PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Thys, B; Eens, M; Aerts, S; Delory, A; Iserbyt, A; Pinxten, R Thys, Bert; Eens, Marcel; Aerts, Silke; Delory, Amandine; Iserbyt, Arne; Pinxten, Rianne Exploration and sociability in a highly gregarious bird are repeatable across seasons and in the long term but are unrelated ANIMAL BEHAVIOUR English Article animal personality; behavioural syndrome; (co)variance partitioning; long term; seasonal context; social behaviour; Sturnus vulgaris STARLINGS STURNUS-VULGARIS; CONSISTENT INDIVIDUAL-DIFFERENCES; BEHAVIORAL SYNDROMES; ANIMAL PERSONALITY; GREAT TITS; CORRELATED BEHAVIORS; TRADE-OFFS; PHENOTYPIC CORRELATIONS; ADAPTIVE PERSONALITIES; FITNESS CONSEQUENCES Personality traits and behavioural syndromes are often assumed to relate to life history strategies and lifetime fitness variation and hence may be generally under selection. Key in this regard is the, often untested, assumption that individual differences in (correlated) behaviours are maintained across contexts and over an individual's lifetime. Here, we tested this assumption, using a population of 30 captive male starlings, Sturnus vulgaris, a highly gregarious avian species. We repeatedly assayed novel environment exploration and different aspects of sociability towards a female conspecific, across seasonal contexts (spring and autumn) and across a 2-year period, which represents a substantial portion of a starling's life span. We found that, regardless of plasticity at the population level, both exploration behaviour and sociability traits investigated were moderately repeatable across seasons and years, with no significant differences between repeatability estimates over different timescales. However, no evidence was found for significant between-individual correlations between the investigated traits, including different aspects of sociability. Taken together, our results provide empirical evidence that exploration and sociability are personality traits that are stable across seasons and in the long term but do not form behavioural syndromes. Given the recent evidence that personality traits are often heritable, the traits assessed in our study might have the potential to evolve independently under selection. This long-term consistency in exploration and sociability might have important implications for the social organization within complex social environments and influence a wide variety of ecologically relevant processes. (C) 2016 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Thys, Bert; Eens, Marcel; Aerts, Silke; Delory, Amandine; Iserbyt, Arne; Pinxten, Rianne] Univ Antwerp, Dept Biol, Behav Ecol & Ecophysiol Grp, Antwerp, Belgium; [Pinxten, Rianne] Univ Antwerp, Fac Social Sci, Antwerp Sch Educ, Antwerp, Belgium Thys, B (reprint author), Campus Drie Eiken,Bldg D Room 1-23,Univ Pl 1, B-2610 Antwerp, Belgium. bert.thys@uantwerpen.be Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO); University of Antwerp We thank Geert Eens for technical support and building the test room, Peter Scheys for animal care and Sofie Brems for preparing Fig. 1. Thomas Raap, AlexanderWeiss and two anonymous referees provided valuable feedback on the manuscript. This work was financially supported by the Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO) and the University of Antwerp. The authors declare that they have no conflict of interest. Apfelbeck B, 2008, HORM BEHAV, V54, P435, DOI 10.1016/j.yhbeh.2008.04.003; Aplin LM, 2015, ANIM BEHAV, V108, P117, DOI 10.1016/j.anbehav.2015.07.016; Bates D, 2015, J STAT SOFTW, V67, P1; Baugh AT, 2014, GEN COMP ENDOCR, V208, P154, DOI 10.1016/j.ygcen.2014.08.014; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; BOAKE CRB, 1989, EVOL ECOL, V3, P173, DOI 10.1007/BF02270919; Boogert NJ, 2006, ANIM BEHAV, V72, P1229, DOI 10.1016/j.anbehav.2006.02.021; Boulton K, 2014, BEHAV ECOL SOCIOBIOL, V68, P791, DOI 10.1007/s00265-014-1692-0; Brommer JE, 2015, FRONT ZOOL, V12, DOI 10.1186/1742-9994-12-S1-S2; Budaev SV, 1997, J COMP PSYCHOL, V111, P399, DOI 10.1037/0735-7036.111.4.399; Class B, 2016, BEHAV ECOL SOCIOBIOL, V70, P733, DOI 10.1007/s00265-016-2096-0; Class B, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2777; Cote J, 2008, P ROY SOC B-BIOL SCI, V275, P2851, DOI 10.1098/rspb.2008.0783; Cote J, 2007, P R SOC B, V274, P383, DOI 10.1098/rspb.2006.3734; Cote J, 2010, P ROY SOC B-BIOL SCI, V277, P1571, DOI 10.1098/rspb.2009.2128; Dammhahn M., 2012, P ROYAL SOC B, V84, P1131; David M, 2012, ETHOLOGY, V118, P932, DOI 10.1111/j.1439-0310.2012.02085.x; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Dingemanse NJ, 2014, QUANTITATIVE GENETICS IN THE WILD, P54; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dochtermann NA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2201; Dochtermann NA, 2013, BEHAV ECOL, V24, P806, DOI 10.1093/beheco/art002; Dochtermann NA, 2011, EVOLUTION, V65, P1814, DOI 10.1111/j.1558-5646.2011.01264.x; EENS M, 1993, BEHAVIOUR, V125, P51, DOI 10.1163/156853993X00182; EENS M, 1990, BIRD STUDY, V37, P48, DOI 10.1080/00063659009477038; Eens M, 1997, ADV STUD BEHAV, V26, P355, DOI 10.1016/S0065-3454(08)60384-8; Farine DR, 2015, J EVOLUTION BIOL, V28, P547, DOI 10.1111/jeb.12587; Feare C., 1984, STARLING; FEARE CJ, 1995, IBIS, V137, P379, DOI 10.1111/j.1474-919X.1995.tb08036.x; Formica VA, 2012, J EVOLUTION BIOL, V25, P130, DOI 10.1111/j.1420-9101.2011.02411.x; Funghi C, 2015, ETHOLOGY, V121, P84, DOI 10.1111/eth.12318; Garamszegi LZ, 2013, BEHAV ECOL, V24, P1068, DOI 10.1093/beheco/art033; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Gelman Andrew, 2015, ARM DATA ANAL USING; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Gwinner H, 2002, HORM BEHAV, V42, P21, DOI 10.1006/hbeh.2002.1795; Haage M, 2013, BEHAV PROCESS, V100, P103, DOI 10.1016/j.beproc.2013.08.009; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hall ML, 2015, FRONT ECOL EVOL, V3, P28; Hamede RK, 2009, ECOL LETT, V12, P1147, DOI 10.1111/j.1461-0248.2009.01370.x; Kluen E, 2013, BEHAV ECOL, V24, P650, DOI 10.1093/beheco/ars221; Koski S. E., 2014, FRONTIERS ECOLOGY EV, V2, P70, DOI DOI 10.3389/FEV0.2014.00070; Koski SE, 2011, BEHAV ECOL SOCIOBIOL, V65, P2161, DOI 10.1007/s00265-011-1224-0; McCowan LSC, 2015, BEHAV ECOL, V26, P735, DOI 10.1093/beheco/aru239; McEvoy J, 2015, J ZOOL, V296, P58, DOI 10.1111/jzo.12217; McGhee KE, 2010, ANIM BEHAV, V79, P497, DOI 10.1016/j.anbehav.2009.11.037; Minderman J, 2010, BEHAV ECOL, V21, P1321, DOI 10.1093/beheco/arq151; Mutzel A, 2011, ANIM BEHAV, V81, P731, DOI 10.1016/j.anbehav.2011.01.001; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nicolaus M, 2012, P ROY SOC B-BIOL SCI, V279, P4885, DOI 10.1098/rspb.2012.1936; Niemela PT, 2012, FUNCT ECOL, V26, P450, DOI 10.1111/j.1365-2435.2011.01939.x; Niemela PT, 2014, TRENDS ECOL EVOL, V29, P245, DOI 10.1016/j.tree.2014.02.007; Oh KP, 2010, AM NAT, V176, pE80, DOI 10.1086/655216; Pike TW, 2008, P ROY SOC B-BIOL SCI, V275, P2515, DOI 10.1098/rspb.2008.0744; PINXTEN R, 1990, ANIM BEHAV, V40, P1035, DOI 10.1016/S0003-3472(05)80171-X; Pinxten R, 2003, HORM BEHAV, V44, P103, DOI 10.1016/S0018-506X(03)00120-X; Pinxten R, 2003, HORM BEHAV, V43, P394, DOI 10.1016/S0018-506X(03)00012-6; Reale D., 2012, ANIMAL PERSONALITY; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reale D, 2010, PHILOS T R SOC B, V365, P3937, DOI 10.1098/rstb.2010.0222; RENNER MJ, 1990, PSYCHOBIOLOGY, V18, P16; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Schielzeth H, 2010, METHODS ECOL EVOL, V1, P103, DOI 10.1111/j.2041-210X.2010.00012.x; Schuett W, 2009, ANIM BEHAV, V77, P1041, DOI 10.1016/j.anbehav.2008.12.024; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sinervo B, 2002, HEREDITY, V89, P329, DOI 10.1038/sj.hdy.6800148; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Svenson L., 1984, IDENTIFICATION GUIDE; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; VERBEEK MEM, 1994, ANIM BEHAV, V48, P1113, DOI 10.1006/anbe.1994.1344; Webster MM, 2011, BIOL REV, V86, P759, DOI 10.1111/j.1469-185X.2010.00169.x; WITTER MS, 1995, BEHAV ECOL, V6, P343, DOI 10.1093/beheco/6.3.343; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2014, TRENDS ECOL EVOL, V29, P306, DOI 10.1016/j.tree.2014.03.008; Wolf M, 2011, P ROY SOC B-BIOL SCI, V278, P440, DOI 10.1098/rspb.2010.1051; Wuerz Y., 2015, FRONTIERS ZOOLOGY, V12, P1; Garamszegi LZ, 2015, BEHAV ECOL SOCIOBIOL, V69, P2005, DOI 10.1007/s00265-015-2012-z; Garamszegi LZ, 2012, BEHAV ECOL SOCIOBIOL, V66, P1651, DOI 10.1007/s00265-012-1439-8; Garamszegi LZ, 2012, EVOL ECOL, V26, P1213, DOI 10.1007/s10682-012-9589-8; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 88 3 3 2 38 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. JAN 2017 123 339 348 10.1016/j.anbehav.2016.11.014 10 Behavioral Sciences; Zoology Behavioral Sciences; Zoology EH5VK WOS:000391840900036 2019-02-21 J Honsey, AE; Staples, DF; Venturelli, PA Honsey, Andrew E.; Staples, David F.; Venturelli, Paul A. Accurate estimates of age at maturity from the growth trajectories of fishes and other ectotherms ECOLOGICAL APPLICATIONS English Article age at maturity; biphasic growth; Lester biphasic growth model; life history; profile likelihood; Sander vitreus DENSITY-DEPENDENT GROWTH; LIFE-HISTORY TRAITS; REACTION NORMS; PHENOTYPIC PLASTICITY; SEXUAL-MATURITY; EFFECTS MODELS; SIZE; MATURATION; REPRODUCTION; POPULATIONS Age at maturity (AAM) is a key life history trait that provides insight into ecology, evolution, and population dynamics. However, maturity data can be costly to collect or may not be available. Life history theory suggests that growth is biphasic for many organisms, with a change-point in growth occurring at maturity. If so, then it should be possible to use a biphasic growth model to estimate AAM from growth data. To test this prediction, we used the Lester biphasic growth model in a likelihood profiling framework to estimate AAM from length at age data. We fit our model to simulated growth trajectories to determine minimum data requirements (in terms of sample size, precision in length at age, and the cost to somatic growth of maturity) for accurate AAM estimates. We then applied our method to a large walleye Sander vitreus data set and show that our AAM estimates are in close agreement with conventional estimates when our model fits well. Finally, we highlight the potential of our method by applying it to length at age data for a variety of ectotherms. Our method shows promise as a tool for estimating AAM and other life history traits from contemporary and historical samples. [Honsey, Andrew E.] Univ Minnesota, Ecol Evolut & Behav Grad Program, 1987 Upper Buford Circle, St Paul, MN 55108 USA; [Honsey, Andrew E.; Venturelli, Paul A.] Univ Minnesota, Dept Fisheries Wildlife & Conservat Biol, 2003 Upper Buford Circle, St Paul, MN 55108 USA; [Staples, David F.] Minnesota Dept Nat Resources, Div Fish & Wildlife, 5463-C West Broadway, Forest Lake, MN 55025 USA Honsey, AE (reprint author), Univ Minnesota, Ecol Evolut & Behav Grad Program, 1987 Upper Buford Circle, St Paul, MN 55108 USA.; Honsey, AE (reprint author), Univ Minnesota, Dept Fisheries Wildlife & Conservat Biol, 2003 Upper Buford Circle, St Paul, MN 55108 USA. honse018@umn.edu Venturelli, Paul/A-2337-2008 Venturelli, Paul/0000-0002-7329-7517 Moos Fellowship in Aquatic Biology; University of Minnesota; Minnesota Department of Natural Resources We thank Tyler Imfeld, Monica Watson, Nigel Lester, Brian Shuter, Cindy Chu, Henrique Giacomini, and the Venturelli lab for their assistance with analysis and data collection. We are also indebted to Richard Bruce, Beth Matta, Mike Palmer, Paul Rago, Sandra Orsatti, Daniel Nadeau, Michel Legault, the Ontario Ministry of Natural Resources and Forestry, the Quebec Ministry of Natural Resources and Wildlife, and the Minnesota Department of Natural Resources (copyright 2016, Minnesota Department of Natural Resources) for providing data. Finally, we thank two anonymous reviewers for their helpful comments and suggestions. This work was funded by the Moos Fellowship in Aquatic Biology, the University of Minnesota, and the Minnesota Department of Natural Resources. Andersen KH, 2015, FISH FISH, V16, P1, DOI 10.1111/faf.12042; AUGERT D, 1993, CAN J ZOOL, V71, P26, DOI 10.1139/z93-005; Baulier L, 2008, J FISH BIOL, V73, P2452, DOI 10.1111/j.1095-8649.2008.02088.x; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; Beverton R. J. H., 1957, FISHERIES INVESTIG 2, V19, P1; Boukal DS, 2014, J THEOR BIOL, V359, P199, DOI 10.1016/j.jtbi.2014.05.022; Bozek MA, 2011, BIOLOGY, MANAGEMENT, AND CULTURE OF WALLEYE AND SAUGER, P233; Brunel T, 2013, OECOLOGIA, V172, P631, DOI 10.1007/s00442-012-2527-1; Canty A., 2015, BOOT BOOTSTRAP R S P; Castanet J, 1996, HERPETOLOGICA, V52, P160; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; Chavarie L, 2016, J GREAT LAKES RES, V42, P193, DOI 10.1016/j.jglr.2015.07.006; CHEN Y, 1994, AQUAT SCI, V56, P206, DOI 10.1007/BF00879965; Chezik KA, 2014, CAN J FISH AQUAT SCI, V71, P47, DOI 10.1139/cjfas-2013-0295; Daniel W., 2013, BIOSTATISTICS FDN AN; Davison A. C., 1997, BOOTSTRAP METHODS TH; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; DEMASTER DP, 1978, J FISH RES BOARD CAN, V35, P912, DOI 10.1139/f78-148; EBERT D, 1994, OIKOS, V69, P309, DOI 10.2307/3546152; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Engelhard GH, 2003, ICES J MAR SCI, V60, P304, DOI 10.1016/S1054-3139(03)00017-1; Fox J., 2011, R COMPANION APPL REG; Glazier DS, 2010, BIOL REV, V85, P111, DOI 10.1111/j.1469-185X.2009.00095.x; Hacking I., 1965, LOGIC STAT INFERENCE; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Herczeg G, 2012, EVOL ECOL, V26, P109, DOI 10.1007/s10682-011-9491-9; Hixon MA, 2014, ICES J MAR SCI, V71, P2171, DOI 10.1093/icesjms/fst200; Hoekstra R. J., 2005, EVOLUTION; HUBERT JJ, 1984, BIOASSAY; KALBFLEI.JD, 1970, J ROY STAT SOC B, V32, P175; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuwamura T, 1996, BEHAV ECOL SOCIOBIOL, V38, P365, DOI 10.1007/s002650050253; LAIRD NM, 1982, BIOMETRICS, V38, P963, DOI 10.2307/2529876; Lester NP, 2014, ECOL APPL, V24, P38, DOI 10.1890/12-2020.1; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Logsdon D. E., 2006, 535 MINN DEP NAT RES; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Matta ME, 2007, ENVIRON BIOL FISH, V80, P309, DOI 10.1007/s10641-007-9223-8; Minte-Vera CV, 2016, FISH RES, V180, P31, DOI 10.1016/j.fishres.2015.10.023; Mollet FM, 2010, OIKOS, V119, P10, DOI 10.1111/j.1600-0706.2009.17746.x; Morgan G.E., 2002, MANUAL INSTRUCTIONS; Ohnishi S, 2012, FISH B-NOAA, V110, P223; Pawitan Y., 2013, ALL LIKELIHOOD STAT; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; R Core Team, 2015, R LANG ENV STAT COMP; Raue A, 2009, BIOINFORMATICS, V25, P1923, DOI 10.1093/bioinformatics/btp358; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; Rijnsdorp AD, 1995, BEL BAR LIB, P581; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Roff Derek A., 1992; Royall R, 2004, NATURE OF SCIENTIFIC EVIDENCE, P119; Royall RM, 1997, STAT EVIDENCE LIKELI; Scott RD, 2012, MAR ECOL PROG SER, V450, P147, DOI 10.3354/meps09565; Sober E, 2008, EVIDENCE EVOLUTION L; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Taper ML, 2011, HBK PHILOS SCI, V7, P513; TRIPPEL EA, 1991, CAN J FISH AQUAT SCI, V48, P1446, DOI 10.1139/f91-172; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Uusi-Heikkila S., 2015, EVOLUTIONARY APPL, V8, P579; Venturelli PA, 2010, CAN J FISH AQUAT SCI, V67, P1057, DOI 10.1139/F10-041; Von Bertalanffy L., 1938, HUM BIOL, V10, P181, DOI DOI 10.2307/41447359; Walters C. J, 1992, QUANTITATIVE FISHERI; WARE DM, 1978, J FISH RES BOARD CAN, V35, P220, DOI 10.1139/f78-036; West GB, 1999, SCIENCE, V284, P1677, DOI 10.1126/science.284.5420.1677; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122 69 1 1 3 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. JAN 2017 27 1 182 192 10.1002/eap.1421 11 Ecology; Environmental Sciences Environmental Sciences & Ecology EH7XG WOS:000391985300015 27973729 2019-02-21 J Wang, HY; Chen, YS; Hsu, CC; Shen, SF Wang, Hui-Yu; Chen, Ying-Shiuan; Hsu, Chien-Chung; Shen, Sheng-Feng Fishing-induced changes in adult length are mediated by skipped-spawning ECOLOGICAL APPLICATIONS English Article adult demography; eco-genetic individual-based modeling; fisheries selectivity; fishing-induced evolution; life history trade-offs; Pacific bluefin tuna; Thunnus orientalis PACIFIC BLUEFIN TUNA; INDUCED DISRUPTIVE SELECTION; DEPENDENT ENERGY ALLOCATION; LIFE-HISTORY EVOLUTION; COD GADUS-MORHUA; AGE-STRUCTURE; THUNNUS-ORIENTALIS; BIPHASIC GROWTH; NORTH PACIFIC; FISHERIES Elucidating fishing effects on fish population dynamics is a critical step toward sustainable fisheries management. Despite previous studies that have suggested age or size truncation in exploited fish populations, other aspects of fishing effects on population demography, e. g., via altering life histories and density, have received less attention. Here, we investigated the fishing effects altering adult demography via shifting reproductive trade-offs in the iconic, overexploited, Pacific bluefin tuna Thunnus orientalis. We found that, contrary to our expectation, mean lengths of catch increased over time in longline fisheries. On the other hand, mean catch lengths for purse seine fisheries did not show such increasing trends. We hypothesized that the size-dependent energetic cost of the spawning migration and elevated fishing mortality on the spawning grounds potentially drive size-dependent skipped spawning for adult tuna, mediating the observed changes in the catch lengths. Using eco-genetic individual-based modeling, we demonstrated that fishing-induced evolution of skipped spawning and size truncation interacted to shape the observed temporal changes in mean catch lengths for tuna. Skipped spawning of the small adults led to increased mean catch lengths for the longline fisheries, while truncation of small adults by the purse seines could offset such a pattern. Our results highlight the eco-evolutionary dynamics of fishing effects on population demography and caution against using demographic traits as a basis for fisheries management of the Pacific bluefin tuna as well as other migratory species. [Wang, Hui-Yu; Chen, Ying-Shiuan; Hsu, Chien-Chung] Natl Taiwan Univ, Inst Oceanog, 1,Sec 4,Roosevelt Rd, Taipei 106, Taiwan; [Shen, Sheng-Feng] Acad Sinica, Biodivers Res Ctr, Taipei 115, Taiwan Wang, HY (reprint author), Natl Taiwan Univ, Inst Oceanog, 1,Sec 4,Roosevelt Rd, Taipei 106, Taiwan. huiyuwang@ntu.edu.tw WANG, HUI-YU/0000-0002-9100-321X Ministry of Science and Technology (a.k.a., National Science Council), Taiwan [NSC 102-2611-M-002-001, MOST 103-2611-M-002-015] We thank Tomas Hook's laboratory at Purdue University, Mikko Heino, Lori Ivan, Francis Juanes, Jin Gao, and Chih-hao Hsieh for providing invaluable comments and suggestions on the manuscript. Funding was provided by the Ministry of Science and Technology (a.k.a., National Science Council), Taiwan. Projects NSC 102-2611-M-002-001 and MOST 103-2611-M-002-015. BAYLIFF WH, 1994, FAO FISH TECH PAP, V336, P244; Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; Block BA, 2011, NATURE, V475, P86, DOI 10.1038/nature10082; Boustany AM, 2010, PROG OCEANOGR, V86, P94, DOI 10.1016/j.pocean.2010.04.015; Brunel T, 2013, ICES J MAR SCI, V70, P270, DOI 10.1093/icesjms/fss184; Brunel T, 2010, ICES J MAR SCI, V67, P1921, DOI 10.1093/icesjms/fsq032; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Chapman EW, 2011, CAN J FISH AQUAT SCI, V68, P1934, DOI 10.1139/F2011-109; Chen KS, 2006, FISHERIES SCI, V72, P985, DOI 10.1111/j.1444-2906.2006.01247.x; Collette B. B., 1983, FAO FISHERY SYNOPSIS, V125, P122; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Durant JM, 2013, MAR ECOL PROG SER, V480, P277, DOI 10.3354/meps10308; Edeline E, 2009, P R SOC B, V276, P4163, DOI 10.1098/rspb.2009.1106; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Farley JH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096392; Francis RC, 2007, FISHERIES, V32, P217, DOI 10.1577/1548-8446(2007)32[217:TCFBFS]2.0.CO;2; Hidalgo M, 2011, MAR ECOL PROG SER, V426, P1, DOI 10.3354/meps09077; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Hsieh CH, 2010, AQUAT SCI, V72, P165, DOI 10.1007/s00027-009-0122-2; Hsu CC, 2000, FISHERIES SCI, V66, P485, DOI 10.1046/j.1444-2906.2000.00078.x; IATTC, 2014, INT TROP TUN COMM SC; International Scientific Committee (ISC) for Tuna and Tuna-like Species in the North Pacific Ocean, 2011, PAC BLUEF TUN WORK G; International Scientific Committee (ISC) for Tuna and Tuna-like Species in the North Pacific Ocean, 2014, ISC14PLENARYINFO18; International Scientific Committee (ISC) for Tuna and Tuna-like Species in the North Pacific Ocean, 2012, PAC BLUEF TUN WORK G; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Landi P, 2015, J THEOR BIOL, V365, P204, DOI 10.1016/j.jtbi.2014.10.017; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Lester NP, 2014, ECOL APPL, V24, P38, DOI 10.1890/12-2020.1; Margulies D, 2007, FISH B-NOAA, V105, P249; Masuma S., 2009, COLLECT VOL SCI PAP, V63, P207; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Ottersen G, 2006, FISH OCEANOGR, V15, P230, DOI 10.1111/j.1365-2419.2006.00404.x; Quince C, 2008, J THEOR BIOL, V254, P207, DOI 10.1016/j.jtbi.2008.05.030; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; ROFF DA, 1991, AM ZOOL, V31, P205; Rouyer T, 2011, GLOBAL CHANGE BIOL, V17, P3046, DOI 10.1111/j.1365-2486.2011.02443.x; Secor D. H., 2007, COL VOL SCI PAP ICCA, V60, P1141; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Shimose T, 2009, FISH RES, V100, P134, DOI 10.1016/j.fishres.2009.06.016; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Wang HY, 2009, EVOL APPL, V2, P438, DOI 10.1111/j.1752-4571.2009.00088.x; Ware D. M., 1980, CANADIAN J FISHERIES, V37, P207; WARE DM, 1982, CAN J FISH AQUAT SCI, V39, P3, DOI 10.1139/f82-002; Whitlock RE, 2016, FISH RES, V181, P248, DOI 10.1016/j.fishres.2016.03.010; Whitlock RE, 2012, FISH RES, V119, P115, DOI 10.1016/j.fishres.2011.12.015; Yamada H., 2009, COLLECT VOL SCI PAP, V63, P195 53 1 1 1 11 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. JAN 2017 27 1 274 284 10.1002/eap.1441 11 Ecology; Environmental Sciences Environmental Sciences & Ecology EH7XG WOS:000391985300022 28052500 2019-02-21 J Dennenmoser, S; Vamosi, SM; Nolte, AW; Rogers, SM Dennenmoser, Stefan; Vamosi, Steven M.; Nolte, Arne W.; Rogers, Sean M. Adaptive genomic divergence under high gene flow between freshwater and brackish-water ecotypes of prickly sculpin (Cottus asper) revealed by Pool-Seq MOLECULAR ECOLOGY English Article adaptation; amphidromy; atp1a1a; Pool-Seq; salinity genes; whole-genome scan RECOMBINATION RATE VARIATION; LOCAL ADAPTATION; THREESPINE STICKLEBACKS; ATLANTIC SALMON; NEXT-GENERATION; DIFFERENTIAL EXPRESSION; ECOLOGICAL SPECIATION; 3-SPINED STICKLEBACK; POPULATION-STRUCTURE; SALINITY TOLERANCE Understanding the genomic basis of adaptive divergence in the presence of gene flow remains a major challenge in evolutionary biology. In prickly sculpin (Cottus asper), an abundant euryhaline fish in northwestern North America, high genetic connectivity among brackish-water (estuarine) and freshwater (tributary) habitats of coastal rivers does not preclude the build-up of neutral genetic differentiation and emergence of different life history strategies. Because these two habitats present different osmotic niches, we predicted high genetic differentiation at known teleost candidate genes underlying salinity tolerance and osmoregulation. We applied whole-genome sequencing of pooled DNA samples (Pool-Seq) to explore adaptive divergence between two estuarine and two tributary habitats. Paired-end sequence reads were mapped against genomic contigs of European Cottus, and the gene content of candidate regions was explored based on comparisons with the threespine stickleback genome. Genes showing signals of repeated differentiation among brackish-water and freshwater habitats included functions such as ion transport and structural permeability in freshwater gills, which suggests that local adaptation to different osmotic niches might contribute to genomic divergence among habitats. Overall, the presence of both repeated and unique signatures of differentiation across many loci scattered throughout the genome is consistent with polygenic adaptation from standing genetic variation and locally variable selection pressures in the early stages of life history divergence. [Dennenmoser, Stefan; Nolte, Arne W.] Max Planck Inst Evolutionary Biol, August Thienemann Str 2, D-24306 Plon, Germany; [Dennenmoser, Stefan; Vamosi, Steven M.; Rogers, Sean M.] Univ Calgary, Dept Biol Sci, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada; [Nolte, Arne W.] Carl von Ossietzky Univ Oldenburg, Inst Biol, Carl von Ossietzky Str 9-11, D-26111 Oldenburg, Germany Dennenmoser, S (reprint author), Max Planck Inst Evolutionary Biol, August Thienemann Str 2, D-24306 Plon, Germany.; Dennenmoser, S (reprint author), Univ Calgary, Dept Biol Sci, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. dennenmoser@evolbio.mpg.de Nolte, Arne/I-4661-2017; Vamosi, Steven/C-8126-2009 Vamosi, Steven/0000-0003-3903-5000 NSERC; Alberta Innovates Technology Futures New Faculty Award; Alberta Innovates Technology Futures Postgraduate scholarship; European Research Council Field assistance by Jonathan Lowey is greatly appreciated. This research was supported by NSERC Discovery Grants (SMR and SMV), an Alberta Innovates Technology Futures New Faculty Award (SMR), an Alberta Innovates Technology Futures Postgraduate scholarship (SD) and an European Research Council starting grant (AN). SMR would like to thank the Bamfield Marine Sciences Centre (BMSC) for resources while working on this study. ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999; Anderson EC, 2014, MOL ECOL, V23, P502, DOI 10.1111/mec.12609; Aykanat T, 2011, GENETICA, V139, P233, DOI 10.1007/s10709-010-9540-2; Barrio AM, 2016, ELIFE, V5, DOI 10.7554/eLife.12081; Beaumont MA, 1996, P ROY SOC B-BIOL SCI, V263, P1619, DOI 10.1098/rspb.1996.0237; Bekkevold D, 2005, EVOLUTION, V59, P2656; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Berg PR, 2015, GENOME BIOL EVOL, V7, P1644, DOI 10.1093/gbe/evv093; BOHN A, 1965, CAN J ZOOLOG, V43, P977, DOI 10.1139/z65-101; Bourret V, 2014, MOL ECOL, V23, P4444, DOI 10.1111/mec.12798; Burri R, 2015, GENOME RES, V25, P1656, DOI 10.1101/gr.196485.115; Butlin RK, 2014, EVOLUTION, V68, P935, DOI 10.1111/evo.12329; CHARLESWORTH B, 1993, GENETICS, V134, P1289; Cheng J, 2013, HEREDITY, V111, P520, DOI 10.1038/hdy.2013.76; Cheng J, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0746; Conesa A, 2005, BIOINFORMATICS, V21, P3674, DOI 10.1093/bioinformatics/bti610; Coyne J. A., 2004, SPECIATION; Cruickshank TE, 2014, MOL ECOL, V23, P3133, DOI 10.1111/mec.12796; Dalziel AC, 2009, MOL ECOL, V18, P4997, DOI 10.1111/j.1365-294X.2009.04427.x; DeFaveri J, 2014, J EVOLUTION BIOL, V27, P290, DOI 10.1111/jeb.12289; DeFaveri J, 2011, EVOLUTION, V65, P1800, DOI 10.1111/j.1558-5646.2011.01247.x; Delmore KE, 2015, MOL ECOL, V24, P1873, DOI 10.1111/mec.13150; Dennenmoser S, 2015, J BIOGEOGR, V42, P1626, DOI 10.1111/jbi.12527; Dennenmoser S, 2014, BIOL J LINN SOC, V113, P943, DOI 10.1111/bij.12384; Endler J. A., 1986, NATURAL SELECTION WI; Ern R, 2014, J FISH BIOL, V84, P1210, DOI 10.1111/jfb.12330; Evans DH, 2008, AM J PHYSIOL-REG I, V295, pR704, DOI 10.1152/ajpregu.90337.2008; Evans DH, 2005, PHYSIOL REV, V85, P97, DOI 10.1152/physrev.00050.2003; Feder JL, 2014, J HERED, V105, P810, DOI 10.1093/jhered/esu038; Feder JL, 2012, TRENDS GENET, V28, P342, DOI 10.1016/j.tig.2012.03.009; Ferretti L, 2013, MOL ECOL, V22, P5561, DOI 10.1111/mec.12522; Feulner PGD, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1004966; Flaxman SM, 2014, MOL ECOL, V23, P4074, DOI 10.1111/mec.12750; Foll M, 2008, GENETICS, V180, P977, DOI 10.1534/genetics.108.092221; Fracassetti M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0140462; Futschik A, 2010, GENETICS, V186, P207, DOI 10.1534/genetics.110.114397; Gagnaire PA, 2013, EVOLUTION, V67, P2483, DOI 10.1111/evo.12075; Gautier M, 2013, MOL ECOL, V22, P3766, DOI 10.1111/mec.12360; Goto A, 2015, ENVIRON BIOL FISH, V98, P307, DOI 10.1007/s10641-014-0262-7; Gow JL, 2007, J EVOLUTION BIOL, V20, P2173, DOI 10.1111/j.1420-9101.2007.01427.x; Guo BC, 2015, BMC BIOL, V13, DOI 10.1186/s12915-015-0130-8; Haasl RJ, 2016, MOL ECOL, V25, P5, DOI 10.1111/mec.13339; Hemmer-Hansen J, 2013, MOL ECOL, V22, P2653, DOI 10.1111/mec.12284; Hoffmann AA, 2008, ANNU REV ECOL EVOL S, V39, P21, DOI 10.1146/annurev.ecolsys.39.110707.173532; Hohenlohe PA, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000862; Holliday JA, 2016, NEW PHYTOL, V209, P1240, DOI 10.1111/nph.13643; Hwang PP, 2011, AM J PHYSIOL-REG I, V301, pR28, DOI 10.1152/ajpregu.00047.2011; Ito Y, 2013, FRONT PHYSIOL, V4, DOI 10.3389/fphys.2013.00059; Jones FC, 2012, NATURE, V484, P55, DOI 10.1038/nature10944; Jones FC, 2012, CURR BIOL, V22, P83, DOI 10.1016/j.cub.2011.11.045; Kaeuffer R, 2012, EVOLUTION, V66, P402, DOI 10.1111/j.1558-5646.2011.01440.x; Kinziger AP, 2010, ZOOTAXA, P50; Kirkpatrick M, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000501; Kofler R, 2011, BIOINFORMATICS, V27, P3435, DOI 10.1093/bioinformatics/btr589; Kofler R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015925; Kozak GM, 2014, EVOLUTION, V68, P63, DOI 10.1111/evo.12265; Lamichhaney S, 2012, P NATL ACAD SCI USA, V109, P19345, DOI 10.1073/pnas.1216128109; Langerhans RB, 2013, CURR ZOOL, V59, P31, DOI 10.1093/czoolo/59.1.31; Larsen PF, 2008, BMC GENET, V9, DOI 10.1186/1471-2156-9-12; Le Corre V, 2012, MOL ECOL, V21, P1548, DOI 10.1111/j.1365-294X.2012.05479.x; Leder EH, 2010, MOL BIOL EVOL, V27, P1495, DOI 10.1093/molbev/msq031; Lee CE, 2011, EVOLUTION, V65, P2229, DOI 10.1111/j.1558-5646.2011.01308.x; Li H, 2009, BIOINFORMATICS, V25, P2078, DOI 10.1093/bioinformatics/btp352; Lohse K, 2015, EVOLUTION, V69, P1178, DOI 10.1111/evo.12650; MacPherson A, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.1570; Malinsky M, 2015, SCIENCE, V350, P1493, DOI 10.1126/science.aac9927; Mayr E., 1963, ANIMAL SPECIES EVOLU; McAllister DE, 1961, B NATL MUSEUM CANADA, V172, P66; McCairns RJS, 2008, MOL ECOL, V17, P3901, DOI 10.1111/j.1365-294X.2008.03884.x; McCairns RJS, 2010, EVOLUTION, V64, P1029, DOI 10.1111/j.1558-5646.2009.00886.x; McGaughran A, 2016, MOL BIOL EVOL, V33, P2257, DOI 10.1093/molbev/msw093; McPhail J. D., 2007, FRESHWATER FISHES BR; Mobasheri A, 2000, BIOSCIENCE REP, V20, P51, DOI 10.1023/A:1005580332144; Nachman MW, 2012, PHILOS T R SOC B, V367, P409, DOI 10.1098/rstb.2011.0249; Nei M., 1987, MOL EVOLUTIONARY GEN; Nielsen R, 2005, ANNU REV GENET, V39, P197, DOI 10.1146/annurev.genet.39.073003.112420; Nilsen TO, 2007, J EXP BIOL, V210, P2885, DOI 10.1242/jeb.002873; Norman JD, 2011, BMC GENET, V12, DOI 10.1186/1471-2156-12-81; Nosil P, 2013, EVOLUTION, V67, P2461, DOI 10.1111/evo.12191; Nosil P, 2012, PHILOS T R SOC B, V367, P332, DOI 10.1098/rstb.2011.0263; Papakostas S, 2012, MOL ECOL, V21, P3516, DOI 10.1111/j.1365-294X.2012.05553.x; Perrier C, 2013, MOL ECOL, V22, P5577, DOI 10.1111/mec.12500; Prunier J, 2012, MOL ECOL, V21, P4270, DOI 10.1111/j.1365-294X.2012.05691.x; Ravinet M, 2016, MOL ECOL, V25, P287, DOI 10.1111/mec.13332; Rellstab C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080422; Renaut S, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2833; Roesti M, 2012, MOL ECOL, V21, P2852, DOI 10.1111/j.1365-294X.2012.05509.x; Ruegg K, 2014, MOL ECOL, V23, P4757, DOI 10.1111/mec.12842; Rundle HD, 2000, SCIENCE, V287, P306, DOI 10.1126/science.287.5451.306; Sambrook J, 2001, MOL CLONING LAB MANU; Schlotterer C, 2014, NAT REV GENET, V15, P749, DOI 10.1038/nrg3803; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schluter D, 2009, SCIENCE, V323, P737, DOI 10.1126/science.1160006; Sedlazeck FJ, 2013, BIOINFORMATICS, V29, P2790, DOI 10.1093/bioinformatics/btt468; Seehausen O, 2014, NAT REV GENET, V15, P176, DOI 10.1038/nrg3644; Sexton JP, 2014, EVOLUTION, V68, P1, DOI 10.1111/evo.12258; Shafer ABA, 2013, ECOL LETT, V16, P940, DOI 10.1111/ele.12120; Shikano T, 2010, MOL ECOL, V19, P1147, DOI 10.1111/j.1365-294X.2010.04553.x; Shimada Y, 2011, MOL BIOL EVOL, V28, P181, DOI 10.1093/molbev/msq181; Smadja CM, 2012, EVOLUTION, V66, P2723, DOI 10.1111/j.1558-5646.2012.01612.x; Smolka M, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0803-1; Stemshorn KC, 2011, MOL ECOL, V20, P1475, DOI 10.1111/j.1365-294X.2010.04997.x; Stephan W, 2016, MOL ECOL, V25, P79, DOI 10.1111/mec.13288; Sutherland BJG, 2014, MOL ECOL, V23, P1952, DOI 10.1111/mec.12713; TAJIMA F, 1989, GENETICS, V123, P585; Tigano A, 2016, MOL ECOL, V25, P2144, DOI 10.1111/mec.13606; Tsai JR, 2007, J EXP BIOL, V210, P620, DOI 10.1242/jeb.02684; Turner TL, 2005, PLOS BIOL, V3, P1572, DOI 10.1371/journal.pbio.0030285; Urbina MA, 2013, J COMP PHYSIOL B, V183, P345, DOI 10.1007/s00360-012-0719-y; Velotta JP, 2014, OECOLOGIA, V175, P1081, DOI 10.1007/s00442-014-2961-3; Wadsworth CB, 2015, HEREDITY, V114, P593, DOI 10.1038/hdy.2014.128; Wang YF, 2009, AM J PHYSIOL-REG I, V296, pR1650, DOI 10.1152/ajpregu.00119.2009; Whitehead A, 2013, MOL ECOL, V22, P3780, DOI 10.1111/mec.12316; Whitehead A, 2011, P NATL ACAD SCI USA, V108, P6193, DOI 10.1073/pnas.1017542108; Wu CI, 2001, J EVOLUTION BIOL, V14, P851, DOI 10.1046/j.1420-9101.2001.00335.x; Yan BQ, 2013, MOL BIOL REP, V40, P925, DOI 10.1007/s11033-012-2133-7; Yeaman S, 2013, P NATL ACAD SCI USA, V110, pE1743, DOI 10.1073/pnas.1219381110; Yeaman S, 2011, EVOLUTION, V65, P1897, DOI 10.1111/j.1558-5646.2011.01269.x; Zikos A, 2014, COMP BIOCHEM PHYS A, V178, P121, DOI 10.1016/j.cbpa.2014.08.016 119 12 12 5 58 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. JAN 2017 26 1 SI 25 42 10.1111/mec.13805 18 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology EH7GJ WOS:000391940600003 27541083 2019-02-21 J van der Linden, D; Pekaar, KA; Bakker, AB; Schermer, JA; Vernon, PA; Dunkel, CS; Petrides, KV van der Linden, Dimitri; Pekaar, Keri A.; Bakker, Arnold B.; Schermer, Julie Aitken; Vernon, Philip A.; Dunkel, Curtis S.; Petrides, K. V. Overlap Between the General Factor of Personality and Emotional Intelligence: A Meta-Analysis PSYCHOLOGICAL BULLETIN English Article general factor of personality; emotional intelligence; meta-analysis; social effectiveness; trait EI HIGHER-ORDER FACTORS; CRITERION-RELATED VALIDITY; SITUATIONAL JUDGMENT TEST; CAREER DECISION-MAKING; CORE-SELF-EVALUATIONS; INVENTORY-SHORT-FORM; LIFE-HISTORY THEORY; BIG 5; INCREMENTAL VALIDITY; PREDICTIVE-VALIDITY We examine the relationship between the general factor of personality (GFP) and emotional intelligence (EI) and specifically test the hypothesis that the GFP is a social effectiveness factor overlapping conceptually with EI. Presented is an extensive meta-analysis in which the associations between the GFP, extracted from the Big Five dimensions, with various EI measures is examined. Based on a total sample of k = 142 data sources (N = 36,268) the 2 major findings from the meta-analysis were (a) a large overlap between the GFP and trait EI (r approximate to .85); and (b) a positive, but more moderate, correlation with ability EI (r approximate to .28). These findings show that high-GFP individuals score higher on trait and ability EI, supporting the notion that the GFP is a social effectiveness factor. The findings also suggest that the GFP is very similar, perhaps even synonymous, to trait EI. [van der Linden, Dimitri; Pekaar, Keri A.; Bakker, Arnold B.] Erasmus Univ, Inst Psychol, POB 9104, NL-3000 DR Rotterdam, Netherlands; [Schermer, Julie Aitken] Univ Western Ontario, Management & Org Studies, London, ON, Canada; [Vernon, Philip A.] Univ Western Ontario, Dept Psychol, London, ON, Canada; [Dunkel, Curtis S.] Western Illinois Univ, Dept Psychol, Macomb, IL USA; [Petrides, K. V.] UCL, London Psychometr Lab, London, England van der Linden, D (reprint author), Erasmus Univ, Inst Psychol, POB 9104, NL-3000 DR Rotterdam, Netherlands. vanderlinden@fsw.eur.nl Van der Linden, Dimitri/0000-0001-7098-8948; Pekaar, Keri/0000-0002-4612-0476 AFOLABI OA, 2005, TEAM PERFORMANCE MAN, V11, P280, DOI DOI 10.1108/13527590510635161; Andrei F, 2016, J PERS ASSESS, V98, P261, DOI 10.1080/00223891.2015.1084630; Andrei F, 2013, PSIHOLOGIJA, V46, P5, DOI 10.2298/PSI1301005A; Anusic I, 2009, J PERS SOC PSYCHOL, V97, P1142, DOI 10.1037/a0017159; Arteche A, 2008, INT J SELECT ASSESS, V16, P421, DOI 10.1111/j.1468-2389.2008.00446.x; Ashton MC, 2007, PERS SOC PSYCHOL REV, V11, P150, DOI 10.1177/1088868306294907; Ashton MC, 2009, PERS SOC PSYCHOL REV, V13, P79, DOI 10.1177/1088868309338467; Atta M, 2013, INT J BUSINESS SOCIA, V4, P253; Austin EJ, 2005, PERS INDIV DIFFER, V38, P547, DOI 10.1016/j.paid.2004.05.009; Austin EJ, 2008, PERS INDIV DIFFER, V44, P679, DOI 10.1016/j.paid.2007.10.001; Austin EJ, 2007, PERS INDIV DIFFER, V43, P179, DOI 10.1016/j.paid.2006.11.019; Austin EJ, 2010, BRIT J PSYCHOL, V101, P563, DOI 10.1348/000712609X474370; Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; Bastian VA, 2005, PERS INDIV DIFFER, V39, P1135, DOI 10.1016/j.paid.2005.04.006; BLOCK J, 1995, PSYCHOL BULL, V117, P187, DOI 10.1037/0033-2909.117.2.187; Brackett MA, 2004, PERS INDIV DIFFER, V36, P1387, DOI 10.1016/S0191-8869(03)00236-8; Brackett MA, 2003, PERS SOC PSYCHOL B, V29, P1147, DOI 10.1177/0146167203254596; Brannick MT, 2009, MED EDUC, V43, P1062, DOI 10.1111/j.1365-2923.2009.03430.x; Byrne JC, 2007, INT J SELECT ASSESS, V15, P341, DOI 10.1111/j.1468-2389.2007.00393.x; Perez-Gonzalez JC, 2014, PERS INDIV DIFFER, V65, P53, DOI 10.1016/j.paid.2014.01.021; CARROLL JB, 1991, INTELLIGENCE, V15, P423, DOI 10.1016/0160-2896(91)90004-W; Caruso DR, 2002, J PERS ASSESS, V79, P306, DOI 10.1207/S15327752JPA7902_12; Caspi A, 2014, CLIN PSYCHOL SCI, V2, P119, DOI 10.1177/2167702613497473; Cavazotte F, 2012, LEADERSHIP QUART, V23, P443, DOI 10.1016/j.leaqua.2011.10.003; Chamorro-Premuzic T, 2007, PERS INDIV DIFFER, V42, P1633, DOI 10.1016/j.paid.2006.10.029; Chamorro-Premuzic T, 2012, PSYCHOL MUSIC, V40, P285, DOI 10.1177/0305735610381591; Chang LY, 2012, J PERS SOC PSYCHOL, V102, P408, DOI 10.1037/a0025559; Chapman B. P., 2005, THESIS; Chapman BP, 2005, J PERS ASSESS, V85, P154, DOI 10.1207/s15327752jpa8502_08; Charbonneau D, 2002, PERS INDIV DIFFER, V33, P1101, DOI 10.1016/S0191-8869(01)00216-1; Ciarrochi JV, 2000, PERS INDIV DIFFER, V28, P539, DOI 10.1016/S0191-8869(99)00119-1; Collins E, 2012, PERS INDIV DIFFER, V52, P133, DOI 10.1016/j.paid.2011.09.015; Connelly BS, 2010, PSYCHOL BULL, V136, P1092, DOI 10.1037/a0021212; Cote S, 2006, ADMIN SCI QUART, V51, P1, DOI 10.2189/asqu.51.1.1; Cote S, 2014, ANNU REV ORGAN PSYCH, V1, P459, DOI 10.1146/annurev-orgpsych-031413-091233; Cote S, 2011, PSYCHOL SCI, V22, P1073, DOI 10.1177/0956797611416251; Cote S, 2010, IND ORGAN PSYCHOL-US, V3, P127, DOI 10.1111/j.1754-9434.2010.01211.x; CRONBACH LJ, 1955, PSYCHOL BULL, V52, P281, DOI 10.1037/h0040957; Davies M, 1998, J PERS SOC PSYCHOL, V75, P989, DOI 10.1037/0022-3514.75.4.989; Davies SE, 2015, PERS INDIV DIFFER, V81, P13, DOI 10.1016/j.paid.2015.01.006; Davis SK, 2012, J ADOLESCENCE, V35, P1369, DOI 10.1016/j.adolescence.2012.05.007; Dawda D, 2000, PERS INDIV DIFFER, V28, P797, DOI 10.1016/S0191-8869(99)00139-7; Day AL, 2005, EUR J PERSONALITY, V19, P519, DOI 10.1002/per.552; Day AL, 2004, PERS INDIV DIFFER, V36, P1443, DOI 10.1016/S0191-8869(03)00240-X; De Raad B, 2005, PERS INDIV DIFFER, V38, P673, DOI 10.1016/j.paid.2004.05.022; de Vries RE, 2011, J RES PERS, V45, P229, DOI 10.1016/j.jrp.2010.12.002; Depue RA, 1999, BEHAV BRAIN SCI, V22, P491; DeYoung CG, 2002, PERS INDIV DIFFER, V33, P533, DOI 10.1016/S0191-8869(01)00171-4; Di Fabio A, 2013, J CAREER ASSESSMENT, V21, P42, DOI 10.1177/1069072712454698; Di Fabio A, 2012, J EMPLOYMENT COUNS, V49, P118, DOI 10.1002/j.2161-1920.2012.00012.x; Di Fabio A, 2009, INT J EDUC VOCAT GUI, V9, P135, DOI 10.1007/s10775-009-9162-3; Di Fabio A, 2011, J CAREER ASSESSMENT, V19, P21, DOI 10.1177/1069072710382530; Digman JM, 1997, J PERS SOC PSYCHOL, V73, P1246, DOI 10.1037/0022-3514.73.6.1246; Douglas C., 2004, J LEADERSH ORG STUD, V10, P2, DOI DOI 10.1177/107179190401000301; Downey LA, 2011, INT J SELECT ASSESS, V19, P280, DOI 10.1111/j.1468-2389.2011.00557.x; DULEWICZ V, 1999, LEADERSHIP ORG DEV J, V20, P242, DOI DOI 10.1108/01437739910287117; Dunkel C. S., 2014, HUMAN ETHOLOGY B, V29, P14; Dunkel C. S., 2014, HUMAN ETHOLOGY B, V29, P4; Dunkel CS, 2014, INTELLIGENCE, V47, P72, DOI 10.1016/j.intell.2014.09.003; Dunkel CS, 2014, PERS INDIV DIFFER, V64, P147, DOI 10.1016/j.paid.2014.02.030; Dunkel CS, 2014, PERS INDIV DIFFER, V61-62, P13, DOI 10.1016/j.paid.2013.12.017; Dunkel CS, 2013, INTELLIGENCE, V41, P423, DOI 10.1016/j.intell.2013.06.010; Emery C, 2012, SOC NETWORKS, V34, P429, DOI 10.1016/j.socnet.2012.02.001; Extremera N, 2011, PERS INDIV DIFFER, V51, P11, DOI 10.1016/j.paid.2011.02.029; Eysenck H. J, 1975, MANUAL EYSENCK PERSO; Ferguson FJ, 2010, PERS INDIV DIFFER, V49, P414, DOI 10.1016/j.paid.2010.04.009; Ferrando M, 2011, J PSYCHOEDUC ASSESS, V29, P150, DOI 10.1177/0734282910374707; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fiori M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098827; Fiori M, 2011, PERS INDIV DIFFER, V50, P329, DOI 10.1016/j.paid.2010.10.010; FISKE DW, 1949, J ABNORM SOC PSYCH, V44, P329, DOI 10.1037/h0057198; Freudenthaler HH, 2008, PERS INDIV DIFFER, V45, P673, DOI 10.1016/j.paid.2008.07.014; Freudenthaler HH, 2008, J INDIVID DIFFER, V29, P105, DOI 10.1027/1614-0001.29.2.105; Freudenthaler HH, 2005, PERS INDIV DIFFER, V39, P569, DOI 10.1016/j.paid.2005.02.004; Fukunishi I, 2001, PSYCHOL REP, V89, P625, DOI 10.2466/PR0.89.7.625-632; Gallagher EN, 2008, PERS INDIV DIFFER, V44, P1551, DOI 10.1016/j.paid.2008.01.011; GALTON F, 1887, FORTNIGHTLY REV, V42, P21; Gannon N, 2005, PERS INDIV DIFFER, V38, P1353, DOI 10.1016/j.paid.2004.09.001; Ghiabi B., 2011, SOCIAL BEHAV SCI, V30, P98; Godse A. S., 2010, SINGAPORE MANAGEMENT, V32, P69; GOLDBERG LR, 1990, J PERS SOC PSYCHOL, V59, P1216, DOI 10.1037//0022-3514.59.6.1216; Gottfredson L. S., 1997, INTELLIGENCE, V24, P24, DOI DOI 10.1016/S0160-2896(97)90014-3; Greven C, 2008, PERS INDIV DIFFER, V44, P1562, DOI 10.1016/j.paid.2008.01.012; Grubb WL, 2007, HUM PERFORM, V20, P43, DOI 10.1207/s15327043hup2001_3; Gugliandolo MC, 2015, PERS INDIV DIFFER, V74, P16, DOI 10.1016/j.paid.2014.09.032; Hafen CA, 2011, J HAPPINESS STUD, V12, P807, DOI 10.1007/s10902-010-9228-4; Hayduk L. A., 1987, STRUCTURAL EQUATIONS; Hopwood CJ, 2011, J RES PERS, V45, P468, DOI 10.1016/j.jrp.2011.06.002; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Hunter J. E., 2004, METHODS METAANALYSIS; Iliescu D, 2013, EUR J PSYCHOL ASSESS, V29, P121, DOI 10.1027/1015-5759/a000132; Iliescu D, 2012, INT J SELECT ASSESS, V20, P347, DOI 10.1111/j.1468-2389.2012.00605.x; Irwing P., 2013, PERSONALITY INDIVIDU, V55, P534, DOI DOI 10.1016/J.PAID.2013.03.002; Irwing P, 2012, INTELLIGENCE, V40, P296, DOI 10.1016/j.intell.2012.03.001; Ivcevic Z, 2007, J PERS, V75, P199, DOI 10.1111/j.1467-6494.2007.00437.x; James C, 2012, J PSYCHOEDUC ASSESS, V30, P425, DOI 10.1177/0734282912449448; JENSEN AR, 1994, INTELLIGENCE, V18, P231, DOI 10.1016/0160-2896(94)90029-9; Jensen AR, 1998, G FACTOR SCI MENTAL; Johnson SJ, 2009, PERS INDIV DIFFER, V47, P470, DOI 10.1016/j.paid.2009.04.025; Joseph DL, 2015, J APPL PSYCHOL, V100, P298, DOI 10.1037/a0037681; Joseph DL, 2010, J APPL PSYCHOL, V95, P54, DOI 10.1037/a0017286; Karim J, 2010, CROSS-CULT RES, V44, P374, DOI 10.1177/1069397110377603; Killian KD, 2012, J MARITAL FAM THER, V38, P502, DOI 10.1111/j.1752-0606.2011.00233.x; Kim HJ, 2011, INT J HOSP MANAG, V30, P588, DOI 10.1016/j.ijhm.2010.11.003; Kluemper D. H., 2006, THESIS; Kluemper DH, 2008, PERS INDIV DIFFER, V44, P1402, DOI 10.1016/j.paid.2007.12.008; Kluemper DH, 2013, J MANAGE, V39, P878, DOI 10.1177/0149206311407326; Law KS, 2004, J APPL PSYCHOL, V89, P483, DOI 10.1037/0021-9010.89.3.483; Libbrecht N, 2014, EMOTION, V14, P64, DOI 10.1037/a0034392; Libbrecht N, 2012, INT J PSYCHOL, V47, P438, DOI 10.1080/00207594.2012.682063; Linden D. van der, 2015, EVOLUTIONARY BEHAV S, V9, P145, DOI [DOI 10.1037/EBS0000027, 10.1037/ebs0000027]; Livingstone HA, 2005, EDUC PSYCHOL MEAS, V65, P757; Loehlin JC, 2012, J RES PERS, V46, P258, DOI 10.1016/j.jrp.2012.02.003; Loehlin JC, 2011, J RES PERS, V45, P44, DOI 10.1016/j.jrp.2010.11.008; Lopes PN, 2004, PERS SOC PSYCHOL B, V30, P1018, DOI 10.1177/0146167204264762; Lopes PN, 2003, PERS INDIV DIFFER, V35, P641, DOI 10.1016/S0191-8869(02)00242-8; Lyusin D., 2006, J RUSS E EUR PSYCHOL, V44, P54, DOI DOI 10.2753/RP01061-0405440604; Marsh HW, 2005, MULTIVAR APPL SER, P275; Martins A, 2010, PERS INDIV DIFFER, V49, P554, DOI 10.1016/j.paid.2010.05.029; Maul A, 2012, EMOT REV, V4, P394, DOI 10.1177/1754073912445811; Mayer JD, 1999, INTELLIGENCE, V27, P267, DOI 10.1016/S0160-2896(99)00016-1; MCCRAE RR, 1986, AM PSYCHOL, V41, P1001; McIntyre HH, 2010, PERS INDIV DIFFER, V48, P617, DOI 10.1016/j.paid.2009.12.019; Mikolajczak M, 2007, J PERS ASSESS, V88, P338, DOI 10.1080/00223890701333431; Miyake A, 2012, CURR DIR PSYCHOL SCI, V21, P8, DOI 10.1177/0963721411429458; Montasem A, 2013, J APPL SOC PSYCHOL, V43, P1097, DOI 10.1111/jasp.12074; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Newsome S, 2000, PERS INDIV DIFFER, V29, P1005, DOI 10.1016/S0191-8869(99)00250-0; O'Boyle EH, 2011, J ORGAN BEHAV, V32, P788, DOI 10.1002/job.714; O'Connor RM, 2003, PERS INDIV DIFFER, V35, P1893, DOI 10.1016/S0191-8869(03)00038-2; O'Sullivan M., 2007, SCI EMOTIONAL INTELL, P258; Oh IS, 2011, J APPL PSYCHOL, V96, P762, DOI 10.1037/a0021832; Ono M, 2011, CRIM JUSTICE BEHAV, V38, P471, DOI 10.1177/0093854811399406; Parker JDA, 2011, PSYCHOL ASSESSMENT, V23, P762, DOI 10.1037/a0023289; PEABODY D, 1989, J PERS SOC PSYCHOL, V57, P552, DOI 10.1037//0022-3514.57.3.552; Pelt D. H. M., 2015, C INT SOC STUD IND D; Petrides KV, 2007, COGNITION EMOTION, V21, P26, DOI 10.1080/02699930601038912; Petrides KV, 2007, BRIT J PSYCHOL, V98, P273, DOI 10.1348/00712606X120618; Petrides KV, 2006, PSICOTHEMA, V18, P101; Petrides KV, 2010, IND ORGAN PSYCHOL-US, V3, P136, DOI 10.1111/j.1754-9434.2010.01213.x; Petrides KV, 2011, PERS INDIV DIFFER, V50, P874, DOI 10.1016/j.paid.2010.12.029; Petrides KV, 2010, PERS INDIV DIFFER, V48, P906, DOI 10.1016/j.paid.2010.02.019; Petrides KV, 2009, SPRINGER SER HUM EXC, P85, DOI 10.1007/978-0-387-88370-0_5; Petrides K. V., 2011, BLACKWELL WILEY HDB; Petrides KV, 2001, EUR J PERSONALITY, V15, P425, DOI 10.1002/per.416; Petrides KV, 2000, PERS INDIV DIFFER, V29, P313, DOI 10.1016/S0191-8869(99)00195-6; Pettersson E, 2012, EUR J PERSONALITY, V26, P292, DOI 10.1002/per.839; Prentice C, 2013, INT J HOSP MANAG, V32, P287, DOI 10.1016/j.ijhm.2012.06.004; Qualter P, 2012, LEARN INDIVID DIFFER, V22, P83, DOI 10.1016/j.lindif.2011.11.007; REE MJ, 1994, J APPL PSYCHOL, V79, P518, DOI 10.1037/0021-9010.79.4.518; Revelle W, 2013, J RES PERS, V47, P493, DOI 10.1016/j.jrp.2013.04.012; Rey L, 2013, J PSYCHOSOC ONCOL, V31, P51, DOI 10.1080/07347332.2012.703770; Rieck T, 2013, TRAIN EDUC PROF PSYC, V7, P42, DOI 10.1037/a0031659; Roberts RD, 2001, EMOTION, V1, P196, DOI 10.1037//1528-3542.1.3.196; Rode JC, 2008, INTELLIGENCE, V36, P350, DOI 10.1016/j.intell.2007.07.002; Rossen E, 2009, J RES PERS, V43, P60, DOI 10.1016/j.jrp.2008.12.002; Rushton J. P., 2011, WILEY BLACKWELL HDB, P132; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Russo PM, 2012, J PSYCHOEDUC ASSESS, V30, P274, DOI 10.1177/0734282911426412; Saklofske DH, 2003, PERS INDIV DIFFER, V34, P707, DOI 10.1016/S0191-8869(02)00056-9; Saklofske DH, 2007, J HEALTH PSYCHOL, V12, P937, DOI 10.1177/1359105307082458; Saklofske DH, 2007, PERS INDIV DIFFER, V42, P491, DOI 10.1016/j.paid.2006.08.006; Saklofske DH, 2012, LEARN INDIVID DIFFER, V22, P251, DOI 10.1016/j.lindif.2011.02.010; Salovey P., 1990, IMAGINATION COGNITIO, V9, P185, DOI DOI 10.2190/DUGG-P24E-52WK-6CDG; Sanchez-Ruiz MJ, 2013, PERS INDIV DIFFER, V54, P658, DOI 10.1016/j.paid.2012.11.013; SAUCIER G, 1994, J PERS ASSESS, V63, P506, DOI 10.1207/s15327752jpa6303_8; Schmidt FL, 2002, HUM PERFORM, V15, P187, DOI 10.1207/S15327043HUP1501&02_12; Schulte MJ, 2004, PERS INDIV DIFFER, V37, P1059, DOI 10.1016/j.paid.2003.11.014; Sharma S, 2013, INT J SELECT ASSESS, V21, P57, DOI 10.1111/ijsa.12017; Shi JQ, 2007, PERS INDIV DIFFER, V43, P377, DOI 10.1016/j.paid.2006.12.012; Siegling AB, 2015, J PERS ASSESS, V97, P525, DOI 10.1080/00223891.2015.1013219; Siegling AB, 2013, PERS INDIV DIFFER, V54, P81, DOI 10.1016/j.paid.2012.08.010; Siegling AB, 2012, PERS INDIV DIFFER, V52, P776, DOI 10.1016/j.paid.2012.01.003; Singh M, 2008, J APPL SOC PSYCHOL, V38, P635, DOI 10.1111/j.1559-1816.2007.00320.x; Sitser T, 2013, HUM PERFORM, V26, P126, DOI 10.1080/08959285.2013.765877; Sjoberg L, 2001, EUR PSYCHOL, V6, P79, DOI 10.1027//1016-9040.6.2.79; Song LJ, 2010, INTELLIGENCE, V38, P137, DOI 10.1016/j.intell.2009.09.003; Spearman C, 1904, AM J PSYCHOL, V15, P201, DOI 10.2307/1412107; Stankov L., 2005, G FACTOR ISSUES DESI; Sy T, 2006, J VOCAT BEHAV, V68, P461, DOI 10.1016/j.jvb.2005.10.003; Tok S, 2009, SOC BEHAV PERSONAL, V37, P921, DOI 10.2224/sbp.2009.37.7.921; Vakola M., 2004, J MANAGERIAL PSYCHOL, V19, P88, DOI DOI 10.1108/02683940410526082; van der Linden D, 2016, PERS INDIV DIFFER, V101, P98, DOI 10.1016/j.paid.2016.05.020; Van der Linden D, 2012, PERS INDIV DIFFER, V53, P175, DOI 10.1016/j.paid.2012.03.001; van der Linden D, 2011, PERS INDIV DIFFER, V51, P836, DOI 10.1016/j.paid.2011.07.010; van der Linden D, 2011, INT J SELECT ASSESS, V19, P157, DOI 10.1111/j.1468-2389.2011.00543.x; van der Linden D, 2010, J RES PERS, V44, P669, DOI 10.1016/j.jrp.2010.08.007; van der Linden D, 2010, J RES PERS, V44, P315, DOI 10.1016/j.jrp.2010.03.003; Van Rooy DL, 2004, J VOCAT BEHAV, V65, P71, DOI 10.1016/S0001-8791(03)00076-9; Van Rooy DL, 2005, PERS INDIV DIFFER, V38, P689, DOI 10.1016/j.paid.2004.05.023; Veselka L., 2010, EUROPES J PSYCHOL, V3, P9; Veselka L, 2009, TWIN RES HUM GENET, V12, P420, DOI 10.1375/twin.12.5.420; Warwick J, 2004, PERS INDIV DIFFER, V37, P1091, DOI 10.1016/j.paid.2003.12.003; Webb CA, 2013, INTELLIGENCE, V41, P149, DOI 10.1016/j.intell.2013.01.004; Webb E., 1915, CHARACTER INTELLIGEN; Wilhelm O., 2005, INT HDB EMOTIONAL IN, P131; Wong C. S., 2007, ASIA PACIFIC J MANAG, V24, P43, DOI [10.1007/s10490-006-9024-1, DOI 10.1007/S10490-006-9024-1]; Wong CS, 2007, INTELLIGENCE, V35, P141, DOI 10.1016/j.intell.2006.04.008; Zeidner M, 2008, EUR PSYCHOL, V13, P64, DOI 10.1027/1016-9040.13.1.64; Zeidner M, 2010, PERS INDIV DIFFER, V48, P431, DOI 10.1016/j.paid.2009.11.011 201 27 27 16 87 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0033-2909 1939-1455 PSYCHOL BULL Psychol. Bull. JAN 2017 143 1 36 52 10.1037/bul0000078 17 Psychology; Psychology, Multidisciplinary Psychology EH2BC WOS:000391571200002 27841449 2019-02-21 J Hurst, JE; Kavanagh, PS Hurst, Jessie E.; Kavanagh, Phillip S. Life history strategies and psychopathology: the faster the life strategies, the more symptoms of psychopathology EVOLUTION AND HUMAN BEHAVIOR English Article Life history theory; Life history strategy; Psychopathology; Aggression; Attachment; Self-harm DELIBERATE SELF-HARM; AGGRESSION; ATTACHMENT; DISORDER; QUESTIONNAIRE; ADOLESCENTS; PERSONALITY; ADAPTATION; MATURATION; BEHAVIOR There is little extant empirical literature examining the associations between life history strategies and symptoms of psychopathology. The current study (N = 138) investigated the associations between life history strategies, symptoms of psychopathology, aggression, incidence of self-harm behaviour, and attachment (perceived parental support) in sample drawn from the general population and community mental health service providers. The results from the study indicate those with a faster life strategy report greater levels of aggression and symptoms of psychopathology. Further, perceptions of poorer parental support were associated with a faster life history strategy. Implications for life history theory, conceptualising psychopathology, and future research directions are discussed. Crown Copyright (C) 2016 Published by Elsevier Inc. All rights reserved. [Hurst, Jessie E.; Kavanagh, Phillip S.] Univ South Australia, Adelaide, SA, Australia Kavanagh, PS (reprint author), Univ South Australia, Sch Psychol Social Work & Social Policy, GPO Box 2471, Adelaide, SA 5001, Australia. phil.kavanagh@unisa.edu.au Kavanagh, Phil/0000-0003-1090-4188 Akiskal KK, 2005, J AFFECT DISORDERS, V85, P231, DOI 10.1016/j.jad.2004.08.002; American Psychiatric Association, 2013, DSM 5 SELF RAT LEV 1; American Psychiatric Association, 2013, DIAGN STAT MAN MENT; American Psychiatric Association, 2000, DIAGN STAT MAN MENT; Andrews PW, 2009, PSYCHOL REV, V116, P620, DOI 10.1037/a0016242; BARTHOLOMEW K, 1991, J PERS SOC PSYCHOL, V61, P226, DOI 10.1037//0022-3514.61.2.226; Beauchaine TP, 2013, CHILD ADOLESCENT PSY, P111; BUSS AH, 1992, J PERS SOC PSYCHOL, V63, P452, DOI 10.1037/0022-3514.63.3.452; Buss D., 2005, HDB EVOLUTIONARY PSY; Buss DM, 1997, CLIN PSYCHOL REV, V17, P605, DOI 10.1016/S0272-7358(97)00037-8; Campbell A, 2008, BIOL PSYCHOL, V77, P1, DOI 10.1016/j.biopsycho.2007.09.001; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Coccaro EF, 1997, PSYCHIAT RES, V73, P147, DOI 10.1016/S0165-1781(97)00119-4; Crawford C, 2000, ANN NY ACAD SCI, V907, P21; Crawford TN, 2006, J PERS DISORD, V20, P331, DOI 10.1521/pedi.2006.20.4.331; CRICK NR, 1995, CHILD DEV, V66, P710, DOI 10.2307/1131945; DALY M, 1985, ETHOL SOCIOBIOL, V6, P197, DOI 10.1016/0162-3095(85)90012-3; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Dunkel CS, 2011, PERS INDIV DIFFER, V51, P34, DOI 10.1016/j.paid.2011.03.005; Ellis B. J., 2013, CHILD ADOLESCENT PSY, P251; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Fanti KA, 2014, J EARLY ADOLESCENCE; Figueredo A.J., 2012, OXFORD HDB SEXUAL CO; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, HUM NATURE-INT BIOS, V20, P317, DOI 10.1007/s12110-009-9068-2; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Gratz KL, 2001, J PSYCHOPATHOL BEHAV, V23, P253, DOI 10.1023/A:1012779403943; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hayes AF, 2013, INTRO MEDIATION MODE; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K, 2012, CLIN CHILD PSYCHOL P, V17, P459, DOI 10.1177/1359104511423364; Hinshaw S. P., 2013, CHILD ADOLESCENT PSY, P3; Howell D, 2002, STAT METHODS PSYCHOL; Ivancic L., 2014, YOUTH MENTAL HLTH RE; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kerig P. K., 2012, DEV PSYCHOPATHOLOGY; Klonsky ED, 2003, AM J PSYCHIAT, V160, P1501, DOI 10.1176/appi.ajp.160.8.1501; Koh J-B, 2015, J INTERPERSONAL VIOL; Laye-Gindhu A, 2005, J YOUTH ADOLESCENCE, V34, P447, DOI 10.1007/s10964-005-7262-z; Mangnall J, 2008, PERSPECT PSYCHIATR C, V44, P175, DOI 10.1111/j.1744-6163.2008.00172.x; Marcus RF, 2001, J GENET PSYCHOL, V162, P260, DOI 10.1080/00221320109597483; Mash E. J., 2003, CHILD PSYCHOPATHOLOG, P3; Mishra S, 2014, EVOL HUM BEHAV, V35, P126, DOI 10.1016/j.evolhumbehav.2013.11.006; Murphy D., 2000, EVOLUTION HUMAN MIND, P62; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rodham K., 2005, PSYCHIAT TIMES, V22, P36; Simons KJ, 2001, J EARLY ADOLESCENCE, V21, P182, DOI 10.1177/0272431601021002003; Spataro J, 2004, BRIT J PSYCHIAT, V184, P416, DOI 10.1192/bjp.184.5.416; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Volk AA, 2012, AGGRESSIVE BEHAV, V38, P222, DOI 10.1002/ab.21418; WAKEFIELD JC, 1992, AM PSYCHOL, V47, P373, DOI 10.1037//0003-066X.47.3.373; West M, 1998, J YOUTH ADOLESCENCE, V27, P661, DOI 10.1023/A:1022891225542; Wolfe V. V., 2007, ASSESSMENT CHILDHOOD, P685 60 13 13 1 9 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2017 38 1 1 8 10.1016/j.evolhumbehav.2016.06.001 8 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences EG9AS WOS:000391350000001 2019-02-21 J Voland, E; Willfuhr, KP Voland, Eckart; Willfuehr, Kai P. Why does paternal death accelerate the transition to first marriage in the C18-C19 Krummhorn population? EVOLUTION AND HUMAN BEHAVIOR English Article Paternal absence effect; Krummhorn; Family reconstitution study; Sibling interaction PARENT-OFFSPRING CONFLICT; LIFE-HISTORY THEORY; FATHER ABSENCE; REPRODUCTIVE STRATEGY; INVESTMENT; MATURATION; EVOLUTION; MENARCHE; OUTCOMES; SUCCESS Among the population of the Krummhorn region (Ostfriesland, Germany) in the 18th and 19th centuries, the death of the father in the family led on average to the accelerated marriage of his children. Three evolutionary explanations are offered for this "paternal absence" effect in the literature: namely, (i) the assumption of an adaptive "psychosocial acceleration" of the children with prepubertal experience of uncertainty; (ii) an opportunistic adjustment of life and reproduction decisions as an adaptive reaction to the personal cost-benefit balances that are changed by the father's death; and (iii) given the genetic parent-offspring conflict, an increase in the reproductive autonomy of offspring after the loss of the dominant father figure. Our models, which are based on the analyses of the vital statistics data derived from church registers and tax rolls and compiled into a family reconstitution study, attribute the greatest explanatory power for the patterns found in the Krummhorn to the opportunistic adjustment approach (ii). (C) 2016 The Authors. Published by Elsevier Inc. [Voland, Eckart] Univ Giessen, Inst Philosophy, Rathenaustr 8, D-35394 Giessen, Germany; [Willfuehr, Kai P.] Max Planck Inst Demog Res, Konrad Zuse Str 1, D-18057 Rostock, Germany Voland, E (reprint author), Univ Giessen, Inst Philosophy, Rathenaustr 8, D-35394 Giessen, Germany. eckart.voland@phil.uni-giessen.de; willfuehr@demogr.mpg.de Deutsche Forschungsgemeinschaft (DFG) [Vo 310/16-1] We thank two anonymous reviewers for their very helpful comments and Jonathan F. Fox for his highly valuable input and advice on modeling. Financial support came from Deutsche Forschungsgemeinschaft (DFG), Vo 310/16-1. Allison Paul D., 2009, FIXED EFFECTS REGRES; Apostolou M, 2014, SEXUAL SELECTION UNDER PARENTAL CHOICE: THE EVOLUTION OF HUMAN MATING BEHAVIOR, P1; Beise J., 2001, THESIS; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; COX DR, 1972, J R STAT SOC B, V34, P187; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; EMLEN ST, 1982, AM NAT, V119, P40, DOI 10.1086/283889; Flinn M. V., 1988, HUMAN REPROD BEHAV D, P189; Gettler LT, 2015, AM J PHYS ANTHR; Kramer KL, 2009, AM J HUM BIOL, V21, P430, DOI 10.1002/ajhb.20930; Mattison SM, 2014, AM ANTHROPOL, V116, P591, DOI 10.1111/aman.12125; Nettle D, 2015, P ROY SOC B-BIOL SCI, V282, P23, DOI 10.1098/rspb.2015.1005; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nitsch A, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2313; Ohling GD., 1963, ACHT IHRE SIEBEN SIE, P17; Pollet T. V., 2011, OXFORD HDB EVOLUTION, P128, DOI DOI 10.1093/OXFORDHB/9780195396690.013.0009; Reiches MW, 2009, AM J HUM BIOL, V21, P421, DOI 10.1002/ajhb.20906; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Scelza BA, 2010, CURR ANTHROPOL, V51, P295, DOI 10.1086/651051; Shenk MK, 2013, HUM NATURE-INT BIOS, V24, P76, DOI 10.1007/s12110-013-9160-5; Shenk MK, 2012, J BIOSOC SCI, V44, P549, DOI 10.1017/S0021932012000053; Sheppard P, 2014, HUM NATURE-INT BIOS, V25, P213, DOI 10.1007/s12110-014-9195-2; Stormer C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0083633; SWART F, 1910, FRIESISCHEN AGRARGES; TRIVERS RL, 1974, AM ZOOL, V14, P249; van den Berg P, 2013, EVOL HUM BEHAV, V34, P405, DOI 10.1016/j.evolhumbehav.2013.07.004; Voland E, 2000, EVOL ANTHROPOL, V9, P134; VOLAND E, 1990, ETHOLOGY, V84, P144; VOLAND E, 1990, BEHAV ECOL SOCIOBIOL, V26, P65; VOLAND E, 2014, ANTHROPOL REV, V77, P251, DOI DOI 10.2478/anre-2014-0020; Webster GD, 2014, EVOL PSYCHOL-US, V12, P273, DOI 10.1177/147470491401200202; Willfuhr KP, 2013, BIODEMOGR SOC BIOL, V59, P191, DOI 10.1080/19485565.2013.833803; Willfuhr KP, 2015, HIST LIFE COURSE STU, V2, P58; Winking J, 2011, EVOL HUM BEHAV, V32, P79, DOI 10.1016/j.evolhumbehav.2010.08.002 38 0 0 0 10 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2017 38 1 125 135 10.1016/j.evolhumbehav.2016.08.001 11 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences EG9AS WOS:000391350000015 Other Gold 2019-02-21 J Young, CM; Cain, KE; Svedin, N; Backwell, PRY; Pryke, SR Young, Catherine M.; Cain, Kristal E.; Svedin, Nina; Backwell, Patricia R. Y.; Pryke, Sarah R. Nesting Success in Crimson Finches: Chance or Choice? ETHOLOGY English Article nest predation; nest defence; nest-site; breeding success LIFE-HISTORY EVOLUTION; DEFENSE BEHAVIOR; SYLVIA-ATRICAPILLA; PARENTAL BEHAVIOR; NEOCHMIA-PHAETON; PREDATION RISK; NORTH-AMERICA; CLUTCH-SIZE; BIRDS; SITE In avian systems, nest predation is one of the most significant influences on reproductive success. Selection for mechanisms and behaviours to minimise predation rates should be favoured. To avoid predation, breeding birds can often deter predators through active nest defence or by modifying behaviours around the nest (e.g. reducing feeding rates and vocalisations). Birds might also benefit from concealing nests or placing them in inaccessible locations. The relative importance of these strategies (behaviour vs. site selection) can be difficult to disentangle and may differ according to life history. Tropical birds are thought to experience higher rates of predation than temperate birds and invest less energy in nest defence. We monitored a population of crimson finches (Neochmia phaeton), in the Australian tropics, over two breeding seasons. We found no relationship between adult nest defence behaviour (towards a model reptile predator) and the likelihood of nest success. However, nest success was strongly related to the visibility of the nest and the structure of the vegetation. We found no evidence that adult nest building decisions were influenced by predation risk; individuals that re-nested after a predation event did not build their nest in a more concealed location. Therefore, predator avoidance, and hence nest success, appears to be largely due to chance rather than due to the behaviour of the birds or their choice of nesting sites. To escape high predation pressures, multiple nesting attempts both within and between seasons may be necessary to increase reproductive success. Alternatively, birds may be limited in their nest-site options; that is, high-quality individuals dominate quality nest sites. [Young, Catherine M.; Cain, Kristal E.; Svedin, Nina; Backwell, Patricia R. Y.; Pryke, Sarah R.] Australian Natl Univ, Res Sch Biol, Div Ecol Evolut & Genet, Bldg 44 Daley Rd, Canberra, ACT 2601, Australia Young, CM (reprint author), Australian Natl Univ, Res Sch Biol, Div Ecol Evolut & Genet, Bldg 44 Daley Rd, Canberra, ACT 2601, Australia. catherine.young@anu.edu.au Backwell, Patricia/C-8883-2009 Cain, Kristal/0000-0002-6908-7015 Australian Research Council; A.N.U PhD scholarship; Australian Bird Study Association This work was supported by Australian Research Council Grants (S.R.P), an A.N.U PhD scholarship (C.M.Y) and a Fund for Avian Research grant from The Australian Bird Study Association (C.M.Y). We thank Fiona Finch and Sophie Keats for help in the field as well as Save The Gouldian Fund for providing access to their field station. We are grateful to David Hamilton and reviewers for helpful comments on the manuscript, Thomas Merkling and Liam Bailey for assistance with R software. All work was approved by the Australian National University's Animal Ethics Committee (A2012/55). Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; BEST LB, 1978, AUK, V95, P9, DOI 10.2307/4085491; BURGHARDT G. M., 1970, ADV CHEMORECEPTION, P241; Caro TM, 2005, ANTIPREDATOR DEFENCE; Collias NE, 1984, NEST BUILDING BIRD B; Colombelli-Negrel D, 2009, ECOL RES, V24, P921, DOI 10.1007/s11284-008-0569-y; COOPER WE, 1989, ETHOLOGY, V81, P250; Cresswell W, 1997, ANIM BEHAV, V53, P93, DOI 10.1006/anbe.1996.0281; Dale S, 1996, BEHAV ECOL SOCIOBIOL, V39, P31, DOI 10.1007/s002650050264; FILLIATER TS, 1994, CONDOR, V96, P761, DOI 10.2307/1369479; FLASSKAMP A, 1994, ETHOLOGY, V96, P322; Gelman A, 2014, ARM DATA ANAL USING; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Goawski A., 2008, FOLIA ZOOL, V57, P403; Godard RD, 2007, J AVIAN BIOL, V38, P128, DOI 10.1111/j.2007.0908-8857.03788.x; Grim T, 2008, J ORNITHOL, V149, P169, DOI 10.1007/s10336-007-0257-7; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; Hakkarainen H, 1998, OECOLOGIA, V114, P574, DOI 10.1007/s004420050482; Higgins PJ, 2006, HDB AUSTR NZ ANTARCT, V7; Kleindorfer S, 2005, ANIM BEHAV, V69, P307, DOI 10.1016/j.anbehav.2004.06.003; Kleindorfer S, 1996, ANIM BEHAV, V51, P1199, DOI 10.1006/anbe.1996.0125; Kleindorfer Sonia, 2003, Avian Science, V3, P21; KNIGHT RL, 1988, CONDOR, V90, P193, DOI 10.2307/1368448; KOTLER BP, 1992, ANN ZOOL FENN, V29, P199; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LAWLER SP, 1989, ANIM BEHAV, V38, P1039, DOI 10.1016/S0003-3472(89)80142-3; Lima SL, 1998, ADV STUD BEHAV, V27, P215; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P455; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Mazerolle M., 2013, AICCMODAVG MODEL SEL; Milenkaya O, 2011, EMU, V111, P312, DOI 10.1071/MU10088; Misenhelter MD, 2000, ECOLOGY, V81, P2892, DOI 10.2307/177349; Moller AP, 2013, BEHAV ECOL, V24, P267, DOI 10.1093/beheco/ars163; MOLLER AP, 1990, OIKOS, V57, P237, DOI 10.2307/3565945; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Muchai M, 2005, J AVIAN BIOL, V36, P110, DOI 10.1111/j.0908-8857.2005.03312.x; Muchai M., 2001, SCOPUS, V22, P23; Muller M, 2005, OECOLOGIA, V143, P37, DOI 10.1007/s00442-004-1770-5; Olendorf R, 2000, IBIS, V142, P365, DOI 10.1111/j.1474-919X.2000.tb04432.x; PATTERSON TL, 1980, BEHAV ECOL SOCIOBIOL, V7, P227, DOI 10.1007/BF00299368; Polak M, 2013, J ETHOL, V31, P1, DOI 10.1007/s10164-012-0340-2; R Development Core Team, 2014, R LANG ENV STAT COMP; Remes V, 2005, BEHAV ECOL SOCIOBIOL, V58, P326, DOI 10.1007/s00265-005-0910-1; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Rompre Ghislain, 2008, Ecotropica-Bonn, V14, P81; Roper JJ, 2005, ORNITOL NEOTROP, V16, P253; Roper JJ, 1997, J AVIAN BIOL, V28, P111, DOI 10.2307/3677304; Saether BE, 1996, TRENDS ECOL EVOL, V11, P311, DOI 10.1016/0169-5347(96)30032-3; Schmidt KA, 2010, OIKOS, V119, P245, DOI 10.1111/j.1600-0706.2009.17824.x; SIH A, 1992, ECOLOGY, V73, P1418, DOI 10.2307/1940687; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Soanes R, 2015, EMU, V115, P317, DOI 10.1071/MU14046; Stake MM, 2005, J HERPETOL, V39, P215, DOI 10.1670/150-04A; Symonds MRE, 2011, BEHAV ECOL SOCIOBIOL, V65, P13, DOI 10.1007/s00265-010-1037-6; Thompson FR, 2007, IBIS, V149, P98, DOI 10.1111/j.1474-919X.2007.00697.x; Todd Michael K., 2002, Australian Bird Watcher, V19, P161; VERBEEK NAM, 1993, EMU, V93, P53, DOI 10.1071/MU9930053; Weatherhead PJ, 2004, J AVIAN BIOL, V35, P185, DOI 10.1111/j.0908-8857.2004.03336.x 65 1 1 1 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology JAN 2017 123 1 41 50 10.1111/eth.12422 10 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology EG0CG WOS:000390697900003 2019-02-21 J Murillo-Rincon, AP; Kolter, NA; Laurila, A; Orizaola, G Murillo-Rincon, Andrea P.; Kolter, Nora A.; Laurila, Anssi; Orizaola, German Intraspecific priority effects modify compensatory responses to changes in hatching phenology in an amphibian JOURNAL OF ANIMAL ECOLOGY English Article amphibians; compensatory growth; competition; development; life-history strategies; metamorphosis; phenology; synchrony EXPERIMENTAL POND COMMUNITIES; LIFE-HISTORY PLASTICITY; TIME CONSTRAINTS; CLIMATE-CHANGE; ANURAN LARVAE; LOCAL ADAPTATION; INTERFERENCE COMPETITION; PHENOTYPIC PLASTICITY; AMBYSTOMA-TALPOIDEUM; GEOGRAPHIC-VARIATION 1. In seasonal environments, modifications in the phenology of life-history events can alter the strength of time constraints experienced by organisms. Offspring can compensate for a change in timing of hatching by modifying their growth and development trajectories. However, intra-and interspecific interactions may affect these compensatory responses, in particular if differences in phenology between cohorts lead to significant priority effects (i.e. the competitive advantage that early-hatching individuals have over late-hatching ones). 2. Here, we conducted a factorial experiment to determine whether intraspecific priority effects can alter compensatory phenotypic responses to hatching delay in a synchronic breeder by rearing moor frog (Rana arvalis) tadpoles in different combinations of phenological delay and food abundance. 3. Tadpoles compensated for the hatching delay by speeding up their development, but only when reared in groups of individuals with identical hatching phenology. In mixed phenology groups, strong competitive effects by non-delayed tadpoles prevented the compensatory responses and delayed larvae metamorphosed later than in single phenology treatments. Non-delayed individuals gained advantage from developing with delayed larvae by increasing their developmental and growth rates as compared to single phenology groups. 4. Food shortage prolonged larval period and reduced mass at metamorphosis in all treatments, but it did not prevent compensatory developmental responses in larvae reared in single phenology groups. 5. This study demonstrates that strong intraspecific priority effects can constrain the compensatory growth and developmental responses to phenological change, and that priority effects can be an important factor explaining the maintenance of synchronic life histories (i.e. explosive breeding) in seasonal environments. [Murillo-Rincon, Andrea P.; Kolter, Nora A.; Laurila, Anssi; Orizaola, German] Uppsala Univ, Anim Ecol, Dept Ecol & Genet, Evolutionary Biol Ctr, S-75236 Uppsala, Sweden; [Murillo-Rincon, Andrea P.] Christian Albrechts Univ Kiel, Inst Zool, D-24118 Kiel, Germany Orizaola, G (reprint author), Uppsala Univ, Anim Ecol, Dept Ecol & Genet, Evolutionary Biol Ctr, S-75236 Uppsala, Sweden. german.orizaola@ebc.uu.se Orizaola, German/A-5217-2008 Orizaola, German/0000-0002-6748-966X Helge Ax:son Johnsons Stiftelse; Stiftelsen Oscar och Lili Lamms Minne [FO2011-0004]; Spanish Ministry of Education and Culture [MEC2007-0944]; Formas [2007-903] We thank Frank Johansson and Alex Richter-Boix for comments on a previous draft of the manuscript. Comments from the Associate Editor and three anonymous reviewers significantly improved the final version of the manuscript. The animals were collected with a permit from Uppsala County Board (521-3019-09), and the experiment was conducted with a permit from the Ethical committee for Animal Experiments in Uppsala (C92/9). This study was supported by Helge Ax:son Johnsons Stiftelse (to GO), Stiftelsen Oscar och Lili Lamms Minne (grant FO2011-0004; to GO), Spanish Ministry of Education and Culture (postdoctoral fellowship MEC2007-0944; to GO) and Formas (2007-903; to AL). Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ALFORD RA, 1985, ECOLOGY, V66, P1097, DOI 10.2307/1939161; Altwegg R, 2003, EVOLUTION, V57, P872; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.2307/3071813; Baker GC, 2000, AMPHIBIA-REPTILIA, V21, P25, DOI 10.1163/156853800507255; BEEBEE TJC, 1995, NATURE, V374, P219, DOI 10.1038/374219a0; BEEBEE TJC, 1992, PHYSIOL ZOOL, V65, P815, DOI 10.1086/physzool.65.4.30158541; Boone MD, 2002, COPEIA, P511, DOI 10.1643/0045-8511(2002)002[0511:EOHTFL]2.0.CO;2; Capellan E, 2007, J ANIM ECOL, V76, P1026, DOI 10.1111/j.1365-2656.2007.01281.x; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Cleland EE, 2007, TRENDS ECOL EVOL, V22, P357, DOI 10.1016/j.tree.2007.04.003; Dahl E, 2012, J ANIM ECOL, V81, P1233, DOI 10.1111/j.1365-2656.2012.02009.x; De Block M, 2004, OECOLOGIA, V140, P68, DOI 10.1007/s00442-004-1575-6; De Meester L, 2002, ACTA OECOL, V23, P121, DOI 10.1016/S1146-609X(02)01145-1; De Meester L, 2016, TRENDS ECOL EVOL, V31, P136, DOI 10.1016/j.tree.2015.12.009; Diez JM, 2012, ECOL LETT, V15, P545, DOI 10.1111/j.1461-0248.2012.01765.x; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; DRAKE JA, 1991, AM NAT, V137, P1, DOI 10.1086/285143; Dunbar RIM, 2009, BIOL REV, V84, P413, DOI 10.1111/j.1469-185X.2009.00080.x; Earl JE, 2015, COPEIA, V103, P297, DOI 10.1643/CH-14-128; Easterling DR, 2000, SCIENCE, V289, P2068, DOI 10.1126/science.289.5487.2068; Eitam A, 2005, OECOLOGIA, V146, P36, DOI 10.1007/s00442-005-0185-2; Frisbie M, 2000, CAN J ZOOL, V78, P1032, DOI 10.1139/cjz-78-6-1032; Gosner K. L., 1960, Herpetologica, V16, P183; GOTTHARD K, 2001, ANIMAL DEV ECOLOGY, P287; GRIFFITHS RA, 1993, J ANIM ECOL, V62, P274, DOI 10.2307/5358; Hedengren I., 1987, THESIS; Hernandez JP, 2012, OIKOS, V121, P259, DOI 10.1111/j.1600-0706.2011.19221.x; Hopper KR, 1996, ECOLOGY, V77, P191, DOI 10.2307/2265668; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.2307/177071; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; LAWLER SP, 1993, ECOLOGY, V74, P174, DOI 10.2307/1939512; Loman J, 2009, J ZOOL, V279, P64, DOI 10.1111/j.1469-7998.2009.00589.x; Mangel M, 2001, EVOL ECOL RES, V3, P583; Menzel A, 2006, GLOBAL ECOL BIOGEOGR, V15, P498, DOI 10.1111/j.1466-822x.2006.00247.x; Mikolajewski DJ, 2015, ECOLOGY, V96, P1128, DOI 10.1890/14-0262.1; Olito C, 2009, AM NAT, V173, P354, DOI 10.1086/596538; Orizaola G., 2016, FIGSHARE; Orizaola G, 2016, ECOLOGY, V97, P2470, DOI 10.1002/ecy.1464; Orizaola G, 2013, OECOLOGIA, V171, P873, DOI 10.1007/s00442-012-2456-z; Orizaola G, 2010, OIKOS, V119, P980, DOI 10.1111/j.1600-0706.2009.17956.x; Parmesan C, 2000, B AM METEOROL SOC, V81, P443, DOI 10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2; Phillimore AB, 2010, P NATL ACAD SCI USA, V107, P8292, DOI 10.1073/pnas.0913792107; Rasanen K, 2003, EVOLUTION, V57, P352, DOI 10.1554/0014-3820(2003)057[0352:GVIAST]2.0.CO;2; Rasmussen NL, 2015, ECOLOGY, V96, P1754, DOI 10.1890/14-1919.1; Rasmussen NL, 2014, J ANIM ECOL, V83, P1206, DOI 10.1111/1365-2656.12203; Richter-Boix A, 2014, ECOLOGY, V95, P2715, DOI 10.1890/13-1996.1; Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Rudolf VHW, 2013, OECOLOGIA, V173, P1043, DOI 10.1007/s00442-013-2675-y; Ryan TJ, 2004, OECOLOGIA, V140, P46, DOI 10.1007/s00442-004-1563-x; Segers FHID, 2012, BEHAV ECOL, V23, P665, DOI 10.1093/beheco/ars013; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; STEINWASCHER K, 1978, ECOLOGY, V59, P1039, DOI 10.2307/1938556; Stoks R, 2006, ECOLOGY, V87, P809, DOI 10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Strobbe F, 2004, BIOL J LINN SOC, V83, P187, DOI 10.1111/j.1095-8312.2004.00379.x; Sunahara T, 2002, ECOL ENTOMOL, V27, P346, DOI 10.1046/j.1365-2311.2002.00417.x; Urban MC, 2009, P R SOC B, V276, P4129, DOI 10.1098/rspb.2009.1382; van Asch M, 2010, FUNCT ECOL, V24, P1103, DOI 10.1111/j.1365-2435.2010.01734.x; Visser ME, 2006, OECOLOGIA, V147, P164, DOI 10.1007/s00442-005-0299-6; Vitt LJ, 2014, HERPETOLOGY INTRO BI; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; WERNER EE, 1994, ECOLOGY, V75, P197, DOI 10.2307/1939394; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; Werner EE, 1996, ECOLOGY, V77, P157, DOI 10.2307/2265664; WILBUR HM, 1985, ECOLOGY, V66, P1106, DOI 10.2307/1939162; Yearsley JM, 2004, FUNCT ECOL, V18, P563, DOI 10.1111/j.0269-8463.2004.00879.x 69 2 2 6 36 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2017 86 1 128 135 10.1111/1365-2656.12605 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology EF4TR WOS:000390325400014 27779740 Bronze 2019-02-21 S King, B; Harris, BP; Rose, CS IEEE King, Brianna; Harris, Bradley P.; Rose, Craig S. Quantifying seafloor contact in commercial fishing gear OCEANS 2017 - ANCHORAGE OCEANS-IEEE English Proceedings Paper Conference on OCEANS SEP 18-21, 2017 Anchorage, AK commercial fishing; conservation engineering; engineering; seafloor; bottom contact; sensors MARINE-BENTHOS All commercial fishery species harvested globally either live on or near the seabed (also referred to as the benthos or benthic environment) or employ life history strategies or behaviors linked to benthic processes. The act of pursuing and catching benthic and demersal species requires operating fishing gear on or very near the seabed, resulting in direct gear-seabed contact. It is essential to further quantify bottom contact, given that contact made by commercial fishing gear with the benthos is considered one of the most significant human impacts on the oceanic environment. There are several devices that measure bottom contact; these devices, however, usually address only one point of contact, such as the center of the footrope, when other components of the fishing gear may be making contact as well. An NPRB-funded study by Rose et al. (2016) used multiple bottom contact sensors (accelerometers) hung from the footrope of a trawl net to quantify bottom contact; however, this study was not conducted under real fishing conditions (the codend was open). Rose et al. provided statistical analyses of the gear configurations as they relate to habitat susceptibility, but examination in terms of components, material, and clearance was beyond the scope of the work. Here I propose an algorithm to examine these covariates as estimators of habitat susceptibility by reassessing the imagery/data from the field, constructing quantitative models based on these covariates, re-running the applicable models, and examining the spatial distribution of seabed clearance for each material and component combination. These data, along with an assessment of the current state of science and technology in bottom contact sensors, will aid in determining the best methods for measuring bottom contact and/orseabed clearance in future field-based portions of this study [King, Brianna; Harris, Bradley P.] Alaska Pacific Univ, FAST Lab, Anchorage, AK 99508 USA; [Rose, Craig S.] FishNext Res, Seattle, WA USA King, B (reprint author), Alaska Pacific Univ, FAST Lab, Anchorage, AK 99508 USA. bking@alaskapacific.edu; bharris@alaskapacific.edu; fishnextresearch@gmail.com Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Cressie N., 1993, STAT SPATIAL DATA; Deleanu D., 2008, CONSTANTA MARIT U AN, V11, P341; Grabowski JH, 2014, REV FISH SCI AQUAC, V22, P142, DOI 10.1080/10641262.2013.846292; Isaaks EH, 1989, INTRO APPL GEOSTATIS; Kaiser MJ, 2016, FISH FISH, V17, P637, DOI 10.1111/faf.12134; National Research Council Committee on Ecosystem Effects of Fishing, 2002, EFF TRAWL DREDG SEAF; New England Fishery Management Council (NEFMC), 2011, SWEPT AR SEAB IMP SA; NMFS, 2015, FISH US 2015; Rose C. S., 2016, 1319 NPRB; Rose CS, 1998, FISH RES, V36, P139, DOI 10.1016/S0165-7836(98)00099-X; Watling L, 1998, CONSERV BIOL, V12, P1178, DOI 10.1046/j.1523-1739.1998.0120061178.x 12 0 0 0 0 IEEE NEW YORK 345 E 47TH ST, NEW YORK, NY 10017 USA 0197-7385 OCEANS-IEEE 2017 4 Engineering, Marine; Engineering, Electrical & Electronic; Oceanography Engineering; Oceanography BL7GR WOS:000455012000173 2019-02-21 J Sethi, SA; Gerken, J; Ashline, J Sethi, Suresh Andrew; Gerken, Jonathon; Ashline, Joshua Accurate aging of juvenile salmonids using fork lengths FISHERIES RESEARCH English Article Aging; Juvenile fish; Length frequency; Mixture models; Pacific salmon TUNA THUNNUS-MACCOYII; FREQUENCY DATA; AGE VALIDATION; COHO SALMON; GROWTH; SIZE; STEELHEAD; DENSITY; HABITAT; STREAMS Juvenile salmon life history strategies, survival, and habitat interactions may vary by age cohort. However, aging individual juvenile fish using scale reading is time consuming and can be error prone. Fork length data are routinely measured while sampling juvenile salmonids. We explore the performance of aging juvenile fish based solely on fork length data, using finite Gaussian mixture models to describe multimodal size distributions and estimate optimal age-discriminating length thresholds. Fork length-based ages are compared against a validation set of juvenile coho salmon, Oncorynchus kisutch, aged by scales. Results for juvenile coho salmon indicate greater than 95% accuracy can be achieved by aging fish using length thresholds estimated from mixture models. Highest accuracy is achieved when aged fish are compared to length thresholds generated from samples from the same drainage, time of year, and habitat type (lentic versus lotic), although relatively high aging accuracy can still be achieved when thresholds are extrapolated to fish from populations in different years or drainages. Fork length-based aging thresholds are applicable for taxa for which multiple age cohorts coexist sympatrically. Where applicable, the method of aging individual fish is relatively quick to implement and can avoid ager interpretation bias common in scale-based aging. Published by Elsevier B.V. [Sethi, Suresh Andrew] Cornell Univ, New York Cooperat Fish & Wildlife Res Unit, US Geol Survey, 211 Fernow Hall, Ithaca, NY 14853 USA; [Gerken, Jonathon; Ashline, Joshua] US Fish & Wildlife Serv, Anchorage Field Off, 4700 BLM Rd, Anchorage, AK 99507 USA Sethi, SA (reprint author), Cornell Univ, New York Cooperat Fish & Wildlife Res Unit, US Geol Survey, 211 Fernow Hall, Ithaca, NY 14853 USA. suresh.sethi@cornell.edu Alaska Sustainable Salmon Fund; U.S. Fish and Wildlife Service; U.S. Geological Survey We thank two anonymous reviwers, A.E. Punt, and other journal editorial staff for comments that improved this article. Funding for this project was provided by the Alaska Sustainable Salmon Fund, the U.S. Fish and Wildlife Service, and the U.S. Geological Survey. We thank the private landowners throughout the Big Lake watershed and the Alaska Department of fish and game for providing access for study sampling. Numerous U.S. Fish and Wildlife Service field technicians are thanked for their sampling efforts. The findings and conclusions in this article are those,of the author(s) and do not necessarily represent the views of the U.S. Fish and Wildlife Service. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. BEAMISH RJ, 1983, T AM FISH SOC, V112, P735, DOI 10.1577/1548-8659(1983)112<735:TFRFAV>2.0.CO;2; BISSON PA, 1988, T AM FISH SOC, V117, P262, DOI 10.1577/1548-8659(1988)117<0262:CHHUAB>2.3.CO;2; Bradley C., 2016, ECOL FRESHW IN PRESS; Campana SE, 2001, J FISH BIOL, V59, P197, DOI 10.1006/jfbi.2001.1668; Carlson SM, 2008, FUNCT ECOL, V22, P663, DOI 10.1111/j.1365-2435.2008.01416.x; Clements S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021406; Crone R.A., 1974, FISH B, V74, P897; DOLLOFF CA, 1990, CAN J FISH AQUAT SCI, V47, P2297, DOI 10.1139/f90-256; FOURNIER DA, 1990, CAN J FISH AQUAT SCI, V47, P301, DOI 10.1139/f90-032; Fraley C, 2002, J AM STAT ASSOC, V97, P611, DOI 10.1198/016214502760047131; GADOMSKI DM, 1994, ENVIRON BIOL FISH, V39, P191, DOI 10.1007/BF00004937; Gilbert C. H., 1912, FISH B, V32, P1; Groot C., 1991, PACIFIC SALMON LIFE; Hogan E.V., 1995, GEOLOGICAL SURVEY OP, P95; Hunt L, 1999, AUST NZ J STAT, V41, P153; Jearld A. Jr, 1983, P301; Keith RM, 1998, T AM FISH SOC, V127, P889, DOI 10.1577/1548-8659(1998)127<0889:ROJSTR>2.0.CO;2; Laslett GM, 2004, ICES J MAR SCI, V61, P218, DOI 10.1016/j.icesjms.2003.12.006; Leigh GM, 2000, MAR FRESHWATER RES, V51, P143, DOI 10.1071/MF99029; MACDONALD PDM, 1979, J FISH RES BOARD CAN, V36, P987, DOI 10.1139/f79-137; Maceina MJ, 2007, FISHERIES, V32, P329, DOI 10.1577/1548-8446(2007)32[329:CSAROF]2.0.CO;2; McLachlan G.J., 2000, FINITE MIXTURE MODEL; Mosher K.H., 1968, FISHERY B, V67, P243; Myrvold KM, 2015, T AM FISH SOC, V144, P577, DOI 10.1080/00028487.2015.1022220; Quist MC, 2012, FISHERIES TECHNIQUES, THIRD EDITION, P677; R Core Team, 2015, R LANG ENV STAT COMP; Richardson N., 2016, ECOL FRESHW IN PRESS; Van Beveren E, 2014, MAR BIOL, V161, P1809, DOI 10.1007/s00227-014-2463-1; Zhu XH, 2013, T AM FISH SOC, V142, P333, DOI 10.1080/00028487.2012.741554 29 1 1 2 12 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. JAN 2017 185 161 168 10.1016/j.fishres.2016.09.012 8 Fisheries Fisheries ED3XA WOS:000388780600019 2019-02-21 J Jonason, PK; Zeigler-Hill, V; Okan, C Jonason, Peter K.; Zeigler-Hill, Virgil; Okan, Ceylan Good v. evil: Predicting sinning with dark personality traits and moral foundations PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Narcissism; Psychopathy; Machiavellianism; Sadism; Spitefulness; Morality; Sins TRIAD; BEHAVIORS; INVENTORY; DIRTY Using life history theory, we provided (N = 1236) insight into individual differences in the engagement in human vice or sin (e.g., lust) by examining individual differences in dark personality traits and morality. Moral foundations were associated with sin through the individualizing aspects of morality. Dark personality traits accounted for almost six times more variance in individual differences in sinning than the moral foundations which suggests that it is personality rather than morality that is responsible for sinning behaviors. While sadism and spitefulness accounted for unique and significantly more variance, this was a small and specialized amount We replicated effects suggesting men are more strongly embodied by dark personality traits and behaviors than women are, and women are more morally virtuous than men are, but showed these sex differences were a function of dark personality traits in particular and moral foundations. Overwhelmingly, dark personality traits trump participant' sex and moral foundations. in accounting for variance in sin. (C) 2016 Elsevier Ltd. All rights reserved. [Jonason, Peter K.; Okan, Ceylan] Univ Western Sydney, Penrith, NSW 1797, Australia; [Zeigler-Hill, Virgil] Oakland Univ, Rochester, MI 48063 USA Jonason, PK (reprint author), Univ Western Sydney, Sch Social Sci & Psychol, Penrith, NSW 2751, Australia. p.jonason@westernsydney.edu.au Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buckels EE, 2013, PSYCHOL SCI, V24, P2201, DOI 10.1177/0956797613490749; Campbell J, 2009, TWIN RES HUM GENET, V12, P132, DOI 10.1375/twin.12.2.132; Christie R, 1970, STUDIES MACHIAVELLIA; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; de Waal F., 1996, GOOD NATURED; Figueredo AJ, 2015, EVOL PSYCHOL-US, V13, P435; Gioia GA, 2000, CHILD NEUROPSYCHOL, V6, P235, DOI 10.1076/chin.6.3.235.3152; Graham J, 2011, J PERS SOC PSYCHOL, V101, P366, DOI 10.1037/a0021847; Hayes AF, 2013, INTRO MEDIATION MODE; Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X; James S, 2014, PERS INDIV DIFFER, V68, P211, DOI 10.1016/j.paid.2014.04.020; Jonason PK, 2015, PERS INDIV DIFFER, V81, P102, DOI 10.1016/j.paid.2014.10.045; Jonason PK, 2015, PERS INDIV DIFFER, V78, P43, DOI 10.1016/j.paid.2015.01.028; Jonason PK, 2013, EVOL PSYCHOL-US, V11, P172, DOI 10.1177/147470491301100116; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2015, PERS INDIV DIFFER, V86, P360, DOI 10.1016/j.paid.2015.06.021; Kajonius PJ, 2015, PERS INDIV DIFFER, V77, P173, DOI 10.1016/j.paid.2014.12.055; Kavanagh PS, 2013, PERS INDIV DIFFER, V55, P666, DOI 10.1016/j.paid.2013.05.019; Marcus DK, 2014, PSYCHOL ASSESSMENT, V26, P563, DOI 10.1037/a0036039; Medina John J., 2000, GENETIC INFERNO INSI; Paulhus D. L., 2013, COMPREHENSIVE UNPUB; Paulhus D. L., 2009, MANUAL SELF REPORT P; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Schimmel S., 1997, 7 DEADLY SINS JEWISH; Veselka L, 2014, PERS INDIV DIFFER, V67, P75, DOI 10.1016/j.paid.2014.01.055; Wilson E.O., 1975, P1 30 11 11 1 37 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JAN 2017 104 180 185 10.1016/j.paid.2016.08.002 6 Psychology, Social Psychology EA2DG WOS:000386402400029 2019-02-21 J Eikeset, AM; Dunlop, ES; Heino, M; Storvik, G; Stenseth, NC; Dieckmann, U Eikeset, Anne Maria; Dunlop, Erin S.; Heino, Mikko; Storvik, Geir; Stenseth, Nils C.; Dieckmann, Ulf Roles of density-dependent growth and life history evolution in accounting for fisheries-induced trait changes PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article phenotypic plasticity; eco-evolutionary dynamics; management; genetic adaptation; genetic variance NORTHEAST ARCTIC COD; MATURATION REACTION NORMS; EXPLOITED FISH STOCKS; ECO-GENETIC MODEL; LONG-TERM CHANGES; GADUS-MORHUA; ATLANTIC COD; SELECTIVE MORTALITY; SIZE; CONSEQUENCES The relative roles of density dependence and life history evolution in contributing to rapid fisheries-induced trait changes remain debated. In the 1930s, northeast Arctic cod (Gadus morhua), currently the world's largest cod stock, experienced a shift from a traditional spawning-ground fishery to an industrial trawl fishery with elevated exploitation in the stock's feeding grounds. Since then, age and length at maturation have declined dramatically, a trend paralleled in other exploited stocks worldwide. These trends can be explained by demographic truncation of the population's age structure, phenotypic plasticity in maturation arising through density-dependent growth, fisheries-induced evolution favoring faster-growing or earlier-maturing fish, or a combination of these processes. Here, we use a multitrait eco-evolutionary model to assess the capacity of these processes to reproduce 74 y of historical data on age and length at maturation in northeast Arctic cod, while mimicking the stock's historical harvesting regime. Our results show that model predictions critically depend on the assumed density dependence of growth: when this is weak, life history evolution might be necessary to prevent stock collapse, whereas when a stronger density dependence estimated from recent data is used, the role of evolution in explaining fisheries-induced trait changes is diminished. Our integrative analysis of density-dependent growth, multitrait evolution, and stock-specific time series data underscores the importance of jointly considering evolutionary and ecological processes, enabling a more comprehensive perspective on empirically observed stock dynamics than previous studies could provide. [Eikeset, Anne Maria; Stenseth, Nils C.] Univ Oslo, Dept Biol, N-0316 Oslo, Norway; [Eikeset, Anne Maria; Stenseth, Nils C.] Univ Oslo, CEES, N-0316 Oslo, Norway; [Eikeset, Anne Maria; Dunlop, Erin S.; Heino, Mikko; Dieckmann, Ulf] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria; [Eikeset, Anne Maria] Princeton Univ, Ctr BioComplex, Princeton, NJ 08544 USA; [Eikeset, Anne Maria] Princeton Univ, Princeton Environm Inst, Princeton, NJ 08544 USA; [Eikeset, Anne Maria] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Dunlop, Erin S.] Ontario Minist Nat Resources & Forestry, Aquat Res & Monitoring Sect, Peterborough, ON K9L 0G2, Canada; [Dunlop, Erin S.; Heino, Mikko] Inst Marine Res, N-5817 Bergen, Norway; [Dunlop, Erin S.; Heino, Mikko] Univ Bergen, Dept Biol, N-5020 Bergen, Norway; [Dunlop, Erin S.; Heino, Mikko] Univ Bergen, Hjort Ctr Marine Ecosyst Dynam, N-5020 Bergen, Norway; [Storvik, Geir] Univ Oslo, Stat Div, Dept Math, N-0316 N- Oslo, Norway Eikeset, AM; Stenseth, NC (reprint author), Univ Oslo, Dept Biol, N-0316 Oslo, Norway.; Eikeset, AM; Stenseth, NC (reprint author), Univ Oslo, CEES, N-0316 Oslo, Norway.; Eikeset, AM (reprint author), Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria.; Eikeset, AM (reprint author), Princeton Univ, Ctr BioComplex, Princeton, NJ 08544 USA.; Eikeset, AM (reprint author), Princeton Univ, Princeton Environm Inst, Princeton, NJ 08544 USA.; Eikeset, AM (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. a.m.eikeset@ibv.uio.no; n.c.stenseth@ibv.uio.no Heino, Mikko/C-7241-2009 Heino, Mikko/0000-0003-2928-3940; Dieckmann, Ulf/0000-0001-7089-0393; Storvik, Geir Olve/0000-0001-8198-1426 Norwegian Research Council; NordForsk (GreenMAR); Bergen Research Foundation; European Research Training Network on Fisheries-Induced Adaptive Changes in Exploited Stocks (FishACE) [MRTN-CT-2204-005578]; European Specific Targeted Research Programme on Fisheries-induced Evolution (FinE) [SSP-2006-044276]; European Science Foundation; Austrian Science Fund; Austrian Ministry of Science and Research; Vienna Science and Technology Fund We are grateful to the Research Computing Services at the University of Oslo for access to computing resources crucial for this study. We thank A. Hylen, K. Nedreaas, B. Bogstad, and O. S. Kjesbu for kindly providing data on biomass and reproduction, and C. T. Marshall for data on length at age. We sincerely appreciate comments provided by J. Hutchings, C. T. Marshall, N. L. Hjort, O. R. Godo, T. Hansen, B. Shuter, K. Brander, and E. Kenchington, and discussions with K. Enberg and C. Jorgensen on the model and results. This work was supported by the Norwegian Research Council (A.M.E., E.S.D., M.H., and N. C. S.), NordForsk (GreenMAR) (A.M.E. and N. C. S.), the Bergen Research Foundation (M.H.), the European Research Training Network on Fisheries-Induced Adaptive Changes in Exploited Stocks (FishACE; Grant MRTN-CT-2204-005578) (to E.S.D., M.H., and U.D.), the European Specific Targeted Research Programme on Fisheries-induced Evolution (FinE; Grant SSP-2006-044276) (to A.M.E., E.S.D., M.H., N. C. S., and U.D.), the European Science Foundation (U.D.), the Austrian Science Fund (U.D.), the Austrian Ministry of Science and Research (U.D.), and the Vienna Science and Technology Fund (U.D.). Aglen A, 2004, P 10 NORW RUSS S, P27; AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Bangera R, 2015, J MAR SCI ENG, V3, P412, DOI 10.3390/jmse3020412; Baskett ML, 2005, ECOL APPL, V15, P882, DOI 10.1890/04-0723; Bromaghin JF, 2011, NAT RESOUR MODEL, V24, P1, DOI 10.1111/j.1939-7445.2010.00077.x; Browman HI, 2008, SCIENCE, V320, P47, DOI 10.1126/science.320.5872.47b; Burnham K. P, 2002, MODEL SELECTION MULT; Cameron TC, 2013, ECOL LETT, V16, P754, DOI 10.1111/ele.12107; Casini M, 2014, PLOS ONE, V9; Castellani M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0138444; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Conover DO, 2007, FISHERIES, V32, P90; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; de Roos AM, 2006, P ROY SOC B-BIOL SCI, V273, P1873, DOI 10.1098/rspb.2006.3518; Devore J. L, 2012, MODERN MATH STAT APP; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2015, ECOL APPL, V25, P1860, DOI 10.1890/14-1862.1; Dunlop ES, 2009, EVOL APPL, V2, P371, DOI 10.1111/j.1752-4571.2009.00089.x; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Eikeset AM, 2013, P NATL ACAD SCI USA, V110, P12259, DOI 10.1073/pnas.1212593110; Eikeset AM, 2013, MAR POLICY, V39, P172, DOI 10.1016/j.marpol.2012.10.020; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Feiner ZS, 2015, EVOL APPL, V8, P724, DOI 10.1111/eva.12285; Fraser DJ, 2013, CAN J FISH AQUAT SCI, V70, P1417, DOI 10.1139/cjfas-2013-0171; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Gjerde B, 2004, AQUACULTURE, V236, P167, DOI 10.1016/j.aquaculture.2004.03.004; Gobin J, 2015, J GREAT LAKES RES, V41, P405, DOI 10.1016/j.jglr.2015.03.003; Godo OR, 2003, FISH FISH, V4, P121, DOI 10.1046/j.1467-2979.2003.00112.x; GODO OR, 1987, FISH RES, V5, P235, DOI 10.1016/0165-7836(87)90043-9; Godo OR, 2000, IR00024 IIASA; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M., 2002, ICES CM Y, V2002 Y, P14; Hilborn R, 2006, FISHERIES, V31, P554; Hjermann DO, 2007, P ROY SOC B-BIOL SCI, V274, P661, DOI 10.1098/rspb.2006.0069; HOULE D, 1992, GENETICS, V130, P195; Hsieh CH, 2010, AQUAT SCI, V72, P165, DOI 10.1007/s00027-009-0122-2; Huse G, 2004, ICES J MAR SCI, V61, P1201, DOI 10.1016/j.icesjms.2004.06.011; HUTCHINGS JA, 1994, CAN J FISH AQUAT SCI, V51, P2126, DOI 10.1139/f94-214; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Hylen A., 2002, ICES MARINE SCI S, V215, P543; ICES, 2013, 2013ACOM05 ICES CM; ICES, 2009, 2009ACOM01 ICES CM; Ivan LN, 2015, CAN J FISH AQUAT SCI, V72, P1243, DOI 10.1139/cjfas-2014-0197; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; JORGENSEN T, 1992, ICES J MAR SCI, V49, P263, DOI 10.1093/icesjms/49.3.263; JORGENSEN T, 1990, J CONSEIL, V46, P235; Kinnison MT, 2009, P NATL ACAD SCI USA, V106, pE115, DOI 10.1073/pnas.09007871106; Kjesbu OS, 2014, P NATL ACAD SCI USA, V111, P3478, DOI 10.1073/pnas.1316342111; Kjesbu OS, 1998, J SEA RES, V40, P303, DOI 10.1016/S1385-1101(98)00029-X; Korsbrekke K, 2001, ICES J MAR SCI, V58, P763, DOI 10.1006/jmsc.2001.1064; Kuparinen A, 2014, EVOL APPL, V7, P1218, DOI 10.1111/eva.12217; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Marshall CT, 2004, CAN J FISH AQUAT SCI, V61, P1900, DOI 10.1139/F04-128; Marty L, 2015, EVOL APPL, V8, P47, DOI 10.1111/eva.12220; MCEVOY LA, 1992, J FISH BIOL, V41, P125, DOI 10.1111/j.1095-8649.1992.tb03874.x; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Nussle S, 2009, EVOL APPL, V2, P200, DOI 10.1111/j.1752-4571.2008.00054.x; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Palkovacs EP, 2012, EVOL APPL, V5, P183, DOI 10.1111/j.1752-4571.2011.00212.x; Pardoe H, 2009, CAN J FISH AQUAT SCI, V66, P1719, DOI 10.1139/F09-132; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Piou C, 2012, ECOL MODEL, V231, P37, DOI 10.1016/j.ecolmodel.2012.01.025; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2005, CAN J FISH AQUAT SCI, V62, P791, DOI 10.1139/F05-079; Roff Derek A., 1992; SAETERSDAL G, 1964, FISKERIDIREKTORATE H, V13, P56; Scheffer M, 1995, ECOL MODEL, V80, P161; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Tenhumberg B, 2004, ECOLOGY, V85, P2003, DOI 10.1890/03-4111; Traill LW, 2014, P NATL ACAD SCI USA, V111, P13223, DOI 10.1073/pnas.1407508111; Vainikka A, 2012, FISH RES, V113, P8, DOI 10.1016/j.fishres.2011.09.004; Vainikka A, 2009, ICES J MAR SCI, V66, P248, DOI 10.1093/icesjms/fsn199; van Wijk SJ, 2013, FRONT ECOL ENVIRON, V11, P181, DOI 10.1890/120229; Wang HY, 2009, EVOL APPL, V2, P438, DOI 10.1111/j.1752-4571.2009.00088.x; Yoneda M, 2004, MAR ECOL PROG SER, V276, P237, DOI 10.3354/meps276237; Zimmermann F, 2015, CAN J FISH AQUAT SCI, V72, P612, DOI 10.1139/cjfas-2014-0006; Zuykova NV, 2009, MAR BIOL RES, V5, P66, DOI 10.1080/17451000802454874 93 14 14 1 57 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. DEC 27 2016 113 52 15030 15035 10.1073/pnas.1525749113 6 Multidisciplinary Sciences Science & Technology - Other Topics EG5NL WOS:000391090800046 27940913 Green Published, Bronze 2019-02-21 J Boratynski, Z; Arias, JM; Garcia, C; Mappes, T; Mousseau, TA; Moller, AP; Pajares, AJM; Piwczynski, M; Tukalenko, E Boratynski, Zbyszek; Arias, Javi Miranda; Garcia, Cristina; Mappes, Tapio; Mousseau, Timothy A.; Moller, Anders P.; Munoz Pajares, Antonio Jesus; Piwczynski, Marcin; Tukalenko, Eugene Ionizing radiation from Chernobyl affects development of wild carrot plants SCIENTIFIC REPORTS English Article LIFE-HISTORY EVOLUTION; TRADE-OFFS; OXIDATIVE STRESS; ADAPTATION; GROWTH; EXPRESSION; ANIMALS; DNA; POPULATIONS; FUKUSHIMA Radioactivity released from disasters like Chernobyl and Fukushima is a global hazard and a threat to exposed biota. To minimize the deleterious effects of stressors organisms adopt various strategies. Plants, for example, may delay germination or stay dormant during stressful periods. However, an intense stress may halt germination or heavily affect various developmental stages and select for life history changes. Here, we test for the consequence of exposure to ionizing radiation on plant development. We conducted a common garden experiment in an uncontaminated greenhouse using 660 seeds originating from 33 wild carrots (Daucus carota) collected near the Chernobyl nuclear power plant. These maternal plants had been exposed to radiation levels that varied by three orders of magnitude. We found strong negative effects of elevated radiation on the timing and rates of seed germination. In addition, later stages of development and the timing of emergence of consecutive leaves were delayed by exposure to radiation. We hypothesize that low quality of resources stored in seeds, damaged DNA, or both, delayed development and halted germination of seeds from plants exposed to elevated levels of ionizing radiation. We propose that high levels of spatial heterogeneity in background radiation may hamper adaptive life history responses. [Boratynski, Zbyszek; Arias, Javi Miranda; Garcia, Cristina; Munoz Pajares, Antonio Jesus] Univ Porto, Associated Lab, Res Ctr Biodivers & Genet Resources, CIBIO InBIO, P-4485661 Vairao, PT, Portugal; [Boratynski, Zbyszek; Mappes, Tapio; Tukalenko, Eugene] Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, FI-40014 Jyvaskyla, Finland; [Mousseau, Timothy A.] Univ South Carolina, Dept Biol Sci, Columbia, SC 29208 USA; [Mousseau, Timothy A.] Chubu Univ, Dept Environm Biol, Kasugai, Aichi 4878501, Japan; [Moller, Anders P.] Univ Paris Sud, CNRS UMR 8079, Lab Ecol Systemat & Evolut, Batiment 362, F-91405 Orsay, France; [Piwczynski, Marcin] Nicolaus Copernicus Univ, Chair Ecol & Biogeog, Lwowska 1, PL-87100 Torun, Poland; [Tukalenko, Eugene] Taras Shevchenko Natl Univ Kyiv, Inst Biol, UA-03022 Kiev, Ukraine Boratynski, Z (reprint author), Univ Porto, Associated Lab, Res Ctr Biodivers & Genet Resources, CIBIO InBIO, P-4485661 Vairao, PT, Portugal.; Boratynski, Z (reprint author), Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, FI-40014 Jyvaskyla, Finland. boratyns@jyu.fi Piwczynski, Marcin/E-4016-2014 Piwczynski, Marcin/0000-0002-1756-5580; Munoz-Pajares, A. Jesus/0000-0002-2505-8116; Boratynski, Zbyszek/0000-0003-4668-4922; GARCIA, CRISTINA/0000-0001-7970-1245 Academy of Finland [268670]; Portuguese Foundation for Science and Technology (FCT) [RH/BPD/84822/2012, SFRH/BPD/111015/2015]; Portuguese Foundation for Science and Technology (FCT) - European Program COMPETE [FCT-ANR/BIA-BIC/0010/2013, PTDC/BIA-BIC/5223/2014, FCOMP-01-0124-FEDER-019772]; Project "Genomics and Evolutionary Biology" - North Portugal Regional Operational Programme (ON.2 - O Novo Norte) under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF); Polish National Science Centre [2015/18/E/NZ8/00716]; Samuel Freeman Charitable Trust; CNRS (France); American Council of Learned Societies; University of South Carolina College of Arts and Sciences We gratefully acknowledge the help and support of Gennadi Milinevsky, Laura Martinez-Rodriguez, Margarida Isabel Oliveira Barros and Ricardo Guerreiro during field work and greenhouse experiment, and Nikolaos Evangeliou for help in calculations of exposure to ground contamination (http://radio.nilu.no). The study was financially supported by the Academy of Finland to TM (Grant No. 268670). AJMP and ZB were funded by the Portuguese Foundation for Science and Technology (FCT: RH/BPD/84822/2012 and SFRH/BPD/111015/2015). CG was supported by the Portuguese Foundation for Science and Technology (FCT) through the Investigador Programme and two research grants (FCT-ANR/BIA-BIC/0010/2013 and PTDC/BIA-BIC/5223/2014) co-funded by the European Program COMPETE (FCOMP-01-0124-FEDER-019772), and by the Project "Genomics and Evolutionary Biology" cofinanced by North Portugal Regional Operational Programme 2007/2013 (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). MP was supported by the Polish National Science Centre (grant no. 2015/18/E/NZ8/00716). Additional support to TAM and APM came from the Samuel Freeman Charitable Trust, the CNRS (France), the American Council of Learned Societies, and the University of South Carolina College of Arts and Sciences. Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; Boratynski Z, 2014, SCI REP-UK, V4, DOI 10.1038/srep07141; Boubriak II, 2008, ANN BOT-LONDON, V101, P267, DOI 10.1093/aob/mcm276; COLEY PD, 1988, OECOLOGIA, V74, P531, DOI 10.1007/BF00380050; Einor D, 2016, SCI TOTAL ENVIRON, V548, P463, DOI 10.1016/j.scitotenv.2016.01.027; Evangeliou N., 2016, ENV POLLUT; Galvan I, 2014, FUNCT ECOL, V28, P1387, DOI 10.1111/1365-2435.12283; GRAY D, 1984, J EXP BOT, V35, P459, DOI 10.1093/jxb/35.4.459; Hall ME, 2010, FUNCT ECOL, V24, P365, DOI 10.1111/j.1365-2435.2009.01635.x; Hayashi G, 2015, PLANT SIGNAL BEHAV, V10, DOI 10.1080/15592324.2015.1103406; Hayashi G, 2014, J HERED, V105, P723, DOI 10.1093/jhered/esu025; Hereford J, 2009, AM NAT, V173, P579, DOI 10.1086/597611; Hinton TG, 2007, HEALTH PHYS, V93, P427, DOI 10.1097/01.HP.0000281179.03443.2e; KOLLER P. C., 1943, Proceedings of the Royal Society of Edinburgh, V61, P398; Kovalchuk I, 2004, PLANT PHYSIOL, V135, P357, DOI 10.1104/pp.104.040477; Kovalchuk O, 2000, NATURE, V407, P583, DOI 10.1038/35036692; LACEY EP, 1986, J ECOL, V74, P73, DOI 10.2307/2260349; Leck Mary Allessio, 2008, P3; Lind EM, 2013, ECOL LETT, V16, P513, DOI 10.1111/ele.12078; Moller AP, 2013, BIOL REV, V88, P226, DOI 10.1111/j.1469-185X.2012.00249.x; Moller AP, 2015, SCI REP-UK, V5, DOI 10.1038/srep08363; Moller AP, 1998, OIKOS, V81, P444, DOI 10.2307/3546765; Moller AP, 1997, J THEOR BIOL, V185, P415, DOI 10.1006/jtbi.1996.0332; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Mousseau TA, 2000, ADAPTIVE GENETIC VARIATION IN THE WILD, P219; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Mousseau TA, 2014, J HERED, V105, P704, DOI 10.1093/jhered/esu040; Mousseau TA, 2013, TREES-STRUCT FUNCT, V27, P1443, DOI 10.1007/s00468-013-0891-z; Nakanishi T. M., 2016, AGR IMPLICATIONS FUK; Nascimento WM, 2013, SEED SCI TECHNOL, V41, P164, DOI 10.15258/sst.2013.41.1.19; Prati D, 2000, OIKOS, V90, P442, DOI 10.1034/j.1600-0706.2000.900303.x; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Sidler C, 2015, RADIAT RES, V183, P219, DOI 10.1667/RR13840.1; Smith SA, 2008, SCIENCE, V322, P86, DOI 10.1126/science.1163197; SPARROW A. H., 1961, RADIATION BOT, V1, P10, DOI 10.1016/S0033-7560(61)80003-3; Stearns S C, 1987, Experientia Suppl, V55, P337; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Sultan SE, 2000, TRENDS PLANT SCI, V5, P537, DOI 10.1016/S1360-1385(00)01797-0; WOODWELL GM, 1963, SCIENCE, V139, P222, DOI 10.1126/science.139.3551.222 42 5 5 4 36 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep DEC 16 2016 6 39282 10.1038/srep39282 8 Multidisciplinary Sciences Science & Technology - Other Topics EE9UM WOS:000389971700001 27982121 DOAJ Gold, Green Published 2019-02-21 J Jourdan, J; Krause, ST; Lazar, VM; Zimmer, C; Sommer-Trembo, C; Arias-Rodriguez, L; Klaus, S; Riesch, R; Plath, M Jourdan, Jonas; Krause, Sarah T.; Lazar, V. Max; Zimmer, Claudia; Sommer-Trembo, Carolin; Arias-Rodriguez, Lenin; Klaus, Sebastian; Riesch, Rudiger; Plath, Martin Shared and unique patterns of phenotypic diversification along a stream gradient in two congeneric species SCIENTIFIC REPORTS English Article LIFE-HISTORY EVOLUTION; GUPPY POECILIA-RETICULATA; FISH BRACHYRHAPHIS-RHABDOPHORA; GAMBUSIA-EURYSTOMA MILLER; TOXIC HYDROGEN-SULFIDE; SEXUAL SIZE DIMORPHISM; LIVEBEARING FISH; POSTPLEISTOCENE RADIATION; ECOLOGICAL SPECIATION; MEXICANA POECILIIDAE Stream ecosystems show gradual variation of various selection factors, which can result in a zonation of species distributions and gradient evolution of morphological and life-history traits within species. Identifying the selective agents underlying such phenotypic evolution is challenging as different species could show shared and/or unique (species-specific) responses to components of the river gradient. We studied a stream gradient inhabited by two mosquitofishes (genus Gambusia) in the Rio Grijalva basin in southern Mexico and found a patchy distribution pattern of both congeners along a stretch of 100 km, whereby one species was usually dominant at a given site. We uncovered both shared and unique patterns of diversification: some components of the stream gradient, including differences in piscine predation pressure, drove shared patterns of phenotypic divergence, especially in females. Other components of the gradient, particularly abiotic factors (max. annual temperature and temperature range) resulted in unique patterns of divergence, especially in males. Our study highlights the complexity of selective regimes in stream ecosystems. It exemplifies that even closely related, congeneric species can respond in unique ways to the same components of the river gradient and shows how both sexes can exhibit quite different patterns of divergence in multivariate phenotypic character suites. [Jourdan, Jonas; Zimmer, Claudia; Plath, Martin] Northwest A&F UNiv, Coll Anim Sci & Technol, Yangling 712100, Shaanxi, Peoples R China; [Jourdan, Jonas; Krause, Sarah T.; Lazar, V. Max; Zimmer, Claudia; Sommer-Trembo, Carolin; Klaus, Sebastian] Goethe Univ Frankfurt, Dept Ecol & Evolut, Max von Laue Str 13, D-60438 Frankfurt, Germany; [Jourdan, Jonas] Senckenberg Res Inst, Dept River Ecol & Conservat, Gelnhausen, Germany; [Jourdan, Jonas] Nat Hist Museum Frankfurt, Gelnhausen, Germany; [Arias-Rodriguez, Lenin] Univ Juarez Autonoma Tabasco, Div Acad Ciencias Biol, Villahermosa 86150, Tabasco, Mexico; [Riesch, Rudiger] Royal Holloway Univ London, Sch Biol Sci, Egham TW20 0EX, Surrey, England Jourdan, J (reprint author), Northwest A&F UNiv, Coll Anim Sci & Technol, Yangling 712100, Shaanxi, Peoples R China.; Jourdan, J (reprint author), Goethe Univ Frankfurt, Dept Ecol & Evolut, Max von Laue Str 13, D-60438 Frankfurt, Germany.; Jourdan, J (reprint author), Senckenberg Res Inst, Dept River Ecol & Conservat, Gelnhausen, Germany.; Jourdan, J (reprint author), Nat Hist Museum Frankfurt, Gelnhausen, Germany. JonasJourdan@googlemail.com Riesch, Rudiger/A-5787-2008; Jourdan, Jonas/Y-7389-2018 Riesch, Rudiger/0000-0002-0223-1254; Klaus, Sebastian/0000-0001-5822-7978; ARIAS RODRIGUEZ, LENIN/0000-0002-8025-5569; Jourdan, Jonas/0000-0002-2745-2520 Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M; 'LOEWE-Landes-Offensive zur Entwicklung Wissenschaftlich-okonomischer Exzellenz' of Hesse's Ministry of Higher Education, Research, and the Arts We thank J.R. Indy, A.L.D'artola Barcelo, K. Lipkowski, S. Hornung, and Y. Verel for helping us collect fish. We are indebted to R. Velazquez Pacheco for giving us the opportunity to use the facilities of the Centro de Investigacion e Innovacion para la Ensenanza y el Apredizaje in Teapa. The present study was supported by the Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M. Funding was provided by the research funding programme 'LOEWE-Landes-Offensive zur Entwicklung Wissenschaftlich-okonomischer Exzellenz' of Hesse's Ministry of Higher Education, Research, and the Arts. Collection of fish and experimental work in Mexico were conducted under the authorization and regulations of the Mexican Federal Agency CONAPESCA: PRMN/DGOPA-003/2014 and PRMN/DGOPA-009/2015. Allan J. D., 1995, STREAM ECOLOGY; Anderson EC, 2002, GENETICS, V160, P1217; Arif S, 2007, EVOL ECOL RES, V9, P843; Banet AI, 2016, OECOLOGIA, V181, P87, DOI 10.1007/s00442-015-3542-9; Belk MC, 2010, OIKOS, V119, P163, DOI 10.1111/j.1600-0706.2009.17742.x; BISAZZA A, 1995, ETHOL ECOL EVOL, V7, P169, DOI 10.1080/08927014.1995.9522963; BLACK DA, 1979, COPEIA, P509; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; CARTER HJ, 1981, COPEIA, P694; Coyne JA, 2004, SPECIATION, V37; Culumber ZW, 2011, MOL ECOL, V20, P342, DOI 10.1111/j.1365-294X.2010.04949.x; Culumber ZW, 2016, AQUAT CONSERV, V26, P1155, DOI 10.1002/aqc.2640; Dayan T, 2005, ECOL LETT, V8, P875, DOI 10.1111/j.1461-0248.2005.00791.x; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Earl DA, 2012, CONSERV GENET RESOUR, V4, P359, DOI 10.1007/s12686-011-9548-7; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; Endler J. A., 1986, NATURAL SELECTION WI; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Farr J.A., 1989, P91; Fink W.L., 1971, Publ Gulf Coast Res Lab Mus (Ocean Springs Miss), V2, P11; Franssen NR, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2715; Franssen NR, 2011, EVOL APPL, V4, P791, DOI 10.1111/j.1752-4571.2011.00200.x; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Gillespie RG, 2012, TRENDS ECOL EVOL, V27, P47, DOI 10.1016/j.tree.2011.08.009; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Gomez-Mestre I, 2004, EVOLUTION, V58, P2343; GOMEZGONZALEZ AE, 2015, CHECK LIST, V11, pNIL65, DOI DOI 10.15560/11.1726; Goudet J, 1995, J HERED, V86, P485, DOI 10.1093/oxfordjournals.jhered.a111627; GREENFIELD DW, 1985, COPEIA, P368, DOI 10.2307/1444846; GREENFIELD DW, 1983, COPEIA, P598; GREENFIELD DW, 1982, COPEIA, P128; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Haas TC, 2010, BIOL LETTERS, V6, P803, DOI 10.1098/rsbl.2010.0401; Hangartner S, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-366; Heibo E, 2005, ECOLOGY, V86, P3377, DOI 10.1890/04-1620; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Hijmans R. J., 2004, DIVA GIS VERSION 7 5; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Hodkinson ID, 2005, BIOL REV, V80, P489, DOI 10.1017/S1464793105006767; Horstkotte J, 2005, BIOL J LINN SOC, V85, P125, DOI 10.1111/j.1095-8312.2005.00476.x; Hudson P. F., 2005, RIVERS N AM, P1031, DOI DOI 10.1016/B978-012088253-3/50026-2; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/f00-239; Jansen M., 2016, AMPHIBIA-REPTILIA, DOI [10.1163/15685381-00003038, DOI 10.1163/15685381-00003038]; Jennions MD, 2002, OIKOS, V97, P79, DOI 10.1034/j.1600-0706.2002.970108.x; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Keller I, 2012, MOL ECOL, V21, P782, DOI 10.1111/j.1365-294X.2011.05397.x; Klingenberg CP, 2011, MOL ECOL RESOUR, V11, P353, DOI 10.1111/j.1755-0998.2010.02924.x; KOCHER TD, 1989, P NATL ACAD SCI USA, V86, P6196, DOI 10.1073/pnas.86.16.6196; KRUMHOLZ LA, 1948, ECOL MONOGR, V18, P1, DOI 10.2307/1948627; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P2231, DOI 10.1111/j.1420-9101.2009.01839.x; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; Langerhans RB, 2007, EVOLUTION, V61, P2056, DOI 10.1111/j.1558-5646.2007.00171.x; Langerhans RB, 2009, BIOL LETTERS, V5, P488, DOI 10.1098/rsbl.2009.0179; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Laverty G, 2015, EXTREMOPHILE FISHES, P85; Lindholm AK, 2014, J EVOLUTION BIOL, V27, P437, DOI 10.1111/jeb.12313; LYDEARD C, 1995, SYST BIOL, V44, P221, DOI 10.2307/2413708; LYDEARD C, 1995, CAN J ZOOL, V73, P213, DOI 10.1139/z95-025; MacLaren RD, 2012, ENVIRON BIOL FISH, V93, P105, DOI 10.1007/s10641-011-9896-x; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Martin RA, 2014, EVOLUTION, V68, P397, DOI 10.1111/evo.12277; Matthews W. J., 1998, PATTERNS FRESHWATER; Meyer A, 2006, MOL ECOL, V15, P721, DOI 10.1111/j.1365-294X.2006.02810.x; Miller RR, 2005, FRESHWATER FISHES ME; Moore MP, 2016, ECOL LETT, V19, P435, DOI 10.1111/ele.12576; Nelson J., 2015, EXTREMOPHILE FISHES, P193; Palacios M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071069; Palo JU, 2003, MOL ECOL, V12, P1963, DOI 10.1046/j.1365-294X.2003.01865.x; Plath M, 2005, BEHAV ECOL SOCIOBIOL, V58, P144, DOI 10.1007/s00265-005-0918-6; Plath M, 2003, BEHAV ECOL SOCIOBIOL, V54, P303, DOI 10.1007/s00265-003-0625-0; Plath M, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-256; Pritchard JK, 2000, GENETICS, V155, P945; Purcell KM, 2011, CONSERV GENET RESOUR, V3, P361, DOI 10.1007/s12686-010-9362-7; Pyke GH, 2005, REV FISH BIOL FISHER, V15, P339, DOI 10.1007/s11160-006-6394-x; RAKOCINSKI CF, 1985, STUD NEOTROP FAUNA E, V20, P157, DOI 10.1080/01650528509360684; Rambaut A., 2013, TRACER V1 6; RAUCHENBERGER M, 1990, AM MUS NOVIT, P1; Rauchenberger M, 1989, AM MUS NOVIT, V2951, P1; Reeve JP, 1999, HEREDITY, V83, P697, DOI 10.1046/j.1365-2540.1999.00616.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Riesch R, 2011, J EVOLUTION BIOL, V24, P596, DOI 10.1111/j.1420-9101.2010.02194.x; Riesch R, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0705-1; Riesch R, 2016, SCI REP-UK, V6, DOI 10.1038/srep22968; Riesch R, 2014, ECOL LETT, V17, P65, DOI 10.1111/ele.12209; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Riesch R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027377; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; Rios-Cardenas O., 2011, ECOLOGY EVOLUTION PO, P188; Rodriguez G., 1986, Crustacean Issues, V4, P51; Rohlf F. J, 2010, TPSDIG2 VERSION 2 16; Rohlf F. J., 2013, TPSUTIL VERSION 1 58; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; Sexton JP, 2009, ANNU REV ECOL EVOL S, V40, P415, DOI 10.1146/annurev.ecolsys.110308.120317; Spencer CC, 1999, MOL ECOL, V8, P157; Stearns S. C., 1992, EVOLUTION LIFE HIST, V249; Stuart YE, 2014, SCIENCE, V346, P463, DOI 10.1126/science.1257008; Taniguchi Y, 2000, ECOLOGY, V81, P2027, DOI 10.1890/0012-9658(2000)081[2027:CSCIFT]2.0.CO;2; TERBRAAK CJF, 1986, ECOLOGY, V67, P1167; Tobler M, 2008, J FISH BIOL, V72, P523, DOI 10.1111/j.1095-8649.2007.01716.x; Tobler M, 2009, ENVIRON BIOL FISH, V85, P251, DOI 10.1007/s10641-009-9481-8; Torres-Dowdall J, 2013, BIOL J LINN SOC, V108, P790, DOI 10.1111/bij.12031; Torres-Dowdall J, 2012, FUNCT ECOL, V26, P616, DOI 10.1111/j.1365-2435.2012.01980.x; Watt C, 2010, OIKOS, V119, P89, DOI 10.1111/j.1600-0706.2009.17959.x; Wesner JS, 2011, BIOL J LINN SOC, V104, P386, DOI 10.1111/j.1095-8312.2011.01715.x; Wetzel R. G., 2001, LIMNOLOGY LAKE RIVER; Wiens JJ, 2010, ECOL LETT, V13, P1310, DOI 10.1111/j.1461-0248.2010.01515.x; WINEMILLER KO, 1992, ENVIRON BIOL FISH, V34, P29, DOI 10.1007/BF00004783; WOURMS JP, 1981, AM ZOOL, V21, P473; XLSTAT, 2016, ADD; Zandona E, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136079; Zelditch ML, 2012, GEOMETRIC MORPHOMETRICS FOR BIOLOGISTS: A PRIMER, 2ND EDITION, P1 119 7 7 3 17 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep DEC 16 2016 6 38971 10.1038/srep38971 20 Multidisciplinary Sciences Science & Technology - Other Topics EE8NS WOS:000389883400001 27982114 DOAJ Gold, Green Published 2019-02-21 J de Souza, FC; Dexter, KG; Phillips, OL; Brienen, RJW; Chave, J; Galbraith, DR; Gonzalez, GL; Mendoza, AM; Pennington, RT; Poorter, L; Alexiades, M; Alvarez-Davila, E; Andrade, A; Aragao, LEOC; Araujo-Murakami, A; Arets, EJMM; Aymard, GA; Baraloto, C; Barroso, JG; Bonal, D; Boot, RGA; Camargo, JLC; Comiskey, JA; Valverde, FC; de Camargo, PB; Di Fiore, A; Elias, F; Erwin, TL; Feldpausch, TR; Ferreira, L; Fyllas, NM; Gloor, E; Herault, B; Herrera, R; Higuchi, N; Coronado, ENH; Killeen, TJ; Laurance, WF; Laurance, S; Lloyd, J; Lovejoy, TE; Malhi, Y; Maracahipes, L; Marimon, BS; Marimon, BH; Mendoza, C; Morandi, P; Neill, DA; Vargas, PN; Oliveira, EA; Lenza, E; Palacios, WA; Penuela-Mora, MC; Pipoly, JJ; Pitman, NCA; Prieto, A; Quesada, CA; Ramirez-Angulo, H; Rudas, A; Ruokolainen, K; Salomao, RP; Silveira, M; Stropp, J; ter Steege, H; Thomas-Caesar, R; van der Hout, P; van der Heijden, GMF; van der Meer, PJ; Vasquez, RV; Vieira, SA; Vilanova, E; Vos, VA; Wang, O; Young, KR; Zagt, RJ; Baker, TR de Souza, Fernanda Coelho; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Gonzalez, Gabriela Lopez; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Alvarez-Davila, Esteban; Andrade, Ana; Aragao, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C., Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, Jose L. C.; Comiskey, James A.; Cornejo Valverde, Fernando; de Camargo, Plinio B.; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Euridice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Nunez Vargas, Percy; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Penuela-Mora, Maria C.; Pipoly, John J., III; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomao, Rafael P.; Silveira, Marcos; Stropp, Juliana; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R. Evolutionary heritage influences Amazon tree ecology PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article tropical tree; trait; convergent evolution; divergent selection; phylogenetic signal PHYLOGENETIC NICHE CONSERVATISM; FUNCTIONAL TRAITS; WOOD DENSITY; RAIN-FOREST; COMMUNITY ECOLOGY; SIGNAL; BIOMASS; GROWTH; PRODUCTIVITY; SIZE Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. [de Souza, Fernanda Coelho; Phillips, Oliver L.; Brienen, Roel J. W.; Galbraith, David R.; Gonzalez, Gabriela Lopez; Aragao, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C., Gerardo A.; Baraloto, Christopher; Fyllas, Nikolaos M.; Gloor, Emanuel; Baker, Timothy R.] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England; [Dexter, Kyle G.] Univ Edinburgh, Sch Geosci, 201 Crew Bldg,Kings Bldg, Edinburgh EH9 3FF, Midlothian, Scotland; [Dexter, Kyle G.; Pennington, R. Toby] Royal Bot Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, Midlothian, Scotland; [Chave, Jerome] Univ Paul Sabatier, CNRS, UMR 5174, Evolut & Diversite Biol, Batiment 4R1, F-31062 Toulouse, France; [Monteagudo Mendoza, Abel; Vasquez, Rodolfo V.] Jardin Bot Missouri, Prolongac Bolognesi Mz E,Lote 6, Oxapampa, Pasco, Peru; [Poorter, Lourens] Wageningen Univ & Res, Forest Ecol & Forest Management Grp, POB 47, NL-6700 AA Wageningen, Netherlands; [Alexiades, Miguel] Univ Kent, Sch Anthropol & Conservat, Marlowe Bldg, Canterbury CT2 7NR, Kent, England; [Alvarez-Davila, Esteban] Fdn Con Vida, Cra 48 20-114, Medellin, Colombia; [Andrade, Ana; Camargo, Jose L. C.] INPA, Biol Dynam Forest Fragment Project, CP 478, BR-69011970 Manaus, Amazonas, Brazil; [Andrade, Ana; Camargo, Jose L. C.] STRI, CP 478, BR-69011970 Manaus, Amazonas, Brazil; [Aragao, Luis E. O. C.; Feldpausch, Ted R.] Univ Exeter, Coll Life & Environm Sci, Geog, Exeter EX4 4RJ, Devon, England; [Aragao, Luis E. O. C.] Natl Inst Space Res INPE, Sao Paulo, Brazil; [Araujo-Murakami, Alejandro] Univ Autonoma Gabriel Rene Moreno, Museo Hist Nat Noel Kempff Mercado, Casilla 2489,Ave Irala 565, Santa Cruz, Bolivia; [Arets, Eric J. M. M.] Wageningen Univ & Res Ctr, Alterra, POB 47, NL-6700 AA Wageningen, Netherlands; [Aymard C., Gerardo A.] Herbario Univ PORT, UNELLEZ Guanare, Programa Agro & Mar, Estado Portuguesa 3350, Mesa De Cavacas, Venezuela; [Baraloto, Christopher] Florida Int Univ, Dept Biol Sci, Int Ctr Trop Bot, Miami, FL 33199 USA; [Barroso, Jorcely G.] Univ Fed Acre, Campus Cruzeiro Sul, Acre, Brazil; [Bonal, Damien] INRA, UMR 1137, Ecol & Ecophysiol Forestiere, F-54280 Champenoux, France; [Boot, Rene G. A.; Zagt, Roderick J.] Tropenbos Int, POB 232, NL-6700 AE Wageningen, Netherlands; [Comiskey, James A.] Natl Pk Serv, 120 Chatham Lane, Fredericksburg, VA 22405 USA; [Comiskey, James A.] Smithsonian Inst, 1100 Jefferson Dr SW, Washington, DC 20560 USA; [Cornejo Valverde, Fernando] Proyecto Castana, Madre De Dios, Peru; [de Camargo, Plinio B.] Univ Sao Paulo, Ctr Energia Nucl Agr, Sao Paulo, SP, Brazil; [Di Fiore, Anthony] Univ Texas Austin, Dept Anthropol, SAC Room 5-150,2201 Speedway Stop C3200, Austin, TX 78712 USA; [Elias, Fernando; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Morandi, Paulo; Oliveira, Edmar A.; Lenza, Eddie] Univ Estado Mato Grosso, Campus Nova Xavantina,Caixa Postal 08, BR-78690000 Nova Xavantina, MG, Brazil; [Erwin, Terry L.] Smithsonian Inst, Dept Entomol, POB 37012,MRC 187, Washington, DC 20013 USA; [Ferreira, Leandro; Salomao, Rafael P.] Museu Paraense Emilio Goeldi, CP 399, BR-66040170 Belem, Para, Brazil; [Herault, Bruno] Univ Guyane, Univ Antilles, CNRS, Cirad,UMR EcoFoG,AgroParisTech,Inra, Campus Agron, Kourou 97310, French Guiana; [Herrera, Rafael] Ctr Ecol IVIC, Caracas, Venezuela; [Herrera, Rafael] Univ Vienna, Inst Geog & Reg Forsch, Vienna, Austria; [Higuchi, Niro; Quesada, Carlos A.] INPA, Ave Andre Araujo 2-936, BR-69067375 Manaus, Amazonas, Brazil; [Honorio Coronado, Euridice N.] Inst Invest Amazonia Peruana, Apartado 784, Iquitos, Peru; [Killeen, Timothy J.] AGTECA Amazonica, Santa Cruz, Bolivia; [Laurance, William F.; Laurance, Susan] James Cook Univ, Ctr Trop Environm & Sustainabil Sci TESS, Cairns, Qld 4878, Australia; [Laurance, William F.; Laurance, Susan] James Cook Univ, Coll Sci & Engn, Cairns, Qld 4878, Australia; [Lloyd, Jon] Imperial Coll London, Dept Life Sci, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, Berks, England; [Lovejoy, Thomas E.] George Mason Univ, Environm Sci & Policy, Washington, DC USA; [Lovejoy, Thomas E.] George Mason Univ, Dept Publ & Int Affairs, Washington, DC USA; [Malhi, Yadvinder] Univ Oxford, Sch Geog & Environm, Environm Change Inst, Oxford, England; [Maracahipes, Leandro] Univ Fed Goias, Programa Posgrad Ecol & Evolucao, Goiania, Go, Brazil; [Mendoza, Casimiro] Univ Mayor San Simon, Unidad Acad Trop, Escuela Ciencias Forest, Sacta, Bolivia; [Neill, David A.] Univ Estatal Amazonica, Puyo, Pastaza, Ecuador; [Palacios, Walter A.] Univ Nacl San Antonio Abad Cusco, Ave Cultura 733, Cuzco, Peru; [Palacios, Walter A.] Univ Tcen Norte, Casilla 17-21-1787,Ave Rio Coca E6-115, Quito, Ecuador; [Palacios, Walter A.] Herbario Nacl Ecuador, Casilla 17-21-1787,Ave Rio Coca E6-115, Quito, Ecuador; [Penuela-Mora, Maria C.] Univ Reg Amazonica IKIAM, Tena, Ecuador; [Pipoly, John J., III] Broward Cty Pk & Recreat Div, 950 NW 38th St, Oakland Pk, FL 33309 USA; [Pitman, Nigel C. A.] Duke Univ, Ctr Trop Conservat, POB 90381, Durham, NC 27708 USA; [Prieto, Adriana; Rudas, Agustin] Univ Ciol Colombia, Doctorado Inst Ciencias Nat, Bogota, Colombia; [Ramirez-Angulo, Hirma] Univ Los Andes, Fac Ciencias Forestales & Ambientales, Inst Invest Desarrollo Forestal INDEFOR, Merida 5101, Venezuela; [Ruokolainen, Kalle] Univ Turku, Dept Geog & Geol, Turku 20014, Finland; [Silveira, Marcos] Univ Fed Acre, Museu Univ, BR-69910900 Rio Branco, AC, Brazil; [Stropp, Juliana] Univ Fed Alagoas, ICBS, Maceio, AL, Brazil; [ter Steege, Hans] Naturalis Biodivers Ctr, Vondellaan 55,Postbus 9517, NL-2300 RA Leiden, Netherlands; [Thomas-Caesar, Raquel] Iwokrama Intertiol Ctr Rainforest Conservat & Dev, 77 High St Kingston, Georgetown, Guyana; [van der Hout, Peter] Van der Hout Forestry Consulting, Jan Trooststr 6, NL-3078 HP Rotterdam, Netherlands; [van der Heijden, Geertje M. F.] Univ Nottingham, Sch Geog, Univ Pk, Nottingham NG7 2RD, England; [van der Meer, Peter J.] Van Hall Larenstein Univ Appl Sci, POB 9001, NL-6880 GB Velp, Netherlands; [Vieira, Simone A.] Univ Estadual Campinas, Nucleo Estudos & Pesquisas Ambientais NEPAM, Campinas, SP, Brazil; [Vilanova, Emilio] Univ Los Andes, Fac Ciencias Forest & Ambient, Merida, Venezuela; [Vos, Vincent A.] Ctr Invest & Promoc Campesinado Reg Norte Amazoni, C Nicanor Gonzalo Salvatierra 362,Casilla 16, Riberalta, Bolivia; [Vos, Vincent A.] Univ Autonoma Beni, Campus Univ, Riberalta, Bolivia; [Wang, Ophelia] No Arizona Univ, Flagstaff, AZ 86011 USA; [Young, Kenneth R.] Univ Texas Austin, Dept Geog & Environm, Austin, TX 78712 USA de Souza, FC (reprint author), Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England. fecoelhos@gmail.com Silveira, Marcos/H-7906-2013; Marimon Junior, Ben Hur/E-7330-2013; Marimon, Beatriz/J-6389-2012; Feldpausch, Ted/D-3436-2009; Lloyd, Jonathan/F-8893-2010; Lenza, Eddie/E-7232-2013; Elias, Fernando/P-4400-2014; Dexter, Kyle/D-5589-2018; Phillips, Oliver/A-1523-2011; Vieira, Simone/H-1225-2011; Maracahipes, Leandro/F-8674-2012; ter Steege, Hans/B-5866-2011; vieira, Sabrina/X-1702-2018; Herault, Bruno/B-2765-2011; James Cook University, TESS/B-8171-2012 Silveira, Marcos/0000-0003-0485-7872; Marimon, Beatriz/0000-0003-3105-2914; Feldpausch, Ted/0000-0002-6631-7962; Lloyd, Jonathan/0000-0002-5458-9960; Lenza, Eddie/0000-0001-9139-5949; Elias, Fernando/0000-0001-9190-1733; Dexter, Kyle/0000-0001-9232-5221; Phillips, Oliver/0000-0002-8993-6168; Vieira, Simone/0000-0002-0129-4181; Maracahipes, Leandro/0000-0002-6148-3291; ter Steege, Hans/0000-0002-8738-2659; Herault, Bruno/0000-0002-6950-7286; Poorter, Lourens/0000-0003-1391-4875; Laurance, Susan/0000-0002-2831-2933; Arets, Eric/0000-0001-7209-9028; Young, Kenneth R./0000-0003-0866-1260; Fyllas, Nikolaos/0000-0002-5651-5578; Baraloto, Christopher/0000-0001-7322-8581; Vos, Vincent Antoine/0000-0002-0388-8530 Gordon and Betty Moore Foundation; European Union [283080, 282664]; ERC; Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grant 'AMAZONICA' [NE/ F005806/1]; Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grant 'TROBIT' [NE/D005590/1]; Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grant 'Niche Evolution of South American Trees' [NE/I028122/1]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico of Brazil (CNPq); project Programa de Pesquisas Ecologicas de Longa Duracao [PELD-403725/2012-7]; Coordination for the Improvement of Higher Education Personnel - Brasil (CAPES) [117913-6]; Royal Society-Wolfson Research Merit Award; Leverhulme Trust [RF-2015-653] The field data used in this study have been generated by the RAINFOR network, which has been supported by a Gordon and Betty Moore Foundation grant, the European Union's Seventh Framework Programme projects 283080, 'GEOCARBON'; and 282664, 'AMAZALERT'; ERC grant 'Tropical Forests in the Changing Earth System'), and Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grants 'AMAZONICA' (NE/ F005806/1), 'TROBIT' (NE/D005590/1) and 'Niche Evolution of South American Trees' (NE/I028122/1). Additional data were included from the Tropical Ecology Assessment and Monitoring (TEAM) Network - a collaboration between Conservation International, the Missouri Botanical Garden, the Smithsonian Institution and the Wildlife Conservation Society, and partly funded by these institutions, the Gordon and Betty Moore Foundation, and other donors. Fieldwork was also partially supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico of Brazil (CNPq), project Programa de Pesquisas Ecologicas de Longa Duracao (PELD-403725/2012-7). F.C.S. is supported by a PhD scholarship from Coordination for the Improvement of Higher Education Personnel - Brasil (CAPES) (117913-6). O.L.P. is supported by an ERC Advanced Grant and is a Royal Society-Wolfson Research Merit Award holder and T.R.B. acknowledges support from a Leverhulme Trust Research Fellowship (RF-2015-653). Arroyo-Rodriguez V, 2012, J ECOL, V100, P702, DOI 10.1111/j.1365-2745.2011.01952.x; Baker TR, 2014, ECOL LETT, V17, P527, DOI 10.1111/ele.12252; Baker TR, 2004, GLOBAL CHANGE BIOL, V10, P545, DOI 10.1111/j.1529-8817.2003.00751.x; Baker TR, 2004, PHILOS T ROY SOC B, V359, P353, DOI 10.1098/rstb.2003.1422; Baraloto C, 2012, J ECOL, V100, P690, DOI 10.1111/j.1365-2745.2012.01966.x; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Boyle B, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-16; Burns JH, 2012, ECOLOGY, V93, pS126, DOI 10.1890/11-0401.1; Cadotte MW, 2008, P NATL ACAD SCI USA, V105, P17012, DOI 10.1073/pnas.0805962105; Cadotte MW, 2013, P NATL ACAD SCI USA, V110, P8996, DOI 10.1073/pnas.1301685110; Cavender-Bares J, 2009, ECOL LETT, V12, P693, DOI 10.1111/j.1461-0248.2009.01314.x; Chave J, 2014, GLOBAL CHANGE BIOL, V20, P3177, DOI 10.1111/gcb.12629; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Conner JK, 2004, A PRIMER OF ECOLOGIC; Crisp MD, 2012, NEW PHYTOL, V196, P681, DOI 10.1111/j.1469-8137.2012.04298.x; Davies TJ, 2012, ECOLOGY, V93, P242, DOI 10.1890/11-1360.1; DENSLOW JS, 1987, ANNU REV ECOL SYST, V18, P431, DOI 10.1146/annurev.es.18.110187.002243; Dexter K, 2016, PEERJ, V4, DOI 10.7717/peerj.2402; Dowle M, 2014, 2014 DATA TABLE EXTE; El-Lithy ME, 2004, PLANT PHYSIOL, V135, P444, DOI 10.1104/pp.103.036822; Enquist BJ, 2007, NATURE, V449, P218, DOI 10.1038/nature06061; Fan ZX, 2012, J ECOL, V100, P732, DOI 10.1111/j.1365-2745.2011.01939.x; Fauset S, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7857; Feeley KJ, 2007, ECOL LETT, V10, P461, DOI 10.1111/j.1461-0248.2007.01033.x; Fine PVA, 2014, EVOLUTION, V68, P1988, DOI 10.1111/evo.12414; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Geber MA, 2003, INT J PLANT SCI, V164, pS21, DOI 10.1086/368233; Goodman RC, 2013, FOREST ECOL MANAG, V310, P994, DOI 10.1016/j.foreco.2013.09.045; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Ives AR, 2007, SYSTEMATIC BIOL, V56, P252, DOI 10.1080/10635150701313830; Kamilar JM, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0341; Kitajima K, 2008, TROPICAL FOREST COMM, P160; Krasnov BR, 2011, ECOGRAPHY, V34, P114, DOI 10.1111/j.1600-0587.2010.06502.x; Lines ER, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013212; Lopez-Gonzalez G, 2011, J VEG SCI, V22, P610, DOI 10.1111/j.1654-1103.2011.01312.x; Losos JB, 2008, ECOL LETT, V11, P995, DOI 10.1111/j.1461-0248.2008.01229.x; Nascimento HEM, 2005, J VEG SCI, V16, P625, DOI 10.1658/1100-9233(2005)016[0625:DALCFA]2.0.CO;2; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Phillips OL, 2004, PHILOS T ROY SOC B, V359, P381, DOI 10.1098/rstb.2003.1438; Quesada CA, 2010, BIOGEOSCIENCES, V7, P1515, DOI 10.5194/bg-7-1515-2010; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Revell LJ, 2008, SYST BIOL, V57, P591, DOI 10.1080/10635150802302427; Ribeiro EMS, 2016, ECOLOGY, V97, P1583, DOI 10.1890/15-1122.1; Santos BA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113109; Swenson NG, 2007, AM J BOT, V94, P451, DOI 10.3732/ajb.94.3.451; Swenson NG, 2012, ECOLOGY, V93, P490, DOI 10.1890/11-1180.1; Talbot J, 2014, FOREST ECOL MANAG, V320, P30, DOI 10.1016/j.foreco.2014.02.021; Team R. D. C, 2014, R A LANGUAGE AND ENV; ter Steege H, 2013, SCIENCE, V342, P325, DOI 10.1126/science.1243092; Uriarte M, 2010, ECOL LETT, V13, P1503, DOI 10.1111/j.1461-0248.2010.01541.x; Webb CO, 2005, MOL ECOL NOTES, V5, P181, DOI 10.1111/j.1471-8286.2004.00829.x; Webb CO, 2002, ANNU REV ECOL SYST, V33, P475, DOI 10.1146/annurev.ecolysis.33.010802.150448; Yang J, 2014, FUNCT ECOL, V28, P520, DOI 10.1111/1365-2435.12176; Zanne A. E, 2009, DRYAD DIGITAL REPOSI, DOI 10.5061/dryad.234 55 5 5 5 42 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. DEC 14 2016 283 1844 20161587 10.1098/rspb.2016.1587 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology EF5XW WOS:000390404200010 Green Published, Other Gold 2019-02-21 J Mittal, C; Griskevicius, V Mittal, Chiraag; Griskevicius, Vladas Silver Spoons and Platinum Plans: How Childhood Environment Affects Adult Health Care Decisions JOURNAL OF CONSUMER RESEARCH English Article health insurance; childhood socioeconomic status; risk perception; risk propensity; financial threat FAMILY UNPREDICTABILITY SCALE; LIFE-HISTORY STRATEGIES; SOCIOECONOMIC-STATUS; UNREALISTIC OPTIMISM; RISK-TAKING; INSURANCE DECISIONS; SELF-POSITIVITY; BEHAVIOR; STRESS; PREFERENCE Can socioeconomic status in childhood influence desire for health coverage in adulthood? We develop and test a model that yielded two sets of findings across five experiments. First, people who grew up poor were generally less interested in health coverage compared to those who grew up wealthy. This effect was independent of people's current level of socioeconomic status, emerged most strongly when adults were experiencing financial threat, and was mediated by differences in willingness to take risks between people from poor versus wealthy childhoods. Second, we show that this effect reverses when people are provided with baserate information about disease. When information about the average likelihood of getting sick is made available, people who grew up poor were consistently more likely to seek health coverage than people who grew up wealthy. This effect was again strongest when people felt a sense of financial threat, and it was driven by people from poor versus wealthy childhoods differing in their perceptions of the likelihood of becoming sick. Overall, we show how, why, and when childhood socioeconomic status influences desire for health coverage. [Mittal, Chiraag] Texas A&M Univ, Mkt, Mays Business Sch, 220 Wehner Bldg,4113 TAMU, College Stn, TX 77843 USA; [Griskevicius, Vladas] Univ Minnesota, Mkt, Carlson Sch Management, 321 19th Ave South,Suite 3-150, Minneapolis, MN 55455 USA Mittal, C (reprint author), Texas A&M Univ, Mkt, Mays Business Sch, 220 Wehner Bldg,4113 TAMU, College Stn, TX 77843 USA. cmittal@tamu.edu; vladasg@umn.edu Adler NE, 2002, HEALTH AFFAIR, V21, P60, DOI 10.1377/hlthaff.21.2.60; Aiken LS, 1991, MULTIPLE REGRESSION; American Psychological Association, 2015, STRESS AM PAYING OUR; Anderson LR, 2008, J HEALTH ECON, V27, P1260, DOI 10.1016/j.jhealeco.2008.05.011; Arrow K., 1971, ESSAYS THEORY RISK B; Baicker K, 2012, MILBANK Q, V90, P107, DOI 10.1111/j.1468-0009.2011.00656.x; Barnett J, 2001, RISK ANAL, V21, P171, DOI 10.1111/0272-4332.211099; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Blais AR, 2006, JUDGM DECIS MAK, V1, P33; BLOCK LG, 1995, J MARKETING RES, V32, P192, DOI 10.2307/3152047; Bradley RH, 2002, ANNU REV PSYCHOL, V53, P371, DOI 10.1146/annurev.psych.53.100901.135233; Brady SS, 2002, J PEDIATR PSYCHOL, V27, P575, DOI 10.1093/jpepsy/27.7.575; Breakwell G. M., 2014, PSYCHOL RISK; Brewer NT, 2007, HEALTH PSYCHOL, V26, P136, DOI 10.1037/0278-6133.26.2.136; BrooksGunn J, 1997, FUTURE CHILD, V7, P55, DOI 10.2307/1602387; Bundorf MK, 2006, J HEALTH ECON, V25, P650, DOI 10.1016/j.jhealeco.2005.11.003; CAMERER CF, 1989, J POLICY ANAL MANAG, V8, P565, DOI 10.2307/3325045; Chaplin LN, 2007, J CONSUM RES, V34, P480, DOI 10.1086/518546; Chen E, 2004, CURR DIR PSYCHOL SCI, V13, P112, DOI 10.1111/j.0963-7214.2004.00286.x; Chen E, 2012, PERSPECT PSYCHOL SCI, V7, P135, DOI 10.1177/1745691612436694; Cohen S, 2010, ANN NY ACAD SCI, V1186, P37, DOI 10.1111/j.1749-6632.2009.05334.x; Connell PM, 2014, J CONSUM RES, V41, P119, DOI 10.1086/675218; de Meza D, 2001, RAND J ECON, V32, P249, DOI 10.2307/2696408; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; DeNavas-Walt Carmen, 2013, INCOME POVERTY HLTH, P50; Diener E, 2002, SOC INDIC RES, V57, P119, DOI 10.1023/A:1014411319119; Duncan GJ, 2002, AM J PUBLIC HEALTH, V92, P1151, DOI 10.2105/AJPH.92.7.1151; Duncan GJ, 2010, CHILD DEV, V81, P306, DOI 10.1111/j.1467-8624.2009.01396.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Evans GW, 2004, AM PSYCHOL, V59, P77, DOI 10.1037/0003-066X.59.2.77; Fischhoff B, 2003, J RISK UNCERTAINTY, V26, P137, DOI 10.1023/A:1024163023174; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Guo G, 2000, DEMOGRAPHY, V37, P431, DOI 10.2307/2648070; Hanoch Y, 2006, PSYCHOL SCI, V17, P300, DOI 10.1111/j.1467-9280.2006.01702.x; Harris P, 1996, J SOC CLIN PSYCHOL, V15, P9, DOI 10.1521/jscp.1996.15.1.9; Hayes AF, 2013, INTRO MEDIATION MODE; Helweg-Larsen M, 2001, PERS SOC PSYCHOL REV, V5, P74, DOI 10.1207/S15327957PSPR0501_5; Hill SE, 2013, J EXP SOC PSYCHOL, V49, P888, DOI 10.1016/j.jesp.2013.03.016; HOGARTH RM, 1995, J RISK UNCERTAINTY, V10, P15, DOI 10.1007/BF01211526; HOORENS V, 1993, J APPL SOC PSYCHOL, V23, P291, DOI 10.1111/j.1559-1816.1993.tb01088.x; Horton R, 2009, LANCET, V373, P355, DOI 10.1016/S0140-6736(09)60116-1; Hsee CK, 2000, J RISK UNCERTAINTY, V20, P141, DOI 10.1023/A:1007876907268; Irwin JR, 2001, J MARKETING RES, V38, P100, DOI 10.1509/jmkr.38.1.100.18835; JENSEN EW, 1983, SOC SCI MED, V17, P201, DOI 10.1016/0277-9536(83)90117-X; Jiang Y., 2016, BASIC FACTS LOW INCO; JOHNSON EJ, 1993, J RISK UNCERTAINTY, V7, P35, DOI 10.1007/BF01065313; KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185; Keller RA, 2002, J CONSUM RES, V29, P57; Klein CTF, 2002, PSYCHOL HEALTH, V17, P437, DOI 10.1080/0887044022000004920; Kunreuther H, 1996, J RISK UNCERTAINTY, V12, P171, DOI 10.1007/BF00055792; Kunreuther H., 2006, FDN TRENDS MICROECON, V1, P63; Chaplin LN, 2014, J PUBLIC POLICY MARK, V33, P78, DOI 10.1509/jppm.13.050; Laran J, 2013, PSYCHOL SCI, V24, P167, DOI 10.1177/0956797612450033; Lejuez CW, 2002, J EXP PSYCHOL-APPL, V8, P75, DOI 10.1037//1076-898X.8.2.75; Levy H, 2008, INQUIRY-J HEALTH CAR, V45, P365, DOI 10.5034/inquiryjrnl_45.04.365; LICHTENSTEIN S, 1971, J EXP PSYCHOL, V89, P46, DOI 10.1037/h0031207; LICHTENSTEIN S, 1973, J EXP PSYCHOL, V101, P16, DOI 10.1037/h0035472; Lin YC, 2003, J CONSUM PSYCHOL, V13, P464, DOI 10.1207/S15327663JCP1304_13; LINK BG, 1995, J HEALTH SOC BEHAV, V35, P80, DOI 10.2307/2626958; Loewenstein GF, 2001, PSYCHOL BULL, V127, P267, DOI 10.1037//0033-2909.127.2.267; Marjanovic Z, 2013, J ECON PSYCHOL, V36, P1, DOI 10.1016/j.joep.2013.02.005; MATHENY AP, 1995, J APPL DEV PSYCHOL, V16, P429, DOI 10.1016/0193-3973(95)90028-4; McEwen BS, 2012, P NATL ACAD SCI USA, V109, P17180, DOI 10.1073/pnas.1121254109; MCEWEN BS, 1993, ARCH INTERN MED, V153, P2093, DOI 10.1001/archinte.153.18.2093; MCKENNA FP, 1993, BRIT J PSYCHOL, V84, P39, DOI 10.1111/j.2044-8295.1993.tb02461.x; MECHANIC D, 1980, PREV MED, V9, P805, DOI 10.1016/0091-7435(80)90023-7; Menon G, 2007, HDB CONSUMER PSYCHOL, P981; Menon G, 2009, ORGAN BEHAV HUM DEC, V108, P39, DOI 10.1016/j.obhdp.2008.05.001; Miller GE, 2009, P NATL ACAD SCI USA, V106, P14716, DOI 10.1073/pnas.0902971106; Minsky Hyman P, 1986, STABILIZING UNSTABLE; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Mittal C, 2014, J PERS SOC PSYCHOL, V107, P621, DOI 10.1037/a0037398; MOORMAN C, 1993, J CONSUM RES, V20, P208, DOI 10.1086/209344; Moss JH, 2014, HUM NATURE-INT BIOS, V25, P328, DOI 10.1007/s12110-014-9210-7; MOSSIN J, 1968, J POLIT ECON, V76, P553, DOI 10.1086/259427; Muller D, 2005, J PERS SOC PSYCHOL, V89, P852, DOI 10.1037/0022-3514.89.6.852; Nes LS, 2006, PERS SOC PSYCHOL REV, V10, P235, DOI 10.1207/s15327957pspr1003_3; Nicholson N, 2005, J RISK RES, V8, P157, DOI 10.1080/1366987032000123856; Pampel FC, 2010, ANNU REV SOCIOL, V36, P349, DOI 10.1146/annurev.soc.012809.102529; PERLOFF LS, 1986, J PERS SOC PSYCHOL, V50, P502, DOI 10.1037//0022-3514.50.3.502; Petrolia DR, 2013, LAND ECON, V89, P227, DOI 10.3368/le.89.2.227; Raghubir P, 1998, J CONSUM RES, V25, P52, DOI 10.1086/209526; Richins ML, 2015, J CONSUM RES, V41, P1333, DOI 10.1086/680087; Rindfleisch A, 1997, J CONSUM RES, V23, P312, DOI 10.1086/209486; Ross LT, 2008, J CHILD FAM STUD, V17, P13, DOI 10.1007/s10826-007-9138-1; Ross LT, 2000, J MARRIAGE FAM, V62, P549, DOI 10.1111/j.1741-3737.2000.00549.x; Roux Caroline, 2014, ADV CONSUM RES, V42, P216; Samuelson William, 1988, J RISK UNCERTAINTY, V1, P7, DOI DOI 10.1007/BF00055564; SCHLESINGER H, 1991, J RISK INSUR, V58, P109, DOI 10.2307/3520051; SCHOEMAKER PJH, 1979, J RISK INSUR, V46, P603, DOI 10.2307/252533; Sharma E, 2012, J CONSUM RES, V39, P545, DOI 10.1086/664038; Shonkoff JP, 2012, PEDIATRICS, V129, pE460, DOI 10.1542/peds.2011-0366; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SITKIN SB, 1992, ACAD MANAGE REV, V17, P9, DOI 10.2307/258646; SLOVIC P, 1987, SCIENCE, V236, P280, DOI 10.1126/science.3563507; SLOVIC P, 1977, J RISK INSUR, V44, P237, DOI 10.2307/252136; SMITH VL, 1968, J POLIT ECON, V76, P68, DOI 10.1086/259382; Spinnewijn J, 2013, ECON J, V123, P606, DOI 10.1111/ecoj.12008; Sunstein CR, 2011, ENVIRON RESOUR ECON, V48, P435, DOI 10.1007/s10640-010-9449-3; Taylor SE, 2004, J PERS, V72, P1365, DOI 10.1111/j.1467-6494.2004.00300.x; TAYLOR SE, 1988, PSYCHOL BULL, V103, P193, DOI 10.1037/0033-2909.103.2.193; Taylor SE, 2010, P NATL ACAD SCI USA, V107, P8507, DOI 10.1073/pnas.1003890107; Thompson Debora V., 2015, ADV CONSUM RES, V46, P230; Troxel WM, 2004, CLIN CHILD FAM PSYCH, V7, P29, DOI 10.1023/B:CCFP.0000020191.73542.b0; US Department of Health and Human Services, 2013, HLTH INS MARK PREM 2; VISCUSI WK, 1987, RAND J ECON, V18, P465, DOI 10.2307/2555636; Wambach A, 2008, MICROECONOMIC INSURA, V4, P1; Watson, 1988, J PERS SOC PSYCHOL, V54, P1063; WEINSTEIN ND, 1980, J PERS SOC PSYCHOL, V39, P806, DOI 10.1037//0022-3514.39.5.806; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919; Yan DF, 2013, J CONSUM RES, V39, P931, DOI 10.1086/666596; Zhao XS, 2010, J CONSUM RES, V37, P197, DOI 10.1086/651257 115 5 5 7 11 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 0093-5301 1537-5277 J CONSUM RES J. Consum. Res. DEC 2016 43 4 636 656 10.1093/jcr/ucw046 21 Business Business & Economics EQ3AK WOS:000397943100009 2019-02-21 J Xue, X; Adhikari, BN; Perkes, A; Martin, M; Wall, DH; Adams, BJ Xue, X.; Adhikari, B. N.; Perkes, A.; Martin, M.; Wall, D. H.; Adams, B. J. LIFE HISTORY EVOLUTION OF AN ANTARCTIC NEMATODE: ELEMENTAL STOICHIOMETRY AND THE GROWTH RATE HYPOTHESIS JOURNAL OF NEMATOLOGY English Meeting Abstract [Xue, X.; Perkes, A.; Martin, M.; Adams, B. J.] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA; [Xue, X.; Perkes, A.; Martin, M.; Adams, B. J.] Brigham Young Univ, Evolutionary Ecol Labs, Provo, UT 84602 USA; [Adhikari, B. N.] ARS, USDA, Tucson, AZ USA; [Wall, D. H.] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA; [Wall, D. H.] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA; [Perkes, A.] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA; [Martin, M.] Midwestern Univ, Arizona Coll Osteopath Med, Glendale, AZ USA Adams, Byron/C-3808-2009 Adams, Byron/0000-0002-7815-3352 0 0 0 1 5 SOC NEMATOLOGISTS MARCELINE PO BOX 311, MARCELINE, MO 64658 USA 0022-300X J NEMATOL J. Nematol. DEC 2016 48 4 384 385 2 Zoology Zoology EJ1FL WOS:000392955800235 2019-02-21 J Prati, D; Peintinger, M; Fischer, M Prati, Daniel; Peintinger, Markus; Fischer, Markus Genetic composition, genetic diversity and small-scale environmental variation matter for the experimental reintroduction of a rare plant JOURNAL OF PLANT ECOLOGY English Article conservation management; global change; lakeshore; Ranunculus reptans LIFE-HISTORY EVOLUTION; CLONAL PLANT; RANUNCULUS-REPTANS; POPULATION-SIZE; GENTIANELLA-GERMANICA; GENOTYPIC DIVERSITY; PHENOTYPIC PLASTICITY; LAKE CONSTANCE; RAPD VARIATION; SELECTION Aims Reintroduction has become an important tool for the management of endangered plant species. We tested the little-explored effects of small-scale environmental variation, genotypic composition (i.e. identity of genotypes) and genotypic diversity on the population survival of the regionally rare clonal plant Ranunculus reptans. For this species of periodically inundated lakeshores, genetic differentiation had been reported between populations and between short-flooded and long-flooded microsites within populations. Methods We established 306 experimental test populations at a previously unoccupied lakeshore, comprising either monocultures of 32 genotypes, mixtures of genotypes within populations or mixtures of genotypes between populations. In 2000, three years after planting out at the experimental site, a long-lasting flood caused the death of half of the experimental populations. In 2003, an extreme drought resulted in the lowest summer water levels ever measured. Important Findings Despite these climatic extremes, 27% of the established populations survived in December 2003. The success of experimental populations largely differed between microsites. Moreover, the success of genotype monocultures depended on genotype and source population. Genetic differentiation between microsites played a minor role for the success of reintroduction. After the flood, populations planted with genotypes from different source populations increased in abundance, whereas populations with genotypes from single source populations and genotype monocultures decreased. In 2014, several small patches of Ranunculus clones were still present, but plants were strongly intermingled, which precluded their assignment to the original treatments. We conclude that sources for reintroductions need to be selected carefully. Moreover, mixtures of plants from different populations appear to be the best choice for successful reintroduction, at least in unpredictably varying environments. [Prati, Daniel; Fischer, Markus] Univ Bern, Inst Plant Sci, Altenbergrain 21, CH-3013 Bern, Switzerland; [Prati, Daniel; Fischer, Markus] Univ Bern, Oeschger Ctr Climate Change Res, Zahringerstr 25, CH-3012 Bern, Switzerland; [Peintinger, Markus] WSL Eidgenoss Forsch Anstalt Wald Schnee & Landsc, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland Prati, D (reprint author), Univ Bern, Inst Plant Sci, Altenbergrain 21, CH-3013 Bern, Switzerland. daniel.prati@ips.unibe.ch Fischer, Markus/C-6411-2008 Fischer, Markus/0000-0002-5589-5900 Swiss National Science Foundation [31-49728.96, 31-56809.99, 31-67876.02]; Institute of Environmental Sciences of the University of Zurich Swiss National Science Foundation (grants 31-49728.96, 31-56809.99, 31-67876.02); Bernhard Schmid and the Institute of Environmental Sciences of the University of Zurich. ARGYRES AZ, 1991, EVOLUTION, V45, P178, DOI 10.1111/j.1558-5646.1991.tb05276.x; BARRETT SCH, 1993, AQUAT BOT, V44, P105, DOI 10.1016/0304-3770(93)90068-8; Crawford KM, 2012, J ECOL, V100, P1512, DOI 10.1111/j.1365-2745.2012.02016.x; Crutsinger GM, 2006, SCIENCE, V313, P966, DOI 10.1126/science.1128326; Dienst M, 1999, MITTEILUNGEN BADISCH, V17, P389; Eriksson O, 1999, BIOL CONSERV, V87, P319, DOI 10.1016/S0006-3207(98)00075-5; Falk D. A, 1996, RESTORING DIVERSITY; Fischer M, 2000, AM J BOT, V87, P1128, DOI 10.2307/2656649; Fischer M, 1998, J ECOL, V86, P195, DOI 10.1046/j.1365-2745.1998.00246.x; Fischer M, 2004, J EVOLUTION BIOL, V17, P331, DOI 10.1046/j.1420-9101.2003.00677.x; Fischer M, 1998, ECOGRAPHY, V21, P269, DOI 10.1111/j.1600-0587.1998.tb00564.x; Fischer M, 1998, AM J BOT, V85, P811, DOI 10.2307/2446416; Frankham R, 2002, INTRO CONSERVATION G; Helenurm K, 1998, CONSERV BIOL, V12, P118, DOI 10.1046/j.1523-1739.1998.96316.x; Hess HE, 1980, FLORA SCHWEIZ; Johnk KD, 2004, LIMNOLOGICA, V34, P15, DOI 10.1016/S0075-9511(04)80017-3; Johnson MTJ, 2006, ECOL LETT, V9, P24, DOI 10.1111/j.1461-0248.2005.00833.x; Korneck D., 1996, SCHRIFTENREIHE VEGET, V28, P21; Krauss SL, 2002, CONSERV BIOL, V16, P986, DOI 10.1046/j.1523-1739.2002.01105.x; Lande R, 1999, GENETICS AND THE EXTINCTION OF SPECIES, P1; Lang G, 1967, ARCH HYDROBIOLOGIE S, V32, P437; LEBERG PL, 1993, CONSERV BIOL, V7, P194, DOI 10.1046/j.1523-1739.1993.07010194.x; Lenssen JPM, 2004, J ECOL, V92, P696, DOI 10.1111/j.0022-0477.2004.00895.x; LINHART YB, 1974, EVOLUTION, V28, P232, DOI 10.1111/j.1558-5646.1974.tb00742.x; Loreau M, 2001, NATURE, V412, P72, DOI 10.1038/35083573; Luijten SH, 2000, CONSERV BIOL, V14, P1776, DOI 10.1046/j.1523-1739.2000.99345.x; Moser DMDM, 2002, ROTE LISTE GEFAHRDET; Newman D, 1997, EVOLUTION, V51, P354, DOI 10.1111/j.1558-5646.1997.tb02422.x; Newman JA, 1997, ECOLOGY, V78, P1312; Peintinger M., 1997, Zeitschrift fur Okologie und Naturschutz, V6, P75; Prati D, 2000, OIKOS, V90, P442, DOI 10.1034/j.1600-0706.2000.900303.x; Prati D, 2000, FLORA, V195, P135; Pullin A. S., 2002, CONSERVATION BIOL; SCHMID B, 1994, J ECOL, V82, P165, DOI 10.2307/2261395; SOMMER U, 1993, OECOLOGIA, V93, P276, DOI 10.1007/BF00317682; Storfer A, 1996, TRENDS ECOL EVOL, V11, P343, DOI 10.1016/0169-5347(96)20051-5; STRATTON DA, 1994, EVOLUTION, V48, P1607, DOI 10.1111/j.1558-5646.1994.tb02199.x; Van Kleunen M, 2000, J EVOLUTION BIOL, V13, P237; Van Kleunen M, 2001, ECOLOGY, V82, P3309, DOI 10.2307/2680154; van Kleunen M, 2002, EVOLUTION, V56, P2168, DOI 10.1554/0014-3820(2002)056[2168:ELHESO]2.0.CO;2; vanTienderen PH, 1997, EVOLUTION, V51, P1372, DOI 10.1111/j.1558-5646.1997.tb01460.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; von Ende Carl N., 1993, P113; Wang XY, 2012, MOL ECOL, V21, P2542, DOI 10.1111/j.1365-294X.2012.05531.x; Willi Y, 2004, THESIS; Zhu YY, 2000, NATURE, V406, P718, DOI 10.1038/35021046 46 1 1 2 11 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1752-9921 1752-993X J PLANT ECOL J. Plant Ecol. DEC 2016 9 6 805 813 10.1093/jpe/rtv067 9 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology EJ2JO WOS:000393036400015 Bronze 2019-02-21 J Gonzalez, MZ; Allen, JP; Coan, JA Gonzalez, Marlen Z.; Allen, Joseph P.; Coan, James A. Lower neighborhood quality in adolescence predicts higher mesolimbic sensitivity to reward anticipation in adulthood Developmental Cognitive Neuroscience English Article NUCLEUS-ACCUMBENS; REPRODUCTIVE STRATEGY; CHICAGO NEIGHBORHOODS; SOCIOECONOMIC-STATUS; DEPRESSIVE SYMPTOMS; NEURAL RESPONSE; BRAIN; STRESS; CORTEX; SOCIALIZATION Life history theory suggests that adult reward sensitivity should be best explained by childhood, but not current, socioeconomic conditions. In this functional magnetic resonance imaging (fMRI) study, 83 participants from a larger longitudinal sample completed the monetary incentive delay (MID) task in adulthood (25 years old). Parent-reports of neighborhood quality and parental SES were collected when participants were 13 years of age. Current income level was collected concurrently with scanning. Lower adolescent neighborhood quality, but neither lower current income nor parental SES, was associated with heightened sensitivity to the anticipation of monetary gain in putative mesolimbic reward areas. Lower adolescent neighborhood quality was also associated with heightened sensitivity to the anticipation of monetary loss activation in visuo-motor areas. Lower current income was associated with heightened sensitivity to anticipated loss in occipital areas and the operculum. We tested whether externalizing behaviors in childhood or adulthood could better account for neighborhood quality findings, but they did not. Findings suggest that neighborhood ecology in adolescence is associated with greater neural reward sensitivity in adulthood above the influence of parental SES or current income and not mediated through impulsivity and externalizing behaviors. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. [Gonzalez, Marlen Z.; Allen, Joseph P.; Coan, James A.] Univ Virginia, Charlottesville, VA 22903 USA Gonzalez, MZ; Coan, JA (reprint author), Univ Virginia, Charlottesville, VA 22903 USA. mzg7uv@virginia.edu; jcoan@virginia.edu National Institute of Mental Health [R01MH080725, 9R01 HD058305-11A1, R01-MH58066]; National Institute of Child Health and Human Development This work was supported by a grant from the National Institute of Mental Health (R01MH080725) awarded to James A. Coan and grants from the National Institute of Child Health and Human Development and the National Institute of Mental Health (9R01 HD058305-11A1 & R01-MH58066) awarded to Joseph P. Allen. Achenbach T. M., 2003, ASEBA ADULT FORMS PR; Achenbach T. M., 1991, MANUAL CHILD BEHAV C; Bates D., 2015, STAT SOFTWARE, V67, P1; Beck A, 2009, BIOL PSYCHIAT, V66, P734, DOI 10.1016/j.biopsych.2009.04.035; Beckes L, 2011, SOC PERSONAL PSYCHOL, V5, P976, DOI 10.1111/j.1751-9004.2011.00400.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J., 2010, DEV REPROD STRATEGY; Belsky J, 2015, DEV PSYCHOL, V51, P816, DOI 10.1037/dev0000017; Bradley RH, 2002, ANNU REV PSYCHOL, V53, P371, DOI 10.1146/annurev.psych.53.100901.135233; BUCKNER JC, 1988, AM J COMMUN PSYCHOL, V16, P771, DOI 10.1007/BF00930892; Bush G, 2002, P NATL ACAD SCI USA, V99, P523, DOI 10.1073/pnas.012470999; Cabeza de Baca T., 2016, ADAPT HUM BEHAV PHYS, P93; Carlson DL, 2014, J YOUTH ADOLESCENCE, V43, P1536, DOI 10.1007/s10964-013-0052-0; Cavanagh J, 2013, CEREBELLUM, V12, P882, DOI 10.1007/s12311-013-0497-4; Coan JA, 2013, INT J PSYCHOPHYSIOL, V88, P224, DOI 10.1016/j.ijpsycho.2013.04.006; Cooper JC, 2008, NEUROIMAGE, V39, P538, DOI 10.1016/j.neuroimage.2007.08.009; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; ElKhodor BF, 1997, EXP NEUROL, V145, P118, DOI 10.1006/exnr.1997.6437; Ellis B. J., 2009, HUM NAT, V20; Evans G. W., 2002, CHILD DEV; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fiorillo CD, 2003, SCIENCE, V299, P1898, DOI 10.1126/science.1077349; Furr-Holden C. D. M., 2012, J ADOLESC, V50; Gianaros PJ, 2007, SOC COGN AFFECT NEUR, V2, P161, DOI 10.1093/scan/nsm013; Gonzales N. A., 1996, ONE YEAR PROSPECTIVE, V24, P365; Gregory SG, 2009, BMC MED, V7, DOI 10.1186/1741-7015-7-62; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hahn T, 2009, NEUROIMAGE, V46, P1148, DOI 10.1016/j.neuroimage.2009.03.038; Hair NL, 2015, JAMA PEDIATR, V169, P822, DOI 10.1001/jamapediatrics.2015.1475; Hanson JL, 2015, BIOL PSYCHIAT, V78, P598, DOI 10.1016/j.biopsych.2015.05.010; Hare AL, 2011, J YOUTH ADOLESCENCE, V40, P744, DOI 10.1007/s10964-010-9586-6; Hariri AR, 2006, J NEUROSCI, V26, P13213, DOI 10.1523/JNEUROSCI.3446-06.2006; Martinez-Tellez RI, 2009, SYNAPSE, V63, P794, DOI 10.1002/syn.20664; Jenkinson M, 2002, NEUROIMAGE, V17, P825, DOI 10.1006/nimg.2002.1132; Knutson B, 2001, J NEUROSCI, V21, part. no., DOI 10.1523/JNEUROSCI.21-16-j0002.2001; Knutson B, 2008, BIOL PSYCHIAT, V63, P686, DOI 10.1016/j.biopsych.2007.07.023; Liu X, 2011, NEUROSCI BIOBEHAV R, V35, P1219, DOI 10.1016/j.neubiorev.2010.12.012; Mair C, 2008, J EPIDEMIOL COMMUN H, V62, P940, DOI 10.1136/jech.2007.066605; Mani A, 2013, SCIENCE, V342, DOI 10.1126/science.1246799; McArthur S, 2005, J NEUROENDOCRINOL, V17, P475, DOI 10.1111/j.1365-2826.2005.01331.x; McEwen BS, 2011, ANNU REV MED, V62, P431, DOI 10.1146/annurev-med-052209-100430; Michaelson L, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00355; O'Doherty J, 2001, NAT NEUROSCI, V4, P95; OLDS J, 1954, J COMP PHYSIOL PSYCH, V47, P419, DOI 10.1037/h0058775; Otto AR, 2012, SOC PSYCHOL PERS SCI, V3, P131, DOI 10.1177/1948550611411311; Padmala S, 2011, J COGNITIVE NEUROSCI, V23, P3419, DOI 10.1162/jocn_a_00011; Plichta MM, 2014, NEUROSCI BIOBEHAV R, V38, P125, DOI 10.1016/j.neubiorev.2013.07.012; Robbins T. W., 1996, CURR OPIN NEUROBIOL; Romens SE, 2015, J CHILD PSYCHOL PSYC, V56, P1177, DOI 10.1111/jcpp.12410; Ross CE, 2001, J HEALTH SOC BEHAV, V42, P258, DOI 10.2307/3090214; Rossiter S, 2012, DRUG ALCOHOL DEPEN, V125, P89, DOI 10.1016/j.drugalcdep.2012.03.017; Sampson RJ, 1997, J ADOLESCENT RES, V12, P227, DOI 10.1177/0743554897122005; Shackman J. E., 2007, Emotion. JOUR, Patent No. 537068190; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Smith SM, 2002, HUM BRAIN MAPP, V17, P143, DOI 10.1002/hbm.10062; Spear L., 2000, NEUROSCI BIOBEHAV RE, V24; Spielberg JM, 2015, HUM BRAIN MAPP, V36, P3194, DOI 10.1002/hbm.22838; Sturge-Apple M. L., 2016, PSYCHOL SCI; Sweitzer MM, 2016, PSYCHOPHARMACOLOGY, V233, P751, DOI 10.1007/s00213-015-4152-2; Teasdale B, 2009, SOC PROBL, V56, P205, DOI 10.1525/sp.2008.56.1.205; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 62 2 2 2 12 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 1878-9293 1878-9307 DEV COGN NEUROS-NETH Dev. Cogn. Neurosci. DEC 2016 22 48 57 10.1016/j.dcn.2016.10.003 10 Psychology, Developmental; Neurosciences Psychology; Neurosciences & Neurology EI7XD WOS:000392716900006 27838595 DOAJ Gold, Green Accepted 2019-02-21 J Waterton, J; Cleland, EE Waterton, Joseph; Cleland, Elsa E. Trade-off between early emergence and herbivore susceptibility mediates exotic success in an experimental California plant community ECOLOGY AND EVOLUTION English Article community assembly; emergence; germination; herbivory; invasion; phenology; seedlings ENEMY RELEASE HYPOTHESIS; SEEDLING HERBIVORY; PERENNIAL GRASSES; ANNUAL GRASSLAND; PHENOLOGY; INVASIONS; PRIORITY; BIODIVERSITY; GERMINATION; EVOLUTION Ecological trade-offs are fundamental to theory in community ecology; critical for understanding species coexistence in diverse plant communities, as well as the evolution of diverse life-history strategies. Invasions by exotic species can provide insights into the importance of trade-offs in community assembly, because the ecological strategies of invading species often differ from those present in the native species pool. Exotic annual species have invaded many Mediterranean-climate areas around the globe, and often germinate and emerge earlier in the growing season than native species. Early-season growth can enable exotic annual species to preempt space and resources, competitively suppressing later-emerging native species; however, early-emerging individuals may also be more apparent to herbivores. This suggests a potential trade-off between seasonal phenology and susceptibility to herbivory. To evaluate this hypothesis, we monitored the emergence and growth of 12 focal species (six each native and exotic) in monoculture and polyculture, while experimentally excluding generalist herbivores both early and later in the growing season. Consistent with past studies, the exotic species emerged earlier than native species. Regardless of species origin, earlier-emerging species achieved greater biomass by the end of the experiment, but were more negatively impacted by herbivory, particularly in the early part of the growing season. This greater impact of early-season herbivory on early-active species led to a reduction in the competitive advantage of exotic species growing in polyculture, and improved the performance of later-emerging natives. Such a trade-off between early growth and susceptibility to herbivores could be an important force in community assembly in seasonal herbaceous-dominated ecosystems. These results also show how herbivore exclusion favors early-active exotic species in this system, with important implications for management in many areas invaded by early-active exotic species. [Waterton, Joseph; Cleland, Elsa E.] Univ Calif San Diego, Ecol Behav & Evolut Sect, 9500 Gilman Dr, La Jolla, CA 92093 USA Waterton, J (reprint author), Univ Calif San Diego, Ecol Behav & Evolut Sect, 9500 Gilman Dr, La Jolla, CA 92093 USA. jwaterto@ucsd.edu Cleland, Elsa/0000-0003-3920-0029; Waterton, Joseph/0000-0003-3177-7667 Jeanne M. Messier Memorial Fellowship Jeanne M. Messier Memorial Fellowship Abraham JK, 2009, PLANT ECOL, V201, P445, DOI 10.1007/s11258-008-9467-1; Anderson JT, 2012, P ROY SOC B-BIOL SCI, V279, P3843, DOI 10.1098/rspb.2012.1051; Augspurger CK, 2013, ECOLOGY, V94, P41, DOI 10.1890/12-0200.1; BARTOLOME JW, 1979, J ECOL, V67, P273, DOI 10.2307/2259350; Barton KE, 2013, ANN BOT-LONDON, V112, P643, DOI 10.1093/aob/mct139; Beck JJ, 2015, ECOL APPL, V25, P1259, DOI 10.1890/14-1093.1; Boege K, 2005, TRENDS ECOL EVOL, V20, P441, DOI 10.1016/j.tree.2005.05.001; Burt-Smith GS, 2003, OIKOS, V101, P345, DOI 10.1034/j.1600-0706.2003.11052.x; Cleland EE, 2006, ECOLOGY, V87, P686, DOI 10.1890/05-0529; Cleland EE, 2016, ECOSYSTEMS OF CALIFORNIA, P429; Cleland EE, 2015, OIKOS, V124, P33, DOI 10.1111/oik.01433; Colautti RI, 2004, ECOL LETT, V7, P721, DOI 10.1111/j.1461-0248.2004.00616.x; Crawley MJ, 2007, THEORETICAL ECOLOGY, P62; Cushman JH, 2011, J ECOL, V99, P524, DOI 10.1111/j.1365-2745.2010.01776.x; Deering RH, 2006, GRASSLANDS, V16, P14; Fenner M, 2005, ECOLOGY SEEDS; Fox J., 2011, R COMPANION APPL REG; Fridley JD, 2012, NATURE, V485, P359, DOI 10.1038/nature11056; Fukami T, 2015, ANNU REV ECOL EVOL S, V46, P1, DOI 10.1146/annurev-ecolsys-110411-160340; Funk JL, 2015, RESTOR ECOL, V23, P122, DOI 10.1111/rec.12162; Godoy O, 2011, FUNCT ECOL, V25, P1248, DOI 10.1111/j.1365-2435.2011.01886.x; Grman E, 2010, RESTOR ECOL, V18, P664, DOI 10.1111/j.1526-100X.2008.00497.x; Hanley ME, 2007, PLANT CELL ENVIRON, V30, P812, DOI 10.1111/j.1365-3040.2007.01671.x; Hanley ME, 2009, ANN BOT-LONDON, V103, P1347, DOI 10.1093/aob/mcp081; Hanley Mick E., 1998, Perspectives in Plant Ecology Evolution and Systematics, V1, P191, DOI 10.1078/1433-8319-00058; HEADY HF, 1958, ECOLOGY, V39, P402, DOI 10.2307/1931750; Hobbs RJ, 2001, CONSERV BIOL, V15, P1522, DOI 10.1046/j.1523-1739.2001.01092.x; Holmgren Milena, 2002, Biological Invasions, V4, P25, DOI 10.1023/A:1020535628776; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; HULME PE, 1994, J ECOL, V82, P873, DOI 10.2307/2261451; Keane RM, 2002, TRENDS ECOL EVOL, V17, P164, DOI 10.1016/S0169-5347(02)02499-0; Kempel A, 2015, ECOLOGY, V96, P2923, DOI 10.1890/14-2125.1; Lambers J. Hille Ris, 2010, J ECOL, V98, P1147; Lambrinos JG, 2006, OECOLOGIA, V147, P327, DOI 10.1007/s00442-005-0259-1; Leishman MR, 2007, NEW PHYTOL, V176, P635, DOI 10.1111/j.1469-8137.2007.02189.x; Loreau M, 1998, OIKOS, V82, P600, DOI 10.2307/3546381; Marushia RG, 2010, J APPL ECOL, V47, P1290, DOI 10.1111/j.1365-2664.2010.01881.x; Menke JW, 1992, FREMONTIA, V20, P22; Norden N, 2009, FUNCT ECOL, V23, P203, DOI 10.1111/j.1365-2435.2008.01477.x; Parker JD, 2006, SCIENCE, V311, P1459, DOI 10.1126/science.1121407; Pau S, 2011, GLOBAL CHANGE BIOL, V17, P3633, DOI 10.1111/j.1365-2486.2011.02515.x; Perez-Fernandez MA, 2000, ACTA OECOL, V21, P323, DOI 10.1016/S1146-609X(00)01084-5; Peters HA, 2007, J VEG SCI, V18, P175, DOI 10.1658/1100-9233(2007)18[175:TSOSHI]2.0.CO;2; Pinheiro J., 2015, R PACKAGE VERSION, V3, P1, DOI DOI 10.1016/J.BSE.2009.03.010; Quintero C, 2014, ECOLOGY, V95, P2589, DOI 10.1890/13-2249.1; R Core Team, 2015, R LANG ENV STAT COMP; Reynolds Sally A., 2001, Madrono, V48, P230; RICE KJ, 1987, ECOLOGY, V68, P1113, DOI 10.2307/1938386; Rinella MJ, 2009, J APPL ECOL, V46, P796, DOI 10.1111/j.1365-2664.2009.01676.x; Roche CT, 2001, WEED SCI, V49, P439, DOI 10.1614/0043-1745(2001)049[0439:BOCCAY]2.0.CO;2; Sala OE, 2000, SCIENCE, V287, P1770, DOI 10.1126/science.287.5459.1770; Semchenko M, 2012, J ECOL, V100, P459, DOI 10.1111/j.1365-2745.2011.01936.x; Skaer MJ, 2013, J VEG SCI, V24, P332, DOI 10.1111/j.1654-1103.2012.01460.x; Strauss SY, 1999, TRENDS ECOL EVOL, V14, P179, DOI 10.1016/S0169-5347(98)01576-6; Sullivan AT, 2009, ECOLOGY, V90, P1346, DOI 10.1890/08-0629.1; Underwood EC, 2009, DIVERS DISTRIB, V15, P188, DOI 10.1111/j.1472-4642.2008.00518.x; Underwood N, 2014, Q REV BIOL, V89, P1, DOI 10.1086/674991; van Kleunen M, 2010, ECOL LETT, V13, P235, DOI 10.1111/j.1461-0248.2009.01418.x; Vaughn KJ, 2015, ECOL APPL, V25, P791, DOI 10.1890/14-0922.1; Vila M, 1998, ECOL APPL, V8, P1196, DOI 10.2307/2640972; Wainwright CE, 2013, BIOL INVASIONS, V15, P2253, DOI 10.1007/s10530-013-0449-4; Wainwright CE, 2012, J APPL ECOL, V49, P234, DOI 10.1111/j.1365-2664.2011.02088.x; Wolkovich EM, 2014, AOB PLANTS, V6, DOI 10.1093/aobpla/plu013; Wolkovich EM, 2011, FRONT ECOL ENVIRON, V9, P287, DOI 10.1890/100033; Xu J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098601 65 1 1 3 22 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. DEC 2016 6 24 8942 8953 10.1002/ece3.2610 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology EH9AF WOS:000392063300026 28035282 DOAJ Gold, Green Published 2019-02-21 J Boddy, L; Hiscox, J Boddy, Lynne; Hiscox, Jennifer Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi MICROBIOLOGY SPECTRUM English Article VOLATILE ORGANIC-COMPOUNDS; INTERSPECIFIC MYCELIAL INTERACTIONS; DIFFERENTIAL GENE-EXPRESSION; IN-VITRO INTERACTIONS; CORD-FORMING FUNGI; WOOD DECAY FUNGI; WHITE-ROT FUNGI; TRICHODERMA-HARZIANUM; FUSARIUM-VERTICILLIOIDES; HETEROBASIDION-ANNOSUM Decomposer fungi continually deplete the organic resources they inhabit, so successful colonization of new resources is a crucial part of their ecology. Colonization success can be split into (i) the ability to arrive at, gain entry into, and establish within a resource and (ii) the ability to persist within the resource until reproduction and dissemination. Fungi vary in their life history strategies, the three main drivers of which are stress (S-selected), disturbance (ruderal, or R-selected), and incidence of competitors (C-selected); however, fungi often have combinations of characteristics from different strategies. Arrival at a new resource may occur as spores or mycelium, with successful entry and establishment (primary resource capture) within the resource largely dependent on the enzymatic ability of the fungus. The communities that develop in a newly available resource depend on environmental conditions and, in particular, the levels of abiotic stress present (e.g., high temperature, low water availability). Community change occurs when these initial colonizers are replaced by species that are either more combative (secondary resource capture) or better able to tolerate conditions within the resource, either through changing abiotic conditions or due to modification of the resource by the initial colonizers. Competition for territory may involve highly specialized species-specific interactions such as mycoparasitism or may be more general; in both cases combat involves changes in morphology, metabolism, and reactive oxygen species production, and outcomes of these interactions can be altered under different environmental conditions. In summary, community development is not a simple ordered sequence, but a complex ever-changing mosaic. [Boddy, Lynne; Hiscox, Jennifer] Cardiff Univ, Sch Biosci, Cardiff CF10 3AX, S Glam, Wales Boddy, L (reprint author), Cardiff Univ, Sch Biosci, Cardiff CF10 3AX, S Glam, Wales. boddyl@cf.ac.uk Boddy, Lynne/0000-0003-1845-6738 Abraham WR, 2001, CURR MED CHEM, V8, P583, DOI 10.2174/0929867013373147; Arfi Y, 2013, APPL ENVIRON MICROB, V79, P6626, DOI 10.1128/AEM.02316-13; Baldrian P, 2004, FEMS MICROBIOL ECOL, V50, P245, DOI 10.1016/j.femsec.2004.07.005; Baxter A, 2014, J EXP BOT, V65, P1229, DOI 10.1093/jxb/ert375; BELL AA, 1986, ANNU REV PHYTOPATHOL, V24, P411, DOI 10.1146/annurev.py.24.090186.002211; BODDY L, 1983, NEW PHYTOL, V94, P623, DOI 10.1111/j.1469-8137.1983.tb04871.x; BODDY L, 1985, T BRIT MYCOL SOC, V85, P201, DOI 10.1016/S0007-1536(85)80183-2; BODDY L, 1993, MYCOL RES, V97, P641, DOI 10.1016/S0953-7562(09)80141-X; Boddy L, 1999, MYCOLOGIA, V91, P13, DOI 10.2307/3761190; Boddy L, 2000, FEMS MICROBIOL ECOL, V31, P185, DOI 10.1016/S0168-6496(99)00093-8; Boddy L., 1984, ECOLOGY PHYSL FUNGAL, P261; Boddy L., 2008, BIOPHYSICAL CHEM FRA, P239; Boddy L, 2006, 8 INT MYC C P MED IT, P13; BODDY L, 2007, BR MYCOL SY, P112; Boddy L, 2017, FUNGAL COMMUNITY ITS, P169; Boddy L, 2011, FUNGAL ECOL, V4, P163, DOI 10.1016/j.funeco.2010.10.001; Boddy L, 2008, BR MYCOL SY, V28, P211; Cairney JWG, 2005, MYCOL RES, V109, P7, DOI 10.1017/S0953756204001753; Cupul WC, 2014, ELECTRON J BIOTECHN, V17, P114, DOI 10.1016/j.ejbt.2014.04.007; Chen YN, 2015, ENVIRON SCI POLLUT R, V22, P9807, DOI 10.1007/s11356-015-4149-8; COATES D, 1985, NEW PHYTOL, V101, P153, DOI 10.1111/j.1469-8137.1985.tb02823.x; Cooke R. C., 1984, ECOLOGY SAPROTROPHIC; Crowther TW, 2014, FRONT MICROBIOL, V5, DOI 10.3389/fmicb.2014.00579; Dickie IA, 2012, ECOL LETT, V15, P133, DOI 10.1111/j.1461-0248.2011.01722.x; Dix NJ, 1995, FUNGAL ECOLOGY; DOWSON CG, 1989, NEW PHYTOL, V111, P699, DOI 10.1111/j.1469-8137.1989.tb02365.x; El Ariebi N, 2016, FUNGAL ECOL, V20, P144, DOI 10.1016/j.funeco.2015.12.013; Sanchez-Fernandez RE, 2016, MICROB ECOL, V71, P347, DOI 10.1007/s00248-015-0679-3; Estrada AER, 2011, FUNGAL GENET BIOL, V48, P874, DOI 10.1016/j.fgb.2011.06.006; Evans JA, 2008, FUNGAL ECOL, V1, P57, DOI 10.1016/j.funeco.2008.06.001; Eyre C, 2010, FUNGAL BIOL-UK, V114, P646, DOI 10.1016/j.funbio.2010.05.006; Ferguson BA, 2003, CAN J FOREST RES, V33, P612, DOI 10.1139/x03-065; Fischer G, 1999, CHEMOSPHERE, V39, P795; FREITAG M, 1992, CAN J MICROBIOL, V38, P317, DOI 10.1139/m92-053; Fricker MD, 2008, BR MYCOL SY, V28, P3; Fukami T, 2015, ANNU REV ECOL EVOL S, V46, P1, DOI 10.1146/annurev-ecolsys-110411-160340; Fukami T, 2010, ECOL LETT, V13, P675, DOI 10.1111/j.1461-0248.2010.01465.x; Gao Y, 2005, J INTEGR PLANT BIOL, V47, P499, DOI 10.1111/j.1744-7909.2005.00081.x; Garbelotto MM, 1997, MYCOLOGIA, V89, P92, DOI 10.2307/3761177; Goh YK, 2010, MYCOLOGIA, V102, P757, DOI 10.3852/09-171; GRIFFITH GS, 1991, NEW PHYTOL, V117, P259, DOI 10.1111/j.1469-8137.1991.tb04907.x; Hallenberg N, 2001, NORD J BOT, V21, P431, DOI 10.1111/j.1756-1051.2001.tb00793.x; Hallenberg Nils, 1995, Acta Universitatis Upsaliensis Symbolae Botanicae Upsalienses, V30, P95; Heaton Luke, 2012, Fungal Biology Reviews, V26, P12, DOI 10.1016/j.fbr.2012.02.001; HEDGER J, 1990, Mycologist, V4, P200; Heilmann-Clausen J, 2005, MICROB ECOL, V49, P399, DOI 10.1007/s00248-004-0240-2; Heilmann-Clausen J, 2004, FOREST ECOL MANAG, V201, P105, DOI 10.1016/j.foreco.2004.07.010; Henson JM, 1999, ANNU REV PHYTOPATHOL, V37, P447, DOI 10.1146/annurev.phyto.37.1.447; Hiscox J, 2016, ENVIRON MICROBIOL, V18, P1954, DOI 10.1111/1462-2920.13141; Hiscox J, 2016, FUNGAL ECOL, V21, P32, DOI 10.1016/j.funeco.2016.01.011; Hiscox J, 2015, ISME J, V9, P2246, DOI 10.1038/ismej.2015.38; Hiscox J, 2010, FUNGAL GENET BIOL, V47, P562, DOI 10.1016/j.fgb.2010.03.007; Holmer L, 1997, OIKOS, V79, P77, DOI 10.2307/3546092; Humphris SN, 2002, FEMS MICROBIOL LETT, V210, P215, DOI 10.1016/S0378-1097(02)00604-3; Hynes J, 2007, J CHEM ECOL, V33, P43, DOI 10.1007/s10886-006-9209-6; Iakovlev A, 2000, MICROB ECOL, V39, P236; JEFFRIES P, 1995, CAN J BOT, V73, pS1284; Jonkers W, 2012, APPL ENVIRON MICROB, V78, P3656, DOI 10.1128/AEM.07841-11; Keddy P. A, 1989, COMPETITION; Ladygina N, 2006, PROCESS BIOCHEM, V41, P1001, DOI 10.1016/j.procbio.2005.12.007; Lang E, 1998, FEMS MICROBIOL LETT, V167, P239, DOI 10.1111/j.1574-6968.1998.tb13234.x; Lemfack MC, 2014, NUCLEIC ACIDS RES, V42, pD744, DOI 10.1093/nar/gkt1250; Lindahl BD, 2006, NEW PHYTOL, V169, P389, DOI 10.1111/j.1469-8137.2005.01581.x; Lindner DL, 2011, FUNGAL ECOL, V4, P449, DOI 10.1016/j.funeco.2011.07.001; Lumsden R., 2005, FUNGAL COMMUNITY ITS, P275; Malik M, 1999, STRUCTURE DYNAMICS F, P123; Niemela T, 1995, ANN BOT FENN, V32, P141; Norden B, 2000, NORD J BOT, V20, P215, DOI 10.1111/j.1756-1051.2000.tb01572.x; Osono T, 2005, MYCOLOGIA, V97, P589, DOI 10.3852/mycologia.97.3.589; Ottosson E., 2013, THESIS; Ottosson E, 2014, FUNGAL ECOL, V11, P17, DOI 10.1016/j.funeco.2014.03.003; Ovaskainen O, 2010, FUNGAL ECOL, V3, P274, DOI 10.1016/j.funeco.2010.01.001; Peiris D, 2008, METABOLOMICS, V4, P52, DOI 10.1007/s11306-007-0100-4; Polizzi V, 2012, FUNGAL BIOL-UK, V116, P941, DOI 10.1016/j.funbio.2012.06.001; Pouska V, 2013, POL J ECOL, V61, P119; PUGH GJF, 1988, P ROY SOC EDINB B, V94, P3; Rajala T, 2011, FUNGAL ECOL, V4, P437, DOI 10.1016/j.funeco.2011.05.005; Rayner A. D. M., 1985, DEV BIOL HIGHER FUNG, P249; RAYNER ADM, 1987, FEMS MICROBIOL ECOL, V45, P53, DOI 10.1016/0378-1097(87)90042-5; RAYNER ADM, 1994, BIOCHEM SOC T, V22, P389, DOI 10.1042/bst0220389; Read Nick D., 2012, Fungal Biology Reviews, V26, P1, DOI 10.1016/j.fbr.2012.02.003; Redfern DB, 2001, FORESTRY, V74, P53, DOI 10.1093/forestry/74.1.53; Richardson MJ, 2002, FUNGAL DIVERS, V10, P101; Rosado IV, 2007, FUNGAL GENET BIOL, V44, P950, DOI 10.1016/j.fgb.2007.01.001; Rosecke J, 2000, PHYTOCHEMISTRY, V54, P747, DOI 10.1016/S0031-9422(00)00138-2; Schoeman MW, 1996, MYCOL RES, V100, P1454, DOI 10.1016/S0953-7562(96)80077-3; Score AJ, 1997, INT BIODETER BIODEGR, V39, P225, DOI 10.1016/S0964-8305(97)00012-7; Sharma P, 2011, AFR J BIOTECHNOL, V10, P19898, DOI 10.5897/AJBX11.041; Silar P, 2005, MYCOL RES, V109, P137, DOI 10.1017/S0953756204002230; Smith ME, 2015, FUNGAL ECOL, V13, P211, DOI 10.1016/j.funeco.2014.08.010; Snajdr J, 2011, FEMS MICROBIOL ECOL, V78, P80, DOI 10.1111/j.1574-6941.2011.01123.x; Stenlid J, 2008, BR MYCOL SY, V28, P105; Strobel GA, 2001, MICROBIOL-SGM, V147, P2943, DOI 10.1099/00221287-147-11-2943; THOMPSON W, 1983, T BRIT MYCOL SOC, V81, P333, DOI 10.1016/S0007-1536(83)80085-0; Thompson W, 1984, ECOLOGY PHYSL FUNGAL, P185; Tordoff GM, 2006, MYCOL RES, V110, P335, DOI 10.1016/j.mycres.2005.11.012; Tornberg K, 2002, FEMS MICROBIOL ECOL, V40, P13, DOI [10.1111/j.1574-6941.2002.tb00931.x, 10.1016/S0168-6496(02)00200-3]; Ujor VC, 2012, LETT APPL MICROBIOL, V54, P336, DOI 10.1111/j.1472-765X.2012.03215.x; van der Wal A, 2013, FEMS MICROBIOL REV, V37, P477, DOI 10.1111/1574-6976.12001; Verma P, 2002, APPL BIOCHEM BIOTECH, V102, P109, DOI 10.1385/ABAB:102-103:1-6:109; VILGALYS R, 1994, MYCOLOGIA, V86, P270, DOI 10.2307/3760649; Watkinson S, 2015, FUNGI; Wheatley R, 1997, INT BIODETER BIODEGR, V39, P199, DOI 10.1016/S0964-8305(97)00015-2; Wheatley RE, 2002, ANTON LEEUW INT J G, V81, P357, DOI 10.1023/A:1020592802234; Whipps John M., 2007, P223, DOI 10.1007/978-1-4020-5799-1_12; WHITE NA, 1992, FEMS MICROBIOL LETT, V98, P75; Zhao YX, 2015, APPL MICROBIOL BIOT, V99, P4361, DOI 10.1007/s00253-014-6367-2 107 4 4 12 57 AMER SOC MICROBIOLOGY WASHINGTON 1752 N ST NW, WASHINGTON, DC 20036-2904 USA 2165-0497 MICROBIOL SPECTR Microbiol. Spectr. DEC 2016 4 6 UNSP FUNK-0019-2016 10.1128/microbiolspec.FUNK-0019-2016 16 Microbiology Microbiology EI1AU WOS:000392208200007 28087930 2019-02-21 J Akcay, C; Lendvai, AZ; Stanback, M; Haussmann, M; Moore, IT; Bonier, F Akcay, Caglar; Lendvai, Adam Z.; Stanback, Mark; Haussmann, Mark; Moore, Ignacio T.; Bonier, Fran Strategic adjustment of parental care in tree swallows: life-history trade-offs and the role of glucocorticoids ROYAL SOCIETY OPEN SCIENCE English Article corticosterone; nestling begging; provisioning; brood value; latitude; fitness TACHYCINETA-BICOLOR; STRESS-RESPONSE; PASSERINE BIRD; DIFFERENTIAL-ALLOCATION; CORTICOSTERONE; REPRODUCTION; MODULATION; INVESTMENT; INCREASES; BEHAVIOR Life-history theory predicts that optimal strategies of parental investment will depend on ecological and social factors, such as current brood value and offspring need. Parental care strategies are also likely to be mediated in part by the hypothalamic-pituitary-adrenal axis and glucocorticoid hormones. Here, we present an experiment in tree swallows (Tachycineta bicolor), a biparental songbird with wide geographical distribution, asking whether parental care is strategically adjusted in response to signals of offspring need and brood value and if so, whether glucocorticoids are involved in these adjustments. Using an automated playback system, we carried out playbacks of nestling begging calls specifically to females in two populations differing in their brood value: a northern population in Ontario, Canada (relatively higher brood value) and a southern population in North Carolina, USA (relatively lower brood value). We quantified female offspring provisioning rates before and during playbacks and plasma corticosterone levels (cort) once during late incubation and once immediately after playbacks. Females in both populations increased feeding rates temporarily during the first 2 h of playback but the increase was not sustained for the entire duration of playback (6 h). Cort levels from samples at the end of the playback did not differ between control females and females that received playbacks. However, females that had higher increases in cort between the incubation and nestling period had greater fledging success. These results suggest that females are able to strategically respond to offspring need, although the role of glucocorticoids in this strategic adjustment remains unclear. [Akcay, Caglar; Lendvai, Adam Z.; Moore, Ignacio T.; Bonier, Fran] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA; [Lendvai, Adam Z.] Univ Debrecen, Dept Evolutionary Zool & Human Biol, Egyet Ter 1, H-4032 Debrecen, Hungary; [Stanback, Mark] Davidson Coll, Dept Biol, Davidson, NC 28036 USA; [Haussmann, Mark] Bucknell Univ, Dept Biol, Lewisburg, PA 17837 USA; [Bonier, Fran] Queens Univ, Dept Biol, Kingston, ON, Canada Akcay, C; Lendvai, AZ (reprint author), Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA. akcay.caglar@gmail.com; az.lendvai@gmail.com Akcay, Caglar/F-7145-2010 Akcay, Caglar/0000-0003-0635-9586 U.S. National Science Foundation (NSF) grant [IOS-1145625]; Natural Sciences and Engineering Research Council of Canada Banting Postdoctoral Fellowship; Hungarian Research Fund [OTKA K 113108] This work was supported by a U.S. National Science Foundation (NSF) grant (F.B., I.T.M. and M.H.; IOS-1145625), and by the Natural Sciences and Engineering Research Council of Canada Banting Postdoctoral Fellowship (F.B.). During the preparation of the manuscript, A.Z.L. was supported by a grant from the Hungarian Research Fund (OTKA K 113108). Angelier F, 2007, HORM BEHAV, V52, P482, DOI 10.1016/j.yhbeh.2007.07.003; Angelier F, 2009, GEN COMP ENDOCR, V163, P142, DOI 10.1016/j.ygcen.2009.03.028; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Barton K., 2013, MUMLN MULTIMODEL INF; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bonier F, 2011, BIOL LETTERS, V7, P944, DOI 10.1098/rsbl.2011.0391; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; Bridge ES, 2011, J FIELD ORNITHOL, V82, P52, DOI 10.1111/j.1557-9263.2010.00307.x; BURLEY N, 1988, AM NAT, V132, P611, DOI 10.1086/284877; Crossin GT, 2012, AM NAT, V180, pE31, DOI 10.1086/666001; Dakin R, 2016, ANIM BEHAV, V111, P111, DOI 10.1016/j.anbehav.2015.10.006; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; Hinde CA, 2006, BEHAV ECOL, V17, P6, DOI 10.1093/beheco/ari092; Hinde CA, 2007, P ROY SOC B-BIOL SCI, V274, P53, DOI 10.1098/rspb.2006.3692; HUSSELL DJT, 1988, AM NAT, V131, P175, DOI 10.1086/284785; Lendvai AZ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0141194; Lendvai AZ, 2015, PEERJ, V3, DOI 10.7717/peerj.877; Lendvai AZ, 2008, HORM BEHAV, V53, P395, DOI 10.1016/j.yhbeh.2007.11.011; Lendvai AZ, 2007, P R SOC B, V274, P391, DOI 10.1098/rspb.2006.3735; Leonard M, 1996, BEHAV ECOL SOCIOBIOL, V38, P341, DOI 10.1007/s002650050250; Leonard ML, 2006, ETHOLOGY, V112, P1020, DOI 10.1111/j.1439-0310.2006.01259.x; Leonard ML, 2015, ANIM BEHAV, V109, P1, DOI 10.1016/j.anbehav.2015.07.036; Leonard ML, 2009, J AVIAN BIOL, V40, P243, DOI 10.1111/j.1600-048X.2009.04672.x; Leonard ML, 2001, BEHAV ECOL, V12, P501, DOI 10.1093/beheco/12.4.501; Leonard ML, 2001, BEHAV ECOL SOCIOBIOL, V49, P170, DOI 10.1007/s002650000290; Love OP, 2004, HORM BEHAV, V46, P59, DOI 10.1016/j.yhbeh.2004.02.001; Lucass C, 2016, ECOL EVOL, V6, P1825, DOI 10.1002/ece3.1976; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; McCarty JP, 2002, J FIELD ORNITHOL, V73, P9, DOI 10.1648/0273-8570-73.1.9; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Mock DW, 2011, BEHAV ECOL, V22, P909, DOI 10.1093/beheco/arr091; Moore IT, 2000, PHYSIOL BIOCHEM ZOOL, V73, P307, DOI 10.1086/316748; Moore IT, 2003, HORM BEHAV, V43, P39, DOI 10.1016/S0018-506X(02)00038-7; Ottosson U, 1997, BEHAV ECOL SOCIOBIOL, V41, P381, DOI 10.1007/s002650050399; Ouyang JQ, 2013, HORM BEHAV, V63, P776, DOI 10.1016/j.yhbeh.2013.03.002; Ouyang JQ, 2011, P ROY SOC B-BIOL SCI, V278, P2537, DOI 10.1098/rspb.2010.2490; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; Silverin B, 1997, FUNCT ECOL, V11, P376, DOI 10.1046/j.1365-2435.1997.00097.x; Sol D, 2012, SCIENCE, V337, P580, DOI 10.1126/science.1221523; Stearns S, 1992, EVOLUTION LIFE HIST; Symonds MRE, 2011, BEHAV ECOL SOCIOBIOL, V65, P13, DOI 10.1007/s00265-010-1037-6; Westneat DF, 2011, AM NAT, V178, P652, DOI 10.1086/662173; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; WINGFIELD JC, 1992, J EXP ZOOL, V264, P419, DOI 10.1002/jez.1402640407; Wingfield JC, 1998, AM ZOOL, V38, P191; Winkler D. W., 2011, BIRDS N AM ONLINE; Winkler DW, 2004, CONDOR, V106, P768, DOI 10.1650/7634 51 2 2 6 33 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 2054-5703 ROY SOC OPEN SCI R. Soc. Open Sci. DEC 2016 3 12 UNSP 160740 10.1098/rsos.160740 12 Multidisciplinary Sciences Science & Technology - Other Topics EH4HH WOS:000391731800024 28083111 DOAJ Gold, Green Published 2019-02-21 J Gilbert, J; Uggla, C; Mace, R Gilbert, James; Uggla, Caroline; Mace, Ruth Knowing your neighbourhood: local ecology and personal experience predict neighbourhood perceptions in Belfast, Northern Ireland ROYAL SOCIETY OPEN SCIENCE English Article life-history theory; ecological perceptions; mortality risk; morbidity risk REPRODUCTION; DEATH Evolutionary theory predicts that humans should adjust their life-history strategies in response to local ecological threats and opportunities in order to maximize their reproductive success. Cues representing threats to individuals' lives and health in modern, Western societies may come in the form of local ages at death, morbidity rate and crime rate in their local area, whereas the adult sex ratio represents a measure of the competition for reproductive partners. These characteristics are believed to have a strong influence over a wide range of behaviours, but whether they are accurately perceived has not been robustly tested. Here, we investigate whether perceptions of four neighbourhood characteristics are accurate across eight neighbourhoods in Belfast, Northern Ireland. We find that median age at death and morbidity rates are accurately perceived, whereas adult sex ratios and crime rates are not. We suggest that both neighbourhood characteristics and personal experiences contribute to the formation of perceptions. This should be considered by researchers looking for associations between area-level factors. [Gilbert, James; Uggla, Caroline; Mace, Ruth] UCL, Dept Anthropol, 14 Taviton St, London WC1H 0BW, England; [Uggla, Caroline] Stockholm Univ, Dept Sociol, Demog Unit, S-10691 Stockholm, Sweden; [Mace, Ruth] Lanzhou Univ, Life Sci, 222 Tianshui South Rd, Lanzhou 73000, Gansu, Peoples R China Gilbert, J (reprint author), UCL, Dept Anthropol, 14 Taviton St, London WC1H 0BW, England.; Mace, R (reprint author), Lanzhou Univ, Life Sci, 222 Tianshui South Rd, Lanzhou 73000, Gansu, Peoples R China. james.gilbert.14@ucl.ac.uk; r.mace@ucl.ac.uk Gilbert, James/0000-0003-2808-2004; Mace, Ruth/0000-0002-6137-7739; uggla, caroline/0000-0003-1639-3307 ERC [ERC AdG249347] This research was funded by the ERC advanced grant to R.M. (ERC AdG249347). ARK, 2014, 2015 NO IR LIF TIM S; Baldini R., 2015, BIORXIV, DOI [10.1101/014647, DOI 10.1101/014647]; Copping LT, 2015, EVOL HUM BEHAV, V36, P182, DOI 10.1016/j.evolhumbehav.2014.10.005; Copping LT, 2013, HUM NATURE-INT BIOS, V24, P137, DOI 10.1007/s12110-013-9163-2; Dixon M, 2006, UNEQUAL IMPACT CRIME; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hox J. J, 1998, CLASSIFICATION DATA, P147, DOI [10.1007/978-3-642-72087-1_17, DOI 10.1007/978-3-642-72087-1_17]; Jamieson S, 2004, MED EDUC, V38, P1217, DOI 10.1111/j.1365-2929.2004.02012.x; Johns SE, 2011, HEALTH PLACE, V17, P122, DOI 10.1016/j.healthplace.2010.09.006; Kalmijn M, 1998, ANNU REV SOCIOL, V24, P395, DOI 10.1146/annurev.soc.24.1.395; Marmot M, 2005, LANCET, V365, P1099, DOI 10.1016/S0140-6736(05)71146-6; MARMOT MG, 1987, ANNU REV PUBL HEALTH, V8, P111, DOI 10.1146/annurev.pu.08.050187.000551; Nettle D, 2014, PEERJ, V2, DOI 10.7717/peerj.236; Nettle D, 2012, HUM NATURE-INT BIOS, V23, P375, DOI 10.1007/s12110-012-9153-9; NISRA, 2014, MED AG AT DEATH; NISRA [Northern Ireland Statistics and Research Agency], 2012, CENS 2011 KEY STAT N; Norman G, 2010, ADV HEALTH SCI EDUC, V15, P625, DOI 10.1007/s10459-010-9222-y; Northern Ireland Statistics and Research Agency, 2010, NO IR MULT DEPR MEAS; Pepper GV, 2013, EVOL HUM BEHAV, V34, P433, DOI 10.1016/j.evolhumbehav.2013.08.004; R CoreTeam, 2014, R LANG ENV STAT COMP; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Roff D., 1993, EVOLUTION LIFE HIST; Schacht R, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.140402; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Sullivan Gail M, 2013, J Grad Med Educ, V5, P541, DOI 10.4300/JGME-5-4-18; Uggla C, 2016, BEHAV ECOL, V27, P158, DOI 10.1093/beheco/arv133; Uggla Caroline, 2015, Evolution Medicine and Public Health, P266, DOI 10.1093/emph/eov020; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 29 5 5 0 3 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 2054-5703 ROY SOC OPEN SCI R. Soc. Open Sci. DEC 2016 3 12 160468 10.1098/rsos.160468 8 Multidisciplinary Sciences Science & Technology - Other Topics EH4HH WOS:000391731800008 28083095 DOAJ Gold, Green Published 2019-02-21 J Ebneter, C; Pick, JL; Tschirren, B Ebneter, Christina; Pick, Joel L.; Tschirren, Barbara A trade-off between reproductive investment and maternal cerebellum size in a precocial bird BIOLOGY LETTERS English Article life-history evolution; trade-off; brain size; parental care; cost of reproduction; reproductive investment BRAIN SIZE; ARTIFICIAL SELECTION; EGG SIZE; EVOLUTION; ENVIRONMENTS; SURVIVAL; ADULTS; COSTS Natural selection favours increased investment in reproduction, yet considerable variation in parental investment is observed in natural populations. Life-history theory predicts that this variation is maintained by a trade-off between the benefits of increased reproductive investment and its associated costs for the parents. The nature of these costs of reproduction, however, remains poorly understood. The brain is an energetically highly expensive organ and increased reproductive investment may, therefore, negatively affect brain maintenance. Using artificial selection lines for high and low prenatal maternal investment in a precocial bird, the Japanese quail (Coturnix japonica), we provide experimental evidence for this hypothesis by showing that increased prenatal provisioning negatively affects the size of a particular brain region of the mother, the cerebellum. Our finding suggests that cognitive demands may constrain the evolution of parental investment, and vice versa, contributing to the maintenance of variation in reproductive behaviour in animal populations. [Ebneter, Christina; Pick, Joel L.; Tschirren, Barbara] Univ Zurich, Dept Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland; [Tschirren, Barbara] Univ Exeter, Ctr Ecol & Conservat, Penryn TR10 9FE, England Tschirren, B (reprint author), Univ Zurich, Dept Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland.; Tschirren, B (reprint author), Univ Exeter, Ctr Ecol & Conservat, Penryn TR10 9FE, England. barbara.tschirren@ieu.uzh.ch Pick, Joel L/0000-0002-6295-3742; Tschirren, Barbara/0000-0003-4806-4102 Swiss National Science Foundation [PP00P3_128386, PP00P3_157455]; Georges und Antoine Claraz-Schenkung This work was supported by the Swiss National Science Foundation (PP00P3_128386, PP00P3_157455 to B.T.) and the Georges und Antoine Claraz-Schenkung (to C.E.). Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2012, EVOLUTION OF PARENTAL CARE, P40; Barton RA, 2014, CURR BIOL, V24, P2440, DOI 10.1016/j.cub.2014.08.056; Bates D., 2011, LME4 LINEAR MIXED EF; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Deaner RO, 2007, BRAIN BEHAV EVOLUT, V70, P115, DOI 10.1159/000102973; Ebneter C, 2016, DRYAD DIGITAL REPOSI; Hogan MJ, 2011, CORTEX, V47, P441, DOI 10.1016/j.cortex.2010.01.001; Isler K, 2006, BIOL LETTERS, V2, P557, DOI 10.1098/rsbl.2006.0538; Isler K, 2009, J HUM EVOL, V57, P392, DOI 10.1016/j.jhevol.2009.04.009; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Kotrschal A, 2015, ECOL LETT, V18, P646, DOI 10.1111/ele.12441; Kotrschal A, 2013, CURR BIOL, V23, P168, DOI 10.1016/j.cub.2012.11.058; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Maklakov AA, 2011, BIOL LETTERS, V7, P730, DOI 10.1098/rsbl.2011.0341; MINK JW, 1981, AM J PHYSIOL, V241, pR203; Oatridge A, 2002, AM J NEURORADIOL, V23, P19; Pick JL, 2016, HEREDITY, V116, P542, DOI 10.1038/hdy.2016.16; Pick JL, 2016, AM NAT, V188, P628, DOI 10.1086/688918; Raz N, 2001, AM J NEURORADIOL, V22, P1161; Sol D, 2005, P NATL ACAD SCI USA, V102, P5460, DOI 10.1073/pnas.0408145102; Stearns S, 1992, EVOLUTION LIFE HIST; Strick PL, 2009, ANNU REV NEUROSCI, V32, P413, DOI 10.1146/annurev.neuro.31.060407.125606; van der Bijl W, 2015, P ROY SOC B-BIOL SCI, V282, P116, DOI 10.1098/rspb.2015.1132 25 1 1 2 26 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. DEC 1 2016 12 12 20160659 10.1098/rsbl.2016.0659 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology EG5SV WOS:000391105500005 28003519 Green Published, Bronze 2019-02-21 J Popkov, VA; Silachev, DN; Jankauskas, SS; Zorova, LD; Pevzner, IB; Babenko, VA; Plotnikov, EY; Zorov, DB Popkov, V. A.; Silachev, D. N.; Jankauskas, S. S.; Zorova, L. D.; Pevzner, I. B.; Babenko, V. A.; Plotnikov, E. Y.; Zorov, D. B. Molecular and cellular interactions between mother and fetus. Pregnancy as a rejuvenating factor BIOCHEMISTRY-MOSCOW English Review pregnancy; rejuvenation; aging LIFE-HISTORY EVOLUTION; MULTIPLE-SCLEROSIS; MYOCARDIAL-INFARCTION; PROGENITOR CELLS; FETAL CELLS; STEM-CELLS; TISSUE REGENERATION; COGNITIVE FUNCTION; GENDER-DIFFERENCES; SEX-DIFFERENCES Aging is associated with a decline of various body functions, including ability to regenerate. Over recent decades, it has been demonstrated that some of these changes could be reversed in response to factors originating from a young organism, for example, fetal stem cells or "young blood" in models of heterochronic parabiosis. Pregnancy might be considered as parabiotic model of the interaction between two organisms of different age. In this work, we analyzed and summarized data on the effects of pregnancy on the maternal organism that confirm the hypothesis that pregnancy rejuvenates the mother's organism or slows its aging. [Popkov, V. A.; Silachev, D. N.; Jankauskas, S. S.; Pevzner, I. B.; Plotnikov, E. Y.; Zorov, D. B.] Lomonosov Moscow State Univ, Belozersky Inst Phys Chem Biol, Moscow 119991, Russia; [Popkov, V. A.; Babenko, V. A.] Lomonosov Moscow State Univ, Fac Bioengn & Bioinformat, Moscow 119991, Russia; [Zorova, L. D.] Lomonosov Moscow State Univ, Ctr Int Laser, Moscow 119991, Russia; [Babenko, V. A.] Res Ctr Obstet, Gynecol & Perinatol, Moscow 117997, Russia Plotnikov, EY; Zorov, DB (reprint author), Lomonosov Moscow State Univ, Belozersky Inst Phys Chem Biol, Moscow 119991, Russia. plotnikov@genebee.msu.ru; zorov@genebee.msu.su Zorova, Ljubava/J-3554-2017; Popkov, Vasily/N-9030-2016 Zorova, Ljubava/0000-0001-9046-712X; Popkov, Vasily/0000-0003-2913-5091 Russian Foundation for Basic Research [14-04-00542, 14-04-00300, 15-34-20074, 16-34-01314] This work was supported by the Russian Foundation for Basic Research (projects Nos. 14-04-00542, 14-04-00300, 15-34-20074, and 16-34-01314). Anand SS, 2008, EUR HEART J, V29, P932, DOI 10.1093/eurheartj/ehn018; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; Bae SC, 2005, J PHARMACOL EXP THER, V315, P1125, DOI 10.1124/jpet.105.090803; Balistreri CR, 2016, AGEING RES REV, V29, P50, DOI 10.1016/j.arr.2016.06.004; Bianchi DW, 1996, P NATL ACAD SCI USA, V93, P705, DOI 10.1073/pnas.93.2.705; Cavasin MA, 2006, AM J PHYSIOL-HEART C, V290, pH2043, DOI 10.1152/ajpheart.01121.2005; Chen C, 2009, SCI SIGNAL, V2, DOI 10.1126/scisignal.2000559; Chen J, 2013, TISSUE ENG PART B-RE, V19, P516, DOI [10.1089/ten.teb.2012.0672, 10.1089/ten.TEB.2012.0672]; Chereji E, 2013, J GERONTOL A-BIOL, V68, P499, DOI 10.1093/gerona/gls218; Conboy IM, 2005, CELL CYCLE, V4, P407, DOI 10.4161/cc.4.3.1518; Conboy IM, 2005, NATURE, V433, P760, DOI 10.1038/nature03260; Conboy IM, 2003, SCIENCE, V302, P1575, DOI 10.1126/science.1087573; Costenbader KH, 2007, ARTHRITIS RHEUM-US, V56, P1251, DOI 10.1002/art.22510; Deswal A, 2006, AM J CARDIOL, V97, P1228, DOI 10.1016/j.amjcard.2005.11.042; Dimitrow P P, 1997, J Cardiovasc Risk, V4, P33; Felker GM, 2000, NEW ENGL J MED, V342, P1077, DOI 10.1056/NEJM200004133421502; Freitas-Rodriguez S., 2016, ONCOTARGET, DOI 10.18632/oncotarget.11096; Gagnon A, 2009, AM J HUM BIOL, V21, P533, DOI 10.1002/ajhb.20893; Gielchinsky Y, 2010, GENE DEV, V24, P543, DOI 10.1101/gad.563110; Glass DJ, 2016, CELL METAB, V24, P7, DOI 10.1016/j.cmet.2016.06.017; Gold J. J., 1987, GYNECOLOGIC ENDOCRIN; Gregg C, 2007, J NEUROSCI, V27, P1812, DOI 10.1523/JNEUROSCI.4441-06.2007; Grodstein F, 1996, NEW ENGL J MED, V335, P453, DOI 10.1056/NEJM199608153350701; Grundy E, 2005, SOC SCI MED, V61, P217, DOI 10.1016/j.socscimed.2004.11.046; Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221; Harrison-Bernard L M, 2000, Curr Hypertens Rep, V2, P202, DOI 10.1007/s11906-000-0083-2; Heer T, 2006, AM J CARDIOL, V98, P160, DOI 10.1016/j.amjcard.2006.01.072; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; Hinken AC, 2016, AGING CELL, V15, P582, DOI 10.1111/acel.12475; Hochman JS, 1997, J AM COLL CARDIOL, V30, P141, DOI 10.1016/S0735-1097(97)00107-1; Hsieh YC, 2006, FASEB J, V20, P1109, DOI 10.1096/fj.05-5549com; Humphries KH, 2001, CIRCULATION, V103, P2365; Hybertson BM, 2014, CLIN GENET, V86, P447, DOI 10.1111/cge.12474; Ishii Tetsuya, 2014, World J Stem Cells, V6, P404, DOI 10.4252/wjsc.v6.i4.404; Jaffe D, 2015, ANN EPIDEMIOL, V25, P387, DOI 10.1016/j.annepidem.2014.12.002; James PR, 2004, INT J CLIN PRACT, V58, P363; Johnson SC, 2015, INTERD T GERONT GERI, V40, P107, DOI 10.1159/000364974; Kara RJ, 2012, CIRC RES, V110, P82, DOI 10.1161/CIRCRESAHA.111.249037; Katsimpardi L, 2014, SCIENCE, V344, P630, DOI 10.1126/science.1251141; Khosrotehrani K, 2007, HUM REPROD, V22, P654, DOI 10.1093/humrep/del426; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kleeberger W, 2003, AM J PATHOL, V162, P1487, DOI 10.1016/S0002-9440(10)64281-2; Lee JongUn, 2016, Chonnam Med J, V52, P81, DOI 10.4068/cmj.2016.52.2.81; Liu S, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17060982; Loffredo FS, 2013, CELL, V153, P828, DOI 10.1016/j.cell.2013.04.015; McArdle PF, 2006, J GERONTOL A-BIOL, V61, P190, DOI 10.1093/gerona/61.2.190; MCCAY CM, 1957, GERONTOLOGY, V1, P7, DOI 10.1159/000210677; Michaeli TF, 2015, AGING CELL, V14, P698, DOI 10.1111/acel.12286; Min KJ, 2012, CURR BIOL, V22, pR792, DOI 10.1016/j.cub.2012.06.036; Nassar Dany, 2012, Chimerism, V3, P45, DOI 10.4161/chim.20739; Olson KA, 2015, EUR HEART J, V36, P3426, DOI 10.1093/eurheartj/ehv385; Pandey MK, 2016, THERANOSTICS, V6, P571, DOI 10.7150/thno.14334; Poggioli T, 2016, CIRC RES, V118, P29, DOI 10.1161/CIRCRESAHA.115.307521; Ponsonby AL, 2012, NEUROLOGY, V78, P867, DOI 10.1212/WNL.0b013e31824c4648; Popkov VA, 2015, BIOCHEMISTRY-MOSCOW+, V80, P1560, DOI 10.1134/S0006297915120032; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Ro Angela, 2006, Cardiol Rev, V14, P35, DOI 10.1097/01.crd.0000174805.68081.f7; Rosen CJ, 2005, NEW ENGL J MED, V353, P595, DOI 10.1056/NEJMcp043801; Ruckh JM, 2012, CELL STEM CELL, V10, P96, DOI 10.1016/j.stem.2011.11.019; RUNMARKER B, 1995, BRAIN, V118, P253, DOI 10.1093/brain/118.1.253; Sandberg K, 2008, GENDER MED, V5, P10, DOI 10.1016/j.genm.2008.03.016; Sarkar S., 2008, COMPANION PHILOS BIO; Singh H, 2007, HYPERTENSION, V50, P123, DOI 10.1161/HYPERTENSIONAHA.107.089599; Sinha M, 2014, SCIENCE, V344, P649, DOI 10.1126/science.1251152; Smith GA, 2015, J INHERIT METAB DIS, V38, P753, DOI 10.1007/s10545-015-9838-4; Smith KR, 2002, SOC BIOL, V49, P185; Sorenson CM, 2004, BBA-MOL CELL RES, V1644, P169, DOI 10.1016/j.bbamcr.2003.08.010; Sun XF, 2007, HISTOL HISTOPATHOL, V22, P1387, DOI 10.14670/HH-22.1387; Szekacs B, 2000, BRIT J OBSTET GYNAEC, V107, P1017, DOI 10.1111/j.1471-0528.2000.tb10406.x; VANWALDERVEEN MAA, 1994, NEUROLOGY, V44, P327, DOI 10.1212/WNL.44.2.327; Vellai T, 2003, NATURE, V426, P620, DOI 10.1038/426620a; Villeda SA, 2014, NAT MED, V20, P659, DOI 10.1038/nm.3569; Villeda SA, 2011, NATURE, V477, P90, DOI 10.1038/nature10357; Vukusic S, 2006, CLIN NEUROL NEUROSUR, V108, P266, DOI 10.1016/j.clineuro.2005.11.016; Vukusic S, 2004, BRAIN, V127, P1353, DOI 10.1093/brain/awh152; Wang Y, 2004, BIOCHEM BIOPH RES CO, V325, P961, DOI 10.1016/j.bbrc.2004.10.105; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; Whitehead H, 2015, CURR BIOL, V25, pR225, DOI 10.1016/j.cub.2015.02.002; World Health Organization, 2012, ANN REPORT; Xiao JJ, 2014, INT J CLIN EXP PATHO, V7, P229; Zeng XX, 2010, STEM CELLS DEV, V19, P1819, DOI 10.1089/scd.2010.0046; Zorov DB, 2014, BIOCHEMISTRY-MOSCOW+, V79, P1017, DOI 10.1134/S0006297914100046; Zorov DB, 2013, BIOCHEMISTRY-MOSCOW+, V78, P979, DOI 10.1134/S0006297913090034; Zorov DB, 2012, BIOCHEMISTRY-MOSCOW+, V77, P742, DOI 10.1134/S0006297912070073 84 3 4 2 9 MAIK NAUKA/INTERPERIODICA/SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013-1578 USA 0006-2979 1608-3040 BIOCHEMISTRY-MOSCOW+ Biochem.-Moscow DEC 2016 81 12 1480 1487 10.1134/S0006297916120099 8 Biochemistry & Molecular Biology Biochemistry & Molecular Biology EF1NZ WOS:000390092900009 28259125 2019-02-21 J Lofgren, ET; Egizi, AM; Fefferman, NH Lofgren, Eric T.; Egizi, Andrea M.; Fefferman, Nina H. Patients as Patches: Ecology and Epidemiology in Healthcare Environments INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY English Editorial Material CLOSTRIDIUM-DIFFICILE INFECTION; LIFE-HISTORY EVOLUTION; HUMAN MICROBIOME; TRANSMISSION; DIVERSITY; PATHOGENS; URBANIZATION; BIODIVERSITY; HOSPITALS; SURFACES The modern healthcare system involves complex interactions among microbes, patients, providers, and the built environment. It represents a unique and challenging setting for control of the emergence and spread of infectious diseases. We examine an extension of the perspectives and methods from ecology (and especially urban ecology) to address these unique issues, and we outline 3 examples: (1) viewing patients as individual microbial ecosystems; (2) the altered ecology of infectious diseases specifically within hospitals; and (3) ecosystem management perspectives for infection surveillance and control. In each of these cases, we explore the accuracy and relevance of analogies to existing urban ecological perspectives, and we demonstrate a few of the potential direct uses of this perspective for altering research into the control of healthcare-associated infections. Infect Control Hosp Epidemiol. 2016;1507-1512 [Lofgren, Eric T.] Washington State Univ, Paul G Allen Sch Global Anim Hlth, Pullman, WA 99164 USA; [Lofgren, Eric T.] Washington State Univ, Community Hlth Analyt Initiat, Pullman, WA 99164 USA; [Lofgren, Eric T.; Fefferman, Nina H.] CCICADA, Piscataway, NJ USA; [Egizi, Andrea M.] Tick Borne Dis Lab, Monmouth Cty Mosquito Control Div, Tinton Falls, NJ USA; [Egizi, Andrea M.] Rutgers State Univ, Dept Entomol, Ctr Vector Biol, New Brunswick, NJ USA; [Fefferman, Nina H.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN USA Fefferman, NH (reprint author), Dept Ecol & Evolutionary Biol, 569 Dabney Hall, Knoxville, TN 37996 USA. feffermn@dimacs.rutgers.edu Egizi, Andrea/0000-0002-4604-045X Abir M, 2012, ACAD EMERG MED, V19, P280, DOI 10.1111/j.1553-2712.2011.01278.x; Adler F.R., 2013, URBAN ECOSYSTEMS ECO; Al-Nassir WN, 2008, ANTIMICROB AGENTS CH, V52, P2403, DOI 10.1128/AAC.00090-08; Alberti M, 2005, INT REGIONAL SCI REV, V28, P168, DOI 10.1177/0160017605275160; Buffie CG, 2012, INFECT IMMUN, V80, P62, DOI 10.1128/IAI.05496-11; Cadotte MW, 2011, J APPL ECOL, V48, P1079, DOI 10.1111/j.1365-2664.2011.02048.x; Calfee DP, 2012, ANNU REV MED, V63, P359, DOI 10.1146/annurev-med-081210-144458; Chang JY, 2008, J INFECT DIS, V197, P435, DOI 10.1086/525047; Costello EK, 2012, SCIENCE, V336, P1255, DOI 10.1126/science.1224203; Deasy AM, 2015, CLIN INFECT DIS, V60, P1512, DOI 10.1093/cid/civ098; Dethlefsen L, 2008, PLOS BIOL, V6, P2383, DOI 10.1371/journal.pbio.0060280; Edmond M, 2015, SHEA C MAY 14 ORL FL; Fisman D, 2012, CLIN MICROBIOL INFEC, V18, P946, DOI 10.1111/j.1469-0691.2012.03968.x; Galea S, 2005, ANNU REV PUBL HEALTH, V26, P341, DOI 10.1146/annurev.publhealth.26.021304.144708; Gaston K. J., 2010, URBAN ECOLOGY; Gerding DN, 2015, JAMA-J AM MED ASSOC, V313, P1719, DOI 10.1001/jama.2015.3725; Gilbert-Norton L, 2010, CONSERV BIOL, V24, P660, DOI 10.1111/j.1523-1739.2010.01450.x; Grimm NB, 2008, SCIENCE, V319, P756, DOI 10.1126/science.1150195; Hillebrand H, 2008, ECOLOGY, V89, P1510, DOI 10.1890/07-1053.1; Hilty J. A, 2006, CORRIDOR ECOLOGY SCI; Hirshberg A, 2005, J TRAUMA ACUTE CARE, P58; Hooper DU, 2005, ECOL MONOGR, V75, P3, DOI 10.1890/04-0922; Jarchum I, 2011, CURR OPIN IMMUNOL, V23, P353, DOI 10.1016/j.coi.2011.03.001; Jesse M, 2008, J THEOR BIOL, V254, P331, DOI 10.1016/j.jtbi.2008.05.038; Johnson PTJ, 2015, SCIENCE, V349, DOI 10.1126/science.1259504; Jombart T, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003457; Kembel SW, 2012, ISME J, V6, P1469, DOI 10.1038/ismej.2011.211; King AA, 2009, AM NAT, V173, P446, DOI 10.1086/597217; King GM, 2014, J MICROBIOL, V52, P721, DOI 10.1007/s12275-014-4364-x; Kurokawa K, 2007, DNA RES, V14, P169, DOI 10.1093/dnares/dsm018; Lal A, 2013, PLOS ONE, V7; Lax S, 2015, TRENDS MOL MED, V21, P427, DOI 10.1016/j.molmed.2015.03.005; Lee BY, 2013, MED CARE, V51, P205, DOI 10.1097/MLR.0b013e3182836dc2; Lemon KP, 2012, SCI TRANSL MED, V4, DOI 10.1126/scitranslmed.3004183; Lloyd-Smith JO, 2013, PHILOS T R SOC B, P368; Lofgren E, 2007, J VIROL, V81, P5429, DOI 10.1128/JVI.01680-06; Lofgren ET, 2014, INFECT CONT HOSP EP, V35, P18, DOI 10.1086/674394; Magill SS, 2014, JAMA-J AM MED ASSOC, V312, P1438, DOI 10.1001/jama.2014.12923; McDonnell MJ, 2011, URBAN ECOLOGY: PATTERNS, PROCESSES, AND APPLICATIONS, P5; McKinney M. L., 2008, Urban Ecosystems, V11, P161, DOI 10.1007/s11252-007-0045-4; McKinney ML, 2006, BIOL CONSERV, V127, P247, DOI 10.1016/j.biocon.2005.09.005; O'Brien-Pallas L, 2010, J NURS MANAGE, V18, P1073, DOI 10.1111/j.1365-2834.2010.01167.x; O'Keefe KJ, 2005, J THEOR BIOL, V233, P55, DOI 10.1016/j.jtbi.2004.09.005; Otter JA, 2011, INFECT CONT HOSP EP, V32, P687, DOI 10.1086/660363; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; Phillips DP, 2010, J GEN INTERN MED, V25, P774, DOI 10.1007/s11606-010-1356-3; Pickett S. T. A, 1985, ECOLOGY NATURAL DIST; Relman DA, 2012, NUTR REV, V70, pS2, DOI 10.1111/j.1753-4887.2012.00489.x; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Robinson CJ, 2010, MICROBIOL MOL BIOL R, V74, P453, DOI 10.1128/MMBR.00014-10; Septimus E, 2014, INFECT CONT HOSP EP, V35, P797, DOI [10.1017/S0899823X00193808, 10.1086/676535]; Shochat E, 2010, BIOSCIENCE, V60, P199, DOI 10.1525/bio.2010.60.3.6; Smith D, 2013, STAND GENOMIC SCI, V8, P112, DOI 10.4056/sigs.3717348; Smith Val H., 2015, Evolution Medicine and Public Health, P179, DOI 10.1093/emph/eov014; Sullivan A, 2001, Lancet Infect Dis, V1, P101, DOI 10.1016/S1473-3099(01)00066-4; Turnbaugh PJ, 2009, NATURE, V457, P480, DOI 10.1038/nature07540; Weber DJ, 2010, AM J INFECT CONTROL, V38, pS25, DOI 10.1016/j.ajic.2010.04.196; Weinstock GM, 2012, NATURE, V489, P250, DOI 10.1038/nature11553; Weissman JS, 2007, MED CARE, V45, P448, DOI 10.1097/01.mlr.0000257231.86368.09; Zipperer A, 2016, NATURE, V535, P511, DOI 10.1038/nature18634 60 0 0 3 12 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0899-823X 1559-6834 INFECT CONT HOSP EP Infect. Control Hosp. Epidemiol. DEC 2016 37 12 1507 1512 10.1017/ice.2016.224 6 Public, Environmental & Occupational Health; Infectious Diseases Public, Environmental & Occupational Health; Infectious Diseases EF5DW WOS:000390351900020 27760571 2019-02-21 J Perlut, NG; Strong, AM Perlut, Noah G.; Strong, Allan M. Comparative analysis of factors associated with first-year survival in two species of migratory songbirds JOURNAL OF AVIAN BIOLOGY English Article SPARROWS PASSERCULUS-SANDWICHENSIS; LIFE-HISTORY STRATEGIES; POSTFLEDGING SURVIVAL; JUVENILE SURVIVAL; PASSERINE BIRDS; HOUSE SPARROW; RECRUITMENT; DISTANCE; DISPERSAL; SIZE Our understanding of the full life cycle of most migratory birds remains limited. Estimates of survival rates, particularly for first-year birds are notably lacking. This knowledge gap results in imprecise parameters in population models and limits our ability to fully understand life history trade-offs. We used eleven years of field data to estimate first-year apparent survival (phi(1)st) for two species of migratory grassland songbirds that breed in the same managed habitats but have substantially different migration distances. We used a suite of life-history, habitat and individually-based covariates to explore causes of variation in phi(1)st. The interaction between fledge date and body mass was the best supported model of apparent survival. We found differential effects of fledging date based on nestling body mass. Overall, lighter nestlings had greater apparent survival than heavier nestlings; average or heavy nestlings within-brood had greater apparent survival when they fledged earlier in the summer. We hypothesize that heavier birds that fledge earlier in the season have a longer window of opportunity to evaluate potential breeding sites and are more likely to disperse greater distances from the natal region, thus confounding survival with permanent emigration. L ighter birds, particularly those fledged late in the breeding season may spend more time on self-maintenance and consequently have less time to evaluate potential future breeding sites, showing greater fidelity to their natal region. We found no support for management treatment (timing of mowing), sex, brood size, or species as important covariates in explaining apparent survival. Our results suggest that differential migration distances may not have a strong effect on first-year apparent survival. [Perlut, Noah G.] Univ New England, Dept Environm Studies, Biddeford, ME 04005 USA; [Strong, Allan M.] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT USA Perlut, NG (reprint author), Univ New England, Dept Environm Studies, Biddeford, ME 04005 USA. nperlut@une.edu Univ. of New England; Rubenstein School of Environment and Natural Resources; Initiative for Future Agricultural and Food Systems; National Research Initiative of the USDA Cooperative State Research, Education and Extension Service [2001-52103-11351, 03-35101-13817]; U.S. Dept of Agriculture/National Inst. of Food and Agriculture Managed Ecosystems Program [2009-35304-05349]; Natural Resource Conservation Service's Wildlife Habitat Management Inst; Galipeau family This project was supported by the Univ. of New England, the Rubenstein School of Environment and Natural Resources, and the Initiative for Future Agricultural and Food Systems and the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant numbers 2001-52103-11351 and 03-35101-13817, respectively and the U.S. Dept of Agriculture/National Inst. of Food and Agriculture Managed Ecosystems Program (award no. 2009-35304-05349). Additional funding was provided by the Natural Resource Conservation Service's Wildlife Habitat Management Inst. and the Galipeau family. We thank Shelburne Farms, the Galipeau, Ross, Maile and Stern families for generous access to their land. Thanks to each summer's army of research assistants for their excellent work. Adams AAY, 2006, ECOLOGY, V87, P178, DOI 10.1890/04-1922; Anders AD, 1997, CONSERV BIOL, V11, P698, DOI 10.1046/j.1523-1739.1997.95526.x; Brown C. R., 1996, COLONALITY CLIFF SWA; Bryant D.M., 1988, P173; Buehler DM, 2008, PHILOS T R SOC B, V363, P247, DOI 10.1098/rstb.2007.2138; Chamberlain CP, 1997, OECOLOGIA, V109, P132, DOI 10.1007/s004420050067; Cleasby IR, 2010, BIOL J LINN SOC, V101, P680, DOI 10.1111/j.1095-8312.2010.01515.x; Cooper CB, 2008, ECOLOGY, V89, P3349, DOI 10.1890/08-0315.1; Cox WA, 2014, J WILDLIFE MANAGE, V78, P183, DOI 10.1002/jwmg.670; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; Faaborg J, 2010, ECOL MONOGR, V80, P3, DOI 10.1890/09-0395.1; Fajardo N, 2009, AUK, V126, P310, DOI 10.1525/auk.2009.07097; Green DJ, 2001, J ANIM ECOL, V70, P505, DOI 10.1046/j.1365-2656.2001.00503.x; Gruebler MU, 2008, ECOLOGY, V89, P2736, DOI 10.1890/07-0786.1; Gruebler MU, 2014, ECOL EVOL, V4, P756, DOI 10.1002/ece3.984; Han JI, 2009, AUK, V126, P779, DOI 10.1525/auk.2009.08203; Hobson KA, 1997, OECOLOGIA, V109, P142, DOI 10.1007/s004420050068; Hovick TJ, 2011, CONDOR, V113, P429, DOI 10.1525/cond.2011.100135; LACK D, 1966, POPULATION STUDIES B; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Maness TJ, 2013, ORNITHOL MONOGR, P1, DOI 10.1525/om.2013.78.1.1; Marra PP, 2000, BEHAV ECOL, V11, P299, DOI 10.1093/beheco/11.3.299; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; McKim-Louder MI, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056059; Middleton HA, 2008, CAN J ZOOL, V86, P875, DOI 10.1139/Z08-069; Mitchell GW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028838; Molina-Morales M, 2012, ANIM BEHAV, V83, P671, DOI 10.1016/j.anbehav.2011.12.011; Monros JS, 2002, OIKOS, V99, P481, DOI 10.1034/j.1600-0706.2002.11909.x; NASS (National Agriculture Statistics Survey), 2010, CENS AGR; PARRISH JD, 1994, AUK, V111, P38, DOI 10.2307/4088503; Perkins DG, 2013, AUK, V130, P512, DOI 10.1525/auk.2013.12163; Perlut NG, 2008, ECOLOGY, V89, P1941, DOI 10.1890/07-0900.1; Perlut NG, 2006, ECOL APPL, V16, P2235, DOI 10.1890/1051-0761(2006)016[2235:GSIADM]2.0.CO;2; Perlut NG, 2014, AUK, V131, P224, DOI 10.1642/AUK-13-183.1; Perlut NG, 2011, J WILDLIFE MANAGE, V75, P1657, DOI 10.1002/jwmg.199; Reilly JR, 2009, J ANIM ECOL, V78, P990, DOI 10.1111/j.1365-2656.2009.01576.x; Renfrew RB, 2013, DIVERS DISTRIB, V19, P1008, DOI 10.1111/ddi.12080; Ringsby TH, 1999, OIKOS, V85, P419, DOI 10.2307/3546691; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; Streby HM, 2011, ECOSPHERE, V2, DOI 10.1890/ES10-00187.1; Streby HM, 2014, WILDLIFE SOC B, V38, P305, DOI 10.1002/wsb.406; Streby HM, 2014, AUK, V131, P718, DOI 10.1642/AUK-14-69.1; Stutchbury BJM, 2009, SCIENCE, V323, P896, DOI 10.1126/science.1166664; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; Tarof SA, 2011, AUK, V128, P716, DOI 10.1525/auk.2011.11087; Tarwater CE, 2011, ECOLOGY, V92, P1271, DOI 10.1890/10-1386.1; Vitz AC, 2011, CONDOR, V113, P400, DOI 10.1525/cond.2011.100023; WEATHERHEAD PJ, 1994, BEHAV ECOL, V5, P426, DOI 10.1093/beheco/5.4.426; Wells KMS, 2007, CONDOR, V109, P781, DOI 10.1650/0010-5422(2007)109[781:SOPGBI]2.0.CO;2; Wheelwright N. T., 2008, BIRDS N AM, V45; White GC, 1999, BIRD STUDY, V46, P120; Zalik NJ, 2008, AUK, V125, P700, DOI 10.1525/auk.2008.07106 52 3 3 4 16 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. DEC 2016 47 6 858 864 10.1111/jav.00892 7 Ornithology Zoology EF4UG WOS:000390326900013 2019-02-21 J Cameron, H; Monro, K; Malerba, M; Munch, S; Marshall, D Cameron, Hayley; Monro, Keyne; Malerba, Martino; Munch, Stephan; Marshall, Dustin Why do larger mothers produce larger offspring? A test of classic theory ECOLOGY English Article density dependence; life-history theory; offspring performance; optimal offspring size; siblingcompetition COLONIAL MARINE INVERTEBRATE; BRYOZOAN BUGULA-NERITINA; OPTIMAL EGG SIZE; MATERNAL PHENOTYPE; TRADE-OFFS; COMPETITION; QUALITY; DISPERSAL; NUMBER; GROWTH Across a wide range of taxa, larger mothers produce larger offspring. Theory assumes that larger, more fecund mothers create higher local densities of siblings, and so larger mothers produce larger offspring to offset sibling competition. This assumption has beendebated for over 30yr, but direct empirical tests are surprisingly rare. Here, we test two key assumptions of classic theories that predict sibling competition drives maternal-size-offspring-size (MSOS) correlations: (1) independent effects of offspring size and sibling density on offspring performance or (2) as a product of an interaction between these two factors. To simultaneously test these alternative assumptions, we manipulate offspring size and sibling density in the marine invertebrate, Bugula neritina, and monitor offspring performance in the field. We found that, depending on the fitness metric being considered, offspring size and sibling density can either independently or interactively affect offspring performance. Yet sibling density did not affect offspring performance in the ways that classic theories assume. Given our results, it is unlikely that sibling competition drives the positive MSOS correlation observed in this species. Empirical support for these classic theories remains lacking, suggesting alternative explanations are necessary. [Cameron, Hayley; Monro, Keyne; Malerba, Martino; Marshall, Dustin] Monash Univ, Sch Biol Sci, Ctr Geometr Biol, Melbourne, Vic 3800, Australia; [Munch, Stephan] NOAA, Natl Marine Fisheries Serv, Fisheries Ecol Div, Southwest Fisheries Sci Ctr, Santa Cruz, CA 95060 USA Cameron, H (reprint author), Monash Univ, Sch Biol Sci, Ctr Geometr Biol, Melbourne, Vic 3800, Australia. Hayley.Cameron@monash.edu Malerba, Martino E./0000-0002-7480-4779 Aguirre JD, 2013, OIKOS, V122, P881, DOI 10.1111/j.1600-0706.2012.20827.x; Aguirre JD, 2012, ECOLOGY, V93, P1134, DOI 10.1890/11-1448.1; Allen RM, 2008, AM NAT, V171, P225, DOI 10.1086/524952; Beckerman AP, 2006, P ROY SOC B-BIOL SCI, V273, P485, DOI 10.1098/rspb.2005.3315; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Burgess SC, 2011, MAR ECOL PROG SER, V440, P151, DOI 10.3354/meps09374; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; Eberhart A, 2012, J ARID ENVIRON, V76, P23, DOI 10.1016/j.jaridenv.2011.08.009; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Filin I, 2015, J THEOR BIOL, V364, P168, DOI 10.1016/j.jtbi.2014.09.007; Gardner JL, 2011, TRENDS ECOL EVOL, V26, P285, DOI 10.1016/j.tree.2011.03.005; Hart SP, 2012, ECOLOGY, V93, P2015, DOI 10.1890/11-2248.1; Hart SP, 2009, ECOLOGY, V90, P1485, DOI 10.1890/08-1813.1; Hendry AP, 2003, EVOL ECOL RES, V5, P421; Hixon MA, 2014, ICES J MAR SCI, V71, P2171, DOI 10.1093/icesjms/fst200; Johnson SL, 2007, MOL ECOL, V16, P3253, DOI 10.1111/j.1365-294X.2007.03366.x; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; KEOUGH MJ, 1984, EVOLUTION, V38, P142, DOI 10.1111/j.1558-5646.1984.tb00267.x; KEOUGH MJ, 1987, ECOLOGY, V68, P199, DOI 10.2307/1938820; Kindsvater HK, 2010, EVOL ECOL RES, V12, P327; Kosman ET, 2011, MAR ECOL PROG SER, V429, P67, DOI 10.3354/meps09096; Lim JN, 2014, EVOLUTION, V68, P2306, DOI 10.1111/evo.12446; Marshall DJ, 2006, ECOLOGY, V87, P214, DOI 10.1890/05-0350; Marshall DJ, 2004, MAR ECOL PROG SER, V272, P301, DOI 10.3354/meps272301; Marshall DJ, 2003, ECOLOGY, V84, P3131, DOI 10.1890/02-0311; Marshall DJ, 2003, MAR ECOL PROG SER, V255, P145, DOI 10.3354/meps255145; Marshall DJ, 2010, ECOLOGY, V91, P2862, DOI 10.1890/09-0156.1; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Pettersen A. K., 2015, P ROY SOC LOND B BIO, V282, P819; Quinn G. P., 2002, EXPT DESIGN DATA ANA; Rollinson N, 2016, BIOL REV, V91, P1134, DOI 10.1111/brv.12214; Rollinson N, 2010, EVOL ECOL RES, V12, P949; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; Sinervo B, 2003, SCIENCE, V300, P1949, DOI 10.1126/science.1083109; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Svensson JR, 2015, ECOLOGY, V96, P819, DOI 10.1890/14-0665.1; Takahashi T., 2005, EVOLUTIONARY ECOLOGY, V7, P1201; Thompson ML, 2015, MAR ECOL PROG SER, V522, P115, DOI 10.3354/meps11178; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413; Wendt DE, 1998, BIOL BULL-US, V195, P126, DOI 10.2307/1542820 43 4 4 0 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology DEC 2016 97 12 3452 3459 10.1002/ecy.1590 8 Ecology Environmental Sciences & Ecology EE2WC WOS:000389444800022 27912014 2019-02-21 J Adler, MI; Telford, M; Bonduriansky, R Adler, M. I.; Telford, M.; Bonduriansky, R. Phenotypes optimized for early-life reproduction exhibit faster somatic deterioration with age, revealing a latent cost of high condition JOURNAL OF EVOLUTIONARY BIOLOGY English Article ageing; condition; development; diet; life-history; lifespan; neriid fly Telostylinus angusticollis; nutrition; reproduction-soma trade-off; somatic maintenance TELOSTYLINUS-ANGUSTICOLLIS DIPTERA; ONTHOPHAGUS-ACUMINATUS COLEOPTERA; CONDITION-DEPENDENT TRAITS; SEXUAL SELECTION; TRADE-OFFS; TELEOGRYLLUS-COMMODUS; NATURAL-SELECTION; FIELD CRICKETS; ADULT DIET; BODY-SIZE High condition enables individuals to express a phenotype with greater reproductive potential. However, life-history theory predicts that reproduction will trade off with somatic maintenance and viability, and several studies have reported faster age-related decline in performance in high-condition individuals, suggesting that high condition in early life is associated with accelerated somatic deterioration. This trade-off may be especially pronounced in males, which often express condition-dependent secondary sexual traits that can impose viability costs during development and through damage-inflicting adult sexual behaviours. To test this prediction, we reared larvae of the neriid fly Telostylinus angusticollis on diets of varying nutrient content and quantified somatic deterioration in solitary males, males housed in all-male or mixed-sex groups and immobilized males subjected to mechanical stress. We found that males reared on a nutrient-rich larval diet (high-condition males) suffered a higher rate of somatic deterioration with age, particularly when housed in groups. Perhaps as a result of accelerated somatic deterioration, high-condition males did not outlive low-condition males. In addition, high-condition males housed in all-male groups experienced a greater reduction in escape response with age than males housed in mixed-sex groups, suggesting that male-male combat promotes somatic deterioration. However, even when immobilized, high-condition males were still found to be more susceptible to somatic damage than low-condition males. Our findings suggest that a high-condition male phenotype is more prone to somatic damage, both as a result of associated behaviours such as combat, and because of the inherent fragility of the high-condition body. [Adler, M. I.; Telford, M.; Bonduriansky, R.] Univ New South Wales, Evolut & Ecol Res Ctr, Sydney, NSW, Australia; [Adler, M. I.; Telford, M.; Bonduriansky, R.] Univ New South Wales, Sch Biol Earth & Environm Sci, Sydney, NSW, Australia; [Telford, M.] Univ Pompeu Fabra, Inst Biol Evolutiva, Barcelona, Spain Adler, MI (reprint author), UNSW, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia.; Adler, MI (reprint author), UNSW, Sch BEES, Sydney, NSW 2052, Australia. margo.adler@gmail.com Bonduriansky, Russell/0000-0002-5786-6951 University of New South Wales; Evolution & Ecology Research Centre; Australian Research Council We thank Ditka Jeran, Matheus Guimaraes, Rob Champion, Aidan Runagall-McNaull, David Tran, Eleanor Bath, Alexander Sentinella and Mark Brown for help with the experiment, and Bart Adriaenssens for generously sharing his statistics wisdom. We also thank Viktor Nilsson-Ortman for thoughtful discussions and suggesting relevant papers, and Luc Bussiere and Wolf Blanckenhorn for thorough and very helpful comments and suggestions on an earlier version of the manuscript. The research was funded through a PhD scholarship to MA from the University of New South Wales and the Evolution & Ecology Research Centre, and an Australian Research Council research fellowship and Discovery grant to RB. The authors have no conflict of interests to declare. Adler MI, 2011, J EVOLUTION BIOL, V24, P1169, DOI 10.1111/j.1420-9101.2011.02250.x; Adler MI, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a017566; Adler MI, 2013, EVOL BIOL, V40, P288, DOI 10.1007/s11692-012-9211-6; Adler MI, 2013, EXP GERONTOL, V48, P539, DOI 10.1016/j.exger.2013.03.007; Agrawal A. A., 2010, EVOLUTION SINCE DARW, V150, P243; Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; Allen BJ, 2007, FUNCT ECOL, V21, P154, DOI 10.1111/j.1365-2435.2006.01219.x; ANDERSSON M, 1982, BIOL J LINN SOC, V17, P375, DOI 10.1111/j.1095-8312.1982.tb02028.x; Bath E, 2012, ANIM BEHAV, V84, P1331, DOI 10.1016/j.anbehav.2012.08.025; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bonduriansky R, 2007, J EVOLUTION BIOL, V20, P2379, DOI 10.1111/j.1420-9101.2007.01409.x; Bonduriansky R, 2005, J EVOLUTION BIOL, V18, P1332, DOI 10.1111/j.1420-9101.2005.00957.x; Bonduriansky R, 2006, J MORPHOL, V267, P602, DOI 10.1002/jmor.10426; Bonduriansky R, 2005, EVOLUTION, V59, P138, DOI 10.1111/j.0014-3820.2005.tb00901.x; Bonduriansky R, 2002, NATURE, V420, P377, DOI 10.1038/420377a; Bonduriansky R, 2007, AM NAT, V169, P9, DOI 10.1086/510214; BOYD R, 1982, ANIM BEHAV, V30, P972, DOI 10.1016/S0003-3472(82)80185-1; Burkhard DU, 2002, ECOL ENTOMOL, V27, P514, DOI 10.1046/j.1365-2311.2002.00453.x; Bussiere L.F., 2012, ELS 2012; CARTAR RV, 1992, J ANIM ECOL, V61, P225, DOI 10.2307/5525; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; Christensen R. H. B., 2015, ORDINAL REGRESSION M; CORBET PS, 1960, NATURE, V187, P525, DOI 10.1038/187525a0; Cotton S, 2004, P ROY SOC B-BIOL SCI, V271, P771, DOI 10.1098/rspb.2004.2688; Dingle H., 2001, Insect movement: mechanisms and consequences. Proceedings of the Royal Entomological Society's 20th Symposium, London, UK, September 1999, P159, DOI 10.1079/9780851994567.0159; Dmitriew C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017399; Downer G.H., 1983, ENDOCRINOLOGY INSECT; Emlen DJ, 1997, P ROY SOC B-BIOL SCI, V264, P567, DOI 10.1098/rspb.1997.0081; EMLEN DJ, 1994, P ROY SOC B-BIOL SCI, V256, P131, DOI 10.1098/rspb.1994.0060; Engqvist L, 2011, BIOL J LINN SOC, V102, P199, DOI 10.1111/j.1095-8312.2010.01560.x; Griffith SC, 1999, NATURE, V400, P358, DOI 10.1038/22536; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hadfield JD, 2014, MCMCGLMM COURSE NOTE; Hayes EJ, 1999, PHYSIOL ENTOMOL, V24, P1, DOI 10.1046/j.1365-3032.1999.00104.x; Hill GE, 2011, ECOL LETT, V14, P625, DOI 10.1111/j.1461-0248.2011.01622.x; Houslay TM, 2015, J EVOLUTION BIOL, V28, P1067, DOI 10.1111/jeb.12630; Hughes KA, 2005, ANNU REV ENTOMOL, V50, P421, DOI 10.1146/annurev.ento.50.071803.130409; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Jennions MD, 2001, Q REV BIOL, V76, P3, DOI 10.1086/393743; Kawasaki N, 2008, AM NAT, V172, P346, DOI 10.1086/589519; Koehl MAR, 1996, ANNU REV ECOL SYST, V27, P501, DOI 10.1146/annurev.ecolsys.27.1.501; Krause J., 2002, LIVING GROUPS; Lailvaux SP, 2011, EVOLUTION, V65, P3138, DOI 10.1111/j.1558-5646.2011.01358.x; Ljubuncic P, 2009, GERONTOLOGY, V55, P205, DOI 10.1159/000200772; Maklakov AA, 2015, BIOESSAYS, V37, P802, DOI 10.1002/bies.201500025; Marden JH, 2000, ANNU REV PHYSIOL, V62, P157, DOI 10.1146/annurev.physiol.62.1.157; Muhlhauser C, 2002, BEHAV ECOL, V13, P359, DOI 10.1093/beheco/13.3.359; NUR N, 1984, J THEOR BIOL, V110, P275, DOI 10.1016/S0022-5193(84)80059-4; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Rasband W. S., 1997, IMAGEJ; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Robinson MR, 2006, EVOLUTION, V60, P2168, DOI 10.1111/j.0014-3820.2006.tb01854.x; Roff DA, 1996, Q REV BIOL, V71, P3, DOI 10.1086/419266; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Shevtsova E, 2011, P NATL ACAD SCI USA, V108, P668, DOI 10.1073/pnas.1017393108; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Swallow JG, 2000, J COMP PHYSIOL B, V170, P481, DOI 10.1007/s003600000124; Ungar P.S., 2010, MAMMAL TEETH ORIGIN; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zajitschek F, 2009, FUNCT ECOL, V23, P602, DOI 10.1111/j.1365-2435.2008.01520.x; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 66 3 3 0 17 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. DEC 2016 29 12 2436 2446 10.1111/jeb.12968 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity EE7ZT WOS:000389844700008 27546615 2019-02-21 J Gantz, A; Yanez, M Gantz, Alberto; Yanez, Miguel Breeding Biology of the Black-faced Ibis (Theristicus melanopis) in Southern Chile WATERBIRDS English Article breeding success; clutch size; ibis; Mayfield estimator; nest predation; pastures; reproduction; southern Chile PARAKEET ENICOGNATHUS-LEPTORHYNCHUS; LIFE-HISTORY EVOLUTION; CAVITY-NESTING BIRDS; SCARLET IBIS; CLUTCH SIZE; REPRODUCTIVE SUCCESS; GERONTICUS-EREMITA; HABITAT SELECTION; FOOD AVAILABILITY; PREY SELECTION The breeding parameters of the Black-faced Ibis (Theristicus melanopis) in pastures of southern Chile between 5 July and 30 November 2014 were evaluated. Thirty active nests were monitored in an area of 31 km(2), using a mirror mounted on a 13-m retractable aluminum pole. Each nest was visited once a week. The Black-faced Ibis presented an asynchronous posture period, with a maximum of three egg clutches. The first eggs were laid on 6 August 2014, and the mean incubation period was 28.66 (+/- 4.41) days. Mean clutch size during the first posture was 2.23 (+/- 0.73) with a range of one to three eggs per nest. None of the structural parameters of the nesting site evaluated were related to clutch size. The nests were oriented with a mean angle of 218 SW. Hatching of the chicks began on 25 September 2014, and the mean period of parental care lasted 36.67 (+/- 14.49) days. The apparent hatching success was 0.54, the fledging success was 0.40, and the total breeding cycle success was 0.23 independent young per nest. Predation explained the 56.7% nest loss. Chimango Caracara (Milvago chimango) was the main predator of eggs and chicks. The Mayfield estimator indicated a daily survival probability of 4.4% for the incubation cycle, 26.2% for the fledglings and 11.3% for the total breeding cycle. [Gantz, Alberto] Univ Los Lagos, Lab Ecol, Dept Ciencias Biol & Biodiversidad, Ave Fuchslocher 1305,Casilla 933, Osorno, Chile; [Yanez, Miguel] Univ Bio Bio, Dept Estadist, Ave Collao 1202,Casilla 5-C, Concepcion, Chile Gantz, A (reprint author), Univ Los Lagos, Lab Ecol, Dept Ciencias Biol & Biodiversidad, Ave Fuchslocher 1305,Casilla 933, Osorno, Chile. agantz@ulagos.cl Yanez Alvarado, Miguel/0000-0001-5483-3428 Borges FJA, 2010, BIODIVERS CONSERV, V19, P223, DOI 10.1007/s10531-009-9718-z; Araya B., 1984, GUIA CAMPO AYES CHIL; Ardia DR, 2006, J AVIAN BIOL, V37, P252, DOI 10.1111/j.2006.0908-8857.03624.x; Beerens JM, 2011, AUK, V128, P651, DOI 10.1525/auk.2011.10165; Belhadj G., 2007, EUROPEAN J SCI RES, V19, P58; Birdlife International, 2013, SPEC FACTSH THER MEL; Boatman ND, 2004, IBIS, V146, P131, DOI 10.1111/j.1474-919X.2004.00347.x; Bowden CGR, 2003, IBIS, V145, P419, DOI 10.1046/j.1474-919X.2003.00181.x; Bradbury RB, 2000, J APPL ECOL, V37, P789, DOI 10.1046/j.1365-2664.2000.00552.x; Campbell B, 1985, DICT OF BIRDS; Carneiro APB, 2012, CONDOR, V114, P166, DOI 10.1525/cond.2011.100127; Corporacion Nacional del Medio Ambiente, 2008, BIOD CHIL PERSP DES; DOBKIN DS, 1995, CONDOR, V97, P694, DOI 10.2307/1369178; DONAZAR JA, 1994, CONDOR, V96, P994, DOI 10.2307/1369108; Fjeldsa J, 1990, BIRDS HIGH ANDES; Gonzalez JA, 1999, J FIELD ORNITHOL, V70, P18; Hancock JA, 1992, STORKS IBISES SPOONB; Hatchwell BJ, 1999, AUK, V116, P355, DOI 10.2307/4089370; Heath JA, 2003, GEN COMP ENDOCR, V133, P118, DOI 10.1016/S0016-6480(03)00155-2; Hellmayr C. E., 1932, THE BIRDS OF CHILE; Hoekman ST, 2002, WILSON BULL, V114, P450, DOI 10.1676/0043-5643(2002)114[0450:GBONRT]2.0.CO;2; Housse P. R., 1945, AYES CHILE CLASIFICA; Jimenez JE, 2011, ORNITOL NEOTROP, V22, P465; JOHNSON AW, 1965, BIRDS CHILE ADJACENT, V1; JOHNSON DH, 1979, AUK, V96, P651; KUSHLAN JA, 1979, CONDOR, V81, P376, DOI 10.2307/1366963; Lehner PN, 1996, HDB ETHOLOGICAL METH; Long AM, 2009, CONDOR, V111, P395, DOI 10.1525/cond.2009.080076; Lorenz JJ, 2009, ECOL INDIC, V9, pS96, DOI 10.1016/j.ecolind.2008.10.008; Lueber F., 2006, SINOPSIS BIOCLIMATIC; Luneau MD, 2010, J FIELD ORNITHOL, V81, P176, DOI 10.1111/j.1557-9263.2010.00275.x; Manolis JC, 2000, AUK, V117, P615, DOI 10.1642/0004-8038(2000)117[0615:UNFISS]2.0.CO;2; Margalida A, 2009, IBIS, V151, P235; Martin Paul R., 1993, MEASURING BEHAV INTR; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; MARTIN TE, 1993, AM NAT, V142, P937, DOI 10.1086/285582; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martinez C, 1999, J FIELD ORNITHOL, V70, P558; Martinez D., 2004, AYES CHILE NUEVA GUI; MATHEU E, 1992, HDB BIRDS WORLD, V1, P472; MAYFIELD HF, 1975, WILSON BULL, V87, P456; Mino C. I., 2009, ECOLOGIA BRASILIENSE, V13, P141; Morrison JL, 1999, CONDOR, V101, P505, DOI 10.2307/1370180; MURRAY BG, 1985, ORNITHOL MONOGR, V36, P505; Naef-Daenzer L, 2000, J AVIAN BIOL, V31, P206, DOI 10.1034/j.1600-048X.2000.310212.x; Neigh AM, 2007, ECOTOX ENVIRON SAFE, V66, P107, DOI 10.1016/j.ecoenv.2005.10.004; Olmos F, 2003, IBIS, V145, pE12, DOI 10.1046/j.1474-919X.2003.00134.x; Olmos F, 2001, WATERBIRDS, V24, P58, DOI 10.2307/1522244; Olmos Fabio, 2002, Ornitologia Neotropical, V13, P17; Petry MV, 2005, ACTA ZOOL-STOCKHOLM, V86, P217, DOI 10.1111/j.1463-6395.2005.00200.x; Raimilla V, 2015, STUD NEOTROP FAUNA E, V50, P130, DOI 10.1080/01650521.2015.1057425; Rotella J. J., 2004, Animal Biodiversity and Conservation, V27, P187; Samraoui F, 2007, OSTRICH, V78, P481, DOI 10.2989/OSTRICH.2007.78.2.58.172; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; Smith KW, 2008, IBIS, V150, P728, DOI 10.1111/j.1474-919X.2008.00844.x; Subiabre A., 1994, GEOGRAFFA FISICA REG; Torres R, 2006, ORNITOL NEOTROP, V17, P63; URBAN EK, 1974, IBIS, V116, P263, DOI 10.1111/j.1474-919X.1974.tb00124.x; van Wieringen M., 1990, IWRB SPECIAL PUBLICA, V11, P7; Vizcarra Jhonson K., 2009, Boletin Chileno de Ornitologia, V15, P104; YOMTOV Y, 1994, CONDOR, V96, P170, DOI 10.2307/1369074; Zar J.H, 1984, BIOSTATISTICAL ANAL 64 2 2 0 9 WATERBIRD SOC WASHINGTON NATL MUSEUM NATURAL HISTORY SMITHSONIAN INST, WASHINGTON, DC 20560 USA 1524-4695 1938-5390 WATERBIRDS Waterbirds DEC 2016 39 4 346 355 10.1675/063.039.0404 10 Ornithology Zoology EE9SH WOS:000389966000003 2019-02-21 J Kwan, L; Dobkin, AN; Rodd, FH; Rowe, L Kwan, Lucia; Dobkin, Adam N.; Rodd, F. Helen; Rowe, Locke A Potential Cost of Long Genitalia in Male Guppies: the Effects of Current Speed on Reproductive Behaviour ETHOLOGY English Article gonopodium; current speed; Poecilia reticulata; mating tatics LIFE-HISTORY EVOLUTION; POECILIA-RETICULATA; SWIMMING PERFORMANCE; TRINIDADIAN GUPPIES; COURTSHIP BEHAVIOR; SEXUAL SEGREGATION; PREDATION RISK; PATTERNS; SELECTION; CONFLICT In the fish family Poeciliidae, male genitalia, the gonopodia, are remarkably diverse across species; however, we still do not have a good understanding of the evolutionary processes promoting this diversity. For one trait, gonopodium length, several studies support a role for sexual conflict in selection for longer gonopodia. However, genital elongation may come at a cost of reduced locomotor abilities (e.g. resulting from greater drag and resistance). In this study, we were interested in the potential role of natural selection on the evolution of gonopodium length in poeciliids. Specifically, we asked whether a greater genital length impedes male reproductive behaviours at higher flow rates in the Trinidadian guppy, Poecilia reticulata. Using a flow chamber, males were placed with females in low- and high-flow regimes and reproductive behaviours were measured. We did not find evidence for a cost of bearing a longer gonopodium at high flow. However, males did alter their mating tactics in response to current flow. We discuss the implications of our findings, in the light of habitat selection, on the forms of selection operating on gonopodium length and the mating interactions between the sexes in poeciliids. [Kwan, Lucia; Dobkin, Adam N.; Rodd, F. Helen; Rowe, Locke] Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Willcocks St, Toronto, ON M5S 3B2, Canada Kwan, L (reprint author), Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Willcocks St, Toronto, ON M5S 3B2, Canada. luciaokwan@gmail.com Natural Sciences and Engineering Research Council of Canada (NSERC); NSERC; Canada Research Chair We would like to thank the Rodd and Rowe laboratories, Hernan Lopez-Fernandez, and John Stinchcombe for useful feedback and discussion; the anonymous referees for their suggestions; Pedro Peres-Neto and his Canada Foundation for Innovation grant for the use of his the flow chamber; Bill Sloan, Scott Ferguson, and Liset Cruz-Font for assistance with transporting the flow chamber; Lauren Malatesta for significant contributions to the development of the design and methods of this experiment; and Stephen De Lisle and Alex De Serrano for statistical advice. This study was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) scholarship to LK, NSERC grants to FHR and LR, and Canada Research Chair funding to LR. Arnqvist G, 1997, BIOL J LINN SOC, V60, P365; Basolo AL, 2003, P ROY SOC B-BIOL SCI, V270, P1631, DOI 10.1098/rspb.2003.2388; Blumstein DT, 2000, JWATCHER; CHAMBERS J, 1987, J FISH BIOL, V30, P389, DOI 10.1111/j.1095-8649.1987.tb05764.x; Cheng YY., 2004, THESIS; CLARK EUGENIE, 1951, ZOOLOGICA [NEW YORK], V36, P49; Constantz G.D., 1989, P33; Croft DP, 2006, AM NAT, V167, P867, DOI 10.1086/504853; Croft DP, 2004, ENVIRON BIOL FISH, V71, P127, DOI 10.1007/s10641-003-0092-5; Eberhard W. G, 1985, SEXUAL SELECTION ANI; Engqvist L, 2005, ANIM BEHAV, V70, P967, DOI 10.1016/j.anbehav.2005.01.016; Evans JP, 2011, P ROY SOC B-BIOL SCI, V278, P2611, DOI 10.1098/rspb.2010.2453; Farr J.A., 1989, P91; Gasparini C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022329; Ghalambor CK, 2003, INTEGR COMP BIOL, V43, P431, DOI 10.1093/icb/43.3.431; Head ML, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015279; Hosken DJ, 2004, TRENDS ECOL EVOL, V19, P87, DOI 10.1016/j.tree.2003.11.012; Houde A., 1997, SEX COLOR MATE CHOIC; Kahn AT, 2010, BIOL LETTERS, V6, P55, DOI 10.1098/rsbl.2009.0637; Kelly CD, 2000, CAN J ZOOL, V78, P1674, DOI 10.1139/cjz-78-9-1674; Kodric-Brown A, 2005, ENVIRON BIOL FISH, V73, P299, DOI 10.1007/s10641-005-1598-9; Kwan L, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0267; Langerhans R. Brian, 2011, P228; Langerhans R. Brian, 2010, P200, DOI 10.1201/b10190-8; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Langerhans RB, 2005, P NATL ACAD SCI USA, V102, P7618, DOI 10.1073/pnas.0500935102; Leonard J, 2010, EVOLUTION PRIMARY SE; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; Magellan K, 2006, ANIM BEHAV, V72, P75, DOI 10.1016/j.anbehav.2005.09.022; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Magurran AE, 2001, GENETICA, V112, P463, DOI 10.1023/A:1013339822246; Magurran Anne E., 2011, P209; Martin S. B., 2010, VIVIPAROUS FISHES, VII, P451; Nicoletto PF, 1996, BEHAV ECOL, V7, P272, DOI 10.1093/beheco/7.3.272; Nicoletto PF, 1999, ENVIRON BIOL FISH, V55, P227, DOI 10.1023/A:1007587809618; Ptacek MB, 1998, ANIM BEHAV, V56, P1044, DOI 10.1006/anbe.1998.0874; Quinn G. P., 2002, EXPT DESIGN DATA ANA; Rasband W. S., 1997, IMAGEJ; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Rohlf F. J., 2010, TPS SOFTWARE SUITE; Rohlf F. J., 2014, TPS SOFTWARE SUITE; Rosen D. E., 1963, Bulletin of the American Museum of Natural History, V126, P1; ROSEN DE, 1961, COPEIA, P201, DOI 10.2307/1439999; ROSEN DONN ERIC, 1953, ZOOLOGICA [NEW YORK], V38, P1; Slice D. E., 2002, MORPHEUS ETAL MULTIP; Sokal RR, 1995, FREEMAN, V3, P1995, DOI DOI 10.1016/J.JIP.2003.08.007; Zelditch M. L, 2004, GEOMETRIC MORPHOMETR; Zuniga-Vega JJ, 2011, J FISH BIOL, V79, P1029, DOI 10.1111/j.1095-8649.2011.03081.x 50 0 0 4 29 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology DEC 2016 122 12 945 953 10.1111/eth.12564 9 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology EC1EN WOS:000387846800003 2019-02-21 J Midwood, JD; Larsen, MH; Aarestrup, K; Cooke, SJ Midwood, Jonathan D.; Larsen, Martin H.; Aarestrup, Kim; Cooke, Steven J. Stress and food deprivation: linking physiological state to migration success in a teleost fish JOURNAL OF EXPERIMENTAL BIOLOGY English Article Glucocorticoid; Stress; Starvation; Passive integrated transponder tags; Freshwater; Brown trout TROUT SALMO-TRUTTA; JUVENILE CHINOOK SALMON; BROWN TROUT; ATLANTIC SALMON; LIFE-HISTORY; RAINBOW-TROUT; ENVIRONMENTAL-FACTORS; SWIMMING PERFORMANCE; SEAWATER ADAPTATION; GROWTH COMPENSATION Food deprivation is a naturally occurring stressor that is thought to influence the ultimate life-history strategy of individuals. Little is known about how food deprivation interacts with other stressors to influence migration success. European populations of brown trout (Salmo trutta) exhibit partial migration, whereby a portion of the population smoltifies and migrates to the ocean, and the rest remain in their natal stream. This distinct, natural dichotomy of life-history strategies provides an excellent opportunity to explore the roles of energetic state (as affected by food deprivation) and activation of the glucocorticoid stress response in determining life-history strategy and survival of a migratory species. Using an experimental approach, the relative influences of short-term food deprivation and experimental cortisol elevation (i. e. intra-coelomic injection of cortisol suspended in cocoa butter) on migratory status, survival and growth of juvenile brown trout relative to a control were evaluated. Fewer fish migrated in both the food deprivation and cortisol treatments; however, migration of fish in cortisol and control treatments occurred at the same time while that of fish in the food deprivation treatment was delayed for approximately 1 week. A significantly greater proportion of trout in the food deprivation treatment remained in their natal stream, but unlike the cortisol treatment, there were no long-term negative effects of food deprivation on growth, relative to the control. Overall survival rates were comparable between the food deprivation and control treatments, but significantly lower for fish in the cortisol treatment. Food availability and individual energetic state appear to dictate the future life-history strategy (migrate or remain resident) of juvenile salmonids while experimental elevation of the stress hormone cortisol causes impaired growth and reduced survival of both resident and migratory individuals. [Midwood, Jonathan D.; Cooke, Steven J.] Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada; [Midwood, Jonathan D.; Cooke, Steven J.] Carleton Univ, Inst Environm Sci, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada; [Larsen, Martin H.; Aarestrup, Kim] Tech Univ Denmark, Freshwater Fisheries, Natl Inst Aquat Resources, Vejlsovej 39, DK-8600 Silkeborg, Denmark Midwood, JD (reprint author), Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada.; Midwood, JD (reprint author), Carleton Univ, Inst Environm Sci, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada. midwoodj@gmail.com Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant; Danish National Fishing License Funds; Svenska Forskningsradet Formas; Canada Research Chairs program Funding for this project was provided by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant awarded to S.J.C. and grants to the Technical University of Denmark from the Danish National Fishing License Funds, and the Svenska Forskningsradet Formas. S.J.C. is further supported by the Canada Research Chairs program. Aarestrup K, 2002, HYDROBIOLOGIA, V483, P95, DOI 10.1023/A:1021306907338; Adriaenssens B, 2013, ECOL LETT, V16, P47, DOI 10.1111/ele.12011; Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; Alerstam T, 2003, OIKOS, V103, P247, DOI 10.1034/j.1600-0706.2003.12559.x; ANDERSEN DE, 1991, CAN J FISH AQUAT SCI, V48, P1811, DOI 10.1139/f91-214; Barton B.A., 1991, Annual Review of Fish Diseases, V1, P3, DOI 10.1016/0959-8030(91)90019-G; BARTON BA, 1988, PROG FISH CULT, V50, P16, DOI 10.1577/1548-8640(1988)050<0016:FADCAS>2.3.CO;2; BARTON BA, 1985, GEN COMP ENDOCR, V59, P468, DOI 10.1016/0016-6480(85)90406-X; Barton BA, 2002, INTEGR COMP BIOL, V42, P517, DOI 10.1093/icb/42.3.517; BARTON BA, 1987, DIS AQUAT ORGAN, V2, P173; Boel M, 2014, PHYSIOL BIOCHEM ZOOL, V87, P334, DOI 10.1086/674869; BOHLIN T, 1993, CAN J FISH AQUAT SCI, V50, P1132, DOI 10.1139/f93-128; Boonstra R, 2013, FUNCT ECOL, V27, P7, DOI 10.1111/1365-2435.12048; Boonstra R, 2013, FUNCT ECOL, V27, P11, DOI 10.1111/1365-2435.12008; BUTTIKER B, 1992, J FISH BIOL, V41, P673, DOI 10.1111/j.1095-8649.1992.tb02697.x; Bystrom P, 2006, OIKOS, V115, P43, DOI 10.1111/j.2006.0030-1299.15014.x; Cai L, 2014, AQUAT BIOL, V20, P69, DOI 10.3354/ab00546; Calow P, 1998, COMP BIOCHEM PHYS A, V120, P11, DOI 10.1016/S1095-6433(98)10003-X; Caruso G, 2011, MAR ENVIRON RES, V72, P46, DOI 10.1016/j.marenvres.2011.04.005; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; Costa DP, 2004, ANNU REV PHYSIOL, V66, P209, DOI 10.1146/annurev.physiol.66.032102.114245; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; Crossin GT, 2016, FUNCT ECOL, V30, P116, DOI 10.1111/1365-2435.12482; Dantzer B, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou023; Espelid S, 1996, FISH SHELLFISH IMMUN, V6, P95, DOI 10.1006/fsim.1996.0011; FEDER ME, 1991, FUNCT ECOL, V5, P136, DOI 10.2307/2389251; FOLMAR LC, 1980, AQUACULTURE, V21, P1, DOI 10.1016/0044-8486(80)90123-4; Forseth T, 1999, J ANIM ECOL, V68, P783, DOI 10.1046/j.1365-2656.1999.00329.x; GAMPERL AK, 1994, REV FISH BIOL FISHER, V4, P215, DOI 10.1007/BF00044129; Gibbons JW, 2004, BIOSCIENCE, V54, P447, DOI 10.1641/0006-3568(2004)054[0447:PTSTAI]2.0.CO;2; Gilmour KM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P669, DOI 10.1086/432144; Gregory TR, 1999, PHYSIOL BIOCHEM ZOOL, V72, P286, DOI 10.1086/316673; Halver J.E., 2002, FISH NUTR; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hoogenboom MO, 2011, J FISH BIOL, V79, P587, DOI 10.1111/j.1095-8649.2011.03039.x; Johnsson JI, 2006, P R SOC B, V273, P1281, DOI 10.1098/rspb.2005.3437; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; Jonsson N, 1998, J FISH BIOL, V53, P1306, DOI 10.1111/j.1095-8649.1998.tb00250.x; Kleiber M., 1961, FIRE LIFE INTRO ANIM; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Krimmer AN, 2011, J FISH BIOL, V79, P707, DOI 10.1111/j.1095-8649.2011.03053.x; Larsen MH, 2013, ANIM BIOTELEM, V1, P19, DOI DOI 10.1186/2050-3385-1-19; LECREN ED, 1951, J ANIM ECOL, V20, P201; Mangum CP, 1998, PHYSIOL ZOOL, V71, P471, DOI 10.1086/515953; MASON JC, 1976, J WILDLIFE MANAGE, V40, P775, DOI 10.2307/3800576; McCue MD, 2010, COMP BIOCHEM PHYS A, V156, P1, DOI 10.1016/j.cbpa.2010.01.002; MCNAMARA JM, 1987, ECOLOGY, V68, P1515, DOI 10.2307/1939235; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; Midwood JD, 2015, J EXP ZOOL PART A, V323, P645, DOI 10.1002/jez.1955; Midwood JD, 2014, MAR ECOL PROG SER, V496, P135, DOI 10.3354/meps10524; Mommsen TP, 1999, REV FISH BIOL FISHER, V9, P211, DOI 10.1023/A:1008924418720; Nicieza AG, 1997, ECOLOGY, V78, P2385; O'Connor CM, 2014, ECOSPHERE, V5, DOI 10.1890/ES13-00388.1; Pankhurst NW, 2011, GEN COMP ENDOCR, V170, P265, DOI 10.1016/j.ygcen.2010.07.017; Pascual P, 2003, CHEM-BIOL INTERACT, V145, P191, DOI 10.1016/S0009-2797(03)00002-4; PICKERING AD, 1989, FRESHWATER BIOL, V21, P47, DOI 10.1111/j.1365-2427.1989.tb01347.x; PICKERING AD, 1982, J FISH BIOL, V20, P229, DOI 10.1111/j.1095-8649.1982.tb03923.x; PICKERING AD, 1984, J FISH BIOL, V24, P731, DOI 10.1111/j.1095-8649.1984.tb04844.x; PORTER WP, 1969, ECOL MONOGR, V39, P227, DOI 10.2307/1948545; POUGH FH, 1989, PHYSIOL ZOOL, V62, P199, DOI 10.1086/physzool.62.2.30156169; Quigley JT, 2006, J THERM BIOL, V31, P429, DOI 10.1016/j.jtherbio.2006.02.003; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Romero LM, 2000, GEN COMP ENDOCR, V118, P113, DOI 10.1006/gcen.1999.7446; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; SCHRECK CB, 1990, METHODS FISH BIOL; SHERIDAN MA, 1989, AQUACULTURE, V82, P191, DOI 10.1016/0044-8486(89)90408-0; Sheriff MJ, 2011, OECOLOGIA, V166, P593, DOI 10.1007/s00442-011-1907-2; Small BC, 2006, DOMEST ANIM ENDOCRIN, V31, P340, DOI 10.1016/j.domaniend.2005.12.003; Somero GN, 2000, ANNU REV PHYSIOL, V62, P927, DOI 10.1146/annurev.physiol.62.1.927; Sopinka NM, 2015, CONSERV PHYSIOL, V3, DOI 10.1093/conphys/cov031; Spicer JI, 1999, PHYSL DIVERSITY ECOL; Wang T, 2006, ANNU REV PHYSIOL, V68, P223, DOI 10.1146/annurev.physiol.68.040104.105739; Willmer P., 2009, ENV PHYSL ANIMALS; Wingfield JC, 2013, FUNCT ECOL, V27, P37, DOI 10.1111/1365-2435.12039; Zydlewski GB, 2006, FISHERIES, V31, P492, DOI 10.1577/1548-8446(2006)31[492:RMOFIS]2.0.CO;2 75 9 9 0 21 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. DEC 1 2016 219 23 3712 3718 10.1242/jeb.140665 7 Biology Life Sciences & Biomedicine - Other Topics ED4IV WOS:000388812200011 27618858 Green Published, Bronze 2019-02-21 J Peron, G; Gaillard, JM; Barbraud, C; Bonenfant, C; Charmantier, A; Choquet, R; Coulson, T; Grosbois, V; Loison, A; Marzolin, G; Owen-Smith, N; Pardo, D; Plard, F; Pradel, R; Toigo, C; Gimenez, O Peron, Guillaume; Gaillard, Jean-Michel; Barbraud, Christophe; Bonenfant, Christophe; Charmantier, Anne; Choquet, Remi; Coulson, Tim; Grosbois, Vladimir; Loison, Anne; Marzolin, Gilbert; Owen-Smith, Norman; Pardo, Deborah; Plard, Floriane; Pradel, Roger; Toigo, Carole; Gimenez, Olivier Evidence of reduced individual heterogeneity in adult survival of long-lived species EVOLUTION English Article Capture-recapture; comparative analyses; individual differences; life-history evolution; mixture models; random-effect models; vertebrates CAPTURE-RECAPTURE MODELS; LIFE-HISTORY TRAITS; JOLLY-SEBER MODEL; GENERATION TIME; MARKED ANIMALS; POPULATIONS; SENESCENCE; AGE; MORTALITY; EVOLUTION The canalization hypothesis postulates that the rate at which trait variation generates variation in the average individual fitness in a population determines how buffered traits are against environmental and genetic factors. The ranking of a species on the slow-fast continuum - the covariation among life-history traits describing species-specific life cycles along a gradient going from a long life, slow maturity, and low annual reproductive output, to a short life, fast maturity, and high annual reproductive output - strongly correlates with the relative fitness impact of a given amount of variation in adult survival. Under the canalization hypothesis, long-lived species are thus expected to display less individual heterogeneity in survival at the onset of adulthood, when reproductive values peak, than short-lived species. We tested this life-history prediction by analysing long-term time series of individual-based data in nine species of birds and mammals using capture-recapture models. We found that individual heterogeneity in survival was higher in species with short-generation time (< 3 years) than in species with long generation time (> 4 years). Our findings provide the first piece of empirical evidence for the canalization hypothesis at the individual level from the wild. [Peron, Guillaume] Natl Zool Pk, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA; [Peron, Guillaume; Gaillard, Jean-Michel; Bonenfant, Christophe; Plard, Floriane] UCB Lyon 1, UMR 5558, CNRS, LBBE Biometrie & Biol Evolut, F-69622 Villeurbanne, France; [Barbraud, Christophe] Univ La Rochelle, CNRS, Ctr Etud Biol Chize, UMR 7372, F-79360 Villiers En Bois, France; [Charmantier, Anne; Choquet, Remi; Marzolin, Gilbert; Pardo, Deborah; Pradel, Roger; Gimenez, Olivier] Univ Paul Valery Montpellier, EPHE, Univ Montpellier, CEFE,UMR 5175,CNRS, 1919 Route Mende, F-34293 Montpellier 5, France; [Coulson, Tim] Univ Oxford, Dept Zool, Oxford OX1 3PS, England; [Grosbois, Vladimir] UR AGIRs Anim & Gest Integree Risques, TA C 22-E Campus Int Baillarguet, F-34398 Montpellier 5, France; [Loison, Anne] Univ Savoie Mt Blanc, Lab Ecol Alpine, F-73376 Le Bourget Du Lac, France; [Loison, Anne] CNRS, Lab Ecol Alpine, F-38000 Grenoble, France; [Owen-Smith, Norman] Univ Witwatersrand, Sch Anim Plant & Environm Sci, Ctr African Ecol, ZA-2050 Johannesburg, South Africa; [Plard, Floriane] Swiss Ornithol Inst, CH-6204 Sempach, Switzerland; [Toigo, Carole] ONCFS Unite Faune Montagne, 5 Allee Bethleem, F-38610 Zi De Mayencin, Gieres, France Peron, G (reprint author), Natl Zool Pk, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA.; Peron, G (reprint author), UCB Lyon 1, UMR 5558, CNRS, LBBE Biometrie & Biol Evolut, F-69622 Villeurbanne, France. peron_guillaume@yahoo.fr Choquet, Remi/F-6462-2011; Gimenez, Olivier/G-4281-2010 PERON, Guillaume/0000-0002-6311-4377; Owen-Smith, Norman/0000-0001-8429-1201; Bonenfant, Christophe/0000-0002-9924-419X IPEV program [109]; Office National de la Chasse et de la Faune Sauvage; BioAdapt grant [ANR-12-ADAP-0006-02-PEPS]; ANR grant [08-JCJC-0028-01] We thank everyone involved in fieldwork and data management for the long-term monitoring of marked individuals. Critical support for the longterm studies was provided by IPEV program no109, Zone Atelier Antarctique, and TAAF; Office National de la Chasse et de la Faune Sauvage; BioAdapt grant ANR-12-ADAP-0006-02-PEPS to A.C.; ANR grant 08-JCJC-0028-01 to O.G. This is a contribution of the GDR 3645 "Statistical Ecology." We are most grateful to Stephen Dobson for insightful comments on an earlier draft of this article. Barbraud C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060353; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Brown J.H., 2000, SCALING BIOL; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2014, DEMOGR RES, V31, P553, DOI 10.4054/DemRes.2014.31.19; Charlesworth B, 2000, GENETICS, V156, P927; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Gaillard J.M., 2016, ENCY EVOLUT IN PRESS, DOI [10.1016/B978-0-12-800049-6.00085-8, DOI 10.1016/B978-0-12-800049-6.00085-8]; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Gimenez O, 2010, ECOLOGY, V91, P951, DOI 10.1890/09-1903.1; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Knape J, 2011, ECOLOGY, V92, P813, DOI 10.1890/10-0183.1; Koons DN, 2009, OIKOS, V118, P972, DOI 10.1111/j.1600-0706.2009.16399.x; Lebreton JD, 2005, ECOL MODEL, V188, P22, DOI 10.1016/j.ecolmodel.2005.05.003; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; Nevoux M, 2010, ECOLOGY, V91, P2416, DOI 10.1890/09-0143.1; Peron G, 2010, OIKOS, V119, P524, DOI 10.1111/j.1600-1706.2009.17882.x; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Pledger S, 2003, BIOMETRICS, V59, P786, DOI 10.1111/j.0006-341X.2003.00092.x; Pradel R, 2009, ENVIRON ECOL STAT SE, V3, P781, DOI 10.1007/978-0-387-78151-8_36; Royle JA, 2008, BIOMETRICS, V64, P364, DOI 10.1111/j.1541-0420.2007.00891.x; Saether BE, 2013, AM NAT, V182, P743, DOI 10.1086/673497; Service PM, 2000, AM NAT, V156, P1, DOI 10.1086/303371; STEARNS SC, 1994, EVOLUTION, V48, P1438, DOI 10.1111/j.1558-5646.1994.tb02186.x; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; WADDINGTON CH, 1953, EVOLUTION, V7, P118, DOI 10.2307/2405747 33 14 14 0 32 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution DEC 2016 70 12 2909 2914 10.1111/evo.13098 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity ED1SD WOS:000388624300020 27813056 2019-02-21 J Pamminger, T; Buttstedt, A; Norman, V; Schierhorn, A; Botias, C; Jones, JC; Bosley, K; Hughes, WOH Pamminger, T.; Buttstedt, A.; Norman, V.; Schierhorn, A.; Botias, C.; Jones, J. C.; Bosley, K.; Hughes, W. O. H. The effects of juvenile hormone on Lasius niger reproduction JOURNAL OF INSECT PHYSIOLOGY English Article Social insects; Ants; Endocrinology; Regulatory architecture; Gonadotropin HONEY-BEE; QUEENS; ANT; VITELLOGENIN; GONADOTROPIN; HYMENOPTERA; LONGEVITY; PROTEINS; WORKERS; COSTS Reproduction has been shown to be costly for survival in a wide diversity of taxa. The resulting trade-off, termed the reproduction-survival trade-off, is thought to be one of the most fundamental forces of life history evolution. In insects the pleiotropic effect of juvenile hormone OH), antagonistically regulating reproduction and pathogen resistance, is suggested to underlie this phenomenon. In contrast to the majority of insects, reproductive individuals in many eusocial insects defy this trade-off and live both long and prosper. By remodelling the gonadotropic effects of JH in reproductive regulation, the queens of the long-lived black garden ant Lasius niger (living up to 27 years), have circumvented the reproduction-survival trade off enabling them to maximize both reproduction and pathogen resistance simultaneously. In this study we measure fertility, vitellogenin gene expression and protein levels after experimental manipulation of hormone levels. We use these measurements to investigate the mechanistic basis of endocrinological role remodelling in reproduction and determine how JH suppresses reproduction in this species, rather then stimulating it, like in the majority of insects. We find that JH likely inhibits three key aspects of reproduction both during vitellogenesis and oogenesis, including two previously unknown mechanisms. In addition, we document that juvenile hormone, as in the majority of insects, has retained some stimulatory function in regulating vitellogenin expression. We discuss the evolutionary consequences of this complex regulatory architecture of reproduction in L. niger, which might enable the evolution of similar reproductive phenotypes by alternate regulatory pathways, and the surprising flexibility regulatory role of juvenile hormone in this process. (C) 2016 Elsevier Ltd. All rights reserved. [Pamminger, T.; Norman, V.; Botias, C.; Jones, J. C.; Bosley, K.; Hughes, W. O. H.] Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England; [Buttstedt, A.] Martin Luther Univ Halle Wittenberg, Inst Biol, Mol Okol, D-06099 Halle, Germany; [Schierhorn, A.] Martin Luther Univ Halle Wittenberg, Inst Biochem, D-06099 Halle, Germany Pamminger, T (reprint author), Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England. t.pamminger@sussex.ac.uk Botias, Cristina/L-4918-2017; Buttstedt, Anja/B-5281-2012 Botias, Cristina/0000-0002-3891-9931; Buttstedt, Anja/0000-0003-2299-7000; Pamminger, Tobias/0000-0003-1257-3829; Jones, Julia C/0000-0002-3557-1941 FP7 Marie Curie Fellowship [PIEF-GA-2013-626585]; Biotechnology and Biological Sciences Research Council [1284276] TP was funded by FP7 Marie Curie Fellowship PIEF-GA-2013-626585. BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Bloch G, 2009, HORMONES, BRAIN AND BEHAVIOR, VOLS 1-5, 2ND EDITION, P1027; Brent CS, 2016, J COMP PHYSIOL B, V186, P169, DOI 10.1007/s00360-015-0953-1; Brent CS, 2003, J INSECT PHYSIOL, V49, P967, DOI 10.1016/S0022-1910(03)00166-5; CHIU AY, 1979, P NATL ACAD SCI USA, V76, P6656, DOI 10.1073/pnas.76.12.6656; Corona M, 2007, P NATL ACAD SCI USA, V104, P7128, DOI 10.1073/pnas.0701909104; Dolezal AG, 2013, J INSECT PHYSIOL, V59, P519, DOI 10.1016/j.jinsphys.2013.02.008; EDWARDS JP, 1975, B ENTOMOL RES, V65, P75, DOI 10.1017/S0007485300005782; Engel KC, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11035; Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; Flatt T, 2008, J EXP BIOL, V211, P2712, DOI 10.1242/jeb.014878; Graff J, 2007, MOL ECOL, V16, P675, DOI 10.1111/j.1365-294X.2007.03162.x; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hartfelder K, 2000, BRAZ J MED BIOL RES, V33, P157, DOI 10.1590/S0100-879X2000000200003; Hartfelder K, 2002, INSECT BIOCHEM MOLEC, V32, P211, DOI 10.1016/S0965-1748(01)00100-X; Heinze J, 2013, BEHAV ECOL SOCIOBIOL, V67, P1555, DOI 10.1007/s00265-013-1567-9; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; Kelstrup HC, 2015, BEHAV ECOL SOCIOBIOL, V69, P2043, DOI 10.1007/s00265-015-2015-9; Kramer BH, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137969; LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0; LAUFER H, 1993, AM ZOOL, V33, P365; Lensnoff M., 2012, AOD ANAL OVERDISPERS; Libbrecht R, 2013, P NATL ACAD SCI USA, V110, P11050, DOI 10.1073/pnas.1221781110; Lindemans M, 2009, P NATL ACAD SCI USA, V106, P1642, DOI 10.1073/pnas.0809881106; Morales M., 2011, SCIPLOT SCI GRAPHING; Nijhout HF., 1998, INSECT HORMONES; OLIVE PJW, 1980, INT J INVER REP DEV, V2, P205; Pamminger T, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2409; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; R Core Team, 2014, R LANG ENV STAT COMP; RAIKHEL AS, 1992, ANNU REV ENTOMOL, V37, P217, DOI 10.1146/annurev.en.37.010192.001245; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Robinson GE, 1997, ARCH INSECT BIOCHEM, V35, P559, DOI 10.1002/(SICI)1520-6327(1997)35:4<559::AID-ARCH13>3.0.CO;2-9; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; Ronai I, 2016, ADV STUD BEHAV, V48, P251, DOI 10.1016/bs.asb.2016.03.002; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; SCHNEIRLA T. C., 1957, INSECTES SOCIAUX, V4, P259, DOI 10.1007/BF02222158; Schrempf A, 2005, CURR BIOL, V15, P267, DOI 10.1016/j.cub.2005.01.036; SOMMER K, 1995, ANIM BEHAV, V50, P287, DOI 10.1006/anbe.1995.0244; Vandesompele J, 2002, GENOME BIOL, V3, DOI 10.1186/gb-2002-3-7-research0034; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson E. O., 1971, INSECT SOC 42 5 5 0 34 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. DEC 2016 95 1 7 10.1016/j.jinsphys.2016.09.004 7 Entomology; Physiology; Zoology Entomology; Physiology; Zoology ED8GM WOS:000389110000001 27614175 2019-02-21 J Hordyk, AR; Ono, K; Prince, JD; Walters, CJ Hordyk, Adrian R.; Ono, Kotaro; Prince, Jeremy D.; Walters, Carl J. A simple length-structured model based on life history ratios and incorporating size-dependent selectivity: application to spawning potential ratios for data-poor stocks CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article SMALL-SCALE FISHERIES; BERTALANFFY GROWTH-PARAMETERS; NATURAL MORTALITY; INDIVIDUAL VARIABILITY; FREQUENCY DATA; RED GROUPER; FISH; MANAGEMENT; AGE; STRATEGIES Selectivity in fish is often size-dependent, which results in differential fishing mortality rates across fish of the same age, an effect known as "Lee's Phenomenon". We extend previous work on using length composition to estimate the spawning potential ratio (SPR) for data-limited stocks by developing a computationally efficient length-structured per-recruit model that splits the population into a number of subcohorts, or growth-type-groups, to account for size-dependent fishing mortality rates. Two simple recursive equations, using the life history ratio of the natural mortality rate to the von Bertalanffy growth parameter (M/K), were developed to generate length composition data, reducing the complexity of the previous approach. Using simulated and empirical data, we demonstrate that ignoring Lee's Phenomenon results in overestimates of fishing mortality and negatively biased estimates of SPR. We also explored the behaviour of the model under various scenarios, including alternative life history strategies and the presence of size-dependent natural mortality. The model developed in this paper may be a useful tool to estimate the SPR for data-limited stock where it is not possible to apply more conventional methods. [Hordyk, Adrian R.; Prince, Jeremy D.] Murdoch Univ, Ctr Fish & Fisheries Res, 90 South St, Murdoch, WA 6150, Australia; [Ono, Kotaro] Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA; [Prince, Jeremy D.] Biospherics Pty Ltd, POB 168, South Fremantle, WA 6162, Australia; [Walters, Carl J.] Univ British Columbia, Inst Oceans & Fisheries, Vancouver, BC V6T 1Z4, Canada Hordyk, AR (reprint author), Murdoch Univ, Ctr Fish & Fisheries Res, 90 South St, Murdoch, WA 6150, Australia. a.hordyk@murdoch.edu.au Hordyk, Adrian/P-2539-2017 Hordyk, Adrian/0000-0001-5620-3446 David and Lucille Packard Foundation; Murdoch University; Joint Institute for the Study of the Atmosphere and Ocean under NOAA [NA15OAR4320063, 2653] We are grateful to the David and Lucille Packard Foundation for funding and support for this study. A.H. was also supported by Murdoch University. This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2653. We thank J. Cope, T. Gedamke, H. Geremont, N. Gutierrez, A. MacCall, and S. Valencia for valuable comments and suggestions in a workshop relating to this research. N. Loneragan also provided useful comments that improved the quality of the paper. We are grateful to the editor and three anonymous reviewers, whose comments and suggestions greatly improved the paper. Andersen KH, 2015, FISH FISH, V16, P1, DOI 10.1111/faf.12042; Andrew NL, 2007, FISH FISH, V8, P227, DOI 10.1111/j.1467-2679.2007.00252.x; Bene C, 2003, WORLD DEV, V31, P949, DOI 10.1016/S0305-750X(03)00045-7; Bentley N, 2015, ICES J MAR SCI, V72, P186, DOI 10.1093/icesjms/fsu023; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; Botsford L. W., 1979, P 13 EUR MAR BIOL S, P73; BOTSFORD LW, 1981, AM NAT, V117, P38, DOI 10.1086/283685; BOTSFORD LW, 1981, J MATH BIOL, V12, P265, DOI 10.1007/BF00276917; Bull B., 2012, 135 NIWA CASAL; Charnov EL, 2014, EVOL ECOL RES, V16, P435; Charnov EL, 2013, FISH FISH, V14, P213, DOI 10.1111/j.1467-2979.2012.00467.x; Costello C, 2012, SCIENCE, V338, P517, DOI 10.1126/science.1223389; Dowling NA, 2015, FISH RES, V171, P141, DOI 10.1016/j.fishres.2014.11.005; ERZINI K, 1990, FISH RES, V9, P355, DOI 10.1016/0165-7836(90)90053-X; Eveson JP, 2007, CAN J FISH AQUAT SCI, V64, P602, DOI 10.1139/F07-036; Francis RICC, 2016, FISH RES, V180, P77, DOI 10.1016/j.fishres.2015.02.018; Gerritsen H. D., 2006, FISHERY B, V106, P116; GOODYEAR CP, 1995, T AM FISH SOC, V124, P746, DOI 10.1577/1548-8659(1995)124<0746:MSAAAE>2.3.CO;2; Hampton J, 2000, CAN J FISH AQUAT SCI, V57, P1002, DOI 10.1139/cjfas-57-5-1002; Heery EC, 2009, T AM FISH SOC, V138, P218, DOI 10.1577/T07-226.1; Hilborn R, 2007, AMBIO, V36, P296, DOI 10.1579/0044-7447(2007)36[296:MTSBLF]2.0.CO;2; Hilborn R, 2014, ICES J MAR SCI, V71, P1040, DOI 10.1093/icesjms/fsu034; Honey K., 2010, MAN DAT POOR FISH WO, P159; Hordyk A, 2015, ICES J MAR SCI, V72, P217, DOI 10.1093/icesjms/fsu004; Hordyk A, 2015, ICES J MAR SCI, V72, P204, DOI 10.1093/icesjms/fst235; Hordyk AR, 2015, FISH RES, V171, P20, DOI 10.1016/j.fishres.2014.12.018; Kelly CJ, 2006, FISH RES, V79, P233, DOI 10.1016/j.fishres.2006.03.007; Kenchington TJ, 2014, FISH FISH, V15, P533, DOI 10.1111/faf.12027; Kent G, 1997, FOOD POLICY, V22, P393, DOI 10.1016/S0306-9192(97)00030-4; Lee R, 1912, J CONS INT EXPLOR S, V1, P3, DOI DOI 10.1093/ICESJMS/S1.63.3; Lorenzen K, 1996, J FISH BIOL, V49, P627, DOI 10.1006/jfbi.1996.0192; Lorenzen K, 2000, CAN J FISH AQUAT SCI, V57, P2374, DOI 10.1139/cjfas-57-12-2374; Magnusson A, 2013, FISH FISH, V14, P325, DOI 10.1111/j.1467-2979.2012.00473.x; Mangel M, 2007, EVOLUTION, V61, P1208, DOI 10.1111/j.1558-5646.2007.00094.x; Maunder MN, 2013, FISH RES, V142, P61, DOI 10.1016/j.fishres.2012.07.025; McGarvey R, 2007, CAN J FISH AQUAT SCI, V64, P1157, DOI 10.1139/F07-080; Methot RD, 2013, FISH RES, V142, P86, DOI 10.1016/j.fishres.2012.10.012; PENNINGS SC, 1990, MAR ECOL PROG SER, V62, P95, DOI 10.3354/meps062095; Pilling GM, 2002, CAN J FISH AQUAT SCI, V59, P424, DOI 10.1139/F02-022; Pitcher TJ, 2013, MAR POLLUT BULL, V74, P506, DOI 10.1016/j.marpolbul.2013.05.045; Prince J, 2015, FISH RES, V171, P42, DOI 10.1016/j.fishres.2015.06.008; Prince J, 2015, ICES J MAR SCI, V72, P194, DOI 10.1093/icesjms/fsu011; Punt AE, 1997, REV FISH BIOL FISHER, V7, P35, DOI 10.1023/A:1018419207494; Punt AE, 2002, MAR FRESHWATER RES, V53, P615, DOI 10.1071/MF01007; Punt AE, 2013, ICES J MAR SCI, V70, P16, DOI 10.1093/icesjms/fss185; Quinn T. J., 1999, QUANTITATIVE FISH DY; R Core Team, 2015, R LANG ENV STAT COMP; SAINSBURY KJ, 1980, CAN J FISH AQUAT SCI, V37, P241, DOI 10.1139/f80-031; SCHEFFER M, 1995, ECOL MODEL, V80, P161, DOI 10.1016/0304-3800(94)00055-M; Shelton AO, 2013, AM NAT, V181, P799, DOI 10.1086/670198; SULLIVAN PJ, 1990, CAN J FISH AQUAT SCI, V47, P184, DOI 10.1139/f90-021; Taylor IG, 2013, FISH RES, V142, P75, DOI 10.1016/j.fishres.2012.08.021; VAUGHAN DS, 1994, T AM FISH SOC, V123, P1, DOI 10.1577/1548-8659(1994)123<0001:EOVBGP>2.3.CO;2; Walmsley S, 2006, OCEAN COAST MANAGE, V49, P812, DOI 10.1016/j.ocecoaman.2006.08.006; Walters C. J., 2004, FISHERIES ECOLOGY MA; Walters C. J, 1992, QUANTITATIVE FISHERI; WANG YG, 1995, CAN J FISH AQUAT SCI, V52, P252, DOI 10.1139/f95-025; Wang YG, 1998, CAN J FISH AQUAT SCI, V55, P2393, DOI 10.1139/cjfas-55-11-2393; WANG YG, 1995, CAN J FISH AQUAT SCI, V52, P1368, DOI 10.1139/f95-132; Worm B, 2012, TRENDS ECOL EVOL, V27, P594, DOI 10.1016/j.tree.2012.07.005 60 5 6 1 15 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. DEC 2016 73 12 1787 1799 10.1139/cjfas-2015-0422 13 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology EC4QO WOS:000388118700010 Green Published 2019-02-21 J Samsing, F; Oppedal, F; Dalvin, S; Johnsen, I; Vagseth, T; Dempster, T Samsing, Francisca; Oppedal, Frode; Dalvin, Sussie; Johnsen, Ingrid; Vagseth, Tone; Dempster, Tim Salmon lice (Lepeophtheirus salmonis) development times, body size, and reproductive outputs follow universal models of temperature dependence CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article LIFE-HISTORY STRATEGIES; ATLANTIC SALMON; EGG SIZE; SEA LICE; MARINE-INVERTEBRATES; PARASITIC COPEPODS; CALIGUS-ELONGATUS; VAN NOORDWIJK; JONG MODEL; TRADE-OFFS Temperatures regulate metabolism of marine ectotherms and thereby influence development, reproduction, and, as a consequence, dispersal. Despite the importance of water temperatures in the epidemiology of marine diseases, for the parasitic copepod Lepeophtheirus salmonis, the effect of high and low temperatures has not been methodically investigated. Here, we examined the effects of a wide temperature range (3-20 degrees C) on L. salmonis larval development, adult body size, reproductive outputs, and infestation success. Further, we tested if dispersal of salmon lice differed with two temperature-dependent development times to the infective stage (30 and 60 degree-days) using an individual-based dispersal model. Development times followed universal models of temperature dependence described for other marine ectotherms. Water temperatures had a negative relationship with development times, adult body size, and reproductive outputs, except at 3 degrees C, where larvae failed to reach the infective stage and all parameters were decreased, indicating low temperatures are more detrimental than high temperatures. The predictable effect of temperatures on lice development and reproduction will have important applications, such as predicting dispersal and population connectivity, to assist in controlling lice epidemics. [Samsing, Francisca; Dempster, Tim] Univ Melbourne, Sch BioSci, SALTT, Melbourne, Vic 3010, Australia; [Oppedal, Frode; Dalvin, Sussie; Johnsen, Ingrid; Vagseth, Tone; Dempster, Tim] Inst Marine Res, POB 1870, N-5817 Bergen, Norway Samsing, F (reprint author), Univ Melbourne, Sch BioSci, SALTT, Melbourne, Vic 3010, Australia. samsing@student.unimelb.edu.au Samsing, Francisca/0000-0002-6343-2295; Dempster, Tim/0000-0001-8041-426X Norwegian Seafood Research Fund [901073]; Research Council of Norway [14567]; Australian Research Council Future Fellowship This work was conducted with the assistance of Karen Anita Kvestad, Lise Dyrhovden, and Marita Larsen from the Institute of Marine Research. The project was funded by a Norwegian Seafood Research Fund grant to SD (Temperaturens innflytelse pa lakseluslarver: overlevelse og smittbarhet; grant No. 901073), a Research Council of Norway grant to FO, SD, and TD (Regional lice assessment-towards a model based management system; grant No. 14567), and an Australian Research Council Future Fellowship to TD. All experiments were conducted in accordance with the laws and regulations of the Norwegian Regulation on Animal Experimentation 1996 under the permit No. 7754. Albretsen J., 2011, FISK HAV, V2, P1; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Asplin L, 2014, MAR BIOL RES, V10, P216, DOI 10.1080/17451000.2013.810755; Asplin L, 2011, SALMON LICE: AN INTEGRATED APPROACH TO UNDERSTANDING PARASITE ABUNDANCE AND DISTRIBUTION, P31; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Behradek J., 1930, BIOL REV, V5, P30, DOI [10.1111/j.1469-185X.1930.tb00892.x, DOI 10.1111/J.1469-185X.1930.TB00892.X]; Besnier F, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-937; Boxaspen K, 2000, CONTRIB ZOOL, V69, P51; BRON JE, 1991, J ZOOL, V224, P201, DOI 10.1111/j.1469-7998.1991.tb04799.x; Brown CA, 2003, EVOLUTION, V57, P2184, DOI 10.1111/j.0014-3820.2003.tb00397.x; Cavaleiro FI, 2014, INT J PARASITOL, V44, P173, DOI 10.1016/j.ijpara.2013.10.009; Christians JK, 2000, FUNCT ECOL, V14, P497, DOI 10.1046/j.1365-2435.2000.00444.x; Costello MJ, 2006, TRENDS PARASITOL, V22, P475, DOI 10.1016/j.pt.2006.08.006; Costello MJ, 2009, P R SOC B, V276, P3385, DOI 10.1098/rspb.2009.0771; Costello MJ, 2009, J FISH DIS, V32, P115, DOI 10.1111/j.1365-2761.2008.01011.x; Crossan J, 2007, EVOLUTION, V61, P675, DOI 10.1111/j.1558-5646.2007.00057.x; Espedal PG, 2013, AQUACULTURE, V416, P111, DOI 10.1016/j.aquaculture.2013.09.001; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Glover KA, 2011, MAR ECOL PROG SER, V427, P161, DOI 10.3354/meps09045; Graham EM, 2008, CORAL REEFS, V27, P529, DOI 10.1007/s00338-008-0361-z; Gravil H. R., 1996, STUDIES BIOL ECOLOGY; Groner ML, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088465; Hamre LA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073539; Hamre LA, 2009, PARASITOL INT, V58, P451, DOI 10.1016/j.parint.2009.08.009; Heuch PA, 2009, J FISH DIS, V32, P89, DOI 10.1111/j.1365-2761.2008.01002.x; Heuch PA, 2005, AQUACULTURE, V246, P79, DOI 10.1016/aquaculture.2004.12.027; Heuch PA, 2002, J MAR BIOL ASSOC UK, V82, P887, DOI 10.1017/S0025315402006306; Heuch PA, 2000, AQUAC RES, V31, P805, DOI 10.1046/j.1365-2109.2000.00512.x; JOHANNESSEN A, 1978, SARSIA, V63, P169; Johnsen IA, 2014, AQUACULT ENV INTERAC, V5, DOI 10.3354/aei00098; JOHNSON SC, 1991, CAN J ZOOL, V69, P929, DOI 10.1139/z91-138; Kinnison MT, 2001, EVOLUTION, V55, P1656; Krkosek M, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2359; Krkosek M, 2011, P NATL ACAD SCI USA, V108, P14700, DOI 10.1073/pnas.1101845108; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; McCallum HI, 2004, TRENDS ECOL EVOL, V19, P585, DOI 10.1016/j.tree.2004.08.009; MCKINNEY ML, 1984, PALEOBIOLOGY, V10, P407; Mennerat A, 2010, EVOL BIOL, V37, P59, DOI 10.1007/s11692-010-9089-0; Murray AG, 2009, PREV VET MED, V88, P167, DOI 10.1016/j.prevetmed.2008.09.006; Nordhagen JR, 2000, CONTRIB ZOOL, V69, P99; Nordi GA, 2015, AQUACULT ENV INTERAC, V7, P15, DOI 10.3354/aei00134; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; O'Connor MI, 2007, P NATL ACAD SCI USA, V104, P1266, DOI 10.1073/pnas.0603422104; PEARSE JS, 1991, AM ZOOL, V31, P65; Pike A W, 1999, Adv Parasitol, V44, P233, DOI 10.1016/S0065-308X(08)60233-X; Pike A.W., 1993, P99; POULIN R, 1995, EVOLUTION, V49, P325, DOI 10.1111/j.1558-5646.1995.tb02245.x; POULIN R, 1989, BEHAV ECOL SOCIOBIOL, V24, P251, DOI 10.1007/BF00295205; Quinn G. P., 2002, EXPT DESIGN DATA ANA; R Development Core Team, 2009, R LANG ENV STAT COMP; Ritchie G., 1993, P153; Saksida S, 2007, J FISH DIS, V30, P357, DOI 10.1111/j.1365-2761.2007.00814.x; Salama NKG, 2013, AQUACULT ENV INTERAC, V4, P91, DOI 10.3354/aei00077; Samsing F, 2014, AQUACULT ENV INTERAC, V6, P81, DOI 10.3354/aei00118; Stien A, 2005, MAR ECOL PROG SER, V290, P263, DOI 10.3354/meps290263; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Timi JT, 2005, PARASITOL RES, V95, P1, DOI 10.1007/s00436-004-1242-1; Treml EA, 2008, LANDSCAPE ECOL, V23, P19, DOI 10.1007/s10980-007-9138-y; Tucker CS, 2002, FISH PATHOL, V37, P107, DOI 10.3147/jsfp.37.107; Tucker CS, 2000, FISH PATHOL, V35, P137, DOI 10.3147/jsfp.35.137; Vollset KW, 2016, FISH FISH, V17, P714, DOI 10.1111/faf.12141; Vollset KW, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2013.0896; WOOTTEN R, 1982, P ROY SOC EDINB B, V81, P185, DOI 10.1017/S0269727000003389 63 23 23 4 43 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. DEC 2016 73 12 1841 1851 10.1139/cjfas-2016-0050 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology EC4QO WOS:000388118700014 2019-02-21 J Nolin, DA; Ziker, JP Nolin, David A.; Ziker, John P. Reproductive Responses to Economic Uncertainty Fertility Decline in Post-Soviet Ust'-Avam, Siberia HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Demographic transition; Hunter-gatherers; Life history theory; Birth spacing; Birth stopping; Birth postponement UNITED-STATES; DEMOGRAPHIC-TRANSITION; DELAYED REPRODUCTION; NORTHERN SIBERIA; NATURAL DISASTER; DEVELOPED WORLD; ENVIRONMENTS; STRATEGIES; RUSSIA; BIRTH In the face of economic and political changes following the end of the Soviet Union, total fertility rates fell significantly across the post-Soviet world. In this study we examine the dramatic fertility transition in one community in which the total fertility rate fell from approximately five children per woman before 1993 to just over one child per woman a decade later. We apply hypotheses derived from evolutionary ecology and demography to the question of fertility transition in the post-Soviet period, focusing on an indigenous community (Ust'-Avam) in the Taimyr Region, northern Russia. We employ a mixed parametric accelerated failure-time model that allows comparison of age at first birth, interbirth interval, and reproductive postponement or cessation prior to and following 1993. We find that short-term reproductive delay alone does not explain the dramatic drop in fertility in Ust'-Avam. Age at first birth remains constant. Interbirth intervals increase moderately. The estimated fraction of women who have ceased or indefinitely postponed reproducing doubles (for parities 2 through 4) or triples (for nulliparous women). We caution against assuming that environmental harshness necessarily leads to earlier and more rapid reproduction. An evolutionary theory of fertility responses to acute environmental shocks remains relatively undeveloped. In such contexts it is possible that selection favors a conservative reproductive strategy while more information is learned about the new environment. When investigating fertility responses to environmental stressors we suggest researchers examine postponement and stopping behavior in addition to changes in age at first birth and interbirth interval. [Nolin, David A.] Univ Missouri, Dept Anthropol, 112 Swallow Hall, Columbia, MO 65211 USA; [Nolin, David A.] Univ Missouri, Life Sci & Soc Program, 112 Swallow Hall, Columbia, MO 65211 USA; [Ziker, John P.] Boise State Univ, Dept Anthropol, 1910 Univ Dr,MS 1950, Boise, ID 83725 USA Nolin, DA (reprint author), Univ Missouri, Dept Anthropol, 112 Swallow Hall, Columbia, MO 65211 USA.; Nolin, DA (reprint author), Univ Missouri, Life Sci & Soc Program, 112 Swallow Hall, Columbia, MO 65211 USA. nolind@missouri.edu American Council of Teachers of Russian; International Research and Exchanges Board; National Science Foundation [OPP 9528936, OPP 0631970]; L.B.S. Leakey Foundation; Max Planck Institute for Social Anthropology This research would not have been possible without the hospitality, goodwill, and cooperation of the people of the study community in the Taimyr Region. Thanks to Mary Shenk for helpful comments on earlier versions of this analysis, to Darryl Holman for assistance with his mle event-history analysis programming language, and to three anonymous reviewers for their helpful comments. Funding for this research was provided by the American Council of Teachers of Russian (1993, 1996, and 2001), the International Research and Exchanges Board (1996), the National Science Foundation (1997) (OPP 9528936), the L.B.S. Leakey Foundation (2001), the Max Planck Institute for Social Anthropology (2003), and the National Science Foundation (2006) (OPP 0631970). This study was performed in accordance with the ethical standards of the institutional review boards at U Alaska Fairbanks and Boise State University, and with the 1964 Helsinki declaration and its amendments or comparable ethical standards. All conclusions are our own. Adsera A, 2011, POP STUD-J DEMOG, V65, P37, DOI 10.1080/00324728.2010.530291; Agadjanian V, 2002, DEMOGRAPHY, V39, P215, DOI 10.1353/dem.2002.0013; Avdeyeva OA, 2011, SOC POLIT, V18, P361, DOI 10.1093/sp/jxr013; Baldini R., 2015, BIORXIV, DOI [10.1101/014647, DOI 10.1101/014647]; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Blanc AK, 2004, STUD FAMILY PLANN, V35, P236, DOI 10.1111/j.0039-3665.2004.00028.x; Bogoyavlenskiy D, 2010, SIBIRICA, V9, P91, DOI 10.3167/sib.2010.090305; Bumpass L. L., 1978, SOCIAL DEMOGRAPHY, P15; BUTZ WP, 1979, AM ECON REV, V69, P318; Caldwell JC, 2004, J FAM HIST, V29, P382, DOI 10.1177/0363199004267744; Charnov Eric L., 1993, P1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1988, SOCIOBIOLOGICAL PERS, P78, DOI DOI 10.1007/978-1-4612-3760-0_3; Cohan CL, 2002, J FAM PSYCHOL, V16, P14, DOI 10.1037//0893-3200.16.1.14; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Dorzhu Z.Y., 2016, SIBIRICA IN PRESS, V15; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLISON PT, 2001, FERTILE GROUND NATUR; Evans RW, 2010, J POPUL ECON, V23, P1, DOI 10.1007/s00148-008-0219-2; Finlay J., 2009, WPS4883 WORLD BANK; Forsyth J., 1992, HIST PEOPLES SIBERIA; Frejka T, 2013, POPUL DEV REV, V39, P635, DOI 10.1111/j.1728-4457.2013.00631.x; Goldstein JR, 2009, POPUL DEV REV, V35, P663, DOI 10.1111/j.1728-4457.2009.00304.x; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Hauer M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067226; Heleniak T., 2014, 82806 NAT COUNC EUR; Heleniak T, 2010, MARRIAGE FAM REV, V46, P79, DOI 10.1080/01494921003648613; Heuveline P, 2007, DEMOGRAPHY, V44, P405, DOI 10.1353/dem.2007.0012; Holman D., 2003, MLE PROGRAMMING LANG; Holman D., 2003, 0304 U WASH CTR STUD; Jacobsen L.A., 2011, POPULATION B UPDATE; Knight F. H., 1921, RISK UNCERTAINTY PRO; Kohler HP, 2002, EUR J POPUL, V18, P233, DOI 10.1023/A:1019701812709; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Kreyenfeld M, 2005, 2005034 MPIDR WP; Leslie P, 2002, AM J HUM BIOL, V14, P168, DOI 10.1002/ajhb.10044; Lightbourne Robert E., 1985, REPROD CHANGE DEV CO, P165; Lindstrom DP, 1999, DEMOGRAPHY, V36, P247, DOI 10.2307/2648112; Livingston Gretchen, 2011, EC FEWER BIRTHS; MORGAN SP, 1982, DEMOGRAPHY, V19, P315, DOI 10.2307/2060974; MORGAN SP, 1981, DEMOGRAPHY, V18, P267, DOI 10.2307/2060997; Moultrie TA, 2012, POP STUD-J DEMOG, V66, P241, DOI 10.1080/00324728.2012.701660; Myrskyla M, 2013, POPUL DEV REV, V39, P31, DOI 10.1111/j.1728-4457.2013.00572.x; Nakamura K, 2008, J ASSIST REPROD GEN, V25, P47, DOI 10.1007/s10815-008-9206-5; Nobles J, 2015, DEMOGRAPHY, V52, P15, DOI 10.1007/s13524-014-0362-1; OGAWA NAOHIRO, 2003, J POPULATION RES, V20, P89, DOI DOI 10.1007/BF03031797; Phillips RL, 2000, AM FAM PHYSICIAN, V62, P782; Raschky P. A., 2012, SOCIAL SCI RES NETWO, DOI [10.2139/ssrn.2175387, DOI 10.2139/SSRN.2175387]; Rodgers JL, 2005, DEMOGRAPHY, V42, P675, DOI 10.1353/dem.2005.0034; Sobotka T, 2011, POPUL DEV REV, V37, P267, DOI 10.1111/j.1728-4457.2011.00411.x; Stearns S, 1992, EVOLUTION LIFE HIST; Timaeus I. M., 2008, POPUL DEV REV, V34, P383; Tong V, 2011, MATERN CHILD HLTH J, V15, P281, DOI 10.1007/s10995-010-0576-9; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; Wilbur HM, 2006, AM NAT, V168, P398, DOI 10.1086/506258; Winterhalder B, 2002, EVOL HUM BEHAV, V23, P59, DOI 10.1016/S1090-5138(01)00089-7; YAMAGUCHI K, 1992, J AM STAT ASSOC, V87, P284; YAMAGUCHI K, 1995, AM SOCIOL REV, V60, P272, DOI 10.2307/2096387; Zakharov S, 2008, DEMOGR RES, V19, P907, DOI 10.4054/DemRes.2008.19.24; Zakharov SV, 1996, RAND CONF PROC, P36; Ziker J., 2015, SUSTAIN SCI, V11, P45; Ziker JP, 2007, ECOL FOOD NUTR, V46, P445, DOI 10.1080/03670240701486743; Ziker JP, 2016, CURR ANTHROPOL, V57, P221, DOI 10.1086/685730; Ziker John P., 2002, PEOPLES TUNDRA NO SI; Ziker JP, 1998, RES ECON AN, V19, P191 71 2 2 0 14 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. DEC 2016 27 4 SI 351 371 10.1007/s12110-016-9267-6 21 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences EC5WW WOS:000388209000002 27595735 2019-02-21 J Naslund, J; Johnsson, JI Naslund, Joacim; Johnsson, Jorgen I. State-dependent behavior and alternative behavioral strategies in brown trout (Salmo trutta L.) fry BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Animal personality; Behavioral syndrome; Compensatory growth; Food restriction; Mirror aggression; Open-field activity; Repeatability JUVENILE COHO SALMON; CHARR SALVELINUS-FONTINALIS; LIFE-HISTORY STRATEGIES; WILD SEA-TROUT; PACE-OF-LIFE; ATLANTIC SALMON; GROWTH-RATE; BODY-SIZE; FOOD AVAILABILITY; RAINBOW-TROUT Animals generally adjust their behavior in response to bodily state (e.g., size and energy reserves) to optimize energy intake in relation to mortality risk, weighing predation probability against the risk of starvation. Here, we investigated whether brown trout Salmo trutta adjust their behavior in relation to energetic status and body size during a major early-life selection bottleneck, when fast growth is important. Over two consecutive time periods (P1 and P2; 12 and 23 days, respectively), food availability was manipulated, using four different combinations of high (H) and low (L) rations (i.e., HH, HL, LH, and LL; first and second letter denoting ration during P1 and P2, respectively). Social effects were excluded through individual isolation. Following the treatment periods, fish in the HL treatment were on average 15-21 % more active than the other groups in a forced open-field test, but large within-treatment variation provided only weak statistical support for this effect. Furthermore, fish on L-ration during P2 tended to be more actively aggressive towards their mirror image than fish on H-ration. Body size was related to behavioral expression, with larger fish being more active and aggressive. Swimming activity and active aggression were positively correlated, forming a behavioral syndrome in the studied population. Based on these behavioral traits, we could also distinguish two behavioral clusters: one consisting of more active and aggressive individuals and the other consisting of less active and aggressive individuals. This indicates that brown trout fry adopt distinct behavioral strategies early in life. This paper provides information on the state-dependence of behavior in animals, in particular young brown trout. On the one hand, our data suggest a weak energetic state feedback where activity and aggression is increased as a response to short term food restriction. This suggests a limited scope for behavioral alterations in the face of starvation. On the other hand, body size is linked to higher activity and aggression, likely as a positive feedback between size and dominance. The experiment was carried out during the main population survival bottleneck, and the results indicate that growth is important during this stage, as 1) behavioral compensation to increase growth is limited, and 2) growth likely increases the competitive ability. However, our data also suggests that the population separates into two clusters, based on combined scores of activity and aggression (which are positively linked within individuals). Thus, apart from an active and aggressive strategy, there seems to be another more passive behavioral strategy. [Naslund, Joacim; Johnsson, Jorgen I.] Univ Gothenburg, Dept Biol & Environm Sci, Box 463, S-40530 Gothenburg, Sweden Naslund, J (reprint author), Univ Gothenburg, Dept Biol & Environm Sci, Box 463, S-40530 Gothenburg, Sweden. joacim.naslund@gmail.com Helge Ax:son Johnsons stiftelse; Wilhelm och Martina Lundgrens Vetenskapsfond; Swedish Research Council Formas We thank Lin Sandquist and Christina Claesson for their assistance during field collection and in the laboratory. We are also grateful to the comments from three anonymous reviewers on a previous version of this manuscript. This study was funded by Helge Ax:son Johnsons stiftelse (JN), Wilhelm och Martina Lundgrens Vetenskapsfond (JN), and the Swedish Research Council Formas (JIJ). Adriaenssens B, 2013, ECOL LETT, V16, P47, DOI 10.1111/ele.12011; Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; Alanara A, 2001, J ANIM ECOL, V70, P980, DOI 10.1046/j.0021-8790.2001.00550.x; Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; Bell AM, 2007, P ROY SOC B-BIOL SCI, V274, P755, DOI 10.1098/rspb.2006.0199; BOHLIN T, 1994, CAN J FISH AQUAT SCI, V51, P1920, DOI 10.1139/f94-193; Bohlin T, 1996, J FISH BIOL, V49, P157; BOHLIN T, 1993, CAN J FISH AQUAT SCI, V50, P224, DOI 10.1139/f93-025; Brett J. R, 1979, FISH PHYSIOL, V8, P599; Brodin T, 2011, J ETHOL, V29, P107, DOI 10.1007/s10164-010-0230-4; Brown MR, 1957, PHYSIOL FISHES, V1, P361, DOI DOI 10.1016/B978-1-4832-2817-4.50015-9; Budaev SV, 2010, ETHOLOGY, V116, P472, DOI 10.1111/j.1439-0310.2010.01758.x; Burton T, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2441; Burton T, 2011, FUNCT ECOL, V25, P1379, DOI 10.1111/j.1365-2435.2011.01897.x; CHANDLER GL, 1988, T AM FISH SOC, V117, P432, DOI 10.1577/1548-8659(1988)117<0432:AGAIOJ>2.3.CO;2; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Conceicao LEC, 1998, AQUACULTURE, V161, P95, DOI 10.1016/S0044-8486(97)00260-3; Conrad JL, 2011, J FISH BIOL, V78, P395, DOI 10.1111/j.1095-8649.2010.02874.x; Cuinat R, 1979, B FR PISCIC, V274, P1; Degerman E, 2001, FISKERIVERKET INFORM; DELLEFORS C, 1988, J FISH BIOL, V33, P741, DOI 10.1111/j.1095-8649.1988.tb05519.x; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Elliott J. M., 1994, QUANTITATIVE ECOLOGY; ELLIOTT JM, 1990, J ANIM ECOL, V59, P803, DOI 10.2307/5015; Farwell M, 2014, BEHAV ECOL SOCIOBIOL, V68, P781, DOI 10.1007/s00265-014-1691-1; Farwell M, 2009, BEHAV ECOL, V20, P913, DOI 10.1093/beheco/arp059; Fiksen O, 2011, MAR ECOL PROG SER, V432, P207, DOI 10.3354/meps09148; Geffroy B, 2015, BEHAVIOUR, V152, P147, DOI 10.1163/1568539X-00003236; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; GRANT JWA, 1987, J ANIM ECOL, V56, P1001, DOI 10.2307/4962; Grimm V, 2005, INDIVIDUAL BASED MOD; Groothuis TGG, 2011, DEV PSYCHOBIOL, V53, P641, DOI 10.1002/dev.20574; Heithaus MR, 2007, J ANIM ECOL, V76, P837, DOI 10.1111/j.1365-2656.2007.01260.x; Heland M, 1999, BIOL ECOLOGY BROWN S, P115; Hojesjo J, 1999, J FISH BIOL, V55, P1009, DOI 10.1006/jfbi.1999.1113; Hojesjo J, 2004, BEHAV ECOL SOCIOBIOL, V56, P286, DOI 10.1007/s00265-004-0784-7; Hojesjo J, 2011, BEHAV ECOL SOCIOBIOL, V65, P1801, DOI 10.1007/s00265-011-1188-0; Hoogenboom MO, 2013, BEHAV ECOL, V24, P253, DOI 10.1093/beheco/ars161; Hopkins Kevin D., 1992, Journal of the World Aquaculture Society, V23, P173, DOI 10.1111/j.1749-7345.1992.tb00766.x; Huntingford F, 2005, BEHAVIOUR, V142, P1207, DOI 10.1163/156853905774539382; Johnsson JI, 2006, P R SOC B, V273, P1281, DOI 10.1098/rspb.2005.3437; Johnsson JI, 1999, J FISH BIOL, V54, P469, DOI 10.1006/jfbi.1998.0881; JOHNSSON JI, 1994, ANIM BEHAV, V48, P177, DOI 10.1006/anbe.1994.1224; Johnsson JI, 1996, HORM BEHAV, V30, P13, DOI 10.1006/hbeh.1996.0003; Jonsson B, 2014, J FISH BIOL, V85, P151, DOI 10.1111/jfb.12432; Jonsson B, 2011, FISH FISH SER, V33, P1, DOI 10.1007/978-94-007-1189-1; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kortet R, 2014, BEHAV ECOL SOCIOBIOL, V68, P927, DOI 10.1007/s00265-014-1705-z; Kotrschal A, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000351; LIMA SL, 1986, ECOLOGY, V67, P377, DOI 10.2307/1938580; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; MASON JC, 1965, J FISH RES BOARD CAN, V22, P173, DOI 10.1139/f65-015; McNamara JM, 2013, SCIENCE, V340, P1084, DOI 10.1126/science.1230599; METCALFE NB, 1992, J FISH BIOL, V41, P93, DOI 10.1111/j.1095-8649.1992.tb03871.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; MITTELBACH GG, 1981, ECOLOGY, V62, P1370, DOI 10.2307/1937300; Morrongiello JR, 2012, J ANIM ECOL, V81, P806, DOI 10.1111/j.1365-2656.2012.01961.x; Naslund J, 2017, ECOL FRESHW FISH, V26, P462, DOI 10.1111/eff.12291; Naslund J, 2015, OECOLOGIA, V177, P1221, DOI 10.1007/s00442-015-3263-0; Nicieza AG, 1997, ECOLOGY, V78, P2385; Nilsson N-A, 1956, REP I FRESHWATER RES, V38, P154; Orpwood JE, 2006, J ANIM ECOL, V75, P677, DOI 10.1111/j.1365-2656.2006.01088.x; Peck MA, 2015, ENVIRON BIOL FISH, V98, P1117, DOI 10.1007/s10641-014-0345-5; Pedersen BH, 1997, AQUACULTURE, V155, P259, DOI 10.1016/S0044-8486(97)00127-0; Perez KO, 2010, EVOLUTION, V64, P2450, DOI 10.1111/j.1558-5646.2010.00994.x; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; Pettersson JCE, 2002, THESIS; PETTERSSON LB, 1993, OECOLOGIA, V95, P353, DOI 10.1007/BF00320988; PICKERING AD, 1982, J FISH BIOL, V20, P229, DOI 10.1111/j.1095-8649.1982.tb03923.x; R Core Team, 2014, R LANG ENV STAT COMP; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Regnier T, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150441; Regnier T, 2012, J EXP ZOOL PART A, V317A, P347, DOI 10.1002/jez.1728; Reid D, 2012, J ANIM ECOL, V81, P868, DOI 10.1111/j.1365-2656.2012.01969.x; Reinhardt UG, 1999, ANIM BEHAV, V57, P923, DOI 10.1006/anbe.1998.1051; Revelle W, 2015, PSYCH PROCEDURES PER; SIH A, 1980, SCIENCE, V210, P1041, DOI 10.1126/science.210.4473.1041; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Skoglund H, 2006, J FISH BIOL, V68, P507, DOI [10.1111/j.0022-1112.2006.00938.x, 10.1111/j.1095-8649.2006.00938.x]; SPSS Inc, 2001, SPSS TWOSTEP CLUST C; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Sundstrom LF, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063287; Sundstrom LF, 2004, BEHAV ECOL, V15, P192, DOI 10.1093/beheco/arg089; TRAVIS J, 1985, OIKOS, V45, P59, DOI 10.2307/3565222; Vehanen T, 2003, J FISH BIOL, V63, P1034, DOI 10.1046/j.1095-8649.2003.00228.x; Vollestad LA, 2003, ANIM BEHAV, V66, P561, DOI 10.1006/anbe.2003.2237; Wengstrom N, 2016, ETHOLOGY, V122, P769, DOI 10.1111/eth.12524; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Wolf M, 2012, AM NAT, V179, P679, DOI 10.1086/665656; Zavorka L, 2015, BEHAV ECOL, V26, P877, DOI 10.1093/beheco/arv029 96 11 11 2 42 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. DEC 2016 70 12 2111 2125 10.1007/s00265-016-2215-y 15 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology EB8QW WOS:000387656900012 27881895 Other Gold, Green Published 2019-02-21 J Galatowitsch, ML; McIntosh, AR Galatowitsch, Mark L.; McIntosh, Angus R. Developmental constraints control generalist invertebrate distributions across a gradient of unpredictable disturbance FRESHWATER SCIENCE English Article life-history flexibility; unpredictable disturbance; predator-permanence gradient; freshwater temporary ponds LIFE-HISTORY PLASTICITY; PHENOTYPIC PLASTICITY; TIME CONSTRAINTS; NEW-ZEALAND; TRADE-OFFS; HETEROGENEOUS ENVIRONMENTS; GROWTH; EVOLUTION; COMMUNITIES; SPECIALISTS Mechanisms underpinning flexible life-history strategies have rarely been tested in hydrologically unpredictable ecosystems where generalists may have life-history trade-offs and developmental constraints that limit their distributions. We investigated in situ nymphal growth and developmental strategies of 2 generalists, Xanthocnemis zealandica and Sigara arguta, across a habitat-permanence gradient. In response to temporary pond drying, we anticipated a flexible generalist response with rapid growth and shorter development, resulting in smaller adult size. In comparison, we expected nymphs living in permanent lakes with predatory fish to extend growth and development in favor of larger adult size. Both species maximized growth rates in temporary ponds but had different developmental strategies that influenced their distribution. Xanthocnemis zealandica had longer development requirements (125 d), which limited their distribution in less predictable temporary ponds, whereas S. arguta were less constrained in development (56 d) and inhabited more temporary ponds. The longer development time of X. zealandica meant they benefited from flexible life-history traits: shorter development, limited desiccation tolerance in temporary ponds, and extended development and predator avoidance in permanent habitats. Sigara arguta had an opportunistic life-history strategy with a fixed, rapid developmental response across the permanence gradient and rapid colonization of refilled temporary ponds. This fixed strategy meant S. arguta was intolerant of drying and, in permanent lakes, was found only in shallow refuges from fish. Neither species differed in adult size across the permanence gradient. Our study shows how life-history strategies enable generalists to achieve broad distributions in a heterogeneous waterscape, and that resilience and flexibility to local selection pressures depend on the constraints of their phenologies. [Galatowitsch, Mark L.; McIntosh, Angus R.] Univ Canterbury, Sch Biol Sci, Ctr Integrat Ecol, Christchurch, New Zealand; [Galatowitsch, Mark L.] Ctr Coll Danville, Dept Biol, 600 West Walnut St, Danville, KY 40422 USA Galatowitsch, ML (reprint author), Univ Canterbury, Sch Biol Sci, Ctr Integrat Ecol, Christchurch, New Zealand.; Galatowitsch, ML (reprint author), Ctr Coll Danville, Dept Biol, 600 West Walnut St, Danville, KY 40422 USA. mark.galatowitsch@centre.edu; angus.mcintosh@canterbury.ac.nz McIntosh, Angus/B-2992-2011 McIntosh, Angus/0000-0003-2696-8813 Miss E. L. Hellaby Indigenous Grasslands Trust; Educate New Zealand International Doctoral Scholarship This research was funded by the Miss E. L. Hellaby Indigenous Grasslands Trust with further financial support from an Educate New Zealand International Doctoral Scholarship to MLG. Justyna Giejsztowt, Amanda Klemmer, Steve Pohe, and Sophie Hunt assisted in the field, and Linda Morris and Nicole Lauren-Manuera provided laboratory and technical support. We are grateful to the Department of Conservation (DOC) and Craigieburn and Molesworth Stations for access to field sites and to the University of Canterbury (UC) for use of the Cass field station. Additional hydrology data were provided by Hugh Robertson (DOC). Precipitation data were provided by Environment Canterbury, the National Institute of Water and Atmospheric Research CliFlo database, and University of Canterbury (UC) Center for Atmospheric Research. We thank UC's Freshwater Ecology Research Group for support, and Christoph Matthaei, Jenny Davis, Michael Winterbourn, and 2 anonymous referees for comments that improved the manuscript. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.2307/3071813; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; Barahona J, 2005, FRESHWATER BIOL, V50, P2101, DOI 10.1111/j.1365-2427.2005.01463.x; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/jss.v067.i01; BHATTACHARYA CG, 1967, BIOMETRICS, V23, P115, DOI 10.2307/2528285; Bogan MT, 2013, FRESHWATER BIOL, V58, P1016, DOI 10.1111/fwb.12105; Caley MJ, 2003, P ROY SOC B-BIOL SCI, V270, pS175, DOI 10.1098/rsbl.2003.0040; Carpenter SR, 1998, ECOSYSTEMS, V1, P1, DOI 10.1007/s100219900001; Clavel J, 2011, FRONT ECOL ENVIRON, V9, P222, DOI 10.1890/080216; De Block M, 2004, OECOLOGIA, V140, P68, DOI 10.1007/s00442-004-1575-6; De Block M, 2005, OIKOS, V108, P485; de Meeus T, 2000, EVOL ECOL RES, V2, P981; Deacon K. G., 1979, THESIS; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Dmitriew C, 2005, OECOLOGIA, V142, P150, DOI 10.1007/s00442-004-1712-2; Galatowitsch ML, 2016, FRESHWATER BIOL, V61, P862, DOI 10.1111/fwb.12747; Greig H. S., 2008, THESIS; Greig HS, 2013, J ANIM ECOL, V82, P598, DOI 10.1111/1365-2656.12042; Greig HS, 2010, ECOLOGY, V91, P836, DOI 10.1890/08-1871.1; Hothorn T., 2014, SIMULTANEOUS INFEREN; Jannot JE, 2008, BIOL J LINN SOC, V95, P495, DOI 10.1111/j.1095-8312.2008.01061.x; Jannot JE, 2009, OECOLOGIA, V161, P267, DOI 10.1007/s00442-009-1389-7; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Kisdi E, 2002, AM NAT, V159, P579, DOI 10.1086/339989; Kuznetsova A, 2013, TESTS RANDOM FIXED E; Laurila A, 2002, EVOLUTION, V56, P617; Lytle DA, 2002, ECOLOGY, V83, P370; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; Lytle DA, 2008, P R SOC B, V275, P453, DOI 10.1098/rspb.2007.1157; Massol F, 2013, ECOL COMPLEX, V16, P9, DOI 10.1016/j.ecocom.2012.05.004; McCauley SJ, 2007, OIKOS, V116, P121, DOI 10.1111/j.2006.0030-1299.15105.x; Mccauley SJ, 2008, FRESHWATER BIOL, V53, P253, DOI 10.1111/j.1365-2427.2007.01889.x; McPeek MA, 1998, ECOLOGY, V79, P867, DOI 10.2307/176586; McPeek MA, 1996, AM NAT, V148, pS124, DOI 10.1086/285906; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; OSCARSON HG, 1987, OIKOS, V49, P133, DOI 10.2307/3566018; Relyea RA, 2002, AM NAT, V159, P272, DOI 10.1086/338540; Rowe RJ, 1987, DRAGONFLIES NZ; Rudolf VHW, 2007, EVOL ECOL, V21, P121, DOI 10.1007/s10682-006-0017-9; Sparre P., 2005, FAO COMPUTERIZED INF, V8; Stevens DJ, 2000, P ROY SOC B-BIOL SCI, V267, P1511, DOI 10.1098/rspb.2000.1172; Stoffels RJ, 2003, NEW ZEAL J MAR FRESH, V37, P449, DOI 10.1080/00288330.2003.9517179; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Thibert-Plante X, 2011, J EVOLUTION BIOL, V24, P326, DOI 10.1111/j.1420-9101.2010.02169.x; VANTIENDEREN PH, 1991, EVOLUTION, V45, P1317, DOI 10.1111/j.1558-5646.1991.tb02638.x; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; Verberk WCEP, 2010, J ANIM ECOL, V79, P589, DOI 10.1111/j.1365-2656.2010.01660.x; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; Whiles MR, 2005, WETLANDS, V25, P462, DOI 10.1672/20; Williams DD, 1996, J N AM BENTHOL SOC, V15, P634, DOI 10.2307/1467813; Winterbourn M. J., 2006, B ENTOMOL SOC, V5, P1; WINTERBOURN MJ, 1981, NEW ZEAL J MAR FRESH, V15, P321, DOI 10.1080/00288330.1981.9515927; Wissinger SA, 2003, FRESHWATER BIOL, V48, P255, DOI 10.1046/j.1365-2427.2003.00997.x; Wissinger SA, 2006, FRESHWATER BIOL, V51, P2009, DOI 10.1111/j.1365-2427.2006.01629.x; Wissinger SA, 2009, J N AM BENTHOL SOC, V28, P12, DOI 10.1899/08-007.1; Young E. C., 2010, WATER BOATMEN BACKSW 59 1 1 3 18 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 2161-9549 2161-9565 FRESHW SCI Freshw. Sci. DEC 2016 35 4 1300 1311 10.1086/688959 12 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology EC4FC WOS:000388080700020 2019-02-21 J Henriques-Silva, R; Pinel-Alloul, B; Peres-Neto, PR Henriques-Silva, Renato; Pinel-Alloul, Bernadette; Peres-Neto, Pedro R. Climate, history and life-history strategies interact in explaining differential macroecological patterns in freshwater zooplankton GLOBAL ECOLOGY AND BIOGEOGRAPHY English Article Allee effect; cladocerans; copepods; latitudinal diversity gradient; Rapoport's rule; temperate lakes GEOGRAPHIC RANGE SIZE; LATITUDINAL DIVERSITY GRADIENT; SPECIES-RICHNESS; CRUSTACEAN ZOOPLANKTON; BETA DIVERSITY; GENE FLOW; COMMUNITY; DISPERSAL; LIMITS; SCALE AimWe investigated how freshwater microcrustaceans with different susceptibilities to Allee effects differ in the distribution of their geographical range size (GRS) and diversity along latitudinal gradients, evaluating the importance of climatic and historical factors in explaining these differences. We hypothesized that sexual copepods would have a smaller GRS and that their distribution would be linked to historical processes due to mate-finding Allee effects during colonization. Given that cyclic parthenogenetic cladocerans avoid these Allee effects, we predicted that they would exhibit a larger GRS and their distribution would be related to climatic factors rather than dispersal limitation. LocationCanadian watersheds, North America. MethodsWe used a database containing the presence-absence of freshwater zooplankton across 1665 Canadian lakes along a latitudinal gradient of 40 degrees. We computed GRS using minimum convex polygons encompassing all lakes in which each species was present. We pooled the diversity of lakes within watersheds, and computed linear regressions models between watershed diversity and average GRS with the average latitude, distance from a glacial refugium and environmental variables of the watershed. All analyses were performed separately for cladocerans and copepods. ResultsCladocerans exhibited, on average, a GRS 70% larger than that of copepods. We found a strong relationship between diversity (negative) and average GRS (positive) with latitude for cladocerans but not for copepods. Cladoceran macroecological patterns were mainly explained by climatic factors, whereas the lack of latitudinal gradients in copepods was potentially due to the influence of a northern glacial refuge and dispersal limitation. Main conclusionsOur results show that Allee effects are strongly and negatively associated with GRS, influencing the relative importance of environmental filtering and dispersal limitation on species diversity patterns. We suggest that studies should avoid lumping species with large differences in their susceptibility to Allee effects in order to better disentangle the multiple processes affecting large-scale patterns. [Henriques-Silva, Renato; Peres-Neto, Pedro R.] Univ Quebec, Dept Biol Sci, CP 8888,Succ Ctr Ville, Montreal, PQ H3C 3P8, Canada; [Henriques-Silva, Renato; Pinel-Alloul, Bernadette; Peres-Neto, Pedro R.] Quebec Ctr Biodivers Sci, Montreal, PQ H3A 1B1, Canada; [Pinel-Alloul, Bernadette] Univ Montreal, Dept Biol Sci, Montreal, PQ H3C 3J7, Canada; [Pinel-Alloul, Bernadette] Univ Montreal, GRIL, Grp Rech Interuniv Limnol & Environm Aquat, CP 6128,Succ Ctr Ville, Montreal, PQ, Canada Henriques-Silva, R (reprint author), Univ Quebec, Dept Biol Sci, CP 8888,Succ Ctr Ville, Montreal, PQ H3C 3P8, Canada. renatohenriques@gmail.com Peres Neto, Pedro/0000-0002-5629-8067; Pinel-Alloul, Bernadette/0000-0002-1070-2968; Henriques da Silva, Renato/0000-0003-2731-2023 FQRNT (Fonds Quebecois de Recherche Nature et Technologies, Quebec, Canada) team research project programme grant; National Science and Engineering Research Council (NSERC); Canada Research Chair in Spatial Modelling and Biodiversity; NSERC discovery grant We are grateful to K. Patalas and A. Salki for compiling and providing the dataset as well as Mark C. Urban and Luc De Meester and three anonymous referees for fruitful comments on earlier versions of this manuscript. R.H.-S. was supported by a FQRNT (Fonds Quebecois de Recherche Nature et Technologies, Quebec, Canada) team research project programme grant. B.P.-A. was supported by discovery grants from the National Science and Engineering Research Council (NSERC). P.R.P.-N. was supported by the Canada Research Chair in Spatial Modelling and Biodiversity and an NSERC discovery grant. ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; ANDERSON RS, 1971, J FISH RES BOARD CAN, V28, P311, DOI 10.1139/f71-043; Barnett AJ, 2007, FRESHWATER BIOL, V52, P796, DOI 10.1111/j.1365-2427.2007.01733.x; Baselga A, 2012, METHODS ECOL EVOL, V3, P808, DOI 10.1111/j.2041-210X.2012.00224.x; Baselga A, 2012, GLOBAL ECOL BIOGEOGR, V21, P1106, DOI 10.1111/j.1466-8238.2011.00753.x; Baselga A, 2010, GLOBAL ECOL BIOGEOGR, V19, P134, DOI 10.1111/j.1466-8238.2009.00490.x; Blanchet FG, 2008, ECOLOGY, V89, P2623, DOI 10.1890/07-0986.1; Blanchet S, 2013, GLOBAL ECOL BIOGEOGR, V22, P1083, DOI 10.1111/geb.12074; Courchamp F, 1999, TRENDS ECOL EVOL, V14, P405, DOI 10.1016/S0169-5347(99)01683-3; Decaestecker E, 2009, LOST SEX: THE EVOLUTIONARY BIOLOGY OF PARTHENOGENESIS, P295, DOI 10.1007/978-90-481-2770-2_15; DesMeester L., 2002, ACTA OECOL, V23, P121, DOI [10.1016/S1146-609X(02)01145-1, DOI 10.1016/S1146-609X(02)01145-1]; DesMeester L., 2016, TRENDS ECOL EVOL, V31, P136; Dufresne F, 1997, P ROY SOC B-BIOL SCI, V264, P201, DOI 10.1098/rspb.1997.0028; Dynesius M, 2000, P NATL ACAD SCI USA, V97, P9115, DOI 10.1073/pnas.97.16.9115; Figuerola J, 2005, AM NAT, V165, P274, DOI 10.1086/427092; Fox J., 2011, R COMPANION APPL REG; Francis AP, 2003, AM NAT, V161, P523, DOI 10.1086/368223; Frisch D, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040205; Fukami T, 2015, ANNU REV ECOL EVOL S, V46, P1, DOI 10.1146/annurev-ecolsys-110411-160340; Gaston KJ, 2009, P R SOC B, V276, P1395, DOI 10.1098/rspb.2008.1480; Gray DK, 2012, J APPL ECOL, V49, P1216, DOI 10.1111/j.1365-2664.2012.02203.x; Gross J., 2015, 5 OMNIBUS TESTS COMP; Grossenbacher D, 2015, ECOL LETT, V18, P706, DOI 10.1111/ele.12449; Guisande C, 2003, OECOLOGIA, V136, P627, DOI 10.1007/s00442-003-1306-4; Havel JE, 2004, LIMNOL OCEANOGR, V49, P1229, DOI 10.4319/lo.2004.49.4_part_2.1229; Hawkins BA, 2003, ECOLOGY, V84, P3105, DOI 10.1890/03-8006; Hebert PDN, 2007, LIMNOL OCEANOGR, V52, P2507, DOI 10.4319/lo.2007.52.6.2507; HEBERT PDN, 1986, CAN J FISH AQUAT SCI, V43, P1416, DOI 10.1139/f86-175; Hessen DO, 2007, ECOGRAPHY, V30, P749, DOI 10.1111/j.2007.0906-7590.05259.x; Hillebrand H, 2004, AM NAT, V163, P192, DOI 10.1086/381004; Holt RD, 2011, AM NAT, V178, pS6, DOI 10.1086/661784; Hortal J, 2011, ECOL LETT, V14, P741, DOI 10.1111/j.1461-0248.2011.01634.x; Hothorn T., 2014, TESTING LINEAR REGRE; Jeffery NW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018364; Kramer AM, 2008, ECOLOGY, V89, P2760, DOI 10.1890/07-1505.1; Kubisch A, 2014, OIKOS, V123, P5, DOI 10.1111/j.1600-0706.2013.00706.x; Leibold MA, 2010, ECOL LETT, V13, P1290, DOI 10.1111/j.1461-0248.2010.01523.x; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; Louette G, 2007, OIKOS, V116, P419, DOI 10.1111/j.2006.0030-1299.15381.x; Marquet P. A., 2004, FRONTIERS BIOGEOGRAP; Mazaris AD, 2010, J BIOGEOGR, V37, P1341, DOI 10.1111/j.1365-2699.2010.02294.x; Mittelbach GG, 2007, ECOL LETT, V10, P315, DOI 10.1111/j.1461-0248.2007.01020.x; PALMER MW, 1990, ECOLOGY, V71, P1195, DOI 10.2307/1937387; Pantel JH, 2015, ECOL LETT, V18, P992, DOI 10.1111/ele.12480; PATALAS K, 1990, INT VER THEOR ANGEW, V24, P360; Patalas K., 1994, CANADIAN TECHNICAL R, VDepartment of Fisheries and Oceans, Central and Arctic Region; Pine-Alloul Bemadette, 2007, P203, DOI 10.1007/978-1-4020-6216-2_8; Pinel-Alloul B, 2013, GLOBAL ECOL BIOGEOGR, V22, P784, DOI 10.1111/geb.12041; PINELALLOUL B, 1995, HYDROBIOLOGIA, V300, P17; Quinn RM, 1996, OECOLOGIA, V107, P179, DOI 10.1007/BF00327901; Rahbek C, 2005, ECOL LETT, V8, P224, DOI 10.1111/j.1461-0248.2004.00701.x; Rapoport E. H., 1975, AREOGRAFIA ESTRATEGI; Santer B, 2006, ARCH HYDROBIOL, V167, P301, DOI 10.1127/0003-9136/2006/0167-0301; Sexton JP, 2009, ANNU REV ECOL EVOL S, V40, P415, DOI 10.1146/annurev.ecolsys.110308.120317; Shaw AK, 2015, AM NAT, V185, P631, DOI 10.1086/680511; Shurin JB, 2000, ECOLOGY, V81, P3062, DOI 10.1890/0012-9658(2000)081[3062:LARZSR]2.0.CO;2; Shurin JB, 2007, ECOL LETT, V10, P127, DOI 10.1111/j.1461-0248.2006.01009.x; Stemberger RS, 1995, CAN J FISH AQUAT SCI, V52, P2197, DOI 10.1139/f95-812; STEVENS GC, 1989, AM NAT, V133, P240, DOI 10.1086/284913; Sun XY, 2016, PALAEOWORLD, V25, P303, DOI 10.1016/j.palwor.2015.02.003; TASH JC, 1967, ECOLOGY, V48, P129, DOI 10.2307/1933424; Urban MC, 2009, P R SOC B, V276, P4129, DOI 10.1098/rspb.2009.1382; US Geological Survey, 2012, HYDRO1K; VansDoorslaer W., 2009, GLOBAL CHANGE BIOL, V15, P3046; Vavrek M.J., 2011, PALAEONTOL ELECTRON, V14, P1; Vogt RJ, 2013, OIKOS, V122, P1700, DOI 10.1111/j.1600-0706.2013.00039.x 66 8 8 2 17 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1466-822X 1466-8238 GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. DEC 2016 25 12 1454 1465 10.1111/geb.12505 12 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography EB9YA WOS:000387752800005 2019-02-21 J Mondy, CP; Munoz, I; Doledec, S Mondy, Cedric P.; Munoz, Isabel; Doledec, Sylvain Life-history strategies constrain invertebrate community tolerance to multiple stressors: A case study in the Ebro basin SCIENCE OF THE TOTAL ENVIRONMENT English Article Aquatic invertebrates; Trait combinations; Habitat template; Boosted regression trees; Mediterranean streams; Water scarcity STREAM MACROINVERTEBRATE COMMUNITIES; FRESH-WATER MACROINVERTEBRATES; LARGE EUROPEAN RIVERS; BIOLOGICAL TRAITS; SPECIES TRAITS; AQUATIC ECOSYSTEMS; HABITAT; SEDIMENT; ECOLOGY; TEMPLET Context: Multiple stressors constitute a serious threat to aquatic ecosystems, particularly in the Mediterranean region where water scarcity is likely to interact with other anthropogenic stressors. Biological traits potentially allow the unravelling of the effects of multiple stressors. However, thus far, trait-based approaches have failed to fully deliver on their promise and still lack strong predictive power when multiple stressors are present. Goal: We aimed to quantify specific community tolerances against six anthropogenic stressors and investigate the responses of the underlying macroinvertebrate biological traits and their combinations. Methods: We built and calibrated boosted regression tree models to predict community tolerances using multiple biological traits with a priori hypotheses regarding their individual responses to specific stressors. We analysed the combinations of traits underlying community tolerance and the effect of trait association on this tolerance. Results: Our results validated the following three hypotheses: (i) the community tolerance models efficiently and robustly related trait combinations to stressor intensities and, to a lesser extent, to stressors related to the presence of dams and insecticides; (ii) the effects of traits on community tolerance not only depended on trait identity but also on the trait associations emerging at the community level from the co-occurrence of different traits in species; and (iii) the community tolerances and the underlying trait combinations were specific to the different stressors. Conclusion: This study takes a further step towards predictive tools in community ecology that consider combinations and associations of traits as the basis of stressor tolerance. Additionally, the community tolerance concept has potential application to help stream managers in the decision process regarding management options. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. [Mondy, Cedric P.; Doledec, Sylvain] Univ Lyon 1, LEHNA, UMR 5023, Biodiversite & Plasticite Hydrosyst, Villeurbanne, France; [Munoz, Isabel] Univ Barcelona, Dept Ecol, Barcelona, Spain Mondy, CP (reprint author), Univ Lyon 1, LEHNA, UMR 5023, Biodiversite & Plasticite Hydrosyst, Villeurbanne, France. cedric.mondy@gmail.com Mondy, Cedric/0000-0003-2788-0936; Munoz, Isabel/0000-0001-8110-9435 European Communities 7th Framework Program [603629-ENV-2013-6.2.1-Globaqua] This work has been supported by the European Communities 7th Framework Program Funding under Grant agreement no. 603629-ENV-2013-6.2.1-Globaqua. AHRENS WH, 1990, WEED SCI, V38, P452; Arce E, 2014, FRESHW SCI, V33, P1060, DOI 10.1086/678673; Archaimbault V, 2010, FRESHWATER BIOL, V55, P1430, DOI 10.1111/j.1365-2427.2009.02281.x; Baird DJ, 2007, ECOTOX ENVIRON SAFE, V67, P296, DOI 10.1016/j.ecoenv.2006.07.001; Bonada N, 2006, ANNU REV ENTOMOL, V51, P495, DOI 10.1146/annurev.ento.51.110104.151124; Bonada N, 2004, ENVIRON POLLUT, V132, P509, DOI 10.1016/j.envpol.2004.05.006; Bonada N, 2011, LIMNETICA, V30, P129; Bonada N, 2007, HYDROBIOLOGIA, V589, P91, DOI 10.1007/s10750-007-0723-5; Bonada N, 2007, GLOBAL CHANGE BIOL, V13, P1658, DOI 10.1111/j.1365-2486.2007.01375.x; Brabec K, 2004, HYDROBIOLOGIA, V516, P331, DOI 10.1023/B:HYDR.0000025274.47757.85; Brack W, 2015, SCI TOTAL ENVIRON, V503, P22, DOI 10.1016/j.scitotenv.2014.05.143; Brandt SA, 2000, CATENA, V40, P375, DOI 10.1016/S0341-8162(00)00093-X; Buendia C, 2013, ECOL INDIC, V25, P184, DOI 10.1016/j.ecolind.2012.09.027; CHEVENET F, 1994, FRESHWATER BIOL, V31, P295, DOI 10.1111/j.1365-2427.1994.tb01742.x; CLIFFORD HUGH F., 1966, INVEST INDIANA LAKES STREAMS, V7, P57; Coats JR, 2012, INSECTICIDE MODE ACT; Core Team R, 2016, R LANG ENV STAT COMP; Crain CM, 2008, ECOL LETT, V11, P1304, DOI 10.1111/j.1461-0248.2008.01253.x; Dewson ZS, 2007, J N AM BENTHOL SOC, V26, P401, DOI 10.1899/06-110.1; Doledec S, 2006, J N AM BENTHOL SOC, V25, P44, DOI 10.1899/0887-3593(2006)25[44:COSAFA]2.0.CO;2; Doledec S, 1999, FRESHWATER BIOL, V42, P737, DOI 10.1046/j.1365-2427.1999.00509.x; Doledec S, 2008, FRESHWATER BIOL, V53, P617, DOI 10.1111/j.1365-2427.2007.01924.x; Elith J, 2008, J ANIM ECOL, V77, P802, DOI 10.1111/j.1365-2656.2008.01390.x; ETC/ICM, 2012, 12012 ETCICM; European Environment Agency (EEA), 2012, 82012 EEA; Gayraud S, 2003, FRESHWATER BIOL, V48, P2045, DOI 10.1046/j.1365-2427.2003.01139.x; HARPER PP, 1970, ECOLOGY, V51, P925; Hering D, 2015, SCI TOTAL ENVIRON, V503, P10, DOI 10.1016/j.scitotenv.2014.06.106; Hering D, 2010, SCI TOTAL ENVIRON, V408, P4007, DOI 10.1016/j.scitotenv.2010.05.031; Ings TC, 2009, J ANIM ECOL, V78, P253, DOI 10.1111/j.1365-2656.2008.01460.x; Kuster EC, 2008, J ECOL, V96, P860, DOI 10.1111/j.1365-2745.2008.01406.x; Lange K, 2014, FRESHWATER BIOL, V59, P2431, DOI 10.1111/fwb.12437; Lawton JH, 1999, OIKOS, V84, P177, DOI 10.2307/3546712; Lessard JL, 2003, RIVER RES APPL, V19, P721, DOI 10.1002/rra.713; Liess M, 2005, ENVIRON TOXICOL CHEM, V24, P954, DOI 10.1897/03-652.1; Ludwig R, 2011, ENVIRON SCI POLICY, V14, P794, DOI 10.1016/j.envsci.2011.04.003; Malaj E, 2014, P NATL ACAD SCI USA, V111, P9549, DOI 10.1073/pnas.1321082111; Diaz AM, 2008, FRESHWATER BIOL, V53, P1, DOI 10.1111/j.1365-2427.2007.01854.x; Mondy CP, 2013, SCI TOTAL ENVIRON, V461, P750, DOI 10.1016/j.scitotenv.2013.05.072; Mondy CP, 2012, ECOL INDIC, V18, P452, DOI 10.1016/j.ecolind.2011.12.013; MUNOZ I, 1989, Regulated Rivers Research and Management, V3, P345, DOI 10.1002/rrr.3450030132; Navarro-Ortega A, 2015, SCI TOTAL ENVIRON, V503, P3, DOI 10.1016/j.scitotenv.2014.06.081; Ormerod SJ, 2010, FRESHWATER BIOL, V55, P1, DOI 10.1111/j.1365-2427.2009.02395.x; Oudin LC, 2003, SYSTEME EVALUATION Q; Pardo Isabel, 2002, Limnetica, V21, P115; Pollard AI, 2010, FRESHWATER BIOL, V55, P1420, DOI 10.1111/j.1365-2427.2009.02235.x; Rabeni CF, 2005, AQUAT SCI, V67, P395, DOI 10.1007/s00027-005-0793-2; RESH VH, 1994, FRESHWATER BIOL, V31, P539, DOI 10.1111/j.1365-2427.1994.tb01756.x; Sabater S, 2009, RIVERS OF EUROPE, 1ST EDITION, P113, DOI 10.1016/B978-0-12-369449-2.00004-7; Sarriquet PE, 2007, RIVER RES APPL, V23, P815, DOI 10.1002/rra.1013; Schafer RB, 2011, ENVIRON SCI TECHNOL, V45, P1665, DOI 10.1021/es103227q; Scheiner SM, 2008, THEOR ECOL, V1, P21, DOI 10.1007/s12080-007-0002-0; Singer MB, 2007, RIVER RES APPL, V23, P55, DOI 10.1002/rra.968; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SPRAGUE JB, 1970, WATER RES, V4, P3, DOI 10.1016/0043-1354(70)90018-7; Statzner B, 1997, FRESHWATER BIOL, V38, P109, DOI 10.1046/j.1365-2427.1997.00195.x; Statzner B, 2007, BIODIVERS CONSERV, V16, P3609, DOI 10.1007/s10531-007-9150-1; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Townsend CR, 2008, J APPL ECOL, V45, P1810, DOI 10.1111/j.1365-2664.2008.01548.x; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Usseglio-Polatera P, 2010, INVERTEBRES EAU DOUC; Usseglio-Polatera Philippe, 2001, Archiv fuer Hydrobiologie Supplement, V139, P53; Van Looy K, 2014, ECOL INDIC, V37, P10, DOI 10.1016/j.ecolind.2013.10.006; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Von Der Ohe PC, 2004, ENVIRON TOXICOL CHEM, V23, P150; Wooster DE, 2012, RIVER RES APPL, V28, P1630, DOI 10.1002/rra.1555 69 11 11 2 22 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0048-9697 1879-1026 SCI TOTAL ENVIRON Sci. Total Environ. DEC 1 2016 572 196 206 10.1016/j.scitotenv.2016.07.227 11 Environmental Sciences Environmental Sciences & Ecology EC0RA WOS:000387807200021 27498381 Other Gold 2019-02-21 J Loehle, C Loehle, Craig Biomechanical constraints on tree architecture TREES-STRUCTURE AND FUNCTION English Article Allocation; Allometry; Biomechanics; Crown shape; Evolution; Mechanical support; Mortality; Wind EFFECTIVE LEAF AREA; PIPE MODEL-THEORY; TERMINALIA-BRANCHING PATTERN; CROWN ARCHITECTURE; LIGHT INTERCEPTION; SIMULATION-MODEL; WIND DAMAGE; FOREST; GEOMETRY; GROWTH Mechanical properties of wood constrain most conifers to an excurrent form and limit the width of tree crowns. Development of support tissue alters allometric relations during ontogeny. Biomechanical constraints on tree architecture are explored. Torque on a tree branch is a multiplicative function of mass and moment arm. As such, the need for support rises faster than branch length, which leads to increased taper as branch size increases. This violates assumptions of models, such as the pipe-model theory, for large trees and causes changing allometry with tree size or exposure. Thus, assumptions about optimal design for light capture, self-similarity, or optimal hydraulic architecture need to be modified to account for mechanical constraints and costs. In particular, it is argued that mechanical limitations of compression wood in conifers prevent members of this taxon from developing large branches. With decurrent form ruled out (for larger species), only a conical or excurrent form can develop. Wind is shown to be a major mortality risk for trees. Adaptations for wind include dynamic responses of wood properties and height. It is argued that an adaptation to wind could be the development of an open crown in larger trees to let the wind penetrate, thereby reducing wind-throw risk. It is thus argued that crown shape and branching may result not just from optimal light capture considerations but also from adaptation to and response to wind as well as from mechanical constraints. Results have implications for allometric theory, life history theory, and simulations of tree architecture. [Loehle, Craig] Natl Council Air & Stream Improvement Inc, 1258 Windemere Ave, Naperville, IL 60564 USA Loehle, C (reprint author), Natl Council Air & Stream Improvement Inc, 1258 Windemere Ave, Naperville, IL 60564 USA. cloehle@ncasi.org Almeras T, 2005, TREES-STRUCT FUNCT, V19, P457, DOI 10.1007/s00468-005-0407-6; Almeras T, 2004, ANN BOT-LONDON, V93, P455, DOI 10.1093/aob/mch054; Almeras T, 2009, J THEOR BIOL, V256, P370, DOI 10.1016/j.jtbi.2008.10.011; Almeras T, 2009, J EXP BOT, V60, P4397, DOI 10.1093/jxb/erp276; Ancelin P, 2004, FOREST ECOL MANAG, V203, P101, DOI 10.1016/j.foreco.2004.07.067; Anderson-Teixeira KJ, 2015, FUNCT ECOL, V29, P1587, DOI 10.1111/1365-2435.12470; Antin C, 2013, TREES-STRUCT FUNCT, V27, P1485, DOI 10.1007/s00468-013-0896-7; Bao FC, 2001, WOOD SCI TECHNOL, V35, P363, DOI 10.1007/s002260100099; Bentley LP, 2013, ECOL LETT, V16, P1069, DOI 10.1111/ele.12127; BORCHERT R, 1984, AM J BOT, V71, P958, DOI 10.2307/2443666; BORCHERT R, 1981, BOT GAZ, V142, P394, DOI 10.1086/337238; Chiba Y, 1998, ECOL MODEL, V108, P219, DOI 10.1016/S0304-3800(98)00030-1; Coutand C, 2014, TREES-STRUCT FUNCT, V28, P687, DOI 10.1007/s00468-014-0981-6; Dean TJ, 2002, TREES-STRUCT FUNCT, V16, P559, DOI 10.1007/s00468-002-0208-0; Eloy C, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.258101; Enquist BJ, 2002, TREE PHYSIOL, V22, P1045, DOI 10.1093/treephys/22.15-16.1045; FARNSWORTH KD, 1995, FUNCT ECOL, V9, P355, DOI 10.2307/2389997; FISHER JB, 1979, AM J BOT, V66, P645, DOI 10.2307/2442409; FISHER JB, 1982, AM J BOT, V69, P690, DOI 10.2307/2442959; FISHER JB, 1981, BOT GAZ, V142, P82, DOI 10.1086/337199; FISHER JB, 1979, AM J BOT, V66, P633, DOI 10.2307/2442408; FISHER JB, 1992, INT J PLANT SCI, V153, pS137, DOI 10.1086/297071; FRANKLIN JF, 1988, CAN J FOREST RES, V18, P633, DOI 10.1139/x88-093; FRANKLIN JF, 1987, BIOSCIENCE, V37, P550, DOI 10.2307/1310665; Gehring E, 2015, TREES-STRUCT FUNCT, V29, P321, DOI 10.1007/s00468-014-1093-z; Godin C, 1999, ANN BOT-LONDON, V84, P343, DOI 10.1006/anbo.1999.0923; Greenberg CH, 1998, FOREST ECOL MANAG, V104, P179, DOI 10.1016/S0378-1127(97)00246-6; Greenhill G, 1881, P CAMBRIDGE PHILOS S, V4, P65; Groover A, 2016, NEW PHYTOL, V211, P790, DOI 10.1111/nph.13968; Hamant O, 2013, CURR OPIN PLANT BIOL, V16, P654, DOI 10.1016/j.pbi.2013.06.006; Hamant O, 2010, NEW PHYTOL, V185, P369, DOI 10.1111/j.1469-8137.2009.03100.x; HARCOMBE PA, 1983, OECOLOGIA, V57, P49, DOI 10.1007/BF00379561; HONDA H, 1978, SCIENCE, V199, P888, DOI 10.1126/science.199.4331.888; HORN H S, 1971, P144; Kane B, 2014, TREES-STRUCT FUNCT, V28, P151, DOI 10.1007/s00468-013-0938-1; KING DA, 1986, ECOLOGY, V67, P980, DOI 10.2307/1939821; KING DA, 1990, AM NAT, V135, P809, DOI 10.1086/285075; Loehle C, 2000, AM NAT, V156, P14, DOI 10.1086/303369; Loehle C, 1996, OIKOS, V75, P299, DOI 10.2307/3546253; LOEHLE C, 1986, AM MIDL NAT, V116, P190, DOI 10.2307/2425951; Mandelbrot B. B., 1983, FRACTAL GEOMETRY NAT; Mandelbrot BB, 1978, GEOMETRICAL PROBABIL, P235; MCMAHON TA, 1976, J THEOR BIOL, V59, P443, DOI 10.1016/0022-5193(76)90182-X; Niklas KJ, 1998, REV PALAEOBOT PALYNO, V102, P1, DOI 10.1016/S0034-6667(98)00011-6; NIKLAS KJ, 1991, AM J BOT, V78, P989, DOI 10.2307/2445178; NIKLAS KJ, 1995, ANN BOT-LONDON, V75, P217, DOI 10.1006/anbo.1995.1015; Nishimura TB, 2005, FOREST ECOL MANAG, V215, P295, DOI 10.1016/j.foreco.2005.05.018; Ogawa K, 2015, TREES-STRUCT FUNCT, V29, P695, DOI 10.1007/s00468-014-1147-2; Pearcy RW, 2005, NEW PHYTOL, V166, P791, DOI 10.1111/j.1469-8137.2005.01328.x; Perttunen J, 2005, ECOL MODEL, V181, P479, DOI 10.1016/j.ecolmodel.2004.06.034; Peterson CJ, 2007, FOREST ECOL MANAG, V250, P96, DOI 10.1016/j.foreco.2007.03.013; Peterson CJ, 2000, FOREST ECOL MANAG, V135, P237, DOI 10.1016/S0378-1127(00)00283-8; Pittermann J, 2006, PLANT CELL ENVIRON, V29, P1618, DOI 10.1111/1365-3040.2006.01539.x; Pot G, 2014, TREES-STRUCT FUNCT, V28, P1235, DOI 10.1007/s00468-014-1033-y; Raulier F, 1996, CAN J FOREST RES, V26, P1742, DOI 10.1139/x26-198; Read J, 2006, AM J BOT, V93, P1546, DOI 10.3732/ajb.93.10.1546; Richter JP, 1880, NOTEBOOKS L DAVINCI; Roden JS, 2003, TREES-STRUCT FUNCT, V17, P117, DOI 10.1007/s00468-002-0213-3; Rouvinen S, 1997, CAN J FOREST RES, V27, P890, DOI 10.1139/cjfr-27-6-890; Scott RE, 2005, FOREST ECOL MANAG, V218, P193, DOI 10.1016/j.foreco.2005.07.012; Shinozaki K., 1964, JAPANESE J ECOL, V14, P97, DOI DOI 10.18960/SEITAI.14.3_97; Shinozaki K, 1964, JAPANESE J ECOL, V14, P133; Sievanen R, 2000, ANN FOREST SCI, V57, P399; Sillett SC, 2015, ECOL MONOGR, V85, P181, DOI 10.1890/14-1016.1; Skatter S, 2000, FOREST ECOL MANAG, V135, P97, DOI 10.1016/S0378-1127(00)00301-7; Smith DD, 2014, NEW PHYTOL, V201, P217, DOI 10.1111/nph.12487; SMITH WK, 1994, AM NAT, V143, P528, DOI 10.1086/285618; Sperry JS, 2008, PLANT CELL ENVIRON, V31, P632, DOI 10.1111/j.1365-3040.2007.01765.x; Stathers R. J., 1994, WINDTHROW HDB BRIT C; TAKENAKA A, 1994, J PLANT RES, V107, P321, DOI 10.1007/BF02344260; TOMLINSON PB, 1987, ANNU REV ECOL SYST, V18, P1; VOGEL S, 1989, J EXP BOT, V40, P941, DOI 10.1093/jxb/40.8.941; Vogel S, 2007, J BIOSCIENCES, V32, P643, DOI 10.1007/s12038-007-0064-6; Yamazaki K, 2011, BIOL J LINN SOC, V104, P738, DOI 10.1111/j.1095-8312.2011.01776.x; Yang XD, 2015, TREES-STRUCT FUNCT, V29, P43, DOI 10.1007/s00468-014-1054-6; Zeide B, 1998, CAN J FOREST RES, V28, P106, DOI 10.1139/cjfr-28-1-106 76 0 0 5 37 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0931-1890 1432-2285 TREES-STRUCT FUNCT Trees-Struct. Funct. DEC 2016 30 6 2061 2070 10.1007/s00468-016-1433-2 10 Forestry Forestry EB9NX WOS:000387723300014 2019-02-21 J Kuan, SH Kuan, Shu-Hui Metamorphic strategies of the Indian rice frog, Fejervarya limnocharis, in response to irrigation regimes TAIWANIA English Article ANURAN LARVAL GROWTH; LIFE-HISTORY; RANA-TEMPORARIA; PHENOTYPIC PLASTICITY; NATURAL-SELECTION; TEMPERATURE; TADPOLES; SIZE; PERFORMANCE; FITNESS Organisms gain benefits from phenotypic plasticity by possessing traits better cope with environmental variations. Although cohort-dependent life-history strategy may be ubiquitous in amphibians, it is rarely studied. I investigated whether Indian rice frog, Fejervarya limnocharis, populations from cultivated fields with different irrigation regimes have differential cohort-dependent metamorphic strategies. I tested the hypothesis that populations inhabiting temporally disrupted breeding habitats would, while populations inhabiting temporally constant breeding habitats would not show cohort-dependent metamorphic strategies in response to seasonal temperature variation. I assessed cohort-dependent strategies by comparing metamorphic weight, age, and growth rate between spring and summer cohorts in response to low and high temperatures in a factorial common garden experiment. The results showed that the plasticity of metamorphic weight and age were both very extensive in the Indian rice frog. Tadpoles from disrupted irrigation (rice paddy) populations had cohort-dependent metamorphic strategies. In contrast, tadpoles from constant irrigation (water bamboo field) populations did not show cohort-dependent metamorphic strategies. More research on cohort-dependent life-history traits is badly needed to further our understanding the evolution of life history strategies. [Kuan, Shu-Hui] Natl Taiwan Univ, Inst Ecol & Evolutionary Biol, 1,Sect 4,Roosevelt Rd, Taipei 10617, Taiwan Kuan, SH (reprint author), Natl Taiwan Univ, Inst Ecol & Evolutionary Biol, 1,Sect 4,Roosevelt Rd, Taipei 10617, Taiwan. d94b44004@ntu.edu.tw Alexander P.S., 1979, Journal of Asian Ecology, V1, P68; Altwegg R, 2003, EVOLUTION, V57, P872; Alvarez D, 2002, FUNCT ECOL, V16, P640, DOI 10.1046/j.1365-2435.2002.00658.x; Atkinson D, 1996, OIKOS, V77, P359, DOI 10.2307/3546078; Beck CW, 2000, FUNCT ECOL, V14, P32, DOI 10.1046/j.1365-2435.2000.00386.x; BERVEN KA, 1979, EVOLUTION, V33, P609, DOI 10.1111/j.1558-5646.1979.tb04714.x; BERVEN KA, 1983, AM ZOOL, V23, P85; Blouin MS, 2000, OECOLOGIA, V125, P358, DOI 10.1007/s004420000458; Cabrera-Guzman E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070121; Castaneda LE, 2006, PHYSIOL BIOCHEM ZOOL, V79, P919, DOI 10.1086/506006; Chuang M.F.A., 2006, THESIS; Gosner K. L., 1960, Herpetologica, V16, P183; HARKEY GA, 1988, COPEIA, P1001; Hsu JL, 2012, HERPETOLOGICA, V68, P184; Kaplan RH, 2006, EVOLUTION, V60, P142; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; Kuan SH, 2011, J ZOOL, V285, P165, DOI 10.1111/j.1469-7998.2011.00836.x; Kuan S.-H., 2016, THESIS; Lai Su-Ju, 2002, Acta Zoologica Taiwanica, V13, P11; Laugen AT, 2003, J EVOLUTION BIOL, V16, P996, DOI 10.1046/j.1420-9101.2003.00560.x; Liess A, 2013, J ANIM ECOL, V82, P1316, DOI 10.1111/1365-2656.12107; Lind MI, 2007, J EVOLUTION BIOL, V20, P1288, DOI 10.1111/j.1420-9101.2007.01353.x; Lind M.I., 2009, THESIS; Merila J, 2004, EVOL ECOL RES, V6, P727; Miner BG, 2005, TRENDS ECOL EVOL, V20, P685, DOI 10.1016/j.tree.2005.08.002; Mogali SM, 2011, CURR SCI INDIA, V101, P1219; Morey S, 2001, ECOLOGY, V82, P510, DOI 10.2307/2679876; NEWMAN RA, 1994, COPEIA, P372; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; POUGH FH, 1984, OECOLOGIA, V65, P138, DOI 10.1007/BF00384476; Relyea RA, 2007, OECOLOGIA, V152, P389, DOI 10.1007/s00442-007-0675-5; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; SINSCH U, 1988, OECOLOGIA, V76, P399, DOI 10.1007/BF00377035; Stahlberg F, 2001, J EVOLUTION BIOL, V14, P755, DOI 10.1046/j.1420-9101.2001.00333.x; Watkins TB, 2006, PHYSIOL BIOCHEM ZOOL, V79, P140, DOI 10.1086/498182; Wells K.D., 2007, ECOLOGY BEHAV AMPHIB, P559 37 0 0 1 1 NATL TAIWAN UNIV PRESS TAIPEI NO 1 SECTION 4, ROOSEVELT RD, TAIPEI, 106, TAIWAN 0372-333X TAIWANIA Taiwania DEC 2016 61 4 271 278 10.6165/tai.2016.61.271 8 Plant Sciences; Horticulture Plant Sciences; Agriculture EE9SE WOS:000389965700001 DOAJ Gold 2019-02-21 J Bradley, BJ; Snowdon, CT; McGrew, WC; Lawler, RR; Guevara, EE; McIntosh, A; O'Connor, T Bradley, Brenda J.; Snowdon, Charles T.; McGrew, William C.; Lawler, Richard R.; Guevara, Elaine E.; McIntosh, Annick; O'Connor, Timothy Non-human primates avoid the detrimental effects of prenatal androgen exposure in mixed-sex litters: combined demographic, behavioral, and genetic analyses AMERICAN JOURNAL OF PRIMATOLOGY English Article aromatase; callitrichid; CYP19A1; strepsirrhine; testosterone; twins TWINS REDUCE FITNESS; COTTON-TOP TAMARINS; FEMALE CO-TWINS; SAGUINUS-OEDIPUS; AMNIOTIC-FLUID; OPPOSITE-SEX; EVOLUTION; SIZE; AROMATASE; NUMBER Producing single versus multiple births has important life history trade-offs, including the potential benefits and risks of sharing a common in utero environment. Sex hormones can diffuse through amniotic fluid and fetal membranes, and females with male littermates risk exposure to high levels of fetal testosterone, which are shown to have masculinizing effects and negative fitness consequences in many mammals. Whereas most primates give birth to single offspring, several New World monkey and strepsirrhine species regularly give birth to small litters. We examined whether neonatal testosterone exposure might be detrimental to females in mixed-sex litters by compiling data from long-term breeding records for seven primate species (Saguinus oedipus; Varecia variegata, Varecia rubra, Microcebus murinis, Mirza coquereli, Cheirogaleus medius, Galago moholi). Litter sex ratios did not differ from the expected 1:2:1 (MM:MF:FF for twins) and 1:2:2:1 (MMM:MMF:MFF:FFF for triplets). Measures of reproductive success, including female survivorship, offspring-survivorship, and inter-birth interval, did not differ between females born in mixed-sex versus all-female litters, indicating that litter-producing non-human primates, unlike humans and rodents, show no signs of detrimental effects from androgen exposure in mixed sex litters. Although we found no evidence for CYP19A1 gene duplicationsa hypothesized mechanism for coping with androgen exposurearomatase protein evolution shows patterns of convergence among litter-producing taxa. That some primates have effectively found a way to circumvent a major cost of multiple births has implications for understanding variation in litter size and life history strategies across mammals. [Bradley, Brenda J.] George Washington Univ, Dept Anthropol, Washington, DC USA; [Bradley, Brenda J.; Guevara, Elaine E.; McIntosh, Annick] Yale Univ, Dept Anthropol, New Haven, CT 06520 USA; [Snowdon, Charles T.] Univ Wisconsin, Dept Psychol, 1202 W Johnson St, Madison, WI 53706 USA; [McGrew, William C.] Univ Cambridge, Dept Archaeol & Anthropol, Cambridge, England; [Lawler, Richard R.] James Madison Univ, Dept Sociol & Anthropol, Harrisonburg, VA 22807 USA; [O'Connor, Timothy] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA; [O'Connor, Timothy] Univ Maryland, Sch Med, Program Personalized & Genom Med, Baltimore, MD 21201 USA; [O'Connor, Timothy] Univ Maryland, College Pk, MD 20742 USA Bradley, BJ (reprint author), George Washington Univ, Sci & Engn Hall,Suite 6000 CASHP,800 22nd NW, Washington, DC 20052 USA. bradleyjbrenda@gwu.edu Guevara, Elaine/0000-0003-1480-474X; O'Connor, Timothy/0000-0002-0276-1896 Yale Institute for Biospheric Studies - Program in Reproductive Ecology; Yale Reproductive Ecology Laboratory; USPHS [MH 029775, MH 035215] This research was supported by Yale Institute for Biospheric Studies - Program in Reproductive Ecology, Yale Reproductive Ecology Laboratory and USPHS MH 029775 and MH 035215. Adzhubei IA, 2010, NAT METHODS, V7, P248, DOI 10.1038/nmeth0410-248; Ahrenfeldt L, 2015, HORM BEHAV, V69, P123, DOI 10.1016/j.yhbeh.2015.01.007; Altschul SF, 1998, TRENDS BIOCHEM SCI, V23, P444, DOI 10.1016/S0968-0004(98)01298-5; [Anonymous], 2015, DUK LEM CTR DAT; Baden AL, 2013, BEHAV ECOL SOCIOBIOL, V67, P1939, DOI 10.1007/s00265-013-1601-y; Bromberg Y, 2007, NUCLEIC ACIDS RES, V35, P3823, DOI 10.1093/nar/gkm238; Brown GR, 2002, P NATL ACAD SCI USA, V99, P11252, DOI 10.1073/pnas.162360599; Carlson B. M., 2014, HUMAN EMBRYOLOGY DEV, P520; Chiang EFL, 2001, J EXP ZOOL, V290, P709, DOI 10.1002/jez.1121; CLARK MM, 1991, PHYSIOL BEHAV, V49, P239, DOI 10.1016/0031-9384(91)90038-P; CLARK MM, 1992, ANIM BEHAV, V43, P215, DOI 10.1016/S0003-3472(05)80217-9; CLUTTONBROCK TH, 1986, Q REV BIOL, V61, P339, DOI 10.1086/415033; COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037//0033-2909.112.1.155; Conrad DF, 2010, NATURE, V464, P704, DOI 10.1038/nature08516; Corbin CJ, 2003, MOL CELL ENDOCRINOL, V206, P147, DOI 10.1016/S0303-7207(02)00422-7; Curtis JT, 2010, PHYSIOL BEHAV, V101, P93, DOI 10.1016/j.physbeh.2010.04.020; EVEN MD, 1992, J REPROD FERTIL, V96, P709; Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146; FRENCH JA, 1984, ANIM BEHAV, V32, P615, DOI 10.1016/S0003-3472(84)80299-7; French JA, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2013.0084; French JA, 2013, AM J PRIMATOL, V75, P212, DOI 10.1002/ajp.22077; Gaucher EA, 2004, BMC BIOL, V2, DOI 10.1186/1741-7007-2-19; Ginther AJ, 2002, BIOL REPROD, V66, P282, DOI 10.1095/biolreprod66.2.282; Ginther AJ, 2001, ANIM BEHAV, V61, P65, DOI 10.1006/anbe.2000.1587; Gish W., 1996, BLAST 2 0 WU BLAST; Gursky S. L., 2015, THE SPECTRAL TARSIER, P256; Harris RA, 2014, P NATL ACAD SCI USA, V111, P1467, DOI 10.1073/pnas.1316037111; Helle S, 2004, EVOLUTION, V58, P430, DOI 10.1111/j.0014-3820.2004.tb01658.x; HENIKOFF S, 1992, P NATL ACAD SCI USA, V89, P10915, DOI 10.1073/pnas.89.22.10915; Hunter J., 1779, PHILOS T ROY SOC LON, V69, P279; Husen B, 2003, BIOL REPROD, V68, P2092, DOI 10.1095/biolreprod.102.012476; Jaquish CE, 1996, J MED PRIMATOL, V25, P57, DOI 10.1111/j.1600-0684.1996.tb00194.x; JONES DT, 1992, COMPUT APPL BIOSCI, V8, P275; Kang JH, 2006, TOXICOLOGY, V226, P79, DOI 10.1016/j.tox.2006.06.009; Kappeler PM, 2016, INT J PRIMATOL, V37, P10, DOI 10.1007/s10764-015-9873-x; Kappeler PM, 1998, AM J PRIMATOL, V46, P7; Kearse M, 2012, BIOINFORMATICS, V28, P1647, DOI 10.1093/bioinformatics/bts199; Kent WJ, 2002, GENOME RES, V12, P656, DOI [10.1101/gr.229202, 10.1101/gr.229202. Article published online before March 2002]; Kiesling NMJ, 2015, MOL PHYLOGENET EVOL, V82, P386, DOI 10.1016/j.ympev.2014.03.027; Kontopoulos DG, 2013, COMPUT METH PROG BIO, V111, P711, DOI 10.1016/j.cmpb.2013.05.021; Korsten P, 2009, BIOL LETTERS, V5, P663, DOI 10.1098/rsbl.2009.0366; KRACKOW S, 1995, BIOL REV, V70, P225, DOI 10.1111/j.1469-185X.1995.tb01066.x; Kragie L, 2002, ENDOCR RES, V28, P121, DOI 10.1081/ERC-120015041; Kumar P, 2009, NAT PROTOC, V4, P1073, DOI 10.1038/nprot.2009.86; LEUTENEGGER W, 1979, AM NAT, V114, P525, DOI 10.1086/283499; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Luckett W., 1976, CONTRIB PRIMATOL, V3, P142; Lummaa V, 2007, P NATL ACAD SCI USA, V104, P10915, DOI 10.1073/pnas.0605875104; Martin R. D., 1990, PRIMATE ORIGINS EVOL, P804; McIntosh AM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047760; Medland SE, 2008, TWIN RES HUM GENET, V11, P481, DOI 10.1375/twin.11.5.481; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MILLER EM, 1994, PERS INDIV DIFFER, V17, P511, DOI 10.1016/0191-8869(94)90088-4; Mo ZP, 2012, CLIN CHEM LAB MED, V50, P649, DOI [10.1515/cclm.2011.833, 10.1515/CCLM.2011.833]; Monclus R, 2012, J ANIM ECOL, V81, P80, DOI 10.1111/j.1365-2656.2011.01888.x; Murrell B, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002764; Nadeau NJ, 2010, TRENDS GENET, V26, P484, DOI 10.1016/j.tig.2010.08.004; Nielsen R, 1998, GENETICS, V148, P929; Petty JMA, 2015, SCI REP-UK, V5, DOI 10.1038/srep09631; Pond SLK, 2005, MOL BIOL EVOL, V22, P1208, DOI 10.1093/molbev/msi105; Pond SLK, 2005, MOL BIOL EVOL, V22, P478, DOI 10.1093/molbev/msi031; Pond SLK, 2005, BIOINFORMATICS, V21, P676, DOI 10.1093/bioinformatics/bti079; Ross C, 2001, INT J PRIMATOL, V22, P749, DOI 10.1023/A:1012065332758; Ross CN, 2007, P NATL ACAD SCI USA, V104, P6278, DOI 10.1073/pnas.0607426104; Rutherford J. N., 2014, PLOS ONE, V9; Ryan BC, 2002, NEUROSCI BIOBEHAV R, V26, P665, DOI 10.1016/S0149-7634(02)00038-6; RYAN KJ, 1961, ENDOCRINOLOGY, V69, P613, DOI 10.1210/endo-69-3-613; Schultz AH, 1948, AM J PHYS ANTHROP-NE, V6, P1, DOI 10.1002/ajpa.1330060108; SHORT RV, 1970, PHILOS T ROY SOC B, V259, P141, DOI 10.1098/rstb.1970.0054; Sim NL, 2012, NUCLEIC ACIDS RES, V40, pW452, DOI 10.1093/nar/gks539; Springer MS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049521; Stajich JE, 2002, GENOME RES, V12, P1611, DOI 10.1101/gr.361602; Tapp AL, 2011, HORM BEHAV, V60, P713, DOI 10.1016/j.yhbeh.2011.08.011; Tardif SD, 1997, AM J PRIMATOL, V42, P323, DOI 10.1002/(SICI)1098-2345(1997)42:4<323::AID-AJP7>3.0.CO;2-Z; Tchoudakova A, 1998, ENDOCRINOLOGY, V139, P2179, DOI 10.1210/en.139.4.2179; Tietz N. W., 1976, FUNDAMENTALS CLIN CH, P1917; Vom Saal F. S., 1983, HORMONES BEHAVIOR HI, P159; VOMACHKA AJ, 1986, HORM BEHAV, V20, P181, DOI 10.1016/0018-506X(86)90016-4; Weber KS, 2001, DEV BRAIN RES, V126, P217, DOI 10.1016/S0165-3806(00)00138-3; Wildman DE, 2006, P NATL ACAD SCI USA, V103, P3203, DOI 10.1073/pnas.0511344103; Windle CP, 1999, J MED PRIMATOL, V28, P73, DOI 10.1111/j.1600-0684.1999.tb00254.x; Wislocki GB, 1929, CONTRIB EMBRYOL, V20, P53; Wislocki GB, 1939, AM J ANAT, V64, P445, DOI 10.1002/aja.1000640305; Worley KC, 2014, NAT GENET, V46, P850, DOI 10.1038/ng.3042; Yang ZH, 2007, MOL BIOL EVOL, V24, P1586, DOI 10.1093/molbev/msm088; Zahed SR, 2010, AM J PRIMATOL, V72, P296, DOI 10.1002/ajp.20782; Zarrei M, 2015, NAT REV GENET, V16, P172, DOI 10.1038/nrg3871; Zehr SM, 2014, SCI DATA, V1, DOI 10.1038/sdata.2014.19; ZIEGLER TE, 1995, HORM BEHAV, V29, P407, DOI 10.1006/hbeh.1995.1028; ZIEGLER TE, 1987, BIOL REPROD, V37, P618, DOI 10.1095/biolreprod37.3.618 90 3 3 0 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0275-2565 1098-2345 AM J PRIMATOL Am. J. Primatol. DEC 2016 78 12 1304 1315 10.1002/ajp.22583 12 Zoology Zoology EB0ZZ WOS:000387077200006 27434275 2019-02-21 J Amundsen, PA Amundsen, Per-Arne Contrasting life-history strategies facilitated by cannibalism in a stunted Arctic charr population HYDROBIOLOGIA English Article Life-history tradeoffs; Piscivory; Reproduction; Salvelinus alpinus; Sexual maturation; Somatic growth SALVELINUS-ALPINUS L.; SIZE-STRUCTURED POPULATIONS; PHENOTYPIC PLASTICITY; ONTOGENIC NICHE; POLYMORPHISM; COMPETITION; DYNAMICS; LAKES; SPECIALIZATION; SPECIATION Life-history tradeoffs between energy investments in reproduction versus somatic growth may be highly important for fish populations suffering from food limitations. This study addresses life-history tradeoffs in a stunted Arctic charr population from a subarctic lake sampled annually over a 12-year period. The vast majority of charr matured early, grew slowly toward average adult sizes of 13-14 cm, and had a short longevity with few fish reaching ages older than 6 years. Some gender differences in life-history strategies related to sexual maturation were revealed, likely due to energetic constraints from high cost of egg production. Some charr followed a highly different growth trajectory, growing rapidly and attaining lengths > 40 cm. These fast-growing individuals matured later and reached higher ages than the stunted fish. Hence, there was a distinct tradeoff between early versus late sexual maturation, the former strategy resulting in short generation time enhancing the survival up to first spawning and the latter being related to a dietary shift to cannibalism resulting in increased growth and body size, and reproduction at a postponed maturation age. This dual pattern was sustained over the 12-year study period, apparently reflecting two contrasting stable strategies. [Amundsen, Per-Arne] UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, Tromso, Norway Amundsen, PA (reprint author), UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, Tromso, Norway. per-arne.amundsen@uit.no Adams CE, 1998, J FISH BIOL, V52, P1259, DOI 10.1006/jfbi.1998.0676; Agresti A., 2002, CATEGORICAL DATA ANA; AMUNDSEN PA, 1994, J FISH BIOL, V45, P181, DOI 10.1111/j.1095-8649.1994.tb01092.x; AMUNDSEN PA, 1995, ENVIRON BIOL FISH, V43, P285, DOI 10.1007/BF00005860; Amundsen PA, 1999, ECOL FRESHW FISH, V8, P43, DOI 10.1111/j.1600-0633.1999.tb00051.x; Amundsen PA, 2007, J ANIM ECOL, V76, P149, DOI 10.1111/j.1365-2656.2006.01179.x; Amundsen PA, 2008, ENVIRON BIOL FISH, V83, P45, DOI 10.1007/s10641-007-9262-1; Arrington DA, 2002, ECOLOGY, V83, P2145, DOI 10.1890/0012-9658(2002)083[2145:HODFRO]2.0.CO;2; Berg OK, 2010, HYDROBIOLOGIA, V652, P337, DOI 10.1007/s10750-010-0366-9; Borgstrom R, 2015, POLAR BIOL, V38, P309, DOI 10.1007/s00300-014-1587-6; Bystrom P, 2006, J ANIM ECOL, V75, P434, DOI 10.1111/j.1365-2656.2006.01064.x; Claessen D, 2000, AM NAT, V155, P219, DOI 10.1086/303315; Claessen D, 2002, ECOLOGY, V83, P1660, DOI 10.2307/3071986; Curtis M.A., 1984, P395; Finstad AG, 2006, OIKOS, V112, P73, DOI 10.1111/j.0030-1299.2006.13990.x; Finstad AG, 2000, CAN J FISH AQUAT SCI, V57, P1718, DOI 10.1139/cjfas-57-8-1718; Finstad AG, 2004, CAN J FISH AQUAT SCI, V61, P2151, DOI 10.1139/F04-157; Finstad AG, 2001, ECOL FRESHW FISH, V10, P220, DOI 10.1034/j.1600-0633.2001.100404.x; Hammar J, 2014, J FISH BIOL, V85, P81, DOI 10.1111/jfb.12321; Hammar J, 2000, OIKOS, V88, P33, DOI 10.1034/j.1600-0706.2000.880105.x; Henriksen EH, 2016, HYDROBIOLOGIA, V783, P37, DOI 10.1007/s10750-015-2589-2; Holden M.J., 1974, MANUAL FISHERIES SCI; Jensen H, 2012, J FISH BIOL, V80, P2448, DOI 10.1111/j.1095-8649.2012.03294.x; Jonsson B, 2001, J FISH BIOL, V58, P605, DOI 10.1006/jfbi.2000.1515; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Klemetsen A., 2013, J ICHTHYOL, V53, P781; Klemetsen Anders, 2010, Freshwater Reviews, V3, P49, DOI 10.1608/FRJ-3.1.3; Knudsen R, 2016, HYDROBIOLOGIA, V783, P65, DOI 10.1007/s10750-015-2601-x; PARKER HH, 1991, J FISH BIOL, V38, P123, DOI 10.1111/j.1095-8649.1991.tb03098.x; Persson L, 2000, ECOLOGY, V81, P1058; SKULASON S, 1995, TRENDS ECOL EVOL, V10, P366, DOI 10.1016/S0169-5347(00)89135-1; Smalas A, 2013, J ICHTHYOL+, V53, P856, DOI DOI 10.1134/S0032945213100111; SNORRASON SS, 1994, BIOL J LINN SOC, V52, P1; Stearns S, 1992, EVOLUTION LIFE HIST; Svanback R, 2009, AM NAT, V174, P176, DOI 10.1086/600112; Svenning M. A., 1993, THESIS; Svenning MA, 2005, J FISH BIOL, V66, P957, DOI 10.1111/j.0022-1112.2005.00646.x; Svenning Martin-A., 1995, Nordic Journal of Freshwater Research, V71, P424; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Werner EE, 1986, COMMUNITY ECOLOGY, P344; Woods PJ, 2013, J FISH BIOL, V82, P569, DOI 10.1111/jfb.12011; Woods PJ, 2012, EVOL ECOL RES, V14, P973; WOOTTON RJ, 1998, ECOLOGY TELEOST FISH 43 2 2 1 21 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia DEC 2016 783 1 11 19 10.1007/s10750-015-2600-y 9 Marine & Freshwater Biology Marine & Freshwater Biology EB2WE WOS:000387222500002 2019-02-21 J Nash, KL; Graham, NAJ Nash, Kirsty L.; Graham, Nicholas A. J. Ecological indicators for coral reef fisheries management FISH AND FISHERIES English Article Artisanal fisheries; ecosystem function; indicator selection; reference points; sensitivity; specificity ECOSYSTEM-BASED MANAGEMENT; DATA-POOR FISHERIES; LIFE-HISTORY STRATEGIES; SIZE-BASED INDICATORS; MARINE FOOD WEBS; FISH COMMUNITIES; REFERENCE POINTS; BODY-SIZE; FUNCTIONAL DIVERSITY; HARVEST STRATEGIES Coral reef fisheries are of great importance both economically and for food security, but many reefs are showing evidence of overfishing, with significant ecosystem-level consequences for reef condition. In response, ecological indicators have been developed to assess the state of reef fisheries and their broader ecosystem-level impacts. To date, use of fisheries indicators for coral reefs has been rather piecemeal, with no overarching understanding of their performance with respect to highlighting fishing effects. Here, we provide a review of multispecies fishery-independent indicators used to evaluate fishing impacts on coral reefs. We investigate the consistency with which indicators highlight fishing effects on coral reefs. We then address questions of statistical power and uncertainty, type of fishing gradient, scale of analysis, the influence of other variables and the need for more work to set reference points for empirical, fisheries-independent indicators on coral reefs. Our review provides knowledge that will help underpin the assessment of the ecological effects of fishing, offering essential support for the development and implementation of coral reef fisheries management plans. [Nash, Kirsty L.; Graham, Nicholas A. J.] James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia; [Nash, Kirsty L.] Univ Tasmania, Ctr Marine Socioecol, Inst Marine & Antarctic Studies, Hobart, Tas 7000, Australia; [Graham, Nicholas A. J.] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England Nash, KL (reprint author), IMAS Hobart, Private Bag 129, Hobart, Tas 7001, Australia. nashkirsty@gmail.com Nash, Kirsty/B-5456-2015; Graham, Nicholas/C-8360-2014 Nash, Kirsty/0000-0003-0976-3197; Graham, Nicholas/0000-0002-0304-7467 Australian Research Council; Royal Society This work was supported by the Australian Research Council. Nick Graham is supported by the Royal Society. Thank you to Jessica Blythe and Paul Markey for their comments on the manuscript. We thank four anonymous reviewers for their comments, which prompted significant improvements to the manuscript. Abesamis RA, 2014, REV FISH BIOL FISHER, V24, P1033, DOI 10.1007/s11160-014-9362-x; Amand M, 2004, AQUAT LIVING RESOUR, V17, P139, DOI 10.1051/alr:2004022; Appeldoorn RS, 2008, ENVIRON CONSERV, V35, P232, DOI 10.1017/S0376892908005018; Aswani S, 2015, FRONTIERS MARINE, V2, P50, DOI [10.3389/fmars.2015.00050, DOI 10.3389/FMARS.2015.00050]; Ault JS, 2014, ECOL INDIC, V44, P164, DOI 10.1016/j.ecolind.2014.04.013; Babcock EA, 2013, FISH RES, V147, P434, DOI 10.1016/j.fishres.2013.03.011; Babcock EA, 2011, CAN J FISH AQUAT SCI, V68, P343, DOI 10.1139/F10-146; Bartlett CY, 2009, CONSERV BIOL, V23, P1475, DOI 10.1111/j.1523-1739.2009.01293.x; Beets C. J., 1997, P 8 INT COR REEF S, V2, P2009; Bejarano S, 2013, MAR ECOL PROG SER, V482, P197, DOI 10.3354/meps10270; Bellwood DR, 2004, NATURE, V429, P827, DOI 10.1038/nature02691; Bianchi G, 2000, ICES J MAR SCI, V57, P558, DOI 10.1006/jmsc.2000.0727; Branch TA, 2010, NATURE, V468, P431, DOI 10.1038/nature09528; Bundy A, 2010, ICES J MAR SCI, V67, P745, DOI 10.1093/icesjms/fsp283; Caddy J., 1998, 04299345 FAO UN; Caddy J.F., 1995, FAO FISH TECH PAP, P83; Cesar H., 2003, EC WORLDWIDE CORAL R; Chabanet P, 2005, AQUAT LIVING RESOUR, V18, P215, DOI 10.1051/alr:2005028; Christensen NL, 1996, ECOL APPL, V6, P665, DOI 10.2307/2269460; Christie P, 2009, COAST MANAGE, V37, P349, DOI 10.1080/08920750902851740; Cinner JE, 2012, GLOBAL ENVIRON CHANG, V22, P651, DOI 10.1016/j.gloenvcha.2012.03.002; Cinner JE, 2013, CONSERV BIOL, V27, P453, DOI 10.1111/j.1523-1739.2012.01933.x; CLARKE KR, 1993, MAR ECOL PROG SER, V92, P205, DOI 10.3354/meps092205; Clua E, 2005, AQUAT LIVING RESOUR, V18, P199, DOI 10.1051/alr:2005026; Clua E, 2008, AQUAT LIVING RESOUR, V21, P339, DOI 10.1051/alr:2008036; Cohen PJ, 2013, MAR POLICY, V37, P278, DOI 10.1016/j.marpol.2012.05.010; Colegrave N, 2003, BEHAV ECOL, V14, P446, DOI 10.1093/beheco/14.3.446; Cope JM, 2009, CAN J FISH AQUAT SCI, V66, P1256, DOI 10.1139/F09-084; Costello C, 2012, SCIENCE, V338, P517, DOI 10.1126/science.1223389; Coulthard S, 2011, GLOBAL ENVIRON CHANG, V21, P453, DOI 10.1016/j.gloenvcha.2011.01.003; Darling ES, 2013, GLOBAL CHANGE BIOL, V19, P1930, DOI 10.1111/gcb.12191; DICKIE LM, 1987, ECOL MONOGR, V57, P233, DOI 10.2307/2937082; Dowling NA, 2015, FISH RES, V171, P130, DOI 10.1016/j.fishres.2014.09.013; Dowling NA, 2008, FISH RES, V94, P380, DOI 10.1016/j.fishres.2008.09.033; Dulvy NK, 2004, ECOL LETT, V7, P410, DOI 10.1111/j.1461-0248.2004.00593.x; Dulvy NK, 2004, CAN J FISH AQUAT SCI, V61, P466, DOI 10.1139/F03-169; Edwards CTT, 2012, REV FISH SCI, V20, P136, DOI 10.1080/10641262.2012.683210; Erisman BE, 2014, FISH RES, V159, P75, DOI 10.1016/j.fishres.2014.05.013; Essington TE, 2006, P NATL ACAD SCI USA, V103, P3171, DOI 10.1073/pnas.0510964103; Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF; FAO, 1999, IND SUST DEV MAR CAP, V8; Francis RICC, 1997, CAN J FISH AQUAT SCI, V54, P1699, DOI 10.1139/f97-100; Friedlander AM, 2007, ECOL APPL, V17, P715, DOI 10.1890/06-0536; Friedlander AM, 2002, MAR ECOL PROG SER, V230, P253, DOI 10.3354/meps230253; Frisch AJ, 2014, MAR BIOL, V161, P61, DOI 10.1007/s00227-013-2315-4; Froese R, 2004, FISH FISH, V5, P86, DOI 10.1111/j.1467-2979.2004.00144.x; Fulton EA, 2005, ICES J MAR SCI, V62, P540, DOI 10.1016/j.icesjms.2004.12.012; Galal N, 2002, MAR FRESHWATER RES, V53, P199, DOI 10.1071/MF01158; Gislason H, 1998, ICES J MAR SCI, V55, P362, DOI 10.1006/jmsc.1997.0323; Gonzalez A, 2009, ANNU REV ECOL EVOL S, V40, P393, DOI 10.1146/annurev.ecolsys.39.110707.173349; Grace-McCaskey C. A., 2012, 12 INT COR REEF S SO, V22; Graham NAJ, 2013, CORAL REEFS, V32, P315, DOI 10.1007/s00338-012-0984-y; Graham NAJ, 2005, CORAL REEFS, V24, P118, DOI 10.1007/s00338-004-0466-y; Graham NAJ, 2015, NATURE, V518, P94, DOI 10.1038/nature14140; Greenstreet SPR, 2006, ICES J MAR SCI, V63, P573, DOI 10.1016/j.icesjms.2005.12.009; Guillemot N, 2014, ECOL INDIC, V43, P227, DOI 10.1016/j.ecolind.2014.02.015; Gurevitch J, 1999, ECOLOGY, V80, P1142, DOI 10.2307/177061; Harborne AR, 2008, J APPL ECOL, V45, P1010, DOI 10.1111/j.1365-2664.2008.01490.x; Hatcher BG, 1997, CORAL REEFS, V16, pS77, DOI 10.1007/s003380050244; HELSTROM CW, 1968, STAT THEORY SIGNAL D; Henriques S, 2014, J APPL ECOL, V51, P623, DOI 10.1111/1365-2664.12235; Hicks CC, 2014, P NATL ACAD SCI USA, V111, P17791, DOI 10.1073/pnas.1413473111; Hicks CC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036022; Hilborn R, 2007, AMBIO, V36, P296, DOI 10.1579/0044-7447(2007)36[296:MTSBLF]2.0.CO;2; Hoegh-Guldberg O, 2007, SCIENCE, V318, P1737, DOI 10.1126/science.1152509; Hoggarth D. D., 2006, FAO FISHERIES TECHNI, V487; Houle JE, 2012, CAN J FISH AQUAT SCI, V69, P1065, DOI 10.1139/F2012-044; Hughes TP, 2010, TRENDS ECOL EVOL, V25, P633, DOI 10.1016/j.tree.2010.07.011; Jackson JBC, 1997, CORAL REEFS, V16, pS23, DOI 10.1007/s003380050238; Jennings S, 1998, ADV MAR BIOL, V34, P201, DOI 10.1016/S0065-2881(08)60212-6; Jennings S, 2005, ICES J MAR SCI, V62, P397, DOI 10.1016/j.icesjms.2004.07.030; Jennings S, 2005, FISH FISH, V6, P212, DOI 10.1111/j.1467-2979.2005.00189.x; Jennings S, 2001, J ANIM ECOL, V70, P934, DOI 10.1046/j.0021-8790.2001.00552.x; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; Jennings S, 1996, AMBIO, V25, P44; Johnson AE, 2013, FISH FISH, V14, P281, DOI 10.1111/j.1467-2979.2012.00468.x; Jupiter Stacy D., 2014, Pacific Conservation Biology, V20, P165; Karnauskas M, 2014, ECOL INDIC, V46, P454, DOI 10.1016/j.ecolind.2014.07.006; Karnauskas M, 2011, FISH RES, V111, P40, DOI 10.1016/j.fishres.2011.06.010; Karr KA, 2015, J APPL ECOL, V52, P402, DOI 10.1111/1365-2664.12388; Kelly CJ, 2006, FISH RES, V79, P233, DOI 10.1016/j.fishres.2006.03.007; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Laliberte E, 2010, ECOLOGY, V91, P299, DOI 10.1890/08-2244.1; Large SI, 2013, ICES J MAR SCI, V70, P755, DOI 10.1093/icesjms/fst067; Leigh G., 2014, STOCK ASSESSMENT QUE; Levine M, 2001, PHARMACOTHERAPY, V21, P405, DOI 10.1592/phco.21.5.405.34503; Lindfield SJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092628; Link JS, 2010, ICES J MAR SCI, V67, P787, DOI 10.1093/icesjms/fsp258; Link JS, 2005, ICES J MAR SCI, V62, P569, DOI 10.1016/j.icesjms.2004.12.015; Link JS, 2002, CAN J FISH AQUAT SCI, V59, P1429, DOI 10.1139/F02-115; Lokrantz J, 2008, CORAL REEFS, V27, P967, DOI 10.1007/s00338-008-0394-3; MacNeil MA, 2015, NATURE, V520, P341, DOI 10.1038/nature14358; Madin EMP, 2010, ECOLOGY, V91, P3563, DOI 10.1890/09-2174.1; Mangi SC, 2007, OCEAN COAST MANAGE, V50, P463, DOI 10.1016/j.ocecoaman.2006.10.003; Mardle S, 2002, J ENVIRON MANAGE, V65, P49, DOI 10.1006/jema.2001.0518; Martin J, 2009, ECOL APPL, V19, P1079, DOI 10.1890/08-0255.1; McClanahan TR, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1938; McClanahan TR, 2015, CONSERV BIOL, V29, P409, DOI 10.1111/cobi.12430; McClanahan TR, 2012, MAR ECOL PROG SER, V469, P121, DOI 10.3354/meps10009; McClanahan TR, 2011, FISHERIES MANAG ECOL, V18, P50, DOI 10.1111/j.1365-2400.2010.00768.x; McClanahan TR, 2011, P NATL ACAD SCI USA, V108, P17230, DOI 10.1073/pnas.1106861108; MCCLANAHAN TR, 1994, HYDROBIOLOGIA, V286, P109, DOI 10.1007/BF00008501; McGilliard CR, 2011, ICES J MAR SCI, V68, P201, DOI 10.1093/icesjms/fsq151; Micheli F, 2014, BIOL CONSERV, V171, P186, DOI 10.1016/j.biocon.2013.12.029; Mouillot D, 2014, P NATL ACAD SCI USA, V111, P13757, DOI 10.1073/pnas.1317625111; Mullon C., 2012, J BIOECON, V14, P267, DOI DOI 10.1007/s10818-011-9124-y; Mumby PJ, 2016, FISH FISH, V17, P266, DOI 10.1111/faf.12078; Nash KL, 2013, ECOL APPL, V23, P1632, DOI 10.1890/12-2031.1; Nash KL, 2013, ECOSYSTEMS, V16, P478, DOI 10.1007/s10021-012-9625-0; Newson Stuart E., 2009, Endangered Species Research, V7, P101, DOI 10.3354/esr00162; Newton K, 2007, CURR BIOL, V17, P655, DOI 10.1016/j.cub.2007.02.054; Nystrom M, 2012, ECOSYSTEMS, V15, P695, DOI 10.1007/s10021-012-9530-6; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; PAULY D, 1995, TRENDS ECOL EVOL, V10, P430, DOI 10.1016/S0169-5347(00)89171-5; Pazhayamadom DG, 2013, FISH RES, V145, P114, DOI 10.1016/j.fishres.2013.02.002; Pestle WJ, 2013, J ISL COAST ARCHAEOL, V8, P228, DOI 10.1080/15564894.2013.797943; PETERMAN RM, 1992, MAR POLLUT BULL, V24, P231, DOI 10.1016/0025-326X(92)90559-O; Piet GJ, 2004, ICES J MAR SCI, V61, P1305, DOI 10.1016/j.icesjms.2004.08.009; Punt AE, 2001, MAR FRESHWATER RES, V52, P819, DOI 10.1071/MF00095; Rice J, 2003, OCEAN COAST MANAGE, V46, P235, DOI 10.1016/S0964-5691(03)00006-1; Rice JC, 2005, ICES J MAR SCI, V62, P516, DOI 10.1016/j.icesjms.2005.01.003; Rochet MJ, 2003, CAN J FISH AQUAT SCI, V60, P86, DOI 10.1139/F02-164; Rogers SI, 2005, MAR POLLUT BULL, V50, P9, DOI 10.1016/j.marpolbul.2004.10.028; Rouyer T, 2008, P NATL ACAD SCI USA, V105, P5420, DOI 10.1073/pnas.0709034105; Ruckelshaus M, 2008, BIOSCIENCE, V58, P53, DOI 10.1641/B580110; Russ Garry R., 2002, P421, DOI 10.1016/B978-012615185-5/50024-4; Sadovy Y, 2005, FISH FISH, V6, P167, DOI 10.1111/j.1467-2979.2005.00186.x; Sainsbury KJ, 2000, ICES J MAR SCI, V57, P731, DOI 10.1006/jmsc.2000.0737; Salomon AK, 2011, B MAR SCI, V87, P251, DOI 10.5343/bms.2010.1089; Samhouri JF, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008907; Scandol J. P., 2004, FISHERIES RESOURCE A, V96; SHELDON RW, 1972, LIMNOL OCEANOGR, V17, P327, DOI 10.4319/lo.1972.17.3.0327; Shin YJ, 2005, ICES J MAR SCI, V62, P384, DOI 10.1016/j.icesjms.2005.01.004; Shin YJ, 2012, REV FISH BIOL FISHER, V22, P835, DOI 10.1007/s11160-012-9252-z; Shin YJ, 2010, ICES J MAR SCI, V67, P692, DOI 10.1093/icesjms/fsp294; SMITH AH, 1992, EPIDEMIOLOGY, V3, P449, DOI 10.1097/00001648-199209000-00011; Smith D, 2009, MAR COAST FISH, V1, P244, DOI 10.1577/C08-041.1; Starr RM, 2010, MAR COAST FISH, V2, P159, DOI 10.1577/C08-056.1; Steneck RS, 2014, MAR ECOL PROG SER, V506, P115, DOI 10.3354/meps10764; Tallis H, 2010, MAR POLICY, V34, P340, DOI 10.1016/j.marpol.2009.08.003; Taylor BM, 2014, CORAL REEFS, V33, P869, DOI 10.1007/s00338-014-1187-5; Taylor BM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2423; Teh LSL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065397; Thorson JT, 2015, FISH FISH, V16, P342, DOI 10.1111/faf.12061; Thorson JT, 2012, CAN J FISH AQUAT SCI, V69, P1556, DOI 10.1139/F2012-077; Thrush SF, 2010, ANNU REV MAR SCI, V2, P419, DOI 10.1146/annurev-marine-120308-081129; Travis J, 2014, P NATL ACAD SCI USA, V111, P581, DOI 10.1073/pnas.1305853111; Trenkel VM, 2003, CAN J FISH AQUAT SCI, V60, P67, DOI 10.1139/F02-163; Valles H, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086291; Villeger S, 2008, ECOLOGY, V89, P2290, DOI 10.1890/07-1206.1; Wagner T, 2013, FISHERIES, V38, P309, DOI 10.1080/03632415.2013.799466; Weijerman M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063797; Wiedenmann J, 2013, N AM J FISH MANAGE, V33, P845, DOI 10.1080/02755947.2013.811128; Willis TJ, 2001, J FISH BIOL, V59, P1408, DOI 10.1006/jfbi.2001.1721; Wilson SK, 2008, GLOBAL CHANGE BIOL, V14, P2796, DOI 10.1111/j.1365-2486.2008.01696.x; Wilson SK, 2007, MAR BIOL, V151, P1069, DOI 10.1007/s00227-006-0538-3; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Worm B, 2012, TRENDS ECOL EVOL, V27, P594, DOI 10.1016/j.tree.2012.07.005; Worm B, 2009, SCIENCE, V325, P578, DOI 10.1126/science.1173146; Yemane D, 2005, ICES J MAR SCI, V62, P374, DOI 10.1016/j.icesjms.2005.01.009; Yodzis P, 2000, ECOLOGY, V81, P261, DOI 10.2307/177149 161 10 10 3 68 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. DEC 2016 17 4 1029 1054 10.1111/faf.12157 26 Fisheries Fisheries EA9CO WOS:000386938900006 2019-02-21 J Zera, AJ Zera, Anthony J. Juvenile Hormone and the endocrine regulation of wing polymorphism in insects: new insights from circadian and functional-genomic studies in Gryllus crickets PHYSIOLOGICAL ENTOMOLOGY English Review Circadian rhythm; Gryllus firmus; hormone receptor; hormone titre; insulin-signalling; Juvenile Hormone (JH); wing polymorphism HEMOLYMPH JH TITER; HONEY-BEE COLONIES; DIVISION-OF-LABOR; EVOLUTIONARY ENDOCRINOLOGY; DROSOPHILA-MELANOGASTER; ENVIRONMENTAL-FACTORS; PYRRHOCORIS-APTERUS; NILAPARVATA-LUGENS; SIGNALING PATHWAY; BROWN PLANTHOPPER For decades, Juvenile Hormone (JH) has been a major focus of studies investigating the endocrine regulation of wing-polymorphism. The most general model postulates a single threshold, above which JH causes the expression of traits that define the short-winged morph (SW), and below which JH causes the expression of traits that define the long-winged morph (LW). Early studies in aphids and crickets reported ambiguous results as a result of the small size of aphids or the very low JH titre in nymphal crickets. Detailed studies in wing morphs of adult Gryllus firmus Scudder uncovered an unexpected and novel morph-specific JH titre circadian cycle (cycling in LW but not in SW) in both the laboratory and field. This finding clearly contradicts the classic model. Morph-specific daily rhythms in global gene expression are strongly associated with (and are possibly caused by) the morph-specific JH titre rhythm. Daily rhythms for hormonal traits and gene expression, which are largely ignored in studies of life-history evolution, may be common and play an important role in adaptation. Juvenile Hormone has likely evolved a specialized within-morph function in G. firmus, regulating aspects of daily flight in the LW morph, which exhibits circadian flight. Other hormones, such as insulin-like peptides and ecdysteroids, possibly regulate the expression of chronic (long-term, noncircadian) differences between LW and SW morphs. Future studies should aim to investigate JH titres in more detail, as well as other hormones, most notably peptides and biogenic amines, which are largely ignored in endocrine studies of wing polymorphism. [Zera, Anthony J.] Univ Nebraska, Sch Biol Sci, 1184 T St, Lincoln, NE 68588 USA Zera, AJ (reprint author), Univ Nebraska, Sch Biol Sci, 1184 T St, Lincoln, NE 68588 USA. azera1@unl.edu National Science Foundation (U.S.A.) [IOS-1122075] The author gratefully acknowledges the National Science Foundation (U.S.A.), which has supported his studies of wing polymorphism during the past 25 years, most recently by award # IOS-1122075. Adkins-Regan E., 2005, HORMONES ANIMAL SOCI; Amsalem E, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-45; Badisco L, 2008, J MOL ENDOCRINOL, V40, P137, DOI 10.1677/JME-07-0161; Badisco L, 2011, PEPTIDES, V32, P573, DOI 10.1016/j.peptides.2010.11.008; Beaver LM, 2003, J BIOL RHYTHM, V18, P463, DOI 10.1177/0748730403259108; Bertuso AG, 2002, J INSECT PHYSIOL, V48, P221, DOI 10.1016/S0022-1910(01)00167-6; Bloch G, 2013, J INSECT PHYSIOL, V59, P56, DOI 10.1016/j.jinsphys.2012.10.012; Bonilla ML, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-2327-1; Corona M, 2007, P NATL ACAD SCI USA, V104, P7128, DOI 10.1073/pnas.0701909104; Crossin GT, 2016, FUNCT ECOL, V30, P116, DOI 10.1111/1365-2435.12482; Dai Hua-guo, 2001, Acta Entomologica Sinica, V44, P27; de Azevedo SV, 2008, J INSECT PHYSIOL, V54, P1064, DOI 10.1016/j.jinsphys.2008.04.009; de Paula RM, 2008, CELL CYCLE, V7, P2630, DOI 10.4161/cc.7.17.6516; Dunlap J. C, 2004, CHRONOBIOLOGY BIOL T; Elekonich MM, 2001, J INSECT PHYSIOL, V47, P1119, DOI 10.1016/S0022-1910(01)00090-7; Emlen DJ, 2012, SCIENCE, V337, P860, DOI 10.1126/science.1224286; Fassold K, 2010, J COMP PHYSIOL A, V196, P271, DOI 10.1007/s00359-010-0513-9; Goodman W.G., 2005, P319; Goodman W. G., 2012, INSECT ENDOCRINOLOGY, P310, DOI DOI 10.1016/B978-0-12-384749-2-10008-1; Gotoh H, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004098; Guerra PA, 2011, BIOL REV, V86, P813, DOI 10.1111/j.1469-185X.2010.00172.x; Hardie J., 1985, COMPREHENSIVE INSECT, V8, P441; Harrison C, 2014, J CELL COMMUN SIGNAL, V8, P195, DOI 10.1007/s12079-014-0236-8; HARRISON RG, 1980, ANNU REV ECOL SYST, V11, P95, DOI 10.1146/annurev.es.11.110180.000523; Hartfelder K, 2012, INSECT ENDOCRINOLOGY, P464; Henrich V. C., 2009, INSECT DEV MORPHOGEN, P177; Ishikawa A, 2012, INSECT MOL BIOL, V21, P49, DOI 10.1111/j.1365-2583.2011.01111.x; Jindra M, 2013, ANNU REV ENTOMOL, V58, P181, DOI 10.1146/annurev-ento-120811-153700; Liu SH, 2008, J INSECT PHYSIOL, V54, P1495, DOI 10.1016/j.jinsphys.2008.08.010; MASAKI S, 1987, EVOL BIOL, V21, P349; Maxova A, 2001, EUR J ENTOMOL, V98, P433, DOI 10.14411/eje.2001.063; Mello TRP, 2014, FRONT GENET, V5, DOI 10.3389/fgene.2014.00445; NELSON RJ, 1995, INTRO BEHAV ENDOCRIN; Neufeld-Cohen A, 2016, P NATL ACAD SCI USA, V113, pE1673, DOI 10.1073/pnas.1519650113; Nijhout H.F., 1994, INSECT HORMONES; Nijhout HF, 1999, BIOSCIENCE, V49, P181, DOI 10.2307/1313508; Pener M. P., 1985, COMPREHENSIVE INSECT, P491; Qi MS, 2005, J CELL SCI, V118, P3569, DOI 10.1242/jcs.02470; Rankin M.A., 1978, P5; RANKIN MA, 1992, ANNU REV ENTOMOL, V37, P533; Riddiford L., 1985, COMPREHENSIVE INSECT, P35; Robinson GE, 1997, ARCH INSECT BIOCHEM, V35, P559, DOI 10.1002/(SICI)1520-6327(1997)35:4<559::AID-ARCH13>3.0.CO;2-9; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; Rosvall KA, 2012, P ROY SOC B-BIOL SCI, V279, P3547, DOI 10.1098/rspb.2012.0442; Saunders D.S., 2002, INSECT CLOCKS; Schipper I, 1998, J CLIN ENDOCR METAB, V83, P1292, DOI 10.1210/jc.83.4.1292; Schwartzberg EG, 2008, J INSECT PHYSIOL, V54, P1332, DOI 10.1016/j.jinsphys.2008.04.025; Smykal V, 2014, INSECT BIOCHEM MOLEC, V45, P69, DOI 10.1016/j.ibmb.2013.12.003; Stay B, 2010, J INSECT PHYSIOL, V56, P266, DOI 10.1016/j.jinsphys.2009.10.012; STEPIEN G, 1988, INSECT BIOCHEM, V18, P313, DOI 10.1016/0020-1790(88)90096-0; Stout J, 1998, J COMP PHYSIOL A, V182, P635, DOI 10.1007/s003590050209; Sullivan JP, 2003, J EXP BIOL, V206, P2287, DOI 10.1242/jeb.00432; Taniguchi CM, 2006, NAT REV MOL CELL BIO, V7, P85, DOI 10.1038/nrm1837; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; Tawfik AI, 1999, P NATL ACAD SCI USA, V96, P7083, DOI 10.1073/pnas.96.12.7083; TOBE SS, 1985, ADV INSECT PHYSIOL, V18, P305; Toma DP, 2000, P NATL ACAD SCI USA, V97, P6914, DOI 10.1073/pnas.97.12.6914; Trumbo ST, 2014, ANIM BEHAV, V92, P203, DOI 10.1016/j.anbehav.2014.04.004; Tu MP, 2005, GEN COMP ENDOCR, V142, P347, DOI 10.1016/j.ygcen.2005.02.009; Vellichirammal NN, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0082129; WALKER TJ, 1986, FLA ENTOMOL, V69, P678, DOI 10.2307/3495213; Wang XH, 2014, ANNU REV ENTOMOL, V59, P225, DOI 10.1146/annurev-ento-011613-162019; WEEKS JC, 1992, DEV BIOL, V149, P185, DOI 10.1016/0012-1606(92)90275-L; Wigglesworth V. B., 1961, Symposia Royal Entomological Society London, Vno. 1, P103; Wu Q, 2006, ANNU REV ENTOMOL, V51, P1, DOI 10.1146/annurev.ento.51.110104.151011; Xu HJ, 2015, NATURE, V519, P464, DOI 10.1038/nature14286; Zeng Y, 2015, ANN ENTOMOL SOC AM, V108, P1053, DOI 10.1093/aesa/sav085; Zera A. J., 2009, Phenotypic plasticity of insects: mechanisms and consequences, P609; Zera AJ, 1999, EVOLUTION, V53, P837, DOI 10.1111/j.1558-5646.1999.tb05377.x; ZERA AJ, 1989, J INSECT PHYSIOL, V35, P501, DOI 10.1016/0022-1910(89)90057-7; Zera AJ, 1997, PHYSIOL ZOOL, V70, P519, DOI 10.1086/515865; Zera AJ, 2003, INTEGR COMP BIOL, V43, P607, DOI 10.1093/icb/43.5.607; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2001, PHYSIOL BIOCHEM ZOOL, V74, P293, DOI 10.1086/319664; Zera AJ, 2001, EVOLUTION, V55, P538, DOI 10.1554/0014-3820(2001)055[0538:TEGBOL]2.0.CO;2; ZERA AJ, 1989, J INSECT PHYSIOL, V35, P7, DOI 10.1016/0022-1910(89)90031-0; Zera AJ, 2007, PHYSIOL BIOCHEM ZOOL, V80, P592, DOI 10.1086/521803; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615; Zera AJ, 2007, EVOL DEV, V9, P499, DOI 10.1111/j.1525-142X.2007.00181.x; Zera AJ, 2006, COMP BIOCHEM PHYS A, V144, P365, DOI 10.1016/j.cbpa.2005.11.026; Zera AJ, 2016, INTEGR COMP BIOL, V56, P159, DOI 10.1093/icb/icw027; Zera AJ, 2013, QSAR ENVIRON HEALTH, P31; Zera AJ, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P63; Zera AJ, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P311; Zera AJ, 2009, J INSECT PHYSIOL, V55, P450, DOI 10.1016/j.jinsphys.2008.11.012; Zhang XP, 2009, J APPL PHYSIOL, V107, P1647, DOI 10.1152/japplphysiol.00725.2009; Zhao ZW, 2004, J INSECT PHYSIOL, V50, P965, DOI 10.1016/j.jinsphys.2004.07.008; Zhao ZW, 2004, J INSECT PHYSIOL, V50, P93, DOI 10.1016/j.jinsphys.2003.10.003 88 5 5 5 49 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6962 1365-3032 PHYSIOL ENTOMOL Physiol. Entomol. DEC 2016 41 4 313 326 10.1111/phen.12166 14 Entomology Entomology EA9DK WOS:000386941200006 Bronze 2019-02-21 J Arnqvist, G; Novicic, ZK; Castro, JA; Sayadi, A Arnqvist, Goran; Novicic, Zorana Kurbalija; Castro, Jose A.; Sayadi, Ahmed Negative frequency dependent selection on sympatric mtDNA haplotypes in Drosophila subobscura HEREDITAS English Article Balancing selection; mtDNA; Life history evolution; Polymorphism; Negative frequency dependent selection; SimuPop MITOCHONDRIAL-DNA HAPLOTYPES; OLD-WORLD POPULATIONS; CYTOPLASMIC TRANSMISSION; CHROMOSOMAL ARRANGEMENTS; DIFFERENTIAL SELECTION; LINKAGE DISEQUILIBRIA; NATURAL-SELECTION; GENETIC-VARIATION; METABOLIC-RATE; NUCLEAR GENES Background: Recent experimental evidence for selection on mitochondrial DNA (mtDNA) has prompted the question as to what processes act to maintain within-population variation in mtDNA. Balancing selection though negative frequency dependent selection (NFDS) among sympatric haplotypes is a possibility, but direct empirical evidence for this is very scarce. Findings: We extend the previous findings of a multi-generation replicated cage experiment in Drosophila subobscura, where mtDNA polymorphism was maintained in a laboratory setting. First, we use a set of Monte Carlo simulations to show that the haplotype frequency dynamics observed are inconsistent with genetic drift alone and most closely match those expected under NFDS. Second, we show that haplotype frequency changes over time were significantly different from those expected under either genetic drift or positive selection but were consistent with those expected under NFSD. Conclusions: Collectively, our analyses provide novel support for NFDS on mtDNA haplotypes, suggesting that mtDNA polymorphism may at least in part be maintained by balancing selection also in natural populations. We very briefly discuss the possible mechanisms that might be involved. [Arnqvist, Goran; Novicic, Zorana Kurbalija; Sayadi, Ahmed] Uppsala Univ, Dept Ecol & Genet, Anim Ecol, Norbyv 18D, SE-75236 Uppsala, Sweden; [Novicic, Zorana Kurbalija] Univ Belgrade, Inst Biol Res Sinisa Stankovic, Despot Stefan Blvd 142, Belgrade 11000, Serbia; [Castro, Jose A.] Univ Illes Balears, Fac Ciencies, Dept Biol, Lab Genet, Edifici Guillem Colom,Campus UIB, Palma de Mallorca 07122, Balears, Spain Arnqvist, G (reprint author), Uppsala Univ, Dept Ecol & Genet, Anim Ecol, Norbyv 18D, SE-75236 Uppsala, Sweden. Goran.Arnqvist@ebc.uu.se Arnqvist, Goran/E-6782-2015 Arnqvist, Goran/0000-0002-3501-3376; Castro, Jose A./0000-0001-8262-560X European Research Council [GENCON AdG-294333]; Swedish Research Council [621-2014-4523] This contribution was supported by the European Research Council (GENCON AdG-294333) and the Swedish Research Council (621-2014-4523). AFONSO JM, 1990, MOL BIOL EVOL, V7, P123; Agresti A, 1998, AM STAT, V52, P119, DOI 10.2307/2685469; Arnqvist G, 2010, EVOLUTION, V64, P3354, DOI 10.1111/j.1558-5646.2010.01135.x; Babcock CS, 1996, GENETICS, V144, P839; Babcock CS, 1998, GENETICS, V149, P2063; Ballard JWO, 2007, EVOLUTION, V61, P1735, DOI 10.1111/j.1558-5646.2007.00133.x; Ballard JWO, 2005, ANNU REV ECOL EVOL S, V36, P621, DOI 10.1146/annurev.ecolsys.36.091704.175513; Ballard JWO, 2004, MOL ECOL, V13, P729, DOI 10.1046/j.1365-294X.2003.02063.x; Castro JA, 2003, GENETICA, V119, P295, DOI 10.1023/B:GENE.0000003656.19330.ba; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Christie JS, 2004, HEREDITY, V93, P371, DOI 10.1038/sj.hdy.6800513; CLARK AG, 1984, GENETICS, V107, P679; CLARK AG, 1985, GENETICS, V111, P97; Dobler R, 2014, J EVOLUTION BIOL, V27, P2021, DOI 10.1111/jeb.12468; Dowling DK, 2007, GENETICS, V175, P235, DOI 10.1534/genetics.105.052050; Dowling DK, 2007, EVOLUTION, V61, P194, DOI 10.1111/j.1558-5646.2007.00016.x; Fitzpatrick MJ, 2007, NATURE, V447, P210, DOI 10.1038/nature05764; FOS M, 1990, P NATL ACAD SCI USA, V87, P4198, DOI 10.1073/pnas.87.11.4198; Garcia-Martinez J, 1998, GENETICS, V149, P1377; GONZALEZ A, 1994, J EVOLUTION BIOL, V7, P29, DOI 10.1046/j.1420-9101.1994.7010029.x; GREGORIUS HR, 1984, GENETICS, V107, P165; Jelic M, 2015, BMC EVOL BIOL, V15, DOI 10.1186/s12862-015-0421-2; Jelic M, 2012, GENOME, V55, P214, DOI [10.1139/G2012-004, 10.1139/g2012-004]; Jenkins TM, 1996, GENETICS, V142, P189; Kassen R, 2002, J EVOLUTION BIOL, V15, P173, DOI 10.1046/j.1420-9101.2002.00377.x; Kazancioglu E, 2014, ECOL LETT, V17, P22, DOI 10.1111/ele.12195; Kent CF, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000609; LATORRE A, 1986, P NATL ACAD SCI USA, V83, P8649, DOI 10.1073/pnas.83.22.8649; LATORRE A, 1992, HEREDITY, V68, P15, DOI 10.1038/hdy.1992.2; Lewontin RC, 1974, GENETIC BASIS EVOLUT; Lovlie H, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1039; MACRAE AF, 1988, GENETICS, V120, P485; Maklakov AA, 2006, EVOLUTION, V60, P2081, DOI 10.1554/05-537.1; MOYA A, 1993, GENOME, V36, P890, DOI 10.1139/g93-117; MYERS RH, 2002, RESPONSE SURFACE MET; Novicic ZK, 2015, J EVOLUTION BIOL, V28, P338, DOI 10.1111/jeb.12565; Oliver P, 2005, GENOME, V48, P1010, DOI 10.1139/G05-077; Oliver P, 2002, HEREDITY, V89, P133, DOI 10.1038/sj.hdy.6800116; Peng B, 2012, FORWARD-TIME POPULATION GENETICS SIMULATIONS: METHODS, IMPLEMENTATION, AND APPLICATIONS, P1, DOI 10.1002/9781118180358; Rand DM, 1996, MOL BIOL EVOL, V13, P735, DOI 10.1093/oxfordjournals.molbev.a025634; Rand DM, 2001, GENETICS, V159, P173; ROZAS J, 1990, MOL BIOL EVOL, V7, P103; Wolf M, 2012, AM NAT, V179, P679, DOI 10.1086/665656; Wolff JN, 2016, J EVOLUTION BIOL, V29, P736, DOI 10.1111/jeb.12822; Wolff JN, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0443 45 0 0 0 4 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 0018-0661 1601-5223 HEREDITAS Hereditas NOV 24 2016 153 15 10.1186/s41065-016-0020-2 6 Genetics & Heredity Genetics & Heredity EH3TS WOS:000391695500001 28096777 DOAJ Gold, Green Published 2019-02-21 J Dahlgren, JP; Colchero, F; Jones, OR; Oien, DI; Moen, A; Sletvold, N Dahlgren, Johan Petter; Colchero, Fernando; Jones, Owen R.; Oien, Dag-Inge; Moen, Asbjorn; Sletvold, Nina Actuarial senescence in a long-lived orchid challenges our current understanding of ageing PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article demographic senescence; demography; life-history theory; mortality; rate of ageing; survival-reproduction trade-off MORTALITY PLATEAUS; LIFE-HISTORY; AGE; REPRODUCTION; COSTS; SURVIVAL; DEMOGRAPHY; DYNAMICS; ECOLOGY; PLANTS The dominant evolutionary theory of actuarial senescence-an increase in death rate with advancing age-is based on the concept of a germ cell line that is separated from the somatic cells early in life. However, such a separation is not clear in all organisms. This has been suggested to explain the paucity of evidence for actuarial senescence in plants. We used a 32 year study of Dactylorhiza lapponica that replaces its organs each growing season, to test whether individuals of this tuberous orchid senesce. We performed a Bayesian survival trajectory analysis accounting for reproductive investment, for individuals under two types of land use, in two climatic regions. The mortality trajectory was best approximated by a Weibull model, showing clear actuarial senescence. Rates of senescence in this model declined with advancing age, but were slightly higher in mown plots and in the more benign climatic region. At older ages, senescence was evident only when accounting for a positive effect of reproductive investment on mortality. Our results demonstrate actuarial senescence as well as a survival-reproduction trade-off in plants, and indicate that environmental context may influence senescence rates. This knowledge is crucial for understanding the evolution of demographic senescence and for models of plant population dynamics. [Dahlgren, Johan Petter; Colchero, Fernando; Jones, Owen R.] Univ Southern Denmark, Max Planck Odense Ctr Biodemog Aging, DK-5230 Odense, Denmark; [Dahlgren, Johan Petter; Jones, Owen R.] Univ Southern Denmark, Dept Biol, DK-5230 Odense, Denmark; [Colchero, Fernando] Univ Southern Denmark, Dept Math & Comp Sci, DK-5230 Odense, Denmark; [Oien, Dag-Inge; Moen, Asbjorn] Norwegian Univ Sci & Technol, NTNU Univ Museum, Dept Nat Hist, N-7491 Trondheim, Norway; [Sletvold, Nina] Uppsala Univ, Evolutionary Biol Ctr, Dept Ecol & Genet, S-75236 Uppsala, Sweden Dahlgren, JP (reprint author), Univ Southern Denmark, Max Planck Odense Ctr Biodemog Aging, DK-5230 Odense, Denmark.; Dahlgren, JP (reprint author), Univ Southern Denmark, Dept Biol, DK-5230 Odense, Denmark. dahlgren@biology.sdu.dk Colchero, Fernando/0000-0001-8613-4568; Jones, Owen/0000-0001-5720-4686 Research Council of Norway; Directorate for Nature Management; Max Planck Society; Swedish Research Council Formas The field study was conducted with financial support from the Research Council of Norway and the Directorate for Nature Management (to A.M. and D.I.O.). J.P.D., F.C. and O.R.J. acknowledge funding by the Max Planck Society and N.S. by the Swedish Research Council Formas. Baudisch A, 2013, J ECOL, V101, P596, DOI 10.1111/1365-2745.12084; Baudisch A, 2012, SCIENCE, V338, P618, DOI 10.1126/science.1226467; BjOrndalen JE, 2015, EUR J ENVIRON SCI, V5, P121, DOI 10.14712/23361964.2015.85; Bronikowski AM, 2002, P NATL ACAD SCI USA, V99, P9591, DOI 10.1073/pnas.142675599; Bronikowski AM, 2011, SCIENCE, V331, P1325, DOI 10.1126/science.1201571; Caswell H, 2013, J ECOL, V101, P585, DOI 10.1111/1365-2745.12088; Celeux G, 2006, BAYESIAN ANAL, V1, P651, DOI 10.1214/06-BA122; Colchero F, 2012, METHODS ECOL EVOL, V3, P466, DOI 10.1111/j.2041-210X.2012.00186.x; Colchero F, 2012, J ANIM ECOL, V81, P139, DOI 10.1111/j.1365-2656.2011.01898.x; Dahlgren JP, 2016, DRYAD DIGITAL REPOSI; Dahlgren JP, EVOLUTION SENESCENCE; Delforge P, 2006, ORCHIDS OF EUROPE NO; Ehrlen J, 2001, J ECOL, V89, P237, DOI 10.1046/j.1365-2745.2001.00546.x; Fair J, 1999, J ECOL, V87, P233, DOI 10.1046/j.1365-2745.1999.00344.x; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; Gompertz B., 1825, PHILOS T ROY SOC LON, V115, P513, DOI [10.1098/rstl.1825.0026, DOI 10.1098/RSTL.1825.0026]; Grime J. P., 2001, PLANT STRATEGIES VEG; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARPER JL, 1967, J APPL ECOL, V4, P267, DOI 10.2307/2401336; Horvitz CC, 2008, AM NAT, V172, P203, DOI 10.1086/589453; Hutchings MJ, 2010, J ECOL, V98, P867, DOI 10.1111/j.1365-2745.2010.01661.x; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Kaplan HS, 2009, P R SOC B, V276, P1837, DOI 10.1098/rspb.2008.1831; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Kirkwood TBL, 2011, CURR BIOL, V21, pR701, DOI 10.1016/j.cub.2011.07.020; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Lemaitre JF, 2013, EXP GERONTOL, V48, P162, DOI 10.1016/j.exger.2012.12.004; Missov TI, 2015, SIAM REV, V57, P61, DOI 10.1137/130912992; Moen A, 2002, NORD J BOT, V22, P435, DOI 10.1111/j.1756-1051.2002.tb01398.x; Moen A, 1990, GUNNERIA, V63, P1; Moen A, 2012, NORD J BOT, V30, P226, DOI 10.1111/j.1756-1051.2011.01253.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Oien DI, 2008, ANN BOT FENN, V45, P161, DOI 10.5735/085.045.0301; Oien DI, 2002, TRENDS AND FLUCTUATIONS AND UNDERLYING MECHANISMS IN TERRESTRIAL ORCHID POPULATIONS, P3; Oien DI, 2003, NORD J BOT, V23, P441, DOI 10.1111/j.1756-1051.2003.tb00418.x; Partridge L, 2010, PHILOS T R SOC B, V365, P147, DOI 10.1098/rstb.2009.0222; Pico FX, 2008, PLANT BIOLOGY, V10, P374, DOI 10.1111/j.1438-8677.2008.00044.x; PINDER JE, 1978, ECOLOGY, V59, P175; Pletcher SD, 1999, J EVOLUTION BIOL, V12, P430; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Ricklefs RE, 2000, J AVIAN BIOL, V31, P103, DOI 10.1034/j.1600-048X.2000.210201.x; ROACH DA, 1993, GENETICA, V91, P53, DOI 10.1007/BF01435987; Roach DA, 2009, ECOLOGY, V90, P1427, DOI 10.1890/08-0981.1; ROFF DA, 2002, LIFE HIST EVOLUTION; Sletvold N, 2015, J ECOL, V103, P1205, DOI 10.1111/1365-2745.12430; Sletvold N, 2015, ECOL LETT, V18, P357, DOI 10.1111/ele.12417; Sletvold N, 2013, GLOBAL CHANGE BIOL, V19, P2729, DOI 10.1111/gcb.12167; Sletvold N, 2011, OECOLOGIA, V167, P461, DOI 10.1007/s00442-011-2006-0; Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353; Stearns S, 1992, EVOLUTION LIFE HIST; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; VAUPEL JW, 1986, POP STUD-J DEMOG, V40, P147, DOI 10.1080/0032472031000141896 58 3 3 1 27 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 16 2016 283 1842 20161217 10.1098/rspb.2016.1217 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology ED2ZL WOS:000388718700003 Green Published, Bronze 2019-02-21 J Morris, H; Brodersen, C; Schwarze, FWMR; Jansen, S Morris, Hugh; Brodersen, Craig; Schwarze, Francis W. M. R.; Jansen, Steven The Parenchyma of Secondary Xylem and Its Critical Role in Tree Defense against Fungal Decay in Relation to the CODIT Model FRONTIERS IN PLANT SCIENCE English Article ray parenchyma; axial parenchyma; CODIT; reaction zone; secondary xylem; fungi; barrier zone BARRIER-ZONE FORMATION; DUTCH-ELM-DISEASE; BASIDIOMYCETE INONOTUS-HISPIDUS; LIFE-HISTORY STRATEGIES; LONG-DISTANCE TRANSPORT; ROBINIA-PSEUDOACACIA L; LIVING WOOD FIBERS; QUERCUS-ROBUR L; FOREST TREES; CLIMATE-CHANGE This review examines the roles that ray and axial parenchyma (RAP) plays against fungal pathogens in the secondary xylem of wood within the context of the CODIT model (Compartmentalization of Decay in Trees), a defense concept first conceived in the early 1970s by Alex Shigo. This model, simplistic in its design, shows how a large woody perennial is highly compartmented. Anatomical divisions in place at the time of infection or damage, (physical defense) alongside the 'active' response by the RAP during and after wounding work together in forming boundaries that function to restrict air or decay spread. The living parenchyma cells play a critical role in all of the four walls (differing anatomical constructs) that the model comprises. To understand how living cells in each of the walls of CODIT cooperate, we must have a clear vision of their complex interconnectivity from a three-dimensional perspective, along with knowledge of the huge variation in ray parenchyma (RP) and axial parenchyma (AP) abundance and patterns. Crucial patterns for defense encompass the symplastic continuum between both RP and AP and the dead tissues, with the latter including the vessel elements, libriform fibers, and imperforate tracheary elements (i.e., vasicentric and vascular tracheids). Also, the heartwood, a chemically altered antimicrobial nonliving substance that forms the core of many trees, provides an integral part of the defense system. In the heartwood, dead RAP can play an important role in defense, depending on the genetic constitution of the species. Considering the array of functions that RAP are associated with, from capacitance, through to storage, and long-distance water transport, deciding how their role in defense fits into this suite of functions is a challenge for plant scientists, and likely depends on a range of factors. Here, we explore the important role of RAP in defense against fungal pathogens and the tradeoffs involved from a viewpoint for structure-function relations, while also examining how fungi can breach the defense system using an array of enzymes in conjunction with the physically intrusive hyphae. [Morris, Hugh; Jansen, Steven] Univ Ulm, Inst Systemat Bot & Ecol, Ulm, Germany; [Brodersen, Craig] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT USA; [Schwarze, Francis W. M. R.] Empa Swiss Fed Labs Mat Testing & Res, Lab Appl Wood Mat, St Gallen, Switzerland Morris, H (reprint author), Univ Ulm, Inst Systemat Bot & Ecol, Ulm, Germany. hugh.morris@uni-ulm.de Jansen, Steven/A-9868-2012 Jansen, Steven/0000-0002-4476-5334; Brodersen, Craig/0000-0002-0924-2570 German Science Foundation (DFG) [JA2175/3-1] HM and SJ acknowledge financial support from the German Science Foundation (DFG, JA2175/3-1). Addison A, 2015, J THEOR BIOL, V368, P55, DOI 10.1016/j.jtbi.2014.12.011; Aitken SN, 2008, EVOL APPL, V1, P95, DOI 10.1111/j.1752-4571.2007.00013.x; Alves ES, 2002, IAWA J, V23, P391; Anderegg WRL, 2015, NEW PHYTOL, V208, P674, DOI 10.1111/nph.13477; Anderegg WRL, 2012, TRENDS PLANT SCI, V17, P693, DOI 10.1016/j.tplants.2012.09.006; Anderson PK, 2004, TRENDS ECOL EVOL, V19, P535, DOI 10.1016/j.tree.2004.07.021; Arbellay E, 2012, J EXP BOT, V63, P3271, DOI 10.1093/jxb/ers050; Arbellay E, 2010, TREE PHYSIOL, V30, P1290, DOI 10.1093/treephys/tpq065; AzconAguilar C, 1997, SCI HORTIC-AMSTERDAM, V68, P1, DOI 10.1016/S0304-4238(96)00954-5; BANFIELD W. M., 1968, Phytopathologische Zeitschrift, V62, P21; Bari E, 2015, INT BIODETER BIODEGR, V104, P231, DOI 10.1016/j.ibiod.2015.03.033; Baum S, 2002, NEW PHYTOL, V154, P481, DOI 10.1046/j.1469-8137.2002.00390.x; Bayliss J. S., 1908, J EC BIOL, V3, P1; BEERY WH, 1983, WOOD FIBER SCI, V15, P395; BIGGS AR, 1986, CAN J BOT, V64, P2319, DOI 10.1139/b86-303; BIGGS AR, 1986, PHYTOPATHOLOGY, V76, P905, DOI 10.1094/Phyto-76-905; BIGGS AR, 1987, PHYTOPATHOLOGY, V77, P718, DOI 10.1094/Phyto-77-718; Biggs AR, 1992, DEFENSE MECH WOODY P, P13; Blanchette R. A., 1992, DEFENSE MECH WOODY P, P76, DOI DOI 10.1007/978-3-662-01642-8_5; BLANCHETTE RA, 1982, PHYTOPATHOLOGY, V72, P1272, DOI 10.1094/Phyto-77-1272; BLANCHETTE RA, 1982, CAN J FOREST RES, V12, P304, DOI 10.1139/x82-044; BODDY L, 1983, NEW PHYTOL, V94, P623, DOI 10.1111/j.1469-8137.1983.tb04871.x; Boddy L., 1992, DEFENSE MECH WOODY P, P96; BONSEN K J M, 1991, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zuerich, V136, P13; BONSEN KJM, 1990, IAWA BULL, V11, P393, DOI 10.1163/22941932-90000528; BONSEN KJM, 1985, IAWA BULL, V6, P71, DOI 10.1163/22941932-90000916; Breda N, 2006, ANN FOREST SCI, V63, P625, DOI 10.1051/forest:2006042; Brodersen CR, 2016, AM J BOT, V103, P184, DOI 10.3732/ajb.1500532; Brodersen CR, 2013, IAWA J, V34, P408, DOI 10.1163/22941932-00000033; Brodersen CR, 2010, PLANT PHYSIOL, V154, P1088, DOI 10.1104/pp.110.162396; BROWN CL, 1962, AM J BOT, V49, P683, DOI 10.2307/2439160; Buisman C., 1935, REV APPL MYCOL, V41, P104; Burdekin D. A., 1979, COMMON DECAY FUNGI B; Burgert I, 2001, TREES-STRUCT FUNCT, V15, P168, DOI 10.1007/s004680000086; Burgert I, 1999, HOLZ ROH WERKST, V57, P397, DOI 10.1007/s001070050367; Carbone MS, 2013, NEW PHYTOL, V200, P1145, DOI 10.1111/nph.12448; Carlquist S., 2001, COMP WOOD ANATOMY SY; Carmona D, 2011, FUNCT ECOL, V25, P358, DOI 10.1111/j.1365-2435.2010.01794.x; Chapotin SM, 2006, AM J BOT, V93, P1251, DOI 10.3732/ajb.93.9.1251; CHATTAWAY MM, 1951, AUST J SCI RES SER B, V4, P12, DOI 10.1071/BI9510012; CHATTAWAY MM, 1949, AUST J SCI RES SER B, V2, P227; Choat B, 2012, NATURE, V491, P752, DOI 10.1038/nature11688; Clerivet A, 2000, TREES-STRUCT FUNCT, V15, P25, DOI 10.1007/s004680000063; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; Courtois H, 1963, HOLZFORSCH HOLZVERW, V15, P89; Deflorio G, 2008, FOREST ECOL MANAG, V255, P2373, DOI 10.1016/j.foreco.2007.12.040; Desprez-Loustau ML, 2006, ANN FOREST SCI, V63, P597, DOI 10.1051/forest:2006040; DOBBINS DR, 1986, BOT GAZ, V147, P278, DOI 10.1086/337595; Dujesiefken D, 2001, FORSTWISS CENTRALBL, V120, P80, DOI 10.1007/BF02796083; Duncan C. G., 1960, 2173 USDA FOR PROD L; Dutton MV, 1996, CAN J MICROBIOL, V42, P881, DOI 10.1139/m96-114; Esau K., 1953, PLANT ANATOMY; Evert RF., 2006, ESAUS PLANT ANATOMY; Ewers FW, 2007, IAWA J, V28, P373, DOI 10.1163/22941932-90001650; Eyles A, 2003, CAN J FOREST RES, V33, P2331, DOI [10.1139/x03-149, 10.1139/X03-149]; FAHN A., 1963, N PHYTOL, V62, P91, DOI 10.1111/j.1469-8137.1963.tb06317.x; FAHN A, 1986, WOOD ANATOMY IDENTIF; Ferrenberg S, 2014, FUNCT ECOL, V28, P837, DOI 10.1111/1365-2435.12228; FISHER JB, 1981, IAWA BULL, V2, P193, DOI 10.1163/22941932-90000732; FISHER JB, 1989, BOT GAZ, V150, P251, DOI 10.1086/337770; Fisher JB, 1991, BIOL VINES, P99; Franceschi VR, 2005, NEW PHYTOL, V167, P353, DOI 10.1111/j.1469-8137.2005.01436.x; Frank A. B., 1895, KRANKHEITEN PFLANZEN; Frankenstein C, 2005, J APPL BOT FOOD QUAL, V79, P44; Fujii T, 1981, MOKUZAI GAKKAISHI, V27, P149; GARTNER BL, 1991, OECOLOGIA, V87, P180, DOI 10.1007/BF00325255; Gleason SM, 2004, TREE PHYSIOL, V24, P1087, DOI 10.1093/treephys/24.10.1087; Green F, 1997, INT BIODETER BIODEGR, V39, P113, DOI 10.1016/S0964-8305(96)00063-7; GRIFFITH GS, 1990, NEW PHYTOL, V116, P407, DOI 10.1111/j.1469-8137.1990.tb00526.x; Haberlandt G, 1914, PHYSL PLANT ANATOMY; Hacke UG, 2017, PLANT CELL ENVIRON, V40, P831, DOI 10.1111/pce.12777; Hartig R., 1878, ZERSETZUNGSERSCHEINU; Hartmann H, 2016, NEW PHYTOL, V211, P386, DOI 10.1111/nph.13955; Hepting G. H., 1935, USDA B, V409, P1; Hepting GH, 1936, PHYTOPATHOLOGY, V26, P62; Herbette S, 2015, ANN BOT-LONDON, V115, P187, DOI 10.1093/aob/mcu232; HERMS DA, 1992, Q REV BIOL, V67, P283, DOI 10.1086/417659; HESS ROBT. W., 1950, TROPICAL WOOD, V96, P1; Hillis W, 1987, HEARTWOOD TREE EXUDA; Hillis W. E., 1977, STRUCTURE BIOSYNTHES, P247; Holl W, 1975, TRANSPORT PLANTS, P432; Hudgins JW, 2004, PLANT PHYSIOL, V135, P2134, DOI 10.1104/pp.103.037929; Hudgins JW, 2003, NEW PHYTOL, V159, P677, DOI 10.1046/j.1469-8137.2003.00839.x; Jane FW, 1934, NATURE, V133, P534, DOI 10.1038/133534a0; Jupa R, 2016, TREE PHYSIOL, V36, P756, DOI 10.1093/treephys/tpw020; Keel SG, 2007, PLANT CELL ENVIRON, V30, P963, DOI 10.1111/j.1365-3040.2007.01688.x; Kile G. A., 1991, AGR HDB, P102; Kirisits T., 2007, BARK WOOD BORING INS, P185; Klepsch MM, 2016, AOB PLANTS, V8, DOI 10.1093/aobpla/plw052; Knipfer T, 2016, PLANT PHYSIOL, V171, P1024, DOI 10.1104/pp.16.00136; Koenigs J. W., 1974, Wood and Fiber, V6, P66; KOENIGS JW, 1972, PHYTOPATHOLOGY, V62, P100, DOI 10.1094/Phyto-62-100; Koyani R. D., 2010, Mycology - An International Journal on Fungal Biology, V1, P204, DOI 10.1080/21501203.2010.516409; Koyani RD, 2015, J SUSTAIN FOREST, V34, P502, DOI 10.1080/10549811.2015.1033554; KOZLOWSKI TT, 1992, BOT REV, V58, P107, DOI 10.1007/BF02858600; Kuster E., 1913, PATHOLOGICAL PLANT A; Lamarre GPA, 2012, ECOLOGY, V93, pS195, DOI 10.1890/11-0397.1; LIESE W, 1966, HOLZ ROH WERKST, V24, P454, DOI 10.1007/BF02612874; Liese W., 1964, Holz als Roh- und Werkstoff, V22, P289, DOI 10.1007/BF02608320; Liese W., 1996, P21; Liese W., 1989, P S AUSGEWAHLTE PROB, P75; Liese W., 1970, REC ANN CONV BR WOOD, V4, P1, DOI [10.1186/s13075-015-0844-6, DOI 10.1186/S13075-015-0844-6]; Lodge D. J, 1993, BMS S SERIES, P37; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Loepfe L, 2007, J THEOR BIOL, V247, P788, DOI 10.1016/j.jtbi.2007.03.036; MAGEL E, 1994, TREES-STRUCT FUNCT, V8, P165; Martin JA, 2009, CAN J FOREST RES, V39, P420, DOI 10.1139/X08-183; Martinez-Cabrera HI, 2009, AM J BOT, V96, P1388, DOI 10.3732/ajb.0800237; Martinez-Vilalta J, 2012, AM J BOT, V99, P1189, DOI 10.3732/ajb.1100384; McDougall D. N., 1996, J ARBORICULT, V22, P205; MCNABB H S JR, 1970, Netherlands Journal of Plant Pathology, V76, P196, DOI 10.1007/BF01974331; Meinzer FC, 2009, FUNCT ECOL, V23, P922, DOI 10.1111/j.1365-2435.2009.01577.x; MERRILL W, 1979, PHYTOPATHOLOGY, V69, P1158, DOI 10.1094/Phyto-69-1158; Mildner M, 2014, OECOLOGIA, V175, P747, DOI 10.1007/s00442-014-2935-5; MOORE KE, 1978, CAN J FOREST RES, V8, P389, DOI 10.1139/x78-058; Morris H, 2016, IAWA J, V37, P1, DOI 10.1163/22941932-20160117; Morris H, 2016, NEW PHYTOL, V209, P1553, DOI 10.1111/nph.13737; MUELLER WC, 1984, ANN BOT-LONDON, V53, P107, DOI 10.1093/oxfordjournals.aob.a086658; MUHAMMAD AF, 1984, IAWA BULL, V5, P237, DOI 10.1163/22941932-90000897; MULHERN J, 1979, FOREST SCI, V25, P311; Nagy NE, 2012, MOL PLANT MICROBE IN, V25, P1450, DOI 10.1094/MPMI-02-12-0029-R; Nardini A, 2013, NEW PHYTOL, V200, P322, DOI 10.1111/nph.12288; Nardini A, 2011, J EXP BOT, V62, P4701, DOI 10.1093/jxb/err208; NEWBANKS D, 1983, PHYTOPATHOLOGY, V73, P1060, DOI 10.1094/Phyto-73-1060; Niklas K., 1992, PLANT BIOMECHANICS E; Nutman FJ, 1929, ANN APPL BIOL, V16, P40, DOI 10.1111/j.1744-7348.1929.tb07120.x; O'Brien MJ, 2015, NEW PHYTOL, V205, P1083, DOI 10.1111/nph.13134; O'Brien MJ, 2014, NAT CLIM CHANGE, V4, P710, DOI [10.1038/nclimate2281, 10.1038/NCLIMATE2281]; Orians CM, 2004, TREES-STRUCT FUNCT, V18, P501, DOI 10.1007/s00468-004-0326-y; Orians CM, 2002, AM J BOT, V89, P270, DOI 10.3732/ajb.89.2.270; OUELLETTE GB, 2004, INVEST AGRAR-SIST R, V13, P119; Paine CET, 2010, FUNCT ECOL, V24, P1202, DOI 10.1111/j.1365-2435.2010.01736.x; Parfitt D, 2010, FUNGAL ECOL, V3, P338, DOI 10.1016/j.funeco.2010.02.001; PEARCE RB, 1984, PHYSIOL PLANT PATHOL, V24, P71, DOI 10.1016/0048-4059(84)90075-4; PEARCE RB, 1991, PHYSIOL MOL PLANT P, V39, P41, DOI 10.1016/0885-5765(91)90030-L; PEARCE RB, 1981, PHYSIOL PLANT PATHOL, V19, P359; PEARCE RB, 1990, EUR J FOREST PATHOL, V20, P275; PEARCE RB, 1986, PHYSIOL MOL PLANT P, V29, P197, DOI 10.1016/S0048-4059(86)80021-2; Pearce RB, 1996, NEW PHYTOL, V132, P203, DOI 10.1111/j.1469-8137.1996.tb01842.x; PHILLIPS E. W. J., 1948, FOR PROD RES B, V22, P1; Plavcova L, 2016, AM J BOT, V103, P603, DOI 10.3732/ajb.1500489; Plavcova L, 2011, NEW PHYTOL, V192, P885, DOI 10.1111/j.1469-8137.2011.03842.x; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; Pouzoulet J, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00253; PRATT C, 1974, AM J ENOL VITICULT, V25, P131; Putz F, 1991, BIOL VINES, P73; RADEMACHER P, 1984, IAWA BULL, V5, P141, DOI 10.1163/22941932-90000879; Rayner ADM, 1988, FUNGAL DECOMPOSITION; Rayner Alan D. M., 1993, Arboricultural Journal, V17, P171; Reed DE, 2014, ENVIRON RES LETT, V9, DOI 10.1088/1748-9326/9/10/105004; Reiterer A, 2002, J MATER SCI, V37, P935, DOI 10.1023/A:1014339612423; Richardson AD, 2013, NEW PHYTOL, V197, P850, DOI 10.1111/nph.12042; Rioux D, 1998, PHYTOPATHOLOGY, V88, P494, DOI 10.1094/PHYTO.1998.88.6.494; RIOUX D, 1995, PLANTA, V196, P125; RIOUX D, 1991, CAN J BOT, V69, P2055, DOI 10.1139/b91-258; RIOUX D, 1991, CAN J BOT, V69, P2074, DOI 10.1139/b91-259; Rolshausen PE, 2010, AM J ENOL VITICULT, V61, P113; Romero C, 2008, CAN J FOREST RES, V38, P611, DOI 10.1139/X07-205; Rosas T, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00400; Rosell JA, 2016, NEW PHYTOL, V211, P90, DOI 10.1111/nph.13889; SAUTER JJ, 1986, PLANTA, V168, P377, DOI 10.1007/BF00392363; SAVORY JG, 1954, ANN APPL BIOL, V41, P336, DOI 10.1111/j.1744-7348.1954.tb01126.x; SCHENCK H, 1893, BOT MITTHEILUNGEN TR, P1; Schenk HJ, 2008, P NATL ACAD SCI USA, V105, P11248, DOI 10.1073/pnas.0804294105; Schmidt O, 2006, WOOD TREE FUNGI BIOL; SCHMITT U, 1993, TREES-STRUCT FUNCT, V8, P23; SCHMITT U, 1992, WOOD SCI TECHNOL, V26, P405; SCHMITT U, 1994, IAWA J, V15, P157, DOI 10.1163/22941932-90001357; SCHMITT U, 1990, IAWA BULL, V11, P413, DOI 10.1163/22941932-90000531; Schmitt U., 2007, PLANT CELL WALL RECE, P119; Schmitt Uwe, 2006, New Zealand Journal of Forestry Science, V36, P72; Schmitt Uwe, 2009, New Zealand Journal of Forestry Science, V39, P233; SCHOENEWEISS DF, 1959, PHYTOPATHOLOGY, V49, P335; Schwarze F, 2000, FUNGAL STRATEGIES WO; Schwarze FMWR, 2000, MYCOLOGICAL RES, V104, P126, DOI DOI 10.1017/S0953756200002525; Schwarze Francis W. M. R., 2007, Fungal Biology Reviews, V21, P133, DOI 10.1016/j.fbr.2007.09.001; Schwarze FWMR, 1995, EUR J FOREST PATHOL, V25, P327; Schwarze FWMR, 1998, NEW PHYTOL, V139, P721, DOI 10.1046/j.1469-8137.1998.00238.x; SCHWARZE FWMR, 1995, MYCOL RES, V99, P813, DOI 10.1016/S0953-7562(09)80732-6; Schwarze FWMR, 1997, MYCOL RES, V101, P1207, DOI 10.1017/S0953756297003808; Schwarze FWMR, 1998, HOLZFORSCHUNG, V52, P117, DOI 10.1515/hfsg.1998.52.2.117; Schwarze FWMR, 2000, MYCOL RES, V104, P846, DOI 10.1017/S0953756299002063; Schwarze FWMR, 2003, MYCOLOGICAL PROGR, V2, P26, DOI DOI 10.1007/S11557-006-0064-1; Schwarze FWMR, 2008, DIAGNOSIS PROGNOSIS; Sevanto S, 2014, PLANT CELL ENVIRON, V37, P153, DOI 10.1111/pce.12141; SHAIN L, 1979, PHYTOPATHOLOGY, V69, P1143, DOI 10.1094/Phyto-69-1143; SHAIN L, 1971, PHYTOPATHOLOGY, V61, P301, DOI 10.1094/Phyto-61-301; SHAIN L, 1967, PHYTOPATHOLOGY, V57, P1034; Shain Louis, 1995, P383, DOI 10.1016/B978-012276460-8/50019-9; Sharples A, 1933, ANN BOT-LONDON, V47, P827, DOI 10.1093/oxfordjournals.aob.a090419; SHIGO A, 1981, PLANT DIS, V65, P715, DOI 10.1094/PD-65-715; SHIGO A L, 1977, U S Department of Agriculture Agriculture Information Bulletin, V405, P1; Shigo A. L., 1980, Journal of Arboriculture, V6, P96; Shigo A. L., 1982, RESISTANCE FOREST TR, P103; Shigo A. L., 1976, MATERIAL ORGANISME S, V3, P221; Shigo A. L., 1979, USDA FOR SER AGRIC I, V419, P1; Shigo A. L., 1970, LAVAL U B, P7; SHIGO AL, 1984, ANNU REV PHYTOPATHOL, V22, P189, DOI 10.1146/annurev.py.22.090184.001201; SHIGO AL, 1973, ANNU REV PHYTOPATHOL, V11, P197, DOI 10.1146/annurev.py.11.090173.001213; SHIGO AL, 1977, FOREST SCI, V23, P179; SHIGO AL, 1969, PHYTOPATHOLOGY, V59, P1164; SIEBER M, 1980, IAWA BULL, V1, P49, DOI 10.1163/22941932-90000804; Sikes BA, 2010, PLANT SIGNAL BEHAV, V5, P763, DOI 10.4161/psb.5.6.11776; Singh AP, 2006, WOOD SCI TECHNOL, V40, P16, DOI 10.1007/s00226-005-0056-3; Solla A, 2005, NEW PHYTOL, V166, P1025, DOI 10.1111/j.1469-8137.2005.01384.x; SPERRY JS, 1994, PLANT CELL ENVIRON, V17, P1233, DOI 10.1111/j.1365-3040.1994.tb02021.x; Spicer R, 2007, PLANT CELL ENVIRON, V30, P934, DOI 10.1111/j.1365-3040.2007.01677.x; Spicer R, 2014, J EXP BOT, V65, P1829, DOI 10.1093/jxb/ert459; Spicer R, 2010, NEW PHYTOL, V186, P577, DOI 10.1111/j.1469-8137.2010.03236.x; Spicer Rachel, 2005, P457, DOI 10.1016/B978-012088457-5/50024-1; Stobbe H, 2002, ANN BOT-LONDON, V89, P773, DOI 10.1093/aob/mcf137; Sturrock RN, 2011, PLANT PATHOL, V60, P133, DOI 10.1111/j.1365-3059.2010.02406.x; Sun Q, 2007, PLANT PHYSIOL, V145, P1629, DOI 10.1104/pp.107.100537; Taylor FW., 1969, WOOD FIBER SCI, V1, P142; TIPPETT JT, 1981, IAWA BULL, V2, P163, DOI 10.1163/22941932-90000724; TRUE R. P., 1955, JOUR FOREST, V53, P412; Tyree MT, 2002, XYLEM STRUCTURE ASCE; von Aufsess H, 1974, EUR J FOREST PATHOL, V4, P193, DOI [10.1111/j.1439-0329.1974.tb00437.x, DOI 10.1111/J.1439-0329.1974.TB00437.X]; WAGENFUHR R., 2007, HOLZATLAS; Wargo MP, 1977, CANADIAN J FOREST RE, V7, P410, DOI DOI 10.1139/X77-051; Wheeler EA, 2007, IAWA J, V28, P229, DOI 10.1163/22941932-90001638; WHEELER EA, 1991, IAWA BULL, V12, P275, DOI 10.1163/22941932-90001256; Wheeler EA, 1989, IAWA B, V10, P219, DOI DOI 10.1163/22941932-90000496; Wheeler JK, 2005, PLANT CELL ENVIRON, V28, P800, DOI 10.1111/j.1365-3040.2005.01330.x; Wilczek A, 2014, NAT J-OPOLE, V47, P31; WISNIEWSKI M, 1995, TREES-STRUCT FUNCT, V9, P253; WOLKINGER F, 1971, HOLZFORSCHUNG, V25, P29, DOI 10.1515/hfsg.1971.25.1.29; WOLKINGER F, 1970, PHYTON-ANN REI BOT A, V14, P55; Woods A, 2005, BIOSCIENCE, V55, P761, DOI 10.1641/0006-3568(2005)055[0761:IAUDNB]2.0.CO;2; Woodward S, 1992, DEFENSE MECH WOODY P, P62; WU J, 1992, HOLZFORSCHUNG, V46, P181, DOI 10.1515/hfsg.1992.46.3.181; Yadeta K, 2013, FRONT PLANT SCI, V4, DOI [10.3389/fpls.2013.00097, 10.3389/fpls.2013.00086]; Yamada Y, 2011, TREES-STRUCT FUNCT, V25, P607, DOI 10.1007/s00468-010-0537-3; Yilgor N, 2013, BIORESOURCES, V8, P2805; Zanne AE, 2006, FUNCT ECOL, V20, P200, DOI 10.1111/j.1365-2435.2006.01101.x; Zanne AE, 2014, NATURE, V506, P89, DOI 10.1038/nature12872; Zheng JM, 2013, ANN BOT-LONDON, V112, P927, DOI 10.1093/aob/mct153; Zieminska K, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124892; Zieminska K, 2013, AOB PLANTS, V5, DOI 10.1093/aobpla/plt046; Zimmermann M. H., 1979, IAWA B, V2, P51; Zimmermann T., 1997, ABTEILUNGS ARBEITSBE, V35, P1 241 10 10 5 48 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-462X FRONT PLANT SCI Front. Plant Sci. NOV 9 2016 7 1665 10.3389/fpls.2016.01665 18 Plant Sciences Plant Sciences EB3OW WOS:000387276000001 27881986 DOAJ Gold, Green Published 2019-02-21 J Aguilar, RJAO; Jahn, GA; Soto-Gamboa, M; Novaro, AJ; Carmanchahi, P Ovejero Aguilar, Ramiro J. A.; Jahn, Graciela A.; Soto-Gamboa, Mauricio; Novaro, Andres J.; Carmanchahi, Pablo The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos PEERJ English Article Stress ecology; Reproduction; Lama guanicoe; Sociality; Non-invasive methods; Hormonal profiles in wildlife FECAL GLUCOCORTICOID METABOLITES; LAMA-GUANICOE; CORTICOSTERONE LEVELS; CORTISOL METABOLITES; SEASONAL-VARIATION; ENDOCRINE CONTROL; GROUND-SQUIRRELS; TESTOSTERONE; REPRODUCTION; VALIDATION Background. Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life's challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. Methods. All of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. Results. As expected, there was a marked adrenal (p-value =.3.4e-12) and gonadal (p-value = 0.002656) response due to seasonal variation in Lama guanicae. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value = 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value = 1.952e-11, COR = 0.50) between the adrenal and gonadal system. The marked endocrine (r(2) = 0.806) and gonad (r(2) = 0.7231) response due to seasonal variation in male guanaco individuals highlights the individual's energetic demands according to life-history strategies. This is a remarkable result because noinhibition was found between the axes as theory suggests Finally, the dataset was used to build a reactive scope model for guanacos. Discussion. Guanacos cope with the trade-off between sociability and reproductive benefits and costs, by regulating their GCs and T levels on a seasonal basis, suggesting an adaptive role of both axes to different habitat pressures. The results presented here highlight the functional role of stress and gonad axes on a critical phase of a male mammal's life the mating period when all of the resources are at the disposal of the male and must be used to maximize the chances for reproductive success. [Ovejero Aguilar, Ramiro J. A.; Soto-Gamboa, Mauricio] Univ Austral Chile, Fac Ciencias, Inst Ciencias Ambient & Evolut, Lab Ecol Conductual, Valdivia, Chile; [Ovejero Aguilar, Ramiro J. A.] CONICET MENDOZA LIE IADIZA, Inst Invest Zonas Aridas, Lab Interacc Ecol, Mendoza, Argentina; [Ovejero Aguilar, Ramiro J. A.; Carmanchahi, Pablo] Univ Nacl Comahue INIBIOMA CONICET AUSMA UNCo, AUSMA, Grp Invest Ecofisiol Fauna Silvestre GIEFAS, Neuquen, Argentina; [Jahn, Graciela A.] Univ Mendoza IMBECU CCT MENDOZA, Lab Reprod & Lactancia, Mendoza, Argentina; [Novaro, Andres J.] Programa Estepa Andino Patagon CONICET PATAGONIA, Neuquen, Argentina Aguilar, RJAO (reprint author), Univ Austral Chile, Fac Ciencias, Inst Ciencias Ambient & Evolut, Lab Ecol Conductual, Valdivia, Chile.; Aguilar, RJAO (reprint author), CONICET MENDOZA LIE IADIZA, Inst Invest Zonas Aridas, Lab Interacc Ecol, Mendoza, Argentina.; Aguilar, RJAO (reprint author), Univ Nacl Comahue INIBIOMA CONICET AUSMA UNCo, AUSMA, Grp Invest Ecofisiol Fauna Silvestre GIEFAS, Neuquen, Argentina. rovejero@mendoza-conicet.gob.ar Rufford Small Grant Foundation (RSGF) [120608]; Scientific Research Society/Sigma-Xi; FONDECYT-CONICYT-PROGRAM [3140237]; FONDECYT [11060132] This study has been funded by the Rufford Small Grant Foundation (RSGF #120608); The Scientific Research Society/Sigma-Xi and FONDECYT-CONICYT-PROGRAM (No 3140237). We thank for partial support by FONDECYT #11060132 (MSG)". The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acebes P, 2009, MAMMALIA, P57; ASTHEIMER LB, 1992, ORNIS SCAND, V23, P355, DOI 10.2307/3676661; Bank MS, 2003, BIOL CONSERV, V112, P427, DOI 10.1016/S0006-3207(02)00342-7; Becker JB., 2002, BEHAV ENDOCRINOLOGY, P1; Blanchard RJ, 2001, PHYSIOL BEHAV, V73, P261, DOI 10.1016/S0031-9384(01)00449-8; Bonacic C, 2003, ANIM WELFARE, V12, P387; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; BOONSTRA R, 1993, GEN COMP ENDOCR, V91, P126, DOI 10.1006/gcen.1993.1113; Boonstra R, 2001, ECOLOGY, V82, P1930, DOI 10.2307/2680058; Boonstra R, 2005, J MAMMAL, V86, P236, DOI 10.1644/BHE-001.1; Boonstra Rudy, 2007, P139; Bozinovic F., 2002, PHYSL ECOLOGY EVOLUT, P531; Buchanan KL, 2004, ANIM BEHAV, V67, P183, DOI 10.1016/j.anbehav.2003.09.002; Busch DS, 2009, BIOL CONSERV, V142, P2844, DOI 10.1016/j.biocon.2009.08.013; Carmanchahi PD, 2011, WILDLIFE RES, V38, P61, DOI 10.1071/WR10170; Cavigelli SA, 2000, HORM BEHAV, V37, P246, DOI 10.1006/hbeh.2000.1585; Cavigelli SA, 1999, ANIM BEHAV, V57, P935, DOI 10.1006/anbe.1998.1054; Clutton-Brock TH, 2001, SCIENCE, V291, P478, DOI 10.1126/science.291.5503.478; Cote SD, 2000, BEHAVIOUR, V137, P1541, DOI 10.1163/156853900502718; Creel S, 2001, TRENDS ECOL EVOL, V16, P491, DOI 10.1016/S0169-5347(01)02227-3; Creel S, 2013, FUNCT ECOL, V27, P66, DOI 10.1111/j.1365-2435.2012.02029.x; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; Dallman MF, 2007, J PHYSIOL-LONDON, V583, P431, DOI 10.1113/jphysiol.2007.136051; DALLMAN MF, 1993, FRONT NEUROENDOCRIN, V14, P303, DOI 10.1006/frne.1993.1010; Darwin C., 1859, ORIGIN SPECIES MEANS; de Lamo DA, 1998, CAN J ZOOL, V76, P1388, DOI 10.1139/cjz-76-7-1388; Enstrom DA, 1997, ANIM BEHAV, V54, P1135, DOI 10.1006/anbe.1997.0555; Faulkes Christopher G., 1997, P302; Franklin W.L., 1983, Special Publication American Society of Mammalogists, P573; Goymann W, 2004, ANIM BEHAV, V67, P591, DOI 10.1016/j.anbehav.2003.08.007; Hirschenhauser K, 2006, ANIM BEHAV, V71, P265, DOI 10.1016/j.anbehav.2005.04.014; Holberton RL, 1999, GEN COMP ENDOCR, V116, P49, DOI 10.1006/gcen.1999.7336; Holberton RL, 1996, AUK, V113, P558, DOI 10.2307/4088976; Jacobs JD, 2000, CONDOR, V102, P35, DOI 10.1650/0010-5422(2000)102[0035:ECOLCS]2.0.CO;2; John TM., 1965, PAVO, V4, P9; Kenagy GJ, 2000, GEN COMP ENDOCR, V117, P189, DOI 10.1006/gcen.1999.7397; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; Knapp R, 1997, GEN COMP ENDOCR, V107, P273, DOI 10.1006/gcen.1997.6923; Le PP, 2005, PLOS GENET, V1, P159, DOI 10.1371/journal.pgen.0010016; LEVINE S, 2005, HDB STRESS BRAIN, P3; LOFTS B., 1960, IBIS, V102, P209, DOI 10.1111/j.1474-919X.1960.tb07113.x; Marino A, 2008, ETHOLOGY, V114, P413, DOI 10.1111/j.1439-0310.2008.01485.x; Marino A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089060; MARLER P, 1988, NATURE, V336, P770, DOI 10.1038/336770a0; Mateo JM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P1069, DOI 10.1086/432855; Mattocks PW, 1976, THESIS; McEwen BS, 2010, HORM BEHAV, V57, P105, DOI 10.1016/j.yhbeh.2009.09.011; McGlothlin JW, 2010, AM NAT, V175, P687, DOI 10.1086/652469; MOBERG GP, 1991, J DAIRY SCI, V74, P304, DOI 10.3168/jds.S0022-0302(91)78174-5; Montes MC, 2006, J ARID ENVIRON, V64, P616, DOI 10.1016/j.jaridenv.2005.05.008; Mostl E, 2005, ANN NY ACAD SCI, V1046, P17, DOI 10.1196/annals.1343.004; Mostl E, 2002, DOMEST ANIM ENDOCRIN, V23, P67, DOI 10.1016/S0739-7240(02)00146-7; Moyer K. E., 1968, Communications in Behavioral Biology (Ser A), V2, P65; Muller MN, 2004, ANIM BEHAV, V67, P113, DOI 10.1016/j.anbehav.2003.03.013; NAIK D. V., 1963, PAVO INDIAN J ORNITHOL, V1, P103; Nespolo RF, 2003, EVOLUTION, V57, P1679; OREILLY KM, 1995, AM ZOOL, V35, P222; Ostner J, 2002, BEHAV ECOL SOCIOBIOL, V52, P485, DOI 10.1007/s00265-002-0532-9; Ovejero R, 2012, P 2 LAT AM MAMM C; Ovejero R, 2011, EUROPEAN J WILDLIFE, V57, P1, DOI [10.1007/s10344-010-0477-7, DOI 10.1007/S10344-010-0477-7]; Ovejero R, 2013, THESIS; PECZELY P, 1976, GEN COMP ENDOCR, V30, P1, DOI 10.1016/0016-6480(76)90060-5; Pereira RJG, 2006, HORM BEHAV, V49, P114, DOI 10.1016/j.yhbeh.2005.05.012; Pride RE, 2005, BIOL LETT-UK, V1, P60, DOI 10.1098/rsbl.2004.0245; Puig S., 1995, TECNICAS MANEJO GUAN, P97; PUIG S, 1995, TECNICAS MANEJO GUAN, P57; Puig S, 2008, STUD NEOTROP FAUNA E, V43, P1, DOI 10.1080/01650520701461319; R Development Core Team, 2012, R LANG ENV STAT COMP; Radovani N, 2004, 2 REUN BIN ARG CHIL, P232; Raedeke K. J., 1979, THESIS; Raouf SA, 2006, ANIM BEHAV, V71, P39, DOI 10.1016/j.anbehav.2005.03.027; Roff Derek A., 1992; Romero LM, 2009, HORM BEHAV, V55, P375, DOI 10.1016/j.yhbeh.2008.12.009; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Romero LM, 2000, GEN COMP ENDOCR, V119, P52, DOI 10.1006/gcen.2000.7491; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Rubenstein DR, 2009, AM NAT, V173, P650, DOI 10.1086/597606; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Sapolsky RM., 2002, BEHAV ENDOCRINOLOGY, P409; Schradin C, 2008, HORM BEHAV, V53, P573, DOI 10.1016/j.yhbeh.2008.01.003; SCHWABL H, 1984, AUK, V101, P499; Sheriff MJ, 2011, OECOLOGIA, V166, P869, DOI 10.1007/s00442-011-1943-y; Sheriff MJ, 2009, J COMP PHYSIOL B, V179, P305, DOI 10.1007/s00360-008-0314-4; Sinervo B, 2000, HORM BEHAV, V38, P222, DOI 10.1006/hbeh.2000.1622; Smith JE, 2012, GEN COMP ENDOCR, V178, P417, DOI 10.1016/j.ygcen.2012.06.015; Soto-Gamboa M, 2005, HORM BEHAV, V47, P311, DOI 10.1016/j.yhbeh.2004.11.010; Soto-Gamboa M, 2009, J EXP ZOOL PART A, V311A, P496, DOI 10.1002/jez.546; Stearns S, 1992, EVOLUTION LIFE HIST; Taraborelli P, 2014, ACTA THERIO IN PRESS; Tarlow EM, 2007, APPL ANIM BEHAV SCI, V102, P429, DOI 10.1016/j.applanim.2006.05.040; Tempel DJ, 2004, CONSERV BIOL, V18, P538, DOI 10.1111/j.1523-1739.2004.00372.x; Touma C, 2005, ANN NY ACAD SCI, V1046, P54, DOI 10.1196/annals.1343.006; Vera F, 2012, J EXP ZOOL PART A, V317A, P173, DOI 10.1002/jez.1711; von Holst D, 1998, ADV STUD BEHAV, V27, P1; Wasser SK, 2000, GEN COMP ENDOCR, V120, P260, DOI 10.1006/gcen.2000.7557; Wingfield JC, 2005, J MAMMAL, V86, P248, DOI 10.1644/BHE-004.1; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; WINGFIELD JC, 1986, HORM BEHAV, V20, P405, DOI 10.1016/0018-506X(86)90003-6; Wingfield John C., 1997, P95; Young AJ, 2006, P NATL ACAD SCI USA, V103, P12005, DOI 10.1073/pnas.0510038103; Young JK, 2004, REV CHIL HIST NAT, V77, P617, DOI 10.4067/S0716-078X2004000400005; Zapata B, 2004, ANIM WELFARE, V13, P439; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 104 0 0 3 30 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ NOV 2 2016 4 e2640 10.7717/peerj.2640 21 Multidisciplinary Sciences Science & Technology - Other Topics EB2EG WOS:000387169900004 DOAJ Gold, Green Published 2019-02-21 J Hoenig, JM; Then, AYH; Babcock, EA; Hall, NG; Hewitt, DA; Hesp, SA Hoenig, John M.; Then, Amy Y. -H.; Babcock, Elizabeth A.; Hall, Norman G.; Hewitt, David A.; Hesp, Sybrand A. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate ICES JOURNAL OF MARINE SCIENCE English Article biological reference points; data selection bias; empirical relationships; F-msy; hierarchical Bayesian models; indirect methods; intrinsic rate of population growth; life history correlates; mixed effects models; steepness parameter; stock-recruit relationships BAYESIAN HIERARCHICAL-MODELS; FISH STOCKS; MORPHOEDAPHIC INDEX; GROWTH-PARAMETERS; SPECIES RICHNESS; TEMPERATURE; METAANALYSIS; INFORMATION; RECRUITMENT; FISHERIES There are a number of key parameters in population dynamics that are difficult to estimate, such as natural mortality rate, intrinsic rate of population growth, and stock-recruitment relationships. Often, these parameters of a stock are, or can be, estimated indirectly on the basis of comparative life history studies. That is, the relationship between a difficult to estimate parameter and life history correlates is examined over a wide variety of species in order to develop predictive equations. The form of these equations may be derived from life history theory or simply be suggested by exploratory data analysis. Similarly, population characteristics such as potential yield can be estimated by making use of a relationship between the population parameter and bio-chemico-physical characteristics of the ecosystem. Surprisingly, little work has been done to evaluate how well these indirect estimators work and, in fact, there is little guidance on how to conduct comparative life history studies and how to evaluate them. We consider five issues arising in such studies: (i) the parameters of interest may be ill-defined idealizations of the real world, (ii) true values of the parameters are not known for any species, (iii) selecting data based on the quality of the estimates can introduce a host of problems, (iv) the estimates that are available for comparison constitute a non-random sample of species from an ill-defined population of species of interest, and (v) the hierarchical nature of the data (e.g. stocks within species within genera within families, etc., with multiple observations at each level) warrants consideration. We discuss how these issues can be handled and how they shape the kinds of questions that can be asked of a database of life history studies. [Hoenig, John M.; Then, Amy Y. -H.] Coll William & Mary, Virginia Inst Marine Sci, POB 1346, Gloucester Point, VA 23062 USA; [Then, Amy Y. -H.] Univ Malaya, Inst Biol Sci, Fac Sci, Kuala Lumpur 50603, Malaysia; [Babcock, Elizabeth A.] Univ Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 USA; [Hall, Norman G.] Murdoch Univ, Ctr Fish & Fisheries Res, 90 South St, Murdoch, WA 6150, Australia; [Hall, Norman G.; Hesp, Sybrand A.] Western Australian Fisheries & Marine Res Labs, Dept Fisheries, POB 20, Perth, WA 6920, Australia; [Hewitt, David A.] US Geol Survey, Western Fisheries Res Ctr, Klamath Falls Field Stn, 2795 Anderson Ave Suite 106, Klamath Falls, OR 97603 USA Hoenig, JM (reprint author), Coll William & Mary, Virginia Inst Marine Sci, POB 1346, Gloucester Point, VA 23062 USA. hoenig@vims.edu Hewitt, David/0000-0002-5387-0275 NMFS Stock Assessment Improvement Grant; Virginia Sea Grant; Malaysian Ministry of Higher Education-University of Malaya; NOAA grant through the Cooperative Institute for Marine and Atmospheric Studies at the University of Miami [NA150AR4320064] This study was funded by an NMFS Stock Assessment Improvement Grant awarded to the Southeast Fisheries Science Centre and was supported by Virginia Sea Grant and by the Malaysian Ministry of Higher Education-University of Malaya scholarship awarded to A.Y.-H.T. The work of E.A.B. was supported in part by a NOAA grant through the Cooperative Institute for Marine and Atmospheric Studies at the University of Miami (Award Number NA150AR4320064). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. We thank Andre Punt and an anonymous reviewer for helpful comments. This article is Contribution No. 3548 of the Virginia Institute of Marine Science, College of William & Mary. Ault JS, 1998, FISH B-NOAA, V96, P395; Bayliff W. H., 1967, COMMISSION B, V12, P365; BEST PB, 1993, ICES J MAR SCI, V50, P169, DOI 10.1006/jmsc.1993.1018; Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Brodziak J., 2011, NFMSFSPO119 NOAA; Charnov E. L, 1993, LIFE HIST INVARIANTS, V6; Charnov EL, 2013, FISH FISH, V14, P213, DOI 10.1111/j.1467-2979.2012.00467.x; Cubillos LA, 1999, FISH RES, V42, P147, DOI 10.1016/S0165-7836(99)00042-9; Donald D.B., 1989, North American Journal of Fisheries Management, V9, P177, DOI 10.1577/1548-8675(1989)009<0177:EOEAAM>2.3.CO;2; Dorazio RM, 2006, ECOLOGY, V87, P842, DOI 10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2; Dorn MW, 2002, N AM J FISH MANAGE, V22, P280, DOI 10.1577/1548-8675(2002)022<0280:AOWCRH>2.0.CO;2; Fryer G., 1972, CICHLID FISHES GREAT; Gedamke T, 2007, N AM J FISH MANAGE, V27, P605, DOI 10.1577/M05-157.1; Gelman A., 2007, DATA ANAL USING REGR; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Hamel OS, 2015, ICES J MAR SCI, V72, P62, DOI 10.1093/icesjms/fsu131; Hastie T, 2009, ELEMENTS STAT LEARNI; Helser TE, 2004, ECOL MODEL, V178, P399, DOI 10.1016/j.ecolmodel.2004.02.013; HERON AC, 1972, OECOLOGIA, V10, P294, DOI 10.1007/BF00345734; Hewit DA, 2007, T AM FISH SOC, V136, P1030, DOI 10.1577/T06-078.1; Hewitt D. A., 2005, FISHERY B, V103, P443; HOENIG JM, 1983, FISH B-NOAA, V81, P898; Johnson KF, 2015, ICES J MAR SCI, V72, P137, DOI 10.1093/icesjms/fsu055; Jones R., 1982, ICLARM C P, V9, P195; Kenchington TJ, 2014, FISH FISH, V15, P533, DOI 10.1111/faf.12027; Kery M, 2008, J APPL ECOL, V45, P589, DOI 10.1111/j.1365-2664.2007.01441.x; Lester NP, 2004, T AM FISH SOC, V133, P588, DOI 10.1577/T02-111.1; Liermann M., 1997, CANADIAN J FISHERIES, V15, P1976; Lorenzen K, 1996, J FISH BIOL, V49, P627, DOI 10.1006/jfbi.1996.0192; Lunn D., 2014, BUGS BOOK PRACTICAL; Marten Gerald, 1982, ICLARM C P, V9, P255; Maunder MN, 2011, FISH RES, V111, P92, DOI 10.1016/j.fishres.2011.06.016; McDermid JL, 2010, T AM FISH SOC, V139, P21, DOI 10.1577/T08-130.1; Melnychuk MC, 2012, FISH FISH, V13, P267, DOI 10.1111/j.1467-2979.2011.00429.x; Myers RA, 1998, ECOL APPL, V8, pS165, DOI 10.2307/2641375; Myers RA, 2001, ICES J MAR SCI, V58, P937, DOI 10.1006/jmsc.2001.1109; MYERS RA, 1995, CAN TECH REP FISH AQ, V2024, P327; Nakagawa S, 2008, TRENDS ECOL EVOL, V23, P592, DOI 10.1016/j.tree.2008.06.014; Ohsumi S., 1979, International Whaling Commission Report of the Commission, P397; PASCUAL MA, 1993, FISH RES, V16, P17, DOI 10.1016/0165-7836(93)90107-I; PAULY D, 1980, J CONSEIL, V39, P175; Pauly D, 2015, FISHBASE; Pauly D., 1984, ICLARM STUDIES REV, V8; Punt AE, 2011, ICES J MAR SCI, V68, P972, DOI 10.1093/icesjms/fsr039; Royle J. A., 2008, HIERARCHICAL MODELIN; Royle JA, 2008, BIOMETRICS, V64, P364, DOI 10.1111/j.1541-0420.2007.00891.x; Royle JA, 2009, BIOMETRICS, V65, P267, DOI 10.1111/j.1541-0420.2008.01038.x; RYDER RA, 1965, T AM FISH SOC, V94, P214, DOI 10.1577/1548-8659(1965)94[214:AMFETP]2.0.CO;2; RYDER RA, 1982, T AM FISH SOC, V111, P154, DOI 10.1577/1548-8659(1982)111<154:TMIAAF>2.0.CO;2; RYDER RA, 1974, J FISH RES BOARD CAN, V31, P663, DOI 10.1139/f74-097; Schmidt JH, 2009, J WILDLIFE MANAGE, V73, P720, DOI 10.2193/2008-262; Shuter BJ, 1998, CAN J FISH AQUAT SCI, V55, P2161, DOI 10.1139/cjfas-55-9-2161; SPOF (Strategic Planning for Ontario Fisheries), 1982, PART YIELDS EST MORP; Then AY, 2015, ICES J MAR SCI, V72, P82, DOI 10.1093/icesjms/fsu136; Thorson JT, 2015, FISH FISH, V16, P342, DOI 10.1111/faf.12061; Tyrrell MC, 2008, ICES J MAR SCI, V65, P1689, DOI 10.1093/icesjms/fsn185; WALTERS CJ, 1981, CAN J FISH AQUAT SCI, V38, P704, DOI 10.1139/f81-093; WELCOMME RL, 1985, FAO FISHERIES TECHNI, V262, P330; Zhang CI, 2006, T AM FISH SOC, V135, P620, DOI 10.1577/T04-173.1; Zhang ZN, 2009, FISH RES, V95, P289, DOI 10.1016/j.fishres.2008.09.035; Zhou SJ, 2012, CAN J FISH AQUAT SCI, V69, P1292, DOI 10.1139/F2012-060 62 6 6 0 4 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1054-3139 1095-9289 ICES J MAR SCI ICES J. Mar. Sci. NOV 2016 73 10 2453 2467 10.1093/icesjms/fsw089 15 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography EW3DW WOS:000402376300003 Bronze, Green Published 2019-02-21 J Zworykin, DD Zworykin, D. D. Phylogenesis of reproductive strategies in labyrinth fishes (Anabantoidei) and their sisterly groups ZHURNAL OBSHCHEI BIOLOGII Russian Article PERCH ANABAS-TESTUDINEUS; CICHLASOMA OCTOFASCIATUM TELEOSTEI; PARENTAL INVESTMENT THEORY; LIFE-HISTORY EVOLUTION; RAY-FINNED FISHES; FILIAL CANNIBALISM; CICHLID FISHES; FRESH-WATER; TROPHEUS-MOORII; MATE DESERTION Clado- and semogenetic approaches, when used in concert, make it possible to resolve questions concerning phylogenetic relationships between a group representatives as well as phylogenesis of those representatives' traits. Parental care patterns and other forms of reproductive behavior, along, with a reproductive strategy as a whole, can be subjects for semogenetic analysis to no lesser extent than morphological structures sensu stricto. One of the highly specialized forms of parental care in fishes, including suborder of labyrinth fishes and their sisterly groups, appears to be parental food provisioning. In my view, evolutionary origin of post-embryonic brood provisioning in bony fishes is related with three distinctive features, namely: 1) In fishes, different forms of post-embryonic food provisioning are convergent in their origin. 2) Any kind of brood provisioning is realized through exploiting the trait already existent and maintained by selection due to offspring fitness enhancement. 3) The main evolutionary path of this phenomenon emergence and development consists in the function expansion and replacement. This hypothesis does have the heuristic power, since it allows predicting the presence of the reproductive strategy component in question through identification of adequate basic adaptations. Despite the fact that parental care occurs in a majority of anabantoid fishes, there still are several species for which such care is not known. On cladogram, these species by no means take the basal position but are surrounded by fishes providing care for their eggs or even hatchlings. The parsimony principle leads to the suggestion that parental care is a plesiomorphic trait in the suborder Anabantoidei (or in the order Anabantiformes). It seems that the ancestors of present day non-caring species that take various positions within this phylogenetic group were fishes showing parental care. Later on, their reproductive strategy has changed as a result of gamma-selection. If this hypothesis is correct, the absence of parental care should be considered as a case of reproductive strategy degradation. It is quite probable that parental food provisioning was a component of the ancestral reproductive strategies. It is also possible that reproductive strategy of the present day Anabantiformes supposedly not caring for their offspring, actually includes some optional forms of parental care. [Zworykin, D. D.] RAS, AN Severtsov Inst Ecol & Evolut, Leninsky Pr 33, Moscow 119071, Russia Zworykin, DD (reprint author), RAS, AN Severtsov Inst Ecol & Evolut, Leninsky Pr 33, Moscow 119071, Russia. d.zworykin@gmail.com Zworykin, Dmitry/0000-0001-6198-3299 Atz J. W., 1970, P53; Axelrod H. R., 1971, EXOTIC TROPICAL FISH; Balon E.K., 1984, P35; Balon E.K., 1990, GUELPH ICHTHYOL REV, V1, P1; Balshine S, 2012, EVOLUTION OF PARENTAL CARE, P62; Bandoli JH, 2002, BEHAV ECOL SOCIOBIOL, V51, P222, DOI 10.1007/S00265-001-0428-0; BANERJI SR, 1981, INDIAN J ANIM SCI, V51, P651; BANERJI SR, 1981, HYDROBIOLOGIA, V79, P147, DOI 10.1007/BF00006122; Barlow G.W., 1991, P173; BARLOW GW, 1968, J ZOOL, V156, P415; Betancur R. R., 2014, PHYLOGENETIC CLASSIF; Binoy VV, 2008, J FISH BIOL, V73, P1053, DOI 10.1111/j.1095-8649.2008.01987.x; BLUMER LS, 1982, ZOOL J LINN SOC-LOND, V75, P1, DOI 10.1111/j.1096-3642.1982.tb01939.x; Breder CM, 1966, MODES REPROD FISHES; BRITZ R, 1995, JPN J ICHTHYOL, V42, P71; Britz Ralf, 1997, American Museum Novitates, V3195, P1; Britz Ralf, 2000, Ichthyological Exploration of Freshwaters, V11, P305; Buckley J, 2010, J EXP BIOL, V213, P3787, DOI 10.1242/jeb.042929; Chen WJ, 2003, MOL PHYLOGENET EVOL, V26, P262, DOI 10.1016/S1055-7903(02)00371-8; Clotfelter ED, 2007, BRAIN BEHAV EVOLUT, V69, P169, DOI 10.1159/000096985; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Cole B., 1999, CENT TROP SUBTROP AQ, V135; COLEMAN RM, 1991, TRENDS ECOL EVOL, V6, P404, DOI 10.1016/0169-5347(91)90163-R; Collins RA, 2015, J ZOOL SYST EVOL RES, V53, P259, DOI 10.1111/jzs.12103; Corning PA, 2014, BIOL J LINN SOC, V112, P242, DOI 10.1111/bij.12061; Courtenay W.R., 2004, USGS CIRCULAR, V1251, P143; DAOULAS C, 1993, J FISH BIOL, V42, P749; DAVIS CC, 1959, LIMNOL OCEANOGR, V4, P352, DOI 10.4319/lo.1959.4.3.0352; DAWKINS R, 1976, NATURE, V262, P131, DOI 10.1038/262131a0; Dawson KJ, 1996, J THEOR BIOL, V183, P139, DOI 10.1006/jtbi.1996.0208; Devine JA, 2000, J FISH BIOL, V56, P1488, DOI 10.1006/jfbi.2000.1275; Dillman CB, 2016, CLADISTICS, V32, P276, DOI 10.1111/cla.12127; DOKINZ R, 2010, RASSHIRENNYY FENOTIP, P512; DORN FA, 1937, PROISKHOZHDENIE POZV, P195; Drew JA, 2015, ETHOLOGY, V121, P2, DOI 10.1111/eth.12329; Duckworth RA, 2009, EVOL ECOL, V23, P513, DOI 10.1007/s10682-008-9252-6; Duponchelle F, 2008, P NATL ACAD SCI USA, V105, P15475, DOI 10.1073/pnas.0802343105; Dzerzhinskiy K. F., 2016, Voprosy Ikhtiologii, V56, P86, DOI 10.7868/S0042875216010045; DZERZHINSKIY KF, 2012, EKOLOGIYA EVOLYUTSIY, P245; Ereshefsky M, 2007, BIOL PHILOS, V22, P659, DOI 10.1007/s10539-007-9091-9; FABRI KE, 1999, OSNOVY ZOOPSIKHOLOGI, P464; Favorito Sandra E., 2005, Neotrop. ichthyol., V3, P319, DOI 10.1590/S1679-62252005000300001; Felsenstein J., 2004, INFERRING PHYLOGENIE; Field J, 2005, BEHAV ECOL, V16, P770, DOI 10.1093/beheco/ari054; GEBHARDT MD, 1987, ENVIRON BIOL FISH, V19, P69, DOI 10.1007/BF00002739; GITTLEMAN JL, 1981, ANIM BEHAV, V29, P936, DOI 10.1016/S0003-3472(81)80031-0; GOLOVIN SYU, 1998, SLOVAR PRAKTICHESKOG, P660; Gonzalez-Voyer A, 2009, P ROY SOC B-BIOL SCI, V276, P161, DOI 10.1098/rspb.2008.0979; GOODWIN NB, 1998, BIOL SCI, V265, P2265; Greene Harry W., 1994, P369; Gross M. R., 1984, Fish reproduction: strategies and tactics., P55; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; GROSS MR, 1985, AM ZOOL, V25, P807; GURZHIY A, 2010, AKVARIUM, P6; Hanel R, 2002, J MOL EVOL, V55, P776, DOI 10.1007/s00239-002-2373-6; Harrington RC, 2015, MOL PHYLOGENET EVOL, V84, P158, DOI 10.1016/j.ympev.2015.01.002; Harz W., 2001, AQUARISTIK FACHMAGAZ, V31, P26; Hennig W., 1966, PHYLOGENETIC SYSTEMA; Houston AI, 2013, ANIM BEHAV, V86, P667, DOI 10.1016/j.anbehav.2013.08.001; Huey RB, 2003, AM NAT, V161, P357, DOI 10.1086/346135; Jacob E, 2014, THESIS; Jacob P. K., 2005, THESIS; Jennions MD, 2001, BEHAV ECOL, V12, P84, DOI 10.1093/oxfordjournals.beheco.a000383; Johnston C.E., 1993, P600; KASYANOV VL, 1989, REPRODUKTIVNAYA STRA, P179; KAWASE H, 1995, ENVIRON BIOL FISH, V43, P241, DOI 10.1007/BF00005856; Keenleyside M.H.A., 1991, P191; KHLEBOSOLOV EI, 2004, LEKTSII TEORII EVOLT, P264; Kidd MR, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031236; Kitching IJ, 1998, CLADISTICS THEORY PR; Klett V, 2002, MOL BIOL EVOL, V19, P865, DOI 10.1093/oxfordjournals.molbev.a004144; KLYUGE NYU, 2000, SOVREMENNAYA SISTEMA, P336; KLYUGE NYU, 2012, ENTOMOL OBOZR, V1, P63; Kokshajskij N.V., 1980, P37; Kokshaysky N. V., 1966, P169; Kokshaysky NV, 1997, ZOOL ZH, V76, P883; Kolm N, 2006, J EVOLUTION BIOL, V19, P66, DOI 10.1111/j.1420-9101.2005.00984.x; KRAMER DL, 1973, BEHAVIOUR, V47, P14, DOI 10.1163/156853973X00256; Kullander SO, 1999, REV FISH BIOL FISHER, V9, P325, DOI 10.1023/A:1008959313491; KUWAMURA T, 1986, Physiology and Ecology Japan, V23, P31; LAUDER G V, 1983, Bulletin of the Museum of Comparative Zoology, V150, P95; Leach B, 2000, BEHAV ECOL SOCIOBIOL, V49, P31, DOI 10.1007/s002650000268; Lehtonen TK, 2011, BEHAV ECOL SOCIOBIOL, V65, P607, DOI 10.1007/s00265-010-1061-6; Li B, 2009, MOL PHYLOGENET EVOL, V50, P345, DOI 10.1016/j.ympev.2008.11.013; Liem K. F., 1963, ILLINOIS BIOL MONOGR, V30; Lim K. K. P., 2008, FISHES SINGAPORE RE, P145; LORENTS K, 1994, AGRESSIYA TAK NAZYVA, P272; Lorenz K., 1939, MOTIVATION HUMAN ANI, P1; Lorenz K., 1939, Z TIERPSYCHOL, V2, P1, DOI [DOI 10.1111/J.1439-0310.1939.TB01558.X, 10.1111/j.1439-0310.1939.tb01558.x]; Lowe-McConnell RH, 1987, ECOLOGICAL STUDIES T; Makeeva A. P., 2000, Voprosy Ikhtiologii, V40, P780; MAKFARLEND D, 1988, POVEDENIYE ZHIVOTNYK, P520; MAKHLIN MD, 1983, ZHIZN ZHIVOTNYKH, V4, P468; Manica A, 2002, BIOL REV, V77, P261, DOI 10.1017/S1464793101005905; Mank JE, 2006, J FISH BIOL, V69, P1, DOI 10.1111/j.1095-8649.2006.01132.x; Mank JE, 2005, EVOLUTION, V59, P1570; MANTEYFEL BP, 1987, EKOLOGICHESKIE EVOLY, P272; Martin E, 1997, BEHAV ECOL SOCIOBIOL, V41, P311, DOI 10.1007/s002650050391; MASLOV SP, 1980, UROVNI ORG BIOL SIST, P8; Matsumoto S, 2010, ICHTHYOL RES, V57, P71, DOI 10.1007/s10228-009-0125-y; McNamara JM, 2002, ANIM BEHAV, V64, P147, DOI 10.1006/anbe.2002.3038; Mehlis M, 2010, P ROY SOC B-BIOL SCI, V277, P2627, DOI 10.1098/rspb.2010.0234; Mercy TVA, 2003, CURR SCI INDIA, V84, P1468; MILLER R J, 1974, Zeitschrift fuer Tierpsychologie, V34, P484; MILLER RJ, 1983, BEHAVIOUR, V83, P155, DOI 10.1163/156853982X00076; Moitra A., 1979, BIOLL B INDIA, P31; Near TJ, 2013, P NATL ACAD SCI USA, V110, P12738, DOI 10.1073/pnas.1304661110; Ord T.J., 2014, ANIMAL BEHAV WHY ANI, V2, P339; Ord Terry J., 2010, P108; Ota K., 2012, INT J EVOLUTIONARY B; Panijpan B, 2015, META GENE, V4, P17, DOI 10.1016/j.mgene.2015.02.003; Panijpan B, 2014, META GENE, V2, P862, DOI 10.1016/j.mgene.2014.10.007; Panov E.N., 1983, Itogi Nauki i Tekhniki Seriya Zoologiya Pozvonochnykh, V12, P5; PANOV EN, 1982, ZOOL ZH, V61, P988; PANOV EN, 1983, POVEDENIE ZHIVOTNYKH, P423; PARAMESWARAN S, 1971, INDIAN ACAD SCI, V73, P132; PAVLINOV IYA, 2005, VVEDENIE SOVREMENNYY, P392; PAVLOV DS, 2014, EKOLOGIYA VNUTRENNIY, P279; Perry JC, 2006, OIKOS, V112, P706; Plate L, 1913, HANDWORTERBUCH NATUR, V2; POTAPOVA EG, 2013, TR ZIN RAN, P53; RASNITSYM AP, 2005, IZBRANNYE TRUDY EVOL, P347; Rendall D, 2007, J HUM EVOL, V52, P504, DOI 10.1016/j.jhevol.2006.11.014; Reynolds JD, 2002, PHILOS T R SOC B, V357, P269, DOI 10.1098/rstb.2001.0930; Richter H.-J, 1983, BUCH LABYRINTHFISCHE; Riehl R, 1991, AQUARIEN ATLAS, V1; Roberts T.R., 1989, MEMOIRS CALIFORNIA A, V14, P210; Robillard T, 2006, CLADISTICS, V22, P602, DOI 10.1111/j.1096-0031.2006.00125.x; Rosen D.E., 1976, Bulletin Am Mus nat Hist, V157, P1; Ruber L, 2004, EVOLUTION, V58, P799; Ruber L., 2006, SYST BIOL, V55, P374; Ruggiero MA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0119248; Ryan Michael J., 1996, P1; Ryder JA., 1886, AM NAT, V20, P986; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; Sayer M.D.J., 1991, Reviews in Fish Biology and Fisheries, V1, P159, DOI 10.1007/BF00157583; Schnieder M., 2001, AQUARISTIK FACHMAGAZ, V31, P38; Schurch R, 2005, BEHAVIOUR, V142, P265, DOI 10.1163/1568539053778274; Schutz M, 1997, FISH PHYSIOL BIOCHEM, V16, P11, DOI 10.1007/BF00004536; SEVERTSOV AN, 1967, GLAVNYE NAPRAVLENIYA, P203; SEVERTSOV AN, 1987, OSNOVY TEORII EVOLYU, P320; SEVERTSOV AN, 1990, NAPRAVLENNOST EVOLYU, P272; Severtzov A. N., 1939, P610; SHEPHARD KL, 1994, REV FISH BIOL FISHER, V4, P401, DOI 10.1007/BF00042888; Silva HMA, 2011, AN ACAD BRAS CIENC, V83, P483, DOI 10.1590/S0001-37652011000200010; Sloman KA, 2011, ENCYCLOPEDIA OF FISH PHYSIOLOGY: FROM GENOME TO ENVIRONMENT, VOLS 1-3, P678; Smiseth PT, 2012, EVOLUTION OF PARENTAL CARE, P1; Smith HM., 1945, FRESH WATER FISHES S; Sneath PHA, 1973, NUMERICAL TAXONOMY P; Sober E., 1988, RECONSTRUCTING PARSI; Sparks JS, 2004, CLADISTICS, V20, P501, DOI 10.1111/j.1096-0031.2004.00038.x; Sterelny Kim, 2003, DAWKINS VS GOULD SUR; Stiassny Melanie L. J., 1994, V50, P235; Stiassny MLJ, 1999, SCI AM, V280, P64, DOI 10.1038/scientificamerican0299-64; STURMBAUER C, 1993, MOL BIOL EVOL, V10, P751; Suraiya S., 2012, J INNOVATION DEV ST, V6, P63; TATARINOV L P, 1976, P258; Thomaz A.T., 2015, BMC EVOLUTIONARY BIO, V15, pe146; Tsuboi M, 2015, BIOL LETT, V11; UKHTOMSKIY AA, 1950, SOBRANIE SOCHINENIY, V1, P329; van Velzen J, 1998, NETH J ZOOL, V48, P305, DOI 10.1163/156854298X00011; VIERKE J, 1975, Zeitschrift fuer Tierpsychologie, V38, P163; Vierke J., 1991, Aquarium (Bornheim), P15; Wade MJ, 2002, AM NAT, V160, P285, DOI 10.1086/341520; WELCOMME RL, 1985, FAO FISHERIES TECHNI, V262, P330; WENZEL JW, 1992, ANNU REV ECOL SYST, V23, P361, DOI 10.1146/annurev.es.23.110192.002045; Wiley E.O., 2010, P123; Wimberger Peter H., 1998, P509; WISENDEN BD, 1995, ANIM BEHAV, V49, P623; WISENDEN BD, 1994, BEHAV ECOL, V5, P439, DOI 10.1093/beheco/5.4.439; Wong BBM, 2015, BEHAV ECOL, V26, P665, DOI 10.1093/beheco/aru183; Wootton R.J., 1984, P1; YANAGISAWA Y, 1990, ENVIRON BIOL FISH, V27, P43, DOI 10.1007/BF00004903; Yanagisawa Y, 1996, ENVIRON BIOL FISH, V47, P191, DOI 10.1007/BF00005042; Yudin K.A., 1974, Trudy zool Inst Leningr, V53, P5; Zalina I., 2012, Journal of Fisheries and Aquatic Science, V7, P291, DOI 10.3923/jfas.2012.291.306; ZORINA ZA, 2002, OSNOVY ETOLOGII GENE, P384; ZVORKIN DD, 2006, VOPR IKHTIOLOGII, V46, P694; Zvorykin D. D., 2012, Voprosy Ikhtiologii, V52, P469; Zworykin D.D., 2001, CICHLID RES STATE AR, P269; Zworykin D.D., 2000, J ICHTHYOL S2, V40, P271; Zworykin DD, 1998, ETHOLOGY, V104, P771; Zworykin DD, 2000, ENVIRON BIOL FISH, V57, P443, DOI 10.1023/A:1007654729430; Zworykin DD, 1998, MAR FRESHW BEHAV PHY, V31, P185, DOI 10.1080/10236249809387072 184 0 0 0 7 MEZHDUNARODNAYA KNIGA MOSCOW 39 DIMITROVA UL., MOSCOW, 113095, RUSSIA 0044-4596 ZH OBSHCH BIOL Zhurnal Obshchei Biol. NOV-DEC 2016 77 6 464 481 18 Biology Life Sciences & Biomedicine - Other Topics EJ5EY WOS:000393241600006 30024673 2019-02-21 J Skinner, HM; Durso, AM; Neuman-Lee, LA; Durham, SL; Mueller, SD; French, SS Skinner, Heather M.; Durso, Andrew M.; Neuman-Lee, Lorin A.; Durham, Susan L.; Mueller, Sarah D.; French, Susannah S. Effects of Diet Restriction and Diet Complexity on Life History Strategies in Side-Blotched Lizards (Uta stansburiana) JOURNAL OF EXPERIMENTAL ZOOLOGY PART A-ECOLOGICAL GENETICS AND PHYSIOLOGY English Article TRADE-OFFS; ENERGY ALLOCATION; NUTRIENT COMPOSITION; UROSAURUS-ORNATUS; FOOD RESTRICTION; OXIDATIVE STRESS; IMMUNE-SYSTEMS; TREE LIZARDS; BODY-SIZE; REPRODUCTION Organisms must balance energy invested into self-maintenance, reproduction, and somatic growth over their lifetime. In this study, the effects of diet restriction and diet complexity on side-blotched lizards (Uta stansburiana) were analyzed. Thirty male lizards, housed in the laboratory, were fed either an ad libitum or a restricted diet for 18 days (phase 1). Individuals from both treatments were then assigned to a diet of the same quantity of food that was either simple (only crickets) or complex (crickets, cockroaches, waxworms, and mealworms) for 35 days (phase 2). We evaluated (1) how diet restriction affected life history strategies and (2) how diet complexity affected recovery from diet restriction as measured at the end of phase 2 by body mass, snout-vent length, calculated body condition score, wound healing, tail regrowth, bacterial killing ability, oxidative stress, and plasma testosterone and corticosterone concentrations. Lizards without diet restriction allocated more energy to self-maintenance (i.e., maintaining higher body condition scores, healing wounds more quickly) than lizards with diet restriction. Lizards with diet restriction had higher plasma testosterone concentrations and larger increases in snout-vent lengths than those fed ad libitum, which may reflect allocations toward reproduction and somatic growth. A complex diet resulted in better body condition and faster tail regrowth than a simple diet, suggesting that a complex diet enhanced recovery from diet restriction, although long-term life history choices remained unaltered. Finally, lizards on a complex diet consumed substantially less food while maintaining higher body condition, suggesting that key nutrients may be lacking from a simple diet. [Skinner, Heather M.] Washington State Univ, WIMU Reg Program Vet Med, Pullman, WA 99164 USA; [Durso, Andrew M.; Neuman-Lee, Lorin A.; French, Susannah S.] Utah State Univ, Dept Biol, 5305 Old Main Hill, Logan, UT 84322 USA; [Durso, Andrew M.; Durham, Susan L.; French, Susannah S.] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA; [Mueller, Sarah D.] Univ Puget Sound, Dept Biol, Tacoma, WA 98416 USA Skinner, HM (reprint author), Utah State Univ, Dept Biol, 5305 Old Main Hill, Logan, UT 84322 USA. heatherjones@vetmed.wsu.edu National Science Foundation [IOS-1350070]; Utah Agricultural Experiment Station Project [UTA01104] Grant sponsor: National Science Foundation; grant number: IOS-1350070. Grant sponsor: Utah Agricultural Experiment Station Project # UTA01104. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Fernandez A, 2012, J EXP MAR BIOL ECOL, V416, P8, DOI 10.1016/j.jembe.2012.02.001; Alonzo SH, 2001, BEHAV ECOL SOCIOBIOL, V49, P176, DOI 10.1007/s002650000265; Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001; Barker D, 1998, ZOO BIOL, V17, P123, DOI 10.1002/(SICI)1098-2361(1998)17:2<123::AID-ZOO7>3.0.CO;2-B; Bernard J. B, 1997, NUTR ADVISORY GROUP, V3, P1; Bjelakovic G, 2007, J Basic Clin Physiol Pharmacol, V18, P115; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; Casto JM, 2001, AM NAT, V157, P408, DOI 10.1086/319318; Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Cohen PG, 1999, MED HYPOTHESES, V52, P49, DOI 10.1054/mehy.1997.0624; Costantini D, 2011, J COMP PHYSIOL B, V181, P447, DOI 10.1007/s00360-011-0566-2; Cox RM, 2014, J ANIM ECOL, V83, P888, DOI 10.1111/1365-2656.12228; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; DENARDO DF, 1994, HORM BEHAV, V28, P273, DOI 10.1006/hbeh.1994.1023; Dickens MJ, 2013, GEN COMP ENDOCR, V191, P177, DOI 10.1016/j.ygcen.2013.06.014; Durso A, J EXP BIOL IN PRESS; Fidgett A. L., 2014, International Zoo Yearbook, V48, P116, DOI 10.1111/izy.12057; Finke MD, 2002, ZOO BIOL, V21, P269, DOI 10.1002/zoo.10031; French SS, 2006, GEN COMP ENDOCR, V145, P128, DOI 10.1016/j.ygcen.2005.08.005; French SS, 2007, J EXP BIOL, V210, P2859, DOI 10.1242/jeb.005348; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; French SS, 2012, BIOL OPEN, V1, P482, DOI 10.1242/bio.2012919; French SS, 2010, HORM BEHAV, V58, P792, DOI 10.1016/j.yhbeh.2010.08.001; GLAZIER DS, 1992, OECOLOGIA, V90, P540, DOI 10.1007/BF01875448; Goymann W, 2014, BEHAV ECOL, V25, P685, DOI 10.1093/beheco/aru019; Guarnieri DJ, 2012, BIOL PSYCHIAT, V71, P358, DOI 10.1016/j.biopsych.2011.06.028; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hasselquist D, 2012, ANIM BEHAV, V83, P1303, DOI 10.1016/j.anbehav.2012.03.025; Hoby S, 2010, J NUTR, V140, P1923, DOI 10.3945/jn.110.120998; Hoppmann E, 2007, J EXOT PET MED, V16, P210, DOI 10.1053/j.jepm.2007.10.001; Jonsson N, 2003, CAN J FISH AQUAT SCI, V60, P506, DOI [10.1139/f03-042, 10.1139/F03-042]; Keeley ER, 1998, BEHAVIOUR, V135, P65; Kitaysky AS, 2001, J COMP PHYSIOL B, V171, P701, DOI 10.1007/s003600100230; Klasing KC, 2007, BRIT POULTRY SCI, V48, P525, DOI 10.1080/00071660701671336; Kogut MH, 2009, J APPL POULTRY RES, V18, P103, DOI 10.3382/japr.2008-00080; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; LATSHAW JD, 1991, VET IMMUNOL IMMUNOP, V30, P111; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lucas LD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049895; MAC ARTHUR ROBERT H., 1967; Martin P, 1997, SCIENCE, V276, P75, DOI 10.1126/science.276.5309.75; MCCANCE RA, 1962, PROC R SOC SER B-BIO, V156, P326; McWilliams D., 2006, INT ZOO YB, V39, P69; MILSTEAD WW, 1969, AM MIDL NAT, V81, P491, DOI 10.2307/2423984; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; MOORE MC, 1986, J COMP PHYSIOL A, V158, P159, DOI 10.1007/BF01338559; Morgan KN, 2007, APPL ANIM BEHAV SCI, V102, P262, DOI 10.1016/j.applanim.2006.05.032; Nagy KA, 1999, ANNU REV NUTR, V19, P247, DOI 10.1146/annurev.nutr.19.1.247; Neuman-Lee LA, 2015, FUNCT ECOL, V29, P1453, DOI 10.1111/1365-2435.12457; Neuman-Lee LA, 2014, J COMP PHYSIOL B, V184, P623, DOI 10.1007/s00360-014-0826-z; Noble R.C., 1991, P17, DOI 10.1017/CBO9780511585739.003; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; NUSSBAUM R A, 1976, Northwest Science, V50, P243; Pankhurst NW, 2011, MAR FRESHWATER RES, V62, P1015, DOI 10.1071/MF10269; PARKER WS, 1975, COPEIA, P615; Reedy AM, 2016, BIOL J LINN SOC, V117, P516, DOI 10.1111/bij.12685; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roff Derek A., 1992; Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x; SCHWARZKOPF L, 1994, LIZARD ECOLOGY, P7; Sibly RM, 2013, METHODS ECOL EVOL, V4, P151, DOI 10.1111/2041-210x.12002; Sinervo B, 2000, HORM BEHAV, V38, P222, DOI 10.1006/hbeh.2000.1622; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TANNER W W, 1972, Brigham Young University Science Bulletin Biological Series, V15, P1; Tinkle D. W., 1967, Miscellaneous Publications Museum of Zoology University of Michigan, VNo. 132, P1; URIST MR, 1961, J GEN PHYSIOL, V44, P743, DOI 10.1085/jgp.44.4.743; Verhulst S, 2005, J AVIAN BIOL, V36, P22, DOI 10.1111/j.0908-8857.2005.03342.x; WADA K, 1993, MAR BIOL, V115, P47, DOI 10.1007/BF00349385; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 74 1 1 4 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1932-5223 1932-5231 J EXP ZOOL PART A J. Exp. Zool. Part A NOV 2016 325 9 626 637 10.1002/jez.2056 12 Zoology Zoology EI9DW WOS:000392808700006 28102007 2019-02-21 J Correll, MD; Wiest, WA; Olsen, BJ; Shriver, WG; Elphick, CS; Hodgman, TP Correll, Maureen D.; Wiest, Whitney A.; Olsen, Brian J.; Shriver, W. Gregory; Elphick, Chris S.; Hodgman, Thomas P. Habitat specialization explains avian persistence in tidal marshes ECOSPHERE English Article climate change; niche; specialism; species conservation; tidal marsh NEW-ENGLAND; ECOLOGICAL SPECIALIZATION; MODELS; POPULATION; GENERALISTS; SPECIALISTS; DIVERSITY; FRAGMENTATION; MECHANISMS; ABUNDANCE Habitat specialists are declining at alarming rates worldwide, driving biodiversity loss of the earth's next mass extinction. Specialist organisms maintain smaller functional niches than their generalist counterparts, and tradeoffs exist between these contrasting life history strategies, creating conservation challenges for specialist taxa. There is little work, however, explicitly quantifying "specialization"; such information is necessary for the development of focused conservation strategies in light of the rapidly changing landscapes of the modern world. In this study, we tested whether habitat specialism explains the persistence of breeding bird populations in tidal marshes of the northeastern United States. We used the North American Breeding Bird Survey (BBS) together with contemporary marsh bird surveys to develop a Marsh Specialization Index (MSI) for 106 bird species that regularly use tidal marshes during the breeding season. We produced four metrics of species persistence (occupancy, abundance, total biomass supported, and 14-yr population trends) and compared them to MSI values in one of the first community-scale demonstrations of specialist loss in disturbed landscapes. Our results confirm that tidal marsh specialism has short-term benefits but long-term consequences for bird persistence in coastal marsh systems, results that are generalizable across many changing landscapes. We then use this robust support of niche theory to recommend MSI as a tool for quantitatively identifying species of conservation concern in disturbed and rapidly changing landscapes such as tidal marsh. [Correll, Maureen D.; Olsen, Brian J.] Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA; [Wiest, Whitney A.; Shriver, W. Gregory] Univ Delaware, Dept Entomol & Wildlife Ecol, Newark, DE 19716 USA; [Elphick, Chris S.] Univ Connecticut, Ctr Conservat & Biodivers, Dept Ecol & Evolutionary Biol, Storrs, CT 06269 USA; [Hodgman, Thomas P.] Maine Dept Inland Fisheries & Wildlife, Bangor, ME 04401 USA Correll, MD (reprint author), Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA. maureen.correll@maine.edu Competitive State Wildlife Grant via Federal Aid in Sportfish and Wildlife Restoration to the States of Delaware, Maryland, Connecticut, and Maine [U2-5-R-1]; National Science Foundation [DGE-1144423]; United States Fish and Wildlife Service [P11AT00245, 50154-0-G-004A]; United States Department of Agriculture [ME0-H-6-00492-12]; Maine Association of Wetland Scientists We received primary funding through a Competitive State Wildlife Grant (U2-5-R-1) via Federal Aid in Sportfish and Wildlife Restoration to the States of Delaware, Maryland, Connecticut, and Maine. Additional funding was provided through a National Science Foundation Integrated Graduate Education and Research Traineeship (DGE-1144423), the United States Fish and Wildlife Service (P11AT00245, 50154-0-G-004A), the United States Department of Agriculture (ME0-H-6-00492-12), and the Maine Association of Wetland Scientists. This is Maine Agricultural and Forest Experiment Station Publication Number #3491. We thank the Maine Department of Inland Fisheries and Wildlife, University of Delaware, Rachel Carson National Wildlife Refuge (NWR), Parker River NWR, Monomoy NWR, Bombay Hook NWR, Massachusetts Audubon, New Hampshire Audubon, Audubon New York, New Jersey Audubon, The Meadowlands Field Commission, the Smithsonian Institution, SHARP field crews and landowners for data contributions, land access, and field support. Thank you also to J.C. Avise (barn swallow), L. Blumin, J. Taggert (song sparrow), M. Eising (American black duck), M. Baird (Virginia rail), J. Wolf (great egret), D. Berganza (clapper rail), D. Pancamo (common yellowthroat), F. Schulenberg (snowy egret), A. Reago (Nelson's sparrow), M. Baird (Virginia rail), Wikimedia Creative Commons, Clipart-Finder.com, Photogra-phicClipart.com, and Cliparts.co for providing images of focal species for use in our figures. We also thank E. Adams and D. Rosco for support during analysis and two anonymous reviewers whose suggestions greatly improved earlier versions of this manuscript. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of our sponsors. Barnosky AD, 2011, NATURE, V471, P51, DOI 10.1038/nature09678; Barton K., 2015, MUMIN MULTIMODEL INF; Bates D, 2015, J STAT SOFTW, V67, P1; Bertness MD, 2002, P NATL ACAD SCI USA, V99, P1395, DOI 10.1073/pnas.022447299; Blonder B, 2014, GLOBAL ECOL BIOGEOGR, V23, P595, DOI 10.1111/geb.12146; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Burnham K. P., 2002, ECOLOGICAL MODELLING; Carter MF, 2000, AUK, V117, P541, DOI 10.1642/0004-8038(2000)117[0541:SCPFLI]2.0.CO;2; Chase J. M., 2003, ECOLOGICAL NICHES LI; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Clavel J, 2011, FRONT ECOL ENVIRON, V9, P222, DOI 10.1890/080216; Colles A, 2009, ECOL LETT, V12, P849, DOI 10.1111/j.1461-0248.2009.01336.x; Correll M. D., 2016, CONSERVATIO IN PRESS; Dennis RLH, 2011, BIOL J LINN SOC, V104, P725, DOI 10.1111/j.1095-8312.2011.01789.x; Dettmers R., 2000, PARTNERS FLIGHT CONS; Devictor V, 2008, OIKOS, V117, P507, DOI 10.1111/j.2008.0030-1299.16215.x; Devictor V, 2010, J APPL ECOL, V47, P15, DOI 10.1111/j.1365-2664.2009.01744.x; Elton C. S., 1927, ANIMAL ECOLOGY; EMLEN JT, 1971, AUK, V88, P323, DOI 10.2307/4083883; Enquist Brian, 2012, Biodiversity Ecol, V4, P288, DOI 10.7809/b-e.00086; Fischer J, 2007, GLOBAL ECOL BIOGEOGR, V16, P265, DOI 10.1111/j.1466-8238.2007.00287; Fiske IJ, 2011, J STAT SOFTW, V43, P1; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; Gaston KJ, 1997, J ANIM ECOL, V66, P579, DOI 10.2307/5951; Gedan KB, 2009, ANNU REV MAR SCI, V1, P117, DOI 10.1146/annurev.marine.010908.163930; Geraci M, 2014, J STAT SOFTW, V57, P1; Grinnell J., 1917, Auk Cambridge Mass, V34; Hodgman T., 2000, PARTNERS FLIGHT CONS; Holt RD, 2009, P NATL ACAD SCI USA, V106, P19659, DOI 10.1073/pnas.0905137106; Hutchinson G. E, 1978, INTRO POPULATION ECO; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P415, DOI 10.1101/SQB.1957.022.01.039; IUCN, 2013, IUCN RED LIST INT UN; Jonsen ID, 1997, LANDSCAPE ECOL, V12, P185, DOI 10.1023/A:1007961006232; Julliard R, 2006, ECOL LETT, V9, P1237, DOI 10.1111/j.1461-0248.2006.00977.x; KAWECKI TJ, 1994, AM NAT, V144, P833, DOI 10.1086/285709; Kroodsma D. E., 2014, BIRDS N AM; LEIBOLD MA, 1995, ECOLOGY, V76, P1371, DOI 10.2307/1938141; Levins R., 1968, EVOLUTION CHANGING E; Lotts K., 2016, BUTTERFLIES MOTHS N; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; MacArthur R., 1972, GEOGRAPHICAL ECOLOGY; Partners in Flight Science Committee, 2012, SPEC ASS DAT VERS 20; R Core Team, 2015, R LANG ENV STAT COMP; RMBO, 2014, INT MON BIRD CONS RE; Rosenberg K. V, 2014, STATE BIRDS 2014 WAT; Royle JA, 2004, BIOMETRICS, V60, P108, DOI 10.1111/j.0006-341X.2004.00142.x; Ruskin K, 2015, THESIS; Sallenger AH, 2012, NAT CLIM CHANGE, V2, P884, DOI [10.1038/nclimate1597, 10.1038/NCLIMATE1597]; Sauer J. R, 2014, N AM BREEDING BIRD S; Shea K, 2002, TRENDS ECOL EVOL, V17, P170, DOI 10.1016/S0169-5347(02)02495-3; Shepard CC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027374; Shriver WG, 2004, BIOL CONSERV, V119, P545, DOI 10.1016/j.biocon.2004.01.016; Silliman BR, 2004, CONSERV BIOL, V18, P1424, DOI 10.1111/j.1523-1739.2004.00112.x; The Birds of North America, 2015, BIRDS N AM; Urban MC, 2015, SCIENCE, V348, P571, DOI 10.1126/science.aaa4984; Watts B., 1999, PARTNERS FLIGHT CONS; Wiest W., 2015, THESIS; Wiest WA, 2016, CONDOR, V118, P274, DOI 10.1650/CONDOR-15-30.1; Wilkinson J. W., 2012, NATL AMPHIBIAN REPTI; WILSON DS, 1994, AM NAT, V144, P692, DOI 10.1086/285702 60 5 5 2 20 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2150-8925 ECOSPHERE Ecosphere NOV 2016 7 11 e01506 10.1002/ecs2.1506 13 Ecology Environmental Sciences & Ecology EI1AP WOS:000392207600005 DOAJ Gold 2019-02-21 J Rull, J; Abraham, S; Tadeo, E; Rodriguez, CL Rull, Juan; Abraham, Solana; Tadeo, Eduardo; Luis Rodriguez, Christian Life History and Mating Behavior of Rhagoletis solanophaga (Diptera: Tephritidae), a Non-Diapausing Species with Highly Variable Mating Duration JOURNAL OF INSECT BEHAVIOR English Article Mate guarding; sperm competition; copulation duration; paternity assurance CRYPTIC FEMALE CHOICE; FLY DRYOMYZA ANILIS; YELLOW DUNG FLIES; POMONELLA DIPTERA; APPLE MAGGOT; WALNUT FLY; SPERM COMPETITION; JUGLANDIS DIPTERA; DIAPAUSE; INSECTS As an initial contribution to understanding the adaptive value of behavioral and life-history strategies, the life cycle and mating behavior of an unstudied species of tephritid fruit fly in the genus Rhagoletis are characterized for the first time. Over a 9-month fruiting period, a small proportion of Solanum appendiculatum Dunal (< 10 %) was found to be infested with a single larva of Rhagoletis solanophaga (Hernandez & Frias). The average duration of R. solanophaga lifecycle (c.a. 140 days from egg laying to death of adults) exceeded the three month fruitless period. Additionally, R. solanophaga is capable of exploiting Solanaceous plants in at least two genera. These features could have selected for a non-diapausing species of Rhagoletis, a genus where most species are univoltine. Nevertheless, some individuals in the population became dormant. As other members of the genus, R. solanophaga exhibited a resource defense mating system with forced copulations and multiple mating. Both males and females could be highly promiscuous and individual mating success exhibited a wide range of outcomes. Regardless of mating success, mated females stored similar amounts of sperm in two spherical spermathecae. Long copulations were observed, perhaps functioning as a form of mate guarding with probable disadvantages for females. We outline hypotheses and opportunities for future comparative studies examining sperm competition and mate guarding. [Rull, Juan; Abraham, Solana] PROIMI Biotecnol CONICET, LIEMEN Div Control Biol Plagas, Ave Belgrano & Pje Caseros,T4001MVB, San Miguel De Tucuman, Tucuman, Argentina; [Tadeo, Eduardo; Luis Rodriguez, Christian] Inst Ecol AC, Red Manejo Biorrac Plagas & Vectores, Xalapa 91070, Veracruz, Mexico Rull, J (reprint author), PROIMI Biotecnol CONICET, LIEMEN Div Control Biol Plagas, Ave Belgrano & Pje Caseros,T4001MVB, San Miguel De Tucuman, Tucuman, Argentina. pomonella@gmail.com Rodriguez-Enriquez, Christian Luis/0000-0001-6339-3882 Instituto de Ecologia A.C. This study was funded by the Instituto de Ecologia A.C. to Juan Rull. AlonsoPimentel H, 1996, BEHAV ECOL SOCIOBIOL, V39, P171, DOI 10.1007/s002650050278; AVERILL AL, 1987, ECOLOGY, V68, P878, DOI 10.2307/1938359; BOLLER EF, 1976, ANNU REV ENTOMOL, V21, P223, DOI 10.1146/annurev.en.21.010176.001255; BUSH GUY L., 1966, BULL MUS COMP ZOOL HARVARD UNIV, V134, P431; Carsten LD, 2005, BEHAV ECOL, V16, P528, DOI 10.1093/beheco/ari026; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; Danks H.V., 1991, P231; DENLINGER DL, 1986, ANNU REV ENTOMOL, V31, P239, DOI 10.1146/annurev.en.31.010186.001323; Denlinger DL, 2002, ANNU REV ENTOMOL, V47, P93, DOI 10.1146/annurev.ento.47.091201.145137; DICKINSON JL, 1986, BEHAV ECOL SOCIOBIOL, V18, P331, DOI 10.1007/BF00299664; Dodson GN, 1997, ANN ENTOMOL SOC AM, V90, P496, DOI 10.1093/aesa/90.4.496; EBERHARD WG, 1994, EVOLUTION, V48, P711, DOI 10.1111/j.1558-5646.1994.tb01356.x; EBERHARD WG, 1991, BIOL REV, V66, P1, DOI 10.1111/j.1469-185X.1991.tb01133.x; Feder JL, 2010, ENTOMOL EXP APPL, V136, P31, DOI 10.1111/j.1570-7458.2010.01003.x; Filchak KE, 1999, EVOLUTION, V53, P187, DOI 10.1111/j.1558-5646.1999.tb05344.x; Foote RH, 1981, TECH B, V1607, P75; Frias D., 2008, Fruit Flies of Economic Importance to Applied Knowledge. Proceedings of the 7th International Symposium on Fruit Flies of Economic Importance, 10-15 September 2006, Salvador, Brazil, P29; FRIAS D, 1984, ANN ENTOMOL SOC AM, V77, P548, DOI 10.1093/aesa/77.5.548; Frias D., 1986, BIOLOGIA, V13, P75; Frias DA, 2001, REV CHIL HIST NAT, V74, P73; FRIAS-L D, 1991, Acta Entomologica Chilena, V16, P193; HEADRICK DH, 1994, STUDIA DIPTEROLOGICA, V1, P194; Hernandez-Ortiz V, 1999, INS MUND, V13, P11; Huestis DL, 2014, INFECT GENET EVOL, V28, P648, DOI 10.1016/j.meegid.2014.05.027; Keller LF, 2002, TRENDS ECOL EVOL, V17, P230, DOI 10.1016/S0169-5347(02)02489-8; Kostal V, 2006, J INSECT PHYSIOL, V52, P113, DOI 10.1016/j.jinsphys.2005.09.008; LALONDE RG, 1994, J ANIM ECOL, V63, P583, DOI 10.2307/5224; Mattsson M, 2015, ECOL EVOL, V5, pS823, DOI 10.1002/ece3.1826; Nufio CR, 2000, ENVIRON ENTOMOL, V29, P994, DOI 10.1603/0046-225X-29.5.994; OPP SB, 1990, ANN ENTOMOL SOC AM, V83, P521, DOI 10.1093/aesa/83.3.521; Opp SB, 1996, FRUIT FLY PESTS, P43; Opp SB, 2000, J INSECT BEHAV, V13, P901, DOI 10.1023/A:1007818719058; OTRONEN M, 1991, BEHAV ECOL SOCIOBIOL, V29, P33, DOI 10.1007/BF00164292; Otronen M, 1997, P ROY SOC B-BIOL SCI, V264, P777, DOI 10.1098/rspb.1997.0110; Otronen M, 1998, BEHAV ECOL SOCIOBIOL, V42, P185, DOI 10.1007/s002650050430; PAPAJ DR, 1994, BEHAV ECOL SOCIOBIOL, V34, P187, DOI 10.1007/s002650050032; Parker GA, 1999, ANIM BEHAV, V57, P795, DOI 10.1006/anbe.1998.1034; PROKOPY RJ, 1968, CAN ENTOMOL, V100, P318, DOI 10.4039/Ent100318-3; Prokopy RJ, 2000, FRUIT FLIES (TEPHRITIDAE): PHYLOGENY AND EVOLUTION OF BEHAVIOR, P219; Ramirez CC, 2008, NEOTROP ENTOMOL, V37, P651, DOI 10.1590/S1519-566X2008000600005; Rull J, 2016, J INS BEHAV UNPUB; Rull J, 2016, B ENTOMOL R IN PRESS; Rull J, 2010, BIOL J LINN SOC, V100, P213, DOI 10.1111/j.1095-8312.2010.01403.x; Schofl G, 2002, BEHAV ECOL SOCIOBIOL, V52, P426, DOI 10.1007/s00265-002-0524-9; Segura DF, 2013, J APPL ENTOMOL, V137, P19, DOI 10.1111/j.1439-0418.2010.01534.x; SIMMONS LW, 1992, EVOLUTION, V46, P366, DOI 10.1111/j.1558-5646.1992.tb02044.x; Smith JJ, 2000, FRUIT FLIES (TEPHRITIDAE): PHYLOGENY AND EVOLUTION OF BEHAVIOR, P187; Smyth E. Graywood., 1960, Bulletin of the California Department of Agriculture, V49, P16; Tauber M.J., 1986, SEASONAL ADAPTATIONS; Wilkinson Gerald S., 2005, P312 50 1 1 2 9 SPRINGER/PLENUM PUBLISHERS NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0892-7553 1572-8889 J INSECT BEHAV J. Insect Behav. NOV 2016 29 6 629 642 10.1007/s10905-016-9586-9 14 Entomology Entomology EF3WD WOS:000390254700003 2019-02-21 J Caudell, M; Quinlan, R Caudell, Mark; Quinlan, Robert Life-history theory and climate change: resolving population and parental investment paradoxes Royal Society Open Science English Article life-history theory; climate change; ecological psychology; sustainability; environmental risk CARBON-DIOXIDE EMISSIONS; CO2 EMISSIONS; UNIVERSITY-STUDENTS; FUTURE ORIENTATION; TIME PERSPECTIVE; K-SELECTION; R-SELECTION; BEHAVIOR; IMPACT; DETERMINANTS Population growth in the next half-century is on pace to raise global carbon emissions by half. Carbon emissions are associated with fertility as a by-product of somatic and parental investment, which is predicted to involve time orientation/preference as a mediating psychological mechanism. Here, we draw upon life-history theory (LHT) to investigate associations between future orientation and fertility, and their impacts on carbon emissions. We argue 'K-strategy' life history (LH) in high-income countries has resulted in parental investment behaviours involving future orientation that, paradoxically, promote unsustainable carbon emissions, thereby lowering the Earth's K or carrying capacity. Increasing the rate of approach towards this capacity are 'r-strategy' LHs in low-income countries that promote population growth. We explore interactions between future orientation and development that might slow the rate of approach towards global K. Examination of 67 000 individuals across 75 countries suggests that future orientation interacts with the relationship between environmental risk and fertility and with development related parental investment, particularly investment in higher education, to slow population growth and mitigate per capita carbon emissions. Results emphasize that LHT will be an important tool in understanding the demographic and consumption patterns that drive anthropogenic climate change. [Caudell, Mark] Washington State Univ, Paul G Allen Sch Global Anim Hlth, Pullman, WA 99164 USA; [Quinlan, Robert] Washington State Univ, Dept Anthropol, Pullman, WA 99164 USA Caudell, M (reprint author), Washington State Univ, Paul G Allen Sch Global Anim Hlth, Pullman, WA 99164 USA. mcaudell@vetmed.wsu.edu NSF EEID [DEB1216040]; Washington State University M.C. is a postdoctoral researcher whose work is funded by an NSF EEID grant (DEB1216040). Washington State University supported the work of R.Q. as an academic staff member. Alan S, 2014, GOOD THING COME THOS, DOI [10.2139/ssrn.2566405, DOI 10.2139/SSRN.2566405]; Apostolidis T, 2006, ADDICT BEHAV, V31, P2339, DOI 10.1016/j.addbeh.2006.03.008; Ashkanasy NM, 2004, CULTURE LEADERSHIP O, P282; Baiocchi G, 2010, J IND ECOL, V14, P50, DOI 10.1111/j.1530-9290.2009.00216.x; Bar M, 2010, REV ECON DYNAM, V13, P424, DOI 10.1016/j.red.2009.03.002; Boserup E, 1983, INT J HLTH SERV, V13, P15, DOI [10.2190/A06B-VVUX-41ME-TKYJ, DOI 10.2190/A06B-VVUX-41ME-TKYJ]; Boyd J, 2005, UNDERSTANDING BEHAV; Buchs M, 2013, ECOL ECON, V90, P114, DOI 10.1016/j.ecolecon.2013.03.007; Burger O, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0157; Burger O, 2011, SCI REP-UK, V1, DOI 10.1038/srep00056; Burnside WR, 2012, BIOL REV, V87, P194, DOI 10.1111/j.1469-185X.2011.00192.x; Caldwell RM, 2006, J YOUTH ADOLESCENCE, V35, P591, DOI 10.1007/s10964-006-9031-z; Carmi N, 2014, SOC NATUR RESOUR, V27, P1304, DOI 10.1080/08941920.2014.928393; Caudell MA, 2015, CROSS-CULT RES, V49, P358, DOI 10.1177/1069397115591152; Caudell MA, 2012, HUM BIOL, V84, P101, DOI 10.3378/027.084.0201; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Coale A J, 1984, Pak Dev Rev, V23, P531; Cohen JE, 2010, P AM PHILOS SOC, V154, P158; DeLong JP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130547; DeLong JP, 2013, FRONT ECOL ENVIRON, V11, P65, DOI 10.1890/13.WB.004; Dietz T, 1997, P NATL ACAD SCI USA, V94, P175, DOI 10.1073/pnas.94.1.175; Duarte R, 2012, ENERG POLICY, V44, P441, DOI 10.1016/j.enpol.2012.02.020; Ebreo A, 2001, ENVIRON BEHAV, V33, P424, DOI 10.1177/00139160121973061; EHRLICH PR, 1971, SCIENCE, V171, P1212, DOI 10.1126/science.171.3977.1212; Fang T., 2003, INT J CROSS CULTURAL, V3, P347, DOI DOI 10.1177/1470595803003003006; Folke C, 2006, GLOBAL ENVIRON CHANG, V16, P253, DOI 10.1016/j.gloenvcha.2006.04.002; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; Friedl B, 2003, ECOL ECON, V45, P133, DOI 10.1016/S0921-8009(03)00008-9; Gant L, 2009, SOC WORK PUBLIC HLTH, V24, P39, DOI 10.1080/19371910802569435; Giudice DM, 2015, HDB EVOLUTIONARY PSY, P68; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Han LY, 2015, J CLEAN PROD, V103, P219, DOI 10.1016/j.jclepro.2014.08.078; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hofstede G., 2001, CULTURES CONSEQUENCE; Horstmanshof L, 2007, BRIT J EDUC PSYCHOL, V77, P703, DOI 10.1348/000709906X160778; Johnson CY, 2004, ENVIRON BEHAV, V36, P157, DOI 10.1177/0013916503251478; Joireman JA, 2004, ENVIRON BEHAV, V36, P187, DOI 10.1177/0013916503251476; Jorgenson AK, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057107; KAPLAN H, 1996, AM J PHYS ANTHROPOL, V101, P91, DOI DOI 10.1002/(SICI)1096-8644(1996)23+<91::AID-AJPA4>3.0.CO;2-C; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Lenzen M, 2006, ENERGY, V31, P181, DOI 10.1016/j.energy.2005.01.009; Lindsay JJ, 1997, J APPL SOC PSYCHOL, V27, P1799, DOI 10.1111/j.1559-1816.1997.tb01626.x; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; MAC ARTHUR ROBERT H., 1967; Mattison SM, 2016, HUM NATURE-INT BIOS, V27, P335, DOI 10.1007/s12110-016-9270-y; Milfont TL, 2006, J ENVIRON PSYCHOL, V26, P72, DOI 10.1016/j.jenvp.2006.03.001; Minkov M., 2007, WHAT MAKES US DIFFER; Minkov M, 2012, J CROSS CULT PSYCHOL, V43, P3, DOI 10.1177/0022022110388567; Minx J, 2013, ENVIRON RES LETT, V8, DOI 10.1088/1748-9326/8/3/035039; Murtaugh PA, 2009, GLOBAL ENVIRON CHANG, V19, P14, DOI 10.1016/j.gloenvcha.2008.10.007; Myrskyla M, 2011, HIGH DEV FERTILITY O; Myrskyla M, 2009, NATURE, V460, P741, DOI 10.1038/nature08230; Nassen J, 2014, ENERGY, V66, P98, DOI 10.1016/j.energy.2014.01.019; O'Neill BC, 2012, LANCET, V380, P157, DOI 10.1016/S0140-6736(12)60958-1; O'Neill BC, 2010, P NATL ACAD SCI USA, V107, P17521, DOI 10.1073/pnas.1004581107; Odling-Smee FJ, 2003, NICHE CONSTRUCTION N; Olli E, 2001, ENVIRON BEHAV, V33, P181, DOI 10.1177/0013916501332002; Peetsma T. T. D., 2000, SCAND J EDUC RES, V44, P177; Pepper GV, 2013, EVOL HUM BEHAV, V34, P433, DOI 10.1016/j.evolhumbehav.2013.08.004; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Ramos D, 2013, J RES ADOLESCENCE, V23, P95, DOI 10.1111/j.1532-7795.2012.00796.x; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; ROFF DA, 2002, LIFE HIST EVOLUTION; Ross L, 2016, BIOSCIENCE, V66, P363, DOI 10.1093/biosci/biw025; Schechter DE, 2010, HUM NATURE-INT BIOS, V21, P140, DOI 10.1007/s12110-010-9084-2; Schultz PW, 2001, J ENVIRON PSYCHOL, V21, P327; Shi AQ, 2003, ECOL ECON, V44, P29, DOI 10.1016/S0921-8009(02)00223-9; Skrondal A., 2012, MULTILEVEL LONGITUDI; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stephenson J, 2010, J PUBLIC HEALTH-UK, V32, P150, DOI 10.1093/pubmed/fdq038; Swim J, 2010, PSYCHOL GLOBAL CLIMA; Trivers RL, 1972, SEXUAL SELECTION DES; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Wall G, 1995, CAN REV SOC ANTHROP, V32, P465; World Bank, 2009, WORLD DEV IND; Xu XB, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121604; Zimbardo P. G., 2015, TIME PERSPECTIVE THE, P17, DOI DOI 10.1007/978-3-319-07368-2_2; Zimbardo PG, 1999, J PERS SOC PSYCHOL, V77, P1271, DOI 10.1037/0022-3514.77.6.1271 82 0 0 6 23 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 2054-5703 ROY SOC OPEN SCI R. Soc. Open Sci. NOV 2016 3 11 160470 10.1098/rsos.160470 8 Multidisciplinary Sciences Science & Technology - Other Topics EE0DR WOS:000389244400023 28018631 DOAJ Gold, Green Published 2019-02-21 J Alvarenga, LDP; Porto, KC; Coelho, MLP; Zartman, CE Alvarenga, Lisi D. P.; Porto, Ktia C.; Coelho, Maria L. P.; Zartman, Charles E. How does reproductive strategy influence demography? A case study in the tropical, unisexual epiphyllous moss Crossomitrium patrisiae AMERICAN JOURNAL OF BOTANY English Article bryophyte; demography; epiphyll; Hookeriaceae; metapopulation; rainforest; reproductive strategy; tropics HEPATIC ANASTROPHYLLUM-HELLERIANUM; RAIN-FOREST LEAVES; HYLOCOMIUM-SPLENDENS; SEXUAL REPRODUCTION; METAPOPULATION DYNAMICS; TETRAPHIS-PELLUCIDA; DESERT MOSS; POPULATION; DISPERSAL; PATTERNS PREMISE OF THE STUDY: Leaf-inhabiting organisms off er an experimentally tractable model system within which to investigate the influence of alternative reproductive strategies on plant metapopulation dynamics. We conducted a field study to determine whether (1) threshold colony sizes exist for the onset of sexual and asexual expression, and (2) alternative reproductive strategies differentially influence within-patch dynamics of the tropical pleurocarpous moss Crossomitrium patrisiae. METHODS: The growth, reproduction, and fate of 2101 colonies of C. patrisiae were followed over 2 years to investigate threshold size and age for sporophyte and brood branch formation and their influence on within-patch growth rates and longevity. KEY RESULTS: Asexual expression rather than sexual onset was limited by a minimal colony size. Age was uncoupled with threshold sizes. Colonies bearing brood branches survived nearly twice as long as sterile and solely sporophytic colonies. However, no effect of reproductive strategies on colony growth rates was found. CONCLUSIONS: This study is among the few attempts to correlate life history strategies with demographic parameters of terrestrial plants. Specifically, we provide evidence for differential influence of reproductive strategies on metapopulation survivorship. [Alvarenga, Lisi D. P.; Porto, Ktia C.; Coelho, Maria L. P.] Univ Fed Pernambuco, Dept Bot, Moraes Rego Av S-N, BR-50670901 Recife, PE, Brazil; [Zartman, Charles E.] Natl Inst Amazonian Res INPA, Dept Bot, Andre Av 2936, BR-69083000 Manaus, Amazonas, Brazil Alvarenga, LDP (reprint author), Univ Fed Pernambuco, Dept Bot, Moraes Rego Av S-N, BR-50670901 Recife, PE, Brazil. lisidamaris@yahoo.com.br Fundacao O Boticario de Protecao a Natureza (FBPN); Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); Brazil MCT/CNPq (Cooperacao Internacional-Acordos bilaterais) [017/2013] L.D.P.A. thanks the Fundacao O Boticario de Protecao a Natureza (FBPN) and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for financial support and the Centro de Pesquisas Ambientais do Nordeste (CEPAN) for logistic support, and Dr. Nicholas McLetchie (University of Kentucky), Paul Wilson, and two anonymous reviewers for valuable comments during the preparation of this manuscript. C.E.Z. acknowledges financial support from grant No 017/2013 from the Brazil MCT/CNPq (Cooperacao Internacional-Acordos bilaterais) while writing the manuscript. Allen B., 1990, TROPICAL BRYOLOGY, V2, P3; Alvarenga LDP, 2009, BIOTROPICA, V41, P682, DOI 10.1111/j.1744-7429.2009.00532.x; Anthony PA, 2002, FUNCT ECOL, V16, P808, DOI 10.1046/j.1365-2435.2002.00688.x; Bisang I, 2006, AM J BOT, V93, P1313, DOI 10.3732/ajb.93.9.1313; Buck William R., 1998, Memoirs of the New York Botanical Garden, V82, P1; COLEY PD, 1993, ECOLOGY, V74, P619, DOI 10.2307/1939322; CONVEY P, 1993, OIKOS, V68, P293, DOI 10.2307/3544842; Crawley M. J., 2007, R BOOK; Cronberg N, 2006, ECOGRAPHY, V29, P95, DOI 10.1111/j.2006.0906-7590.04361.x; de Oliveira SM, 2015, J ECOL, V103, P441, DOI 10.1111/1365-2745.12359; DUCKETT JG, 1993, J BRYOL, V17, P541, DOI 10.1179/jbr.1993.17.4.541; During Heinjo J., 1992, P1; Ehrlen J, 2000, PLANT ECOL, V149, P207, DOI 10.1023/A:1026531122302; Ferreira T., 2012, IMAGEJ USER GUIDE IJ; Gilbert GS, 2007, ECOLOGY, V88, P575, DOI 10.1890/05-1170; Gonzalez-Mancebo J. M., 1997, Lindbergia, V22, P36; Gradstein SR, 1997, ABSTR BOT, V21, P15; Hassel K, 2005, PLANT ECOL, V179, P207, DOI 10.1007/s11258-005-8065-8; Hock Z, 2009, PLANT ECOL, V202, P123, DOI 10.1007/s11258-008-9541-8; Johansson V, 2012, ECOLOGY, V93, P235, DOI 10.1890/11-0760.1; JONSSON BG, 1988, J BRYOL, V15, P315, DOI 10.1179/jbr.1988.15.2.315; KIMMERER RW, 1991, BRYOLOGIST, V94, P255, DOI 10.2307/3243962; KIMMERER RW, 1994, BRYOLOGIST, V97, P20, DOI 10.2307/3243344; Laaka-Lindberg S, 2001, OIKOS, V94, P525, DOI 10.1034/j.1600-0706.2001.940314.x; Lobel S, 2009, OECOLOGIA, V161, P569, DOI 10.1007/s00442-009-1402-1; Lobel S, 2009, J ECOL, V97, P176, DOI 10.1111/j.1365-2745.2008.01459.x; Longton R. E., 1983, NEW MANUAL BRYOLOGY, P386; LUCKING R, 2008, FLORA NEOTROPICA MON, V103; Maciel-Silva A. S., 2014, REPROD BIOL PLANTS, P57; Magdefrau K, 1982, BRYOPHYTE ECOLOGY, P59; Marino P. C., 1993, LINDBERGIA, V17, P91; Maynard Smith J, 1978, EVOLUTION SEX; McLetchie DN, 2000, OIKOS, V90, P227, DOI 10.1034/j.1600-0706.2000.900203.x; Alvarenga LDP, 2013, J BRYOL, V35, P88, DOI 10.1179/174328213X13662092820316; Pohjamo M, 2004, PLANT ECOL, V173, P73, DOI 10.1023/B:VEGE.0000026330.62021.0a; Pohjamo M, 2004, PERSPECT PLANT ECOL, V6, P159; Pohjamo M, 2006, EVOL ECOL, V20, P415, DOI 10.1007/s10682-006-0011-2; Roads Estne, 2006, Lindbergia, V31, P63; Ruete A, 2012, P ROY SOC B-BIOL SCI, V279, P3098, DOI 10.1098/rspb.2012.0428; Rydgren K, 2002, J BRYOL, V24, P207, DOI 10.1179/037366802125001376; Rydgren K, 1998, OIKOS, V82, P5, DOI 10.2307/3546912; Schuster R. M., 1988, J HATTORI BOT LAB, V64, P237; Shaw A. J., 2000, BRYOPHYTE BIOL, P368; Soderstrom L, 2005, J BRYOL, V27, P261, DOI 10.1179/174328205X70010; Sonnleitner M, 2009, J TROP ECOL, V25, P321, DOI 10.1017/S0266467409006002; Stark L, 2001, PLANT ECOL, V157, P181; Stark LR, 2000, AM J BOT, V87, P1599, DOI 10.2307/2656736; Stark LR, 2004, AM J BOT, V91, P1, DOI 10.3732/ajb.91.1.1; STONEBURNER A, 1992, BRYOLOGIST, V95, P324, DOI 10.2307/3243491; The R Development Core Team, 2007, R LANG ENV STAT COMP; van Dulmen A, 2001, PLANT ECOL, V153, P73, DOI 10.1023/A:1017577305193; Vanderpoorten A, 2009, INTRODUCTION TO BRYOPHYTES, P1, DOI 10.1017/CBO9780511626838; Veloso H. P, 1991, CLASSIFICACAO VEGETA; Vorholt JA, 2012, NAT REV MICROBIOL, V10, P828, DOI 10.1038/nrmicro2910; Wiklund K, 2004, BRYOLOGIST, V107, P293, DOI 10.1639/0007-2745(2004)107[0293:CEONPM]2.0.CO;2; Wu P.-C., 1987, S BIOL HUNGARICA, V35, P27; Wyatt R., 1984, EXPT BIOL BRYOPHYTES, P39; Zartman CE, 2006, BIOL CONSERV, V127, P46, DOI 10.1016/j.biocon.2005.07.012; Zartman CE, 2015, BIOTROPICA, V47, P172, DOI 10.1111/btp.12201; Zartman CE, 2012, J ECOL, V100, P980, DOI 10.1111/j.1365-2745.2012.01969.x 60 0 0 0 7 BOTANICAL SOC AMER INC ST LOUIS PO BOX 299, ST LOUIS, MO 63166-0299 USA 0002-9122 1537-2197 AM J BOT Am. J. Bot. NOV 2016 103 11 1921 1927 10.3732/ajb.1600202 7 Plant Sciences Plant Sciences ED7IR WOS:000389037800008 27849159 Bronze 2019-02-21 J Liang, K; Elias, RJ; Choh, SJ; Lee, DC; Lee, DJ Liang, Kun; Elias, Robert J.; Choh, Suk-Joo; Lee, Dong-Chan; Lee, Dong-Jin Morphometrics and paleoecology of Catenipora (Tabulata) from the Xiazhen Formation (Upper Ordovician), Zhuzhai, South China JOURNAL OF PALEONTOLOGY English Article LIFE-HISTORY STRATEGIES; MONTASTRAEA-ANNULARIS; SPECIES BOUNDARIES; CORAL; CANADA; MANITOBA; COMPLEX; GROWTH; EVOLUTION; REEFS Catenipora is one of the most common tabulate coral genera occurring in various lithofacies in the Upper Ordovician Xiazhen Formation at Zhuzhai in South China. A combination of traditional multivariate analysis and geometric morphometrics is applied to a large number of specimens to distinguish and identify species. Based on three major principal components extracted from 11 morphological characters, three major groups as determined by the cluster-analysis dendrogram are considered to be morphospecies. Their validity and distinctiveness are confirmed by discriminant analysis, descriptive statistics, and bivariate plots. Tabularium area and common wall thickness are the most meaningful characters to distinguish the three morphospecies. Geometric morphometrics is adopted to compare the morphospecies with types and/or figured specimens of species previously reported from the vicinity of Zhuzhai. Despite discrepancies in corallite size, principal component analysis and discriminant analysis, as well as consideration of overall morphological characteristics, indicate that the morphospecies represent C. zhejiangensis Yu in Yu et al., 1963, C. shiyangensis Lin and Chow, 1977, and C. dianbiancunensis Lin and Chow, 1977. Catenipora occurs in seven stratigraphic intervals in the Xiazhen Formation at Zhuzhai, representing a variety of heterogeneous environments. The coralla preservation is variable due to differential compaction; coralla preserved in limestones are commonly intact and in growth position, whereas those in shales are mostly crushed or fragmentary. The size and shape of corallites are considered primarily to be species-specific characters, but are also related to the depositional environments. In all species, morphological characters, including corallite size, septal development, and shape and size of lacunae, show high variability in accordance with lithofacies and stratigraphic position. The intraspecific differences in corallite size at various localities in the Zhuzhai area may indicate responses to local environmental factors, but may also reflect genetic differences if there was limited connection among populations. [Liang, Kun] Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, Key Lab Econ Stratig & Palaeogeog, Beijing 100864, Peoples R China; [Elias, Robert J.] Univ Manitoba, Dept Geol Sci, Winnipeg, MB R3T 2N2, Canada; [Choh, Suk-Joo] Korea Univ, Dept Earth & Environm Sci, Seoul 136701, South Korea; [Lee, Dong-Chan] Chungbuk Natl Univ, Dept Earth Sci Educ, Cheongju 361763, South Korea; [Lee, Dong-Jin] Andong Natl Univ, Dept Earth & Environm Sci, Andong 760749, South Korea Liang, K (reprint author), Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, Key Lab Econ Stratig & Palaeogeog, Beijing 100864, Peoples R China. kliang@nigpas.ac.cn; eliasrj@cc.umanitoba.ca; sjchoh@korea.ac.kr; dclee@chungbuk.ac.kr; djlee@andong.ac.kr Choh, Suk-Joo/0000-0002-1110-0416 National Science Foundation of China [41402013, J1210006]; National Research Foundation of Korea [NRF-2013R1A2A2A01067612, NRF-2014K2A2A2000787] This study was supported by grants from the National Science Foundation of China (Grant No. 41402013 and J1210006) and from the National Research Foundation of Korea (NRF-2013R1A2A2A01067612 and NRF-2014K2A2A2000787). We thank N. Sun, Y. Wang, and L. Guan for their assistance in the field and lab. We are grateful to an anonymous reviewer and editors P. Harries and B. Pratt for their constructive comments, which were helpful in improving the manuscript. Bae BY, 2008, J PALEONTOL, V82, P78, DOI 10.1666/05-146.1; Bae BY, 2006, J PALEONTOL, V80, P885; Bae BY, 2006, LETHAIA, V39, P141, DOI 10.1080/00241160600623723; Bae BY, 2013, LETHAIA, V46, P98, DOI 10.1111/j.1502-3931.2012.00326.x; Bian L. Z., 1990, J NANJING U EARTH SC, V3, P1; Bian L. Z., 1996, ANCIENT ORGANIC REEF, P4; Bookstein FL., 1991, MORPHOMETRIC TOOLS L; Budd AE, 2004, PALEOBIOLOGY, V30, P396, DOI 10.1666/0094-8373(2004)030<0396:OSBAHW>2.0.CO;2; BUDD AF, 1994, PALEOBIOLOGY, V20, P484; Budd AF, 2001, J PALEONTOL, V75, P527, DOI 10.1666/0022-3360(2001)075<0527:TOAEEO>2.0.CO;2; Budd AF, 2012, EVOL ECOL, V26, P265, DOI 10.1007/s10682-010-9460-8; Budd AF, 2010, SCIENCE, V328, P1558, DOI 10.1126/science.1188947; Buehler E. J., 1955, PEABODY MUSEUM NATUR, V8; Cairns S.D., 1989, Memoir of the Association of Australasian Palaeontologists, V8, P61; CHEETHAM AH, 1987, PALEOBIOLOGY, V13, P286; Chen X., 1987, J STRATIGRAPHY, V11, P23; Copper P., 2012, GEOSCIENCES, V2, P65; Deng Z.Q., 1984, STRATIGRAPHY PALAE 4, P1; DIXON OA, 1974, J PALEONTOL, V48, P568; Dryden LL, 1998, STAT SHAPE ANAL; Ehrenberg C. G., 1834, ABHANDLUNGEN KONIGLI, P225; ELIAS RJ, 1993, J PALEONTOL, V67, P922, DOI 10.1017/S0022336000025221; Foster A.B., 1984, PALAEONTOGRAPHICA AM, V54, P58; FOSTER AB, 1979, J EXP MAR BIOL ECOL, V39, P25, DOI 10.1016/0022-0981(79)90003-0; FOSTER AB, 1985, J PALEONTOL, V59, P1359; FOSTER AB, 1980, B MAR SCI, V30, P678; Fukami H, 2004, EVOLUTION, V58, P324, DOI 10.1111/j.0014-3820.2004.tb01648.x; GOODALL C, 1991, J ROY STAT SOC B MET, V53, P285; Hamada T., 1957, J FACULTY SCI, V10, P393; Hill D., 1981, TREATISE INVERT F S1, V2, p[F430, F379]; Hubmann B., 1992, Anzeiger der Oesterreichischen Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse, V128, P113; JACKSON JBC, 1990, SCIENCE, V248, P579, DOI 10.1126/science.248.4955.579; Jackson JE, 1991, USERS GUIDE PRINCIPA; Jolliffe I. T., 2002, SPRINGER SERIES STAT; Klaamann E., 1966, INKOMMUNIKATNYE TABU; Klaus JS, 2003, PALAIOS, V18, P3, DOI 10.1669/0883-1351(2003)018<0003:COCCRC>2.0.CO;2; Kwon SW, 2012, SEDIMENT GEOL, V267, P15, DOI 10.1016/j.sedgeo.2012.04.001; LAMARCK J.B.P.A. DE M., 1816, HIST NATURELLE ANIMA, V2; Laub R.S., 1979, Bulletins of American Paleontology, V75, P1; LEE DJ, 1990, LETHAIA, V23, P179, DOI 10.1111/j.1502-3931.1990.tb01359.x; LEE DJ, 1991, J PALEONTOL, V65, P191, DOI 10.1017/S0022336000020424; Lee DC, 2013, ACTA PALAEONTOL POL, V58, P855, DOI 10.4202/app.2010.0036; Lee DC, 2012, ALCHERINGA, V36, P387, DOI 10.1080/03115518.2012.658724; Li Y, 2004, PALAEOGEOGR PALAEOCL, V205, P235, DOI 10.1016/j.palaeo.2003.12.010; Lin B.Y., 1977, Professional Papers of Stratigraphy and Palaeontology, V3, P108; Milne-Edwards H., 1850, PALAEONTOGRAPHICAL S, V3, p[i, 1]; Milne-Edwards H., 1849, CR HEBD ACAD SCI, V29, P257; ROHLF FJ, 1990, SYST ZOOL, V39, P40, DOI 10.2307/2992207; ROHLF FJ, 1993, TRENDS ECOL EVOL, V8, P129, DOI 10.1016/0169-5347(93)90024-J; Rong J.-y., 1987, Acta Palaeontologica Sinica, V26, P507; Rong JY, 2010, SCI CHINA EARTH SCI, V53, P1, DOI 10.1007/s11430-010-0005-3; Schmidt F., 1858, ARCH NATURKUNDE LIV, V2, P1; Sokolov BS, 1947, BIOL MOSKOVSKOE OBSH, V22, P19; Stasinska A., 1967, ACTA PALAEONTOLOGICA, V18, P1; Tchernychev B.B., 1937, VSESOIUZNOE ARKTIKI, V91, P67; Wang Guang-xu, 2010, Acta Palaeontologica Sinica, V49, P478; Watkins R, 2000, LETHAIA, V33, P55, DOI 10.1080/00241160050150302; WEBBY BD, 2002, SEPM SPECIAL PUBLICA, V72, P129, DOI DOI 10.2110/PEC.02.72.0095; [吴浩若 Wu Haoruo], 2003, [古地理学报, Journal of palaeogeography], V5, P328; Yan DT, 2009, PALAEOGEOGR PALAEOCL, V274, P32, DOI 10.1016/j.palaeo.2008.12.016; Yu C.M., 1963, CHINESE CORAL FOSSIL, P291; Yu C.M., 1960, ACTA PALAEONTOLOGICA, V8, P65; Yu J. -H., 1992, J NANJING U EARTH SC, V4, P1; Zhan R.B., 2007, ORDOVICIAN LLANDOVER; Zhan RB, 2008, PROG NAT SCI-MATER, V18, P1, DOI 10.1016/j.pnsc.2007.07.004; Zhang Y. D., 2007, ORDOVICIAN SILURIAN 66 3 3 1 2 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0022-3360 1937-2337 J PALEONTOL J. Paleontol. NOV 2016 90 6 1027 1048 10.1017/jpa.2016.60 22 Paleontology Paleontology ED3JR WOS:000388745900002 2019-02-21 J Scheele, BC; Hunter, DA; Banks, SC; Pierson, JC; Skerratt, LF; Webb, R; Driscoll, DA Scheele, Ben C.; Hunter, David A.; Banks, Sam C.; Pierson, Jennifer C.; Skerratt, Lee F.; Webb, Rebecca; Driscoll, Don A. High adult mortality in disease-challenged frog populations increases vulnerability to drought JOURNAL OF ANIMAL ECOLOGY English Article amphibian declines; chytrid fungus; demography; environmental stochasticity; life history; niche contraction; population dynamics; recruitment failure AMPHIBIAN CHYTRID FUNGUS; EMERGING INFECTIOUS-DISEASE; LIFE-HISTORY EVOLUTION; BATRACHOCHYTRIUM-DENDROBATIDIS; FISH POPULATIONS; TASMANIAN DEVIL; RAPID EVOLUTION; GROWTH RATE; CHYTRIDIOMYCOSIS; EXTINCTION 1. Pathogen emergence can drive major changes in host population demography, with implications for population dynamics and sensitivity to environmental fluctuations. The amphibian disease chytridiomycosis, caused by infection with the fungal pathogen Batrachochytrium dendrobatidis (Bd), is implicated in the severe decline of over 200 amphibian species. In species that have declined but not become extinct, Bd persists and can cause substantial ongoing mortality. High rates of mortality associated with Bd may drive major changes in host demography, but this process is poorly understood. 2. Here, we compared population age structure of Bd-infected populations, Bd-free populations and museum specimens collected prior to Bd emergence for the endangered Australian frog, Litoria verreauxii alpina (alpine tree frog). We then used population simulations to investigate how pathogen-associated demographic shifts affect the ability of populations to persist in stochastic environments. 3. We found that Bd-infected populations have a severely truncated age structure associated with very high rates of annual adult mortality. Near-complete annual adult turnover in Bdinfected populations means that individuals breed once, compared with Bd-free populations where adults may breed across multiple years. 4. Our simulations showed that truncated age structure erodes the capacity of populations to withstand periodic recruitment failure; a common challenge for species reproducing in uncertain environments. 5. We document previously undescribed demographic shifts associated with a globally emerging pathogen and demonstrate how these shifts alter host ecology. Truncation of age structure associated with Bd effectively reduces host niche width and can help explain the contraction of L. v. alpina to perennial waterbodies where the risk of drought-induced recruitment failure is low. Reduced capacity to tolerate other sources of mortality may explain variation in decline severity among other chytridiomycosis-challenged species and highlights the potential to mitigate disease impacts through minimizing other sources of mortality. [Scheele, Ben C.; Banks, Sam C.; Pierson, Jennifer C.] Australian Natl Univ, Coll Med Biol & Environm, Fenner Sch Environm & Soc, Canberra, ACT 0200, Australia; [Scheele, Ben C.; Skerratt, Lee F.; Webb, Rebecca] James Cook Univ, Coll Publ Hlth Med & Vet Sci, Hlth Res Grp 1, 1 James Cook Dr, Townsville, Qld 4811, Australia; [Hunter, David A.] NSW Off Environm & Heritage, POB 544, Albury, NSW 2640, Australia; [Driscoll, Don A.] Deakin Univ, Sch Life & Environm Sci, Ctr Integrat Ecol, Burwood, Vic 3125, Australia Scheele, BC (reprint author), Australian Natl Univ, Coll Med Biol & Environm, Fenner Sch Environm & Soc, Canberra, ACT 0200, Australia.; Scheele, BC (reprint author), James Cook Univ, Coll Publ Hlth Med & Vet Sci, Hlth Res Grp 1, 1 James Cook Dr, Townsville, Qld 4811, Australia. ben.scheele@anu.edu.au /0000-0003-2415-0057; Driscoll, Don/0000-0002-1560-5235; Skerratt, Lee/0000-0003-3471-7512; Scheele, Benjamin/0000-0001-7284-629X Taronga Zoo Field Conservation Grant; New South Wales Office of Environment and Heritage; Australian Research Council [LP110200240] Funding was provided by a Taronga Zoo Field Conservation Grant, the New South Wales Office of Environment and Heritage and Australian Research Council grant LP110200240. C. Scheele and S. Kearney provided field assistance and K. Smith and L. Brannelly helped facilitate museum sampling. C. Foster provided useful comments on an earlier draft of this manuscript. Research was conducted under scientific permits SL100436 and SL10006052 issued by the New South Wales Office of Environment and Heritage and ethics approval from the Australian National University (A2011/19) and the University of Canberra (CEAE 98/7). An D, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0018; Anstis M., 2002, TADPOLES S E AUSTRAL; Australian Government, 2006, BACKGR DOC THREAR AB; Bates D. M., 2012, LME4 LINEAR MIXED EF; Berger L, 1998, P NATL ACAD SCI USA, V95, P9031, DOI 10.1073/pnas.95.15.9031; Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; Boyle DG, 2004, DIS AQUAT ORGAN, V60, P141, DOI 10.3354/dao060141; Briggs CJ, 2010, P NATL ACAD SCI USA, V107, P9695, DOI 10.1073/pnas.0912886107; Burnham K. P, 2002, MODEL SELECTION MULT; Caughley G, 1977, ANAL VERTEBRATE POPU; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Daszak P, 2000, SCIENCE, V287, P443, DOI 10.1126/science.287.5452.443; de Castro F, 2005, ECOL LETT, V8, P117, DOI 10.1111/j.1461-0248.2004.00693.x; Fisher MC, 2012, NATURE, V484, P186, DOI 10.1038/nature10947; Fisher MC, 2009, ANNU REV MICROBIOL, V63, P291, DOI 10.1146/annurev.micro.091208.073435; Gandon S, 2002, AM NAT, V160, P374, DOI 10.1086/341525; Gillespie GR, 2001, BIOL CONSERV, V100, P187, DOI 10.1016/S0006-3207(01)00021-0; Harkonen T, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000887; Hunter DA, 2010, DIS AQUAT ORGAN, V92, P209, DOI 10.3354/dao02118; Hyatt AD, 2007, DIS AQUAT ORGAN, V73, P175, DOI 10.3354/dao073175; Jones ME, 2008, P NATL ACAD SCI USA, V105, P10023, DOI 10.1073/pnas.0711236105; Keesing F, 2010, NATURE, V468, P647, DOI 10.1038/nature09575; Lachish S, 2009, J ANIM ECOL, V78, P427, DOI 10.1111/j.1365-2656.2008.01494.x; Lachish S, 2007, J ANIM ECOL, V76, P926, DOI 10.1111/j.1365-2656.2007.01272.x; Lips KR, 2006, P NATL ACAD SCI USA, V103, P3165, DOI 10.1073/pnas.0506889103; Martel A, 2014, SCIENCE, V346, P630, DOI 10.1126/science.1258268; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Murray KA, 2009, CONSERV BIOL, V23, P1242, DOI 10.1111/j.1523-1739.2009.01211.x; Muths E, 2011, J APPL ECOL, V48, P873, DOI 10.1111/j.1365-2664.2011.02005.x; Ohlberger J, 2011, P ROY SOC B-BIOL SCI, V278, P35, DOI 10.1098/rspb.2010.0960; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Olson DH, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056802; OSBORNE W, 1999, DECLINES DISAPPEARAN, P145; OSBORNE WS, 1989, AUST WILDLIFE RES, V16, P537; Packer A, 2000, SCIENCE, V404, P278; Phillott AD, 2013, CONSERV BIOL, V27, P1058, DOI 10.1111/cobi.12073; Pilliod DS, 2010, CONSERV BIOL, V24, P1259, DOI 10.1111/j.1523-1739.2010.01506.x; R Development Core Team, 2014, R LANG ENV STAT COMP; Rachowicz LJ, 2006, ECOLOGY, V87, P1671, DOI 10.1890/0012-9658(2006)87[1671:EIDAAP]2.0.CO;2; Retallick RWR, 2004, PLOS BIOL, V2, P1965, DOI 10.1371/journal.pbio.0020351; Rogers LM, 1998, P ROY SOC B-BIOL SCI, V265, P1269, DOI 10.1098/rspb.1998.0429; Romiguier J, 2014, NATURE, V515, P261, DOI 10.1038/nature13685; Rouyer T, 2012, ECOL LETT, V15, P658, DOI 10.1111/j.1461-0248.2012.01781.x; RYAN MJ, 1988, AM ZOOL, V28, P885; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Scheele B. C., 2016, DRYAD DIGITAL REPOSI; Scheele BC, 2015, BIOL CONSERV, V182, P36, DOI 10.1016/j.biocon.2014.11.032; Scheele BC, 2014, CONSERV BIOL, V28, P1195, DOI 10.1111/cobi.12322; Scheele B, 2014, BIOL CONSERV, V170, P86, DOI 10.1016/j.biocon.2013.12.034; Skerratt LF, 2007, ECOHEALTH, V4, P125, DOI 10.1007/s10393-007-0093-5; SMIRINA EM, 1994, GERONTOLOGY, V40, P133, DOI 10.1159/000213583; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Vredenburg VT, 2010, P NATL ACAD SCI USA, V107, P9689, DOI 10.1073/pnas.0914111107; Wake DB, 2008, P NATL ACAD SCI USA, V105, P11466, DOI 10.1073/pnas.0801921105; Wilbur HM, 2006, AM NAT, V168, P398, DOI 10.1086/506258; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435 57 19 19 1 31 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. NOV 2016 85 6 1453 1460 10.1111/1365-2656.12569 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology EC7XK WOS:000388354200005 27380945 Bronze 2019-02-21 J Fayet, AL; Freeman, R; Shoji, A; Kirk, HL; Padget, O; Perrins, CM; Guilford, T Fayet, Annette L.; Freeman, Robin; Shoji, Akiko; Kirk, Holly L.; Padget, Oliver; Perrins, Chris M.; Guilford, Tim Carry-over effects on the annual cycle of a migratory seabird: an experimental study JOURNAL OF ANIMAL ECOLOGY English Article cost of reproduction; cross-fostering; etho-informatics; geolocation; life-history theory; migration; phenology SHEARWATERS PUFFINUS-PUFFINUS; NORTH-ATLANTIC OSCILLATION; MANX SHEARWATER; ECOLOGICAL CONDITIONS; PARENTAL INVESTMENT; PELAGIC SEABIRD; LONG-DISTANCE; EGG-SIZE; WINTER; BIRD 1. Long-lived migratory animals must balance the cost of current reproduction with their own condition ahead of a challenging migration and future reproduction. In these species, carry-over effects, which occur when events in one season affect the outcome of the subsequent season, may be particularly exacerbated. However, how carry-over effects influence future breeding outcomes and whether (and how) they also affect behaviour during migration and wintering is unclear. 2. Here we investigate carry-over effects induced by a controlled, bidirectional manipulation of the duration of reproductive effort on the migratory, wintering and subsequent breeding behaviour of a long-lived migratory seabird, the Manx shearwater Puffinus puffinus. By cross-fostering chicks of different age between nests, we successfully prolonged or shortened by similar to 25% the chick-rearing period of 42 breeding pairs. We tracked the adults with geolocators over the subsequent year and combined migration route data with at-sea activity budgets obtained from high-resolution saltwater-immersion data. Migratory behaviour was also recorded during non-experimental years (the year before and/or two years after manipulation) for a subset of birds, allowing comparison between experimental and non-experimental years within treatment groups. 3. All birds cared for chicks until normal fledging age, resulting in birds with a longer breeding period delaying their departure on migration; however, birds that finished breeding earlier did not start migrating earlier. Increased reproductive effort resulted in less time spent at the wintering grounds, a reduction in time spent resting daily and a delayed start of breeding with lighter eggs and chicks and lower breeding success the following breeding season. Conversely, reduced reproductive effort resulted in more time resting and less time foraging during the winter, but a similar breeding phenology and success compared with control birds the following year, suggesting that 'positive' carry-over effects may also occur but perhaps have a less long-lasting impact than those incurred from increased reproductive effort. 4. Our results shed light on how carry-over effects can develop and modify an adult animal's behaviour year-round and reveal how a complex interaction between current and future reproductive fitness, individual condition and external constraints can influence life-history decisions. [Fayet, Annette L.; Shoji, Akiko; Kirk, Holly L.; Padget, Oliver; Guilford, Tim] Univ Oxford, Dept Zool, Oxford Nav Grp, Oxford, England; [Freeman, Robin] Zool Soc London, Inst Zool, London, England; [Perrins, Chris M.] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford, England Fayet, AL; Guilford, T (reprint author), Univ Oxford, Dept Zool, Oxford Nav Grp, Oxford, England. annette.fayet@gmail.com; tim.guilford@zoo.ox.ac.uk Kirk, Holly/0000-0002-8724-3210; Fayet, Annette/0000-0001-6373-0500 Biotechnology and Biological Sciences Research Council; Microsoft Research Cambridge; British Council; Mary Griffiths Foundation; British Federation for Women Graduates; Biotechnology and Biological Sciences Research Council [1095480] We thank Philip Collins, Jennifer Roberts, Ben Dean, Will Whittington, Nia Stevens, Marwa Kavelaars, Ignacio Juarez-Martinez, Lewis Yates, Sarah Bond and many other volunteers for their invaluable help in the field, and Chris Taylor, Birgitta Buche, Eddie Stubbings and the Wildlife Trust of South and West Wales for their support and for allowing us to carry out this study on Skomer. We are grateful to colleagues from the OxNav group, Rhiannon Meier and Nick Golding for helpful discussion on this manuscript. A.F. was funded by scholarships from the Biotechnology and Biological Sciences Research Council, Microsoft Research Cambridge, the British Council, the Mary Griffiths Foundation and the British Federation for Women Graduates. Alerstam T, 1990, BIRD MIGRATION; Bety J, 2003, AM NAT, V162, P110, DOI 10.1086/375680; Bogdanova MI, 2011, P ROY SOC B-BIOL SCI, V278, P2412, DOI 10.1098/rspb.2010.2601; Brooke M., 1990, POYSER MONOGRAPHS; BROOKE MDL, 1978, J ANIM ECOL, V47, P477, DOI 10.2307/3795; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Catry P, 2006, ANIM BEHAV, V72, P383, DOI 10.1016/j.anbehav.2005.10.030; Catry P, 2013, ECOLOGY, V94, P1230, DOI 10.1890/12-2177.1; COLEMAN RM, 1985, BEHAV ECOL SOCIOBIOL, V18, P59; CROXALL JP, 1992, IBIS, V134, P219, DOI 10.1111/j.1474-919X.1992.tb03803.x; Daunt F, 2014, ECOLOGY, V95, P2077, DOI 10.1890/13-1797.1; Dean B, 2012, J R SOC INTERFACE, V10, P1; Dean B, 2015, MAR ECOL PROG SER, V538, P239, DOI 10.3354/meps11443; Dean B, 2013, J R SOC INTERFACE, V10, DOI 10.1098/rsif.2012.0570; DRENT RH, 1980, ARDEA, V68, P225; Erikstad KE, 2009, ECOLOGY, V90, P3197, DOI 10.1890/08-1778.1; Fayet A.L., 2016, DRYAD DIGITAL REPOSI; Forchhammer MC, 2002, J ANIM ECOL, V71, P1002, DOI 10.1046/j.1365-2656.2002.00664.x; Guilford T, 2009, P ROY SOC B-BIOL SCI, V276, P1215, DOI 10.1098/rspb.2008.1577; Guilford T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033753; Gunnarsson TG, 2005, P ROY SOC B-BIOL SCI, V272, P2319, DOI 10.1098/rspb.2005.3214; Gunnarsson TG, 2006, J ANIM ECOL, V75, P1119, DOI 10.1111/j.1365-2656.2006.01131.x; HAMER KC, 1994, J AVIAN BIOL, V25, P198, DOI 10.2307/3677075; HARRIS MP, 1966, IBIS, V108, P17, DOI 10.1111/j.1474-919X.1966.tb07249.x; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hinks AE, 2015, AM NAT, V186, P84, DOI 10.1086/681572; Huppop O, 2003, P ROY SOC B-BIOL SCI, V270, P233, DOI 10.1098/rspb.2002.2236; JOHNSEN I, 1994, OIKOS, V71, P273, DOI 10.2307/3546276; Jonker RM, 2011, BEHAV ECOL, V22, P326, DOI 10.1093/beheco/arq208; Kokko H, 1999, J ANIM ECOL, V68, P940, DOI 10.1046/j.1365-2656.1999.00343.x; Marra PP, 1998, SCIENCE, V282, P1884, DOI 10.1126/science.282.5395.1884; McNamara JM, 1998, J AVIAN BIOL, V29, P416, DOI 10.2307/3677160; Mitchell GW, 2012, J ANIM ECOL, V81, P1024, DOI 10.1111/j.1365-2656.2012.01978.x; Norris DR, 2006, BIOL LETT-UK, V2, P148, DOI 10.1098/rsbl.2005.0397; Norris DR, 2004, P ROY SOC B-BIOL SCI, V271, P59, DOI 10.1098/rspb.2003.2569; O'Connor CM, 2014, ECOSPHERE, V5, DOI 10.1890/ES13-00388.1; OWEN M, 1991, BIRD POPULATION STUD, P360; PARSONS J, 1970, NATURE, V228, P1221, DOI 10.1038/2281221a0; Perrins C., 2013, 294 JNCC WILDL TRUST; Perrins C., 2012, 293 JNCC WILDL TRUST; PERRINS CM, 1973, IBIS, V115, P535, DOI 10.1111/j.1474-919X.1973.tb01991.x; PERRINS CM, 1966, IBIS, V108, P132, DOI 10.1111/j.1474-919X.1966.tb07259.x; R Core Development Team, 2016, R LANG ENV STAT COMP; Regular PM, 2014, ECOSPHERE, V5, DOI 10.1890/ES14-00182.1; Rehling A, 2012, ANIM BEHAV, V83, P35, DOI 10.1016/j.anbehav.2011.10.003; Richardson W.J., 1990, P78; Riou S, 2012, BEHAV ECOL, V23, P1102, DOI 10.1093/beheco/ars079; Saino N, 2004, ECOL LETT, V7, P21, DOI 10.1046/j.1461-0248.2003.00553.x; Saino N, 2004, P ROY SOC B-BIOL SCI, V271, P681, DOI 10.1098/rspb.2003.2656; SCHIFFER.L, 1973, IBIS, V115, P549, DOI 10.1111/j.1474-919X.1973.tb01992.x; Senner NR, 2015, P ROY SOC B-BIOL SCI, V282, P5, DOI 10.1098/rspb.2015.1050; Shaw AK, 2013, J MATH BIOL, V66, P685, DOI 10.1007/s00285-012-0603-0; Shoji A, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0671; Sillett TS, 2000, SCIENCE, V288, P2040, DOI 10.1126/science.288.5473.2040; SWANSON LJ, 1980, BEHAV NEURAL BIOL, V28, P172, DOI 10.1016/S0163-1047(80)91519-8; TRIVERS RL, 1974, AM ZOOL, V14, P249; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 57 6 6 4 50 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. NOV 2016 85 6 1516 1527 10.1111/1365-2656.12580 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology EC7XK WOS:000388354200011 27576353 Green Published, Other Gold 2019-02-21 J Balasubramaniam, P; Rotenberry, JT Balasubramaniam, Priya; Rotenberry, John T. Elevation and latitude interact to drive life-history variation in precocial birds: a comparative analysis using galliformes JOURNAL OF ANIMAL ECOLOGY English Article altitude; clutch size; egg mass; elevation; fecundity vs. offspring quality galliformes; interspecific variation; life-history trade-off; phylogenetic comparative methods CLUTCH SIZE; NEST PREDATION; INCUBATION BEHAVIOR; REPRODUCTIVE EFFORT; FLEDGING SUCCESS; TROPICAL BIRDS; AVIAN EGGS; EVOLUTION; SURVIVAL; FOOD 1. Elevational gradients provide a powerful laboratory for understanding the environmental and ecological drivers of geographic variation in avian life-history strategies. Environmental variation across elevational gradients is hypothesized to select for a trade-off of reduced fecundity (lower clutch size and/or fewer broods) for higher offspring quality (larger eggs and/or increased parental care) in higher elevation species and populations. In birds, a focus on altricial species from north temperate latitudes has prevented an evaluation of the generality of this trade-off, and how it is affected by latitude and intrinsic factors (development mode). 2. We performed a comparative analysis controlling for body size and phylogenetic relationships on a global data set of 135 galliform species to test (i) whether higher elevation precocial species have lower fecundity (smaller clutch and/or fewer broods) and invest more in offspring quality (greater egg mass) and (ii) whether latitude influences the traits involved and/or the trade-off, and (iii) to identify ecological and environmental drivers of life-history variation along elevational gradients. 3. Life-history traits showed significant interaction effects across elevation and latitude: temperate higher elevation species had smaller clutches and clutch mass, larger eggs and shorter incubation periods, whereas more tropical species had larger clutches, eggs and clutch mass, and longer incubation periods as elevation increased. Number of broods and body mass did not vary with elevation or latitude. Latitudinal gradient in clutch size was observed only for low-elevation species. 4. Significantly, an overlooked latitude-by-elevation interaction confounds our traditional view of clutch size variation across a tropical-to-temperate gradient. Across all latitudes, higher elevation species invested in offspring quality via larger eggs but support for reduced fecundity resulting from smaller clutches was found only along temperate elevational gradients; contrary to expectations, tropical high-elevation species showed increased fecundity. Variation in nest predation risk could explain differences between temperate and tropical elevational gradients, but we lack a consistent mechanism to explain why predation risk should vary in this manner. Alternatively, a resource availability hypothesis based on physical attributes that globally differ between elevation and latitude (seasonality in day length and temperature) seems more plausible. [Balasubramaniam, Priya; Rotenberry, John T.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Rotenberry, John T.] Univ Minnesota, Dept Ecol Evolut & Behav, 1987 Upper Buford Circle, St Paul, MN 55108 USA Balasubramaniam, P (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. pbala001@ucr.edu ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Badyaev AV, 1997, OECOLOGIA, V111, P365, DOI 10.1007/s004420050247; Balasubramaniam P., 2016, DRYAD DIGITAL REPOSI; BAUR B, 1988, J ANIM ECOL, V57, P71, DOI 10.2307/4764; Bears H, 2009, J ANIM ECOL, V78, P365, DOI 10.1111/j.1365-2656.2008.01491.x; BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; BirdLife International & NatureServe, 2012, BIRD SPEC DISTR MAPS; Bohning-Gaese K, 2000, EVOL ECOL RES, V2, P823; Boyce AJ, 2015, AUK, V132, P424, DOI 10.1642/AUK-14-150.1; Boyle WA, 2008, OECOLOGIA, V155, P397, DOI 10.1007/s00442-007-0897-6; Boyle WA, 2016, BIOL REV, V91, P469, DOI 10.1111/brv.12180; CAREY C, 1994, J BIOSCIENCES, V19, P429, DOI 10.1007/BF02703179; CAREY C, 1980, CONDOR, V82, P335, DOI 10.2307/1367405; Chalfoun AD, 2007, ANIM BEHAV, V73, P579, DOI 10.1016/j.anbehav.2006.09.010; Chen W, 2013, J EVOLUTION BIOL, V26, P2710, DOI 10.1111/jeb.12271; Class AM, 2011, CONDOR, V113, P438, DOI 10.1525/cond.2011.100068; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Conway CJ, 2000, EVOLUTION, V54, P670; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DRENT RH, 1980, ARDEA, V68, P225; ELLIOTT A., 1994, HDB BIRDS WORLD; ESRI, 2013, 1022 ESRI ARCGIS; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; Hardesty J. L., 2008, SEASONALITY EQUATORI; Hille SM, 2015, BIOL REV, V90, P204, DOI 10.1111/brv.12106; HOYT DF, 1979, AUK, V96, P73; JANZEN DH, 1967, AM NAT, V101, P233, DOI 10.1086/282487; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Jia CX, 2010, AUK, V127, P926, DOI 10.1525/auk.2010.09254; Korner C, 2007, TRENDS ECOL EVOL, V22, P569, DOI 10.1016/j.tree.2007.09.006; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lepage D, 1999, J AVIAN BIOL, V30, P72, DOI 10.2307/3677245; Lepage D, 1998, J ANIM ECOL, V67, P210, DOI 10.1046/j.1365-2656.1998.00182.x; Maddison W.P., 2011, MESQUITE MODULAR SYS; Martin KM, 2001, WILDLIFE-HABITAT RELATIONSHIPS IN OREGON AND WASHINGTON, P239; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2009, ANN NY ACAD SCI, V1168, P201, DOI 10.1111/j.1749-6632.2009.04577.x; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Musvuugwa T, 2011, IBIS, V153, P165, DOI 10.1111/j.1474-919X.2010.01064.x; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Peh KSH, 2012, RAFFLES B ZOOL, P249; Pelayo JT, 2003, AUK, V120, P384, DOI 10.1642/0004-8038(2003)120[0384:COESFO]2.0.CO;2; Pinheiro JC, 2012, NLME LINEAR NONLINEA, P1; R Core Team, 2012, R LANG ENV STAT COMP; RAHN H, 1974, CONDOR, V76, P147, DOI 10.2307/1366724; RHYMER JM, 1988, OECOLOGIA, V75, P20, DOI 10.1007/BF00378809; Roff Derek A., 1992; Rose AP, 2013, ECOLOGY, V94, P1327, DOI 10.1890/12-0953.1; Sandercock BK, 2005, ECOLOGY, V86, P2176, DOI 10.1890/04-0563; Sarmiento G, 1986, HIGH ALT TROP BIOGEO, V11, P45; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SMITH HG, 1989, ORNIS SCAND, V20, P156, DOI 10.2307/3676885; Starck JM, 1998, AVIAN GROWTH DEV EVO; Sundqvist MK, 2013, ANNU REV ECOL EVOL S, V44, P261, DOI 10.1146/annurev-ecolsys-110512-135750; Symonds M.R.E., 2014, MODERN PHYLOGENETIC, P105; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkler D.W., 1983, Current Ornithology, V1, P33 67 2 2 8 49 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. NOV 2016 85 6 1528 1539 10.1111/1365-2656.12570 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology EC7XK WOS:000388354200012 27392151 2019-02-21 J Paterson, JT; Rotella, JJ; Mannas, JM; Garrott, RA Paterson, John T.; Rotella, Jay J.; Mannas, Jennifer M.; Garrott, Robert A. Patterns of age-related change in reproductive effort differ in the pre-natal and post-natal periods in a long-lived mammal JOURNAL OF ANIMAL ECOLOGY English Article Antarctica; reproductive allocation; Ross Sea; senescence; terminal allocation; Weddell seal SOUTHERN ELEPHANT SEALS; ANTARCTIC FUR SEALS; OFFSPRING SEX-RATIO; MIXED-EFFECTS MODELS; WEDDELL SEALS; MATERNAL INVESTMENT; BODY-MASS; RED DEER; TERMINAL INVESTMENT; EREBUS BAY 1. Age-related changes in maternal reproductive allocation for long-lived species are a key prediction from life-history theory. 2. Theoretical and empirical work suggests that allocation may increase with age due to constraint (increases with experience) or restraint (increases with age in the face of declining residual reproductive value), and may decrease among the oldest aged animals due to senescence in reproductive function. 3. Here, we use a hierarchical modelling approach to investigate the age-related patterns of change in maternal reproductive effort in the Weddell seal, a long-lived marine mammal with a protracted period of maternal care during which mothers allocate a large proportion of body mass while feeding little. 4. We find that maternal allocation increases with age for young mothers during both the pre-natal and post-natal periods. In contrast, older mothers demonstrate a senescent decline in pre-natal allocation but allocate more of their declining resources to their offspring during the post-natal period. We also find strong evidence for the importance of individual effects in reproductive allocation among mothers: some mothers consistently produce heavier (or lighter) pups than expected. 5. Our results indicate that maternal allocation changes over a mother's reproductive life span and that age-specific differences differ in notable ways in pre-natal and post-natal periods. [Paterson, John T.; Rotella, Jay J.; Mannas, Jennifer M.; Garrott, Robert A.] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA; [Mannas, Jennifer M.] Progress Anim Welf Soc, Lynnwood, WA 98046 USA Paterson, JT (reprint author), Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. terrillpaterson@gmail.com National Science Foundation, Division of Polar Programs [ANT-1141326]; NSF We thank the many graduate students and field technicians who have collected data on this project. This project was supported by the National Science Foundation, Division of Polar Programs (Grant No. ANT-1141326 to J.J.R., R.A.G. and Donald B. Siniff) and prior NSF Grants to R.A.G., J.J.R., D.B.S. and J. Ward Testa. Logistical support for fieldwork in Antarctica was provided by Lockheed Martin, Raytheon Polar Services Company, Antarctic Support Associates, the United States Navy and Air Force and Petroleum Helicopters Incorporated. Adams LG, 2005, J MAMMAL, V86, P506, DOI 10.1644/1545-1542(2005)86[506:EOMCAC]2.0.CO;2; Ailsa J. H., 2001, J ANIM ECOL, V70, P138; ANDERSON SS, 1987, J ZOOL, V211, P667, DOI 10.1111/j.1469-7998.1987.tb04478.x; ARNBOM T, 1994, BEHAV ECOL SOCIOBIOL, V35, P373, DOI 10.1007/s002650050108; Arnbom T, 1997, ECOLOGY, V78, P471; Baron JP, 2010, J ANIM ECOL, V79, P640, DOI 10.1111/j.1365-2656.2010.01661.x; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Boltnev AI, 2001, J ZOOL, V254, P219, DOI 10.1017/S0952836901000735; Bowen W., 2004, J ZOOL, V261, P155; Bowen WD, 2006, J ANIM ECOL, V75, P1340, DOI 10.1111/j.1365-2656.2006.01157.x; Bowen WD, 2001, CAN J ZOOL, V79, P1088, DOI 10.1139/cjz-79-6-1088; Bowen WD, 2015, ECOL EVOL, V5, P1412, DOI 10.1002/ece3.1450; BOYD IL, 1989, BEHAV ECOL SOCIOBIOL, V24, P377, DOI 10.1007/BF00293265; Cam E, 2000, OIKOS, V90, P560, DOI 10.1034/j.1600-0706.2000.900314.x; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Cameron MF, 2004, CAN J ZOOL, V82, P601, DOI 10.1139/Z04-025; Cameron MF, 2007, ANTARCT SCI, V19, P149, DOI 10.1017/S0954102007000223; Carvalho CM, 2010, BIOMETRIKA, V97, P465, DOI 10.1093/biomet/asq017; Chambert T, 2013, ECOL EVOL, V3, P2047, DOI 10.1002/ece3.615; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cote SD, 2001, OECOLOGIA, V127, P230, DOI 10.1007/s004420000584; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Cubaynes S, 2011, BIOL LETTERS, V7, P303, DOI 10.1098/rsbl.2010.0778; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; Denwood M., 2016, RUNJAGS INTERFACE UT; Derocher AE, 1998, J ZOOL, V245, P253, DOI 10.1017/S095283699800702X; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; Fedak MA, 1996, PHYSIOL ZOOL, V69, P887, DOI 10.1086/physzool.69.4.30164234; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; FestaBianchet M, 1996, CAN J ZOOL, V74, P330, DOI 10.1139/z96-041; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Froy H, 2013, ECOL LETT, V16, P642, DOI 10.1111/ele.12092; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Garroway CJ, 2007, J MAMMAL, V88, P1305, DOI 10.1644/06-MAMM-A-212R2.1; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Gelman A, 2014, STAT COMPUT, V24, P997, DOI 10.1007/s11222-013-9416-2; Georges JY, 2000, ECOLOGY, V81, P295, DOI 10.2307/177427; Gittleman J.L., 1988, INTEGR COMP BIOL, V28, P863, DOI DOI 10.1093/ICB/28.3.863; Gluckman P. D., 2005, NEONATOLOGY, V87, P127; GUINNESS FE, 1978, J REPROD FERTIL, V54, P325; HACKMAN E, 1983, JAMA-J AM MED ASSOC, V250, P2016, DOI 10.1001/jama.250.15.2016; Hadley GL, 2007, J ANIM ECOL, V76, P448, DOI 10.1111/j.1365-2656.2007.01219.x; Hadley GL, 2006, J ANIM ECOL, V75, P1058, DOI 10.1111/j.1365-2656.2006.01118.x; Hales CN, 2001, BRIT MED BULL, V60, P5, DOI 10.1093/bmb/60.1.5; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Hamel S, 2012, ECOL APPL, V22, P1628; Hewison AJM, 1999, TRENDS ECOL EVOL, V14, P229, DOI 10.1016/S0169-5347(99)01592-X; Hill S., 1987, THESIS; Hindle AG, 2009, J EXP ZOOL PART A, V311A, P358, DOI 10.1002/jez.534; Hindle AG, 2009, J EXP BIOL, V212, P790, DOI 10.1242/jeb.025387; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HOERL AE, 1970, TECHNOMETRICS, V12, P55; Hooten MB, 2015, ECOL MONOGR, V85, P3, DOI 10.1890/14-0661.1; INNES S, 1987, THE JOURNAL OF ANIMA, V56, P115; Keech MA, 2000, J WILDLIFE MANAGE, V64, P450, DOI 10.2307/3803243; King EG, 2011, J EVOLUTION BIOL, V24, P256, DOI 10.1111/j.1420-9101.2010.02160.x; Kirkwood T.B.L., 1981, P165; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; KOVACS KM, 1986, J ANIM ECOL, V55, P1035, DOI 10.2307/4432; Kruuk LEB, 1999, P ROY SOC B-BIOL SCI, V266, P1655, DOI 10.1098/rspb.1999.0828; Lang SLC, 2009, ECOLOGY, V90, P2513, DOI 10.1890/08-1386.1; Lindstrom J., 1999, TRENDS ECOL EVOL, V14, P343; Lock JE, 2007, AM NAT, V170, P709, DOI 10.1086/521963; Loison A, 2005, BEHAV ECOL, V16, P624, DOI 10.1093/beheco/ari037; Lucas A., 1991, CHILDHOOD ENV ADULT, V1991, P38; Lummaa V, 2003, AM J HUM BIOL, V15, P370, DOI 10.1002/ajhb.10155; Lummaa V, 2002, TRENDS ECOL EVOL, V17, P141, DOI 10.1016/S0169-5347(01)02414-4; LUNN NJ, 1994, J ANIM ECOL, V63, P827, DOI 10.2307/5260; Martin JGA, 2011, ECOLOGY, V92, P441, DOI 10.1890/09-2413.1; MCLAREN IA, 1993, BIOL REV, V68, P1, DOI 10.1111/j.1469-185X.1993.tb00731.x; McMahon CR, 2000, ANTARCT SCI, V12, P149; McMullen S, 2012, MED HYPOTHESES, V78, P88, DOI 10.1016/j.mehy.2011.09.047; MEDAWAR PB, 1946, MODERN Q, V1, P30; Mellish JAE, 1999, PHYSIOL BIOCHEM ZOOL, V72, P677, DOI 10.1086/316708; MILLAR JS, 1977, EVOLUTION, V31, P370, DOI 10.1111/j.1558-5646.1977.tb01019.x; Mysterud A, 2001, P ROY SOC B-BIOL SCI, V268, P911, DOI 10.1098/rspb.2001.1585; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nussey DH, 2011, ECOLOGY, V92, P1936, DOI 10.1890/11-0308.1; Ochoa-Acuna H, 1998, CAN J ZOOL, V76, P978, DOI 10.1139/cjz-76-5-978; Oftedal O. T., 1985, BIOENERGETICS WILD H, V10, P215; Park T, 2008, J AM STAT ASSOC, V103, P681, DOI 10.1198/016214508000000337; Parker TH, 2002, AUK, V119, P840, DOI 10.1642/0004-8038(2002)119[0840:MCRIAO]2.0.CO;2; Paterson J. T., 2016, DRYAD DIGITAL REPOSI; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Plummer M., 2003, P 3 INT WORKSH DISTR, P125; Pomeroy PP, 1999, J ANIM ECOL, V68, P235, DOI 10.1046/j.1365-2656.1999.00281.x; Proffitt KM, 2008, MAR MAMMAL SCI, V24, P677, DOI 10.1111/j.1748-7692.2008.00207.x; Proffitt KM, 2007, OIKOS, V116, P1683, DOI 10.1111/j.2007.0030-1299.16139.x; Proffitt KM, 2010, OIKOS, V119, P1255, DOI 10.1111/j.1600-0706.2009.18098.x; R Core Team, 2015, R LANG ENV STAT COMP; ROBBINS CT, 1979, AM NAT, V114, P101, DOI 10.1086/283456; ROFF DA, 2002, LIFE HIST EVOLUTION; Schubert KA, 2009, AM NAT, V173, P831, DOI 10.1086/598495; Schulz TM, 2005, ECOL MONOGR, V75, P159, DOI 10.1890/04-0319; SINIFF DB, 1977, ECOL MONOGR, V47, P319, DOI 10.2307/1942520; Skibiel AL, 2013, FUNCT ECOL, V27, P1382, DOI 10.1111/1365-2435.12130; Skibiel AL, 2009, ECOL MONOGR, V79, P325, DOI 10.1890/08-0718.1; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STIRLING I, 1969, ECOLOGY, V50, P573, DOI 10.2307/1936247; Stopher KV, 2008, P ROY SOC B-BIOL SCI, V275, P2137, DOI 10.1098/rspb.2008.0502; Vaida F, 2005, BIOMETRIKA, V92, P351, DOI 10.1093/biomet/92.2.351; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Watanabe S, 2010, J MACH LEARN RES, V11, P3571; WAUTERS L, 1993, J ANIM ECOL, V62, P280, DOI 10.2307/5359; Weladji RB, 2010, OECOLOGIA, V162, P261, DOI 10.1007/s00442-009-1443-5; Wheatley KE, 2006, J ANIM ECOL, V75, P724, DOI 10.1111/j.1365-2656.01093.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wolcott DM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124431 114 4 4 2 42 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. NOV 2016 85 6 1540 1551 10.1111/1365-2656.12577 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology EC7XK WOS:000388354200013 27448960 Bronze 2019-02-21 J Wu, JH; Chen, HL; Zhang, YZ Wu, Jihua; Chen, Huili; Zhang, Youzheng Latitudinal variation in nematode diversity and ecological roles along the Chinese coast ECOLOGY AND EVOLUTION English Article biogeography; dietary niche; feeding selectivity; life-history group; phylogenetic diversity; soil animal; taxonomic distinctness LIFE-HISTORY TRAITS; MARINE NEMATODES; NICHE BREADTH; DEEP-SEA; SPECIES-DIVERSITY; GLOBAL PATTERNS; MACROECOLOGICAL PATTERNS; PHYLOGENETIC DIVERSITY; TAXONOMIC DISTINCTNESS; SANDY BEACHES Aim: To test changes in the phylogenetic relatedness, niche breadth, and life-history strategies of nematodes along a latitudinal gradient. Location: Sixteen wetland locations along the Pacific coast of China, from 20 degrees N to 40 degrees N. Methods: Linear regression was used to relate nematode phylogenetic relatedness (average taxonomic distinctness (AvTD) and average phylogenetic diversity [AvPD]), life-history group (based on "c-p" colonizer-persister group classification), and dietary specificity (based on guild classification of feeding selectivity) to latitude. Results: Wetland nematode taxonomic diversity (richness and Shannon diversity indices) decreased with increasing latitude along the Chinese coast. Phylogenetic diversity indices (AvTD and AvPD) significantly increased with increasing latitude. This indicates that at lower latitudes, species within the nematode community were more closely related. With increasing latitude, the nematode relative richness and abundance decreased for selective deposit feeders but increased for nonselective deposit feeders. The proportion of general opportunists decreased with increasing latitude, but persisters showed the opposite trend. The annual temperature range and the pH of sediments were more important than vegetation type in structuring nematode communities. Main conclusion: Nematode niche breadth was narrower at lower latitudes with respect to dietary specificity. Higher latitudes with a more variable climate favor r over K life-history strategists. Nematode communities at lower latitudes contained more closely related species. [Wu, Jihua; Chen, Huili; Zhang, Youzheng] Fudan Univ, Coastal Ecosyst Res Stn Yangtze River Estuary, Key Lab Biodivers Sci & Ecol Engn, Minist Educ,Sch Life Sci, Shanghai, Peoples R China; [Chen, Huili] Hangzhou Normal Univ, Hangzhou Key Lab Anim Adaptat & Evolut, Hangzhou, Zhejiang, Peoples R China Wu, JH (reprint author), Fudan Univ, Inst Biodivers Sci, Minist Educ, Key Lab Biodivers Sci & Ecol Engn, Shanghai, Peoples R China. jihuawu@fudan.edu.cn Ministry of Science and Technology of the People's Republic of China [2013CB430404]; National Natural Science Foundation of China [41201054, 41630528]; Shanghai Pujiang Scholar Program [16PJ1400900] Ministry of Science and Technology of the People's Republic of China, Grant/ Award Number: 2013CB430404; National Natural Science Foundation of China, Grant/ Award Number: 41201054 and 41630528; Shanghai Pujiang Scholar Program, Grant/ Award Number: 16PJ1400900. Adams BJ, 2007, POLAR BIOL, V30, P809, DOI 10.1007/s00300-006-0241-3; Adams BJ, 2006, SOIL BIOL BIOCHEM, V38, P3003, DOI 10.1016/j.soilbio.2006.04.030; Auer SK, 2014, GLOBAL ECOL BIOGEOGR, V23, P867, DOI 10.1111/geb.12174; Bardgett Richard D., 2005, P100, DOI 10.1017/CBO9780511541926.007; Bardgett RD, 2014, NATURE, V515, P505, DOI 10.1038/nature13855; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Boag B, 1998, BIODIVERS CONSERV, V7, P617, DOI 10.1023/A:1008852301349; Bongers T, 1999, TRENDS ECOL EVOL, V14, P224, DOI 10.1016/S0169-5347(98)01583-3; BONGERS T, 1990, OECOLOGIA, V83, P14, DOI 10.1007/BF00324627; BOUCHER G, 1990, MAR ECOL-P S Z N I, V11, P133, DOI 10.1111/j.1439-0485.1990.tb00234.x; Boucher G, 1995, CONSERV BIOL, V9, P1594, DOI 10.1046/j.1523-1739.1995.09061594.x; Brussaard L, 2013, SOIL ECOLOGY AND ECOSYSTEM SERVICES, P201; Cardillo M, 2005, ECOLOGY, V86, P2278, DOI 10.1890/05-0112; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; Clarke KR, 2001, MAR ECOL PROG SER, V216, P265, DOI 10.3354/meps216265; Clarke KR, 1998, J APPL ECOL, V35, P523, DOI 10.1046/j.1365-2664.1998.3540523.x; Decaens T, 2010, GLOBAL ECOL BIOGEOGR, V19, P287, DOI 10.1111/j.1466-8238.2009.00517.x; DEGOEDE RGM, 1993, INT S CROP, V45, P743; Dunn RR, 2009, ECOL LETT, V12, P324, DOI 10.1111/j.1461-0248.2009.01291.x; Fonseca G, 2015, ESTUAR COAST, V38, P612, DOI 10.1007/s12237-014-9844-z; Forister ML, 2015, P NATL ACAD SCI USA, V112, P442, DOI [10.1073/pnas.1423042112, 10.1073/pnas.142304211]; Gaston KJ, 2000, NATURE, V405, P220, DOI 10.1038/35012228; Gobin JF, 2006, J EXP MAR BIOL ECOL, V330, P234, DOI 10.1016/j.jembe.2005.12.030; Gonzalez-Bergonzoni I, 2012, ECOSYSTEMS, V15, P492, DOI 10.1007/s10021-012-9524-4; Goodey J. B, 1963, SOIL FRESHWATER NEMA; Graham CH, 2009, P NATL ACAD SCI USA, V106, P19673, DOI 10.1073/pnas.0901649106; Helmus MR, 2010, ECOL LETT, V13, P162, DOI 10.1111/j.1461-0248.2009.01411.x; Hille SM, 2015, BIOL REV, V90, P204, DOI 10.1111/brv.12106; Jairajpuri M. S, 1992, DORYLAIMIDA FREE LIV; Kissling WD, 2012, GLOBAL ECOL BIOGEOGR, V21, P328, DOI 10.1111/j.1466-8238.2011.00679.x; Krasnov BR, 2008, J BIOGEOGR, V35, P592, DOI 10.1111/j.1365-2699.2007.01800.x; Lambshead PJD, 2000, MAR ECOL PROG SER, V194, P159, DOI 10.3354/meps194159; Lambshead PJD, 2002, MAR ECOL PROG SER, V236, P129, DOI 10.3354/meps236129; Lee MR, 2012, MAR ECOL-EVOL PERSP, V33, P317, DOI 10.1111/j.1439-0485.2011.00497.x; Lorenzen S., 1981, VEROEFFENTLICHUNGEN DES INSTITUTS FUER MEERESFORSCHUNG IN BREMERHAVEN SUPPLEMENT, V7, P1; Mokievsky V, 2002, MAR ECOL PROG SER, V238, P101, DOI 10.3354/meps238101; Morin X, 2006, ECOL LETT, V9, P185, DOI 10.1111/j.1461-0248.2005.00864.x; Neher DA, 2010, ANNU REV PHYTOPATHOL, V48, P371, DOI 10.1146/annurev-phyto-073009-114439; Nicholas WL, 2005, BIODIVERS CONSERV, V14, P823, DOI 10.1007/s10531-004-0656-5; Nielsen UN, 2014, GLOBAL ECOL BIOGEOGR, V23, P968, DOI 10.1111/geb.12177; PROCTER DLC, 1984, J BIOGEOGR, V11, P103, DOI 10.2307/2844684; Qian H, 2013, GLOBAL ECOL BIOGEOGR, V22, P1183, DOI 10.1111/geb.12069; Rex MA, 2001, MAR ECOL PROG SER, V210, P297, DOI 10.3354/meps210297; Ricklefs RE, 2006, ECOLOGY, V87, pS3, DOI 10.1890/0012-9658(2006)87[3:EDATOO]2.0.CO;2; Safi K, 2011, PHILOS T R SOC B, V366, P2536, DOI 10.1098/rstb.2011.0024; SAINTE-MARIE B, 1991, HYDROBIOLOGIA, V223, P189, DOI 10.1007/BF00047641; Schweiger O, 2008, OECOLOGIA, V157, P485, DOI 10.1007/s00442-008-1082-2; Simon NPP, 2003, ECOSCIENCE, V10, P289, DOI 10.1080/11956860.2003.11682776; Slove J, 2010, ECOL ENTOMOL, V35, P768, DOI 10.1111/j.1365-2311.2010.01238.x; Sommer B, 2014, ECOLOGY, V95, P1000, DOI 10.1890/13-1445.1; Ulrich W, 2013, ECOGRAPHY, V36, P1106, DOI 10.1111/j.1600-0587.2013.00188.x; Vazquez DP, 2004, AM NAT, V164, pE1, DOI 10.1086/421445; Wardle D. A., 2002, COMMUNITIES ECOSYSTE; Warwick R. M., 1998, SYNOPSES BRIT FAUNA, V53; Wiens JJ, 2010, ECOL LETT, V13, P1310, DOI 10.1111/j.1461-0248.2010.01515.x; Wieser W., 1953, ACTA U LUND, V49, P1; Willig MR, 2003, ANNU REV ECOL EVOL S, V34, P273, DOI 10.1146/annurev.ecolsys.34.012103.144032; Wu TH, 2011, P NATL ACAD SCI USA, V108, P17720, DOI 10.1073/pnas.1103824108 58 1 2 4 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. NOV 2016 6 22 8018 8027 10.1002/ece3.2538 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology EB8TR WOS:000387664500008 27878074 DOAJ Gold, Green Published 2019-02-21 J Waldbusser, GG; Gray, MW; Hales, B; Langdon, CJ; Haley, BA; Gimenez, I; Smith, SR; Brunner, EL; Hutchinson, G Waldbusser, George G.; Gray, Matthew W.; Hales, Burke; Langdon, Chris J.; Haley, Brian A.; Gimenez, Iria; Smith, Stephanie R.; Brunner, Elizabeth L.; Hutchinson, Greg Slow shell building, a possible trait for resistance to the effects of acute ocean acidification LIMNOLOGY AND OCEANOGRAPHY English Review LIFE-HISTORY EVOLUTION; LARVAL DEVELOPMENT; OLYMPIA OYSTER; CARBONATE SATURATION; CONTINENTAL-SHELF; OSTREA-CHILENSIS; CHILEAN OYSTER; TOTAL CO2; BIVALVIA; SYSTEM Increasing anthropogenic carbon dioxide is altering marine carbonate chemistry through a process called ocean acidification. Many calcium carbonate forming organisms are sensitive to changes in marine carbonate chemistry, especially mollusk bivalve larvae at the initial shell building stage. Rapid calcification, limited energy reserves, and more exposed calcification surfaces, are traits at this stage that increase vulnerability to ocean acidification through our previously argued kinetic-energetic hypothesis. These developmental traits are common to broadcast spawning bivalve species that are the focus of most ocean acidification studies to date. Some oyster species brood their young, which results in slower development of the embryos through the initial shell formation stage. We examined the responses of the brooding Olympia oyster, Ostrea lurida, during their initial shell building stage. We extracted fertilized eggs from, O. lurida, prior to shell development, then exposed developing embryos to a wide range of marine carbonate chemistry conditions. Surprisingly, O. lurida showed no acute negative response to any ocean acidification treatments. Compared to the broadcast spawning Pacific oyster, Crassostrea gigas, calcification rate and standardized endogenous energy lipid consumption rate were nearly 10 and 50 times slower, respectively. Our results suggest that slow shell building may lessen the energetic burden of acidification at this stage and provides additional support for our kinetic-energetic hypothesis. Furthermore, these results may represent an example of exaptation; fitness conveyed by a coopted trait that evolved for another purpose, a concept largely lacking in the current perspective of adaptation and global climate change. [Waldbusser, George G.; Hales, Burke; Haley, Brian A.; Gimenez, Iria; Smith, Stephanie R.; Brunner, Elizabeth L.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA; [Gray, Matthew W.; Langdon, Chris J.; Hutchinson, Greg] Oregon State Univ, Hatfield Marine Sci Ctr, Coastal Oregon Marine Expt Stn, Newport, OR 97365 USA; [Gray, Matthew W.; Langdon, Chris J.; Hutchinson, Greg] Oregon State Univ, Hatfield Marine Sci Ctr, Dept Fisheries & Wildlife, Newport, OR 97365 USA Waldbusser, GG (reprint author), Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. waldbuss@coas.oregonstate.edu Gray, Matthew/0000-0003-0872-2449; Waldbusser, George/0000-0002-8334-580X National Science Foundation OCE CRI-OA [1041267] The authors would like to thank Oregon Oyster Company for providing Ostrea lurida broodstock, N. Danilchik for imaging bivalve larvae, K. Kovalchik for working on larval calcium measurements, and L. Copeman for running lipid samples and advice on interpretation. A previous version of this manuscript was improved by comments from A. Hettinger,S.E. Kolesar, one anonymous reviewer, and the Associate Editor, James Leichter. This work was supported by National Science Foundation OCE CRI-OA #1041267 to GGW, BH, CJL, and BAH. Aranda-Burgos JA, 2014, J MOLLUS STUD, V80, P8, DOI 10.1093/mollus/eyt044; Baker P, 1995, J SHELLFISH RES, V14, P501; Bandstra L, 2006, MAR CHEM, V100, P24, DOI 10.1016/j.marchem.2005.10.009; Barros V, 2014, CLIMATE CHANGE 2014: IMPACTS, ADAPTATION, AND VULNERABILITY, PT A: GLOBAL AND SECTORAL ASPECTS, pIX; Barton A, 2015, OCEANOGRAPHY, V28, P146, DOI 10.5670/oceanog.2015.38; Barton A, 2012, LIMNOL OCEANOGR, V57, P698, DOI 10.4319/lo.2012.57.3.0698; Ben Kheder R, 2010, AQUACULTURE, V308, P174, DOI 10.1016/j.aquaculture.2010.08.030; Byrne M, 2011, OCEANOGR MAR BIOL, V49, P1; Chaparro OR, 2009, MAR ECOL PROG SER, V374, P145, DOI 10.3354/meps07777; CHAPARRO OR, 1993, BIOL BULL-US, V185, P365, DOI 10.2307/1542477; DICKSON AG, 1990, J CHEM THERMODYN, V22, P113, DOI 10.1016/0021-9614(90)90074-Z; Doney SC, 2009, ANNU REV MAR SCI, V1, P169, DOI 10.1146/annurev.marine.010908.163834; EYSTER LS, 1986, BIOL BULL-US, V170, P211, DOI 10.2307/1541804; Feely RA, 2008, SCIENCE, V320, P1490, DOI 10.1126/science.1155676; Feely RA, 2010, ESTUAR COAST SHELF S, V88, P442, DOI 10.1016/j.ecss.2010.05.004; Foden WB, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065427; FOLCH J, 1957, J BIOL CHEM, V226, P497; GAINES SD, 1992, NATURE, V360, P579, DOI 10.1038/360579a0; Gazeau F, 2013, MAR BIOL, V160, P2207, DOI 10.1007/s00227-013-2219-3; Gazeau F, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023010; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; Hales B, 2005, GLOBAL BIOGEOCHEM CY, V19, DOI 10.1029/2004GB002295; Harris KE, 2013, GEOPHYS RES LETT, V40, P2720, DOI 10.1002/grl.50460; Hauri C, 2013, GEOPHYS RES LETT, V40, P3424, DOI 10.1002/grl.50618; Hettinger A, 2013, BIOGEOSCI DISCUSS, V10, P5781, DOI [10.5194/bgd-10-5781-2013, DOI 10.5194/BGD-10-5781-2013]; Hettinger A, 2012, ECOLOGY, V93, P2758, DOI 10.1890/12-0567.1; His E, 1997, WATER RES, V31, P351, DOI 10.1016/S0043-1354(96)00244-8; Hopkins AE, 1936, ECOLOGY, V17, P551, DOI 10.2307/1932760; Ishii M, 2011, J GEOPHYS RES-OCEANS, V116, DOI 10.1029/2010JC006831; Jaeckle William B., 1995, P49; LABARBERA M, 1974, MAR BIOL, V25, P233, DOI 10.1007/BF00394969; Lucey NM, 2015, SCI REP-UK, V5, DOI 10.1038/srep12009; Lueker TJ, 2000, MAR CHEM, V70, P105, DOI 10.1016/S0304-4203(00)00022-0; Luthi D, 2008, NATURE, V453, P379, DOI 10.1038/nature06949; MAEDAMARTINEZ AN, 1987, COMP BIOCHEM PHYS A, V86, P21, DOI 10.1016/0300-9629(87)90270-2; Mardones-Toledo DA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122859; Medakovic D, 1997, MAR BIOL, V129, P615, DOI 10.1007/s002270050204; Melzner F, 2009, BIOGEOSCIENCES, V6, P2313, DOI 10.5194/bg-6-2313-2009; MILLERO FJ, 1995, GEOCHIM COSMOCHIM AC, V59, P661, DOI 10.1016/0016-7037(94)00354-O; Millero FJ, 2010, MAR FRESHWATER RES, V61, P139, DOI 10.1071/MF09254; Moueza M, 2006, INVERTEBR BIOL, V125, P21, DOI 10.1111/j.1744-7410.2006.00036.x; Mount AS, 2004, SCIENCE, V304, P297, DOI 10.1126/science.1090506; Noisette F, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093021; Pan TCF, 2015, P NATL ACAD SCI USA, V112, P4696, DOI 10.1073/pnas.1416967112; Pane EF, 2007, MAR ECOL PROG SER, V334, P1, DOI 10.3354/meps334001; PARRISH CC, 1987, CAN J FISH AQUAT SCI, V44, P722, DOI 10.1139/f87-087; Pechenik JA, 1999, MAR ECOL PROG SER, V177, P269, DOI 10.3354/meps177269; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; Portner HO, 2008, MAR ECOL PROG SER, V373, P203, DOI 10.3354/meps07768; Quayle D.B., 1988, CAN B FISH AQUAT SCI, V218, P241; Sammarco Paul W., 2009, Environmental Bioindicators, V4, P9, DOI 10.1080/15555270902905377; Segura CJ, 2015, J COMP PHYSIOL B, V185, P659, DOI 10.1007/s00360-015-0908-6; Sponaugle S, 2002, B MAR SCI, V70, P341; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Takahashi T, 2014, MAR CHEM, V164, P95, DOI 10.1016/j.marchem.2014.06.004; Thomsen J, 2015, BIOGEOSCIENCES DISCU, V12, P1543, DOI DOI 10.5194/BGD-12-1543-2015; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Waldbusser G. G., 2010, MARINE ECOLOGICAL PR, V417, P177; Waldbusser GG, 2016, ICES J MAR SCI, V73, P563, DOI 10.1093/icesjms/fsv174; Waldbusser GG, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128376; Waldbusser GG, 2015, NAT CLIM CHANGE, V5, P273, DOI 10.1038/NCLIMATE2479; Waldbusser GG, 2014, ANNU REV MAR SCI, V6, P221, DOI 10.1146/annurev-marine-121211-172238; Waldbusser GG, 2013, GEOPHYS RES LETT, V40, P2171, DOI 10.1002/grl.50449; Waldbusser GG, 2011, ESTUAR COAST, V34, P221, DOI 10.1007/s12237-010-9307-0; Wethey DS, 2011, J EXP MAR BIOL ECOL, V400, P132, DOI 10.1016/j.jembe.2011.02.008; Wray Gregory A., 1995, P413; Yamamoto-Kawai M, 2015, J OCEANOGR, V71, P427, DOI 10.1007/s10872-015-0302-8; ZUDDAS P, 1994, GEOCHIM COSMOCHIM AC, V58, P4353, DOI 10.1016/0016-7037(94)90339-5 68 15 15 5 74 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-3590 1939-5590 LIMNOL OCEANOGR Limnol. Oceanogr. NOV 2016 61 6 1969 1983 10.1002/lno.10348 15 Limnology; Oceanography Marine & Freshwater Biology; Oceanography EB9WX WOS:000387749500003 2019-02-21 J Belsky, J; Shalev, I Belsky, Jay; Shalev, Idan Contextual adversity, telomere erosion, pubertal development, and health: Two models of accelerated aging, or one? DEVELOPMENT AND PSYCHOPATHOLOGY English Article EARLY-LIFE STRESS; GLUCOCORTICOID-RECEPTOR GENE; CORTICOTROPIN-RELEASING HORMONE; CHILDHOOD SOCIOECONOMIC-STATUS; POSTMENOPAUSAL BREAST-CANCER; MESSENGER-RIBONUCLEIC-ACID; HEMATOPOIETIC STEM-CELLS; PITUITARY-ADRENAL AXIS; LOW-BIRTH-WEIGHT; DIFFERENTIAL SUSCEPTIBILITY Two independent lines of inquiry suggest that growing up under conditions of contextual adversity (e.g., poverty and household chaos) accelerates aging and undermines long-term health. Whereas work addressing the developmental origins of health and disease highlights accelerated-aging effects of contextual adversity on telomere erosion, that informed by an evolutionary analysis of reproductive strategies highlights such effects with regard to pubertal development (in females). That both shorter telomeres early in life and earlier age of menarche are associated with poor health later in life raises the prospect, consistent with evolutionary life-history theory, that these two bodies of theory and research are tapping into the same evolutionary-developmental process whereby longer term health costs are traded off for increased probability of reproducing before dying via a process of accelerated aging. Here we make the case for such a claim, while highlighting biological processes responsible for these effects, as well as unknowns in the epigenetic equation that might instantiate these contextually regulated developmental processes. [Belsky, Jay] Univ Calif Davis, Davis, CA 95616 USA; [Shalev, Idan] Penn State Univ, University Pk, PA 16802 USA Belsky, J (reprint author), Univ Calif Davis, Human Dev & Family Studies Program, Dept Human Ecol, One Shields Ave,1331 Hart Hall, Davis, CA 95616 USA. jbelsky@ucdavis.edu Asok A, 2013, DEV PSYCHOPATHOL, V25, P577, DOI 10.1017/S0954579413000011; Barker DJP, 2007, J INTERN MED, V261, P412, DOI 10.1111/j.1365-2796.2007.01809.x; Barker D. J. P., 2002, NATURE, V430, P420; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bateson P, 2008, TRENDS ENDOCRIN MET, V19, P111, DOI 10.1016/j.tem.2008.02.001; Bayne S, 2007, ANN NY ACAD SCI, V1114, P48, DOI 10.1196/annals.1396.023; Beach SRH, 2014, DEV PSYCHOPATHOL, V26, P289, DOI 10.1017/S0954579413000990; Beach SRH, 2010, AM J MED GENET B, V153B, P710, DOI 10.1002/ajmg.b.31028; Behl C, 1997, ENDOCRINOLOGY, V138, P101, DOI 10.1210/en.138.1.101; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J., 2007, OXFORD HDB EVOLUTION, P237; Belsky J, 2007, CURR DIR PSYCHOL SCI, V16, P300, DOI 10.1111/j.1467-8721.2007.00525.x; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2015, DEV PSYCHOL, V51, P816, DOI 10.1037/dev0000017; Belsky J, 2015, DEV PSYCHOPATHOL, V27, P1, DOI 10.1017/S0954579414001254; Belsky J, 2013, DEV PSYCHOPATHOL, V25, P1243, DOI 10.1017/S095457941300059X; Belsky J, 2014, PERSPECT PSYCHOL SCI, V9, P16, DOI 10.1177/1745691613513471; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bernstein L, 2002, J MAMMARY GLAND BIOL, V7, P3, DOI 10.1023/A:1015714305420; Bojesen SE, 2013, NAT GENET, V45, P371, DOI 10.1038/ng.2566; Boyce WT, 2015, DEVELOPMENTAL SCI, V18, P1, DOI 10.1111/desc.12282; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brody G. H., 2014, PREVENTION SCI; Brody GH, 2013, J FAM PSYCHOL, V27, P22, DOI 10.1037/a0027829; BURGESS LH, 1992, ENDOCRINOLOGY, V131, P1261, DOI 10.1210/en.131.3.1261; Byun HM, 2015, TOXICOLOGY, V328, P152, DOI 10.1016/j.tox.2014.12.019; Cai N, 2015, CURR BIOL, V25, P1146, DOI 10.1016/j.cub.2015.03.008; CAREY MP, 1995, J ENDOCRINOL, V144, P311, DOI 10.1677/joe.0.1440311; Carroll JE, 2013, P NATL ACAD SCI USA, V110, P17149, DOI 10.1073/pnas.1315458110; Champagne FA, 2006, BIOL PSYCHIAT, V59, P1227, DOI 10.1016/j.biopsych.2005.10.016; Chen C, 2008, J EXP MED, V205, P2397, DOI 10.1084/jem.20081297; Chen E, 2010, PSYCHOL SCI, V21, P31, DOI 10.1177/0956797609355566; Chen L, 2015, DEV PSYCHOPATHOL, V27, P137, DOI 10.1017/S0954579414001357; Choi J, 2008, BRAIN BEHAV IMMUN, V22, P600, DOI 10.1016/j.bbi.2007.12.004; Cicchetti D, 2015, DEV PSYCHOPATHOL, V27, P19, DOI 10.1017/S0954579414001278; Cohen S, 2013, BRAIN BEHAV IMMUN, V34, P31, DOI 10.1016/j.bbi.2013.06.009; Conradt E, 2016, CHILD DEV, V87, P73, DOI 10.1111/cdev.12483; Coppe JP, 2010, ANNU REV PATHOL-MECH, V5, P99, DOI 10.1140/annurev-pathol-121808-102144; Costantini D, 2011, J COMP PHYSIOL B, V181, P447, DOI 10.1007/s00360-011-0566-2; Costello EJ, 2007, DRUG ALCOHOL DEPEN, V88, pS50, DOI 10.1016/j.drugalcdep.2006.12.009; Danese A, 2007, P NATL ACAD SCI USA, V104, P1319, DOI 10.1073/pnas.0610362104; Dantzer B, 2015, EXP GERONTOL, V71, P38, DOI 10.1016/j.exger.2015.08.012; De Vivo I, 2009, CANCER EPIDEM BIOMAR, V18, P1152, DOI 10.1158/1055-9965.EPI-08-0998; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dempster EL, 2014, BIOL PSYCHIAT, V76, P977, DOI 10.1016/j.biopsych.2014.04.013; Dismukes AR, 2015, DEV PSYCHOBIOL, V57, P705, DOI 10.1002/dev.21231; Drury S., 2011, MOL PSYCHIATR, V17, DOI DOI 10.1038/MP.2011.53; Drury SS, 2014, PEDIATRICS, V134, pE128, DOI 10.1542/peds.2013-3415; Edelman S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048597; Elks CE, 2010, NAT GENET, V42, P1077, DOI 10.1038/ng.714; Ellis B. J., 2013, CHILD ADOLESCENT PSY, P251; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P85, DOI 10.1017/S0954579410000660; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Entringer S., 2012, SCI SIGNAL, V5; Entringer S, 2013, AM J OBSTET GYNECOL, V208, DOI 10.1016/j.ajog.2012.11.033; Epel ES, 2006, PSYCHONEUROENDOCRINO, V31, P277, DOI 10.1016/j.psyneuen.2005.08.011; Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101; Essex MJ, 2013, CHILD DEV, V84, P58, DOI 10.1111/j.1467-8624.2011.01641.x; Evans GW, 2012, PSYCHOL SCI, V23, P979, DOI 10.1177/0956797612441218; Evans GW, 2003, DEV PSYCHOL, V39, P924, DOI 10.1037/0012-1649.39.5.924; Fagundes CP, 2014, CURR DIR PSYCHOL SCI, V23, P277, DOI 10.1177/0963721414535603; Figueiredo HF, 2007, AM J PHYSIOL-ENDOC M, V292, pE1173, DOI 10.1152/ajpendo.00102.2006; Flaherty EG, 2013, JAMA PEDIATR, V167, P622, DOI 10.1001/jamapediatrics.2013.22; Gao J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125674; Gee DG, 2013, P NATL ACAD SCI USA, V110, P15638, DOI 10.1073/pnas.1307893110; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; Gluckman PD, 2008, NEW ENGL J MED, V359, P61, DOI 10.1056/NEJMra0708473; Goronzy JJ, 2006, EXP GERONTOL, V41, P246, DOI 10.1016/j.exger.2005.12.002; Gotlib IH, 2014, MOL PSYCHIAT; Graham AM, 2015, J CHILD PSYCHOL PSYC, V56, P1212, DOI 10.1111/jcpp.12409; Gunnar MR, 2009, DEV PSYCHOPATHOL, V21, P69, DOI 10.1017/S0954579409000054; Handa RJ, 2014, FRONT NEUROENDOCRIN, V35, P197, DOI 10.1016/j.yfrne.2013.11.001; Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221; Hartman S., 2014, DEV PSYCHOPATHOL, V23, P1; Haussmann MF, 2003, P ROY SOC B-BIOL SCI, V270, P1387, DOI 10.1098/rspb.2003.2385; Heijmans BT, 2012, INT J EPIDEMIOL, V41, P74, DOI 10.1093/ije/dyr225; Hertzman C, 1999, ANN NY ACAD SCI, V896, P85, DOI 10.1111/j.1749-6632.1999.tb08107.x; Hertzman C., 2004, CURRENT PAEDIAT, V14, P438, DOI DOI 10.1016/J.CUPE.2004.05.008; Ibanez L, 2000, PEDIATRICS, V106, DOI 10.1542/peds.106.5.e72; Ibanez L, 2006, PEDIATRICS, V117, P117, DOI 10.1542/peds.2005-0664; Ibanez L, 2001, CLIN ENDOCRINOL, V55, P667, DOI 10.1046/j.1365-2265.2001.01399.x; Ivy AS, 2008, NEUROSCIENCE, V154, P1132, DOI 10.1016/j.neuroscience.2008.04.019; Jirtle RL, 2007, NAT REV GENET, V8, P253, DOI 10.1038/nrg2045; Jurk D., 2014, NATURE COMMUNICATION; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; KELSEY JL, 1993, EPIDEMIOL REV, V15, P36, DOI 10.1093/oxfordjournals.epirev.a036115; Kember RL, 2012, BRAIN BEHAV, V2, P455, DOI 10.1002/brb3.69; Kertes DA, 2016, CHILD DEV, V87, P61, DOI 10.1111/cdev.12487; Kiecolt-Glaser JK, 2013, BRAIN BEHAV IMMUN, V34, P29, DOI 10.1016/j.bbi.2013.08.004; Kiecolt-Glaser JK, 2011, PSYCHOSOM MED, V73, P16, DOI 10.1097/PSY.0b013e31820573b6; KIM J, 2013, NATL GEOGR, V224, P8; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; Klengel T, 2013, NAT NEUROSCI, V16, P33, DOI 10.1038/nn.3275; Kroenke CH, 2011, PSYCHOSOM MED, V73, P533, DOI 10.1097/PSY.0b013e318229acfc; Lehman BJ, 2005, PSYCHOSOM MED, V67, P846, DOI 10.1097/01.psy.0000188443.48405.eb; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Levitt NS, 1996, NEUROENDOCRINOLOGY, V64, P412, DOI 10.1159/000127146; Lomniczi A, 2013, NAT NEUROSCI, V16, P281, DOI 10.1038/nn.3319; Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039; Lowe R, 2013, EPIGENETICS-US, V8, P445, DOI 10.4161/epi.24362; Madrigano J, 2012, EPIGENETICS-US, V7, P63, DOI 10.4161/epi.7.1.18749; Manoli I, 2007, TRENDS ENDOCRIN MET, V18, P190, DOI 10.1016/j.tem.2007.04.004; Manuck SB, 2011, DEV PSYCHOPATHOL, V23, P69, DOI 10.1017/S0954579410000659; Marceau K, 2014, PSYCHONEUROENDOCRINO, V41, P33, DOI 10.1016/j.psyneuen.2013.12.002; Marchetto N. M., 2016, AM J OBSTET GYNECOLO; McGowan PO, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014739; McGowan PO, 2009, NAT NEUROSCI, V12, P342, DOI 10.1038/nn.2270; McIntosh LJ, 1998, BRAIN RES, V791, P209, DOI 10.1016/S0006-8993(98)00115-2; McPherson CP, 1996, AM J EPIDEMIOL, V143, P1195; Meaney MJ, 2007, TRENDS MOL MED, V13, P269, DOI 10.1016/j.molmed.2007.05.003; Melas PA, 2013, INT J NEUROPSYCHOPH, V16, P1513, DOI 10.1017/S1461145713000102; Melchior M, 2007, AM J EPIDEMIOL, V166, P966, DOI 10.1093/aje/kwm155; Mendle J, 2016, J RES ADOLESCENCE, V26, P595, DOI 10.1111/jora.12201; MEYNE J, 1989, P NATL ACAD SCI USA, V86, P7049, DOI 10.1073/pnas.86.18.7049; Miller GE, 2011, PSYCHOL BULL, V137, P959, DOI 10.1037/a0024768; Miller GE, 2009, P NATL ACAD SCI USA, V106, P14716, DOI 10.1073/pnas.0902971106; Misiti S, 2000, MOL CELL BIOL, V20, P3764, DOI 10.1128/MCB.20.11.3764-3771.2000; Mitchell C, 2014, P NATL ACAD SCI USA, V111, P5944, DOI 10.1073/pnas.1404293111; Murgatroyd C, 2009, NAT NEUROSCI, V12, P1559, DOI 10.1038/nn.2436; Naka K, 2008, ANTIOXID REDOX SIGN, V10, P1883, DOI 10.1089/ars.2008.2114; Negriff S, 2015, J RES ADOLESCENCE, V25, P201, DOI 10.1111/jora.12128; Nettle D., 2013, PROCEEDINGS OF THE R, V280; NORMAN RL, 1992, STEROIDS, V57, P37, DOI 10.1016/0039-128X(92)90094-P; O'Connor TG, 2013, BRAIN BEHAV IMMUN, V32, P21, DOI 10.1016/j.bbi.2013.02.002; Oberlander TF, 2008, EPIGENETICS-US, V3, P97, DOI 10.4161/epi.3.2.6034; Pace TWW, 2006, AM J PSYCHIAT, V163, P1630, DOI 10.1176/appi.ajp.163.9.1630; Parade SH, 2016, CHILD DEV, V87, P86, DOI 10.1111/cdev.12484; Passos JF, 2010, MOL SYST BIOL, V6, DOI 10.1038/msb.2010.5; PEIFFER A, 1991, ENDOCRINOLOGY, V129, P2166; Perroud N, 2011, TRANSL PSYCHIAT, V1, DOI 10.1038/tp.2011.60; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; Picard M, 2014, NAT REV ENDOCRINOL, V10, P303, DOI 10.1038/nrendo.2014.22; Pieters N, 2015, MECH AGEING DEV, V145, P51, DOI 10.1016/j.mad.2015.02.003; Poulton R, 2002, LANCET, V360, P1640, DOI 10.1016/S0140-6736(02)11602-3; REDEI E, 1994, NEUROENDOCRINOLOGY, V60, P113, DOI 10.1159/000126741; Revesz D, 2014, J CLIN ENDOCR METAB, V99, P4607, DOI 10.1210/jc.2014-1851; Richardson B, 2003, AGEING RES REV, V2, P245, DOI 10.1016/S1568-1637(03)00010-2; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Ricklefs RE, 2010, P NATL ACAD SCI USA, V107, P10314, DOI 10.1073/pnas.1005862107; Roa J, 2009, ENDOCRINOLOGY, V150, P5016, DOI 10.1210/en.2009-0096; Roberts S, 2014, TRANSL PSYCHIAT, V4, DOI 10.1038/tp.2014.83; Rodier F, 2009, NAT CELL BIOL, V11, P973, DOI 10.1038/ncb1909; Romens SE, 2015, CHILD DEV, V86, P303, DOI 10.1111/cdev.12270; Romeo RD, 2006, ENDOCRINOLOGY, V147, P1664, DOI 10.1210/en.2005-1432; Romeo RD, 2010, FRONT NEUROENDOCRIN, V31, P232, DOI 10.1016/j.yfrne.2010.02.004; Roth TL, 2009, BIOL PSYCHIAT, V65, P760, DOI 10.1016/j.biopsych.2008.11.028; Roy BN, 1999, ENDOCRINOLOGY, V140, P2191, DOI 10.1210/en.140.5.2191; Sahin E, 2011, NATURE, V470, P359, DOI 10.1038/nature09787; Schieke SM, 2006, J BIOL CHEM, V281, P27643, DOI 10.1074/jbc.M603536200; SELLERS TA, 1992, NEW ENGL J MED, V326, P1323, DOI 10.1056/NEJM199205143262004; Shalev C, 2013, PSYCHONEUROENDOCRINO, V38, P1835, DOI 10.1016/j.psyneuen.2013.03.010; Shalev I, 2014, MOL PSYCHIATR, V19, P1163, DOI 10.1038/mp.2013.183; Shalev I, 2013, MOL PSYCHIATR, V18, P576, DOI 10.1038/mp.2012.32; Shalev I, 2016, MED HYPOTHESES, V90, P41, DOI 10.1016/j.mehy.2016.03.002; Shalev I, 2014, PEDIATRICS, V134, pE1315, DOI 10.1542/peds.2014-1669; Shalev I, 2012, BIOESSAYS, V34, P943, DOI 10.1002/bies.201200084; Sharma NK, 2012, NUCLEIC ACIDS RES, V40, P712, DOI 10.1093/nar/gkr758; Shen J, 2007, CANCER RES, V67, P5538, DOI 10.1158/0008-5472.CAN-06-3490; Shirtcliff EA, 2009, P NATL ACAD SCI USA, V106, P2963, DOI 10.1073/pnas.0806660106; Simon NM, 2006, BIOL PSYCHIAT, V60, P432, DOI 10.1016/j.biopsych.2006.02.004; Singhapol C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0052989; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stroud LR, 2016, CHILD DEV, V87, P49, DOI 10.1111/cdev.12482; Szyf M, 2011, EPIGENETICS-US, V6, P971, DOI 10.4161/epi.6.8.16793; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Tomiyama AJ, 2012, PHYSIOL BEHAV, V106, P40, DOI 10.1016/j.physbeh.2011.11.016; Trickett PK, 2011, DEV PSYCHOPATHOL, V23, P453, DOI 10.1017/S0954579411000174; Tyrka AR, 2016, BIOL PSYCHIAT, V79, P78, DOI 10.1016/j.biopsych.2014.12.025; Tyrka AR, 2012, BIOL PSYCHIAT, V71, p152S; Tyrka AR, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030148; Uchida S, 2011, NEURON, V69, P359, DOI 10.1016/j.neuron.2010.12.023; VAMVAKOPOULOS NC, 1993, J CLIN INVEST, V92, P1896, DOI 10.1172/JCI116782; van Ijzendoorn MH, 2015, DEV PSYCHOPATHOL, V27, P151, DOI 10.1017/S0954579414001369; Vartak S., 2014, CURRENT RES MED MED, V4, P20; VIAU V, 1991, ENDOCRINOLOGY, V129, P2503, DOI 10.1210/endo-129-5-2503; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; Waterland RA, 2007, ANNU REV NUTR, V27, P363, DOI 10.1146/annurev.nutr.27.061406.093705; Weaver I. C., 2004, NEUROPSYCHOPHARMOCOL, V38, P111; Weaver ICG, 2004, NAT NEUROSCI, V7, P847, DOI 10.1038/nn1276; Wegman HL, 2009, PSYCHOSOM MED, V71, P805, DOI 10.1097/PSY.0b013e3181bb2b46; Welberg LAM, 2001, NEUROSCIENCE, V104, P71, DOI 10.1016/S0306-4522(01)00065-3; Wikgren M, 2012, BIOL PSYCHIAT, V71, P294, DOI 10.1016/j.biopsych.2011.09.015; Wise LA, 2009, AM J PUBLIC HEALTH, V99, pS460, DOI 10.2105/AJPH.2008.149005; Wolkowitz OM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017837; WU ML, 1988, AM J EPIDEMIOL, V128, P1216, DOI 10.1093/oxfordjournals.aje.a115076; Yehuda R, 2014, AM J PSYCHIAT, V171, P872, DOI 10.1176/appi.ajp.2014.13121571; Young EA, 1995, CRIT REV NEUROBIOL, V9, P371; Zhang TY, 2010, ANNU REV PSYCHOL, V61, P439, DOI 10.1146/annurev.psych.60.110707.163625; Zilbauer M, 2013, BLOOD, V122, pE52, DOI 10.1182/blood-2013-05-503201; Ziomkiewicz A., 2016, PLOS ONE 195 6 6 1 6 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0954-5794 1469-2198 DEV PSYCHOPATHOL Dev. Psychopathol. NOV 2016 28 4 2 1367 1383 10.1017/S0954579416000900 17 Psychology, Developmental Psychology EB6OP WOS:000387504400012 27688015 2019-02-21 J Collins, SM; Thomas, SA; Heatherly, T; MacNeill, KL; Leduc, AOHC; Lopez-Sepulcre, A; Lamphere, BA; El-Sabaawi, RW; Reznick, DN; Pringle, CM; Flecker, AS Collins, Sarah M.; Thomas, Steven A.; Heatherly, Thomas; MacNeill, Keeley L.; Leduc, Antoine O. H. C.; Lopez-Sepulcre, Andres; Lamphere, Bradley A.; El-Sabaawi, Rana W.; Reznick, David N.; Pringle, Catherine M.; Flecker, Alexander S. Fish introductions and light modulate food web fluxes in tropical streams: a whole-ecosystem experimental approach ECOLOGY English Article nitrogen flux; reach-scale experiment; stable isotope tracers; stream food web; top-down and bottom-up effects; trophic linkages; benthic macroinvertebrates; primary production; Trinidad guppy; Neotropics; 15N LIFE-HISTORY EVOLUTION; AMMONIA DIFFUSION METHOD; FOREST CANOPY COVER; TRINIDADIAN GUPPIES; ORGANIC-MATTER; TOP-DOWN; NUTRIENTS; ENRICHMENT; ADAPTATION; CONSUMER Decades of ecological study have demonstrated the importance of top-down and bottom-up controls on food webs, yet few studies within this context have quantified the magnitude of energy and material fluxes at the whole-ecosystem scale. We examined top-down and bottom-up effects on food web fluxes using a field experiment that manipulated the presence of a consumer, the Trinidadian guppy Poecilia reticulata, and the production of basal resources by thinning the riparian forest canopy to increase incident light. To gauge the effects of these reach-scale manipulations on food web fluxes, we used a nitrogen (N-15) stable isotope tracer to compare basal resource treatments (thinned canopy vs. control) and consumer treatments (guppy introduction vs. control). The thinned canopy stream had higher primary production than the natural canopy control, leading to increased N fluxes to invertebrates that feed on benthic biofilms (grazers), fine benthic organic matter (collector-gatherers), and organic particles suspended in the water column (filter feeders). Stream reaches with guppies also had higher primary productivity and higher N fluxes to grazers and filter feeders. In contrast, N fluxes to collector-gatherers were reduced in guppy introduction reaches relative to upstream controls. N fluxes to leaf-shredding invertebrates, predatory invertebrates, and the other fish species present (Hart's killifish, Anablepsoides hartii) did not differ across light or guppy treatments, suggesting that effects on detritus-based linkages and upper trophic levels were not as strong. Effect sizes of guppy and canopy treatments on N flux rates were similar for most taxa, though guppy effects were the strongest for filter feeding invertebrates while canopy effects were the strongest for collector-gatherer invertebrates. Combined, these results extend previous knowledge about top-down and bottom-up controls on ecosystems by providing experimental, reach-scale evidence that both pathways can act simultaneously and have equally strong influence on nutrient fluxes from inorganic pools through primary consumers. [Collins, Sarah M.; MacNeill, Keeley L.; Leduc, Antoine O. H. C.; Flecker, Alexander S.] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA; [Collins, Sarah M.] Michigan State Univ, Dept Fisheries & Wildlife, 13 Nat Resources, E Lansing, MI 48824 USA; [Thomas, Steven A.; Heatherly, Thomas] Univ Nebraska, Sch Nat Resources, Hardin Hall Room 403, Lincoln, NE 68583 USA; [Heatherly, Thomas] Univ Estado Rio De Janeiro, Dept Ecol, 524 Rua Sao Francisco Xavier, BR-20550013 Rio De Janeiro, Brazil; [Leduc, Antoine O. H. C.] Univ Fed Bahia, Inst Biol, Ondina Campus, BR-14740170 Salvador, Brazil; [Lopez-Sepulcre, Andres] Univ Paris 06, Inst Ecol & Environm Sci Paris iEES, UMR 7618, CNRS, 7 Quai St Bernard, F-775252 Paris, France; [Lopez-Sepulcre, Andres] Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, Jyvaskyla 40014, Finland; [Lamphere, Bradley A.] Coll William & Mary, Dept Biol, Williamsburg, VA 23187 USA; [El-Sabaawi, Rana W.] Univ Victoria, Dept Biol, POB 1700 STN CSC, Victoria, BC V8W 2Y2, Canada; [Reznick, David N.] Univ Calif Riverside, Dept Biol, 209 Univ Lab Bldg, Riverside, CA 92521 USA; [Pringle, Catherine M.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA Collins, SM (reprint author), Univ Wisconsin Ctr Limnol, 680 N Pk St, Madison, WI 53706 USA. sarahmcollins@gmail.com reznick, david/0000-0002-1144-0568; Collins, Sarah/0000-0001-5503-7386; Lopez-Sepulcre, Andres/0000-0001-9708-0788 National Science Foundation Frontiers in Integrative Biological Research grant [DEB-0623632EF] Matt Fuller, Jason Garritt, Alex Latzka, and Rachel Paseka assisted with field sampling. Simla Tropical Research Station, Jogi Ramlal and family, and the University of West Indies provided housing and logistical support. Methods for modeling N flux rates were developed by Walter Dodds and members of a stream nitrogen food web modeling workshop. Nelson Hairston, Jr., Stuart Findlay, Cliff Kraft, and two anonymous reviewers provided feedback on earlier versions of the manuscript. This work was funded by a National Science Foundation Frontiers in Integrative Biological Research grant (DEB-0623632EF). Ask J, 2009, LIMNOL OCEANOGR, V54, P2034, DOI 10.4319/lo.2009.54.6.2034; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Capps KA, 2015, BIOL INVASIONS, V17, P1253, DOI 10.1007/s10530-014-0793-z; CARPENTER SR, 1988, BIOSCIENCE, V38, P764, DOI 10.2307/1310785; Cebrian J, 1999, AM NAT, V154, P449, DOI 10.1086/303244; Collins SM, 2016, OIKOS, V125, P674, DOI 10.1111/oik.02713; Cross WF, 2006, ECOLOGY, V87, P1556, DOI 10.1890/0012-9658(2006)87[1556:WNEISP]2.0.CO;2; Cross WF, 2013, ECOL MONOGR, V83, P311, DOI 10.1890/12-1727.1; CUSHING CE, 1993, LIMNOL OCEANOGR, V38, P1101, DOI 10.4319/lo.1993.38.6.1101; Davis JM, 2010, P NATL ACAD SCI USA, V107, P121, DOI 10.1073/pnas.0908497107; De Nadai-Monoury E, 2014, FRESHWATER BIOL, V59, P1532, DOI 10.1111/fwb.12364; Dodds WK, 2014, ECOLOGY, V95, P2757, DOI 10.1890/13-2276.1; El-Sabaawi RW, 2015, OIKOS, V124, P1181, DOI 10.1111/oik.01769; Flecker AS, 2004, ECOLOGY, V85, P2267, DOI 10.1890/03-0194; FLECKER AS, 1994, ECOL APPL, V4, P798, DOI 10.2307/1942009; Flecker AS, 2002, ECOLOGY, V83, P1831, DOI 10.1890/0012-9658(2002)083[1831:IBHFAL]2.0.CO;2; Fraser DF, 2013, ECOLOGY, V94, P640, DOI 10.1890/12-0803.1; Frauendorf TC, 2013, FRESHWATER BIOL, V58, P1340, DOI 10.1111/fwb.12131; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Gruner DS, 2008, ECOL LETT, V11, P740, DOI 10.1111/j.1461-0248.2008.01192.x; HAIRSTON NG, 1993, AM NAT, V142, P379, DOI 10.1086/285546; Hambright KD, 2007, FUND APPL LIMNOL, V170, P103, DOI 10.1127/1863-9135/2007/0170-0103; Hill WR, 2010, ECOLOGY, V91, P518, DOI 10.1890/09-0703.1; HILL WR, 1995, ECOLOGY, V76, P1297, DOI 10.2307/1940936; Hill WR, 2001, ECOLOGY, V82, P2306, DOI 10.1890/0012-9658(2001)082[2306:SERTFL]2.0.CO;2; Hillebrand H, 2001, LIMNOL OCEANOGR, V46, P1881, DOI 10.4319/lo.2001.46.8.1881; Holmes RM, 1998, MAR CHEM, V60, P235, DOI 10.1016/S0304-4203(97)00099-6; Holtgrieve GW, 2010, LIMNOL OCEANOGR, V55, P1047, DOI 10.4319/lo.2010.55.3.1047; Hotchkiss ER, 2015, ECOLOGY, V96, P403, DOI 10.1890/14-0631.1; Kiffney PM, 2004, J N AM BENTHOL SOC, V23, P542, DOI 10.1899/0887-3593(2004)023<0542:ELAACM>2.0.CO;2; Klemmer AJ, 2012, J ANIM ECOL, V81, P770, DOI 10.1111/j.1365-2656.2012.01966.x; Kohler TJ, 2012, FRESHW SCI, V31, P1019, DOI 10.1899/11-141.1; Lau DCP, 2009, FRESHWATER BIOL, V54, P127, DOI 10.1111/j.1365-2427.2008.02099.x; Leroux S. J., 2015, TROPHIC ECOLOGY BOTT, P3; Lopez-Sepulcre A, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1116; Lourenco-Amorim C, 2014, FRESHWATER BIOL, V59, P2365, DOI 10.1111/fwb.12441; Magurran AE, 2005, OXFORD SERIES ECOLOG; March JG, 2003, BIOTROPICA, V35, P84, DOI 10.1111/j.1744-7429.2003.tb00265.x; Marshall MC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045230; Moulton TP, 2010, HYDROBIOLOGIA, V638, P55, DOI 10.1007/s10750-009-0009-1; MURPHY J, 1962, ANAL CHIM ACTA, V26, P31; Nadelhoffer KJ, 1999, ECOL APPL, V9, P72, DOI 10.1890/1051-0761(1999)009[0072:SFNEAT]2.0.CO;2; Newbold JD, 2005, LIMNOL OCEANOGR, V50, P1571, DOI 10.4319/lo.2005.50.5.1571; ODUM HT, 1956, LIMNOL OCEANOGR, V1, P102, DOI 10.4319/lo.1956.1.2.0102; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Polis GA, 1996, AM NAT, V147, P813, DOI 10.1086/285880; POWER ME, 1992, ECOLOGY, V73, P733, DOI 10.2307/1940153; POWER ME, 1990, SCIENCE, V250, P811, DOI 10.1126/science.250.4982.811; Pringle CM, 1997, ECOLOGY, V78, P2432; R Core Team, 2014, R LANG ENV STAT COMP; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Roberts BJ, 2007, ECOSYSTEMS, V10, P588, DOI 10.1007/s10021-007-9059-2; Rosemond AD, 2001, ECOLOGY, V82, P2279, DOI 10.2307/2680231; ROSENZWE.ML, 1971, SCIENCE, V171, P385, DOI 10.1126/science.171.3969.385; SCHINDLER DW, 1977, SCIENCE, V195, P260, DOI 10.1126/science.195.4275.260; Sherwood GD, 2002, CAN J FISH AQUAT SCI, V59, P1, DOI 10.1139/F01-213; Sigman DM, 1997, MAR CHEM, V57, P227, DOI 10.1016/S0304-4203(97)00009-1; Taylor BW, 2006, SCIENCE, V313, P833, DOI 10.1126/science.1128223; Taylor J. M., 2015, TROPHIC ECOLOGY BOTT, P55; THIMIJAN RW, 1983, HORTSCIENCE, V18, P818; Thorp JH, 2002, OIKOS, V96, P543, DOI 10.1034/j.1600-0706.2002.960315.x; Travis J, 2014, ADV ECOL RES, V50, P1, DOI 10.1016/B978-0-12-801374-8.00001-3; Veuger B, 2007, LIMNOL OCEANOGR, V52, P1930, DOI 10.4319/lo.2007.52.5.1930; Walsh MR, 2011, FUNCT ECOL, V25, P227, DOI 10.1111/j.1365-2435.2010.01786.x; Whiles MR, 2013, ECOSYSTEMS, V16, P146, DOI 10.1007/s10021-012-9602-7; Winemiller KO, 2006, J N AM BENTHOL SOC, V25, P250, DOI 10.1899/0887-3593(2006)25[250:SVIODF]2.0.CO;2; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x 69 6 6 3 59 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology NOV 2016 97 11 3154 3166 10.1002/ecy.1530 13 Ecology Environmental Sciences & Ecology EB2YJ WOS:000387228200025 27870030 Green Published, Bronze 2019-02-21 J Rubach, K; Wu, MY; Abebe, A; Dobson, FS; Murie, JO; Viblanc, VA Rubach, Kristin; Wu, Mingyan; Abebe, Asheber; Dobson, F. Stephen; Murie, Jan O.; Viblanc, Vincent A. Testing the reproductive and somatic trade-off in female Columbian ground squirrels ECOLOGY AND EVOLUTION English Article Capital breeding; Columbian ground squirrels; energy allocation; income breeding; reproductive allocation LIFE-HISTORY PATTERNS; LITTER SIZE; SPERMOPHILUS-COLUMBIANUS; NATURAL-SELECTION; BODY-MASS; COSTS; EVOLUTION; SUCCESS; ENERGY; CONSEQUENCES Energetic trade-offs in resource allocation form the basis of life-history theory, which predicts that reproductive allocation in a given season should negatively affect future reproduction or individual survival. We examined how allocation of resources differed between successful and unsuccessful breeding female Columbian ground squirrels to discern any effects of resource allocation on reproductive and somatic efforts. We compared the survival rates, subsequent reprodction, and mass gain of successful breeders (females that successfully weaned young) and unsuccessful breeders (females that failed to give birth or wean young) and investigated carryover effects to the next year. Starting capital was an important factor influencing whether successful reproduction was initiated or not, as females with the lowest spring emergence masses did not give birth to a litter in that year. Females that were successful and unsuccessful at breeding in oneyear, however, were equally likely to be successful breeders in the next year and at very similar litter sizes. Although successful and unsuccessful breeding females showed no difference in over winter survival, females that failed to wean a litter gained additional mass during the season when they failed. The next year, those females had increased energy capital in the spring, leading to larger litter sizes. Columbian ground squirrels appear to act as income breeders that also rely on stored capital to increase their propensity for future reproduction. Failed breeders in oneyear prepare for future reproduction by accumulating additional mass, which is carried over to the subsequent reproductive season. [Rubach, Kristin; Dobson, F. Stephen] Auburn Univ, Dept Biol Sci, Auburn, AL 36840 USA; [Wu, Mingyan; Abebe, Asheber] Auburn Univ, Dept Math & Stat, Auburn, AL 36840 USA; [Murie, Jan O.] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada; [Viblanc, Vincent A.] Univ Strasbourg, DEPE, IPHC, 23 Rue Becquerel, F-67087 Strasbourg, France; [Viblanc, Vincent A.] CNRS, Unite Mixte Rech 7178, F-67087 Strasbourg, France Viblanc, VA (reprint author), Inst Pluridisciplinaire Hubert Curien, Dept Ecol, Physiol, Ethol, Strasbourg, France. vincent.viblanc@iphc.cnrs.fr Murie, Jan/F-3663-2014; Abebe, Ash/C-3681-2014 Murie, Jan/0000-0002-2658-4986; Abebe, Ash/0000-0001-5759-2383; Viblanc, Vincent/0000-0002-4953-659X Natural Sciences and Engineering Research Council of Canada grant; National Science Foundation grant [DEB-0089473]; CNRS Projet International de Cooperation Scientifique grant [PICS-07143] Natural Sciences and Engineering Research Council of Canada grant; National Science Foundation grant (DEB-0089473), CNRS Projet International de Cooperation Scientifique grant (PICS-07143). Arnaud CM, 2012, MOL ECOL, V21, P493, DOI 10.1111/j.1365-294X.2011.05219.x; Bates D, 2015, J STAT SOFTW, V67, P1; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Broussard DR, 2008, J MAMMAL, V89, P145, DOI 10.1644/06-MAMM-A-357.1; Broussard DR, 2003, J ANIM ECOL, V72, P212, DOI 10.1046/j.1365-2656.2003.00691.x; Broussard DR, 2005, CAN J ZOOL, V83, P546, DOI 10.1139/Z05-044; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1989, NATURE, V340, P463, DOI 10.1038/340463a0; Cox D.R., 1984, ANAL SURVIVAL DATA; Descamps S, 2009, P ROY SOC B-BIOL SCI, V276, P1129, DOI 10.1098/rspb.2008.1401; Diggle P. J., 2002, ANAL LONGITUDINAL DA; DOBSON FS, 1985, CAN J ZOOL, V63, P2105, DOI 10.1139/z85-309; DOBSON FS, 1992, CAN J ZOOL, V70, P1364, DOI 10.1139/z92-192; DOBSON FS, 1987, AM NAT, V129, P382, DOI 10.1086/284643; Dobson FS, 1999, J ANIM ECOL, V68, P73, DOI 10.1046/j.1365-2656.1999.00268.x; DOBSON FS, 1992, AM NAT, V140, P109, DOI 10.1086/285405; DOBSON FS, 1988, EVOLUTION LIFE HIST, P193; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Fisher DO, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015226; Fisher R. A., 1930, GENETIC THEORY NATUR; Fletcher QE, 2015, FUNCT ECOL, V29, P195, DOI 10.1111/1365-2435.12313; HARE JF, 1992, J MAMMAL, V73, P449, DOI 10.2307/1382083; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Karels TJ, 2000, J ANIM ECOL, V69, P235, DOI 10.1046/j.1365-2656.2000.00387.x; KENAGY GJ, 1989, OECOLOGIA, V78, P269, DOI 10.1007/BF00377166; Kunz T. H., 2004, ENCY ENERGY, V5, P423, DOI DOI 10.1016/B0-12-176480-X/00061-9; LACK D, 1966, POPULATION STUDIES B; Lane JE, 2012, NATURE, V489, P554, DOI 10.1038/nature11335; MATTINGLY DK, 1982, ECOLOGY, V63, P183, DOI 10.2307/1937043; MICHENER GR, 1989, OECOLOGIA, V78, P77, DOI 10.1007/BF00377200; MILLAR JS, 1992, CAN J ZOOL, V70, P1129, DOI 10.1139/z92-158; MORRIS DW, 1986, EVOLUTION, V40, P169, DOI 10.1111/j.1558-5646.1986.tb05728.x; MURIE JO, 1987, OECOLOGIA, V73, P1, DOI 10.1007/BF00376969; MURIE JO, 1982, J MAMMAL, V63, P431, DOI 10.2307/1380440; MURIE JO, 1992, J MAMMAL, V73, P385, DOI 10.2307/1382073; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Neuhaus P, 2000, BEHAV ECOL SOCIOBIOL, V48, P75, DOI 10.1007/s002650000209; Neuhaus P, 2006, BEHAVIOUR, V143, P1013, DOI 10.1163/156853906778623653; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; R Core Team, 2013, R LANG ENV STAT COMP; Raveh S, 2011, BEHAV ECOL SOCIOBIOL, V65, P695, DOI 10.1007/s00265-010-1071-4; Raveh S, 2010, BEHAV ECOL, V21, P537, DOI 10.1093/beheco/arq004; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Ripatti S, 2000, BIOMETRICS, V56, P1016, DOI 10.1111/j.0006-341X.2000.01016.x; Risch TS, 2007, ECOLOGY, V88, P306, DOI 10.1890/06-0249; RISCH TS, 1995, ECOLOGY, V76, P1643, DOI 10.2307/1938165; Robbins C., 1993, WILDLIFE FEEDING NUT; Rughetti M, 2015, OECOLOGIA, V178, P197, DOI 10.1007/s00442-014-3192-3; Shaw WT, 1925, ECOLOGY, V6, P75, DOI 10.2307/1929242; Skibiel AL, 2013, FUNCT ECOL, V27, P1382, DOI 10.1111/1365-2435.12130; Skibiel AL, 2009, ECOL MONOGR, V79, P325, DOI 10.1890/08-0718.1; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Stearns S, 1992, EVOLUTION LIFE HIST; vansNoordwijk A. J., 1986, AM NAT, V128, P137, DOI DOI 10.1086/284547; Vasilieva NA, 2014, CAN J ZOOL, V92, P737, DOI 10.1139/cjz-2014-0084; WIGGETT D, 1992, CAN J ZOOL, V70, P1984, DOI 10.1139/z92-269; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 61 1 1 2 19 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. NOV 2016 6 21 7586 7595 10.1002/ece3.2215 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology EB1NX WOS:000387120800003 30128113 DOAJ Gold 2019-02-21 J Gleichsner, AM; Cleveland, JA; Minchella, DJ Gleichsner, Alyssa M.; Cleveland, Jessica A.; Minchella, Dennis J. One stimulusTwo responses: Host and parasite life-history variation in response to environmental stress EVOLUTION English Article Adaptation; climate change; disease; drought; fecundity compensation; life history; parasite; plasticity; Schistosoma mansoni; stress SCHISTOSOMA-MANSONI CERCARIAE; BIOMPHALARIA-GLABRATA; FECUNDITY COMPENSATION; RHYTHMIC EMERGENCE; CLIMATE-CHANGE; SNAIL; ESTIVATION; INFECTION; TEMPERATURE; SYSTEM Climate change stressors will place different selective pressures on both parasites and their hosts, forcing individuals to modify their life-history strategies and altering the distribution and prevalence of disease. Few studies have investigated whether parasites are able to respond to host stress and respond by varying their reproductive schedules. Additionally, multiple environmental stressors can limit the ability of a host to respond adaptively to parasite infection. This study compared both host and parasite life-history parameters in unstressed and drought-stressed environments using the human parasite, Schistosoma mansoni, in its freshwater snail intermediate host. Snail hosts infected with the parasite demonstrated a significant reproductive burst during the prepatent period (fecundity compensation), but that response was absent in a drought-stressed environment. This is the first report of the elimination of host fecundity compensation to parasitism when exposed to additional environmental stress. More surprisingly, we found that infections in drought-stressed snails had significantly higher parasite reproductive outputs than infections in unstressed snails. The finding suggests that climate change may alter the infection dynamics of this human parasite. [Gleichsner, Alyssa M.; Cleveland, Jessica A.; Minchella, Dennis J.] Purdue Univ, Dept Biol Sci, 915 West State St, W Lafayette, IN 47907 USA Gleichsner, AM (reprint author), Purdue Univ, Dept Biol Sci, 915 West State St, W Lafayette, IN 47907 USA. agleichs@purdue.edu Altizer S, 2013, SCIENCE, V341, P514, DOI 10.1126/science.1239401; ASCH HL, 1972, EXP PARASITOL, V31, P350, DOI 10.1016/0014-4894(72)90096-3; Badger LI, 2004, BRIT J BIOMED SCI, V61, P138, DOI 10.1080/09674845.2004.11732659; Beck MA, 2004, TRENDS MICROBIOL, V12, P417, DOI 10.1016/j.tim.2004.07.007; Blair L, 2002, INVERTEBR REPROD DEV, V41, P243, DOI 10.1080/07924259.2002.9652757; Calder PC, 2000, NUTR RES REV, V13, P3, DOI 10.1079/095442200108728981; Colley DG, 2014, LANCET, V383, P2253, DOI 10.1016/S0140-6736(13)61949-2; Conover W. J., 1999, PRACTICAL NONPARAMET; CREWS AE, 1989, EXP PARASITOL, V68, P326, DOI 10.1016/0014-4894(89)90114-8; Dai AG, 2013, NAT CLIM CHANGE, V3, P52, DOI [10.1038/nclimate1633, 10.1038/NCLIMATE1633]; Dobson A., 1992, GLOBAL WARMING BIODI; Elsaeed G., 2011, NATL SECURITY HUMAN, P337; EVANS NA, 1985, PARASITOLOGY, V90, P269, DOI 10.1017/S0031182000050976; Gerard C, 1997, OECOLOGIA, V112, P447, DOI 10.1007/s004420050331; Harvell CD, 2002, SCIENCE, V296, P2158, DOI 10.1126/science.1063699; Heins DC, 2012, BIOL J LINN SOC, V106, P807, DOI 10.1111/j.1095-8312.2012.01907.x; Jones-Nelson O, 2011, PARASITOL RES, V109, P675, DOI 10.1007/s00436-011-2299-2; Kelehear C, 2012, ECOL LETT, V15, P329, DOI 10.1111/j.1461-0248.2012.01742.x; LEWIS FA, 1986, J PARASITOL, V72, P813, DOI 10.2307/3281829; Marcogliese DJ, 2011, TRENDS PARASITOL, V27, P123, DOI 10.1016/j.pt.2010.11.002; MINCHELLA DJ, 1985, AM NAT, V126, P843, DOI 10.1086/284456; MINCHELLA DJ, 1985, PARASITOLOGY, V90, P205, DOI 10.1017/S0031182000049143; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; O'Dwyer K, 2015, PARASITOL INT, V64, P632, DOI 10.1016/j.parint.2015.09.001; Paull SH, 2011, FRESHWATER BIOL, V56, P767, DOI 10.1111/j.1365-2427.2010.02547.x; RICHARDS CS, 1967, AM J TROP MED HYG, V16, P797, DOI 10.4269/ajtmh.1967.16.797; Rubaba O, 2016, AFR J AQUAT SCI, V41, P143, DOI 10.2989/16085914.2016.1145103; Sandland GJ, 2007, J INVERTEBR PATHOL, V96, P43, DOI 10.1016/j.jip.2007.02.005; Schwanz LE, 2008, BEHAV ECOL SOCIOBIOL, V62, P1351, DOI 10.1007/s00265-008-0563-y; Sorensen RE, 2001, PARASITOLOGY, V123, pS3; Studer A, 2010, MAR ECOL PROG SER, V415, P11, DOI 10.3354/meps08742; Tabachnick WJ, 2010, J EXP BIOL, V213, P946, DOI 10.1242/jeb.037564; Tavalire HF, 2016, INT J PARASITOL, V46, P123, DOI 10.1016/j.ijpara.2015.10.001; Thiele EA, 2013, TROP MED INT HEALTH, V18, P1164, DOI 10.1111/tmi.12164; Thomas F, 2002, TRENDS PARASITOL, V18, P387, DOI 10.1016/S1471-4922(02)02339-5; THORNHILL JA, 1986, PARASITOLOGY, V93, P443, DOI 10.1017/S0031182000081166; Vale PF, 2012, J EVOLUTION BIOL, V25, P1888, DOI 10.1111/j.1420-9101.2012.02579.x; White MM, 2007, J PARASITOL, V93, P1, DOI 10.1645/GE-945R.1; White MM, 2006, J LIQ CHROMATOGR R T, V29, P2167, DOI 10.1080/10826070600760358; WILLIAMS CL, 1984, J PARASITOL, V70, P450, DOI 10.2307/3281585; Zekhnini A, 2002, PARASITOL RES, V88, P768, DOI 10.1007/s00436-002-0663-y 41 1 1 2 28 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution NOV 2016 70 11 2640 2646 10.1111/evo.13061 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity EB0YN WOS:000387072900018 27596485 2019-02-21 J Moll, RJ; Kilshaw, K; Montgomery, RA; Abade, L; Campbell, RD; Harrington, LA; Millspaugh, JJ; Birks, JDS; Macdonald, DW Moll, R. J.; Kilshaw, K.; Montgomery, R. A.; Abade, L.; Campbell, R. D.; Harrington, L. A.; Millspaugh, J. J.; Birks, J. D. S.; Macdonald, D. W. Clarifying habitat niche width using broad-scale, hierarchical occupancy models: a case study with a recovering mesocarnivore JOURNAL OF ZOOLOGY English Article habitat niche; Bayesian analysis; hierarchical occupancy models; Martes martes; specialist-generalist; trap happiness; camera traps MARTEN MARTES-MARTES; PINE MARTEN; ECOLOGICAL SPECIALIZATION; GENETIC DIFFERENTIATION; SELECTION; DIET; FRAGMENTATION; CONSERVATION; LANDSCAPE; PATTERNS A species' habitat niche width informs its position on the generalist-specialist continuum, which is central to life-history theory and crucial to conservation planning. However, assessments of niche width are often based on local-scale studies or qualitative descriptions rather than broad, quantitative assessments conducted in heterogeneous landscapes. Here, we show how broad-scale, hierarchical occupancy models can clarify a species' niche width and degree of habitat specialism by evaluating the woodland-specialist classification of the European pine marten Martes martes. We deployed 526 camera-trap stations at 27 sites throughout a vast extent (similar to 50000km(2)) in Scotland and modeled pine marten occupancy as a function of habitat characteristics using a hierarchical Bayesian analysis. Our model was flexible to trap happiness due to baiting at camera traps and accounted for spatial autocorrelation among and imperfect detection at camera-trap stations. We detected a positive association between pine marten occupancy probability and wooded habitats. However, pine marten occupancy probability was also high in numerous non-wooded habitats, including agricultural land, heather and heather grassland, semi-natural grassland and areas near anthropogenic structures. Our study is the first to record high pine marten occupancy in open habitats at broad spatial scales and thereby corroborates recent smaller scale indications that pine martens are more of a habitat generalist than previously thought. Our results guide ongoing conservation efforts by identifying that pine martens are not strict woodland specialists, but rather inhabit a mosaic of habitat types in the landscape. More broadly, our case study exemplifies how coupling hierarchical occupancy models with large-scale experimental designs can clarify a species' niche width and associated position on the generalist-specialist continuum. [Moll, R. J.; Montgomery, R. A.; Abade, L.] Michigan State Univ, Dept Fisheries & Wildlife, Nat Resources Bldg,480 Wilson Rd,Room 14, E Lansing, MI 48824 USA; [Kilshaw, K.; Montgomery, R. A.; Abade, L.; Campbell, R. D.; Harrington, L. A.; Macdonald, D. W.] Univ Oxford, Dept Zool, Wildlife Conservat Res Unit, Tubney, Oxon, England; [Millspaugh, J. J.] Univ Missouri, Sch Nat Resources, Columbia, MO USA; [Birks, J. D. S.] Swift Ecol Ltd, West Malvern, Worcs, England Moll, RJ (reprint author), Michigan State Univ, Dept Fisheries & Wildlife, Nat Resources Bldg,480 Wilson Rd,Room 14, E Lansing, MI 48824 USA. rjmoll@msu.edu Montgomery, Robert/C-5541-2019 Montgomery, Robert/0000-0001-5894-0589 Michigan State University via University Distinguished Fellowship; Ambrose Patullo Fund for Environmental Issues; Vera. M. Wallach Fellowship; National Science Foundation; Recanti-Kaplan Foundation; European Nature Trust; People's Trust for Endangered Species; Aspinall Foundation; Scottish Natural Heritage; Royal Zoological Society of Scotland R.J.M. is grateful for funding from Michigan State University via a University Distinguished Fellowship, the Ambrose Patullo Fund for Environmental Issues and the Vera. M. Wallach Fellowship and for a Graduate Research Fellowship provided by the National Science Foundation. We are also grateful for the support of the Recanti-Kaplan Foundation, the European Nature Trust, the People's Trust for Endangered Species, the Aspinall Foundation (K.K. and D.W.M.), Scottish Natural Heritage (K.K.) and the Royal Zoological Society of Scotland (K.K., R.D.C.). M. Bruce, C. McClean, V. Hilton, A. Mitchell, S. Hinshelwood, D. Calder, G. Cumming, B. MacDonald, J. Bain, T. MacDonell, F. Law, Lord Moray, A. W. Featherstone, S. Morris, E. Cameron, G. Vestey, C. Ross, J. Tulloch, G., L. Suggett, P. Crome, A. Henderson, Lord Thurso, P. Sinclair, J., W. Cameron, M. Mitchell, A. Robertson, R. Dennis, A. Davis and R. Scott generously provided access to their land. We thank staff at the Forestry Commission Scotland, Scottish Natural Heritage, National Trust for Scotland, Royal Society for the Protection of Birds, Woodland Trust, Scottish Wildlife Trust and Scottish Wildcat Association. We thank E. Zipkin for modeling guidance and X. Lambin, E. Sheehy and two anonymous reviewers for comments that improved the manuscript. Baines D, 2013, WILDLIFE BIOL, V19, P490, DOI 10.2981/13-030; Balestrieri A, 2011, ACTA THERIOL, V56, P199, DOI 10.1007/s13364-010-0015-8; Balestrieri A, 2010, MAMM BIOL, V75, P412, DOI 10.1016/j.mambio.2009.05.003; Balharry D, 1993, THESIS; Birks J. D. S., 2002, THE PINE MARTEN; Birks JDS, 2005, MAMMAL REV, V35, P313, DOI 10.1111/j.1365-2907.2005.00068.x; BRAINERD SM, 1995, ANN ZOOL FENN, V32, P151; Brainerd SM, 1990, T 19 INT C GAM BIOL, P421; Bright P.W., 1997, English Nature Research Reports, V240, P1; Burton AC, 2015, J APPL ECOL, V52, P675, DOI 10.1111/1365-2664.12432; Burton AC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038007; Caryl FM, 2012, J ZOOL, V288, P252, DOI 10.1111/j.1469-7998.2012.00951.x; Caryl FM, 2012, J MAMMAL, V93, P464, DOI 10.1644/11-MAMM-A-149.1; Clavel J, 2011, FRONT ECOL ENVIRON, V9, P222, DOI 10.1890/080216; CLEVENGER AP, 1994, ECOGRAPHY, V17, P257, DOI 10.1111/j.1600-0587.1994.tb00101.x; Dennis RLH, 2011, BIOL J LINN SOC, V104, P725, DOI 10.1111/j.1095-8312.2011.01789.x; Devictor V, 2008, OIKOS, V117, P507, DOI 10.1111/j.2008.0030-1299.16215.x; Devictor V, 2010, J APPL ECOL, V47, P15, DOI 10.1111/j.1365-2664.2009.01744.x; Filippi-Codaccioni O, 2010, BIOL CONSERV, V143, P883, DOI 10.1016/j.biocon.2009.12.035; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; Gelman A., 2007, DATA ANAL USING REGR; Halliwell EC, 1997, THESIS; Jackson D. L., 2000, 307 JOINT NAT CONS C, VJoint Nature Conservation Committee; Kery M, 2012, BAYESIAN POPULATION ANALYSIS USING WINBUGS: A HIERARCHICAL PERSPECTIVE, P1; Kery M, 2010, INTRO WINBUGS ECOLOG; Kuo L., 1998, SANKHYA B, V60, P65, DOI DOI 10.1186/1471-2105-12-186; Landis DA, 2000, ANNU REV ENTOMOL, V45, P175, DOI 10.1146/annurev.ento.45.1.175; Larroque J, 2016, LANDSCAPE ECOL, V31, P517, DOI 10.1007/s10980-015-0281-6; Lombardini M, 2015, MAMMAL RES, V60, P97, DOI 10.1007/s13364-014-0211-z; Lynch AB, 2007, BIOL ENVIRON, V107B, P67, DOI 10.3318/BIOE.2007.107.2.67; MacKenzie DI, 2002, ECOLOGY, V83, P2248, DOI 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2; MacPherson J., 2014, FEASIBILITY ASSESSME; Manel S, 2001, J APPL ECOL, V38, P921, DOI 10.1046/j.1365-2664.2001.00647.x; Manzo E, 2012, ACTA THERIOL, V57, P165, DOI 10.1007/s13364-011-0055-8; Mergey M, 2011, J MAMMAL, V92, P328, DOI 10.1644/09-MAMM-A-366.1; MET, 2012, MET OFF CLIM DAT; Moriarty KM, 2015, LANDSCAPE ECOL, V30, P1865, DOI 10.1007/s10980-015-0216-2; Pardini R, 2009, BIOL CONSERV, V142, P1178, DOI 10.1016/j.biocon.2009.02.010; Pereboom V, 2008, CAN J ZOOL, V86, P983, DOI 10.1139/Z08-076; Plummer M., 2003, P 3 INT WORKSH DISTR; R Development Core Team, 2011, R LANG ENV STAT COMP; Rhodes JR, 2009, MIXED EFFECTS MODELS, P469, DOI DOI 10.1007/978-0-387-87458-6; Robin X, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-77; Royle J. A., 2008, HIERARCHICAL MODELIN; Ruiz-Gutierrez V, 2010, J APPL ECOL, V47, P621, DOI 10.1111/j.1365-2664.2010.01811.x; SCROL, 2011, SCOTL CENS RES ONL; STORCH I, 1990, ACTA THERIOL, V35, P311, DOI 10.4098/AT.arch.90-36; Su Y.-S., 2012, R2JAGS PACKAGE RUNNI; Tylianakis JM, 2010, BIOL CONSERV, V143, P2270, DOI 10.1016/j.biocon.2009.12.004; Virgos E., 2012, BIOL CONSERVATION MA; Wereszczuk A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139852; Zayed A, 2005, CONSERV GENET, V6, P1017, DOI 10.1007/s10592-005-9094-5; Zipkin EF, 2012, ECOL APPL, V22, P1962, DOI 10.1890/11-1936.1; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x 54 6 6 3 41 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. NOV 2016 300 3 177 185 10.1111/jzo.12369 9 Zoology Zoology EB1QR WOS:000387130000003 2019-02-21 J Spurgeon, JJ; Pegg, MA; Hamel, MJ Spurgeon, J. J.; Pegg, M. A.; Hamel, M. J. Multi-scale Approach to Hydrological Classification Provides Insight to Flow Structure in Altered River System RIVER RESEARCH AND APPLICATIONS English Article classification; flow regime; hydrological character; hydropeaking; climate; hierarchical scales; rivers LIFE-HISTORY STRATEGIES; MISSOURI RIVER; FISH ASSEMBLAGE; PLATTE RIVER; REGIMES; HYDROPEAKING; VARIABILITY; AUSTRALIA; TIME; ECOHYDROLOGY Rivers are hierarchical systems exhibiting processes and patterns across spatial and temporal scales principally driven by changes in flow. Hydrological indices estimated with mean or median daily flow data (i.e. daily scale) may be insensitive to anthropogenic alteration that imparts sub-daily variation to flow. Therefore, indices developed at multiple temporal resolutions may provide additional insight into the presence of flow patterns masked by traditional techniques. We characterized the flow regime along the longitudinal gradient of the Platte River, a large Great Plains USA river, using hydrological indices derived with mean daily and sub-daily flow data and a combination of multivariate statistical techniques. Three unique flow units were evident using daily scale flow data, whereas six unique flow units were evident at the sub-daily scale. Flow units at both scales were not static, but rather the presence and extent of flow units across the riverscape depended on climate, tributary inflows and human influence. Anthropogenic alteration including hydropeaking was evident at the sub-daily scale but not at the daily scale. The full complement of flow structure within regulated rivers, therefore, may not be captured using mean or median daily discharge values alone. Inductive river classification studies may benefit from assessing hydrological indices at multiple scales, particularly when investigating river systems with anthropogenic modification such as hydropeaking. Copyright (c) 2016 John Wiley & Sons, Ltd. [Spurgeon, J. J.; Pegg, M. A.; Hamel, M. J.] Univ Nebraska, Sch Nat Resources, 243A Hardin Hall,3310 Holdrege St, Lincoln, NE 68583 USA Spurgeon, JJ (reprint author), Univ Nebraska, Sch Nat Resources, 243A Hardin Hall,3310 Holdrege St, Lincoln, NE 68583 USA. jonathan.spurgeon@huskers.unl.edu Nebraska Game and Parks Commission through the National Sport Fish Restoration Fund [F-75-R]; University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources We thank the Nebraska Game and Parks Commission for project funding through the National Sport Fish Restoration Fund (F-75-R) and the University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources. Ayllon D, 2014, ECOHYDROLOGY, V7, P569, DOI 10.1002/eco.1379; Baumgartner LJ, 2014, FISH FISH, V15, P410, DOI 10.1111/faf.12023; Bevelhimer MS, 2015, RIVER RES APPL, V31, P867, DOI 10.1002/rra.2781; Biggs BJF, 2005, RIVER RES APPL, V21, P283, DOI 10.1002/rra.847; Bond MJ, 2015, RIVER RES APPL, V31, P120, DOI 10.1002/rra.2720; Bruno MC, 2016, ECOHYDROLOGY, V9, P68, DOI 10.1002/eco.1611; Buenau KE, 2014, RIVER RES APPL, V30, P964, DOI 10.1002/rra.2694; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Chen QH, 2015, ECOL ENG, V77, P40, DOI 10.1016/j.ecoleng.2014.12.017; Dodds WK, 2015, FRESHW SCI, V34, P1, DOI 10.1086/679756; DYNESIUS M, 1994, SCIENCE, V266, P753, DOI 10.1126/science.266.5186.753; Everitt B, 2011, USE R, P1, DOI 10.1007/978-1-4419-9650-3; Falke JA, 2011, ECOHYDROLOGY, V4, P682, DOI 10.1002/eco.158; Galat D. L, 2005, RIVERS N AM, P427; Ginting D., 2008, 20075267 US GEOL SUR, P43; Goto D., 2015, ECOLOGICAL MODELLING, V296, P79, DOI DOI 10.1016/J.EC0L; Hadley R, 1987, REGUL RIVER, V1, P331; Hamel MJ, 2016, RIVER RES APPL, V32, P320, DOI 10.1002/rra.2850; Humphries P, 2014, BIOSCIENCE, V64, P870, DOI 10.1093/biosci/biu130; Humphries P, 2013, ECOL APPL, V23, P208, DOI 10.1890/11-2255.1; JOHNSON WC, 1994, ECOL MONOGR, V64, P45, DOI 10.2307/2937055; Jones NE, 2014, CAN J FISH AQUAT SCI, V71, P1616, DOI 10.1139/cjfas-2014-0040; Kennard MJ, 2010, FRESHWATER BIOL, V55, P171, DOI 10.1111/j.1365-2427.2009.02307.x; Korman J, 2009, T AM FISH SOC, V138, P76, DOI 10.1577/T08-026.1; Larned ST, 2011, ECOHYDROLOGY, V4, P532, DOI 10.1002/eco.126; MANLY B., 2005, MULTIVARIATE STAT ME; MATTHEWS WJ, 1988, J N AM BENTHOL SOC, V7, P387, DOI 10.2307/1467298; McManamay RA, 2015, ECOHYDROLOGY, V8, P460, DOI 10.1002/eco.1517; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; McManamay RA, 2014, ECOHYDROLOGY, V7, P903, DOI 10.1002/eco.1410; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Olden JD, 2003, RIVER RES APPL, V19, P101, DOI 10.1002/rra.700; Olden JD, 2012, ECOHYDROLOGY, V5, P503, DOI 10.1002/eco.251; Olden JD, 2010, AM FISH S S, V73, P83; Palmer MA, 2008, FRONT ECOL ENVIRON, V6, P81, DOI 10.1890/060148; Pegg MA, 2003, AQUAT SCI, V65, P63, DOI 10.1007/s000270300005; Pegg MA, 2002, RIVER RES APPL, V18, P31, DOI 10.1002/rra.635; Perkin JS, 2015, ECOL MONOGR, V85, P73, DOI 10.1890/14-0121.1; Peters E. J., 2005, V45, P239; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Pracheil BM, 2013, FRONT ECOL ENVIRON, V11, P124, DOI 10.1890/120179; R Core Team, 2015, LANG ENV STAT COMP; Richter BD, 1996, CONSERV BIOL, V10, P1163, DOI 10.1046/j.1523-1739.1996.10041163.x; Schmutz S, 2015, RIVER RES APPL, V31, P919, DOI 10.1002/rra.2795; Stewart-Koster B, 2011, J FISH BIOL, V79, P1525, DOI 10.1111/j.1095-8649.2011.03072.x; Thoms MC, 2006, RIVER RES APPL, V22, P115, DOI 10.1002/rra.900; Thoms MC, 2003, RIVER RES APPL, V19, P443, DOI 10.1002/rra.737; Thorp JH, 2014, FRESHWATER BIOL, V59, P200, DOI 10.1111/fwb.12237; Thorp JH, 2006, RIVER RES APPL, V22, P123, DOI 10.1002/rra.901; TRAVNICHEK VH, 1995, T AM FISH SOC, V124, P836, DOI 10.1577/1548-8659(1995)124<0836:ROAWFA>2.3.CO;2; Yellen B, 2015, HYDROL PROCESS, V29, P3261, DOI 10.1002/hyp.10438; Zimmerman JKH, 2010, RIVER RES APPL, V26, P1246, DOI 10.1002/rra.1324 55 8 8 0 9 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1535-1459 1535-1467 RIVER RES APPL River Res. Appl. NOV 2016 32 9 1841 1852 10.1002/rra.3041 12 Environmental Sciences; Water Resources Environmental Sciences & Ecology; Water Resources EB4JG WOS:000387336800002 2019-02-21 J Van Petegem, KHP; Boeye, J; Stoks, R; Bonte, D Van Petegem, Katrien H. P.; Boeye, Jeroen; Stoks, Robby; Bonte, Dries Spatial Selection and Local Adaptation Jointly Shape Life-History Evolution during Range Expansion AMERICAN NATURALIST English Article global change; Tetranychus urticae; quantitative genetic trait divergence; pattern-oriented modeling; dispersal evolution; sawtooth pattern TETRANYCHUS-URTICAE ACARI; SPIDER-MITE POPULATION; COLORADO POTATO BEETLE; LINEAR MIXED MODELS; TRADE-OFF; DROSOPHILA-MELANOGASTER; ARTIFICIAL SELECTION; DISPERSAL EVOLUTION; NATURAL-SELECTION; CLIMATE-CHANGE In the context of climate change and species invasions, range shifts increasingly gain attention because the rates at which they occur in the Anthropocene induce rapid changes in biological assemblages. During range shifts, species experience multiple selection pressures. For poleward expansions in particular, it is difficult to interpret observed evolutionary dynamics because of the joint action of evolutionary processes related to spatial selection and to adaptation toward local climatic conditions. To disentangle the effects of these two processes, we integrated stochastic modeling and data from a common garden experiment, using the spider mite Tetranychus urticae as a model species. By linking the empirical data with those derived form a highly parameterized individual-based model, we infer that both spatial selection and local adaptation contributed to the observed latitudinal life-history divergence. Spatial selection best described variation in dispersal behavior, while variation in development was best explained by adaptation to the local climate. Divergence in life-history traits in species shifting poleward could consequently be jointly determined by contemporary evolutionary dynamics resulting from adaptation to the environmental gradient and from spatial selection. The integration of modeling with common garden experiments provides a powerful tool to study the contribution of these evolutionary processes on life-history evolution during range expansion. [Van Petegem, Katrien H. P.; Boeye, Jeroen; Bonte, Dries] Univ Ghent, Dept Biol, Terr Ecol Unit, KL Ledeganckstr 35, B-9000 Ghent, Belgium; [Stoks, Robby] Katholieke Univ Leuven, Lab Aquat Ecol Evolut & Conservat, Charles Deberiotstr 32, B-3000 Leuven, Belgium Van Petegem, KHP (reprint author), Univ Ghent, Dept Biol, Terr Ecol Unit, KL Ledeganckstr 35, B-9000 Ghent, Belgium. katrien.vanpetegem@ugent.be Bonte, Dries/0000-0002-3320-7505 Fund for Scientific Research-Flanders (FWO) [G.0610.11]; BelSpo Interuniversity Attraction Poles Project "Speedy"; Ghent University; Hercules Foundation; Flemish government (Department of Economy, Science, and Innovation) This project was funded by the Fund for Scientific Research-Flanders (FWO; project G.0610.11). D.B. and R.S. were supported by BelSpo Interuniversity Attraction Poles Project "Speedy." The computational resources (Stevin Supercomputer Infrastructure) and services used in this work were provided by the Flemish Supercomputer Center (VSC), funded by Ghent University, the Hercules Foundation, and the Flemish government (Department of Economy, Science, and Innovation). We are grateful to H. Matheve, R. Puls, J. Teunen, and J. Van den Berghe for their help during the sampling of the mites in the field and A. Alcantara, J. Hillaert, V. Vandomme, and A. Vanommeslaeghe for their short but useful assistance during the data gathering in the lab. We would also like to thank C. G. Eckert, E. Fronhofer, T. Hovestadt, E. Matthysen, M. Shawkey, D. Strubbe, J. Travis, and two anonymous reviewers for their useful comments on earlier versions of this manuscript. Agrawal AA, 2002, AM NAT, V159, P553, DOI 10.1086/339463; Alex Perkins T, 2013, ECOL LETT, V16, P1079, DOI 10.1111/ele.12136; Baiser B, 2013, OIKOS, V122, P492, DOI 10.1111/j.1600-0706.2012.00005.x; Bancroft JS, 1999, ECOL MODEL, V123, P161, DOI 10.1016/S0304-3800(99)00131-3; Bitume EV, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1061; Bitume EV, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026927; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; BRESLOW NE, 1993, J AM STAT ASSOC, V88, P9, DOI 10.1080/01621459.1993.10594284; Burton OJ, 2010, ECOL LETT, V13, P1210, DOI 10.1111/j.1461-0248.2010.01505.x; Carbonnelle S, 2007, EXP APPL ACAROL, V41, P225, DOI 10.1007/s10493-007-9068-z; Colautti RI, 2013, SCIENCE, V342, P364, DOI 10.1126/science.1242121; Conover DO, 2009, ANN NY ACAD SCI, V1168, P100, DOI 10.1111/j.1749-6632.2009.04575.x; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Crawley MJ, 2007, REGRESSION, P387; Csillery K, 2010, TRENDS ECOL EVOL, V25, P410, DOI 10.1016/j.tree.2010.04.001; CWYNAR LC, 1987, AM NAT, V129, P463, DOI 10.1086/284651; Darling E, 2008, NEW PHYTOL, V178, P424, DOI 10.1111/j.1469-8137.2007.02349.x; De Roissart A, 2015, J ANIM ECOL, V84, P1565, DOI 10.1111/1365-2656.12400; Denno Robert F., 1995, P113, DOI 10.1016/B978-012159270-7/50007-5; Duputie A, 2013, INTERFACE FOCUS, V3, DOI 10.1098/rsfs.2013.0028; Fronhofer EA, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7844; Fronhofer EA, 2014, EVOLUTION, V68, P1838, DOI 10.1111/evo.12339; Gotoh T, 2004, APPL ENTOMOL ZOOL, V39, P675, DOI 10.1303/aez.2004.675; GRIFFING B, 1982, J THEOR BIOL, V95, P199, DOI 10.1016/0022-5193(82)90297-1; Grimm V, 2005, SCIENCE, V310, P987, DOI 10.1126/science.1116681; Hargreaves AL, 2015, J EVOLUTION BIOL, V28, P1489, DOI 10.1111/jeb.12669; Hargreaves AL, 2014, FUNCT ECOL, V28, P5, DOI 10.1111/1365-2435.12170; Hargreaves AL, 2014, AM NAT, V183, P157, DOI 10.1086/674525; HARRISON RG, 1980, ANNU REV ECOL SYST, V11, P95, DOI 10.1146/annurev.es.11.110180.000523; HARTL DL, 1971, AM ZOOL, V11, P309; HAVRON A, 1987, ENTOMOPHAGA, V32, P261, DOI 10.1007/BF02373249; Henry RC, 2013, J THEOR BIOL, V321, P1, DOI 10.1016/j.jtbi.2012.12.004; Hill JK, 2011, ANNU REV ENTOMOL, V56, P143, DOI 10.1146/annurev-ento-120709-144746; Holt RD, 2003, EVOL ECOL RES, V5, P159; Huang FF, 2015, OIKOS, V124, P1023, DOI 10.1111/oik.01820; Hughes CL, 2003, P ROY SOC B-BIOL SCI, V270, pS147, DOI 10.1098/rsbl.2003.0049; Ito K, 2009, ENTOMOL EXP APPL, V130, P266, DOI 10.1111/j.1570-7458.2008.00819.x; KASS RE, 1995, J AM STAT ASSOC, V90, P773, DOI 10.1080/01621459.1995.10476572; Kivela SM, 2011, J ANIM ECOL, V80, P1184, DOI 10.1111/j.1365-2656.2011.01864.x; KRAINACKER DA, 1989, ENTOMOL EXP APPL, V50, P209, DOI 10.1111/j.1570-7458.1989.tb01194.x; Kubisch A, 2014, OIKOS, V123, P5, DOI 10.1111/j.1600-0706.2013.00706.x; Kubisch A, 2010, ECOLOGY, V91, P3094, DOI 10.1890/09-2022.1; LACTIN DJ, 1995, ENVIRON ENTOMOL, V24, P68, DOI 10.1093/ee/24.1.68; Lehmann P, 2015, EVOL ECOL, V29, P269, DOI 10.1007/s10682-015-9755-x; Lehmann P, 2014, OECOLOGIA, V176, P57, DOI 10.1007/s00442-014-3009-4; Levy RC, 2015, J EVOLUTION BIOL, V28, P40, DOI 10.1111/jeb.12562; Lewis Z, 2010, EUR J ENTOMOL, V107, P55, DOI 10.14411/eje.2010.006; LI JB, 1994, HEREDITY, V72, P10, DOI 10.1038/hdy.1994.2; LOGAN JA, 1976, ENVIRON ENTOMOL, V5, P1133, DOI 10.1093/ee/5.6.1133; Magalhaes S, 2007, J EVOLUTION BIOL, V20, P2016, DOI 10.1111/j.1420-9101.2007.01365.x; Magalhaes S, 2011, J EVOLUTION BIOL, V24, P2653, DOI 10.1111/j.1420-9101.2011.02388.x; MCPEEK MA, 1992, AM NAT, V140, P1010, DOI 10.1086/285453; Mitikka V, 2010, ANN ZOOL FENN, V47, P1; Moran EV, 2014, ECOL LETT, V17, P637, DOI 10.1111/ele.12262; Muggeo VMR, 2003, STAT MED, V22, P3055, DOI 10.1002/sim.1545; Muggeo VMR, 2008, R NEWS, V8, P20, DOI DOI 10.1159/000323281; North A, 2011, EVOLUTION, V65, P1739, DOI 10.1111/j.1558-5646.2011.01254.x; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Phillips BL, 2009, BIOL LETTERS, V5, P802, DOI 10.1098/rsbl.2009.0367; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; Phillips BL, 2006, NATURE, V439, P803, DOI 10.1038/439803a; Piiroinen S, 2011, FUNCT ECOL, V25, P527, DOI 10.1111/j.1365-2435.2010.01804.x; Richardson DM, 2011, DIVERS DISTRIB, V17, P788, DOI 10.1111/j.1472-4642.2011.00782.x; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; RStudio Team, 2015, RSTUDIO INT DEV R; Saastamoinen M, 2007, OECOLOGIA, V153, P569, DOI 10.1007/s00442-007-0772-5; Sabelis M. W., 1981, BIOL CONTROL 2 SPOTT; SAS Institute, 2008, SAS STAT 9 2 US GUID; SAS Institute, 2013, SAS SOFTW VERS 9 4; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Shine R, 2011, P NATL ACAD SCI USA, V108, P5708, DOI 10.1073/pnas.1018989108; Tauber M.J., 1986, SEASONAL ADAPTATIONS; Therry L, 2014, J EVOLUTION BIOL, V27, P141, DOI 10.1111/jeb.12281; Therry L, 2015, ECOL ENTOMOL, V40, P133, DOI 10.1111/een.12170; Therry L, 2014, BIOL J LINN SOC, V112, P556, DOI 10.1111/bij.12295; Therry L, 2014, FRESHWATER BIOL, V59, P1266, DOI 10.1111/fwb.12346; Thomas CD, 2001, NATURE, V411, P577, DOI 10.1038/35079066; Tien NSH, 2011, EXP APPL ACAROL, V53, P349, DOI 10.1007/s10493-010-9411-7; Travis JMJ, 2002, EVOL ECOL RES, V4, P1119; Travis JMJ, 2013, OIKOS, V122, P1532, DOI 10.1111/j.1600-0706.2013.00399.x; Tsikliras AC, 2007, POPUL ECOL, V49, P221, DOI 10.1007/s10144-007-0038-4; Van Petegem K. H. P., 2016, AM NATURALIST DRYAD; Van Petegem KHP, 2015, EVOL ECOL, V29, P299, DOI 10.1007/s10682-015-9756-9; VERBEKE G, 2000, LINEAR MIXED MODELS; Wiegand T, 2014, CH HALL CRC APP ENV, P1; WOLFINGER R, 1993, J STAT COMPUT SIM, V48, P233, DOI 10.1080/00949659308811554; Yadav P, 2014, J EXP BIOL, V217, P580, DOI 10.1242/jeb.093864; YOUNG SSY, 1986, ENTOMOL EXP APPL, V40, P53, DOI 10.1111/j.1570-7458.1986.tb02155.x; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207 91 7 7 4 51 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. NOV 2016 188 5 485 498 10.1086/688666 14 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology EA4FM WOS:000386565700004 27788346 Green Published 2019-02-21 J Hamel, S; Gaillard, JM; Yoccoz, NG; Albon, S; Cote, SD; Craine, JM; Festa-Bianchet, M; Garel, M; Lee, P; Moss, C; Nussey, DH; Pelletier, F; Stien, A; Tveraa, T Hamel, S.; Gaillard, J. -M.; Yoccoz, N. G.; Albon, S.; Cote, S. D.; Craine, J. M.; Festa-Bianchet, M.; Garel, M.; Lee, P.; Moss, C.; Nussey, D. H.; Pelletier, F.; Stien, A.; Tveraa, T. Cohort variation in individual body mass dissipates with age in large herbivores ECOLOGICAL MONOGRAPHS English Article catch-up growth; cohort; compensatory growth; cumulative effects; life-history tactics; mixture models; sexual selection; slow-fast continuum; ungulates; viability selection LIFE-HISTORY TACTICS; EUROPEAN ROE DEER; FEMALE SOAY SHEEP; POPULATION-DYNAMICS; REPRODUCTIVE SUCCESS; RED DEER; SEXUAL SELECTION; MIXTURE-MODELS; BIGHORN EWES; TRADE-OFFS Environmental conditions experienced during early growth and development markedly shape phenotypic traits. Consequently, individuals of the same cohort may show similar life-history tactics throughout life. Conditions experienced later in life, however, could fine-tune these initial differences, either increasing (cumulative effect) or decreasing (compensatory effect) the magnitude of cohort variation with increasing age. Our novel comparative analysis that quantifies cohort variation in individual body size trajectories shows that initial cohort variation dissipates throughout life, and that lifetime patterns change both across species with different paces of life and between sexes. We used longitudinal data on body size (mostly assessed using mass) from 11 populations of large herbivores spread along the "slow-fast" continuum of life histories. We first quantified cohort variation using mixture models to identify clusters of cohorts with similar initial size. We identified clear cohort clusters in all species except the one with the slowest pace of life, revealing that variation in early size is structured among cohorts and highlighting typological differences among cohorts. Growth trajectories differed among cohort clusters, highlighting how early size is a fundamental determinant of lifetime growth patterns. In all species, among-cohort variation in size peaked at the start of life, then quickly decreased with age and stabilized around mid-life. Cohort variation was lower in species with a slower than a faster pace of life, and vanished at prime age in species with the slowest pace of life. After accounting for viability selection, compensatory/catch-up growth in early life explained much of the decrease in cohort variation. Females showed less phenotypic variability and stronger compensatory/catch-up growth than males early in life, whereas males showed more progressive changes throughout life. These results confirm that stronger selective pressures for rapid growth make males more vulnerable to poor environmental conditions early in life and less able to recover after a poor start. Our comparative analysis illustrates how variability in growth changes over time in closely related species that span a wide range on the slow-fast continuum, the main axis of variation in life-history strategies of vertebrates. [Hamel, S.; Yoccoz, N. G.] UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, N-9037 Tromso, Norway; [Gaillard, J. -M.] Univ Lyon 1, CNRS, UMR Biometrie & Biol Evolut 5558, F-69622 Villeurbanne, France; [Albon, S.] James Hutton Inst, Aberdeen AB15 8QH, Scotland; [Cote, S. D.] Univ Laval, Dept Biol, Quebec City, PQ G1V 0A6, Canada; [Cote, S. D.] Univ Laval, Ctr Etud Nord, Quebec City, PQ G1V 0A6, Canada; [Craine, J. M.] Jonas Ventures, Manhattan, KS 66502 USA; [Festa-Bianchet, M.; Pelletier, F.] Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada; [Festa-Bianchet, M.; Pelletier, F.] Univ Sherbrooke, Ctr Etud Nord, Sherbrooke, PQ J1K 2R1, Canada; [Garel, M.] Off Natl Chasse & Faune Sauvage, Unite Faune Montagne, 5 Allee Bethleem, F-38610 Zi Mayencin, Gieres, France; [Lee, P.] Univ Stirling, Sch Nat Sci, Behav & Evolut Res Grp, Stirling FK9 4LA, Scotland; [Lee, P.; Moss, C.] Amboseli Trust Elephants, POB 15135, Nairobi 00509, Kenya; [Nussey, D. H.] Univ Edinburgh, Inst Evolutionary Biol, Kings Bldg,Ashworth Labs Charlotte Auerbach Rd, Edinburgh EH 3FL, Midlothian, Scotland; [Stien, A.; Tveraa, T.] Norwegian Inst Nat Res, NO-9296 Tromso, Norway Hamel, S (reprint author), UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, N-9037 Tromso, Norway. sandra.hamel@uit.no Craine, Joseph/D-4569-2009; Nussey, Daniel/F-4155-2010 Craine, Joseph/0000-0001-6561-3244; Festa-Bianchet, Marco/0000-0002-2352-3379; Stien, Audun/0000-0001-8046-7337; Yoccoz, Nigel/0000-0003-2192-1039 Natural Sciences and Engineering Research Council of Canada; Alberta Conservation Association; Norwegian Research Council; NERC; Hutton Institute; Environmental Agency of Norway; Office National de la Chasse et de la Faune Sauvage; National Trust for Scotland; ASAB; Carnegie Trust for Universities of Scotland; FRIPRO program of the Norwegian Research Council; Biotechnology and Biological Sciences Research Council [BB/H021868/1]; Natural Environment Research Council [NE/M003035/1] The mountain goat and bighorn sheep studies are mainly supported by the Natural Sciences and Engineering Research Council of Canada and the Alberta Conservation Association. The Svalbard reindeer project is mainly financed by the Norwegian Research Council, NERC and The Hutton Institute. The Ravdol reindeer study is financed by the Environmental Agency of Norway. The mouflon and roe deer projects are supported by the Office National de la Chasse et de la Faune Sauvage. The Soay sheep project was funded by NERC and supported by National Trust for Scotland; we thank Josephine Pemberton and many other researchers involved in the project for access to the data. Funding for the elephant growth was from ASAB, Carnegie Trust for Universities of Scotland, and many private donors over 43 years. This contribution is part of the HETRAGE project supported by the FRIPRO program of the Norwegian Research Council (awarded to S. Hamel). We are extremely grateful to the many people who helped collecting these invaluable data over all these years. We thank T. Coulson for comments on a previous draft of this manuscript. We are extremely grateful to T. Ezard, an anonymous reviewer, and the Associate Editor for providing constructive and insightful comments that greatly improved this paper. Aitkin M, 2009, STAT MODELLING R; ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; Andersen R, 2000, J ANIM ECOL, V69, P672, DOI 10.1046/j.1365-2656.2000.00425.x; Auer SK, 2010, AM NAT, V176, P818, DOI 10.1086/657061; Bardsen BJ, 2012, J ANIM ECOL, V81, P364, DOI 10.1111/j.1365-2656.2011.01913.x; Baron JP, 2010, J ANIM ECOL, V79, P640, DOI 10.1111/j.1365-2656.2010.01661.x; Bates D, 2014, LME4 LINEAR MIXED EF; Bates D, 2015, J STAT SOFTW, V67, P1; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bernardo J, 1996, AM ZOOL, V36, P83; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Brame R, 2006, J QUANT CRIMINOL, V22, P31, DOI 10.1007/s10940-005-9001-8; Caswell H., 2001, MATRIX POPULATION MO; Christiansen P, 2004, ZOOL J LINN SOC-LOND, V140, P523, DOI 10.1111/j.1096-3642.2004.00113.x; Clutton-Brock T, 1988, REPROD SUCCESS STUDI; CLUTTON-BROCK T. H, 2004, SOAY SHEEP DYNAMICS; Clutton-Brock T, 2007, SCIENCE, V318, P1882, DOI 10.1126/science.1133311; CluttonBrock TH, 1996, J ANIM ECOL, V65, P675, DOI 10.2307/5667; CLUTTONBROCK TH, 1985, NATURE, V313, P131, DOI 10.1038/313131a0; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Coulson T, 2008, AM NAT, V172, P599, DOI 10.1086/591693; Crowley PH, 2015, ECOL MODEL, V308, P1, DOI 10.1016/j.ecolmodel.2015.03.018; Cubaynes S, 2012, METHODS ECOL EVOL, V3, P564, DOI 10.1111/j.2041-210X.2011.00175.x; Descamps S, 2008, J ANIM ECOL, V77, P305, DOI 10.1111/j.1365-2656.2007.01340.x; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dobson FS, 1999, J ANIM ECOL, V68, P73, DOI 10.1046/j.1365-2656.1999.00268.x; Douhard M, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0276; Douhard M, 2013, ECOLOGY, V94, P1805, DOI 10.1890/13-0034.1; Easterling DR, 2000, SCIENCE, V289, P2068, DOI 10.1126/science.289.5487.2068; Everitt B. S., 2011, CLUSTER ANAL; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; Festa-Bianchet M, 1998, BEHAV ECOL, V9, P144, DOI 10.1093/beheco/9.2.144; Festa-Bianchet M, 2008, MOUNTAIN GOATS ECOLO; Fisher RA, 1930, GENETICAL THEORY NAT; Ford JH, 2012, METHODS ECOL EVOL, V3, P1047, DOI 10.1111/j.2041-210X.2012.00243.x; Fruhwirth-Schnatter S., 2006, FINITE MIXTURE MARKO; Gaillard J.-M, 2016, ENCY EVOLUTIONARY BI, V2, P312; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; Gaillard JM, 2003, ECOSCIENCE, V10, P412, DOI 10.1080/11956860.2003.11682789; Gaillard JM, 2003, J WILDLIFE MANAGE, V67, P767, DOI 10.2307/3802684; Gaillard JM, 2000, P ROY SOC B-BIOL SCI, V267, P471, DOI 10.1098/rspb.2000.1024; Garel M, 2006, ECOLOGY, V87, P745, DOI 10.1890/05-0584; Garel M, 2005, J ZOOL, V266, P65, DOI 10.1017/S0952836905006667; Garel M, 2007, ECOL APPL, V17, P1607, DOI 10.1890/06-0898.1; Garratt M, 2015, CURR BIOL, V25, P759, DOI 10.1016/j.cub.2014.11.071; Grafen A., 1988, REPROD SUCCESS, P454; GREEN WCH, 1991, OECOLOGIA, V86, P521, DOI 10.1007/BF00318318; Grun B, 2008, J STAT SOFTW, V28, P1; Hamel S, 2017, BIOL REV, V92, P754, DOI 10.1111/brv.12254; Hamel S, 2012, ECOL APPL, V22, P1628; Hamel S, 2010, ECOLOGY, V91, P2034, DOI 10.1890/09-1311.1; Hastings KK, 2011, ECOSPHERE, V2, DOI 10.1890/ES11-00215.1; Hayward AD, 2013, P NATL ACAD SCI USA, V110, P13886, DOI 10.1073/pnas.1301817110; Hector KL, 2012, J ANIM ECOL, V81, P583, DOI 10.1111/j.1365-2656.2011.01942.x; Herfindal I, 2015, J ANIM ECOL, V84, P702, DOI 10.1111/1365-2656.12318; Hodge SJ, 2008, J ANIM ECOL, V77, P92, DOI 10.1111/j.1365-2656.2007.01318.x; Hoeksma JB, 2006, INFANT CHILD DEV, V15, P627, DOI 10.1002/icd.483; Jones BL, 2001, SOCIOL METHOD RES, V29, P374, DOI 10.1177/0049124101029003005; Jones JH, 2010, J ANIM ECOL, V79, P1262, DOI 10.1111/j.1365-2656.2010.01687.x; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kruuk LEB, 1999, P ROY SOC B-BIOL SCI, V266, P1655, DOI 10.1098/rspb.1999.0828; Landete-Castillejos T, 2005, BEHAV ECOL SOCIOBIOL, V57, P267, DOI 10.1007/s00265-004-0848-8; Langer P, 2008, ZOOLOGY, V111, P148, DOI 10.1016/j.zool.2007.06.007; Laws R. M., 1975, ELEPHANTS THEIR HABI; Le Galliard JF, 2010, J ANIM ECOL, V79, P1296, DOI 10.1111/j.1365-2656.2010.01732.x; Lebreton JD, 2005, ECOL MODEL, V188, P22, DOI 10.1016/j.ecolmodel.2005.05.003; Lee Phyllis C, 2013, Biol Lett, V9, P20130011, DOI 10.1098/rsbl.2013.0011; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; LESLIE PH, 1966, J ANIM ECOL, V35, P291, DOI 10.2307/2396; Lidgard DC, 2005, BEHAV ECOL, V16, P541, DOI 10.1093/beheco/ari023; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Lindstrom J, 2002, ECOL LETT, V5, P338, DOI 10.1046/j.1461-0248.2002.00317.x; Madsen T, 2000, J ANIM ECOL, V69, P952, DOI 10.1046/j.1365-2656.2000.00477.x; Mainguy J, 2009, P ROY SOC B-BIOL SCI, V276, P4067, DOI 10.1098/rspb.2009.1231; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; Marcil-Ferland D, 2013, AM NAT, V182, P775, DOI 10.1086/673534; Martin JGA, 2012, OIKOS, V121, P752, DOI 10.1111/j.1600-0706.2011.19962.x; Martin JGA, 2010, AM NAT, V176, P414, DOI 10.1086/656267; McLachlan G.J., 2000, FINITE MIXTURE MODEL; McLachlan GJ, 2014, WIRES DATA MIN KNOWL, V4, P341, DOI 10.1002/widm.1135; MCLACHLAN GJ, 1987, J R STAT SOC C-APPL, V36, P318; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; McNamara JM, 1998, BEHAV ECOL, V9, P642, DOI 10.1093/beheco/9.6.642; Melnykov V, 2013, WIRES COMPUT STAT, V5, P135, DOI 10.1002/wics.1248; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MICHENER GR, 1990, ECOLOGY, V71, P855, DOI 10.2307/1937357; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Moss C. J, 2011, AMBOSELI ELEPHANTS L; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Newton I, 1989, LIFETIME REPROD BIRD; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Nussey DH, 2011, ECOLOGY, V92, P1936, DOI 10.1890/11-0308.1; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; ORIANS GH, 1969, AM NAT, V103, P589, DOI 10.1086/282628; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; Pelletier F, 2006, ANIM BEHAV, V71, P649, DOI 10.1016/j.anbehav.2005.07.008; Pettorelli N, 2002, P ROY SOC B-BIOL SCI, V269, P747, DOI 10.1098/rspb.2001.1791; Plard F, 2015, J ANIM ECOL, V84, P1363, DOI 10.1111/1365-2656.12378; Plard F, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001828; Plard F, 2014, ECOGRAPHY, V37, P241, DOI 10.1111/j.1600-0587.2013.00414.x; ROBERTSON A, 1992, J ZOOL, V227, P661, DOI 10.1111/j.1469-7998.1992.tb04422.x; Robinson MR, 2006, EVOLUTION, V60, P2168, DOI 10.1111/j.0014-3820.2006.tb01854.x; Rughetti M, 2010, J WILDLIFE MANAGE, V74, P1024, DOI 10.2193/2009-335; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; Saether BE, 2013, AM NAT, V182, P743, DOI 10.1086/673497; Schielzeth H, 2009, BEHAV ECOL, V20, P416, DOI 10.1093/beheco/arn145; Solberg EJ, 2004, ECOGRAPHY, V27, P677, DOI 10.1111/j.0906-7590.2004.03864.x; Solberg E, 2008, OECOLOGIA, V158, P485, DOI 10.1007/s00442-008-1158-z; Solberg EJ, 2007, OECOLOGIA, V154, P259, DOI 10.1007/s00442-007-0833-9; Stahl D, 2012, WIRES COMPUT STAT, V4, P341, DOI 10.1002/wics.1204; Stamps JA, 2012, ANIM BEHAV, V83, P1325, DOI 10.1016/j.anbehav.2012.02.017; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Steinheim G, 2002, J ZOOL, V258, P515, DOI 10.1017/S095283690200167X; Stenseth NC, 2002, SCIENCE, V297, P1292, DOI 10.1126/science.1071281; Stien A, 2002, J ANIM ECOL, V71, P937, DOI 10.1046/j.1365-2656.2002.00659.x; Suarez OV, 2004, CAN J ZOOL, V82, P1572, DOI 10.1139/Z04-137; Theoret-Gosselin R, 2015, OECOLOGIA, V178, P175, DOI 10.1007/s00442-014-3198-x; Therrien JF, 2007, BEHAV ECOL SOCIOBIOL, V62, P193, DOI 10.1007/s00265-007-0453-8; Thomas DW, 2001, SCIENCE, V291, P2598, DOI 10.1126/science.1057487; Toigo C, 1999, J MAMMAL, V80, P1021, DOI 10.2307/1383272; Trivers R. L., 1972, SEXUAL SELECTION DES, P138; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Van de Pol M, 2006, J ANIM ECOL, V75, P616, DOI 10.1111/j.1365-2656.2006.01079.x; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Venables WN, 2002, MODERN APPL STAT S; Verbeke G, 1996, J AM STAT ASSOC, V91, P217, DOI 10.2307/2291398; Wilkin TA, 2009, CURR BIOL, V19, P1998, DOI 10.1016/j.cub.2009.09.065; Wilson AJ, 2009, J ANIM ECOL, V78, P354, DOI 10.1111/j.1365-2656.2008.01489.x; WOOLLER RD, 1992, TRENDS ECOL EVOL, V7, P111, DOI 10.1016/0169-5347(92)90143-Y; Zedrosser A, 2013, ECOLOGY, V94, P231, DOI 10.1890/12-0229.1 140 18 18 0 39 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9615 1557-7015 ECOL MONOGR Ecol. Monogr. NOV 2016 86 4 517 543 10.1002/ecm.1232 27 Ecology Environmental Sciences & Ecology EA8TI WOS:000386911200008 Green Published 2019-02-21 J Ruh, A; Olden, JD; Sabo, JL Ruh, Albert; Olden, Julian D.; Sabo, John L. Declining streamflow induces collapse and replacement of native fish in the American Southwest FRONTIERS IN ECOLOGY AND THE ENVIRONMENT English Article ALTERED FLOW REGIMES; LIFE-HISTORY STRATEGIES; CLIMATE-CHANGE; ENVIRONMENTAL FLOWS; RIVER; WATER; BIODIVERSITY; ECOSYSTEMS; SCIENCE; PERSISTENCE Water scarcity is a global threat to freshwater biodiversity, but connecting variation in streamflow to viability of imperiled faunas remains a challenge. Here we combined time-series modeling techniques on long-term ecohydrological data to quantify flow-ecology relationships on native and non-native riverine fish in the American Southwest, and simulate likely fish trajectories and "quasi-extinction" risks in the near future. Streamflow has been declining conspicuously over the past 30 years in the Colorado and Rio Grande river basins, and year-to-year variation in streamflow influences the covariation between native and non-native fish abundance. Risks of decline are high (>50%) for nearly three-quarters of the modeled native species, and current trends in streamflow increase quasi-extinction risk for natives (+8.5%) but reduce this risk for non-natives (-5.9%). Hydrological changes need to be mitigated if we are to slow down the rapid replacement of native biodiversity with non-native species in American Southwest rivers. [Ruh, Albert; Sabo, John L.] Arizona State Univ, Julie Ann Wrigley Global Inst Sustainabil, Tempe, AZ 85281 USA; [Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA; [Sabo, John L.] Arizona State Univ, Sch Life Sci, Tempe, AZ USA Ruh, A (reprint author), Arizona State Univ, Julie Ann Wrigley Global Inst Sustainabil, Tempe, AZ 85281 USA. albert.ruhi@asu.edu US National Science Foundation [1204478]; US Department of Defense SERDP [RC-2511] We thank the numerous individuals, agencies, and institutions - including the Arizona Game and Fish Department, the New Mexico Department of Game and Fish, the Navajo Nation, and the US Forest Service - that graciously contributed the long-term fish datasets to JDO that were analyzed in this study. We also thank K Fritschie for assisting in database management, and members of the Sabo lab for suggestions that improved the manuscript. Support for this work was provided by the US National Science Foundation (1204478) to AR and JLS, and by the US Department of Defense SERDP (RC-2511) to JDO. Acreman M, 2014, FRONT ECOL ENVIRON, V12, P466, DOI 10.1890/130134; Bernardo JM, 2003, RIVER RES APPL, V19, P521, DOI 10.1002/rra.726; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Byers JE, 2002, OIKOS, V97, P449, DOI 10.1034/j.1600-0706.2002.970316.x; Carlisle DM, 2011, FRONT ECOL ENVIRON, V9, P264, DOI 10.1890/100053; Dettinger M, 2015, ECOL APPL, V25, P2069, DOI 10.1890/15-0938.1; Gido KB, 2013, CAN J FISH AQUAT SCI, V70, P554, DOI 10.1139/cjfas-2012-0441; Grantham TE, 2014, BIOSCIENCE, V64, P1006, DOI 10.1093/biosci/biu159; Pachauri R. K., 2014, CLIMATE CHANGE 2014; IUCN, 2013, GUID US IUCN RED LIS; Jaeger KL, 2014, P NATL ACAD SCI USA, V111, P13894, DOI 10.1073/pnas.1320890111; Johnson PTJ, 2008, FRONT ECOL ENVIRON, V6, P359, DOI 10.1890/070156; Lake PS, 2011, DROUGHT AND AQUATIC ECOSYSTEMS: EFFECTS AND RESPONSES, P1, DOI 10.1002/9781444341812; Lake PS, 2003, FRESHWATER BIOL, V48, P1161, DOI 10.1046/j.1365-2427.2003.01086.x; Lins H.F., 2012, USGS HYDROCLIMATIC D; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Mcclure MM, 2013, CONSERV BIOL, V27, P1222, DOI 10.1111/cobi.12166; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2014, FRONT ECOL ENVIRON, V12, P176, DOI 10.1890/130076; Perkin JS, 2015, AQUAT CONSERV, V25, P639, DOI 10.1002/aqc.2501; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 2016, NAT CLIM CHANGE, V6, P25, DOI 10.1038/NCLIMATE2765; Poff NL, 2003, FRONT ECOL ENVIRON, V1, P298, DOI 10.1890/1540-9295(2003)001[0298:RFAWWE]2.0.CO;2; Poff NL, 2012, SAVING MILLION SPECI; Propst DL, 2008, ECOL APPL, V18, P1236, DOI 10.1890/07-1489.1; Ruhi A, 2015, GLOBAL CHANGE BIOL, V21, P1482, DOI 10.1111/gcb.12780; Sabater Sergi, 2008, Freshwater Reviews, V1, P75, DOI 10.1608/FRJ-1.1.5; Sabo JL, 2008, ECOL MONOGR, V78, P19, DOI 10.1890/06-1340.1; Sabo JL, 2014, P NATL ACAD SCI USA, V111, P13686, DOI 10.1073/pnas.1414385111; Sabo JL, 2010, P NATL ACAD SCI USA, V107, P21263, DOI 10.1073/pnas.1009734108; Seager R, 2013, NAT CLIM CHANGE, V3, P482, DOI [10.1038/nclimate1787, 10.1038/NCLIMATE1787]; Shafroth PB, 2010, FRESHWATER BIOL, V55, P68, DOI 10.1111/j.1365-2427.2009.02271.x; Staudt A, 2013, FRONT ECOL ENVIRON, V11, P494, DOI 10.1890/120275; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Xenopoulos MA, 2005, GLOBAL CHANGE BIOL, V11, P1557, DOI 10.1111/j.1365-2486.2005.01008.x 36 0 0 1 33 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1540-9295 1540-9309 FRONT ECOL ENVIRON Front. Ecol. Environ. NOV 2016 14 9 465 472 10.1002/fee.1424 8 Ecology; Environmental Sciences Environmental Sciences & Ecology EA8TO WOS:000386912000012 2019-02-21 J Koyama, T; Ito, H; Fujisawa, T; Ikeda, H; Kakishima, S; Cooley, JR; Simon, C; Yoshimura, J; Sota, T Koyama, Takuya; Ito, Hiromu; Fujisawa, Tomochika; Ikeda, Hiroshi; Kakishima, Satoshi; Cooley, John R.; Simon, Chris; Yoshimura, Jin; Sota, Teiji Genomic divergence and lack of introgressive hybridization between two 13-year periodical cicadas support life cycle switching in the face of climate change MOLECULAR ECOLOGY English Article contact zone; developmental plasticity; gene flow; reproductive isolation; restrictionsite-associated DNA sequences; single nucleotide polymorphism REPRODUCTIVE CHARACTER DISPLACEMENT; ALLOCHRONIC SPECIATION; POPULATION-DYNAMICS; MITOCHONDRIAL-DNA; LOCAL ADAPTATION; COALESCENT MODEL; HYBRID ZONES; ICE AGES; EVOLUTION; MAGICICADA Life history evolution spurred by post-Pleistocene climatic change is hypothesized to be responsible for the present diversity in periodical cicadas (Magicicada), but the mechanism of life cycle change has been controversial. To understand the divergence process of 13-year and 17-year cicada life cycles, we studied genetic relationships between two synchronously emerging, parapatric 13-year periodical cicada species in the Decim group, Magicicada tredecim and M. neotredecim. The latter was hypothesized to be of hybrid origin or to have switched from a 17-year cycle via developmental plasticity. Phylogenetic analysis using restriction-site-associated DNA sequences for all Decim species and broods revealed that the 13-year M. tredecim lineage is genomically distinct from 17-year Magicicada septendecim but that 13-year M. neotredecim is not. We detected no significant introgression between M. tredecim and M. neotredecim/M. septendecim thus refuting the hypothesis that M. neotredecim are products of hybridization between M. tredecim and M. septendecim. Further, we found that introgressive hybridization is very rare or absent in the contact zone between the two 13-year species evidenced by segregation patterns in single nucleotide polymorphisms, mitochondrial lineage identity and head width and abdominal sternite colour phenotypes. Our study demonstrates that the two 13-year Decim species are of independent origin and nearly completely reproductively isolated. Combining our data with increasing observations of occasional life cycle change in part of a cohort (e.g. 4-year acceleration of emergence in 17-year species), we suggest a pivotal role for developmental plasticity in Magicicada life cycle evolution. [Koyama, Takuya; Fujisawa, Tomochika; Sota, Teiji] Kyoto Univ, Grad Sch Sci, Dept Zool, Sakyo Ku, Kyoto 6068502, Japan; [Ito, Hiromu; Kakishima, Satoshi; Yoshimura, Jin] Shizuoka Univ, Grad Sch Sci & Technol, Hamamatsu, Shizuoka 4328561, Japan; [Ito, Hiromu] Nagasaki Univ, Inst Trop Med, Dept Int Hlth, Nagasaki 8528523, Japan; [Ikeda, Hiroshi] Hirosaki Univ, Fac Agr & Life Sci, Hirosaki, Aomori 0368561, Japan; [Cooley, John R.] Wesleyan Univ, Coll Integrat Sci, Middletown, CT 06459 USA; [Simon, Chris] Univ Connecticut, Dept Ecol & Evolutionary Biol, Storrs, CT 06268 USA; [Yoshimura, Jin] SUNY Coll Environm Sci & Forestry, Dept Environm & Forest Biol, Syracuse, NY 13210 USA; [Yoshimura, Jin] Chiba Univ, Marine Biosyst Res Ctr, Chiba 2995502, Japan Sota, T (reprint author), Kyoto Univ, Grad Sch Sci, Dept Zool, Sakyo Ku, Kyoto 6068502, Japan. sota@terra.zool.kyoto-u.ac.jp Ikeda, Hiroshi/B-3940-2011 Kakishima, Satoshi/0000-0001-6000-3068 JSPS KAKENHI [22255004, 22370010, 26257405, 15H00420, 26840126, 16H07075]; Japan Prize Foundation; Asahi Glass Foundation; NSF DEB [09-55849]; [14J02983]; [13J03600] We are grateful to T. A. Suzuki, D. Marshall, K. Hill and Dixon Springs Agricultural Center for support in fieldwork. This study was supported by JSPS KAKENHI (nos. 22255004, 22370010, 26257405 and 15H00420 to JY; 26840126 to SK; 16H07075 to HIt), Grants-in-Aid for JSPS Fellows to HIt and SK (nos. 14J02983 to HIt; 13J03600 to SK), the Japan Prize Foundation to HIt and the Asahi Glass Foundation to SK. CS and JRC received support from NSF DEB 09-55849. Arnold Michael L., 2009, Journal of Biology (London), V8, P82, DOI 10.1186/jbiol176; Bradshaw WE, 2008, MOL ECOL, V17, P157, DOI 10.1111/j.1365-294X.2007.03509.x; Buerkle CA, 2005, MOL ECOL NOTES, V5, P684, DOI 10.1111/j.1471-8286.2005.01011.x; Chifman J, 2015, J THEOR BIOL, V374, P35, DOI 10.1016/j.jtbi.2015.03.006; Chifman J, 2014, BIOINFORMATICS, V30, P3317, DOI 10.1093/bioinformatics/btu530; Cooley John R., 2015, American Entomologist, V61, P51, DOI 10.1093/ae/tmv004; Cooley JR, 2013, GLOBAL ECOL BIOGEOGR, V22, P410, DOI 10.1111/geb.12002; Cooley JR, 2006, J EVOLUTION BIOL, V19, P855, DOI 10.1111/j.1420-9101.2005.01056.x; Cooley JR, 2001, MOL ECOL, V10, P661, DOI 10.1046/j.1365-294x.2001.01210.x; COX RT, 1991, AM MIDL NAT, V125, P63, DOI 10.2307/2426370; COX RT, 1988, AM MIDL NAT, V120, P183, DOI 10.2307/2425898; Cox RT, 2003, EVOLUTION, V57, P428; Durand EY, 2011, MOL BIOL EVOL, V28, P2239, DOI 10.1093/molbev/msr048; Earl DA, 2012, CONSERV GENET RESOUR, V4, P359, DOI 10.1007/s12686-011-9548-7; Eaton DAR, 2014, BIOINFORMATICS, V30, P1844, DOI 10.1093/bioinformatics/btu121; Eaton DAR, 2013, SYST BIOL, V62, P689, DOI 10.1093/sysbio/syt032; Etter PD, 2011, METHODS MOL BIOL, V772, P157, DOI 10.1007/978-1-61779-228-1_9; Franks SJ, 2012, ANNU REV GENET, V46, P185, DOI 10.1146/annurev-genet-110711-155511; Groning J, 2008, Q REV BIOL, V83, P257, DOI 10.1086/590510; Hanrahan SJ, 2011, CHROMOSOME RES, V19, P809, DOI 10.1007/s10577-011-9231-6; Hedrick PW, 2013, MOL ECOL, V22, P4606, DOI 10.1111/mec.12415; Hewitt G, 2000, NATURE, V405, P907, DOI 10.1038/35016000; Hewitt GM, 2004, PHILOS T ROY SOC B, V359, P183, DOI 10.1098/rstb.2003.1388; Hewitt GM, 2001, MOL ECOL, V10, P537, DOI 10.1046/j.1365-294x.2001.01202.x; Holt RE, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou050; Jensen LF, 2008, P ROY SOC B-BIOL SCI, V275, P2859, DOI 10.1098/rspb.2008.0870; Karban R, 1997, AM NAT, V150, P446, DOI 10.1086/286075; Koyama T, 2015, J EVOLUTION BIOL, V28, P1270, DOI 10.1111/jeb.12653; KUNO E, 1992, RES POPUL ECOL, V34, P275, DOI 10.1007/BF02514797; LLOYD M, 1966, EVOLUTION, V20, P466, DOI 10.1111/j.1558-5646.1966.tb03381.x; LLOYD M, 1976, EVOLUTION, V30, P786, DOI 10.1111/j.1558-5646.1976.tb00960.x; Marshall DC, 2011, ANN ENTOMOL SOC AM, V104, P443, DOI 10.1603/AN10087; Marshall DC, 2000, EVOLUTION, V54, P1313; Marshall DC, 2003, EVOLUTION, V57, P433; MARTIN A, 1990, EVOLUTION, V44, P1066, DOI 10.1111/j.1558-5646.1990.tb03826.x; MARTIN AP, 1988, NATURE, V336, P237, DOI 10.1038/336237a0; Meirmans PG, 2004, MOL ECOL NOTES, V4, P792, DOI 10.1111/j.1471-8286.2004.00770.x; Merila J, 2013, EVOLUTIONARY APPL, V7, P1, DOI DOI 10.1111/EVA.12137; Misof B, 2014, SCIENCE, V346, P763, DOI 10.1126/science.1257570; Nariai Y, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018347; Post E, 2001, P ROY SOC B-BIOL SCI, V268, P15, DOI 10.1098/rspb.2000.1324; Pritchard JK, 2000, GENETICS, V155, P945; RIBEIRO JMC, 1986, AM NAT, V128, P513, DOI 10.1086/284584; Roure B, 2013, MOL BIOL EVOL, V30, P197, DOI 10.1093/molbev/mss208; Rubin BER, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033394; Simon C, 2000, EVOLUTION, V54, P1326; SIMON C, 1982, J NEW YORK ENTOMOL S, V90, P275; Sota T, 2013, P NATL ACAD SCI USA, V110, P6919, DOI 10.1073/pnas.1220060110; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Swenson NG, 2005, AM NAT, V166, P581, DOI 10.1086/491688; Swenson NG, 2004, EVOLUTION, V58, P2391; Swofford D. L., 2002, PAUP PHYLOGENETIC AN; Takahashi T, 2014, MOL PHYLOGENET EVOL, V80, P137, DOI 10.1016/j.ympev.2014.07.016; Vaha JP, 2006, MOL ECOL, V15, P63, DOI 10.1111/j.1365-294X.2005.02773.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Williams JL, 2015, J ECOL, V103, P798, DOI 10.1111/1365-2745.12369; Yoshimura J, 1997, AM NAT, V149, P112, DOI 10.1086/285981; YOSHIMURA J, 1994, THEOR POPUL BIOL, V45, P121, DOI 10.1006/tpbi.1994.1007 58 3 3 4 41 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. NOV 2016 25 21 5543 5556 10.1111/mec.13858 14 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology EA1LH WOS:000386353200020 27661077 2019-02-21 J Varela-Cervero, S; Lopez-Garcia, A; Barea, JM; Azcon-Aguilar, C Varela-Cervero, Sara; Lopez-Garcia, Alvaro; Barea, Jose M.; Azcon-Aguilar, Concepcion Spring to autumn changes in the arbuscular mycorrhizal fungal community composition in the different propagule types associated to a Mediterranean shrubland PLANT AND SOIL English Article Arbuscular mycorrhizal fungi; Diversity; Mycorrhizal propagules; Seasonal changes; Life strategy; Mediterranean environments LIFE-HISTORY STRATEGIES; SOIL ORGANIC-MATTER; ROOT COLONIZATION; FUNCTIONAL DIVERSITY; DISTRIBUTION PATTERNS; TEMPORAL DYNAMICS; COLONIZING ROOTS; SPORE ABUNDANCE; SOUTHEAST SPAIN; HOST-PLANTS Arbuscular mycorrhizal fungi (AMF) appear differentially represented among propagule forms [intraradical mycelium (IRM) in colonized roots, spores and extraradical mycelium (ERM)]. However, spring to autumn changes in the AMF communities harboured in the different propagule forms has not been studied, being this the aim of the present study. A terminal restriction fragment length polymorphism approach was used to monitor, in spring and autumn, the AMF community composition present in the three propagule types associated to five shrub species in a semi-arid Mediterranean environment. The AMF community composition in roots was significantly different between spring and autumn; however, no significant differences were detected in soil propagules (spores and ERM). Different trends were identified according to the preferential biomass allocation patterns of AMF phylotypes, suggesting different life strategies: those allocating mainly into IRM (belonging to the Glomeraceae), ERM (Diversisporaceae and Gigasporaceae) or spores (Pacisporaceae and Paraglomeraceae). Differences of AMF taxa in the biomass allocation patterns among propagules are maintained throughout the year. Progress in the knowledge of functional features of AMF communities and their responses to seasonal variations are important for the AMF application in Mediterranean ecosystems. [Varela-Cervero, Sara; Lopez-Garcia, Alvaro; Barea, Jose M.; Azcon-Aguilar, Concepcion] CSIC, Dept Microbiol Suelo & Sistemas Simbiot, Estn Expt Zaidin, Prof Albareda 1, E-18008 Granada, Spain Varela-Cervero, S (reprint author), CSIC, Dept Microbiol Suelo & Sistemas Simbiot, Estn Expt Zaidin, Prof Albareda 1, E-18008 Granada, Spain. sara.varela@eez.csic.es Barea, Jose Miguel/H-5893-2015 Barea, Jose Miguel/0000-0001-5021-4718; Lopez-Garcia, Alvaro/0000-0001-8267-3572 Formacion de Personal Investigador Programme (Ministerio de Ciencia e Innovacion); Spanish government under Plan Nacional de I + D + I; FEDER funds [CGL-2009-08825]; Junta de Andalucia, Consejeria de Economia, Innovacion y Ciencia [CVI-7640] Sara Varela-Cervero thanks the Formacion de Personal Investigador Programme (Ministerio de Ciencia e Innovacion) for financial support. This research was supported by the Spanish government under the Plan Nacional de I + D + I, co-financed by FEDER funds (project CGL-2009-08825) and the Junta de Andalucia, Consejeria de Economia, Innovacion y Ciencia (project CVI-7640). We also thank the Consejeria de Medio Ambiente, Junta de Andalucia (Spain) for permission to work in Sierra de Baza Natural Park. We sincerely thank Estefania Berrio for technical assistance and Jose-Miguel Barea Azcon, from the Environment and Water Agency of Andalusia, for providing the climatic data of the study site. Additionally, we would like to thank the two anonymous reviewers and the Section Editor for their valuable comments and suggestions to improve the manuscript. Allen HD, 2009, PHYS GEOGRAPHY MEDIT, P203; Bardgett RD, 2014, NATURE, V515, P505, DOI 10.1038/nature13855; Barea JM, 2011, J ARID ENVIRON, V75, P1292, DOI 10.1016/j.jaridenv.2011.06.001; Bates ST, 2013, ISME J, V7, P652, DOI 10.1038/ismej.2012.147; Bennett AE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0083241; Bever JD, 2009, ECOL LETT, V12, P13, DOI 10.1111/j.1461-0248.2008.01254.x; Brito I, 2011, SOIL USE MANAGE, V27, P350, DOI 10.1111/j.1475-2743.2011.00350.x; Brundrett M. C, 1994, PRACTICAL METHODS MY; Chagnon PL, 2013, TRENDS PLANT SCI, V18, P484, DOI 10.1016/j.tplants.2013.05.001; Chytry M, 2002, J VEG SCI, V13, P79, DOI 10.1658/1100-9233(2002)013[0079:DODSWS]2.0.CO;2; Collins RE, 2007, NUCLEIC ACIDS RES, V35, pW58, DOI 10.1093/nar/gkm384; Cornejo P, 2004, FEMS MICROBIOL LETT, V241, P265, DOI 10.1016/j.femsle.2004.10.030; Cotton TEA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109234; Davison J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041938; De Caceres M, 2009, ECOLOGY, V90, P3566; de Souza FA, 2003, MYCOLOGIA, V95, P1004, DOI 10.2307/3761908; Denison RF, 2011, CURR BIOL, V21, pR775, DOI 10.1016/j.cub.2011.06.018; DIAZ G, 1994, ARID SOIL RES REHAB, V8, P59; DONCASTER C. C., 1962, NEMATOLOGICA, V8, P313; Dumbrell AJ, 2011, NEW PHYTOL, V190, P794, DOI 10.1111/j.1469-8137.2010.03636.x; Fitzjohn RG, 2007, MOL ECOL NOTES, V7, P583, DOI 10.1111/j.1471-8286.2007.01744.x; GERDEMANN J. W., 1963, TRANS BRIT MYCOL SOC, V46, P235; Grabherr G, 2003, ECOL STU AN, P3; Gryndler M, 2009, MYCORRHIZA, V19, P255, DOI 10.1007/s00572-008-0217-y; Hart MM, 2002, NEW PHYTOL, V153, P335, DOI 10.1046/j.0028-646X.2001.00312.x; Hart MM, 2001, MYCOLOGIA, V93, P1186, DOI 10.2307/3761678; Helgason T, 2002, J ECOL, V90, P371, DOI 10.1046/j.1365-2745.2001.00674.x; Hempel S, 2007, ENVIRON MICROBIOL, V9, P1930, DOI 10.1111/j.1462-2920.2007.01309.x; HETRICK BAD, 1986, MYCOLOGIA, V78, P32, DOI 10.2307/3793373; Holland SM, 2008, ANAL RAREFACTION 1 3; JONER EJ, 1995, SOIL BIOL BIOCHEM, V27, P1153, DOI 10.1016/0038-0717(95)00047-I; Jung SC, 2012, J CHEM ECOL, V38, P651, DOI 10.1007/s10886-012-0134-6; Kaiser C, 2015, NEW PHYTOL, V205, P1537, DOI 10.1111/nph.13138; Kjoller R, 2000, PLANT SOIL, V226, P189, DOI 10.1023/A:1026499923717; Klironomos JN, 2002, MYCORRHIZA, V12, P181, DOI 10.1007/s00572-002-0169-6; Koide RT, 2004, MYCORRHIZA, V14, P145, DOI 10.1007/s00572-004-0307-4; Lee J, 2008, FEMS MICROBIOL ECOL, V65, P339, DOI 10.1111/j.1574-6941.2008.00531.x; Leifheit EF, 2014, PLANT SOIL, V374, P523, DOI 10.1007/s11104-013-1899-2; Li LF, 2010, FEMS MICROBIOL ECOL, V71, P418, DOI 10.1111/j.1574-6941.2009.00815.x; Liu Y, 2009, FEMS MICROBIOL ECOL, V67, P81, DOI 10.1111/j.1574-6941.2008.00597.x; Lopez-Garcia A, 2014, OECOLOGIA, V176, P1075, DOI 10.1007/s00442-014-3091-7; Lopez-Garcia A, 2014, PLANT SOIL, V379, P247, DOI 10.1007/s11104-014-2060-6; Lopez-Sanchez M. E., 1992, Mycorrhiza, V2, P33, DOI 10.1007/BF00206281; Lumini E, 2010, ENVIRON MICROBIOL, V12, P2165, DOI 10.1111/j.1462-2920.2009.02099.x; Mandyam K, 2008, MYCORRHIZA, V18, P145, DOI 10.1007/s00572-008-0165-6; Martinez-Garcia LB, 2015, NEW PHYTOL, V205, P1565, DOI 10.1111/nph.13226; Martinez-Garcia LB, 2011, SOIL BIOL BIOCHEM, V43, P682, DOI 10.1016/j.soilbio.2010.12.006; Martiny JBH, 2006, NAT REV MICROBIOL, V4, P102, DOI 10.1038/nrmicro1341; MAYR R, 1990, AGR ECOSYST ENVIRON, V29, P281, DOI 10.1016/0167-8809(90)90288-O; McArdle BH, 2001, ECOLOGY, V82, P290, DOI 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2; MCGONIGLE TP, 1990, NEW PHYTOL, V115, P495, DOI 10.1111/j.1469-8137.1990.tb00476.x; Munkvold L, 2004, NEW PHYTOL, V164, P357, DOI 10.1111/j.1469-8137.2004.01169.x; Oehl F, 2009, AGR ECOSYST ENVIRON, V134, P257, DOI 10.1016/j.agee.2009.07.008; Opik M, 2009, NEW PHYTOL, V184, P424, DOI 10.1111/j.1469-8137.2009.02920.x; Oksanen J, 2015, VEGAN COMMUNITY ECOL; Opik M, 2010, NEW PHYTOL, V188, P223, DOI 10.1111/j.1469-8137.2010.03334.x; Opik M, 2008, NEW PHYTOL, V179, P867, DOI 10.1111/j.1469-8137.2008.02515.x; Opik M, 2006, J ECOL, V94, P778, DOI 10.1111/j.1365-2745.2006.01136.x; PHILLIPS JM, 1970, T BRIT MYCOL SOC, V55, P158, DOI 10.1016/S0007-1536(70)80110-3; Powell JR, 2009, P ROY SOC B-BIOL SCI, V276, P4237, DOI 10.1098/rspb.2009.1015; Pozo MJ, 2015, NEW PHYTOL, V205, P1431, DOI 10.1111/nph.13252; Redford AJ, 2010, ENVIRON MICROBIOL, V12, P2885, DOI 10.1111/j.1462-2920.2010.02258.x; Rillig MC, 2006, NEW PHYTOL, V171, P41, DOI 10.1111/j.1469-8137.2006.01750.x; Rodriguez-Echeverria S, 2008, EUR J SOIL BIOL, V44, P30, DOI 10.1016/j.ejsobi.2007.01.003; ROYSTON P, 1995, APPL STAT-J ROY ST C, V44, P547, DOI 10.2307/2986146; Russo SE, 2012, SOIL BIOL BIOCHEM, V55, P48, DOI 10.1016/j.soilbio.2012.05.021; Sanchez-Castro I, 2012, MYCORRHIZA, V22, P449, DOI 10.1007/s00572-011-0421-z; Santos-Gonzalez JC, 2007, APPL ENVIRON MICROB, V73, P5613, DOI 10.1128/AEM.00262-07; Sikes BA, 2014, MYCORRHIZA, V24, P219, DOI 10.1007/s00572-013-0531-x; SIMON L, 1992, APPL ENVIRON MICROB, V58, P291; Sivakumar N, 2013, ANN MICROBIOL, V63, P151, DOI 10.1007/s13213-012-0455-2; Smith SE, 2010, PLANT SOIL, V326, P3, DOI 10.1007/s11104-009-9981-5; Tamura K, 2007, MOL BIOL EVOL, V24, P1596, DOI 10.1093/molbev/msm092; Tichy L, 2006, J VEG SCI, V17, P809, DOI 10.1111/j.1654-1103.2006.tb02504.x; van der Heijden MGA, 2008, ECOL LETT, V11, P296, DOI 10.1111/j.1461-0248.2007.01139.x; van der Heijden MGA, 2015, NEW PHYTOL, V205, P1406, DOI 10.1111/nph.13288; van der Heijden MGA, 2004, NEW PHYTOL, V164, P201, DOI 10.1111/j.1469-8137.2004.01205.x; van der Heijden MGA, 1998, NATURE, V396, P69, DOI 10.1038/23932; van der Heijden MGA, 1998, ECOLOGY, V79, P2082, DOI 10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2; Vandenkoornhuyse P, 2003, MOL ECOL, V12, P3085, DOI 10.1046/j.1365-294X.2003.01967.x; Varela-Cervero S, 2015, ENVIRON MICROBIOL, V17, P2882, DOI 10.1111/1462-2920.12810; Vogelsang KM, 2006, NEW PHYTOL, V172, P554, DOI 10.1111/j.1469-8137.2006.01854.x; Yang HS, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-50; Zangaro W, 2013, MYCORRHIZA, V23, P221, DOI 10.1007/s00572-012-0464-9 84 5 5 2 33 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0032-079X 1573-5036 PLANT SOIL Plant Soil NOV 2016 408 1-2 107 120 10.1007/s11104-016-2912-3 14 Agronomy; Plant Sciences; Soil Science Agriculture; Plant Sciences EA7CV WOS:000386787000008 2019-02-21 J Rollinson, N; Rowe, L Rollinson, Njal; Rowe, Locke The positive correlation between maternal size and offspring size: fitting pieces of a life-history puzzle BIOLOGICAL REVIEWS English Article body size; life-history theory; investment per offspring; egg size; propagule size; seed size; fecundity; condition-dependence; parental care; parent-offspring conflict OPTIMAL EGG SIZE; TURTLE CHRYSEMYS-PICTA; TROUT SALMO-TRUTTA; NUMBER TRADE-OFF; PARENTAL CARE; REPRODUCTIVE TRAITS; CLUTCH SIZE; FEMALE SIZE; BODY-SIZE; ENVIRONMENTAL-QUALITY The evolution of investment per offspring (I) is often viewed through the lens of the classic theory, in winch variation among individuals in a population is not expected. A substantial departure from this prediction arises in the form of correlations between maternal body size and I, which are observed within populations in virtually all taxonomic groups. Based on the generality of this observation, we suggest it is caused by a common underlying mechanism. We pursue a unifying explanation for this pattern by reviewing all theoretical models that attempt to explain it. We assess the generality of the mechanism upon which each model is based, and the extent to which data support its predictions. Two classes of adaptive models are identified: models that assume that the correlation arises from maternal influences on the relationship between I and offspring fitness [w(I)], and those that assume that maternal size influences the relationship between I and maternal fitness [W(I)]. The weight of evidence suggests that maternal influences on w(/) are probably not very general, and even for taxa where maternal influences onw(I) are likely, experiments fail to support model predictions. Models that assume that 617(1) varies with maternal size appear to offer more generality, but the current challenge is to identify a specific and general mechanism upon which UV) varies predictably with maternal size. Recent theory suggests the exciting, possibility that a yet unknown mechanism modifies the offspring, size number trade-off function in a manner that is predictable With respect to maternal size, such that w(I) varies with size. We identify two promising avenues of inquiry. First, the trade-off might be modified by energetic costs that are associated with the initiation of reproduction ('overhead costs) and that scale with I, and future work could investigate what specific overhead costs are generally associated with reproduction and whether these costs scale with w(I) Second, the trade-off might be modified by virtue of condition-dependent offspring provisioning coupled with metabolic, factors, and future work could investigate the proximate cause of, and generality of, condition-dependent offspring provisioning. Filially, drawing on the existing literature, we suggest that maternal size per se is not causatively related to variation in 1, and the mechanism involved in the correlation is instead linked to maternal nutritional status or maternal condition, which is usually correlated \yith maternal size. Using manipulative experiments to elucidate why females with high nutritional status typically produce large offspring might help explain what specific mechanism underlies the maternal-size correlation. [Rollinson, Njal; Rowe, Locke] Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Willcocks St, Toronto, ON M5S 3B2, Canada Rollinson, N (reprint author), Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Willcocks St, Toronto, ON M5S 3B2, Canada. njal.rollinson@gmail.com University of Toronto Ecology and Evolutionary Biology Postdoctoral Fellowship; Natural Sciences and Engineering Council of Canada Postdoctoral Fellowship; NSERC; Canada Research Chairs Program We thank J. Porter, two anonymous reviewers, and members of the Rowe lab for thought-provoking discussions on this topic. Funding to N.R. was provided by a University of Toronto Ecology and Evolutionary Biology Postdoctoral. Fellowship and by a Natural Sciences and Engineering Council of Canada Postdoctoral Fellowship. Funding to L.R. was provided by NSERC, and the Canada Research Chairs Program. Abrams Peter, 2001, P273, DOI 10.1017/CBO9780511609084.010; Acolas ML, 2008, ECOL FRESHW FISH, V17, P382, DOI 10.1111/j.1600-0633.2007.00290.x; BARNES H, 1965, J ANIM ECOL, V34, P391, DOI 10.2307/2656; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Beck CW, 2009, J ZOOL, V279, P319, DOI 10.1111/j.1469-7998.2009.00651.x; Beck CW, 2005, EVOL ECOL RES, V7, P1077; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; Bernardo J, 1996, AM ZOOL, V36, P216; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Braga Goncalves I, 2011, J FISH BIOL, V78, P1847, DOI 10.1111/j.1095-8649.2011.02984.x; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Brooks R, 2005, EVOLUTION, V59, P871, DOI 10.1111/j.0014-3820.2005.tb01760.x; Caval-Holme F, 2013, EVOLUTION, V67, P3537, DOI 10.1111/evo.12210; Charnov EL, 2006, AM NAT, V167, P578, DOI 10.1086/501141; Clark PJ, 2001, FUNCT ECOL, V15, P70, DOI 10.1046/j.1365-2435.2001.00494.x; Closs GP, 2013, FRESHWATER BIOL, V58, P1162, DOI 10.1111/fwb.12116; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; CONGDON JD, 1983, ECOLOGY, V64, P419, DOI 10.2307/1939959; Congdon JD, 2013, EVOL ECOL, V27, P445, DOI 10.1007/s10682-012-9595-x; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Crespi BJ, 2002, EVOLUTION, V56, P1008; Czesak ME, 2003, EVOLUTION, V57, P1121; Davis RB, 2012, J EVOLUTION BIOL, V25, P210, DOI 10.1111/j.1420-9101.2011.02420.x; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; Dixon AFG, 2001, ECOLOGY, V82, P1847, DOI 10.1890/0012-9658(2001)082[1847:BSDIPL]2.0.CO;2; Downhower JF, 1998, P NATL ACAD SCI USA, V95, P6208, DOI 10.1073/pnas.95.11.6208; Dunsworth HM, 2012, P NATL ACAD SCI USA, V109, P15212, DOI 10.1073/pnas.1205282109; Eberhart A, 2012, J ARID ENVIRON, V76, P23, DOI 10.1016/j.jaridenv.2011.08.009; EBERT D, 1993, ARCH HYDROBIOL, P453; Einum S, 2004, EVOL ECOL RES, V6, P443; Einum S, 2002, P ROY SOC B-BIOL SCI, V269, P2325, DOI 10.1098/rspb.2002.2150; Einum S, 2002, AM NAT, V160, P756, DOI 10.1086/343876; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Einum S., 2004, EVOLUTION ILLUMINATE, P128; Filin I, 2015, J THEOR BIOL, V364, P168, DOI 10.1016/j.jtbi.2014.09.007; Fischer B, 2011, OIKOS, V120, P258, DOI 10.1111/j.1600-0706.2010.18642.x; Fischer K, 2006, J EVOLUTION BIOL, V19, P380, DOI 10.1111/j.1420-9101.2005.01046.x; Fischer K, 2002, OECOLOGIA, V131, P375, DOI 10.1007/s00442-002-0913-9; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Gilbert JDJ, 2010, AM NAT, V176, P212, DOI 10.1086/653661; Gilchrist George W., 2001, P219, DOI 10.1017/CBO9780511609084.008; Gillooly JF, 2002, NATURE, V417, P70, DOI 10.1038/417070a; Gomez JM, 2004, EVOLUTION, V58, P71, DOI 10.1111/j.0014-3820.2004.tb01574.x; Green BS, 2008, ADV MAR BIOL, V54, P1, DOI 10.1016/S0065-2881(08)00001-1; GROSS MR, 1985, AM ZOOL, V25, P807; Heath DD, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P178; Hendriks AJ, 2008, OECOLOGIA, V155, P705, DOI 10.1007/s00442-007-0952-3; Hendry AP, 2003, EVOL ECOL RES, V5, P421; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; Hofmeyr MD, 2005, CAN J ZOOL, V83, P1343, DOI 10.1139/Z05-132; Hunt J, 2000, EVOLUTION, V54, P936; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Ikeda H, 2008, EVOLUTION, V62, P2065, DOI 10.1111/j.1558-5646.2008.00432.x; IVERSON JB, 1993, COPEIA, P1; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; Kindsvater HK, 2011, J EVOLUTION BIOL, V24, P2230, DOI 10.1111/j.1420-9101.2011.02351.x; Kindsvater HK, 2014, AM NAT, V184, P543, DOI 10.1086/678248; Kindsvater HK, 2010, EVOL ECOL RES, V12, P327; King EG, 2011, J EVOLUTION BIOL, V24, P256, DOI 10.1111/j.1420-9101.2010.02160.x; King EG, 2011, EVOLUTION, V65, P2273, DOI 10.1111/j.1558-5646.2011.01296.x; Kishi S, 2014, ECOL ENTOMOL, V39, P355, DOI 10.1111/een.12102; Kjesbu OS, 1996, CAN J FISH AQUAT SCI, V53, P610, DOI 10.1139/f95-215; Krogman WM., 1951, SCI AM, V184, P54; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lalonde RG, 2005, J ANIM ECOL, V74, P630, DOI 10.1111/j.1365-2656.2005.00958.x; LALONDE RG, 1991, AM NAT, V138, P680, DOI 10.1086/285242; Leon JA, 2000, J THEOR BIOL, V205, P563, DOI 10.1006/jtbi.2000.2086; Lim JN, 2014, EVOLUTION, V68, P2306, DOI 10.1111/evo.12446; LONG DR, 1989, J HERPETOL, V23, P315, DOI 10.2307/1564462; Louhi P, 2015, ECOL FRESHW FISH, V24, P23, DOI 10.1111/eff.12121; Lovich JE, 2012, AMPHIBIA-REPTILIA, V33, P161, DOI 10.1163/156853812X634035; Macip-Rios R, 2013, CHELONIAN CONSERV BI, V12, P218, DOI 10.2744/CCB-1038.1; Marshall DJ, 2006, ECOLOGY, V87, P214, DOI 10.1890/05-0350; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; Marshall DJ, 2010, ECOLOGY, V91, P2862, DOI 10.1890/09-0156.1; Marteinsdottir G, 1998, J FISH BIOL, V52, P1241, DOI 10.1006/jfbi.1998.0670; Mazzoldi C, 2002, MAR ECOL PROG SER, V233, P231, DOI 10.3354/meps233231; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MCGINLEY MA, 1989, EVOL ECOL, V3, P150, DOI 10.1007/BF02270917; McIntyre GS, 2000, HEREDITY, V85, P480, DOI 10.1046/j.1365-2540.2000.00787.x; NUSSBAUM RA, 1989, AM NAT, V133, P591, DOI 10.1086/284939; ORZACK SH, 1994, AM NAT, V143, P361, DOI 10.1086/285608; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PIANKA ER, 1976, AM ZOOL, V16, P775; Plaistow SJ, 2006, AM NAT, V167, P206, DOI 10.1086/499380; Plaistow SJ, 2007, AM NAT, V170, P520, DOI 10.1086/521238; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; RAHN H, 1975, AUK, V92, P750, DOI 10.2307/4084786; Reale D, 2000, J EVOLUTION BIOL, V13, P679, DOI 10.1046/j.1420-9101.2000.00205.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roff D. A., 2012, EVOLUTION, V66, P2593; ROFF DA, 2002, LIFE HIST EVOLUTION; Rollinson N, 2008, COPEIA, P533, DOI 10.1643/CE-06-203; Rollinson N, 2008, OIKOS, V117, P144, DOI 10.1111/j.2007.0030-1299.16088.x; Rollinson N, 2013, AM NAT, V182, P76, DOI 10.1086/670648; Rollinson N, 2013, ECOLOGY, V94, P315, DOI 10.1890/2-0552.1; Rollinson N, 2012, ZOOLOGY, V115, P160, DOI 10.1016/j.zool.2011.10.005; Rollinson N, 2010, EVOL ECOL RES, V12, P949; Rollinson N, 2011, OECOLOGIA, V166, P889, DOI 10.1007/s00442-011-1945-9; Sakai S, 2005, OIKOS, V108, P105, DOI 10.1111/j.0030-1299.2005.13232.x; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; Schrader M, 2012, EVOLUTION, V66, P272, DOI 10.1111/j.1558-5646.2011.01422.x; Schultz D. L., 1991, EVOLUTIONARY ECOLOGY, V5, P414; Schwarzkopf L, 1999, AM NAT, V154, P333, DOI 10.1086/303242; SHINE R, 1989, AM NAT, V134, P311, DOI 10.1086/284982; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Sikes RS, 1998, EVOL ECOL, V12, P179, DOI 10.1023/A:1006531728971; SIKES RS, 1995, J MAMMAL, V76, P348, DOI 10.2307/1382346; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STANTON ML, 1984, ECOLOGY, V65, P1105, DOI 10.2307/1938318; Su GS, 1997, AQUACULTURE, V154, P115, DOI 10.1016/S0044-8486(97)00050-1; Summers K, 2006, P ROY SOC B-BIOL SCI, V273, P687, DOI 10.1098/rspb.2005.3368; Takahashi K, 2005, EVOL ECOL RES, V7, P1201; Tamate T, 2000, OIKOS, V90, P209, DOI 10.1034/j.1600-0706.2000.900201.x; Thomson FJ, 2011, J ECOL, V99, P1299, DOI 10.1111/j.1365-2745.2011.01867.x; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413; Visman V, 1996, ECOSCIENCE, V3, P173, DOI 10.1080/11956860.1996.11682328; WALL R, 1986, ECOL ENTOMOL, V11, P445, DOI 10.1111/j.1365-2311.1986.tb00323.x; Warne RW, 2008, AM NAT, V172, pE80, DOI 10.1086/589880; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; Worley AC, 2003, AM NAT, V161, P153, DOI 10.1086/345461; Yanagi S, 2012, J INSECT PHYSIOL, V58, P1432, DOI 10.1016/j.jinsphys.2012.08.007; ZASTROW CE, 1989, RAP PROCES, V191, P34; ZUG GR, 1972, ANIM BEHAV, V20, P439, DOI 10.1016/S0003-3472(72)80006-X 131 22 22 2 31 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. NOV 2016 91 4 1134 1148 10.1111/brv.12214 15 Biology Life Sciences & Biomedicine - Other Topics DZ1AG WOS:000385570300015 26289842 2019-02-21 J Merrill, L; Baehl, EM; Ripple, KE; Benson, TJ Merrill, Loren; Baehl, Elizabeth M.; Ripple, Kaitlyn E.; Benson, Thomas J. Do Birds Alter Levels of Parental Investment Based on Nest-Site Habitat Features? ETHOLOGY English Article nest defense; parental investment; habitat gradient; shrubland; environmental cues; nest predation BEHAVIORAL SYNDROMES; MOBBING BEHAVIOR; PREDATION RISK; DEFENSE; URBAN; FLYCATCHER; SUCCESS Many habitats have undergone rapid changes over the past century as a result of anthropogenic activities. Organisms can respond to changes in their environment in many ways, including how much they invest in a given reproductive bout. Optimality theory and life history theory together have provided a framework for understanding how individuals make decisions about the risks and rewards of investing high levels of resources into their offspring within the context of current vs. future reproduction. Shrubland birds in the United States often breed in habitat that has been impacted by humans to varying degrees and provide an ideal system for examining whether organisms alter their levels of parental investment based on the habitat around the nest site. In this study, we assessed levels of nest-defense behavior during a simulated nest predation event in four shrubland birds: American robins (Turdus migratorius), gray catbirds (Dumetella carolinensis), brown thrashers (Toxostoma rufum), and northern cardinals (Cardinalis cardinalis). We found that thrashers and catbirds exhibited significantly higher levels of nest defense compared to robins and cardinals and that birds with larger broods acted more aggressively in defending them. We also found that thrashers acted less aggressively as the proportion of shrubland around the nest increased and as the proportion of developed land around the nest decreased and that cardinals acted less aggressively as the proportion of developed land around the nest increased. These patterns suggest that nest-defense behavior can covary with features of the landscape surrounding the nest, but that the factors shaping that behavior can differ by species. [Merrill, Loren; Ripple, Kaitlyn E.; Benson, Thomas J.] Univ Illinois, Prairie Res Inst, Illinois Nat Hist Survey, 1816 S Oak St, Champaign, IL 61822 USA; [Baehl, Elizabeth M.] Univ Illinois, Dept Anim Sci, 328 Mumford Hall, Urbana, IL 61801 USA Merrill, L (reprint author), Univ Illinois, Prairie Res Inst, Illinois Nat Hist Survey, 1816 S Oak St, Champaign, IL 61822 USA. loren21@illinois.edu USFWS; IDNR Federal Aid in Wildlife Restoration [W-181-R]; Illinois Natural History Survey We thank members of the field crews (Scott Chiavacci, Emilie Ospina, Michael Olsta, Jason Newton, Caitlin Elkins, Eric Peterson, Victoria Lima, Ohad Paris, Andy Ondrejecht, Lauren Novak, Price Dickson, Shannon Darcy, and Morgan Helfrich) for their assistance in nest searching and conducting simulated nest predation events. Thanks to Tara Stewart for help in the field and feedback on the manuscript. Thanks to Steve Buck for access to the University of Illinois' Vermillion River Observatory, Champaign County Forest Preserve District, Urbana Parks District and Derek Liebert, Forest Preserve District of Kane County, and Illinois Department of Natural Resources for use of their properties. Funding was provided by the USFWS and IDNR Federal Aid in Wildlife Restoration grant number W-181-R to TJB and the Illinois Natural History Survey as part of a postdoctoral fellowship to LM. All procedures were approved by the University of Illinois, Urbana-Champaign IACUC under protocol number 14072. All authors declare no conflict of interests. ANDERSSON M, 1980, ANIM BEHAV, V28, P536, DOI 10.1016/S0003-3472(80)80062-5; BARASH DP, 1975, WILSON BULL, V87, P367; Benson TJ, 2010, J ANIM ECOL, V79, P225, DOI 10.1111/j.1365-2656.2009.01604.x; Beyer H. L., 2012, GEOSPATIAL MODELLING; Bhardwaj M, 2015, WILSON J ORNITHOL, V127, P421; Blair RB, 1996, ECOL APPL, V6, P506, DOI 10.2307/2269387; BOUCHER DH, 1977, AM NAT, V111, P786, DOI 10.1086/283207; BRUNTON DH, 1986, WILSON BULL, V98, P605; Chiavacci S.J., 2016, THESIS; CURIO E, 1975, ANIM BEHAV, V23, P1, DOI 10.1016/0003-3472(75)90056-1; CURIO E, 1984, Z TIERPSYCHOL, V66, P101; D'Amore A, 2010, BIOL INVASIONS, V12, P145, DOI 10.1007/s10530-009-9438-z; Deikumah JP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128521; Dinkins JB, 2014, CAN J ZOOL, V92, P319, DOI 10.1139/cjz-2013-0263; ESRI, 2011, ARCGIS DESKT REL 10; Evans J, 2010, ETHOLOGY, V116, P588, DOI 10.1111/j.1439-0310.2010.01771.x; Fahrig L, 2003, ANNU REV ECOL EVOL S, V34, P487, DOI 10.1146/annurev.ecolsys.34.011802.132419; GOTTFRIED BM, 1979, CONDOR, V81, P251, DOI 10.2307/1367626; HINDE RA, 1954, PROC R SOC SER B-BIO, V142, P331, DOI 10.1098/rspb.1954.0029; Ibanez-Alamo JD, 2015, J ORNITHOL, V156, pS247, DOI 10.1007/s10336-015-1207-4; Jeliazkov A, 2016, AGR ECOSYST ENVIRON, V216, P9, DOI 10.1016/j.agee.2015.09.017; KNIGHT RL, 1986, ANIM BEHAV, V34, P561, DOI 10.1016/S0003-3472(86)80125-7; KNIGHT RL, 1986, ANIM BEHAV, V34, P887, DOI 10.1016/S0003-3472(86)80075-6; KNIGHT RL, 1987, CONDOR, V89, P175, DOI 10.2307/1368772; Komdeur J, 1999, BEHAV ECOL, V10, P648, DOI 10.1093/beheco/10.6.648; Kontiainen P, 2009, BEHAV ECOL, V20, P789, DOI 10.1093/beheco/arp062; Lamanna JA, 2015, ECOLOGY, V96, P1670, DOI 10.1890/14-1333.1; Mahr K, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.1670; Martin TE, 2009, ANN NY ACAD SCI, V1168, P201, DOI 10.1111/j.1749-6632.2009.04577.x; Marzluff J. M., 2008, CITIES ENV, V1, P1, DOI DOI 10.15365/CATE.1262008; Marzluff JM, 2006, BIOL CONSERV, V130, P301, DOI 10.1016/j.biocon.2005.12.026; MCLEAN IG, 1986, BEHAVIOUR, V96, P171, DOI 10.1163/156853986X00270; Mizuta T, 2005, ECOL RES, V20, P547, DOI 10.1007/s11284-005-0066-5; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; PATTERSON TL, 1980, BEHAV ECOL SOCIOBIOL, V7, P227, DOI 10.1007/BF00299368; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Rehage JS, 2004, BIOL INVASIONS, V6, P379, DOI 10.1023/B:BINV.0000034618.93140.a5; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rodewald AD, 2011, ECOL APPL, V21, P936, DOI 10.1890/10-0863.1; Sauer J. R., 2014, N AM BREEDING BIRD S; Scales J, 2011, ETHOLOGY, V117, P887, DOI 10.1111/j.1439-0310.2011.01943.x; Seress G, 2015, ACTA ZOOL ACAD SCI H, V61, P373; Sih A, 2011, EVOL APPL, V4, P367, DOI 10.1111/j.1752-4571.2010.00166.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stirnemann RL, 2015, AUSTRAL ECOL, V40, P974, DOI 10.1111/aec.12282; TRIVERS RL, 1974, AM ZOOL, V14, P249; Woodard JD, 1999, ANIM BEHAV, V57, P105, DOI 10.1006/anbe.1998.0998 47 0 0 3 45 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology NOV 2016 122 11 859 868 10.1111/eth.12535 10 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology DZ1BD WOS:000385572700002 2019-02-21 J Cheng, YR; Mayfield, AB; Meng, PJ; Dai, CF; Huys, R Cheng, Yu-Rong; Mayfield, Anderson B.; Meng, Pei-Jie; Dai, Chang-Feng; Huys, Rony Copepods associated with scleractinian corals: a worldwide checklist and a case study of their impact on the reef-building coral Pocillopora damicornis (Linnaeus, 1758) (Pocilloporidae) ZOOTAXA English Article; Proceedings Paper 12th International Conference on Copepoda (ICOC) JUL 14-18, 2014 Hanyang Univ, Seoul, SOUTH KOREA World Assoc Copepodologists Hanyang Univ bleaching; checklist; copepod; coral reef; infection; Symbiodinium; Scleractinia; symbiosis; water pollution GARDINEROSERIS-PLANULATA DANA; PAVONA EXPLANULATA LAMARCK; HOST-PARASITE INTERACTIONS; GREAT-BARRIER-REEF; SP-N COPEPODA; NEW-CALEDONIA; CLIMATE-CHANGE; INDO-PACIFIC; POECILOSTOMATOID COPEPODS; HARPACTICOID COPEPODS The Cnidaria have more symbiotic copepods than any other group of invertebrates, and the greatest numbers of these associates occur on hard corals. A review of the scattered literature on the diversity and taxonomic composition of scleractinian-associated copepods and their hosts revealed a total of 148 coral species, representing 66 genera and 15 families that serve as hosts to copepods. At present, 363 copepod species, representing 99 genera, 19 families and three orders, have been recorded as associates of scleractinian corals. The total included 288 cyclopoids, 68 siphonostomatoids and seven harpacticoids. Within the Cyclopoida the representation of species varied greatly among the 13 families, with a disproportionate number of species belonging to the Anchimolgidae (141 species) and Xarifiidae (92 species). Data on host utilization and geographical distribution of all copepods living symbiotically with hard corals is synthesized and host specificity patterns are highlighted. The prevalence, intensity, density, and biodiversity of copepod infection of 480 colonies of the reef-building coral Pocillopora damicornis (Linnaeus, 1758) from Nanwan Bay, southern Taiwan were documented between July 2007 and November 2008. It was hypothesized that certain environmental factors and physiological coral traits, such as the density of Symbiodinium, could influence these infection parameters. Analysis revealed that ectoparasitic copepods were the most likely to infect P. damicornis, and that Asteropontius minutus Kim, 2003 accounted for more than 50% of total copepod density in July-September 2007 when temperatures were high and bleaching occurred in similar to 75% of the sampled colonies. The data further showed that copepod virulence may be related to their life history strategies, as well as to Symbiodinium density, surface area of the host coral colonies, and concentration of nitrate and chlorophyll-a in the surrounding seawater. By tracking the abundance, diversity, and performance of infectious copepods prior, throughout, and after a natural bleaching event, the potential to use these parasites as bioindicators for predicting the future physiological performance of P. damicornis in response to environmental change, particularly bleaching events, may ultimately be further explored, developed and maximized. Humesimyzon Kim, 2010, previously placed in the Asterocheridae, is tentatively transferred to the recently resurrected family Coralliomyzontidae. The authorship and spelling of Pseudanthessius thorellii (Brady, 1880) are corrected. [Cheng, Yu-Rong; Dai, Chang-Feng] Natl Taiwan Univ, Inst Oceanog, 1 Sec 4,Roosevelt Rd, Taipei 106, Taiwan; [Mayfield, Anderson B.; Meng, Pei-Jie] Natl Museum Marine Biol & Aquarium, Pingtung, Taiwan; [Mayfield, Anderson B.] Living Oceans Fdn, Landover, MD USA; [Huys, Rony] Nat Hist Museum, Dept Life Sci, Cromwell Rd, London SW7 5BD, England Huys, R (reprint author), Nat Hist Museum, Dept Life Sci, Cromwell Rd, London SW7 5BD, England. d94241001@ntu.edu.tw; andersonblairmayfield@gmail.com; pjmeng@nmmba.gov.tw; corallab@ntu.edu.tw; rjh@nhm.ac.uk DAI, CHANG-FENG/0000-0003-2242-5643 Alcock A., 1902, TIJDSCHRIFT NEDERLAN, V7, P89; Bandera ME, 2008, ZOOL J LINN SOC-LOND, V152, P635, DOI 10.1111/j.1096-3642.2008.00375.x; Bassett-Smith P.W., 1890, ANN MAGAZINE NATURAL, V6, P353; Bernard H., 1897, CATALOGUE MADREPORAR, V3, P1; Bernard H., 1896, CATALOGUE MADREPORAR, V2, P1; Bieger A, 2009, OECOLOGIA, V160, P247, DOI 10.1007/s00442-009-1297-x; BLACK NA, 1995, BIOL BULL, V188, P234, DOI 10.2307/1542301; Boeck A., 1860, FORHANDLINGER VIDENS, V1859, P171; Boxshall G. A, 2004, INTRO COPEPOD DIVERS; Brady G. S., 1873, Annals of Natural History, V(4), P126; Brady G.S., 1880, MONOGRAPH FREE SEMIP, V3; BRADY GS, 1876, REPORT BRIT ASS ADV, V45, P185; Brook G, 1891, ANN MAGAZINE NATURAL, V8, P458; BROOK G, 1893, CATALOGUE MADREPORAR, V1, P1; Brook G., 1892, ANN MAGAZINE NATURAL, V10, P451; Brown MJF, 2000, OIKOS, V91, P421, DOI 10.1034/j.1600-0706.2000.910302.x; Bruggemann F., 1877, ABHANDLUNGEN HERAUSG, V5, P395; Bruggemann F, 1879, J MUSEUM GODEFFROY H, V14, P201; Bush AO, 1997, J PARASITOL, V83, P575, DOI 10.2307/3284227; BUTTER ME, 1979, BIJDR DIERKD, V48, P140; Canario R, 2012, ZOOSYMPOSIA, V8, P49; CARMAN KR, 1985, MAR BIOL, V88, P143, DOI 10.1007/BF00397161; CASTRO P, 1988, SYMBIOSIS, V5, P161; Chamisso A. de, 1821, NOVA ACTA PHYSICOMED, V10, P343; Cheng YR, 2010, CORAL REEFS, V29, P13, DOI 10.1007/s00338-009-0559-8; Cheng YR, 2009, CORAL REEFS, V28, P681, DOI 10.1007/s00338-009-0493-9; Cheng YR, 2007, CRUSTACEANA, V80, P1135, DOI 10.1163/156854007782008531; Cheng YR, 2016, ZOOTAXA, V4174, P346, DOI 10.11646/zootaxa.4174.1.21; Cheng YR, 2016, ZOOTAXA, V4174, P274, DOI 10.11646/zootaxa.4174.1.19; Cheng Yu-Rong, 2011, Journal of the Fisheries Society of Taiwan, V38, P31; Cheng YR, 2011, ZOOL STUD, V50, P605; Cheng YR, 2011, SYST PARASITOL, V79, P227, DOI 10.1007/s11230-011-9305-z; Cheng Yu-Rong, 2010, Journal of the Fisheries Society of Taiwan, V37, P273; Cheng YR, 2009, SYST PARASITOL, V74, P17, DOI 10.1007/s11230-009-9188-4; Cheng YR, 2008, CRUSTACEANA, V81, P1099, DOI 10.1163/156854008X360833; Chevalier JP, 1971, EXPEDITION FRANCAISE, V5, P1; Clarke K, 2001, CHANGE MARINE COMMUN; Claus C., 1863, FREILEBENDEN COPEPOD; Conradi M, 2006, J NAT HIST, V40, P739, DOI 10.1080/00222930600774210; Conradi M, 2011, ZOOTAXA, P1; CORBEL MJ, 1975, J FISH BIOL, V7, P539, DOI 10.1111/j.1095-8649.1975.tb04630.x; Crossland C, 1952, BRITISH MUSEUM NATUR, VVI, P85; Cruz J, 2013, J PLANKTON RES, V35, P1046, DOI 10.1093/plankt/fbt057; Dana J. D., 1846, US EXPLORING EXPEDIT, VVII; Dana J. D., 1846, US EXPLORING EXPEDIT, VVII, p[121, 721]; Dana J. D., 1846, US EXPLORING EXPEDIT, V7, P1; de Blainville H.-M.D., 1830, DICT SCI NATURELLES, V60; Della Valle A., 1880, LICHOMOLGUS MITTHEIL, V2, P83; DOJIRI M, 1990, AUST J ZOOL, V37, P695; DOJIRI M, 1988, J CRUSTACEAN BIOL, V8, P99, DOI 10.2307/1548435; Downs CA, 2005, MAR POLLUT BULL, V51, P486, DOI 10.1016/j.marpolbul.2005.06.028; Downs CA, 2000, MAR BIOTECHNOL, V2, P533, DOI 10.1007/s101260000038; Duchassaing P., 1861, MEMORIE REALE ACCADE, V19, P279; Dzikowski R, 2003, HELGOLAND MAR RES, V57, P220, DOI 10.1007/s10152-003-0138-2; EDWARDS HM, 1951, ANN SC NAT PARIS, V16, P21; Ehrenberg C. G., 1834, ABHANDLUNGEN KONIGLI, P225; Ellis J., 1786, NATURAL HIST MANY CU, V4; Esper E.C.J., 1791, FORTSETZUNGEN PFLANZ, P1; Esper E.C.J., 1794, FORTSETZUNGEN PFLANZ, P221; Esper E.C.J., 1793, FORTSETZUNGEN PFLANZ, P181; Esper E.C.J., 1792, FORTSETZUNGEN PFLANZ; Esper E.C.J., 1791, FORTSETZUNGEN PFLANZ; Esper E.J.C., 1790, FORTSETZUNGEN PFLANZ, P197; Fang LS, 1997, CORAL REEFS, V16, P127, DOI 10.1007/s003380050066; Forskal P., 1775, DESCRIPTIONES ANIMAL; Gardiner J. S., 1898, Proceedings of the Zoological Society, P525; GEDDES DC, 1968, SARSIA, P9; Gerlach S.A., 1960, ATOLL RES B, V23, p[356, 1]; Giesbrecht W., 1897, ZOOL ANZ, V20, P17; Giesbrecht W., 1897, ZOOL ANZ, V20, P9; GLADFELTER WB, 1982, B MAR SCI, V32, P639; Gomez Andres, 2013, International Journal for Parasitology Parasites and Wildlife, V2, P222, DOI 10.1016/j.ijppaw.2013.07.002; Gravier Ch, 1911, ANN I OCEANOGRAPHIQU, V2, P1; Grube A.E., 1869, ABHANDLUNGEN SCHLESI, V1868-69, P91; Haime J., 1851, ANN SCI NATURELLES 3, V15, P73; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Harris VA, 2014, REC AUST MUS, V66, P167, DOI 10.3853/j.2201-4349.66.2014.1596; Harvell CD, 2002, SCIENCE, V296, P2158, DOI 10.1126/science.1063699; Harvell D, 2001, HYDROBIOLOGIA, V460, P97, DOI 10.1023/A:1013169331913; HERRIOTT AB, 1979, CRUSTACEANA, V36, P166, DOI 10.1163/156854079X00357; HICKS GRF, 1983, OCEANOGR MAR BIOL, V21, P67; Ho JS, 2013, CRUSTACEANA, V86, P639, DOI 10.1163/15685403-00003184; Ho JS, 2010, CRUSTACEANA, V83, P89, DOI 10.1163/001121609X12511103974574; Ho Ju-Shey, 2008, Journal of the Fisheries Society of Taiwan, V35, P147; Hoegh-Guldberg O, 1999, MAR FRESHWATER RES, V50, P839, DOI 10.1071/MF99078; HOFFMEISTER JE, 1925, PAPERS DEP MARINE BI, V22, P1; HOI KIM IL, 2004, [Animal Systematics, Evolution and Diversity, 한국동물분류학회지], V20, P109; HOLMES JC, 1995, WILDLIFE RES, V22, P11, DOI 10.1071/WR9950011; Holroyd PA, 2012, CRUSTACEANA, V85, P767, DOI 10.1163/156854012X649522; Hooff RC, 2006, LIMNOL OCEANOGR, V51, P2607, DOI 10.4319/lo.2006.51.6.2607; Houttuyn M., 1772, NATUURLYKE HIST UITV, VI, pi; HUDSON DA, 1992, AQUACULTURE, V105, P269, DOI 10.1016/0044-8486(92)90092-Y; HUMES A G, 1991, Bulletin Zoologisch Museum Universiteit van Amsterdam, V13, P17; HUMES A G, 1978, Publications of the Seto Marine Biological Laboratory, V24, P387; HUMES A G, 1985, Publications of the Seto Marine Biological Laboratory, V30, P277; HUMES A G, 1981, Journal of Crustacean Biology, V1, P227, DOI 10.2307/1548161; HUMES A G, 1968, Bulletin of the Museum of Comparative Zoology, V136, P353; HUMES A G, 1981, Proceedings of the Biological Society of Washington, V94, P254; Humes A.G., 1973, Zoologischer Anz, V190, P312; Humes A. G., 1964, Crustaceana, V6, P238, DOI 10.1163/156854064X00650; Humes A.G., 1973, Smithsonian Contributions to Zoology, VNo. 127, P1; HUMES A G, 1978, Smithsonian Contributions to Zoology, P1; Humes A. G., 1964, Trav Centre oceanogr Peches Nosy-Be, VNo. 6, P131; HUMES A G, 1972, Bulletin Zoologisch Museum Universiteit van Amsterdam, V2, P121; HUMES A G, 1968, Bulletin of the Museum of Comparative Zoology, V136, P415; Humes A. G., 1967, Proceedings of the United States National Museum, V122, P1; HUMES A G, 1982, Beaufortia, V32, P139; Humes A. G., 1960, Kieler Meeresforschungen, V16, P229; HUMES A G, 1983, Bulletin Zoologisch Museum Universiteit van Amsterdam, V9, P93; HUMES A. G., 1962, CRUSTACEANA, V4, P47, DOI 10.1163/156854062X00067; HUMES A G, 1992, Invertebrate Taxonomy, V6, P303, DOI 10.1071/IT9920303; HUMES A G, 1990, Beaufortia, V41, P121; Humes A. G., 1962, Bulletin of the Museum of Comparative Zoology, V128, P37; Humes A.G., 1973, SMITHS CONTR ZOOL, V127, pi; Humes A.G., 1995, PUBLICATIONS SETO MA, V37, P1; Humes AG, 1997, J NAT HIST, V31, P57, DOI 10.1080/00222939700770051; HUMES AG, 1995, J NAT HIST, V29, P65, DOI 10.1080/00222939500770041; HUMES AG, 1991, J NAT HIST, V25, P1171, DOI 10.1080/00222939100770751; HUMES AG, 1992, P BIOL SOC WASH, V105, P268; HUMES AG, 1984, ZOOL SCR, V13, P33, DOI 10.1111/j.1463-6409.1984.tb00020.x; HUMES AG, 1984, ZOOL SCR, V13, P209, DOI 10.1111/j.1463-6409.1984.tb00038.x; HUMES AG, 1991, P BIOL SOC WASH, V104, P101; HUMES AG, 1983, J NAT HIST, V17, P257, DOI 10.1080/00222938300770221; HUMES AG, 1985, B MAR SCI, V36, P467; HUMES AG, 1979, ZOOL J LINN SOC-LOND, V66, P95, DOI 10.1111/j.1096-3642.1979.tb01904.x; HUMES AG, 1985, T AM MICROSC SOC, V104, P313, DOI 10.2307/3226484; Humes AG, 1997, ZOOL SCR, V26, P51, DOI 10.1111/j.1463-6409.1997.tb00408.x; Humes AG, 1997, HYDROBIOLOGIA, V344, P195, DOI 10.1023/A:1002974816780; Humes AG, 1996, CONTRIB ZOOL, V66, P193; Humes AG, 1996, ZOOL J LINN SOC-LOND, V118, P59; HUMES AG, 1975, ZOOL J LINN SOC-LOND, V56, P171, DOI 10.1111/j.1096-3642.1975.tb00815.x; HUMES AG, 1992, HYDROBIOLOGIA, V234, P41, DOI 10.1007/BF00010778; HUMES AG, 1994, HYDROBIOLOGIA, V293, P1, DOI 10.1007/BF00229916; HUMES AG, 1984, CAH BIOL MAR, V25, P181; HUMES AG, 1979, CAH BIOL MAR, V20, P77; HUMES AG, 1991, ZOOL SCR, V20, P277, DOI 10.1111/j.1463-6409.1991.tb00291.x; HUMES AG, 1974, T AM MICROSC SOC, V93, P153, DOI 10.2307/3225283; HUMES AG, 1986, SYST PARASITOL, V8, P187, DOI 10.1007/BF00009887; HUMES AG, 1979, PAC SCI, V33, P195; HUMES AG, 1974, PAC SCI, V28, P383; HUMES AG, 1979, J NAT HIST, V13, P507, DOI 10.1080/00222937900770391; HUMES AG, 1978, HYDROBIOLOGIA, V58, P119, DOI 10.1007/BF00007993; Humes Arthur G., 1994, Beaufortia, V44, P1; Humes Arthur G., 1995, Bulletin du Museum National d'Histoire Naturelle Section A Zoologie Biologie et Ecologie Animales, V17, P141; Humes Arthur G., 1996, Publications of the Seto Marine Biological Laboratory, V37, P1; Humes Arthur G., 1993, Invertebrate Taxonomy, V7, P805, DOI 10.1071/IT9930805; Huspeni TC, 2004, ECOL APPL, V14, P795, DOI 10.1890/01-5346; Huys R, 2006, BIOL J LINN SOC, V87, P403, DOI 10.1111/j.1095-8312.2005.00579.x; HUYS R, 2009, ZOOTAXA 0806, P1; Huys R, 2012, INT J PARASITOL, V42, P71, DOI 10.1016/j.ijpara.2011.10.009; Ivanenko VN, 2014, CORAL REEFS, V33, P637, DOI 10.1007/s00338-014-1186-6; Ivanenko V.N., 1999, CRUSTACEANS BIODIVER, VI, P207; Ivanenko VN, 2004, CRUSTACEANA, V77, P1131, DOI 10.1163/1568540042900286; Johnsson R, 2002, AM MUS NOVIT, P1, DOI 10.1206/0003-0082(2002)370<0001:ANSOCC>2.0.CO;2; Jones RJ, 1998, PLANT CELL ENVIRON, V21, P1219, DOI 10.1046/j.1365-3040.1998.00345.x; Karanovic T, 2014, ZOOL ANZ, V253, P512, DOI 10.1016/j.jcz.2014.07.002; Kim I.H., 2010, KOREAN J BIOL SCI, V8, P1; Kim I.-H., 2009, KOREAN J SYSTEMATIC, V7, P1; Kim IH, 2007, KOREAN J SYSTEMATAIC, V6, P1; Kim Ii-Hoi, 2014, Animal Systematics Evolution and Diversity, V30, P274, DOI 10.5635/ASED.2014.30.4.274; Kim II-Hoi, 2004, Korean Journal of Biological Sciences, V8, P165; Kim IH, 2007, J CRUSTACEAN BIOL, V27, P319, DOI 10.1651/S-2745.1; Kim Il-Hoi, 2005, Animal Cells and Systems, V9, P215; Kim Il-Hoi, 2006, Korean Journal of Systematic Zoology, V22, P63; Klunzinger CB, 1879, KORALLENTHIERE ROTHE, P1; Kuo CY, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044364; Lafferty KD, 2003, ECOL LETT, V6, P654, DOI 10.1046/j.1461-0248.2003.00480.x; Lamarck J. B. P. A. M, 1801, SYSTEME ANIMAUX SANS; Lamarck J.P.B., 1816, HIST NATURELLE ANIMA; Lee JM, 2003, KOREAN J RADIOL, V4, P1, DOI 10.3348/kjr.2003.4.1.1; Lesson R.-P., 1831, ILLUSTRATIONS ZOOLOG; Lesson R.-P., 1829, ZOOLOGY, P1; Leydig F, 1853, Z WISS ZOOL, V4, P377; Link D.H.F., 1807, BESCHREIBUNG NATURAL, P101; Linnaeus C., 1766, SYSTEMA NATURAE REGN, VI; Linnaeus C., 1758, SYSTEMA NATUROE REGN, VI; Linnaeus C, 1758, SYSTEMA NATURAE REGN, V1, p[i, 1], DOI DOI 10.5962/BHL.TITLE.542; Linnaeus C., 1767, SYSTEMA NATURAE 2, V1, P533; Marenzeller E. von, 1907, DENKSCHRIFT AKAD WIS, V80, P27; Matthai G., 1914, T LINN SOC LOND, V17, P1; Meng PJ, 2008, ENVIRON POLLUT, V156, P67, DOI 10.1016/j.envpol.2007.12.039; Milne Edwards H., 1860, HIST NATURELLE CORAL, V3; Milne Edwards H., 1848, ANN SCI NATURELLES 3, V10, P209; Milne Edwards H., 1850, MONOGRAPH BRIT FOSSI, pviii; Milne Edwards H, 1849, ANN SCI NATURELLES 3, V11, P233; Milne-Edwards H., 1851, ARCH MUSEUM HIST NAT, V5, P1; MISAKI H, 1978, B MARINE PARK RES ST, V2, P105; Moller AP, 2010, GLOBAL CHANGE BIOL, V16, P1158, DOI 10.1111/j.1365-2486.2009.02035.x; Moseley H.N., 1881, ZOOLOGY 1, V2, P238; Moseley H.N., 1881, ZOOLOGY, V2, P127; Moshe T., 1999, BIOCHEM BIOPH RES CO, V262, P103; Moudrova Mudrova S., 2014, 12 INT C COP SEOUL K, P204; Moudrova Mudrova S., 2014, 4 MOSC INT C MOL PHY, P6; Mouritsen KN, 2002, OIKOS, V97, P462, DOI 10.1034/j.1600-0706.2002.970318.x; Nair B.U., 1984, RECORDS ZOOLOGICAL S, V81, P357; NAIR BU, 1986, CRUSTACEANA, V50, P27; Norman A. M., 1911, Transactions of the Linnean Society 2nd Ser Zoology London, V11; O'Connor MI, 2007, P NATL ACAD SCI USA, V104, P1266, DOI 10.1073/pnas.0603422104; Ogden NH, 2006, INT J PARASITOL, V36, P63, DOI 10.1016/j.ijpara.2005.08.016; Ogut H, 2005, PARASITOL RES, V96, P149, DOI 10.1007/s00436-005-1346-2; Oken L., 1815, LEHRBUCH NATURGESCHI, P1; Overstreet R. M., 1997, Parassitologia (Rome), V39, P169; Page L. Kristen, 2013, International Journal for Parasitology Parasites and Wildlife, V2, P203, DOI 10.1016/j.ijppaw.2013.05.003; PALING JE, 1965, PARASITOLOGY, V55, P667; Pallas P. S., 1766, ELENCHUS ZOOPHYTORUM; Pallas PS, 1766, ELENCHUS ZOOPHYTORUM, P1; Perez JM, 2006, BIODIVERS CONSERV, V15, P2033, DOI 10.1007/s10531-005-0773-9; Porter JW, 2001, HYDROBIOLOGIA, V460, P1, DOI 10.1023/A:1013177617800; Poulin R, 2006, J HELMINTHOL, V80, P183, DOI 10.1079/JOH2006341; Price P. W., 1980, EVOLUTIONARY BIOL PA; Quelch J. J., 1884, Annals of Natural History, V(5), P292; Quelch JJ, 1886, ZOOLOGY, V16, P1; Quoy J.R.C., 1833, VOYAGES DECOUVERTES; Reaka-Kudla Marjorie L., 1997, P83; Richardson LL, 1998, REV BIOL TROP, V46, P187; Richardson LL, 1998, NATURE, V392, P557, DOI 10.1038/33302; RIEPER M, 1982, MAR ECOL PROG SER, V7, P303, DOI 10.3354/meps007303; Roe K. M., 1958, Proceedings of the Royal Irish Academy, V59B, P221; Rozsa L, 2000, J PARASITOL, V86, P228, DOI 10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2; Rueckert S, 2009, REG ENVIRON CHANGE, V9, P315, DOI 10.1007/s10113-008-0076-2; Ruppert Edward E, 2004, INVERTEBRATE ZOOLOGY; Saville-Kent W., 1893, GREAT BARRIER REEF A; Schall JJ, 1996, ADV PARASIT, V37, P255, DOI 10.1016/S0065-308X(08)60222-5; Scheer G., 1974, ZOOLOGICA, V42, P1; SCHWEIGGER AF, 1820, HDB NATURGESCHICHTE; Scott T., 1893, Annals of Natural History, Vxii, P237; Scott T, 1894, ANN MAG NAT HIST, V13, P137, DOI 10.1080/00222939408677678; SEBASTIAN M J, 1974, Crustaceana (Leiden), V26, P80, DOI 10.1163/156854074X00082; SEBASTIAN MJ, 1973, HYDROBIOLOGIA, V42, P143, DOI 10.1007/BF00014150; Seifried S, 2000, J NAT HIST, V34, P1595, DOI 10.1080/00222930050117503; Smallridge CJ, 2000, PARASITOL RES, V86, P655, DOI 10.1007/PL00008547; SNELGROVE PVR, 1989, MAR BIOL, V101, P249, DOI 10.1007/BF00391464; Solander D., 1786, SYSTEMATICALLY ARRAN, V4, p[1, 1]; Stella JS, 2011, OCEANOGR MAR BIOL, V49, P43; STIMSON J, 1991, J EXP MAR BIOL ECOL, V153, P63, DOI 10.1016/S0022-0981(05)80006-1; Stock J. H., 1969, Crustaceana, V16, P57; STOCK J H, 1985, Vie et Milieu, V35, P93; STOCK J H, 1975, Bulletin Zoologisch Museum Universiteit van Amsterdam, V4, P111; Stock J.H., 1989, STUDIES HONOUR PW HU, V123, P145; Stock J. H, 1975, STUD FAUNA CURACAO O, V47, P1; STOCK JAN H., 1960, CRUSTACEANA, V1, P218, DOI 10.1163/156854060X00276; STOCK JAN H., 1966, BEAUFORTIA SER MISC PUBLICATIONS ZOOL MUS AMSTERDAM, V13, P145; STOCK JH, 1985, HYDROBIOLOGIA, V120, P129, DOI 10.1007/BF00032133; STOCK JH, 1987, B MAR SCI, V40, P464; Studer T., 1901, ZOOL JB SYST, V14, P388; Stutchbury S, 1833, T LINN SOC LOND, V16, P493; Sures B, 2008, J FISH BIOL, V73, P2133, DOI 10.1111/j.1095-8649.2008.02057.x; Sures B, 2008, PARASITE, V15, P434, DOI 10.1051/parasite/2008153434; Thompson IC, 1903, REPORT GOVT CEYLON P, V7, P227; Thompson RCA, 2010, INT J PARASITOL, V40, P1163, DOI 10.1016/j.ijpara.2010.04.009; Umbgrove J. H. F., 1940, ZOOL MEDEDEEL LEY DEN, V22, P265; Ummerkutty A. N. P., 1966, Crustaceana, V11, P17, DOI 10.1163/156854066X00414; Ummerkutty A. N. P., 1968, J. mar. biol. Ass. India, V8, P302; Unnikrishnan Nair B., 1983, P11; Urrtmerkutty A. N. P., 1962, Journal of the Marine Biological Association of India, V3, P19; Varela Carlos, 2010, Cocuyo, V18, P31; Varela Carlos, 2005, Solenodon, V5, P6; Vaughan TW, 1907, US NATL MUSEUM B, V59, P1, DOI DOI 10.5479/SI.03629236.59.I; Vaughan TW, 1918, PAPERS DEP MARINE BI, V9, P49; Verill AE, 1866, P ESSEX I, V5, P17; Verrill A.E., 1901, T CONNECTICUT ACAD A, V11, P63; Verrill A. E., 1864, B MUS COMP ZOOL HARV, V1, P29; VERRILL AE, 1868, T CONNECTICUT ACAD A, V1, P377; Wells JW, 1936, AM J SCI, V31, P97; WELLS JW, 1968, PAC SCI, V22, P274; WoRMS Editorial Board, 2016, WORLD REGISTER MARIN; Yabe H., 1935, Journal of the Geological Society of Tokyo, V42, P379 267 6 7 2 17 MAGNOLIA PRESS AUCKLAND PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND 1175-5326 1175-5334 ZOOTAXA Zootaxa OCT 11 2016 4174 1 291 345 10.11646/zootaxa.4174.1.20 55 Zoology Zoology DY6PL WOS:000385249700018 27811803 2019-02-21 J Bjorklund, DF Bjorklund, David F. Incorporating Development Into Evolutionary Psychology: Evolved Probabilistic Cognitive Mechanisms EVOLUTIONARY PSYCHOLOGY English Article evolutionary developmental psychology; life history theory; developmental plasticity; evolved cognitive mechanisms; evolved probabilistic cognitive mechanisms TOOL-USE; HUMAN INFANTS; LIFE-HISTORY; EXPERIMENTAL MICROCULTURES; NEONATAL IMITATION; SOCIAL COGNITION; OVER-IMITATION; YOUNG-CHILDREN; CHIMPANZEES; PLAY Developmental thinking is gradually becoming integrated within mainstream evolutionary psychology. This is most apparent with respect to the role of parenting, with proponents of life history theory arguing that cognitive and behavioral plasticity early in life permits children to select different life history strategies, with such strategies being adaptive solutions to different fitness trade-offs. I argue that adaptations develop and are based on the highly plastic nature of infants' and children's behavior/cognition/brains. The concept of evolved probabilistic cognitive mechanisms is introduced, defined as information processing mechanisms evolved to solve recurrent problems faced by ancestral populations that are expressed in a probabilistic fashion in each individual in a generation and are based on the continuous and bidirectional interaction over time at all levels of organization, from the genetic through the cultural. Early perceptual/cognitive biases result in behavior that, when occurring in a species-typical environment, produce continuous adaptive changes in behavior (and cognition), yielding adaptive outcomes. Examples from social learning and tool use are provided, illustrating the development of adaptations via evolved probabilistic cognitive mechanisms. The integration of developmental concepts into mainstream evolutionary psychology (and evolutionary concepts into mainstream developmental psychology) will provide a clearer picture of what it means to be human. [Bjorklund, David F.] Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA Bjorklund, DF (reprint author), Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA. dbjorklu@fau.edu ABRAVANEL E, 1984, CHILD DEV, V55, P381, DOI 10.2307/1129950; ALEXANDER RD, 1989, HUMAN REVOLUTION, P455; Alvergne A., 2016, EVOLUTIONARY MED GUI; Anzures G, 2012, J EXP CHILD PSYCHOL, V112, P484, DOI 10.1016/j.jecp.2012.04.005; BAKEMAN R, 1990, CHILD DEV, V61, P794, DOI 10.2307/1130964; Bardi L, 2014, DEV PSYCHOL, V50, P986, DOI 10.1037/a0034678; Bardi L, 2011, DEVELOPMENTAL SCI, V14, P353, DOI 10.1111/j.1467-7687.2010.00985.x; Barrett TM, 2007, DEV PSYCHOL, V43, P352, DOI 10.1037/0012-1649.43.2.352; BAUMRIND D, 1967, GENET PSYCHOL MONOGR, V75, P43; Beier JS, 2012, CHILD DEV, V83, P486, DOI 10.1111/j.1467-8624.2011.01702.x; BELSKY J, 1981, DEV PSYCHOL, V17, P630, DOI 10.1037//0012-1649.17.5.630; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bender CE, 2009, ANIM COGN, V12, P43, DOI 10.1007/s10071-008-0169-9; Bering JM, 2000, DEV PSYCHOBIOL, V36, P218, DOI 10.1002/(SICI)1098-2302(200004)36:3<218::AID-DEV5>3.0.CO;2-K; BERTENTHAL BI, 1984, J EXP CHILD PSYCHOL, V37, P213, DOI 10.1016/0022-0965(84)90001-8; Bertenthal BI, 1996, ANNU REV PSYCHOL, V47, P431, DOI 10.1146/annurev.psych.47.1.431; Bjorklund D. F., 2011, OXFORD HDB PLAY, P153; Bjorklund DF, 2007, ADV CHILD DEV BEHAV, V35, P1; Bjorklund DF, 2006, DEV REV, V26, P213, DOI 10.1016/j.dr.2006.02.007; Bjorklund DF, 2015, DEV REV, V38, P13, DOI 10.1016/j.dr.2015.07.002; Bjorklund DF, 2014, DEV REV, V34, P225, DOI 10.1016/j.dr.2014.05.005; Bjorklund DF, 1997, PSYCHOL BULL, V122, P153, DOI 10.1037/0033-2909.122.2.153; Bjorklund DF, 2000, CHILD DEV, V71, P1687, DOI 10.1111/1467-8624.00258; BJORKLUND DF, 1987, DEV REV, V7, P86, DOI 10.1016/0273-2297(87)90006-2; BJORKLUND DF, 2002, ORIGINS HUMAN NATURE; Bloom P, 1998, TRENDS COGN SCI, V2, P67, DOI 10.1016/S1364-6613(98)01121-8; Bock John, 2005, NATURE PLAY GREAT AP, P254; BOESCH C, 1991, ANIM BEHAV, V41, P530, DOI 10.1016/S0003-3472(05)80857-7; Boesch C, 1998, CURR ANTHROPOL, V39, P591, DOI 10.1086/204785; Bourgeois KS, 2005, INFANCY, V8, P233, DOI 10.1207/s15327078in0803_3; Bowlby J., 1969, ATTACHMENT LOSS, V1; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brauer J, 2005, J COMP PSYCHOL, V119, P145, DOI 10.1037/0735-7036.119.2.145; Brooks R, 2002, DEV PSYCHOL, V38, P958, DOI 10.1037//0012-1649.38.6.958; Brooks-Gunn J., 2005, CHILDRENS COMPETENCE; Buss D., 2016, EVOLUTIONARY PSYCHOL; Buss D. M., 2005, EVOLUTIONARY PSYCHOL; Buss DM, 1998, AM PSYCHOL, V53, P533, DOI 10.1037/0003-066X.53.5.533; Buttelmann D, 2008, CHILD DEV, V79, P609, DOI 10.1111/j.1467-8624.2008.01146.x; Buttelmann D, 2007, DEVELOPMENTAL SCI, V10, pF31, DOI 10.1111/j.1467-7687.2007.00630.x; Byrne R. W., 2005, CURR BIOL, V15, pR489; Carpenter M, 1998, INFANT BEHAV DEV, V21, P315, DOI 10.1016/S0163-6383(98)90009-1; Carpenter M., 1998, MONOGR SOC RES CHILD, V63, P255, DOI DOI 10.2307/1166214; Casler K, 2005, DEVELOPMENTAL SCI, V8, P472, DOI 10.1111/j.1467-7687.2005.00438.x; Chen Z, 2000, MONOGR SOC RES CHILD, V65, pI; CHEYNE JA, 1983, DEV PSYCHOL, V19, P577, DOI 10.1037//0012-1649.19.4.577; CONNOLLY K, 1989, DEV PSYCHOL, V25, P894, DOI 10.1037//0012-1649.25.6.894; COOK M, 1989, J ABNORM PSYCHOL, V98, P448, DOI 10.1037//0021-843X.98.4.448; Csibra G, 2008, COGNITION, V107, P705, DOI 10.1016/j.cognition.2007.08.001; Csibra G, 2011, PHILOS T R SOC B, V366, P1149, DOI 10.1098/rstb.2010.0319; Cutting N, 2014, J EXP CHILD PSYCHOL, V125, P110, DOI 10.1016/j.jecp.2013.11.010; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; DeLoache JS, 2009, DEVELOPMENTAL SCI, V12, P201, DOI 10.1111/j.1467-7687.2008.00753.x; DENNETT DC, 1990, PHILOS PHENOMEN RES, V50, P177, DOI 10.2307/2108038; Dunbar RIM, 2003, ANNU REV ANTHROPOL, V32, P163, DOI 10.1146/annurev.anthro.32.061002.093158; Dunbar Robin, 2007, OXFORD HDB EVOLUTION; Duncker K, 1945, PSYCHOL MONOGR, V58, P1; Easterbrook MA, 1999, INFANT BEHAV DEV, V22, P17, DOI 10.1016/S0163-6383(99)80003-4; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Flynn E, 2012, CHILD DEV, V83, P911, DOI 10.1111/j.1467-8624.2012.01747.x; Gardiner AK, 2014, J EXP CHILD PSYCHOL, V119, P54, DOI 10.1016/j.jecp.2013.10.008; Gardiner AK, 2012, COGNITIVE DEV, V27, P240, DOI 10.1016/j.cogdev.2012.05.001; Gardiner AK, 2011, J COGN DEV, V12, P355, DOI 10.1080/15248372.2010.542216; Geary D., 2005, ORIGIN MIND EVOLUTIO; Geary D. C., 2010, MALE FEMALE EVOLUTIO; Geary DC, 2016, EVOL PSYCHOL-SER, P1, DOI 10.1007/978-3-319-29986-0; GEARY DC, 1995, AM PSYCHOL, V50, P24, DOI 10.1037/0003-066X.50.1.24; Gergely G., 2005, INTERACTION STUDIES, V6, P463, DOI DOI 10.1075/IS.6.3.10GER; German TP, 2002, J COGN DEV, V3, P279, DOI 10.1207/S15327647JCD0303_2; Gray P., 2016, EVOLUTIONARY PERSPEC, P66; Gredlein JM, 2005, HUM NATURE-INT BIOS, V16, P211, DOI 10.1007/s12110-005-1004-5; Hamlin JK, 2008, DEVELOPMENTAL SCI, V11, P487, DOI 10.1111/j.1467-7687.2008.00694.x; Hare B, 2011, ANNU REV ANTHROPOL, V40, P293, DOI 10.1146/annurev-anthro-081309-145726; Harris JR, 1998, NURTURE ASSUMPTION W; Harris L. J., 2005, CAMBRIDGE ENCY CHILD, P321; Hayne H., 2003, INT J EARLY YEARS ED, V11, P7, DOI DOI 10.1080/0966976032000066055; HEIMANN M, 1989, INFANT BEHAV DEV, V12, P495, DOI 10.1016/0163-6383(89)90029-5; Herrmann E, 2007, SCIENCE, V317, P1360, DOI 10.1126/science.1146282; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hopper LM, 2010, J EXP CHILD PSYCHOL, V106, P82, DOI 10.1016/j.jecp.2009.12.001; Horner V, 2005, ANIM COGN, V8, P164, DOI 10.1007/s10071-004-0239-6; Hutt C., 1966, S ZOOLOGICAL SOC LON, V18, P61; JACOBSON SW, 1979, CHILD DEV, V50, P425, DOI 10.2307/1129418; JOHNSON MH, 1991, COGNITION, V40, P1, DOI 10.1016/0010-0277(91)90045-6; Kelemen D, 2004, PSYCHOL SCI, V15, P295, DOI 10.1111/j.0956-7976.2004.00672.x; Kelly DJ, 2007, PSYCHOL SCI, V18, P1084, DOI 10.1111/j.1467-9280.2007.02029.x; Kelly DJ, 2009, J EXP CHILD PSYCHOL, V104, P105, DOI 10.1016/j.jecp.2009.01.006; Kenward B, 2012, J EXP CHILD PSYCHOL, V112, P195, DOI 10.1016/j.jecp.2012.02.006; Keupp S, 2013, J EXP CHILD PSYCHOL, V116, P392, DOI 10.1016/j.jecp.2013.07.002; Kovacs AM, 2010, SCIENCE, V330, P1830, DOI 10.1126/science.1190792; Kuhl PK, 2006, DEVELOPMENTAL SCI, V9, pF13, DOI 10.1111/j.1467-7687.2006.00468.x; Lancy D., 2015, ANTHR CHILDHOOD; Leavens DA, 2005, CURR DIR PSYCHOL SCI, V14, P185, DOI 10.1111/j.0963-7214.2005.00361.x; LICKLITER R, 1990, DEV PSYCHOBIOL, V23, P15, DOI 10.1002/dev.420230103; Lickliter R, 2003, PSYCHOL BULL, V129, P819, DOI 10.1037/0033-2909.129.6.819; Liszkowski U, 2007, J CHILD LANG, V34, P1, DOI 10.1017/S0305000906007689; LoBue V, 2010, J EXP CHILD PSYCHOL, V107, P59, DOI 10.1016/j.jecp.2010.04.005; LoBue V, 2010, DEVELOPMENTAL SCI, V13, P221, DOI 10.1111/j.1467-7687.2009.00872.x; Lockman JJ, 2000, CHILD DEV, V71, P137, DOI 10.1111/1467-8624.00127; Lyons DE, 2007, P NATL ACAD SCI USA, V104, P19751, DOI 10.1073/pnas.0704452104; Martin H., 1974, ADV PEDIATR, V21, P119; MCCARTNEY K, 1990, PSYCHOL BULL, V107, P226, DOI 10.1037//0033-2909.107.2.226; McGuigan N, 2011, BRIT J PSYCHOL, V102, P1, DOI 10.1348/000712610X493115; MELTZOFF AN, 1995, DEV PSYCHOL, V31, P838, DOI 10.1037/0012-1649.31.5.838; MELTZOFF AN, 1977, SCIENCE, V198, P75, DOI 10.1126/science.198.4312.75; Mondloch CJ, 1999, PSYCHOL SCI, V10, P419, DOI 10.1111/1467-9280.00179; NAGELL K, 1993, J COMP PSYCHOL, V107, P174, DOI 10.1037/0735-7036.107.2.174; Nettle D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012690; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; NICHD Early Child Care Res Network, 2002, PSYCHOL SCI, V13, P199; Nielsen M, 2006, DEV PSYCHOL, V42, P555, DOI 10.1037/0012-1649.42.3.555; Nielsen M, 2012, J COMP PSYCHOL, V126, P170, DOI 10.1037/a0025168; Nielsen M, 2010, PSYCHOL SCI, V21, P729, DOI 10.1177/0956797610368808; O'Connor TG, 2003, DEV PSYCHOPATHOL, V15, P671, DOI 10.1017/S0954579403000336; Ohman A, 2001, J EXP PSYCHOL GEN, V130, P466, DOI 10.1037/0096-3445.130.3.466; Oostenbroek J, 2016, CURR BIOL, V26, P1334, DOI 10.1016/j.cub.2016.03.047; Overton W. F., 2015, HDB CHILD PSYCHOL DE, V1, P9, DOI DOI 10.1002/9781118963418.CHILDPSY102; Pascalis O, 2005, P NATL ACAD SCI USA, V102, P5297, DOI 10.1073/pnas.0406627102; Pellegrini A. D., 2016, EVOLUTIONARY PERSPEC, P95; Pellegrini AD, 2004, HUM NATURE-INT BIOS, V15, P23, DOI 10.1007/s12110-004-1002-z; PETTIT GS, 1988, CHILD DEV, V59, P107, DOI 10.2307/1130393; Piaget J., 1962, PLAY DREAMS IMITATIO; Pinker S., 1997, MIND WORKS; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; Ploeger A, 2008, PSYCHOL INQ, V19, P1, DOI 10.1080/10478400701774006; Ramsey Jacklyn K., 2005, P89; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rubin KH, 1983, HDB CHILD PSYCHOL, P693; Ruiz AM, 2013, TOOL USE IN ANIMALS: COGNITION AND ECOLOGY, P119; RUSSELL J, 1991, BRIT J DEV PSYCHOL, V9, P331, DOI 10.1111/j.2044-835X.1991.tb00881.x; Salmon C, 2011, OXFORD HDB EVOLUTION; Schulz LE, 2008, CHILD DEV, V79, P395, DOI 10.1111/j.1467-8624.2007.01132.x; Schulz LE, 2007, DEV PSYCHOL, V43, P1045, DOI 10.1037/0012-1649.43.4.1045; Schulz LE, 2007, DEVELOPMENTAL SCI, V10, P322, DOI 10.1111/j.1467-7687.2007.00587.x; Shackelford T. K., 2014, EVOLUTION VIOLENCE; SHERROD KB, 1984, CHILD DEV, V55, P1174, DOI 10.2307/1129986; SIGMAN M, 1988, CHILD DEV, V59, P1251, DOI 10.1111/j.1467-8624.1988.tb01494.x; SIMON T, 1985, MERRILL PALMER QUART, V31, P265; Simon T., 1983, BRIT J DEV PSYCHOL, V1, P289, DOI DOI 10.1111/J.2044-835X.1983.TB00901.X; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SMITH PK, 1987, DEV PSYCHOL, V23, P49, DOI 10.1037//0012-1649.23.1.49; SMITH PK, 1979, CHILD DEV, V50, P830, DOI 10.1111/j.1467-8624.1979.tb02432.x; Spelke ES, 2007, DEVELOPMENTAL SCI, V10, P89, DOI 10.1111/j.1467-7687.2007.00569.x; Stearns S, 1992, EVOLUTION LIFE HIST; Sylva K., 1976, PLAY ITS ROLE DEV EV, P244; Thompson R. A., 2006, HDB CHILD PSYCHOL, V3, P24, DOI DOI 10.1002/9780470147658.CHPSY0302; Tomasello M, 2005, MONOGR SOC RES CHILD, V70, P1; TOMASELLO M, 1993, CHILD DEV, V64, P1688, DOI 10.2307/1131463; Tomasello M, 2009, WHY WE COOPERATE, P1; Tomasello M, 2000, CURR DIR PSYCHOL SCI, V9, P37, DOI 10.1111/1467-8721.00056; Tomasello M, 2007, DEVELOPMENTAL SCI, V10, P121, DOI 10.1111/j.1467-7687.2007.00573.x; Tomasello M, 2016, CHILD DEV, V87, P643, DOI 10.1111/cdev.12499; Tooby J., 2005, HDB EVOLUTIONARY PSY, P5, DOI DOI 10.1002/9780470939376.CH1; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; TURKEWITZ G, 1982, DEV PSYCHOBIOL, V15, P357, DOI 10.1002/dev.420150408; Volk AA, 2013, EVOL HUM BEHAV, V34, P182, DOI 10.1016/j.evolhumbehav.2012.11.007; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whiten A, 2010, MIND THE GAP: TRACING THE ORIGINS OF HUMAN UNIVERSALS, P429, DOI 10.1007/978-3-642-02725-3_20; Whiten A, 2010, DEV PSYCHOL, V46, P1694, DOI 10.1037/a0020786; Whiten A, 2009, PHILOS T R SOC B, V364, P2417, DOI 10.1098/rstb.2009.0069; Williamson RA, 2006, DEV PSYCHOL, V42, P723, DOI 10.1037/0012-1649.42.4.723; ZeiglerHill V, 2015, EVOL PSYCHOL-SER, P1, DOI 10.1007/978-3-319-12697-5 165 2 2 0 10 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. OCT-DEC 2016 14 4 10.1177/1474704916670166 14 Psychology, Experimental Psychology EG5RG WOS:000391101300002 DOAJ Gold 2019-02-21 J Bennett, MG; Whiles, MR; Whitledge, GW Bennett, Micah G.; Whiles, Matt R.; Whitledge, Gregory W. Population-level responses of life history traits to flow regime in three common stream fish species ECOHYDROLOGY English Article flow-ecology; reproduction; trait-based; functional trait FRESH-WATER FISH; HYDROLOGY CONSTRAIN; COMMUNITY ECOLOGY; FUNCTIONAL TRAITS; FRENCH STREAMS; SCALE ANALYSIS; UNITED-STATES; EGG NUMBER; STRATEGIES; ASSEMBLAGES Trait-based approaches may improve understanding in ecology by linking environmental variation to fitness-related characteristics of species. Most trait-environment studies focus on assemblage-level relationships; yet intraspecific trait variation is important for community, ecosystem, and evolutionary processes, and has substantial implications for these approaches. Assessing population-level trait-environment relationships could test the generality of trait models whilst assessing intraspecific variation. We evaluated the generality of the trilateral life history model (TLHM opportunistic, periodic, and equilibrium endpoints) for fishes - a well-studied trait-environment model at the assemblage level - to populations of three stream fishes in the Midwestern United States in relation to flow regime. The TLHM adequately described major trade-offs in traits amongst populations in all species. Some TLHM flow-based predictions were confirmed, with periodic traits (high fecundity) favoured at sites with greater flow seasonality and lower flow variability in two species, and equilibrium traits (large eggs) in more stable flow conditions in two species. Size at maturity was also inversely related to variability in one species. However, relationships contradicting the TLHM were also found. Coupled with the explanatory power of the TLHM for populations, supporting relationships suggest that synthesizing habitat template models with demographic life history theory could be valuable. Trait-environment models that are well-supported at multiple levels of biological organization could improve understanding of the impacts of environmental change on populations and communities and the valuable ecosystem services that they support. Copyright (C) 2016 John Wiley & Sons, Ltd. [Bennett, Micah G.; Whiles, Matt R.; Whitledge, Gregory W.] Southern Illinois Univ, Ctr Ecol, Dept Zool, 1125 Lincoln Dr,Mail Code 6501, Carbondale, IL 62901 USA; [Whitledge, Gregory W.] Southern Illinois Univ, Ctr Fisheries Aquaculture & Aquat Sci, 1125 Lincoln Dr,Mail Code 6511, Carbondale, IL 62901 USA Bennett, MG (reprint author), US EPA, Off Res & Dev, Washington, DC 20460 USA. micahgbennett@yahoo.com Bennett, Micah/0000-0002-5806-3878 SIU NSF-IGERT Program in Watershed Science and Policy; Graduate Professional Student Council The SIU NSF-IGERT Program in Watershed Science and Policy and the Graduate Professional Student Council supported this research. Thanks to J. Adams, K. Baumann, A. Beattie, T. Egdorf, J. Fulgoni, H. Rantala, L. Shoup, and B. Zuniga-Cespedes for field help. Sampling was conducted with permits from IL, IN, KS, MN, MO, NE, OH, and IACUC. K. Gido provided useful discussions that greatly improved the manuscript, and the Freshwater Ecology Lab at SIU provided helpful comments and edits on an earlier draft of the manuscript. Ackerly DD, 2007, ECOL LETT, V10, P135, DOI 10.1111/j.1461-0248.2006.01006.x; Albert CH, 2010, FUNCT ECOL, V24, P1192, DOI 10.1111/j.1365-2435.2010.01727.x; Beachum CE, 2015, ECOLOGY FRESHWATER F; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Boschung Jr H. T., 2004, FISHES ALABAMA; Bossu CM, 2013, MOL ECOL, V22, P5397, DOI 10.1111/mec.12485; Burnham K. P, 2002, MODEL SELECTION MULT; Cattaneo F, 2005, ARCH HYDROBIOL, V164, P367, DOI 10.1127/0003-9136/2005/0164-0367; Cattaneo F, 2005, ARCH HYDROBIOL, V164, P345, DOI 10.1127/0003-9136/2005/0164-0345; COLWELL RK, 1974, ECOLOGY, V55, P1148, DOI 10.2307/1940366; Crutsinger GM, 2006, SCIENCE, V313, P966, DOI 10.1126/science.1128326; Daily G., 1997, NATURES SERVICES SOC; Darwin C. R., 1861, ORIGIN SPECIES MEANS; Diniz JAF, 2012, GENET MOL BIOL, V35, P673, DOI 10.1590/S1415-47572012005000053; Durham BW, 2006, T AM FISH SOC, V135, P1644, DOI 10.1577/T05-133.1; Endler J. A., 1986, NATURAL SELECTION WI; Etnier D. A., 1993, FISHES TENNESSEE; Falcone J. A., 2010, Ecology, V91, P621, DOI 10.1890/09-0889.1; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Frimpong EA, 2012, T AM FISH SOC, V141, P1472, DOI 10.1080/00028487.2012.694832; Frimpong EA, 2009, FISHERIES, V34, P487, DOI 10.1577/1548-8446-34.10.487; Frimpong EA, 2010, AM FISH S S, V73, P109; GALE WF, 1986, T AM FISH SOC, V115, P429, DOI 10.1577/1548-8659(1986)115<429:IFASBO>2.0.CO;2; HARVEY BC, 1987, T AM FISH SOC, V116, P851, DOI 10.1577/1548-8659(1987)116<851:SOYFTD>2.0.CO;2; Heins D.C., 1987, P223; HEINS DC, 1986, J FISH BIOL, V28, P343, DOI 10.1111/j.1095-8649.1986.tb05171.x; HEINS DC, 1988, COPEIA, P238, DOI 10.2307/1445942; HEINS DC, 1991, COPEIA, P736; HEINS DC, 1993, J FISH BIOL, V42, P819, DOI 10.1006/jfbi.1993.1092; HEINS DC, 1988, THE SOUTHWESTERN NAT, V33, P147, DOI DOI 10.2307/3671889; JACKSON DA, 1993, ECOLOGY, V74, P2204, DOI 10.2307/1939574; Kamler E, 2005, REV FISH BIOL FISHER, V15, P399, DOI 10.1007/s11160-006-0002-y; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; Luck GW, 2003, TRENDS ECOL EVOL, V18, P331, DOI 10.1016/S0169-5347(03)00100-9; Machado MD, 2002, ECOL FRESHW FISH, V11, P11, DOI 10.1034/j.1600-0633.2002.1o103.x; MARSH E, 1986, COPEIA, P18; Matthews W. J., 1998, PATTERNS FRESHWATER; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; McManamay RA, 2015, ECOHYDROLOGY, V8, P460, DOI 10.1002/eco.1517; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Morrongiello JR, 2012, J ANIM ECOL, V81, P806, DOI 10.1111/j.1365-2656.2012.01961.x; Olden J. D., 2010, COMMUNITY ECOLOGY ST, P83; Pflieger WL, 1997, FISHES MISSOURI; POFF NL, 1990, ENVIRON MANAGE, V14, P629, DOI 10.1007/BF02394714; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Richter BD, 1996, CONSERV BIOL, V10, P1163, DOI 10.1046/j.1523-1739.1996.10041163.x; ROBISON HW, 1988, FISHES ARKANSAS; Roff Derek A., 1992; Smith C.L, 1971, American Mus Novit, VNo. 2458, P1; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Stearns S, 1992, EVOLUTION LIFE HIST; Sternberg D, 2014, ECOGRAPHY, V37, P54, DOI 10.1111/j.1600-0587.2013.00362.x; Torres-Dowdall J, 2012, FUNCT ECOL, V26, P616, DOI 10.1111/j.1365-2435.2012.01980.x; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Vila-Gispert A, 2002, REV FISH BIOL FISHER, V12, P417, DOI 10.1023/A:1025352026974; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wootton RJ, 2014, REPROD BIOL TELEOST; WOOTTON RJ, 1998, ECOLOGY TELEOST FISH; Wuebbles D. J., 2004, Mitigation and Adaptation Strategies for Global Change, V9, P335, DOI 10.1023/B:MITI.0000038843.73424.de 63 2 2 2 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1936-0584 1936-0592 ECOHYDROLOGY Ecohydrology OCT 2016 9 7 1388 1399 10.1002/eco.1734 12 Ecology; Environmental Sciences; Water Resources Environmental Sciences & Ecology; Water Resources EF0NF WOS:000390021700019 2019-02-21 J El-Sabaawi, RW; Frauendorf, TC; Marques, PS; Mackenzie, RA; Manna, LR; Mazzoni, R; Phillip, DAT; Warbanski, ML; Zandona, E El-Sabaawi, Rana W.; Frauendorf, Therese C.; Marques, Piata S.; Mackenzie, Richard A.; Manna, Luisa R.; Mazzoni, Rosana; Phillip, Dawn A. T.; Warbanski, Misha L.; Zandona, Eugenia Biodiversity and ecosystem risks arising from using guppies to control mosquitoes BIOLOGY LETTERS English Article dengue; ecosystem service; invasion; malaria; Zika LIFE-HISTORY EVOLUTION; POECILIA-RETICULATA; TRINIDADIAN GUPPIES; RIVULUS-HARTII; LARVAE; WATER; ADAPTATION; STREAMS; SPREAD; FISH Deploying mosquito predators such as the guppy (Poecilia reticulata) into bodies of water where mosquitoes breed is a common strategy for limiting the spread of disease-carrying mosquitoes. Here, we draw on studies from epidemiology, conservation, ecology and evolution to show that the evidence for the effectiveness of guppies in controlling mosquitoes is weak, that the chances of accidental guppy introduction into local ecosystems are large, and that guppies can easily establish populations and damage these aquatic ecosystems. We highlight several knowledge and implementation gaps, and urge that this approach is either abandoned in favour of more effective strategies or that it is used much more rigorously. Controlling mosquitoes does not need to come at the expense of freshwater biodiversity. [El-Sabaawi, Rana W.; Frauendorf, Therese C.; Marques, Piata S.; Warbanski, Misha L.] Univ Victoria, Dept Biol, Stn CSC, POB 1700, Victoria, BC V8W 2Y2, Canada; [Mackenzie, Richard A.] USDA Forest Serv, Inst Pacific Isl, Pacific Southwest Res Stn, Hilo, HI 96720 USA; [Manna, Luisa R.; Mazzoni, Rosana; Zandona, Eugenia] Univ Estado Rio de Janeiro, Dept Ecol, Rua Sao Francisco Xavier 524, BR-20550900 Rio De Janeiro, Brazil; [Phillip, Dawn A. T.] Univ West Indies, Dept Life Sci, St Augustine, Trinid & Tobago El-Sabaawi, RW (reprint author), Univ Victoria, Dept Biol, Stn CSC, POB 1700, Victoria, BC V8W 2Y2, Canada. rana@uvic.ca Zandona, Eugenia/B-3449-2013; Mazzoni, Rosana/O-7241-2015 Zandona, Eugenia/0000-0003-4754-5326; MAZZONI, ROSANA/0000-0001-8780-7779 IDRC/AUCC; CNPq; Science without Borders (CAPES) fellowship; University of Victoria We have received no funding for this study. Past and ongoing work on guppies in our groups has been funded by a number of sources (IDRC/AUCC, CNPq, etc) that are acknowledged in the primary papers we cite in this article. PSM is supported by a Science without Borders (CAPES) fellowship. TCF is supported by funding from the University of Victoria. [Anonymous], 2009, DENG GUID DIAGN TREA; [Anonymous], 2015, O GLOBO 1209; [Anonymous], 2016, REUTERS 0218; [Anonymous], 2013, EXPRESS TRIBUNE 0916; Azevedo-Santos VM, 2016, SCIENCE, V351, P675, DOI 10.1126/science.351.6274.675; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Bowman LR, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004551; Collins SM, 2016, ECOLOGY, V97, P3154, DOI 10.1002/ecy.1530; Deacon AE, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024416; Dua VK, 2007, J AM MOSQUITO CONTR, V23, P481, DOI 10.2987/5560.1; Ehlman SM, 2015, J COMP PHYSIOL A, V201, P1125, DOI 10.1007/s00359-015-1041-4; El-Sabaawi RW, 2015, FRESHWATER BIOL, V60, P590, DOI 10.1111/fwb.12507; Elias M, 1995, Bangladesh Med Res Counc Bull, V21, P81; FONT WF, 1994, J PARASITOL, V80, P682, DOI 10.2307/3283246; Gagne RB, 2015, FRESHWATER BIOL, V60, P311, DOI 10.1111/fwb.12491; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Han WW, 2015, TROP MED INT HEALTH, V20, P1239, DOI 10.1111/tmi.12538; Hawaii State Department of Health, 2015, CONTR MOSQ BREED RAI; Holitzki TM, 2013, ECOL APPL, V23, P1367, DOI 10.1890/12-0529.1; Kusumawathie PHD, 2008, ASIA-PAC J PUBLIC HE, V20, P56, DOI 10.1177/1010539507308507; Kyle JL, 2008, ANNU REV MICROBIOL, V62, P71, DOI 10.1146/annurev.micro.62.081307.163005; Lawal M, 2013, W AFRICAN J APPL ECO, V20, P1; Lee R., 2014, TECH TIMES; Lopez-Sepulcre A, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1116; Mackenzie JS, 2004, NAT MED, V10, pS98, DOI 10.1038/nm1144; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Manna Barnali, 2008, Journal of Vector Borne Diseases, V45, P200; Mendonsa K., 2013, TIMES INDIA; Murias A., 2015, GUPPY FISH STOCKED C; Pyke GH, 2008, ANNU REV ECOL EVOL S, V39, P171, DOI 10.1146/annurev.ecolsys.39.110707.173451; Rasmussen SA, 2016, NEW ENGL J MED, V374, P1981, DOI 10.1056/NEJMsr1604338; Reeve AJ., 2015, PHENOTYPIC PLASTICIT; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Rolshausen G, 2015, EVOL APPL, V8, P854, DOI 10.1111/eva.12289; Saleeza SNR, 2014, SE ASIAN J TROP MED, V45, P299; Sandipan Gupta, 2013, Bioscience Discovery, V4, P89; van Driesche R, 2016, BIOL CONTROL CONSERV; Walsh MR, 2011, EVOLUTION, V65, P1021, DOI 10.1111/j.1558-5646.2010.01188.x; Walsh MR, 2011, FUNCT ECOL, V25, P227, DOI 10.1111/j.1365-2435.2010.01786.x; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Warbanski M, ECOL EVOL; Widianarko B, 2000, ECOTOX ENVIRON SAFE, V46, P101, DOI 10.1006/eesa.1999.1879; Yamamoto M. N, 2000, HAWAIIS NATIVE EXOTI; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x 44 4 4 1 53 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. OCT 1 2016 12 10 20160590 10.1098/rsbl.2016.0590 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology EE5HM WOS:000389636800011 28120806 Green Published, Bronze 2019-02-21 J Marshall, DJ; Burgess, SC; Connallon, T Marshall, Dustin J.; Burgess, Scott C.; Connallon, Tim Global change, life-history complexity and the potential for evolutionary rescue EVOLUTIONARY APPLICATIONS English Article evolutionary theory; life history evolution; quantitative genetics PHENOTYPIC PLASTICITY; CLIMATE-CHANGE; STRUCTURED POPULATIONS; PROPAGULE DISPERSAL; PREVENT EXTINCTION; GENETIC EVOLUTION; COLD TOLERANCE; TRADE-OFFS; EGG SIZE; ADAPTATION Most organisms have complex life cycles, and in marine taxa, larval life-history stages tend to be more sensitive to environmental stress than adult (reproductive) life-history stages. While there are several models of stage-specific adaptation across the life history, the extent to which differential sensitivity to environmental stress (defined here as reductions in absolute fitness across the life history) affects the tempo of adaptive evolution to change remains unclear. We used a heuristic model to explore how commonly observed features associated with marine complex life histories alter a population's capacity to cope with environmental change. We found that increasing the complexity of the life history generally reduces the evolutionary potential of taxa to cope with environmental change. Our model also predicted that genetic correlations in stress tolerance between stages, levels of genetic variance in each stage, and the relative plasticity of different stages, all interact to affect the maximum rate of environmental change that will permit species persistence. Our results suggest that marine organisms with complex life cycles are particularly vulnerable to anthropogenic global change, but we lack empirical estimates of key parameters for most species. [Marshall, Dustin J.] Monash Univ, Ctr Geometr Biol, Melbourne, Vic 3800, Australia; [Marshall, Dustin J.; Connallon, Tim] Monash Univ, Sch Biol Sci, Melbourne, Vic, Australia; [Burgess, Scott C.] Florida State Univ, Dept Biol Sci, B-157, Tallahassee, FL 32306 USA Marshall, DJ (reprint author), Monash Univ, Ctr Geometr Biol, Melbourne, Vic 3800, Australia. dustin.marshall@monash.edu Burgess, Scott/0000-0002-0348-3453 Agrawal AF, 2009, P ROY SOC B-BIOL SCI, V276, P1183, DOI 10.1098/rspb.2008.1671; Aguirre JD, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1091; Arellano SM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3276; Barfield M, 2011, AM NAT, V177, P397, DOI 10.1086/658903; Baskett ML, 2010, GLOBAL CHANGE BIOL, V16, P1229, DOI 10.1111/j.1365-2486.2009.02062.x; Bell G, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0080; Blows MW, 2007, J EVOLUTION BIOL, V20, P1, DOI 10.1111/j.1420-9101.2006.01164.x; Bottrill MC, 2008, TRENDS ECOL EVOL, V23, P649, DOI 10.1016/j.tree.2008.07.007; BULMER MG, 1980, MATH THEORY QUANTITA; Byrne M, 2012, MAR ENVIRON RES, V76, P3, DOI 10.1016/j.marenvres.2011.10.004; Byrne M, 2011, OCEANOGR MAR BIOL, V49, P1; Chevin LM, 2013, EVOLUTION, V67, P708, DOI 10.1111/j.1558-5646.2012.01809.x; Chevin LM, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0089; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Chevin LM, 2010, EVOLUTION, V64, P1143, DOI 10.1111/j.1558-5646.2009.00875.x; Childs DZ, 2016, J ANIM ECOL, V85, P329, DOI 10.1111/1365-2656.12483; Cotto O, 2014, EVOLUTION, V68, P2481, DOI 10.1111/evo.12462; Coulson T, 2008, AM NAT, V172, P599, DOI 10.1086/591693; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Evans JP, 2007, EVOLUTION, V61, P2832, DOI 10.1111/j.1558-5646.2007.00227.x; Fischer B, 2014, AM NAT, V183, P108, DOI 10.1086/674008; GOMULKIEWICZ R, 1995, EVOLUTION, V49, P201, DOI 10.1111/j.1558-5646.1995.tb05971.x; Gomulkiewicz R, 2009, AM NAT, V174, pE218, DOI 10.1086/645086; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Kasimatis K, 2016, CORAL REEFS, V35, P387, DOI 10.1007/s00338-015-1380-1; Kinlan BP, 2003, ECOLOGY, V84, P2007, DOI 10.1890/01-0622; Kopp M, 2014, EVOL APPL, V7, P169, DOI 10.1111/eva.12127; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; LEE RE, 1985, PHYSIOL ENTOMOL, V10, P309, DOI 10.1111/j.1365-3032.1985.tb00052.x; LEVIN LA, 1991, EVOLUTION, V45, P380, DOI 10.1111/j.1558-5646.1991.tb04412.x; Levitus S, 2012, GEOPHYS RES LETT, V39, DOI 10.1029/2012GL051106; Lynch M, 1998, GENETICS ANAL QUANTI; Marshall DJ, 2012, ANNU REV ECOL EVOL S, V43, P97, DOI 10.1146/annurev-ecolsys-102710-145004; Marshall DJ, 2011, CURR BIOL, V21, pR718, DOI 10.1016/j.cub.2011.08.022; Miles CM, 2009, GENETICA, V135, P289, DOI 10.1007/s10709-008-9277-3; Mitchell KA, 2013, NATURWISSENSCHAFTEN, V100, P281, DOI 10.1007/s00114-013-1023-8; Monro K, 2015, GLOBAL ECOL BIOGEOGR, V24, P1499, DOI 10.1111/geb.12358; MORAN NA, 1994, ANNU REV ECOL SYST, V25, P573, DOI 10.1146/annurev.es.25.110194.003041; Munday PL, 2013, ECOL LETT, V16, P1488, DOI 10.1111/ele.12185; MUNKITTRICK KR, 1989, ECOTOX ENVIRON SAFE, V18, P15, DOI 10.1016/0147-6513(89)90088-2; Pandolfi JM, 2011, SCIENCE, V333, P418, DOI 10.1126/science.1204794; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; Przeslawski R, 2015, GLOBAL CHANGE BIOL, V21, P2122, DOI 10.1111/gcb.12833; Reed TE, 2010, P ROY SOC B-BIOL SCI, V277, P3391, DOI 10.1098/rspb.2010.0771; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; Sgro CM, 2011, EVOL APPL, V4, P326, DOI 10.1111/j.1752-4571.2010.00157.x; Shanks AL, 2003, ECOL APPL, V13, pS159; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Walsh B, 2009, ANNU REV ECOL EVOL S, V40, P41, DOI 10.1146/annurev.ecolsys.110308.120232; Watkins TB, 2001, EVOLUTION, V55, P1668; WILLIAMS KA, 1986, OECOLOGIA, V70, P362, DOI 10.1007/BF00379498 55 5 5 5 40 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. OCT 2016 9 9 1189 1201 10.1111/eva.12396 13 Evolutionary Biology Evolutionary Biology EC0BS WOS:000387763200014 27695526 DOAJ Gold, Green Published 2019-02-21 J van Leeuwen, AJ; Mace, R van Leeuwen, Abram J.; Mace, Ruth Life history factors, personality and the social clustering of sexual experience in adolescents ROYAL SOCIETY OPEN SCIENCE English Article adolescent sexual behaviour; life history theory; personality; social clustering; multiple classification models; Avon Longitudinal Study of Parents and Children (ALSPAC) 5 FACTOR MODEL; FATHER ABSENCE; REPRODUCTIVE STRATEGY; SOCIOECONOMIC-STATUS; PUBERTAL DEVELOPMENT; FAMILY-STRUCTURE; 5-FACTOR MODEL; PARENTAL CARE; RISK-TAKING; DYING YOUNG Adolescent sexual behaviour may show clustering in neighbourhoods, schools and friendship networks. This study aims to assess how experience with sexual intercourse clusters across the social world of adolescents and whether predictors implicated by life history theory or personality traits can account for its between-individual variation and social patterning. Using data on 2877 adolescents from the Avon Longitudinal Study of Parents and Children, we ran logistic multiple classification models to assess the clustering of sexual experience by approximately 17.5 years in schools, neighbourhoods and friendship networks. We examined how much clustering at particular levels could be accounted for by life history predictors and Big Five personality factors. Sexual experience exhibited substantial clustering in friendship networks, while clustering at the level of schools and neighbourhoods was minimal, suggesting a limited role for socio-ecological influences at those levels. While life history predictors did account for some variation in sexual experience, they did not explain clustering in friendship networks. Personality, especially extraversion, explained about a quarter of friends' similarity. After accounting for life history factors and personality, substantial unexplained similarity among friends remained, which may reflect a tendency to associate with similar individuals or the social transmission of behavioural norms. [van Leeuwen, Abram J.; Mace, Ruth] UCL, Dept Anthropol, London, England van Leeuwen, AJ (reprint author), UCL, Dept Anthropol, London, England. a.leeuwen@ucl.ac.uk PAN, ZEQIANG/X-6341-2018 Mace, Ruth/0000-0002-6137-7739 European Research Council [AdG 249347]; University College London Impact Studentship; Wellcome Trust [102215/2/13/2]; Medical Research Council [MC_PC_15018] This research was funded by the European Research Council (http://erc.europa.eu/; grant AdG 249347) and a University College London Impact Studentship awarded to the A.J.v.L. The UK Medical Research Council and the Wellcome Trust (grant ref.: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. Ali MM, 2011, J ADOLESCENCE, V34, P183, DOI 10.1016/j.adolescence.2009.12.008; Alvergne A, 2010, P NATL ACAD SCI USA, V107, P11745, DOI 10.1073/pnas.1001752107; Asendorpf JB, 1998, J PERS SOC PSYCHOL, V74, P1531, DOI 10.1037//0022-3514.74.6.1531; Baams L, 2015, J ADOLESCENT HEALTH, V56, P586, DOI 10.1016/j.jadohealth.2014.11.019; Baams L, 2015, J RES PERS, V54, P2, DOI 10.1016/j.jrp.2014.07.009; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bogaert AF, 2005, J ADOLESCENCE, V28, P541, DOI 10.1016/j.adolescence.2004.10.008; Bouchard TJ, 2001, BEHAV GENET, V31, P243; Boyd A, 2013, INT J EPIDEMIOL, V42, P111, DOI 10.1093/ije/dys064; Brent LJN, 2011, AM J PRIMATOL, V73, P720, DOI 10.1002/ajp.20949; BROWNE WJ, 2005, MCMC ESTIMATION MLWI; Burgess S, 2011, 11271 U BRIT DEP EC; Burgess S., 2011, SCH TIES ANAL HOMOPH; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Byrne D, 1997, J SOC PERS RELAT, V14, P417, DOI 10.1177/0265407597143008; Campa MI, 2006, J MARRIAGE FAM, V68, P558, DOI 10.1111/j.1741-3737.2006.00275.x; Card D, 2013, REV ECON STAT, V95, P1130, DOI 10.1162/REST_a_00340; Chen ACC, 2010, RES NURS HEALTH, V33, P512, DOI 10.1002/nur.20409; Chierchia G, 2015, FRONT BEHAV NEUROSCI, V9, DOI 10.3389/fnbeh.2015.00202; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cole T, 2004, PERS RELATIONSHIP, V11, P135, DOI 10.1111/j.1475-6811.2004.00075.x; Costa P. T., 1992, PSYCHOL ASSESSMENT, V4, P5, DOI [10.1037/1040-3590.4.1.5, DOI 10.1037/1040-3590.4.1.5]; Culpin I, 2014, J ADOLESCENCE, V37, P291, DOI 10.1016/j.adolescence.2014.02.003; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; Daly M, 2009, J EUR ECON ASSOC, V7, P659, DOI 10.1162/JEEA.2009.7.2-3.659; DiClemente RJ, 2005, PUBLIC HEALTH, V119, P825, DOI 10.1016/j.puhe.2004.10.015; DIGMAN JM, 1990, ANNU REV PSYCHOL, V41, P417, DOI 10.1146/annurev.ps.41.020190.002221; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; EISER JR, 1991, BRIT J SOC PSYCHOL, V30, P339, DOI 10.1111/j.2044-8309.1991.tb00950.x; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; FEINSTEIN JS, 1993, MILBANK Q, V71, P279, DOI 10.2307/3350401; Fielding A, 2006, CROSS CLASSIFIED MUL; Fletcher JM, 2007, DEMOGRAPHY, V44, P373, DOI 10.1353/dem.2007.0009; Fu F, 2012, SCI REP-UK, V2, DOI 10.1038/srep00845; Goldberg L. R, 1999, PERSONALITY PSYCHOL, P7, DOI DOI 10.1016/J.JRP.2014.05.003; Golding J, 2001, PAEDIATR PERINAT EP, V15, P74; Gosling SD, 1999, CURR DIR PSYCHOL SCI, V8, P69, DOI 10.1111/1467-8721.00017; HARRIS JR, 1995, PSYCHOL REV, V102, P458, DOI 10.1037//0033-295X.102.3.458; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HOGAN DP, 1985, AM J SOCIOL, V90, P825, DOI 10.1086/228146; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; Hoyle RH, 2000, J PERS, V68, P1203, DOI 10.1111/1467-6494.00132; Jaccard J, 2005, DEV PSYCHOL, V41, P135, DOI 10.1037/0012-1649.41.1.135; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Jean RT, 2011, AM J EPIDEMIOL, V173, P1203, DOI 10.1093/aje/kwq498; Jensen-Campbell LA, 2002, J RES PERS, V69, P323, DOI [10.1111/1467-6494.00148, DOI 10.1111/1467-6494.00148]; Jokela M, 2011, EUR J PERSONALITY, V25, P487, DOI 10.1002/per.822; KANDEL DB, 1978, AM J SOCIOL, V84, P427, DOI 10.1086/226792; Kern ML, 2008, HEALTH PSYCHOL, V27, P505, DOI 10.1037/0278-6133.27.5.505; Kiernan KE, 1997, POP STUD-J DEMOG, V51, P41, DOI 10.1080/0032472031000149716; Koski SE, 2015, SCI REP-UK, V5, DOI 10.1038/srep08878; Lahey BB, 2009, AM PSYCHOL, V64, P241, DOI 10.1037/a0015309; Lammers C, 2000, J ADOLESCENT HEALTH, V26, P42, DOI 10.1016/S1054-139X(99)00041-5; Lawson DW, 2009, EVOL HUM BEHAV, V30, P170, DOI 10.1016/j.evolhumbehav.2008.12.001; Leckie G., 2012, JOURNAL OF STATISTIC, V52, P1, DOI DOI 10.18637/JSS.V052.I11); Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Lusseau D, 2004, P ROY SOC B-BIOL SCI, V271, pS477, DOI 10.1098/rsbl.2004.0225; LUSTER T, 1994, J MARRIAGE FAM, V56, P622, DOI 10.2307/352873; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; Maestripieri D, 2004, DEVELOPMENTAL SCI, V7, P560, DOI 10.1111/j.1467-7687.2004.00380.x; MANSKI CF, 1993, REV ECON STUD, V60, P531, DOI 10.2307/2298123; Massen JJM, 2014, EVOL HUM BEHAV, V35, P1, DOI 10.1016/j.evolhumbehav.2013.08.008; Matchock RL, 2006, AM J HUM BIOL, V18, P481, DOI 10.1002/ajhb.20508; McLennan D., 2011, ENGLISH INDICES DEPR; Mercer CH, 2013, LANCET, V382, P1781, DOI 10.1016/S0140-6736(13)62035-8; Mercken L, 2007, ADDICTION, V102, P1483, DOI 10.1111/j.1360-0443.2007.01905.x; Miller BC, 2002, J SEX RES, V39, P22, DOI 10.1080/00224490209552115; Miller JD, 2004, PERS INDIV DIFFER, V36, P1611, DOI 10.1016/j.paid.2003.06.009; Miller KS, 2000, ADOLESCENCE, V35, P313; MISCHEL W, 1995, PSYCHOL REV, V102, P246, DOI 10.1037/0033-295X.102.2.246; Mustanski B, 2007, HEALTH PSYCHOL, V26, P610, DOI 10.1037/0278-6133.26.5.610; Mustanski BS, 2004, DEV PSYCHOL, V40, P1188, DOI 10.1037/0012-1649.40.6.1188; Neberich W, 2010, EUR J DEV PSYCHOL, V7, P153, DOI 10.1080/17405620801928029; Nettle D, 2005, EVOL HUM BEHAV, V26, P363, DOI 10.1016/j.evolhumbehav.2004.12.004; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; NEWCOMER S, 1987, J MARRIAGE FAM, V49, P235, DOI 10.2307/352296; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Perkins DF, 1998, J MARRIAGE FAM, V60, P660, DOI 10.2307/353536; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Rasbash J., 2014, MLWIN VERSION 2 30; Roberts BW, 2000, PSYCHOL BULL, V126, P3, DOI 10.1037//0033-2909.126.1.3; Roff Derek A., 1992; Romans SE, 2003, PSYCHOL MED, V33, P933, DOI 10.1017/S0033291703007530; Rubin D. B., 1987, MULTIPLE IMPUTATION; Santelli JS, 2000, AM J PUBLIC HEALTH, V90, P1582, DOI 10.2105/AJPH.90.10.1582; Schmitt DP, 2004, EUR J PERSONALITY, V18, P301, DOI 10.1002/per.520; Selfhout M, 2010, J PERS, V78, P509, DOI 10.1111/j.1467-6494.2010.00625.x; Shalizi C. R., 2010, SOCIOLOGICAL METHODS, V40, P211, DOI DOI 10.1177/0049124111404820; Snijders T., 1999, MULTILEVEL MODELING; Snijders T. A. B, 2012, MULTILEVEL ANAL INTR; Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353; StataCorp LP, 2011, STAT STAT SOFTW REL; Stearns S, 1992, EVOLUTION LIFE HIST; Sterne JAC, 2009, BMJ-BRIT MED J, V338, P1, DOI [DOI 10.1136/BMJ.B2393, DOI 10.1136/BMJ.B2393)]; Teitler JO, 2000, SOCIOL EDUC, V73, P112, DOI 10.2307/2673240; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Tranmer M, 2014, J R STAT SOC A STAT, V177, P439, DOI 10.1111/rssa.12021; Uggla C, 2016, BEHAV ECOL, V27, P158, DOI 10.1093/beheco/arv133; van de Bongardt D, 2015, PERS SOC PSYCHOL REV, V19, P203, DOI 10.1177/1088868314544223; van de Bongardt D, 2014, J ADOLESCENT HEALTH, V55, P388, DOI 10.1016/j.jadohealth.2014.02.017; Vikat A, 2002, J EPIDEMIOL COMMUN H, V56, P659, DOI 10.1136/jech.56.9.659; Voisin DR, 2006, SOC WORK, V51, P71, DOI 10.1093/sw/51.1.71; Warner TD, 2011, SOC SCI RES, V40, P1676, DOI 10.1016/j.ssresearch.2011.06.009; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 110 2 2 1 8 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 2054-5703 ROY SOC OPEN SCI R. Soc. Open Sci. OCT 2016 3 10 160257 10.1098/rsos.160257 20 Multidisciplinary Sciences Science & Technology - Other Topics EE0CS WOS:000389241700014 27853543 DOAJ Gold, Green Published 2019-02-21 J Izzo, C; Doubleday, ZA; Grammer, GL; Barnes, TC; Delean, S; Ferguson, GJ; Ye, QF; Gillanders, BM Izzo, Christopher; Doubleday, Zoe A.; Grammer, Gretchen L.; Barnes, Thomas C.; Delean, Steven; Ferguson, Greg J.; Ye, Qifeng; Gillanders, Bronwyn M. Multi-species response to rapid environmental change in a large estuary system: A biochronological approach ECOLOGICAL INDICATORS English Article Biochronology; Fish; Drought; Estuary; Environmental sensitivity GROWTH-INCREMENT CHRONOLOGIES; CLIMATE-CHANGE IMPACTS; FISH GROWTH; NORTHEAST PACIFIC; MARINE FISH; AUSTRALIA; ECOSYSTEMS; SHIFTS; BIODIVERSITY; VARIABILITY The sensitivity of species to environmental change is dependent on their ecological requirements (i.e. specialist v. generalist), and hence likely to be species-specific. Identifying species level variation in environmental sensitivity informs assessments of community vulnerability and assists in developing adaptive management strategies. We investigated species-specific sensitivity in fish to understand the vulnerability of differing life histories and ecological requirements to rapid environmental alteration (i.e. drought). Biochronologies of fish growth, based on increment widths in otoliths, were analysed using a mixed modelling approach. We assessed multi-decadal responses in fish growth to environmental variation in the terminal system of Australia's largest river, for three long-lived fish species with differing life histories and ecological requirements: a freshwater specialist and two estuarine generalists. Biochronologies were between 20 and 38 years long, spanned a decade of severe drought and showed considerable inter-annual variation in growth. Precipitation influenced the growth of the obligate freshwater specialist, Macquaria ambigua ambigua. Temperature and salinity influenced the growth of the two estuarine generalists: Argyrosomus japonicus (estuarine opportunist) and Acanthopagrus butcheri (estuarine dependent), respectively. These results suggest that generalisations about how species respond to environmental change may mask species-specific responses to dependent on the constraints of their ecological requirements (i.e. specialist v. generalist). These findings also highlight the importance of considering the diversity of life history strategies that inhabit an ecosystem when developing conservation and management strategies. (C) 2016 Elsevier Ltd. All rights reserved. [Izzo, Christopher; Doubleday, Zoe A.; Grammer, Gretchen L.; Barnes, Thomas C.; Gillanders, Bronwyn M.] Univ Adelaide, Sch Biol Sci, Southern Seas Ecol Labs, Adelaide, SA 5005, Australia; [Izzo, Christopher; Doubleday, Zoe A.; Grammer, Gretchen L.; Barnes, Thomas C.; Delean, Steven; Gillanders, Bronwyn M.] Univ Adelaide, Inst Environm, Adelaide, SA 5005, Australia; [Grammer, Gretchen L.; Ferguson, Greg J.; Ye, Qifeng] South Australian Res & Dev Inst, Aquat Sci, POB 120, Henley Beach, SA 5022, Australia; [Delean, Steven] Univ Adelaide, Dept Ecol & Environm Sci, Sch Biol Sci, Adelaide, SA 5005, Australia Izzo, C (reprint author), Univ Adelaide, Sch Biol Sci, Southern Seas Ecol Labs, Adelaide, SA 5005, Australia. c.izzo@adelaide.edu.au; zoe.doubleday@adelaide.edu.au; gretchen.grammer@sa.gov.au; thomas.barnes@adelaide.edu.au; steven.delean@adelaide.edu.au; greg.ferguson@sa.gov.au; qifeng.ye@sa.gov.au; bronwyn.gillanders@adelaide.edu.au Doubleday, Zoe/N-9955-2013 Doubleday, Zoe/0000-0003-0045-6377; Grammer, Gretchen/0000-0003-1605-8007 ARC [DP110100716, FT100100767] We thank David Fleer, David Short, Chris Bice and Jason Earl at the South Australian Research and Development Institute (Aquatic Sciences) and Skye Woodcock at the University of Adelaide for collecting and preparing otoliths. Thanks also to John Morrongiello for insights into model and biochronology development. This research was funded by an ARC Discovery grant (DP110100716) and Future Fellowship (FT100100767) awarded to B.M.G. ANDERSON JR, 1992, AUST J MAR FRESH RES, V43, P1103; Barto K., 2013, MUMIN MULTIMODEL INF; Bates D., 2013, R FDN STAT COMPUT; Black BA, 2008, FISH OCEANOGR, V17, P368, DOI 10.1111/j.1365-2419.2008.00484.x; Black BA, 2014, SCIENCE, V345, P1498, DOI 10.1126/science.1253209; Black BA, 2013, FISH OCEANOGR, V22, P523, DOI 10.1111/fog.12036; Black BA, 2010, ECOSCIENCE, V17, P240, DOI 10.2980/17-3-3353; Black BA, 2009, MAR ECOL PROG SER, V378, P37, DOI 10.3354/meps07854; Brander KM, 2007, P NATL ACAD SCI USA, V104, P19709, DOI 10.1073/pnas.0702059104; Brookes JD, 2015, T ROY SOC SOUTH AUST, V139, P189, DOI 10.1080/03721426.2015.1074338; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Chambers RC, 1995, BEL BAR LIB, P155; Cheung WWL, 2009, FISH FISH, V10, P235, DOI 10.1111/j.1467-2979.2008.00315.x; Dawson TP, 2011, SCIENCE, V332, P53, DOI 10.1126/science.1200303; Disspain M, 2011, J ARCHAEOL SCI, V38, P1842, DOI 10.1016/j.jas.2011.03.027; Doney SC, 2012, ANNU REV MAR SCI, V4, P11, DOI 10.1146/annurev-marine-041911-111611; Doubleday ZA, 2015, OECOLOGIA, V179, P1079, DOI 10.1007/s00442-015-3411-6; Ferguson G. J., 2013, ESTUARIES COASTS, V36; Ferguson GJ, 2014, FISH RES, V151, P148, DOI 10.1016/j.fishres.2013.11.002; Folke C, 2004, ANNU REV ECOL EVOL S, V35, P557, DOI 10.1146/annurev.ecolsys.35.021103.105711; Fox J., 2003, J STAT SOFTW, V8, P27, DOI DOI 10.18637/JSS.V008.I15; Gillanders BM, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2014.0850; Government of South Australia, 2015, SURF WAT DAT WATERCO; GUYETTE RP, 1995, OECOLOGIA, V104, P272, DOI 10.1007/BF00328361; Harrell FE, 2014, R PACKAGE VERSION, V3, P14; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Humphries P, 1999, ENVIRON BIOL FISH, V56, P129, DOI 10.1023/A:1007536009916; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; Jessop BM, 2004, MAR ECOL PROG SER, V272, P231, DOI 10.3354/meps272231; Last PR, 2011, GLOBAL ECOL BIOGEOGR, V20, P58, DOI 10.1111/j.1466-8238.2010.00575.x; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Matthe M., 2016, POLAR BIOL, P1, DOI 10.1007/s00300-016-1917-y; Morrongiello JR, 2015, ECOL MONOGR, V85, P93, DOI 10.1890/13-2355.1; Morrongiello JR, 2014, GLOBAL CHANGE BIOL, V20, P1844, DOI 10.1111/gcb.12545; Morrongiello JR, 2012, NAT CLIM CHANGE, V2, P849, DOI [10.1038/NCLIMATE1616, 10.1038/nclimate1616]; Morrongiello JR, 2011, GLOBAL CHANGE BIOL, V17, P745, DOI 10.1111/j.1365-2486.2010.02259.x; Mosley LM, 2012, WATER RESOUR MANAG, V26, P3923, DOI 10.1007/s11269-012-0113-2; Neuheimer AB, 2011, NAT CLIM CHANGE, V1, P110, DOI [10.1038/NCLIMATE1084, 10.1038/nclimate1084]; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Perry AL, 2005, SCIENCE, V308, P1912, DOI 10.1126/science.1111322; Potter IC, 2015, FISH FISH, V16, P230, DOI 10.1111/faf.12050; R Development Core Team, 2015, R LANG ENV STAT COMP; Roessig JM, 2004, REV FISH BIOL FISHER, V14, P251, DOI 10.1007/s11160-004-6749-0; Rountrey AN, 2014, GLOBAL CHANGE BIOL, V20, P2450, DOI 10.1111/gcb.12617; Rowland EL, 2011, ENVIRON MANAGE, V47, P322, DOI 10.1007/s00267-010-9608-x; Rypel AL, 2009, ECOL FRESHW FISH, V18, P620, DOI 10.1111/j.1600-0633.2009.00379.x; Sarre GA, 2000, FISH B-NOAA, V98, P785; Scheffer M, 2001, NATURE, V413, P591, DOI 10.1038/35098000; Stocks J, 2011, FISHERIES MANAG ECOL, V18, P121, DOI 10.1111/j.1365-2400.2010.00761.x; Swihart RK, 2003, DIVERS DISTRIB, V9, P1, DOI 10.1046/j.1472-4642.2003.00158.x; Thresher RE, 2007, P NATL ACAD SCI USA, V104, P7461, DOI 10.1073/pnas.0610546104; Thuiller W, 2005, GLOBAL ECOL BIOGEOGR, V14, P347, DOI 10.1111/j.1466-822x.2005.00162.x; Uusi-Heikkila S, 2015, EVOL APPL, V8, P597, DOI 10.1111/eva.12268; van Dijk AIJM, 2013, WATER RESOUR RES, V49, P1040, DOI 10.1002/wrcr.20123; VanDerWal J, 2013, NAT CLIM CHANGE, V3, P239, DOI [10.1038/nclimate1688, 10.1038/NCLIMATE1688]; Weisberg S, 2010, CAN J FISH AQUAT SCI, V67, P269, DOI 10.1139/F09-181; Whitten AR, 2013, FISH RES, V142, P27, DOI 10.1016/j.fishres.2012.06.021; Williams SE, 2008, PLOS BIOL, V6, P2621, DOI 10.1371/journal.pbio.0060325; Ye Q., 2013, SARDI RES REPORT SER, V698, P84; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 62 4 4 4 29 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1470-160X 1872-7034 ECOL INDIC Ecol. Indic. OCT 2016 69 739 748 10.1016/j.ecolind.2016.05.019 10 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology ED3YT WOS:000388785100072 2019-02-21 J McMahon, DP; Hayward, A McMahon, Dino P.; Hayward, Alexander Why grow up? A perspective on insect strategies to avoid metamorphosis ECOLOGICAL ENTOMOLOGY English Review Evolution; Holometabola; life cycle; life history; neoteny; paedogenesis; phenotypic plasticity; progenesis COMPLEX LIFE-CYCLES; ECDYSONE RECEPTOR; COLEOPTERA LYCIDAE; MICROMALTHUS-DEBILIS; STREPSIPTERA INSECTA; ORDER STREPSIPTERA; LARVAE COLEOPTERA; SEX-PHEROMONE; HESSIAN FLY; BODY PLANS 1. Insects with complete metamorphosis (holometaboly) are extremely successful, constituting over 60% of all described animal species. Complete metamorphosis confers significant advantages because it enables organisms to optimise life-history components through temporal partitioning, and thereby to exploit multiple ecological niches. Yet holometaboly can also impose costs, and several lineages have evolved life cycle modifications to avoid complete metamorphosis. 2. In this review, we discuss different strategies that have evolved that result in the loss of complete metamorphosis (type I and type II paedomorphosis). In addition, the ecological pressures and developmental modifications that facilitate this avoidance are considered, as well as the importance of life cycle complexity in life-history evolution. 3. Interestingly, only female holometabolous insects have entirely avoided complete metamorphosis, and it is always the ancestrally juvenile morphology that is retained. These findings point to a strong sex-biased trade-off between investment in reproduction and development. While the loss of complete metamorphosis in females has occurred independently on several occasions across holometabolous insects, only a small number of species possessing this ability have been described. 4. Thus, complete metamorphosis, which originated only once in insects, appears to have been almost fully retained. This indicates that significant modifications to the holometabolan metamorphic ground plan are highly constrained, and suggests that the transition to complete metamorphosis is evolutionarily irreversible. [McMahon, Dino P.] Free Univ Berlin, Inst Biol, Schwendenerstr 1, D-14195 Berlin, Germany; [McMahon, Dino P.] BAM Fed Inst Mat Res & Testing, Dept Mat & Environm, Berlin, Germany; [Hayward, Alexander] Univ Exeter, Ctr Ecol & Conservat, Penryn, England McMahon, DP (reprint author), Free Univ Berlin, Inst Biol, Schwendenerstr 1, D-14195 Berlin, Germany. dino.mcmahon@gmail.com McMahon, Dino/0000-0003-1119-5299 Achterkamp Bart, 2000, Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society (N.E.V.), V11, P83; Beani L, 2005, J MORPHOL, V265, P291, DOI 10.1002/jmor.10359; Bergstrom C. T., 2011, EVOLUTION; Beutel RG, 2008, CLADISTICS, V24, P270, DOI 10.1111/j.1096-0031.2007.00186.x; Bocak L, 2003, J NAT HIST, V37, P1463, DOI 10.1080/00222930210125362; Bocak L, 2008, P ROY SOC B-BIOL SCI, V275, P2015, DOI 10.1098/rspb.2008.0476; Bocakova M, 2007, CLADISTICS, V23, P477, DOI 10.1111/j.1096-0031.2007.00164.x; Bonner JT, 1965, SIZE CYCLE ESSAY STR; BRYANT EH, 1969, ANN ENTOMOL SOC AM, V62, P1087, DOI 10.1093/aesa/62.5.1087; BULL JJ, 1985, EVOLUTION, V39, P1149, DOI 10.1111/j.1558-5646.1985.tb00455.x; Buning J, 1998, INT J INSECT MORPHOL, V27, P3, DOI 10.1016/S0020-7322(97)00028-7; CICERO J., 1988, THE COLEOPS B, V42, P105; Cicero JM, 2008, PAN-PAC ENTOMOL, V84, P200, DOI 10.3956/2007-53.1; Crowson R. A., 1981, BIOL COLEOPTERA; Cvacka J, 2012, J CHEM ECOL, V38, P1483, DOI 10.1007/s10886-012-0214-7; DAVIDSON EH, 1995, SCIENCE, V270, P1319, DOI 10.1126/science.270.5240.1319; De Cock R, 2001, ETHOLOGY, V107, P1019, DOI 10.1046/j.1439-0310.2001.00746.x; EBENMAN B, 1987, J THEOR BIOL, V124, P25, DOI 10.1016/S0022-5193(87)80249-7; Erezyilmaz DF, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093614; Erezyilmaz DF, 2006, P NATL ACAD SCI USA, V103, P6925, DOI 10.1073/pnas.0509983103; Garstang W., 1922, Journal of the Linnean Society Zoology, V35, P81; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Gould S. J., 1977, ONTOGENY PHYLOGENY; Guerra PA, 2011, BIOL REV, V86, P813, DOI 10.1111/j.1469-185X.2010.00172.x; Haeckel E., 1897, EVOLUTION MAN POPULA; Haeckel E., 1866, GENERELLE MORPHOLOGI; HAMILTON WD, 1978, DIVERSITY INSECT FAU, P154; Hayward A, 2011, MOL ECOL, V20, P1508, DOI 10.1111/j.1365-294X.2011.05010.x; Hodin J, 1998, DEV GENES EVOL, V208, P304, DOI 10.1007/s004270050186; Hodin J, 2000, DEV GENES EVOL, V210, P358, DOI 10.1007/s004270000079; HODIN J, 2009, PHENOTYPIC PLASTICIT, P423; Hornschemeyer T, 2009, SYST ENTOMOL, V34, P533, DOI 10.1111/j.1365-3113.2009.00476.x; Hrabar M, 2014, CAN ENTOMOL, V146, P514, DOI 10.4039/tce.2013.85; IBRAHIM IA, 1975, J MED ENTOMOL, V12, P268, DOI 10.1093/jmedent/12.2.268; Jeng M. L., 2008, THESIS; Johannsen OA, 1910, SCIENCE, V32, P768, DOI 10.1126/science.32.830.768; Johnston JS, 2004, INSECT MOL BIOL, V13, P581, DOI 10.1111/j.0962-1075.2004.00514.x; Johnston PR, 2015, PLOS PATHOG, V11, DOI 10.1371/journal.ppat.1005246; Kathirithamby J, 2004, P ROY SOC B-BIOL SCI, V271, pS5, DOI 10.1098/rsbl.2003.0078; Kathirithamby J, 2003, P NATL ACAD SCI USA, V100, P7655, DOI 10.1073/pnas.1131999100; KATHIRITHAMBY J, 1989, SYST ENTOMOL, V14, P41, DOI 10.1111/j.1365-3113.1989.tb00265.x; Kathirithamby J, 2009, ANNU REV ENTOMOL, V54, P227, DOI 10.1146/annurev.ento.54.110807.090525; Kirschner M, 1998, P NATL ACAD SCI USA, V95, P8420, DOI 10.1073/pnas.95.15.8420; Kundrata R, 2014, MOL PHYLOGENET EVOL, V76, P162, DOI 10.1016/j.ympev.2014.03.012; Kundrata R, 2011, ZOOL SCR, V40, P364, DOI 10.1111/j.1463-6409.2011.00476.x; Labandeira CC, 1997, ANNU REV ECOL SYST, V28, P153, DOI 10.1146/annurev.ecolsys.28.1.153; LANGTON PH, 1988, B ENTOMOL RES, V78, P317, DOI 10.1017/S0007485300013080; Levkanicova Z, 2009, SYST ENTOMOL, V34, P210, DOI 10.1111/j.1365-3113.2008.00457.x; LINSLEY EG, 1961, EVOLUTION, V15, P15, DOI 10.2307/2405840; Malohlava V, 2011, ANN SOC ENTOMOL FR, V47, P176, DOI 10.1080/00379271.2011.10697710; Mamaev B. M., 1993, LARVAE GALL MIDGES D; Masek M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0123855; Masek M, 2014, RAFFLES B ZOOL, V62, P136; Masek M, 2014, ZOOKEYS, P29, DOI 10.3897/zookeys.426.7398; McMahon DP, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021206; McMahon DP, 2011, CURR BIOL, V21, pR271, DOI 10.1016/j.cub.2011.02.038; Meier R, 1999, BIOL REV, V74, P199, DOI 10.1017/S0006323199005320; MINELLI A, 2003, DEV ANIMAL FORM ONTO; Minelli A., 2015, FRONTIERS ECOLOGY EV, V2, P85; Minelli A, 2010, PHILOS T R SOC B, V365, P631, DOI 10.1098/rstb.2009.0268; Misof B, 2014, SCIENCE, V346, P763, DOI 10.1126/science.1257570; Mjoberg E., 1925, Psyche Boston, V32, P119, DOI 10.1155/1925/19784; MOORE BP, 1981, INSECT BIOCHEM, V11, P493, DOI 10.1016/0020-1790(81)90016-0; MORAN NA, 1994, ANNU REV ECOL SYST, V25, P573, DOI 10.1146/annurev.es.25.110194.003041; Ng P.K.L., 1991, Nature Malaysiana, V16, P94; Normark BB, 2003, ANNU REV ENTOMOL, V48, P397, DOI 10.1146/annurev.ento.48.091801.112703; Pfennig DW, 2010, TRENDS ECOL EVOL, V25, P459, DOI 10.1016/j.tree.2010.05.006; PIERCE BA, 1979, J HERPETOL, V13, P119, DOI 10.2307/1563766; Pigliucci M, 2010, EVOLUTION EXTENDED S; Pohl H, 2008, ZOOLOGY, V111, P318, DOI 10.1016/j.zool.2007.06.008; Pollock DA, 2002, J ZOOL SYST EVOL RES, V40, P105, DOI 10.1046/j.1439-0469.2002.00183.x; POULIN R, 1995, EVOLUTION, V49, P325, DOI 10.1111/j.1558-5646.1995.tb02245.x; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; Raff RA, 2008, PHILOS T R SOC B, V363, P1473, DOI 10.1098/rstb.2007.2237; Reilly SM, 1997, BIOL J LINN SOC, V60, P119; Roskam H. C., 2005, BIOL ECOLOGY EVOLUTI, P307; Scott C. A., 1938, Z MORPHOLOGIE OKOLOG, V33, P633; Seevers C. H., 1957, Fieldiana Zoology, V40, P1; SILVESTRI F, 1943, B LAB ZOOLOGIA GEN A, V32, P197; STEFFAN WA, 1973, SCIENCE, V182, P1265, DOI 10.1126/science.182.4118.1265; STUART JJ, 1988, J HERED, V79, P190, DOI 10.1093/oxfordjournals.jhered.a110491; STUART JJ, 1991, J HERED, V82, P43, DOI 10.1093/jhered/82.1.43; Suzuki Y, 2008, DEVELOPMENT, V135, P569, DOI 10.1242/dev.015263; Tolasch T, 2012, J CHEM ECOL, V38, P1493, DOI 10.1007/s10886-012-0215-6; Truman JW, 1999, NATURE, V401, P447, DOI 10.1038/46737; WENT DF, 1979, INT J INVER REP DEV, V1, P21; Werner E.E., 1988, P60; Whiting MF, 2004, ASSEMBLING THE TREE OF LIFE, P345; Wiegmann BM, 2011, P NATL ACAD SCI USA, V108, P5690, DOI 10.1073/pnas.1012675108; Wong ATC, 1996, RAFFLES B ZOOL, V44, P173; Wyatt I. J., 1963, Proceedings of the Royal Entomological Society of London (A), V38, P136; Wyatt I. J., 1961, Proceedings of the Royal Entomological Society of London (A), V36, P133; WYATT IJ, 1967, T ROY ENT SOC LONDON, V119, P71; Yang AS, 2001, EVOL DEV, V3, P59, DOI 10.1046/j.1525-142x.2001.003002059.x; YAO TP, 1993, NATURE, V366, P476, DOI 10.1038/366476a0; YAO TP, 1992, CELL, V71, P63, DOI 10.1016/0092-8674(92)90266-F; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhou BH, 2001, DEV BIOL, V231, P125, DOI 10.1006/dbio.2000.0143 98 7 7 1 39 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6946 1365-2311 ECOL ENTOMOL Ecol. Entomol. OCT 2016 41 5 505 515 10.1111/een.12313 11 Entomology Entomology EC7HU WOS:000388308600001 2019-02-21 J Mason, JS; Rostant, WG; Chapman, T Mason, J. S.; Rostant, W. G.; Chapman, T. Resource limitation and responses to rivals in males of the fruit fly Drosophila melanogaster JOURNAL OF EVOLUTIONARY BIOLOGY English Article carbohydrate; diet; mating duration; mating latency; nutrition; protein; reproduction LIFE-HISTORY EVOLUTION; DIETARY-RESTRICTION; SPERM COMPETITION; PHENOTYPIC PLASTICITY; REPRODUCTIVE SUCCESS; MATING RIVALS; FLIES DIPTERA; TRADE-OFFS; NUTRITION; TEPHRITIDAE Diet has a profound direct and indirect effect on reproductive success in both sexes. Variation in diet quality and quantity can significantly alter the capacity of females to lay eggs and of males to deliver courtship. Here, we tested the effect of dietary resource limitation on the ability of male Drosophila melanogaster to respond adaptively to rivals by extending their mating duration. Previous work carried out under ad libitum diet conditions showed that males exposed to rivals prior to mating significantly extend mating duration, transfer more ejaculate proteins and achieve higher reproductive success. Such adaptive responses are predicted to occur because male ejaculate production may be limited. Hence, ejaculate resources require allocation across different reproductive bouts, to balance current vs. future reproductive success. However, when males suffer dietary limitation, and potentially have fewer reproductive resources to apportion, we expect adaptive allocation of responses to rivals to be minimized. We tested this prediction and found that males held on agar-only diets for 5-7 days lost the ability to extend mating following exposure to rivals. Interestingly, extended mating was retained in males held on low yeast/sugar: no sugar/yeast diet treatments, but was mostly lost when males were maintained on 'imbalanced' diets in which there was high yeast: no sugar and vice versa. Overall, the results show that males exhibit adaptive responses to rivals according to the degree of dietary resource limitation and to the ratio of individual diet components. [Mason, J. S.; Rostant, W. G.; Chapman, T.] Univ East Anglia, Sch Biol Sci, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England Chapman, T (reprint author), Univ East Anglia, Sch Biol Sci, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. tracey.chapman@uea.ac.uk Chapman, Tracey/E-5100-2011; Rostant, Wayne/F-3507-2017 Rostant, Wayne/0000-0002-3798-6251 Research into Ageing; Age UK; NERC [NE/K004697/1]; BBSRC [BB/H002499/1, BB/L003139/1]; Biotechnology and Biological Sciences Research Council [BB/L003139/1, BB/H002499/1]; Natural Environment Research Council [NE/K004697/1] We thank Research into Ageing, Age UK and the NERC (NE/K004697/1) and BBSRC (BB/H002499/1, BB/L003139/1) for funding, Tom Wileman, Dylan Edwards and Matt Piper for advice and Amanda Bretman for helpful comments on the MS. We also thank three anonymous reviewers and Thomas Flatt for helpful and constructive comments on the MS. Abraham S, 2015, ETHOLOGY, V121, P451, DOI 10.1111/eth.12355; Aluja M, 2001, J INSECT BEHAV, V14, P759, DOI 10.1023/A:1013037400676; Anderson C, 2001, BEHAV ECOL, V12, P534, DOI 10.1093/beheco/12.5.534; Bass TM, 2007, J GERONTOL A-BIOL, V62, P1071, DOI 10.1093/gerona/62.10.1071; Blay S, 1997, ANIM BEHAV, V54, P59, DOI 10.1006/anbe.1996.0445; Bretman A, 2013, EVOLUTION, V67, P2413, DOI 10.1111/evo.12125; Bretman A, 2013, J INSECT PHYSIOL, V59, P824, DOI 10.1016/j.jinsphys.2013.05.011; Bretman A, 2011, TRENDS ECOL EVOL, V26, P467, DOI 10.1016/j.tree.2011.05.002; Bretman A, 2011, CURR BIOL, V21, P617, DOI 10.1016/j.cub.2011.03.008; Bretman A, 2010, BEHAV ECOL, V21, P317, DOI 10.1093/beheco/arp189; Bretman A, 2009, P ROY SOC B-BIOL SCI, V276, P1705, DOI 10.1098/rspb.2008.1878; Carey JR, 2008, AGING CELL, V7, P470, DOI 10.1111/j.1474-9726.2008.00389.x; Chapman T, 1996, P ROY SOC B-BIOL SCI, V263, P755, DOI 10.1098/rspb.1996.0113; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; Chippindale AK, 1997, J EVOLUTION BIOL, V10, P269, DOI 10.1007/s000360050023; EASTWOOD L, 1977, BEHAV GENET, V7, P359, DOI 10.1007/BF01077449; Engqvist L, 2003, ETHOLOGY, V109, P911, DOI 10.1046/j.1439-0310.2003.00937.x; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Fricke C, 2010, J EVOLUTION BIOL, V23, P157, DOI 10.1111/j.1420-9101.2009.01882.x; Fricke C, 2015, BEHAV ECOL, V26, P617, DOI 10.1093/beheco/aru240; Fricke C, 2008, EVOLUTION, V62, P3170, DOI 10.1111/j.1558-5646.2008.00515.x; Gage AR, 1996, BEHAV ECOL SOCIOBIOL, V38, P349, DOI 10.1007/s002650050251; Gilchrist AS, 2000, EVOLUTION, V54, P534; Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619; GWYNNE DT, 1993, ECOLOGY, V74, P1406, DOI 10.2307/1940070; HOLEHAN AM, 1985, MECH AGEING DEV, V33, P19, DOI 10.1016/0047-6374(85)90106-X; Hopwood PE, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3102; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; HOUSE HL, 1962, ANNU REV BIOCHEM, V31, P653, DOI 10.1146/annurev.bi.31.070162.003253; Lewis SM, 2012, J EVOLUTION BIOL, V25, P438, DOI 10.1111/j.1420-9101.2011.02408.x; Libert S, 2007, SCIENCE, V315, P1133, DOI 10.1126/science.1136610; Maklakov AA, 2008, CURR BIOL, V18, P1062, DOI 10.1016/j.cub.2008.06.059; Parker GA, 2010, BIOL REV, V85, P897, DOI 10.1111/j.1469-185X.2010.00140.x; Partridge L, 1999, P ROY SOC B-BIOL SCI, V266, P255, DOI 10.1098/rspb.1999.0630; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Partridge L, 2005, MECH AGEING DEV, V126, P938, DOI 10.1016/j.mad.2005.03.023; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; Partridge L, 2006, TRENDS ECOL EVOL, V21, P334, DOI 10.1016/j.tree.2006.02.008; Partridge L, 2011, EXP GERONTOL, V46, P376, DOI 10.1016/j.exger.2010.09.003; Perez-Staples D, 2008, BEHAV ECOL SOCIOBIOL, V62, P1333, DOI 10.1007/s00265-008-0561-0; Perez-Staples D, 2011, ENTOMOL EXP APPL, V141, P103, DOI 10.1111/j.1570-7458.2011.01173.x; Perry JC, 2010, P ROY SOC B-BIOL SCI, V277, P3639, DOI 10.1098/rspb.2010.0810; Piper MDW, 2005, J GERONTOL A-BIOL, V60, P549, DOI 10.1093/gerona/60.5.549; Piper MDW, 2005, EXP GERONTOL, V40, P857, DOI 10.1016/j.exger.2005.06.013; Pound N, 2004, ANIM BEHAV, V68, P819, DOI 10.1016/j.anbehav.2004.02.004; R Core Team, 2014, R LANG ENV STAT COMP; Shelly TE, 2002, FLA ENTOMOL, V85, P150, DOI 10.1653/0015-4040(2002)085[0150:EOADOS]2.0.CO;2; Sinclair BJ, 2011, PHYSIOL ENTOMOL, V36, P84, DOI 10.1111/j.1365-3032.2010.00765.x; SIVINSKI J, 1988, ANN ENTOMOL SOC AM, V81, P1021, DOI 10.1093/aesa/81.6.1021; Stearns S, 1992, EVOLUTION LIFE HIST; STOFFOLANO JG, 1995, ANN ENTOMOL SOC AM, V88, P240, DOI 10.1093/aesa/88.2.240; Tatar M, 2014, TRENDS ENDOCRIN MET, V25, P509, DOI 10.1016/j.tem.2014.02.006; Taylor PW, 2013, J APPL ENTOMOL, V137, P113, DOI 10.1111/j.1439-0418.2011.01644.x; Tazzyman SJ, 2009, AM NAT, V174, pE71, DOI 10.1086/603612; Thompson SN, 1999, ANNU REV ENTOMOL, V44, P561, DOI 10.1146/annurev.ento.44.1.561; WARD PI, 1991, BEHAV ECOL SOCIOBIOL, V29, P77, DOI 10.1007/BF00166481; Wigby S, 2011, P ROY SOC B-BIOL SCI, V278, P424, DOI 10.1098/rspb.2010.1390; Wigby S, 2009, CURR BIOL, V19, P751, DOI 10.1016/j.cub.2009.03.036 58 2 2 2 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. OCT 2016 29 10 2010 2021 10.1111/jeb.12924 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity EC7IS WOS:000388311200016 27338014 Green Published, Other Gold 2019-02-21 J Hmieleski, KM; Lerner, DA Hmieleski, Keith M.; Lerner, Daniel A. The Dark Triad and Nascent Entrepreneurship: An Examination of Unproductive versus Productive Entrepreneurial Motives JOURNAL OF SMALL BUSINESS MANAGEMENT English Article DISPOSITIONAL POSITIVE AFFECT; LIFE-HISTORY THEORY; VENTURE PERFORMANCE; PERSONALITY-TRAITS; SOCIAL-EXCHANGE; DIRTY DOZEN; INDIVIDUAL-DIFFERENCES; STATISTICAL CONTROL; CONTROL VARIABLES; FIRM PERFORMANCE This study examined relationships of the dark triad personality characteristics (i.e., narcissism, psychopathy, and Machiavellianism) with entrepreneurial intentions and motives. Results from samples of business undergraduates (N=508) and MBA students (N=234) found narcissism to be positively related to entrepreneurial intentions. In addition, results from subgroups of business undergraduates and MBA students high in entrepreneurial intentions (i.e., early-stage nascent entrepreneurs) indicated differences in motives for engaging in the startup process. Specifically, we found all facets of the dark triad to be positively associated with unproductive entrepreneurial motives, and observed differential associations of the dark triad characteristics with productive entrepreneurial motives. [Hmieleski, Keith M.] Texas Christian Univ, Neeley Sch Business, Entrepreneurship, Ft Worth, TX 76129 USA; [Lerner, Daniel A.] Univ Deusto, Deusto Business Sch, Bilbao, Spain; [Lerner, Daniel A.] Univ Desarrollo, Concepcion, Chile Hmieleski, KM (reprint author), Texas Christian Univ, Dept Management Entrepreneurship & Leadership, Ft Worth, TX 76129 USA. k.hmieleski@tcu.edu Hmieleski, Keith/0000-0001-5520-704X Adrian R., 2013, SOCIAL PERSONALITY P, V7, P199; AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T; Akhtar R, 2013, PERS INDIV DIFFER, V54, P420, DOI 10.1016/j.paid.2012.10.013; Anderson AR, 2011, INT SMALL BUS J, V29, P589, DOI 10.1177/0266242611416417; Antoncic B, 2015, J SMALL BUS MANAGE, V53, P819, DOI 10.1111/jsbm.12089; Babiak P., 2006, SNAKES SUITS PSYCHOP; Baron R. A., 2015, ESSENTIALS ENTREPREN; Baron RA, 2015, J BUS ETHICS, V128, P107, DOI 10.1007/s10551-014-2078-y; Baron RA, 2016, J MANAGE, V42, P742, DOI 10.1177/0149206313495411; Baron RA, 2012, J BUS VENTURING, V27, P310, DOI 10.1016/j.jbusvent.2011.04.002; Baron RA, 2011, STRATEG ENTREP J, V5, P101, DOI 10.1002/sej.109; BAUMOL WJ, 1990, J POLIT ECON, V98, P893, DOI 10.1086/261712; Becker TE, 2005, ORGAN RES METHODS, V8, P274, DOI 10.1177/1094428105278021; Bergman JZ, 2010, ACAD MANAG LEARN EDU, V9, P119, DOI 10.5465/AMLE.2010.48661195; Brown TA, 2010, J EDUC BUS, V85, P203, DOI 10.1080/08832320903449501; Bruyat C, 2001, J BUS VENTURING, V16, P165, DOI 10.1016/S0883-9026(99)00043-9; Buckels EE, 2013, PSYCHOL SCI, V24, P2201, DOI 10.1177/0956797613490749; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; Carsrud A, 2011, J SMALL BUS MANAGE, V49, P9, DOI 10.1111/j.1540-627X.2010.00312.x; Carter GL, 2015, PERS INDIV DIFFER, V83, P185, DOI 10.1016/j.paid.2015.04.012; Chatterjee A, 2007, ADMIN SCI QUART, V52, P351, DOI 10.2189/asqu.52.3.351; Chen CC, 1998, J BUS VENTURING, V13, P295, DOI 10.1016/S0883-9026(97)00029-3; Cohen J., 2003, APPL MULTIPLE REGRES; Cook K. S., 2003, HDB SOCIAL PSYCHOL, P53; COOPER AC, 1995, J BUS VENTURING, V10, P439, DOI 10.1016/0883-9026(95)00083-K; Cote S, 2011, PSYCHOL SCI, V22, P1073, DOI 10.1177/0956797611416251; Decuyper M, 2009, EUR J PERSONALITY, V23, P531, DOI 10.1002/per.729; Deluga RJ, 2001, LEADERSHIP QUART, V12, P339, DOI 10.1016/S1048-9843(01)00082-0; DeNisi AS, 2015, ENTREP THEORY PRACT, V39, P997, DOI 10.1111/etap.12168; DEVRIES MFRK, 1985, HARVARD BUS REV, V63, P160; Dutton K., 2012, WISDOM PSYCHOPATHS W; Ermer E, 2010, PSYCHOL SCI, V21, P1399, DOI 10.1177/0956797610384148; Fairlie RW, 2004, SMALL BUS ECON, V23, P203, DOI 10.1023/B:SBEJ.0000032031.28403.31; Foster JD, 2011, PERS INDIV DIFFER, V50, P816, DOI 10.1016/j.paid.2011.01.002; Furtner MR, 2011, SOC BEHAV PERSONAL, V39, P369, DOI 10.2224/sbp.2011.39.3.369; Goss D, 2008, BRIT J MANAGE, V19, P120, DOI 10.1111/j.1467-8551.2006.00518.x; Gunnthorsdottir A, 2002, J ECON PSYCHOL, V23, P49, DOI 10.1016/S0167-4870(01)00067-8; Gupta VK, 2008, J APPL PSYCHOL, V93, P1053, DOI 10.1037/0021-9010.93.5.1053; Hair J. F, 2010, MULTIVARIATE DATA AN; Hare R. D., 2006, HDB PSYCHOPATHY, P58; Hare RD, 1991, HARE PSYCHOPATHY CHE; HAYS RD, 1989, EDUC PSYCHOL MEAS, V49, P629, DOI 10.1177/001316448904900315; Hmieleski KM, 2015, STRATEG ENTREP J, V9, P289, DOI 10.1002/sej.1208; Hmieleski KM, 2013, STRATEG ENTREP J, V7, P138, DOI 10.1002/sej.1143; Hmieleski KM, 2012, J MANAGE, V38, P1476, DOI 10.1177/0149206311415419; Hmieleski KM, 2008, STRATEG ENTREP J, V2, P285, DOI 10.1002/sej.56; Hmieleski KM, 2009, ACAD MANAGE J, V52, P473, DOI 10.5465/AMJ.2009.41330755; Hmieleski KM, 2006, J SMALL BUS MANAGE, V44, P45, DOI 10.1111/j.1540-627X.2006.00153.x; Hotchkiss S., 2003, WHY IS IT ALWAYS YOU; Humphrey RH, 2013, ENTREP RES J, V3, P287, DOI 10.1515/erj-2013-0057; Hunt MK, 2005, ASSESSMENT, V12, P416, DOI 10.1177/1073191105278740; Jonason PK, 2013, PERS INDIV DIFFER, V55, P532, DOI 10.1016/j.paid.2013.04.027; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jonason PK, 2010, INDIVIDUAL DIFFERENC, V8, P111; Jones DN, 2014, PERS INDIV DIFFER, V67, P109, DOI 10.1016/j.paid.2014.01.030; Jones DN, 2014, ASSESSMENT, V21, P28, DOI 10.1177/1073191113514105; Jones DN, 2013, J RES PERS, V47, P563, DOI 10.1016/j.jrp.2013.04.005; Jones DN, 2013, EUR J PERSONALITY, V27, P521, DOI 10.1002/per.1893; Kautonen T, 2015, ENTREP THEORY PRACT, V39, P655, DOI 10.1111/etap.12056; Kets de Vries M., 1996, HUM RELAT, V49, P853, DOI DOI 10.1177/001872679604900701; Klotz AC, 2016, ENTREP THEORY PRACT, V40, P7, DOI 10.1111/etap.12214; Klotz AC, 2014, J MANAGE, V40, P226, DOI 10.1177/0149206313493325; Kristof-Brown AL, 2005, PERS PSYCHOL, V58, P281, DOI 10.1111/j.1744-6570.2005.00672.x; KRUEGER Jr N. F., 1993, ENTREP THEORY PRACT, V18, P5; Krueger NF, 2000, J BUS VENTURING, V15, P411, DOI 10.1016/S0883-9026(98)00033-0; Lance CE, 2009, STATISTICAL AND METHODOLOGICAL MYTHS AND URBAN LEGENDS: DOCTRINE, VERITY AND FABLE IN THE ORGANIZATIONAL AND SOCIAL SCIENCES, P1; Lerner DA, 2016, J BUS VENTURING, V31, P234, DOI 10.1016/j.jbusvent.2015.11.001; Levy H., 2005, J MANAGERIAL PSYCHOL, V20, P541, DOI DOI 10.1108/02683940510615460; LEWIN AY, 1994, ORGAN STUD, V15, P183, DOI 10.1177/017084069401500202; Leybman MJ, 2011, PERS INDIV DIFFER, V51, P940, DOI 10.1016/j.paid.2011.07.024; Lu JF, 2010, J APPL SOC PSYCHOL, V40, P101, DOI 10.1111/j.1559-1816.2009.00565.x; Magister H., 2013, FORBES; Markman G. D., 2003, HUMAN RESOURCE MANAG, V13, P281, DOI DOI 10.1016/S1053-4822(03)00018-4; Mathieu C, 2013, PERS INDIV DIFFER, V55, P527, DOI 10.1016/j.paid.2013.04.026; Mathieu C, 2013, PSYCHOL ASSESSMENT, V25, P288, DOI 10.1037/a0029262; Miller JD, 2012, PSYCHOL ASSESSMENT, V24, P1048, DOI 10.1037/a0028583; Morgan J, 2016, J BUS VENTURING, V31, P1, DOI 10.1016/j.jbusvent.2015.09.002; Mycoskie B., 2012, START SOMETHING MATT; Neter J, 1996, APPL LINEAR REGRESSI; Nicolaou N, 2011, SMALL BUS ECON, V36, P151, DOI 10.1007/s11187-010-9308-1; O'Boyle EH, 2012, J APPL PSYCHOL, V97, P557, DOI 10.1037/a0025679; O'Reilly CA, 2014, LEADERSHIP QUART, V25, P218, DOI 10.1016/j.leaqua.2013.08.002; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Perugini M, 2003, EUR J PERSONALITY, V17, P251, DOI 10.1002/per.474; Piperopoulos P, 2015, J SMALL BUS MANAGE, V53, P970, DOI 10.1111/jsbm.12116; Rauthmann JF, 2012, PERS INDIV DIFFER, V53, P884, DOI 10.1016/j.paid.2012.06.020; Reynolds P. D, 1997, ENTREPRENEURIAL PROC; Rindova V, 2009, ACAD MANAGE REV, V34, P477, DOI 10.5465/AMR.2009.40632647; Robinson J., 2014, ENTREPRENEUR, V42, P46; ROFF D, 2001, LIFE HIST EVOLUTION; Schiller BR, 1997, ECON INQ, V35, P523, DOI 10.1111/j.1465-7295.1997.tb02029.x; Schjoedt L, 2014, HANDB RES METH APPL, P136; Shepherd DA, 2015, J BUS VENTURING, V30, P489, DOI 10.1016/j.jbusvent.2015.02.001; Shepherd DA, 2013, ACAD MANAGE J, V56, P1251, DOI 10.5465/amj.2011.0776; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; Smith MB, 2016, J ORGAN BEHAV, V37, P236, DOI 10.1002/job.2038; Spector PE, 2011, ORGAN RES METHODS, V14, P287, DOI 10.1177/1094428110369842; STAW BM, 1991, J MANAGE, V17, P805, DOI 10.1177/014920639101700412; Tabachnick B. G, 2001, USING MULTIVARIATE S; Twenge J. M., 2010, NARCISSISM EPIDEMIC; Twenge JM, 2008, J PERS, V76, P875, DOI 10.1111/j.1467-6494.2008.00507.x; vansPraag C. M., 2007, SMALL BUSINESS EC, V29, P351; Verheul I, 2016, EUR J EPIDEMIOL, V31, P793, DOI 10.1007/s10654-016-0159-1; Webb JW, 2009, ACAD MANAGE REV, V34, P492, DOI 10.5465/AMR.2009.40632826; Webster R. L., 2002, TEACHING BUSINESS ET, V6, P435; Wilson K, 2008, J RES PERS, V42, P1651, DOI 10.1016/j.jrp.2008.07.006; Zettler I, 2013, EUR J PERSONALITY, V27, P545, DOI 10.1002/per.1912; Zhao H, 2005, J APPL PSYCHOL, V90, P1265, DOI 10.1037/0021-9010.90.6.1265; Zhao H, 2010, J MANAGE, V36, P381, DOI 10.1177/0149206309335187 113 11 11 14 56 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0047-2778 1540-627X J SMALL BUS MANAGE J. Small Bus. Manag. OCT 2016 54 1 7 32 10.1111/jsbm.12296 26 Management Business & Economics EA8YT WOS:000386926900001 2019-02-21 J Sato, Y; Ruhr, PT; Schmitz, H; Egas, M; Blanke, A Sato, Yukie; Ruehr, Peter T.; Schmitz, Helmut; Egas, Martijn; Blanke, Alexander Age-dependent male mating tactics in a spider mite-A life-history perspective ECOLOGY AND EVOLUTION English Article alternative reproductive tactics; male mate competition; residual reproductive value; resource holding potential; Tetranychus urticae TETRANYCHUS-URTICAE; FIGHTING BEHAVIOR; SUCCESS; ACARI; STRATEGIES; EXPERIENCE; EVOLUTION; ENVIRONMENT; QUALITY; LEARN Males often fight with rival males for access to females. However, some males display nonfighting tactics such as sneaking, satellite behavior, or female mimicking. When these mating tactics comprise a conditional strategy, they are often thought to be explained by resource holding potential (RHP), that is, nonfighting tactics are displayed by less competitive males who are more likely to lose a fight. The alternative mating tactics, however, can also be explained by life-history theory, which predicts that young males avoid fighting, regardless of their RHP, if it pays off to wait for future reproduction. Here, we test whether the sneaking tactic displayed by young males of the two-spotted spider mite can be explained by life-history theory. We tested whether young sneaker males survive longer than young fighter males after a bout of mild or strong competition with old fighter males. We also investigated whether old males have a more protective outer skin-a possible proxy for RHP-by measuring cuticle hardness and elasticity using nanoindentation. We found that young sneaker males survived longer than young fighter males after mild male competition. This difference was not found after strong male competition, which suggests that induction of sneaking tactic is affected by male density. Hardness and elasticity of the skin did not vary with male age. Given that earlier work could also not detect morphometric differences between fighter and sneaker males, we conclude that there is no apparent increase in RHP with age in the mite and age-dependent male mating tactics in the mite can be explained only by life-history theory. Because it is likely that fighting incurs a survival cost, age-dependent alternative mating tactics may be explained by life-history theory in many species when reproduction of old males is a significant factor in fitness. [Sato, Yukie; Blanke, Alexander] Univ Tsukuba, Sugadaira Montane Res Ctr, Ueda, Nagano, Japan; [Sato, Yukie; Egas, Martijn] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands; [Ruehr, Peter T.] Zool Forsch Museum Alexander Koenig, Zentrum Mol Biodiversitatsforsch, Bonn, Germany; [Schmitz, Helmut] Univ Bonn, Inst Zool, Bonn, Germany; [Blanke, Alexander] Univ Hull, Sch Engn, Med & Biol Engn Res Grp, Kingston Upon Hull, N Humberside, England Sato, Y (reprint author), Univ Tsukuba, Sugadaira Montane Res Ctr, Ueda, Nagano, Japan. uchietan@gmail.com Blanke, Alexander/H-9858-2013 Ruhr, Peter/0000-0003-2776-6172; Sato, Yukie/0000-0003-0573-0371; Blanke, Alexander/0000-0003-4385-6039 Royal Academy of Sciences (KNAW); Ministry of Education, Culture, Sports, Science, and Technology (MEXT); Japanese Society for the Promotion of Science [P14071, S16080]; Deutsche Forschungsgemeinschaft [BL 1355/1-1]; University of Tsukuba Royal Academy of Sciences (KNAW); Ministry of Education, Culture, Sports, Science, and Technology (MEXT); Japanese Society for the Promotion of Science, Grant/Award Number: P14071 and S16080; Deutsche Forschungsgemeinschaft, Grant/Award Number: BL 1355/1-1; University of Tsukuba Andersson M., 1994, SEXUAL SELECTION; Bates D., 2015, LME4 LINEAR MIXED EF; Bhushan B, 2003, INT MATER REV, V48, P125, DOI 10.1179/095066003225010227; BOUDREAUX HB, 1963, ANNU REV ENTOMOL, V8, P137, DOI 10.1146/annurev.en.08.010163.001033; Brockmann HJ, 2001, ADV STUD BEHAV, V30, P1, DOI 10.1016/S0065-3454(01)80004-8; Candolin U, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057992; Choh Y, 2012, SCI REP-UK, V2, DOI 10.1038/srep00728; CRESPI BJ, 1988, BEHAV ECOL SOCIOBIOL, V22, P293, DOI 10.1007/BF00299845; Drukker B, 2000, EXP APPL ACAROL, V24, P881, DOI 10.1023/A:1010645720829; Egas M, 2003, EXP APPL ACAROL, V30, P233, DOI 10.1023/B:APPA.0000006512.26242.39; Fawcett TW, 2010, P ROY SOC B-BIOL SCI, V277, P1427, DOI 10.1098/rspb.2009.2088; Fisher RA, 1930, GENETICAL THEORY NAT; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hack MA, 1997, BEHAV ECOL, V8, P28, DOI 10.1093/beheco/8.1.28; Hamilton W.D., 1979, P167; HELLE W, 1967, ENTOMOL EXP APPL, V10, P103, DOI 10.1111/j.1570-7458.1967.tb00049.x; Helle W, 1985, SPIDER MITES THEIR B, V1; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; Kemp DJ, 2006, BIOL J LINN SOC, V88, P565, DOI 10.1111/j.1095-8312.2006.00643.x; Klocke D, 2012, ACTA BIOMATER, V8, P3392, DOI 10.1016/j.actbio.2012.05.020; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kuznetsova A, 2015, LMERTEST TESTS LINEA; Lee VE, 2014, BEHAV ECOL, V25, P172, DOI 10.1093/beheco/art101; Mann AB, 2005, NANOTRIBOLOGY AND NANOMECHANICS, P575, DOI 10.1007/3-540-28248-3_12; Muller M, 2008, J EXP BIOL, V211, P2576, DOI 10.1242/jeb.020164; OLIVER WC, 1992, J MATER RES, V7, P1564, DOI 10.1557/JMR.1992.1564; PARKER GA, 1974, J THEOR BIOL, V47, P223, DOI 10.1016/0022-5193(74)90111-8; POTTER DA, 1976, SCIENCE, V193, P160, DOI 10.1126/science.193.4248.160; POTTER DA, 1976, ANN ENTOMOL SOC AM, V69, P707, DOI 10.1093/aesa/69.4.707; R Development Core Team, 2015, R LANG ENV STAT COMP; Radwan J, 2009, ADV STUD BEHAV, V39, P185, DOI 10.1016/S0065-3454(09)39006-3; Rahmani H, 2009, BEHAV ECOL, V20, P946, DOI 10.1093/beheco/arp081; Reece SE, 2007, ANIM BEHAV, V74, P1163, DOI 10.1016/j.anbehav.2006.10.027; ROFF DA, 2002, LIFE HIST EVOLUTION; SAITO Y, 1990, RES POPUL ECOL, V32, P263, DOI 10.1007/BF02512562; SAITO Y, 1979, APPL ENTOMOL ZOOL, V14, P83, DOI 10.1303/aez.14.83; Sato Y, 2014, ANIM BEHAV, V92, P125, DOI 10.1016/j.anbehav.2014.03.032; Sato Y, 2013, EXP APPL ACAROL, V61, P31, DOI 10.1007/s10493-013-9673-y; Satoh Y, 2001, APPL ENTOMOL ZOOL, V36, P41, DOI 10.1303/aez.2001.41; Sharpe LL, 2005, ANIM BEHAV, V69, P1023, DOI 10.1016/j.anbehav.2004.07.013; Therneau T., 2000, MODELING SURVIVAL DA; Therneau T. M., 2015, SURVIVAL ANAL R PACK; Venables WN, 2002, MODERN APPL STAT S; WEATHERHEAD PJ, 1995, BEHAV ECOL SOCIOBIOL, V37, P81, DOI 10.1007/BF00164153 44 0 0 0 18 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2016 6 20 7367 7374 10.1002/ece3.2489 8 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology EA2NA WOS:000386429200019 28725404 DOAJ Gold, Green Published 2019-02-21 J Trakimas, G; Whittaker, RJ; Borregaard, MK Trakimas, Giedrius; Whittaker, Robert J.; Borregaard, Michael K. Do biological traits drive geographical patterns in European amphibians? GLOBAL ECOLOGY AND BIOGEOGRAPHY English Article Amphibian biogeography; body size; clutch size; developmental biology; Europe; geographical range size; habitat specialization; macroecology; structural equation models; trait biogeography SALAMANDRINA-PERSPICILLATA SAVI; GOLDEN-STRIPED SALAMANDER; SEXUAL SIZE DIMORPHISM; LIFE-HISTORY TRAITS; BODY-SIZE; REPRODUCTIVE-BIOLOGY; AGE STRUCTURE; TRITURUS-MARMORATUS; TEMPORARY PONDS; GREEN TOAD AimsThe present-day biogeography of European amphibians has been hypothesized to have arisen from range expansion and recolonization of the northern part of the continent from southern late Pleistocene refugia, such that northern species generally possess large ranges while southerly species are mostly small-ranged. Here we test the hypothesis that these patterns are likely to be underpinned by biological traits associated with dispersal ability. We do this by analysing data for anurans and urodeles, the two main groups of European amphibians. LocationEurope. MethodsWe built a database of biological traits (body size, fecundity, life span, habitat specialization) of European amphibians, excluding island endemics. We mapped the basic macroecological patterns of range size and position, and analysed the causal pathways for range size using structural equation models (SEMs). ResultsAmphibian species with a small range size are largely restricted to areas in southern Europe associated with putative Pleistocene refugia. Those present in northern Europe are exclusively large-ranged species whose distributions extend all the way from southern Europe. SEMs explained 54% of range size variation for anurans, with long life span and high fecundity being influential explanatory variables, and explained 61% of range size variation within urodeles, with measures of species fecundity being influential. Main conclusionsSpecies that have successfully recolonized the north following deglaciation have the largest ranges for both groups of amphibians. These large-ranged species generally possess traits that indicate the potential for rapid range expansion, with differences apparent in the balance of traits between anurans and urodeles. The traits linked to northern distributions (and large range size) appear to be a mix of r and K traits, indicating that intermediate life-history strategies have proved to be optimal for range expansion into northern regions. These results integrate species biology with geographical history in explaining present-day patterns of species distribution, range size and diversity. [Trakimas, Giedrius] Vilnius Univ, Ctr Ecol & Environm Res, MK Ciurlionio 21-27, LT-03101 Vilnius, Lithuania; [Trakimas, Giedrius] Daugavpils Univ, Inst Life Sci & Technol, LV-5401 Daugavpils, Latvia; [Whittaker, Robert J.; Borregaard, Michael K.] Univ Oxford, Sch Geog & Environm, Oxford OX1 3QY, England; [Whittaker, Robert J.; Borregaard, Michael K.] Natl Museum Nat Hist, Ctr Macroecol Evolut & Climate, DK-2100 Copenhagen, Denmark Trakimas, G (reprint author), Vilnius Univ, Ctr Ecol & Environm Res, MK Ciurlionio 21-27, LT-03101 Vilnius, Lithuania. giedrius.trakimas@gf.vu.lt publicationpage, cmec/B-4405-2017; Trakimas, Giedrius/B-8462-2008 Trakimas, Giedrius/0000-0001-6294-0194; Whittaker, Robert/0000-0001-7775-3383; Borregaard, Michael/0000-0002-8146-8435 Danish Councils for Independent Research; Danish National Research Foundation [DNRF96]; [VP1-2-SMM-09-V-01-004] This study was partially supported by programme VP1-2-SMM-09-V-01-004 (to G.T.). M.K.B. was supported by a Sapere Aude post-doctoral grant from the Danish Councils for Independent Research when conducting the research. M.K.B. and R.J.W. also acknowledge the Danish National Research Foundation for funding for the Center for Macroecology, Evolution and Climate (grant DNRF96). The authors thank the reviewers and editors for constructive comments on an earlier version. Amat F, 2010, J HERPETOL, V44, P313, DOI 10.1670/08-278.1; Angelini C, 2008, AMPHIBIA-REPTILIA, V29, P161, DOI 10.1163/156853808784125072; Arnold N, 2002, REPTILES AMPHIBIANS; Arntzen J.W., 1980, AMPHIBIA-REPTILIA, V1, P187; Arntzen JW, 2007, J NAT HIST, V41, P925, DOI 10.1080/00222930701300147; Arntzen JW, 2000, AMPHIBIA-REPTILIA, V21, P155, DOI 10.1163/156853800507345; ARNTZEN JW, 1990, HOLARCTIC ECOL, V13, P325; Banks Brian, 1993, Amphibia-Reptilia, V14, P155, DOI 10.1163/156853893X00327; Bannikov AG, 1977, GUIDE AMPHIBIANS REP; Bannikov AG., 1971, AMPHIBIANS REPTILES; Baskale E, 2011, ZOOL MIDDLE EAST, V52, P39; Beebee T. J. C., 1983, THE NATTERJACK TOAD; BELL G, 1977, ECOL MONOGR, V47, P279, DOI 10.2307/1942518; Bernini F., 2004, MONOGRAFIE PIANURA, V5; Bohme W., 1979, Salamandra, V15, P176; Bohme W, 1999, HDB REPTILIEN AMPHIB; Boll Susanne, 1997, Mertensiella, V7, P315; Bosch J., 2012, SEGUIMIENTO ALYTES D; Bosch J., 2009, ENCICLOPEDIA VIRTUAL; Bovero Stefano, 2006, Acta Herpetologica, V1, P153; Brea C., 2007, MUNIBE, V25, P170; Caetano M. H., 1993, Amphibia-Reptilia, V14, P117, DOI 10.1163/156853893X00291; Casini L., 2008, ATLANTE VERTEBRATI T; CLERGUE-GAZEAU M, 1971, Annales de Speleologie, V26, P825; Cordero Rivera A, 2007, MUNIBE, V25, P94; Corsetti L, 1999, AMPHIBIA-REPTILIA, V20, P77, DOI 10.1163/156853899X00088; Cvetkovic D, 1996, ITAL J ZOOL, V63, P107, DOI 10.1080/11250009609356116; Dandova R, 1998, ITAL J ZOOL, V65, P399, DOI 10.1080/11250009809386781; Della Rocca F, 2005, HERPETOL J, V15, P273; Diaz-Paniagua C, 1999, HERPETOL J, V9, P21; Diaz-Paniagua C., 2005, ANFIBIOS DONANA NATU; DIAZPANIAGUA C, 1990, HERPETOL J, V1, P447; Effinger N., 1997, STAPFIA, V51, P133; Esteban M, 2004, J NAT HIST, V38, P2789, DOI 10.1080/00222930310001618859; Esteban M, 2000, HERPETOL J, V10, P19; Fachbach G., 1978, ZOOL ANZ, V221, P188; Federico Marangoni, 2007, Herpetological Review, V38, P189; Fiacchini D., 2008, EC LIMN OC FUT AMB A, P407; Galan P., 2003, ANFIBIOS REPTILES PA; Galan P, 1982, ACTA VERTEBRATA, V9, P85; GALLIEN L., 1951, BULL BIOL FRANCE ET BELGIQUE, V85, P373; Gomez-Mestre I., 2009, ENCICLOPEDIA VIRTUAL; Gonzalez De La Vega JP, 1988, ANFIBIOS REPTILES PR; Griffiths RA, 1996, NEWTS SALAMANDERS EU; Guarino F.M., 2012, HYLA INTERMEDIA BOUL, P143; Guarino F.M., 1995, AMPHIBIA-REPTILIA, V16, P197; Guarino FM, 2003, J BIOSCIENCES, V28, P775, DOI 10.1007/BF02708438; Guex Gaston-Denis, 1994, Mertensiella, V4, P161; Gvozdik L, 2006, EVOLUTION, V60, P2110; IUCN, 2012, IUCN RED LIST THREAT, V2012; Jakob C, 2003, CAN J ZOOL, V81, P1905, DOI 10.1139/Z03-164; KNOEPFFLER LOUIS-PHILIPPE, 1962, VIE ET MILIEU, V13, P1; Kutrup B, 2005, AMPHIBIA-REPTILIA, V26, P49, DOI 10.1163/1568538053693314; Kyriakopoulou-Sklavounou P., COMMUNICATION; Lanza B., 1995, MORPHOLOGIC GENETIC; Lanza B., 2006, ATTI MUSEO CIVICO S, V52, P5; Lima V, 2001, AMPHIBIA-REPTILIA, V22, P55, DOI 10.1163/156853801750096178; Litvinchuk S. N., 2002, Vestnik Zoologii, V36, P35; Litvinchuk S. N., 2009, EVOLUTION SYSTEMATIC; LIZANA M, 1994, J HERPETOL, V28, P19, DOI 10.2307/1564675; Luiselli L, 2001, ITAL J ZOOL, V68, P125, DOI 10.1080/11250000109356396; Maio N., 2012, ATLANTE ANFIBIE RETT, P95; Maio N., 2012, ATLANTE ANFIBIE RETT, P137; MALETZKY A., 2004, HERPETOZOA, V17, P75; Marquez R, 1996, HERPETOL J, V6, P9; Marquez R, 1997, J HERPETOL, V31, P52, DOI 10.2307/1565328; Marquez R, 2011, ENCICLOPEDIA VIRTUAL; Martinez-Solano I., 2009, ENCICLOPEDIA VIRTUAL; Miaud C, 2005, HERPETOLOGICA, V61, P241, DOI 10.1655/04-29.1; Miaud C, 2001, J ZOOL, V254, P251, DOI 10.1017/S0952836901000760; Montori A., 2009, ENCICLOPEDIA VIRTUAL; Montori Alberto, 1992, P333; NOLLERT A, 1992, AMPHIBIEN EUROPAS; Olgun K, 2005, AMPHIBIA-REPTILIA, V26, P223, DOI 10.1163/1568538054253465; Panchenko I.M., 1989, VOPROSY GERPETOLOGII, V1989, P187; Pisanec E.M., 2007, AMPHIBIANS UKRAINE; Plytycz Barbara, 1993, Amphibia-Reptilia, V14, P35, DOI 10.1163/156853893X00174; Reques R., 2009, ENCICLOPEDIA VIRTUAL; Richter-Boix A, 2006, AMPHIBIA-REPTILIA, V27, P549, DOI 10.1163/156853806778877149; Romano A, 2009, ITAL J ZOOL, V76, P422, DOI 10.1080/11250000802623995; Rot-Nikcevic I., 2001, ANN SERIES HIST NATU, V11, P107; Salvador A, 2001, ANFIBIOS ESPANOLES I; Salvador A., 2012, ENCICLOPEDIA VIRTUAL; SALVIDIO S, 1993, HERPETOL J, V3, P55; Sanchez-Herraiz M.J., 2004, THESIS; Schabetsberger Robert, 1994, Alytes (Paris), V12, P41; Scillitani G., 1993, B MUS REG SCI NAT TO, V11, P209; Sequeira F, 2003, AMPHIBIA-REPTILIA, V24, P1, DOI 10.1163/156853803763806894; Sillero N., 2009, ENCICLOPEDIA VIRTUAL; Sindaco R, 2006, ATLANTE ANFIBI RETTI; Sinsch U, 2007, CAN J ZOOL, V85, P665, DOI 10.1139/Z07-046; SMIRINA EM, 1994, GERONTOLOGY, V40, P133, DOI 10.1159/000213583; Tsiora A, 2002, ZOOLOGY, V105, P55, DOI 10.1078/0944-2006-00049; Tsiora A., 2003, THESIS; Vanni S., 2006, ATLANTE ANFIBI RETTI 95 5 7 3 26 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1466-822X 1466-8238 GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. OCT 2016 25 10 1228 1238 10.1111/geb.12479 11 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography DW5IP WOS:000383677800008 2019-02-21 J Cayuela, H; Boualit, L; Arsovski, D; Bonnaire, E; Pichenot, J; Bellec, A; Miaud, C; Lena, JP; Joly, P; Besnard, A Cayuela, Hugo; Boualit, Laurent; Arsovski, Dragan; Bonnaire, Eric; Pichenot, Julian; Bellec, Arnaud; Miaud, Claude; Lena, Jean-Paul; Joly, Pierre; Besnard, Aurelien Does habitat unpredictability promote the evolution of a colonizer syndrome in amphibian metapopulations? ECOLOGY English Article amphibian; Bombina variegata; colonizer syndrome; demography; dispersal; environmental predictability; life history; multievent capture-recapture models TOAD BOMBINA-VARIEGATA; CAPTURE-RECAPTURE DATA; LIFE-HISTORY; BUTTERFLY METAPOPULATION; POPULATION-DYNAMICS; OVIPOSITION SITE; DISPERSAL RATE; TRADE-OFFS; SURVIVAL; ECOLOGY Dispersal is a central component of life history evolution. An increasing number of studies suggest that spatiotemporally variable environments may promote the evolution of dispersal syndromes, consisting of covariation patterns between dispersal and morphological, physiological, behavioral, and life history traits. At the interspecific scale, the colonizer syndrome appears to be one of the most frequently recorded associations between dispersal and life history traits, linking a high dispersal rate, high fecundity, and a short lifespan as systematically combined adaptations in spatiotemporally varying environments. However, few studies have highlighted the existence of a colonizer syndrome at the intraspecific scale, and none have investigated how different degrees of habitat stochasticity might shape covariation patterns between dispersal and life history traits. In this study, we examined this issue in free-ranging metapopulations of the yellow-bellied toad (Bombina variegata) using capture-recapture data. Combining the results of this study with another recent study, we found that a high dispersal rate, high fecundity, and a short lifespan are associated in metapopulations experiencing unpredictable environments. In contrast, a very low dispersal rate (close to zero), low fecundity and a long lifespan are associated in metapopulations occupying predictable environments. We discuss these results as well as their demographic and evolutionary consequences. [Cayuela, Hugo; Boualit, Laurent; Bellec, Arnaud; Lena, Jean-Paul; Joly, Pierre] Lab Ecol Hydrosyst Nat & Anthropises, UMR LEHNA 5023, F-69100 Villeurbanne, France; [Cayuela, Hugo; Arsovski, Dragan; Miaud, Claude; Besnard, Aurelien] Univ Montpellier, PSL Res Univ, Univ Paul Valery Montpellier, CEFE UMR 5175,CNRS,EPHE,Lab Biogeog & Ecol Verteb, 1919 Route Mende, F-34293 Montpellier, France; [Bonnaire, Eric] Agence Verdun, Off Natl Forets, F-55100 Verdun, France; [Pichenot, Julian] Ctr Rech & Format Ecoethol, CERFE, F-08240 Boult Aux Bois, France Cayuela, H (reprint author), Lab Ecol Hydrosyst Nat & Anthropises, UMR LEHNA 5023, F-69100 Villeurbanne, France.; Cayuela, H (reprint author), Univ Montpellier, PSL Res Univ, Univ Paul Valery Montpellier, CEFE UMR 5175,CNRS,EPHE,Lab Biogeog & Ecol Verteb, 1919 Route Mende, F-34293 Montpellier, France. hugo.cayuela@univ-lyon1.fr Arsovski, Dragan/0000-0003-1798-1864 Lorraine DREAL; Rhone-Alpes DREAL; Agence de l'Eau Rhone-Alpes; Agence de l'Eau Rhin-Meuse; Office National des Forets; Conseil Regional de Lorraine; Conseil Regional de Champagne-Ardenne; Conseil Regional de Picardie; Conseil General de l'Aisne; Conseil General d'Ardeche; Conseil General d'Isere; Communaute de Communes de l'Argonne Ardennaise [2C2A] We would like to warmly thank all the fieldworkers who helped with data collection, especially Sylvain Boitaud, Sandrine Farny, Ludwick Simon, Jonathan Rolland, Haize Perret, and Justine Rivoalen. We are also grateful for the technical support provided by the Parc Naturel des Monts d'Ardeche. This research was funded by the Lorraine DREAL, the Rhone-Alpes DREAL, the Agence de l'Eau Rhone-Alpes, the Agence de l'Eau Rhin-Meuse, the Office National des Forets, the Conseil Regional de Lorraine, the Conseil Regional de Champagne-Ardenne, the Conseil Regional de Picardie, the Conseil General de l'Aisne, the Conseil General d'Ardeche, the Conseil General d'Isere and the Communaute de Communes de l'Argonne Ardennaise (2C2A). Toad capture was authorized by the Prefecture de l'Ardeche (arrete no. 2014-288-002) and the Prefecture de la Meuse (arrete no. 2008-2150). Baker H. G., 1965, GENETICS COLONIZING; BARANDUN J, 1990, Amphibia-Reptilia, V11, P277, DOI 10.1163/156853890X00195; Barandun Jonas, 1997, Amphibia-Reptilia, V18, P347, DOI 10.1163/156853897X00404; BERVEN KA, 1990, EVOLUTION, V44, P2047, DOI 10.1111/j.1558-5646.1990.tb04310.x; BESHKOV VA, 1980, HERPETOLOGICA, V36, P365; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; BREDEN F, 1987, COPEIA, P386; Buschmann H, 2002, AMPHIBIA-REPTILIA, V23, P362; Cayuela H, 2016, GLOBAL CHANGE BIOL, V22, P2676, DOI 10.1111/gcb.13290; Cayuela H, 2016, ECOLOGY, V97, P980, DOI 10.1890/15-0693.1; Cayuela H, 2015, POPUL ECOL, V57, P433, DOI 10.1007/s10144-015-0483-4; Cayuela H, 2014, OECOLOGIA, V176, P107, DOI 10.1007/s00442-014-3003-x; Cayuela H, 2013, BIOL INVASIONS, V15, P2001, DOI 10.1007/s10530-013-0427-x; Cayuela H, 2011, AMPHIBIA-REPTILIA, V32, P533, DOI 10.1163/156853811X614461; Chan LM, 2009, MOL ECOL, V18, P3185, DOI 10.1111/j.1365-294X.2009.04273.x; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Chuang A, 2016, GLOBAL CHANGE BIOL, V22, P494, DOI 10.1111/gcb.13107; Cote J, 2010, PHILOS T R SOC B, V365, P4065, DOI 10.1098/rstb.2010.0176; Cubaynes S, 2012, METHODS ECOL EVOL, V3, P564, DOI 10.1111/j.2041-210X.2011.00175.x; Cushman SA, 2006, BIOL CONSERV, V128, P231, DOI 10.1016/j.biocon.2005.09.031; Denno RF, 1996, ECOL MONOGR, V66, P389, DOI 10.2307/2963487; Dingemanse NJ, 2003, P ROY SOC B-BIOL SCI, V270, P741, DOI 10.1098/rspb.2002.2300; Duckworth RA, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P83; Fahrig L, 2003, ANNU REV ECOL EVOL S, V34, P487, DOI 10.1146/annurev.ecolsys.34.011802.132419; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gamble LR, 2007, BIOL CONSERV, V139, P247, DOI 10.1016/j.biocon.2007.07.001; GILL DE, 1978, ECOL MONOGR, V48, P145, DOI 10.2307/2937297; Gould WR, 1998, ECOLOGY, V79, P2531, DOI 10.1890/0012-9658(1998)079[2531:EOTVOS]2.0.CO;2; Grant EHC, 2010, P NATL ACAD SCI USA, V107, P6936, DOI 10.1073/pnas.1000266107; Griffiths RA, 2010, BIOL CONSERV, V143, P485, DOI 10.1016/j.biocon.2009.11.017; Guarino FM, 1998, ITAL J ZOOL, V65, P335, DOI 10.1080/11250009809386770; Haag CR, 2005, P ROY SOC B-BIOL SCI, V272, P2449, DOI 10.1098/rspb.2005.3235; Hanski I, 2006, J ANIM ECOL, V75, P91, DOI 10.1111/j.1365-2656.2005.01024.x; Hartel T, 2008, NORTH-WEST J ZOOL, V4, P79; Hiby L., 1990, Reports of the International Whaling Commission Special Issue, P57; JASIENSKI M, 1988, OECOLOGIA, V77, P407, DOI 10.1007/BF00378052; Jones ME, 2008, P NATL ACAD SCI USA, V105, P10023, DOI 10.1073/pnas.0711236105; Kendall WL, 2002, ECOLOGY, V83, P3276; Kendall WL, 1997, ECOLOGY, V78, P563; Lachish S, 2009, J ANIM ECOL, V78, P427, DOI 10.1111/j.1365-2656.2008.01494.x; Lagrange P, 2014, ECOLOGY, V95, P2316, DOI 10.1890/13-1564.1; Marsh DM, 2001, CONSERV BIOL, V15, P40, DOI 10.1046/j.1523-1739.2001.00129.x; Matthysen E, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P3; MCPEEK MA, 1992, AM NAT, V140, P1010, DOI 10.1086/285453; Mims MC, 2015, ECOLOGY, V96, P1371, DOI 10.1890/14-0490.1; MORAND A, 1995, HYDROBIOLOGIA, V300, P249, DOI 10.1007/BF00024465; Morand A., 1997, GEOBIOS, V30, P23; Paradis E, 1998, EVOL ECOL, V12, P235, DOI 10.1023/A:1006539930788; Peron G, 2010, OIKOS, V119, P524, DOI 10.1111/j.1600-1706.2009.17882.x; Phillips BL, 2009, BIOL LETTERS, V5, P802, DOI 10.1098/rsbl.2009.0367; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; PIANKA ER, 1976, AM ZOOL, V16, P775; Pichenot J., 2008, THESIS; Pradel R, 1997, BIOMETRICS, V53, P60, DOI 10.2307/2533097; Reigada C, 2015, AM NAT, V185, P183, DOI 10.1086/679502; Resetarits WJ, 2005, ECOL LETT, V8, P480, DOI 10.1111/j.1461-0248.2005.00747.x; RESETARITS WJ, 1989, ECOLOGY, V70, P220, DOI 10.2307/1938428; Rieger JF, 2004, ECOLOGY, V85, P2094, DOI 10.1890/04-0156; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Ronce Ophelie, 2004, P227, DOI 10.1016/B978-012323448-3/50012-X; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; Rothermel BB, 2002, CONSERV BIOL, V16, P1324, DOI 10.1046/j.1523-1739.2002.01085.x; Saastamoinen M, 2007, OECOLOGIA, V153, P569, DOI 10.1007/s00442-007-0772-5; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Semlitsch RD, 2008, J WILDLIFE MANAGE, V72, P260, DOI 10.2193/2007-082; Sinsch U, 1997, OECOLOGIA, V112, P42, DOI 10.1007/s004420050281; Smith MA, 2006, ECOGRAPHY, V29, P649, DOI 10.1111/j.2006.0906-7590.04584.x; Smith MA, 2005, ECOGRAPHY, V28, P110; Stearns S. C., 1992, EVOLUTION LIFE HIST, V249; Stevens VM, 2014, ECOL LETT, V17, P1039, DOI 10.1111/ele.12303; Stevens VM, 2013, EVOL APPL, V6, P630, DOI 10.1111/eva.12049; Stevens VM, 2012, ECOL LETT, V15, P74, DOI 10.1111/j.1461-0248.2011.01709.x; Travis JMJ, 1999, P ROY SOC B-BIOL SCI, V266, P723, DOI 10.1098/rspb.1999.0696; Trenham PC, 2001, ECOLOGY, V82, P3519, DOI 10.2307/2680169; White G. C., 1991, ANAL WILDLIFE RADIO; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615 79 14 14 3 29 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 2016 97 10 2658 2670 10.1002/ecy.1489 13 Ecology Environmental Sciences & Ecology DZ7ZQ WOS:000386088000013 27859109 2019-02-21 J Escallon, C; Weinstein, NM; Tallant, JA; Wojtenek, W; Rodriguez-Saltos, CA; Bonaccorso, E; Moore, IT Escallon, Camilo; Weinstein, Nicole M.; Tallant, James A.; Wojtenek, Winfried; Rodriguez-Saltos, Carlos A.; Bonaccorso, Elisa; Moore, Ignacio T. Testosterone and Haemosporidian Parasites Along a Tropical Elevational Gradient in Rufous-Collared Sparrows (Zonotrichia capensis) JOURNAL OF EXPERIMENTAL ZOOLOGY PART A-ECOLOGICAL GENETICS AND PHYSIOLOGY English Article HISTORY TRADE-OFFS; MALARIA PLASMODIUM-RELICTUM; JUNCOS JUNCO-HYEMALIS; TITS PARUS-MAJOR; LIFE-HISTORY; AVIAN MALARIA; BLOOD PARASITES; PARENTAL EFFORT; WILD BIRD; IMMUNOCOMPETENCE HANDICAP Elevation has been proposed as a dominant ecological variable shaping life history traits and subsequently their underlying hormonal mechanisms. In an earlier meta-analysis of tropical birds, elevation was positively related to testosterone levels. Furthermore, parasitism by avian haemosporidians should vary with elevation as environmental conditions affect vector abundance, and while testosterone is needed for breeding, it is hypothesized to be immunosuppressive and thus could exacerbate haemosporidian infection. Our objective in this study was to examine the relationships between elevation, testosterone levels, and parasitism by avian haemosporidians. We surveyed breeding male rufous-collared sparrows (Zonotrichia capensis) across a wide elevational range along the equator. We measured baseline testosterone levels, haemosporidian infection at four elevations spanning the species' natural range in the Ecuadorian Andes (600, 1500, 2100, 3300 m). Testosterone levels from breedingmales were not related to elevation, but there was high intrapopulation variability. Testosterone levels were not related to the probability of parasitism, but our results from one population suggested that the likelihood of being infected by haemosporidian parasites was greater when in breeding condition. In conclusion, even though there is variation in life history strategies among the studied populations, wider divergence in seasonality and life history traits would probably be needed to detect an effect of elevation on testosterone if one exists. Additionally, our results show that variation in testosterone is not related to infection risk of haemosporidians, thus other factors that take a toll on energetic resources, such as reproduction, should be looked at more closely. (C) 2016 Wiley Periodicals, Inc. [Escallon, Camilo; Tallant, James A.; Moore, Ignacio T.] Virginia Tech, Dept Biol Sci, 2119 Derring Hall, Blacksburg, VA 24061 USA; [Weinstein, Nicole M.] Virginia Tech, VA MD Reg Coll Vet Med, Blacksburg, VA USA; [Wojtenek, Winfried] Univ Tecn Ambato, Direcc Salud, Ambato, Ecuador; [Rodriguez-Saltos, Carlos A.] Emory Univ, Dept Psychol, Rollins Res Ctr, Atlanta, GA 30322 USA; [Bonaccorso, Elisa] Univ Tecnol Indoamer, Fac Ciencias Medio Ambiente, Ctr Invest Biodiversidad & Cambio Climat BioCamb, Cotocollao, Quito, Ecuador Escallon, C (reprint author), Virginia Tech, Dept Biol Sci, 2119 Derring Hall, Blacksburg, VA 24061 USA. camiloescallon@gmail.com Rodriguez-Saltos, Carlos/0000-0002-3162-7645; Bonaccorso, Elisa/0000-0002-7262-9356 National Science Foundation [IOS 0545735, IOS 1353093] Grant sponsor: National Science Foundation; grant numbers: IOS 0545735 and IOS 1353093 Addis EA, 2011, HORM BEHAV, V60, P195, DOI 10.1016/j.yhbeh.2011.05.002; Addis EA, 2010, GEN COMP ENDOCR, V166, P581, DOI 10.1016/j.ygcen.2010.01.011; Allander K, 1997, FUNCT ECOL, V11, P358, DOI 10.1046/j.1365-2435.1997.00095.x; Apfelbeck B, 2011, P ROY SOC B-BIOL SCI, V278, P3233, DOI 10.1098/rspb.2011.0098; Asghar M, 2011, J AVIAN BIOL, V42, P530, DOI 10.1111/j.1600-048X.2011.05281.x; Atkinson CT, 1991, BIRD PARASITE INTERA, P19; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Badyaev AV, 1997, OECOLOGIA, V111, P365, DOI 10.1007/s004420050247; Bears H, 2009, J ANIM ECOL, V78, P365, DOI 10.1111/j.1365-2656.2008.01491.x; BENDIX J, 2001, ERDKUNDE, V55, P257, DOI DOI 10.3112/ERDKUNDE.2001.03.04; Bonier F, 2014, AM NAT, V183, P54, DOI 10.1086/674130; Braude S, 1999, BEHAV ECOL, V10, P345, DOI 10.1093/beheco/10.3.345; Buttemer WA, 2000, J AVIAN BIOL, V31, P479, DOI 10.1034/j.1600-048X.2000.310407.x; Campbell T, 2007, AVIAN EXOTIC ANIMAL, P3; Casto JM, 2001, AM NAT, V157, P408, DOI 10.1086/319318; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Class AM, 2011, CONDOR, V113, P438, DOI 10.1525/cond.2011.100068; Class AM, 2011, ORNITOL NEOTROP, V22, P89; Cornelius JM, 2014, J EXP BIOL, V217, P841, DOI 10.1242/jeb.080697; de Jong ME, 2014, J AVIAN BIOL, V45, P179, DOI 10.1111/j.1600-048X.2013.00199.x; Deviche P, 2006, AUK, V123, P548, DOI 10.1642/0004-8038(2006)123[548:TTTFMD]2.0.CO;2; Deviche P, 2010, PARASITOLOGY, V137, P261, DOI [10.1017/S003118200999134X, 10.1017/S00311820099134X]; Eikenaar C, 2013, J AVIAN BIOL, V44, P600, DOI 10.1111/j.1600-048X.2013.00212.x; Eikenaar C, 2012, AM NAT, V180, P642, DOI 10.1086/667891; Ezenwa VO, 2012, FUNCT ECOL, V26, P123, DOI 10.1111/j.1365-2435.2011.01919.x; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Fuxjager MJ, 2011, FUNCT ECOL, V25, P132, DOI 10.1111/j.1365-2435.2010.01784.x; Garamszegi LZ, 2008, AM NAT, V172, P533, DOI 10.1086/590955; Garamszegi LZ, 2005, HORM BEHAV, V47, P389, DOI 10.1016/j.yhbeh.2004.11.008; Garvin MC, 2006, J PARASITOL, V92, P659, DOI 10.1645/GE-759R.1; Gonzalez-Gomez PL, 2013, GEN COMP ENDOCR, V191, P1, DOI 10.1016/j.ygcen.2013.05.007; Goymann W, 2004, AM NAT, V164, P327, DOI 10.1086/422856; Goymann W, 2007, HORM BEHAV, V51, P463, DOI 10.1016/j.yhbeh.2007.01.007; GRANT BW, 1990, ECOLOGY, V71, P1765, DOI 10.2307/1937584; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Hille SM, 2015, BIOL REV, V90, P204, DOI 10.1111/brv.12106; Isaksson C, 2013, BMC ECOL, V13, DOI 10.1186/1472-6785-13-15; Johns JL, 2008, AM J VET RES, V69, P1067, DOI 10.2460/ajvr.69.8.1067; Jones MR, 2013, J PARASITOL, V99, P903, DOI 10.1645/12-147.1; Karell P, 2011, J EVOLUTION BIOL, V24, P1783, DOI 10.1111/j.1420-9101.2011.02308.x; Kempenaers B, 2008, PHILOS T R SOC B, V363, P1711, DOI 10.1098/rstb.2007.0001; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; Kilpatrick AM, 2006, AUK, V123, P764, DOI 10.1642/0004-8038(2006)123[764:EOCAMP]2.0.CO;2; Lachish S, 2011, J ANIM ECOL, V80, P1196, DOI 10.1111/j.1365-2656.2011.01836.x; LaPointe DA, 2012, ANN NY ACAD SCI, V1249, P211, DOI 10.1111/j.1749-6632.2011.06431.x; LaPointe DA, 2010, J PARASITOL, V96, P318, DOI 10.1645/GE-2290.1; Loiseau C, 2013, SCI REP-UK, V3, DOI 10.1038/srep01126; Lynn SE, 2009, PHYSIOL BIOCHEM ZOOL, V82, P699, DOI 10.1086/605915; Martin LB, 2009, GEN COMP ENDOCR, V163, P70, DOI 10.1016/j.ygcen.2009.03.008; Martinez-de la Puente J, 2010, BIOL LETTERS, V6, P663, DOI 10.1098/rsbl.2010.0046; McGlothlin JW, 2007, AM NAT, V170, P864, DOI 10.1086/522838; Merino S, 2000, P ROY SOC B-BIOL SCI, V267, P2507, DOI 10.1098/rspb.2000.1312; Miller A.H., 1968, CALDASIA, V10, P83; Mitchell Elizabeth B., 2008, Veterinary Clinics of North America Exotic Animal Practice, V11, P501, DOI 10.1016/j.cvex.2008.03.004; Moore IT, 2005, BEHAV ECOL, V16, P755, DOI 10.1093/beheco/ari049; Moore IT, 2004, ANIM BEHAV, V67, P411, DOI 10.1016/j.anbehav.2003.03.021; Moore IT, 2002, GEN COMP ENDOCR, V129, P13, DOI 10.1016/S0016-6480(02)00563-4; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ots I, 1996, P ROY SOC B-BIOL SCI, V263, P1443, DOI 10.1098/rspb.1996.0210; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Perez-Tris J, 2005, ECOL LETT, V8, P838, DOI 10.1111/j.1461-0248.2005.00788.x; Podmokla E, 2014, J AVIAN BIOL, V45, P219, DOI 10.1111/j.1600-048X.2013.00284.x; Raberg L, 2009, PHILOS T R SOC B, V364, P37, DOI 10.1098/rstb.2008.0184; Raouf SA, 1997, P ROY SOC B-BIOL SCI, V264, P1599, DOI 10.1098/rspb.1997.0223; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; Robinson WD, 2010, AUK, V127, P253, DOI 10.1525/auk.2010.127.2.253; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Sarmiento G, 1986, HIGH ALT TROP BIOGEO, V11, P45; Sehgal RNM, 2010, J EXP BIOL, V213, P955, DOI 10.1242/jeb.037663; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Stearns S, 1992, EVOLUTION LIFE HIST; Stutchbury BJM, 2001, BEHAV ECOLOGY TROPIC; Tomas G, 2007, FUNCT ECOL, V21, P125, DOI 10.1111/j.1365-2435.2006.01214.x; Valkiunas G, 2008, J PARASITOL, V94, P1395, DOI 10.1645/GE-1570.1; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Wingfield JC, 2001, BRAIN BEHAV EVOLUT, V57, P239, DOI 10.1159/000047243; Yorinks N, 2000, AUK, V117, P731, DOI 10.1642/0004-8038(2000)117[0731:EOMOAB]2.0.CO;2; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 81 1 1 4 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1932-5223 1932-5231 J EXP ZOOL PART A J. Exp. Zool. Part A OCT 2016 325 8 501 510 10.1002/jez.2034 10 Zoology Zoology EA1NM WOS:000386359000003 27527346 2019-02-21 J Neggazi, SA; Noreikiene, K; Ost, M; Jaatinen, K Neggazi, Sara A.; Noreikiene, Kristina; Ost, Markus; Jaatinen, Kim Reproductive investment is connected to innate immunity in a long-lived animal OECOLOGIA English Article Bacteria-killing capacity; H/L ratio; Immunosuppression; Incubation stage; Somateria mollissima; Trade-offs EIDERS SOMATERIA-MOLLISSIMA; HISTORY TRADE-OFFS; COMMON EIDERS; TREE SWALLOWS; CLUTCH SIZE; ECOLOGICAL IMMUNOLOGY; INDIVIDUAL VARIATION; BREEDING EIDERS; INCUBATION FAST; FEMALE Life-history theory predicts that organisms optimize their resource allocation strategy to maximize lifetime reproductive success. Individuals can flexibly reallocate resources depending on their life-history stage, and environmental and physiological factors, which lead to variable life-history strategies even within species. Physiological trade-offs between immunity and reproduction are particularly relevant for long-lived species that need to balance current reproduction against future survival and reproduction, but their underlying mechanisms are poorly understood. A major unresolved issue is whether the first-line innate immune function is suppressed by reproductive investment. In this paper, we tested if reproductive investment is associated with the suppression of innate immunity, and how this potential trade-off is resolved depending on physiological state and residual reproductive value. We used long-lived capital-breeding female eiders (Somateria mollissima) as a model. We showed that the innate immune response, measured by plasma bacteria-killing capacity (BKC), was negatively associated with increasing reproductive investment, i.e., with increasing clutch size and advancing incubation stage. Females in a better physiological state, as indexed by low heterophil-to-lymphocyte (H/L) ratios, showed higher BKC during early incubation, but this capacity decreased as incubation progressed, whereas females in poorer state showed low BKC capacity throughout incubation. Although plasma BKC generally declined with increasing H/L ratios, this decrease was most pronounced in young females. Our results demonstrate that reproductive investment can suppress constitutive first-line immune defence in a long-lived bird, but the degree of immunosuppression depends on physiological state and age. [Neggazi, Sara A.; Noreikiene, Kristina] Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Viikinkaari 1, FIN-00014 Helsinki, Finland; [Ost, Markus] Abo Akad Univ, Fac Sci & Engn, Environm & Marine Biol, Artillerigatan 6, FIN-20520 Turku, Finland; [Ost, Markus; Jaatinen, Kim] Novia Univ Appl Sci, Coastal Zone Res Team, Raseborgsvagen 9, Ekenas 10600, Finland Noreikiene, K (reprint author), Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, Viikinkaari 1, FIN-00014 Helsinki, Finland. kriste.noreikiene@gmail.com Ost, Markus/C-7376-2008 Ost, Markus/0000-0002-2205-1437 Academy of Finland [266208, 1265211]; Finnish Cultural Foundation; Walter and Andree de Nottbeck foundation; Societas pro Fauna et Flora Fennica; Otto A. Malm foundation; Swedish Cultural Foundation in Finland We thank Heikki Eriksson, Ben Steele, Petteri Lehikoinen, Martin Seltmann, and James Montanari for their efforts in the field. We are also grateful to Tuomas Ojalehto for his valuable advice on performing BKC assays and two anonymous reviewers for constructive comments. Tvarminne Zoological Station provided excellent facilities. The study was funded by The Academy of Finland (Grant # 266208 to KJ and # 1265211 to Juha Merila which supported the work of KN), The Finnish Cultural Foundation (KJ and KN), Walter and Andree de Nottbeck foundation (SN), Societas pro Fauna et Flora Fennica (KN), Otto A. Malm foundation (KN), and the Swedish Cultural Foundation in Finland (MO). Aiken LS, 1991, MULTIPLE REGRESSION; Al-Murrani WK, 2002, BRIT POULTRY SCI, V43, P501, DOI 10.1080/0007166022000004408; Andersson M., 1994, SEXUAL SELECTION; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; BAILLIE SR, 1982, BIRD STUDY, V29, P55, DOI 10.1080/00063658209476738; Bolduc F, 2003, BIOL CONSERV, V110, P77, DOI 10.1016/S0006-3207(02)00178-7; Borgsteede FHM, 2005, HELMINTHOLOGIA, V42, P215; Borgsteede FHM, 2005, HELMINTHOLOGIA, V42, P83; Bourgeon S, 2007, DEV COMP IMMUNOL, V31, P720, DOI 10.1016/j.dci.2006.11.009; Bourgeon S, 2009, GEN COMP ENDOCR, V163, P77, DOI 10.1016/j.ygcen.2008.11.015; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Bouwhuis S, 2010, J ANIM ECOL, V79, P1251, DOI 10.1111/j.1365-2656.2010.01730.x; Campbell T. W, 1988, AVIAN HEMATOLOGY CYT; Cichon M, 2001, J EVOLUTION BIOL, V14, P180, DOI 10.1046/j.1420-9101.2001.00243.x; Cichon M, 2001, ACTA OECOL, V22, P71, DOI 10.1016/S1146-609X(00)01094-8; Clinchy M, 2004, P ROY SOC B-BIOL SCI, V271, P2473, DOI 10.1098/rspb.2004.2913; Cotter SC, 2011, FUNCT ECOL, V25, P652, DOI 10.1111/j.1365-2435.2010.01819.x; COULSON JC, 1984, IBIS, V126, P525, DOI 10.1111/j.1474-919X.1984.tb02078.x; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Delves PJ, 2011, ROITTS ESSENTIAL IMM; Downs CJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125586; DRENT RH, 1980, ARDEA, V68, P225; Ekroos J, 2012, OECOLOGIA, V170, P979, DOI 10.1007/s00442-012-2378-9; Ellis VA, 2012, AUK, V129, P231, DOI 10.1525/auk.2012.11215; French SS, 2008, GEN COMP ENDOCR, V155, P148, DOI 10.1016/j.ygcen.2007.04.007; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Hanssen SA, 2003, OECOLOGIA, V136, P457, DOI 10.1007/s00442-003-1282-8; Hanssen SA, 2002, BEHAV ECOL SOCIOBIOL, V52, P282, DOI 10.1007/s00265-002-0523-x; Hario M, 2009, ORNIS FENNICA, V86, P81; Hasselquist D, 2012, ANIM BEHAV, V83, P1303, DOI 10.1016/j.anbehav.2012.03.025; Hobson KA, 2015, AUK, V132, P624, DOI 10.1642/AUK-14-294.1; Hollmen T, 1999, J WILDLIFE DIS, V35, P466, DOI 10.7589/0090-3558-35.3.466; Hollmen T, 2002, THESIS; Ilmonen P, 2000, P ROY SOC B-BIOL SCI, V267, P665, DOI 10.1098/rspb.2000.1053; Jaatinen K, 2011, ANIM BEHAV, V81, P1289, DOI 10.1016/j.anbehav.2011.03.020; Jamieson SE, 2006, WILDLIFE BIOL, V12, P219, DOI 10.2981/0909-6396(2006)12[219:AEOMUT]2.0.CO;2; Janeway C. A., 2001, IMMUNOBIOLOGY; Kats R.K.H., 2007, THESIS; Kilgas P, 2006, PHYSIOL BIOCHEM ZOOL, V79, P565, DOI 10.1086/502817; Kilpi M, 1997, OECOLOGIA, V111, P297, DOI 10.1007/s004420050238; Kilpi M, 2001, ANIM BEHAV, V62, P527, DOI 10.1006/anbe.2001.1784; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Kortet R, 2003, BIOL J LINN SOC, V78, P117, DOI 10.1046/j.1095-8312.2003.00136.x; Liebl AL, 2009, FUNCT ECOL, V23, P1091, DOI 10.1111/j.1365-2435.2009.01592.x; Lobato E, 2005, ECOSCIENCE, V12, P27, DOI 10.2980/i1195-6860-12-1-27.1; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Love OP, 2008, AM NAT, V172, pE99, DOI 10.1086/589521; Ludtke B, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081395; Maizels RM, 2013, NAT IMMUNOL, V14, P879, DOI 10.1038/ni.2643; Mann DR, 2000, CELL IMMUNOL, V200, P105, DOI 10.1006/cimm.2000.1623; Matson KD, 2006, PHYSIOL BIOCHEM ZOOL, V79, P556, DOI 10.1086/501057; MAXWELL MH, 1993, WORLD POULTRY SCI J, V49, P34, DOI 10.1079/WPS19930004; Meijer T, 1999, IBIS, V141, P399, DOI 10.1111/j.1474-919X.1999.tb04409.x; Merrill L, 2014, AUK, V131, P3, DOI 10.1642/AUK-13-020-R1.1; Millet S, 2007, DEV COMP IMMUNOL, V31, P188, DOI 10.1016/j.dci.2006.05.013; Moller AP, 2004, OIKOS, V104, P299, DOI 10.1111/j.0030-1299.2004.12844.x; Morgan BP, 2005, IMMUNOL LETT, V97, P171, DOI 10.1016/j.imlet.2004.11.010; Nebel S, 2013, J EXP BIOL, V216, P2752, DOI 10.1242/jeb.083204; Neter J, 1996, APPL LINEAR REGRESSI; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ost M, 2008, OECOLOGIA, V158, P205, DOI 10.1007/s00442-008-1139-2; Ost M, 2008, J ANIM ECOL, V77, P315, DOI 10.1111/j.1365-2656.2007.01348.x; Ost M, 2011, OECOLOGIA, V166, P327, DOI 10.1007/s00442-010-1855-2; Ost M, 2010, OECOLOGIA, V162, P59, DOI 10.1007/s00442-009-1444-4; PARKER H, 1990, AUK, V107, P660, DOI 10.2307/4087996; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Proaktor G, 2007, BIOLOGY LETT, V3, P674, DOI 10.1098/rsbl.2007.0376; R Development Core Team, 2013, R LANG ENV STAT COMP; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; Ricklin D, 2010, NAT IMMUNOL, V11, P785, DOI 10.1038/ni.1923; Ruiz M, 2011, HERPETOL J, V21, P131; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Stearns S, 1992, EVOLUTION LIFE HIST; Swennen C., 1991, Wildfowl, V42, P94; Taylor M.A., 2007, VET PARASITOLOGY; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Villanua D, 2006, PARASITOLOGY, V133, P251, DOI 10.1017/S003118200600031X; Waldeck P, 2004, BEHAVIOUR, V141, P725, DOI 10.1163/1568539042245132; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; Williams TD, 1999, P ROY SOC B-BIOL SCI, V266, P753, DOI 10.1098/rspb.1999.0701; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Wolak ME, 2012, METHODS ECOL EVOL, V3, P129, DOI 10.1111/j.2041-210X.2011.00125.x; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049 90 3 3 3 25 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia OCT 2016 182 2 347 356 10.1007/s00442-016-3657-7 10 Ecology Environmental Sciences & Ecology DW5FS WOS:000383669300003 27215635 2019-02-21 J Chamberlain, JD; Gifford, ME Chamberlain, Jeremy D.; Gifford, Matthew E. Physical and Physiological Costs of Reproduction in Watersnakes COPEIA English Article RELATIVE CLUTCH MASS; NORTHERN WATER SNAKES; LOCOMOTOR PERFORMANCE; VIVIPAROUS SNAKE; NERODIA-SIPEDON; GRAVID SNAKES; VIPERA-ASPIS; LIZARDS; THERMOREGULATION; CONSTRAINTS Estimating the cost of reproduction is pivotal to understanding the trade-off between current and future reproductive success, a key prediction in life-history theory. Increases in the cost of each reproductive attempt theoretically reduce future reproductive ability. Further, costs may change as individuals grow thus changing the nature of this trade-off. Measuring changes in female locomotor ability during reproduction has been one effective method to measure the cost of reproduction for females. We measured female Diamond-backed Watersnake (Nerodia rhombifer) swimming speed during and after pregnancy to determine if there was a loss of locomotor ability. We then correlated these speeds with measures of reproductive burdening (as estimated by relative clutch mass) and body size to investigate if increased reproductive investment and body size changed locomotor ability and subsequent cost of reproduction. Female snakes swam slower during pregnancy than after. Larger relative clutch masses resulted in slower swimming speeds during pregnancy. Further, shorter individuals showed a greater decrease in swimming speed suggesting a greater cost of reproduction for smaller individuals. Lastly, we demonstrated that additional costs to locomotor ability may be incurred by the female due to weight loss during pregnancy from carrying the burden of reproductive material. [Chamberlain, Jeremy D.] Univ Arkansas, Dept Biol, 2601 S Univ Ave, Little Rock, AR 72204 USA; [Gifford, Matthew E.] Univ Cent Arkansas, Dept Biol, 201 Donaghey Ave, Conway, AR 72035 USA Chamberlain, JD (reprint author), Univ Arkansas, Dept Biol, 2601 S Univ Ave, Little Rock, AR 72204 USA. jdchamberlai@ualr.edu; megifford@uca.edu Gifford, Matthew/0000-0003-1263-0010 [R-12-03]; [031220131] We thank A. Anderson, T. Clay, C. Korfel, M. Pollett, and A. Winters for their assistance in collecting snakes. We thank I. Clifton for his assistance in running swimming trials. We thank T. Persons for helpful comments that improved the manuscript. Lastly, we thank the Basic Animal Services Unit at the University of Arkansas at Little Rock for allowing us to use their facilities. This project was covered under Institutional Animal Care protocol R-12-03 and Arkansas Game and Fish permit #031220131. Angilletta MJ, 2000, FUNCT ECOL, V14, P39, DOI 10.1046/j.1365-2435.2000.00387.x; BAINBRIDGE R, 1958, J EXP BIOL, V35, P109; Bonnet X, 2002, ECOLOGY, V83, P2124, DOI 10.1890/0012-9658(2002)083[2124:RIATCB]2.0.CO;2; Brischoux F, 2011, AUSTRAL ECOL, V36, P46, DOI 10.1111/j.1442-9993.2010.02115.x; Brown GP, 1997, CAN J ZOOL, V75, P424, DOI 10.1139/z97-052; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; GARLAND T, 1988, EVOLUTION, V42, P335, DOI 10.1111/j.1558-5646.1988.tb04137.x; Gregory PT, 1999, J ZOOL, V248, P231, DOI 10.1111/j.1469-7998.1999.tb01199.x; Hammaker S., 2003, J ECOLOGICAL RES, V5, P1; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; JAYNE BC, 1985, COPEIA, P195, DOI 10.2307/1444809; Ladyman M, 2003, PHYSIOL BIOCHEM ZOOL, V76, P497, DOI 10.1086/376420; Le Galliard JF, 2003, FUNCT ECOL, V17, P877, DOI 10.1046/j.0269-8463.2003.00800.x; Lourdais O, 2002, J EXP ZOOL, V292, P487, DOI 10.1002/jez.10065; Miles DB, 2000, EVOLUTION, V54, P1386; O'Donnell R. P., 2005, COPEIA, V2005, P929; Olsson M, 2000, J EVOLUTION BIOL, V13, P263; SEIGEL RA, 1986, HERPETOLOGICA, V42, P179; SEIGEL RA, 1984, OECOLOGIA, V61, P293, DOI 10.1007/BF00379625; SEIGEL RA, 1987, OECOLOGIA, V73, P481, DOI 10.1007/BF00379404; Shine R, 2001, J EVOLUTION BIOL, V14, P338, DOI 10.1046/j.1420-9101.2001.00265.x; SHINE R, 1988, EVOLUTION, V42, P17, DOI 10.1111/j.1558-5646.1988.tb04104.x; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SHINE R, 1992, EVOLUTION, V46, P828, DOI 10.1111/j.1558-5646.1992.tb02088.x; Shine R, 2003, OECOLOGIA, V136, P450, DOI 10.1007/s00442-003-1281-9; SHINE R, 1979, AM NAT, V113, P905, DOI 10.1086/283444; SHINE R, 1988, BIOL REPTILIA, V16, P275; SINERVO B, 1991, J EXP BIOL, V155, P323; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; VITT LJ, 1982, HERPETOLOGICA, V38, P237; WEATHERHEAD PJ, 1992, CAN J ZOOL, V70, P94, DOI 10.1139/z92-014; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winne CT, 2006, FUNCT ECOL, V20, P1054, DOI 10.1111/j.1365-2435.2006.01180.x 33 2 2 2 11 AMER SOC ICHTHYOLOGISTS & HERPETOLOGISTS MIAMI MAUREEN DONNELLY, SECRETARY FLORIDA INT UNIV BIOLOGICAL SCIENCES, 11200 SW 8TH STREET, MIAMI, FL 33199 USA 0045-8511 1938-5110 COPEIA Copeia OCT 2016 104 3 722 727 10.1643/CP-15-347 6 Zoology Zoology DY9CH WOS:000385429700015 2019-02-21 J Doyle, MJ; Mier, KL Doyle, Miriam J.; Mier, Kathryn L. Early life history pelagic exposure profiles of selected commercially important fish species in the Gulf of Alaska DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY English Article Fish species; Early life history; Gulf of Alaska; Pelagic exposure profiles; Environmental sensitivities; Recruitment processes POLLOCK THERAGRA-CHALCOGRAMMA; COD GADUS-MACROCEPHALUS; AGE-0 WALLEYE POLLOCK; SABLEFISH ANOPLOPOMA-FIMBRIA; WESTERN GULF; NORTHERN GULF; OF-ALASKA; NEUSTONIC ICHTHYOPLANKTON; SHELIKOF-STRAIT; PACIFIC-OCEAN A synthesis of nearly four decades of ichthyoplankton survey data from the Gulf of Alaska was undertaken to provide the most comprehensive information available on the early life history ecology of five focal species: Pacific Cod (Gadus macrocephalus), Walleye Pollock (Gadus chalcogrammus), Pacific Ocean Perch (Sebastes alutus), Sablefish (Anoplopoma fimbria), and Arrowtooth Flounder (Atheresthes stomias). This analysis of historical data, along with information from published studies, is presented here in the form of ecological reviews of the species during their planktonic phase. The reviews include descriptions of temporal and spatial patterns of exposure to the environment, and interpretation regarding associated sensitivities to environmental forcing. On a temporal scale, patterns in abundance of eggs and larvae are synthesized that characterize seasonal exposure to the pelagic environment, and interannual variation that is presumed to incorporate responses to long-term environmental forcing. Spatial patterns are synthesized to identify horizontal and vertical extent of egg and larval distributions, delineate areas of primary larval habitat, and illuminate egg and larval drift pathways. The observed patterns are discussed with respect to characterizing species early life history strategies, identifying long-term adaptations to the Gulf of Alaska environment, and associated resilience and vulnerability factors that may modulate early life responses to environmental forcing in this region. For each species, gaps in knowledge are identified and are concerned primarily with the period of transition between the larval and juvenile stage, and feeding habits and ecology across seasons, habitats and sub-intervals of early ontogeny. These early life history reviews advance our ecological understanding of the pelagic phase, and fine-tune our focus for the investigation of potential response mechanisms to environmental forcing at appropriate, species-specific temporal and spatial scales. (C) 2015 Elsevier Ltd. All rights reserved. [Doyle, Miriam J.] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA; [Mier, Kathryn L.] NOAA, NMFS, Alaska Fisheries Sci Ctr, 7600 Sand Point Way NE, Seattle, WA 98115 USA Doyle, MJ (reprint author), Alaska Fisheries Sci Ctr, 7600 Sand Point Way NE, Seattle, WA 98115 USA. miriam.doyle@noaa.gov North Pacific Research Board; Joint Institute for the study of the Atmosphere and Ocean, University of Washington under NOAA [NA10OAR4320148]; NOAA The data presented here are based on four decades of ichthyoplankton sampling in the Gulf of Alaska. Appreciation is extended to the many scientists and crews aboard the various research vessels that collected the samples during these Alaska Fisheries Research Center (AFSC) surveys. In addition, thanks are due to scientists at the AFSC Recruitment Processes Program, and at the Plankton Sorting and Identification Center in Sczcecin, Poland, who participated over the years in processing and analysis of the samples, as well as compilation of the ichthyoplankton data. Reviews on an earlier draft of the manuscript were provided by Ann Matarese, Janet Duffy-Anderson and Lisa De Forest, and are gratefully acknowledged. Myron Peck and two anonymous reviewers also provided valuable comments that helped improve the manuscript. Partial funding for this synthesis work was provided by the North Pacific Research Board and this paper represents NPRB Publication # 554 and GOAIERP publication # 8. This research was also partially funded by the Joint Institute for the study of the Atmosphere and Ocean, University of Washington under NOAA Cooperative Agreement no. NA10OAR4320148, Contribution no. 2192, and by NOAA's Climate Regimes and Ecosystem Productivity program. The research is also contribution EcoFOCI-0785 to NOAA's Fisheries-Oceanography Coordinated Investigations. Abookire AA, 2007, J SEA RES, V57, P198, DOI 10.1016/j.seares.2006.08.004; [Anonymous], FISH OCEANOGR S1, V5, P203; Atwood E, 2010, FISH OCEANOGR, V19, P493, DOI 10.1111/j.1365-2419.2010.00559.x; Bailey KM, 2008, FISH FISH, V9, P44, DOI 10.1111/j.1467-2979.2007.00268.x; Bailey KM, 2012, MAR ECOL PROG SER, V452, P205, DOI 10.3354/meps09614; Bailey KM, 1996, FISH OCEANOGR, V5, P137, DOI 10.1111/j.1365-2419.1996.tb00088.x; Bailey KM, 2005, PROG OCEANOGR, V67, P24, DOI 10.1016/j.pocean.2005.06.001; Bailey KM, 2003, BIG FISH BANG, P293; Bailey KM, 2002, MAR ECOL PROG SER, V236, P205, DOI 10.3354/meps236205; Bailey KM, 1999, FISH OCEANOGR, V8, P264, DOI 10.1046/j.1365-2419.1999.00113.x; Bailey KM, 2000, MAR ECOL PROG SER, V198, P215, DOI 10.3354/meps198215; BAILEY KM, 1995, MAR ECOL PROG SER, V119, P11, DOI 10.3354/meps119011; Belkin I, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2001GL013806; Blood D. B., 2007, 7 NOAA NMFS US DEP C; Boeing WJ, 2008, ECOL INDIC, V8, P292, DOI 10.1016/j.ecolind.2007.03.002; BRODEUR RD, 1995, FISH B-NOAA, V93, P603; Brodeur RD, 1996, FISH OCEANOGR, V5, P148, DOI 10.1111/j.1365-2419.1996.tb00089.x; BRODEUR RD, 1994, FISH B-NOAA, V92, P223; Brodeur RD, 1996, FISH OCEANOGR, V5, P92, DOI 10.1111/j.1365-2419.1996.tb00085.x; CANINO MF, 1991, MAR ECOL PROG SER, V79, P27, DOI 10.3354/meps079027; Chilton Elizabeth, 2007, ALASKA FISHERY RESEARCH BULLETIN, V12, P264; Chilton EA, 2010, FISH B-NOAA, V108, P70; Ciannelli L, 2007, CAN J FISH AQUAT SCI, V64, P713, DOI 10.1139/F07-049; Coyle KO, 2013, J MARINE SYST, V128, P185, DOI 10.1016/j.jmarsys.2013.04.018; Coyle KO, 2005, DEEP-SEA RES PT II, V52, P217, DOI 10.1016/j.dsr2.2004.09.025; Coyle KO, 2003, FISH OCEANOGR, V12, P327, DOI 10.1046/j.1365-2419.2003.00256.x; CURY P, 1994, CAN J FISH AQUAT SCI, V51, P1664, DOI 10.1139/f94-167; deYoung B, 2004, SCIENCE, V304, P1463, DOI 10.1126/science.1094858; Dougherty A, 2012, MAR BIOL, V159, P1733, DOI 10.1007/s00227-012-1961-2; Dougherty AB, 2007, J FISH BIOL, V71, P763, DOI 10.1111/j.1095-8649.2007.01543.x; Doyle MJ, 2012, CAN J FISH AQUAT SCI, V69, P2112, DOI 10.1139/cjfas-2012-0171; Doyle MJ, 2009, PROG OCEANOGR, V80, P163, DOI 10.1016/j.pocean.2009.03.002; DOYLE MJ, 1995, FISH B-NOAA, V93, P231; DOYLE MJ, 1992, CAL COOP OCEAN FISH, V33, P141; Doyle MJ, 2002, PROG OCEANOGR, V53, P247, DOI 10.1016/S0079-6611(02)00033-2; DUNN JR, 1987, FISH RES, V5, P163, DOI 10.1016/0165-7836(87)90038-5; Fuiman Lee A., 2002, P1; Gaichas SK, 2011, CAN J FISH AQUAT SCI, V68, P1553, DOI 10.1139/F2011-080; GROVER JJ, 1990, FISH B-NOAA, V88, P811; GROVER JJ, 1986, FISH B-NOAA, V84, P484; Haltuch MA, 2011, CAN J FISH AQUAT SCI, V68, P912, DOI 10.1139/F2011-030; HINCKLEY S, 1990, FISH B-NOAA, V88, P471; Houde Edward D., 2009, Journal of Northwest Atlantic Fishery Science, V41, P53; Hulson P.J.F, 2014, STOCK ASSESSMENT FIS, P547; Hurst TP, 2010, FISH B-NOAA, V108, P382; Hurst TP, 2009, FISH OCEANOGR, V18, P301, DOI 10.1111/j.1365-2419.2009.00512.x; Jump CM, 2008, FISH RES, V89, P222, DOI 10.1016/j.fishres.2007.08.019; Kamin LM, 2014, FISH OCEANOGR, V23, P1, DOI 10.1111/fog.12038; KENDALL AW, 1991, ENVIRON BIOL FISH, V30, P173, DOI 10.1007/BF02296888; KENDALL AW, 1994, FISH B-NOAA, V92, P540; KENDALL AW, 1987, MAR FISH REV, V49, P1; Laurel BJ, 2008, J PLANKTON RES, V30, P1051, DOI 10.1093/plankt/fbn057; Laurel BJ, 2011, CAN J FISH AQUAT SCI, V68, P51, DOI 10.1139/F10-130; Laurel J, 2007, J EXP MAR BIOL ECOL, V351, P42, DOI 10.1016/j.jembe.2007.06.005; LePage C, 1997, CAN J FISH AQUAT SCI, V54, P2235, DOI 10.1139/cjfas-54-10-2235; MASON JC, 1983, CAN J FISH AQUAT SCI, V40, P2126, DOI 10.1139/f83-247; Matarese A.C., 1989, 80 NOAA NMFS US DEP; Matarese AC, 2003, NOAA PROFESSIONAL PA, V1, P281; Mecklenburg T. A., 2002, FISHES ALASKA; Miller BS, 2009, EARLY LIFE HISTORY OF MARINE FISHES, P1, DOI 10.1525/california/9780520249721.001.0001; MILLER CB, 1988, PROG OCEANOGR, V20, P293, DOI 10.1016/0079-6611(88)90044-4; Montagnes DJS, 2010, J EUKARYOT MICROBIOL, V57, P223, DOI 10.1111/j.1550-7408.2010.00476.x; Moss JH, 2016, DEEP-SEA RES PT II, V132, P146, DOI 10.1016/j.dsr2.2015.03.014; Mueter FJ, 1999, MAR ECOL PROG SER, V190, P37, DOI 10.3354/meps190037; Mundy P., 2005, GULF ALASKA BIOL OCE; Myers RA, 1998, REV FISH BIOL FISHER, V8, P285, DOI 10.1023/A:1008828730759; Napp JM, 1996, FISH OCEANOGR, V5, P19, DOI 10.1111/j.1365-2419.1996.tb00080.x; Page L. M., 2013, AM FISHERIES SOC SPE, V34; Palof KJ, 2011, MAR BIOL, V158, P779, DOI 10.1007/s00227-010-1606-2; Porter SM, 2005, MAR ECOL PROG SER, V302, P207, DOI 10.3354/meps302207; Reynolds RW, 2002, J CLIMATE, V15, P1609, DOI 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2; Rooper CN, 2008, FISH B-NOAA, V106, P1; Rose KA, 2005, CAN J FISH AQUAT SCI, V62, P886, DOI 10.1139/F05-049; SAMEOTO DD, 1969, J FISH RES BOARD CAN, V26, P2240, DOI 10.1139/f69-213; SHENKER JM, 1986, CAN J FISH AQUAT SCI, V43, P930, DOI 10.1139/f86-115; Shima Michiyo, 1994, Fisheries Oceanography, V3, P50, DOI 10.1111/j.1365-2419.1994.tb00047.x; Shotwell S.K., 2012, DEEP SEA RES 2; Sigler M.F., 2001, Alaska Fishery Research Bulletin, V8, P57; Spies I., 2013, 7 ASSESSMENT ARROWTO, P541; Stabeno PJ, 2004, CONT SHELF RES, V24, P859, DOI 10.1016/j.csr.2004.02.007; Stachura MM, 2014, FISH OCEANOGR, V23, P389, DOI 10.1111/fog.12066; Stark JW, 2007, FISH B-NOAA, V105, P396; Strasburger WW, 2014, DEEP-SEA RES PT II, V109, P172, DOI 10.1016/j.dsr2.2013.10.007; TenBrink TT, 2013, N AM J FISH MANAGE, V33, P373, DOI 10.1080/02755947.2012.760505; THEILACKER GH, 1995, FISH B-NOAA, V93, P333; Waite JN, 2013, PROG OCEANOGR, V116, P179, DOI 10.1016/j.pocean.2013.07.006; WIEBE PH, 1976, J MAR RES, V34, P313; Wilson MT, 2006, MAR ECOL PROG SER, V317, P245, DOI 10.3354/meps317245; Wilson MT, 2009, MAR ECOL PROG SER, V392, P223, DOI 10.3354/meps08160; Wilson MT, 2005, FISH B-NOAA, V103, P207; Wing B. L., 1997, BIOL MANAGEMENT SABL, P13; Yatsu A, 2008, PROG OCEANOGR, V77, P252, DOI 10.1016/j.pocean.2008.03.009 92 8 8 5 19 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0967-0645 1879-0100 DEEP-SEA RES PT II Deep-Sea Res. Part II-Top. Stud. Oceanogr. OCT 2016 132 162 193 10.1016/j.dsr2.2015.06.019 32 Oceanography Oceanography DZ1LA WOS:000385598700013 2019-02-21 J Poysa, H; Rintala, J; Johnson, DH; Kauppinen, J; Lammi, E; Nudds, TD; Vaananen, VM Poysa, Hannu; Rintala, Jukka; Johnson, Douglas H.; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D.; Vaananen, Veli-Matti Environmental variability and population dynamics: do European and North American ducks play by the same rules? ECOLOGY AND EVOLUTION English Article demographic stochasticity; density dependence; environmental variability; hierarchical Bayesian state-space models; life history strategy; population variability ESTIMATING DENSITY-DEPENDENCE; ECOLOGICAL TIME-SERIES; BRITISH BIRDS; TEMPORAL VARIABILITY; COMMUNITY DYNAMICS; HUNTING PRESSURE; BREEDING DUCKS; LIFE-HISTORY; WATERFOWL; PATTERNS Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively "fast species" and governed by environmental variability) and diving (relatively "slow species" and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history. [Poysa, Hannu] Nat Resources Inst Finland, Joensuu, Finland; [Rintala, Jukka] Nat Resources Inst Finland, Helsinki, Finland; [Johnson, Douglas H.] USGS Northern Prairie Wildlife Res Ctr, St Paul, MN USA; [Johnson, Douglas H.] Univ Minnesota, Fisheries Wildlife & Conservat Biol, St Paul, MN 55108 USA; [Kauppinen, Jukka] Kuopio Nat Hist Museum, Kuopio, Finland; [Lammi, Esa] Environm Planning ENVIRO, Espoo, Finland; [Nudds, Thomas D.] Univ Guelph, Dept Integrat Biol, Guelph, ON, Canada; [Vaananen, Veli-Matti] Univ Helsinki, Dept Forest Sci, Helsinki, Finland Poysa, H (reprint author), Nat Resources Inst Finland, Joensuu, Finland. hannu.poysa@luke.fi Almaraz P, 2012, J ANIM ECOL, V81, P1113, DOI 10.1111/j.1365-2656.2012.01972.x; Bailey RO, 1981, T N AM WILDL NAT RES, V46, P58; Batt B.D.J., 1989, P204; Benton TG, 2002, J ANIM ECOL, V71, P320, DOI 10.1046/j.1365-2656.2002.00601.x; BETHKE RW, 1995, ECOL APPL, V5, P588, DOI 10.2307/1941969; BETHKE RW, 1993, OECOLOGIA, V93, P102, DOI 10.1007/BF00321198; Bjornstad ON, 2001, SCIENCE, V293, P638, DOI 10.1126/science.1062226; Blums P, 2002, J ANIM ECOL, V71, P438, DOI 10.1046/j.1365-2656.2002.00613.x; Bonenfant C, 2009, ADV ECOL RES, V41, P313, DOI 10.1016/S0065-2504(09)00405-X; Brook BW, 2006, ECOLOGY, V87, P1445, DOI 10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO;2; Dennis B, 2006, ECOL MONOGR, V76, P323, DOI 10.1890/0012-9615(2006)76[323:EDDPNA]2.0.CO;2; Drever MC, 2006, OECOLOGIA, V147, P725, DOI 10.1007/s00442-005-0308-9; Feldman RE, 2015, GLOBAL ECOL BIOGEOGR, V24, P896, DOI 10.1111/geb.12323; GASTON KJ, 1994, PHILOS T R SOC B, V345, P335, DOI 10.1098/rstb.1994.0114; Gelman A, 2003, BAYESIAN DATA ANAL; Gelman A, 2006, BAYESIAN ANAL, V1, P515, DOI 10.1214/06-BA117A; Gilks W., 1996, MARKOV CHAIN MONTE C, P1; Gonzalez J, 2009, J ZOOL, V279, P310, DOI 10.1111/j.1469-7998.2009.00622.x; Gunnarsson G, 2013, EUR J WILDLIFE RES, V59, P305, DOI 10.1007/s10344-013-0716-9; Hagemeijer W. J. M., 1997, EBCC ATLAS EUROPEAN; HANSKI I, 1990, PHILOS T ROY SOC B, V330, P141, DOI 10.1098/rstb.1990.0188; HANSKI I, 1993, OIKOS, V67, P29, DOI 10.2307/3545092; Heath JP, 2006, OIKOS, V115, P573; HEATH MF, 2000, BIRDLIFE CONSERVATIO, V8; Herrando-Perez S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0091536; Hixon MA, 2002, ECOLOGY, V83, P1490, DOI 10.1890/0012-9658(2002)083[1490:PRHCAC]2.0.CO;2; Holopainen S, 2014, FRESHWATER BIOL, V59, P2621, DOI 10.1111/fwb.12458; Holyoak M, 1996, OECOLOGIA, V108, P47, DOI 10.1007/BF00333213; Holyoak M, 1996, OECOLOGIA, V108, P54, DOI 10.1007/BF00333214; Jamieson L. E., 2004, Animal Biodiversity and Conservation, V27, P113; Johnson D. H., 1995, LONG TERM STUDIES VE, P391; JOHNSON DH, 1988, WILDLIFE MONOGR, P1; Kaitala V, 1997, P ROY SOC B-BIOL SCI, V264, P943, DOI 10.1098/rspb.1997.0130; Kauppinen J, 1999, WILDLIFE BIOL, V5, P73; Kauppinen J., 1983, FINNISH GAME RES, V40, P49; Kauppinen Jukka, 1993, Finnish Game Research, V48, P24; Kery M, 2012, BAYESIAN POPULATION ANALYSIS USING WINBUGS: A HIERARCHICAL PERSPECTIVE, P1; Kery M., 2016, APPL HIERARCHICAL MO; Knape J, 2012, ECOL LETT, V15, P17, DOI 10.1111/j.1461-0248.2011.01702.x; Koons David N., 2014, Wildfowl, P169; Koskimies P., 1991, MONITORING BIRD POPU; Krebs CJ, 2002, PHILOS T ROY SOC B, V357, P1211, DOI 10.1098/rstb.2002.1122; Laakso J, 2003, OIKOS, V102, P663, DOI 10.1034/j.1600-0706.2003.12319.x; LANDE R, 1993, AM NAT, V142, P911, DOI 10.1086/285580; Lande R., 2003, STOCHASTIC POPULATIO; Lawrence JD, 2013, METHODS ECOL EVOL, V4, P25, DOI 10.1111/j.2041-210X.2012.00255.x; Lebreton JD, 2013, J WILDLIFE MANAGE, V77, P12, DOI 10.1002/jwmg.425; LEITCH WG, 1985, J WILDLIFE MANAGE, V49, P212, DOI 10.2307/3801873; McCarthy MA, 2005, J APPL ECOL, V42, P1012, DOI 10.1111/j.1365-2664.2005.01101.x; MURDOCH WW, 1994, ECOLOGY, V75, P271, DOI 10.2307/1939533; Murray DL, 2010, ECOLOGY, V91, P571, DOI 10.1890/MS08-1032.1; Mutshinda CM, 2011, J ANIM ECOL, V80, P101, DOI 10.1111/j.1365-2656.2010.01743.x; Mutshinda CM, 2009, P ROY SOC B-BIOL SCI, V276, P2923, DOI 10.1098/rspb.2009.0523; NUDDS TD, 1994, OIKOS, V69, P295, DOI 10.2307/3546150; NUDDS TD, 1983, ECOLOGY, V64, P319, DOI 10.2307/1937079; NUMMI P, 1993, ECOGRAPHY, V16, P319, DOI 10.1111/j.1600-0587.1993.tb00221.x; Nummi P, 2015, OECOLOGIA, V177, P679, DOI 10.1007/s00442-014-3133-1; Patterson J. H., 1979, T N AM WILDL NAT RES, V44, P130; Peron G, 2012, J ANIM ECOL, V81, P960, DOI 10.1111/j.1365-2656.2012.01980.x; Petchey OL, 2000, P ROY SOC B-BIOL SCI, V267, P747, DOI 10.1098/rspb.2000.1066; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Plummer M., 2003, JAGS PROGRAM ANAL BA; Poysa H, 1996, ORNIS FENNICA, V73, P60; Poysa H, 2001, OIKOS, V94, P365, DOI 10.1034/j.1600-0706.2001.940218.x; Poysa H, 2014, J ORNITHOL, V155, P679, DOI 10.1007/s10336-014-1051-y; Poysa H, 2013, EUR J WILDLIFE RES, V59, P245, DOI 10.1007/s10344-012-0673-8; R Core Team, 2014, R LANG ENV STAT COMP; Ranta E, 2000, P ROY SOC B-BIOL SCI, V267, P1851, DOI 10.1098/rspb.2000.1220; Ripa J, 1999, ECOL LETT, V2, P219; ROHWER FC, 1988, AUK, V105, P161; Ross BE, 2015, ECOL APPL, V25, P1606, DOI 10.1890/14-0582.1; ROUGHGARDEN J, 1975, AM NAT, V109, P713, DOI 10.1086/283039; Roy C., 2016, ECOGRAPHY IN PRESS; Royama T., 1992, ANAL POPULATION DYNA; Ruokolainen L, 2009, TRENDS ECOL EVOL, V24, P555, DOI 10.1016/j.tree.2009.04.009; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Saether BE, 2002, SCIENCE, V295, P2070; Saether BE, 2008, J ANIM ECOL, V77, P869, DOI 10.1111/j.1365-2656.2008.01424.x; Saether BE, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12001; Saether BE, 2011, J ANIM ECOL, V80, P215, DOI 10.1111/j.1365-2656.2010.01751.x; Schwager M, 2006, AM NAT, V167, P879, DOI 10.1086/503609; Sibly RM, 2005, SCIENCE, V309, P607, DOI 10.1126/science.1110760; Sinclair ARE, 1996, OIKOS, V75, P164, DOI 10.2307/3546240; Stenseth NC, 1999, OIKOS, V87, P427, DOI 10.2307/3546809; Sturtz S, 2005, J STAT SOFTW, V12, P1; Suhonen S, 2011, BOREAL ENVIRON RES, V16, P71; Thomas A., 2006, R NEWS, V6, P12; TURCHIN P, 1992, ECOLOGY, V73, P289, DOI 10.2307/1938740; Turchin P, 1999, OIKOS, V84, P153, DOI 10.2307/3546876; Turchin Peter, 1995, P19, DOI 10.1016/B978-012159270-7/50003-8; Vaananen VM, 2001, WILDLIFE BIOL, V7, P3; VICKERY WL, 1984, ECOLOGY, V65, P96, DOI 10.2307/1939462; Viljugrein H, 2005, ECOLOGY, V86, P245, DOI 10.1890/04-0467; Williams CK, 2003, ECOLOGY, V84, P2654, DOI 10.1890/03-0038; WOIWOD IP, 1992, J ANIM ECOL, V61, P619, DOI 10.2307/5617; Zeng Z, 1998, ECOLOGY, V79, P2193, DOI 10.2307/176721; Ziebarth NL, 2010, ECOL LETT, V13, P21, DOI 10.1111/j.1461-0248.2009.01393.x; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 98 3 3 3 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2016 6 19 7004 7014 10.1002/ece3.2413 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DZ1UJ WOS:000385626100021 28725377 DOAJ Gold, Green Published 2019-02-21 J Husak, JF; Ferguson, HA; Lovern, MB Husak, Jerry F.; Ferguson, Haley A.; Lovern, Matthew B. Trade-offs among locomotor performance, reproduction and immunity in lizards FUNCTIONAL ECOLOGY English Article endurance; exercise; growth; life-history CRICKET GRYLLUS-FIRMUS; LIFE-HISTORY TRAITS; GROWTH-FACTOR-I; ANOLIS-CAROLINENSIS; CROTAPHYTUS-COLLARIS; SEXUAL-DIMORPHISM; FIELD CRICKETS; HOUSE SPARROWS; BODY CONDITION; FLIGHT-MUSCLE Life-history theory predicts that investment of acquired energetic resources to a particular trait denies those same resources from being allocated to a different trait, resulting in life-history trade-offs. Dynamic, whole-organism performance traits, including locomotor capacity, are key to fitness and fit within this framework. Such performance traits are typically energetically expensive, but are seldom integrated into life-history studies. We manipulated diet and allocation of resources to performance, via exercise training, to examine trade-offs among endurance capacity, growth, immune function and current reproductive investment. Captive green anole lizards were assigned to one of four treatment combinations across two factors (diet restricted or not and endurance trained or not) over the course of 9weeks. Our results show that both diet restriction and training dramatically suppressed reproduction and immune function, but there were opposing effects of diet restriction and training on growth. Elevated corticosterone from training was associated with suppression of immunity, and decreased fat stores from diet restriction were associated with suppressed reproduction in both sexes. Our results suggest that locomotor performance is an important part of energy allocation decisions and thus a key component of life-history trade-offs. [Husak, Jerry F.; Ferguson, Haley A.] Univ St Thomas, Dept Biol, St Paul, MN 55105 USA; [Lovern, Matthew B.] Oklahoma State Univ, Dept Integrat Biol, Stillwater, OK 74078 USA Husak, JF (reprint author), Univ St Thomas, Dept Biol, St Paul, MN 55105 USA. jerry.husak@stthomas.edu Adamo SA, 2008, J EXP BIOL, V211, P531, DOI 10.1242/jeb.013136; Adelman JS, 2009, INTEGR COMP BIOL, V49, P202, DOI 10.1093/icb/icp028; Atherton PJ, 2012, J PHYSIOL-LONDON, V590, P1049, DOI 10.1113/jphysiol.2011.225003; Berger S, 2005, HORM BEHAV, V47, P419, DOI 10.1016/j.yhbeh.2004.11.011; Bouchard C, 2011, COMPR PHYSIOL, V1, P1603, DOI 10.1002/cphy.c100059; Bowers EK, 2014, ECOLOGY, V95, P3027; Brace AJ, 2015, FUNCT ECOL, V29, P924, DOI 10.1111/1365-2435.12402; Cotter SC, 2011, FUNCT ECOL, V25, P186, DOI 10.1111/j.1365-2435.2010.01766.x; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; Cox RM, 2009, PHYSIOL BIOCHEM ZOOL, V82, P686, DOI 10.1086/605391; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Crnokrak P, 2000, J EVOLUTION BIOL, V13, P396, DOI 10.1046/j.1420-9101.2000.00188.x; Crnokrak P, 2002, J EVOLUTION BIOL, V15, P388, DOI 10.1046/j.1420-9101.2002.00401.x; Dantzer B, 2012, BIOL REV, V87, P414, DOI 10.1111/j.1469-185X.2011.00204.x; Demas G. E., 2012, ECOIMMUNOLOGY, P259; Eliakim A, 1997, AM J PHYSIOL-REG I, V273, pR1557; French SS, 2011, INTEGR COMP BIOL, V51, P505, DOI 10.1093/icb/icr019; Garland T, 1999, ANIM BEHAV, V58, P77, DOI 10.1006/anbe.1999.1132; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hasselquist D, 2012, ANIM BEHAV, V83, P1303, DOI 10.1016/j.anbehav.2012.03.025; Hegemann A, 2013, FRONT ZOOL, V10, DOI 10.1186/1742-9994-10-77; Herrel A, 1999, FUNCT ECOL, V13, P289, DOI 10.1046/j.1365-2435.1999.00305.x; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Husak J. F., 2016, DRYAD DIGITAL REPOSI; Husak JF, 2006, EVOLUTION, V60, P1888; Husak JF, 2008, EVOL ECOL RES, V10, P213; Husak JF, 2015, J EXP BIOL, V218, P899, DOI 10.1242/jeb.114975; Husak JF, 2009, INTEGR COMP BIOL, V49, P349, DOI 10.1093/icb/icp030; Huyghe K, 2009, HORM BEHAV, V55, P488, DOI 10.1016/j.yhbeh.2009.02.005; Irschick DJ, 2001, ANNU REV ECOL SYST, V32, P367, DOI 10.1146/annurev.ecolsys.32.081501.114048; Irschick DJ, 2005, EVOLUTION, V59, P1579; Irschick DJ, 1998, EVOLUTION, V52, P219, DOI 10.1111/j.1558-5646.1998.tb05155.x; Irschick DJ, 2000, PHYSIOL BIOCHEM ZOOL, V73, P428, DOI 10.1086/317733; Irschick DJ, 2008, EVOL ECOL RES, V10, P177; Jacot A, 2004, EVOLUTION, V58, P2280; Jenssen Thomas A., 1995, Herpetological Monographs, V9, P41, DOI 10.2307/1466995; Klasing Kirk C., 2004, Acta Zoologica Sinica, V50, P961; Koziris LP, 1999, J APPL PHYSIOL, V86, P1436; Lailvaux SP, 2014, Q REV BIOL, V89, P285, DOI 10.1086/678567; Lailvaux SP, 2012, P ROY SOC B-BIOL SCI, V279, P2841, DOI 10.1098/rspb.2011.2577; Lailvaux SP, 2010, ECOLOGY, V91, P1530, DOI 10.1890/09-0963.1; Lailvaux SP, 2004, P ROY SOC B-BIOL SCI, V271, P2501, DOI 10.1098/rspb.2004.2891; Lappin AK, 2005, AM NAT, V166, P426, DOI 10.1086/432564; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Londraville RL, 2014, GEN COMP ENDOCR, V203, P146, DOI 10.1016/j.ygcen.2014.02.002; Loucks AB, 1998, J APPL PHYSIOL, V84, P37; Lovern MB, 2008, INTEGR COMP BIOL, V48, P428, DOI 10.1093/icb/icn058; LUGER A, 1987, NEW ENGL J MED, V316, P1309, DOI 10.1056/NEJM198705213162105; Magwere T, 2004, J GERONTOL A-BIOL, V59, P3; Maklakov AA, 2013, BIOESSAYS, V35, P717, DOI 10.1002/bies.201300021; Marden JH, 2013, EVOLUTION, V67, P1105, DOI 10.1111/evo.12004; MARDEN JH, 1989, PHYSIOL ZOOL, V62, P505, DOI 10.1086/physzool.62.2.30156182; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; Martin LB, 2006, FUNCT ECOL, V20, P290, DOI 10.1111/j.1365-2435.01094.x; Martin LB, 2005, GEN COMP ENDOCR, V140, P126, DOI 10.1016/j.ygcen.2004.10.010; Martin LB, 2012, J EXP BIOL, V215, P4097, DOI 10.1242/jeb.073049; Meylan S, 2013, PHYSIOL BIOCHEM ZOOL, V86, P127, DOI 10.1086/668637; MOLE S, 1994, FUNCT ECOL, V8, P573, DOI 10.2307/2389917; Nunn CL, 2009, PHILOS T R SOC B, V364, P61, DOI 10.1098/rstb.2008.0148; Perry G, 2004, ANIM BEHAV, V67, P37, DOI 10.1016/j.anbehav.2003.02.003; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; Reaney LT, 2010, BEHAV ECOL, V21, P1367, DOI 10.1093/beheco/arq139; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roelen CAM, 1997, INT J SPORTS MED, V18, P238, DOI 10.1055/s-2007-972626; Roff Derek A., 1992; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Ruiz M, 2010, HORM BEHAV, V57, P134, DOI 10.1016/j.yhbeh.2009.09.019; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; SCHALL JJ, 1982, SCIENCE, V217, P1057, DOI 10.1126/science.7112113; Schulte-Hostedde AI, 2005, ECOLOGY, V86, P155, DOI 10.1890/04-0232; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Shine R, 2003, OECOLOGIA, V136, P450, DOI 10.1007/s00442-003-1281-9; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Timmons JA, 2010, J APPL PHYSIOL, V108, P1487, DOI 10.1152/japplphysiol.01295.2009; Tipton KD, 2001, INT J SPORT NUTR EXE, V11, P109, DOI 10.1123/ijsnem.11.1.109; Uller T, 2006, FUNCT ECOL, V20, P873, DOI 10.1111/j.1365-2435.2006.01163.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vanhooydonck B, 2005, BEHAV ECOL SOCIOBIOL, V59, P157, DOI 10.1007/s00265-005-0022-y; Veasey JS, 2001, J ANIM ECOL, V70, P20, DOI 10.1046/j.1365-2656.2001.00476.x; Wedell N, 2006, ANIM BEHAV, V71, P999, DOI 10.1016/j.anbehav.2005.06.023; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson M, 2013, INT J APPL EXERC PHY, V2, P1; WINGFIELD JC, 1975, STEROIDS, V26, P311, DOI 10.1016/0039-128X(75)90077-X; Yan Z, 2011, J APPL PHYSIOL, V110, P264, DOI 10.1152/japplphysiol.00993.2010; Zera AJ, 1998, AM NAT, V152, P7, DOI 10.1086/286146; Zera AJ, 1997, PHYSIOL ZOOL, V70, P519, DOI 10.1086/515865; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 89 17 17 1 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. OCT 2016 30 10 1665 1674 10.1111/1365-2435.12653 10 Ecology Environmental Sciences & Ecology DZ0EY WOS:000385511500006 Bronze 2019-02-21 J Cozzi, G; Chynoweth, M; Kusak, J; Coban, E; Coban, A; Ozgul, A; Sekercioglu, CH Cozzi, G.; Chynoweth, M.; Kusak, J.; Coban, E.; Coban, A.; Ozgul, A.; Sekercioglu, C. H. Anthropogenic food resources foster the coexistence of distinct life history strategies: year-round sedentary and migratory brown bears JOURNAL OF ZOOLOGY English Article anthropogenic food resource; behavioral plasticity; behavioral type; habitat selection; migration; movement patterns; Ursus arctos AMERICAN BLACK BEAR; URSUS-ARCTOS; BEHAVIORAL-ADJUSTMENTS; SELECTION FUNCTIONS; HUMAN DISTURBANCE; CONSEQUENCES; POPULATION; RESPONSES; MOVEMENT; CONSERVATION Plastic behavioral adaptation to human activities can result in the enhancement and establishment of distinct behavioral types within a population. Such inter-individual behavioral variations, if unaccounted for, can lead to biases in our understanding of species' feeding habits, movement pattern and habitat selection. We tracked the movements of 16 adult brown bears in a small and isolated population in north-east Turkey to (1) identify inter-individual behavioral variations associated with the use of a garbage dump and (2) to examine how these variations influenced ranging patterns, movements behavior and habitat selection. We identified two remarkably distinct behavioral types: bears that regularly visited the dump and remained sedentary year-round and bears that never visited the dump and migrated 165.7 +/- 20.1km (round-trip mean cumulative distance +/- se) prior to hibernation to search for food. We demonstrated that during migratory trips, bears moved more rapidly and were less selective in habitat choice than during the sedentary phase; during the migration phase, forest cover was the only important environmental characteristic. Our results thus reinforce the growing evidence that animals' use of the landscape largely changes according to movement phase. Our study shows that anthropogenic food resources can influence food habits, which can have cascading effects on movement patterns and hence habitat selection, ultimately resulting in the establishment of distinct behavioral types within a population. Identification and consideration of these behavioral types is thus fundamental for the correct implementation of evidence-based conservation strategies at the population level. [Cozzi, G.; Ozgul, A.] Univ Zurich, Dept Evolutionary Biol & Environm Studies, Populat Ecol Res Grp, Winterthurerstr 190, CH-8057 Zurich, Switzerland; [Chynoweth, M.; Sekercioglu, C. H.] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA; [Kusak, J.] Univ Zagreb, Fac Vet, Dept Biol, Zagreb, Croatia; [Coban, E.; Coban, A.; Sekercioglu, C. H.] KuzeyDoga Soc, Kars, Turkey; [Coban, A.] Kafkas Univ, Inst Hlth Sci, Dept Parasitol, Kars, Turkey; [Sekercioglu, C. H.] Koc Univ, Coll Sci, Istanbul, Turkey Cozzi, G (reprint author), Univ Zurich, Dept Evolutionary Biol & Environm Studies, Populat Ecol Res Grp, Winterthurerstr 190, CH-8057 Zurich, Switzerland. gabriele.cozzi@uzh.ch Ozgul, Arpat/K-2032-2012 Ozgul, Arpat/0000-0001-7477-2642; Sekercioglu, Cagan H./0000-0003-3193-0377; Kusak, Josip/0000-0002-5544-6486 Forschungskredit der Universitat Zurich; Claraz Foundation; Ashoka Fellowship; Bosporus University; Christensen Fund; Fondation Segre; National Geographic Society; National Science Foundation; UNDP Small Grants Program; University of Utah; Whitley Fund; Kuzey Doga and Nature Turkiye Foundation We thank the General Directorate of Nature Conservation and National Parks and Forestry General Directorate of Turkey's Ministry of Forestry and Water Affairs for permitting our research. For their support, we thank the Forschungskredit der Universitat Zurich, Claraz Foundation, Ashoka Fellowship, Bosporus University, Christensen Fund, Fondation Segre, National Geographic Society, National Science Foundation, UNDP Small Grants Program, University of Utah, Whitley Fund and Kuzey Doga and Nature Turkiye Foundation donors, especially Bilge Bahar, Seha Ismen, Lin Lougheed and Batubay Ozkan, Burak Over, and Barin Yucemen. We are grateful to the KuzeyDoga staff and volunteers for their efforts through the years and to the people of Erzurum, Kars and Sarikamis for their hospitality. Beier P, 1998, CONSERV BIOL, V12, P1241, DOI 10.1046/j.1523-1739.1998.98036.x; BLANCHARD BM, 1991, BIOL CONSERV, V58, P41, DOI 10.1016/0006-3207(91)90044-A; Borger L, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P222; Boyce MS, 2002, ECOL MODEL, V157, P281, DOI 10.1016/S0304-3800(02)00200-4; Bunnefeld N, 2011, J ANIM ECOL, V80, P466, DOI 10.1111/j.1365-2656.2010.01776.x; Can OE, 2004, URSUS, V15, P48, DOI 10.2192/1537-6176(2004)015<0048:SAMOBB>2.0.CO;2; Capitani C, 2016, MAMMALIA, V80, P329, DOI 10.1515/mammalia-2014-0151; Chynoweth MW, 2016, TURK J ZOOL, V40, P972, DOI 10.3906/zoo-1509-6; Chynoweth MW, 2015, TURK J ZOOL, V39, P541, DOI 10.3906/zoo-1405-10; Craiu RV, 2011, J COMPUT GRAPH STAT, V20, P767, DOI 10.1198/jcgs.2011.09189; Dahle B, 2003, J ZOOL, V260, P329, DOI 10.1017/S0952836903003753; Dingle H, 2014, MIGRATION: THE BIOLOGY OF LIFE ON THE MOVE, 2ND EDITION, P1, DOI 10.1093/acprof:oso/9780199640386.001.0001; Elfstrom M, 2014, J WILDLIFE MANAGE, V78, P881, DOI 10.1002/jwmg.727; Elfstrom M, 2014, MAMMAL REV, V44, P5, DOI 10.1111/j.1365-2907.2012.00223.x; Elliot NB, 2014, J APPL ECOL, V51, P1169, DOI 10.1111/1365-2664.12282; Fieberg J, 2010, PHILOS T R SOC B, V365, P2233, DOI 10.1098/rstb.2010.0079; Flack A, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1500931; Forester JD, 2009, ECOLOGY, V90, P3554, DOI 10.1890/08-0874.1; Fortin D, 2005, ECOLOGY, V86, P1320, DOI 10.1890/04-0953; Gill JA, 2001, BIOL CONSERV, V97, P265, DOI 10.1016/S0006-3207(00)00002-1; Goudie A. S., 2013, HUMAN IMPACT NATURAL; Hanski I., 1999, METAPOPULATION ECOLO; Kaczensky P, 2006, J ZOOL, V269, P474, DOI 10.1111/j.1469-7998.2006.00114.x; Killeen J, 2014, MOV ECOL, V2, DOI 10.1186/s40462-014-0015-4; Liley SG, 2015, URSUS, V26, P1, DOI 10.2192/URSUS-D-15-00006.1; Martin J, 2010, CAN J ZOOL, V88, P875, DOI 10.1139/Z10-053; Massemin-Challet S, 2006, IBIS, V148, P503, DOI 10.1111/j.1474-919X.2006.00550.x; Nelson ME, 1998, CAN J ZOOL, V76, P426, DOI 10.1139/cjz-76-3-426; Noyce KV, 2011, BEHAV ECOL SOCIOBIOL, V65, P823, DOI 10.1007/s00265-010-1086-x; Ordiz A, 2013, J APPL ECOL, V50, P306, DOI 10.1111/1365-2664.12047; Palmer SCF, 2014, OIKOS, V123, P923, DOI 10.1111/oik.01248; Peirce KN, 2006, URSUS, V17, P165, DOI 10.2192/1537-6176(2006)17[165:UOAGDB]2.0.CO;2; Robbins CT, 2004, URSUS, V15, P161, DOI 10.2192/1537-6176(2004)015<0161:NEOUAR>2.0.CO;2; Runge CA, 2014, FRONT ECOL ENVIRON, V12, P395, DOI 10.1890/130237; Seger RL, 2013, CAN J ZOOL, V91, P512, DOI 10.1139/cjz-2012-0326; Sekercioglu CH, 2011, BIOL CONSERV, V144, P2752, DOI 10.1016/j.biocon.2011.06.025; Sekerciolu C. H., 2012, TURKEYS 1 WILDLIFE C; SIMBERLOFF D, 1992, CONSERV BIOL, V6, P493, DOI 10.1046/j.1523-1739.1992.06040493.x; Sol D, 2013, ANIM BEHAV, V85, P1101, DOI 10.1016/j.anbehav.2013.01.023; Stien A, 2010, ECOLOGY, V91, P915, DOI 10.1890/09-0056.1; Valeix M, 2012, J APPL ECOL, V49, P73, DOI 10.1111/j.1365-2664.2011.02099.x; Weimerskirch H, 2015, SCI REP-UK, V5, DOI 10.1038/srep08853; Wood SN., 2006, GEN ADDITIVE MODELS; Yoda K, 2012, MAR ECOL PROG SER, V466, P249, DOI 10.3354/meps09939; Zeller KA, 2012, LANDSCAPE ECOL, V27, P777, DOI 10.1007/s10980-012-9737-0 45 5 5 1 23 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. OCT 2016 300 2 142 150 10.1111/jzo.12365 9 Zoology Zoology DY9CQ WOS:000385430900009 2019-02-21 J Magnanou, E; Noirot, C; Falcon, J; Jorgensen, EH Magnanou, Elodie; Noirot, Celine; Falcon, Jack; Jorgensen, Even Hjalmar Sequencing and characterization of a multi-organ Arctic charr transcriptome: A toolbox for investigating polymorphism and seasonal life in a high Arctic fish MARINE GENOMICS English Article Salvelinus alpinus; Contig; 454 sequencing; Phenotype; Life-history; Physiology SALMON SALMO-SALAR; ATLANTIC SALMON; SALVELINUS-ALPINUS; HISTORY VARIATION; LEPTIN; GENERATION; L.; ANNOTATION; ADIPOSITY; FRAMEWORK The Arctic charr (Salvelinus alpinus L.) inhabits fresh water ecosystems of the high North. The species has developed a strong phenotypic plasticity and variability in life history characteristics which has made this species an attractive model for investigations on phenotype plasticity, morph formation and ecological speciation. Further, the extreme seasonal variations in environmental conditions (e.g. food availability) in the high North induce seasonal changes in phenotype, which require precise timing mechanisms and physiological preparations. Individual gating of life-history strategies (e.g. formation of resident and sea-migrating morphs) and transitions (e.g. maturation) depends on conditional traits (size/energy status) at specific assessment time windows, and complex neuroendocrine regulation, which so far is poorly understood. In the absence of a reference genome, and in order to facilitate the investigation of the complex biological mechanisms of this unique fish model, the present study reveals a reference transcriptome for the Arctic charr. Using Roche 454 GS FLX+, we targeted various organs being either at the crossroads of many key pathways (neuroendocrine, metabolic, behavioral), of different ontological origins or displaying complementary physiological functions. The assemblage yielded 34,690 contigs greater than 1000 bp with an average length (1690 bp) and annotation rate (52%) within the range, or even higher, than what has been previously obtained with other teleost de novo transcriptomes. We dramatically improve the publically available transcript data on this species that may indeed be useful for various disciplines, from basic research to applied aspects related to conservation issues and aquaculture. (C) 2016 Elsevier B.V. All rights reserved. [Magnanou, Elodie; Falcon, Jack] UPMC Univ Paris 06, Sorbonne Univ, CNRS, Observ Oceanol,BIOM, F-66650 Banyuls Sur Mer, France; [Noirot, Celine] INRA, Plateforme Bioinformat Toulouse Midi Pyrenees, Biometrie & Intelligence Artificielle UR875, BP 52627, F-31326 Castanet Tolosan, France; [Jorgensen, Even Hjalmar] UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, NO-9037 Tormso, Norway Magnanou, E (reprint author), UPMC Univ Paris 06, Sorbonne Univ, CNRS, Observ Oceanol,BIOM, F-66650 Banyuls Sur Mer, France.; Jorgensen, EH (reprint author), UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, NO-9037 Tormso, Norway. elodie.magnanou@obs-banyuls.fr; even.jorgensen@uit.no Tromso University Research Foundation at UiT the Arctic University of Norway, Tromso, Norway [A36144] We thank colleagues at Eurofins MWG Operon, Germany, for technical advices and Christophe Klopp at INRA, Plateforme bioinformatique Toulouse Midi-Pyrenees, for his help and support during this work. We also acknowledge the Tromso University Research Foundation (Grant no. A36144) at UiT the Arctic University of Norway, Tromso, Norway, for financial support for this study. We thank two anonymous reviewers for their valuable comments that greatly improved our manuscript. Aarseth JJ, 2010, POLAR BIOL, V33, P379, DOI 10.1007/s00300-009-0715-1; Adzhubei AA, 2007, BMC GENOMICS, V8, DOI 10.1186/1471-2164-8-209; Barb CR, 2004, ANIM REPROD SCI, V82-3, P155, DOI 10.1016/j.anireprosci.2004.04.032; Bardou P, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/1471-2105-15-293; Betancur-R R, 2013, PLOS CURR-TREE LIFE, DOI 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288; Blum WF, 1997, HORM RES, V48, P2, DOI 10.1159/000191303; Boivin T.G., 1989, BIOL CHARRS MASU SAL, P653; Chevreux B, 2004, GENOME RES, V14, P1147, DOI 10.1101/gr.1917404; Coppe A, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-635; Davie A, 2009, CHRONOBIOL INT, V26, P379, DOI 10.1080/07420520902820947; DEMPSON JB, 1998, INT SOC ARCTIC CHAR, V6, P27; DePristo MA, 2011, NAT GENET, V43, P491, DOI 10.1038/ng.806; Di Genova A., 2011, DATABASE J BIOL DATA, V2011; DUSTON J, 1988, J COMP PHYSIOL A, V164, P259, DOI 10.1007/BF00603956; Ferraresso S, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-315; Ferraz ALJ, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-173; Fraser BA, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-202; Friedman JM, 2002, NUTR REV, V60, pS1, DOI 10.1301/002966402320634878; Froiland E, 2012, GEN COMP ENDOCR, V178, P330, DOI 10.1016/j.ygcen.2012.06.017; Froiland E, 2010, GEN COMP ENDOCR, V165, P136, DOI 10.1016/j.ygcen.2009.06.010; Hoar W.S., 1988, PHYSL DEV FISH VIVIP, P275; Ji PF, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035152; Johansen SJS, 2003, AQUAC RES, V34, P317; Johnson L., 1980, CHARRS SALMONID FISH, P15; Jonsson B, 2001, J FISH BIOL, V58, P605, DOI 10.1006/jfbi.2000.1515; Jorgensen EH, 2014, MAR GENOM, V14, P71, DOI 10.1016/j.margen.2013.10.005; Kapralova KH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106084; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Kristiansson E, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-345; Kurokawa T, 2005, PEPTIDES, V26, P745, DOI 10.1016/j.peptides.2004.12.017; Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324; Lorgen M, 2015, CURR BIOL, V25, P936, DOI 10.1016/j.cub.2015.01.074; Magnanou E, 2014, GENE, V544, P56, DOI 10.1016/j.gene.2014.04.032; Mariette J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096821; McCormick SD, 2013, FISH PHYSIOL, V32, P199, DOI 10.1016/B978-0-12-396951-4.00005-0; McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110; Moriya Y, 2007, NUCLEIC ACIDS RES, V35, pW182, DOI 10.1093/nar/gkm321; NORDENG H, 1983, CAN J FISH AQUAT SCI, V40, P1372, DOI 10.1139/f83-159; Qian X, 2014, OMICS, V18, P98, DOI 10.1089/omi.2013.0110; Rikardsen AH, 2004, ECOL FRESHW FISH, V13, P305, DOI 10.1111/j.1600-0633.2004.00070.x; Saether B.-S., 2013, J ICHTHYOL, V53, P833; Striberny A., 2015, PLOS ONE; Swanson HK, 2011, CAN J FISH AQUAT SCI, V68, P2020, DOI 10.1139/F2011-111; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Tveiten H, 1996, J FISH BIOL, V48, P910; Van der Auwera G. A., 2013, CURR PROTOC BIOINFOR, V11, P1, DOI DOI 10.1002/0471250953.BI1110S43; Wynne K, 2005, J ENDOCRINOL, V184, P291, DOI 10.1677/joe.1.05866; Yufera M, 2012, MAR BIOTECHNOL, V14, P423, DOI 10.1007/s10126-011-9422-3 48 1 1 1 11 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1874-7787 1876-7478 MAR GENOM Mar. Genom. OCT 2016 29 45 53 10.1016/j.margen.2016.04.006 9 Genetics & Heredity; Marine & Freshwater Biology Genetics & Heredity; Marine & Freshwater Biology DY9RN WOS:000385472900008 27118202 2019-02-21 J Oufiero, CE; Whitlow, KR Oufiero, Christopher E.; Whitlow, Katrina R. The evolution of phenotypic plasticity in fish swimming CURRENT ZOOLOGY English Article environmental variation; evolution; fish; phenotypic plasticity; swimming kinematics; swimming performance LIFE-HISTORY EVOLUTION; AFRICAN CICHLID FISH; CORAL-REEF FISHES; EUROPEAN SEA BASS; COD GADUS-MORHUA; PREDATOR-INDUCED MORPHOLOGY; GUPPY POECILIA-RETICULATA; PERFORMANCE TRADE-OFFS; THERMAL-ACCLIMATION; HYPOXIA TOLERANCE Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming. [Oufiero, Christopher E.; Whitlow, Katrina R.] Towson Univ, Dept Biol Sci, Towson, MD 21252 USA Oufiero, CE (reprint author), Towson Univ, Dept Biol Sci, Towson, MD 21252 USA. coufiero@towson.edu Whitlow, Katrina/0000-0003-0664-3704 Albertson RC, 2003, J HERED, V94, P291, DOI 10.1093/jhered/esg071; Allan BJM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2179; Allan BJM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058520; Allen PJ, 2006, CAN J FISH AQUAT SCI, V63, P1360, DOI 10.1139/F06-031; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; Angilletta MJ, 2003, TRENDS ECOL EVOL, V18, P234, DOI 10.1016/S0169-5347(03)00087-9; Angilletta MJ, 2002, J THERM BIOL, V27, P249, DOI 10.1016/S0306-4565(01)00094-8; ARNOLD SJ, 1983, AM ZOOL, V23, P347; BAINBRIDGE R, 1958, J EXP BIOL, V35, P109; BEAMISH FWH, 1978, FISH PHYSIOL, V7, P101, DOI DOI 10.1016/S1546-5098(08)60164-8; Beukers JS, 1998, OECOLOGIA, V114, P50, DOI 10.1007/s004420050419; Biewener A, 2010, BIOL LETTERS, V6, P387, DOI 10.1098/rsbl.2010.0294; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Binning SA, 2015, ECOLOGY, V96, P828, DOI 10.1890/14-0426.1; Binning SA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121983; Binning SA, 2014, OECOLOGIA, V174, P623, DOI 10.1007/s00442-013-2794-5; Blake RW, 2005, J FISH BIOL, V67, P834, DOI 10.1111/j.1095-8649.2005.00788.x; Blake RW, 2004, J FISH BIOL, V65, P1193, DOI 10.1111/j.1095-8949.2004.00568.x; Bouton N, 2002, BIOL J LINN SOC, V77, P185, DOI 10.1046/j.1095-8312.2002.00093.x; BRILL RW, 2001, TUNA PHYSL ECOLOGY E, V19, P79; BRONMARK C, 1994, OIKOS, V70, P396, DOI 10.2307/3545777; BUSHNELL PG, 1984, J EXP BIOL, V113, P225; Cannas M, 2006, J FISH BIOL, V69, P1612, DOI 10.1111/j.1095-8649.2006.01225.x; Carey GR, 2009, MAR FRESHWATER RES, V60, P203, DOI 10.1071/MF07250; CARPENTER JH, 1966, LIMNOL OCEANOGR, V11, P264, DOI 10.4319/lo.1966.11.2.0264; Claireaux G, 2007, PHYSIOL BIOCHEM ZOOL, V80, P186, DOI 10.1086/511143; Claireaux G, 2006, J EXP BIOL, V209, P3420, DOI 10.1242/jeb.02346; Clusella-Trullas S, 2010, PHYSIOL BIOCHEM ZOOL, V83, P519, DOI 10.1086/651387; Cole NJ, 2001, J COMP PHYSIOL B, V171, P321, DOI 10.1007/s003600100179; Crispo E, 2010, J EVOLUTION BIOL, V23, P2091, DOI 10.1111/j.1420-9101.2010.02069.x; Crispo E, 2011, EVOL ECOL, V25, P949, DOI 10.1007/s10682-010-9445-7; DEJONG G, 1995, AM NAT, V145, P493, DOI 10.1086/285752; Dhillon RS, 2011, J EXP BIOL, V214, P3639, DOI 10.1242/jeb.057737; Dickson KA, 2012, J FISH BIOL, V80, P2494, DOI 10.1111/j.1095-8649.2012.03302.x; Domenici P, 2007, PHILOS T R SOC B, V362, P1929, DOI 10.1098/rstb.2007.2078; Domenici P, 2008, P ROY SOC B-BIOL SCI, V275, P195, DOI 10.1098/rspb.2007.1088; Domenici P, 2012, BIOL LETTERS, V8, P78, DOI 10.1098/rsbl.2011.0591; Domenici P, 2010, J EXP ZOOL PART A, V313A, P59, DOI 10.1002/jez.580; Dowis HJ, 2003, J EXP BIOL, V206, P2749, DOI 10.1242/jeb.00496; Drucker EG, 1996, AM ZOOL, V36, P555; Dudley SA, 1996, AM NAT, V147, P445, DOI 10.1086/285860; Dutil JD, 2007, J FISH BIOL, V71, P363, DOI 10.1111/j.1095-8649.2007.01487.x; Ellerby DJ, 2011, EVOL BIOL, V38, P422, DOI 10.1007/s11692-011-9130-y; Epthorp JA, 2014, J AUST STRENGTH COND, V21, P78; Fu SJ, 2014, J EXP BIOL, V217, P590, DOI 10.1242/jeb.089268; Fu SJ, 2011, J EXP BIOL, V214, P2080, DOI 10.1242/jeb.053132; Fulton CJ, 2007, CORAL REEFS, V26, P217, DOI 10.1007/s00338-007-0195-0; Fulton CJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054033; Fulton CJ, 2005, P ROY SOC B-BIOL SCI, V272, P827, DOI 10.1098/rspb.2004.3029; Futuyma DJ, 2013, J EXP BIOL; Garland T, 2006, J EXP BIOL, V209, P2344, DOI 10.1242/jeb.02244; Garland Theodore Jr., 1994, P240; Georgakopoulou E, 2007, J FISH BIOL, V70, P278, DOI 10.1111/j.1095-8649.2007.01305.x; Gerry SP, 2011, J FISH BIOL, V78, P1023, DOI 10.1111/j.1095-8649.2011.02911.x; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Gibb AC, 2002, INTEGR COMP BIOL, V42, P199, DOI 10.1093/icb/42.2.199; Gibert P, 2001, EVOLUTION, V55, P205; Gotanda KM, 2012, CAN J ZOOL, V90, P545, DOI 10.1139/Z2012-019; GUDERLEY H, 1988, CAN J ZOOL, V66, P1105, DOI 10.1139/z88-162; Healy TM, 2012, PHYSIOL BIOCHEM ZOOL, V85, P107, DOI 10.1086/664584; Hoegh-Guldberg O, 2007, SCIENCE, V318, P1737, DOI 10.1126/science.1152509; HOLETON GF, 1967, J EXP BIOL, V46, P317; Hulsey CD, 2005, FUNCT ECOL, V19, P487, DOI 10.1111/j.1365-2435.2005.00987.x; Irschick DJ, 2001, ANNU REV ECOL SYST, V32, P367, DOI 10.1146/annurev.ecolsys.32.081501.114048; Johansen JL, 2011, GLOBAL CHANGE BIOL, V17, P2971, DOI 10.1111/j.1365-2486.2011.02436.x; Johnston IA, 2002, J EXP BIOL, V205, P2305; Johnston IA, 2006, J EXP BIOL, V209, P2249, DOI 10.1242/jeb.02153; KERSTENS A, 1979, J EXP BIOL, V83, P169; Kingsolver JG, 2004, INTEGR COMP BIOL, V44, P450, DOI 10.1093/icb/44.6.450; Kingsolver JG, 1998, AM ZOOL, V38, P545; Kocher TD, 2004, NAT REV GENET, V5, P288, DOI 10.1038/nrg1316; Korsmeyer KE, 2002, J EXP BIOL, V205, P1253; Koumoundouros G, 2009, J FISH BIOL, V74, P1309, DOI 10.1111/j.1095-8649.2009.02206.x; KRAMER DL, 1987, ENVIRON BIOL FISH, V18, P81, DOI 10.1007/BF00002597; Kress N, 2001, DEEP-SEA RES PT I, V48, P2347, DOI 10.1016/S0967-0637(01)00022-X; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; Langerhans R. Brian, 2010, P200, DOI 10.1201/b10190-8; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Langerhans RB, 2003, BIOL J LINN SOC, V80, P689, DOI 10.1111/j.1095-8312.2003.00266.x; Lauder G.V., 1991, P169; Lauder GV, 2015, ANNU REV MAR SCI, V7, P521, DOI 10.1146/annurev-marine-010814-015614; Law TC, 1996, J EXP BIOL, V199, P2595; Lee CG, 2003, J EXP BIOL, V206, P3239, DOI 10.1242/jeb.00547; Levis NA, 2016, TRENDS ECOL IN PRESS; Losos JB, 2000, EVOLUTION, V54, P301, DOI 10.1111/j.0014-3820.2000.tb00032.x; McGee MD, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-277; McGee MD, 2013, J EXP BIOL, V216, P835, DOI 10.1242/jeb.074948; Meyers LA, 2002, TRENDS ECOL EVOL, V17, P551, DOI 10.1016/S0169-5347(02)02633-2; Munday PL, 2013, MAR BIOL, V160, P2137, DOI 10.1007/s00227-012-2111-6; Munday PL, 2012, J EXP BIOL, V215, P3865, DOI 10.1242/jeb.074765; Munday PL, 2009, MAR ECOL PROG SER, V388, P235, DOI 10.3354/meps08137; Nelson JA, 2008, PHYSIOL BIOCHEM ZOOL, V81, P25, DOI 10.1086/523304; Nelson JA, 2015, ENVIRON BIOL FISH, V98, P1431, DOI 10.1007/s10641-014-0369-x; Nicoglou A, 2015, STUD HIST PHI PART C, V50, P67, DOI 10.1016/j.shpsc.2015.01.003; Nilsson GE, 2012, NAT CLIM CHANGE, V2, P201, DOI [10.1038/NCLIMATE1352, 10.1038/nclimate1352]; NILSSON PA, 1995, OECOLOGIA, V104, P291, DOI 10.1007/BF00328363; Nowicki JP, 2012, J EXP MAR BIOL ECOL, V412, P46, DOI 10.1016/j.jembe.2011.10.020; Nudds RL, 2014, J EXP BIOL, V217, P2244, DOI 10.1242/jeb.102236; OSENBERG CW, 1992, ECOLOGY, V73, P255, DOI 10.2307/1938737; Ottmar ML, 2012, MAR BIOL, V159, P2185, DOI 10.1007/s00227-012-2004-8; Oufiero CE, 2007, FUNCT ECOL, V21, P676, DOI 10.1111/j.1365-2435.2007.01259.x; Oufiero CE, 2014, FUNCT ECOL, V28, P924, DOI 10.1111/1365-2435.12222; Oufiero CE, 2011, ECOLOGY, V92, P170, DOI 10.1890/09-1912.1; Peres-Neto PR, 2004, OECOLOGIA, V140, P36, DOI 10.1007/s00442-004-1562-y; Petersen LH, 2010, J EXP BIOL, V213, P808, DOI 10.1242/jeb.033746; Pfennig DW, 2010, TRENDS ECOL EVOL, V25, P459, DOI 10.1016/j.tree.2010.05.006; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Plaut I, 2001, COMP BIOCHEM PHYS A, V131, P41, DOI 10.1016/S1095-6433(01)00462-7; Price SA, 2011, ECOL LETT, V14, P462, DOI 10.1111/j.1461-0248.2011.01607.x; Price SA, 2013, EVOLUTION, V67, P417, DOI 10.1111/j.1558-5646.2012.01773.x; Recasens L, 2006, B MAR SCI, V78, P71; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Roze T, 2013, J THERM BIOL, V38, P98, DOI 10.1016/j.jtherbio.2012.12.001; Schulte PM, 2011, INTEGR COMP BIOL, V51, P691, DOI 10.1093/icb/icr097; Scott GR, 2012, P NATL ACAD SCI USA, V109, P14247, DOI 10.1073/pnas.1205012109; Seebacher F, 2012, FUNCT ECOL, V26, P1418, DOI 10.1111/j.1365-2435.2012.02052.x; Seehausen O, 2006, P ROY SOC B-BIOL SCI, V273, P1987, DOI 10.1098/rspb.2006.3539; Silkin YA, 2005, J EVOL BIOCHEM PHYS+, V41, P527, DOI 10.1007/s10893-005-0092-5; Somero GN, 2008, ANIMALS TEMPERATURE, P53; Standen EM, 2014, NATURE, V513, P54, DOI 10.1038/nature13708; STEVENS ED, 1979, CAN J ZOOL, V57, P1628, DOI 10.1139/z79-214; Svanback R, 2008, OIKOS, V117, P114, DOI 10.1111/j.2007.0030-1299.16267.x; Svendsen JC, 2013, J EXP BIOL, V216, P3564, DOI 10.1242/jeb.083089; Svendsen JC, 2010, J EXP BIOL, V213, P2177, DOI 10.1242/jeb.041368; THOMPSON JD, 1991, TRENDS ECOL EVOL, V6, P246, DOI 10.1016/0169-5347(91)90070-E; Tirsgaard B, 2015, COMP BIOCHEM PHYS A, V179, P89, DOI 10.1016/j.cbpa.2014.09.033; Wainwright PC, 2008, J EXP BIOL, V211, P3523, DOI 10.1242/jeb.007187; Wainwright PC, 2007, ANNU REV ECOL EVOL S, V38, P381, DOI 10.1146/annurev.ecolsys.38.091206.095706; Wainwright Peter C., 2002, P33, DOI 10.1016/B978-012615185-5/50004-9; Walker JA, 2005, FUNCT ECOL, V19, P808, DOI 10.1111/j.1365-2435.2005.01033.x; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; Watabe S, 2002, J EXP BIOL, V205, P2231; WEBB PW, 1984, AM ZOOL, V24, P107; Webb PW, 2002, J EXP BIOL, V205, P2125; WEBB PW, 1994, MECHANICS AND PHYSIOLOGY OF ANIMAL SWIMMING, P45; WEBB PW, 1984, SCI AM, V251, P72, DOI 10.1038/scientificamerican0784-72; WEBB PW, 1982, AM ZOOL, V22, P329; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; Wiens KE, 2014, INTEGR ZOOL, V9, P85, DOI 10.1111/1749-4877.12029; WIKRAMANAYAKE ED, 1990, ECOLOGY, V71, P1756, DOI 10.2307/1937583; Wilson RS, 2001, J COMP PHYSIOL B, V171, P263, DOI 10.1007/s003600000172; Yang H, 2013, COMP BIOCHEM PHYS A, V165, P131, DOI 10.1016/j.cbpa.2013.02.028 145 5 5 3 45 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1674-5507 2396-9814 CURR ZOOL Curr. Zool. OCT 2016 62 5 475 488 10.1093/cz/zow084 14 Zoology Zoology DW6DP WOS:000383737600008 29491937 DOAJ Gold, Green Published 2019-02-21 J Sommer, S; Reynolds, JJ; Kehn, A Sommer, Shannon; Reynolds, Joshua J.; Kehn, Andre Mock Juror Perceptions of Rape Victims: Impact of Case Characteristics and Individual Differences JOURNAL OF INTERPERSONAL VIOLENCE English Article sexual assault; perceptions of rape victims; life history strategy LIFE-HISTORY STRATEGY; SEXUAL ASSAULT; K-FACTOR; MYTH ACCEPTANCE; COLLEGE-WOMEN; GENDER; BLAME; REVICTIMIZATION; RISK; ORIENTATION The purpose of the present study was to examine mock juror perceptions of rape victims based on the sex of the offender and victim (male offender/female victim vs. female offender/male victim), relationship to the offender (stranger vs. acquaintance vs. intimate partner), revictimization (no revictimization vs. revictimization), and individual differences in rape myth acceptance (RMA) and life history strategy (LHS). Participants (N = 332) read a vignette describing a forcible rape scenario and completed victim and perpetrator blame scales, the Mini-K, and a gender-neutral Rape Myth Acceptance Scale. Results indicated increased victim blame in revictimization conditions, as well as female offender/male victim conditions. A significant mediation effect of LHS on victim blame through the indirect effect of RMA was found, which is predicted from life history theory. Implications of these findings are discussed. [Sommer, Shannon] Univ North Dakota, Grand Forks, ND USA; [Kehn, Andre] Univ North Dakota, Psychol, Grand Forks, ND USA; [Reynolds, Joshua J.] Univ Wyoming, Laramie, WY 82071 USA Sommer, S (reprint author), Univ North Dakota, 319 Harvard St,POB 8380, Grand Forks, ND 58202 USA. smsommer@comcast.net Anderson I, 2007, BRIT J SOC PSYCHOL, V46, P225, DOI 10.1348/014466606X101780; Aosved AC, 2011, PSYCHOL MEN MASCULIN, V12, P285, DOI 10.1037/a0020828; Areh I, 2009, STUD PSYCHOL, V51, P85; BARNETT MA, 1992, J PSYCHOL, V126, P609, DOI 10.1080/00223980.1992.10543391; BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173; Bieneck S, 2011, J INTERPERS VIOLENCE, V26, P1785, DOI 10.1177/0886260510372945; BLUMBERG ML, 1991, ADOLESCENCE, V26, P727; Buhrmester M, 2011, PERSPECT PSYCHOL SCI, V6, P3, DOI 10.1177/1745691610393980; BURT MR, 1980, J PERS SOC PSYCHOL, V38, P217, DOI 10.1037/0022-3514.38.2.217; Classen CC, 2005, TRAUMA VIOLENCE ABUS, V6, P103, DOI 10.1177/1524838005275087; Coxell AW, 2010, SEX RELATSH THER, V25, P380, DOI 10.1080/14681994.2010.518725; Cramer RJ, 2013, PSYCHOL PUBLIC POL L, V19, P355, DOI 10.1037/a0031404; Davies M, 2003, J COMMUNITY APPL SOC, V13, P391, DOI 10.1002/casp.741; Davies M, 2008, J HOMOSEXUAL, V55, P533, DOI 10.1080/00918360802345339; Doherty K, 2004, J COMMUNITY APPL SOC, V14, P85, DOI 10.1002/casp.765; Edwards KM, 2011, SEX ROLES, V65, P761, DOI 10.1007/s11199-011-9943-2; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLIS L, 1988, PERS INDIV DIFFER, V9, P697, DOI 10.1016/0191-8869(88)90059-1; Field H. S., 1978, LAW HUMAN BEHAV, V2, P73, DOI DOI 10.1007/BF01040385; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Ford TM, 1998, J SOC BEHAV PERS, V13, P253; GIDYCZ CA, 1993, PSYCHOL WOMEN QUART, V17, P151, DOI 10.1111/j.1471-6402.1993.tb00441.x; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Hannon R, 2000, SEX ROLES, V43, P311, DOI 10.1023/A:1026643225329; Harrower J., 2009, J SEX AGGRESS, V15, P63, DOI [10.1080/13552600802641649, DOI 10.1080/13552600802641649]; Logan T, 2007, J INTERPERS VIOLENCE, V22, P1066, DOI 10.1177/0886260507302996; MacFarlane B. A., 1993, HIST DEV OFFENCE RAP; Martin EK, 2007, AGGRESS VIOLENT BEH, V12, P329, DOI 10.1016/j.avb.2006.10.003; Messman-Moore TL, 2006, PSYCHOL WOMEN QUART, V30, P159, DOI 10.1111/j.1471-6402.2006.00279.x; Messman-Moore TL, 2009, J INTERPERS VIOLENCE, V24, P499, DOI 10.1177/0886260508317199; Miller AK, 2007, BASIC APPL SOC PSYCH, V29, P129, DOI 10.1080/01973530701331585; Mitchell D, 1999, J SEX RES, V36, P369, DOI 10.1080/00224499909552009; Nunez N, 2011, BEHAV SCI LAW, V29, P439, DOI 10.1002/bsl.967; Planty Michael, 2013, FEMALE VICTIMS SEXUA; Preacher KJ, 2004, BEHAV RES METH INS C, V36, P717, DOI 10.3758/BF03206553; Rayburn NR, 2003, J INTERPERS VIOLENCE, V18, P1055, DOI 10.1177/0886260503254513; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Salmon C, 2009, EVOL PSYCHOL-US, V7, P585; Schutte JW, 1997, J SOC BEHAV PERS, V12, P759; SHELDONKELLER A, 1994, SOC BEHAV PERSONAL, V22, P313, DOI 10.2224/sbp.1994.22.4.313; Shrout PE, 2002, PSYCHOL METHODS, V7, P422, DOI 10.1037//1082-989X.7.4.422; Sinclair HC, 1998, PSYCHOL WOMEN QUART, V22, P575, DOI 10.1111/j.1471-6402.1998.tb00178.x; Smith R E, 1988, J Sex Res, V24, P101, DOI 10.1080/00224498809551401; Sorenson S B, 1991, Violence Vict, V6, P299; Stearns S, 1992, EVOLUTION LIFE HIST; Steffensmeier D, 2006, J QUANT CRIMINOL, V22, P241, DOI 10.1007/s10940-006-9010-2; Tjaden P., 2000, 13781 NCJ NAT I JUST; Tjaden P., 2006, 210346 NCJ NAT I JUS; Turchik JA, 2012, PSYCHOL MEN MASCULIN, V13, P211, DOI 10.1037/a0023207 52 4 4 2 25 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0886-2605 1552-6518 J INTERPERS VIOLENCE J. Interpers. Violence OCT 2016 31 17 2847 2866 10.1177/0886260515581907 20 Criminology & Penology; Family Studies; Psychology, Applied Criminology & Penology; Family Studies; Psychology DV5HC WOS:000382956800004 25900913 2019-02-21 J Schuppli, C; Forss, SIF; Meulman, EJM; Zweifel, N; Lee, KC; Rukmana, E; Vogel, ER; van Noordwijk, MA; van Schaik, CP Schuppli, Caroline; Forss, Sofia I. F.; Meulman, Ellen J. M.; Zweifel, Nicole; Lee, Kevin C.; Rukmana, Evasari; Vogel, Erin R.; van Noordwijk, Maria A.; van Schaik, Carel P. Development of foraging skills in two orangutan populations: needing to learn or needing to grow? FRONTIERS IN ZOOLOGY English Article Body growth; Development; Diet repertoire; Feeding rates; Foraging skills; Life history; Needing-to-learn hypothesis; Ranging; Orangutans; Skill learning WILD SUMATRAN ORANGUTANS; LIFE-HISTORY; BORNEAN ORANGUTANS; SOCIAL INFLUENCES; CAPUCHIN MONKEYS; HUMAN BRAIN; FEEDING-BEHAVIOR; GORILLA-GORILLA; HUMAN-EVOLUTION; CEBUS-APELLA Background: Orangutans have one of the slowest-paced life histories of all mammals. Whereas life-history theory suggests that the time to reach adulthood is constrained by the time needed to reach adult body size, the needing-to-learn hypothesis instead suggests that it is limited by the time needed to acquire adult-level skills. To test between these two hypotheses, we compared the development of foraging skills and growth trajectories of immature wild orangutans in two populations: at Tuanan (Pongo pygmaeus wurmbii), Borneo, and Suaq Balimbing (Pongo abelii), Sumatra. We collected behavioral data on diet repertoire, feeding rates and ranging competence during focal follows, and estimated growth through non-invasive laser photogrammetry. Results: We found that adult-like diet repertoires are attained around the age of weaning and that female immatures increase their repertoire size faster than their male peers. Adult-level feeding rates of easy techniques are reached just after weaning, but several years later for more difficult techniques, albeit always before adulthood (i.e. age at first reproduction). Independent immatures had faster feeding rates for easy to process items than their mothers, with male immatures achieving faster feeding rates earlier in development relative to females. Sumatran immatures reach adult-level feeding rates 2-3 years later than their Bornean peers, in line with their higher dietary complexity and later weaning. The range-use competence of independently ranging and weaned immatures is similar to that of adult females. Body size measurements showed, immatures grow until female age of first reproduction. Conclusions: In conclusion, unlike in humans, orangutan foraging skills are in place prior to reproduction. Growth trajectories suggest that energetic constraints, rather than skills, best explain the length of immaturity. However, skill competence for dietary independence is reached later where the adult niche is more complex, which is consistent with the relatively later weaning age with increasing brain size found generally in primates, and apes in particular. [Schuppli, Caroline; Forss, Sofia I. F.; Meulman, Ellen J. M.; Zweifel, Nicole; Lee, Kevin C.; van Noordwijk, Maria A.; van Schaik, Carel P.] Univ Zurich, Dept Anthropol, Winterthurerstr 190, CH-8057 Zurich, Switzerland; [Rukmana, Evasari] Univ Nasl, Fak Biol, DKI, RT 14 RW 3, Jakarta, Indonesia; [Vogel, Erin R.] Rutgers State Univ, Dept Anthropol, New Brunswick, NJ 08904 USA Schuppli, C (reprint author), Univ Zurich, Dept Anthropol, Winterthurerstr 190, CH-8057 Zurich, Switzerland. caroline.schuppli@aim.uzh.ch Schuppli, Caroline/0000-0001-6318-2815 Swiss National Science Foundation [31003A-138368/1, 310030B-160363/1]; A.H. Schultz Foundation; Philadelphia ZOO; USAID [APS-497-11-000001]; University of Zurich This study was funded through Swiss National Science Foundation grant No. 31003A-138368/1 and No. 310030B-160363/1, as well as the A.H. Schultz Foundation, Philadelphia ZOO, USAID (APS-497-11-000001 to EV) and the University of Zurich. Agostini I, 2005, AM J PRIMATOL, V65, P335, DOI 10.1002/ajp.20120; ASHMOLE NP, 1968, AUK, V85, P90, DOI 10.2307/4083627; Barrickman NL, 2008, J HUM EVOL, V54, P568, DOI 10.1016/j.jhevol.2007.08.012; Barton RA, 2011, P NATL ACAD SCI USA, V108, P6169, DOI 10.1073/pnas.1019140108; Basabose AK, 2002, AM J PRIMATOL, V58, P1, DOI 10.1002/ajp.10049; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Bauernfeind AL, 2014, J HUM EVOL, V77, P132, DOI 10.1016/j.jhevol.2014.05.016; Beyer H. L., 2004, HAWTHS ANAL TOOLS AR; Boesch C, 2000, CHIMPANZEES TAI FORE; Borchers HW, 2015, PRACMA PRACTICAL NUM, V1, P3; BYRNE RW, 1993, BEHAV ECOL SOCIOBIOL, V33, P233, DOI 10.1007/BF02027120; Casey BJ, 2008, ANN NY ACAD SCI, V1124, P111, DOI 10.1196/annals.1440.010; Chappell J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130291; Charnov EL, 2004, EVOL ECOL RES, V6, P307; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; CLUTTONBROCK TH, 1977, NATURE, V269, P797, DOI 10.1038/269797a0; Crews F, 2007, PHARMACOL BIOCHEM BE, V86, P189, DOI 10.1016/j.pbb.2006.12.001; Deaner RO, 2003, PRIMATE BRAINS LIFE; Development Core Team R, 2015, R LANG ENV STAT COMP; Durston S, 2001, J AM ACAD CHILD PSY, V40, P1012, DOI 10.1097/00004583-200109000-00009; *ESRI, 2004, ARCGIS 9 0; FRAGASZY DM, 1990, FOLIA PRIMATOL, V54, P155, DOI 10.1159/000156439; GALDIKAS BMF, 1985, AM J PRIMATOL, V9, P101, DOI 10.1002/ajp.1350090204; GAUTIERHION A, 1980, J ANIM ECOL, V49, P237, DOI 10.2307/4287; Giedd JN, 1999, NAT NEUROSCI, V2, P861, DOI 10.1038/13158; Gruber T, 2010, ANIM BEHAV, V80, P1023, DOI 10.1016/j.anbehav.2010.09.005; Gunst N, 2008, BEHAVIOUR, V145, P195, DOI 10.1163/156853907783244701; Gunst N, 2010, J COMP PSYCHOL, V124, P194, DOI 10.1037/a0017723; Hanya G, 2003, PRIMATES, V44, P333, DOI 10.1007/s10329-003-0047-7; Hiraiwa-Hasegawa M., 1990, P277; Hothorn T, 2015, PACKAGE MULTCOMP OBT; Isler K, 2009, J HUM EVOL, V57, P392, DOI 10.1016/j.jhevol.2009.04.009; Jaeggi AV, 2008, AM J PRIMATOL, V70, P533, DOI 10.1002/ajp.20525; Jaeggi AV, 2010, AM J PRIMATOL, V72, P62, DOI 10.1002/ajp.20752; Janson Charles H., 1993, P57; Johnson SE, 2004, HUM NATURE-INT BIOS, V15, P45, DOI 10.1007/s12110-004-1003-y; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; Knott Cheryl D., 2009, P171; Krishnamani R., 1994, Tropical Biodiversity, V2, P285; Kuzawa CW, 2014, P NATL ACAD SCI USA, V111, P13010, DOI 10.1073/pnas.1323099111; Leigh SR, 2004, AM J PRIMATOL, V62, P139, DOI 10.1002/ajp.20012; Leigh SR, 2001, EVOL ANTHROPOL, V10, P223, DOI 10.1002/evan.20002; LEVITSKY DA, 1995, J NUTR, V125, pS2212, DOI 10.1093/jn/125.suppl_8.2212S; Lonsdorf EV, 2005, ANIM BEHAV, V70, P673, DOI 10.1016/j.anbehav.2004.12.014; MARCHETTI K, 1989, BIOL REV, V64, P51, DOI 10.1111/j.1469-185X.1989.tb00638.x; Marshall Andrew J., 2009, P97; Matsuzawa Tetsuro, 1994, P351; Meulman EJM, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2013.0050; Meulman EJM, 2013, TOOL USE IN ANIMALS: COGNITION AND ECOLOGY, P176; Mitra Setia T, 2009, SOCIAL ORG MALE FEMA; Morrogh-Bernard HC, 2009, ORANGUTAN ACTIVITY B; Nakayama Y, 1999, ECOL RES, V14, P291, DOI 10.1046/j.1440-1703.1999.143306.x; Navarrete A, 2011, NATURE, V480, P91, DOI 10.1038/nature10629; Nowell AA, 2007, INT J PRIMATOL, V28, P441, DOI 10.1007/s10764-007-9128-6; Nowicki S, 1998, AM ZOOL, V38, P179; Paus T, 2005, TRENDS COGN SCI, V9, P60, DOI 10.1016/j.tics.2004.12.008; Pontzer H, 2016, NATURE; Rapaport LG, 2008, EVOL ANTHROPOL, V17, P189, DOI 10.1002/evan.20180; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Rolfe DFS, 1997, PHYSIOL REV, V77, P731; Ross Caroline, 1999, Cambridge Studies in Biological Anthropology, V22, P73; Rothman JM, 2008, AM J PRIMATOL, V70, P1191, DOI 10.1002/ajp.20611; Schiel N, 2010, AM J PRIMATOL, V72, P1039, DOI 10.1002/ajp.20860; Schuppli C, 2016, ANIM BEHAV, V119, P87, DOI 10.1016/j.anbehav.2016.06.014; Schuppli C, 2016, J HUM EVOL, V92, P91, DOI 10.1016/j.jhevol.2015.11.007; Schuppli C, 2012, J HUM EVOL, V63, P843, DOI 10.1016/j.jhevol.2012.08.009; Singleton I, 2009, RANGING BEHAVIOR ORA; Stone AI, 2006, ETHOLOGY, V112, P105, DOI 10.1111/j.1439-0310.2005.01121.x; TANNER JM, 1986, CLIN ENDOCRINOL META, V15, P411, DOI 10.1016/S0300-595X(86)80005-6; Tarnaud L, 2004, INT J PRIMATOL, V25, P803, DOI 10.1023/B:IJOP.0000029123.78167.63; O'Mara MT, 2012, ANIM BEHAV, V84, P1547, DOI 10.1016/j.anbehav.2012.09.032; Utami Atmoko SS, 2009, ORANGUTAN MATING BEH; van Noordwijk MA, 2005, AM J PHYS ANTHROPOL, V127, P79, DOI 10.1002/ajpa.10426; van Noordwijk Maria A., 1993, P77; van Noordwijk MA, 2013, BEHAV ECOL SOCIOBIOL, V67, P805, DOI 10.1007/s00265-013-1504-y; van Noordwijk MA, 2012, BEHAV ECOL SOCIOBIOL, V66, P823, DOI 10.1007/s00265-012-1330-7; van Noordwijk Maria A., 2009, P189; van Schaik CP, 2006, SCH AM RES, P127; van Schaik Carel P., 2009, P351; van Schaik Carel P., 2009, P255; Van Schaik CP, 2001, AM J PHYS ANTHROPOL, V114, P331, DOI 10.1002/ajpa.1045; van Schaik CP, 1999, PRIMATES, V40, P69, DOI 10.1007/BF02557703; van Schaik CP, 2016, PRIMATE ORIGINS HUMA; vanSchaik CP, 1996, NATURWISSENSCHAFTEN, V83, P186, DOI 10.1007/s001140050271; VANSCHAIK CP, 1986, BEHAVIOUR, V99, P296, DOI 10.1163/156853986X00595; Vogel ER, NUTR ECOLOGY WILD BO; Vogel ER, 2014, J HUM EVOL, V75, P110, DOI 10.1016/j.jhevol.2014.05.007; WATTS DP, 1985, AM J PRIMATOL, V8, P1, DOI 10.1002/ajp.1350080102; Wich SA, 2004, J HUM EVOL, V47, P385, DOI 10.1016/j.jhevol.2004.08.006; Wich SA, 2009, ORANGUTAN LIFE HIST; WRANGHAM RW, 1991, PHILOS T ROY SOC B, V334, P171, DOI 10.1098/rstb.1991.0106 91 6 6 4 66 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1742-9994 FRONT ZOOL Front. Zool. SEP 29 2016 13 43 10.1186/s12983-016-0178-5 17 Zoology Zoology DX4PW WOS:000384364600001 27708679 DOAJ Gold, Green Published 2019-02-21 J Zhou, KL; Wang, MX; Sun, S Zhou, Konglin; Wang, Minxiao; Sun, Song Effects of Elevated Temperature and Food Supply on the Termination of Over-Summering and Subsequent Development of the Calanoid Copepod Calanus sinicus: Morphology, Physiology and Gene Expression PLOS ONE English Article LIFE-HISTORY STRATEGIES; SOUTHERN YELLOW SEA; COLD BOTTOM WATER; VITELLOGENIN-RECEPTOR; MARINE COPEPOD; LIPID STORAGE; MOLECULAR CHARACTERIZATION; ECDYSONE RECEPTOR; GONAD DEVELOPMENT; LOCH ENVIRONMENT The copepod Calanus sinicus Brodsky dominates the zooplankton in the Yellow Sea, China, and undergoes over-summering within the Yellow Sea Cold Water Mass (YSCWM). Termination of over-summering and subsequent development are regarded as key processes in population recruitment, and are probably linked to environmental variations in the YSCWM. In this study, we examined the effects of temperature (9 and 18 degrees C) and food conditions (0.1 mu g C mL(-1) and unfed) on metabolic rates, morphological characteristics, and relative gene expressions of six genes involved in molting, gonad development, lipid catabolism, and stress tolerance processes of C. sinicus during termination of over-summering and subsequent development. Both elevated temperature and external food supply rapidly ended over-summering of C. sinicus, accompanied by up-regulation of the ecdysteroid receptor (EcR) gene expression and increased metabolic rates. These environmental conditions resulted in irreversible termination of over-summering and ensure the success of molting. During subsequent development, the lipid reserve in oil sacs could permit only early gonad development. The food supply might be a trigger to activate the final maturity of gonad by up-regulating expression of the vitellogenin receptor (VgR) gene. Thus, food played an indispensable role in population recruitment after termination of over-summering, whereas the elevated temperature accelerated these physiological processes. This study revealed the first dynamic profiles of physiological processes involved in over-summering termination and the subsequent development of C. sinicus using morphological, physiological and molecular methods simultaneously, confirmed the quiescent state of over-summering C5 copepodites, detected the effects of environmental changes on over-summering termination and subsequent development, and provided a foundation for future investigations of the mechanisms involved in over-summering in YSCWM. [Zhou, Konglin; Wang, Minxiao; Sun, Song] Chinese Acad Sci, Inst Oceanol, Key Lab Marine Ecol & Environm Sci, Qingdao, Peoples R China; [Zhou, Konglin] Univ Chinese Acad Sci, Beijing, Peoples R China; [Zhou, Konglin; Wang, Minxiao; Sun, Song] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Ecol & Environm Sci, Qingdao, Peoples R China; [Sun, Song] Chinese Acad Sci, Inst Oceanol, Jiaozhou Bay Marine Ecosyst Res Stn, Qingdao, Peoples R China; [Zhou, Konglin] State Ocean Adm, Inst Oceanog 2, Key Lab Marine Ecosyst & Biogeochem, Hangzhou, Zhejiang, Peoples R China Sun, S (reprint author), Chinese Acad Sci, Inst Oceanol, Key Lab Marine Ecol & Environm Sci, Qingdao, Peoples R China.; Sun, S (reprint author), Qingdao Natl Lab Marine Sci & Technol, Lab Marine Ecol & Environm Sci, Qingdao, Peoples R China.; Sun, S (reprint author), Chinese Acad Sci, Inst Oceanol, Jiaozhou Bay Marine Ecosyst Res Stn, Qingdao, Peoples R China. sunsong@qdio.ac.cn National Natural Science Foundation of China [41230963, 41106133]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDA11020305]; National Natural Science Foundation of China - Shandong Joint Fund for Marine Ecology and Environmental Sciences [U1406403]; National Program on Basic Research of China [2014FY110500] This work was supported by the National Natural Science Foundation of China No. 41230963 (SS) and No. 41106133 (MW), the Strategic Priority Research Program of the Chinese Academy of Sciences No. XDA11020305 (SS), the National Natural Science Foundation of China - Shandong Joint Fund for Marine Ecology and Environmental Sciences No. U1406403 (SS) and National Program on Basic Research of China No. 2014FY110500 (MW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ARNAUD J, 1982, REPROD NUTR DEV, V22, P537, DOI 10.1051/rnd:19820410; Chen T, 2003, EUR J BIOCHEM, V270, P137, DOI 10.1046/j.1432-1033.2003.03373.x; Clark KAJ, 2012, LIMNOL OCEANOGR, V57, P65, DOI 10.4319/lo.2012.57.1.0065; Clark KAJ, 2013, GEN COMP ENDOCR, V189, P66, DOI 10.1016/j.ygcen.2013.04.002; Crain JA, 2000, ICES J MAR SCI, V57, P1773, DOI 10.1006/jmsc.2000.0979; Crain JA, 2001, DEEP-SEA RES PT II, V48, P551, DOI 10.1016/S0967-0645(00)00078-3; DAHMS HU, 1995, HYDROBIOLOGIA, V306, P199, DOI 10.1007/BF00017691; Denlinger DL, 2014, ANNU REV ENTOMOL, V59, P73, DOI 10.1146/annurev-ento-011613-162023; Goepfert S, 2005, PLANT PHYSIOL, V138, P1947, DOI 10.1104/pp.105.064311; Gunawardene YINS, 2001, INSECT BIOCHEM MOLEC, V31, P1115, DOI 10.1016/S0965-1748(01)00060-1; Hansen BH, 2008, GEN COMP ENDOCR, V158, P115, DOI 10.1016/j.ygcen.2008.05.013; Harrison PM, 1996, BBA-BIOENERGETICS, V1275, P161, DOI 10.1016/0005-2728(96)00022-9; HIRCHE HJ, 1983, MAR ECOL PROG SER, V11, P281, DOI 10.3354/meps011281; Hirche HJ, 1996, OPHELIA, V44, P129, DOI 10.1080/00785326.1995.10429843; Huang Jiaqi, 1986, Oceanologia et Limnologia Sinica, V17, P161; Hwang DS, 2010, COMP BIOCHEM PHYS C, V151, P303, DOI 10.1016/j.cbpc.2009.12.003; Irigoien X, 2004, J PLANKTON RES, V26, P259, DOI 10.1093/plankt/fbh030; Ji RB, 2011, MAR ECOL PROG SER, V440, P105, DOI 10.3354/meps09342; Johnson CL, 2004, PROG OCEANOGR, V62, P15, DOI 10.1016/j.pocean.2004.08.002; Johnson CL, 2003, MAR ECOL PROG SER, V257, P159, DOI 10.3354/meps257159; Jonasdottir Sigrun H., 1999, Fisheries Oceanography, V8, P61, DOI 10.1046/j.1365-2419.1999.00003.x; Kattner G, 2007, CAN J FISH AQUAT SCI, V64, P1628, DOI 10.1139/F07-122; Klinbunga S, 2015, AQUACULTURE, V435, P18, DOI 10.1016/j.aquaculture.2014.09.013; KOELLE MR, 1991, CELL, V67, P59, DOI 10.1016/0092-8674(91)90572-G; Krishnan M., 2008, Journal of Endocrinology and Reproduction, V12, P13; Kuballa AV, 2007, GEN COMP ENDOCR, V150, P48, DOI 10.1016/j.ygcen.2006.07.020; LAUFER H, 1987, SCIENCE, V235, P202, DOI 10.1126/science.235.4785.202; Lee RF, 2006, MAR ECOL PROG SER, V307, P273, DOI 10.3354/meps307273; Lenz PH, 2012, COMP BIOCHEM PHYS D, V7, P110, DOI 10.1016/j.cbd.2011.12.001; Li C, 2004, MAR BIOL, V145, P149, DOI 10.1007/s00227-004-1306-x; Liu GM, 2003, FISH OCEANOGR, V12, P291, DOI 10.1046/j.1365-2419.2003.00253.x; [刘梦坛 Liu Mengtan], 2011, [生态学报, Acta Ecologica Sinica], V31, P933; Madsen ML, 2008, ICES J MAR SCI, V65, P1112, DOI 10.1093/icesjms/fsn097; Maps F, 2014, J PLANKTON RES, V36, P18, DOI 10.1093/plankt/fbt100; Miller CB, 2000, ICES J MAR SCI, V57, P1786, DOI 10.1006/jmsc.2000.0975; Niehoff B, 2005, MAR ECOL PROG SER, V285, P107, DOI 10.3354/meps285107; Niehoff B, 2004, J EXP MAR BIOL ECOL, V307, P237, DOI 10.1016/j.jembe.2004.02.006; Niehoff B, 2003, J PLANKTON RES, V25, P1581, DOI 10.1093/plankt/fbg104; Niehoff B, 2002, MAR BIOL, V140, P567, DOI 10.1007/s00227-001-0731-3; Niehoff B, 2007, PROG OCEANOGR, V74, P1, DOI 10.1016/j.pocean.2006.05.005; Nilsson B, 2014, J PLANKTON RES, V36, P513, DOI 10.1093/plankt/fbt099; Ning J, 2013, DEEP-SEA RES PT II, V97, P109, DOI 10.1016/j.dsr2.2013.05.019; Ning J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063741; Parsons T. R, 1984, MANUAL CHEM BIOL MET; Pond DW, 2011, LIMNOL OCEANOGR, V56, P1310, DOI 10.4319/lo.2011.56.4.1310; Pu XM, 2004, J PLANKTON RES, V26, P1059, DOI 10.1093/plankt/fbh101; Pu XM, 2004, J PLANKTON RES, V26, P1049, DOI 10.1093/plankt/fbh097; Rey-Rassat C, 2002, MAR ECOL PROG SER, V238, P301, DOI 10.3354/meps238301; Roth Z, 2012, MOL REPROD DEV, V79, P478, DOI 10.1002/mrd.22055; SANTER B, 1995, J ANIM ECOL, V64, P600, DOI 10.2307/5803; Speirs DC, 2006, MAR ECOL PROG SER, V313, P173, DOI 10.3354/meps313173; STEWART JM, 1994, INVERTEBR REPROD DEV, V25, P73, DOI 10.1080/07924259.1994.9672370; STRICKLAND JDH, 1968, B FISH RES BD CAN, V167, P1; Sun Song, 2011, Oceanologia et Limnologia Sinica, V42, P165; Sun S, 2010, DEEP-SEA RES PT II, V57, P1006, DOI 10.1016/j.dsr2.2010.02.002; Sun Song, 2005, GLOBEC International Newsletter, V11, P34; Svetlichny LS, 2006, J MARINE SYST, V59, P52, DOI 10.1016/j.jmarsys.2005.09.003; Swalethorp R, 2011, MAR ECOL PROG SER, V429, P125, DOI 10.3354/meps09065; Tarrant AM, 2008, MAR ECOL PROG SER, V355, P193, DOI 10.3354/meps07207; Tarrant AM, 2014, FRONT ZOOL, V11, DOI 10.1186/s12983-014-0091-8; Tiu SHK, 2008, BIOL REPROD, V79, P66, DOI 10.1095/biolreprod.107.066258; Unal E, 2013, J EXP MAR BIOL ECOL, V446, P76, DOI 10.1016/j.jembe.2013.04.020; UYE S, 1988, HYDROBIOLOGIA, V167, P285, DOI 10.1007/BF00026316; Uye S, 2000, ICES J MAR SCI, V57, P1850, DOI 10.1006/jmsc.2000.0965; Wang R, 2003, J PLANKTON RES, V25, P169, DOI 10.1093/plankt/25.2.169; Wang S., 2009, THESIS; Wang SW, 2009, MAR ECOL PROG SER, V379, P123, DOI 10.3354/meps07902; Weng X C, 1982, HYDROMETEOLOGY, P61; Zhang DY, 2001, J BIOL CHEM, P276; Zhang GT, 2007, J PLANKTON RES, V29, P179, DOI 10.1093/plankt/fbm005; Zhou KL, 2016, J PLANKTON RES, V38, P551, DOI 10.1093/plankt/fbw011 71 1 1 2 18 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One SEP 21 2016 11 9 e0161838 10.1371/journal.pone.0161838 22 Multidisciplinary Sciences Science & Technology - Other Topics DW8GK WOS:000383892700011 27652608 DOAJ Gold, Green Published 2019-02-21 J Peeters, C; Adams, RMM Peeters, Christian; Adams, Rachelle M. M. Uncoupling Flight and Reproduction in Ants: Evolution of Ergatoid Queens in Two Lineages of Megalomyrmex (Hymenoptera: Formicidae) JOURNAL OF INSECT SCIENCE English Article ovary; ergatoid; Megalomyrmex foreli; Megalomyrmex wallacei; dispersal DEPENDENT COLONY FOUNDATION Megalomyrmex Forel (Myrmicinae: Solenopsidini) consists of 44 species with diverse life history strategies. Most species are predatory and may also tend honeydew-producing insects. A morphologically derived group of species are social parasites that consume the brood and fungus garden within fungus-growing ant nests. The reproductive strategies of Megalomyrmex queens are somewhat aligned with these life-style patterns. Predatory species in the leoninus species group are large in body size and have ergatoid (i.e., permanently wingless) queens whereas the social parasitic species are smaller and typically have winged queens. We examined two ergatoid phenotypes of Megalomyrmex foreli Emery and Megalomyrmex wallacei Mann and compared them to winged species, one a social lestobiotic or "thief ant" parasite (Megalomyrmex mondabora Brandao) and the other a predator (Megalomyrmex modestus Emery). Megalomyrmex foreli colonies have a single queen with an enlarged gaster that is morphologically distinct from workers. Megalomyrmex wallacei colonies have several queens that are similar in body size to workers. Queens in both species showed a simplification of the thorax, but there was a dramatic difference in the number of ovarioles. Megalomyrmex foreli had 60-80 ovarioles compared to eight in M. wallacei and M. mondabora and M. modestus had 22-28. Along with flight loss in queens, there is an obligate shift to dependent colony founding (also called budding or fission) consequently influencing dispersal patterns. These constraints in life history traits may help explain the variation in nesting biology among Megalomyrmex species. [Peeters, Christian] UPMC, Sorbonne Univ, UMR CNRS 7618, Inst Ecol & Environm Sci, F-75005 Paris, France; [Adams, Rachelle M. M.] Ohio State Univ, Museum Biol Divers, Dept Evolut Ecol & Organismal Biol, Rm 1500,1315 Kinnear Rd, Columbus, OH 43212 USA Adams, RMM (reprint author), Ohio State Univ, Museum Biol Divers, Dept Evolut Ecol & Organismal Biol, Rm 1500,1315 Kinnear Rd, Columbus, OH 43212 USA. christian.peeters@upmc.frc; adams.1970@osu.edu Organization for Tropical Studies; La Selva Biological Station; El Ceibo Ranger Station in Costa Rica; Marie Curie International Incoming Fellowship at the University of Copenhagen [237266]; French National Research Agency (ANTEVO) [ANR-12-JSV7-0003-01] We would like to thank Janni Larsen and Ronald Vargas for their help with fieldwork, Mia Hegelund Hyldahl and Janni Larsen for laboratory assistance, and Virginie Garnier-Thibaud with the scanning electron microscope at UPMC, Paris. We are grateful for research and permit support from the Organization for Tropical Studies, La Selva Biological Station, and El Ceibo Ranger Station in Costa Rica. Field work was supported by a Marie Curie International Incoming Fellowship (237266 - ANCEPS) to R.M.M.A. at the University of Copenhagen. C.P. is supported by the French National Research Agency (ANTEVO ANR-12-JSV7-0003-01). Adams RMM, 2007, INSECT SOC, V54, P136, DOI 10.1007/s00040-007-0922-0; Adams R.M.M., 2008, THESIS; Adams RMM, 2015, J CHEM ECOL, V41, P373, DOI 10.1007/s10886-015-0565-y; Adams RMM, 2013, P NATL ACAD SCI USA, V110, P15752, DOI 10.1073/pnas.1311654110; Boudinot BE, 2013, ZOOTAXA, V3732, P1, DOI 10.11646/zootaxa.3732.1.1; BRANDAO C R F, 1990, Arquivos de Zoologia (Sao Paulo), V31, P411; Brandao C.R.F., 1987, P111; Brandão Carlos Roberto F., 2003, Pap. Avulsos Zool. (São Paulo), V43, P145, DOI 10.1590/S0031-10492003000800001; Cronin AL, 2013, ANNU REV ENTOMOL, V58, P37, DOI 10.1146/annurev-ento-120811-153643; Devries P. J., 1992, Journal of Research on the Lepidoptera, V31, P103; Heinze J, 1998, INSECT SOC, V45, P113, DOI 10.1007/s000400050073; JONES TH, 1991, J CHEM ECOL, V17, P2507, DOI 10.1007/BF00994598; Longino JT, 2010, ZOOTAXA, P35; Molet M, 2012, AM NAT, V180, P328, DOI 10.1086/667368; Molet M, 2009, BIOL J LINN SOC, V98, P198, DOI 10.1111/j.1095-8312.2009.01257.x; Peeters C, 2012, MYRMECOL NEWS, V16, P75; Peeters C, 2010, ANT ECOLOGY, P159; Ward PS, 2015, SYST ENTOMOL, V40, P61, DOI 10.1111/syen.12090 18 0 0 0 15 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1536-2442 2250-2645 J INSECT SCI J Insect Sci. SEP 12 2016 16 10.1093/jisesa/iew068 5 Entomology Entomology DW0ZP WOS:000383372600005 27620557 DOAJ Gold, Green Published 2019-02-21 J Pakanen, VM; Orell, M; Vatka, E; Rytkonen, S; Broggi, J Pakanen, Veli-Matti; Orell, Markku; Vatka, Emma; Rytkonen, Seppo; Broggi, Juli Different Ultimate Factors Define Timing of Breeding in Two Related Species PLOS ONE English Article TIT PARUS-MONTANUS; CLIMATE-CHANGE; GREAT TITS; POPULATION FLUCTUATIONS; TROPHIC INTERACTIONS; FOOD AVAILABILITY; SOCIAL-DOMINANCE; NORTHERN FINLAND; CLUTCH-SIZE; MARSH TIT Correct reproductive timing is crucial for fitness. Breeding phenology even in similar species can differ due to different selective pressures on the timing of reproduction. These selection pressures define species' responses to warming springs. The temporal match-mismatch hypothesis suggests that timing of breeding in animals is selected to match with food availability (synchrony). Alternatively, time-dependent breeding success (the date hypothesis) can result from other seasonally deteriorating ecological conditions such as intra-or interspecific competition or predation. We studied the effects of two ultimate factors on the timing of breeding, synchrony and other time-dependent factors (time-dependence), in sympatric populations of two related forest-dwelling passerine species, the great tit (Parus major) and the willow tit (Poecile montanus) by modelling recruitment with long-termcapture-recapture data. We hypothesized that these two factors have different relevance for fitness in these species. We found that local recruitment in both species showed quadratic relationships with both time-dependence and synchrony. However, the importance of these factors was markedly different between the studied species. Caterpillar food played a predominant role in predicting the timing of breeding of the great tit. In contrast, for the willow tit time-dependence modelled as timing in relation to conspecifics was more important for local recruitment than synchrony. High caterpillar biomass experienced during the pre- and post-fledging periods increased local recruitment of both species. These contrasting results confirm that these species experience different selective pressures upon the timing of breeding, and hence responses to climate change may differ. Detailed information about life-history strategies is required to understand the effects of climate change, even in closely related taxa. The temporal match-mismatch hypothesis should be extended to consider subsequent critical periods when food needs to be abundantly available. [Pakanen, Veli-Matti; Orell, Markku; Vatka, Emma; Rytkonen, Seppo] Univ Oulu, Dept Ecol, POB 3000, FIN-90014 Oulu, Finland; [Broggi, Juli] UO CISC, Res Unit Biodivers, UMIB, PA, Ed Invest 5a C Gonzalo Gutierrez Quiros S-N, Mieres 33600, Spain; [Broggi, Juli] Lund Univ, Sect Evolutionary Ecol, Dept Biol, S-22362 Lund, Sweden Pakanen, VM (reprint author), Univ Oulu, Dept Ecol, POB 3000, FIN-90014 Oulu, Finland. veli-matti.pakanen@oulu.fi Pakanen, Veli-Matti/L-8134-2015 Academy of Finland, Research Council for Biosciences and Environment [128193, 258638, 278759]; Thule Institute of the University of Oulu; Foundations' Professor Pool The Academy of Finland, Research Council for Biosciences and Environment (to MO, project numbers 128193 and 258638; to VMP, project number 278759) http://www.aka.fi/en/, Thule Institute of the University of Oulu (to MO) http://www.oulu.fi/thuleinstitute/, and Foundations' Professor Pool (to MO) http://www.professoripooli.fi/index_en.php?cat=1&lang=3. Ahola MP, 2009, J ANIM ECOL, V78, P1298, DOI 10.1111/j.1365-2656.2009.01596.x; Both C, 2001, NATURE, V411, P296, DOI 10.1038/35077063; Both C, 2009, J ANIM ECOL, V78, P73, DOI 10.1111/j.1365-2656.2008.01458.x; Burnham K. P, 2002, MODEL SELECTION MULT; Dias PC, 1996, IBIS, V138, P644, DOI 10.1111/j.1474-919X.1996.tb04766.x; DRENT RH, 1980, ARDEA, V68, P225; Drent RH, 2006, ARDEA, V94, P305; DUNN E K, 1976, British Birds, V69, P45; Durant JM, 2005, ECOL LETT, V8, P952, DOI 10.1111/j.1461-0248.2005.00798.x; Durant JM, 2007, CLIM RES, V33, P271, DOI 10.3354/cr033271; Eeva T, 2012, J ORNITHOL, V153, P653, DOI 10.1007/s10336-011-0783-1; Eeva T, 2000, CAN J ZOOL, V78, P67, DOI 10.1139/cjz-78-1-67; EKMAN J, 1989, WILSON BULL, V101, P263; Garcia-Navas V, 2011, OECOLOGIA, V165, P639, DOI 10.1007/s00442-010-1858-z; GARNETT MC, 1981, IBIS, V123, P31, DOI 10.1111/j.1474-919X.1981.tb00170.x; Goodenough AE, 2011, BIRD STUDY, V58, P221, DOI 10.1080/00063657.2010.548006; Goodenough AE, 2010, CLIMATIC CHANGE, V102, P687, DOI 10.1007/s10584-010-9932-4; Gruebler MU, 2010, J AVIAN BIOL, V41, P282, DOI 10.1111/j.1600-048X.2009.04865.x; Harrap S, 1996, TITS NUTHACHES TREEC; Johansson J, 2014, J ANIM ECOL, V83, P440, DOI 10.1111/1365-2656.12151; KOIVULA K, 1993, BEHAV ECOL SOCIOBIOL, V33, P283, DOI 10.1007/BF02027126; Koivula K, 1996, IBIS, V138, P624, DOI 10.1111/j.1474-919X.1996.tb04763.x; Lambrechts MM, 2000, ECOGRAPHY, V23, P525, DOI 10.1034/j.1600-0587.2000.230502.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LENS L, 1993, BEHAV ECOL SOCIOBIOL, V33, P79; Lof ME, 2012, P ROY SOC B-BIOL SCI, V279, P3161, DOI 10.1098/rspb.2012.0431; MINOT EO, 1981, J ANIM ECOL, V50, P375, DOI 10.2307/4061; Moller AP, 2008, P NATL ACAD SCI USA, V105, P16195, DOI 10.1073/pnas.0803825105; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; NILSSON JA, 1989, J ANIM ECOL, V58, P619, DOI 10.2307/4852; NILSSON JA, 1988, J ANIM ECOL, V57, P917, DOI 10.2307/5101; ORELL M, 1989, IBIS, V131, P112, DOI 10.1111/j.1474-919X.1989.tb02750.x; ORELL M, 1983, ANN ZOOL FENN, V20, P99; ORELL M, 1983, HOLARCTIC ECOL, V6, P413; ORELL M, 1983, ARDEA, V71, P183; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; Post E, 2001, P ROY SOC B-BIOL SCI, V268, P15, DOI 10.1098/rspb.2000.1324; Reale D, 2003, P ROY SOC B-BIOL SCI, V270, P591, DOI 10.1098/rspb.2002.2224; Reed TE, 2013, SCIENCE, V340, P488, DOI 10.1126/science.1232870; Rytkonen S, 1996, J AVIAN BIOL, V27, P21, DOI 10.2307/3676957; Rytkonen S, 2003, J AVIAN BIOL, V34, P288, DOI 10.1034/j.1600-048X.2003.03041.x; Stevenson IR, 2000, NATURE, V406, P366, DOI 10.1038/35019151; Thackeray SJ, 2010, GLOBAL CHANGE BIOL, V16, P3304, DOI 10.1111/j.1365-2486.2010.02165.x; VANBALEN JH, 1973, ARDEA, V61, P1; Vatka E, 2016, GLOBAL CHANGE BIOL, V22, P1585, DOI 10.1111/gcb.13144; Vatka E, 2014, OECOLOGIA, V176, P595, DOI 10.1007/s00442-014-3022-7; Vatka E, 2011, GLOBAL CHANGE BIOL, V17, P3002, DOI 10.1111/j.1365-2486.2011.02430.x; Verboven N, 1998, OIKOS, V81, P511, DOI 10.2307/3546771; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; Visser ME, 2012, J ORNITHOL, V153, pS75, DOI 10.1007/s10336-011-0770-6; Visser ME, 1998, P ROY SOC B-BIOL SCI, V265, P1867, DOI 10.1098/rspb.1998.0514; Wesolowski T, 1998, ARDEA, V86, P89; White GC, 1999, BIRD STUDY, V46, P120; ZANDT HS, 1994, OECOLOGIA, V97, P399, DOI 10.1007/BF00317331 55 3 3 2 24 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One SEP 9 2016 11 9 e0162643 10.1371/journal.pone.0162643 15 Multidisciplinary Sciences Science & Technology - Other Topics DV9JE WOS:000383255900143 27611971 DOAJ Gold, Green Published 2019-02-21 J Baumann, JH; Townsend, JE; Courtney, TA; Aichelman, HE; Davies, SW; Lima, FP; Castillo, KD Baumann, Justin H.; Townsend, Joseph E.; Courtney, Travis A.; Aichelman, Hannah E.; Davies, Sarah W.; Lima, Fernando P.; Castillo, Karl D. Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal Reefs in Belize PLOS ONE English Article GREAT-BARRIER-REEF; 1998 BLEACHING EVENT; CLIMATE-CHANGE; MULTIPLE STRESSORS; CARIBBEAN PANAMA; LIFE-HISTORIES; RESILIENCE; DECLINE; SEA; EUTROPHICATION Coral reefs are increasingly threatened by global and local anthropogenic stressors such as rising seawater temperature, nutrient enrichment, sedimentation, and overfishing. Although many studies have investigated the impacts of local and global stressors on coral reefs, we still do not fully understand how these stressors influence coral community structure, particularly across environmental gradients on a reef system. Here, we investigate coral community composition across three different temperature and productivity regimes along a nearshore-offshore gradient on lagoonal reefs of the Belize Mesoamerican Barrier Reef System (MBRS). A novel metric was developed using ultra-high-resolution satellite-derived estimates of sea surface temperatures (SST) to classify reefs as exposed to low (low(TP)), moderate (mod(TP)), or high (high(TP)) temperature parameters over 10 years (2003 to 2012). Coral species richness, abundance, diversity, density, and percent cover were lower at high(TP) sites relative to low(TP) and mod(TP) sites, but these coral community traits did not differ significantly between low(TP) and mod(TP) sites. Analysis of coral life history strategies revealed that high(TP) sites were dominated by hardy stress-tolerant and fast-growing weedy coral species, while low(TP) and mod(TP) sites consisted of competitive, generalist, weedy, and stress-tolerant coral species. Satellite-derived estimates of Chlorophyll-a (chl-a) were obtained for 13-years (2003-2015) as a proxy for primary production. Chl-a concentrations were highest at high(TP) sites, medial at mod(TP) sites, and lowest at low(TP) sites. Notably, thermal parameters correlated better with coral community traits between site types than productivity, suggesting that temperature (specifically number of days above the thermal bleaching threshold) played a greater role in defining coral community structure than productivity on the MBRS. Dominance of weedy and stress-tolerant genera at high(TP) sites suggests that corals utilizing these two life history strategies may be better suited to cope with warmer oceans and thus may warrant protective status under climate change. [Baumann, Justin H.; Townsend, Joseph E.; Courtney, Travis A.; Aichelman, Hannah E.; Davies, Sarah W.; Castillo, Karl D.] Univ N Carolina, Dept Marine Sci, 3202 Murray & Venable Halls, Chapel Hill, NC 27599 USA; [Courtney, Travis A.; Davies, Sarah W.] Northeastern Univ, Dept Marine & Environm Sci, 430 Nahant Rd, Nahant, MA USA; [Courtney, Travis A.] Univ Calif San Diego, Scripps Inst Oceanog, 9500 Gilman Dr, La Jolla, CA 92093 USA; [Lima, Fernando P.] Univ Porto, Ctr Invest Biodiversidade & Recursos Genet, CIBIO InBIO, Campus Agr Vairao, Vairao, Portugal Baumann, JH (reprint author), Univ N Carolina, Dept Marine Sci, 3202 Murray & Venable Halls, Chapel Hill, NC 27599 USA. baumannj@live.unc.edu Lima, Fernando/C-1398-2008 Lima, Fernando/0000-0001-9575-9834; Courtney, Travis/0000-0002-1868-9630; Baumann, Justin/0000-0003-0113-0491 Rufford Foundation [15802-1]; National Science Foundation [OCE 1459522]; Department of Defense NDSEG fellowship This work was supported by the Rufford Foundation (http://www.rufford.org) Small Grant to JHB (15802-1); National Science Foundation (Oceanography) (nsf.gov) to KDC (OCE 1459522); Department of Defense NDSEG fellowship to JHB. Alvarez-Filip L, 2013, SCI REPORTS, V3; Alvarez-Filip L, 2009, P ROY SOC LOND B BIO; Alvarez-Filip L, 2011, ECOL APPL, V21, P2223, DOI 10.1890/10-1563.1; Andrefouet S, 2002, CORAL REEFS, V21, P43, DOI 10.1007/s00338-001-0199-0; Anthony KRN, 1999, J EXP MAR BIOL ECOL, V232, P85, DOI 10.1016/S0022-0981(98)00099-9; Aronson RB, 2004, ECOLOGY, V85, P1876, DOI 10.1890/03-0108; Aronson RB, 2002, MAR BIOL, V141, P435, DOI 10.1007/s00227-002-0842-5; Barshis DJ, 2013, P NATL ACAD SCI USA, V110, P1387, DOI 10.1073/pnas.1210224110; Bell PRF, 2014, AMBIO, V43, P361, DOI 10.1007/s13280-013-0443-1; BELL PRF, 1992, WATER RES, V26, P553, DOI 10.1016/0043-1354(92)90228-V; Brown BE, 1997, CORAL REEFS, V16, pS129, DOI 10.1007/s003380050249; Buglass S, 2016, MAR POLLUT BULL, V104, P198, DOI 10.1016/j.marpolbul.2016.01.038; Burke L. M., 2004, REEFS RISK CARIBBEAN; Carilli J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034418; Carilli JE, 2009, MAR POLLUT BULL, V58, P1835, DOI 10.1016/j.marpolbul.2009.07.024; Carilli JE, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006324; Carrillo L, 2015, CONT SHELF RES, V109, P164, DOI 10.1016/j.csr.2015.09.014; Castillo KD, 2012, NAT CLIM CHANGE, V2, P756, DOI [10.1038/NCLIMATE1577, 10.1038/nclimate1577]; Chin TM, 2013, ALGORITHM THEORETICA, V1, P13; Chollett I, 2012, LIMNOL OCEANOGR, V57, P1233, DOI 10.4319/lo.2012.57.4.1233; Cooper TF, 2007, ESTUAR COAST SHELF S, V74, P458, DOI 10.1016/j.ecss.2007.05.020; Cortes J., 1990, CORAL REEFS GOLFO DU; Cramer K, 2010, P 2010 AGU OC SCI M; Cramer KL, 2015, MAR POLLUT BULL, V96, P176, DOI 10.1016/j.marpolbul.2015.05.031; Cramer KL, 2012, ECOL LETT, V15, P561, DOI 10.1111/j.1461-0248.2012.01768.x; D'Croz L, 2001, B MAR SCI, V69, P203; Dale MRT, 2002, ECOSCIENCE, V9, P162, DOI 10.1080/11956860.2002.11682702; Darling ES, 2013, GLOBAL CHANGE BIOL, V19, P1930, DOI 10.1111/gcb.12191; Darling ES, 2012, ECOL LETT, V15, P1378, DOI 10.1111/j.1461-0248.2012.01861.x; Done T.J., 1982, Coral Reefs, V1, P95, DOI 10.1007/BF00301691; Donner SD, 2005, GLOBAL CHANGE BIOL, V11, P2251, DOI 10.1111/j.1365-2486.2005.01073.x; Donner SD, 2007, P NATL ACAD SCI USA, V104, P5483, DOI 10.1073/pnas.0610122104; Fabricius KE, 2005, MAR POLLUT BULL, V50, P125, DOI 10.1016/j.marpolbul.2004.11.028; Fine M, 2013, GLOBAL CHANGE BIOL, V19, P3640, DOI 10.1111/gcb.12356; Frieler K, 2013, NAT CLIM CHANGE, V3, P165, DOI 10.1038/NCLIMATE1674; Game ET, 2008, CONSERV BIOL, V22, P1619, DOI 10.1111/j.1523-1739.2008.01037.x; Gardner TA, 2003, SCIENCE, V301, P958, DOI 10.1126/science.1086050; Ginsburg R, 2003, ATOLL RES B, V496; GITTLEMAN JL, 1990, SYST ZOOL, V39, P227, DOI 10.2307/2992183; Graham NAJ, 2014, CURR OPIN ENV SUST, V7, P9, DOI 10.1016/j.cosust.2013.11.023; Green DH, 2008, MAR ECOL PROG SER, V359, P1, DOI 10.3354/meps07454; Greenstein BJ, 1998, CORAL REEFS, V17, P249, DOI 10.1007/s003380050125; Grime J., 2012, EVOLUTIONARY STRATEG; Grottoli AG, 2006, NATURE, V440, P1186, DOI 10.1038/nature04565; Hoegh-Guldberg O, 2007, SCIENCE, V318, P1737, DOI 10.1126/science.1152509; Hughes TP, 2003, SCIENCE, V301, P929, DOI 10.1126/science.1085046; Hughes TP, 2000, ECOLOGY, V81, P2250, DOI 10.1890/0012-9658(2000)081[2250:RFLHAL]2.0.CO;2; HUNTE W, 1992, MAR BIOL, V114, P625, DOI 10.1007/BF00357259; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; JOKIEL PL, 1990, CORAL REEFS, V8, P155, DOI 10.1007/BF00265006; Lirman D, 2007, MAR POLLUT BULL, V54, P779, DOI 10.1016/j.marpolbul.2006.12.014; Loya Y, 2001, ECOL LETT, V4, P122, DOI 10.1046/j.1461-0248.2001.00203.x; Marubini F, 1999, MAR ECOL PROG SER, V188, P117, DOI 10.3354/meps188117; McClanahan TR, 2008, MAR BIOL, V153, P755, DOI 10.1007/s00227-007-0844-4; McClanahan TR, 2014, CURR OPIN ENV SUST, V7, P59, DOI 10.1016/j.cosust.2013.11.028; McClanahan TR, 2003, ECOSYSTEMS, V6, P551, DOI 10.1007/s10021-002-0104-x; Moberg F, 1999, ECOL ECON, V29, P2151; Polonia ARM, 2015, SCI TOTAL ENVIRON, V537, P139, DOI 10.1016/j.scitotenv.2015.07.102; Oksanen J, 2013, PACKAGE VEGAN R PACK, V254, P20; Oliver TA, 2011, CORAL REEFS, V30, P429, DOI 10.1007/s00338-011-0721-y; Paris CB, 2008, CORAL REEFS, V27, P773, DOI 10.1007/s00338-008-0396-1; Paris CB, 2007, MAR ECOL PROG SER, V347, P285, DOI 10.3354/meps06985; Perry CT, 2003, CORAL REEFS, V22, P427, DOI 10.1007/s00338-003-0330-5; Pineda J, 2013, LIMNOL OCEANOGR, V58, P1531, DOI 10.4319/lo.2013.58.5.1531; Prouty NG, 2008, CORAL REEFS, V27, P727, DOI 10.1007/s00338-008-0413-4; Sheng JY, 2004, OCEAN DYNAM, V54, P232, DOI 10.1007/s10236-003-0074-3; Sheng JY, 2003, J PHYS OCEANOGR, V33, P2049, DOI 10.1175/1520-0485(2003)033<2049:ANSOCI>2.0.CO;2; Simons R., 2011, ERDDAP ENV RES DIVIS; Soto I, 2011, J MARINE BIOL, V2011; Szmant AM, 2002, ESTUARIES, V25, P743, DOI 10.1007/BF02804903; Tang L, 2006, J GEOPHYS RES OCEANS, V111; Team RC, 2012, R LANG ENV STAT COMP; Thompson DM, 2009, P ROY SOC B-BIOL SCI, V276, P2893, DOI 10.1098/rspb.2009.0591; Thurber RLV, 2014, GLOBAL CHANGE BIOL, V20, P544, DOI 10.1111/gcb.12450; Torres JL, 2002, CARIBB J SCI, V38, P222; van Hooidonk R, 2015, GLOBAL CHANGE BIOL, V21, P3389, DOI 10.1111/gcb.12901; van Woesik R, 1999, MAR FRESHWATER RES, V50, P427, DOI 10.1071/MF97046; van Woesik R, 2011, MAR ECOL PROG SER, V434, P67, DOI 10.3354/meps09203; van Woesik R, 2012, ECOL EVOL, V2, P2474, DOI 10.1002/ece3.363; West K, 2001, MAR POLLUT BULL, V42, P864, DOI 10.1016/S0025-326X(01)00040-6; Wild C, 2011, MAR FRESHWATER RES, V62, P205, DOI 10.1071/MF10254; Wooldridge S, 2005, MAR ECOL PROG SER, V295, P157, DOI 10.3354/meps295157; Wooldridge SA, 2009, MAR ECOL PROG SER, V396, P145, DOI 10.3354/meps08310; Wooldridge SA, 2009, MAR POLLUT BULL, V58, P745, DOI 10.1016/j.marpolbul.2008.12.013; Zaneveld JR, 2016, NATURE COMMUNICATION, V7 85 3 3 9 68 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One SEP 8 2016 11 9 e0162098 10.1371/journal.pone.0162098 19 Multidisciplinary Sciences Science & Technology - Other Topics DV9JB WOS:000383255600017 27606598 DOAJ Gold, Green Published 2019-02-21 J de Jong, TJ; Grebenstein, C; Tamis, WLM de Jong, Tom J.; Grebenstein, Cilia; Tamis, Wil L. M. Demography and life history of Daucus carota L. populations in the Netherlands FLORA English Article Carrot; Annual; Monocarpic perennial; Life history; Threshold size for flowering; Introgression CULTIVATED CARROTS; THRESHOLD SIZE; WILD; CROP; INTROGRESSION; PHENOLOGY; HYBRIDS; RISK In nature so-called 'biennial' plants often delay their life cycle, flowering in the third or fourth year, or even later. Life-history theory predicts that high rosette survival is associated with longer life histories. We test this in wild carrot (Daucus carota) populations along disturbed roadsides in the Netherlands, covering a range from unfertile to highly fertile soils. Only 24.2% of the plants behaved as biennial or monocarpic perennial. Most plants were winter (38.9%) or summer annual (36.8%). There was no significant association between life history and habitat, despite differences in mortality and soil fertility between the populations. Annual rosette survival was between 19% and 80%, indicating a high turnover of populations. As predicted by life history theory, the fraction summer annuals (the shortest life-cycle) decreased significantly with rosette survival. In five populations the fraction plants flowering increased with plant size in a similar manner, but in the North Holland dune population plants had a higher threshold size. The annual behaviour of the carrots is quite different from their monocarpic perennial life cycle described in other studies. Carrot cultivars may cross with wild carrots and in this way generation time of the offspring can be affected. We discuss how this may affect plant fitness in the wild. (C) 2016 Elsevier GmbH. All rights reserved. [de Jong, Tom J.; Grebenstein, Cilia] Leiden Univ, Inst Biol, POB 9505, NL-2300 RA Leiden, Netherlands; [Grebenstein, Cilia; Tamis, Wil L. M.] Leiden Univ, Inst Environm Sci, POB 9518, NL-2300 RA Leiden, Netherlands t.j.de.jong@biology.leidenuniv.nl Dutch Ministry for the Environment [838.06.031]; Dutch Ministry for the Economic Affairs [838.06.031]; Dutch Ministry for the Agriculture [838.06.031]; Dutch Ministry for the Science and Education [838.06.031] Many thanks to Erik Gertenaar and Sonja Esch for helping with fieldwork. Thanks also go to Geert de Snoo for discussions. This work was supported by the research program 'Ecology Regarding Genetically Modified Organisms' (ERGO) No. 838.06.031 of the Dutch Ministries for the Environment, Economic Affairs, Agriculture and Science and Education, implemented by the Earth and Life Sciences Council (ALW) of the Netherlands Organisation for Scientific Research (NWO). Alessandro MS, 2007, J AM SOC HORTIC SCI, V132, P525; Boudry P, 2002, J ECOL, V90, P693, DOI 10.1046/j.1365-2745.2002.00704.x; de Jong TJ, 2013, ENVIRON SCI POLICY, V27, P135, DOI 10.1016/j.envsci.2012.12.002; DEJONG T, 2005, EVOLUTIONARY ECOLOGY; Ellstrand NC, 2013, ANNU REV ECOL EVOL S, V44, P325, DOI 10.1146/annurev-ecolsys-110512-135840; FLORON, 2011, NIEUW ATL NED FLOR; Ghosh A, 2012, P ROY SOC B-BIOL SCI, V279, P4747, DOI 10.1098/rspb.2012.1907; GROSS KL, 1981, OECOLOGIA, V48, P209, DOI 10.1007/BF00347966; GROSS KL, 1982, ECOLOGY, V63, P921, DOI 10.2307/1937232; Harper J. L., 1977, POPULATION BIOL PLAN; HART R, 1977, AM NAT, V111, P792, DOI 10.1086/283209; Hartman Y, 2014, ECOL EVOL, V4, P2395, DOI 10.1002/ece3.1060; Hauser Thure P., 2007, Environmental Biosafety Research, V6, P237, DOI 10.1051/ebr:2007044; Hauser TP, 2001, GENET RESOUR CROP EV, V48, P499, DOI 10.1023/A:1012051731933; Metcalf JC, 2003, TRENDS ECOL EVOL, V18, P471, DOI 10.1016/S0169-5347(03)00162-9; Nemeth E, 2003, CARAWAY GENUS CONN; Olsson K, 2002, J EVOLUTION BIOL, V15, P983, DOI 10.1046/j.1420-9101.2002.00457.x; Paccard A, 2014, OECOLOGIA, V175, P577, DOI 10.1007/s00442-014-2932-8; R Development Core Team, 2011, R LANG ENV STAT COMP; Rong J, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-895; Schouten Henk J., 2002, Environmental Biosafety Research, V1, P39, DOI 10.1051/ebr:2002004; UMEHARA M, 2005, PLANT BIOTECHNOL-NAR, V22, P497, DOI DOI 10.5511/22.497; Van Dijk H, 2014, J EVOLUTION BIOL, V27, P1572, DOI 10.1111/jeb.12410; VERKAAR HJ, 1984, NEW PHYTOL, V98, P659, DOI 10.1111/j.1469-8137.1984.tb04155.x; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; WESSELINGH RA, 1993, ACTA BOT NEERL, V42, P81; WIJNHEIJMER EHM, 1989, EUPHYTICA, V40, P147, DOI 10.1007/BF00023309; Williams JL, 2009, AM NAT, V174, P660, DOI 10.1086/605999 28 0 0 1 10 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 0367-2530 1618-0585 FLORA Flora SEP 2016 224 154 158 10.1016/j.flora.2016.07.017 5 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology EI5VB WOS:000392563300017 2019-02-21 J Franca, LF; da Silva, CM; de Paiva, LV Franca, Leonardo Fernandes; da Silva, Camila Melo; de Paiva, Luciana Vieira Effects of intrinsic and time-specific factors on daily nest survival of birds in a semiarid area of South America (Caatinga) REVISTA BRASILEIRA DE ORNITOLOGIA English Article avian; density-dependence; predation; reproductive success FLYCATCHER SUIRIRI-ISLERORUM; LIFE-HISTORY EVOLUTION; BLUE-BLACK GRASSQUITS; BREEDING BIOLOGY; CENTRAL BRAZIL; REPRODUCTIVE SUCCESS; LIMITATION HYPOTHESIS; NEOTROPICAL SAVANNA; TYRANT-FLYCATCHER; NORTH-AMERICA Nest predation is a determinant of reproductive success of tropical birds and its effects can vary in space, time and due to intrinsic factors of the species. In this study, we conducted a preliminary investigation on changes in the risk of nest predation on Caatinga birds due to intrinsic factors (nest type and taxonomic group) and time-specific factors (breeding season and nest abundance). We located and monitored bird nests during the breeding seasons of 2012 (n = 33 nests) and 2013 (n = 45) in a mixed landscape of anthropogenic and natural sites. We use the MARK program that uses known-fate models to calculate Daily Nest Survival Estimates (DNS) and evaluate the effect of covariates on DNS estimates. Predation was the main cause of nest loss (n = 54). In the analysis of intrinsic factors, the best model included the type of nest to explain variation in estimates. DNS declined across the breeding season for all nest types, but estimates of closed nests (between 0.996 and 0.851) were higher than those of open nests (between 0.985 and 0.629). For time-specific factors, the best models for each breeding season included the quadratic effect of nest abundance to explain the variation in DNS. There was an inverse relationship between the abundance of nests and nest predation. The high importance of predation and the effect of the type of nest showed that the reproductive success of the birds studied is due to similar factors to those found in other Neotropical environments. On the other hand, locally-specific effects, such as low reproductive success and inverse relationship between abundance and nest predation risk, demonstrate the need for further exploration of this theme within the Caatinga avifauna. [Franca, Leonardo Fernandes; de Paiva, Luciana Vieira] Univ Fed Rural Semi Arido, Dept Ciencias Anim, UFERSA, Ave Francisco Mota, BR-59625900 Mossoro, RN, Brazil; [da Silva, Camila Melo] Univ Fed Rural Semi Arido, Grad Ecol, Ave Francisco Mota, BR-59625900 Mossoro, RN, Brazil Franca, LF (reprint author), Univ Fed Rural Semi Arido, Dept Ciencias Anim, UFERSA, Ave Francisco Mota, BR-59625900 Mossoro, RN, Brazil. franca_lf@ufersa.edu.br Gesseff, Ednilson/A-3019-2017 FAPERN [Edital 005/2011, 57] We thank the graduate and post-graduate students of the Laboratory of Population Ecology of Universidade Federal Rural do Semi-Arido for their help with field work. We thank FAPERN (Edital 005/2011, Grant No. 57) for funding the research of LFF. Ackerman JT, 2004, OIKOS, V107, P128; Aguilar TM, 2008, J FIELD ORNITHOL, V79, P24, DOI 10.1111/j.1557-9263.2008.00142.x; Borges FJA, 2010, BIODIVERS CONSERV, V19, P223, DOI 10.1007/s10531-009-9718-z; Araujo H. F. P., 2011, ZOOLOGIA, V28, P629; Bety J, 2002, J ANIM ECOL, V71, P88, DOI 10.1046/j.0021-8790.2001.00581.x; Burhans DE, 2002, J WILDLIFE MANAGE, V66, P240, DOI 10.2307/3802890; Burnham KP, 1998, MODEL SELECTION MULT; Carvalho CBV., 2007, Braz. J. Biol., V67, P275, DOI 10.1590/S1519-69842007000200012; Cavalcanti L. M. P., 2014, BACHELORS MONOGRAPH; Del R PCM, 1999, IBIS, V141, P240; Dias RI, 2011, ORNIS FENNICA, V88, P30; Dias RI, 2010, ETHOLOGY, V116, P1011, DOI 10.1111/j.1439-0310.2010.01817.x; Dinsmore SJ, 2002, ECOLOGY, V83, P3476, DOI 10.1890/0012-9658(2002)083[3476:ATFMAN]2.0.CO;2; Duca C, 2008, REV BRAS ZOOL, V25, P165, DOI 10.1590/S0101-81752008000200002; Duca C, 2011, WILSON J ORNITHOL, V123, P259, DOI 10.1676/10-116.1; Duca Charles, 2005, Rev. Bras. Zool., V22, P484, DOI 10.1590/S0101-81752005000200026; Elmberg J, 2011, CAN J ZOOL, V89, P1164, DOI 10.1139/Z11-093; Faria LCR, 2008, REV BRAS ZOOL, V25, P172, DOI 10.1590/S0101-81752008000200003; Farias G.D., 2007, REV BRAS ORNITOL, V15, P53; FARIAS GB, 2005, ANALISE VARIACOES BI, P204; Franca LF, 2009, ZOOLOGIA-CURITIBA, V26, P799, DOI 10.1590/S1984-46702009000400028; Franca LF, 2009, EMU, V109, P265, DOI 10.1071/MU09052; Franca LC, 2009, ZOOLOGIA, V26, P241, DOI 10.1590/S1984-46702009000200006; Francisco MR, 2006, WILSON J ORNITHOL, V118, P85, DOI 10.1676/1559-4491(2006)118[0085:BBOTDS]2.0.CO;2; GATES JE, 1978, ECOLOGY, V59, P871, DOI 10.2307/1938540; Hoffmann D, 2011, ZOOLOGIA-CURITIBA, V28, P305, DOI [10.1590/S1984-46702011000300004, 10.1590/S1984-4670201100030000]; Jaksic FM, 1999, WILSON BULL, V111, P527; Jeschke JM, 2002, ECOL MONOGR, V72, P95, DOI 10.1890/0012-9615(2002)072[0095:PFRDBH]2.0.CO;2; Johnson MD, 2006, J AVIAN BIOL, V37, P229, DOI 10.1111/j.2006.0908-8857.03608.x; Leal IR, 2005, CONSERV BIOL, V19, P701, DOI 10.1111/j.1523-1739.2005.00703.x; Lopes LE, 2005, BIRD CONSERV INT, V15, P337, DOI 10.1017/S0959270905000675; Lopes Leonardo Esteves, 2005, Pap. Avulsos Zool. (São Paulo), V45, P127, DOI 10.1590/S0031-10492005001200001; Lyra-Neves R., 2005, ORNITHOLOGIA, V1, P49; Mahon CL, 2006, J WILDLIFE MANAGE, V70, P1257, DOI 10.2193/0022-541X(2006)70[1257:NSOCIM]2.0.CO;2; Marini MA, 2005, CONSERV BIOL, V19, P665, DOI 10.1111/j.1523-1739.2005.00706.x; Marini MA, 2012, ORNITOL NEOTROP, V23, P385; Marini MA, 2010, ORNITOL NEOTROP, V21, P581; Marini Miguel Ângelo, 2009, Biota Neotrop., V9, P0, DOI 10.1590/S1676-06032009000100007; Marini Miguel Angelo, 2009, Neotropical Biology and Conservation, V4, P3, DOI 10.4013/nbc.2009.41.01; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Medeiros R. C. S., 2007, REV BRAS ZOOL, V24, P12, DOI DOI 10.1590/S0101-81752007000100002; Mullner A, 2007, J FIELD ORNITHOL, V78, P352, DOI 10.1111/j.1557-9263.2007.00123.x; Nascimento J., 2000, ARARAJUBA, V8, P115; Oliveira Jose E. M., 2001, Neotropical Entomology, V30, P647, DOI 10.1590/S1519-566X2001000400020; Olmos Fábio, 2005, Pap. Avulsos Zool. (São Paulo), V45, P179, DOI 10.1590/S0031-10492005001400001; ONIKI Y, 1979, BIOTROPICA, V11, P60, DOI 10.2307/2388174; Oro D, 2006, P ROY SOC B-BIOL SCI, V273, P379, DOI 10.1098/rspb.2005.3287; Paiva L. V., 2008, THESIS; Peak RG, 2004, AUK, V121, P726, DOI 10.1642/0004-8038(2004)121[0726:FASNSI]2.0.CO;2; POULIN B, 1993, IBIS, V135, P432, DOI 10.1111/j.1474-919X.1993.tb02116.x; Prado DE, 2003, ECOLOGIA CONSERVACAO; Purcell KL, 1999, WILSON BULL, V111, P251; RICKLEFS R E, 1969, Living Bird, V8, P165; Robinson WD, 2000, J AVIAN BIOL, V31, P151, DOI 10.1034/j.1600-048X.2000.310207.x; Rodrigues S.S., 2009, THESIS; Roos A., 2006, ORNITHOLOGIA, V1, P135; Roos S, 2002, OECOLOGIA, V133, P608, DOI 10.1007/s00442-002-1056-8; SANTOS MPD, 2004, ARARAJUBA, V12, P113; SILVA JMC, 2003, ECOLOGIA CONSERVACAO, P237; Stutchbury BJM, 2001, BEHAV ECOLOGY TROPIC; Thompson FR, 2007, IBIS, V149, P98, DOI 10.1111/j.1474-919X.2007.00697.x; Velloso A. L., 2002, ECORREGIOES PROPOSTA; Wilson S, 2007, CONDOR, V109, P377, DOI 10.1650/0010-5422(2007)109[377:NSPIWP]2.0.CO;2; Woodworth BL, 1999, CONSERV BIOL, V13, P67, DOI 10.1046/j.1523-1739.1999.97267.x 66 2 2 0 8 SOC BRASILEIRA ORNITOLOGIA VICOSA C/O ROMULO RIBON, MUSEU ZOOLOGIA JOAO MOOJEN, LADEIRA DOS OPERARIOS 54-204, VICOSA, MG 36570-000, BRAZIL 0103-5657 REV BRAS ORNITOL Rev. Bras. Ornitol. SEP 2016 24 3 228 234 7 Ornithology Zoology EE9NA WOS:000389952200006 2019-02-21 J Kupfer, A; Maxwell, E; Reinhard, S; Kuehnel, S Kupfer, Alexander; Maxwell, Erin; Reinhard, Sandy; Kuehnel, Susanne The evolution of parental investment in caecilian amphibians: a comparative approach BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article Amphibia; Gymnophiona; life history; parental care; phylogeny; reproductive investment LIFE-HISTORY EVOLUTION; REPRODUCTIVE MODES; LIVE-BEARING; EGG SIZE; PLETHODONTID SALAMANDERS; GENUS ICHTHYOPHIS; NORTHEAST INDIA; GYMNOPHIONA; CARE; VIVIPARITY Parental care is widespread among vertebrates and the observed patterns of parental care and investment are extremely diverse. Among amphibians, caecilians (Gymnophiona) exhibit considerable variation in reproductive modes, including both oviparity and viviparity, combined with highly unusual investment strategies (e.g. skin-feeding and intrauterine feeding). In the present study, current knowledge on the reproductive modes is integrated into an analysis of the evolutionary scenario of parental investment of caecilians. Phylogenetically basal caecilians possessing a biphasic life cycle that includes an aquatic larval stage invest in macrolecithal eggs directly corresponding to size at hatching. Some phylogenetically derived caecilians (i.e. the Teresomata) have a smaller clutch size and show a reduction to either medium-yolked (mesolecithal) or small-yolked (microlecithal) eggs. Via alternative pathways of parental investment, such as intrauterine feeding in viviparous taxa and maternal dermatotrophy in oviparous taxa, teresomatan caecilians increase both offspring size and quality. However, more data regarding reproductive biology are needed to obtain a fully resolved understanding of the evolution of reproduction in caecilian amphibians. (C) 2016 The Linnean Society of London [Kupfer, Alexander; Maxwell, Erin] Staatliches Museum Nat Kunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany; [Kupfer, Alexander] Univ Potsdam, Inst Biochem & Biol, Allgemeine Zool & Evolut Genom, Karl Liebknecht Str 24-25,Haus 26, D-14476 Potsdam, Germany; [Kupfer, Alexander; Reinhard, Sandy; Kuehnel, Susanne] Friedrich Schiller Univ Jena, Inst Spezielle Zool & Evolut Biol, Phyletischem Museum, Erbertstr 1, D-07743 Jena, Germany; [Reinhard, Sandy] Thuringer Landesmuseum Heidecksburg, Nat Hist Museum, Schlossbezirk 1, D-07407 Rudolstadt, Germany Kupfer, A (reprint author), Staatliches Museum Nat Kunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany.; Kupfer, A (reprint author), Univ Potsdam, Inst Biochem & Biol, Allgemeine Zool & Evolut Genom, Karl Liebknecht Str 24-25,Haus 26, D-14476 Potsdam, Germany.; Kupfer, A (reprint author), Friedrich Schiller Univ Jena, Inst Spezielle Zool & Evolut Biol, Phyletischem Museum, Erbertstr 1, D-07743 Jena, Germany. alexander.kupfer@smns-bw.de Maxwell, Erin/0000-0002-6032-6251 EU-Marie-Curie grant [MEIF-CT-2003-501675]; Volkswagen Foundation Evolution Initiative [I/84 205]; Friedrich-Schiller-University Jena Graduate Academy We thank the curators and researchers of the herpetological collections of various Natural History Museums for supporting our data collections on caecilian specimens under their care: Adrian Friday (CUMZ, Cambridge); Ana L. C. Prudente and Fabricio Sarmento (MPEG, Belem); Andreas Schmitz (MHNG, Geneva); Marvalee Wake and Carol L. Spencer (MVZ, Berkeley); Christopher Austin (LSUMZ, Baton Rouge); Diego Arrieta (MHNM, Montevideo); Patrick K. Malonza and Beryl Bwoung (NMK, Nairobi); Mark Wilkinson and David Gower (NHM, London); Gunter Kohler and Linda Acker (SMF, Frankfurt a. Main); Ulrich Joger and Annika Simon (SNMB, Braunschweig); Jarujin Nabhitabhata (deceased) and Tanya Chan-ard (THNHM, Patumthani); Wolfgang Bohme and Dennis Rodder (ZFMK, Bonn); Mark-Oliver Rodel und Frank Tillak (ZMB, Berlin); Alexander Haas and Jakob Hallermann (ZMH, Hamburg); Andreas Schluter and Axel Kwet (SMNS, Stuttgart); and Frank Glaw and Michael Franzen (ZSM, Munich). Collection based work has been partly supported by a EU-Marie-Curie grant to AK (MEIF-CT-2003-501675), a Volkswagen Foundation Evolution Initiative PhD fellowship grant to SK (I/84 205), and a Friedrich-Schiller-University Jena Graduate Academy PhD fellowship grant to SR. Jan Haft is especially thanked for providing unpublished captive care data and a photo of a Schistometopum thomense family. We also thank Lennart Olsson and three anonymous reviewers for their helpful comments on earlier versions of the manuscript. Balshine S, 2012, EVOLUTION OF PARENTAL CARE, P62; Blackburn DG, 2000, HERPETOL MONOGR, V14, P371, DOI 10.2307/1467051; Brauer A., 1897, Zoologische Jahrbuecher (Anatomie), Vx, P389; BRAUER A, 1899, ZOOL JB ANAT, V12, P477; BROPHY TE, 1980, J HERPETOL, V14, P1, DOI 10.2307/1563867; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Dulvy NK, 1997, P ROY SOC B-BIOL SCI, V264, P1309, DOI 10.1098/rspb.1997.0181; EXBRAYAT JM, 1985, COPEIA, P950, DOI 10.2307/1445246; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Frost DR, 2006, B AM MUS NAT HIST, P8, DOI 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GoLDI E. A., 1899, Zoologische Jahrbuecher (Systematik), Vxii, P170; Gomez-Mestre I, 2012, EVOLUTION, V66, P3687, DOI 10.1111/j.1558-5646.2012.01715.x; Goodwin NB, 2002, PHILOS T R SOC B, V357, P259, DOI 10.1098/rstb.2001.0958; Gower DJ, 2008, J EVOLUTION BIOL, V21, P1220, DOI 10.1111/j.1420-9101.2008.01577.x; Gower DJ, 2015, J NAT HIST, V49, P233, DOI 10.1080/00222933.2014.939733; Gower DJ, 2002, P ROY SOC B-BIOL SCI, V269, P1563, DOI 10.1098/rspb.2002.2050; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Greven H, 1998, J EXP ZOOL, V282, P507; Gross MR, 2005, Q REV BIOL, V80, P37, DOI 10.1086/431023; HARVEY PH, 1991, OXFORD SERIES ECOLOG; Himstedt W., 1996, DIE BLINDWUHLEN; Jockusch EL, 1997, P ROY SOC B-BIOL SCI, V264, P597, DOI 10.1098/rspb.1997.0085; Kamei RG, 2013, ZOOTAXA, V3666, P401, DOI 10.11646/zootaxa.3666.4.1; Kamei RG, 2012, P ROY SOC B-BIOL SCI, V279, P2396, DOI 10.1098/rspb.2012.0150; Kouete MT, 2012, ISRN ZOOL, V2012, P1, DOI DOI 10.5402/2012/269690; Kupfer A, 2006, NATURE, V440, P926, DOI 10.1038/nature04403; Kupfer A, 2005, J ZOOL, V266, P237, DOI 10.1017/S0952836905006849; Kupfer A, 2004, BIOL J LINN SOC, V83, P207, DOI 10.1111/j.1095-8312.2004.00382.x; Kupfer A, 2008, J EXP ZOOL PART A, V309A, P460, DOI 10.1002/jez.475; Kupfer A, 2009, ZOOLOGY, V112, P362, DOI 10.1016/j.zool.2008.12.001; LARGEN M J, 1972, Monitore Zoologico Italiano Supplemento, V4, P185; LILLEGRAVEN JA, 1987, BIOL J LINN SOC, V32, P281, DOI 10.1111/j.1095-8312.1987.tb00434.x; Loader SP, 2003, J ZOOL, V259, P93, DOI 10.1017/S0952836902003060; LUTZ B, 1948, EVOLUTION, V2, P29, DOI 10.2307/2405613; Maddison W.P., 2011, MESQUITE MODULAR SYS; MEYER A, 1993, P ROY SOC B-BIOL SCI, V254, P153, DOI 10.1098/rspb.1993.0140; Midford P, 2008, PDAP MESQUITE TRANSL; Muller H, 2009, BIOL J LINN SOC, V96, P491, DOI 10.1111/j.1095-8312.2008.01152.x; Muller H., 2007, DEV MORPHOLOGICAL DI; NUSSBAUM R A, 1985, Miscellaneous Publications Museum of Zoology University of Michigan, P1; NUSSBAUM RA, 1987, RES POPUL ECOL, V29, P27, DOI 10.1007/BF02515423; O'Reilly J. C., 1998, American Zoologist, V38, p187A; Olivera-Tlahuel C, 2015, BIOL J LINN SOC, V116, P787, DOI 10.1111/bij.12662; Orme D., 2013, CAPER PACKAGE COMP A; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Perez OD, 2009, J MORPHOL, V270, P1492, DOI 10.1002/jmor.10772; R Core Development Team, 2011, R LANG ENV STAT COMP; Rauter CM, 2002, J EVOLUTION BIOL, V15, P407, DOI 10.1046/j.1420-9101.2002.00412.x; Reznick D, 2007, EVOLUTION, V61, P2570, DOI 10.1111/j.1558-5646.2007.00207.x; Roelants K, 2007, P NATL ACAD SCI USA, V104, P887, DOI 10.1073/pnas.0608378104; ROFF DA, 2002, LIFE HIST EVOLUTION; Salthe S.N., 1973, P229; SALTHE SN, 1969, AM MIDL NAT, V81, P467, DOI 10.2307/2423983; San Mauro D, 2004, MOL PHYLOGENET EVOL, V33, P413, DOI 10.1016/j.ympev.2004.05.014; San Mauro D, 2014, MOL PHYLOGENET EVOL, V73, P177, DOI [10.1016/Lympev.2014.01.009, 10.1016/j.ympev.2014.01.009]; Sanderson IT, 1937, ANIMAL TREASURE; Sarasin P, 1887, ERGEBNISSE NATURWISS; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; Skulan J, 2000, ZOOL J LINN SOC-LOND, V130, P235, DOI 10.1006/zjls.1999.0221; Smiseth PT, 2012, EVOLUTION OF PARENTAL CARE, P1; SOTHERLAND PR, 1987, CONDOR, V89, P48, DOI 10.2307/1368759; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Summers K, 2006, P ROY SOC B-BIOL SCI, V273, P687, DOI 10.1098/rspb.2005.3368; TILLEY SG, 1993, HERPETOLOGICA, V49, P154; Trexler JC, 2003, AM NAT, V162, P574, DOI 10.1086/378822; Wake M.H., 1977, P73; Wake MH, 2015, J MORPHOL, V276, P941, DOI 10.1002/jmor.20271; Wake MH, 1998, J EXP ZOOL, V282, P477; WAKE MH, 1980, HERPETOLOGICA, V36, P244; WAKE MH, 1993, J EXP ZOOL, V266, P394, DOI 10.1002/jez.1402660507; Wallace BP, 2006, COMP BIOCHEM PHYS A, V145, P524, DOI 10.1016/j.cbpa.2006.08.040; Wells K. D., 2007, ECOLOGY BEHAV AMPHIB; Wilkinson M, 1998, J NAT HIST, V32, P1403, DOI 10.1080/00222939800770701; Wilkinson M, 2002, MOL PHYLOGENET EVOL, V23, P401, DOI 10.1016/S1055-7903(02)00031-3; Wilkinson M, 2008, BIOL LETTERS, V4, P358, DOI 10.1098/rsbl.2008.0217; Wilkinson M, 2006, REPROD BIOL PHYLOGEN, V5, P39; Wilkinson M, 2011, ZOOTAXA, P41; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wirkner CS, 2010, CLADISTICS, V26, P143, DOI 10.1111/j.1096-0031.2009.00278.x; WOURMS JP, 1981, AM ZOOL, V21, P473; Zhang P, 2009, MOL PHYLOGENET EVOL, V53, P479, DOI 10.1016/j.ympev.2009.06.018 82 7 7 1 23 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. SEP 2016 119 1 4 14 10.1111/bij.12805 11 Evolutionary Biology Evolutionary Biology EA8VU WOS:000386918500001 2019-02-21 J English, S; Uller, T English, Sinead; Uller, Tobias Does early-life diet affect longevity? A meta-analysis across experimental studies BIOLOGY LETTERS English Article early development; nutrition; caloric restriction; lifespan; meta-analysis GROWTH; SPAN; RESTRICTION; EVOLUTION; INSIGHTS; MODELS; HEALTH; RATES Life-history theory predicts that nutrition influences lifespan owing to trade-offs between allocating resources to reproduction, growth and repair. Despite occasional reports that early diet has strong effects on lifespan, it is unclear whether this prediction is generally supported by empirical studies. We conducted a meta-analysis across experimental studies manipulating pre- or post-natal diet and measuring longevity. We found no overall effect of early diet on lifespan. We used meta-regression, considering moderator variables based on experimental and life-history traits, to test predictions regarding the strength and direction of effects that could lead to positive or negative effects. Pre-natal diet manipulations reduced lifespan, but there were no effects of later diet, manipulation type, development mode, or sex. The results are consistent with the prediction that early diet restriction disrupts growth and results in increased somatic damage, which incurs lifespan costs. Our findings raise a cautionary note, however, for placing too strong an emphasis on early diet effects on lifespan and highlight limitations of measuring these effects under laboratory conditions. [English, Sinead; Uller, Tobias] Univ Oxford, Edward Grey Inst, Dept Zool, Oxford, England; [English, Sinead] Univ Cambridge, Dept Zool, Cambridge, England; [Uller, Tobias] Lund Univ, Dept Biol, Lund, Sweden English, S (reprint author), Univ Oxford, Edward Grey Inst, Dept Zool, Oxford, England.; English, S (reprint author), Univ Cambridge, Dept Zool, Cambridge, England. sineadenglish@cantab.net English, Sinead/0000-0003-2898-2301 EU FP7 programme [259679]; Royal Society of London; Knut and Alice Wallenberg Foundations This research was funded by the EU FP7 programme (agreement 259679, IDEAL). S.E. and T.U. were supported by the Royal Society of London. T.U. received support from the Knut and Alice Wallenberg Foundations. Barnes SK, 2011, PROG BIOPHYS MOL BIO, V106, P323, DOI 10.1016/j.pbiomolbio.2010.12.005; Boggs CL, 2005, OECOLOGIA, V144, P353, DOI 10.1007/s00442-005-0076-6; Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629; English S., 2016, CODE DATA DOES EARLY; Gavrilov L. A., 2003, Modulating aging and longevity, P27; Geiger S, 2012, MOL ECOL, V21, P1500, DOI 10.1111/j.1365-294X.2011.05331.x; Gluckman PD, 2008, NEW ENGL J MED, V359, P61, DOI 10.1056/NEJMra0708473; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Houslay TM, 2015, J EVOLUTION BIOL, V28, P1067, DOI 10.1111/jeb.12630; Kirkwood TBL, 2005, MECH AGEING DEV, V126, P1011, DOI 10.1016/j.mad.2005.03.021; Kirkwood TBL, 2005, CELL, V120, P437, DOI 10.1016/j.cell.2005.01.027; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Lee KP, 2008, P NATL ACAD SCI USA, V105, P2498, DOI 10.1073/pnas.0710787105; Mentis AFA, 2010, BIOGERONTOLOGY, V11, P725, DOI 10.1007/s10522-010-9293-4; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nakagawa S, 2012, EVOL ECOL, V26, P1253, DOI 10.1007/s10682-012-9555-5; Nakagawa S, 2012, AGING CELL, V11, P401, DOI 10.1111/j.1474-9726.2012.00798.x; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Ozanne SE, 2004, NATURE, V427, P411, DOI 10.1038/427411b; R Development Core Team, 2012, R LANG ENV STAT COMP; Ricklefs RE, 2010, FUNCT ECOL, V24, P588, DOI 10.1111/j.1365-2435.2009.01684.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Saastamoinen M, 2013, OECOLOGIA, V171, P93, DOI 10.1007/s00442-012-2412-y; Sayer AA, 2002, P NUTR SOC, V61, P79, DOI 10.1079/PNS2001138; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790 27 5 5 2 23 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. SEP 2016 12 9 20160291 10.1098/rsbl.2016.0291 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology EA5GF WOS:000386646700016 27601722 Bronze, Green Published 2019-02-21 J Froy, H; Walling, CA; Pemberton, JM; Clutton-Brock, TH; Kruuk, LEB Froy, Hannah; Walling, Craig A.; Pemberton, Josephine M.; Clutton-Brock, Tim H.; Kruuk, Loeske E. B. Relative costs of offspring sex and offspring survival in a polygynous mammal BIOLOGY LETTERS English Article cost of reproduction; Cervus elaphus; sex allocation; wild ungulate population REPRODUCTIVE COSTS; NATURAL-SELECTION; FITNESS COSTS; DAUGHTERS; MODELS; SONS Costs of reproduction are expected to be ubiquitous in wild animal populations and understanding the drivers of variation in these costs is an important aspect of life-history evolution theory. We use a 43 year dataset from a wild population of red deer to examine the relative importance of two factors that influence the costs of reproduction to mothers, and to test whether these costs vary with changing ecological conditions. Like previous studies, our analyses indicate fitness costs of lactation: mothers whose calves survived the summer subsequently showed lower survival and fecundity than those whose calves died soon after birth, accounting for 5% and 14% of the variation in mothers' survival and fecundity, respectively. The production of a male calf depressed maternal survival and fecundity more than production of a female, but accounted for less than 1% of the variation in either fitness component. There was no evidence for any change in the effect of calf survival or sex with increasing population density. [Froy, Hannah; Walling, Craig A.; Pemberton, Josephine M.; Kruuk, Loeske E. B.] Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland; [Clutton-Brock, Tim H.] Univ Cambridge, Dept Zool, Cambridge, England; [Kruuk, Loeske E. B.] Australian Natl Univ, Res Sch Biol, Canberra, ACT, Australia Froy, H (reprint author), Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland. hannah.froy@ed.ac.uk Pemberton, Josephine/F-3100-2010; Kruuk, Loeske/J-3295-2012 NERC [NE/I024925/1] This work was funded by an NERC standard grant (NE/I024925/1) to L.E.B.K. and J.M.P. Barbraud C, 2005, ECOLOGY, V86, P682, DOI 10.1890/04-0075; Berube CH, 1996, BEHAV ECOL, V7, P60, DOI 10.1093/beheco/7.1.60; CLUTTONBROCK TH, 1981, NATURE, V289, P487, DOI 10.1038/289487a0; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Descamps S, 2009, P ROY SOC B-BIOL SCI, V276, P1129, DOI 10.1098/rspb.2008.1401; Froy H, 2016, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.6rj63, DOI 10.5061/DRYAD.6RJ63]; Froy H, 2016, DRYAD DIGITAL REPOSI; GOMENDIO M, 1990, NATURE, V343, P261, DOI 10.1038/343261a0; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Hamel S, 2010, ECOLOGY, V91, P2034, DOI 10.1890/09-1311.1; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Martin JGA, 2010, AM NAT, V176, P414, DOI 10.1086/656267; Moyes K, 2011, J ANIM ECOL, V80, P456, DOI 10.1111/j.1365-2656.2010.01789.x; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; STAMPS JA, 1990, AM NAT, V135, P671, DOI 10.1086/285068; Stearns S, 1992, EVOLUTION LIFE HIST; Stopher KV, 2014, ECOLOGY, V95, P3124; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 23 6 6 1 21 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. SEP 2016 12 9 20160417 10.1098/rsbl.2016.0417 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology EA5GF WOS:000386646700015 27601725 Green Published, Other Gold 2019-02-21 J Remes, V; Matysiokova, B Remes, Vladimir; Matysiokova, Beata Survival to independence in relation to pre-fledging development and latitude in songbirds across the globe JOURNAL OF AVIAN BIOLOGY English Article EXTENDED PARENTAL CARE; AGE-SPECIFIC MORTALITY; LIFE-HISTORY; POSTFLEDGING SURVIVAL; NEST PREDATION; CLUTCH-SIZE; TROPICAL BIRDS; GEOGRAPHIC-VARIATION; DEVELOPMENT RATES; SLOW PACE Species differ strongly in their life histories, including the probability of survival. Annual adult survival was investigated extensively in the past, whereas juvenile survival, and especially survival to independence, received much less attention. Yet, they are critical for our understanding of population demography and life-history evolution. We investigated post-fledging survival to independence (i.e. survival upon leaving the nest until nutritional independence) in 74 species of passerine birds worldwide based on 100 population level estimates extracted from published literature. Our comparative analyses revealed that survival to independence increased with the length of nestling period and relative fledging mass (ratio of fledging mass to adult body mass). At the same time, species with higher nest predation rates had shorter nestling periods and lower relative fledging mass. Thus, we identify an important trade-off in life history strategies: staying longer in the nest may improve post-fledging survival due to enhanced flight ability and sensory functions, but at the cost of a longer exposure to nest predators and increased mortality due to nest predation. Additionally, post-fledging survival to independence did not differ between species from the northern temperate zone vs species from the tropics and southern hemisphere. However, analyses of post-fledging survival curves suggest that 1) daily survival rates are not constant and improve quickly upon leaving the nest, and 2) species in the tropics and southern hemisphere have higher daily post-fledging survival rates than northern temperate species. Nevertheless, due to the accumulation of mortality risk during their much longer periods of post-fledging care, overall survival until independence is comparable across latitudes. Obtaining high-quality demographic data across latitudes to evaluate the generality of these findings and mechanisms underlying them should be a research priority. [Remes, Vladimir; Matysiokova, Beata] Palacky Univ, Dept Zool, Fac Sci, 17 Listopadu 50, CZ-77146 Olomouc, Czech Republic; [Remes, Vladimir; Matysiokova, Beata] Palacky Univ, Ornithol Lab, Fac Sci, 17 Listopadu 50, CZ-77146 Olomouc, Czech Republic Remes, V (reprint author), Palacky Univ, Dept Zool, Fac Sci, 17 Listopadu 50, CZ-77146 Olomouc, Czech Republic.; Remes, V (reprint author), Palacky Univ, Ornithol Lab, Fac Sci, 17 Listopadu 50, CZ-77146 Olomouc, Czech Republic. vladimir.remes@upol.cz Remes, Vladimir/B-6842-2016 Palacky Univ. [Prf_2016_004] This study would not be possible without hard work of generations of field ornithologists. We are obliged to N. Friedman for comments on the first draft of the manuscript and to T. Koutny for help with digitizing survival curves. K. Weidinger, M. Krist, and E. Kolarova commented on selected parts of the manuscript and their insights were much appreciated. Three reviewers and the Editor provided very valuable comments and suggestions that significantly improved this work. This study was supported by an internal grant from Palacky Univ. (Prf_2016_004). Anava A, 2001, AUK, V118, P519, DOI 10.1642/0004-8038(2001)118[0519:GRAEOA]2.0.CO;2; Bonnevie BT, 2004, OSTRICH, V75, P75, DOI 10.2989/00306520409485415; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; Calder III WA, 1984, SIZE FUNCTION LIFE H; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; Cheng YR, 2012, AM NAT, V180, P285, DOI 10.1086/667214; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Coulson T, 2001, TRENDS ECOL EVOL, V16, P219, DOI 10.1016/S0169-5347(01)02137-1; Cox WA, 2014, J WILDLIFE MANAGE, V78, P183, DOI 10.1002/jwmg.670; Drobniak SM, 2015, BEHAV ECOL, V26, P805, DOI 10.1093/beheco/arv015; Dybala KE, 2013, ECOLOGY, V94, P1584, DOI 10.1890/12-1443.1; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gill SA, 2012, J AVIAN BIOL, V43, P461, DOI 10.1111/j.1600-048X.2012.05637.x; Gruebler MU, 2014, ECOL EVOL, V4, P756, DOI 10.1002/ece3.984; Gruebler MU, 2010, J ANIM ECOL, V79, P334, DOI 10.1111/j.1365-2656.2009.01650.x; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Kleinbaum DG, 2011, SURVIVAL ANAL SELF L; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lloyd P, 2014, J AVIAN BIOL, V45, P493, DOI 10.1111/jav.00454; Maness TJ, 2013, ORNITHOL MONOGR, P1, DOI 10.1525/om.2013.78.1.1; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Martin TE, 2015, AM NAT, V185, P380, DOI 10.1086/679612; Martin TE, 2014, AM NAT, V183, P313, DOI 10.1086/674966; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; Matysiokova B, 2014, FRONT ZOOL, V11, DOI 10.1186/1742-9994-11-24; Matysiokova B, 2011, ANIM BEHAV, V82, P1347, DOI 10.1016/j.anbehav.2011.09.018; Mcgregor R, 2007, IBIS, V149, P615, DOI 10.1111/j.1474-919X.2007.00670.x; McKim-Louder MI, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056059; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Paradis E., 2012, ANAL PHYLOGENETICS E; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Perrins C.M., 1991, Oxford Ornithology Series, P190; Pinheiro J., 2013, R PACKAGE VERSION, P1, DOI DOI 10.1016/S0006-3207(01)00201-4; Remes V, 2002, EVOLUTION, V56, P2505; Remes V, 2007, J EVOLUTION BIOL, V20, P320, DOI 10.1111/j.1420-9101.2006.01191.x; Remes V, 2012, J AVIAN BIOL, V43, P435, DOI 10.1111/j.1600-048X.2012.05599.x; Ricklefs R.E., 1983, Current Ornithology, V1, P1; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Ricklefs RE, 2011, J ORNITHOL, V152, P481, DOI 10.1007/s10336-010-0614-9; Ricklefs RE, 2010, AM NAT, V175, P350, DOI 10.1086/650371; Ridley AR, 2007, J ANIM ECOL, V76, P750, DOI 10.1111/j.1365-2656.2007.01248.x; Roff DA, 2005, J EVOLUTION BIOL, V18, P1425, DOI 10.1111/j.1420-9101.2005.00958.x; Roff Derek A., 1992; Rowley I., 1991, Oxford Ornithology Series, P22; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Russell EM, 2000, EMU, V100, P377, DOI 10.1071/MU0005S; Saether BE, 2002, SCIENCE, V295, P2070; Sankamethawee W, 2009, CONDOR, V111, P675, DOI 10.1525/cond.2009.090006; Schaefer HC, 2004, IBIS, V146, P427, DOI 10.1111/j.1474-919X.2004.00276.x; Shipley AA, 2013, AUK, V130, P501, DOI 10.1525/auk.2013.12139; Sibly Richard M., 2012, P57; Sim IMW, 2013, AUK, V130, P69, DOI 10.1525/auk.2012.12008; Stutchbury BJM, 2001, BEHAV ECOLOGY TROPIC; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Tarwater CE, 2011, ECOLOGY, V92, P1271, DOI 10.1890/10-1386.1; Tarwater CE, 2010, ANIM BEHAV, V80, P535, DOI 10.1016/j.anbehav.2010.06.017; Vila-Gispert A, 2002, REV FISH BIOL FISHER, V12, P417, DOI 10.1023/A:1025352026974; WEATHERS WW, 1989, ECOL MONOGR, V59, P223, DOI 10.2307/1942600; Whittingham MJ, 2006, J ANIM ECOL, V75, P1182, DOI 10.1111/j.1365-2656.2006.01141.x; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Wisdom MJ, 2000, ECOLOGY, V81, P628, DOI 10.2307/177365; Wolak ME, 2012, METHODS ECOL EVOL, V3, P129, DOI 10.1111/j.2041-210X.2011.00125.x; WOLF L, 1988, ANIM BEHAV, V36, P1601, DOI 10.1016/S0003-3472(88)80102-7; Woolfenden GE, 1984, FLORIDA SCRUB JAY DE; YOMTOV Y, 1994, CONDOR, V96, P170, DOI 10.2307/1369074; YOMTOV Y, 1994, IBIS, V136, P161, DOI 10.1111/j.1474-919X.1994.tb01080.x; YOMTOV Y, 1992, IBIS, V134, P374, DOI 10.1111/j.1474-919X.1992.tb08017.x 75 11 11 0 20 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. SEP 2016 47 5 610 618 10.1111/jav.00841 9 Ornithology Zoology DZ8NV WOS:000386128000002 2019-02-21 J Tavera, EA; Lank, DB; Gonzalez, PM Tavera, Eveling A.; Lank, David B.; Gonzalez, Patricia M. Effects of migration distance on life history strategies of Western and Semipalmated sandpipers in Peru JOURNAL OF FIELD ORNITHOLOGY English Article culmen length; molt strategies; over-summering; Paracas; partial post-juvenile wing molt; shorebirds CALIDRIS-MAURI; RED KNOTS; SOUTHERN AFRICA; PRIMARY MOLT; ANNUAL CYCLE; BODY-MASS; BREEDING GROUNDS; FLIGHT; PATTERNS; AMERICA Migration distances of shorebird species correlate with life history strategies. To assess age-specific migratory preparation and adult wing-molt strategies, we studied Western Sandpipers (Calidris mauri) and Semipalmated Sandpipers (C.pusilla) with different migration routes at the Paracas National Reserve in Peru, one of the most austral non-breeding areas for these sandpipers, from 2012 to 2015. Western Sandpipers breed near the Bering Sea, similar to 11,000km from Paracas. Semipalmated Sandpiper populations at Paracas are a mixture of short-billed birds from western Arctic breeding sites, plus long-billed birds from eastern sites, similar to 8000km distant. Adults of both species arrive in October with primary feathers already partially renewed so wing molt starts at sites further north. Semipalmated Sandpipers with longer bills completed wing molt later than shorter billed birds. Adults of both species prepared for migration in February and March. No juvenile Western Sandpipers prepared for migration, confirming the slow over-summering life history strategy of more southerly non-breeding populations. Juvenile Semipalmated Sandpipers showed bimodality in strategies. Most showed no migratory preparation, but, during three non-breeding periods, from 27% to 31% fattened, molted, and partially replaced outer primaries during the pre-migratory period. Juveniles with longer culmens were heavier and tended to have more alternate plumage. Juveniles that were partially molting primaries had longer culmens and more alternate plumage. Juvenile Semipalmated Sandpipers from eastern-breeding populations thus have a higher propensity for a fast life history strategy, and western birds a slow one, at this non-breeding site in Peru. Western-breeding Semipalmated Sandpiper populations thus resemble Western Sandpipers, suggesting a common, possibly distance-related, effect on life history strategy. [Tavera, Eveling A.; Lank, David B.] Simon Fraser Univ, Dept Biol Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada; [Tavera, Eveling A.] Ctr Ornitol & Biodiversidad CORBIDI, Santa Rita 105,Of 202, Lima 33, Peru; [Gonzalez, Patricia M.] Fdn Inalafquen, Pedro Moron 385, RA-8520 San Antonio Oeste, Rio Negro, Argentina Tavera, EA (reprint author), Simon Fraser Univ, Dept Biol Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada.; Tavera, EA (reprint author), Ctr Ornitol & Biodiversidad CORBIDI, Santa Rita 105,Of 202, Lima 33, Peru. etaveraf@sfu.ca Neotropical Migratory Bird Conservation Act Program; Environment Canada; Centre for Wildlife Ecology at Simon Fraser University A number of people played key roles in obtaining all the data for our study, but we would like to give especial thanks to CORBIDI shorebird banding crew: E. Ortiz, P. Pellissier, O. Custodio, A. Mendez, Y. Tenorio, R. Huayanca, L. Burga, P. Colchao, P. Alcazar, and all the volunteers for their constant effort and help during capture and sampling processes. We deeply appreciate T. Valqui for his patience, support and first-hand cooperation during all the years of fieldwork. We are grateful to the staff of Paracas National Reserve, especially to P. Saravia for assistance in obtaining the permits with no further complications and to the head of the Reserve in those years S. Marthans for all his support and cooperation. We thank R. Ydenberg, C. Smith, and M. Drever for their support and scientific advice during the last year of fieldwork. This study was held under the permit of the Peruvian National Service of Protected Natural Areas (SERNANP). Funding for this project was provided by two grants from the Neotropical Migratory Bird Conservation Act Program administered by the U.S. Fish and Wildlife Service, and also by Environment Canada and the Centre for Wildlife Ecology at Simon Fraser University. Capture and sampling methods performed in this study followed guidelines recommended by the Canadian Council on Animal Care as approved by CCAC committee of the Simon Fraser University (Animal Care's permit number: 1043B-03). Alerstam T, 2003, OIKOS, V103, P247, DOI 10.1034/j.1600-0706.2003.12559.x; Baker AJ, 2004, P ROY SOC B-BIOL SCI, V271, P875, DOI 10.1098/rspb.2003.2663; Barta Z, 2006, OIKOS, V112, P580, DOI 10.1111/j.0030-1299.2006.14240.x; Buehler DM, 2008, PHILOS T R SOC B, V363, P247, DOI 10.1098/rstb.2007.2138; Dietz MW, 2015, IBIS, V157, P147, DOI 10.1111/ibi.12185; EISENMANN EUGENE, 1951, WILSON BULL, V63, P181; Fernandez G, 2004, ORNITOL NEOTROP, V15, P385; Fernandez G, 2007, AUK, V124, P1037, DOI 10.1642/0004-8038(2007)124[1037:VITWMO]2.0.CO;2; Franks S., 2014, BIRDS N AM ONLINE; Ginn H. B., 1983, MOLT IN BIRDS; GRATTO CL, 1983, CAN J ZOOL, V61, P1133, DOI 10.1139/z83-149; GRATTO CL, 1988, WILSON BULL, V100, P660; Gratto-Trevor C. L., 1981, WADER STUDY GROUP B, V33, P33; Gratto-Trevor C, 2012, WATERBIRDS, V35, P83, DOI 10.1675/063.035.0109; GRATTOTREVOR CL, 1991, IBIS, V133, P394, DOI 10.1111/j.1474-919X.1991.tb04587.x; Haig SM, 1997, MOL ECOL, V6, P413, DOI 10.1046/j.1365-294X.1997.t01-1-00203.x; Harrington B.A., 1979, Studies in Avian Biology, V2, P83; Harrington BA, 2010, WATERBIRDS, V33, P357, DOI 10.1675/063.033.0312; Hedenstrom A, 1999, J EXP BIOL, V202, P67; Hicklin P., 2010, BIRDS N AM ONLINE; Hockey PAR, 1998, J AVIAN BIOL, V29, P325, DOI 10.2307/3677117; HOLMES RT, 1972, AM MIDL NAT, V87, P472, DOI 10.2307/2423577; Holmgren M, 2001, TRENDS ECOL EVOL, V16, P89, DOI 10.1016/S0169-5347(00)02052-8; Howell SNG, 2010, PETERSON REFERENCE G; JEHL JR, 1987, ORNIS SCAND, V18, P173, DOI 10.2307/3676763; JOHNSON OW, 1983, CONDOR, V85, P406, DOI 10.2307/1367979; Kania W., 1990, WADER STUDY GROUP B, V60, P17; Lank DB, 2003, OIKOS, V103, P303, DOI 10.1034/j.1600-0706.2003.12314.x; Lind J, 2001, P ROY SOC B-BIOL SCI, V268, P1915, DOI 10.1098/rspb.2001.1740; Loftin H., 1962, BIRD BANDING, V33, P175; Manning T. H., 1956, B NATL MUSEUM CANADA; MCNEIL R, 1994, ARDEA, V82, P143; Miller MP, 2013, WATERBIRDS, V36, P166, DOI 10.1675/063.036.0206; Morrison R. I. G., 1984, WADER STUDY GROUP B, V42, P26; Morrison RIG, 2012, WATERBIRDS, V35, P120, DOI 10.1675/063.035.0112; Morrison RIG, 2005, CONDOR, V107, P449, DOI 10.1650/7614; Myers J. P., 1983, WADER STUDY GROUP B, V38, P30; Myers J. P., 1985, NEOTROPICAL ORNITHOL, V36, P520; Nebel S, 2002, AUK, V119, P922, DOI 10.1642/0004-8038(2002)119[0922:WSCMDT]2.0.CO;2; Nebel S, 2000, ARDEA, V88, P165; O'Hara P. D., 2002, THESIS; O'Hara PD, 2005, J AVIAN BIOL, V36, P191, DOI 10.1111/j.0908-8857.2005.03368.x; Paulson D., 1993, SHOREBIRDS PACIFIC N; Pearson D. J., 1974, WADER STUDY GROUP B, V12, P6; PEARSON DJ, 1984, IBIS, V126, P1, DOI 10.1111/j.1474-919X.1984.tb03659.x; Pellissier P., 2013, P 5 W HEM SHOR RES G; PHILLIPS A R, 1975, American Birds, V29, P799; Pienkowski M.W., 1985, P331; Prater A.J., 1981, P393; PRATER AJ, 1977, GUIDE IDENTIFICATION; PUTTICK GM, 1979, ARDEA, V67, P111; Pyle P, 2008, IDENTIFICATION GUI 2; Remisiewicz M, 2014, ARDEA, V102, P31, DOI 10.5253/078.102.0109; Remisiewicz Magdalena, 2011, Wader Study Group Bulletin, V118, P163; Remisiewicz M, 2010, J ORNITHOL, V151, P429, DOI 10.1007/s10336-009-0473-4; Remisiewicz M, 2009, ARDEA, V97, P271, DOI 10.5253/078.097.0302; Rogers KG, 2014, IBIS, V156, P840, DOI 10.1111/ibi.12184; Ruthrauff DR, 2009, IBIS, V151, P523, DOI 10.1111/j.1474-919X.2009.00942.x; SAS Institute, 2012, SAS V 9 4; SENNER SE, 1982, SOUTHWEST NAT, V27, P149, DOI 10.2307/3671139; SIBLEY D. A., 2000, SIBLEY GUIDE BIRDS; Spaans A. L., 1981, ANN REPORT 1983 RES, P63; SPAANS AL, 1976, BIRD BANDING, V47, P359, DOI 10.2307/4512271; Spaans AL, 1979, WADER STUDY GROUP B, V25, P32; Summers RW, 2010, IBIS, V152, P127, DOI 10.1111/j.1474-919X.2009.00972.x; Summers RW, 1995, ARDEA, V83, P351; Swaddle JP, 1997, CAN J ZOOL, V75, P1135, DOI 10.1139/z97-136; Tavera E. A., 2013, THESIS; Tree A. J., 1977, SAFRING NEWS, V6, P25; TREE AJ, 1974, SAFRING NEWS, V3, P21; Videler J. J, 2005, AVIAN FLIGHT; Warnock N, 2013, ARCTIC, V66, P407; Watts B. D., 1998, MIGRANT SHOREBIRDS U; Wetmore A., 1927, USDA TECH B, V26; Wilson H. E., 1994, BIRDS N AM, V90; Xu CL, 2015, POPUL ECOL, V57, P551, DOI 10.1007/s10144-015-0502-5; Ydenberg RC, 2004, P ROY SOC B-BIOL SCI, V271, P1263, DOI 10.1098/rspb.2004.2713; Ydenberg RC, 2007, J AVIAN BIOL, V38, P523, DOI 10.1111/j.2007.0908-8857.04202.x; ZWARTS L, 1990, ARDEA, V78, P339 79 6 6 1 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0273-8570 1557-9263 J FIELD ORNITHOL J. Field Ornithol. SEP 2016 87 3 293 308 10.1111/jofo.12164 16 Ornithology Zoology DW5KZ WOS:000383685000005 2019-02-21 J Moiron, M; Mathot, KJ; Dingemanse, NJ Moiron, Maria; Mathot, Kimberley J.; Dingemanse, Niels J. A multi-level approach to quantify speed-accuracy trade-offs in great tits (Parus major) BEHAVIORAL ECOLOGY English Article decision-making behavior; multi-level variation; Parus major; personality; sampling; speed-accuracy trade-offs INDIVIDUAL-DIFFERENCES; EXPLORATORY-BEHAVIOR; BODY-MASS; SELECTION; REPEATABILITY; PERSONALITY; PLASTICITY; EVOLUTION; PREDATION; COGNITION Are fast decisions less likely to be accurate? We tested for a trade-off between speed and accuracy in foraging great tits. We found support for a speed-accuracy trade-off among-individuals but not within-individuals. These findings thereby imply that these patterns were level-specific, and caused by multiple mechanisms acting simultaneously. This study may be used to guide further empirical studies focusing on level-specificity of relationships between behavioral and cognitive traits.Animals often face a conflict between the speed and accuracy by which a decision is made. Decisions taken quickly might be relatively inaccurate, whereas decisions taken more slowly might be more accurate. Such "speed-accuracy trade-offs" receive increasing attention in behavioral and cognitive sciences. Importantly, life-history theory predicts that trade-offs typically exist only at certain hierarchical levels, such as within rather than among individuals. We therefore examined within- and among-individual correlations in the speed and accuracy by which decisions are taken, using a foraging context in wild-caught great tits (Parus major) as a worked example. We find that great tits exhibit among-individual variation in speed-accuracy trade-offs: some individuals predictably made relatively slow but accurate decisions, whereas others were predictably faster but less accurate. We did not, however, find evidence for the trade-off at the within-individual level. These level-specific relationships imply that different mechanisms acted across levels. These findings highlight the need for future work on the integration of individual behavior and cognition across hierarchical levels. [Moiron, Maria; Dingemanse, Niels J.] Max Planck Inst Ornithol, Evolutionary Ecol Variat Grp, Eberhard Gwinner St 5, D-82319 Seewiesen, Germany; [Mathot, Kimberley J.] Royal Netherlands Inst Sea Res, Marine Ecol Dept, POB 59, NL-1790 AB Den Burg, Netherlands; [Dingemanse, Niels J.] Univ Munich, Dept Biol, Behav Ecol, Grosshaderner St 2, D-82152 Planegg Martinsried, Germany Moiron, M (reprint author), Max Planck Inst Ornithol, Evolutionary Ecol Variat Grp, Eberhard Gwinner St 5, D-82319 Seewiesen, Germany. mmoiron@orn.mpg.de Mathot, Kimberley/A-2544-2017 Mathot, Kimberley/0000-0003-2021-1369 Netherlands Organisation for Scientific Research (NWO, Veni fellowship); Max Planck Society K.J.M. was supported by the Netherlands Organisation for Scientific Research (NWO, Veni fellowship) and M.M., K.J.M. and N.J.D. were supported by the Max Planck Society. M.M. is a member of the International Max Planck Research School (IMPRS). Araya-Ajoy YG, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2645; Bogacz R, 2010, TRENDS NEUROSCI, V33, P10, DOI 10.1016/j.tins.2009.09.002; Chittka L, 2003, NATURE, V424, P388, DOI 10.1038/424388a; Chittka L, 2009, TRENDS ECOL EVOL, V24, P400, DOI 10.1016/j.tree.2009.02.010; Coppens CM, 2010, PHILOS T R SOC B, V365, P4021, DOI 10.1098/rstb.2010.0217; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Dingemanse NJ, 2012, BEHAV ECOL SOCIOBIOL, V66, P1543, DOI 10.1007/s00265-012-1416-2; Dingemanse NJ, 2012, J ANIM ECOL, V81, P116, DOI 10.1111/j.1365-2656.2011.01877.x; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Ducatez S, 2015, ANIM COGN, V18, P485, DOI 10.1007/s10071-014-0817-1; Gelman A., 2007, DATA ANAL USING REGR; Guillette LM, 2015, ANIM COGN, V18, P165, DOI 10.1007/s10071-014-0787-3; Guillette LM, 2009, BEHAV PROCESS, V82, P265, DOI 10.1016/j.beproc.2009.07.005; Hadfield JD, 2007, J EVOLUTION BIOL, V20, P549, DOI 10.1111/j.1420-9101.2006.01262.x; Hallgrimsson B., 2005, VARIATION CENTRAL CO; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; Jandt JM, 2014, BIOL REV, V89, P48, DOI 10.1111/brv.12042; Jenni L, 1994, MOULT AGEING EUROPEA; KREBS JR, 1978, NATURE, V275, P27, DOI 10.1038/275027a0; Laine VN, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10474; Lange H, 2004, BEHAV ECOL, V15, P549, DOI 10.1093/beheco/arh044; LIMA SL, 1986, ECOLOGY, V67, P377, DOI 10.2307/1938580; Ludtke O, 2008, PSYCHOL METHODS, V13, P203, DOI 10.1037/a0012869; Mamuneas D, 2015, BEHAV ECOL, V26, P91, DOI 10.1093/beheco/aru160; Marchetti C, 2000, ANIM BEHAV, V60, P131, DOI 10.1006/anbe.2000.1443; Mathot KJ, 2012, OIKOS, V121, P1009, DOI 10.1111/j.1600-0706.2012.20339.x; Morrissey MB, 2014, EVOLUTION, V68, P1748, DOI 10.1111/evo.12385; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nicolaus M, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2405; Proulx MJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111540; R Core Team, 2014, R LANG ENV STAT COMP; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; Sih A, 2012, PHILOS T R SOC B, V367, P2762, DOI 10.1098/rstb.2012.0216; Stearns S, 1992, EVOLUTION LIFE HIST; Stuber EF, 2013, BEHAV ECOL, V24, P1092, DOI 10.1093/beheco/art035; te Marvelde L, 2012, OECOLOGIA, V168, P631, DOI 10.1007/s00442-011-2122-x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VERBEEK MEM, 1994, ANIM BEHAV, V48, P1113, DOI 10.1006/anbe.1994.1344; Wang MY, 2015, ANIM BEHAV, V103, P277, DOI 10.1016/j.anbehav.2015.01.022; WANSINK D, 1994, J AVIAN BIOL, V25, P261, DOI 10.2307/3677272; Webster MS, 1995, EVOLUTION, V49, P1147, DOI 10.1111/j.1558-5646.1995.tb04441.x; Westneat DF, 2015, BIOL REV, V90, P729, DOI 10.1111/brv.12131; Westneat DF, 2011, AM NAT, V178, P652, DOI 10.1086/662173 46 8 8 0 28 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. SEP-OCT 2016 27 5 1539 1546 10.1093/beheco/arw077 8 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology DX8PI WOS:000384650600036 Bronze 2019-02-21 J Perkins, TA; Boettiger, C; Phillips, BL Perkins, T. Alex; Boettiger, Carl; Phillips, Benjamin L. After the games are over: life-history trade-offs drive dispersal attenuation following range expansion ECOLOGY AND EVOLUTION English Article Fitness; life-history evolution; natural selection; theory; traveling wave SPECIES RANGE; EVOLUTION; POPULATIONS; ADAPTATION; INVASIONS; BEHAVIOR; BIRD; TIME Increased dispersal propensity often evolves on expanding range edges due to the Olympic Village effect, which involves the fastest and fittest finding themselves together in the same place at the same time, mating, and giving rise to like individuals. But what happens after the range's leading edge has passed and the games are over? Although empirical studies indicate that dispersal propensity attenuates following range expansion, hypotheses about the mechanisms driving this attenuation have not been clearly articulated or tested. Here, we used a simple model of the spatiotemporal dynamics of two phenotypes, one fast and the other slow, to propose that dispersal attenuation beyond preexpansion levels is only possible in the presence of trade-offs between dispersal and life-history traits. The Olympic Village effect ensures that fast dispersers preempt locations far from the range's previous limits. When trade-offs are absent, this preemptive spatial advantage has a lasting impact, with highly dispersive individuals attaining equilibrium frequencies that are strictly higher than their introduction frequencies. When trade-offs are present, dispersal propensity decays rapidly at all locations. Our model's results about the postcolonization trajectory of dispersal evolution are clear and, in principle, should be observable in field studies. We conclude that empirical observations of postcolonization dispersal attenuation offer a novel way to detect the existence of otherwise elusive trade-offs between dispersal and life-history traits. [Perkins, T. Alex] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA; [Perkins, T. Alex] Univ Notre Dame, Eck Inst Global Hlth, Notre Dame, IN 46556 USA; [Boettiger, Carl] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA; [Phillips, Benjamin L.] Univ Melbourne, Sch Biosci, Melbourne, Vic, Australia Perkins, TA (reprint author), 100 Galvin Hall, Notre Dame, IN 46556 USA. taperkins@nd.edu Alex Perkins T, 2013, ECOL LETT, V16, P1079, DOI 10.1111/ele.12136; Alford RA, 2009, WILDLIFE RES, V36, P23, DOI 10.1071/WR08021; Alleaume-Benharira M, 2006, J EVOLUTION BIOL, V19, P203, DOI 10.1111/j.1420-9101.2005.00976.x; Benichou O, 2012, PHYS REV E, V86, DOI 10.1103/PhysRevE.86.041908; Bridle JR, 2010, ECOL LETT, V13, P485, DOI 10.1111/j.1461-0248.2010.01442.x; Burton OJ, 2010, ECOL LETT, V13, P1210, DOI 10.1111/j.1461-0248.2010.01505.x; Cadet C, 2003, AM NAT, V162, P427, DOI 10.1086/378213; CWYNAR LC, 1987, AM NAT, V129, P463, DOI 10.1086/284651; Duckworth RA, 2008, AM NAT, V172, pS4, DOI 10.1086/588289; Duckworth RA, 2007, P NATL ACAD SCI USA, V104, P15017, DOI 10.1073/pnas.0706174104; Duckworth RA, 2009, EVOLUTION, V63, P968, DOI 10.1111/j.1558-5646.2009.00625.x; Duthie AB, 2015, AM NAT, V186, P151, DOI 10.1086/681621; Hargreaves A. L., 2013, FUNCTIONAL ECOLOGY, V28, P5; Hudson CM, 2015, BIOL J LINN SOC, V116, P743, DOI 10.1111/bij.12618; Hughes CL, 2003, P ROY SOC B-BIOL SCI, V270, pS147, DOI 10.1098/rsbl.2003.0049; Kirkpatrick M, 1997, AM NAT, V150, P1, DOI 10.1086/286054; Leotard G, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005377; Lindstrom T, 2013, P NATL ACAD SCI USA, V110, P13452, DOI 10.1073/pnas.1303157110; Lombaert E, 2014, J EVOLUTION BIOL, V27, P508, DOI 10.1111/jeb.12316; Okubo A., 2001, DIFFUSION ECOLOGICAL; Orlando PA, 2013, FRONT ONCOL, V3, DOI 10.3389/fonc.2013.00045; Perkins TA, 2012, AM NAT, V179, pE37, DOI 10.1086/663682; Petersen JE, 2001, AM NAT, V157, P324, DOI 10.1086/319197; Phillips BL, 2008, AM NAT, V172, pS34, DOI 10.1086/588255; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; R Core Team, 2014, R LANG ENV STAT COMP; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Sexton JP, 2009, ANNU REV ECOL EVOL S, V40, P415, DOI 10.1146/annurev.ecolsys.110308.120317; Shaw AK, 2015, AM NAT, V185, P631, DOI 10.1086/680511; Shine R, 2011, P NATL ACAD SCI USA, V108, P5708, DOI 10.1073/pnas.1018989108; Simmons AD, 2004, AM NAT, V164, P378, DOI 10.1086/423430; SOETAERT K, 2010, J STAT SOFTWARE, V33, P1; Travis JMJ, 2010, J EVOLUTION BIOL, V23, P2656, DOI 10.1111/j.1420-9101.2010.02123.x; Travis JMJ, 2002, EVOL ECOL RES, V4, P1119; van Ditmarsch D, 2013, CELL REP, V4, P697, DOI 10.1016/j.celrep.2013.07.026; Van Valen Leigh, 1971, Evolution, V25, P591, DOI 10.1111/j.1558-5646.1971.tb01919.x 36 5 5 3 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. SEP 2016 6 18 6425 6434 10.1002/ece3.2314 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DX6WU WOS:000384527200001 27777719 DOAJ Gold, Green Published 2019-02-21 J Van Petegem, KHP; Renault, D; Stoks, R; Bonte, D Van Petegem, Katrien H. P.; Renault, David; Stoks, Robby; Bonte, Dries Metabolic adaptations in a range-expanding arthropod ECOLOGY AND EVOLUTION English Article Common garden; essential amino acids; GC-MS metabolomics; global change; life-history evolution; Tetranychus urticae LYRATA SSP PETRAEA; ENVIRONMENTAL METABOLOMICS; POPULATION-GENETICS; AMINO-ACIDS; SPIDER-MITE; TRADE-OFFS; TETRANYCHIDAE; PHENOTYPES; METABOANALYST; ACARI Despite an increasing number of studies documenting life-history evolution during range expansions or shifts, we lack a mechanistic understanding of the underlying physiological processes. In this explorative study, we used a metabolomics approach to study physiological changes associated with the recent range expansion of the two-spotted spider mite (Tetranychus urticae). Mite populations were sampled along a latitudinal gradient from range core to edge and reared under benign common garden conditions for two generations. Using gas chromatography-mass spectrometry, we obtained metabolic population profiles, which showed a gradual differentiation along the latitudinal gradient, indicating (epi)genetic changes in the metabolome in association with range expansion. These changes seemed not related with shifts in the mites' energetic metabolism, but rather with differential use of amino acids. Particularly, more dispersive northern populations showed lowered concentrations of several essential and nonessential amino acids, suggesting a potential downregulation of metabolic pathways associated with protein synthesis. [Van Petegem, Katrien H. P.; Bonte, Dries] Univ Ghent, Dept Biol, Ghent, Belgium; [Renault, David] Univ Rennes 1, UMR CNRS Ecobio 6553, Rennes, France; [Stoks, Robby] Katholieke Univ Leuven, Evolut & Conservat, Leuven, Belgium Van Petegem, KHP (reprint author), Univ Ghent, Dept Biol, Terr Ecol Unit, Ledeganckstr 35, B-9000 Ghent, Belgium. Katrien.VanPetegem@ugent.be Bonte, Dries/0000-0002-3320-7505; RENAULT, David/0000-0003-3644-1759 Fund for Scientific Research - Flanders (FWO) [G.0610.11]; BelSpo IAP Project "Speedy"; INEE-CNRS This project was funded by the Fund for Scientific Research - Flanders (FWO) (project G.0610.11). D. Bonte and R. Stoks were supported by BelSpo IAP Project "Speedy." We furthermore thank the INEE-CNRS (ENVIROMICS call, project "ALIENS") for funding D. Renault. Agrawal AA, 2002, AM NAT, V159, P553, DOI 10.1086/339463; Ahmed I, 2006, BRIT J NUTR, V96, P450, DOI 10.1079/BJN20061845; Bundy JG, 2009, METABOLOMICS, V5, P3, DOI 10.1007/s11306-008-0152-0; Carbonnelle S, 2007, EXP APPL ACAROL, V41, P225, DOI 10.1007/s10493-007-9068-z; Chuang A, 2016, GLOBAL CHANGE BIOL, V22, P494, DOI 10.1111/gcb.13107; Colinet H, 2012, FUNCT ECOL, V26, P711, DOI 10.1111/j.1365-2435.2012.01985.x; Davey MP, 2008, NEW PHYTOL, V177, P380, DOI 10.1111/j.1469-8137.2007.02282.x; Davey MP, 2009, METABOLOMICS, V5, P138, DOI 10.1007/s11306-008-0127-1; Eanes WF, 2011, J EXP BIOL, V214, P165, DOI 10.1242/jeb.046458; Fiehn O, 2002, PLANT MOL BIOL, V48, P155, DOI 10.1023/A:1013713905833; Foucreau N, 2012, COMP BIOCHEM PHYS A, V163, P388, DOI 10.1016/j.cbpa.2012.07.001; Frank T, 2009, J AGR FOOD CHEM, V57, P6408, DOI 10.1021/jf901019y; Fronhofer EA, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7844; Fuchs S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084865; Fuchs S, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-14; Gotoh T, 2004, APPL ENTOMOL ZOOL, V39, P675, DOI 10.1303/aez.2004.675; Heagle AS, 2002, ENVIRON ENTOMOL, V31, P594, DOI 10.1603/0046-225X-31.4.594; Hidalgo K, 2014, J INSECT PHYSIOL, V70, P102, DOI 10.1016/j.jinsphys.2014.07.003; Hines A, 2007, ENVIRON SCI TECHNOL, V41, P3375, DOI 10.1021/es062745w; Khodayari S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054025; Klopfstein S, 2006, MOL BIOL EVOL, V23, P482, DOI 10.1093/molbev/msj057; Koek MM, 2011, METABOLOMICS, V7, P307, DOI 10.1007/s11306-010-0254-3; Kunin WE, 2009, P R SOC B, V276, P1495, DOI 10.1098/rspb.2008.1767; Lankadurai BP, 2013, ENVIRON REV, V21, P180, DOI 10.1139/er-2013-0011; Matsuda F, 2012, PLANT J, V70, P624, DOI 10.1111/j.1365-313X.2012.04903.x; Mevi-Schutz J, 2005, AM NAT, V165, P411, DOI 10.1086/429150; Miller MG, 2007, J PROTEOME RES, V6, P540, DOI 10.1021/pr060623x; O'Brien DM, 2002, P NATL ACAD SCI USA, V99, P4413, DOI 10.1073/pnas.072346699; Oliver SG, 1998, TRENDS BIOTECHNOL, V16, P373, DOI 10.1016/S0167-7799(98)01214-1; Padfield D, 2016, ECOL LETT, V19, P133, DOI 10.1111/ele.12545; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; Raina M, 2014, FRONT GENET, V5, DOI 10.3389/fgene.2014.00171; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robinson AR, 2007, NEW PHYTOL, V174, P762, DOI 10.1111/j.1469-8137.2007.02046.x; RODRIGUEZ JG, 1966, J INSECT PHYSIOL, V12, P1209, DOI 10.1016/0022-1910(66)90012-6; SABELIS MW, 1981, BIOL CONTROL 2 SPO 1, P242; Sardans J, 2011, CHEMOECOLOGY, V21, P191, DOI 10.1007/s00049-011-0083-5; Shine R, 2011, P NATL ACAD SCI USA, V108, P5708, DOI 10.1073/pnas.1018989108; Snart CJP, 2015, ENTOMOL EXP APPL, V155, P1, DOI 10.1111/eea.12281; Tamanna Nahid, 2014, Int Sch Res Notices, V2014, P235619, DOI 10.1155/2014/235619; Tenenhaus M, 1998, LA REGRESSION PLS; Travis JMJ, 2007, MOL BIOL EVOL, V24, P2334, DOI 10.1093/molbev/msm167; TULISALO U, 1971, Annales Entomologici Fennici, V37, P155; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Van Petegem K. H. P., 2016, AM NAT IN PRESS; Verhoeven KJF, 2016, MOL ECOL, V25, P1631, DOI 10.1111/mec.13617; Viant MR, 2008, MOL BIOSYST, V4, P980, DOI 10.1039/b805354e; Xia JG, 2015, NUCLEIC ACIDS RES, V43, pW251, DOI 10.1093/nar/gkv380; Xia JG, 2012, NUCLEIC ACIDS RES, V40, pW127, DOI 10.1093/nar/gks374; Xia JG, 2009, NUCLEIC ACIDS RES, V37, pW652, DOI 10.1093/nar/gkp356; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zera AJ, 2011, J EXP BIOL, V214, P179, DOI 10.1242/jeb.046912 52 2 2 0 22 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. SEP 2016 6 18 6556 6564 10.1002/ece3.2350 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DX6WU WOS:000384527200011 27777729 DOAJ Gold, Green Published 2019-02-21 J Gibert, A; Gray, EF; Westoby, M; Wright, IJ; Falster, DS Gibert, Anais; Gray, Emma F.; Westoby, Mark; Wright, Ian J.; Falster, Daniel S. On the link between functional traits and growth rate: meta-analysis shows effects change with plant size, as predicted JOURNAL OF ECOLOGY English Article growth strategy; life-history traits; maximum height; ontogenetic stage; photosynthetic rate; plant development; seed mass; specific leaf area; wood density RAIN-FOREST TREES; PHYLOGENETICALLY INDEPENDENT CONTRASTS; TROPICAL DECIDUOUS FOREST; LIFE-HISTORY STRATEGIES; RESOURCE-USE EFFICIENCY; NET ASSIMILATION RATE; WOOD SPECIFIC-GRAVITY; SEEDLING GROWTH; SHADE-TOLERANCE; LEAF-AREA A plant's growth rate is seen as a central element of its ecological strategy, and as determined by its traits. Yet the literature is inconsistent about the empirical correlation between functional traits and growth, casting doubt on the capacity of some prominent traits to influence growth rate. We propose that traits should influence growth in a way that depends on the size of individual plants. We outline mechanisms and hypotheses based on new theoretical work and test these predictions in tree species using a meta-analysis of 103 studies (>500 correlations) for five traits (specific leaf area, wood density, maximum height, seed mass and maximum assimilation rate). We also recorded data for 14 other traits commonly used in the trait literature. To capture the effects of plant size, we tested for a shift in the direction of correlation between growth rates and each trait across three ontogenetic stages: seedling, sapling and adult. Results were consistent with predictions, although there were some limitations arising from unequal numbers of observation across ontogenetic stages. Specific leaf area was correlated with relative growth rate in seedlings but not in adult plants. Correlations of growth with wood density were not affected by ontogenetic stage. Seed mass, assimilation rate and maximum height were correlated with relative growth rate only in one ontogenetic stage category: seedlings, seedlings and adults, respectively. Although we were able to confirm several of our theoretical predictions, major knowledge gaps still exist in the trait literature. For example, for one-third of the traits considered, the majority (>75%) of reported correlations with growth came from the same ontogenetic stage. Synthesis. We show for some traits, how trait-growth correlations change in a predictable way with plant size. Our understanding of plant strategies should shift away from describing species as having a fixed growth strategy throughout their life (on a continuous axis from slow to fast growth), in favour of a size-dependent growth trajectories. [Gibert, Anais; Gray, Emma F.; Westoby, Mark; Wright, Ian J.; Falster, Daniel S.] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia Gibert, A (reprint author), Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia. anais.gibert@gmail.com Gibert, Anais/E-5005-2018; Wright, Ian/G-4979-2012 Gibert, Anais/0000-0003-2924-2380; Wright, Ian/0000-0001-8338-9143; Westoby, Mark/0000-0001-7690-4530; Falster, Daniel/0000-0002-9814-092X Australian Research Council; Macquarie University; L'Oreal UNESCO FWIS Fellowship We thank Andrea Stephens for helpful comments on the meta-analyses, and Sean Gleason et al. for pre-publication access to their data. Charles Warren and Jordi Martinez-Vilalta kindly provided additional information about their published results. We thank Elizabeth Wenk and Freya Thomas for their friendly review of our manuscript, and Timothy Paine and two anonymous referees for their insightful comments and suggestions. This work was funded by the Australian Research Council through a fellowship to M.W, a discovery grant to D.S.F and a Macquarie University Research Excellence Scholarship and L'Oreal UNESCO FWIS Fellowship to E.F.G. Aiba M, 2009, J ECOL, V97, P992, DOI 10.1111/j.1365-2745.2009.01522.x; Aiba SI, 1997, J ECOL, V85, P611, DOI 10.2307/2960532; Antunez I, 2001, OECOLOGIA, V128, P172, DOI 10.1007/s004420100645; Atkin OK, 1998, PLANT CELL ENVIRON, V21, P1007, DOI 10.1046/j.1365-3040.1998.00356.x; AUGSPURGER CK, 1984, OECOLOGIA, V61, P211, DOI 10.1007/BF00396763; AUGSPURGER CK, 1984, J ECOL, V72, P777, DOI 10.2307/2259531; Baltzer JL, 2007, OECOLOGIA, V153, P209, DOI 10.1007/s00442-007-0722-2; Baraloto C, 2005, J ECOL, V93, P1156, DOI 10.1111/j.1365-2745.2005.01041.x; Baraloto C, 2006, J TROP ECOL, V22, P487, DOI 10.1017/S0266467406003439; Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; Beckmann M, 2012, J VEG SCI, V23, P1197, DOI 10.1111/j.1654-1103.2012.01454.x; Bloor JMG, 2003, J ECOL, V91, P77, DOI 10.1046/j.1365-2745.2003.00743.x; Borenstein M, 2011, INTRO METAANALYSIS; Broncano MJ, 1998, PLANT ECOL, V138, P17, DOI 10.1023/A:1009784215900; Brown KR, 1996, TREES-STRUCT FUNCT, V10, P189; Bruhn D, 2000, NEW PHYTOL, V146, P415, DOI 10.1046/j.1469-8137.2000.00661.x; Cai ZQ, 2007, ANN BOT-LONDON, V100, P831, DOI 10.1093/aob/mcm179; Castro-Diez P, 1998, OECOLOGIA, V116, P57, DOI 10.1007/s004420050563; Castro-Diez P, 2003, PLANT ECOL, V166, P117, DOI 10.1023/A:1023209230303; Cernusak LA, 2008, PLANT PHYSIOL, V148, P642, DOI 10.1104/pp.108.123521; Chao KJ, 2008, J ECOL, V96, P281, DOI 10.1111/j.1365-2745.2007.01343.x; Chaturvedi RK, 2011, J VEG SCI, V22, P917, DOI 10.1111/j.1654-1103.2011.01299.x; Chaturvedi RK, 2014, J PLANT ECOL, V7, P544, DOI 10.1093/jpe/rtt053; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Clark DA, 1999, ECOL APPL, V9, P981; CONDIT R, 1993, FOREST ECOL MANAG, V62, P123, DOI 10.1016/0378-1127(93)90046-P; Coomes DA, 1998, FUNCT ECOL, V12, P426, DOI 10.1046/j.1365-2435.1998.00211.x; Coomes DA, 2009, J ECOL, V97, P705, DOI 10.1111/j.1365-2745.2009.01507.x; Cornelissen JHC, 1996, J ECOL, V84, P755, DOI 10.2307/2261337; Cornelissen JHC, 1997, OECOLOGIA, V111, P460, DOI 10.1007/s004420050259; Cornelissen JHC, 1998, INHERENT VARIATION IN PLANT GROWTH, P363; Dalling JW, 2004, FUNCT ECOL, V18, P725, DOI 10.1111/j.0269-8463.2004.00868.x; DEBELL JD, 1994, CAN J FOREST RES, V24, P638, DOI 10.1139/x94-083; Duursma R. A., 2016, NEW PHYTOLO IN PRESS; Easdale TA, 2009, PERSPECT PLANT ECOL, V11, P203, DOI 10.1016/j.ppees.2009.03.001; Enquist BJ, 2007, NATURE, V449, P218, DOI 10.1038/nature06061; Falster DS, 2016, METHODS ECOL EVOL, V7, P136, DOI 10.1111/2041-210X.12525; Falster DS, 2015, ECOLOGY, V96, P1445, DOI 10.1890/14-1889.1; Falster DS, 2011, J ECOL, V99, P148, DOI 10.1111/j.1365-2745.2010.01735.x; Falster DS, 2005, OIKOS, V111, P57, DOI 10.1111/j.0030-1299.2005.13383.x; Fan ZX, 2012, J ECOL, V100, P732, DOI 10.1111/j.1365-2745.2011.01939.x; FARNSWORTH KD, 1995, FUNCT ECOL, V9, P355, DOI 10.2307/2389997; Fayolle A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042381; Fujimoto T, 2006, J FOREST RES-JPN, V11, P157, DOI 10.1007/s10310-005-0200-9; Galmes J, 2005, OECOLOGIA, V145, P21, DOI 10.1007/s00442-005-0106-4; Garnier E., 2007, HDB FUNCTIONAL PLANT, P81; Gibert A., 2016, DRYAD DIGITAL REPOSI; Givnish Thomas J., 1995, P3, DOI 10.1016/B978-012276460-8/50003-5; GLEESON SK, 1994, FUNCT ECOL, V8, P543, DOI 10.2307/2390080; Grime J. P, 1979, PLANT STRATEGIES VEG; Grime JP, 1997, OIKOS, V79, P259, DOI 10.2307/3546011; GRIME JP, 1975, J ECOL, V63, P393, DOI 10.2307/2258728; Grotkopp E, 2002, AM NAT, V159, P396, DOI 10.1086/338995; Grubb PJ, 1996, J ECOL, V84, P827, DOI 10.2307/2960555; Herault B, 2011, J ECOL, V99, P1431, DOI 10.1111/j.1365-2745.2011.01883.x; Hoffmann WA, 2003, J ECOL, V91, P475, DOI 10.1046/j.1365-2745.2003.00777.x; Huante P, 1995, FUNCT ECOL, V9, P849, DOI 10.2307/2389982; Huante P, 1998, OECOLOGIA, V113, P53, DOI 10.1007/s004420050353; HUANTE P, 1995, FUNCT ECOL, V9, P760, DOI 10.2307/2390249; Hunt R, 1997, NEW PHYTOL, V135, P395, DOI 10.1046/j.1469-8137.1997.00671.x; Iida Y, 2014, J ECOL, V102, P641, DOI 10.1111/1365-2745.12221; Iida Y, 2014, ECOLOGY, V95, P353, DOI 10.1890/11-2173.1; Iida Y, 2012, FUNCT ECOL, V26, P274, DOI 10.1111/j.1365-2435.2011.01921.x; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; King DA, 2006, J ECOL, V94, P670, DOI 10.1111/j.1365-2745.2006.01112.x; King DA, 2005, FUNCT ECOL, V19, P445, DOI 10.1111/j.1365-2435.2005.00982.x; KING DA, 1994, AM J BOT, V81, P948, DOI 10.2307/2445287; King DA, 1999, ECOLOGY, V80, P1944, DOI 10.2307/176670; King DA, 2011, TREE PHYSIOL-NETH, V4, P165, DOI 10.1007/978-94-007-1242-3_6; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kohyama T, 2003, J ECOL, V91, P797, DOI 10.1046/j.1365-2745.2003.00810.x; Koricheva J, 2014, J ECOL, V102, P828, DOI 10.1111/1365-2745.12224; Kruger EL, 2006, FUNCT PLANT BIOL, V33, P421, DOI 10.1071/FP05310; Lajeunesse M. J., 2013, HDB METAANALYSIS ECO, P195, DOI DOI 10.1515/9781400846184-015; LAMBERS H, 1992, ADV ECOL RES, V23, P187, DOI 10.1016/S0065-2504(08)60148-8; Lamers JPA, 2006, FOREST ECOL MANAG, V221, P249, DOI 10.1016/j.foreco.2005.10.022; Larjavaara M, 2010, FUNCT ECOL, V24, P701, DOI 10.1111/j.1365-2435.2010.01698.x; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Lopez-Iglesias B, 2014, ACTA OECOL, V56, P10, DOI 10.1016/j.actao.2014.01.003; Loveys BR, 2002, PLANT CELL ENVIRON, V25, P975, DOI 10.1046/j.1365-3040.2002.00879.x; Lusk CH, 2002, AUSTRAL ECOL, V27, P173, DOI 10.1046/j.1442-9993.2002.01168.x; Lusk CH, 1997, OECOLOGIA, V109, P49, DOI 10.1007/s004420050057; Lusk CH, 2013, J ECOL, V101, P1531, DOI 10.1111/1365-2745.12152; Lusk CH, 2013, ANN BOT-LONDON, V111, P479, DOI 10.1093/aob/mcs289; Martinez-Vilalta J, 2010, J ECOL, V98, P1462, DOI 10.1111/j.1365-2745.2010.01718.x; McCormack ML, 2012, NEW PHYTOL, V195, P823, DOI 10.1111/j.1469-8137.2012.04198.x; Moles AT, 2006, OIKOS, V113, P91, DOI 10.1111/j.0030-1299.2006.14194.x; Moya R., 2008, FOREST SYSTEMS, V16, P267; Muller-Landau HC, 2004, BIOTROPICA, V36, P20, DOI 10.1111/j.1744-7429.2004.tb00292.x; Nascimento HEM, 2005, J VEG SCI, V16, P625, DOI 10.1658/1100-9233(2005)016[0625:DALCFA]2.0.CO;2; Osone Y, 2008, NEW PHYTOL, V179, P417, DOI 10.1111/j.1469-8137.2008.02476.x; Osunkoya OO, 2010, ANN BOT-LONDON, V106, P371, DOI 10.1093/aob/mcq119; OSUNKOYA OO, 1994, J ECOL, V82, P149, DOI 10.2307/2261394; Paine C. E. T., 2015, J ECOL, V4, P978; Paz H, 2005, FUNCT ECOL, V19, P707, DOI 10.1111/j.1365-2435.2005.00984.x; Poorter H, 1989, CAUSES CONSEQUENCES, P1; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 1999, FUNCT ECOL, V13, P396, DOI 10.1046/j.1365-2435.1999.00332.x; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; POPMA J, 1988, OECOLOGIA, V75, P625, DOI 10.1007/BF00776429; Prior LD, 2004, AUST J BOT, V52, P303, DOI 10.1071/BT03119; Quero JL, 2008, FUNCT PLANT BIOL, V35, P725, DOI 10.1071/FP08149; R Core Team, 2014, R LANG ENV STAT COMP; Read J, 2011, AM J BOT, V98, P1762, DOI 10.3732/ajb.1100080; Rees M, 2010, AM NAT, V176, pE152, DOI 10.1086/657037; Reich PB, 1998, FUNCT ECOL, V12, P327, DOI 10.1046/j.1365-2435.1998.00208.x; Reich PB, 1998, FUNCT ECOL, V12, P395, DOI 10.1046/j.1365-2435.1998.00209.x; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; Rossatto DR, 2009, FUNCT ECOL, V23, P689, DOI 10.1111/j.1365-2435.2009.01568.x; Ruger N, 2012, ECOLOGY, V93, P2626, DOI 10.1890/12-0622.1; Ruiz-Robleto J, 2005, PLANT BIOLOGY, V7, P484, DOI 10.1055/s-2005-865905; Sack L, 2004, OIKOS, V107, P110, DOI 10.1111/j.0030-1299.2004.13184.x; Saldana-Acosta A, 2009, FOREST ECOL MANAG, V258, P1650, DOI 10.1016/j.foreco.2009.07.027; Salgado-Luarte C, 2012, AM NAT, V180, pE42, DOI 10.1086/666612; Saverimuttu T, 1996, OECOLOGIA, V105, P281, DOI 10.1007/BF00328729; Scheiter S, 2013, NEW PHYTOL, V198, P957, DOI 10.1111/nph.12210; Shen Y, 2014, OECOLOGIA, V175, P1315, DOI 10.1007/s00442-014-2981-z; Shipley B, 2006, FUNCT ECOL, V20, P565, DOI 10.1111/j.1365-2435.2006.01135.x; Shipley B, 2002, FUNCT ECOL, V16, P682, DOI 10.1046/j.1365-2435.2002.00672.x; SHIPLEY B, 1990, AM NAT, V136, P139, DOI 10.1086/285088; Stratton LC, 2001, TREE PHYSIOL, V21, P1327, DOI 10.1093/treephys/21.18.1327; Thomas SC, 1996, AM J BOT, V83, P556, DOI 10.2307/2445913; Thomas SC, 2011, TREE PHYSIOL-NETH, V4, P33, DOI 10.1007/978-94-007-1242-3_2; Tomlinson KW, 2014, ANN BOT-LONDON, V114, P315, DOI 10.1093/aob/mcu107; Turnbull LA, 2012, ECOLOGY, V93, P1283, DOI 10.1890/11-0261.1; Veneklaas EJ, 2002, SCI HORTIC-AMSTERDAM, V93, P75, DOI 10.1016/S0304-4238(01)00315-6; Viechtbauer W, 2010, J STAT SOFTW, V36, P1; Villagra M, 2013, TREE PHYSIOL, V33, P285, DOI 10.1093/treephys/tpt003; Villar R, 2006, PLANT CELL ENVIRON, V29, P1629, DOI 10.1111/j.1365-3040.2006.01540.x; Vogel S, 1988, LIFES DEVICES PHYS W; Vogel S, 2003, COMP BIOMECHANICS LI; WALTERS MB, 1993, OECOLOGIA, V96, P219, DOI 10.1007/BF00317735; WALTERS MB, 1993, OECOLOGIA, V94, P7, DOI 10.1007/BF00317294; Walters MB, 1996, ECOLOGY, V77, P841, DOI 10.2307/2265505; Wang JR, 1998, CAN J FOREST RES, V28, P44; Warren CR, 2005, OECOLOGIA, V144, P373, DOI 10.1007/s00442-005-0092-6; Wenk EH, 2015, ECOL EVOL, V5, P5521, DOI 10.1002/ece3.1802; Westbrook JW, 2011, AM NAT, V177, P800, DOI 10.1086/659963; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1; Wright IJ, 1999, J ECOL, V87, P85, DOI 10.1046/j.1365-2745.1999.00330.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright IJ, 2001, OECOLOGIA, V127, P21, DOI 10.1007/s004420000554; Wright IJ, 2000, FUNCT ECOL, V14, P97, DOI 10.1046/j.1365-2435.2000.00393.x; Wright SJ, 2003, ECOLOGY, V84, P3174, DOI 10.1890/02-0038; Zapata JMC, 2003, TREE PHYSIOL, V23, P879, DOI 10.1093/treephys/23.13.879; ZHANG SY, 1995, WOOD SCI TECHNOL, V29, P451, DOI 10.1007/BF00194204; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 149 13 14 7 84 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. SEP 2016 104 5 1488 1503 10.1111/1365-2745.12594 16 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology DW3OU WOS:000383551800027 Bronze 2019-02-21 J Descamps, S; Gaillard, JM; Hamel, S; Yoccoz, NG Descamps, S.; Gaillard, J. -M.; Hamel, S.; Yoccoz, N. G. When relative allocation depends on total resource acquisition: implication for the analysis of trade-offs JOURNAL OF EVOLUTIONARY BIOLOGY English Article energy budget; life-history evolution; reproductive effort; slow-fast continuum; survival; Y-model LIFE-HISTORY; POPULATION-DYNAMICS; REPRODUCTION; PLASTICITY; SURVIVAL; DORMOUSE; TACTICS; MODEL A central tenet of evolutionary biology states that life-history traits are linked via trade-offs, as classically exemplified by the van Noordwijk and de Jong model. This model, however, assumes that the relative resource allocation to a biological function varies independently of the total resource acquisition. Based on current empirical evidence, we first explored the dependency between the total resource acquisition and the relative resource allocation to reproduction and showed that such dependency is the rule rather than the exception. We then derived the expression of the covariance between traits when the assumption of independence is relaxed and used simulations to quantify the importance of such dependency on the detection of trade-offs between current reproduction and future survival. We found that the dependency between the total energy acquisition and the relative allocation to reproduction can influence the probability to detect trade-offs between survival and reproduction. As a general rule, a negative dependency between the total energy acquisition and the relative allocation to reproduction should lead to a higher probability of detecting a trade-off in species with a fast pace of life, whereas a positive dependency should lead to a higher probability of detecting a trade-off in species with a slow pace of life. In addition to confirming the importance of resource variation to reveal trade-offs, our finding demonstrates that the covariance between resource allocation and resource acquisition is generally not null and also plays a fundamental role in the detection of trade-offs. [Descamps, S.] Norwegian Polar Res Inst, Tromso, Norway; [Gaillard, J. -M.] Univ Lyon 1, UMR CNRS 5558, Villeurbanne, France; [Hamel, S.; Yoccoz, N. G.] UiT, Dept Arctic & Marine Biol, Tromso, Norway Descamps, S (reprint author), Norwegian Polar Res Inst, Fram Ctr, N-9296 Tromso, Norway. sebastien.descamps@npolar.no Yoccoz, Nigel/0000-0003-2192-1039 Bardsen BJ, 2008, ECOLOGY, V89, P829, DOI 10.1890/07-0414.1; BOHRNSTE.GW, 1969, J AM STAT ASSOC, V64, P1439, DOI 10.2307/2286081; Christians JK, 2000, FUNCT ECOL, V14, P497, DOI 10.1046/j.1365-2435.2000.00444.x; Cressler CE, 2010, AM NAT, V176, P276, DOI 10.1086/655425; Cubaynes S, 2011, BIOL LETTERS, V7, P303, DOI 10.1098/rsbl.2010.0778; Erikstad KE, 1998, ECOLOGY, V79, P1781; Fischer B, 2009, AM NAT, V173, pE108, DOI 10.1086/596536; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 1997, OECOLOGIA, V112, P502, DOI 10.1007/s004420050338; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; King EG, 2011, J EVOLUTION BIOL, V24, P256, DOI 10.1111/j.1420-9101.2010.02160.x; Kokko H, 2000, ECOLOGY, V81, P252, DOI 10.2307/177148; KOMERS PE, 1994, ETHOL ECOL EVOL, V6, P313, DOI 10.1080/08927014.1994.9522984; Lancaster LT, 2008, J EVOLUTION BIOL, V21, P556, DOI 10.1111/j.1420-9101.2007.01478.x; Metcalf CJE, 2016, AM NAT, V187, pIII, DOI 10.1086/685487; Pilastro A, 2003, ECOLOGY, V84, P1784, DOI 10.1890/0012-9658(2003)084[1784:LLARSI]2.0.CO;2; Robinson MR, 2013, ECOL LETT, V16, P281, DOI 10.1111/ele.12047; ROFF DA, 2002, LIFE HIST EVOLUTION; Ruf T, 2006, ECOLOGY, V87, P372, DOI 10.1890/05-0672; Stearns S, 1992, EVOLUTION LIFE HIST; vansNoordwijk A. J., 1986, AM NAT, V128, P137, DOI DOI 10.1086/284547; Ward DH, 2005, GLOBAL CHANGE BIOL, V11, P869, DOI 10.1111/j.1365-2486.2005.00942.x 22 9 9 2 23 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. SEP 2016 29 9 1860 1866 10.1111/jeb.12901 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DX5MG WOS:000384424500018 27200492 Bronze 2019-02-21 J Xiang, XL; Jiang, RM; Tao, YY; Chen, YY; Xi, YL Xiang, Xianling; Jiang, Ruiming; Tao, Yuanyuan; Chen, Yingying; Xi, Yilong Differences in life history characteristics among three sympatric evolutionary species of the Rotaria rotatoria complex JOURNAL OF FRESHWATER ECOLOGY English Article rotifer; bdelloid; Rotaria rotatoria; evolutionary species; life history traits; temperature BRACHIONUS-PLICATILIS ROTIFERA; BDELLOID ROTIFERS; GENETIC DIFFERENTIATION; DIFFERENT TEMPERATURES; CALYCIFLORUS ROTIFERA; ECOLOGICAL GENETICS; POPULATION-GROWTH; SHALLOW LAKES; FRESH-WATER; REPRODUCTION The Bdelloidea rotifer, a kind of asexually microscopic invertebrate, is the largest Metazoan group that reproduces only through parthenogenesis. Here the potential evolutionary species composition was analyzed using a coalescent approach to infer independently evolving entities from a phylogenetic tree obtained from cytochrome oxidase I sequences. Three clones (HX4, HX8 and HX19) of Bdelloidea Rotaria rotatoria were selected to be the representatives of three sympatric putative cryptic taxa for detecting the effects of temperature (24, 28 and 32 ?) on their life history traits. The results showed that the responses of life table parameters to increasing temperature were different among the three evolving entities. Evolutionary species, temperatures and their interaction significantly affected all life history parameters except that evolutionary species did not significantly affect the durations of post-reproductive period and mean lifespan. In addition, the interaction of evolutionary species and temperatures did not significantly affect the durations of post-reproductive period, offspring production or net reproductive rate. No matter what the evolutionary species was, the age-specific survival curves tended to decrease earlier and more quickly, and the peak of age-specific fecundity curves appeared earlier with increasing temperature. The three potential cryptic R. rotatoria taxa adopted variable life history strategies, low reproduction and high survivorship at low temperature, as well as high reproduction and low survivorship at high temperature. The similar adaptation abilities of HX4, HX8 and HX19 to water temperatures could be the best explanation for their coexistence in the subtropical shallow pond at a high temperature. [Xiang, Xianling; Jiang, Ruiming; Tao, Yuanyuan; Chen, Yingying; Xi, Yilong] Anhui Normal Univ, Dept Ecol, Coll Life Sci, Key Lab Biot Environm & Ecol Safety, Wuhu 241000, Anhui, Peoples R China Xiang, XL (reprint author), Anhui Normal Univ, Dept Ecol, Coll Life Sci, Key Lab Biot Environm & Ecol Safety, Wuhu 241000, Anhui, Peoples R China. xiangxianling@163.com Xiang, Xianling/Q-6388-2018 Xiang, Xianling/0000-0002-1378-5877 Natural Science Foundation of China [31200324]; Natural Science Foundation of Anhui Province [1208085QC47]; Natural Science Foundation in College of Anhui Province [KJ2012A127]; Foundation of Provincial Key Laboratory of Conservation and Utilization for Important Biological Resource in Anhui This work was supported by the Natural Science Foundation of China [grant number 31200324]; Natural Science Foundation of Anhui Province [grant number 1208085QC47]; Natural Science Foundation in College of Anhui Province [grant number KJ2012A127]; Foundation of Provincial Key Laboratory of Conservation and Utilization for Important Biological Resource in Anhui. ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; Barraclough TG, 2007, MOL BIOL EVOL, V24, P1952, DOI 10.1093/molbev/msm123; Birky CW, 2011, ZOOL J LINN SOC-LOND, V161, P723, DOI 10.1111/j.1096-3642.2010.00674.x; Campillo S, 2011, EVOL ECOL, V25, P933, DOI 10.1007/s10682-010-9447-5; Ciros-Perez J, 2001, J PLANKTON RES, V23, P1311, DOI 10.1093/plankt/23.12.1311; Derry AM, 2003, LIMNOL OCEANOGR, V48, P675, DOI 10.4319/lo.2003.48.2.0675; Dong L.L., 2004, CHINESE J APPL ECOLO, V15, P2165; FANESTIL DD, 1965, J GERONTOL, V20, P462; Feng Li-Ke, 2004, Chinese Journal of Zoology, V39, P12; Fontaneto D, 2008, J EVOLUTION BIOL, V21, P580, DOI 10.1111/j.1420-9101.2007.01472.x; Fontaneto D, 2007, PLOS BIOL, V5, P914, DOI 10.1371/journal.pbio.0050087; Fontaneto D, 2011, HYDROBIOLOGIA, V662, P27, DOI 10.1007/s10750-010-0481-7; Fontaneto D, 2009, MOL PHYLOGENET EVOL, V53, P182, DOI 10.1016/j.ympev.2009.04.011; GALKOVSKAJA GA, 1987, HYDROBIOLOGIA, V147, P307, DOI 10.1007/BF00025759; Gilbert JJ, 2005, HYDROBIOLOGIA, V546, P257, DOI 10.1007/s10750-005-4205-3; Gomez A, 2002, EVOLUTION, V56, P1431; GOMEZ A, 1995, J EVOLUTION BIOL, V8, P601, DOI 10.1046/j.1420-9101.1995.8050601.x; Gomez A, 1996, FUNCT ECOL, V10, P681, DOI 10.2307/2390502; Guo RX, 2011, HYDROBIOLOGIA, V658, P163, DOI 10.1007/s10750-010-0459-5; [胡存兵 HU CunBing], 2008, [生态学报, Acta Ecologica Sinica], V28, P5957; Huang L, 2012, ANN LIMNOL-INT J LIM, V48, P383, DOI 10.1051/limn/2012029; KING CE, 1972, ECOLOGY, V53, P408, DOI 10.2307/1934226; KING CE, 1987, HYDROBIOLOGIA, V147, P57, DOI 10.1007/BF00025726; King CE, 1980, EVOLUTION ECOLOGY ZO, P315; KREBS CJ, 1985, ECOLOGY EXPT ANAL DI, P800; LEBEDEVA LI, 1987, INT REV GES HYDROBIO, V72, P695, DOI 10.1002/iroh.19870720606; Li SH, 1959, ACTA HYDROBIOL SINIC, V4, P462; Lotka A. J., 1913, J WASH ACAD SCI, V3, P241; MEADOW ND, 1971, J GERONTOL, V26, P302, DOI 10.1093/geronj/26.3.302; Min GS, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-533; MIRACLE MR, 1989, HYDROBIOLOGIA, V186, P81, DOI 10.1007/BF00048900; Monaghan MT, 2009, SYST BIOL, V58, P298, DOI 10.1093/sysbio/syp027; Nogrady T., 1993, BIOL ECOLOGY SYSTEMA, P1; Ortells R, 2003, FRESHWATER BIOL, V48, P2194, DOI 10.1046/j.1365-2427.2003.01159.x; Pan L, 2014, ANN LIMNOL-INT J LIM, V50, P261, DOI 10.1051/limn/2014021; Peltier WH, 1985, EPA600485013; Perez-Legaspi IA, 1998, HYDROBIOLOGIA, V387, P341, DOI 10.1023/A:1017099906853; Pociecha A., 2010, PAPERS GLOBAL CHANGE, V17, P31; Pons J, 2006, SYST BIOL, V55, P595, DOI 10.1080/10635150600852011; Posada D, 2004, SYST BIOL, V53, P793, DOI 10.1080/10635150490522304; Pourriot R., 1986, AQUACULTURE, V5, P201; Ricci C, 2005, HYDROBIOLOGIA, V546, P307, DOI 10.1007/s10750-005-4238-7; RICCI C, 1983, HYDROBIOLOGIA, V104, P175, DOI 10.1007/BF00045965; Ricci C, 2000, HYDROBIOLOGIA, V418, P73, DOI 10.1023/A:1003840216827; RICCI C, 1991, HYDROBIOLOGIA, V211, P147, DOI 10.1007/BF00037370; Ricci Claudia, 1998, Aquatic Ecology, V32, P353, DOI 10.1023/A:1009905404868; Rico-Martinez R, 2013, ENVIRON POLLUT, V173, P5, DOI 10.1016/j.envpol.2012.09.024; Sanderson MJ, 2002, MOL BIOL EVOL, V19, P101, DOI 10.1093/oxfordjournals.molbev.a003974; Santo N, 2001, HYDROBIOLOGIA, V446, P71, DOI 10.1023/A:1017525222744; Sarma SSS, 2002, HYDROBIOLOGIA, V481, P89, DOI 10.1023/A:1021265104165; Schroder T, 2007, HYDROBIOLOGIA, V593, P129, DOI 10.1007/s10750-007-9066-5; SCOTT AP, 1978, AQUACULTURE, V14, P247, DOI 10.1016/0044-8486(78)90098-4; Segers H, 2008, HYDROBIOLOGIA, V595, P49, DOI 10.1007/s10750-007-9003-7; Serra M, 1998, HYDROBIOLOGIA, V387, P373, DOI 10.1023/A:1017083820908; SNELL TW, 1986, MAR BIOL, V92, P157, DOI 10.1007/BF00392832; SNELL TW, 1991, ECOTOX ENVIRON SAFE, V21, P308, DOI 10.1016/0147-6513(91)90070-6; SNELL TW, 1980, OECOLOGIA, V46, P343, DOI 10.1007/BF00346262; Stelzer CP, 2005, DEV HYDROBIOL, V181, P335; Swofford D. L, 2002, PAUP 4 0 PHYLOGENETI; Tao L.X., 2008, CHIN J APPL ECOL, V15, P2165; van der Land J., 1965, Zoologische Mededeelingen Leiden, V40, P235; Walczynska A, 2014, HYDROBIOLOGIA, V734, P17, DOI 10.1007/s10750-014-1859-8; Wang XL, 2014, ANN LIMNOL-INT J LIM, V50, P289, DOI 10.1051/limn/2014024; Welch DM, 2000, SCIENCE, V288, P1211, DOI 10.1126/science.288.5469.1211; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; Xi YL, 2013, J FRESHWATER ECOL, V28, P539, DOI 10.1080/02705060.2013.799102; Xi YL, 2005, J FRESHWATER ECOL, V20, P707, DOI 10.1080/02705060.2005.9664794; Xiang XL, 2011, MOL ECOL, V20, P3027, DOI 10.1111/j.1365-294X.2011.05147.x; Xiang XL, 2011, MOL PHYLOGENET EVOL, V59, P386, DOI 10.1016/j.ympev.2011.02.011; Xiang XL, 2010, J FRESHWATER ECOL, V25, P9, DOI 10.1080/02705060.2010.9664352 70 4 4 9 46 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 0270-5060 2156-6941 J FRESHWATER ECOL J. Freshw. Ecol. SEP 2016 31 3 351 360 10.1080/02705060.2016.1141379 10 Ecology; Limnology Environmental Sciences & Ecology; Marine & Freshwater Biology DX3JV WOS:000384270300005 2019-02-21 J Howard, SJ; Cook, CJ; Said-Mohamed, R; Norris, SA; Draper, CE Howard, Steven J.; Cook, Caylee J.; Said-Mohamed, Rihlat; Norris, Shane A.; Draper, Catherine E. The (Possibly Negative) Effects of Physical Activity on Executive Functions: Implications of the Changing Metabolic Costs of Brain Development JOURNAL OF PHYSICAL ACTIVITY & HEALTH English Review nutrition; neuroscience; psychology; risks of exercise; youth SEDENTARY BEHAVIOR; COGNITIVE-DEVELOPMENT; PRESCHOOL-CHILDREN; ENERGY-EXPENDITURE; NUTRITIONAL-STATUS; AEROBIC EXERCISE; BODY-COMPOSITION; WORKING-MEMORY; OVERWEIGHT; HEALTH Background: An area of growth in physical activity research has involved investigating effects of physical activity on children's executive functions. Many of these efforts seek to increase the energy expenditure of young children as a healthy and low-cost way to affect physical, health, and cognitive outcomes. Methods: We review theory and research from neuroscience and evolutionary biology, which suggest that interventions seeking to increase the energy expenditure of young children must also consider the energetic trade-offs that occur to accommodate changing metabolic costs of brain development. Results: According to Life History Theory, and supported by recent evidence, the high relative energy-cost of early brain development requires that other energy-demanding functions of development (ie, physical growth, activity) be curtailed. This is important for interventions seeking to dramatically increase the energy expenditure of young children who have little excess energy available, with potentially negative cognitive consequences. Less energy-demanding physical activities, in contrast, may yield psychosocial and cognitive benefits while not overburdening an underweight child's already scarce energy supply. Conclusions: While further research is required to establish the extent to which increases in energy-demanding physical activities may compromise or displace energy available for brain development, we argue that action cannot await these findings. [Howard, Steven J.] Univ Wollongong, Early Start Res Inst, Wollongong, NSW, Australia; [Howard, Steven J.] Univ Wollongong, Sch Educ, Wollongong, NSW, Australia; [Cook, Caylee J.; Draper, Catherine E.] Univ Cape Town, Div Exercise Sci & Sports Med, Dept Human Biol, Fac Hlth Sci, Cape Town, South Africa; [Said-Mohamed, Rihlat; Norris, Shane A.; Draper, Catherine E.] Univ Witwatersrand, Dept Paediat & Child Hlth, Fac Hlth Sci, MRC Wits Dev Pathways Hlth Res Unit, Johannesburg, South Africa Howard, SJ (reprint author), Univ Wollongong, Early Start Res Inst, Wollongong, NSW, Australia.; Howard, SJ (reprint author), Univ Wollongong, Sch Educ, Wollongong, NSW, Australia. stevenh@uow.edu.au Howard, Steven/0000-0002-1258-3210 DST/NRF Centre of Excellence in Human Development Support for this paper was provided by the DST/NRF Centre of Excellence in Human Development. Alhassan S, 2007, INT J PEDIATR OBES, V2, P153, DOI 10.1080/17477160701520108; Alhassan S, 2012, BMC PUBLIC HEALTH, V12, DOI 10.1186/1471-2458-12-582; Amorim PRD, 2006, ASIA PAC J CLIN NUTR, V15, P217; Angevaren M, 2008, COCHRANE DB SYST REV, DOI [10.1002/14651858.CD005381.pub2, 10.1002/14651858.CD005381.pub3]; Bayer O, 2009, CLIN NUTR, V28, P122, DOI 10.1016/j.clnu.2009.01.001; Bellows LL, 2013, AM J OCCUP THER, V67, P28, DOI 10.5014/ajot.2013.005777; Berghanel A, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1500451; Best JR, 2012, DEV PSYCHOL, V48, P1501, DOI 10.1037/a0026648; Best JR, 2010, DEV REV, V30, P331, DOI 10.1016/j.dr.2010.08.001; Blair C, 2007, CHILD DEV, V78, P647, DOI 10.1111/j.1467-8624.2007.01019.x; Blair C, 2012, AM PSYCHOL, V67, P309, DOI 10.1037/a0027493; Blair C, 2011, CHILD DEV, V82, P1970, DOI 10.1111/j.1467-8624.2011.01643.x; Bogin B, 2007, AM J HUM BIOL, V19, P631, DOI 10.1002/ajhb.20666; Bull R, 2008, DEV NEUROPSYCHOL, V33, P205, DOI 10.1080/87565640801982312; Byun W, 2011, PEDIATRICS, V128, P937, DOI 10.1542/peds.2011-0748; Carson V, 2015, PREV MED, V78, P115, DOI 10.1016/j.ypmed.2015.07.016; Casale D, 2014, CHILD CARE HLTH DEV, V40, P900, DOI 10.1111/cch.12143; Casey BJ, 2002, DEV PSYCHOBIOL, V40, P237, DOI 10.1002/dev.10030; Chang YK, 2012, ARCH CLIN NEUROPSYCH, V27, P225, DOI 10.1093/arclin/acr094; Davis CL, 2007, RES Q EXERCISE SPORT, V78, P510, DOI 10.5641/193250307X13082512817660; Davis CL, 2011, HEALTH PSYCHOL, V30, P91, DOI 10.1037/a0021766; De Bock F, 2013, AM J PREV MED, V45, P64, DOI 10.1016/j.amepre.2013.01.032; Diamond Adele, 2015, Ann Sports Med Res, V2, P1011; Donnelly JE, 2011, PREV MED, V52, pS36, DOI 10.1016/j.ypmed.2011.01.021; Ebbeling CB, 2002, LANCET, V360, P473, DOI 10.1016/S0140-6736(02)09678-2; Eliakim A, 2007, J PEDIATR ENDOCR MET, V20, P711; Fitzgibbon ML, 2006, OBESITY, V14, P1616, DOI 10.1038/oby.2006.186; Fonseca-Azevedo K, 2012, P NATL ACAD SCI USA, V109, P18571, DOI 10.1073/pnas.1206390109; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Hannon JC, 2008, PREV MED, V46, P532, DOI 10.1016/j.ypmed.2008.01.006; Harvey-Berino J, 2003, OBES RES, V11, P606, DOI 10.1038/oby.2003.87; Hayden EC, 2012, NATURE, V483, P24, DOI 10.1038/483024a; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hillman CH, 2009, NEUROSCIENCE, V159, P1044, DOI 10.1016/j.neuroscience.2009.01.057; Hochberg Z, 2008, PEDIATR RES, V64, P2, DOI 10.1203/PDR.0b013e318177590f; Janssen I, 2010, INT J BEHAV NUTR PHY, V7, DOI 10.1186/1479-5868-7-40; Jones S, 2014, CHILD OBES, V10, P501, DOI 10.1089/chi.2014.0097; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kar BR, 2008, BEHAV BRAIN FUNCT, V4, DOI 10.1186/1744-9081-4-31; KLEIBER MAX, 1932, HILGARDIA, V6, P315; Kuhl ES, 2012, OBESITY, V20, P3, DOI 10.1038/oby.2011.201; Kuzawa CW, 2014, P NATL ACAD SCI USA, V111, P13010, DOI 10.1073/pnas.1323099111; Lakes KD, 2004, J APPL DEV PSYCHOL, V25, P283, DOI 10.1016/j.appdev.2004.04.002; LeBlanc AG, 2012, APPL PHYSIOL NUTR ME, V37, P753, DOI [10.1139/H2012-063, 10.1139/h2012-063]; LEONARD WR, 1992, AM J HUM BIOL, V4, P179, DOI 10.1002/ajhb.1310040204; Liu-Ambrose T, 2010, ARCH INTERN MED, V170, P170, DOI 10.1001/archinternmed.2009.494; Mamabolo RL, 2007, PUBLIC HEALTH NUTR, V10, P1047, DOI 10.1017/S1368980007668724; Manjunath N. K., 2001, Indian Journal of Physiology and Pharmacology, V45, P351; Martinez-Gomez D, 2009, ARCH PEDIAT ADOL MED, V163, P724, DOI 10.1001/archpediatrics.2009.90; Miranda Mônica C., 2007, Rev. Bras. Saude Mater. Infant., V7, P45, DOI 10.1590/S1519-38292007000100006; Monyeki MA, 2005, EUR J CLIN NUTR, V59, P877, DOI 10.1038/sj.ejcn.1602153; Monyeki MA, 2015, INT J ENV RES PUB HE, V12, P1156, DOI 10.3390/ijerph120201156; Morgan KE, 2015, COGNITIVE EFFECTS CH; Navarrete A, 2011, NATURE, V480, P91, DOI 10.1038/nature10629; Piek JP, 2010, HUM MOVEMENT SCI, V29, P777, DOI 10.1016/j.humov.2010.03.006; Piek JP, 2008, HUM MOVEMENT SCI, V27, P668, DOI 10.1016/j.humov.2007.11.002; Piek JP, 2006, HUM MOVEMENT SCI, V25, P65, DOI 10.1016/j.humov.2005.10.011; Pontzer H, 2014, P NATL ACAD SCI USA, V111, P1433, DOI 10.1073/pnas.1316940111; Prista A, 2003, AM J CLIN NUTR, V77, P952; Reilly JJ, 2006, BMJ-BRIT MED J, V333, P1041, DOI 10.1136/bmj.38979.623773.55; Riggs NR, 2006, J APPL DEV PSYCHOL, V27, P300, DOI 10.1016/j.appdev.2006.04.002; Saakslahti A, 2004, SCAND J MED SCI SPOR, V14, P143, DOI 10.1046/j.1600-0838.2003.00347.x; Said-Mohamed R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039007; Skinner RA, 2001, HUM MOVEMENT SCI, V20, P73, DOI 10.1016/S0167-9457(01)00029-X; Smith PJ, 2010, PSYCHOSOM MED, V72, P239, DOI 10.1097/PSY.0b013e3181d14633; Strong WB, 2005, J PEDIATR-US, V146, P732, DOI 10.1016/j.jpeds.2005.01.055; Subramanian SV, 2009, AM J CLIN NUTR, V90, P369, DOI 10.3945/ajcn.2009.27487; Taylor RW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081567; Theoret-Gosselin R, 2015, OECOLOGIA, V178, P175, DOI 10.1007/s00442-014-3198-x; Timmons BW, 2012, APPL PHYSIOL NUTR ME, V37, P773, DOI [10.1139/h2012-070, 10.1139/H2012-070]; Trost SG, 2002, MED SCI SPORT EXER, V34, P350, DOI 10.1097/00005768-200202000-00025; Trost SG, 2008, J PHYS ACT HEALTH, V5, P88, DOI 10.1123/jpah.5.1.88; Tzioumis E, 2014, FOOD NUTR BULL, V35, P230, DOI 10.1177/156482651403500210; Uauy R., 2004, OBES REV, V5, P4, DOI [10.1111/j.1467-789X.2004.00133.x, DOI 10.1111/J.1467-789X.2004.00133.X]; United Nations Children's Fund World Health Organization, 2012, UNICEF WHO WORLD BAN; Velde SJT, 2012, OBES REV, V13, P56, DOI 10.1111/j.1467-789X.2011.00960.x; Walker R, 2006, AM J PHYS ANTHROPOL, V129, P577, DOI 10.1002/ajpa.20306; Wass SV, 2012, DEV REV, V32, P360, DOI 10.1016/j.dr.2012.07.001; Wilson HJ, 2012, ANN HUM BIOL, V39, P432, DOI 10.3109/03014460.2012.714403; World Health Organization, 2006, WHO CHILD GROWTH STA 80 2 2 3 24 HUMAN KINETICS PUBL INC CHAMPAIGN 1607 N MARKET ST, PO BOX 5076, CHAMPAIGN, IL 61820-2200 USA 1543-3080 1543-5474 J PHYS ACT HEALTH J. Phys. Act. Health SEP 2016 13 9 1017 1022 10.1123/jpah.2015-0687 6 Public, Environmental & Occupational Health Public, Environmental & Occupational Health DX3MA WOS:000384276000015 27172615 2019-02-21 J McFarlane, SE; Sirkia, PM; Alund, M; Qvarnstrom, A McFarlane, S. Eryn; Sirkia, Paivi M.; Alund, Murielle; Qvarnstrom, Anna Hybrid Dysfunction Expressed as Elevated Metabolic Rate in Male Ficedula Flycatchers PLOS ONE English Article CLIMATE-CHANGE; ECOLOGICAL SPECIATION; DARWINS COROLLARY; MITOCHONDRIAL; EVOLUTION; DROSOPHILA; INCOMPATIBILITIES; HYBRIDIZATION; CONSEQUENCES; SPERMATOZOA Studies of ecological speciation are often biased towards extrinsic sources of selection against hybrids, resulting from intermediate hybrid morphology, but the knowledge of how genetic incompatibilities accumulate over time under natural conditions is limited. Here we focus on a physiological trait, metabolic rate, which is central to life history strategies and thermoregulation but is also likely to be sensitive to mismatched mitonuclear interactions. We measured the resting metabolic rate of male collared, and pied flycatchers as well as of naturally occurring F1 hybrid males, in a recent hybrid zone. We found that hybrid males had a higher rather than intermediate metabolic rate, which is indicative of hybrid physiological dysfunction. Fitness costs associated with elevated metabolic rate are typically environmentally dependent and exaggerated under harsh conditions. By focusing on male hybrid dysfunction in an eco-physiological trait, our results contribute to the general understanding of how combined extrinsic and intrinsic sources of hybrid dysfunction build up under natural conditions. [McFarlane, S. Eryn; Alund, Murielle; Qvarnstrom, Anna] Dept Ecol & Genet, Anim Ecol, Norbyvagen 18D, SE-75236 Uppsala, Sweden; [Sirkia, Paivi M.] Univ Helsinki, Finnish Museum Nat Hist, Zool Unit, Helsinki, Finland; [Sirkia, Paivi M.] Univ Turku, Sect Ecol, Dept Biol, Turku, Finland McFarlane, SE (reprint author), Dept Ecol & Genet, Anim Ecol, Norbyvagen 18D, SE-75236 Uppsala, Sweden. eryn.mcfarlane@ebc.uu.se Alund, Murielle/0000-0003-2861-9721 Swedish Research Council [621-2012-3722]; Natural Sciences and Engineering Research Council; Stiftelsen for Zoologisk Forskning; Academy of Finland [267430] This work was supported by funding from the Swedish Research Council (AQ 621-2012-3722), the Natural Sciences and Engineering Research Council (SEM PGS-D), Stiftelsen for Zoologisk Forskning (SEM and MA) and the Academy of Finland (PMS 267430). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Alund M, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0169; Arnqvist G, 2010, EVOLUTION, V64, P3354, DOI 10.1111/j.1558-5646.2010.01135.x; Bates D., LME4 LINEAR MIXED EF; Becker M, 2013, NAT CLIM CHANGE, V3, P1039, DOI 10.1038/NCLIMATE2027; BENNETT AF, 1979, SCIENCE, V206, P649, DOI 10.1126/science.493968; Blackmer AL, 2005, BEHAV ECOL, V16, P906, DOI 10.1093/beheco/ari069; Bolnick DI, 2008, GENETICS, V178, P1037, DOI 10.1534/genetics.107.081364; Brideau NJ, 2006, SCIENCE, V314, P1292, DOI 10.1126/science.1133953; Burton RS, 2012, MOL ECOL, V21, P4942, DOI 10.1111/mec.12006; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Christensen B., 2014, LMERTEST TESTS RANDO; Deerenberg C, 1998, J COMP PHYSIOL B, V168, P507, DOI 10.1007/s003600050171; DIECKMANN U, 2004, ADAPTIVE SPECIATION; Dobzhansky T, 1936, GENETICS, V21, P113; Ellison CK, 2008, J EVOLUTION BIOL, V21, P1844, DOI 10.1111/j.1420-9101.2008.01608.x; Fishman L, 2001, EVOLUTION, V55, P1932; FORD WCL, 1981, J REPROD FERTIL, V63, P271; Garroway CJ, 2010, GLOBAL CHANGE BIOL, V16, P113, DOI 10.1111/j.1365-2486.2009.01948.x; Gershoni M, 2009, BIOESSAYS, V31, P642, DOI 10.1002/bies.200800139; Gomendio M, 2011, P ROY SOC LOND B BIO; HALANGK W, 1985, BIOCHIM BIOPHYS ACTA, V808, P316, DOI 10.1016/0005-2728(85)90014-3; HEWITT GM, 1988, TRENDS ECOL EVOL, V3, P158, DOI 10.1016/0169-5347(88)90033-X; Hoekstra LA, 2013, GENETICS, V195, P1129, DOI 10.1534/genetics.113.154914; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Hothorn T., 2008, SIMULTANEOUS INFEREN; Huntley B, 2007, CLIMATIC ATLAS EUROP; Johnson NA, 2010, TRENDS GENET, V26, P317, DOI 10.1016/j.tig.2010.04.005; Kawakami T, 2014, MOL ECOLOGY RESOURCE; Klaassen M, 2004, COMP BIOCHEM PHYS A, V137, P639, DOI 10.1016/j.cbpb.2003.12.004; Krol E, 2003, J EXP BIOL, V206, P4283, DOI 10.1242/jeb.00676; Larivee ML, 2010, FUNCT ECOL, V24, P597, DOI 10.1111/j.1365-2435.2009.01680.x; Lasiewski RC, 1964, CONDOR, P212; Lighton J.R.B., 2008, MEASURING METABOLIC; Lundberg A., 1992, PIED FLYCATCHER; Maheshwari S, 2011, ANNU REV GENET, V45, P331, DOI 10.1146/annurev-genet-110410-132514; MANI GS, 1990, PROC R SOC SER B-BIO, V240, P29, DOI 10.1098/rspb.1990.0025; Muhlfeld CC, 2014, NATURE CLIMATE CHANG; Muller H. J., 1940, NEW SYSTEMATICS, P185; Nadachowska-Brzyska K, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003942; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; Olson JR, 2010, PHYSIOL BIOCHEM ZOOL, V83, P263, DOI 10.1086/648395; Osada N, 2012, MOL BIOL EVOL, V29, P337, DOI 10.1093/molbev/msr211; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Qvarnstrom A, 2005, BIOL LETTERS, V1, P68, DOI 10.1098/rsbl.2004.0265; Qvarnstrom A, 2015, EVOLUTIONARY APPL; Qvarnstrom A, 2010, PHILOS T R SOC B, V365, P1841, DOI 10.1098/rstb.2009.0306; Qvarnstrom A, 2009, ECOLOGY, V90, P1948, DOI 10.1890/08-0494.1; R Core Team, 2013, R LANG ENV STAT COMP; Rundle HD, 2005, ECOL LETT, V8, P336, DOI 10.1111/j.1461-0248.2004.00715.x; Saetre GP, 1997, NATURE, V387, P589; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schluter D, 2009, SCIENCE, V323, P737, DOI 10.1126/science.1160006; Skibiel AL, 2013, FUNCT ECOL, V27, P1382, DOI 10.1111/1365-2435.12130; Svedin N, 2008, P R SOC B, V275, P735, DOI 10.1098/rspb.2007.0967; Tieleman BI, 2009, P R SOC B, V276, P1685, DOI 10.1098/rspb.2008.1946; Tourmente M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021244; Trier CN, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004075; Turelli M, 2001, TRENDS ECOL EVOL, V16, P330, DOI 10.1016/S0169-5347(01)02177-2; Turelli M, 2007, GENETICS, V176, P1059, DOI 10.1534/genetics.106.065979 60 8 8 0 5 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One SEP 1 2016 11 9 e0161547 10.1371/journal.pone.0161547 10 Multidisciplinary Sciences Science & Technology - Other Topics DV3WN WOS:000382855600038 27583553 DOAJ Gold, Green Published 2019-02-21 J Tingley, R; Mahoney, PJ; Durso, AM; Tallian, AG; Moran-Ordonez, A; Beard, KH Tingley, Reid; Mahoney, Peter J.; Durso, Andrew M.; Tallian, Aimee G.; Moran-Ordonez, Alejandra; Beard, Karen H. Threatened and invasive reptiles are not two sides of the same coin GLOBAL ECOLOGY AND BIOGEOGRAPHY English Article Establishment success; extinction risk; human population density; invasion success; IUCN; threat status; traits EXTINCTION RISK; ESTABLISHMENT SUCCESS; SPECIES TRAITS; UNITED-STATES; NEW-ZEALAND; DETERMINANTS; BIRDS; TRADE; PREDICTORS; GEOGRAPHY AimThe two sides of the same coin' hypothesis posits that biological traits that predispose species to extinction and invasion lie on opposite ends of a continuum. Conversely, anthropogenic factors may have similar effects on extinction and invasion risk. We test these two hypotheses using data on more than 1000 reptile species. LocationGlobal. MethodsWe used hierarchical Bayesian models to determine whether biological traits and anthropogenic factors were correlated with whether a species was: (1) listed as Threatened versus Least Concern on the IUCN Red List, and (2) successful versus unsuccessful at establishing a viable population once introduced outside of its native geographical range. The two sides of the same coin' hypothesis predicts that model coefficients for each trait should be opposite in sign between these two models. ResultsSeventy-three per cent of model coefficients describing 10 aspects of a species' life history, ecology, biogeography and environmental niche breadth were opposite in sign between the two groups; however, most effect sizes for variables that showed contrasting relationships were small and/or uncertain. The only exception was body size: larger-bodied species were more likely to be threatened, whereas smaller-bodied species were more likely to be invasive. As predicted, human population density across a species' native geographical range was positively correlated with both threat and invasion probabilities. Other anthropogenic variables did not have strong analogous effects. Main conclusionsThe assumption that threatened and invasive species lie on opposite ends of a continuum, while consistent with life-history theory, appears to be an oversimplification. Our results do suggest, however, that anthropogenic variables can be important predictors of a species' fate, and should be more routinely incorporated in trait-based analyses of extinction and invasion risk. [Tingley, Reid; Moran-Ordonez, Alejandra] Univ Melbourne, Sch BioSci, Melbourne, Vic 3010, Australia; [Mahoney, Peter J.; Tallian, Aimee G.; Beard, Karen H.] Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA; [Mahoney, Peter J.; Durso, Andrew M.; Tallian, Aimee G.; Beard, Karen H.] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA; [Durso, Andrew M.] Utah State Univ, Dept Biol, Logan, UT 84322 USA Tingley, R (reprint author), Univ Melbourne, Sch BioSci, Melbourne, Vic 3010, Australia. reid.tingley@unimelb.edu.au Beard, Karen/B-7177-2011 Beard, Karen/0000-0003-4997-2495; Tingley, Reid/0000-0002-7630-7434; Moran-Ordonez, Alejandra/0000-0002-5815-6089 Utah State Agricultural Experiment Station and Ecology Center; Australian Research Council Centre of Excellence for Environmental Decisions (CEED); National Environmental Research Program (NERP) Arthur Wallis, Cason Wortley, Leland Bennion and Alejandro Macias helped with data collection. Lucie Bland provided insightful comments on an earlier draft of this manuscript. P.J.M., A.M.D., A.G.T. and K.H.B. were supported by the Utah State Agricultural Experiment Station and Ecology Center. R.T. and A.M.-O. were funded by the Australian Research Council Centre of Excellence for Environmental Decisions (CEED) and the National Environmental Research Program (NERP). Allen CR, 2013, GLOBAL ECOL BIOGEOGR, V22, P889, DOI 10.1111/geb.12054; Amiel JJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018277; Balk DL, 2006, ADV PARASIT, V62, P119, DOI 10.1016/S0065-308X(05)62004-0; Bennett PM, 1997, P ROY SOC B-BIOL SCI, V264, P401, DOI 10.1098/rspb.1997.0057; Blackburn TM, 2011, TRENDS ECOL EVOL, V26, P333, DOI 10.1016/j.tree.2011.03.023; Blackburn TM, 2009, GLOBAL CHANGE BIOL, V15, P2852, DOI 10.1111/j.1365-2486.2008.01841.x; Blackburn TM, 2009, ECOGRAPHY, V32, P83, DOI 10.1111/j.1600-0587.2008.05661.x; Blackburn TM, 2001, NATURE, V414, P195, DOI 10.1038/35102557; Bohm M, 2016, GLOBAL ECOL BIOGEOGR, V25, P391, DOI 10.1111/geb.12419; Bohm M, 2013, BIOL CONSERV, V157, P372, DOI 10.1016/j.biocon.2012.07.015; Bomford M, 2009, BIOL INVASIONS, V11, P713, DOI 10.1007/s10530-008-9285-3; Bradshaw CJA, 2008, J ECOL, V96, P869, DOI 10.1111/j.1365-2745.2008.01408.x; Cardillo M, 2004, PLOS BIOL, V2, P909, DOI 10.1371/journal.pbio.0020197; Cardillo M, 2003, ANIM CONSERV, V6, P63, DOI 10.1017/S1367943003003093; Cardillo M, 2008, P ROY SOC B-BIOL SCI, V275, P1441, DOI 10.1098/rspb.2008.0179; Cassey P, 2004, J BIOGEOGR, V31, P277, DOI 10.1046/j.0305-0270.2003.00979.x; Davies RG, 2006, P R SOC B, V273, P2127, DOI 10.1098/rspb.2006.3551; DAVIS MA, 2001, ESA B, V82, P206; Dormann CF, 2013, ECOGRAPHY, V36, P27, DOI 10.1111/j.1600-0587.2012.07348.x; Ducatez S, 2014, ECOSPHERE, V5, DOI 10.1890/ES14-00332.1; Ferreira RB, 2012, AMPHIBIA-REPTILIA, V33, P387, DOI 10.1163/15685381-00002841; Fisher DO, 2004, TRENDS ECOL EVOL, V19, P391, DOI 10.1016/j.tree.2004.05.004.; Gabry J., 2015, SHINYSTAN INTERACTIV; Garcia-Diaz P., 2014, Diversity and Distributions, V20, P455; Garcia-Diaz P, 2015, GLOBAL CHANGE BIOL, V21, P1078, DOI 10.1111/gcb.12790; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Holland TG, 2009, CONSERV BIOL, V23, P1304, DOI 10.1111/j.1523-1739.2009.01207.x; Jeschke JM, 2008, ECOGRAPHY, V31, P124, DOI 10.1111/j.2007.0906-7590.05343.x; Jeschke JM, 2006, GLOBAL CHANGE BIOL, V12, P1608, DOI 10.1111/j.1365-2486.2006.01213.x; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; Kraus F., 2009, ALIEN REPTILES AMPHI; Larson ER, 2010, CONSERV BIOL, V24, P1099, DOI 10.1111/j.1523-1739.2010.01462.x; Lester PJ, 2005, DIVERS DISTRIB, V11, P279, DOI 10.1111/j.1366-9516.2005.00169.x; Liu X, 2014, ECOL LETT, V17, P821, DOI 10.1111/ele.12286; Mahoney PJ, 2015, DIVERS DISTRIB, V21, P64, DOI 10.1111/ddi.12240; Murray KA, 2014, GLOBAL CHANGE BIOL, V20, P483, DOI 10.1111/gcb.12366; Murray KA, 2011, P ROY SOC B-BIOL SCI, V278, P1515, DOI 10.1098/rspb.2010.1872; Myhrvold N. P., 2015, ECOLOGY, V96, P3109, DOI DOI 10.1890/15-0846R.1; Nordhaus WD, 2006, P NATL ACAD SCI USA, V103, P3510, DOI 10.1073/pnas.0509842103; Owens IPF, 2000, P NATL ACAD SCI USA, V97, P12144, DOI 10.1073/pnas.200223397; Pandit MK, 2011, J ECOL, V99, P1108, DOI 10.1111/j.1365-2745.2011.01838.x; PIMM SL, 1988, AM NAT, V132, P757, DOI 10.1086/284889; Poessel SA, 2013, GLOBAL ECOL BIOGEOGR, V22, P192, DOI 10.1111/j.1466-8238.2012.00797.x; Pyek P, 2010, P NATL ACAD SCI USA, V107, P12157; R Development Core Team, 2015, R LANG ENV STAT COMP; Robinson JE, 2015, BIOL CONSERV, V184, P42, DOI 10.1016/j.biocon.2014.12.019; Romagosa CM, 2009, CONSERV BIOL, V23, P1001, DOI 10.1111/j.1523-1739.2009.01194.x; Ruesink JL, 2005, CONSERV BIOL, V19, P1883, DOI 10.1111/j.1523-1739.2005.00289.x; Schmidt JP, 2012, ECOL APPL, V22, P1512; Sodhi NS, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001636; Stan Development Team, 2015, STAN C LIB PROB SAMP; Su YS, 2011, J STAT SOFTW, V45, P1; Tingley R, 2013, BIOL CONSERV, V165, P62, DOI 10.1016/j.biocon.2013.05.028; Tingley R, 2010, GLOBAL ECOL BIOGEOGR, V19, P496, DOI 10.1111/j.1466-8238.2010.00530.x; UETZ P, 2008, TIGR REPTILE DATABAS; Vamosi JC, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003886 56 5 5 1 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1466-822X 1466-8238 GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. SEP 2016 25 9 1050 1060 10.1111/geb.12462 11 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography DW3AV WOS:000383515300002 2019-02-21 J Sarangi, M; Nagarajan, A; Dey, S; Bose, J; Joshi, A Sarangi, Manaswini; Nagarajan, Archana; Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate JOURNAL OF GENETICS English Article life-history evolution; experimental evolution; development time; dry weight; competition; K-selection DEPENDENT NATURAL-SELECTION; ADAPTIVE EVOLUTION; FASTER DEVELOPMENT; FORAGING BEHAVIOR; PUPATION HEIGHT; K-SELECTION; TRADE-OFF; POPULATIONS; ADAPTATION; RESISTANCE Multiple experimental evolution studies on Drosophila melanogaster in the 1980s and 1990s indicated that enhanced competitive ability evolved primarily through increased larval tolerance to nitrogenous wastes and increased larval feeding and foraging rate, at the cost of efficiency of food conversion to biomass, and this became the widely accepted view of how adaptation to larval crowding evolves in fruitflies. We recently showed that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolved greater competitive ability without evolving higher feeding rates, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater efficiency of food conversion to biomass, increased pupation height and, perhaps, greater urea/ammonia tolerance. This was a very different suite of traits than that seen to evolve under similar selection in D. melanogaster and was closer to the expectations from the theory of K-selection. At that time, we suggested two possible reasons for the differences in the phenotypic correlates of greater competitive ability seen in the studies with D. melanogaster and the other two species. First, that D. ananassae and D. n. nasuta had a very different genetic architecture of traits affecting competitive ability compared to the long-term laboratory populations of D. melanogaster used in the earlier studies, either because the populations of the former two species were relatively recently wild-caught, or by virtue of being different species. Second, that the different evolutionary trajectories in D. ananassae and D. n. nasuta versus D. melanogaster were a reflection of differences in the manner in which larval crowding was imposed in the two sets of selection experiments. The D. melanogaster studies used a higher absolute density of eggs per unit volume of food, and a substantially larger total volume of food, than the studies on D. ananassae and D. n. nasuta. Here, we show that long-term laboratory populations of D. melanogaster, descended from some of the populations used in the earlier studies, evolve essentially the same set of traits as the D. ananassae and D. n. nasuta crowding-adapted populations when subjected to a similar larval density at low absolute volumes of food. As in the case of D. ananassae and D. n. nasuta, and in stark contrast to earlier studies with D. melanogaster, these crowding-adapted populations of D. melanogaster did not evolve greater larval feeding rates as a correlate of increased competitive ability. The present results clearly suggest that the suite of phenotypes through which the evolution of greater competitive ability is achieved in fruitflies depends critically not just on larval density per unit volume of food, but also on the total amount of food available in the culture vials. We discuss these results in the context of an hypothesis about how larval density and the height of the food column in culture vials might interact to alter the fitness costs and benefits of increased larval feeding rates, thus resulting in different routes to the evolution of greater competitive ability, depending on the details of exactly how the larval crowding was implemented. [Sarangi, Manaswini; Nagarajan, Archana; Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh] Jawaharlal Nehru Ctr Adv Sci Res, Evolutionary & Organismal Biol Unit, Evolutionary Biol Lab, Jakkur PO, Bengaluru 560064, India; [Nagarajan, Archana] Univ Stavanger, Fac Sci & Technol, Ctr Organelle Res CORE, N-4036 Stavanger, Norway; [Dey, Snigdhadip] Ecole Normale Super, Dept Biol, 46 Rue Ulm, F-75005 Paris, France Joshi, A (reprint author), Jawaharlal Nehru Ctr Adv Sci Res, Evolutionary & Organismal Biol Unit, Evolutionary Biol Lab, Jakkur PO, Bengaluru 560064, India. ajoshi@jncasr.ac.in Council of Scientific and Industrial Research, Government of India; Jawaharlal Nehru Centre for Advanced Scientific Research; Department of Science and Technology, Government of India; J. C. Bose National Fellowship We thank Larry Mueller for much helpful discussion, D. Ravi Teja, Avani Mital, N. Rajanna and M. Manjesh for help in the laboratory and N. G. Prasad for very helpful comments on early drafts of the manuscript. A. Nagarajan thanks the Council of Scientific and Industrial Research, Government of India, for financial assistance in the form of Junior and Senior Research Fellowships. S. Dey and M. Sarangi were supported by doctoral fellowships from the Jawaharlal Nehru Centre for Advanced Scientific Research. This work was supported by funds from the Department of Science and Technology, Government of India, to A. Joshi. The preparation of the manuscript was supported in part by a J. C. Bose National Fellowship to A. Joshi. ANDERSON WW, 1983, AM NAT, V121, P649, DOI 10.1086/284092; Archana N, 2010, THESIS; ASMUSSEN MA, 1983, GENETICS, V103, P335; Borash DJ, 2000, J EVOLUTION BIOL, V13, P181, DOI 10.1046/j.1420-9101.2000.00167.x; Borash DJ, 2001, J INSECT PHYSIOL, V47, P1349, DOI 10.1016/S0022-1910(01)00108-1; Borash DJ, 1998, AM NAT, V151, P148, DOI 10.1086/286108; BURNET B, 1977, GENET RES, V30, P149, DOI 10.1017/S0016672300017559; CLARKE B, 1972, AM NAT, V106, P1, DOI 10.1086/282747; Dey S, 2012, ECOL EVOL, V2, P941, DOI 10.1002/ece3.227; Fellowes MDE, 1998, P ROY SOC B-BIOL SCI, V265, P1553, DOI 10.1098/rspb.1998.0471; Fellowes MDE, 1999, EVOLUTION, V53, P1302, DOI 10.1111/j.1558-5646.1999.tb04544.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; JOSHI A, 1993, EVOLUTION, V47, P176, DOI 10.1111/j.1558-5646.1993.tb01208.x; Joshi A, 2003, J GENET, V82, P147, DOI 10.1007/BF02715815; Joshi A, 1996, EVOL ECOL, V10, P463, DOI 10.1007/BF01237879; JOSHI A, 1988, EVOLUTION, V42, P1090, DOI 10.1111/j.1558-5646.1988.tb02527.x; Joshi A, 2001, J GENET, V80, P63, DOI 10.1007/BF02728332; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; Mueller LD, 2015, GENETICA, V143, P93, DOI 10.1007/s10709-015-9818-5; Mueller LD, 2012, EVOLUTION, V66, P263, DOI 10.1111/j.1558-5646.2011.01427.x; Mueller LD, 2009, EXPERIMENTAL EVOLUTION: CONCEPTS, METHODS, AND APPLICATIONS OF SELECTION EXPERIMENTS, P197; Mueller LD, 1997, ANNU REV ECOL SYST, V28, P269, DOI 10.1146/annurev.ecolsys.28.1.269; Mueller LD, 2005, PHYSIOL ENTOMOL, V30, P262, DOI 10.1111/j.1365-3032.2005.00458.x; MUELLER LD, 1988, P NATL ACAD SCI USA, V85, P4383, DOI 10.1073/pnas.85.12.4383; MUELLER LD, 1990, EVOL ECOL, V4, P290, DOI 10.1007/BF02270928; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MUELLER LD, 1986, EVOLUTION, V40, P1354, DOI 10.1111/j.1558-5646.1986.tb05761.x; MUELLER LD, 1993, FUNCT ECOL, V7, P469, DOI 10.2307/2390034; Nagarajan A., 2016, J GENET IN PRESS; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Prasad NG, 2003, J GENET, V82, P45, DOI 10.1007/BF02715881; Prasad NG, 2001, EVOLUTION, V55, P1363; Rajamani M, 2006, J GENET, V85, P209, DOI 10.1007/BF02935333; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROUGHGARDEN J, 1971, ECOLOGY, V52, P453, DOI 10.2307/1937628; Sarangi M., 2013, THESIS; Shakarad M, 2005, BIOL LETTERS, V1, P91, DOI 10.1098/2004.0261; Sheeba V, 1998, J BIOSCIENCE, V23, P93, DOI 10.1007/BF02703000; Sheeba V., 2002, THESIS; Shiotsugu J, 1997, EVOLUTION, V51, P163, DOI 10.1111/j.1558-5646.1997.tb02397.x; Sokolowski MB, 1997, P NATL ACAD SCI USA, V94, P7373, DOI 10.1073/pnas.94.14.7373; StatSoft Inc., 1995, STAT, VI 44 4 4 0 7 INDIAN ACAD SCIENCES BANGALORE C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA 0022-1333 0973-7731 J GENET J. Genet. SEP 2016 95 3 491 503 10.1007/s12041-016-0656-8 13 Genetics & Heredity Genetics & Heredity DW7YD WOS:000383868600003 27659320 2019-02-21 J Urvik, J; Meitern, R; Rattiste, K; Saks, L; Horak, P; Sepp, T Urvik, Janek; Meitern, Richard; Rattiste, Kalev; Saks, Lauri; Horak, Peeter; Sepp, Tuul Variation in the Markers of Nutritional and Oxidative State in a Long-Lived Seabird: Associations with Age and Longevity PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article aging; glutathione; mortality; triglycerides; oxidative stress; nutrition; repeatability DEPENDENT SEXUAL SIGNALS; LIFE-HISTORY EVOLUTION; LIPID-PEROXIDATION; REPRODUCTIVE EFFORT; TRADE-OFFS; PLASMA BIOCHEMISTRY; ENERGY-EXPENDITURE; WILD BIRD; URIC-ACID; BODY-MASS Age-related declines in life-history traits have been widely observed in free-living animals. Several theories link senescence to oxidative stress. The aim of this study was to measure several widely used markers of oxidative and nutritional state in a long-lived seabird, the common gull (Larus canus), in order to assess the suitability of these markers for describing deterioration in physiological condition associated with chronological age and survival. Associations with longevity and individual consistency of these parameters over the years (repeatability) were also assessed. Senescence in fitness parameters was observed during the study period: in females, laying date and clutch mass were related to bird age in a curvilinear manner, with middle-aged birds breeding earlier and laying heavier eggs. The only parameter associated with aging processes was glutathione concentration in erythrocytes, which was lower in female birds with longer life spans. Of indexes of nutritional state, plasma triglyceride concentration showed a between-individual increase with age, suggesting selective mortality of birds with low levels. Additionally, total plasma protein levels of individual males increased with age. The mostly negative results of this study hint that the commonly used parameters of physiological condition and oxidative state used in this study do not adequately reflect an individual's long-term health condition. Alternatively, it is possible that in common gulls, senescence occurs in reproductive mechanisms but not in mechanisms responsible for maintaining an organism's redox balance, consistent with the idea that different aspects of an organism's physiological condition age at different rates. Significant interannual repeatability was detected in three plasma constituents-carotenoids, uric acid, and total protein-all of which can possibly be linked to variation in dietary habits. [Urvik, Janek; Meitern, Richard; Horak, Peeter; Sepp, Tuul] Univ Tartu, Dept Zool, Vanemuise 46, EE-51014 Tartu, Estonia; [Rattiste, Kalev] Estonian Univ Life Sci, Inst Environm & Life Sci, Dept Zool, Kreutzwaldi 1, EE-51014 Tartu, Estonia; [Saks, Lauri] Univ Tartu, Estonian Marine Inst, Vanemuise 46a, EE-51014 Tartu, Estonia Sepp, T (reprint author), Univ Tartu, Dept Zool, Vanemuise 46, EE-51014 Tartu, Estonia. tuul.sepp@ut.ee Estonian Ministry of Education and Research [IUT21-1, IUT34-8]; Estonian state-financed projects [ETF7190, SF0180005s10]; European Union through the European Regional Development Fund (Centre of Excellence Frontiers in Biodiversity Research); European Union [701747] We thank Ulvi Karu and Marju Manniste for their help in the field. Two anonymous reviewers provided constructive criticism of the manuscript. Robert B. Davis kindly edited the language. The study was financed by the Estonian Ministry of Education and Research (grants IUT21-1, IUT34-8), by Estonian state-financed projects ETF7190 and SF0180005s10, and by the European Union through the European Regional Development Fund (Centre of Excellence Frontiers in Biodiversity Research) and European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement 701747. The publication reflects only the authors' views; the Research Executive Agency is not responsible for any use that may be made of the information it contains. Romero-Haro AA, 2014, PHYSIOL BIOCHEM ZOOL, V87, P353, DOI 10.1086/674432; Balbontin J, 2012, BIOL J LINN SOC, V105, P420, DOI 10.1111/j.1095-8312.2011.01800.x; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179; Brommer JE, 2010, HEREDITY, V104, P363, DOI 10.1038/hdy.2009.125; Brommer JE, 2008, EVOLUTION, V62, P2326, DOI 10.1111/j.1558-5646.2008.00451.x; Noguera JC, 2012, BIOL LETTERS, V8, P61, DOI 10.1098/rsbl.2011.0756; Comfort Alex, 1956, BIOL SENESCENCE; Cornelius JM, 2011, J EXP BIOL, V214, P2768, DOI 10.1242/jeb.057174; Costantini D, 2010, FUNCT ECOL, V24, P950, DOI 10.1111/j.1365-2435.2010.01746.x; Cyr NE, 2008, PHYSIOL BIOCHEM ZOOL, V81, P452, DOI 10.1086/589547; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Elliott KH, 2014, J ANIM ECOL, V83, P136, DOI 10.1111/1365-2656.12126; Erel O, 2004, CLIN BIOCHEM, V37, P277, DOI [10.1016/j.clinbiochem.2003.11.015, 10.1016/j.clinbiochem.2003.11.1015]; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; Fletcher QE, 2015, EXP GERONTOL, V71, P1, DOI 10.1016/j.exger.2015.09.015; Galvan I, 2015, EVOLUTION, V69, P2776, DOI 10.1111/evo.12754; Galvan I, 2012, PHYSIOL BIOCHEM ZOOL, V85, P332, DOI 10.1086/666606; Galvan I, 2009, FUNCT ECOL, V23, P302, DOI 10.1111/j.1365-2435.2008.01504.x; Galvan I, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003335; Garratt M, 2012, P ROY SOC B-BIOL SCI, V279, P3121, DOI 10.1098/rspb.2012.0568; Gaston AJ, 2006, J AVIAN BIOL, V37, P101; Gladbach A, 2010, COMP BIOCHEM PHYS A, V156, P269, DOI 10.1016/j.cbpa.2010.02.012; Guillemette M, 2007, ECOLOGY, V88, P2936, DOI 10.1890/06-1751.1; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Harr KE, 2002, VET CLIN PATH, V31, P140, DOI 10.1111/j.1939-165X.2002.tb00295.x; Hartman S, 2006, POULTRY SCI, V85, P1791; Hatch MI, 2010, J FIELD ORNITHOL, V81, P64, DOI 10.1111/j.1557-9263.2009.00261.x; Hayflick L, 2000, NATURE, V408, P267, DOI 10.1038/35041709; Herborn KA, 2016, FUNCT ECOL, V30, P913, DOI 10.1111/1365-2435.12578; Hill GE, 2012, AM NAT, V180, pE127, DOI 10.1086/667861; Horak P, 2004, J ANIM ECOL, V73, P935, DOI 10.1111/j.0021-8790.2004.00870.x; Horak P, 2002, CAN J ZOOL, V80, P636, DOI 10.1139/Z02-038; Horak P, 2007, AM NAT, V170, P625, DOI 10.1086/521232; Horak P, 2010, FUNCT ECOL, V24, P960, DOI 10.1111/j.1365-2435.2010.01755.x; Horak P, 2010, J EXP BIOL, V213, P2225, DOI 10.1242/jeb.042085; Ibanez AE, 2015, WATERBIRDS, V38, P153, DOI 10.1675/063.038.0204; Jenni-Eiermann Susanne, 1999, Biologia e Conservazione della Fauna, V102, P312; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Losdat S, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.0888; Marko G, 2011, J COMP PHYSIOL B, V181, P73, DOI 10.1007/s00360-010-0502-x; McGraw KJ, 2010, FUNCT ECOL, V24, P947, DOI 10.1111/j.1365-2435.2010.01772.x; Medawar P, 1952, UNSOLVED PROBLEM BIO; Meitern R, 2013, J EXP BIOL, V216, P2713, DOI 10.1242/jeb.087528; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Niki E, 2009, FREE RADICAL BIO MED, V47, P469, DOI 10.1016/j.freeradbiomed.2009.05.032; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; Paredes SD, 2009, AGE, V31, P179, DOI 10.1007/s11357-009-9107-2; Perez-Rodriguez L, 2015, PHYSIOL BIOCHEM ZOOL, V88, P345, DOI 10.1086/680688; R Development Core Team, 2015, R LANG ENV STAT COMP; Rahman I, 2006, NAT PROTOC, V1, P3159, DOI 10.1038/nprot.2006.378; Rajman M, 2006, COMP BIOCHEM PHYS A, V145, P363, DOI 10.1016/j.cbpa.2006.07.004; Rattiste K, 2004, P ROY SOC B-BIOL SCI, V271, P2059, DOI 10.1098/rspb.2004.2832; Rattiste K., 1986, VAR FAGELVARLD S, V11, P179; Rattiste K, 2015, BIOGERONTOLOGY, V16, P435, DOI 10.1007/s10522-015-9564-1; Rodriguez AB, 1999, BIOCHEM PHARMACOL, V58, P1301, DOI 10.1016/S0006-2952(99)00207-5; Safran RJ, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009420; Saino N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019593; Salomons HM, 2009, P ROY SOC B-BIOL SCI, V276, P3157, DOI 10.1098/rspb.2009.0517; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sepp T, 2012, PHYSIOL BIOCHEM ZOOL, V85, P299, DOI 10.1086/664827; Sepp T, 2010, PHYSIOL BIOCHEM ZOOL, V83, P276, DOI 10.1086/648580; Sherratt TN, 2010, J ANIM ECOL, V79, P1034, DOI 10.1111/j.1365-2656.2010.01719.x; Sies H, 2007, ENCY STRESS, P45; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Speakman JR, 2001, BODY COMPOSITION ANA; Stier A, 2015, EXP GERONTOL, V71, P118, DOI 10.1016/j.exger.2015.09.001; Svensson PA, 2011, BEHAVIOUR, V148, P131, DOI 10.1163/000579510X548673; Therneau T. M., 2015, PACKAGE SURVIVAL ANA; Trzeciak AR, 2012, MUTAT RES-FUND MOL M, V736, P93, DOI 10.1016/j.mrfmmm.2012.01.002; Tsahar E, 2006, J COMP PHYSIOL B, V176, P653, DOI 10.1007/s00360-006-0088-5; Tummeleht L, 2006, COMP BIOCHEM PHYS C, V144, P166, DOI 10.1016/j.cbpc.2006.08.004; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1; Voss P, 2006, FREE RADICAL RES, V40, P1339, DOI 10.1080/10715760600953859; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; Xu YC, 2014, FUNCT ECOL, V28, P402, DOI 10.1111/1365-2435.12168; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049 83 3 3 1 28 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. SEP-OCT 2016 89 5 417 440 10.1086/688180 24 Physiology; Zoology Physiology; Zoology DW7TS WOS:000383855600006 27617362 2019-02-21 J Pisapia, C; Anderson, KD; Pratchett, MS Pisapia, C.; Anderson, K. D.; Pratchett, M. S. Temporal consistency in background mortality of four dominant coral taxa along Australia's Great Barrier Reef CORAL REEFS English Article Disturbance; Resilience; Coral reefs; Partial mortality; Temporal variation; Long-term LIFE-HISTORY STRATEGIES; SCLERACTINIAN CORALS; ACROPORA-PALMATA; BUILDING CORALS; TREE MORTALITY; SIZE STRUCTURE; LESION SHAPE; REGENERATION; DISTURBANCE; COMMUNITY Studies on the population and community dynamics of scleractinian corals typically focus on catastrophic mortality associated with acute disturbances (e.g., coral bleaching and outbreaks of crown-of-thorns starfish), though corals are subject to high levels of background mortality and injuries caused by routine and chronic processes. This study quantified prevalence (proportion of colonies with injuries) and severity (areal extent of injuries on individual colonies) of background mortality and injuries for four common coral taxa (massive Porites, encrusting Montipora, Acropora hyacinthus and branching Pocillopora) on the Great Barrier Reef, Australia. Sampling was conducted over three consecutive years during which there were no major acute disturbances. A total of 2276 adult colonies were surveyed across 27 sites, within nine reefs and three distinct latitudinal sectors. The prevalence of injuries was very high (> 83%) across all four taxa, but highest for Porites (91%) and Montipora (85%). For these taxa (Montipora and Pocillopora), there was also significant temporal and spatial variation in prevalence of partial mortality. The severity of injuries ranged from 3% to more than 80% and varied among coral taxa, but was fairly constant spatially and temporally. This shows that some injuries have considerable longevity and that corals may invest relatively little in regenerating tissue over sites of previous injuries. Inter-colony variation in the severity of injury also had no apparent effect on the realized growth of individual colonies, suggesting that energy diverted to regeneration has a limited bearing on overall energetic allocation, or impacts on other life-history processes (e.g., reproduction) rather than growth. Establishing background levels of injury and regeneration is important for understanding energy investment and life-history consequences for reef-building corals as well as for predicting susceptibility to, and capacity to recover from, acute disturbances. [Pisapia, C.; Anderson, K. D.; Pratchett, M. S.] James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia; [Pisapia, C.] James Cook Univ, Sch Marine Biol, Australian Inst Marine Sci, Townsville, Qld, Australia Pisapia, C (reprint author), James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia.; Pisapia, C (reprint author), James Cook Univ, Sch Marine Biol, Australian Inst Marine Sci, Townsville, Qld, Australia. chiara.pisapia@my.jcu.edu.au Anderson, Kristen/0000-0002-1576-6979 ARC Centre of Excellence of Coral Reef Studies; AIMS@JCU; Graduate Research Scheme award; Great Barrier Reef Marine Park Authority Science for Management award This study was funded by the ARC Centre of Excellence of Coral Reef Studies, AIMS@JCU, a Graduate Research Scheme award and a Great Barrier Reef Marine Park Authority Science for Management award. The authors are indebted to V. Messmer for comments on the manuscript and to M. Trapon, J. Casey, A. Hoey, D. Coker, D. Schmid-Lieberg, S. Katz for assistance in the field, the staff at Lizard Island, Orpheus Island and Heron Island Research Stations, and the RV Kirby for field and logistical support. Adjeroud M, 2007, HYDROBIOLOGIA, V589, P117, DOI 10.1007/s10750-007-0726-2; ANDRES NG, 1995, MAR ECOL PROG SER, V118, P305, DOI 10.3354/meps118305; Anthony KRN, 2009, FUNCT ECOL, V23, P539, DOI 10.1111/j.1365-2435.2008.01531.x; Bachok Z, 2006, CORAL REEFS, V25, P545, DOI 10.1007/s00338-006-0130-9; Baird AH, 2002, MAR ECOL PROG SER, V237, P133, DOI 10.3354/meps237133; BAK RPM, 1983, MAR BIOL, V77, P221, DOI 10.1007/BF00395810; BAK RPM, 1979, MAR BIOL, V54, P341, DOI 10.1007/BF00395440; BAK RPM, 1980, B MAR SCI, V30, P883; BAZZAZ FA, 1987, BIOSCIENCE, V37, P58, DOI 10.2307/1310178; Bruckner AW, 2012, REV BIOL TROP, V60, P39; Bruckner AW, 2009, DIS AQUAT ORGAN, V87, P19, DOI 10.3354/dao02120; BYTHELL JC, 1993, CORAL REEFS, V12, P143, DOI 10.1007/BF00334474; Cole AJ, 2011, MAR ECOL PROG SER, V422, P155, DOI 10.3354/meps08917; Connell JH, 1997, CORAL REEFS, V16, pS101, DOI 10.1007/s003380050246; Connell JH, 1997, ECOL MONOGR, V67, P461, DOI 10.1890/0012-9615(1997)067[0461:AYSOCA]2.0.CO;2; Cumming RL, 2002, MAR ECOL PROG SER, V242, P131, DOI 10.3354/meps242131; Darling ES, 2012, ECOL LETT, V15, P1378, DOI 10.1111/j.1461-0248.2012.01861.x; De'ath G, 2012, P NATL ACAD SCI USA, V109, P17995, DOI 10.1073/pnas.1208909109; De'ath G, 2009, SCIENCE, V323, P116, DOI 10.1126/science.1165283; Denis V, 2011, MAR ECOL PROG SER, V428, P105, DOI 10.3354/meps09060; DONE TJ, 1988, MAR BIOL, V100, P51, DOI 10.1007/BF00392954; Fine M, 2002, MAR ECOL PROG SER, V234, P119, DOI 10.3354/meps234119; Fung T, 2011, ECOLOGY, V92, P967, DOI 10.1890/10-0378.1; GUZMAN HM, 1994, MAR ECOL PROG SER, V105, P231, DOI 10.3354/meps105231; Habeeb RL, 2007, ECOL APPL, V17, P641, DOI 10.1890/06-0348; Hall VR, 2001, J EXP MAR BIOL ECOL, V264, P209, DOI 10.1016/S0022-0981(01)00318-5; Hall VR, 1997, J EXP MAR BIOL ECOL, V212, P9, DOI 10.1016/S0022-0981(96)02760-8; Hall VR, 1998, THESIS; Henry LA, 2005, INT REV HYDROBIOL, V90, P125, DOI 10.1002/iroh.200410759; Hughes TP, 1999, NATURE, V397, P59, DOI 10.1038/16237; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; HUGHES TP, 1987, AM NAT, V129, P818, DOI 10.1086/284677; Johnson CR, 1992, P 7 INT COR REEF S, V1, P606; Kramer Philip A., 2003, Atoll Research Bulletin, V496, P1; LANG J, 1973, B MAR SCI, V23, P260; Langmead O, 2004, ECOL MODEL, V175, P271, DOI 10.1016/j.ecolmodel.2003.10.019; Lenihan HS, 2011, ECOLOGY, V92, P1959, DOI 10.1890/11-0108.1; LIDDLE MJ, 1991, TRENDS ECOL EVOL, V6, P13, DOI 10.1016/0169-5347(91)90141-J; LIDDLE MJ, 1987, BIOL CONSERV, V42, P1, DOI 10.1016/0006-3207(87)90049-8; Lirman D, 2014, ECOL INDIC, V44, P120, DOI 10.1016/j.ecolind.2013.10.021; Lirman D, 2000, MAR ECOL PROG SER, V197, P209, DOI 10.3354/meps197209; LOYA Y, 1976, NATURE, V261, P490, DOI 10.1038/261490a0; Lugo AE, 1996, BIOTROPICA, V28, P585, DOI 10.2307/2389099; Madin JS, 2014, ECOL LETT, V17, P1008, DOI 10.1111/ele.12306; MEESTERS EH, 1994, MAR ECOL PROG SER, V112, P119, DOI 10.3354/meps112119; MEESTERS EH, 1993, MAR ECOL PROG SER, V96, P189, DOI 10.3354/meps096189; Meesters EH, 1997, MAR ECOL PROG SER, V146, P91, DOI 10.3354/meps146091; Meesters EH, 1996, B MAR SCI, V58, P838; Meesters EH, 1992, P 7 INT COR REEF S, V2, P681; Nugues MM, 2003, MAR POLLUT BULL, V46, P314, DOI 10.1016/S0025-326X(02)00402-2; Oren U, 1997, MAR ECOL PROG SER, V146, P101, DOI 10.3354/meps146101; Pisapia C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100969; Pratchett MS, 2013, MAR ENVIRON RES, V86, P29, DOI 10.1016/j.marenvres.2013.02.007; Rinkevich B., 1989, ENV QUALITY ECOSYSTE, V4, P257; Rotjan RD, 2008, MAR ECOL PROG SER, V367, P73, DOI 10.3354/meps07531; SCATENA FN, 1995, GEOMORPHOLOGY, V13, P199, DOI 10.1016/0169-555X(95)00021-V; Sweatman H, 2011, CORAL REEFS, V30, P521, DOI 10.1007/s00338-010-0715-1; Trapon ML, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057788; van Mantgem PJ, 2009, SCIENCE, V323, P521, DOI 10.1126/science.1165000; Warton DI, 2011, ECOLOGY, V92, P3, DOI 10.1890/10-0340.1; White P. S., 1985, ECOLOGY NATURAL DIST, P3; Williams DE, 2012, CORAL REEFS, V31, P369, DOI 10.1007/s00338-011-0847-y; YAP HT, 1992, MAR ECOL PROG SER, V83, P91, DOI 10.3354/meps083091 63 2 2 1 107 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4028 1432-0975 CORAL REEFS Coral Reefs SEP 2016 35 3 839 849 10.1007/s00338-016-1421-4 11 Marine & Freshwater Biology Marine & Freshwater Biology DU2CU WOS:000382019400009 2019-02-21 J Viladrich, N; Bramanti, L; Tsounis, G; Chocarro, B; Martinez-Quitana, A; Ambroso, S; Madurell, T; Rossi, S Viladrich, Nuria; Bramanti, Lorenzo; Tsounis, Georgios; Chocarro, Blanca; Martinez-Quitana, Angela; Ambroso, Stefano; Madurell, Teresa; Rossi, Sergio Variation in lipid and free fatty acid content during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder CORAL REEFS English Article Energy investment; Free fatty acids; Lipids; Corallium rubrum; Paramuricea clavata GORGONIAN PARAMURICEA-CLAVATA; BENTHIC SUSPENSION FEEDERS; CORALLIUM-RUBRUM L.; PARTICULATE ORGANIC-MATTER; REEF-BUILDING CORALS; LIFE-HISTORY TRAITS; RED CORAL; GONADAL DEVELOPMENT; BIOCHEMICAL-COMPOSITION; POCILLOPORA-DAMICORNIS This study investigates the energetic investment during spawning of two Mediterranean gorgonians characterized by different reproductive strategies: Corallium rubrum (internal brooder) and Paramuricea clavata (surface brooder). Sexual products (number of oocytes and spermatic sacs) were quantified, and biochemical characteristics (lipid content and free fatty acid content and composition) were determined to investigate the parental energetic investment and demand in reproduction. Results suggested that the majority of the energetic cost was due to reproductive activity (i.e., gametogenesis and spawning). The two species exhibited different life history strategies, with P. clavata investing more energy in reproduction than C. rubrum. However, P. clavata is reproductively more sensitive to inter-annual changes in environmental conditions. [Viladrich, Nuria; Chocarro, Blanca; Rossi, Sergio] Univ Autonoma Barcelona, Inst Ciencia & Tecnol Ambientals, Edifici Z Campus UAB, Cerdanyola Del Valles 08193, Spain; [Bramanti, Lorenzo] Univ Paris 06, Sorbonne Univ, CNRS, Lab Ecogeochim Environm Benth LECOB,Observ Oceano, F-66650 Banyuls Sur Mer, France; [Bramanti, Lorenzo] Calif State Univ Northridge, Dept Biol, 18111 Nordhoff St, Northridge, CA 91330 USA; [Tsounis, Georgios; Martinez-Quitana, Angela; Ambroso, Stefano; Madurell, Teresa] CSIC, Inst Ciencies Mar, Passeig Maritim Barceloneta 37-49, E-08003 Barcelona, Spain Viladrich, N (reprint author), Univ Autonoma Barcelona, Inst Ciencia & Tecnol Ambientals, Edifici Z Campus UAB, Cerdanyola Del Valles 08193, Spain. viladrich.nuria@gmail.com Bramanti, Lorenzo/0000-0002-4872-840X; Viladrich, Nuria/0000-0001-8456-4812; Rossi, Sergio/0000-0003-4402-3418 FI AGAUR research grant [FI-2010-03824]; Ramon y Cajal contract [RyC-2007-01327]; Marie Curie International Outgoing Fellowship (Animal Forest Health) [327845]; BENTOLARV project [CTM2009-10007]; Generalitat de Catalunya [2014 SGR-1356] The authors wish to thank N. Moraleda for laboratory work and A. Sandu for help with English. N. Viladrich was funded by a FI AGAUR research grant (FI-2010-03824), S. Rossi by a Ramon y Cajal contract (RyC-2007-01327) and a Marie Curie International Outgoing Fellowship (Animal Forest Health, Grant Agreement Number 327845). This work was supported by the BENTOLARV project (CTM2009-10007). The authors want to thank the support of the Generalitat de Catalunya to MERS (2014 SGR-1356). Al-Lihaibi SS, 1998, OCEANOL ACTA, V21, P495, DOI 10.1016/S0399-1784(98)80033-9; Allemand D, 2011, CORAL REEFS: AN ECOSYSTEM IN TRANSITION, P119, DOI 10.1007/978-94-007-0114-4_9; ARAI T, 1993, CORAL REEFS, V12, P71; Ballesteros E, 2006, OCEANOGR MAR BIOL, V44, P123; Baptista M, 2012, COMP BIOCHEM PHYS B, V161, P178, DOI 10.1016/j.cbpb.2011.11.002; BARNES H, 1973, Journal of Experimental Marine Biology and Ecology, V12, P103, DOI 10.1016/0022-0981(73)90040-3; BAYNE BL, 1975, J MAR BIOL ASSOC UK, V55, P675, DOI 10.1017/S0025315400017343; Bramanti L, 2005, J EXP MAR BIOL ECOL, V314, P69, DOI 10.1016/j.jembe.2004.08.029; BREY T, 1995, MAR ECOL PROG SER, V125, P87, DOI 10.3354/meps125087; Cantin NE, 2007, MAR ECOL PROG SER, V344, P81, DOI 10.3354/meps07059; Cerrano C, 2000, ECOL LETT, V3, P284, DOI 10.1046/j.1461-0248.2000.00152.x; Chambers J. M., 1992, STAT MODELS S; Coma R, 1998, MAR ECOL PROG SER, V162, P89, DOI 10.3354/meps162089; Coma R, 2000, TRENDS ECOL EVOL, V15, P448, DOI 10.1016/S0169-5347(00)01970-4; Coma R, 2003, OIKOS, V101, P205, DOI 10.1034/j.1600-0706.2003.12028.x; COMA R, 1994, MAR ECOL PROG SER, V115, P257, DOI 10.3354/meps115257; COMA R, 1995, MAR ECOL PROG SER, V117, P173, DOI 10.3354/meps117173; Cupido R, 2012, MAR ECOL PROG SER, V469, P25, DOI 10.3354/meps09976; Dalsgaard J, 2003, ADV MAR BIOL, V46, P225, DOI 10.1016/S0065-2881(03)46005-7; Debreuil J, 2011, COMP BIOCHEM PHYS B, V159, P40, DOI 10.1016/j.cbpb.2011.01.007; Diaz-Almeyda E, 2011, CORAL REEFS, V30, P217, DOI 10.1007/s00338-010-0691-5; Doughty P, 1997, OECOLOGIA, V110, P508, DOI 10.1007/s004420050187; Fiorillo I, 2013, MAR BIOL, V160, P719, DOI 10.1007/s00227-012-2126-z; Garrabou J, 2002, J ANIM ECOL, V71, P966, DOI 10.1046/j.1365-2656.2002.00661.x; Garrabou J, 2009, GLOBAL CHANGE BIOL, V15, P1090, DOI 10.1111/j.1365-2486.2008.01823.x; Giese AC, 1959, S PHOT PLANTS AN GAT; GIESEL JT, 1976, ANNU REV ECOL SYST, V7, P57, DOI 10.1146/annurev.es.07.110176.000421; Gili JM, 1998, TRENDS ECOL EVOL, V13, P316, DOI 10.1016/S0169-5347(98)01365-2; Gori A, 2012, CORAL REEFS, V31, P823, DOI 10.1007/s00338-012-0904-1; Gori A, 2013, J EXP MAR BIOL ECOL, V444, P38, DOI 10.1016/j.jembe.2013.03.009; Gremare A, 1997, MAR ECOL PROG SER, V150, P195, DOI 10.3354/meps150195; Grottoli AG, 2004, MAR BIOL, V145, P621, DOI 10.1007/s00227-004-1337-3; GURR MI, 2002, LIPID BIOCH; Gutierrez-Rodriguez C, 2004, MOL ECOL, V13, P2211, DOI 10.1111/j.1365-294X.2004.02247.x; Hall JM, 2000, SEAFOOD HLTH NUTR, P435; Harii S, 2002, MAR BIOL, V141, P39, DOI 10.1007/s00227-002-0812-y; HARMS J, 1992, J EXP MAR BIOL ECOL, V156, P151, DOI 10.1016/0022-0981(92)90242-3; Imbs AB, 2008, RUSS J MAR BIOL+, V34, P174, DOI 10.1134/S1063074008030061; Imbs AB, 2013, RUSS J MAR BIOL+, V39, P153, DOI 10.1134/S1063074013030061; Imbs AB, 2015, LIPIDS, V50, P575, DOI 10.1007/s11745-015-4021-0; Imbs AB, 2010, MAR ECOL PROG SER, V409, P65, DOI 10.3354/meps08622; JABLONSKI D, 1983, BIOL REV, V58, P21, DOI 10.1111/j.1469-185X.1983.tb00380.x; Kahng SE, 2011, MAR ECOL PROG SER, V443, P265, DOI 10.3354/meps09414; LAWRENCE JM, 1994, ECHINODERMS THROUGH TIME, P39; Lehninger A. L., 1982, PRINCIPLES BIOCH; Lenz EA, 2015, CORAL REEFS, V34, P1099, DOI 10.1007/s00338-015-1315-x; Leuzinger S, 2003, OECOLOGIA, V136, P524, DOI 10.1007/s00442-003-1305-5; MACGINITIE GE, 1949, NATURAL HIST MARINE; MEIJER L, 1984, DEV BIOL, V106, P368, DOI 10.1016/0012-1606(84)90235-5; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Muller-Navarra DC, 2000, NATURE, V403, P74, DOI 10.1038/47469; Oksanen J, 2005, VEGAN COMMUNITY ECOL; Orejas C, 2002, MAR ECOL PROG SER, V231, P101, DOI 10.3354/meps231101; PECHENIK JA, 1990, OPHELIA, V32, P63, DOI 10.1080/00785236.1990.10422025; Perez MJ, 2007, COMP BIOCHEM PHYS B, V146, P187, DOI 10.1016/j.cbpb.2006.10.097; Pernet V, 2002, J COMP PHYSIOL B, V172, P455, DOI 10.1007/s00360-002-0268-x; Previati M, 2010, J EXP MAR BIOL ECOL, V390, P39, DOI 10.1016/j.jembe.2010.04.025; QIAN PY, 1992, J EXP MAR BIOL ECOL, V157, P159, DOI 10.1016/0022-0981(92)90160-C; QIAN PY, 1991, J EXP MAR BIOL ECOL, V148, P11, DOI 10.1016/0022-0981(91)90143-K; R Development Core Team, 2008, R LANG ENV STAT COMP; Raymond JF, 2007, J EXP MAR BIOL ECOL, V341, P32, DOI 10.1016/j.jembe.2006.10.030; Ribes M, 1999, MAR ECOL PROG SER, V183, P125, DOI 10.3354/meps183125; Ribes M, 2007, INVERTEBR BIOL, V126, P307, DOI 10.1111/j.1744-7410.2007.00101.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Rossi S, 2004, MAR BIOL, V144, P89, DOI 10.1007/s00227-003-1168-7; Rossi S, 2003, ESTUAR COAST SHELF S, V58, P423, DOI 10.1016/S0272-7714(03)00108-2; Rossi S, 2007, MAR BIOL, V152, P429, DOI 10.1007/s00227-007-0702-4; Rossi S, 2006, MAR BIOL, V149, P643, DOI 10.1007/s00227-005-0229-5; Rossi S, 2013, OCEAN COAST MANAGE, V84, P77, DOI 10.1016/j.ocecoaman.2013.07.004; Rossi S, 2010, SCI MAR, V74, P633, DOI 10.3989/scimar.2010.74n4633; Rossi S, 2009, INVERTEBR REPROD DEV, V53, P175, DOI 10.1080/07924259.2009.9652304; Santangelo G, 2004, SCI MAR, V68, P199, DOI 10.3989/scimar.2004.68s1199; Santangelo G, 2015, HYDROBIOLOGIA, V759, P171, DOI 10.1007/s10750-015-2241-1; Sargent J, 1999, AQUACULTURE, V179, P217, DOI 10.1016/S0044-8486(99)00191-X; Sargent JR, 1988, MICROBES SEA, P119; Schols P, 2008, MACNIFICATION; Sebens KP, 1996, MAR BIOL, V127, P303, DOI 10.1007/BF00942116; Sebens KP, 1987, ANIMAL ENERGETICS, P55; SLATTERY M, 1995, MAR BIOL, V122, P461, DOI 10.1007/BF00350880; STANLEYSAMUELSON DW, 1987, BIOL BULL, V173, P92, DOI 10.2307/1541865; Stearns S, 1992, EVOLUTION LIFE HIST; STIMSON JS, 1987, B MAR SCI, V41, P889; STRATHMANN RR, 1977, AM NAT, V111, P373, DOI 10.1086/283168; Tsounis G, 2006, MAR BIOL, V149, P313, DOI 10.1007/s00227-005-0220-1; Tsounis G, 2006, MAR BIOL, V148, P513, DOI 10.1007/s00227-005-0100-8; Tsounis G, 2007, ECOSYSTEMS, V10, P975, DOI 10.1007/s10021-007-9072-5; Tsounis G, 2012, MAR ECOL PROG SER, V449, P161, DOI 10.3354/meps09521; TURON X, 1992, MAR ECOL PROG SER, V82, P235, DOI 10.3354/meps082235; VARVAS K, 1993, TETRAHEDRON LETT, V34, P3643, DOI 10.1016/S0040-4039(00)73658-6; VIGHI M, 1972, VIE MILIEU A BIOL MA, V23, P21; Viladrich N, 2015, MAR ECOL, V37, P46; Wacker A, 2001, ECOLOGY, V82, P2507, DOI 10.1890/0012-9658(2001)082[2507:PFAEFN]2.0.CO;2; WARD S, 1995, J EXP MAR BIOL ECOL, V187, P193, DOI 10.1016/0022-0981(94)00180-L; WEINHEIMER AJ, 1969, TETRAHEDRON LETT, P5185; Wild C, 2011, MAR FRESHWATER RES, V62, P205, DOI 10.1071/MF10254; Yamashiro H, 2005, FISHERIES SCI, V71, P448, DOI 10.1111/j.1444-2906.2005.00983.x; Yamashiro H, 2001, J EXP MAR BIOL ECOL, V265, P171, DOI 10.1016/S0022-0981(01)00333-1; YOUNG SD, 1971, COMP BIOCHEM PHYSIOL, V40, P945, DOI 10.1016/0305-0491(71)90040-X 98 6 7 7 21 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4028 1432-0975 CORAL REEFS Coral Reefs SEP 2016 35 3 1033 1045 10.1007/s00338-016-1440-1 13 Marine & Freshwater Biology Marine & Freshwater Biology DU2CU WOS:000382019400032 2019-02-21 J Spens, AE; Douhovnikoff, V Spens, Amy E.; Douhovnikoff, Vladimir Epigenetic variation within Phragmites australis among lineages, genotypes, and ramets BIOLOGICAL INVASIONS English Article Epigenetics; Plasticity; Phragmites australis; Clonal; MS-AFLP PHENOTYPIC PLASTICITY; HABITATS; PLANT Epigenetics is likely an important factor in morphological and physiological acclimation, phenotypic plasticity, and potentially ecological dynamics such as invasiveness. We propose that Phragmites australis is an ideal model species for studies of epigenetics as a factor in plant invasions and ecology due to natural clonal replication (controlling for genetic variation) and the co-occurrence of subspecies with distinct life history strategies such as differences in invasiveness. In earlier work, genotypes and constituent clonal ramets were identified using microsatellite markers. In this pilot study, we screened the same ramets for epigenetic variation with Methylation-Sensitive AFLPs (MS-AFLPs), a modified type of AFLP dependent on differentially methylation-sensitive restriction enzymes. We found a significant difference in epigenetic signatures between introduced and native subspecies, and found that introduced P. australis demonstrated more epigenetic variation than their native counterparts. In both subspecies we observed moderate variation between genotypes relative to the higher degree of epigenetic variation found within genotypes (among ramets), suggesting that epigenotype may be more closely aligned with microhabitat than within-subspecies genotype. Finally, we observed potential epigenetic variation by site. This is the first study to investigate natural variation in DNA methylation patterns of P. australis and establishes the baseline in our understanding of the ecological relevance of epigenetics in this species. [Spens, Amy E.; Douhovnikoff, Vladimir] Bowdoin Coll, Dept Biol, 3600 Coll Stn, Brunswick, ME 04011 USA Douhovnikoff, V (reprint author), Bowdoin Coll, Dept Biol, 3600 Coll Stn, Brunswick, ME 04011 USA. vlad@bowdoin.edu Alpert P, 2002, EVOL ECOL, V16, P285, DOI 10.1023/A:1019684612767; Bossdorf O, 2008, ECOL LETT, V11, P106, DOI 10.1111/j.1461-0248.2007.01130.x; Bossdorf O, 2010, EVOL ECOL, V24, P541, DOI 10.1007/s10682-010-9372-7; Chambers RM, 1999, AQUAT BOT, V64, P261, DOI 10.1016/S0304-3770(99)00055-8; Davidson AM, 2011, ECOL LETT, V14, P419, DOI 10.1111/j.1461-0248.2011.01596.x; Donohue K, 2014, EVOLUTION, V68, P617, DOI 10.1111/evo.12347; Douhovnikoff V, 2016, AOB PLANTS, V8, DOI 10.1093/aobpla/plw006; Douhovnikoff V, 2015, PLANT ECOL, V216, P227, DOI 10.1007/s11258-014-0430-z; Douhovnikoff V, 2014, AM J BOT, V101, P1577, DOI 10.3732/ajb.1400177; Gao LX, 2010, PLANT CELL ENVIRON, V33, P1820, DOI 10.1111/j.1365-3040.2010.02186.x; Herman JJ, 2014, EVOLUTION, V68, P632, DOI 10.1111/evo.12324; Herrera CM, 2011, MOL ECOL, V20, P1675, DOI 10.1111/j.1365-294X.2011.05026.x; Massicotte R, 2011, GENET RES INT, P1; Meyerson LA, 2016, BIOL INVASIONS, V18, P2421, DOI 10.1007/s10530-016-1132-3; Mozdzer TJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042794; Pal C, 1998, P ROY SOC B-BIOL SCI, V265, P1319, DOI 10.1098/rspb.1998.0436; Peakall R, 2012, BIOINFORMATICS, V28, P2537, DOI 10.1093/bioinformatics/bts460; Perez-Figueroa A, 2013, MOL ECOL RESOUR, V13, P522, DOI 10.1111/1755-0998.12064; Richards CL, 2006, ECOL LETT, V9, P981, DOI 10.1111/j.1461-0248.2006.00950.x; Richards CL, 2012, ECOL LETT, V15, P1016, DOI 10.1111/j.1461-0248.2012.01824.x; Richards EJ, 2008, CURR OPIN GENET DEV, V18, P221, DOI 10.1016/j.gde.2008.01.014; Verhoeven KJF, 2014, EVOLUTION, V68, P644, DOI 10.1111/evo.12320; Verhoeven KJF, 2010, NEW PHYTOL, V185, P1108, DOI 10.1111/j.1469-8137.2009.03121.x 23 9 10 9 43 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1387-3547 1573-1464 BIOL INVASIONS Biol. Invasions SEP 2016 18 9 SI 2457 2462 10.1007/s10530-016-1223-1 6 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology DU3UA WOS:000382136500005 2019-02-21 J Record, S; Kobe, RK; Vriesendorp, CF; Finley, AO Record, Sydne; Kobe, Richard K.; Vriesendorp, Corine F.; Finley, Andrew O. Seedling survival responses to conspecific density, soil nutrients, and irradiance vary with age in a tropical forest ECOLOGY English Article base cations; negative density dependence; nitrogen; phosphorous; shade tolerance RAIN-FOREST; GROWTH-RESPONSES; TREE SEEDLINGS; ORGANIC PHOSPHORUS; SPECIES-DIVERSITY; SHADE TOLERANCE; MOIST FOREST; TRADE-OFFS; DISTRIBUTIONS; LIMITATION Understanding processes that promote species coexistence is integral to diversity maintenance. In hyperdiverse tropical forests, local conspecific density (LCD) and light are influential to woody seedling recruitment and soil nutrients are often limiting, yet the simultaneous effects of these factors on seedling survival across time remain unknown. We fit species-and age-specific models to census and resource data of seedlings of 68 woody species from a Costa Rican wet tropical forest. In decreasing order of prevalence, seedling survivorship was related to LCD, soil base cations, irradiance, nitrogen, and phosphorus. Species-specific responses to factors did not covary, providing evidence that species life history strategies have not converged to one continuum of high-surviving stress tolerant to low-surviving stress intolerant species. Survival responses to all factors varied over the average seedling's lifetime, indicating seedling requirements change with age and conclusions drawn about processes important to species coexistence depend on temporal resolution. [Record, Sydne] Bryn Mawr Coll, Dept Biol, 101 North Mer Ave, Bryn Mawr, PA 19010 USA; [Kobe, Richard K.] Michigan State Univ, Dept Forestry, 125 Nat Resources East Lansing, E Lansing, MI 48824 USA; [Vriesendorp, Corine F.] Field Museum, Environm Culture & Conservat, 1400 South Lake Shore Dr, Chicago, IL 60605 USA; [Finley, Andrew O.] Michigan State Univ, Dept Forestry, 126 Nat Resources, E Lansing, MI 48824 USA Record, S (reprint author), Bryn Mawr Coll, Dept Biol, 101 North Mer Ave, Bryn Mawr, PA 19010 USA. srecord@brynmawr.edu Record, Sydne/0000-0001-7293-2155 NSF [DEB0075472, 0640904, 0743609, 1256747, 1354414, DMS-1513481, EF-1137309, EF-1241874, EF-1253225] NSF (DEB0075472, 0640904, 0743609, 1256747, 1354414) provided financial support. In addition, A. Finley was supported by NSF DMS-1513481, EF-1137309, EF-1241874, and EF-1253225. We thank Ademar Hurtado, Ralph Garcia, and Yehudi Hernandez (field help), Orlando Vargas (taxonomy), OTS (logistical support), Pete Herbst (seedling database support), and E. Holste (helpful discussions). Baribault TW, 2012, ECOL MONOGR, V82, P189, DOI 10.1890/11-1013.1; Bonsall MB, 2004, SCIENCE, V306, P111, DOI 10.1126/science.1100680; Borowicz VA, 2001, ECOLOGY, V82, P3057; BURSLEM DFRP, 1995, J ECOL, V83, P113, DOI 10.2307/2261155; Catovsky S, 2002, ECOL APPL, V12, P1611, DOI 10.1890/1051-0761(2002)012[1611:NICISR]2.0.CO;2; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Clark DA, 1999, ECOL APPL, V9, P981; CLARK DA, 1992, ECOL MONOGR, V62, P315, DOI 10.2307/2937114; Clark DB, 1999, ECOLOGY, V80, P2662, DOI 10.1890/0012-9658(1999)080[2662:EFATLS]2.0.CO;2; Cleveland CC, 2011, ECOL LETT, V14, P939, DOI 10.1111/j.1461-0248.2011.01658.x; Colchero F, 2012, METHODS ECOL EVOL, V3, P466, DOI 10.1111/j.2041-210X.2012.00186.x; Colchero F, 2012, J ANIM ECOL, V81, P139, DOI 10.1111/j.1365-2656.2011.01898.x; Condit R, 2013, P NATL ACAD SCI USA, V110, P5064, DOI 10.1073/pnas.1218042110; CONNELL J H, 1971, P298; Finzi AC, 1998, ECOL APPL, V8, P447, DOI 10.2307/2641084; Harms KE, 2000, NATURE, V404, P493, DOI 10.1038/35006630; Holste EK, 2011, ECOLOGY, V92, P1828, DOI 10.1890/10-1697.1; Hubbell SP, 1999, SCIENCE, V283, P554, DOI 10.1126/science.283.5401.554; John R, 2007, P NATL ACAD SCI USA, V104, P864, DOI 10.1073/pnas.0604666104; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kobe R. K., 2014, FORESTS GLOBAL CHANG, P309; Kobe RK, 2011, ECOL LETT, V14, P503, DOI 10.1111/j.1461-0248.2011.01612.x; Kobe RK, 1999, ECOLOGY, V80, P187, DOI 10.2307/176989; Kusano M, 2011, J EXP BOT, V62, P1439, DOI 10.1093/jxb/erq417; Ledo A, 2014, ECOLOGY, V95, P2169, DOI 10.1890/13-1775.1; Leigh R. A., 2006, NEW PHYTOLOLOGIST, V97, P1; Lovelock CE, 2003, OECOLOGIA, V135, P268, DOI 10.1007/s00442-002-1166-3; MACARTHUR RH, 1965, BIOL REV, V40, P510, DOI 10.1111/j.1469-185X.1965.tb00815.x; Mangan SA, 2010, NATURE, V466, P752, DOI 10.1038/nature09273; McCarthy-Neumann S, 2010, J ECOL, V98, P396, DOI 10.1111/j.1365-2745.2009.01619.x; MCDADE LA, 1994, LA SELVA ECOLOGY NAT; Metz MR, 2012, J ECOL, V100, P969, DOI 10.1111/j.1365-2745.2012.01972.x; Montgomery RA, 2002, OECOLOGIA, V131, P165, DOI 10.1007/s00442-002-0872-1; Pant HK, 2000, BIOL FERT SOILS, V30, P306, DOI 10.1007/s003740050008; Pasquini SC, 2012, OECOLOGIA, V168, P311, DOI 10.1007/s00442-011-2099-5; Pasquini SC, 2015, ECOLOGY, V96, P1866, DOI 10.1890/14-1660.1; Pearcy R. W, 2007, FUNCTIONAL PLANT ECO, P213, DOI DOI 10.1201/9781420007626.CH7; Poorter L, 2005, J ECOL, V93, P256, DOI 10.1111/j.1365-2745.2004.00956.x; POOVAIAH BW, 1993, CRIT REV PLANT SCI, V12, P185, DOI 10.1080/713608046; R Development Core Team, 2013, R LANG ENV STAT COMP; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Russo SE, 2008, J ECOL, V96, P192, DOI 10.1111/j.1365-2745.2007.01330.x; Russo SE, 2005, J ECOL, V93, P879, DOI 10.1111/j.1365-2745.2005.01030.x; Santiago LS, 2012, J ECOL, V100, P309, DOI 10.1111/j.1365-2745.2011.01904.x; Schachtman DP, 1998, PLANT PHYSIOL, V116, P447, DOI 10.1104/pp.116.2.447; Schreeg LA, 2005, CAN J FOREST RES, V35, P263, DOI 10.1139/X04-168; SOULIDES D. A., 1961, SOIL SCI, V91, P291, DOI 10.1097/00010694-196105000-00001; Tanner EVJ, 1998, ECOLOGY, V79, P10; Terborgh J, 2012, AM NAT, V179, P303, DOI 10.1086/664183; VANCE CP, 1980, ANNU REV PHYTOPATHOL, V18, P259, DOI 10.1146/annurev.py.18.090180.001355; Vincent AG, 2010, EUR J SOIL SCI, V61, P48, DOI 10.1111/j.1365-2389.2009.01200.x; Vitousek PM, 2010, ECOL APPL, V20, P5, DOI 10.1890/08-0127.1; VITOUSEK PM, 1984, ECOLOGY, V65, P285, DOI 10.2307/1939481; Wood TE, 2009, ECOLOGY, V90, P109, DOI 10.1890/07-1146.1; Wright SJ, 2011, ECOLOGY, V92, P1616, DOI 10.1890/10-1558.1; Wright SJ, 2002, OECOLOGIA, V130, P1, DOI 10.1007/s004420100809; Yavitt JB, 2008, J TROP ECOL, V24, P19, DOI 10.1017/S0266467407004713 57 5 7 2 50 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology SEP 2016 97 9 2406 2415 10.1002/ecy.1458 10 Ecology Environmental Sciences & Ecology DU9HK WOS:000382527100024 27859074 Bronze, Green Published 2019-02-21 J Orizaola, G; Richter-Boix, A; Laurila, A Orizaola, German; Richter-Boix, Alex; Laurila, Anssi Transgenerational effects and impact of compensatory responses to changes in breeding phenology on antipredator defenses ECOLOGY English Article amphibians; climate change; complex life cycles; life-history strategies; metamorphosis; phenotypic plasticity; predation; transgenerational effects LIFE-HISTORY PLASTICITY; GLOBAL CLIMATE-CHANGE; TIME CONSTRAINTS; PHENOTYPIC PLASTICITY; ANURAN LARVAE; INDUCIBLE DEFENSES; NATURAL-SELECTION; PREDATION RISK; BEHAVIORAL-RESPONSES; SPECIES INTERACTIONS As organisms living in temperate environments often have only a short time window for growth and reproduction, their life-history strategies are expected to be influenced by these time constraints. Parents may alter the pace of offspring life-history as a response to changes in breeding phenology. However, the responses to changes in time constraints must be balanced with those against other stressors, such as predation, one of the strongest and more ubiquitous selective factors in nature. Here, after experimentally modifying the timing of breeding and hatching in the moor frog (Rana arvalis), we studied how compensatory responses to delayed breeding and hatching affect antipredator strategies in amphibian larvae. We examined the activity patterns, morphology and life-history responses in tadpoles exposed to different combinations of breeding and hatching delays in the presence and absence of predators. We found clear evidence of adaptive transgenerational effects since tadpoles from delayed breeding treatments increased growth and development independently of predation risk. The presence of predators reduced tadpole activity, tadpoles from delayed breeding treatments maintaining lower activity than non-delayed ones also in the absence of predators. Tadpoles reared with predators developed deeper tails and bodies, however, tadpoles from breeding delay treatments had reduced morphological defenses as compared to non-delayed individuals. No significant effects of hatching delay were detected in this study. Our study reveals that amphibian larvae exposed to breeding delay develop compensatory life-history responses even under predation risk, but these responses trade-off with the development of morphological antipredator defenses. These results suggest that under strong time constraints organisms are selected to develop fast growth and development responses, and rely on lower activity rates as their main antipredator defense. Examining how responses to changes in phenology affect species interactions is highly relevant for better understanding ecological responses to climate change. [Orizaola, German; Richter-Boix, Alex; Laurila, Anssi] Uppsala Univ, Anim Ecol, Dept Ecol & Genet, Evolutionary Biol Ctr, S-75236 Uppsala, Sweden Orizaola, G (reprint author), Uppsala Univ, Anim Ecol, Dept Ecol & Genet, Evolutionary Biol Ctr, S-75236 Uppsala, Sweden. german.orizaola@ebc.uu.se Orizaola, German/A-5217-2008 Orizaola, German/0000-0002-6748-966X; Richter-Boix, Alex/0000-0002-8559-5191 Helge Ax:son Johnsons Stiftelse; Stiftelsen Oscar och Lili Lamms Minne [FO2011-0004]; Spanish Ministry of Education and Culture [MEC2007-0944]; Generalitat de Catalunya Beatriu de Pinos program [2008 BP A 00032]; Formas [2007-903] The animals were collected with a permit from Uppsala County Board (521-3019-09) and the experiment was conducted with a permit from the Ethical committee for Animal Experiments in Uppsala (C92/9). This study was supported by Helge Ax:son Johnsons Stiftelse (to G. Orizaola), Stiftelsen Oscar och Lili Lamms Minne (grant FO2011-0004; to G. Orizaola), Spanish Ministry of Education and Culture (postdoctoral fellowship MEC2007-0944; to G. Orizaola), Generalitat de Catalunya Beatriu de Pinos program (postdoctoral fellowship 2008 BP A 00032; to A. Richter-Boix) and Formas (2007-903; to A. Laurila). Agrawal AA, 1999, NATURE, V401, P60, DOI 10.1038/43425; Altwegg R, 2003, EVOLUTION, V57, P872; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.2307/3071813; Alvarez D, 2006, EVOL ECOL, V20, P523, DOI 10.1007/s10682-006-9114-z; Angert AL, 2013, ANN NY ACAD SCI, V1297, P1, DOI 10.1111/nyas.12286; ANHOLT BR, 1995, ECOLOGY, V76, P2230, DOI 10.2307/1941696; BEEBEE TJC, 1995, NATURE, V374, P219, DOI 10.1038/374219a0; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; Benard MF, 2015, GLOBAL CHANGE BIOL, V21, P1058, DOI 10.1111/gcb.12720; Crean AJ, 2011, EVOLUTION, V65, P3079, DOI 10.1111/j.1558-5646.2011.01372.x; Dayton GH, 2005, OIKOS, V111, P582, DOI 10.1111/j.1600-0706.2005.14340.x; De Block M, 2004, OECOLOGIA, V140, P68, DOI 10.1007/s00442-004-1575-6; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; De Block M, 2008, OIKOS, V117, P908, DOI 10.1111/j.2008.0030-1299.16603.x; DeVito J, 2003, OIKOS, V103, P75, DOI 10.1034/j.1600-0706.2003.12527.x; Dijk B, 2016, BEHAV ECOL SOCIOBIOL, V70, P237, DOI 10.1007/s00265-015-2040-8; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dunbar RIM, 2009, BIOL REV, V84, P413, DOI 10.1111/j.1469-185X.2009.00080.x; Gasc J.-P., 1997, ATLAS AMPHIBIANS REP; Giesing ER, 2011, P ROY SOC B-BIOL SCI, V278, P1753, DOI 10.1098/rspb.2010.1819; Gomez-Mestre I, 2011, P ROY SOC B-BIOL SCI, V278, P3364, DOI 10.1098/rspb.2010.2762; Gosner K. L., 1960, Herpetologica, V16, P183; GOTTHARD K, 2001, ANIMAL DEV ECOLOGY, P287; GROMKO MH, 1973, J EXP ZOOL, V186, P63, DOI 10.1002/jez.1401860109; Groothuis TGG, 2008, PHILOS T R SOC B, V363, P1647, DOI 10.1098/rstb.2007.0007; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; Horton TH, 2005, AM J HUM BIOL, V17, P34, DOI 10.1002/ajhb.20092; Huey RB, 2012, PHILOS T R SOC B, V367, P1665, DOI 10.1098/rstb.2012.0005; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.2307/177071; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Johnson JB, 2008, EVOLUTION, V62, P1243, DOI 10.1111/j.1558-5646.2008.00343.x; Kaplan RH, 2006, EVOLUTION, V60, P142; Kats LB, 1998, ECOSCIENCE, V5, P361, DOI 10.1080/11956860.1998.11682468; Kojima W, 2015, BEHAV ECOL SOCIOBIOL, V69, P415, DOI 10.1007/s00265-014-1854-0; Laurila A, 2006, OECOLOGIA, V147, P585, DOI 10.1007/s00442-005-0301-3; LAWLER SP, 1989, ANIM BEHAV, V38, P1039, DOI 10.1016/S0003-3472(89)80142-3; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lindgren B, 2005, J EVOLUTION BIOL, V18, P820, DOI 10.1111/j.1420-9101.2004.00875.x; McCollum SA, 1996, EVOLUTION, V50, P583, DOI 10.1111/j.1558-5646.1996.tb03870.x; Menzel A, 2006, GLOBAL ECOL BIOGEOGR, V15, P498, DOI 10.1111/j.1466-822x.2006.00247.x; Mikolajewski DJ, 2015, ECOLOGY, V96, P1128, DOI 10.1890/14-0262.1; Nunes AL, 2014, ECOL EVOL, V4, P1491, DOI 10.1002/ece3.979; Nunes AL, 2013, OECOLOGIA, V171, P115, DOI 10.1007/s00442-012-2389-6; Orizaola G, 2014, OECOLOGIA, V174, P131, DOI 10.1007/s00442-013-2754-0; Orizaola G, 2013, OECOLOGIA, V171, P873, DOI 10.1007/s00442-012-2456-z; Orizaola G, 2010, OIKOS, V119, P980, DOI 10.1111/j.1600-0706.2009.17956.x; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Phillimore AB, 2010, P NATL ACAD SCI USA, V107, P8292, DOI 10.1073/pnas.0913792107; Rasanen K, 2003, EVOLUTION, V57, P363, DOI 10.1554/0014-3820(2003)057[0363:GVIAST]2.0.CO;2; Rasmussen NL, 2015, ECOLOGY, V96, P1754, DOI 10.1890/14-1919.1; Relyea RA, 2004, ECOL LETT, V7, P869, DOI 10.1111/j.1461-0248.2004.00645.x; Relyea RA, 2001, ECOLOGY, V82, P523, DOI 10.1890/0012-9658(2001)082[0523:MABPOL]2.0.CO;2; Richter-Boix A, 2014, ECOLOGY, V95, P2715, DOI 10.1890/13-1996.1; Richter-Boix A, 2011, MOL ECOL, V20, P1582, DOI 10.1111/j.1365-294X.2011.05025.x; ROHLF F, 2007, TPSRELW; ROHLF FJ, 1990, SYST ZOOL, V39, P40, DOI 10.2307/2992207; Rohlf FJ, 2008, TPSDIG2; Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Rudolf VHW, 2013, OECOLOGIA, V173, P1043, DOI 10.1007/s00442-013-2675-y; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; Senapathi D, 2011, P ROY SOC B-BIOL SCI, V278, P3184, DOI 10.1098/rspb.2011.0212; Sheets H. D., 2014, PCAGEN8; Sheets HD, 2009, MAKEFAN7; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; SKELLY DK, 1994, ANIM BEHAV, V47, P465, DOI 10.1006/anbe.1994.1063; Somero GN, 2010, J EXP BIOL, V213, P912, DOI 10.1242/jeb.037473; Steiner UK, 2007, OECOLOGIA, V152, P201, DOI 10.1007/s00442-006-0645-3; Stoks R, 2006, ECOLOGY, V87, P809, DOI 10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2; Storm JJ, 2010, AM NAT, V175, P382, DOI 10.1086/650443; Strobbe F, 2004, BIOL J LINN SOC, V83, P187, DOI 10.1111/j.1095-8312.2004.00379.x; Todd BD, 2011, P ROY SOC B-BIOL SCI, V278, P2191, DOI 10.1098/rspb.2010.1768; Tollrian R, 1999, ECOLOGY EVOLUTION IN; Uller T, 2013, J EVOLUTION BIOL, V26, P2161, DOI 10.1111/jeb.12212; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; Urban MC, 2007, ECOLOGY, V88, P2587, DOI 10.1890/06-1946.1; Van Buskirk J, 2000, ECOLOGY, V81, P2813, DOI 10.1890/0012-9658(2000)081[2813:TCOAID]2.0.CO;2; Van Buskirk J, 1998, BIOL J LINN SOC, V65, P301, DOI 10.1006/bijl.1998.0249; Van Buskirk J, 1997, EVOLUTION, V51, P1983, DOI 10.1111/j.1558-5646.1997.tb05119.x; Van Buskirk J, 2009, ECOL MONOGR, V79, P681, DOI 10.1890/08-1692.1; VANBUSKIRK J, 2003, J HERPETOL, V37, P192; Visser ME, 2005, P ROY SOC B-BIOL SCI, V272, P2561, DOI 10.1098/rspb.2005.3356; Visser ME, 2004, ADV ECOL RES, V35, P89, DOI 10.1016/S0065-2504(04)35005-1; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WOODHEAD AP, 1983, J INSECT PHYSIOL, V29, P665, DOI 10.1016/0022-1910(83)90040-9; Yang LH, 2010, ECOL LETT, V13, P1, DOI 10.1111/j.1461-0248.2009.01402.x; Zewe Frances L., 2014, Australian Zoologist, V37, P173, DOI 10.7882/AZ.2014.003 90 5 5 5 34 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology SEP 2016 97 9 2470 2478 10.1002/ecy.1464 9 Ecology Environmental Sciences & Ecology DU9HK WOS:000382527100029 27859081 2019-02-21 J Koons, DN; Iles, DT; Schaub, M; Caswell, H Koons, David N.; Iles, David T.; Schaub, Michael; Caswell, Hal A life-history perspective on the demographic drivers of structured population dynamics in changing environments ECOLOGY LETTERS English Article Age structure; global change; life history; matrix model; non-stationary; perturbation analysis; stage structure; stochasticity; transient dynamics; vital rate TABLE RESPONSE EXPERIMENTS; CLIMATE-CHANGE; SENSITIVITY-ANALYSIS; TRANSIENT DYNAMICS; TEMPORAL VARIATION; MATRIX MODELS; VITAL-RATES; GROWTH-RATE; FITNESS; MECHANISMS Current understanding of life-history evolution and how demographic parameters contribute to population dynamics across species is largely based on assumptions of either constant environments or stationary environmental variation. Meanwhile, species are faced with non-stationary environmental conditions (changing mean, variance, or both) created by climate and landscape change. To close the gap between contemporary reality and demographic theory, we develop a set of transient life table response experiments (LTREs) for decomposing realised population growth rates into contributions from specific vital rates and components of population structure. Using transient LTREs in a theoretical framework, we reveal that established concepts in population biology will require revision because of reliance on approaches that do not address the influence of unstable population structure on population growth and mean fitness. Going forward, transient LTREs will enhance understanding of demography and improve the explanatory power of models used to understand ecological and evolutionary dynamics. [Koons, David N.; Iles, David T.] Utah State Univ, Dept Wildland Resources, 5230 Old Main Hill, Logan, UT 84322 USA; [Koons, David N.; Iles, David T.] Utah State Univ, Ctr Ecol, 5230 Old Main Hill, Logan, UT 84322 USA; [Schaub, Michael] Swiss Ornithol Inst, CH-6204 Sempach, Switzerland; [Caswell, Hal] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, NL-1090 GE Amsterdam, Netherlands Koons, DN (reprint author), Utah State Univ, Dept Wildland Resources, 5230 Old Main Hill, Logan, UT 84322 USA.; Koons, DN (reprint author), Utah State Univ, Ctr Ecol, 5230 Old Main Hill, Logan, UT 84322 USA. david.koons@.usu.edu S.J. and Jessie E. Quinney Foundation; Ducks Unlimited Canada; European Research Commission [322989] We thank R Salguero-Gomez and C Horvitz for general discussions about transient dynamics. DNK thanks the Max Planck Institute for Demographic Research for his introduction to H Caswell, and USU for a sabbatical leave, without which the collaboration with M Schaub would not have been possible. We also thank S Jenouvrier for useful comments about our figures, as well as JD Nichols and four anonymous reviewers for their constructive comments on earlier drafts. DTI was funded by fellowships from the S.J. and Jessie E. Quinney Foundation and Ducks Unlimited Canada. HC was supported by Advanced Grant 322989 from the European Research Commission. Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Adler PB, 2010, ECOL LETT, V13, P1019, DOI 10.1111/j.1461-0248.2010.01496.x; Bassar RD, 2010, ANN NY ACAD SCI, V1206, P17, DOI 10.1111/j.1749-6632.2010.05706.x; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.2307/177364; CASWELL H, 1989, ECOL MODEL, V46, P221, DOI 10.1016/0304-3800(89)90019-7; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2007, ECOL LETT, V10, P1, DOI 10.1111/j.1461-0248.2006.01001.x; Caswell H, 2010, J ECOL, V98, P324, DOI 10.1111/j.1365-2745.2009.01627.x; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; COHEN JE, 1979, B AM MATH SOC, V1, P275, DOI 10.1090/S0273-0979-1979-14594-4; Coulson T, 2006, EVOL ECOL RES, V8, P1155; Coulson T, 2005, J ANIM ECOL, V74, P789, DOI 10.1111/j.1365-2656.2005.00975.x; Davison R, 2013, AM NAT, V181, P410, DOI 10.1086/669155; Davison R, 2010, J ECOL, V98, P255, DOI 10.1111/j.1365-2745.2009.01611.x; Fisher RA, 1930, GENETICAL THEORY NAT; Gaillard JM, 2013, ECOL LETT, V16, P48, DOI 10.1111/ele.12059; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gamelon M, 2016, OIKOS, V125, P395, DOI 10.1111/oik.02582; Gerber L.R., 2010, ECOLOGICAL APPL, V20, P783; Gotelli NJ, 2006, ECOL APPL, V16, P51, DOI 10.1890/04-0479; Haridas CV, 2009, ECOL LETT, V12, P806, DOI 10.1111/j.1461-0248.2009.01330.x; Hastings A, 2004, TRENDS ECOL EVOL, V19, P39, DOI 10.1016/j.tree.2003.09.007; HORVITZ C, 1997, STRUCTURED POPULATIO, P247, DOI DOI 10.1007/978-1-4615-5973-3; Hunter CM, 2010, ECOLOGY, V91, P2883, DOI 10.1890/09-1641.1; Iles DT, 2016, J ECOL, V104, P399, DOI 10.1111/1365-2745.12516; Jenouvrier S, 2014, NAT CLIM CHANGE, V4, P715, DOI 10.1038/NCLIMATE2280; Kery M, 2012, BAYESIAN POPULATION ANALYSIS USING WINBUGS: A HIERARCHICAL PERSPECTIVE, P1; Koons DN, 2006, ECOL MODEL, V197, P418, DOI 10.1016/j.ecolmodel.2006.03.034; Koons David N., 2014, Wildfowl, P169; Koons DN, 2005, ECOL MODEL, V185, P283, DOI 10.1016/j.ecolmodel.2004.12.011; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R, 2007, EVOLUTION, V61, P1835, DOI 10.1111/j.1558-5646.2007.00170.x; Merow C, 2014, ECOGRAPHY, V37, P1167, DOI 10.1111/ecog.00839; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Morris WF, 2004, AM NAT, V163, P579, DOI 10.1086/382550; Neubert MG, 2000, J MATH BIOL, V41, P103, DOI 10.1007/s002850070001; Neubert MG, 1997, ECOLOGY, V78, P653; Oli MK, 2004, ECOLOGY, V85, P2446, DOI 10.1890/03-0513; Petchey OL, 2015, ECOL LETT, V18, P597, DOI 10.1111/ele.12443; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sanchez Gassen N., 2015, DEMOGR RES, V33, P801; Schaub M, 2011, J ORNITHOL, V152, P227, DOI 10.1007/s10336-010-0632-7; Stott I, 2011, ECOL LETT, V14, P959, DOI 10.1111/j.1461-0248.2011.01659.x; Tuljapurkar S., 1990, POPULATION DYNAMICS; Verdy A, 2008, B MATH BIOL, V70, P1634, DOI 10.1007/s11538-008-9312-7; Wolkovich EM, 2014, ECOL LETT, V17, P1365, DOI 10.1111/ele.12353; Zuidema PA, 2007, ECOL APPL, V17, P118, DOI 10.1890/1051-0761(2007)017[0118:TSBPAR]2.0.CO;2 49 15 16 2 68 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. SEP 2016 19 9 1023 1031 10.1111/ele.12628 9 Ecology Environmental Sciences & Ecology DU9MT WOS:000382542500002 27401966 Other Gold 2019-02-21 J Ibler, B; Fischer, K Ibler, Benjamin; Fischer, Klaus Costs of reproduction-A demographical approach to examine life-history trade-offs in two old-world deer species MAMMALIAN BIOLOGY English Article Life-history; Survival; Trade-off; Reproductive phase; Post-reproductive phase SEXUAL SIZE DIMORPHISM; PERSIAN FALLOW DEER; RED DEER; POPULATION-DYNAMICS; DENSITY; EVOLUTION; SELECTION; SUCCESS; FITNESS; ISRAEL Resource-allocation trade-offs comprise fundamental constraints on life-history evolution. In particular, the trade-offs between reproduction and longevity and between present and future reproduction are believed to be important in shaping reproductive patterns. Unfortunately, exploring such trade-offs in natural populations is complicated and may not be possible in all taxa. Against this background we here use zoo data for enhancing our understanding of reproductive patterns in two endangered and cryptic deer species (Vietnamese sika deer Cervus nippon pseudaxis, Mesopotamian fallow deer Dama dama mesopotamica). In both species, births peaked right before the onset of the rainy season in the species' natural environments. Females reached high reproductive output earlier in life and had (in one species only) higher survival rates than males. Offspring number covaried positively rather than negatively with longevity. In females, the length of the reproductive phase correlated positively with longevity, birth rate within the entire lifespan, and offspring number, while it was negatively related to the birth rate during the reproductive phase (in 1 species). The length of the post-reproductive phase was positively related to longevity and negatively to the birth rate during the entire lifespan. Taken together, we revealed several patterns being presumably of ecological relevance including indications for trade-offs among offspring quality and quantity, and between present and future reproduction even within these captive populations relieved from seasonal (e.g. food) constraints. In spite of some limitations, our study reconfirms that zoo data offer insights into the reproductive biology of species for which field data are difficult to obtain. (C) 2016 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH. All rights reserved. [Ibler, Benjamin; Fischer, Klaus] Ernst Moritz Arndt Univ Greifswald, Museum & Inst Zool, Johann Sebastian Bach Str 11-12, D-17489 Greifswald, Germany Ibler, B (reprint author), Ernst Moritz Arndt Univ Greifswald, Museum & Inst Zool, Johann Sebastian Bach Str 11-12, D-17489 Greifswald, Germany. benjamin.ibler@gmx.de; Klaus.fischer@uni-greifswald.de Akesson M, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001739; ALBON SD, 1983, J ANIM ECOL, V52, P969, DOI 10.2307/4467; Badyaev AV, 2002, TRENDS ECOL EVOL, V17, P369, DOI 10.1016/S0169-5347(02)02569-7; Bar-David S, 2005, CONSERV BIOL, V19, P131, DOI 10.1111/j.1523-1739.2005.00371.x; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; Bonenfant C, 2002, ECOGRAPHY, V25, P446, DOI 10.1034/j.1600-0587.2002.250407.x; CHAPMAN NG, 1980, MAMMAL REV, V10, P61, DOI 10.1111/j.1365-2907.1980.tb00234.x; Clutton-Brock T, 1982, RED DEER BEHAV ECOLO; Clutton-Brock T, 1988, REPROD SUCCESS STUDI; Clutton-Brock T.H., 1985, P557; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; CluttonBrock TH, 1997, P ROY SOC B-BIOL SCI, V264, P1509, DOI 10.1098/rspb.1997.0209; DUNBAR RIM, 1984, REPROD DECISIONS EC; Falconer D.S., 1981, INTRO QUANTITATIVE G; Forchhammer MC, 1998, P ROY SOC B-BIOL SCI, V265, P341, DOI 10.1098/rspb.1998.0301; Fowler C.W., 1987, Current Mammalogy, V1, P401; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; HAENSEL J, 1980, Milu, V5, P69; Haltenorth T., 1959, MAMM BIOL, V7, P1; HAYDEN TJ, 1994, J ZOOL, V232, P21, DOI 10.1111/j.1469-7998.1994.tb01557.x; Jantschke F., 1991, INT STUDBOOK PERSIAN, P15; Kruuk LEB, 2000, P NATL ACAD SCI USA, V97, P698, DOI 10.1073/pnas.97.2.698; Lincoln G. A., 1985, ROYAL SOC NZ B, V22, P165; Loison A, 1999, EVOL ECOL RES, V1, P611; McElligott AG, 2000, BEHAV ECOL SOCIOBIOL, V48, P203, DOI 10.1007/s002650000234; McElligott T., 2002, P ROY SOC LOND B BIO, V269, P1129; Mehlitz S., 1973, Beitrage Jagd-Wildforsch, V8, P49; Mysterud A, 2000, J ANIM ECOL, V69, P959, DOI 10.1046/j.1365-2656.2000.00454.x; Newton I, 1989, LIFETIME REPROD SUCC; Nowak RM, 1999, WALKERS MAMMALS WORL; Pelletier F, 2009, TRENDS ECOL EVOL, V24, P263, DOI 10.1016/j.tree.2008.11.013; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; Puschmann W., 2003, ZOOTIERHALTUNG SAUGE; Ratajszczak Radoslaw, 1993, International Zoo Yearbook, V32, P56; Roff D. A., 2002, EVOLUTION LIFE HIST; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Rudloff K., 1991, INT STUDBOOK PERSIAN, V1-23; Rudloff K., 1994, INT STUDBOOK VIETNAM, V1-20; Saltz D, 2011, ANIM PROD SCI, V51, P251, DOI 10.1071/AN10187; Siegmund A., 2006, DIERCKE SPEZIAL ANGE; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stewart KM, 2005, OECOLOGIA, V143, P85, DOI 10.1007/s00442-004-1785-y; Taborsky M, 2010, ANIMAL BEHAVIOUR: EVOLUTION AND MECHANISMS, P537, DOI 10.1007/978-3-642-02624-9_18; Thevenon S, 2003, ZOO BIOL, V22, P465, DOI 10.1002/zoo.10091; van Noordwijk MA, 1999, PRIMATES, V40, P105, DOI 10.1007/BF02557705; Weladji RB, 2006, P ROY SOC B-BIOL SCI, V273, P1239, DOI 10.1098/rspb.2005.3393; Whitehead GK, 1993, WHITEHEAD ENCY DEER; Williams Geroge C, 1966, ADAPTATION NATURAL S; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zerbe P, 2012, BIOL REV, V87, P965, DOI 10.1111/j.1469-185X.2012.00238.x 50 0 0 6 26 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 1616-5047 1618-1476 MAMM BIOL Mamm. Biol. SEP 2016 81 5 455 463 10.1016/j.mambio.2016.06.001 9 Zoology Zoology DV0HK WOS:000382598400004 2019-02-21 J Munoz, F; Violle, C; Cheptou, PO Munoz, Francois; Violle, Cyrille; Cheptou, Pierre-Olivier CSR ecological strategies and plant mating systems: outcrossing increases with competitiveness but stress-tolerance is related to mixed mating OIKOS English Article CREPIS-SANCTA ASTERACEAE; SELF-FERTILIZATION; INBREEDING DEPRESSION; REPRODUCTIVE ASSURANCE; FLOWERING PLANTS; COMPARATIVE BIOLOGY; PRIMARY SUCCESSION; POLLEN LIMITATION; LIFE-HISTORY; EVOLUTION A number of plant traits influence the success of fertilization and reproduction in plants. Collectively these traits represent ecological syndromes that are of evolutionary significance. However, while an association between mating system and colonizing ability has been proposed, the existence of a broader relationship between mating system and a species' position in ecological succession has not been extensively investigated. Grime's CSR theory stresses that an ecological succession can involve changes from colonizing to either competitive or stress-tolerant strategies. How distinct dimensions of competitiveness and stress tolerance covary with mating systems has still not been considered. We designed a comparative approach to evaluate the link between mating system, life form and CSR strategies for 1996 herbaceous and woody species. We found that CSR strategies are significantly related to mating systems. Ruderal species - colonizers in early succession - were mostly selfers while more competitive species were more often outcrossers. On the other hand, greater physiological stress tolerance was associated with mixed mating systems. Outcrossing is classically expected to be advantageous for most life history strategies other than colonizers, but we suggest that reproductive assurance can counterbalance this effect in stressful environments where populations are sparse and pollinators are rare. Therefore, our results emphasize that competition and abiotic stresses are not equivalent selective pressures on the evolution of mating systems. Finally, we found plant life span to convey additional information on mating system variation, supporting its role for mating system evolution. These findings encourage further investigation of the evolutionary role of ecological strategies as syndromes of traits and suggest that the emergence of large databases of plant traits will help address the major evolutionary hypotheses on such syndromes. [Munoz, Francois] French Inst Pondicherry, 11 St Louis St, Pondicherry 605001, India; [Munoz, Francois] Univ Montpellier 2, UMR AMAP, Blvd Lironde,TA A51-PS2, FR-34398 Montpellier 5, France; [Violle, Cyrille; Cheptou, Pierre-Olivier] Univ Montpellier 3, EPHE, Univ Montpellier, CNRS,CEFE,UMR 5175, 1919 Route Mende, FR-34293 Montpellier 5, France Munoz, F (reprint author), French Inst Pondicherry, 11 St Louis St, Pondicherry 605001, India.; Munoz, F (reprint author), Univ Montpellier 2, UMR AMAP, Blvd Lironde,TA A51-PS2, FR-34398 Montpellier 5, France. francois.munoz@cirad.fr Munoz, Francois/0000-0001-8776-4705 Armbruster P, 2005, HEREDITY, V95, P235, DOI 10.1038/sj.hdy.6800721; BAKER HG, 1957, EVOLUTION, V11, P449, DOI 10.2307/2406065; BAKER HG, 1967, EVOLUTION, V21, P853, DOI 10.1111/j.1558-5646.1967.tb03440.x; Barrett SCH, 1996, TRENDS ECOL EVOL, V11, P73, DOI 10.1016/0169-5347(96)81046-9; Barrett SCH, 1996, PHILOS T ROY SOC B, V351, P1271, DOI 10.1098/rstb.1996.0110; BAWA KS, 1980, ANNU REV ECOL SYST, V11, P15, DOI 10.1146/annurev.es.11.110180.000311; Blomberg SP, 2002, J EVOLUTION BIOL, V15, P899, DOI 10.1046/j.1420-9101.2002.00472.x; BURD M, 1994, BOT REV, V60, P83, DOI 10.1007/BF02856594; Busch JW, 2005, AM J BOT, V92, P1503, DOI 10.3732/ajb.92.9.1503; Caccianiga M, 2006, OIKOS, V112, P10, DOI 10.1111/j.0030-1299.2006.14107.x; CHARLESWORTH D, 1990, EVOLUTION, V44, P1469, DOI 10.1111/j.1558-5646.1990.tb03839.x; Cheptou PO, 2009, AM NAT, V174, P46, DOI 10.1086/599303; Cheptou PO, 2000, J EVOLUTION BIOL, V13, P522, DOI 10.1046/j.1420-9101.2000.00175.x; Cheptou PO, 2002, J EVOLUTION BIOL, V15, P753, DOI 10.1046/j.1420-9101.2002.00443.x; Davis HG, 2005, EVOL ECOL, V19, P255, DOI 10.1007/s10682-005-0912-5; Delmas CEL, 2014, BMC EVOL BIOL, V14, DOI 10.1186/s12862-014-0243-7; Dornier A, 2008, EVOLUTION, V62, P2558, DOI 10.1111/j.1558-5646.2008.00464.x; Durka W., 2012, Ecology, V93, P2297, DOI 10.1890/12-0743.1; Eckert CG, 2010, TRENDS ECOL EVOL, V25, P35, DOI 10.1016/j.tree.2009.06.013; Ellenberg H, 1991, ZEIGERWERTE PFLANZEN; Fisher RA, 1941, ANN EUGENIC, V11, P53, DOI 10.1111/j.1469-1809.1941.tb02272.x; Garamszegi L.Z., 2014, MODERN PHYLOGENETIC; Gelman A, 2006, BAYESIAN ANAL, V1, P515, DOI 10.1214/06-BA117A; GRANT WILLIAM F., 1967, TAXON, V16, P283, DOI 10.2307/1216376; Grime J. P, 1979, PLANT STRATEGIES VEG; Grime J.P., 2007, COMP PLANT ECOLOGY F; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Grime JP, 1997, OIKOS, V79, P259, DOI 10.2307/3546011; GRIME JP, 1974, NATURE, V250, P26, DOI 10.1038/250026a0; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield JD, 2015, METHODS ECOL EVOL, V6, P706, DOI 10.1111/2041-210X.12354; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hadfield JD, 2014, MCMCGLMM COURSE NOTE; Hodgson JG, 1999, OIKOS, V85, P282, DOI 10.2307/3546494; HUSTON M, 1987, AM NAT, V130, P168, DOI 10.1086/284704; Kalisz S, 2004, NATURE, V430, P884, DOI 10.1038/nature02776; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Klotz S., 1984, PHYTOOKOLOGISCHE BEI; Knight TM, 2005, ANNU REV ECOL EVOL S, V36, P467, DOI 10.1146/annurev.ecolsys.36.102403.115320; Kuhn I, 2004, DIVERS DISTRIB, V10, P363, DOI 10.1111/j.1366-9516.2004.00106.x; LANDE R, 1985, EVOLUTION, V39, P24, DOI 10.1111/j.1558-5646.1985.tb04077.x; LLOYD DG, 1992, INT J PLANT SCI, V153, P370, DOI 10.1086/297041; LLOYD DG, 1979, AM NAT, V113, P67, DOI 10.1086/283365; Morgan MT, 1997, AM NAT, V150, P618, DOI 10.1086/286085; Navas ML, 2010, PLANT BIOLOGY, V12, P183, DOI 10.1111/j.1438-8677.2009.00208.x; Pannell JR, 1998, EVOLUTION, V52, P657, DOI 10.1111/j.1558-5646.1998.tb03691.x; PRICE SC, 1981, OECOLOGIA, V49, P283, DOI 10.1007/BF00349202; Raevel V, 2012, OIKOS, V121, P1761, DOI 10.1111/j.1600-0706.2012.20261.x; Raunkiaer C., 1934, LIFE FORMS PLANTS ST; RENNER SS, 1995, AM J BOT, V82, P596, DOI 10.2307/2445418; RYDIN H, 1991, ECOLOGY, V72, P1089, DOI 10.2307/1940608; SAKAI AK, 1995, ECOLOGY, V76, P2530, DOI 10.2307/2265826; Silvertown J, 2002, AM NAT, V160, P409, DOI 10.1086/342071; Snell Rebecca, 2005, BMC Ecology, V5, P2, DOI 10.1186/1472-6785-5-2; Stebbins G. L., 1950, VARIATION EVOLUTION; STEBBINS GL, 1957, AM NAT, V91, P337, DOI 10.1086/281999; STEBBINS GL, 1958, COLD SPRING HARB SYM, V23, P395; Sutherland S, 2004, OECOLOGIA, V141, P24, DOI 10.1007/s00442-004-1628-x; Uyenoyama M., 1993, OXFORD SURVEYS EVOLU; Van Kleunen M, 2007, CONSERV BIOL, V21, P1537, DOI 10.1111/j.1523-1739.2007.00765.x; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Vogler DW, 2001, EVOLUTION, V55, P202; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452 63 8 8 1 46 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos SEP 2016 125 9 1296 1303 10.1111/oik.02328 8 Ecology Environmental Sciences & Ecology DU8WI WOS:000382496000009 Green Published 2019-02-21 J Blanchard, A; Lyons, M; Centifanti, L Blanchard, Alyson; Lyons, Minna; Centifanti, Luna Baby was a black sheep: Digit ratio (2D:4D), maternal bonding and primary and secondary psychopathy PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Primary psychopathy; Secondary psychopathy; Prenatal testosterone; 2D:4D digit ratio; Maternal bonding; Life history theory; Fetal programming PERSONALITY-TRAITS; FETAL TESTOSTERONE; GENDER-DIFFERENCES; ANTENATAL ANXIETY; STRESS; 2D-4D; WOMEN; SEX; MEN; AGGRESSION Psychopathy is generally considered to be a male adaptation. While studies have elucidated a relationship to freely circulating testosterone, less is known about the role of prenatal testosterone (PT) in the development of primary and secondary psychopathy and how this pertains to sex differences. In this study (N = 148), digit ratio (2D:4D) was used to investigate the relationship between prenatal testosterone and primary and secondary psychopathy. In addition, quality of recalled maternal bonding was measured to see if postnatal experience could affect the influence of PT on psychopathic behaviours. Low LH2D:4D predicted primary and secondary psychopathy in women. In men, low maternal care predicted primary psychopathy and high maternal protection predicted secondary psychopathy. Low maternal care also predicted primary psychopathy in women. Lower levels of maternal care and higher levels of maternal control contributed to primary psychopathy above and beyond PT. Lower levels of maternal care were also an influential factor for secondary psychopathy above and beyond PT, although higher levels of mother control were not. (C) 2016 Elsevier Ltd. All rights reserved. [Blanchard, Alyson; Lyons, Minna] Univ Liverpool, Liverpool L69 3BX, Merseyside, England; [Centifanti, Luna] Univ Durham, Durham DH1 3HP, England Blanchard, A (reprint author), Univ Liverpool, Dept Psychol Sci, Eleanor Rathbone Bldg, Liverpool L69 7ZA, Merseyside, England. aeblanch@liverpool.ac.uk Centifanti, Luna/D-4962-2012 Centifanti, Luna/0000-0003-4562-8187 Bailey AA, 2005, BIOL PSYCHOL, V68, P215, DOI 10.1016/j.biopsycho.2004.05.001; Barrett ES, 2015, ENDOCRINOLOGY, V156, P3435, DOI 10.1210/en.2015-1335; Barrett ES, 2014, NEUROTOXICOLOGY, V41, P20, DOI 10.1016/j.neuro.2013.12.011; Beaver KM, 2014, PSYCHIAT QUART, V85, P497, DOI 10.1007/s11126-014-9308-4; Benderlioglu Z, 2004, HORM BEHAV, V46, P558, DOI 10.1016/j.yhbeh.2004.06.004; Berenbaum SA, 2009, ENDOCRINOLOGY, V150, P5119, DOI 10.1210/en.2009-0774; Blanchard A., 2010, BRIT J FORENSIC PRAC, V12, P23, DOI [10.5042/bjfp.2010.0183, DOI 10.5042/BJFP.2010.0183]; Blanchard A., 2016, EVOLUTIONARY BEHAV S, V10, P56, DOI DOI 10.1037/EBS0000065; Craig RL, 2013, PERS INDIV DIFFER, V55, P345, DOI 10.1016/j.paid.2013.03.012; Del Giudice M, 2012, PSYCHONEUROENDOCRINO, V37, P1614, DOI 10.1016/j.psyneuen.2012.05.014; Fink B, 2004, PERS INDIV DIFFER, V37, P495, DOI 10.1016/j.paid.2003.09.018; Fink B, 2006, PERS INDIV DIFFER, V41, P1253, DOI 10.1016/j.paid.2006.05.002; Gao Y, 2010, PSYCHOL MED, V40, P1007, DOI 10.1017/S0033291709991279; Gitau R, 2005, ARCH DIS CHILD-FETAL, V90, P166, DOI 10.1136/adc.2004.049320; Grundwald NJ, 2015, PSYCHONEUROENDOCRINO, V62, P204, DOI 10.1016/j.psyneuen.2015.08.010; Hampson E, 2008, ARCH SEX BEHAV, V37, P133, DOI 10.1007/s10508-007-9263-3; Hicks BM, 2012, PERSONAL DISORD, V3, P209, DOI 10.1037/a0025084; Hoskin AW, 2015, CRIMINOLOGY, V53, P54, DOI 10.1111/1745-9125.12056; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P69; Kardum I, 2015, PERS INDIV DIFFER, V75, P7, DOI 10.1016/j.paid.2014.10.048; Karpman B., 1941, J CRIMINOLOGY PSYCHO, V3, P112; Kempe V, 2011, PERS INDIV DIFFER, V50, P430, DOI 10.1016/j.paid.2010.10.024; Kemper CJ, 2009, AM J HUM BIOL, V21, P188, DOI 10.1002/ajhb.20843; Krischer MK, 2008, INT J LAW PSYCHIAT, V31, P253, DOI 10.1016/j.ijlp.2008.04.008; Loney BR, 2007, AGGRESSIVE BEHAV, V33, P14, DOI 10.1002/ab.20163; Lukaszewski A, 2015, EVOL PSYCHOL SCI, V1, P131; Lutchmaya S, 2004, EARLY HUM DEV, V77, P23, DOI 10.1016/j.earlhumdev.2003.12.002; Mack TD, 2011, PERS INDIV DIFFER, V51, P584, DOI 10.1016/j.paid.2011.05.019; Manning JT, 2007, ARCH SEX BEHAV, V36, P223, DOI 10.1007/s10508-007-9171-6; McDonald R, 2011, J ABNORM CHILD PSYCH, V39, P1013, DOI 10.1007/s10802-011-9512-8; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P579, DOI 10.1017/S0140525X00040024; Munoz LC, 2011, J PERS DISORD, V25, P28, DOI 10.1521/pedi.2011.25.1.28; O'Connor TG, 2003, J CHILD PSYCHOL PSYC, V44, P1025, DOI 10.1111/1469-7610.00187; PARKER G, 1979, BRIT J MED PSYCHOL, V52, P1, DOI 10.1111/j.2044-8341.1979.tb02487.x; Paulhus D. L., 2009, MANUAL SELF REPORT P; Pinderhughes EE, 2001, J MARRIAGE FAM, V63, P941, DOI 10.1111/j.1741-3737.2001.00941.x; Rogstad JE, 2008, CLIN PSYCHOL REV, V28, P1472, DOI 10.1016/j.cpr.2008.09.004; Sarkar P, 2008, J NEUROENDOCRINOL, V20, P489, DOI 10.1111/j.1365-2826.2008.01659.x; Stalenheim EG, 1998, PSYCHIAT RES, V77, P79, DOI 10.1016/S0165-1781(97)00143-1; Van den Bergh BRH, 2004, CHILD DEV, V75, P1085, DOI 10.1111/j.1467-8624.2004.00727.x; van Honk Jack, 2006, Cogn Neuropsychiatry, V11, P285, DOI 10.1080/13546800500233728; Voracek M, 2007, AM J HUM BIOL, V19, P142, DOI 10.1002/ajhb.20581; Voracek M, 2009, AM J PHYS ANTHROPOL, V140, P376, DOI 10.1002/ajpa.21105; WARD IL, 1984, ENDOCRINOLOGY, V114, P1635, DOI 10.1210/endo-114-5-1635; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wise PM, 2001, ENDOCRINOLOGY, V142, P969, DOI 10.1210/en.142.3.969; Yildirim BO, 2012, PSYCHIAT RES, V200, P984, DOI 10.1016/j.psychres.2012.07.044 48 2 2 4 70 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. SEP 2016 99 67 71 10.1016/j.paid.2016.04.077 5 Psychology, Social Psychology DV0EW WOS:000382591800011 Green Published 2019-02-21 J Pang, X; Fu, SJ; Zhang, YG Pang, Xu; Fu, Shi-Jian; Zhang, Yao-Guang Acclimation temperature alters the relationship between growth and swimming performance among juvenile common carp (Cyprinus carpio) COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY English Article Cyprinids; Ecophysiology; Individual variation; Metabolic rate; Trade-offs TROUT ONCORHYNCHUS-MYKISS; LIFE-HISTORY STRATEGIES; STANDARD METABOLIC-RATE; EUROPEAN SEA BASS; COD GADUS-MORHUA; QINGBO SPINIBARBUS-SINENSIS; RAINBOW-TROUT; ATLANTIC SALMON; INDIVIDUAL VARIATION; INTRINSIC GROWTH Individual variation in growth, metabolism and swimming performance, their possible interrelationships, and the effects of temperature were investigated in 30 juvenile common carp (Cyprinus carpio) at two acclimation temperatures (15 and 25 degrees C). We measured body mass, critical swimming speed (U-crit), resting metabolic rate (RMR), active metabolic rate (AMR) and metabolic scope (MS) twice (28 days apart) in both temperature groups. Fish acclimated to 25 degrees C showed a 204% higher specific growth rate (SGR) than those acclimated to 15 degrees C due to a 97% higher feeding rate (FR) and a 46% higher feed efficiency (FE). Among individuals, SGR was positively correlated with the FR and FE at both low and high temperatures. All measured variables (U-crit, RMR and AMR) related to swimming except MS showed a high repeatability after adjusting for body mass (mass-independent). Fish acclimated to 25 degrees C had a 40% higher U-crit compared with 15 degrees C acclimated fish, which was at least partially due to an improved metabolic capacity. AMR showed a 97% increase, and MS showed a 104% parallel increase with the higher acclimation temperature. Residual (mass-independent) U-crit was positively correlated with residual RMR, AMR and MS, except for the residual RMR at high temperature. When acclimated to the lower temperature, both the residual and absolute U-crit were negatively correlated with FR and FE and, hence, with SGR, suggesting a functional trade-off between growth and locomotion in fish acclimated to low temperatures. However, when acclimated to the higher temperature, this trade-off no longer existed; absolute U-crit was positively correlated with SGR because individuals with rapid growth exhibited greatly increased body mass. The higher metabolic capacity at 25 degrees C showed a positive effect on both swimming performance and growth rate (because of improved digestive efficiency) under the high-temperature condition, which we did not anticipate. Overall, these results indicate that temperature alters the relationship between growth and swimming performance of juvenile common carp. This change may be an adaptive strategy to seasonal temperature variation during their life history. (C) 2016 Elsevier Inc. All rights reserved. [Pang, Xu; Zhang, Yao-Guang] Southwest Univ, Key Lab Aquat Sci Chongqing, Key Lab Freshwater Fish Reprod & Dev, Educ Minist, Chongqing 400715, Peoples R China; [Fu, Shi-Jian] Chongqing Normal Univ, Lab Evolutionary Physiol & Behav, Chongqing Key Lab Anim Biol, Chongqing 401331, Peoples R China Zhang, YG (reprint author), Southwest Univ, Key Lab Aquat Sci Chongqing, Key Lab Freshwater Fish Reprod & Dev, Educ Minist, Chongqing 400715, Peoples R China. zhangyg@swu.edu.cn Program of Introducing Talents of Discipline to Universities of China (111 Program) [B14037]; Major Program of Science and Technology Commission Foundation of Chongqing [cstc2014yykfC80001]; Fundamental Research Funds for the Central Universities [XDJK2015A011]; China Postdoctoral Science Foundation [2015M572429] This study was supported by the Program of Introducing Talents of Discipline to Universities of China (111 Program) (B14037), the Major Program of Science and Technology Commission Foundation of Chongqing (cstc2014yykfC80001), the Fundamental Research Funds for the Central Universities (XDJK2015A011) and the China Postdoctoral Science Foundation (2015M572429). Alsop DH, 1997, J EXP BIOL, V200, P2337; Alvarez D, 2007, OIKOS, V116, P1144, DOI 10.1111/j.2007.0030-1299.15861.x; Angilletta MJ, 2003, TRENDS ECOL EVOL, V18, P234, DOI 10.1016/S0169-5347(03)00087-9; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arnott SA, 2006, EVOLUTION, V60, P1269; Auer SK, 2015, J ANIM ECOL, V84, P1405, DOI 10.1111/1365-2656.12384; Auer SK, 2015, FUNCT ECOL, V29, P479, DOI 10.1111/1365-2435.12396; Barton BA, 2002, INTEGR COMP BIOL, V42, P517, DOI 10.1093/icb/42.3.517; Bell W.H., 1970, 195 FISH RES BOARD C, P195; BENNETT AF, 1979, SCIENCE, V206, P649, DOI 10.1126/science.493968; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Bjornsson B, 2001, ICES J MAR SCI, V58, P29, DOI 10.1006/jmsc.2000.0986; Boldsen MM, 2013, COMP BIOCHEM PHYS A, V165, P22, DOI 10.1016/j.cbpa.2013.01.027; BRETT JR, 1971, AM ZOOL, V11, P99; BRETT JR, 1964, J FISH RES BOARD CAN, V21, P1183, DOI 10.1139/f64-103; Chappell MA, 2007, J EXP BIOL, V210, P4179, DOI 10.1242/jeb.006163; Claireaux G, 2006, J EXP BIOL, V209, P3420, DOI 10.1242/jeb.02346; Clark TD, 2013, J EXP BIOL, V216, P2771, DOI 10.1242/jeb.084251; Franklin CE, 1998, CLIN EXP PHARMACOL P, V25, P753, DOI 10.1111/j.1440-1681.1998.tb02291.x; FRY FEJ, 1970, J FISH RES BOARD CAN, V27, P976, DOI 10.1139/f70-111; Fu SJ, 2009, J EXP BIOL, V212, P2296, DOI 10.1242/jeb.027102; Gallaugher P, 1995, RESP PHYSIOL, V102, P279, DOI 10.1016/0034-5687(95)00065-8; Gomes FR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P197, DOI 10.1086/381471; Gregory TR, 1999, CAN J FISH AQUAT SCI, V56, P479, DOI 10.1139/cjfas-56-3-479; Gregory TR, 1998, CAN J FISH AQUAT SCI, V55, P1583, DOI 10.1139/cjfas-55-7-1583; Guderley H, 2004, COMP BIOCHEM PHYS B, V139, P371, DOI 10.1016/j.cbpc.2004.04.001; HAMMER C, 1995, COMP BIOCHEM PHYS A, V112, P1, DOI 10.1016/0300-9629(95)00060-K; Handeland SO, 2008, AQUACULTURE, V283, P36, DOI 10.1016/j.aquaculture.2008.06.042; Jain KE, 2003, J EXP BIOL, V206, P3569, DOI 10.1242/jeb.00588; KELLOGG RL, 1983, T AM FISH SOC, V112, P424, DOI 10.1577/1548-8659(1983)112<424:RBOTFG>2.0.CO;2; Kelly C, 2005, AM NAT, V166, P700, DOI 10.1086/497402; Killen SS, 2014, J EXP BIOL, V217, P859, DOI 10.1242/jeb.097899; Killen SS, 2013, TRENDS ECOL EVOL, V28, P651, DOI 10.1016/j.tree.2013.05.005; KOLOK AS, 1992, AM J PHYSIOL, V263, pR1042; Kolok AS, 1995, CAN J ZOOL, V73, P2165, DOI 10.1139/z95-254; KOLOK AS, 1994, PHYSIOL ZOOL, V67, P706, DOI 10.1086/physzool.67.3.30163766; KOTEJA P, 1987, COMP BIOCHEM PHYS A, V87, P205, DOI 10.1016/0300-9629(87)90447-6; Lee CG, 2003, J EXP BIOL, V206, P3239, DOI 10.1242/jeb.00547; Li DL, 2007, CHINESE SCI BULL, V52, P1501, DOI 10.1007/s11434-007-0217-x; Luo YP, 2008, COMP BIOCHEM PHYS A, V149, P150, DOI 10.1016/j.cbpa.2007.11.003; Maciak S, 2010, COMP BIOCHEM PHYS A, V157, P136, DOI 10.1016/j.cbpa.2010.05.017; Marras S, 2010, J EXP BIOL, V213, P26, DOI 10.1242/jeb.032136; McCarthy ID, 2000, J FISH BIOL, V57, P224, DOI 10.1111/j.1095-8649.2000.tb00788.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; Morgan IJ, 2000, J FISH BIOL, V56, P637, DOI 10.1006/jfbi.1999.1183; Nelson JA, 1996, J EXP BIOL, V199, P1295; Nilsson PA, 2000, OIKOS, V88, P539, DOI 10.1034/j.1600-0706.2000.880310.x; Norin T, 2016, FUNCT ECOL, V30, P369, DOI 10.1111/1365-2435.12503; Norin T, 2012, PHYSIOL BIOCHEM ZOOL, V85, P645, DOI 10.1086/665982; Norin T, 2011, J EXP BIOL, V214, P1668, DOI 10.1242/jeb.054205; Oufiero CE, 2009, FUNCT ECOL, V23, P969, DOI 10.1111/j.1365-2435.2009.01571.x; Pang X, 2015, MAR FRESHW BEHAV PHY, V48, P431, DOI 10.1080/10236244.2015.1090205; Pang X, 2014, J THERM BIOL, V42, P25, DOI 10.1016/j.jtherbio.2014.02.014; Pang X, 2013, J COMP PHYSIOL B, V183, P99, DOI 10.1007/s00360-012-0690-7; Pang X, 2010, COMP BIOCHEM PHYS A, V155, P253, DOI 10.1016/j.cbpa.2009.11.005; PELLETIER D, 1993, FISH PHYSIOL BIOCHEM, V12, P83, DOI 10.1007/BF00004373; PELLETIER D, 1993, J EXP ZOOL, V265, P477, DOI 10.1002/jez.1402650503; Portner HO, 2008, SCIENCE, V322, P690, DOI 10.1126/science.1163156; Priede I.G., 1985, P33; Reidy SP, 2000, J EXP BIOL, V203, P347; RICHARDSON JS, 1991, ECOLOGY, V72, P873, DOI 10.2307/1940589; Roche DG, 2013, J EXP BIOL, V216, P2103, DOI 10.1242/jeb.082925; Sogard SM, 1997, B MAR SCI, V60, P1129; Svendsen JC, 2010, J EXP BIOL, V213, P2177, DOI 10.1242/jeb.041368; Webb PW, 1975, B FISH RES BOARD CAN, V190, P1; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; White CR, 2013, J EXP BIOL, V216, P1763, DOI 10.1242/jeb.076562; Yan GJ, 2012, J THERM BIOL, V37, P424, DOI 10.1016/j.jtherbio.2012.04.006; Zeng LQ, 2009, COMP BIOCHEM PHYS A, V153, P125, DOI 10.1016/j.cbpa.2009.01.013 71 5 7 3 29 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1095-6433 1531-4332 COMP BIOCHEM PHYS A Comp. Biochem. Physiol. A-Mol. Integr. Physiol. SEP 2016 199 111 119 10.1016/j.cbpa.2016.06.011 9 Biochemistry & Molecular Biology; Physiology; Zoology Biochemistry & Molecular Biology; Physiology; Zoology DT9OU WOS:000381833000015 27312325 2019-02-21 J Virgo, S; Sear, R Virgo, Sandra; Sear, Rebecca Area-level mortality and morbidity predict 'abortion proportion' in England and Wales EVOLUTION AND HUMAN BEHAVIOR English Article Life history theory; Abortion; Morbidity; Mortality LIFE-HISTORY EVOLUTION; TEENAGE PREGNANCY; REPRODUCTIVE STRATEGIES; SOCIOECONOMIC-STATUS; DYING YOUNG; LIVING FAST; POPULATION; EXPECTANCY; RATES; DEPRIVATION Life history theory predicts that where mortality/morbidity is high, earlier reproduction will be favoured. A key component of reproductive decision-making in high income contexts is induced abortion. Accordingly, relationships between mortality/morbidity and 'abortion proportion' (proportion of conceptions ending in abortion) are explored at small-area ('ward') level in England and Wales. It is predicted that where mortality/morbidity is high, there will be a lower 'abortion proportion' in younger women (<25 years), adjusting for education, unemployment, income, housing tenure and population density. Results show that this prediction is supported: wards with both shorter life expectancy and a higher proportion of people with a limiting long-standing illness have lower abortion proportions in under 25 s. In older age bands, in contrast, elevated mortality and morbidity are mostly associated with a higher 'abortion proportion'. Further, morbidity appears to have a larger effect than mortality on 'abortion proportion' in the under-25 age band, perhaps because a) morbidity is be more salient than mortality in high-income contexts, and/or b) young women are influenced by health of potential female alloparents when scheduling fertility. (C) 2016 The Authors. Published by Elsevier Inc. [Virgo, Sandra; Sear, Rebecca] London Sch Hyg & Trop Med, Dept Populat Hlth, Keppel St, London WC1E 7HT, England Virgo, S (reprint author), London Sch Hyg & Trop Med, Dept Populat Hlth, Keppel St, London WC1E 7HT, England. Sandra.virgo@lshtm.ac.uk; Rebecca.sear@Ishtrn.ac.uk Sear, Rebecca/0000-0002-4315-0223 Economic and Social Research Council We are grateful to the funders, the Economic and Social Research Council. Agadjanian V, 2002, STUD FAMILY PLANN, V33, P237, DOI 10.1111/j.1728-4465.2002.00237.x; Bajekal Madhavi, 2005, Health Stat Q, P18; Bankole A, 1998, INT FAM PLAN PERSPEC, V24, P117, DOI 10.2307/3038208; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Bolte G, 2010, EUR J PUBLIC HEALTH, V20, P14, DOI 10.1093/eurpub/ckp213; Bradshaw J, 2005, J FAM PLAN REPROD H, V31, P15, DOI 10.1783/0000000052973022; Bulled NL, 2010, HUM NATURE-INT BIOS, V21, P269, DOI 10.1007/s12110-010-9092-2; Burton L M, 1990, Hum Nat, V1, P123, DOI 10.1007/BF02692149; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CONRAD D, 2012, J PUBLIC HLTH; CSDH, 2008, CLOS GAP GEN HLTH EQ; Cubbin C, 2000, J EPIDEMIOL COMMUN H, V54, P517, DOI 10.1136/jech.54.7.517; del Giudice Marco, 2011, EVOLUTION PERSONALIT, P154; Diamond I, 1999, J ROY STAT SOC A STA, V162, P273, DOI 10.1111/1467-985X.00135; Engqvist L, 2002, BEHAV ECOL, V13, P632, DOI 10.1093/beheco/13.5.632; Finer LB, 2005, PERSPECT SEX REPRO H, V37, P110, DOI 10.1363/3711005; Font-Ribera L, 2008, J URBAN HEALTH, V85, P125, DOI 10.1007/s11524-007-9233-z; GARLICK R, 1993, PUBLIC HEALTH, V107, P135, DOI 10.1016/S0033-3506(05)80411-1; Geronimus Arline T., 1992, Ethnicity and Disease, V2, P207; Geronimus AT, 1996, SOC SCI MED, V42, P589, DOI 10.1016/0277-9536(95)00159-X; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Geronimus AT, 1999, SOC SCI MED, V49, P1623, DOI 10.1016/S0277-9536(99)00246-4; Gray E, 2013, ADV LIFE COURSE RES, V18, P141, DOI 10.1016/j.alcr.2012.09.003; Griffiths C, 2000, Popul Trends, P13; Harding DJ, 2003, AM J SOCIOL, V109, P676, DOI 10.1086/379217; Hills J., 2010, ANATOMY EC INEQUALIT; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; HRDY SB, 1979, ETHOL SOCIOBIOL, V1, P13, DOI 10.1016/0162-3095(79)90004-9; Imamura M, 2007, EUR J PUBLIC HEALTH, V17, P630, DOI 10.1093/eurpub/ckm014; Javois J, 2004, ANIM BEHAV, V68, P249, DOI 10.1016/j.anbehav.2003.10.022; JOSHI H, 2004, HARV IN SEM; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Katz MH, 2011, MULTIVARIABLE ANAL P; Kramer KL, 2010, ANN HUM BIOL, V37, P613, DOI 10.3109/03014460903563434; Krupp DB, 2012, ARCH SEX BEHAV, V41, P1409, DOI 10.1007/s10508-012-9949-z; Lancaster GA, 2006, J ROY STAT SOC A STA, V169, P681, DOI 10.1111/j.1467-985X.2006.00418.x; Lee E., 2004, MATTER CHOICE EXPLAI; LO SV, 1994, BRIT J FAM PLAN, V20, P79; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Lycett JE, 1999, P ROY SOC B-BIOL SCI, V266, P2355, DOI 10.1098/rspb.1999.0931; Lynch SM, 2003, DEMOGRAPHY, V40, P309, DOI 10.1353/dem.2003.0016; McLanahan S, 2004, DEMOGRAPHY, V41, P607, DOI 10.1353/dem.2004.0033; McLeod A, 2001, BRIT MED J, V323, P199, DOI 10.1136/bmj.323.7306.199; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; Murphy M, 2008, POPUL DEV REV, V34, P19, DOI 10.1111/j.1728-4457.2008.00204.x; NETTLE D, 2014, WHAT FUTURE HELD CHI; Nettle D, 2011, PHILOS T R SOC B, V366, P357, DOI 10.1098/rstb.2010.0073; Nettle D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012690; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nguyen QC, 2012, SOC SCI MED, V74, P1452, DOI 10.1016/j.socscimed.2012.01.006; Office for National Statistics, 2013, FOC VIOL CRIM SEX OF; Olausson PO, 2001, FAM PLANN PERSPECT, V33, P70, DOI 10.2307/2673752; OLSHANSKY SJ, 1986, MILBANK Q, V64, P355, DOI 10.2307/3350025; Papke LE, 1996, J APPL ECONOM, V11, P619, DOI 10.1002/(SICI)1099-1255(199611)11:6<619::AID-JAE418>3.0.CO;2-1; PIANTADOSI S, 1988, AM J EPIDEMIOL, V127, P893, DOI 10.1093/oxfordjournals.aje.a114892; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roff Derek A., 1992; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Schillinger D, 2006, PUBLIC HEALTH REP, V121, P245, DOI 10.1177/003335490612100305; Sear R, 2010, BEHAV BRAIN SCI, V33, P34, DOI 10.1017/S0140525X09991725; Sedgh G, 2011, PERSPECT SEX REPRO H, V43, P188, DOI 10.1363/4318811; Sihvo S, 2003, J EPIDEMIOL COMMUN H, V57, P601, DOI 10.1136/jech.57.8.601; Smith DM, 2009, J YOUTH STUD, V12, P669, DOI 10.1080/13676260902897418; Smith GD, 1998, J EPIDEMIOL COMMUN H, V52, P399, DOI 10.1136/jech.52.6.399; SMITH T, 1993, BRIT MED J, V306, P1232, DOI 10.1136/bmj.306.6887.1232; Stearns S. C., 1992, EVOLUTION LIFE HIST, V249; Tullberg BS, 2001, EVOL HUM BEHAV, V22, P1, DOI 10.1016/S1090-5138(00)00057-X; UREN Z, 2007, TEENAGE CONCEPTIONS, V33; Vlassoff M, 2012, MENSTRUAL REGULATION; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Wellings K, 1999, REV REPROD, V4, P184, DOI 10.1530/revreprod/4.3.184; Wilkinson P, 2006, LANCET, V368, P1879, DOI 10.1016/S0140-6736(06)69777-8; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WILSON SH, 1992, J PUBLIC HEALTH MED, V14, P17; WOOD R, 1996, POPULATION TRENDS, V84, P21 77 0 0 0 4 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. SEP 2016 37 5 366 375 10.1016/j.evolhumbehav.2016.03.001 10 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences DT9RK WOS:000381839800004 Green Published, Other Gold 2019-02-21 J Severns, PM Severns, Paul M. Fire Elicits an Adaptive Reproductive Strategy Shift from Host Plant Quantity to Quality in a Capital Breeding Species EVOLUTIONARY BIOLOGY English Article Fire-adaptation; Income breeding species; Life history evolution; Plant-insect interactions; Prescribed fire TALLGRASS PRAIRIE; CLUTCH SIZE; LONG-TERM; INSECTS; HISTORY; CONSERVATION; OVIPOSITION; PERFORMANCE; BUTTERFLIES; MANAGEMENT Capital breeding species, those that do not acquire resources over their reproductive period, are hypothesized to have more flexible reproductive strategies than income breeding species, enabling the former to better cope with environmental changes. Yet, empirical study of this life history attribute in a changing environment is rare. Hemileuca eglanterina (Saturniidae), a strict capital breeding, day-flying moth, should employ a different reproductive strategy to exploit temporary increases in host plant nutrient quality following fire. In wetlands, where one half was burned and the other left unburned, the number of eggs/clutch was positively correlated with host plant abundance in the absence of fire, suggesting that H. eglanterina uses a resource abundance matching reproductive strategy by default. However, following fire, H. eglanterina laid greater numbers of eggs/clutch and did not adjust clutch size to host plant abundance, appearing to shift to a host plant quality based reproductive strategy. Coinciding with the fire-induced shift in reproductive strategy, host plants from burned habitat contained a greater proportion of N-containing compounds in their foliage than plants from unburned habitat, and larvae fed only leaves from the burned habitat had significantly greater survival than siblings fed unburned foliage. These results suggest the shift in reproductive strategy by H. eglanterina following fire was adaptive and that capital breeding species can cope with sudden environmental changes via alternative reproductive strategies. [Severns, Paul M.] Oregon State Univ, Dept Bot & Plant Pathol, 2082 Cordley Hall, Corvallis, OR 97331 USA Severns, PM (reprint author), Oregon State Univ, Dept Bot & Plant Pathol, 2082 Cordley Hall, Corvallis, OR 97331 USA. paulseverns@hotmail.com Awmack CS, 2002, ANNU REV ENTOMOL, V47, P817, DOI 10.1146/annurev.ento.47.091201.145300; Bailey JK, 2002, ECOLOGY, V83, P1701, DOI 10.1890/0012-9658(2002)083[1701:IAFAAE]2.0.CO;2; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; BOYD R, 1986, Canadian Journal of Anthropology, V5, P65; BREWER JS, 1995, OIKOS, V74, P45, DOI 10.2307/3545673; COURTNEY SP, 1982, OECOLOGIA, V52, P258, DOI 10.1007/BF00363846; DAMMAN H, 1991, J ANIM ECOL, V60, P193, DOI 10.2307/5454; DANTONIO CM, 1992, ANNU REV ECOL SYST, V23, P63, DOI 10.1146/annurev.es.23.110192.000431; Doughty P, 1998, ECOLOGY, V79, P1073, DOI 10.2307/176602; DUDLEY JL, 1993, AM MIDL NAT, V130, P286, DOI 10.2307/2426128; Ekbom B, 1998, OIKOS, V83, P56, DOI 10.2307/3546546; FAY PA, 1993, ENVIRON ENTOMOL, V22, P1333, DOI 10.1093/ee/22.6.1333; Fischer Klaus, 2001, Journal of the Lepidopterists' Society, V54, P91; Forcada J, 2008, GLOBAL CHANGE BIOL, V14, P2473, DOI 10.1111/j.1365-2486.2008.01678.x; FORCE DC, 1981, AM NAT, V117, P575, DOI 10.1086/283742; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Grogan P, 2000, OECOLOGIA, V122, P537, DOI 10.1007/s004420050977; HILL CJ, 1989, OECOLOGIA, V81, P249, DOI 10.1007/BF00379812; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Huber E, 2013, OECOLOGIA, V173, P1063, DOI 10.1007/s00442-013-2665-0; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Keeley JE, 2011, TRENDS PLANT SCI, V16, P406, DOI 10.1016/j.tplants.2011.04.002; Kerby J, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0484; LAMONT BB, 1991, BOT REV, V57, P277, DOI 10.1007/BF02858770; MATTSON WJ, 1980, ANNU REV ECOL SYST, V11, P119, DOI 10.1146/annurev.es.11.110180.001003; McCullough DG, 1998, ANNU REV ENTOMOL, V43, P107, DOI 10.1146/annurev.ento.43.1.107; McLoughlin PD, 2006, P ROY SOC B-BIOL SCI, V273, P1449, DOI 10.1098/rspb.2006.3486; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moretti M, 2002, J APPL ECOL, V39, P321, DOI 10.1046/j.1365-2664.2002.00701.x; Morris DW, 2000, ECOLOGY, V81, P2061, DOI 10.1890/0012-9658(2000)081[2061:OFMMPU]2.0.CO;2; MORRIS M G, 1975, Biological Conservation, V7, P311, DOI 10.1016/0006-3207(75)90046-4; OJIMA DS, 1994, BIOGEOCHEMISTRY, V24, P67, DOI 10.1007/BF02390180; Panzer R, 2000, BIOL CONSERV, V96, P363, DOI 10.1016/S0006-3207(00)00065-3; Parmesan C, 2013, ECOL LETT, V16, P58, DOI 10.1111/ele.12098; PILSON D, 1988, NATURE, V333, P361, DOI 10.1038/333361a0; Radho-Toly S, 2001, AUSTRAL ECOL, V26, P500, DOI 10.1046/j.1442-9993.2001.01133.x; Schmitz H, 2000, NATURWISSENSCHAFTEN, V87, P542, DOI 10.1007/s001140050775; SCRIBER JM, 1981, ANNU REV ENTOMOL, V26, P183, DOI 10.1146/annurev.en.26.010181.001151; SCRIBER JM, 1977, OECOLOGIA, V28, P269, DOI 10.1007/BF00751605; Severns PM, 2008, J INSECT CONSERV, V12, P651, DOI 10.1007/s10841-007-9101-x; Severns Paul M., 2003, Journal of the Lepidopterists' Society, V57, P137; Severns PM, 2011, INSECT CONSERV DIVER, V4, P184, DOI 10.1111/j.1752-4598.2010.00120.x; Severns PM, 2005, J MOLLUS STUD, V71, P181, DOI 10.1093/mollus/eyi021; Shochat E, 2005, OIKOS, V111, P159, DOI 10.1111/j.0030-1299.2005.13907.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Stiling P, 2007, GLOBAL CHANGE BIOL, V13, P1823, DOI 10.1111/j.1365-2486.2007.01392.x; Swengel AB, 2001, BIODIVERS CONSERV, V10, P1141, DOI 10.1023/A:1016683807033; TIBCO Spotfire, 2010, TIBCO SPOTF S 8 2 WI; Tuskes P. M., 1996, WILD SILK MOTHS N AM, P250; VASCONCELLOSNETO J, 1993, OECOLOGIA, V95, P431, DOI 10.1007/BF00320999; Vickery PD, 2002, CONSERV BIOL, V16, P413, DOI 10.1046/j.1523-1739.2002.00494.x; Walsh MK, 2010, PALAEOGEOGR PALAEOCL, V297, P273, DOI 10.1016/j.palaeo.2010.08.007; Warchola N, 2015, J INSECT CONSERV, V19, P1063, DOI 10.1007/s10841-015-9822-1 55 0 0 0 14 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0071-3260 1934-2845 EVOL BIOL Evol. Biol. SEP 2016 43 3 336 343 10.1007/s11692-016-9373-8 8 Evolutionary Biology Evolutionary Biology DS0EP WOS:000380268500003 2019-02-21 J Zaikman, Y; Vogel, EA; Vicary, AM; Marks, MJ Zaikman, Yuliana; Vogel, Erin A.; Vicary, Amanda M.; Marks, Michael J. The Influence of Early Experiences and Adult Attachment on the Exhibition of the Sexual Double Standard SEXUALITY AND CULTURE English Article Sexual double standard; Attachment theory; Life history theory; Sexual activity FATHER ABSENCE; REPRODUCTIVE DEVELOPMENT; ROMANTIC RELATIONSHIPS; GENDER; WOMEN; JEALOUSY; STYLE; ASSOCIATIONS; METAANALYSIS; ANTECEDENTS The sexual double standard is the phenomenon whereby men and women are judged differently for the same sexual behavior. The purpose of the present study was to investigate the potential relationship between life history theory, attachment theory and the sexual double standard. Life history theory posits that one's upbringing (e.g., quality of early relationship with one's parents) may have implications for one's future mating strategies, especially for women. Furthermore, adult attachment orientation often influences individuals' feelings toward sexual behavior. To address the relationship between these variables, we had participants complete questionnaires regarding their early relationships with their parents and their current attachment regarding romantic partners. Participants then evaluated a target individual who reported having 1 or 12 sexual partners (N = 154). Results showed that female participants' early relationships with their parents and their current attachment avoidance predicted their exhibition of the double standard. Results are discussed in the context of theoretical and empirical implications. [Zaikman, Yuliana; Marks, Michael J.] New Mexico State Univ, Dept Psychol, MSC 3452,POB 30001, Las Cruces, NM 88003 USA; [Vogel, Erin A.] Univ Toledo, Dept Psychol, Toledo, OH 43606 USA; [Vicary, Amanda M.] Illinois Wesleyan Univ, Dept Psychol, Bloomington, IL 61701 USA Zaikman, Y (reprint author), New Mexico State Univ, Dept Psychol, MSC 3452,POB 30001, Las Cruces, NM 88003 USA. yzaikman@nmsu.edu Anders SL, 2000, PERS RELATIONSHIP, V7, P379, DOI 10.1111/j.1475-6811.2000.tb00023.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Birnbaum GE, 2010, J SOC PERS RELAT, V27, P245, DOI 10.1177/0265407509360902; Bowlby J., 1973, ATTACHMENT LOSS, V2; Brassard A, 2007, PERS RELATIONSHIP, V14, P475, DOI 10.1111/j.1475-6811.2007.00166.x; BRENNAN KA, 1995, PERS SOC PSYCHOL B, V21, P267, DOI 10.1177/0146167295213008; Brumbaugh CC, 2007, PERS RELATIONSHIP, V14, P513, DOI 10.1111/j.1475-6811.2007.00169.x; Burns Vicki Ellison, 2008, Issues Ment Health Nurs, V29, P279, DOI 10.1080/01612840701869692; BUSS DM, 1992, PSYCHOL SCI, V3, P251, DOI 10.1111/j.1467-9280.1992.tb00038.x; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Costa AL, 2015, J AFFECT DISORDERS, V174, P38, DOI 10.1016/j.jad.2014.11.017; Del Giudice M, 2011, PERS SOC PSYCHOL B, V37, P193, DOI 10.1177/0146167210392789; Doyle AB, 2009, J RES ADOLESCENCE, V19, P690, DOI 10.1111/j.1532-7795.2009.00617.x; Duntley JD, 2011, AGGRESS VIOLENT BEH, V16, P399, DOI 10.1016/j.avb.2011.04.016; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Emmers-Sommer TM, 2010, COMMUN STUD, V61, P339, DOI 10.1080/10510971003752676; Fraley C. R., 1998, ATTACHMENT THEORY CL, P77; Fraley RC, 2011, J PERS SOC PSYCHOL, V101, P974, DOI 10.1037/a0024150; Fraley RC, 2011, PSYCHOL ASSESSMENT, V23, P615, DOI 10.1037/a0022898; Fraley RC, 2006, J PERS, V74, P1163, DOI 10.1111/j.1467-6494.2006.00406.x; Fraley RC, 2002, PERS SOC PSYCHOL REV, V6, P123, DOI 10.1207/S15327957PSPR0602_03; Fraley RC, 2000, J PERS SOC PSYCHOL, V79, P816, DOI 10.1037//0022-3514.79.5.816; Fraley RC, 2000, J PERS SOC PSYCHOL, V78, P350, DOI 10.1037//0022-3514.78.2.350; Ganong K, 2011, SOC MENT HEALTH, V1, P153, DOI 10.1177/2156869311431612; Gentry M, 1998, PSYCHOL WOMEN QUART, V22, P505, DOI 10.1111/j.1471-6402.1998.tb00173.x; Gentzler AL, 2004, PERS RELATIONSHIP, V11, P249, DOI 10.1111/j.1475-6811.2004.00081.x; Greene K, 2005, SEX ROLES, V53, P239, DOI 10.1007/s11199-005-5682-6; Guerrero LK, 1996, COMMUN MONOGR, V63, P269, DOI 10.1080/03637759609376395; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037/0022-3514.52.3.511; HILLER J, 2004, SEX RELATSH THER, V19, P1468; Howell JL, 2011, J SOC PSYCHOL, V151, P180, DOI 10.1080/00224540903510837; Ivan Z, 2006, J CULTURAL EVOLUTION, V4, P267, DOI DOI 10.1556/JCEP.4.2006.3-4.5; Ivcevic Z, 2012, PSYCHOL POP MEDIA CU, V1, P38, DOI 10.1037/a0027329; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; Lefkowitz ES, 2014, SEX CULT, V18, P833, DOI 10.1007/s12119-014-9225-6; Manago AM, 2008, J APPL DEV PSYCHOL, V29, P446, DOI 10.1016/j.appdev.2008.07.001; Marks M. J., J SOCIAL PERSONAL RE; Marks M. J., 2007, SOC INFLUENCE, V2, P29, DOI [10.1080/15534510601154413, DOI 10.1080/15534510601154413]; Marks MJ, 2008, BASIC APPL SOC PSYCH, V30, P84, DOI 10.1080/01973530701866664; Marks MJ, 2005, SEX ROLES, V52, P175, DOI 10.1007/s11199-005-1293-5; Mendle J, 2009, CHILD DEV, V80, P1463, DOI 10.1111/j.1467-8624.2009.01345.x; Mikulincer M., 2007, ATTACHMENT ADULTHOOD; Moors AC, 2015, J SOC PERS RELAT, V32, P222, DOI 10.1177/0265407514529065; MUEHLENHARD CL, 1985, PSYCHOL WOMEN QUART, V9, P297, DOI 10.1111/j.1471-6402.1985.tb00882.x; Mustanski B, 2007, HEALTH PSYCHOL, V26, P610, DOI 10.1037/0278-6133.26.5.610; Petersen JL, 2010, PSYCHOL BULL, V136, P21, DOI 10.1037/a0017504; Pottharst K., 1990, EXPLORATIONS ADULT A, P9; Qiu L, 2012, CYBERPSYCH BEH SOC N, V15, P569, DOI 10.1089/cyber.2012.0200; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Rodgers JL, 1999, J BIOSOC SCI, V31, P29, DOI 10.1017/S0021932099000292; Rudman LA, 2014, PSYCHOL SCI, V25, P1438, DOI 10.1177/0956797614533123; Sharpsteen DJ, 1997, J PERS SOC PSYCHOL, V72, P627, DOI 10.1037/0022-3514.72.3.627; Shaver P., 1999, HDB ATTACHMENT THEOR; SPRECHER S, 1989, J SEX RES, V26, P232, DOI 10.1080/00224498909551508; Turan B, 2010, PERS SOC PSYCHOL B, V36, P119, DOI 10.1177/0146167209349374; Vicary AM, 2007, PERS SOC PSYCHOL B, V33, P1279, DOI 10.1177/0146167207303013; Wassil-Grimm C., 1995, DADDY DIVORCED SINGL; Waters E, 2000, CHILD DEV, V71, P684, DOI 10.1111/1467-8624.00176; Young M., 2010, AM J HLTH STUDIES, V25, P156; Zaikman Y., J HOMOSEXUALITY; Zaikman Y, 2016, SEX CULT, V20, P255, DOI 10.1007/s12119-015-9319-9; Zaikman Y, 2014, SEX ROLES, V71, P333, DOI 10.1007/s11199-014-0417-1 65 2 2 3 6 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1095-5143 1936-4822 SEX CULT Sex. Cult. SEP 2016 20 3 425 445 10.1007/s12119-015-9332-z 21 Social Sciences, Interdisciplinary Social Sciences - Other Topics FI4HT WOS:000411932600001 2019-02-21 J Behringer, V; Wudy, SA; Blum, WF; Stevens, JMG; Remer, T; Boesch, C; Hohmann, G Behringer, Verena; Wudy, Stefan A.; Blum, Werner F.; Stevens, Jeroen M. G.; Remer, Thomas; Boesch, Christophe; Hohmann, Gottfried Sex Differences in Age-Related Decline of Urinary Insulin-Like Growth Factor-Binding Protein-3 Levels in Adult Bonobos and Chimpanzees FRONTIERS IN ENDOCRINOLOGY English Article aging pattern; urinary marker; IGFBP-3; primate; ape species; pan paniscus; pan troglodytes DEVELOPING RHESUS-MONKEY; TOTAL IGF-I; PAN-TROGLODYTES; HORMONE CONCENTRATIONS; CIRCULATING LEVELS; BIOLOGICAL-FLUIDS; WILD CHIMPANZEES; MORTALITY-RATES; FACTOR (IGF)-I; IGFBP-3 LEVELS There is increasing interest in the characterization of normative senescence in humans. To assess to what extent aging patterns in humans are unique, comparative data from closely related species, such as non-human primates, can be very useful. Here, we use data from bonobos and chimpanzees, two closely related species that share a common ancestor with humans, to explore physiological markers that are indicative of aging processes. Many studies on aging in humans focus on the somatotropic axis, consisting of growth hormone (GH), insulin-like growth factors (IGFs), and IGF binding proteins (IGFBPs). In humans, IGFBP-3 levels decline steadily with increasing age. We used urinary IGFBP-3 levels as an alternative endocrine marker for IGF-I to identify the temporal pattern known to be related with age-related changes in cell proliferation, growth, and apoptosis. We measured urinary IGFBP-3 levels in samples from 71 bonobos and 102 chimpanzees. Focusing on samples from individuals aged 10 years or older, we found that urinary IGFBP-3 levels decline in both ape species with increasing age. However, in both species, females start with higher urinary IGFBP-3 levels than males, experience a steeper decline with increasing age, and converge with male levels around the age of 30-35 years. Our measurements of urinary IGFBP-3 levels indicate that bonobos and chimpanzees mirror human patterns of age-related decline in IGFBP-3 in older individuals (<10 years) of both sexes. Moreover, such as humans, both ape species show sex-specific differences in IGFBP-3 levels with females having higher levels than males, a result that correlates with sex differences in life expectancy. Using changes in urinary IGFBP-3 levels as a proxy for changes in GH and IGF-I levels that mark age-related changes in cell proliferation, this approach provides an opportunity to investigate trade-offs in life-history strategies in cross-sectional and in longitudinal studies, both in captivity and in the wild. [Behringer, Verena; Boesch, Christophe; Hohmann, Gottfried] Max Planck Inst Evolutionary Anthropol, Dept Primatol, Leipzig, Germany; [Wudy, Stefan A.; Blum, Werner F.] Univ Giessen, Ctr Child & Adolescent Med, Lab Translat Hormone Analyt Paediat Endocrinol, Giessen, Germany; [Stevens, Jeroen M. G.] Royal Zool Soc Antwerp, Ctr Res & Conservat, Antwerp, Belgium; [Remer, Thomas] Univ Bonn, IEL Nutr Epidemiol, DONALD Study Dortmund, Dortmund, Germany Behringer, V (reprint author), Max Planck Inst Evolutionary Anthropol, Dept Primatol, Leipzig, Germany. verena_behringer@eva.mpg.cle Max Planck Society This project was funded by the Max Planck Society. Baayen R. H., 2008, ANAL LINGUISTIC DATA; Barr DJ, 2013, J MEM LANG, V68, P255, DOI 10.1016/j.jml.2012.11.001; Bates D, 2013, J STAT SOFTW, V52, P1; BAXTER RC, 1986, J CLIN INVEST, V78, P1504, DOI 10.1172/JCI112742; Baxter RC, 2010, RES PERSPECT END INT, P59, DOI 10.1007/978-3-642-04302-4_5; Behringer V, 2014, J HUM EVOL, V66, P83, DOI 10.1016/j.jhevol.2013.09.008; Benbassat CA, 1997, J CLIN ENDOCR METAB, V82, P1484, DOI 10.1210/jc.82.5.1484; Bernstein RM, 2008, AM J PHYS ANTHROPOL, V136, P156, DOI 10.1002/ajpa.20791; Bernstein RM, 2013, INT J PRIMATOL, V34, P732, DOI 10.1007/s10764-013-9692-x; Bernstein RM, 2012, AM J PRIMATOL, V74, P890, DOI 10.1002/ajp.22038; Blum JW, 2008, BIOACTIVE COMPONENTS, P397; BLUM WF, 1993, J CLIN ENDOCR METAB, V76, P1610, DOI 10.1210/jc.76.6.1610; BLUM WF, 1990, J CLIN ENDOCR METAB, V70, P1292, DOI 10.1210/jcem-70-5-1292; Bronikowski AM, 2011, SCIENCE, V331, P1325, DOI 10.1126/science.1201571; Carter CS, 2002, TRENDS GENET, V18, P295, DOI 10.1016/S0168-9525(02)02696-3; Clemmons D R, 1997, Cytokine Growth Factor Rev, V8, P45, DOI 10.1016/S1359-6101(96)00053-6; Clutton-Brock TH, 2007, P ROY SOC B-BIOL SCI, V274, P3097, DOI 10.1098/rspb.2007.1138; COHEN P, 1991, ACTA ENDOCRINOL-COP, V124, P74; COHEN P, 1992, PSYCHONEUROENDOCRINO, V17, P335, DOI 10.1016/0306-4530(92)90039-A; Collett-Solberg PF, 2000, ENDOCRINE, V12, P121, DOI 10.1385/ENDO:12:2:121; COLMAN RJ, 1999, METHODS AGING RES, P249; COPELAND KC, 1985, J CLIN ENDOCR METAB, V60, P1154, DOI 10.1210/jcem-60-6-1154; COPELAND KC, 1982, J CLIN ENDOCR METAB, V55, P1198, DOI 10.1210/jcem-55-6-1198; CORPAS E, 1993, ENDOCR REV, V14, P20, DOI 10.1210/er.14.1.20; Crawford BA, 1997, J MED PRIMATOL, V26, P153, DOI 10.1111/j.1600-0684.1997.tb00047.x; Crawford BA, 1996, J CLIN ENDOCR METAB, V81, P65, DOI 10.1210/jc.81.1.65; Crews DE, 2003, HUMAN SENESCENCE EVO; DAUGHADAY WH, 1989, ENDOCR REV, V10, P68, DOI 10.1210/edrv-10-1-68; DeLellis K, 2004, CANCER EPIDEM BIOMAR, V13, P1444; Dobson A. J., 2008, INTRO GEN LINEAR MOD; Erwin JM, 2002, INTERD T GERONT GERI, V31, P1; Erwin JM, 2001, DEV PRIMATOL, P195; Field A, 2009, DISCOVERING STAT USI; Forstmeier W, 2011, BEHAV ECOL SOCIOBIOL, V65, P47, DOI 10.1007/s00265-010-1038-5; Fox J., 2011, R COMPANION APPL REG; GARGOSKY SE, 1993, J CLIN ENDOCR METAB, V76, P1631, DOI 10.1210/jc.76.6.1631; GARGOSKY SE, 1992, ENDOCRINOLOGY, V131, P3051, DOI 10.1210/en.131.6.3051; Gems D, 2014, AGING-US, V6, P84, DOI 10.18632/aging.100640; Gilissen EP, 2016, BRAIN STRUCT FUNCT, V221, P647, DOI 10.1007/s00429-014-0931-5; Hamada Y, 2002, AM J PHYS ANTHROPOL, V118, P268, DOI 10.1002/ajpa.10078; HASEGAWA Y, 1992, J CLIN ENDOCR METAB, V74, P830, DOI 10.1210/jc.74.4.830; Herndon JG, 2001, COMPARATIVE MED, V51, P60; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; Hiraiwa-Hasegawa M., 1984, DEMOGRAPHIC STUDY LA, V25, P401, DOI DOI 10.1007/BF02381663; Janssen JAMJL, 1999, J ENDOCRINOL INVEST, V22, P313, DOI 10.1007/BF03343563; Janssen JAMJL, 1998, CLIN ENDOCRINOL, V48, P471; JONES JI, 1995, ENDOCR REV, V16, P3, DOI 10.1210/er.16.1.3; Junnila RK, 2013, NAT REV ENDOCRINOL, V9, P366, DOI 10.1038/nrendo.2013.67; JUUL A, 1995, J CLIN ENDOCR METAB, V80, P2534, DOI 10.1210/jc.80.8.2534; Kaklamani VG, 1999, J CLIN ONCOL, V17, P813, DOI 10.1200/JCO.1999.17.3.813; KATZ LEL, 1995, ENDOCRINOLOGIST, V5, P36; KING FA, 1988, SCIENCE, V240, P1475, DOI 10.1126/science.3287624; Kirkwood TBL, 2001, SEX AND LONGEVITY: SEXUALITY, GENDER, REPRODUCTION, PARENTHOOD, P1; Lamson G, 1991, Growth Factors, V5, P19, DOI 10.3109/08977199109000268; LANGFORD KS, 1995, J CLIN ENDOCR METAB, V80, P21, DOI 10.1210/jc.80.1.21; Leigh SR, 1996, AM J PHYS ANTHROPOL, V99, P43, DOI 10.1002/(SICI)1096-8644(199601)99:1<43::AID-AJPA3>3.0.CO;2-0; Littleton J, 2005, AM J PRIMATOL, V67, P281, DOI 10.1002/ajp.20185; LIU F, 1991, J CLIN ENDOCR METAB, V72, P905, DOI 10.1210/jcem-72-4-905; Martin FC, 1997, BAILLIERE CLIN ENDOC, V11, P223, DOI 10.1016/S0950-351X(97)80257-1; Miller RC, 2004, CLIN CHEM, V50, P924, DOI 10.1373/clinchem.2004.032292; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Monzavi R, 2002, BEST PRACT RES CL EN, V16, P433, DOI 10.1053/beem.2002.0212; Muller MN, 2014, J HUM EVOL, V66, P107, DOI 10.1016/j.jhevol.2013.10.004; Muller MN, 2012, AM J PHYS ANTHROPOL, V149, P622, DOI DOI 10.1002/AJPA.22157; NANTOSALONEN K, 1993, ENDOCRINOLOGY, V132, P781, DOI 10.1210/en.132.2.781; Nishida T, 2003, AM J PRIMATOL, V59, P99, DOI 10.1002/ajp.10068; Olney RC, 2003, MED PEDIATR ONCOL, V41, P228, DOI 10.1002/mpo.10342; Probst-Hensch NM, 2003, CANCER EPIDEM BIOMAR, V12, P739; R Development Core Team, 2016, R LANG ENV STAT COMP; Rajaram S, 1997, ENDOCR REV, V18, P801, DOI 10.1210/er.18.6.801; Ranke MB, 1990, ACTA PAEDIATR SC S, V79, P55, DOI 10.1111/j.1651-2227.1990.tb11634.x; Rechler MM, 1991, PEPTIDE GROWTH FACTO, P263; Renehan AG, 2006, ENDOCR-RELAT CANCER, V13, P273, DOI 10.1677/erc.1.01219; Rincon M, 2005, EXP GERONTOL, V40, P873, DOI 10.1016/j.exger.2005.06.014; Rosenfeld RG, 2009, HORM RES, V71, P36, DOI 10.1159/000192434; RUDMAN D, 1990, NEW ENGL J MED, V323, P1, DOI 10.1056/NEJM199007053230101; RUDMAN D, 1985, J AM GERIATR SOC, V33, P800, DOI 10.1111/j.1532-5415.1985.tb04195.x; Rutherford JN, 2009, AM J HUM BIOL, V21, P745, DOI 10.1002/ajhb.20923; Samani AA, 2007, ENDOCR REV, V28, P20, DOI 10.1210/er.2006-0001; Schielzeth H, 2010, METHODS ECOL EVOL, V1, P103, DOI 10.1111/j.2041-210X.2010.00012.x; Schoen RE, 2002, CANCER EPIDEM BIOMAR, V11, P581; Schubert G, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0083870; SCHWANDER JC, 1983, ENDOCRINOLOGY, V113, P297, DOI 10.1210/endo-113-1-297; Seck T, 1998, EUR J ENDOCRINOL, V138, P70, DOI 10.1530/eje.0.1380070; Sherwood CC, 2011, P NATL ACAD SCI USA, V108, P13029, DOI 10.1073/pnas.1016709108; STYNE DM, 1991, J MED PRIMATOL, V20, P334; SUIKKARI AM, 1992, J CLIN ENDOCR METAB, V74, P177, DOI 10.1210/jc.74.1.177; Suwazono Y, 2005, BIOMARKERS, V10, P117, DOI 10.1080/13547500500159001; Suzuki J, 2003, PRIMATES, V44, P273, DOI 10.1007/S10329-003-0044-x; Suzuki T, 2000, CLIN ENDOCRINOL, V53, P739, DOI 10.1046/j.1365-2265.2000.01144.x; Thompson ME, 2007, CURR BIOL, V17, P2150, DOI 10.1016/j.cub.2007.11.033; Thorner MO, 1992, WILLIAMS TXB ENDOCRI, P228; Videan EN, 2008, AM J PRIMATOL, V70, P327, DOI 10.1002/ajp.20494; Videan EN, 2006, COMPARATIVE MED, V56, P291; Ward EJ, 2009, FRONT ZOOL, V6, DOI 10.1186/1742-9994-6-4; Williams JM, 2008, AM J PRIMATOL, V70, P766, DOI 10.1002/ajp.20573; Willis EL, 2014, GEN COMP ENDOCR, V195, P21, DOI 10.1016/j.ygcen.2013.10.004; Woller MJ, 2002, J CLIN ENDOCR METAB, V87, P5160, DOI 10.1210/jc.2002-020659; Yang J, 2005, EXP GERONTOL, V40, P867, DOI 10.1016/j.exger.2005.08.001; ZUMKELLER W, 1990, ACTA ENDOCRINOL-COP, V123, P499, DOI 10.1530/acta.0.1230499 100 2 3 1 7 FRONTIERS MEDIA SA LAUSANNE PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND 1664-2392 FRONT ENDOCRINOL Front. Endocrinol. AUG 23 2016 7 118 10.3389/fendo.2016.00118 10 Endocrinology & Metabolism Endocrinology & Metabolism DY7LU WOS:000385311600001 27602019 DOAJ Gold, Green Published 2019-02-21 J Pick, JL; Hutter, P; Ebneter, C; Ziegler, AK; Giordano, M; Tschirren, B Pick, Joel L.; Hutter, Pascale; Ebneter, Christina; Ziegler, Ann-Kathrin; Giordano, Marta; Tschirren, Barbara Artificial selection reveals the energetic expense of producing larger eggs FRONTIERS IN ZOOLOGY English Article Life history evolution; Maintenance of variation; Cost of reproduction; Egg size; Maternal investment; Oxidative stress FINCHES TAENIOPYGIA-GUTTATA; SWALLOWS HIRUNDO-RUSTICA; STARLINGS STURNUS-VULGARIS; RESTING METABOLIC-RATE; FEMALE ZEBRA FINCHES; HISTORY TRADE-OFFS; OXIDATIVE STRESS; PREDATION RISK; GREAT TITS; EUROPEAN STARLINGS Background: The amount of resources provided by the mother before birth has important and long-lasting effects on offspring fitness. Despite this, there is a large amount of variation in maternal investment seen in natural populations. Life-history theory predicts that this variation is maintained through a trade-off between the benefits of high maternal investment for the offspring and the costs of high investment for the mother. However, the proximate mechanisms underlying these costs of reproduction are not well understood. Here we used artificial selection for high and low maternal egg investment in a precocial bird, the Japanese quail (Coturnix japonica) to quantify costs of maternal reproductive investment. Results: We show that females from the high maternal investment lines had significantly larger reproductive organs, which explained their overall larger body mass, and resulted in a higher resting metabolic rate (RMR). Contrary to our expectations, this increase in metabolic activity did not lead to a higher level of oxidative damage. Conclusions: This study is the first to provide experimental evidence for metabolic costs of increased per offspring investment. [Pick, Joel L.; Hutter, Pascale; Ebneter, Christina; Ziegler, Ann-Kathrin; Giordano, Marta; Tschirren, Barbara] Univ Zurich, Dept Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland Pick, JL (reprint author), Univ Zurich, Dept Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland. joel.l.pick@gmail.com Ziegler, Ann-Kathrin/R-6064-2018 Ziegler, Ann-Kathrin/0000-0002-2593-0349 Swiss National Science Foundation [PP00P3 128386, 458 PP00P3 157455] We thank Alison Pick and Barbara Schnuriger for help with animal husbandry, Jennifer Morger, Cindy Canale, Silvan Pfandler and Sabine Frei for help with data collection and Mathieu Giraudeau and Melissa Lemoine for discussions. The study was financially supported by the Swiss National Science Foundation (PP00P3 128386 and 458 PP00P3 157455 to BT). ADKINS EK, 1973, PHYSIOL BEHAV, V10, P619, DOI 10.1016/0031-9384(73)90232-1; Alberti A, 2000, RES CHEM INTERMEDIAT, V26, P253, DOI 10.1163/156856700X00769; Bauchinger U, 2011, J ORNITHOL, V152, P507, DOI 10.1007/s10336-010-0644-3; Bednekoff PA, 1996, P ROY SOC B-BIOL SCI, V263, P887, DOI 10.1098/rspb.1996.0131; Ben-Hamo M, 2010, COMP BIOCHEM PHYS A, V156, P84, DOI 10.1016/j.cbpa.2009.12.020; Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179; BOLTON M, 1991, IBIS, V133, P264, DOI 10.1111/j.1474-919X.1991.tb04568.x; Challenger WO, 2001, PHYSIOL BIOCHEM ZOOL, V74, P356, DOI 10.1086/320427; Christians JK, 1999, J EXP BIOL, V202, P2679; Christians JK, 2000, J AVIAN BIOL, V31, P312, DOI 10.1034/j.1600-048X.2000.310306.x; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Christians JK, 2001, J AVIAN BIOL, V74, P356; COOPER WE, 1990, BEHAV ECOL SOCIOBIOL, V27, P153; Costantini D, 2016, BEHAV ECOL SOCIOBIOL, V70, P809, DOI 10.1007/s00265-016-2091-5; Costantini D, 2014, NATURWISSENSCHAFTEN, V101, P541, DOI 10.1007/s00114-014-1190-2; Costantini D, 2011, J EXP BIOL, V214, P1148, DOI 10.1242/jeb.053496; Czesak ME, 2003, EVOLUTION, V57, P1121; Djawdan M, 1996, PHYSIOL ZOOL, V69, P1176, DOI 10.1086/physzool.69.5.30164252; Fischer K, 2006, J EVOLUTION BIOL, V19, P380, DOI 10.1111/j.1420-9101.2005.01046.x; Giordano M, 2015, OECOLOGIA, V177, P123, DOI 10.1007/s00442-014-3100-x; Giordano M, 2015, BEHAV ECOL SOCIOBIOL, V69, P777, DOI 10.1007/s00265-015-1893-1; Halliwell B, 2007, FREE RADICALS BIOL M; Hamel S, 2010, ECOLOGY, V91, P2034, DOI 10.1890/09-1311.1; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Henry CJ, 1996, LONG TERM CONSEQUENC; Hilton GM, 1999, OIKOS, V87, P295, DOI 10.2307/3546744; HOULE D, 1992, GENETICS, V130, P195; HOUSTON DC, 1995, J ZOOL, V235, P469, DOI 10.1111/j.1469-7998.1995.tb01763.x; Johnsgard PA, 1988, QUAILS PARTRIDGES FR; Johnston SL, 2007, OBESITY, V15, P600, DOI 10.1038/oby.2007.550; Kalmbach E, 2004, J AVIAN BIOL, V35, P501, DOI 10.1111/j.0908-8857.2004.03271.x; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Koopman WJH, 2010, ANTIOXID REDOX SIGN, V12, P1431, DOI 10.1089/ars.2009.2743; Kotrschal A, 2013, CURR BIOL, V23, P168, DOI 10.1016/j.cub.2012.11.058; Kvalnes T, 2013, OECOLOGIA, V171, P391, DOI 10.1007/s00442-012-2437-2; Lee SJ, 1996, P ROY SOC B-BIOL SCI, V263, P619, DOI 10.1098/rspb.1996.0093; Lighton J.R.B., 2008, MEASURING METABOLIC; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Martin JGA, 2010, AM NAT, V176, P414, DOI 10.1086/656267; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Mateo J. M., 2009, MATERNAL EFFECTS MAM; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Monaghan P, 1998, P ROY SOC B-BIOL SCI, V265, P1731, DOI 10.1098/rspb.1998.0495; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Nager RG, 2006, ARDEA, V94, P323; NESTOR KE, 1982, POULTRY SCI, V61, P2137, DOI 10.3382/ps.0612137; Nilsson JA, 2001, OECOLOGIA, V128, P187, DOI 10.1007/s004420100653; Perrins CM, 1996, IBIS, V138, P2, DOI 10.1111/j.1474-919X.1996.tb04308.x; Phillips RA, 1998, J AVIAN BIOL, V29, P190, DOI 10.2307/3677198; Pick JL, 2016, HEREDITY, V116, P542, DOI 10.1038/hdy.2016.16; Pick JL, 2016, AM NAT IN PRESS; Postma E, 2014, QUANTITATIVE GENETICS IN THE WILD, P16; R Core Team, 2014, R LANG ENV STAT COMP; Roff Derek A., 1992; Romanoff A. L., 1949, AVIAN EGG; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1; SCHLUTER D, 1993, EVOLUTION, V47, P658, DOI 10.1111/j.1558-5646.1993.tb02119.x; Schwarzkopf L, 1999, AM NAT, V154, P333, DOI 10.1086/303242; Selman C, 2001, J EXP BIOL, V204, P777; Selman RG, 1996, IBIS, V138, P348, DOI 10.1111/j.1474-919X.1996.tb04353.x; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Stearns S, 1992, EVOLUTION LIFE HIST; Stevenson IR, 2000, NATURE, V406, P366, DOI 10.1038/35019151; Swaddle JP, 2000, NATURE, V406, P585, DOI 10.1038/35020695; te Marvelde L, 2012, OECOLOGIA, V168, P631, DOI 10.1007/s00442-011-2122-x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANDAMME R, 1989, J HERPETOL, V23, P459; Veasey JS, 2001, J ANIM ECOL, V70, P20, DOI 10.1046/j.1365-2656.2001.00476.x; Veasey JS, 2000, FUNCT ECOL, V14, P115, DOI 10.1046/j.1365-2435.2000.00391.x; Vezina F, 2005, FUNCT ECOL, V19, P119, DOI 10.1111/j.0269-8463.2005.00942.x; Vezina F, 2002, PHYSIOL BIOCHEM ZOOL, V75, P377, DOI 10.1086/343137; Vezina F, 2005, J EXP BIOL, V208, P2533, DOI 10.1242/jeb.01675; Vezina F, 2006, ECOLOGY, V87, P2447, DOI 10.1890/0012-9658(2006)87[2447:IVEMSI]2.0.CO;2; Ward S, 2006, J AVIAN BIOL, V37, P179, DOI 10.1111/j.0908-8857.2006.03262.x; Ward S, 1996, PHYSIOL ZOOL, V69, P930, DOI 10.1086/physzool.69.4.30164236; Ward S, 1992, P NUTR SOC, V51, P41; Wegmann M, 2015, BEHAV ECOL, V26, P747, DOI 10.1093/beheco/arv006; Wegmann M, 2015, PHYSIOL BEHAV, V141, P127, DOI 10.1016/j.physbeh.2015.01.017; Wilder SM, 2016, FUNCT ECOL, V30, P108, DOI 10.1111/1365-2435.12460; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams T.D., 2001, P205; Williams TD, 1999, HORM BEHAV, V35, P135, DOI 10.1006/hbeh.1998.1506; Williams TD, 1996, CAN J ZOOL, V74, P85, DOI 10.1139/z96-011; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x; WITTER MS, 1994, ANIM BEHAV, V48, P201, DOI 10.1006/anbe.1994.1227; Woodburn RJW, 1997, J ZOOL, V243, P789, DOI 10.1111/j.1469-7998.1997.tb01976.x; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 92 6 6 2 19 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1742-9994 FRONT ZOOL Front. Zool. AUG 23 2016 13 38 10.1186/s12983-016-0172-y 10 Zoology Zoology DW3JM WOS:000383537900001 27559356 DOAJ Gold, Green Published 2019-02-21 J Ries, PR; Newton, TJ; Haro, RJ; Zigler, SJ; Davis, M Ries, Patricia R.; Newton, Teresa J.; Haro, Roger J.; Zigler, Steven J.; Davis, Mike Annual variation in recruitment of freshwater mussels and its relationship with river discharge AQUATIC CONSERVATION-MARINE AND FRESHWATER ECOSYSTEMS English Article hydroecology; unionids; monitoring; catch-curve; invertebrates PEARL MUSSEL; ASSEMBLAGE STRUCTURE; LAMPSILIS-CARDIUM; MISSISSIPPI RIVER; POPULATION-MODEL; UNIONIDAE; MARGARITIFERA; CONSERVATION; AGE; USA 1. Vital rates such as mortality, growth, and recruitment are important tools to evaluate the status of threatened populations and identify their vulnerabilities, leading to enhanced conservation strategies. 2. Native freshwater mussels are a guild of largely sedentary, filter-feeding bivalves currently facing worldwide declines. Lack of recruitment has been identified as a major threat to mussel populations. 3. A mussel bed in the Upper Mississippi River was sampled for 5 years (2008-2012). A trend analysis showed a significant decline in the percentage of species with juvenile representatives. 4. Species were grouped into equilibrium and periodic life history strategies to assess past recruitment. Residuals from catch-curve regressions quantified past year-class strength of both strategists and Amblema plicata over a 13-year period (1994-2006), and identified strong and weak year-classes. 5. Generalized linear regression models containing July maximum discharge and April minimum discharge explained 64% of the variation in recruitment strength of A. plicata. The best model for the equilibrium strategists explained 86% of the variation in recruitment and contained the same variables as A. plicata, but also incorporated the 7-day minimum discharge. For the periodic strategists, the model containing the number of low-flow pulses and the mean duration of high-flow pulses explained 56% of the variation in recruitment strength. 6. Understanding variation in recruitment dynamics of native mussels and its relationship to river discharge will be useful in designing effective management strategies to enhance conservation of this imperilled fauna. Copyright (C) 2015 John Wiley & Sons, Ltd. [Ries, Patricia R.; Newton, Teresa J.; Zigler, Steven J.] US Geol Survey, Upper Midwest Environm Sci Ctr, 2630 Fanta Reed Rd, La Crosse, WI 54603 USA; [Haro, Roger J.] Univ Wisconsin, River Studies Ctr, La Crosse, WI 54601 USA; [Davis, Mike] Minnesota Dept Nat Resources, Lake City, MN USA Ries, PR (reprint author), US Geol Survey, Upper Midwest Environm Sci Ctr, 2630 Fanta Reed Rd, La Crosse, WI 54603 USA. pries@usgs.gov Ries, Patricia/0000-0001-5095-7896; Zigler, Steven/0000-0002-4153-0652; Newton, Teresa/0000-0001-9351-5852 US Army Corps of Engineers, Upper Mississippi River Restoration, Environmental Management Program, Long Term Resource Monitoring element This research was funded by the US Army Corps of Engineers, Upper Mississippi River Restoration, Environmental Management Program, Long Term Resource Monitoring element. We thank, Bernard Sietman, Zeb Secrist, Shelby Marr, and the rest of the MNDNR dive crew for conducting the field work. We also thank Bob Kennedy for assembling discharge data, and Michelle Bartsch and two anonymous reviewers for helpful contributions. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. Allen DC, 2010, J N AM BENTHOL SOC, V29, P383, DOI 10.1899/09-024.1; Augspurger T, 2003, ENVIRON TOXICOL CHEM, V22, P2569, DOI 10.1897/02-339; Bauer G, 2001, ECOL STU AN, V145, P155; Beasley CR, 1999, J CONCHOL, V36, P53; Bey CR, 2015, AQUAT CONSERV, V25, P555, DOI 10.1002/aqc.2539; Button CA, 2011, MAR ECOL PROG SER, V431, P151, DOI 10.3354/meps09094; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; Daraio JA, 2010, J N AM BENTHOL SOC, V29, P838, DOI 10.1899/09-118.1; Gates KK, 2015, FRESHWATER BIOL, V60, P620, DOI 10.1111/fwb.12528; Haag WR, 2007, AQUAT CONSERV, V17, P25, DOI 10.1002/aqc.773; Haag WR, 2011, BIOL REV, V86, P225, DOI 10.1111/j.1469-185X.2010.00146.x; Haag WR, 2012, NORTH AMERICAN FRESHWATER MUSSELS: NATURAL HISTORY, ECOLOGY, AND CONSERVATION, P1, DOI 10.1017/CBO9781139048217; Haag WR, 2003, FRESHWATER BIOL, V48, P2118, DOI 10.1046/j.1365-2427.2003.01155.x; Hardison BS, 2001, REGUL RIVER, V17, P77, DOI 10.1002/1099-1646(200101/02)17:1<77::AID-RRR604>3.0.CO;2-S; Hastie LC, 2008, AQUAT CONSERV, V18, P671, DOI 10.1002/aqc.879; Hastie LC, 2011, TOXICOL ENVIRON CHEM, V93, P1748, DOI 10.1080/02772248.2010.503655; Helsel D. R., 2002, 4A3 USGS, V4, pA3; HOLLANDBARTELS LE, 1989, J FRESHWATER ECOL, V5, P87, DOI 10.1080/02705060.1989.9665216; Howard JK, 2006, J N AM BENTHOL SOC, V25, P677, DOI 10.1899/0887-3593(2006)25[677:FCTASO]2.0.CO;2; HURVICH CM, 1989, BIOMETRIKA, V76, P297, DOI 10.1093/biomet/76.2.297; Johnson HE, 2010, ECOL APPL, V20, P1753, DOI 10.1890/09-1107.1; Jones JW, 2011, AQUAT CONSERV, V21, P57, DOI 10.1002/aqc.1161; Lytle DA, 2004, ECOLOGY, V85, P2493, DOI 10.1890/04-0282; Maceina Michael J., 1998, North American Journal of Fisheries Management, V18, P998, DOI 10.1577/1548-8675(1998)018<0998:VILBRI>2.0.CO;2; Maceina MJ, 1997, FISH RES, V32, P115, DOI 10.1016/S0165-7836(97)00051-9; Master Lawrence L., 2000, P93; Miller AC, 1998, REGUL RIVER, V14, P179, DOI 10.1002/(SICI)1099-1646(199803/04)14:2<179::AID-RRR496>3.0.CO;2-S; Moorkens EA, 2014, AQUAT CONSERV, V24, P853, DOI 10.1002/aqc.2530; Morales Y, 2006, J N AM BENTHOL SOC, V25, P664, DOI 10.1899/0887-3593(2006)25[664:EOSAHC]2.0.CO;2; Newton TJ, 2011, AQUAT CONSERV, V21, P122, DOI 10.1002/aqc.1170; Newton TJ, 2003, ENVIRON TOXICOL CHEM, V22, P2554, DOI 10.1897/02-342; Olden JD, 2003, RIVER RES APPL, V19, P101, DOI 10.1002/rra.700; Payne BS, 2000, AM MIDL NAT, V144, P328, DOI 10.1674/0003-0031(2000)144[0328:ROFEBU]2.0.CO;2; Peterson JT, 2011, ENVIRON MANAGE, V48, P109, DOI 10.1007/s00267-011-9688-2; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Ricker W. E, 1975, FISHERIES RES BOARD, V191; ROPER DS, 1994, HYDROBIOLOGIA, V284, P205, DOI 10.1007/BF00006690; Strayer DL, 2012, ECOL APPL, V22, P1780, DOI 10.1890/11-1536.1; Strayer DL, 2004, BIOSCIENCE, V54, P429, DOI 10.1641/0006-3568(2004)054[0429:CPOPMN]2.0.CO;2; US Army Corps of Engineers, 2010, UPP MISS RIV RIV RES; Vaughn CC, 2006, J N AM BENTHOL SOC, V25, P691, DOI 10.1899/0887-3593(2006)25[691:UMIMAS]2.0.CO;2; Vaughn CC, 2004, AM MIDL NAT, V152, P336, DOI 10.1674/0003-0031(2004)152[0336:SOTMFO]2.0.CO;2; Vaughn CC, 2001, FRESHWATER BIOL, V46, P1431, DOI 10.1046/j.1365-2427.2001.00771.x; Villella RF, 2004, AM MIDL NAT, V151, P114, DOI 10.1674/0003-0031(2004)151[0114:ESARIA]2.0.CO;2; vonStorch H, 1995, ANALYSIS OF CLIMATE VARIABILITY, P11; Watters G. T, 2009, FRESHWATER MUSSELS O 47 5 5 0 23 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1052-7613 1099-0755 AQUAT CONSERV Aquat. Conserv.-Mar. Freshw. Ecosyst. AUG 2016 26 4 703 714 10.1002/aqc.2590 12 Environmental Sciences; Marine & Freshwater Biology; Water Resources Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources DW5GA WOS:000383670100008 2019-02-21 J Rodrigues, MA; Flatt, T Rodrigues, Marisa A.; Flatt, Thomas Endocrine uncoupling of the trade-off between reproduction and somatic maintenance in eusocial insects CURRENT OPINION IN INSECT SCIENCE English Article JUVENILE-HORMONE REGULATION; LIFE-HISTORY EVOLUTION; DROSOPHILA-MELANOGASTER; SOCIAL INSECTS; NATURAL-SELECTION; SPAN; VITELLOGENIN; LONGEVITY; ANTS; BEE In most animals reproduction trades off with somatic maintenance and survival. Physiologically this trade-off is mediated by hormones with opposite effects on reproduction and maintenance. In many insects, this regulation is achieved by an endocrine network that integrates insulin-like/IGF-1 signaling (IIS), juvenile hormone (JH), and the yolk precursor vitellogenin (Vg) (or, more generally, yolk proteins [YPs]). Downregulation of this network promotes maintenance and survival at the expense of reproduction. Remarkably, however, queens of highly eusocial social insects exhibit both enormous reproductive output and longevity, thus escaping the trade-off. Here we argue based on recent evidence that the proximate reason for why eusocial insects can decouple this trade-off is that they have evolved a different 'wiring' of the IIS-JH-Vg/YP circuit. [Rodrigues, Marisa A.; Flatt, Thomas] Univ Lausanne, Dept Ecol & Evolut, UNIL Sorge, Biophore, CH-1015 Lausanne, Switzerland Flatt, T (reprint author), Univ Lausanne, Dept Ecol & Evolut, UNIL Sorge, Biophore, CH-1015 Lausanne, Switzerland. thomas.flatt@unil.ch Flatt, Thomas/0000-0002-5990-1503 Swiss National Science Foundation (SNSF) [PP00P3_133641, 310030E-164207] We thank Tuck Finch and Michael Rose [171 for inspiration, and Klaus Hartfelder and Judith Korb for very helpful comments on the manuscript. This paper was written as part of the research carried out by the DFG Collaborative Research Unit (RU) 'Sociality and the Reversal of the Fecundity-longevity Trade-off' (DFG FOR 2281), and we thank the members of the RU for stimulating discussions. Due to space limitations, we could not always cite primary research papers but had to cite reviews instead; we apologize to our colleagues whose work we could not discuss. Our work was funded by the Swiss National Science Foundation (SNSF) (grants PP00P3_133641 and 310030E-164207 to T.F.). Amdam GV, 2003, J THEOR BIOL, V223, P451, DOI 10.1016/S0022-5193(03)00121-8; Amsalem E, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-45; Barchuk Angel Roberto, 2002, Journal of Insect Science (Tucson), V2, P1; Bartke A, 2013, PHYSIOL REV, V93, P571, DOI 10.1152/physrev.00006.2012; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; Bloch G, 2009, HORMONES, BRAIN AND BEHAVIOR, VOLS 1-5, 2ND EDITION, P1027; BOWNES M, 1992, J LIPID RES, V33, P777; Brandt BW, 2005, BIOESSAYS, V27, P339, DOI 10.1002/bies.20161; Corona M, 2007, P NATL ACAD SCI USA, V104, P7128, DOI 10.1073/pnas.0701909104; Corona M, 2016, CURR OPIN INSECT SCI, V13, P55, DOI 10.1016/j.cois.2015.12.003; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Flatt T, 2008, J EXP BIOL, V211, P2712, DOI 10.1242/jeb.014878; Flatt T, 2008, P NATL ACAD SCI USA, V105, P6368, DOI 10.1073/pnas.0709128105; Flatt T, 2007, EVOLUTION, V61, P1980, DOI 10.1111/j.1558-5646.2007.00151.x; Flatt T, 2013, Q REV BIOL, V88, P185, DOI 10.1086/671484; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Galikova M, 2011, EXP GERONTOL, V46, P141, DOI 10.1016/j.exger.2010.08.021; Giray T, 1996, P NATL ACAD SCI USA, V93, P11718, DOI 10.1073/pnas.93.21.11718; Hansen M, 2013, CELL METAB, V17, P10, DOI 10.1016/j.cmet.2012.12.003; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hartfelder K, 1998, CURR TOP DEV BIOL, V40, P45, DOI 10.1016/S0070-2153(08)60364-6; Heinze J, 2008, GERONTOLOGY, V54, P160, DOI 10.1159/000122472; Herman WS, 2001, P ROY SOC B-BIOL SCI, V268, P2509, DOI 10.1098/rspb.2001.1765; Hodkova M, 2008, J INSECT PHYSIOL, V54, P508, DOI 10.1016/j.jinsphys.2007.11.011; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Keller L, 1998, INSECT SOC, V45, P235, DOI 10.1007/s000400050084; Keller L, 2006, EXP GERONTOL, V41, P553, DOI 10.1016/j.exger.2006.04.002; Leroi AM, 2001, TRENDS ECOL EVOL, V16, P24, DOI 10.1016/S0169-5347(00)02032-2; Libbrecht R, 2013, P NATL ACAD SCI USA, V110, P11050, DOI 10.1073/pnas.1221781110; Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789; Nelson CM, 2007, PLOS BIOL, V5, P673, DOI 10.1371/journal.pbio.0050062; Palm W, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002828; Pamminger T, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2409; Puig O, 2005, GENE DEV, V19, P2435, DOI 10.1101/gad.1340505; Ramaswamy SB, 1997, ARCH INSECT BIOCHEM, V35, P539, DOI 10.1002/(SICI)1520-6327(1997)35:4<539::AID-ARCH12>3.0.CO;2-B; REMBOLD H, 1987, INSECT BIOCHEM, V17, P1003, DOI 10.1016/0020-1790(87)90110-7; Ren Yingxue, 2014, F1000Res, V3, P125, DOI 10.12688/f1000research.3975.1; Robinson GE, 1997, ARCH INSECT BIOCHEM, V35, P559, DOI 10.1002/(SICI)1520-6327(1997)35:4<559::AID-ARCH13>3.0.CO;2-9; Russell SJ, 2007, NAT REV MOL CELL BIO, V8, P681, DOI 10.1038/nrm2234; Seehuus SC, 2006, P NATL ACAD SCI USA, V103, P962, DOI 10.1073/pnas.0502681103; SOMMER K, 1993, ETHOLOGY, V94, P162; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P365; Tarone AM, 2012, HEREDITY, V109, P226, DOI 10.1038/hdy.2012.34; Tatar M, 2003, SCIENCE, V299, P1346, DOI 10.1126/science.1081447; Tatar M, 2001, EXP GERONTOL, V36, P723, DOI 10.1016/S0531-5565(00)00238-2; Tetlak A, 2015, BIOGERONTOLOGY, V16, P1; Toivonen JM, 2009, MOL CELL ENDOCRINOL, V299, P39, DOI 10.1016/j.mce.2008.07.005; Tsuji K, 1996, NATURWISSENSCHAFTEN, V83, P577; von Wyschetzki K, 2015, MOL BIOL EVOL, V32, P3173, DOI 10.1093/molbev/msv186; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson EO, 2005, P NATL ACAD SCI USA, V102, P13367, DOI 10.1073/pnas.0505858102; Yamamoto R, 2013, BMC BIOL, V11, DOI 10.1186/1741-7007-11-85; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 57 13 13 2 24 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 2214-5745 2214-5753 CURR OPIN INSECT SCI Curr. Opin. Insect Sci. AUG 2016 16 1 8 10.1016/j.cois.2016.04.013 8 Biology; Ecology; Entomology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Entomology EA2EM WOS:000386405600003 27720042 2019-02-21 J Negroni, MA; Jongepier, E; Feldmeyer, B; Kramer, BH; Foitzik, S Negroni, Matteo Antoine; Jongepier, Evelien; Feldmeyer, Barbara; Kramer, Boris H.; Foitzik, Susanne Life history evolution in social insects: a female perspective CURRENT OPINION IN INSECT SCIENCE English Article COLONY SIZE; ANT COLONIES; KIN SELECTION; HARVESTER ANT; QUEEN; HYMENOPTERA; REPRODUCTION; WORKERS; SPAN; EUSOCIALITY Social insects are known for their unusual life histories with fecund, long-lived queens and sterile, short-lived workers. We review ultimate factors underlying variation in life history strategies in female social insects, whose social life reshapes common trade-offs, such as the one between fecundity and longevity. Interspecific life history variation is associated with colony size, mediated by changes in division of labour and extrinsic mortality. In addition to the ratio of juvenile to adult mortality, social factors such as queen number influence life history trajectories. We discuss two hypotheses explaining why queen fecundity and lifespan is higher in single-queen societies and suggest further research directions on the evolution of life history variation in social insects. [Negroni, Matteo Antoine; Jongepier, Evelien; Foitzik, Susanne] Johannes Gutenberg Univ Mainz, Inst Zool, Johannes von Muller Weg 6, D-55128 Mainz, Germany; [Feldmeyer, Barbara] Senckenberg Biodivers & Climate Res Ctr BiK F, Mol Ecol, Senckenberganlage 25, D-60325 Frankfurt, Germany; [Kramer, Boris H.] Univ Groningen, Theoret Res Evolutionary Life Sci TRES, Nijenborgh 7, NL-9747 AG Groningen, Netherlands Foitzik, S (reprint author), Johannes Gutenberg Univ Mainz, Inst Zool, Johannes von Muller Weg 6, D-55128 Mainz, Germany. foitzik@uni-mainz.de Feldmeyer, Barbara/E-5067-2015; Foitzik, Susanne/A-6504-2019 Feldmeyer, Barbara/0000-0002-0413-7245; Foitzik, Susanne/0000-0001-8161-6306 DFG [Fo 298/17-1, Fe 1333/6-1, FOR 2281] This study was supported by DFG grants Fo 298/17-1 and Fe 1333/6-1 of the research unit FOR 2281. Barth MB, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105621; Boomsma JJ, 2007, CURR BIOL, V17, pR673, DOI 10.1016/j.cub.2007.06.033; Boomsma JJ, 2014, ANIM BEHAV, V92, P241, DOI 10.1016/j.anbehav.2014.03.005; Boomsma JJ, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0444; Boomsma JJ, 2009, PHILOS T R SOC B, V364, P3191, DOI 10.1098/rstb.2009.0101; Boulay R, 2014, J EVOLUTION BIOL, V27, P2856, DOI 10.1111/jeb.12515; Bourke AFG, 1999, J EVOLUTION BIOL, V12, P245, DOI 10.1046/j.1420-9101.1999.00028.x; BOURKE AFG, 1991, BIOL J LINN SOC, V43, P157, DOI 10.1111/j.1095-8312.1991.tb00591.x; BOURKE AFG, 1994, PHILOS T ROY SOC B, V345, P359, DOI 10.1098/rstb.1994.0115; Bourke AFG, 2007, ANNU REV ECOL EVOL S, V38, P103, DOI 10.1146/annurev.ecolsys.38.091206.095528; Bourke FG, 1995, SOCIAL EVOLUTION ANT; Burchill AT, 2016, INSECTES SOC; BUSCHINGER A, 1986, TRENDS ECOL EVOL, V1, P155, DOI 10.1016/0169-5347(86)90044-3; Buschinger A, 2009, MYRMECOL NEWS, V12, P219; Cassill D, 2003, J BIOECONOMICS, V2, P83; Changizi MA, 2002, J THEOR BIOL, V218, P215, DOI 10.1006/yjtbi.3070; Chapuisat M, 2002, P ROY SOC B-BIOL SCI, V269, P909, DOI 10.1098/rspb.2002.1962; Chouvenc T, 2015, INSECT SOC, V62, P23, DOI 10.1007/s00040-014-0369-z; COLE BJ, 1983, BEHAV ECOL SOCIOBIOL, V12, P191, DOI 10.1007/BF00290771; Cole BJ, 2002, ECOLOGY, V83, P1433, DOI 10.2307/3071955; Cronin AL, 2013, ANNU REV ENTOMOL, V58, P37, DOI 10.1146/annurev-ento-120811-153643; Dornhaus A, 2012, ANNU REV ENTOMOL, V57, P123, DOI 10.1146/annurev-ento-120710-100604; ELMES GW, 1982, J ANIM ECOL, V51, P665, DOI 10.2307/3990; Espadaler X, 2001, INSECT SOC, V48, P159, DOI 10.1007/PL00001760; Ferguson-Gow H, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1411; Fjerdingstad EJ, 2004, EVOLUTION, V58, P1056; Fjerdingstad EJ, 1998, BEHAV ECOL SOCIOBIOL, V42, P257, DOI 10.1007/s002650050437; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Franks NR, 2006, ANIM BEHAV, V72, P611, DOI 10.1016/j.anbehav.2005.11.019; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Giraldo YM, 2014, BEHAV ECOL SOCIOBIOL, V68, P1901, DOI 10.1007/s00265-014-1826-4; Gordon DM, 1996, ECOLOGY, V77, P2393, DOI 10.2307/2265741; Hartke TR, 2011, ANIM BEHAV, V82, P927, DOI 10.1016/j.anbehav.2011.07.022; Heinze J, 2008, GERONTOLOGY, V54, P160, DOI 10.1159/000122472; Heinze J, 2013, BEHAV ECOL SOCIOBIOL, V67, P1555, DOI 10.1007/s00265-013-1567-9; Heinze J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035201; HOLLDOBLER B, 1977, NATURWISSENSCHAFTEN, V64, P8, DOI 10.1007/BF00439886; Holldobler B., 1990, ANTS; Holway DA, 2001, ANIM BEHAV, V61, P1181, DOI 10.1006/anbe.2000.1698; Hou C, 2010, P NATL ACAD SCI USA, V107, P3634, DOI 10.1073/pnas.0908071107; Hughes WOH, 2008, SCIENCE, V320, P1213, DOI 10.1126/science.1156108; Ingram KK, 2013, J ANIM ECOL, V82, P540, DOI 10.1111/1365-2656.12036; KASPARI M, 1995, AM NAT, V145, P610, DOI 10.1086/285758; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Keller L, 1998, INSECT SOC, V45, P235, DOI 10.1007/s000400050084; Keller L., 1993, QUEEN NUMBER SOCIALI; Korb J, 2016, ANNU REV ENTOMOL, V61, P297, DOI 10.1146/annurev-ento-010715-023711; Kramer BH, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137969; Kramer BH, 2014, BEHAV ECOL SOCIOBIOL, V68, P41, DOI 10.1007/s00265-013-1620-8; Kramer BH, 2013, BIOL J LINN SOC, V109, P710, DOI 10.1111/bij.12072; Kramer BH, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061813; Kraus FB, 2004, BEHAV ECOL SOCIOBIOL, V55, P494, DOI 10.1007/s00265-003-0706-0; MACEVICZ S, 1976, BEHAV ECOL SOCIOBIOL, V1, P265, DOI 10.1007/BF00300068; McGlynn TP, 1999, AM NAT, V154, P690, DOI 10.1086/303270; MEDAWAR PB, 1952, UNRESOLVED PROBLEM B; Meunier L, 1999, INSECT SOC, V46, P171, DOI 10.1007/s000400050129; Michener CD, 1974, SOCIAL BEHAV BEES CO, P73; Ozan M, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1231; Palmer TM, 2004, ANIM BEHAV, V68, P993, DOI 10.1016/j.anbehav.2004.02.005; Parker JD, 2010, MYRMECOL NEWS, V13, P103; Peeters C, 2001, ANNU REV ENTOMOL, V46, P601, DOI 10.1146/annurev.ento.46.1.601; Rangel J, 2013, INSECT SOC, V60, P65, DOI 10.1007/s00040-012-0267-1; Rehan SM, 2015, TRENDS ECOL EVOL, V30, P426, DOI 10.1016/j.tree.2015.05.004; Retana J, 2015, ECOLOGY, V96, P2781, DOI 10.1890/14-2326.1.sm; Rubenstein D, COMP SOCIAL IN PRESS; Sanetra M, 2002, NATURWISSENSCHAFTEN, V89, P71, DOI 10.1007/s00114-001-0288-5; Schmid-Hempel P., 1998, PARASITES SOCIAL INS; Schrempf A, 2011, J EVOLUTION BIOL, V24, P1455, DOI 10.1111/j.1420-9101.2011.02278.x; Shik JZ, 2008, FUNCT ECOL, V22, P674, DOI 10.1111/j.1365-2435.2008.01428.x; Shik JZ, 2012, BIOL LETTERS, V8, P1059, DOI 10.1098/rsbl.2012.0463; SIEBER R, 1982, J INSECT PHYSIOL, V28, P979, DOI 10.1016/0022-1910(82)90002-6; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SZATHMARY E, 1995, NATURE, V374, P227, DOI 10.1038/374227a0; von Wyschetzki K, 2015, MOL BIOL EVOL, V32, P3173, DOI 10.1093/molbev/msv186; Wheller WM, 1911, J MORPHOL, V22, P307; Wiernasz DC, 2003, EVOLUTION, V57, P2179; Wilson E. O., 1971, INSECT SOC 77 6 7 5 38 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 2214-5745 2214-5753 CURR OPIN INSECT SCI Curr. Opin. Insect Sci. AUG 2016 16 51 57 10.1016/j.cois.2016.05.008 7 Biology; Ecology; Entomology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Entomology EA2EM WOS:000386405600010 27720050 2019-02-21 J de Verges, J; Nehring, V de Verges, Jane; Nehring, Volker A critical look at proximate causes of social insect senescence: damage accumulation or hyperfunction? CURRENT OPINION IN INSECT SCIENCE English Article HONEYBEES APIS-MELLIFERA; LIFE-HISTORY EVOLUTION; OXIDATIVE STRESS; REPRODUCTIVE PROTEIN; INNATE IMMUNITY; BEE LONGEVITY; WING WEAR; AGE; SPAN; ANT Social insects have received attention for their extreme lifespan variation and reversal of the fecundity/longevity trade-off. However, proximate causes of senescence in general are disputed, and social insects often fail to meet the predictions of prevailing models. We present evidence for and against the long-held free radical theory of aging in social insects, and consider the application of the competing hyperfunction theory. Current results present problems for both theories, and a more complex picture of the biological processes involved emerges. The eusocial life style might allow colonies to allocate damage in ways that create seemingly senescence-free life histories. Only experimental approaches characterizing multiple senescence factors simultaneously will shed light on how social insects defy the conventions of senescence. [de Verges, Jane; Nehring, Volker] Univ Freiburg, Biol Evolut & Ecol 1, Hauptstr 1, D-79104 Freiburg, Germany Nehring, V (reprint author), Univ Freiburg, Biol Evolut & Ecol 1, Hauptstr 1, D-79104 Freiburg, Germany. volker.nehring@biologie.uni-freiburg.de Nehring, Volker/H-1908-2012 Nehring, Volker/0000-0002-0494-1428 Aamodt RM, 2009, EXP GERONTOL, V44, P586, DOI 10.1016/j.exger.2009.06.004; Amdam GV, 2011, AGING CELL, V10, P18, DOI 10.1111/j.1474-9726.2010.00647.x; Amdam GV, 2005, EXP GERONTOL, V40, P939, DOI 10.1016/j.exger.2005.08.004; Armitage SAO, 2010, J INSECT PHYSIOL, V56, P780, DOI 10.1016/j.jinsphys.2010.01.009; Aurori CM, 2014, J GERONTOL A-BIOL, V69, P633, DOI 10.1093/gerona/glt134; Azizi T, 2009, PHYSIOL ENTOMOL, V34, P79, DOI 10.1111/j.1365-3032.2008.00655.x; Behrends A, 2007, EXP GERONTOL, V42, P1146, DOI 10.1016/j.exger.2007.09.003; Bernadou A, 2015, BEHAV ECOL SOCIOBIOL, V69, P1365, DOI 10.1007/s00265-015-1950-9; Bull JC, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1003083; Chuang YL, 2013, AGE, V35, P1867, DOI 10.1007/s11357-012-9490-y; Corona M, 2005, MECH AGEING DEV, V126, P1230, DOI 10.1016/j.mad.2005.07.004; Corona M, 2007, P NATL ACAD SCI USA, V104, P7128, DOI 10.1073/pnas.0701909104; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Dukas R, 2011, ANIM BEHAV, V81, P635, DOI 10.1016/j.anbehav.2010.12.011; Freitak D, 2014, BIOL LETT; Gems D, 2013, ANTIOXID REDOX SIGN, V19, P321, DOI 10.1089/ars.2012.4840; Gems D, 2013, ANNU REV PHYSIOL, V75, P621, DOI 10.1146/annurev-physiol-030212-183712; Giraldo YM, 2016, P R SOC B, P283; Giraldo YM, 2014, BEHAV ECOL SOCIOBIOL, V68, P1901, DOI 10.1007/s00265-014-1826-4; Goto S, 2015, AGING MECH, P3; Haddad LS, 2007, EXP GERONTOL, V42, P601, DOI 10.1016/j.exger.2007.02.008; Hedenstrom A, 2001, FUNCT ECOL, V15, P417, DOI 10.1046/j.0269-8463.2001.00531.x; Heinze J, 2013, BEHAV ECOL SOCIOBIOL, V67, P1555, DOI 10.1007/s00265-013-1567-9; Heinze J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035201; Hystad EM, 2014, EXP GERONTOL, V49, P12, DOI 10.1016/j.exger.2013.10.013; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Kirkwood T B, 1977, NATURE, V170, P201; Kodrik D, 2015, INT J MOL SCI, V16, P25788, DOI 10.3390/ijms161025788; Korb J, 2016, FRONT ECOL EVOL, V4, DOI 10.3389/fevo.2016.00045; Kramer BH, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061813; Lucas ER, 2014, CURR OPIN INSECT SCI, V5, P31, DOI 10.1016/j.cois.2014.09.009; Munch D, 2013, HBK BEHAV NEUROSCI, V22, P487, DOI 10.1016/B978-0-12-415823-8.00037-X; Munch D, 2013, J EXP BIOL, V216, P1638, DOI 10.1242/jeb.078915; Munch D, 2008, FUNCT ECOL, V22, P407, DOI 10.1111/j.1365-2435.2008.01419.x; Munch D, 2015, EXP GERONTOL, V71, P103, DOI 10.1016/j.exger.2015.08.001; Munch D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013504; Munch D, 2010, FEBS LETT, V584, P2496, DOI 10.1016/j.febslet.2010.04.007; Neff F, 2013, J CLIN INVEST, V123, P3272, DOI 10.1172/JCI67674; NEUKIRCH A, 1982, J COMP PHYSIOL, V146, P35, DOI 10.1007/BF00688714; Nutting W. L., 1969, P233; Omholt Stig W, 2004, Sci Aging Knowledge Environ, V2004, ppe28, DOI 10.1126/sageke.2004.26.pe28; Pamminger T, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2409; Parker JD, 2004, P NATL ACAD SCI US; Pearl R., 1928, RATE LIVING; PORTER SD, 1981, BEHAV ECOL SOCIOBIOL, V9, P247, DOI 10.1007/BF00299879; Radak Z, 2005, BIOGERONTOLOGY, V6, P71, DOI 10.1007/s10522-004-7386-7; Reavey CE, 2015, ECOL EVOL, V5, P4365, DOI 10.1002/ece3.1668; Remolina SC, 2007, J INSECT PHYSIOL, V53, P1027, DOI [10.1016/j.jinsphys.2007.05.015, 10.1016/j.jinspliys.2007.05.015]; Roisin Y, 2011, BIOLOGY OF TERMITES: A MODERN SYNTHESIS, P133, DOI 10.1007/978-90-481-3977-4_6; Rueppell O, 2005, AGING CELL, V4, P13, DOI 10.1111/j.1474-9728.2004.00141.x; Rueppell O, 2015, J EVOLUTION BIOL, V28, P2349, DOI 10.1111/jeb.12749; Rueppell O, 2007, EXP GERONTOL, V42, P1020, DOI 10.1016/j.exger.2007.06.002; Rueppell O, 2007, CURR BIOL, V17, pR274, DOI 10.1016/j.cub.2007.02.015; Scheiner R, 2009, J EXP BIOL, V212, P994, DOI 10.1242/jeb.021188; Schmid MR, 2008, J INSECT PHYSIOL, V54, P439, DOI 10.1016/j.jinsphys.2007.11.002; Schneider SA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014601; Schofield RMS, 2011, BEHAV ECOL SOCIOBIOL, V65, P969, DOI 10.1007/s00265-010-1098-6; Seehuus SC, 2006, P NATL ACAD SCI USA, V103, P962, DOI 10.1073/pnas.0502681103; Seehuus SC, 2006, EXP GERONTOL, V41, P1117, DOI 10.1016/j.exger.2006.08.004; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Speth MT, 2015, EXP GERONTOL, V65, P46, DOI 10.1016/j.exger.2015.03.006; STRASSMANN JE, 1985, INSECT SOC, V32, P275, DOI 10.1007/BF02224916; Sun JT, 2002, GENETICS, V161, P661; Tolfsen CC, 2011, J EXP BIOL, V214, P1322, DOI 10.1242/jeb.049155; Vance JT, 2014, J INSECT PHYSIOL, V65, P27, DOI 10.1016/j.jinsphys.2014.04.003; Weil T, 2007, BMC GENOMICS, V8, DOI 10.1186/1471-2164-8-198; Williams JB, 2008, EXP GERONTOL, V43, P538, DOI 10.1016/j.exger.2008.02.001; Zimniak P, 2008, AGEING RES REV, V7, P281, DOI 10.1016/j.arr.2008.04.001; Zimniak Piotr, 2012, Frontiers in Genetics, V3, P189, DOI 10.3389/fgene.2012.00189; Zirnniak P, 2011, FREE RADICAL BIO MED, V51, P1087, DOI 10.1016/j.freeradbiomed.2011.05.039 70 2 2 4 21 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 2214-5745 2214-5753 CURR OPIN INSECT SCI Curr. Opin. Insect Sci. AUG 2016 16 69 75 10.1016/j.cois.2016.05.003 7 Biology; Ecology; Entomology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Entomology EA2EM WOS:000386405600013 27720053 2019-02-21 J Kivela, SM; Valimaki, P; Gotthard, K Kivela, Sami M.; Valimaki, Panu; Gotthard, Karl Evolution of alternative insect life histories in stochastic seasonal environments ECOLOGY AND EVOLUTION English Article Bet-hedging; clinal variation; geometric mean fitness; life cycle; phenotypic plasticity; voltinism AQUARIUS-REMIGIS HETEROPTERA; DIAPAUSE INDUCTION; UNCERTAIN ENVIRONMENTS; VARIABLE ENVIRONMENTS; DELAYED REPRODUCTION; POPULATION-DYNAMICS; NATURAL-SELECTION; AGE STRUCTURE; TRADE-OFF; FITNESS Deterministic seasonality can explain the evolution of alternative life history phenotypes (i.e., life history polyphenism) expressed in different generations emerging within the same year. However, the influence of stochastic variation on the expression of such life history polyphenisms in seasonal environments is insufficiently understood. Here, we use insects as a model and explore (1) the effects of stochastic variation in seasonality and (2) the life cycle on the degree of life history differentiation among the alternative developmental pathways of direct development and diapause (overwintering), and (3) the evolution of phenology. With numerical simulation, we determine the values of development (growth) time, growth rate, body size, reproductive effort, adult life span, and fecundity in both the overwintering and directly developing generations that maximize geometric mean fitness. The results suggest that natural selection favors the expression of alternative life histories in the alternative developmental pathways even when there is stochastic variation in seasonality, but that trait differentiation is affected by the developmental stage that overwinters. Increasing environmental unpredictability induced a switch to a bet-hedging type of life history strategy, which is consistent with general life history theory. Bet-hedging appeared in our study system as reduced expression of the direct development phenotype, with associated changes in life history phenotypes, because the fitness value of direct development is highly variable in uncertain environments. Our main result is that seasonality itself is a key factor promoting the evolution of seasonally polyphenic life histories but that environmental stochasticity may modulate the expression of life history phenotypes. [Kivela, Sami M.; Gotthard, Karl] Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden; [Kivela, Sami M.; Valimaki, Panu] Univ Oulu, Dept Ecol, POB 3000, FI-90014 Oulu, Finland Kivela, SM (reprint author), Univ Oulu, Dept Ecol, POB 3000, FI-90014 Oulu, Finland. sami.kivela@oulu.fi Gotthard, Karl/F-1163-2011 Kivela, Sami/0000-0002-6844-9168 Knut and Alice Wallenberg Foundation; EkoKlim at Stockholm University; Swedish Research Council; Stockholm University; Finnish Cultural Foundation The Knut and Alice Wallenberg Foundation, the strategic research programme EkoKlim at Stockholm University, the Swedish Research Council, the international fellowship program at Stockholm University, the Finnish Cultural Foundation. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Arbaciauskas K, 2001, HYDROBIOLOGIA, V442, P157, DOI 10.1023/A:1017593131383; Barbosa M, 2015, ECOL EVOL, V5, P4567, DOI 10.1002/ece3.1723; Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; BLANCKENHORN WU, 1994, OECOLOGIA, V97, P354, DOI 10.1007/BF00317325; BLANCKENHORN WU, 1995, J EVOLUTION BIOL, V8, P21, DOI 10.1046/j.1420-9101.1995.8010021.x; Bonte D, 2014, ECOLOGY, V95, P3104, DOI 10.1890/13-2269.1; BRONMARK C, 1992, SCIENCE, V258, P1348, DOI 10.1126/science.258.5086.1348; BULL JJ, 1987, EVOLUTION, V41, P303, DOI 10.1111/j.1558-5646.1987.tb05799.x; BULMER MG, 1984, THEOR POPUL BIOL, V26, P367, DOI 10.1016/0040-5809(84)90040-6; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN D, 1970, AM NAT, V104, P389, DOI 10.1086/282672; COOPER WS, 1982, J THEOR BIOL, V94, P135, DOI 10.1016/0022-5193(82)90336-8; Danks H.V., 1987, INSECT DORMANCY ECOL; DEMPSTER ER, 1955, COLD SPRING HARB SYM, V20, P25, DOI 10.1101/SQB.1955.020.01.005; Dixon AFG, 2009, FUNCT ECOL, V23, P257, DOI 10.1111/j.1365-2435.2008.01489.x; ELLNER S, 1985, THEOR POPUL BIOL, V28, P50, DOI 10.1016/0040-5809(85)90022-X; Evans MEK, 2005, Q REV BIOL, V80, P431, DOI 10.1086/498282; Friberg M, 2011, OECOLOGIA, V165, P301, DOI 10.1007/s00442-010-1804-0; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; Gourbiere S, 2009, EVOLUTION, V63, P1879, DOI 10.1111/j.1558-5646.2009.00731.x; Halkett F, 2004, AM NAT, V163, pE112, DOI 10.1086/383618; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; Haugen IMA, 2015, J ANIM ECOL, V84, P464, DOI 10.1111/1365-2656.12291; IWASA Y, 1994, SERIES ENTOM, V52, P69; Kivela SM, 2012, J EVOLUTION BIOL, V25, P881, DOI 10.1111/j.1420-9101.2012.02478.x; Kivela SM, 2013, EVOLUTION, V67, P3145, DOI 10.1111/evo.12181; Kivela SM, 2009, AM NAT, V174, P526, DOI 10.1086/605371; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; LIVELY CM, 1986, EVOLUTION, V40, P232, DOI 10.1111/j.1558-5646.1986.tb00466.x; McCollum SA, 1996, EVOLUTION, V50, P583, DOI 10.1111/j.1558-5646.1996.tb03870.x; Menu F, 2000, AM NAT, V155, P724, DOI 10.1086/303355; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; Nijhout HF, 2003, EVOL DEV, V5, P9, DOI 10.1046/j.1525-142X.2003.03003.x; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; PHILIPPI T, 1993, AM NAT, V142, P474, DOI 10.1086/285550; R Core Team, 2013, R LANG ENV STAT COMP; Radwan J, 2002, J EVOLUTION BIOL, V15, P744, DOI 10.1046/j.1420-9101.2002.00444.x; Rajon E, 2014, AM NAT, V184, pE1, DOI 10.1086/676506; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff D, 1983, DIAPAUSE LIFE CYCLE, P253; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff DA, 2008, J GENET, V87, P339, DOI 10.1007/s12041-008-0056-9; SASAKI A, 1995, EVOLUTION, V49, P337, DOI 10.1111/j.1558-5646.1995.tb02246.x; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Scheiner SM, 2014, ECOL EVOL, V4, P505, DOI 10.1002/ece3.951; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Simpson SJ, 2011, CURR BIOL, V21, pR738, DOI 10.1016/j.cub.2011.06.006; SLATKIN M, 1976, AM NAT, V110, P31, DOI 10.1086/283047; SPENCE JR, 1989, CAN J ZOOL, V67, P2432, DOI 10.1139/z89-344; Starrfelt J, 2012, BIOL REV, V87, P742, DOI 10.1111/j.1469-185X.2012.00225.x; Stireman JO, 2005, P NATL ACAD SCI USA, V102, P17384, DOI 10.1073/pnas.0508839102; Stork N. E., 2003, ENCY INSECTS, P85; Tammaru T, 2007, FUNCT ECOL, V21, P1099, DOI 10.1111/j.1365-2435.2007.01319.x; Tauber M.J., 1986, SEASONAL ADAPTATIONS; TAYLOR F, 1986, THEOR POPUL BIOL, V30, P76, DOI 10.1016/0040-5809(86)90025-0; TAYLOR F, 1986, THEOR POPUL BIOL, V30, P93, DOI 10.1016/0040-5809(86)90026-2; TAYLOR F, 1980, THEOR POPUL BIOL, V18, P125, DOI 10.1016/0040-5809(80)90044-1; Teder T, 2010, OECOLOGIA, V162, P117, DOI 10.1007/s00442-009-1439-1; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; TULJAPURKAR S, 1993, THEOR POPUL BIOL, V43, P251, DOI 10.1006/tpbi.1993.1011; Tuljapurkar S, 2000, ECOL MODEL, V133, P143, DOI 10.1016/S0304-3800(00)00288-X; Valimaki P, 2008, J EVOLUTION BIOL, V21, P1711, DOI 10.1111/j.1420-9101.2008.01597.x; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; WALKER TJ, 1986, FLA ENTOMOL, V69, P46, DOI 10.2307/3494744; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; Wilbur HM, 2006, AM NAT, V168, P398, DOI 10.1086/506258; Yoshimura J, 1996, RES POPUL ECOL, V38, P165, DOI 10.1007/BF02515724 72 7 7 6 46 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. AUG 2016 6 16 5596 5613 10.1002/ece3.2310 18 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DT6FF WOS:000381578400004 27547340 DOAJ Gold, Green Published 2019-02-21 J Lack, JB; Yassin, A; Sprengelmeyer, QD; Johanning, EJ; David, JR; Pool, JE Lack, Justin B.; Yassin, Amir; Sprengelmeyer, Quentin D.; Johanning, Evan J.; David, Jean R.; Pool, John E. Life history evolution and cellular mechanisms associated with increased size in high-altitude Drosophila ECOLOGY AND EVOLUTION English Article Cell; Drosophila; egg; life history; size; wing SPRUCE BUDWORM LEPIDOPTERA; BODY-SIZE; EGG SIZE; DEVELOPMENTAL TIME; THERMAL EVOLUTION; WING SIZE; MORPHOLOGICAL TRAITS; NATURAL-POPULATIONS; LATITUDINAL CLINES; LARVAL DEVELOPMENT Understanding the physiological and genetic basis of growth and body size variation has wide-ranging implications, from cancer and metabolic disease to the genetics of complex traits. We examined the evolution of body and wing size in high-altitude Drosophila melanogaster from Ethiopia, flies with larger size than any previously known population. Specifically, we sought to identify life history characteristics and cellular mechanisms that may have facilitated size evolution. We found that the large-bodied Ethiopian flies laid significantly fewer but larger eggs relative to lowland, smaller-bodied Zambian flies. The highland flies were found to achieve larger size in a similar developmental period, potentially aided by a reproductive strategy favoring greater provisioning of fewer offspring. At the cellular level, cell proliferation was a strong contributor to wing size evolution, but both thorax and wing size increases involved important changes in cell size. Nuclear size measurements were consistent with elevated somatic ploidy as an important mechanism of body size evolution. We discuss the significance of these results for the genetic basis of evolutionary changes in body and wing size in Ethiopian D. melanogaster. [Lack, Justin B.; Yassin, Amir; Sprengelmeyer, Quentin D.; Johanning, Evan J.; Pool, John E.] Univ Wisconsin, Genet Lab, 425-G Henry Mall, Madison, WI 53706 USA; [David, Jean R.] Univ Paris Saclay, Univ Paris 11, Lab Evolut Genomes Comportement Ecol EGCE, CNRS,IRD, 1 Ave Terrasse, F-91198 Gif Sur Yvette, France; [Lack, Justin B.] NCI, Ctr Canc Res, NIH, Bethesda, MD 20892 USA Lack, JB (reprint author), Univ Wisconsin, 425-G Henry Mall, Madison, WI 53706 USA. jpool@wisc.edu Pool, John/0000-0003-2968-9545 National Institute of General Medical Sciences [F32 GM106594, R01 GM111797] National Institute of General Medical Sciences (Grant/Award Number: "F32 GM106594", "R01 GM111797"). ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Azevedo RBR, 1997, AM NAT, V150, P250, DOI 10.1086/286065; Azevedo RBR, 1996, EVOLUTION, V50, P2338, DOI 10.1111/j.1558-5646.1996.tb03621.x; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; Bitner-Mathe BC, 1999, GENETICA, V105, P35, DOI 10.1023/A:1003591726851; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Bridle JR, 2009, P ROY SOC B-BIOL SCI, V276, P1507, DOI 10.1098/rspb.2008.1601; Brodsky W Y, 1977, Int Rev Cytol, V50, P275; Calboli FCF, 2003, EVOLUTION, V57, P566; Collinge JE, 2006, J EVOLUTION BIOL, V19, P473, DOI 10.1111/j.1420-9101.2005.01016.x; Conlon I, 1999, CELL, V96, P235, DOI 10.1016/S0092-8674(00)80563-2; Dahlgaard J, 2001, EVOLUTION, V55, P738, DOI 10.1554/0014-3820(2001)055[0738:BDIOAI]2.0.CO;2; DAVID JR, 1988, TRENDS GENET, V4, P106, DOI 10.1016/0168-9525(88)90098-4; Demontis F, 2009, DEVELOPMENT, V136, P983, DOI 10.1242/dev.027466; Dudley R., 2000, BIOMECHANICS INSECT; Edgar BA, 2001, CELL, V105, P297, DOI 10.1016/S0092-8674(01)00334-8; Fabian DK, 2015, J EVOLUTION BIOL, V28, P826, DOI 10.1111/jeb.12607; Fischer K, 2006, J EVOLUTION BIOL, V19, P380, DOI 10.1111/j.1420-9101.2005.01046.x; Fischer K, 2003, ECOLOGY, V84, P3138, DOI 10.1890/02-0733; Fischer K, 2003, FUNCT ECOL, V17, P803, DOI 10.1111/j.1365-2435.2003.00798.x; Folguera G, 2008, BIOL J LINN SOC, V95, P233, DOI 10.1111/j.1095-8312.2008.01053.x; French V, 1998, J INSECT PHYSIOL, V44, P1081, DOI 10.1016/S0022-1910(98)00061-4; Harrison D. S., 1948, EVOLUTION, V2, P295; HARVEY GT, 1985, CAN ENTOMOL, V117, P1451, DOI 10.4039/Ent1171451-12; HARVEY GT, 1983, CAN ENTOMOL, V115, P1109, DOI 10.4039/Ent1151109-9; Hassall M, 2006, J EVOLUTION BIOL, V19, P267, DOI [10.1111/j.1420-9101.2005.00967.x, 10.1111/j.1420-9101.2005.00987.x]; Heath D., 1979, LIFE HIGH ALTITUDE; Hodkinson ID, 2005, BIOL REV, V80, P489, DOI 10.1017/S1464793105006767; Houle D, 2003, BMC EVOL BIOL, V3, DOI 10.1186/1471-2148-3-25; Imasheva AG, 2003, HEREDITAS, V138, P193, DOI 10.1034/j.1601-5223.2003.01727.x; Jalal M, 2015, J THERM BIOL, V51, P1, DOI 10.1016/j.jtherbio.2015.02.011; JAMES AC, 1995, GENETICS, V140, P659; JAMES AC, 1995, J EVOLUTION BIOL, V8, P315, DOI 10.1046/j.1420-9101.1995.8030315.x; Josephson R.K., 1981, P19; Keller I, 2013, J EVOLUTION BIOL, V26, P2527, DOI 10.1111/jeb.12255; Klepsatel P, 2014, EVOLUTION, V68, P1385, DOI 10.1111/evo.12351; Korner C, 2007, TRENDS ECOL EVOL, V22, P569, DOI 10.1016/j.tree.2007.09.006; Lack JB, 2016, P NATL ACAD SCI USA, V113, P1014, DOI 10.1073/pnas.1515964113; Lee SF, 2013, MOL ECOL, V22, P2716, DOI 10.1111/mec.12301; Louis J., 1982, DROS INF SERV, V58, P100; Lynch M, 1998, GENETICS ANAL QUANTI; Maines JZ, 2004, DEVELOPMENT, V131, P775, DOI 10.1242/dev.00932; McMahon T. A., 1983, SIZE LIFE; Nijhout HF, 2014, WIRES DEV BIOL, V3, P113, DOI 10.1002/wdev.124; Norry FM, 2001, HEREDITAS, V135, P35, DOI 10.1111/j.1601-5223.2001.t01-1-00035.x; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Ohlstein B, 2006, NATURE, V439, P470, DOI 10.1038/nature04333; Parkash R, 2005, PHYSIOL ENTOMOL, V30, P353, DOI 10.1111/j.1365-3032.2005.00470.x; PARSONS PA, 1962, J EXP BIOL, V39, P251; PARTRIDGE L, 1994, J EVOLUTION BIOL, V7, P645, DOI 10.1046/j.1420-9101.1994.7060645.x; PARTRIDGE L, 1994, EVOLUTION, V48, P1269, DOI 10.1111/j.1558-5646.1994.tb05311.x; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; Partridge L, 1996, ANIM TEMP PHENOTYPIC, V59, P265; Petavy G, 1997, J EVOLUTION BIOL, V10, P875, DOI 10.1007/s000360050059; Pitchers W, 2013, EVOLUTION, V67, P438, DOI 10.1111/j.1558-5646.2012.01774.x; Pool JE, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1003080; PROMISLOW DEL, 1991, PHYSIOL ZOOL, V64, P393, DOI 10.1086/physzool.64.2.30158183; Reeve MW, 2000, J EVOLUTION BIOL, V13, P836, DOI 10.1046/j.1420-9101.2000.00216.x; ROBERTSON FW, 1960, GENET RES, V1, P288, DOI 10.1017/S0016672300000264; Sambucetti P, 2006, HEREDITAS, V143, P77, DOI 10.1111/j.2006.0018-0661.01934.x; Scholes DR, 2013, ECOL EVOL, V3, P2128, DOI 10.1002/ece3.623; Schwarzkopf L, 1999, AM NAT, V154, P333, DOI 10.1086/303242; Shcherbata HR, 2004, DEVELOPMENT, V131, P3169, DOI 10.1242/dev.01172; SMITH AV, 1991, DEVELOPMENT, V112, P997; STALKER HD, 1980, GENETICS, V95, P211; STEVENSON RD, 1995, P ROY SOC B-BIOL SCI, V259, P105, DOI 10.1098/rspb.1995.0016; STEVENSON RD, 1990, J EXP BIOL, V149, P61; Turner TL, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1001336; Weinkove D, 1999, CURR BIOL, V9, P1019, DOI 10.1016/S0960-9822(99)80450-3; Zimmet J, 2000, EXP HEMATOL, V28, P3, DOI 10.1016/S0301-472X(99)00124-1; Zwaan BJ, 2000, HEREDITY, V84, P338, DOI 10.1046/j.1365-2540.2000.00677.x; Zybina EV, 1996, INT REV CYTOL, V165, P53, DOI 10.1016/S0074-7696(08)62220-2 72 5 5 2 16 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. AUG 2016 6 16 5893 5906 10.1002/ece3.2327 14 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DT6FF WOS:000381578400027 27547363 DOAJ Gold, Green Published 2019-02-21 J Fussell, KMD; Smith, REH; Fraker, ME; Boegman, L; Frank, KT; Miller, TJ; Tyson, JT; Arend, KK; Boisclair, D; Guildford, SJ; Hecky, RE; Hook, TO; Jensen, OP; Llopiz, JK; May, CJ; Najjar, RG; Rudstam, LG; Taggart, CT; Rao, YR; Ludsin, SA Fussell, Kristen M. DeVanna; Smith, Ralph E. H.; Fraker, Michael E.; Boegman, Leon; Frank, Kenneth T.; Miller, Thomas J.; Tyson, Jeff T.; Arend, Kristin K.; Boisclair, Daniel; Guildford, Stephanie J.; Hecky, Robert E.; Hook, Tomas O.; Jensen, Olaf P.; Llopiz, Joel K.; May, Cassandra J.; Najjar, Raymond G.; Rudstam, Lars G.; Taggart, Christopher T.; Rao, Yerubandi R.; Ludsin, Stuart A. A perspective on needed research, modeling, and management approaches that can enhance Great Lakes fisheries management under changing ecosystem conditions JOURNAL OF GREAT LAKES RESEARCH English Editorial Material PERCH PERCA-FLAVESCENS; WHITEFISH COREGONUS-CLUPEAFORMIS; LIFE-HISTORY STRATEGIES; WALLEYE SANDER-VITREUS; GLOBAL CLIMATE-CHANGE; AGE-0 YELLOW PERCH; FRESH-WATER FISH; REGIME SHIFT; RECRUITMENT SUCCESS; SALMONID COMMUNITY The Great Lakes Fishery Commission sponsored a 2-day workshop that sought to enhance the ability of Great Lakes agencies to understand, predict, and ideally manage fisheries production in the face of changes in natural and anthropogenic forcings (e.g., climate, invasive species, and nutrients). The workshop brought together 18 marine and freshwater researchers with collective expertise in aquatic ecology, physical oceanography, limnology, climate modeling, and ecosystem modeling, and two individuals with fisheries management expertise. We report on the outcome of a writing exercise undertaken as part of this workshop that challenged each participant to identify three needs, which if addressed, could most improve the ability of Great Lakes agencies to manage their fisheries in the face of ecosystem change. Participant responses fell into two categories. The first identified gaps in ecological understanding, including how physical and biological processes can regulate early life growth and survival, how life-history strategies vary across species and within populations, and how anthropogenic stressors (e.g., nutrient runoff, climate change) can interact to influence fish populations. The second category pointed to the need for improved approaches to research (e.g., meta-analytic, comparative, spatial translation) and management (e.g., mechanistic management models, consideration of multi-stock management), and also identified the need for improved predictive models of the physical environment and associated ecosystem monitoring programs. While some progress has been made toward addressing these needs, we believe that a continued focus will be necessary to enable optimal fisheries management responses to forthcoming ecosystem change. (C) 2016 Published by Elsevier B.V. on behalf of International Association for Great Lakes Research. [Fussell, Kristen M. DeVanna; Fraker, Michael E.; May, Cassandra J.; Ludsin, Stuart A.] Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Aquat Ecol Lab, Columbus, OH 43212 USA; [Smith, Ralph E. H.] Univ Waterloo, Dept Biol, Waterloo, ON N2L 3G1, Canada; [Boegman, Leon] Queens Univ, Dept Civil Engn, Kingston, ON K7L 3N6, Canada; [Frank, Kenneth T.] Bedford Inst Oceanog, Dept Fisheries & Oceans, Ocean Sci Div, POB 1006, Dartmouth, NS B2Y 4A2, Canada; [Miller, Thomas J.] Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, Solomons, MD 20688 USA; [Tyson, Jeff T.] Ohio Dept Nat Resources, Sandusky Fisheries Res Unit, Div Wildlife, 305 East Shoreline Dr, Sandusky, OH 44870 USA; [Arend, Kristin K.] Ohio Dept Nat Resources, Old Woman Creek Natl Estuarine Res Reserve, Div Wildlife, 2514 Cleveland Rd East, Huron, OH 44839 USA; [Boisclair, Daniel] Univ Montreal, Dept Sci Biol, Montreal, PQ H3C 3J7, Canada; [Guildford, Stephanie J.; Hecky, Robert E.] Univ Minnesota, Dept Biol, 2205 5th St, Duluth, MN 55812 USA; [Guildford, Stephanie J.; Hecky, Robert E.] Univ Minnesota, Large Lakes Observ, 2205 5th St, Duluth, MN 55812 USA; [Hook, Tomas O.] Purdue Univ, Dept Forestry & Nat Resources, 195 Marstellar St, W Lafayette, IN 47907 USA; [Hook, Tomas O.] Purdue Univ, Illinois Indiana Sea Grant Program, 195 Marstellar St, W Lafayette, IN 47907 USA; [Jensen, Olaf P.] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA; [Llopiz, Joel K.] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA; [Najjar, Raymond G.] Penn State Univ, Dept Meteorol, 503 Walker Bldg, University Pk, PA 16802 USA; [Rudstam, Lars G.] Cornell Univ, Dept Nat Resources, Cornell Biol Field Stn, Bridgeport, NY 13030 USA; [Taggart, Christopher T.] Dalhousie Univ, Dept Oceanog, 1355 Oxford St,POB 15000, Halifax, NS B3H 4R2, Canada; [Rao, Yerubandi R.] Environm Canada, Water & Sci Technol Directorate, 867 Lakeshore Rd, Burlington, ON L7R 4A6, Canada; [Fussell, Kristen M. DeVanna; Fraker, Michael E.] Ohio State Univ, Ohio Sea Grant & Stone Lab, Columbus, OH 43212 USA; [May, Cassandra J.] Bethel Coll, Dept Biol & Chem, 1001 Bethel Circle, Mishawaka, IN 46544 USA Ludsin, SA (reprint author), Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Aquat Ecol Lab, Columbus, OH 43212 USA. ludsin.1@osu.edu Miller, Thomas/C-2129-2008 Miller, Thomas/0000-0001-8427-1614 Allan JD, 2013, P NATL ACAD SCI USA, V110, P372, DOI 10.1073/pnas.1213841110; Anderson PJ, 1999, MAR ECOL PROG SER, V189, P117, DOI 10.3354/meps189117; Austin JA, 2007, GEOPHYS RES LETT, V34, DOI 10.1029/2006GL029021; BAYS JS, 1983, CAN J FISH AQUAT SCI, V40, P1813, DOI 10.1139/f83-210; Beaugrand G, 2004, PROG OCEANOGR, V60, P245, DOI 10.1016/j.pocean.2004.02.018; Beaugrand G, 2003, NATURE, V426, P661, DOI 10.1038/nature02164; Begg GA, 1999, FISH RES, V43, P35, DOI 10.1016/S0165-7836(99)00065-X; BERST AH, 1972, J FISH RES BOARD CAN, V29, P877, DOI 10.1139/f72-131; Boesch D., 2008, GLOBAL WARMING FREE; Breitburg D, 2002, ESTUARIES, V25, P767, DOI 10.1007/BF02804904; Bremigan MT, 2003, J GREAT LAKES RES, V29, P501, DOI 10.1016/S0380-1330(03)70454-7; Brochier T, 2013, GLOBAL CHANGE BIOL, V19, P1841, DOI 10.1111/gcb.12184; Brodnik RM, 2016, CAN J FISH AQUAT SCI, V73, P416, DOI 10.1139/cjfas-2015-0161; Brook BW, 2008, TRENDS ECOL EVOL, V23, P453, DOI 10.1016/j.tree.2008.03.011; Brylawski BJ, 2006, CAN J FISH AQUAT SCI, V63, P1298, DOI 10.1139/F06-011; Bunnell DB, 2014, BIOSCIENCE, V64, P26, DOI 10.1093/biosci/bit001; Bunnell DB, 2011, FRESHWATER BIOL, V56, P1281, DOI 10.1111/j.1365-2427.2010.02568.x; Byers JE, 2002, OIKOS, V97, P449, DOI 10.1034/j.1600-0706.2002.970316.x; Carlton J, 2003, INVASIVE SPECIES VEC; Carreon-Martinez LB, 2014, MOL ECOL, V23, P5366, DOI 10.1111/mec.12927; Choi JS, 2005, OCEANOGR MAR BIOL, V43, P47; Christensen JH, 2007, CLIMATIC CHANGE, V81, P1, DOI 10.1007/s10584-006-9211-6; Christensen MR, 2006, GLOBAL CHANGE BIOL, V12, P2316, DOI 10.1111/j.1365-2486.2006.01257.x; CHRISTIE WJ, 1972, J FISH RES BOARD CAN, V29, P913, DOI 10.1139/f72-134; CHRISTIE WJ, 1974, J FISH RES BOARD CAN, V31, P827, DOI 10.1139/f74-104; Conover DO, 1997, CAN J FISH AQUAT SCI, V54, P2401, DOI 10.1139/cjfas-54-10-2401; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; Cousino LK, 2015, J HYDROL-REG STUD, V4, P762, DOI 10.1016/j.ejrh.2015.06.017; Crain CM, 2008, ECOL LETT, V11, P1304, DOI 10.1111/j.1461-0248.2008.01253.x; Cushing D. H., 1975, MARINE ECOLOGY FISHE; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; Dettmers JM, 2005, CAN J FISH AQUAT SCI, V62, P2683, DOI 10.1139/F05-173; deYoung B, 2010, MARINE ECOSYSTEMS AND GLOBAL CHANGE, P89; Doak DF, 2008, ECOLOGY, V89, P952, DOI 10.1890/07-0965.1; DuFour M. R., 2016, ECOSPHERE, V6, P1; Durant JM, 2005, ECOL LETT, V8, P952, DOI 10.1111/j.1461-0248.2005.00798.x; Durant JM, 2007, CLIM RES, V33, P271, DOI 10.3354/cr033271; Farmer T. M., 2015, NATURE COMM, V6; Feiner ZS, 2015, EVOL APPL, V8, P724, DOI 10.1111/eva.12285; Fetzer W. W., 2009, THESIS; Ficke AD, 2007, REV FISH BIOL FISHER, V17, P581, DOI 10.1007/s11160-007-9059-5; Fitzgerald DG, 2006, ECOL APPL, V16, P1487, DOI 10.1890/1051-0761(2006)016[1487:GSPAFO]2.0.CO;2; Folt CL, 1999, LIMNOL OCEANOGR, V44, P864, DOI 10.4319/lo.1999.44.3_part_2.0864; Fraker ME, 2015, J GREAT LAKES RES, V41, P830, DOI 10.1016/j.jglr.2015.04.008; FREEBERG MH, 1990, T AM FISH SOC, V119, P92, DOI 10.1577/1548-8659(1990)119<0092:EOEALS>2.3.CO;2; Glover DC, 2008, CAN J FISH AQUAT SCI, V65, P1919, DOI 10.1139/F08-100; Halpem B. S., 2008, SCIENCE, V319, P48; Hare SR, 2000, PROG OCEANOGR, V47, P103, DOI 10.1016/S0079-6611(00)00033-1; HARTMAN WL, 1972, J FISH RES BOARD CAN, V29, P899, DOI 10.1139/f72-133; Hayhoe K, 2010, J GREAT LAKES RES, V36, P7, DOI 10.1016/j.jglr.2010.03.012; Hecicy R. E., 2010, FRESHW BIOL S1, V55, P19; Hecky RE, 2004, CAN J FISH AQUAT SCI, V61, P1285, DOI 10.1139/F04-065; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; Hines A. H., 2009, BIOL MANAGEMENT EXPL; Hjort J., 1914, RAPP P V REUN CONS I, V20, P1; Hook TO, 2008, CAN J FISH AQUAT SCI, V65, P1402, DOI 10.1139/F08-066; Hofmann EE, 1998, ECOL APPL, V8, pS23, DOI 10.2307/2641360; Hofmann EE, 2010, MARINE ECOSYSTEMS AND GLOBAL CHANGE, P323; Holeck K. T., 2004, BIOSCIENCE, V54, P1; Hook TO, 2007, T AM FISH SOC, V136, P1298, DOI 10.1577/T06-194.1; HOUDE ED, 1994, ICES J MAR SCI, V51, P91, DOI 10.1006/jmsc.1994.1008; Houde Edward D., 2009, P91, DOI 10.1002/9781444312133.ch3; Houde Edward D., 2009, Journal of Northwest Atlantic Fishery Science, V41, P53; IHSSEN PE, 1981, CAN J FISH AQUAT SCI, V38, P1790, DOI 10.1139/f81-226; IPCC, 2013, CLIM CHANG 2013 PHYS; JOHNSON TB, 1990, T AM FISH SOC, V119, P301, DOI 10.1577/1548-8659(1990)119<0301:SWMOYW>2.3.CO;2; Jones ML, 2006, CAN J FISH AQUAT SCI, V63, P457, DOI 10.1139/F05-239; Kane DD, 2015, J GREAT LAKES RES, V41, P930, DOI 10.1016/j.jglr.2015.06.002; Kane DD, 2014, J GREAT LAKES RES, V40, P496, DOI 10.1016/j.jglr.2014.04.004; Karl TR, 2003, SCIENCE, V302, P1719, DOI 10.1126/science.1090228; Kling G. W., 2003, CONFRONTING CLIMATE; Klumb RA, 2004, ECOL APPL, V14, P113, DOI 10.1890/02-5054; Krueger CC, 1995, J GREAT LAKES RES, V21, P348, DOI 10.1016/S0380-1330(95)71109-1; Kunkel KE, 1999, B AM METEOROL SOC, V80, P1077, DOI 10.1175/1520-0477(1999)080<1077:TFIWAC>2.0.CO;2; Kunkel KE, 2013, GEOPHYS RES LETT, V40, DOI 10.1002/grl.50334; KUTKUHN JH, 1981, CAN J FISH AQUAT SCI, V38, P1476, DOI 10.1139/f81-199; Last PR, 2011, GLOBAL ECOL BIOGEOGR, V20, P58, DOI 10.1111/j.1466-8238.2010.00575.x; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; Lindenmayer DB, 2009, TRENDS ECOL EVOL, V24, P482, DOI 10.1016/j.tree.2009.03.005; Ludsin S., 2011, RIVER DISCHARGE PRED; Ludsin SA, 2001, ECOL APPL, V11, P731, DOI 10.1890/1051-0761(2001)011[0731:LADILE]2.0.CO;2; Ludsin SA, 2014, CAN J FISH AQUAT SCI, V71, P775, DOI 10.1139/cjfas-2013-0512; Ludsin SA, 2009, J EXP MAR BIOL ECOL, V381, pS121, DOI 10.1016/j.jembe.2009.07.016; Magnuson J.J., 1997, Society for Experimental Biology Seminar Series, V61, P377; Magnuson JJ, 1997, HYDROL PROCESS, V11, P825; MAKAREWICZ JC, 1991, BIOSCIENCE, V41, P216, DOI 10.2307/1311411; Manning NF, 2013, J GREAT LAKES RES, V39, P295, DOI 10.1016/j.jglr.2013.03.010; Massol F, 2007, J ANIM ECOL, V76, P538, DOI 10.1111/j.1365-2656.2007.01226.x; MCCAULEY E, 1981, CAN J FISH AQUAT SCI, V38, P458, DOI 10.1139/f81-063; McGowan JA, 2003, DEEP-SEA RES PT II, V50, P2567, DOI 10.1016/S0967-0645(03)00135-8; MCQUEEN DJ, 1989, ECOL MONOGR, V59, P289, DOI 10.2307/1942603; Michalak AM, 2013, P NATL ACAD SCI USA, V110, P6448, DOI 10.1073/pnas.1216006110; MILLER T, 1990, T AM FISH SOC, V119, P483, DOI 10.1577/1548-8659(1990)119<0483:EOCITZ>2.3.CO;2; Miller TJ, 2007, MAR ECOL PROG SER, V347, P127, DOI 10.3354/meps06973; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; Mion JB, 1998, ECOL APPL, V8, P88, DOI 10.2307/2641313; Mueter FJ, 2011, ICES J MAR SCI, V68, P1284, DOI 10.1093/icesjms/fsr022; Mulvaney KK, 2014, J GREAT LAKES RES, V40, P590, DOI 10.1016/j.jglr.2014.06.002; Myers RA, 2001, ICES J MAR SCI, V58, P937, DOI 10.1006/jmsc.2001.1109; Myers RA, 1998, FISH RES, V37, P51; MYERS RA, 1997, EARLY LIFE HIST RECR, P451; Najjar RG, 2010, ESTUAR COAST SHELF S, V86, P1, DOI 10.1016/j.ecss.2009.09.026; North E., 2009, 295 ICES; O'Reilly CM, 2003, NATURE, V424, P766, DOI 10.1038/nature01833; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Ormerod SJ, 2010, FRESHWATER BIOL, V55, P1, DOI 10.1111/j.1365-2427.2009.02395.x; Ottersen G, 2010, J MARINE SYST, V79, P343, DOI 10.1016/j.jmarsys.2008.12.013; Paine RT, 1998, ECOSYSTEMS, V1, P535, DOI 10.1007/s100219900049; Pangle KL, 2012, ECOSPHERE, V3, DOI 10.1890/ES12-00224.1; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; Peer AC, 2014, N AM J FISH MANAGE, V34, P94, DOI 10.1080/02755947.2013.847877; Peeters F, 2007, GLOBAL CHANGE BIOL, V13, P1898, DOI 10.1111/j.1365-2486.2007.01412.x; Petitgas P, 2013, FISH OCEANOGR, V22, P121, DOI 10.1111/fog.12010; Pimm SL, 2000, NATURE, V403, P843, DOI 10.1038/35002708; Planque B, 1999, CAN J FISH AQUAT SCI, V56, P2069, DOI 10.1139/cjfas-56-11-2069; Platt T, 2003, NATURE, V423, P398, DOI 10.1038/423398b; Pothoven SA, 2014, J GREAT LAKES RES, V40, P148, DOI 10.1016/j.jglr.2013.09.016; Pritt JJ, 2014, ICES J MAR SCI, V71, P2252, DOI 10.1093/icesjms/fsu080; Rahel FJ, 2008, CONSERV BIOL, V22, P521, DOI 10.1111/j.1523-1739.2008.00950.x; Redman RA, 2011, T AM FISH SOC, V140, P1277, DOI 10.1080/00028487.2011.620480; Reichert JM, 2010, CAN J FISH AQUAT SCI, V67, P987, DOI 10.1139/F10-036; Reid PC, 2001, FISH RES, V50, P163, DOI 10.1016/S0165-7836(00)00249-6; Roseman EF, 2005, J GREAT LAKES RES, V31, P28, DOI 10.1016/S0380-1330(05)70288-4; Ryan P. A., 2003, GREAT LAKES FISHERY, V03-02; Sahoo GB, 2013, CLIMATIC CHANGE, V116, P71, DOI 10.1007/s10584-012-0600-8; Scavia D, 2014, J GREAT LAKES RES, V40, P226, DOI 10.1016/j.jglr.2014.02.004; Scheffer M, 2001, NATURE, V413, P591, DOI 10.1038/35098000; Scheffer M, 2003, TRENDS ECOL EVOL, V18, P648, DOI 10.1016/j.tree.2003.09.002; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Sepulveda-Villet OJ, 2011, CAN J FISH AQUAT SCI, V68, P1435, DOI 10.1139/F2011-077; Sesterhenn TM, 2014, J GREAT LAKES RES, V40, P113, DOI 10.1016/j.jglr.2013.09.022; Sih A, 2011, EVOL APPL, V4, P367, DOI 10.1111/j.1752-4571.2010.00166.x; SMITH SH, 1968, J FISH RES BOARD CAN, V25, P667, DOI 10.1139/f68-063; Smith VH, 1999, ENVIRON POLLUT, V100, P179, DOI 10.1016/S0269-7491(99)00091-3; Stockner JG, 2000, FISHERIES, V25, P7, DOI 10.1577/1548-8446(2000)025<0007:CO>2.0.CO;2; Strayer DL, 2010, FRESHWATER BIOL, V55, P152, DOI 10.1111/j.1365-2427.2009.02380.x; Taylor SG, 2008, GLOBAL CHANGE BIOL, V14, P229, DOI 10.1111/j.1365-2486.2007.01494.x; Turschak BA, 2014, ECOLOGY, V95, P1243, DOI 10.1890/13-0329.1; van Zwieten PAM, 2016, CAN J FISH AQUAT SCI, V73, P622, DOI 10.1139/cjfas-2015-0130; Vanderploeg HA, 2012, J GREAT LAKES RES, V38, P336, DOI 10.1016/j.jglr.2012.02.005; Vanderploeg HA, 2009, J EXP MAR BIOL ECOL, V381, pS108, DOI 10.1016/j.jembe.2009.07.015; Vitousek PM, 1997, SCIENCE, V277, P494, DOI 10.1126/science.277.5325.494; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Wang HY, 2008, CAN J FISH AQUAT SCI, V65, P2157, DOI 10.1139/F08-124; Wang HY, 2012, J GREAT LAKES RES, V38, P477, DOI 10.1016/j.jglr.2012.06.002; Wang J, 2012, J CLIMATE, V25, P1318, DOI 10.1175/2011JCLI4066.1; Weidel B., 2014, LAKE ONTARIO 2013 CS; Wellington CG, 2010, J FISH BIOL, V76, P1729, DOI 10.1111/j.1095-8649.2010.02612.x; WELLS L, 1972, J FISH RES BOARD CAN, V29, P889, DOI 10.1139/f72-132; Winder M, 2004, GLOBAL CHANGE BIOL, V10, P1844, DOI 10.1111/j.1365-2486.2004.00849.x; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Worm B, 2009, SCIENCE, V325, P578, DOI 10.1126/science.1173146 153 3 3 5 48 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0380-1330 J GREAT LAKES RES J. Gt. Lakes Res. AUG 2016 42 4 743 752 10.1016/j.jglr.2016.04.007 10 Environmental Sciences; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DW8VP WOS:000383933900001 2019-02-21 J van de Vijver, PL; van Bodegom, D; Westendorp, RGJ van de Vijver, Paul L.; van Bodegom, David; Westendorp, Rudi G. J. Early and extraordinary peaks in physical performance come with a longevity cost AGING-US English Article life history theory; athletes; personal record; trade-off; development; longevity LIFE-SPAN; DIE YOUNG; AGE; MORTALITY; GROWTH; MAMMALS; WOMEN; MICE; REPRODUCTION; MENARCHE Life history theory postulates a trade-off between development and maintenance. This trade-off is observed when comparing life histories of different animal species. In humans, however, it is debated if variation in longevity is explained by differences in developmental traits. Observational studies found a trade-off between early and high fecundity and longevity in women. Development encompasses more than fecundity and also concerns growth and physical performance. Here, we show a life history trade-off between early and above average physical performance and longevity in male Olympic athletes. Athletes who peaked at an earlier age showed 17-percent increased mortality rates (95% CI 8-26% per SD, p<0.001) and athletes who ranked higher showed 11-percent increased mortality rates (95% CI 1-22% per SD, p=0.025). Male athletes who had both an early and extraordinary peak performance suffered a 4.7-year longevity cost. (95% CI 2.1-7.5 years, p=0.001). This is the first time a life history trade-off between physical performance and longevity has been found in humans. This finding deepens our understanding of early developmental influences on the variation of longevity in humans. [van de Vijver, Paul L.; van Bodegom, David] Leyden Acad Vital & Ageing, NL-2333 AA Leiden, Netherlands; [van Bodegom, David; Westendorp, Rudi G. J.] Leiden Univ, Med Ctr, NL-2333 ZA Leiden, Netherlands; [Westendorp, Rudi G. J.] Univ Copenhagen, Dept Publ Hlth, DK-1165 Copenhagen, Denmark; [Westendorp, Rudi G. J.] Univ Copenhagen, Ctr Hlth Aging, DK-1165 Copenhagen, Denmark van Bodegom, D (reprint author), Leyden Acad Vital & Ageing, NL-2333 AA Leiden, Netherlands.; van Bodegom, D (reprint author), Leiden Univ, Med Ctr, NL-2333 ZA Leiden, Netherlands. bodegom@leydenacademy.nl Baudisch A, 2011, METHODS ECOL EVOL, V2, P375, DOI 10.1111/j.2041-210X.2010.00087.x; Berryman DE, 2008, GROWTH HORM IGF RES, V18, P455, DOI 10.1016/j.ghir.2008.05.005; Blagosklonny MV, 2013, AGING-US, V5, P227, DOI 10.18632/aging.100551; Blagosklonny MV, 2010, AGING-US, V2, P265, DOI 10.18632/aging.100149; Blagosklonny MV, 2009, AGING-US, V1, P357, DOI 10.18632/aging.100040; Donato AJ, 2003, J APPL PHYSIOL, V94, P764, DOI 10.1152/japplphysiol.00438.2002; Ericsson KA, 1993, SUCCESSFUL AGING PER, P164; Finch CE, 1994, LONGEVITY SENESCENCE; Fink B, 2007, AM J HUM BIOL, V19, P82, DOI 10.1002/ajhb.20583; Greer KA, 2007, RES VET SCI, V82, P208, DOI 10.1016/j.rvsc.2006.06.005; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; Holt RIG, 2009, GROWTH HORM IGF RES, V19, P320, DOI 10.1016/j.ghir.2009.04.009; INGRAM DK, 1982, MECH AGEING DEV, V20, P253, DOI 10.1016/0047-6374(82)90092-6; Jacobsen BK, 2009, INT J EPIDEMIOL, V38, P245, DOI 10.1093/ije/dyn251; Jacobsen BK, 2007, AM J EPIDEMIOL, V166, P1431, DOI 10.1093/aje/kwm237; Kraus C, 2013, AM NAT, V181, P492, DOI 10.1086/669665; Lakshman R, 2009, J CLIN ENDOCR METAB, V94, P4953, DOI 10.1210/jc.2009-1789; Leontieva OV, 2012, AGING-US, V4, P899, DOI 10.18632/aging.100528; Lycett JE, 2000, P ROY SOC B-BIOL SCI, V267, P31, DOI 10.1098/rspb.2000.0962; Mitchell JH, 2005, J AM COLL CARDIOL, V45, P1364, DOI 10.1016/j.jacc.2005.02.015; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Rollo CD, 2002, EVOL DEV, V4, P55, DOI 10.1046/j.1525-142x.2002.01053.x; Sports Reference LL, 2014, OL SPORTS REF COM OL; Sutter NB, 2007, SCIENCE, V316, P112, DOI 10.1126/science.1137045; Thomas F, 2000, J EVOLUTION BIOL, V13, P409; Wang Xiaofei, 2013, Evolution Medicine and Public Health, P241, DOI 10.1093/emph/eot013; Wensink MJ, 2012, BIOGERONTOLOGY, V13, P197, DOI 10.1007/s10522-011-9362-3; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; Yesalis CE, 2002, HIST DOPING SPORT PE, P1; Zwiers R, 2012, BRIT MED J, V345, DOI 10.1136/bmj.e7456 31 1 1 3 4 IMPACT JOURNALS LLC ORCHARD PARK 6666 E QUAKER ST, STE 1, ORCHARD PARK, NY 14127 USA 1945-4589 AGING-US Aging-US AUG 2016 8 8 1822 1829 10.18632/aging.101023 8 Cell Biology; Geriatrics & Gerontology Cell Biology; Geriatrics & Gerontology DV9UI WOS:000383287300019 27540872 Green Published 2019-02-21 J Dunkel, CS; Lukaszewski, AW; Chua, K Dunkel, Curtis S.; Lukaszewski, Aaron W.; Chua, Kristine The relationships between sex, life history strategy, and adult romantic attachment style PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history theory; Attachment style; Sex differences MIDDLE CHILDHOOD; EVOLUTIONARY The roles of sex and life history (LH) strategy in predicting romantic attachment style were examined. Women had higher preoccupied scores and, for women, slower LH strategy was negatively correlated with preoccupied attachment style. For men, slower LH strategy was positively associated with secure attachment and negatively associated with fearful and dismissive attachment. However, the results of hierarchical regression analyses revealed that the only significant sex difference in the strength of the LH strategy and romantic attachment correlations with dismissing attachment and this only occurred once a possible outlier was removed. It is suggested that future research increases power by using methods that allow for a larger participant sample. (C) 2016 Elsevier Ltd. All rights reserved. [Dunkel, Curtis S.] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA; [Lukaszewski, Aaron W.] Calif State Univ Fullerton, Fullerton, CA 92634 USA; [Chua, Kristine] Oklahoma State Univ, Stillwater, OK 74078 USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. c-dunkel@wiu.edu BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Block J, 2006, AM PSYCHOL, V61, P315, DOI 10.1037/0003-066X.61.4.315; BLOCK J, 1978, Q SORT METHOD PERSON; Block J., 2006, BLOCK BLOCK LONGITUD; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Del Giudice M, 2008, BRIT J DEV PSYCHOL, V26, P369, DOI 10.1348/026151007X243289; Del Giudice M, 2016, PERS INDIV DIFFER, V88, P125, DOI 10.1016/j.paid.2015.09.004; Del Giudice M, 2011, PERS SOC PSYCHOL B, V37, P193, DOI 10.1177/0146167210392789; Del Giudice M, 2010, CHILD DEV PERSPECT, V4, P97, DOI 10.1111/j.1750-8606.2010.00125.x; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; del Giudice Marco, 2011, EVOLUTION PERSONALIT, P154; Dunkel C. S., 2015, EVOLUTIONARY PSYCHOL, V1, P201; Dunkel CS, 2015, EVOL HUM BEHAV, V36, P374, DOI 10.1016/j.evolhumbehav.2015.02.006; Dunkel CS, 2015, ARCH SEX BEHAV, V44, P1705, DOI 10.1007/s10508-014-0445-5; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Kremen AM, 1998, J PERS SOC PSYCHOL, V75, P1062, DOI 10.1037/0022-3514.75.4.1062; Onishi M., 2001, PERSONALITY SOCIAL P, V27, P1097, DOI [10.1177/0146167201279003, DOI 10.1177/0146167201279003]; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131 21 3 3 3 21 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. AUG 2016 98 176 178 10.1016/j.paid.2016.04.040 3 Psychology, Social Psychology DV3AZ WOS:000382794700029 2019-02-21 J Fernandes, HBF; of Menie, MAW; Hutz, CS; Kruger, DJ; Figueredo, AJ Fernandes, Heitor B. F.; of Menie, Michael A. Woodley; Hutz, Claudio S.; Kruger, Daniel J.; Figueredo, Aurelio Jose The strength of associations among sexual strategy traits: Variations as a function of life history speed PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Sexual Strategies Theory; Life history; SD-IE; Factor analysis; Cross-national DIFFERENTIATION-INTEGRATION EFFORT; FAST-SLOW CONTINUUM; ROMANTIC RELATIONSHIPS; PERSONALITY-TRAITS; GENDER DIFFERENCES; COLLEGE-STUDENTS; MATING-EFFORT; 53 NATIONS; SOCIOSEXUALITY; ATTACHMENT Individuals exhibit differences in their life history strategies along a continuum that ranges from fast (involving investments in immediate rewards) to slow (involving long-term relationships and investments). Components of life history have been demonstrated to be more strongly correlated in individuals with faster life histories, a phenomenon termed Strategic Differentiation-Integration Effort (SD-IE). Sexual strategies are an intrinsic component of life history, yet have not been examined for SD-IE effects. We tested SD-IE in one student and two general population samples from two countries, among sexual strategy traits and correlates (sociosexual orientation, attachment avoidance, attachment anxiety, three groups of postcoital emotions, mate value, and life history speed). Two latent factors were found to explain the overall associations among these variables. The associations between the two factors and among their respective manifest indicators within factor were stronger in individuals with less restricted sexual strategies and more negative emotionality in sexual relationships, traits which are indicative of overall faster life history, supporting SD-IE hypotheses. Sex differences were identified and accounted for by life history speed differences between men and women. Unifactorial and multifactorial views of human sexual strategies can be argued to be equally supported by data, depending on individual life history speed. (C) 2016 Elsevier Ltd. All rights reserved. [Fernandes, Heitor B. F.; Hutz, Claudio S.] Univ Fed Rio Grande do Sul, Dept Psychol, BR-90046900 Porto Alegre, RS, Brazil; [of Menie, Michael A. Woodley] Tech Univ Chemnitz, Dept Psychol, Chemnitz, Germany; [of Menie, Michael A. Woodley] Vnje Univ Brussel, Ctr Leo Apostel Interdisciplinary Studies, Brussels, Belgium; [Kruger, Daniel J.] Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA; [Figueredo, Aurelio Jose] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA Fernandes, HBF (reprint author), Univ Fed Rio Grande do Sul, Inst Psicol, Ramiro Barcelos 2600-101, Porto Alegre, RS, Brazil. heitor.barcellos@ufrgs.br Barcellos Ferreira Fernandes, Heitor/0000-0002-1147-571X Armstrong EL, 2014, PERS INDIV DIFFER, V68, P189, DOI 10.1016/j.paid.2014.03.043; Bentler P. M., 1995, EQS STRUCTURAL EQUAT; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Bogin B, 2006, SCH AM RES, P197; Bowlby J., 1969, ATTACHMENT AND LOSS, V1; Brennan K. A., 1998, ATTACHMENT THEORY CL, V1998, P46, DOI DOI 10.2105/AJPH.90.4.553; Buddie AM, 2005, J INTERPERS VIOLENCE, V20, P713, DOI 10.1177/0886260505276073; Buss D. M., 2006, PSYCHOL TOPICS, V15, P239; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Byrne B. M., 1994, STRUCTURAL EQUATION; Caico C., 2015, EUROPEAN SCI J, V11, P170; Campbell A, 2008, HUM NATURE-INT BIOS, V19, P157, DOI 10.1007/s12110-008-9036-2; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; Costa PT, 2001, J PERS SOC PSYCHOL, V81, P322, DOI 10.1037/0022-3514.81.2.322; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2011, PERS SOC PSYCHOL B, V37, P193, DOI 10.1177/0146167210392789; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DeSouza E. R., 2004, INTERAMERICAN J PSYC, V38, P33; DeSouza ER, 1998, SEX ROLES, V39, P913, DOI 10.1023/A:1018884807080; DESOUZA ER, 1992, J SEX RES, V29, P251, DOI 10.1080/00224499209551645; DeSouza ER, 1996, SEX ROLES, V34, P549, DOI 10.1007/BF01545032; Dunkel CS, 2014, PERS INDIV DIFFER, V61-62, P13, DOI 10.1016/j.paid.2013.12.017; Edlund JE, 2010, PERS INDIV DIFFER, V49, P835, DOI 10.1016/j.paid.2010.07.004; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fernandes H. B. F., 2015, EVOLUTIONARY BEHAV S; Fernandes HBF, 2013, PERS INDIV DIFFER, V55, P1000, DOI 10.1016/j.paid.2013.07.463; Figueredo A. J., 2013, J SOCIAL EVOLUTIONAR, V7, P361, DOI DOI 10.1037/H0099182; Figueredo A. J., 2014, EVOLUTIONARY BEHAV S, V8, P148, DOI DOI 10.1037/H0099837; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Figueredo AJ, 2009, HUM NATURE-INT BIOS, V20, P317, DOI 10.1007/s12110-009-9068-2; Fischer A. H., 2000, GENDER EMOTION SOCIA, V1, P71, DOI DOI 10.1017/CBO9780511628191; Fisher HE, 2002, ARCH SEX BEHAV, V31, P413, DOI 10.1023/A:1019888024255; Galperin A, 2013, ARCH SEX BEHAV, V42, P1145, DOI 10.1007/s10508-012-0019-3; GORDON ME, 1986, ACAD MANAGE REV, V11, P191, DOI 10.2307/258340; Gorsuch R. L., 1983, FACTOR ANAL; Gorsuch R. L., 2005, J SCI FAC CHIANG MAI, V32, P11; Grabb E. G., 2005, REGIONS APART 4 SOCI; Haselton MG, 2001, PERS RELATIONSHIP, V8, P357, DOI 10.1111/j.1475-6811.2001.tb00045.x; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037/0022-3514.52.3.511; Hojjat M, 2000, J SOC PERS RELAT, V17, P598, DOI 10.1177/0265407500174007; Hughes S. M., 2010, J SOCIAL EVOLUTIONAR, V4, P254, DOI [10.1037/h0099285, DOI 10.1037/H0099285]; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Jensen AR, 1998, G FACTOR SCI MENTAL; Jones C. B., 2005, BEHAV FLEXIBILITY PR; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kennair L. E. O., 2015, EVOLUTIONARY PSYCHOL, V1, P207; Kirkpatrick L. A., 1998, ATTACHMENT THEORY CL, P353; Kirsner BR, 2003, J AFFECT DISORDERS, V75, P131, DOI 10.1016/S0165-0327(02)00048-4; Kurzban R, 2005, EVOL HUM BEHAV, V26, P227, DOI 10.1016/j.evolhumbehav.2004.08.012; Lippa RA, 2010, ARCH SEX BEHAV, V39, P990, DOI 10.1007/s10508-008-9460-8; Lippa RA, 2009, ARCH SEX BEHAV, V38, P631, DOI 10.1007/s10508-007-9242-8; MacDonald K., 2016, PSYCHOLOGY, V7, P238; Magrath MJL, 2003, TRENDS ECOL EVOL, V18, P424, DOI 10.1016/S0169-5347(03)00124-1; McGlothlin JW, 2007, AM NAT, V170, P864, DOI 10.1086/522838; Meisenberg G, 2013, PERS INDIV DIFFER, V55, P273, DOI 10.1016/j.paid.2012.04.016; Menie MAWO, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.00422; MIROWSKY J, 1995, AM SOCIOL REV, V60, P449, DOI 10.2307/2096424; Mongeau PA, 2007, COMMUN RES, V34, P526, DOI 10.1177/0093650207305235; Murray AL, 2013, INTELLIGENCE, V41, P439, DOI 10.1016/j.intell.2013.06.007; Natividade J. C., 2013, EVIDENCIAS VALIDADE; Nesse R M, 1990, Hum Nat, V1, P261, DOI 10.1007/BF02733986; Noftle EE, 2006, J RES PERS, V40, P179, DOI 10.1016/j.jrp.2004.11.003; Olderbak S., 2013, COMPARING HYPOTHESES; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Ostovich JM, 2004, PERS SOC PSYCHOL B, V30, P1255, DOI 10.1177/0146167204264754; Pena SDJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017063; Penke L, 2008, J PERS SOC PSYCHOL, V95, P1113, DOI 10.1037/0022-3514.95.5.1113; Peterson RA, 2001, J CONSUM RES, V28, P450, DOI 10.1086/323732; Peterson RA, 2014, J BUS RES, V67, P1035, DOI 10.1016/j.jbusres.2013.08.010; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pinker Susan, 2008, SEXUAL PARADOX MEN W; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; Schmitt D. P., 2005, HDB EVOLUTIONARY PSY, P258; Schmitt DP, 2000, J RES PERS, V34, P141, DOI 10.1006/jrpe.1999.2267; Schwartz SH, 2009, J PERS SOC PSYCHOL, V97, P171, DOI 10.1037/a0015546; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037//0022-3514.60.6.870; SPRECHER S, 1993, SEX ROLES, V28, P511, DOI 10.1007/BF00289678; Steams S. C., 1992, EVOLUTION LIFE HIST; TOWNSEND JM, 1995, ARCH SEX BEHAV, V24, P173, DOI 10.1007/BF01541580; van Schaik Carel P., 2012, P220; Wei MF, 2007, J PERS ASSESS, V88, P187, DOI 10.1080/00223890701268041; Woodley MA, 2014, PERS INDIV DIFFER, V63, P64, DOI 10.1016/j.paid.2014.01.043; Woodley MA, 2014, PERS INDIV DIFFER, V57, P3, DOI 10.1016/j.paid.2013.09.010 87 1 1 1 4 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. AUG 2016 98 275 283 10.1016/j.paid.2016.04.019 9 Psychology, Social Psychology DV3AZ WOS:000382794700047 2019-02-21 J Lister, KN; Lamare, MD; Burritt, DJ Lister, Kathryn N.; Lamare, Miles D.; Burritt, David J. Dietary pollutants induce oxidative stress, altering maternal antioxidant provisioning and reproductive output in the temperate sea urchin Evechinus chloroticus AQUATIC TOXICOLOGY English Article Oxidative stress; Antioxidant; Pollutants; Life-history; Evechinus chloroticus UV-B RADIATION; LIFE-HISTORY; STERECHINUS-NEUMAYERI; MARINE-INVERTEBRATES; DNA-DAMAGE; GLUTATHIONE-PEROXIDASE; ULTRAVIOLET-RADIATION; LYTECHINUS-VARIEGATUS; AQUATIC ORGANISMS; CHRONIC EXPOSURE Evidence is growing to suggest that the capacity to withstand oxidative stress may play an important role in shaping life-history trade-offs, although little is known on the relationship in broadcast spawning marine invertebrates. In this group, variation in gamete quantity and quality are important drivers of offspring survival and successful recruitment. Therefore the provisioning of eggs with antioxidants may be an important driver of life history strategies because they play a critical role in preventing damage from reactive oxygen species to macromolecules. In this study, a suite of oxidative stress biomarkers was measured in the gonads and eggs of the sea urchin Evechinus chloroticus exposed to polycyclic aromatic hydrocarbons (PAHs). Links between oxidative stress markers and core components of fitness including fecundity, gamete quality and maternal transfer of antioxidants were assessed. Experimental induction of oxidative stress was achieved via exposure to a mix of four PAHs over a 21-day period. In PAH exposed individuals, we observed a significant upregulation of the antioxidant defence and detoxification enzymes SOD, CAT, GR, GPx and GST, as well as a greater pool of the non-enzymatic antioxidant glutathione in gonad tissue and eggs. In contrast, glutathione redox status was not affected by PAH exposure, with the percentage of reduced glutathione remaining at approximately 80% in both gonad tissue and released eggs. PAH-exposed adults experienced greater than three- and five-fold increases in oxidative protein and lipid damage, respectively, in gonad tissue. In contrast, eggs maintained low levels of damage, not differing from baseline levels found in eggs released from PAH-naive mothers. PAH exposure also resulted in a 2-fold reduction in fecundity of reproductively mature females but no significant alteration to egg diameter. Although PAH-exposed females released fewer eggs, successful fertilisation of those eggs was slightly enhanced with average rates ranging from 90-99% in comparison to 76-90% in control eggs. Early-stage offspring reflected maternal antioxidant status with populations derived from PAH-exposed mothers demonstrating significantly higher antioxidant levels than those derived from PAH-naive mothers. This maternally inherited protection enhanced the capacity of embryos to minimise oxidative damage to lipids and proteins during early development but, despite this, did not reduce the proportion of morphological abnormalities in the population. Overall, these findings indicate that when faced with short-term contaminant stress E. chloroticus has the capacity to trade high reproductive output during a spawning event for a greater antioxidant investment in eggs. However, this production of potentially more resilient offspring did not translate to a fitness gain, at least for the early larval stages in the present experimental conditions. (C) 2016 Elsevier B.V. All rights reserved. [Lister, Kathryn N.; Burritt, David J.] Univ Otago, Dept Bot, 464 Great King St, Dunedin 9016, New Zealand; [Lamare, Miles D.] Univ Otago, Dept Marine Sci, 410 Castle St, Dunedin 9016, New Zealand Lister, KN (reprint author), Univ Otago, Dept Bot, 464 Great King St, Dunedin 9016, New Zealand. kathryn.lister@otago.ac.nz Remy, Melanie/G-3598-2010 Remy, Melanie/0000-0002-3238-2125 University of Otago We thank D. Pecorino and M. Baird for field assistance. The University of Otago supported this research. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Au DWT, 2001, ENVIRON POLLUT, V111, P11, DOI 10.1016/S0269-7491(00)00036-1; Au DWT, 2001, ENVIRON POLLUT, V111, P1, DOI 10.1016/S0269-7491(00)00035-X; Banowetz GM, 2004, ANAL BIOCHEM, V332, P314, DOI 10.1016/j.ab.2004.06.015; Baussant T, 2009, MAR POLLUT BULL, V58, P1796, DOI 10.1016/j.marpolbul.2009.08.007; Bellas J, 2005, ECOTOXICOLOGY, V14, P337, DOI 10.1007/s10646-004-6370-y; Bellas J, 2008, MAR POLLUT BULL, V57, P493, DOI 10.1016/j.marpolbul.2008.02.039; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blount J. D., 2015, BIOL REV; BROGDON WG, 1990, COMP BIOCHEM PHYS B, V96, P339, DOI 10.1016/0305-0491(90)90385-7; Burritt DJ, 2008, PLANT CELL ENVIRON, V31, P1416, DOI 10.1111/j.1365-3040.2008.01846.x; Byrne M, 2012, MAR ENVIRON RES, V76, P3, DOI 10.1016/j.marenvres.2011.10.004; Camus L, 2003, SCI TOTAL ENVIRON, V308, P221, DOI 10.1016/S0048-9697(02)00616-2; Costantini D, 2013, J EXP BIOL, V216, P2213, DOI 10.1242/jeb.083154; Costantini D, 2010, FUNCT ECOL, V24, P950, DOI 10.1111/j.1365-2435.2010.01746.x; CRIBB AE, 1989, ANAL BIOCHEM, V183, P195, DOI 10.1016/0003-2697(89)90188-7; de Almeida EA, 2007, COMP BIOCHEM PHYS A, V146, P588, DOI 10.1016/j.cbpa.2006.02.040; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; EPA, 1987, QUAL CRIT WAT 1986; FLETCHER WJ, 1987, ECOL MONOGR, V57, P89, DOI 10.2307/1942640; Fontagne S, 2008, BRIT J NUTR, V100, P102, DOI 10.1017/S0007114507876215; FRYER HJL, 1986, ANAL BIOCHEM, V153, P262, DOI 10.1016/0003-2697(86)90090-4; Galgani F, 2011, ENVIRON MONIT ASSESS, V172, P301, DOI 10.1007/s10661-010-1335-5; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; George SB, 2001, AQUACULTURE, V199, P353, DOI 10.1016/S0044-8486(01)00578-6; HABIG WH, 1974, J BIOL CHEM, V249, P7130; Halliwell B, 2007, FREE RADICALS BIOL M; Hylland K, 2006, J TOXICOL ENV HEAL A, V69, P109, DOI 10.1080/15287390500259327; Janssens BJ, 2000, J EXP BIOL, V203, P3717; King CK, 2001, MAR ECOL PROG SER, V215, P143, DOI 10.3354/meps215143; Lamare MD, 1999, MAR ECOL PROG SER, V180, P197, DOI 10.3354/meps180197; Lamare MD, 2007, AQUAT BIOL, V1, P21, DOI 10.3354/ab00003; Lesser MP, 2010, PHOTOCHEM PHOTOBIOL, V86, P382, DOI 10.1111/j.1751-1097.2009.00671.x; Lesser MP, 2006, ANNU REV PHYSIOL, V68, P253, DOI 10.1146/annurev.physiol.68.040104.110001; Lesser MP, 2003, J EXP BIOL, V206, P4097, DOI 10.1242/jeb.00621; Levitan DR, 2000, P ROY SOC B-BIOL SCI, V267, P531, DOI 10.1098/rspb.2000.1032; LEVITAN DR, 1991, BIOL BULL, V181, P371, DOI 10.2307/1542357; Lister KN, 2015, POLAR BIOL, V38, P1741, DOI 10.1007/s00300-015-1739-3; Lister KN, 2015, AQUAT TOXICOL, V161, P61, DOI 10.1016/j.aquatox.2015.01.031; Lister KN, 2010, J EXP BIOL, V213, P1967, DOI 10.1242/jeb.039990; Lister KN, 2010, PHOTOCHEM PHOTOBIOL, V86, P1091, DOI 10.1111/j.1751-1097.2010.00779.x; Livingstone DR, 2001, MAR POLLUT BULL, V42, P656, DOI 10.1016/S0025-326X(01)00060-1; Llodra ER, 2002, ADV MAR BIOL, V43, P87; Lushchak VI, 2011, AQUAT TOXICOL, V101, P13, DOI 10.1016/j.aquatox.2010.10.006; MARAL J, 1977, BIOCHEM BIOPH RES CO, V77, P1525, DOI 10.1016/S0006-291X(77)80151-4; Marshall DJ, 2008, ECOLOGY, V89, P418, DOI 10.1890/07-0449.1; Marshall DJ, 2006, MAR POLLUT BULL, V52, P734, DOI 10.1016/j.marpolbul.2006.05.005; Marshall DJ, 2009, ECOL STUD-ANAL SYNTH, V206, P165, DOI 10.1007/978-3-540-92704-4_11; Martins M, 2013, AQUAT TOXICOL, V142, P85, DOI 10.1016/j.aquatox.2013.07.019; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Mihaljevic B, 1996, FREE RADICAL BIO MED, V21, P53, DOI 10.1016/0891-5849(95)02224-4; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Moran AL, 2009, BIOL BULL-US, V216, P226; PAGLIA DE, 1967, J LAB CLIN MED, V70, P158; Rahman I, 2006, NAT PROTOC, V1, P3159, DOI 10.1038/nprot.2006.378; Regoli F, 2014, MAR ENVIRON RES, V93, P106, DOI 10.1016/j.marenvres.2013.07.006; REZNICK AZ, 1994, METHOD ENZYMOL, V233, P357; Schafer S, 2009, MAR ENVIRON RES, V68, P128, DOI 10.1016/j.marenvres.2009.05.001; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; Stearns S, 1992, EVOLUTION LIFE HIST; Uthicke S, 2009, ECOL MONOGR, V79, P3, DOI 10.1890/07-2136.1; Valavanidis A, 2006, ECOTOX ENVIRON SAFE, V64, P178, DOI 10.1016/j.ecoenv.2005.03.013; Vaschenko MA, 1999, MAR POLLUT BULL, V38, P1097, DOI 10.1016/S0025-326X(99)00116-2; WALKER MM, 1984, NEW ZEAL J MAR FRESH, V18, P393, DOI 10.1080/00288330.1984.9516060 65 9 9 3 12 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0166-445X 1879-1514 AQUAT TOXICOL Aquat. Toxicol. AUG 2016 177 106 115 10.1016/j.aquatox.2016.05.013 10 Marine & Freshwater Biology; Toxicology Marine & Freshwater Biology; Toxicology DT5NK WOS:000381529700012 27267389 2019-02-21 J De Roissart, A; Wybouw, N; Renault, D; Van Leeuwen, T; Bonte, D De Roissart, Annelies; Wybouw, Nicky; Renault, David; Van Leeuwen, Thomas; Bonte, Dries Life-history evolution in response to changes in metapopulation structure in an arthropod herbivore FUNCTIONAL ECOLOGY English Article evolutionary rescue; metapopulation-level selection; stochasticity; stress; Tetranychus urticae SEX-RATIO; TETRANYCHUS-URTICAE; GENE-EXPRESSION; HOST-PLANT; DISPERSAL; SELECTION; DYNAMICS; POPULATION; ADAPTATION; RESCUE The persistence and dynamics of populations largely depend on the way they are configured and integrated into space and the ensuing eco-evolutionary dynamics. We manipulated spatial and temporal variation in patch size in replicated experimental metapopulations of the herbivore mite Tetranychus urticae and followed evolutionary dynamics over approximately 30 generations. A significant divergence in life-history traits, physiological endpoints and gene expression was recorded in the spatially and spatiotemporally variable metapopulation, but also a remarkable convergence relative to the stable reference metapopulation in traits related to size and fecundity and in its transcriptional regulation. The observed evolutionary dynamics are tightly linked to demographic changes, more specifically frequent episodes of resource shortage that increased the reproductive performance of mites on tomato, a challenging host plant. This points towards a general, adaptive stress response in stable spatial variable and spatiotemporal variable metapopulations that pre-adapts a herbivore arthropod to novel environmental stressors. [De Roissart, Annelies; Bonte, Dries] Univ Ghent, Dept Biol, Terr Ecol Unit, KL Ledeganckstr 35, B-9000 Ghent, Belgium; [Wybouw, Nicky; Van Leeuwen, Thomas] Univ Ghent, Dept Crop Protect, Lab Agrozool, Coupure Links 653, B-9000 Ghent, Belgium; [Wybouw, Nicky; Van Leeuwen, Thomas] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands; [Renault, David] Univ Rennes 1, UMR ECOBIO CNRS 6553, Ave Gal Leclerc 263,CS 74205, F-35042 Rennes, France Bonte, D (reprint author), Univ Ghent, Dept Biol, Terr Ecol Unit, KL Ledeganckstr 35, B-9000 Ghent, Belgium. dries.bonte@ugent.be Bonte, Dries/0000-0002-3320-7505; RENAULT, David/0000-0003-3644-1759 FWO [G.0610.11, G.0093.12N]; Belspo-IAP project Speedy; BOF-Ugent; Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) [IWT/SB/101451]; Observatoire des Sciences de l'Univers de Rennes (OSUR) This project was funded by FWO projects G.0610.11 and G.0093.12N and Belspo-IAP project Speedy. ADR was funded by BOF-Ugent. NW was supported by the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT, grant IWT/SB/101451). DR was supported by the Observatoire des Sciences de l'Univers de Rennes (OSUR). Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1046/j.1442-9993.2001.01070.x; Bell G, 2011, SCIENCE, V332, P1327, DOI 10.1126/science.1203105; BIERBAUM TJ, 1989, EVOLUTION, V43, P382, DOI 10.1111/j.1558-5646.1989.tb04234.x; Boeye J, 2013, EVOL APPL, V6, P353, DOI 10.1111/eva.12004; Bozic J, 1997, J APICULT RES, V36, P33; Bryon A, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-815; Cameron TC, 2014, ADV ECOL RES, V50, P171, DOI 10.1016/B978-0-12-801374-8.00005-0; Cameron TC, 2013, ECOL LETT, V16, P754, DOI 10.1111/ele.12107; Carlson SM, 2014, TRENDS ECOL EVOL, V29, P521, DOI 10.1016/j.tree.2014.06.005; CLARK AB, 1978, SCIENCE, V201, P163, DOI 10.1126/science.201.4351.163; Conesa A, 2005, BIOINFORMATICS, V21, P3674, DOI 10.1093/bioinformatics/bti610; De Block M, 2008, P R SOC B, V275, P781, DOI 10.1098/rspb.2007.1515; De Roissart A, 2015, J ANIM ECOL, V84, P1565, DOI 10.1111/1365-2656.12400; Dermauw W, 2013, P NATL ACAD SCI USA, V110, pE113, DOI 10.1073/pnas.1213214110; DesRoissart A., 2015, DRYAD DIGITAL RESPOI; Dirzo R, 2003, ANNU REV ENV RESOUR, V28, P137, DOI 10.1146/annurev.energy.28.050302.105532; Dytham C, 2006, OIKOS, V113, P530, DOI 10.1111/j.2006.0030-1299.14395.x; Farkas TE, 2013, CURR BIOL, V23, P1835, DOI 10.1016/j.cub.2013.07.067; Fronhofer EA, 2014, EVOLUTION, V68, P1838, DOI 10.1111/evo.12339; Fronhofer EA, 2012, ECOLOGY, V93, P1967, DOI 10.1890/11-1814.1; GEORGE AA, 1993, PLANT FOOD HUM NUTR, V43, P225, DOI 10.1007/BF01886223; GOMULKIEWICZ R, 1995, EVOLUTION, V49, P201, DOI 10.1111/j.1558-5646.1995.tb05971.x; Grbic M, 2011, NATURE, V479, P487, DOI 10.1038/nature10640; Hanski I, 1998, NATURE, V396, P41, DOI 10.1038/23876; Hanski I, 2011, ECOL LETT, V14, P1025, DOI 10.1111/j.1461-0248.2011.01671.x; Harrison Susan, 1997, P27, DOI 10.1016/B978-012323445-2/50004-3; JOHNSON CN, 1988, NATURE, V332, P726, DOI 10.1038/332726a0; Kawecki TJ, 2012, TRENDS ECOL EVOL, V27, P547, DOI 10.1016/j.tree.2012.06.001; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; Kokko H, 2007, ECOL LETT, V10, P773, DOI 10.1111/j.1461-0248.2007.01086.x; Krips OE, 1998, ENTOMOL EXP APPL, V89, P159, DOI 10.1046/j.1570-7458.1998.00395.x; Laparie M, 2012, COMP BIOCHEM PHYS A, V161, P122, DOI 10.1016/j.cbpa.2011.09.011; LEVINS R, 1969, P NATL ACAD SCI USA, V62, P1061, DOI 10.1073/pnas.62.4.1061; LI JB, 1994, HEREDITY, V72, P10, DOI 10.1038/hdy.1994.2; Macke E, 2011, SCIENCE, V334, P1127, DOI 10.1126/science.1212177; Magalhaes S, 2007, J EVOLUTION BIOL, V20, P2016, DOI 10.1111/j.1420-9101.2007.01365.x; Marden JH, 2013, MOL ECOL, V22, P5743, DOI 10.1111/mec.12534; Margulis L., 2000, WHAT IS LIFE; Monro K, 2014, AM NAT, V183, P798, DOI 10.1086/676006; OLIVIERI I, 1990, TRENDS ECOL EVOL, V5, P207, DOI 10.1016/0169-5347(90)90132-W; Packard GC, 1999, COMP BIOCHEM PHYS A, V122, P37, DOI 10.1016/S1095-6433(98)10170-8; Parsons PA, 2005, BIOL REV, V80, P589, DOI 10.1017/S1464793105006822; Ronce O, 2000, EVOL ECOL, V14, P233, DOI 10.1023/A:1011068005057; Smyth GK, 2005, STAT BIOL HEALTH, P397, DOI 10.1007/0-387-29362-0_23; Sulmon C, 2015, ENVIRON POLLUT, V202, P66, DOI 10.1016/j.envpol.2015.03.013; TERRA WR, 1994, COMP BIOCHEM PHYS B, V109, P1, DOI 10.1016/0305-0491(94)90141-4; Travis JMJ, 1999, P ROY SOC B-BIOL SCI, V266, P723, DOI 10.1098/rspb.1999.0696; Travis JMJ, 2013, OIKOS, V122, P1532, DOI 10.1111/j.1600-0706.2013.00399.x; Van Leeuwen T, 2008, P NATL ACAD SCI USA, V105, P5980, DOI 10.1073/pnas.0802224105; Varemo L, 2013, NUCLEIC ACIDS RES, V41, P4378, DOI 10.1093/nar/gkt111; Wheat CW, 2014, CURR OPIN INSECT SCI, V4, P42, DOI 10.1016/j.cois.2014.10.003; Wheat CW, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P95; Zajitschek F, 2013, AGE, V35, P1193, DOI 10.1007/s11357-012-9445-3; Zhurov V, 2014, PLANT PHYSIOL, V164, P384, DOI 10.1104/pp.113.231555 54 5 5 5 39 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. AUG 2016 30 8 1408 1417 10.1111/1365-2435.12612 10 Ecology Environmental Sciences & Ecology DV0BB WOS:000382581400014 2019-02-21 J Crisci, JL; Dean, MD; Ralph, P Crisci, Jessica L.; Dean, Matthew D.; Ralph, Peter Adaptation in isolated populations: when does it happen and when can we tell? MOLECULAR ECOLOGY English Article adaptation; bottlenecks; isolated populations; population genetics theory; selective sweeps GUPPIES POECILIA-RETICULATA; STANDING GENETIC-VARIATION; RAPID MORPHOLOGICAL CHANGE; LIFE-HISTORY EVOLUTION; HOUSE MICE; POSITIVE SELECTION; ADAPTIVE DIFFERENTIATION; LINKAGE DISEQUILIBRIUM; RATTUS-RATTUS; GOUGH ISLAND Isolated populations with novel phenotypes present an exciting opportunity to uncover the genetic basis of ecologically significant adaptation, and genomic scans have often, but not always, led to candidate genes directly related to an adaptive phenotype. However, in many cases these populations were established by a severe bottleneck, which can make identifying targets of selection problematic. Here, we simulate severe bottlenecks and subsequent selection on standing variation, mimicking adaptation after establishment of a new small population, such as an island or an artificial selection experiment. Using simulations of single loci under positive selection and population genetics theory, we examine how population size and age of the population isolate affect the ability of outlier scans for selection to identify adaptive alleles using both single-site measures and haplotype structure. We find and explain an optimal combination of selection strength, starting frequency, and age of the adaptive allele, which we refer to as a Goldilocks zone, where adaptation is likely to occur and yet the adaptive variants are most likely to derive from a single ancestor (a 'hard' selective sweep); in this zone, four commonly used statistics detect selection with high power. Real-world examples of both island colonization and experimental evolution studies are discussed. Our study provides concrete considerations to be made before embarking on whole-genome sequencing of differentiated populations. [Crisci, Jessica L.; Dean, Matthew D.; Ralph, Peter] Univ Southern Calif, Dept Biol Sci, Mol & Computat Biol, 1050 Childs Way, Los Angeles, CA 90089 USA Ralph, P (reprint author), Univ Southern Calif, Dept Biol Sci, Mol & Computat Biol, 1050 Childs Way, Los Angeles, CA 90089 USA. pralph@usc.edu Ralph, Peter/0000-0002-9459-6866 National Science Foundation [1146525]; USC Funding for this study was provided by National Science Foundation grant #1146525 (MDD) and USC start-up funds (PR). Emily Kopania helped code application of the H12 statistic. Lorraine Provencio assisted with Table 1. Akey JM, 2009, GENOME RES, V19, P711, DOI 10.1101/gr.086652.108; Alachiotis N, 2012, BIOINFORMATICS, V28, P2274, DOI 10.1093/bioinformatics/bts419; Berry RJ, 1996, PHILOS T ROY SOC B, V351, P753, DOI 10.1098/rstb.1996.0070; Burke MK, 2010, NATURE, V467, P587, DOI 10.1038/nature09352; Coop G, 2012, GENETICS, V192, P205, DOI 10.1534/genetics.112.141861; Cuthbert R, 2004, BIOL CONSERV, V117, P483, DOI 10.1016/j.biocon.2003.08.007; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Ewing G, 2010, BIOINFORMATICS, V26, P2064, DOI 10.1093/bioinformatics/btq322; Firman RC, 2008, J EVOLUTION BIOL, V21, P1524, DOI 10.1111/j.1420-9101.2008.01612.x; Firman RC, 2013, EVOLUTION, V67, P3061, DOI 10.1111/evo.12164; Firman RC, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-19; Fisher R. A., 1919, Transactions of the Royal Society of Edinburgh, V52; Fraser BA, 2015, MOL ECOL, V24, P389, DOI 10.1111/mec.13022; Garud NR, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005004; GILL AE, 1977, EVOLUTION, V31, P512, DOI 10.1111/j.1558-5646.1977.tb01041.x; Gray MM, 2014, MOL ECOL, V23, P1923, DOI 10.1111/mec.12715; Haldane J. B. S., 1924, Trans Phil Soc Cambridge U K, V23, P19; Hermisson J, 2005, GENETICS, V169, P2335, DOI 10.1534/genetics.104.036947; Holland B, 1999, P NATL ACAD SCI USA, V96, P5083, DOI 10.1073/pnas.96.9.5083; KAPLAN NL, 1989, GENETICS, V123, P887; Keller SR, 2008, ECOL LETT, V11, P852, DOI 10.1111/j.1461-0248.2008.01188.x; Kim Y, 2004, GENETICS, V167, P1513, DOI 10.1534/genetics.103.025387; Kolbe JJ, 2012, SCIENCE, V335, P1086, DOI 10.1126/science.1209566; Ledevin R, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2820; Lescak EA, 2015, P NATL ACAD SCI USA, V112, pE7204, DOI 10.1073/pnas.1512020112; Losos JB, 2001, GENETICA, V112, P399, DOI 10.1023/A:1013387705408; Losos JB, 2009, NATURE, V457, P830, DOI 10.1038/nature07893; Martinkova N, 2013, MOL ECOL, V22, P5205, DOI 10.1111/mec.12462; McVean G, 2007, GENETICS, V175, P1395, DOI 10.1534/genetics.106.062828; PATTON JL, 1975, SYST ZOOL, V24, P296, DOI 10.2307/2412717; Pergams ORW, 2015, PEERJ, V3, DOI 10.7717/peerj.812; Pergams ORW, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006452; Poh YP, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0110579; Przeworski M, 2005, EVOLUTION, V59, P2312, DOI 10.1554/05-273.1; Przeworski M, 2002, GENETICS, V160, P1179; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; ROWEROWE DT, 1992, S AFR J ZOOL, V27, P1; Smith JM, 2007, GENET RES, V89, P391, DOI [10.1017/S0016672308009579, 10.1017/S0016672300014634]; Swallow JG, 1999, J EXP BIOL, V202, P2513; WRIGHT S, 1950, NATURE, V166, P247, DOI 10.1038/166247a0; WRIGHT S, 1946, GENETICS, V31, P125 43 7 7 0 41 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. AUG 2016 25 16 3901 3911 10.1111/mec.13729 11 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology DT6FD WOS:000381578200009 27297514 2019-02-21 J Davis, RB; Javois, J; Kaasik, A; Ounap, E; Tammaru, T Davis, Robert B.; Javois, Juhan; Kaasik, Ants; Ounap, Erki; Tammaru, Toomas An ordination of life histories using morphological proxies: capital vs. income breeding in insects ECOLOGY English Article capital breeding; CSR classification; income breeding; insect ecology; insect life history; Lepidoptera; phylogenetic comparative methods; phylogenetic generalized least squares; polyphagy; r- and K-strategies EPIRRITA-AUTUMNATA LEPIDOPTERA; EGG MATURATION STRATEGY; BODY-SIZE; POPULATION-DYNAMICS; PHYLOGENETIC INERTIA; HOLOMETABOLOUS INSECTS; REPRODUCTIVE EFFORT; REALIZED FECUNDITY; FEMALE SIZE; AMINO-ACIDS Predictive classifications of life histories are essential for evolutionary ecology. While attempts to apply a single approach to all organisms may be overambitious, recent advances suggest that more narrow ordination schemes can be useful. However, these schemes mostly lack easily observable proxies of the position of a species on respective axes. It has been proposed that, in insects, the degree of capital (vs. income) breeding, reflecting the importance of adult feeding for reproduction, correlates with various ecological traits at the level of among-species comparison. We sought to prove these ideas via rigorous phylogenetic comparative analyses. We used experimentally derived life-history data for 57 species of European Geometridae (Lepidoptera), and an original phylogenetic reconstruction. The degree of capital breeding was estimated based on morphological proxies, including relative abdomen size of females. Applying Brownian-motion-based comparative analyses (with an original update to include error estimates), we demonstrated the associations between the degree of capital breeding and larval diet breadth, sexual size dimorphism, and reproductive season. Ornstein-Uhlenbeck model based phylogenetic analysis suggested a causal relationship between the degree of capital breeding and diet breadth. Our study indicates that the gradation from capital to income breeding is an informative axis to ordinate life-history strategies in flying insects which are affected by the fecundity vs. mobility trade off, with the availability of easy to record proxies contributing to its predictive power in practical contexts. [Davis, Robert B.; Javois, Juhan; Kaasik, Ants; Ounap, Erki; Tammaru, Toomas] Univ Tartu, Inst Ecol & Earth Sci, Dept Zool, Vanemuise 46, EE-51014 Tartu, Estonia; [Ounap, Erki] Estonian Univ Life Sci, Inst Agr & Environm Sci, Kreutzwaldi 5, EE-51014 Tartu, Estonia Davis, RB (reprint author), Univ Tartu, Inst Ecol & Earth Sci, Dept Zool, Vanemuise 46, EE-51014 Tartu, Estonia. davis@ut.ee Kaasik, Ants/H-2462-2012 Kaasik, Ants/0000-0002-4904-0877 Estonian Ministry of Education and Research [IUT 20-33]; Estonian Research Council (ETF) [9344, 9294]; EU through European Regional Development Fund (Centre of Excellence FIBIR) We thank our colleagues in Tartu and anonymous referees for constructive criticism. The study was supported by institutional research funding IUT 20-33 of the Estonian Ministry of Education and Research, Estonian Research Council (ETF grants no 9344, 9294) and the EU through the European Regional Development Fund (Centre of Excellence FIBIR). Arnqvist G, 2000, ANIM BEHAV, V60, P145, DOI 10.1006/anbe.2000.1446; Bauerfeind SS, 2005, J INSECT PHYSIOL, V51, P545, DOI 10.1016/j.jinsphys.2005.02.002; Bauerfeind SS, 2008, BASIC APPL ECOL, V9, P443, DOI 10.1016/j.baae.2007.05.005; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; BOGGS CL, 1981, AM NAT, V117, P692, DOI 10.1086/283753; BOGGS CL, 1993, ECOLOGY, V74, P433, DOI 10.2307/1939305; Boggs CL, 1997, ECOLOGY, V78, P192; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Brett MT, 2004, OIKOS, V105, P647, DOI 10.1111/j.0030-1299.2004.12777.x; Carnicer J, 2013, GLOBAL ECOL BIOGEOGR, V22, P6, DOI 10.1111/j.1466-8238.2012.00762.x; Carvalho MC, 1998, OECOLOGIA, V116, P98, DOI 10.1007/s004420050567; Casas J, 2005, ECOLOGY, V86, P545, DOI 10.1890/04-0812; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Crafer T., 2005, FOODPLANT LIST CATER; Davey K. G., 1999, ENCY REPROD, V2, P845; Davis RB, 2012, J EVOLUTION BIOL, V25, P210, DOI 10.1111/j.1420-9101.2011.02420.x; Davis RB, 2013, EVOLUTION, V67, P583, DOI 10.1111/j.1558-5646.2012.01776.x; DIXON AFG, 1993, FUNCT ECOL, V7, P267, DOI 10.2307/2390204; DRENT RH, 1980, ARDEA, V68, P225; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Fischer K, 2004, FUNCT ECOL, V18, P656, DOI 10.1111/j.0269-8463.2004.00892.x; Flanders Stanley E., 1942, ANN ENT SOC AMERICA, V35, P251; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; Griffen BD, 2012, BIOL INVASIONS, V14, P2545, DOI 10.1007/s10530-012-0251-8; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Hansen TF, 2005, EVOLUTION, V59, P2063; Hansen TF, 1997, EVOLUTION, V51, P1341, DOI 10.1111/j.1558-5646.1997.tb01457.x; Hansen TF, 2008, EVOLUTION, V62, P1965, DOI 10.1111/j.1558-5646.2008.00412.x; HEBERT PDN, 1983, CAN ENTOMOL, V115, P1477, DOI 10.4039/Ent1151477-11; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Hughes CL, 2007, ECOL ENTOMOL, V32, P437, DOI 10.1111/j.1365-2311.2007.00890.x; HUNTER AF, 1995, EVOL ECOL, V9, P275, DOI 10.1007/BF01237773; Ives AR, 2007, SYSTEMATIC BIOL, V56, P252, DOI 10.1080/10635150701313830; Javois J, 2011, ENTOMOL EXP APPL, V139, P187, DOI 10.1111/j.1570-7458.2011.01120.x; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Jervis MA, 2007, BIOL J LINN SOC, V90, P293, DOI 10.1111/j.1095-8312.2007.00721.x; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; Johnson RA, 2006, INSECT SOC, V53, P316, DOI 10.1007/s00040-006-0874-9; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Kemp DJ, 2003, AM NAT, V162, P290, DOI 10.1086/376890; Kristensen N. P., 2003, HDB OF ZOOLOGY; Labra A, 2009, AM NAT, V174, P204, DOI 10.1086/600088; LEATHER SR, 1988, OIKOS, V51, P386, DOI 10.2307/3565323; Leraut P., 2009, MOTHS OF EUROPE, V2; MAC ARTHUR ROBERT H., 1967; Madden AH, 1945, USDA TECHNICAL B, V896, P1; Milano P, 2010, NEOTROP ENTOMOL, V39, P172, DOI 10.1590/S1519-566X2010000200005; Miller WE, 1996, ENVIRON ENTOMOL, V25, P213, DOI 10.1093/ee/25.2.213; Molleman F, 2009, J INSECT PHYSIOL, V55, P375, DOI 10.1016/j.jinsphys.2009.01.004; O'Brien DM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P819, DOI 10.1086/431191; O'Brien DM, 2000, ECOLOGY, V81, P2822, DOI 10.2307/177344; Ounap E, 2008, ZOOL SCR, V37, P405, DOI 10.1111/j.1463-6409.2008.00327.x; Ounap E, 2011, EUR J ENTOMOL, V108, P267, DOI 10.14411/eje.2011.036; Pelisson PF, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0076086; Pienaar J, 2013, ECOL LETT, V16, P571, DOI 10.1111/ele.12077; Pierce S, 2013, FUNCT ECOL, V27, P1002, DOI 10.1111/1365-2435.12095; Poykko H, 2009, ECOL ENTOMOL, V34, P254, DOI 10.1111/j.1365-2311.2008.01064.x; R Development Core Team, 2012, R LANG ENV STAT COMP; Reeve JP, 1999, HEREDITY, V83, P697, DOI 10.1046/j.1365-2540.1999.00616.x; Remmel T, 2009, ECOL ENTOMOL, V34, P98, DOI 10.1111/j.1365-2311.2008.01044.x; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Rhainds M, 2008, ECOL ENTOMOL, V33, P663, DOI 10.1111/j.1365-2311.2008.01027.x; Rhainds M, 2013, J INSECT BEHAV, V26, P850, DOI 10.1007/s10905-013-9400-x; Sainmont J, 2014, AM NAT, V184, P466, DOI 10.1086/677926; Sattler K., 1991, Bulletin of the British Museum (Natural History) Entomology, V60, P243; Schmidtlein S, 2012, J VEG SCI, V23, P395, DOI 10.1111/j.1654-1103.2011.01370.x; Senechal E, 2011, OECOLOGIA, V165, P593, DOI 10.1007/s00442-010-1853-4; Seppanen E. J., 1970, SUURPERHOSTOUKKIEN R; Smits A, 2001, ECOL ENTOMOL, V26, P417, DOI 10.1046/j.1365-2311.2001.00329.x; Snall N, 2007, BIOL J LINN SOC, V92, P241, DOI 10.1111/j.1095-8312.2007.00834.x; Song ZM, 2007, EUR J ENTOMOL, V104, P721, DOI 10.14411/eje.2007.091; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Stephens PA, 2014, ECOLOGY, V95, P882, DOI 10.1890/13-1434.1; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Tammaru T, 1996, OIKOS, V77, P407, DOI 10.2307/3545931; Tammaru T, 2000, ENVIRON ENTOMOL, V29, P1002, DOI 10.1603/0046-225X-29.5.1002; Tammaru T, 1995, OIKOS, V74, P296, DOI 10.2307/3545659; Tammaru T, 1996, ECOL ENTOMOL, V21, P185, DOI 10.1111/j.1365-2311.1996.tb01186.x; Tammaru T, 1996, OIKOS, V77, P561, DOI 10.2307/3545946; Tammaru T, 2002, OECOLOGIA, V133, P430, DOI 10.1007/s00442-002-1057-7; Tammaru T, 2001, ECOL ENTOMOL, V26, P646, DOI 10.1046/j.1365-2311.2001.00363.x; TWEEDIE M W F, 1976, Entomologist's Gazette, V27, P2; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; Viidalepp J, 2007, EUR J ENTOMOL, V104, P303, DOI 10.14411/eje.2007.046; Voje KL, 2013, EVOLUTION, V67, P453, DOI 10.1111/j.1558-5646.2012.01777.x; WAGNER DL, 1992, TRENDS ECOL EVOL, V7, P216, DOI 10.1016/0169-5347(92)90047-F; Wahlberg N, 2010, MOL PHYLOGENET EVOL, V55, P929, DOI 10.1016/j.ympev.2010.01.025; Warne RW, 2012, AM NAT, V180, P130, DOI 10.1086/665995; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Wheeler D, 1996, ANNU REV ENTOMOL, V41, P407, DOI 10.1146/annurev.en.41.010196.002203; WICKMAN PO, 1989, OIKOS, V56, P209, DOI 10.2307/3565338; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; Yamamoto S, 2007, MOL PHYLOGENET EVOL, V44, P711, DOI 10.1016/j.ympev.2006.12.027; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207 99 7 7 2 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology AUG 2016 97 8 2112 2124 10.1002/ecy.1435 13 Ecology Environmental Sciences & Ecology DS4KI WOS:000380749600023 27859210 2019-02-21 J Davidowitz, G Davidowitz, Goggy Endocrine Proxies Can Simplify Endocrine Complexity to Enable Evolutionary Prediction INTEGRATIVE AND COMPARATIVE BIOLOGY English Article SEXUAL SIZE DIMORPHISM; LIFE-HISTORY EVOLUTION; INSECT BODY-SIZE; PHENOTYPIC PLASTICITY; PHYSIOLOGICAL-BASIS; WING POLYMORPHISM; JUVENILE-HORMONE; DEVELOPMENT TIME; MANDUCA-SEXTA; TESTOSTERONE It is well understood that much of evolutionary change is mediated through the endocrine system with growing interest to identify how this occurs. This however, causes a conflict of sorts. To understand endocrine mechanism, a focus on detail is required. In contrast, to understand evolutionary change, reduction to a few key traits is essential. Endocrine proxies, measurable traits that accurately reflect specific hormonal titers or the timing of specific hormonal events, can reduce endocrine complexity to a few traits that enable predictions of how the endocrine system regulates evolutionary change. In the tobacco hornworm (Manduca sexta, Sphingidae), three endocrine proxies, measured on 5470 individuals, were used to test explicit predictions of how the endocrine system regulates the response to 10 generations of simultaneous selection on body size and development time. The critical weight (CW) reflects the variation in the cessation of juvenile hormone (JH) secretion in the last larval instar, the interval to cessation of growth (ICG) reflects the variation in prothoracicotropic hormone and 20-hydroxyecdysone (20E). Growth rate (GR) reflects the nutrient signaling pathways, primarily the insulin and TOR This is a standard identity similar to DNA signaling pathways. These three endocrine proxies explained 99% and 93% of the variation in body size and development time, respectively, following the 10 generations of simultaneous selection. When the two focal traits, body size and development time, were selected in the same direction, both to either increase or both to decrease, the response to selection was determined primarily by the CW and the ICG, proxies for the developmental hormones JH and 20E, and constrained by GR. In contrast, when the two focal traits were selected in opposite directions, one to increase and the other to decrease, the response to selection was determined primarily by the insulin and TOR signaling pathways as measured by their proxy, GR, and constrained by the CW and the ICG. Thus, the use of endocrine proxies may be a powerful tool to reduce endocrine complexity to enable explicit and testable predictions how the endocrine system can enable or constrain evolutionary change. [Davidowitz, Goggy] Univ Arizona, Dept Entomol, Forbes 410,1140 E South Campus Dr, Tucson, AZ 85721 USA Davidowitz, G (reprint author), Univ Arizona, Dept Entomol, Forbes 410,1140 E South Campus Dr, Tucson, AZ 85721 USA. goggy@email.arizona.edu ARTHUR AZ, 1987, PERCEPT MOTOR SKILL, V64, P75, DOI 10.2466/pms.1987.64.1.75; Badyaev AV, 2002, TRENDS ECOL EVOL, V17, P369, DOI 10.1016/S0169-5347(02)02569-7; Baugh AT, 2012, GEN COMP ENDOCR, V175, P488, DOI 10.1016/j.ygcen.2011.12.012; Bonier F, 2011, BIOL LETTERS, V7, P944, DOI 10.1098/rsbl.2011.0391; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Boorse GC, 2003, INTEGR COMP BIOL, V43, P646, DOI 10.1093/icb/43.5.646; Callier V, 2013, BIOL REV, V88, P944, DOI 10.1111/brv.12033; Colombani J, 2005, SCIENCE, V310, P667, DOI 10.1126/science.1119432; Cox RM, 2009, J EVOLUTION BIOL, V22, P1586, DOI 10.1111/j.1420-9101.2009.01772.x; Cox RM, 2005, J EXP BIOL, V208, P4679, DOI 10.1242/jeb.01948; Cox RM, 2016, INTEGR COMP BIOL; Cox RM, 2009, AM NAT, V173, P176, DOI 10.1086/595841; D'Amico LJ, 2001, P ROY SOC B-BIOL SCI, V268, P1589, DOI 10.1098/rspb.2001.1698; Davidowitz G, 2005, INTEGR COMP BIOL, V45, P525, DOI 10.1093/icb/45.3.525; Davidowitz G, 2004, INTEGR COMP BIOL, V44, P443, DOI 10.1093/icb/44.6.443; Davidowitz G, 2004, EVOL ECOL RES, V6, P49; Davidowitz G, 2003, EVOL DEV, V5, P188, DOI 10.1046/j.1525-142X.2003.03026.x; Davidowitz G, SYNERGISM A IN PRESS; Davidowitz G, 2015, INTEGRATIVE ORGANISMAL BIOLOGY, P207; Davidowitz G, 2012, EVOLUTION, V66, P2916, DOI 10.1111/j.1558-5646.2012.01644.x; Dawson A, 2008, PHILOS T R SOC B, V363, P1621, DOI 10.1098/rstb.2007.0004; Dugovic C, 1999, J NEUROSCI, V19, P8656; Efeyan A, 2015, NATURE, V517, P302, DOI 10.1038/nature14190; Fairbairn DJ, 1999, EVOLUTION, V53, P977, DOI 10.1111/j.1558-5646.1999.tb05393.x; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Gokhale RH, 2015, WIRES DEV BIOL, V4, P335, DOI 10.1002/wdev.181; Golinski A, 2014, GEN COMP ENDOCR, V205, P133, DOI 10.1016/j.ygcen.2014.05.012; Golinski A, 2011, HORM BEHAV, V59, P144, DOI 10.1016/j.yhbeh.2010.11.007; Hatem NE, 2015, BMC BIOL, V13, DOI 10.1186/s12915-015-0155-z; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Helm BR, 2015, J INSECT PHYSIOL, V78, P78, DOI 10.1016/j.jinsphys.2015.04.015; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; Koyama T, 2014, ELIFE, V3, DOI 10.7554/eLife.03091; Lynch M, 1998, GENETICS ANAL QUANTI; McGlothlin JW, 2008, PHILOS T R SOC B, V363, P1611, DOI 10.1098/rstb.2007.0002; McGlothlin JW, 2010, AM NAT, V175, P687, DOI 10.1086/652469; Mirth Christen Kerry, 2014, Commun Integr Biol, V7, DOI 10.4161/cib.29240; Mirth CK, 2014, P NATL ACAD SCI USA, V111, P7018, DOI 10.1073/pnas.1313058111; Nijhout H. F., 2009, Phenotypic plasticity of insects: mechanisms and consequences, P589; Nijhout H. F., 2006, J BIOL, V5, P1; Nijhout HF, 2014, WIRES DEV BIOL, V3, P113, DOI 10.1002/wdev.124; Nijhout HF, 2010, PHILOS T R SOC B, V365, P567, DOI 10.1098/rstb.2009.0249; Nijhout HF, 2003, EVOL DEV, V5, P9, DOI 10.1046/j.1525-142X.2003.03003.x; Okamoto N, 2015, CURR OPIN INSECT SCI, V11, P21, DOI 10.1016/j.cois.2015.08.001; Oliveira MM, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004408; Ouyang JQ, 2011, P ROY SOC B-BIOL SCI, V278, P2537, DOI 10.1098/rspb.2010.2490; Pavitt AT, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2014.0685; Pravosudov VV., 2003, P R SOC B, V270, P2585; Roff Derek A., 1992; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Schwartz TS, 2013, MOL ECOL, V22, P739, DOI 10.1111/j.1365-294X.2012.05750.x; Shepard JD, 2000, BRAIN RES, V861, P288, DOI 10.1016/S0006-8993(00)02019-9; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stillwell RC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106548; Stillwell RC, 2010, P ROY SOC B-BIOL SCI, V277, P3819, DOI 10.1098/rspb.2010.0895; Stillwell RC, 2010, P ROY SOC B-BIOL SCI, V277, P2069, DOI 10.1098/rspb.2009.2277; Stillwell RC, 2010, ANNU REV ENTOMOL, V55, P227, DOI 10.1146/annurev-ento-112408-085500; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; Voellmy IK, 2014, HORM BEHAV, V66, P759, DOI 10.1016/j.yhbeh.2014.08.008; Williams TD, 2012, GEN COMP ENDOCR, V176, P286, DOI 10.1016/j.ygcen.2011.11.028; Zera AJ, 1999, EVOLUTION, V53, P973, DOI 10.1111/j.1558-5646.1999.tb05392.x; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615; Zera AJ, 2007, EVOL DEV, V9, P499, DOI 10.1111/j.1525-142X.2007.00181.x 66 6 6 0 5 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. AUG 2016 56 2 198 206 10.1093/icb/icw021 9 Zoology Zoology DT1YX WOS:000381279100008 27252196 Bronze 2019-02-21 J Burns, JG; Price, AC; Thomson, JD; Hughes, KA; Rodd, FH Burns, James G.; Price, Anna C.; Thomson, James D.; Hughes, Kimberly A.; Rodd, F. Helen Environmental and genetic effects on exploratory behavior of high- and low-predation guppies (Poecilia reticulata) BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Temperament; Predation pressure; Dispersal; Poecilia reticulata LIFE-HISTORY EVOLUTION; OPEN-FIELD TEST; TRINIDADIAN GUPPIES; ANTIPREDATOR RESPONSES; FITNESS CONSEQUENCES; AVIAN PERSONALITIES; MATE PREFERENCE; FEMALE GUPPIES; SELECTION; STRESS Exploratory behavior-an individual's response to novel environments, resources, or objects-should vary with the associated benefits, including new sources of food and reduced levels of competition, and the costs, such as predation pressure. Using guppies from multiple streams and rivers in Trinidad, we compared guppies from high- and low-predation populations. We found that wild-caught male and female guppies from low-predation populations were more exploratory than high-predation fish when tested in the field and in controlled laboratory conditions. We did not detect significant evidence for a genetic basis for differences in the behavior of high- and low-predation fish using a common-garden approach, but further study is required before conclusions can be made about the relative contribution of genes to population differences in exploratory behavior of guppies. Theory has assumed that predation risk is a cost that will select against high levels of exploratory behavior; this study is one of the few that has tested this assumption, and we show that exploratory behavior is indeed suppressed in guppies from high-predation localities. Exploratory behavior is a component of an individual's responses to novel environments, resources, and objects (including potential predators) and thus can affect important decisions of animals in the wild (e.g., whether to sample new, potential sources of food, whether to disperse). We compared exploratory behavior of wild-caught guppies from sites with large, dangerous predators with those from sites with small predators that are only a threat to small individuals. Guppies co-occurring with large predators were less exploratory than those from sites with small predators. Factors contributing to this difference could include exposure to predators directly and to conspecifics' responses to predators. Studies on general behavioral traits (e.g., temperament) combined with knowledge of animals' environment and evolution are expanding our ability to test ideas about the origin and maintenance of intra-specific variation in fascinating and complex traits. [Burns, James G.; Price, Anna C.; Thomson, James D.; Hughes, Kimberly A.; Rodd, F. Helen] Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Harbord St, Toronto, ON M5S 3G5, Canada Rodd, FH (reprint author), Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Harbord St, Toronto, ON M5S 3G5, Canada. helen.rodd@utoronto.ca Ontario Graduate Scholarship; Natural Science and Engineering Council of Canada; Government of Ontario PREA grants; US government National Science Foundation [DEB-0128455, DEB-0128820] The research was supported by an Ontario Graduate Scholarship to JGB, Natural Science and Engineering Council of Canada grants to FHR and JDT, Government of Ontario PREA grants to FHR, and the US government National Science Foundation grants (DEB-0128455 and DEB-0128820) to FHR, A. Houde, and KAH. Ahmed O, 2011, BEHAV BRAIN RES, V216, P166, DOI 10.1016/j.bbr.2010.07.028; Alexander HJ, 2006, EVOLUTION, V60, P2352, DOI 10.1111/j.0014-3820.2006.tb01870.x; Archard GA, 2011, J FISH BIOL, V78, P593, DOI 10.1111/j.1095-8649.2010.02880.x; Archard GA, 2012, FUNCT ECOL, V26, P637, DOI 10.1111/j.1365-2435.2012.01968.x; ARCHER J, 1973, BEHAV BIOL, V8, P93, DOI 10.1016/S0091-6773(73)80010-0; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Barreto RE, 2007, AQUACULT INT, V15, P163, DOI 10.1007/s10499-007-9073-6; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Bell BA, 2014, METHODOLOGY-EUR, V10, P1, DOI 10.1027/1614-2241/a000062; BOISSY A, 1995, Q REV BIOL, V70, P165, DOI 10.1086/418981; Both C, 2005, J ANIM ECOL, V74, P667, DOI 10.1111/j.1365-2656.2005.00962.x; Brown C, 2001, ANIM COGN, V2, P109; Budaev SV, 1999, BEHAV PROCESS, V48, P49, DOI 10.1016/S0376-6357(99)00068-6; Burns JG, 2008, J COMP PSYCHOL, V122, P344, DOI 10.1037/0735-7036.122.4.344; Burns JG, 2012, P NATL ACAD SCI USA, V109, P17239, DOI 10.1073/pnas.1121265109; Burns Jason Matthew, 2007, THESIS; Canadian Council on Animal Care, 2005, CCAC GUID CAR US FIS; Choleris E, 2001, NEUROSCI BIOBEHAV R, V25, P235, DOI 10.1016/S0149-7634(01)00011-2; Cote J, 2008, P ROY SOC B-BIOL SCI, V275, P2851, DOI 10.1098/rspb.2008.0783; De Serrano AR, 2016, BEHAV BRAIN RES, V302, P53, DOI 10.1016/j.bbr.2016.01.021; Deacon AE, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024416; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Dingemanse NJ, 2003, P ROY SOC B-BIOL SCI, V270, P741, DOI 10.1098/rspb.2002.2300; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Eakley AL, 2004, P ROY SOC B-BIOL SCI, V271, pS299, DOI 10.1098/rsbl.2004.0165; Edenbrow M, 2013, OIKOS, V122, P667, DOI 10.1111/j.1600-0706.2012.20556.x; Egan RJ, 2009, BEHAV BRAIN RES, V205, P38, DOI 10.1016/j.bbr.2009.06.022; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Fidler AE, 2007, P ROY SOC B-BIOL SCI, V274, P1685, DOI 10.1098/rspb.2007.0337; Fraser DF, 2001, AM NAT, V158, P124, DOI 10.1086/321307; Graber RE, 2015, ETHOLOGY, V121, P17, DOI 10.1111/eth.12313; GREENBERG R, 1984, P NATL ACAD SCI-BIOL, V81, P3778, DOI 10.1073/pnas.81.12.3778; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Hampton KJ, 2009, ETHOLOGY, V115, P475, DOI 10.1111/j.1439-0310.2009.01634.x; Herczeg G, 2011, J EVOLUTION BIOL, V24, P2434, DOI 10.1111/j.1420-9101.2011.02371.x; Holloway AC, 2004, AQUAC RES, V35, P1025, DOI 10.1111/j.1365-2109.2004.01108.x; Houde A., 1997, SEX COLOR MATE CHOIC; Hughes KA, 1999, ANIM BEHAV, V58, P907, DOI 10.1006/anbe.1999.1225; Hughes KA, 2013, NATURE, V503, P108, DOI 10.1038/nature12717; Johansson J, 2004, OIKOS, V105, P595, DOI 10.1111/j.0030-1299.2004.12938.x; Johnson AM, 2010, ETHOLOGY, V116, P448, DOI 10.1111/j.1439-0310.2010.01763.x; KAPLAN S, 1995, J ENVIRON PSYCHOL, V15, P169, DOI 10.1016/0272-4944(95)90001-2; Kelley JL, 2003, FISH FISH, V4, P216, DOI 10.1046/j.1467-2979.2003.00126.x; Kelley JL, 2003, BEHAV ECOL SOCIOBIOL, V54, P225, DOI 10.1007/s00265-003-0621-4; Kemp DJ, 2009, P R SOC B, V276, P4335, DOI 10.1098/rspb.2009.1226; Kotrschal A, 2014, EVOLUTION, V68, P1139, DOI 10.1111/evo.12341; Krackow S, 2003, ETHOLOGY, V109, P671, DOI 10.1046/j.1439-0310.2003.00913.x; Lima SL, 1998, ADV STUD BEHAV, V27, P215; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1990, ANIM BEHAV, V39, P834, DOI 10.1016/S0003-3472(05)80947-9; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; Neff BD, 2008, MOL ECOL, V17, P2975, DOI 10.1111/j.1365-294X.2008.03816.x; Poltyrev T, 1996, DEV PSYCHOBIOL, V29, P453, DOI 10.1002/(SICI)1098-2302(199607)29:5<453::AID-DEV4>3.0.CO;2-N; Ramos A, 1998, NEUROSCI BIOBEHAV R, V22, P33; Reader SM, 2003, ANIM BEHAV, V66, P729, DOI 10.1006/anbe.2003.2252; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; RENNER MJ, 1990, PSYCHOBIOLOGY, V18, P16; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Roche DP, 2012, BIOL LETTERS, V8, P932, DOI 10.1098/rsbl.2012.0685; Schielzeth H, 2010, METHODS ECOL EVOL, V1, P103, DOI 10.1111/j.2041-210X.2010.00012.x; Seghers BH, 1973, THESIS, DOI 10.14288/1.0100947; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Smith BR, 2010, BEHAV ECOL, V21, P919, DOI 10.1093/beheco/arq084; TULLEY JJ, 1987, ANIM BEHAV, V35, P1570, DOI 10.1016/S0003-3472(87)80034-9; Turner CL, 1941, J MORPHOL, V69, P161, DOI 10.1002/jmor.1050690107; VALLE FP, 1970, AM J PSYCHOL, V83, P103, DOI 10.2307/1420860; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; WALSH RN, 1976, PSYCHOL BULL, V83, P482, DOI 10.1037//0033-2909.83.3.482; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WILSON DS, 1994, TRENDS ECOL EVOL, V9, P442, DOI 10.1016/0169-5347(94)90134-1 73 4 4 2 76 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. AUG 2016 70 8 1187 1196 10.1007/s00265-016-2127-x 10 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology DS0DQ WOS:000380266000007 2019-02-21 J Chuard, PJC; Brown, GE; Grant, JWA Chuard, Pierre J. C.; Brown, Grant E.; Grant, James W. A. The effects of adult sex ratio on mating competition in male and female guppies (Poecilia reticulata) in two wild populations BEHAVIOURAL PROCESSES English Article Animal population group; Poecilia; Predatory behaviour; Sex characteristic; Sex ratio; Sexual behaviour LIFE-HISTORY EVOLUTION; SENSITIVE PREDATOR AVOIDANCE; TRINIDADIAN GUPPY; JAPANESE MEDAKA; ANTIPREDATOR BEHAVIOR; RESOURCE AVAILABILITY; REPRODUCTIVE SUCCESS; GEOGRAPHIC-VARIATION; NATURAL-POPULATIONS; COLORFUL MALES When competing for mates, males typically exhibit higher rates of intrasexual aggression and courtship than females. Operational sex ratio, represented here by adult sex ratio (ASR) as a proxy, is likely the best predictor of this competition, which typically increases between members of one sex as members of the opposite sex become rarer. Moreover, in populations subject to high predation, males often decrease mating competitive behaviour due to predation risk. We explored the combined effects of ASR and population of origin (low vs. high ambient predation risk) on mating competition in male and female wild-caught Trinidadian guppies. Both male and female aggression rates increased with ASR, but the increase for males was only significant in the low-predation population. In regard to male mating tactics, courtship propensity was unaffected by ASR, while the propensity to sneak increased at male-biased ASRs. Guppies from a high predation population had lower aggression rates than their low predation counterpart, but male courtship and sneaking attempts did not differ between populations. Surprisingly, females were just as aggressive as males when competing for mates. These results highlight the trade-offs between antipredator and agonistic behaviour, which may affect sexual selection pressures in wild populations. (C) 2016 Elsevier B.V. All rights reserved. [Chuard, Pierre J. C.; Brown, Grant E.; Grant, James W. A.] Concordia Univ, Dept Biol, 7141 Sherbrooke St West, Montreal, PQ H4B 1R6, Canada Chuard, PJC (reprint author), Concordia Univ, Dept Biol, 7141 Sherbrooke St West, Montreal, PQ H4B 1R6, Canada. pierre.chuard2@gmail.com ABRAHAMS MV, 1993, ANIM BEHAV, V45, P673, DOI 10.1006/anbe.1993.1082; Andersson M. B., 1994, SEXUAL SELECTION MON; Ang TZ, 2010, ETHOLOGY, V116, P855, DOI 10.1111/j.1439-0310.2010.01798.x; Baird TA, 2006, ETHOLOGY, V112, P52, DOI 10.1111/j.1439-0310.2006.01131.x; BalshineEarn S, 1996, BEHAV ECOL SOCIOBIOL, V39, P107, DOI 10.1007/s002650050272; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Botham MS, 2008, ECOLOGY, V89, P3174, DOI 10.1890/07-0490.1; Brown GE, 2006, CAN J ZOOL, V84, P1, DOI 10.1139/Z05-166; Brown GE, 2009, BEHAV ECOL SOCIOBIOL, V63, P699, DOI 10.1007/s00265-008-0703-4; BRUCE KE, 1995, ANIM BEHAV, V50, P1009, DOI 10.1016/0003-3472(95)80101-4; Cain KE, 2012, BEHAV ECOL SOCIOBIOL, V66, P241, DOI 10.1007/s00265-011-1272-5; Chambers JM, 1992, STAT MODELS S, P13; Clark L, 2010, ANIM BEHAV, V80, P707, DOI 10.1016/j.anbehav.2010.07.007; CLUTTONBROCK TH, 1992, Q REV BIOL, V67, P437, DOI 10.1086/417793; COLWELL MA, 1988, BEHAV ECOL SOCIOBIOL, V22, P165, DOI 10.1007/BF00300566; Constantz G.D., 1984, P465; CONSTANTZ GD, 1975, ECOLOGY, V56, P966, DOI 10.2307/1936307; Cordes N, 2014, BEHAV ECOL, V25, P409, DOI 10.1093/beheco/art128; Croft DP, 2006, AM NAT, V167, P867, DOI 10.1086/504853; DARWIN C, 1871, DESCENT MAN SEXUAL S; de Jong K, 2012, BEHAV ECOL, V23, P1170, DOI 10.1093/beheco/ars094; de Jong K, 2009, ANIM BEHAV, V78, P1229, DOI 10.1016/j.anbehav.2009.08.006; Debuse VJ, 1999, ANIM BEHAV, V58, P973, DOI 10.1006/anbe.1999.1213; DUGATKIN LA, 1992, EVOL ECOL, V6, P519, DOI 10.1007/BF02270695; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Evans JP, 2004, J FISH BIOL, V65, P1154, DOI 10.1111/j.1095-8649.2004.00502.x; Evans JP, 2001, P ROY SOC B-BIOL SCI, V268, P719, DOI 10.1098/rspb.2000.1577; FARR JA, 1980, ANIM BEHAV, V28, P1195, DOI 10.1016/S0003-3472(80)80108-4; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; Ferrari MCO, 2009, ANIM BEHAV, V78, P579, DOI 10.1016/j.anbehav.2009.05.034; Forsgren E, 2004, NATURE, V429, P551, DOI 10.1038/nature02562; Fournier DA, 2012, OPTIM METHOD SOFTW, V27, P233, DOI 10.1080/10556788.2011.597854; Franklin AM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115027; GORLICK DL, 1976, ANIM BEHAV, V24, P336, DOI 10.1016/S0003-3472(76)80041-3; GRANT JWA, 1995, ANIM BEHAV, V49, P367, DOI 10.1006/anbe.1995.9998; Grant JWA, 2002, CAN J ZOOL, V80, P2242, DOI [10.1139/z02-217, 10.1139/Z02-217]; Grant JWA, 2000, BEHAV ECOL, V11, P670, DOI 10.1093/beheco/11.6.670; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Haskins KE, 1997, BEHAV ECOL, V8, P351, DOI 10.1093/beheco/8.4.351; Heinen JL, 2013, EVOL ECOL, V27, P971, DOI 10.1007/s10682-012-9627-6; HELFMAN GS, 1989, BEHAV ECOL SOCIOBIOL, V24, P47, DOI 10.1007/BF00300117; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; Houde AE, 2001, P NATL ACAD SCI USA, V98, P12857, DOI 10.1073/pnas.241503598; HOUDE AE, 1988, ANIM BEHAV, V36, P888, DOI 10.1016/S0003-3472(88)80171-4; HUGHES AL, 1985, BEHAV ECOL SOCIOBIOL, V17, P271, DOI 10.1007/BF00300146; HUNTINGFORD FA, 1982, ANIM BEHAV, V30, P909, DOI 10.1016/S0003-3472(82)80165-6; Jennions MD, 2012, J EVOLUTION BIOL, V25, P591, DOI 10.1111/j.1420-9101.2011.02451.x; Jirotkul M, 1999, ANIM BEHAV, V58, P287, DOI 10.1006/anbe.1999.1149; Jirotkul M, 1999, ANIM BEHAV, V58, P1169, DOI 10.1006/anbe.1999.1248; Kanoh Y, 2000, ENVIRON BIOL FISH, V57, P143, DOI 10.1023/A:1004585405848; Kelly CD, 2001, BEHAV ECOL SOCIOBIOL, V51, P95, DOI 10.1007/s002650100410; Klug H, 2010, J EVOLUTION BIOL, V23, P447, DOI 10.1111/j.1420-9101.2009.01921.x; KODRICBROWN A, 1992, ANIM BEHAV, V44, P165, DOI 10.1016/S0003-3472(05)80766-3; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kolluru GR, 2007, BEHAV ECOL SOCIOBIOL, V61, P689, DOI 10.1007/s00265-006-0299-5; Kolluru GR, 2015, BEHAVIOUR, V152, P963, DOI 10.1163/1568539X-00003264; Koops MA, 1999, ETHOLOGY, V105, P737, DOI 10.1046/j.1439-0310.1999.00456.x; Kvarnemo C, 1995, ANIM BEHAV, V50, P1455, DOI 10.1016/0003-3472(95)80002-6; Kvarnemo C, 1996, TRENDS ECOL EVOL, V11, P404, DOI 10.1016/0169-5347(96)10056-2; Liley N. R., 1966, Behaviour Suppl, V13, P1; Lima SL, 1999, AM NAT, V153, P649, DOI 10.1086/303202; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; Magurran AE, 2005, OXFORD SERIES ECOLOG; Michelangeli M, 2014, BEHAV ECOL, V25, P928, DOI 10.1093/beheco/aru056; Mills SC, 2003, BEHAV ECOL SOCIOBIOL, V54, P98, DOI 10.1007/s00265-003-0616-1; O'Rourke CF, 2013, ANIM BEHAV, V85, P43, DOI 10.1016/j.anbehav.2012.10.004; Pettersson LB, 2004, BEHAV ECOL SOCIOBIOL, V55, P461, DOI 10.1007/s00265-003-0727-8; Pilastro A, 2004, EVOLUTION, V58, P665, DOI 10.1111/j.0014-3820.2004.tb01690.x; Preisser EL, 2005, ECOLOGY, V86, P501, DOI 10.1890/04-0719; R Development Core Team, 2015, LANG ENV STAT COMP; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; RIECHERT SE, 1993, BEHAV ECOL SOCIOBIOL, V32, P355; Robb SE, 1998, ANIM BEHAV, V56, P29, DOI 10.1006/anbe.1998.0735; RODD FH, 1995, ANIM BEHAV, V49, P1139; Toscano BJ, 2010, J EXP MAR BIOL ECOL, V385, P59, DOI 10.1016/j.jembe.2010.01.001; Venables WN, 2002, MODERN APPL STAT S; Verrell PA, 1998, BEHAVIOUR, V135, P121, DOI 10.1163/156853998793066357; VINCENT ACJ, 1994, BEHAVIOUR, V128, P135, DOI 10.1163/156853994X00082; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WARD G, 1988, J ZOOL, V215, P597, DOI 10.1111/j.1469-7998.1988.tb02397.x; Weir LK, 2011, AM NAT, V177, P167, DOI 10.1086/657918; Williams GC., 1964, PUBLS MUS MICHIGAN S, V2, P349; Zuk M, 1998, Q REV BIOL, V73, P415, DOI 10.1086/420412 88 1 1 10 113 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0376-6357 1872-8308 BEHAV PROCESS Behav. Processes AUG 2016 129 1 10 10.1016/j.beproc.2016.05.001 10 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology DS2PQ WOS:000380626400001 27208810 2019-02-21 J Liedtke, HC; Muller, H; Rodel, MO; Menegon, M; Gonwouo, LN; Barej, MF; Gvozdik, V; Schmitz, A; Channing, A; Nagel, P; Loader, SP Christoph Liedtke, H.; Mueller, Hendrik; Roedel, Mark-Oliver; Menegon, Michele; Gonwouo, LeGrand Nono; Barej, Michael F.; Gvozdik, Vaclav; Schmitz, Andreas; Channing, Alan; Nagel, Peter; Loader, Simon P. No ecological opportunity signal on a continental scale? Diversification and life-history evolution of African true toads (Anura: Bufonidae) EVOLUTION English Article Amphibia; BAMM; bGMYC; disparity; evolutionary rate dynamics; molecular phylogeny MOLECULAR PHYLOGENIES; ADAPTIVE RADIATION; FOSSIL RECORD; MORPHOLOGICAL EVOLUTION; SPECIES DELIMITATION; PASSERINE BIRDS; AMPHIBIA ANURA; KEY INNOVATION; R PACKAGE; RATES The niche-filling process predicted by the "ecological opportunity" (EO) model is an often-invoked mechanism for generating exceptional diversity in island colonizers. Whether the same process governs lineage accumulation and trait disparity during continental colonization events is less clear. Here, we test this prediction by investigating the rate dynamics and trait evolution of one of Africa's most widespread amphibian colonizers, the true toads (Bufonidae). By reconstructing the most complete molecular phylogeny of African Bufonidae to date, we find that the diversification of lineages in Africa best conforms to a constant rate model throughout time and across subclades, with little support for EO. Evolutionary rates of life-history traits have similarly been constant over time. However, an analysis of generalists and specialists showed a shift toward higher speciation rates associated with habitat specialization. The overall lack of EO signal can be interpreted in a number of ways and we propose several explanations. Firstly, methodological issues might preclude the detection of EO. Secondly, colonizers might not experience true EO conditions and due to the size, ecological heterogeneity and age of landmasses, the diversification processes might be more complex. Thirdly, lower speciation rates of habitat generalists may have affected overall proliferation of lineages. [Christoph Liedtke, H.; Nagel, Peter; Loader, Simon P.] Univ Basel, Dept Environm Sci Biogeog, CH-4056 Basel, Switzerland; [Christoph Liedtke, H.] CSIC, Ecol Evolut & Dev Grp, Dept Wetland Ecol, Estn Biol Donana, Seville 41092, Spain; [Mueller, Hendrik] Univ Jena, Phyletischem Museum, Inst Spezielle Zool & Evolut Biol, D-07743 Jena, Germany; [Roedel, Mark-Oliver; Barej, Michael F.] Leibniz Inst Evolut & Biodivers Sci, Museum Nat Kunde Berlin, D-10115 Berlin, Germany; [Menegon, Michele] MUSE Museo Sci, Trop Biodivers Sect, I-38123 Trento, Italy; [Gonwouo, LeGrand Nono] Cameroon Herpetol Conservat Biol Fdn, POB 8218, Yaounde, Cameroon; [Gvozdik, Vaclav] Acad Sci Czech Republic, Inst Vertebrate Biol, Brno, Czech Republic; [Schmitz, Andreas] Nat Hist Museum Geneva, Dept Herpetol & Ichthyol, CP 6434, CH-1211 Geneva 6, Switzerland; [Channing, Alan] Univ Western Cape, Biodivers & Conservat Biol Dept, ZA-7535 Bellville, South Africa; [Loader, Simon P.] Univ Roehampton, Dept Life Sci, London SW15 4JD, England Liedtke, HC (reprint author), Univ Basel, Dept Environm Sci Biogeog, CH-4056 Basel, Switzerland.; Liedtke, HC (reprint author), CSIC, Ecol Evolut & Dev Grp, Dept Wetland Ecol, Estn Biol Donana, Seville 41092, Spain. christoph.liedtke@ebd.csic.es Mueller, Hendrik/B-4979-2010; CSIC, EBD Donana/C-4157-2011; Gvozdik, Vaclav/E-4043-2010 Mueller, Hendrik/0000-0001-6764-7376; CSIC, EBD Donana/0000-0003-4318-6602; Swiss National Science Foundation [31003A-133067, P2BSP3_158846]; Freiwillige Akademische Gesellschaft Basel; Czech Science Foundation (GACR) [15-13415Y] This work was supported by the Swiss National Science Foundation (grant number 31003A-133067 to S.P.L. and P2BSP3_158846 to H.C.L.) and by the Freiwillige Akademische Gesellschaft Basel. V.G. was supported by the Czech Science Foundation (GACR, project number 15-13415Y), and IVB institutional support (RVO: 68081766). Abascal F, 2010, NUCLEIC ACIDS RES, V38, pW7, DOI 10.1093/nar/gkq291; Alhajeri BH, 2016, BIOL J LINN SOC, V117, P463, DOI 10.1111/bij.12695; Andreone Franco, 2008, P53; Arbogast BS, 2006, EVOLUTION, V60, P370, DOI 10.1111/j.0014-3820.2006.tb01113.x; Barej MF, 2014, FRONT ZOOL, V11, DOI 10.1186/1742-9994-11-8; Barker FK, 2013, SYST BIOL, V62, P298, DOI 10.1093/sysbio/sys094; BAUR B, 1987, J BIOGEOGR, V14, P329, DOI 10.2307/2844941; Blackburn DC, 2015, J VERTEBR PALEONTOL, V35, DOI 10.1080/02724634.2014.907174; Blair W. F, 1972, EVOLUTION GENUS BUFO; Brock CD, 2011, SYST BIOL, V60, P410, DOI 10.1093/sysbio/syr007; Burbrink FT, 2010, EVOLUTION, V64, P934, DOI 10.1111/j.1558-5646.2009.00888.x; Butler MA, 2004, AM NAT, V164, P683, DOI 10.1086/426002; CANNATELLA DC, 1993, SYST BIOL, V42, P476, DOI 10.2307/2992485; Castresana J, 2000, MOL BIOL EVOL, V17, P540, DOI 10.1093/oxfordjournals.molbev.a026334; Claramunt S, 2012, AM NAT, V179, P649, DOI 10.1086/664998; Claramunt S, 2012, P ROY SOC B-BIOL SCI, V279, P1567, DOI 10.1098/rspb.2011.1922; Clarke Barry T., 2001, African Journal of Herpetology, V50, P19; Cusimano N, 2010, SYST BIOL, V59, P458, DOI 10.1093/sysbio/syq032; Davis MP, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-38; DAVIS WILLIAM B., 1938, JOUR MAMMAL, V19, P338, DOI 10.2307/1374573; Day JJ, 2013, SYST BIOL, V62, P351, DOI 10.1093/sysbio/syt001; Dennis RLH, 2012, J BIOGEOGR, V39, P1412, DOI 10.1111/j.1365-2699.2012.02698.x; Derryberry EP, 2011, EVOLUTION, V65, P2973, DOI 10.1111/j.1558-5646.2011.01374.x; Dobzhansky T., 1950, American Scientist, V38, P209; Drummond AJ, 2006, PLOS BIOL, V4, P699, DOI 10.1371/journal.pbio.0040088; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Drummond CS, 2012, SYST BIOL, V61, P443, DOI 10.1093/sysbio/syr126; Duellman W. E., 1994, BIOL AMPHIBIANS; Duellman W. E, 1999, PATTERNS DISTRIBUTIO; DUELLMAN WE, 1993, BIOLOGICAL RELATIONSHIPS BETWEEN AFRICA AND SOUTH AMERICA, P200; Esselstyn JA, 2009, EVOLUTION, V63, P2595, DOI 10.1111/j.1558-5646.2009.00743.x; Estes R., 1963, MIOCENE TOAD COLOMBI, V193, P1; FELSENSTEIN J, 1973, AM J HUM GENET, V25, P471; Fernandez MH, 2005, EVOL ECOL, V19, P199, DOI 10.1007/s10682-004-8152-7; FitzJohn RG, 2012, METHODS ECOL EVOL, V3, P1084, DOI 10.1111/j.2041-210X.2012.00234.x; FLENLEY JR, 1979, EQUATORIAL RAIN FORE; Fritz SA, 2012, EVOLUTION, V66, P179, DOI 10.1111/j.1558-5646.2011.01430.x; Frost D. R, 2016, AMPHIBIAN SPECIES WO; Frost DR, 2006, B AM MUS NAT HIST, P8, DOI 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2; Gardner JD, 2016, PALAEOBIO PALAEOENV, V96, P1, DOI 10.1007/s12549-015-0229-5; Gernhard T, 2008, J THEOR BIOL, V253, P769, DOI 10.1016/j.jtbi.2008.04.005; Grant P., 1999, ECOLOGY EVOLUTION DA; Graybeal A, 1997, ZOOL J LINN SOC-LOND, V119, P297, DOI 10.1111/j.1096-3642.1997.tb00139.x; Greenbaum Eli, 2012, Herpetological Review, V43, P253; Harmon LJ, 2003, SCIENCE, V301, P961, DOI 10.1126/science.1084786; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Harmon LJ, 2015, AM NAT, V185, P584, DOI 10.1086/680859; Harmon LJ, 2010, EVOLUTION, V64, P2385, DOI 10.1111/j.1558-5646.2010.01025.x; Harmon LJ, 2008, SYST BIOL, V57, P562, DOI 10.1080/10635150802304779; Hughes C, 2006, P NATL ACAD SCI USA, V103, P10334, DOI 10.1073/pnas.0601928103; HUNTER JP, 1995, P NATL ACAD SCI USA, V92, P10718, DOI 10.1073/pnas.92.23.10718; IUCN SSC Amphibian Specialist Group, 2013, IUCN 2013 IUCN RED L; Jonsson KA, 2012, P NATL ACAD SCI USA, V109, P6620, DOI 10.1073/pnas.1115835109; Katoh K, 2013, MOL BIOL EVOL, V30, P772, DOI 10.1093/molbev/mst010; Kearse M, 2012, BIOINFORMATICS, V28, P1647, DOI 10.1093/bioinformatics/bts199; Kisel Y, 2011, PHILOS T R SOC B, V366, P2514, DOI 10.1098/rstb.2011.0022; Kozak KH, 2006, EVOLUTION, V60, P2604, DOI 10.1111/j.0014-3820.2006.tb01893.x; Kozak KH, 2006, P ROY SOC B-BIOL SCI, V273, P539, DOI 10.1098/rspb.2005.3326; Lanfear R, 2012, MOL BIOL EVOL, V29, P1695, DOI 10.1093/molbev/mss020; Laurent R., 1950, Revue de Zoologie et de Botanique Africaines, V44, P1; Liedtke H. C, 2014, THESIS; Liedtke HC, 2014, ZOOL ANZ, V253, P309, DOI 10.1016/j.jcz.2014.02.003; Liow LH, 2010, SYST BIOL, V59, P646, DOI 10.1093/sysbio/syq052; Livingstone D. A, 1993, BIOL RELATIONSHIPS A, P456; Lomolino MV, 2000, J BIOGEOGR, V27, P17, DOI 10.1046/j.1365-2699.2000.00377.x; LOSOS JB, 2010, EVOLUTION DARWIN 1 1, P381; Losos JB, 2010, AM NAT, V175, P623, DOI 10.1086/652433; MAC ARTHUR ROBERT H., 1967; Mahler DL, 2010, EVOLUTION, V64, P2731, DOI 10.1111/j.1558-5646.2010.01026.x; Martin C., 2012, Graellsia, V68, P159, DOI 10.3989/graellsia.2012.v68.056; McGuire JA, 2014, CURR BIOL, V24, P910, DOI 10.1016/j.cub.2014.03.016; McKenna DD, 2009, P NATL ACAD SCI USA, V106, P7083, DOI 10.1073/pnas.0810618106; Measey GJ, 2011, CONSERV GENET, V12, P61, DOI 10.1007/s10592-009-9989-7; Mooers AO, 1997, Q REV BIOL, V72, P31, DOI 10.1086/419657; MORIN PJ, 1988, ECOLOGY, V69, P1401, DOI 10.2307/1941637; Morlon H, 2016, METHODS ECOL EVOL, V7, P589, DOI 10.1111/2041-210X.12526; Morlon H, 2011, P NATL ACAD SCI USA, V108, P16327, DOI 10.1073/pnas.1102543108; Moyle RG, 2009, P NATL ACAD SCI USA, V106, P1863, DOI 10.1073/pnas.0809861105; Muller H, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1146; Nakazawa Y, 2015, BIOTROPICA, V47, P292, DOI 10.1111/btp.12212; NEE S, 1992, P NATL ACAD SCI USA, V89, P8322, DOI 10.1073/pnas.89.17.8322; NEE S, 1994, PHILOS T ROY SOC B, V344, P305, DOI 10.1098/rstb.1994.0068; Onstein RE, 2015, EVOLUTION, V69, P756, DOI 10.1111/evo.12605; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Parmentier I, 2007, J ECOL, V95, P1058, DOI 10.1111/j.1365-2745.2007.01273.x; Peters R. H., 1986, ECOLOGICAL IMPLICATI; Phillimore AB, 2006, AM NAT, V168, P220, DOI 10.1086/505763; Pinto G, 2008, P ROY SOC B-BIOL SCI, V275, P2749, DOI 10.1098/rspb.2008.0686; Pons J, 2006, SYST BIOL, V55, P595, DOI 10.1080/10635150600852011; Portik DM, 2015, BMC EVOL BIOL, V15, DOI 10.1186/s12862-015-0417-y; Poynton J.C., 1997, African Journal of Herpetology, V46, P98, DOI 10.1080/21564574.1997.9649983; POYNTON J C, 1988, Annals of the Natal Museum, V29, P447; Poynton JC, 2016, ZOOTAXA, V4098, P73, DOI 10.11646/zootaxa.4098.1.3; Poynton John C., 1998, African Journal of Herpetology, V47, P3, DOI 10.1080/21564574.1998.9649994; Pramuk JB, 2008, GLOBAL ECOL BIOGEOGR, V17, P72, DOI 10.1111/j.1466-8238.2007.00348.x; Price JP, 2004, EVOLUTION, V58, P2185; Price SL, 2014, J EVOLUTION BIOL, V27, P242, DOI 10.1111/jeb.12300; Price TD, 2014, NATURE, V509, P222, DOI 10.1038/nature13272; Pybus OG, 2000, P ROY SOC B-BIOL SCI, V267, P2267, DOI 10.1098/rspb.2000.1278; Pyron RA, 2011, MOL PHYLOGENET EVOL, V61, P543, DOI 10.1016/j.ympev.2011.06.012; Quental TB, 2013, SCIENCE, V341, P290, DOI 10.1126/science.1239431; R Core Team, 2013, R LANG ENV STAT COMP; Rabosky DL, 2008, P ROY SOC B-BIOL SCI, V275, P2363, DOI 10.1098/rspb.2008.0630; Rabosky DL, 2008, EVOLUTION, V62, P1866, DOI 10.1111/j.1558-5646.2008.00409.x; Rabosky DL, 2015, AM NAT, V185, P572, DOI 10.1086/680850; Rabosky DL, 2015, SYST BIOL, V64, P340, DOI 10.1093/sysbio/syu131; Rabosky DL, 2014, METHODS ECOL EVOL, V5, P701, DOI 10.1111/2041-210X.12199; Rabosky DL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089543; Rabosky DL, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2958; Rabosky DL, 2010, EVOLUTION, V64, P1816, DOI 10.1111/j.1558-5646.2009.00926.x; Rabosky DL, 2009, ECOL LETT, V12, P735, DOI 10.1111/j.1461-0248.2009.01333.x; Rabosky DL, 2006, EVOL BIOINFORM, V2, P247; Rage JC, 2003, AMPHIBIA-REPTILIA, V24, P133, DOI 10.1163/156853803322390408; Rambaut A., 2012, TREEANNOTATOR V1 7 5; Rambaut A., 2012, LOGCOMBINER V1 7 5; Rasanen K, 2008, ECOLOGY, V89, P2553, DOI 10.1890/07-0168.1; RAVEN PH, 1974, ANN MO BOT GARD, V61, P539, DOI 10.2307/2395021; Reid NM., 2014, BGMYC BAYESIAN MCMC; Reid NM, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-196; Richards PW, 1973, TROPICAL FOREST ECOS, P21; ROBICHAUX RH, 1990, ANN MO BOT GARD, V77, P64, DOI 10.2307/2399626; Rodel M.-O., 2003, SALAMANDRA, V38, P213; Rodel MO, 2000, HERPETOFAUNA W AFRIC, VI; Roelants K, 2007, P NATL ACAD SCI USA, V104, P887, DOI 10.1073/pnas.0608378104; ROFF DA, 2002, LIFE HIST EVOLUTION; Rowe KC, 2011, SYST BIOL, V60, P188, DOI 10.1093/sysbio/syq092; Ruta M, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1071; Salisbury CL, 2012, ECOL LETT, V15, P847, DOI 10.1111/j.1461-0248.2012.01806.x; Schenk JJ, 2013, SYST BIOL, V62, P837, DOI 10.1093/sysbio/syt050; Schluter D., 2000, OXFORD SERIES ECOLOG; Schweizer M, 2014, J BIOGEOGR, V41, P1301, DOI 10.1111/jbi.12293; Sepkoski JJ, 1998, PHILOS T ROY SOC B, V353, P315, DOI 10.1098/rstb.1998.0212; Simpson GG., 1953, MAJOR FEATURES EVOLU; Slater GJ, 2010, P ROY SOC B-BIOL SCI, V277, P3097, DOI 10.1098/rspb.2010.0408; Slingsby JA, 2014, MOL PHYLOGENET EVOL, V72, P61, DOI 10.1016/j.ympev.2013.11.017; Steelman J. T., 2003, TRENDS ECOL EVOL, V18, P126; Tandy M, 1972, EVOLUTION GENUS BUFO, P119; Tihen J. A., 1962, AM MIDL NAT, P1; TIHEN JA, 1951, COPEIA, P230; Tolley KA, 2010, BIOL J LINN SOC, V100, P822, DOI 10.1111/j.1095-8312.2010.01469.x; Van Bocxlaer I, 2006, PLOS ONE, V1, DOI 10.1371/journal.pone.0000074; Van Bocxlaer I, 2010, SCIENCE, V327, P679, DOI 10.1126/science.1181707; Vences M, 2003, P ROY SOC B-BIOL SCI, V270, P2435, DOI 10.1098/rspb.2003.2516; von Rintelen K, 2010, EVOLUTION, V64, P3287, DOI 10.1111/j.1558-5646.2010.01043.x; Whittaker R. J, 2007, ISLAND BIOGEOGRAPHY; WILGENBUSCH J.C., 2004, AWTY SYSTEM GRAPHICA; Yoder AD, 2010, J EVOLUTIONARY BIOL, V23, P1581 148 12 13 3 35 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution AUG 2016 70 8 10.1111/evo.12985 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DT0XG WOS:000381205700003 27312525 2019-02-21 J Forbes, VE; Galic, N; Schmolke, A; Vavra, J; Pastorok, R; Thorbek, P Forbes, Valery E.; Galic, Nika; Schmolke, Amelie; Vavra, Janna; Pastorok, Rob; Thorbek, Pernille Assessing the risks of pesticides to threatened and endangered species using population modeling: A critical review and recommendations for future work ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY English Review Ecological risk assessment; Endangered Species Act; Life history; Population viability analysis LIFE-HISTORY STRATEGIES; INDIVIDUAL-BASED MODEL; ECOLOGICAL MODELS; SALMON POPULATIONS; CHRONIC TOXICITY; SIMULATION-MODEL; CHINOOK SALMON; LEVEL TOXICITY; VIABILITY; RECOVERY United States legislation requires the US Environmental Protection Agency to ensure that pesticide use does not cause unreasonable adverse effects on the environment, including species listed under the Endangered Species Act (ESA; hereafter referred to as listed species). Despite a long history of population models used in conservation biology and resource management and a 2013 report from the US National Research Council recommending their use, application of population models for pesticide risk assessments under the ESA has been minimal. The pertinent literature published from 2004 to 2014 was reviewed to explore the availability of population models and their frequency of use in listed species risk assessments. The models were categorized in terms of structure, taxonomic coverage, purpose, inputs and outputs, and whether the models included density dependence, stochasticity, or risk estimates, or were spatially explicit. Despite the widespread availability of models and an extensive literature documenting their use in other management contexts, only 2 of the approximately 400 studies reviewed used population models to assess the risks of pesticides to listed species. This result suggests that there is an untapped potential to adapt existing models for pesticide risk assessments under the ESA, but also that there are some challenges to do so for listed species. Key conclusions from the analysis are summarized, and priorities are recommended for future work to increase the usefulness of population models as tools for pesticide risk assessments. Environ Toxicol Chem 2016;35:1904-1913. (c) 2016 SETAC [Forbes, Valery E.; Galic, Nika; Schmolke, Amelie] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA; [Vavra, Janna] Univ Nebraska, Sch Biol Sci, Lincoln, NE USA; [Pastorok, Rob] Integral Consulting, Seattle, WA USA; [Thorbek, Pernille] Jealotts Hill Int Res Ctr, Environm Safety, Bracknell, Berks, England Forbes, VE (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA. veforbes@umn.edu Galic, Nika/0000-0002-4344-3464 CropLife America We thank M. Etterson and 2 anonymous reviewers for providing helpful comments on an earlier version of the manuscript. Funding for the present review was provided by CropLife America. Achord S, 2003, ECOL LETT, V6, P335, DOI 10.1046/j.1461-0248.2003.00438.x; Adams VM, 2005, BIOL CONSERV, V124, P425, DOI 10.1016/j.biocon.2005.02.001; Augusiak J, 2014, ECOL MODEL, V280, P117, DOI 10.1016/j.ecolmodel.2013.11.009; Baldwin DH, 2009, ECOL APPL, V19, P2004, DOI 10.1890/08-1891.1; Banks JE, 2011, BIOL CONTROL, V59, P336, DOI 10.1016/j.biocontrol.2011.09.005; Banks JE, 2010, RISK ANAL, V30, P175, DOI 10.1111/j.1539-6924.2009.01349.x; Bartell SM, 2003, HUM ECOL RISK ASSESS, V9, P907, DOI 10.1080/713610016; Baveco JM, 2014, ENVIRON TOXICOL CHEM, V33, P1517, DOI 10.1002/etc.2605; Bruggeman DJ, 2008, ENVIRON MANAGE, V42, P591, DOI 10.1007/s00267-008-9179-2; Buenau KE, 2014, RIVER RES APPL, V30, P964, DOI 10.1002/rra.2694; Busch DS, 2013, N AM J FISH MANAGE, V33, P1125, DOI 10.1080/02755947.2013.824933; Caswell H., 2001, MATRIX POPULATION MO; Chades I, 2012, CONSERV BIOL, V26, P1016, DOI 10.1111/j.1523-1739.2012.01951.x; Dohmen P., 2015, INTEGR ENVIRON ASSES, V12, P67; Ducrot V, 2010, ENVIRON SCI TECHNOL, V44, P3566, DOI 10.1021/es903860w; Dzul MC, 2013, POPUL ECOL, V55, P325, DOI 10.1007/s10144-013-0361-x; European Commission, 2013, ADDR NEW CHALL RISK; European Food Safety Authority, 2015, EFSA J, V13, P3996; European Food Safety Authority, 2015, EFSA J, V13, p[4125, 4216]; European Food Safety Authority, 2014, EFSA J, V12, P3589; Evans MEK, 2010, ECOL MONOGR, V80, P627, DOI 10.1890/09-1758.1; Finkelstein ME, 2012, P NATL ACAD SCI USA, V109, P11449, DOI 10.1073/pnas.1203141109; Forbes VE, 2015, INTEGR ENVIRON ASSES, V11, P348, DOI 10.1002/ieam.1628; Forbes VE, 2008, ENVIRON TOXICOL CHEM, V27, P1987, DOI 10.1897/08-029.1; Forbes VE, 2001, ECOL APPL, V11, P1249, DOI 10.1890/1051-0761(2001)011[1249:TIODLP]2.0.CO;2; Galic N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054584; Galic Nika, 2010, Integrated Environmental Assessment and Management, V6, P338, DOI 10.1002/ieam.68; Grimm V, 2005, SCIENCE, V310, P987, DOI 10.1126/science.1116681; Grimm V, 2014, ECOL MODEL, V280, P129, DOI 10.1016/j.ecolmodel.2014.01.018; Grimm V, 2010, ECOL MODEL, V221, P2760, DOI 10.1016/j.ecolmodel.2010.08.019; Hanson N, 2012, INTEGR ENVIRON ASSES, V8, P262, DOI 10.1002/ieam.272; Hanson N, 2011, ECOTOXICOLOGY, V20, P1268, DOI 10.1007/s10646-011-0675-4; Harveson PM, 2004, J WILDLIFE MANAGE, V68, P909, DOI 10.2193/0022-541X(2004)068[0909:SDOFKD]2.0.CO;2; Hayashi TI, 2009, ECOL RES, V24, P945, DOI 10.1007/s11284-008-0561-6; Hendriks AJ, 1999, OIKOS, V86, P293, DOI 10.2307/3546447; Hudgens B, 2011, J WILDLIFE MANAGE, V75, P1350, DOI 10.1002/jwmg.165; Ibrahim L, 2014, ECOL MODEL, V280, P65, DOI [10.1016/j.ecolmode1.2013.08.001, 10.1016/j.ecolmodel.2013.08.001]; Kesler DC, 2007, BIOL CONSERV, V136, P520, DOI 10.1016/j.biocon.2006.12.023; Kretschmann A, 2012, ENVIRON TOXICOL CHEM, V31, P2014, DOI 10.1002/etc.1905; LANDE R, 1993, AM NAT, V142, P911, DOI 10.1086/285580; Liu C, 2013, ECOL MODEL, V248, P92, DOI 10.1016/j.ecolmodel.2012.09.016; Liu HY, 2008, BIRD CONSERV INT, V18, P292, DOI 10.1017/S0959270908000440; Luna TO, 2013, ENVIRON TOXICOL CHEM, V32, P2771, DOI 10.1002/etc.2372; Macneale KH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092436; Mebane CA, 2010, HUM ECOL RISK ASSESS, V16, P1026, DOI 10.1080/10807039.2010.512243; Meli M, 2013, ECOL MODEL, V250, P338, DOI 10.1016/j.ecolmodel.2012.11.010; Miller JK, 2011, BIOCONTROL, V56, P935, DOI 10.1007/s10526-011-9371-9; Munns Jr WR, 2008, POPULATION LEVEL ECO, P211; Nabe-Nielsen J, 2014, ECOL MODEL, V272, P242, DOI 10.1016/j.ecolmodel.2013.09.025; National Research Council, 2013, ASS RISKS END THREAT; Natl. Res. Counc, 2009, SCI DEC ADV RISK ASS; Pastorok RA, 2003, HUM ECOL RISK ASSESS, V9, P939, DOI 10.1080/713610017; Preuss TG, 2009, ENVIRON SCI POLLUT R, V16, P250, DOI 10.1007/s11356-009-0124-6; Raimondo S, 2007, ENVIRON SCI TECHNOL, V41, P5888, DOI 10.1021/es070359o; Raimondo S, 2006, ENVIRON TOXICOL CHEM, V25, P589, DOI 10.1897/05-335R.1; Raimondo S, 2010, EPA600R OFF RES DEV; Raimondo S, 2013, ECOL MODEL, V265, P149, DOI 10.1016/j.ecolmodel.2013.06.014; Sappington LC, 2001, ENVIRON TOXICOL CHEM, V20, P2869, DOI 10.1897/1551-5028(2001)020<2869:CSOTAE>2.0.CO;2; Schipper AM, 2013, J APPL ECOL, V50, P1469, DOI 10.1111/1365-2664.12142; Schmitt W, 2013, ECOL MODEL, V255, P1, DOI 10.1016/j.ecolmodel.2013.01.017; Schmolke A, 2010, TRENDS ECOL EVOL, V25, P479, DOI 10.1016/j.tree.2010.05.001; Schmolke A, 2010, ENVIRON TOXICOL CHEM, V29, P1006, DOI 10.1002/etc.120; Schumaker NH, 2014, LANDSCAPE ECOL, V29, P579, DOI 10.1007/s10980-014-0004-4; Spromberg JA, 2005, ENVIRON TOXICOL CHEM, V24, P1532, DOI 10.1897/04-160.1; Spromberg JA, 2006, ECOL MODEL, V199, P240, DOI 10.1016/j.ecolmodel.2006.05.007; Spromberg JA, 2005, INTEGR ENVIRON ASSES, V1, P9, DOI 10.1897/IEAM_2004a-005.1; Spromberg Julann A., 2011, Integrated Environmental Assessment and Management, V7, P648, DOI 10.1002/ieam.219; Stark JD, 2004, P NATL ACAD SCI USA, V101, P732, DOI 10.1073/pnas.0304903101; Stillman RA, 2015, BIOSCIENCE, V65, P140, DOI 10.1093/biosci/biu192; Thomson DM, 2006, CONSERV BIOL, V20, P1132, DOI 10.1111/j.1523-1739.2006.00376.x; Topping CJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065803; US Environmental Protection Agency US Fish & Wildlife Service National Marine Fisheries Service US Department of Agriculture, 2013, INT APPR NAT LEV PES; Van Kirk RW, 2007, ECOL MODEL, V206, P407, DOI 10.1016/j.ecolmodel.2007.04.003; Wang M, 2013, INTEGR ENVIRON ASSES, V9, P294, DOI 10.1002/ieam.1377; Wang M, 2010, ENVIRON TOXICOL CHEM, V29, P1292, DOI 10.1002/etc.151; Williams R, 2011, CONSERV BIOL, V25, P526, DOI 10.1111/j.1523-1739.2011.01656.x; Willson JD, 2012, ECOL APPL, V22, P1791, DOI 10.1890/11-0915.1; Wolf S, 2015, BIOSCIENCE, V65, P200, DOI 10.1093/biosci/biu218; Wootton JT, 2014, ECOL APPL, V24, P1251, DOI 10.1890/13-1323.1; Zeigler SL, 2014, ECOL APPL, V24, P2144, DOI 10.1890/13-1275.1 80 14 14 1 38 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0730-7268 1552-8618 ENVIRON TOXICOL CHEM Environ. Toxicol. Chem. AUG 2016 35 8 1904 1913 10.1002/etc.3440 10 Environmental Sciences; Toxicology Environmental Sciences & Ecology; Toxicology DR7CH WOS:000380057100004 27037541 2019-02-21 J Kraemer, AC; Serb, JM; Adams, DC Kraemer, Andrew C.; Serb, Jeanne M.; Adams, Dean C. Both novelty and conspicuousness influence selection by mammalian predators on the colour pattern of Plethodon cinereus (Urodela: Plethodontidae) BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article apostatic selection; clay replicas; colour polymorphism; mimicry; non-exclusive hypotheses; Plethodon GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; APOSEMATIC COLORATION; DIFFERENTIAL AVOIDANCE; NATURAL-POPULATIONS; BATESIAN MIMICRY; SALAMANDER; MODEL; PREY; CRYPSIS Predators influence the evolution of colour pattern in prey species, yet how these selective forces might differ among predators is rarely considered. In particular, prey colour patterns that indicate unpalatability to some predator species may not carry the same signal for other predators. We test several hypotheses of selection on patterning between mammal predators and the polymorphic salamander Plethodon cinereus, which, under an avian visual system appears as a mimic of the toxic newt Notophthalmus viridescens. We fit each hypothesis against field observations of mammalian attacks on salamander clay replicas. We then develop a novel analytical procedure that enables the combination of multiple non-exclusive models in a likelihood framework. We find that mammals do not follow any single hypothesis proposed, including the hypothesis of mimicry. Instead, mammals in this system use visual cues while foraging to avoid unfamiliar, novel prey and attack conspicuous prey. We propose that mammals may help to maintain colour pattern polymorphism within populations of P.cinereus by avoiding novel, unfamiliar colour morphs. Additionally, selective pressures from multiple predators and variation in predator communities among sites may contribute to the maintenance of colour polymorphism within and among localities in this salamander species. [Kraemer, Andrew C.; Serb, Jeanne M.; Adams, Dean C.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA; [Kraemer, Andrew C.] Univ Idaho, Dept Biol Sci, Moscow, ID 83844 USA Kraemer, AC (reprint author), Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA.; Kraemer, AC (reprint author), Univ Idaho, Dept Biol Sci, Moscow, ID 83844 USA. andrew.c.kraemer@gmail.com NSF [DEB-1257287] The authors would like to thank M. Gacke, S. Hofmann, and A. Worthington for helping to construct model replicas. Members of the Adams, Serb, and Valenzuela labs provided valuable comments on earlier versions of this manuscript, as did B. Danielson, D. Vleck, and D. Pfennig. The authors are also grateful to the two anonymous reviewers for their valuable input. This work was sponsored in part by NSF grant DEB-1257287 to DCA. Adams DC, 1999, PREDATION HERPETOLOG, V30, P160; ALLEN JA, 1988, PHILOS T ROY SOC B, V319, P485, DOI 10.1098/rstb.1988.0061; ARNOLD SJ, 1982, COPEIA, P247, DOI 10.2307/1444602; Bates H, 1862, BIOL J LINN SOC, V23, P495; Beachy CK, 1991, PREDATION HERPETOLOG, V22, P128; BELL MA, 1993, EVOLUTION, V47, P906, DOI 10.1111/j.1558-5646.1993.tb01243.x; Bond AB, 2007, ANNU REV ECOL EVOL S, V38, P489, DOI 10.1146/annurev.ecolsys.38.091206.095728; Brodie ED, 2002, EVOLUTION, V56, P2067; BRODIE ED, 1979, COPEIA, P270; BRODIE ED, 1993, EVOLUTION, V47, P227, DOI 10.1111/j.1558-5646.1993.tb01212.x; BRODIE ED, 1980, SCIENCE, V208, P181, DOI 10.1126/science.208.4440.181; BURTON TM, 1975, COPEIA, P541; CAIN AJ, 1954, GENETICS, V39, P89; CHEN DM, 1986, J COMP PHYSIOL A, V159, P473, DOI 10.1007/BF00604167; CHITTY D, 1949, ECOLOGY, V30, P536, DOI 10.2307/1932457; DODD CK, 1991, BIOL CONSERV, V55, P57, DOI 10.1016/0006-3207(91)90005-T; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; Endler J.A., 1986, P109; ENDLER JA, 1988, PHILOS T ROY SOC B, V319, P505, DOI 10.1098/rstb.1988.0062; ENDLER JA, 1993, ECOL MONOGR, V63, P1, DOI 10.2307/2937121; Fenster Thomas L. D., 1996, Herpetological Review, V27, P194; Hegna RH, 2013, EVOL ECOL, V27, P831, DOI 10.1007/s10682-012-9605-z; Hoffman EA, 2000, BIOL J LINN SOC, V70, P633, DOI 10.1006/bijl.1999.0421; Hughes NK, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013114; Huheey J. E., 1967, AMPHIBIANS REPTILES; Husak JF, 2006, ETHOLOGY, V112, P572, DOI 10.1111/j.1439-0310.2005.01189.x; JACOBS GH, 1993, BIOL REV, V68, P413, DOI 10.1111/j.1469-185X.1993.tb00738.x; Karpestam E, 2014, BIOL J LINN SOC, V112, P546, DOI 10.1111/bij.12276; Kikuchi DW, 2010, AM NAT, V176, P830, DOI 10.1086/657041; Kraemer AC, 2014, EVOLUTION, V68, P1197, DOI 10.1111/evo.12325; Kuchta SR, 2005, COPEIA, P265, DOI 10.1643/CH-04-173R; Lewis F, 2011, METHODS ECOL EVOL, V2, P155, DOI 10.1111/j.2041-210X.2010.00063.x; Lindstrom L, 2001, P ROY SOC B-BIOL SCI, V268, P357, DOI 10.1098/rspb.2000.1377; LOTTER F, 1977, COPEIA, P681, DOI 10.2307/1443166; Low PA, 2014, ENTOMOL EXP APPL, V152, P120, DOI 10.1111/eea.12207; MADSEN T, 1987, OIKOS, V48, P265, DOI 10.2307/3565512; Marples NM, 2007, BEHAV ECOL, V18, P803, DOI 10.1093/beheco/arm053; McElroy MT, 2015, BIOL J LINN SOC, V117, P285; Merilaita S, 2002, ECOL LETT, V5, P495, DOI 10.1046/j.1461-0248.2002.00362.x; MITCHELL D, 1976, J COMP PHYSIOL PSYCH, V90, P190, DOI 10.1037/h0077196; Nokelainen O, 2014, J ANIM ECOL, V83, P598, DOI 10.1111/1365-2656.12169; Noonan BP, 2009, BIOL LETTERS, V5, P51, DOI 10.1098/rsbl.2008.0586; NORRIS KS, 1964, ECOLOGY, V45, P565; Olsson M, 2013, SEMIN CELL DEV BIOL, V24, P529, DOI 10.1016/j.semcdb.2013.04.001; Pafilis P, 2009, EVOLUTION, V63, P1262, DOI 10.1111/j.1558-5646.2009.00635.x; Pekar S, 2011, AM NAT, V178, P124, DOI 10.1086/660287; Petranka J. W, 1998, SALAMANDERS US CANAD; Pfennig DW, 2007, BEHAV ECOL SOCIOBIOL, V61, P505, DOI 10.1007/s00265-006-0278-x; Pfennig DW, 2001, NATURE, V410, P323, DOI 10.1038/35066628; Poulton E. B., 1890, COLOURS ANIMALS THEI; Prum RO, 2002, Q REV BIOL, V77, P261, DOI 10.1086/341993; Pyare S, 2001, CAN J ZOOL, V79, P1007, DOI 10.1139/cjz-79-6-1007; R Core Development Team, 2015, R LANG ENV STAT COMP; Reimchen TE, 2000, BEHAVIOUR, V137, P1081, DOI 10.1163/156853900502448; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Ruxton GD, 2009, PHILOS T R SOC B, V364, P549, DOI 10.1098/rstb.2008.0228; Sandoval CP, 2005, EVOLUTION, V59, P2405; Saporito RA, 2007, COPEIA, P1006, DOI 10.1643/0045-8511(2007)7[1006:EEFAIT]2.0.CO;2; SLATKIN M, 1987, SCIENCE, V236, P787, DOI 10.1126/science.3576198; Sokal R. R, 2012, BIOMETRY; Speed M. P., 2004, AVOIDING ATTACK EVOL; STEBBINS ROBERT C., 1954, UNIV CALIFORNIA PUBL ZOOL, V54, P47; TILLEY SG, 1982, HERPETOLOGICA, V38, P409; Veilleux CC, 2012, J EXP BIOL, V215, P4085, DOI 10.1242/jeb.071415; Vignieri SN, 2010, EVOLUTION, V64, P2153, DOI 10.1111/j.1558-5646.2010.00976.x; Vorobyev M, 1998, J COMP PHYSIOL A, V183, P621, DOI 10.1007/s003590050286; WILLIAMS DA, 1970, BIOMETRICS, V26, P23, DOI 10.2307/2529041; Willink B, 2014, BIOL J LINN SOC, V113, P580, DOI 10.1111/bij.12355 70 4 4 1 39 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. AUG 2016 118 4 889 900 10.1111/bij.12780 12 Evolutionary Biology Evolutionary Biology DR3DZ WOS:000379784100013 Bronze 2019-02-21 J Burgess, SC; Baskett, ML; Grosberg, RK; Morgan, SG; Strathmann, RR Burgess, Scott C.; Baskett, Marissa L.; Grosberg, Richard K.; Morgan, Steven G.; Strathmann, Richard R. When is dispersal for dispersal? Unifying marine and terrestrial perspectives BIOLOGICAL REVIEWS English Review adaptation; dispersal; complex life cycles; movement; multivariate selection LIFE-HISTORY EVOLUTION; CORAL-REEF FISHES; SEED DISPERSAL; LARVAL DISPERSAL; REPRODUCTIVE STRATEGIES; BENTHIC INVERTEBRATES; NATURAL-SELECTION; POPULATION PERSISTENCE; ADAPTIVE SIGNIFICANCE; VARYING ENVIRONMENTS Recent syntheses on the evolutionary causes of dispersal have focused on dispersal as a direct adaptation, but many traits that influence dispersal have other functions, raising the question: when is dispersal for' dispersal? We review and critically evaluate the ecological causes of selection on traits that give rise to dispersal in marine and terrestrial organisms. In the sea, passive dispersal is relatively easy and specific morphological, behavioural, and physiological adaptations for dispersal are rare. Instead, there may often be selection to limit dispersal. On land, dispersal is relatively difficult without specific adaptations, which are relatively common. Although selection for dispersal is expected in both systems and traits leading to dispersal are often linked to fitness, systems may differ in the extent to which dispersal in nature arises from direct selection for dispersal or as a by-product of selection on traits with other functions. Our analysis highlights incompleteness of theories that assume a simple and direct relationship between dispersal and fitness, not just insofar as they ignore a vast array of taxa in the marine realm, but also because they may be missing critically important effects of traits influencing dispersal in all realms. [Burgess, Scott C.] Florida State Univ, Dept Biol Sci, 319 Stadium Dr, Tallahassee, FL 32308 USA; [Baskett, Marissa L.] Univ Calif Davis, Dept Environm Sci & Policy, One Shields Ave, Davis, CA 95616 USA; [Grosberg, Richard K.] Univ Calif Davis, Dept Evolut & Ecol, One Shields Ave, Davis, CA 95616 USA; [Morgan, Steven G.] Univ Calif Davis, Bodega Marine Lab, 2099 Westside Rd, Davis, CA 94923 USA; [Strathmann, Richard R.] Univ Washington, Friday Harbor Labs, 620 Univ Rd, Friday Harbor, WA 98250 USA Burgess, SC (reprint author), Florida State Univ, Dept Biol Sci, 319 Stadium Dr, Tallahassee, FL 32308 USA. sburgess@bio.fsu.edu Baskett, Marissa/P-1762-2014 Baskett, Marissa/0000-0001-6102-1110; Burgess, Scott/0000-0002-0348-3453 UC Davis Center for Population Biology Postdoctoral Fellowship; UC Davis Hellman Fellowship Program; Biological Oceanography program [OCE-0929057, OCE-092735]; Friday Harbor Laboratory at the University of Washington We appreciate very helpful discussions with David Ayre, Hugh Dingle, Marcel Holyoak, Robin Snyder, and Judy Stamps, who all also provided insightful comments on earlier versions of the manuscript. Comments from Dries Bonte and an anonymous reviewer improved the final version. This article was developed in part while S.C.B. was supported by a UC Davis Center for Population Biology Postdoctoral Fellowship. M.L.B. acknowledges funding support from the UC Davis Hellman Fellowship Program. NSF grants from the Biological Oceanography program supported R.K.G. (OCE-0929057) and S.G.M. (OCE-092735). Friday Harbor Laboratory at the University of Washington supported R.R.S. Aguirre J. D., 2012, OIKOS, V122, P881; Alexander RM, 2005, J EXP BIOL, V208, P1645, DOI 10.1242/jeb.01484; Alexander RM, 1998, J AVIAN BIOL, V29, P387, DOI 10.2307/3677157; Ayre DJ, 1996, ANIM BEHAV, V51, P1233, DOI 10.1006/anbe.1996.0128; BARLOW GW, 1981, ENVIRON BIOL FISH, V6, P65, DOI 10.1007/BF00001801; Baskett ML, 2007, AM NAT, V170, P59, DOI 10.1086/518184; Baskett ML, 2012, J EXP BIOL, V215, P948, DOI 10.1242/jeb.059022; Ben-Tzvi O, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042672; Benard MF, 2008, AM NAT, V171, P553, DOI 10.1086/587072; Benton TG, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P41; Bernardi G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044953; Bitume EV, 2013, ECOL LETT, V16, P430, DOI 10.1111/ele.12057; Blows MW, 2005, ECOLOGY, V86, P1371, DOI 10.1890/04-1209; Bonhomme F, 2000, ENVIRON BIOL FISH, V59, P365, DOI 10.1023/A:1026508715631; Bonte D, 2014, ECOLOGY, V95, P3104, DOI 10.1890/13-2269.1; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Bonte D, 2010, OIKOS, V119, P560, DOI 10.1111/j.1600-0706.2009.17943.x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Buoro M, 2014, ECOL LETT, V17, P756, DOI 10.1111/ele.12275; Burgess SC, 2007, MAR ECOL PROG SER, V341, P233, DOI 10.3354/meps341233; Burgess SC, 2014, ECOL APPL, V24, P257, DOI 10.1890/13-0710.1; Burgess SC, 2013, FUNCT ECOL, V27, P757, DOI 10.1111/1365-2435.12080; Burgess SC, 2009, BIOL BULL-US, V216, P344; Burton OJ, 2010, ECOL LETT, V13, P1210, DOI 10.1111/j.1461-0248.2010.01505.x; Buston PM, 2012, P ROY SOC B-BIOL SCI, V279, P1883, DOI 10.1098/rspb.2011.2041; Buston PM, 2009, MOL ECOL, V18, P4707, DOI 10.1111/j.1365-294X.2009.04383.x; Byers JE, 2006, MAR ECOL PROG SER, V313, P27, DOI 10.3354/meps313027; Carr MH, 2003, ECOL APPL, V13, P90; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; Clobert J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P1, DOI 10.1093/acprof:oso/9780199608898.001.0001; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Cody ML, 1996, J ECOL, V84, P53, DOI 10.2307/2261699; COMINS HN, 1980, J THEOR BIOL, V82, P205, DOI 10.1016/0022-5193(80)90099-5; Commito J. A., 2013, ECOL MONOGR, V65, P1; Dawson MN, 2008, J R SOC INTERFACE, V5, P135, DOI 10.1098/rsif.2007.1089; Denny M. W., 1993, AIR WATER BIOL PHYS; Dingle H, 2014, MIGRATION: THE BIOLOGY OF LIFE ON THE MOVE, 2ND EDITION, P1, DOI 10.1093/acprof:oso/9780199640386.001.0001; DOHERTY PJ, 1985, ENVIRON BIOL FISH, V12, P81, DOI 10.1007/BF00002761; Donohue K, 1999, AM NAT, V154, P674, DOI 10.1086/303273; Duputie A, 2013, INTERFACE FOCUS, V3, DOI 10.1098/rsfs.2013.0028; Dytham C, 2007, MAR ECOL PROG SER, V346, P255, DOI 10.3354/meps07039; ECONOMOU AN, 1991, ENVIRON BIOL FISH, V31, P313, DOI 10.1007/BF00002356; Edelsparre AH, 2014, ECOL LETT, V17, P333, DOI 10.1111/ele.12234; Emlet R.B., 1987, Echinoderm Studies, V2, P55; Falster DS, 2003, TRENDS ECOL EVOL, V18, P337, DOI 10.1016/S0169-5347(03)00061-2; Fernandez M, 2000, ECOL LETT, V3, P487, DOI 10.1046/j.1461-0248.2000.00172.x; Figuerola J, 2002, FRESHWATER BIOL, V47, P483, DOI 10.1046/j.1365-2427.2002.00829.x; Figuerola J, 2010, NATURWISSENSCHAFTEN, V97, P555, DOI 10.1007/s00114-010-0671-1; Fronhofer EA, 2014, EVOLUTION, V68, P1838, DOI 10.1111/evo.12339; GANESHAIAH KN, 1991, OIKOS, V60, P3, DOI 10.2307/3544984; Gerlach G, 2007, P NATL ACAD SCI USA, V104, P858, DOI 10.1073/pnas.0606777104; GROSBERG RK, 1986, NATURE, V322, P456, DOI 10.1038/322456a0; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; Hansen TF, 2008, J EVOLUTION BIOL, V21, P1201, DOI 10.1111/j.1420-9101.2008.01573.x; Havenhand Jon N., 1995, P79; HEDGECOCK D, 1986, B MAR SCI, V39, P550; Hein AM, 2012, ECOL LETT, V15, P104, DOI 10.1111/j.1461-0248.2011.01714.x; Helmuth B, 2005, ANNU REV PHYSIOL, V67, P177, DOI 10.1146/annurev.physiol.67.040403.105027; Hovestadt T, 2001, P ROY SOC B-BIOL SCI, V268, P385, DOI 10.1098/rspb.2000.1379; Hovestadt T, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P211; JACKSON GA, 1981, AM NAT, V118, P16, DOI 10.1086/283797; JOHANNES R E, 1978, Environmental Biology of Fishes, V3, P65, DOI 10.1007/BF00006309; JOHANNESSON K, 1988, MAR BIOL, V99, P507, DOI 10.1007/BF00392558; JOHNSON ML, 1990, ANNU REV ECOL SYST, V21, P449, DOI 10.1146/annurev.es.21.110190.002313; Jordano P, 2007, P NATL ACAD SCI USA, V104, P3278, DOI 10.1073/pnas.0606793104; Kinlan BP, 2003, ECOLOGY, V84, P2007, DOI 10.1890/01-0622; Knott KE, 2012, INTEGR COMP BIOL, V52, P120, DOI 10.1093/icb/ics037; Kokko H, 2006, SCIENCE, V313, P789, DOI 10.1126/science.1128566; Kremer A, 2012, ECOL LETT, V15, P378, DOI 10.1111/j.1461-0248.2012.01746.x; Krug P. J., 2012, INTEGR COMP BIOL, V57, P161; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Largier JL, 2003, ECOL APPL, V13, pS71; Levin SA, 2003, ANNU REV ECOL EVOL S, V34, P575, DOI 10.1146/annurev.ecolsys.34.011802.132428; Levin SA, 2000, EVOL ECOL RES, V2, P409; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; Mabry KE, 2008, P R SOC B, V275, P543, DOI 10.1098/rspb.2007.1541; MacColl ADC, 2011, TRENDS ECOL EVOL, V26, P514, DOI 10.1016/j.tree.2011.06.009; Marshall DJ, 2003, MAR ECOL PROG SER, V255, P145, DOI 10.3354/meps255145; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; Marshall DJ, 2011, CURR BIOL, V21, pR718, DOI 10.1016/j.cub.2011.08.022; Matthysen E, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P3; McEdward LR, 1997, AM NAT, V150, P48, DOI 10.1086/286056; MCPEEK MA, 1992, AM NAT, V140, P1010, DOI 10.1086/285453; MITCHELLOLDS T, 1987, EVOLUTION, V41, P1149, DOI 10.1111/j.1558-5646.1987.tb02457.x; MORAN NA, 1994, ANNU REV ECOL SYST, V25, P573, DOI 10.1146/annurev.es.25.110194.003041; MORGAN SG, 1990, ECOLOGY, V71, P1639, DOI 10.2307/1937574; MORGAN SG, 1995, AM NAT, V145, P457, DOI 10.1086/285749; Morgan Steven G., 1995, P279; Morrissey MB, 2014, EVOLUTION, V68, P1748, DOI 10.1111/evo.12385; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19052, DOI 10.1073/pnas.0800375105; Nickols KJ, 2015, AM NAT, V185, P196, DOI 10.1086/679503; Orr HA, 2009, NAT REV GENET, V10, P531, DOI 10.1038/nrg2603; PALMER AR, 1981, OECOLOGIA, V48, P308, DOI 10.1007/BF00346487; Parciak W, 2002, ECOLOGY, V83, P794, DOI 10.2307/3071882; Pechenik JA, 1999, MAR ECOL PROG SER, V177, P269, DOI 10.3354/meps177269; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; PHILLIPS PC, 1989, EVOLUTION, V43, P1209, DOI 10.1111/j.1558-5646.1989.tb02569.x; Pringle JM, 2014, ECOLOGY, V95, P1022, DOI 10.1890/13-0970.1; Reitzel AM, 2004, MAR ECOL PROG SER, V280, P13, DOI 10.3354/meps280013; Riginos C, 2011, ECOGRAPHY, V34, P566, DOI 10.1111/j.1600-0587.2010.06511.x; Robertson DR, 2001, P NATL ACAD SCI USA, V98, P5667, DOI 10.1073/pnas.091367798; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Rousset F, 2002, J EVOLUTION BIOL, V15, P515, DOI 10.1046/j.1420-9101.2002.00430.x; Russo SE, 2006, ECOLOGY, V87, P3160, DOI 10.1890/0012-9658(2006)87[3160:IABISD]2.0.CO;2; Salewski V, 2007, NATURWISSENSCHAFTEN, V94, P268, DOI 10.1007/s00114-006-0186-y; Samuels IA, 2005, FUNCT ECOL, V19, P365, DOI 10.1111/j.1365-2435.2005.00973.x; Shanks AL, 2005, ECOL MONOGR, V75, P505, DOI 10.1890/05-0309; Shanks AL, 2009, BIOL BULL-US, V216, P373; Sinclair M, 1988, MARINE POPULATIONS E; Snyder RE, 2011, P ROY SOC B-BIOL SCI, V278, P739, DOI 10.1098/rspb.2010.1549; Stamps JA, 2005, ECOLOGY, V86, P510, DOI 10.1890/04-0516; Starrfelt J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P19; Starrfelt J, 2010, AM NAT, V175, P38, DOI 10.1086/648605; Stevens VM, 2014, ECOL LETT, V17, P1039, DOI 10.1111/ele.12303; Stevens VM, 2012, ECOL LETT, V15, P74, DOI 10.1111/j.1461-0248.2011.01709.x; Stinchcombe JR, 2002, AM NAT, V160, P511, DOI 10.1086/342069; STRATHMANN R, 1974, AM NAT, V108, P29, DOI 10.1086/282883; Strathmann RR, 2007, B MAR SCI, V81, P167; STRATHMANN RR, 1990, AM ZOOL, V30, P197; Strathmann RR, 2002, B MAR SCI, V70, P377; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Thiel M, 2006, OCEANOGR MAR BIOL, V44, P323, DOI 10.1201/9781420006391.ch7; Thomson FJ, 2011, J ECOL, V99, P1299, DOI 10.1111/j.1365-2745.2011.01867.x; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; TODD CD, 1981, MAR ECOL PROG SER, V4, P75, DOI 10.3354/meps004075; Todd CD, 1998, J EXP MAR BIOL ECOL, V228, P1, DOI 10.1016/S0022-0981(98)00005-7; Toonen RJ, 2001, EVOLUTION, V55, P2439; Traveset A., 2007, Seed dispersal: theory and its application in a changing world, P78, DOI 10.1079/9781845931650.004; Traveset A, 1998, ECOL EVOL SYST, V1, P151, DOI DOI 10.1078/1433-8319-00057; Travis JMJ, 2001, ECOL RES, V16, P157, DOI 10.1046/j.1440-1703.2001.00381.x; Travis JMJ, 2013, OIKOS, V122, P1532, DOI 10.1111/j.1600-0706.2013.00399.x; Travis JMJ, 2012, METHODS ECOL EVOL, V3, P628, DOI 10.1111/j.2041-210X.2012.00193.x; Travis JMJ, 2010, DIVERS DISTRIB, V16, P690, DOI 10.1111/j.1472-4642.2010.00674.x; Van Dyck H, 2005, BASIC APPL ECOL, V6, P535, DOI 10.1016/j.baae.2005.03.005; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; vansOverveld T., 2014, OECOLOGIA, V174, P109; Veliz D, 2006, MOL ECOL, V15, P4193, DOI 10.1111/j.1365-294X.2006.03078.x; Vermeij GJ, 2010, INTEGR COMP BIOL, V50, P675, DOI 10.1093/icb/icq078; WADE MJ, 1990, EVOLUTION, V44, P1947, DOI 10.1111/j.1558-5646.1990.tb04301.x; Weersing K, 2009, MAR ECOL PROG SER, V393, P1, DOI 10.3354/meps08287; Will H, 2008, J ECOL, V96, P1011, DOI 10.1111/j.1365-2745.2007.01341.x; Winkler David W., 2005, P401; Wolf JB, 2001, J EVOLUTION BIOL, V14, P347, DOI 10.1046/j.1420-9101.2001.00277.x 143 30 30 5 56 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. AUG 2016 91 3 867 882 10.1111/brv.12198 16 Biology Life Sciences & Biomedicine - Other Topics DR5ER WOS:000379926500014 26118564 Green Published 2019-02-21 J Scranton, K; Lummaa, V; Stearns, SC Scranton, Katherine; Lummaa, Virpi; Stearns, Stephen C. The importance of the timescale of the fitness metric for estimates of selection on phenotypic traits during a period of demographic change ECOLOGY LETTERS English Article Demographic change; fitness; fitness timescale; life-history traits; phenotypic selection CONTEMPORARY HUMAN-POPULATION; LIFE-HISTORY EVOLUTION; INDIVIDUAL FITNESS; NATURAL-SELECTION; STRUCTURED POPULATIONS; REPRODUCTIVE SUCCESS; SEXUAL SELECTION; RED DEER; TRANSITION; TIME Although fitness is central to the evolutionary process, metrics vary by timescale. Different timescales may give rise to different estimates of selection, especially during demographic transitions caused by rapid environmental and socioeconomic change. In this study, we used a dataset of a human population in Finland from 1775 to 1950 to compare two fitness metrics and their estimates of selection pressures, before and during a demographic transition. Both metrics, lifetime reproductive success and an annual metric of individual performance, declined while selection on the ages at first and last reproduction remained nearly constant, favouring individuals with wider reproductive windows. The ability to partition the annual metric into contributions from reproduction and survival revealed the short-term effects of a famine and the reversal of selection pressure via the survival component of annual fitness. Although the metrics generally agreed, the annual metric detected the effects of environmental variation and demographic change occurring within a generation. [Scranton, Katherine; Stearns, Stephen C.] Yale Univ, Dept Ecol & Evolutionary Biol, 165 Prospect St, New Haven, CT 06520 USA; [Lummaa, Virpi] Univ Turku, Dept Biol, FI-20014 Turku, Finland Scranton, K (reprint author), Yale Univ, Dept Ecol & Evolutionary Biol, 165 Prospect St, New Haven, CT 06520 USA. katherine.scranton@ucla.edu Academy of Finland; European Research Council This work was supported in part by the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center and by Academy of Finland and European Research Council grants to VL. ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; Barfield M, 2011, AM NAT, V177, P397, DOI 10.1086/658903; Bell G, 2010, PHILOS T R SOC B, V365, P87, DOI 10.1098/rstb.2009.0150; Benton TG, 2000, EVOL ECOL RES, V2, P769; Bolund E, 2015, EVOLUTION, V69, P747, DOI 10.1111/evo.12598; Brommer JE, 2004, AM NAT, V163, P505, DOI 10.1086/382547; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; Byars SG, 2010, P NATL ACAD SCI USA, V107, P1787, DOI 10.1073/pnas.0906199106; Christensen RHB, 2015, ORDINAL REGRESSION M, P6; Coulson T, 2006, P ROY SOC B-BIOL SCI, V273, P547, DOI 10.1098/rspb.2005.3357; Coulson T, 2003, EVOLUTION, V57, P2879; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; Courtiol A, 2013, CURR BIOL, V23, P884, DOI 10.1016/j.cub.2013.04.006; Courtiol A, 2012, P NATL ACAD SCI USA, V109, P8044, DOI 10.1073/pnas.1118174109; Grafen A., 1988, REPROD SUCCESS, P454; Hamed KH, 1998, J HYDROL, V204, P182, DOI 10.1016/S0022-1694(97)00125-X; Hayward AD, 2013, P NATL ACAD SCI USA, V110, P13886, DOI 10.1073/pnas.1301817110; Holt RD, 2008, ECOLOGY, V89, P671, DOI 10.1890/07-0348.1; Horvitz CC, 2010, INT J PLANT SCI, V171, P945, DOI 10.1086/657141; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kingsolver JG, 2012, EVOL ECOL, V26, P1101, DOI 10.1007/s10682-012-9563-5; Korpelainen H, 2003, AM J PHYS ANTHROPOL, V120, P384, DOI 10.1002/ajpa.10191; Kruuk LEB, 1999, P ROY SOC B-BIOL SCI, V266, P1655, DOI 10.1098/rspb.1999.0828; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 2003, STOCHASTIC POPULATIO; Link WA, 2002, J APPL STAT, V29, P207, DOI 10.1080/02664760120108700a; Liu JH, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034898; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; Milot E, 2011, P NATL ACAD SCI USA, V108, P17040, DOI 10.1073/pnas.1104210108; Moorad JA, 2013, EVOLUTION, V67, P1622, DOI 10.1111/evo.12023; Morrissey MB, 2012, EVOLUTION, V66, P435, DOI 10.1111/j.1558-5646.2011.01444.x; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Pettay JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000606; Rees M, 2016, METHODS ECOL EVOL, V7, P157, DOI 10.1111/2041-210X.12487; Smith EA, 2001, TRENDS ECOL EVOL, V16, P128, DOI 10.1016/S0169-5347(00)02077-2; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2010, NAT REV GENET, V11, P611, DOI 10.1038/nrg2831; Steiner UK, 2014, AM NAT, V183, P771, DOI 10.1086/675894; Vink JM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047371 40 7 7 2 22 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. AUG 2016 19 8 854 861 10.1111/ele.12619 8 Ecology Environmental Sciences & Ecology DR5TW WOS:000379966300003 27230740 2019-02-21 J Fitzpatrick, SW; Gerberich, JC; Angeloni, LM; Bailey, LL; Broder, ED; Torres-Dowdall, J; Handelsman, CA; Lopez-Sepulcre, A; Reznick, DN; Ghalambor, CK; Funk, WC Fitzpatrick, Sarah W.; Gerberich, Jill C.; Angeloni, Lisa M.; Bailey, Larissa L.; Broder, Emily D.; Torres-Dowdall, Julian; Handelsman, Corey A.; Lopez-Sepulcre, Andres; Reznick, David N.; Ghalambor, Cameron K.; Funk, W. Chris Gene flow from an adaptively divergent source causes rescue through genetic and demographic factors in two wild populations of Trinidadian guppies EVOLUTIONARY APPLICATIONS English Article capture-mark-recapture; demographic rescue; fitness; gene flow; genetic rescue; hybridization; Poecilia reticulata; population growth LIFE-HISTORY EVOLUTION; PER-GENERATION RULE; POECILIA-RETICULATA; NATURAL-SELECTION; INBREEDING DEPRESSION; LOCAL ADAPTATION; ONE-MIGRANT; OUTBREEDING DEPRESSION; EXTINCTION; CONSERVATION Genetic rescue, an increase in population growth owing to the infusion of new alleles, can aid the persistence of small populations. Its use as a management tool is limited by a lack of empirical data geared toward predicting effects of gene flow on local adaptation and demography. Experimental translocations provide an ideal opportunity to monitor the demographic consequences of gene flow. In this study we take advantage of two experimental introductions of Trinidadian guppies to test the effects of gene flow on downstream native populations. We individually marked guppies from the native populations to monitor population dynamics for 3months before and 26months after gene flow. We genotyped all individuals caught during the first 17months at microsatellite loci to classify individuals by their genetic ancestry: native, immigrant, F-1 hybrid, F-2 hybrid, or backcross. Our study documents a combination of demographic and genetic rescue over multiple generations under fully natural conditions. Within both recipient populations, we found substantial and long-term increases in population size that could be attributed to high survival and recruitment caused by immigration and gene flow from the introduction sites. Our results suggest that low levels of gene flow, even from a divergent ecotype, can provide a substantial demographic boost to small populations, which may allow them to withstand environmental stochasticity. [Fitzpatrick, Sarah W.] Michigan State Univ, Kellogg Biol Stn, Dept Integrat Biol, 3700 East Gull Lake Dr, Hickory Corners, MI 49060 USA; [Fitzpatrick, Sarah W.; Gerberich, Jill C.; Angeloni, Lisa M.; Broder, Emily D.; Handelsman, Corey A.; Ghalambor, Cameron K.; Funk, W. Chris] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA; [Angeloni, Lisa M.; Broder, Emily D.; Ghalambor, Cameron K.; Funk, W. Chris] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA; [Bailey, Larissa L.] Colorado State Univ, Dept Fish Wildlife & Conservat Biol, Ft Collins, CO 80523 USA; [Torres-Dowdall, Julian] Univ Konstanz, Dept Biol, Lehrstuhl Zool & Evolut Biol, Constance, Germany; [Lopez-Sepulcre, Andres] Univ Paris 06, CNRS, UMR 7618, Inst Ecol & Environm Sci Paris iEES, Paris, France; [Lopez-Sepulcre, Andres] Univ Jyvaskyla, Dept Biol & Environm Sci, Ctr Excellence Biol Interact, Jyvaskyla, Finland; [Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Fitzpatrick, SW (reprint author), Michigan State Univ, Kellogg Biol Stn, Dept Integrat Biol, 3700 East Gull Lake Dr, Hickory Corners, MI 49060 USA. sfitz@msu.edu Bailey, Larissa/A-2565-2009 Lopez-Sepulcre, Andres/0000-0001-9708-0788; Funk, W. Chris/0000-0002-6466-3618; reznick, david/0000-0002-1144-0568; Torres-Dowdall, Julian/0000-0003-2729-6246 National Science Foundation [DEB-0846175, EF-0623632]; NSF; National Geographic Young Explorer's Grant; Society for the Study of Evolution Rosemary Grant Student Research Award We thank P. Bois and the many field assistants who helped catch, process, and release guppies in Trinidad. This project was funded by National Science Foundation grants to W.C.F. and L.M.A. (DEB-0846175), D.N.R (EF-0623632), C.K.G (DEB-0846175) and a NSF graduate research fellowship, National Geographic Young Explorer's Grant, and Society for the Study of Evolution Rosemary Grant Student Research Award to S.W.F. This is Kellogg Biological Station Contribution no. 1910. Aitken SN, 2013, ANNU REV ECOL EVOL S, V44, P367, DOI 10.1146/annurev-ecolsys-110512-135747; Alexander HJ, 2006, EVOLUTION, V60, P2352, DOI 10.1111/j.0014-3820.2006.tb01870.x; Anderson EC, 2002, GENETICS, V160, P1217; Araki H, 2008, EVOL APPL, V1, P342, DOI 10.1111/j.1752-4571.2008.00026.x; Armbruster P, 2005, HEREDITY, V95, P235, DOI 10.1038/sj.hdy.6800721; Baillie L., 2012, GENETIC POPULATION S; Barson NJ, 2009, J EVOLUTION BIOL, V22, P485, DOI 10.1111/j.1420-9101.2008.01675.x; Bassar RD, 2013, AM NAT, V181, P25, DOI 10.1086/668590; Bronikowski AM, 2002, ECOLOGY, V83, P2194, DOI 10.2307/3072051; BROWN JH, 1977, ECOLOGY, V58, P445, DOI 10.2307/1935620; Burnham K. P, 2002, MODEL SELECTION MULT; Burton RS, 2013, ANNU REV ECOL EVOL S, V44, P281, DOI 10.1146/annurev-ecolsys-110512-135758; Carlson SM, 2014, TRENDS ECOL EVOL, V29, P521, DOI 10.1016/j.tree.2014.06.005; Coyne J. A., 2004, SPECIATION; Crispo E, 2006, MOL ECOL, V15, P49, DOI 10.1111/j.1365-294X.2005.02764.x; DOBZHANSKY T, 1948, GENETICS, V33, P588; Eakley AL, 2004, P ROY SOC B-BIOL SCI, V271, pS299, DOI 10.1098/rsbl.2004.0165; Edmands S, 1999, EVOLUTION, V53, P1757, DOI 10.1111/j.1558-5646.1999.tb04560.x; Edmands S, 2007, MOL ECOL, V16, P463, DOI 10.1111/j.1365-294X.2006.03148.x; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Evans JP, 2003, BIOL J LINN SOC, V78, P605, DOI 10.1046/j.0024-4066.2002.00193.x; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Fagan WF, 2006, ECOL LETT, V9, P51, DOI 10.1111/j.1461-0248.2005.00845.x; Fagan WF, 2002, ECOLOGY, V83, P3243, DOI 10.2307/3072074; Fitzpatrick SW, 2015, ECOL LETT, V18, P37, DOI 10.1111/ele.12388; Fitzpatrick SW, 2014, CONSERV GENET, V15, P771, DOI 10.1007/s10592-014-0577-0; Fitzpatrick SW, 2014, AM NAT, V183, P290, DOI 10.1086/674611; Frankham R, 2011, CONSERV BIOL, V25, P465, DOI 10.1111/j.1523-1739.2011.01662.x; Fraser BA, 2015, MOL ECOL, V24, P389, DOI 10.1111/mec.13022; Garant D, 2007, FUNCT ECOL, V21, P434, DOI 10.1111/j.1365-2435.2006.01228.x; GarciaRamos G, 1997, EVOLUTION, V51, P21, DOI 10.1111/j.1558-5646.1997.tb02384.x; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Goudet J, 2005, MOL ECOL NOTES, V5, P184, DOI 10.1111/j.1471-8278.2004.00828.x; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Hendry AP, 2004, EVOLUTION, V58, P2319; Hogg JT, 2006, P R SOC B, V273, P1491, DOI 10.1098/rspb.2006.3477; Hufford KM, 2003, TRENDS ECOL EVOL, V18, P147, DOI 10.1016/S0169-5347(03)00002-8; Hughes KA, 2013, NATURE, V503, P108, DOI 10.1038/nature12717; Johnson AM, 2010, ETHOLOGY, V116, P448, DOI 10.1111/j.1439-0310.2010.01763.x; Johnson WE, 2010, SCIENCE, V329, P1641, DOI 10.1126/science.1192891; Kearse M, 2012, BIOINFORMATICS, V28, P1647, DOI 10.1093/bioinformatics/bts199; Keller LF, 2002, TRENDS ECOL EVOL, V17, P230, DOI 10.1016/S0169-5347(02)02489-8; Labonne J, 2010, AM NAT, V176, P26, DOI 10.1086/652992; LANDE R, 1988, SCIENCE, V241, P1455, DOI 10.1126/science.3420403; LANDE R, 1980, AM NAT, V116, P463, DOI 10.1086/283642; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; Lopez-Sepulcre A, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1116; Lu GQ, 1999, EVOLUTION, V53, P1491, DOI 10.1111/j.1558-5646.1999.tb05413.x; Ludlow AM, 2006, P ROY SOC B-BIOL SCI, V273, P2477, DOI 10.1098/rspb.2006.3605; Madsen T, 2004, BIOL CONSERV, V120, P145, DOI 10.1016/j.biocon.2004.01.022; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Mills LS, 1996, CONSERV BIOL, V10, P1509, DOI 10.1046/j.1523-1739.1996.10061509.x; Moody KN, 2015, MOL ECOL, V24, P545, DOI 10.1111/mec.13016; Newman D, 1997, EVOLUTION, V51, P354, DOI 10.1111/j.1558-5646.1997.tb02422.x; Nichols JD, 2000, ECOLOGY, V81, P3362, DOI 10.2307/177500; Nielsen EE, 2006, MOL ECOL NOTES, V6, P971, DOI 10.1111/j.1471-8286.2006.01433.x; Nosil P, 2004, EVOLUTION, V58, P102, DOI 10.1111/j.0014-3820.2004.tb01577.x; Nosil P, 2008, EVOLUTION, V62, P316, DOI 10.1111/j.1558-5646.2007.00299.x; Nosil P, 2009, MOL ECOL, V18, P375, DOI 10.1111/j.1365-294X.2008.03946.x; Olendorf R, 2006, NATURE, V441, P633, DOI 10.1038/nature04646; Pradel R, 1996, BIOMETRICS, V52, P703, DOI 10.2307/2532908; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Russell ST, 2006, J EVOLUTION BIOL, V19, P1294, DOI 10.1111/j.1420-9101.2005.01069.x; Saccheri I, 1998, NATURE, V392, P491, DOI 10.1038/33136; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SLATKIN M, 1985, ANNU REV ECOL SYST, V16, P393, DOI 10.1146/annurev.ecolsys.16.1.393; Spielman D, 2004, P NATL ACAD SCI USA, V101, P15261, DOI 10.1073/pnas.0403809101; SPIETH PT, 1974, GENETICS, V78, P961; Tallmon DA, 2004, TRENDS ECOL EVOL, V19, P489, DOI 10.1016/j.tree.2004.07.003; Torres-Dowdall J, 2012, FUNCT ECOL, V26, P616, DOI 10.1111/j.1365-2435.2012.01980.x; Travis J, 2014, ADV ECOL RES, V50, P1, DOI 10.1016/B978-0-12-801374-8.00001-3; Vaha JP, 2006, MOL ECOL, V15, P63, DOI 10.1111/j.1365-294X.2005.02773.x; van Oosterhout C, 2003, J EVOLUTION BIOL, V16, P273, DOI 10.1046/j.1420-9101.2003.00511.x; Vucetich JA, 2000, ANIM CONSERV, V3, P261, DOI 10.1017/S1367943000000986; Wang JL, 2004, CONSERV BIOL, V18, P332, DOI 10.1111/j.1523-1739.2004.00440.x; Weeks AR, 2011, EVOL APPL, V4, P709, DOI 10.1111/j.1752-4571.2011.00192.x; Weese DJ, 2011, EVOL APPL, V4, P354, DOI 10.1111/j.1752-4571.2010.00169.x; White GC, 1999, BIRD STUDY, V46, P120; Whiteley AR, 2015, TRENDS ECOL EVOL, V30, P42, DOI 10.1016/j.tree.2014.10.009; Willing EM, 2010, MOL ECOL, V19, P968, DOI 10.1111/j.1365-294X.2010.04528.x 86 14 14 5 84 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. AUG 2016 9 7 SI 879 891 10.1111/eva.12356 13 Evolutionary Biology Evolutionary Biology DR5GW WOS:000379932500006 27468306 DOAJ Gold, Green Published 2019-02-21 J Gust, KA; Kennedy, AJ; Melby, NL; Wilbanks, MS; Laird, J; Meeks, B; Muller, EB; Nisbet, RM; Perkins, EJ Gust, Kurt A.; Kennedy, Alan J.; Melby, Nicolas L.; Wilbanks, Mitchell S.; Laird, Jennifer; Meeks, Barbara; Muller, Erik B.; Nisbet, Roger M.; Perkins, Edward J. Daphnia magna's sense of competition: intra-specific interactions (ISI) alter life history strategies and increase metals toxicity ECOTOXICOLOGY English Article Daphnia; Intra-specific interactions; Ecotoxicology; Metals toxicity; Standard toxicity assays ENERGY BUDGET THEORY; INTRASPECIFIC COMPETITION; POPULATIONS; CONSPECIFICS; INDIVIDUALS; SENSITIVITY; INVESTMENT; CHEMICALS; BIOMARKER; RESPONSES This work investigates whether the scale-up to multi-animal exposures that is commonly applied in genomics studies provides equivalent toxicity outcomes to single-animal experiments of standard Daphnia magna toxicity assays. Specifically, we tested the null hypothesis that intraspecific interactions (ISI) among D. magna have neither effect on the life history strategies of this species, nor impact toxicological outcomes in exposure experiments with Cu and Pb. The results show that ISI significantly increased mortality of D. magna in both Cu and Pb exposure experiments, decreasing 14 day LC50 s and 95 % confidence intervals from 14.5 (10.9-148.3) to 8.4 (8.2-8.7) A mu g Cu/L and from 232 (156-4810) to 68 (63-73) A mu g Pb/L. Additionally, ISI potentiated Pb impacts on reproduction eliciting a nearly 10-fold decrease in the no-observed effect concentration (from 236 to 25 A mu g/L). As an indication of environmental relevance, the effects of ISI on both mortality and reproduction in Pb exposures were sustained at both high and low food rations. Furthermore, even with a single pair of Daphnia, ISI significantly increased (p < 0.05) neonate production in control conditions, demonstrating that ISI can affect life history strategy. Given these results we reject the null hypothesis and conclude that results from scale-up assays cannot be directly applied to observations from single-animal assessments in D. magna. We postulate that D. magna senses chemical signatures of conspecifics which elicits changes in life history strategies that ultimately increase susceptibility to metal toxicity. [Gust, Kurt A.; Kennedy, Alan J.; Melby, Nicolas L.; Wilbanks, Mitchell S.; Laird, Jennifer; Perkins, Edward J.] US Army, Environm Lab, Engineer Res & Dev Ctr, Vicksburg, MS 39180 USA; [Meeks, Barbara] SpecPro Tech Serv, San Antonio, TX USA; [Muller, Erik B.] Univ Calif Santa Barbara, Inst Marine Sci, Santa Barbara, CA 93106 USA; [Nisbet, Roger M.] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA Gust, KA (reprint author), US Army, Environm Lab, Engineer Res & Dev Ctr, Vicksburg, MS 39180 USA. kurt.a.gust@usace.army.mil Nisbet, Roger/B-6951-2014 Muller, Erik/0000-0003-2300-0727 US Army's Environmental Quality and Installations Research Program from the US National Science Foundation; US Environmental Protection Agency [DBI-1266377] We thank the anonymous peer reviewers for their assistance in refining the content and presentation of this paper. Opinions, interpretations, conclusions, and recommendations are those of the author(s) and are not necessarily endorsed by the U.S. Army, the National Science Foundation or the U.S. Environmental Protection Agency. This work was supported by the US Army's Environmental Quality and Installations Research Program in addition to partial support to RMN and EBM from the US National Science Foundation and the US Environmental Protection Agency under Cooperative Agreement Number DBI-1266377. Ananthasubramaniam B, 2015, ECOL APPL, V25, P1691, DOI 10.1890/14-0498.1; ASTM, 2012, E119397 ASTM; Bedhomme S, 2005, ECOL ENTOMOL, V30, P1, DOI 10.1111/j.0307-6946.2005.00665.x; BURNS CW, 1995, OECOLOGIA, V101, P234, DOI 10.1007/BF00317289; Burns CW, 2000, FRESHWATER BIOL, V43, P19, DOI 10.1046/j.1365-2427.2000.00510.x; Campos B, 2013, ENVIRON SCI TECHNOL, V47, P9434, DOI 10.1021/es4012299; Colbourne JK, 2011, SCIENCE, V331, P555, DOI 10.1126/science.1197761; De Coen WM, 2003, ENVIRON TOXICOL CHEM, V22, P1632, DOI 10.1897/1551-5028(2003)22<1632:TMBLRB>2.0.CO;2; De Schamphelaere KAC, 2007, AQUAT TOXICOL, V81, P409, DOI 10.1016/j.aquatox.2007.01.002; Foit K, 2012, AQUAT TOXICOL, V106, P25, DOI 10.1016/j.aquatox.2011.09.012; Gabsi F, 2014, ENVIRON TOXICOL CHEM, V33, P1449, DOI 10.1002/etc.2409; Gabsi F, 2014, ECOL MODEL, V280, P18, DOI 10.1016/j.ecolmodel.2013.06.018; Garcia-Reyero N, 2012, ENVIRON SCI TECHNOL, V46, P42, DOI 10.1021/es201245b; Garcia-Reyero N, 2009, ENVIRON SCI TECHNOL, V43, P4188, DOI 10.1021/es803702a; Gergs A, 2013, SCI REP-UK, V3, DOI 10.1038/srep02036; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; HOBK A, 1990, ECOLOGY, V71, P2255; Knillmann S, 2012, ECOTOXICOLOGY, V21, P1857, DOI 10.1007/s10646-012-0919-y; Liess M, 2010, AQUAT TOXICOL, V97, P15, DOI 10.1016/j.aquatox.2009.11.018; Lurling M, 2003, J PLANKTON RES, V25, P967, DOI 10.1093/plankt/25.8.967; Martin BT, 2013, AM NAT, V181, P506, DOI 10.1086/669904; Martin BT, 2013, ECOTOXICOLOGY, V22, P574, DOI 10.1007/s10646-013-1049-x; *OECD, 1984, 202 OECD; Pohnert G, 2007, TRENDS ECOL EVOL, V22, P198, DOI 10.1016/j.tree.2007.01.005; Roy S., 2009, THESIS; Shaw JR, 2007, BMC GENOMICS, V8, DOI 10.1186/1471-2164-8-477; Stabell OB, 2003, CHEM SENSES, V28, P141, DOI 10.1093/chemse/28.2.141; Stanley JK, 2013, ENVIRON SCI TECHNOL, V47, P9424, DOI 10.1021/es401115q; U.S. Environmental Protection Agency, 2002, EPA812R02012 OFF WAT; *US EPA, 6010B US EPA; US EPA, 6020 US EPA; Viaene KPJ, 2015, ENVIRON TOXICOL CHEM, V34, P1751, DOI 10.1002/etc.2973; Yamada K, 2010, SCIENCE, V329, P1647, DOI 10.1126/science.1192020 33 2 2 3 26 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0963-9292 1573-3017 ECOTOXICOLOGY Ecotoxicology AUG 2016 25 6 1126 1135 10.1007/s10646-016-1667-1 10 Ecology; Environmental Sciences; Toxicology Environmental Sciences & Ecology; Toxicology DQ2KQ WOS:000379031600007 27151402 Other Gold, Green Published 2019-02-21 J Ho, ALFC; Pruett, CL; Lin, JD Ho, Adeljean L. F. C.; Pruett, Christin L.; Lin, Junda Phylogeny and biogeography of Poecilia (Cyprinodontiformes: Poeciliinae) across Central and South America based on mitochondrial and nuclear DNA markers MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Poeciliidae; Secondary freshwater fishes; Mitochondrial DNA; Nuclear DNA; Mollienesia; Allopoecilia FISH GENUS POECILIOPSIS; MEXICAN SAILFIN MOLLIES; LIFE-HISTORY EVOLUTION; GEOGRAPHICAL VARIATION; MOLECULAR PHYLOGENY; MATE CHOICE; ENVIRONMENTAL GRADIENT; TELEOSTEI POECILIIDAE; LIVEBEARING FISH; CARIBBEAN REGION Poeciliids are a diverse group of small Neotropical fishes, and despite considerable research attention as models in ecology and evolutionary biology, our understanding of their biogeographic and phylogenetic relationships is still limited. We investigated the phylogenetic relationships of South and Central American Poecilia, by examining 2395 base pairs of mitochondrial DNA (ATPase 8/6, COI) and nuclear DNA (S7) for 18 species across six subgenera. Fifty-eight novel sequences were acquired from newly collected specimens and 20 sequences were obtained from previously published material. Analyses of concatenated and partitioned mitochondrial DNA and nuclear DNA sets resulted in a well-supported phylogeny that resolved several monophyletic groups corresponding to previously hypothesized subgenera and species complexes. A divergence-dating analysis supported the hypothesis of the genus Poecilia dispersing into Central America in the early Pliocene (ancestors of Psychropoecilia + Allopoecilia + Mollienesia: 7.3-2.0 Mya) from predominantly South America. Subsequently, one lineage (subgenus Allopoecilia: 5.1-1.3 Mya) expanded deeper into South America from Lower-Central America, and one lineage expanded from Nuclear-Central America into South America (subgenus Mollienesia: 0.71-0.14 Mya). The subgenus Mollienesia diverged into three monophyletic groups that can be identified by nuptial male dorsal fin morphology and inner jaw dentition. A subclade of the unicuspid short-fins (subgenus Mollienesia) was the lineage that expanded into South America during the middle Pleistocene. Species in this subclade are now distributed across northern South America, where they are partially sympatric with Allopoecilia. However the P. (A.) caucana complex was not monophyletic, with P. (A.) wandae clustering in the Mollienesia subclade that expanded into South America. It is apparent that characters (body size, scale count, pigmentation, and gonopodium morphology) used to define the P. (A.) caucana complex are homoplastic and suggestive of rapid convergence in northern South America. Our improved taxon sampling and divergence-time calibration allowed for insights into the timing and direction of dispersals, and provides an improved understanding of the biogeographic history of an enigmatic group of fishes. Furthermore, we provided strong evidence for the monophyly of the subgenus Mollienesia and further substantiated its species complexes; therefore, we advise a taxonomic re-evaluation for the P. (A.) caucana complex to maintain monophyly of both Mollienesia and Allopoecilia. (C) 2016 Elsevier Inc. All rights reserved. [Ho, Adeljean L. F. C.; Pruett, Christin L.; Lin, Junda] Florida Inst Technol, Dept Biol Sci, 150 W Univ Blvd, Melbourne, FL 32901 USA; [Pruett, Christin L.] Tabor Coll, Dept Sci & Math, 400 South Jefferson St, Hillsboro, KS 67063 USA Ho, ALFC (reprint author), Florida Inst Technol, Dept Biol Sci, 150 W Univ Blvd, Melbourne, FL 32901 USA. aho2008@my.fit.edu Ho, Adeljean Loong Fat Clemen/0000-0002-9146-3734 Proaquatix, Inc. The authors are grateful for the assistance provided in the fish sample collections: C. Bryan, A.G. Ho, H.Y. Ho, L.F. Ho, N.K.P. Ho, Y.L. Ho, E. Jimenez, A. Maduro, J. Maduro, A. Marcano, C. Marcano, F. Morales, E. Ron, H. Severeyn, Y. Severeyn, E. Sjak-Shie, T. Solorzano, E. Tromp, and M. Vermeij. The authors thank F. Alda for proving various GPS coordinates for collections. We are grateful to G. Orti and R. Betancur-R for their aid in providing time calibration estimates. The authors thank N. Matzke for helping with running BioGeoBEARS. We thank the reviewers of the manuscript that provided valuable comments and feedback. Panama specimens were collected under ARAP Scientific Permit No 39. We also thank the Proaquatix, Inc. for financial support. Agorreta A, 2013, MOL PHYLOGENET EVOL, V66, P80, DOI 10.1016/j.ympev.2012.09.010; Alda F., 2013, DRYAD DIGITAL REPOSI; Alda F, 2013, MOL PHYLOGENET EVOL, V66, P1011, DOI 10.1016/j.ympev.2012.12.012; Alpirez-Quesada O., 1971, ESTUDIO SISTEMATICO; Gutierrez-Garcia TA, 2013, QUATERNARY RES, V79, P311, DOI [10.1016/j.yqres.2012.12.007, 10.1016/j.ygres.2012.12.007]; April J, 2011, P NATL ACAD SCI USA, V108, P10602, DOI 10.1073/pnas.1016437108; Araujo LGBR, 2013, ENVIRON BIOL FISH, V96, P941, DOI 10.1007/s10641-012-0089-z; Araujo MS, 2014, BMC EVOL BIOL, V14, DOI 10.1186/s12862-014-0251-7; Bacon CD, 2015, P NATL ACAD SCI USA, V112, P6110, DOI 10.1073/pnas.1423853112; Bagley JC, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121139; Bagley JC, 2014, BIOL REV, V89, P767, DOI 10.1111/brv.12076; Baldwin CC, 2009, ZOOTAXA, P1; Betancur-R R, 2013, PLOS CURR-TREE LIFE, DOI 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288; Breden F, 1999, MOL PHYLOGENET EVOL, V12, P95, DOI 10.1006/mpev.1998.0600; Buckley TR, 2001, EVOLUTION, V55, P1395; Bussing W.A., 1987, FRESHWATER FISHES CO; CHERVINSKI J, 1984, J FISH BIOL, V24, P449, DOI 10.1111/j.1095-8649.1984.tb04815.x; Chow S, 1998, MOL ECOL, V7, P1255; COATES AG, 1992, GEOL SOC AM BULL, V104, P814, DOI 10.1130/0016-7606(1992)104<0814:COTIOP>2.3.CO;2; Coates Anthony G., 1996, P21; Coates AG, 2013, B MAR SCI, V89, P801, DOI 10.5343/bms.2012.1076; Doadrio I, 2009, MOL PHYLOGENET EVOL, V50, P16, DOI 10.1016/j.ympev.2008.09.014; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Eschmeyer W. N., 2016, CATALOG FISHES GENER; Feltkamp C.A., 1969, STUD FAUNA CURACAO C, p[120, 102]; Grether GF, 1999, P ROY SOC B-BIOL SCI, V266, P1317, DOI 10.1098/rspb.1999.0781; Hamilton A, 2001, MOL PHYLOGENET EVOL, V19, P277, DOI 10.1006/mpev.2000.0919; Hankison SJ, 2008, MOL ECOL, V17, P2219, DOI 10.1111/j.1365-294X.2008.03736.x; Heled J, 2010, MOL BIOL EVOL, V27, P570, DOI 10.1093/molbev/msp274; Herdman EJE, 2004, ETHOLOGY, V110, P97, DOI 10.1111/j.1439-0310.2003.00960.x; Ho ALFC, 2012, MAR ECOL PROG SER, V444, P275, DOI 10.3354/meps09435; Hrbek T, 2007, MOL PHYLOGENET EVOL, V43, P986, DOI 10.1016/j.ympev.2006.06.009; HUBBS CARL L., 1933, THE AQUARIUM, V1, P263; HUBBS CL, 1926, MISCELLANEOUS PUBLIC, V16, P1; HUBBS CL, 1924, MISC PUBL MUS ZOOL, V13, P1; Ingley SJ, 2015, MOL PHYLOGENET EVOL, V89, P104, DOI 10.1016/j.ympev.2015.04.013; Iturralde-Vinent MA, 1999, B AM MUS NAT HIST, P1; Iturralde-Vinent MA, 2006, INT GEOL REV, V48, P791, DOI 10.2747/0020-6814.48.9.791; Jennions MD, 2002, OIKOS, V97, P79, DOI 10.1034/j.1600-0706.2002.970108.x; Katoh K, 2002, NUCLEIC ACIDS RES, V30, P3059, DOI 10.1093/nar/gkf436; Katoh K, 2008, BRIEF BIOINFORM, V9, P286, DOI 10.1093/bib/bbn013; Kelly CD, 2000, CAN J ZOOL, V78, P1674, DOI 10.1139/cjz-78-9-1674; KOCHER TD, 1989, P NATL ACAD SCI USA, V86, P6196, DOI 10.1073/pnas.86.16.6196; Kodandaramaiah U, 2011, CURR ZOOL, V57, P116, DOI 10.1093/czoolo/57.1.116; Kozak HL, 2008, BEHAV ECOL, V19, P463, DOI 10.1093/beheco/arm139; Lambeck K, 2002, NATURE, V419, P199, DOI 10.1038/nature01089; Landis MJ, 2013, SYST BIOL, V62, P789, DOI 10.1093/sysbio/syt040; Lanfear R, 2012, MOL BIOL EVOL, V29, P1695, DOI 10.1093/molbev/mss020; Lucinda Paulo Henrique Franco, 2005, Neotrop. ichthyol., V3, P1, DOI 10.1590/S1679-62252005000100001; Lucinda PHF, 2003, CHECK LIST FRESHWATE, P555; Maddison WP, 2015, MESQUITE MODULAR SYS; Mateos M, 2002, EVOLUTION, V56, P972; Matzke N. J, 2013, BIOGEOBEARS BIOGEOGR; Matzke NJ, 2013, FRONT BIOGEOGR, V5, P242, DOI DOI 10.5811/WESTJEM.2011.5; MENZEL BW, 1973, COPEIA, P225; Meredith RW, 2011, MOL PHYLOGENET EVOL, V59, P148, DOI 10.1016/j.ympev.2011.01.014; Meredith RW, 2010, MOL PHYLOGENET EVOL, V55, P631, DOI 10.1016/j.ympev.2009.11.006; Meyer Axel, 1993, V2, P1; Meyer Manfred K., 2000, Annalen des Naturhistorischen Museums in Wien Serie B Botanik und Zoologie, V102B, P75; Meyer Manfred K., 1993, Zoologische Abhandlungen (Dresden), V47, P121; Miller R.R., 1975, Occasional Papers of the Museum of Zoology University of Michigan, VNo. 672, P1; MILLER RR, 1983, COPEIA, P817; Miller RR, 2005, FRESHWATER FISHES ME; Montes C, 2015, SCIENCE, V348, P226, DOI 10.1126/science.aaa2815; Montes C., 2012, J GEOPHYS RES SOLID, V117; Montes C, 2012, GEOL SOC AM BULL, V124, P780, DOI 10.1130/B30528.1; MYERS GS, 1966, COPEIA, P766; Neves FM, 2003, J FISH BIOL, V63, P928, DOI 10.1046/j.1095-8649.2003.00199.x; Norman JE, 2000, J MOL EVOL, V50, P11, DOI 10.1007/s002399910002; Palacios M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071069; Parenti LR, 1981, B AM MUS NAT HIST, V168, P335; Perdices A, 2005, MOL PHYLOGENET EVOL, V37, P460, DOI 10.1016/j.ympev.2005.01.020; PITMAN WC, 1993, BIOLOGICAL RELATIONSHIPS BETWEEN AFRICA AND SOUTH AMERICA, P15; Poeser F.N., 2003, THESIS, P180; Poeser FN, 2005, CONTRIB ZOOL, V74, P97; Poeser FN, 2003, P BIOL SOC WASH, V116, P356; Poeser FN, 2002, CONTRIB ZOOL, V70, P243; Poeser FN, 2011, COPEIA, P418, DOI 10.1643/CI-09-111; Pollux BJA, 2014, NATURE, V513, P233, DOI 10.1038/nature13451; Ptacek MB, 1998, J FISH BIOL, V53, P64, DOI 10.1111/j.1095-8649.1998.tb01018.x; Ptacek MB, 1998, ANIM BEHAV, V56, P1145, DOI 10.1006/anbe.1998.0909; R Core Team, 2014, R LANG ENV STAT COMP; Rambaut A, 2014, TRACER V1 6; Ree RH, 2005, EVOLUTION, V59, P2299; Ree RH, 2008, SYSTEMATIC BIOL, V57, P4, DOI 10.1080/10635150701883881; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Riesch R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027377; RIVAS LUIS RENE, 1958, PROC AMER PHIL SOC, V102, P281; Rodriguez CM, 1997, COPEIA, P663, DOI 10.2307/1447285; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Ronquist F, 2011, ANNU REV ECOL EVOL S, V42, P441, DOI 10.1146/annurev-ecolsys-102209-144710; Rosen D. E., 1963, Bulletin of the American Museum of Natural History, V126, P1; ROSEN D E, 1979, Bulletin of the American Museum of Natural History, V162, P267; ROSEN DE, 1975, SYST ZOOL, V24, P431, DOI 10.2307/2412905; SCHARTL M, 1995, EVOLUTION, V49, P827, DOI 10.1111/j.1558-5646.1995.tb02319.x; Schlupp I, 2002, J BIOGEOGR, V29, P1, DOI 10.1046/j.1365-2699.2002.00651.x; SCHULTZ RJ, 1971, COPEIA, P282; SCHULTZ RJ, 1968, NATURE, V219, P280, DOI 10.1038/219280a0; Smith EJ, 2002, BEHAV ECOL, V13, P11, DOI 10.1093/beheco/13.1.11; Sukumaran J, 2010, BIOINFORMATICS, V26, P1569, DOI 10.1093/bioinformatics/btq228; Thomas JA, 2006, P NATL ACAD SCI USA, V103, P7366, DOI 10.1073/pnas.0510261103; Tiedemann R, 2005, MOL ECOL NOTES, V5, P586, DOI 10.1111/j.1471-8286.2005.00993.x; Tobler M, 2008, EVOLUTION, V62, P2643, DOI 10.1111/j.1558-5646.2008.00466.x; van Lidth de Jeude T.W., 1887, NOTES LEYDEN MUS, V9, P129; Werner T, 2010, NATURE, V464, P1143, DOI 10.1038/nature08896; WILGENBUSCH J.C., 2004, AWTY SYSTEM GRAPHICA; Wilson JS, 2014, ECOGRAPHY, V37, P791, DOI 10.1111/ecog.00663; Yoshinaga T., 1994, Journal of Aquatic Animal Health, V6, P197, DOI 10.1577/1548-8667(1994)006<0197:LPOCIO>2.3.CO;2; Zwickl D. J, 2006, THESIS 111 5 5 3 45 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 1095-9513 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. AUG 2016 101 32 45 10.1016/j.ympev.2016.04.032 14 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity DP0OC WOS:000378188100004 27129899 2019-02-21 J Le Luyer, M; Coquerelle, M; Rottier, S; Bayle, P Le Luyer, Mona; Coquerelle, Michael; Rottier, Stephane; Bayle, Priscilla Internal Tooth Structure and Burial Practices: Insights into the Neolithic Necropolis of Gurgy (France, 5100-4000 cal. BC) PLOS ONE English Article ENAMEL-DENTIN JUNCTION; MAJOR HUMAN-POPULATIONS; UPPER PALEOLITHIC CHILD; LIFE-HISTORY EVOLUTION; SUB-SAHARAN AFRICANS; BRIEF COMMUNICATION; TISSUE PROPORTIONS; MAXILLARY MOLARS; AUSTRALOPITHECUS-AFRICANUS; MORPHOLOGICAL VARIATION Variations in the dental crown form are widely studied to interpret evolutionary changes in primates as well as to assess affinities among human archeological populations. Compared to external metrics of dental crown size and shape, variables including the internal structures such as enamel thickness, tissue proportions, and the three-dimensional shape of enamel-dentin junction (EDJ), have been described as powerful measurements to study taxonomy, phylogenetic relationships, dietary, and/or developmental patterns. In addition to providing good estimate of phenotypic distances within/across archeological samples, these internal tooth variables may help to understand phylogenetic, functional, and developmental underlying causes of variation. In this study, a high resolution microtomographic-based record of upper permanent second molars from 20 Neolithic individuals of the necropolis of Gurgy (France) was applied to evaluate the intrasite phenotypic variation in crown tissue proportions, thickness and distribution of enamel, and EDJ shape. The study aims to compare interindividual dental variations with burial practices and chronocultural parameters, and suggest underlying causes of these dental variations. From the non-invasive characterization of internal tooth structure, differences have been found between individuals buried in pits with alcove and those buried in pits with container and pits with wattling. Additionally, individuals from early and recent phases of the necropolis have been distinguished from those of the principal phase from their crown tissue proportions and EDJ shape. The results suggest that the internal tooth structure may be a reliable proxy to track groups sharing similar chronocultural and burial practices. In particular, from the EDJ shape analysis, individuals buried in an alcove shared a reduction of the distolingual dentin horn tip (corresponding to the hypocone). Environmental, developmental and/or functional underlying causes might be suggested for the origin of phenotypic differences shared by these individuals buried in alcoves. [Le Luyer, Mona; Rottier, Stephane; Bayle, Priscilla] Univ Bordeaux, UMR 5199 PACEA, Pessac, France; [Coquerelle, Michael] Rey Juan Carlos Univ, Dept Oral Surg, Alcorcon, Spain Le Luyer, M (reprint author), Univ Bordeaux, UMR 5199 PACEA, Pessac, France. mona.le-luyer@u-bordeaux.fr Le Luyer, Mona/0000-0001-7999-0294 Research National Agency through the DHP project (Universite Bordeaux 1/LaScArBx) [ANR-10-LABX-52]; PEPS 3Dent'in (PEPS IdEx Bordeaux/CNRS) [ANR-10-IDEX-03-02]; Ministere de l'Enseignement Superieur et de la Recherche The research was supported by the Research National Agency through the DHP project (dir: S. Rottier; 2012-14; Universite Bordeaux 1/LaScArBx; ANR-10-LABX-52) and the PEPS 3Dent'in (dir: P. Bayle; 2013-14; PEPS IdEx Bordeaux/CNRS; ANR-10-IDEX-03-02). M. Le Luyer benefited from a doctoral grant of the Ministere de l'Enseignement Superieur et de la Recherche. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ALVESALO L, 1974, HEREDITAS, V77, P311; Alvesalo L, 1997, HUM GENET, V101, P1, DOI 10.1007/s004390050575; ALVESALO L, 1991, J DENT RES, V70, P1057, DOI 10.1177/00220345910700070801; ALVESALO L, 1981, AM J HUM GENET, V33, P464; Augereau A, 2011, MEMOIRE SOC PREHISTO; Bailey SE, 2011, AM J PHYS ANTHROPOL, V145, P505, DOI 10.1002/ajpa.21468; Bayle P., 2008, THESIS; Bayle P, 2010, P NATL ACAD SCI USA, V107, P1338, DOI 10.1073/pnas.0914202107; Bayle P, 2009, AM J PHYS ANTHROPOL, V138, P493, DOI 10.1002/ajpa.21000; Bayle P, 2009, J HUM EVOL, V56, P66, DOI 10.1016/j.jhevol.2008.09.002; Bentley RA, 2012, P NATL ACAD SCI USA, V109, P9326, DOI 10.1073/pnas.1113710109; BERRY AC, 1967, J ANAT, V101, P361; BONDIOLI L, 1986, AM J PHYS ANTHROPOL, V71, P393, DOI 10.1002/ajpa.1330710402; Bondioli L, 2010, AM J PHYS ANTHROPOL, V142, P328, DOI 10.1002/ajpa.21271; Bookstein FL, 1996, NATO ADV SCI INST SE, V284, P131; Braga J, 2010, J ANAT, V216, P62, DOI 10.1111/j.1469-7580.2009.01154.x; Bronk Ramsey C., 2013, RADIOCARBON, V55, P720, DOI DOI 10.2458/AZU_; Brook AH, 2009, ARCH ORAL BIOL, V54, pS79, DOI 10.1016/j.archoralbio.2008.12.003; Bruzek J, 2002, AM J PHYS ANTHROPOL, V117, P157, DOI 10.1002/ajpa.10012; BUTLER PM, 1956, BIOL REV, V31, P30, DOI 10.1111/j.1469-185X.1956.tb01551.x; CALCAGNO JM, 1986, AM J PHYS ANTHROPOL, V70, P349, DOI 10.1002/ajpa.1330700310; Chambon P., 2007, B SOC PREHISTORIQUE, V104, P289; Chambon P, 2013, RUPTURES CONTINUITE, V1, P213; Coleman MN, 2007, AM J PHYS ANTHROPOL, V133, P723, DOI 10.1002/ajpa.20583; Constantin C, 1997, NEOLITHIQUE DANUBIEN, P207; Coppa A, 2007, AM J PHYS ANTHROPOL, V133, P918, DOI 10.1002/ajpa.20620; Coquerelle M, 2011, AM J PHYS ANTHROPOL, V145, P192, DOI 10.1002/ajpa.21485; CORRUCCINI RS, 1986, AM J PHYS ANTHROPOL, V70, P293, DOI 10.1002/ajpa.1330700304; Crevecoeur I, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084652; CRUBEZY E, 1990, Bulletins et Memoires de la Societe d'Anthropologie de Paris, V2, P171, DOI 10.3406/bmsap.1990.1756; Crubezy E, 1990, NOUVELLES ARCHEOLOGI, V40, P35; Crubezy Eric, 1999, Bulletins et Memoires de la Societe d'Anthropologie de Paris, V11, P1, DOI 10.3406/bmsap.1999.2537; DEAN M, 2003, DIGITAL ARCH HUMAN P; Dean MC, 2006, P ROY SOC B-BIOL SCI, V273, P2799, DOI 10.1098/rspb.2006.3583; Dean MC, 2014, SIGNIFICANCE, V11, P19; Deguilloux MF, 2014, J ARCHAEOL SCI, V41, P399, DOI 10.1016/j.jas.2013.09.006; Delgado-Burbano ME, 2007, HOMO, V58, P329, DOI 10.1016/j.jchb.2006.12.002; DEMIRJIAN A, 1973, HUM BIOL, V45, P211; Dempsey PJ, 2001, HEREDITY, V86, P685, DOI 10.1046/j.1365-2540.2001.t01-1-00878.x; Desideri J., 2003, CONSTELLASION HOMMAG, P447; Dubouloz J, 2003, B SOC PREHIST FR, V100, P371; Eguchi S, 2004, ARCH ORAL BIOL, V49, P1015, DOI 10.1016/j.archoralbio.2004.07.006; Evans AR, 2016, NATURE, V530, P477, DOI 10.1038/nature16972; Feeney R. N. M., 2009, THESIS; Feeney RNM, 2010, ANTHROPOL SCI, V118, P191, DOI 10.1537/ase.091006; Feeney RNM, 2010, AM J PHYS ANTHROPOL, P103; Garn S., 1962, ANGLE ORTHOD, V32, P270; GARN SM, 1969, AM ANTHROPOL, V71, P79, DOI 10.1525/aa.1969.71.1.02a00090; Gemmerich Pfister I., 1999, THESIS; Guatelli-Steinberg D., 2013, ANTHR PERSPECTIVES T, P69; Guatelli-Steinberg D, 2007, J HUM EVOL, V52, P72, DOI 10.1016/j.jhevol.2006.08.001; Guatelli-Steinberg D, 2009, EVOL ANTHROPOL, V18, P9, DOI 10.1002/evan.20190; Guilaine J., 1998, SEPULTURES OCCIDENT; Gunz P, 2005, DEV PRIMATOL-PROG PR, P73, DOI 10.1007/0-387-27614-9_3; Gunz P, 2013, HYSTRIX, V24, P103, DOI 10.4404/hystrix-24.1-6292; Guy F, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0138802; Haak W, 2008, P NATL ACAD SCI USA, V105, P18226, DOI 10.1073/pnas.0807592105; HANIHARA K, 1966, J ANTHR SOC NIPPON, V74, P61; HANIHARA K, 1961, J ANTHR SOC NIPPON, V69, P27; Hanihara T, 2005, AM J PHYS ANTHROPOL, V128, P287, DOI 10.1002/ajpa.20080; Hanihara T, 2008, AM J PHYS ANTHROPOL, V136, P169, DOI 10.1002/ajpa.20792; HAUSER G, 1989, EPIGENETIC VARIANTS; Herrera B, 2014, AM J PHYS ANTHROPOL, V154, P334, DOI 10.1002/ajpa.22513; Hlusko LJ, 2016, ANN ANAT, V203, P3, DOI 10.1016/j.aanat.2015.05.001; Hlusko LJ, 2004, AM J PHYS ANTHROPOL, V124, P223, DOI 10.1002/ajpa.10353; Horvath JE, 2014, J HUM EVOL, V73, P75, DOI 10.1016/j.jhevol.2014.01.005; Hubbard AR, 2015, AM J PHYS ANTHROPOL, V157, P295, DOI 10.1002/ajpa.22714; Hughes T, 2001, ARCH ORAL BIOL, V46, P857, DOI 10.1016/S0003-9969(01)00026-7; Hughes T. E., 2013, ANTHR PERSPECTIVES T, P31; Hunter JP, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011844; Irish JD, 2006, AM J PHYS ANTHROPOL, V129, P529, DOI 10.1002/ajpa.20261; Irish JD, 2005, AM J PHYS ANTHROPOL, V128, P520, DOI 10.1002/ajpa.20109; Irish JD, 1998, J HUM EVOL, V34, P81, DOI 10.1006/jhev.1997.0191; Irish JD, 2014, AM J PHYS ANTHROPOL, V155, P33, DOI 10.1002/ajpa.22526; Irish JD, 2014, J HUM EVOL, V69, P129, DOI 10.1016/j.jhevol.2014.01.004; Irish JD, 2013, SCIENCE, V340, DOI 10.1126/science.1233062; Jernvall J, 2000, YEARB PHYS ANTHROPOL, V43, P171; Jeunesse C, 1997, PRATIQUES FUNERAIRES; JOHNSON AL, 1994, AM J PHYS ANTHROPOL, V93, P427, DOI 10.1002/ajpa.1330930403; KAY RF, 1974, AM J PHYS ANTHROPOL, V40, P227, DOI 10.1002/ajpa.1330400210; Kelley JL, 2008, GENETICS, V178, P1595, DOI 10.1534/genetics.107.077123; Kenyhercz MW, 2014, AM J PHYS ANTHROPOL, V153, P269, DOI 10.1002/ajpa.22429; Keyser-Tracqui C, 2003, AM J HUM GENET, V73, P247, DOI 10.1086/377005; Kono RT, 2004, ANTHROPOL SCI, V112, P121, DOI 10.1537/ase.03106; Kono RT, 2002, ARCH ORAL BIOL, V47, P867, DOI 10.1016/S0003-9969(02)00151-6; Korenhof CAW, 1961, P KONINKL NEDERL A B, V64B, P639; Kupczik K, 2010, J HUM EVOL, V59, P525, DOI 10.1016/j.jhevol.2010.05.009; Laforest C., 2012, Bulletins et Memoires de la Societe d'Anthropologie de Paris, V24, P12, DOI 10.1007/s13219-011-0046-y; Le Luyer M, 2016, MORPHOMUSEUM, V2, pe1, DOI 10.18563/m3.2.1.e1; Le Luyer M, 2014, AM J PHYS ANTHROPOL, V155, P162, DOI 10.1002/ajpa.22562; Le Roy M, 2016, J ANTHR SCI IN PRESS; Le Roy M, 2015, PLOS ONE, V10, DOI [10.1371/journal.pone.0125521, DOI 10.1371/JOURNAL.PONE.0125521]; Lukacs JR, 2013, HOMO, V64, P411, DOI 10.1016/j.jchb.2013.08.003; Macchiarelli R., 2008, TECHNIQUE APPL DENT, P426; Macchiarelli R., 2007, NEANDERTALIENS BIOL, P169; Macchiarelli R., 2013, ANTHR PERSPECTIVES T, P250; Macchiarelli R, 2006, NATURE, V444, P748, DOI 10.1038/nature05314; MACHO GA, 1994, AM J PHYS ANTHROPOL, V94, P327, DOI 10.1002/ajpa.1330940304; MACHO GA, 1993, AM J PHYS ANTHROPOL, V92, P189, DOI 10.1002/ajpa.1330920208; MACHO GA, 1992, AM J PHYS ANTHROPOL, V87, P151, DOI 10.1002/ajpa.1330870203; MARTIN L, 1985, NATURE, V314, P260, DOI 10.1038/314260a0; Matsumura H, 2005, AM J PHYS ANTHROPOL, V127, P182, DOI 10.1002/ajpa.20067; McIlvaine BK, 2014, AM J PHYS ANTHROPOL, V153, P236, DOI 10.1002/ajpa.22425; Mitteroecker P, 2004, J HUM EVOL, V46, P679, DOI 10.1016/j.jhevol.2004.03.006; Mitteroecker P, 2013, HYSTRIX, V24, P59, DOI 10.4404/hystrix-24.1-6369; Mitteroecker P, 2009, EVOL BIOL, V36, P235, DOI 10.1007/s11692-009-9055-x; MOLNAR S, 1971, AM J PHYS ANTHROPOL, V34, P175, DOI 10.1002/ajpa.1330340204; MOORREES CF, 1963, AM J PHYS ANTHROPOL, V21, P205, DOI 10.1002/ajpa.1330210212; MOORREES COENRAAD F.A., 1963, JOUR DENT RES, V42, P1490, DOI 10.1177/00220345630420062701; Morita W, 2014, J ANAT, V224, P669, DOI 10.1111/joa.12180; Murail P, 1999, INT J OSTEOARCHAEOL, V9, P39, DOI 10.1002/(SICI)1099-1212(199901/02)9:1<39::AID-OA458>3.0.CO;2-V; MURAIL P, 2005, B MEM SOC ANTHRO PAR, V17, P167; Olejniczak AJ, 2008, BIOL LETTERS, V4, P406, DOI 10.1098/rsbl.2008.0223; Olejniczak AJ, 2008, J HUM EVOL, V55, P12, DOI 10.1016/j.jhevol.2007.11.004; Olejniczak AJ, 2008, J HUM EVOL, V54, P187, DOI 10.1016/j.jhevol.2007.09.014; Olejniczak AJ, 2007, J HUM EVOL, V53, P292, DOI 10.1016/j.jhevol.2007.04.006; Pampush JD, 2013, J HUM EVOL, V64, P216, DOI 10.1016/j.jhevol.2013.01.009; Paul KS, 2015, AM J PHYS ANTHROPOL, V157, P615, DOI 10.1002/ajpa.22755; Polychronis G, 2013, AM J PHYS ANTHROPOL, V152, P186, DOI 10.1002/ajpa.22340; POTTER RH, 1976, AM J PHYS ANTHROPOL, V44, P391, DOI 10.1002/ajpa.1330440303; POTTER RH, 1976, AM J PHYS ANTHROPOL, V44, P397, DOI 10.1002/ajpa.1330440304; POTTER RHY, 1981, J CRAN GENET DEV BIO, V1, P217; R Development Core Team, 2012, R LANG ENV STAT COMP; Reimer PJ, 2013, RADIOCARBON, V55, P1869, DOI 10.2458/azu_js_rc.55.16947; Rey L, 2016, B MEM SOC A IN PRESS; Ricaut FX, 2010, AM J PHYS ANTHROPOL, V143, P355, DOI 10.1002/ajpa.21322; Riga A, 2014, AM J PHYS ANTHROPOL, V153, P397, DOI 10.1002/ajpa.22438; ROHLF FJ, 1990, SYST ZOOL, V39, P40, DOI 10.2307/2992207; Rottier S, 2007, CISTES CHAMBLANDES P, P99; Rottier S, 2005, BULL SOC PREHIST FR, V102, P641, DOI 10.3406/bspf.2005.13148; Salazar-Ciudad I, 2002, P NATL ACAD SCI USA, V99, P8116, DOI 10.1073/pnas.132069499; SANSILBANO-COLLILIEUX M, 1990, Bulletins et Memoires de la Societe d'Anthropologie de Paris, V2, P179, DOI 10.3406/bmsap.1990.1757; Scheuer L., 2000, DEV JUVENILE OSTEOLO; Schmitt A, 2005, B MEM SOC ANTHRO PAR, V17, P1; Schwartz GT, 2008, TECHNIQUE APPL DENT, P219; Scott G. R, 1997, ANTHR MODERN HUMAN T; Skinner M. M., 2008, THESIS; Skinner MM, 2008, J HUM EVOL, V54, P173, DOI 10.1016/j.jhevol.2007.09.012; Skinner MM, 2015, J HUM EVOL, V85, P35, DOI 10.1016/j.jhevol.2015.03.012; Skinner MM, 2010, J ANAT, V217, P245, DOI 10.1111/j.1469-7580.2010.01265.x; Skinner MM, 2010, AM J PHYS ANTHROPOL, V142, P157, DOI 10.1002/ajpa.21248; Skinner MM, 2008, J HUM EVOL, V55, P979, DOI 10.1016/j.jhevol.2008.08.013; Smith TM, 2006, ARCH ORAL BIOL, V51, P974, DOI 10.1016/j.archoralbio.2006.04.012; Smith TM, 2008, AM J PHYS ANTHROPOL, V136, P237, DOI 10.1002/ajpa.20796; Smith TM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118118; Smith TM, 2013, ANNU REV ANTHROPOL, V42, P191, DOI 10.1146/annurev-anthro-092412-155550; Smith TM, 2012, J HUM EVOL, V62, P395, DOI 10.1016/j.jhevol.2011.12.004; Smith TM, 2005, J HUM EVOL, V48, P575, DOI 10.1016/j.jhevol.2005.02.004; SPOOR CF, 1993, AM J PHYS ANTHROPOL, V91, P469, DOI 10.1002/ajpa.1330910405; Stojanowski CM, 2006, YEARB PHYS ANTHROPOL, V49, P49, DOI 10.1002/ajpa.20517; Suwa G, 2009, SCIENCE, V326, P94, DOI 10.1126/science.1175824; Thevenet C., 2004, B SOC PREHISTORIQUE, V101, P815; Thomas A.M, 2011, THESIS; TOWNSEND GC, 1978, AM J PHYS ANTHROPOL, V49, P497, DOI 10.1002/ajpa.1330490409; TOWNSEND GC, 1980, AM J PHYS ANTHROPOL, V53, P297, DOI 10.1002/ajpa.1330530214; Townsend G, 2012, ODONTOLOGY, V100, P1, DOI 10.1007/s10266-011-0052-z; Townsend G, 2009, ARCH ORAL BIOL, V54, pS45, DOI 10.1016/j.archoralbio.2008.06.009; TURNER CG, 1987, AM J PHYS ANTHROPOL, V73, P305, DOI 10.1002/ajpa.1330730304; Ullinger JM, 2005, AM J PHYS ANTHROPOL, V128, P466, DOI 10.1002/ajpa.20074; WARD JH, 1963, J AM STAT ASSOC, V58, P236, DOI 10.2307/2282967; Zanolli C, 2015, AM J PHYS ANTHROPOL, V157, P666, DOI 10.1002/ajpa.22748; Zanolli C, 2014, J HUM EVOL, V74, P96, DOI 10.1016/j.jhevol.2014.04.005; Zanolli C, 2010, CR PALEVOL, V9, P341, DOI 10.1016/j.crpv.2010.07.019; Zubova AV, 2014, B INT ASS PALEODONTO, V8, P244 164 1 1 0 2 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUL 22 2016 11 7 e0159688 10.1371/journal.pone.0159688 26 Multidisciplinary Sciences Science & Technology - Other Topics DS5CT WOS:000380799000030 27447183 DOAJ Gold, Green Published 2019-02-21 J Swanson, EM; Espeset, A; Mikati, I; Bolduc, I; Kulhanek, R; Whiter, WA; Kenzie, S; Snell-Rood, EC Swanson, Eli M.; Espeset, Anne; Mikati, Ihab; Bolduc, Isaac; Kulhanek, Robert; Whiter, William A.; Kenzie, Susan; Snell-Rood, Emilie C. Nutrition shapes life-history evolution across species PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article life history; fecundity; nutrition; nitrogen; ecological stoichiometry HESPERIIDAE LEPIDOPTERA-HESPERIOIDEA; POLYGONIA BUTTERFLIES NYMPHALIDAE; PHYLOGENETIC-RELATIONSHIPS; BODY-SIZE; MOLECULAR PHYLOGENY; NEST PREDATION; HOST PLANTS; EGG SIZE; BRAIN; CLASSIFICATION Nutrition is a key component of life-history theory, yet we know little about how diet quality shapes life-history evolution across species. Here, we test whether quantitative measures of nutrition are linked to life-history evolution across 96 species of butterflies representing over 50 independent diet shifts. We find that butterflies feeding on high nitrogen host plants as larvae are more fecund, but their eggs are smaller relative to their body size. Nitrogen and sodium content of host plants are also both positively related to eye size. Some of these relationships show pronounced lineage-specific effects. Testis size is not related to nutrition. Additionally, the evolutionary timing of diet shifts is not important, suggesting that nutrition affects life histories regardless of the length of time a species has been adapting to its diet. Our results suggest that, at least for some lineages, species with higher nutrient diets can invest in a range of fitness-related traits like fecundity and eye size while allocating less to each egg as offspring have access to a richer diet. These results have important implications for the evolution of life histories in the face of anthropogenic changes in nutrient availability. [Swanson, Eli M.; Espeset, Anne; Mikati, Ihab; Bolduc, Isaac; Kulhanek, Robert; Whiter, William A.; Kenzie, Susan; Snell-Rood, Emilie C.] Univ Minnesota Twin Cities, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA; [Espeset, Anne] Univ Nevada, Dept Biol, Reno, NV 89509 USA Snell-Rood, EC (reprint author), Univ Minnesota Twin Cities, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA. emilies@umn.edu NSF [1306627, IOS-1354737]; University of Minnesota OVPR E.M.S. was supported by an NSF postdoctoral fellowship (#1306627). This research was supported by a Grant-in-Aid of Research from the University of Minnesota OVPR; the Snell-Rood lab was supported in part through NSF IOS-1354737. ALI FA, 1974, T ROY ENT SOC LONDON, V125, P363; ANTONOVICS J, 1991, TRENDS ECOL EVOL, V6, P166, DOI 10.1016/0169-5347(91)90059-7; ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Aubert J, 1999, MOL PHYLOGENET EVOL, V12, P156, DOI 10.1006/mpev.1998.0605; Axelsson E, 2013, NATURE, V495, P360, DOI 10.1038/nature11837; Badyaev AV, 2002, AUK, V119, P301, DOI 10.1642/0004-8038(2002)119[0301:PSTITC]2.0.CO;2; Beck J, 2009, BIOL J LINN SOC, V96, P166, DOI 10.1111/j.1095-8312.2008.01102.x; Berner D, 2005, OIKOS, V111, P525, DOI 10.1111/j.1600-0706.2005.14144.x; Betzholtz PE, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2305; Boback SM, 2007, COMP BIOCHEM PHYS A, V148, P651, DOI 10.1016/j.cbpa.2007.08.014; Borer ET, 2013, OIKOS, V122, P1121, DOI 10.1111/j.1600-0706.2013.00465.x; Braby MF, 2006, J EVOLUTION BIOL, V19, P1677, DOI 10.1111/j.1420-9101.2006.01109.x; BRABY MF, 1994, OIKOS, V71, P119, DOI 10.2307/3546179; Bremer B, 2009, BOT J LINN SOC, V161, P105; BREZNAK JA, 1994, ANNU REV ENTOMOL, V39, P453, DOI 10.1146/annurev.en.39.010194.002321; Brower AVZ, 2000, P ROY SOC B-BIOL SCI, V267, P1201, DOI 10.1098/rspb.2000.1129; BURSEY RG, 1983, AM J CLIN NUTR, V37, P43; Conway CJ, 2000, EVOLUTION, V54, P670; Cork SJ, 1996, AUST J ECOL, V21, P10, DOI 10.1111/j.1442-9993.1996.tb00581.x; Douglas AE, 2009, FUNCT ECOL, V23, P38, DOI 10.1111/j.1365-2435.2008.01442.x; Ehrlich PR, 2004, WINGS CHECKERSPOTS; Eliot JN, 1973, B BR MUS NAT HIST, V28; Elser JJ, 2000, ECOL LETT, V3, P540, DOI 10.1046/j.1461-0248.2000.00185.x; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Freitas AVL, 2004, SYST BIOL, V53, P363, DOI 10.1080/10635150490445670; GAGE MJG, 1994, P ROY SOC B-BIOL SCI, V258, P247, DOI 10.1098/rspb.1994.0169; Garcia-Barros E, 2000, BIOL J LINN SOC, V70, P251, DOI 10.1006/bijl.1999.0374; Glazier DS, 1999, EVOL ECOL, V13, P539, DOI 10.1023/A:1006793600600; Gronenberg W, 1999, J COMP NEUROL, V412, P229, DOI 10.1002/(SICI)1096-9861(19990920)412:2<229::AID-CNE4>3.0.CO;2-E; Hern A, 1996, ANN APPL BIOL, V128, P349, DOI 10.1111/j.1744-7348.1996.tb07328.x; Janz N, 2001, EVOLUTION, V55, P783, DOI 10.1554/0014-3820(2001)055[0783:EDOHPS]2.0.CO;2; Jones KE, 2004, AM NAT, V164, pE20, DOI 10.1086/421334; Jones MT, 2002, ECOL ENTOMOL, V27, P753, DOI 10.1046/j.1365-2311.2002.00465.x; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Karban R, 2002, ANNU REV ECOL SYST, V33, P641, DOI 10.1146/annurev.ecolsys.33.010802.150443; Kawahara AY, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0970; Kerkhoff AJ, 2006, AM NAT, V168, pE103, DOI 10.1086/507879; King EG, 2011, J EVOLUTION BIOL, V24, P256, DOI 10.1111/j.1420-9101.2010.02160.x; Lee KP, 2004, PHYSIOL ENTOMOL, V29, P108, DOI 10.1111/j.0307-6962.2004.00371.x; LEONARD WR, 1994, AM J HUM BIOL, V6, P77, DOI 10.1002/ajhb.1310060111; Lynch JP, 2001, PLANT SOIL, V237, P225, DOI 10.1023/A:1013324727040; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MATEJOVIC I, 1995, COMMUN SOIL SCI PLAN, V26, P2217, DOI 10.1080/00103629509369441; MATTSON WJ, 1980, ANNU REV ECOL SYST, V11, P119, DOI 10.1146/annurev.es.11.110180.001003; Merry JW, 2011, EVOLUTION, V65, P2098, DOI 10.1111/j.1558-5646.2011.01285.x; Mullen SP, 2011, P ROY SOC B-BIOL SCI, V278, P1777, DOI 10.1098/rspb.2010.2140; New T.R., 1993, CONSERVATION BIOL LY; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Nylin S, 2014, EVOLUTION, V68, P105, DOI 10.1111/evo.12227; Orme D, 2012, CAPER COMP ANLA PHYL; PAPAJ DR, 1987, ECOLOGY, V68, P245, DOI 10.2307/1939254; Pearce E, 2012, BIOL LETTERS, V8, P90, DOI 10.1098/rsbl.2011.0570; Pena C, 2006, MOL PHYLOGENET EVOL, V40, P29, DOI 10.1016/j.ympev.2006.02.007; Perkins MC, 2004, ARCH INSECT BIOCHEM, V55, P153, DOI 10.1002/arch.10133; Pollock DD, 1998, ANN ENTOMOL SOC AM, V91, P524, DOI 10.1093/aesa/91.5.524; R Development Core Team, 2013, R LANG ENV STAT COMP; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Robinson GS, 2010, HOSTS DATABASE WORLD; ROFF D, 2001, LIFE HIST EVOLUTION; Rutowski RL, 2000, J ZOOL, V252, P187, DOI 10.1017/S0952836900009924; Rutowski RL, 2001, BEHAVIOUR, V138, P31, DOI 10.1163/156853901750077772; Scott JA, 1992, BUTTERFLIES N AM NAT; SCRIBER JM, 1981, ANNU REV ENTOMOL, V26, P183, DOI 10.1146/annurev.en.26.010181.001151; Scriber JM, 1994, SWALLOWTAIL BUTTERFL; SILBERGLIED RE, 1978, BEHAV ECOL SOCIOBIOL, V3, P203, DOI 10.1007/BF00296311; Silva-Brandao KL, 2007, BIOL J LINN SOC, V90, P247, DOI 10.1111/j.1095-8312.2007.00727.x; Simonsen TJ, 2006, BIOL J LINN SOC, V89, P627, DOI 10.1111/j.1095-8312.2006.00697.x; Simonsen TJ, 2011, CLADISTICS, V27, P113, DOI 10.1111/j.1096-0031.2010.00326.x; SIVINSKI J, 1989, J INSECT BEHAV, V2, P277, DOI 10.1007/BF01053299; SLANSKY F, 1992, ENTOMOL EXP APPL, V65, P171, DOI 10.1111/j.1570-7458.1992.tb01641.x; Snell-Rood E, 2015, EVOL APPL, V8, P635, DOI 10.1111/eva.12272; Snell-Rood EC, 2014, P NATL ACAD SCI USA, V111, P10221, DOI 10.1073/pnas.1323607111; Sol D, 2005, P NATL ACAD SCI USA, V102, P5460, DOI 10.1073/pnas.0408145102; Stearns S, 1992, EVOLUTION LIFE HIST; Sterner R, 2002, ECOLOGICAL STOICHIOM, P209; Swanson EM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038447; Talavera G, 2013, CLADISTICS, V29, P166, DOI 10.1111/j.1096-0031.2012.00421.x; van Dorp Karen, 2004, Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society (N.E.V.), V15, P65; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vitousek PM, 1997, ECOL APPL, V7, P737, DOI 10.2307/2269431; Wahlberg N, 2005, BIOL J LINN SOC, V86, P227, DOI 10.1111/j.1095-8312.2005.00531.x; Wahlberg N, 2003, MOL PHYLOGENET EVOL, V28, P473, DOI 10.1016/S1055-7903(03)00052-6; Wahlberg N, 2008, SYSTEMATIC BIOL, V57, P231, DOI 10.1080/10635150802033006; Wahlberg N, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-92; Warren AD, 2008, CLADISTICS, V24, P642, DOI 10.1111/j.1096-0031.2008.00218.x; Warren AD, 2009, SYST ENTOMOL, V34, P467, DOI 10.1111/j.1365-3113.2008.00463.x; Watanabe T, 2007, NEW PHYTOL, V174, P516, DOI 10.1111/j.1469-8137.2007.02078.x; Weingartner E, 2006, J EVOLUTION BIOL, V19, P483, DOI 10.1111/j.1420-9101.2005.01009.x; Wheat CW, 2007, P NATL ACAD SCI USA, V104, P20427, DOI 10.1073/pnas.0706229104; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 91 3 4 0 48 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUL 13 2016 283 1834 20152764 10.1098/rspb.2015.2764 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology DT7FI WOS:000381652100014 27412282 Bronze, Green Published 2019-02-21 J Walsh, MR; Broyles, W; Beston, SM; Munch, SB Walsh, Matthew R.; Broyles, Whitnee; Beston, Shannon M.; Munch, Stephan B. Predator-driven brain size evolution in natural populations of Trinidadian killifish (Rivulus hartii) PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article life-history evolution; predation; brain size; boldness; killifish LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; PHENOTYPIC PLASTICITY; 9-SPINED STICKLEBACK; 3-SPINED STICKLEBACK; ARTIFICIAL SELECTION; PUNGITIUS-PUNGITIUS; SOCIAL-ENVIRONMENT; LOCAL ADAPTATION; RELATIVE BRAIN Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii, from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour. [Walsh, Matthew R.; Broyles, Whitnee; Beston, Shannon M.] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA; [Munch, Stephan B.] Natl Marine Fisheries Serv, 110 Shaffer Rd, Santa Cruz, CA 95060 USA Walsh, MR (reprint author), Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA. matthew.walsh@uta.edu NSF FIBR grant The original experiments were funded by an NSF FIBR grant to David Reznick. AIELLO LC, 1995, CURR ANTHROPOL, V36, P199, DOI 10.1086/204350; Amiel JJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018277; Archard GA, 2011, J FISH BIOL, V78, P593, DOI 10.1111/j.1095-8649.2010.02880.x; Benson-Amram S, 2016, P NATL ACAD SCI USA, V113, P2532, DOI 10.1073/pnas.1505913113; Brown C, 2004, ANIM BEHAV, V68, P1325, DOI 10.1016/j.anbehav.2004.04.004; Brydges NM, 2008, ANIM BEHAV, V75, P935, DOI 10.1016/j.anbehav.2007.08.005; Cousyn C, 2001, P NATL ACAD SCI USA, V98, P6256, DOI 10.1073/pnas.111606798; Crispo E, 2010, J EVOLUTION BIOL, V23, P2091, DOI 10.1111/j.1420-9101.2010.02069.x; DePasquale C, 2014, OECOLOGIA, V176, P661, DOI 10.1007/s00442-014-3099-z; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Drake JM, 2007, FUNCT ECOL, V21, P963, DOI 10.1111/j.1365-2435.2007.01318.x; Eifert C, 2015, J ZOOL, V295, P143, DOI 10.1111/jzo.12190; Fraser DF, 2001, AM NAT, V158, P124, DOI 10.1086/321307; Fraser DF, 1999, ECOLOGY, V80, P597, DOI 10.1890/0012-9658(1999)080[0597:HQIAHR]2.0.CO;2; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Gilliam JF, 2001, ECOLOGY, V82, P258, DOI 10.2307/2680101; Godin JGJ, 1996, P NATL ACAD SCI USA, V93, P10262, DOI 10.1073/pnas.93.19.10262; Gonda A, 2009, J EVOLUTION BIOL, V22, P1721, DOI 10.1111/j.1420-9101.2009.01782.x; Gonda A, 2013, ECOL EVOL, V3, P2751, DOI 10.1002/ece3.627; Gonda A, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-75; Gonda A, 2009, P R SOC B, V276, P2085, DOI 10.1098/rspb.2009.0026; Harris S, 2010, OIKOS, V119, P1711, DOI 10.1111/j.1600-0706.2010.18028.x; Hembre LK, 2013, HYDROBIOLOGIA, V700, P245, DOI 10.1007/s10750-012-1234-6; Herczeg G, 2014, J EVOLUTION BIOL, V27, P1604, DOI 10.1111/jeb.12409; Herczeg G, 2015, FRONT ZOOL, V12, DOI 10.1186/s12983-015-0130-0; Ingley SJ, 2014, ECOL EVOL, V4, P4361, DOI 10.1002/ece3.1304; Isler K, 2006, J HUM EVOL, V51, P228, DOI 10.1016/j.jhevol.2006.03.006; Karasov WH, 2011, ANNU REV PHYSIOL, V73, P69, DOI 10.1146/annurev-physiol-012110-142152; King AJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081116; Kolm N, 2009, J EVOLUTION BIOL, V22, P2524, DOI 10.1111/j.1420-9101.2009.01875.x; Kotrschal A, 2015, ECOL LETT, V18, P646, DOI 10.1111/ele.12441; Kotrschal A, 2015, BEHAV ECOL, V26, P527, DOI 10.1093/beheco/aru227; Kotrschal A, 2014, EVOLUTION, V68, P1139, DOI 10.1111/evo.12341; Kotrschal A, 2013, ANIM BEHAV, V86, pE4, DOI 10.1016/j.anbehav.2013.07.011; Kotrschal A, 2013, CURR BIOL, V23, P168, DOI 10.1016/j.cub.2012.11.058; Kotrschal A, 2012, BEHAV ECOL SOCIOBIOL, V66, P1485, DOI 10.1007/s00265-012-1403-7; Kotrschal A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030055; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; loannou CC, 2008, OECOLOGIA, V157, P177, DOI [10.1007/s00442-008-1058-2, DOI 10.1007/S00442-008-1058-2]; MacLean EL, 2014, P NATL ACAD SCI USA, V111, pE2140, DOI 10.1073/pnas.1323533111; Navarrete A, 2011, NATURE, V480, P91, DOI 10.1038/nature10629; Olsson J, 2007, BIOL J LINN SOC, V90, P517, DOI 10.1111/j.1095-8312.2007.00742.x; Overington SE, 2009, ANIM BEHAV, V78, P1001, DOI 10.1016/j.anbehav.2009.06.033; PIJANOWSKA J, 1993, OECOLOGIA, V96, P40, DOI 10.1007/BF00318028; Pitnick S, 2006, P ROY SOC B-BIOL SCI, V273, P719, DOI 10.1098/rspb.2005.3367; Raichle ME, 2002, P NATL ACAD SCI USA, V99, P10237, DOI 10.1073/pnas.172399499; Reader SM, 2011, PHILOS T R SOC B, V366, P1017, DOI 10.1098/rstb.2010.0342; Relyea RA, 2004, ECOL LETT, V7, P869, DOI 10.1111/j.1461-0248.2004.00645.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Shohet AJ, 2009, J FISH BIOL, V75, P1323, DOI 10.1111/j.1095-8649.2009.02366.x; Sol D, 2000, OIKOS, V90, P599, DOI 10.1034/j.1600-0706.2000.900317.x; Sol D, 2008, AM NAT, V172, pS63, DOI 10.1086/588304; Sol D, 2007, P R SOC B, V274, P763, DOI 10.1098/rspb.2006.3765; Striedter G. F., 2005, PRINCIPLES BRAIN EVO; Sullam KE, 2015, OECOLOGIA, V177, P245, DOI 10.1007/s00442-014-3158-5; Tebbich S, 2004, ANIM BEHAV, V67, P689, DOI 10.1016/j.anbehav.2003.08.003; Tsuboi M, 2015, EVOLUTION, V69, P190, DOI 10.1111/evo.12556; TULLEY JJ, 1988, ETHOLOGY, V78, P219; Urban MC, 2007, P NATL ACAD SCI USA, V104, P14377, DOI 10.1073/pnas.0704645104; van der Bijl W, 2016, BIOESSAYS, V38, P568, DOI 10.1002/bies.201500166; van der Bijl W, 2015, P ROY SOC B-BIOL SCI, V282, P116, DOI 10.1098/rspb.2015.1132; Wagner CE, 2009, FUNCT ECOL, V23, P1122, DOI 10.1111/j.1365-2435.2009.01589.x; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2011, FUNCT ECOL, V25, P227, DOI 10.1111/j.1365-2435.2010.01786.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x 66 8 8 4 37 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUL 13 2016 283 1834 20161075 10.1098/rspb.2016.1075 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology DT7FI WOS:000381652100005 27412278 Bronze, Green Published 2019-02-21 J Thompson, ME; Muller, MN; Sabbi, K; Machanda, ZP; Otali, E; Wrangham, RW Thompson, Melissa Emery; Muller, Martin N.; Sabbi, Kris; Machanda, Zarin P.; Otali, Emily; Wrangham, Richard W. Faster reproductive rates trade off against offspring growth in wild chimpanzees PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article life history; growth; reproduction; primates; weaning URINARY CREATININE EXCRETION; NORTHERN ELEPHANT SEALS; SKELETAL-MUSCLE MASS; LIFE-HISTORY; BODY-SIZE; LACTATIONAL AMENORRHEA; PARENTAL INVESTMENT; RED DEER; ENVIRONMENTAL-CONDITIONS; INTERNAL RELATEDNESS Life history theory predicts a trade-off between offspring quality and quantity. Among large-bodied mammals, prolonged lactation and infant dependence suggest particularly strong potential for a quality-quantity trade-off to exist. Humans are one of the only such species to have been examined, providing mixed evidence under a peculiar set of circumstances, including extensive nutritional provisioning by nonmothers and extrasomatic wealth transmission. Here, we examine trade-offs between reproductive rate and one aspect of offspring quality (body size) in wild chimpanzees (Pan troglodytes schweinfurthii), a species with long periods of infant dependence and little direct provisioning. Juvenile lean body mass, estimated using urinary creatinine excretion, was positively associated with the interval to the next sibling's birth. These effects persisted into adolescence and were not moderated by maternal identity. Maternal depletion could not explain poor offspring growth, as older mothers had larger offspring, and low maternal energy balance during lactation predicted larger, not smaller, juvenile size. Instead, our data suggest that offspring growth suffers when mothers wean early to invest in new reproductive efforts. These findings indicate that chimpanzee mothers with the resources to do so prioritize production of new offspring over prolonged investment in current offspring. [Thompson, Melissa Emery; Muller, Martin N.; Sabbi, Kris] Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA; [Thompson, Melissa Emery; Muller, Martin N.; Machanda, Zarin P.; Otali, Emily; Wrangham, Richard W.] Kibale Chimpanzee Project, Ft Portal, Uganda; [Machanda, Zarin P.; Wrangham, Richard W.] Harvard Univ, Dept Human Evolutionary Biol, Cambridge, MA 02138 USA Thompson, ME (reprint author), Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA.; Thompson, ME (reprint author), Kibale Chimpanzee Project, Ft Portal, Uganda. memery@unm.edu Leakey Foundation; Wenner-Gren Foundation; National Science Foundation [1355014, 0849380]; National Institute on Aging of the National Institutes of Health [R01AG049395] We thank the field staff of the Kibale Chimpanzee Project for daily chimpanzee observations. Drew Enigk, Jayda Patterson, Sarah Schmidt, Erin Fitzgerald, Sarah Phillips-Garcia, and Thais Schwartz provided laboratory assistance. We thank the associate editor and two reviewers for insightful feedback. Research was supported by the Leakey Foundation, Wenner-Gren Foundation, National Science Foundation (Grants 1355014 and 0849380), and the National Institute on Aging of the National Institutes of Health (Award R01AG049395). ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; ALBON SD, 1983, J ANIM ECOL, V52, P969, DOI 10.2307/4467; Altmann J., 1983, P67; Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; Baker Jason D., 2008, Endangered Species Research, V5, P55, DOI 10.3354/esr00122; Baxmann AC, 2008, CLIN J AM SOC NEPHRO, V3, P348, DOI 10.2215/CJN.02870707; Belavady B., 1979, The mother/child dyad: nutritional aspects, P62; BERCOVITCH FB, 1989, EVOLUTION, V43, P1507, DOI 10.1111/j.1558-5646.1989.tb02600.x; Berghanel A, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1500451; Blurton J., 1986, ETHOL SOCIOBIOL, V7, P91; Borgerhoff Mulder M., 2000, EVOL HUM BEHAV, V21, P391, DOI DOI 10.1016/S1090-5138(00)00054-4); CAMERON RD, 1993, CAN J ZOOL, V71, P480, DOI 10.1139/z93-069; Catherwood R, 1937, J BIOL CHEM, V119, P201; Charnov EL, 2006, AM NAT, V167, P578, DOI 10.1086/501141; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CHINN KSK, 1966, J NUTR, V90, P323; Clark C. B., 1977, P235; Crocker DE, 2001, ECOLOGY, V82, P3541, DOI 10.2307/2680171; De Campeneere S, 2000, ANN ZOOTECH, V49, P335, DOI 10.1051/animres:2000124; Deschner T, 2008, HORM BEHAV, V54, P620, DOI 10.1016/j.yhbeh.2008.06.005; Dewey KG, 2011, MATERN CHILD NUTR, V7, P5, DOI 10.1111/j.1740-8709.2011.00349.x; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Ellison PT, 2003, FERTIL STERIL, V80, P1279, DOI 10.1016/S0015-0282(03)02158-7; Ellison PT, CHIMPANZEES HUMAN EV; Emery Thompson M., 2007, ANIM BEHAV, V73, P501, DOI DOI 10.1016/J.ANBEHAV.2006.09.007; Emery Thompson M., 2008, J PHYS, V135, P171, DOI DOI 10.1002/AJPA.20718; Emery Thompson M, 2009, HORM BEHAV, V55, P299, DOI DOI 10.1016/J.YHBEH.2008.11.005); Emery Thompson M, 2013, AM J PRIMATOL, V75, P222; FORBES GB, 1976, AM J CLIN NUTR, V29, P1359; FUCHS S, 1982, BEHAV ECOL SOCIOBIOL, V10, P39, DOI 10.1007/BF00296394; Gibson MA, 2006, PLOS MED, V3, P476, DOI 10.1371/journal.pmed.0030087; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; Girard-Buttoz C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018042; Gluckman PD, 2008, NEW ENGL J MED, V359, P61, DOI 10.1056/NEJMra0708473; Goodall J., 1986, CHIMPANZEES GOMBE PA; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; HALEY MP, 1994, ANIM BEHAV, V48, P1249, DOI 10.1006/anbe.1994.1361; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HEYMSFIELD SB, 1983, AM J CLIN NUTR, V37, P478; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; Hill K., 1996, ACHE LIFE HIST ECOLO; HOBCRAFT J, 1983, POPUL INDEX, V49, P585, DOI 10.2307/2737284; Hobcraft J, 1992, Popul Bull UN, P1; Hooper PL, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2808; HOWIE PW, 1982, J REPROD FERTIL, V65, P545; HULSEMANN J, 1987, KLIN PADIATR, V199, P292, DOI 10.1055/s-2008-1026805; Humphries MM, 2000, ECOLOGY, V81, P2867, DOI 10.1890/0012-9658(2000)081[2867:TDOOLS]2.0.CO;2; Isabirye-Basuta G., 1989, P116; Janson Charles H., 1993, P57; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; KAUFMAN DW, 1987, J MAMMAL, V68, P275, DOI 10.2307/1381466; KENNEDY KI, 1992, LANCET, V339, P227, DOI 10.1016/0140-6736(92)90018-X; KENNEDY KI, 1989, CONTRACEPTION, V39, P477, DOI 10.1016/0010-7824(89)90103-0; Knott CD, 2008, HORM BEHAV, V53, P526, DOI DOI 10.1016/J.YHBEH.2007.12.005); Kramer KL, 2010, EVOL ANTHROPOL, V19, P136, DOI 10.1002/evan.20265; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1954, NATURAL REGULATION A; Lancaster JB, 2010, AM J HUM BIOL, V22, P259; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lawson DW, 2012, P ROY SOC B-BIOL SCI, V279, P4755, DOI 10.1098/rspb.2012.1635; Lee P. C., 1996, Evolutionary Anthropology, V5, P87, DOI 10.1002/(SICI)1520-6505(1996)5:3<87::AID-EVAN4>3.0.CO;2-T; LEE PC, 1991, J ZOOL, V225, P99, DOI 10.1111/j.1469-7998.1991.tb03804.x; LEE PC, 1986, BEHAV ECOL SOCIOBIOL, V18, P353, DOI 10.1007/BF00299666; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Loison A, 1999, ECOGRAPHY, V22, P20, DOI 10.1111/j.1600-0587.1999.tb00451.x; Lummaa V, 2002, TRENDS ECOL EVOL, V17, P141, DOI 10.1016/S0169-5347(01)02414-4; Mace R, 1996, BEHAV ECOL SOCIOBIOL, V38, P75, DOI 10.1007/s002650050219; Mann J, 2000, BEHAV ECOL, V11, P210, DOI 10.1093/beheco/11.2.210; MATTINGLY DK, 1982, ECOLOGY, V63, P183, DOI 10.2307/1937043; McElligott AG, 2001, BEHAV ECOL SOCIOBIOL, V49, P266, DOI 10.1007/s002650000293; McMahon CR, 2000, ANTARCT SCI, V12, P149; Meij JJ, 2009, J EVOLUTION BIOL, V22, P1014, DOI 10.1111/j.1420-9101.2009.01713.x; Miller EJ, 2010, REPROD FERT DEVELOP, V22, P539, DOI 10.1071/RD09061; Mitani JC, 1996, AM NAT, V147, P966, DOI 10.1086/285888; MOORE T, 1991, TRENDS GENET, V7, P45, DOI 10.1016/0168-9525(91)90230-N; Muller MN, 2014, J HUM EVOL, V66, P107, DOI 10.1016/j.jhevol.2013.10.004; Muller MN, 2012, BEHAV ECOL, V23, P1234, DOI [DOI 10.1093/BEHEC0/ARS107), DOI 10.1093/BEHEC0/ARS107]; Muller MN, 2014, BEHAV ECOL SOCIOBIOL, V68, P1973; Muller MN, 2012, AM J PHYS ANTHROPOL, V149, P622, DOI DOI 10.1002/AJPA.22157; Neubert A, 1998, J PEDIATR-US, V133, P655, DOI 10.1016/S0022-3476(98)70107-6; Nunez CL, 2015, AM J PRIMATOL, V77, P963, DOI 10.1002/ajp.22426; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; Proctor DN, 1999, AM J PHYSIOL-ENDOC M, V277, pE489; Pusey AE, 2005, INT J PRIMATOL, V26, P3, DOI 10.1007/s10764-005-0721-2; RANDOLPH PA, 1977, ECOLOGY, V58, P31, DOI 10.2307/1935106; Reiches MW, 2009, AM J HUM BIOL, V21, P421, DOI 10.1002/ajhb.20906; Remer T, 2002, AM J CLIN NUTR, V75, P561; Richard AF, 2000, J HUM EVOL, V39, P381, DOI 10.1006/jhev.2000.0427; Rieger JF, 1996, OECOLOGIA, V107, P463, DOI 10.1007/BF00333936; Sand H, 1996, OECOLOGIA, V106, P212, DOI 10.1007/BF00328601; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sogard SM, 1997, B MAR SCI, V60, P1129; Stearns S, 1992, EVOLUTION LIFE HIST; SUTPHEN JL, 1982, PEDIATRICS, V69, P719; Valeggia C, 2004, J BIOSOC SCI, V36, P573, DOI 10.1017/S0021932003006382; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; van Noordwijk MA, 2013, BEHAV ECOL SOCIOBIOL, V67, P805, DOI 10.1007/s00265-013-1504-y; VANDERIJTPLOOIJ HHC, 1987, BEHAVIOUR, V101, P1, DOI 10.1163/156853987X00378; VANNIEKERK BDH, 1963, J NUTR, V79, P463, DOI 10.1093/jn/79.4.463; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; Walker SP, 2007, LANCET, V369, P145, DOI 10.1016/S0140-6736(07)60076-2; Wang ZM, 1996, AM J CLIN NUTR, V63, P863; WILCOX MA, 1995, ACTA OBSTET GYN SCAN, V74, P15, DOI 10.3109/00016349509009936; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINIKOFF B, 1983, STUD FAMILY PLANN, V14, P231, DOI 10.2307/1965748; WINKVIST A, 1992, AM J PUBLIC HEALTH, V82, P691, DOI 10.2105/AJPH.82.5.691; Zedrosser A, 2007, J ANIM ECOL, V76, P368, DOI 10.1111/j.1365-2656.2006.01203.x; Zihlman AL, 2015, P NATL ACAD SCI USA, V112, P7466, DOI 10.1073/pnas.1505071112 111 8 8 1 33 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JUL 12 2016 113 28 7780 7785 10.1073/pnas.1522168113 6 Multidisciplinary Sciences Science & Technology - Other Topics DR1VX WOS:000379694100040 27354523 Green Published, Bronze 2019-02-21 J Reynolds, JJ; McCrea, SM Reynolds, Joshua J.; McCrea, Sean M. Life History Theory and Exploitative Strategies EVOLUTIONARY PSYCHOLOGY English Article exploitation; life history theory; life history strategy; life history contingencies; age FAST-SLOW CONTINUUM; SEXUAL COERCION; K-SELECTION; R-SELECTION; PATTERNS; MAMMALS Exploitative strategies involve depriving others of resources while enhancing one's own. Life history theory suggests that there are individual differences (life history strategy) and environmental characteristics (life history contingencies [LHCs]) that influence the use of exploitative strategies. However, past work manipulating LHCs has found mixed evidence for the influence of this information on exploitative behavior. We present three studies that help clarify the effects of this type of information. Results indicated that younger individuals are most sensitive to LHC information. We also found, contrary to predictions, that communicating slow LHC information (i.e., high population density, intraspecific competition, and resource scarcity) increased rather than decreased the temptation to engage in exploitative behavior. Limitations and future directions are discussed. [Reynolds, Joshua J.; McCrea, Sean M.] Univ Wyoming, 1000 E Univ Ave, Laramie, WY 82071 USA Reynolds, JJ (reprint author), Univ Wyoming, 1000 E Univ Ave, Laramie, WY 82071 USA. jreyno14@uwyo.edu Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buss DM, 2008, GROUP DYN-THEOR RES, V12, P53, DOI 10.1037/1089-2699.12.1.53; Charnov Eric L., 1993, P1; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Danchin Etienne, 2008, P363; Dobzhansky T, 1950, AM SCI, V38, P208; Dunkel C., 2010, J SOCIAL EVOLUTIONAR, V4, P51, DOI DOI 10.1037/H0099301; Dunkel C.S., 2013, J SOC EVOL CULTUR PS, V7, P12, DOI DOI 10.1037/H0099177; Dunkel CS, 2011, EVOL PSYCHOL-US, V9, P588; Dunkel CS, 2010, EVOL PSYCHOL-US, V8, P492; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; FARRINGTON DP, 1986, CRIME JUSTICE, V7, P189, DOI 10.1086/449114; Figueredo A. J., 2012, APPL EVOLUTIONARY PS, P201; Figueredo A. J, 2007, ARIZONA LIFE HIST BA; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Gorelik G., 2012, OXFORD HDB EVOLUTION, P506; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; McArthur R, 1967, THEORY ISLAND BIOGEO; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Piquero AR, 2003, CRIME JUSTICE, V30, P359, DOI 10.1086/652234; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Reynolds JJ, 2015, EVOL PSYCHOL-US, V13, DOI 10.1177/1474704915593664; Roff Derek A., 1992; ROGERS AR, 1992, EVOLUTIONARY ECOLOGY, P375; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Sweeten G, 2013, J YOUTH ADOLESCENCE, V42, P921, DOI 10.1007/s10964-013-9926-4 36 0 0 1 12 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. JUL-SEP 2016 14 3 10.1177/1474704916659483 16 Psychology, Experimental Psychology EG5QY WOS:000391100500003 DOAJ Gold 2019-02-21 J Garcia de Leon, D; Moora, M; Opik, M; Neuenkamp, L; Gerz, M; Jairus, T; Vasar, M; Bueno, CG; Davison, J; Zobel, M Garcia de Leon, David; Moora, Mari; Opik, Maarja; Neuenkamp, Lena; Gerz, Maret; Jairus, Teele; Vasar, Martti; Bueno, C. Guillermo; Davison, John; Zobel, Martin Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities FEMS MICROBIOLOGY ECOLOGY English Article arbuscular mycorrhiza; chronosequence; covariation; dispersal limitation; plant-fungal interactions; species pool LIFE-HISTORY STRATEGIES; MOUNT-ST-HELENS; RE-ESTABLISHMENT; DIVERSITY; GRASSLAND; ROOTS; PRODUCTIVITY; ENVIRONMENT; DISPERSAL; RICHNESS Although mycorrhizas are expected to play a key role in community assembly during ecological succession, little is known about the dynamics of the symbiotic partners in natural systems. For instance, it is unclear how efficiently plants and arbuscular mycorrhizal (AM) fungi disperse into early successional ecosystems, and which, if either, symbiotic partner drives successional dynamics. This study describes the dynamics of plant and AM fungal communities, assesses correlation in the composition of plant and AM fungal communities and compares dispersal limitation of plants and AM fungi during succession. We studied gravel pits 20 and 50 years post abandonment and undisturbed grasslands in Western Estonia. The composition of plant and AM fungal communities was strongly correlated, and the strength of the correlation remained unchanged as succession progressed, indicating a stable dependence among mycorrhizal plants and AM fungi. A relatively high proportion of the AM fungal taxon pool was present in early successional sites, in comparison with the respective fraction of plants. These results suggest that AM fungi arrived faster than plants and may thus drive vegetation dynamics along secondary vegetation succession. [Garcia de Leon, David; Moora, Mari; Opik, Maarja; Neuenkamp, Lena; Gerz, Maret; Jairus, Teele; Vasar, Martti; Bueno, C. Guillermo; Davison, John; Zobel, Martin] Univ Tartu, Dept Bot, Inst Ecol & Earth Sci, Lai 40, EE-51005 Tartu, Estonia Garcia de Leon, D (reprint author), Univ Tartu, Dept Bot, Inst Ecol & Earth Sci, Lai 40, EE-51005 Tartu, Estonia. david.garciadeleon@ut.ee Moora, Mari/D-1961-2009; Garcia de Leon, David/I-2398-2018; Zobel, Martin/H-1336-2015; Opik, Maarja/A-1765-2008 Moora, Mari/0000-0002-4819-7506; Garcia de Leon, David/0000-0001-8165-6965; Zobel, Martin/0000-0001-7957-6704; Opik, Maarja/0000-0001-8025-7460; Neuenkamp, Lena/0000-0001-6108-5720 Estonian Research Council [IUT 20-28]; Estonian Science Foundation [9050, 9157]; European Regional Development Fund (Centre of Excellence EcolChange) This work was supported by the Estonian Research Council [IUT 20-28], the Estonian Science Foundation [9050, 9157] and the European Regional Development Fund (Centre of Excellence EcolChange). ALLEN EB, 1980, J APPL ECOL, V17, P139, DOI 10.2307/2402969; ALLEN MF, 1988, P ROY SOC EDINB B, V94, P63, DOI 10.1017/S0269727000007132; ALLEN MF, 1992, MYCOL RES, V96, P447, DOI 10.1016/S0953-7562(09)81089-7; ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999; Bardgett RD, 2014, NATURE, V515, P505, DOI 10.1038/nature13855; Bever JD, 2009, ECOL LETT, V12, P13, DOI 10.1111/j.1461-0248.2008.01254.x; Bever JD, 1996, J ECOL, V84, P71, DOI 10.2307/2261701; da Silva IR, 2014, APPL SOIL ECOL, V84, P166, DOI 10.1016/j.apsoil.2014.07.008; Davison J, 2015, SCIENCE, V349, P970, DOI 10.1126/science.aab1161; Davison J, 2016, SOIL BIOL BIOCHEM, V97, P63, DOI 10.1016/j.soilbio.2016.03.003; Davison J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041938; Dickie IA, 2015, NEW PHYTOL, V205, P1369, DOI 10.1111/nph.13290; Edgar RC, 2010, BIOINFORMATICS, V26, P2460, DOI 10.1093/bioinformatics/btq461; Egan C, 2014, FUNGAL ECOL, V12, P26, DOI 10.1016/j.funeco.2014.06.004; Gazol A, 2016, FEMS MICROBIOL ECOL, V92, DOI 10.1093/femsec/fiw073; Lisboa FJG, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101238; Hart MM, 2001, MYCOLOGIA, V93, P1186, DOI 10.2307/3761678; Hausmann NT, 2010, ECOLOGY, V91, P2333, DOI 10.1890/09-0924.1; Hiiesalu I, 2014, NEW PHYTOL, V203, P233, DOI 10.1111/nph.12765; Jaagus J, 1999, NEW DATA CLIMATE EST, V85, P28; JACKSON DA, 1995, ECOSCIENCE, V2, P297, DOI 10.1080/11956860.1995.11682297; Johnson D, 2004, NEW PHYTOL, V161, P503, DOI 10.1046/j.1469-8137.2003.00938.x; Kiers ET, 2011, SCIENCE, V333, P880, DOI 10.1126/science.1208473; Kivlin SN, 2014, FUNGAL ECOL, V12, P14, DOI 10.1016/j.funeco.2014.04.004; Landis FC, 2004, NEW PHYTOL, V164, P493, DOI 10.1111/j.1469-8137.2004.01202.x; Lee J, 2008, FEMS MICROBIOL ECOL, V65, P339, DOI 10.1111/j.1574-6941.2008.00531.x; Lekberg Y, 2011, ECOLOGY, V92, P1292, DOI 10.1890/10-1516.1; Lopez-Garcia A, 2014, PLANT SOIL, V379, P247, DOI 10.1007/s11104-014-2060-6; Maltz MR, 2015, RESTOR ECOL, V23, P625, DOI 10.1111/rec.12231; Martinez-Garcia LB, 2015, NEW PHYTOL, V205, P1565, DOI 10.1111/nph.13226; Milne I, 2009, BIOINFORMATICS, V25, P126, DOI 10.1093/bioinformatics/btn575; Moora M, 2010, POSITIVE PLANT INTERACTIONS AND COMMUNITY DYNAMICS, P79; Opik M, 2013, MYCORRHIZA, V23, P411, DOI 10.1007/s00572-013-0482-2; Oksanen J, 2015, VEGAN COMMUNITY ECOL; Opik M, 2010, NEW PHYTOL, V188, P223, DOI 10.1111/j.1469-8137.2010.03334.x; Partel M, 1999, J VEG SCI, V10, P561, DOI 10.2307/3237190; Pendergast TH, 2013, NEW PHYTOL, V197, P1300, DOI 10.1111/nph.12105; Peres-Neto PR, 2001, OECOLOGIA, V129, P169, DOI 10.1007/s004420100720; Pickett STA, 2012, VEGETATION ECOLOGY, P107; R Core Team, 2015, R LANG ENV STAT COMP; Reitalu T, 2014, AGR ECOSYST ENVIRON, V182, P59, DOI 10.1016/j.agee.2012.11.005; Roberts DW., 2015, LABDSV ORDINATION MU; Saks U, 2014, BOTANY, V92, DOI 10.1139/cjb-2013-0058; SIMON L, 1992, APPL ENVIRON MICROB, V58, P291; Smith SE, 2008, MYCORRHIZAL SYMBIOSIS, 3RD EDITION, P1; Tamme R, 2014, ECOLOGY, V95, P505, DOI 10.1890/13-1000.1; Titus JH, 2007, CAN J BOT, V85, P941, DOI 10.1139/B07-099; Torrez V, 2016, APPL VEG SCI, V19, P7, DOI 10.1111/avsc.12193; Uibopuu A, 2012, PLANT SOIL, V356, P331, DOI 10.1007/s11104-011-1116-0; Varga S, 2015, MYCORRHIZA, V25, P335, DOI 10.1007/s00572-014-0613-4; Vogelsang KM, 2006, NEW PHYTOL, V172, P554, DOI 10.1111/j.1469-8137.2006.01854.x; Waterhouse AM, 2009, BIOINFORMATICS, V25, P1189, DOI 10.1093/bioinformatics/btp033; Williams A, 2011, SOIL BIOL BIOCHEM, V43, P339, DOI 10.1016/j.soilbio.2010.10.021; Yang GW, 2014, J ECOL, V102, P1072, DOI 10.1111/1365-2745.12249; Zobel M, 2014, J VEG SCI, V25, P1133, DOI 10.1111/jvs.12191; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 56 10 10 5 34 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0168-6496 1574-6941 FEMS MICROBIOL ECOL FEMS Microbiol. Ecol. JUL 2016 92 7 UNSP fiw097 10.1093/femsec/fiw097 9 Microbiology Microbiology DR1VT WOS:000379693700008 27162183 Bronze 2019-02-21 J Pellerin, S; Paquette, SR; Pelletier, F; Garant, D; Belisle, M Pellerin, Stephanie; Paquette, Sebastien Rioux; Pelletier, Fanie; Garant, Dany; Belisle, Marc The trade-off between clutch size and egg mass in tree swallows Tachycineta bicolor is modulated by female body mass JOURNAL OF AVIAN BIOLOGY English Article LIFE-HISTORY EVOLUTION; AGRICULTURAL INTENSIFICATION; INDIVIDUAL OPTIMIZATION; REPRODUCTIVE SUCCESS; OFFSPRING SIZE; PARUS-MAJOR; NUMBER; BIRDS; AGE; POPULATION Egg production is a costly component of reproduction for female birds in terms of energy expenditure and maternal investment. Because resources are typically limited, clutch size and egg mass are expected to be constrained, and this putative trade-off between offspring number and size is at the core of life history theory. Nevertheless, empirical evidence for this trade-off is equivocal at best, as individual heterogeneity in resource acquisition and allocation may hamper the detection of the negative correlation between egg number and mass within populations. Here, we investigated how female body mass and landscape composition influences clutch size, egg mass, and the relationship between these two traits. To do so, we fitted linear mixed models using data from tree swallows Tachycineta bicolor breeding in a network of 400 nestboxes located along a gradient of agricultural intensity between 2004 and 2011. Our dataset comprised 1463 broods for clutch size analyses and 4371 eggs (from 847 broods laid between 2005-2008) for egg mass analyses. Our results showed that agricultural intensity negatively impacted clutch size, but not egg mass nor the relationship between these two traits. Female mass, on the other hand, modulated the trade-off between clutch size and egg mass. For heavier females, both traits increased jointly, without evidence of a trade-off. However, for lighter females, there was a clear negative relationship between clutch size and egg mass. This work shows that accounting for individual heterogeneity in body mass allows the detection of a clutch size/egg mass trade-off that would have remained undetected otherwise. Identifying habitat and individual effects on resource allocation towards reproductive traits may help bridging the gap between predictions from theory and empirical evidence on life history trade-offs. [Pellerin, Stephanie; Paquette, Sebastien Rioux; Pelletier, Fanie; Garant, Dany; Belisle, Marc] Univ Sherbrooke, Dept Biol, 2500 Blvd Univ, Sherbrooke, PQ J1K 2R1, Canada Paquette, SR (reprint author), Univ Sherbrooke, Dept Biol, 2500 Blvd Univ, Sherbrooke, PQ J1K 2R1, Canada. sebastien.riouxpaquette@gmail.com Garant, Dany/0000-0002-8091-1044 Natural Sciences and Engineering Research Council of Canada (NSERC) [261398-2013]; Fonds de recherche du Quebec sur la nature et les technologies (FRQNT) [2013-PR-167001]; Canada Research Chairs program; Canadian Foundation for Innovation; NSERC; FRQNT We are grateful to the 40 farmers who gave us access to their land and thereby made this study possible. Sincere thanks to the many students and field assistants who collected data on tree swallow nesting ecology since 2004 in our study system. Thanks also to C. Girard for her help with geomatics. This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC, 261398-2013) through Discovery and Strategic Grants (DG, FP and MB), by the Fonds de recherche du Quebec sur la nature et les technologies (FRQNT, 2013-PR-167001; FP and MB), by the Canada Research Chairs program (FP and MB), as well as by the Canadian Foundation for Innovation (DG, FP and MB). SP benefitted from scholarships from both NSERC and FRQNT. ANKNEY CD, 1980, J WILDLIFE MANAGE, V44, P174, DOI 10.2307/3808363; Ardia DR, 2006, J AVIAN BIOL, V37, P252, DOI 10.1111/j.2006.0908-8857.03624.x; Arnold TW, 2007, CONDOR, V109, P705, DOI 10.1650/7902.1; Baeta R, 2012, LANDSCAPE ECOL, V27, P1395, DOI 10.1007/s10980-012-9785-5; Barrionuevo M, 2014, WILSON J ORNITHOL, V126, P86, DOI 10.1676/13-084.1; Barton K., 2014, MUMIN MULTIMODEL INF; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Belanger L, 2002, LANDSCAPE ECOL, V17, P495, DOI 10.1023/A:1021443929548; Bernardo J, 1996, AM ZOOL, V36, P216; Bishop CA, 2000, ENVIRON TOXICOL CHEM, V19, P588, DOI 10.1897/1551-5028(2000)019<0588:ROCNBI>2.3.CO;2; Blackenhorn W. U., 2004, EVOL ECOL, V18, P385; Burnham K. P, 2002, MODEL SELECTION MULT; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Canadian Wildlife Service, 2004, OCC SOL PART IM CLAS; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Descamps S, 2011, FUNCT ECOL, V25, P671, DOI 10.1111/j.1365-2435.2010.01824.x; Devries JH, 2008, AUK, V125, P618, DOI 10.1525/auk.2008.07055; Dunn PO, 2005, J FIELD ORNITHOL, V76, P259, DOI 10.1648/0273-8570-76.3.259; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Fox C. W, 2001, EVOLUTIONARY ECOLOGY; Garant D, 2008, MOL ECOL, V17, P179, DOI 10.1111/j.1365-294X.2007.03436.x; Ghilain A, 2008, ECOL APPL, V18, P1140, DOI 10.1890/07-1107.1; Gladbach A, 2010, J ORNITHOL, V151, P817, DOI 10.1007/s10336-010-0518-8; Goulson D, 2014, NATURE, V511, P295, DOI 10.1038/nature13642; Gruebler MU, 2008, AGR ECOSYST ENVIRON, V123, P75, DOI 10.1016/j.agee.2007.05.001; Hargitai R, 2005, AUK, V122, P509, DOI 10.1642/0004-8038(2005)122[0509:EOECAP]2.0.CO;2; HUSSELL DJT, 1983, J FIELD ORNITHOL, V54, P312; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Kvalnes T, 2013, OECOLOGIA, V171, P391, DOI 10.1007/s00442-012-2437-2; Labocha MK, 2012, J ORNITHOL, V153, P1, DOI 10.1007/s10336-011-0706-1; Lessard A, 2014, BEHAV ECOL SOCIOBIOL, V68, P733, DOI 10.1007/s00265-014-1686-y; LESSELLS CM, 1989, J EVOLUTION BIOL, V2, P457, DOI 10.1046/j.1420-9101.1989.2060457.x; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Lopez-Antia A, 2015, ENVIRON RES, V136, P97, DOI 10.1016/j.envres.2014.10.023; MANNING TH, 1982, CAN J ZOOL, V60, P3143, DOI 10.1139/z82-399; Messina FJ, 2003, J EVOLUTION BIOL, V16, P501, DOI 10.1046/j.1420-9101.2003.00535.x; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Nooker JK, 2005, AUK, V122, P1225, DOI 10.1642/0004-8038(2005)122[1225:EOFAWA]2.0.CO;2; NUR N, 1984, OIKOS, V43, P407, DOI 10.2307/3544163; Paquette SR, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0649; Paquette SR, 2013, ECOL APPL, V23, P122, DOI 10.1890/12-0068.1; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Pellerin S., 2016, DRYAD DIGITAL REPOSI; Perrins CM, 1996, IBIS, V138, P2, DOI 10.1111/j.1474-919X.1996.tb04308.x; Pettifor RA, 2001, J ANIM ECOL, V70, P62, DOI 10.1046/j.1365-2656.2001.00465.x; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Roff D. A., 2002, LIFE HIST EVOLUTION, V7; Roff Derek A., 1992; Saether B.-E., 1990, Current Ornithology, V7, P251; Santure AW, 2013, MOL ECOL, V22, P3949, DOI 10.1111/mec.12376; Schroderus E, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-44; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WIGGINS DA, 1990, ORNIS SCAND, V21, P157, DOI 10.2307/3676812; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 64 6 6 4 37 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. JUL 2016 47 4 500 507 10.1111/jav.00725 8 Ornithology Zoology DZ8NR WOS:000386127600006 2019-02-21 J Tilley, JD; Butler, CM; Suarez-Morales, E; Franks, JS; Hoffmayer, ER; Gibson, DP; Comyns, BH; Ingram, GW; Blake, EM Tilley, Jason D.; Butler, Christopher M.; Suarez-Morales, Eduardo; Franks, James S.; Hoffmayer, Eric R.; Gibson, Dyan P.; Comyns, Bruce H.; Ingram, G. Walter, Jr.; Blake, E. Mae Feeding ecology of larval Atlantic bluefin tuna, Thunnus thynnus, from the central Gulf of Mexico BULLETIN OF MARINE SCIENCE English Article OIL-SPILL; COPEPOD ASSEMBLAGES; POPULATION-DYNAMICS; SHELF; OCEAN; FISH; SEA; SCOMBRIDAE; FISHERIES; PLANKTON Inter-annual and ontogenetic differences in diet and feeding intensity were examined for larval Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758), collected from the central Gulf of Mexico (GOM) during May 2008, 2009, and 2010 [n = 100; 3.0-6.7 mm body length (BL)]. Predominant prey groups were copepods, cirripeds, and cladocerans. Inter-annual differences in diet resulted from changes in the consumption of copepods and unique prey groups (e.g., cladocerans). Body length had an effect on T. thynnus diet, and a relative increase in copepod consumption occurred beyond 5 mm. Feeding intensity (i.e., the number of prey per digestive tract) was higher during 2010 than 2008 and 2009 and positively correlated with increasing T. thynnus BL. No fish prey were observed, which suggests piscivory in GOM T. thynnus does not occur at sizes < 6 mm. Patterns in feeding incidence (i.e., total number of digestive tracts with prey divided by the total number of digestive tracts) contrasted with reports from the Mediterranean Sea, suggesting T. thynnus may have distinct early life history strategies between the two regions. [Tilley, Jason D.; Butler, Christopher M.; Franks, James S.; Gibson, Dyan P.; Comyns, Bruce H.; Blake, E. Mae] Univ Southern Mississippi, Gulf Coast Res Lab, Ctr Fisheries Res & Dev, Ocean Springs, MS 39564 USA; [Suarez-Morales, Eduardo] El Colegio Frontera ECOSUR, Unidad Chetumal, Quintana Roo 77014, Mexico; [Hoffmayer, Eric R.; Ingram, G. Walter, Jr.] Natl Ocean & Atmospher Adm, Southeast Fisheries Sci Ctr, Mississippi Labs, Pascagoula, MS 39567 USA Tilley, JD (reprint author), Univ Southern Mississippi, Gulf Coast Res Lab, Ctr Fisheries Res & Dev, Ocean Springs, MS 39564 USA. Jason.Tilley@usm.edu Tilley, Jason/0000-0002-8512-543X Guy Harvey Ocean Foundation (GHOF); NOAA Fisheries, Southeast Fisheries Science Center (SEFSC) This research was partially funded by a grant from the Guy Harvey Ocean Foundation (GHOF) to J Franks. We acknowledge NOAA Fisheries, Southeast Fisheries Science Center (SEFSC) for funding our larval bluefin tuna research cruises through the Southeast Area Monitoring and Assessment Program (SEAMAP). We appreciate the field assistance provided by Gulf Coast Research Laboratory colleagues R Waller, J Ballard, and P Grammer and gratefully acknowledge the contributions of the captains and crew of the R/V Tommy Munro. We also appreciate the statistical guidance of J Osborne and W Wu and oceanographic advice from J Wiggert. This work is dedicated to the memory of our colleague M Blake in recognition of her contributions to ichthyoplankton research in the Gulf of Mexico. Abbriano RM, 2011, OCEANOGRAPHY, V24, P294, DOI 10.5670/oceanog.2011.80; Almeda R, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067212; Anderson DR., 2008, MODEL BASED INFERENC; ANDERSON J T, 1988, Journal of Northwest Atlantic Fishery Science, V8, P55; Bakun A, 2003, FISH OCEANOGR, V12, P458, DOI 10.1046/j.1365-2419.2003.00258.x; Batten SD, 1998, MAR POLLUT BULL, V36, P764, DOI 10.1016/S0025-326X(98)00039-3; Block BA, 2005, NATURE, V434, P1121, DOI 10.1038/nature03463; Bolker B., 2012, GETTING STARTED GLMM; BOLTOVSKOY D., 1999, S ATLANTIC ZOOPLANKT; Brette F, 2014, SCIENCE, V343, P772, DOI 10.1126/science.1242747; Burnham KP, 2011, BEHAV ECOL SOCIOBIOL, V65, P23, DOI 10.1007/s00265-010-1029-6; Campos-Hernandez A, 1994, COPEPODOS PELAGICOS; Carassou L, 2014, ENVIRON RES LETT, V9, DOI 10.1088/1748-9326/9/12/124003; Catalan IA, 2011, J FISH BIOL, V78, P1545, DOI 10.1111/j.1095-8649.2011.02960.x; CONWAY DVP, 1990, MAR BIOL, V105, P419, DOI 10.1007/BF01316313; Fennel K, 2011, BIOGEOSCIENCES, V8, P1881, DOI 10.5194/bg-8-1881-2011; Fox J., 2011, R COMPANION APPL REG; Fromentin JM, 2005, FISH FISH, V6, P281, DOI 10.1111/j.1467-2979.2005.00197.x; Greer AT, 2015, J MARINE SYST, V142, P111, DOI 10.1016/j.jmarsys.2014.10.008; Hare JA, 2014, ICES J MAR SCI, V71, P2343, DOI 10.1093/icesjms/fsu018; Hjort J., 1914, RAPP P V REUN CONS I, V20, P1; HOUDE ED, 1987, AM FISH SOC S, V2, P17; HYCOM, 2008, HYCOM NCODA GULF MEX; HYSLOP EJ, 1980, J FISH BIOL, V17, P411, DOI 10.1111/j.1095-8649.1980.tb02775.x; Jones EB, 2015, REMOTE SENS ENVIRON, V159, P152, DOI 10.1016/j.rse.2014.11.019; Knapp JM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098233; Laiz-Carrion R, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133406; Lasker R, 1978, RAPPORTS PROCES VERB, V173, P212; Llopiz Joel K., 2015, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V71, P1710; Llopiz JK, 2015, DEEP-SEA RES PT II, V113, P113, DOI 10.1016/j.dsr2.2014.05.014; Lopez-Salgado I, 1998, CRUSTACEANA, V71, P312, DOI 10.1163/156854098X00284; Mather FJ, 1995, HIST DOCUMENT LIFE H; Muhling BA, 2011, B MAR SCI, V87, P687, DOI 10.5343/bms.2010.1101; Owre H B, 1967, COPEPODS FLORIDA CUR; Prairie J. C., 2012, LIMNOL OCEANOGR FLUI, V2, P121, DOI DOI 10.1215/21573689-1964713; Reeb CA, 2013, NA11NMF4720106 NOAA; Reglero P, 2011, MAR ECOL PROG SER, V433, P205, DOI 10.3354/meps09187; Reglero P, 2015, J PLANKTON RES, V37, P2, DOI 10.1093/plankt/fbu082; RICHARDS WJ, 1993, B MAR SCI, V53, P475; RICHARDS WJ, 1990, FISH B-NOAA, V88, P607; Richards WJ, 2005, EARLY STAGES ATLANTI, P2187; RICHARDS WJ, 1976, ICCAT COLL VOL SCI P, V5, P267; Richardson DE, 2016, P NATL ACAD SCI USA, V113, P3299, DOI 10.1073/pnas.1525636113; ROFFS (Roffer's Ocean Fishing Forecasting Service), 2011, ROFFS FISH AN 2008 2; Rooker JR, 2007, REV FISH SCI, V15, P265, DOI 10.1080/10641260701484135; SAS Institute Inc, 2011, SAS STAT 9 3 USERS G; Secor D. H., 2014, COLLECT VOL SCI PAP, V70, P368; Seuront L, 2010, MAR FRESHWATER RES, V61, P263, DOI 10.1071/MF09055; Sheng YL, 2011, GEOMAT NAT HAZ RISK, V2, P329, DOI 10.1080/19475705.2011.564213; Suarez-Morales E, 2000, CRUSTACEANA, V73, P1247, DOI 10.1163/156854000505227; Suarez-Morales E, 2009, BIODIVERSITY, VI, P841; Suarez-Morales E, 1991, B PLANKTON SOC JAPAN, V1991, P593; Takasuka A, 2003, MAR ECOL PROG SER, V252, P223, DOI 10.3354/meps252223; UOTANI I, 1990, NIPPON SUISAN GAKK, V56, P713; Varela M, 2006, MAR POLLUT BULL, V53, P272, DOI 10.1016/j.marpolbul.10.005; YOUNG JW, 1990, MAR ECOL PROG SER, V61, P17, DOI 10.3354/meps061017; Yufera M, 2014, AQUACULTURE, V426, P126, DOI 10.1016/j.aquaculture.2014.01.031 57 5 5 1 13 ROSENSTIEL SCH MAR ATMOS SCI MIAMI 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 USA 0007-4977 1553-6955 B MAR SCI Bull. Mar. Sci. JUL 2016 92 3 321 334 10.5343/bms.2015.1067 14 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography DZ4CB WOS:000385804300003 2019-02-21 J Zizzari, ZV; van Straalen, NM; Ellers, J Zizzari, Z. V.; van Straalen, N. M.; Ellers, J. Transgenerational effects of nutrition are different for sons and daughters JOURNAL OF EVOLUTIONARY BIOLOGY English Article Collembola; environmental mismatches; food shortage; life-history traits; sex-specific effects; transgenerational plasticity LIFE-HISTORY TRAJECTORIES; INDIRECT SPERM TRANSFER; ORCHESELLA-CINCTA; THRIFTY PHENOTYPE; DEVELOPMENTAL PLASTICITY; COLLEMBOLA; FOOD; SIZE; DIET; TRAITS Food shortage is an important selective factor shaping animal life-history trajectories. Yet, despite its role, many aspects of the interaction between parental and offspring food environments remain unclear. In this study, we measured developmental plasticity in response to food availability over two generations and tested the relative contribution of paternal and maternal food availability to the performance of offspring reared under matched and mismatched food environments. We applied a cross-generational split-brood design using the springtail Orchesella cincta, which is found in the litter layer of temperate forests. The results show adverse effects of food limitation on several life-history traits and reproductive performance of both parental sexes. Food conditions of both parents contributed to the offspring phenotypic variation, providing evidence for transgenerational effects of diet. Parental diet influenced sons' age at maturity and daughters' weight at maturity. Specifically, being born to food-restricted parents allowed offspring to alleviate the adverse effects of food limitation, without reducing their performance under well-fed conditions. Thus, parents raised on a poor diet primed their offspring for a more efficient resource use. However, a mismatch between maternal and offspring food environments generated sex-specific adverse effects: female offspring born to well-fed mothers showed a decreased flexibility to deal with low-food conditions. Notably, these maternal effects of food availability were not observed in the sons. Finally, we found that the relationship between age and size at maturity differed between males and females and showed that offspring life-history strategies in O. cincta are primed differently by the parents. [Zizzari, Z. V.; van Straalen, N. M.; Ellers, J.] Vrije Univ Amsterdam, Dept Ecol Sci Anim Ecol, De Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands Zizzari, ZV (reprint author), Vrije Univ Amsterdam, Dept Ecol Sci Anim Ecol, De Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands. z.v.zizzari@vu.nl Ellers, Jacintha/K-5823-2012 Ellers, Jacintha/0000-0003-2665-1971; Zizzari, Valentina/0000-0002-9945-3071 Netherlands Organization for Scientific Research (NWO) [ALW1PJ/12035, 865.12.003] We are thankful for the assistance of P. Foglia Manzillo, F. Huyer and F. Monroy during this experiment and for the useful comments of the anonymous reviewers. Particular thanks go to C. Fox for comments on a first version of the manuscript. This research was financed by the Netherlands Organization for Scientific Research (NWO) via ALW Grant to ZVZ (ALW1PJ/12035) and VICI Grant to JE (865.12.003). Andersson M., 1994, SEXUAL SELECTION; Barrett ELB, 2009, P ROY SOC B-BIOL SCI, V276, P3257, DOI 10.1098/rspb.2009.0725; Bateson P, 2014, J PHYSIOL-LONDON, V592, P2357, DOI 10.1113/jphysiol.2014.271460; Bonduriansky R, 2007, J EVOLUTION BIOL, V20, P2379, DOI 10.1111/j.1420-9101.2007.01409.x; Bonduriansky R, 2009, ANNU REV ECOL EVOL S, V40, P103, DOI 10.1146/annurev.ecolsys.39.110707.173441; Brown AC, 2014, FUNCT ECOL, V28, P612, DOI 10.1111/1365-2435.12205; Brzek P, 2001, J EXP BIOL, V204, P3065; Burgess SC, 2014, OIKOS, V123, P769, DOI 10.1111/oik.01235; Cragg RG, 2001, SOIL BIOL BIOCHEM, V33, P2073, DOI 10.1016/S0038-0717(01)00138-9; Crean AJ, 2013, ECOLOGY, V94, P2575, DOI 10.1890/13-0184.1; Curley JP, 2011, HORM BEHAV, V59, P306, DOI 10.1016/j.yhbeh.2010.06.018; Desai M, 1997, BIOL REV, V72, P329, DOI 10.1017/S0006323196005026; Frago E, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088039; Franzke A, 2013, BEHAV ECOL, V24, P734, DOI 10.1093/beheco/ars205; Gill CJ, 1997, PHYSIOL BEHAV, V61, P387, DOI 10.1016/S0031-9384(96)00449-0; Giordano M, 2014, BEHAV ECOL, V25, P1459, DOI 10.1093/beheco/aru149; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; Gols R, 2004, J INSECT BEHAV, V17, P317, DOI 10.1023/B:JOIR.0000031533.32859.ba; Hafer N, 2011, BIOL LETTERS, V7, P755, DOI 10.1098/rsbl.2011.0139; Hales CN, 2001, BRIT MED BULL, V60, P5, DOI 10.1093/bmb/60.1.5; Harvey SC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025840; JANSSEN GM, 1988, EVOLUTION, V42, P828, DOI 10.1111/j.1558-5646.1988.tb02503.x; JOOSSE ENG, 1977, OECOLOGIA, V29, P189, DOI 10.1007/BF00345694; Liefting M, 2015, J EVOLUTION BIOL, V28, P1057, DOI 10.1111/jeb.12629; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Perry JC, 2010, P ROY SOC B-BIOL SCI, V277, P3639, DOI 10.1098/rspb.2010.0810; Plaistow SJ, 2004, P ROY SOC B-BIOL SCI, V271, P919, DOI 10.1098/rspb.2004.2682; Proctor HC, 1998, ANNU REV ENTOMOL, V43, P153, DOI 10.1146/annurev.ento.43.1.153; Ratikainen II, 2010, BEHAV ECOL, V21, P195, DOI 10.1093/beheco/arp168; ROFF DA, 2002, LIFE HIST EVOLUTION; Rusek J, 1998, BIODIVERS CONSERV, V7, P1207, DOI 10.1023/A:1008887817883; Saastamoinen M, 2013, OECOLOGIA, V171, P93, DOI 10.1007/s00442-012-2412-y; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Taborsky B, 2006, P ROY SOC B-BIOL SCI, V273, P741, DOI 10.1098/rspb.2005.3347; Timmermans MJTN, 2005, MOL ECOL, V14, P2017, DOI 10.1111/j.1365-294X.2005.02548.x; Triggs AM, 2012, FUNCT ECOL, V26, P1409, DOI 10.1111/j.1365-2435.2012.02051.x; Tully T, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003207; Uller T, 2013, J EVOLUTION BIOL, V26, P2161, DOI 10.1111/jeb.12212; Vahed K, 1998, BIOL REV, V73, P43, DOI 10.1017/S0006323197005112; VANSTRAALEN NM, 1985, OIKOS, V45, P253, DOI 10.2307/3565712; Verhoef HA, 1988, FUNCT ECOL, V2, P195, DOI 10.2307/2389695; Vijendravarma RK, 2010, BIOL LETTERS, V6, P238, DOI 10.1098/rsbl.2009.0754; Wei YC, 2014, P NATL ACAD SCI USA, V111, P1873, DOI 10.1073/pnas.1321195111; Wells JCK, 2007, EVOL BIOINFORM, V3, P109; White TCR, 2008, BIOL REV, V83, P227, DOI 10.1111/j.1469-185X.2008.00041.x; Zizzari ZV, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0762; Zizzari ZV, 2009, ANIM BEHAV, V78, P1261, DOI 10.1016/j.anbehav.2009.08.014; Zizzari ZV, 2014, OIKOS, V123, P1365, DOI 10.1111/oik.01496 50 5 5 2 17 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JUL 2016 29 7 1317 1327 10.1111/jeb.12872 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DU8XS WOS:000382500100004 27018780 Bronze 2019-02-21 J Jacquin, L; Reader, SM; Boniface, A; Mateluna, J; Patalas, I; Perez-Jvostov, F; Hendry, AP Jacquin, L.; Reader, S. M.; Boniface, A.; Mateluna, J.; Patalas, I.; Perez-Jvostov, F.; Hendry, A. P. Parallel and nonparallel behavioural evolution in response to parasitism and predation in Trinidadian guppies JOURNAL OF EVOLUTIONARY BIOLOGY English Article fish behaviour; Gyrodactylus parasite; host-parasite interactions; parallel evolution; personality traits; predation LIFE-HISTORY EVOLUTION; NATURAL ENEMY ECOLOGY; ADULT SEX-RATIO; POECILIA-RETICULATA; HOST BEHAVIOR; WILD GUPPIES; GYRODACTYLUS-TURNBULLI; ANTIPREDATOR BEHAVIOR; SHOALING BEHAVIOR; GENETIC DIFFERENTIATION Natural enemies such as predators and parasites are known to shape intraspecific variability of behaviour and personality in natural populations, yet several key questions remain: (i) What is the relative importance of predation vs. parasitism in shaping intraspecific variation of behaviour across generations? (ii) What are the contributions of genetic and plastic effects to this behavioural divergence? (iii) And to what extent are responses to predation and parasitism repeatable across independent evolutionary lineages? We addressed these questions using Trinidadian guppies (Poecilia reticulata) (i) varying in their exposure to dangerous fish predators and Gyrodactylus ectoparasites for (ii) both wild-caught F0 and laboratory-reared F2 individuals and coming from (iii) multiple independent evolutionary lineages (i.e. independent drainages). Several key findings emerged. First, a population's history of predation and parasitism influenced behavioural profiles, but to different extent depending on the behaviour considered (activity, shoaling or boldness). Second, we had evidence for some genetic effects of predation regime on behaviour, with differences in activity of F2 laboratory-reared individuals, but not for parasitism, which had only plastic effects on the boldness of wild-caught F0 individuals. Third, the two lineages showed a mixture of parallel and nonparallel responses to predation/parasitism, with parallel responses being stronger for predation than for parasitism and for activity and boldness than for shoaling. These findings suggest that different sets of behaviours provide different pay-offs in alternative predation/parasitism environments and that parasitism has more transient effects in shaping intraspecific variation of behaviour than does predation. [Jacquin, L.] Univ Toulouse, UPS, CNRS, UMR 5174,Lab Evolut & Diversite Biol,EDB,ENFA, 118 Route Narbonne, F-31400 Toulouse, France; [Jacquin, L.; Boniface, A.; Hendry, A. P.] McGill Univ, Redpath Museum, Montreal, PQ, Canada; [Jacquin, L.; Boniface, A.; Hendry, A. P.] McGill Univ, Dept Biol, Montreal, PQ, Canada; [Jacquin, L.] Univ Pau & Pays Adou, INRA, ECOBIOP, St Pee Sur Nivelle, France; [Reader, S. M.; Mateluna, J.; Patalas, I.; Perez-Jvostov, F.] McGill Univ, Dept Biol, Montreal, PQ, Canada; [Perez-Jvostov, F.] McGill Univ, Inst Parasitol, Ste Anne De Bellevue, PQ, Canada Jacquin, L (reprint author), Univ Toulouse, UPS, CNRS, UMR 5174,Lab Evolut & Diversite Biol,EDB,ENFA, 118 Route Narbonne, F-31400 Toulouse, France. lisa.jacquin@univ-tlse3.fr Fyssen foundation; ATER fellowship from the Universite de Pau et des Pays de l'Adour (UPPA); FQRNT/QCBS international grant; NSERC We thank two anonymous reviewers for their comments that greatly improved the manuscript. We are grateful to M. Cabrera, L. Chouinard-Thuly, F. Dargent, S Ducatez, G. Fussmann, K. Gotanda, J. Labonne, I. Leris, M Mugabo, D. Reale, A. Reddon, G. Rolhausen, M. Scott, P. Sims and W. Swaney for fruitful discussions and assistance at different stages of the study. We thank R. Chang, L. Duan, C. Leblond, L. Lundberg, Y. Wang and D. Zhang for logistic and technical support. L. Jacquin was supported by a postdoctoral grant from the Fyssen foundation and an ATER fellowship from the Universite de Pau et des Pays de l'Adour (UPPA). A. Boniface was funded by a FQRNT/QCBS international grant, and S. M. Reader and A.P. Hendry thank NSERC for funding. Arendt J, 2008, TRENDS ECOL EVOL, V23, P26, DOI 10.1016/j.tree.2007.09.011; Barber I, 2000, REV FISH BIOL FISHER, V10, P131, DOI 10.1023/A:1016658224470; Barber I, 1998, J FISH BIOL, V53, P1365, DOI 10.1006/jfbi.1998.0788; Barber I, 2010, PHILOS T R SOC B, V365, P4077, DOI 10.1098/rstb.2010.0182; Barribeau SM, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0628-y; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Blumstein DT, 2006, JWATCHER; Boyer N, 2010, J ANIM ECOL, V79, P538, DOI 10.1111/j.1365-2656.2010.01659.x; BREDEN F, 1987, ANIM BEHAV, V35, P618, DOI 10.1016/S0003-3472(87)80297-X; Brown GE, 2014, ANIM COGN, V17, P1063, DOI 10.1007/s10071-014-0738-z; Cable J, 2007, BIOL J LINN SOC, V90, P647, DOI 10.1111/j.1095-8312.2006.00755.x; Cable J, 2002, J PARASITOL, V88, P183, DOI 10.2307/3285412; Clinchy M, 2013, FUNCT ECOL, V27, P56, DOI 10.1111/1365-2435.12007; Coats J, 2010, BEHAVIOUR, V147, P367, DOI 10.1163/000579509X12574307194101; Cohen J, 1988, STAT POWER ANAL BEHA; Cohen J, 2002, APPL MULTIPLE REGRES; Coleman K, 1998, ANIM BEHAV, V56, P927, DOI 10.1006/anbe.1998.0852; Combes C., 2001, PARASITISM ECOLOGY E; COTE IM, 1995, BEHAV ECOL, V6, P159, DOI 10.1093/beheco/6.2.159; Croft DP, 2011, BEHAV ECOL SOCIOBIOL, V65, P2219, DOI 10.1007/s00265-011-1230-2; Dargent F, 2016, J EVOLUTION BIOL, V29, P23, DOI 10.1111/jeb.12758; Dargent F, 2015, PARASITOLOGY, V142, P1647, DOI 10.1017/S0031182015001286; Dargent F, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2371; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Dingemanse NJ, 2012, J ANIM ECOL, V81, P116, DOI 10.1111/j.1365-2656.2011.01877.x; Dingemanse NJ, 2009, P R SOC B, V276, P1285, DOI 10.1098/rspb.2008.1555; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; DUGATKIN LA, 1992, BEHAV ECOL, V3, P124, DOI 10.1093/beheco/3.2.124; Endler J. A., 1984, EVOLUTIONARY ECOLOGY, P95; Endler J. A., 1986, SELECTION WILD; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Ezenwa VO, 2004, BEHAV ECOL, V15, P446, DOI 10.1093/beheco/arh028; Fitzpatrick SW, 2014, AM NAT, V183, P290, DOI 10.1086/674611; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Fraser BA, 2010, EVOLUTION, V64, P2086, DOI 10.1111/j.1558-5646.2010.00965.x; Fraser BA, 2010, GENETICA, V138, P273, DOI 10.1007/s10709-009-9402-y; Gotanda KM, 2013, OECOLOGIA, V172, P155, DOI 10.1007/s00442-012-2485-7; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; HARRIS PD, 1992, J PARASITOL, V78, P912, DOI 10.2307/3283329; Harris S, 2010, OIKOS, V119, P1711, DOI 10.1111/j.1600-0706.2010.18028.x; HART BL, 1992, J PARASITOL, V78, P256, DOI 10.2307/3283472; HART BL, 1994, PARASITOLOGY, V109, pS139, DOI 10.1017/S0031182000085140; HART BL, 1990, NEUROSCI BIOBEHAV R, V14, P273, DOI 10.1016/S0149-7634(05)80038-7; Hasselquist D, 2012, ANIM BEHAV, V83, P1303, DOI 10.1016/j.anbehav.2012.03.025; Hatcher MJ, 2006, ECOL LETT, V9, P1253, DOI 10.1111/j.1461-0248.2006.00964.x; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Hensor EMA, 2003, ANIM BEHAV, V65, P663, DOI 10.1006/anbe.2003.2075; Hockley FA, 2014, BEHAV ECOL SOCIOBIOL, V68, P1513, DOI 10.1007/s00265-014-1760-5; Houde A., 1997, SEX COLOR MATE CHOIC; HUDSON PJ, 1992, J ANIM ECOL, V61, P681, DOI 10.2307/5623; Huizinga M, 2009, J EVOLUTION BIOL, V22, P1860, DOI 10.1111/j.1420-9101.2009.01799.x; Johnson MB, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022634; Kaeuffer R, 2012, EVOLUTION, V66, P402, DOI 10.1111/j.1558-5646.2011.01440.x; KENNEDY CEJ, 1987, BEHAV ECOL SOCIOBIOL, V21, P291, DOI 10.1007/BF00299966; Knell RJ, 2004, BIOL REV, V79, P557, DOI 10.1017/S1464793103006365; Koprivnikar J, 2012, P ROY SOC B-BIOL SCI, V279, P1544, DOI 10.1098/rspb.2011.2156; Kortet R., 2015, FRONT ECOL EVOL, V3, P1; Kortet R, 2010, ECOL LETT, V13, P1449, DOI 10.1111/j.1461-0248.2010.01536.x; KRAUSE J, 1994, CAN J ZOOL, V72, P1775, DOI 10.1139/z94-240; Laland KN, 1999, ANIM BEHAV, V57, P331, DOI 10.1006/anbe.1998.0967; Lopez S, 1999, ANIM BEHAV, V57, P1129, DOI 10.1006/anbe.1998.1064; Lyles A. M., 1990, THESIS; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; Martin CH, 2007, BEHAV ECOL SOCIOBIOL, V61, P1897, DOI 10.1007/s00265-007-0430-2; McCabe CM, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.0862; McKellar AE, 2011, J FISH BIOL, V79, P937, DOI 10.1111/j.1095-8649.2011.03065.x; McKellar AE, 2009, OECOLOGIA, V159, P735, DOI 10.1007/s00442-008-1257-x; Millar NP, 2006, OIKOS, V113, P1; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Natoli E, 2005, NEUROSCI BIOBEHAV R, V29, P151, DOI 10.1016/j.neubiorev.2004.06.011; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; Perez-Jvostov F, 2015, INT J PARASITOL, V45, P409, DOI 10.1016/j.ijpara.2015.01.010; Perez-Jvostov F, 2012, OECOLOGIA, V170, P77, DOI 10.1007/s00442-012-2289-9; Pike TW, 2008, P ROY SOC B-BIOL SCI, V275, P2515, DOI 10.1098/rspb.2008.0744; Poulin R, 2013, J EXP BIOL, V216, P18, DOI 10.1242/jeb.073353; Poulin R, 2010, ADV STUD BEHAV, V41, P151, DOI 10.1016/S0065-3454(10)41005-0; Preston DL, 2014, FUNCT ECOL, V28, P1472, DOI 10.1111/1365-2435.12293; Raffel TR, 2008, TRENDS ECOL EVOL, V23, P610, DOI 10.1016/j.tree.2008.06.015; Reader SM, 2015, TOP COGN SCI, V7, P451, DOI 10.1111/tops.12148; Reale D., 2007, BIOL REV, V82, P291, DOI DOI 10.1111/J.1469-185X.2007.00010.X; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Richards E. J., 2010, THESIS; Richards EL, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013285; Rigaud T, 2010, P ROY SOC B-BIOL SCI, V277, P3693, DOI 10.1098/rspb.2010.1163; Rodd FH, 1997, ECOLOGY, V78, P405; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; SchmidHempel P, 2011, EVOLUTIONARY PARASITOLOGY: THE INTEGRATED STUDY OF INFECTIONS, IMMUNOLOGY, ECOLOGY, AND GENETICS, P1; SCOTT ME, 1984, PARASITOLOGY, V89, P159, DOI 10.1017/S0031182000001207; SCOTT ME, 1985, J FISH DIS, V8, P495, DOI 10.1111/j.1365-2761.1985.tb00964.x; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1995, CAN J ZOOL, V73, P1100, DOI 10.1139/z95-131; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2012, ECOL LETT, V15, P278, DOI 10.1111/j.1461-0248.2011.01731.x; Smith BR, 2010, BEHAV ECOL, V21, P919, DOI 10.1093/beheco/arq084; Stephenson JF, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0806; Suk HY, 2009, HEREDITY, V102, P425, DOI 10.1038/hdy.2009.7; Swaney WT, 2015, BEHAV PROCESS, V118, P42, DOI 10.1016/j.beproc.2015.05.010; Templeton CN, 2004, BEHAV ECOL, V15, P673, DOI 10.1093/beheco/arh065; Torres-Dowdall J, 2012, EVOLUTION, V66, P3432, DOI 10.1111/j.1558-5646.2012.01694.x; van Oosterhout C, 2007, INT J PARASITOL, V37, P805, DOI 10.1016/j.ijpara.2006.12.016; van Oosterhout C, 2006, EVOLUTION, V60, P2562, DOI 10.1554/06-286.1; Weese DJ, 2010, EVOLUTION, V64, P1802, DOI 10.1111/j.1558-5646.2010.00945.x; Willing EM, 2010, MOL ECOL, V19, P968, DOI 10.1111/j.1365-294X.2010.04528.x; WILSON DS, 1993, J COMP PSYCHOL, V107, P250, DOI 10.1037/0735-7036.107.3.250; Wright D, 2006, NAT PROTOC, V1, P1828, DOI 10.1038/nprot.2006.287; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 116 5 5 2 35 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JUL 2016 29 7 1406 1422 10.1111/jeb.12880 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DU8XS WOS:000382500100012 27086945 Bronze 2019-02-21 J Lind, MI; Zwoinska, MK; Meurling, S; Carlsson, H; Maklakov, AA Lind, Martin I.; Zwoinska, Martyna K.; Meurling, Sara; Carlsson, Hanne; Maklakov, Alexei A. Sex-specific Tradeoffs With Growth and Fitness Following Life-span Extension by Rapamycin in an Outcrossing Nematode, Caenorhabditis remanei JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES English Article Antiaging; Evolution; Longevity GENETICALLY HETEROGENEOUS MICE; DROSOPHILA-MELANOGASTER; SIZE DIMORPHISM; BODY-SIZE; MALE LONGEVITY; C-ELEGANS; EVOLUTION; INSULIN; METABOLISM; CONFLICT Rapamycin inhibits the nutrient-sensing TOR pathway and extends life span in a wide range of organisms. Although life-span extension usually differs between the sexes, the reason for this is poorly understood. Because TOR influences growth, rapamycin likely affects life-history traits such as growth and reproduction. Sexes have different life-history strategies, and theory predicts that they will resolve the tradeoffs between growth, reproduction, and life span differently. Specifically, in taxa with female-biased sexual size dimorphism, reduced growth may have smaller effects on male fitness. We investigated the effects of juvenile, adult, or life-long rapamycin treatment on growth, reproduction, life span, and individual fitness in the outcrossing nematode Caenorhabditis remanei. Life-long exposure to rapamycin always resulted in the strongest response, whereas postreproductive exposure did not affect life span. Although rapamycin resulted in longer life span and smaller size in males, male individual fitness was not affected. In contrast, size and fitness were negatively affected in females, whereas life span was only extended under high rapamycin concentrations. Our results support the hypothesis that rapamycin affects key life-history traits in a sex-specific manner. We argue that the fitness cost of life-span extension will be sex specific and propose that the smaller sex generally pay less while enjoying stronger life-span increase. [Lind, Martin I.; Zwoinska, Martyna K.; Meurling, Sara; Carlsson, Hanne; Maklakov, Alexei A.] Uppsala Univ, Ageing Res Grp, Dept Anim Ecol, Evolutionary Biol Ctr, S-75105 Uppsala, Sweden Lind, MI (reprint author), Uppsala Univ, Dept Anim Ecol, S-75236 Uppsala, Sweden. martin.i.lind@gmail.com Maklakov, Alexei/F-8167-2014; Lind, Martin/A-4189-2011 Maklakov, Alexei/0000-0002-5809-1203; Lind, Martin/0000-0001-5602-1933 Swedish Research Council [C0636601, 621-2013-4828]; Evolutionary Biology Centre, Uppsala University; European Research Council [St-G 2010 AGINGSEXDIFF 260885] This work was supported by the Swedish Research Council (C0636601) and by the Evolutionary Biology Centre, Uppsala University to M.I.L. A.A.M. was supported by the European Research Council Starting Grant-2010 (St-G 2010 AGINGSEXDIFF 260885) and by the Swedish Research Council (621-2013-4828). Andersson M., 1994, SEXUAL SELECTION; ARAK A, 1988, EVOLUTION, V42, P820, DOI 10.1111/j.1558-5646.1988.tb02501.x; Berg EC, 2012, P ROY SOC B-BIOL SCI, V279, P4296, DOI 10.1098/rspb.2012.1345; Bjedov I, 2010, CELL METAB, V11, P35, DOI 10.1016/j.cmet.2009.11.010; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Brommer JE, 2002, ECOL LETT, V5, P802, DOI 10.1046/j.1461-0248.2002.00369.x; Broughton SJ, 2005, P NATL ACAD SCI USA, V102, P3105, DOI 10.1073/pnas.0405775102; Carter CS, 2016, J GERONTOL A-BIOL, V71, P866, DOI 10.1093/gerona/glu238; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Chen HY, 2014, CURR BIOL, V24, P2423, DOI 10.1016/j.cub.2014.08.055; Chen HY, 2012, CURR BIOL, V22, P2140, DOI 10.1016/j.cub.2012.09.021; Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991; Colombani J, 2003, CELL, V114, P739, DOI 10.1016/S0092-8674(03)00713-X; Criscuolo F, 2008, P ROY SOC B-BIOL SCI, V275, P1565, DOI 10.1098/rspb.2008.0148; DAVID JR, 1994, GENET SEL EVOL, V26, P229, DOI 10.1051/gse:19940305; de Magalhaes JP, 2007, J GERONTOL A-BIOL, V62, P149; Dillin A, 2002, SCIENCE, V298, P830, DOI 10.1126/science.1074240; EKLUND J, 1977, NATURE, V265, P48, DOI 10.1038/265048b0; Evans DS, 2011, AGEING RES REV, V10, P225, DOI 10.1016/j.arr.2010.04.001; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; Gems D, 2000, GENETICS, V154, P1597; Griffin RM, 2013, MOL BIOL EVOL, V30, P2168, DOI 10.1093/molbev/mst121; Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221; HEAD G, 1995, EVOLUTION, V49, P776, DOI 10.1111/j.1558-5646.1995.tb02313.x; Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298; Ivanov DK, 2015, J GERONTOL A-BIOL, DOI DOI 10.1093/GERONA/GLV047; Johnson SC, 2013, NATURE, V493, P338, DOI 10.1038/nature11861; Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059; Kraus C, 2013, AM NAT, V181, P492, DOI 10.1086/669665; LaFever L, 2005, SCIENCE, V309, P1071, DOI 10.1126/science.1111410; Lamming DW, 2012, SCIENCE, V335, P1638, DOI 10.1126/science.1215135; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Lee WS, 2011, AM NAT, V178, P774, DOI 10.1086/662671; Lehtovaara A, 2013, AM NAT, V182, P653, DOI 10.1086/673296; LINTS FA, 1977, NATURE, V266, P624, DOI 10.1038/266624a0; Lionaki E, 2013, METHOD MOL BIOL, P473; Maklakov AA, 2013, BIOESSAYS, V35, P717, DOI 10.1002/bies.201300021; McCulloch D, 2003, AGING CELL, V2, P165, DOI 10.1046/j.1474-9728.2003.00047.x; McCulloch D, 2003, EXP GERONTOL, V38, P129, DOI 10.1016/S0531-5565(02)00147-X; Meissner B, 2004, J BIOL CHEM, V279, P36739, DOI 10.1074/jbc.M403415200; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Miller RA, 2014, AGING CELL, V13, P468, DOI 10.1111/acel.12194; Miller RA, 2011, J GERONTOL A-BIOL, V66, P191, DOI 10.1093/gerona/glq178; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Oldham S, 2000, PHILOS T R SOC B, V355, P945, DOI 10.1098/rstb.2000.0630; Olsson M, 2002, EVOLUTION, V56, P1867; Powers RW, 2006, GENE DEV, V20, P174, DOI 10.1101/gad.1381406; Promislow D, 2003, BEHAV GENET, V33, P191, DOI 10.1023/A:1022562103669; Reeve JP, 1999, HEREDITY, V83, P697, DOI 10.1046/j.1365-2540.1999.00616.x; Rice WR, 2001, J EVOLUTION BIOL, V14, P685, DOI 10.1046/j.1420-9101.2001.00319.x; Robert KA, 2010, AM NAT, V175, P147, DOI 10.1086/649595; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Robida-Stubbs S, 2012, CELL METAB, V15, P713, DOI 10.1016/j.cmet.2012.04.007; Rollo CD, 2002, EVOL DEV, V4, P55, DOI 10.1046/j.1525-142x.2002.01053.x; Shi C, 2014, SCIENCE, V343, P536, DOI 10.1126/science.1242958; Soukas AA, 2009, GENE DEV, V23, P496, DOI 10.1101/gad.1775409; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P365; Stiernagle Theresa, 2006, WormBook, P1, DOI 10.1895/wormbook.1.101.1; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vellai T, 2003, NATURE, V426, P620, DOI 10.1038/426620a; WARD S, 1979, DEV BIOL, V73, P304, DOI 10.1016/0012-1606(79)90069-1; Wullschleger S, 2006, CELL, V124, P471, DOI 10.1016/j.cell.2006.01.016 64 6 6 0 8 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1079-5006 1758-535X J GERONTOL A-BIOL J. Gerontol. Ser. A-Biol. Sci. Med. Sci. JUL 2016 71 7 882 890 10.1093/gerona/glv174 9 Geriatrics & Gerontology; Gerontology Geriatrics & Gerontology DT0YW WOS:000381209900006 26472877 Bronze 2019-02-21 J Large, EE; Xu, W; Zhao, YH; Brady, SC; Long, LJ; Butcher, RA; Andersen, EC; McGrath, PT Large, Edward E.; Xu, Wen; Zhao, Yuehui; Brady, Shannon C.; Long, Lijiang; Butcher, Rebecca A.; Andersen, Erik C.; McGrath, Patrick T. Selection on a Subunit of the NURF Chromatin Remodeler Modifies Life History Traits in a Domesticated Strain of Caenorhabditis elegans PLOS GENETICS English Article C-ELEGANS; DAUER PHEROMONE; NATURAL VARIATION; COMPLEX NURF; EVOLUTION; GENETICS; DROSOPHILA; NEMATODES; BRIGGSAE; PLATFORM Evolutionary life history theory seeks to explain how reproductive and survival traits are shaped by selection through allocations of an individual's resources to competing life functions. Although life-history traits evolve rapidly, little is known about the genetic and cellular mechanisms that control and couple these tradeoffs. Here, we find that two laboratory-adapted strains of C. elegans descended from a single common ancestor that lived in the 1950s have differences in a number of life-history traits, including reproductive timing, life-span, dauer formation, growth rate, and offspring number. We identified a quantitative trait locus (QTL) of large effect that controls 24%-75% of the total trait variance in reproductive timing at various timepoints. Using CRISPR/ Cas9-induced genome editing, we show this QTL is due in part to a 60 bp deletion in the 3' end of the nurf-1 gene, which is orthologous to the human gene encoding the BPTF component of the NURF chromatin remodeling complex. Besides reproduction, nurf-1 also regulates growth rate, lifespan, and dauer formation. The fitness consequences of this deletion are environment specific-it increases fitness in the growth conditions where it was fixed but decreases fitness in alternative laboratory growth conditions. We propose that chromatin remodeling, acting through nurf-1, is a pleiotropic regulator of life history trade-offs underlying the evolution of multiple traits across different species. [Large, Edward E.; Xu, Wen; Zhao, Yuehui; Long, Lijiang; McGrath, Patrick T.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA; [Brady, Shannon C.; Andersen, Erik C.] Northwestern Univ, Dept Mol Biosci, Evanston, IL USA; [Butcher, Rebecca A.] Univ Florida, Dept Chem, Gainesville, FL 32611 USA McGrath, PT (reprint author), Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. patrick.mcgrath@biology.gatech.edu National Institutes of Health (NIH) [R01 GM114170, R21 AG050304]; Ellison Medical Foundation; Pew Charitable Trusts; American Cancer Society This work was funded by the National Institutes of Health (NIH) grants R01 GM114170 and R21 AG050304 and by the Ellison Medical Foundation (PTM). ECA is a Pew Scholar in the Biomedical Sciences, supported by the Pew Charitable Trusts. Also, ECA and SCB were supported by an American Cancer Society Research Scholar Grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Ables ET, 2010, CELL STEM CELL, V7, P581, DOI 10.1016/j.stem.2010.10.001; Altshuler DM, 2012, NATURE, V491, P56, DOI 10.1038/nature11632; Andersen EC, 2006, DEVELOPMENT, V133, P2695, DOI 10.1242/dev.02444; Andersen EC, 2015, G3-GENES GENOM GENET, V5, P911, DOI 10.1534/g3.115.017178; Andersen EC, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004156; Andersen EC, 2012, NAT GENET, V44, P285, DOI 10.1038/ng.1050; Aprison EZ, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005729; Arribere JA, 2014, GENETICS, V198, P837, DOI 10.1534/genetics.114.169730; Badenhorst P, 2002, GENE DEV, V16, P3186, DOI 10.1101/gad.1032202; Badenhorst P, 2005, GENE DEV, V19, P2540, DOI 10.1101/gad.1342605; BRENNER S, 1974, GENETICS, V77, P71; Broman KW, 2003, BIOINFORMATICS, V19, P889, DOI 10.1093/bioinformatics/btg112; Butcher RA, 2008, P NATL ACAD SCI USA, V105, P14288, DOI 10.1073/pnas.0806676105; Butcher RA, 2007, NAT CHEM BIOL, V3, P420, DOI 10.1038/nchembio.2007.3; Butcher RA, 2009, P NATL ACAD SCI USA, V106, P1875, DOI 10.1073/pnas.0810338106; Chen XM, 2014, MOL BIOL EVOL, V31, P2573, DOI 10.1093/molbev/msu198; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Cutter AD, 2004, EVOLUTION, V58, P651, DOI 10.1111/j.0014-3820.2004.tb01687.x; de Bono M, 1998, CELL, V94, P679, DOI 10.1016/S0092-8674(00)81609-8; Dickinson DJ, 2013, NAT METHODS, V10, P1028, DOI [10.1038/NMETH.2641, 10.1038/nmeth.2641]; Duveau F, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001230; Fielenbach N, GENES; Fielenbach N, 2008, GENE DEV, V22, P2149, DOI 10.1101/gad.1701508; FODOR A, 1983, NEMATOLOGICA, V29, P203, DOI 10.1163/187529283X00456; GOLDEN JW, 1985, MOL GEN GENET, V198, P534, DOI 10.1007/BF00332953; Hagman Mattias, 2010, Commun Integr Biol, V3, P238; Hagman M, 2009, J CHEM ECOL, V35, P265, DOI 10.1007/s10886-009-9592-x; Hall SE, 2010, CURR BIOL, V20, P149, DOI 10.1016/j.cub.2009.11.035; Kim K, 2009, SCIENCE, V326, P994, DOI 10.1126/science.1176331; Kiontke K., 2006, WORMBOOK, V2006, P1, DOI DOI 10.1895/W0RMB00K.1.37.1; Kwon SY, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000574; Landry JW, 2011, GENE DEV, V25, P275, DOI 10.1101/gad.2007311; Maures TJ, 2014, SCIENCE, V343, P541, DOI 10.1126/science.1244160; McGrath PT, 2011, NATURE, V477, P321, DOI 10.1038/nature10378; McGrath PT, 2009, NEURON, V61, P692, DOI 10.1016/j.neuron.2009.02.012; NEI M, 1975, EVOLUTION, V29, P1, DOI 10.1111/j.1558-5646.1975.tb00807.x; Persson A, 2009, NATURE, V458, P1030, DOI 10.1038/nature07820; Ramot D, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002208; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Roff DA, 2007, NAT REV GENET, V8, P116, DOI 10.1038/nrg2040; Ruthenburg AJ, 2011, CELL, V145, P692, DOI 10.1016/j.cell.2011.03.053; Schafer WF, 2006, ANNU REV GENET, V40, P487, DOI 10.1146/annurev.genet.40.110405.090527; Schultner J, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2090; Shimko TC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111090; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Swan KA, 2002, GENOME RES, V12, P1100, DOI 10.1101/gr.208902; Thompson O, 2013, GENOME RES, V23, P1749, DOI 10.1101/gr.157651.113; TOMLINSON GA, 1962, BIOCHIM BIOPHYS ACTA, V63, P465, DOI 10.1016/0006-3002(62)90109-9; Weber KP, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013922; Wysocka J, 2006, NATURE, V442, P86, DOI 10.1038/nature04815 52 7 8 2 7 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1553-7404 PLOS GENET PLoS Genet. JUL 2016 12 7 e1006219 10.1371/journal.pgen.1006219 19 Genetics & Heredity Genetics & Heredity DS8RI WOS:000381050100059 27467070 DOAJ Gold, Green Published 2019-02-21 J Chen, LJ; Zhu, L; Yang, XN; Lyu, N; Liu, Y; Liang, W; Sun, YH Chen, Lijun; Zhu, Lei; Yang, Xiaonong; Lyu, Nan; Liu, Yang; Liang, Wei; Sun, Yuehua Are egg colors and patterns signs of phylogenetic relatedness in parrotbills? ORNITHOLOGICAL SCIENCE English Article Egg polymorphism; Parrotbill; Phylogenetic relationship signal hypothesis; Phylogenetic tree AVIAN SUPERFAMILY SYLVIOIDEA; LIFE-HISTORY EVOLUTION; SEXUAL SELECTION; EGGSHELL PIGMENTATION; THROATED PARROTBILL; BROOD PARASITISM; BREEDING BIOLOGY; BIRDS; TIMALIIDAE; CHINA Egg colors and patterns have long been of interest for ornithologists and evolutionary biologists, with several hypotheses proposed to explain them. These include: Wallace's hypothesis, the structure hypothesis, the brood parasitism hypothesis and the post-mating sexual selection signal hypothesis. However, none of these are sufficient to elucidate the evolutionary mechanism involved. In this study, egg polymorphism and phylogenetic relationships within the avian family Paradoxornithidae were investigated. When compared with phylogenetic information, we found that egg color matched two size-related clades within the Paradoxornithidae. The larger parrotbills all lay patterned eggs with pale background colors, whereas the smaller parrotbills lay plain pale blue eggs. To our knowledge, this is the first study to detect such a relationship between egg color and pattern and phylogeny in parrotbills, suggesting that they are under strong phylogenetic constraints and can be treated as an important indicator of phylogenetic relationship. [Chen, Lijun; Zhu, Lei; Lyu, Nan; Sun, Yuehua] Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing 100101, Peoples R China; [Chen, Lijun] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Zhu, Lei; Yang, Xiaonong] Chengdu Bird Watching Soc, Chengdu 610041, Peoples R China; [Liu, Yang] Sun Yat Sen Univ, State Key Lab Biocontrol, Guangzhou 510275, Guangdong, Peoples R China; [Liu, Yang] Sun Yat Sen Univ, Coll Ecol & Evolut, Guangzhou 510275, Guangdong, Peoples R China; [Liang, Wei] Hainan Normal Univ, Coll Life Sci, Key Lab Trop Plant & Anim Ecol, Minist Educ, Haikou 571158, Peoples R China Sun, YH (reprint author), Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing 100101, Peoples R China. sunyh@ioz.ac.cn National Natural Science Foundation of China [31301886, 31270468, 31272328, 31472013] We thank the staff of the Wawushan Natural Reserve, Kuankuoshui and Dongzhai National Nature Reserves for their support and field assistance. This study was supported by the National Natural Science Foundation of China (nos. 31301886 to NL, 31270468 to YS, 31272328 and 31472013 to WL). We declare that the authors have no conflicts of interest. Alstrom P, 2006, MOL PHYLOGENET EVOL, V38, P381, DOI 10.1016/j.ympev.2005.05.015; Alstrom Per, 2013, Chinese Birds, V4, P99; Aviles JM, 2006, P ROY SOC B-BIOL SCI, V273, P2821, DOI 10.1098/rspb.2006.3674; Baker E. C. S., 1922, FAUNA BRIT INDIA INC; BERTRAM BCR, 1981, IBIS, V123, P207, DOI 10.1111/j.1474-919X.1981.tb00927.x; BirdLife International, 2012, IUCN RED LIST THREAT; Cassey P, 2012, BIOL J LINN SOC, V106, P657, DOI 10.1111/j.1095-8312.2012.01877.x; Cassey P, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012054; Cherry MI, 2010, BIOL J LINN SOC, V100, P753, DOI 10.1111/j.1095-8312.2010.01457.x; Cibois A, 2003, AUK, V120, P35, DOI 10.1642/0004-8038(2003)120[0035:MDPOBT]2.0.CO;2; Cuthill IC, 2000, ADV STUD BEHAV, V29, P159, DOI 10.1016/S0065-3454(08)60105-9; Davies NB, 2011, J ZOOL, V284, P1, DOI 10.1111/j.1469-7998.2011.00810.x; Dickinson E. C., 2004, HOWARD MOORE COMPLET; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Gill FB., 2007, ORNITHOLOGY; Gosler AG, 2005, ECOL LETT, V8, P1105, DOI 10.1111/j.1461-0248.2005.00816.x; Gosler AG, 2011, AVIAN BIOL RES, V4, P214, DOI 10.3184/175815511X13207833399666; Guo Zong-ming, 2006, Sichuan Journal of Zoology, V25, P858; Hachisuka M., 1951, Quarterly Journal of the Taiwan Museum, V4; Harington H, 1914, IBIS, V56, P1; Heled J, 2010, MOL BIOL EVOL, V27, P570, DOI 10.1093/molbev/msp274; Hu YB, 2014, J NAT HIST, V48, P975, DOI 10.1080/00222933.2013.826829; Hunt DM, 2009, PHILOS T R SOC B, V364, P2941, DOI 10.1098/rstb.2009.0044; Jiang YX, 2009, WILSON J ORNITHOL, V121, P800, DOI 10.1676/08-154.1; Kilner RM, 2006, BIOL REV, V81, P383, DOI 10.1017/S1464793106007044; Kilner RM, 2011, BIOL REV, V86, P836, DOI 10.1111/j.1469-185X.2010.00173.x; Kim CH, 1995, AUK, V112, P831; LACK DAVID, 1958, IBIS, V100, P145; Lee Jin-Won, 2004, Korean Journal of Biological Sciences, V8, P77; Lee Jin-Won, 2012, Chinese Birds, V3, P312; Lee JW, 2010, J ORNITHOL, V151, P483, DOI 10.1007/s10336-009-0484-1; Li Guiyuan, 1993, Sichuan Journal of Zoology, V12, P20; Liu Y, J BIOGEOGR IN PRESS; Luo X, 2009, ZOOL SCR, V38, P9, DOI 10.1111/j.1463-6409.2008.00355.x; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; MONTEVECCHI WA, 1976, BEHAVIOUR, V58, P26, DOI 10.1163/156853976X00226; Moreno J, 2003, ECOL LETT, V6, P803, DOI 10.1046/j.1461-0248.2003.00505.x; Newton A., 1896, DICT BIRDS; Oates W, 1936, FAUNA BRIT INDIA INC; Odeen A, 2003, MOL BIOL EVOL, V20, P855, DOI 10.1093/molbev/msg108; Penhallurick J, 2009, FORKTAIL, P137; Reynolds SJ, 2009, ANIM BEHAV, V78, P209, DOI 10.1016/j.anbehav.2009.03.003; Robson C., 2007, HDB BIRDS WORLD, V12, P292; Soler JJ, 2003, BIOL J LINN SOC, V79, P551, DOI 10.1046/j.1095-8312.2003.00209.x; Soler JJ, 2005, EVOLUTION, V59, P636; Soler JJ, 1996, BEHAV ECOL, V7, P89, DOI 10.1093/beheco/7.1.89; Solomon S.E, 1997, EGG EGGSHELL QUALITY; Stokke BG, 2002, EVOLUTION, V56, P199; Takasu F, 2003, EVOL ECOL RES, V5, P345; Takasu Fugo, 2005, Ornithological Science, V4, P65, DOI 10.2326/osj.4.65; Underwood TJ, 2002, OX ORN SER, V13, P280; Wallace A.R., 1889, DARWINISM EXPOSITION; Walters Michael, 2006, Historical Biology, V18, P145; Weidinger K, 2001, BEHAV ECOL SOCIOBIOL, V49, P456, DOI 10.1007/s002650100324; Yang Can-Chao, 2014, Zoological Research, V35, P70; Yang CC, 2014, ECOL EVOL, V4, P2239, DOI 10.1002/ece3.1096; Yang Canchao, 2013, Chinese Birds, V4, P51; Yang CC, 2011, J NAT HIST, V45, P1817, DOI 10.1080/00222933.2011.560969; Yang CC, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010816; Yang L, 1984, CHIN J ZOOL, V30, P10; Yeung C, 2006, J ORNITHOL, V147, P87; Yeung CKL, 2011, MOL PHYLOGENET EVOL, V61, P192, DOI 10.1016/j.ympev.2011.06.004; Zhao Z, 2001, AVIFAUNA OF CHINA; Zheng G, 2011, CHECKLIST CLASSIFICA; Zheng Z, 1987, FAMILY MUSCICAPIDAE; ZHENG ZX, 1984, ACTA ZOOL SINICA, V30, P278; Zhu L. X., 2014, THESIS 68 2 4 0 11 ORNITHOLOGICAL SOC JAPAN, UNIV TOKYO, SCH AGR TOKYO YAYOI 1-1-1, TOKYO, 113-8657, JAPAN 1347-0558 ORNITHOL SCI Ornithol. Sci. JUL 2016 15 2 119 125 7 Ornithology Zoology DS5MP WOS:000380826600003 2019-02-21 J Ronning, B; Broggi, J; Bech, C; Moe, B; Ringsby, TH; Parn, H; Hagen, IJ; Saether, BE; Jensen, H Ronning, Bernt; Broggi, Juli; Bech, Claus; Moe, Borge; Ringsby, Thor Harald; Parn, Henrik; Hagen, Ingerid J.; Saether, Bernt-Erik; Jensen, Henrik Is basal metabolic rate associated with recruit production and survival in free-living house sparrows? FUNCTIONAL ECOLOGY English Article energetics; evolutionary physiology; fitness; life history traits; Passer domesticus OVER-WINTER SURVIVAL; PASSER-DOMESTICUS; LIFE-HISTORY; ENERGY-EXPENDITURE; BANK VOLES; BODY-MASS; REPRODUCTIVE-PERFORMANCE; INTRASPECIFIC VARIATION; QUANTITATIVE GENETICS; SLOW PACE Life history theory predicts that available energy is limited and needs to be allocated among different processes such as growth, reproduction and self-maintenance. Basal metabolic rate (BMR), a common measure of an animal's maintenance cost, is therefore believed to be a trait of ecological and evolutionary significance. However, although BMR is often assumed to be correlated with fitness, its association with individual variation in fitness in free-living populations is virtually unknown. We examined the relationship between BMR in late winter prior to the breeding season and recruit production (number of offspring recorded the subsequent year), as well as adult survival, in two populations of house sparrow (Passer domesticus) on the islands Leka and Vega in northern Norway. Number of recruits tended to be negatively related to BMR. However, analysing the data for each sex within the two populations revealed that the negative effect of BMR on recruit production was significant only for females in the Vega population. Survival probability was associated with BMR, but the relationship differed both between sexes and populations. In the Leka population, we found evidence for stabilizing selection in the females and disruptive selection in the males. In contrast, there was no effect of BMR on survival in the Vega population. Body mass influenced adult survival, but not recruit production. Furthermore, the relationship between BMR and fitness in females remained significant after controlling for body mass. Thus, the selection on BMR in females was not driven by a BMR-body mass correlation. Basal metabolic rate was significantly related to fitness in both populations. However, the results in the present study show spatial variation as well as sex specific differences in the influence of BMR on fitness in house sparrows. [Ronning, Bernt; Ringsby, Thor Harald; Parn, Henrik; Hagen, Ingerid J.; Saether, Bernt-Erik; Jensen, Henrik] Norwegian Univ Sci & Technol, Ctr Biodivers Dynam, Dept Biol, NO-7491 Trondheim, Norway; [Broggi, Juli] CSIC, Estn Biol Donana, Avda Americo Vespucio S-N, E-41092 Seville, Spain; [Bech, Claus] Norwegian Univ Sci & Technol, Dept Biol, NO-7491 Trondheim, Norway; [Moe, Borge] Norwegian Inst Nat Res, POB 5685 Sluppen, NO-7485 Trondheim, Norway Ronning, B (reprint author), Norwegian Univ Sci & Technol, Ctr Biodivers Dynam, Dept Biol, NO-7491 Trondheim, Norway. bernt.ronning@ntnu.no Moe, Borge/P-2946-2015; Jensen, Henrik/B-5085-2011; Bech, Claus/C-1086-2011; CSIC, EBD Donana/C-4157-2011 Moe, Borge/0000-0002-2306-1899; Jensen, Henrik/0000-0001-7804-1564; Bech, Claus/0000-0002-0860-0663; CSIC, EBD Donana/0000-0003-4318-6602 Research Council of Norway (Storforsk, Strategic University Program (SUP) in Conservation Biology) [204303, 221956]; Ph.D. research grant [159584/V40] We thank O.R. Davidsen and T. Kolaas for their contribution in the field work, and O.R. Davidsen, H. Holand, R. Rosbak and T. Kvalnes for help with the laboratory work. We are also grateful to Z. Boratynski and an anonymous reviewer for helpful comments on the manuscript. Furthermore, we would like to thank the inhabitants and especially the farmers on Leka and Vega, whose hospitality made this study possible. This work was supported by grants from the Research Council of Norway (Storforsk, Strategic University Program (SUP) in Conservation Biology, grant # 204303 to BES, and grant # 221956 to HJ) and Ph.D. research grant # 159584/V40 to BR. The research was carried out in accordance with permits from the Norwegian Animal Research Authority (permit # S-2007/1482) and the Bird Ringing Centre at Stavanger Museum, Norway. Abbott J., 2014, P PEERAGE SCI, V1, pe2; BENNETT AF, 1979, SCIENCE, V206, P649, DOI 10.1126/science.493968; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Blackmer AL, 2005, BEHAV ECOL, V16, P906, DOI 10.1093/beheco/ari069; Boratynski Z, 2010, J EVOLUTION BIOL, V23, P1969, DOI 10.1111/j.1420-9101.2010.02059.x; Boratynski Z, 2013, EVOL ECOL, V27, P301, DOI 10.1007/s10682-012-9590-2; Boratynski Z, 2010, FUNCT ECOL, V24, P1252, DOI 10.1111/j.1365-2435.2010.01764.x; Boratynski Z, 2009, FUNCT ECOL, V23, P330, DOI 10.1111/j.1365-2435.2008.01505.x; Bouwhuis S, 2014, OIKOS, V123, P56, DOI 10.1111/j.1600-0706.2013.00654.x; Bouwhuis S, 2011, FUNCT ECOL, V25, P829, DOI 10.1111/j.1365-2435.2011.01850.x; Broggi J, 2005, EVOLUTION, V59, P1600; Broggi J, 2004, J ANIM ECOL, V73, P967, DOI 10.1111/j.0021-8790.2004.00872.x; Bryant DM, 1997, P NUTR SOC, V56, P1025, DOI 10.1079/PNS19970107; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Bushuev AV, 2011, BIOL B REV, V1, P26; Chappell MA, 1999, J EXP BIOL, V202, P2269; Chastel O, 2003, J AVIAN BIOL, V34, P298, DOI 10.1034/j.1600-048X.2003.02528.x; DAAN S, 1990, AM J PHYSIOL, V259, pR333; DERTING TL, 1989, J MAMMAL, V70, P520, DOI 10.2307/1381424; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Furness RW, 2003, NATURE, V425, P779, DOI 10.1038/425779a; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Grant PR, 2000, P ROY SOC B-BIOL SCI, V267, P131, DOI 10.1098/rspb.2000.0977; HAYES JP, 1995, EVOLUTION, V49, P836, DOI 10.1111/j.1558-5646.1995.tb02320.x; HAYES JP, 1992, FUNCT ECOL, V6, P5, DOI 10.2307/2389765; Hudson J. W., 1996, COMP BIOCH PHYSL, V17, P203; Jackson DM, 2001, J ANIM ECOL, V70, P633, DOI 10.1046/j.1365-2656.2001.00518.x; Jensen H, 2004, J ANIM ECOL, V73, P599, DOI 10.1111/j.0021-8790.2004.00837.x; Jensen H, 2008, EVOLUTION, V62, P1275, DOI 10.1111/j.1558-5646.2008.00395.x; Johnson MS, 2001, J EXP BIOL, V204, P1937; Johnston SL, 2007, J EXP BIOL, V210, P65, DOI 10.1242/jeb.02625; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Ketola T., 2014, P PEERAGE SCI, V1, pe1; Kleiber C, 2008, USE R, P1, DOI 10.1007/978-0-387-77318-6_1; Konarzewski M, 2005, INTEGR COMP BIOL, V45, P416, DOI 10.1093/icb/45.3.416; Konarzewski M, 2013, J COMP PHYSIOL B, V183, P27, DOI 10.1007/s00360-012-0698-z; Ksiek A., 2004, PHYSIOL BIOCHEM ZOOL, V77, P890; Ksiek A., 2007, COMP BIOCH PHYSL A, V148, pS20; Kvalnes T, 2013, OECOLOGIA, V171, P391, DOI 10.1007/s00442-012-2437-2; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Larivee ML, 2010, FUNCT ECOL, V24, P597, DOI 10.1111/j.1365-2435.2009.01680.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Liknes ET, 1996, J AVIAN BIOL, V27, P279, DOI 10.2307/3677259; Lindstrom, 1995, P ROY SOC LOND B BIO, V261, P337; Lynch M, 1998, GENETICS ANAL QUANTI; Maggini I, 2013, J AVIAN BIOL, V44, P479, DOI 10.1111/j.1600-048X.2013.05869.x; Mathot KJ, 2013, HEREDITY, V111, P175, DOI 10.1038/hdy.2013.35; Mathot KJ, 2009, OIKOS, V118, P545, DOI 10.1111/j.1600-0706.2009.17357.x; McNab B.K., 2002, PHYSL ECOLOGY VERTEB; Nespolo RF, 2007, J EXP BIOL, V210, P2000, DOI 10.1242/jeb.02780; Nilsson JA, 2009, J EVOLUTION BIOL, V22, P1867, DOI 10.1111/j.1420-9101.2009.01798.x; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; Page AJ, 2011, J COMP PHYSIOL B, V181, P657, DOI 10.1007/s00360-011-0551-9; R Development Core Team, 2013, R LANG ENV STAT COMP; Ricklefs RE, 1996, AM NAT, V147, P1047, DOI 10.1086/285892; Roff Derek A., 1992; Ronning B, 2007, J EVOLUTION BIOL, V20, P1815, DOI 10.1111/j.1420-9101.2007.01384.x; Sadowska ET, 2005, EVOLUTION, V59, P672; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sichova K, 2014, ANIM BEHAV, V92, P229, DOI 10.1016/j.anbehav.2014.04.011; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Stearns S, 1992, EVOLUTION LIFE HIST; Tieleman BI, 2009, J ZOOL, V279, P129, DOI 10.1111/j.1469-7998.2009.00597.x; Venables WN, 2002, MODERN APPL STAT S; White CR, 2013, J COMP PHYSIOL B, V183, P1, DOI 10.1007/s00360-012-0676-5; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Williams JB, 2010, INTEGR COMP BIOL, V50, P855, DOI 10.1093/icb/icq024; Withers PC, 2001, AUST J ZOOL, V49, P445, DOI 10.1071/ZO00057; Wone B, 2009, P R SOC B, V276, P3695, DOI 10.1098/rspb.2009.0980 70 7 7 3 36 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JUL 2016 30 7 1140 1148 10.1111/1365-2435.12597 9 Ecology Environmental Sciences & Ecology DR5YK WOS:000379978100013 Bronze 2019-02-21 J Losdat, S; Arcese, P; Sampson, L; Villar, N; Reid, JM Losdat, Sylvain; Arcese, Peter; Sampson, Laura; Villar, Nacho; Reid, Jane M. Additive genetic variance and effects of inbreeding, sex and age on heterophil to lymphocyte ratio in song sparrows FUNCTIONAL ECOLOGY English Article animal model; H:L ratio; heritability; inbreeding; physiological trait; stress levels HUMORAL IMMUNE-RESPONSE; EXTRA-PAIR REPRODUCTION; WILD BIRD POPULATION; TITS PARUS-MAJOR; MELOSPIZA-MELODIA; LIFE-HISTORY; OXIDATIVE STRESS; HETEROPHIL/LYMPHOCYTE RATIOS; PHYSIOLOGICAL STRESS; ENVIRONMENTAL-STRESS Physiological traits can influence individual fitness and evolutionary changes in stress-related physiological traits have been hypothesized to mediate the evolution of life-history traits and trade-offs. The hypothesis that such physiological variation could drive ongoing life-history evolution requires non-zero additive genetic variance in individual stress-related physiological traits. However, the magnitude of genetic and environmental components of phenotypic variation in stress-related physiological traits has not been estimated in fully developed vertebrates under natural environmental conditions. We used 490 observations of heterophil to lymphocyte (H:L) ratio, one stress-related physiological trait, collected from 350 fully developed song sparrows (Melospiza melodia) across nine different sampling periods to estimate direct and interacting effects of individual and parental coefficients of inbreeding (f), sampling period, age and sex, and to estimate additive genetic variance and heritability. Across all nine sampling periods combined, H:L ratio increased with individual f. However, there was a significant individual f by period interaction whereby H:L ratio increased with individual f in two of the nine sampling periods, hence indicating inbreeding depression. H:L ratio was higher (suggesting an increase in baseline stress level) in older individuals, did not differ between males and females and did not vary with parental f. A quantitative genetic animal model' estimated low additive genetic variance in individual H:L ratio. The estimated heritability was h(2)=004 and did not differ significantly from zero. Overall, these results imply that the magnitude of inbreeding depression, as measured through H:L ratio, varies with environmental conditions. In contrast, the low estimated heritability implies relatively low potential for H:L ratio to show an evolutionary response to selection, or hence to mediate the evolution of life-history trade-offs. [Losdat, Sylvain; Villar, Nacho; Reid, Jane M.] Univ Aberdeen, Sch Biol Sci, Inst Biol & Environm Sci, Tillydrone Ave,Zool Bldg, Aberdeen AB24 2TZ, Scotland; [Losdat, Sylvain] Univ Bern, Inst Ecol & Evolut, Baltzerstr 6, CH-3012 Bern, Switzerland; [Arcese, Peter] Univ British Columbia, Dept Forest & Conservat Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; [Sampson, Laura] Univ Valle, Grp Invest Ecol Anim, Calle 13 N 100-00, Cali, Colombia Losdat, S (reprint author), Univ Aberdeen, Sch Biol Sci, Inst Biol & Environm Sci, Tillydrone Ave,Zool Bldg, Aberdeen AB24 2TZ, Scotland.; Losdat, S (reprint author), Univ Bern, Inst Ecol & Evolut, Baltzerstr 6, CH-3012 Bern, Switzerland. s.losdat@gmail.com Villar, Nacho/E-8670-2011 Villar, Nacho/0000-0003-3609-4080 Marie Curie Actions; UK Royal Society; Swiss National Science Foundation; Killam Trusts; British Ecological Society; Jesus College Cambridge; Natural Sciences and Engineering Research Council of Canada We thank the Tsawout and Tseycum first nations bands for allowing access to Mandarte, everyone who contributed to long-term field data collection, Rebecca Sardell, Amy Hall, Kyle Elliott and Dawn Cooper for field and/or lab assistance, Ryan Germain, Brad Duthie, Matthew Wolak, Lukas Keller and Pirmin Nietlisbach, for constructive comments on manuscript drafts, and Marie Curie Actions, UK Royal Society, Swiss National Science Foundation, Killam Trusts, British Ecological Society, Jesus College Cambridge and the Natural Sciences and Engineering Research Council of Canada for funding. Armbruster P, 2005, HEREDITY, V95, P235, DOI 10.1038/sj.hdy.6800721; Banbura J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074226; Bates D., 2008, THE LME4 PACKAGE; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Brzeski KE, 2014, MOL ECOL, V23, P4241, DOI 10.1111/mec.12871; Butler D., 2007, ASREML S REFERENCE M; Campbell T. W., 1995, AVIAN HEMATOLOGY CYT; Casagrande S, 2012, BEHAV ECOL SOCIOBIOL, V66, P1319, DOI 10.1007/s00265-012-1387-3; CHARLESWORTH D, 1987, ANNU REV ECOL SYST, V18, P237, DOI 10.1146/annurev.es.18.110187.001321; Charlesworth D, 2009, NAT REV GENET, V10, P783, DOI 10.1038/nrg2664; Charmantier A, 2006, P ROY SOC B-BIOL SCI, V273, P225, DOI 10.1098/rspb.2005.3294; Cheptou PO, 2011, NEW PHYTOL, V189, P395, DOI 10.1111/j.1469-8137.2010.03541.x; Cichon M, 2003, J EVOLUTION BIOL, V16, P1205, DOI 10.1046/j.1420-9101.2003.00611.x; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Costantini D, 2014, OXIDATIVE STRESS HOR; Costantini D, 2006, J COMP PHYSIOL B, V176, P575, DOI 10.1007/s00360-006-0080-0; Cote J, 2010, J EXP BIOL, V213, P271, DOI 10.1242/jeb.035188; Creel S, 2013, FUNCT ECOL, V27, P66, DOI 10.1111/j.1365-2435.2012.02029.x; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; Crnokrak P, 1999, HEREDITY, V83, P260, DOI 10.1038/sj.hdy.6885530; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Davis AK, 2005, J FIELD ORNITHOL, V76, P334, DOI 10.1648/0273-8570-76.4.334; Elliott K. H., 2014, FUNCTIONAL ECOLOGY, V29, P219; Evans MR, 2006, J EVOLUTION BIOL, V19, P343, DOI 10.1111/j.1420-9101.2005.01034.x; Evans SR, 2013, J ANIM ECOL, V82, P418, DOI 10.1111/1365-2656.12008; Fitzpatrick JL, 2009, BIOL LETTERS, V5, P320, DOI 10.1098/rsbl.2008.0734; Fox CW, 2011, EVOLUTION, V65, P246, DOI 10.1111/j.1558-5646.2010.01108.x; Goessling JM, 2015, FUNCT ECOL, V29, P1189, DOI 10.1111/1365-2435.12442; GROSS WB, 1983, AVIAN DIS, V27, P972, DOI 10.2307/1590198; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; Harmon BG, 1998, POULTRY SCI, V77, P972, DOI 10.1093/ps/77.7.972; Harris A, 2011, HORM BEHAV, V59, P279, DOI 10.1016/j.yhbeh.2010.06.007; Hoeck PEA, 2009, MOL ECOL RESOUR, V9, P1538, DOI 10.1111/j.1755-0998.2009.02704.x; HOULE D, 1992, GENETICS, V130, P195; Isaksson C, 2013, ECOL EVOL, V3, P2730, DOI 10.1002/ece3.663; Jenkins BR, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1302; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Keller LF, 2002, TRENDS ECOL EVOL, V17, P230, DOI 10.1016/S0169-5347(02)02489-8; Keller LF, 1998, EVOLUTION, V52, P240, DOI 10.1111/j.1558-5646.1998.tb05157.x; Keller LF, 2002, EVOLUTION, V56, P1229, DOI 10.1111/j.0014-3820.2002.tb01434.x; Kenney J, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3337; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; Kim SY, 2010, J EVOLUTION BIOL, V23, P769, DOI 10.1111/j.1420-9101.2010.01942.x; Krams I, 2012, COMP BIOCHEM PHYS A, V161, P422, DOI 10.1016/j.cbpa.2011.12.018; Kristensen TN, 2002, EVOL ECOL RES, V4, P1209; Kruuk LEB, 2007, J EVOLUTION BIOL, V20, P1890, DOI 10.1111/j.1420-9101.2007.01377.x; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Lecomte VJ, 2010, P NATL ACAD SCI USA, V107, P6370, DOI 10.1073/pnas.0911181107; Lobato E, 2005, ECOSCIENCE, V12, P27, DOI 10.2980/i1195-6860-12-1-27.1; Losdat S, 2014, J EVOLUTION BIOL, V27, P1990, DOI 10.1111/jeb.12454; Losdat S, 2014, J EVOLUTION BIOL, V27, P992, DOI 10.1111/jeb.12403; Losdat S., 2015, DRYAD DIGITAL REPOSI; Lynch M, 1998, GENETICS ANAL QUANTI; Mariette M, 2006, ETHOLOGY, V112, P807, DOI 10.1111/j.1439-0310.2006.01236.x; Marr AB, 2006, J ANIM ECOL, V75, P1406, DOI 10.1111/j.1365-2656.2006.01165.x; Mattey SN, 2013, J EVOLUTION BIOL, V26, P843, DOI 10.1111/jeb.12102; Merila J, 2001, CURR ORNITHOL, V16, P179; Moe B, 2009, BIOL LETTERS, V5, P86, DOI 10.1098/rsbl.2008.0481; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Moreno J, 2002, ECOSCIENCE, V9, P434, DOI 10.1080/11956860.2002.11682731; Mueller C, 2011, FUNCT ECOL, V25, P566, DOI 10.1111/j.1365-2435.2010.01816.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nietlisbach P, 2015, MOL ECOL RESOUR, V15, P1486, DOI 10.1111/1755-0998.12414; Nisbet ICT, 1999, GEN COMP ENDOCR, V114, P279, DOI 10.1006/gcen.1999.7255; Nunn CL, 2009, PHILOS T R SOC B, V364, P61, DOI 10.1098/rstb.2008.0148; Odeh FM, 2003, POULTRY SCI, V82, P31, DOI 10.1093/ps/82.1.31; Palacios MG, 2007, P ROY SOC B-BIOL SCI, V274, P951, DOI 10.1098/rspb.2006.0192; Pedersen KS, 2005, J EVOLUTION BIOL, V18, P756, DOI 10.1111/j.1420-9101.2005.00884.x; Pfaff JA, 2007, P R SOC B, V274, P2035, DOI 10.1098/rspb.2007.0170; Pinheiro J, 2011, NLME LINEAR NONLINEA; Postma E, 2011, P ROY SOC B-BIOL SCI, V278, P2996, DOI 10.1098/rspb.2010.2763; R Core Team, 2013, R LANG ENV STAT COMP; Reid JM, 2014, J EVOLUTION BIOL, V27, P2046, DOI 10.1111/jeb.12445; Reid JM, 2007, P R SOC B, V274, P697, DOI 10.1098/rspb.2006.0092; Reid JM, 2006, AM NAT, V168, P1, DOI 10.1086/504852; Reid JM, 2015, EVOLUTION, V69, P59, DOI 10.1111/evo.12557; Reid JM, 2014, EVOLUTION, V68, P2357, DOI 10.1111/evo.12424; Reid JM, 2003, P ROY SOC B-BIOL SCI, V270, P2151, DOI 10.1098/rspb.2003.2480; Ricklefs RE, 2008, FUNCT ECOL, V22, P379, DOI 10.1111/j.1365-2435.2008.01420.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Saino N, 2003, J EVOLUTION BIOL, V16, P1127, DOI 10.1046/j.1420-9101.2003.00616.x; Sardell RJ, 2010, MOL ECOL, V19, P4352, DOI 10.1111/j.1365-294X.2010.04805.x; Smith J., 2006, CONSERVATION BIOL SM; Stowe M, 2010, HORM BEHAV, V58, P864, DOI 10.1016/j.yhbeh.2010.08.011; Tobler M, 2011, BIOL LETTERS, V7, P906, DOI 10.1098/rsbl.2011.0350; Townsend AK, 2009, P ROY SOC B-BIOL SCI, V276, P2057, DOI 10.1098/rspb.2008.1852; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Verhulst S, 2006, BIOL LETT-UK, V2, P478, DOI 10.1098/rsbl.2006.0496; Waller DM, 2008, EVOLUTION, V62, P917, DOI 10.1111/j.1558-5646.2008.00325.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams T. D., 2012, PHYSL ADAPTATIONS BR; Yun L, 2014, EVOLUTION, V68, P3599, DOI 10.1111/evo.12527; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; ZINSMEISTER VAP, 1987, J WILDLIFE DIS, V23, P521, DOI 10.7589/0090-3558-23.3.521 96 3 3 2 30 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JUL 2016 30 7 1185 1195 10.1111/1365-2435.12586 11 Ecology Environmental Sciences & Ecology DR5YK WOS:000379978100018 Bronze 2019-02-21 J Fazlioglu, F; Al-Namazi, A; Bonser, SP Fazlioglu, Fatih; Al-Namazi, Ali; Bonser, Stephen P. Reproductive efficiency and shade avoidance plasticity under simulated competition ECOLOGY AND EVOLUTION English Article Phenotypic plasticity; plant reproduction; shade avoidance; simulated competition PLANT STRATEGY THEORY; IMPATIENS-CAPENSIS; TRIFOLIUM-REPENS; DEPENDENT SELECTION; MECHANICAL-STRESS; LIGHT QUALITY; GROWTH; POPULATIONS; MORPHOLOGY; NEIGHBORS Plant strategy and life-history theories make different predictions about reproductive efficiency under competition. While strategy theory suggests under intense competition iteroparous perennial plants delay reproduction and semelparous annuals reproduce quickly, life-history theory predicts both annual and perennial plants increase resource allocation to reproduction under intense competition. We tested (1) how simulated competition influences reproductive efficiency and competitive ability (CA) of different plant life histories and growth forms; (2) whether life history or growth form is associated with CA; (3) whether shade avoidance plasticity is connected to reproductive efficiency under simulated competition. We examined plastic responses of 11 herbaceous species representing different life histories and growth forms to simulated competition (spectral shade). We found that both annual and perennial plants invested more to reproduction under simulated competition in accordance with life-history theory predictions. There was no significant difference between competitive abilities of different life histories, but across growth forms, erect species expressed greater CA (in terms of leaf number) than other growth forms. We also found that shade avoidance plasticity can increase the reproductive efficiency by capitalizing on the early life resource acquisition and conversion of these resources into reproduction. Therefore, we suggest that a reassessment of the interpretation of shade avoidance plasticity is necessary by revealing its role in reproduction, not only in competition of plants. [Fazlioglu, Fatih; Al-Namazi, Ali; Bonser, Stephen P.] UNSW Australia, Evolut & Ecol Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia Bonser, SP (reprint author), UNSW Australia, Evolut & Ecol Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia. s.bonser@unsw.edu.au Fazlioglu, Fatih/A-4824-2018 Fazlioglu, Fatih/0000-0002-4723-3640; Bonser, Stephen/0000-0002-6608-9912 Anten NPR, 2009, AM NAT, V173, P241, DOI 10.1086/595761; Anten NPR, 2005, AM NAT, V166, P650, DOI 10.1086/497442; BALLARE CL, 1990, SCIENCE, V247, P329, DOI 10.1126/science.247.4940.329; Bell G., 1976, AM NAT, V110, P55; Bittebiere AK, 2012, AM J BOT, V99, P646, DOI 10.3732/ajb.1100487; Bonser SP, 2005, J EVOLUTION BIOL, V18, P1009, DOI 10.1111/j.1420-9101.2005.00904.x; Bonser SP, 2013, FUNCT ECOL, V27, P876, DOI 10.1111/1365-2435.12064; Bonser SP, 2011, PLANT ECOL, V212, P1441, DOI 10.1007/s11258-011-9919-x; Bonser SP, 2009, PERSPECT PLANT ECOL, V11, P31, DOI 10.1016/j.ppees.2008.10.003; Brainard DC, 2005, WEED SCI, V53, P175, DOI 10.1614/WS-04-067R1; Brown JR, 1998, J VEG SCI, V9, P829, DOI 10.2307/3237048; Callahan HS, 2002, ECOLOGY, V83, P1965, DOI 10.1890/0012-9658(2002)083[1965:SIPAIE]2.0.CO;2; CAMPBELL BD, 1992, ECOLOGY, V73, P15, DOI 10.2307/1938717; Donohue K, 2000, EVOLUTION, V54, P1956; Dudley SA, 1996, AM NAT, V147, P445, DOI 10.1086/285860; Friedman J., 2015, AM J BOT, V2, P1; Fynn RWS, 2005, J ECOL, V93, P384, DOI [10.1111/j.0022-0477.2005.00993.x, 10.1111/j.1365-2745.2005.00993.x]; GOLDBERG DE, 1991, J ECOL, V79, P1013, DOI 10.2307/2261095; GOLDBERG DE, 1992, AM NAT, V139, P771, DOI 10.1086/285357; Griffith TM, 2005, J EVOLUTION BIOL, V18, P1601, DOI 10.1111/j.1420-9101.2005.01021.x; Grime J. P, 1979, PLANT STRATEGIES VEG; Haag JJ, 2004, J ECOL, V92, P156, DOI 10.1111/j.1365-2745.2004.00847.x; Huber H, 1996, FUNCT ECOL, V10, P401, DOI 10.2307/2390290; Huber H, 2004, AM NAT, V163, P548, DOI 10.1086/382549; Huber H, 1998, OIKOS, V81, P576, DOI 10.2307/3546778; Huber H, 1997, PLANT ECOL, V130, P53, DOI 10.1023/A:1009702611270; Kegge desWit M. W., 2012, P NATL ACAD SCI USA, V109, P14705; Leeflang L, 1999, PLANT ECOL, V141, P59, DOI 10.1023/A:1009897031525; MAC ARTHUR ROBERT H., 1967; MAHMOUD A, 1976, NEW PHYTOL, V77, P431, DOI 10.1111/j.1469-8137.1976.tb01532.x; Mahoney KJ, 2008, WEED RES, V48, P552, DOI 10.1111/j.1365-3180.2008.00652.x; Marcuvitz S, 2000, OECOLOGIA, V125, P293, DOI 10.1007/s004420000453; Nicotra AB, 2010, TRENDS PLANT SCI, V15, P684, DOI 10.1016/j.tplants.2010.09.008; NOVOPLANSKY A, 1990, OECOLOGIA, V82, P490, DOI 10.1007/BF00319791; Oksanen L, 2006, OIKOS, V112, P149, DOI 10.1111/j.0030-1299.2006.13379.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Riley JM, 1987, CALIFORNIA RARE FRUI, V19, P10; Santos-del-Blanco L, 2013, J EVOLUTION BIOL, V26, P1912, DOI 10.1111/jeb.12187; Schmitt J, 1997, PLANT CELL ENVIRON, V20, P826, DOI 10.1046/j.1365-3040.1997.d01-96.x; Sih Andrew, 2004, P112; Smith H, 2000, NATURE, V407, P585, DOI 10.1038/35036500; Stearns S, 1992, EVOLUTION LIFE HIST; Stuefer JF, 1998, OECOLOGIA, V117, P1, DOI 10.1007/s004420050624; TAYLOR DR, 1990, OIKOS, V58, P239, DOI 10.2307/3545432; Tilman D, 1988, PLANT STRATEGIES DYN; Tracey AJ, 2011, J PLANT ECOL-UK, V4, P115, DOI 10.1093/jpe/rtr008; TURKINGTON R, 1993, ECOLOGY, V74, P863, DOI 10.2307/1940812; UNGAR IA, 1992, INT J PLANT SCI, V153, P421, DOI 10.1086/297047; Valladares F, 2000, ECOLOGY, V81, P1925, DOI 10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2; Wang P, 2014, J ECOL, V102, P1688, DOI 10.1111/1365-2745.12313; Weigelt A, 2005, PLANT ECOL, V176, P57, DOI 10.1007/s11258-004-0016-2; Weijschede J, 2006, NEW PHYTOL, V172, P655, DOI 10.1111/j.1469-8137.2006.01885.x; Weiner J, 2004, PERSPECT PLANT ECOL, V6, P207, DOI 10.1078/1433-8319-00083; WEINER J, 1990, TRENDS ECOL EVOL, V5, P360, DOI 10.1016/0169-5347(90)90095-U; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913 55 3 3 1 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JUL 2016 6 14 4947 4957 10.1002/ece3.2254 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DR6TE WOS:000380033400026 27547325 DOAJ Gold, Green Published 2019-02-21 J Tran, TT; Janssens, L; Dinh, KV; de Beeck, LO; Stoks, R Tran, Tam T.; Janssens, Lizanne; Dinh, Khuong V.; de Beeck, Lin Op; Stoks, Robby Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes EVOLUTIONARY APPLICATIONS English Article biological control; climate change; contaminants; Ischnura elegans; latitudinal gradient; life history evolution; range shifts; thermal evolution LIFE-HISTORY TRAITS; CLIMATE-CHANGE; BIOLOGICAL-CONTROL; LOCAL ADAPTATION; TEMPERATURE; RESPONSES; ENDOSULFAN; TADPOLES; VULNERABILITY; PATTERNS How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4 degrees C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low-and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward. [Tran, Tam T.; Dinh, Khuong V.] Nha Trang Univ, Inst Aquaculture, 2 Nguyen Dinh Chieu St, Nha Trang, Vietnam; [Tran, Tam T.; Janssens, Lizanne; de Beeck, Lin Op; Stoks, Robby] Univ Leuven, Lab Aquat Ecol Evolut & Conservat, Leuven, Belgium; [Dinh, Khuong V.] Tech Univ Denmark, Natl Inst Aquat Resources, Copenhagen, Denmark Tran, TT (reprint author), Nha Trang Univ, Inst Aquaculture, 2 Nguyen Dinh Chieu St, Nha Trang, Vietnam. thanhtam.ntu.edu@gmail.com Tran, Thanh Tam/0000-0002-7919-7189 Belspo project SPEEDY; KU Leuven Excellence Centre Financing [PF/2010/07]; FWO [G.0943.15] We thank Jeremias Becker and Matthias Liess for providing mosquito eggs, Frank Johansson and Ulf Norling for providing the Swedish damselfly eggs, Kent Olsen and Nicolas Bell for providing the Danish damselfly eggs, Philippe Lambret, Sarah Oexle and Vincent Lemoine for providing the French damselfly eggs. Lieven Therry assisted with running the Flake model. TTT is an IRO PhD Fellow, LJ is a postdoctoral Fellow of FWO-Flanders, KVD is a postdoctoral Fellow of H.C. Orsted, Technical University of Denmark and LODB is a PhD Fellow of IWT-Flanders. Financial support came from the Belspo project SPEEDY, KU Leuven Excellence Centre Financing PF/2010/07 and FWO research grant G.0943.15. Becker N, 2010, MOSQUITOES AND THEIR CONTROL, SECOND EDITION, P3, DOI 10.1007/978-3-540-92874-4_1; Brooks AC, 2009, ENVIRON TOXICOL CHEM, V28, P2449, DOI 10.1897/09-108.1; Broomhall S, 2002, AQUAT TOXICOL, V61, P243, DOI 10.1016/S0166-445X(02)00061-9; Broomhall SD, 2004, J APPL ECOL, V41, P105, DOI 10.1111/j.1365-2664.2004.00883.x; Brunelli E, 2009, AQUAT TOXICOL, V91, P135, DOI 10.1016/j.aquatox.2008.09.006; Calamari D, 1994, REV POLLUTION AFRICA; Campero M, 2007, ECOL APPL, V17, P2111, DOI 10.1890/07-0442.1; Ciota AT, 2014, J MED ENTOMOL, V51, P55, DOI 10.1603/ME13003; Congdon JD, 2001, ENVIRON TOXICOL CHEM, V20, P1698, DOI 10.1897/1551-5028(2001)020<1698:RABLHA>2.0.CO;2; De Block M, 2013, GLOBAL CHANGE BIOL, V19, P689, DOI 10.1111/gcb.12089; De Frenne P, 2013, J ECOL, V101, P784, DOI 10.1111/1365-2745.12074; Declerck S, 2006, BIOL CONSERV, V131, P523, DOI 10.1016/j.biocon.2006.02.024; Dinh Van K., 2013, GLOBAL CHANGE BIOL, V19, P2625; Elmendorf SC, 2015, P NATL ACAD SCI USA, V112, P448, DOI 10.1073/pnas.1410088112; Englert D, 2012, ENVIRON POLLUT, V167, P41, DOI 10.1016/j.envpol.2012.03.024; Farajollahi A, 2011, INFECT GENET EVOL, V11, P1577, DOI 10.1016/j.meegid.2011.08.013; Fleeger JW, 2003, SCI TOTAL ENVIRON, V317, P207, DOI 10.1016/S0048-9697(03)00141-4; Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x; Fukami T, 2005, P ROY SOC B-BIOL SCI, V272, P2105, DOI 10.1098/rspb.2005.3277; Gilman SE, 2010, TRENDS ECOL EVOL, V25, P325, DOI 10.1016/j.tree.2010.03.002; Gimonneau G, 2012, PARASITE VECTOR, V5, DOI 10.1186/1756-3305-5-65; Gosden TP, 2011, BIOL J LINN SOC, V102, P775, DOI 10.1111/j.1095-8312.2011.01619.x; Grigaltchik VS, 2012, P ROY SOC B-BIOL SCI, V279, P4058, DOI 10.1098/rspb.2012.1277; Hayden MT, 2015, ECOSPHERE, V6, DOI 10.1890/ES14-00461.1; Hickling R, 2006, GLOBAL CHANGE BIOL, V12, P450, DOI 10.1111/j.1365-2486.2006.01116.x; Janssens L, 2014, EVOL APPL, V7, P421, DOI 10.1111/eva.12141; Janssens L, 2012, AQUAT TOXICOL, V110, P91, DOI 10.1016/j.aquatox.2011.12.019; Johansson H, 2013, ECOGRAPHY, V36, P744, DOI 10.1111/j.1600-0587.2012.00064.x; Junges CM, 2012, CHEMOSPHERE, V87, P1348, DOI 10.1016/j.chemosphere.2012.02.026; Junges CM, 2010, CHEMOSPHERE, V81, P1233, DOI 10.1016/j.chemosphere.2010.09.035; Kamareddine L, 2012, TOXINS, V4, P748, DOI 10.3390/toxins4090748; Kattwinkel M, 2011, ECOL APPL, V21, P2068, DOI 10.1890/10-1993.1; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Kesavaraju B, 2010, ANN ENTOMOL SOC AM, V103, P1038, DOI 10.1603/AN10007; Kirillin G, 2011, ENVIRON MODELL SOFTW, V26, P683, DOI 10.1016/j.envsoft.2010.12.004; Klecka J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037741; Kovats RS, 2001, PHILOS T ROY SOC B, V356, P1057, DOI 10.1098/rstb2001.0894; Mandal SK, 2008, ACTA TROP, V106, P109, DOI 10.1016/j.actatropica.2008.02.002; McClure CD, 2014, EVOLUTION, V68, P2225, DOI 10.1111/evo.12453; MENGE BA, 1990, TRENDS ECOL EVOL, V5, P52, DOI 10.1016/0169-5347(90)90048-I; Merila J, 2014, EVOL APPL, V7, P1, DOI 10.1111/eva.12137; Millennium Ecosystem Assessment, 2005, EC HUM WELL BEING BI; Miller LP, 2014, GLOBAL CHANGE BIOL, V20, P3834, DOI 10.1111/gcb.12639; Moe SJ, 2013, ENVIRON TOXICOL CHEM, V32, P49, DOI 10.1002/etc.2045; Parham PE, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2013.0551; Rall BC, 2010, GLOBAL CHANGE BIOL, V16, P2145, DOI 10.1111/j.1365-2486.2009.02124.x; Ramasamy R, 2012, FRONT PHYSIOL, V3, DOI 10.3389/fphys.2012.00198; Rasmussen JJ, 2013, AQUAT TOXICOL, V140, P340, DOI 10.1016/j.aquatox.2013.06.019; Reynaldi S, 2011, AQUAT TOXICOL, V104, P56, DOI 10.1016/j.aquatox.2011.03.017; Roderick GK, 2012, EVOL APPL, V5, P419, DOI 10.1111/j.1752-4571.2012.00281.x; Schmitz OJ, 2014, BIOL CONTROL, V75, P87, DOI 10.1016/j.biocontrol.2013.10.001; Schulz R, 2001, ENVIRON TOXICOL CHEM, V20, P2537, DOI 10.1897/1551-5028(2001)020<2537:CEOPFA>2.0.CO;2; Seebacher F, 2015, NAT CLIM CHANGE, V5, P61, DOI 10.1038/NCLIMATE2457; Seiter S, 2013, J EVOLUTION BIOL, V26, P1634, DOI 10.1111/jeb.12159; Sentis A, 2015, GLOBAL CHANGE BIOL, V21, P3290, DOI 10.1111/gcb.12931; Shama LNS, 2011, MOL ECOL, V20, P2929, DOI 10.1111/j.1365-294X.2011.05156.x; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; SRIVASTAVA V, 1981, TOXICOL LETT, V7, P475, DOI 10.1016/0378-4274(81)90096-5; Stocker T. F., 2013, CLIMATE CHANGE 2013, P3, DOI DOI 10.1017/CBO9781107415324; Stoks R, 2014, EVOL APPL, V7, P42, DOI 10.1111/eva.12108; Stoks R, 2012, J ANIM ECOL, V81, P1034, DOI 10.1111/j.1365-2656.2012.01987.x; Trekels H, 2013, AQUAT TOXICOL, V138, P116, DOI 10.1016/j.aquatox.2013.04.008; Van Dinh K, 2014, AQUAT TOXICOL, V152, P215, DOI [10.1016/j.aquatox.2014.04.011, DOI 10.1016/J.AQUATOX.2014.04.011]; VANDINH K, 2014, J APPL ECOLOGY, V0051; Zarnetske PL, 2012, SCIENCE, V336, P1516, DOI 10.1126/science.1222732 65 8 8 3 41 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. JUL 2016 9 6 818 830 10.1111/eva.12390 13 Evolutionary Biology Evolutionary Biology DR5GQ WOS:000379931900007 27330557 DOAJ Gold, Green Published 2019-02-21 J Kennamer, RA; Hepp, GR; Alexander, BW Kennamer, Robert A.; Hepp, Gary R.; Alexander, Bradley W. Effects of current reproductive success and individual heterogeneity on survival and future reproductive success of female Wood Ducks AUK English Article life history tradeoffs; capture-mark-recapture; apparent survival; reproductive success; female quality; Aix sponsa PRAIRIE POTHOLE REGION; BREEDING-SEASON SURVIVAL; AMERICAN BLACK DUCKS; BODY CONDITION; NEST SUCCESS; AIX-SPONSA; PREDATOR REDUCTION; HABITAT CONDITIONS; CAPTURE-RECAPTURE; MALLARD FEMALES Estimates of vital rates and their sources of variation are necessary to understand the population dynamics of any organism. These data have been used to test predictions of life history theory as well as to guide decisions of wildlife managers and conservation biologists. Life history theory predicts tradeoffs among life history traits, such that current reproductive effort will be negatively correlated with survival and/or future reproduction. Many studies support this prediction, but others report positive covariation between fitness traits, and attribute positive correlations to differences in individual quality. In this study, we used 11 yr of capture-mark-recapture data of breeding female Wood Ducks (Aix sponsa), along with their breeding histories, to examine sources of variation in annual survival rates and to assess the impact of current reproductive success on probabilities of survival and future reproductive success. Cormack-Jolly-Seber models indicated that apparent survival of female Wood Ducks did not vary annually and was only weakly affected by age class and breeding habitat conditions, but that there was a strong positive relationship between survival and the number of successful nests (0, 1, or 2). Next, we used a multistate analysis to examine the importance of female nest fate (successful or failed) on the probability of surviving and of nesting successfully the next year. Early incubation body mass was used to assess the nutritional status and quality of females. Females that nested successfully in year t were not less likely to nest successfully in year t + 1 than females that had nested unsuccessfully in year t. We also found strong positive covariation between nest success in year t and the probability of surviving. However, being in relatively good or poor condition had no effect on these relationships. Our results are consistent with the idea that female quality is heterogeneous, but body mass was not a good proxy of quality. Therefore, the existence of tradeoffs between female reproductive success and survival or future reproduction was less clear because of our inability to identify and control for differences in female quality. [Kennamer, Robert A.] Savannah River Ecol Lab, Aiken, SC 29831 USA; [Hepp, Gary R.; Alexander, Bradley W.] Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA Kennamer, RA (reprint author), Savannah River Ecol Lab, Aiken, SC 29831 USA.; Hepp, GR (reprint author), Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA. rkennamer@srel.uga.edu; heppgar@auburn.edu Department of Energy Office of Environmental Management [DE-FC09-07SR22506]; Alabama Agricultural Experiment Station Funding statement: Financial support was provided by the Department of Energy Office of Environmental Management under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation, and the Alabama Agricultural Experiment Station to G.R.H. Neither of the funders had any input into the content of the manuscript, nor required approval prior to submission or publication. Amundson CL, 2013, J WILDLIFE MANAGE, V77, P143, DOI 10.1002/jwmg.438; Arnold TW, 2012, WILDLIFE SOC B, V36, P286, DOI 10.1002/wsb.134; Arnold TW, 2012, AVIAN CONSERV ECOL, V7, DOI 10.5751/ACE-00504-070101; Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; Arnold TW, 1996, J WILDLIFE MANAGE, V60, P560, DOI 10.2307/3802073; Baldassarre GA, 2006, WATERFOWL ECOLOGY MA; Beauchamp WD, 1996, J WILDLIFE MANAGE, V60, P247, DOI 10.2307/3802222; Beissinger S. R., 2006, ORNITHOLOGICAL MONOG, V59; Bellrose F. C., 1994, ECOLOGY MANAGEMENT W; BERGAN JF, 1993, J WILDLIFE MANAGE, V57, P570, DOI 10.2307/3809284; Bergeron P, 2011, J ANIM ECOL, V80, P361, DOI 10.1111/j.1365-2656.2010.01770.x; Blomberg EJ, 2013, J AVIAN BIOL, V44, P149, DOI 10.1111/j.1600-048X.2012.00013.x; Blums P, 2005, OECOLOGIA, V143, P365, DOI 10.1007/s00442-004-1794-x; Blums P, 1996, CONDOR, V98, P61, DOI 10.2307/1369509; Blums P, 2004, OECOLOGIA, V140, P61, DOI 10.1007/s00442-004-1573-8; Boulton RL, 2009, J WILDLIFE MANAGE, V73, P530, DOI 10.2193/2007-467; Brasher MG, 2006, J WILDLIFE MANAGE, V70, P805, DOI 10.2193/0022-541X(2006)70[805:BSOMAF]2.0.CO;2; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Burnham K. P, 2002, MODEL SELECTION MULT; BURNHAM KP, 1987, AM FISHERIES SOC MON, V5; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; CHOQUET R, 2005, U CARE 2 2 USERS MAN; CONROY MJ, 1989, J WILDLIFE MANAGE, V53, P99, DOI 10.2307/3801314; Cowardin L. M., 1985, WILDLIFE MONOGR, V92, P3; Davis JB, 2001, J WILDLIFE MANAGE, V65, P738, DOI 10.2307/3803024; Devries JH, 2008, AUK, V125, P618, DOI 10.1525/auk.2008.07055; Devries JH, 2003, J WILDLIFE MANAGE, V67, P551, DOI 10.2307/3802713; Dufour KW, 2002, CONDOR, V104, P297, DOI 10.1650/0010-5422(2002)104[0297:DSOYAA]2.0.CO;2; Guillemain M, 2014, CONDOR, V116, P293, DOI 10.1650/CONDOR-13-148.1; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; HANSON H. C., 1954, AUK, V71, P267; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hartke KM, 2006, CONDOR, V108, P201, DOI 10.1650/0010-5422(2006)108[0201:SOVISO]2.0.CO;2; HARVEY WF, 1989, CAN J ZOOL, V67, P570, DOI 10.1139/z89-081; HARVEY WF, 1989, WILDLIFE SOC B, V17, P254; Hepp G. R., 2013, BIRDS N AM ONLINE; Hepp GR, 2011, AUK, V128, P258, DOI 10.1525/auk.2011.10189; Hepp GR, 2005, J AVIAN BIOL, V36, P523; HEPP GR, 1984, CONDOR, V86, P251, DOI 10.2307/1366992; HEPP GR, 1986, J WILDLIFE MANAGE, V50, P177, DOI 10.2307/3801893; HEPP GR, 1986, AUK, V103, P477; HEPP GR, 1992, AUK, V109, P812, DOI 10.2307/4088155; HEPP GR, 1989, ECOLOGY, V70, P897, DOI 10.2307/1941357; HEPP GR, 1987, J WILDLIFE MANAGE, V51, P401, DOI 10.2307/3801026; HEPP GR, 1990, AUK, V107, P756, DOI 10.2307/4088008; Hines J. E., 1987, RESOURCE PUBLICATION; HIPES DL, 1995, CONDOR, V97, P451, DOI 10.2307/1369031; Hoekman ST, 2002, J WILDLIFE MANAGE, V66, P883, DOI 10.2307/3803153; Johnson Douglas H., 1992, P446; Kennamer RA, 2001, WILDLIFE SOC B, V29, P1193; KENNAMER RA, 1987, WILSON BULL, V99, P655; KLETT AT, 1988, J WILDLIFE MANAGE, V52, P431, DOI 10.2307/3801586; Koons David N., 2014, Wildfowl, P169; Labocha MK, 2012, J ORNITHOL, V153, P1, DOI 10.1007/s10336-011-0706-1; Lescroel A, 2009, J ANIM ECOL, V78, P798, DOI 10.1111/j.1365-2656.2009.01542.x; Letcher BH, 1998, BIOL CONSERV, V86, P1, DOI 10.1016/S0006-3207(98)00019-6; Lewis S, 2006, J ANIM ECOL, V75, P1304, DOI 10.1111/j.1365-2656.2006.01152.x; Lindberg MS, 2013, ECOL EVOL, V3, P4045, DOI 10.1002/ece3.767; Lockwood JL, 2001, ANIM CONSERV, V4, P275, DOI 10.1017/S1367943001001329; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; McClintock ME, 2014, AUK, V131, P672, DOI 10.1642/AUK-14-57.1; Mills L. S., 2013, CONSERVATION WILDLIF; Milonoff M, 2004, J AVIAN BIOL, V35, P344, DOI 10.1111/j.0908-8857.2004.03215.x; Moyes K, 2011, J ANIM ECOL, V80, P456, DOI 10.1111/j.1365-2656.2010.01789.x; Moyes K, 2009, J ANIM ECOL, V78, P406, DOI 10.1111/j.1365-2656.2008.01497.x; Murphy MT, 2007, AUK, V124, P1010, DOI 10.1642/0004-8038(2007)124[1010:LRSOFE]2.0.CO;2; Newton I, 1989, LIFETIME REPROD BIRD; Nichols J. D., 1990, P 1988 N AM WOOD DUC, P83; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; NICHOLS JD, 1982, J WILDLIFE MANAGE, V46, P80, DOI 10.2307/3808410; Nielsen CLR, 2007, CONDOR, V109, P210, DOI 10.1650/0010-5422(2007)109[210:RNPOCW]2.0.CO;2; Nielsen CR, 2006, ANIM BEHAV, V72, P917, DOI 10.1016/j.anbehav.2006.03.004; Oli MK, 2002, EVOL ECOL RES, V4, P563; Pieron MR, 2013, J WILDLIFE MANAGE, V77, P663, DOI 10.1002/jwmg.506; Pieron MR, 2010, J WILDLIFE MANAGE, V74, P124, DOI 10.2193/2009-056; REYNOLDS RE, 1995, J WILDLIFE MANAGE, V59, P691, DOI 10.2307/3801945; Reynolds RE, 2001, J WILDLIFE MANAGE, V65, P765, DOI 10.2307/3803027; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sanz-Aguilar A, 2008, ECOLOGY, V89, P3195, DOI 10.1890/08-0431.1; Sargeant Alan B., 1992, P396; Sauer J. R., 1990, P 1988 N AM WOOD DUC, P357; Schalles J. F., 1989, SRONERP18 SAV RIV EC; Schamber JL, 2009, J AVIAN BIOL, V40, P49, DOI 10.1111/j.1600-048X.2008.04462.x; Stahl JT, 2006, ECOL MODEL, V198, P23, DOI 10.1016/j.ecolmodel.2006.04.001; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stoelting RE, 2015, AUK, V132, P46, DOI 10.1642/AUK-14-98.1; TINBERGEN JM, 2002, AVIAN INCUBATION BEH, P299; Viallefont A, 1995, AUK, V112, P67, DOI 10.2307/4088767; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; Walters JR, 2002, ECOL APPL, V12, P249, DOI 10.1890/1051-0761(2002)012[0249:PVAFRC]2.0.CO;2; WALTERS JR, 1982, EVOLUTION, V36, P1030, DOI 10.1111/j.1558-5646.1982.tb05471.x; White GC, 2006, J WILDLIFE MANAGE, V70, P1521, DOI 10.2193/0022-541X(2006)70[1521:MSMATE]2.0.CO;2; White GC, 1999, BIRD STUDY, V46, P120; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002 97 4 4 2 27 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK JUL 2016 133 3 439 450 10.1642/AUK-15-183.1 12 Ornithology Zoology DR1KC WOS:000379663400009 2019-02-21 J Butler, MW; Lutz, TJ; Fokidis, HB; Stahlschmidt, ZR Butler, Michael W.; Lutz, Thomas J.; Fokidis, H. Bobby; Stahlschmidt, Zachary R. Eating increases oxidative damage in a reptile JOURNAL OF EXPERIMENTAL BIOLOGY English Article Digestion; Food intake; Hydroperoxides; Prandial state; Reactive oxygen metabolites; Specific dynamic action D-ROMS TEST; PANTHEROPHIS-GUTTATUS; LIPID-PEROXIDATION; GASTRIC DIGESTION; DYNAMIC ACTION; STRESS; TEMPERATURE; RESTRICTION; COVARIATION; PHYSIOLOGY While eating has substantial benefits in terms of both nutrient and energy acquisition, there are physiological costs associated with digesting and metabolizing a meal. Frequently, these costs have been documented in the context of energy expenditure while other physiological costs have been relatively unexplored. Here, we tested whether the seemingly innocuous act of eating affects either systemic pro-oxidant (reactive oxygen metabolite, ROM) levels or antioxidant capacity of corn snakes (Pantherophis guttatus) by collecting plasma during absorptive (peak increase in metabolic rate due to digestion of a meal) and non-absorptive (baseline) states. When individuals were digesting a meal, there was a minimal increase in antioxidant capacity relative to baseline (4%), but a substantial increase in ROMs (nearly 155%), even when controlling for circulating nutrient levels. We report an oxidative cost of eating that is much greater than that due to long distance flight or mounting an immune response in other taxa. This result demonstrates the importance of investigating non-energetic costs associated with meal processing, and it begs future work to identify the mechanism(s) driving this increase in ROM levels. Because energetic costs associated with eating are taxonomically widespread, identifying the taxonomic breadth of eating-induced ROM increases may provide insights into the interplay between oxidative damage and life history theory. [Butler, Michael W.; Lutz, Thomas J.] Lafayette Coll, Dept Biol, Easton, PA 18042 USA; [Fokidis, H. Bobby] Rollins Coll, Dept Biol, Winter Pk, FL 32789 USA; [Stahlschmidt, Zachary R.] Georgia Southern Univ, Dept Biol, Statesboro, GA 30460 USA; [Stahlschmidt, Zachary R.] Univ Pacific, Dept Biol Sci, Stockton, CA 95211 USA Butler, MW (reprint author), Lafayette Coll, Dept Biol, Easton, PA 18042 USA. butlermw@lafayette.edu Butler, Michael/0000-0002-8390-2960 Lafayette College; Rollins College; Georgia Southern University Funding was provided by Lafayette College (to M.W.B.), Rollins College (to H.B.F.) and Georgia Southern University (to Z.R.S.). Colombini F, 2016, FREE RADICAL RES, V50, P447, DOI 10.3109/10715762.2015.1136063; Costantini D, 2014, OXIDATIVE STRESS HOR; Costantini D, 2008, J EXP BIOL, V211, P377, DOI 10.1242/jeb.012856; Costantini D, 2008, BIOL LETTERS, V4, P119, DOI 10.1098/rsbl.2007.0513; Costantini D, 2012, J EXP BIOL, V215, P2820, DOI 10.1242/jeb.072231; Costantini D, 2011, J EXP BIOL, V214, P1148, DOI 10.1242/jeb.053496; Costantini D, 2010, FUNCT ECOL, V24, P950, DOI 10.1111/j.1365-2435.2010.01746.x; Costantini D, 2009, PHYSIOL BIOCHEM ZOOL, V82, P430, DOI 10.1086/604668; Crocker-Buta SP, 2014, COMP BIOCHEM PHYS A, V169, P60, DOI 10.1016/j.cbpa.2013.12.008; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Fokidis HB, 2012, J EXP BIOL, V215, P2920, DOI 10.1242/jeb.071043; Fokidis HB, 2011, PHYSIOL BIOCHEM ZOOL, V84, P595, DOI 10.1086/662068; Gibbons W, 2005, SNAKES SE; Kilk K, 2014, FREE RADICAL RES, V48, P883, DOI 10.3109/10715762.2014.919390; Larsson K, 2012, J AGR FOOD CHEM, V60, P7556, DOI 10.1021/jf301444x; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Luoma RL, 2016, J EXP BIOL, V219, P1965, DOI 10.1242/jeb.138123; Mateos R, 2007, J SEP SCI, V30, P175, DOI 10.1002/jssc.200600314; McCue MD, 2008, COMP BIOCHEM PHYS A, V151, P239, DOI 10.1016/j.cbpa.2008.06.034; Najafi P, 2015, POULTRY SCI, V94, P2322, DOI 10.3382/ps/pev246; Neuman-Lee LA, 2015, FUNCT ECOL, V29, P1453, DOI 10.1111/1365-2435.12457; Perez-Rodriguez L, 2015, PHYSIOL BIOCHEM ZOOL, V88, P345, DOI 10.1086/680688; Roark AW, 2000, J HERPETOL, V34, P481, DOI 10.2307/1565378; Salin K, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0538; Secor SM, 2009, J COMP PHYSIOL B, V179, P1, DOI 10.1007/s00360-008-0283-7; Secor SM, 2008, J EXP BIOL, V211, P3767, DOI 10.1242/jeb.023754; Sepp T, 2012, PHYSIOL BIOCHEM ZOOL, V85, P299, DOI 10.1086/664827; Sies H, 2005, J NUTR, V135, P969; Sievert LM, 2013, ZOOL STUD, V52, DOI 10.1186/1810-522X-52-33; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Stahlschmidt ZR, 2015, COMP BIOCHEM PHYS A, V187, P1, DOI 10.1016/j.cbpa.2015.04.007; van de Crommenacker J, 2010, J EXP BIOL, V213, P3527, DOI 10.1242/jeb.045591; Verzelloni E, 2010, FOOD CHEM TOXICOL, V48, P2097, DOI 10.1016/j.fct.2010.05.010; Wallace JP, 2010, INT J CLIN PRACT, V64, P389, DOI 10.1111/j.1742-1241.2009.02146.x; Weissgerber TL, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002128 35 9 9 2 22 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. JUL 2016 219 13 1969 1973 10.1242/jeb.138875 5 Biology Life Sciences & Biomedicine - Other Topics DQ7DF WOS:000379366400015 27099366 Bronze 2019-02-21 J Skirnisson, K Skirnisson, Karl Reprint of 'Association of helminth infections and food consumption in common elders Somateria mollissima in Iceland' JOURNAL OF SEA RESEARCH English Article; Proceedings Paper International NIOZ AWI Symposium on Ecology and Evolution of Marine Parasites and Diseases MAR 10-14, 2014 Texel, NETHERLANDS Royal Netherlands Inst Sea Res, Alfred Wegner Inst Common eider; Helminths; Prey; Life cycles; Seasonality; Parasites PROFILICOLLIS-BOTULUS ACANTHOCEPHALA; EIDER DUCK; LIFE-CYCLES; CARCINUS-MAENAS; 1913 CESTODA; SW ICELAND; SHORE CRAB; PARASITES; HYMENOLEPIDIDAE; REDESCRIPTION Common eider Somateria mollissima L. 1758, subsp. borealis, is widely distributed along the coasts of Iceland. In this study association of parasite infections and food composition was studied among 40 females and 38 males (66 adults, 12 subadults), shot under license on four occasions within the same year (February; before egg laying in May; after the breeding period in late June; and in November) in Skerjafjordur, SW Iceland. Parasitological examinations revealed 31 helminth species (11 digeneans, ten cestodes, seven nematodes, and three acanthocephalans). Distinct digenean species parasitized the gallbladder, kidney and bursa of Fabricius, whereas other helminths parasitized the gastrointestinal tract. Thirty-six invertebrate prey species were identified as food; waste and bread fed by humans, were also consumed by some birds. Amidostomum acutum was the only parasite found with a direct life cycle, whereas other species were food transmitted and ingested with different invertebrate prey. Opposite to females male birds rarely utilized periwinkles and gammarids as a food source. As a result, Microphallus and Microsomacanthus infection intensities were low except in February, when subadult males were responsible for an infection peak. Females caring for young increased their consumption of periwinkles close to the littoral zone in June; during pre-breeding, females also increased their gammarid intake. As a consequence, Microphallus and Microsomacanthus infection intensities temporarily peaked. Increased food intake (including Mytilus edulis) of females before the egg-laying period resulted in twofold higher Gymnophallus bursicola infection intensity than observed for males. Profilicollis botulus infection reflected seasonal changes in decapod consumption in both genders. Different life history strategies of males and females, especially before and during the breeding season and caring of young, and during molting in distinct feeding areas in summer, promote differences in consumption of prey-transmitted parasites that result in distinct infection patterns of the genders. (C) 2016 Published by Elsevier B.V. [Skirnisson, Karl] Univ Iceland, Inst Expt Pathol, Parasitol Lab, IS-112 Reykjavik, Iceland Skirnisson, K (reprint author), Univ Iceland, Inst Expt Pathol, Parasitol Lab, IS-112 Reykjavik, Iceland. karlsk@hi.is Anderson R.C., 1992, THEIR DEV TRANSMISSI; Baer J. C., 1962, ZOOLOGY ICELAND, V2; Belopolskaya M.M., 1952, BIOL SERIES, V141, P127; BISHOP CA, 1974, P HELM SOC WASH, V41, P25; Borgsteede FHM, 2006, HELMINTHOLOGIA, V43, P98, DOI 10.2478/s11687-006-0019-8; Borgsteede FHM, 2005, HELMINTHOLOGIA, V42, P83; Bray R. A., 2008, KEYS TREMATODA, V3; Brinkman A., 1956, ZOOLOGY ICELAND, VII; Camphuysen CJ, 2002, BIOL CONSERV, V106, P303, DOI 10.1016/S0006-3207(01)00256-7; COWAN AB, 1955, J PARASITOL, V41, P43; Galaktionov KV, 2015, MAR BIOL, V162, P193, DOI 10.1007/s00227-014-2586-4; Galaktionov KV, 2012, PARASITOLOGY, V139, P1346, DOI 10.1017/S0031182012000583; Galaktionov KV, 2000, SYST PARASITOL, V47, P87, DOI 10.1023/A:1006426117264; Galaktionov KV, 2003, BIOL EVOLUTION TREMA; Galkin A.K., 2005, B SCANDINAVIAN BALTI, V14, P58; Galkin AK, 2008, SYST PARASITOL, V70, P119, DOI 10.1007/s11230-008-9134-x; Galkin AK, 2006, SYST PARASITOL, V64, P1, DOI 10.1007/s11230-005-9020-8; Garden E. A., 1964, BIRD STUDY, V11, P280, DOI 10.1080/00063656409476078; Garoarsson A., 1977, FJOLRIT, V9; Garoarsson Arnpor, 2009, BLIKI, V30, P49; Gibson D. I., 2002, KEYS TREMATODA, V1; GORMAN M L, 1972, Ornis Scandinavica, V3, P21, DOI 10.2307/3676162; GRYTNER-ZIECINA B, 1978, Acta Parasitologica Polonica, V25, P121; Hario M., 1992, Suomen Riista, V38, P23; Hollmen T, 1999, J WILDLIFE DIS, V35, P466, DOI 10.7589/0090-3558-35.3.466; Ingolfsson A., 1977, FJOLRIT, V10; Jones A., 2005, KEYS TREMATODA, V2; Kats R.K.H., 2007, THESIS; Kulachkova V. G., 1979, Ekologiya i morfologiya gag v SSSR., P119; LIAT LB, 1980, J ZOOL, V190, P39; LOOSFRANK B, 1969, Z PARASITENK, V32, P135; Madsen H., 1945, DAN REV GAME BIOL, V1, P3; McDonald M. E, 1969, 126 US DEP INT FISH; MCDONALD M. E., 1974, RESOURCE PUBLICATION, V122; McDonald M. E., 1988, RESOURCE PUBLICATION, V173; MCDONALD ME, 1981, RESOURCE PUBLICATION, V142; MILNE H, 1976, Wildfowl, V27, P115; PERSSON L, 1974, Viltrevy (Stockholm), V9, P1; Petersen AE., 2001, AEOARFUGL AEOARRAEKT, P13; PETHON P, 1967, NYTT MAG ZOOL OSLO, V15, P97; POULIN R, 1993, INT J PARASITOL, V23, P937, DOI 10.1016/0020-7519(93)90060-C; Regel K.V., 2001, THESIS; Reiczigel J, 2005, QUANTITATIVE PARASIT; Rommel M., 2000, VETERINARMEDICINISHC; Rozsa L, 2000, J PARASITOL, V86, P228, DOI 10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2; Ryzhikov K.M., 1985, REGION 2 CESTODA ACA; SCHILLER EL, 1955, J PARASITOL, V41, P79, DOI 10.2307/3274004; Schmidt J.D., 1986, CRC HDB TAPEWORM IDE; Skarphedinsson Kristinn H., 1996, Bulletin of the Scandinavian Society for Parasitology, V6, P90; Skirnisson K, 2004, J PARASITOL, V90, P50, DOI 10.1645/GE-118R; Skirnisson K, 2002, SARSIA, V87, P144, DOI 10.1080/003648202320205229; Skirnisson K., 2001, AEOARFUGL AEOARRAEKT, P171; Skirnisson K, 2003, B SCAND SOC PARASITO, V12-13, P50; Skirnisson K., 2001, AEOARFUGL AEOARRAEKT, P55; Skirnisson Karl, 2014, Natturufraedingurinn, V84, P89; Skirnisson Karl, 2000, Bliki (Reykjavik), V21, P1; Skirnisson Karl, 2003, Bliki (Reykjavik), V24, P3; Smidt G.D., 1996, FDN PARASITOLOGY; StatSoft Inc, 2013, STAT DAT AN SOFTW SY; Thieltges DW, 2006, J SEA RES, V55, P301, DOI 10.1016/j.seares.2005.12.001; THOMPSON AB, 1985, J ANIM ECOL, V54, P595, DOI 10.2307/4501; THOMPSON AB, 1985, PARASITOLOGY, V91, P563, DOI 10.1017/S0031182000062806; Wehr E.E., 1971, INFECT PARASITIC DIS, P184; Wesenberg-Lund E., 1952, ZOOLOGY ICELAND, VII 64 0 0 1 17 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1385-1101 1873-1414 J SEA RES J. Sea Res. JUL 2016 113 SI 132 141 10.1016/j.seares.2016.06.002 10 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography DR1AJ WOS:000379638000015 2019-02-21 J Sherman, AK; Minich, SH; Langen, TA; Skufca, J; Wilke, A Sherman, Amanda K.; Minich, Steven H.; Langen, Tom A.; Skufca, Joseph; Wilke, Andreas Are College Students' Assessments of Threat Shaped by the Dangers of Their Childhood Environment? JOURNAL OF INTERPERSONAL VIOLENCE English Article decision making; early environment; fear of crime; life-history theory; risk perception; risk-taking RISK-TAKING; LIFE-HISTORY; DECISION-MAKING; SEXUAL ASSAULT; FEAR; VICTIMIZATION; NEIGHBORHOODS; PERSONALITY; ATTITUDES; BEHAVIOR Humans internalize environmental cues of mortality risk at an early age, which influences subsequent risk perceptions and behavior. In this respect, an individual's current risk assessment may be viewed as an adaptive response to the dangers present within his or her early local environment. Here we examine the relationship between several variables indicating threat within an individual's early environment (e. g., prevalence of violent and property crimes, registered sex offenders) and their perception of crime risk within both the childhood and current adult environments. We recruited a group of 657 students who hail from diverse geographic backgrounds to provide the zip code location of their childhood residence along with subjective ratings of danger of that and their current location, which enabled us to compare their ratings of risk/danger with the federally reported crime statistics of each setting. Our results indicate that the early prevalence of registered sex offenders indeed influences an individual's risk perception in adulthood, and that these factors have a differential effect on males and females. Our findings provide support for the theory that early environmental factors signaling danger affect how individuals assess risk within their adult environment. [Sherman, Amanda K.; Minich, Steven H.] Clarkson Univ, Potsdam, NY USA; [Langen, Tom A.] Clarkson Univ, Dept Biol, Potsdam, NY 13699 USA; [Langen, Tom A.; Wilke, Andreas] Clarkson Univ, Dept Psychol, 8 Clarkson Ave,Box 5825, Potsdam, NY 13699 USA; [Skufca, Joseph] Clarkson Univ, Dept Math, Potsdam, NY USA Sherman, AK (reprint author), Clarkson Univ, Dept Psychol, 8 Clarkson Ave,Box 5825, Potsdam, NY 13699 USA. shermaak@clarkson.edu National Science Foundation [DBI-0926568]; Undergraduate Biology-Mathematics (UBM) program The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: We acknowledge National Science Foundation (DBI-0926568) for partial financial support through the Undergraduate Biology-Mathematics (UBM) program. [Anonymous], 2012, MURD RAP ROBB ASS BU; Boyd R, 2006, URBAN STUD, V43, P863, DOI 10.1080/00420980600676105; Broder A, 2003, EVOL HUM BEHAV, V24, P391, DOI 10.1016/S1090-5138(03)00055-2; Bureau of Justice Statistics, 2011, 235508 NCJ US DEP JU; Bureau of Justice Statistics, 2010, CRIM VICT US 2007 ST; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Davis J, 2012, EVOL HUM BEHAV, V33, P647, DOI 10.1016/j.evolhumbehav.2012.04.002; Dunkel C., 2009, J SOCIAL EVOLUTIONAR, V4, P51; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Family Watchdog, 2013, NAT SEX OFF REG; Fetchenhauer D, 2002, EVOL HUM BEHAV, V23, P233, DOI 10.1016/S1090-5138(01)00104-0; Fisher BS, 2003, JUSTICE Q, V20, P633, DOI 10.1080/07418820300095641; Fyfe N, 2006, URBAN STUD, V43, P853, DOI 10.1080/00420980600676063; Gardner M, 2005, DEV PSYCHOL, V41, P625, DOI 10.1037/0012-1649.41.4.625; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hanoch Y, 2006, PSYCHOL SCI, V17, P300, DOI 10.1111/j.1467-9280.2006.01702.x; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Johnson J. G., 2004, POLISH PSYCHOL B, V35, P153; Krebs CP, 2009, J AM COLL HEALTH, V57, P639, DOI 10.3200/JACH.57.6.639-649; Lieberman D, 2011, PSYCHOL SCI, V22, P13, DOI 10.1177/0956797610390385; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Smuts B, 1992, Hum Nat, V3, P1, DOI 10.1007/BF02692265; Snyder JK, 2011, EVOL HUM BEHAV, V32, P127, DOI 10.1016/j.evolhumbehav.2010.08.007; Stanford MS, 2009, PERS INDIV DIFFER, V47, P385, DOI 10.1016/j.paid.2009.04.008; Tseloni A, 2008, EUR J CRIMINOL, V5, P387, DOI 10.1177/1477370808095123; U.S. Department of Justice, 1997, BUREAU JUSTICE STAT; Valera S, 2014, J ENVIRON PSYCHOL, V38, P195, DOI 10.1016/j.jenvp.2014.02.002; Wang XT, 2009, EVOL HUM BEHAV, V30, P77, DOI 10.1016/j.evolhumbehav.2008.09.006; Weber EU, 2002, J BEHAV DECIS MAKING, V15, P263, DOI 10.1002/bdm.414; Weber EU, 1998, MANAGE SCI, V44, P1205, DOI 10.1287/mnsc.44.9.1205; Weber EU, 2000, APPL PSYCHOL-INT REV, V49, P32, DOI 10.1111/1464-0597.00005; Wilke A., 2014, EVOLUTIONARY BEHAV S, V8, P123; Wilke A, 2006, EVOLUTIONARY PSYCHOL, V4, P367; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Zuckerman M, 2000, J PERS, V68, P999, DOI 10.1111/1467-6494.00124 36 2 2 3 17 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0886-2605 1552-6518 J INTERPERS VIOLENCE J. Interpers. Violence JUL 2016 31 11 2006 2025 10.1177/0886260515572473 20 Criminology & Penology; Family Studies; Psychology, Applied Criminology & Penology; Family Studies; Psychology DP7MP WOS:000378683600002 25805844 2019-02-21 J Aoyagi, R; Kitayama, K Aoyagi, Ryota; Kitayama, Kanehiro Nutrient allocation among plant organs across 13 tree species in three Bornean rain forests with contrasting nutrient availabilities JOURNAL OF PLANT RESEARCH English Article Cell walls; Functional traits; Mixed dipterocarp forests; Nutrient productivity; Photosynthetic and non-photosynthetic organs; Tropical heath forests NITROGEN-USE EFFICIENCY; 2-MILLION-YEAR DUNE CHRONOSEQUENCE; PHOSPHORUS-USE EFFICIENCY; LEAF LIFE-SPAN; BIRCH SEEDLINGS; HABITAT SPECIALIZATION; LONG CHRONOSEQUENCE; BIOMASS ALLOCATION; C-3 PLANTS; PHOTOSYNTHESIS Allocation of nitrogen (N) and phosphorus (P) among plant organs is an important factor regulating growth rate, which is a key ecological process associated with plant life-history strategies. However, few studies have explored how N and P investment in photosynthetic (leaves) and non-photosynthetic (stems and roots) organs changes in relation to depletion of each element. We investigated nutrient concentrations of plant organs in relation to whole-plant nutrient concentration (total nutrient weight per total biomass) as an index of nutrient status of each individual using the saplings of the 13 species in three tropical rain forests with contrasting N and P availabilities (tropical evergreen forests and tropical heath forests). We found a steeper decrease in foliar N concentration than foliar P concentration with decreasing whole-plant nutrient concentration. Moreover, the steeper decrease in foliar N concentration was associated with relatively stable N concentration in stems, and vice versa for P. We suggest that the depletion of N is associated with a rapid dilution of foliar N because the cell walls in non-photosynthetic organs function as an N sink. On the other hand, these species can maintain foliar P concentration by decreasing stem P concentrations despites the depletion of P. Our results emphasize the significance of non-photosynthetic organs as an N sink for understanding the variation of foliar nutrient concentrations for the tree species in the three Bornean rain forests with different N and P availabilities. [Aoyagi, Ryota; Kitayama, Kanehiro] Kyoto Univ, Grad Sch Agr, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan Aoyagi, R (reprint author), Kyoto Univ, Grad Sch Agr, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan. aoyagi.ryota@gmail.com Aoyagi, Ryota/N-2971-2017 Japanese MESSC [22255002]; Global Environment Research Fund of the Ministry of the Environment, Japan [D-1006, 1-1403] We thank L. Ajon, P. Lagan, Y. Onoda, A. Hidaka, N. Imai, T. Seino, and K. Miyamoto for assisting our fieldwork and providing valuable suggestions. Permission to conduct our research was granted by the Sabah Forestry Department and the Sabah Parks. This study was supported by the Grant-in-Aid from the Japanese MESSC (22255002) to K. K. and by the Global Environment Research Fund D-1006 and 1-1403 of the Ministry of the Environment, Japan, to K.K. Aoyagi R, 2016, TROPICS IN PRESS; Aoyagi R, 2015, J TROP ECOL, V31, P231, DOI 10.1017/S0266467415000097; Canham CD, 1996, CAN J FOREST RES, V26, P1521, DOI 10.1139/x26-171; CHAPIN FS, 1990, ANNU REV ECOL SYST, V21, P423, DOI 10.1146/annurev.ecolsys.21.1.423; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; Chua G. L. S., 1995, Journal of Tropical Forest Science, V8, P240; Coomes DA, 1997, CAN J FOREST RES, V27, P831, DOI 10.1139/cjfr-27-6-831; Cordell S, 2001, OECOLOGIA, V127, P198, DOI 10.1007/s004420000588; Craine JM, 2009, RESOURCE STRATEGIES; CREWS TE, 1995, ECOLOGY, V76, P1407, DOI 10.2307/1938144; Dent DH, 2009, BIOTROPICA, V41, P424, DOI 10.1111/j.1744-7429.2009.00505.x; Elser JJ, 2007, ECOL LETT, V10, P1135, DOI 10.1111/j.1461-0248.2007.01113.x; ERICSSON T, 1988, PHYSIOL PLANTARUM, V72, P227, DOI 10.1111/j.1399-3054.1988.tb05827.x; EVANS JR, 1989, OECOLOGIA, V78, P9, DOI 10.1007/BF00377192; Field C, 1986, EC PLANT FORM FUNCTI, P25; GARNIER E, 1995, ANN BOT-LONDON, V76, P667, DOI 10.1006/anbo.1995.1145; GEIGER DR, 1994, ANNU REV PLANT PHYS, V45, P235, DOI 10.1146/annurev.pp.45.060194.001315; Grime J. P, 1979, PLANT STRATEGIES VEG; Gusewell S, 2005, PLANT ECOL, V176, P35, DOI 10.1007/s11258-004-0010-8; Gusewell S, 2004, NEW PHYTOL, V164, P243, DOI 10.1111/j.1469-8137.2004.01192.x; Harrington RA, 2001, ECOSYSTEMS, V4, P646, DOI 10.1007/s10021-001-0034-z; Hayes P, 2014, J ECOL, V102, P396, DOI 10.1111/1365-2745.12196; Hidaka A, 2011, J ECOL, V99, P849, DOI 10.1111/j.1365-2745.2011.01805.x; Hidaka A, 2009, J ECOL, V97, P984, DOI 10.1111/j.1365-2745.2009.01540.x; Hunt R., 1978, PLANT GROWTH ANAL; Imai N, 2010, J TROP ECOL, V26, P627, DOI 10.1017/S0266467410000350; INGESTAD T, 1979, PHYSIOL PLANTARUM, V45, P149, DOI 10.1111/j.1399-3054.1979.tb01679.x; INGESTAD T, 1979, PHYSIOL PLANTARUM, V45, P137, DOI 10.1111/j.1399-3054.1979.tb01678.x; Kerkhoff AJ, 2006, AM NAT, V168, pE103, DOI 10.1086/507879; Laliberte E, 2012, J ECOL, V100, P631, DOI 10.1111/j.1365-2745.2012.01962.x; LAMBERS H, 1992, ADV ECOL RES, V23, P187, DOI 10.1016/S0065-2504(08)60148-8; LAMPORT DTA, 1965, ADV BOT RES, V2, P151, DOI DOI 10.1016/S0065-2296(08)60251-7; Moran JA, 2000, BIOTROPICA, V32, P2; Murphy J. A. M. E. S., 1962, ANAL CHIM ACTA, V27, P31, DOI DOI 10.1016/S0003-2670(00)88444-5; Onoda Y, 2004, FUNCT ECOL, V18, P419, DOI 10.1111/j.0269-8463.2004.00847.x; Palmiotto PA, 2004, J ECOL, V92, P609, DOI 10.1111/j.0022-0477.2004.00894.x; Poorter H, 2012, NEW PHYTOL, V193, P30, DOI 10.1111/j.1469-8137.2011.03952.x; Poorter L, 1999, FUNCT ECOL, V13, P396, DOI 10.1046/j.1365-2435.1999.00332.x; Poorter L, 2007, ECOLOGY, V88, P1000, DOI 10.1890/06-0984; R Core Team, 2014, R LANG ENV STAT COMP; Reed SC, 2012, NEW PHYTOL, V196, P173, DOI 10.1111/j.1469-8137.2012.04249.x; REICH PB, 1994, OECOLOGIA, V97, P62, DOI 10.1007/BF00317909; Reich PB, 2009, OECOLOGIA, V160, P207, DOI 10.1007/s00442-009-1291-3; Richardson SJ, 2008, FUNCT ECOL, V22, P738, DOI 10.1111/j.1365-2435.2008.01426.x; Richardson SJ, 2004, OECOLOGIA, V139, P267, DOI 10.1007/s00442-004-1501-y; Ryser P, 1997, NEW PHYTOL, V137, P293, DOI 10.1046/j.1469-8137.1997.00807.x; Sardans J, 2015, GLOBAL ECOL BIOGEOGR, V24, P147, DOI 10.1111/geb.12231; SEINO T., 2007, SABAH PARKS NATURE J, V8, P63; Sterner R. W., 2002, ECOLOGICAL STOICHIOM; Takashima T, 2004, PLANT CELL ENVIRON, V27, P1047, DOI 10.1111/j.1365-3040.2004.01209.x; Tiessen H, 1993, SOIL SAMPLING METHOD, P75, DOI DOI 10.1201/9781420005271.CH25; Turner AIM, 2000, BIOTROPICA, V32, P53; Veneklaas EJ, 2012, NEW PHYTOL, V195, P306, DOI 10.1111/j.1469-8137.2012.04190.x; Vicca S, 2012, ECOL LETT, V15, P520, DOI 10.1111/j.1461-0248.2012.01775.x; VITOUSEK PM, 1995, ECOLOGY, V76, P712, DOI 10.2307/1939338; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright IJ, 2002, J ECOL, V90, P534, DOI 10.1046/j.1365-2745.2002.00689.x 57 3 4 2 28 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 0918-9440 1618-0860 J PLANT RES J. Plant Res. JUL 2016 129 4 675 684 10.1007/s10265-016-0826-z 10 Plant Sciences Plant Sciences DP8MC WOS:000378751200011 27056098 2019-02-21 J Varela-Cervero, S; Lopez-Garcia, A; Barea, JM; Azcon-Aguilar, C Varela-Cervero, Sara; Lopez-Garcia, Alvaro; Miguel Barea, Jose; Azcon-Aguilar, Concepcion Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland MYCORRHIZA English Article Arbuscular mycorrhizal fungi; Propagule types; Colonization strategies; Life-history traits; Mediterranean environments LIFE-HISTORY STRATEGIES; ROOTS; ECOSYSTEM; COLONIZATION; GLOMEROMYCOTA; DIVERSITY; ECOLOGY; BIODIVERSITY; ANASTOMOSIS; UNDERSTAND As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs. [Varela-Cervero, Sara; Lopez-Garcia, Alvaro; Miguel Barea, Jose; Azcon-Aguilar, Concepcion] CSIC, Soil Microbiol & Symbiot Syst Dept, Estn Expt Zaidin, Prof Albareda 1, E-18008 Granada, Spain Varela-Cervero, S (reprint author), CSIC, Soil Microbiol & Symbiot Syst Dept, Estn Expt Zaidin, Prof Albareda 1, E-18008 Granada, Spain. sara.varela@eez.csic.es Barea, Jose Miguel/H-5893-2015 Barea, Jose Miguel/0000-0001-5021-4718; Lopez-Garcia, Alvaro/0000-0001-8267-3572; Varela-Cervero, Sara/0000-0002-9513-0224 Formacion de Personal Investigador Programme (Ministerio de Ciencia e Innovacion); Spanish government under the Plan Nacional de I + D + I; FEDER funds [CGL-2009-08825]; Junta de Andalucia, Consejeria de Economia, Innovacion y Ciencia [CVI-7640] Sara Varela-Cervero thanks the Formacion de Personal Investigador Programme (Ministerio de Ciencia e Innovacion) for the financial support. This research was supported by the Spanish government under the Plan Nacional de I + D + I, co-financed by FEDER funds (project CGL-2009-08825), and the Junta de Andalucia, Consejeria de Economia, Innovacion y Ciencia (project CVI-7640). We also thank the Consejeria de Medio Ambiente, Junta de Andalucia (Spain), for the permission to work in Sierra de Baza Natural Park. We sincerely thank Estefania Berrio for the technical assistance. Abbott LK, 1994, METHOD MICROBIOL, V24, P1; Allen MF, 2013, NEW PHYTOL, V200, P222, DOI 10.1111/nph.12363; Bares J. M., 2013, BENEFICIAL PLANT MIC, P353; BIERMANN B, 1983, NEW PHYTOL, V95, P97, DOI 10.1111/j.1469-8137.1983.tb03472.x; Brundrett MC, 1999, MYCORRHIZA, V8, P305, DOI 10.1007/s005720050251; Chagnon PL, 2014, FEMS MICROBIOL ECOL, V88, P437, DOI 10.1111/1574-6941.12321; Chagnon PL, 2013, TRENDS PLANT SCI, V18, P484, DOI 10.1016/j.tplants.2013.05.001; Chytry M, 2002, J VEG SCI, V13, P79, DOI 10.1658/1100-9233(2002)013[0079:DODSWS]2.0.CO;2; de la Providencia IE, 2005, NEW PHYTOL, V165, P261, DOI 10.1111/j.1469-8137.2004.01236.x; Dickie IA, 2007, MYCORRHIZA, V17, P259, DOI 10.1007/s00572-007-0129-2; Fitter AH, 2005, J ECOL, V93, P231, DOI 10.1111/j.0022-0477.2005.00990.x; GERDEMANN J. W., 1963, TRANS BRIT MYCOL SOC, V46, P235; GRIME JP, 1987, NATURE, V328, P420, DOI 10.1038/328420a0; Gutjahr C, 2013, ANNU REV CELL DEV BI, V29, P593, DOI 10.1146/annurev-cellbio-101512-122413; Hart MM, 2002, NEW PHYTOL, V153, P335, DOI 10.1046/j.0028-646X.2001.00312.x; Helgason T, 2009, J EXP BOT, V60, P2465, DOI 10.1093/jxb/erp144; Hempel S, 2007, ENVIRON MICROBIOL, V9, P1930, DOI 10.1111/j.1462-2920.2007.01309.x; HEWITT EJ, 1952, TECHNICAL COMMUNICAT, V22; IJdo M, 2010, FEMS MICROBIOL ECOL, V72, P114, DOI 10.1111/j.1574-6941.2009.00829.x; Jakobsen I, 2004, NEW PHYTOL, V164, P4, DOI 10.1111/j.1469-8137.2004.01163.x; Jeffries P, 2012, MYCOTA, VIX, P51; Klironomos JN, 2002, MYCORRHIZA, V12, P181, DOI 10.1007/s00572-002-0169-6; Lavorel S, 2011, J ECOL, V99, P135, DOI 10.1111/j.1365-2745.2010.01753.x; Lee J, 2008, FEMS MICROBIOL ECOL, V65, P339, DOI 10.1111/j.1574-6941.2008.00531.x; Legendre P, 2009, ECOLOGY, V90, P3566, DOI DOI 10.1890/08-1823.1; Lopez-Garcia A, 2014, OECOLOGIA, V176, P1075, DOI 10.1007/s00442-014-3091-7; Lopez-Garcia A, 2014, PLANT SOIL, V379, P247, DOI 10.1007/s11104-014-2060-6; Mader P, 2000, NEW PHYTOL, V146, P155, DOI 10.1046/j.1469-8137.2000.00615.x; Maherali H, 2007, SCIENCE, V316, P1746, DOI 10.1126/science.1143082; Maherali H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036695; Martiny JBH, 2006, NAT REV MICROBIOL, V4, P102, DOI 10.1038/nrmicro1341; McArdle BH, 2001, ECOLOGY, V82, P290, DOI 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2; MCGONIGLE TP, 1990, NEW PHYTOL, V115, P495, DOI 10.1111/j.1469-8137.1990.tb00476.x; MILLER RM, 2000, ARBUSCULAR MYCORRHIZ; NEWSHAM KK, 1995, TRENDS ECOL EVOL, V10, P407, DOI 10.1016/S0169-5347(00)89157-0; Oksanen J, 2015, VEGAN COMMUNITY ECOL; PHILLIPS JM, 1970, T BRIT MYCOL SOC, V55, P158, DOI 10.1016/S0007-1536(70)80110-3; pik M, 2010, NEW PHYTOL, V188, P223, DOI DOI 10.1111/J.1469-8137.2010.03334.X; Powell JR, 2009, P ROY SOC B-BIOL SCI, V276, P4237, DOI 10.1098/rspb.2009.1015; Redecker D, 2013, MYCORRHIZA, V23, P515, DOI 10.1007/s00572-013-0486-y; Ripley B., 2014, MASS SUPPORT FUNCTIO; Saks U, 2014, BOTANY, V92, DOI 10.1139/cjb-2013-0058; Schalamuk S, 2010, MYCOLOGIA, V102, P261, DOI 10.3852/08-118; Sieverding E., 1991, VESICULAR ARBUSCULAR; Smith SE, 2011, ANNU REV PLANT BIOL, V62, P227, DOI 10.1146/annurev-arplant-042110-103846; Smith SE, 2008, MYCORRHIZAL SYMBIOSIS, 3RD EDITION, P1; Tichy L, 2006, J VEG SCI, V17, P809, DOI 10.1111/j.1654-1103.2006.tb02504.x; van der Heijden MGA, 2015, NEW PHYTOL, V205, P1406, DOI 10.1111/nph.13288; van der Heijden MGA, 1998, NATURE, V396, P69, DOI 10.1038/23932; Varela-Cervero S, 2015, ENVIRON MICROBIOL, V17, P2882, DOI 10.1111/1462-2920.12810; Voets L, 2006, NEW PHYTOL, V172, P185, DOI 10.1111/j.1469-8137.2006.01873.x; Werner GDA, 2015, NEW PHYTOL, V205, P1515, DOI 10.1111/nph.13092 52 10 10 4 36 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0940-6360 1432-1890 MYCORRHIZA Mycorrhiza JUL 2016 26 5 489 496 10.1007/s00572-016-0687-2 8 Mycology Mycology DP8EN WOS:000378730900012 26883142 2019-02-21 J Frias-Alvarez, P; Zuniga-Vega, JJ Frias-Alvarez, Patricia; Jaime Zuniga-Vega, J. Superfetation in live-bearing fishes is not always the result of a morphological constraint OECOLOGIA English Article Life histories; Poeciliidae; Poeciliopsis; Simultaneous broods; Water velocity LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; SWIMMING PERFORMANCE; LIVEBEARING FISH; REPRODUCTIVE ECOLOGY; CLUTCH OVERLAP; BODY SHAPE; POPULATIONS; CYPRINODONTIFORMES; LAKE Superfetation is an unusual reproductive strategy that consists of the presence of multiple broods at different developmental stages within a single female. One hypothesis that was proposed to explain its adaptive significance suggests that, in fishes, superfetation is a response to selective pressures that promote a thin and streamlined body shape, such as high-velocity water systems. Superfetation may allow for reduction in ovary size and hence improve streamlining because superfetating females carry few large, full-term embryos at any given time. We tested this morphological constraint hypothesis using reproductive and morphological data from several populations of two viviparous fishes of the family Poeciliidae (Poeciliopsis gracilis and Poeciliopsis infans). We found no evidence to support the morphological constraint hypothesis. In both species the degree of superfetation varied as a function of a complex interaction between source population and female size, and this interpopulation variation was not associated with the velocity of the water current. Contrary to what we expected, females of P. gracilis with more streamlined bodies were observed in rivers where water velocity is slow or moderate. In P. infans the velocity of the water current did not predict variation in body shape. Our results are noteworthy because a previous study which focused on a congeneric species (Poeciliopsis turrubarensis) demonstrated strong support for this hypothesis. However, based on our evidence we conclude that the association among increased superfetation, streamlined morphologies, and fast-flowing environments is not a general rule and that the adaptive value of superfetation may differ among species. [Frias-Alvarez, Patricia; Jaime Zuniga-Vega, J.] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Ciudad Univ, Mexico City 04510, DF, Mexico Frias-Alvarez, P (reprint author), Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Ciudad Univ, Mexico City 04510, DF, Mexico. pfriasalvarez@ciencias.unam.mx Mexican Research Council (Consejo Nacional de Ciencia y Tecnologia) [129675] This study was supported by the Mexican Research Council (Consejo Nacional de Ciencia y Tecnologia) through grant no. 129675 and through a doctorate scholarship awarded to P. F. A. and is a partial fulfillment of the requirements for a doctoral degree (Doctorado en Ciencias Biomedicas, Universidad Nacional Autonoma de Mexico) of P. F. A. under the supervision of J. J. Z. V. This research was conducted with approval from the Mexican Agency of Aquaculture and Fisheries (Comision Nacional de Acuacultura y Pesca), under permits SDPA/DGVS/03492, DGOPA-07010.210612.1749, and PPF/DGOPA-223/2013. C. Macias Garcia, C. Olivera-Tlahuel, and two anonymous reviewers provided valuable comments and suggestions. K. Villa-Meza helped with photographs. Logistic assistance was provided by E. Avila-Luna, J. L. Bortolini-Rosales, H. Espinosa-Perez, M. Hernandez-Quiroz, P. Mendoza-Hernandez, I. A. Morales-Salas, M. E. Muniz-Diaz de Leon, M. E. Perez-Cruz, G. Ramirez-Cruz, and B. Zuniga-Ruiz. We also thank the following people for field and laboratory assistance: P. Garcia-Aviles, A. Hernandez-Rosas, A. Molina-Moctezuma, O. Olivares-Loyola, C. Olivera-Tlahuel, H. Perez-Mendoza, D. Robledo, N. Saleh-Subaie, H. Salinas-Matus, T. Sandoval, I. Solano-Zavaleta, L. Vazquez-Vega, R. Vega-Trejo, K. Villa-Meza, and I. Zapata-Moran. Belk MC, 2010, OIKOS, V119, P163, DOI 10.1111/j.1600-0706.2009.17742.x; Billman EJ, 2014, METHODS ECOL EVOL, V5, P797, DOI 10.1111/2041-210X.12211; Blake RW, 2004, J FISH BIOL, V65, P1193, DOI 10.1111/j.1095-8949.2004.00568.x; Boily P, 2002, J EXP BIOL, V205, P1031; BURLEY N, 1980, AM NAT, V115, P223, DOI 10.1086/283556; DOWNHOWER JF, 1975, NATURE, V256, P345, DOI 10.1038/256345a0; Frias-Alvarez P, 2014, NATURWISSENSCHAFTEN, V101, P1085, DOI 10.1007/s00114-014-1247-2; Galindo-Villegas J, 2002, REV BIOL TROP, V50, P1151; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Glantz S. A., 2001, PRIMER APPL REGRESSI; GUNN JS, 1991, ENVIRON BIOL FISH, V31, P323, DOI 10.1007/BF00002357; Gutierrez-Cabrera AE, 2005, MEXICO HIDROBIOLOGIC, V15, P283; Haas TC, 2015, BIOL J LINN SOC, V115, P842, DOI 10.1111/bij.12539; Hankison SJ, 2008, MOL ECOL, V17, P2219, DOI 10.1111/j.1365-294X.2008.03736.x; HAYNES JL, 1995, COPEIA, P147; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson Jerald B., 2011, P38; Langerhans R. Brian, 2010, P200, DOI 10.1201/b10190-8; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Macias-Garcia Constantino, 2005, P289; McGuigan K, 2003, EVOLUTION, V57, P104; Miller RR, 2005, FRESHWATER FISHES ME; Neat FC, 2003, J FISH BIOL, V63, P374, DOI 10.1046/j.1095-8649.2003.00159.x; Pires Marcelo N., 2011, P28; Plaut I, 2002, FUNCT ECOL, V16, P290, DOI 10.1046/j.1365-2435.2002.00638.x; Pollux BJA, 2014, NATURE, V513, P233, DOI 10.1038/nature13451; Pollux BJA, 2009, ANNU REV ECOL EVOL S, V40, P271, DOI 10.1146/annurev.ecolsys.110308.120209; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D.N., 1989, P125; Reznick D, 2007, EVOLUTION, V61, P2570, DOI 10.1111/j.1558-5646.2007.00207.x; Reznick DN, 2012, EVOLUTION, V66, P2903, DOI 10.1111/j.1558-5646.2012.01650.x; Riesch Ruediger, 2012, Aqua, V18, P95; Rohlf F.J., 2013, TPSDIG; Rohlf FJ, 2013, TPSRELW; SANDELL M, 1990, Q REV BIOL, V65, P23, DOI 10.1086/416583; Scrimshaw Nevin S., 1944, COPEIA, V1944, P180, DOI 10.2307/1437814; THIBAULT RE, 1974, NATURE, V251, P138, DOI 10.1038/251138a0; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; Tobler M, 2008, EVOLUTION, V62, P2643, DOI 10.1111/j.1558-5646.2008.00466.x; TRAVIS J, 1987, ECOLOGY, V68, P611, DOI 10.2307/1938466; Turner CL, 1937, BIOL BULL-US, V72, P145, DOI 10.2307/1537249; Weldele ML, 2014, SW NATURALIST, V59, P449; Zelditch M. L, 2004, GEOMETRIC MORPHOMETR; Zuniga-Vega JJ, 2011, J FISH BIOL, V79, P1029, DOI 10.1111/j.1095-8649.2011.03081.x; Zuniga-Vega J. J., 2010, VIVIPAROUS FISHES, P241; Zuniga-Vega JJ, 2007, OIKOS, V116, P995, DOI 10.1111/j.2007.0030-1299.15763.x 48 4 4 0 18 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JUL 2016 181 3 645 658 10.1007/s00442-015-3477-1 14 Ecology Environmental Sciences & Ecology DP8ZY WOS:000378787700002 26508151 2019-02-21 J Platt, ERM; Fowler, AM; Ord, TJ Platt, Edward R. M.; Fowler, Ashley M.; Ord, Terry J. Land colonisation by fish is associated with predictable changes in life history OECOLOGIA English Article Age-specific mortality; Blenny; Gonad development; Trade-offs; Ecological release GUPPIES POECILIA-RETICULATA; CORAL-REEF FISH; NATURAL-SELECTION; AMPHIBIOUS FISH; JUVENILE MORTALITY; INTERTIDAL FISHES; TELEOST FISHES; GROWTH; EVOLUTION; BLENNY The colonisation of new environments is a central evolutionary process, yet why species make such transitions often remains unknown because of the difficulty in empirically investigating potential mechanisms. The most likely explanation for transitions to new environments is that doing so conveys survival benefits, either in the form of an ecological release or new ecological opportunity. Life history theory makes explicit predictions about how traits linked to survival and reproduction should change with shifts in age-specific mortality. We used these predictions to examine whether a current colonisation of land by fishes might convey survival benefits. We found that blenny species with more terrestrial lifestyles exhibited faster reproductive development and slower growth rates than species with more marine lifestyles; a life history trade off that is consistent with the hypothesis that mortality has become reduced in younger life stages on land. A plausible explanation for such a shift is that an ecological release or opportunity on land has conveyed survival benefits relative to the ancestral marine environment. More generally, our study illustrates how life history theory can be leveraged in novel ways to formulate testable predictions on why organisms might make transitions into novel environments. [Platt, Edward R. M.; Ord, Terry J.] Univ New S Wales, Evolut & Ecol Res Ctr, Kensington, NSW 2052, Australia; [Platt, Edward R. M.; Ord, Terry J.] Univ New S Wales, Sch Biol Earth & Environm Sci, Kensington, NSW 2052, Australia; [Fowler, Ashley M.] Univ Technol Sydney, Sch Life Sci, Ultimo, NSW 2007, Australia Ord, TJ (reprint author), Univ New S Wales, Evolut & Ecol Res Ctr, Kensington, NSW 2052, Australia.; Ord, TJ (reprint author), Univ New S Wales, Sch Biol Earth & Environm Sci, Kensington, NSW 2052, Australia. t.ord@unsw.edu.au Ord, Terry/C-6870-2009; Fowler, Ashley/N-8623-2016 Ord, Terry/0000-0002-2608-2150; Fowler, Ashley/0000-0003-3075-7066 Australian Research Council; School of Biological, Earth and Environmental Sciences We would like to thank Alex Kerr and Brett Taylor for logistical support on Guam, Georgina Cooke for assistance in specimen collection, Iain Suthers for the use of his lab equipment and David Chapple and several anonymous reviewers for comments on previous versions of this paper. This work was supported by an Australian Research Council grant to T. J. O., and a postgraduate research award from the School of Biological, Earth and Environmental Sciences to E. R. M. P. This study was covered by the University of New South Wales Animal Care and Ethics Committee protocol 11/36b initially approved on 10 March 2011 and most recently reviewed on 28 February 2013. All data from this publication have been archived in the Dryad Digital Repository (doi:10.5061/dryad.55f35). The authors declare no conflict of interest. Almany GR, 2006, CORAL REEFS, V25, P19, DOI 10.1007/s00338-005-0044-y; Arbogast BS, 2006, EVOLUTION, V60, P370, DOI 10.1111/j.0014-3820.2006.tb01113.x; BATES D, 2008, LME4 LINEAR MIXED EF; BELK MC, 1995, J FISH BIOL, V47, P237, DOI 10.1111/j.1095-8649.1995.tb01891.x; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; BERGLUND A, 1986, OIKOS, V46, P349, DOI 10.2307/3565833; Bhikajee M, 2002, AFR ZOOL, V37, P221; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BROTHERS EB, 1976, FISH B-NOAA, V74, P1; BROWN CR, 1992, COPEIA, P1007; CAMPANA SE, 1985, CAN J FISH AQUAT SCI, V42, P1014, DOI 10.1139/f85-127; Carlson BA, 1992, THESIS; Clelland ES, 2007, ENDOCRINOLOGY, V148, P5451, DOI 10.1210/en.2007-0674; Dabruzzi TF, 2011, J EXP MAR BIOL ECOL, V406, P125, DOI 10.1016/j.jembe.2011.05.032; FORRESTER GE, 1990, ECOLOGY, V71, P1666, DOI 10.2307/1937576; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; Gibb AC, 2013, INTEGR COMP BIOL, V53, P295, DOI 10.1093/icb/ict052; Graham J. B, 1997, AIR BREATHING FISHES; Graham JB, 2004, PHYSIOL BIOCHEM ZOOL, V77, P720, DOI 10.1086/425184; Hayes KR, 2008, BIOL INVASIONS, V10, P483, DOI 10.1007/s10530-007-9146-5; Hernandez-Miranda E, 2009, REV BIOL MAR OCEANOG, V44, P619, DOI 10.4067/S0718-19572009000300009; Horn M. H., 1999, INTERTIDAL FISHES LI; Hsieh STT, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011197; HUNTE W, 1989, CORAL REEFS, V8, P45, DOI 10.1007/BF00304691; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; JEFFRIES MJ, 1984, BIOL J LINN SOC, V23, P269, DOI 10.1111/j.1095-8312.1984.tb00145.x; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Knope ML, 2013, J EVOLUTION BIOL, V26, P472, DOI 10.1111/jeb.12088; Kornfield I, 2000, ANNU REV ECOL SYST, V31, P163, DOI 10.1146/annurev.ecolsys.31.1.163; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LISTER BC, 1976, EVOLUTION, V30, P659, DOI 10.1111/j.1558-5646.1976.tb00947.x; Losos JB, 2010, EVOL DARWIN 1, V150, P381; Martin KL, 2014, J FISH BIOL, V84, P577, DOI 10.1111/jfb.12270; Martin KL, 2013, INTEGR COMP BIOL, V53, P233, DOI 10.1093/icb/ict018; MARTIN KLM, 1989, COPEIA, P723; Martin KLM, 1996, PHYSIOL ZOOL, V69, P1096, DOI 10.1086/physzool.69.5.30164248; Martin KLM, 2004, PHYSIOL BIOCHEM ZOOL, V77, P750, DOI 10.1086/421755; Martin KLM, 2015, BEACH-SPAWNING FISHES: REPRODUCTION IN AN ENDANGERED ECOSYSTEM, P1; MARTIN KLM, 1995, ENVIRON BIOL FISH, V44, P165, DOI 10.1007/BF00005914; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Morgans CL, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-97; Morgans CL, 2013, ANIM BEHAV, V86, P1241, DOI 10.1016/j.anbehav.2013.09.027; MUNZING J, 1963, EVOLUTION, V17, P320, DOI 10.2307/2406161; MYERS RA, 1993, CAN J FISH AQUAT SCI, V50, P1576, DOI 10.1139/f93-179; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; Nunez J, 2009, FISH PHYSIOL BIOCHEM, V35, P167, DOI 10.1007/s10695-008-9241-2; Ord TJ, 2011, ETHOLOGY, V117, P918, DOI 10.1111/j.1439-0310.2011.01949.x; OSENBERG CW, 1992, ECOLOGY, V73, P255, DOI 10.2307/1938737; Pace CM, 2014, J FISH BIOL, V84, P639, DOI 10.1111/jfb.12318; Patzner R. A., 2009, BIOL BLENNIES; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Platt ERM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137244; Rainey PB, 1998, NATURE, V394, P69, DOI 10.1038/27900; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; ROBINSON BW, 1985, BIOL BULL, V168, P482, DOI 10.2307/1541528; ROZEMEIJER MJC, 1993, COMP BIOCHEM PHYS A, V104, P57, DOI 10.1016/0300-9629(93)90008-R; Rundle Howard D., 2004, P192; RYSER J, 1989, OECOLOGIA, V78, P264, DOI 10.1007/BF00377165; Sayer M.D.J., 1991, Reviews in Fish Biology and Fisheries, V1, P159, DOI 10.1007/BF00157583; Sayer MDJ, 2005, FISH FISH, V6, P186, DOI 10.1111/j.1467-2979.2005.00193.x; Schluter D, 2009, SCIENCE, V323, P737, DOI 10.1126/science.1160006; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; SELMAN K, 1993, J MORPHOL, V218, P203, DOI 10.1002/jmor.1052180209; Shimizu N, 2006, J ZOOL, V269, P357, DOI 10.1111/j.1469-7998.2006.00113.x; SHULMAN MJ, 1985, ECOLOGY, V66, P1056, DOI 10.2307/1940565; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; Simberloff D, 2009, ANNU REV ECOL EVOL S, V40, P81, DOI 10.1146/annurev.ecolsys.110308.120304; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sol D, 2012, SCIENCE, V337, P580, DOI 10.1126/science.1221523; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Streelman JT, 2003, TRENDS ECOL EVOL, V18, P126; SUNOBE T, 1995, ENVIRON BIOL FISH, V43, P195, DOI 10.1007/BF00002491; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; Tyler CR, 1996, REV FISH BIOL FISHER, V6, P287, DOI 10.1007/BF00122584; Vermeij GJ, 2000, BIOL J LINN SOC, V70, P541; VICTOR BC, 1986, ECOL MONOGR, V56, P145, DOI 10.2307/1942506; WILSON EO, 1961, AM NAT, V95, P169, DOI 10.1086/282174; Wilson SK, 2004, MAR ECOL PROG SER, V284, P253, DOI 10.3354/meps284253; Yoder JB, 2010, J EVOLUTION BIOL, V23, P1581, DOI 10.1111/j.1420-9101.2010.02029.x 84 2 2 0 14 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JUL 2016 181 3 769 781 10.1007/s00442-016-3593-6 13 Ecology Environmental Sciences & Ecology DP8ZY WOS:000378787700012 26932469 2019-02-21 J Hu, YJ; Zhang, HC; Hou, JW; Dou, DH Hu, Yuanjie; Zhang, Hongchuan; Hou, Jiawei; Dou, Donghui Environmental mortality threat accelerate individuals' reproduction timing: A life history theory perspective INTERNATIONAL JOURNAL OF PSYCHOLOGY English Meeting Abstract [Hu, Yuanjie; Zhang, Hongchuan; Hou, Jiawei; Dou, Donghui] Cent Univ Finance & Econ, Beijing, Peoples R China 0 0 0 1 1 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 0020-7594 1464-066X INT J PSYCHOL Int. J. Psychol. JUL 2016 51 1 SI OR1895 1055 1055 1 Psychology, Multidisciplinary Psychology FK7XH WOS:000413720407442 2019-02-21 J Horak, P; Valge, M Horak, Peeter; Valge, Markus Old-for-grade girls reproduce but do not mature early: Simply a mechanistic link between educational progress and pace of life? INTELLIGENCE English Article Age at first birth; Cognitive ability; Completed fertility; Pubertal maturation; School progress SOCIOECONOMIC-STATUS; BIRTH COHORT; 1ST BIRTH; EVOLUTIONARY GENETICS; HISTORY STRATEGY; FATHER ABSENCE; EARLY PUBERTY; LUNG-FUNCTION; SMART TEENS; TWIN DATA Human life-history theory predicts that low cognitive abilities have coevolved with the fast pace-of-life. Old-for-grade pupils proceed slowly at school, which is usually caused by grade repetition due to low cognitive abilities. We assessed the causes and consequences of slow school progress by comparing life-history traits and measures of growth and performance between old-for-grade and appropriate-for-grade Estonian adolescent girls born between 1938 and 1953 (n=1673). We found no evidence for covariation between early pubertal maturation and school progress; girls who were more than 1.5 years old for their grade did not show signs of faster development of breasts and axillary hair. However, their first birth occurred one year earlier than for girls who had passed school at an appropriate rate. Among a subset of girls from Tallinn, a higher grade point average predicted a later age at first birth. Completed fertility and parity did not relate to the rate of school progress. Old-for-grade girls were generally shorter, weaker, and had smaller heads than appropriate-for-grade girls, which suggests that they experienced developmental constraints. The most parsimonious explanation for the observed patterns is that old-for-grade girls were devoid of capabilities required for obtaining tertiary education under the highly competitive environment prevalent in the study period. Our findings emphasize the role of (tertiary) education as a proximate constraint on reproductive rates. (C) 2016 Elsevier Inc. All rights reserved. [Horak, Peeter] Univ Tartu, Inst Ecol & Earth Sci, Dept Zool, Vanemuise 46, EE-51014 Tartu, Estonia; [Valge, Markus] Univ Tartu, Inst Psychol, Naituse 2, EE-50409 Tartu, Estonia Horak, P (reprint author), Univ Tartu, Inst Ecol & Earth Sci, Dept Zool, Vanemuise 46, EE-51014 Tartu, Estonia. horak@ut.ee Horak, Peeter/0000-0002-1442-9903 Estonian Science Agency [IUT34-8] We thank Gudrun Veldre for various consultations in anthropometry and logistic help, Robert Barry Davis and Joseph Enge for language check and reviewers for their constructive comments on the ms. The study was financed by the Estonian Science Agency (Institutional Research Grant IUT34-8). Alvergne A., 2014, P ROYAL SOC B, V281; Arden R., 2015, INT J EPIDE IN PRESS; Arden R, 2009, INTELLIGENCE, V37, P581, DOI 10.1016/j.intell.2009.03.008; Barthold JA, 2012, EVOL HUM BEHAV, V33, P628, DOI 10.1016/j.evolhumbehav.2012.03.003; Batty GD, 2006, EUR J EPIDEMIOL, V21, P795, DOI 10.1007/s10654-006-9057-2; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Boothroyd LG, 2013, AM J HUM BIOL, V25, P366, DOI 10.1002/ajhb.22378; Boswell HB, 2014, FEMALE PUBERTY, P7; Cairo O, 2011, FRONT HUM NEUROSCI, V5, DOI 10.3389/fnhum.2011.00108; Cavanagh SE, 2007, SOC PSYCHOL QUART, V70, P186, DOI 10.1177/019027250707000207; Chisholm JS, 1993, CURR ANTHROPOL, V1993, P1; Deardorff J, 2011, J ADOLESCENT HEALTH, V48, P441, DOI 10.1016/j.jadohealth.2010.07.032; DUBAS JS, 1991, AM J EDUC, V99, P444, DOI 10.1086/443993; Duke PM, 1982, J PEDIAT, V100, P633; Dutton E, 2013, INTELLIGENCE, V41, P817, DOI 10.1016/j.intell.2013.05.008; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Fergusson DM, 2000, J MARRIAGE FAM, V62, P147, DOI 10.1111/j.1741-3737.2000.00147.x; Figueredo A. J., 2014, EVOLUTIONARY BEHAV S, V8, P148, DOI DOI 10.1037/H0099837; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Gallup AC, 2007, EVOL HUM BEHAV, V28, P423, DOI 10.1016/j.evolhumbehav.2007.07.001; GEARY DC, 1989, B PSYCHONOMIC SOC, V27, P241, DOI 10.3758/BF03334596; Graber JA, 2004, J AM ACAD CHILD PSY, V43, P718, DOI 10.1097/01.chi.0000120022.14101.11; Guerrant RL, 2012, NAT REV GASTRO HEPAT, V10, P220, DOI DOI 10.1038/NRGASTRO.2012.239; Guven C, 2015, ECON HUM BIOL, V16, P16, DOI 10.1016/j.ehb.2013.12.005; Halpern CT, 2000, J ADOLESCENT HEALTH, V26, P213, DOI 10.1016/S1054-139X(99)00061-0; Harden KP, 2011, CHILD DEV, V82, P1327, DOI 10.1111/j.1467-8624.2011.01607.x; HIGGINS JV, 1962, EUGEN QUART, V9, P84, DOI 10.1080/19485565.1962.9987508; Hochberg Z, 2013, BMC MED, V11, DOI 10.1186/1741-7015-11-113; Horak P., 2015, BIOL LETT IN PRESS, V11; Horak Peeter, 2015, Evolution Medicine and Public Health, P167, DOI 10.1093/emph/eov017; Houle D, 2000, Novartis Found Symp, V233, P149, DOI 10.1002/0470870850.ch10; IJAZ MK, 2012, OPEN INFECT DIS J, V6, P65, DOI DOI 10.2174/1874279301206010065; Joshi PK, 2015, NATURE, V523, P459, DOI 10.1038/nature14618; Kaltiala-Heino R, 2003, SOC SCI MED, V57, P1055, DOI 10.1016/S0277-9536(02)00480-X; Kanazawa S., 2005, J CULTURAL EVOLUTION, V3, P255, DOI [10.1556/JCEP.3.2005.3-4.3, DOI 10.1556/JCEP.3.2005.3-4.3]; Kanazawa S, 2014, SOC SCI RES, V48, P157, DOI 10.1016/j.ssresearch.2014.06.003; Katus K., 2005, GLOBALIZATION UNCERT, P217; Kirk KM, 2001, EVOLUTION, V55, P423; Klauser P, 2015, PSYCHONEUROENDOCRINO, V52, P111, DOI 10.1016/j.psyneuen.2014.10.020; Klijzing E., 2000, FAMILY PLANNING PERS, P74; Koivusilta L, 2004, ANN HUM BIOL, V31, P446, DOI 10.1080/03014460412331281719; Krapohl E, 2016, MOL PSYCHIATR, V21, P437, DOI 10.1038/mp.2015.2; Krapohl E., 2015, MOL PSYCHIAT; Kreyenfeld M., 2006, FAMILY FORMATION E W, P225; Laidra K, 2007, PERS INDIV DIFFER, V42, P441, DOI 10.1016/j.paid.2006.08.001; Lawlor DA, 2005, J EPIDEMIOL COMMUN H, V59, P656, DOI 10.1136/jech.2004.030205; Lawson DW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073698; Lawson DW, 2012, P ROY SOC B-BIOL SCI, V279, P4755, DOI 10.1098/rspb.2012.1635; Lorntz B, 2006, PEDIATR INFECT DIS J, V25, P513, DOI 10.1097/01.inf.0000219524.64448.90; Lynn R., 1996, DYSGENICS GENETIC DE; Marioni RE, 2014, INTELLIGENCE, V44, P26, DOI 10.1016/j.intell.2014.02.006; Marioni RE, 2014, BEHAV GENET, V44, P91, DOI 10.1007/s10519-014-9644-z; Martin AJ, 2009, J EDUC PSYCHOL, V101, P101, DOI 10.1037/a0013100; Meisenberg G, 2010, INTELLIGENCE, V38, P220, DOI 10.1016/j.intell.2010.01.003; Mendle J, 2007, DEV REV, V27, P151, DOI 10.1016/j.dr.2006.11.001; Menie MAWO, 2015, PERS INDIV DIFFER, V86, P266, DOI 10.1016/j.paid.2015.05.032; Menie MAWO, 2015, PERS INDIV DIFFER, V74, P270, DOI 10.1016/j.paid.2014.10.027; Miller G, 2000, Novartis Found Symp, V233, P260; Murray C, 1994, BELL CURVE RESHAPING; Neiss M, 2002, J BIOSOC SCI, V34, P259, DOI 10.1017/S0021932002002596; Nettle Daniel, 2013, Evolution Medicine and Public Health, P187, DOI 10.1093/emph/eot016; Peach H, 2014, PERS INDIV DIFFER, V71, P56, DOI 10.1016/j.paid.2014.07.017; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Penke L, 2016, CURR OPIN PSYCHOL, V7, P104, DOI 10.1016/j.copsyc.2015.08.021; Plomin R, 2015, MOL PSYCHIATR, V20, P98, DOI 10.1038/mp.2014.105; Rahu K, 2010, EARLY HUM DEV, V86, P493, DOI 10.1016/j.earlhumdev.2010.06.010; Raichle ME, 2002, P NATL ACAD SCI USA, V99, P10237, DOI 10.1073/pnas.172399499; Raymo JM, 2015, DEMOGR RES, V33, P65, DOI 10.4054/DemRes.2015.33.3; Reeve CL, 2013, INTELLIGENCE, V41, P358, DOI 10.1016/j.intell.2013.05.010; Riley AP, 2001, SOC BIOL, V48, P21; Rodgers JL, 2008, AM J SOCIOL, V114, pS202, DOI 10.1086/592205; Rushton JP, 2009, INT J NEUROSCI, V119, P691, DOI 10.1080/00207450802325843; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Saar E, 1997, EUR SOCIOL REV, V13, P139, DOI 10.1093/oxfordjournals.esr.a018209; Saar E., 2012, UNEQUAL ED TRANSITIO; Saar E., 2008, INT STAND CLASS ED I, V15, P237; Scholder SVK, 2013, EUR ECON REV, V57, P1, DOI 10.1016/j.euroecorev.2012.09.009; Schwartz JA, 2015, INTELLIGENCE, V51, P109, DOI 10.1016/j.intell.2015.06.001; Shearer D. L., 2002, PERSPECT SEX REPRO H, P236; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; Silventoinen K, 2006, GENES BRAIN BEHAV, V5, P585, DOI 10.1111/j.1601-183X.2006.00208.x; Silventoinen K, 2013, PAEDIATR PERINAT EP, V27, P380, DOI 10.1111/ppe.12054; Sin DD, 2005, CHEST, V127, P1952, DOI 10.1378/chest.127.6.1952; Sirin SR, 2005, REV EDUC RES, V75, P417, DOI 10.3102/00346543075003417; Skirbekk V, 2008, DEMOGR RES, V18, P145, DOI 10.4054/DemRes.2008.18.5; SKUSE D, 1994, ACTA PAEDIATR, V83, P11, DOI 10.1111/j.1651-2227.1994.tb13413.x; Stearns S, 1992, EVOLUTION LIFE HIST; Thornhill R, 2004, EVOLUTIONARY PSYCHOLOGY, PUBLIC POLICY AND PERSONAL DECISIONS, P249; Tork J., 1940, EESTI LASTE INTELLIG; Trzaskowski M, 2014, INTELLIGENCE, V42, P83, DOI 10.1016/j.intell.2013.11.002; Verweij KJH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103102; Victora CG, 2008, LANCET, V371, P340, DOI 10.1016/S0140-6736(07)61692-4; Waynforth D, 2012, P ROY SOC B-BIOL SCI, V279, P2998, DOI 10.1098/rspb.2012.0220; Wood J, 2014, DEMOGR RES, V31, DOI 10.4054/DemRes.2014.31.46; Woodley MA, 2013, PERS INDIV DIFFER, V55, P279, DOI 10.1016/j.paid.2012.05.024; Woodley MA, 2012, PERS INDIV DIFFER, V53, P152, DOI 10.1016/j.paid.2011.03.028; Woodley MA, 2011, REV GEN PSYCHOL, V15, P228, DOI 10.1037/a0024348; Yao SY, 2014, EVOL HUM BEHAV, V35, P481, DOI 10.1016/j.evolhumbehav.2014.06.007 100 0 0 1 12 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 0160-2896 1873-7935 INTELLIGENCE Intelligence JUL-AUG 2016 57 41 47 10.1016/j.intell.2016.04.004 7 Psychology, Multidisciplinary Psychology DN7YZ WOS:000377297400006 2019-02-21 J Sungani, H; Ngatunga, BP; Genner, MJ Sungani, Harold; Ngatunga, Benjamin P.; Genner, Martin J. Migratory behaviour shapes spatial genetic structure of cyprinid fishes within the Lake Malawi catchment FRESHWATER BIOLOGY English Article conservation genetics; microsatellite DNA; mitochondrial DNA; river fishes; stock structure SEX-BIASED DISPERSAL; POPULATION-STRUCTURE; MARINE FISHES; EVOLUTION; SOFTWARE; DIFFERENTIATION; WINDOWS; LINUX; SHAD Genetic differences among freshwater fish populations are dependent on life-history characteristics of the species, including the range of adult dispersal and the extent of homing to natal breeding grounds. However, the effects of variation in such characteristics on population genetic connectivity are rarely studied comparatively among closely related species. We studied population genetic structure within three congeneric cyprinid species from the Lake Malawi catchment that differ substantially in life-history traits and conservation status, using a combination of microsatellite and mitochondrial DNA markers. Mpasa (Opsaridium microlepis) is a large (70cm total length) migratory species that spawns in rivers, but as an adult is exclusively known from the main lake body. Sanjika (Opsaridium microcephalum), is a medium size (30cm total length) species that exists in lake breeding, river-lake migratory and apparently landlocked populations. Dwarf sanjika (Opsaridium tweddleorum) is a small non-migratory species (15cm total length) that persists in small tributaries surrounding the main lake and adjoining rivers. The results revealed striking differences among the three species in spatial genetic structuring. The river-lake migratory mpasa showed only weak yet significant population genetic structure within the main Lake Malawi catchment, suggesting that there is no strong natal homing. The habitat-generalist sanjika showed only weak spatial genetic differentiation at microsatellite loci within the Lake Malawi catchment, but moderate structure in mitochondrial DNA, potentially reflecting male-biased dispersal. The river-restricted dwarf sanjika showed strong genetic structure in both microsatellite and mitochondrial DNA, suggesting strictly limited dispersal at both adult and juvenile stages. We conclude that contrasting migration life histories have resulted in dramatically different patterns of population genetic structure among these congeneric species. The observed patterns demonstrate how divergent life-history evolution may strongly influence broader patterns of population genetic connectivity in freshwater fish, with consequences for management and conservation. Specifically the results suggesting gene flow among Lake Malawi populations of mpasa, an IUCN red-listed Endangered' species endemic to the lake catchment, imply that conservation initiatives operating at both local and catchment scales are needed to reverse local population decline. [Sungani, Harold; Genner, Martin J.] Sch Biol Sci, Life Sci Bldg,24 Tyndall Ave, Bristol BS8 1TQ, Avon, England; [Sungani, Harold] Fisheries Res Unit, Monkey Bay, Malawi; [Ngatunga, Benjamin P.] Tanzania Fisheries Res Inst, Dar Es Salaam, Tanzania Sungani, H (reprint author), Sch Biol Sci, Life Sci Bldg,24 Tyndall Ave, Bristol BS8 1TQ, Avon, England. harold.sungani@bristol.ac.uk Commonwealth Scholarship [MWCS-2012-249]; Royal Society-Leverhulme Trust Africa Award [AA100023, AA130107] The work was supported by Commonwealth Scholarship MWCS-2012-249 to H.S. and a Royal Society-Leverhulme Trust Africa Award AA100023 and AA130107 to M.G. and B.P.N. Alan Smith, George Turner and Jennifer Swanstrom provided assistance with sample collection in Tanzania. Jane Coghill provided valuable support with genotyping the samples, whereas Alan Hudson is thanked for advice on Structure analyses. We thank George Turner and the reviewers for comments that improved the manuscript. Bartakova V, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-196; Basiita RK, 2016, CONSERV GENET RESOUR, V8, P85, DOI 10.1007/s12686-015-0515-6; Changadeya W., 2013, African Journal of Biotechnology, V12, P6709; Croft DP, 2003, OECOLOGIA, V137, P62, DOI 10.1007/s00442-003-1268-6; CROZIER RH, 1994, EXS, V68, P227; Danley Patrick D., 2012, International Journal of Evolutionary Biology, P1, DOI 10.1155/2012/574851; Egger B, 2015, HYDROBIOLOGIA, V748, P171, DOI 10.1007/s10750-014-1919-0; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; Hedgecock D, 2007, OCEANOGRAPHY, V20, P70, DOI 10.5670/oceanog.2007.30; HINDAR K, 1991, HEREDITY, V66, P83, DOI 10.1038/hdy.1991.11; Hutchings JA, 2002, P ROY SOC B-BIOL SCI, V269, P2487, DOI 10.1098/rspb.2002.2176; Jolly MT, 2012, MAR BIOL, V159, P675, DOI 10.1007/s00227-011-1845-x; Katongo C, 2005, HYDROBIOLOGIA, V542, P221, DOI 10.1007/s10750-004-1389-x; Kazembe J., 2006, IUCN RED LIST THREAT; Knutsen H, 2011, MOL ECOL, V20, P768, DOI 10.1111/j.1365-294X.2010.04979.x; Kopelman NM, 2015, MOL ECOL RESOUR, V15, P1179, DOI 10.1111/1755-0998.12387; Librado P, 2009, BIOINFORMATICS, V25, P1451, DOI 10.1093/bioinformatics/btp187; Lyons RP, 2015, P NATL ACAD SCI USA, V112, P15568, DOI 10.1073/pnas.1512864112; Mortimer E, 2007, BASIN RES, V19, P393, DOI 10.1111/j.1365-2117.2007.00332.x; Nei M., 1987, MOL EVOLUTIONARY GEN; Nichols P., 2015, P ROY SOC LOND B BIO, V282, P20142; Palsboll PJ, 2007, TRENDS ECOL EVOL, V22, P11, DOI 10.1016/j.tree.2006.09.003; Palumbi SR, 2003, ECOL APPL, V13, pS146; Pritchard JK, 2000, GENETICS, V155, P945; Prugnolle F, 2002, HEREDITY, V88, P161, DOI 10.1038/sj/hdy/6800060; R Development Core Team, 2015, R LANG ENV STAT COMP; Riginos C, 2011, ECOGRAPHY, V34, P566, DOI 10.1111/j.1600-0587.2010.06511.x; Ripley B, 2015, PACKAGE MASS; ROFF DA, 1988, ENVIRON BIOL FISH, V22, P133, DOI 10.1007/BF00001543; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Ryman N, 2006, MOL ECOL NOTES, V6, P600, DOI 10.1111/j.1365-294X.2006.01378.x; Schmidt RC, 2014, MOL PHYLOGENET EVOL, V79, P415, DOI 10.1016/j.ympev.2014.07.011; Selkoe KA, 2014, MOL ECOL, V23, P3064, DOI 10.1111/mec.12804; Skelton P. H, 2001, COMPLETE GUIDE FRESH; Swartz ER, 2009, MOL PHYLOGENET EVOL, V51, P75, DOI 10.1016/j.ympev.2008.10.017; Teacher AGF, 2011, MOL ECOL RESOUR, V11, P151, DOI 10.1111/j.1755-0998.2010.02890.x; Tweddle D, 2014, AFR J AQUAT SCI, V39, P479, DOI 10.2989/16085914.2014.982499; Tweddle D., 1979, Ichthyological Bulletin of the J. L. B. Smith Institute of Ichthyology, V39, P1; TWEDDLE D, 1987, Journal of the Limnological Society of Southern Africa, V13, P52; Tweddle D, 2001, ENVIRON BIOL FISH, V61, P72, DOI 10.1023/A:1011077308523; Tweddle D., 1981, 8 CIFA FAO, P145; Tweddle D., 1993, FISHES AAH THOSE ELP; Tweddle D., 1983, J SCI TECHNOLOGOY MA, V4, P55; vansOosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI DOI 10.1111/J.1471-8286.2004.00684.X; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Vreven E., 2006, IUCN RED LIST THREAT; Waldman J, 2008, BIOL LETTERS, V4, P659, DOI 10.1098/rsbl.2008.0341; Walther BD, 2008, T AM FISH SOC, V137, P57, DOI 10.1577/T07-029.1; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Woodruff D.S., 1989, P76; Xia XH, 2013, MOL BIOL EVOL, V30, P1720, DOI 10.1093/molbev/mst064 54 1 1 0 28 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. JUL 2016 61 7 1062 1074 10.1111/fwb.12767 13 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DN6YU WOS:000377223300003 2019-02-21 J Goodwin, JCA; King, RA; Jones, JI; Ibbotson, A; Stevens, JR Goodwin, Jill C. A.; King, R. Andrew; Jones, J. Iwan; Ibbotson, Anton; Stevens, Jamie R. A small number of anadromous females drive reproduction in a brown trout (Salmo trutta) population in an English chalk stream FRESHWATER BIOLOGY English Article microsatellite; parental investment; Salmo trutta; sea trout; stable isotope analysis FRESH-WATER-RESIDENT; STABLE-ISOTOPE ANALYSIS; LAKE DISTRICT STREAM; ATLANTIC SALMON; EGG SIZE; BROOK TROUT; SALVELINUS-FONTINALIS; SEA-TROUT; SPERM QUALITY; ARCTIC CHARR Brown trout, Salmo trutta, exhibit one of the most highly variable and polytypic life-history strategies of all salmonids. Populations may be wholly freshwater-resident or almost exclusively migratory (anadromous), or fish of a single population may exhibit varying proportions of the two life-history strategies. Both anadromous and freshwater-resident trout freely interbreed to produce fertile offspring. We quantify maternal reproductive provisioning by anadromous and freshwater-resident brown trout to their offspring and assess relative parental fitness (in terms of number, size and time of emergence of offspring). Newly emerged juvenile trout (fry) were sampled (n=119) over the emergence period in March-April 2007 in a lowland English chalk stream; samples of adult trout [anadromous (6F:12M) and freshwater-resident (22F:56M)], river-resident trout parr and macroinvertebrate prey were also collected. Using a novel combination of stable isotope analysis and microsatellite genotyping we demonstrate the overwhelming contribution of anadromous parents (both female and male) to fry production, despite the obvious presence and numerical dominance of resident adults. We unambiguously identify the maternal origins of 78% of juveniles sampled and show that maternal reproductive contribution to juvenile production in the river was higher for anadromous females (76%) than freshwater-resident fish (2.5%). Offspring of anadromous females emerged earlier and at a larger body size than offspring of resident females. Similarly, while the relative contribution of resident males (37%) was higher than that of resident females, anadromous males sired considerably more offspring (63%) than resident males. This is the first study of its kind to accurately assess the reproductive contribution of anadromous male trout. Overall, this study suggests that anadromous maternal traits provide offspring with an adaptive advantage and greater fitness in early ontogeny, and that a small number of anadromous females (six of 96 adults sampled) are the main drivers of reproduction in this system. [Goodwin, Jill C. A.; King, R. Andrew; Stevens, Jamie R.] Univ Exeter, Coll Life & Environm Sci, Dept Biosci, Exeter, Devon, England; [Goodwin, Jill C. A.; Jones, J. Iwan; Ibbotson, Anton] Winfrith Technol Ctr, Ctr Ecol & Hydrol Dorset, Dorchester, Dorset, England; [Jones, J. Iwan] Queen Mary Univ London, Sch Biol & Chem Sci, London, England; [Ibbotson, Anton] GWCT, Salmon & Trout Res Ctr, River Lab, East Stoke Wareham, Dorset, England Stevens, JR (reprint author), Univ Exeter, Dept Biosci, Geoffrey Pope Bldg,Stocker Rd, Exeter EX4 4QD, Devon, England. j.r.stevens@exeter.ac.uk King, Andrew/0000-0001-9737-214X; Jones, John Iwan/0000-0002-7238-2509 Natural Environment Research Council (UK) [NER/S/A/2005/13773]; Game and Wildlife Conservation Trust; University of Exeter; NERC [NE/C511905/1]; Natural Environment Research Council [NE/C511905/1, NE/C521244/1] We thank William Beaumont (Game and Wildlife Conservation Trust) for help with sampling and fieldwork, and Dr Rasmus Lauridsen (Game and Wildlife Conservation Trust) for advice on stable isotope analysis. This work was supported by a Natural Environment Research Council (UK) PhD studentship (NER/S/A/2005/13773); additional funding was provided by the Game and Wildlife Conservation Trust and the University of Exeter. J. I. Jones was supported by NERC grant NE/C511905/1. All tissue collection was carried out under UK Home Office licence PPL 80/1913. We thank three anonymous referees for constructive comments on an earlier draft of this manuscript. The authors declare no conflict of interests. Acolas ML, 2008, ECOL FRESHW FISH, V17, P382, DOI 10.1111/j.1600-0633.2007.00290.x; Bekkevold D, 2004, MOL ECOL, V13, P1707, DOI 10.1111/j.1365-294X.2004.02156.x; BERG OK, 1990, ENVIRON BIOL FISH, V29, P145, DOI 10.1007/BF00005031; Berg OK, 2001, FUNCT ECOL, V15, P13, DOI 10.1046/j.1365-2435.2001.00473.x; BLACK GA, 1981, CAN J ZOOL, V59, P1892, DOI 10.1139/z81-257; Bohlin T, 2001, J ANIM ECOL, V70, P112, DOI 10.1046/j.1365-2656.2001.00466.x; Charles K, 2006, ECOL FRESHW FISH, V15, P255, DOI 10.1111/j.1600-0633.2006.00149.x; Charles K, 2004, MAR FRESHWATER RES, V55, P185, DOI 10.1071/MF03173; Consuegra S, 2007, EVOL ECOL, V21, P229, DOI 10.1007/s10682-006-9001-7; CRISP DT, 1989, J FISH BIOL, V34, P119, DOI 10.1111/j.1095-8649.1989.tb02962.x; CURRY RA, 1995, CAN J FISH AQUAT SCI, V52, P1741, DOI 10.1139/f95-766; Curry RA, 2005, J FISH BIOL, V66, P741, DOI 10.1111/j.0022-1112.2005.00636.x; Dieperink C, 2001, ECOL FRESHW FISH, V10, P177, DOI 10.1034/j.1600-0633.2001.100307.x; Doucett RR, 1999, T AM FISH SOC, V128, P278, DOI 10.1577/1548-8659(1999)128<0278:IOAANA>2.0.CO;2; Eek D, 1997, J FISH BIOL, V51, P659, DOI 10.1111/j.1095-8649.1997.tb01522.x; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Eisbrenner WS, 2014, HEREDITY, V113, P86, DOI 10.1038/hdy.2013.55; Elliott J. M., 1994, QUANTITATIVE ECOLOGY; ELLIOTT JM, 1984, J ANIM ECOL, V53, P327, DOI 10.2307/4360; Elliott JM, 1998, J FISH BIOL, V53, P1120, DOI 10.1006/jfbi.1998.0778; ELLIOTT JM, 1995, J FISH BIOL, V47, P893, DOI 10.1111/j.1095-8649.1995.tb06010.x; ESTOUP A, 1993, HEREDITY, V71, P488, DOI 10.1038/hdy.1993.167; Estoup A, 1996, MOL MAR BIOL BIOTECH, V5, P295; FERGUSON A, 1989, FRESHWATER BIOL, V21, P35, DOI 10.1111/j.1365-2427.1989.tb01346.x; Feuchtmayr H, 2003, RAPID COMMUN MASS SP, V17, P2605, DOI 10.1002/rcm.1227; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Frost W. E., 1967, THE TROUT; Fry B., 2008, STABLE ISOTOPE ECOLO; Garcia-Vazquez E, 2001, J HERED, V92, P146, DOI 10.1093/jhered/92.2.146; Greenberg L, 1996, REGUL RIVER, V12, P287, DOI 10.1002/(SICI)1099-1646(199603)12:2/3<287::AID-RRR396>3.3.CO;2-V; Grey J, 2001, ECOL FRESHW FISH, V10, P168, DOI 10.1034/j.1600-0633.2001.100306.x; Griffiths AM, 2009, EVOL APPL, V2, P537, DOI [10.1111/j.1752-4571.2009.00092-x, 10.1111/j.1752-4571.2009.00092.x]; GROSS MR, 1988, SCIENCE, V239, P1291, DOI 10.1126/science.239.4845.1291; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Ibbotson A. T., 2006, TADNOLL BROOK REV HI; Jardine TD, 2008, CAN J FISH AQUAT SCI, V65, P2201, DOI 10.1139/F08-132; JONES J. W., 1954, BRIT JOUR ANIMAL BEHAVIOR, V2, P103, DOI 10.1016/S0950-5601(54)80046-3; Jones OR, 2010, MOL ECOL RESOUR, V10, P551, DOI 10.1111/j.1755-0998.2009.02787.x; JONSSON B, 1985, T AM FISH SOC, V114, P182, DOI 10.1577/1548-8659(1985)114<182:LHPOFR>2.0.CO;2; Jonsson B, 2000, AQUACULTURE, V187, P315, DOI 10.1016/S0044-8486(00)00312-4; Jonsson N, 1999, J FISH BIOL, V55, P767, DOI 10.1006/jfbi.1999.1035; LABEELUND JH, 1990, J FISH BIOL, V37, P755, DOI 10.1111/j.1095-8649.1990.tb02539.x; Lobon-Cervia J, 2000, ECOL FRESHW FISH, V9, P92, DOI 10.1034/j.1600-0633.2000.90111.x; LobonCervia J, 1997, FRESHWATER BIOL, V38, P277, DOI 10.1046/j.1365-2427.1997.00217.x; Martinez JL, 1999, ANIM GENET, V30, P464; McCarthy ID, 2000, RAPID COMMUN MASS SP, V14, P1325; Ojanguren AF, 1996, AQUACULTURE, V147, P9, DOI 10.1016/S0044-8486(96)01398-1; Olofsson H, 1999, ECOL FRESHW FISH, V8, P59, DOI 10.1111/j.1600-0633.1999.tb00054.x; OReilly PT, 1996, CAN J FISH AQUAT SCI, V53, P2292, DOI 10.1139/cjfas-53-10-2292; Petersson E, 1997, BEHAVIOUR, V134, P1, DOI 10.1163/156853997X00250; Petersson JCE, 2001, J FISH BIOL, V58, P487, DOI 10.1006/jfbi.2000.1468; Phillips DL, 2001, OECOLOGIA, V127, P171, DOI 10.1007/s004420000578; Poteaux C., 1995, THESIS U MONTPELLIER; Presa P, 1996, J FISH BIOL, V49, P1326, DOI 10.1111/j.1095-8649.1996.tb01800.x; RIEMAN BE, 1994, CAN J FISH AQUAT SCI, V51, P68, DOI 10.1139/f94-009; Roff Derek A., 1992; Sear DA, 2014, HYDROL PROCESS, V28, P86, DOI 10.1002/hyp.9565; SLETTAN A, 1995, ANIM GENET, V26, P281, DOI 10.1111/j.1365-2052.1995.tb03262.x; Theriault V, 2003, J FISH BIOL, V63, P1144, DOI 10.1046/j.1095-8649.2003.00233.x; Vignes JC, 1995, B FR PECHE PISCIC, P207, DOI 10.1051/kmae:1995023; Vladic TV, 2001, P ROY SOC B-BIOL SCI, V268, P2375, DOI 10.1098/rspb.2001.1768; Vladie T, 2006, INT VER THEOR ANGEW, V29, P1331; WALLACE JC, 1984, J FISH BIOL, V24, P427, DOI 10.1111/j.1095-8649.1984.tb04813.x; Yano A, 2013, EVOL APPL, V6, P486, DOI 10.1111/eva.12032; Youngson AF, 1997, CAN J FISH AQUAT SCI, V54, P1064, DOI 10.1139/cjfas-54-5-1064 67 3 3 2 28 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. JUL 2016 61 7 1075 1089 10.1111/fwb.12768 15 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DN6YU WOS:000377223300004 Green Published, Other Gold 2019-02-21 J Torrens, J; Heraty, JM; Murray, E; Fidalgo, P Torrens, Javier; Heraty, John M.; Murray, Elizabeth; Fidalgo, Patricio Biology and phylogenetic placement of a new species of Lasiokapala Ashmead from Argentina (Hymenoptera: Eucharitidae) SYSTEMATIC ENTOMOLOGY English Article KAPALA HYMENOPTERA; LIFE-HISTORY; CHALCIDOIDEA; FORMICIDAE; ECTATOMMA; BEHAVIOR; PARASITISM; GENUS Within the ant-parasitic wasp family Eucharitidae (Hymenoptera), the Kapala clade is a monophyletic group attacking Ectatomminae and Ponerinae. Members often express extreme phenotypic features, especially in the morphology of the paired frenal spines. Although the means of attack and developmental history of the eucharitid wasps within the ant nest are very similar, the means by which they oviposit and optimize encounters of their active first-instar larvae with ants is highly variable. The relationships and life-history strategies of Lasiokapala Ashmead (Hymenoptera: Eucharitidae) and related taxa within the Kapala clade are discussed based on phylogenetic analyses of morphological and molecular data. Descriptions are provided for the adults (both sexes), eggs and planidia of Lasiokapala spiralicornissp.n. from Santiago del Estero (Argentina). Females deposit their eggs on the underside of leaves of Sida cordifolia L. (Malvaceae) and the likely host is postulated to be the genus Ectatomma (Formicidae: Ectatomminae). Even within a closely related group of genera, there is extreme independent divergence in morphology of scutellar spines, antennae and other features, but the larvae and larval biology are highly conserved across a much larger group of Eucharitidae. This published work has been registered in ZooBank, . [Torrens, Javier; Fidalgo, Patricio] CRILAR CONICET, Entre Rios y Mendoza S-N Anillaco, RA-5301 La Rioja, Argentina; [Heraty, John M.] Univ Calif Riverside, Dept Entomol, Riverside, CA 92521 USA; [Murray, Elizabeth] Cornell Univ, Dept Entomol, Ithaca, NY 14853 USA Torrens, J (reprint author), CRILAR CONICET, Entre Rios y Mendoza S-N Anillaco, RA-5301 La Rioja, Argentina. jtorrens@crilar-conicet.gob.ar Torrens, Javier/0000-0002-3608-132X Agencia Nacional de Promocion Cientifica y Tecnologica [PICT 2324]; National Science Foundation [DEB 0730616, 1257733] This investigation was made possible through funding by Project PICT 2324 provided by Agencia Nacional de Promocion Cientifica y Tecnologica to JT and National Science Foundation grants DEB 0730616 and 1257733 to JMH. In particular, we thank Jason Mottern (Systematic Entomology Laboratory, ARS-USDA) and Christiane Weirauch (Entomology Department, UC Riverside) for help with fieldwork. We would also like to thank the Willi Henning Society for free use of the phylogenetic program TNT. Ashmead W. H, 1904, MEM CARNEGIE MUS, V1, P225; Ashmead W. H, 1899, P ENTOMOL SOC WASH, V4, P235; Buys SC, 2010, TROP ZOOL, V23, P29; Clausen C. P., 1923, Annals of the Entomological Society of America, V16, P195; CLAUSEN CURTIS P., 1940, JOUR WASHINGTON ACAD SCI, V30, P504; De Santis L., 1980, CATALOGO HIMENOPTERO; EADY RD, 1968, PROC R ENTOMOL SOC A, V43, P66, DOI 10.1111/j.1365-3032.1968.tb01029.x; Goloboff PA, 2008, CLADISTICS, V24, P774, DOI 10.1111/j.1096-0031.2008.00217.x; HARRIS RA, 1979, OCC PAP ENT, V28, P1; Heraty J, 2004, SYST ENTOMOL, V29, P544, DOI 10.1111/j.0307-6970.2004.00267.x; Heraty J. M., 2015, ANN ENTOMOLOGICAL SO, V2015, P1; Heraty J. M, 2002, MEMOIRS AM ENTOMOLOG, V68, P1; HERATY JM, 1984, SYST ENTOMOL, V9, P309, DOI 10.1111/j.1365-3113.1984.tb00056.x; HERATY JM, 1993, ANN ENTOMOL SOC AM, V86, P517, DOI 10.1093/aesa/86.5.517; Heraty JM, 2000, ANN ENTOMOL SOC AM, V93, P374, DOI 10.1603/0013-8746(2000)093[0374:PROOHE]2.0.CO;2; Heraty JM, 1998, P ENTOMOL SOC WASH, V100, P72; Heraty JM, 2013, J HYMENOPT RES, V35, P1, DOI 10.3897/JHR.35.6025; Heraty JM, 2013, CLADISTICS, V29, P466, DOI 10.1111/cla.12006; Heraty JM, 2009, ZOOKEYS, P215, DOI 10.3897/zookeys.20.126; ISHII TEI, 1932, BULL IMP AGRIC EXP STA [TOKYO] [NOJI SHIKEN J6], V3, P203; Kugler C., 1982, AGRICULTURE, V24, P1; Kusnezov N., 1978, MISCELANEA I M LILLO, V61, P1; Lachaud Jean-Paul, 2012, Psyche (Cambridge), P342157; Lapola D. M., 2003, Revista Brasileira de Zoociencias, V5, P177; Maddison WP, 2015, MESQUITE MODULAR SYS; Miller M. A., 2010, GAT COMP ENV WORKSH, P1, DOI DOI 10.1109/GCE.2010.5676129; Morello J., 2012, ECORREGIONES COMPLEJ; MORRONE JJ, 2001, BIOGEOGRAFIA AM LATI, V3; Murray E. A., 2014, THESIS U CALIFORNIA; Murray EA, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0495; Nixon K. C., 1999, WINCLADA 0 9 9; Perez-Lachaud G, 2006, BIOTROPICA, V38, P574, DOI 10.1111/j.1744-7429.2006.00169.x; Perez-Lachaud G, 2006, ANN ENTOMOL SOC AM, V99, P567, DOI 10.1603/0013-8746(2006)99[567:BABOKH]2.0.CO;2; Perez-Lachaud G, 2015, J INSECT PHYSIOL, V75, P63, DOI 10.1016/j.jinsphys.2015.03.003; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; Schwitzke C, 2015, ARTHROPOD-PLANT INTE, V9, P497, DOI 10.1007/s11829-015-9391-y; Shorthouse D. P., 2010, SIMPLEMAPPR ONLINE T; The Global Biodiversity Information Facility, 2013, GBIF SECR GBIF BACKB; Torrens J., 2013, PSYCHE A, V2013, P1; Torrens J, 2007, P ENTOMOL SOC WASH, V109, P45; Torrens Javier, 2013, Acta Zoologica Lilloana, V57, P102; Torrens J, 2013, ZOOTAXA, V3630, P347, DOI 10.11646/zootaxa.3630.2.9; Torrens J, 2012, ZOOKEYS, P33, DOI 10.3897/zookeys.165.2089; Ward P. S., 2013, ANTWEB ANTS CALIFORN 44 2 2 1 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6970 1365-3113 SYST ENTOMOL Syst. Entomol. JUL 2016 41 3 596 606 10.1111/syen.12176 11 Evolutionary Biology; Entomology Evolutionary Biology; Entomology DN6ZG WOS:000377224500008 2019-02-21 J van Brummen-Girigori, O; Buunk, AP; Dijkstra, P; Girigori, A van Brummen-Girigori, Odette; Buunk, Abraham P.; Dijkstra, Pieternel; Girigori, Auronette Father abandonment and jealousy: A study among women on Curacao PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Father abandonment; Jealousy; Life history theory; Curacao LIFE-HISTORY THEORY; REPRODUCTIVE STRATEGY; EVOLUTIONARY PERSPECTIVE; LONGITUDINAL TEST; CORE BELIEFS; MODEL; MATURATION; QUALITY; ABSENCE; RISK The goal of the present study was to examine whether women who were abandoned by their father experience more anxious, preventive and reactive jealousy than women who grew up in the presence of their father. The sample consisted of 186 female undergraduate students from Curacao (age M = 22.88; SD = 5.68) who were categorized into two groups: women who grew up without their father and women who grew up in the presence of their father. We found that women who were abandoned by their father reported significantly more anxious and preventive jealousy than women who grew up in the presence of their father. There were no significant differences between these two groups in reactive jealousy. Possible explanations are discussed in light of the potential function of jealousy for females who grew up without a father. (C) 2016 Elsevier Ltd. All rights reserved. [van Brummen-Girigori, Odette; Buunk, Abraham P.] Univ Curacao, Fac Social & Behav Sci, Dr Moises Da Costa Gomez, Curacao, Netherlands; [Buunk, Abraham P.; Dijkstra, Pieternel] Univ Groningen, Dept Psychol, NL-9700 AB Groningen, Netherlands van Brummen-Girigori, O (reprint author), Jan Noorduynweg 111, Curacao, Neth Antilles. o.girigori@uoc.cw Allgood S. M., 2012, N AM J PSYCHOL, V14, P95; Barelds DPH, 2007, CLIN PSYCHOL PSYCHOT, V14, P176, DOI 10.1002/cpp.532; BARTHOLOMEW K, 1991, J PERS SOC PSYCHOL, V61, P226, DOI 10.1037//0022-3514.61.2.226; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Blissett J, 2006, CLIN PSYCHOL PSYCHOT, V13, P163, DOI 10.1002/cpp.482; Buss DM, 1999, PERS RELATIONSHIP, V6, P125, DOI 10.1111/j.1475-6811.1999.tb00215.x; Buunk A. P., 2015, EVOLUTION MIND BEHAV; Buunk A. P., 1997, PERSONALITY INDIVIDU, V23, P997; Buunk A. P., 2015, EVOLUTIONARY BEHAV S, V9, P116, DOI DOI 10.1037/EBS0000030; Buunk A. P., 2009, EVOLUTIONARY PSYCHOL, V4, P545; Buunk B. P., 1991, PSYCHOL JEALOUSY ENV, P148; Central Bureau of Statistics Curacao, 2011, POVERTY; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; DALY M, 1982, ETHOL SOCIOBIOL, V3, P11, DOI 10.1016/0162-3095(82)90027-9; DeSteno DA, 1996, PERS SOC PSYCHOL B, V22, P920, DOI 10.1177/0146167296229006; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Jones CJ, 2006, BRIT J CLIN PSYCHOL, V45, P319, DOI 10.1348/014466505X53489; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Maner JK, 2008, EUR J PERSONALITY, V22, P31, DOI 10.1002/per.661; Owen DW, 2006, COMMIMITY WORK FAM, V9, P251, DOI 10.1080/13668800600743552; Rostad WL, 2014, J AM COLL HEALTH, V62, P213, DOI 10.1080/07448481.2014.887570; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003 27 0 0 0 7 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUL 2016 96 181 184 10.1016/j.paid.2016.02.048 4 Psychology, Social Psychology DK0LM WOS:000374604300031 2019-02-21 J Sommer-Trembo, C; Bierbach, D; Arias-Rodriguez, L; Verel, Y; Jourdan, J; Zimmer, C; Riesch, R; Streit, B; Plath, M Sommer-Trembo, Carolin; Bierbach, David; Arias-Rodriguez, Lenin; Verel, Yesim; Jourdan, Jonas; Zimmer, Claudia; Riesch, Rudiger; Streit, Bruno; Plath, Martin Does personality affect premating isolation between locally-adapted populations? BMC EVOLUTIONARY BIOLOGY English Article Premating isolation; Animal personality; Ecological speciation; Mate choice; Local adaptation; Assortative mating GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; IMMIGRANTS MAINTAINS DIFFERENTIATION; FEMALE MATING PREFERENCES; MATE-CHOICE; SEXUAL SELECTION; ANIMAL PERSONALITY; INDIVIDUAL-DIFFERENCES; ECOLOGICAL SPECIATION; MEXICANA POECILIIDAE Background: One aspect of premating isolation between diverging, locally-adapted population pairs is female mate choice for resident over alien male phenotypes. Mating preferences often show considerable individual variation, and whether or not certain individuals are more likely to contribute to population interbreeding remains to be studied. In the Poecilia mexicana-species complex different ecotypes have adapted to hydrogen sulfide (H2S)-toxic springs, and females from adjacent non-sulfidic habitats prefer resident over sulfide-adapted males. We asked if consistent individual differences in behavioral tendencies (animal personality) predict the strength and direction of the mate choice component of premating isolation in this system. Results: We characterized focal females for their personality and found behavioral measures of 'novel object exploration', 'boldness' and 'activity in an unknown area' to be highly repeatable. Furthermore, the interaction term between our measures of exploration and boldness affected focal females' strength of preference (SOP) for the resident male phenotype in dichotomous association preference tests. High exploration tendencies were coupled with stronger SOPs for resident over alien mating partners in bold, but not shy, females. Shy and/ or little explorative females had an increased likelihood of preferring the non-resident phenotype and thus, are more likely to contribute to rare population hybridization. When we offered large vs. small conspecific stimulus males instead, less explorative females showed stronger preferences for large male body size. However, this effect disappeared when the size difference between the stimulus males was small. Conclusions: Our results suggest that personality affects female mate choice in a very nuanced fashion. Hence, population differences in the distribution of personality types could be facilitating or impeding reproductive isolation between diverging populations depending on the study system and the male trait(s) upon which females base their mating decisions, respectively. [Sommer-Trembo, Carolin; Zimmer, Claudia; Plath, Martin] Northwest A&F Univ, Coll Anim Sci & Technol, Yangling 712100, Peoples R China; [Sommer-Trembo, Carolin; Verel, Yesim; Jourdan, Jonas; Zimmer, Claudia; Streit, Bruno] Goethe Univ Frankfurt, Dept Ecol & Evolut, Max von Laue Str 13, D-60438 Frankfurt, Germany; [Bierbach, David] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Biol & Ecol Fishes, Muggelseedamm 310, D-12587 Berlin, Germany; [Arias-Rodriguez, Lenin] Univ Juarez Autonoma Tabasco, Div Acad Ciencias Biol, Villahermosa 86150, Tabasco, Mexico; [Jourdan, Jonas] Biodivers & Climate Res Ctr BiK F, Senckenberganlage 25, D-60325 Frankfurt, Germany; [Riesch, Rudiger] Univ London, Royal Holloway, Sch Biol Sci, Egham Hill, Egham TW20 0EX, Surrey, England Sommer-Trembo, C (reprint author), Northwest A&F Univ, Coll Anim Sci & Technol, Yangling 712100, Peoples R China.; Sommer-Trembo, C (reprint author), Goethe Univ Frankfurt, Dept Ecol & Evolut, Max von Laue Str 13, D-60438 Frankfurt, Germany. sommercarolin@gmx.net Riesch, Rudiger/A-5787-2008; Jourdan, Jonas/Y-7389-2018 Riesch, Rudiger/0000-0002-0223-1254; Jourdan, Jonas/0000-0002-2745-2520; ARIAS RODRIGUEZ, LENIN/0000-0002-8025-5569 Hermann-Willkomm-Stiftung, Goethe University Frankfurt am Main; Vereinigung von Freunden und Forderern der Universitat Frankfurt am Main; Leibniz Competition [SAW- 2013-IGB-2] Financial support came from the Hermann-Willkomm-Stiftung, Goethe University Frankfurt am Main (to CST), the Vereinigung von Freunden und Forderern der Universitat Frankfurt am Main (to CZ) and the B-Types project funded through the Leibniz Competition (SAW- 2013-IGB-2, to DB). Andersson M., 1994, SEXUAL SELECTION; Ariyomo TO, 2013, BEHAV ECOL, V24, P1320, DOI 10.1093/beheco/art070; Arlinghaus R, 2016, TRENDS ECOL EVOL, V31, P92, DOI 10.1016/j.tree.2015.11.008; Aspbury AS, 2010, EVOL ECOL, V24, P69, DOI 10.1007/s10682-008-9291-z; Aviles JM, 2011, ANIM BEHAV, V82, P613, DOI 10.1016/j.anbehav.2011.07.025; Bagley JC, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121139; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bierbach D, 2015, BEHAV ECOL, V26, P1314, DOI 10.1093/beheco/arv079; Bierbach D, 2014, BEHAV ECOL SOCIOBIOL, V68, P935, DOI 10.1007/s00265-014-1706-y; Bierbach D, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-190; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Bischoff RJ, 1985, BEHAV ECOL SOCIOBIOL, V46, P169; Bonnot N, 2015, BEHAV ECOL, V26, P105, DOI 10.1093/beheco/aru169; Both C, 2005, J ANIM ECOL, V74, P667, DOI 10.1111/j.1365-2656.2005.00962.x; Boyer N, 2010, J ANIM ECOL, V79, P538, DOI 10.1111/j.1365-2656.2010.01659.x; Brooks R, 2001, EVOLUTION, V55, P1644; Brown C, 2007, J FISH BIOL, V71, P1590, DOI 10.1111/j.1095-8649.2007.01627.x; Brown C, 2014, BEHAV ECOL, V25, P95, DOI 10.1093/beheco/art090; Brydges NM, 2008, J ANIM ECOL, V77, P229, DOI 10.1111/j.1365-2656.2007.01343.x; Burns JG, 2008, J COMP PSYCHOL, V122, P344, DOI 10.1037/0735-7036.122.4.344; Canestrelli D, 2016, TRENDS ECOL EVOL, V31, P35, DOI 10.1016/j.tree.2015.11.004; Caspers BA, 2009, FRONT ZOOL, V6, DOI 10.1186/1742-9994-6-13; Cote J, 2007, P R SOC B, V274, P383, DOI 10.1098/rspb.2006.3734; Cote J, 2011, P ROY SOC B-BIOL SCI, V278, P1670, DOI 10.1098/rspb.2010.1892; Croft DP, 2003, OIKOS, V100, P429, DOI 10.1034/j.1600-0706.2003.12023.x; Cummings ME, 2015, CURR OPIN BEHAV SCI, V6, P125, DOI 10.1016/j.cobeha.2015.10.001; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; Danchin E, 2004, SCIENCE, V305, P487, DOI 10.1126/science.1098254; Dardenne S, 2013, BEHAV ECOL SOCIOBIOL, V67, P1317, DOI 10.1007/s00265-013-1560-3; del Villar J., 1947, AN ESC NAC CIENC BIO, V5, P275; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; Dingemanse NJ, 2003, P ROY SOC B-BIOL SCI, V270, P741, DOI 10.1098/rspb.2002.2300; Duckworth RA, 2007, P NATL ACAD SCI USA, V104, P15017, DOI 10.1073/pnas.0706174104; Dugatkin LA, 2003, ETHOL ECOL EVOL, V15, P43; Feldman MW, 1996, ANTHROPOL SCI, V104, P209, DOI 10.1537/ase.104.209; Forstmeier W, 2004, ANIM BEHAV, V68, P1017, DOI 10.1016/j.anbehav.2004.02.007; Fraser DF, 2001, AM NAT, V158, P124, DOI 10.1086/321307; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; Freund J, 2013, SCIENCE, V340, P756, DOI 10.1126/science.1235294; Geffroy B, 2015, TRENDS ECOL EVOL, V30, P755, DOI 10.1016/j.tree.2015.09.010; Griffin AS, 2015, TRENDS ECOL EVOL, V30, P207, DOI 10.1016/j.tree.2015.01.012; Guillette LM, 2011, P ROY SOC B-BIOL SCI, V278, P767, DOI 10.1098/rspb.2010.1669; Guillette LM, 2009, BEHAV PROCESS, V82, P265, DOI 10.1016/j.beproc.2009.07.005; Harris MR, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088668; Harris S, 2010, OIKOS, V119, P1711, DOI 10.1111/j.1600-0706.2010.18028.x; Ingley SJ, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2015.1022; Ingley SJ, 2016, EVOLUTION, V70, P600, DOI 10.1111/evo.12872; Ingley SJ, 2014, ECOL EVOL, V4, P4361, DOI 10.1002/ece3.1304; Ingley SJ, 2014, TRENDS ECOL EVOL, V29, P369, DOI 10.1016/j.tree.2014.04.008; Jennions MD, 1997, BIOL REV, V72, P283, DOI 10.1017/S0006323196005014; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Keiser CN, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1424; KODRICBROWN A, 1993, BEHAV ECOL SOCIOBIOL, V32, P415, DOI 10.1007/BF00168825; Kohler A, 2011, BEHAV ECOL SOCIOBIOL, V65, P1513, DOI 10.1007/s00265-011-1161-y; Koprivnikar J., 2011, P ROYAL SOC B, V279, P1544; Kralj-Fiser S, 2013, BEHAV ECOL, V24, P824, DOI 10.1093/beheco/art030; Krause J, 2010, PHILOS T R SOC B, V365, P4099, DOI 10.1098/rstb.2010.0216; Kurvers RHJM, 2010, ECOL LETT, V13, P829, DOI 10.1111/j.1461-0248.2010.01473.x; Langerhans RB, 2007, EVOLUTION, V61, P2056, DOI 10.1111/j.1558-5646.2007.00171.x; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Marler CA, 1997, EVOLUTION, V51, P1244, DOI 10.1111/j.1558-5646.1997.tb03971.x; Morris MR, 2010, ANIM BEHAV, V79, P673, DOI 10.1016/j.anbehav.2009.12.018; Muraco JJ, 2014, BEHAV ECOL, V25, P200, DOI 10.1093/beheco/art106; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Noor MAF, 1999, HEREDITY, V83, P503, DOI 10.1038/sj.hdy.6886320; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; Palacios M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071069; PARZEFAL.J, 1969, BEHAVIOUR, V33, P1, DOI 10.1163/156853969X00297; Pfenninger M, 2015, MOL ECOL, V24, P5446, DOI 10.1111/mec.13397; Piyapong C, 2010, BEHAV ECOL, V21, P3, DOI 10.1093/beheco/arp142; Plath M, 2004, BEHAV ECOL SOCIOBIOL, V55, P596, DOI 10.1007/s00265-003-0750-9; Plath M, 2003, BEHAV ECOL SOCIOBIOL, V54, P303, DOI 10.1007/s00265-003-0625-0; Plath M, 2013, EVOLUTION, V65, P2213; Plath M, 2008, BEHAVIOUR, V145, P73, DOI 10.1163/156853908782687241; Plath M, 2007, BEHAV ECOL, V18, P680, DOI 10.1093/beheco/arm030; Plath M, 2010, NATURWISSENSCHAFTEN, V97, P769, DOI 10.1007/s00114-010-0691-x; Qvarnstrom A, 1998, TRENDS ECOL EVOL, V13, P498, DOI 10.1016/S0169-5347(98)01513-4; Rangassamy M, 2015, ANIM BEHAV, V103, P7, DOI 10.1016/j.anbehav.2015.02.007; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P3937, DOI 10.1098/rstb.2010.0222; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Riesch R, 2015, EXTREMOPHILE FISHES, P137; Riesch R, 2014, ECOL LETT, V17, P65, DOI 10.1111/ele.12209; Riesch R, 2010, NATURWISSENSCHAFTEN, V97, P133, DOI 10.1007/s00114-009-0613-y; Riesch R, 2009, BEHAV ECOL SOCIOBIOL, V63, P1515, DOI 10.1007/s00265-009-0780-z; Rundle HD, 2005, ECOL LETT, V8, P336, DOI 10.1111/j.1461-0248.2004.00715.x; Scharnweber K, 2011, ACTA ETHOL, V14, P77, DOI 10.1007/s10211-011-0097-6; Schlupp I, 2001, BEHAVIOUR, V138, P277, DOI 10.1163/15685390151074438; Schuett W, 2011, ANIM BEHAV, V81, P609, DOI 10.1016/j.anbehav.2010.12.006; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; Seehausen O, 2014, NAT REV GENET, V15, P176, DOI 10.1038/nrg3644; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2008, ADV STUD BEHAV, V38, P227, DOI 10.1016/S0065-3454(08)00005-3; Sih A, 2012, ECOL LETT, V15, P278, DOI 10.1111/j.1461-0248.2011.01731.x; Smith BR, 2010, BEHAV ECOL, V21, P919, DOI 10.1093/beheco/arq084; Sneddon LU, 2003, J FISH BIOL, V62, P971, DOI 10.1046/j.1095-8649.2003.00084.x; Titulaer M, 2012, ANIM BEHAV, V83, P723, DOI 10.1016/j.anbehav.2011.12.020; Tobler M, 2009, J EVOLUTION BIOL, V22, P2298, DOI 10.1111/j.1420-9101.2009.01844.x; Tobler M, 2008, BIOL LETTERS, V4, P452, DOI 10.1098/rsbl.2008.0259; Tobler M, 2014, COMP BIOCHEM PHYS A, V175, P7, DOI 10.1016/j.cbpa.2014.04.012; Tobler M, 2011, EVOLUTION, V65, P2213, DOI 10.1111/j.1558-5646.2011.01298.x; Trompf L, 2014, ANIM BEHAV, V88, P99, DOI 10.1016/j.anbehav.2013.11.022; van Oers K, 2005, BEHAVIOUR, V142, P1185, DOI 10.1163/156853905774539364; Wagner RH, 2010, OIKOS, V119, P203, DOI 10.1111/j.1600-0706.2009.17315.x; Walling CA, 2010, BEHAV ECOL SOCIOBIOL, V64, P541, DOI 10.1007/s00265-009-0869-4; WILSON DS, 1994, TRENDS ECOL EVOL, V9, P442, DOI 10.1016/0169-5347(94)90134-1; Witte K, 2002, ANIM BEHAV, V63, P943, DOI 10.1006/anbe.2001.1982; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001; Wong RY, 2011, ANIM BEHAV, V82, P691, DOI 10.1016/j.anbehav.2011.06.024 112 6 6 3 48 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. JUN 23 2016 16 138 10.1186/s12862-016-0712-2 13 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity DP7JN WOS:000378675100002 27338278 DOAJ Gold, Green Published 2019-02-21 J Riesch, R; Tobler, M; Lerp, H; Jourdan, J; Doumas, T; Nosil, P; Langerhans, RB; Plath, M Riesch, Rudiger; Tobler, Michael; Lerp, Hannes; Jourdan, Jonas; Doumas, Tess; Nosil, Patrik; Langerhans, R. Brian; Plath, Martin Extremophile Poeciliidae: multivariate insights into the complexity of speciation along replicated ecological gradients BMC EVOLUTIONARY BIOLOGY English Article Hydrogen sulfide; Gambusia; Ecological speciation; Life-history evolution; Morphometrics; Poecilia; Reproductive isolation TOXIC HYDROGEN-SULFIDE; LIFE-HISTORY EVOLUTION; GENETIC-DIVERGENCE; LIVEBEARING FISH; POSTPLEISTOCENE RADIATION; EXTREME ENVIRONMENTS; PARALLEL EVOLUTION; GAMBUSIA-AFFINIS; BODY-SIZE; TRADE-OFF Background: Replicate population pairs that diverge in response to similar selective regimes allow for an investigation of (a) whether phenotypic traits diverge in a similar and predictable fashion, (b) whether there is gradual variation in phenotypic divergence reflecting variation in the strength of natural selection among populations, (c) whether the extent of this divergence is correlated between multiple character suites (i.e., concerted evolution), and (d) whether gradual variation in phenotypic divergence predicts the degree of reproductive isolation, pointing towards a role for adaptation as a driver of (ecological) speciation. Here, we use poeciliid fishes of the genera Gambusia and Poecilia that have repeatedly evolved extremophile lineages able to tolerate high and sustained levels of toxic hydrogen sulfide (H2S) to answer these questions. Results: We investigated evolutionary divergence in response to H2S in Gambusia spp. (and to a lesser extent Poecilia spp.) using a multivariate approach considering the interplay of life history, body shape, and population genetics (nuclear miscrosatellites to infer population genetic differentiation as a proxy for reproductive isolation). We uncovered both shared and unique patterns of evolution: most extremophile Gambusia predictably evolved larger heads and offspring size, matching a priori predictions for adaptation to sulfidic waters, while variation in adult life histories was idiosyncratic. When investigating patterns for both genera (Gambusia and Poecilia), we found that divergence in offspring-related life histories and body shape were positively correlated across populations, but evidence for individual-level associations between the two character suites was limited, suggesting that genetic linkage, developmental interdependencies, or pleiotropic effects do not explain patterns of concerted evolution. We further found that phenotypic divergence was positively correlated with both environmental H2S-concentration and neutral genetic differentiation (a proxy for gene flow). Conclusions: Our results suggest that higher toxicity exerts stronger selection, and that divergent selection appears to constrain gene flow, supporting a scenario of ecological speciation. Nonetheless, progress toward ecological speciation was variable, partially reflecting variation in the strength of divergent selection, highlighting the complexity of selective regimes even in natural systems that are seemingly governed by a single, strong selective agent. [Riesch, Rudiger] Royal Holloway Univ London, Sch Biol Sci, Egham TW20 0EX, Surrey, England; [Riesch, Rudiger; Langerhans, R. Brian] N Carolina State Univ, Dept Biol Sci, 127 David Clark Labs, Raleigh, NC 27695 USA; [Riesch, Rudiger; Langerhans, R. Brian] N Carolina State Univ, WM Keck Ctr Behav Biol, 127 David Clark Labs, Raleigh, NC 27695 USA; [Tobler, Michael] Kansas State Univ, Div Biol, 116 Ackert Hall, Manhattan, KS 66506 USA; [Lerp, Hannes] Museum Wiesbaden, Nat Hist Collect, Friedrich Ebert Allee 2, D-65185 Wiesbaden, Germany; [Jourdan, Jonas] Goethe Univ Frankfurt, Evolutionary Ecol Grp, Max von Laue Str 13, D-60438 Frankfurt, Germany; [Doumas, Tess] Univ Houston, Dept Biol & Biochem, 4800 Calhoun Rd, Houston, TX 77004 USA; [Nosil, Patrik] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Plath, Martin] Northwest A&F Univ, Coll Anim Sci & Technol, Xinong Rd 22, Yangling 712100, Peoples R China Riesch, R (reprint author), Royal Holloway Univ London, Sch Biol Sci, Egham TW20 0EX, Surrey, England.; Riesch, R (reprint author), N Carolina State Univ, Dept Biol Sci, 127 David Clark Labs, Raleigh, NC 27695 USA.; Riesch, R (reprint author), N Carolina State Univ, WM Keck Ctr Behav Biol, 127 David Clark Labs, Raleigh, NC 27695 USA. Rudiger.Riesch@rhul.ac.uk Riesch, Rudiger/A-5787-2008; Jourdan, Jonas/Y-7389-2018 Riesch, Rudiger/0000-0002-0223-1254; Jourdan, Jonas/0000-0002-2745-2520; Tobler, Michael/0000-0002-0326-0890 Erwin-Riesch Stiftung; W. M. Keck Center for Behavioral Biology; program "LOEWE - Landes-Offensive zur Entwicklung Wissenschaftlich-okonomischer Exzellenz" of Hesse's Ministry of Higher Education, Research, and the Arts; National Science Foundation [IOS-1121832, IOS-1463720, IOS-1557860, DEB-0842364] Financial support came from the Erwin-Riesch Stiftung and W. M. Keck Center for Behavioral Biology (to RR), the research funding program "LOEWE - Landes-Offensive zur Entwicklung Wissenschaftlich-okonomischer Exzellenz" of Hesse's Ministry of Higher Education, Research, and the Arts (to MP), and the National Science Foundation (IOS-1121832, IOS-1463720, and IOS-1557860 to MT, DEB-0842364 to RBL). Andersson M., 1994, SEXUAL SELECTION; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Behm JE, 2010, AM NAT, V175, P11, DOI 10.1086/648559; CONNER J, 1993, EVOLUTION, V47, P704, DOI 10.1111/j.1558-5646.1993.tb02128.x; Conner W.H., 1989, Wetlands Ecology and Management, V1, P45; Cooper CE, 2008, J BIOENERG BIOMEMBR, V40, P533, DOI 10.1007/s10863-008-9166-6; Coyne J. A., 2004, SPECIATION; Culumber ZW, 2011, MOL ECOL, V20, P342, DOI 10.1111/j.1365-294X.2010.04949.x; Darwin C., 1859, ORIGIN SPECIES MEANS; Earl DA, 2011, CONSERV GENET RESOUR, V4, P359, DOI DOI 10.1007/S12686-011-9548-7; Edward DA, 2011, TRENDS ECOL EVOL, V26, P647, DOI 10.1016/j.tree.2011.07.012; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Elmer KR, 2010, PHILOS T R SOC B, V365, P1763, DOI 10.1098/rstb.2009.0271; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Fiser C, 2013, OIKOS, V122, P770, DOI 10.1111/j.1600-0706.2012.20644.x; Ghalambor CK, 2003, INTEGR COMP BIOL, V43, P431, DOI 10.1093/icb/43.3.431; Goudet J, 2001, FSTAT PROGRAM ESTIMA; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Hendry AP, 2009, J FISH BIOL, V75, P2000, DOI 10.1111/j.1095-8649.2009.02419.x; Hendry AP, 2001, EVOLUTION, V55, P459, DOI 10.1554/0014-3820(2001)055[0459:PMATAD]2.0.CO;2; Hulsey CD, 2008, EVOLUTION, V62, P1587, DOI 10.1111/j.1558-5646.2008.00384.x; Jahn A, 1997, MAR ECOL PROG SER, V154, P175, DOI 10.3354/meps154175; Kaeuffer R, 2012, EVOLUTION, V66, P402, DOI 10.1111/j.1558-5646.2011.01440.x; Kenward MG, 1997, BIOMETRICS, V53, P983, DOI 10.2307/2533558; Landsea CW, 1999, CLIMATIC CHANGE, V42, P89, DOI 10.1023/A:1005416332322; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; Langerhans RB, 2013, CURR ZOOL, V59, P31, DOI 10.1093/czoolo/59.1.31; Langerhans RB, 2010, INTEGR COMP BIOL, V50, P1167, DOI 10.1093/icb/icq117; Langerhans RB, 2009, BIOL LETTERS, V5, P488, DOI 10.1098/rsbl.2009.0179; Losos JB, 2011, EVOLUTION, V65, P1827, DOI 10.1111/j.1558-5646.2011.01289.x; LYDEARD C, 1995, CAN J ZOOL, V73, P213, DOI 10.1139/z95-025; Mallet J, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-28; Martin RA, 2014, EVOLUTION, V68, P397, DOI 10.1111/evo.12277; Merrill RM, 2011, EVOLUTION, V65, P1489, DOI 10.1111/j.1558-5646.2010.01216.x; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; Nosil P, 2013, EVOLUTION, V67, P2461, DOI 10.1111/evo.12191; Nosil P, 2009, TRENDS ECOL EVOL, V24, P145, DOI 10.1016/j.tree.2008.10.011; Palacios M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071069; Passow CN, 2015, PHYSIOL BIOCHEM ZOOL, V88, P371, DOI 10.1086/681053; Peccoud J, 2009, P NATL ACAD SCI USA, V106, P7495, DOI 10.1073/pnas.0811117106; Pfenninger M, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4873; Plath M, 2007, MOL ECOL, V16, P967, DOI 10.1111/j.1365-294X.2006.03212.x; Plath M, 2013, EVOLUTION, V67, P2647, DOI 10.1111/evo.12133; Plath M, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-256; POWELL E, 1989, J MAR RES, V47, P887, DOI 10.1357/002224089785076082; Powell THQ, 2013, EVOLUTION, V67, P2561, DOI 10.1111/evo.12209; Pritchard JK, 2000, GENETICS, V155, P945; Purcell KM, 2011, CONSERV GENET RESOUR, V3, P361, DOI 10.1007/s12686-010-9362-7; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Riesch R, 2011, J EVOLUTION BIOL, V24, P596, DOI 10.1111/j.1420-9101.2010.02194.x; Riesch R, 2015, EXTREMOPHILE FISHES, P137; Riesch R, DRYAD DIGITAL REPOSI; Riesch R, 2014, ECOL LETT, V17, P65, DOI 10.1111/ele.12209; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Riesch R, 2012, ENVIRON BIOL FISH, V94, P457, DOI 10.1007/s10641-011-9960-6; Riesch R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027377; Riesch R, 2010, BIOL J LINN SOC, V101, P417, DOI 10.1111/j.1095-8312.2010.01522.x; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; Riesch R, 2010, NATURWISSENSCHAFTEN, V97, P133, DOI 10.1007/s00114-009-0613-y; Rosen D. E., 1963, Bulletin of the American Museum of Natural History, V126, P1; Schluter D, 2000, ECOLOGY ADAPTIVE RAD, P2000; Seehausen O, 2008, MOL ECOL, V17, P30, DOI 10.1111/j.1365-294X.2007.03529.x; SLATKIN M, 1987, SCIENCE, V236, P787, DOI 10.1126/science.3576198; Slattery P, 2012, CONSERV GENET RESOUR, V4, P935, DOI 10.1007/s12686-012-9677-7; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Spencer CC, 1999, MOL ECOL, V8, P157; Taylor EB, 2006, MOL ECOL, V15, P343, DOI 10.1111/j.1365-294X.2005.02794.x; Tobler M, 2008, J FISH BIOL, V72, P523, DOI 10.1111/j.1095-8649.2007.01716.x; Tobler M, 2009, J EVOLUTION BIOL, V22, P2298, DOI 10.1111/j.1420-9101.2009.01844.x; Tobler M, 2008, EVOLUTION, V62, P2643, DOI 10.1111/j.1558-5646.2008.00466.x; Tobler M, 2015, FRESHWATER BIOL, V60, P768, DOI 10.1111/fwb.12530; Tobler M, 2011, EVOL BIOL, V38, P412, DOI 10.1007/s11692-011-9129-4; Tobler M, 2011, EVOLUTION, V65, P2213, DOI 10.1111/j.1558-5646.2011.01298.x; Vonlanthen P, 2012, NATURE, V482, P357, DOI 10.1038/nature10824; Walsh B, 2009, ANNU REV ECOL EVOL S, V40, P41, DOI 10.1146/annurev.ecolsys.110308.120232; Wesner JS, 2011, BIOL J LINN SOC, V104, P386, DOI 10.1111/j.1095-8312.2011.01715.x 78 9 9 5 29 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. JUN 22 2016 16 136 10.1186/s12862-016-0705-1 15 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity DP7JM WOS:000378675000001 27334284 DOAJ Gold, Green Published 2019-02-21 J Sims, SR; Shapiro, AM Sims, Steven R.; Shapiro, Arthur M. REPRODUCTIVE STRATEGIES AND LIFE HISTORY EVOLUTION OF SOME CALIFORNIA SPEYERIA (NYMPHALIDAE) JOURNAL OF THE LEPIDOPTERISTS SOCIETY English Article female size; egg numbers; first instars EGG SIZE VARIATION; LEPIDOPTERA NYMPHALIDAE; OFFSPRING SIZE; FECUNDITY; ECOLOGY; BUTTERFLIES; POPULATION; DIAPAUSE; BEHAVIOR; QUALITY Egg weights and total eggs produced by nine Speyeria spp. (Nymphalidae) in California allowed estimates of per-egg and lifetime reproductive effort Interpopulation reproductive effort in four species and intrapopulation reproductive effort of two species in different years were documented. Female body weight was uncorrelated with either individual egg weight or total lifetime egg weight. Smallest eggs (mean dry wt/egg = 0.05 - 0.06 ug), and the greatest number of eggs, were from S. coronis (Skinner) and S. zerene (Boisduval) whose females undergo summer reproductive diapause in dry habitats. Largest eggs (mean dry wt/egg = 0.10 ug) were from S. nokomis (Skinner), a wet habitat species. The greatest relative reproductive effort was made by dry habitat species lacking reproductive diapause. Reproductive effort and duration of first instar exposure to summer temperatures were positively correlated. Intrayear variation in total egg weight did not vary significantly among populations of S. callippe (Boisduval), S. hesperis (Boisduval), S. nokomis, or S. zerene but mean total egg weights were significantly different in females from the Donner Pass, CA population of S. mormonia (Boisduval) in two years. S. zerene from high elevations lacked the reproductive diapause characteristic of lower elevation populations. The reproductive strategies of Speyeria spp. are adaptive responses to the desiccation stress that their habitats impose on diapausing first instars. [Sims, Steven R.] 1973 Rule Ave, Maryland Hts, MO 63043 USA; [Shapiro, Arthur M.] Univ Calif Davis, Ctr Populat Biol, Davis, CA 95616 USA Sims, SR (reprint author), 1973 Rule Ave, Maryland Hts, MO 63043 USA. steve.sims@blueimago.com; amshapiro@ucdavis.edu California Agricultural Experiment Station Project [CA-D*-AZO-3994-H] We thank A. G. Appel, P. C. Hammond, and S. O. Mattoon for comments on the manuscript. In addition, two reviewers made suggestions that improved the text. This research was supported by California Agricultural Experiment Station Project CA-D*-AZO-3994-H, "Climatic Range Limitation of Phytophagous Lepidopterans", AMS, Principal Investigator. Adams J.K., 2006, NEWS LEPID SOC, V48, P106; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Bernardo J, 1996, AM ZOOL, V36, P216; Boggs Carol L., 1994, P25; BOGGS CL, 1986, ECOL ENTOMOL, V11, P7, DOI 10.1111/j.1365-2311.1986.tb00274.x; BOGGS CL, 1987, HOLARCTIC ECOL, V10, P175; BRABY MF, 1994, OIKOS, V71, P119, DOI 10.2307/3546179; BRITTNACHER JG, 1978, EVOLUTION, V32, P199, DOI 10.1111/j.1558-5646.1978.tb01110.x; Corkum LD, 1997, OECOLOGIA, V111, P69, DOI 10.1007/s004420050209; CUMMINS CP, 1986, J ANIM ECOL, V55, P303, DOI 10.2307/4710; Edwards W. H., 1868, BUTTERFLIES N AM; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Franzen M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0078233; Heath DD, 1999, EVOLUTION, V53, P1605, DOI 10.1111/j.1558-5646.1999.tb05424.x; James D, 2011, LIFE HIST CASCADIA B; KARLSSON B, 1987, ECOL ENTOMOL, V12, P473, DOI 10.1111/j.1365-2311.1987.tb01029.x; KARLSSON B, 1985, ECOL ENTOMOL, V10, P205, DOI 10.1111/j.1365-2311.1985.tb00549.x; Kemp DJ, 2006, EVOL ECOL RES, V8, P515; Kopper BJ, 2001, ANN ENTOMOL SOC AM, V94, P427, DOI 10.1603/0013-8746(2001)094[0427:EFRDIT]2.0.CO;2; MCCORKLE D V, 1988, Journal of the Lepidopterists' Society, V42, P184; PALMER JO, 1984, ANN ENTOMOL SOC AM, V77, P188, DOI 10.1093/aesa/77.2.188; Parry D, 2001, ECOL ENTOMOL, V26, P281, DOI 10.1046/j.1365-2311.2001.00319.x; REAVEY D, 1992, J ZOOL, V227, P277, DOI 10.1111/j.1469-7998.1992.tb04823.x; Roff Derek A., 1992; SAS Institute, 2001, JMP V 4; Scott J.A., 1992, Papilio New Series, V6, P1; Seko T, 2004, APPL ENTOMOL ZOOL, V39, P171, DOI 10.1303/aez.2004.171; SIMS S R, 1984, Journal of Research on the Lepidoptera, V23, P211; SIMS SR, 1979, AM MIDL NAT, V102, P36, DOI 10.2307/2425064; Sims SR, 2014, ANN ENTOMOL SOC AM, V107, P163, DOI 10.1603/AN13099; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; Torres-Vila LM, 2002, OIKOS, V99, P272, DOI 10.1034/j.1600-0706.2002.990207.x; Zalucki MP, 2002, ANNU REV ENTOMOL, V47, P361, DOI 10.1146/annurev.ento.47.091201.145220 35 0 0 1 8 LEPIDOPTERISTS SOC LOS ANGELES 900 EXPOSITION BLVD, LOS ANGELES, CA 90007-4057 USA 0024-0966 J LEPID SOC J. Lepid. Soc. JUN 16 2016 70 2 114 120 10.18473/lepi.70i2.a6 7 Entomology Entomology DP0OJ WOS:000378188800005 2019-02-21 J Hansen, WK; Bate, LJ; Landry, DW; Chastel, O; Parenteau, C; Breuner, CW Hansen, Warren K.; Bate, Lisa J.; Landry, Devin W.; Chastel, Olivier; Parenteau, Charline; Breuner, Creagh W. Feather and faecal corticosterone concentrations predict future reproductive decisions in harlequin ducks (Histrionicus histrionicus) CONSERVATION PHYSIOLOGY English Article Carry-over effects; glucocorticoid physiology; harlequin; reproduction; stress LIFE-HISTORY STAGE; LONG-LIVED BIRD; BASE-LINE; BREEDING-SEASON; HABITAT QUALITY; MIGRATORY BIRD; ACUTE STRESS; AGE; FITNESS; CONSERVATION Understanding sources of reproductive variation can inform management and conservation decisions, population ecology and life-history theory. Annual reproductive variation can drive population growth rate and can be influenced by factors from across the annual cycle (known as carry-over effects). The majority of studies, however, focus solely on the role of current environmental events. Past events often influence future reproductive decisions and success but can be logistically difficult to collect and quantify, especially in migratory species. Recent work indicates that glucocorticoids may prove good indicators to evaluate carry-over effects across life-history transitions. Here, we evaluated three different measures of glucocorticoid physiology (feathers, faeces and plasma) to evaluate the predictability of future breeding decision in the harlequin duck (Histrionicus histrionicus). We collected tail and back feathers, plasma and faeces for glucocorticoid analysis, and fitted female harlequin ducks with very high-frequency transmitters to track their breeding decisions. Both back feathers (moulted immediately before the current season) and faecal glucocorticoid metabolites were identified as important predictive factors of reproductive decisions; high concentrations of glucocorticoid metabolites in back feathers and faeces predicted a higher likelihood of reproductive deferral for the year. Although back and tail feather corticosterone concentrations were correlated, tail feathers (moulted at the end of the previous breeding season) did not predict breeding decisions. Plasma corticosterone concentrations were collected over too broad a time range after capture to be useful in this study. This study demonstrates the utility of non-invasive corticosterone metrics in predicting breeding decisions and supports the use of feathers to measure carry-over effects in migratory birds. With this technique, we identified the prenuptial moult as an important life-history phase that contributes to reproductive decisions. Identification of critical life-history phases is paramount to efficient management of species. [Hansen, Warren K.; Landry, Devin W.; Breuner, Creagh W.] Univ Montana, Wildlife Biol, Missoula, MT 59812 USA; [Hansen, Warren K.; Bate, Lisa J.] Glacier Natl Pk, Ctr Sci, West Glacier, MT 59936 USA; [Chastel, Olivier; Parenteau, Charline] CNRS, UMR 7372, Ctr Etud Biol Chize, F-79360 Villiers En Bois, France Breuner, CW (reprint author), Univ Montana, Wildlife Biol & Organismal Biol & Ecol, 32 Campus Dr,HS l04, Missoula, MT 59812 USA. creagh.breuner@umontana.edu Federal Highway Administration grant; Rocky Mountain-Cooperative Ecosystem Studies Unit grant; Glacier National Park Conservancy grant; Jerry O'Neal National Park Fellowship grant; Mission Mountain Audubon Society grant; National Science Foundation grant [PSI-0747361]; National Park Service; University of Montana Wildlife Biology Program This work was supported by The Federal Highway Administration grant to L.J.B.; a Rocky Mountain-Cooperative Ecosystem Studies Unit grant to L.J.B. and C.W.B; Glacier National Park Conservancy grant to L.J.B.; Jerry O'Neal National Park Fellowship grant to W.K.H.; Mission Mountain Audubon Society grant to W.K.H.; National Science Foundation grant (PSI-0747361) to C.W.B.; the National Park Service; and The University of Montana Wildlife Biology Program. Angelier F, 2011, J AVIAN BIOL, V42, P335, DOI 10.1111/j.1600-048X.2011.05369.x; Angelier F, 2010, BIOL LETTERS, V6, P846, DOI 10.1098/rsbl.2010.0376; BENGTSON S-A, 1972, Ornis Scandinavica, V3, P1, DOI 10.2307/3676161; BENGTSON SA, 1971, OIKOS, V22, P235, DOI 10.2307/3543732; Berk SA, 2016, CONSERV PHYSL; Bond JC, 2007, CONDOR, V109, P698, DOI 10.1650/8241.1; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bortolotti GR, 2008, FUNCT ECOL, V22, P494, DOI 10.1111/j.1365-2435.2008.01387.x; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Breuner CW, 2006, HORM METAB RES, V38, P260, DOI 10.1055/s-2005-925347; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; Breuner CW, 2010, HORMONES REPROD VERT, V4; Brodeur S, 2008, WATERBIRDS, V31, P122; Bump G, 1947, RUFFED GROUSE LIFE H; Burnham K. P, 2002, MODEL SELECTION MULT; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Crossin GT, 2013, GEN COMP ENDOCR, V193, P112, DOI 10.1016/j.ygcen.2013.07.011; Diamond S, 1993, HARLEQUIN DUCK ECOLO; Erikstad KE, 1998, ECOLOGY, V79, P1781; Gardarsson A, 2008, WATERBIRDS, V31, P84; Garrabou J, 2002, J ANIM ECOL, V71, P966, DOI 10.1046/j.1365-2656.2002.00661.x; Goudie IR, 2014, COSEWIC ASSESSMENT S; Goutte A, 2010, GEN COMP ENDOCR, V169, P108, DOI 10.1016/j.ygcen.2010.07.016; Goutte A, 2010, FUNCT ECOL, V24, P1007, DOI 10.1111/j.1365-2435.2010.01712.x; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hayward LS, 2010, GEN COMP ENDOCR, V169, P117, DOI 10.1016/j.ygcen.2010.08.004; Heidinger BJ, 2006, P ROY SOC B-BIOL SCI, V273, P2227, DOI 10.1098/rspb.2006.3557; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Homberger B, 2015, GEN COMP ENDOCR, V210, P46, DOI 10.1016/j.ygcen.2014.09.020; Hooper RG, 1979, RED COCKADED WOODPEC; Inger R, 2010, J ANIM ECOL, V79, P974, DOI 10.1111/j.1365-2656.2010.01712.x; Jenni-Eiermann S, 2015, METHODS ECOL EVOL, V6, P237, DOI 10.1111/2041-210X.12314; Koren L, 2012, P ROY SOC B-BIOL SCI, V279, P1560, DOI 10.1098/rspb.2011.2062; Kuchel CR, 1977, THESIS; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Lattin CR, 2011, J AVIAN BIOL, V42, P247, DOI 10.1111/j.1600-048X.2010.05310.x; Love OP, 2004, HORM BEHAV, V46, P59, DOI 10.1016/j.yhbeh.2004.02.001; Lozano GA, 1996, J AVIAN BIOL, V27, P164, DOI 10.2307/3677146; MacLULICH D. A., 1957, JOUR WILDLIFE MANAGEMENT, V21, P293, DOI 10.2307/3796548; Marra PP, 1998, OECOLOGIA, V116, P284, DOI 10.1007/s004420050590; Marra PP, 1998, SCIENCE, V282, P1884, DOI 10.1126/science.282.5395.1884; Montana Natural Heritage Program and Montana Fish Wildlife and Parks, 2016, HARL DUCK HIST HIST; Nilsson PB, 2008, COMP BIOCHEM PHYS A, V149, P275, DOI 10.1016/j.cbpa.2008.01.002; Norris DR, 2005, OIKOS, V109, P178, DOI 10.1111/j.0030-1299.2005.13671.x; O'Connor CM, 2014, ECOSPHERE, V5, DOI 10.1890/ES13-00388.1; Peig J, 2010, FUNCT ECOL, V24, P1323, DOI 10.1111/j.1365-2435.2010.01751.x; Perfito N, 2002, CAN J ZOOL, V80, P1334, DOI 10.1139/Z02-118; PYLE P, 2008, IDENTIFICATION GUIDE; R Core Team, 2013, R LANG ENV STAT COMP; Reichel GJ, 1996, HARLEQUIN DUCK SURVE; Robertson GJ, 1999, BIRDS N AM ONLINE; Rohwer FC, 1988, CURRENT ORNITHOLOGY, P187; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Saino N, 2005, J EXP ZOOL PART A, V303A, P998, DOI 10.1002/jez.a.224; Schultner J, 2014, MAR ECOL PROG SER, V496, P125, DOI 10.3354/meps10603; SILVERIN B, 1986, GEN COMP ENDOCR, V64, P67, DOI 10.1016/0016-6480(86)90029-8; Smith CM, 1998, BENFF NATL PAR UNPUB; Smith CM, 2015, WILDLIFE SOC B, V39, P373, DOI 10.1002/wsb.530; Stearns S, 1992, EVOLUTION LIFE HIST; Visser ME, 2004, ADV ECOL RES, V35, P89, DOI 10.1016/S0065-2504(04)35005-1; Webster MS, 2002, TRENDS ECOL EVOL, V17, P76, DOI 10.1016/S0169-5347(01)02380-1; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield JC, 1998, AM ZOOL, V38, P191; Wingfield John C., 1997, P95 66 4 5 0 40 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2051-1434 CONSERV PHYSIOL Conserv. Physiol. JUN 14 2016 4 cow015 10.1093/conphys/cow015 10 Biodiversity Conservation; Ecology; Environmental Sciences; Physiology Biodiversity & Conservation; Environmental Sciences & Ecology; Physiology DW7MP WOS:000383835300001 27382474 DOAJ Gold, Green Published 2019-02-21 J Jaatinen, K; Ost, M; Hobson, KA Jaatinen, Kim; Ost, Markus; Hobson, Keith A. State-dependent capital and income breeding: a novel approach to evaluating individual strategies with stable isotopes FRONTIERS IN ZOOLOGY English Article Resource allocation; Reproductive allocation; Stable isotopes; Capital vs. income; Climate change; Somateria mollissima EIDERS SOMATERIA-MOLLISSIMA; COMMON EIDERS; CLUTCH SIZE; EGG COMPONENTS; BLUE MUSSELS; LAYING DATE; BIRDS; REPRODUCTION; NUTRIENTS; TEMPERATURE Background: Species-specific strategies for financing the costs of reproduction are well understood, forming a continuum ranging from high to low reliance on stored nutrients. Animals relying mostly on stored reserves are termed 'capital breeders', whereas 'income breeders' rely mostly on concurrent intake when financing the costs of reproduction. The role and adaptive value of individual variation in these strategies remain elusive. Life-history theory posits that capital breeding should be favoured when offspring reproductive value peaks, typically occurring early in the season, and that current income should increasingly be used with progressing season. Because resource limitation may hamper flexible resource allocation, a corollary prediction is that only good-condition individuals may show the expected seasonal shift in resource use. To test this prediction, we examined stable isotopes (delta C-13 and delta N-15) in blood and lipid-free egg yolk of breeding eider females (Somateria mollissima) from the Baltic Sea to assess the role of individual variation in the use of proteins from local diet vs. stored reserves. Results: We show for the first time that individuals from a single population differ in their utilization of stored reserves and concurrent intake to finance the costs of reproduction. Consistent with our prediction, heavy females predominantly used stored reserves for producing egg yolks early in the season, increasingly relying on local feeding with later onset of breeding, whereas light females showed no seasonal change in allocation strategy. Conclusions: Stable isotope profiling at the individual level is a powerful tool for monitoring relative changes in investment strategies through time, showing promise as an early warning indicator of ecological change in food webs. [Jaatinen, Kim; Ost, Markus] Novia Univ Appl Sci, Coastal Zone Res Team, Raseborgsvagen 9, FI-10600 Ekenas, Finland; [Ost, Markus] Abo Akad Univ, Environm & Marine Biol, Fac Sci & Engn, Artillerigatan 6, FI-20520 Turku, Finland; [Hobson, Keith A.] Environm Canada, 11 Innovat Blvd, Saskatoon, SK S7N 3H5, Canada; [Hobson, Keith A.] Univ Western Ontario, Dept Biol, 1151 Richmond St, London, ON N6A 5B7, Canada Jaatinen, K (reprint author), Novia Univ Appl Sci, Coastal Zone Res Team, Raseborgsvagen 9, FI-10600 Ekenas, Finland. kim.jaatinen@gmail.com Ost, Markus/C-7376-2008 Ost, Markus/0000-0002-2205-1437 Academy of Finland [266208, 128039]; Swedish Cultural Foundation in Finland We thank numerous people participating in field work at Tvarminne over the years, particularly Heikki Eriksson and Petteri Lehikoinen of Avescapes Oy. Tvaminne Zoological Station provided excellent facilities. This study was funded by the Academy of Finland (grant number 266208 to KJ and grant 128039 to MO) and the Swedish Cultural Foundation in Finland (MO). Aiken LS, 1991, MULTIPLE REGRESSION; ALERSTAM T, 1974, IBIS, V116, P194, DOI 10.1111/j.1474-919X.1974.tb00238.x; BAGGE P, 1973, OIKOS, P146; Birdlife International, 2015, EUR RED LIST BIRDS; Boyd IL, 2000, FUNCT ECOL, V14, P623, DOI 10.1046/j.1365-2435.2000.t01-1-00463.x; Carleton SA, 2005, OECOLOGIA, V144, P226, DOI 10.1007/s00442-005-0066-8; Casas J, 2005, ECOLOGY, V86, P545, DOI 10.1890/04-0812; Descamps S, 2011, FUNCT ECOL, V25, P671, DOI 10.1111/j.1365-2435.2010.01824.x; DRENT RH, 1980, ARDEA, V68, P225; Ejsmond MJ, 2015, AM NAT, V25, P1; Ekroos J, 2012, OECOLOGIA, V170, P979, DOI 10.1007/s00442-012-2378-9; Federer RN, 2006, CONDOR, V114, P726; Gauthier G, 2003, ECOLOGY, V84, P3250, DOI 10.1890/02-0613; Haramis MG, 2001, AUK, V118, P1008; Hario M, 2002, ORNIS FENNICA, V79, P111; Hobson KA, 1997, AUK, V114, P467, DOI 10.2307/4089247; HOBSON KA, 1995, CONDOR, V97, P752, DOI 10.2307/1369183; Hobson KA, 2015, AUK, V132, P624, DOI 10.1642/AUK-14-294.1; Jaatinen K, 2013, GEN COMP ENDOCR, V191, P231, DOI 10.1016/j.ygcen.2013.06.022; Jaatinen K, 2011, ANIM BEHAV, V81, P1289, DOI 10.1016/j.anbehav.2011.03.020; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Kilpi M, 1997, OECOLOGIA, V111, P297, DOI 10.1007/s004420050238; Lehikoinen A, 2006, GLOBAL CHANGE BIOL, V12, P1355, DOI 10.1111/j.1365-2486.2006.01162.x; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Meijer T, 1999, IBIS, V141, P399, DOI 10.1111/j.1474-919X.1999.tb04409.x; Moore JW, 2008, ECOL LETT, V11, P470, DOI 10.1111/j.1461-0248.2008.01163.x; Ost M, 2008, OECOLOGIA, V158, P205, DOI 10.1007/s00442-008-1139-2; Ost M, 2008, J ANIM ECOL, V77, P315, DOI 10.1111/j.1365-2656.2007.01348.x; Ost M, 2010, OECOLOGIA, V162, P59, DOI 10.1007/s00442-009-1444-4; PARKER H, 1990, AUK, V107, P660, DOI 10.2307/4087996; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; R Development Core Team, 2013, R LANG ENV STAT COMP; ROBERTSON GJ, 1995, CAN J ZOOL, V73, P1579, DOI 10.1139/z95-188; ROBERTSON GJ, 1993, CAN J ZOOL, V71, P544, DOI 10.1139/z93-075; Senechal E, 2011, OECOLOGIA, V165, P593, DOI 10.1007/s00442-010-1853-4; Sharp CM, 2013, AUK, V130, P171, DOI 10.1525/auk.2012.12016; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; Waldeck P, 2013, J EXP MAR BIOL ECOL, V444, P24, DOI 10.1016/j.jembe.2013.03.007; Westerbom M, 2002, MAR BIOL, V140, P991, DOI 10.1007/s00227-001-0765-6 40 6 6 3 26 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1742-9994 FRONT ZOOL Front. Zool. JUN 9 2016 13 24 10.1186/s12983-016-0157-x 8 Zoology Zoology DO1ZP WOS:000377579200001 27284285 DOAJ Gold, Green Published 2019-02-21 J Jahn, AE; Seavy, NE; Bejarano, V; Guzman, MB; Provinciato, ICC; Pizo, MA; MacPherson, M Jahn, Alex E.; Seavy, Nathaniel E.; Bejarano, Vanesa; Guzman, Marcela Benavides; Carvalho Provinciato, Ivan Celso; Pizo, Marco A.; MacPherson, Maggie Intra-tropical migration and wintering areas of Fork-tailed Flycatchers (Tyrannus savana) breeding in Sao Paulo, Brazil REVISTA BRASILEIRA DE ORNITOLOGIA English Article austral; Cerrado; Itirapina; molt; Neotropical BIRD MIGRATION; MOLT-MIGRATION; SOUTH-AMERICA; GEOLOCATORS; FUTURE Fork-tailed Flycatchers (Tyrannus s. savana) breed from central to southern South America from September to January, migrating to northern South America to spend the non-breeding season. However, little is known of the migratory routes, rate, and timing of migration of those that breed in Brazil. In 2013, we attached light-level geolocators to breeding Fork-tailed Flycatchers breeding in Sao Paulo State. Data for six male flycatchers recaptured in 2014 indicates that they exhibited two fall migration strategies. Some individuals migrated northwest to the wintering grounds (primarily Colombia, Venezuela and northern Brazil), while others first spent several weeks in southwestern Brazil before going to the wintering grounds. Mean fall migration rate was 69 km/day (+/- 13.7) during 59 (+/- 13.2) days. Some flycatchers moved during winter, using more than one winter area. Flycatchers initiated spring migration in July and migrated southeast to the breeding grounds at a mean rate of 129 km/day (+/- 19.0) during 27 (+/- 2.8) days. A detailed understanding of the annual cycle of South America's migratory birds is essential to evaluating theoretical questions, such as the evolution of their life history strategies, in addition to applied questions, such as explanations for changes in population size, or their role as disease vectors. [Jahn, Alex E.; Bejarano, Vanesa; Guzman, Marcela Benavides; Carvalho Provinciato, Ivan Celso; Pizo, Marco A.] Univ Estadual Paulista, Dept Zool, Av 24A,1515, BR-13506900 Rio Claro, SP, Brazil; [Seavy, Nathaniel E.] Point Blue Conservat Sci, 3820 Cypress Dr 11, Petaluma, CA 94954 USA; [MacPherson, Maggie] Tulane Univ, Ecol & Evolutionary Biol, New Orleans, LA 70118 USA Jahn, AE (reprint author), Univ Estadual Paulista, Dept Zool, Av 24A,1515, BR-13506900 Rio Claro, SP, Brazil. ajahn@rc.unesp.br Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2012/17225-2] We dedicate this paper to the late E. O. Willis. We thank the Estacao Ecologica de Itirapina for logistical support. This research was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP; 2012/17225-2) and conducted under SISBIO permit 40221-2, CEMAVE permit 3819/1, and COTEC permit 260108-008.399/2013. Alves MAS, 2007, REV BRAS ORNITOL, V15, P231; Antas P. T. Z., 1987, AN NAC AN AV RIO JAN, P153; Barry JH, 2009, AUK, V126, P260, DOI 10.1525/auk.2009.07137; Butler LK, 2002, AUK, V119, P1010, DOI 10.1642/0004-8038(2002)119[1010:MMIWTP]2.0.CO;2; Capllonch P., 2009, ACTA ZOOLOGICA LILLO, V53, P55; Cavalcanti R. B., 1990, AN 4 ENC NAC AN AV R, P110; Chesser R. T., 1995, THESIS; Chesser R. Terry, 1994, Bird Conservation International, V4, P91; Chesser R. Terry, 1997, Ornithological Monographs, V48, P171; Cueto Víctor R., 2008, Hornero, V23, P1; DAVIS S, 1993, FIELDIANA ZOOL, V71, P1; Fitzpatrick J., 2004, HDB BIRDS WORLD, P170; Areta JI, 2010, ORNITOL NEOTROP, V21, P71; Jahn AE, 2004, AUK, V121, P1005, DOI 10.1642/0004-8038(2004)121[1005:RAHASA]2.0.CO;2; Jahn AE, 2013, NEOTROPICAL BIRDS ON; Jahn AE, 2014, EMU, V114, P337, DOI 10.1071/MU13084; Jahn AE, 2013, AUK, V130, P223, DOI 10.1525/auk.2013.12077; Jahn AE, 2013, AUK, V130, P247, DOI 10.1525/auk.2013.13010; Jahn AE, 2012, J ORNITHOL, V153, pS199, DOI 10.1007/s10336-012-0849-8; Lisovski S, 2012, METHODS ECOL EVOL, V3, P1055, DOI 10.1111/j.2041-210X.2012.00248.x; Marini Miguel Ângelo, 2009, Biota Neotrop., V9, P0, DOI 10.1590/S1676-06032009000100007; McKinnon EA, 2013, AUK, V130, P211, DOI 10.1525/auk.2013.12226; Parker Theodore A. Iii, 1996, P113; Parrish JD, 1997, CONDOR, V99, P681, DOI 10.2307/1370480; Pimentel T. M., 1985, THESIS; Pyle P, 1997, IDENTIFICATION GUIDE; Ralph CJ, 1993, HDB FIELD METHODS MO; RAPPOLE JH, 1991, J FIELD ORNITHOL, V62, P335; Rohwer Sievert, 2005, P87; Sick H., 1983, PUBLICACAO TECNICA, V2; Stotz D. F, 1996, NEOTROPICAL BIRDS EC; WILLIS E. O., 2003, BRAZ J BIOL, V64, P901; ZIMMER JOHN T., 1938, AUK, V55, P405 33 4 5 0 2 SOC BRASILEIRA ORNITOLOGIA VICOSA C/O ROMULO RIBON, MUSEU ZOOLOGIA JOAO MOOJEN, LADEIRA DOS OPERARIOS 54-204, VICOSA, MG 36570-000, BRAZIL 0103-5657 REV BRAS ORNITOL Rev. Bras. Ornitol. JUN 2016 24 2 116 121 6 Ornithology Zoology EE9MT WOS:000389951500007 2019-02-21 J Shi, SL; Li, ZS; Wang, H; Wu, X; Wang, S; Wang, XC; Liu, GH; Fu, BJ Shi, Songlin; Li, Zongshan; Wang, Hao; Wu, Xing; Wang, Shuai; Wang, Xiaochun; Liu, Guohua; Fu, Bojie Comparative analysis of annual rings of perennial forbs in the Loess Plateau, China DENDROCHRONOLOGIA English Article Herb-chronology; Anatomical patterns; Secondary root xylem; Permanent main root; Growth rate; Age distribution SCALE SPATIAL VARIABILITY; GROWTH RINGS; SOIL-EROSION; PLANT; ROOTS; AGE; NITROGEN; REGION; WATER; REPRODUCTION Although recent studies have demonstrated that annual growth rings are present among perennial forbs species at high northern latitudes, little is known about whether there are demarcated growth rings of perennial forbs in the Loess Plateau of China where plant growth is strongly limited by dry climate conditions and severe soil erosion. In this study, we collected the main roots of 11 perennial forbs species along the precipitation gradient in the Loess Plateau, and analyzed the growth rings in the secondary root xylem. We found that ten species showed distinct annual growth rings, and the anatomical patterns, including vessel size and density, varied considerably among different families. Our results suggest, for forbs species in the Loess Plateau, that vessel diameter in the root xylem was strongly correlated with growth rate of the forb's roots. Ring widths of the forbs showed a significant declining trend, reflecting the deteriorating signal of growth condition with age. In comparison to other families, forb species of Fabaceae usually have the evidently larger vessels that link directly to higher hydraulic capacity and growth rate. In terms of annual ring width patterns, this study provides an applicable approach to detecting effects of limited climatic conditions and life history strategies on herbaceous vegetation in the Loess Plateau. (C) 2016 Elsevier GmbH. All rights reserved. [Shi, Songlin; Li, Zongshan; Wang, Hao; Wu, Xing; Wang, Shuai; Liu, Guohua; Fu, Bojie] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China; [Shi, Songlin; Wang, Hao] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Wang, Xiaochun] Northeast Forestry Univ, Coll Forestry, Harbin 150040, Peoples R China Li, ZS (reprint author), Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China. zsli..st@rcees.ac.cn Wang, Shuai/B-2334-2017; Fu, Bojie/B-1493-2009 Wang, Shuai/0000-0003-1595-9858; Major Program of the National Natural Science Foundation of China [41390462]; Natural Science Foundation of China [41571503] This study was supported by the Major Program of the National Natural Science Foundation of China (Grant no. 41390462) and Natural Science Foundation of China (Grant No. 41571503). We greatly thank Yu-jia Liu and Li Shen of the Tree Ring Laboratory, Northeast Forestry University of China, for the assistance of producing root sections and ring-width measurements. We are also indebted to Yi-He Lv, Xiao-Ming Feng, and Guang-yao Gao for providing insightful comments and constructive suggestions for revising an early draft of this article. Anfodillo T, 2013, IAWA J, V34, P352, DOI 10.1163/22941932-00000030; Brodribb TJ, 2000, PLANT CELL ENVIRON, V23, P1381, DOI 10.1046/j.1365-3040.2000.00647.x; Denne MP, 1999, HOLZFORSCHUNG, V53, P199, DOI 10.1515/HF.1999.033; Dietz H, 2005, ECOLOGY, V86, P327, DOI 10.1890/04-0801; Dietz H, 2004, ARCT ANTARCT ALP RES, V36, P591, DOI 10.1657/1523-0430(2004)036[0591:GIPITR]2.0.CO;2; Dietz H, 2002, CAN J BOT, V80, P642, DOI [10.1139/B02-048, 10.1139/b02-048]; Dietz H, 2002, ANN BOT-LONDON, V90, P663, DOI 10.1093/aob/mcf247; Dietz H, 1997, ANN BOT-LONDON, V80, P377, DOI 10.1006/anbo.1997.0423; Dietz H, 1998, ANN BOT-LONDON, V82, P471, DOI 10.1006/anbo.1998.0706; Feng XM, 2013, SCI REP-UK, V3, DOI 10.1038/srep02846; Franche C, 2009, PLANT SOIL, V321, P35, DOI 10.1007/s11104-008-9833-8; Fu BJ, 2009, PROG PHYS GEOG, V33, P793, DOI 10.1177/0309133309350264; Fu BJ, 2011, ECOL COMPLEX, V8, P284, DOI 10.1016/j.ecocom.2011.07.003; JEFFERIES RA, 1981, J APPL ECOL, V18, P945, DOI 10.2307/2402384; Liu YB, 2007, J INTEGR PLANT BIOL, V49, P144, DOI 10.1111/j.1672-9072.2007.00426.x; Liu YB, 2010, J VEG SCI, V21, P899, DOI 10.1111/j.1654-1103.2010.01199.x; Liu ZP, 2012, SOIL RES, V50, P114, DOI 10.1071/SR11183; Liu ZP, 2013, GEODERMA, V197, P67, DOI 10.1016/j.geoderma.2012.12.011; Lu Y., 2015, SCI REP, V5; McDowell N, 2008, NEW PHYTOL, V178, P719, DOI 10.1111/j.1469-8137.2008.02436.x; Molau U, 1997, NORD J BOT, V17, P225, DOI 10.1111/j.1756-1051.1997.tb00314.x; Moloney KA, 2009, BIOL INVASIONS, V11, P625, DOI 10.1007/s10530-008-9277-3; Nooden LD, 2001, J EXP BOT, V52, P2151, DOI 10.1093/jexbot/52.364.2151; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Olano JM, 2013, FUNCT ECOL, V27, P1295, DOI 10.1111/1365-2435.12144; Russo SE, 2010, FUNCT ECOL, V24, P253, DOI 10.1111/j.1365-2435.2009.01670.x; Schweingruber F.H., 2005, FOR SNOW LANDSC RES, V79, P199; SONESSON M, 1991, ARCTIC, V44, P95; Stratton L, 2000, PLANT CELL ENVIRON, V23, P99, DOI 10.1046/j.1365-3040.2000.00533.x; Thomas H, 2002, MECH AGEING DEV, V123, P747, DOI 10.1016/S0047-6374(01)00420-1; von Arx G, 2006, PLANT BIOLOGY, V8, P224, DOI 10.1055/s-2005-873051; von Arx G, 2006, ECOLOGY, V87, P665, DOI 10.1890/05-1041; von Arx G, 2012, ANN BOT-LONDON, V109, P1091, DOI 10.1093/aob/mcs030; Wang YQ, 2010, GEODERMA, V159, P99, DOI 10.1016/j.geoderma.2010.07.001; Weiher E, 1999, J VEG SCI, V10, P609, DOI 10.2307/3237076; Yang WZ, 1999, SCI CHINA SER D, V42, P240, DOI 10.1007/BF02878961; Yin RS, 2010, ENVIRON MANAGE, V45, P442, DOI 10.1007/s00267-009-9387-4; Zhang XC, 2003, ACTA BOT SIN, V45, P1195; Zhao YF, 2014, QUATERN INT, V349, P196, DOI 10.1016/j.quaint.2014.06.050 39 1 1 2 17 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 1125-7865 1612-0051 DENDROCHRONOLOGIA Dendrochronologia JUN 2016 38 82 89 10.1016/j.dendro.2016.03.010 8 Plant Sciences; Forestry; Geography, Physical Plant Sciences; Forestry; Physical Geography EA8EG WOS:000386867500009 Green Published 2019-02-21 J Herborn, KA; Daunt, F; Heidinger, BJ; Granroth-Wilding, HMV; Burthe, SJ; Newell, MA; Monaghan, P Herborn, Katherine A.; Daunt, Francis; Heidinger, Britt J.; Granroth-Wilding, Hanna M. V.; Burthe, Sarah J.; Newell, Mark A.; Monaghan, Pat Age, oxidative stress exposure and fitness in a long-lived seabird FUNCTIONAL ECOLOGY English Article life history trade-off; oxidative stress; Phalacrocorax aristotelis; senescence SHAGS PHALACROCORAX-ARISTOTELIS; LIFE-HISTORY EVOLUTION; EUROPEAN SHAGS; ENVIRONMENTAL-CONDITIONS; DAMAGE; SENESCENCE; REPRODUCTION; CERULOPLASMIN; ACCUMULATION; PERFORMANCE 1. The need to manage exposure to oxidative stress, which can damage macromolecules, is thought to influence the resolution of life-history trade-offs. Oxidative damage is expected to increase with age as a consequence of changes in the optimal investment in defences or repair, and/or because of senescence in antioxidant defence systems, although the pattern might differ between short and long-lived species. However, data on age-related changes in damage levels in wild populations are rare. 2. Using cross-sectional and longitudinal data collected over 3 years, we examine variation in a measure of oxidative damage exposure in known age, wild European Shags (Phalacrocorax aristotelis), a relatively long lived species. 3. The cross-sectional data showed a quadratic relationship between oxidative damage exposure and age: both relatively young and old adults had higher levels than those in middle age. In contrast, a measure of non-enzymatic antioxidant levels did not vary with age. 4. The cross-sectional increase in oxidative damage exposure in later life was consistent with longitudinal patterns observed within older birds (more than 10 years old). 5. However, the apparent decline in oxidative damage in early adulthood was not consistent with longitudinal patterns in younger birds, which showed individual variation but no consistent age-related change in the marker. This suggests that cross-sectional patterns reflect instead higher disappearance of individuals with high exposure to oxidative damage at this life stage. 6. Our data further show that oxidative damage levels are predictive of attendance at the colony in all age classes: juveniles fledging with a high damage exposure index were less likely to be resighted in the breeding colony 2 years later, and adults with high levels at the end of the breeding season had reduced return rates, irrespective of age. Since this is a species that shows high colony fidelity, this is likely to reflect mortality patterns. 7. These data suggest that exposure to oxidative damage increases with age in a long lived species, but only in later life, when high investment in reproduction at the cost of defence would be predicted. [Herborn, Katherine A.; Monaghan, Pat] Univ Glasgow, Coll Med Vet & Life Sci, Inst Biodivers Anim Hlth & Comparat Med, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland; [Daunt, Francis; Burthe, Sarah J.; Newell, Mark A.] Ctr Ecol & Hydrol, Bush Estate, Penicuik EH26 0QB, Midlothian, Scotland; [Heidinger, Britt J.] North Dakota State Univ, Dept Biol Sci, Stevens Hall, Fargo, ND 58108 USA; [Granroth-Wilding, Hanna M. V.] Univ Edinburgh, Sch Biol Sci, Inst Evolutionary Biol, Edinburgh EH9 3JT, Midlothian, Scotland; [Granroth-Wilding, Hanna M. V.] Univ Edinburgh, Sch Biol Sci, Inst Immunol & Infect Res, Edinburgh EH9 3JT, Midlothian, Scotland Monaghan, P (reprint author), Univ Glasgow, Coll Med Vet & Life Sci, Inst Biodivers Anim Hlth & Comparat Med, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. pat.monaghan@glasgow.ac.uk burthe, sarah/Q-9505-2016; Monaghan, Pat/E-6810-2015 burthe, sarah/0000-0001-8871-3432; Herborn, Katherine/0000-0002-5913-7912 Leverhulme Trust [0179/AX]; NSF IRFP [0852962]; ERC Adg Grant [268926]; Natural Environment Research Council [ceh020002] We thank W. Boner, J. Noguera, A. Adam, K. Griffiths, C. Gunn, J. Squire, D. Pickett and E. Takahashi for contributions to in the field and laboratory, and to SNH for permission to work on the Isle of May National Nature Reserve. This work was funded by a Leverhulme Trust Grant to P.M. and F.D. (0179/AX), NSF IRFP (0852962) to B.J.H and an ERC Adg Grant to P.M. (268926). AEBISCHER NJ, 1986, J ANIM ECOL, V55, P613, DOI 10.2307/4743; AEBISCHER NJ, 1992, BIRD STUDY, V39, P43, DOI 10.1080/00063659209477098; AGARWAL S, 1994, P NATL ACAD SCI USA, V91, P12332, DOI 10.1073/pnas.91.25.12332; Alberti A, 2000, RES CHEM INTERMEDIAT, V26, P253, DOI 10.1163/156856700X00769; Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001; Barlow EJ, 2013, IBIS, V155, P762, DOI 10.1111/ibi.12060; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Burthe S, 2013, METHODS ECOL EVOL, V4, P207, DOI 10.1111/2041-210x.12015; Noguera JC, 2012, BIOL LETTERS, V8, P61, DOI 10.1098/rsbl.2011.0756; CARTAR RV, 1992, J ANIM ECOL, V61, P225, DOI 10.2307/5525; Charlesworth B, 2001, J THEOR BIOL, V210, P47, DOI 10.1006/jtbi.2001.2296; Costantini D, 2006, COMP BIOCHEM PHYS A, V145, P137, DOI 10.1016/j.cbpa.2006.06.002; Costantini D, 2014, J EXP BIOL, V217, P4237, DOI 10.1242/jeb.114116; Costantini D, 2011, J COMP PHYSIOL B, V181, P447, DOI 10.1007/s00360-011-0566-2; Costantini D, 2011, METHODS ECOL EVOL, V2, P321, DOI 10.1111/j.2041-210X.2010.00080.x; Crawley M. J., 2007, R BOOK; Daunt F, 2007, BIOL LETTERS, V3, P371, DOI 10.1098/rsbl.2007.0157; Daunt F, 2007, FUNCT ECOL, V21, P561, DOI 10.1111/j.1365-2435.2007.01260.x; Daunt F, 2001, FUNCT ECOL, V15, P211, DOI 10.1046/j.1365-2435.2001.00515.x; Daunt F, 1999, P ROY SOC B-BIOL SCI, V266, P1489, DOI 10.1098/rspb.1999.0805; Devevey G, 2010, J ORNITHOL, V151, P251, DOI 10.1007/s10336-009-0456-5; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Erel O, 2005, CLIN BIOCHEM, V38, P1103, DOI 10.1016/j.clinbiochem.2005.08.008; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Frederiksen M, 2008, J ANIM ECOL, V77, P1020, DOI 10.1111/j.1365-2656.2008.01422.x; FURNESS RW, 1987, SEABIRD ECOLOGY; Ganini D, 2012, FREE RADICAL BIO MED, V53, P1514, DOI 10.1016/j.freeradbiomed.2012.07.013; Granroth-Wilding HMV, 2014, ECOL EVOL, V4, P3408, DOI 10.1002/ece3.1192; Griffiths R, 1996, P ROY SOC B-BIOL SCI, V263, P1251, DOI 10.1098/rspb.1996.0184; Halliwell B, 1996, ANNU REV NUTR, V16, P33, DOI 10.1146/annurev.nu.16.070196.000341; Hamilton ML, 2001, P NATL ACAD SCI USA, V98, P10469, DOI 10.1073/pnas.171202698; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; HARRIS MP, 1994, J AVIAN BIOL, V25, P268, DOI 10.2307/3677273; Herborn K.A., 2015, DRYAD DIGITAL REPOSI; Herborn KA, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3151; Iamele L, 2002, CLIN CHEM LAB MED, V40, P673, DOI 10.1515/CCLM.2002.115; Isaksson C, 2011, INTEGR ZOOL, V6, P140, DOI 10.1111/j.1749-4877.2011.00237.x; Kilk K, 2014, FREE RADICAL RES, V48, P883, DOI 10.3109/10715762.2014.919390; Medawar PB, 1946, MODERN Q, V1, P56; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Perez-Rodriguez L, 2015, PHYSIOL BIOCHEM ZOOL, V88, P345, DOI 10.1086/680688; R Development Core Team, 2008, R LANG ENV STAT COMP; Reid JM, 2003, J ANIM ECOL, V72, P765, DOI 10.1046/j.1365-2656.2003.00750.x; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Shukla N, 2006, ATHEROSCLEROSIS, V187, P238, DOI 10.1016/j.atherosclerosis.2005.11.035; Sies H, 2007, J NUTR, V137, P1493; Sliwinski M, 2010, RES HUM DEV, V7, P45, DOI 10.1080/15427600903578169; SOHAL RS, 1994, MECH AGEING DEV, V74, P121, DOI 10.1016/0047-6374(94)90104-X; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Whittingham MJ, 2006, J ANIM ECOL, V75, P1182, DOI 10.1111/j.1365-2656.2006.01141.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Yasuda K, 1999, J GERONTOL A-BIOL, V54, pB47, DOI 10.1093/gerona/54.2.B47 59 15 15 3 26 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JUN 2016 30 6 913 921 10.1111/1365-2435.12578 9 Ecology Environmental Sciences & Ecology DR5ZB WOS:000379979800009 Bronze, Green Published 2019-02-21 J Dial, TR; Reznick, DN; Brainerd, EL Dial, Terry R.; Reznick, David N.; Brainerd, Elizabeth L. Effects of neonatal size on maturity and escape performance in the Trinidadian guppy FUNCTIONAL ECOLOGY English Article fast-start; maturity; offspring; ossification; performance; size LIFE-HISTORY EVOLUTION; FAST-START PERFORMANCE; PARENT-OFFSPRING CONFLICT; POECILIA-RETICULATA; SWIMMING PERFORMANCE; TELEOST FISH; EGG SIZE; SELECTION; ONTOGENY; CYPRINIDAE 1. The livebearing Trinidadian guppy (Poecilia reticulata) produces bigger offspring in populations exposed to low predation and produces smaller, more numerous offspring in populations subject to high predation (HP). 2. Like most fishes, guppies respond to predator attacks with a fast-start escape response. From the scaling of teleost fast-start performance, we predict that larger guppy neonates should exhibit faster, more effective escape responses than smaller neonates. Increasing performance with increasing size could be due simply to size, or to both size and the acquisition of more mature body forms, as is seen in larval-stage fishes. 3. We find no difference in external body proportions among guppy offspring varying in size from 5.1 mm to 7.1 mm at birth, suggesting offspring are born morphologically mature. However, based on the degree of skeletal ossification, as a proxy for internal maturity, we find that guppies are still maturing rapidly around the time of birth. The smallest neonates from the very HP Caroni confluence lack ossification of key skeletal elements that are present in their larger low predation counterparts. 4. In guppies from the Aripo/Caroni drainage, we show that neonatal escape performance covaries with responsiveness and increases with size along a gradient of HP offspring, but is lower in the largest low predation offspring. The scaling of escape performance in the HP populations performing maximally (scaling with length as L-2.76) exceeds predictions from size alone (scaling exponent of L-1.0 indicates performance increases linearly with body size). This suggests that guppy neonates, like rapidly developing larval fishes, vary substantially in morphological maturity among populations. 5. The finding that neonatal guppy offspring covary in both size and maturity at birth means that being smaller also means being less mature, which amplifies the negative escape performance effects of being born small. Despite the negative consequences of being born both small and immature, HP environments select heavily for high fecundity, and thus small offspring size. We find selection favours female life-history traits over offspring escape performance. [Dial, Terry R.; Brainerd, Elizabeth L.] Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA; [Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Dial, TR (reprint author), Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA. terry_dial@brown.edu reznick, david/0000-0002-1144-0568 Bushnell Research and Education Fund The authors wish to acknowledge the Ramlal homestead and guppy project crew in Trinidad for housing and assistance caring for the fish. We also thank Natividad Chen for help with analysis and Erika Tavares for her thorough edits on the manuscript. Bushnell Research and Education Fund provided the opportunity to travel to Trinidad. Two reviewers substantially enhanced the manuscript. The authors state no conflicts of interest. Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Astley HC, 2013, J EXP BIOL, V216, P3947, DOI 10.1242/jeb.090357; Balon E.K., 1998, DO FISHES BECOME JUV, P17; Bashey F, 2006, EVOLUTION, V60, P348, DOI 10.1554/05-087.1; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Bergstrom CA, 2002, CAN J ZOOL, V80, P207, DOI 10.1139/Z01-226; Brainerd EL, 2010, J EXP ZOOL PART A, V313A, P262, DOI 10.1002/jez.589; Britz R, 2009, J MORPHOL, V270, P389, DOI 10.1002/jmor.10698; Carrier DR, 1996, PHYSIOL ZOOL, V69, P467, DOI 10.1086/physzool.69.3.30164211; Cubbage CC, 1996, J MORPHOL, V229, P121, DOI 10.1002/(SICI)1097-4687(199608)229:2<121::AID-JMOR1>3.0.CO;2-4; Dial T.R., 2015, DRYAD DIGITAL REPOSI; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Falster DS, 2008, AM NAT, V172, P299, DOI 10.1086/589889; Fox CW, 1996, OECOLOGIA, V107, P541, DOI 10.1007/BF00333946; FUIMAN LA, 1988, ANIM BEHAV, V36, P250, DOI 10.1016/S0003-3472(88)80268-9; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Ghalambor CK, 2003, INTEGR COMP BIOL, V43, P431, DOI 10.1093/icb/43.3.431; Gibb AC, 2006, PHYSIOL BIOCHEM ZOOL, V79, P7, DOI 10.1086/498192; Gorman KF, 2010, SCOLIOSIS SPINAL DIS, V5, DOI 10.1186/1748-7161-5-10; Hale ME, 1999, J EXP BIOL, V202, P1465; Hedrick TL, 2008, BIOINSPIR BIOMIM, V3, DOI 10.1088/1748-3182/3/3/034001; Herrel A, 2006, PHYSIOL BIOCHEM ZOOL, V79, P1, DOI 10.1086/498196; Howland HC, 2004, VISION RES, V44, P2043, DOI 10.1016/j.visres.2004.03.023; Janzen FJ, 2009, J EVOLUTION BIOL, V22, P2222, DOI 10.1111/j.1420-9101.2009.01838.x; Langerhans RB, 2009, FISH LOCOMOTION ETHO, P200; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Marshall DJ, 2005, OIKOS, V108, P602, DOI 10.1111/j.0030-1299.2005.13588.x; Marshall DJ, 2008, AM NAT, V171, P214, DOI 10.1086/524954; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1554/0014-3820(2002)056[0776:REOEAI]2.0.CO;2; Reznick D, 1996, AM ZOOL, V36, P147; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK D, 1982, AM NAT, V120, P181, DOI 10.1086/283981; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; ROME LC, 1988, NATURE, V335, P824, DOI 10.1038/335824a0; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sokal R. R., 2012, BIOMETRY PRINCIPLES; Thompson DW, 1942, GROWTH FORM; Torres-Dowdall J, 2012, FUNCT ECOL, V26, P616, DOI 10.1111/j.1365-2435.2012.01980.x; TRIVERS RL, 1974, AM ZOOL, V14, P249; VEGGETTI A, 1993, ANAT EMBRYOL, V187, P353; Wakeling JM, 2006, FISH PHYSIOL, V23, P333, DOI 10.1016/S1546-5098(05)23009-1; Wakeling JM, 1999, J EXP BIOL, V202, P3057; Walker JA, 2005, FUNCT ECOL, V19, P808, DOI 10.1111/j.1365-2435.2005.01033.x; WASSERSUG RJ, 1977, ECOLOGY, V58, P830, DOI 10.2307/1936218; WEBB PW, 1978, J EXP BIOL, V74, P211; WEBB PW, 1976, J EXP BIOL, V65, P157; WEISEL GF, 1967, J MORPHOL, V121, P1, DOI 10.1002/jmor.1051210102; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Wilson AJ, 2005, EVOLUTION, V59, P451 50 4 4 2 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JUN 2016 30 6 943 952 10.1111/1365-2435.12565 10 Ecology Environmental Sciences & Ecology DR5ZB WOS:000379979800012 2019-02-21 J Kuparinen, A; Hutchings, JA; Waples, RS Kuparinen, Anna; Hutchings, Jeffrey A.; Waples, Robin S. Harvest-induced evolution and effective population size EVOLUTIONARY APPLICATIONS English Article contemporary evolution; fisheries management; life history evolution; population genetics - empirical; wildlife management FISHERIES-INDUCED EVOLUTION; EXPLOITED FISH STOCKS; LIFE-HISTORY; OVERLAPPING GENERATIONS; GENETIC COMPENSATION; TEMPORAL-CHANGES; CONSEQUENCES; AGE; OVEREXPLOITATION; COMPONENTS Much has been written about fishery-induced evolution (FIE) in exploited species, but relatively little attention has been paid to the consequences for one of the most important parameters in evolutionary biology-effective population size (N-e). We use a combination of simulations of Atlantic cod populations experiencing harvest, artificial manipulation of cod life tables, and analytical methods to explore how adding harvest to natural mortality affects N-e, census size (N), and the ratio N-e/N. We show that harvest-mediated reductions in N-e are due entirely to reductions in recruitment, because increasing adult mortality actually increases the N-e/N ratio. This means that proportional reductions in abundance caused by harvest represent an upper limit to the proportional reductions in N-e, and that in some cases N-e can even increase with increased harvest. This result is a quite general consequence of increased adult mortality and does not depend on harvest selectivity or FIE, although both of these influence the results in a quantitative way. In scenarios that allowed evolution, N-e recovered quickly after harvest ended and remained higher than in the preharvest population for well over a century, which indicates that evolution can help provide a long-term buffer against loss of genetic variability. [Kuparinen, Anna] Univ Helsinki, Dept Environm Sci, Helsinki, Finland; [Hutchings, Jeffrey A.] Dalhousie Univ, Dept Biol, Halifax, NS, Canada; [Hutchings, Jeffrey A.] Univ Oslo, Dept Biosci, Ctr Ecol & Evolutionary Synth, Oslo, Norway; [Hutchings, Jeffrey A.] Univ Agder, Dept Nat Sci, Kristiansand, Norway; [Waples, Robin S.] NOAA, Natl Marine Fisheries Serv, Northwest Fisheries Sci Ctr, Seattle, WA 98115 USA Waples, RS (reprint author), Northwest Fisheries Sci Ctr, 2725 Montlake Blvd East, Seattle, WA USA. robin.waples@noaa.gov Waples, Robin/K-1126-2016 Academy of Finland; Natural Sciences and Engineering Research Council of Canada Discovery Grant; Loblaw Companies Ltd The Academy of Finland provided funding to AK and a Natural Sciences and Engineering Research Council of Canada Discovery Grant and Loblaw Companies Ltd provided funding to JAH to support this research. The comments of the associate editor and two anonymous reviewers considerably improved the manuscript. Allendorf F. W., 2009, LIGHT EVOLUTION, VIII, P129; Audzijonyte A, 2013, EVOL APPL, V6, P585, DOI 10.1111/eva.12044; Beebee TJC, 2009, MOL ECOL, V18, P4790, DOI 10.1111/j.1365-294X.2009.04398.x; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Charnov EL, 2013, FISH FISH, V14, P213, DOI 10.1111/j.1467-2979.2012.00467.x; Charnov Eric L., 1993, P1; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Devine JA, 2012, CAN J FISH AQUAT SCI, V69, P1105, DOI 10.1139/F2012-047; Dowling TE, 2014, EVOL APPL, V7, P339, DOI 10.1111/eva.12125; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; FELSENSTEIN J, 1971, GENETICS, V68, P581; Gaggiotti OE, 1999, CAN J FISH AQUAT SCI, V56, P1376, DOI 10.1139/cjfas-56-8-1376; HEDGECOCK D, 1994, GENETICS AND EVOLUTION OF AQUATIC ORGANISMS, P122; HILL WG, 1972, THEOR POPUL BIOL, V3, P278, DOI 10.1016/0040-5809(72)90004-4; Howell D, 2013, MAR BIOL RES, V9, P920, DOI 10.1080/17451000.2013.775452; Hutchings J.A., 2011, ECOLOGY CANADIAN CON; Hutchings JA, 2005, PHILOS T ROY SOC B, V360, P315, DOI 10.1098/rstb.2004.1586; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Jensen AL, 1997, CAN J FISH AQUAT SCI, V54, P987, DOI 10.1139/cjfas-54-5-987; Kendall NW, 2014, EVOL APPL, V7, P313, DOI 10.1111/eva.12123; Kuparinen A., 2014, CONSERV BIOL, V3, P790; Kuparinen A, 2014, EVOL APPL, V7, P1218, DOI 10.1111/eva.12217; Kuparinen A, 2012, EVOL APPL, V5, P245, DOI 10.1111/j.1752-4571.2011.00215.x; Lanfear R, 2014, TRENDS ECOL EVOL, V29, P33, DOI 10.1016/j.tree.2013.09.009; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Lee AM, 2011, P ROY SOC B-BIOL SCI, V278, P3303, DOI 10.1098/rspb.2011.0283; Marty L, 2015, EVOL APPL, V8, P47, DOI 10.1111/eva.12220; Mertz G, 1998, CAN J FISH AQUAT SCI, V55, P478, DOI 10.1139/cjfas-55-2-478; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; NUNNEY L, 1991, P ROY SOC B-BIOL SCI, V246, P71, DOI 10.1098/rspb.1991.0126; NUNNEY L, 1993, EVOLUTION, V47, P1329, DOI 10.1111/j.1558-5646.1993.tb02158.x; Palstra FP, 2008, MOL ECOL, V17, P3428, DOI 10.1111/j.1365-294X.2008.03842.x; Palstra FP, 2012, ECOL EVOL, V2, P2357, DOI 10.1002/ece3.329; Pigeon G, 2016, EVOL APPL, V9, P521, DOI 10.1111/eva.12358; Polacheck T, 2004, CAN J FISH AQUAT SCI, V61, P307, DOI 10.1139/F04-005; Postma E, 2014, QUANTITATIVE GENETICS IN THE WILD, P16; ROFF DA, 2002, LIFE HIST EVOLUTION; Saarinen EV, 2010, EVOL APPL, V3, P28, DOI 10.1111/j.1752-4571.2009.00096.x; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; von BERTALANFFY LUDWIG, 1938, HUMAN BIOL, V10, P181; Waples RS, 2007, GENETICS, V175, P219, DOI 10.1534/genetics.106.065300; Waples RS, 2014, GENETICS, V197, P769, DOI 10.1534/genetics.114.164822; Waples RS, 2014, EVOLUTION, V68, P1722, DOI 10.1111/evo.12384; Waples RS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1339; Waples RS, 2011, ECOLOGY, V92, P1513, DOI 10.1890/10-1796.1; WAPLES RS, 1989, GENETICS, V121, P379; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379; Wright S., 1938, SCIENCE, V87, P430, DOI DOI 10.1126/SCIENCE.87.2263 50 12 12 4 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. JUN 2016 9 5 658 672 10.1111/eva.12373 15 Evolutionary Biology Evolutionary Biology DR5GK WOS:000379931300005 27247617 DOAJ Gold, Green Published 2019-02-21 J Campbell, LG; Teitel, Z; Miriti, MN Campbell, Lesley G.; Teitel, Zachary; Miriti, Maria N. Contemporary evolution and the dynamics of invasion in crop-wild hybrids with heritable variation for two weedy life-histories EVOLUTIONARY APPLICATIONS English Article agriculture; artificial selection; evolutionary demography; hybridization; invasive species; life table response experiment; life-history evolution RAPID EVOLUTION; GENE FLOW; RAPHANUS-RAPHANISTRUM; POPULATION-DYNAMICS; LOCAL ADAPTATION; VITAL-RATES; HYBRIDIZATION; FITNESS; PLANTS; PERSISTENCE Gene flow in crop-wild complexes between phenotypically differentiated ancestors may transfer adaptive genetic variation that alters the fecundity and, potentially, the population growth (lambda) of weeds. We created biotypes with potentially invasive traits, early flowering or long leaves, in wild radish (Raphanus raphanistrum) and F-5 crop-wild hybrid (R. sativus x R. raphanistrum) backgrounds and compared them to randomly mated populations, to provide the first experimental estimate of long-term fitness consequences of weedy life-history variation. Using a life table response experiment design, we modeled lambda of experimental, field populations in Pellston, MI, and assessed the relative success of alternative weed strategies and the contributions of individual vital rates (germination, survival, seed production) to differences in lambda among experimental populations. Growth rates (lambda) were most influenced by seed production, a trait altered by hybridization and selection, compared to other vital rates. More seeds were produced by wild than hybrid populations and by long-leafed than early-flowering lineages. Although we did not detect a biotype by selection treatment effect on lambda, lineages also exhibited contrasting germination and survival strategies. Identifying life-history traits affecting population growth contributes to our understanding of which portions of the crop genome are most likely to introgress into weed populations. [Campbell, Lesley G.; Teitel, Zachary] Ryerson Univ, Dept Chem & Biol, 350 Victoria St, Toronto, ON, Canada; [Miriti, Maria N.] Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Columbus, OH 43210 USA; [Teitel, Zachary] Univ Guelph, Dept Integrat Biol, Guelph, ON, Canada Campbell, LG (reprint author), Ryerson Univ, Dept Chem & Biol, 350 Victoria St, Toronto, ON, Canada. lesley.g.campbell@ryerson.ca USDA [2002-03715]; NSF DDIG [DEB-0508615]; NSERC Discovery [402305-2011] We thank J. Leonard, the UMBS staff, and many student researchers for their help in the greenhouse, field, and laboratory. The USDA (#2002-03715), NSF DDIG (DEB-0508615), and NSERC Discovery (#402305-2011) granting programs financially supported this research. The manuscript was improved by the constructive criticisms of two anonymous reviewers and A. Snow. Arnold ML, 1997, NATURAL HYBRIDIZATIO; Bartsch D, 1999, MOL ECOL, V8, P1733, DOI 10.1046/j.1365-294x.1999.00769.x; Bone E, 2001, GENETICA, V112, P165, DOI 10.1023/A:1013378014069; Burgess KS, 2005, MOL ECOL, V14, P3471, DOI 10.1111/j.1365-294X.2005.02670.x; Burns JH, 2013, ECOLOGY, V94, P995, DOI 10.1890/12-1310.1; Campbell L.G., 2005, CROP FERALITY VOLUNT, P193; Campbell LG, 2006, ECOL LETT, V9, P1198, DOI 10.1111/j.1461-0248.2006.00974.x; Campbell LG, 2014, CAN J PLANT SCI, V94, P1315, DOI [10.4141/CJPS-2014-070, 10.4141/cjps-2014-070]; Campbell LG, 2009, NEW PHYTOL, V184, P806, DOI 10.1111/j.1469-8137.2009.03036.x; Campbell LG, 2009, EVOL APPL, V2, P172, DOI 10.1111/j.1752-4571.2008.00051.x; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2007, ECOL LETT, V10, P1, DOI 10.1111/j.1461-0248.2006.01001.x; Daehler CC, 2003, ANNU REV ECOL EVOL S, V34, P183, DOI 10.1146/annurev.ecolsys.34.011802.132403; Darwin C, 1858, J LINNEAN SOC ZOOLOG, V3, P45, DOI DOI 10.1111/J.1096-3642.1858.TB02500.X; Davidson AM, 2011, ECOL LETT, V14, P419, DOI 10.1111/j.1461-0248.2011.01596.x; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; Delye C, 2013, ANN BOT-LONDON, V111, P681, DOI 10.1093/aob/mct018; EHRLICH PR, 1969, SCIENCE, V165, P1228, DOI 10.1126/science.165.3899.1228; Ellstrand NC, 2000, P NATL ACAD SCI USA, V97, P7043, DOI 10.1073/pnas.97.13.7043; Ellstrand NC, 2013, ANNU REV ECOL EVOL S, V44, P325, DOI 10.1146/annurev-ecolsys-110512-135840; Frankham R, 2005, BIOL CONSERV, V126, P131, DOI 10.1016/j.biocon.2005.05.002; Freville H, 2005, PLANT ECOL, V176, P69, DOI 10.1007/s11258-004-0017-1; Gomulkiewicz R, 1999, THEOR POPUL BIOL, V55, P283, DOI 10.1006/tpbi.1998.1405; Gould S. J., 1989, WONDERFUL LIFE; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Hanski I., 1999, METAPOPULATION ECOLO; Heap I., 2015, INT SURVEY HERBICIDE; Hegde SG, 2006, EVOLUTION, V60, P1187, DOI 10.1554/05-634.1; Hendry AP, 2004, EVOL ECOL RES, V6, P1219; Hereford J, 2009, AM NAT, V173, P579, DOI 10.1086/597611; Hitchings SP, 1998, J EVOLUTION BIOL, V11, P269, DOI 10.1007/s000360050088; Holt RD, 2004, AM NAT, V163, P253, DOI 10.1086/381408; Hooftman DAP, 2007, J APPL ECOL, V44, P1035, DOI 10.1111/j.1365-2664.2007.01341.x; Hooftman DAP, 2011, EVOL APPL, V4, P648, DOI 10.1111/j.1752-4571.2011.00188.x; Hooftman DAP, 2005, J APPL ECOL, V42, P1086, DOI 10.1111/j.1365-2664.2005.01086.x; Hovick SM, 2014, ECOL LETT, V17, P1464, DOI 10.1111/ele.12355; Hovick SM, 2012, AM NAT, V179, P192, DOI 10.1086/663684; Hyatt LA, 2006, BIOL INVASIONS, V8, P261, DOI 10.1007/s10530-004-5572-9; JORDAN N, 1995, AM J BOT, V82, P390, DOI 10.2307/2445585; Kinnison MT, 2008, MOL ECOL, V17, P405, DOI 10.1111/j.1365-294X.2007.03495.x; Kinnison MT, 2007, FUNCT ECOL, V21, P444, DOI 10.1111/j.1365-2435.2007.01278.x; Kirkpatrick M, 1997, AM NAT, V150, P1, DOI 10.1086/286054; KLINGER T, 1994, ECOL APPL, V4, P117, DOI 10.2307/1942121; Lee TN, 1998, AM J BOT, V85, P333, DOI 10.2307/2446325; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; MAZER SJ, 1986, AM J BOT, V73, P500, DOI 10.2307/2444254; Mercer KL, 2006, EVOLUTION, V60, P2044, DOI 10.1554/06-020.1; Mertens SK, 2002, ECOL APPL, V12, P1125, DOI 10.1890/1051-0761(2002)012[1125:WPACRE]2.0.CO;2; Miriti MN, 2001, ECOL MONOGR, V71, P491, DOI 10.1890/0012-9615(2001)071[0491:TEONOT]2.0.CO;2; Morris WF, 2004, AM NAT, V163, P579, DOI 10.1086/382550; Novack S. J., 2005, SPECIES INVASIONS IN; Nuismer SL, 2012, J EVOLUTION BIOL, V25, P2665, DOI 10.1111/jeb.12002; Owart BR, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102717; PANETSOS CA, 1968, GENETICA, V38, P243; PERRINS J, 1992, ACTA OECOL, V13, P517; Pilson D, 2004, ANNU REV ECOL EVOL S, V35, P149, DOI 10.1146/annurev.ecolsys.34.011802.132406; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Rieseberg LH, 2003, SCIENCE, V301, P1211, DOI 10.1126/science.1086949; Roff Derek A., 1992; Simpson GG, 1944, TEMPO MODE EVOLUTION; SLATKIN M, 1987, SCIENCE, V236, P787, DOI 10.1126/science.3576198; Snow AA, 2010, NEW PHYTOL, V186, P537, DOI 10.1111/j.1469-8137.2009.03172.x; Snow AA, 2005, Crop Ferality and Volunteerism, P193, DOI 10.1201/9781420037999.ch13; Snow AA, 2005, ECOL APPL, V15, P377, DOI 10.1890/04-0539; Snow AA, 2001, ECOL APPL, V11, P934, DOI 10.1890/1051-0761(2001)011[0934:FOHBWA]2.0.CO;2; Snow AA, 2003, ECOL APPL, V13, P279, DOI 10.1890/1051-0761(2003)013[0279:ABTRHA]2.0.CO;2; Stearns S, 1992, EVOLUTION LIFE HIST; Teitel Z, 2016, WEED RES, V56, P149, DOI 10.1111/wre.12194; Teitel Z., 2014, EFFECT CLIMATE STRES; Warwick SI, 2005, CAN J PLANT SCI, V85, P709, DOI 10.4141/P04-120; Weiner J, 2009, J ECOL, V97, P1220, DOI 10.1111/j.1365-2745.2009.01559.x; Whitney KD, 2006, AM NAT, V167, P794, DOI 10.1086/504606; Whitton J, 1997, THEOR APPL GENET, V95, P33, DOI 10.1007/s001220050529; Yoshida T, 2003, NATURE, V424, P303, DOI 10.1038/nature01767 75 1 1 3 28 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. JUN 2016 9 5 697 708 10.1111/eva.12366 12 Evolutionary Biology Evolutionary Biology DR5GK WOS:000379931300008 27247620 DOAJ Gold, Green Published 2019-02-21 J Reynolds, A; Lindstrom, J; Johnson, PCD; Mable, BK Reynolds, Alan; Lindstrom, Jan; Johnson, Paul C. D.; Mable, Barbara K. Evolution of drug-tolerant nematode populations in response to density reduction EVOLUTIONARY APPLICATIONS English Article Caenorhabditis remanei; drug resistance; drug tolerance; experimental evolution; pesticide resistance; population density; rapid evolution; selection experiment LIFE-HISTORY EVOLUTION; ANTHELMINTIC RESISTANCE; CAENORHABDITIS-ELEGANS; PARASITIC NEMATODES; LINKAGE DISEQUILIBRIUM; INSECTICIDE RESISTANCE; IVERMECTIN RESISTANCE; HAEMONCHUS-CONTORTUS; FITNESS COSTS; NEW-ZEALAND Resistance to xenobiotics remains a pressing issue in parasite treatment and global agriculture. Multiple factors may affect the evolution of resistance, including interactions between life-history traits and the strength of selection imposed by different drug doses. We experimentally created replicate selection lines of free-living Caenorhabditis remanei exposed to Ivermectin at high and low doses to assess whether survivorship of lines selected in drug-treated environments increased, and if this varied with dose. Additionally, we maintained lines where mortality was imposed randomly to control for differences in density between drug treatments and to distinguish between the evolutionary consequences of drug-treatment versus ecological processes due to changes in density-dependent feedback. After 10 generations, we exposed all of the selected lines to high-dose, low-dose and drug-free environments to evaluate evolutionary changes in survivorship as well as any costs to adaptation. Both adult and juvenile survival were measured to explore relationships between life-history stage, selection regime and survival. Intriguingly, both drug-selected and random-mortality lines showed an increase in survivorship when challenged with Ivermectin; the magnitude of this increase varied with the intensity of selection and life-history stage. Our results suggest that interactions between density-dependent processes and life history may mediate evolved changes in susceptibility to control measures. [Reynolds, Alan; Lindstrom, Jan; Johnson, Paul C. D.; Mable, Barbara K.] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Coll Med Vet & Life Sci, Glasgow G12 8QQ, Lanark, Scotland Reynolds, A (reprint author), Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Coll Med Vet & Life Sci, Glasgow G12 8QQ, Lanark, Scotland. a.reynolds.2@research.gla.ac.uk Johnson, Paul/0000-0001-6663-7520 National Environment Research Council; Natural Environment Research Council [Dec-63] We would like to thank the National Environment Research Council for funding this project (NERC doctoral training grant). We are grateful to Nadine Timmermeyer for providing the SP8 strain of C. remanei used in this research. We thank Aileen Adam, Eileen Devaney, Elizabeth Kilbride and Kirsty Maitland for advice and assistance with laboratory work. We also thank the editor and reviewers for their helpful comments. ALLENDORF FW, 1986, ZOO BIOL, V5, P181, DOI 10.1002/zoo.1430050212; Ardelli BF, 2009, VET PARASITOL, V165, P96, DOI 10.1016/j.vetpar.2009.06.043; BARNES EH, 1995, PARASITOL TODAY, V11, P56, DOI 10.1016/0169-4758(95)80117-0; Barriere A, 2007, GENETICS, V176, P999, DOI 10.1534/genetics.106.067223; Barros ATM, 2001, VET PARASITOL, V96, P243, DOI 10.1016/S0304-4017(00)00435-0; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Besier RB, 2003, AUST J EXP AGR, V43, P1383, DOI 10.1071/EA02229; Bourguet D, 2013, TRENDS ECOL EVOL, V28, P110, DOI 10.1016/j.tree.2012.09.001; Bourguet D, 2010, EVOL APPL, V3, P375, DOI 10.1111/j.1752-4571.2010.00124.x; Brausch JM, 2009, ECOTOXICOLOGY, V18, P600, DOI 10.1007/s10646-009-0318-1; BRENNER S, 1974, GENETICS, V77, P71; Browne WJ, 2005, J ROY STAT SOC A STA, V168, P599, DOI 10.1111/j.1467-985X.2004.00365.x; Busi R, 2009, HEREDITY, V103, P318, DOI 10.1038/hdy.2009.64; CARRIERE Y, 1994, P ROY SOC B-BIOL SCI, V258, P35, DOI 10.1098/rspb.1994.0138; Chehresa A, 1997, INT J PARASITOL, V27, P541, DOI 10.1016/S0020-7519(97)00005-2; Churcher TS, 2008, EVOLUTION, V62, P528, DOI 10.1111/j.1558-5646.2007.00290.x; Churcher TS, 2006, J ANIM ECOL, V75, P1313, DOI 10.1111/j.1365-2656.2006.01154.x; Coles GC, 2005, VET PARASITOL, V129, P345, DOI 10.1016/j.vetpar.2005.02.002; Coles TB, 2014, PARASITE VECTOR, V7, DOI 10.1186/1756-3305-7-8; Committee on Strategies for the Management of Pesticide Resistant Pest Populations National Research Council, 1986, PESTICIDE RESISTANCE; Cutter AD, 2006, GENETICS, V174, P901, DOI 10.1534/genetics.106.061879; Dey S, 2012, ECOL EVOL, V2, P941, DOI 10.1002/ece3.227; Diaz SA, 2008, J NEMATOL, V40, P167; DRISCOLL M, 1989, J CELL BIOL, V109, P2993, DOI 10.1083/jcb.109.6.2993; Fritzsche K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0942; Fuller RC, 2005, INTEGR COMP BIOL, V45, P391, DOI 10.1093/icb/45.3.391; Galvani A, 1998, J HELMINTHOL, V72, P295, DOI 10.1017/S0022149X00016631; Gassmann AJ, 2009, ANNU REV ENTOMOL, V54, P147, DOI 10.1146/annurev.ento.54.110807.090518; Ghosh R, 2012, SCIENCE, V335, P574, DOI 10.1126/science.1214318; Gilleard JS, 2007, PARASITOLOGY, V134, P1133, DOI 10.1017/S0031182007000066; Gray JC, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3055; Greene B. Y., 2012, AM ACAD MICROBIOLOGY; Hendry AP, 2011, EVOL APPL, V4, P159, DOI 10.1111/j.1752-4571.2010.00165.x; Hope I. A., 2001, C ELEGANS PRACTICAL; JACKSON F, 1993, BRIT VET J, V149, P123; James CE, 2009, TRENDS PARASITOL, V25, P328, DOI 10.1016/j.pt.2009.04.004; James CE, 2009, INT J PARASITOL, V39, P213, DOI 10.1016/j.ijpara.2008.06.009; Jansen M, 2011, ECOTOXICOLOGY, V20, P543, DOI 10.1007/s10646-011-0627-z; Johnson PCD, 2015, METHODS ECOL EVOL, V6, P133, DOI 10.1111/2041-210X.12306; Joshi A, 2001, J GENET, V80, P63, DOI 10.1007/BF02728332; Kaplan RM, 2012, VET PARASITOL, V186, P70, DOI 10.1016/j.vetpar.2011.11.048; Kaplan RM, 2004, TRENDS PARASITOL, V20, P477, DOI 10.1016/j.pt.2004.08.001; Kliot A, 2012, PEST MANAG SCI, V68, P1431, DOI 10.1002/ps.3395; Lawrence KE, 2007, NEW ZEAL VET J, V55, P228, DOI 10.1080/00480169.2007.36773; Leathwick DM, 2014, VET PARASITOL, V204, P44, DOI 10.1016/j.vetpar.2013.12.022; Leathwick DM, 2009, NEW ZEAL VET J, V57, P181, DOI 10.1080/00480169.2009.36900; Leignel V, 2001, FUNCT ECOL, V15, P569, DOI 10.1046/j.0269-8463.2001.00567.x; Lopes PC, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003741; Lynch PA, 2008, PARASITOLOGY, V135, P1599, DOI 10.1017/S0031182008000309; Manalil S, 2011, WEED SCI, V59, P210, DOI 10.1614/WS-D-10-00111.1; Morand S, 1996, FUNCT ECOL, V10, P210, DOI 10.2307/2389845; Morran LT, 2011, SCIENCE, V333, P216, DOI 10.1126/science.1206360; MUELLER LD, 1988, P NATL ACAD SCI USA, V85, P4383, DOI 10.1073/pnas.85.12.4383; Palumbi SR, 2001, SCIENCE, V293, P1786, DOI 10.1126/science.293.5536.1786; Prasad NG, 2003, J GENET, V82, P45, DOI 10.1007/BF02715881; Puniamoorthy N, 2014, EVOL APPL, V7, P548, DOI 10.1111/eva.12152; R Core Team, 2014, R LANG ENV STAT COMP; Ranjan S, 2002, VET PARASITOL, V103, P109, DOI 10.1016/S0304-4017(01)00551-9; Ritz C, 2005, J STAT SOFTW, V12, P1; Roff Derek A., 1992; ROUSH RT, 1987, ANNU REV ENTOMOL, V32, P361, DOI 10.1146/annurev.ento.32.1.361; Rufener L, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1001091; Sangster NC, 1999, PARASITOL TODAY, V15, P141, DOI 10.1016/S0169-4758(99)01413-1; SCOTT JA, 1995, FLA ENTOMOL, V78, P399, DOI 10.2307/3495526; Shi MR, 2013, PEST MANAG SCI, V69, P1049, DOI 10.1002/ps.3457; SIMPKIN KG, 1981, J CHEM TECHNOL BIOT, V31, P66, DOI 10.1002/jctb.280310110; Skorping A, 1998, ECOL LETT, V1, P10, DOI 10.1046/j.1461-0248.1998.0007d.x; Sparks TC, 2012, PESTIC BIOCHEM PHYS, V102, P1, DOI 10.1016/j.pestbp.2011.11.004; Stearns S, 1992, EVOLUTION LIFE HIST; Tabashnik BE, 2014, J ECON ENTOMOL, V107, P496, DOI 10.1603/EC13458; TAYLOR CE, 1983, J ECON ENTOMOL, V76, P704, DOI 10.1093/jee/76.4.704; Wolstenholme AJ, 2004, TRENDS PARASITOL, V20, P469, DOI 10.1016/j.pt.2004.07.010 72 1 1 0 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. JUN 2016 9 5 726 738 10.1111/eva.12376 13 Evolutionary Biology Evolutionary Biology DR5GK WOS:000379931300010 27247622 DOAJ Gold, Green Published 2019-02-21 J Lusk, CH; Jimenez-Castillo, M; Aragon, R; Easdale, TA; Poorter, L; Hinojosa, LF; Mason, NWH Lusk, C. H.; Jimenez-Castillo, M.; Aragon, R.; Easdale, T. A.; Poorter, L.; Hinojosa, L. F.; Mason, N. W. H. Testing for functional convergence of temperate rainforest tree assemblages in Chile and New Zealand NEW ZEALAND JOURNAL OF BOTANY English Article Bioclimatic matching; environmental filtering; functional trait convergence; leaf dry matter content; leaf economics; leaf habit; leaf size; pollination syndrome; seed mass; wood density MEDITERRANEAN-CLIMATE ECOSYSTEMS; LIFE-HISTORY STRATEGIES; DRY-MATTER CONTENT; SHADE TOLERANCE; TROPICAL TREES; WOOD DENSITY; TRADE-OFF; LEAF-AREA; MOLECULAR PHYLOGENY; DISPERSAL SYNDROMES An important tenet of biogeography and comparative ecology is that disjunct assemblages in similar physical environments are functionally more similar to each other than to assemblages from other environments. Temperate rainforests in South America, New Zealand and Australia share certain physiognomic similarities, but we are not aware of any statistical evidence that these disjunct plant assemblages share a distinctive suite of functional traits, or trait combinations. We compiled height, leaf, wood and reproductive traits from the 25 commonest arborescent species at Chilean and New Zealand sites matched for summer rainfall, summer maximum temperatures, and winter minimum temperatures. We then used multivariate tests of trait convergence. Tropical and subtropical assemblages served as out-groups. PERMANOVA showed convergence of trait centroids at the two temperate sites, where trees on average had denser wood and smaller leaves than trees at the (sub)tropical sites. Principal components analyses carried out separately on each assemblage showed that the Chilean and New Zealand assemblages were also the most similar pair in terms of trait relationships, although New Zealand also shared strong similarities with subtropical Argentina. The main axis of variation in both temperate assemblages ranged from small, short-lived understorey trees with soft leaves, to emergents with sclerophyllous leaves and fairly dense wood. However, the New Zealand assemblage was much richer in small trees with soft leaves than its Chilean counterpart; possible historical influences on this difference include conditions favouring radiation of small trees during the late Neogene in New Zealand, competition from Chusquea bamboos in Chile and the historical absence of browsing mammals from New Zealand. Environmental filtering has produced similar values of individual traits in Chile and New Zealand, but only partial convergence of functional trait combinations. As far as we know, this is the first study to statistically test whether disjunct tree assemblages on climatically matched sites are more functionally similar to each other than to assemblages from other environments. [Lusk, C. H.] Univ Waikato, Environm Res Inst, Hamilton, New Zealand; [Jimenez-Castillo, M.] Univ Austral Chile, Inst Ciencias Ambientales & Evolut, Valdivia, Chile; [Aragon, R.] Univ Nacl Tucuman, Inst Ecol Reg, San Miguel De Tucuman, Argentina; [Easdale, T. A.] Landcare Res, Lincoln, New Zealand; [Poorter, L.] Wageningen Univ, Forest Ecol & Forest Management Grp, Wageningen, Netherlands; [Poorter, L.] IBIF, Santa Cruz, Bolivia; [Poorter, L.] Wageningen Univ, Resource Ecol Grp, Wageningen, Netherlands; [Hinojosa, L. F.] Univ Chile, Fac Ciencias, Lab Paleoecol, Santiago, Chile; [Mason, N. W. H.] Landcare Res, Hamilton, New Zealand Lusk, CH (reprint author), Univ Waikato, Environm Res Inst, Hamilton, New Zealand. clusk@waikato.ac.nz Poorter, Lourens/0000-0003-1391-4875; Easdale, Tomas/0000-0001-5086-8527; Jimenez-Castillo, Mylthon/0000-0003-4328-3904 Armesto J. J., 2011, BOT ECOLOGICA GUIA C; ARMESTO JJ, 1989, J BIOGEOGR, V16, P219, DOI 10.2307/2845258; Atkinson I. A. E., 1972, Proceedings, New Zealand Ecological Society, V19, P34; Baraloto C, 2010, ECOL LETT, V13, P1338, DOI 10.1111/j.1461-0248.2010.01517.x; BARBOUR MG, 1990, ISRAEL J BOT, V39, P453; Barreda Viviana, 1997, Ameghiniana, V34, P69; Barreda V, 2009, REV PALAEOBOT PALYNO, V154, P22, DOI 10.1016/j.revpalbo.2008.11.005; Barros Eduardo Cristo de Oliveira, 2013, Rodriguésia, V64, P37, DOI 10.1590/S2175-78602013000100005; BEVERIDGE A E, 1973, New Zealand Journal of Forestry, V18, P23; Biffin E, 2012, P ROY SOC B-BIOL SCI, V279, P341, DOI 10.1098/rspb.2011.0559; Bokma F, 2008, EVOLUTION, V62, P2718, DOI 10.1111/j.1558-5646.2008.00492.x; BUSBY J R, 1991, Plant Protection Quarterly, V6, P8; Bush MB, 2001, GLOBAL ECOL BIOGEOGR, V10, P359, DOI 10.1046/j.1466-822X.2001.00247.x; Chave J, 2006, ECOL APPL, V16, P2356, DOI 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; CLOUT MN, 1989, NEW ZEAL J ECOL, V12, P27; CODY ML, 1978, ANNU REV ECOL SYST, V9, P265, DOI 10.1146/annurev.es.09.110178.001405; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; Cowling RM, 2005, GLOBAL ECOL BIOGEOGR, V14, P509, DOI 10.1111/j.1466-822x.2005.00166.x; COWLING RM, 1994, AUST J ECOL, V19, P220; Craine JM, 2012, FRONT PLANT SCI, V3, DOI 10.3389/fpls.2012.00246; Di Castri F., 1976, BIOCLIMATOLOGIA CHIL; Direccion Meteorologica de Chile, 2001, EST CLIM, VII; Easdale TA, 2007, J VEG SCI, V18, P313, DOI 10.1658/1100-9233(2007)18[313:TMISDM]2.0.CO;2; Easdale TA, 2009, PERSPECT PLANT ECOL, V11, P203, DOI 10.1016/j.ppees.2009.03.001; Enright NJ, 1995, ECOLOGY SO CONIFERS; ESCUDERO A, 1992, OECOLOGIA, V90, P80, DOI 10.1007/BF00317812; Falster DS, 2005, OIKOS, V111, P57, DOI 10.1111/j.0030-1299.2005.13383.x; Falster DS, 2003, TRENDS ECOL EVOL, V18, P337, DOI 10.1016/S0169-5347(03)00061-2; Fisher AE, 2014, SYST BOT, V39, P829, DOI 10.1600/036364414X681554; Flynn JJ, 1998, TRENDS ECOL EVOL, V13, P449, DOI 10.1016/S0169-5347(98)01457-8; Forsyth DM, 2002, NEW ZEAL J ZOOL, V29, P323, DOI 10.1080/03014223.2002.9518316; Freschet GT, 2011, GLOBAL ECOL BIOGEOGR, V20, P755, DOI 10.1111/j.1466-8238.2011.00651.x; GODOY R, 1994, REV CHIL HIST NAT, V67, P209; Gonzalez ME, 2002, PLANT ECOL, V161, P59, DOI 10.1023/A:1020378822847; Grubb PJ, 2013, BIOL REV, V88, P701, DOI 10.1111/brv.12029; Gutierrez AG, 2012, PERSPECT PLANT ECOL, V14, P243, DOI 10.1016/j.ppees.2012.01.004; Hacke UG, 2001, OECOLOGIA, V126, P457, DOI 10.1007/s004420100628; Hajek E. R., 1975, BIOCLIMATOGRAFIA CHI; Hodgson JG, 2011, ANN BOT-LONDON, V108, P1337, DOI 10.1093/aob/mcr225; HOFFMANN A., 1997, FLORA SILVESTRE CHIL; Hunzinger H, 1997, MT RES DEV, V17, P299, DOI 10.2307/3674020; JOHNSON PN, 1977, NEW PHYTOL, V78, P161, DOI 10.1111/j.1469-8137.1977.tb01554.x; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; KELLY D, 1994, NEW ZEAL J BOT, V32, P509, DOI 10.1080/0028825X.1994.10412937; KIKUZAWA K, 1991, AM NAT, V138, P1250, DOI 10.1086/285281; Kitajima K, 2010, NEW PHYTOL, V186, P708, DOI 10.1111/j.1469-8137.2010.03212.x; Kooyman R, 2012, BIOTROPICA, V44, P668, DOI 10.1111/j.1744-7429.2012.00861.x; Lamanna C, 2014, P NATL ACAD SCI USA, V111, P13745, DOI 10.1073/pnas.1317722111; Leathwick JR, 2001, NEW ZEAL J BOT, V39, P447; Lee WG, 2010, NEW ZEAL J ECOL, V34, P28; LEUNING R, 1988, AGR FOREST METEOROL, V42, P121, DOI 10.1016/0168-1923(88)90072-X; Loehle C, 2000, AM NAT, V156, P14, DOI 10.1086/303369; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Lord J, 1997, J BIOGEOGR, V24, P205, DOI 10.1046/j.1365-2699.1997.00126.x; Lusk CH, 2011, J ECOL, V99, P491, DOI 10.1111/j.1365-2745.2010.01766.x; Lusk Christopher H., 2001, Gayana Botanica, V58, P25; Lusk CH, 2015, J ECOL, V103, P479, DOI 10.1111/1365-2745.12368; Lusk CH, 2012, ANN BOT-LONDON, V110, P177, DOI 10.1093/aob/mcs095; Lusk CH, 2010, NEW PHYTOL, V186, P429, DOI 10.1111/j.1469-8137.2010.03202.x; McGlone MS, 2010, NEW ZEAL J ECOL, V34, P137; Mefford M, 2011, PC ORD MULTIVARIATE; Moles AT, 2009, J ECOL, V97, P923, DOI 10.1111/j.1365-2745.2009.01526.x; Moles AT, 2004, J ECOL, V92, P372, DOI 10.1111/j.0022-0477.2004.00884.x; Moles AT, 2000, OIKOS, V90, P517, DOI 10.1034/j.1600-0706.2000.900310.x; MONK CD, 1966, ECOLOGY, V47, P504, DOI 10.2307/1932995; Muller-Landau HC, 2004, BIOTROPICA, V36, P20, DOI 10.1111/j.1744-7429.2004.tb00292.x; Newstrom L, 2005, NEW ZEAL J BOT, V43, P1, DOI 10.1080/0028825X.2005.9512943; NEWTON AC, 1989, J TROP ECOL, V5, P441, DOI 10.1017/S0266467400003916; Nix H., 1986, AUSTR FLORA FAUNA SE, V7; NORTON SA, 1984, NEW ZEAL J ECOL, V7, P157; OGDEN J, 1991, J VEG SCI, V2, P165, DOI 10.2307/3235948; Ogden J, 1995, ECOLOGY SO CONIFERS, P81; Oliver WRB, 1930, J ECOL, V18, P1, DOI 10.2307/2255890; Otegui M, 1999, NORD J BOT, V19, P71, DOI 10.1111/j.1756-1051.1999.tb01904.x; Ough K., 1996, Australian Forestry, V59, P178; PARKHURST DF, 1972, J ECOL, V60, P505, DOI 10.2307/2258359; Pena-Claros M, 2008, FOREST ECOL MANAG, V256, P1458, DOI 10.1016/j.foreco.2007.11.013; Peppe DJ, 2011, NEW PHYTOL, V190, P724, DOI 10.1111/j.1469-8137.2010.03615.x; Pollock ML, 2007, NEW ZEAL J ECOL, V31, P68; POOLE AL, 1990, TREES SHRUBS NZ; Poorter H, 2009, NEW PHYTOL, V182, P565, DOI 10.1111/j.1469-8137.2009.02830.x; Poorter L, 2008, OECOLOGIA, V158, P35, DOI 10.1007/s00442-008-1131-x; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; R Development Core Team, 2008, R LANG ENV STAT COMP; Rabosky DL, 2008, EVOLUTION, V62, P1866, DOI 10.1111/j.1558-5646.2008.00409.x; Rabosky DL, 2010, EVOLUTION, V64, P1816, DOI 10.1111/j.1558-5646.2009.00926.x; READ J, 1983, AUST J ECOL, V8, P149, DOI 10.1111/j.1442-9993.1983.tb01602.x; REICH PB, 1991, OECOLOGIA, V86, P16, DOI 10.1007/BF00317383; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Schimper A. F. W., 1902, PLANT GEOGRAPHY PHYS; Schneider H, 2004, NATURE, V428, P553, DOI 10.1038/nature02361; Sterck FJ, 2006, AM NAT, V167, P758, DOI 10.1086/503056; Swenson NG, 2007, AM J BOT, V94, P451, DOI 10.3732/ajb.94.3.451; Swenson NG, 2012, GLOBAL ECOL BIOGEOGR, V21, P798, DOI 10.1111/j.1466-8238.2011.00727.x; Taylor A, 2016, NEW ZEAL J BOT, V54, DOI [10.1080/0028825X.2016.1147471, DOI 10.1080/0028825X.2016.1147471]; Tng DYP, 2012, NEW PHYTOL, V196, P1001, DOI 10.1111/j.1469-8137.2012.04359.x; Tortorelli L, 1956, MADERAS BOSQUES ARGE; van Gelder HA, 2006, NEW PHYTOL, V171, P367, DOI 10.1111/j.1469-8137.2006.01757.x; Veblen T. T., 1982, Bosque, V4, P73; Veblen T. T., 1996, ECOLOGY BIOGEOGRAPHY; Veblen Thomas T., 1996, P293; Veblen TT, 2016, NEW ZEAL J BOT, V54, DOI [10.1080/0028825X.2015.1130726, DOI 10.1080/0028825X.2015.1130726]; Villagran C, 1997, REV CHIL HIST NAT, V70, P241; Wardle P., 1991, VEGETATION NZ; Warming Eugenius, 1909, OECOLOGY PLANTS INTR; WEBB LJ, 1968, ECOLOGY, V49, P296, DOI 10.2307/1934459; WEBB LJ, 1959, J ECOL, V47, P551, DOI 10.2307/2257290; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; WHITEHEAD DR, 1969, EVOLUTION, V23, P28, DOI 10.1111/j.1558-5646.1969.tb03490.x; WILLSON MF, 1989, BIOTROPICA, V21, P133, DOI 10.2307/2388704; Wilson PJ, 1999, NEW PHYTOL, V143, P155, DOI 10.1046/j.1469-8137.1999.00427.x; Woodburne MO, 2014, J MAMM EVOL, V21, P1, DOI 10.1007/s10914-012-9222-1; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Yamamoto Leila Fumiyo, 2007, Acta Bot. Bras., V21, P553, DOI 10.1590/S0102-33062007000300005 115 4 4 1 18 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0028-825X 1175-8643 NEW ZEAL J BOT N. Z. J. Bot. JUN 2016 54 2 SI 175 203 10.1080/0028825X.2016.1143019 29 Plant Sciences Plant Sciences DR3TQ WOS:000379825900006 2019-02-21 J Visser, B; Le Lann, C; Snaas, H; Verdeny-Vilalta, O; Harvey, JA Visser, Bertanne; Le Lann, Cecile; Snaas, Helen; Verdeny-Vilalta, Oriol; Harvey, Jeffrey A. Divergent life history strategies in congeneric hyperparasitoids EVOLUTIONARY ECOLOGY English Article Gelis; Hymenoptera; Life history theory; Metabolic rate; Reproduction ECTOPARASITOID NASONIA-VITRIPENNIS; GELIS-AGILIS HYMENOPTERA; RESTING METABOLIC-RATE; EGG SIZE; TRADE-OFF; PARASITOID WASPS; REPRODUCTIVE STRATEGIES; DROSOPHILA-MELANOGASTER; RESOURCE COMPETITION; LYSIBIA-NANA Life histories can reveal important information on the performance of individuals within their environment and how that affects evolutionary change. Major trait changes, such as trait decay or loss, may lead to pronounced differences in life history strategies when tight correlations between traits exist. Here, we show that three congeneric hyperparasitoids (Gelis agilis, Gelis acarorum and Gelis areator) that have diverged in wing development and reproductive mode employ markedly different life history strategies. Potential fecundity of Gelis sp. varied, with the wingless G. acarorum maturing a much higher number of eggs throughout life compared with the other two species. Realized lifetime fecundity, in terms of total offspring number was, however, highest for the winged G. areator. The parthenogenic G. agilis invests its resources solely in females, whilst the sexually reproducing species both invested heavily in males to reduce competitive pressures for their female offspring. Longevity also differed between species, as did the direction of the reproduction-longevity trade-off, where reproduction is heavily traded off against longevity only in the asexual G. agilis. Resting metabolic rates also differed between the winged and wingless species, with the highest metabolic rate observed in the winged G. areator. Overall, these geline hyperparasitoids showed considerable divergence in life history strategies, both in terms of timing and investment patterns. Major trait changes observed between closely related species, such as the loss of wings and sexual reproduction, may contribute to the divergence in key life history traits. [Visser, Bertanne; Snaas, Helen; Harvey, Jeffrey A.] Netherlands Inst Ecol, Dept Terr Ecol, Droevendaalsesteeg 10, NL-6708 PB Wageningen, Netherlands; [Visser, Bertanne] Catholic Univ Louvain, Evolutionary Ecol & Genet Grp, Biodivers Res Ctr, Earth & Life Inst, Croix Sud 4, B-1348 Louvain La Neuve, Belgium; [Le Lann, Cecile] Univ Rennes 1, ECOBIO, CNRS, Unite Mixte Rech 6553, F-35042 Rennes, France; [Le Lann, Cecile; Harvey, Jeffrey A.] Vrije Univ Amsterdam, Dept Ecol Sci, De Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands; [Verdeny-Vilalta, Oriol] CSIC, EEZA, Dept Funct & Evolutionary Ecol, Carretera Sacramento S-N, La Canada De San Urbano 04120, Almeria, Spain Visser, B (reprint author), Netherlands Inst Ecol, Dept Terr Ecol, Droevendaalsesteeg 10, NL-6708 PB Wageningen, Netherlands.; Visser, B (reprint author), Catholic Univ Louvain, Evolutionary Ecol & Genet Grp, Biodivers Res Ctr, Earth & Life Inst, Croix Sud 4, B-1348 Louvain La Neuve, Belgium. bertannevisser@gmail.com Harvey, Jeffrey/B-7439-2008; Library, Library/A-4320-2012 Harvey, Jeffrey/0000-0002-4227-7935; Library, Library/0000-0002-3835-159X; Visser, Bertanne/0000-0003-4465-6020 IEF People Program (Marie Curie Actions) of the European Union under REA grant [274386, 298457]; Netherlands Organisation for Scientific Research Rubicon [815.12.014] We would like to thank Roel Wagenaar for his help in rearing of the hyperparasitoids and three anonymous referees for their constructive comments on earlier drafts of this manuscript. B. V. is further grateful to Louise Vet and Wim van der Putten for their hospitality to work in their institute and department. C. L. L. was supported by the IEF People Program (Marie Curie Actions) of the European Union's Seventh Framework Program (FP7/2007-2013) under REA grant agreement no 274386, project COEVOLCLIM. B. V. was supported by a Netherlands Organisation for Scientific Research Rubicon fellowship with Grant No. 815.12.014 and the IEF People Program (Marie Curie Actions) of the European Union's Seventh Framework Program (FP7/2007-2013) under REA grant agreement no 298457, project ECOLOGY&LIPOGENESIS. Boivin G, 2009, ECOL ENTOMOL, V34, P240, DOI 10.1111/j.1365-2311.2008.01063.x; Boratynski Z, 2010, FUNCT ECOL, V24, P1252, DOI 10.1111/j.1365-2435.2010.01764.x; BOURCHIER RS, 1992, ENVIRON ENTOMOL, V21, P907, DOI 10.1093/ee/21.4.907; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; CHARNOV EL, 1981, NATURE, V289, P27, DOI 10.1038/289027a0; CLARK AB, 1978, SCIENCE, V201, P163, DOI 10.1126/science.201.4351.163; Clark RM, 2015, J EXP BIOL, V15, P298; DENNO RF, 1989, ECOL ENTOMOL, V14, P31, DOI 10.1111/j.1365-2311.1989.tb00751.x; Development Core Team R, 2014, R LANG ENV STAT COMP; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; FOX CW, 1993, OECOLOGIA, V96, P139, DOI 10.1007/BF00318042; Gems D, 1996, NATURE, V379, P723, DOI 10.1038/379723a0; Gibbs AM, 2005, J INSECT SCI, V5, P1; Gilbert JDJ, 2010, AM NAT, V176, P212, DOI 10.1086/653661; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Giron D, 2003, ECOL LETT, V6, P273, DOI 10.1046/j.1461-0248.2003.00429.x; Giron D, 2002, FUNCT ECOL, V16, P750, DOI 10.1046/j.1365-2435.2002.00679.x; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Gomez-Marco F, 2015, BIOL CONTROL, V81, P111, DOI 10.1016/j.biocontrol.2014.11.015; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; Harvey JA, 2008, EVOL ECOL, V22, P153, DOI 10.1007/s10682-007-9164-x; Harvey JA, 2005, APPL ENTOMOL ZOOL, V40, P309, DOI 10.1303/aez.2005.309; Harvey JA, 2000, ECOL ENTOMOL, V25, P267, DOI 10.1046/j.1365-2311.2000.00265.x; Harvey JA, 2015, ECOL ENTOMOL, V40, P114, DOI 10.1111/een.12165; Harvey JA, 2014, ARTHROPOD-PLANT INTE, V8, P393, DOI 10.1007/s11829-014-9319-y; Harvey JA, 2012, J INSECT PHYSIOL, V58, P816, DOI 10.1016/j.jinsphys.2012.03.002; Harvey JA, 2011, OIKOS, V120, P226, DOI 10.1111/j.1600-0706.2010.18744.x; Harvey JA, 2011, J INSECT BEHAV, V24, P282, DOI 10.1007/s10905-010-9254-4; Hoffmann AA, 2001, EVOLUTION, V55, P436; Horak D, 2008, ACTA OECOL, V33, P197, DOI 10.1016/j.actao.2007.10.007; Hsu JC, 1996, MULTIPLE COMP THEORY; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Hurst Laurence D., 1996, Trends in Ecology and Evolution, V11, P46, DOI 10.1016/0169-5347(96)81041-X; Jackson DM, 2001, J ANIM ECOL, V70, P633, DOI 10.1046/j.1365-2656.2001.00518.x; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis M, 2011, BIOL J LINN SOC, V104, P443, DOI 10.1111/j.1095-8312.2011.01719.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Jervis MA, 2012, ECOL LETT, V15, P357, DOI 10.1111/j.1461-0248.2012.01745.x; Kawecki TJ, 2008, ANNU REV ECOL EVOL S, V39, P321, DOI 10.1146/annurev.ecolsys.38.091206.095622; Kenyon CJ, 2010, NATURE, V464, P504, DOI 10.1038/nature08980; KING BH, 1987, Q REV BIOL, V62, P367, DOI 10.1086/415618; King EG, 2011, J EVOLUTION BIOL, V24, P256, DOI 10.1111/j.1420-9101.2010.02160.x; Kolm N, 2006, J EVOLUTION BIOL, V19, P76, DOI 10.1111/j.1420-9101.2005.00987; Kramer MG, 2001, EVOLUTION, V55, P748, DOI [10.1554/0014-3820(2001)055[0748:LHCTAT]2.0.CO;2, 10.1111/j.0014-3820.2001.tb00811.x]; Lahti DC, 2009, TRENDS ECOL EVOL, V24, P487, DOI 10.1016/j.tree.2009.03.010; LAMB RY, 1979, EVOLUTION, V33, P774, DOI 10.1111/j.1558-5646.1979.tb04731.x; Laurenne N.M., 2008, THESIS; Le Lann C, 2014, ECOL ENTOMOL, V39, P578, DOI 10.1111/een.12135; Le Lann C, 2014, OECOLOGIA, V174, P967, DOI 10.1007/s00442-013-2810-9; Le Lann C, 2012, EVOL ECOL, V26, P79, DOI 10.1007/s10682-011-9498-2; Le Lann C, 2011, FUNCT ECOL, V25, P641, DOI 10.1111/j.1365-2435.2010.01813.x; Lehtonen J, 2012, TRENDS ECOL EVOL, V27, P172, DOI 10.1016/j.tree.2011.09.016; Lei GC, 1997, J NAT HIST, V31, P635, DOI 10.1080/00222939700770301; Libert P, 2010, FAUN ENTOMOL, V63, P47; Madec L, 2000, BIOL J LINN SOC, V69, P25, DOI 10.1006/bijl.1999.0324; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Mayhew PJ, 1999, J ANIM ECOL, V68, P906, DOI 10.1046/j.1365-2656.1999.00338.x; McIntyre GS, 2000, CAN J ZOOL, V78, P1544, DOI 10.1139/cjz-78-9-1544; MOLE S, 1993, OECOLOGIA, V93, P121, DOI 10.1007/BF00321201; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; Pennacchio F, 2006, ANNU REV ENTOMOL, V51, P233, DOI 10.1146/annurev.ento.51.110104.151029; Poelman EH, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001435; Preziosi RF, 1996, OECOLOGIA, V108, P424, DOI 10.1007/BF00333717; PRICE PW, 1973, AM NAT, V107, P684, DOI 10.1086/282867; Reinhold K, 1999, FUNCT ECOL, V13, P217, DOI 10.1046/j.1365-2435.1999.00300.x; Rivero A, 2002, EVOL ECOL RES, V4, P407; RIVERS DB, 1994, J INSECT PHYSIOL, V40, P207, DOI 10.1016/0022-1910(94)90044-2; RIVERS DB, 1995, J INVERTEBR PATHOL, V66, P104, DOI 10.1006/jipa.1995.1071; Schwarzkopf L, 1999, AM NAT, V154, P333, DOI 10.1086/303242; Shaw MR, 2006, J INSECT CONSERV, V10, P117, DOI 10.1007/s10841-006-6288-1; Simmons FH, 1997, J INSECT PHYSIOL, V43, P779, DOI 10.1016/S0022-1910(97)00037-1; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Tatar M, 2010, ANN NY ACAD SCI, V1204, P149, DOI 10.1111/j.1749-6632.2010.05522.x; TAYLOR VA, 1981, ECOL ENTOMOL, V6, P89, DOI 10.1111/j.1365-2311.1981.tb00975.x; Timi JT, 2005, PARASITOL RES, V95, P1, DOI 10.1007/s00436-004-1242-1; Van Voorhies WA, 1999, P NATL ACAD SCI USA, V96, P11399, DOI 10.1073/pnas.96.20.11399; Visser B, 2014, BEHAV ECOL SOCIOBIOL, V68, P105, DOI 10.1007/s00265-013-1627-1; Warne RW, 2008, AM NAT, V172, pE80, DOI 10.1086/589880; West S., 2009, MONOGRAPHS POPULATIO, V44; Williams TD, 2001, P ROY SOC B-BIOL SCI, V268, P423, DOI 10.1098/rspb.2000.1374; Zuur A. F., 2009, MIXED EFFECT MODELS 85 6 6 6 8 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JUN 2016 30 3 535 549 10.1007/s10682-016-9819-6 15 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DQ9GZ WOS:000379519700011 2019-02-21 J Curtsinger, JW Curtsinger, James W. Retired flies, hidden plateaus, and the evolution of senescence in Drosophila melanogaster EVOLUTION English Article Drosophila; fecundity; heterogeneity models; mortality; senescence AGE-SPECIFIC MORTALITY; LATE-LIFE FECUNDITY; NATURAL-SELECTION; GENETIC VARIANCE; RATES; HETEROGENEITY; PATTERNS; SPAN; LONGEVITY; MUTATION Late-life plateaus in age-specific mortality have been an evolutionary and biodemographic puzzle for decades. Although classic theory on the evolution of senescence predicts late-life walls of death, observations in experimental organisms document the opposite trend: a slowing in the rate of increase of mortality at advanced ages. Here, I analyze published life-history data on individual Drosophila melanogaster females and argue for a fundamental change in our understanding of mortality in this important model system. Mortality plateaus are not, as widely assumed, exclusive to late life, and are not explained by population heterogeneitythey are intimately connected to individual fecundity. Female flies begin adult life in the working stage, a period of active oviposition and low but accelerating mortality. Later they transition to the retired stage, a terminal period characterized by limited fecundity and relatively constant mortality. Because ages of transition differ between flies, age-synchronized cohorts contain a mix of working and retired flies. Early- and mid-life plateaus are obscured by the presence of working flies, but can be detected when cohorts are stratified by retirement status. Stage-specificity may be an important component of Drosophila life-history evolution. [Curtsinger, James W.] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA Curtsinger, JW (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA. jwcurt@umn.edu Arking R, 2015, HEALTHY AGEING LONG, V3, P321, DOI 10.1007/978-3-319-18326-8_15; Beard R., 1959, LIFESPAN ANIMALS, P302, DOI [DOI 10.1002/9780470715253.APP1, 10.1002/9780470715253.app1]; Beyer W. H., 1987, CRC STANDARD MATH TA, p[531, 533]; BROOKS A, 1994, SCIENCE, V263, P668, DOI 10.1126/science.8303273; CAREY JR, 1992, SCIENCE, V258, P457; CAREY JR, 2003, LONGEVITY BIOL DEMOG; Caswell H, 2013, J ECOL, V101, P585, DOI 10.1111/1365-2745.12088; Charlesworth B, 1997, CURR BIOL, V7, pR440, DOI 10.1016/S0960-9822(06)00213-2; Charlesworth B, 2001, J THEOR BIOL, V210, P47, DOI 10.1006/jtbi.2001.2296; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Curtsinger JW, 2015, EXP GERONTOL, V72, P22, DOI 10.1016/j.exger.2015.08.020; Curtsinger JW, 2015, J GERONTOL A-BIOL, V70, P1455, DOI 10.1093/gerona/glv122; Curtsinger JW, 2013, EXP GERONTOL, V48, P1338, DOI 10.1016/j.exger.2013.08.016; CURTSINGER JW, 1992, SCIENCE, V258, P461, DOI 10.1126/science.1411541; CURTSINGER JW, 2006, HDB BIOL AGING, P267; Demetrius L, 2001, P ROY SOC B-BIOL SCI, V268, P2029, DOI 10.1098/rspb.2001.1739; Drapeau MD, 2000, EXP GERONTOL, V35, P71, DOI 10.1016/S0531-5565(99)00082-0; FUKUI HH, 1993, EXP GERONTOL, V28, P585, DOI 10.1016/0531-5565(93)90048-I; Fukui HH, 1996, EXP GERONTOL, V31, P517, DOI 10.1016/0531-5565(95)02069-1; Gavrilov LA, 2001, J THEOR BIOL, V213, P527, DOI 10.1006/jtbi.2001.2430; Gavrilova NS, 2015, J GERONTOL A-BIOL, V70, P1, DOI 10.1093/gerona/glu009; Greenwood M., 1939, HUM BIOL, V11, P1, DOI DOI 10.2307/41447403; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HOULE D, 1994, GENETICS, V138, P773; HUGHES KA, 1994, NATURE, V367, P64, DOI 10.1038/367064a0; Johnson N. A., 2012, EVOLUTION, V66, P2988, DOI 10.1111/j.1558-5646.2012.01695.x; Khazaeli AA, 2005, GENETICS, V169, P231, DOI 10.1534/genetics.104.030403; Khazaeli AA, 1998, MECH AGEING DEV, V105, P301, DOI 10.1016/S0047-6374(98)00102-X; Khazaeli AA, 2014, DEMOGR RES, V30, P313, DOI 10.4054/DemRes.2014.30.10; Kimber CM, 2013, CURR BIOL, V23, P2283, DOI 10.1016/j.cub.2013.09.049; Klepsatel P, 2013, J EVOLUTION BIOL, V26, P1508, DOI 10.1111/jeb.12155; Klepsatel P., 2013, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.3q332, DOI 10.5061/DRYAD.3Q332]; LesBourg E., 2014, EXP GERONTOL, V55, P102; Ljubuncic P, 2009, GERONTOLOGY, V55, P205, DOI 10.1159/000200772; Maklakov AA, 2015, BIOESSAYS, V37, P802, DOI 10.1002/bies.201500025; Medawar P, 1952, UNSOLVED PROBLEM BIO; Mueller LD, 2009, EXP GERONTOL, V44, P766, DOI 10.1016/j.exger.2009.09.001; Mueller LD, 2003, EXP GERONTOL, V38, P373, DOI 10.1016/S0531-5565(02)00238-3; Mueller LD, 2011, DOES AGING STOP; Novoseltsev VN, 2005, J GERONTOL A-BIOL, V60, P953, DOI 10.1093/gerona/60.8.953; Pletcher SD, 1999, GENETICS, V153, P813; Pletcher SD, 2000, GENET RES, V75, P321, DOI 10.1017/S0016672399004413; Pletcher SD, 1999, J EVOLUTION BIOL, V12, P430; Pletcher SD, 1998, GENETICS, V148, P287; Pletcher SD, 1998, EVOLUTION, V52, P454, DOI 10.1111/j.1558-5646.1998.tb01645.x; Promislow DEL, 1996, GENETICS, V143, P839; Rauser CL, 2005, EXP GERONTOL, V40, P660, DOI 10.1016/j.exger.2005.06.006; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Rera M, 2012, P NATL ACAD SCI USA, V109, P21528, DOI 10.1073/pnas.1215849110; Reynolds RM, 2007, GENETICS, V177, P587, DOI 10.1534/genetics.106.070078; Reznick D, 2006, PLOS BIOL, V4, P136, DOI 10.1371/journal.pbio.0040007; Roff DA, 2011, P ROY SOC B-BIOL SCI, V278, P2724, DOI 10.1098/rspb.2011.0595; Rose M. R., 2002, EVOLUTION, V56, P982; Service PM, 2000, AM NAT, V156, P1, DOI 10.1086/303371; Shahrestani P, 2012, J EVOLUTION BIOL, V25, P1060, DOI 10.1111/j.1420-9101.2012.02492.x; Shaw FH, 1999, GENETICS, V152, P553; Tahoe NMA, 2004, J GERONTOL A-BIOL, V59, P896; Tatar M, 1996, GENETICS, V143, P849; Tuljapurkar SD, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000785; Vaupel J. W., 1997, ZEUS SALMON BIODEMOG, P65; Vaupel JW, 2010, NATURE, V464, P536, DOI 10.1038/nature08984; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; VAUPEL JW, 1993, SCIENCE, V260, P1666, DOI 10.1126/science.8503016; Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855; Wachter KW, 2013, P NATL ACAD SCI USA, V110, P10141, DOI 10.1073/pnas.1306656110; Wachter KW, 2003, POPUL DEV REV, V29, P270; Wachter KW, 1999, P NATL ACAD SCI USA, V96, P10544, DOI 10.1073/pnas.96.18.10544; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wrigley-Field E, 2014, DEMOGRAPHY, V51, P51, DOI 10.1007/s13524-013-0256-7; Yampolsky LY, 2001, GENETICA, V110, P11 70 4 4 2 14 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUN 2016 70 6 1297 1306 10.1111/evo.12946 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DQ5TP WOS:000379268200011 27166620 2019-02-21 J Nagarajan, A; Natarajan, SB; Jayaram, M; Thammanna, A; Chari, S; Bose, J; Jois, SV; Joshi, A Nagarajan, Archana; Natarajan, Sharmila Bharathi; Jayaram, Mohan; Thammanna, Ananda; Chari, Sudarshan; Bose, Joy; Jois, Shreyas V.; Joshi, Amitabh Adaptation to larval crowding in Drosophila ananassae and Drosophila nasuta nasuta: increased larval competitive ability without increased larval feeding rate JOURNAL OF GENETICS English Article life-history evolution; experimental evolution; development time; dry weight; competition; K-selection DEPENDENT NATURAL-SELECTION; LIFE-HISTORY; ADAPTIVE EVOLUTION; FASTER DEVELOPMENT; STRESS RESISTANCE; FORAGING BEHAVIOR; DEVELOPMENT TIME; PUPATION HEIGHT; K-SELECTION; TRADE-OFF The standard view of adaptation to larval crowding in fruitflies, built on results from 25 years of multiple experimental evolution studies on Drosophila melanogaster, was that enhanced competitive ability evolves primarily through increased larval feeding and foraging rate, and increased larval tolerance to nitrogenous wastes, at the cost of efficiency of food conversion to biomass. These results were at odds from the predictions of classical K-selection theory, notably the expectation that selection at high density should result in the increase of efficiency of conversion of food to biomass, and were better interpreted through the lens of alpha-selection. We show here that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolve greater competitive ability and pre-adult survivorship at high density, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater time efficiency of food conversion to biomass and increased pupation height, with a relatively small role of increased urea/ammonia tolerance, if at all. This is a very different suite of traits than that seen to evolve under similar selection in D. melanogaster, and seems to be closer to the expectations from the canonical theory of K-selection. We also discuss possible reasons for these differences in results across the three species. Overall, the results reinforce the view that our understanding of the evolution of competitive ability in fruitflies needs to be more nuanced than before, with an appreciation that there may be multiple evolutionary routes through which higher competitive ability can be attained. [Nagarajan, Archana; Natarajan, Sharmila Bharathi; Jayaram, Mohan; Thammanna, Ananda; Chari, Sudarshan; Bose, Joy; Jois, Shreyas V.; Joshi, Amitabh] Jawaharlal Nehru Ctr Adv Sci Res, Evolutionary Biol Lab, Evolutionary & Organismal Biol Unit, Jakkur PO, Bengaluru 560064, India; [Nagarajan, Archana] Univ Stavanger, Fac Sci & Technol, Ctr Organelle Res CORE, N-4036 Stavanger, Norway; [Natarajan, Sharmila Bharathi] Univ Penn, Sch Med, Dept Pharmocol, Philadelphia, PA 19104 USA; [Jayaram, Mohan] Indian Inst Sci, Dept Mol Reprod Dev & Genet, Bengaluru 560012, India; [Thammanna, Ananda] Jubilant Biosys Ltd, 96 Yeshwantpur Ind Suburb 2nd Stage,Tumkur Rd, Bengaluru 560022, India; [Chari, Sudarshan] Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA; [Jois, Shreyas V.] Biocenter, Inst Zool, Dept Anim Physiol, D-50674 Cologne, Germany Joshi, A (reprint author), Jawaharlal Nehru Ctr Adv Sci Res, Evolutionary Biol Lab, Evolutionary & Organismal Biol Unit, Jakkur PO, Bengaluru 560064, India. ajoshi@jncasr.ac.in Chari, Sudarshan/0000-0002-4683-0996 Council of Scientific and Industrial Research, Government of India; Jawaharlal Nehru Centre for Advanced Scientific Research; Summer Research Fellowship programme; Department of Science and Technology, Government of India; J. C. Bose National Fellowship from the Department of Science and Technology, Government of India We thank Larry Mueller for much helpful discussion, and N. Rajanna and M. Manjesh for help in the laboratory. A. Nagarajan thanks the Council of Scientific and Industrial Research, Government of India for financial assistance in the form of Junior and Senior Research Fellowships. S. B. Natarajan was supported by a doctoral fellowship from the Jawaharlal Nehru Centre for Advanced Scientific Research. Jois's stay in the laboratory was supported by the joint Summer Research Fellowship programme of the three Indian science academies. This work was supported by funds from the Department of Science and Technology, Government of India to A. Joshi. Preparation of the manuscript was supported in part by a J. C. Bose National Fellowship from the Department of Science and Technology, Government of India, to A. Joshi. Ackermann M, 2001, J EVOLUTION BIOL, V14, P199, DOI 10.1046/j.1420-9101.2001.00281.x; Bharathi NS, 2004, J ZOOL, V264, P87, DOI 10.1017/S0952836904005576; Bharathi NS, 2003, J GENET, V82, P191, DOI 10.1007/BF02715818; BIERBAUM TJ, 1989, EVOLUTION, V43, P382, DOI 10.1111/j.1558-5646.1989.tb04234.x; Borash DJ, 2000, J EVOLUTION BIOL, V13, P181, DOI 10.1046/j.1420-9101.2000.00167.x; Borash DJ, 2001, J INSECT PHYSIOL, V47, P1349, DOI 10.1016/S0022-1910(01)00108-1; Borash DJ, 1998, AM NAT, V151, P148, DOI 10.1086/286108; BOTELLA LM, 1985, J INSECT PHYSIOL, V31, P179, DOI 10.1016/0022-1910(85)90118-0; BURNET B, 1977, GENET RES, V30, P149, DOI 10.1017/S0016672300017559; Dey S, 2012, ECOL EVOL, V2, P941, DOI 10.1002/ece3.227; Fellowes MDE, 1998, P ROY SOC B-BIOL SCI, V265, P1553, DOI 10.1098/rspb.1998.0471; Fellowes MDE, 1999, EVOLUTION, V53, P1302, DOI 10.1111/j.1558-5646.1999.tb04544.x; GUO PZ, 1991, P NATL ACAD SCI USA, V88, P10905, DOI 10.1073/pnas.88.23.10905; JOSHI A, 1993, EVOLUTION, V47, P176, DOI 10.1111/j.1558-5646.1993.tb01208.x; Joshi A, 2003, J GENET, V82, P147, DOI 10.1007/BF02715815; Joshi A, 1996, EVOL ECOL, V10, P463, DOI 10.1007/BF01237879; JOSHI A, 1988, EVOLUTION, V42, P1090, DOI 10.1111/j.1558-5646.1988.tb02527.x; JOSHI A, 1995, EVOLUTION, V49, P616, DOI 10.1111/j.1558-5646.1995.tb02298.x; Joshi A, 2001, J GENET, V80, P63, DOI 10.1007/BF02728332; Joshi A, 1997, CURR SCI INDIA, V72, P555; Krijger CL, 2001, OIKOS, V92, P325, DOI 10.1034/j.1600-0706.2001.920215.x; MAC ARTHUR ROBERT H., 1967; Mueller LD, 2012, EVOLUTION, V66, P263, DOI 10.1111/j.1558-5646.2011.01427.x; Mueller LD, 2009, EXPERIMENTAL EVOLUTION: CONCEPTS, METHODS, AND APPLICATIONS OF SELECTION EXPERIMENTS, P197; Mueller LD, 1997, ANNU REV ECOL SYST, V28, P269, DOI 10.1146/annurev.ecolsys.28.1.269; Mueller LD, 2005, ADV ECOL RES, V37, P77, DOI 10.1016/S0065-2504(04)37003-0; Mueller LD, 2005, PHYSIOL ENTOMOL, V30, P262, DOI 10.1111/j.1365-3032.2005.00458.x; MUELLER LD, 1988, P NATL ACAD SCI USA, V85, P4383, DOI 10.1073/pnas.85.12.4383; MUELLER LD, 1990, EVOL ECOL, V4, P290, DOI 10.1007/BF02270928; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MUELLER LD, 1986, EVOLUTION, V40, P1354, DOI 10.1111/j.1558-5646.1986.tb05761.x; MUELLER LD, 1993, FUNCT ECOL, V7, P469, DOI 10.2307/2390034; Prasad NG, 2003, J GENET, V82, P45, DOI 10.1007/BF02715881; Prasad NG, 2001, EVOLUTION, V55, P1363; Rajamani M, 2006, J GENET, V85, P209, DOI 10.1007/BF02935333; Ranganath HA, 2003, J GENET, V82, P163, DOI 10.1007/BF02715816; Rose Michael R., 1996, P221; Rose MR, 2005, INTEGR COMP BIOL, V45, P486, DOI 10.1093/icb/45.3.486; Shakarad M, 2005, BIOL LETTERS, V1, P91, DOI 10.1098/2004.0261; Sheeba V, 1998, J BIOSCIENCE, V23, P93, DOI 10.1007/BF02703000; Shiotsugu J, 1997, EVOLUTION, V51, P163, DOI 10.1111/j.1558-5646.1997.tb02397.x; Singh BN, 2010, INDIAN J EXP BIOL, V48, P333; Sokolowski MB, 1997, P NATL ACAD SCI USA, V94, P7373, DOI 10.1073/pnas.94.14.7373; StatSoft, 1995, STAT, V1 44 2 2 1 11 INDIAN ACAD SCIENCES BANGALORE C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA 0022-1333 0973-7731 J GENET J. Genet. JUN 2016 95 2 411 425 10.1007/s12041-016-0655-9 15 Genetics & Heredity Genetics & Heredity DQ2LN WOS:000379033900025 27350686 2019-02-21 J Jahn, AE; Giraldo, JI; MacPherson, M; Tuero, DT; Sarasola, JH; Cereghetti, J; Masson, DA; Morales, MV Jahn, Alex E.; Giraldo, Jose I.; MacPherson, Maggie; Tuero, Diego T.; Hernan Sarasola, Jose; Cereghetti, Joaquin; Masson, Diego A.; Morales, Marvin V. Demographic variation in timing and intensity of feather molt in migratory Fork-tailed Flycatchers (Tyrannus s. savana) JOURNAL OF FIELD ORNITHOLOGY English Article Argentina; Colombia; feather; llanos; rectrix; remige WORLD BIRD MIGRATION; PIED FLYCATCHER; TROPICAL BIRDS; SOUTH-AMERICA; CLUTCH-SIZE; TRADE-OFF; BODY-MASS; AGE; CONSERVATION; STRATEGIES Understanding the annual cycle of migratory birds is imperative for evaluating the evolution of life-history strategies and developing effective conservation strategies. Yet, we still know little about the annual cycle of migratory birds that breed at south-temperate latitudes of South America. We aged, sexed, and determined the progression and intensity of body, remige, and rectrix molt of migratory Fork-tailed Flycatchers (Tyrannus s. savana) at breeding sites in southern South America and at wintering sites in northern South America. Molt of both body and flight feathers occurred primarily during the winter. In early winter, a similar proportion of young and adult flycatchers molted remiges and rectrices, but remige molt intensity (number of remiges molting) was greater and primary molt progression (mean primary feather molting) more advanced in adults. In late winter, remige molt intensity and primary molt progression did not differ between age groups. We found no difference between males and females either in the proportion of individuals molting in winter or in the intensity or progress of remige molt. Our results suggest that the nominate subspecies of Fork-tailed Flycatcher undergoes one complete, annual molt on the wintering grounds, and represents the first comprehensive evaluation of molt timing of a migratory New World flycatcher that overwinters in the tropics. Given that breeding, molt, and migration represent three key events in the annual cycle of migratory birds, knowledge of the timing of these events is the first step toward understanding the possible tradeoffs migratory birds face throughout the year. [Jahn, Alex E.] Univ Estadual Paulista, Dept Zool, Ave 24a,1515, Sao Paulo, Brazil; [Giraldo, Jose I.] Aves Int Colombia, Carrera 4,5-80, Sopo, Cundinamarca, Colombia; [MacPherson, Maggie] Tulane Univ, Dept Ecol & Evolutionary Biol, Lindy Boggs Ctr 400, New Orleans, LA 70118 USA; [Tuero, Diego T.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Inst IEGEBA,CONICET UBA, Buenos Aires, DF, Argentina; [Hernan Sarasola, Jose] Univ Nacl La Pampa, CECARA, CONICET, Santa Rosa, La Pampa, Argentina; [Cereghetti, Joaquin] Univ Nacl La Pampa, Fac Ciencias Exactas & Nat, Ave Uruguay 151, La Pampa, Argentina; [Masson, Diego A.] Univ Nacl La Plata, Fac Ciencias Nat & Museo, B1904CCA,Ave 122 & 60, RA-1900 La Plata, Buenos Aires, Argentina; [Morales, Marvin V.] Univ Florida, Dept Biol, 220 Bartram Hall, Gainesville, FL 32611 USA Jahn, AE (reprint author), Univ Estadual Paulista, Dept Zool, Ave 24a,1515, Sao Paulo, Brazil. ajahn@rc.unesp.br National Geographic Society Scientific Research Grants [8444-08, 8953-11]; Gatorade Fund of the University of Florida; Idea Wild; Optics for the Tropics; National Science Foundation [IRFP-0965213]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [2012/17225-2] We thank M. Murphy, G. Ritchison, and three anonymous reviewers for numerous helpful comments. We are grateful to numerous field assistants without whom this research would not have been possible. We thank L. Brown, V. Cueto, and D. Levey for advice, and the Sikuani and owners of private properties for access to their land. This research was funded by National Geographic Society Scientific Research Grants 8444-08 and 8953-11, the Gatorade Fund of the University of Florida, Idea Wild, Optics for the Tropics, the National Science Foundation (IRFP-0965213), and the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (2012/17225-2). Research was conducted in Argentina under permits from the Departamento de Flora y Fauna, Ministerio de Asuntos Agrarios, Provincia de Buenos Aires (Disposicion 256/11), Direccion de Recursos Naturales, Ministerio de la Produccion, Provincia de La Pampa, and in Colombia under ANLA permit 2015005957-1-000. The authors have no conflict of interest to declare. Barry JH, 2009, AUK, V126, P260, DOI 10.1525/auk.2009.07137; Butler LK, 2002, AUK, V119, P1010, DOI 10.1642/0004-8038(2002)119[1010:MMIWTP]2.0.CO;2; Carlisle JD, 2005, AUK, V122, P1070, DOI 10.1642/0004-8038(2005)122[1070:MSAADI]2.0.CO;2; Chesser R. Terry, 1994, Bird Conservation International, V4, P91; Cooper NW, 2009, J FIELD ORNITHOL, V80, P35, DOI 10.1111/j.1557-9263.2009.00203.x; Cueto Víctor R., 2008, Hornero, V23, P1; Danner R. M., 2014, FUNCTIONAL ECOLOGY, V29, P259; Dawson Terence J., 2004, Australian Mammalogy, V26, P145; Dietz MW, 2015, IBIS, V157, P147, DOI 10.1111/ibi.12185; Faaborg J, 2010, ECOL MONOGR, V80, P3, DOI 10.1890/09-0395.1; Fitzpatrick J., 2004, HDB BIRDS WORLD, P170; HARMS NJ, 2015, P ROYAL SOC B, V0282; HEDENSTROM A, 1993, IBIS, V135, P177, DOI 10.1111/j.1474-919X.1993.tb02829.x; Hedenstrom A, 1999, J EXP BIOL, V202, P67; Heise CD, 2003, CONDOR, V105, P496, DOI 10.1650/7183; Hemborg C, 2001, OECOLOGIA, V129, P206, DOI 10.1007/s004420100710; Jahn AE, 2004, AUK, V121, P1005, DOI 10.1642/0004-8038(2004)121[1005:RAHASA]2.0.CO;2; Jahn AE, 2013, NEOTROPICAL BIRDS ON; Jahn AE, 2014, EMU, V114, P337, DOI 10.1071/MU13084; Jahn AE, 2013, AUK, V130, P223, DOI 10.1525/auk.2013.12077; Jahn AE, 2013, AUK, V130, P247, DOI 10.1525/auk.2013.13010; Jahn AE, 2012, J ORNITHOL, V153, pS199, DOI 10.1007/s10336-012-0849-8; Jenni L, 1994, MOULT AGEING EUROPEA; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Lemke HW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079209; Leu M, 2002, BIOL CONSERV, V106, P45, DOI 10.1016/S0006-3207(01)00228-2; LINDSTROM A, 1993, PHYSIOL ZOOL, V66, P490, DOI 10.1086/physzool.66.4.30163805; Marini Miguel Ângelo, 2009, Biota Neotrop., V9, P0, DOI 10.1590/S1676-06032009000100007; Marra PP, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0552; MOLLER AP, 1995, BEHAV ECOL, V6, P242, DOI 10.1093/beheco/6.3.242; Murphy Mary E., 1996, P158; MURPHY ME, 1992, ORNIS SCAND, V23, P304, DOI 10.2307/3676654; NILES DM, 1972, CONDOR, V74, P61, DOI 10.2307/1366450; Pyle P, 1997, IDENTIFICATION GUI 1; Pyle Peter, 1998, Western Birds, V29, P29; R Core Team, 2013, R LANG ENV STAT COMP; RALPH CJ, 1993, PSWGTR144 US FOR SER; Renfrew RB, 2013, DIVERS DISTRIB, V19, P1008, DOI 10.1111/ddi.12080; Ridgely R. S., 2009, FIELD GUIDE SONGBIRD; Robinson WD, 2010, AUK, V127, P253, DOI 10.1525/auk.2010.127.2.253; Rohwer Sievert, 2005, P87; Rohwer S, 2013, CONDOR, V115, P421, DOI 10.1525/cond.2013.120090; Rohwer S, 2011, CONDOR, V113, P61, DOI 10.1525/cond.2011.100092; Ryder TB, 2009, ORNITOL NEOTROP, V20, P1; Saino N, 2004, P ROY SOC B-BIOL SCI, V271, P681, DOI 10.1098/rspb.2003.2656; Sherry TW, 1996, ECOLOGY, V77, P36, DOI 10.2307/2265652; SIIKAMAKI P, 1994, FUNCT ECOL, V8, P587, DOI 10.2307/2389919; Silveira MB, 2012, CONDOR, V114, P435, DOI 10.1525/cond.2012.110022; Stach R., 2012, ANIM MIGR, V1, P1, DOI DOI 10.2478/AMI-2012-0001; Stutchbury BJM, 2011, P ROY SOC B-BIOL SCI, V278, P131, DOI 10.1098/rspb.2010.1220; Svensson E, 1999, BIOL J LINN SOC, V67, P263, DOI 10.1006/bijl.1998.0302; Swaddle JP, 1997, CAN J ZOOL, V75, P1135, DOI 10.1139/z97-136; Szep T, 2009, J ORNITHOL, V150, P621, DOI 10.1007/s10336-009-0382-6; Tottrup AP, 2012, P ROY SOC B-BIOL SCI, V279, P1008, DOI 10.1098/rspb.2011.1323; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wolfe JD, 2010, J FIELD ORNITHOL, V81, P186, DOI 10.1111/j.1557-9263.2010.00276.x; Zimmer J. T., 1937, American Museum Novitates, V962, P1 57 5 5 0 8 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0273-8570 1557-9263 J FIELD ORNITHOL J. Field Ornithol. JUN 2016 87 2 143 154 10.1111/jofo.12147 12 Ornithology Zoology DP6SK WOS:000378628900003 2019-02-21 J Dahirel, M; Ansart, A; Madec, L Dahirel, M.; Ansart, A.; Madec, L. Potential syndromes linking dispersal and reproduction in the hermaphrodite land snail Cornu aspersum JOURNAL OF ZOOLOGY English Article dispersal; reproduction; protandric simultaneous hermaphrodite; syndromes; terrestrial gastropods; hermaphrodites; life-history traits FULICA FERUSSAC STYLOMMATOPHORA; SEX-ALLOCATION; HELIX-ASPERSA; GROWTH; MATE; CONSEQUENCES; ACHATINIDAE; PROPENSITY; STRATEGIES; EVOLUTION Dispersal plays a key role in many ecological and evolutionary processes, in particular through correlations, or syndromes, with other life-history traits. Here, we investigated the potential syndromes linking movement behaviour, body mass and male and female sexual organs development, to explain a previously described subadult dispersal pattern in the hermaphrodite land snail Cornu aspersum. We found elements indicating that this snail may not strictly be a simultaneous hermaphrodite, but presents a male-biased phase before reaching adulthood and hermaphroditism. Body mass was positively correlated with both patch-leaving propensity and movement speed. However, because the dry mass of the female albumen gland, which represents on average in adults masses equivalent to 42.6% of somatic soft tissues dry mass, was negatively correlated with patch-leaving propensity, snails of intermediate age are expected to be more likely to leave than older ones. No relationship between male organ size and movement characteristics was found. We discuss briefly the interesting consequences the existence of a syndrome linking movement propensity with female investment in a protandric hermaphrodite species might have in terms of life-history evolution and on the maintenance of hermaphroditism in dispersal-favouring environments. [Dahirel, M.; Ansart, A.; Madec, L.] Univ Rennes 1, CNRS, UMR Ecosyst 6553, Biodiversite,Evolut ECOBIO, Rennes, France; [Dahirel, M.] Univ Ghent, Dept Biol, Terr Ecol Grp, B-9000 Ghent, Belgium Dahirel, M (reprint author), Univ Rennes 1, CNRS, UMR Ecosyst 6553, Biodiversite,Evolut ECOBIO, Rennes, France. maxime.dahirel@yahoo.fr Dahirel, Maxime/0000-0001-8077-7765 Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Ansart A, 2009, CABI INVASIVE SPECIE; Baeza JA, 2007, BEHAV ECOL SOCIOBIOL, V61, P365, DOI 10.1007/s00265-006-0265-2; Barker G. M, 2001, BIOL TERRESTRIAL MOL; Barton K., 2015, MUMIN MULTIMODEL INF; Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; Borger L, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P222; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; BRIDE J, 1991, REPROD NUTR DEV, V31, P81, DOI 10.1051/rnd:19910108; Burnham K. P, 2002, MODEL SELECTION MULT; Calenge C, 2009, ECOL INFORM, V4, P34, DOI 10.1016/j.ecoinf.2008.10.002; Chase R, 2006, P R SOC B, V273, P1471, DOI 10.1098/rspb.2006.3474; Clobert J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P1, DOI 10.1093/acprof:oso/9780199608898.001.0001; Cook A., 2001, P447, DOI 10.1079/9780851993188.0447; Dahirel M, 2015, J ANIM ECOL, V84, P228, DOI 10.1111/1365-2656.12276; Dahirel M, 2014, POPUL ECOL, V56, P227, DOI 10.1007/s10144-013-0407-0; DAN N, 1982, J MOLLUS STUD, V48, P257, DOI 10.1093/oxfordjournals.mollus.a065647; Debeffe L, 2012, J ANIM ECOL, V81, DOI 10.1111/j.1365-2656.2012.02014.x; DENNY M, 1980, SCIENCE, V208, P1288, DOI 10.1126/science.208.4449.1288; Eppley SM, 2008, J EVOLUTION BIOL, V21, P727, DOI 10.1111/j.1420-9101.2008.01524.x; Fearnley R. H., 1993, THESIS; Garefalaki ME, 2010, J EVOLUTION BIOL, V23, P966, DOI 10.1111/j.1420-9101.2010.01964.x; Gomez B.J., 2001, P307, DOI 10.1079/9780851993188.0307; Gomot L, 1980, LAV SOC MALACOL ITAL, V17, P73; Guerra PA, 2011, BIOL REV, V86, P813, DOI 10.1111/j.1469-185X.2010.00172.x; Henry PY, 2007, INVERTEBR BIOL, V126, P138, DOI 10.1111/j.1744-7410.2007.00084.x; Honek A, 2011, ANN APPL BIOL, V158, P79, DOI 10.1111/j.1744-7348.2010.00442.x; JESS S, 1995, J MOLLUS STUD, V61, P313, DOI 10.1093/mollus/61.3.313; Kimura K, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-264; Koene JM, 2006, BEHAV ECOL SOCIOBIOL, V60, P332, DOI 10.1007/s00265-006-0169-1; Leslie AB, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1812; Livingstone D.R., 1983, P177; Llewelyn J, 2010, OECOLOGIA, V162, P343, DOI 10.1007/s00442-009-1471-1; Locher R, 2000, J EVOLUTION BIOL, V13, P607, DOI 10.1046/j.1420-9101.2000.00206.x; Martinussen T., 2006, DYNAMIC REGRESSION M; Miller C, 2011, APPL ANIM BEHAV SCI, V135, P13, DOI 10.1016/j.applanim.2011.09.002; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Perrott JK, 2007, NEW ZEAL J ECOL, V31, P60; Pinheiro J, 2015, NLME LINEAR NONLINEA; Puurtinen M, 2002, AM NAT, V160, P645, DOI 10.1086/342821; R Core Team, 2015, R LANG ENV STAT COMP; ROFF D, 1977, J ANIM ECOL, V46, P443, DOI 10.2307/3822; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; Samietz J, 2012, ECOL EVOL, V2, P2788, DOI 10.1002/ece3.396; Tomiyama K, 1996, J MOLLUS STUD, V62, P101, DOI 10.1093/mollus/62.1.101; TOMIYAMA K, 1993, J MOLLUS STUD, V59, P315, DOI 10.1093/mollus/59.3.315; Tompa A. S., 1984, THE MOLLUSCA, V7; Vizoso DB, 2007, J EVOLUTION BIOL, V20, P1046, DOI 10.1111/j.1420-9101.2007.01294.x; Zollner PA, 1999, ECOLOGY, V80, P1019, DOI 10.1890/0012-9658(1999)080[1019:SSFLLI]2.0.CO;2 50 3 3 0 15 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. JUN 2016 299 2 98 105 10.1111/jzo.12328 8 Zoology Zoology DP5OJ WOS:000378546600004 2019-02-21 J Sen, A; Kim, S; Miller, AJ; Hovey, KJ; Hourdez, S; Luther, GW; Fisher, CR Sen, Arunima; Kim, Stacy; Miller, Alex J.; Hovey, Kyle J.; Hourdez, Stephane; Luther, George W., III; Fisher, Charles R. Peripheral communities of the Eastern Lau Spreading Center and Valu Fa Ridge: community composition, temporal change and comparison to near-vent communities MARINE ECOLOGY-AN EVOLUTIONARY PERSPECTIVE English Article Deep-sea mining; hydrothermal vents; Lau Basin; peripheral MID-ATLANTIC RIDGE; DEEP-SEA BENTHOS; CRAB BYTHOGRAEA-THERMYDRON; FLOOR MASSIVE SULFIDES; BACK-ARC BASIN; HYDROTHERMAL VENTS; PACIFIC RISE; GALAPAGOS RIFT; HOT-SPRINGS; IN-SITU Western Pacific hydrothermal vents will soon be subjected to deep-sea mining and peripheral sites are considered the most practical targets. The limited information on community dynamics and temporal change in these communities makes it difficult to anticipate the impact of mining activities and recovery trajectories. We studied community composition of peripheral communities along a cline in hydrothermal chemistry on the Eastern Lau Spreading Center and Valu Fa Ridge (ELSC-VFR) and also studied patterns of temporal change. Peripheral communities located in the northern vent fields of the ELSC-VFR are significantly different from those in the southern vent fields. Higher abundances of zoanthids and anemones were found in northern peripheral sites and the symbiont-containing mussel Bathymodiolus brevior, brisingid seastars and polynoids were only present in the northern peripheral sites. By contrast, certain faunal groups were seen only in the southern peripheral sites, such as lollipop sponges, pycnogonids and ophiuroids. Taxonomic richness of the peripheral communities was similar to that of active vent communities, due to the presence of non-vent endemic species that balanced the absence of species found in areas of active venting. The communities present at waning active sites resemble those of peripheral sites, indicating that peripheral species can colonize previously active vent sites in addition to settling in the periphery of areas of venting. Growth and mortality were observed in a number of the normally slow-growing cladorhizid stick sponges, indicating that these animals may exhibit life history strategies in the vicinity of vents that differ from those previously recorded. A novel facultative association between polynoids and anemones is proposed based on their correlated distributions. [Sen, Arunima] IFREMER, REM EEP LEP, Ctr Bretagne, Plouzane, France; [Kim, Stacy] Moss Landing Marine Labs, Benth Lab, Pob 450, Moss Landing, CA 95039 USA; [Miller, Alex J.; Hovey, Kyle J.; Fisher, Charles R.] Penn State Univ, Dept Biol, University Pk, PA 16802 USA; [Hourdez, Stephane] CNRS, UMR 7144, Adaptat & Biol Invertebres Condit Extremes, Roscoff, France; [Hourdez, Stephane] Univ Paris 06, UMR 7144, Adaptat & Biol Invertebres Condit Extremes, Roscoff, France; [Luther, George W., III] Univ Delaware, Sch Marine Sci & Policy, Lewes, DE 19958 USA; [Sen, Arunima] UiT Arctic Univ Tromso, Dept Geol, Ctr Arctic Gas Hydrate Environm & Climate, Tromso, Norway Sen, A (reprint author), IFREMER, REM EEP LEP, Ctr Bretagne, Plouzane, France. arunima.sen@uit.no Luther, III, George/A-6384-2008 Luther, III, George/0000-0002-0780-885X National Science Foundation (NSF) grants Division of Ocean Sciences [02-40985, 07-32333]; NSF grants Division of Ocean Sciences [0240896, 0732439]; NSF Division of Ocean Sciences [0241250] We would like to thank the crews of the R/V Melville and the R/V Thomas G. Thompson and the crew of Jason II for making this study possible. We thank Amy Gartman, Mustafa Yucel, Andrew Madison, Katherine Mullaugh and Shufen Ma for assistance with physico-chemical measurements, Baptiste Faure, Sabine Gollner and Dominique Cowart for assistance at sea and Miles Saunders for help with digitizing and mosaicking. Many thanks are due to Kamille Hammerstrom for identifying peripheral sites and depositing markers for return visits. Katriona Shea, Denice Wardrop, Todd Lajeunesse, Steve Schaeffer and Erin Becker provided valuable feedback and insights throughout the study. We thank two anonymous reviewers for their input. This project was funded by National Science Foundation (NSF) grants Division of Ocean Sciences 02-40985 and Division of Ocean Sciences 07-32333 to C.R.F., NSF grants Division of Ocean Sciences-0240896 and Division of Ocean Sciences-0732439 to G.W.L. and NSF Division of Ocean Sciences grant 0241250 to S.K. ARQUIT AM, 1990, J GEOPHYS RES-SOLID, V95, P12947, DOI 10.1029/JB095iB08p12947; Bates AE, 2005, MAR ECOL PROG SER, V305, P1, DOI 10.3354/meps305001; BEAUCHAMP RO, 1984, CRC CR REV TOXICOL, V13, P25, DOI 10.3109/10408448409029321; Beinart RA, 2012, P NATL ACAD SCI USA, V109, pE3241, DOI 10.1073/pnas.1202690109; Boschen RE, 2013, OCEAN COAST MANAGE, V84, P54, DOI 10.1016/j.ocecoaman.2013.07.005; Both R., 1986, EOS, V67, P489, DOI DOI 10.1029/EO067I021P00489; Childress JJ, 2011, J EXP BIOL, V214, P312, DOI 10.1242/jeb.049023; CHILDRESS JJ, 1992, OCEANOGR MAR BIOL, V30, P337; Copley JTP, 1997, MAR BIOL, V129, P723, DOI 10.1007/s002270050215; CORLISS JB, 1979, SCIENCE, V203, P1073, DOI 10.1126/science.203.4385.1073; Cuvelier D, 2009, DEEP-SEA RES PT I, V56, P2026, DOI 10.1016/j.dsr.2009.06.006; DESBRUYERES D, 1994, MAR GEOL, V116, P227, DOI 10.1016/0025-3227(94)90178-3; Desbruyeres D., 2006, HDB DEEP SEA HYDROTH, V18; Di Camillo C. G., 2010, HELGOLAND MARINE RES, V65, P495; Dilly GF, 2012, P ROY SOC B-BIOL SCI, V279, P3347, DOI 10.1098/rspb.2012.0098; Dittel AI, 2008, J SHELLFISH RES, V27, P63, DOI 10.2983/0730-8000(2008)27[63:BOTVCB]2.0.CO;2; Dunn D. F, 1976, MAR BIOL, V39, P67; EDMOND JM, 1982, NATURE, V297, P187, DOI 10.1038/297187a0; ENRIGHT JT, 1981, NATURE, V289, P219, DOI 10.1038/289219a0; Epifanio CE, 1999, MAR ECOL PROG SER, V185, P147, DOI 10.3354/meps185147; Ferrini VL, 2008, GEOCHEM GEOPHY GEOSY, V9, DOI 10.1029/2008GC002047; FISHER CR, 1994, MAR ECOL PROG SER, V103, P45, DOI 10.3354/meps103045; Galkin SV, 1997, MAR GEOL, V142, P197, DOI 10.1016/S0025-3227(97)00051-0; Garrabou J, 2001, ESTUAR COAST SHELF S, V52, P293, DOI 10.1006/ecss.2000.0699; Gartman A, 2011, AQUAT GEOCHEM, V17, P583, DOI 10.1007/s10498-011-9136-1; Gebruk AV, 2000, J MAR BIOL ASSOC UK, V80, P383, DOI 10.1017/S0025315499002088; Gebruk AV, 2000, J MAR BIOL ASSOC UK, V80, P485, DOI 10.1017/S0025315400002186; GIBBS PE, 1969, PHILOS T ROY SOC B, V255, P443, DOI 10.1098/rstb.1969.0020; GRASSLE JF, 1991, BIOSCIENCE, V41, P464, DOI 10.2307/1311803; Gray JS, 1997, MAR ECOL PROG SER, V159, P97, DOI 10.3354/meps159097; Hajdu E, 2002, SYSTEMA PORIFERA GUI, P636; Halfar J, 2002, MAR POLICY, V26, P103, DOI 10.1016/S0308-597X(01)00041-0; Henry MS, 2008, DEEP-SEA RES PT I, V55, P679, DOI 10.1016/j.dsr.2008.02.001; Hessler R. R., 1985, B BIOL SOC WASH, V6, P411; HESSLER RR, 1967, DEEP-SEA RES, V14, P65; HESSLER RR, 1988, DEEP-SEA RES, V35, P1681, DOI 10.1016/0198-0149(88)90044-1; Hoagland P, 2010, MAR POLICY, V34, P728, DOI 10.1016/j.marpol.2009.12.001; Hyman L., 1940, INVERTEBRATES PROTOZ; JOHNSON KS, 1986, SCIENCE, V231, P1139, DOI 10.1126/science.231.4742.1139; Jollivet D, 1996, BIODIVERS CONSERV, V5, P1619, DOI 10.1007/BF00052119; JUNIPER SK, 1995, AM ZOOL, V35, P174; JUNIPER SK, 1992, GEOLOGY, V20, P895, DOI 10.1130/0091-7613(1992)020<0895:IOATBP>2.3.CO;2; Kim S, 2012, DEEP-SEA RES PT I, V62, P10, DOI 10.1016/j.dsr.2011.12.010; LAMPITT RS, 1986, MAR BIOL, V93, P69, DOI 10.1007/BF00428656; Lilley MD, 1983, HYDROTHERMAL PROCESS, VIV, P411; LONSDALE P, 1977, DEEP-SEA RES, V24, P857, DOI 10.1016/0146-6291(77)90478-7; Luther GW, 2008, MAR CHEM, V108, P221, DOI 10.1016/j.marchem.2007.03.002; Luther GW, 2012, OCEANOGRAPHY, V25, P234, DOI 10.5670/oceanog.2012.22; Luther GW, 2001, J ENVIRON MONITOR, V3, P61; Marsh L, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048348; Martin D, 1998, OCEANOGR MAR BIOL, V36, P217; Martinez F, 2006, EARTH PLANET SC LETT, V245, P655, DOI 10.1016/j.epsl.2006.03.049; Matabos M, 2008, J MAR BIOL ASSOC UK, V88, P995, DOI 10.1017/S002531540800163X; MCCLENDON JF, 2006, BIOL BULL, V10, P66, DOI DOI 10.2307/1535667; McMullin E R, 2000, Gravit Space Biol Bull, V13, P13; Mills SW, 2007, BIOL BULL-US, V212, P185, DOI 10.2307/25066601; Mottl MJ, 2011, GEOCHIM COSMOCHIM AC, V75, P1013, DOI 10.1016/j.gca.2010.12.008; Nakamura K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032965; Osburn R. C., 1914, ANIMAL KINGDOM B NEW, V17, P1163; Parker GH, 1916, P NATL ACAD SCI USA, V2, P449, DOI 10.1073/pnas.2.8.449; Parker GH, 1917, J EXP ZOOL, V22, P111, DOI 10.1002/jez.1400220106; Pettibone M. H., 1963, MARINE POLYCHAETE WO; PETTIBONE MH, 1991, P BIOL SOC WASH, V104, P714; PETTIBONE MH, 1989, P BIOL SOC WASH, V102, P300; PETTIBONE MH, 1991, P BIOL SOC WASH, V104, P688; PETTIBONE MH, 1993, SMITHSONIAN CONTRIBU, V538, P1, DOI DOI 10.5479/SI.00810282.538; Pizarro O, 2003, IEEE J OCEANIC ENG, V28, P651, DOI 10.1109/JOE.2003.819154; Podowski EL, 2010, MAR ECOL PROG SER, V418, P25, DOI 10.3354/meps08797; Podowski EL, 2009, DEEP-SEA RES PT I, V56, P2041, DOI 10.1016/j.dsr.2009.07.002; Portner HO, 2002, COMP BIOCHEM PHYS A, V132, P739, DOI 10.1016/S1095-6433(02)00045-4; Ravaux J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064074; Rex MA, 2006, MAR ECOL PROG SER, V317, P1, DOI 10.3354/meps317001; SANDERS HL, 1969, SCIENCE, V163, P1419, DOI 10.1126/science.163.3874.1419; SANDERS HL, 1968, AM NAT, V102, P243, DOI 10.1086/282541; Sarrazin J, 1997, MAR ECOL PROG SER, V153, P5, DOI 10.3354/meps153005; Sarrazin J, 1999, MAR ECOL PROG SER, V185, P1, DOI 10.3354/meps185001; Sen A, 2013, DEEP-SEA RES PT 1, V72, P48; Sen A, 2014, LIMNOL OCEANOGR, V59, P1510, DOI 10.4319/lo.2014.59.5.1510; Shank TM, 1998, DEEP-SEA RES PT II, V45, P465, DOI 10.1016/S0967-0645(97)00089-1; Singh H, 2004, IEEE J OCEANIC ENG, V29, P872, DOI 10.1109/JOE.2004.831619; SPIESS FN, 1980, SCIENCE, V207, P1421, DOI 10.1126/science.207.4438.1421; Sudarikov SM, 1995, HYDROTHERMAL VENTS P, V87, P319; Taylor B, 1996, EARTH PLANET SC LETT, V144, P35, DOI 10.1016/0012-821X(96)00148-3; Tokeshi M, 2011, J OCEANOGR, V67, P651, DOI 10.1007/s10872-011-0065-9; TUNNICLIFFE V, 1986, DEEP-SEA RES, V33, P401, DOI 10.1016/0198-0149(86)90100-7; TUNNICLIFFE V, 1990, PROG OCEANOGR, V24, P1, DOI 10.1016/0079-6611(90)90015-T; Tunnicliffe V., 1985, B BIOL SOC WASH, V6, P453; Vacelet J, 1996, MAR ECOL PROG SER, V145, P77, DOI 10.3354/meps145077; Vacelet J, 2004, ZOOMORPHOLOGY, V123, P179, DOI 10.1007/s00435-004-0100-0; VACELET J, 1995, NATURE, V373, P333, DOI 10.1038/373333a0; Vacelet J., 2007, PORIFERA RES BIODIVE, P28; Van Dover CL, 2011, NATURE, V470, P31, DOI 10.1038/470031a; Van Dover CL, 2001, SCIENCE, V294, P818, DOI 10.1126/science.1064574; Van Dover CL, 2000, ECOLOGY DEEP SEA HYD; WILSON MV, 1984, J ECOL, V72, P1055, DOI 10.2307/2259551; WOLFF T, 1977, NATURE, V267, P780, DOI 10.1038/267780a0; Zelnio KA, 2009, MAR BIOL RES, V5, P547, DOI 10.1080/17451000902729662 97 4 4 0 19 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0173-9565 1439-0485 MAR ECOL-EVOL PERSP Mar. Ecol.-Evol. Persp. JUN 2016 37 3 599 617 10.1111/maec.12313 19 Marine & Freshwater Biology Marine & Freshwater Biology DP6YP WOS:000378646200011 Green Published 2019-02-21 J Stott, I Stott, Iain Perturbation analysis of transient population dynamics using matrix projection models METHODS IN ECOLOGY AND EVOLUTION English Article; Proceedings Paper 5th Anniversary Symposium of Methods in Ecology and Evolution 2015 CANADA comparative demography; demography; direct perturbation; elasticity; population biology; population management; population viability analysis; sensitivity; transfer function DENSITY-DEPENDENT POPULATIONS; SENSITIVITY-ANALYSIS; VITAL-RATES; STRUCTURED POPULATIONS; ECOLOGICAL-SYSTEMS; GROWTH-RATE; CONSERVATION BIOLOGY; PLANT-POPULATIONS; DEMOGRAPHIC-DATA; 2ND DERIVATIVES Non-stable populations exhibit short-term transient dynamics: size, growth and structure that are unlike predicted long-term asymptotic stable, stationary or equilibrium dynamics. Understanding transient dynamics of non-stable populations is important for designing effective population management strategies, predicting the responses of populations to environmental change or disturbance, and understanding population processes and life-history evolution in variable environments. Transient perturbation analyses are vital tools for achieving these aims. They assess how transient dynamics are affected by changes to vital rates, population structure, or underlying variables that affect these. These changes could be imposed deliberately by population managers, or driven by environmental variables. Methodological approaches to transient perturbation analysis are diverse, and different methods are suited to different applications: choosing a method to use may be challenging. Here, I review existing methods for prospective transient perturbation analysis, and identify a number of key considerations for ecologists when choosing a method. These include the approach taken in calculating the perturbation, the type of model being analysed, the perturbation structure, the population response of interest, nonlinear response to perturbation, standardization for asymptotic dynamics, the initial population structure, and the time frame of interest. I discuss these with reference to the application of transient perturbation analyses in both population management and comparative analysis. The diversity of transient perturbation analyses available means that existing approaches are applicable to a wide range of population management and comparative analysis scenarios. It is important, however, for ecologists using these methods to know exactly what is being measured. Despite a wealth of existing methods, Iidentify some areas that would benefit from further development. [Stott, Iain] Max Planck Inst Demog Res, Konrad Zuse Str 1, D-18057 Rostock, Germany; [Stott, Iain] Univ Southern Denmark, Max Planck Odense Ctr Biodemog Aging, Campusvej 55, DK-5230 Odense M, Denmark Stott, I (reprint author), Max Planck Inst Demog Res, Konrad Zuse Str 1, D-18057 Rostock, Germany.; Stott, I (reprint author), Univ Southern Denmark, Max Planck Odense Ctr Biodemog Aging, Campusvej 55, DK-5230 Odense M, Denmark. iainmstott@gmail.com Stott, Iain/0000-0002-1399-3596 Baines A. D., 2015, LETT BIOMATHEMATICS, V1, P235; Barabas G, 2014, THEOR POPUL BIOL, V92, P97, DOI 10.1016/j.tpb.2013.12.001; Baxter PWJ, 2006, CONSERV BIOL, V20, P893, DOI 10.1111/j.1523-1739.2006-00378.x; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; Brook BW, 2000, NATURE, V404, P385, DOI 10.1038/35006050; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.2307/177364; Caswell H, 1996, ECOLOGY, V77, P870, DOI 10.2307/2265507; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; Caswell H., 2001, MATRIX POPULATION MO; Caswell H., 1989, MATRIX POPULATION MO; Caswell H, 2007, ECOL LETT, V10, P1, DOI 10.1111/j.1461-0248.2006.01001.x; Caswell H, 2012, THEOR ECOL-NETH, V5, P403, DOI 10.1007/s12080-011-0132-2; Caswell H, 2010, J ECOL, V98, P324, DOI 10.1111/j.1365-2745.2009.01627.x; COHEN JE, 1979, SIAM J APPL MATH, V36, P169, DOI 10.1137/0136015; Costantino RF, 1997, SCIENCE, V275, P389, DOI 10.1126/science.275.5298.389; Crone EE, 2013, CONSERV BIOL, V27, P968, DOI 10.1111/cobi.12049; Eager EA, 2014, THEOR POPUL BIOL, V92, P88, DOI 10.1016/j.tpb.2013.12.004; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.2307/177370; Ellis MM, 2013, ECOLOGY, V94, P1681, DOI 10.1890/13-0028.1; Ellis MM, 2013, J ECOL, V101, P734, DOI 10.1111/1365-2745.12069; Ezard THG, 2010, J APPL ECOL, V47, P515, DOI 10.1111/j.1365-2664.2010.01801.x; Fieberg J, 2001, ECOL LETT, V4, P244, DOI 10.1046/j.1461-0248.2001.00202.x; Forbis TA, 2004, AM J BOT, V91, P1147, DOI 10.3732/ajb.91.7.1147; Fordham DA, 2008, J APPL ECOL, V45, P52, DOI 10.1111/j.1365-2664.2007.01414.x; Fox GA, 2000, AM NAT, V156, P242, DOI 10.1086/303387; Franco M, 2004, ECOLOGY, V85, P531, DOI 10.1890/02-0651; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gamelon M, 2014, AM NAT, V184, P673, DOI 10.1086/677929; Grant A, 2000, ECOLOGY, V81, P680, DOI 10.2307/177369; Grant A, 1997, P ROY SOC B-BIOL SCI, V264, P303, DOI 10.1098/rspb.1997.0043; Haridas CV, 2007, ECOL LETT, V10, P1143, DOI 10.1111/j.1461-0248.2007.01108.x; Haridas CV, 2009, ECOL LETT, V12, P806, DOI 10.1111/j.1461-0248.2009.01330.x; Hastings A, 2001, ECOL LETT, V4, P215, DOI 10.1046/j.1461-0248.2001.00220.x; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; Hodgson DJ, 2004, J APPL ECOL, V41, P1155, DOI 10.1111/j.0021-8901.2004.00959.x; Iles DT, 2016, J ECOL, V104, P399, DOI 10.1111/1365-2745.12516; Jongejans E, 2006, J APPL ECOL, V43, P877, DOI 10.1111/j.1365-2664.2006.01228.x; Koons DN, 2007, ECOLOGY, V88, P2857, DOI 10.1890/06-1801.1; Koons DN, 2006, J WILDLIFE MANAGE, V70, P19, DOI 10.2193/0022-541X(2006)70[19:PMIFWM]2.0.CO;2; McCarthy D, 2008, THEOR POPUL BIOL, V74, P68, DOI 10.1016/j.tpb.2008.04.008; McDonald J. L., 2016, J ECOLOGY IN PRESS; Mertens SK, 2006, ECOLOGY, V87, P2338, DOI 10.1890/0012-9658(2006)87[2338:TPDIPM]2.0.CO;2; Morris WF, 2004, AM NAT, V163, P579, DOI 10.1086/382550; Neubert MG, 1997, ECOLOGY, V78, P653; Neubert MG, 2000, ECOLOGY, V81, P1613, DOI 10.1890/0012-9658(2000)081[1613:DADCAS]2.0.CO;2; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Pople AR, 2010, RANGELAND J, V32, P11, DOI 10.1071/RJ09053; Shyu E, 2014, METHODS ECOL EVOL, V5, P473, DOI 10.1111/2041-210X.12179; Stott I, 2012, METHODS ECOL EVOL, V3, P797, DOI 10.1111/j.2041-210X.2012.00222.x; Stott I, 2012, METHODS ECOL EVOL, V3, P673, DOI 10.1111/j.2041-210X.2012.00199.x; Stott I, 2011, ECOL LETT, V14, P959, DOI 10.1111/j.1461-0248.2011.01659.x; Stott I, 2010, J ECOL, V98, P302, DOI 10.1111/j.1365-2745.2009.01632.x; Tavener S, 2011, METHODS ECOL EVOL, V2, P560, DOI 10.1111/j.2041-210X.2011.00108.x; Tidemann R., 2000, MOL ECOL, V9, P1159; Townley S, 2008, J APPL ECOL, V45, P1836, DOI 10.1111/j.1365-2664.2008.01562.x; Townley S, 2007, J APPL ECOL, V44, P1243, DOI 10.1111/j.1365-2664.2007.01333.x; Tremblay RL, 2015, ANN BOT-LONDON, V116, P381, DOI 10.1093/aob/mcv031; Tuljapurkar S, 1997, MATH COMPUT MODEL, V26, P39, DOI 10.1016/S0895-7177(97)00168-4; Verdy A, 2008, B MATH BIOL, V70, P1634, DOI 10.1007/s11538-008-9312-7; Wong TM, 2015, ENVIRON CONSERV, V42, P20, DOI 10.1017/S0376892914000204; Yearsley JM, 2004, ECOL MODEL, V177, P245, DOI 10.1016/j.ecolmodel.2003.12.053 61 3 3 1 29 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2041-210X 2041-2096 METHODS ECOL EVOL Methods Ecol. Evol. JUN 2016 7 6 666 678 10.1111/2041-210X.12543 13 Ecology Environmental Sciences & Ecology DP8EW WOS:000378731900005 Other Gold 2019-02-21 J Nahrgang, J; Storhaug, E; Murzina, SA; Delmas, O; Nemova, NN; Berge, J Nahrgang, Jasmine; Storhaug, Ekaterina; Murzina, Svetlana A.; Delmas, Olympe; Nemova, Nina N.; Berge, Jorgen Aspects of reproductive biology of wild-caught polar cod (Boreogadus saida) from Svalbard waters POLAR BIOLOGY English Article Boreogadus saida; Reproduction; Iteroparous; Life history strategies; Group-synchronous ARCTIC COD; GADUS-MORHUA; BARENTS SEA; LEPECHIN; FISHES; SPERMATOGENESIS; GROWTH; GONAD Polar cod (Boreogadus saida) is considered a key species in the Arctic marine ecosystems. Yet detailed or even basic knowledge regarding its biology and adaptations, especially during the polar night, is in many cases poor. Data are presently unavailable in Western literature on the gonad development of polar cod and its reproductive biology in wild specimens. Accordingly, gonad development of wild-caught polar cod from fjords of the Svalbard archipelago was studied across seasons (April, August, September, November and January). Histological analyses of polar cod showed strong indication of a group-synchronous oocyte development with determinate fecundity and iteroparity. Females started gonadal development prior to April and had not yet reached the final stage of maturation in January. Testes matured more rapidly, with males ready to spawn in January. Furthermore, our data show that polar cod were able to reach sexual maturity at age 1+. Based on our data and previous reports, we hypothesise that polar cod is a total spawner. [Nahrgang, Jasmine; Storhaug, Ekaterina; Delmas, Olympe; Berge, Jorgen] UiT, Dept Arctic & Marine Biol, N-9037 Tromso, Norway; [Nahrgang, Jasmine; Berge, Jorgen] Univ Ctr Svalbard, N-9171 Longyearbyen, Norway; [Storhaug, Ekaterina] Akvaplan Niva, Fram Ctr, N-9296 Tromso, Norway; [Murzina, Svetlana A.; Nemova, Nina N.] RAS, Inst Biol, Karelian Res Ctr, Petrozavodsk, Russia Nahrgang, J (reprint author), UiT, Dept Arctic & Marine Biol, N-9037 Tromso, Norway. jasmine.m.nahrgang@uit.no Murzina, Svetlana/A-7624-2014 Murzina, Svetlana/0000-0002-9705-2741; Berge, Jorgen/0000-0003-0900-5679; Nahrgang, Jasmine/0000-0002-4202-5922 Akvaplan-niva AS (Tromso); Norwegian Research Council through the Environmental Waste Management (EWMA) project [195160]; Norwegian Research Council through Polarisation project [214184]; Arctic Field Grant (Svalbard Science Forum); Presidium of RAS "Searching fundamental research for development of the Russian Arctic" [11406194001] We thank the crew of RV Helmer Hanssen, the University Centre in Svalbard and the TUNU-Programme (UiT-Arctic University of Norway, Tromso) for providing ship time and polar cod samples. The project was financially supported by Akvaplan-niva AS (Tromso), the Norwegian Research Council through the Environmental Waste Management (EWMA) (nr 195160) and Polarisation (nr 214184) projects, the Arctic Field Grant (Svalbard Science Forum) and the Presidium of RAS "Searching fundamental research for development of the Russian Arctic" (nr 11406194001, 2014-2016). Altukhov KA, 1979, ICTHYOLOGY, V19, P874; Andriashev AP, 1954, FISHES NO SEAS USSR, P566; ARONOVICH TM, 1975, AQUACULTURE, V6, P233, DOI 10.1016/0044-8486(75)90043-5; Berge J, 2015, PROG OCEANOGR, V139, P258, DOI 10.1016/j.pocean.2015.08.005; Bouchard C, 2016, POLAR BIOL, V39, P1005, DOI 10.1007/s00300-014-1617-4; Bouchard C, 2011, PROG OCEANOGR, V90, P105, DOI 10.1016/j.pocean.2011.02.008; Bradstreet M.S.W., 1986, CAN TECH REP FISH AQ, V1491, P193; BRADSTREET MSW, 1982, ARCTIC, V35, P1; Brown-Peterson NJ, 2011, MAR COAST FISH, V3, P52, DOI 10.1080/19425120.2011.555724; BUCHOLTZ R.H, 2008, 19708 DTU NAT I AQ R; Christophorov OL, 1978, VNIRO P, V130, P33; CRAIG PC, 1982, CAN J FISH AQUAT SCI, V39, P395, DOI 10.1139/f82-057; DOROSHEV SI, 1974, AQUACULTURE, V4, P353, DOI 10.1016/0044-8486(74)90064-7; Dziewulska Katarzyna, 2003, Reprod Biol, V3, P47; ELIASSEN JE, 1982, J FISH BIOL, V20, P707, DOI 10.1111/j.1095-8649.1982.tb03981.x; Fishelson L, 2006, ANAT EMBRYOL, V211, P31, DOI 10.1007/s00429-005-0050-4; GJOSAETER H, 1994, ICES J MAR SCI, V51, P115, DOI 10.1006/jmsc.1994.1011; Gjosaeter Harald, 2009, P373; GRAHAM M, 1995, ARCTIC, V48, P130; HOP H, 1995, CAN J FISH AQUAT SCI, V52, P541, DOI 10.1139/f95-055; Hop H, 2013, MAR BIOL RES, V9, P878, DOI 10.1080/17451000.2013.775458; JENSEN T, 1991, POLAR RES, V10, P547, DOI 10.1111/j.1751-8369.1991.tb00672.x; KJESBU OS, 1990, CAN J FISH AQUAT SCI, V47, P1185, DOI 10.1139/f90-138; Lapin VI, 1981, ICTHYOLOGY, V21, P482; Lowerre-Barbieri SK, 2011, MAR COAST FISH, V3, P71, DOI 10.1080/19425120.2011.556932; McBride RS, 2015, FISH FISH, V16, P23, DOI 10.1111/faf.12043; McMillan D. B., 2007, FISH HISTOLOGY FEMAL; Mikodina E. V., 2009, HISTOLOGY ICHTHYOLOG; Moskalenko B. K., 1964, VOP IKHTIOL, V4, P433; Murua H., 2003, Journal of Northwest Atlantic Fishery Science, V33, P33, DOI 10.2960/J.v33.a3; Nahrgang J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098452; PONOMARENKO V P, 1968, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V158, P131; Ponomarenko V. P., 2000, J ICHTHYOL, V40, P165; Quinn G. P., 2002, EXPT DESIGN DATA ANA; RASS T S, 1968, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V158, P135; RATTY FJ, 1990, FISH B-NOAA, V88, P207; Rideout RM, 2011, MAR COAST FISH, V3, P176, DOI 10.1080/19425120.2011.556943; Rideout RM, 2000, CAN J ZOOL, V78, P1017, DOI 10.1139/cjz-78-6-1017; Sakurai Y, 1998, MEMOIRS FACULTY FISH, V44, P77; Sameoto DD, 1984, REV CURRENT INFORM A; Wang MY, 2009, GEOPHYS RES LETT, V36, DOI 10.1029/2009GL037820 41 4 4 3 22 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. JUN 2016 39 6 SI 1155 1164 10.1007/s00300-015-1837-2 10 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology DP8XW WOS:000378782300017 Other Gold 2019-02-21 J Neel, R; Kenrick, DT; White, AE; Neuberg, SL Neel, Rebecca; Kenrick, Douglas T.; White, Andrew Edward; Neuberg, Steven L. Individual Differences in Fundamental Social Motives JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY English Article motivation; life history theory; individual differences LIFE-HISTORY STRATEGY; BIG 5; DISEASE AVOIDANCE; SELF-ENHANCEMENT; HUMAN-MOTIVATION; 5-FACTOR MODEL; TRADE-OFFS; PERSONALITY; EVOLUTIONARY; BEHAVIOR Motivation has long been recognized as an important component of how people both differ from, and are similar to, each other. The current research applies the biologically grounded fundamental social motives framework, which assumes that human motivational systems are functionally shaped to manage the major costs and benefits of social life, to understand individual differences in social motives. Using the Fundamental Social Motives Inventory, we explore the relations among the different fundamental social motives of Self-Protection, Disease Avoidance, Affiliation, Status, Mate Seeking, Mate Retention, and Kin Care; the relationships of the fundamental social motives to other individual difference and personality measures including the Big Five personality traits; the extent to which fundamental social motives are linked to recent life experiences; and the extent to which life history variables (e.g., age, sex, childhood environment) predict individual differences in the fundamental social motives. Results suggest that the fundamental social motives are a powerful lens through which to examine individual differences: They are grounded in theory, have explanatory value beyond that of the Big Five personality traits, and vary meaningfully with a number of life history variables. A fundamental social motives approach provides a generative framework for considering the meaning and implications of individual differences in social motivation. [Neel, Rebecca] Univ Iowa, Dept Psychol & Brain Sci, E11 Seashore Hall, Iowa City, IA 52242 USA; [Kenrick, Douglas T.; White, Andrew Edward; Neuberg, Steven L.] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA Neel, R (reprint author), Univ Iowa, Dept Psychol & Brain Sci, E11 Seashore Hall, Iowa City, IA 52242 USA. rebecca-neel@uiowa.edu Arizona State University Graduate and Professional Student Association We thank Roger Millsap, Anna Berlin, and Meara Habashi for consultation on scale development; the Kenrick-Neuberg graduate and faculty lab group for assistance developing items; Chloe Huelsnitz and Isaiah Cottengaim for assistance with coding; Chloe Huelsnitz for assistance with references; and Arizona State University Graduate and Professional Student Association for grant support to Rebecca Neel. Ackerman JM, 2008, PERS SOC PSYCHOL REV, V12, P118, DOI 10.1177/1088868308315700; Altemeyer B., 1988, ENEMIES FREEDOM; Anderson C, 2015, PSYCHOL BULL, V141, P574, DOI 10.1037/a0038781; Archer J, 2004, REV GEN PSYCHOL, V8, P291, DOI 10.1037/1089-2680.8.4.291; Aunger Robert, 2013, Biology Theory, V8, P49, DOI 10.1007/s13752-013-0101-7; Bakan D, 1966, DUALITY HUMAN EXISTE; BAUMEISTER RF, 1995, PSYCHOL BULL, V117, P497, DOI 10.1037/0033-2909.117.3.497; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Bem DJ, 1972, ADV EXPT SOCIAL PSYC, P1, DOI DOI 10.1016/S0065-2601(08)60024-6; Bernard LC, 2005, GENET SOC GEN PSYCH, V131, P129, DOI 10.3200/MONO.131.2.129-184; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; BROWN JD, 1986, SOC COGNITION, V4, P353, DOI 10.1521/soco.1986.4.4.353; Brown N. A., EVOLUTIONAR IN PRESS; Buckels EE, 2015, J PERS SOC PSYCHOL, V108, P497, DOI 10.1037/pspp0000023; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; BUSS DM, 1991, ANNU REV PSYCHOL, V42, P459, DOI 10.1146/annurev.ps.42.020191.002331; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Buss DM, 1999, J PERS, V67, P209, DOI 10.1111/1467-6494.00053; BUSS DM, 1990, J SOC CLIN PSYCHOL, V9, P196, DOI 10.1521/jscp.1990.9.2.196; BUSS DM, 1989, PERSONALITY PSYCHOL; CACIOPPO JT, 1982, J PERS SOC PSYCHOL, V42, P116, DOI 10.1037/0022-3514.42.1.116; Cacioppo JT, 1996, PSYCHOL BULL, V119, P197, DOI 10.1037/0033-2909.119.2.197; Cameron TA, 2010, J HEALTH ECON, V29, P364, DOI 10.1016/j.jhealeco.2010.02.005; Card NA, 2008, CHILD DEV, V79, P1185, DOI 10.1111/j.1467-8624.2008.01184.x; Chaulk B., 2003, J FAMILY EC ISSUES, V24, P257, DOI DOI 10.1023/A:1025495221519; Cheng JT, 2013, J PERS SOC PSYCHOL, V104, P103, DOI 10.1037/a0030398; Cheng JT, 2010, EVOL HUM BEHAV, V31, P334, DOI 10.1016/j.evolhumbehav.2010.02.004; Chulef AS, 2001, MOTIV EMOTION, V25, P191, DOI 10.1023/A:1012225223418; CONRAD KM, 1992, BRIT J ADDICT, V87, P1711; Conway MA, 2000, PSYCHOL REV, V107, P261, DOI 10.1037//0033-295X.107.2.261; Costa Jr P. T., 1992, REVISED NEO PERSONAL; Cox KS, 2010, J PERS, V78, P1185, DOI 10.1111/j.1467-6494.2010.00647.x; Crowe E, 1997, ORGAN BEHAV HUM DEC, V69, P117, DOI 10.1006/obhd.1996.2675; Daly M, 1997, CRIME JUSTICE, V22, P51, DOI 10.1086/449260; Daly M., 1988, HOMICIDE; Deci EL, 2000, PSYCHOL INQ, V11, P227, DOI 10.1207/S15327965PLI1104_01; DeYoung CG, 2015, J RES PERS, V56, P33, DOI 10.1016/j.jrp.2014.07.004; Duncan LA, 2009, PERS INDIV DIFFER, V47, P541, DOI 10.1016/j.paid.2009.05.001; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Emmons R. A., 1989, GOAL CONCEPTS PERSON, P87; EMMONS RA, 1995, J PERS, V63, P341, DOI 10.1111/j.1467-6494.1995.tb00499.x; Erikson E., 1963, CHILDHOOD SOC; Farahani HA, 2011, PROCD SOC BEHV, V28, DOI 10.1016/j.sbspro.2011.11.147; Fessler DMT, 2014, EVOL HUM BEHAV, V35, P109, DOI 10.1016/j.evolhumbehav.2013.11.004; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Finkel EJ, 2015, CURR OPIN BEHAV SCI, V3, P7, DOI 10.1016/j.cobeha.2014.12.006; Fraley RC, 2000, J PERS SOC PSYCHOL, V78, P350, DOI 10.1037//0022-3514.78.2.350; Funder DC, 2012, CURR DIR PSYCHOL SCI, V21, P177, DOI 10.1177/0963721412445309; Funder DC, 2006, J RES PERS, V40, P21, DOI 10.1016/j.jrp.2005.08.003; Geary D. C, 1998, MALE FEMALE EVOLUTIO; Gigerenzer G., 2000, ADAPTIVE THINKING RA; Griskevicius V, 2006, J PERS SOC PSYCHOL, V91, P281, DOI 10.1037/0022-3514.91.2.281; Griskevicius V, 2013, J CONSUM PSYCHOL, V23, P372, DOI 10.1016/j.jcps.2013.03.003; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2009, J PERS SOC PSYCHOL, V96, P980, DOI 10.1037/a0013907; Haselton MG, 2006, PERS SOC PSYCHOL REV, V10, P47, DOI 10.1207/s15327957pspr1001_3; Henrich J, 2001, EVOL HUM BEHAV, V22, P165, DOI 10.1016/S1090-5138(00)00071-4; Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X; Higgins ET, 1997, AM PSYCHOL, V52, P1280, DOI 10.1037//0003-066X.52.12.1280; HOGAN R, 1982, NEBRASKA S MOTIVATIO, V30, P55; Hogan R, 1996, 5 FACTOR MODEL PERSO, P163; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; John O. P, 2008, HDB PERSONALITY THEO, P114, DOI DOI 10.1037/0021-9010.87.3.530; John O. P., 1999, HDB PERSONALITY THEO, V2, P102, DOI DOI 10.1525/FQ.1998.51.4.04A00260; Kaplan H. S., 2004, HDB EVOLUTIONARY PSY, P68; Karremans JC, 2008, PERS SOC PSYCHOL B, V34, P939, DOI 10.1177/0146167208316693; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Kenrick DT, 2010, CURR DIR PSYCHOL SCI, V19, P63, DOI 10.1177/0963721409359281; Kenrick DT, 2008, HANDBOOK OF APPROACH AND AVOIDANCE MOTIVATION, P273; KENRICK DT, 1990, J PERS, V58, P97, DOI 10.1111/j.1467-6494.1990.tb00909.x; KENRICK DT, 1993, J PERS SOC PSYCHOL, V64, P951, DOI 10.1037/0022-3514.64.6.951; Leary MR, 2013, J PERS ASSESS, V95, P610, DOI 10.1080/00223891.2013.819511; Li YJ, 2012, J PERS SOC PSYCHOL, V102, P550, DOI 10.1037/a0025844; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MacDonald K.B., 2012, HDB TEMPERAMENT, P273; Maner JK, 2005, J PERS SOC PSYCHOL, V88, P63, DOI [10.1037/0022-3514.88.1.63, 10.1037/0022-3514.1.63]; Maner JK, 2007, J PERS SOC PSYCHOL, V93, P389, DOI 10.1037/0022-3514.93.3.389; Maner JK, 2012, J PERS SOC PSYCHOL, V103, P70, DOI 10.1037/a0028172; Maner JK, 2009, J EXP SOC PSYCHOL, V45, P174, DOI 10.1016/j.jesp.2008.08.002; Maples JL, 2014, PSYCHOL ASSESSMENT, V26, P1070, DOI 10.1037/pas0000004; MCADAMS DP, 1995, J PERS, V63, P365, DOI 10.1111/j.1467-6494.1995.tb00500.x; McAdams DP, 2006, AM PSYCHOL, V61, P204, DOI 10.1037/0003-066X.61.3.204; McClelland David, 1951, PERSONALITY; MCCLELLAND DC, 1989, PSYCHOL REV, V96, P690, DOI 10.1037/0033-295X.96.4.690; MCCLELLAND DC, 1985, AM PSYCHOL, V40, P812, DOI 10.1037/0003-066X.40.7.812; McDougall W, 1908, INTRO SOCIAL PSYCHOL; Morse PJ, 2015, J PERS, V83, P389, DOI 10.1111/jopy.12111; Mortensen CR, 2010, PSYCHOL SCI, V21, P440, DOI 10.1177/0956797610361706; Murray D. R., 2008, EVOLUTION CULTURE HU, P243; Murray H. A., 1938, EXPLORATIONS PERSONA; Neel R., 2015, ACCURATE PERCEPTION; Neuberg S. L., 2014, APA HDB PERSONALITY, V1, P3; Neuberg S. L., 2010, HDB SOCIAL PSYCHOL, P761; NEUBERG SL, 1993, J PERS SOC PSYCHOL, V65, P113, DOI 10.1037/0022-3514.65.1.113; Neuberg SL, 2011, NEUROSCI BIOBEHAV R, V35, P1042, DOI 10.1016/j.neubiorev.2010.08.011; Nichols CP, 2008, SOC PERSONAL PSYCHOL, V2, P968, DOI 10.1111/j.1751-9004.2008.00086.x; NISBETT RE, 1977, PSYCHOL REV, V84, P231, DOI 10.1037//0033-295X.84.3.231; PAULHUS DL, 1991, J PERS SOC PSYCHOL, V60, P307, DOI 10.1037/0022-3514.60.2.307; Reiss S, 2004, REV GEN PSYCHOL, V8, P179, DOI 10.1037/1089-2680.8.3.179; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Roberts BW, 2000, PERS SOC PSYCHOL B, V26, P1284, DOI 10.1177/0146167200262009; Sacco DF, 2014, PERS SOC PSYCHOL B, V40, P1611, DOI 10.1177/0146167214552790; Schaller M, 2003, PERS SOC PSYCHOL B, V29, P637, DOI 10.1177/0146167203251526; Schaller M, 2007, SYD SYM SOC PSYCHOL, P293; Schaller M, 2010, PSYCHOL SCI, V21, P649, DOI 10.1177/0956797610368064; Sedikides C, 2003, J PERS SOC PSYCHOL, V84, P60, DOI 10.1037/0022-3514.84.1.60; SHELDON KM, 2004, OPTIMAL HUMAN BEING; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; Sherman RA, 2010, J PERS SOC PSYCHOL, V99, P330, DOI 10.1037/a0019796; SHERRY DF, 1987, PSYCHOL REV, V94, P439, DOI 10.1037/0033-295X.94.4.439; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Smith C., 1992, MOTIVATION PERSONALI; Stearns S, 1992, EVOLUTION LIFE HIST; TRAPNELL PD, 1990, J PERS SOC PSYCHOL, V59, P781, DOI 10.1037/0022-3514.59.4.781; Tybur JM, 2009, J PERS SOC PSYCHOL, V97, P103, DOI 10.1037/a0015474; Vazire S, 2010, J PERS SOC PSYCHOL, V98, P281, DOI 10.1037/a0017908; White AE, 2013, J PERS SOC PSYCHOL, V105, P924, DOI 10.1037/a0033808; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919; White AE, 2012, J PERS SOC PSYCHOL, V103, P622, DOI 10.1037/a0029140; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Winter DG, 1998, PSYCHOL REV, V105, P230, DOI 10.1037/0033-295X.105.2.230; WINTER DG, 1988, J PERS SOC PSYCHOL, V54, P510, DOI 10.1037//0022-3514.54.3.510 124 25 25 5 59 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0022-3514 1939-1315 J PERS SOC PSYCHOL J. Pers. Soc. Psychol. JUN 2016 110 6 887 907 10.1037/pspp0000068 21 Psychology, Social Psychology DP1EQ WOS:000378233700007 26371400 2019-02-21 J Thorson, JT; Jensen, OP; Zipkin, EF Thorson, James T.; Jensen, Olaf P.; Zipkin, Elise F. How variable is recruitment for exploited marine fishes? A hierarchical model for testing life history theory (vol 71, pg 973, 2014) CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Correction [Thorson, James T.] Natl Ocean & Atmospher Adm, Fisheries Resource Assessment & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd East, Seattle, WA 98112 USA; [Jensen, Olaf P.] Rutgers State Univ, Inst Marine & Coastal Sci, 71 Dudley Rd, New Brunswick, NJ 08901 USA; [Zipkin, Elise F.] Michigan State Univ, Dept Zool, 288 Farm Lane, E Lansing, MI 48824 USA Thorson, JT (reprint author), Natl Ocean & Atmospher Adm, Fisheries Resource Assessment & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd East, Seattle, WA 98112 USA. Jimthor@u.washington.edu Thorson, James/O-7937-2014 Thorson, James/0000-0001-7415-1010 Thorson JT, 2014, CAN J FISH AQUAT SCI, V71, P973, DOI 10.1139/cjfas-2013-0645 1 10 10 0 6 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. JUN 2016 73 6 1014 1014 10.1139/cjfas-2016-0167 1 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology DN8CQ WOS:000377307200013 Bronze 2019-02-21 J Collin, R; Roof, KE; Spangler, A Collin, Rachel; Erin Roof, Karah; Spangler, Abby Hatching plasticity in the tropical gastropod Nerita scabricosta INVERTEBRATE BIOLOGY English Article Neritimorpha; phenotypic plasticity; bet-hedging; rocky intertidal; life history evolution TRADE-OFFS; EXTENDED INCUBATION; CALIFORNIA GRUNION; EMBRYONIC DIAPAUSE; SALAMANDER EGGS; ROCKY SHORE; TEMPERATURE; SNAILS; RISK; PREDATION Hatching plasticity has been documented in diverse terrestrial and freshwater taxa, but in few marine invertebrates. Anecdotal observations over the last 80years have suggested that intertidal neritid snails may produce encapsulated embryos able to significantly delay hatching. The cause for delays and the cues that trigger hatching are unknown, but temperature, salinity, and wave action have been suggested to play a role. We followed individual egg capsules of Nerita scabricosta in 16 tide pools to document the variation in natural time to hatching and to determine if large delays in hatching occur in the field. Hatching occurred after about 30d and varied significantly among tide pools in the field. Average time to hatching in each pool was not correlated with presence of potential predators, temperature, salinity, or pool size. We also compared hatching time between egg capsules in the field to those kept in the laboratory at a constant temperature in motionless water, and to those kept in the laboratory with sudden daily water motion and temperature changes. There was no significant difference in the hatching rate between the two laboratory treatments, but capsules took, on average, twice as long to hatch in the laboratory as in the field. Observations of developing embryos showed that embryos in the field develop slowly and continuously until hatching, but embryos in the laboratory reach the hatching stage during the first month of development and remain in stasis after that. Instances of hatching plasticity in benthic marine invertebrates, like the one in N. scabricosta, could greatly enhance our ability to investigate the costs and benefits of benthic versus planktonic development, a long-standing area of interest for invertebrate larval biologists. [Collin, Rachel; Erin Roof, Karah; Spangler, Abby] Smithsonian Trop Res Inst, Balboa 084303092, Panama Collin, R (reprint author), Smithsonian Trop Res Inst, Balboa 084303092, Panama. collinr@si.edu Collin, Rachel/0000-0001-5103-4460 National Science Foundation [REU 1359299]; STRI We thank Autoridad de Recursos Acuaticos de Panama for issuing permits (No. 06, 2014; No. 75, 2015). We thank Isis Ochoa and Nerea Nieto for help maintaining animals in the laboratory and photographing and measuring embryos, and Louise Page for sharing her translation of Risbec (1932). KER was supported by a fellowship from the National Science Foundation grant "REU 1359299: Integrative Tropical Biology at the Smithsonian Tropical Research Institute in Panama," and AS was supported by an internship from STRI. Armstrong AF, 2013, AM NAT, V181, P264, DOI 10.1086/668829; Asoh K, 2002, ENVIRON BIOL FISH, V64, P379, DOI 10.1023/A:1016177512353; Barroso CX, 2009, INVERTEBR REPROD DEV, V53, P137, DOI 10.1080/07924259.2009.9652299; Bradbury IR, 2004, LIMNOL OCEANOGR, V49, P2310, DOI 10.4319/lo.2004.49.6.2310; Branscomb ES, 2014, INVERTEBR BIOL, V133, P158, DOI 10.1111/ivb.12051; Capellan E, 2007, EVOL ECOL, V21, P445, DOI 10.1007/s10682-006-9133-9; Chen F, 1997, MAR BIOL, V127, P587, DOI 10.1007/s002270050049; Collin R, 2003, MAR ECOL PROG SER, V247, P103, DOI 10.3354/meps247103; Collin R, 2008, VELIGER, V50, P51; Collin R, 2012, BIOL J LINN SOC, V106, P763, DOI 10.1111/j.1095-8312.2012.01908.x; DIMICHELE L, 1980, J EXP ZOOL, V214, P181, DOI 10.1002/jez.1402140209; Duguid WDP, 2011, INVERTEBR BIOL, V130, P68, DOI 10.1111/j.1744-7410.2011.00221.x; Furness AI, 2016, BIOL REV, V91, P796, DOI 10.1111/brv.12194; GARRITY SD, 1984, ECOLOGY, V65, P559, DOI 10.2307/1941418; Garrity SD, 1981, ECOL MONOGR, V51, P268; Gomez-Mestre I, 2008, ECOL MONOGR, V78, P205, DOI 10.1890/07-0529.1; Gyllstrom M, 2004, AQUAT SCI, V66, P274, DOI 10.1007/s00027-004-0712-y; Hand SC, 2000, THERMOCHIM ACTA, V349, P31, DOI 10.1016/S0040-6031(99)00511-0; HUANG SP, 1994, J NEMATOL, V26, P72; Hurtado LA, 2007, MAR BIOL, V151, P1863, DOI 10.1007/s00227-007-0620-5; Johnson JB, 2003, CAN J ZOOL, V81, P1608, DOI 10.1139/Z03-148; Kano Y, 2010, J MOLLUS STUD, V76, P360, DOI 10.1093/mollus/eyq018; KEARN GC, 1986, J CHEM ECOL, V12, P1651, DOI 10.1007/BF01022371; Keen A. M., 1971, SEA SHELLS TROPICAL; Kerr KA, 2012, MAR ECOL PROG SER, V459, P1, DOI 10.3354/meps09832; Lebour Marie V., 1945, PROC ZOOL SOC LONDON, V114, P462; LEVINGS SC, 1983, J EXP MAR BIOL ECOL, V67, P261, DOI 10.1016/0022-0981(83)90043-6; Martin K, 2011, INTEGR COMP BIOL, V51, P26, DOI 10.1093/icb/icr037; Martin KLM, 1999, AM ZOOL, V39, P279; Miner BG, 2010, OECOLOGIA, V163, P69, DOI 10.1007/s00442-010-1570-z; Moore RD, 1996, OIKOS, V77, P331, DOI 10.2307/3546073; Moravek CL, 2011, COPEIA, P308, DOI 10.1643/CG-10-164; Oyarzun FX, 2011, INTEGR COMP BIOL, V51, P81, DOI 10.1093/icb/icr009; Page LR, 2013, J MORPHOL, V274, P412, DOI 10.1002/jmor.20103; Przeslawski R, 2011, MOLLUSCAN RES, V31, P152; RISBEC J., 1932, BULL SOC ZOOL FRANCE, V57, P358; Robertson D. Ross, 2009, Smithsonian Contributions to the Marine Sciences, P73; Robertson DR, 2015, FRONT ECOL EVOL, V2, DOI [10.3389/fevo.2014.00084, DOI 10.3389/FEVO.2014.00084]; SIH A, 1993, AM NAT, V142, P947, DOI 10.1086/285583; Smyder EA, 2002, COPEIA, P313; Strathmann RR, 2010, INVERTEBR BIOL, V129, P309, DOI 10.1111/j.1744-7410.2010.00212.x; Touchon JC, 2006, CAN J ZOOL, V84, P556, DOI 10.1139/Z06-058; UNDERWOOD AJ, 1981, J EXP MAR BIOL ECOL, V51, P57, DOI 10.1016/0022-0981(81)90154-4; UNDERWOOD AJ, 1984, J EXP MAR BIOL ECOL, V79, P277, DOI 10.1016/0022-0981(84)90201-6; Vitek CJ, 2009, J MED ENTOMOL, V46, P766, DOI 10.1603/033.046.0406; Voronezhskaya EE, 2004, DEVELOPMENT, V131, P3671, DOI 10.1242/dev.01237; Warkentin KM, 2011, INTEGR COMP BIOL, V51, P14, DOI 10.1093/icb/icr017; Warkentin KM, 2011, INTEGR COMP BIOL, V51, P111, DOI 10.1093/icb/icr046; Wedekind C, 2005, ECOLOGY, V86, P2525, DOI 10.1890/04-1738; Whittington ID, 2011, INTEGR COMP BIOL, V51, P91, DOI 10.1093/icb/icr003; WOURMS JP, 1972, J EXP ZOOL, V182, P389, DOI 10.1002/jez.1401820310 51 1 1 1 19 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1077-8306 1744-7410 INVERTEBR BIOL Invertebr. Biol. JUN 2016 135 2 87 96 10.1111/ivb.12119 10 Marine & Freshwater Biology; Zoology Marine & Freshwater Biology; Zoology DN7QH WOS:000377271600002 2019-02-21 J Amir, D; Jordan, MR; Bribiescas, RG Amir, Dorsa; Jordan, Matthew R.; Bribiescas, Richard G. A Longitudinal Assessment of Associations between Adolescent Environment, Adversity Perception, and Economic Status on Fertility and Age of Menarche PLOS ONE English Article LIFE-HISTORY STRATEGIES; REPRODUCTIVE STRATEGIES; CHILDHOOD EXPERIENCE; SOCIOECONOMIC-STATUS; PUBERTAL MATURATION; FOOD INSECURITY; GIRLS; MORTALITY; RISK; WOMEN Purpose Perceptions of environmental adversity and access to economic resources in adolescence can theoretically affect the timing of life history transitions and investment in reproductive effort. Here we present evidence of correlations between variables associated with subjective extrinsic mortality, economic status, and reproductive effort in a nationally representative American population of young adults. Methods We used a longitudinal database that sampled American participants (N >= 1,579) at four points during early adolescence and early adulthood to test whether perceptions of environmental adversity and early economic status were associated with reproductive effort. Results We found that subjectively high ratings of environmental danger and low access to economic resources in adolescence were significantly associated with an earlier age of menarche in girls and earlier, more robust fertility in young adulthood. Conclusion While energetics and somatic condition remain as possible sources of variation, the results of this study support the hypothesis that perceptions of adversity early in life and limited access to economic resources are associated with differences in reproductive effort and scheduling. How these factors may covary with energetics and somatic condition merits further investigation. [Amir, Dorsa; Bribiescas, Richard G.] Yale Univ, Dept Anthropol, New Haven, CT 06520 USA; [Jordan, Matthew R.] Yale Univ, Dept Psychol, New Haven, CT USA Amir, D (reprint author), Yale Univ, Dept Anthropol, New Haven, CT 06520 USA. Dorsa.amir@yale.edu Amir, Dorsa/0000-0003-0255-0228 Belachew T, 2011, REPROD BIOL ENDOCRIN, V9, DOI 10.1186/1477-7827-9-125; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2011, J CHILD PSYCHOL PSYC, V52, P619, DOI 10.1111/j.1469-7610.2010.02327.x; Belsky J, 2009, PERSPECT PSYCHOL SCI, V4, P345, DOI 10.1111/j.1745-6924.2009.01136.x; Boynton-Jarrett R, 2013, J ADOLESCENT HEALTH, V52, P241, DOI 10.1016/j.jadohealth.2012.06.006; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Carey JR, 1998, J GERONTOL A-BIOL, V53, pB245, DOI 10.1093/gerona/53A.4.B245; Charnov Eric L., 1993, P1; Chipman A, 2015, PSYCHONEUROENDOCRINO, V62, P89, DOI 10.1016/j.psyneuen.2015.07.611; Daly M., 1978, SEX EVOLUTION BEHAV; DUNCAN GJ, 1994, CHILD DEV, V65, P296, DOI 10.1111/j.1467-8624.1994.tb00752.x; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison PT, 1996, AM J HUM BIOL, V8, P725, DOI 10.1002/(SICI)1520-6300(1996)8:6<725::AID-AJHB4>3.0.CO;2-S; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Emaus A, 2008, HUM REPROD, V23, P919, DOI 10.1093/humrep/dem432; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; GOLDEN WL, 1981, ACTA GENET MED GEMEL, V30, P91, DOI 10.1017/S000156600000773X; Gordon CM, 1999, PEDIATR CLIN N AM, V46, P519, DOI 10.1016/S0031-3955(05)70135-8; Graber JA, 1997, J AM ACAD CHILD PSY, V36, P1768, DOI 10.1097/00004583-199712000-00026; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.1111/j.1467-8624.1995.tb00875.x; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Harris K. M., 2009, NATL LONGITUDINAL ST; Harris K.M., 2009, RES DESIGN; James-Todd T, 2010, ANN EPIDEMIOL, V20, P836, DOI 10.1016/j.annepidem.2010.08.006; Jean RT, 2011, AM J EPIDEMIOL, V173, P1203, DOI 10.1093/aje/kwq498; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; KAPRIO J, 1995, HUM BIOL, V67, P739; Kawachi I, 1997, AM J PUBLIC HEALTH, V87, P1491, DOI 10.2105/AJPH.87.9.1491; Khan AD, 1996, AM J HUM BIOL, V8, P717, DOI 10.1002/(SICI)1520-6300(1996)8:6<717::AID-AJHB3>3.0.CO;2-Q; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Kuzawa CW, 2007, AM J HUM BIOL, V19, P654, DOI 10.1002/ajhb.20659; Leitao Raquel Beatriz, 2013, Int J Adolesc Med Health, V25, P55, DOI 10.1515/ijamh-2013-0007; Lipson SF, 1996, HUM REPROD, V11, P2090; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Martin JA, 2010, NATL VITAL STAT REP, V61, P1; Mishra GD, 2009, EARLY LIFE CIRCUMSTA; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.1111/j.1467-8624.1992.tb03594.x; Mpora BO, 2014, BMC WOMENS HEALTH, V14, DOI 10.1186/1472-6874-14-66; Nackers LM, 2013, J NUTR EDUC BEHAV, V45, P780, DOI 10.1016/j.jneb.2013.08.001; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Phipps SA, 2006, OBES REV, V7, P5, DOI 10.1111/j.1467-789X.2006.00217.x; Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559; Prebeg Z, 2000, AM J HUM BIOL, V12, P503; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Roff Derek A., 1992; Rutherford JN, 2010, AM J HUM BIOL, V22, P310, DOI 10.1002/ajhb.20986; Saez Emmanuel, 2014, WEALTH INEQUALITY US; Santos-Ruiz A, 2012, PSYCHONEUROENDOCRINO, V37, P1912, DOI 10.1016/j.psyneuen.2012.04.002; Schultz TP, 2005, FERTILITY AND INCOME; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Slovic Paul, 2000, PERCEPTION RISK; Snyder JK, 2011, EVOL HUM BEHAV, V32, P127, DOI 10.1016/j.evolhumbehav.2010.08.007; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stearns SC, 2010, NAT REV GENET, V11, P611, DOI 10.1038/nrg2831; STJOHN C, 1990, SOC SCI QUART, V71, P152; Trusts PC, 2012, PURSUING AM DREAM EC; Valeggia CR, 2001, FOUND HUM B, P85; Vandell DL, 2010, CHILD DEV, V81, P737, DOI 10.1111/j.1467-8624.2010.01431.x; Wang Xiaofei, 2013, Evolution Medicine and Public Health, P241, DOI 10.1093/emph/eot013; Wattigney WA, 1998, ETHNIC DIS, V9, P181; Wildsmith E, 2006, J MARRIAGE FAM, V68, P491, DOI 10.1111/j.1741-3737.2006.00267.x; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Yermachenko A, 2014, BIOMED RES INT, V2014 70 3 3 0 7 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUN 1 2016 11 6 e0155883 10.1371/journal.pone.0155883 16 Multidisciplinary Sciences Science & Technology - Other Topics DN6KZ WOS:000377184700021 27249338 DOAJ Gold, Green Published 2019-02-21 J ter Hofstede, HM; Ratcliffe, JM ter Hofstede, Hannah M.; Ratcliffe, John M. Evolutionary escalation: the bat-moth arms race JOURNAL OF EXPERIMENTAL BIOLOGY English Review Insects; Echolocation; Nocturnal; Bat-detecting ears; Arms race; Predator-prey interaction MORPHO-PELEIDES PAPILIONOIDEA; ULTRASONIC COURTSHIP SONGS; TIGER BEETLES CICINDELIDAE; LASIURUS-CINEREUS-SEMOTUS; ACOUSTIC STARTLE RESPONSE; EVASIVE FLIGHT BEHAVIOR; BIG BROWN BATS; ECHOLOCATING BATS; SOUND PRODUCTION; PRAYING-MANTIS Echolocation in bats and high-frequency hearing in their insect prey make bats and insects an ideal system for studying the sensory ecology and neuroethology of predator-prey interactions. Here, we review the evolutionary history of bats and eared insects, focusing on the insect order Lepidoptera, and consider the evidence for antipredator adaptations and predator counter-adaptations. Ears evolved in a remarkable number of body locations across insects, with the original selection pressure for ears differing between groups. Although cause and effect are difficult to determine, correlations between hearing and life history strategies in moths provide evidence for how these two variables influence each other. We consider life history variables such as size, sex, circadian and seasonal activity patterns, geographic range and the composition of sympatric bat communities. We also review hypotheses on the neural basis for antipredator behaviours (such as evasive flight and sound production) in moths. It is assumed that these prey adaptations would select for counter-adaptations in predatory bats. We suggest two levels of support for classifying bat traits as counter-adaptations: traits that allow bats to eat more eared prey than expected based on their availability in the environment provide a low level of support for counter-adaptations, whereas traits that have no other plausible explanation for their origination and maintenance than capturing defended prey constitute a high level of support. Specific predator counter-adaptations include calling at frequencies outside the sensitivity range of most eared prey, changing the pattern and frequency of echolocation calls during prey pursuit, and quiet, or 'stealth', echolocation. [ter Hofstede, Hannah M.] Dartmouth Coll, Dept Biol Sci, 78 Coll St, Hanover, NH 03755 USA; [Ratcliffe, John M.] Univ Toronto, Dept Biol, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada ter Hofstede, HM (reprint author), Dartmouth Coll, Dept Biol Sci, 78 Coll St, Hanover, NH 03755 USA.; Ratcliffe, JM (reprint author), Univ Toronto, Dept Biol, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada. hannah.ter.hofstede@dartmouth.edu; j.ratcliffe@utoronto.ca Danish Research Council (FNU); Natural Sciences and Engineering Research Council of Canada (NSERC); National Geographic Society; University of Toronto; Dartmouth College The Danish Research Council (FNU), the Natural Sciences and Engineering Research Council of Canada (NSERC), the National Geographic Society, the University of Toronto and Dartmouth College have funded our research. Acharya L, 1999, CAN J ZOOL, V77, P27, DOI 10.1139/cjz-77-1-27; ACHARYA L, 1992, CAN J ZOOL, V70, P1292, DOI 10.1139/z92-180; ACHARYA L, 1995, ANIM BEHAV, V49, P1461, DOI 10.1016/0003-3472(95)90067-5; AGEE H R, 1985, Journal of Agricultural Entomology, V2, P345; AGEE HR, 1969, ANN ENTOMOL SOC AM, V62, P801, DOI 10.1093/aesa/62.4.801; AGEE HR, 1988, ANN ENTOMOL SOC AM, V81, P977, DOI 10.1093/aesa/81.6.977; AGEE HR, 1967, J ECON ENTOMOL, V60, P366, DOI 10.1093/jee/60.2.366; Alcock J., 2013, ANIMAL BEHAV EVOLUTI; Alem S, 2011, BEHAV ECOL SOCIOBIOL, V65, P2105, DOI 10.1007/s00265-011-1219-x; Altermatt F, 2009, ENTOMOL EXP APPL, V130, P259, DOI 10.1111/j.1570-7458.2008.00817.x; Andersson S, 1998, P ROY SOC B-BIOL SCI, V265, P1345, DOI 10.1098/rspb.1998.0440; [Anonymous], TITLE ERROR; Barber JR, 2006, J EXP BIOL, V209, P2637, DOI 10.1242/jeb.02295; Barber JR, 2007, P NATL ACAD SCI USA, V104, P9331, DOI 10.1073/pnas.0703627104; Barber JR, 2015, P NATL ACAD SCI USA, V112, P2812, DOI 10.1073/pnas.1421926112; Barber JR, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0161; Bininda-Emonds ORP, 2007, NATURE, V446, P507, DOI 10.1038/nature05634; Bohmann K, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021441; BOYAN G, 1990, J COMP NEUROL, V295, P248, DOI 10.1002/cne.902950208; BOYAN GS, 1986, J COMP PHYSIOL A, V158, P391, DOI 10.1007/BF00603623; BOYD P, 1984, J COMP PHYSIOL, V154, P423, DOI 10.1007/BF00605241; CARDONE B, 1988, PHYSIOL ENTOMOL, V13, P9, DOI 10.1111/j.1365-3032.1988.tb00903.x; Clare EL, 2009, MOL ECOL, V18, P2532, DOI 10.1111/j.1365-294X.2009.04184.x; Conner WE, 1999, J EXP BIOL, V202, P1711; Corcoran AJ, 2012, J EXP BIOL, V215, P4278, DOI 10.1242/jeb.076943; Corcoran AJ, 2010, CURR ZOOL, V56, P358; Corcoran AJ, 2009, SCIENCE, V325, P325, DOI 10.1126/science.1174096; CORO F, 1993, EXPERIENTIA, V49, P285, DOI 10.1007/BF01923403; Dangles O, 2005, J EXP BIOL, V208, P461, DOI 10.1242/jeb.01369; DAWKINS R, 1979, PROC R SOC SER B-BIO, V205, P489, DOI 10.1098/rspb.1979.0081; DAWSON JW, 1995, J COMP PHYSIOL A, V176, P541; DUNNING DC, 1992, CAN J ZOOL, V70, P2218, DOI 10.1139/z92-298; Dusenbury D. B., 2001, ECOLOGY SENSING, P19; Eklof J, 2002, OIKOS, V99, P347, DOI 10.1034/j.1600-0706.2002.990216.x; Elemans CPH, 2011, SCIENCE, V333, P1885, DOI 10.1126/science.1207309; Faure PA, 2000, J EXP BIOL, V203, P3225; FAURE PA, 1993, J EXP BIOL, V178, P173; FAURE PA, 1990, J COMP PHYSIOL A, V166, P843; Fenton MB, 2012, J EXP BIOL, V215, P2935, DOI 10.1242/jeb.073171; Fenton MB, 2010, CURR BIOL, V20, pR1060, DOI 10.1016/j.cub.2010.10.037; FENTON MB, 1981, J MAMMAL, V62, P233, DOI 10.2307/1380701; FENTON MB, 1979, J COMP PHYSIOL, V132, P77, DOI 10.1007/BF00617734; FORREST TG, 1995, J EXP BIOL, V198, P2593; Forrest TG, 1997, J EXP BIOL, V200, P601; Fournier JP, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0319; Fullard JH, 2008, NATURWISSENSCHAFTEN, V95, P241, DOI 10.1007/s00114-007-0323-2; Fullard JH, 2007, BIOL LETT-UK, V3, P26, DOI 10.1098/rsbl.2006.0550; Fullard JH, 2010, NATURWISSENSCHAFTEN, V97, P53, DOI 10.1007/s00114-009-0610-1; Fullard JH, 2008, J EXP BIOL, V211, P3808, DOI 10.1242/jeb.023978; FULLARD JH, 1982, CAN J ZOOL, V60, P2572, DOI 10.1139/z82-330; Fullard JH, 1999, NATURWISSENSCHAFTEN, V86, P276, DOI 10.1007/s001140050613; Fullard JH, 2000, ANN ENTOMOL SOC AM, V93, P956, DOI 10.1603/0013-8746(2000)093[0956:ASADFA]2.0.CO;2; FULLARD JH, 1984, J COMP PHYSIOL, V155, P795, DOI 10.1007/BF00611596; Fullard JH, 1997, J COMP PHYSIOL A, V181, P477, DOI 10.1007/s003590050131; FULLARD JH, 1977, NATURE, V267, P42, DOI 10.1038/267042a0; FULLARD JH, 1988, EXPERIENTIA, V44, P423, DOI 10.1007/BF01940537; Fullard JH, 2006, AUST J ZOOL, V54, P51, DOI 10.1071/ZO05066; FULLARD JH, 1994, J EVOLUTION BIOL, V7, P435, DOI 10.1046/j.1420-9101.1994.7040435.x; FULLARD JH, 1984, J COMP PHYSIOL, V154, P249, DOI 10.1007/BF00604990; FULLARD JH, 1993, TRENDS ECOL EVOL, V8, P248, DOI 10.1016/0169-5347(93)90200-9; Fullard JH, 2004, J EVOLUTION BIOL, V17, P856, DOI 10.1111/j.1420-9101.2004.00722.x; Fullard JH, 2003, CAN J ZOOL, V81, P395, DOI 10.1139/Z03-019; FULLARD JH, 1980, CAN J ZOOL, V58, P1745, DOI 10.1139/z80-241; Fullard JH, 1998, SPR HDB AUD, V10, P279; FULLARD JH, 1982, PHYSIOL ENTOMOL, V7, P157, DOI 10.1111/j.1365-3032.1982.tb00284.x; FULLARD JH, 1983, CAN J ZOOL, V61, P1752, DOI 10.1139/z83-226; Fullard JH, 2001, ANIM BEHAV, V62, P349, DOI 10.1006/anbe.2001.1753; Fullard JH, 2001, P ROY SOC B-BIOL SCI, V268, P1375, DOI 10.1098/rspb.2001.1664; Fullard JH, 1997, J EXP BIOL, V200, P129; Ghose K, 2009, J EXP BIOL, V212, P693, DOI 10.1242/jeb.019380; Goerlitz HR, 2010, CURR BIOL, V20, P1568, DOI 10.1016/j.cub.2010.07.046; Gopfert MC, 1999, J EXP BIOL, V202, P909; Gopfert MC, 2002, P ROY SOC B-BIOL SCI, V269, P89, DOI 10.1098/rspb.2001.1646; Gopfert MC, 1999, J EXP BIOL, V202, P1579; Griffin D. R., 1958, LISTENING DARK; GRIFFIN DR, 1971, ANIM BEHAV, V19, P55, DOI 10.1016/S0003-3472(71)80134-3; Guignion C, 2004, CAN J ZOOL, V82, P529, DOI 10.1139/Z04-015; HARTLEY DJ, 1992, J ACOUST SOC AM, V91, P1133, DOI 10.1121/1.402640; Hasenfuss I, 1997, ZOOMORPHOLOGY, V117, P155, DOI 10.1007/s004350050040; HELLER KG, 1994, J EXP BIOL, V187, P101; Holderied MW, 2005, J EXP BIOL, V208, P1321, DOI 10.1242/jeb.01528; Holderied MW, 2003, P ROY SOC B-BIOL SCI, V270, P2293, DOI 10.1098/rspb.2003.2487; Hristov NI, 2005, NATURWISSENSCHAFTEN, V92, P164, DOI 10.1007/s00114-005-0611-7; Hulgard K, 2016, SCI REP-UK, V6, DOI 10.1038/srep21500; Jacobs DS, 2008, BEHAV ECOL, V19, P1333, DOI 10.1093/beheco/arn071; Jakobsen L, 2013, FRONT PHYSIOL, V4, DOI 10.3389/fphys.2013.00089; Jakobsen L, 2010, P NATL ACAD SCI USA, V107, P13930, DOI 10.1073/pnas.1006630107; JANZEN DH, 1980, EVOLUTION, V34, P611, DOI 10.1111/j.1558-5646.1980.tb04849.x; Jones G, 2003, BAT ECOLOGY, P301; Jones G, 1999, J EXP BIOL, V202, P3359; Kavlie RG, 2013, CURR BIOL, V23, pR334, DOI 10.1016/j.cub.2013.03.048; Kawahara AY, 2015, P NATL ACAD SCI USA, V112, P6407, DOI 10.1073/pnas.1416679112; KICK SA, 1984, J NEUROSCI, V4, P2725; Lane KA, 2008, J COMP NEUROL, V508, P677, DOI 10.1002/cne.21675; LAWRENCE BD, 1982, J ACOUST SOC AM, V71, P585, DOI 10.1121/1.387529; LEWIS FP, 1993, CAN J ZOOL, V71, P1562, DOI 10.1139/z93-221; LIBERSAT F, 1991, J COMP PHYSIOL A, V169, P507; Lucas KM, 2009, J EXP BIOL, V212, P3533, DOI 10.1242/jeb.032425; MADSEN BM, 1987, J COMP PHYSIOL A, V160, P23, DOI 10.1007/BF00613438; Matsuta N, 2013, J EXP BIOL, V216, P1210, DOI 10.1242/jeb.081398; MILLER LA, 1979, J COMP PHYSIOL, V131, P113, DOI 10.1007/BF00619071; MILLER LA, 1971, J INSECT PHYSIOL, V17, P491, DOI 10.1016/0022-1910(71)90028-X; MILLER LA, 1970, J MORPHOL, V131, P359, DOI 10.1002/jmor.1051310402; Minet Joel, 2003, Handbuch der Zoologie (Berlin), V4, P289; Misof B, 2014, SCIENCE, V346, P763, DOI 10.1126/science.1257570; MORRILL SB, 1992, CAN J ZOOL, V70, P1097, DOI 10.1139/z92-153; Moss CF, 2006, PLOS BIOL, V4, P615, DOI 10.1371/journal.pbio.0040079; Moss Cynthia F., 1995, Springer Handbook of Auditory Research, V5, P87; Muma KE, 2004, ECOL ENTOMOL, V29, P718, DOI 10.1111/j.0307-6946.2004.00655.x; Nakano R, 2009, J EXP BIOL, V212, P4072, DOI 10.1242/jeb.032466; Nakano R, 2008, P NATL ACAD SCI USA, V105, P11812, DOI 10.1073/pnas.0804056105; Nakano R, 2015, J COMP PHYSIOL A, V201, P111, DOI 10.1007/s00359-014-0945-8; Nakano R, 2013, SCI REP-UK, V3, DOI 10.1038/srep02003; NEUWEILER G, 1990, PHYSIOL REV, V70, P615; Nishida R, 2002, ANNU REV ENTOMOL, V47, P57, DOI 10.1146/annurev.ento.47.091201.145121; Niven JE, 2008, J EXP BIOL, V211, P1792, DOI 10.1242/jeb.017574; NOLEN TG, 1986, J COMP PHYSIOL A, V159, P423, DOI 10.1007/BF00604163; Oppel Kenneth, 1997, SILVERWING; Painter ML, 2009, CAN J ZOOL, V87, P865, DOI 10.1139/Z09-075; PAYNE RS, 1966, J EXP BIOL, V44, P17; PEREZ M, 1976, J INSECT PHYSIOL, V22, P1267, DOI 10.1016/0022-1910(76)90105-0; Plotnick RE, 2012, J PALEONTOL, V86, P19, DOI 10.1666/11-072.1; Ratcliffe JM, 2006, BRAIN BEHAV EVOLUT, V67, P165, DOI 10.1159/000090980; Ratcliffe JM, 2005, J EXP BIOL, V208, P4689, DOI 10.1242/jeb.01927; Ratcliffe JM, 2003, ANIM BEHAV, V65, P385, DOI 10.1006/anbe.2003.2059; Ratcliffe JM, 2008, NATURE, V455, P96, DOI 10.1038/nature07087; Ratcliffe JM, 2008, CAN J ZOOL, V86, P582, DOI 10.1139/Z08-024; Ratcliffe JM, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1031; Ratcliffe JM, 2011, J COMP PHYSIOL A, V197, P413, DOI 10.1007/s00359-011-0630-0; Ratcliffe JM, 2011, P ROY SOC B-BIOL SCI, V278, P364, DOI 10.1098/rspb.2010.1488; Ratcliffe John M., 2009, P201; Ratcliffe JM, 2009, BIOL LETTERS, V5, P368, DOI 10.1098/rsbl.2009.0079; Reddy E, 2003, CAN J ZOOL, V81, P1553, DOI 10.1139/Z03-146; Regier JC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058568; Regier JC, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-280; Robert D, 1996, CELL TISSUE RES, V284, P435, DOI 10.1007/s004410050604; ROBERT D, 1992, SCIENCE, V258, P1135, DOI 10.1126/science.1439820; ROBERT D, 1989, J EXP BIOL, V147, P279; Rodriguez RL, 2004, PHYSIOL ENTOMOL, V29, P159, DOI 10.1111/j.1365-3032.2004.00380.x; ROEDER K. D., 1962, ANIMAL BEHAVIOUR, V10, P300, DOI 10.1016/0003-3472(62)90053-2; Roeder K. D., 1962, Verhandlungen XI Internationaler Kongress fuer Entomologie Wien 1960 Vienna (Symp), V3, P7; ROEDER KD, 1957, J EXP ZOOL, V134, P127, DOI 10.1002/jez.1401340107; ROEDER KD, 1964, J INSECT PHYSIOL, V10, P529, DOI 10.1016/0022-1910(64)90025-3; ROEDER KD, 1968, SCIENCE, V159, P331, DOI 10.1126/science.159.3812.331; ROEDER KD, 1974, J INSECT PHYSIOL, V20, P55, DOI 10.1016/0022-1910(74)90123-1; ROEDER KD, 1975, J INSECT PHYSIOL, V21, P1625, DOI 10.1016/0022-1910(75)90200-0; ROEDER KD, 1967, NERVE CELLS INSECT B; ROEDER KD, 1974, P CAN SOC ZOOL ANN M, P71; Roemer Heiner, 2008, Journal of Orthoptera Research, V17, P343, DOI 10.1665/1082-6467-17.2.343; ROMER H, 1988, J COMP NEUROL, V275, P201, DOI 10.1002/cne.902750204; Rosen MJ, 2009, J EXP BIOL, V212, P4056, DOI 10.1242/jeb.033183; Rydell J, 2000, P ROY SOC B-BIOL SCI, V267, P553, DOI 10.1098/rspb.2000.1036; Rydell J, 1997, P ROY SOC B-BIOL SCI, V264, P83, DOI 10.1098/rspb.1997.0012; Rydell J, 2003, NATURWISSENSCHAFTEN, V90, P80, DOI 10.1007/s00114-002-0391-2; Rydell J, 1998, P ROY SOC B-BIOL SCI, V265, P1373, DOI 10.1098/rspb.1998.0444; Rydell J, 2000, OIKOS, V88, P13, DOI 10.1034/j.1600-0706.2000.880103.x; SCHILDBERGER K, 1984, J COMP PHYSIOL, V155, P171, DOI 10.1007/BF00612635; Schmidt S, 2011, J COMP PHYSIOL A, V197, P403, DOI 10.1007/s00359-010-0552-2; Schnitzler HU, 2001, BIOSCIENCE, V51, P557, DOI 10.1641/0006-3568(2001)051[0557:EBIEB]2.0.CO;2; Schoeman MC, 2003, OECOLOGIA, V134, P154, DOI 10.1007/s00442-002-1107-1; Schulze W, 2001, J EXP BIOL, V204, P733; SIMMONS JA, 1979, SCIENCE, V203, P16, DOI 10.1126/science.758674; Simmons N. B., 1998, B AM MUS NAT HIST, V235, P2; Simmons NB, 2008, NATURE, V451, P818, DOI 10.1038/nature06549; Skals N, 2005, J EXP BIOL, V208, P595, DOI 10.1242/jeb.01400; Skals N, 2000, PHYSIOL ENTOMOL, V25, P354, DOI 10.1046/j.1365-3032.2000.00204.x; Skals N, 1999, J EXP BIOL, V202, P2937; Smith EC, 2006, NATURE, V439, P978, DOI 10.1038/nature04485; Soutar AR, 2004, BEHAV ECOL, V15, P1016, DOI 10.1093/beheco/arh103; SPANGLER HG, 1988, PHYSIOL ENTOMOL, V13, P447, DOI 10.1111/j.1365-3032.1988.tb01129.x; Stumpner A, 1996, J COMP PHYSIOL A, V178, P227; Surlykke A, 1997, NATURWISSENSCHAFTEN, V84, P356, DOI 10.1007/s001140050410; SURLYKKE A, 1986, PHYSIOL ENTOMOL, V11, P221, DOI 10.1111/j.1365-3032.1986.tb00409.x; Surlykke A, 1998, NATURWISSENSCHAFTEN, V85, P36, DOI 10.1007/s001140050449; SURLYKKE A, 1986, J COMP PHYSIOL A, V159, P267, DOI 10.1007/BF00612309; Surlykke A, 2000, J ACOUST SOC AM, V108, P2419, DOI 10.1121/1.1315295; SURLYKKE A, 1984, J EXP BIOL, V113, P323; SURLYKKE A, 1982, J INSECT PHYSIOL, V28, P357, DOI 10.1016/0022-1910(82)90048-8; Surlykke A, 2003, J EXP BIOL, V206, P2653, DOI 10.1242/jeb.00469; SURLYKKE A, 1995, NATURWISSENSCHAFTEN, V82, P382, DOI 10.1007/s001140050204; Surlykke A, 1999, NATURWISSENSCHAFTEN, V86, P238, DOI 10.1007/s001140050607; Surlykke A., 1988, NATO ASI (Advanced Science Institutes) Series Series A Life Sciences, P551; Surlykke A, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002036; Svensson GP, 2004, OIKOS, V104, P91, DOI 10.1111/j.0030-1299.2004.12517.x; Svensson MGE, 1999, OIKOS, V84, P193, DOI 10.2307/3546713; Takanashi T, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013144; Teeling EC, 2005, SCIENCE, V307, P580, DOI 10.1126/science.1105113; Teeling EC, 2009, TRENDS ECOL EVOL, V24, P351, DOI 10.1016/j.tree.2009.02.012; ter Hofstede HM, 2008, J EXP BIOL, V211, P2431, DOI 10.1242/jeb.017285; ter Hofstede HM, 2008, BIOL LETTERS, V4, P262, DOI 10.1098/rsbl.2007.0617; ter Hofstede HM, 2013, J EXP BIOL, V216, P3954, DOI 10.1242/jeb.093294; ter Hofstede HM, 2010, J COMP PHYSIOL A, V196, P349, DOI 10.1007/s00359-010-0518-4; ter Hofstede HM, 2008, BEHAV ECOL SOCIOBIOL, V63, P217, DOI 10.1007/s00265-008-0652-y; Tougaard J, 1998, J COMP PHYSIOL A, V183, P563, DOI 10.1007/s003590050282; Tougaard J, 1996, J COMP PHYSIOL A, V178, P669; TREAT ASHER E., 1955, ANN ENT SOC AMER, V48, P272; Triblehorn JD, 2005, J EXP BIOL, V208, P1867, DOI 10.1242/jeb.01565; Triblehorn JD, 2001, J ZOOL, V254, P27, DOI 10.1017/S095283690100053X; van Staaden MJ, 2003, J COMP NEUROL, V465, P579, DOI 10.1002/cne.10871; Veselka N, 2010, NATURE, V463, P939, DOI 10.1038/nature08737; WATERS DA, 1995, J EXP BIOL, V198, P475; Weller SJ, 1999, BIOL J LINN SOC, V68, P557, DOI 10.1006/bijl.1999.0363; WOHLERS DW, 1979, CELL TISSUE RES, V203, P35; Yack JE, 2007, J COMP PHYSIOL A, V193, P577, DOI 10.1007/s00359-007-0213-2; YACK JE, 1988, CAN J ZOOL, V66, P753, DOI 10.1139/z88-111; Yack JE, 1999, ZOOMORPHOLOGY, V119, P93, DOI 10.1007/s004350050084; Yack JE, 2004, MICROSC RES TECHNIQ, V63, P315, DOI 10.1002/jemt.20051; Yack JE, 2000, NATURE, V403, P265, DOI 10.1038/35002247; Yack JE, 2000, J EXP BIOL, V203, P3689; YACK JE, 1993, J COMP PHYSIOL A, V173, P301, DOI 10.1007/BF00212694; Yack JE, 2008, SENSES COMPREHENSIVE, V3, P35; Yager DD, 2008, BIOL J LINN SOC, V94, P541, DOI 10.1111/j.1095-8312.2008.00996.x; YAGER DD, 1990, J ZOOL, V221, P517, DOI 10.1111/j.1469-7998.1990.tb04017.x; Yager DD, 1997, J EXP BIOL, V200, P649; YAGER DD, 1990, J EXP BIOL, V152, P17; YAGER DD, 1987, CELL TISSUE RES, V250, P531; YAGER DD, 1989, J COMP PHYSIOL A, V165, P471, DOI 10.1007/BF00611236; YAGER DD, 1995, J COMP PHYSIOL A, V176, P587, DOI 10.1007/BF01021579; Yager DD, 2000, J ZOOL, V251, P355, DOI 10.1017/S0952836900007093; Zahiri R, 2011, ZOOL SCR, V40, P158, DOI 10.1111/j.1463-6409.2010.00459.x; Zhemchuzhnikov MK, 2014, ARTHROPOD STRUCT DEV, V43, P231, DOI 10.1016/j.asd.2014.04.001 221 11 12 8 107 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. JUN 2016 219 11 1589 1602 10.1242/jeb.086686 14 Biology Life Sciences & Biomedicine - Other Topics DN2EX WOS:000376878000009 27252453 Bronze 2019-02-21 J Perez-Jvostov, F; Hendry, AP; Fussmann, GF; Scott, ME Perez-Jvostov, Felipe; Hendry, Andrew P.; Fussmann, Gregor F.; Scott, Marilyn E. An experimental test of antagonistic effects of competition and parasitism on host performance in semi-natural mesocosms OIKOS English Article GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; ADULT SEX-RATIO; GYRODACTYLUS-TURNBULLI; TRINIDADIAN GUPPY; EXPERIMENTAL INFECTIONS; TREMATODE PARASITES; POPULATION-DYNAMICS; DISEASE RISK; STREAM FISH The mechanisms by which parasites can mediate the interactions between species have received increased interest in recent years. Nonetheless, most research has focused on the role of shared parasites as mediators of interspecific competition. Here, we explore the relative effects of Gyrodactylus specialist ectoparasites of Trinidadian guppies Poecilia reticulata on competition between their host and juveniles of the killifish Rivulus hartii. In mesocosms that replicate natural streams, we exposed guppies to only competitors, to only parasites, to both parasites and competitors, or the absence of both. Consistent with previous studies, we found that female guppies grew significantly less where only Gyrodactylus were present, and this was regardless of infection status or parasite load. Surprisingly, this effect of Gyrodactylus on the growth of female guppies was greatly reduced when both parasites and competitors were present in the mesocosms. We conclude that guppies can mediate the effects of Gyrodactylus on competition with Rivulus, by adaptively fine-tuning their phenotype when simultaneously facing multiple enemies. [Perez-Jvostov, Felipe; Scott, Marilyn E.] McGill Univ, Inst Parasitol, 21111 Lakeshore Rd, Ste Anne De Bellevue, PQ H9X 3V9, Canada; [Perez-Jvostov, Felipe; Scott, Marilyn E.] McGill Univ, Ctr Host Parasite Interact, 21111 Lakeshore Rd, Ste Anne De Bellevue, PQ H9X 3V9, Canada; [Hendry, Andrew P.] McGill Univ, Redpath Museum, 859 Sherbrooke St West, Montreal, PQ H3A 2K6, Canada; [Fussmann, Gregor F.] McGill Univ, Dept Biol, 1205 Docteur Penfield, Montreal, PQ H3A 1B1, Canada Perez-Jvostov, F (reprint author), McGill Univ, Inst Parasitol, 21111 Lakeshore Rd, Ste Anne De Bellevue, PQ H9X 3V9, Canada.; Perez-Jvostov, F (reprint author), McGill Univ, Ctr Host Parasite Interact, 21111 Lakeshore Rd, Ste Anne De Bellevue, PQ H9X 3V9, Canada. felipe.perezjvostov@mail.mcgill.ca Fussmann, Gregor/0000-0001-9576-0122 ANDERSON RM, 1981, PHILOS T R SOC B, V291, P451, DOI 10.1098/rstb.1981.0005; Arendt JD, 2014, EVOLUTION, V68, P2343, DOI 10.1111/evo.12445; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Brunner JL, 2008, ECOLOGY, V89, P2259, DOI 10.1890/07-0665.1; Cable J, 2007, BIOL J LINN SOC, V90, P647, DOI 10.1111/j.1095-8312.2006.00755.x; Cable J, 2002, INT J PARASITOL, V32, P255, DOI 10.1016/S0020-7519(01)00330-7; Cable J, 2013, PARASITOLOGY, V140, P1138, DOI 10.1017/S003118201300067X; Chase JM, 2002, ECOL LETT, V5, P302, DOI 10.1046/j.1461-0248.2002.00315.x; COHEN J, 1977, REPRODUCTION; Dargent F, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2371; Dunn AM, 2012, FUNCT ECOL, V26, P1262, DOI 10.1111/j.1365-2435.2012.02041.x; DUSSAULT GV, 1981, CAN J ZOOL, V59, P684, DOI 10.1139/z81-098; Fraser DF, 1999, ECOLOGY, V80, P597, DOI 10.1890/0012-9658(1999)080[0597:HQIAHR]2.0.CO;2; Fraser DF, 2013, ECOLOGY, V94, P640, DOI 10.1890/12-0803.1; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Gotanda KM, 2013, OECOLOGIA, V172, P155, DOI 10.1007/s00442-012-2485-7; Hall SR, 2009, ECOLOGY, V90, P791, DOI 10.1890/08-0838.1; HARRIS PD, 1989, PARASITOLOGY, V98, P245, DOI 10.1017/S0031182000062156; HARRIS PD, 1992, J PARASITOL, V78, P912, DOI 10.2307/3283329; Harris PD, 2004, SYST PARASITOL, V59, P1, DOI 10.1023/B:SYPA.0000038447.52015.e4; Hatcher MJ, 2006, ECOL LETT, V9, P1253, DOI 10.1111/j.1461-0248.2006.00964.x; HOLT RD, 1977, THEOR POPUL BIOL, V12, P197, DOI 10.1016/0040-5809(77)90042-9; Hudson P, 1998, TRENDS ECOL EVOL, V13, P387, DOI 10.1016/S0169-5347(98)01475-X; KEARN GC, 1994, INT J PARASITOL, V24, P1227, DOI 10.1016/0020-7519(94)90193-7; Keesing F, 2006, ECOL LETT, V9, P485, DOI 10.1111/j.1461-0248.2006.00885.x; King TA, 2007, INT J PARASITOL, V37, P663, DOI 10.1016/j.ijpara.2006.11.015; King TA, 2009, PARASITOL INT, V58, P249, DOI 10.1016/j.parint.2009.04.005; Lafferty KD, 1996, ECOLOGY, V77, P1390, DOI 10.2307/2265536; Logiudice K, 2008, ECOLOGY, V89, P2841, DOI 10.1890/07-1047.1; Marino JA, 2013, ECOLOGY, V94, P2697, DOI 10.1890/13-0396.1; Marino JA, 2014, OIKOS, V123, P451, DOI 10.1111/j.1600-0706.2013.00896.x; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; McKellar AE, 2011, J FISH BIOL, V79, P937, DOI 10.1111/j.1095-8649.2011.03065.x; Millar P., 2006, OIKOS, V113, P1; MINCHELLA DJ, 1991, TRENDS ECOL EVOL, V6, P250, DOI 10.1016/0169-5347(91)90071-5; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Pedersen AB, 2007, TRENDS ECOL EVOL, V22, P133, DOI 10.1016/j.tree.2006.11.005; Perez-Jvostov F., 2015, DRYAD DIGITAL REPOSI, DOI DOI 10.5061/DRYAD.F5124; Perez-Jvostov F, 2012, OECOLOGIA, V170, P77, DOI 10.1007/s00442-012-2289-9; Price P., 1986, ANNU REV ECOL SYST, V1, P487; Raffel TR, 2010, ECOLOGY, V91, P1900, DOI 10.1890/09-1697.1; Rauw Wendy M., 2012, Frontiers in Genetics, V3, P267, DOI 10.3389/fgene.2012.00267; Relyea RA, 2002, ECOL MONOGR, V72, P523, DOI 10.1890/0012-9615(2002)072[0523:CIPITC]2.0.CO;2; Relyea RA, 2007, OECOLOGIA, V152, P389, DOI 10.1007/s00442-007-0675-5; Richards EL, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013285; Richards GR, 1996, PARASITOL RES, V82, P242, DOI 10.1007/s004360050103; Rodd F. H., 2007, AQUAT ECOL, V42, P693; Sadd BM, 2009, BIOL LETTERS, V5, P798, DOI 10.1098/rsbl.2009.0458; SCOTT ME, 1984, PARASITOLOGY, V89, P159, DOI 10.1017/S0031182000001207; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1973, THESIS U BRIT COLUMB; van Oosterhout C, 2007, INT J PARASITOL, V37, P805, DOI 10.1016/j.ijpara.2006.12.016; Van Oosterhout C, 2003, BIOL J LINN SOC, V79, P645, DOI 10.1046/j.1095-8312.2003.00203.x; Walsh MR, 2011, FUNCT ECOL, V25, P227, DOI 10.1111/j.1365-2435.2010.01786.x; Weese DJ, 2010, EVOLUTION, V64, P1802, DOI 10.1111/j.1558-5646.2010.00945.x; Werner EE, 2003, ECOLOGY, V84, P1083, DOI 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2; Wilson K, 2009, PHENOTYPIC PLASTICIT, P381; Xavier R, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117096 58 4 4 2 17 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos JUN 2016 125 6 790 796 10.1111/oik.02499 7 Ecology Environmental Sciences & Ecology DN6UM WOS:000377212000005 2019-02-21 J Torres, KMM; Higgins, CL Torres, Kryztal M. Medina; Higgins, Christopher L. Taxonomic and functional organization in metacommunity structure of stream-fish assemblages among and within river basins in Texas AQUATIC ECOLOGY English Article Connectivity; River continuum concept; Dendritic network; Spatial distributions; Warm-water streams; Life-history LIFE-HISTORY STRATEGIES; COMMUNITY STRUCTURE; COMPREHENSIVE FRAMEWORK; ECOLOGICAL COMMUNITIES; POPULATION REGULATION; TEMPORAL VARIABILITY; CONTINUUM CONCEPT; REGRESSION TREES; SPECIES RICHNESS; PATTERNS Metacommunities are spatially structured communities linked by dispersal. They provide a connection between local community assembly and regional-level processes. One of the more widely used methods to address questions related to metacommunity concepts is those that characterize elements of metacommunity structure by quantifying aspects of coherence, species turnover, and boundary clumping. In this study, we used this approach to study the spatial ecology of freshwater fishes in Texas. Stream-fish assemblages in Texas provide an excellent opportunity to examine the patterns of metacommunity structure due to the number of drainages that empty directly into the Gulf of Mexico, which minimizes the likelihood of dispersal between basins while allowing for longitudinal movement within basins. We used fisheries data published by the Texas Parks and Wildlife Department and from the North American Water Quality Association, which consisted of 94 sampling localities distributed across 18 river basins and 11 ecoregions. To examine within-basin patterns, we focused only on the Brazos, Colorado, and Trinity rivers because of the number of sites within each of these basins. From a taxonomic standpoint, we consistently observed Clementsian patterns regardless of whether it was among or within river basins, whereas we mostly observed Gleasonian patterns from a functional perspective. Only one functional group was found at all sites in each of the three main river basins, which consisted of invertivores with an equilibrium life-history strategy. Various bioclimatic variables were significantly correlated with metacommunity structure, but these correlations differed between taxonomic and functional organization and differed depending on which river basin was considered. The results of this study support previous findings that species composition and functional traits relate to environmental gradients, but further our understanding by providing additional evidence that species sorting processes are the dominant structuring mechanisms. [Torres, Kryztal M. Medina; Higgins, Christopher L.] Tarleton State Univ, Dept Biol Sci, Stephenville, TX 76402 USA Higgins, CL (reprint author), Tarleton State Univ, Dept Biol Sci, Stephenville, TX 76402 USA. higgins@tarleton.edu Altermatt F, 2013, AQUAT ECOL, V47, P365, DOI 10.1007/s10452-013-9450-3; ANDERSON AA, 1995, SOUTHWEST NAT, V40, P314; Bertuzzo E, 2009, WATER RESOUR RES, V45, DOI 10.1029/2009WR007997; Borthagaray A. I., 2015, AQUATIC FUNCTIONAL B, P75, DOI [10.1016/B978-0-12-417015-5.00004-9, DOI 10.1016/B978-0-12-417015-5.00004-9]; Carrara F, 2012, P NATL ACAD SCI USA, V109, P5761, DOI 10.1073/pnas.1119651109; Clements FE, 1916, PLANT SUCCESSION ANA; Cook RR, 2004, OECOLOGIA, V140, P639, DOI 10.1007/s00442-004-1618-z; Cottenie K, 2003, ECOLOGY, V84, P991, DOI 10.1890/0012-9658(2003)084[0991:ZMSRVL]2.0.CO;2; De Bie T, 2012, ECOL LETT, V15, P740, DOI 10.1111/j.1461-0248.2012.01794.x; de la Sancha NU, 2014, DIVERS DISTRIB, V20, P1058, DOI 10.1111/ddi.12210; De'ath G, 2000, ECOLOGY, V81, P3178, DOI 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2; Eros T, 2014, HYDROBIOLOGIA, V722, P31, DOI 10.1007/s10750-013-1673-8; Eros T, 2012, FRESHWATER BIOL, V57, P1914, DOI 10.1111/j.1365-2427.2012.02842.x; Evelyn H, 2007, BIODIVERS CONSERV, V16, P3179, DOI 10.1007/s10531-007-9171-9; Fernandes IM, 2014, ECOGRAPHY, V37, P464, DOI 10.1111/j.1600-0587.2013.00527.x; GAUCH H. G, 1982, MULTIVARIATE ANAL CO; Gleason H. A., 1926, B TORREY BOT CLUB, V53, P7, DOI [DOI 10.2307/2479933, 10.2307/2479933]; HANSKI I, 1991, BIOL J LINN SOC, V42, P3, DOI 10.1111/j.1095-8312.1991.tb00548.x; Heino J, 2005, ECOL ENTOMOL, V30, P590, DOI 10.1111/j.0307-6946.2005.00728.x; Heino J, 2005, FRESHWATER BIOL, V50, P567, DOI 10.1111/j.1365-2427.2005.01346.x; Heino J, 2015, ECOL EVOL, V5, P1525, DOI 10.1002/ece3.1460; Heino J, 2015, FRESHWATER BIOL, V60, P845, DOI 10.1111/fwb.12533; Heino J, 2013, OECOLOGIA, V171, P971, DOI 10.1007/s00442-012-2451-4; Henriques-Silva R, 2013, ECOLOGY, V94, P627, DOI 10.1890/12-0683.1; Higgins CL, 2008, T AM FISH SOC, V137, P696, DOI 10.1577/T07-061.1; Higgins CL, 2010, ECOGRAPHY, V33, P678, DOI 10.1111/j.1600-0587.2009.05958.x; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Hoeinghaus DJ, 2007, J BIOGEOGR, V34, P324, DOI 10.1111/j.1365-2699.2006.01587.x; Holyoak M., 2005, METACOMMUNITIES SPAT; Hortal J, 2014, J LIMNOL, V73, P46, DOI 10.4081/jlimnol.2014.887; Hoverman JT, 2011, ECOGRAPHY, V34, P1049, DOI 10.1111/j.1600-0587.2011.06856.x; Ibarra AA, 2005, ECOL FRESHW FISH, V14, P233, DOI 10.1111/j.1600-0633.2005.00096.x; Jacobson B, 2010, LANDSCAPE ECOL, V25, P495, DOI 10.1007/s10980-009-9442-9; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.1890/0012-9658(2002)083[1792:ICOSFC]2.0.CO;2; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Leibold MA, 2002, OIKOS, V97, P237, DOI 10.1034/j.1600-0706.2002.970210.x; Leibold MA, 2010, ECOL LETT, V13, P1290, DOI 10.1111/j.1461-0248.2010.01523.x; LINAM G, 2002, 17 TEX PARKS WILDL D; Logue JB, 2011, TRENDS ECOL EVOL, V26, P482, DOI 10.1016/j.tree.2011.04.009; Loh WY, 2011, WIRES DATA MIN KNOWL, V1, P14, DOI 10.1002/widm.8; Lopez-Gonzalez C, 2012, J BIOGEOGR, V39, P177, DOI 10.1111/j.1365-2699.2011.02590.x; Muneepeerakul R, 2008, NATURE, V453, P220, DOI 10.1038/nature06813; OBERDORFF T, 1993, HYDROBIOLOGIA, V259, P157, DOI 10.1007/BF00006595; Ostrand KG, 2002, ECOL FRESHW FISH, V11, P137, DOI 10.1034/j.1600-0633.2002.00005.x; PATTERSON BD, 1986, BIOL J LINN SOC, V28, P65, DOI 10.1111/j.1095-8312.1986.tb01749.x; Perkin JS, 2012, ECOL APPL, V22, P2176, DOI 10.1890/12-0318.1; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Presley SJ, 2011, BIOTROPICA, V43, P480, DOI 10.1111/j.1744-7429.2010.00727.x; Presley SJ, 2010, OIKOS, V119, P908, DOI 10.1111/j.1600-0706.2010.18544.x; Presley SJ, 2009, OECOLOGIA, V160, P781, DOI 10.1007/s00442-009-1341-x; Guimaraes TDR, 2014, HYDROBIOLOGIA, V740, P207, DOI 10.1007/s10750-014-1954-x; Ricklefs RE, 2004, ECOL LETT, V7, P1, DOI 10.1046/j.1461-0248.2003.00554.x; Rodriguez-Iturbe I., 2009, WATER RESOUR RES, V45, P1; SCHLOSSER IJ, 1982, ECOL MONOGR, V52, P395, DOI 10.2307/2937352; Schwalb AN, 2015, FRESHWATER BIOL, V60, P911, DOI 10.1111/fwb.12544; SIMBERLOFF D, 1991, ANNU REV ECOL SYST, V22, P115, DOI 10.1146/annurev.es.22.110191.000555; SIMBERLOFF D, 1983, AM NAT, V122, P626, DOI 10.1086/284163; Sokol ER, 2011, AM NAT, V177, P630, DOI 10.1086/659625; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Tilman D., 1982, RESOURCE COMPETITION; Tornwall Brett, 2015, Diversity-Basel, V7, P16; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Urban D. L, 2002, ANAL ECOLOGICAL COMM, P222; Urban MC, 2008, TRENDS ECOL EVOL, V23, P311, DOI 10.1016/j.tree.2008.02.007; Van Looy K, 2014, ECOL INDIC, V37, P10, DOI 10.1016/j.ecolind.2013.10.006; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; WILSON DS, 1992, ECOLOGY, V73, P1984, DOI 10.2307/1941449; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Winemiller KO, 1995, ENCY ENV BIOL, V2, P49 72 4 5 1 31 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1386-2588 1573-5125 AQUAT ECOL Aquat. Ecol. JUN 2016 50 2 247 259 10.1007/s10452-016-9572-5 13 Ecology; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DM8KB WOS:000376610200009 2019-02-21 J Refsnider, JM Refsnider, Jeanine M. Nest-site choice and nest construction in non-avian reptiles: Evolutionary significance and ecological implications AVIAN BIOLOGY RESEARCH English Article crocodilian; incubation; life history; lizard; parental care; snake; Tuatara; turtle DEPENDENT SEX DETERMINATION; TUATARA SPHENODON-PUNCTATUS; SNAKES PITUOPHIS-MELANOLEUCUS; TURTLES CHELYDRA-SERPENTINA; HATCHLING SNAPPING TURTLES; LIFE-HISTORY EVOLUTION; CLIMATE-CHANGE; INCUBATION-TEMPERATURE; HATCHING SUCCESS; ADAPTIVE SIGNIFICANCE In oviparous animals, nest-site choice is both a critical determinant of an individual's lifetime fitness, and an important demographic parameter of populations. At the individual level, the location and characteristics of a nest site impact survival of both the nesting female and the nestling or hatchling stage, and can also influence offspring phenotype and the survival of emerging juveniles. At the population level, survival rates of females and offspring, and phenotypes affected by incubation conditions, affect population trends. Reptiles differ from birds in several key life-history traits associated with nesting behaviour in that they have long incubation periods, bury eggs within a substrate, and have minimal parental care. However, studies in reptile systems have also demonstrated several evolutionary drivers of nest-site choice that are also likely to be important in avian systems. These include the role of incubation conditions in affecting offspring phenotype, and the contribution of nest-site choice to survival of the juvenile life stage. Overall, studies on the evolution and ecology of nest-site choice in reptiles and birds have much to offer each other in terms of both theoretical basis and applications to conservation and management. Incorporating knowledge gained from a range of taxa into our research, and testing hypotheses in one system that have demonstrated importance in other systems, will provide a richer understanding of the ecology and evolution of nest-site choice. [Refsnider, Jeanine M.] Univ Toledo, Dept Environm Sci, Wolfe Hall Suite 1235,2801 West Bancroft St, Toledo, OH 43606 USA Refsnider, JM (reprint author), Univ Toledo, Dept Environm Sci, Wolfe Hall Suite 1235,2801 West Bancroft St, Toledo, OH 43606 USA. jeanine.refsnider@utoledo.edu College of Natural Sciences and Mathematics at the University of Toledo; National Science Foundation [1202725] I am very grateful to Charles Deeming for the opportunity to participate in the 2015 Nest Construction and Function Conference. I would also like to acknowledge the College of Natural Sciences and Mathematics at the University of Toledo for funding my travel to the conference. During the preparation of this manuscript I was supported by a National Science Foundation Postdoctoral Research Fellowship (1202725). Ackerman R.A., 2004, P15; ACKERMAN RA, 1985, COPEIA, P703, DOI 10.2307/1444764; ACKERMAN RA, 1985, PHYSIOL ZOOL, V58, P129, DOI 10.1086/physzool.58.1.30161226; Angilletta MJ, 2009, ECOLOGY, V90, P2933, DOI 10.1890/08-2224.1; Ar A., 1978, P227; Aubret F, 2003, BIOL J LINN SOC, V78, P263, DOI 10.1046/j.1095-8312.2003.00169.x; Barber I, 2013, AVIAN BIOL RES, V6, P83, DOI 10.3184/175815513X13609538379947; Belinsky A., 2004, P125; Bernardo J, 1996, AM ZOOL, V36, P83; Birchard G.F., 2004, P103; BOCK BC, 1989, COPEIA, P978, DOI 10.2307/1445983; Bodensteiner BL, 2015, FUNCT ECOL, V29, P710, DOI 10.1111/1365-2435.12382; Booth D.T., 2002, REPTILIAN INCUBATION, P192; Booth DT, 2006, PHYSIOL BIOCHEM ZOOL, V79, P274, DOI 10.1086/499988; BROOKS RJ, 1991, CAN J ZOOL, V69, P2667, DOI 10.1139/z91-375; Brown GP, 2005, CAN J ZOOL, V83, P1134, DOI 10.1139/Z05-115; Brown GP, 2004, ECOLOGY, V85, P1627, DOI 10.1890/03-0107; BURGER J, 1993, COPEIA, P748; BURGER J, 1989, BEHAV ECOL SOCIOBIOL, V24, P201, DOI 10.1007/BF00295199; BURGER J, 1986, COPEIA, P116; Bustard H.R., 1972, SEA TURTLES THEIR NA; Chalfoun AD, 2012, AUK, V129, P589, DOI 10.1525/auk.2012.129.4.589; Chu CT, 2008, AUST J ZOOL, V56, P57, DOI 10.1071/ZO08004; Congdon JD, 2001, EXP GERONTOL, V36, P813, DOI 10.1016/S0531-5565(00)00242-4; CONGDON JD, 1983, HERPETOLOGICA, V39, P417; CREE A, 1995, NATURE, V375, P543, DOI 10.1038/375543a0; Cree A., 1990, NEW SCI, V1739, P22; Deeming D.C., 2004, P1; Deeming DC, 2007, J ZOOL, V271, P78, DOI 10.1111/j.1469-7998.2006.00219.x; Deeming DC, 2006, J ZOOL, V270, P209, DOI 10.1111/j.1469-7998.2006.00131.x; Deeming DC, 2015, NESTS, EGGS, AND INCUBATION: NEW IDEAS ABOUT AVIAN REPRODUCTION, P29; Deeming D. C., 2004, REPTILIAN INCUBATION, P211; DEEMING DC, 1989, AM ZOOL, V29, P973; DEEMING DC, 1991, POULT SCI S, V22, P3; Deeming Denis C., 2004, P33; Doody JS, 2006, EVOL ECOL, V20, P307, DOI 10.1007/s10682-006-0003-2; Doody JS, 2014, J HERPETOL, V48, P363, DOI 10.1670/13-006; Doody JS, 2009, AUSTRAL ECOL, V34, P773, DOI 10.1111/j.1442-9993.2009.01983.x; Doody JS, 2009, Q REV BIOL, V84, P229, DOI 10.1086/605078; DuRant SE, 2013, BIOL REV, V88, P499, DOI 10.1111/brv.12015; ERNST C H, 1974, Journal of Herpetology, V8, P237, DOI 10.2307/1563169; Ewert MA, 2005, J ZOOL, V265, P81, DOI 10.1017/S0952836904006120; EWERT MA, 1994, J EXP ZOOL, V270, P3, DOI 10.1002/jez.1402700103; FERGUSON MWJ, 1983, J ZOOL, V200, P143; Freedberg S, 2001, EVOLUTION, V55, P1049, DOI 10.1554/0014-3820(2001)055[1049:CIAAMF]2.0.CO;2; Frith H.J., 1962, THE MALLEE FOWL; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Girondot M, 1998, CONSERV BIOL, V12, P353, DOI 10.1046/j.1523-1739.1998.96382.x; Goth A, 2005, BIOL LETTERS, V1, P31, DOI 10.1098/rsbl.2004.0247; GUTZKE WHN, 1987, PHYSIOL ZOOL, V60, P9, DOI 10.1086/physzool.60.1.30158624; Harlow PS, 2000, AUSTRAL ECOL, V25, P640, DOI 10.1046/j.1442-9993.2000.01064.x; Haxton T, 2000, CAN FIELD NAT, V114, P106; Hepp GR, 2015, NESTS, EGGS, AND INCUBATION: NEW IDEAS ABOUT AVIAN REPRODUCTION, P171; Hughes EJ, 2006, CAN J ZOOL, V84, P1545, DOI 10.1139/Z06-148; Hulin V, 2009, OECOLOGIA, V160, P493, DOI 10.1007/s00442-009-1313-1; Janzen FJ, 2001, ANIM BEHAV, V62, P73, DOI 10.1006/anbe.2000.1732; JANZEN FJ, 1994, P NATL ACAD SCI USA, V91, P7487, DOI 10.1073/pnas.91.16.7487; Jergenson AM, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2013.0782; Kamel SJ, 2005, ANIM BEHAV, V70, P819, DOI 10.1016/j.anbehav.2005.01.006; Kamel SJ, 2004, ANIM BEHAV, V68, P357, DOI 10.1016/j.anbehav.2003.07.021; Kolbe JJ, 2002, ECOLOGY, V83, P269, DOI 10.2307/2680137; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lang J.W., 1987, P273; LANG JW, 1994, J EXP ZOOL, V270, P28, DOI 10.1002/jez.1402700105; Les HL, 2009, PHYSIOL BIOCHEM ZOOL, V82, P105, DOI 10.1086/590263; Leslie AJ, 2001, BIOL CONSERV, V98, P347, DOI 10.1016/S0006-3207(00)00177-4; Madsen T, 1999, ECOLOGY, V80, P989, DOI 10.1890/0012-9658(1999)080[0989:LHCONS]2.0.CO;2; MAGNUSSON WE, 1979, J HERPETOL, V13, P439, DOI 10.2307/1563479; Mainwaring MC, 2015, NESTS, EGGS, AND INCUBATION: NEW IDEAS ABOUT AVIAN REPRODUCTION, P50; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P455; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; Matsuzawa Y, 2002, MAR BIOL, V140, P639, DOI 10.1007/s00227-001-0724-2; MCGEHEE MA, 1990, HERPETOLOGICA, V46, P251; MILLER K, 1993, J HERPETOL, V27, P228, DOI 10.2307/1564943; MILLER K, 1987, J EXP BIOL, V127, P401; Mitchell NJ, 2010, SEX DEV, V4, P129, DOI 10.1159/000282494; Mitchell NJ, 2008, P ROY SOC B-BIOL SCI, V275, P2185, DOI 10.1098/rspb.2008.0438; Mitchell TS, 2015, FUNCT ECOL, V29, P268, DOI 10.1111/1365-2435.12315; Mitchell TS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2460; Mitchell TS, 2013, ECOLOGY, V94, P336, DOI 10.1890/12-0343.1; MORA JM, 1989, HERPETOLOGICA, V45, P293; Nelson Nicola J., 2004, P53; Nelson NJ, 2004, NEW ZEAL J ZOOL, V31, P283, DOI 10.1080/03014223.2004.9518381; Nelson NJ, 2002, J BIOGEOGR, V29, P633, DOI 10.1046/j.1365-2699.2002.00712.x; Neuwald J, 2011, PLOS ONE, V6, P1; Newell M, 2015, MAR ECOL PROG SER, V532, P257, DOI 10.3354/meps11329; PACKARD GC, 1977, BIOL REV, V52, P71, DOI 10.1111/j.1469-185X.1977.tb01346.x; PACKARD MJ, 1982, HERPETOLOGICA, V38, P136; Part T, 2003, P ROY SOC B-BIOL SCI, V270, P1809, DOI 10.1098/rspb.2003.2419; PAUKSTIS GL, 1989, CAN J ZOOL, V67, P1082, DOI 10.1139/z89-151; Pina CI, 2003, J HERPETOL, V37, P199, DOI 10.1670/0022-1511(2003)037[0199:EOITOI]2.0.CO;2; Platt SG, 2008, J ZOOL, V275, P177, DOI 10.1111/j.1469-7998.2008.00426.x; PLUMMER MV, 1981, COPEIA, P243, DOI 10.2307/1444070; Poykko H, 2006, ENVIRON ENTOMOL, V35, P1669, DOI 10.1603/0046-225X(2006)35[1669:FALOAG]2.0.CO;2; Putman NF, 2010, INTEGR COMP BIOL, V50, P305, DOI 10.1093/icb/icq041; RAND AS, 1983, COPEIA, P705, DOI 10.2307/1444336; Refsnider JM, 2013, ANIM CONSERV, V16, P481, DOI 10.1111/acv.12034; Refsnider JM, 2010, J ZOOL, V280, P396, DOI 10.1111/j.1469-7998.2009.00676.x; Refsnider JM, 2014, EVOL ECOL, V28, P977, DOI 10.1007/s10682-014-9710-2; Refsnider JM, 2013, J THERM BIOL, V38, P152, DOI 10.1016/j.jtherbio.2013.01.003; Refsnider JM, 2013, J ETHOL, V31, P85, DOI 10.1007/s10164-012-0354-9; Refsnider JM, 2012, BIOL CONSERV, V152, P90, DOI 10.1016/j.biocon.2012.03.019; Refsnider JM, 2010, ANNU REV ECOL EVOL S, V41, P39, DOI 10.1146/annurev-ecolsys-102209-144712; Refsnider JM, 2009, J HERPETOL, V43, P294, DOI 10.1670/08-120R1.1; Resetarits WJ, 1996, AM ZOOL, V36, P205; Roosenburg WM, 1996, AM ZOOL, V36, P157; SEYMOUR RS, 1980, AM ZOOL, V20, P437; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; Shine R, 2002, J EVOLUTION BIOL, V15, P553, DOI 10.1046/j.1420-9101.2002.00420.x; Shine R, 1997, ECOLOGY, V78, P1713; Shine R, 1996, ECOLOGY, V77, P1808, DOI 10.2307/2265785; Shine R, 1997, ECOLOGY, V78, P2559; SHINE R, 1988, BIOL REPTILIA, V16, P275; Shine R, 2014, J HERPETOL, V48, P147, DOI 10.1670/13-075; Socci AM, 2005, HERPETOLOGICA, V61, P233, DOI 10.1655/04-67.1; Somaweera R, 2013, AUSTRAL ECOL, V38, P313, DOI 10.1111/j.1442-9993.2012.02406.x; Spencer RJ, 2002, ECOLOGY, V83, P2136, DOI 10.2307/3072045; Spencer RJ, 2003, OIKOS, V102, P592, DOI 10.1034/j.1600-0706.2003.12436.x; Steen DA, 2004, CONSERV BIOL, V18, P1143, DOI 10.1111/j.1523-1739.2004.00240.x; Streby HM, 2014, AUK, V131, P718, DOI 10.1642/AUK-14-69.1; Streby HM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.1834; Telemeco RS, 2013, AM NAT, V181, P637, DOI 10.1086/670051; Telemeco RS, 2009, ECOLOGY, V90, P17, DOI 10.1890/08-1452.1; Thompson MB, 1996, J ZOOL, V238, P239, DOI 10.1111/j.1469-7998.1996.tb05392.x; Urban MC, 2014, EVOL APPL, V7, P88, DOI 10.1111/eva.12114; VANDAMME R, 1992, HERPETOLOGICA, V48, P220; Verdade L. M., 2001, Brazilian Journal of Biology, V61, P431, DOI 10.1590/S1519-69842001000300012; VITT LJ, 1993, CAN J ZOOL, V71, P2370, DOI 10.1139/z93-333; Warner DA, 2008, NATURE, V451, P566, DOI 10.1038/nature06519; WEBB G, 2002, AUSTR CROCODILES NAT; Weisrock DW, 1999, FUNCT ECOL, V13, P94, DOI 10.1046/j.1365-2435.1999.00288.x; WITH KA, 1993, CONDOR, V95, P401, DOI 10.2307/1369363; Wood DW, 2000, COPEIA, P119 135 5 5 2 68 SCIENCE REVIEWS 2000 LTD ST ALBANS PO BOX 314, ST ALBANS AL1 4ZG, HERTS, ENGLAND 1758-1559 1758-1567 AVIAN BIOL RES Avian Biol. Res. JUN 2016 9 2 76 88 10.3184/175815516X14490631289752 13 Agriculture, Dairy & Animal Science; Ornithology; Zoology Agriculture; Zoology DM8GN WOS:000376599500002 2019-02-21 J Galatowitsch, ML; McIntosh, AR Galatowitsch, Mark L.; McIntosh, Angus R. Trait flexibility of generalist invertebrates exposed to contrasting predation and drying stressors FRESHWATER BIOLOGY English Article anti-predator behaviour; drying tolerance; life-history flexibility; pond permanence LIFE-HISTORY STRATEGIES; WATER HABITAT GRADIENT; NEW-ZEALAND; HETEROGENEOUS ENVIRONMENTS; PHENOTYPIC PLASTICITY; PERMANENCE GRADIENT; TIME CONSTRAINTS; HARD SELECTION; TRADE-OFFS; EVOLUTION How different generalist species are able to exploit heterogeneous landscapes likely depends on whether their life-history strategies confer resilience to multiple environmental selection pressures. We investigated the life-history strategies of two generalist invertebrates, Xanthocnemis zealandica damselflies and Sigara arguta waterboatmen, which inhabit ponds varying in drying and predator presence. Using mesocosm experiments with temporary- and permanent-pond nymphs, we determined the flexibility of their predator avoidance and drying resistance.Xanthocnemis zealandica was most susceptible to predatory fish regardless of natal habitat, with permanent-pond nymphs more likely to have reduced movement, higher refuge use and slower growth than temporary-pond nymphs; growth was, however, not influenced by predator presence. Xanthocnemis zealandica had a fixed response to drying stress, with high survival rates (80-90%) during short drying periods (2-8days), regardless of natal habitat. In contrast to X.zealandica, S.arguta had a completely inflexible life-history with no differences in predator avoidance between permanent- and temporary-pond nymphs, and a complete inability to survive drying. Without flexible traits S.arguta may counter potentially high costs of predation in permanent ponds and drying mortality in temporary ponds through rapid development and terrestrial dispersal. Xanthocnemis zealandica's flexible life-history is likely driven by longer nymphal development which requires adaptation to both predator and drying stressors to complete their life-cycle over the range of habitats they occupy. Overall, these two species exemplify how generalists can strongly differ in their life-history strategies but still persist across a similar range of habitats. [Galatowitsch, Mark L.; McIntosh, Angus R.] Univ Canterbury, Sch Biol Sci, Ctr Integrat Ecol, Christchurch 1, New Zealand; [Galatowitsch, Mark L.] Ctr Coll Danville, Dept Biol, 600 West Walnut St, Danville, KY 40422 USA Galatowitsch, ML (reprint author), Ctr Coll Danville, Dept Biol, 600 West Walnut St, Danville, KY 40422 USA. mark.galatowitsch@centre.edu McIntosh, Angus/B-2992-2011 McIntosh, Angus/0000-0003-2696-8813 Miss E.L. Hellaby Indigenous Grassland Research Trust; Educate New Zealand International Doctoral Scholarship; UC's Freshwater Ecology Research Group We are grateful to Amanda Klemmer, Helen Warburton and Hamish Greig for field assistance, Linda Morris for technical support and Nick Etheridge for critical help with mesocosm construction. This work was funded by the Miss E.L. Hellaby Indigenous Grassland Research Trust and an Educate New Zealand International Doctoral Scholarship for MLG. We were also grateful to University of Canterbury (UC) for providing facilities at the Cass Field Station. Fish use in our experiments complied with UC's Animal Ethics requirements. We thank UC's Freshwater Ecology Research Group for support, and Christoph Matthaei, Jenny Davis and two anonymous reviewers for comments which improved the manuscript. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.2307/3071813; Baber MJ, 2004, OIKOS, V107, P16; Bates D, 2013, LINEAR MIXED EFFECTS; Bogan MT, 2013, FRESHWATER BIOL, V58, P1016, DOI 10.1111/fwb.12105; Bourne EC, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2795; Caceres CE, 1997, P NATL ACAD SCI USA, V94, P9171, DOI 10.1073/pnas.94.17.9171; Chester ET, 2015, FRESHWATER BIOL, V60, P2066, DOI 10.1111/fwb.12630; CRUMPTON J, 1979, NEW ZEAL J ZOOL, V6, P285, DOI 10.1080/03014223.1979.10428367; de Meeus T, 2000, EVOL ECOL RES, V2, P981; Deacon K.J.G., 1979, THESIS U CANTERBURY; Debarre F, 2011, AM NAT, V177, pE84, DOI 10.1086/658178; DesBlock M., 2008, OIKOS, V117, P245; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Franch-Gras L, 2014, INT REV HYDROBIOL, V99, P125, DOI 10.1002/iroh.201301712; Galatowitsch ML, 2011, CAN J ZOOL, V89, P714, DOI [10.1139/Z11-044, 10.1139/z11-044]; Galatowitsch M. L., 2014, THESIS U CANTERBURY; Greig H. S., 2008, THESIS U CANTERBURY; Greig HS, 2013, J ANIM ECOL, V82, P598, DOI 10.1111/1365-2656.12042; Greig HS, 2010, ECOLOGY, V91, P836, DOI 10.1890/08-1871.1; Hampton SE, 2004, OECOLOGIA, V138, P475, DOI 10.1007/s00442-003-1446-6; Johansson F, 2004, ECOL ENTOMOL, V29, P196, DOI 10.1111/j.0307-6946.2004.00592.x; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Johansson F, 2000, FRESHWATER BIOL, V43, P149, DOI 10.1046/j.1365-2427.2000.00532.x; Kuznetsova A, 2013, TESTS RANDOM FIXED E; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; McCauley SJ, 2007, OIKOS, V116, P121, DOI 10.1111/j.2006.0030-1299.15105.x; Mccauley SJ, 2008, FRESHWATER BIOL, V53, P253, DOI 10.1111/j.1365-2427.2007.01889.x; McDowall R. M., 2001, FRESHWATER FISHES NZ; MCINTOSH AR, 1994, ECOLOGY, V75, P2078, DOI 10.2307/1941612; McPeek M. A., 2004, AM NAT, V163, P88; MCPEEK MA, 1990, ECOLOGY, V71, P1714, DOI 10.2307/1937580; McPeek MA, 1996, AM NAT, V148, pS124, DOI 10.1086/285906; Murren CJ, 2015, HEREDITY, V115, P293, DOI 10.1038/hdy.2015.8; Nagelkerke CJ, 2013, ACTA BIOTHEOR, V61, P467, DOI 10.1007/s10441-013-9186-4; Peckarsky BL, 1996, ECOLOGY, V77, P1888, DOI 10.2307/2265792; R Development Core Team, 2013, R LANG ENV STAT COMP; Rebora M, 2007, PHYSIOL ENTOMOL, V32, P121, DOI 10.1111/j.1365-3032.2006.00553.x; Relyea RA, 2002, AM NAT, V159, P272, DOI 10.1086/338540; Relyea RA, 1999, ECOLOGY, V80, P2117, DOI 10.1890/0012-9658(1999)080[2117:QTRBPI]2.0.CO;2; Richter-Boix A, 2007, HYDROBIOLOGIA, V583, P43, DOI 10.1007/s10750-006-0475-7; Richter-Boix A, 2011, ECOL EVOL, V1, P15, DOI 10.1002/ece3.2; Rowe RJ, 1987, DRAGONFLIES NZ; Sih A., 1987, P203; STAPLES DJ, 1975, J FISH BIOL, V7, P1, DOI 10.1111/j.1095-8649.1975.tb04573.x; Stoffels RJ, 2003, NEW ZEAL J MAR FRESH, V37, P449, DOI 10.1080/00288330.2003.9517179; Stoks R, 2003, ECOLOGY, V84, P3327, DOI 10.1890/02-0696; Stoks R, 2000, ARCH HYDROBIOL, V147, P417; Storey RG, 2011, NEW ZEAL J MAR FRESH, V45, P213, DOI 10.1080/00288330.2011.554988; Therneau T., 2013, PACKAGE SURVIVAL ANA, P37; Therneau TM, 2001, MODELING SURVIVAL DA; Turner AM, 2009, FRESHWATER BIOL, V54, P1189, DOI 10.1111/j.1365-2427.2009.02168.x; Urban MC, 2004, ECOLOGY, V85, P2971, DOI 10.1890/03-0631; Van Buskirk J, 1998, OIKOS, V82, P20; VANTIENDEREN PH, 1991, EVOLUTION, V45, P1317, DOI 10.1111/j.1558-5646.1991.tb02638.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; Werner EE, 2007, OIKOS, V116, P1713, DOI 10.1111/j.2007.0030-1299.16039.x; Wickson S, 2012, MAR FRESHWATER RES, V63, P821, DOI 10.1071/MF12095; Williams DD, 1996, J N AM BENTHOL SOC, V15, P634, DOI 10.2307/1467813; Winterbourn M. J., 2006, B ENTOMOL SOC, V14, P108; WINTERBOURN MJ, 1981, NEW ZEAL J MAR FRESH, V15, P321, DOI 10.1080/00288330.1981.9515927; Wissinger SA, 1999, ECOLOGY, V80, P2102; Wissinger SA, 2003, FRESHWATER BIOL, V48, P255, DOI 10.1046/j.1365-2427.2003.00997.x; Wissinger SA, 2006, FRESHWATER BIOL, V51, P2009, DOI 10.1111/j.1365-2427.2006.01629.x; Wissinger SA, 2009, J N AM BENTHOL SOC, V28, P12, DOI 10.1899/08-007.1; Young E. C., 2010, WATER BOATMEN BACKSW 68 4 4 3 23 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. JUN 2016 61 6 862 875 10.1111/fwb.12747 14 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DM8GS WOS:000376600100004 2019-02-21 J Boulenger, C; Acou, A; Gimenez, O; Charrier, F; Tremblay, J; Feunteun, E Boulenger, Clarisse; Acou, Anthony; Gimenez, Olivier; Charrier, Fabien; Tremblay, Julien; Feunteun, Eric Factors determining survival of European eels in two unexploited sub-populations FRESHWATER BIOLOGY English Article European eel; Life-history characteristics; sex ratio; survival ANGUILLA-ANGUILLA L; SMALL COASTAL CATCHMENT; DENSITY-DEPENDENCE; POPULATION-DYNAMICS; AMERICAN EEL; PHENOTYPIC PLASTICITY; CARRYING-CAPACITY; RECAPTURE DATA; HABITAT USE; GROWTH Estimating accurate age-specific survival probabilities and understanding the processes (density dependent or independent) that regulate this demographic parameter are fundamental to propose sustainable management options for the endangered European eel (Anguilla anguilla). In the present study, we used extensive mark-recapture data sets (13 and 17years) on eel >150mm to estimate accurate natural survival probabilities of two eel sub-populations, from the Oir and Fremur rivers, western France, and then we analysed survival probabilities in relation to density-independent (temperature) and density-dependent factors to identify those causing survival variability. The Fremur and Oir rivers are two small (<100km(2)) river systems in close proximity (65km apart). The Fremur River is a small river obstructed by dams with medium water quality, high eel recruitment and density (0.37eelm(-2)), and a male dominant population; whereas, in the Oir River, low densities of eels were observed (0.04eelm(-2)) and the sex ratio was skewed towards females. Furthermore, previous research suggested that the lotic habitats of the Fremur River have reached carrying capacity, whereas habitats in the Oir River are below habitat saturation. In the Fremur River, there were significant spatial and temporal variations in the survival probabilities. However, survival probabilities observed in the Oir River were stable over time and space. The results highlight that the differences in the characteristics of the two systems and the two sub-populations prompt different responses to regulatory processes. The contrasting pressures applied on these two sub-populations impact survival, which possibly lead to different life history strategies such as sex differentiation. [Boulenger, Clarisse; Acou, Anthony; Feunteun, Eric] Museum Natl Hist Nat, CRESCO, UPMC Serv Stan Marines, IRD,CNRS,UMR BOREA 7208, Dinard, France; [Boulenger, Clarisse] INRA, INRA Agrocampus, Ecol & Sante Ecosyst, UMR 985, 65 Rue St Brieuc,CS 84215, F-35042 Rennes, France; [Gimenez, Olivier] Ctr Ecol Fonct & Evolut, UMR 5175, Campus CNRS, Montpellier, France; [Charrier, Fabien] Fish Pass, Laille, France; [Tremblay, Julien] INRA, Pole GESTAQUA, U3E 1036, F-35042 Rennes, France; [Tremblay, Julien] ONEMA, Pole GESTAQUA, Rennes, France Boulenger, C (reprint author), INRA, INRA Agrocampus, Ecol & Sante Ecosyst, UMR 985, 65 Rue St Brieuc,CS 84215, F-35042 Rennes, France. clarisse.boulenger@rennes.inra.fr Gimenez, Olivier/G-4281-2010 Region Bretagne; MAVA Foundation; Bretagne Grands Migrateurs This study was funded by the 'Region Bretagne', the MAVA Foundation, and 'Bretagne Grands Migrateurs'. The surveys and sampling were organised and operated by the company FISH PASS and the association 'Coeur Emeraude' in the Fremur River, and the INRA-Rennes and ONEMA in the Oir River. We are especially grateful to Frederic Marchand (INRA), Julien Tremblay (INRA), Richard Delanoe (ONEMA), Virgile Mazel (FISH PASS), Sebastien Quinot (FISH PASS) and all the people that helped with sampling and data gathering. We are also grateful to ORE PFC for the salmonid data. Acou A, 2003, B FR PECHE PISCIC, P55, DOI 10.1051/kmae:2003036; Acou A, 2005, ARCH HYDROBIOL, V164, P237, DOI 10.1127/0003-9136/2005/0164-0237; Acou A, 2006, ECOL FRESHW FISH, V15, P578, DOI 10.1111/j.1600-0633.2006.00189.x; Acou A, 2011, FRESHWATER BIOL, V56, P952, DOI 10.1111/j.1365-2427.2010.02540.x; Acou Anthony, 2009, P157; Amoros C., 1993, HYDROSYSTEMES FLUVIA; Angilletta MJ, 2003, AM NAT, V162, P332; Aprahamian MW, 2007, ICES J MAR SCI, V64, P1472, DOI 10.1093/icesjms/fsm131; Bagliniere JL, 2005, ICES J MAR SCI, V62, P695, DOI 10.1016/j.icesjms.2005.02.008; Baisez A., 2001, THESIS TOULOUSE 3 U; Barker R, 2002, J APPL STAT, V29, P305, DOI 10.1080/02664760120108782; Bevacqua D., 2010, OECOLOGIA, V165, P333; Bevacqua D, 2011, HYDROBIOLOGIA, V671, P259, DOI 10.1007/s10750-011-0725-1; BISGAARD J, 1991, Dana, V9, P57; Bonhommeau S, 2010, FISH FISH, V11, P289, DOI 10.1111/j.1467-2979.2010.00362.x; Burnham K. P, 2002, MODEL SELECTION MULT; CARLE FL, 1978, BIOMETRICS, V34, P621, DOI 10.2307/2530381; Carroll R. J., 2006, MEASUREMENT ERROR NO; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.2307/177364; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Cucherousset J, 2011, OECOLOGIA, V167, P75, DOI 10.1007/s00442-011-1974-4; Cushing D. H., 1975, MARINE ECOLOGY FISHE; Daverat F, 2006, MAR ECOL PROG SER, V308, P231, DOI 10.3354/meps308231; Dawson W.A, 1991, ICES J MAR SCI, V47, P303; Dekker W, 2003, CAN J FISH AQUAT SCI, V60, P787, DOI 10.1139/F03-066; DeLeo GA, 1996, ECOL APPL, V6, P1281; DELEO GA, 1995, CAN J FISH AQUAT SCI, V52, P1351; Drake JM, 2005, PLOS BIOL, V3, P1300, DOI 10.1371/journal.pbio.0030222; Eberhardt LL, 2002, ECOLOGY, V83, P2841, DOI 10.2307/3072020; ELLIOTT JM, 1989, J ANIM ECOL, V58, P987, DOI 10.2307/5137; Feunteun E, 1998, B FR PECHE PISCIC, P129, DOI 10.1051/kmae:1998038; Feunteun E, 2003, EEL BIOLOGY, P191; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Grosbois V, 2008, BIOL REV, V83, P357, DOI 10.1111/j.1469-185X.2008.00047.x; Hanski I, 1996, J ANIM ECOL, V65, P274, DOI 10.2307/5874; HASSELL MP, 1987, J ANIM ECOL, V56, P705, DOI 10.2307/5078; HELFMAN G. S., 1987, AM FISHERIES SOC S, V1, P42; Ibbotson A, 2002, FRESHWATER BIOL, V47, P1696, DOI 10.1046/j.1365-2427.2002.00930.x; ICES (International Council for the Exploration of the Sea), 2013, REP JOINT EIFAAC ICE; Jacoby D, 2014, ANGUILLA ANGUILLA IU; JENKINS GP, 1991, CAN J FISH AQUAT SCI, V48, P1358, DOI 10.1139/f91-162; Jenkins TM, 1999, ECOLOGY, V80, P941, DOI 10.2307/177029; Josset Q., 2015, ICES J MAR SCI, V73, P150; Knights B, 2003, SCI TOTAL ENVIRON, V310, P237, DOI 10.1016/S0048-9697(02)00644-7; Krueger WH, 1999, ENVIRON BIOL FISH, V55, P381, DOI 10.1023/A:1007575600789; Laffaille P, 2004, WETLANDS, V24, P642, DOI 10.1672/0277-5212(2004)024[0642:HPODEE]2.0.CO;2; Lambert P, 2007, ECOL MODEL, V206, P166, DOI 10.1016/j.ecolmodel.2007.03.003; Lasne E, 2008, ECOL FRESHW FISH, V17, P567, DOI 10.1111/j.1600-0633.2008.00307.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lebreton JD, 2009, ADV ECOL RES, V41, P87, DOI 10.1016/S0065-2504(09)00403-6; Lobon-Cervia J, 2008, FRESHWATER BIOL, V53, P1832, DOI 10.1111/j.1365-2427.2008.02008.x; MORIARTY C, 1986, Vie et Milieu, V36, P233; Morin A, 1999, J N AM BENTHOL SOC, V18, P299, DOI 10.2307/1468446; NAISMITH IA, 1990, J FISH BIOL, V37, P975, DOI 10.1111/j.1095-8649.1990.tb03600.x; Noth E. G., 2008, NEW ZEAL J MAR FRESH, V42, P153; Oliveira K, 1999, CAN J FISH AQUAT SCI, V56, P795, DOI 10.1139/cjfas-56-5-795; Oliveira K, 2002, T AM FISH SOC, V131, P203, DOI 10.1577/1548-8659(2002)131<0203:SDGHOT>2.0.CO;2; Ovidio M, 2013, AQUAT ECOL, V47, P291, DOI 10.1007/s10452-013-9444-1; PANKHURST NW, 1982, J FISH BIOL, V21, P127, DOI 10.1111/j.1095-8649.1982.tb03994.x; PERSSON L, 1990, OIKOS, V59, P97, DOI 10.2307/3545128; Pradel R, 2003, BIOMETRICS, V59, P43, DOI 10.1111/1541-0420.00006; Prentice E. F., 1990, SYMPOSIUM, V7, P317; Ray C, 1996, J ANIM ECOL, V65, P556, DOI 10.2307/5736; Rivot E, 2008, CAN J FISH AQUAT SCI, V65, P117, DOI 10.1139/F07-153; SADLER K, 1979, J FISH BIOL, V15, P499, DOI 10.1111/j.1095-8649.1979.tb03633.x; Schulze T, 2004, J FISH BIOL, V65, P1543, DOI 10.1111/j.1095-8649.2004.00565.x; Sinclair ARE, 1996, OIKOS, V75, P164, DOI 10.2307/3546240; STEWARTOATEN A, 1995, AM NAT, V146, P519, DOI 10.1086/285813; Tesch F.-W., 2003, EEL; van Gils JA, 2004, OIKOS, V104, P197, DOI 10.1111/j.0030-1299.2003.12214.x; VOLLESTAD LA, 1992, J ANIM ECOL, V61, P41, DOI 10.2307/5507; VOLLESTAD LA, 1988, J ANIM ECOL, V57, P983, DOI 10.2307/5106; Walsh CT, 2002, AQUAC RES, V33, P627, DOI 10.1046/j.1365-2109.2002.00701.x; Williams B. K., 2002, ANAL MANAGEMENT ANIM 75 3 3 1 25 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. JUN 2016 61 6 947 962 10.1111/fwb.12759 16 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DM8GS WOS:000376600100011 2019-02-21 J de Leo, GA; Dobson, AP; Gatto, M de Leo, Giulio A.; Dobson, Andrew P.; Gatto, Marino Body size and meta-community structure: the allometric scaling of parasitic worm communities in their mammalian hosts PARASITOLOGY English Article intestinal nematodes; wild mammal pathology; body size; parasite community; interspecific competition; life-history strategies; allometric scaling; bioenergetic requirements LIFE-HISTORY TRAITS; POPULATION-DYNAMICS; METABOLIC THEORY; TERRESTRIAL MAMMALS; INFECTIOUS-DISEASES; WILDLIFE DISEASES; NEMATODE SYSTEM; CLIMATE-CHANGE; FOOD WEBS; MODEL In this paper we derive from first principles the expected body sizes of the parasite communities that can coexist in a mammal of given body size. We use a mixture of mathematical models and known allometric relationships to examine whether host and parasite life histories constrain the diversity of parasite species that can coexist in the population of any host species. The model consists of one differential equation for each parasite species and a single density-dependent nonlinear equation for the affected host under the assumption of exploitation competition. We derive threshold conditions for the coexistence and competitive exclusion of parasite species using invasion criteria and stability analysis of the resulting equilibria. These results are then used to evaluate the range of parasites species that can invade and establish in a target host and identify the optimal' size of a parasite species for a host of a given body size; optimal' is defined as the body size of a parasite species that cannot be outcompeted by any other parasite species. The expected distributions of parasites body sizes in hosts of different sizes are then compared with those observed in empirical studies. Our analysis predicts the relative abundance of parasites of different size that establish in the host and suggests that increasing the ratio of parasite body size to host body size above a minimum threshold increases the persistence of the parasite population. [de Leo, Giulio A.] Stanford Univ, Woods Inst Environm, Pacific Grove, CA 93950 USA; [de Leo, Giulio A.] Stanford Univ, Hopkins Marine Stn, Pacific Grove, CA 93950 USA; [Dobson, Andrew P.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Gatto, Marino] Politecn Milan, Dipartimento Elettron & Informaz, Via Ponzio 34-5, I-23100 Milan, Italy Dobson, AP (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. dobson@princeton.edu Gatto, Marino/D-9531-2012 Gatto, Marino/0000-0001-8063-9178 National Center for Ecological Analysis and Synthesis - NSF [DEB-0072909]; MUR project Internazionalizzazione del Sistema Universitario [II O4 CE 4968]; McDonnell Foundation; Woods Institute's Environmental Venture Projects at Stanford University; NSF CNH [1414102] This work was supported in part by the National Center for Ecological Analysis and Synthesis (a centre funded by NSF grant No. DEB-0072909, the University of California at Santa Barbara, Seasonality and Infectious Diseases Group) (A. D. and G. D. L.), by MUR project Internazionalizzazione del Sistema Universitario II O4 CE 4968 and by a Grant on Complexity to APD from the McDonnell Foundation. G. D. L. was partially supported by a grant from the Woods Institute's Environmental Venture Projects at Stanford University and from NSF CNH 1414102. ANDERSON RM, 1978, J ANIM ECOL, V47, P219, DOI 10.2307/3933; ANDERSON RM, 1978, PARASITOLOGY, V76, P119, DOI 10.1017/S0031182000047739; ANDERSON RM, 1986, T ROY SOC TROP MED H, V80, P686, DOI 10.1016/0035-9203(86)90367-6; Anderson RM, 1991, INFECT DIS HUMANS DY; BAILEY GNA, 1975, INT J PARASITOL, V5, P609, DOI 10.1016/0020-7519(75)90059-4; Banavar JR, 2002, P NATL ACAD SCI USA, V99, P10506, DOI 10.1073/pnas.162216899; Banavar JR, 2002, NATURE, V420, P626, DOI 10.1038/420626a; BERDING C, 1986, J THEOR BIOL, V122, P459, DOI 10.1016/S0022-5193(86)80186-2; Bolzoni L, 2008, AM NAT, V172, P818, DOI 10.1086/593000; Bolzoni L, 2008, THEOR POPUL BIOL, V73, P374, DOI 10.1016/j.tpb.2007.12.003; BOOTH DT, 1993, P ROY SOC B-BIOL SCI, V253, P125, DOI 10.1098/rspb.1993.0091; Brose U, 2006, ECOL LETT, V9, P1228, DOI 10.1111/j.1461-0248.2006.00978.x; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Cable JM, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001130; Calder III WA, 1984, SIZE FUNCTION LIFE H; Cattadori IM, 2005, P ROY SOC B-BIOL SCI, V272, P1163, DOI 10.1098/rspb.2004.3050; CHARNOV EL, 1992, EVOL ECOL, V6, P307, DOI 10.1007/BF02270967; Charnov Eric L., 1993, P1; Cohen JE, 2003, P NATL ACAD SCI USA, V100, P1781, DOI 10.1073/pnas.232715699; Cohen JE, 2005, P NATL ACAD SCI USA, V102, P684, DOI 10.1073/pnas.0408780102; Cornell SJ, 2008, P R SOC B, V275, P511, DOI 10.1098/rspb.2007.1415; DAMUTH J, 1981, NATURE, V290, P699, DOI 10.1038/290699a0; DeLeo GA, 1996, NATURE, V379, P720, DOI 10.1038/379720a0; DIEKMANN O, 1990, J MATH BIOL, V28, P365; DIEKMANN O, 1991, J MATH BIOL, V29, P539, DOI 10.1007/BF00164051; DOBSON A, 1994, PARASITOLOGY, V109, pS97, DOI 10.1017/S0031182000085115; Dobson A. P., 1990, STRUCTURE PARASITE C, P261; Dobson A, 2008, P NATL ACAD SCI USA, V105, P11482, DOI 10.1073/pnas.0803232105; DOBSON AP, 1985, PARASITOLOGY, V91, P317, DOI 10.1017/S0031182000057401; Dodds PS, 2001, J THEOR BIOL, V209, P9, DOI 10.1006/jtbi.2000.2238; DWYER G, 1990, ECOL MONOGR, V60, P423, DOI 10.2307/1943014; Economo EP, 2005, ECOL LETT, V8, P353, DOI 10.1111/j.1461-0248.2005.00737.x; Esch GW, 1990, PARASITE COMMUNITIES; FENNER F, 1983, PROC R SOC SER B-BIO, V218, P259, DOI 10.1098/rspb.1983.0039; Gatto M, 1998, J MATH BIOL, V37, P467, DOI 10.1007/s002850050138; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Grenfell B. T., 1995, ECOLOGY INFECT DIS N; HARVEY PH, 1991, PHILOS T ROY SOC B, V332, P31, DOI 10.1098/rstb.1991.0030; Hechinger RF, 2015, P NATL ACAD SCI USA, V112, P1656, DOI 10.1073/pnas.1423785112; Hechinger RF, 2013, AM NAT, V182, P234, DOI 10.1086/670820; Hechinger Ryan F., 2012, P234; Hechinger RF, 2011, SCIENCE, V333, P445, DOI 10.1126/science.1204337; Hudson P. J., 1994, INFECTIOUS DIS NATUR, P144; JANOVY J, 1990, J THEOR BIOL, V142, P517, DOI 10.1016/S0022-5193(05)80106-7; Jetz W, 2004, SCIENCE, V306, P266, DOI 10.1126/science.1102138; Kozlowski J, 2004, FUNCT ECOL, V18, P283, DOI 10.1111/j.0269-8463.2004.00830.x; Lafferty KD, 2015, SCIENCE, V349, P854, DOI 10.1126/science.aaa6224; Loeuille N, 2005, P NATL ACAD SCI USA, V102, P5761, DOI 10.1073/pnas.0408424102; MACARTHUR R, 1970, Theoretical Population Biology, V1, P1, DOI 10.1016/0040-5809(70)90039-0; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; Marquet PA, 2004, ECOLOGY, V85, P1794, DOI 10.1890/03-0694; MAY RM, 1978, J ANIM ECOL, V47, P249, DOI 10.2307/3934; MAY RM, 1983, PROC R SOC SER B-BIO, V219, P281, DOI 10.1098/rspb.1983.0075; Molnar PK, 2013, GLOBAL CHANGE BIOL, V19, P3291, DOI 10.1111/gcb.12303; Molnar PK, 2013, ECOL LETT, V16, P9, DOI 10.1111/ele.12022; Morand S, 1996, FUNCT ECOL, V10, P210, DOI 10.2307/2389845; Morand S, 1996, OECOLOGIA, V107, P274, DOI 10.1007/BF00327912; Morand S, 1998, EVOL ECOL, V12, P717, DOI 10.1023/A:1006537600093; Morand S, 2002, EVOL ECOL RES, V4, P951; Osnas EE, 2012, EVOLUTION, V66, P391, DOI 10.1111/j.1558-5646.2011.01461.x; Osnas EE, 2010, BIOL LETTERS, V6, P505, DOI 10.1098/rsbl.2009.1019; Otto SB, 2007, NATURE, V450, P1226, DOI 10.1038/nature06359; Owen-Smith R. N., 1988, MEGAHERBIVORES INFLU; Peters R.H., 1983, P1; POULIN R, 1995, PARASITOL TODAY, V11, P342, DOI 10.1016/0169-4758(95)80187-1; Poulin R, 2000, J PARASITOL, V86, P642, DOI 10.1645/0022-3395(2000)086[0642:PBSAIV]2.0.CO;2; POULIN R, 1995, ECOL MONOGR, V65, P283, DOI 10.2307/2937061; Price CA, 2012, ECOL LETT, V15, P1465, DOI 10.1111/j.1461-0248.2012.01860.x; Roberts M. G., 1993, ECOLOGY INFECTIOUS D, P177; ROBERTS MG, 1995, MATH BIOSCI, V126, P191, DOI 10.1016/0025-5564(94)00036-Y; Roughgarden J., 1979, THEORY POPULATION GE; Savage VM, 2004, FUNCT ECOL, V18, P257, DOI 10.1111/j.0269-8463.2004.00856.x; Savage VM, 2004, AM NAT, V163, P429, DOI 10.1086/381872; Schmidt-Nielsen K., 1984, SCALING WHY ANIMAL B; Shaw DJ, 1998, PARASITOLOGY, V117, P597, DOI 10.1017/S0031182098003448; SILVA M, 1995, AM NAT, V145, P704, DOI 10.1086/285764; SKORPING A, 1991, OIKOS, V60, P365, DOI 10.2307/3545079; Stearns S, 1992, EVOLUTION LIFE HIST; Tilman D, 2004, ECOLOGY, V85, P1797, DOI 10.1890/03-0725; VANCE RR, 1985, AM NAT, V126, P72, DOI 10.1086/284397; WAKELIN D, 1984, PARASITOLOGY, V88, P639; Weibel ER, 2004, RESP PHYSIOL NEUROBI, V140, P115, DOI 10.1016/j.resp.2004.01.006; Weitz JS, 2006, ECOL LETT, V9, P548, DOI 10.1111/j.1461-0248.2006.00900.x; West GB, 1999, SCIENCE, V284, P1677, DOI 10.1126/science.284.5420.1677; West GB, 2005, J EXP BIOL, V208, P1575, DOI 10.1242/jeb.01589; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; White CR, 2003, P NATL ACAD SCI USA, V100, P4046, DOI 10.1073/pnas.0436428100; YODZIS P, 1992, AM NAT, V139, P1151, DOI 10.1086/285380 88 3 3 1 16 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0031-1820 1469-8161 PARASITOLOGY Parasitology JUN 2016 143 7 SI 880 893 10.1017/S0031182015001444 14 Parasitology Parasitology DN0UM WOS:000376781100008 27001526 2019-02-21 J Farahat, EA; Galal, TM; El-Midany, MM; Hassan, LM Farahat, Emad Abdelmoneim; Galal, Tarek Mohamed; El-Midany, Maha Maged; Hassan, Loutfy Mohsen Phenology, biomass and reproductive characteristics of Calotropis procera (Aiton) WT Aiton in South Cairo, Egypt RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI English Article Calotropis procera; Phenology, regression equations; Biomass; Colonization; Urbanization CLIMATE-CHANGE; SUCCESS; PLASTICITY; PLANTS Phenology is a major trait structuring life history strategies and its role in shaping plant invasions that has increasing attention. The present study aimed to examine the role of phenology, reproductive, and morphological attributes of Calotropis procera in colonizing urban areas, besides assessing its biomass and developing allometric regression equation for prediction of its biomass. Sixty-three permanent quadrats were selected to represent the distribution of C. procera in urban habitats at South Cairo Province, Egypt. The present study revealed significant positive correlation between fruiting phase of the species and temperature, as well as the vegetative phase and precipitation. C. procera is characterized by continuous flowering for 8 months, with a peak in April and May, which help in reproductive success of the species. It had its highest biomass in November (439 kg ha(-1)), but the lowest in March (343 kg ha(-1)), with an annual mean of 388 kg ha(-1). The linear regression based on plant volume as an independent variable was found to be the best fit for biomass prediction, with the highest coefficient of determination (R (2) = 0.81). The above-ground biomass of this plant encourages its potential use as a renewable energy source. Our study suggests that C. procera has efficient plastic phenological and functional attributes that may enable it to dominate many ecosystems in the future. Efficient management plans are needed to mitigate the risk of this plant on other ecosystems and conserve other native species. [Farahat, Emad Abdelmoneim; Galal, Tarek Mohamed; El-Midany, Maha Maged; Hassan, Loutfy Mohsen] Helwan Univ, Fac Sci, Dept Bot & Microbiol, Cairo, Egypt; [Farahat, Emad Abdelmoneim] Univ Gothenburg, Dept Earth Sci, Reg Climate Grp, Gothenburg, Sweden Farahat, EA (reprint author), Helwan Univ, Fac Sci, Dept Bot & Microbiol, Cairo, Egypt.; Farahat, EA (reprint author), Univ Gothenburg, Dept Earth Sci, Reg Climate Grp, Gothenburg, Sweden. emad23_1999@yahoo.com Farahat, Emad/0000-0003-3115-1912; Galal, Tarek/0000-0001-9847-1051 Arias D, 2011, BIOMASS BIOENERG, V35, P1779, DOI 10.1016/j.biombioe.2011.01.009; AUGSPURGER CK, 1983, BIOTROPICA, V15, P257, DOI 10.2307/2387650; Badeck FW, 2004, NEW PHYTOL, V162, P295, DOI 10.1111/j.1469-8137.2004.01059.x; Bradley BA, 2010, TRENDS ECOL EVOL, V25, P310, DOI 10.1016/j.tree.2009.12.003; Claesson S, 2001, SCAND J FOREST RES, V16, P138, DOI 10.1080/028275801300088206; Devineau JL, 1999, J TROP ECOL, V15, P497, DOI 10.1017/S0266467499000978; Eid EM, 2002, THESIS TANTA U TANTA, P118; EISIKOWITCH D, 1986, PLANT SYST EVOL, V152, P185, DOI 10.1007/BF00989426; El-Ghani Monier M. Abd, 1997, Journal of Arid Environments, V35, P673; El-keblawy AAM, 1987, THESIS U ALEXANDRIA, P100; El-Midany M, 2014, THESIS HELWAN U CAIR; Elton C. S, 1958, ECOLOGY INVASIONS AN; ERDMAN MD, 1981, ECON BOT, V35, P467, DOI 10.1007/BF02858597; Farahat E., 2012, FEDDES REPERT, V123, P1; Farahat E, 2015, REND LINCEI-SCI FIS, V26, P193, DOI 10.1007/s12210-015-0408-3; Goodwin BJ, 1999, CONSERV BIOL, V13, P422, DOI 10.1046/j.1523-1739.1999.013002422.x; Hameed AAA, 2009, SCI TOTAL ENVIRON, V407, P6217, DOI 10.1016/j.scitotenv.2009.08.028; Hassan LM, 2015, TREES-STRUCT FUNCT, V29, P311, DOI 10.1007/s00468-015-1158-7; Kumar A, 2004, BIOMASS ENERGY IND C, P180; Lesica P, 2010, J ARID ENVIRON, V74, P1013, DOI 10.1016/j.jaridenv.2010.02.002; Levine JM, 2003, P ROY SOC B-BIOL SCI, V270, P775, DOI [10.1098/rspb.2003.2327, 10.1098/rspb.2002.2299]; Lloret F, 2005, J ECOL, V93, P512, DOI 10.1111/j.1365-2745.2005.00979.x; Lottermoser BG, 2011, J GEOCHEM EXPLOR, V111, P39, DOI 10.1016/j.gexplo.2011.07.005; Mala Rathore, 2010, Journal of Phytology, V2, P78; Miller-Rushing AJ, 2008, ECOLOGY, V89, P332, DOI 10.1890/07-0068.1; Pandey SK, 2011, J COMBUST, DOI 10.1155/2011/216762; Parsons W. T., 2001, NOXIOUS WEEDS AUSTR; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; Razakamanarivo R. H., 2011, BIOMASS BIOENERG, V45, P1, DOI [10.1016/j.biombioe.2011.01.020, DOI 10.1016/J.BI0M-BI0E.2011.01.020]; Seghieri J, 2002, J TROP ECOL, V18, P897, DOI 10.1017/S0266467402002584; Shaltout K. H., 1990, Egyptian Journal of Botany, V33, P133; SHALTOUT KH, 1988, VEGETATIO, V74, P137, DOI 10.1007/BF00044738; SHALTOUT KH, 1994, VEGETATIO, V112, P35, DOI 10.1007/BF00045098; SINGH JS, 1974, ECOL MONOGR, V44, P351, DOI 10.2307/2937034; Singh KP, 2005, CURR SCI INDIA, V89, P964; Sobrinho MS, 2013, ACTA BOT BRAS, V27, P456, DOI 10.1590/S0102-33062013000200018; Stanton ML, 2000, EVOLUTION, V54, P93, DOI 10.1111/j.0014-3820.2000.tb00011.x; Wang CK, 2006, FOREST ECOL MANAG, V222, P9, DOI 10.1016/j.foreco.2005.10.074; Willis CG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008878; Wolkovich EM, 2013, AM J BOT, V100, P1407, DOI 10.3732/ajb.1200478; Wolkovich EM, 2014, AOB PLANTS, V6, P1; Zhang GM, 2006, BIOTROPICA, V38, P334, DOI 10.1111/j.1744-7429.2006.00150.x 42 2 2 1 12 SPRINGER-VERLAG ITALIA SRL MILAN VIA DECEMBRIO, 28, MILAN, 20137, ITALY 2037-4631 1720-0776 REND LINCEI-SCI FIS Rend. Lincei.-Sci. Fis. Nat. JUN 2016 27 2 197 204 10.1007/s12210-015-0450-1 8 Multidisciplinary Sciences Science & Technology - Other Topics DM5SM WOS:000376410300005 2019-02-21 J Mesquita, DO; Costa, GC; Colli, GR; Costa, TB; Shepard, DB; Vitt, LJ; Pianka, ER Mesquita, Daniel O.; Costa, Gabriel C.; Colli, Guarino R.; Costa, Tais B.; Shepard, Donald B.; Vitt, Laurie J.; Pianka, Eric R. Life-History Patterns of Lizards of the World AMERICAN NATURALIST English Article Squamata; life history; reproduction; historical factors; climatic factors; phylogenetic analysis RELATIVE CLUTCH MASS; PHYLOGENETIC NICHE CONSERVATISM; SQUAMATE REPTILES; ANOLIS LIZARDS; REPRODUCTIVE EFFORT; ECOLOGICAL CONSEQUENCES; PHENOTYPIC EVOLUTION; NEOTROPICAL SAVANNA; COMPARATIVE BIOLOGY; AUSTRALIAN LIZARDS Identification of mechanisms that promote variation in life-history traits is critical to understand the evolution of divergent reproductive strategies. Here we compiled a large life-history data set (674 lizard populations, representing 297 species from 263 sites globally) to test a number of hypotheses regarding the evolution of life-history traits in lizards. We found significant phylogenetic signal in most life-history traits, although phylogenetic signal was not particularly high. Climatic variables influenced the evolution of many traits, with clutch frequency being positively related to precipitation and clutches of tropical lizards being smaller than those of temperate species. This result supports the hypothesis that in tropical and less seasonal climates, many lizards tend to reproduce repeatedly throughout the season, producing smaller clutches during each reproductive episode. Our analysis also supported the hypothesis that viviparity has evolved in lizards as a response to cooler climates. Finally, we also found that variation in trait values explained by clade membership is unevenly distributed among lizard clades, with basal clades and a few younger clades showing the most variation. Our global analyses are largely consistent with life-history theory and previous results based on smaller and scattered data sets, suggesting that these patterns are remarkably consistent across geographic and taxonomic scales. [Mesquita, Daniel O.; Costa, Tais B.] Univ Fed Paraiba, Ctr Ciencias Exatas & Nat, Dept Sistemat & Ecol, Ave Castelo Branco S-N, BR-58000000 Joao Pessoa, Paraiba, Brazil; [Costa, Gabriel C.] Univ Fed Rio Grande do Norte, Dept Ecol, Ctr Biociencias, BR-59072970 Natal, RN, Brazil; [Colli, Guarino R.] Univ Brasilia, Inst Ciencias Biol, Dept Zool, BR-70910900 Brasilia, DF, Brazil; [Shepard, Donald B.] Univ Cent Arkansas, Dept Biol, Conway, AR 72035 USA; [Vitt, Laurie J.] Univ Oklahoma, Sam Noble Museum, Norman, OK 73072 USA; [Vitt, Laurie J.] Univ Oklahoma, Dept Biol, Norman, OK 73072 USA; [Pianka, Eric R.] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA Mesquita, DO (reprint author), Univ Fed Paraiba, Ctr Ciencias Exatas & Nat, Dept Sistemat & Ecol, Ave Castelo Branco S-N, BR-58000000 Joao Pessoa, Paraiba, Brazil. danmesq@dse.ufpb.br Mesquita, Daniel/I-5007-2012; Colli, Guarino/A-5368-2008 Mesquita, Daniel/0000-0002-8174-6837; Colli, Guarino/0000-0002-2628-5652; Shepard, Donald/0000-0002-1762-6283; Costa, Gabriel/0000-0002-6777-6706 Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); University of Oklahoma Research Council via a George Lynn Cross Research Professorship; CAPES; CNPq [302776/2012-5, 201413/2014-0, 563352/2010-8]; Fundacao de Apoio a Pesquisa do Distrito Federal We thank Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) for D.O.M.'s postdoctorate and research fellowship. E.R.P. thanks the Denton A. Cooley Centennial Professorship in Zoology at the University of Texas at Austin. L.J.V. acknowledges support from the University of Oklahoma Research Council via a George Lynn Cross Research Professorship. G.R.C. thanks CAPES, CNPq, and Fundacao de Apoio a Pesquisa do Distrito Federal for financial support. G.C.C. thanks CNPq grants 302776/2012-5, 201413/2014-0, and 563352/2010-8. We thank A. Garda and CNPq/Instituto Chico Mendes de Conservacao da Biodiversidade (ICMBio; processo 552031/2011-9). We thank ICMBio for granting the necessary permissions to sample animals. We also thank D. D. Ackerly and J. L. Bronstein as well as two reviewers for many suggestions for improvements that added clarity to our article. We thank R. E. Espinoza for the photo of Liolaemus multicolor. Ackerly D, 2009, P NATL ACAD SCI USA, V106, P19699, DOI 10.1073/pnas.0901635106; ANDREWS R, 1974, ECOLOGY, V55, P1317, DOI 10.2307/1935459; BLACKBURN D G, 1982, Amphibia-Reptilia, V3, P185, DOI 10.1163/156853882X00419; Blackburn DG, 2006, HERPETOL MONOGR, V20, P131, DOI 10.1655/0733-1347(2007)20[131:SRAMOF]2.0.CO;2; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; BOX GEP, 1964, J ROY STAT SOC B, V26, P211; Brooks DR, 1991, PHYLOGENY ECOLOGY BE; Burnham K. P, 2002, MODEL SELECTION MULT; CAVALLISFORZA LL, 1967, EVOLUTION, V21, P550, DOI 10.1111/j.1558-5646.1967.tb03411.x; CLERKE RB, 1993, J HERPETOL, V27, P400, DOI 10.2307/1564826; Colli GR, 2003, J HERPETOL, V37, P694, DOI 10.1670/180-02A; COLLI GR, 1991, COPEIA, P1002; Colston TJ, 2010, BIOL J LINN SOC, V101, P476, DOI 10.1111/j.1095-8312.2010.01502.x; CUELLAR O, 1984, AM MIDL NAT, V111, P242, DOI 10.2307/2425319; Dunham A.E., 1988, Biology of Reptilia, V16, P441; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; Duvall D., 1982, Biology of Reptilia, V13, P201; FELSENSTEIN J, 1984, EVOLUTION, V38, P16, DOI 10.1111/j.1558-5646.1984.tb00255.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fitch H. S, 1970, U KANSAS MUS NAT HIS, V52, P1; Fraipont M, 1996, EVOLUTION, V50, P391, DOI DOI 10.2307/2410809; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Fritz SA, 2010, CONSERV BIOL, V24, P1042, DOI 10.1111/j.1523-1739.2010.01455.x; Giannini NP, 2003, SYST BIOL, V52, P684, DOI 10.1080/10635150390238888; Gilbert B, 2010, J APPL ECOL, V47, P1071, DOI 10.1111/j.1365-2664.2010.01861.x; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Greer A. E., 1989, BIOL EVOLUTION AUSTR; Guisan A, 2000, ECOL MODEL, V135, P147, DOI 10.1016/S0304-3800(00)00354-9; HARVEY PH, 1991, OXFORD SERIES ECOLOG; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Ho LST, 2014, SYST BIOL, V63, P397, DOI 10.1093/sysbio/syu005; HOWARD C W, 1974, Journal of the Arizona Academy of Science, V9, P108, DOI 10.2307/40023610; HUEY RB, 1981, ECOLOGY, V62, P991, DOI 10.2307/1936998; HUEY RB, 1977, COPEIA, P373, DOI 10.2307/1443919; INGER RF, 1966, ECOLOGY, V47, P1007, DOI 10.2307/1935648; Ives AR, 2010, SYST BIOL, V59, P9, DOI 10.1093/sysbio/syp074; JAMES C, 1988, OECOLOGIA, V75, P307, DOI 10.1007/BF00378615; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; Losos JB, 2003, NATURE, V424, P542, DOI 10.1038/nature01814; LOSOS JB, 1993, OECOLOGIA, V95, P525, DOI 10.1007/BF00317437; Losos JB, 1997, BIOL J LINN SOC, V61, P459, DOI 10.1111/j.1095-8312.1997.tb01802.x; Losos JB, 2009, ORGANISM ENVIRON, V10, P1; LOSOS JB, 1994, ANNU REV ECOL SYST, V25, P467, DOI 10.1146/annurev.es.25.110194.002343; LOSOS JB, 1995, PHILOS T ROY SOC B, V349, P69, DOI 10.1098/rstb.1995.0092; Losos JB, 2008, ECOL LETT, V11, P995, DOI 10.1111/j.1461-0248.2008.01229.x; Losos JB, 2011, AM NAT, V177, P709, DOI 10.1086/660020; Mahler DL, 2010, EVOLUTION, V64, P2731, DOI 10.1111/j.1558-5646.2010.01026.x; McFadden D, 1973, FRONTIERS ECONOMETRI, P105, DOI DOI 10.1108/EB028592; Menezes VA, 2011, ZOOLOGIA-CURITIBA, V28, P8, DOI 10.1590/S1984-46702011000100002; Mesquita D. O., 2016, AM NATURALIST DRYAD; Mesquita Daniel O., 2015, Ecology (Washington D C), V96, P594; Mesquita DO, 2016, AUSTRAL ECOL, V41, P1, DOI 10.1111/aec.12276; Mesquita DO, 2003, J HERPETOL, V37, P498; Mesquita DO, 2003, COPEIA, P285; MESQUITO D.O, 2010, REPRODUCCION REPTILE, P45; MILES DB, 1992, AM NAT, V139, P848, DOI 10.1086/285361; Munkemuller T, 2012, METHODS ECOL EVOL, V3, P743, DOI 10.1111/j.2041-210X.2012.00196.x; O'Meara B.C., 2014, MODERN PHYLOGENETIC, P381; Oksanen J., 2007, VEGAN PACKAGE COMMUN; Oksanen J, 2013, VEGAN COMMUNITY ECOL; Orme D., 2013, CAPER COMP ANAL PHYL; Pagel M, 1997, ZOOL SCR, V26, P331, DOI 10.1111/j.1463-6409.1997.tb00423.x; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2002, J THEOR BIOL, V218, P175, DOI 10.1006/yjtbi.3066; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Pennell MW, 2014, TRENDS ECOL EVOL, V29, P72, DOI 10.1016/j.tree.2013.12.010; Pinheiro J., 2015, R PACKAGE VERSION, V3, P1, DOI DOI 10.1016/J.BSE.2009.03.010; Pyron R. A., 2013, BMC EVOLUTIONARY BIO, V2013, P13, DOI DOI 10.1186/1471-2148-13-93; Pyron RA, 2015, BIOL REV, V90, P1248, DOI 10.1111/brv.12154; Pyron RA, 2014, ECOL LETT, V17, P13, DOI 10.1111/ele.12168; Quinn G. P., 2002, EXPT DESIGN DATA ANA; R Development Core Team, 2015, R LANG ENV STAT COMP; Revell LJ, 2007, EVOL ECOL RES, V9, P261; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Revell LJ, 2012, EVOLUTION, V66, P135, DOI 10.1111/j.1558-5646.2011.01435.x; Revell LJ, 2008, SYST BIOL, V57, P591, DOI 10.1080/10635150802302427; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; SEIGEL RA, 1984, OECOLOGIA, V61, P293, DOI 10.1007/BF00379625; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; Shine R, 2004, EVOLUTION, V58, P1809; Stearns S, 1992, EVOLUTION LIFE HIST; Ter Braak C., 1995, DATA ANAL COMMUNITY; TERBRAAK CJF, 1986, ECOLOGY, V67, P1167; Tinkle D.W, 1977, Miscellaneous Publs Mus Zool Univ Michigan, VNo. 154, P1; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; Venables WN, 2002, MODERN APPL STAT S; VITT L J, 1990, Papeis Avulsos de Zoologia (Sao Paulo), V37, P107; Vitt L.J., 1992, P135; VITT LJ, 1994, CAN J ZOOL, V72, P1986, DOI 10.1139/z94-271; VITT LJ, 1986, COPEIA, P773, DOI 10.2307/1444960; Vitt LJ, 2003, AM NAT, V162, P44, DOI 10.1086/375172; VITT LJ, 1982, HERPETOLOGICA, V38, P237; VITT LJ, 1981, AM NAT, V117, P506, DOI 10.1086/283731; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; Vitt LJ, 2005, P NATL ACAD SCI USA, V102, P7877, DOI 10.1073/pnas.0501104102; Warne RW, 2008, AM NAT, V172, pE80, DOI 10.1086/589880; Werneck FD, 2009, MOL ECOL, V18, P262, DOI 10.1111/j.1365-294X.2008.03999.x; Wiens JJ, 2005, ANNU REV ECOL EVOL S, V36, P519, DOI 10.1146/annurev.ecolsys.36.102803.095431; Zamora-Abrego JG, 2007, J HERPETOL, V41, P630 101 12 13 2 54 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JUN 2016 187 6 689 705 10.1086/686055 17 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DM3UE WOS:000376271400003 27172590 2019-02-21 J Olsen, K; Sneed, JM; Paul, VJ Olsen, K.; Sneed, J. M.; Paul, V. J. Differential larval settlement responses of Porites astreoides and Acropora palmata in the presence of the green alga Halimeda opuntia CORAL REEFS English Article Settlement; Coral recruitment; Macroalgae; Porites astreoides; Acropora palmata CORAL RECRUITMENT; ELEVATED-TEMPERATURE; CARIBBEAN CORAL; REEF CORALS; MACROALGAE; RESILIENCE; DISPERSAL; SURVIVAL Settlement is critical to maintaining coral cover on reefs, yet interspecific responses of coral planulae to common benthic macroalgae are not well characterized. Larval survival and settlement of two Caribbean reef-building corals, the broadcast-spawner Acropora palmata and the planulae-brooder Porites astreoides, were quantified following exposure to plastic algae controls and the green macroalga Halimeda opuntia. Survival and settlement rates were not significantly affected by the presence of H. opuntia in either species. However, similar to 10 % of P. astreoides larvae settled on the surface of the macroalga, whereas larvae of A. palmata did not. It is unlikely that corals that settle on macroalgae will survive post-settlement; therefore, H. opuntia may reduce the number of P. astreoides and other non-discriminatory larvae that survive to adulthood. Our results suggest that the presence of macroalgae on impacted reefs can have unexpected repercussions for coral recruitment and highlight discrepancies in settlement specificity between corals with distinct life history strategies. [Olsen, K.; Sneed, J. M.; Paul, V. J.] Smithsonian Marine Stn, 701 Seaway Dr, Ft Pierce, FL 34949 USA; [Olsen, K.] Florida State Univ, Dept Biol Sci, 319 Stadium Dr, Tallahassee, FL 32306 USA Paul, VJ (reprint author), Smithsonian Marine Stn, 701 Seaway Dr, Ft Pierce, FL 34949 USA. Paul@si.edu Sneed, Jennifer/0000-0003-3010-7055 Mote Protect Our Reef Grant program [POR 2013-27]; Smithsonian Competitive Grants Program for Science; CCRE program [983] Funding was provided by Mote Protect Our Reef Grant program (POR 2013-27) and Smithsonian Competitive Grants Program for Science. We thank L. Johnston, M. Jones, Z. Foltz, A. Wood, M. Henley, D. Dixson, K. Ritchie, M. Schwartz, J. Skutas, A. Augustines and L. Spiers for assistance with larval collection and experiments. We thank the Belize Fisheries Department for providing permits to conduct research at Carrie Bow Cay, Belize. In the Florida Keys, coral larvae were collected under Permit No. FKNMS-2013-021. This is Contribution No. 1019 from the Smithsonian Marine Station and No. 983 from the CCRE program. Arnold SN, 2010, MAR ECOL PROG SER, V414, P91, DOI 10.3354/meps08724; Aronson R, 2014, IUCN RED LIST THREAT; Birrell CL, 2008, OCEANOGR MAR BIOL, V46, P25; CARLON DB, 1993, J EXP MAR BIOL ECOL, V173, P247, DOI 10.1016/0022-0981(93)90056-T; Dixson DL, 2014, SCIENCE, V345, P892, DOI 10.1126/science.1255057; Fong P, 2011, CORAL REEFS: AN ECOSYSTEM IN TRANSITION, P241, DOI 10.1007/978-94-007-0114-4_17; Green DH, 2008, MAR ECOL PROG SER, V359, P1, DOI 10.3354/meps07454; Harrington L, 2004, ECOLOGY, V85, P3428, DOI 10.1890/04-0298; Kuffner IB, 2004, CORAL REEFS, V23, P455, DOI 10.1007/s00338-004-0416-8; Kuffner IB, 2006, MAR ECOL PROG SER, V323, P107, DOI 10.3354/meps323107; Mumby PJ, 2008, TRENDS ECOL EVOL, V23, P555, DOI 10.1016/j.tree.2008.06.011; Nozawa Y, 2005, CORAL REEFS, V24, P274, DOI 10.1007/s00338-005-0476-4; Nugues MM, 2006, CORAL REEFS, V25, P585, DOI 10.1007/s00338-006-0147-0; Nugues MM, 2004, ECOL LETT, V7, P919, DOI 10.1111/j.1461-0248.2004.00651.x; Olsen K, 2015, B MAR SCI, V91, P255, DOI 10.5343/bms.2014.1050; Olsen K, 2014, MAR ECOL PROG SER, V509, P181, DOI 10.3354/meps10880; Paul VJ, 2011, MAR ECOL PROG SER, V426, P161, DOI 10.3354/meps09032; PAUL VJ, 1992, J EXP MAR BIOL ECOL, V160, P191, DOI 10.1016/0022-0981(92)90237-5; Price N, 2010, OECOLOGIA, V163, P747, DOI 10.1007/s00442-010-1578-4; Ritson-Williams R, 2014, CORAL REEFS, V33, P59, DOI 10.1007/s00338-013-1113-2; Ritson-Williams R, 2010, CORAL REEFS, V29, P71, DOI 10.1007/s00338-009-0555-z; Ritson-Williams Raphael, 2009, Smithsonian Contributions to the Marine Sciences, P437; Roff G, 2012, TRENDS ECOL EVOL, V27, P404, DOI 10.1016/j.tree.2012.04.007; Sneed JM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3086; Vermeij MJA, 2009, OECOLOGIA, V159, P325, DOI 10.1007/s00442-008-1223-7; Walters LJ, 2002, J EXP MAR BIOL ECOL, V278, P47, DOI 10.1016/S0022-0981(02)00335-0 26 1 1 5 31 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4028 1432-0975 CORAL REEFS Coral Reefs JUN 2016 35 2 521 525 10.1007/s00338-015-1394-8 5 Marine & Freshwater Biology Marine & Freshwater Biology DM3KF WOS:000376244600015 2019-02-21 J Plantamp, C; Salort, K; Gibert, P; Dumet, A; Mialdea, G; Mondy, N; Voituron, Y Plantamp, Christophe; Salort, Katleen; Gibert, Patricia; Dumet, Adeline; Mialdea, Gladys; Mondy, Nathalie; Voituron, Yann All or nothing: Survival, reproduction and oxidative balance in Spotted Wing Drosophila (Drosophila suzukii) in response to cold JOURNAL OF INSECT PHYSIOLOGY English Article Cold temperature; Insect; Invasive species; Life history traits; Oxidative stress; Thermal tolerance HEAT-SHOCK PROTEINS; LIFE-HISTORY EVOLUTION; ANTIOXIDANT DEFENSES; RANGE EXPANSION; UNITED-STATES; STARVATION RESISTANCE; DIPTERA DROSOPHILIDAE; MOLECULAR CHAPERONES; THERMAL ADAPTATION; NEZARA-VIRIDULA Winter severity and overwintering capacity are key ecological factors in successful invasions, especially in ectotherms. The integration of physiological approaches into the study of invasion processes is emerging and promising. Physiological information describes the mechanisms underlying observed survival and reproductive capacities, and it can be used to predict an organism's response to environmental perturbations such as cold temperatures. We investigated the effects of various cold treatments on life history and physiological traits of an invasive pest species, Drosophila suzukii, such as survival, fertility and oxidative balance. This species, a native of temperate Asian areas, is known to survive where cold temperatures are particularly harsh and has been recently introduced into Europe and North America. We found that cold treatments had a strong impact on adult survival but no effect on female's fertility. Although only minor changes were observed after cold treatment on studied physiological traits, a strong sex-based difference was observed in both survival and physiological markers (antioxidant defences and oxidative markers). Females exhibited higher survival, reduced oxidative defences, less damage to nucleic acids, and more damage to lipids. These results suggest that D. suzukii relies on a pathway other than oxidative balance to resist cold injury. Altogether, our results provide information concerning the mechanisms of successful invasion by D. suzukii. These findings may assist in the development of population models that predict the current and future geographic ranges of this species. (C) 2016 Elsevier Ltd. All rights reserved. [Plantamp, Christophe; Salort, Katleen; Gibert, Patricia; Mialdea, Gladys] Univ Lyon 1, CNRS, Lab Biometrie & Biol Evolut, UMR 5558, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France; [Salort, Katleen; Dumet, Adeline; Mondy, Nathalie; Voituron, Yann] Univ Lyon 1, CNRS, Lab Ecol Hydrosyst Nat & Anthropises, ENTPE,UMR 5023, 6 Rue Raphael Dubois, F-69622 Villeurbanne, France Plantamp, C (reprint author), Univ Lyon 1, Bat Gregor Mendel,43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France. cplantamp@gmail.com Gibert, Patricia/0000-0002-9461-6820 FR BioEnviS (Federation de Recherche Bio-Environment et Sante); CASDAR project (French Ministry of Agriculture); Bayer CropScience France This work was funded by FR BioEnviS (Federation de Recherche Bio-Environment et Sante) and CASDAR project (French Ministry of Agriculture). Experimentations were carried out at Eco-Aquatron (University of Lyon 1). CP was supported by funding from Bayer CropScience France. We thank Nicole Lara for the production of artificial diet for Drosophila rearing. We thank Emmanuel Desouhant, David Monnin and Sara Puijalon for their assistance with data analysis. Ali SS, 2006, AGING CELL, V5, P565, DOI 10.1111/j.1474-9726.2006.00252.x; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Asplen MK, 2015, J PEST SCI, V88, P469, DOI 10.1007/s10340-015-0681-z; Barbagallo B, 2015, CURR OPIN NEUROBIOL, V34, P8, DOI 10.1016/j.conb.2015.01.002; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Calabria G., 2010, J APPL ENTOMOL, V136, P139; Carvalho M, 2012, MOL SYST BIOL, V8, P1, DOI [10.1038/msb.2012.29, DOI 10.1038/MSB.2012.29]; Cini A, 2012, B INSECTOL, V65, P149; Clements DR, 2011, WEED RES, V51, P227, DOI 10.1111/j.1365-3180.2011.00850.x; COSGROVE JP, 1987, LIPIDS, V22, P299, DOI 10.1007/BF02533996; Costantini D, 2009, PHYSIOL BIOCHEM ZOOL, V82, P430, DOI 10.1086/604668; Crozier L, 2003, OECOLOGIA, V135, P648, DOI 10.1007/s00442-003-1219-2; CZAJKA MC, 1990, J EXP BIOL, V148, P245; DAISIE, 2015, INVASIVE ALIEN SPECI; Dalton DT, 2011, PEST MANAG SCI, V67, P1368, DOI 10.1002/ps.2280; Danks HV, 2006, CAN ENTOMOL, V138, P1; DAVID JEAN, 1965, BULL BIOL FRANCE BELG, V99, P369; DAVID JR, 1998, J THERMAL BIOL, V23, P291; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; EPPO, 2015, PQR EPPO DAT QUAR PE; Evans T. G., 2015, CONSERV PHYSL, V3, P1, DOI DOI 10.1093/CONPHYSICOV056; Facon B, 2006, TRENDS ECOL EVOL, V21, P130, DOI 10.1016/j.tree.2005.10.012; Feder ME, 1999, ANNU REV PHYSIOL, V61, P243, DOI 10.1146/annurev.physiol.61.1.243; Fink AL, 1999, PHYSIOL REV, V79, P425; Gao XM, 2013, PEST MANAG SCI, V69, P1315, DOI 10.1002/ps.3503; Garrity PA, 2010, GENE DEV, V24, P2365, DOI 10.1101/gad.1953710; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Goodhue RE, 2011, PEST MANAG SCI, V67, P1396, DOI 10.1002/ps.2259; Grim JM, 2013, COMP BIOCHEM PHYS A, V164, P383, DOI 10.1016/j.cbpa.2012.11.018; Guan XL, 2013, DEV CELL, V24, P98, DOI 10.1016/j.devcel.2012.11.012; Halliwell B, 2007, FREE RADICALS BIOL M; Hartl FU, 1996, NATURE, V381, P571, DOI 10.1038/381571a0; Hauser M, 2011, PEST MANAG SCI, V67, P1352, DOI 10.1002/ps.2265; HAZEL JR, 1995, ANNU REV PHYSIOL, V57, P19, DOI 10.1146/annurev.ph.57.030195.000315; HERMESLIMA M, 1993, AM J PHYSIOL, V265, pR646; HOFFMANN AA, 1993, AM NAT, V142, pS93, DOI 10.1086/285525; Huey RB, 2012, PHILOS T R SOC B, V367, P1665, DOI 10.1098/rstb.2012.0005; Jakobs R, 2015, J INSECT PHYSIOL, V79, P1, DOI 10.1016/j.jinsphys.2015.05.003; Joanisse DR, 1996, J EXP BIOL, V199, P1483; Kanzawa T., 1939, STUDIES DROSOPHILA S, P1; Kearney M, 2009, ECOL LETT, V12, P334, DOI 10.1111/j.1461-0248.2008.01277.x; Kelley AL, 2014, CONSERV PHYSIOL, V2, P1, DOI DOI 10.1093/CONPHYS/COU045.INTRODUCTION; Kelty JD, 1999, J INSECT PHYSIOL, V45, P719, DOI 10.1016/S0022-1910(99)00040-2; Kimura MT, 2004, OECOLOGIA, V140, P442, DOI 10.1007/s00442-004-1605-4; King AM, 2015, ANNU REV ENTOMOL, V60, P59, DOI 10.1146/annurev-ento-011613-162107; Kobey RL, 2013, J EXP BIOL, V216, P1174, DOI 10.1242/jeb.076539; Kostal V, 2007, COMP BIOCHEM PHYS A, V147, P231, DOI 10.1016/j.cbpa.2006.12.033; Kostal V, 2004, J EXP BIOL, V207, P1509, DOI 10.1242/jeb.00923; Lalouette L, 2011, COMP BIOCHEM PHYS A, V158, P229, DOI 10.1016/j.cbpa.2010.11.007; Lee RE, 2006, CRYOBIOLOGY, V52, P459, DOI 10.1016/j.cryobiol.2006.03.003; Lefevre GJ, 1962, DIS, V36, P86; LIANG KY, 1986, BIOMETRIKA, V73, P13, DOI 10.2307/2336267; Lindhard H., 2014, SPOTTED WING DROSOPH; lsaksson C., 2011, INTEGR ZOOL, V6, P140, DOI DOI 10.1111/J.1749-4877.2011.00237.X; Lushchak VI, 2001, AM J PHYSIOL-REG I, V280, pR100; Mack RN, 2000, ECOL APPL, V10, P689, DOI 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2; MacMillan HA, 2015, SCI REP-UK, V5, DOI 10.1038/srep18607; MacMillan HA, 2015, J EXP BIOL, V218, P423, DOI 10.1242/jeb.115790; MacMillan HA, 2009, J INSECT PHYSIOL, V55, P243, DOI 10.1016/j.jinsphys.2008.11.015; Mahowald A.P., 1980, Genetics and Biology of Drosophila, V2d, P141; Marshall KE, 2010, P R SOC B, V277, P963, DOI 10.1098/rspb.2009.1807; MeteoFrance, 2015, FRENCH CLIM DAT; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Mooney HA, 2001, P NATL ACAD SCI USA, V98, P5446, DOI 10.1073/pnas.091093398; Nonidez JF, 1920, BIOL BULL-US, V39, P207, DOI 10.2307/1536488; NOVITSKI E, 1949, BIOL BULL, V97, P150, DOI 10.2307/1538294; Nurnberger B, 2003, HEREDITY, V91, P136, DOI 10.1038/sj.hdy.6800291; OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3; Overgaard J, 2008, J INSECT PHYSIOL, V54, P619, DOI 10.1016/j.jinsphys.2007.12.011; Overgaard J, 2007, J INSECT PHYSIOL, V53, P1218, DOI 10.1016/j.jinsphys.2007.06.012; Overgaard J, 2006, PHYSIOL ENTOMOL, V31, P328, DOI 10.1111/j.1365-3032.2006.00522.x; PARSELL DA, 1993, ANNU REV GENET, V27, P437, DOI 10.1146/annurev.ge.27.120193.002253; Pimentel D, 2005, ECOL ECON, V52, P273, DOI 10.1016/j.ecolecon.2004.10.002; Portner HO, 2006, PHYSIOL BIOCHEM ZOOL, V79, P295, DOI 10.1086/499986; R Core Team, 2015, R LANG ENV STAT COMP; Rako L, 2006, J INSECT PHYSIOL, V52, P94, DOI 10.1016/j.jinsphys.2005.09.007; Resasco J, 2014, ECOLOGY, V95, P2033, DOI 10.1890/14-0169.1; Rinehart JP, 2007, P NATL ACAD SCI USA, V104, P11130, DOI 10.1073/pnas.0703538104; Rojas RR, 1996, CRYOBIOLOGY, V33, P447, DOI 10.1006/cryo.1996.0045; Romero LM, 2013, CONSERV PHYSL, V1, P1, DOI DOI 10.1093/CONPHYSICOT012; Sayeed O, 1996, P NATL ACAD SCI USA, V93, P6079, DOI 10.1073/pnas.93.12.6079; Schwasinger-Schmidt TE, 2012, J EVOLUTION BIOL, V25, P378, DOI 10.1111/j.1420-9101.2011.02428.x; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Shreve SM, 2007, CRYOLETTERS, V28, P33; Sinclair BJ, 2005, J THERM BIOL, V30, P557, DOI 10.1016/j.jtherbio.2005.07.002; Singh K, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129992; Somero G. N., 2002, BIOCH ADAPTATION MEC, DOI DOI 10.1002/BMB.2002A94030030071; Stephens AR, 2015, ENVIRON ENTOMOL, V44, P1619, DOI 10.1093/ee/nvv134; Storey KB, 2013, COMPR PHYSIOL, V3, P1283, DOI 10.1002/cphy.c130007; Storey KB, 2012, CAN J ZOOL, V90, P456, DOI 10.1139/Z2012-011; Suarez AV, 2008, MOL ECOL, V17, P351, DOI 10.1111/j.1365-294X.2007.03456.x; Tougou D, 2009, ENTOMOL EXP APPL, V130, P249, DOI 10.1111/j.1570-7458.2008.00818.x; Vermeulen CJ, 2006, J INSECT PHYSIOL, V52, P910, DOI 10.1016/j.jinsphys.2006.05.014; Voituron Y, 2006, CRYOBIOLOGY, V52, P74, DOI 10.1016/j.cryobiol.2005.09.006; WANG JY, 1994, CHEM PHYS LIPIDS, V71, P197, DOI 10.1016/0009-3084(94)90071-X; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Williamson M, 1996, ECOLOGY, V77, P1661, DOI 10.2307/2265769; Yi SX, 2007, APOPTOSIS, V12, P1183, DOI 10.1007/s10495-006-0048-2; Yukawa J, 2009, APPL ENTOMOL ZOOL, V44, P429, DOI 10.1303/aez.2009.429 100 11 11 2 76 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. JUN 2016 89 28 36 10.1016/j.jinsphys.2016.03.009 9 Entomology; Physiology; Zoology Entomology; Physiology; Zoology DM2XL WOS:000376211300004 27040270 2019-02-21 J Gutsch, M; Hoffman, J Gutsch, Michelle; Hoffman, Joel A review of Ruffe (Gymnocephalus cernua) life history in its native versus non-native range REVIEWS IN FISH BIOLOGY AND FISHERIES English Review Ruffe; Life history; Adaptability; Invasive species; Life cycle; Tolerances; Thresholds PERCH PERCA-FLUVIATILIS; ST-LOUIS RIVER; PIKE ESOX-LUCIUS; PULP-MILL EFFLUENT; FRESH-WATER FISH; LAKE-SUPERIOR; GREAT-LAKES; EURASIAN RUFFE; LATERAL-LINE; BALTIC SEA Invasive Ruffe (Gymnocephalus cernua) has caused substantial ecological damage in North America, parts of Western Europe, Scandinavian countries, and the United Kingdom. The objectives of this review are to define Ruffe's native and non-native range, examine life history requirements, explore the life cycle, and differentiate between life stages. We compare data from its native and non-native ranges to determine if there are any differences in habitat, size, age, genotype, or seasonal migration. Literature from both the native and non-native ranges of Ruffe, with some rare, translated literature, is used. In each life stage, Ruffe exhibit plasticity with regard to chemical, physical, biological, and habitat requirements. Adult Ruffe has characteristics that allow them to adapt to a range of environments, including rapid maturation, relatively long life and large size (allowing them to reproduce many times in large batches), batch spawning, genotype and phenotype (having plasticity in their genetic expression), tolerance to a wide range of water quality, broad diet, and multiple dispersal periods. There is, however, variability among these characteristics between the native, non-native North American, and European non-native populations, which presents a challenge to managing populations based on life history characteristics. Monitoring and preventative strategies are important because, based on Ruffe's variable life history strategies and its recent range expansion, all of the Laurentian Great Lakes and many other water bodies in the UK, Europe, and Norway are vulnerable to Ruffe establishment. [Gutsch, Michelle] Univ Minnesota Twin Cities, UMD Biol, 207 SSB,D170A,1035 Kirby Dr, Duluth, MN 55812 USA; [Hoffman, Joel] US EPA, Off Res & Dev, Mid Continent Ecol Div, Natl Hlth & Environm Effects Res Lab, 6201 Congdon Blvd, Duluth, MN 55804 USA Gutsch, M (reprint author), Univ Minnesota Twin Cities, UMD Biol, 207 SSB,D170A,1035 Kirby Dr, Duluth, MN 55812 USA. guts0007@umn.edu; Hoffman.Joel@epa.gov US EPA; University of Minnesota We thank the US Fish and Wildlife Service of Ashland, WI, the US Geological Survey, and the US Environmental Protection Agency (EPA) for providing Ruffe survey data, making it possible to construct Ruffe distribution maps in the US. We especially thank Derek Ogle for providing us with his library of Ruffe literature that was extremely helpful to writing this manuscript. We thank the US EPA for providing funding for this project through a cooperative agreement with the University of Minnesota. We thank the many people who helped review this paper, especially Charles Gornik and Emily Heald, who reviewed it many times. We also thank anonymous reviewers, Carol Stepien, and Ian Winfield for providing data and comments to the manuscript. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the US EPA. ADAMS C E, 1991, Aquaculture and Fisheries Management, V22, P239, DOI 10.1111/j.1365-2109.1991.tb00513.x; ADAMS CE, 1991, J FISH BIOL, V38, P663, DOI 10.1111/j.1095-8649.1991.tb03155.x; Alabaster JS, 1966, FIELD LAB INVESTIGAT, P1; APPELBERG M, 1990, Limnologica, V20, P319; BAGGE P, 1985, Aqua Fennica, V15, P237; Bakanov AI, 1987, J ICHTHYOL, V27, P124; Balon E.K., 1990, GUELPH ICHTHYOL REV, V1, P1; BALON EK, 1977, J FISH RES BOARD CAN, V34, P1910, DOI 10.1139/f77-257; Bastl I., 1969, Pr. Lab. rybarstva, V2, P159; Bastl I, 1988, PRACE UST RYBAR HYDR, V6, P9; Berg L. S., 1965, FRESHWATER FISHES US, V3; BERG LS, 1949, FRESHWATER FISHES US; BERGMAN E, 1991, CAN J FISH AQUAT SCI, V48, P536, DOI 10.1139/f91-068; BERGMAN E, 1987, ENVIRON BIOL FISH, V19, P45, DOI 10.1007/BF00002736; BERGMAN E, 1994, ECOLOGY, V75, P1233, DOI 10.2307/1937449; BERGMAN E, 1988, J ANIM ECOL, V57, P443, DOI 10.2307/4916; BERGMAN E, 1990, OIKOS, V57, P241, DOI 10.2307/3565946; BIRO P, 1977, J FISH RES BOARD CAN, V34, P1678, DOI 10.1139/f77-232; BOIKOVA OS, 1986, HYDROBIOLOGIA, V141, P95, DOI 10.1007/BF00007483; BONSDORFF E, 1990, Limnologica, V20, P279; Boron S., 1987, Acta Ichthyologica et Piscatoria, V17, P59; Brown WP, 1998, J GREAT LAKES RES, V24, P217, DOI 10.1016/S0380-1330(98)70814-7; COLLETTE BB, 1977, J FISH RES BOARD CAN, V34, P1890, DOI 10.1139/f77-255; COLLETTE BB, 1977, J FISH RES BOARD CAN, V34, P1450, DOI 10.1139/f77-209; CRAIG JF, 1987, BIOL PERCH RELATED F; Crosier D, 2007, GYMNOCEPHALUS CERNUU; CUNJAK RA, 1986, CAN J FISH AQUAT SCI, V43, P1970, DOI 10.1139/f86-242; Dawson HA, 2006, J GREAT LAKES RES, V32, P40, DOI 10.3394/0380-1330(2006)32[40:UOEOBB]2.0.CO;2; Devine JA, 2000, J FISH BIOL, V56, P1488, DOI 10.1006/jfbi.2000.1275; DISLER NN, 1977, J FISH RES BOARD CAN, V34, P1492, DOI 10.1139/f77-214; DOORNBOS G, 1979, ARDEA, V67, P42; DUNCAN A, 1990, HYDROBIOLOGIA, V200, P541, DOI 10.1007/BF02530371; DYKOVA I, 1978, J FISH BIOL, V12, P197, DOI 10.1111/j.1095-8649.1978.tb04165.x; Eckmann R, 2004, J FISH BIOL, V65, P1498, DOI [10.1111/j.0022-1112.2004.00553.x, 10.1111/j.1095-8649.2004.00553.x]; EKLOV P, 1989, OIKOS, V56, P149, DOI 10.2307/3565330; Fairchild DJ, 1996, J GREAT LAKES RES, V22, P89, DOI 10.1016/S0380-1330(96)70938-3; FEDOROVA G V, 1974, Journal of Ichthyology, V14, P836; FRENCH JRP, 1992, J FRESHWATER ECOL, V7, P59, DOI 10.1080/02705060.1992.9664670; Fullerton AH, 1998, J GREAT LAKES RES, V24, P319, DOI 10.1016/S0380-1330(98)70823-8; Giannico GR, 2003, RIVER RES APPL, V19, P219, DOI 10.1002/rra.723; GRAY JAB, 1989, J MAR BIOL ASSOC UK, V69, P289, DOI 10.1017/S0025315400029416; Gunderson JL, 1998, J GREAT LAKES RES, V24, P165, DOI 10.1016/S0380-1330(98)70810-X; HANSSON S, 1984, J BIOGEOGR, V11, P367, DOI 10.2307/2844802; HANSSON S, 1985, HYDROBIOLOGIA, V121, P3, DOI 10.1007/BF00035223; HANSSON S, 1987, AMBIO, V16, P344; HENSEL K, 1979, FOLIA ZOOL, V28, P85; Hoffman JC, 2010, ESTUAR COAST, V33, P1391, DOI 10.1007/s12237-010-9295-0; HOKANSON KEF, 1977, J FISH RES BOARD CAN, V34, P1524, DOI 10.1139/f77-217; HOLCIK J, 1974, COPEIA, P471; Holcik J, 1968, FRESHWATER FISHES; HOLKER F, 1994, ARCH FISH MAR RES, V42, P47; Holker F, 1998, J GREAT LAKES RES, V24, P186; HOROSZEWICZ L, 1973, J FISH BIOL, V5, P165, DOI 10.1111/j.1095-8649.1973.tb04445.x; JAKUBOWSKI M, 1963, ACTA BIOL CRACOV, V6, P59; JAMET JL, 1991, ANN SCI NAT ZOOL, V12, P99; Johansson L., 1986, P237; JOHNSEN PALLE, 1965, MEDDELELSER DENMARKS FISKERI OG HAVUNDERSOGELSER, V4, P137; JOKELA J, 1991, ARCH HYDROBIOL, V120, P345; KALAS S, 1995, ENVIRON BIOL FISH, V42, P219, DOI 10.1007/BF00004915; Kangur K, 1999, HYDROBIOLOGIA, V408, P65, DOI 10.1023/A:1017005904700; Kangur Kulli, 2000, Proceedings of the Estonian Academy of Sciences Biology Ecology, V49, P121; Kangur Kulli, 1996, Proceedings of the Estonian Academy of Sciences Biology, V45, P1; Kangur P, 2003, HYDROBIOLOGIA, V506, P435, DOI 10.1023/B:HYDR.0000008573.64863.e5; Kangur Peeter, 2000, Proceedings of the Estonian Academy of Sciences Biology Ecology, V49, P109; Kiyashko VI, 1978, J ICHTHYOL, V18, P693; Kolar CS, 2001, TRENDS ECOL EVOL, V16, P199, DOI 10.1016/S0169-5347(01)02101-2; KOLOMIN YM, 1977, J ICHTHYOL, V17, P345; Kontsevaya NY, 1980, T GOSNIORKH, V159, P80; KOSHELEV B. V., 1963, TR INST MORFOL ZHIVOTN AKAD NAUK SSSR, V38, P189; Kovac V, 1998, J GREAT LAKES RES, V24, P205, DOI 10.1016/S0380-1330(98)70813-5; KOVAC V, 1993, FOLIA ZOOL, V42, P269; KOVAC V, 1994, ENVIRON BIOL FISH, V40, P241, DOI 10.1007/BF00002511; KOVALEV P M, 1973, Voprosy Ikhtiologii, V13, P1122; Kozlova MF, 1977, J ICHTHYOL, V17, P382; Lappalainen J, 1998, J GREAT LAKES RES, V24, P228, DOI 10.1016/S0380-1330(98)70815-9; LEACH JH, 1977, J FISH RES BOARD CAN, V34, P1964, DOI 10.1139/f77-263; Lehtonen H, 1998, J GREAT LAKES RES, V24, P285, DOI 10.1016/S0380-1330(98)70819-6; Leszczynski L, 1963, ROCZNIKI NAUK ROLNIC, V82B2, P251; Lilja J, 2003, AQUAT LIVING RESOUR, V16, P185, DOI 10.1016/S0990-7440(03000016-0; LIND EA, 1977, J FISH RES BOARD CAN, V34, P1684, DOI 10.1139/f77-233; LINDESJOO E, 1990, DIS AQUAT ORGAN, V8, P119, DOI 10.3354/dao008119; Logvinenko BM, 1983, J ICHTHYOL, V23, P165; Lorenzoni M, 2009, FOLIA ZOOL, V58, P420; MAITLAND P S, 1989, Aquaculture and Fisheries Management, V20, P227, DOI 10.1111/j.1365-2109.1989.tb00347.x; MAITLAND PS, 1977, HAMLYN GUIDE FRESHWA; Matkovskiy AK, 1987, J ICHTHYOL, V27, P113; Matthey G, 1966, B SOC VAUD SCI NAT, V69, P229; MATTILA J, 1992, J EXP MAR BIOL ECOL, V157, P55, DOI 10.1016/0022-0981(92)90074-K; Mayo KR, 1998, J GREAT LAKES RES, V24, P329, DOI 10.1016/S0380-1330(98)70824-X; MAYR B, 1987, GENETICA, V75, P199, DOI 10.1007/BF00123574; McLean M, 1993, RUFFE GYMNOCEPHALUS; Mikheev Victor N., 1993, Polskie Archiwum Hydrobiologii, V40, P31; MIKKOLA H, 1979, Aqua Fennica, V9, P68; MILLS EL, 1994, BIOSCIENCE, V44, P666, DOI 10.2307/1312510; MN Sea Grant (Minnesota Sea Grant), 2013, EUR RUFF GYMN CERN; Nagy S, 1988, PRACE USTAVU RYBARST, V6, P59; NBN Gateway, 2013, GYMN CERN; Neja Zbigniew, 1989, Acta Ichthyologica et Piscatoria, V19, P3; Neja Zbigniew, 1988, Acta Ichthyologica et Piscatoria, V18, P33; NEUMAN E, 1988, WATER SCI TECHNOL, V20, P95; Neuman E, 1979, I FRESHW RES, V58, P88; NICKELSON TE, 1992, CAN J FISH AQUAT SCI, V49, P790, DOI 10.1139/f92-089; Nilsson NA, 1979, REP I FRESHWATER RES, V58, P126; NYGREN A, 1968, HEREDITAS-GENETISK A, V59, P518; Nyman L., 1975, Report Inst Freshw Res Drottningholm, VNo. 54, P75; Ogle DH, 2009, FISH RES, V99, P244, DOI 10.1016/j.fishres.2009.06.009; Ogle DH, 2009, N AM J FISH MANAGE, V29, P850, DOI 10.1577/M08-176.1; Ogle Derek H., 1996, North American Journal of Fisheries Management, V16, P115, DOI 10.1577/1548-8675(1996)016<0115:PORBNF>2.3.CO;2; Ogle DH, 2004, J GREAT LAKES RES, V30, P287, DOI 10.1016/S0380-1330(04)70346-9; OGLE DH, 1995, T AM FISH SOC, V124, P356, DOI 10.1577/1548-8659(1995)124<0356:DAFPOR>2.3.CO;2; Ogle DH, 1998, J GREAT LAKES RES, V24, P170, DOI 10.1016/S0380-1330(98)70811-1; Parmanne R, 1988, SUOMEN KAKATALOUS, V53, P1; Pavlovskiy SA, 1986, VOP IKHTIOL, V5, P765; PETERS N, 1987, DIS AQUAT ORGAN, V2, P87; Peterson GS, 2011, J GREAT LAKES RES, V37, P349, DOI [10.1016/j.jglr.2011.03.009, 10.1016/j/jglr.2011.03.009]; Petlina AP, 1967, PROBL ECOL TOMSK, V1, P175; Pietrock M, 1999, ACTA PARASITOL, V44, P165; PIHU E, 1982, HYDROBIOLOGIA, V86, P207, DOI 10.1007/BF00005812; POLIVANNAYA M F, 1974, Hydrobiological Journal, V10, P70; Popova OA, 1998, J GREAT LAKES RES, V24, P263, DOI 10.1016/S0380-1330(98)70818-4; Pratt D, 1988, DISTRIBUTION POPULAT; Reimers N., 1963, T AM FISH SOC, V92, P39; Rosch R, 1996, ANN ZOOL FENN, V33, P305; Ruffe Task Force, 1992, RUFF GREAT LAK THREA; Sandlund O. T., 1985, REP I FRESHWATER RES, V62, P136; Sanjose B.S., 1984, Vestnik Ceskoslovenske Spolecnosti Zoologicke, V48, P215; Selgeby J, 1998, J GREAT LAKES RES, V24, P304, DOI 10.1016/S0380-1330(98)70821-4; Sierszen ME, 1996, J GREAT LAKES RES, V22, P436, DOI 10.1016/S0380-1330(96)70968-1; Stepien CA, 1998, J GREAT LAKES RES, V24, P361, DOI 10.1016/S0380-1330(98)70827-5; Stepien CA, 2005, RISK ANAL, V25, P1043, DOI 10.1111/j.1539-6924.2005.00655.x; Stepien CA, 2015, BIOL CULTURE PERCID, P3, DOI 10.1007/978-94-017-7227-3_1; Sterligova OP, 1984, VOP IKHTIOL, V6, P1036; Tarvainen M, 2008, J FISH BIOL, V73, P536, DOI 10.1111/j.1095-8649.2008.01953.x; Travkina GL, 1971, J ICHTHYOLOGY, V11, P120; URHO L, 1990, ENVIRON BIOL FISH, V27, P273, DOI 10.1007/BF00002746; USGS (U.S. Geological Survey), 2014, GYMN CERN; VALTONEN ET, 1990, INT J PARASITOL, V20, P101, DOI 10.1016/0020-7519(90)90180-U; VANDENSEN WLT, 1982, HYDROBIOLOGIA, V95, P351, DOI 10.1007/BF00044495; VOLLESTAD LA, 1986, ARCH HYDROBIOL, V108, P107; Volta P, 2013, J LIMNOL, V72, P280, DOI 10.4081/jlimnol.2013.e22; Werner M.-G., 1996, Limnologica, V26, P145; WESTIN L, 1987, ENVIRON BIOL FISH, V20, P49, DOI 10.1007/BF00002025; WILLEMSEN J, 1977, J FISH RES BOARD CAN, V34, P1710, DOI 10.1139/f77-236; Winfield IJ, 2011, HYDROBIOLOGIA, V660, P93, DOI 10.1007/s10750-010-0397-2; Winfield IJ, 2010, J APPL ICHTHYOL, V26, P60, DOI 10.1111/j.1439-0426.2010.01504.x; Winfield IJ, 2004, ANN ZOOL FENN, V41, P155; WINFIELD IJ, 1992, NETH J ZOOL, V42, P233; Winfield IJ, 1998, J GREAT LAKES RES, V24, P235, DOI 10.1016/S0380-1330(98)70816-0; WOOTTEN R, 1974, J HELMINTHOL, V48, P167, DOI 10.1017/S0022149X00022793; WUBBELS RJ, 1990, J COMP PHYSIOL A, V166, P585; WUBBELS RJ, 1991, COMP BIOCHEM PHYS A, V100, P571, DOI 10.1016/0300-9629(91)90371-I 151 5 5 5 44 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0960-3166 1573-5184 REV FISH BIOL FISHER Rev. Fish. Biol. Fish. JUN 2016 26 2 213 233 10.1007/s11160-016-9422-5 21 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology DM3UW WOS:000376273200006 2019-02-21 J de Baca, TC; Wahl, RA; Barnett, MA; Figueredo, AJ; Ellis, BJ de Baca, Tomas Cabeza; Wahl, Richard A.; Barnett, Melissa A.; Figueredo, Aurelio Jose; Ellis, Bruce J. Adversity, Adaptive Calibration, and Health: The Case of Disadvantaged Families ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY English Article Life history theory; Chronic degenerative disease; Evolutionary psychology; Harshness; Unpredictability; Stress; Adversity; Disadvantaged families; Unpredictability schema LIFE-HISTORY THEORY; AFRICAN-AMERICAN ADOLESCENTS; C-REACTIVE PROTEIN; SOCIOECONOMIC-STATUS; SEX-RATIOS; REPRODUCTIVE STRATEGIES; RACIAL-DISCRIMINATION; PATERNAL INVESTMENT; LOWER TESTOSTERONE; DIABETES-MELLITUS Epidemiologists and medical researchers often employ an allostatic load model that focuses on environmental and lifestyle factors, together with biological vulnerabilities, to explain the deterioration of human physiological systems and chronic degenerative disease. Although this perspective has informed medicine and public health, it is agnostic toward the functional significance of pathophysiology and health deterioration. Drawing on Life History (LH) theory, the current paper reviews the literature on disadvantaged families to serve as a conceptual model of stress-health relationships in which the allocation of reproductive effort is instantiated in the LH strategies of individuals and reflects the bioenergetic and material resource tradeoffs. We propose that researchers interested in health disparities reframe chronic degenerative diseases as outcomes resulting from strategic calibration of physiological systems to best adapt, survive, and reproduce in response to demands of specific developmental contexts. These effects of adversity on later-age degenerative disease are mediated, in part, by socioemotional and cognitive mechanisms expressed in different life history strategies. [de Baca, Tomas Cabeza] Univ Calif San Francisco, Dept Psychiat, Hlth Psychol, 3333 Calif St,Suite 465, San Francisco, CA 94118 USA; [Wahl, Richard A.] Univ Arizona, Dept Pediat, Coll Med, Adolescent Med, Tucson, AZ 85721 USA; [Barnett, Melissa A.; Ellis, Bruce J.] Univ Arizona, Norton Sch Family & Consumer Sci, Div Family Studies & Human Dev, Tucson, AZ 85721 USA; [Figueredo, Aurelio Jose] Univ Arizona, Dept Psychol, Coll Sci, Sch Mind Brain & Behav, Tucson, AZ 85721 USA de Baca, TC (reprint author), Univ Calif San Francisco, Dept Psychiat, Hlth Psychol, 3333 Calif St,Suite 465, San Francisco, CA 94118 USA. tomas.cabezadebaca@ucsf.edu Wahl, Richard/0000-0002-3387-114X National Institute of Mental Health [T32MH019391] TCDB was partially supported by a National Institute of Mental Health grant T32MH019391. The authors would like to thank the two anonymous reviewers for their insightful comments and suggestions on earlier drafts of the paper. Adler NE, 2010, ANN NY ACAD SCI, V1186, P5, DOI 10.1111/j.1749-6632.2009.05337.x; Albert M A, 1999, Curr Cardiol Rep, V1, P99, DOI 10.1007/s11886-999-0066-0; Alexander R. D., 1974, ANNU REV ECOL SYST, V4, P325, DOI DOI 10.1146/ANNUREV.ES.05.110174.001545; Alvarado LC, 2013, EVOL APPL, V6, P117, DOI 10.1111/eva.12036; Angold A, 2007, J CHILD PSYCHOL PSYC, V48, P961, DOI 10.1111/j.1469-7610.2007.01832.x; Barber N, 2000, CROSS-CULT RES, V34, P26, DOI 10.1177/106939710003400102; Barber N, 2003, CROSS-CULT RES, V37, P163, DOI 10.1177/1069397103251424; Barber N, 2009, AGGRESSIVE BEHAV, V35, P49, DOI 10.1002/ab.20291; Beall AT, 2014, PERS INDIV DIFFER, V68, P112, DOI 10.1016/j.paid.2014.03.049; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Bjorklund DF, 2014, DEV REV, V34, P225, DOI 10.1016/j.dr.2014.05.005; Blum SC, 2014, SOC COGNITION, V32, P297, DOI 10.1521/soco.2014.32.3.297; Braithwaite D, 2009, CANCER CAUSE CONTROL, V20, P713, DOI 10.1007/s10552-008-9284-9; Braveman PA, 2010, AM J PUBLIC HEALTH, V100, pS186, DOI 10.2105/AJPH.2009.166082; Bronfenbrenner U., 1979, ECOLOGY HUMAN DEV EX; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Burnham TC, 2003, HORM BEHAV, V44, P119, DOI 10.1016/S0018-506X(03)00125-9; Burton L M, 1990, Hum Nat, V1, P123, DOI 10.1007/BF02692149; Cabeza de Baca T., 2016, EVOLUTIONARY BEHAV S, V10, P43, DOI DOI 10.1037/EBS0000056; Caldwell RM, 2006, J YOUTH ADOLESCENCE, V35, P591, DOI 10.1007/s10964-006-9031-z; Caudillo ML, 2014, SOCIOL EDUC, V87, P89, DOI 10.1177/0038040714523795; Charnov Eric L., 1993, P1; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; Chipman A, 2015, PSYCHONEUROENDOCRINO, V62, P89, DOI 10.1016/j.psyneuen.2015.07.611; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clancy KBH, 2013, AM J HUM BIOL, V25, P389, DOI 10.1002/ajhb.22386; Colen CG, 2006, SOC SCI MED, V63, P1531, DOI 10.1016/j.socscimed.2006.04.006; Coll CG, 1996, CHILD DEV, V67, P1891, DOI 10.2307/1131600; Costello EJ, 2003, JAMA-J AM MED ASSOC, V290, P2023, DOI 10.1001/jama.290.15.2023; De Baca TC, 2012, PERS INDIV DIFFER, V53, P681, DOI 10.1016/j.paid.2012.05.015; Deardorff J, 2011, J ADOLESCENT HEALTH, V48, P441, DOI 10.1016/j.jadohealth.2010.07.032; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; DENESRAJ V, 1991, OMEGA-J DEATH DYING, V23, P309, DOI 10.2190/YGW9-QQ3Y-NUMT-27NE; Dickerson SS, 2004, J PERS, V72, P1191, DOI 10.1111/j.1467-6494.2004.00295.x; Dishion TJ, 2012, DEV PSYCHOL, V48, P703, DOI 10.1037/a0027304; Dishion TJ, 2005, J ABNORM CHILD PSYCH, V33, P395, DOI 10.1007/s10802-005-3579-z; Doom J. R., 2015, DEV PSYCHOPATHOLOGY; Egeland B, 1996, DEV PSYCHOPATHOL, V8, P735, DOI 10.1017/S0954579400007392; Ellis B. J., 2013, CHILD ADOLESCENT PSY; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2013, HORM BEHAV, V64, P215, DOI 10.1016/j.yhbeh.2013.02.012; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison PT, 2007, AM J HUM BIOL, V19, P622, DOI 10.1002/ajhb.20662; Figueredo A. J., 2014, J METHODS MEASUREMEN, V5, P76; Figueredo A. J., 2012, TEMAS PSICOLOGIA, V20, P81; Figueredo A. J., 2001, VIRGINIA J SOCIAL PO, V8, P219; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Figueredo AJ, 2010, PSYCHOL EMOT MOTIV A, P3; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Fredrickson BL, 2013, P NATL ACAD SCI USA, V110, P13684, DOI 10.1073/pnas.1305419110; Frias Armenta M., 2008, REV MEXICANS PSICOLO, V25, P237; Garfin DR, 2014, PSYCHOL TRAUMA-US, V6, P563, DOI 10.1037/a0036584; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geronimus AT, 2010, HUM NATURE-INT BIOS, V21, P19, DOI 10.1007/s12110-010-9078-0; Geronimus Arline T., 1992, Ethnicity and Disease, V2, P207; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Gladden P. R., 2013, J METHODS MEASUREMEN, V4, P48, DOI DOI 10.2458/AZU_JMMSS.V4I1.17774; Gluckman PD, 2011, EVOL APPL, V4, P249, DOI 10.1111/j.1752-4571.2010.00164.x; Goff PA, 2012, J EXP SOC PSYCHOL, V48, P1111, DOI 10.1016/j.jesp.2012.03.015; Gray PB, 2002, EVOL HUM BEHAV, V23, P193, DOI 10.1016/S1090-5138(01)00101-5; Guerra NG, 2003, CHILD DEV, V74, P1561, DOI 10.1111/1467-8624.00623; HALES CN, 1992, DIABETOLOGIA, V35, P595, DOI 10.1007/BF00400248; Juster RP, 2011, DEV PSYCHOPATHOL, V23, P725, DOI 10.1017/S0954579411000289; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; King A. C., 2011, EVOLUTION, V4, P64; Kochanek Kenneth D, 2015, Natl Vital Stat Rep, V63, P1; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kruger D. J., 2012, LETT EVOLUTIONARY BE, V3, P17; Kruger DJ, 2014, J COMMUNITY PSYCHOL, V42, P119, DOI 10.1002/jcop.21597; Kruger DJ, 2013, AM J HUM BIOL, V25, P225, DOI 10.1002/ajhb.22369; Kruger DJ, 2009, EVOL PSYCHOL-US, V7, P280; Kuzawa CW, 2014, P NATL ACAD SCI USA, V111, P13010, DOI 10.1073/pnas.1323099111; Kuzawa CW, 2009, ANNU REV ANTHROPOL, V38, P131, DOI 10.1146/annurev-anthro-091908-164350; Kvarnemo C, 1996, TRENDS ECOL EVOL, V11, P404, DOI 10.1016/0169-5347(96)10056-2; Lehman BJ, 2005, PSYCHOSOM MED, V67, P846, DOI 10.1097/01.psy.0000188443.48405.eb; Marsland AL, 2008, BRAIN BEHAV IMMUN, V22, P753, DOI 10.1016/j.bbi.2007.11.008; McDade TW, 2005, AM J HUM BIOL, V17, P81, DOI 10.1002/ajhb.20095; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; MCLOYD VC, 1989, AM PSYCHOL, V44, P293, DOI 10.1037/0003-066X.44.2.293; McLoyd VC, 2006, HDB CHILD PSYCHOL, P700; Mendle J, 2016, J RES ADOLESCENCE, V26, P595, DOI 10.1111/jora.12201; Meyer IH, 2003, PSYCHOL BULL, V129, P674, DOI 10.1037/0033-2909.129.5.674; Mirowsky J, 2000, SOC PSYCHOL QUART, V63, P133, DOI 10.2307/2695888; MOFFITT TE, 1993, PSYCHOL REV, V100, P674, DOI 10.1037//0033-295X.100.4.674; MUEHLENBEIN MP, 2010, HUMAN EVOLUTIONARY B, P351; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Nieuwbeerta P, 2008, J RES CRIME DELINQ, V45, P256, DOI 10.1177/0022427808317573; Olderbak S, 2009, PERS INDIV DIFFER, V46, P604, DOI 10.1016/j.paid.2008.12.019; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Painter Nell Irvin, 2007, CREATING BLACK AM AF; Pettit B, 2004, AM SOCIOL REV, V69, P151, DOI 10.1177/000312240406900201; Pew Research Center, 2011, WEALTH GAPS RISE REC; Piquero AR, 2016, JUSTICE Q, V33, P73, DOI 10.1080/07418825.2014.896396; Pradhan AD, 2001, JAMA-J AM MED ASSOC, V286, P327, DOI 10.1001/jama.286.3.327; Quiroga A, 2015, ESTUD PSICOL-MADRID, V36, P294, DOI 10.1080/02109395.2015.1026122; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Ridker PM, 2000, NEW ENGL J MED, V342, P836, DOI 10.1056/NEJM200003233421202; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Roberts ME, 2012, DEV PSYCHOL, V48, P89, DOI 10.1037/a0025430; Roff Derek A., 1992; Ross LT, 2002, SOC BEHAV PERSONAL, V30, P453, DOI 10.2224/sbp.2002.30.5.453; Rowe D., 1994, LIMITS FAMILY INFLUE; Sampson R. J., 1995, CRIME INEQUALITY, P37; Scott LD, 2003, J BLACK STUD, V33, P520, DOI 10.1177/0021934702250035; Shaw DS, 1998, J ABNORM CHILD PSYCH, V26, P95, DOI 10.1023/A:1022665704584; Shonkoff JP, 2011, CHILD DEV, V82, P17, DOI 10.1111/j.1467-8624.2010.01538.x; Shonkoff JP, 2009, JAMA-J AM MED ASSOC, V301, P2252, DOI 10.1001/jama.2009.754; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Slopen N., 2010, CHANGING PLACES COMM, P311; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns S. C., 2008, FDN EVOLUTIONARY PSY, P47; Sutin AR, 2010, AGE, V32, P513, DOI 10.1007/s11357-010-9153-9; Szepsenwol O, 2015, J PERS SOC PSYCHOL, V109, P1045, DOI 10.1037/pspi0000032; Taylor SE, 2011, DEV PSYCHOPATHOL, V23, P939, DOI 10.1017/S0954579411000411; Turkheimer E, 2003, PSYCHOL SCI, V14, P623, DOI 10.1046/j.0956-7976.2003.psci_1475.x; Uggla C., 2015, BEHAV ECOLOGY; United States Census Bureau: Current Population Survey, 2008, REP INC EXP WEALTH; Vigil JM, 2005, DEV PSYCHOL, V41, P553, DOI 10.1037/0012-1649.41.3.553; Waynforth D., 2012, P ROY SOC LOND B BIO; Wight D, 2006, J ADOLESCENCE, V29, P473, DOI 10.1016/j.adolescence.2005.08.007; Williams DR, 2010, ANN NY ACAD SCI, V1186, P69, DOI 10.1111/j.1749-6632.2009.05339.x; WILLIAMS DR, 1999, ANN NY ACAD SCI, V896, P173, DOI DOI 10.1111/J.1749-6632.1999.TB08114.X; Wilson D. S., 2013, BEHAV SLEEP MED, V15, P1; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Yoshikawa H, 2012, AM PSYCHOL, V67, P272, DOI 10.1037/a0028015; Zilioli S, 2016, PSYCHOL SCI, V27, P114, DOI 10.1177/0956797615615868; Zlodre Jakov, 2012, Am J Public Health, V102, pe67, DOI 10.2105/AJPH.2012.300764 138 6 6 2 7 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 2198-7335 ADAPT HUM BEHAV PHYS Adapt. Hum. Behav. Physiol. JUN 2016 2 2 SI 93 115 10.1007/s40750-016-0042-z 23 Psychology, Biological Psychology FC8TZ WOS:000407115400001 27175327 Green Accepted, Bronze 2019-02-21 J Hill, SE; Boehm, GW; Prokosch, ML Hill, Sarah E.; Boehm, Gary W.; Prokosch, Marjorie L. Vulnerability to Disease as a Predictor of Faster Life History Strategies ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY English Article Life history theory; Mortality; Socioeconomic differences; Immune function; Health; Natural killer cell activity; Mitogen-induced lymphocyte proliferation INDUCED SICKNESS BEHAVIOR; REPRODUCTIVE STRATEGY; CHILDHOOD EXPERIENCE; AUTOIMMUNE-DISEASE; RISK BEHAVIORS; IMMUNE-SYSTEM; HUMAN HEIGHT; K-FACTOR; T-CELLS; STRESS Here we review research suggesting that vulnerability to disease plays a significant role in modulating life history strategies. In particular, we highlight the role of immunocompetence in life history tradeoffs, predicting that individuals whose immune systems leave them more vulnerable to disease should exhibit a range of psychological and behavioral outcomes that are associated with faster life history strategies. Further, we propose that these differences should occur even after controlling for the effects of early life stress, which themselves calibrate faster life history strategies and alter immune function. We close by highlighting important issues and challenges in this emerging area of inquiry, and illuminate potentially promising avenues of future research. [Hill, Sarah E.; Boehm, Gary W.; Prokosch, Marjorie L.] Texas Christian Univ, Dept Psychol, Ft Worth, TX 76129 USA Hill, SE (reprint author), Texas Christian Univ, Dept Psychol, Ft Worth, TX 76129 USA. s.e.hill@tcu.edu Prokosch, Marjorie/0000-0003-3569-3794 Aaltonen J, 1997, NAT GENET, V17, P399, DOI 10.1038/ng1297-399; Ader R., 2014, PSYCHONEUROIMMUNOLOG, V4, P281; Allen HL, 2010, NATURE, V467, P832, DOI 10.1038/nature09410; AUBERT A, 1995, BRAIN BEHAV IMMUN, V9, P129, DOI 10.1006/brbi.1995.1013; Barrientos RM, 2002, BEHAV BRAIN RES, V134, P291, DOI 10.1016/S0166-4328(02)00043-8; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; BLALOCK JE, 1984, J IMMUNOL, V132, P1067; Butterfield Lisa H., 2014, Critical Reviews in Oncogenesis, V19, P47; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charnov E. L, 1993, LIFE HIST INVARIANTS, V6; Daan Serge, 1997, P311; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Dantzer R., 2014, PSYCHONEUROIMMUNOLOG, V4, P281; Dantzer R, 2007, BRAIN BEHAV IMMUN, V21, P153, DOI 10.1016/j.bbi.2006.09.006; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P45, DOI 10.1017/S0140525X09000272; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Duncan LA, 2009, PERS INDIV DIFFER, V47, P541, DOI 10.1016/j.paid.2009.05.001; Ellis B. J., 2005, ORIGINS SOCIAL MIND; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Erickson JD, 2005, CHILD HEALTH CARE, V34, P181, DOI 10.1207/s15326888chc3403_2; Felten D.L., 1991, PSYCHONEUROIMMUNOLOG, P3; FELTEN SY, 1994, PROG BRAIN RES, V100, P157; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fremeaux-Bacchi V, 2008, BLOOD, V112, P4948, DOI 10.1182/blood-2008-01-133702; Gershenfeld HK, 2005, AM J GERIAT PSYCHIAT, V13, P1027, DOI 10.1176/appi.ajgp.13.12.1027; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; HESTON LL, 1977, SCIENCE, V196, P322, DOI 10.1126/science.196.4287.322; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill S. E., 2016, NK CELL REACTIVITY R; Hill SE, 2015, J PERS SOC PSYCHOL, V109, P244, DOI 10.1037/pspi0000024; Hoerger M, 2011, PSYCHOL ASSESSMENT, V23, P725, DOI 10.1037/a0023286; Jones ME, 2008, P NATL ACAD SCI USA, V105, P10023, DOI 10.1073/pnas.0711236105; Kaiko GE, 2010, J IMMUNOL, V185, P4681, DOI 10.4049/jimmunol.1001758; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kiecolt-Glaser JK, 2002, ANNU REV PSYCHOL, V53, P83, DOI 10.1146/annurev.psych.53.100901.135217; Konsman JP, 2002, TRENDS NEUROSCI, V25, P154, DOI 10.1016/S0166-2236(00)02088-9; Kranjac D, 2012, BRAIN BEHAV IMMUN, V26, P109, DOI 10.1016/j.bbi.2011.08.005; Lanier LL, 2005, ANNU REV IMMUNOL, V23, P225, DOI 10.1146/annurev.immunol.23.021704.115526; Licinio J, 1997, J CLIN INVEST, V100, P2941, DOI 10.1172/JCI119846; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Lowin B., 1994, P NATL ACAD SCI USA, V91, P11571, DOI [10.1073/pnas.91.24.11571, DOI 10.1073/PNAS.91.24.11571.]; Maier SF, 1998, ANN NY ACAD SCI, V840, P289, DOI 10.1111/j.1749-6632.1998.tb09569.x; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; McLinden KA, 2012, PHYSIOL BEHAV, V105, P1219, DOI 10.1016/j.physbeh.2011.04.024; McNamara JM, 1999, NATURE, V401, P368, DOI 10.1038/43872; Medzhitov R, 1997, CELL, V91, P295, DOI 10.1016/S0092-8674(00)80412-2; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.1111/j.1467-8624.1992.tb03594.x; Murphy K., 2011, JANEWAYS IMMUNOBIOLO; Murphy MLM, 2013, CLIN PSYCHOL SCI, V1, P30, DOI [10.1177/2167702612455743, 10.1177/2167702613478594]; Nayak D, 2014, ANNU REV IMMUNOL, V32, P367, DOI 10.1146/annurev-immunol-032713-120240; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Nettle D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012690; Park Sung Won, 2012, Korean J Pediatr, V55, P388, DOI 10.3345/kjp.2012.55.10.388; Patton JH, 1995, J CLIN PSYCHOL, V51, P768, DOI 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1; Pike JL, 1997, PSYCHOSOM MED, V59, P447, DOI 10.1097/00006842-199707000-00015; Prokosch M. L., 2015, IN M INT SOC EV MED; Pugh CR, 1998, BRAIN BEHAV IMMUN, V12, P212, DOI 10.1006/brbi.1998.0524; Radjavi A, 2014, BRAIN BEHAV IMMUN, V35, P58, DOI 10.1016/j.bbi.2013.08.013; Raghavendra V, 2004, EUR J NEUROSCI, V20, P467, DOI 10.1111/j.1460-9568.2004.03514.x; Raison CL, 2006, TRENDS IMMUNOL, V27, P24, DOI 10.1016/j.it.2005.11.006; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Roff Derek A., 1992; Sakaguchi N, 2003, NATURE, V426, P454, DOI 10.1038/nature02119; Sakaguchi S, 2006, IMMUNOL REV, V212, P8, DOI 10.1111/j.0105-2896.2006.00427.x; SCHULER W, 1986, CELL, V46, P963, DOI 10.1016/0092-8674(86)90695-1; Sharma AK, 1996, P NATL ACAD SCI USA, V93, P10996, DOI 10.1073/pnas.93.20.10996; Shattuck EC, 2015, AM J PHYS ANTHROPOL, V157, P1, DOI 10.1002/ajpa.22698; SHAVIT Y, 1984, SCIENCE, V223, P188, DOI 10.1126/science.6691146; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Sparkman NL, 2005, PHYSIOL BEHAV, V85, P278, DOI 10.1016/j.physbeh.2005.04.015; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Steptoe A, 2007, BRAIN BEHAV IMMUN, V21, P901, DOI 10.1016/j.bbi.2007.03.011; Stone M, 2009, VIROLOGY, V392, P260, DOI 10.1016/j.virol.2009.06.052; Suris JC, 2005, EUR J PUBLIC HEALTH, V15, P484, DOI 10.1093/eurpub/cki001; Suris JC, 2008, PEDIATRICS, V122, pE1113, DOI 10.1542/peds.2008-1479; Swann JB, 2007, J CLIN INVEST, V117, P1137, DOI 10.1172/JCI31405; Valencia L S, 2000, J Pediatr Adolesc Gynecol, V13, P53, DOI 10.1016/S1083-3188(00)00004-8; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vezilier J, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2014.0840; Waynforth D, 2012, P ROY SOC B-BIOL SCI, V279, P2998, DOI 10.1098/rspb.2012.0220; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Widen E, 2012, DIABETES CARE, V35, P850, DOI 10.2337/dc11-1365; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wohleb ES, 2013, MOD TR PHARMACOPSYCH, V28, P1, DOI 10.1159/000343964; Wood AR, 2014, NAT GENET, V46, P1173, DOI 10.1038/ng.3097; Yirmiya R, 2011, BRAIN BEHAV IMMUN, V25, P181, DOI 10.1016/j.bbi.2010.10.015; Zampieri B., 2013, PLOS ONE, V9, DOI 10.1371/journal.pone.0107218 98 8 9 2 7 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 2198-7335 ADAPT HUM BEHAV PHYS Adapt. Hum. Behav. Physiol. JUN 2016 2 2 SI 116 133 10.1007/s40750-015-0040-6 18 Psychology, Biological Psychology FC8TZ WOS:000407115400002 Bronze 2019-02-21 J Ponzi, D; Henry, A; Kubicki, K; Nickels, N; Wilson, MC; Maestripieri, D Ponzi, Davide; Henry, Andrea; Kubicki, Konrad; Nickels, Nora; Wilson, M. Claire; Maestripieri, Dario Autistic-Like Traits, Sociosexuality, and Hormonal Responses to Socially Stressful and Sexually Arousing Stimuli in Male College Students ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY English Article Personality; Sociosexuality; Life history; Hormones; Sex; Stress SPECTRUM QUOTIENT AQ; PSYCHOSOCIAL STRESS; CORTISOL RESPONSES; MEN; TESTOSTERONE; RELIABILITY; POPULATION; STRATEGIES; VALIDITY; INCREASE We tested the hypothesis that autistic-like traits are associated with restricted sociosexuality and investigated the role of stress and sex hormones as potential physiological mechanisms underlying this association. Study participants were heterosexual male college students (n=107). Individuals with more autistic-like traits reported lower short-term mating orientation and less previous sexual experience. Autistic-like traits were associated with greater cortisol secretion during a Trier Social Stress Test (TSST) and greater testosterone and cortisol reactivity to a video with explicit erotic content. Cortisol secretion during the TSST was negatively correlated with short-term mating orientation. A mediation analysis suggested that cortisol reactivity to socially stressful stimuli may be one of the physiological mechanisms linking autistic-like traits and sociosexuality. These findings have implications for our understanding of autisticlike traits in normal populations, our knowledge of the relationship between psychosocial stress, sexual arousal, and sociosexuality, and also for research on the role of hormonal mechanisms in inter-individual variation in male life history strategies. [Ponzi, Davide] Univ Utah, Dept Anthropol, 270 S 1400 E, Salt Lake City, UT 84112 USA; [Ponzi, Davide; Henry, Andrea; Kubicki, Konrad; Nickels, Nora; Wilson, M. Claire; Maestripieri, Dario] Univ Chicago, Inst Mind & Biol, Chicago, IL 60637 USA Ponzi, D (reprint author), Univ Utah, Dept Anthropol, 270 S 1400 E, Salt Lake City, UT 84112 USA.; Ponzi, D (reprint author), Univ Chicago, Inst Mind & Biol, Chicago, IL 60637 USA. ponzdbiol@gmail.com Baron-Cohen S, 2001, J AUTISM DEV DISORD, V31, P5, DOI 10.1023/A:1005653411471; Baron-Cohen S., 2003, ESSENTIAL DIFFERENCE; Buske-Kirschbaum A, 2003, PSYCHOSOM MED, V65, P806, DOI 10.1097/01.PSY.0000095916.25975.4F; CARANI C, 1990, PSYCHONEUROENDOCRINO, V15, P207, DOI 10.1016/0306-4530(90)90031-4; Chichinadze K, 2008, PHYSIOL BEHAV, V94, P595, DOI 10.1016/j.physbeh.2008.03.020; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2014, EVOL HUM BEHAV, V35, P415, DOI 10.1016/j.evolhumbehav.2014.05.007; Del Giudice M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00041; DOERR P, 1976, J CLIN ENDOCR METAB, V43, P622, DOI 10.1210/jcem-43-3-622; Fekedulegn DB, 2007, PSYCHOSOM MED, V69, P651, DOI 10.1097/PSY.0b013e31814c405c; Goldey KL, 2015, ADAPT HUM BEHAV PHYS, V1, P93, DOI 10.1007/s40750-014-0005-1; Gray PB, 2004, PSYCHONEUROENDOCRINO, V29, P1153, DOI 10.1016/j.psyneuen.2004.01.008; Happe F, 2008, NEUROPSYCHOL REV, V18, P287, DOI 10.1007/s11065-008-9076-8; Hayes AF, 2013, INTRO MEDIATION MODE; Hoekstra RA, 2008, J AUTISM DEV DISORD, V38, P1555, DOI 10.1007/s10803-008-0538-x; Hoekstra RA, 2007, ARCH PEDIAT ADOL MED, V161, P372, DOI 10.1001/archpedi.161.4.372; Hurst RM, 2007, PERS INDIV DIFFER, V43, P1938, DOI 10.1016/j.paid.2007.06.012; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Jobe LE, 2007, PERS INDIV DIFFER, V42, P1479, DOI 10.1016/j.paid.2006.10.021; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; KIRSCHBAUM C, 1993, NEUROPSYCHOBIOLOGY, V28, P76, DOI 10.1159/000119004; Lennartsson AK, 2012, INT J PSYCHOPHYSIOL, V84, P246, DOI 10.1016/j.ijpsycho.2012.03.001; Maestripieri D., 2014, EVOLUTIONARY BEHAV S, V8, P96; Oswald LM, 2006, NEUROPSYCHOPHARMACOL, V31, P1583, DOI 10.1038/sj.npp.1301012; Preacher KJ, 2011, PSYCHOL METHODS, V16, P93, DOI 10.1037/a0022658; Reser JE, 2011, EVOL PSYCHOL-US, V9, P207, DOI 10.1177/147470491100900209; Roney JR, 2013, HORM BEHAV, V63, P636, DOI 10.1016/j.yhbeh.2013.02.013; Roney JR, 2003, EVOL HUM BEHAV, V24, P365, DOI 10.1016/S1090-5138(03)00053-9; Shaner A, 2008, HUM NATURE-INT BIOS, V19, P389, DOI 10.1007/s12110-008-9049-x; Singer JD, 2003, APPL LONGITUDINAL AN; Stearns S, 1992, EVOLUTION LIFE HIST; Takagishi H, 2010, NEUROENDOCRINOL LETT, V31, P837; Wheelwright S, 2010, MOL AUTISM, V1, DOI 10.1186/2040-2392-1-10; White SW, 2011, AUTISM, V15, P683, DOI 10.1177/1362361310393363; Woodbury-Smith MR, 2005, J AUTISM DEV DISORD, V35, P331, DOI 10.1007/s10803-005-3300-7; Wust S, 2004, J CLIN ENDOCR METAB, V89, P565, DOI 10.1210/jc.2003-031148 36 2 2 0 2 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 2198-7335 ADAPT HUM BEHAV PHYS Adapt. Hum. Behav. Physiol. JUN 2016 2 2 SI 150 165 10.1007/s40750-015-0034-4 16 Psychology, Biological Psychology FC8TZ WOS:000407115400004 Bronze 2019-02-21 J Kindsvater, HK; Braun, DC; Otto, SP; Reynolds, JD Kindsvater, Holly K.; Braun, Douglas C.; Otto, Sarah P.; Reynolds, John D. Costs of reproduction can explain the correlated evolution of semelparity and egg size: theory and a test with salmon ECOLOGY LETTERS English Article Costs of reproduction; demography; iteroparity; life history theory; offspring size; salmon; semelparity SOCKEYE-SALMON; LIFE-HISTORY; NATURAL-SELECTION; ONCORHYNCHUS-NERKA; PACIFIC SALMON; BROWN TROUT; TRADE-OFF; CONSEQUENCES; NUMBER; STRATEGIES Species' life history traits, including maturation age, number of reproductive bouts, offspring size and number, reflect adaptations to diverse biotic and abiotic selection pressures. A striking example of divergent life histories is the evolution of either iteroparity (breeding multiple times) or semelparity (breed once and die). We analysed published data on salmonid fishes and found that semelparous species produce larger eggs, that egg size and number increase with salmonid body size among populations and species and that migratory behaviour and parity interact. We developed three hypotheses that might explain the patterns in our data and evaluated them in a stage-structured modelling framework accounting for different growth and survival scenarios. Our models predict the observation of small eggs in iteroparous species when egg size is costly to maternal survival or egg number is constrained. By exploring trait co-variation in salmonids, we generate new hypotheses for the evolution of trade-offs among life history traits. [Kindsvater, Holly K.; Reynolds, John D.] Simon Fraser Univ, Dept Biol Sci, Earth Ocean Res Grp, Burnaby, BC V5A 1S6, Canada; [Braun, Douglas C.] Simon Fraser Univ, Sch Resource & Environm Management, Burnaby, BC V5A 1S6, Canada; [Braun, Douglas C.] InStream Fisheries Res Inc, Vancouver, BC V5M 4V8, Canada; [Otto, Sarah P.] Univ British Columbia, Biodivers Res Ctr, Vancouver, BC V6T 1Z4, Canada Kindsvater, HK (reprint author), Simon Fraser Univ, Dept Biol Sci, Earth Ocean Res Grp, Burnaby, BC V5A 1S6, Canada. holly.kindsvater@rutgers.edu Otto, Sarah/0000-0003-3042-0818; Kindsvater, Holly/0000-0001-7580-4095 NSF; NSERC; InStream Fisheries Research Inc.; Tom Buell BC Leadership Chair endowment - Pacific Salmon Foundation; BC Leading Edge Endowment Fund Feedback from Axios Review and four anonymous reviewers benefitted this manuscript. H.K.K. was supported by an NSF Postdoctoral Fellowship in Mathematical Biology. D.C.B was supported by an NSERC Industrial Postdoctoral fellowship and InStream Fisheries Research Inc. S.P.O. was supported by an NSERC Discovery Grant and J.D.R. was supported by an NSERC Discovery Grant and the Tom Buell BC Leadership Chair endowment funded by the Pacific Salmon Foundation and the BC Leading Edge Endowment Fund. Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Barton K., 2013, MUMIN MULTIMODEL INT; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Braun DC, 2013, ECOL EVOL, V3, P1727, DOI 10.1002/ece3.555; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Cooke SJ, 2004, FISHERIES, V29, P22, DOI 10.1577/1548-8446(2004)29[22:AMTAHE]2.0.CO;2; Crespi BJ, 2002, EVOLUTION, V56, P1008; Crete-Lafreniere A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046662; Crossin GT, 2004, J FISH BIOL, V65, P788, DOI 10.1111/j.1095-8649.2004.00486.x; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Einum S, 2007, EVOLUTION, V61, P232, DOI 10.1111/j.1558-5646.2007.00020.x; Evans TG, 2011, MOL ECOL, V20, P4472, DOI 10.1111/j.1365-294X.2011.05276.x; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Groot C., 1991, PACIFIC SALMON LIFE; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; Hinch S. G., 2011, REV POTENTIAL CLIMAT; Jonsson N, 1999, J FISH BIOL, V55, P767, DOI 10.1006/jfbi.1999.1035; Kindsvater HK, 2014, AM NAT, V184, P543, DOI 10.1086/678248; MANGEL M, 1994, DEEP-SEA RES PT II, V41, P75, DOI 10.1016/0967-0645(94)90063-9; Miller TEX, 2012, P ROY SOC B-BIOL SCI, V279, P2831, DOI 10.1098/rspb.2012.0326; Olofsson H, 1999, ECOL FRESHW FISH, V8, P59, DOI 10.1111/j.1600-0633.1999.tb00054.x; Otto S., 2007, BIOL GUIDE MATH MODE; Paradis E., 2012, ANAL PHYLOGENETICS E; Patterson DA, 2004, J FISH BIOL, V64, P1039, DOI [10.1111/j.1095-8649.2004.0370.x, 10.1111/j.1095-8649.2004.00370.x]; Proaktor G, 2008, ECOLOGY, V89, P2604, DOI 10.1890/07-0833.1; QUINN TP, 1994, ANIM BEHAV, V48, P751, DOI 10.1006/anbe.1994.1300; R Core Team, 2015, R LANG ENV STAT COMP; Rollinson N, 2013, AM NAT, V182, P76, DOI 10.1086/670648; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; Sloat M. R., 2014, REV FISH BIOL FISHER, V24, P1; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; TYLER CR, 1994, FISH PHYSIOL BIOCHEM, V13, P309, DOI 10.1007/BF00003435; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J 39 6 6 2 51 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. JUN 2016 19 6 687 696 10.1111/ele.12607 10 Ecology Environmental Sciences & Ecology DL6MD WOS:000375752400010 27146705 2019-02-21 J Pedro, MS; Rammer, W; Seidl, R Pedro, Mariana Silva; Rammer, Werner; Seidl, Rupert A disturbance-induced increase in tree species diversity facilitates forest productivity LANDSCAPE ECOLOGY English Article Alpha diversity; Beta diversity; Forest productivity; Natural disturbances; Forest landscape dynamics; iLand model; Tree species diversity COMPETITIVE OUTCOMES; BETA-DIVERSITY; CLIMATE-CHANGE; FIRE DANGER; BIODIVERSITY; DYNAMICS; EUROPE; MODEL; ECOSYSTEMS; TEMPERATE Context Natural disturbances can have a considerable negative impact on the productivity of forest landscapes. Yet, disturbances are also important drivers of diversity, with diversity generally contributing positively to forest productivity. While the direct effects of disturbance have been investigated extensively it remains unclear how disturbance-mediated changes in diversity influence landscape productivity. Considering that disturbances are increasing in many ecosystems a better understanding of disturbance impacts is of growing importance for ecosystem management. Objectives Here, our objectives were to study the effect of disturbance on tree species diversity at different spatial scales (alpha and beta diversity), and to analyze how a disturbance-mediated variation in tree species diversity affects forest productivity. Methods To account for long-term interactions between disturbance, diversity, and productivity and test a range of disturbance scenarios we used simulation modeling, focusing on a temperate forest landscape in Central Europe. Results We found an overall positive effect of disturbance on tree species diversity both with regard to alpha and beta diversity, persisting under elevated disturbance frequencies. Productivity was enhanced by within- and between-stand diversity, with the effect of alpha diversity decreasing and that of beta diversity increasing through the successional development. Positive diversity effects were found to be strongly contingent on the available species pool, with landscapes containing species with different life-history strategies responding most strongly to disturbance-mediated diversity. Conclusions We conclude that, rather than homogenizing disturbed areas, forest managers should incorporate the diversity created by disturbances into stand development to capitalize on a positive diversity effect on productivity. [Pedro, Mariana Silva; Rammer, Werner; Seidl, Rupert] Univ Nat Resources & Life Sci, Inst Silviculture, Dept Forest & Soil Sci, Peter Jordan Str 82, A-1190 Vienna, Austria Pedro, MS (reprint author), Univ Nat Resources & Life Sci, Inst Silviculture, Dept Forest & Soil Sci, Peter Jordan Str 82, A-1190 Vienna, Austria. marianapedro@boku.ac.at Seidl, Rupert/0000-0002-3338-3402 European Commission collaborative research project FunDivEUROPE [265171]; European Commission's Marie Curie Career Integration Grant [PCIG12-GA-2012-334104] This study was conducted under the European Commission collaborative research project FunDivEUROPE (Project No. 265171). R. Seidl acknowledges further support from a European Commission's Marie Curie Career Integration Grant (PCIG12-GA-2012-334104). The simulation results presented here have been derived using the Vienna Scientific Cluster (VSC). We are grateful to two anonymous reviewers for helpful comments on a previous version of the manuscript. Baeten L, 2013, PERSPECT PLANT ECOL, V15, P281, DOI 10.1016/j.ppees.2013.07.002; Barwell LJ, 2015, J ANIM ECOL, V84, P1112, DOI 10.1111/1365-2656.12362; Boyd IL, 2013, SCIENCE, V342, P823, DOI 10.1126/science.1235773; Busby PE, 2008, CAN J FOREST RES, V38, P2942, DOI 10.1139/X08-139; Chisholm RA, 2013, J ECOL, V101, DOI 10.1111/1365-2745.12132; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Dale VH, 2001, BIOSCIENCE, V51, P723, DOI 10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2; Deque M, 2012, CLIM DYNAM, V38, P951, DOI 10.1007/s00382-011-1053-x; Dornelas M, 2010, PHILOS T R SOC B, V365, P3719, DOI 10.1098/rstb.2010.0295; Duursma RA, 2007, ECOL MODEL, V203, P297, DOI 10.1016/j.ecolmodel.2006.11.032; Elkin CM, 2008, AM NAT, V172, P563, DOI 10.1086/590962; Fox JW, 2013, TRENDS ECOL EVOL, V28, P86, DOI 10.1016/j.tree.2012.08.014; Franklin JF, 2002, FOREST ECOL MANAG, V155, P399, DOI 10.1016/S0378-1127(01)00575-8; Garrison A, 2012, J APPL ECOL, V49, P1020, DOI 10.1111/j.1365-2664.2012.02187.x; Gaston KJ, 2008, TRENDS ECOL EVOL, V23, P14, DOI 10.1016/j.tree.2007.11.001; Gough CM, 2013, ECOL APPL, V23, P1202, DOI 10.1890/12-1554.1; Hughes AR, 2007, ECOL LETT, V10, P849, DOI 10.1111/j.1461-0248.2007.01075.x; Nguyen H, 2012, FOREST ECOL MANAG, V274, P81, DOI 10.1016/j.foreco.2012.02.022; Huston M. A, 1994, BIOL DIVERSITY COEXI; Huston MA, 2014, ECOLOGY, V95, P2382, DOI 10.1890/13-1397.1; Jost L, 2007, ECOLOGY, V88, P2427, DOI 10.1890/06-1736.1; Kirwan L, 2009, ECOLOGY, V90, P2032, DOI 10.1890/08-1684.1; Kondoh M, 2001, P ROY SOC B-BIOL SCI, V268, P269, DOI 10.1098/rspb.2000.1384; Landsberg JJ, 1997, FOREST ECOL MANAG, V95, P209, DOI 10.1016/S0378-1127(97)00026-1; Lasky JR, 2014, ECOL LETT, V17, P1158, DOI 10.1111/ele.12322; Lebourgeois F, 2013, FOREST ECOL MANAG, V303, P61, DOI 10.1016/j.foreco.2013.04.003; Legendre P, 2013, ECOL LETT, V16, P951, DOI 10.1111/ele.12141; Lindroth A, 2009, GLOBAL CHANGE BIOL, V15, P346, DOI 10.1111/j.1365-2486.2008.01719.x; Loreau M, 2001, NATURE, V412, P72, DOI 10.1038/35083573; Mackey RL, 2001, ECOLOGY, V82, P3479, DOI 10.1890/0012-9658(2001)082[3479:TDDRII]2.0.CO;2; Mayer M, 2014, BIOGEOSCIENCES, V11, P6081, DOI 10.5194/bg-11-6081-2014; Miller A, 2012, ECOL RES, V27, P783, DOI 10.1007/s11284-012-0954-4; Miller AD, 2011, P NATL ACAD SCI USA, V108, P5643, DOI 10.1073/pnas.1018594108; Miller AD, 2012, THEOR ECOL-NETH, V5, P419, DOI 10.1007/s12080-011-0133-1; Mori AS, 2013, BIOL REV, V88, P349, DOI 10.1111/brv.12004; Mori AS, 2011, J APPL ECOL, V48, P280, DOI 10.1111/j.1365-2664.2010.01956.x; Morin X, 2014, ECOL LETT, V17, P1526, DOI 10.1111/ele.12357; Morin X, 2011, ECOL LETT, V14, P1211, DOI 10.1111/j.1461-0248.2011.01691.x; Moser W. K., 2006, P 8 ANN FOR INV AN S, P149; Nave LE, 2011, ECOL APPL, V21, P1189, DOI 10.1890/10-0660.1; Paquette A, 2011, GLOBAL ECOL BIOGEOGR, V20, P170, DOI 10.1111/j.1466-8238.2010.00592.x; Pasari JR, 2013, P NATL ACAD SCI USA, V110, P10219, DOI 10.1073/pnas.1220333110; Pedro MS, 2015, OECOLOGIA, V177, P619, DOI 10.1007/s00442-014-3150-0; Perot T, 2013, FOREST ECOL MANAG, V295, P155, DOI 10.1016/j.foreco.2013.01.016; Peters EB, 2013, ECOSYSTEMS, V16, P95, DOI 10.1007/s10021-012-9599-y; Potter KM, 2014, FOREST ECOL MANAG, V321, P117, DOI 10.1016/j.foreco.2013.06.026; Pretzsch H, 2009, EUR J FOREST RES, V128, P183, DOI 10.1007/s10342-008-0215-9; R Core Team, 2013, R LANG ENV STAT COMP; Roxburgh SH, 2004, ECOLOGY, V85, P359, DOI 10.1890/03-0266; Scherer-Lorenzen M, 2014, FORESTS GLOBAL CHANG, P195; Seidl R, 2014, NAT CLIM CHANGE, V4, P806, DOI [10.1038/NCLIMATE2318, 10.1038/nclimate2318]; Seidl R, 2012, ECOSYSTEMS, V15, P1321, DOI 10.1007/s10021-012-9587-2; Seidl R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033301; Seidl R, 2012, ECOL MODEL, V231, P87, DOI 10.1016/j.ecolmodel.2012.02.015; Seidl R, 2011, GLOBAL CHANGE BIOL, V17, P2842, DOI 10.1111/j.1365-2486.2011.02452.x; Seidl R, 2009, REG ENVIRON CHANGE, V9, P101, DOI 10.1007/s10113-008-0068-2; Shannon CE., 1949, MATH THEORY COMMUNIC; Shea K, 2004, ECOL LETT, V7, P491, DOI 10.1111/j.1461-0248.2004.00600.x; Spiecker H, 2004, NORWAY SPRUCE CONVER; Svensson JR, 2012, P ROY SOC B-BIOL SCI, V279, P2163, DOI 10.1098/rspb.2011.2620; Taylor AR, 2014, ECOSYSTEMS, V17, P778, DOI 10.1007/s10021-014-9759-3; Thom D, 2016, BIOL REV, V91, P760, DOI 10.1111/brv.12193; Thom D, 2013, FOREST ECOL MANAG, V307, P293, DOI 10.1016/j.foreco.2013.07.017; Thompson I., 2009, FOREST RESILIENCE BI, P67; Tian XR, 2014, INT J WILDLAND FIRE, V23, P185, DOI 10.1071/WF13014; Tilman D, 1996, NATURE, V379, P718, DOI 10.1038/379718a0; Tomiczek C, 2006, BFW PRAXISINFORMATIO, V12, P19; Turner MG, 2013, LANDSCAPE ECOL, V28, P1081, DOI 10.1007/s10980-012-9741-4; Turner MG, 2010, ECOLOGY, V91, P2833, DOI 10.1890/10-0097.1; Vila M, 2005, ECOL STU AN, V176, P65; Westerling AL, 2006, SCIENCE, V313, P940, DOI 10.1126/science.1128834; White ST, 1985, ECOLOGY NATURAL DIST, P3; Williams AAJ, 2001, CLIMATIC CHANGE, V49, P171, DOI 10.1023/A:1010706116176; Wimberly MC, 2000, CONSERV BIOL, V14, P167, DOI 10.1046/j.1523-1739.2000.98284.x; Zhang Y, 2012, J ECOL, V100, P742, DOI 10.1111/j.1365-2745.2011.01944.x 75 10 10 1 43 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0921-2973 1572-9761 LANDSCAPE ECOL Landsc. Ecol. JUN 2016 31 5 989 1004 10.1007/s10980-015-0317-y 16 Ecology; Geography, Physical; Geosciences, Multidisciplinary Environmental Sciences & Ecology; Physical Geography; Geology DK5LS WOS:000374962000006 2019-02-21 J Varnum, MEW; Kwon, JY Varnum, Michael E. W.; Kwon, Jung Y. The Ecology of Withdrawal. Commentary: The NEET and Hikikomori spectrum: Assessing the risks and consequences of becoming culturally marginalized FRONTIERS IN PSYCHOLOGY English Editorial Material NEET; Hikikomori; life history theory; evolution; culture LIFE-HISTORY STRATEGIES; SOCIOECONOMIC-STATUS; CHILDHOOD [Varnum, Michael E. W.; Kwon, Jung Y.] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA Varnum, MEW (reprint author), Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA. mvarnum@asu.edu Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hill SE, 2016, ADAPT HUM BEHAV PHYS, V2, P116, DOI 10.1007/s40750-015-0040-6; Hill SE, 2016, PSYCHOL SCI, V27, P354, DOI 10.1177/0956797615621901; Ishii K, 2016, J CROSS CULT PSYCHOL, V47, P376, DOI 10.1177/0022022115621969; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Uchida Y, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01117 11 1 2 1 1 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. MAY 23 2016 7 764 10.3389/fpsyg.2016.00764 2 Psychology, Multidisciplinary Psychology DM4AN WOS:000376288000001 27242651 DOAJ Gold, Green Published 2019-02-21 J Nattrass, S; Lusseau, D Nattrass, Stuart; Lusseau, David Using resilience to predict the effects of disturbance SCIENTIFIC REPORTS English Article BODY CONDITION; REPRODUCTION; FITNESS; SURVIVAL; BEHAVIOR; MASS Animal behaviour emerges from a complex interaction between an individual's needs, life history strategies and the varying local environment. This environment is increasingly disturbed as human activity encroaches on previously unexposed regions. This disturbance can have different effects on individual animals or populations depending on their behavioural strategies. Here, we examine a means of predicting the resilience of individuals or populations to unanticipated disturbances, and we find that resilience that can be estimated from routinely collected behavioural observations is a good predictor of how rapidly an individual's expected behaviour is returned to following a perturbation, and correlates strongly with how much population abundance changes following a disturbance. [Nattrass, Stuart; Lusseau, David] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland; [Nattrass, Stuart] Univ York, York Ctr Complex Syst Anal, York YO10 5DD, N Yorkshire, England Nattrass, S (reprint author), Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland.; Nattrass, S (reprint author), Univ York, York Ctr Complex Syst Anal, York YO10 5DD, N Yorkshire, England. stunattrass@gmail.com Lusseau, David/0000-0003-1245-3747 Office of Naval Research [N00014-13-1-0696] This work was funded by the Office of Naval Research (N00014-13-1-0696). We thank C Asher for her comments on an earlier version of this manuscript. Bejder L, 2006, ANIM BEHAV, V72, P1149, DOI 10.1016/j.anbehav.2006.04.003; Blums P, 2005, OECOLOGIA, V143, P365, DOI 10.1007/s00442-004-1794-x; Buckley F, 2003, J DAIRY SCI, V86, P2308, DOI 10.3168/jds.S0022-0302(03)73823-5; Christiansen F, 2015, CONSERV LETT, V8, P424, DOI 10.1111/conl.12166; Gaillard JM, 2000, P ROY SOC B-BIOL SCI, V267, P471, DOI 10.1098/rspb.2000.1024; Guinet C, 1998, CAN J ZOOL, V76, P1418, DOI 10.1139/cjz-76-8-1418; Harwood LA, 2000, ARCTIC, V53, P422, DOI 10.14430/arctic872; Holling C.S., 1973, Annual Rev Ecol Syst, V4, P1, DOI 10.1146/annurev.es.04.110173.000245; Laurance W. F., 2015, CURR BIOL, V25, P259; Lincoln R. J., 1998, DICT ECOLOGY EVOLUTI, P261; Lusseau D., 2003, CONSERV BIOL, V17; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Milner JM, 2003, CAN J ZOOL, V81, P1566, DOI 10.1139/Z03-152; New LF, 2013, FUNCT ECOL, V27, P314, DOI 10.1111/1365-2435.12052; Ouellet JP, 1997, CAN J ZOOL, V75, P11, DOI 10.1139/z97-002; OUELLET P, 1992, CAN J FISH AQUAT SCI, V49, P368, DOI 10.1139/f92-042; PIMM SL, 1984, NATURE, V307, P321, DOI 10.1038/307321a0; PYKE GH, 1984, ANNU REV ECOL SYST, V15, P523, DOI 10.1146/annurev.es.15.110184.002515; Schick RS, 2013, J ANIM ECOL, V82, P1300, DOI 10.1111/1365-2656.12102; SIBLY R, 1976, AM NAT, V110, P601, DOI 10.1086/283093; Williams R., 2006, BIOL CONSERV, V133 22 4 4 0 0 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep MAY 5 2016 6 25539 10.1038/srep25539 9 Multidisciplinary Sciences Science & Technology - Other Topics DL3QE WOS:000375547500001 27145918 DOAJ Gold, Green Published 2019-02-21 J Schwabl, P; Bonaccorso, E; Goymann, W Schwabl, Philipp; Bonaccorso, Elisa; Goymann, Wolfgang Diurnal variation in corticosterone release among wild tropical forest birds FRONTIERS IN ZOOLOGY English Article Corticosterone; Birds; Tropical; Diurnal rhythms; Daily variation; Free-living; Wild; Choco; Stress SPARROWS PASSER-DOMESTICUS; ZONOTRICHIA-LEUCOPHRYS-GAMBELII; HORMONE-BEHAVIOR INTERACTIONS; STRESS-INDUCED CORTICOSTERONE; STARLINGS STURNUS-VULGARIS; ADRENAL AXIS SENSITIVITY; WHITE-CROWNED SPARROWS; LIFE-HISTORY EVOLUTION; PLASMA-CORTICOSTERONE; PREDATION RISK Background: Glucocorticoids are adrenal steroid hormones essential to homeostatic maintenance. Their daily variation at low concentrations regulates physiology and behavior to sustain proper immunological and metabolic function. Glucocorticoids rise well above these baseline levels during stress to elicit emergency-state responses that increase short-term survival. Despite this essence in managing life processes under both regular and adverse conditions, relationships of glucocorticoid release to environmental and intrinsic factors that vary at daily and seasonal scales are rarely studied in the wild. Methods: This study on 41 passerine species of the Ecuadorian Choco applied a standardized capture-and-restraint protocol to examine diurnal variation in baseline and stress-related release of corticosterone, the primary avian glucocorticoid. Tests for relationships to relative body mass, hemoglobin concentration, molt status and date complemented this evaluation of the time of day effect on corticosterone secretion in free-living tropical rainforest birds. Analyses were also partitioned by sex as well as performed separately on two common species, the wedge-billed woodcreeper and olive-striped flycatcher. Results: Interspecific analyses indicated maximum baseline corticosterone levels at the onset of the active phase and reductions thereafter. Stress-related levels did not correspond to time of day but accompanied baseline reductions during molt and elevations in birds sampled later during the September - November study period. Baseline corticosterone related negatively to hemoglobin in the wedge-billed woodcreeper and stress-related levels increased with body mass in the olive-striped flycatcher. There were no substantial sex-related differences. Conclusions: The results of this study suggest a diurnal rhythmicity in baseline corticosterone release so robust as to emerge in pooled analyses across a highly variable dataset. While this detection in nature is singular, correspondent patterns have been demonstrated outside of the tropics in captive model species. Congruity in daily rhythms and links to physiological and life-history state across disparate taxa and environments may promote the yet unresolved utility of corticosterone release as a global metric for population health. However, certain results of this study also deviate from laboratory and field research at higher latitudes, cautioning generalization. Environmental distinctions such as high productivity and tempered seasonality may precipitate unique life-history strategies and underlying hormonal mechanisms in tropical rainforest birds. [Schwabl, Philipp] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland; [Bonaccorso, Elisa] Univ Tecnol Indoamer, Ctr Invest Biodiversidad & Cambio Climat, Cotocollao, Quito, Ecuador; [Goymann, Wolfgang] Max Planck Inst Ornithol, Abt Verhaltensneurobiol, Eberhard Gwinner Str 6a, D-82319 Seewiesen, Germany Schwabl, P (reprint author), Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. p.schwabl.1@research.gla.ac.uk Bonaccorso, Elisa/0000-0002-7262-9356; Goymann, Wolfgang/0000-0002-7553-5910 Max-Planck-Gesellschaft; PROSA-LMU; Mashpi Lodge Max-Planck-Gesellschaft funded laboratory analyses. PROSA-LMU and Mashpi Lodge funded field research. Angelier F, 2008, GEN COMP ENDOCR, V156, P134, DOI 10.1016/j.ygcen.2007.12.001; Angelier F, 2010, BIOL LETTERS, V6, P846, DOI 10.1098/rsbl.2010.0376; ASTHEIMER LB, 1992, ORNIS SCAND, V23, P355, DOI 10.2307/3676661; Blas J, 2015, STURKIE'S AVIAN PHYSIOLOGY, 6TH EDITION, P769; BOISSIN J, 1969, Bulletin Biologique de la France et de la Belgique, V103, P305; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bongers F, 2013, NOURAGUES DYNAMICS P; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Brandt MJ, 2009, J AVIAN BIOL, V40, P90, DOI 10.1111/j.1600-048X.2008.04389.x; Breuner CW, 1999, J EXP ZOOL, V284, P334, DOI 10.1002/(SICI)1097-010X(19990801)284:3<334::AID-JEZ11>3.0.CO;2-#; Brodin A, 2007, PHILOS T R SOC B, V362, P1857, DOI 10.1098/rstb.2006.1812; Buehler DM, 2012, J EVOLUTION BIOL, V25, P1600, DOI 10.1111/j.1420-9101.2012.02543.x; Burnham K. P, 2002, MODEL SELECTION MULT; Busch DS, 2009, BIOL CONSERV, V142, P2844, DOI 10.1016/j.biocon.2009.08.013; Carrasco L, 2013, ORNITOL NEOTROP, V24, P321; Crossin GT, 2012, AM NAT, V180, pE31, DOI 10.1086/666001; DALLMAN MF, 1993, FRONT NEUROENDOCRIN, V14, P303, DOI 10.1006/frne.1993.1010; DAWSON A, 1983, GEN COMP ENDOCR, V51, P303, DOI 10.1016/0016-6480(83)90085-0; DesRochers DW, 2009, COMP BIOCHEM PHYS A, V152, P46, DOI 10.1016/j.cbpa.2008.08.034; Dickens MJ, 2013, GEN COMP ENDOCR, V191, P177, DOI 10.1016/j.ygcen.2013.06.014; DUSSEAU JW, 1971, GEN COMP ENDOCR, V16, P399, DOI 10.1016/0016-6480(71)90105-5; Eikenaar C, 2012, AM NAT, V180, P642, DOI 10.1086/667891; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Fokidis HB, 2011, PHYSIOL BIOCHEM ZOOL, V84, P595, DOI 10.1086/662068; Fontaine JJ, 2007, OIKOS, V116, P1887, DOI 10.1111/j.2007.0030-1299.16043.x; Gelman Andrew, 2015, ARM DATA ANAL USING; Goulding W, 2010, WILSON J ORNITHOL, V122, P689, DOI 10.1676/09-196.1; Goymann W, 2007, GEN COMP ENDOCR, V150, P191, DOI 10.1016/j.ygcen.2006.09.014; Goymann W, 2011, J BIOL RHYTHM, V26, P44, DOI 10.1177/0748730410388394; Greeney Harold F., 2006, Bulletin of the British Ornithologists' Club, V126, P38; Grunst ML, 2014, J AVIAN BIOL, V45, P574, DOI 10.1111/jav.00459; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Hazard D, 2005, POULTRY SCI, V84, P1920, DOI 10.1093/ps/84.12.1920; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Holberton RL, 2007, PHYSIOL BIOCHEM ZOOL, V80, P125, DOI 10.1086/508816; HOLMES WN, 1976, GENERAL COMP CLIN EN, P293; Jenni L, 2000, AM J PHYSIOL-REG I, V278, pR1182; Jetz W, 2014, CURR BIOL, V24, P919, DOI 10.1016/j.cub.2014.03.011; JOHNSON AL, 1981, GEN COMP ENDOCR, V43, P10, DOI 10.1016/0016-6480(81)90025-3; JONES PJ, 1983, J ZOOL, V201, P217; JOSEPH MM, 1973, GEN COMP ENDOCR, V20, P326, DOI 10.1016/0016-6480(73)90184-6; KOVACS K, 1983, COMP BIOCHEM PHYS A, V75, P467, DOI 10.1016/0300-9629(83)90111-1; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Landys MM, 2004, J EXP BIOL, V207, P143, DOI 10.1242/jeb.00734; LAUBER JK, 1987, COMP BIOCHEM PHYS A, V86, P73, DOI 10.1016/0300-9629(87)90279-9; Levins R., 1968, EVOLUTION CHANGING E; Lynn SE, 2003, HORM BEHAV, V43, P150, DOI 10.1016/S0018-506X(02)00023-5; Macleod R, 2005, J ANIM ECOL, V74, P956, DOI 10.1111/j.1365-2656.2005.00993.x; Macleod R, 2005, J ANIM ECOL, V74, P292, DOI 10.1111/j.1365-2656.2005.00923.x; Madliger CL, 2014, CONSERV BIOL, V28, P283, DOI 10.1111/cobi.12185; MARRA PP, 1995, WILSON BULL, V107, P296; Martin LB, 2008, ORNITOL NEOTROP, V19, P207; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; Martin TE, 1999, AM NAT, V153, P131, DOI 10.1086/303153; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2008, PHILOS T R SOC B, V363, P1663, DOI 10.1098/rstb.2007.0009; MCNAMARA JM, 1994, J AVIAN BIOL, V25, P287, DOI 10.2307/3677276; Miller DA, 2009, HORM BEHAV, V56, P457, DOI 10.1016/j.yhbeh.2009.08.001; Minias P, 2015, CONSERV PHYSIOL, V3, DOI 10.1093/conphys/cov007; Mittermeier R.A., 2011, BIODIVERSITY HOTSPOT, P3, DOI DOI 10.1007/978-3-642-20992-5_1; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; NOAA ESRL Global Monitoring Division, NOAA SOL CALC; Olsson O, 2000, P ROY SOC B-BIOL SCI, V267, P1457, DOI 10.1098/rspb.2000.1164; Paradis E, 2015, APE ANAL PHYLOGENETI; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Polo V, 2007, J ANIM ECOL, V76, P866, DOI 10.1111/j.1365-2656.2007.01270.x; Polo V, 2006, ANIM BEHAV, V72, P503, DOI 10.1016/j.anbehav.2005.09.024; Pravosudov VV, 2002, GEN COMP ENDOCR, V126, P242, DOI 10.1006/gcen.2002.7798; Pryke SR, 2005, BIOL J LINN SOC, V86, P35, DOI 10.1111/j.1095-8312.2005.00522.x; Quillfeldt P, 2007, NATURWISSENSCHAFTEN, V94, P919, DOI 10.1007/s00114-007-0275-6; R Core Team, 2015, R LANG ENV STAT COMP; Rich EL, 2001, J COMP PHYSIOL B, V171, P543; Ridgely R. S., 1994, BIRDS S AM, V2; Rogers CM, 2003, J ANIM ECOL, V72, P822, DOI 10.1046/j.1365-2656.2003.00754.x; Romero LM, 2007, COMP BIOCHEM PHYS A, V147, P562, DOI 10.1016/j.cbpa.2007.02.004; Romero LM, 2006, GEN COMP ENDOCR, V149, P66, DOI 10.1016/j.ygcen.2006.05.011; Romero LM, 1999, COMP BIOCHEM PHYS B, V122, P13, DOI 10.1016/S0305-0491(98)10161-X; Romero LM, 2000, GEN COMP ENDOCR, V119, P52, DOI 10.1006/gcen.2000.7491; Romero LM, 2005, COMP BIOCHEM PHYS A, V142, P65, DOI 10.1016/j.cbpa.2005.07.014; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Scanes CG, 2009, GEN COMP ENDOCR, V163, P24, DOI 10.1016/j.ygcen.2009.04.013; Schoech SJ, 2007, GEN COMP ENDOCR, V154, P150, DOI 10.1016/j.ygcen.2007.05.027; Schwabl H, 2007, AM NAT, V170, P196, DOI 10.1086/519397; Silverin B, 1997, FUNCT ECOL, V11, P376, DOI 10.1046/j.1365-2435.1997.00097.x; Solano-Ugalde Alejandro, 2007, Boletin SAO, V17, P17; Spiga F, 2014, COMPR PHYSIOL, V4, P1273, DOI 10.1002/cphy.c140003; Tarlow EM, 2003, GEN COMP ENDOCR, V133, P297, DOI 10.1016/S0016-6480(03)00192-8; Thierry AM, 2013, CONSERV PHYSIOL, V1, DOI 10.1093/conphys/cot007; Thiollay J.-M., 1984, Gerfaut, V74, P209; Thiollay JM, 1999, J AVIAN BIOL, V30, P282, DOI 10.2307/3677354; WESTERHOF I, 1994, AVIAN DIS, V38, P428, DOI 10.2307/1592062; WETHERELL E, 2015, COTINGA, V37, P43; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Wingfield JC, 2002, COMP BIOCHEM PHYS B, V132, P275, DOI 10.1016/S1096-4959(01)00540-1; Wingfield JC, 1998, AM ZOOL, V38, P191; WINGFIELD JC, 1982, CONDOR, V84, P399, DOI 10.2307/1367443; Wingfield John C., 1997, P95 100 2 2 1 34 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1742-9994 FRONT ZOOL Front. Zool. MAY 4 2016 13 19 10.1186/s12983-016-0151-3 11 Zoology Zoology DM5HT WOS:000376379500001 27152116 DOAJ Gold, Green Published 2019-02-21 J Xie, XF; Hu, YK; Pan, X; Liu, FH; Song, YB; Dong, M Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis FRONTIERS IN PLANT SCIENCE English Article biomass allocation; clonal reproduction; ontogenetic drift; optimal allocation theory; phylogenetic meta-analysis; trade-off; sexual reproduction; vegetative growth INTERNAL NITROGEN CONCENTRATION; SEXUAL REPRODUCTION; TRADE-OFFS; CLONAL PLANT; NUTRIENT AVAILABILITY; QUANTITATIVE REVIEWS; ASEXUAL REPRODUCTION; RELATIVE IMPORTANCE; SHOOT RATIOS; GROWTH Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. [Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Song, Yao-Bin; Dong, Ming] Hangzhou Normal Univ, Coll Life & Environm Sci, Key Lab Hangzhou City Ecosyst Protect & Restorat, Hangzhou, Zhejiang, Peoples R China; [Xie, Xiu-Fang; Liu, Feng-Hong] Chinese Acad Sci, Natl Sci Lib, Beijing, Peoples R China; [Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing, Peoples R China Song, YB; Dong, M (reprint author), Hangzhou Normal Univ, Coll Life & Environm Sci, Key Lab Hangzhou City Ecosyst Protect & Restorat, Hangzhou, Zhejiang, Peoples R China. ybsong@hznu.edu.cn; dongming@hznu.edu.cn NSFC [31261120580, 31400346]; Hangzhou Normal University [201203] We thank the three reviewers for their valuable comments. The study was funded by a NSFC grant (31261120580) and an Innovative R & D grant (201203) by Hangzhou Normal University to MD, a NSFC grant (31400346) to YS. ABRAHAMSON WG, 1975, ECOLOGY, V56, P721, DOI 10.2307/1935508; AERTS R, 1991, OECOLOGIA, V87, P551, DOI 10.1007/BF00320419; Barrett SCH, 2015, P NATL ACAD SCI USA, V112, P8859, DOI 10.1073/pnas.1501712112; Bazzaz F. A., 2000, Seeds: the ecology of regeneration in plant communities, P1, DOI 10.1079/9780851994321.0001; BAZZAZ FA, 1987, BIOSCIENCE, V37, P58, DOI 10.2307/1310178; Beckmann M, 2012, J VEG SCI, V23, P1197, DOI 10.1111/j.1654-1103.2012.01454.x; Begg CB, 1994, HDB RES SYNTHESIS, P399; BLOOM AJ, 1985, ANNU REV ECOL SYST, V16, P363, DOI 10.1146/annurev.es.16.110185.002051; Bolnick DI, 2005, ECOLOGY, V86, P2771, DOI 10.1890/04-1249; Cao KF, 1998, ECOL RES, V13, P217, DOI 10.1046/j.1440-1703.1998.00263.x; Carmona D, 2011, FUNCT ECOL, V25, P358, DOI 10.1111/j.1365-2435.2010.01794.x; CHEPLICK GP, 1995, AM J BOT, V82, P621, DOI 10.2307/2445420; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; COLEMAN JS, 1994, TRENDS ECOL EVOL, V9, P187, DOI 10.1016/0169-5347(94)90087-6; Cook R. E., 1985, POPULATION BIOL EVOL; de Kroon H., 1990, CLONAL GROWTH PLANTS, P113; DEKROON H, 1995, J ECOL, V83, P143, DOI 10.2307/2261158; DELPH LF, 1993, AM J BOT, V80, P607, DOI 10.2307/2445429; DONG M, 1994, OIKOS, V70, P99, DOI 10.2307/3545704; DOUST JL, 1989, TRENDS ECOL EVOL, V4, P230, DOI 10.1016/0169-5347(89)90166-3; ERICSSON T, 1995, PLANT SOIL, V168, P205, DOI 10.1007/BF00029330; Eriksson O, 1997, ECOLOGY AND EVOLUTION OF CLONAL PLANTS, P211; Evans G. C., 1972, QUANTITATIVE ANAL PL; Gardner SN, 1999, ECOLOGY, V80, P1202, DOI 10.1890/0012-9658(1999)080[1202:MIISCO]2.0.CO;2; Gates S, 2002, J ANIM ECOL, V71, P547, DOI 10.1046/j.1365-2656.2002.00634.x; Gonzales WL, 2008, ACTA OECOL, V34, P104, DOI 10.1016/j.actao.2008.04.004; GUREVITCH J, 1992, AM NAT, V140, P539, DOI 10.1086/285428; Gurevitch J, 2001, ADV ECOL RES, V32, P199, DOI 10.1016/S0065-2504(01)32013-5; Gurevitch J., 2001, DESIGN ANAL ECOLOGIC, P347; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; HARTNETT DC, 1990, OECOLOGIA, V84, P254, DOI 10.1007/BF00318281; Hedges LV, 1985, STAT METHODS METAANA; HILBERT DW, 1990, ANN BOT-LONDON, V66, P91, DOI 10.1093/oxfordjournals.aob.a088005; Huang YX, 2013, BANGL J BOT, V42, P113; Huang YX, 2009, J PLANT BIOL, V52, P210, DOI 10.1007/s12374-009-9027-9; JOHNSON IR, 1987, ANN BOT-LONDON, V60, P133, DOI 10.1093/oxfordjournals.aob.a087429; King JS, 1999, PLANT SOIL, V217, P119, DOI 10.1023/A:1004560311563; Lajeunesse MJ, 2011, BIOINFORMATICS, V27, P2603, DOI 10.1093/bioinformatics/btr438; Lajeunesse MJ, 2009, AM NAT, V174, P369, DOI 10.1086/603628; Lajeunesse MJ, 2003, ECOL LETT, V6, P448, DOI 10.1046/j.1461-0248.2003.00448.x; Leimu R, 2006, J ECOL, V94, P942, DOI 10.1111/j.1365-2745.2006.01150.x; LEVIN SA, 1989, ANN BOT-LONDON, V64, P71, DOI 10.1093/oxfordjournals.aob.a087810; Li Bo, 2001, Plant Species Biology, V16, P193, DOI 10.1046/j.1442-1984.2001.00064.x; Li Bo, 2001, Plant Species Biology, V16, P69, DOI 10.1046/j.1442-1984.2001.00049.x; Liu F, 2009, PLANT SYST EVOL, V277, P61, DOI 10.1007/s00606-008-0103-2; Marczak LB, 2007, ECOLOGY, V88, P140, DOI 10.1890/0012-9658(2007)88[140:MTLHAP]2.0.CO;2; McConnaughay KDM, 1999, ECOLOGY, V80, P2581, DOI 10.1890/0012-9658(1999)080[2581:BAIPOO]2.0.CO;2; Mendoza A, 1998, AM J BOT, V85, P521, DOI 10.2307/2446436; Mony C, 2007, AQUAT BOT, V86, P236, DOI 10.1016/j.aquabot.2006.11.007; Muller Ivo, 2000, Perspectives in Plant Ecology Evolution and Systematics, V3, P115, DOI 10.1078/1433-8319-00007; Nakagawa S, 2012, EVOL ECOL, V26, P1253, DOI 10.1007/s10682-012-9555-5; Ogawa K, 2003, ECOL RES, V18, P611, DOI 10.1046/j.1440-1703.2003.00582.x; Pino J, 2002, ACTA OECOL, V23, P321, DOI 10.1016/S1146-609X(02)01161-X; PITELKA LF, 1985, J ECOL, V73, P169, DOI 10.2307/2259776; Poorter H, 2000, AUST J PLANT PHYSIOL, V27, P1191, DOI 10.1071/PP99173; Reekie E. G., 1999, LIFE HIST EVOLUTION, P173; REEKIE EG, 1987, AM NAT, V129, P897, DOI 10.1086/284682; REEKIE EG, 1991, CAN J BOT, V69, P2678, DOI 10.1139/b91-336; Richards CL, 2004, ECOL LETT, V7, P1155, DOI 10.1111/j.1461-0248.2004.00674.x; ROBINSON D, 1986, ANN BOT-LONDON, V58, P841, DOI 10.1093/oxfordjournals.aob.a087266; Rosenberg M. S., 2000, METAWIN STAT SOFTWAR; Rosenberg MS, 2005, EVOLUTION, V59, P464, DOI 10.1111/j.0014-3820.2005.tb01004.x; Rosenthal R., 1991, METAANALYTIC PROCEDU; SALONEN V, 1994, ACTA OECOL, V15, P485; Shipley B, 2002, FUNCT ECOL, V16, P326, DOI 10.1046/j.1365-2435.2002.00626.x; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Song YB, 2013, OECOLOGIA, V171, P317, DOI 10.1007/s00442-012-2430-9; Strand JA, 2004, NEW PHYTOL, V163, P449, DOI 10.1111/j.1469-8137.2004.01144.x; SUTHERLAND S, 1988, OECOLOGIA, V76, P330, DOI 10.1007/BF00377025; Svenning JC, 2000, AUST J BOT, V48, P167, DOI 10.1071/BT98048; Thompson FL, 2004, J EVOLUTION BIOL, V17, P581, DOI 10.1111/j.1420-9101.2004.00701.x; Van Drunen WE, 2012, NEW PHYTOL, V196, P606, DOI 10.1111/j.1469-8137.2012.04260.x; van Kleunen M, 2002, EVOLUTION, V56, P2168, DOI 10.1554/0014-3820(2002)056[2168:ELHESO]2.0.CO;2; van Kleunen M, 2010, ECOL LETT, V13, P235, DOI 10.1111/j.1461-0248.2009.01418.x; Van Zandt PA, 2003, J ECOL, V91, P837, DOI 10.1046/j.1365-2745.2003.00806.x; Wang MC, 1998, PSYCHOL METHODS, V3, P46, DOI 10.1037//1082-989X.3.1.46; Wang YJ, 2013, RUSS J ECOL+, V44, P199, DOI 10.1134/S106741361303017X; WATSON MA, 1984, AM NAT, V123, P411, DOI 10.1086/284212; Webb CO, 2008, BIOINFORMATICS, V24, P2098, DOI 10.1093/bioinformatics/btn358; Webb CO, 2005, MOL ECOL NOTES, V5, P181, DOI 10.1111/j.1471-8286.2004.00829.x; Weiner J, 2004, PERSPECT PLANT ECOL, V6, P207, DOI 10.1078/1433-8319-00083; Weiner J, 2009, J ECOL, V97, P1220, DOI 10.1111/j.1365-2745.2009.01559.x; Willson MF., 1983, PLANT REPROD ECOLOGY; Wolf F. M., 1986, METAANALYSIS QUANTIT; Wu GL, 2010, POL J ECOL, V58, P81; Xie XF, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0107114; Yang YH, 2009, J VEG SCI, V20, P177, DOI 10.1111/j.1654-1103.2009.05566.x 87 6 7 11 62 FRONTIERS MEDIA SA LAUSANNE PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND 1664-462X FRONT PLANT SCI Front. Plant Sci. MAY 4 2016 7 603 10.3389/fpls.2016.00603 11 Plant Sciences Plant Sciences DK9JV WOS:000375247600001 27200071 DOAJ Gold, Green Published 2019-02-21 J Berggren, H; Nordahl, O; Tibblin, P; Larsson, P; Forsman, A Berggren, Hanna; Nordahl, Oscar; Tibblin, Petter; Larsson, Per; Forsman, Anders Testing for Local Adaptation to Spawning Habitat in Sympatric Subpopulations of Pike by Reciprocal Translocation of Embryos PLOS ONE English Article GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; ESOX-LUCIUS L.; PHENOTYPIC PLASTICITY; NORTHERN PIKE; BROWN TROUT; BALTIC SEA; GENE FLOW; EGG SIZE; REPRODUCTIVE ISOLATION We tested for local adaption in early life-history traits by performing a reciprocal translocation experiment with approximately 2,500 embryos of pike (Esox lucius) divided in paired split-family batches. The experiment indicated local adaptation in one of the two subpopulations manifested as enhanced hatching success of eggs in the native habitat, both when compared to siblings transferred to a non-native habitat, and when compared to immigrant genotypes from the other subpopulation. Gene-by-environment effects on viability of eggs and larvae were evident in both subpopulations, showing that there existed genetic variation allowing for evolutionary responses to divergent selection, and indicating a capacity for plastic responses to environmental change. Next, we tested for differences in female life-history traits. Results uncovered that females from one population invested more resources into reproduction and also produced more (but smaller) eggs in relation to their body size compared to females from the other population. We suggest that these females have adjusted their reproductive strategies as a counter-adaptation because a high amount of sedimentation on the eggs in that subpopulations spawning habitat might benefit smaller eggs. Collectively, our findings point to adaptive divergence among sympatric subpopulations that are physically separated only for a short period during reproduction and early development-which is rare. These results illustrate how combinations of translocation experiments and field studies of life-history traits might infer about local adaptation and evolutionary divergence among populations. Local adaptations in subdivided populations are important to consider in management and conservation of biodiversity, because they may otherwise be negatively affected by harvesting, supplementation, and reintroduction efforts targeted at endangered populations. [Berggren, Hanna; Nordahl, Oscar; Tibblin, Petter; Larsson, Per; Forsman, Anders] Linnaeus Univ, Dept Biol & Environm Sci, Ctr Ecol & Evolut Microbial Model Syst, EEMiS, SE-39182 Kalmar, Sweden Forsman, A (reprint author), Linnaeus Univ, Dept Biol & Environm Sci, Ctr Ecol & Evolut Microbial Model Syst, EEMiS, SE-39182 Kalmar, Sweden. anders.forsman@lnu.se Forsman, Anders/G-8778-2012 Forsman, Anders/0000-0001-9598-7618; Tibblin, Petter/0000-0001-6804-5342 Linnaeus University; Swedish Research Council [A0532701] Funding was provided by Linnaeus University, www.lnu.se (to AF and PL) and The Swedish Research Council, www.vr.se (grant A0532701 to AF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; AULD AH, 1978, ESTUAR COAST MAR SCI, V6, P153, DOI 10.1016/0302-3524(78)90097-X; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; Berggren H, 2012, J EVOLUTION BIOL, V25, P2126, DOI 10.1111/j.1420-9101.2012.02592.x; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Brooks S, REVIEWS IN FISH BIOL, V7, P387, DOI [10.1023/a:1018400130692, DOI 10.1023/A:1018400130692]; Craig JF, 2008, HYDROBIOLOGIA, V601, P5, DOI 10.1007/s10750-007-9262-3; Craig JF, 1996, PIKE BIOLOGY AND EXP; Edelaar P, 2008, EVOLUTION, V62, P2462, DOI 10.1111/j.1558-5646.2008.00459.x; Eizaguirre C, 2012, ECOL LETT, V15, P723, DOI 10.1111/j.1461-0248.2012.01791.x; Endler J. A., 1977, GEOGRAPHIC VARIATION; Engstedt O, 2014, ECOL FRESHW FISH, V23, P313, DOI 10.1111/eff.12082; Engstedt O, 2010, ENVIRON BIOL FISH, V89, P547, DOI 10.1007/s10641-010-9686-x; Evans ML, 2010, CONSERV GENET, V11, P2333, DOI 10.1007/s10592-010-0119-3; Forsman A, 2015, HEREDITY, V115, P276, DOI 10.1038/hdy.2014.92; Forsman A, 2015, J FISH BIOL, V87, P472, DOI 10.1111/jfb.12712; Forsman A, 1995, FUNCT ECOL, V9, P818, DOI 10.2307/2389979; Forsman A, 2016, ECOGRAPHY, V39, P630, DOI 10.1111/ecog.01357; Forsman A, 2014, P NATL ACAD SCI USA, V111, P302, DOI 10.1073/pnas.1317745111; Fraser DJ, 2005, EVOLUTION, V59, P611; Garcia de Leaniz C, 2007, BIOL REV, V82, P173, DOI 10.1111/j.1469-185X.2006.00004.x; Gregersen F, 2006, ECOL FRESHW FISH, V15, P237, DOI 10.1111/j.1600-0633.2006.00129.x; HASSLER TJ, 1970, T AM FISH SOC, V99, P369, DOI 10.1577/1548-8659(1970)99<369:EIOEDA>2.0.CO;2; Heath DD, 1999, EVOLUTION, V53, P1605, DOI 10.1111/j.1558-5646.1999.tb05424.x; Hendry AP, 2001, GENETICA, V112, P515, DOI 10.1023/A:1013367100865; Hereford J, 2009, AM NAT, V173, P579, DOI 10.1086/597611; Hughes AR, 2008, ECOL LETT, V11, P609, DOI 10.1111/j.1461-0248.2008.01179.x; Jensen LF, 2008, P ROY SOC B-BIOL SCI, V275, P2859, DOI 10.1098/rspb.2008.0870; Johnston TA, 2002, ECOLOGY, V83, P1777, DOI 10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2; Jonsson N, 1999, J FISH BIOL, V55, P767, DOI 10.1006/jfbi.1999.1035; Junge C, 2011, HEREDITY, V106, P460, DOI 10.1038/hdy.2010.160; Kalbe M, 2002, J FISH BIOL, V60, P1529, DOI 10.1006/jfbi.2002.2013; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Laikre L, 2005, AMBIO, V34, P111, DOI 10.1639/0044-7447(2005)034[0111:GPSOFI]2.0.CO;2; Larsson P, 2015, AMBIO, V44, pS451, DOI 10.1007/s13280-015-0664-6; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LEGGETT WC, 1977, ANNU REV ECOL SYST, V8, P285, DOI 10.1146/annurev.es.08.110177.001441; Leimar O, 2009, EVOL ECOL, V23, P125, DOI 10.1007/s10682-007-9194-4; Lucek K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049377; Matthews B, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010948; Merila J, 2014, EVOL APPL, V7, P1, DOI 10.1111/eva.12137; Murry BA, 2008, HYDROBIOLOGIA, V601, P71, DOI 10.1007/s10750-007-9267-y; Nilsson J, 2014, HYDROBIOLOGIA, V721, P145, DOI 10.1007/s10750-013-1656-9; PALUMBI SR, 1994, ANNU REV ECOL SYST, V25, P547, DOI 10.1146/annurev.ecolsys.25.1.547; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Raat AJP, 1988, SYNOPSIS OF BIOLOGIC; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Richter-Boix A, 2013, MOL ECOL, V22, P1322, DOI 10.1111/mec.12181; Roff D. A, 1997, EVOLUTIONARY QUANTIT; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Roff Derek A., 1992; Rossiter MC, 1996, ANNU REV ECOL SYST, V27, P451, DOI 10.1146/annurev.ecolsys.27.1.451; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Taborsky B, 2006, P ROY SOC B-BIOL SCI, V273, P741, DOI 10.1098/rspb.2005.3347; Tibblin P, SCIENTIFIC REPORTS U; Tibblin P, 2016, J ANIM ECOL, V85, P136, DOI 10.1111/1365-2656.12439; Tibblin P, 2015, AM NAT, V186, P98, DOI 10.1086/681597; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANDENBERGHE EP, 1989, EVOLUTION, V43, P125, DOI 10.1111/j.1558-5646.1989.tb04212.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Wennersten L, 2012, BIOL REV, V87, P756, DOI 10.1111/j.1469-185X.2012.00231.x; WESTEBERHARD MJ, 2003, DEVELOPMENTAL PLASTI; Williams G. C., 1966, ADAPTATION AND NATUR 68 5 5 2 28 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAY 3 2016 11 5 e0154488 10.1371/journal.pone.0154488 15 Multidisciplinary Sciences Science & Technology - Other Topics DL5KK WOS:000375675700036 27139695 DOAJ Gold, Green Published 2019-02-21 J Ljungstrom, G; Stjernstedt, M; Wapstra, E; Olsson, M Ljungstrom, G.; Stjernstedt, M.; Wapstra, E.; Olsson, M. Selection and constraints on offspring size-number trade-offs in sand lizards (Lacerta agilis) JOURNAL OF EVOLUTIONARY BIOLOGY English Article adaptation; constraints; life history evolution; natural selection; offspring size and number; trade-offs BODY CONDITION INDEXES; EGG SIZE; REPRODUCTIVE OUTPUT; SEXUAL SELECTION; INDIVIDUAL QUALITY; CLUTCH MASS; RED DEER; SURVIVAL; FITNESS; SNAKES The trade-off between offspring size and number is a central component of life-history theory, postulating that larger investment into offspring size inevitably decreases offspring number. This trade-off is generally discussed in terms of genetic, physiological or morphological constraints; however, as among-individual differences can mask individual trade-offs, the underlying mechanisms may be difficult to reveal. In this study, we use multivariate analyses to investigate whether there is a trade-off between offspring size and number in a population of sand lizards by separating among-and within-individual patterns using a 15-year data set collected in the wild. We also explore the ecological and evolutionary causes and consequences of this trade-off by investigating how a female's resource (condition)- vs. age-related size (snout-vent length) influences her investment into offspring size vs. number (OSN), whether these traits are heritable and under selection and whether the OSN trade-off has a genetic component. We found a negative correlation between offspring size and number within individual females and physical constraints (size of body cavity) appear to limit the number of eggs that a female can produce. This suggests that the OSN trade-off occurs due to resource constraints as a female continues to grow throughout life and, thus, produces larger clutches. In contrast to the assumptions of classic OSN theory, we did not detect selection on offspring size; however, there was directional selection for larger clutch sizes. The repeatabilities of both offspring size and number were low and we did not detect any additive genetic variance in either trait. This could be due to strong selection (past or current) on these life-history traits, or to insufficient statistical power to detect significant additive genetic effects. Overall, the findings of this study are an important illustration of how analyses of within-individual patterns can reveal trade-offs and their underlying causes, with potential evolutionary and ecological consequences that are otherwise hidden by among-individual variation. [Ljungstrom, G.; Stjernstedt, M.; Olsson, M.] Univ Gothenburg, Dept Biol & Environm Sci, Medicinaregatan 18A, S-41390 Gothenburg, Sweden; [Wapstra, E.] Univ Tasmania, Sch Biol Sci, Hobart, Tas, Australia; [Olsson, M.] Univ Sydney, Sch Biol Sci, Sydney, NSW, Australia Ljungstrom, G (reprint author), Univ Gothenburg, Dept Biol & Environm Sci, Medicinaregatan 18A, S-41390 Gothenburg, Sweden. gabriella.ljungstrom@bioenv.gu.se Wapstra, Erik/0000-0002-2050-8026; Olsson, Mats/0000-0002-4130-1323 Swedish Science Council; Australian Research Council We thank the Swedish Science Council and the Australian Research Council for financial support (M.O. and E.W.), Tobias Uller for comments on a previous draft of this manuscript and Tom Langbehn for help with the graphics. All work carried out in this study conforms to Swedish animal welfare and conservation legal requirements, ethics permit no. 82-2011 (University of Gothenburg). ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; Ardia DR, 2005, FUNCT ECOL, V19, P414, DOI 10.1111/j.1365-2435.2005.00997.x; ARNOLD SJ, 1984, EVOLUTION, V38, P720, DOI 10.1111/j.1558-5646.1984.tb00345.x; ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; Bernardo J, 1996, AM ZOOL, V36, P216; Bohme W., 1984, HDB REPTILIEN AMPHIB, VII/I, P26; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Brown GP, 2007, J EVOLUTION BIOL, V20, P588, DOI 10.1111/j.1420-9101.2006.01256.x; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Cam E, 2013, OIKOS, V122, P739, DOI 10.1111/j.1600-0706.2012.20532.x; Christians JK, 2000, FUNCT ECOL, V14, P497, DOI 10.1046/j.1365-2435.2000.00444.x; Congdon JD, 1999, OECOLOGIA, V121, P224, DOI 10.1007/s004420050924; Dohm MR, 2002, FUNCT ECOL, V16, P273; Edward DA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P137; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Falconer D. S., 1996, INTRO QUANTITATIVE G; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; Ford NB, 2015, J ZOOL, V295, P154, DOI 10.1111/jzo.12180; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Garland T, 2014, CURR BIOL, V24, pR60, DOI 10.1016/j.cub.2013.11.036; Gilmour A. R., 2006, ASREML USER GUIDE RE; Grafen A., 1988, REPROD SUCCESS, P454; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Gullberg A, 1998, BIOL J LINN SOC, V65, P257, DOI 10.1111/j.1095-8312.1998.tb01142.x; Gullberg A, 1997, BIOCHEM GENET, V35, P281, DOI 10.1023/A:1021801217185; Hayes JP, 2006, PHYSIOL BIOCHEM ZOOL, V79, P665, DOI 10.1086/502814; Hayes Jack P., 2001, P8, DOI 10.1017/CBO9780511551741.003; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; Husak JF, 2006, FUNCT ECOL, V20, P174, DOI 10.1111/j.1365-2435.2006.01069.x; in den Bosch H. A. J., 1998, J HERPETOL, V32, P410; Jakob EM, 1996, OIKOS, V77, P61, DOI 10.2307/3545585; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Kratochvil L, 2006, BIOL J LINN SOC, V88, P527, DOI 10.1111/j.1095-8312.2006.00627.x; Kruuk LEB, 2007, J EVOLUTION BIOL, V20, P1890, DOI 10.1111/j.1420-9101.2007.01377.x; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Lack David, 1947, JOUR ANIMAL ECOL, V16, P19, DOI 10.2307/1503; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Le Henanff M, 2013, BIOL J LINN SOC, V108, P384, DOI 10.1111/j.1095-8312.2012.02005.x; Lessells C.M., 1991, P32; Lim JN, 2014, EVOLUTION, V68, P2306, DOI 10.1111/evo.12446; Ljungstrom G, 2015, BMC EVOL BIOL, V15, DOI 10.1186/s12862-015-0476-0; Lynch M, 1998, GENETICS ANAL QUANTI; Madsen T, 1996, HERPETOLOGICA, V52, P146; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; Moyes K, 2009, J ANIM ECOL, V78, P406, DOI 10.1111/j.1365-2656.2008.01497.x; O'Brien RM, 2007, QUAL QUANT, V41, P673, DOI 10.1007/s11135-006-9018-6; Olsson M, 1996, BEHAVIOUR, V133, P367, DOI 10.1163/156853996X00503; Olsson M, 2000, P ROY SOC B-BIOL SCI, V267, P2339, DOI 10.1098/rspb.2000.1289; Olsson M, 2004, ECOL LETT, V7, P924, DOI 10.1111/j.1461-0248.2004.00652.x; OLSSON M, 1994, ANIM BEHAV, V48, P607, DOI 10.1006/anbe.1994.1280; Olsson M, 2001, FUNCT ECOL, V15, P443, DOI 10.1046/j.0269-8463.2001.00544.x; Olsson M, 1997, AM NAT, V149, P179, DOI 10.1086/285985; Olsson M, 2005, EVOLUTION, V59, P221; Olsson M, 1996, OECOLOGIA, V105, P175, DOI 10.1007/BF00328543; Olsson M, 2011, EVOLUTION, V65, P3323, DOI 10.1111/j.1558-5646.2011.01387.x; Olsson M, 2011, EVOLUTION, V65, P574, DOI 10.1111/j.1558-5646.2010.01152.x; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Pizzatto L, 2007, ECOLOGY, V88, P359, DOI 10.1890/0012-9658(2007)88[359:LATAIS]2.0.CO;2; Robinson WS, 1950, AM SOCIOL REV, V15, P351, DOI 10.2307/2087176; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Ryberg K, 2004, J EVOLUTION BIOL, V17, P1215, DOI 10.1111/j.1420.9101.2004.00798.x; Schulte-Hostedde AI, 2005, ECOLOGY, V86, P155, DOI 10.1890/04-0232; SHINE R, 1992, EVOLUTION, V46, P828, DOI 10.1111/j.1558-5646.1992.tb02088.x; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; Uller T, 2011, EVOLUTION, V65, P2313, DOI 10.1111/j.1558-5646.2011.01303.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Visman V, 1996, ECOSCIENCE, V3, P173, DOI 10.1080/11956860.1996.11682328; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; Wapstra E, 2010, J EVOLUTION BIOL, V23, P651, DOI 10.1111/j.1420-9101.2009.01924.x; Warner DA, 2007, OECOLOGIA, V154, P65, DOI 10.1007/s00442-007-0809-9; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Wolf JB, 2004, PHENOTYPIC PLASTICIT, P173; Zakharov V. M., 1989, FUTURE PROSPECTS POP; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x 83 7 8 3 41 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAY 2016 29 5 979 990 10.1111/jeb.12838 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DU8XB WOS:000382498000009 26851437 Bronze 2019-02-21 J Fischer, EK; Ghalambor, CK; Hoke, KL Fischer, E. K.; Ghalambor, C. K.; Hoke, K. L. Plasticity and evolution in correlated suites of traits JOURNAL OF EVOLUTIONARY BIOLOGY English Article adaptive divergence; behavioural syndromes; phenotypic integration; Poecilia reticulata GUPPY POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; CRYPTIC GENETIC-VARIATION; PHENOTYPIC PLASTICITY; TRINIDADIAN GUPPIES; QUANTITATIVE GENETICS; BEHAVIORAL PLASTICITY; FEMALE GUPPIES; REACTION NORMS; BODY-SIZE When organisms are faced with new or changing environments, a central challenge is the coordination of adaptive shifts in many different phenotypic traits. Relationships among traits may facilitate or constrain evolutionary responses to selection, depending on whether the direction of selection is aligned or opposed to the pattern of trait correlations. Attempts to predict evolutionary potential in correlated traits generally assume that correlations are stable across time and space; however, increasing evidence suggests that this may not be the case, and flexibility in trait correlations could bias evolutionary trajectories. We examined genetic and environmental influences on variation and covariation in a suite of behavioural traits to understand if and how flexibility in trait correlations influences adaptation to novel environments. We tested the role of genetic and environmental influences on behavioural trait correlations by comparing Trinidadian guppies (Poecilia reticulata) historically adapted to high-and low-predation environments that were reared under native and non-native environmental conditions. Both high-and low-predation fish exhibited increased behavioural variance when reared under non-native vs. native environmental conditions, and rearing in the non-native environment shifted the major axis of variation among behaviours. Our findings emphasize that trait correlations observed in one population or environment may not predict correlations in another and that environmentally induced plasticity in correlations may bias evolutionary divergence in novel environments. [Fischer, E. K.; Ghalambor, C. K.; Hoke, K. L.] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA; [Ghalambor, C. K.] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA Fischer, EK (reprint author), Harvard Univ, Ctr Syst Biol, 52 Oxford St, Cambridge, MA 02138 USA. evafischer@fas.harvard.edu Fischer, Eva K/0000-0002-2916-0900 NSF [DDIG-1311680, IOS-1354755, DEB-0846175] We thank P.A. Reeves for help with apparatus construction, E.D. Broder for input on behavioural assay design; H.A. Buchek, K.E. Dolphin, E.H. Lloyd, H.M. Peterson, P. Robinson, M.T. Sinner and S.S. Streich for help with behavioural data collection; C.A. Handelsman for input on statistical analyses; and S.E. Westrick, E.W. Ruell and the members of the Guppy Lab crew for fish rearing and care. We gratefully acknowledge support from NSF DDIG-1311680 (to EKF), NSF IOS-1354755 (to KLH) and DEB-0846175 (to CKG). ABRAHAMS MV, 1989, ECOLOGY, V70, P999, DOI 10.2307/1941368; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Badyaev AV, 2005, P ROY SOC B-BIOL SCI, V272, P877, DOI 10.1098/rspb.2004.3045; Baldwin JM, 1896, AM NAT, V30, P441, DOI DOI 10.1086/276408; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; BREDEN F, 1987, ANIM BEHAV, V35, P618, DOI 10.1016/S0003-3472(87)80297-X; Cheverud J.M., 1988, EVOLUTION, V95, P8; DEQUEIROZ A, 1993, EVOLUTION, V47, P46, DOI 10.1111/j.1558-5646.1993.tb01198.x; Dingemanse NJ, 2012, J EVOLUTION BIOL, V25, P485, DOI 10.1111/j.1420-9101.2011.02439.x; Dingemanse NJ, 2009, P R SOC B, V276, P1285, DOI 10.1098/rspb.2008.1555; Dzikowski R, 2004, J EXP ZOOL PART A, V301A, P776, DOI 10.1002/jez.a.61; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Eroukhmanoff F, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006173; Etterson JR, 2001, SCIENCE, V294, P151, DOI 10.1126/science.1063656; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fischer EK, 2014, HORM BEHAV, V65, P165, DOI 10.1016/j.yhbeh.2013.12.010; Fischer EK, 2013, J EXP BIOL, V216, P3132, DOI 10.1242/jeb.081349; Fitzpatrick SW, 2014, AM NAT, V183, P290, DOI 10.1086/674611; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Ghalambor CK, 2015, NATURE, V525, P372, DOI 10.1038/nature15256; Ghalambor Cameron K., 2010, P90; Gibson G, 2004, NAT REV GENET, V5, P681, DOI 10.1038/nrg1426; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Gosline AK, 2008, AQUAT ECOL, V42, P693, DOI 10.1007/s10452-007-9138-7; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Handelsman CA, 2014, INTEGR COMP BIOL, V54, P794, DOI 10.1093/icb/icu112; Handelsman CA, 2013, INTEGR COMP BIOL, V53, P975, DOI 10.1093/icb/ict057; Hansen TF, 2008, J EVOLUTION BIOL, V21, P1201, DOI 10.1111/j.1420-9101.2008.01573.x; Harris S, 2010, OIKOS, V119, P1711, DOI 10.1111/j.1600-0706.2010.18028.x; Hoffmann AA, 1999, TRENDS ECOL EVOL, V14, P96, DOI 10.1016/S0169-5347(99)01595-5; Houde A., 1997, SEX COLOR MATE CHOIC; Huizinga M, 2009, J EVOLUTION BIOL, V22, P1860, DOI 10.1111/j.1420-9101.2009.01799.x; Kamilar JM, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0341; Kirkpatrick M, 2009, GENETICA, V136, P271, DOI 10.1007/s10709-008-9302-6; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; Lynch M, 1998, GENETICS ANAL QUANTI; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; MAGURRAN AE, 1990, BEHAVIOUR, V112, P194, DOI 10.1163/156853990X00194; McGuigan K, 2006, MOL ECOL, V15, P883, DOI 10.1111/j.1365-294X.2006.02809.x; McGuigan K, 2011, EVOLUTION, V65, P1203, DOI 10.1111/j.1558-5646.2010.01195.x; McGuigan K, 2009, TRENDS ECOL EVOL, V24, P305, DOI 10.1016/j.tree.2009.02.001; Merila J, 2004, PHENOTYPIC INTEGRATION: STUDYING THE ECOLOGY AND EVOLUTION OF COMPLEX PHENOTYPES, P107; Moretz JA, 2007, BEHAV ECOL, V18, P556, DOI 10.1093/beheco/arm011; NEWMAN RA, 1994, EVOLUTION, V48, P1773, DOI 10.1111/j.1558-5646.1994.tb02213.x; Nordell SE, 1998, ENVIRON BIOL FISH, V51, P331, DOI 10.1023/A:1007464731444; Phillips PC, 1999, EVOLUTION, V53, P1506, DOI [10.1111/j.1558-5646.1999.tb05414.x, 10.2307/2640896]; Pighucci M, 2009, ANN NY ACAD SCI, V1168, P218, DOI 10.1111/j.1749-6632.2009.04578.x; Pigliucci M, 1996, TRENDS ECOL EVOL, V11, P168, DOI 10.1016/0169-5347(96)10008-2; Pigliucci M, 2004, PHENOTYPIC INTEGRATION: STUDYING THE ECOLOGY AND EVOLUTION OF COMPLEX PHENOTYPES, P155; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK D, 1982, AM NAT, V120, P181, DOI 10.1086/283981; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Reznick DN, 1997, EXP GERONTOL, V32, P245, DOI 10.1016/S0531-5565(96)00129-5; Roff DA, 2012, J EVOLUTION BIOL, V25, P1113, DOI 10.1111/j.1420-9101.2012.02500.x; Roff D. A, 1997, EVOLUTIONARY QUANTIT; Roff DA, 2005, J EVOLUTION BIOL, V18, P1104, DOI 10.1111/j.1420-9101.2004.00862.x; Ruell EW, 2013, P R SOC B, V280, P2012, DOI DOI 10.1098/RSPB.2012.2019; Schlichting CD, 2008, ANN NY ACAD SCI, V1133, P187, DOI 10.1196/annals.1438.010; SCHLICHTING CD, 1989, BIOSCIENCE, V39, P460, DOI 10.2307/1311138; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; Schwartz J.M., 1997, BIOMETRICS, V102, P6; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; Sinn DL, 2010, BEHAV ECOL SOCIOBIOL, V64, P693, DOI 10.1007/s00265-009-0887-2; Smith BR, 2010, BEHAV ECOL, V21, P919, DOI 10.1093/beheco/arq084; Spitze K, 1996, AM NAT, V148, pS108, DOI 10.1086/285905; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; Steppan SJ, 2002, TRENDS ECOL EVOL, V17, P320, DOI 10.1016/S0169-5347(02)02505-3; Thioulouse J, 1997, STAT COMPUT, V7, P75, DOI 10.1023/A:1018513530268; Torres-Dowdall J, 2012, EVOLUTION, V66, P3432, DOI 10.1111/j.1558-5646.2012.01694.x; WADDINGTON CH, 1959, NATURE, V183, P1654, DOI 10.1038/1831654a0; WAITT DE, 1993, AM J BOT, V80, P1224, DOI 10.2307/2445552; Weese DJ, 2011, EVOL APPL, V4, P354, DOI 10.1111/j.1752-4571.2010.00169.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Willing EM, 2010, MOL ECOL, V19, P968, DOI 10.1111/j.1365-294X.2010.04528.x; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x 84 12 12 10 75 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAY 2016 29 5 991 1002 10.1111/jeb.12839 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DU8XB WOS:000382498000010 26849747 2019-02-21 J Ely, CR; Meixell, BW Ely, Craig R.; Meixell, Brandt W. Demographic outcomes of diverse migration strategies assessed in a metapopulation of tundra swans MOVEMENT ECOLOGY English Article Cygnus columbianus; Known fate; Life history; Metapopulation; Migration distance; Productivity; Satellite telemetry; Survival; Transmitter effects; Tundra swan GREATER SNOW GEESE; LOWER ALASKA PENINSULA; ANNUAL SURVIVAL RATES; SEASONAL SURVIVAL; PERCUTANEOUS ANTENNAS; POPULATION-DYNAMICS; CYGNUS-COLUMBIANUS; DISTANCE MIGRATION; COMMON EIDERS; EMPEROR GEESE Background: Migration is a prominent aspect of the life history of many avian species, but the demographic consequences of variable migration strategies have only infrequently been investigated, and rarely when using modern technological and analytical methods for assessing survival, movement patterns, and long-term productivity in the context of life history theory. We monitored the fates of 50 satellite-implanted tundra swans (Cygnus columbianus) over 4 years from five disparate breeding areas in Alaska, and used known-fate analyses to estimate monthly survival probability relative to migration distance, breeding area, migratory flyway, breeding status, and age. We specifically tested whether migratory birds face a trade-off, whereby long-distance migrants realize higher survival rates at the cost of lower productivity because of reduced time on breeding areas relative to birds that migrate shorter distances and spend more time on breeding areas. Results: Annual migration distances varied significantly among breeding areas (1020 to 12720 km), and were strongly negatively correlated with time spent on breeding areas (r = -0.986). Estimates of annual survival probability varied by wintering area (Pacific coast, Alaska Peninsula, and Eastern seaboard) and ranged from 0.79 (95% CI: 0.70-0.88) to 1.0, depending on criteria used to discern mortalities from radio failures. We did not find evidence for a linear relationship between migration distance and survival as swans from the breeding areas with the shortest and longest migration distances had the highest survival probabilities. Survival was lower in the first year post-marking than in subsequent years, but there was not support for seasonal differences in survival. Productivity varied among breeding populations and was generally inversely correlated to survival, but not migration distance or time spent on breeding areas. Conclusions: Tundra swans conformed to a major tenet of life history theory, as populations with the highest survival generally had the lowest productivity. The lack of a uniform relationship between time spent on breeding areas and productivity, or time spent on wintering areas and survival, indicates that factors other than temporal investment dictate demographic outcomes in this species. The tremendous diversity of migration strategies we identify in Alaskan tundra swans, without clear impacts on survival, underscores the ability of this species to adapt to different environments and climatic regimes. [Ely, Craig R.; Meixell, Brandt W.] US Geol Survey, Alaska Sci Ctr, 4210 Univ Dr, Anchorage, AK 99508 USA Ely, CR (reprint author), US Geol Survey, Alaska Sci Ctr, 4210 Univ Dr, Anchorage, AK 99508 USA. cely@usgs.gov Meixell, Brandt/0000-0002-6738-0349 U.S. Geological Survey (USGS); U.S. Fish and Wildlife Service (USFWS); Kimberly Trust (USFWS); Alaska Science Centre (ASC) [MB789758]; ASC IACUC [2008-15 (2009-2010)]; U.S. Government We are grateful to the U.S. Geological Survey (USGS), and the U.S. Fish and Wildlife Service (USFWS) that funded this work as part of an effort to monitor avian influenza viruses in wild migratory birds and identify factors related to the transmission of the viruses in North America. We especially appreciate the support of Dirk Derksen (USGS) and Kimberly Trust (USFWS) who arranged funding for the study. We are grateful to the many field assistants and veterinarians with helped with capture and marking in Alaska. Christian Dau and Kristine Sowl kindly provided productivity data from the LAP. We appreciate the software programming and advice provided by David Douglas. We are thankful for the oversights of the Institutional Animal Care and Use Committees (IACUC) of the U. S. Fish and Wildlife Service Region 7, and the U.S. Geological Survey (USGS), Alaska Science Centre (ASC), under Federal Permit # MB789758 (2007-2010), and ASC IACUC # 2008-15 (2009-2010). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The authors declare that they have no conflict of interest. We appreciated the helpful reviews provided by John Pearce, Joel Schmutz, James Sedinger, and two anonymous reviewers. Alerstam T, 2003, OIKOS, V103, P247, DOI 10.1034/j.1600-0706.2003.12559.x; ALERSTAM T, 1982, ORNIS SCAND, V13, P25, DOI 10.2307/3675970; Alerstam T., 1993, BIRD MIGRATION; Alves JA, 2013, ECOLOGY, V94, P11, DOI 10.1890/12-0737.1; Alves JA, 2012, OIKOS, V121, P464, DOI 10.1111/j.1600-0706.2011.19678.x; Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; Baldassarre G, 2014, SWANS N AM; Bart Jonathan, 1991, Wildfowl, P15; Bell Christopher Paul, 2005, P41; BERTHOLD P, 1996, CONTROL BIRD MIGRATI; Bruderer B, 2009, J ORNITHOL, V150, P281, DOI 10.1007/s10336-008-0348-0; Burnham K. P, 2002, MODEL SELECTION MULT; Burns JG, 2002, BEHAV ECOL SOCIOBIOL, V52, P128, DOI 10.1007/s00265-002-0494-y; COLLECTE LOCALISATION SATELLITES (CLS), 2011, ARG US MAN; Dau CP, 2002, WATERBIRDS, V25, P241; Douglas DC, 2012, METHODS ECOL EVOL, V3, P999, DOI 10.1111/j.2041-210X.2012.00245.x; Duriez O, 2012, OIKOS, V121, P862, DOI 10.1111/j.1600-0706.2012.20326.x; Eastern Population Tundra Swan Committee, 2007, MAN PLAN E POP TUNDR; Ely CR, 1997, WILSON BULL, V109, P679; Ely CR, 2014, ECOTOXICOLOGY, V23, P349, DOI 10.1007/s10646-014-1192-z; Fast PLF, 2011, J WILDLIFE MANAGE, V75, P1553, DOI 10.1002/jwmg.220; Gauthier G, 2001, ECOLOGY, V82, P3105, DOI 10.1890/0012-9658(2001)082[3105:SSOGSG]2.0.CO;2; Gillis EA, 2008, ECOLOGY, V89, P1687, DOI 10.1890/07-1122.1; Greenberg R., 1980, P493; HARRINGTON BA, 1988, AUK, V105, P439; HESTBECK JB, 1992, CAN J ZOOL, V70, P2021, DOI 10.1139/z92-273; Hupp JW, 2008, J WILDLIFE MANAGE, V72, P1584, DOI 10.2193/2007-358; Hupp JW, 2006, J WILDLIFE MANAGE, V70, P812, DOI 10.2193/0022-541X(2006)70[812:EOAIRW]2.0.CO;2; Hupp JW, 2010, J WILDLIFE MANAGE, V74, P274, DOI 10.2193/2009-057; Ketterson E.D., 1983, Current Ornithology, V1, P357; Klaassen RHG, 2014, J ANIM ECOL, V83, P176, DOI 10.1111/1365-2656.12135; Korschgen CE, 1996, J WILDLIFE MANAGE, V60, P132, DOI 10.2307/3802047; LACK D, 1968, OIKOS, V19, P1, DOI 10.2307/3564725; Latty CJ, 2010, CONDOR, V112, P314, DOI 10.1525/cond.2010.090022; LEBRETON JD, 1991, BIRD POPULATION STUD, P105; Limpert RJ, 1994, BIRDS N AM; Lok T, 2013, AM NAT, V181, P520, DOI 10.1086/669679; McKinnon L, 2010, SCIENCE, V327, P326, DOI 10.1126/science.1183010; Meixell BW, 2013, CONDOR, V115, P280, DOI 10.1525/cond.2013.110213; Menu S, 2002, J APPL ECOL, V39, P91, DOI 10.1046/j.1365-2664.2002.00692.x; Moller AP, 2000, OECOLOGIA, V122, P500, DOI 10.1007/s004420050972; Mulcahy DM, 1999, J ZOO WILDLIFE MED, V30, P397; Newton I., 2010, CONDOR; Nichols J.D., 1990, P83; Nichols James D., 1996, P147; NICHOLS JD, 1992, J WILDLIFE MANAGE, V56, P485, DOI 10.2307/3808863; Nolet BA, 2006, ARDEA, V94, P579; Nuijten RJM, 2014, J AVIAN BIOL, V45, P113, DOI 10.1111/j.1600-048X.2013.00287.x; OWEN M, 1988, P23; OWEN M, 1989, J ANIM ECOL, V58, P603, DOI 10.2307/4851; Petrie SA, 2003, CAN J ZOOL, V81, P861, DOI 10.1139/Z03-063; Purchase HG, 1989, LAB MANUAL ISOLATION; Ramey AM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045789; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Rogers Christopher M., 2005, P106; Sandercock BK, 2002, AUK, V119, P149, DOI 10.1642/0004-8038(2002)119[0149:ASROWS]2.0.CO;2; Sanz-Aguilar A, 2012, J ANIM ECOL, V81, P1171, DOI 10.1111/j.1365-2656.2012.01997.x; Saracco JF, 2010, ECOLOGY, V91, P1885, DOI 10.1890/09-0705.1; SAS, 2004, STAT US GUID STAT, P123; Schmutz JA, 1997, J WILDLIFE MANAGE, V61, P191, DOI 10.2307/3802428; Schmutz JA, 1999, J WILDLIFE MANAGE, V63, P1239, DOI 10.2307/3802841; Sherry Thomas W., 1995, P85; Souchay G, 2015, J WILDLIFE MANAGE, V79, P570, DOI 10.1002/jwmg.879; Spackman E, 2002, J CLIN MICROBIOL, V40, P3256, DOI 10.1128/JCM.40.9.3256-3260.2002; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; U. S. Avian Influenza Interagency Working Group, 2006, EARL DET SYST HIGHL; U. S. Fish and Wildlife Service, 2001, MAN PLAN W POP TUNDR; USFWS/USGS, 2009, SAMPL HIGHL PATH AS; van den Hout PJ, 2010, BEHAV ECOL, V21, P16, DOI 10.1093/beheco/arp146; van Gils JA, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000184; Varner DM, 2012, J WILDLIFE MANAGE, V76, P129, DOI 10.1002/jwmg.280; White GC, 1999, BIRD STUDY, V46, P120; Winkler D. W., 2014, MOVEMENT ECOLOGY, V2, P1 73 2 2 3 26 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 2051-3933 MOV ECOL Mov. Ecol. MAY 1 2016 4 UNSP 10 10.1186/s40462-016-0075-8 15 Ecology Environmental Sciences & Ecology DU0YZ WOS:000381932500001 27134751 DOAJ Gold, Green Published 2019-02-21 J Froese, R; Walters, C; Pauly, D; Winker, H; Weyl, OLF; Demirel, N; Tsikliras, AC; Holt, SJ Froese, Rainer; Walters, Carl; Pauly, Daniel; Winker, Henning; Weyl, Olaf L. F.; Demirel, Nazli; Tsikliras, Athanassios C.; Holt, Sidney J. A critique of the balanced harvesting approach to fishing ICES JOURNAL OF MARINE SCIENCE English Article balanced harvesting; ecosystem-based fisheries management; population dynamics theory; selectivity; size at first capture; size at maturity FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY EVOLUTION; SMALL-SCALE FISHERIES; SIZE SPECTRA; MARINE ECOSYSTEMS; FORAGE FISH; MANAGEMENT; STOCKS; EXPLOITATION; SEA The approach to fisheries termed "balanced harvesting" (BH) calls for fishing across the widest possible range of species, stocks, and sizes in an ecosystem, in proportion to their natural productivity, so that the relative size and species composition is maintained. Such fishing is proposed to result in higher catches with less negative impact on exploited populations and ecosystems. This study examines the models and the empirical evidence put forward in support of BH. It finds that the models used unrealistic settings with regard to life history (peak of cohort biomass at small sizes), response to fishing (strong compensation of fishing mortality by reduced natural mortality), and economics (uniform high cost of fishing and same ex-vessel price for all species and sizes), and that empirical evidence of BH is scarce and questionable. It concludes that evolutionary theory, population dynamics theory, ecosystem models with realistic assumptions and settings, and widespread empirical evidence do not support the BH proposal. Rather, this body of evidence suggests that BH will not help but will hinder the policy changes needed for the rebuilding of ecosystems, healthy fish populations, and sustainable fisheries. [Froese, Rainer] Helmholtz Ctr Ocean Res, GEOMAR, Dusternbrooker Weg 20, D-24105 Kiel, Germany; [Walters, Carl; Pauly, Daniel] Univ British Columbia, Fisheries Ctr, Vancouver, BC, Canada; [Winker, Henning] South African Natl Biodivers Inst, Kirstenbosch Res Ctr, ZA-7735 Claremont, South Africa; [Winker, Henning] Univ Cape Town, Dept Stat Sci, Ctr Stat Ecol Environm & Conservat SEEC, ZA-7701 Rondebosch, South Africa; [Weyl, Olaf L. F.] South African Inst Aquat Biodivers, ZA-6140 Grahamstown, South Africa; [Demirel, Nazli] Istanbul Univ, Inst Marine Sci & Management, TR-34134 Istanbul, Turkey; [Tsikliras, Athanassios C.] Aristotle Univ Thessaloniki, Dept Ichthyol, Sch Biol, Thessaloniki, Greece Froese, R (reprint author), Helmholtz Ctr Ocean Res, GEOMAR, Dusternbrooker Weg 20, D-24105 Kiel, Germany. rfroese@geomar.de Demirel, Nazli/H-5679-2012; Froese, Rainer/C-9687-2009 Demirel, Nazli/0000-0003-4542-9276; Froese, Rainer/0000-0001-9745-636X; Weyl, Olaf/0000-0002-8935-3296; Tsikliras, Athanassios/0000-0002-9074-3259 Sea Around Us; Paul G. Allen Family Foundation; Scientific and Technological Research Council of Turkey (TUBITAK); National Research Foundation (NRF) of South Africa We thank Tom Froese for comments on the readability of the text. DP is partly supported by the Sea Around Us and funded by the Paul G. Allen Family Foundation. ND acknowledges support from The Scientific and Technological Research Council of Turkey (TUBITAK), and OLFW thanks the National Research Foundation (NRF) of South Africa. This is FIN contribution number 172. Allison EH, 2001, MAR POLICY, V25, P377, DOI 10.1016/S0308-597X(01)00023-9; Barrett JH, 1999, J ARCHAEOL SCI, V26, P353, DOI 10.1006/jasc.1998.0336; Beddington J.R., 1983, 242 FAO; Bene C, 2003, WORLD DEV, V31, P949, DOI 10.1016/S0305-750X(03)00045-7; Beverton R. J. H., 1966, 38 FAO; Blanchard JL, 2005, CAN J FISH AQUAT SCI, V62, P2001, DOI 10.1139/F05-109; Borrell B, 2013, NATURE, V493, P597, DOI 10.1038/493597a; BOUDREAU PR, 1992, CAN J FISH AQUAT SCI, V49, P1528, DOI 10.1139/f92-169; Brotz L., 2015, GLOBAL ATLAS MARINE, P20; Bundy A, 2005, ICES J MAR SCI, V62, P503, DOI 10.1016/j.icesjms.2004.12.008; CADDY JF, 1986, 283 FAO; CFP, 2013, OFFICIAL J EUROPEAN, V354, P22; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Choi JS, 2004, CAN J FISH AQUAT SCI, V61, P505, DOI 10.1139/F04-079; Christensen V, 2004, B MAR SCI, V74, P549; Clark R. S., 1948, RAPPORTS PROCES VERB, V128, P5; Colloca F, 2013, FISH FISH, V14, P89, DOI 10.1111/j.1467-2979.2011.00453.x; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Cury PM, 2011, SCIENCE, V334, P1703, DOI 10.1126/science.1212928; DAFF, 2007, COMM FISH HARV STRAT; Damalas D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0119330; Duplisea DE, 1997, CAN J FISH AQUAT SCI, V54, P1725, DOI 10.1139/f97-077; EC, 2014, FUT ALM SECT TRAD TU; Engelhard GH, 2014, ICES J MAR SCI, V71, P90, DOI 10.1093/icesjms/fst087; Essington TE, 2015, P NATL ACAD SCI USA, V112, P6648, DOI 10.1073/pnas.1422020112; FAO, 1993, 21 FAO CIFA; FAO, 2015, FISH INF DAT STAT UN; Froese R., 2015, FISH FISH, DOI [10.1111/faf.12102/., DOI 10.1111/FAF.12102/]; Froese R, 2008, FISH RES, V92, P231, DOI 10.1016/j.fishres.2008.01.005; Froese R, 2010, FISH FISH, V11, P194, DOI 10.1111/j.1467-2979.2009.00349.x; Garcia SM, 2012, SCIENCE, V335, P1045, DOI 10.1126/science.1214594; Garcia S. M., 1986, 250 FAO; Garcia S. M., 1986, NAGA ICLARM Q, V9, P3; Garcia SM, 2011, SCI WORKSH ORG IUCN; Gardmark A, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2013.0262; Gremillet D, 2015, BIOL CONSERV, V182, P143, DOI 10.1016/j.biocon.2014.12.001; Guenette S, 2012, OCEAN COAST MANAGE, V70, P10, DOI 10.1016/j.ocecoaman.2012.06.010; Halliday RG, 2002, FISH RES, V57, P211, DOI 10.1016/S0165-7836(02)00079-6; HARDIN G, 1968, SCIENCE, V162, P1243; Harland J. F., 2008, FRINGE NEOLITHIC EUR; Heino M, 2008, B MAR SCI, V83, P69; Heino M, 2013, ICES J MAR SCI, V70, P707, DOI 10.1093/icesjms/fst077; Holt S. J, 1957, FISH INVEST SER, V2, P19; Hsieh CH, 2010, AQUAT SCI, V72, P165, DOI 10.1007/s00027-009-0122-2; ICES, 2014, REP WORK GROUP ASS D; ICES, 2014, COD SUB 1 2 NE ARCT; ICES, 2015, ICES FISHMAP COD; Jacobsen NS, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2701; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Kolding J, 2011, FORUM DEV STUDIES, V38, P235; Kolding J, 2003, MANAGEMENT COMANAGEM, P67; Kolding J, 2014, J LIMNOL, V73, P132, DOI 10.4081/jlimnol.2014.818; Komatsu M., 2001, TRUTH WHALING DISPUT; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Law R, 2016, FISH FISH, V17, P281, DOI 10.1111/faf.12098; Law R, 2015, FISH FISH, V16, P160, DOI 10.1111/faf.12056; Law R, 2012, ICES J MAR SCI, V69, P602, DOI 10.1093/icesjms/fss031; Lester NP, 2014, ECOL APPL, V24, P38, DOI 10.1890/12-2020.1; Levin PS, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2013.0275; Mangel M, 2007, EVOLUTION, V61, P1208, DOI 10.1111/j.1558-5646.2007.00094.x; Marty L, 2015, EVOL APPL, V8, P47, DOI 10.1111/eva.12220; Methot RD, 2013, FISH RES, V142, P86, DOI 10.1016/j.fishres.2012.10.012; Misund O. A., 2002, HDB FISH BIOL FISHER, VII; Mkumbo OC, 2015, FISHERIES MANAG ECOL, V22, P56, DOI 10.1111/fme.12084; Okland F, 2005, ECOL FRESHW FISH, V14, P79, DOI 10.1111/j.1600-0633.2004.00080.x; Olsen RE, 2006, AQUACULT NUTR, V12, P280, DOI 10.1111/j.1365-2095.2006.00400.x; Omori M., 1975, B OCEAN RES I U TOKY; Osio GC, 2015, FISH RES, V171, P110, DOI 10.1016/j.fishres.2015.02.005; Pannozzo L., 2013, DEVIL DEEP BLUE SEA; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; Pauly D, 2012, MAR POLICY, V36, P746, DOI 10.1016/j.marpol.2011.10.021; Pikitch E, 2012, LITTLE FISH BIG IMPA; Punt Andre E., 2006, Natural Resource Modeling, V19, P441; Punt AE, 2014, ICES J MAR SCI, V71, P469, DOI 10.1093/icesjms/fst162; Quinn T. J., 1999, QUANTITATIVE FISH DY; Quinn TJ, 2005, PHILOS T R SOC B, V360, P147, DOI 10.1098/rstb.2004.1577; Restrepo V. R., 1998, NMFSFSPO31 NOAA; Rice J, 1996, ICES J MAR SCI, V53, P1214, DOI 10.1006/jmsc.1996.0146; Richardson AJ, 2009, TRENDS ECOL EVOL, V24, P312, DOI 10.1016/j.tree.2009.01.010; Rochet MJ, 2012, P ROY SOC B-BIOL SCI, V279, P284, DOI 10.1098/rspb.2011.0893; Rochet M-J, 2015, INT SCI WORKSH IUCN; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Smith ADM, 2011, SCIENCE, V333, P1147, DOI 10.1126/science.1209395; Tiller RG, 2008, MAR POLICY, V32, P928, DOI 10.1016/j.marpol.2008.01.008; Trewavas E, 1983, TILAPIINE FISHES GEN; Tsagarakis K, 2014, ICES J MAR SCI, V71, P1219, DOI 10.1093/icesjms/fst074; Tsikliras A. C., 2014, FISHERIES AQUACULTUR, V5; Tsikliras AC, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121188; Tsikliras AC, 2014, REV FISH BIOL FISHER, V24, P219, DOI 10.1007/s11160-013-9330-x; Tsikliras AC, 2013, ACTA ADRIAT, V54, P273; Tweddle D, 2015, FISHERIES MANAG ECOL, V22, P99, DOI 10.1111/fme.12107; TWEDDLE D, 1995, IMPACT SPECIES CHANG, P413; UN, 1946, FIN ACT CONV INT OV, V7, P12; van Wijk SJ, 2013, FRONT ECOL ENVIRON, V11, P181, DOI 10.1890/120229; Vasilakopoulos P, 2014, CURR BIOL, V24, P1643, DOI 10.1016/j.cub.2014.05.070; Walters C, 2001, CAN J FISH AQUAT SCI, V58, P39, DOI 10.1139/cjfas-58-1-39; Walters C, 1997, REV FISH BIOL FISHER, V7, P139, DOI 10.1023/A:1018479526149; Walters CJ, 2005, ICES J MAR SCI, V62, P558, DOI 10.1016/j.icesjms.2004.12.005; Weyl OLF, 2010, AQUAT ECOSYST HEALTH, V13, P241, DOI 10.1080/14634988.2010.504695; Weyl Olf, 2004, African Journal of Aquatic Science, V29, P47, DOI 10.2989/16085910409503791; Yurista PM, 2014, CAN J FISH AQUAT SCI, V71, P1324, DOI 10.1139/cjfas-2013-0596; Zhou SJ, 2010, P NATL ACAD SCI USA, V107, P9485, DOI 10.1073/pnas.0912771107; Zimmermann F, 2015, CAN J FISH AQUAT SCI, V72, P612, DOI 10.1139/cjfas-2014-0006 109 23 23 1 37 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1054-3139 1095-9289 ICES J MAR SCI ICES J. Mar. Sci. MAY-JUN 2016 73 6 1640 1650 10.1093/icesjms/fsv122 11 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography DQ7AK WOS:000379358600020 Bronze, Green Published 2019-02-21 J Geiser, MF; Hagmann, R; Nagel, P; Loader, SP Geiser, Michael F.; Hagmann, Reto; Nagel, Peter; Loader, Simon P. A first broad-scale molecular phylogeny of Prionoceridae (Coleoptera: Cleroidea) provides insight into taxonomy, biogeography and life history evolution ARTHROPOD SYSTEMATICS & PHYLOGENY English Article Soft-winged flower beetles; Cucujiformia; Idgia; Prionocerus; Lobonyx; taxonomy; nocturnality; diurnality; biogeography; barcoding DNA-SEQUENCES; RIBOSOMAL-RNA; INFERENCE; BEETLES Based on partial sequences of three mitochondrial (cox1, cox2, trnL) and two nuclear genes (18S and 28S) we conducted a molecular phylogenetic analysis of Prionoceridae represented by all three valid genera, 34 species and a large number of informal species groups from the Palaearctic, Afrotropical and Oriental regions. Analyses indicate the split of Prionoceridae in two main clades, Lobonychinae and Prionocerinae. Lobonychinae includes the genus Lobonyx Jacquelin du Val, 1859 and some species currently placed in Idgia Laporte de Castelnau, 1838. Prionocerinae includes a large paraphyletic grade of Idgia and monophyletic Prionocerus Perty, 1831, with Idgia viridescens Gorham, 1895 identified as a sister group to Prionocerus. Idgia consists of seven clades, with their basal relationships weakly resolved. Two clades Idgia oculata and Idgia pallidicolor species groups are well supported by molecular data and morphological characters. Species identifications based on morphology are consistent with tree topology recovered from molecular dataset, with one possible exception (Idgia inapicalis). Sequence divergence in cox1 varies from 3.7 to 16% between species and from 0 to 4.9% within species of Prionoceridae. The reconstruction of diurnal and nocturnal life histories suggests a single origin of nocturnality, and multiple transitions from nocturnal to diurnal life style within Prionoceridae. The African and the Arabian species represent two lineages, both having their origin in tropical Asia. [Geiser, Michael F.; Hagmann, Reto; Nagel, Peter; Loader, Simon P.] Univ Basel, Dept Environm Sci, Sect Biogeog, St Johanns Vorstadt 10, CH-4056 Basel, Switzerland; [Geiser, Michael F.] Nat Hist Museum, Biowissensch, Augustinergasse 2, CH-4001 Basel, Switzerland; [Geiser, Michael F.] Nat Hist Museum, Dept Life Sci, Entomol, London SW7 5 BD, England Geiser, MF (reprint author), Univ Basel, Dept Environm Sci, Sect Biogeog, St Johanns Vorstadt 10, CH-4056 Basel, Switzerland.; Geiser, MF (reprint author), Nat Hist Museum, Biowissensch, Augustinergasse 2, CH-4001 Basel, Switzerland.; Geiser, MF (reprint author), Nat Hist Museum, Dept Life Sci, Entomol, London SW7 5 BD, England. m.geiser@nhm.ac.uk FAG (Freie Akademische Gesellschaft), Basel; SYNTHESYS Project - European Community Research Infrastructure Action under the FP7 Integrating Activities Programme We would like to thank the following people for kindly providing fresh specimens in ethanol for DNA extraction: Paul Aston (Hong Kong), Jiri Hajek (NMPC) and David Hauck (Brno, Czech Republic). Useful information on laboratory protocols, DNA alignment and feedback was kindly provided by Milada Bocakova (Olomouc, Czech Republic) and Jesus Gomez-Zurita (Barcelona, Spain). The late Michel Brancucci (NHMB) supported field-work, morphological studies and literature research, and we warmly acknowledge his friendship and kindness. Christoph Liedtke is thanked for helping in analysing the phylogenetic data, Lara Schmidlin and Leena Baumann for making the map of the distribution of Prionoceridae. This work is part of a PhD thesis at the University of Basel, Department of Environmental Sciences, Section Biogeography and was supported by two grants from the FAG (Freie Akademische Gesellschaft), Basel. Parts of the morphological research was supported by the SYNTHESYS Project (http://www.synthesys.info/), which is financed by European Community Research Infrastructure Action under the FP7 Integrating Activities Programme. Aston Paul, 2012, Hong Kong Entomological Bulletin, V4, P2; Bergsten J, 2013, SYST BIOL, V62, P660, DOI 10.1093/sysbio/syt029; Bocakova M, 2012, CLADISTICS, V28, P117, DOI 10.1111/j.1096-0031.2011.00368.x; BOVING A. G., 1931, Entomologica Americana, V11, P1; Castresana J, 2000, MOL BIOL EVOL, V17, P540, DOI 10.1093/oxfordjournals.molbev.a026334; Castresana J., 2002, GBLOCKS VERSION 0 91; Champion G. C., 1919, Annals & Magazine of Natural History, V3; Constantin R, 2009, BIODIVERSITAT UND NATURAUSSTATTUNG IM HIMALAYA III, P299; Crowson R. A., 1964, Transactions of the Royal Entomological Society of London, V116, P275; Crowson R.A., 1955, NATURAL CLASSIFICATI; Curiel J, 2012, ZOOTAXA, P56; de la Puebla Pablo Bahillo, 2003, Boletin de la SEA, V33, P161; FELSENSTEIN J, 1981, J MOL EVOL, V17, P368, DOI 10.1007/BF01734359; FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x; Garcia-Robledo C, 2013, BIOL J LINN SOC, V110, P189, DOI 10.1111/bij.12115; GARDNER J. C. M., 1929, INDIAN FOREST REC [ENTOMOLOGY SER PP 1 30], V14, P103; Geiser M, 2010, ZOOTAXA, P1; Geiser Michael, 2009, Entomologica Basiliensia, V31, P131; Gilbert MTP, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000272; HASEGAWA M, 1985, J MOL EVOL, V22, P160, DOI 10.1007/BF02101694; Hendrich L, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014448; Huelsenbeck JP, 2001, SCIENCE, V294, P2310, DOI 10.1126/science.1065889; Hunt T, 2008, MOL PHYLOGENET EVOL, V47, P289, DOI 10.1016/j.ympev.2007.11.029; Hunt T, 2007, SCIENCE, V318, P1913, DOI 10.1126/science.1146954; JUKES TH, 1969, MAMMALIAN PROTEIN ME, V3, P21, DOI DOI 10.1016/B978-1-4832-3211-9.50009-7; KASS RE, 1995, J AM STAT ASSOC, V90, P773, DOI 10.1080/01621459.1995.10476572; LACORDAIRE T., 1857, HIST NATURELLE INSEC; Lawrence J.F., 1995, P779; Lawrence JF, 2008, ANN ZOOL, V58, P689, DOI 10.3161/000315408X396620; Levkanicova Z., 2009, THESIS; Lim J, 2013, J ASIA-PAC ENTOMOL, V16, P223, DOI 10.1016/j.aspen.2013.01.006; Maddison W.P., 2011, MESQUITE MODULAR SYS; Majer K., 1987, POLSKIE PISMO ENTOMO, V56, P719; Majer Karel, 1995, Entomologica Basiliensia, V17, P319; MARSHALL G.A.K., 1902, T ENTOMOLOGICAL SOC, V1902, P287; Mayor A., 2007, CATALOGUE PALAEARCTI, V4, P384; Meier R, 2008, SYST BIOL, V57, P809, DOI 10.1080/10635150802406343; Miller KB, 2005, SYST ENTOMOL, V30, P499, DOI 10.1111/j.1365-3113.2005.00320.x; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; PIC M., 1934, BULL SOC ZOOL FRANCE, V59, P140; Pic M., 1942, ECHANGE REV LINNEENN, V58, P15; PIC M., 1931, ECHANGE, V444, P97; Pic M., 1921, MELANGES EXOTICO ENT, V33, P1; PIC M., 1942, ECHANGE, P1; PIC M., 1941, ECHANGE REV LINNEENN, P1; PIC M., 1937, COLEOPTERORUM CATALO; PIC M., 1926, COLEOPTERORUM CATALO; Pic M., 1943, ECHANGE REV LINNEENN, V59, P1; Pic M, 1943, ECHANGE NUM SPEC, P1; PIC MAURICE, 1927, MELANGES EXOTO ENTOMO LOGIQUES, V49, P1; Rambaut A., 2007, TRACER VERSION 1 5; Riedel A, 2010, ZOOL SCR, V39, P63, DOI 10.1111/j.1463-6409.2009.00404.x; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; Shull VL, 2001, SYST BIOL, V50, P945, DOI 10.1080/106351501753462894; SIMON C, 1994, ANN ENTOMOL SOC AM, V87, P651, DOI 10.1093/aesa/87.6.651; Stamatakis A, 2006, BIOINFORMATICS, V22, P2688, DOI 10.1093/bioinformatics/btl446; Swofford DL, 1998, PAUP PHYLOGENETIC AN; TEMPLETON AR, 1983, EVOLUTION, V37, P221, DOI 10.1111/j.1558-5646.1983.tb05533.x; WITTMER W., 1958, INSECTS MICRONESIA H, V16, P57; Yang Yuxia, 2012, Entomotaxonomia, V34, P378 60 1 2 0 3 SENCKENBERG NATURHISTORISCHE SAMMLUNGEN DRESDEN, MUSEUM TIERKUNDE DRESDEN KOENIGSBRUECKER LANDSTRASSE 159, DRESDEN, 00000, GERMANY 1863-7221 1864-8312 ARTHROPOD SYST PHYLO Arthropod. Syst. Phylogeny MAY 2016 74 1 3 21 19 Entomology Entomology DQ7IR WOS:000379380700001 2019-02-21 J Heins, DC; Knoper, H; Baker, JA Heins, David C.; Knoper, Helen; Baker, John A. Consumptive and non-consumptive effects of predation by introduced northern pike on life-history traits in threespine stickleback EVOLUTIONARY ECOLOGY RESEARCH English Article food limitation; invasive species; nutrient deprivation; physiological stress; predation risk; reproduction; threespine stickleback CESTODE SCHISTOCEPHALUS-SOLIDUS; FEMALE 3-SPINED STICKLEBACKS; GUPPIES POECILIA-RETICULATA; COOK INLET BASIN; GASTEROSTEUS-ACULEATUS; ESOX-LUCIUS; REPRODUCTIVE-PERFORMANCE; TRINIDADIAN GUPPIES; NATURAL-SELECTION; OFFSPRING NUMBER Background: Non-native, predatory northern pike (Esox lucius) are spreading into lakes of south-central Alaska and were illegally introduced into Scout Lake in 2001 or 2002. Pike preyed on native threespine stickleback (Gasterosteus aculeatus) in the lake, subjecting them to higher mortality rates. Hypotheses: Life-history theory predicts evolutionary changes in threespine stickleback females arising from consumption by predators, including reduced body size, earlier age of reproduction, increased reproductive effort (greater clutch mass and clutch size), and, under some conditions, smaller offspring. Alternatively, energetically costly, non-consumptive predation-risk effects resembling food limitation - such as predator avoidance, reduced foraging efficiency, and chronic stress - might cause phenotypically plastic responses inconsistent with life-history theory. Methods: We measured changes in length, body mass, clutch mass, clutch size, and egg mass during an 11-year (1999-2009) study. In analyses of clutch mass, clutch size, and egg mass, we used body mass to correct for female size. Results: Consistent with predictions from life-history theory, the mean size and age of reproducing females declined, with one decline in size following the initial pike introduction and another after sport-fish stocking of salmonids was discontinued. The principal age at reproduction gradually shifted from two years to one year of age, with few females surviving to reproduce in a second year. Clutch mass and clutch size declined, suggesting non-consumptive predation-risk effects resembling those of nutrient deprivation. Egg mass showed an overall decline, with a moderate, temporary increase near the end of the study period. [Heins, David C.; Knoper, Helen] Tulane Univ, Dept Ecol & Evolutionary Biol, New Orleans, LA 70118 USA; [Baker, John A.] Clark Univ, Dept Biol, Worcester, MA 01610 USA Heins, DC (reprint author), Tulane Univ, Dept Ecol & Evolutionary Biol, New Orleans, LA 70118 USA. heins@tulane.edu Newcomb Foundation; Newcomb College Institute We especially thank Robert Massengill, Fisheries Biologist II, ADF&G Sport Fish Division, Soldotna, Alaska, who provided us with information from reports, unpublished data, and records of the ADF&G, which are indicated as personal communications in the text. He provided the anonymous personal communication with the Alaska Wildlife Trooper. He also made important comments on drafts of the manuscript. David Heins was supported by grants from the Newcomb Foundation and the Newcomb College Institute. Rich King and a number of undergraduate students at Tulane University assisted with field collections. A number of undergraduate students at Tulane helped with the dissections of fish specimens and processing of the data, most notably Kelsie Davis and Dillon Green. Ali M, 1999, J FISH BIOL, V55, P1040, DOI 10.1006/jfbi.1999.1114; Bagamian KH, 2004, J FISH BIOL, V64, P1568, DOI 10.1111/j.0022-1112.2004.00411.x; Baker JA, 2015, HEREDITY, V115, P322, DOI 10.1038/hdy.2015.65; Baker JA, 2011, J EVOLUTION BIOL, V24, P863, DOI 10.1111/j.1420-9101.2010.02217.x; Baker JA, 1998, BIOL J LINN SOC, V63, P141, DOI 10.1006/bijl.1997.0187; Baker JA, 2008, BEHAVIOUR, V145, P579, DOI 10.1163/156853908792451539; Beaudoin CP, 1999, OECOLOGIA, V120, P386, DOI 10.1007/s004420050871; Berner D, 2007, FUNCT ECOL, V21, P505, DOI 10.1111/j.1365-2435.2007.01253.x; Billman EJ, 2011, ECOL FRESHW FISH, V20, P102, DOI 10.1111/j.1600-0633.2010.00465.x; Brown-Peterson NJ, 2009, J FISH BIOL, V74, P2299, DOI 10.1111/j.1095-8649.2009.02237.x; Bystrom P, 2007, FRESHWATER BIOL, V52, P1271, DOI 10.1111/j.1365-2427.2007.01763.x; CARLANDER K. D, 1969, HDB FRESHWATER FISHE, V1; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Clavero M, 2005, TRENDS ECOL EVOL, V20, P110, DOI 10.1016/j.tree.2005.01.003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Creel S, 2008, TRENDS ECOL EVOL, V23, P194, DOI 10.1016/j.tree.2007.12.004; Crooks JA, 2005, ECOSCIENCE, V12, P316, DOI 10.2980/i1195-6860-12-3-316.1; Day T, 2002, EVOLUTION, V56, P877; Dominguez J., 2000, Limnetica, V19, P1; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; EKLOV P, 1989, OIKOS, V56, P149, DOI 10.2307/3565330; FLETCHER DA, 1995, J FISH BIOL, V46, P657, DOI 10.1111/j.1095-8649.1995.tb01102.x; Flinders JM, 2008, LAKE RESERV MANAGE, V24, P99, DOI 10.1080/07438140809354054; Foster SA, 2003, FISHERIES, V28, P10, DOI 10.1577/1548-8446(2003)28[10:TCFCTS]2.0.CO;2; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; FROST WE, 1954, J ANIM ECOL, V23, P339, DOI 10.2307/1985; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Garcia-Berthou E, 2005, CAN J FISH AQUAT SCI, V62, P453, DOI 10.1139/F05-017; Haught S, 2011, BIOL INVASIONS, V13, P2103, DOI 10.1007/s10530-011-0029-4; Hawlena D, 2010, AM NAT, V176, P537, DOI 10.1086/656495; Heins DC, 2012, BIOL J LINN SOC, V106, P807, DOI 10.1111/j.1095-8312.2012.01907.x; HEINS DC, 1993, J FISH BIOL, V42, P819, DOI 10.1006/jfbi.1993.1092; Heins DC, 1999, CAN J ZOOL, V77, P1967, DOI 10.1139/cjz-77-12-1967; Hendry AP, 2008, MOL ECOL, V17, P20, DOI 10.1111/j.1365-294X.2007.03428.x; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; HOOGLAND R., 1956, BEHAVIOUR, V10, P205, DOI 10.1163/156853956X00156; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 1999, COPEIA, P948, DOI 10.2307/1447970; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Leprieur F, 2008, PLOS BIOL, V6, P404, DOI 10.1371/journal.pbio.0060028; MANN RHK, 1985, J FISH BIOL, V27, P227, DOI 10.1111/j.1095-8649.1985.tb03244.x; McCauley SJ, 2011, ECOLOGY, V92, P2043, DOI 10.1890/11-0455.1; McGuigan K, 2011, EVOLUTION, V65, P1203, DOI 10.1111/j.1558-5646.2010.01195.x; McMahon TE, 1996, FISHERIES, V21, P6, DOI 10.1577/1548-8446(1996)021<0006:WANP>2.0.CO;2; Meyerson LA, 2007, FRONT ECOL ENVIRON, V5, P199, DOI 10.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;2; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Nunes AL, 2014, ECOLOGY, V95, P1520, DOI 10.1890/13-1380.1; Palumbi SR, 2001, SCIENCE, V293, P1786, DOI 10.1126/science.293.5536.1786; Patankar R, 2006, ECOL FRESHW FISH, V15, P482, DOI 10.1111/j.1600-0633.2006.00186.x; PFEIFFER W, 1962, BIOL REV, V37, P495, DOI 10.1111/j.1469-185X.1962.tb01472.x; Pimm SL, 2000, NATURE, V403, P843, DOI 10.1038/35002708; Poizat G, 1999, P ROY SOC B-BIOL SCI, V266, P1543, DOI 10.1098/rspb.1999.0813; REIST JD, 1986, CAN J ZOOL, V64, P1363, DOI 10.1139/z86-203; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Rutz D, 1999, FISHERY DATA SERIES, V99-5; Rutz D.S., 1996, FISHERY DATA SERIES; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Scott W. B., 1973, FRESHWATER FISHES CA; Sepulveda AJ, 2013, ECOL FRESHW FISH, V22, P268, DOI 10.1111/eff.12024; Simons AM, 2008, J EVOLUTION BIOL, V21, P642, DOI 10.1111/j.1420-9101.2007.01475.x; Simons AM, 2007, J EVOLUTION BIOL, V20, P813, DOI 10.1111/j.1420-9101.2006.01270.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Snyder D. J., 1991, COPEIA, V1991, P526; Stearns S, 1992, EVOLUTION LIFE HIST; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Stockwell CA, 2003, TRENDS ECOL EVOL, V18, P94, DOI 10.1016/S0169-5347(02)00044-7; Strauss Sharon Y, 2006, Ecol Lett, V9, P357, DOI 10.1111/j.1461-0248.2005.00874.x; Van Dyke JU, 2012, BIOL J LINN SOC, V106, P390, DOI 10.1111/j.1095-8312.2012.01880.x; von Hippel FA, 2008, BEHAVIOUR, V145, P693, DOI 10.1163/156853908792451467; Wilcove DS, 1998, BIOSCIENCE, V48, P607, DOI 10.2307/1313420; Winfield IJ, 2012, FRESHWATER BIOL, V57, P373, DOI 10.1111/j.1365-2427.2011.02607.x; Wootton R.J., 1994, P114; Zanette LY, 2011, SCIENCE, V334, P1398, DOI 10.1126/science.1210908; Zimmerman MS, 2006, CAN J FISH AQUAT SCI, V63, P297, DOI 10.1139/F05-216 79 6 6 4 39 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. MAY 2016 17 3 355 372 18 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DP0GV WOS:000378168300004 2019-02-21 J de Albuquerque, CMR; Lira, AFD Ribeiro de Albuquerque, Cleide Maria; de Araujo Lira, Andre Felipe Insights into reproductive strategies of Tityus (Archaeotityus) pusillus Pocock, 1893 (Scorpiones, Buthidae) COMPTES RENDUS BIOLOGIES English Article Postembryonic development; Protandry; Extra molt; Iteroparity; Deferred fertilization STEGODYPHUS LINEATUS ERESIDAE; LIFE-HISTORY EVOLUTION; EUSCORPIUS-FLAVICAUDIS; MATERNAL-CARE; BODY-SIZE; SEX-RATIO; SPIDER; GROWTH; SEMELPARITY; PROTANDRY A remarkable diversity of life history strategies has evolved among species for achieving reproductive success, including adaptive growth, protandry, iteroparity, and extra molting. Here, we report on the reproductive strategies of the litter-dwelling scorpion, Tityus (Archaeotityus) pusillus, the most abundant and widespread scorpion species in the Atlantic Forest of northeastern Brazil. We observed both iteroparity and protandry reproductive strategies in this species. Females were competent to produce up to three broods after a single insemination, and no correlation between female size and litter size was observed. Most males reached adulthood 1 month before females following four molts, characterizing protandry. Nevertheless, an extra molt was observed to occur in some males (n = 4) and females (n = 1). These findings highlight the life history traits of T. (A.) pusillus, which may imply in reproductive success and adaptation to changes in environmental conditions. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. [Ribeiro de Albuquerque, Cleide Maria] Univ Fed Pernambuco, Dept Zool, Rua Prof Moraes Rego S-N,Cidade Univ, BR-50670420 Recife, PE, Brazil; [de Araujo Lira, Andre Felipe] Univ Fed Pernambuco, Dept Zool, Programa Posgrad Biol Anim, Rua Prof Moraes Rego S-N,Cidade Univ, BR-50670420 Recife, PE, Brazil Lira, AFD (reprint author), Univ Fed Pernambuco, Dept Zool, Programa Posgrad Biol Anim, Rua Prof Moraes Rego S-N,Cidade Univ, BR-50670420 Recife, PE, Brazil. andref.lira@gmail.com Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) We are grateful to Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for granting a doctoral scholarship to A.F.A. Lira. We also grateful to three anonymous referees for valuable suggestions on an earlier version of this manuscript. Ayres M., 2007, BIOESTAT APLICACOES; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BENTON TG, 1991, BEHAVIOUR, V117, P20, DOI 10.1163/156853991X00102; BENTON TG, 1992, ANIM BEHAV, V43, P125, DOI 10.1016/S0003-3472(05)80078-8; BENTON TG, 1991, J ARACHNOL, V19, P105; Bidau CJ, 2007, ANN ENTOMOL SOC AM, V100, P850, DOI 10.1603/0013-8746(2007)100[850:CVOBSI]2.0.CO;2; Brown CA, 2004, J ARACHNOL, V32, P193, DOI 10.1636/M02-56; Brown Christopher A., 2001, P307; Carrel JE, 2015, FLA ENTOMOL, V98, P370, DOI 10.1653/024.098.0162; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Chen Y, 2013, J ECON ENTOMOL, V106, P800, DOI 10.1603/EC12367; Crespi BJ, 2002, EVOLUTION, V56, P1008; de Araujo Lira Andre Felipe, 2014, Check List, V10, P1331; de Armas L. F., 1981, POEYANA, V217, P1; DeSouza A. M., 1876, GROWTH DEV IN PRESS; Dyar H. G., 1890, PSYCHE, V5, P420, DOI DOI 10.1155/1890/23871; Fabian D., 2012, NATURE ED KNOWLEDGE, V3, P24; FINK LS, 1986, ANIM BEHAV, V34, P1051, DOI 10.1016/S0003-3472(86)80164-6; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; FRANCKE O F, 1981, Southwestern Naturalist, V25, P517, DOI 10.2307/3670851; Francke O. F., 1984, J ARACHNOL, P1; Fremlin Maria, 2014, Entomologische Berichten (Amsterdam), V74, P115; Futami K, 2005, ETHOLOGY, V111, P1126, DOI 10.1111/j.1439-0310.2005.01126.x; Godfray H. C. J., 1991, EVOLUTION REPROD STR, P67; Gomez J., 2002, ACTUAL BIOL, V24, P13; Gomez J, 2015, ANN ENTOMOL SOC AM, V108, P311, DOI 10.1093/aesa/sav009; Hcchkirch Axel, 2008, Journal of Orthoptera Research, V17, P189, DOI 10.1665/1082-6467-17.2.189; Higgins L., 1993, J ARACHNOL, P107; Honek Alois, 1997, Acta Societatis Zoologicae Bohemicae, V61, P113; Hughes PW, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-90; Hurme KJ, 2015, J HERPETOL, V49, P36, DOI 10.1670/13-214; Kim KW, 2000, ETHOLOGY, V106, P729, DOI 10.1046/j.1439-0310.2000.00585.x; Kleinteich A, 2011, ECOL ENTOMOL, V36, P82, DOI 10.1111/j.1365-2311.2010.01249.x; Kokko H, 2006, J ANIM ECOL, V75, P1293, DOI 10.1111/j.1365-2656.2006.01151.x; Kovarik F., 2009, EUSCORPIUS, P1; Kovarik Frantisek, 2015, Euscorpius, V206, P1; Kudo S., THESIS; Lack D., 1947, IBIS, V89, P309; Lack D., 1954, NATURAL REGULATION A; Lira AFA, 2015, CAN J ZOOL, V93, P15, DOI 10.1139/cjz-2014-0238; Lira A. F. A., 2014, THESIS; Lira AFA, 2013, ZOOLOGY, V116, P182, DOI 10.1016/j.zool.2013.01.002; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Lopes GP, 2015, MAMM BIOL, V80, P1, DOI 10.1016/j.mambio.2014.08.004; LOURENCO W R, 1979, Bulletin du Museum National d'Histoire Naturelle Section A Zoologie Biologie et Ecologie Animales, V1, P95; Lourenco W.R., 1982, Revista Nordestina de Biologia, V5, P35; Lourenco W. R., 1998, NEWSL BR ARACHNOL SO; Lourenco W. R., 2002, SCORPIONS OF BRAZIL; Lourenco W. R., 1992, B BR ARACHNOL SOC; Lourenco W. R., 1999, BIOGEOGRAPHICA, V75, P35; Lourenco Wilson R., 2010, Boletin de la SEA, V47, P293; Lourenco WR, 2003, ZOOL ANZ, V242, P63, DOI 10.1078/0044-5231-00087; Lourenco WR, 1996, J BIOGEOGR, V23, P681, DOI 10.1111/j.1365-2699.1996.tb00028.x; Lourenco WR, 1979, REV NORDEST BIOL, V2, P49; Mahgoub Montasir Omer, 2015, Journal of Entomology, V12, P1, DOI 10.3923/je.2015.1.11; Maklakov AA, 2004, ANIM BEHAV, V68, P1041, DOI 10.1016/j.anbehav.2004.02.010; MATTHIESEN F A, 1971, Revista Brasileira de Pesquisas Medicas e Biologicas, V4, P301; Morbey YE, 2001, ECOL LETT, V4, P663, DOI 10.1046/j.1461-0248.2001.00265.x; Morbey YE, 2013, J THEOR BIOL, V339, P93, DOI 10.1016/j.jtbi.2013.05.009; Neves DA, 2016, NEOTROP ENTOMOL, V45, P13, DOI 10.1007/s13744-015-0323-4; Outeda-Jorge Sabrina, 2009, Zoologia (Curitiba), V26, P45, DOI 10.1590/S1984-46702009000100008; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; Polis G.A., 1990, P161; POLIS GA, 1986, P 10 INT C AR JAC, V1, P111; Polis GA, 1990, BIOL SCORPIONS; Prockow M, 2013, BIOLOGIA, V68, P131, DOI 10.2478/s11756-012-0132-8; Rodriguez-Cabrera T. M., 2015, REV IBER ARACNOL, V26, P75; Rouaud C., 2000, EUR ARACHNOL, P87; SAITO Y, 1990, EXP APPL ACAROL, V10, P45, DOI 10.1007/BF01193972; Schneider JM, 1997, OIKOS, V79, P92, DOI 10.2307/3546094; Schneider JM, 1997, ANIM BEHAV, V54, P305, DOI 10.1006/anbe.1996.0454; Seeman OD, 2012, SYST APPL ACAROL-UK, V17, P355; Seiter M, 2012, REV IBERICA ARACNOLO, V21, P113; SHIVASHANKAR T, 1994, J BIOSCIENCES, V19, P81, DOI 10.1007/BF02703471; SHORTHOUSE DJ, 1982, AUST J ECOL, V7, P109, DOI 10.1111/j.1442-9993.1982.tb01584.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Souza TB, 2015, REV BRAS ENTOMOL, V59, P37, DOI 10.1016/j.rbe.2015.02.004; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stephens PA, 1999, TRENDS ECOL EVOL, V14, P401, DOI 10.1016/S0169-5347(99)01684-5; Stockmann R., 2010, SCORPIONS WORLD; Teruel R., 2009, B SOC ENTOMOL ARAGON, V45, P173; Toyama M, 1999, J ETHOL, V17, P33, DOI 10.1007/BF02769295; Tuni C, 2012, BIOL J LINN SOC, V107, P910, DOI 10.1111/j.1095-8312.2012.01990.x; Varela J. C., 1961, REV FAC HUMAN CIENCI, V19, P225; Verin M., 2015, NEUTRAL EVOLUTION IT; Warburg Michael R., 2001, P349; Warburg MR, 2011, EUR J ENTOMOL, V108, P173, DOI 10.14411/eje.2011.023; Warburg MR, 1998, J ZOOL, V246, P29, DOI 10.1111/j.1469-7998.1998.tb00129.x; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917; WILLIAMS SC, 1987, ANNU REV ENTOMOL, V32, P275; Ythier E., 2010, B ARTHROP, V44, P3 94 2 2 1 7 ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PARIS 23 RUE LINOIS, 75724 PARIS, FRANCE 1631-0691 1768-3238 CR BIOL C. R. Biol. MAY-JUN 2016 339 5-6 179 184 10.1016/j.crvi.2016.03.003 6 Biology Life Sciences & Biomedicine - Other Topics DO9HI WOS:000378095700004 27083999 2019-02-21 J Zhou, KL; Sun, S; Wang, MX; Wang, SW; Li, CL Zhou, Konglin; Sun, Song; Wang, Minxiao; Wang, Shiwei; Li, Chaolun Differences in the physiological processes of Calanus sinicus inside and outside the Yellow Sea Cold Water Mass JOURNAL OF PLANKTON RESEARCH English Article Calanus sinicus; over-summering; metabolic rate; gene expression; physiological processes LIFE-HISTORY STRATEGIES; VITELLOGENIN-RECEPTOR; LIPID STORAGE; MOLECULAR CHARACTERIZATION; OVARIAN DEVELOPMENT; ECDYSONE RECEPTOR; LOCH ENVIRONMENT; GENE-EXPRESSION; BETA-OXIDATION; EGG-PRODUCTION Calanus sinicus, the key zooplankton species in the Yellow Sea, China, over-summers in the Yellow Sea Cold Water Mass (YSCWM). Here, we compared the metabolic rates, morphological characteristics and relative expressions of seven genes associated with molting, gonad development, lipid catabolism and stress tolerance of C. sinicus captured both inside and outside the YSCWM in summer. With a large oil sac, low metabolic rate and suppressed molting development, the C5-stage copepods inside the YSCWM were probably quiescent. The gene expressions revealed differences in physiology between quiescent and active copepods in the two regions. When quiescent, the gene associated with molting [ecdysteroid receptor (EcR)] was down-regulated, while genes related to lipid catabolism (Hydroxyacyl CoA dehydrogenase) and stress tolerance (ferritin) were up-regulated. C5s at the margin of the YSCWM up-regulated EcR expression and this could be in response to the elevated Chl a concentration, suggesting that elevated food condition may serve as a trigger that terminated the over-summering of C. sinicus in the Yellow Sea. In conclusion, this study revealed the physiological processes of quiescent and active C. sinicus via morphological, physiological and molecular methods simultaneously, providing a foundation for future investigations of the mechanisms involved in over-summering in YSCWM. [Zhou, Konglin; Sun, Song; Wang, Minxiao; Li, Chaolun] Chinese Acad Sci, Inst Oceanol, Key Lab Marine Ecol & Environm Sci, 7 Nanhai Rd, Qingdao 266071, Peoples R China; [Zhou, Konglin] Univ Chinese Acad Sci, 19 Yuquan Rd, Beijing 100049, Peoples R China; [Sun, Song; Wang, Shiwei] Chinese Ecosyst Res Network, Jiaozhou Bay Marine Ecosyst Res Stn, 7 Nanhai Rd, Qingdao 266071, Peoples R China Sun, S (reprint author), Chinese Acad Sci, Inst Oceanol, Key Lab Marine Ecol & Environm Sci, 7 Nanhai Rd, Qingdao 266071, Peoples R China.; Sun, S (reprint author), Chinese Ecosyst Res Network, Jiaozhou Bay Marine Ecosyst Res Stn, 7 Nanhai Rd, Qingdao 266071, Peoples R China. sunsong@qdio.ac.cn State Key Program of National Natural Science Foundation of China [41230963, 41106133]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDA11020305]; NSFC-Shandong Joint Fund for Marine Ecology and Environmental Sciences [U1406403] This study was supported by the State Key Program of National Natural Science Foundation of China (41230963 and 41106133), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11020305) and NSFC-Shandong Joint Fund for Marine Ecology and Environmental Sciences (U1406403). Andersen CL, 2004, CANCER RES, V64, P5245, DOI 10.1158/0008-5472.CAN-04-0496; ARNAUD J, 1982, REPROD NUTR DEV, V22, P537, DOI 10.1051/rnd:19820410; Aruda AM, 2011, J INSECT PHYSIOL, V57, P665, DOI 10.1016/j.jinsphys.2011.03.007; Chen T, 2003, EUR J BIOCHEM, V270, P137, DOI 10.1046/j.1432-1033.2003.03373.x; Clark KAJ, 2012, LIMNOL OCEANOGR, V57, P65, DOI 10.4319/lo.2012.57.1.0065; Clark KAJ, 2013, GEN COMP ENDOCR, V189, P66, DOI 10.1016/j.ygcen.2013.04.002; Crain JA, 2001, DEEP-SEA RES PT II, V48, P551, DOI 10.1016/S0967-0645(00)00078-3; Denlinger DL, 2014, ANNU REV ENTOMOL, V59, P73, DOI 10.1146/annurev-ento-011613-162023; Denlinger DL, 2002, ANNU REV ENTOMOL, V47, P93, DOI 10.1146/annurev.ento.47.091201.145137; Goepfert S, 2005, PLANT PHYSIOL, V138, P1947, DOI 10.1104/pp.105.064311; Gunawardene YINS, 2001, INSECT BIOCHEM MOLEC, V31, P1115, DOI 10.1016/S0965-1748(01)00060-1; Harrison PM, 1996, BBA-BIOENERGETICS, V1275, P161, DOI 10.1016/0005-2728(96)00022-9; Hassett RP, 2006, LIMNOL OCEANOGR, V51, P997, DOI 10.4319/lo.2006.51.2.0997; HIRCHE HJ, 1983, MAR ECOL PROG SER, V11, P281, DOI 10.3354/meps011281; Hu Dunxin, 2004, Chinese Journal of Oceanology and Limnology, V22, P231; Huang J. Q., 1986, ACTA OCEANOL SIN, V8, P83; Ikeda T, 2001, MAR BIOL, V139, P587, DOI 10.1007/s002270100608; Johnson CL, 2004, PROG OCEANOGR, V62, P15, DOI 10.1016/j.pocean.2004.08.002; Klinbunga S, 2015, AQUACULTURE, V435, P18, DOI 10.1016/j.aquaculture.2014.09.013; KOELLE MR, 1991, CELL, V67, P59, DOI 10.1016/0092-8674(91)90572-G; Krishnan M., 2008, Journal of Endocrinology and Reproduction, V12, P13; Kuballa AV, 2007, GEN COMP ENDOCR, V150, P48, DOI 10.1016/j.ygcen.2006.07.020; LAUFER H, 1987, SCIENCE, V235, P202, DOI 10.1126/science.235.4785.202; Lee RF, 2006, MAR ECOL PROG SER, V307, P273, DOI 10.3354/meps307273; Lenz PH, 2012, COMP BIOCHEM PHYS D, V7, P110, DOI 10.1016/j.cbd.2011.12.001; Li C, 2004, MAR BIOL, V145, P149, DOI 10.1007/s00227-004-1306-x; Liu GM, 2003, FISH OCEANOGR, V12, P291, DOI 10.1046/j.1365-2419.2003.00253.x; [刘梦坛 Liu Mengtan], 2011, [生态学报, Acta Ecologica Sinica], V31, P933; Maps F, 2014, J PLANKTON RES, V36, P18, DOI 10.1093/plankt/fbt100; [孟田湘 Meng Tianxiang], 2003, [海洋水产研究, Marine Fisheries Research], V24, P1; MILLER CB, 1991, MAR ECOL PROG SER, V72, P79, DOI 10.3354/meps072079; MILLER CB, 1990, MAR BIOL, V106, P91, DOI 10.1007/BF02114678; Niehoff B, 2004, J EXP MAR BIOL ECOL, V307, P237, DOI 10.1016/j.jembe.2004.02.006; Niehoff B, 2003, J PLANKTON RES, V25, P1581, DOI 10.1093/plankt/fbg104; Niehoff B, 2007, PROG OCEANOGR, V74, P1, DOI 10.1016/j.pocean.2006.05.005; Nilsson B, 2014, J PLANKTON RES, V36, P513, DOI 10.1093/plankt/fbt099; Ning J, 2013, DEEP-SEA RES PT II, V97, P109, DOI 10.1016/j.dsr2.2013.05.019; Ning J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063741; Pond DW, 2012, DEEP-SEA RES PT II, V59, P93, DOI 10.1016/j.dsr2.2011.05.009; Pond DW, 2011, LIMNOL OCEANOGR, V56, P1310, DOI 10.4319/lo.2011.56.4.1310; POND DW, 1995, J EXP MAR BIOL ECOL, V187, P253, DOI 10.1016/0022-0981(94)00187-I; Prosser C.L., 1961, COMP ANIMAL PHYSL, P165; Pu XM, 2004, J PLANKTON RES, V26, P1059, DOI 10.1093/plankt/fbh101; Pu XM, 2004, J PLANKTON RES, V26, P1049, DOI 10.1093/plankt/fbh097; Roth Z, 2012, MOL REPROD DEV, V79, P478, DOI 10.1002/mrd.22055; Sim C, 2009, PHYSIOL GENOMICS, V39, P202, DOI 10.1152/physiolgenomics.00095.2009; SOMERO GN, 1995, ANNU REV PHYSIOL, V57, P43, DOI 10.1146/annurev.ph.57.030195.000355; STEWART JM, 1994, INVERTEBR REPROD DEV, V25, P73, DOI 10.1080/07924259.1994.9672370; STRICKLAND JDH, 1968, B FISH RES BD CAN, V167, P1; Sun Song, 2011, Oceanologia et Limnologia Sinica, V42, P165; Sun S, 2010, DEEP-SEA RES PT II, V57, P1006, DOI 10.1016/j.dsr2.2010.02.002; Sun Song, 2005, GLOBEC International Newsletter, V11, P34; Svetlichny LS, 2006, J MARINE SYST, V59, P52, DOI 10.1016/j.jmarsys.2005.09.003; Tarrant AM, 2008, MAR ECOL PROG SER, V355, P193, DOI 10.3354/meps07207; Tarrant AM, 2014, FRONT ZOOL, V11, DOI 10.1186/s12983-014-0091-8; Thongda W, 2015, COMP BIOCHEM PHYS A, V179, P35, DOI 10.1016/j.cbpa.2014.08.019; Tiu SHK, 2008, BIOL REPROD, V79, P66, DOI 10.1095/biolreprod.107.066258; Unal E, 2013, J EXP MAR BIOL ECOL, V446, P76, DOI 10.1016/j.jembe.2013.04.020; UYE S, 1988, HYDROBIOLOGIA, V167, P285, DOI 10.1007/BF00026316; Uye S, 2000, ICES J MAR SCI, V57, P1850, DOI 10.1006/jmsc.2000.0965; Vandesompele J, 2002, GENOME BIOL, V3, DOI 10.1186/gb-2002-3-7-research0034; Wang R, 2003, J PLANKTON RES, V25, P169, DOI 10.1093/plankt/25.2.169; Wang SW, 2009, MAR ECOL PROG SER, V379, P123, DOI 10.3354/meps07902; Weng X., 1982, DETERMINING BOUNDARY, P61; Yang Q., 2014, BIOMED RES INT; YENTSCH CS, 1963, DEEP-SEA RES, V10, P221, DOI 10.1016/0011-7471(63)90358-9; Zhang DY, 2001, J BIOL CHEM, V276, P13622, DOI 10.1074/jbc.M011315200; Zhang GT, 2007, J PLANKTON RES, V29, P179, DOI 10.1093/plankt/fbm005 68 3 5 1 9 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0142-7873 1464-3774 J PLANKTON RES J. Plankton Res. MAY 2016 38 3 551 563 10.1093/plankt/fbw011 13 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography DN7ZP WOS:000377299000013 Bronze 2019-02-21 J Marquez-Garcia, A; Canales-Lazcano, J; Rantala, MJ; Contreras-Garduno, J Marquez-Garcia, Armando; Canales-Lazcano, Jorge; Rantala, Markus J.; Contreras-Garduno, Jorge Is Juvenile Hormone a potential mechanism that underlay the "branched Y-model"? GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Life-history; Sexual selection; Branched Y-model; Condition dependence; Sperm competition; Female choice ONTHOPHAGUS-TAURUS COLEOPTERA; HORN LENGTH DIMORPHISM; TENEBRIO-MOLITOR; LIFE-HISTORY; TRADE-OFFS; DROSOPHILA-MELANOGASTER; IMMUNE-RESPONSE; MALE SIZE; TRAITS; ALLOCATION Trade-offs are a central tenet in the life-history evolution and the simplest model to understand it is the "Y" model: the investment of one arm will affect the investment of the other arm. However, this model is by far more complex, and a "branched Y-model" is proposed: trade-offs could exist within each arm of the Y, but the mechanistic link is unknown. Here we used Tenebrio molitor to test if Juvenile Hormone (JH) could be a mechanistic link behind the "branched Y-model". Larvae were assigned to one of the following experimental groups: (1) low, (2) medium and (3) high doses of methoprene (a Juvenile Hormone analogue, JHa), (4) acetone (methoprene diluents; control one) or (5) naive (handled in the same way as other groups; control two). The JHa lengthened the time of development from larvae to pupae and larvae to adults, resulting in adults with a larger size. Males with medium and long JHa treatment doses were favored with female choice, but had smaller testes and fewer viable sperm. There were no differences between groups in regard to the number of spermatozoa of males, or the number of ovarioles or eggs of females. This results suggest that JH: (i) is a mechanistic link of insects "branched Y model", (ii) is a double ended-sword because it may not only provide benefits on reproduction but could also impose costs, and (iii) has a differential effect on each sex, being males more affected than females. (C) 2016 Elsevier Inc. All rights reserved. [Marquez-Garcia, Armando] Univ Guanajuato, Div Ciencias Nat & Exactas, Dept Biol, Noria Alta S-N, Guanajuato 36050, Mexico; [Canales-Lazcano, Jorge] Univ Nacl Autonoma Mexico, Inst Ecol, Posgrad Ciencias Biomed, Mexico City, DF, Mexico; [Rantala, Markus J.] Univ Turku, Dept Biol, Turku Brain & Mind Ctr, FIN-20014 Turku, Finland; [Contreras-Garduno, Jorge] UNAM, ENES, Unidad Morelia, Antigua Carretera Patzcuaro 8701, Morelia, Michoacan, Mexico Contreras-Garduno, J (reprint author), UNAM, ENES, Unidad Morelia, Antigua Carretera Patzcuaro 8701, Morelia, Michoacan, Mexico. jcg@enesmorelia.unam.mx Canales-Lazcano, Jorge/0000-0002-3728-6095; Contreras-Garduno, Jorge/0000-0002-9231-0641 CONACYT; CONACYT [19660] AMG received a Grant from CONACYT to obtain his master degree. J.C.G was financed by the project 19660 (CONACYT). We acknowledge the comments of two anonymous reviewers that improved substantially this paper. Belgacem YH, 2002, P NATL ACAD SCI USA, V99, P15154, DOI 10.1073/pnas.232244199; Braendle C, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P3; Brooks G.T., 1990, CHROMATOGRAPHY ISOLA; Carazo P, 2007, P R SOC B, V274, P261, DOI 10.1098/rspb.2006.3714; Chapman R. F., 1998, INSECTS STRUCTURE FU; CONNAT JL, 1984, J INSECT PHYSIOL, V30, P413, DOI 10.1016/0022-1910(84)90099-4; Contreras-Garduno J, 2012, ODONATOLOGICA, V41, P1; Contreras-Garduno J, 2011, EVOL ECOL, V25, P845, DOI 10.1007/s10682-010-9438-6; Contreras-Garduno J, 2009, FUNCT ECOL, V23, P157, DOI 10.1111/j.1365-2435.2008.01485.x; DELAGUERIE P, 1991, EVOL ECOL, V5, P361, DOI 10.1007/BF02214153; Dubrovsky EB, 2005, TRENDS ENDOCRIN MET, V16, P6, DOI 10.1016/j.tem.2004.11.003; Emlen DJ, 1999, J INSECT PHYSIOL, V45, P45, DOI 10.1016/S0022-1910(98)00096-1; Emlen DJ, 2001, J INSECT PHYSIOL, V47, P1045, DOI 10.1016/S0022-1910(01)00084-1; Emlen DJ, 2001, SCIENCE, V291, P1534, DOI 10.1126/science.1056607; Emlen DJ, 2012, SCIENCE, V337, P860, DOI 10.1126/science.1224286; Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Flatt T, 2008, J EXP BIOL, V211, P2712, DOI 10.1242/jeb.014878; Fry CL, 2006, EVOL DEV, V8, P191, DOI 10.1111/j.1525-142X.2006.00089.x; Gotoh H, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004098; Gotoh H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021139; Hernandez-Martinez S, 2007, J INSECT PHYSIOL, V53, P230, DOI 10.1016/j.jinsphys.2006.08.009; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Hunt J, 2001, P ROY SOC B-BIOL SCI, V268, P2409, DOI 10.1098/rspb.2001.1758; Jacobs A. C., 2012, ECOIMMUNOLOGY, P468; King EG, 2011, J EVOLUTION BIOL, V24, P256, DOI 10.1111/j.1420-9101.2010.02160.x; Kivleniece I, 2010, ANIM BEHAV, V80, P1015, DOI 10.1016/j.anbehav.2010.09.004; MENON M, 1976, J INSECT PHYSIOL, V22, P1021, DOI 10.1016/0022-1910(76)90086-X; Mirth CK, 2007, BIOESSAYS, V29, P344, DOI 10.1002/bies.20552; Moczek A. P., 2009, Phenotypic plasticity of insects: mechanisms and consequences, P81; Moczek AP, 1999, J EVOLUTION BIOL, V12, P27, DOI 10.1046/j.1420-9101.1999.00004.x; Moret Y, 2003, P ROY SOC B-BIOL SCI, V270, P2475, DOI 10.1098/rspb.2003.2511; Nijhout H.F., 1994, INSECT HORMONES; Nijhout HF, 1998, P NATL ACAD SCI USA, V95, P3685, DOI 10.1073/pnas.95.7.3685; Okada Y, 2012, EVOL DEV, V14, P363, DOI 10.1111/j.1525-142X.2012.00554.x; Park J., 2014, INT J IND ENTOMOL, V28, P5; PARTRIDGE L, 1987, ANIM BEHAV, V35, P468, DOI 10.1016/S0003-3472(87)80272-5; Polkki M, 2012, BIOL LETTERS, V8, P423, DOI 10.1098/rsbl.2011.1135; PRATT GE, 1980, NATURE, V284, P320, DOI 10.1038/284320a0; Rantala MJ, 2003, P ROY SOC B-BIOL SCI, V270, P2257, DOI 10.1098/rspb.2003.2472; Rantala MJ, 2002, P ROY SOC B-BIOL SCI, V269, P1681, DOI 10.1098/rspb.2002.2056; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Riddiford LM, 2012, GEN COMP ENDOCR, V179, P477, DOI 10.1016/j.ygcen.2012.06.001; Roff Derek A., 1992; Rogers DW, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-236; Sehnal F., 1976, JUVENILE HORMONES; Simmons L.W., 2001, MONOGRAPHS BEHAV ECO; Simmons LW, 2006, P NATL ACAD SCI USA, V103, P16346, DOI 10.1073/pnas.0603474103; SIMMONS LW, 1988, ANIM BEHAV, V36, P372, DOI 10.1016/S0003-3472(88)80008-3; SOCHA R, 1972, J INSECT PHYSIOL, V18, P317, DOI 10.1016/0022-1910(72)90131-X; Stearns S, 1992, EVOLUTION LIFE HIST; Suhonen Jukka, 2008, P203; Symonds MRE, 2012, ECOL EVOL, V2, P227, DOI 10.1002/ece3.81; Truman JW, 2006, SCIENCE, V312, P1385, DOI 10.1126/science.1123652; Villanueva Guadalupe, 2013, Open Journal of Ecology, V3, P53; Warren IA, 2013, BIOESSAYS, V35, P889, DOI 10.1002/bies.201300031; Whitman D. W., 2009, Phenotypic plasticity of insects: mechanisms and consequences, P1; Worley AC, 2003, AM NAT, V161, P153, DOI 10.1086/345461; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615 60 1 1 1 8 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 1095-6840 GEN COMP ENDOCR Gen. Comp. Endocrinol. MAY 1 2016 230 170 176 10.1016/j.ygcen.2016.03.027 7 Endocrinology & Metabolism Endocrinology & Metabolism DN4QB WOS:000377051200017 27013379 2019-02-21 J Smith, TM Smith, Tanya M. Dental development in living and fossil orangutans JOURNAL OF HUMAN EVOLUTION English Article Tooth growth; Crown formation; Subfossil orangutan; Life history; Miocene hominoid; Fossil Homo LIFE-HISTORY EVOLUTION; CHIMPANZEES PAN-TROGLODYTES; 1ST MOLAR EMERGENCE; ENAMEL THICKNESS; WILD CHIMPANZEES; PONGO-PYGMAEUS; AFROPITHECUS-TURKANENSIS; PERMANENT DENTITION; BRIEF COMMUNICATION; SUMATRAN ORANGUTAN Numerous studies have investigated molar development in extant and fossil hominoids, yet relatively little is known about orangutans, the only great ape with an extensive fossil record. This study characterizes aspects of dental development, including cuspal enamel daily secretion rate, long-period line periodicities, cusp-specific molar crown formation times and extension rates, and initiation and completion ages in living and fossil orangutan postcanine teeth. Daily secretion rate and periodicities in living orangutans are similar to previous reports, while crown formation times often exceed published values, although direct comparisons are limited. One wild Bornean individual died at 4.5 years of age with fully erupted first molars (M1s), while a captive individual and a wild Sumatran individual likely erupted their M1s around five or six years of age. These data underscore the need for additional samples of orangutans of known sex, species, and developmental environment to explore potential sources of variation in molar emergence and their relationship to life history variables. Fossil orangutans possess larger crowns than living orangutans, show similarities in periodicities, and have faster daily secretion rate, longer crown formation times, and slower extension rates. Molar crown formation times exceed reported values for other fossil apes, including Gigantopithecus blacki. When compared to African apes, both living and fossil orangutans show greater cuspal enamel thickness values and periodicities, resulting in longer crown formation times and slower extension rates. Several of these variables are similar to modern humans, representing examples of convergent evolution. Molar crown formation does not appear to be equivalent among extant great apes or consistent within living and fossil members of Pongo or Homo. (C) 2016 The Author. Published by Elsevier Ltd. [Smith, Tanya M.] Harvard Univ, Dept Human Evolutionary Biol, 11 Divin Ave, Cambridge, MA 02138 USA Smith, TM (reprint author), Harvard Univ, Dept Human Evolutionary Biol, 11 Divin Ave, Cambridge, MA 02138 USA. tsmith@fas.harvard.edu Smith, Tanya/T-2683-2017 Smith, Tanya M./0000-0001-8175-8208 NSF BCS award [0213994]; Stony Brook University; Max Planck Society; Harvard University Don Reid and Pam Walton provided invaluable assistance with the preparation of histological sections at the University of Newcastle. Christine Austin and Manish Arora kindly performed elemental mapping that enabled age at death determination of two individuals. Manfred Ade, Judy Chupasko, Chris Dean, Paula Jenkins, Jay Kelley, Lawrence Martin, Don Reid, Olav Rohrer-Ertl, and Gary Schwartz provided access to living great ape material. Anne Marie Bacon, Russ Ciochon, John de Vos, Wang Wei, and Lingxia Zhao provided access to fossil orangutan material. The following museums and universities provided generous access to living and fossil material: Humboldt Museum (Berlin), Institute of Archaeology (Hanoi), Institute for Vertebrate Paleontology and Paleoanthropology (Beijing), Natural History Museum (London), Naturalis Museum (Leiden), Senckenberg Institute (Frankfurt), State Anthropological Collection (Munich), and the University of Newcastle upon Tyne (UK). Akiko Kato and Nancy Tang assisted with the preparation of Figures 4 and 6, Katrin Wehrheim assisted with German translations, and Kate Carter, Chris Dean, Don Reid, Mark Teaford, and an anonymous reviewer provided helpful comments on the text. This research was funded by NSF BCS award number 0213994, Stony Brook University, the Max Planck Society, and Harvard University. Anemone RL, 1996, AM J PHYS ANTHROPOL, V99, P119, DOI 10.1002/(SICI)1096-8644(199601)99:1<119::AID-AJPA7>3.0.CO;2-W; Arora N, 2010, P NATL ACAD SCI USA, V107, P21376, DOI 10.1073/pnas.1010169107; Austin C, 2016, SCI REP-UK, V6, DOI 10.1038/srep18802; Austin C, 2013, NATURE, V498, P216, DOI 10.1038/nature12169; Bacon AM, 2001, J HUM EVOL, V41, P227, DOI 10.1006/jhev.2001.0496; Bacon AM, 2008, QUATERNARY SCI REV, V27, P1627, DOI 10.1016/j.quascirev.2008.04.017; BEYNON AD, 1991, AM J PHYS ANTHROPOL, V86, P295, DOI 10.1002/ajpa.1330860216; BEYNON AD, 1991, AM J PHYS ANTHROPOL, V86, P189, DOI 10.1002/ajpa.1330860208; Beynon AD, 1998, J HUM EVOL, V35, P163, DOI 10.1006/jhev.1998.0230; BEYNON AD, 1995, P 10 INT S DENT MORP, P320; Brandes G., 1939, BUSCHI ORANG SAUGLIN; Bromage TG, 2009, CALCIFIED TISSUE INT, V84, P388, DOI 10.1007/s00223-009-9221-2; Cameron DW, 2001, PRIMATES, V42, P253, DOI 10.1007/BF02629641; Dean C, 2000, J ANAT, V197, P77, DOI 10.1046/j.1469-7580.2000.19710077.x; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; Dean M. C., 1995, ASPECTS DENT BIOL PA, P239; Dean MC, 2006, P ROY SOC B-BIOL SCI, V273, P2799, DOI 10.1098/rspb.2006.3583; Dean MC, 2012, J HUM EVOL, V62, P174, DOI 10.1016/j.jhevol.2011.10.003; Dean MC, 2003, J HUM EVOL, V45, P381, DOI 10.1016/j.jhevol.2003.08.009; Dean MC, 1998, ARCH ORAL BIOL, V43, P1009, DOI 10.1016/S0003-9969(98)00069-7; Dean MC, 1998, J HUM EVOL, V35, P401, DOI 10.1006/jhev.1998.0243; Dean MC, 1998, J HUM EVOL, V35, P449, DOI 10.1006/jhev.1998.0208; DEAN MC, 1981, FOLIA PRIMATOL, V36, P111, DOI 10.1159/000156011; DEAN MC, 1995, P 10 INT S DENT MORP, P308; DEAN MC, 2007, BAR INT SERIES, V1603, P21; Drawhorn G.M., 1995, THESIS U CALIFORNIA; FITZGERALD CM, 1995, THESIS U CAMBRIDGE; FOODEN J, 1983, AM J PRIMATOL, V5, P285, DOI 10.1002/ajp.1350050402; Green D. R., 2011, AM J PHYS ANTHR S52, P148; Grine F.E., 1988, P3; Harrison T, 2014, QUATERN INT, V354, P59, DOI 10.1016/j.quaint.2014.01.013; Hooljer D. A., 1948, ZOOL MEDED LEIDEN, V29, P175; Hu R, 2012, CHINESE SCI BULL, V57, P790, DOI 10.1007/s11434-011-4883-3; Humphrey LT, 2010, SEMIN CELL DEV BIOL, V21, P453, DOI 10.1016/j.semcdb.2009.11.003; Kelley J, 2003, J HUM EVOL, V44, P307, DOI 10.1016/S0047-2484(03)00005-8; Kelley J., 2014, AM J PHYS ANTHR S58, P156; KELLEY J, 2001, DENT MORPHOLOGY 2001, P123; Kelley J, 2008, J HUM EVOL, V54, P530, DOI 10.1016/j.jhevol.2007.08.005; Kelley J, 2012, INT J PRIMATOL, V33, P1332, DOI 10.1007/s10764-012-9607-2; Kelley J, 2010, P NATL ACAD SCI USA, V107, P1035, DOI 10.1073/pnas.0906206107; Kierdorf H, 2015, AM J PHYS ANTHROPOL, V157, P276, DOI 10.1002/ajpa.22720; Knott CD, 2001, REPROD ECOLOGY HUMAN, P429; Kuykendall KL, 1996, AM J PHYS ANTHROPOL, V99, P135, DOI 10.1002/(SICI)1096-8644(199601)99:1<135::AID-AJPA8>3.0.CO;2-#; Lacruz RS, 2008, J ANAT, V213, P148, DOI 10.1111/j.1469-7580.2008.00938.x; Lippert V. W., 1977, ZOO GARTEN JENA, V47, P209; Locke DP, 2011, NATURE, V469, P529, DOI 10.1038/nature09687; Long Vu The, 1996, INDOPACIFIC PREHISTO, V14, P101; Machanda Z, 2015, J HUM EVOL, V82, P137, DOI 10.1016/j.jhevol.2015.02.010; Mahoney P, 2007, J HUM EVOL, V53, P61, DOI 10.1016/j.jhevol.2007.01.007; MARTIN L, 1983, THESIS U LONDON; OKA SW, 1969, ARCH ORAL BIOL, V14, P639, DOI 10.1016/0003-9969(69)90187-3; Reid DJ, 1998, J HUM EVOL, V35, P427, DOI 10.1006/jhev.1998.0248; Reid DJ, 2000, AM J PHYS ANTHROPOL, V113, P135; Robson SL, 2008, J ANAT, V212, P394, DOI 10.1111/j.1469-7580.2008.00867.x; SCHULTZ AH, 1941, CONTRIB EMBRYOL, V182, P59; Schwartz GT, 2003, J HUM EVOL, V44, P189, DOI 10.1016/S0047-2484(02)00197-5; Schwartz GT, 2001, INT J PRIMATOL, V22, P837, DOI 10.1023/A:1012073601808; Schwartz GT, 2001, AM J PHYS ANTHROPOL, V115, P269, DOI 10.1002/ajpa.1081; Schwartz GT, 2000, AM J PHYS ANTHROPOL, V111, P221, DOI 10.1002/(SICI)1096-8644(200002)111:2<221::AID-AJPA8>3.0.CO;2-G; Schwartz Jeffrey H., 1995, Anthropological Papers of the American Museum of Natural History, V76, P1; Shen G.-J., 2001, ACTA ANTHR SINICA, V20, P238; Smith B. Holly, 1994, Yearbook of Physical Anthropology, V37, P177; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; Smith TM, 2007, VERTEBR PALEOBIOL PA, P177, DOI 10.1007/978-1-4020-5845-5_12; Smith TM, 2007, J HUM EVOL, V52, P201, DOI 10.1016/j.jhevol.2006.09.004; Smith TM, 2010, J HUM EVOL, V58, P363, DOI 10.1016/j.jhevol.2010.02.008; Smith TM, 2009, AM J PHYS ANTHROPOL, V138, P112, DOI 10.1002/ajpa.20898; Smith TM, 2008, J HUM EVOL, V54, P205, DOI 10.1016/j.jhevol.2007.09.020; Smith TM, 2007, P NATL ACAD SCI USA, V104, P6128, DOI 10.1073/pnas.0700747104; Smith TM, 2015, AM J PHYS ANTHROPOL, V157, P556, DOI 10.1002/ajpa.22741; Smith TM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0118118; Smith TM, 2013, ANNU REV ANTHROPOL, V42, P191, DOI 10.1146/annurev-anthro-092412-155550; Smith TM, 2013, P NATL ACAD SCI USA, V110, P2787, DOI 10.1073/pnas.1218746110; Smith TM, 2012, AM J PHYS ANTHROPOL, V147, P417, DOI 10.1002/ajpa.22009; Smith TM, 2010, P NATL ACAD SCI USA, V107, P20923, DOI 10.1073/pnas.1010906107; Smith TM, 2006, J ANAT, V208, P99, DOI 10.1111/j.1469-7580.2006.00499.x; Smith TM, 2004, J HUM EVOL, V46, P551, DOI 10.1016/j.jhevol.2004.01.006; Smith TM, 2003, J HUM EVOL, V44, P283, DOI 10.1016/S0047-2484(03)00006-X; SMITH TM, 2004, THESIS STONY BROOK U; Smith TM, 2011, HUM ORIGINS RES, V1, pe1, DOI [10.4081/hor.2011.e1, DOI 10.4081/HOR.2011.E1]; Steiper ME, 2006, J HUM EVOL, V50, P509, DOI 10.1016/j.jhevol.2005.12.005; Tafforeau P, 2012, J HUM EVOL, V62, P424, DOI 10.1016/j.jhevol.2012.01.001; van Noordwijk MA, 2013, BEHAV ECOL SOCIOBIOL, V67, P805, DOI 10.1007/s00265-013-1504-y; von Koenigswald G.H.R., 1982, ORANG UTAN ITS BIOL, P1; Wich Serge A., 2009, P65; Winkler LA, 1996, AM J PHYS ANTHROPOL, V99, P205, DOI 10.1002/(SICI)1096-8644(199601)99:1<205::AID-AJPA12>3.0.CO;2-R; Winkler LA, 1995, FOLIA PRIMATOL, V65, P1, DOI 10.1159/000156864; WINKLER LA, 1991, AM J PHYS ANTHROPOL, V86, P255, DOI 10.1002/ajpa.1330860213; Xu XF, 1996, J MOL EVOL, V43, P431, DOI 10.1007/PL00006103; Zanolli C, 2016, CR PALEVOL, V15, P209, DOI 10.1016/j.crpv.2015.02.001; Zhang YW, 2001, J MOL EVOL, V52, P516, DOI 10.1007/s002390010182; Zhao LX, 2008, J HUM EVOL, V54, P251, DOI 10.1016/j.jhevol.2007.09.019 92 8 9 3 26 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0047-2484 J HUM EVOL J. Hum. Evol. MAY 2016 94 92 105 10.1016/j.jhevol.2016.02.008 14 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology DN1MR WOS:000376830600008 27178461 Other Gold 2019-02-21 J von Wyschetzki, K; Lowack, H; Heinze, J von Wyschetzki, Katharina; Lowack, Helena; Heinze, Juergen Transcriptomic response to injury sheds light on the physiological costs of reproduction in ant queens MOLECULAR ECOLOGY English Article immunity; reproduction; RNA-seq; social insect; trade-off; transcriptome LIFE-HISTORY EVOLUTION; IMMUNE-RESPONSE; TRADE-OFFS; GENE-EXPRESSION; DROSOPHILA; INCREASES; LONGEVITY; DEFENSE; SPAN; INFLAMMATION The trade-off between reproduction and longevity is widespread among multicellular organisms. As an important exception, the reproductive females of perennial social insects (ants, honeybees, termites) are simultaneously highly fertile and very long-lived relative to their nonreproductive nestmates. The observation that increased fecundity is not coupled with decreased lifespan suggests that social insect queens do not have to reallocate resources between reproduction and self-maintenance. If queens have to compensate for the costs of reproduction on the level of the individual, the activation of other energy-demanding physiological processes might force them to reduce the production of eggs. To test this hypothesis in ant queens, we increased immunity costs by injury and measured the effect of this treatment on egg-laying rates and genomewide gene expression. Amputation of both middle legs led to a temporary decrease in egg-laying rates and affected the expression of 947 genes corresponding to 9% of the transcriptome. The changes comprised the upregulation of the immune and wound healing response on the one hand, and the downregulation of germ cell development, central nervous system development and learning ability on the other hand. Injury strongly influenced metabolism by inducing catabolism and repressing amino acid and nitrogen compound metabolism. By comparing our results to similar transcriptomic studies in insects, we found a highly consistent upregulation of immune genes due to sterile and septic wounding. The gene expression changes, complemented by the temporary decline of egg-laying rates, clearly reveal a trade-off between reproduction and the immune response in social insect queens. [von Wyschetzki, Katharina; Lowack, Helena; Heinze, Juergen] Univ Regensburg, LS Zool Evolut Biol, Univ Str 31, D-93053 Regensburg, Germany von Wyschetzki, K (reprint author), Univ Regensburg, LS Zool Evolut Biol, Univ Str 31, D-93053 Regensburg, Germany. katharina.wyschetzki@ur.de Deutsche Forschungsgemeinschaft [He1623/31]; QMUL Research-IT; EPSRC [EP/K000128/1]; Engineering and Physical Sciences Research Council [EP/K000128/1, EP/K000233/1] This work was supported by Deutsche Forschungsgemeinschaft (He1623/31). Collection of colonies of C. obscurior was possible through permit SISBIO 20324-1. This research utilized Queen Mary's MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. We thank Alexandra Schrempf, Abel Bernadou and Jan Oettler for their comments on the experimental design, Christiane Wanke, Maria Schiwek, Doris Rothgaenger and Anna-Lena Nachtigall for their assistance in the maintenance of colonies and two anonymous referees for their comments on the manuscript. Alghamdi A, 2008, BIOL LETTERS, V4, P479, DOI 10.1098/rsbl.2008.0331; Anders S, 2015, BIOINFORMATICS, V31, P166, DOI 10.1093/bioinformatics/btu638; Ardia DR, 2012, FUNCT ECOL, V26, P732, DOI 10.1111/j.1365-2435.2012.01989.x; Ashburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556; BEISEL WR, 1977, AM J CLIN NUTR, V30, P1236; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Bordenstein Lab, 2011, INS INN IMM DAT; Burkhard DU, 2002, ECOL ENTOMOL, V27, P514, DOI 10.1046/j.1365-2311.2002.00453.x; Camacho C, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-421; Carey JR, 2007, EXP GERONTOL, V42, P166, DOI 10.1016/j.exger.2006.10.002; Carey JR, 2001, EXP GERONTOL, V36, P713, DOI 10.1016/S0531-5565(00)00237-0; Chambers MC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050679; Corley LS, 2006, SEMIN CELL DEV BIOL, V17, P510, DOI 10.1016/j.semcdb.2006.07.002; De Gregorio E, 2001, P NATL ACAD SCI USA, V98, P12590, DOI 10.1073/pnas.221458698; DiAngelo JR, 2009, P NATL ACAD SCI USA, V106, P20853, DOI 10.1073/pnas.0906749106; Dionne MS, 2006, CURR BIOL, V16, P1977, DOI 10.1016/j.cub.2006.08.052; Fernandez-Hernandez I, 2013, CELL REP, V3, P1857, DOI 10.1016/j.celrep.2013.05.034; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Fuchs Y, 2011, CELL, V147, P742, DOI 10.1016/j.cell.2011.10.033; Groh Claudia, 2010, Front Biosci (Schol Ed), V2, P268; Gupta SK, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1748-1; HAMMER O., 2001, PALAEONTOL ELECTRON, V4, P1, DOI DOI 10.1016/J.BCP.2008.05.025; Hartmann A, 2003, EVOLUTION, V57, P2424; Heinze J, 2006, INSECT SOC, V53, P1, DOI 10.1007/s00040-005-0847-4; Heinze J, 2008, GERONTOLOGY, V54, P160, DOI 10.1159/000122472; Heinze J, 2013, BEHAV ECOL SOCIOBIOL, V67, P1555, DOI 10.1007/s00265-013-1567-9; Heinze J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035201; Holldobler B., 1990, ANTS; Huang DW, 2009, NAT PROTOC, V4, P44, DOI 10.1038/nprot.2008.211; Johnston PR, 2014, G3-GENES GENOM GENET, V4, P947, DOI 10.1534/g3.113.008516; Johnston PR, 2013, DEV COMP IMMUNOL, V40, P320, DOI 10.1016/j.dci.2013.01.012; Julian GE, 2002, BRAIN BEHAV EVOLUT, V60, P152, DOI 10.1159/000065936; Kanehisa M, 2000, NUCLEIC ACIDS RES, V28, P27, DOI 10.1093/nar/28.1.27; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Keller L, 1998, INSECT SOC, V45, P235, DOI 10.1007/s000400050084; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Kolde R, 2015, PHEATMAP PRETTY HEAT; Kramer BH, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137969; Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/nmeth.1923, 10.1038/NMETH.1923]; Le Floc'h N, 2004, LIVEST PROD SCI, V87, P37; Leek JT, 2012, BIOINFORMATICS, V28, P882, DOI 10.1093/bioinformatics/bts034; Leek JT, 2010, NAT REV GENET, V11, P733, DOI 10.1038/nrg2825; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Losick VP, 2013, CURR BIOL, V23, P2224, DOI 10.1016/j.cub.2013.09.029; Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8; Mallon EB, 2003, P ROY SOC B-BIOL SCI, V270, P2471, DOI 10.1098/rspb.2003.2456; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; Martin M., 2011, EMB NET J, V17, DOI [DOI 10.14806/EJ.17.1.200, 10.14806/ej.17.1.200]; Michod RE, 2006, J THEOR BIOL, V239, P257, DOI 10.1016/j.jtbi.2005.08.043; Obata F, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9332; Obata F, 2014, CELL REP, V7, P821, DOI 10.1016/j.celrep.2014.03.046; Oksanen J, 2015, VEGAN COMMUNITY ECOL; Patterson RA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061773; R Core Team, 2014, R LANG ENV STAT COMP; Ramet M, 2002, DEV BIOL, V241, P145, DOI 10.1006/dbio.2001.0502; Razzell W, 2011, DIS MODEL MECH, V4, P569, DOI 10.1242/dmm.006825; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Riddell CE, 2006, BRAIN BEHAV IMMUN, V20, P135, DOI 10.1016/j.bbi.2005.06.008; Rueppell O, 2015, J EVOLUTION BIOL, V28, P2349, DOI 10.1111/jeb.12749; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Schrader L, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6495; Schrempf A, 2005, CURR BIOL, V15, P267, DOI 10.1016/j.cub.2005.01.036; Schrempf A, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002592; Sepulveda S, 2008, EXP GERONTOL, V43, P136, DOI 10.1016/j.exger.2007.10.006; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Short SM, 2013, G3-GENES GENOM GENET, V3, P827, DOI 10.1534/g3.112.005306; Siva-Jothy MT, 1998, PHYSIOL ENTOMOL, V23, P274, DOI 10.1046/j.1365-3032.1998.233090.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stramer B, 2008, EMBO REP, V9, P465, DOI 10.1038/embor.2008.34; Tabatabaie V, 2011, AGING-US, V3, P1202, DOI 10.18632/aging.100415; Theopold U, 2004, TRENDS IMMUNOL, V25, P289, DOI 10.1016/j.it.2004.03.004; Trapnell C, 2009, BIOINFORMATICS, V25, P1105, DOI 10.1093/bioinformatics/btp120; Tsuji K, 1996, NATURWISSENSCHAFTEN, V83, P577; Viljakainen L, 2015, BRIEF FUNCT GENOMICS, V14, P407, DOI 10.1093/bfgp/elv002; von Wyschetzki K, 2015, MOL BIOL EVOL, V32, P3173, DOI 10.1093/molbev/msv186; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1 82 6 6 3 33 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. MAY 2016 25 9 1972 1985 10.1111/mec.13588 14 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology DN4GZ WOS:000377023400007 26880273 2019-02-21 J Hughes, M; Kaunisto, KM; Suhonen, J Hughes, Maria; Kaunisto, Kari M.; Suhonen, Jukka Large males have fewer water mites (Arrenurus sp.) on the variable bluet (Coenagrion pulchellum) damselfly CANADIAN JOURNAL OF ZOOLOGY English Article Coenagrion pulchellum; variable bluet damselfly; Arrenurus sp.; water mite; Zygoptera; sex bias; body size PARASITE BURDEN; IMMUNE-RESPONSE; ODONATA; DRAGONFLIES; POPULATION; PUELLA; LARVAE; ACARI; HAGEN Ectoparasitic water mites of the genus Arrenurus Duges, 1834 may affect damselflies in different ways, resulting in lower longevity and reproduction success. We studied the variation of water mite occurrence on the variable bluet (Coenagrion pulchellum (Vander Linden, 1823)) damselfly in relation to the host's sex, location, and wing length, as well as the amount of black pigment on the abdomens of males. In our study, we found that water mite prevalence and abundance were higher on females. Location of the populations did not affect the prevalence of water mites, nor did the colouring of males. The prevalence and abundance of water mites was lower on larger males than on smaller ones. Our results suggest that females are likely to have more water mites due to different behaviour and life-history strategies. According to our results, male body size is a sign of good condition and, thus, of sufficient resources available to be directed to strengthening their immune systems. [Hughes, Maria; Suhonen, Jukka] Univ Turku, Dept Biol, Sect Ecol, FI-20014 Turku, Finland; [Kaunisto, Kari M.] Univ Turku, Dept Biol, Zool Museum, FI-20014 Turku, Finland Hughes, M (reprint author), Univ Turku, Dept Biol, Sect Ecol, FI-20014 Turku, Finland. mainhu@utu.fi Suhonen, Jukka/0000-0001-8546-8945 ABRO A, 1990, Odonatologica, V19, P223; Andres JA, 1998, ECOL ENTOMOL, V23, P103, DOI 10.1046/j.1365-2311.1998.00125.x; Baker RA, 2008, ODONATOLOGICA, V37, P193; Baker R. A., 2006, P S 2 INT S EC MONT, P1; Bonn A, 1996, OECOLOGIA, V108, P596, DOI 10.1007/BF00329031; Bunker BE, 2013, J PARASITOL, V99, P403, DOI 10.1645/GE-3137.1; Bush AO, 1997, J PARASITOL, V83, P575, DOI 10.2307/3284227; CORBET P. S., 1999, DRAGONFLIES BEHAV EC; COrdoba-Aguilar A., 2008, DRAGONFLIES DAMSELFL; DIJKSTRA K.-D.B, 2006, FIELD GUIDE DRAGONFL; Forbes MR, 2004, EXP APPL ACAROL, V34, P79, DOI 10.1023/B:APPA.0000044441.60122.27; FORBES MRL, 1993, OIKOS, V67, P444, DOI 10.2307/3545356; FORBES MRL, 1990, OIKOS, V58, P61, DOI 10.2307/3565361; FORBES MRL, 1991, OECOLOGIA, V86, P335, DOI 10.1007/BF00317598; GARRISON RW, 1981, OECOLOGIA, V48, P377, DOI 10.1007/BF00346498; Honkavaara J, 2009, ENTOMOL EXP APPL, V132, P165, DOI 10.1111/j.1570-7458.2009.00877.x; Ilvonen JJ, 2016, OIKOS, V125, P315, DOI 10.1111/oik.02437; Jacot A, 2004, EVOLUTION, V58, P2280; JAENIKE J, 1988, AM NAT, V131, P774, DOI 10.1086/284821; Joop G, 2006, BMC EVOL BIOL, V6, DOI 10.1186/1471-2148-6-19; Karjalainen S., 2002, SUOMEN SUDENKORENNOT; Kaunisto KM, 2013, J EVOLUTION BIOL, V26, P1784, DOI 10.1111/jeb.12177; Kaunisto KM, 2013, PARASITOLOGY, V140, P87, DOI 10.1017/S0031182012001369; Lajeunesse MJ, 2004, OIKOS, V106, P501, DOI 10.1111/j.0030-1299.2004.13076.x; Leung B, 2001, ANIM BEHAV, V61, P1093, DOI 10.1006/anbe.2001.1693; Lindsey E, 2009, EVOL ECOL, V23, P607, DOI 10.1007/s10682-008-9258-0; Nagel L, 2009, ECOSCIENCE, V16, P265, DOI 10.2980/16-2-3244; Rantala MJ, 2000, P ROY SOC B-BIOL SCI, V267, P2453, DOI 10.1098/rspb.2000.1305; ROBINSON JV, 1983, AM MIDL NAT, V109, P169, DOI 10.2307/2425527; Rolff J, 2003, SCIENCE, V301, P472, DOI 10.1126/science.1080623; SMITH BP, 1988, ANNU REV ENTOMOL, V33, P487, DOI 10.1146/annurev.en.33.010188.002415; Stoks R, 2001, ECOL ENTOMOL, V26, P181, DOI 10.1046/j.1365-2311.2001.00301.x; Zar J. H., 1999, BIOSTATISTICAL ANAL; Zawal A., 2008, NATURA MONTENEGRINA, V7, P354; Zawal A, 2013, ACTA PARASITOL, V58, P486, DOI 10.2478/s11686-013-0162-6 35 2 2 1 13 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool. MAY 2016 94 5 339 343 10.1139/cjz-2015-0208 5 Zoology Zoology DL9HR WOS:000375953200004 2019-02-21 J Smith, SM; Nager, RG; Costantini, D Smith, Shona M.; Nager, Ruedi G.; Costantini, David Meta-analysis indicates that oxidative stress is both a constraint on and a cost of growth ECOLOGY AND EVOLUTION English Article Antioxidants; enzymes; growth rate; life-history theory; oxidative damage; reactive oxygen species; trade-offs OXYGEN SPECIES PRODUCTION; TRANSGENIC COHO SALMON; CATCH-UP GROWTH; ANTIOXIDANT CAPACITY; LIPID-PEROXIDATION; METABOLIC-RATE; SHORT-TERM; LIFE-SPAN; DAMAGE; EVOLUTION Oxidative stress (OS) as a proximate mechanism for life-history trade-offs is widespread in the literature. One such resource allocation trade-off involves growth rate, and theory suggests that OS might act as both a constraint on and a cost of growth, yet studies investigating this have produced conflicting results. Here, we use meta-analysis to investigate whether increased OS levels impact on growth (OS as a constraint on growth) and whether greater growth rates can increase OS (OS as a cost of growth). The role of OS as a constraint on growth was supported by the meta-analysis. Greater OS, in terms of either increased damage or reduced levels of antioxidants, was associated with reduced growth although the effect depended on the experimental manipulation used. Our results also support an oxidative cost of growth, at least in terms of increased oxidative damage, although faster growth was not associated with a change in antioxidant levels. These findings that OS can act as a constraint on growth support theoretical links between OS and animal life histories and provide evidence for a growth-self-maintenance trade-off. Furthermore, the apparent oxidative costs of growth imply individuals cannot alter this trade-off when faced with enhanced growth. We offer a starting platform for future research and recommend the use of oxidative damage biomarkers in nonlethal tissue to investigate the growth-OS relationship further. [Smith, Shona M.; Nager, Ruedi G.; Costantini, David] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland; [Costantini, David] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium Smith, SM (reprint author), Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. s.smith.7@research.gla.ac.uk Costantini, David/0000-0002-8140-8790 Research Foundation of Flanders [12A7714N]; Natural Environment Research Council [NE/G013888/1, NE/J500252/1]; Natural Environment Research Council [1096856] Research Foundation of Flanders (Grant/Award Number: '12A7714N') Natural Environment Research Council (Grant/Award Number: 'NE/G013888/1', 'NE/J500252/1') Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Almroth BC, 2012, FREE RADICAL RES, V46, P1183, DOI 10.3109/10715762.2012.698009; Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Barja G, 2007, REJUV RES, V10, P215, DOI 10.1089/rej.2006.0516; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Brown-Borg HM, 2003, MECH AGEING DEV, V124, P1013, DOI 10.1016/j.mad.2003.07.001; Careau V, 2013, OECOLOGIA, V171, P11, DOI 10.1007/s00442-012-2385-x; Cooper H. M., 2009, HDB RES SYNTHESIS ME; Costantini D, 2014, OXIDATIVE STRESS HOR; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2010, FUNCT ECOL, V24, P950, DOI 10.1111/j.1365-2435.2010.01746.x; Costantini D, 2010, CAN J ZOOL, V88, P795, DOI 10.1139/Z10-046; Costantini D, 2009, COMP BIOCHEM PHYS A, V153, P339, DOI 10.1016/j.cbpa.2009.03.010; Costantini D, 2009, FUNCT ECOL, V23, P506, DOI 10.1111/j.1365-2435.2009.01546.x; Criscuolo F, 2008, P ROY SOC B-BIOL SCI, V275, P1565, DOI 10.1098/rspb.2008.0148; Davis JM, 2010, SEMIN FETAL NEONAT M, V15, P191, DOI 10.1016/j.siny.2010.04.001; Del Re A. C., 2013, COMPUTE ES COMPUTE E; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dotan Y, 2004, PROG LIPID RES, V43, P200, DOI 10.1016/j.plipres.2003.10.001; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; Geiger S, 2011, MOL ECOL, V21, P1500; Hall ME, 2010, FUNCT ECOL, V24, P365, DOI 10.1111/j.1365-2435.2009.01635.x; Halliwell B, 2007, FREE RADICALS BIOL M; Hector KL, 2012, J ANIM ECOL, V81, P583, DOI 10.1111/j.1365-2656.2011.01942.x; Inagaki T, 2008, CELL METAB, V8, P77, DOI 10.1016/j.cmet.2008.05.006; Isaksson C, 2010, ECOHEALTH, V7, P342, DOI 10.1007/s10393-010-0345-7; Kilgas P, 2010, COMP BIOCHEM PHYS B, V157, P288, DOI 10.1016/j.cbpb.2010.07.002; Lajeunesse MJ, 2003, ECOL LETT, V6, P448, DOI 10.1046/j.1461-0248.2003.00448.x; Larcombe SD, 2010, NATURWISSENSCHAFTEN, V97, P903, DOI 10.1007/s00114-010-0708-5; Leggatt RA, 2007, J COMP PHYSIOL B, V177, P413, DOI 10.1007/s00360-006-0140-5; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; Noguera JC, 2011, FUNCT ECOL, V25, P1144, DOI 10.1111/j.1365-2435.2011.01856.x; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; R Core Team, 2013, R LANG ENV STAT COMP; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Rosa CE, 2008, COMP BIOCHEM PHYS B, V149, P209, DOI 10.1016/j.cbpb.2007.09.010; Salin K, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0538; Salomons H. M., 2009, THESIS U GRONINGEN G; Savary-Auzeloux I, 2008, ANIMAL, V2, P738, DOI 10.1017/S1751731108001742; Stier A, 2014, OECOLOGIA, V175, P791, DOI 10.1007/s00442-014-2946-2; Stier A, 2014, J EXP BIOL, V217, P624, DOI 10.1242/jeb.092700; Surai PF, 2002, NATURAL ANTIOXIDANTS; Tarry-Adkins JL, 2008, FASEB J, V22, P2037, DOI 10.1096/fj.07-099523; Tobler M, 2009, J EXP BIOL, V212, P89, DOI 10.1242/jeb.020826; Viechtbauer W., 2014, PACKAGE METAFOR; Viechtbauer W, 2007, Z PSYCHOL, V215, P104, DOI 10.1027/0044-3409.215.2.104; Viechtbauer W, 2010, J STAT SOFTW, V36, P1; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1; Yengkokpam S, 2013, AQUACULTURE, V412, P186, DOI 10.1016/j.aquaculture.2013.07.025; YU BP, 1994, PHYSIOL REV, V74, P139 54 19 19 0 14 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAY 2016 6 9 2833 2842 10.1002/ece3.2080 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DM2AX WOS:000376149400017 27217942 DOAJ Gold, Green Published 2019-02-21 J Ton, R; Martin, TE Ton, Riccardo; Martin, Thomas E. Metabolism correlates with variation in post-natal growth rate among songbirds at three latitudes FUNCTIONAL ECOLOGY English Article body mass; life-history theory; metabolic rate; physiology; temperate and tropical nestlings LIFE-SPAN; TROPICAL BIRDS; GENERAL-MODEL; SLOW PACE; EVOLUTION; HISTORY; RESPIRATION; ALLOCATION; SELECTION; PATTERNS 1. Variation in post-natal growth rates is substantial among organisms and especially strong among latitudes because tropical and south temperate species typically have slower growth than north temperate relatives. Metabolic rate is thought to be a critical mechanism underlying growth rates after accounting for allometric effects of body mass. However, comparative tests on a large spatial scale are lacking, and the importance of metabolism for growth rates remains unclear both within and particularly across latitudes. 2. Songbirds exhibit strong interspecific variation in growth rates across geographic space, although within latitudes an association between metabolic rate and growth rate has not always been observed. Moreover, the hypothesis that differences in growth rates across latitudes reflect underlying differences in metabolism is untested. Here, we investigate these possibilities across north temperate, south temperate and tropical study sites. 3. Phylogenetic analyses showed that, for a given body mass, metabolic rates of north temperate nestlings were higher than tropical and south temperate species. Metabolic rates controlled for body mass correlated with post-natal growth rates both within and among latitudes. Offspring body mass explained substantial residual variation in growth rates as expected under classic allometric theory. 4. Our results suggest that variation in metabolic rates has an important influence on broad patterns of avian growth rates at a global scale. We suggest further studies that address the ecological and physiological costs and consequences of variation in metabolism and growth rates. [Ton, Riccardo] Univ Montana, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA; [Martin, Thomas E.] Univ Montana, US Geol Survey, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA Ton, R (reprint author), Univ Montana, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA. riccardo.ton@mso.umt.edu Martin, Thomas E/0000-0002-4028-4867 U. S. Geological Survey Climate Change Research Program; National Science Foundation [DEB-0841764, DEB-1241041, IOS-1349178]; Drollinger-Dial Foundation; University of Montana IACUC We are thankful to our laboratory and two anonymous reviewers for helpful comments on the manuscript. We thank many field assistants that helped with this project, in particular M. L. Markowsky, J. Olson, K. Corder, J.A. Brandauer, N. Gobbo, O. M. Sutto and V.J. Kerrigan. Sabah Parks and the Sabah Biodiversity Council in Malaysia, and Western Cape Nature Conservation Board in South Africa helped to make the present study possible. The U. S. Geological Survey Climate Change Research Program, the National Science Foundation (DEB-0841764, DEB-1241041, IOS-1349178) and the Drollinger-Dial Foundation supported this work. We performed this research under the auspices of University of Montana IACUC protocol #059-10TMMCWRU. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The authors of this paper declare no conflict of interest. Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Arendt JD, 2003, FUNCT ECOL, V17, P328, DOI 10.1046/j.1365-2435.2003.00737.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arriero E, 2013, FUNCT ECOL, V27, P472, DOI 10.1111/1365-2435.12057; Banavar JR, 2014, P NATL ACAD SCI USA, V111, P3332, DOI 10.1073/pnas.1401336111; Barja G, 2007, REJUV RES, V10, P215, DOI 10.1089/rej.2006.0516; Benrey B, 1997, ECOLOGY, V78, P987, DOI 10.2307/2265852; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Cheng YR, 2012, AM NAT, V180, P285, DOI 10.1086/667214; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; Czarnoleski M, 2008, J EXP BIOL, V211, P391, DOI 10.1242/jeb.013169; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Drent R., 1989, ENERGETICS AVIAN GRO, P349; DUNN EH, 1980, AUK, V97, P19; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Glazier DS, 2015, BIOL REV, V90, P377, DOI 10.1111/brv.12115; Glazier DS, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2302; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; Harman D, 2001, ANN NY ACAD SCI, V928, P1, DOI 10.1111/j.1749-6632.2001.tb05631.x; Harman D, 1955, THEORY BASED FREE RA; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; KLAASSEN M, 1991, CONDOR, V93, P612, DOI 10.2307/1368193; KLEIBER MAX, 1932, HILGARDIA, V6, P315; Kolokotrones T, 2010, NATURE, V464, P753, DOI 10.1038/nature08920; Konarzewski M, 2000, PHYSIOL BIOCHEM ZOOL, V73, P237, DOI 10.1086/316729; KONARZEWSKI M, 1995, ECOLOGY, V76, P8, DOI 10.2307/1940627; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Lighton J.R.B., 2008, MEASURING METABOLIC; Maddison W.P., 2011, MESQUITE MODULAR SYS; Martin TE, 2015, AM NAT, V185, P380, DOI 10.1086/679612; Martin TE, 2013, ECOL LETT, V16, P738, DOI 10.1111/ele.12103; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Orme D., 2013, CAPER PACKAGE COMP A; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Pearl R., 1928, RATE LIVING; Peng YH, 2010, FUNCT ECOL, V24, P502, DOI 10.1111/j.1365-2435.2009.01667.x; Pereyra ME, 2001, AUK, V118, P116, DOI 10.1642/0004-8038(2001)118[0116:NGATDI]2.0.CO;2; PETERSON CC, 1990, P NATL ACAD SCI USA, V87, P2324, DOI 10.1073/pnas.87.6.2324; R Core Team, 2014, R LANG ENV STAT COMP; Remes V, 2002, EVOLUTION, V56, P2505; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; RICKLEFS RE, 1968, IBIS, V110, P419, DOI 10.1111/j.1474-919X.1968.tb00058.x; Ricklefs Robert E., 1993, Current Ornithology, V11, P199; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SOGGE MK, 1991, CONDOR, V93, P773, DOI 10.2307/1368215; Starck JM, 1998, AVIAN GROWTH DEV EVO; vonsBertalanffy L., 1957, Q REV BIOL, V32, P111; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; White CR, 2007, ECOLOGY, V88, P315, DOI 10.1890/05-1883; White CR, 2013, J COMP PHYSIOL B, V183, P1, DOI 10.1007/s00360-012-0676-5; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Williams JB, 2007, PHYSIOL BIOCHEM ZOOL, V80, P500, DOI 10.1086/520126; Williams JB, 2010, INTEGR COMP BIOL, V50, P855, DOI 10.1093/icb/icq024 64 5 5 2 25 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. MAY 2016 30 5 743 748 10.1111/1365-2435.12548 6 Ecology Environmental Sciences & Ecology DL9DN WOS:000375941800008 Bronze 2019-02-21 J Brandt, A; Linse, K; Ellingsen, KE; Somerfield, PJ Brandt, Angelika; Linse, Katrin; Ellingsen, Kari E.; Somerfield, Paul J. Depth-related gradients in community structure and relatedness of bivalves and isopods in the Southern Ocean PROGRESS IN OCEANOGRAPHY English Review DEEP-SEA BENTHOS; MEASURING BETA-DIVERSITY; NORTHEAST WATER POLYNYA; 75 DEGREES N; SPECIES-DIVERSITY; PERACARID CRUSTACEANS; BELLINGSHAUSEN SEA; SHETLAND ISLANDS; ROSS SEA; TAXONOMIC DISTINCTNESS Despite increased research over the last decade, diversity patterns in Antarctic deep-sea benthic taxa and their driving forces are only marginally known. Depth-related patterns of diversity and distribution of isopods and bivalves collected in the Atlantic sector of the Southern Ocean are analysed. The data, sampled by epibenthic sledge at 40 deep-sea stations from the upper continental slope to the hadal zone (774-6348 m) over a wide area of the Southern Ocean, comprises 619 species of isopods and 81 species of bivalves. There were more species of isopods than bivalves in all samples, and species per station varied from 2 to 85 for isopods and from 0 to 18 for bivalves. Most species were rare, with 72% of isopod species restricted to one or two stations, and 45% of bivalves. Among less-rare species bivalves tended to have wider distributions than isopods. The species richness of isopods varied with depth, showing a weak unimodal curve with a peak at 2000-4000 m, while the richness of bivalves did not. Multivariate analyses indicate that there are two main assemblages in the Southern Ocean, one shallow and one deep. These overlap over a large depth-range (2000-4000 m). Comparing analyses based on the Sorensen resemblance measure and Gamma(+) (incorporating relatedness among species) indicates that rare species tend to have other closely related species within the same depth band. Analysis of relatedness among species indicates that the taxonomic variety of bivalves tends to decline at depth, whereas that of isopods is maintained. This, it is speculated, may indicate that the available energy at depth is insufficient to maintain a range of bivalve life-history strategies. (C) 2016 Elsevier Ltd. All rights reserved. [Brandt, Angelika] Univ Hamburg, Ctr Nat Hist, Zool Museum, Martin Luther King Pl 3, D-20146 Hamburg, Germany; [Linse, Katrin] British Antarctic Survey, Nat Environm Res Council, Madlingley Rd, Cambridge CB3 0ET, England; [Ellingsen, Kari E.] Norwegian Inst Nat Res, Fram Ctr, POB 6606, N-9296 Tromso, Norway; [Somerfield, Paul J.] Plymouth Marine Lab, Prospect Pl, Plymouth PL1 3DH, Devon, England Brandt, A (reprint author), Univ Hamburg, Ctr Nat Hist, Zool Museum, Martin Luther King Pl 3, D-20146 Hamburg, Germany. abrandt@zoologie.uni-hamburg.de; kl@bas.ac.uk; kari.ellingsen@nina.no; pjso@pml.ac.uk Brandt, Angelika/C-1630-2018 Linse, Katrin/0000-0003-3477-3047 German Science Foundation, Germany; Research Council of Norway - Norway; UK Natural Environment Research Council, United Kingdom; Natural Environment Research Council [bas0100036] Financial support for the ANDEEP expeditions was provided by the German Science Foundation, Germany. KEE acknowledges the support of the Research Council of Norway - Norway and PJS acknowledges support from the UK Natural Environment Research Council, United Kingdom. We are grateful to Saskia Brix, Stefanie Kaiser, Wiebke Brokeland, Madhumita Choudhury and Marina Malyutina for help in sorting and identification of isopods. This is ANDEEP publication # 200. Aldea C, 2008, DEEP-SEA RES PT I, V55, P350, DOI 10.1016/j.dsr.2007.12.002; Allen JA, 2008, MALACOLOGIA, V50, P57, DOI 10.4002/0076-2997-50.1.57; Arnaud PM, 2001, POLAR BIOL, V24, P105, DOI 10.1007/s003000000183; ARNTZ WE, 1994, OCEANOGR MAR BIOL, V32, P241; Brakeland W., 2008, ZOOLOGICAL J LINNEAN, V152, P655; Brandt A, 1997, POLAR BIOL, V17, P462, DOI 10.1007/s003000050142; Brandt A, 2007, PHILOS T R SOC B, V362, P39, DOI 10.1098/rstb.2006.1952; Brandt A, 2005, ORG DIVERS EVOL, V5, P105, DOI 10.1016/j.ode.2004.10.007; Brandt A, 2005, POLAR BIOL, V28, P284, DOI 10.1007/s00300-004-0688-z; Brandt A, 2004, DEEP-SEA RES PT II, V51, P1753, DOI 10.1016/j.dsr2.2004.06.033; Brandt A, 2004, DEEP-SEA RES PT II, V51, P1457, DOI 10.1016/j.dsr2.2004.08.006; BRANDT A, 1995, OPHELIA, V43, P15, DOI 10.1080/00785326.1995.10430574; BRANDT A, 1993, POLAR BIOL, V13, P565; BRANDT A, 1995, MAR ECOL PROG SER, V121, P39, DOI 10.3354/meps121039; Brandt A., 2012, P291; Brandt A, 1997, POLAR BIOL, V17, P159, DOI 10.1007/s003000050118; Brandt A., 1991, REPORTS POLAR RES, V98, P1; Brandt A., 1996, BIOSCIENCE, V44, P1; Brandt A, 2007, DEEP-SEA RES PT II, V54, P1760, DOI 10.1016/j.dsr2.2007.07.015; Brandt A, 2007, DEEP-SEA RES PT II, V54, P1645, DOI 10.1016/j.dsr2.2007.07.001; Brandt A, 2007, NATURE, V447, P307, DOI 10.1038/nature05827; Brandt A, 2009, DEEP-SEA RES PT I, V56, P2013, DOI 10.1016/j.dsr.2009.06.007; Brault S, 2013, DEEP-SEA RES PT II, V92, P157, DOI 10.1016/j.dsr2.2013.01.018; BRAY J. ROGER, 1957, ECOL MONOGR, V27, P325, DOI 10.2307/1942268; Brenke N, 2005, MAR TECHNOL SOC J, V39, P10, DOI 10.4031/002533205787444015; Brey T, 1996, ANTARCT SCI, V8, P3; Brown B, 2006, PALAEOGEOGR PALAEOCL, V231, P158, DOI 10.1016/j.palaeo.2005.07.033; Brown JH, 1995, MACROECOLOGY; Carney RS, 2005, OCEANOGR MAR BIOL, V43, P211; Cattaneo-Vietti R, 2000, POLAR BIOL, V23, P173, DOI 10.1007/s003000050024; Chazdon R.L., 1999, SCIENCE, V285, P1459; Clarke K., 2006, PRIMER V6 USER MANUA, P192, DOI DOI 10.1111/J.1442-9993.1993.TB00438.X; Clarke K.R., 2014, CHANGE MARINE COMMUN, P256; Clarke K. R., 2001, CHANGE MARINE COMMUN, P172; Clarke KR, 2006, J EXP MAR BIOL ECOL, V330, P55, DOI 10.1016/j.jembe.2005.12.017; Clarke KR, 1998, J APPL ECOL, V35, P523, DOI 10.1046/j.1365-2664.1998.3540523.x; COLWELL RK, 1994, PHILOS T ROY SOC B, V345, P101, DOI 10.1098/rstb.1994.0091; Colwell RK, 2012, J PLANT ECOL-UK, V5, P3, DOI 10.1093/jpe/rtr044; De Broyer C., 2014, BIOGEOGRAPHIC ATLAS, VXII, P498; Ellingsen KE, 2007, POLAR BIOL, V30, P1265, DOI 10.1007/s00300-007-0287-x; Ellingsen KE, 2005, J ANIM ECOL, V74, P1069, DOI 10.1111/j.1365-2656.2005.01004.x; Etter R.J., 1992, NATURE, V360, P360; Gaston KJ, 1997, J ANIM ECOL, V66, P579, DOI 10.2307/5951; Gaston KJ, 1996, J ANIM ECOL, V65, P701, DOI 10.2307/5669; Glover AG, 2002, MAR ECOL PROG SER, V240, P157, DOI 10.3354/meps240157; Gotelli NJ, 2011, FRONTIERS MEASURING, P39; Griffiths H.J., 2014, BIOGEOGRAPHIC ATLAS, P6; Griffiths HJ, 2011, DEEP-SEA RES PT II, V58, P18, DOI 10.1016/j.dsr2.2010.10.008; Griffiths S., 2011, DEEP SEA RES 2, V58, P91; Gutt J, 2013, NAT CONSERV-BULGARIA, P1, DOI 10.3897/natureconservation.4.4499; Gutt J, 2013, MAR BIODIVERS, V43, P481, DOI 10.1007/s12526-013-0152-9; Hain S., 1990, Berichte zur Polarforschung, V70, P1; Held C, 2000, MOL PHYLOGENET EVOL, V15, P165, DOI 10.1006/mpev.1999.0739; Held C, 2003, ANTARCTIC BIOLOGY IN A GLOBAL CONTEXT, PROCEEDINGS, P135; HESSLER RR, 1967, DEEP-SEA RES, V14, P65; Izsak C, 2001, MAR ECOL PROG SER, V215, P69, DOI 10.3354/meps215069; JAMIESON A, 2015, HAD ZON LIF DEEP OC, P1; Kaiser S, 2007, DEEP-SEA RES PT II, V54, P1776, DOI 10.1016/j.dsr2.2007.07.006; Kaiser S, 2013, MAR BIOL, V160, P2295, DOI 10.1007/s00227-013-2232-6; Koleff P, 2003, J ANIM ECOL, V72, P367, DOI 10.1046/j.1365-2656.2003.00710.x; Laptikhovsky V, 2006, MAR ECOL-EVOL PERSP, V27, P7, DOI 10.1111/j.1439-0485.2006.00077.x; Levin LA, 2015, SCIENCE, V350, P766, DOI 10.1126/science.aad0126; Levin LA, 2009, TRENDS ECOL EVOL, V24, P606, DOI 10.1016/j.tree.2009.04.012; Linse K, 2004, DEEP-SEA RES PT II, V51, P1827, DOI 10.1016/j.dsr2.2004.07.016; Magurran A. E, 2004, MEASURING BIOL DIVER, P1; Marshall DJ, 2007, BIOL BULL-US, V212, P6, DOI 10.2307/25066575; McClain CR, 2005, OIKOS, V109, P555, DOI 10.1111/j.0030-1299.2005.13529.x; McClain CR, 2004, GLOBAL ECOL BIOGEOGR, V13, P327, DOI 10.1111/j.1466-822X.2004.00106.x; McClain CR, 2012, P ROY SOC B-BIOL SCI, V279, P1993, DOI 10.1098/rspb.2011.2166; Meyer-Lobbecke A, 2014, DEEP-SEA RES PT II, V108, P76, DOI 10.1016/j.dsr2.2014.06.006; Paterson GLJ, 1998, DEEP-SEA RES PT II, V45, P225, DOI 10.1016/S0967-0645(97)00084-2; PAYNE CM, 1991, PHILOS T ROY SOC B, V334, P481, DOI 10.1098/rstb.1991.0128; Pearse JS, 2009, SMITHSONIAN AT THE POLES: CONTRIBUTIONS TO INTERNATIONAL POLAR YEAR SCIENCE, P181, DOI 10.5479/si.097884601X.13; Piepenburg D, 1997, J MARINE SYST, V10, P467, DOI 10.1016/S0924-7963(96)00050-4; Platell ME, 1998, MAR BIOL, V131, P719, DOI 10.1007/s002270050363; Raupach MJ, 2007, DEEP-SEA RES PT II, V54, P1820, DOI 10.1016/j.dsr2.2007.07.009; Raupach MJ, 2006, ANTARCT SCI, V18, P191, DOI 10.1017/S0954102006000228; Reed AJ, 2014, POLAR BIOL, V37, P1383, DOI 10.1007/s00300-014-1528-4; Rex M. A, 2010, DEEP SEA BIODIVERSIT; Rex M.A., 1997, MARINE BIODIVERSITY, P94; REX MA, 1973, SCIENCE, V181, P1051, DOI 10.1126/science.181.4104.1051; Rex MA, 2005, ECOLOGY, V86, P2288, DOI 10.1890/04-1056; Rex MA, 2005, AM NAT, V165, P163, DOI 10.1086/427226; REX MA, 1993, NATURE, V365, P636, DOI 10.1038/365636a0; REX MA, 1981, ANNU REV ECOL SYST, V12, P331, DOI 10.1146/annurev.es.12.110181.001555; SANDERS HL, 1969, SCIENCE, V163, P1419, DOI 10.1126/science.163.3874.1419; Schiaparelli S, 2006, ANTARCT SCI, V18, P615, DOI 10.1017/S0954102006000654; Schiaparelli S, 2014, POLAR BIOL, V37, P859, DOI 10.1007/s00300-014-1487-9; Schwabe E, 2007, DEEP-SEA RES PT II, V54, P1831, DOI 10.1016/j.dsr2.2007.07.010; Somerfield PJ, 2009, MAR ECOL PROG SER, V382, P279, DOI 10.3354/meps07934; Somerfield P.J., 2009, MAR ECOL PROG SER, V382, P221; Somerfield PJ, 2008, ICES J MAR SCI, V65, P1462, DOI 10.1093/icesjms/fsn118; Tittensor DP, 2011, BIOL LETTERS, V7, P718, DOI 10.1098/rsbl.2010.1174; Troncoso JS, 2008, POLAR BIOL, V31, P1253, DOI 10.1007/s00300-008-0464-6; Troncoso JS, 2007, POLAR RES, V26, P126, DOI 10.1111/j.1751-8369.2007.00033.x; Warwick RM, 2001, OCEANOGR MAR BIOL, V39, P207; WARWICK RM, 1990, J EXP MAR BIOL ECOL, V135, P19, DOI 10.1016/0022-0981(90)90196-J; WHITTAKER R H, 1972, Taxon, V21, P213, DOI 10.2307/1218190; Witman JD, 2004, P NATL ACAD SCI USA, V101, P15664, DOI 10.1073/pnas.0404300101; Wurzberg L, 2011, DEEP-SEA RES PT II, V58, P2027, DOI 10.1016/j.dsr2.2011.05.013; Wurzberg L, 2011, DEEP-SEA RES PT II, V58, P153, DOI 10.1016/j.dsr2.2010.10.014; Young CM, 2003, ECOSY WORLD, V28, P381; Zardus JD, 2002, ADV MAR BIOL, V42, P1 103 1 1 1 20 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0079-6611 PROG OCEANOGR Prog. Oceanogr. MAY 2016 144 25 38 10.1016/j.pocean.2016.03.003 14 Oceanography Oceanography DM2YO WOS:000376214200003 2019-02-21 J Vetter, SG; Brandstatter, C; Macheiner, M; Suchentrunk, F; Gerritsmann, H; Bieber, C Vetter, Sebastian G.; Brandstaetter, Constanze; Macheiner, Marie; Suchentrunk, Franz; Gerritsmann, Hanno; Bieber, Claudia Shy is sometimes better: personality and juvenile body mass affect adult reproductive success in wild boars, Sus scrofa ANIMAL BEHAVIOUR English Article feeding experiment; individual quality; life history strategy; litter size; silver spoon effect FITNESS CONSEQUENCES; INDIVIDUAL-DIFFERENCES; AVIAN PERSONALITIES; ROE DEER; PIGS; POPULATION; TEMPERAMENT; QUALITY; TRAITS; COSTS There is increasing evidence that animal personalities are linked to different life history strategies. However, studies examining whether these effects differ under varying environmental conditions are rare. Here, we investigated how animal personality affects reproductive success in a pulsed resource consumer, the wild boar. We determined the exploratory behaviour of 57 female wild boars in nine novel object tests and additionally assessed their aggressiveness. Exploration behaviour (i.e. approach latency and investigation duration) and aggressiveness were repeatable within individuals and both mapped on a single principal component yielding an individual personality score. Afterwards the females were kept together with 28 males under seminatural conditions in two large breeding enclosures from 2011 to 2014. Over winter 2013/2014 we applied high versus medium feeding regimes to the two enclosures. Our results show that adult body mass and reproductive success were affected by juvenile body mass and thus already determined early in life, which may point to a silver spoon effect in the wild boar. Whether a female reproduced or not, as well as the litter size shortly after birth, was only affected by female body mass. The postweaning litter size (i.e. at the time of independence at the age of about 6 months), however, was additionally affected by the personality score in interaction with food availability. Under high food availability less aggressive and explorative individuals raised more juveniles to independence. We conclude that lower aggressiveness and reduced exploratory tendency of the mother lead to lower juvenile mortality and hence have a positive impact on postweaning litter size. Under slightly decreased food availability, however, this effect vanished. As the impact of personality on reproductive success differed between changing environmental conditions, our results support the hypothesis that different personality phenotypes are evolutionarily maintained by varying selection pressures in heterogeneous environments. (C) 2016 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Vetter, Sebastian G.; Brandstaetter, Constanze; Macheiner, Marie; Suchentrunk, Franz; Gerritsmann, Hanno; Bieber, Claudia] Univ Vet Med, Res Inst Wildlife Ecol, Dept Integrat Biol & Evolut, Savoyenstr 1, A-1160 Vienna, Austria Vetter, SG (reprint author), Univ Vet Med, Res Inst Wildlife Ecol, Dept Integrat Biol & Evolut, Savoyenstr 1, A-1160 Vienna, Austria. sebastian.vetter@vetmeduni.ac.at Vetter, Sebastian G./0000-0001-5374-5872; Bieber, Claudia/0000-0001-8919-3117 Austrian Research Promotion Agency (FFG) [829644]; government of Lower Austria; government of Vienna We thank Thomas Ruf and Steve Smith, as well as four anonymous referees for their important comments on the manuscript. Further, we thank Gabrielle Stalder and all other helpers that were involved in animal care. We thank R. Hengsberger for help with the literature search and formatting the manuscript. This work was supported by the Austrian Research Promotion Agency (FFG, Grant #829644) and the governments of Lower Austria and Vienna. The authors declare no conflict of interest. S.G.V., Co.B., M.M. and H.G. collected the data. S.G.V. and F.S. performed the genetic analysis. S.G.V. performed the statistical analyses. Cl.B. conceived the study. S.G.V. and Cl.B. wrote the manuscript. All authors discussed the results and commented on the manuscript. AHMAD E, 1995, ACTA THERIOL, V40, P163, DOI 10.4098/AT.arch.95-17; Akaike H., 1973, P 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_15; Albon SD, 1992, THE BIOL OF DEER, P15; Andersson A, 2011, APPL ANIM BEHAV SCI, V134, P184, DOI 10.1016/j.applanim.2011.08.001; Bates D., 2015, LME4 LINEAR MIXED EF; BELKHIR K, 1996, 5171 CNRS UMR LAB GE; Bergmuller R, 2010, TRENDS ECOL EVOL, V25, P504, DOI 10.1016/j.tree.2010.06.012; Bieber C, 2005, J APPL ECOL, V42, P1203, DOI 10.1111/j.1365-2664.2005.01094.x; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Boitani L, 1995, IBEX J MT ECOL, V3, P197; Boon AK, 2007, ECOL LETT, V10, P1094, DOI 10.1111/j.1461-0248.2007.01106.x; Both C, 2005, J ANIM ECOL, V74, P667, DOI 10.1111/j.1365-2656.2005.00962.x; Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324; Briedermann L, 2009, SCHWARZWILD; Carere C., 2013, ANIMAL PERSONALITIES, P1, DOI DOI 10.7208/CHICAGO/9780226922065.003.0001; CLUTTONBROCK TH, 1992, J ANIM ECOL, V61, P381, DOI 10.2307/5330; Cote J, 2008, P ROY SOC B-BIOL SCI, V275, P2851, DOI 10.1098/rspb.2008.0783; DeWoody JA, 2004, BIOTECHNIQUES, V37, P348, DOI 10.2144/04373BM02; Dingemanse NJ, 2003, P ROY SOC B-BIOL SCI, V270, P741, DOI 10.1098/rspb.2002.2300; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Dingemanse NJ, 2013, ANIMAL PERSONALITIES, P201, DOI DOI 10.7208/CHICAGO/9780226922065.001.0001; English S, 2014, J ANIM ECOL, V83, P332, DOI 10.1111/1365-2656.12149; Erhard HW, 1999, APPL ANIM BEHAV SCI, V61, P227, DOI 10.1016/S0168-1591(98)00196-8; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; FORKMAN B, 1995, APPL ANIM BEHAV SCI, V45, P31, DOI 10.1016/0168-1591(95)00601-N; Fournier DA, 2012, OPTIM METHOD SOFTW, V27, P233, DOI 10.1080/10556788.2011.597854; FRASER D, 1991, BEHAV ECOL SOCIOBIOL, V29, P9, DOI 10.1007/BF00164289; GAILLARD JM, 1993, FOLIA ZOOL, V42, P204; Genuer R, 2010, PATTERN RECOGN LETT, V31, P2225, DOI 10.1016/j.patrec.2010.03.014; Gethoffer F, 2007, EUR J WILDLIFE RES, V53, P287, DOI 10.1007/s10344-007-0097-z; Gethoffer F., 2005, THESIS TIERARZTLICHE; Goudet J, 1995, J HERED, V86, P485, DOI 10.1093/oxfordjournals.jhered.a111627; Grafen A., 1988, REPROD SUCCESS, P454; Guenther A, 2015, PHYSIOL BEHAV, V145, P22, DOI 10.1016/j.physbeh.2015.03.026; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; HESSING MJC, 1993, APPL ANIM BEHAV SCI, V37, P285, DOI 10.1016/0168-1591(93)90118-9; HESSING MJC, 1994, PHYSIOL BEHAV, V55, P39, DOI 10.1016/0031-9384(94)90007-8; Howells O, 1997, BIOL CONSERV, V81, P77, DOI 10.1016/S0006-3207(96)00134-6; HURVICH CM, 1989, BIOMETRIKA, V76, P297, DOI 10.1093/biomet/76.2.297; Jameson KA, 1999, ANIM BEHAV, V57, P991, DOI 10.1006/anbe.1998.1077; Jedrzejewski W, 2002, ECOLOGY, V83, P1341, DOI 10.2307/3071948; JENSEN P, 1995, APPL ANIM BEHAV SCI, V45, P43, DOI 10.1016/0168-1591(95)00591-F; JEZIERSKI W, 1977, ACTA THERIOL, V22, P337, DOI 10.4098/AT.arch.77-31; Jones OR, 2010, MOL ECOL RESOUR, V10, P551, DOI 10.1111/j.1755-0998.2009.02787.x; KAISER HF, 1991, PSYCHOL REP, V68, P855, DOI 10.2466/pr0.1991.68.3.855; Korhonen H, 1996, J ANIM BREED GENET, V113, P209, DOI 10.1111/j.1439-0388.1996.tb00606.x; Korhonen HT, 2002, CAN J ANIM SCI, V82, P275, DOI 10.4141/A01-088; Laval G, 2000, GENET SEL EVOL, V32, P187, DOI 10.1051/gse:2000113; LAWRENCE AB, 1991, APPL ANIM BEHAV SCI, V30, P73, DOI 10.1016/0168-1591(91)90086-D; Leaper R, 1999, MAMMAL REV, V29, P239, DOI 10.1046/j.1365-2907.1999.2940239.x; Liaw A., 2002, R NEWS, V2, P18, DOI DOI 10.1177/154405910408300516; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Martin Paul R., 1993, MEASURING BEHAV INTR; Menard S., 1995, APPL LOGISTIC REGRES; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Monestier C, 2015, BEHAV ECOL, V26, P1395, DOI 10.1093/beheco/arv087; Moretti L, 2015, ANIM BEHAV, V107, P159, DOI 10.1016/j.anbehav.2015.06.008; Moretti M, 1995, IBEX J MT ECOL, V3, P192; MURPHY PM, 1994, P AUS S ANI, V20, P247; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nowak R, 2000, REV REPROD, V5, P153, DOI 10.1530/ror.0.0050153; Pettorelli N, 2002, P ROY SOC B-BIOL SCI, V269, P747, DOI 10.1098/rspb.2001.1791; R Core Team, 2015, R LANG ENV STAT COMP; Reale D., 2007, BIOL REV, V82, P291, DOI DOI 10.1111/J.1469-185X.2007.00010.X; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Rodel HG, 2011, DEV PSYCHOBIOL, V53, P601, DOI 10.1002/dev.20522; Rosell C, 2012, ANIM BIODIV CONSERV, V35, P209; Rosvall KA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054120; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Ruis MAW, 2000, APPL ANIM BEHAV SCI, V66, P31, DOI 10.1016/S0168-1591(99)00070-2; Sandell MI, 2007, BEHAV ECOL SOCIOBIOL, V62, P255, DOI 10.1007/s00265-007-0460-9; Sandor G., 2003, WILDLIFE BIOL, V9, P249; Scandura M, 2008, MOL ECOL, V17, P1745, DOI 10.1111/j.1365-294X.2008.03703.x; Schielzeth H., 2013, RPTR REPEATABILITY G; Schley L, 2003, MAMMAL REV, V33, P43, DOI 10.1046/j.1365-2907.2003.00010.x; Schwarz S, 2005, ARCH TIERZUCHT, V48, P490; Servanty S, 2007, BEHAV ECOL, V18, P427, DOI 10.1093/beheco/arl099; Servanty S, 2009, J ANIM ECOL, V78, P1278, DOI 10.1111/j.1365-2656.2009.01579.x; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2012, ECOL LETT, V15, P278, DOI 10.1111/j.1461-0248.2011.01731.x; Skaug H., 2014, GEN LINEAR MIXED MOD; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Sokal R.R., 1995, BIOMETRY PRINCIPLES; Spoolder HAM, 1996, APPL ANIM BEHAV SCI, V49, P185, DOI 10.1016/0168-1591(96)01033-7; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Thodberg K, 1999, APPL ANIM BEHAV SCI, V63, P103, DOI 10.1016/S0168-1591(99)00009-X; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Veiga JP, 2008, AM NAT, V172, P42, DOI 10.1086/587850; Vernesi C, 2003, MOL ECOL, V12, P585, DOI 10.1046/j.1365-294X.2003.01763.x; Vetter SG, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0132178; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; Wilson DS, 1998, PHILOS T ROY SOC B, V353, P199, DOI 10.1098/rstb.1998.0202; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 95 9 9 1 88 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. MAY 2016 115 193 205 10.1016/j.anbehav.2016.03.026 13 Behavioral Sciences; Zoology Behavioral Sciences; Zoology DL5CM WOS:000375654900021 2019-02-21 J Smallbone, W; Cable, J; Maceda-Veiga, A Smallbone, Willow; Cable, Jo; Maceda-Veiga, Alberto Chronic nitrate enrichment decreases severity and induces protection against an infectious disease ENVIRONMENT INTERNATIONAL English Article Eutrophication; Nutrient loading; Parasitic disease; Species interactions; Aquatic food-web; Nitrate toxicity GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; NUTRIENT ENRICHMENT; FRESH-WATER; FISH; EUTROPHICATION; POLLUTION; RESPONSES; PARASITES; TOXICITY Excessive fertilisation is one of the most pernicious forms of global change resulting in eutrophication. It has major implications for disease control and the conservation of biodiversity. Yet, the direct link between nutrient enrichment and disease remains largely unexplored. Here, we present the first experimental evidence that chronic nitrate enrichment decreases severity and induces protection against an infectious disease. Specifically, this study shows that nitrate concentrations ranging between 50 and 250 mg NO3-/l reduce Gyrodactylus turnbulli infection intensity in two populations of Trinidadian guppies Poecilia reticulata, and that the highest nitrate concentration can even clean the parasites from the fish. This added to the fact that host nitrate pre-exposure altered the fish epidermal structure and reduced parasite intensity, suggests that nitrate protected the host against the disease. Nitrate treatments also caused fish mortality. As we used ecologically-relevant nitrate concentrations, and guppies are top-consumers widely used for mosquito bio-control in tropical and often nutrient-enriched waters, our results can have major ecological and social implications. In conclusion, this study advocates reducing nitrate level including the legislative threshold to protect the aquatic biota, even though this may control an ectoparasitic disease. (C) 2016 Elsevier Ltd. All rights reserved. [Smallbone, Willow; Cable, Jo; Maceda-Veiga, Alberto] Cardiff Univ, Sch Biosci, Cardiff CF10 3AX, S Glam, Wales Maceda-Veiga, A (reprint author), CSIC, Estn Biol Donana, Dept Integrat Ecol, ES-41092 Seville, Spain. albertomaceda@gmail.com CSIC, EBD Donana/C-4157-2011; Sounga, Carine/P-4851-2015 CSIC, EBD Donana/0000-0003-4318-6602; Fisheries Society of the British Isles (FSBI) Undergraduate Summer internship; Marie Curie Fellowship (Para-Tox project) [FP7-PEOPLE-2012-327941]; Severo Ochoa Program for Centres of Excellence in R + D + I [SEV-2012-0262] Derek Scarborough for fish skin processing for histology, Linda Erlandsson for laboratory assistance, Dr Carsten Muller for advice on water chemistry, Dr Hefin Jones and two anonymous referees for useful comments on the manuscript. WS was funded by Fisheries Society of the British Isles (FSBI) Undergraduate Summer internship, and AMV was funded by a Marie Curie Fellowship (Para-Tox project: FP7-PEOPLE-2012-327941) and then the Severo Ochoa Program for Centres of Excellence in R + D + I (Ref: SEV-2012-0262). Bakke TA, 2007, ADV PARASIT, V64, P161, DOI 10.1016/S0065-308X(06)64003-7; Biagianti-Risbourg S., 2013, ENCY AQUATIC ECOTOXI, P883; Boughton RK, 2011, FUNCT ECOL, V25, P81, DOI 10.1111/j.1365-2435.2010.01817.x; Bruno JF, 2003, ECOL LETT, V6, P1056, DOI 10.1046/j.1461-0248.2003.00544.x; Bush A.O., 1997, INT J PARASITOL, P575; Cable J, 2007, INT J PARASITOL, V37, P1449, DOI 10.1016/j.ijpara.2007.04.013; Camargo JA, 2005, CHEMOSPHERE, V58, P1255, DOI 10.1016/j.chemosphere.2004.10.044; Colin N, 2016, SCI TOTAL ENVIRON, V540, P307, DOI 10.1016/j.scitotenv.2015.06.099; COMLY HH, 1945, JAMA-J AM MED ASSOC, V129, P112, DOI 10.1001/jama.1945.02860360014004; Doyner DF, 2003, J PARASITOL, V89, P290, DOI 10.1645/0022-3395(2003)089[0290:EOEIIF]2.0.CO;2; EEA, 2009, NITR VULN ZON EU; Faria PJ, 2010, BIOL CONSERV, V143, P35, DOI 10.1016/j.biocon.2009.06.002; Gheorghiu C, 2007, INT J PARASITOL, V37, P375, DOI 10.1016/j.ijpara.2006.09.004; Gisbert E, 2004, AQUACULTURE, V239, P141, DOI 10.1016/j.aquaculture.2004.03.019; Glover CN, 2013, J COMP PHYSIOL B, V183, P877, DOI 10.1007/s00360-013-0761-4; Grizzetti B, 2012, GLOBAL CHANGE BIOL, V18, P769, DOI 10.1111/j.1365-2486.2011.02576.x; Guillette LJ, 2005, INTEGR COMP BIOL, V45, P19, DOI 10.1093/icb/45.1.19; Hickey C.W., 2009, ENV CANTERBURY; Hockley FA, 2014, BEHAV ECOL SOCIOBIOL, V68, P1513, DOI 10.1007/s00265-014-1760-5; Hockley FA, 2014, J R SOC INTERFACE, V11, DOI 10.1098/rsif.2013.0814; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; Hrubec TC, 1997, AM J VET RES, V58, P131; Johnson P.T., 2008, INFLUENCE EUTROPHICA, V71; Johnson PTJ, 2007, P NATL ACAD SCI USA, V104, P15781, DOI 10.1073/pnas.0707763104; Johnson PTJ, 2010, ECOL APPL, V20, P16, DOI 10.1890/08-0633.1; Kelley JL, 2012, ANIM BEHAV, V83, P783, DOI 10.1016/j.anbehav.2011.12.028; Lafferty KD, 1997, PARASITOL TODAY, V13, P251, DOI 10.1016/S0169-4758(97)01072-7; Lafferty KD, 2014, APPL ECOLOGY HUMAN D, P73; Maceda-Veiga A, 2013, B EUR ASSOC FISH PAT, V33, P187; Maceda-Veiga A, 2015, WATER RES, V83, P141, DOI 10.1016/j.watres.2015.06.036; Maceda-Veiga A, 2015, SCI TOTAL ENVIRON, V514, P322, DOI 10.1016/j.scitotenv.2015.02.004; Maceda-Veiga A, 2013, SCI TOTAL ENVIRON, V449, P9, DOI 10.1016/j.scitotenv.2013.01.012; Marcogliese DJ, 2011, TRENDS PARASITOL, V27, P123, DOI 10.1016/j.pt.2010.11.002; McKenzie VJ, 2007, ECOHEALTH, V4, P384, DOI 10.1007/s10393-007-0131-3; Millennium Ecosystem Assessment, 2005, MILL EC REP; OLUTIOLA PO, 1977, PHYSIOL PLANTARUM, V39, P239, DOI 10.1111/j.1399-3054.1977.tb04044.x; Palm HW, 2011, PARASITOL RES MG, V2, P223, DOI 10.1007/978-3-642-21396-0_12; Poulin R, 2002, INT J PARASITOL, V32, P245, DOI 10.1016/S0020-7519(01)00329-0; R Development Core Team, 2008, R LANG ENV STAT COMP; Rejmankova Eliska, 2006, P90; Rodriguez-Estival J, 2010, ENVIRON RES, V110, P469, DOI 10.1016/j.envres.2010.03.008; Romansic JM, 2006, DIS AQUAT ORGAN, V68, P235, DOI 10.3354/dao068235; RUBIN AJ, 1977, WATER RES, V11, P927, DOI 10.1016/0043-1354(77)90079-3; Schelkle B, 2013, VET PARASITOL, V198, P96, DOI 10.1016/j.vetpar.2013.08.027; Schelkle B, 2009, DIS AQUAT ORGAN, V86, P65, DOI 10.3354/dao02087; Schwarzmuller F, 2015, J ANIM ECOL, V84, P680, DOI 10.1111/1365-2656.12324; Seng CM, 2008, J VECTOR ECOL, V33, P139, DOI 10.3376/1081-1710(2008)33[139:CUOTLF]2.0.CO;2; Smil Vaclav, 2001, ENRICHING EARTH FRIT; Smith VH, 2009, TRENDS ECOL EVOL, V24, P201, DOI 10.1016/j.tree.2008.11.009; Smith VH, 2005, FRONT ECOL ENVIRON, V3, P268; Smith VH, 1999, ENVIRON POLLUT, V100, P179, DOI 10.1016/S0269-7491(99)00091-3; Ustyugova IV, 2002, ARCH ENVIRON CON TOX, V43, P270, DOI 10.1007/s00244-002-0214-7; Valtonen ET, 1997, CAN J FISH AQUAT SCI, V54, P572, DOI 10.1139/cjfas-54-3-572; Vega-Thurber RL, 2014, GLOBAL CHANGE BIOL, V20, P544, DOI DOI 10.1111/GCB.12450; Vidal-Martinez VM, 2010, TRENDS PARASITOL, V26, P44, DOI 10.1016/j.pt.2009.11.001; W.H. Organization, 2004, GUID DRINK WAT QUAL, V1; Walsh MR, 2011, FUNCT ECOL, V25, P227, DOI 10.1111/j.1365-2435.2010.01786.x; Whitehead PG, 2012, SCI TOTAL ENVIRON, V434, P13, DOI 10.1016/j.scitotenv.2011.08.046; Woodward G, 2012, SCIENCE, V336, P1438, DOI 10.1126/science.1219534; WRA/MIN, 2002, WAT RES AG MIN ENV N 60 15 16 2 30 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0160-4120 1873-6750 ENVIRON INT Environ. Int. MAY 2016 91 265 270 10.1016/j.envint.2016.03.008 6 Environmental Sciences Environmental Sciences & Ecology DL4TQ WOS:000375630500027 26995268 Other Gold, Green Published 2019-02-21 J Vall, G; Gutierrez, F; Peri, JM; Garriz, M; Baines, E; Garrido, JM; Obiols, JE Vall, Gemma; Gutierrez, Fernando; Peri, Josep M.; Garriz, Miguel; Baines, Eva; Miguel Garrido, Juan; Obiols, Jordi E. Seven dimensions of personality pathology are under sexual selection in modern Spain EVOLUTION AND HUMAN BEHAVIOR English Article Sexual selection; Life history strategies; Fitness; Personality; Personality disorder REPRODUCTIVE SUCCESS; NATURAL-SELECTION; MATE CHOICE; FLUCTUATING SELECTION; PHENOTYPIC SELECTION; NONHUMAN ANIMALS; TRADE-OFFS; EVOLUTIONARY; TRAITS; DISORDER Personality variation is increasingly thought to have an adaptive function. This is less clear for personality disorders (PDs)-extreme variants of personality that cause harm in most aspects of life. However, the possibility that PDs may be maintained in the population because of their advantages for fitness has been not convincingly tested. In a sample of 959 outpatients, we examined whether, and how, sexual selection acts on the seven main dimensions of personality pathology, taking into account mating success, reproductive success, and the mediating role of status. We find that, to varying extents, all personality dimensions are under sexual selection. Far from being predominantly purifying, selective forces push traits in diverging, often pathological, directions. These pressures differ moderately between the sexes. Sexual selection largely acts in males through the acquisition of wealth, and through the duration (rather than the number) of mates. This gives a reproductive advantage to males high in persistence-compulsivity. Conversely, because of the decoupling between the number of mates and offspring, the promiscuous strategy of psychopaths is not so successful. Negative emotionality, the most clinically detrimental trait, is slightly deleterious in males but is positively selected in females, which can help to preserve variation. The general picture is that at least some PDs form part of high-risk alternative strategies, although a sole evolutionary mechanism is unlikely to apply to all traits. An evolutionary perspective on PDs can provide a better understanding of their nature and causes than we have achieved to date by considering them as illnesses. (C) 2016 Elsevier Inc. All rights reserved. [Vall, Gemma] GSS Hosp Santa Maria IRB, Dept Psychiat Mental Hlth & Addict, Lleida, Spain; [Vall, Gemma; Obiols, Jordi E.] Univ Autonoma Barcelona, Dept Clin & Hlth Psychol, E-08193 Barcelona, Spain; [Gutierrez, Fernando] Hosp Clin Barcelona, Inst Neurosci, Personal Disorder Unit, Villarroel 170, E-08036 Barcelona, Spain; [Gutierrez, Fernando] IDIBAPS, Barcelona, Spain; [Peri, Josep M.; Miguel Garrido, Juan] Hosp Clin Barcelona, Inst Neurosci, Barcelona, Spain; [Garriz, Miguel] Parc Salut Mar, INAD Inst Neuropsychiat & Addict, Barcelona, Spain; [Baines, Eva] Univ Pompeu Fabra, Dept Ciencies Expt & Salut, Barcelona, Spain Gutierrez, F (reprint author), Hosp Clin Barcelona, Inst Neurosci, Personal Disorder Unit, Villarroel 170, E-08036 Barcelona, Spain. fguti@clinic.ub.es Gutierrez, Fernando/B-6011-2012 Gutierrez, Fernando/0000-0002-6662-1796; Garriz, Miguel/0000-0002-0467-9490 Spain's Ministerio de Educacion y Ciencia [FIS 07/0033, ETES 08/90434] This work was partially supported by grants from Spain's Ministerio de Educacion y Ciencia (FIS 07/0033 and ETES 08/90434) awarded to F. Gutierrez. Alvergne A, 2010, P NATL ACAD SCI USA, V107, P11745, DOI 10.1073/pnas.1001752107; Alvergne A, 2010, TRENDS ECOL EVOL, V25, P171, DOI 10.1016/j.tree.2009.08.003; Amato PR, 2008, J MARRIAGE FAM, V70, P1271, DOI 10.1111/j.1741-3737.2008.00565.x; Bateson M, 2011, CAN J PSYCHIAT, V56, P707, DOI 10.1177/070674371105601202; Bell G, 2010, PHILOS T R SOC B, V365, P87, DOI 10.1098/rstb.2009.0150; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Berg V, 2013, J RES PERS, V47, P296, DOI 10.1016/j.jrp.2013.01.010; Bergmuller R, 2010, TRENDS ECOL EVOL, V25, P504, DOI 10.1016/j.tree.2010.06.012; Betzig L, 2012, EVOL HUM BEHAV, V33, P309, DOI 10.1016/j.evolhumbehav.2011.10.008; Bouchard TJ, 2004, CURR DIR PSYCHOL SCI, V13, P148, DOI 10.1111/j.0963-7214.2004.00295.x; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; Brune M, 2010, CLIN NEUROPSYCHIATR, V7, P3; Buss D., 2014, EVOLUTIONARY PSYCHOL, P141; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; Camargo M. A., 2013, J SOCIAL EVOLUTIONAR, V7, P138; Cloninger C. R., 1994, TEMPERAMENT CHARACTE; Colleran H, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0398; Conroy-Beam D, 2015, ADV EXP SOC PSYCHOL, V51, P1, DOI 10.1016/bs.aesp.2014.11.001; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; DeYoung CG, 2015, J RES PERS, V56, P33, DOI 10.1016/j.jrp.2014.07.004; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Ein-Dor T, 2010, PERSPECT PSYCHOL SCI, V5, P123, DOI 10.1177/1745691610362349; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLIS L, 1995, ETHOL SOCIOBIOL, V16, P257, DOI 10.1016/0162-3095(95)00050-U; Fok MLY, 2012, J PSYCHOSOM RES, V73, P104, DOI 10.1016/j.jpsychores.2012.05.001; Friedman HS, 2010, J PERS, V78, P179, DOI 10.1111/j.1467-6494.2009.00613.x; Fritzsche K, 2013, CURR ZOOL, V59, P558, DOI 10.1093/czoolo/59.4.558; Gangestad S. W., 2003, OFFSPRING HUMAN FERT; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Geary D. C., 2006, PSYCHOL TOPICS, V15, P203; Geher G., 2008, MATING INTELLIGENCE; Glenn AL, 2011, AGGRESS VIOLENT BEH, V16, P371, DOI 10.1016/j.avb.2011.03.009; Goodman A, 2012, P ROY SOC B-BIOL SCI, V279, P4342, DOI 10.1098/rspb.2012.1415; Gosling SD, 1999, CURR DIR PSYCHOL SCI, V8, P69, DOI 10.1111/1467-8721.00017; Gurven M, 2014, EVOL HUM BEHAV, V35, P17, DOI 10.1016/j.evolhumbehav.2013.09.002; Gutierrez F, 2014, COMPR PSYCHIAT, V55, P326, DOI 10.1016/j.comppsych.2013.08.022; Gutierrez F, 2013, EVOL HUM BEHAV, V34, P41, DOI 10.1016/j.evolhumbehav.2012.09.001; Harville EW, 2015, J ADV NURS, V71, P148, DOI 10.1111/jan.12481; Hayes AF, 2014, BRIT J MATH STAT PSY, V67, P451, DOI 10.1111/bmsp.12028; Hill AK, 2013, EVOL HUM BEHAV, V34, P334, DOI 10.1016/j.evolhumbehav.2013.05.004; Holtzman N. S., 2011, HDB NARCISSISM NARCI, P210, DOI [10.1002/9781118093108.chl19, DOI 10.1002/9781118093108.CH19]; Holtzman NS, 2015, EVOL PSYCHOL-SER, P479, DOI 10.1007/978-3-319-12697-5_36; Holtzman Nicholas S, 2013, Evol Psychol, V11, P1101; Hoperoft R. L., 2015, EVOL HUM BEHAV, V36, P146; Hosken DJ, 2011, CURR BIOL, V21, pR62, DOI 10.1016/j.cub.2010.11.053; Hunt J, 2004, TRENDS ECOL EVOL, V19, P329, DOI 10.1016/j.tree.2004.03.035; Hyler S. E., 1994, PDQ 4 PERSONALITY QU; Jennions MD, 2001, Q REV BIOL, V76, P3, DOI 10.1086/393743; Jokela M, 2011, EUR J PERSONALITY, V25, P487, DOI 10.1002/per.822; Jokela M, 2010, BEHAV ECOL, V21, P906, DOI 10.1093/beheco/arq078; Jokela M, 2010, EUR J PERSONALITY, V24, P151, DOI 10.1002/per.749; Jokela M, 2009, EVOL HUM BEHAV, V30, P342, DOI 10.1016/j.evolhumbehav.2009.03.006; Jokela M, 2009, J PERS SOC PSYCHOL, V96, P218, DOI 10.1037/a0014058; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones AG, 2009, P NATL ACAD SCI USA, V106, P10001, DOI 10.1073/pnas.0901129106; Keller MC, 2006, BEHAV BRAIN SCI, V29, P385, DOI 10.1017/S0140525X06009095; Kight C. R., 2013, EVOLUTION ANIMAL PER; Kingsolver JG, 2011, AM NAT, V177, P346, DOI 10.1086/658341; Lafreniere P, 2009, DEV PSYCHOPATHOL, V21, P1065, DOI 10.1017/S0954579409990046; Lahey BB, 2009, AM PSYCHOL, V64, P241, DOI 10.1037/a0015309; Lawson DW, 2012, P ROY SOC B-BIOL SCI, V279, P4755, DOI 10.1098/rspb.2012.1635; Le Coeur C, 2015, BEHAV ECOL, V26, P1285, DOI 10.1093/beheco/arv074; Lee WE, 2006, PSYCHOL MED, V36, P345, DOI 10.1017/S0033291705006847; Livesley W. J., 2009, DIMENSIONAL ASSESSME; Lukas D, 2013, SCIENCE, V341, P526, DOI 10.1126/science.1238677; Lukaszewski AW, 2014, EVOL HUM BEHAV, V35, P319, DOI 10.1016/j.evolhumbehav.2014.03.002; Lyon BE, 2012, PHILOS T R SOC B, V367, P2266, DOI 10.1098/rstb.2012.0012; MacDonald K.B., 2012, HDB TEMPERAMENT, P273; MacKinnon DP, 2007, ANNU REV PSYCHOL, V58, P593, DOI 10.1146/annurev.psych.58.110405.085542; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Miller G, 2000, ANN NY ACAD SCI, V907, P62; Miller GF, 2013, PSYCHOL INQ, V24, P207, DOI 10.1080/1047840X.2013.817937; Mokkonen M, 2012, J ANIM ECOL, V81, P277, DOI 10.1111/j.1365-2656.2011.01903.x; Moller AP, 2002, OECOLOGIA, V132, P492, DOI 10.1007/s00442-002-0952-2; Nesse R M, 2001, Med Health Care Philos, V4, P37, DOI 10.1023/A:1009938513897; Nesse RM, 2001, ANN NY ACAD SCI, V935, P75; Nettle D, 2006, P ROY SOC B-BIOL SCI, V273, P611, DOI 10.1098/rspb.2005.3349; Nettle D, 2008, AM NAT, V172, P658, DOI 10.1086/591690; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Ozer DJ, 2006, ANNU REV PSYCHOL, V57, P401, DOI 10.1146/annurev.psych.57.102904.190127; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Puts D, 2016, CURR OPIN PSYCHOL, V7, P28, DOI 10.1016/j.copsyc.2015.07.011; Reale D, 2010, PHILOS T R SOC B, V365, P3937, DOI 10.1098/rstb.2010.0222; Reser JE, 2011, EVOL PSYCHOL-US, V9, P207, DOI 10.1177/147470491100900209; Roberts BW, 2007, PERSPECT PSYCHOL SCI, V2, P313, DOI 10.1111/j.1745-6916.2007.00047.x; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Ruiz-Munoz D, 2012, HEALTH PLACE, V18, P408, DOI 10.1016/j.healthplace.2011.12.007; Sansone RA, 2011, J PERS DISORD, V25, P782, DOI 10.1521/pedi.2011.25.6.782; Scelza BA, 2013, EVOL ANTHROPOL, V22, P259, DOI 10.1002/evan.21373; Schmitt DP, 2012, EVOL PSYCHOL-US, V10, P720, DOI 10.1177/147470491201000406; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; SEFCEK JA, 2006, J PSYCHOL HUMAN SEXU, V18, P125, DOI DOI 10.1300/J056V18N02_05; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Skirbekk V, 2014, EUR J PERSONALITY, V28, P521, DOI 10.1002/per.1936; Skjaervo GR, 2011, EVOL HUM BEHAV, V32, P305, DOI 10.1016/j.evolhumbehav.2010.11.006; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stearns SC, 2010, NAT REV GENET, V11, P611, DOI 10.1038/nrg2831; Stewart-Williams S, 2013, PSYCHOL INQ, V24, P137, DOI 10.1080/1047840X.2013.804899; Stulp G, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054186; Tang-Martinez Z, 2010, ENCY ANIMAL BEHAV, P166; Troisi A, 2005, NEUROSCI BIOBEHAV R, V29, P159, DOI 10.1016/j.neubiorev.2004.06.012; Tyrer P, 2015, LANCET, V385, P717, DOI 10.1016/S0140-6736(14)61995-4; Ullrich S, 2007, J PERS DISORD, V21, P657, DOI 10.1521/pedi.2007.21.6.657; Vall G, 2015, BRIT J CLIN PSYCHOL, V54, P450, DOI 10.1111/bjc.12091; Widiger TA, 2007, AM PSYCHOL, V62, P71, DOI 10.1037/0003-066X.62.2.71; Wolf M, 2012, AM NAT, V179, P679, DOI 10.1086/665656; Wolf M, 2010, PHILOS T R SOC B, V365, P3959, DOI 10.1098/rstb.2010.0215; Yao SY, 2014, EVOL HUM BEHAV, V35, P481, DOI 10.1016/j.evolhumbehav.2014.06.007 110 6 6 1 23 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. MAY 2016 37 3 169 178 10.1016/j.evolhumbehav.2015.10.004 10 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences DK2BF WOS:000374718900001 2019-02-21 J Kim, JH; Nam, JM; Kim, JG Kim, Jae Hyun; Nam, Jong Min; Kim, Jae Geun Effects of nutrient availability on the amphicarpic traits of Persicaria thunbergii AQUATIC BOTANY English Article Allocation; Amphicarpy; Nutrient; Life-history strategies IMPATIENS-NOLI-TANGERE; REPRODUCTIVE-BEHAVIOR; LIFE-HISTORY; PLANTS; GROWTH; BRACTEATA; STRATEGY; SURVIVAL; SOLIDAGO; ECOLOGY Environmental factors affecting the expression of amphicarpic traits in Persicaria thunbergii are not well studied. We thus performed to investigate the effects of nutrients on the amphicarpic traits of P. thunbergii in a mesocosm experiment. Three nutrient levels were applied using different intervals between fertilization: no fertilization (low nutrient), fertilization at eight-week intervals (medium), and at four-week intervals (high). We compared the relative stem length growth rates (RGR(ST)) and biomass allocation of seedlings from aerial seeds (SA) and subterranean seeds (SS), and then investigated the flowering time and the seed production traits of P. thunbergii according to nutrient level. The results showed that RGR(ST), biomass allocation and total biomass were not different between SA and SS at all levels. Aerial flowering started earlier than subterranean flowering, in contrast to other amphicarpic plants. Subterranean seed allocation and the number of subterranean seeds were stable regardless of nutrient levels whereas aerial seed allocation decreased with increasing nutrient level. The number of aerial seeds per biomass with low nutrient was significantly higher than that at other levels. P. thunbergii showed a different trait of seed production: subterranean seeds appeared to play a role in retaining the mother-site while aerial seeds can escape the site conditions at low nutrient levels. In conclusion, the reproductive strategy of P. thunbergii on aerial propagule was changeable but not subterranean propagule under various nutrient conditions. SA and SS were similar about growth responses. Those characteristics would increase survivability of P. thunbergii. Evolutionary drivers might explain the differences of life-history strategies in flowering time between the aquatic P. thunbergii and other arid amphicarpic plants. (C) 2016 Elsevier B.V. All rights reserved. [Kim, Jae Hyun; Kim, Jae Geun] Seoul Natl Univ, Dept Biol Educ, Seoul 08826, South Korea; [Kim, Jae Geun] Seoul Natl Univ, Ctr Educ Res, Seoul 08826, South Korea; [Nam, Jong Min] Seoul Natl Univ, Res Inst Agr & Life Sci, Seoul 08826, South Korea Kim, JG (reprint author), Seoul Natl Univ, Dept Biol Educ, Seoul 08826, South Korea. jaegkim@snu.ac.kr Kim, Jae Geun/0000-0002-9181-8830 Basic Science Research Program through National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2012R1A1A2001007, NRF-2015R1D1A1A01057373]; Korea Ministry of Environment as "The Eco-Innovation Project" [416-111-010] This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2012R1A1A2001007, NRF-2015R1D1A1A01057373), and the Korea Ministry of Environment as "The Eco-Innovation Project, 416-111-010." ABRAHAMSON WG, 1973, AM NAT, V107, P651, DOI 10.1086/282864; Barker NP, 2005, ANN MO BOT GARD, V92, P445; BLOOM AJ, 1985, ANNU REV ECOL SYST, V16, P363, DOI 10.1146/annurev.es.16.110185.002051; BRAY RH, 1945, SOIL SCI, V59, P39, DOI 10.1097/00010694-194501000-00006; Brouwer R., 1962, J AGR SCI, V10, P399; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; CHEPLICK GP, 1982, OECOLOGIA, V52, P327, DOI 10.1007/BF00367955; CHEPLICK GP, 1987, TRENDS ECOL EVOL, V2, P97, DOI 10.1016/0169-5347(87)90166-2; CHEPLICK GP, 1983, B TORREY BOT CLUB, V110, P442, DOI 10.2307/2996277; Cheplick Gregory P., 1994, Plant Species Biology, V9, P119, DOI 10.1111/j.1442-1984.1994.tb00092.x; Choo YH, 2015, AQUAT BOT, V121, P33, DOI 10.1016/j.aquabot.2014.11.001; Choo YH, 2014, AQUAT BOT, V119, P15, DOI 10.1016/j.aquabot.2014.06.006; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gedroc JJ, 1996, FUNCT ECOL, V10, P44, DOI 10.2307/2390260; Grime J. P., 2006, PLANT STRATEGIES VEG; IWASA Y, 1984, THEOR POPUL BIOL, V25, P78, DOI 10.1016/0040-5809(84)90007-8; KAMPHAKE LJ, 1967, WATER RES, V1, P205, DOI 10.1016/0043-1354(67)90011-5; Kaul V, 2000, CURR SCI INDIA, V78, P39; KAWANO S, 1990, Plant Species Biology, V5, P97, DOI 10.1111/j.1442-1984.1990.tb00196.x; Kawano S, 2008, PLANT SPEC BIOL, V23, P222, DOI 10.1111/j.1442-1984.2008.00226.x; Kim DH, 2013, ECOL ENG, V61, P90, DOI 10.1016/j.ecoleng.2013.09.022; Kim DH, 2012, J PLANT BIOL, V55, P226, DOI 10.1007/s12374-011-0298-6; Kim J. G., 2004, METHOD IN ECOLOGY; KOLLER D, 1964, AM J BOT, V51, P26, DOI 10.2307/2440059; MASUDA M, 1994, ECOL RES, V9, P67, DOI 10.1007/BF02347243; Murphy J. A. M. E. S., 1962, ANAL CHIM ACTA, V27, P31, DOI DOI 10.1016/S0003-2670(00)88444-5; POORTER H, 1990, PLANT PHYSIOL, V94, P621, DOI 10.1104/pp.94.2.621; Poorter H, 2012, NEW PHYTOL, V193, P30, DOI 10.1111/j.1469-8137.2011.03952.x; SCHMID B, 1993, EVOLUTION, V47, P61, DOI 10.1111/j.1558-5646.1993.tb01199.x; SCHNEE BK, 1986, AM J BOT, V73, P376, DOI 10.2307/2444081; SOLORZANO L, 1969, LIMNOL OCEANOGR, V14, P799, DOI 10.4319/lo.1969.14.5.0799; Suzuki M, 2007, ECOL RES, V22, P496, DOI 10.1007/s11284-006-0037-5; Tilman D, 1988, PLANT STRATEGIES DYN; TRAPP EJ, 1988, OECOLOGIA, V75, P285, DOI 10.1007/BF00378611; Urbanska Krystyna M., 1997, P81; ZEIDE B, 1978, AM NAT, V112, P636, DOI 10.1086/283305 36 3 6 0 5 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3770 1879-1522 AQUAT BOT Aquat. Bot. MAY 2016 131 45 50 10.1016/j.aquabot.2016.03.001 6 Plant Sciences; Marine & Freshwater Biology Plant Sciences; Marine & Freshwater Biology DK4VV WOS:000374919300006 2019-02-21 J Thomas, DC; Vandegrift, R; Ludden, A; Carroll, GC; Roy, BA Thomas, Daniel C.; Vandegrift, Roo; Ludden, Ashley; Carroll, George C.; Roy, Bitty A. Spatial Ecology of the Fungal Genus Xylaria in a Tropical Cloud Forest BIOTROPICA English Article decomposer; endophyte; Foraging Ascomycete hypothesis; host preference; life-history strategy; spatial analysis; tropical cloud forest; Xylariaceae; endofitos; descomponedor; Hipotesis del Ascomiceto Forrajero; preferencia de hospedero; estrategia de historia de vida; analisis espacial; bosque tropical nublado; Xylariaceae LEAF-LITTER; ENDOPHYTES; DIVERSITY; PATTERNS; DISPERSAL; GRASSES; BIODIVERSITY; PLANTS; COMMUNITIES; FIELD Fungal symbioses with plants are ubiquitous, ancient, and vital to both ecosystem function and plant health. However, benefits to fungal symbionts are not well explored, especially in non-mycorrhizal fungi. The Foraging Ascomycete hypothesis proposes that some wood-decomposing fungi may shift life-history strategies to endophytism to bridge gaps in time and space between suitable substrates. To test this hypothesis we examine spatial relationships of Xylaria endophytic fungi in the forest canopy with Xylaria decomposer fungi on the forest floor. We sampled for fungi of the genus Xylaria using a spatially explicit sampling scheme in a remote Ecuadorian cloud forest, and concurrently carried out an extensive culture-based sampling of fungal foliar endophytes. We found 36 species of Xylaria in our 0.5ha plot, 31 of which were found to only occur as fruiting bodies. All five species of Xylaria found as endophytes were also found as fruiting bodies. We also tested the relationships of both stages of these fungi to environmental variables. Decomposer fungi were differentiated by species-specific habitat preferences, with three species being found closer to water than expected by chance. In contrast, endophytes displayed no sensitivity to environmental conditions, such as host, moisture, or canopy cover. We found evidence of spatial linkage between life stages in two species. We also demonstrate that direct transmission of endophytes from leaves to woody substrates is possible. These results indicate that endophytism may represent one way for decomposer fungi to escape moisture limitation, and thatendophytic fungi may act as sources of dispersal for decomposer fungi consistent with predictions of the Foraging Ascomycete hypothesis. Resumen Las simbiosis de plantas con hongos son ubicuas, ancestrales y vitales tanto para funciones ecosistemicas como para la salud de las plantas. Sin embargo, los beneficios a los hongos simbiontes no estan bien explorados, especialmente en hongos no micorrizicos. En este estudio examinamos las relaciones espaciales entre hongos endofitos del genero Xylaria en el dosel con los miembros descomponedores del mismo genero en el suelo, para probar la hipotesis de que algunos hongos poseen estrategias de historia de vida alternas, alternando entre estadios de vida descomponedores y endofitos para aumentar su dispersion y resistir escasez de recursos, conocida como la Hipotesis del Ascomiceto Forrajero. Muestreamos miembros del genero Xylaria usando un muestreo espacial explicito en un bosque de niebla remoto en Ecuador, y llevamos a cabo un muestreo extensivo de hongos endofitos foliares usando cultivos. Encontramos 36 especies de Xylaria en nuestro sitio de 0.5ha. De estas, 31 especies estuvieron presentes solamente como hongos descomponedores. Asimismo, todos los Xylaria endofitos fueron encontrados fueron encontrados como descomponedores. Evaluamos las relaciones entre ambos estadios de estos hongos con variables ambientales. Los hongos descomponedores se diferenciaron por preferencias de habitat especificas para cada especie, pero los endofitos no mostraron sensibilidad a condiciones ambientales, como humedad o cobertura del dosel. Encontramos evidencia de vinculacion espacial entre los estadios de vida en dos especies. En conjunto, nuestros resultados indican que el endofitismo podria representar un medio de escape de los hongos descomponedores a las limitaciones de humedad, y que los hongos endofitos pueden actuar como fuentes de dispersion para los hongos descomponedores, apoyando la Hipotesis del Ascomiceto Forrajero. [Thomas, Daniel C.; Vandegrift, Roo; Ludden, Ashley; Carroll, George C.; Roy, Bitty A.] Univ Oregon, Inst Ecol & Evolut, Eugene, OR 97403 USA Thomas, DC (reprint author), Univ Oregon, Inst Ecol & Evolut, Eugene, OR 97403 USA. dthomas@uoregon.edu National Science Foundation [DGE-0829517]; Harvard Travellers Club P. Bartlein contributed ideas for many of the spatial analyses. We thank all the staff at Reserva Los Cedros (www.reservaloscedros.org), but especially J. DeCoux, F. Lomas, and M. Obando for facilitating our work. We also thank M. Davis and J. McAlpine for helping with collecting and culturing; J. D. Simba Larco for tree identifications, and Y.-M. Ju for aid in identifying specimens. F. Campos-Cerda for providing Spanish translation of the abstract, and B. T. M. Dentinger for commenting on a draft. We also thank two anonymous reviewers and the associate editor for helpful comments on a previous version of this manuscript. We are especially grateful to our collaborators at the Museo Ecuatoriano de Ciencias Naturales (M. Altamirano, R. Batallas, D. Fernandez, M. Penafiel Cevallos) and the Escuela Politecnica Nacional (L. Albuja, and A. Troya) for helping us get the necessary permits to work in Ecuador through the Ministerio del Ambiente de Ecuador (No. 001-07 IC-F-DRCI-MA, No. 02-10-IC-FLO-DPAI/MA, No. 03-09-IC-FAU-DPAI/MA, No. 07-2010-IC-FAU-DPAI/MA, No. 03-2011-IC-FLO-DPAI/MA). R. Vandegrift was supported by a National Science Foundation Graduate Research Fellowship (DGE-0829517). D. Thomas was supported by a grant from the Harvard Travellers Club. Arnold AE, 2007, ECOLOGY, V88, P541, DOI 10.1890/05-1459; Arnold AE, 2000, ECOL LETT, V3, P267, DOI 10.1046/j.1461-0248.2000.00159.x; Arnold AE, 2003, MYCOLOGIA, V95, P388, DOI 10.2307/3761880; Baas Seeking L. G. M., 1934, GEOBIOLOGIE INLEIDIN; Bayman P, 1998, MYCOL RES, V102, P944, DOI 10.1017/S095375629700590X; Berendsen RL, 2012, TRENDS PLANT SCI, V17, P478, DOI 10.1016/j.tplants.2012.04.001; Berlec A, 2012, PLANT SCI, V193, P96, DOI 10.1016/j.plantsci.2012.05.010; Bluethgen Nico, 2006, BMC Ecology, V6, P9, DOI 10.1186/1472-6785-6-9; Bruijnzeel LA, 1998, ECOLOGY, V79, P3, DOI 10.2307/176859; BURNHAM KP, 1978, BIOMETRIKA, V65, P625, DOI 10.2307/2335915; Cannon PF, 2002, MYCOLOGIA, V94, P210, DOI 10.2307/3761797; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303; CARROLL G, 1983, MYCOLOGIA, V75, P53, DOI 10.2307/3792923; CARROLL G, 1988, ECOLOGY, V69, P2, DOI 10.2307/1943154; Carroll G. C., 1999, 16 INT BOT C; CHAO A, 1984, SCAND J STAT, V11, P265; Chaparro JM, 2012, BIOL FERT SOILS, V48, P489, DOI 10.1007/s00374-012-0691-4; CHAPELA IH, 1988, NEW PHYTOL, V110, P47, DOI 10.1111/j.1469-8137.1988.tb00236.x; Chaves MM, 2002, ANN BOT-LONDON, V89, P907, DOI 10.1093/aob/mcf105; CLARK PJ, 1954, ECOLOGY, V35, P445, DOI 10.2307/1931034; Clay K, 2002, AM NAT, V160, pS99, DOI 10.1086/342161; CLAY K, 1990, ANNU REV ECOL SYST, V21, P275, DOI 10.1146/annurev.es.21.110190.001423; CLAY K, 1988, ECOLOGY, V69, P10, DOI 10.2307/1943155; Clobert J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P1, DOI 10.1093/acprof:oso/9780199608898.001.0001; COLWELL RK, 1994, PHILOS T ROY SOC B, V345, P101, DOI 10.1098/rstb.1994.0091; Davis EC, 2008, AM J BOT, V95, P914, DOI 10.3732/ajb.2006463; Davis EC, 2003, AM J BOT, V90, P1661, DOI 10.3732/ajb.90.11.1661; Dentinger BTM, 2010, MOL ECOL RESOUR, V10, P628, DOI 10.1111/j.1755-0998.2009.02825.x; DIXON P, 1994, ECOLOGY, V75, P1940, DOI 10.2307/1941598; DORMANN C. F., 2008, R NEWS, V8, P8, DOI DOI 10.1159/; EVELING DW, 1990, MYCOL RES, V94, P998, DOI 10.1016/S0953-7562(09)81320-8; Fenchel T, 2004, BIOSCIENCE, V54, P777, DOI 10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2; Fortin M.-J., 2005, SPATIAL ANAL GUIDE E; FREEMAN S, 1993, SCIENCE, V260, P75, DOI 10.1126/science.260.5104.75; Galante TE, 2011, MYCOLOGIA, V103, P1175, DOI 10.3852/10-388; Gange AC, 2007, SCIENCE, V316, P71, DOI 10.1126/science.1137489; GARDES M, 1993, MOL ECOL, V2, P113, DOI 10.1111/j.1365-294X.1993.tb00005.x; GENTRY AH, 1992, OIKOS, V63, P19, DOI 10.2307/3545512; Green J, 2006, TRENDS ECOL EVOL, V21, P501, DOI 10.1016/j.tree.2006.06.012; Green JL, 2004, NATURE, V432, P747, DOI 10.1038/nature03034; Grubisha LC, 2007, MOL ECOL, V16, P1811, DOI 10.1111/j.1365-294X.2007.03264.x; Hanson CA, 2012, NAT REV MICROBIOL, V10, P497, DOI 10.1038/nrmicro2795; Higgins KL, 2014, FUNGAL ECOL, V8, P1, DOI 10.1016/j.funeco.2013.12.005; Higgins KL, 2011, MYCOLOGIA, V103, P247, DOI 10.3852/09-158; Hsieh HM, 2010, MOL PHYLOGENET EVOL, V54, P957, DOI 10.1016/j.ympev.2009.12.015; HURTT GC, 1995, J THEOR BIOL, V176, P1, DOI 10.1006/jtbi.1995.0170; Ikeda A, 2014, POPUL ECOL, V56, P289, DOI 10.1007/s10144-013-0412-3; Jones N, 2013, NATURE, V504, P199, DOI 10.1038/504199a; Koberl M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024452; Krauss P, 1997, PLANT CELL ENVIRON, V20, P1079, DOI 10.1111/j.1365-3040.1997.tb00684.x; Lau MK, 2013, FUNGAL ECOL, V6, P365, DOI 10.1016/j.funeco.2013.06.003; Liu C, 2001, J VEG SCI, V12, P411, DOI 10.2307/3236855; Lodge DJ, 1997, BIODIVERS CONSERV, V6, P681, DOI 10.1023/A:1018314219111; Malloch D., 1992, FUNGAL COMMUNITY ITS, P147; Martiny JBH, 2006, NAT REV MICROBIOL, V4, P102, DOI 10.1038/nrmicro1341; MAY RM, 1991, NATURE, V352, P475, DOI 10.1038/352475a0; MOORE AM, 1986, SOIL BIOL BIOCHEM, V18, P427, DOI 10.1016/0038-0717(86)90049-0; Norros V, 2012, OIKOS, V121, P961, DOI 10.1111/j.1600-0706.2012.20052.x; Okane I, 2008, MYCOSCIENCE, V49, P359, DOI 10.1007/s10267-008-0440-6; Oksanen J, 2013, PACKAGE VEGAN R PACK, V254, P20; Osono T, 2006, CAN J MICROBIOL, V52, P701, DOI 10.1139/W06-023; Peay KG, 2012, MOL ECOL, V21, P4122, DOI 10.1111/j.1365-294X.2012.05666.x; Peay KG, 2010, ECOLOGY, V91, P3631, DOI 10.1890/09-2237.1; Pebesma E. J., 2005, R NEWS; Peck M., 2008, DEV SUSTAINABLE NETW; Persoh D, 2013, FUNGAL DIVERS, V60, P55, DOI 10.1007/s13225-013-0225-x; Policha T., 2014, THESIS; Porras-Alfaro A, 2011, ANNU REV PHYTOPATHOL, V49, P291, DOI 10.1146/annurev-phyto-080508-081831; Promputtha I, 2007, MICROB ECOL, V53, P579, DOI 10.1007/s00248-006-9117-x; Promputtha I, 2010, FUNGAL DIVERS, V41, P89, DOI 10.1007/s13225-010-0024-6; R Core Team, 2014, R LANG ENV STAT COMP; REICH PB, 1991, OECOLOGIA, V86, P16, DOI 10.1007/BF00317383; Rodriguez RJ, 2009, NEW PHYTOL, V182, P314, DOI 10.1111/j.1469-8137.2009.02773.x; ROGERS JD, 1979, MYCOLOGIA, V71, P1, DOI 10.2307/3759218; Rogers JD, 2000, MYCOL RES, V104, P1412, DOI 10.1017/S0953756200003464; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Roper M, 2010, P NATL ACAD SCI USA, V107, P17474, DOI 10.1073/pnas.1003577107; Roy BA, 2001, EVOLUTION, V55, P41; Rudgers JA, 2009, ECOLOGY, V90, P1531, DOI 10.1890/08-0116.1; Saikkonen K, 2006, TRENDS PLANT SCI, V11, P428, DOI 10.1016/j.tplants.2006.07.001; Schardl CL, 2004, ANNU REV PLANT BIOL, V55, P315, DOI 10.1146/annurev.arplant.55.031903.141735; Schoch CL, 2012, P NATL ACAD SCI USA, V109, P6241, DOI 10.1073/pnas.1117018109; Schulz B, 2005, MYCOL RES, V109, P661, DOI 10.1017/S095375620500273X; Schulz B, 1999, MYCOL RES, V103, P1275, DOI 10.1017/S0953756299008540; Seboth J., 1881, FLORA BRASILIENSIS, V6, P17; STONE JK, 1987, CAN J BOT, V65, P2614, DOI 10.1139/b87-352; Stone JK, 2004, BIODIVERSITY FUNGI I, P241; Suryanarayanan TS, 2002, CAN J BOT, V80, P818, DOI [10.1139/b02-069, 10.1139/B02-069]; Telford RJ, 2006, SCIENCE, V312, P1015, DOI 10.1126/science.1125669; Thomas D., 2014, CODE SPATIAL ECOLOGY; Vaz ABM, 2014, FUNGAL ECOL, V8, P28, DOI 10.1016/j.funeco.2013.12.008; Vazquez DP, 2007, OIKOS, V116, P1120, DOI 10.1111/j.2007.0030-1299.15825.x; Veresoglou SD, 2014, PLANT SOIL, V377, P395, DOI 10.1007/s11104-013-2008-2; Whalley AJS, 1996, MYCOL RES, V100, P897, DOI 10.1016/S0953-7562(96)80042-6; Woodward C, 2012, HORTSCIENCE, V47, P699 95 8 8 3 46 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0006-3606 1744-7429 BIOTROPICA Biotropica MAY 2016 48 3 381 393 10.1111/btp.12273 13 Ecology Environmental Sciences & Ecology DK6WB WOS:000375065200013 2019-02-21 J Boivin, G; Ellers, J Boivin, G.; Ellers, J. Replacing qualitative life-history traits by quantitative indices in parasitoid evolutionary ecology ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article ovigeny index; spermatogeny index; dichotomy hypothesis; specialist; generalist DEVELOPMENTAL TRADE-OFFS; BIOLOGICAL-CONTROL; SEX ALLOCATION; EGG-PRODUCTION; CLUTCH SIZE; BODY-SIZE; PHENOTYPIC PLASTICITY; FEEDING-BEHAVIOR; CADDIS FLIES; HOST-RANGE Life-history traits, which describe the various aspects of the life cycle of a species, can be either quantitative or qualitative. Quantitative traits are likely to adapt to gradual changes in the environment of a species, whereas qualitative traits, which refer to traits that are discontinuous in their variation, pose constraints on the evolution of a species. Traits that are described as qualitative may indeed represent discontinuous characteristics or they can be the result of an oversimplification in the description of the life history of a species. The ovigeny index, which describes the temporal distribution of egg production for a species, has replaced a qualitative life-history trait and has been an important contribution in our understanding of the reproductive ecology of insect parasitoids. We propose here that several other qualitative life-history traits, currently used to describe the evolutionary ecology of insect parasitoids, could advantageously be replaced by quantitative life-history traits. Although replacing these qualitative life-history traits will require devising indices that are biologically and ecologically meaningful, the potential gain in our understanding of the evolutionary forces that have shaped the diversity of life-history strategies of insect parasitoids is important and would fully warrant this effort. [Boivin, G.] Agr & Agroalimentaire Canada, Ctr Rech & Dev Hort, 430 Boul Gouin, St Jean, PQ J3B 3E6, Canada; [Ellers, J.] Vrije Univ Amsterdam, Dept Ecol Sci, Sect Anim Ecol, De Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands Boivin, G (reprint author), Agr & Agroalimentaire Canada, Ctr Rech & Dev Hort, 430 Boul Gouin, St Jean, PQ J3B 3E6, Canada. guy.boivin@agr.gc.ca Ellers, Jacintha/K-5823-2012 Ellers, Jacintha/0000-0003-2665-1971 Berger D, 2012, J ANIM ECOL, V81, P1244, DOI 10.1111/j.1365-2656.2012.02010.x; Bernstein Carlos, 2008, P129, DOI 10.1002/9780470696200.ch7; Bezemer TM, 2003, ANIM BEHAV, V66, P1119, DOI 10.1006/anbe.2003.2296; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BLACKBURN TM, 1991, J ANIM ECOL, V60, P151, DOI 10.2307/5451; Boivin G, 2005, OECOLOGIA, V143, P198, DOI 10.1007/s00442-004-1800-3; Boivin G, 2013, ENTOMOL EXP APPL, V146, P149, DOI 10.1111/j.1570-7458.2012.01291.x; Boivin G, 2012, J INSECT PHYSIOL, V58, P1694, DOI 10.1016/j.jinsphys.2012.10.014; Bressac C, 2008, J EXP ZOOL PART B, V310B, P160, DOI 10.1002/jez.b.21168; Carbone SS, 2003, ENTOMOL EXP APPL, V106, P127, DOI 10.1046/j.1570-7458.2003.00011.x; Chapman RE, 2003, MOL ECOL, V12, P2801, DOI 10.1046/j.1365-294X.2003.01957.x; CHIHRANE J, 1994, ENTOMOPHAGA, V39, P11, DOI 10.1007/BF02373490; Damiens D, 2006, BEHAV ECOL, V17, P138, DOI 10.1093/beheco/arj009; Desneux N, 2009, J INSECT PHYSIOL, V55, P321, DOI 10.1016/j.jinsphys.2008.12.009; Durocher-Granger L, 2011, ENTOMOL EXP APPL, V140, P262, DOI 10.1111/j.1570-7458.2011.01158.x; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Ferracini C, 2006, ENTOMOL EXP APPL, V121, P229, DOI [10.1111/j.1570-8703.2006.00479.x, 10.1111/j.1570-7458.2006.00479.x]; FLANDERS STANLEY E., 1950, CANADIAN ENT, V82, P134; Foitzik S, 2000, BEHAV ECOL SOCIOBIOL, V47, P424, DOI 10.1007/s002650050686; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; GRIFFITHS NT, 1988, BEHAV ECOL SOCIOBIOL, V22, P211, DOI 10.1007/BF00300571; HALLIDAY T, 1987, ANIM BEHAV, V35, P939, DOI 10.1016/S0003-3472(87)80138-0; HARVEY JA, 1994, ECOLOGY, V75, P1420, DOI 10.2307/1937465; Harvey JA, 2000, OIKOS, V88, P621, DOI 10.1034/j.1600-0706.2000.880319.x; Harvey JA, 2010, J INSECT PHYSIOL, V56, P1178, DOI 10.1016/j.jinsphys.2010.03.018; HEIMPEL GE, 1995, J ANIM ECOL, V64, P153, DOI 10.2307/5751; Henter HJ, 2004, J EVOLUTION BIOL, V17, P886, DOI 10.1111/j.1420-9101.2004.00746.x; Herz A, 2002, EUR J ENTOMOL, V99, P117, DOI 10.14411/eje.2002.020; Irvin NA, 2009, BIOL CONTROL, V48, P125, DOI 10.1016/j.biocontrol.2008.10.013; Javois J, 2011, ENTOMOL EXP APPL, V139, P187, DOI 10.1111/j.1570-7458.2011.01120.x; Jervis M. A., 1996, P63; Jervis MA, 1996, ECOL ENTOMOL, V21, P41, DOI 10.1111/j.1365-2311.1996.tb00264.x; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; Jervis MA, 2003, FUNCT ECOL, V17, P375, DOI 10.1046/j.1365-2435.2003.00742.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2007, BIOL J LINN SOC, V90, P293, DOI 10.1111/j.1095-8312.2007.00721.x; KIDD NAC, 1989, RES POPUL ECOL, V31, P235, DOI 10.1007/BF02513204; Kim SY, 2011, J EVOLUTION BIOL, V24, P295, DOI 10.1111/j.1420-9101.2010.02165.x; Kuriachan I, 2011, J INSECT SCI, V11, DOI 10.1673/031.011.0103; LeRalec A, 1995, ENTOMOPHAGA, V40, P87; Lucas E, 2001, BIOL CONTROL, V20, P147, DOI 10.1006/bcon.2000.0890; Martel V, 2011, J INSECT PHYSIOL, V57, P682, DOI 10.1016/j.jinsphys.2011.01.018; Martel V, 2007, ECOL ENTOMOL, V32, P393, DOI 10.1111/j.1365-2311.2007.00895.x; Mayhew PJ, 1999, J ANIM ECOL, V68, P906, DOI 10.1046/j.1365-2656.1999.00338.x; Mayhew PJ, 1999, ANIM BEHAV, V58, P131, DOI 10.1006/anbe.1999.1106; Milano P, 2010, NEOTROP ENTOMOL, V39, P172, DOI 10.1590/S1519-566X2010000200005; Modanu M, 2013, EVOL DEV, V15, P205, DOI 10.1111/ede.12034; ODE PJ, 1995, J ANIM ECOL, V64, P213, DOI 10.2307/5756; Olson DM, 1998, ENVIRON ENTOMOL, V27, P508, DOI 10.1093/ee/27.2.508; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Quicke D.L., 1997, PARASITIC WASPS; Quimio GM, 2000, J INSECT BEHAV, V13, P797, DOI 10.1023/A:1007854332262; Richard R, 2012, FUNCT ECOL, V26, P1399, DOI 10.1111/j.1365-2435.2012.02050.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Riddick EW, 2005, BIOCONTROL, V50, P911, DOI 10.1007/s10526-005-1311-0; RiveroLynch AP, 1997, FUNCT ECOL, V11, P184, DOI 10.1046/j.1365-2435.1997.00076.x; Roff Derek A., 1992; Roitberg BD, 2001, CAN ENTOMOL, V133, P429, DOI 10.4039/Ent133429-3; Saigo T, 2004, P ROY SOC B-BIOL SCI, V271, pS509, DOI 10.1098/rsbl.2004.0238; Snook RR, 2014, EVOLUTION OF INSECT MATING SYSTEMS, P159; Stevens DJ, 1999, P ROY SOC B-BIOL SCI, V266, P1049, DOI 10.1098/rspb.1999.0742; Stevens DJ, 2000, P ROY SOC B-BIOL SCI, V267, P1511, DOI 10.1098/rspb.2000.1172; Stireman JO, 2005, J EVOLUTION BIOL, V18, P325, DOI 10.1111/j.1420-9101.2004.00850.x; Stokkebo S, 2000, ANIM BEHAV, V59, P1111, DOI 10.1006/anbe.2000.1407; Tagawa J, 2000, ENTOMOL EXP APPL, V97, P193, DOI 10.1023/A:1004007802543; Thorne AD, 2006, P ROY SOC B-BIOL SCI, V273, P1099, DOI 10.1098/rspb.2005.3416; THORNHILL R, 2001, EVOLUTION INSECT MAT; Traynor RE, 2005, ENTOMOL EXP APPL, V117, P41, DOI 10.1111/j.1570-7458.2005.00331.x; VET LEM, 1992, ANNU REV ENTOMOL, V37, P141, DOI 10.1146/annurev.en.37.010192.001041; Visser B, 2010, P NATL ACAD SCI USA, V107, P8677, DOI 10.1073/pnas.1001744107; Wajnberg E, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045915; Wheeler D, 1996, ANNU REV ENTOMOL, V41, P407, DOI 10.1146/annurev.en.41.010196.002203 74 5 5 2 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0013-8703 1570-7458 ENTOMOL EXP APPL Entomol. Exp. Appl. MAY 2016 159 2 SI 163 171 10.1111/eea.12425 9 Entomology Entomology DK7AC WOS:000375076200006 Bronze 2019-02-21 J Debecker, S; Sanmartin-Villar, I; de Guinea-Luengo, M; Cordero-Rivera, A; Stoks, R Debecker, Sara; Sanmartin-Villar, Iago; de Guinea-Luengo, Miguel; Cordero-Rivera, Adolfo; Stoks, Robby Integrating the pace-of-life syndrome across species, sexes and individuals: covariation of life history and personality under pesticide exposure JOURNAL OF ANIMAL ECOLOGY English Article Bateman's principle; behavioural syndromes; complex life cycle; consistent individual differences; coping style; hydroperiod; life-history theory; personality-productivity hypothesis; sexual size dimorphism; voltinism SEXUAL SIZE DIMORPHISM; RISK TRADE-OFF; WATER HABITAT GRADIENT; BODY-SIZE; ANTIPREDATOR BEHAVIOR; DAMSELFLY LARVAE; SLOW PACE; GROWTH; SELECTION; ODONATA The pace-of-life syndrome (POLS) hypothesis integrates covariation of life-history traits along a fast-slow continuum and covariation of behavioural traits along a proactive-reactive personality continuum. Few studies have investigated these predicted life-history/personality associations among species and between sexes. Furthermore, whether and how contaminants interfere with POLS patterns remains unexplored. We tested for covariation patterns in life history and in behaviour, and for life-history/personality covariation among species, among individuals within species and between sexes. Moreover, we investigated whether pesticide exposure affects covariation between life history and behaviour and whether species and sexes with a faster POLS strategy have a higher sensitivity to pesticides. We reared larvae of four species of Ischnura damselflies in a common garden experiment with an insecticide treatment (chlorpyrifos absent/present) in the final instar. We measured four life-history traits (larval growth rate during the pesticide treatment, larval development time, adult mass and life span) and two behavioural traits (larval feeding activity and boldness, each before and after the pesticide treatment). At the individual level, life-history traits and behavioural traits aligned along a fast-slow and a proactive-reactive continuum, respectively. Species-specific differences in life history, with fast-lived species having a faster larval growth and development, a lower mass at emergence and a shorter life span, suggested that time constraints in the larval stage were predictably driving life-history evolution both in the larval stage and across metamorphosis in the adult stage. Across species, females were consistently more slow-lived than males, reflecting that a large body size and a long life span are generally more important for females. In contrast to the POLS hypothesis, there was only little evidence for the expected positive coupling between life-history pace and proactivity. Pesticide exposure decreased larval growth rate and affected life-history/personality covariation in the most fast-lived species. Our study supports the existence of life-history and behavioural continua with limited support for life-history/personality covariation. Variation in digestive physiology may explain this decoupling of life history and behaviour and provide valuable mechanistic insights to understand and predict the occurrence of life-history/personality covariation patterns. [Debecker, Sara; Sanmartin-Villar, Iago; de Guinea-Luengo, Miguel; Stoks, Robby] Univ Leuven, Lab Aquat Ecol Evolut & Conservat, Charles Deberiotstr 32,Bus 2439, B-3000 Louvain, Belgium; [Sanmartin-Villar, Iago; Cordero-Rivera, Adolfo] Univ Vigo, Escola Enxenaria Forestal, Grp ECOEVO, Campus A Xunqueira S-N, Pontevedra 36005, Galiza, Spain Debecker, S (reprint author), Univ Leuven, Lab Aquat Ecol Evolut & Conservat, Charles Deberiotstr 32,Bus 2439, B-3000 Louvain, Belgium. sara.debecker@bio.kuleuven.be Debecker, Sara/0000-0002-6097-5307 Spanish Ministry [CGL2011-22629]; FEDER funds; FWO-Flanders [G.0704.13]; KULeuven Excellence Center Financing [PF/2010/07] We thank two anonymous reviewers and the associate editor for valuable comments on the manuscript, Cedric Vanappelghem, Christophe Brochard, Geert De Knijf, Rosa Ana Sanchez Guillen, Marie Van Dievel, Lieven Therry and Janne Swaegers for help with the collection of the damselflies, and Rony Van Aerschot and Ria Van Houdt for help during the laboratory experiment. SD is a PhD fellow of the Research Foundation-Flanders (FWO). This work was supported by research grant CGL2011-22629 from the Spanish Ministry with competences in Science, including FEDER funds, to ACR and ISV, and research grant G.0704.13 from FWO-Flanders and KULeuven Excellence Center Financing PF/2010/07 to RS. We declare no conflict of interest. BAKER RL, 1992, CAN J ZOOL, V70, P1161, DOI 10.1139/z92-162; BANKS MJ, 1987, J ANIM ECOL, V56, P815, DOI 10.2307/4950; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; Bell AM, 2007, P ROY SOC B-BIOL SCI, V274, P755, DOI 10.1098/rspb.2006.0199; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Biro PA, 2014, J ANIM ECOL, V83, P1186, DOI 10.1111/1365-2656.12210; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; Blanckenhorn WU, 2007, AM NAT, V169, P245, DOI 10.1086/510597; Blanckenhorn WU, 2005, ETHOLOGY, V111, P977, DOI 10.1111/j.1439-0310.2005.01147.x; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Brodin T, 2004, ECOLOGY, V85, P2927, DOI 10.1890/03-3120; Brodin T, 2013, SCIENCE, V339, P814, DOI 10.1126/science.1226850; Brodin T, 2009, BEHAV ECOL, V20, P30, DOI 10.1093/beheco/arn111; Burton T., 2011, P ROY SOC LOND B BIO, V281; Campero M, 2007, ECOL APPL, V17, P2111, DOI 10.1890/07-0442.1; Careau V, 2009, FUNCT ECOL, V23, P150, DOI 10.1111/j.1365-2435.2008.01468.x; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Congdon JD, 2001, ENVIRON TOXICOL CHEM, V20, P1698, DOI 10.1897/1551-5028(2001)020<1698:RABLHA>2.0.CO;2; Corbet Philip S., 2006, International Journal of Odonatology, V9, P1; Cordero A., 1997, Odonatologica, V26, P459; CORDERO A, 1991, Odonatologica, V20, P37; Cordero Rivera A., 1999, INT J ODONATOL, V2, P105, DOI DOI 10.1080/13887890.1999.9748118; Crawley M. J, 2012, R BOOK; Crowley PH, 2002, OIKOS, V96, P364, DOI 10.1034/j.1600-0706.2002.960218.x; Debecker S., 2016, DRYAD DIGITAL REPOSI; DesBlock M., 2008, OIKOS, V117, P245; DIJKSTRA K.-D.B, 2006, FIELD GUIDE DRAGONFL; Dinh Van K, 2014, J APPL ECOL, V51, P919, DOI 10.1111/1365-2664.12269; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; FAIRBAIRN DJ, 2007, SEX SIZE GENDER ROLE; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Forbes MR, 2007, TRENDS ECOL EVOL, V22, P111, DOI 10.1016/j.tree.2006.12.004; Fulton MH, 2001, ENVIRON TOXICOL CHEM, V20, P37, DOI 10.1897/1551-5028(2001)020<0037:AIIEFA>2.0.CO;2; Garamszegi L.Z., 2014, MODERN PHYLOGENETIC; Gosden TP, 2008, EVOLUTION, V62, P845, DOI 10.1111/j.1558-5646.2008.00323.x; Harris S, 2010, OIKOS, V119, P1711, DOI 10.1111/j.1600-0706.2010.18028.x; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Janssens L, 2013, ENVIRON POLLUT, V177, P143, DOI 10.1016/j.envpol.2013.02.016; Johansson F, 2004, ECOL ENTOMOL, V29, P196, DOI 10.1111/j.0307-6946.2004.00592.x; Johansson F, 2000, FRESHWATER BIOL, V43, P149, DOI 10.1046/j.1365-2427.2000.00532.x; Johansson F, 2009, J ANIM ECOL, V78, P772, DOI 10.1111/j.1365-2656.2009.01530.x; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Jonsson M, 2014, SCI TOTAL ENVIRON, V472, P108, DOI 10.1016/j.scitotenv.2013.10.104; King AJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081116; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; McDermott DR, 2014, BEHAV ECOL SOCIOBIOL, V68, P425, DOI 10.1007/s00265-013-1657-8; McPeek MA, 2004, AM NAT, V163, pE88, DOI 10.1086/382755; McPeek MA, 2001, ECOLOGY, V82, P1535, DOI 10.1890/0012-9658(2001)082[1535:PABRTP]2.0.CO;2; Montiglio PO, 2014, ANIM BEHAV, V88, P29, DOI 10.1016/j.anbehav.2013.11.018; Morey SR, 2004, OIKOS, V104, P172, DOI 10.1111/j.0030-1299.2004.12623.x; Munkemuller T, 2012, METHODS ECOL EVOL, V3, P743, DOI 10.1111/j.2041-210X.2012.00196.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Niemela PT, 2012, FUNCT ECOL, V26, P450, DOI 10.1111/j.1365-2435.2011.01939.x; Nilsson-Ortman V, 2012, ECOLOGY, V93, P1340; R Core Team, 2013, R LANG ENV STAT COMP; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Rennie MD, 2008, J ANIM ECOL, V77, P916, DOI 10.1111/j.1365-2656.2008.01412.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Royaute R, 2015, FUNCT ECOL, V29, P962, DOI 10.1111/1365-2435.12413; Sanchez-Guillen RA, 2014, J EVOLUTION BIOL, V27, P76, DOI 10.1111/jeb.12274; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stenersen J., 2004, CHEM PESTICIDES MODE; Sternberg K., 1999, LIBELLEN BADEN WURTT; Stoks R, 2003, ECOLOGY, V84, P3327, DOI 10.1890/02-0696; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Stoks R, 2003, ECOLOGY, V84, P1576, DOI 10.1890/0012-9658(2003)084[1576:PALHSL]2.0.CO;2; Stoks R, 2012, ANNU REV ENTOMOL, V57, P249, DOI 10.1146/annurev-ento-120710-100557; Suhling F, 2005, OIKOS, V108, P609, DOI 10.1111/j.0030-1299.2005.13230.x; Tammaru T, 2010, EVOL ECOL, V24, P161, DOI 10.1007/s10682-009-9297-1; Tuzun N, 2015, AQUAT TOXICOL, V163, P81, DOI 10.1016/j.aquatox.2015.04.002; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Yasuda H, 2002, ECOL ENTOMOL, V27, P493, DOI 10.1046/j.1365-2311.2002.00428.x 79 23 23 6 48 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. MAY 2016 85 3 726 738 10.1111/1365-2656.12499 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology DK7QS WOS:000375121400014 26845756 Bronze 2019-02-21 J Shalev, I; Belsky, J Shalev, Idan; Belsky, Jay Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging? MEDICAL HYPOTHESES English Article TELOMERE LENGTH; OXIDATIVE STRESS; ALLOSTATIC LOAD; TRADE-OFF; DIFFERENTIAL SUSCEPTIBILITY; MAMMALIAN TARGET; CHILDHOOD TRAUMA; FITNESS COSTS; POOR HEALTH; STEM-CELLS Two seemingly independent bodies of research suggest a two-hit model of accelerated aging, one highlighting early-life stress and the other reproduction. The first, informed by developmental models of early life stress, highlights reduced longevity effects of early adversity on telomere erosion, whereas the second, informed by evolutionary theories of aging, highlights such effects with regard to reproductive cost (in females). The fact that both early-life adversity and reproductive effort are associated with shorter telomeres and increased oxidative stress raises the prospect, consistent with life-history theory, that these two theoretical frameworks currently informing much research are tapping into the same evolutionary developmental process of increased senescence and reduced longevity. Here we propose a mechanistic view of a two-hit model of accelerated aging in human females through (a) early-life adversity and (b) early reproduction, via a process of telomere erosion, while highlighting mediating biological embedding mechanisms that might link these two developmental aging processes. (C) 2016 Elsevier Ltd. All rights reserved. [Shalev, Idan] Penn State Univ, Dept Biobehav Hlth, 219 Biobehav Hlth Bldg, University Pk, PA 16802 USA; [Belsky, Jay] Univ Calif Davis, Dept Human Ecol, Davis, CA 95616 USA Shalev, I (reprint author), Penn State Univ, Dept Biobehav Hlth, 219 Biobehav Hlth Bldg, University Pk, PA 16802 USA. ius14@psu.edu Atwood CS, 2011, EXP GERONTOL, V46, P100, DOI 10.1016/j.exger.2010.09.007; Barha CK, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146424; Barker DJP, 2007, J INTERN MED, V261, P412, DOI 10.1111/j.1365-2796.2007.01809.x; Barker DJP, 1997, ACTA PAEDIATR, V86, P78; Bateson P, 2014, J PHYSIOL-LONDON, V592, P2357, DOI 10.1113/jphysiol.2014.271460; Bauch C, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2540; Bayne S, 2007, ANN NY ACAD SCI, V1114, P48, DOI 10.1196/annals.1396.023; Behl C, 1997, ENDOCRINOLOGY, V138, P101, DOI 10.1210/en.138.1.101; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2015, DEV PSYCHOL, V51, P816, DOI 10.1037/dev0000017; Belsky J, 2013, DEV PSYCHOPATHOL, V25, P1243, DOI 10.1017/S095457941300059X; Belsky J, 2014, PERSPECT PSYCHOL SCI, V9, P16, DOI 10.1177/1745691613513471; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Blackburn EH, 2000, NATURE, V408, P53, DOI 10.1038/35040500; Blomquist GE, 2009, BIOL LETTERS, V5, P339, DOI 10.1098/rsbl.2009.0009; BOYER D, 1992, FAM PLANN PERSPECT, V24, P4, DOI 10.2307/2135718; Broekman BFP, 2009, PEDIATRICS, V123, pE1011, DOI 10.1542/peds.2008-3344; Broer L, 2013, EUR J HUM GENET, V21, P1163, DOI 10.1038/ejhg.2012.303; BURKE CW, 1970, BRIT MED J, V1, P657, DOI 10.1136/bmj.1.5697.657; Chen C, 2008, J EXP MED, V205, P2397, DOI 10.1084/jem.20081297; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Choi J, 2008, BRAIN BEHAV IMMUN, V22, P600, DOI 10.1016/j.bbi.2007.12.004; CICCHETTI D, 1995, J AM ACAD CHILD PSY, V34, P541, DOI 10.1097/00004583-199505000-00008; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; Coppe JP, 2010, ANNU REV PATHOL-MECH, V5, P99, DOI 10.1140/annurev-pathol-121808-102144; Costantini D, 2011, J COMP PHYSIOL B, V181, P447, DOI 10.1007/s00360-011-0566-2; Danese A, 2007, P NATL ACAD SCI USA, V104, P1319, DOI 10.1073/pnas.0610362104; Dantzer B, 2015, EXP GERONTOL, V71, P38, DOI 10.1016/j.exger.2015.08.012; Dior UR, 2013, ANN EPIDEMIOL, V23, P13, DOI 10.1016/j.annepidem.2012.10.005; Doblhammer G, 2000, POP STUD-J DEMOG, V54, P169, DOI 10.1080/713779087; Drury SS, 2012, MOL PSYCHIATR, V17, P719, DOI 10.1038/mp.2011.53; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Entringer S, 2013, AM J OBSTET GYNECOL, V208, DOI 10.1016/j.ajog.2012.11.033; Epel ES, 2006, PSYCHONEUROENDOCRINO, V31, P277, DOI 10.1016/j.psyneuen.2005.08.011; Evans GW, 2003, DEV PSYCHOL, V39, P924, DOI 10.1037/0012-1649.39.5.924; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Gao J, 2015, PLOS ONE, V10; Gavrilov L. A., 1999, J ANTI-AGING MED, V2, P121; Geiger S, 2012, MOL ECOL, V21, P1500, DOI 10.1111/j.1365-294X.2011.05331.x; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; Gluckman PD, 2008, NEW ENGL J MED, V359, P61, DOI 10.1056/NEJMra0708473; Gotlib IH, 2015, MOL PSYCHIATR, V20, P615, DOI 10.1038/mp.2014.119; Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Haussmann MF, 2012, P ROY SOC B-BIOL SCI, V279, P1447, DOI 10.1098/rspb.2011.1913; Haussmann MF, 2010, CURR ZOOL, V56, P714; Haycock PC, 2014, BMJ-BRIT MED J, V349, DOI 10.1136/bmj.g4227; HAYFLICK L, 1961, EXP CELL RES, V25, P585, DOI 10.1016/0014-4827(61)90192-6; Heidinger BJ, 2012, P NATL ACAD SCI USA, V109, P1743, DOI 10.1073/pnas.1113306109; Heim C, 2001, BIOL PSYCHIAT, V49, P1023, DOI 10.1016/S0006-3223(01)01157-X; Hung TH, 2010, REPROD SCI, V17, P401, DOI 10.1177/1933719109359704; Jurk Diana, 2014, Nat Commun, V2, P4172, DOI 10.1038/ncomms5172; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kiecolt-Glaser JK, 2011, PSYCHOSOM MED, V73, P16, DOI 10.1097/PSY.0b013e31820573b6; Kim YJ, 2005, REPROD TOXICOL, V19, P487, DOI 10.1016/j.reprotox.2004.10.007; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Klengel T, 2013, NAT NEUROSCI, V16, P33, DOI 10.1038/nn.3275; KNUDSON AG, 1971, P NATL ACAD SCI USA, V68, P820, DOI 10.1073/pnas.68.4.820; Kotrschal A, 2007, BIOL LETTERS, V3, P128, DOI 10.1098/rsbl.2006.0594; Kroenke CH, 2011, PSYCHOSOM MED, V73, P533, DOI 10.1097/PSY.0b013e318229acfc; Laplante M, 2009, J CELL SCI, V122, P3589, DOI 10.1242/jcs.051011; Le Bourg E, 2007, AGEING RES REV, V6, P141, DOI 10.1016/j.arr.2007.04.002; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Lin MT, 2006, NATURE, V443, P787, DOI 10.1038/nature05292; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039; Ma HX, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020466; Manning EL, 2002, MAMM GENOME, V13, P234, DOI 10.1007/s003350020027; Marchetto NM, 2016, AM J OBSTET GYNECOL; McEwen BS, 1998, ANN NY ACAD SCI, V840, P33, DOI 10.1111/j.1749-6632.1998.tb09546.x; McGowan PO, 2009, NAT NEUROSCI, V12, P342, DOI 10.1038/nn.2270; Meaney MJ, 2007, TRENDS MOL MED, V13, P269, DOI 10.1016/j.molmed.2007.05.003; Medawar B., 1952, UNSOLVED PROBLEM BIO; Melchior M, 2007, AM J EPIDEMIOL, V166, P966, DOI 10.1093/aje/kwm155; MEYNE J, 1989, P NATL ACAD SCI USA, V86, P7049, DOI 10.1073/pnas.86.18.7049; Miller GE, 2011, PSYCHOL BULL, V137, P959, DOI 10.1037/a0024768; Miller GE, 2009, P NATL ACAD SCI USA, V106, P14716, DOI 10.1073/pnas.0902971106; Mitchell C, 2014, P NATL ACAD SCI USA, V111, P5944, DOI 10.1073/pnas.1404293111; Monaghan P, 2010, ANN NY ACAD SCI, V1206, P130, DOI 10.1111/j.1749-6632.2010.05705.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Murgatroyd C, 2009, NAT NEUROSCI, V12, P1559, DOI 10.1038/nn.2436; OLOVNIKO.AM, 1971, DOKL AKAD NAUK SSSR+, V201, P1496; Passos JF, 2010, MOL SYST BIOL, V6, DOI 10.1038/msb.2010.5; Pauliny A, 2006, MOL ECOL, V15, P1681, DOI 10.1111/j.1365-294X.2006.02862.x; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; Perls TT, 1997, NATURE, V389, P133, DOI 10.1038/38148; Picard M, 2014, NAT REV ENDOCRINOL, V10, P303, DOI 10.1038/nrendo.2014.22; Puterman E, 2012, SOC PERSONAL PSYCHOL, V6, P807, DOI 10.1111/j.1751-9004.2012.00465.x; Revesz D, 2014, NEUROBIOL AGING, V35, P1422, DOI 10.1016/j.neurobiolaging.2013.12.027; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Ricklefs RE, 2010, P NATL ACAD SCI USA, V107, P10314, DOI 10.1073/pnas.1005862107; Roa J, 2009, ENDOCRINOLOGY, V150, P5016, DOI 10.1210/en.2009-0096; Rode L, 2015, JNCI-J NATL CANCER I, V107, DOI 10.1093/jnci/djv074; Roth TL, 2009, BIOL PSYCHIAT, V65, P760, DOI 10.1016/j.biopsych.2008.11.028; Sahin E, 2011, NATURE, V470, P359, DOI 10.1038/nature09787; Sahin E, 2010, NATURE, V464, P520, DOI 10.1038/nature08982; Schieke SM, 2006, J BIOL CHEM, V281, P27643, DOI 10.1074/jbc.M603536200; Shalev C, 2013, PSYCHONEUROENDOCRINO, V38, P1835, DOI 10.1016/j.psyneuen.2013.03.010; Shalev I, 2013, MOL PSYCHIATR, V18, P576, DOI 10.1038/mp.2012.32; Shalev I, 2014, PEDIATRICS, V134, pE1315, DOI 10.1542/peds.2014-1669; Shalev I, 2012, BIOESSAYS, V34, P943, DOI 10.1002/bies.201200084; Sharma NK, 2012, NUCLEIC ACIDS RES, V40, P712, DOI 10.1093/nar/gkr758; Singhapol C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0052989; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Stein TP, 2008, FREE RADICAL RES, V42, P841, DOI 10.1080/10715760802510069; Swamy GK, 2008, JAMA-J AM MED ASSOC, V299, P1429, DOI 10.1001/jama.299.12.1429; Szyf M, 2011, EPIGENETICS-US, V6, P971, DOI 10.4161/epi.6.8.16793; Tabatabaie V, 2011, AGING-US, V3, P1202, DOI 10.18632/aging.100415; Theall KP, 2012, AM J EPIDEMIOL, V176, pS164, DOI 10.1093/aje/kws185; Toescu V, 2002, CLIN ENDOCRINOL, V57, P609, DOI 10.1046/j.1365-2265.2002.01638.x; Tomiyama AJ, 2012, PHYSIOL BEHAV, V106, P40, DOI 10.1016/j.physbeh.2011.11.016; Tyrka A. R., 2015, BIOL PSYCHIAT; Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; Waterland RA, 2007, ANNU REV NUTR, V27, P363, DOI 10.1146/annurev.nutr.27.061406.093705; Weaver ICG, 2004, NAT NEUROSCI, V7, P847, DOI 10.1038/nn1276; Weichhart T, 2012, METHODS MOL BIOL, V821, P1, DOI 10.1007/978-1-61779-430-8_1; Welberg LAM, 2001, NEUROSCIENCE, V104, P71, DOI 10.1016/S0306-4522(01)00065-3; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Ziomkiewicz A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0145753 125 15 15 1 28 CHURCHILL LIVINGSTONE EDINBURGH JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE, LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND 0306-9877 1532-2777 MED HYPOTHESES Med. Hypotheses MAY 2016 90 41 47 10.1016/j.mehy.2016.03.002 7 Medicine, Research & Experimental Research & Experimental Medicine DK3FF WOS:000374801800010 27063083 Green Published 2019-02-21 J Bech, C; Chappell, MA; Astheimer, LB; Londono, GA; Buttemer, WA Bech, Claus; Chappell, Mark A.; Astheimer, Lee B.; Londono, Gustavo A.; Buttemer, William A. A 'slow pace of life' in Australian old-endemic passerine birds is not accompanied by low basal metabolic rates JOURNAL OF COMPARATIVE PHYSIOLOGY B-BIOCHEMICAL SYSTEMIC AND ENVIRONMENTAL PHYSIOLOGY English Article Australian passerines; Basal metabolic rate; Pace-of-life; Life history; Tropical vs. temperate EXTENDED PARENTAL CARE; TROPICAL BIRDS; PHYLOGENETIC SIGNAL; HISTORY EVOLUTION; ORGAN SIZE; R PACKAGE; WATER; THERMOREGULATION; ENVIRONMENT; HONEYEATERS Life history theory suggests that species experiencing high extrinsic mortality rates allocate more resources toward reproduction relative to self-maintenance and reach maturity earlier ('fast pace of life') than those having greater life expectancy and reproducing at a lower rate ('slow pace of life'). Among birds, many studies have shown that tropical species have a slower pace of life than temperate-breeding species. The pace of life has been hypothesized to affect metabolism and, as predicted, tropical birds have lower basal metabolic rates (BMR) than temperate-breeding birds. However, many temperate-breeding Australian passerines belong to lineages that evolved in Australia and share 'slow' life-history traits that are typical of tropical birds. We obtained BMR from 30 of these 'old-endemics' and ten sympatric species of more recently arrived passerine lineages (derived from Afro-Asian origins or introduced by Europeans) with 'faster' life histories. The BMR of 'slow' temperate-breeding old-endemics was indistinguishable from that of new-arrivals and was not lower than the BMR of 'fast' temperate-breeding non-Australian passerines. Old-endemics had substantially smaller clutches and longer maximal life spans in the wild than new arrivals, but neither clutch size nor maximum life span was correlated with BMR. Our results suggest that low BMR in tropical birds is not functionally linked to their 'slow pace of life' and instead may be a consequence of differences in annual thermal conditions experienced by tropical versus temperate species. [Bech, Claus; Chappell, Mark A.; Astheimer, Lee B.; Buttemer, William A.] Univ Wollongong, Australian Flora & Fauna Res Ctr, Dept Biol Sci, Wollongong, NSW 2522, Australia; [Bech, Claus] Norwegian Univ Sci & Technol, Dept Biol, N-7491 Trondheim, Norway; [Chappell, Mark A.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Astheimer, Lee B.] Univ Wollongong, Dept Biomed Sci, Wollongong, NSW 2522, Australia; [Astheimer, Lee B.; Buttemer, William A.] Deakin Univ, Ctr Integrat Ecol, Geelong, Vic 3217, Australia; [Londono, Gustavo A.] Univ Icesi, Fac Ciencias Nat, Dept Ciencias Biol, Cali, Colombia Buttemer, WA (reprint author), Univ Wollongong, Australian Flora & Fauna Res Ctr, Dept Biol Sci, Wollongong, NSW 2522, Australia.; Buttemer, WA (reprint author), Deakin Univ, Ctr Integrat Ecol, Geelong, Vic 3217, Australia. buttemer@deakin.edu.au Bech, Claus/C-1086-2011 Bech, Claus/0000-0002-0860-0663; Buttemer, William/0000-0003-3176-4452 Australian Research Council [A19600561, DP0453021]; Australian Flora and Fauna Research Centre; U.C. Riverside Academic Senate funds; National Science Foundation [DEB-1120682]; Norwegian University of Science and Technology All procedures used in these studies were approved by the University of Wollongong Animal Ethics Committee in accordance with the National Health and Medical Research Council Code of Practice for the Care and Use of Animals for Scientific Purposes. The study was supported by funds from the Australian Research Council (Grant Nos. A19600561 and DP0453021) and the Australian Flora and Fauna Research Centre (to WAB and LBA), U.C. Riverside Academic Senate funds (to MAC), National Science Foundation grant DEB-1120682 (to S. K. Robinson and MAC) and the Norwegian University of Science and Technology (to CB). Ambrose SJ, 1996, AUST J ZOOL, V44, P107, DOI 10.1071/ZO9960107; Astheimer LB, 2002, EMU, V102, P19, DOI 10.1071/MU01031; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Buttemer WA, 2000, J AVIAN BIOL, V31, P479, DOI 10.1034/j.1600-048X.2000.310407.x; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; Chappell MA, 1999, J EXP BIOL, V202, P2269; COLLINS BG, 1980, COMP BIOCHEM PHYS A, V67, P629, DOI 10.1016/0300-9629(80)90252-2; DAAN S, 1990, AM J PHYSIOL, V259, pR333; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Geffen E, 2000, BEHAV ECOL SOCIOBIOL, V47, P250, DOI 10.1007/s002650050662; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; Higgins P. J., 2001, HDB AUSTR NZ ANTARCT, V5; Higgins PJ, 2002, HDB AUSTR NZ ANTARCT, V6; Higgins PJ, 2006, HDB AUSTR NZ ANTARCT, V7; Hulbert AJ, 2004, PHYSIOL BIOCHEM ZOOL, V77, P869, DOI 10.1086/422768; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Jetz W, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003261; Keast A., 1981, ECOLOGICAL BIOGEOGRA, P1891; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lill A, 2006, AUST J ZOOL, V54, P23, DOI 10.1071/ZO05029; Londono GA, 2015, FUNCT ECOL, V29, P338, DOI 10.1111/1365-2435.12348; Maddocks TA, 1997, CONDOR, V99, P104, DOI 10.2307/1370228; Magrath RD, 2000, AUK, V117, P479, DOI 10.1642/0004-8038(2000)117[0479:LITSLR]2.0.CO;2; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; McKechnie AE, 2004, PHYSIOL BIOCHEM ZOOL, V77, P502, DOI 10.1086/383511; Mckechnie AE, 2010, CURR ZOOL, V56, P741; McNab BK, 2015, J COMP PHYSIOL B, V185, P1, DOI 10.1007/s00360-014-0850-z; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Pearl R, 1928, RATE LIVING BEING AC; Pinheiro J, 2013, NLME LINEAR NONLINEA; Previtali MA, 2012, OIKOS, V121, P1483, DOI 10.1111/j.1600-0706.2012.020215.x; R Core Team, 2013, R LANG ENV STAT COMP; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Revell LJ, 2010, METHODS ECOL EVOL, V1, P319, DOI 10.1111/j.2041-210X.2010.00044.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Ritz C, 2008, BIOINFORMATICS, V24, P1549, DOI 10.1093/bioinformatics/btn227; ROWLEY I, 1991, BIRD POPULATION STUD, P22; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Russell EM, 2000, EMU, V100, P377, DOI 10.1071/MU0005S; Skutch A. F., 1985, AOU ORNITHOLOGICAL M, V36, P575; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Vezina F, 2006, J EXP BIOL, V209, P3141, DOI 10.1242/jeb.02338; Vitali SD, 1999, AUST J ZOOL, V47, P385, DOI 10.1071/ZO99023; Weathers WW, 1996, AUST J ZOOL, V44, P445, DOI 10.1071/ZO9960445; White CR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P929, DOI 10.1086/425186; White CR, 2007, P ROY SOC B-BIOL SCI, V274, P287, DOI 10.1098/rspb.2006.3727; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P20866, DOI 10.1073/pnas.0707683104; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wiersma P, 2012, J EXP BIOL, V215, P1662, DOI 10.1242/jeb.065144; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Woinarski J.C.Z., 1985, Proceedings of the Ecological Society of Australia, V14, P159; Yom-Tov Y., 1987, J AUSTR WILDLIFE, V14, P319, DOI DOI 10.1071/WR9870319 56 5 5 7 25 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0174-1578 1432-136X J COMP PHYSIOL B J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. MAY 2016 186 4 503 512 10.1007/s00360-016-0964-6 10 Physiology; Zoology Physiology; Zoology DJ6FZ WOS:000374307300008 26874837 2019-02-21 J Dong, XP; Vargas, K; Cunningham, JA; Zhang, HQ; Liu, T; Chen, F; Liu, JB; Bengtson, S; Donoghue, PCJ Dong, Xi-Ping; Vargas, Kelly; Cunningham, John A.; Zhang, Huaqiao; Liu, Teng; Chen, Fang; Liu, Jianbo; Bengtson, Stefan; Donoghue, Philip C. J. Developmental biology of the early Cambrian cnidarian Olivooides PALAEONTOLOGY English Article development; embryo; Cnidaria; Scyphozoa; Kuanchuanpu; Cambrian RAY TOMOGRAPHIC MICROSCOPY; SOUTH CHINA; PHYLOGENETIC SIGNIFICANCE; PALAEOSCOLECID WORMS; CONULARIID TEST; EMBRYOS; SHAANXI; FOSSILS; ECDYSOZOANS; EVOLUTION Fossilized embryos afford direct insight into the pattern of development in extinct organisms, providing unique tests of hypotheses of developmental evolution based in comparative embryology. However, these fossils can only be effective in this role if their embryology and phylogenetic affinities are well constrained. We elucidate and interpret the development of Olivooides from embryonic and adult stages and use these data to discriminate among competing interpretations of their anatomy and affinity. The embryology of Olivooides is principally characterized by the development of an ornamented periderm that initially forms externally and is subsequently formed internally, released at the aperture, facilitating the direct development of the embryo into an adult theca. Internal anatomy is known only from embryonic stages, revealing two internal tissue layers, the innermost of which is developed into three transversally arranged walls that partly divide the lumen into an abapertural region, interpreted as the gut of a polyp, and an adapertural region that includes structures that resemble the peridermal teeth of coronate scyphozoans. The anatomy and pattern of development exhibited by Olivooides appears common to the other known genus of olivooid, Quadrapyrgites, which differs in its tetraradial, as opposed to pentaradial symmetry. We reject previous interpretations of the olivooids as cycloneuralians, principally on the grounds that they lack a through gut and introvert, in embryo and adult. Instead we consider the affinities of the olivooids among medusozoan cnidarians; our phylogenetic analysis supports their classification as total-group Coronata, within crown-Scyphozoa. Olivooides and Quadrapyrgites evidence a broader range of life history strategies and bodyplan symmetry than is otherwise commonly represented in extant Scyphozoa specifically, and Cnidaria more generally. [Dong, Xi-Ping; Liu, Teng; Chen, Fang; Liu, Jianbo] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China; [Vargas, Kelly; Cunningham, John A.; Donoghue, Philip C. J.] Univ Bristol, Sch Earth Sci, Life Sci Bldg,Tyndall Ave, Bristol BS8 1TQ, Avon, England; [Cunningham, John A.; Bengtson, Stefan] Swedish Museum Nat Hist, Dept Palaeobiol, Box 50007, SE-10405 Stockholm, Sweden; [Zhang, Huaqiao] Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, Key Lab Econ Stratig & Palaeogeog, Nanjing 210008, Jiangsu, Peoples R China Donoghue, PCJ (reprint author), Univ Bristol, Sch Earth Sci, Life Sci Bldg,Tyndall Ave, Bristol BS8 1TQ, Avon, England. dongxp@pku.edu.cn; kelly.vargas@bristol.ac.uk; john.cunningham@bristol.ac.uk; hqzhang@nigpas.ac.cn; liuteng707@163.com; chenfang84@gmail.com; jbliu@pku.edu.cn; stefan.bengtson@nrm.se; phil.donoghue@bristol.ac.uk Dong, Xi-ping/N-5741-2014; Donoghue, Philip/A-3873-2008 Dong, Xi-ping/0000-0001-5917-7159; Donoghue, Philip/0000-0003-3116-7463; Bengtson, Stefan/0000-0003-0206-5791; Cunningham, John/0000-0002-2870-1832 National Natural Science Foundation of China [41372015]; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences [103102]; Research Fund for Doctoral Program of High Education [20060001059]; Science without Borders/CAPES; Danish Research Foundation [DNRF53]; Swedish Research Council [2010-3929, 2013-4290]; Natural Environment Research Council [NE/J018325/1, NE/F00348X/1]; Leverhulme Trust; Royal Society; Wolfson Foundation; Paul Scherrer Institute [20040261, 20050147, 20050597, 20060152, 20060846, 20070197, 20080872, 20100167, 20110963, 20130185, 20141047]; EU [312284]; Biotechnology and Biological Sciences Research Council [BB/G006660/1, BB/J00538X/1, BB/N000919/1]; Natural Environment Research Council [NE/F00348X/1] We would like to thank Julie Fife, Gai Zhikun, Neil Gostling, Jenny Greenwood, Amela Groso, Therese Huldtgren, Federica Marone, Maria Pawlowska, Peng Fan, Martin Rucklin, Marco Stampanoni and Ceri-Wynn Thomas for assistance at the beamline; Shuhai Xiao for discussion, and Han Jian for graciously providing access to his XTM data and generously allowing us to release these data as part of our publication. We thank Sally Thomas, Han Jian and an anonymous reviewer for their comments. This work was supported by the National Natural Science Foundation of China (Grant 41372015 to XPD), State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (Grant 103102 to XPD), the Research Fund for Doctoral Program of High Education (Grant 20060001059 to XPD), Science without Borders/CAPES (to KV), Danish Research Foundation (DNRF53 to SB and JAC), the Swedish Research Council (2010-3929 and 2013-4290 to SB), the Natural Environment Research Council (NE/J018325/1 to JAC and NE/F00348X/1 to PCJD), the Leverhulme Trust (to PCJD), the Royal Society and Wolfson Foundation (to PCJD), the Paul Scherrer Institute (Projects 20040261, 20050147, 20050597, 20060152, 20060846, 20070197, 20080872, 20100167, 20110963, 20130185, 20141047 to PCJD and SB) and EU FP7 grant agreement 312284 (CALIPSO). Bengtson S, 1997, SCIENCE, V277, P1645, DOI 10.1126/science.277.5332.1645; BENGTSON S, 1986, PROBLEMATIC FOSSIL T, P3; Bresciani J., 1991, MICROSCOPIC ANATOMY, V4, P197; Chen F, 2008, CHINESE SCI BULL, V53, P3860, DOI 10.1007/s11434-008-0452-9; CHEN J. Y, 2004, DAWN ANIMAL WORLD; Chen JY, 2004, PROG NAT SCI, V14, P167, DOI 10.1080/10020070412331343311; CHEN M.-E., 1982, SCI GEOL SINICA, V1982, P253; Leme JD, 2008, AMEGHINIANA, V45, P407; DONG X. P., 2016, DRYAD DATA REPOSITOR, DOI [10.5061/dryad.bp685, DOI 10.5061/DRYAD.BP685]; DONG X. P., 2016, BRISTOL DATA REPOSIT, DOI [10.5523/bris.ig22c0fcvoen1qrvpuoctgij9, DOI 10.5523/BRIS.IG22C0FCV0EN1QRVPU0CTGIJ9]; Dong XP, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0071; Donoghue P.C.J., 2015, EVOLUTIONARY DEV BIO, P45; Donoghue PCJ, 2006, NATURE, V442, P680, DOI 10.1038/nature04890; Donoghue PCJ, 2009, BIOESSAYS, V31, P178, DOI 10.1002/bies.200800128; dos Reis M, 2015, CURR BIOL, V25, P2939, DOI 10.1016/j.cub.2015.09.066; Erwin DH, 2011, SCIENCE, V334, P1091, DOI 10.1126/science.1206375; Han J, 2016, GONDWANA RES, V31, P150, DOI 10.1016/j.gr.2015.01.003; Han J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070741; Han JA, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013276; Harvey THP, 2010, EVOL DEV, V12, P177, DOI 10.1111/j.1525-142X.2010.00403.x; HENNIG W., 1950, GRUNDZUEGE THEORIE P; Hints O, 2004, CRIT MOM PERSP EARTH, P223; HOU X.-J., 2010, J EARTH SCI ENV CHAN, V32, P350; HOU XG, 1994, LETHAIA, V27, P11; Hua H, 2004, CHINESE SCI BULL, V49, P487, DOI 10.1360/03wd0400; JARMS G, 1991, HYDROBIOLOGIA, V216, P463, DOI 10.1007/BF00026500; JERRE F, 1994, LETHAIA, V27, P97, DOI 10.1111/j.1502-3931.1994.tb01562.x; Kraft P., 1989, SBORNIK GEOLOGICKYCH, V30, P9; KRISTENSEN R. M., 1991, MICROSCOPIC ANATOMY, V6; KRISTENSEN RM, 1991, MICROSCOPIC ANATOMY, V4, P377; Li P, 2007, CHINESE SCI BULL, V52, P2820, DOI 10.1007/s11434-007-0447-y; LI Y., 2012, J CHINA U GEOSCI EAR, V37, P869; LIU Y., 2007, FRONTIERS EARTH SCI, V1, P1; Liu Y.H., 2008, FRONTIERS BIOL CHINA, V3, P106; Liu Yun-Huan, 2006, Acta Palaeontologica Sinica, V45, P182; Liu Yun-huan, 2009, Acta Palaeontologica Sinica, V48, P688; Liu Yun-huan, 2009, Acta Micropalaeontologica Sinica, V26, P243; Liu YH, 2014, CHINESE SCI BULL, V59, P4086, DOI 10.1007/s11434-014-0481-5; Liu YH, 2014, EVOL DEV, V16, P155, DOI 10.1111/ede.12076; LUO H, 1984, SINIAN CAMBRIAN BOUN; Maas A, 2009, MEM ASSOC AUSTRALAS, V37, P281; Maas Andreas, 2007, Memoir of the Association of Australasian Palaeontologists, V34, P499; Marques AC, 2004, INVERTEBR BIOL, V123, P23; MORRIS SC, 1992, J PALEONTOL, V66, P384, DOI 10.1017/S0022336000033953; Morris SC, 1998, BIOESSAYS, V20, P676, DOI 10.1002/(SICI)1521-1878(199808)20:8<676::AID-BIES11>3.0.CO;2-W; Morris SC, 1997, ZOOL J LINN SOC-LOND, V119, P69, DOI 10.1111/j.1096-3642.1997.tb00136.x; MULLER KJ, 1993, PALAEONTOLOGY, V36, P549; NIELSEN C, 2001, ANIMAL EVOLUTION INT; QIAN Y, 1977, ACTA PALAEONTOL, V16, P255; Schmidt-Rhaesa A, 1998, ZOOL ANZ, V236, P203; Smith MR, 2015, NATURE, V523, P75, DOI 10.1038/nature14573; Steiner M, 2004, GEOLOGY, V32, P833, DOI 10.1130/G20567.1; STEINER M., 2006, ANCIENT LIFE MODERN, P14; STEINER M., 2010, GSA ABSTRACTS PROGRA, V42, P539; Steiner M, 2014, PALAEOGEOGR PALAEOCL, V398, P97, DOI 10.1016/j.palaeo.2013.08.016; Storch V., 1991, P333; Swofford D. L., 2002, PAUP PHYLOGENETIC AN; van Iten H., 1991, P145; Van Iten H, 2006, J SYST PALAEONTOL, V4, P109, DOI 10.1017/S1477201905001793; Van Iten H, 2005, J PALEONTOL, V79, P400; Van Iten H, 2010, PALAEONTOLOGY, V53, P191, DOI 10.1111/j.1475-4983.2009.00925.x; VANITEN H, 1992, LETHAIA, V25, P421; VANITEN H, 1992, PALAEONTOLOGY, V35, P335; VANITEN H, 1992, PALAEONTOLOGY, V35, P359; Wennberg SA, 2009, INVERTEBR BIOL, V128, P157, DOI 10.1111/j.1744-7410.2008.00162.x; WERNER B, 1966, HELGOLAND WISS MEER, V13, P317, DOI 10.1007/BF01611953; Werner B., 1973, Publications Seto Mar Biol Lab, V20, P35; WERNER B, 1983, HELGOLANDER MEERESUN, V36, P119, DOI 10.1007/BF01983852; WERNER B, 1970, Publications of the Seto Marine Biological Laboratory, V18, P1; WRIGHT K. A., 1991, MICROSCOPIC ANATOMY, V4, P111; Xing Y., 1984, B I GEOLOGY CHINESE, V10, P1; YANG X.-H., 1983, B CHENGDU I GEOLOGY, V4, P91; Yao XY, 2011, GONDWANA RES, V20, P844, DOI 10.1016/j.gr.2011.04.003; Yasui K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065890; Yue Z, 1999, CHINESE SCI BULL, V44, P842, DOI 10.1007/BF02885033; YUE Z, 1999, LETHAIA, V32, P181, DOI DOI 10.1111/J.1502-3931.1999.TB00538.X; YUE Zhao, 1986, B I GEOLOGY CHINESE, V14, P147; Zheng Yajuan, 2012, Acta Micropalaeontologica Sinica, V29, P161; [郑亚娟 Zheng Yajuan], 2012, [地球科学进展, Advance in Earth Sciences], V27, P321 79 9 11 6 25 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0031-0239 1475-4983 PALAEONTOLOGY Paleontology MAY 2016 59 3 387 407 10.1111/pala.12231 21 Paleontology Paleontology DK1BS WOS:000374647700005 Green Published, Other Gold 2019-02-21 J Pauletti, RE; Cooper, PJ; Aults, CD; Hodges, EVE; Perry, DG Pauletti, Rachel E.; Cooper, Patrick J.; Aults, Christopher D.; Hodges, Ernest V. E.; Perry, David G. Sex Differences in Preadolescents' Attachment Strategies: Products of Harsh Environments or of Gender Identity? SOCIAL DEVELOPMENT English Article gender identity; attachment; gender differences; preadolescence PSYCHOSOCIAL ADJUSTMENT; REPRODUCTIVE STRATEGY; ROMANTIC ATTACHMENT; PEER RELATIONSHIPS; MIDDLE CHILDHOOD; MOTHER; SOCIALIZATION; CHILDREN; FRIENDS We evaluated two hypotheses proposed to account for sex differences in preadolescents' insecure attachment strategies (more avoidant for boys, more preoccupied for girls). The first hypothesis, rooted in life history theory, is that the sex differences develop among children who experience adverse environmental conditions (e.g., harsh parenting). The second hypothesis, grounded in gender self-socialization theory, is that the sex differences develop among children who identify confidently with their gender collective. Data from an ethnically/racially diverse sample (443 girls, 420 boys; M age=11.1 years) supported the second hypothesis: Sex differences were evident mainly among children who felt gender-typical, were content with their gender, or felt pressure to avoid cross-sex behavior. Further, sex differences were generally smaller rather than larger among children experiencing adverse environments. [Pauletti, Rachel E.; Aults, Christopher D.; Perry, David G.] Florida Atlantic Univ, Boca Raton, FL 33431 USA; [Cooper, Patrick J.] Lynn Univ, Boca Raton, FL USA; [Hodges, Ernest V. E.] St Johns Univ, Jamaica, NY USA Perry, DG (reprint author), Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA. perrydg@fau.edu BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Carver PR, 2004, DEV PSYCHOL, V40, P43, DOI 10.1037/0012-1649.40.1.43; Carver PR, 2003, SEX ROLES, V49, P95, DOI DOI 10.1023/A:1024423012063; Cooper PJ, 2013, SEX ROLES, V69, P618, DOI 10.1007/s11199-013-0310-3; CORBY BC, 2006, THESIS FLORIDA ATLAN; Corby BC, 2007, DEV PSYCHOL, V43, P261, DOI 10.1037/0012-1649.43.1.261; Damon W., 2006, HDB CHILD PSYCHOL, V3, P858, DOI DOI 10.1002/9780470147658.CHPSY0314; Del Giudice M, 2011, PERS SOC PSYCHOL B, V37, P193, DOI 10.1177/0146167210392789; Del Giudice M, 2010, CHILD DEV PERSPECT, V4, P97, DOI 10.1111/j.1750-8606.2010.00125.x; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Egan SK, 2001, DEV PSYCHOL, V37, P451, DOI 10.1037/0012-1649.37.4.451; Finnegan RA, 1996, CHILD DEV, V67, P1318, DOI 10.1111/j.1467-8624.1996.tb01798.x; Finnegan RA, 1998, J PERS SOC PSYCHOL, V75, P1076, DOI 10.1037//0022-3514.75.4.1076; Furman W, 2002, CHILD DEV, V73, P241, DOI 10.1111/1467-8624.00403; Furman W, 1999, MINN SYM CHILD PSYCH, V30, P133; Furman W., 1994, ADV ADOLESCENT DEV, P168; HARTER S, 1982, CHILD DEV, V53, P87, DOI 10.1111/j.1467-8624.1982.tb01295.x; Hodges EVE, 1999, DEV PSYCHOL, V35, P737, DOI 10.1037//0012-1649.35.3.737; Kerns KA, 2005, ATTACHMENT IN MIDDLE CHILDHOOD, P46; Kerns KA, 1996, DEV PSYCHOL, V32, P457, DOI 10.1037/0012-1649.32.3.457; Kohlberg L., 1969, HDB SOCIALIZATION TH, P347; LIBEN LS, 2002, MONOGRAPHS SOC RES C, V67, P1, DOI DOI 10.1111/1540-5834.T01-1-00187; Martin CL, 2000, DEVELOPMENTAL SOCIAL PSYCHOLOGY OF GENDER, P91; McClintock MK, 1996, CURR DIR PSYCHOL SCI, V5, P178, DOI 10.1111/1467-8721.ep11512422; Menon M, 2011, CHILD DEV, V82, P1152, DOI 10.1111/j.1467-8624.2011.01601.x; Mikulincer M., 2007, ATTACHMENT ADULTHOOD; Perry DG, 2001, PEER HARASSMENT IN SCHOOL, P73; Schmitt DP, 2003, PERS RELATIONSHIP, V10, P307, DOI 10.1111/1475-6811.00052; Tobin DD, 2010, PSYCHOL REV, V117, P601, DOI 10.1037/a0018936; Yunger JL, 2004, DEV PSYCHOL, V40, P572, DOI 10.1037/0012-1649.40.4.572; Yunger JL, 2005, ATTACHMENT IN MIDDLE CHILDHOOD, P89 32 0 0 0 10 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0961-205X 1467-9507 SOC DEV Soc. Dev. MAY 2016 25 2 390 404 10.1111/sode.12140 15 Psychology, Developmental Psychology DJ5PA WOS:000374260300010 2019-02-21 J Sommer-Trembo, C; Zimmer, C; Jourdan, J; Bierbach, D; Plath, M Sommer-Trembo, Carolin; Zimmer, Claudia; Jourdan, Jonas; Bierbach, David; Plath, Martin Predator experience homogenizes consistent individual differences in predator avoidance JOURNAL OF ETHOLOGY English Article Risk-taking behavior; Predator recognition; Learning; Animal personality; Poecilia reticulata; Computer animation GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; BEHAVIORAL SYNDROMES; ANTIPREDATOR RESPONSES; NATURAL-SELECTION; ATLANTIC SALMON; FATHEAD MINNOWS; GASTEROSTEUS-ACULEATUS; PIMEPHALES-PROMELAS; ANIMAL PERSONALITY In the presence of predators, many prey species exhibit immediate behavioral responses like the avoidance of risky areas, which imposes opportunity costs, for instance, in the form of reduced foraging. Thus, prey species should be able to discriminate between different predator types and adjust their response to the imminent predation risk. In our current study, we evaluated the relative importance of innate versus learned components of predator recognition and avoidance in the guppy (Poecilia reticulata). We used a feral guppy population occurring in Germany and compared avoidance reactions of each focal individual towards both coevolved piscine predators from their original distribution range and novel, presently co-occurring predator species. Wild-caught, predator-experienced as well as laboratory-reared, predator-na < ve individuals showed strong avoidance responses towards all predator animations. Avoidance was stronger in small-bodied than in large-bodied individuals in both cohorts; however, this effect was significant only in predator-na < ve fish. Moreover, wild-caught individuals showed a significantly higher within-individual variance (across the six predator species) along with a lower among-individual variance in predator avoidance, which resulted in a lower behavioral repeatability in this cohort. Our results suggest that consistent individual differences in risk-taking behavior (also referred to as the personality trait 'boldness') are modified by predator exposure and learning about predators. [Sommer-Trembo, Carolin; Zimmer, Claudia; Plath, Martin] Northwest A&F Univ, Coll Anim Sci & Technol, Yangling 712100, Peoples R China; [Sommer-Trembo, Carolin; Zimmer, Claudia; Jourdan, Jonas] Goethe Univ Frankfurt, Dept Ecol & Evolut, Max von Laue Str 13, D-60438 Frankfurt, Germany; [Jourdan, Jonas] Biodivers & Climate Res Ctr BiKF, Senckenberganlage 25, D-60325 Frankfurt, Germany; [Bierbach, David] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Biol & Ecol Fishes, Muggelseedamm 310, D-12587 Berlin, Germany Sommer-Trembo, C (reprint author), Northwest A&F Univ, Coll Anim Sci & Technol, Yangling 712100, Peoples R China.; Sommer-Trembo, C (reprint author), Goethe Univ Frankfurt, Dept Ecol & Evolut, Max von Laue Str 13, D-60438 Frankfurt, Germany. sommercarolin@gmx.net Jourdan, Jonas/Y-7389-2018 German Research Foundation (DFG) [PL 470/3-1]; Leibniz Competition [SAW-2013-IGB-2]; Gesellschaft fur Ichthyologie (GfI) We would like to thank H. Geupel and E.-M. Worner for help with animal care. This research was partly funded by the German Research Foundation (DFG; PL 470/3-1) and the B-Types project funded through the Leibniz Competition (SAW-2013-IGB-2). Further financial support was received from the Gesellschaft fur Ichthyologie (GfI). All experiments comply with current German law and were approved by Regierungsprasidium Darmstadt (V-54-19c-20/15-F104/Anz.18). Baldauf SA, 2009, J FISH BIOL, V75, P738, DOI 10.1111/j.1095-8649.2009.02347.x; Barron AB, 2015, TRENDS NEUROSCI, V38, P405, DOI 10.1016/j.tins.2015.04.008; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Bierbach D, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1038; Bierbach D, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-190; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Bremner-Harrison S, 2004, ANIM CONSERV, V7, P313, DOI 10.1017/S1367943004001490; Brown C, 2007, J FISH BIOL, V71, P1590, DOI 10.1111/j.1095-8649.2007.01627.x; Brown GE, 1998, CAN J FISH AQUAT SCI, V55, P611, DOI 10.1139/cjfas-55-3-611; Brown GE, 2006, BEHAV ECOL SOCIOBIOL, V61, P9, DOI 10.1007/s00265-006-0232-y; Brydges NM, 2008, J ANIM ECOL, V77, P229, DOI 10.1111/j.1365-2656.2007.01343.x; Cable J, 2013, PARASITOLOGY, V140, P1138, DOI 10.1017/S003118201300067X; Carter AJ, 2013, BIOL REV, V88, P465, DOI 10.1111/brv.12007; Carter AJ, 2010, BEHAV ECOL, V21, P655, DOI 10.1093/beheco/arq036; CHIVERS DP, 1994, J FISH BIOL, V44, P273, DOI 10.1006/jfbi.1994.1026; CHIVERS DP, 1994, ANIM BEHAV, V48, P597, DOI 10.1006/anbe.1994.1279; Cooper W. E, 2015, ESCAPING PREDATORS I; Croft DP, 2009, BEHAV ECOL SOCIOBIOL, V63, P1495, DOI 10.1007/s00265-009-0802-x; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; CSANYI V, 1985, BEHAVIOUR, V92, P227; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dochtermann NA, 2010, BEHAV ECOL, V21, P437, DOI 10.1093/beheco/arq021; DUGATKIN LA, 1991, EVOL ECOL, V5, P300, DOI 10.1007/BF02214234; DUGATKIN LA, 1992, ENVIRON BIOL FISH, V34, P265, DOI 10.1007/BF00004773; Dugatkin LA, 2005, ETHOL ECOL EVOL, V17, P77; DUGATKIN LA, 1992, BEHAV ECOL, V3, P124, DOI 10.1093/beheco/3.2.124; Emde S, 2016, PARASITOL RES, V115, P85, DOI 10.1007/s00436-015-4724-4; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Epp KJ, 2008, ETHOLOGY, V114, P607, DOI 10.1111/j.1439-0310.2008.01494.x; Ferrari MCO, 2005, ANIM BEHAV, V70, P777, DOI 10.1016/j.anbehav.2005.01.009; Finstad AG, 2007, FUNCT ECOL, V21, P905, DOI 10.1111/j.1365-2435.2007.01291.x; Fisher HS, 2009, ANIM BEHAV, V78, P265, DOI 10.1016/j.anbehav.2009.02.029; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; Gaikwad S, 2011, BEHAV PROCESS, V87, P224, DOI 10.1016/j.beproc.2011.04.004; Godin Jean-Guy J., 1997, P191; Godin JGJ, 1996, P NATL ACAD SCI USA, V93, P10262, DOI 10.1073/pnas.93.19.10262; Hammond-Tooke CA, 2012, BEHAVIOUR, V149, P601, DOI 10.1163/156853912X648903; Hawkins LA, 2007, ANIM BEHAV, V73, P1051, DOI 10.1016/j.anbehav.2006.08.011; Hawkins LA, 2004, BEHAVIOUR, V141, P1249, DOI 10.1163/1568539042729694; Huntingford FA, 2010, J FISH BIOL, V76, P1576, DOI 10.1111/j.1095-8649.2010.02582.x; HURLEY AC, 1974, ANIM BEHAV, V22, P430, DOI 10.1016/S0003-3472(74)80041-2; Johansson J, 2004, OIKOS, V105, P595, DOI 10.1111/j.0030-1299.2004.12938.x; Jourdan J, 2014, BIOINVASIONS REC, V3, P175, DOI 10.3391/bir.2014.3.3.07; Kelley JL, 2003, FISH FISH, V4, P216, DOI 10.1046/j.1467-2979.2003.00126.x; Kelley JL, 2003, BEHAV ECOL SOCIOBIOL, V54, P225, DOI 10.1007/s00265-003-0621-4; Kempkes M, 2010, DIE GUPPYS, V1; Kempkes M, 2009, ETHOECOLOGICAL OBSER; Kottelat M., 2007, HDB EUROPEAN FRESHWA; Krams I, 2013, ACTA ETHOL, V16, P163, DOI 10.1007/s10211-013-0147-3; KRAUSE J, 1995, ANIM BEHAV, V50, P465, DOI 10.1006/anbe.1995.0260; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Losos JB, 2006, SCIENCE, V314, P1111, DOI 10.1126/science.1133584; lvarez D, 2007, BEHAV PROCESS, V76, P215; MAGURRAN AE, 1994, BEHAVIOUR, V128, P121, DOI 10.1163/156853994X00073; MAGURRAN AE, 1990, ANIM BEHAV, V40, P443, DOI 10.1016/S0003-3472(05)80524-X; MAGURRAN AE, 1987, PROC R SOC SER B-BIO, V229, P439, DOI 10.1098/rspb.1987.0004; MAGURRAN AE, 1986, ANIM BEHAV, V34, P510, DOI 10.1016/S0003-3472(86)80119-1; Magurran AE, 2005, EVOLUTIONARY ECOLOGY, P13; Mathis A, 1996, ANIM BEHAV, V51, P185, DOI 10.1006/anbe.1996.0016; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Orpwood JE, 2008, ANIM BEHAV, V76, P143, DOI 10.1016/j.anbehav.2008.01.016; POULIN R, 1987, ENVIRON BIOL FISH, V20, P285; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Riesch R, 2009, BEHAV ECOL SOCIOBIOL, V63, P1515, DOI 10.1007/s00265-009-0780-z; Schlupp I, 2010, BEHAV ECOL SOCIOBIOL, V64, P1849, DOI 10.1007/s00265-010-0996-y; SEGHERS BH, 1973, THESIS U BRIT COLUMB; Severino C, 2008, BEHAV BRAIN RES, V191, P77; SHROUT PE, 1979, PSYCHOL BULL, V86, P420, DOI 10.1037//0033-2909.86.2.420; Sih A, 2003, ANIM BEHAV, V65, P29, DOI 10.1006/anbe.2002.2025; SIH A, 1980, SCIENCE, V210, P1041, DOI 10.1126/science.210.4473.1041; SIH A, 1988, AM NAT, V132, P463, DOI 10.1086/284865; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Smith BR, 2010, BEHAV ECOL, V21, P919, DOI 10.1093/beheco/arq084; Smith R. Jan F., 1997, P163; Sokal R.R., 1995, BIOMETRY PRINCIPLES; STEIN RA, 1976, ECOLOGY, V57, P751, DOI 10.2307/1936188; SUBOSKI MD, 1990, J COMP PSYCHOL, V104, P101, DOI 10.1037//0735-7036.104.1.101; Tobler M, 2007, ECOL ENTOMOL, V32, P492, DOI 10.1111/j.1365-2311.2007.00892.x; TREXLER JC, 1994, OIKOS, V69, P250, DOI 10.2307/3546145; TULLEY JJ, 1987, ANIM BEHAV, V35, P1570, DOI 10.1016/S0003-3472(87)80034-9; Utne-Palm AC, 2001, MAR ECOL PROG SER, V218, P267, DOI 10.3354/meps218267; Wong BBM, 2006, AM NAT, V167, P136, DOI 10.1086/498278 93 4 4 2 42 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 0289-0771 1439-5444 J ETHOL J. Ethol. MAY 2016 34 2 155 165 10.1007/s10164-016-0460-1 11 Behavioral Sciences; Zoology Behavioral Sciences; Zoology DJ4JE WOS:000374170400008 2019-02-21 J Boyle, WA; Sandercock, BK; Martin, K Boyle, W. Alice; Sandercock, Brett K.; Martin, Kathy Patterns and drivers of intraspecific variation in avian life history along elevational gradients: a meta-analysis BIOLOGICAL REVIEWS English Article alpine; climate change; demography; fecundity; Hedge's d; interspecific competition; Lack's hypothesis; montane; productivity; species range limits CLUTCH-SIZE; NEST PREDATION; TROPICAL BIRDS; INCUBATION BEHAVIOR; GEOGRAPHICAL VARIATION; COMPARATIVE DEMOGRAPHY; ALTITUDINAL MIGRATION; EXTRAPAIR PATERNITY; AMBIENT-TEMPERATURE; CARDUELINE FINCHES Elevational gradients provide powerful natural systems for testing hypotheses regarding the role of environmental variation in the evolution of life-history strategies. Case studies have revealed shifts towards slower life histories in organisms living at high elevations yet no synthetic analyses exist of elevational variation in life-history traits for major vertebrate clades. We examined (i) how life-history traits change with elevation in paired populations of bird species worldwide, and (ii) which biotic and abiotic factors drive elevational shifts in life history. Using three analytical methods, we found that fecundity declined at higher elevations due to smaller clutches and fewer reproductive attempts per year. By contrast, elevational differences in traits associated with parental investment or survival varied among studies. High-elevation populations had shorter and later breeding seasons, but longer developmental periods implying that temporal constraints contribute to reduced fecundity. Analyses of clutch size data, the trait for which we had the largest number of population comparisons, indicated no evidence that phylogenetic history constrained species-level plasticity in trait variation associated with elevational gradients. The magnitude of elevational shifts in life-history traits were largely unrelated to geographic (altitude, latitude), intrinsic (body mass, migratory status), or habitat covariates. Meta-population structure, methodological issues associated with estimating survival, or processes shaping range boundaries could potentially explain the nature of elevational shifts in life-history traits evident in this data set. We identify a new risk factor for montane populations in changing climates: low fecundity will result in lower reproductive potential to recover from perturbations, especially as fewer than half of the species experienced higher survival at higher elevations. [Boyle, W. Alice; Sandercock, Brett K.] Kansas State Univ, Div Biol, 116 Ackert Hall, Manhattan, KS 66506 USA; [Boyle, W. Alice; Martin, Kathy] Univ British Columbia, Ctr Appl Conservat Biol, Dept Forest & Conservat Sci, 3004-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; [Martin, Kathy] Environm Canada, 5421 Robertson Rd, Delta, BC V4K 3N2, Canada Boyle, WA (reprint author), Kansas State Univ, Div Biol, 116 Ackert Hall, Manhattan, KS 66506 USA.; Boyle, WA (reprint author), Univ British Columbia, Ctr Appl Conservat Biol, Dept Forest & Conservat Sci, 3004-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. aboyle@ksu.edu Sandercock, Brett/L-1644-2016; Boyle, W. Alice/G-1872-2010 Sandercock, Brett/0000-0002-9240-0268; Boyle, W. Alice/0000-0002-2880-142X Natural Sciences and Engineering Research Council (NSERC) of Canada; Environment Canada; Killam Foundation postdoctoral fellowship; University of British Columbia; Kansas State University We thank the authors of all of our source studies for collecting and publishing the raw data upon which this study was based. We thank J. B. Joy for assistance with the phylosig analyses. Funding was provided to K. M. by the Natural Sciences and Engineering Research Council (NSERC) of Canada and by Environment Canada. B.K.S. was supported by a Killam Foundation postdoctoral fellowship, and both W.A.B. and B.K.S. received financial support from the University of British Columbia and Kansas State University. Ackerly DD, 2000, EVOLUTION, V54, P1480, DOI 10.1111/j.0014-3820.2000.tb00694.x; ANDREEV AV, 1991, ARCTIC, V44, P106; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Badyaev AV, 1997, OIKOS, V80, P128, DOI 10.2307/3546524; Badyaev AV, 1997, OECOLOGIA, V111, P365, DOI 10.1007/s004420050247; Barry R. G., 2008, MOUNTAIN WEATHER CLI; Bears H, 2009, J ANIM ECOL, V78, P365, DOI 10.1111/j.1365-2656.2008.01491.x; Bears H, 2008, J AVIAN BIOL, V39, P152, DOI 10.1111/j.2008.0908-8857.04191.x; BIEBACH H, 1981, ARDEA, V69, P141; Bonier F, 2014, AM NAT, V183, P54, DOI 10.1086/674130; Boyle WA, 2008, OECOLOGIA, V155, P397, DOI 10.1007/s00442-007-0897-6; Boyle WA, 2010, P ROY SOC B-BIOL SCI, V277, P2511, DOI 10.1098/rspb.2010.0344; Bronikowski AM, 1999, ECOLOGY, V80, P2314, DOI 10.2307/176912; BRONSON MT, 1979, ECOLOGY, V60, P272, DOI 10.2307/1937655; Buckley LB, 2010, GLOBAL ECOL BIOGEOGR, V19, P452, DOI 10.1111/j.1466-8238.2010.00538.x; CALDER WA, 1984, AUK, V101, P893, DOI 10.2307/4086924; CALDER WA, 1974, NUTTALL ORNITHOLOGIC, V15, P86; Camfield AF, 2010, J AVIAN BIOL, V41, P273, DOI 10.1111/j.1600-048X.2009.04816.x; Camfield AF, 2009, BEHAVIOUR, V146, P1615, DOI 10.1163/156853909X463335; CAREY C, 1982, AUK, V99, P710; Carrillo J, 2005, ORNIS FENNICA, V82, P55; Chamberlain SA, 2012, ECOL LETT, V15, P627, DOI 10.1111/j.1461-0248.2012.01776.x; Class AM, 2011, CONDOR, V113, P438, DOI 10.1525/cond.2011.100068; Cohen J., 1969, STAT POWER ANAL BEHA; Conway CJ, 2000, EVOLUTION, V54, P670; Conway CJ, 2000, BEHAV ECOL, V11, P178, DOI 10.1093/beheco/11.2.178; Cooper SJ, 2002, PHYSIOL BIOCHEM ZOOL, V75, P386, DOI 10.1086/342256; Del Hoyo J., 1992, HDB BIRDS WORLD; Dunning J., 2008, CRC HDB AVIAN BODY M; Dunning J.B., 1993, AVIAN BODY MASSES; Franzen M., 2011, BIODIVERS CONSERV, V21, P517; Freeman BG, 2014, P NATL ACAD SCI USA, V111, P4490, DOI 10.1073/pnas.1318190111; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Ghalambor CK, 2006, INTEGR COMP BIOL, V46, P5, DOI 10.1093/icb/icj003; Gillis EA, 2008, ECOLOGY, V89, P1687, DOI 10.1890/07-1122.1; Google Inc, 2011, GOOGL EARTH VERS 6 1; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; Hargrove L, 2011, OIKOS, V120, P1568, DOI 10.1111/j.1600-0706.2011.19284.x; Harrison F, 2011, METHODS ECOL EVOL, V2, P1, DOI 10.1111/j.2041-210X.2010.00056.x; Hedges LV, 1999, ECOLOGY, V80, P1150, DOI 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2; Hille SM, 2015, BIOL REV, V90, P204, DOI 10.1111/brv.12106; Huston MA, 2009, ECOL MONOGR, V79, P343, DOI 10.1890/08-0588.1; JAMES FC, 1983, SCIENCE, V221, P184, DOI 10.1126/science.221.4606.184; Jankowski JE, 2010, ECOLOGY, V91, P1877, DOI 10.1890/09-2063.1; JANZEN DH, 1967, AM NAT, V101, P233, DOI 10.1086/282487; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Kleindorfer S, 2007, IBIS, V149, P730, DOI 10.1111/j.1474-919X.2007.00694.x; KLOMP H, 1970, ARDEA, V58, P1; Kluge J, 2006, GLOBAL ECOL BIOGEOGR, V15, P358, DOI 10.1111/j.1466-822x.2006.00223.x; Korner C, 2007, TRENDS ECOL EVOL, V22, P569, DOI 10.1016/j.tree.2007.09.006; Koricheva J., 2013, HDB METAANALYSIS ECO, P1; KREMENTZ DG, 1984, OIKOS, V43, P256, DOI 10.2307/3544780; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lloyd P, 2001, OSTRICH, V72, P50, DOI 10.2989/00306520109485287; Lu X, 2005, J ORNITHOL, V146, P72, DOI 10.1007/s10336-004-0058-1; Maddison WP, 2000, J THEOR BIOL, V202, P195, DOI 10.1006/jtbi.1999.1050; Martin K, 2000, CONDOR, V102, P503, DOI 10.1650/0010-5422(2000)102[0503:RDADRI]2.0.CO;2; Martin KM, 2001, WILDLIFE-HABITAT RELATIONSHIPS IN OREGON AND WASHINGTON, P239; Martin M, 2009, J FIELD ORNITHOL, V80, P253, DOI 10.1111/j.1557-9263.2009.00228.x; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martinez K., 2012, IMPACT SKIING RELATE, p[3, 14]; McGuire LP, 2013, BIOL REV, V88, P767, DOI 10.1111/brv.12024; McKinnon L., 2010, SCIENCE, V327, P327; MOLLER AP, 1994, EVOLUTION, V48, P1089, DOI 10.1111/j.1558-5646.1994.tb05296.x; MORENO J, 1989, ARDEA, V77, P107; Novoa C, 2008, IBIS, V150, P270, DOI 10.1111/j.1474-919X.2007.00771.x; Ogden LJE, 2012, WILSON J ORNITHOL, V124, P270, DOI 10.1676/11-186.1; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Peh KSH, 2012, RAFFLES B ZOOL, P249; POOLE A, 2005, BIRDS N AM ONLINE; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; R Core Team, 2014, R LANG ENV STAT COMP; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; RHYMER JM, 1992, J EVOLUTION BIOL, V5, P289, DOI 10.1046/j.1420-9101.1992.5020289.x; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 1997, ECOL MONOGR, V67, P23, DOI 10.1890/0012-9615(1997)067[0023:CDONWP]2.0.CO;2; Rose AP, 2013, ECOLOGY, V94, P1327, DOI 10.1890/12-0953.1; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sandercock BK, 2005, ECOLOGY, V86, P2176, DOI 10.1890/04-0563; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.2307/177213; Sandercock BK, 2006, J WILDLIFE MANAGE, V70, P1504, DOI 10.2193/0022-541X(2006)70[1504:EODPFL]2.0.CO;2; Sanders NJ, 2003, GLOBAL ECOL BIOGEOGR, V12, P93, DOI 10.1046/j.1466-822X.2003.00324.x; SAS Institute Inc, 2009, JMP VERS 8 0 2; Sasvari L, 2011, FOLIA ZOOL, V60, P221; Sekercioglu CH, 2008, CONSERV BIOL, V22, P140, DOI 10.1111/j.1523-1739.2007.00852.x; Sibly RM, 2012, P NATL ACAD SCI USA, V109, P10937, DOI 10.1073/pnas.1206512109; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; STEWART R M, 1977, Living Bird, V16, P83; Symonds MRE, 2010, AM NAT, V176, P188, DOI 10.1086/653666; Tarwater CE, 2009, ANIM BEHAV, V78, P1239, DOI 10.1016/j.anbehav.2009.07.040; TERBORGH J, 1971, Ecology (Washington D C), V52, P23, DOI 10.2307/1934735; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; Tingley MW, 2012, GLOBAL CHANGE BIOL, V18, P3279, DOI 10.1111/j.1365-2486.2012.02784.x; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; TYE H, 1992, IBIS, V134, P154, DOI 10.1111/j.1474-919X.1992.tb08392.x; Viechtbauer W, 2010, J STAT SOFTW, V36, P1; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; Wilson S, 2011, POPUL ECOL, V53, P459, DOI 10.1007/s10144-011-0261-x; Woodworth BL, 1997, CONDOR, V99, P605, DOI 10.2307/1370473; YOUNG BE, 1994, CONDOR, V96, P341, DOI 10.2307/1369319; Zhang LX, 2012, BIOL J LINN SOC, V106, P623, DOI 10.1111/j.1095-8312.2012.01876.x 110 20 21 6 90 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. MAY 2016 91 2 469 482 10.1111/brv.12180 14 Biology Life Sciences & Biomedicine - Other Topics DJ0PM WOS:000373906400011 25765584 2019-02-21 J Blount, JD; Vitikainen, EIK; Stott, I; Cant, MA Blount, Jonathan D.; Vitikainen, Emma I. K.; Stott, Iain; Cant, Michael A. Oxidative shielding and the cost of reproduction BIOLOGICAL REVIEWS English Article ageing; fetal programming; oxidative shielding hypothesis; oxidative stress; life-history trade-off; reactive oxygen species LONG-LIVED BIRD; POLYUNSATURATED FATTY-ACIDS; LIFE-HISTORY EVOLUTION; IN-HOUSE MICE; VITAMIN-E; LIPID-PEROXIDATION; DAIRY-COWS; WILD BIRD; PHYSIOLOGICAL ADAPTATIONS; NATURAL-SELECTION Life-history theory assumes that reproduction and lifespan are constrained by trade-offs which prevent their simultaneous increase. Recently, there has been considerable interest in the possibility that this cost of reproduction is mediated by oxidative stress. However, empirical tests of this theory have yielded equivocal support. We carried out a meta-analysis to examine associations between reproduction and oxidative damage across markers and tissues. We show that oxidative damage is positively associated with reproductive effort across females of various species. Yet paradoxically, categorical comparisons of breeders versus non-breeders reveal that transition to the reproductive state is associated with a step-change reduction in oxidative damage in certain tissues and markers. Developing offspring may be particularly sensitive to harm caused by oxidative damage in mothers. Therefore, such reductions could potentially function to shield reproducing mothers, gametes and developing offspring from oxidative insults that inevitably increase as a consequence of reproductive effort. According to this perspective, we hypothesise that the cost of reproduction is mediated by dual impacts of maternally-derived oxidative damage on mothers and offspring, and that mothers may be selected to diminish such damage. Such oxidative shielding may explain why many existing studies have concluded that reproduction has little or no oxidative cost. Future advance in life-history theory therefore needs to take account of potential transgenerational impacts of the mechanisms underlying life-history trade-offs. [Blount, Jonathan D.; Vitikainen, Emma I. K.; Cant, Michael A.] Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Penryn Campus, Exeter TR10 9FE, Cornwall, England; [Stott, Iain] Univ Exeter, Environm & Sustainabil Inst, Penryn Campus, Exeter TR10 9FE, Cornwall, England Blount, JD (reprint author), Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Penryn Campus, Exeter TR10 9FE, Cornwall, England. j.d.blount@exeter.ac.uk Vitikainen, Emma/F-2099-2010 Vitikainen, Emma/0000-0003-3718-0941; Cant, Michael/0000-0002-1530-3077; Stott, Iain/0000-0002-1399-3596 Natural Environment Research Council [NE/J010278/1] Aksakal E, 2011, CARDIOLOGY, V119, P235, DOI 10.1159/000333003; Al-Gubory KH, 2010, INT J BIOCHEM CELL B, V42, P1634, DOI 10.1016/j.biocel.2010.06.001; Albera E, 2009, REPROD DOMEST ANIM, V44, P606, DOI 10.1111/j.1439-0531.2007.01027.x; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2010, PHYSIOL BIOCHEM ZOOL, V83, P110, DOI 10.1086/605395; Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blanga-Kanfi S, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-71; Blount JD, 2000, TRENDS ECOL EVOL, V15, P47, DOI 10.1016/S0169-5347(99)01774-7; Blount JD, 2001, ECOL LETT, V4, P393, DOI 10.1046/j.1461-0248.2001.00255.x; Borenstein M., 2005, COMPREHENSIVE METAAN; Borenstein M, 2010, RES SYNTH METHODS, V1, P97, DOI 10.1002/jrsm.12; Borras C, 2003, FREE RADICAL BIO MED, V34, P546, DOI 10.1016/S0891-5849(02)01356-4; Bose P, 2006, PLACENTA, V27, P869, DOI 10.1016/j.placenta.2005.09.007; Bouwhuis S, 2010, J EVOLUTION BIOL, V23, P636, DOI 10.1111/j.1420-9101.2009.01929.x; Bouwstra RJ, 2008, J DAIRY SCI, V91, P977, DOI 10.3168/jds.2007-0596; Brand MD, 2000, EXP GERONTOL, V35, P811, DOI 10.1016/S0531-5565(00)00135-2; Noguera JC, 2012, BIOL LETTERS, V8, P61, DOI 10.1098/rsbl.2011.0756; Cartwright SJ, 2014, CURR BIOL, V24, P536, DOI 10.1016/j.cub.2014.01.040; Casagrande S, 2011, COMP BIOCHEM PHYS A, V160, P16, DOI 10.1016/j.cbpa.2011.04.011; Castillo C, 2005, VET J, V169, P286, DOI 10.1016/j.tvjl.2004.02.001; Cederberg J, 2001, DIABETOLOGIA, V44, P766, DOI 10.1007/s001250051686; Chamberlain SA, 2012, ECOL LETT, V15, P627, DOI 10.1111/j.1461-0248.2012.01776.x; Chandra G, 2013, ASIAN AUSTRAL J ANIM, V26, P1569, DOI 10.5713/ajas.2012.12682; Cohen J, 1988, STAT POWER ANAL BEHA; Costantini D, 2008, FUNCT ECOL, V22, P367, DOI 10.1111/j.1365-2435.2007.01366.x; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2014, OECOLOGIA, V175, P1107, DOI 10.1007/s00442-014-2975-x; Costantini D, 2014, NATURWISSENSCHAFTEN, V101, P541, DOI 10.1007/s00114-014-1190-2; Costantini D, 2010, IBIS, V152, P793, DOI 10.1111/j.1474-919X.2010.01052.x; Cram DL, 2015, FUNCT ECOL, V29, P229, DOI 10.1111/1365-2435.12317; da Silva ACA, 2013, BIOGERONTOLOGY, V14, P411, DOI 10.1007/s10522-013-9440-9; Davies KJA, 2000, IUBMB LIFE, V50, P279, DOI 10.1080/15216540051081010; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Fletcher Q. E., 2012, EVOLUTION, V67, P1527; Garratt M, 2013, J EXP BIOL, V216, P2879, DOI 10.1242/jeb.082669; Garratt M, 2012, FUNCT ECOL, V26, P423, DOI 10.1111/j.1365-2435.2011.01952.x; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Grune T, 2001, LIPIDS, V36, P833, DOI 10.1007/s11745-001-0792-7; Gupta S, 2007, OBSTET GYNECOL SURV, V62, P335, DOI 10.1097/01.ogx.0000261644.89300.df; Hadfield JD, 2010, J STAT SOFTW, V33, P1; HALLIWELL B, 1999, FREE RADICALS BIOL M; HAMMOND KA, 1994, PHYSIOL ZOOL, V67, P1479, DOI 10.1086/physzool.67.6.30163908; Haq AU, 1996, POULTRY SCI, V75, P1092, DOI 10.3382/ps.0751092; He ZY, 2008, FREE RADICAL BIO MED, V45, P1135, DOI 10.1016/j.freeradbiomed.2008.07.019; HEDGES LV, 1981, J EDUC STATIST, V6, P107, DOI [DOI 10.2307/1164588, 10.3102/10769986006002107]; HEDGES SB, 1990, MOL BIOL EVOL, V7, P607; Higgins JPT, 2003, BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557; Higgins JPT, 2002, STAT MED, V21, P1539, DOI 10.1002/sim.1186; Hozo Stela Pudar, 2005, BMC Med Res Methodol, V5, P13, DOI 10.1186/1471-2288-5-13; Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5; Jan M. H., 2014, Asian Pacific Journal of Reproduction, V3, P35, DOI 10.1016/S2305-0500(13)60182-7; Jauniaux E, 2006, HUM REPROD UPDATE, V12, P747, DOI 10.1093/humupd/dml016; King EDA, 2013, ECOL EVOL, V3, P4161, DOI 10.1002/ece3.786; Kireev RA, 2007, BIOGERONTOLOGY, V8, P469, DOI 10.1007/s10522-007-9089-3; Koricheva J., 2014, HDB METAANALYSIS ECO; Losdat S, 2011, BEHAV ECOL, V22, P1218, DOI 10.1093/beheco/arr116; Marko G, 2011, J COMP PHYSIOL B, V181, P73, DOI 10.1007/s00360-010-0502-x; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Millon A, 2011, J ANIM ECOL, V80, P968, DOI 10.1111/j.1365-2656.2011.01842.x; Mohiti-Asli M, 2008, CAN J ANIM SCI, V88, P475, DOI 10.4141/CJAS07102; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Mourente G, 1999, AQUACULTURE, V179, P309, DOI 10.1016/S0044-8486(99)00167-2; Myatt L, 2006, J PHYSIOL-LONDON, V572, P25, DOI 10.1113/jphysiol.2006.104968; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Nystrom T, 2005, EMBO J, V24, P1311, DOI 10.1038/sj.emboj.7600599; Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452; Persky AM, 2000, P SOC EXP BIOL MED, V223, P59, DOI 10.1046/j.1525-1373.2000.22308.x; Pichaud N, 2013, J EXP BIOL, V216, P2889, DOI 10.1242/jeb.082685; R Development Core Team, 2014, R LANG ENV STAT COMP; Rizzo A, 2013, RES VET SCI, V95, P1171, DOI 10.1016/j.rvsc.2013.07.016; Rizzo A, 2013, ANIMAL, V7, P118, DOI 10.1017/S1751731112001048; Sainz RM, 2000, J REPROD FERTIL, V119, P143, DOI 10.1530/reprod/119.1.143; Schaff C, 2012, J PROTEOME RES, V11, P5503, DOI 10.1021/pr300732n; Schmidt CM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103286; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Serini S, 2011, CHEM RES TOXICOL, V24, P2093, DOI 10.1021/tx200314p; Sibley CG, 1990, PHYLOGENY CLASSIFICA; Simons MJP, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043088; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; Song S, 2012, P NATL ACAD SCI USA, V109, P14942, DOI 10.1073/pnas.1211733109; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Stearns S, 1992, EVOLUTION LIFE HIST; Sterne JAC, 2005, PUBLICATION BIAS IN META-ANALYSIS: PREVENTION, ASSESSMENT AND ADJUSTMENTS, P75, DOI 10.1002/0470870168.ch5; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Suriyasathaporn W, 2009, THAI J VET MED, V39, P237; Tomruk A, 2010, CELL BIOCHEM BIOPHYS, V56, P39, DOI 10.1007/s12013-009-9068-1; Upreti K., 2002, HLTH POPUL PERSPECT, V25, P177; van de Crommenacker J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026423; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Velando A, 2008, BIOESSAYS, V30, P1212, DOI 10.1002/bies.20838; Vezina F, 2002, PHYSIOL BIOCHEM ZOOL, V75, P377, DOI 10.1086/343137; Vial CA, 2013, J AUTOIMMUN, V47, P45, DOI 10.1016/j.jaut.2013.08.005; Vina J, 2005, FEBS LETT, V579, P2541, DOI 10.1016/j.febslet.2005.03.090; Wicheansoni P, 2007, J ANIM SCI, V85, P9; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILMUT I, 1986, J REPROD FERTIL, V76, P851; Xu YC, 2014, FUNCT ECOL, V28, P402, DOI 10.1111/1365-2435.12168; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049 104 50 50 6 59 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. MAY 2016 91 2 483 497 10.1111/brv.12179 15 Biology Life Sciences & Biomedicine - Other Topics DJ0PM WOS:000373906400012 25765468 2019-02-21 J Lin, JE; Hard, JJ; Naish, KA; Peterson, D; Hilborn, R; Hauser, L Lin, J. E.; Hard, J. J.; Naish, K. A.; Peterson, D.; Hilborn, R.; Hauser, L. It's a bear market: evolutionary and ecological effects of predation on two wild sockeye salmon populations HEREDITY English Article GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; ONCORHYNCHUS-NERKA; BROWN BEARS; BODY-SIZE; DENSITY-DEPENDENCE; SEXUAL SELECTION; PACIFIC SALMON; COHO SALMON; PARENTAGE Predation can affect both phenotypic variation and population productivity in the wild, but quantifying evolutionary and demographic effects of predation in natural environments is challenging. The aim of this study was to estimate selection differentials and coefficients associated with brown bear (Ursus arctos) predation in wild sockeye salmon (Oncorhynchus nerka) populations spawning in pristine habitat that is often subject to intense predation pressure. Using reconstructed genetic pedigrees, individual reproductive success (RS) was estimated in two sockeye salmon populations for two consecutive brood years with very different predation intensities across brood years. Phenotypic data on individual adult body length, body depth, stream entry timing and reproductive lifespan were used to calculate selection coefficients based on RS, and genetic variance components were estimated using animal models. Bears consistently killed larger and more recently arrived adults, although selection differentials were small. In both populations, mean RS was higher in the brood year experiencing lower predation intensity. Selection coefficients were similar across brood years with different levels of predation, often indicating stabilizing selection on reproductive lifespan as well as directional selection for longer reproductive lifespan. Despite these selection pressures, genetic covariation of morphology, phenology and lifespan appears to have maintained variation in spawner body size and stream entry timing in both populations. Our results therefore suggest considerable demographic but limited evolutionary effects of bear predation in the two study populations. [Lin, J. E.; Naish, K. A.; Peterson, D.; Hilborn, R.; Hauser, L.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA; [Hard, J. J.] NOAA, Natl Marine Fisheries Serv, Conservat Biol Div, NW Fisheries Sci Ctr, Seattle, WA 98115 USA; [Peterson, D.] Univ Massachusetts, Grad Program Organism & Evolutionary Biol, 319 Morrill S,611 N Pleasant St, Amherst, MA 01003 USA Lin, JE (reprint author), Ocean Outcomes, 421 SW Sixth Ave,Ste 1400, Portland, OR 97204 USA. jocelynlin98@gmail.com Hauser, Lorenz/E-4365-2010; Naish, Kerry/F-5768-2014 Naish, Kerry/0000-0002-3275-8778; Peterson, Daniel/0000-0002-3024-3068 Institute for Ocean Conservation Science at Stony Brook University via a grant from the Pew Charitable Trusts; Gordon and Betty Moore Foundation; National Science Foundation (NSF) [OCE-0410437]; NSF Graduate Research Fellowship; National Marine Fisheries Service/Sea Grant Joint Graduate Fellowship in Population Dynamics and Marine Resource Economics Anne Hilborn, Ulrike Hilborn, Peter Westley, Allan Hicks, Daniel Schindler and Jackie Carter helped collect the field data, Melissa Baird provided genotypes, Curry Cunningham provided fishery selectivity data and Miyako Kodama assisted with the selection coefficient analysis. We also thank Tom Quinn for comments that helped improve the manuscript. Support was provided by the Institute for Ocean Conservation Science at Stony Brook University via a grant from the Pew Charitable Trusts, the Gordon and Betty Moore Foundation and the National Science Foundation (NSF grant #OCE-0410437). Jocelyn Lin also received funding from an NSF Graduate Research Fellowship and a National Marine Fisheries Service/Sea Grant Joint Graduate Fellowship in Population Dynamics and Marine Resource Economics. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its sub-agencies. Anderson JH, 2010, MOL ECOL, V19, P2562, DOI 10.1111/j.1365-294X.2010.04652.x; Beacham T.D., 1998, North Pacific Anadromous Fish Commission Bulletin, V1, P227; Bentley KT, 2014, J ANIM ECOL, V83, P1478, DOI 10.1111/1365-2656.12223; Carlson SM, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001286; Carlson SM, 2009, EVOLUTION, V63, P1244, DOI 10.1111/j.1558-5646.2009.00643.x; Clark W, 1959, 24 N AM WILDLIFE C, V24, P337; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Cunningham C, 2012, RECONSTRUCTION BRIST; Cunningham CJ, 2013, AM NAT, V181, P663, DOI 10.1086/670026; Dickerson BR, 2002, ETHOL ECOL EVOL, V14, P29; Endler J. A., 1986, NATURAL SELECTION WI; FOOTE CJ, 1989, ANIM BEHAV, V38, P721, DOI 10.1016/S0003-3472(89)80022-3; FRANKHAM R, 1968, GENET RES, V12, P237, DOI 10.1017/S0016672300011848; GARD R, 1971, J WILDLIFE MANAGE, V35, P193, DOI 10.2307/3799591; Gende SM, 2004, OIKOS, V104, P518, DOI 10.1111/j.0030-1299.2004.12762.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hard JJ, 2008, EVOL APPL, V1, P388, DOI 10.1111/j.1752-4571.2008.00020.x; Hauser L, 2011, MOL ECOL RESOUR, V11, P150, DOI 10.1111/j.1755-0998.2010.02961.x; Hendry AP, 1997, CAN J FISH AQUAT SCI, V54, P75, DOI 10.1139/cjfas-54-1-75; Hendry AP, 2004, P ROY SOC B-BIOL SCI, V271, P259, DOI 10.1098/rspb.2003.2600; Hixon MA, 1997, SCIENCE, V277, P946, DOI 10.1126/science.277.5328.946; IHSSEN PE, 1981, CAN J FISH AQUAT SCI, V38, P1790, DOI 10.1139/f81-226; Jones OR, 2010, MOL ECOL RESOUR, V10, P551, DOI 10.1111/j.1755-0998.2009.02787.x; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Kendall NW, 2013, OIKOS, V122, P411, DOI 10.1111/j.1600-0706.2012.20319.x; Kendall NW, 2009, CAN J FISH AQUAT SCI, V66, P896, DOI 10.1139/F09-047; Kodama M, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-116; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Lin J, 2008, HEREDITY, V101, P341, DOI 10.1038/hdy.2008.59; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; MILLS LS, 1993, BIOSCIENCE, V43, P219, DOI 10.2307/1312122; Myers KW, 1996, 192 FRIUW N PAC AN F, P228; Nosil P, 2006, P NATL ACAD SCI USA, V103, P9090, DOI 10.1073/pnas.0601575103; Olsen JB, 2000, MOL ECOL, V9, P2185, DOI 10.1046/j.1365-294X.2000.105317.x; Pemberton JM, 2008, P R SOC B, V275, P613, DOI 10.1098/rspb.2007.1531; Quinn TP, 2014, OECOLOGIA, V176, P445, DOI 10.1007/s00442-014-3043-2; Quinn TP, 1999, OECOLOGIA, V121, P273, DOI 10.1007/s004420050929; Quinn TP, 2001, CAN J ZOOL, V79, P1782, DOI 10.1139/cjz-79-10-1782; Quinn TP, 2001, EVOL ECOL RES, V3, P917; R Development Core Team, 2013, R LANG ENV STAT COMP; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Seamons TR, 2007, EVOL ECOL RES, V9, P409; Skaug H, 2011, GLMMADMB GEN LINEAR; Vamosi SM, 2005, CAN J ZOOL, V83, P894, DOI 10.1139/Z05-063; Van Oosterhout D, 2004, MOL ECOL NOTES, V4, P535; Walling CA, 2010, MOL ECOL, V19, P1914, DOI 10.1111/j.1365-294X.2010.04604.x; Walsh B, 2009, ANNU REV ECOL EVOL S, V40, P41, DOI 10.1146/annurev.ecolsys.110308.120232; Waples RS, 2008, MOL ECOL RESOUR, V8, P753, DOI 10.1111/j.1755-0998.2007.02061.x; Waples Robin S., 2004, P295; Zabel RW, 2006, CONSERV BIOL, V20, P190, DOI 10.1111/j.1523-1739.2006.00300.x 53 4 4 3 27 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0018-067X 1365-2540 HEREDITY Heredity MAY 2016 116 5 447 457 10.1038/hdy.2016.3 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DJ3TT WOS:000374130300004 26860201 Green Published, Bronze 2019-02-21 J Doutrelant, C; Paquet, M; Renoult, JP; Gregoire, A; Crochet, PA; Covas, R Doutrelant, Claire; Paquet, Matthieu; Renoult, Julien P.; Gregoire, Arnaud; Crochet, Pierre-Andre; Covas, Rita Worldwide patterns of bird colouration on islands ECOLOGY LETTERS English Article Colouration; Goldsmith tetrahedral colour space; Insularity syndrome; Parallel evolution; Sexual selection; Species recognition CHARACTER DISPLACEMENT; MAINLAND POPULATIONS; SEXUAL DICHROMATISM; EXTRAPAIR PATERNITY; RELAXED PREDATION; SUBOSCINE BIRDS; EVOLUTION; DIVERSITY; SYMPATRY; ECOLOGY Island environments share distinctive characteristics that offer unique opportunities to investigate parallel evolution. Previous research has produced evidence of an island syndrome for morphological traits, life-history strategies and ecological niches, but little is known about the response to insularity of other important traits such as animal signals. Here, we tested whether birds' plumage colouration is part of the island syndrome. We analysed with spectrophotometry the colouration of 116 species endemic to islands and their 116 closest mainland relatives. We found a pattern of reduced brightness and colour intensity for both sexes on islands. In addition, we found a decrease in the number of colour patches on islands that, in males, was associated with a decrease in the number of same-family sympatric species. These results demonstrate a worldwide pattern of parallel colour changes on islands and suggest that a relaxation of selection on species recognition may be one of the mechanisms involved. [Doutrelant, Claire; Paquet, Matthieu; Gregoire, Arnaud; Crochet, Pierre-Andre] Univ Montpellier 3, Univ Montpellier, CNRS, EPHE,CEFE UMR 5175, 1919 Route Mende, F-34293 Montpellier 5, France; [Doutrelant, Claire; Covas, Rita] Univ Cape Town, DST NRF Ctr Excellence, Percy FitzPatrick Inst, ZA-7701 Rondebosch, South Africa; [Renoult, Julien P.] Univ Paris 1 Pantheon Sorbonne, CNRS, ACTE UMR 8218, 47 Rue bergers, F-75015 Paris, France; [Covas, Rita] Univ Porto, CIBIO InBio, Rua Monte Crasto, P-4485661 Vairao, Portugal; [Covas, Rita] Univ Porto, Fac Sci, Dept Biol, Rua Campo Alegre 823, P-4100 Oporto, Portugal Doutrelant, C (reprint author), Univ Montpellier 3, Univ Montpellier, CNRS, EPHE,CEFE UMR 5175, 1919 Route Mende, F-34293 Montpellier 5, France.; Doutrelant, C (reprint author), Univ Cape Town, DST NRF Ctr Excellence, Percy FitzPatrick Inst, ZA-7701 Rondebosch, South Africa. claire.doutrelant@cefe.cnrs.fr Covas, Rita/G-2242-2018; Gregoire, Arnaud/B-6321-2008 Covas, Rita/0000-0001-7130-144X; Gregoire, Arnaud/0000-0001-6103-355X Agence Nationale de la Recherche [ANR 09-JCJC-0050-0]; Languedoc Roussillon Region (fund 'chercheur(se) d'avenir); European Program Synthesys; AMNH; Marie Curie Fellowship, programmes 'Ciencia'; Portuguese Science and Technology Foundation FCT [01411/2014/CP1256/CT0007]; Project 'Biodiversity, Ecology and Global Change' - North Portugal Regional Operational Programme ON.2 - O Novo Norte; NSRF-ERDF We thank Paul Sweet and Robert Prys-Jones from the American and British Natural History Museum for their kind support and Doris Gomez, Olivier Gimenez, Julien Claude, Goncalo Cardoso and Martim Melo for discussions and advice. Emeline Mourocq helped building the database and Nathalie Grnac, Romain Guerreiro, Andrea Baquero and Thibaut Powolny helped with data collection at the museums. Adrian Skerrett gave useful information on Seychelles birds. M. Melo, S. Anderson and R. Bowie gave us access to unpublished phylogenetic data. We are thankful for the insightful comments of three anonymous reviewers that greatly helped to improve this study. This work was funded by the 'Agence Nationale de la Recherche' (ANR 09-JCJC-0050-0) and the Languedoc Roussillon Region (fund 'chercheur(se) d'avenir 2011) to CD, the European Program Synthesys to RC and CD and a Collection Study Grant from the AMNH to RC. RC was funded by a Marie Curie Fellowship, programmes 'Ciencia 2008' and IF (01411/2014/CP1256/CT0007; Portuguese Science and Technology Foundation FCT) and Project 'Biodiversity, Ecology and Global Change' (co-financed by North Portugal Regional Operational Programme 2007/2013 ON.2 - O Novo Norte and NSRF-ERDF). This research is a joint research programme conducted under the International Associated Lab CNRS-CIBIO. ADLER GH, 1994, Q REV BIOL, V69, P473, DOI 10.1086/418744; Bailey SF, 2015, MOL BIOL EVOL, V32, P1436, DOI 10.1093/molbev/msv033; Beauchamp G, 2004, P ROY SOC B-BIOL SCI, V271, P1039, DOI 10.1098/rspb.2004.2703; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Blondel J, 2000, VIE MILIEU, V50, P205; Botero CA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032311; Byers JA, 2006, J ANIM ECOL, V75, P399, DOI 10.1111/j.1365-2656.2006.01060.x; Covas R, 2012, P ROY SOC B-BIOL SCI, V279, P1531, DOI 10.1098/rspb.2011.1785; Del Hoyo J., 1992, HDB BIRDS WORLD; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; Fabre PH, 2012, J BIOGEOGR, V39, P1900, DOI 10.1111/j.1365-2699.2012.02744.x; Figuerola J, 2000, FUNCT ECOL, V14, P701, DOI 10.1046/j.1365-2435.2000.00474.x; Fitzpatrick S, 1998, J AVIAN BIOL, V29, P248, DOI 10.2307/3677107; Frankham R, 1997, HEREDITY, V78, P311, DOI 10.1038/hdy.1997.46; GOLDSMITH TH, 1990, Q REV BIOL, V65, P281, DOI 10.1086/416840; Gomez D, 2007, AM NAT, V169, pS42, DOI 10.1086/510138; GRANT P. R., 1965, SYST ZOOL, V14, P47, DOI 10.2307/2411902; Grant P. R., 1998, EVOLUTION ISLANDS; Grant PR, 2001, OIKOS, V92, P385, DOI 10.1034/j.1600-0706.2001.920301.x; Griffith SC, 2000, BEHAV ECOL, V11, P265, DOI 10.1093/beheco/11.3.265; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hastad O, 2008, AM NAT, V171, P831, DOI 10.1086/587529; Hayashi M, 2004, BIOL J LINN SOC, V81, P417, DOI 10.1111/j.1095-8312.2003.00292.x; Hill G.E., 2006, BIRD COLORATION FUNC; Ishtiaq F, 2012, PARASITOLOGY, V139, P221, DOI 10.1017/S0031182011001831; Losos JB, 2009, NATURE, V457, P830, DOI 10.1038/nature07893; Maia R, 2013, METHODS ECOL EVOL, V4, P906, DOI 10.1111/2041-210X.12069; Martin PR, 2015, AM NAT, V185, P443, DOI 10.1086/680206; Martin PR, 2010, EVOLUTION, V64, P336, DOI 10.1111/j.1558-5646.2009.00831.x; Matson KD, 2006, P ROY SOC B-BIOL SCI, V273, P2267, DOI 10.1098/rspb.2006.3590; Mayr E., 1963, ANIMAL SPECIES EVOLU; McKnaught M. K., 2003, J EVOLUTION BIOL, V15, P505; Meiri S, 2008, P ROY SOC B-BIOL SCI, V275, P141, DOI 10.1098/rspb.2007.1056; MOLLER AP, 1994, EVOLUTION, V48, P1089, DOI 10.1111/j.1558-5646.1994.tb05296.x; Morinay J, 2013, ECOL EVOL, V3, P5127, DOI 10.1002/ece3.864; Muller C, 2007, GEN COMP ENDOCR, V154, P128, DOI 10.1016/j.ygcen.2007.05.031; Novosolov M, 2013, GLOBAL ECOL BIOGEOGR, V22, P184, DOI 10.1111/j.1466-8238.2012.00791.x; Ord TJ, 2006, ANIM BEHAV, V71, P1411, DOI 10.1016/j.anbehav.2005.12.003; Osorio D, 2005, P ROY SOC B-BIOL SCI, V272, P1745, DOI 10.1098/rspb.2005.3156; Petrie M, 1998, P NATL ACAD SCI USA, V95, P9390, DOI 10.1073/pnas.95.16.9390; Pfennig KS, 2009, Q REV BIOL, V84, P253, DOI 10.1086/605079; Pike N, 2011, METHODS ECOL EVOL, V2, P278, DOI 10.1111/j.2041-210X.2010.00061.x; Price JJ, 2014, EVOLUTION, V68, P2026, DOI 10.1111/evo.12417; R Development Core Team, 2011, R LANG ENV STAT COMP; Raia P, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-289; Renoult JP, 2017, BIOL REV, V92, P292, DOI 10.1111/brv.12230; Roulin A, 2010, J EVOLUTION BIOL, V23, P925, DOI 10.1111/j.1420-9101.2010.01961.x; Runemark A, 2014, J EVOLUTION BIOL, V27, P1676, DOI 10.1111/jeb.12421; Saetre GP, 1997, NATURE, V387, P589; Seddon N, 2005, EVOLUTION, V59, P200; Seddon N, 2008, AM NAT, V171, P620, DOI 10.1086/587071; Seehausen O, 2004, P ROY SOC B-BIOL SCI, V271, P1345, DOI 10.1098/rspb.2004.2737; Sorci G, 1998, J ANIM ECOL, V67, P263, DOI 10.1046/j.1365-2656.1998.00199.x; STAMPS JA, 1985, Q REV BIOL, V60, P155, DOI 10.1086/414314; Stoddard MC, 2008, AM NAT, V171, P755, DOI 10.1086/587526; Tibbetts EA, 2009, J EVOLUTION BIOL, V22, P2376, DOI 10.1111/j.1420-9101.2009.01861.x; Uy JAC, 2015, AUK, V132, P787, DOI 10.1642/AUK-14-284.1; Vanhooydonck B, 2009, J EVOLUTION BIOL, V22, P293, DOI 10.1111/j.1420-9101.2008.01643.x; Warren BH, 2015, ECOL LETT, V18, P200, DOI 10.1111/ele.12398 59 6 6 5 63 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. MAY 2016 19 5 537 545 10.1111/ele.12588 9 Ecology Environmental Sciences & Ecology DI8YT WOS:000373789100005 26932367 2019-02-21 J McManamay, RA; Jett, RT; Ryon, MG; Gregory, SM; Stratton, SH; Peterson, MJ McManamay, Ryan A.; Jett, Robert T.; Ryon, Michael G.; Gregory, Scott M.; Stratton, Sally H.; Peterson, Mark J. Dispersal limitations on fish community recovery following long-term water quality remediation HYDROBIOLOGIA English Article Stream fragmentation; Restoration ecology; Culvert; Fish passage; Habitat patches; Connectivity LIFE-HISTORY STRATEGIES; LONGITUDINAL CONNECTIVITY; FRAGMENTED LANDSCAPES; POPULATION REGULATION; HABITAT RESTORATION; UNITED-STATES; RIVER-BASIN; DAM REMOVAL; STREAMS; FRAMEWORK In-stream barriers may impose constraints on the ecological effectiveness of restoration strategies by limiting colonization. We assessed the importance of dispersal limitations to fish community recovery following long-term pollution abatement, water quality remediation, and species introductions within the White Oak Creek watershed near Oak Ridge, Tennessee (USA). Long-term (26 years) responses in fish species richness, biomass, and community composition to water quality remediation were evaluated in light of physical barriers (culverts and weirs). We found that barriers to dispersal were potentially limiting fish community recovery by preventing colonization by introduced species and seasonal migrants. Changes in richness were negatively related to barrier index, a measure of the degree of isolation by barriers. Following introductions, upstream passage for six fish species above non-passable barriers was not observed. Highly isolated sites were dominated by a few equilibrium species, whereas less isolated sites showed more variation in life history strategies with increasing periodic and opportunistic strategists. The importance of barriers on community dynamics decreased over time-an indication of increasing community stability, homogenization of fauna, and improved water quality. However, isolating the role of dispersal limitation was complicated by multiple interacting stressors, such as the compounding effects of barriers and pervasive water quality conditions. [McManamay, Ryan A.; Jett, Robert T.; Ryon, Michael G.; Gregory, Scott M.; Stratton, Sally H.; Peterson, Mark J.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008 MS6351, Oak Ridge, TN 37831 USA McManamay, RA (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008 MS6351, Oak Ridge, TN 37831 USA. mcmanamayra@ornl.gov ORNL Environmental Protection Services Division's Water Quality Programs; Oak Ridge National Laboratory, UT-Battelle, LLC [DE-AC05-00OR22725]; Department of Energy; DOE Public Access Plan This research was sponsored by the ORNL Environmental Protection Services Division's Water Quality Programs. This paper has been authored by employees of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government's purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). Special thanks to John Smith and two anonymous reviewers for providing comments and editorial suggestions that improved this manuscript. We are also grateful to Diedre Tharpe for providing access to surface water monitoring data. Albanese B, 2009, FRESHWATER BIOL, V54, P1444, DOI 10.1111/j.1365-2427.2009.02194.x; Bates D., 2015, LME4 LINEAR MIXED EF; Bednarek AT, 2005, ECOL APPL, V15, P997, DOI 10.1890/04-0586; Beisner BE, 2003, FRONT ECOL ENVIRON, V1, P376, DOI 10.2307/3868190; Borcard D, 2002, ECOL MODEL, V153, P51, DOI 10.1016/S0304-3800(01)00501-4; Brederveld RJ, 2011, J APPL ECOL, V48, P1241, DOI 10.1111/j.1365-2664.2011.02026.x; Brudvig L. A., 2010, RESTORATION ECOLOGY, V19, P24; CARLE FL, 1978, BIOMETRICS, V34, P621, DOI 10.2307/2530381; Cote D, 2009, LANDSCAPE ECOL, V24, P101, DOI 10.1007/s10980-008-9283-y; Dixon JD, 2006, CONSERV BIOL, V20, P155, DOI [10.1111/j.1523-1739.2005.00292.x, 10.1111/j.1523-1739.2006.00292.x]; Eros T, 2015, HYDROBIOLOGIA, V758, P31, DOI 10.1007/s10750-015-2262-9; Etnier D. A., 1993, FISHES TENNESSEE; Favaro C, 2014, CAN J FISH AQUAT SCI, V71, P1805, DOI 10.1139/cjfas-2014-0199; Ficke AD, 2011, T AM FISH SOC, V140, P1521, DOI 10.1080/00028487.2011.638579; Fraser DJ, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0370; Goslee S, 2015, ECODIST DISSIMILARIT; Han M, 2008, ECOL RES, V23, P735, DOI 10.1007/s11284-007-0432-6; HERKERT JR, 1994, ECOL APPL, V4, P461, DOI 10.2307/1941950; Hitt NP, 2012, T AM FISH SOC, V141, P1171, DOI 10.1080/00028487.2012.675918; Hitt NP, 2011, J N AM BENTHOL SOC, V30, P296, DOI 10.1899/09-155.1; JACKSON DA, 1993, ECOLOGY, V74, P2204, DOI 10.2307/1939574; Keller D, 2012, FRESHWATER BIOL, V57, P1373, DOI 10.1111/j.1365-2427.2012.02797.x; Kiffney PM, 2009, RIVER RES APPL, V25, P438, DOI 10.1002/rra.1174; Kocovsky PM, 2008, N AM J FISH MANAGE, V28, P906, DOI 10.1577/M06-120.1; Krumholz L. A., 1954, ORO587 US AT EN COMM, V1; Kubach KM, 2011, FRESHWATER BIOL, V56, P503, DOI 10.1111/j.1365-2427.2010.02517.x; Kuby MJ, 2005, ADV WATER RESOUR, V28, P845, DOI 10.1016/j.advwatres.2004.12.015; Lepori F, 2005, ECOL APPL, V15, P2060, DOI 10.1890/04-1372; Mahlum S, 2014, CAN J FISH AQUAT SCI, V71, P1852, DOI 10.1139/cjfas-2013-0646; Mahlum S, 2014, T AM FISH SOC, V143, P39, DOI 10.1080/00028487.2013.825641; Marzluff JM, 2001, RESTOR ECOL, V9, P280, DOI 10.1046/j.1526-100x.2001.009003280.x; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; McManamay RA, 2013, ENVIRON MANAGE, V51, P1210, DOI 10.1007/s00267-013-0055-3; Meixler MS, 2009, ECOL MODEL, V220, P2782, DOI 10.1016/j.ecolmodel.2009.07.014; Miller JR, 2007, RESTOR ECOL, V15, P382, DOI 10.1111/j.1526-100X.2007.00234.x; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Newton TJ, 2008, J N AM BENTHOL SOC, V27, P424, DOI 10.1899/07-076.1; Oksanen J, 2011, VEGAN COMMUNITY ECOL; Pepino M, 2012, ECOL APPL, V22, P1435; Perkin JS, 2015, ECOL MONOGR, V85, P73, DOI 10.1890/14-0121.1; Perkin JS, 2012, ECOL APPL, V22, P2176, DOI 10.1890/12-0318.1; Peterson MJ, 2011, ENVIRON MANAGE, V47, P1005, DOI 10.1007/s00267-011-9627-2; Railsback S.F., 1989, ORNLTM11061, P62; Roni P, 2008, N AM J FISH MANAGE, V28, P856, DOI 10.1577/M06-169.1; Ryon M.G., 1988, Journal of the Tennessee Academy of Science, V63, P97; Ryon MG, 2011, ENVIRON MANAGE, V47, P1096, DOI 10.1007/s00267-010-9596-x; Schrott GR, 2005, CONSERV BIOL, V19, P1181, DOI 10.1111/j.1523-1739.2005.00205.x; Sherwood C. B., 1987, ORNLTM10062; Skalski GT, 2008, T AM FISH SOC, V137, P962, DOI 10.1577/T07-060.1; Smith JG, 2011, ENVIRON MANAGE, V47, P1077, DOI 10.1007/s00267-010-9610-3; Southworth GR, 2011, ENVIRON MANAGE, V47, P1064, DOI 10.1007/s00267-011-9637-0; Sudduth EB, 2007, RESTOR ECOL, V15, P573, DOI 10.1111/j.1526-100X.2007.00252.x; Templ M., 2015, CRAN R PACKAGE ROBCO; UCOR (URS | CH2 M Oak Ridge LLC), 2011, DOEORO2399, P56; Warren ML, 1998, T AM FISH SOC, V127, P637, DOI 10.1577/1548-8659(1998)127<0637:RCABTS>2.0.CO;2; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Worthington TA, 2014, GLOBAL CHANGE BIOL, V20, P89, DOI 10.1111/gcb.12329 58 3 3 1 63 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia MAY 2016 771 1 45 65 10.1007/s10750-015-2612-7 21 Marine & Freshwater Biology Marine & Freshwater Biology DH5AY WOS:000372798500005 2019-02-21 J Jonason, PK; Ferrell, JD Jonason, Peter K.; Ferrell, Jason D. Looking under the hood: The psychogenic motivational foundations of the Dark Triad PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Narcissism; Psychopathy; Machiavellianism; Motivation; Evolutionary Psychology TERM MATING STRATEGY; LIFE-HISTORY THEORY; DIRTY DOZEN; PSYCHOLOGICAL NEEDS; PERSONALITY-TRAITS; SELF-DETERMINATION; MACHIAVELLIANISM; EVOLUTIONARY; PSYCHOPATHY; NARCISSISM The Dark Triad traits (i.e., psychopathy, narcissism, & Machiavellianism) have become a popular topic in personality psychology and in the media and may have important evolutionary significance. To provide new insight into the Dark Triad traits, we present four studies (N = 2506) with two measures of the Dark Triad traits, in two volunteer, one mTurk, and one American undergraduate sample using three frameworks of individual differences in psychogenic motives (i.e., achievement, power, and, affiliation). Although results were not fully robust to method and sampling variance, all three traits were associated with motivations towards trying to be dominant and powerful, but only narcissism was motivated by affiliation or intimacy needs. Sex differences in the Dark Triad traits were often accounted for by individual differences in the intimacy and power motives. The Discussion highlights the utility of evolutionary models to improve our understanding of the motivational systems "under the hood" of those characterized by the Dark Triad traits. (C) 2016 Elsevier Ltd. All rights reserved. [Jonason, Peter K.] Univ Western Sydney, Penrith, NSW 1797, Australia; [Ferrell, Jason D.] Univ Texas Austin, Austin, TX 78712 USA Jonason, PK (reprint author), Univ Western Sydney, Sch Social Sci & Psychol, Milperra, NSW 2214, Australia. p.jonason@uws.edu.au Army Research Institute [W5J9CQ12C0043] Preparation of this manuscript was aided by funding from the Army Research Institute (W5J9CQ12C0043). The views, opinions, and/or findings contained in this report are those of the authors, and shall not be construed as official Department of the Army position, policy, or decision, unless so designated by other documents. Adams HM, 2014, PERS INDIV DIFFER, V66, P204, DOI 10.1016/j.paid.2014.01.008; BAUMEISTER RF, 1995, PSYCHOL BULL, V117, P497, DOI 10.1037/0033-2909.117.3.497; Bernard L.C., 2010, PSYCHOL REP, V106, P1; Bernard LC, 2005, GENET SOC GEN PSYCH, V131, P129, DOI 10.3200/MONO.131.2.129-184; Birkas B, 2015, PERS INDIV DIFFER, V74, P112, DOI 10.1016/j.paid.2014.09.046; Bowlby J., 1979, MAKING BREAKING AFFE; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; BUSS DM, 1991, ANNU REV PSYCHOL, V42, P459, DOI 10.1146/annurev.ps.42.020191.002331; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Campbell W. K., 2006, SELF RELATIONSHIPS C, P57; Carey A.L, 2015, J PERS SOC PSYCHOL, pe1; Carter GL, 2014, PERS INDIV DIFFER, V56, P159, DOI 10.1016/j.paid.2013.09.001; Christie R, 1970, STUDIES MACHIAVELLIA; Cleckley HC, 1976, MASK SANITY; Confer JC, 2010, AM PSYCHOL, V65, P110, DOI 10.1037/a0018413; Cooper M.L., 2015, J PERS SOC PSYCHOL, P1; Cooper ML, 2000, J PERS, V68, P1059, DOI 10.1111/1467-6494.00126; Crysel LC, 2013, PERS INDIV DIFFER, V54, P35, DOI 10.1016/j.paid.2012.07.029; deCharms R, 1968, PERSONAL CAUSATION I; Deci E, 1975, INTRINSIC MOTIVATION; Deci EL, 2000, PSYCHOL INQ, V11, P227, DOI 10.1207/S15327965PLI1104_01; Deci EL, 1985, INTRINSIC MOTIVATION; Elliot AJ, 2001, PSYCHOL INQ, V12, P216; Fieder M, 2012, HUM NATURE-INT BIOS, V23, P191, DOI 10.1007/s12110-012-9139-7; Forsterling F, 2007, J PERS SOC PSYCHOL, V92, P775, DOI 10.1037/0022-3514.92.5.775; Giammarco EA, 2014, PERS INDIV DIFFER, V67, P23, DOI 10.1016/j.paid.2014.02.010; HARE RD, 1985, J CONSULT CLIN PSYCH, V53, P7, DOI 10.1037/0022-006X.53.1.7; HARLOW HF, 1959, SCIENCE, V130, P421, DOI 10.1126/science.130.3373.421; Harpur T. J., 1989, PSYCHOL ASSESSMENT J, V1, P6, DOI DOI 10.1037/1040-3590.1.1.6; Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X; Hodson G, 2009, J RES PERS, V43, P686, DOI 10.1016/j.jrp.2009.02.005; Jakobwitz S, 2006, PERS INDIV DIFFER, V40, P331, DOI 10.1016/j.paid.2005.07.006; Jonason P. K., 2013, PERSONALITY INDIVIDU, V57, P572; Jonason P. K., 2013, INDIVIDUAL DIFFERENC, V11, P81; Jonason PK, 2016, PERS INDIV DIFFER, V90, P273, DOI 10.1016/j.paid.2015.11.023; Jonason PK, 2015, PERS INDIV DIFFER, V81, P102, DOI 10.1016/j.paid.2014.10.045; Jonason PK, 2015, PERS INDIV DIFFER, V78, P43, DOI 10.1016/j.paid.2015.01.028; Jonason PK, 2015, PERS INDIV DIFFER, V78, P5, DOI 10.1016/j.paid.2015.01.008; Jonason PK, 2013, PERS INDIV DIFFER, V55, P532, DOI 10.1016/j.paid.2013.04.027; Jonason PK, 2013, PERS INDIV DIFFER, V55, P76, DOI 10.1016/j.paid.2013.02.010; Jonason PK, 2013, EVOL PSYCHOL-US, V11, P172, DOI 10.1177/147470491301100116; Jonason PK, 2012, EVOL PSYCHOL-US, V10, P400, DOI 10.1177/147470491201000303; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P606, DOI 10.1016/j.paid.2011.12.015; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2012, PERS INDIV DIFFER, V52, P306, DOI 10.1016/j.paid.2011.10.032; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones D.N., 2011, THEORY RES ASSESSMEN, P249; Jones DN, 2014, ASSESSMENT, V21, P28, DOI 10.1177/1073191113514105; Jones DN, 2013, J RES PERS, V47, P563, DOI 10.1016/j.jrp.2013.04.005; Jones DN, 2013, EUR J PERSONALITY, V27, P521, DOI 10.1002/per.1893; Kavanagh PS, 2013, PERS INDIV DIFFER, V55, P666, DOI 10.1016/j.paid.2013.05.019; Kenrick D. T., 2013, THE RATIONAL ANIMAL; Kufner ACP, 2015, DIAGNOSTICA, V61, P76, DOI 10.1026/0012-1924/a000124; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; Lee K, 2013, EUR J PERSONALITY, V27, P169, DOI 10.1002/per.1860; LEVENSON MR, 1995, J PERS SOC PSYCHOL, V68, P151, DOI 10.1037//0022-3514.68.1.151; Machiavelli Niccolo, 2004, PRINCE; Maslow A. H, 1987, MOTIVATION PERSONALI; McAdams DP, 2013, PERSPECT PSYCHOL SCI, V8, P272, DOI 10.1177/1745691612464657; McClelland D. C, 1987, HUMAN MOTIVATION; MCCLELLAND DC, 1989, PSYCHOL REV, V96, P690, DOI 10.1037/0033-295X.96.4.690; MCCLELLAND DC, 1985, AM PSYCHOL, V40, P812, DOI 10.1037/0003-066X.40.7.812; McDonald MM, 2012, PERS INDIV DIFFER, V52, P601, DOI 10.1016/j.paid.2011.12.003; McHoskey JW, 1999, MOTIV EMOTION, V23, P267, DOI 10.1023/A:1021338809469; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Miller G, 2012, PERSPECT PSYCHOL SCI, V7, P221, DOI 10.1177/1745691612441215; Nunnally JC, 1978, PSYCHOMETRIC THEORY; O'Boyle EH, 2012, J APPL PSYCHOL, V97, P557, DOI 10.1037/a0025679; Paulhus D. L., 2009, MANUAL SELF REPORT P; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Petrides KV, 2011, TWIN RES HUM GENET, V14, P35, DOI 10.1375/twin.14.1.35; Pohlmann K, 1997, DIAGNOSTICA, V43, P63; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; RYAN RM, 1995, J PERS, V63, P397, DOI 10.1111/j.1467-6494.1995.tb00501.x; Sandvik AM, 2015, PERS INDIV DIFFER, V72, P30, DOI 10.1016/j.paid.2014.08.009; Schmitt N, 1996, PSYCHOL ASSESSMENT, V8, P350, DOI 10.1037/1040-3590.8.4.350; Schonbrodt FD, 2012, J RES PERS, V46, P725, DOI 10.1016/j.jrp.2012.08.010; Scott-Phillips T.C., 2011, PERSPECT PSYCHOL SCI, V1, P38; Semenyna SW, 2015, PERS INDIV DIFFER, V83, P37, DOI 10.1016/j.paid.2015.03.046; Sheldon KM, 2012, MOTIV EMOTION, V36, P439, DOI 10.1007/s11031-012-9279-4; Sheldon KM, 2011, J PERS SOC PSYCHOL, V100, P766, DOI 10.1037/a0022407; Sheldon KM, 2009, J PERS, V77, P1467, DOI 10.1111/j.1467-6494.2009.00589.x; SHELDON KM, 2004, OPTIMAL HUMAN BEING; Spain S.M., 2014, JOURNAL OF ORGANIZAT, V53, pS41; Vansteenkiste M, 2013, J PSYCHOTHER INTEGR, V23, P263, DOI 10.1037/a0032359; Vernon PA, 2008, PERS INDIV DIFFER, V44, P445, DOI 10.1016/j.paid.2007.09.007; Wai M, 2012, PERS INDIV DIFFER, V52, P794, DOI 10.1016/j.paid.2012.01.008; Webster GD, 2013, PERS INDIV DIFFER, V54, P302, DOI 10.1016/j.paid.2012.08.027; WHITE RW, 1959, PSYCHOL REV, V66, P297, DOI 10.1037/h0040934; Wrzus C, 2015, EUR J PERSONALITY, V29, P250, DOI 10.1002/per.1986; Zettler I, 2013, EUR J PERSONALITY, V27, P545, DOI 10.1002/per.1912 97 8 9 3 46 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. MAY 2016 94 324 331 10.1016/j.paid.2016.01.039 8 Psychology, Social Psychology DG2YN WOS:000371936800052 2019-02-21 J Zhao, HH; Zhang, HY; Xu, Y Zhao, Huanhuan; Zhang, Heyun; Xu, Yan Does the Dark Triad of Personality Predict Corrupt Intention? The Mediating Role of Belief in Good Luck FRONTIERS IN PSYCHOLOGY English Article Machiavellianism; narcissism; psychopathy; belief in good luck; corruption LIFE-HISTORY THEORY; IRRATIONAL BELIEFS; UNETHICAL BEHAVIOR; PROSPECT-THEORY; RISK; NARCISSISM; MACHIAVELLIANISM; TRAITS; PERFORMANCE; PSYCHOPATHY The current study is the first attempt to examine the association between the Dark Triad of personality (i.e., Machiavellianism, narcissism, and psychopathy) and corruption through a mediator belief in good luck. Based on Ajzen's theory of planned behavior, we assumed that individuals with Dark Triad would be more likely to engage in corruption as a result of belief in good luck. In Study 1, a set of hypothetical scenarios was used to assess the bribe-offering intention and the corresponding belief in good luck. Results indicated that while the Dark Triad of personality positively predicted bribe-offering intention, it was mediated by the belief in good luck in gain-seeking. In Study 2, we presented participants with some hypothetical scenarios of bribe-taking and the corresponding belief in good luck. Findings revealed that the Dark Triad of personality was positively related to bribe-taking intention; the relationship between narcissism and bribe-taking intention, and that between psychopathy and bribe-taking intention was mediated by the belief in good luck in penalty-avoidance. However, this belief in good luck did not mediate the relationship between Machiavellianism and bribe-taking intention. These results hold while controlling for demographic variables, dispositional optimism, and self-efficacy. Taken together, this study extended previous research by providing evidence that belief in good luck may be one of the reasons explaining why people with Dark Triad are more likely to engage in corruption regardless of the potential outcomes. Theoretical and practical implications were discussed. [Zhao, Huanhuan; Zhang, Heyun; Xu, Yan] Beijing Normal Univ, Sch Psychol, Beijing 100875, Peoples R China Xu, Y (reprint author), Beijing Normal Univ, Sch Psychol, Beijing 100875, Peoples R China. xuyan@bnu.edu.cn National Key Technologies R&D Program of China [2012BAI36B03] This research was funded by grants from the National Key Technologies R&D Program of China (2012BAI36B03). We want to thank Nikolaos Ceorgantzis and two anonymous reviewers for comments on earlier versions of this manuscript; and a special thank you goes to Zhujiang Zhang for help in the language editing process. AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T; Alesina A, 2005, J MONETARY ECON, V52, P1227, DOI 10.1016/j.jmoneco.2005.05.003; Andre N, 2006, PERS INDIV DIFFER, V40, P1461, DOI 10.1016/j.paid.2005.10.022; Azizli N, 2016, PERS INDIV DIFFER, V89, P34, DOI 10.1016/j.paid.2015.09.034; Bai BY, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097075; Birkas B, 2015, PERS INDIV DIFFER, V74, P112, DOI 10.1016/j.paid.2014.09.046; Blackburn K, 2009, J ECON BEHAV ORGAN, V72, P797, DOI 10.1016/j.jebo.2009.08.009; Buelow MT, 2014, PERS INDIV DIFFER, V69, P193, DOI 10.1016/j.paid.2014.05.031; Cabelkova I, 2004, APPL ECON, V36, P383, DOI 10.1080/00036840410001674303; Campbell WK, 2004, J BEHAV DECIS MAKING, V17, P297, DOI 10.1002/bdm.475; Chatterjee A, 2007, ADMIN SCI QUART, V52, P351, DOI 10.2189/asqu.52.3.351; Chen G, 2001, ORGAN RES METHODS, V4, P62, DOI 10.1177/109442810141004; Chiu J, 2010, J GAMBL STUD, V26, P205, DOI 10.1007/s10899-009-9160-x; Crysel LC, 2013, PERS INDIV DIFFER, V54, P35, DOI 10.1016/j.paid.2012.07.029; Damisch L, 2010, PSYCHOL SCI, V21, P1014, DOI 10.1177/0956797610372631; Darke PR, 1997, J RES PERS, V31, P486, DOI 10.1006/jrpe.1997.2197; Darke PR, 1997, PERS SOC PSYCHOL B, V23, P378, DOI 10.1177/0146167297234004; Day L, 2003, J PSYCHOL, V137, P99, DOI 10.1080/00223980309600602; Djeriouat H, 2014, PERS INDIV DIFFER, V67, P11, DOI 10.1016/j.paid.2013.12.026; Egan V, 2015, PERS INDIV DIFFER, V76, P123, DOI 10.1016/j.paid.2014.11.054; Ellis A., 1999, J RATION-EMOT COGN-B, V17, P69, DOI [10.1023/A:1023048830350, DOI 10.1023/A:1023048830350]; Farwell L, 1998, J PERS, V66, P65, DOI 10.1111/1467-6494.00003; Fishbein M., 1975, BELIEF ATTITUDE INTE; Foster JD, 2009, J RES PERS, V43, P764, DOI 10.1016/j.jrp.2009.05.005; Gong T, 2002, COMMUNIS POST-COMMUN, V35, P85, DOI 10.1016/S0967-067X(01)00026-5; Gunnthorsdottir A, 2002, J ECON PSYCHOL, V23, P49, DOI 10.1016/S0167-4870(01)00067-8; Hayes AF, 2013, INTRO MEDIATION MODE; He ZK, 2000, COMMUNIS POST-COMMUN, V33, P243, DOI 10.1016/S0967-067X(00)00006-4; Hodson G, 2009, J RES PERS, V43, P686, DOI 10.1016/j.jrp.2009.02.005; Jaber-Lopez T, 2014, FRONT BEHAV NEUROSCI, V8, DOI 10.3389/fnbeh.2014.00434; Jibeen T, 2015, INT J PSYCHOL, V50, P93, DOI 10.1002/ijop.12069; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jones DN, 2014, PERS INDIV DIFFER, V67, P109, DOI 10.1016/j.paid.2014.01.030; Jones DN, 2014, ASSESSMENT, V21, P28, DOI 10.1177/1073191113514105; Jones DN, 2013, J RES PERS, V47, P563, DOI 10.1016/j.jrp.2013.04.005; Jones DN, 2013, EUR J PERSONALITY, V27, P521, DOI 10.1002/per.1893; Judge TA, 2006, J APPL PSYCHOL, V91, P762, DOI 10.1037/0021-9010.91.4.762; Kusev P, 2009, J EXP PSYCHOL LEARN, V35, P1487, DOI 10.1037/a0017039; Lakey CE, 2008, J BEHAV DECIS MAKING, V21, P113, DOI 10.1002/bdm.582; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; Lindgreen A, 2004, J BUS ETHICS, V51, P31, DOI 10.1023/B:BUSI.0000032388.68389.60; Linton DK, 2013, PERS INDIV DIFFER, V54, P738, DOI 10.1016/j.paid.2012.11.026; LU H, 2003, INT CRIMINAL JUSTICE, V13, P28, DOI DOI 10.1177/105756770301300102; Morf CC, 2000, J EXP SOC PSYCHOL, V36, P424, DOI 10.1006/jesp.1999.1421; O'Boyle EH, 2012, J APPL PSYCHOL, V97, P557, DOI 10.1037/a0025679; Pabian S, 2015, PERS INDIV DIFFER, V75, P41, DOI 10.1016/j.paid.2014.11.015; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Rabl T, 2008, J BUS ETHICS, V82, P477, DOI 10.1007/s10551-008-9898-6; Rauthmann JF, 2013, PERS INDIV DIFFER, V54, P622, DOI 10.1016/j.paid.2012.11.021; Roeser K, 2016, PERS INDIV DIFFER, V88, P73, DOI 10.1016/j.paid.2015.09.002; Samar SM, 2013, J RATION-EMOT COGN-B, V31, P231, DOI 10.1007/s10942-013-0172-1; SCHEIER MF, 1994, J PERS SOC PSYCHOL, V67, P1063, DOI 10.1037/0022-3514.67.6.1063; SCHMIDT Andrew Alexander, 2008, THESIS; Sobhani M, 2011, SOC NEUROSCI-UK, V6, P640, DOI 10.1080/17470919.2011.605592; Song XG, 2012, SOC INDIC RES, V109, P211, DOI 10.1007/s11205-011-9896-4; Tang TLP, 2008, MANAGE DECIS, V46, P243, DOI 10.1108/00251740810854140; Tangney JP, 2004, J PERS, V72, P271, DOI 10.1111/j.0022-3506.2004.00263.x; Treisman D, 2000, J PUBLIC ECON, V76, P399, DOI 10.1016/S0047-2727(99)00092-4; TVERSKY A, 1981, SCIENCE, V211, P453, DOI 10.1126/science.7455683; TVERSKY A, 1992, J RISK UNCERTAINTY, V5, P297, DOI 10.1007/BF00122574; Ujhelyi G., 2007, DO CORRUPTION UNPUB; Wang X. X., 2012, J GUIZHOU POLICE OFF, V5, P22; Wohl MJA, 2003, J EXP SOC PSYCHOL, V39, P184, DOI 10.1016/S0022-1031(02)00525-5; Wohl MJA, 2002, PERS SOC PSYCHOL B, V28, P1388, DOI 10.1177/014616702236870; Yang B., 2007, J PSYCHOL SCI, V30, P1413 67 3 3 5 44 FRONTIERS MEDIA SA LAUSANNE PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. APR 28 2016 7 608 10.3389/fpsyg.2016.00608 16 Psychology, Multidisciplinary Psychology DK5BH WOS:000374934200001 27199841 DOAJ Gold, Green Published 2019-02-21 J van der Vaart, E; Johnston, ASA; Sibly, RM van der Vaart, Elske; Johnston, Alice S. A.; Sibly, Richard M. Predicting how many animals will be where: How to build, calibrate and evaluate individual-based models ECOLOGICAL MODELLING English Article Energy budget; Individual-based models; Population dynamics; Approximate Bayesian Computation; Parameter estimation; Model selection APPROXIMATE BAYESIAN COMPUTATION; EISENIA-FOETIDA SAVIGNY; ENERGY BUDGET THEORY; AGENT-BASED MODELS; POPULATION-DYNAMICS; ECOLOGICAL MODELS; SIMULATION-MODELS; GROWTH; PARAMETERS; FAT Individual-based models (IBMs) can simulate the actions of individual animals as they interact with one another and the landscape in which they live. When used in spatially-explicit landscapes IBMs can show how populations change over time in response to management actions. For instance, IBMs are being used to design strategies of conservation and of the exploitation of fisheries, and for assessing the effects on populations of major construction projects and of novel agricultural chemicals. In such real world contexts, it becomes especially important to build IBMs in a principled fashion, and to approach calibration and evaluation systematically. We argue that insights from physiological and behavioural ecology offer a recipe for building realistic models, and that Approximate Bayesian Computation (ABC) is a promising technique for the calibration and evaluation of IBMs. IBMs are constructed primarily from knowledge about individuals. In ecological applications the relevant knowledge is found in physiological and behavioural ecology, and we approach these from an evolutionary perspective by taking into account how physiological and behavioural processes contribute to life histories, and how those life histories evolve. Evolutionary life history theory shows that, other things being equal, organisms should grow to sexual maturity as fast as possible, and then reproduce as fast as possible, while minimising per capita death rate. Physiological and behavioural ecology are largely built on these principles together with the laws of conservation of matter and energy. To complete construction of an IBM information is also needed on the effects of competitors, conspecifics and food scarcity; the maximum rates of ingestion, growth and reproduction, and life-history parameters. Using this knowledge about physiological and behavioural processes provides a principled way to build IBMs, but model parameters vary between species and are often difficult to measure. A common solution is to manually compare model outputs with observations from real landscapes and so to obtain parameters which produce acceptable fits of model to data. However, this procedure can be convoluted and lead to over-calibrated and thus inflexible models. Many formal statistical techniques are unsuitable for use with IBMs, but we argue that ABC offers a potential way forward. It can be used to calibrate and compare complex stochastic models and to assess the uncertainty in their predictions. We describe methods used to implement ABC in an accessible way and illustrate them with examples and discussion of recent studies. Although much progress has been made, theoretical issues remain, and some of these are outlined and discussed. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). [van der Vaart, Elske; Johnston, Alice S. A.; Sibly, Richard M.] Univ Reading, Sch Biol Sci, Harborne Bldg, Reading RG6 6AS, Berks, England van der Vaart, E (reprint author), Univ Reading, Sch Biol Sci, Harborne Bldg, Reading RG6 6AS, Berks, England. e.e.vandervaart@reading.ac.uk; a.s.a.johnston@pgr.reading.ac.uk; r.m.sibly@reading.ac.uk Sibly, Richard/0000-0001-6828-3543 Natural Environmental Resource Council [NE/K006282/1]; Biotechnology and Biological Sciences Research Council [978605]; Natural Environment Research Council [NE/K006282/1] This work was supported by the Natural Environmental Resource Council [grant number NE/K006282/1, awarded to RM Sibly, M Beaumont, A Meade, PJ van Leeuwen and NK Nichols]. This work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). We are very grateful to Volker Grimm and two anonymous referees for constructive comments. Beaumont MA, 2002, GENETICS, V162, P2025; Beaumont MA, 2010, ANNU REV ECOL EVOL S, V41, P379, DOI 10.1146/annurev-ecolsys-102209-144621; Begon M., 2006, ECOLOGY INDIVIDUALS; Bertorelle G, 2010, MOL ECOL, V19, P2609, DOI 10.1111/j.1365-294X.2010.04690.x; Blum MGB, 2013, STAT SCI, V28, P189, DOI 10.1214/12-STS406; Blum MGB, 2010, STAT COMPUT, V20, P63, DOI 10.1007/s11222-009-9116-0; Brown James H., 2012, P21; Clauss M, 2007, COMP BIOCHEM PHYS A, V148, P249, DOI 10.1016/j.cbpa.2007.05.024; Csillery K, 2012, METHODS ECOL EVOL, V3, P475, DOI 10.1111/j.2041-210X.2011.00179.x; Csillery K, 2010, TRENDS ECOL EVOL, V25, P410, DOI 10.1016/j.tree.2010.04.001; Dalkvist T, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022834; Davies N. B., 2012, INTRO BEHAV ECOLOGY; DeAngelis DL, 2005, ANNU REV ECOL EVOL S, V36, P147, DOI 10.1146/annurev.ecolsys.36.102003.152644; Evans MR, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1452; Galic N, 2014, ENVIRON TOXICOL CHEM, V33, P1446, DOI 10.1002/etc.2607; Glazier DS, 2008, RESOURCE ALLOCATION THEORY APPLIED TO FARM ANIMAL PRODUCTION, P22, DOI 10.1079/9781845933944.0022; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; GOSLER AG, 1995, NATURE, V377, P621, DOI 10.1038/377621a0; Grimm V, 2005, INDIVIDUAL BASED MOD; Grimm V, 2012, PHILOS T R SOC B, V367, P298, DOI 10.1098/rstb.2011.0180; Gunadi B, 2003, PEDOBIOLOGIA, V47, P321, DOI 10.1078/0031-4056-00196; Gunadi B, 2002, PEDOBIOLOGIA, V46, P15, DOI 10.1078/0031-4056-00109; Hartig F, 2014, BIOGEOSCIENCES, V11, P1261, DOI 10.5194/bg-11-1261-2014; Hartig F, 2011, ECOL LETT, V14, P816, DOI 10.1111/j.1461-0248.2011.01640.x; Hartman KJ, 2008, T AM FISH SOC, V137, P216, DOI 10.1577/T07-040.1; Hendriks AJ, 1999, OIKOS, V86, P293, DOI 10.2307/3546447; Holling C.S., 1959, CAN ENTOMOL, V91; Hou C, 2014, AM NAT, V184, P233, DOI 10.1086/676856; Johnston ASA, 2014, ECOL MODEL, V280, P5, DOI 10.1016/j.ecolmodel.2013.09.012; Kaspari M., 2012, METABOLIC ECOLOGY SC, P14; KASS RE, 1995, J AM STAT ASSOC, V90, P773, DOI 10.1080/01621459.1995.10476572; Kerkhoff A.J., 2012, METABOLIC ECOLOGY SC; Kooijman S. A. L. M, 2010, DYNAMIC ENERGY BUDGE; Krebs C. J, 2009, ECOLOGY; Kulakowska KA, 2014, ECOL MODEL, V280, P89, DOI [10.1016/j.ecolmode1.2013.09.019, 10.1016/j.ecolmodel.2013.09.019]; Lind J, 2010, CURR ORNITHOL, V17, P1, DOI 10.1007/978-1-4419-6421-2_1; Lindstedt SL, 2002, LAB ANIM-UK, V36, P1, DOI 10.1258/0023677021911731; Liu C, 2013, ECOL MODEL, V248, P92, DOI 10.1016/j.ecolmodel.2012.09.016; Marjoram P, 2003, P NATL ACAD SCI USA, V100, P15324, DOI 10.1073/pnas.0306899100; Martin BT, 2013, AM NAT, V181, P506, DOI 10.1086/669904; Martin BT, 2012, METHODS ECOL EVOL, V3, P445, DOI 10.1111/j.2041-210X.2011.00168.x; Martinez del Rio C., 2007, PHYSL ECOLOGY; Martinez I, 2011, AM NAT, V177, pE136, DOI 10.1086/659623; Monroy F, 2006, CR BIOL, V329, P912, DOI 10.1016/j.crvi.2006.08.001; Moses ME, 2008, AM NAT, V171, P632, DOI 10.1086/587073; Nabe-Nielsen J, 2014, ECOL MODEL, V272, P242, DOI 10.1016/j.ecolmodel.2013.09.025; Nabe-Nielsen J, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008932; Peters R.H., 1983, P1; Petit O., 2009, P R SOC B, V1672, P3495; POND CM, 1978, ANNU REV ECOL SYST, V9, P519, DOI 10.1146/annurev.es.09.110178.002511; Prangle D, 2014, AUST NZ J STAT, V56, P309, DOI 10.1111/anzs.12087; Price CA, 2012, ECOL LETT, V15, P1465, DOI 10.1111/j.1461-0248.2012.01860.x; Pritchard JK, 1999, MOL BIOL EVOL, V16, P1791, DOI 10.1093/oxfordjournals.molbev.a026091; RE Ricklefs, 2000, ECOLOGY; REINECKE AJ, 1990, BIOL FERT SOILS, V10, P184; Sibly R.M., 2002, ENCY EVOLUTION, P623; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; Sibly RM, 2013, METHODS ECOL EVOL, V4, P151, DOI 10.1111/2041-210x.12002; Sih A, 2012, ECOL LETT, V15, P278, DOI 10.1111/j.1461-0248.2011.01731.x; Simpson SJ, 2004, ANIM BEHAV, V68, P1299, DOI 10.1016/j.anbehav.2004.03.003; Sinclair A.R.E., 1989, P197; Sisson SA, 2007, P NATL ACAD SCI USA, V104, P1760, DOI 10.1073/pnas.0607208104; Stearns S, 1992, EVOLUTION LIFE HIST; Stillman RA, 2015, BIOSCIENCE, V65, P140, DOI 10.1093/biosci/biu192; Stillman RA, 2010, BIOL REV, V85, P413, DOI 10.1111/j.1469-185X.2009.00106.x; Tavare S, 1997, GENETICS, V145, P505; Thiele JC, 2014, JASSS-J ARTIF SOC S, V17, DOI 10.18564/jasss.2503; Thiele JC, 2012, METHODS ECOL EVOL, V3, P480, DOI 10.1111/j.2041-210X.2011.00180.x; Toni T, 2009, J R SOC INTERFACE, V6, P187, DOI 10.1098/rsif.2008.0172; Topping CJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045872; van der Vaart E., 2015, LINKING LEVELS RUNS, V1494757; van der Vaart E, 2015, ECOL MODEL, V312, P182, DOI 10.1016/j.ecolmodel.2015.05.020; Wilensky U, 1999, NETLOGO; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050 74 6 6 1 62 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3800 1872-7026 ECOL MODEL Ecol. Model. APR 24 2016 326 SI 113 123 10.1016/j.ecolmodel.2015.08.012 11 Ecology Environmental Sciences & Ecology DH4RG WOS:000372772500011 Other Gold 2019-02-21 J Coall, DA; Tickner, M; McAllister, LS; Sheppard, P Coall, D. A.; Tickner, M.; McAllister, L. S.; Sheppard, P. Developmental influences on fertility decisions by women: an evolutionary perspective PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review fertility; fecundity; early adversity; life-history theory; development; childhood stress ADVERSE CHILDHOOD EXPERIENCES; POPULATION-BASED REGISTRY; PITUITARY-ADRENAL AXIS; LIFE-HISTORY THEORY; LOW-BIRTH-WEIGHT; BODY-MASS INDEX; WORLD-WAR-II; REPRODUCTIVE SUCCESS; FATHER ABSENCE; SEXUAL-ABUSE Developmental environments are crucial for shaping our life course. Elements of the early social and biological environments have been consistently associated with reproduction in humans. To date, a strong focus has been on the relationship between early stress, earlier menarche and first child birth in women. These associations, found predominately in high-income countries, have been usefully interpreted within life-history theory frameworks. Fertility, on the other hand-a missing link between an individual's early environment, reproductive strategy and fitness-has received little attention. Here, we synthesize this literature by examining the associations between early adversity, age at menarche and fertility and fecundity in women. We examine the evidence that potential mechanisms such as birth weight, childhood body composition, risky health behaviours and developmental influences on attractiveness link the early environment and fecundity and fertility. The evidence that menarche is associated with fertility and fecundity is good. Currently, owing to the small number of correlational studies and mixed methodologies, the evidence that early adversity predicts fecundity and fertility is not conclusive. This area of research is in its infancy; studies examining early adversity and adult fertility decisions that can also examine likely biological, social and psychological pathways present opportunities for future fertility research. [Coall, D. A.; Tickner, M.] Edith Cowan Univ, Sch Med & Hlth Sci, Joondalup, WA, Australia; [Coall, D. A.] Univ Western Australia, Sch Psychiat & Clin Neurosci, Crawley, WA, Australia; [McAllister, L. S.] Univ Calif Santa Barbara, Dept Anthropol, Santa Barbara, CA 93106 USA; [Sheppard, P.] London Sch Hyg & Trop Med, Dept Populat Hlth, London WC1, England Coall, DA (reprint author), Edith Cowan Univ, Sch Med & Hlth Sci, Joondalup, WA, Australia.; Coall, DA (reprint author), Univ Western Australia, Sch Psychiat & Clin Neurosci, Crawley, WA, Australia. d.coall@ecu.edu.au Coall, David/0000-0002-0488-2683 Adair LE, 2015, THESIS; Adair LS, 2001, PEDIATRICS, V107, DOI 10.1542/peds.107.4.e59; Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Allsworth JE, 2007, WOMEN HEALTH ISS, V17, P202, DOI 10.1016/j.whi.2007.02.002; Anda RF, 1999, JAMA-J AM MED ASSOC, V282, P1652, DOI 10.1001/jama.282.17.1652; AnderssonEllstrom A, 1996, ACTA OBSTET GYN SCAN, V75, P484, DOI 10.3109/00016349609033359; [Anonymous], 1995, PHYSICAL STATUS THE; APTER D, 1980, CLIN ENDOCRINOL, V12, P107, DOI 10.1111/j.1365-2265.1980.tb02125.x; APTER D, 1983, J CLIN ENDOCR METAB, V57, P82, DOI 10.1210/jcem-57-1-82; Bana S, 1989, THESIS; Barker DJP, 1994, MOTHERS BABIES AND D; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bateson P., 2015, HDB CHILD PSYCHOL DE, V1, P208, DOI DOI 10.1002/9781118963418.CHILDPSY106; Bateson PPG, 1999, DESIGN FOR A LIFE HO; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Borgerhoff Mulder M., 1992, EVOLUTIONARY ECOLOGY, P339; Bremner JD, 2003, BIOL PSYCHIAT, V54, P710, DOI 10.1016/S0006-3223(03)01912-1; Brown J B, 1978, J Biosoc Sci Suppl, P43; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Chan KA, 2015, J ENDOCRINOL, V224, pR45, DOI 10.1530/JOE-14-0469; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1999, DEATH HOPE SEX; Chisholm JS, 2008, EVOLUTIONARY MED HLT, P134; Christensen TL, 2007, CLIN ENDOCRINOL, V67, P407, DOI 10.1111/j.1365-2265.2007.02901.x; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; Coall DA, 2015, EMOTIONAL AND PERSON, V3, P57; Coall DA, 2012, PRAGMATIC EVOLUTION, P167; Coall DA, 2010, AM J HUM BIOL, V22, P143, DOI 10.1002/ajhb.20965; Corbett SJ, 2009, AM J HUM BIOL, V21, P587, DOI 10.1002/ajhb.20937; Cornwell RE, 2006, PHILOS T R SOC B, V361, P2143, DOI 10.1098/rstb.2006.1936; Danese A, 2014, MOL PSYCHIATR, V19, P544, DOI 10.1038/mp.2013.54; deKeyser N, 2012, HUM REPROD, V27, P1170, DOI 10.1093/humrep/der478; DelPriore DJ, 2013, J PERS SOC PSYCHOL, V105, P234, DOI 10.1037/a0032784; Dietz PH, 1999, JAMA-J AM MED ASSOC, V282, P1359, DOI 10.1001/jama.282.14.1359; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; DREIZEN S, 1967, J PEDIATR-US, V70, P256, DOI 10.1016/S0022-3476(67)80420-7; Dube SR, 2003, PREV MED, V37, P268, DOI 10.1016/S0091-7435(03)00123-3; Ekholm K, 2005, AM J EPIDEMIOL, V161, P725, DOI 10.1093/aje/kwi096; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellison P, 2001, ON FERTILE GROUND A; Ellison PT, 1996, AM J HUM BIOL, V8, P725, DOI 10.1002/(SICI)1520-6300(1996)8:6<725::AID-AJHB4>3.0.CO;2-S; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; ELLISON PT, 1994, HUM NATURE-INT BIOS, V5, P155, DOI 10.1007/BF02692159; Felitti VJ, 1998, AM J PREV MED, V14, P245, DOI 10.1016/S0749-3797(98)00017-8; Flinn MV, 2011, NEUROSCI BIOBEHAV R, V35, P1611, DOI 10.1016/j.neubiorev.2011.01.005; FRISANCHO AR, 1985, AM J PHYS ANTHROPOL, V66, P247, DOI 10.1002/ajpa.1330660302; Fritsche I, 2007, J EXP SOC PSYCHOL, V43, P753, DOI 10.1016/j.jesp.2006.10.003; Gardner DS, 2009, PHILOS T R SOC B, V364, P3419, DOI 10.1098/rstb.2009.0121; GARN SM, 1987, J NUTR, V117, P817; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; Grafen A., 1988, REPROD SUCCESS, P454; Graff M, 2010, DEMOGRAPHY, V47, P125, DOI 10.1353/dem.0.0090; Grimstad H, 1999, CHILD ABUSE NEGLECT, V23, P81, DOI 10.1016/S0145-2134(98)00113-6; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Guldbrandsen K, 2014, HUM REPROD, V29, P2058, DOI 10.1093/humrep/deu153; Harville EW, 2013, ANN EPIDEMIOL, V23, P784, DOI 10.1016/j.annepidem.2013.10.001; Harville EW, 2010, ARCH PEDIAT ADOL MED, V164, P533, DOI 10.1001/archpediatrics.2010.61; Helle S, 2008, EVOL HUM BEHAV, V29, P189, DOI 10.1016/j.evolhumbehav.2007.11.009; Henry CJ, 1996, LONG TERM CONSEQUENC; Hertzman C, 1999, ANN NY ACAD SCI, V896, P8595, DOI [10.1111/j.1749-6632.1999.tb08107.x, DOI 10.1111/0749-6632.1999.TB08107.X]; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K, 1996, ACHE LIFE HISTORY TH; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hillis SD, 2001, FAM PLANN PERSPECT, V33, P206, DOI 10.2307/2673783; Hillis SD, 2000, PEDIATRICS, V106, DOI 10.1542/peds.106.1.e11; Hope D, 2013, ECON HUM BIOL, V11, P236, DOI 10.1016/j.ehb.2011.06.006; Hrdy S. B., 2009, MOTHERS AND OTHERS T; Huinink J, 2015, DEMOGR RES, V33, P93, DOI 10.4054/DemRes.2015.33.4; Ibanez L, 2011, FETAL DIAGN THER, V30, P243, DOI 10.1159/000330366; Jacobs MB, 2015, J PSYCHOSOM OBST GYN, V36, P46, DOI 10.3109/0167482X.2015.1026892; Jasienska G, 2006, EVOL HUM BEHAV, V27, P390, DOI 10.1016/j.evolhumbehav.2006.01.001; Jensen TK, 1999, EPIDEMIOLOGY, V10, P422, DOI 10.1097/00001648-199907000-00014; Jokela M, 2008, AM J CLIN NUTR, V88, P886; Jokela M, 2007, EPIDEMIOLOGY, V18, P599, DOI 10.1097/EDE.0b013e3181257158; Jones JH, 2005, AM J HUM BIOL, V17, P22, DOI 10.1002/ajhb.20099; Keating DP, 1999, DEVELOPMENTAL HEALTH; Kelly-Weeder S, 2006, WOMEN HEALTH, V44, P1, DOI 10.1300/J013v44n04_01; Kirchengast S, 2000, SOC BIOL, V47, P114; Koehler N, 2009, HUM NATURE-INT BIOS, V20, P52, DOI 10.1007/s12110-009-9057-5; KOMURA H, 1992, EUR J OBSTET GYN R B, V44, P201, DOI 10.1016/0028-2243(92)90099-K; Krieger N, 2001, J EPIDEMIOL COMMUN H, V55, P693, DOI 10.1136/jech.55.10.693; Kuh D., 1997, LIFE COURSE APPROACH; Lancaster J. B, 1986, SCH AGE PREGNANCY PA, P17; Liljestrand Jerker, 1993, Scandinavian Journal of Primary Health Care, V11, P157; Little AC, 2011, PHILOS T R SOC B, V366, P1638, DOI 10.1098/rstb.2010.0404; Lumey LH, 1997, AM J PUBLIC HEALTH, V87, P1962, DOI 10.2105/AJPH.87.12.1962; Lunenfeld B, 1978, J Biosoc Sci Suppl, P27; McAllister LS, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0151; McAllister LS, 2015, PAPER PRESENTED AT P; MCCORMICK MC, 1985, NEW ENGL J MED, V312, P82, DOI 10.1056/NEJM198501103120204; McEwen BS, 2010, HORM BEHAV, V57, P105, DOI 10.1016/j.yhbeh.2009.09.011; McGowan PO, 2009, NAT NEUROSCI, V12, P342, DOI 10.1038/nn.2270; MELLBIN T, 1989, ACTA PAEDIATR SCAND, V78, P576, DOI 10.1111/j.1651-2227.1989.tb17939.x; MENKEN J, 1986, SCIENCE, V233, P1389, DOI 10.1126/science.3755843; METCALF MG, 1983, J ENDOCRINOL, V97, P213, DOI 10.1677/joe.0.0970213; Mezey G, 2005, BJOG-INT J OBSTET GY, V112, P197, DOI 10.1111/j.1471-0528.2004.00307.x; Moster D, 2008, NEW ENGL J MED, V359, P262, DOI 10.1056/NEJMoa0706475; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nettle Daniel, 2013, Evolution Medicine and Public Health, P187, DOI 10.1093/emph/eot016; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2011, PHILOS T R SOC B, V366, P357, DOI 10.1098/rstb.2010.0073; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; Painter RC, 2008, HUM REPROD, V23, P2591, DOI 10.1093/humrep/den274; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; Pfluger LS, 2012, EVOL HUM BEHAV, V33, P708, DOI 10.1016/j.evolhumbehav.2012.05.005; PHINNEY VG, 1990, ADOLESCENCE, V25, P321; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; Pound N, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1639; Power C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0119985; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Ramakrishnan U, 1999, J NUTR, V129, P2196; Rantala MJ, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0255; Repetti RL, 2002, PSYCHOL BULL, V128, P330, DOI 10.1037//0033-2909.128.2.330; Rich-Edwards JW, 2002, EPIDEMIOLOGY, V13, P184, DOI 10.1097/00001648-200203000-00013; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; RILEY AP, 1994, ANN NY ACAD SCI, V709, P86, DOI 10.1111/j.1749-6632.1994.tb30390.x; Roosa MW, 1997, J MARRIAGE FAM, V59, P119, DOI 10.2307/353666; Santavirta T, 2015, DEMOGR RES, V33, DOI 10.4054/DemRes.2015.33.1; SCHOLL TO, 1989, ANN HUM BIOL, V16, P335, DOI 10.1080/03014468900000462; Sear R, 2004, RES ECON ANTHROPOL, V23, P203, DOI 10.1016/S0190-1281(04)23008-6; Sear R, 2010, FRONT COLLECT, P127, DOI 10.1007/978-3-642-12142-5_10; Sheppard P, 2016, AM J HUM BIOL, V28, P356, DOI 10.1002/ajhb.22793; Sloboda DM, 2007, J CLIN ENDOCR METAB, V92, P46, DOI 10.1210/jc.2006-1378; Stearns S. C., 1992, THE EVOLUTION OF LIF; STEARNS SC, 1982, EVOL DEV, P237, DOI DOI 10.1007/978-3-642-45532-2; Stewart James A, 2006, J Physiol Anthropol, V25, P133, DOI 10.2114/jpa2.25.133; Stulp G, 2012, AM J HUM BIOL, V24, P486, DOI 10.1002/ajhb.22252; TANNER JM, 1968, SCI AM, V218, P21, DOI 10.1038/scientificamerican0168-21; Thayer ZM, 2011, EPIGENETICS-US, V6, P798, DOI 10.4161/epi.6.7.16222; Thomas F, 2015, INFECT GENET EVOL, V32, P97, DOI 10.1016/j.meegid.2015.02.018; Tyrka AR, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030148; UDRY JR, 1979, J BIOSOC SCI, V11, P433; UDRY JR, 1982, DEMOGRAPHY, V19, P53, DOI 10.2307/2061128; Vigil JM, 2005, DEV PSYCHOL, V41, P553, DOI 10.1037/0012-1649.41.3.553; Vitzthum VJ, 2009, YEARB PHYS ANTHROPOL, V52, P95, DOI 10.1002/ajpa.21195; VITZTHUM VJ, 2001, REPROD ECOLOGY HUMAN, P179; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Wang CS, 1999, AM J PREV MED, V17, P43, DOI 10.1016/S0749-3797(99)00035-5; Webster GD, 2014, EVOL PSYCHOL-US, V12, P273, DOI 10.1177/147470491401200202; Wells JCK, 2012, INT J EPIDEMIOL, V41, P229, DOI 10.1093/ije/dyr239; WESTEBERHARD MJ, 2003, DEVELOPMENTAL PLASTI; WESTROM LV, 1994, SEX TRANSM DIS, V21, pS32; Wheatley JR, 2014, EVOL HUM BEHAV, V35, P264, DOI 10.1016/j.evolhumbehav.2014.02.006; Wildenschild C, 2015, HUM REPROD, V30, P947, DOI 10.1093/humrep/dev007; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wise LA, 2013, HUM REPROD, V28, P2856, DOI 10.1093/humrep/det333; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135; Yam KY, 2015, STRESS, V18, P328, DOI 10.3109/10253890.2015.1064890; Yarde F, 2013, HUM REPROD, V28, P3328, DOI 10.1093/humrep/det331; Zhou XY, 2008, SCAND J PSYCHOL, V49, P413, DOI 10.1111/j.1467-9450.2008.00665.x 160 8 8 3 23 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. APR 19 2016 371 1692 20150146 10.1098/rstb.2015.0146 11 Biology Life Sciences & Biomedicine - Other Topics DK4WT WOS:000374921700010 27022073 Green Published, Bronze 2019-02-21 J Lawson, DW; Mulder, MB Lawson, David W.; Mulder, Monique Borgerhoff The offspring quantity - quality trade-off and human fertility variation PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review life-history theory; demographic transition; parental investment LONG-TERM FITNESS; PARENTAL INVESTMENT; CLUTCH SIZE; LIFE-HISTORY; SIBLING COMPETITION; FAMILY-SIZE; EVOLUTIONARY ECOLOGY; REPRODUCTIVE SUCCESS; RESOURCE DILUTION; NATURAL-SELECTION The idea that trade-offs between offspring quantity and quality shape reproductive behaviour has long been central to economic perspectives on fertility. It also has a parallel and richer theoretical foundation in evolutionary ecology. We review the application of the quantity-quality trade-off concept to human reproduction, emphasizing distinctions between clutch size and lifetime fertility, and the wider set of forces contributing to fertility variation in iteroparous and sexually reproducing species like our own. We then argue that in settings approximating human evolutionary history, several factors limit costly sibling competition. Consequently, while the optimization of quantity-quality trade-offs undoubtedly shaped the evolution of human physiology setting the upper limits of reproduction, we argue it plays a modest role in accounting for socio-ecological and individual variation in fertility. Only upon entering the demographic transition can fertility limitation be clearly interpreted as strategically orientated to advancing offspring quality via increased parental investment per child, with low fertility increasing descendant socio-economic success, although not reproductive success. We conclude that existing economic and evolutionary literature has often overemphasized the centrality of quantity-quality trade-offs to human fertility variation and advocate for the development of more holistic frameworks encompassing alternative life-history trade-offs and the evolved mechanisms guiding their resolution. [Lawson, David W.] London Sch Hyg & Trop Med, Dept Populat Hlth, London WC1, England; [Mulder, Monique Borgerhoff] Univ Calif Davis, Dept Anthropol, Davis, CA 95616 USA Lawson, DW (reprint author), London Sch Hyg & Trop Med, Dept Populat Hlth, London WC1, England. david.lawson@lshtm.ac.uk UK Medical Research Council (MRC) Fellowship [MR/K021672/1]; UK Department for International Development (DFID) [MR/K021672/1]; Medical Research Council [MR/K021672/1] This review was supported by a UK Medical Research Council (MRC) Fellowship to the first author (grant no. MR/K021672/1), jointly funded with the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement. Alonzo SH, 2012, EVOLUTION OF PARENTAL CARE, P189; Alvergne A, 2013, AM J HUM BIOL, V25, P107, DOI 10.1002/ajhb.22348; Anderson T, 2013, THE LIFE OF DAVID LA; Aubret F, 2003, BIOL J LINN SOC, V78, P263, DOI 10.1046/j.1095-8312.2003.00169.x; BECKER GS, 1973, J POLIT ECON, V81, pS279, DOI 10.1086/260166; Becker GS, 1960, AN ECONOMIC ANALYSIS; Beise J, 2008, AM J HUM BIOL, V20, P325, DOI 10.1002/ajhb.20730; BENTLEY GR, 1993, POP STUD-J DEMOG, V47, P269, DOI 10.1080/0032472031000147006; BETZIG L, 1989, CURR ANTHROPOL, V30, P654, DOI 10.1086/203798; Blake J, 1989, FAMILY SIZE AND ACHI; Boone JL, 1999, EVOL HUM BEHAV, V20, P257, DOI 10.1016/S1090-5138(99)00011-2; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; Buckle L, 1996, ETHOL SOCIOBIOL, V17, P363, DOI 10.1016/S0162-3095(96)00075-1; Buckles K, 2008, AM ECON REV, V98, P403, DOI 10.1257/aer.98.2.403; Cohen JE, 2011, P NATL ACAD SCI USA, V108, P11830, DOI 10.1073/pnas.1107993108; Colleran H, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0152; Das Gupta M, 2003, J DEV STUD, V40, P153, DOI 10.1080/00220380412331293807; DESAI S, 1995, POP STUD-J DEMOG, V49, P195, DOI 10.1080/0032472031000148466; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Doepke M, 2015, J DEMOGR ECON, V81, P59, DOI 10.1017/dem.2014.8; Downey DB, 2001, AM PSYCHOL, V56, P497, DOI 10.1037//0003-066X.56.6-7.497; Draper P, 2000, HUM NATURE-INT BIOS, V11, P117, DOI 10.1007/s12110-000-1016-0; EDWARDS TC, 1989, CONDOR, V91, P30, DOI 10.2307/1368145; Eloundou-Enyegue PM, 2006, DEMOGRAPHY, V43, P25, DOI 10.1353/dem.2006.0002; Fisher RA, 1930, THE GENETICAL THEORY; Fortunato L, 2010, J EVOLUTION BIOL, V23, P149, DOI 10.1111/j.1420-9101.2009.01884.x; Gibson MA, 2011, P NATL ACAD SCI USA, V108, P2200, DOI 10.1073/pnas.1010241108; Gibson MA, 2011, EVOL HUM BEHAV, V32, P97, DOI 10.1016/j.evolhumbehav.2010.10.002; Gigerenzer G, 2002, BOUNDED RATIONALITY, P1; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; Goodman A, 2012, P ROY SOC B-BIOL SCI, V279, P4342, DOI 10.1098/rspb.2012.1415; Goody J., 1976, PRODUCTION AND REPRO; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; Hadley C, 2011, AM J PHYS ANTHROPOL, V144, P643, DOI 10.1002/ajpa.21463; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; Hagen EH, 2001, J BIOSOC SCI, V33, P503, DOI 10.1017/S002193200100503X; Hajnal J., 1965, POPULATION HIST ESSA, P101; HARDY ICW, 1992, J ANIM ECOL, V61, P121, DOI 10.2307/5515; HARPER AB, 1986, AM NAT, V128, P99, DOI 10.1086/284542; HAWKES K, 1995, EVOL ECOL, V9, P662, DOI 10.1007/BF01237661; Helfrecht C, 2016, AM J HUM BIOL, V28, P159, DOI 10.1002/ajhb.22763; Hill K, 1996, ACHE LIFE HISTORY TH; Hill KR, 2011, SCIENCE, V331, P1286, DOI 10.1126/science.1199071; Hill SE, 2005, BEHAV ECOL, V16, P398, DOI 10.1093/beheco/ari001; HOBCRAFT J, 1983, POPUL INDEX, V49, P585, DOI 10.2307/2737284; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Hrdy Sarah Blaffer, 2009, MOTHERS AND OTHERS; HRDY SB, 1993, HUM NATURE-INT BIOS, V4, P1, DOI 10.1007/BF02734088; Hruschka DJ, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0155; Irons W, 1998, EVOL ANTHROPOL, V6, P194, DOI 10.1002/(SICI)1520-6505(1998)6:6<194::AID-EVAN2>3.0.CO;2-B; Johnson-Hanks J, 2002, AM ANTHROPOL, V104, P865, DOI 10.1525/aa.2002.104.3.865; Jones JH, 2015, P NATL ACAD SCI USA, V112, P8982, DOI 10.1073/pnas.1422037112; Jones JH, 2009, EVOL HUM BEHAV, V30, P305, DOI 10.1016/j.evolhumbehav.2009.01.005; JONES NB, 1986, ETHOL SOCIOBIOL, V7, P91, DOI 10.1016/0162-3095(86)90002-6; Kaplan H, 2002, AM J HUM BIOL, V14, P233, DOI 10.1002/ajhb.10041; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kaplan HS, 2009, PHILOS T R SOC B, V364, P3289, DOI 10.1098/rstb.2009.0115; Kaplan HS, 2003, OFFSPRING, P170; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Kaplan HS, 2015, FERTILITY THEORY EMB, P28; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Kokko H, 2006, PHILOS T R SOC B, V361, P319, DOI 10.1098/rstb.2005.1784; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kolk M, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2561; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D, 1954, THE NATURAL REGULATI; Lam D, 2003, OFFSPRING, P322; Lawson DW, 2012, P ROY SOC B-BIOL SCI, V279, P4755, DOI 10.1098/rspb.2012.1635; Lawson DW, 2011, PHILOS T R SOC B, V366, P333, DOI 10.1098/rstb.2010.0297; Lawson DW, 2010, SOC SCI MED, V70, P2061, DOI 10.1016/j.socscimed.2010.03.009; Lawson DW, 2009, EVOL HUM BEHAV, V30, P170, DOI 10.1016/j.evolhumbehav.2008.12.001; Lawson DW, 2011, EVOLUTIONARY PSYCHOL, P183; LEE PC, 1987, PRIMATES, V28, P47, DOI 10.1007/BF02382182; Lee RD, 2002, POPUL DEV REV, V28, P475, DOI 10.1111/j.1728-4457.2002.00475.x; Lee R, 2015, J DEMOGR ECON, V81, P67, DOI 10.1017/dem.2014.9; Leonetti DL, 2007, CURR ANTHROPOL, V48, P861, DOI 10.1086/520976; Li NP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0126543; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LUTTBEG B, 2000, HUMAN BEHAV ADAPTATI, P345; Mace R, 1998, PHILOS T R SOC B, V353, P389, DOI 10.1098/rstb.1998.0217; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Mace R, 1996, BEHAV ECOL SOCIOBIOL, V38, P75, DOI 10.1007/s002650050219; Macfarlan SJ, 2014, P NATL ACAD SCI USA, V111, P16662, DOI 10.1073/pnas.1418639111; MALCOLM JR, 1982, BEHAV ECOL SOCIOBIOL, V10, P1, DOI 10.1007/BF00296390; MARTIN TC, 1995, STUD FAMILY PLANN, V26, P187, DOI 10.2307/2137845; Meij JJ, 2009, J EVOLUTION BIOL, V22, P1014, DOI 10.1111/j.1420-9101.2009.01713.x; Mock D, 1997, THE EVOLUTION OF SIB; MOCK DW, 1986, EVOLUTION, V40, P459, DOI 10.1111/j.1558-5646.1986.tb00499.x; Montgomery MR, 2000, POPUL DEV REV, V26, P795, DOI 10.1111/j.1728-4457.2000.00795.x; Moya C, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0149; MULDER MB, 1995, CURR ANTHROPOL, V36, P573, DOI 10.1086/204405; Mulder MB, 1998, HUM NATURE-INT BIOS, V9, P119, DOI 10.1007/s12110-998-1001-6; Mulder MB, 2009, EVOL ANTHROPOL, V18, P201, DOI 10.1002/evan.20226; Mulder MB, 2009, SCIENCE, V326, P682, DOI 10.1126/science.1178336; Mulder MB, 2009, AM J HUM BIOL, V21, P478, DOI 10.1002/ajhb.20885; Mulder VB, 2000, EVOL HUM BEHAV, V21, P391; Nettle D, 2011, PHILOS T R SOC B, V366, P357, DOI 10.1098/rstb.2010.0073; Oksanen TA, 2002, EVOLUTION, V56, P1530; Patridge L, 1991, PHIL T R SOC B, V332, P3, DOI [10.1098/rstb.1991.0027, DOI 10.1098/RSTB.1991.0027]; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; Pettifor RA, 2001, J ANIM ECOL, V70, P62, DOI 10.1046/j.1365-2656.2001.00465.x; Pettingill OS, 1946, LAB FIELD MANUAL ORN; Quinlan RJ, 2005, HUM NATURE-INT BIOS, V16, P32, DOI 10.1007/s12110-005-1006-3; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Rah JH, 2008, J NUTR, V138, P1505; Randall S, 2003, POPULATION, V58, P773, DOI 10.2307/3271282; Richerson PJ, 2008, NOT BY GENES ALONE H; Robson AJ, 2001, J ECON LIT, V39, P11, DOI 10.1257/jel.39.1.11; Roff DA, 2002, LIFE HISTORY EVOLUTI; Ross C, EVOL HUM BEHAV IN PR; ROTH EA, 1993, AM ANTHROPOL, V95, P597, DOI 10.1525/aa.1993.95.3.02a00030; Schlaepfer MA, 2002, TRENDS ECOL EVOL, V17, P474, DOI 10.1016/S0169-5347(02)02580-6; Sear R, 2003, EVOL HUM BEHAV, V24, P25, DOI 10.1016/S1090-5138(02)00105-8; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Sellen DW, 1997, CURR ANTHROPOL, V38, P878, DOI 10.1086/204677; Shenk MK, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0150; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Smith HG, 2000, P ROY SOC B-BIOL SCI, V267, P2163, DOI 10.1098/rspb.2000.1264; Steams SC, 1992, THE EVOLUTION OF LIF; Stevenson JC, 2004, HUM BIOL, V76, P667, DOI 10.1353/hub.2005.0010; Stiver KA, 2009, ETHOLOGY, V115, P1101, DOI 10.1111/j.1439-0310.2009.01707.x; Strassmann BI, 2011, P NATL ACAD SCI USA, V108, P10894, DOI 10.1073/pnas.1100306108; Strassmann BI, 1998, EVOL HUM BEHAV, V19, P33, DOI 10.1016/S1090-5138(97)00103-7; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Stulp G, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0153; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; Van Bavel J, 2011, DEMOGR RES, V24, P313, DOI 10.4054/DemRes.2011.24.14; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vitzthum VJ, 2009, YEARB PHYS ANTHROPOL, V52, P95, DOI 10.1002/ajpa.21195; VOLAND E, 1990, ETHOLOGY, V84, P144; Voland E, 1998, ANNU REV ANTHROPOL, V27, P347, DOI 10.1146/annurev.anthro.27.1.347; Voland E., 1988, HUMAN REPROD BEHAV D, P253; Wachter KW, 2003, OFFSPRING, P1; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winterhalder B, 2002, EVOL HUM BEHAV, V23, P59, DOI 10.1016/S1090-5138(01)00089-7 139 11 12 0 24 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. APR 19 2016 371 1692 20150145 10.1098/rstb.2015.0145 11 Biology Life Sciences & Biomedicine - Other Topics DK4WT WOS:000374921700004 27022072 Green Published, Other Gold 2019-02-21 J Towner, MC; Nenko, I; Walton, SE Towner, Mary C.; Nenko, Ilona; Walton, Savannah E. Why do women stop reproducing before menopause? A life-history approach to age at last birth PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review age at last birth; stopping reproduction; reproductive cessation; infertility; menopause; life-history theory NATURAL FERTILITY POPULATIONS; RURAL BANGLADESH; SPACING BEHAVIOR; FAMILY-SIZE; PARENTAL INVESTMENT; SEXUAL ABSTINENCE; CHILD SURVIVAL; LONGEVITY; CHILDBEARING; EVOLUTIONARY Evolutionary biologists have long considered menopause to be a fundamental puzzle in understanding human fertility behaviour, as post-menopausal women are no longer physiologically capable of direct reproduction. Menopause typically occurs between 45 and 55 years of age, but across cultures and history, women often stop reproducing many years before menopause. Unlike age at first reproduction or even birth spacing, a woman nearing the end of her reproductive cycle is able to reflect upon the offspring she already has-their numbers and phenotypic qualities, including sexes. This paper reviews demographic data on age at last birth both across and within societies, and also presents a case study of age at last birth in rural Bangladeshi women. In this Bangladeshi sample, age at last birth preceded age at menopause by an average of 11 years, with marked variation around that mean, even during a period of high fertility. Moreover, age at last birth was not strongly related to age at menopause. Our literature review and case study provide evidence that stopping behaviour needs to be more closely examined as an important part of human reproductive strategies and life-history theory. Menopause may be a final marker of permanent reproductive cessation, but it is only one piece of the evolutionary puzzle. [Towner, Mary C.; Walton, Savannah E.] Oklahoma State Univ, Dept Integrat Biol, Stillwater, OK 74078 USA; [Nenko, Ilona] Jagiellonian Univ, Coll Med, Dept Environm Hlth, Krakow, Poland; [Walton, Savannah E.] Univ Tulsa, Dept Psychol, Tulsa, OK 74104 USA Towner, MC (reprint author), Oklahoma State Univ, Dept Integrat Biol, Stillwater, OK 74078 USA. mary.towner@okstate.edu Towner, Mary/0000-0002-0784-1860 Foundation for Polish Science; NSF REU Biological Basis of Human and Animal Behavior program (NSF) [SMA 1358847] I.N. was supported by a fellowship from the Foundation for Polish Science, and S.W. by the NSF REU Biological Basis of Human and Animal Behavior program (NSF SMA 1358847). Alter G, 2007, DEMOGRAPHY, V44, P785, DOI 10.1353/dem.2007.0037; Bongaarts J., 1983, FERTILITY BIOL BEHAV; Bove R, 2009, SOC SCI MED, V68, P21, DOI 10.1016/j.socscimed.2008.09.045; Caldwell JC, 2005, J COMP FAM STUD, V36, P205; CALDWELL JC, 1977, POP STUD-J DEMOG, V31, P193, DOI 10.1080/00324728.1977.10410427; Cant MA, 2008, P NATL ACAD SCI USA, V105, P5332, DOI 10.1073/pnas.0711911105; Charbonneau H, 1979, PATT DET NAT FERT P, P442; Coale A J, 1984, Pak Dev Rev, V23, P531; COALE AJ, 1974, POPUL INDEX, V40, P185, DOI 10.2307/2733910; Colleran H, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0398; DESJARDINS B, 1994, J BIOSOC SCI, V26, P509; Dribe M, 2004, POP STUD-J DEMOG, V58, P297, DOI 10.1080/0032472042000272357; Eijkemans MJC, 2014, HUM REPROD, V29, P1304, DOI 10.1093/humrep/deu056; Ellison P. T., 2001, ON FERTILE GROUND; EWBANK DC, 1989, DEMOGRAPHY, V26, P473, DOI 10.2307/2061607; Fine A, 2009, HOMME, P37; GAJANAYAKE I, 1987, J BIOSOC SCI, V19, P65; Gama A, 2011, ANN HUM BIOL, V38, P655, DOI 10.3109/03014460.2011.572916; Grundy E, 2008, AM J EPIDEMIOL, V167, P271, DOI 10.1093/aje/kwm295; Hausfater G., 1984, INFANTICIDE COMP EVO; Hawkes K, 2013, EVOL ANTHROPOL, V22, P294, DOI 10.1002/evan.21382; Hawkes K, 2010, ANN NY ACAD SCI, V1204, P43, DOI [10.1111/L1749-6632.2010.05527A, 10.1111/j.1749-6632.2010.05527.x]; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; HENRY L, 1961, POPULATION, V16, P625, DOI 10.2307/1526583; HILL EM, 1992, ETHOL SOCIOBIOL, V13, P35, DOI 10.1016/0162-3095(92)90005-O; Hill K, 1991, Hum Nat, V2, P313, DOI 10.1007/BF02692196; Hill K., 1996, ACHE LIFE HIST ECOLO; Hionidou V, 1998, POP STUD-J DEMOG, V52, P67, DOI 10.1080/0032472031000150186; HORNE AD, 1988, J BIOSOC SCI, V20, P313; Howell N., 2000, DEMOGRAPHY DOBE KUNG; Hrdy Sarah Blaffer, 1999, MOTHER NATURE HIST M; HRDY SB, 1993, HUM NATURE-INT BIOS, V4, P1, DOI 10.1007/BF02734088; Jasienska G., 2013, FRAGILE WISDOM EVOLU; Jones JH, 2014, EVOL HUM BEHAV, V35, P65, DOI 10.1016/j.evolhumbehav.2013.10.002; Judge DS, 2000, J GERONTOL A-BIOL, V55, pB201, DOI 10.1093/gerona/55.4.B201; Kaplan H, 2010, ANN NY ACAD SCI, V1204, P30, DOI [10.1111/j.1749-6632.2010.05528.x, 10.1111/J.1749-6632.2010.05528.x]; KNODEL J, 1979, DEMOGRAPHY, V16, P493, DOI 10.2307/2060931; KOENIG MA, 1992, STUD FAMILY PLANN, V23, P352, DOI 10.2307/1966893; Korpelainen H, 2000, P ROY SOC B-BIOL SCI, V267, P1765, DOI 10.1098/rspb.2000.1208; Kosova G, 2010, P NATL ACAD SCI USA, V107, P1772, DOI 10.1073/pnas.0906196106; Kramer K, 2005, MAYA CHILDREN HELPER; Lahdenpera M, 2014, FRONT ZOOL, V11, DOI 10.1186/s12983-014-0054-0; Lahdenpera M, 2012, ECOL LETT, V15, P1283, DOI 10.1111/j.1461-0248.2012.01851.x; Lawson DW, 2012, P ROY SOC B-BIOL SCI, V279, P4755, DOI 10.1098/rspb.2012.1635; Lawson DW, 2011, PHILOS T R SOC B, V366, P333, DOI 10.1098/rstb.2010.0297; Levitis DA, 2013, EVOL ANTHROPOL, V22, P66, DOI 10.1002/evan.21332; Mace R, 2012, P ROY SOC B-BIOL SCI, V279, P2219, DOI 10.1098/rspb.2011.2424; Mant J, 1997, BRIT J OBSTET GYNAEC, V104, P579, DOI 10.1111/j.1471-0528.1997.tb11536.x; McArdle PF, 2006, J GERONTOL A-BIOL, V61, P190, DOI 10.1093/gerona/61.2.190; Menken J, 2003, POPUL DEV REV, V29, P405, DOI 10.1111/j.1728-4457.2003.00405.x; MULDER MB, 1989, J BIOSOC SCI, V21, P179; O'Connor KA, 1998, MATURITAS, V30, P127, DOI 10.1016/S0378-5122(98)00068-1; O'Connor KA, 2001, AM J HUM BIOL, V13, P465, DOI 10.1002/ajhb.1078; OKUN BS, 1995, HIST METHOD, V28, P85, DOI 10.1080/01615440.1995.9956357; Pascual J, 2005, AM J PHYS ANTHROPOL, V127, P105, DOI 10.1002/ajpa.20065; Peccei JS, 2001, EVOL ANTHROPOL, V10, P43, DOI 10.1002/evan.1013; Pennington Renee, 1993, STRUCTURE AFRICAN PA; Rahman O, 1999, DRU20181NIA; Riddle J, 1992, CONTRACEPTION ABORTI; RUZICKA LT, 1982, J BIOSOC SCI, V14, P397; Sear R, 2000, P ROY SOC B-BIOL SCI, V267, P1641, DOI 10.1098/rspb.2000.1190; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Sear R, 2011, POPUL DEV REV, V37, P81, DOI 10.1111/j.1728-4457.2011.00379.x; Shanley DP, 2007, P ROY SOC B-BIOL SCI, V274, P2943, DOI 10.1098/rspb.2007.1028; Shenk MK, 2013, P NATL ACAD SCI USA, V110, P8045, DOI 10.1073/pnas.1217029110; Shenk MK, 2013, HUM NATURE-INT BIOS, V24, P76, DOI 10.1007/s12110-013-9160-5; Shoemaker Nancy, 1999, AM INDIAN POPULATION; Sievert LL, 2014, MENOPAUSE, V21, P1151, DOI [10.1097/gme.0000000000000341, 10.1097/GME.0000000000000341]; Skinner G. William, 1997, ANTHR DEMOGRAPHY NEW, P53; Skjaervo GR, 2013, EXP GERONTOL, V48, P408, DOI 10.1016/j.exger.2013.02.001; Smith KR, 2002, SOC BIOL, V49, P185; Snopkowski K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0580; Strassmann B I, 1992, Hum Nat, V3, P89, DOI 10.1007/BF02692249; Strassmann BI, 1998, AM J PHYS ANTHROPOL, V105, P167, DOI 10.1002/(SICI)1096-8644(199802)105:2<167::AID-AJPA5>3.0.CO;2-S; United Nations DoEaSA Population Division, 2013, STESASERA326 UN DOEA; Van Bavel J, 2005, CONTINUITY CHANGE, V20, P247, DOI 10.1017/S0268416005005473; Van Bavel J, 2004, POPULATION, V59, P119, DOI 10.3917/popu.401.0119; VAREA C, 1993, J BIOSOC SCI, V25, P1; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wood J., 1994, DYNAMICS HUMAN REPRO; WOOD JW, 1994, DEMOGRAPHY, V31, P403, DOI 10.2307/2061750 81 5 5 1 21 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. APR 19 2016 371 1692 20150147 10.1098/rstb.2015.0147 11 Biology Life Sciences & Biomedicine - Other Topics DK4WT WOS:000374921700011 27022074 Green Published, Other Gold 2019-02-21 J Bolund, E; Lummaa, V; Smith, KR; Hanson, HA; Maklakov, AA Bolund, Elisabeth; Lummaa, Virpi; Smith, Ken R.; Hanson, Heidi A.; Maklakov, Alexei A. Reduced costs of reproduction in females mediate a shift from a male-biased to a female-biased lifespan in humans SCIENTIFIC REPORTS English Article INTRALOCUS SEXUAL CONFLICT; NATURAL-SELECTION; DEMOGRAPHIC-TRANSITION; HISTORY EVOLUTION; MORTALITY-RATES; TRADE-OFFS; LONGEVITY; FERTILITY; SENESCENCE; HEALTH The causes underlying sex differences in lifespan are strongly debated. While females commonly outlive males in humans, this is generally less pronounced in societies before the demographic transition to low mortality and fertility rates. Life-history theory suggests that reduced reproduction should benefit female lifespan when females pay higher costs of reproduction than males. Using unique longitudinal demographic records on 140,600 reproducing individuals from the Utah Population Database, we demonstrate a shift from male-biased to female-biased adult lifespans in individuals born before versus during the demographic transition. Only women paid a cost of reproduction in terms of shortened post-reproductive lifespan at high parities. Therefore, as fertility decreased over time, female lifespan increased, while male lifespan remained largely stable, supporting the theory that differential costs of reproduction in the two sexes result in the shifting patterns of sex differences in lifespan across human populations. Further, our results have important implications for demographic forecasts in human populations and advance our understanding of lifespan evolution. [Bolund, Elisabeth; Maklakov, Alexei A.] Uppsala Univ, Evolutionary Biol Ctr, Dept Ecol & Genet, SE-75236 Uppsala, Sweden; [Lummaa, Virpi] Univ Turku, Dept Biol, FIN-20014 Turku, Finland; [Lummaa, Virpi] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Smith, Ken R.] Univ Utah, Huntsman Canc Inst, Dept Family & Consumer Studies & Populat Sci, Salt Lake City, UT 84112 USA; [Hanson, Heidi A.] Univ Utah, Huntsman Canc Inst, Dept Family & Prevent Med & Populat Sci, Salt Lake City, UT 84112 USA Bolund, E (reprint author), Uppsala Univ, Evolutionary Biol Ctr, Dept Ecol & Genet, SE-75236 Uppsala, Sweden. elisabeth.bolund@ebc.uu.se Maklakov, Alexei/F-8167-2014 Maklakov, Alexei/0000-0002-5809-1203; Hanson, Heidi/0000-0003-0056-196X Huntsman Cancer Foundation; Wenner-Gren-Foundations; European Research Council; Academy of Finland; Swedish Research Council; National Institutes of Health [AG022095] This study has been approved by the University of Utah's Resource for Genetic and Epidemiologic Research and its Institutional Review Board. We thank the Pedigree and Population Resource of the Huntsman Cancer Institute, University of Utah (funded in part by the Huntsman Cancer Foundation) for its role in the ongoing collection, maintenance and support of the Utah Population Database (UPDB). We are grateful to the Wenner-Gren-Foundations (E.B.), the European Research Council (A.A.M.), the Academy of Finland (VL), the Swedish Research Council (A.A.M.) and the National Institutes of Health (Grant AG022095 (K.S) for funding. Austad Steven N, 2006, Gend Med, V3, P79, DOI 10.1016/S1550-8579(06)80198-1; Bean L. L., 1990, FETILITY CHANGE AM F, P1; Beltran-Sanchez H, 2015, P NATL ACAD SCI USA, V112, P8993, DOI 10.1073/pnas.1421942112; Berg EC, 2012, P ROY SOC B-BIOL SCI, V279, P4296, DOI 10.1098/rspb.2012.1345; Berger D, 2014, EVOLUTION, V68, P3457, DOI 10.1111/evo.12528; Bolund E, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2002; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Clutton-Brock TH, 2007, P ROY SOC B-BIOL SCI, V274, P3097, DOI 10.1098/rspb.2007.1138; Courtiol A, 2013, CURR BIOL, V23, P884, DOI 10.1016/j.cub.2013.04.006; DEMENY P, 1968, DAEDALUS, V97, P502; Doblhammer G, 2003, P ROY SOC B-BIOL SCI, V270, P1541, DOI 10.1098/rspb.2003.2400; Flatt T, 2013, Q REV BIOL, V88, P185, DOI 10.1086/671484; Gagnon A, 2008, INT STUD POPUL, V7, P225, DOI 10.1007/978-1-4020-6733-4_10; Gagnon A, 2009, AM J HUM BIOL, V21, P533, DOI 10.1002/ajhb.20893; Graves BM, 2006, AM J HUM BIOL, V18, P161, DOI 10.1002/ajhb.20488; HED HME, 1987, HUM BIOL, V59, P785; Helle S, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0034; Hill K, 2001, B WORLD HEALTH ORGAN, V79, P182; Hruschka DJ, 2015, AM J HUM BIOL, V27, P654, DOI 10.1002/ajhb.22707; Hurt LS, 2006, POP STUD-J DEMOG, V60, P55, DOI 10.1080/00324720500436011; Jasienska G, 2009, AM J HUM BIOL, V21, P524, DOI 10.1002/ajhb.20931; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Kawasaki N, 2008, AM NAT, V172, P346, DOI 10.1086/589519; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Le Bourg E, 2007, AGEING RES REV, V6, P141, DOI 10.1016/j.arr.2007.04.002; LEBOURG E, 1993, EXP GERONTOL, V28, P217, DOI 10.1016/0531-5565(93)90030-H; Lindahl-Jacobsen R, 2013, ANN EPIDEMIOL, V23, P161, DOI 10.1016/j.annepidem.2013.02.001; Liu JH, 2014, BEHAV ECOL, V25, P102, DOI 10.1093/beheco/art091; Maklakov AA, 2008, EVOL HUM BEHAV, V29, P444, DOI 10.1016/j.evolhumbehav.2008.08.002; Maklakov AA, 2013, BIOESSAYS, V35, P717, DOI 10.1002/bies.201300021; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO, P1; Mondal MNI, 2014, J EPIDEMIOL, V24, P117, DOI 10.2188/jea.JE20130059; Moorad JA, 2013, EVOLUTION, V67, P1622, DOI 10.1111/evo.12023; Morrow EH, 2015, BIOL SEX DIFFER, V6, DOI 10.1186/s13293-015-0023-0; Muller HG, 2002, J GERONTOL A-BIOL, V57, pB202, DOI 10.1093/gerona/57.5.B202; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; Oksuzyan A, 2008, AGING CLIN EXP RES, V20, P91; Olshansky SJ, 2002, POPUL DEV REV, V28, P501, DOI 10.1111/j.1728-4457.2002.00501.x; Parker G.A., 1979, P123; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; Promislow D, 2003, BEHAV GENET, V33, P191, DOI 10.1023/A:1022562103669; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Seifarth JE, 2012, GENDER MED, V9, P390, DOI 10.1016/j.genm.2012.10.001; Smith KR, 2002, SOC BIOL, V49, P185; Stearns S.C., 1992, EVOLUTION LIFE HIST, P262; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2012, P ROY SOC B-BIOL SCI, V279, P4836, DOI 10.1098/rspb.2012.2024; Stulp G, 2012, BIOL LETTERS, V8, P976, DOI 10.1098/rsbl.2012.0590; Teriokhin AT, 2004, HUM BIOL, V76, P623, DOI 10.1353/hub.2004.0061; TIETZE C, 1957, FERTIL STERIL, V8, P89; Trovato F, 2011, J BIOSOC SCI, V43, P353, DOI 10.1017/S0021932011000010; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wang Xiaofei, 2013, Evolution Medicine and Public Health, P241, DOI 10.1093/emph/eot013; Wells JCK, 2000, J THEOR BIOL, V202, P65, DOI 10.1006/jtbi.1999.1044; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 58 3 3 4 28 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep APR 18 2016 6 24672 10.1038/srep24672 9 Multidisciplinary Sciences Science & Technology - Other Topics DJ5NF WOS:000374254700002 27087670 DOAJ Gold, Green Published 2019-02-21 J Ward, TD; Algera, DA; Gallagher, AJ; Hawkins, E; Horodysky, A; Jorgensen, C; Killen, SS; McKenzie, DJ; Metcalfe, JD; Peck, MA; Vu, M; Cooke, SJ Ward, Taylor D.; Algera, Dirk A.; Gallagher, Austin J.; Hawkins, Emily; Horodysky, Andrij; Jorgensen, Christian; Killen, Shaun S.; McKenzie, David J.; Metcalfe, Julian D.; Peck, Myron A.; Vu, Maria; Cooke, Steven J. Understanding the individual to implement the ecosystem approach to fisheries management CONSERVATION PHYSIOLOGY English Review Conservation behaviour; ecosystem-based management; ecosystem models; fisheries management; individual-based models; individual-level variation LIFE-HISTORY EVOLUTION; EUROPEAN SEA BASS; FISHING-INDUCED EVOLUTION; RESTING METABOLIC-RATE; NORTHEAST ARCTIC COD; BODY-SIZE; MARINE FISH; ECOLOGICAL CONSEQUENCES; PHENOTYPIC PLASTICITY; NATURAL MORTALITY Ecosystem-based approaches to fisheries management (EAFMs) have emerged as requisite for sustainable use of fisheries resources. At the same time, however, there is a growing recognition of the degree of variation among individuals within a population, as well as the ecological consequences of this variation. Managing resources at an ecosystem level calls on practitioners to consider evolutionary processes, and ample evidence from the realm of fisheries science indicates that anthropogenic disturbance can drive changes in predominant character traits (e.g. size at maturity). Eco-evolutionary theory suggests that human-induced trait change and the modification of selective regimens might contribute to ecosystem dynamics at a similar magnitude to species extirpation, extinction and ecological dysfunction. Given the dynamic interaction between fisheries and target species via harvest and subsequent ecosystem consequences, we argue that individual diversity in genetic, physiological and behavioural traits are important considerations under EAFMs. Here, we examine the role of individual variation in a number of contexts relevant to fisheries management, including the potential ecological effects of rapid trait change. Using select examples, we highlight the extent of phenotypic diversity of individuals, as well as the ecological constraints on such diversity. We conclude that individual phenotypic diversity is a complex phenomenon that needs to be considered in EAFMs, with the ultimate realization that maintaining or increasing individual trait diversity may afford not only species, but also entire ecosystems, with enhanced resilience to environmental perturbations. Put simply, individuals are the foundation from which population-and ecosystem-level traits emerge and are therefore of central importance for the ecosystem-based approaches to fisheries management. [Ward, Taylor D.; Algera, Dirk A.; Gallagher, Austin J.; Cooke, Steven J.] Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada; [Hawkins, Emily; Vu, Maria] Univ Ottawa, Dept Biol, 30 Marie Curie Private, Ottawa, ON K1N 9B4, Canada; [Horodysky, Andrij] Hampton Univ, Dept Marine & Environm Sci, Hampton, VA 23668 USA; [Jorgensen, Christian] Univ Bergen, Dept Biol, Box 7803, N-5020 Bergen, Norway; [Jorgensen, Christian] Univ Bergen, Hjort Ctr Marine Ecosyst Dynam, Box 7803, N-5020 Bergen, Norway; [Killen, Shaun S.] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland; [McKenzie, David J.] Univ Montpellier, Ecol Syst Marins Cotiers UMR5119, Equipe Divers & Ecol Poissons, Pl Eugene Bataillon, F-34095 Montpellier 5, France; [Metcalfe, Julian D.] Ctr Environm Fisheries & Aquaculture Sci Cefas, Lowestoft Lab, Lowestoft NR33 0HT, Suffolk, England; [Peck, Myron A.] Ctr Earth Syst Res & Sustainabil, Inst Hydrobiol & Fisheries Sci, Olbersweg 24, D-22767 Hamburg, Germany Ward, TD (reprint author), Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. taylor_ward@carleton.ca Peck, Myron/H-6164-2011; Jorgensen, Christian/B-4453-2009 Peck, Myron/0000-0001-7423-1854; Jorgensen, Christian/0000-0001-7087-4625 Canada Research Chairs Program; Natural Sciences and Engineering Research Council of Canada; Canada Research Chairs Program; Natural Sciences and Engineering Research Council of Canada This paper is an output of the EU COST Action on the Conservation Physiology of Marine Fish. S.J.C. is supported by the Canada Research Chairs Program and the Natural Sciences and Engineering Research Council of Canada. Abrams PA, 2009, ECOL LETT, V12, P462, DOI 10.1111/j.1461-0248.2009.01282.x; Adams SM, 2011, ENVIRON MANAGE, V47, P1047, DOI 10.1007/s00267-010-9599-7; Allendorf FW, 1995, AM FISH S S, V17, P247; Alos J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135348; Andersen KH, 2015, FISH FISH, V16, P1, DOI 10.1111/faf.12042; Anderson WG, 2012, COMP BIOCHEM PHYS A, V162, P73, DOI 10.1016/j.cbpa.2011.08.015; Anttila K, 2013, J EXP BIOL, V216, P1183, DOI 10.1242/jeb.080556; Archard GA, 2012, FUNCT ECOL, V26, P637, DOI 10.1111/j.1365-2435.2012.01968.x; Arkema KK, 2006, FRONT ECOL ENVIRON, V4, P525, DOI 10.1890/1540-9295(2006)4[525:MEMFCT]2.0.CO;2; Audzijonyte A, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1103; Barneche DR, 2014, ECOL LETT, V17, P1067, DOI 10.1111/ele.12309; Barros V, 2014, CLIMATE CHANGE 2014: IMPACTS, ADAPTATION, AND VULNERABILITY, PT A: GLOBAL AND SECTORAL ASPECTS, pIX; Barton BA, 2002, INTEGR COMP BIOL, V42, P517, DOI 10.1093/icb/42.3.517; Battiprolu PK, 2007, AM J PHYSIOL-REG I, V292, pR827, DOI 10.1152/ajpregu.00379.2006; Beaudouin R, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125841; Benfey PN, 2008, SCIENCE, V320, P495, DOI 10.1126/science.1153716; Benton TG, 2006, P R SOC B, V273, P1173, DOI 10.1098/rspb.2006.3495; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; BERST AH, 1981, CAN J FISH AQUAT SCI, V38, P1457, DOI 10.1139/f81-194; Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; Birkeland C, 2005, TRENDS ECOL EVOL, V20, P356, DOI 10.1016/j.tree.2005.03.015; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Bisazza A, 1996, ITAL J ZOOL, V63, P365, DOI 10.1080/11250009609356160; Bokma F, 2004, FUNCT ECOL, V18, P184, DOI 10.1111/j.0269-8463.2004.00817.x; Bolnick DI, 2007, P NATL ACAD SCI USA, V104, P10075, DOI 10.1073/pnas.0703743104; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Brill Richard W., 1994, Fisheries Oceanography, V3, P204, DOI 10.1111/j.1365-2419.1994.tb00098.x; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Brunner RD, 1997, CONSERV BIOL, V11, P48, DOI 10.1046/j.1523-1739.1997.96005.x; Buchholz R, 2007, TRENDS ECOL EVOL, V22, P401, DOI 10.1016/j.tree.2007.06.002; Burgess SC, 2011, J ANIM ECOL, V80, P681, DOI 10.1111/j.1365-2656.2010.01802.x; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Calow P, 1998, COMP BIOCHEM PHYS A, V120, P11, DOI 10.1016/S1095-6433(98)10003-X; CALOW P, 1989, BIOL J LINN SOC, V37, P173, DOI 10.1111/j.1095-8312.1989.tb02101.x; Carey C, 2005, INTEGR COMP BIOL, V45, P4, DOI 10.1093/icb/45.1.4; Carlson SM, 2011, CAN J FISH AQUAT SCI, V68, P1579, DOI 10.1139/F2011-084; Carroll SP, 2007, FUNCT ECOL, V21, P387, DOI 10.1111/j.1365-2435.2007.01289.x; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; Chapman BB, 2011, ECOL LETT, V14, P871, DOI 10.1111/j.1461-0248.2011.01648.x; Chown SL, 2012, PHILOS T R SOC B, V367, P1615, DOI 10.1098/rstb.2011.0422; Christensen V, 2004, ECOL MODEL, V172, P109, DOI 10.1016/j.ecolmodel.2003.09.003; COHEN JE, 1993, J ANIM ECOL, V62, P67, DOI 10.2307/5483; Conover DO, 2005, CAN J FISH AQUAT SCI, V62, P730, DOI 10.1139/F05-069; Conrad JL, 2011, J FISH BIOL, V78, P395, DOI 10.1111/j.1095-8649.2010.02874.x; Cooke SJ, 2008, BIOSCIENCE, V58, P957, DOI 10.1641/B581009; Cooke SJ, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou024; Cooke SJ, 2013, CONSERV PHYSIOL, V1, DOI 10.1093/conphys/cot001; Cooke SJ, 2014, PHYSIOL BIOCHEM ZOOL, V87, P1, DOI 10.1086/671165; Cote J, 2010, PHILOS T R SOC B, V365, P4065, DOI 10.1098/rstb.2010.0176; Crain CM, 2008, ECOL LETT, V11, P1304, DOI 10.1111/j.1461-0248.2008.01253.x; Curtin R, 2010, MAR POLICY, V34, P821, DOI 10.1016/j.marpol.2010.01.003; Daewel U, 2011, FISH OCEANOGR, V20, P479, DOI 10.1111/j.1365-2419.2011.00597.x; Dall SRX, 2012, ECOL LETT, V15, P1189, DOI 10.1111/j.1461-0248.2012.01846.x; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Daskalov GM, 2007, P NATL ACAD SCI USA, V104, P10518, DOI 10.1073/pnas.0701100104; Di Franco A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031681; Diaz Pauli B, 2015, J FISH BIOL, V86, P1030, DOI 10.1111/jfb.12620; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; DOBZHANSKY T, 1964, AM ZOOL, V4, P443; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Ellner SP, 2011, ECOL LETT, V14, P603, DOI 10.1111/j.1461-0248.2011.01616.x; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Enberg K, 2010, CAN J FISH AQUAT SCI, V67, P1708, DOI 10.1139/F10-090; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Fogarty MJ, 2014, CAN J FISH AQUAT SCI, V71, P479, DOI 10.1139/cjfas-2013-0203; Follows MJ, 2007, SCIENCE, V315, P1843, DOI 10.1126/science.1138544; Forbes VE, 2008, ENVIRON TOXICOL CHEM, V27, P1987, DOI 10.1897/08-029.1; Freitas V, 2010, PHILOS T R SOC B, V365, P3553, DOI 10.1098/rstb.2010.0049; Fry F.E.J., 1971, P1; Fry FEJ, 1947, BIOL SER, V55, P1; Fulton EA, 2011, ICES J MAR SCI, V68, P1329, DOI 10.1093/icesjms/fsr032; Fulton EA, 2011, FISH FISH, V12, P171, DOI 10.1111/j.1467-2979.2011.00412.x; Gallagher AJ, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou022; Gallagher AJ, 2015, TRENDS ECOL EVOL, V30, P61, DOI 10.1016/j.tree.2014.12.001; Garcia SM, 2012, SCIENCE, V335, P1045, DOI 10.1126/science.1214594; Garcia S. M, 2003, 443 FAO; Garcia SM, 2005, ICES J MAR SCI, V62, P311, DOI 10.1016/j.icesjms.2004.12.003; Giery ST, 2015, AM NAT, V186, P187, DOI 10.1086/682068; Gill AB, 1996, J FISH BIOL, V48, P878; Giske J, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1096; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; Grant PR, 2004, EVOLUTION, V58, P1588; Hanson KC, 2008, CAN J ZOOL, V86, P801, DOI 10.1139/Z08-057; Heino M, 2013, ICES J MAR SCI, V70, P707, DOI 10.1093/icesjms/fst077; Helmuth B, 2009, J EXP BIOL, V212, P753, DOI 10.1242/jeb.023861; HEUSNER AA, 1982, RESP PHYSIOL, V48, P1, DOI 10.1016/0034-5687(82)90046-9; Hilborn R., 1992, REV FISH BIOL FISHER, V2, P177, DOI DOI 10.1007/BF00042883; Hilborn R, 2011, FISH RES, V108, P235, DOI 10.1016/j.fishres.2010.12.030; Holt RE, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou050; Holt RE, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2014.1032; Horodysky AZ, 2015, REV FISH BIOL FISHER, V25, P425, DOI 10.1007/s11160-015-9393-y; HUEY RB, 1991, AM NAT, V137, pS91, DOI 10.1086/285141; Hussey NE, 2015, SCIENCE, V348, DOI 10.1126/science.1255642; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; Jacob A, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-207; Jeffrey JD, 2015, INTEGR COMP BIOL, V55, P618, DOI 10.1093/icb/icv022; Johnson DW, 2010, J EVOLUTION BIOL, V23, P724, DOI 10.1111/j.1420-9101.2010.01938.x; Johnson LJ, 2010, HEREDITY, V105, P113, DOI 10.1038/hdy.2010.25; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Jorgensen C, 2013, J SEA RES, V75, P8, DOI 10.1016/j.seares.2012.04.003; Jorgensen C, 2010, CAN J FISH AQUAT SCI, V67, P1086, DOI 10.1139/F10-049; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Juan-Jorda MJ, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0322; Jusup M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021903; Kershner J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025248; Killen SS, 2007, P ROY SOC B-BIOL SCI, V274, P431, DOI 10.1098/rspb.2006.3741; Killen SS, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0603; Killen SS, 2014, J ANIM ECOL, V83, P1513, DOI 10.1111/1365-2656.12244; Killen SS, 2013, TRENDS ECOL EVOL, V28, P651, DOI 10.1016/j.tree.2013.05.005; Killen SS, 2012, FUNCT ECOL, V26, P134, DOI 10.1111/j.1365-2435.2011.01920.x; Killen SS, 2012, P ROY SOC B-BIOL SCI, V279, P357, DOI 10.1098/rspb.2011.1006; Killen SS, 2011, J ANIM ECOL, V80, P1024, DOI 10.1111/j.1365-2656.2011.01844.x; Killen SS, 2010, ECOL LETT, V13, P184, DOI 10.1111/j.1461-0248.2009.01415.x; Kohda M, 2008, J ANIM ECOL, V77, P859, DOI 10.1111/j.1365-2656.2008.01414.x; KOLOK AS, 1994, PHYSIOL ZOOL, V67, P706, DOI 10.1086/physzool.67.3.30163766; Korn RW, 2005, BIOL PHILOS, V20, P137, DOI 10.1007/s10539-004-4904-6; Kovach RP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0053807; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuparinen A, 2014, EVOL APPL, V7, P1218, DOI 10.1111/eva.12217; Kuparinen A, 2012, EVOL APPL, V5, P245, DOI 10.1111/j.1752-4571.2011.00215.x; Laugen AT, 2014, FISH FISH, V15, P65, DOI 10.1111/faf.12007; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lundsgaard-Hansen B, 2014, ECOLOGY, V95, P2723, DOI 10.1890/13-2338.1; Maltby L, 1999, ECOL APPL, V9, P431, DOI 10.2307/2641131; Marras S, 2010, J EXP BIOL, V213, P26, DOI 10.1242/jeb.032136; Marshall DJ, 2010, ECOL LETT, V13, P128, DOI 10.1111/j.1461-0248.2009.01408.x; Meyer JL, 1996, ECOL APPL, V6, P738, DOI 10.2307/2269477; Miner BG, 2005, TRENDS ECOL EVOL, V20, P685, DOI 10.1016/j.tree.2005.08.002; Modlmeier AP, 2014, ANIM BEHAV, V89, P53, DOI 10.1016/j.anbehav.2013.12.020; Morzaria-Luna HN, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042917; Mullon C, 2002, CAN J FISH AQUAT SCI, V59, P910, DOI 10.1139/F02-064; Munday PL, 2009, MAR ECOL PROG SER, V388, P235, DOI 10.3354/meps08137; Munday PL, 2009, P NATL ACAD SCI USA, V106, P1848, DOI 10.1073/pnas.0809996106; Munday PL, 2012, OCEAN ACIDIFICATION, V1, P1, DOI DOI 10.2478/0AC-2012-0001; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19052, DOI 10.1073/pnas.0800375105; Nisbet RM, 2000, J ANIM ECOL, V69, P913, DOI 10.1046/j.1365-2656.2000.00448.x; Norris DO, 2000, AM ZOOL, V40, P393, DOI 10.1668/0003-1569(2000)040[0393:EDOTSA]2.0.CO;2; Oufiero CE, 2009, FUNCT ECOL, V23, P969, DOI 10.1111/j.1365-2435.2009.01571.x; Palkovacs EP, 2012, EVOL APPL, V5, P183, DOI 10.1111/j.1752-4571.2011.00212.x; Patrick WS, 2015, FISHERIES, V40, P155, DOI 10.1080/03632415.2015.1024308; PAULY D, 1995, TRENDS ECOL EVOL, V10, P430, DOI 10.1016/S0169-5347(00)89171-5; Peck MA, 2012, J MARINE SYST, V93, P77, DOI 10.1016/j.jmarsys.2011.08.005; Peterson GD, 2000, CLIMATIC CHANGE, V44, P291, DOI 10.1023/A:1005502718799; Pikitch EK, 2004, SCIENCE, V305, P346, DOI 10.1126/science.1098222; PITCHER TJ, 1985, MAR BIOL, V86, P319, DOI 10.1007/BF00397518; Pitcher TJ, 2009, MAR POLICY, V33, P223, DOI 10.1016/j.marpol.2008.06.002; Politis SN, 2014, J EXP MAR BIOL ECOL, V459, P70, DOI 10.1016/j.jembe.2014.05.020; Pottinger TG, 1999, GEN COMP ENDOCR, V116, P122, DOI 10.1006/gcen.1999.7355; POTTINGER TG, 1995, GEN COMP ENDOCR, V98, P311, DOI 10.1006/gcen.1995.1073; PROSSER CL, 1955, BIOL REV, V30, P229, DOI 10.1111/j.1469-185X.1955.tb01208.x; Pukk L, 2013, EVOL APPL, V6, P749, DOI 10.1111/eva.12060; Queiros AM, 2015, GLOBAL CHANGE BIOL, V21, P130, DOI 10.1111/gcb.12675; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reid D, 2012, J ANIM ECOL, V81, P868, DOI 10.1111/j.1365-2656.2012.01969.x; Richards CL, 2010, BIOSCIENCE, V60, P232, DOI 10.1525/bio.2010.60.3.9; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Riesch R, 2015, J ANIM ECOL, V84, P1732, DOI 10.1111/1365-2656.12425; Roff D, 2002, ENCY BIODIVERS, V3, P715; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Rose GA, 2015, CAN J FISH AQUAT SCI, V72, P1789, DOI 10.1139/cjfas-2015-0346; Rowe S, 2003, TRENDS ECOL EVOL, V18, P567, DOI 10.1016/j.tree.2003.09.004; Sale PF, 2005, TRENDS ECOL EVOL, V20, P74, DOI 10.1016/j.tree.2004.11.007; Schindler DE, 2015, SCIENCE, V347, P953, DOI 10.1126/science.1261824; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; SCHMIDTNIELSEN K, 1972, SCIENCE, V177, P222, DOI 10.1126/science.177.4045.222; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Seebacher F, 2012, PHILOS T R SOC B, V367, P1607, DOI 10.1098/rstb.2012.0036; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Shiffman DS, 2014, MAR POLICY, V50, P318, DOI 10.1016/j.marpol.2014.07.001; Shin YJ, 2001, AQUAT LIVING RESOUR, V14, P65, DOI 10.1016/S0990-7440(01)01106-8; Shuter BJ, 2005, CAN J FISH AQUAT SCI, V62, P725, DOI 10.1139/F05-067; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Simon HA, 1962, P AM PHILOS SOC, V106, P467, DOI DOI 10.2307/985254; Skern-Mauritzen M, 2015, FISH FISH, V1, P1; Smith JM, 1982, EVOLUTION THEORY GAM; SPICER J. I., 1999, PHYSL DIVERSITY ITS; STEARNS SC, 1983, AM ZOOL, V23, P3; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; Thrush SF, 2010, ANNU REV MAR SCI, V2, P419, DOI 10.1146/annurev-marine-120308-081129; Uusi-Heikkila S, 2008, TRENDS ECOL EVOL, V23, P419, DOI 10.1016/j.tree.2008.04.006; Valentine JW, 1996, PALEOBIOLOGY, V22, P23; Van Valen L., 1965, AM NAT, V99, P377, DOI DOI 10.1086/282379; Vikebo F, 2007, MAR ECOL PROG SER, V347, P207, DOI 10.3354/meps06979; Weissburg MJ, 2005, MAR ECOL PROG SER, V287, P263, DOI 10.3354/meps287263; Wellenreuther M, 2014, MOL ECOL, V23, P5398, DOI 10.1111/mec.12935; Wennersten L, 2012, BIOL REV, V87, P756, DOI 10.1111/j.1469-185X.2012.00231.x; Wikelski M, 2006, TRENDS ECOL EVOL, V21, P38, DOI 10.1016/j.tree.2005.10.018; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wright D, 2015, DIVERS DISTRIB, V21, P698, DOI 10.1111/ddi.12302; Yaffee SL, 1999, CONSERV BIOL, V13, P713, DOI 10.1046/j.1523-1739.1999.98127.x; Yamamichi M, 2011, AM NAT, V178, P287, DOI 10.1086/661241; Young JL, 2006, FISH FISH, V7, P262, DOI 10.1111/j.1467-2979.2006.00225.x; Yue S, 2006, ENVIRON BIOL FISH, V76, P425, DOI 10.1007/s10641-006-9015-6; Zhou SJ, 2010, P NATL ACAD SCI USA, V107, P9485, DOI 10.1073/pnas.0912771107 201 11 11 7 62 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2051-1434 CONSERV PHYSIOL Conserv. Physiol. APR 7 2016 4 UNSP cow005 10.1093/conphys/cow005 18 Biodiversity Conservation; Ecology; Environmental Sciences; Physiology Biodiversity & Conservation; Environmental Sciences & Ecology; Physiology DK8VN WOS:000375206500001 27293757 DOAJ Gold, Green Published 2019-02-21 J Barreto, RR; de Farias, WKT; Andrade, H; Santana, FM; Lessa, R Barreto, Rodrigo R.; de Farias, Wialla K. T.; Andrade, Humber; Santana, Francisco M.; Lessa, Rosangela Age, Growth and Spatial Distribution of the Life Stages of the Shortfin Mako, Isurus oxyrinchus (Rafinesque, 1810) Caught in the Western and Central Atlantic PLOS ONE English Article NORTH-ATLANTIC; EMBRYONIC-DEVELOPMENT; REPRODUCTIVE-BIOLOGY; PELAGIC SHARKS; PACIFIC; VALIDATION; OCEAN; CALIFORNIA; MATURITY; MEXICO The shortfin mako (Isurus oxyrinchus) is a highly migratory pelagic shark that preferentially inhabits oceanic regions in practically all oceans. The wide distribution range of this species renders it susceptible to coastal and oceanic fishing operations. The International Union for Conservation of Nature (IUCN) and the International Commission for the Conservation of Atlantic Tunas (ICCAT) consider this species to be highly vulnerable, especially due to its biological parameters, which are different from those of other sharks that occupy the same niche (e.g., Prionace glauca). Consequently, considerable declines in abundance have been detected over various parts of its range, most of which are linked to oceanic longline fishing. The species has conflicting life history parameters in studies conducted in the last 30 years, especially with regard to age and growth. The main discrepancies regard the interpretation of the periodicity of the deposition of band pairs (BPs) on vertebrae and the possibility of ontogenetic variations in growth. Shortfin mako sharks (n = 1325) were sampled by onboard observers of the Brazilian chartered pelagic longline fleet based in northeast Brazil from 2005 to 2011. Lengths were 79 to 250 and 73 to 296 cm (fork length, FL) for males and females, respectively, with a statistically significant difference in size between sexes and differences in the proportion of individuals in each size class. The onboard observers collected a subsample of vertebrae (n = 467), only 234 of which were suitable for analyses. Reliability between readings was satisfactory. However, it was not possible to validate periodicity in the formation of age bands in the sample. Thus, the von Bertalanffy growth function was used to calculate growth rates for the species through the interpretation of BPs in different scenarios: one BP per year (s1), two BPs per year (s2) and two BPs per year until five years of life (s3). Growth parameters varied for both females (Linf = 309.7[s3] to 441.6 [s1]; k = 0.04[s1] to 0.13[s3]; t0 = -7.08[s1] and -3.27[s3]) and males (Linf = 291.5[s3] to 340.2[s1]; k = 0.04[s1] to 0.13[s3]; t0 = -7.08[s1] and -3.27[s3]). To advance the understanding of the use of habitat, the first analysis of the spatial distribution of the life stages of the shortfin mako sharks caught by commercial longline fishing operations in the South Atlantic was performed. The findings indicate that the portion of the population exploited by the fleets is predominantly juvenile and future actions should take the following issues into account: improvements in the efficiency of data collection procedures, the reestablishment of the onboard observer program, emergency investments in studies that can contribute to a better understanding of habitat use and life history theory. [Barreto, Rodrigo R.; de Farias, Wialla K. T.; Santana, Francisco M.; Lessa, Rosangela] Univ Fed Rural Pernambuco, Dept Pesca & Aquicultura, Lab Dinam Populacoes Marinhas DIMAR, Recife, PE, Brazil; [Andrade, Humber] Univ Fed Rural Pernambuco, Dept Pesca & Aquicultura, Lab Modelagem Estat MOE, Recife, PE, Brazil Barreto, RR (reprint author), Univ Fed Rural Pernambuco, Dept Pesca & Aquicultura, Lab Dinam Populacoes Marinhas DIMAR, Recife, PE, Brazil. rodrigorpbarreto@gmail.com Fundacao de Amparo a Ciencia e Tecnologia de Pernambuco-FACEPE; CNPq (National Counsel of Technological and Scientific Development) This study was supported by the Fundacao de Amparo a Ciencia e Tecnologia de Pernambuco-FACEPE (http://www.facepe.br/): Scholarship to R.B. This work was also supported in part by CNPq (National Counsel of Technological and Scientific Development): Productivity Grant to R.L. AKAIKE H, 1981, J ECONOMETRICS, V16, P3, DOI 10.1016/0304-4076(81)90071-3; Ardizzone D, 2006, AGE GROWTH CHONDRICH, P355; Barreto R, 2016, CONSERV BIOL, V30, P792, DOI 10.1111/cobi.12663; BARTOO NW, 1983, FISH B-NOAA, V81, P91; Baum JK, 2010, FISH RES, V102, P229, DOI 10.1016/j.fishres.2009.11.006; Bernal D, 2001, COMP BIOCHEM PHYS A, V129, P695, DOI 10.1016/S1095-6433(01)00333-6; Bishop SDH, 2006, MAR FRESHWATER RES, V57, P143, DOI 10.1071/MF05077; Cailliet G.M., 1983, California Cooperative Oceanic Fisheries Investigations Reports, V24, P57; Cailliet GM, 2004, CRC MAR BIOL SER, P399; Cailliet GM, 2006, AGE GROWTH CHONDRICH, P211; Cailliet GM, 2009, DATABASE IUCN RED LI; Campana SE, 2001, J FISH BIOL, V59, P197, DOI 10.1006/jfbi.2001.1668; Campana SE, 2002, CAN J FISH AQUAT SCI, V59, P450, DOI 10.1139/F02-027; CAREY FG, 1981, PHYSIOL ZOOL, V54, P334, DOI 10.1086/physzool.54.3.30159948; Cerna F, 2009, MAR FRESHWATER RES, V60, P394, DOI 10.1071/MF08125; CHAN RWK, 2001, THESIS U NEW S WALES; Clarke SC, 2013, CONSERV BIOL, V27, P197, DOI 10.1111/j.1523-1739.2012.01943.x; Cortes E., 2015, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V71, P2637; Cortes E, 2010, AQUAT LIVING RESOUR, V22, P1, DOI DOI 10.1051/ALR/2009044; Cortes Enric, 2007, Gulf and Caribbean Research, V19, P37; Dono F, 2014, ENVIRON BIOL FISH, V98, P517; Ebert D, 2013, SHARKS WORLD FULLY I; Ferretti F, 2008, CONSERV BIOL, V22, P952, DOI 10.1111/j.1523-1739.2008.00938.x; French RP, 2015, CONSERV PHYSIOL, V3, DOI 10.1093/conphys/cov044; Goldman KJ, 2012, CRC MAR BIOL SER, P423; Haddon M., 2001, MODELING QUANTITATIV; Hazin F, 2008, SHARKS OPEN OCEAN BI, P213; Hsu HH., 2003, THESIS NATL TAIWAN O, P107; Isermann DA, 2005, N AM J FISH MANAGE, V25, P1153, DOI 10.1577/M04-130.1; Joung SJ, 2005, ZOOL STUD, V44, P487; KIMURA M, 1980, J MOL EVOL, V16, P111, DOI 10.1007/BF01731581; Maia A, 2007, J APPL ICHTHYOL, V23, P246, DOI 10.1111/j.1439-0426.2007.00849.x; Mejuto J, 2013, COLLECT VOL SCI PAP, V69, P1657; Mejuto J, 2010, COLLECT VOL SCI PAP, V65, P2006; Mollet HF, 2000, FISH B-NOAA, V98, P299; Mourato BL, 2008, COLLECT VOL SCI PAP, V62, P1542; Musick J. A., 2005, MANAGEMENT TECHNIQUE; Natanson LJ, 2006, ENVIRON BIOL FISH, V77, P367, DOI 10.1007/s10641-006-9127-z; NATANSON LJ, 1995, FISH B-NOAA, V93, P116; Ogle D. H., 2015, INTRO FISHERIES ANAL; Pardo SA, 2013, METHODS ECOL EVOL, V4, P353, DOI 10.1111/2041-210x.12020; PRATT H. L, 1983, P INT WORKSH AG DET, P175; Ribot-Carballal MC, 2005, FISH RES, V76, P14, DOI 10.1016/j.fishres.2005.05.004; RICKER WE, 1979, FISH PHYSIOL, V8, P677, DOI DOI 10.1016/S1546-5098(08)60034-5; Semba Y, 2011, MAR FRESHWATER RES, V62, P20, DOI 10.1071/MF10123; Semba Y, 2009, ENVIRON BIOL FISH, V84, P377, DOI 10.1007/s10641-009-9447-x; Smith CL., 2008, SHARKS OPEN OCEAN BI, P288; Sokal RR, 1995, FREEMAN, V3, P1995, DOI DOI 10.1016/J.JIP.2003.08.007; STEVENS JD, 1983, COPEIA, P126, DOI 10.2307/1444706; Stevens JD, 2008, SHARKS OPEN OCEAN BI, P87; Wells RJD, 2013, FISH B-NOAA, V111, P147, DOI 10.7755/FB.111.2.3 51 3 3 0 31 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 6 2016 11 4 e0153062 10.1371/journal.pone.0153062 19 Multidisciplinary Sciences Science & Technology - Other Topics DI6IX WOS:000373603500092 27049319 DOAJ Gold, Green Published 2019-02-21 J Brigolin, D; Cavraro, F; Zanatta, V; Pastres, R; Malavasi, S Brigolin, D.; Cavraro, F.; Zanatta, V.; Pastres, R.; Malavasi, S. The influence of habitat structure on energy allocation tactics in an estuarine batch spawner ESTUARINE COASTAL AND SHELF SCIENCE English Article Iteroparity; Batch spawning; Habitat structure; Bioenergetic model; Individual based model LIFE-HISTORY EVOLUTION; KILLIFISH APHANIUS-FASCIATUS; FUNDULUS-HETEROCLITUS L; LAGOONS W. GREECE; MEDITERRANEAN KILLIFISH; SALT-MARSH; OXYGEN-CONSUMPTION; GENETIC-STRUCTURE; 1827 PISCES; GROWTH Trade-off between fecundity and survival was tested in a batch spawner, the Mediterranean killifish Aphanius fasciatus, using an integrated modelling-data approach based on previously collected empirical data. Two sites of the lagoon of Venice (Northern Adriatic sea, Italy) were selected in order to compare the energy allocation between growth and reproduction in two contrasting habitats. These were characterised by high and comparable level of richness in basal resources, but showed two different mortality schedules: an open natural salt marsh, exposed to high level of predation, and a confined artificial site protected from piscivorous predation. By means of a bioenergetic Scope for Growth model, developed and calibrated for the specific goals of this work, we compared the average individual life history between the two habitats. The average individual life history is characterised by a higher number of spawning events and lower per-spawning investment in the confined site exposed to lower predation risk, compared to the site connected with the open lagoon. Thus, model predictions suggest that habitat structure with different extrinsic mortality schedules may shape the life history strategy in modulating the pattern of energy allocation. Model application highlights the central role of energy partitioning through batch spawning, in determining the life history strategy. The particular ovary structure of a batch spawner seems therefore to allow the fish to modulate timing and investment of spawning events, shaping the optimal life history in relation to the environmental conditions. (C) 2016 Elsevier Ltd. All rights reserved. [Brigolin, D.; Cavraro, F.; Zanatta, V.; Pastres, R.; Malavasi, S.] Univ Ca Foscari Venezia, Dipartimento Sci Ambientali Informat & Stat, Via Torino 155, I-30170 Venice, Italy Brigolin, D (reprint author), Univ Ca Foscari Venezia, Dipartimento Sci Ambientali Informat & Stat, Via Torino 155, I-30170 Venice, Italy. brigo@unive.it Brigolin, Daniele/0000-0002-4590-8616 BRAFIELD AE, 1972, COMP BIOCHEM PHYSIOL, V43, P837, DOI 10.1016/0300-9629(72)90155-7; Brigolin D, 2014, MAR ENVIRON RES, V97, P58, DOI 10.1016/j.marenvres.2014.02.006; Brigolin D, 2014, AQUACULT ENV INTERAC, V5, P71, DOI 10.3354/aei00093; Cavraro F., 2013, Transitional Waters Bulletin, V7, P23; Cavraro F., 2012, GENETICA ECOLOGIA CO, P101; Cavraro F, 2014, ESTUAR COAST SHELF S, V139, P60, DOI 10.1016/j.ecss.2013.12.023; Cavraro F, 2014, J SEA RES, V85, P205, DOI 10.1016/j.seares.2013.05.004; Cavraro Francesco, 2011, Bollettino del Museo di Storia Naturale di Venezia, V62, P125; Consorzio Venezia Nuova, 2003, TECHNICAL REPORT, P209; Consorzio Venezia Nuova, 2005, CIRC ANN COMP TASS P, P96; Elliott M., 2002, FISHES ESTUARIES, P636; Ferrito V, 2013, MAR BIOL, V160, P3193, DOI 10.1007/s00227-013-2307-4; FONDS M, 1973, Netherlands Journal of Sea Research, V7, P376, DOI 10.1016/0077-7579(73)90059-8; Irlandi EA, 1997, OECOLOGIA, V110, P222, DOI 10.1007/s004420050154; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Kidder GW, 2006, J EXP ZOOL PART A, V305A, P309, DOI 10.1002/jez.a.251; KNEIB RT, 1978, J EXP MAR BIOL ECOL, V31, P121, DOI 10.1016/0022-0981(78)90125-9; Lassiter R.R., 1974, MODELLING EUTROPHICA, P131; Leonardos I, 1999, FISH RES, V40, P227, DOI 10.1016/S0165-7836(98)00231-8; Leonardos I, 1998, FISH RES, V35, P171, DOI 10.1016/S0165-7836(98)00082-4; Leonardos I, 2008, SCI MAR, V72, P393; Madon SP, 2001, ECOL MODEL, V136, P149, DOI 10.1016/S0304-3800(00)00416-6; NIXON SW, 1976, ECOLOGY, V57, P740, DOI 10.2307/1936187; NIXON SW, 1973, ECOL MONOGR, V43, P463, DOI 10.2307/1942303; PALOHEIMO JE, 1965, J FISH RES BOARD CAN, V22, P521, DOI 10.1139/f65-048; Pappalardo AM, 2008, J FISH BIOL, V72, P1154, DOI 10.1111/j.1095-8649.2007.01748.x; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick D.N., 2010, EVOLUTION, V65, P1021; Rinaldi A, 2014, J SEA RES, V94, P65, DOI 10.1016/j.seares.2014.05.006; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Roff Derek A., 1992; SKADHAUGE E, 1974, J EXP BIOL, V60, P547; Stearns S. C., 1992, EVOLUTION LIFE HIST, P249; Stewart G.L. A. a. K.W., 1972, AM MIDL NAT, V88, P76; Triantafyllidis A, 2007, MAR BIOL, V152, P1159, DOI 10.1007/s00227-007-0760-7; Tu D., 1995, SPRINGER SERIES STAT, P516; URSIN E, 1967, J FISH RES BOARD CAN, V24, P2355, DOI 10.1139/f67-190; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; Wang YF, 1996, GEOCHIM COSMOCHIM AC, V60, P2993, DOI 10.1016/0016-7037(96)00140-8; WEISBERG SB, 1982, J EXP MAR BIOL ECOL, V62, P237, DOI 10.1016/0022-0981(82)90204-0; Winberg G.G., 1956, RATE METABOLISM FOOD, P1; Wootton R. J., 1990, ECOLOGY TELEOST FISH, P404 47 1 1 2 12 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0272-7714 1096-0015 ESTUAR COAST SHELF S Estuar. Coast. Shelf Sci. APR 5 2016 172 60 71 10.1016/j.ecss.2016.01.038 12 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography DJ6ZH WOS:000374361200006 2019-02-21 J Botha-Brink, J; Codron, D; Huttenlocker, AK; Angielczyk, KD; Ruta, M Botha-Brink, Jennifer; Codron, Daryl; Huttenlocker, Adam K.; Angielczyk, Kenneth D.; Ruta, Marcello Breeding Young as a Survival Strategy during Earth's Greatest Mass Extinction SCIENTIFIC REPORTS English Article END-PERMIAN EXTINCTION; SOUTH-AFRICA; TRIASSIC BOUNDARY; GROWTH-PATTERNS; KAROO-BASIN; DINOSAURS REVEALS; SEXUAL-MATURITY; BONE-GROWTH; BODY-SIZE; THERAPSIDA Studies of the effects of mass extinctions on ancient ecosystems have focused on changes in taxic diversity, morphological disparity, abundance, behaviour and resource availability as key determinants of group survival. Crucially, the contribution of life history traits to survival during terrestrial mass extinctions has not been investigated, despite the critical role of such traits for population viability. We use bone microstructure and body size data to investigate the palaeoecological implications of changes in life history strategies in the therapsid forerunners of mammals before and after the Permo-Triassic Mass Extinction (PTME), the most catastrophic crisis in Phanerozoic history. Our results are consistent with truncated development, shortened life expectancies, elevated mortality rates and higher extinction risks amongst post-extinction species. Various simulations of ecological dynamics indicate that an earlier onset of reproduction leading to shortened generation times could explain the persistence of therapsids in the unpredictable, resource-limited Early Triassic environments, and help explain observed body size distributions of some disaster taxa (e.g., Lystrosaurus). Our study accounts for differential survival in mammal ancestors after the PTME and provides a methodological framework for quantifying survival strategies in other vertebrates during major biotic crises. [Botha-Brink, Jennifer] Natl Museum, Karoo Palaeontol, Box 266, ZA-9300 Bloemfontein, South Africa; [Botha-Brink, Jennifer] Univ Orange Free State, Dept Zool & Entomol, ZA-9300 Bloemfontein, South Africa; [Codron, Daryl] Natl Museum, Florisbad Quaternary Res, Box 266, ZA-9300 Bloemfontein, South Africa; [Codron, Daryl] Univ Orange Free State, Ctr Environm Management, ZA-9300 Bloemfontein, South Africa; [Huttenlocker, Adam K.] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA; [Huttenlocker, Adam K.] Nat Hist Museum Utah, Salt Lake City, UT 84112 USA; [Angielczyk, Kenneth D.] Field Museum Nat Hist, Integrat Res Ctr, Chicago, IL 60605 USA; [Ruta, Marcello] Lincoln Univ, Sch Life Sci, Lincoln LN6 7DL, England Botha-Brink, J (reprint author), Natl Museum, Karoo Palaeontol, Box 266, ZA-9300 Bloemfontein, South Africa.; Botha-Brink, J (reprint author), Univ Orange Free State, Dept Zool & Entomol, ZA-9300 Bloemfontein, South Africa. jbotha@nasmus.co.za Codron, Daryl/B-8867-2008 Codron, Daryl/0000-0001-5223-9513; Botha, Jennifer/0000-0001-8824-9334; Ruta, Marcello/0000-0002-6151-0704 National Research Foundation [UID 91602]; Palaeontological Scientific Trust (PAST) and its Scatterlings of Africa programmes, DST/NRF Centre of Excellence in Palaeosciences; National Science Foundation Doctoral Dissertation Improvement Grant Program [NSF-DDIG-1209018]; Postdoctoral Research Fellowships in Biology [NSF-PRFB-1309040] We thank the following people for access to specimens: B. Rubidge and B. Zipfel (ESI, SA), R. M. H. Smith (Iziko Museums, SA), and E. Butler (NMB, SA). This work was supported by the National Research Foundation (UID 91602), the Palaeontological Scientific Trust (PAST) and its Scatterlings of Africa programmes, DST/NRF Centre of Excellence in Palaeosciences to JBB; National Science Foundation Doctoral Dissertation Improvement Grant Program (NSF-DDIG-1209018) and Postdoctoral Research Fellowships in Biology (NSF-PRFB-1309040) to AKH. We thank three anonymous reviewers for their helpful comments. The authors are solely responsible for opinions and conclusions presented here. AKCAKAYA HR, 1999, APPL POPULATION ECOL; Arche A, 2005, PALAEOGEOGR PALAEOCL, V229, P104, DOI 10.1016/j.palaeo.2005.06.033; Begon M., 2006, ECOLOGY INDIVIDUALS; Botha J, 2007, LETHAIA, V40, P125, DOI 10.1111/j.1502-3931.2007.00011.x; Botha-Brink J., 2012, RAD OSTEOHISTOLOGY N, P223; Botha-Brink J, 2011, J VERTEBR PALEONTOL, V31, P1238, DOI 10.1080/02724634.2011.621797; Botha-Brink J, 2010, ZOOL J LINN SOC-LOND, V160, P341, DOI 10.1111/j.1096-3642.2009.00601.x; Burgess SD, 2014, P NATL ACAD SCI USA, V111, P3316, DOI 10.1073/pnas.1317692111; Castanet J, 2004, J ZOOL, V263, P31, DOI 10.1017/S0952836904004844; Castanet J., 1990, INTRO SKELETOCHRONOL; Cox C. B., 2015, J VERTEBR PALEONTOL, V35, DOI DOI 10.1080/02724634.2014.935388; de Ricqles A., 2008, ANN PALEONTOL, V94, P57, DOI DOI 10.1016/J.ANNPAL.2008.03.002; Erickson GM, 2007, BIOL LETTERS, V3, P558, DOI 10.1098/rsbl.2007.0254; FRANCILLONVIEIL.H, 1990, SKELETAL BIOMINERALI, V1, P471; Garcia-Martinez R, 2011, CR PALEVOL, V10, P489, DOI 10.1016/j.crpv.2011.03.011; Gotelli N. J., 2004, PRIMER ECOLOGICAL ST; Grine F. E., 2006, CRANIAL VARIABILITY, P432; Hendriks AJ, 2008, OECOLOGIA, V155, P705, DOI 10.1007/s00442-007-0952-3; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; Hone DWE, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2015.0947; Huttenlocker AK, 2014, PEERJ, V2, DOI 10.7717/peerj.325; Huttenlocker AK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087553; Huttenlocker AK, 2013, PALEOBIOLOGY, V39, P253, DOI 10.1666/12020; Hutton J. M., 1986, COPEIA, V263, P31; Jablonski D, 2005, PALEOBIOLOGY, V31, P192, DOI 10.1666/0094-8373(2005)031[0192:MEAM]2.0.CO;2; Kohler M, 2012, NATURE, V487, P358, DOI 10.1038/nature11264; Lee AH, 2008, P NATL ACAD SCI USA, V105, P582, DOI 10.1073/pnas.0708903105; Nesbitt S.J., 2012, BIOL LETT, V9, DOI DOI 10.1098/RSBL.2012.0949; Owen-Smith N, 2006, ECOL MONOGR, V76, P93, DOI 10.1890/05-0765; Padian K, 2013, BONE HISTOLOGY OF FOSSIL TETRAPODS: ADVANCING METHODS, ANALYSIS, AND INTERPRETATION, P1; Payne J. L., SCIENCE, V305, P506; Raath M.A., 1992, PALAEONTOLOGIA AFRIC, V29, P3; Rey K., 2015, GONDWANA RES, DOI 10.1016/j.gr.2015.09.008; Rockwood LL, 2006, INTRO POPULATION ECO; Roopnarine PD, 2007, P ROY SOC B-BIOL SCI, V274, P2077, DOI 10.1098/rspb.2007.0515; Roopnarine PD, 2015, SCIENCE, V350, P90, DOI 10.1126/science.aab1371; Roopnarine PD, 2012, BIOL LETTERS, V8, P147, DOI 10.1098/rsbl.2011.0662; Roughgarden J, 1998, PRIMER ECOLOGICAL TH; Ruta M, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1865; Ruta M, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1071; Ruta M, 2011, PALAEONTOLOGY, V54, P1117, DOI 10.1111/j.1475-4983.2011.01051.x; Ruta M, 2008, PALAEONTOLOGY, V51, P1261, DOI 10.1111/j.1475-4983.2008.00808.x; Sander PM, 2000, PALEOBIOLOGY, V26, P466, DOI 10.1666/0094-8373(2000)026<0466:LHOTTS>2.0.CO;2; Smith R., 2012, THERAPSID BIODIVERSI, P31; Smith RMH, 2014, PALAEOGEOGR PALAEOCL, V396, P99, DOI 10.1016/j.palaeo.2014.01.002; Sookias RB, 2012, P ROY SOC B-BIOL SCI, V279, P2180, DOI 10.1098/rspb.2011.2441; Straehl F. R., 2013, PLOS ONE; Sun YD, 2012, SCIENCE, V338, P366, DOI 10.1126/science.1224126 48 13 13 1 30 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep APR 5 2016 6 24053 10.1038/srep24053 9 Multidisciplinary Sciences Science & Technology - Other Topics DI2PP WOS:000373339200001 27044713 DOAJ Gold, Green Published 2019-02-21 J Robertson, SM; Bonner, TH; Fries, JN Robertson, Sarah M.; Bonner, Timothy H.; Fries, Joe N. Effects of Habitat Utilization on the Life Histories of Two Imperiled, Sympatric Dionda (Cyprinidae) in the Rio Grande Basin, Texas AMERICAN MIDLAND NATURALIST English Article DEVILS RIVER MINNOW; POPULATION-STRUCTURE; FISH LARVAE; ASSOCIATIONS; DIABOLI; REPRODUCTION; TEMPERATURE; GROWTH; STREAM; FECUNDITY The genus Dionda consists of at least 12 species, of which most inhabit springdominated streams within the western Gulf slope drainages of North America and demonstrate some differences in habitat selection within these systems. The purpose of this study was to assess the influence of stenothermal spring or eurythermal stream habitat selection on the life history strategies of the stream-associated Dionda argentosa, a population of Dionda diaboli restricted to the spring influenced portions of Pinto Creek (Kinney County, Texas), and a population of D. diaboli utilizing stream habitats in the Devils River (Val Verde County, Texas). While differences in spawning seasons between the two species were noted, all three populations displayed life histories characteristic of opportunistic strategists including early maturation, long spawning seasons, production of multiple batches of oocytes, and short lifespans (<3 y). Differences in reproductive season between the spring-and stream-associated Dionda were consistent with the hypothesis stenothermal waters of springs lack terminating cues to induce gonadal quiescence in fishes. [Robertson, Sarah M.; Bonner, Timothy H.] SW Texas State Univ, Dept Biol, Aquat Stn, San Marcos, TX 78666 USA; [Fries, Joe N.] US Fish & Wildlife Serv, Aquat Resources Ctr, San Marcos, TX 78666 USA; [Robertson, Sarah M.] Texas Parks & Wildlife Dept, River Studies Program, POB 1685, San Marcos, TX 78667 USA Robertson, SM (reprint author), SW Texas State Univ, Dept Biol, Aquat Stn, San Marcos, TX 78666 USA.; Robertson, SM (reprint author), Texas Parks & Wildlife Dept, River Studies Program, POB 1685, San Marcos, TX 78667 USA. sarah.robertson@tpwd.texas.gov Nature Conservancy; Christopher Ring; Texas State University IACUC [0932_1019_34]; Texas Parks and Wildlife Department [SPR-0601-159]; U.S. Fish and Wildlife Service federal fish and wildlife [TE236730-0] We thank the Texas Parks and Wildlife Department for funding and cooperation on this project and Scott McWilliams, The Nature Conservancy, and Christopher Ring for granting us study site access. We also thank Kara Jiminez, research assistant, for assistance in collecting and processing samples. This project was conducted under Texas State University IACUC permit number 0932_1019_34, Texas Parks and Wildlife Department scientific permit number SPR-0601-159, and U.S. Fish and Wildlife Service federal fish and wildlife permit number TE236730-0. ASHWORTH J. B., 2005, SPRINGS KINNEY VAL V; Bender S, 2005, TEXAS COMPREHENSIVE; Bonner TH, 1998, T AM FISH SOC, V127, P971, DOI 10.1577/1548-8659(1998)127<0971:EOTOEP>2.0.CO;2; Brune G., 1981, SPRINGS OF TEXAS, V1; Bye V.J., 1984, P187; Cantu NEV, 1997, SOUTHWEST NAT, V42, P265; CONSTANTZ GD, 1979, OECOLOGIA, V40, P189, DOI 10.1007/BF00347936; Department of Transportation, 2008, FED REG, V73; Durham BW, 2008, ECOL FRESHW FISH, V17, P528, DOI 10.1111/j.1600-0633.2008.00303.x; EDWARDS R. J., 1999, ECOLOGICAL PROFILES; FOLB C. E., 2010, THESIS TEXAS STATE U; GALE WF, 1977, T AM FISH SOC, V106, P170, DOI 10.1577/1548-8659(1977)106<170:SHOSSN>2.0.CO;2; Garrett GP, 2004, SOUTHWEST NAT, V49, P435, DOI 10.1894/0038-4909(2004)049<0435:DOANPO>2.0.CO;2; Garrett GP, 2002, ENVIRON BIOL FISH, V65, P478, DOI 10.1023/A:1021133023322; Gibson JR, 2005, N AM J AQUACULT, V67, P294, DOI 10.1577/A04-077.1; Gibson JR, 2004, N AM J AQUACULT, V66, P42, DOI 10.1577/A03-012; GOTELLI NJ, 1991, OIKOS, V62, P30, DOI 10.2307/3545443; Green BS, 2004, J EXP MAR BIOL ECOL, V299, P115, DOI 10.1016/j.jembe.2003.09.001; HARRELL H. L., 1980, ATLAS N AM FRESHWATE, P153; HEINS DC, 1988, COPEIA, P238, DOI 10.2307/1445942; HEINS DC, 1989, COPEIA, P727; HOUDE ED, 1989, FISH B-NOAA, V87, P471; HUBBS C, 1990, SOUTHWEST NAT, V35, P446, DOI 10.2307/3672044; Hubbs C, 2001, TEX J SCI, V53, P299; HUBBS C, 1985, COPEIA, P56, DOI 10.2307/1444790; HUBBS C, 1968, Southwestern Naturalist, V13, P301, DOI 10.2307/3669223; Hubbs C, 1995, COPEIA, P989, DOI 10.2307/1447053; Hubbs C, 2008, ANNOTATED CHECKLIST; INTERNATIONAL BOUNDARY AND WATER COMMISSION [IBWC], 2006, IBWC WATER B, V76; Kollaus KA, 2012, J ARID ENVIRON, V76, P72, DOI 10.1016/j.jaridenv.2011.08.013; Lopez-Fernandez H, 2005, SOUTHWEST NAT, V50, P246, DOI 10.1894/0038-4909(2005)050[0246:SODDAR]2.0.CO;2; Murphy B. R., 1996, FISHERIES TECHNIQUES; NATIONAL DROUGHT MITIGATION CENTER, 2015, US DROUGHT MON; Perkin JS, 2012, AM MIDL NAT, V167, P111, DOI 10.1674/0003-0031-167.1.111; Rinchard J, 1996, J FISH BIOL, V49, P883, DOI 10.1111/j.1095-8649.1996.tb00087.x; Robertson CR, 2008, ECOL FRESHW FISH, V17, P119, DOI 10.1111/j.1600-0633.2007.00265.x; Robertson MS, 2003, J FRESHWATER ECOL, V18, P115, DOI 10.1080/02705060.2003.9663957; SCHENCK JR, 1977, AM MIDL NAT, V98, P365, DOI 10.2307/2424987; SCHINDEL G. M., 2007, TRACK TEST WORK PLAN; Schonhuth S, 2012, MOL PHYLOGENET EVOL, V62, P427, DOI 10.1016/j.ympev.2011.10.011; TAYLOR CM, 1990, AM MIDL NAT, V123, P32, DOI 10.2307/2425757; TEXAS WATER DEVELOPMENT BOARD [TWDB], 2009, 0704830695 TWDB; USFWS (U.S. FISH AND WILDLIFE SERVICE), 1999, FED REG, V64, P56596; WEDDLE GK, 1991, COPEIA, P419, DOI 10.2307/1446591; Wheeler AP, 2003, T AM FISH SOC, V132, P438, DOI 10.1577/1548-8659(2003)132<0438:HADPBS>2.0.CO;2; Williams CS, 2006, AM MIDL NAT, V155, P84, DOI 10.1674/0003-0031(2006)155[0084:HALHAD]2.0.CO;2; WILLIAMS GEORGE C., 1959, COPEIA, V1959, P18, DOI 10.2307/1440094; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 48 0 0 0 3 AMER MIDLAND NATURALIST NOTRE DAME UNIV NOTRE DAME, BOX 369, ROOM 295 GLSC, NOTRE DAME, IN 46556 USA 0003-0031 1938-4238 AM MIDL NAT Am. Midl. Nat. APR 2016 175 2 222 232 11 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology DN0JC WOS:000376749200007 2019-02-21 J De La Rosa-Cancino, W; Rojas, JC; Cruz-Lopez, L; Castillo, A; Malo, EA De La Rosa-Cancino, Wilmar; Rojas, Julio C.; Cruz-Lopez, Leopolodo; Castillo, Alfredo; Malo, Edi A. Attraction, Feeding Preference, and Performance of Spodoptera frugiperda Larvae (Lepidoptera: Noctuidae) Reared on Two Varieties of Maize ENVIRONMENTAL ENTOMOLOGY English Article fall armyworm; host searching; development; maize; landrace FALL ARMYWORM LARVAE; LIFE-HISTORY EVOLUTION; CHILO-PARTELLUS; BALSAS TEOSINTE; LEAF TOUGHNESS; PLANT DEFENSE; RESISTANCE; DOMESTICATION; OVIPOSITION; BEHAVIOR The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is an economically important pest of maize and other crops in the Americas. Studies suggest that modern varieties of maize lost some of their natural defense mechanisms against herbivores during domestication and agricultural selection. In the present study, we evaluated the attraction, feeding preference (host fidelity and consumption rate), and performance of S. frugiperda larvae reared on hybrid (Pioneer P4063W) and landrace (Tuxpeno) varieties of maize. We also evaluated the damage caused by S. frugiperda to Pioneer and Tuxpeno maize plants in the field. We found that fifth-instar larvae were more attracted to Pioneer plants than to Tuxpeno plants in a Y-tube olfactometer. Additionally, the fall armyworm larvae showed more fidelity to Pioneer leaves than to Tuxpeno leaves. However, the larval consumption rate was similar for both types of maize plants. The life cycle of S. frugiperda was significantly longer when the larvae were reared on Tuxpeno leaves than on Pioneer leaves. In the field, the Pioneer variety was infested with more S. frugiperda larvae than the Tuxpeno variety. Thus, our results provide evidence that modern varieties of maize may have lost some of their defensive traits during selective breeding. [De La Rosa-Cancino, Wilmar; Rojas, Julio C.; Cruz-Lopez, Leopolodo; Castillo, Alfredo; Malo, Edi A.] Colegio Frontera ECOSUR, Grp Ecol Artropodos & Manejo Plagas, Carretera Antiguo Aeropuerto Km 2-5, Tapachula 30700, Chiapas, Mexico Malo, EA (reprint author), Colegio Frontera ECOSUR, Grp Ecol Artropodos & Manejo Plagas, Carretera Antiguo Aeropuerto Km 2-5, Tapachula 30700, Chiapas, Mexico. wdelarosa@ecosur.edu.mx; jrojas@ecosur.mx; lcruz@ecosur.mx; acastill@ecosur.mx; emr@ecosur.mx Alfredo, Castillo/B-5491-2016; Malo, Edi/F-7303-2016 Alfredo, Castillo/0000-0003-1452-0026; Malo, Edi/0000-0002-1697-0277 Consejo Nacional de Ciencia y Tecnologia (CONACYT) We thank Armando Virgen and Antonio Santiesteban (ECOSUR, Unidad Tapachula) for technical support, Javier Valle-Mora (ECOSUR, Unidad Tapachula) for advice on the statistical analysis of the data, and Hugo Perales (ECOSUR, Unidad San Cristobal) for providing the Tuxpeno seeds. De la Rosa-Cancino thanks Consejo Nacional de Ciencia y Tecnologia (CONACYT) for a scholarship during his postgraduate studies. ANDERSON P, 1995, ENTOMOL EXP APPL, V74, P71, DOI 10.1111/j.1570-7458.1995.tb01876.x; ANDREWS KL, 1988, FLA ENTOMOL, V71, P630, DOI 10.2307/3495022; Barros E. M., 2010, ENTOMOL EXP APPL, V3, P237; Bellota E, 2013, ENTOMOL EXP APPL, V149, P185, DOI 10.1111/eea.12122; BERGVINSON DJ, 1994, J ECON ENTOMOL, V87, P1743, DOI 10.1093/jee/87.6.1743; Bernal JS, 2015, ENTOMOL EXP APPL, V155, P206, DOI 10.1111/eea.12299; Boregas KGB, 2013, BRAGANTIA, V72, P61, DOI 10.1590/S0006-87052013000100009; Capinera J. L., 2002, HDB VEGETABLE PESTS, V1, P729; Carlsson MA, 1999, J CHEM ECOL, V25, P2445, DOI 10.1023/A:1020865922827; Carroll MJ, 2006, J CHEM ECOL, V32, P1911, DOI 10.1007/s10886-006-9117-9; Coley PD, 1996, ANNU REV ECOL SYST, V27, P305, DOI 10.1146/annurev.ecolsys.27.1.305; da Costa J. G., 2011, EUPHYTICA, V77, P299; Davila-Flores AM, 2013, OECOLOGIA, V173, P1425, DOI 10.1007/s00442-013-2728-2; de Lange ES, 2014, NEW PHYTOL, V204, P329, DOI 10.1111/nph.13005; Farias-Rivera L. A., 2002, FLORIDA ENTOMOL, V86, P239; Glendinning JI, 2002, ENTOMOL EXP APPL, V104, P15, DOI 10.1023/A:1021271717409; Gotoh T, 2011, J ASIA-PAC ENTOMOL, V14, P173, DOI 10.1016/j.aspen.2010.12.011; Hariprasad KV, 2010, INT J PEST MANAGE, V56, P15, DOI 10.1080/09670870902980834; Hedin PA, 1996, J CHEM ECOL, V22, P1655, DOI 10.1007/BF02272405; Hong SC, 2012, ENTOMOL EXP APPL, V145, P201, DOI 10.1111/eea.12005; KHAN ZR, 1987, J CHEM ECOL, V13, P1903, DOI 10.1007/BF01013239; Kumar H, 1997, CROP PROT, V16, P243, DOI 10.1016/S0261-2194(96)00094-4; Luginbill P., 1928, Technical Bulletin United States Department of Agriculture, Vno.34, P1; Malo EA, 2012, ENTOMOL EXP APPL, V142, P45, DOI 10.1111/j.1570-7458.2011.01200.x; Midega CAO, 2011, ENTOMOL EXP APPL, V138, P40, DOI 10.1111/j.1570-7458.2010.01073.x; Molina-Ochoa J., 1997, VEDALIA, V4, P31; Murua MG, 2008, ANN ENTOMOL SOC AM, V101, P639, DOI 10.1603/0013-8746(2008)101[639:FAMCOS]2.0.CO;2; Mutyambai DM, 2014, ENTOMOL EXP APPL, V153, P170, DOI 10.1111/eea.12237; Rojas JC, 2006, BIOL CONTROL, V37, P141, DOI 10.1016/j.biocontrol.2006.01.009; Rojas JC, 2003, ENVIRON ENTOMOL, V32, P1386, DOI 10.1603/0046-225X-32.6.1386; Rosenthal JP, 1997, EVOL ECOL, V11, P337, DOI 10.1023/A:1018420504439; Signoretti AGC, 2012, NEOTROP ENTOMOL, V41, P22, DOI 10.1007/s13744-011-0003-y; SPARKS AN, 1979, FLA ENTOMOL, V62, P82, DOI 10.2307/3494083; Szczepaniec A, 2013, ENTOMOL EXP APPL, V146, P242, DOI 10.1111/eea.12014; Takahashi CG, 2012, ENTOMOL EXP APPL, V145, P191, DOI 10.1111/eea.12004; WISEMAN B R, 1976, Florida Entomologist, V59, P305, DOI 10.2307/3494267; Wiseman BR, 1996, FLA ENTOMOL, V79, P329, DOI 10.2307/3495581; Wiseman BR, 1996, FLA ENTOMOL, V79, P302, DOI 10.2307/3495578; YANG G, 1993, J CHEM ECOL, V19, P2055, DOI 10.1007/BF00983808 39 1 1 2 32 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 0046-225X 1938-2936 ENVIRON ENTOMOL Environ. Entomol. APR 2016 45 2 384 389 10.1093/ee/nvv229 6 Entomology Entomology DM5JO WOS:000376385000013 26802116 2019-02-21 J DeLong, JP; Walsh, M DeLong, John P.; Walsh, Matthew The interplay between resource supply and demand determines the influence of predation on prey body sizes CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article; Proceedings Paper Symposium on Size-Based Approaches at the 144th Meeting of the American-Fisheries-Society AUG, 2014 Quebec, CANADA Amer Fisheries Soc, Canadian Network Aquat Ecosystem Serv LIFE-HISTORY EVOLUTION; OPTIMAL ALLOCATION; ISLAND RULE; GROWTH-RATE; FISH; TEMPERATURE; REPRODUCTION; GUPPIES; SHIFTS; RISK Predation has been shown to either increase or decrease the body mass of fish, as well as cause variable changes in growth rate. The mechanisms underlying these contrasting responses are not well understood. Here we compared intraspecific body size and growth responses to predation against a backdrop of 2006 estimates of asymptotic mass and growth constants (i.e., von Bertalanffy parameters) across species. We show that intraspecific responses can be quite large relative to interspecific variation and confirm that the magnitude and direction of body size responses is variable. We then employed the supply demand (SD) model of body mass evolution to explore how predator -induced changes in resource demand or supply could alter body mass. The SD model predicts that any combination of increasing or decreasing body mass and increasing or decreasing growth rate is possible when predation risk is increased, which is consistent with the literature. Finally, we use three case studies to illustrate how the interplay of resource supply and resource demand determines the actual body mass and growth rate response to predation. [DeLong, John P.] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA; [Walsh, Matthew] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA DeLong, JP (reprint author), Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA. jpdelong@unl.edu DeLong, John/0000-0003-0558-8213 ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; ATKINSON D, 1995, J THERM BIOL, V20, P61, DOI 10.1016/0306-4565(94)00028-H; Basolo AL, 2004, BIOL J LINN SOC, V83, P87, DOI 10.1111/j.1095-8312.2004.00369.x; BELK MC, 1993, COPEIA, P1034; Bell AM, 2011, J EVOLUTION BIOL, V24, P943, DOI 10.1111/j.1420-9101.2011.02247.x; Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; Billman EJ, 2011, ECOL FRESHW FISH, V20, P102, DOI 10.1111/j.1600-0633.2010.00465.x; Blackburn Tim M., 1999, Diversity and Distributions, V5, P165, DOI 10.1046/j.1472-4642.1999.00046.x; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Bonner J. T., 2006, WHY SIZE MATTERS BAC; Bromham L, 2007, BIOL LETTERS, V3, P398, DOI 10.1098/rsbl.2007.0113; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Calder W. A., 1996, SIZE FUNCTION LIFE H; Charnov Eric L., 1993, P1; Clarke A, 1999, J ANIM ECOL, V68, P893, DOI 10.1046/j.1365-2656.1999.00337.x; Davidowitz G, 2004, INTEGR COMP BIOL, V44, P443, DOI 10.1093/icb/44.6.443; de Roos AM, 2013, POPULATION COMMUNITY; de Roos AM, 2006, P ROY SOC B-BIOL SCI, V273, P1873, DOI 10.1098/rspb.2006.3518; DeLong JP, 2014, FUNCT ECOL, V28, P487, DOI 10.1111/1365-2435.12199; DeLong JP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081024; DeLong JP, 2012, EVOL ECOL RES, V14, P343; DeLong JP, 2011, ECOL COMPLEX, V8, P320, DOI 10.1016/j.ecocom.2011.07.001; DeLong JP, 2010, P NATL ACAD SCI USA, V107, P12941, DOI 10.1073/pnas.1007783107; ELLIOTT JM, 1995, FUNCT ECOL, V9, P625, DOI 10.2307/2390153; Glazier DS, 2011, ECOL MONOGR, V81, P599, DOI 10.1890/11-0264.1; Herczeg G, 2012, EVOL ECOL, V26, P109, DOI 10.1007/s10682-011-9491-9; Jellyman PG, 2013, NEW ZEAL J MAR FRESH, V47, P450, DOI 10.1080/00288330.2013.781510; Kimmance SA, 2006, AQUAT MICROB ECOL, V42, P63, DOI 10.3354/ame042063; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 1996, AM NAT, V147, P101, DOI 10.1086/285842; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lomolino MV, 2005, J BIOGEOGR, V32, P1683, DOI 10.1111/j.1365-2699.2005.01314.x; Lotka AJ, 1922, P NATL ACAD SCI USA, V8, P147, DOI 10.1073/pnas.8.6.147; Nakazawa T, 2007, ECOL FRESHW FISH, V16, P362, DOI 10.1111/j.1600-0633.2007.00234.x; Peters R.H., 1983, P1; Rennie MD, 2005, CAN J FISH AQUAT SCI, V62, P767, DOI 10.1139/F05-052; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Riessen HP, 1999, CAN J FISH AQUAT SCI, V56, P2487, DOI 10.1139/cjfas-56-12-2487; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; Sherwood GD, 2002, CAN J FISH AQUAT SCI, V59, P1, DOI 10.1139/F01-213; Vucic-Pestic O, 2010, J ANIM ECOL, V79, P249, DOI 10.1111/j.1365-2656.2009.01622.x; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2011, FUNCT ECOL, V25, P227, DOI 10.1111/j.1365-2435.2010.01786.x; WOOTTON JT, 1994, ECOLOGY, V75, P151, DOI 10.2307/1939391 48 3 3 1 5 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. APR 2016 73 4 709 715 10.1139/cjfas-2015-0029 7 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology DL1WV WOS:000375424700022 2019-02-21 J Chinn, SM; Miller, MA; Tinker, MT; Staedler, MM; Batac, FI; Dodd, EM; Henkel, LA Chinn, Sarah M.; Miller, Melissa A.; Tinker, M. Tim; Staedler, Michelle M.; Batac, Francesca I.; Dodd, Erin M.; Henkel, Laird A. THE HIGH COST OF MOTHERHOOD: END-LACTATION SYNDROME IN SOUTHERN SEA OTTERS (ENHYDRA LUTRIS NEREIS) ON THE CENTRAL CALIFORNIA COAST, USA JOURNAL OF WILDLIFE DISEASES English Article ELS; emaciation; end-lactation syndrome; Enhydra lutris nereis; lactation; metabolism; maternal care; reproductive cycle; southern sea otter FUR SEALS; REPRODUCTION; PATTERNS; THERMOREGULATION; POPULATION; SPECIALIZATION; MORTALITY; EVOLUTION; BEHAVIOR; BUDGETS Sea otters (Enhydra lutris) have exceptionally high energetic requirements, which nearly double during lactation and pup care. Thus, females are extremely vulnerable to caloric insufficiency. Despite a number of compensatory strategies, the metabolic challenge of reproduction culminates in numerous maternal deaths annually. Massive depletion of energy reserves results in a case presentation that we define as end-lactation syndrome (ELS), characterized by moderate to severe emaciation not attributable to a concurrent, independent disease process in females dying during late pup care or postweaning. We compiled detailed data for 108 adult female southern sea otters (Enhydra lutris nereis) examined postmortem that stranded in California, US, 2005-12, and assessed pathology, reproductive status, and the location and timing of stranding. We introduce simple, grossly apparent, standardized physical criteria to assess reproductive stage for female sea otters. We also describe ELS, examine associated risk factors, and highlight female life history strategies that likely optimize reproduction and survival. Our data suggest that females can reset both the timing and energetic demands of reproduction through fetal loss, pup abandonment, or early weaning as part of specific physiologic checkpoints during each reproductive cycle. Females appear to preload nutritionally during delayed implantation and gestation to increase fitness and reproductive success. We found that ELS was a major cause of death, affecting 56% of enrolled adult females. Peak ELS prevalence occurred in late spring, possibly reflecting the population trend toward fall/winter pupping. Increasing age and number of pregnancies were associated with a higher risk of ELS. Although the proportion of ELS females was highest in areas with dense sea otter populations, cases were recovered throughout the range, suggesting that death from ELS is associated with, but not solely caused by, population resource limitation. [Chinn, Sarah M.; Miller, Melissa A.; Batac, Francesca I.; Dodd, Erin M.; Henkel, Laird A.] Calif Dept Fish & Wildlife, Marine Wildlife Vet Care & Res Ctr, Off Spill Prevent & Response, 1451 Shaffer Rd, Santa Cruz, CA 95060 USA; [Miller, Melissa A.] Univ Calif Davis, Sch Vet Med, Wildlife Hlth Ctr, 1089 Vet Med Dr, Davis, CA 95616 USA; [Tinker, M. Tim] US Geol Survey, Western Ecol Hlth Ctr, Long Marine Lab, 100 Shaffer Rd, Santa Cruz, CA 95060 USA; [Staedler, Michelle M.] Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940 USA Miller, MA (reprint author), Calif Dept Fish & Wildlife, Marine Wildlife Vet Care & Res Ctr, Off Spill Prevent & Response, 1451 Shaffer Rd, Santa Cruz, CA 95060 USA.; Miller, MA (reprint author), Univ Calif Davis, Sch Vet Med, Wildlife Hlth Ctr, 1089 Vet Med Dr, Davis, CA 95616 USA. melissa.miller@wildlife.ca.gov Tinker, Martin/D-3249-2018 Tinker, Martin/0000-0002-3314-839X; Batac, Francesca/0000-0002-3187-059X California Department of Fish and Wildlife Office of Spill Prevention and Response; California tax payers We thank the researchers, field technicians, and volunteers of the US Geological Survey-Western Ecological Research Center, The Monterey Bay Aquarium's Sea Otter Program, the California Department of Fish and Wildlife, The Marine Mammal Center, and the University of California, Santa Cruz, who helped collect stranded sea otters along the California coast, especially Michael Harris. Special thanks to the veterinarians, staff, interns, and volunteers at the Marine Wildlife Veterinary Care and Research Center that conducted numerous postmortem examinations with great detail and for managing the resulting data. Funding for this work was provided in part by the California Department of Fish and Wildlife Office of Spill Prevention and Response and by donations by California tax payers to the California Sea Otter Fund. Berta A, 2005, MARINE MAMMALS EVOLU, P102; Boyd IL, 2000, FUNCT ECOL, V14, P623, DOI 10.1046/j.1365-2435.2000.t01-1-00463.x; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; Costa Daniel P., 1993, Symposia of the Zoological Society of London, V66, P293; COSTA DP, 1982, CAN J ZOOL, V60, P2761, DOI 10.1139/z82-354; COSTA DP, 1984, PHYSIOL ZOOL, V57, P199, DOI 10.1086/physzool.57.2.30163705; Crocker DE, 2001, ECOLOGY, V82, P3541, DOI 10.2307/2680171; Esslinger GG, 2014, J WILDLIFE MANAGE, V78, P689, DOI 10.1002/jwmg.701; Ferguson HS, 2006, OIKOS, V114, P249; FOOTT JO, 1970, J MAMMAL, V51, P621, DOI 10.2307/1378406; GARSHELIS DL, 1987, MAR MAMMAL SCI, V3, P263, DOI 10.1111/j.1748-7692.1987.tb00167.x; Gelatt TS, 2002, J WILDLIFE MANAGE, V66, P29, DOI 10.2307/3802868; Gerber LR, 2004, ECOL APPL, V14, P1554, DOI 10.1890/03-5006; Gibbens J, 2009, MAR MAMMAL SCI, V25, P573, DOI 10.1111/j.1748-7692.2008.00270.x; Guinet C, 1998, CAN J ZOOL, V76, P1418, DOI 10.1139/cjz-76-8-1418; HANSON MB, 1993, ZOO BIOL, V12, P459, DOI 10.1002/zoo.1430120508; JAMESON RJ, 1993, MAR MAMMAL SCI, V9, P156, DOI 10.1111/j.1748-7692.1993.tb00440.x; KENYON KW, 1969, N AM FAUNA, V68, P1, DOI DOI 10.3996/NAFA.68.0001; Kreuder C, 2003, J WILDLIFE DIS, V39, P495, DOI 10.7589/0090-3558-39.3.495; Mead R.A., 1989, P437; Monson D, 2015, P SEA OTT CONS WORKS, P12; Monson DH, 2000, OIKOS, V90, P457, DOI 10.1034/j.1600-0706.2000.900304.x; MORRISON P, 1974, PHYSIOL ZOOL, V47, P218, DOI 10.1086/physzool.47.4.30152525; Oftedal O, 2007, NUTR CONSTRAINTS SO; Riedman M. L., 1990, US FISH WILDL, V90, P126; RIEDMAN ML, 1994, J WILDLIFE MANAGE, V58, P391, DOI 10.2307/3809308; SANDELL M, 1990, Q REV BIOL, V65, P23, DOI 10.1086/416583; SINHA AA, 1966, J WILDLIFE MANAGE, V30, P121, DOI 10.2307/3797891; STAEDLER M, 1993, MAMMALIA, V57, P135; Staedler M. M., 2011, THESIS U CALIFORNIA; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Thometz NM, 2014, J EXP BIOL, V217, P2053, DOI 10.1242/jeb.099739; Tinker MT, 2012, ECOL LETT, V15, P475, DOI 10.1111/j.1461-0248.2012.01760.x; Tinker M.T., 2013, SEA OTTER P IN PRESS; Tinker MT, 2008, P NATL ACAD SCI USA, V105, P560, DOI 10.1073/pnas.0709263105; Tinker MT, 2006, ECOL APPL, V16, P2293, DOI 10.1890/1051-0761(2006)016[2293:IDDARC]2.0.CO;2; Tinker MT, 2015, SW US SO SEA OTTER; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLIAMS TM, 1989, J COMP PHYSIOL A, V164, P815, DOI 10.1007/BF00616753 39 4 4 3 32 WILDLIFE DISEASE ASSOC, INC LAWRENCE 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA 0090-3558 1943-3700 J WILDLIFE DIS J. Wildl. Dis. APR 2016 52 2 307 318 10.7589/2015-06-158 12 Veterinary Sciences Veterinary Sciences DK8XP WOS:000375213100014 26967137 2019-02-21 J Kindsvater, HK; Mangel, M; Reynolds, JD; Dulvy, NK Kindsvater, Holly K.; Mangel, Marc; Reynolds, John D.; Dulvy, Nicholas K. Ten principles from evolutionary ecology essential for effective marine conservation ECOLOGY AND EVOLUTION English Review Conservation; demography; extinction risk; fish; life-history theory; management; reference points; sustainability LIFE-HISTORY STRATEGIES; CORAL-REEF FISHES; STOCK ASSESSMENT; REFERENCE POINTS; EXTINCTION RISK; POPULATION REGULATION; OFFSPRING SIZE; EGG-PRODUCTION; CLIMATE-CHANGE; LOW ABUNDANCE Sustainably managing marine species is crucial for the future health of the human population. Yet there are diverse perspectives concerning which species can be exploited sustainably, and how best to do so. Motivated by recent debates in the published literature over marine conservation challenges, we review ten principles connecting life-history traits, population growth rate, and density-dependent population regulation. We introduce a framework for categorizing life histories, POSE (Precocial-Opportunistic-Survivor-Episodic), which illustrates how a species' life-history traits determine a population's compensatory capacity. We show why considering the evolutionary context that has shaped life histories is crucial to sustainable management. We then review recent work that connects our framework to specific opportunities where the life-history traits of marine species can be used to improve current conservation practices. [Kindsvater, Holly K.; Reynolds, John D.; Dulvy, Nicholas K.] Simon Fraser Univ, Dept Biol Sci, Earth Ocean Res Grp, Burnaby, BC V5A 1S6, Canada; [Kindsvater, Holly K.; Mangel, Marc] Univ Calif Santa Cruz, Ctr Stock Assessment Res, Santa Cruz, CA 95064 USA; [Mangel, Marc] Univ Bergen, Dept Biol, N-5020 Bergen, Norway Kindsvater, HK (reprint author), Rutgers State Univ, Dept Ecol Evolut & Nat Resources, 14 Coll Farm Rd, New Brunswick, NJ 08901 USA. holly.kindsvater@gmail.com Kindsvater, Holly/0000-0001-7580-4095; Dulvy, Nicholas/0000-0002-4295-9725 NSF [DBI-1305929, OCE 11-30483, DEB 14-51931]; NSERC HKK was supported by an NSF Postdoctoral Fellowship in Biology and Math (DBI-1305929). MM was funded by NSF grants OCE 11-30483 and DEB 14-51931. JDR and NKD were each supported by NSERC Discovery Grants. ADAMS PB, 1980, FISH B-NOAA, V78, P1; Allison EH, 2009, FISH FISH, V10, P173, DOI 10.1111/j.1467-2979.2008.00310.x; Alonzo SH, 2004, FISH B-NOAA, V102, P1; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Bjorkvoll E, 2012, AM NAT, V180, P372, DOI 10.1086/666983; Brooks EN, 2007, ICES J MAR SCI, V64, P413, DOI 10.1093/icesjms/fsl046; Brooks EN, 2010, ICES J MAR SCI, V67, P165, DOI 10.1093/icesjms/fsp225; Burgess SC, 2014, ECOL APPL, V24, P257, DOI 10.1890/13-0710.1; CLARK WG, 1991, CAN J FISH AQUAT SCI, V48, P734, DOI 10.1139/f91-088; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Cooper AB, 1999, FISH B-NOAA, V97, P213; Cortes E, 2002, CONSERV BIOL, V16, P1048, DOI 10.1046/j.1523-1739.2002.00423.x; Cortes Enric, 2000, Reviews in Fisheries Science, V8, P299, DOI 10.1080/10408340308951115; Coulson T, 2008, ECOLOGY, V89, P1661, DOI 10.1890/07-1099.1; Denney NH, 2002, P ROY SOC B-BIOL SCI, V269, P2229, DOI 10.1098/rspb.2002.2138; Dulvy NK, 2014, ELIFE, V3, DOI 10.7554/eLife.00590; Dulvy NK, 2004, ECOL LETT, V7, P410, DOI 10.1111/j.1461-0248.2004.00593.x; Edgar GJ, 2014, NATURE, V506, P216, DOI 10.1038/nature13022; Essington TE, 2015, P NATL ACAD SCI USA, V112, P6648, DOI 10.1073/pnas.1422020112; Fitzhugh GR, 2012, FISH B-NOAA, V110, P413; Frisk Michael G., 2005, Journal of Northwest Atlantic Fishery Science, V35, P27; Gardmark A, 2006, J APPL ECOL, V43, P61, DOI 10.1111/j.1365-2664.2005.01104.x; Goodwin NB, 2006, CAN J FISH AQUAT SCI, V63, P494, DOI 10.1139/f05-234; Goodyear C.P., 1980, P253; Graham NAJ, 2011, ECOL LETT, V14, P341, DOI 10.1111/j.1461-0248.2011.01592.x; Grime J., 2012, EVOLUTIONARY STRATEG; Hammerschlag N., CONSERV BIO IN PRESS, DOI [10.1111/cobi.12668, DOI 10.1111/C0BI.12668]; Heppell SS, 2006, ECOL APPL, V16, P238, DOI 10.1890/04-1113; Heppell SS, 1999, AM FISH S S, V23, P137; Hilborn R, 2004, OCEAN COAST MANAGE, V47, P197, DOI 10.1016/j.oceoamann.2004.04.001; Hilborn R, 2014, ICES J MAR SCI, V71, P2141, DOI 10.1093/icesjms/fsu035; Hixon MA, 2014, ICES J MAR SCI, V71, P2171, DOI 10.1093/icesjms/fst200; Holling CS, 2001, ECOSYSTEMS, V4, P390, DOI 10.1007/s10021-001-0101-5; Hordyk A, 2015, ICES J MAR SCI, V72, P204, DOI 10.1093/icesjms/fst235; Hughes TP, 2007, CURR BIOL, V17, P360, DOI 10.1016/j.cub.2006.12.049; Hutchings JA, 2000, MAR ECOL PROG SER, V208, P299; Hutchings JA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0654; Hutchings JA, 2012, ECOL APPL, V22, P1061, DOI 10.1890/11-1313.1; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; Juan-Jorda MJ, 2013, REV FISH BIOL FISHER, V23, P135, DOI 10.1007/s11160-012-9284-4; Juan-Jorda MJ, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0322; Keith DM, 2012, CAN J FISH AQUAT SCI, V69, P1150, DOI 10.1139/F2012-055; Kindsvater H. K., COSTS REPRO IN PRESS; Kindsvater HK, 2014, AM NAT, V184, P543, DOI 10.1086/678248; King JR, 2001, PROG OCEANOGR, V49, P619, DOI 10.1016/S0079-6611(01)00044-1; Kuparinen A, 2012, P ROY SOC B-BIOL SCI, V279, P2571, DOI 10.1098/rspb.2012.0120; Lawton JH, 1999, OIKOS, V84, P177, DOI 10.2307/3546712; Le Bris A, 2015, ICES J MAR SCI, V72, P2590, DOI 10.1093/icesjms/fsv154; Levin SA, 2008, BIOSCIENCE, V58, P27, DOI 10.1641/B580107; Longhurst A, 2002, FISH RES, V56, P125, DOI 10.1016/S0165-7836(01)00351-4; Lorenzen K, 2008, B MAR SCI, V83, P181; MACARTHUR RH, 1960, P NATL ACAD SCI USA, V46, P143; Mace GM, 2014, SCIENCE, V345, P1558, DOI 10.1126/science.1254704; MacNeil MA, 2015, NATURE, V520, P341, DOI 10.1038/nature14358; Mangel M, 2000, EVOL ECOL RES, V2, P547; Mangel M, 1998, ECOL LETT, V1, P87; Mangel M, 2013, CAN J FISH AQUAT SCI, V70, P930, DOI 10.1139/cjfas-2012-0372; Mangel M, 2003, POPUL DEV REV, V29, P57; MCFARLANE GA, 1992, CAN J FISH AQUAT SCI, V49, P743, DOI 10.1139/f92-083; Morgan DL, 2015, J FISH BIOL, V86, P1658, DOI 10.1111/jfb.12668; Munch SB, 2005, ECOL LETT, V8, P691, DOI 10.1111/j.1461-0248.2005.00766.x; Myers Ransom A., 2002, P123, DOI 10.1002/9780470693803.ch6; Nadon MO, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133960; O'Farrell MR, 2005, CAN J FISH AQUAT SCI, V62, P1626, DOI 10.1139/F05-064; Pelc RA, 2010, P NATL ACAD SCI USA, V107, P18266, DOI 10.1073/pnas.0907368107; Perez KO, 2010, EVOLUTION, V64, P2450, DOI 10.1111/j.1558-5646.2010.00994.x; Pinsky ML, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1053; Purvis A, 2000, P ROY SOC B-BIOL SCI, V267, P1947, DOI 10.1098/rspb.2000.1234; Ralston S., 2003, ECOSYST OBS MONTEREY, V2002, P19; Redford KH, 2011, BIOSCIENCE, V61, P39, DOI 10.1525/bio.2011.61.1.9; Reynolds JD, 2005, P ROY SOC B-BIOL SCI, V272, P2337, DOI 10.1098/rspb.2005.3281; Reynolds John D., 2003, P195; Rothschild B. J., 1986, DYNAMICS MARINE FISH; Sadovy Y, 2005, FISH FISH, V6, P167, DOI 10.1111/j.1467-2979.2005.00186.x; Sadovy Y, 2005, CORAL REEFS, V24, P254, DOI 10.1007/s00338-005-0474-6; Sadovy Y, 2001, J FISH BIOL, V59, P90, DOI 10.1006/jfbi.2001.1760; Saether BE, 2013, AM NAT, V182, P743, DOI 10.1086/673497; Schrader M, 2012, ECOL EVOL, V2, P1480, DOI 10.1002/ece3.255; Shelton AO, 2012, CAN J FISH AQUAT SCI, V69, P1631, DOI 10.1139/F2012-082; Shelton AO, 2011, P NATL ACAD SCI USA, V108, P7075, DOI 10.1073/pnas.1100334108; Shelton AO, 2015, ICES J MAR SCI, V72, P1769, DOI 10.1093/icesjms/fsv058; Stearns S, 1992, EVOLUTION LIFE HIST; Stoner AW, 2000, MAR ECOL PROG SER, V202, P297, DOI 10.3354/meps202297; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; Szuwalski CS, 2015, P NATL ACAD SCI USA, V112, pE3314, DOI 10.1073/pnas.1507990112; Thorson JT, 2012, CAN J FISH AQUAT SCI, V69, P1556, DOI 10.1139/F2012-077; Travis J, 2013, AM NAT, V181, pS9, DOI 10.1086/669970; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Walters C, 2001, CAN J FISH AQUAT SCI, V58, P39, DOI 10.1139/cjfas-58-1-39; Walters C, 2000, ECOSYSTEMS, V3, P70, DOI 10.1007/s100210000011; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; Wright PJ, 2014, ICES J MAR SCI, V71, P1393, DOI 10.1093/icesjms/fsu100; Zhou SJ, 2012, CAN J FISH AQUAT SCI, V69, P1292, DOI 10.1139/F2012-060 98 17 17 2 63 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. APR 2016 6 7 2125 2138 10.1002/ece3.2012 14 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DJ2RE WOS:000374052000020 27069573 DOAJ Gold, Green Published 2019-02-21 J Jones, PE; Senior, A; Allibone, RM; Closs, GP Jones, Peter E.; Senior, Alistair; Allibone, Richard M.; Closs, Gerard P. Life-history variation in a species complex of nonmigratory galaxiids ECOLOGY OF FRESHWATER FISH English Article life-history; trade-off; egg size; fecundity; species complex FRESH-WATER FISH; TROUT SALMO-TRUTTA; NEW-ZEALAND RIVER; EGG SIZE; BROWN-TROUT; POPULATION REGULATION; DIADROMOUS FISH; SOUTH ISLAND; TRADE-OFFS; PRIMARY PRODUCTIVITY Life-history theory predicts that the optimal strategy in the trade-off between egg size and number varies in relation to resource availability and environmental disturbance. We assessed interspecific differences in egg size, fecundity and other life-history traits in a species complex of stream-resident galaxiid fish, which are distributed across a range of contrasting habitat types on the South Island, New Zealand. Oocyte size, fecundity and reproductive effort were measured from gravid females collected immediately before spawning. Proxy measures of stream productivity, flow variability and predation pressure were extracted from modelled data sets. A suite of different egg sizes were identified across species within the Galaxias vulgaris complex, with mean oocyte volume differing by up to 133% between species. The species with the smallest eggs showed mean size-relative fecundities 246% higher than the species with the largest eggs. A significant negative relationship was found between species' mean egg size and size-relative fecundity, suggesting a trade-off between these traits. Species with larger eggs had larger maternal body size, lower reproductive effort and delayed maturity compared to small-egg' species. Consistent with the predictions of life-history theory, species with larger eggs, lower size-relative fecundity, lower reproductive effort and delayed maturity were associated with low productivity, stable streams, whereas species exhibiting the opposite set of traits occurred in relatively productive but disturbed systems. [Jones, Peter E.; Closs, Gerard P.] Univ Otago, Dept Zool, 340 Great King St, Dunedin 9016, New Zealand; [Senior, Alistair] Univ Sydney, Charles Perkins Ctr, Sydney, NSW 2006, Australia; [Senior, Alistair] Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia; [Allibone, Richard M.] Golder Associates NZ Ltd, Dunedin, New Zealand Jones, PE (reprint author), Univ Otago, Dept Zool, 340 Great King St, Dunedin 9016, New Zealand. pelwynjones@hotmail.com Department of Zoology (University of Otago); University of Otago Doctoral Scholarship We would like to thank Lance Dorsey, Manna Warburton and Kim Garrett (University of Otago) for field assistance. Thank you also to Pete Ravenscroft, Daniel Jack and Ciaran Campbell (Department of Conservation) for fieldwork help and useful discussions of species' traits. Graham Wallis (University of Otago), Rune Knudsen (University of Tromso) and Andreas Bruder (University of Otago) gave valuable advice and comments on earlier drafts. We would also like to thank anonymous reviewers for their helpful comments on an earlier version of the manuscript. This study was funded by the Department of Zoology (University of Otago), and PEJ was supported by a University of Otago Doctoral Scholarship. All work was conducted with approval from the Animal Ethics Committee at the University of Otago. Adams M, 2014, SYST BIOL, V63, P518, DOI 10.1093/sysbio/syu017; Allibone R, 2010, NEW ZEAL J MAR FRESH, V44, P271, DOI 10.1080/00288330.2010.514346; Allibone RM, 1997, J FISH BIOL, V51, P1247, DOI 10.1111/j.1095-8649.1997.tb01140.x; Allibone RM, 1997, J FISH BIOL, V51, P1235, DOI 10.1111/j.1095-8649.1997.tb01139.x; ARAUJOLIMA CARM, 1994, J FISH BIOL, V44, P371, DOI 10.1111/j.1095-8649.1994.tb01219.x; BAGENAL TB, 1969, J FISH BIOL, V1, P167, DOI 10.1111/j.1095-8649.1969.tb03850.x; Barbee NC, 2011, MAR FRESHWATER RES, V62, P790, DOI 10.1071/MF10284; Bates D., 2013, LME4 LINEAR MIXED EF; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; CADWALLADER PL, 1976, J FISH BIOL, V8, P157, DOI 10.1111/j.1095-8649.1976.tb03929.x; CADWALLADER PL, 1975, AUST J MAR FRESH RES, V26, P15; Chambers R. C., 1997, EARLY LIFE HIST RECR; Closs GP, 2013, FRESHWATER BIOL, V58, P1162, DOI 10.1111/fwb.12116; COOK RD, 1977, TECHNOMETRICS, V19, P15, DOI 10.2307/1268249; Crean AJ, 2009, PHILOS T R SOC B, V364, P1087, DOI 10.1098/rstb.2008.0237; Crow SK, 2009, J ROY SOC NEW ZEAL, V39, P43, DOI 10.1080/03014220909510563; Davey AJH, 2007, FRESHWATER BIOL, V52, P1719, DOI 10.1111/j.1365-2427.2007.01800.x; Death RG, 2005, OIKOS, V111, P392, DOI 10.1111/j.0030-1299.2005.13799.x; DUARTE CM, 1989, OECOLOGIA, V80, P401, DOI 10.1007/BF00379043; Dunn Nicholas R., 2007, New Zealand Natural Sciences, V32, P13; Einum S, 2004, EVOL ECOL RES, V6, P443; Einum S, 2002, AM NAT, V160, P756, DOI 10.1086/343876; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Einum S, 2003, ENVIRON BIOL FISH, V67, P263, DOI 10.1023/A:1025818627731; Esa Y. B., 2000, Conservation Genetics, V1, P329, DOI 10.1023/A:1011511418644; Gelman A., 2007, DATA ANAL USING REGR; GOTO A, 1990, ENVIRON BIOL FISH, V28, P101, DOI 10.1007/BF00751030; Harding JS, 1997, J ENVIRON MANAGE, V51, P275, DOI 10.1006/jema.1997.0145; Harding JS, 1997, ARCH HYDROBIOL, V140, P289; Heath DD, 2003, SCIENCE, V299, P1738, DOI 10.1126/science.1079707; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Humphries P., 1989, MARINE FRESHWATER RE, V40, P501, DOI DOI 10.1071/MF9890501; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Jellyman PG, 2013, NEW ZEAL J MAR FRESH, V47, P450, DOI 10.1080/00288330.2013.781510; Kozowski J, 1992, TRENDS ECOL EVOL, V7, P15; Kuznetsova Alexandra, 2013, LMERTEST TESTS RANDO; Leathwick JR, 2008, J BIOGEOGR, V35, P1481, DOI 10.1111/j.1365-2699.2008.01887.x; Leathwick JR, 2011, FRESHWATER BIOL, V56, P21, DOI 10.1111/j.1365-2427.2010.02414.x; Leprieur F, 2006, J APPL ECOL, V43, P930, DOI 10.1111/j.1365-2664.2006.01201.x; LobonCervia J, 1997, FRESHWATER BIOL, V38, P277, DOI 10.1046/j.1365-2427.1997.00217.x; Marshall DJ, 2010, ECOLOGY, V91, P2862, DOI 10.1890/09-0156.1; McDowall RM, 2006, REV FISH BIOL FISHER, V16, P233, DOI 10.1007/s11160-006-9017-7; McDowall R. M, 1990, NZ FRESHWATER FISHES; McDowall R. M, 2010, NZ FRESHWATER FISHES; McDowall RM, 1996, J ROY SOC NEW ZEAL, V26, P401, DOI 10.1080/03014223.1996.9517518; MCDOWALL RM, 2000, REED FIELD GUIDE NZ; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; Mohseni O, 1999, J HYDROL, V218, P128, DOI 10.1016/S0022-1694(99)00034-7; Morin A, 1999, J N AM BENTHOL SOC, V18, P299, DOI 10.2307/1468446; Morrongiello JR, 2012, J ANIM ECOL, V81, P806, DOI 10.1111/j.1365-2656.2012.01961.x; Olden JD, 2010, AM FISH S S, V73, P83; Olofsson H, 2009, P ROY SOC B-BIOL SCI, V276, P2963, DOI 10.1098/rspb.2009.0500; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P503, DOI 10.1139/f91-065; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; de Leon JLP, 2011, ECOL FRESHW FISH, V20, P243, DOI 10.1111/j.1600-0633.2011.00489.x; Quinn JM, 1997, NEW ZEAL J MAR FRESH, V31, P579, DOI 10.1080/00288330.1997.9516791; Quinn JM, 1997, NEW ZEAL J MAR FRESH, V31, P665, DOI 10.1080/00288330.1997.9516797; R Development Core Team, 2013, R LANG ENV STAT COMP; Reynolds JD, 2005, CAN J FISH AQUAT SCI, V62, P854, DOI 10.1139/F05-066; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Richardson J., 1983, NZ MIN AGR FISH FISH, V12, P1; Roff Derek A., 1992; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SCHLOSSER IJ, 1990, ENVIRON MANAGE, V14, P621, DOI 10.1007/BF02394713; Semmens D, 2012, MAR ECOL PROG SER, V461, P165, DOI 10.3354/meps09814; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; TOWNSEND CR, 1991, OIKOS, V61, P347, DOI 10.2307/3545242; Tyler CR, 1996, REV FISH BIOL FISHER, V6, P287, DOI 10.1007/BF00122584; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Waters JM, 2001, J FISH BIOL, V58, P1166, DOI 10.1006/jfbi.2000.1520; Waters JM, 2010, SYST BIOL, V59, P504, DOI 10.1093/sysbio/syq031; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; Wishart Marcus, 2006, African Journal of Aquatic Science, V31, P99, DOI 10.2989/16085910609503876; Young RG, 1999, ECOL APPL, V9, P1359, DOI 10.1890/1051-0761(1999)009[1359:EOLUOS]2.0.CO;2 81 5 5 1 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish APR 2016 25 2 174 189 10.1111/eff.12200 16 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology DH2YH WOS:000372652900001 2019-02-21 J Baker, CW; Miller, CR; Thaweethai, T; Yuan, J; Baker, MH; Joyce, P; Weinreich, DM Baker, Christopher W.; Miller, Craig R.; Thaweethai, Tanayott; Yuan, Jeffrey; Baker, Meghan Hollibaugh; Joyce, Paul; Weinreich, Daniel M. Genetically Determined Variation in Lysis Time Variance in the Bacteriophage phi X174 G3-GENES GENOMES GENETICS English Article lysis time; variance; genetics of adaptation; evolutionary theory; life history ESCHERICHIA-COLI; PROTEIN-E; EXPERIMENTAL EVOLUTION; FIXATION PROBABILITY; INFECTION; MODEL; DNA; ATTACHMENT; MUTATIONS; VIRUSES Researchers in evolutionary genetics recently have recognized an exciting opportunity in decomposing beneficial mutations into their proximal, mechanistic determinants. The application of methods and concepts from molecular biology and life history theory to studies of lytic bacteriophages (phages) has allowed them to understand how natural selection sees mutations influencing life history. This work motivated the research presented here, in which we explored whether, under consistent experimental conditions, small differences in the genome of bacteriophage phi X174 could lead to altered life history phenotypes among a panel of eight genetically distinct clones. We assessed the clones' phenotypes by applying a novel statistical framework to the results of a serially sampled parallel infection assay, in which we simultaneously inoculated each of a large number of replicate host volumes with approximate to 1 phage particle. We sequentially plated the volumes over the course of infection and counted the plaques that formed after incubation. These counts served as a proxy for the number of phage particles in a single volume as a function of time. From repeated assays, we inferred significant, genetically determined heterogeneity in lysis time and burst size, including lysis time variance. These findings are interesting in light of the genetic and phenotypic constraints on the single-protein lysis mechanism of phi X174. We speculate briefly on the mechanisms underlying our results, and we discuss the potential importance of lysis time variance in viral evolution. [Baker, Christopher W.; Thaweethai, Tanayott; Yuan, Jeffrey; Baker, Meghan Hollibaugh; Weinreich, Daniel M.] Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA; [Weinreich, Daniel M.] Brown Univ, Ctr Computat Mol Biol, Providence, RI 02912 USA; [Miller, Craig R.; Joyce, Paul] Univ Idaho, Dept Math, Moscow, ID 83844 USA; [Miller, Craig R.] Univ Idaho, Dept Biol Sci, Moscow, ID 83844 USA; [Miller, Craig R.] Univ Idaho, Ctr Modeling Complex Interact, Moscow, ID 83844 USA; [Baker, Christopher W.] Harvard Univ, Dept Mol & Cellular Biol, 52 Oxford St, Cambridge, MA 02138 USA; [Thaweethai, Tanayott] Harvard Univ, Sch Publ Hlth, 665 Huntington Ave, Boston, MA 02115 USA; [Yuan, Jeffrey] Univ Calif San Diego, Bioinformat IDP, La Jolla, CA 92093 USA; [Baker, Meghan Hollibaugh] George Washington Univ, Washington, DC 20052 USA Baker, CW (reprint author), Harvard Univ, Dept Mol & Cellular Biol, 52 Oxford St, Cambridge, MA 02138 USA. baker03@g.harvard.edu Baker, Christopher/0000-0002-0819-882X Brown Division of Biology and Medicine; National Science Foundation (NSF) [0638688]; National Institutes of Health [R01-GM076040]; NSF under EPSCoR [0554548, EPS-1004057] We thank Olivier Tenaillion, Amber Stancik, Celeste Brown, Rohit Kongari, and Ry Young for providing the bacterial and phage strains used in this study. Additionally, we thank Darin Rokyta for providing us with the E. coli starvation protocol and Sohini Ramachandran for offering feedback on an early draft of this manuscript. We also are grateful for support from the Brown Division of Biology and Medicine to D.M.W., from the Brown Dean of the College to J.Y., and from the National Science Foundation (NSF) (G-K12 Award 0638688 to T. Herbert) to support M.H.B. C.R.M. and P.J. were supported by grant number R01-GM076040 from the National Institutes of Health. This research is based in part upon work conducted using the Rhode Island Genomics and Sequencing Center, which is supported in part by the NSF under EPSCoR grants nos. 0554548 and EPS-1004057. ABEDON ST, 1989, MICROB ECOL, V18, P79, DOI 10.1007/BF02030117; Abedon ST, 2001, APPL ENVIRON MICROB, V67, P4233, DOI 10.1128/AEM.67.9.4233-4241.2001; ABEDON ST, 1992, J BACTERIOL, V174, P8073; Afshinnekoo E, 2015, CELL SYST, V1, P97, DOI 10.1016/j.cels.2015.07.006; BARRELL BG, 1976, NATURE, V264, P34, DOI 10.1038/264034a0; Bernal RA, 2004, J MOL BIOL, V337, P1109, DOI 10.1016/j.jmb.2004.02.033; Bernhardt TG, 2002, MOL MICROBIOL, V45, P99, DOI 10.1046/j.1365-2958.2002.02984.x; Brown CJ, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-66; Brown CJ, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-378; Bull JJ, 2006, J THEOR BIOL, V241, P928, DOI 10.1016/j.jtbi.2006.01.027; Bull JJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094690; Bull JJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027796; Bull JJ, 2006, AM NAT, V167, pE39, DOI 10.1086/499374; Bull JJ, 2004, TRENDS ECOL EVOL, V19, P76, DOI 10.1016/j.tree.2003.10.008; Burnet FM, 1929, BRIT J EXP PATHOL, V10, P109; Chao L, 2002, J VIROL, V76, P3276, DOI 10.1128/JVI.76.7.3276-3281.2002; Cherwa JE, 2009, J VIROL, V83, P11746, DOI 10.1128/JVI.01297-09; Dean AM, 2007, NAT REV GENET, V8, P675, DOI 10.1038/nrg2160; DELBRUCK M, 1945, J BACTERIOL, V50, P131; DENHARDT DT, 1965, J MOL BIOL, V12, P641, DOI 10.1016/S0022-2836(65)80318-7; Dennehy JJ, 2011, BMC MICROBIOL, V11, DOI 10.1186/1471-2180-11-174; Fane B, 2006, BACTERIOPHAGES, P129; Hadas H, 1997, MICROBIOL-UK, V143, P179, DOI 10.1099/00221287-143-1-179; Harms MJ, 2013, NAT REV GENET, V14, P559, DOI 10.1038/nrg3540; HAYASHI M, 1988, VIRUSES, P1; Hubbarde JE, 2007, GENETICS, V176, P1703, DOI 10.1534/genetics.107.072009; HUTCHISON CA, 1963, J MOL BIOL, V7, P206, DOI 10.1016/S0022-2836(63)80046-7; HUTCHISON CA, 1966, J MOL BIOL, V18, P429, DOI 10.1016/S0022-2836(66)80035-9; Hyman Paul, 2009, V501, P175, DOI 10.1007/978-1-60327-164-6_18; Labrie SJ, 2014, APPL ENVIRON MICROB, V80, P6992, DOI 10.1128/AEM.01365-14; McDonald JH, 2014, HDB BIOL STAT; Mendel S, 2006, MICROBIOL-SGM, V152, P2959, DOI 10.1099/mic.0.28776-0; MENG XL, 1993, BIOMETRIKA, V80, P267, DOI 10.2307/2337198; Michel A, 2010, APPL ENVIRON MICROB, V76, P7310, DOI 10.1128/AEM.02721-09; NEWBOLD JE, 1970, J MOL BIOL, V49, P49, DOI 10.1016/0022-2836(70)90375-X; Patwa Z, 2008, GENETICS, V180, P459, DOI 10.1534/genetics.108.090555; Patwa Z, 2009, J THEOR BIOL, V259, P799, DOI 10.1016/j.jtbi.2009.05.008; Pearson WR, 1997, GENOMICS, V46, P24, DOI 10.1006/geno.1997.4995; Pepin KM, 2006, GENETICS, V172, P2047, DOI 10.1534/genetics.105.049817; Rabinovitch A, 2002, J THEOR BIOL, V216, P1, DOI 10.1006/jtbi.2002.2543; Rabinovitch A, 1999, J BACTERIOL, V181, P1677; ROFF DA, 2002, LIFE HIST EVOLUTION; Roof WD, 1997, MOL MICROBIOL, V25, P1031, DOI 10.1046/j.1365-2958.1997.5201884.x; SANGER F, 1977, NATURE, V265, P687, DOI 10.1038/265687a0; Shao YP, 2008, GENETICS, V180, P471, DOI 10.1534/genetics.108.090100; Singh A, 2014, J R SOC INTERFACE, V11, DOI 10.1098/rsif.2014.0140; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Storms ZJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0116235; Storms ZJ, 2014, FEMS MICROBIOL LETT, V353, P63, DOI 10.1111/1574-6968.12402; Tanaka S, 2012, MOL MICROBIOL, V85, P975, DOI 10.1111/j.1365-2958.2012.08153.x; van Elsas JD, 2011, ISME J, V5, P173, DOI 10.1038/ismej.2010.80; Wahl LM, 2004, GENETICS, V168, P1009, DOI 10.1534/genetics.104.029199; Wang IN, 1996, EVOL ECOL, V10, P545, DOI 10.1007/BF01237884; Wang IN, 2006, GENETICS, V172, P17, DOI 10.1514/genetics.105.045922; Wichman HA, 2010, PHILOS T R SOC B, V365, P2495, DOI 10.1098/rstb.2010.0053; Witte A, 1998, ARCH MICROBIOL, V170, P259, DOI 10.1007/s002030050641; Yin HB, 2012, CURR OPIN BIOTECH, V23, P110, DOI 10.1016/j.copbio.2011.11.002; Young R, 2000, TRENDS MICROBIOL, V8, P120, DOI 10.1016/S0966-842X(00)01705-4; YOUNG R, 2006, BACTERIOPHAGES, P104; Zheng Y, 2008, MICROBIOL-SGM, V154, P1710, DOI 10.1099/mic.0.2008/016956-0; Zheng Y, 2009, BIOCHEMISTRY-US, V48, P4999, DOI 10.1021/bi900469g 62 1 1 0 16 GENETICS SOCIETY AMERICA BETHESDA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA 2160-1836 G3-GENES GENOM GENET G3-Genes Genomes Genet. APR 1 2016 6 4 939 955 10.1534/g3.115.024075 17 Genetics & Heredity Genetics & Heredity DJ2VI WOS:000374062800016 26921293 DOAJ Gold, Green Published 2019-02-21 J Jolles, JW; Manica, A; Boogert, NJ Jolles, J. W.; Manica, A.; Boogert, N. J. Food intake rates of inactive fish are positively linked to boldness in three-spined sticklebacks Gasterosteus aculeatus JOURNAL OF FISH BIOLOGY English Article animal personality; body size; energy; foraging; metabolism; pace-of-life EUROPEAN SEA BASS; METABOLIC-RATE; ANIMAL PERSONALITY; RISK-TAKING; ECOLOGICAL CONSEQUENCES; CONSUMPTION; PREDATION; BEHAVIOR; EXPERIENCE; EVOLUTION To investigate the link between personality and maximum food intake of inactive individuals, food-deprived three-spined sticklebacks Gasterosteus aculeatus at rest in their home compartments were provided with ad libitum prey items. Bolder individuals ate considerably more than shyer individuals, even after accounting for body size, while sociability did not have an effect. These findings support pace-of-life theory predicting that life-history strategies are linked to boldness. (C) 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles. [Jolles, J. W.; Manica, A.; Boogert, N. J.] Univ Cambridge, Dept Zool, Downing St, Cambridge CB2 3EJ, England Jolles, JW (reprint author), Univ Cambridge, Dept Zool, Downing St, Cambridge CB2 3EJ, England. j.w.jolles@gmail.com Manica, Andrea/B-5497-2008 Manica, Andrea/0000-0003-1895-450X; Jolles, Jolle/0000-0001-9905-2633 Biotechnology and Biological Sciences Research Council; Association for the Study of Animal Behaviour; Biotechnology and Biological Sciences Research Council [1221583] We acknowledge funding from the Biotechnology and Biological Sciences Research Council (Graduate Research Fellowship to J.W.J) and the Association for the Study of Animal Behaviour (Research Grant to N.J.B). ALLEN JRM, 1984, FRESHWATER BIOL, V14, P335, DOI 10.1111/j.1365-2427.1984.tb00158.x; Armitage PD, 2012, CHIRONOMIDAE BIOL EC; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; BEUKEMA JJ, 1968, BEHAVIOUR, V31, P1, DOI 10.1163/156853968X00018; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Careau V., 2012, PHYSIOL BIOCHEM ZOOL, V18, P3; Clarke A, 1999, J ANIM ECOL, V68, P893, DOI 10.1046/j.1365-2656.1999.00337.x; Conrad JL, 2011, J FISH BIOL, V78, P395, DOI 10.1111/j.1095-8649.2010.02874.x; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Froese R, 2014, J APPL ICHTHYOL, V30, P78, DOI 10.1111/jai.12299; Herskin J, 1998, J FISH BIOL, V53, P366, DOI 10.1111/j.1095-8649.1998.tb00986.x; Huntingford FA, 2010, J FISH BIOL, V76, P1576, DOI 10.1111/j.1095-8649.2010.02582.x; Ioannou CC, 2008, OECOLOGIA, V157, P177, DOI 10.1007/s00442-008-1058-2; Jolles JW, 2015, ANIM BEHAV, V99, P147, DOI 10.1016/j.anbehav.2014.11.004; Jolles JW, 2014, BEHAV ECOL, V25, P1395, DOI 10.1093/beheco/aru146; Killen SS, 2012, FUNCT ECOL, V26, P134, DOI 10.1111/j.1365-2435.2011.01920.x; Killen SS, 2011, J ANIM ECOL, V80, P1024, DOI 10.1111/j.1365-2656.2011.01844.x; Krause J, 1996, BEHAV ECOL, V7, P264, DOI 10.1093/beheco/7.3.264; MANZER JI, 1976, FISH B-NOAA, V74, P647; Martins CIM, 2011, APPL ANIM BEHAV SCI, V130, P135, DOI 10.1016/j.applanim.2010.12.007; RAJASILTA M, 1980, ANN ZOOL FENN, V17, P123; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 29 8 8 4 33 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 1095-8649 J FISH BIOL J. Fish Biol. APR 2016 88 4 1661 1668 10.1111/jfb.12934 8 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology DJ2BO WOS:000374008900026 26940195 Green Published 2019-02-21 J Chavarie, L; Howland, K; Venturelli, P; Kissinger, BC; Tallman, R; Tonn, W Chavarie, Louise; Howland, Kimberly; Venturelli, Paul; Kissinger, Benjamin C.; Tallman, Ross; Tonn, William Life-history variation among four shallow-water morphotypes of lake trout from Great Bear Lake, Canada JOURNAL OF GREAT LAKES RESEARCH English Article Lake trout; Growth; Reproduction; Polymorphism; Biphasic model; Back-calculation CHARR SALVELINUS-ALPINUS; ARCTIC CHARR; BROWN TROUT; NORTHWEST-TERRITORIES; SALMO-TRUTTA; PHENOTYPIC DIFFERENTIATION; RESOURCE POLYMORPHISM; TROPHIC POLYMORPHISM; ENERGY ALLOCATION; BIPHASIC GROWTH Phenotypic variation within populations is common in many salmonids, especially when inhabiting northern postglacial systems. We compared life-history traits among four lake trout morphs co-existing in the shallow waters of Great Bear Lake (Northwest Territories, Canada). Adult growth rate, age- and size-at-maturity, and survival differed among morphs, consistent with their degree of foraging specialization and predictions from foraging theory, e.g., reduced somatic growth and higher reproductive investment in the generalist morph, high growth throughout life in the piscivorous morph, and intermediate life-histories in the more benthic- and pelagic-oriented morphs. Fecundity and egg size also varied among morphs. However unexpected findings also arose, such as comparable immature growth rates among morphs. Other traits, such as a high proportion of resting individuals among all morphs, suggest life-history adaptations to northern latitudes. Longer resting periods are likely needed to obtain enough energy for reproduction, and may also allow greater investment in post maturation growth. Overall, lake trout from Great Bear Lake demonstrated remarkable longevity and exceptional asymptotic sizes, even for a northern freshwater ecosystem. Our study provides new insights into life-history evolution among lake trout morphs that use different food sources and habitats. In addition, it contributes to our understanding of this complex aquatic ecosystem, which exhibits one of the highest known levels of intraspecific diversity among freshwater fish. (C) 2015 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved. [Chavarie, Louise; Tonn, William] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada; [Howland, Kimberly; Tallman, Ross] Fisheries & Oceans Canada, 501 Univ Crescent, Winnipeg, MB R3T 2N6, Canada; [Venturelli, Paul] Univ Minnesota, Dept Fisheries Wildlife & Conservat Biol, 135 Skok Hall,2003 Upper Buford Circle, St Paul, MN 55108 USA; [Kissinger, Benjamin C.] Univ Manitoba, Dept Biol Sci, 6 Chancellors Cir 50 Sifton Rd, Winnipeg, MB R3T 2N2, Canada Chavarie, L (reprint author), Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada. chavarie@ualberta.ca Venturelli, Paul/A-2337-2008 Venturelli, Paul/0000-0002-7329-7517 Fisheries and Oceans Canada (DFO); Natural Sciences and Engineering Research Council of Canada; Sahtu Renewable Resource Board; Association of Canadian Universities for Northern Studies; Canadian Circumpolar Institute's Circumpolar/Boreal Alberta Research and Northern Scientific Training Program [360150, N011000001, N011000529]; D. Alan Birdsall Memorial Scholarship Fund; Aboriginal Affairs and Northern Development Canada Northwest Territories Cumulative Impacts Monitoring Program grants (YELLOWKN) [547571] We thank Deline Renewable Resources Council, Cane Lands and Finance Corporation, the community of Define, DFO in Hay River, and the Department of Environment and Natural Resources in Dane, which provided valuable help with field planning and logistics. We especially thank J. Chavarie, S. Buckley, L. Harris, G. Lafferty, M. Lindsey, M. Low, Z. Martin, S. Wiley, and Chris Yukon who helped lead sampling teams and coordinate logistics along with the following individuals who helped conduct field sampling in various years: J. Baptiste, D. Betsidea, D. Baton, L. Dueck, R. Eshenroder, G. Menacho, N. Modeste, I. Neyelle, L. Neyelle, M. Smirle, A. Swietzer, C. Takazo, A. Vital, F. Vital, B.Yukon, M. Yukon, T. Yukon and Charity, Cameron, and Cyre Yukon. We thank Laura Heuring, Lenore Vandenbyllaardt, and Rick Wastle for preparation and reading of age structures, and Tracie EisBrenner, Sheri Freisen, and Lenore Vandenbyllaardt for conducting egg counts and measures. Finally we will like to thank Nigel Lester, Ontario MNR, for location information for the McDermid populations. Financial support was provided by Fisheries and Oceans Canada (DFO), Natural Sciences and Engineering Research Council of Canada, Sahtu Renewable Resource Board, Association of Canadian Universities for Northern Studies, Canadian Circumpolar Institute's Circumpolar/Boreal Alberta Research and Northern Scientific Training Program (360150, N011000001, N011000529), D. Alan Birdsall Memorial Scholarship Fund, and Aboriginal Affairs and Northern Development Canada Northwest Territories Cumulative Impacts Monitoring Program grants (YELLOWKN#547571). Logistical support was provided by the Polar Continental Shelf Program. Adams CE, 1998, J FISH BIOL, V52, P1259, DOI 10.1006/jfbi.1998.0676; Alekseyev SS, 2002, ENVIRON BIOL FISH, V64, P97, DOI 10.1023/A:1016050018875; Alfonso NR, 2004, ENVIRON BIOL FISH, V71, P21, DOI 10.1023/B:EBFI.0000043176.61258.3d; Allendorf FW, 2007, CONSERVATION GENETIC; Andersen KH, 2009, ICES J MAR SCI, V66, P1978, DOI 10.1093/icesjms/fsp161; Arbour JH, 2011, CAN J ZOOL, V89, P19, DOI 10.1139/Z10-100; Bagliniere JL, 2002, PROD ANIM, V15, P319; Behnke R. J., 2002, TROUT SALMON N AM; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Blackie CT, 2003, ECOSCIENCE, V10, P509, DOI 10.1080/11956860.2003.11682799; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Bond WA, 1985, CAN TECH REP FISH AQ, V1336, P61; Bronte CR, 1995, J GREAT LAKES RES, V21, P233, DOI 10.1016/S0380-1330(95)71096-6; CAMPANA SE, 1990, CAN J FISH AQUAT SCI, V47, P2219, DOI 10.1139/f90-246; Campana Steven E., 1992, Canadian Special Publication of Fisheries and Aquatic Sciences, V117, P73; CASSELMAN JM, 1992, CAN J FISH AQUAT SCI, V49, P102, DOI 10.1139/f92-305; Chavarie L., 2014, ECOL FRESHW FISH; Chavarie L., 2014, BIOL J LINN SOC; Chavarie L, 2013, T AM FISH SOC, V142, P814, DOI 10.1080/00028487.2013.763855; Chavarie L, 2010, HYDROBIOLOGIA, V650, P161, DOI 10.1007/s10750-009-0043-z; Doucett RR, 1999, J FISH BIOL, V55, P84; Forseth Torbjorn, 1995, Nordic Journal of Freshwater Research, V71, P237; Fraser D, 2008, ECOL FRESHW FISH, V17, P1, DOI 10.1111/j.1600-0633.2007.00245.x; Giacomini HC, 2013, J THEOR BIOL, V339, P100, DOI 10.1016/j.jtbi.2013.08.020; Goetz F, 2011, T AM FISH SOC, V140, P1472, DOI 10.1080/00028487.2011.630276; Goetz F, 2010, MOL ECOL, V19, P176, DOI 10.1111/j.1365-294X.2009.04481.x; GROSS MR, 1988, SCIENCE, V239, P1291, DOI 10.1126/science.239.4845.1291; HAMMER O., 2001, PALAEONTOL ELECTRON, V4, P1, DOI DOI 10.1016/J.BCP.2008.05.025; Hansen MJ, 2012, T AM FISH SOC, V141, P1492, DOI 10.1080/00028487.2012.711263; HEALEY MC, 1978, J FISH RES BOARD CAN, V35, P945, DOI 10.1139/f78-155; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; Hendry AP, 2009, J FISH BIOL, V75, P2000, DOI 10.1111/j.1095-8649.2009.02419.x; Hendry Andrew P., 2004, P92; HINDAR K, 1993, BIOL J LINN SOC, V48, P63, DOI 10.1006/bijl.1993.1006; HODDER V. M., 1965, INT COMM NORTHWEST ATLANTIC FISH SPEC PUBLICATION, V6, P515; Howland K., 2013, DFO CAN SCI ADVIS SE; Howland K.L., 1997, THESIS U ALBERTA EDM; Hutchings JA, 2011, HEREDITY, V106, P421, DOI 10.1038/hdy.2010.166; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Jearld A. Jr, 1983, P301; JOHNSON L, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P219; JOHNSON L, 1975, J FISH RES BOARD CAN, V32, P1989, DOI 10.1139/f75-235; JOHNSON L, 1972, J FISH RES BOARD CAN, V29, P731, DOI 10.1139/f72-118; Johnston FD, 2009, ECOL APPL, V19, P449, DOI 10.1890/07-1507.1; Jones CM, 2000, FISH RES, V46, P123, DOI 10.1016/S0165-7836(00)00139-9; Jonsson B, 2014, J FISH BIOL, V85, P151, DOI 10.1111/jfb.12432; Jonsson B, 2001, J FISH BIOL, V58, P605, DOI 10.1006/jfbi.2000.1515; Jonsson B, 2000, BIOL J LINN SOC, V69, P55, DOI 10.1006/bijl.1999.0316; JONSSON B, 1988, CAN J FISH AQUAT SCI, V45, P1537, DOI 10.1139/f88-182; Jonsson N, 1997, FUNCT ECOL, V11, P310, DOI 10.1046/j.1365-2435.1997.00083.x; KENNEDY W. A., 1954, JOUR FISH RES BD CANADA, V11, P827; Kristjansson B.K., 2008, THESIS U GUELPH GUEL; Lester NP, 2014, ECOL APPL, V24, P38, DOI 10.1890/12-2020.1; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Loewen TN, 2010, HYDROBIOLOGIA, V650, P193, DOI 10.1007/s10750-010-0242-7; MacDonald D, 2004, STATE AQUATIC KNOWLE; Martin N.V., 1980, CHARRS SALMONID FISH, P485; McDermid JL, 2010, CAN J FISH AQUAT SCI, V67, P314, DOI 10.1139/F09-183; McDowall RM, 1987, AM FISH SOC S, V1, P1; McKenney DW, 2006, AGR FOREST METEOROL, V138, P69, DOI 10.1016/j.agrformet.2006.03.012; MILLER R. B., 1948, JOUR FISH RES BD CANADA, V7, P176; Moore SA, 2001, T AM FISH SOC, V130, P1233, DOI 10.1577/1548-8659(2001)130<1233:DOSMOL>2.0.CO;2; Morbey YE, 2006, J FISH BIOL, V69, P1675, DOI 10.1111/j.1095-8649.2006.01236.x; Morbey YE, 2013, ECOSPHERE, V4, DOI 10.1890/ES13-00259.1; Morbey YE, 2008, AM FISH S S, V65, P15; MORIN R, 1982, CAN J FISH AQUAT SCI, V39, P958, DOI 10.1139/f82-131; Muir AM, 2014, T AM FISH SOC, V143, P972, DOI 10.1080/00028487.2014.900823; Muir A.M., 2015, FISH FISH; Nicola GG, 2004, T AM FISH SOC, V133, P66, DOI 10.1577/T02-169; Noakes DLG, 2008, ENVIRON BIOL FISH, V83, P7, DOI 10.1007/s10641-008-9379-x; NORDENG H, 1983, CAN J FISH AQUAT SCI, V40, P1372, DOI 10.1139/f83-159; Ojanguren AF, 1996, AQUACULTURE, V147, P9, DOI 10.1016/S0044-8486(96)01398-1; Ostergren J, 2012, ECOL FRESHW FISH, V21, P119, DOI 10.1111/j.1600-0633.2011.00529.x; Panfili J, 2004, AQUAT LIVING RESOUR, V17, P65, DOI 10.1051/alr:2004002; Parker HH, 2001, J ANIM ECOL, V70, P260, DOI 10.1046/j.1365-2656.2001.00488.x; Parra I, 2009, J FISH BIOL, V74, P2355, DOI 10.1111/j.1095-8649.2009.02249.x; Power M, 2005, ENVIRON BIOL FISH, V73, P263, DOI 10.1007/s10641-005-2137-4; Quince C, 2008, J THEOR BIOL, V254, P207, DOI 10.1016/j.jtbi.2008.05.030; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; Quinn T. J., 1999, QUANTITATIVE FISH DY; Reist James D., 2013, Biodiversity, V14, P45; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; Rikardsen AH, 2000, J FISH BIOL, V56, P328, DOI 10.1111/j.1095-8649.2000.tb02110.x; Robinson BW, 2002, CAN J FISH AQUAT SCI, V59, P1819, DOI 10.1139/F02-144; SANDLUND OT, 1992, OIKOS, V64, P305, DOI 10.2307/3545056; SCHLUTER D, 1995, ECOLOGY, V76, P82, DOI 10.2307/1940633; Secor DH, 2008, T AM FISH SOC, V137, P782, DOI 10.1577/T07-105.1; Secor David H., 1992, Canadian Special Publication of Fisheries and Aquatic Sciences, V117, P19; Sitar SP, 2014, T AM FISH SOC, V143, P660, DOI 10.1080/00028487.2014.880745; Skulason S, 1996, CAN J FISH AQUAT SCI, V53, P1807, DOI 10.1139/f96-098; Smith NG, 2008, ENVIRON BIOL FISH, V81, P375, DOI 10.1007/s10641-007-9207-8; Snorrason Signour S., 2004, P210; Sogard SM, 2012, T AM FISH SOC, V141, P747, DOI 10.1080/00028487.2012.675902; Sokal R. R, 1981, BIOMETRY; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Swanson HK, 2010, CAN J FISH AQUAT SCI, V67, P842, DOI 10.1139/F10-022; Taborsky M, 2010, ANIMAL BEHAVIOUR: EVOLUTION AND MECHANISMS, P537, DOI 10.1007/978-3-642-02624-9_18; TALLMAN RF, 1991, CAN J FISH AQUAT SCI, V48, P661, DOI 10.1139/f91-083; Thorpe J.E., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P7; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Thorpe JE, 2007, MAR ECOL PROG SER, V335, P285, DOI 10.3354/meps335285; Vigliola L, 2009, REV-METHODS TECHNOL, V11, P174, DOI 10.1007/978-1-4020-5775-5_6; Woods PJ, 2013, J FISH BIOL, V82, P569, DOI 10.1111/jfb.12011; WOOTTON RJ, 1998, ECOLOGY TELEOST FISH; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279; Zar J. H., 1999, BIOSTATISTICAL ANAL; Zimmerman MS, 2007, J GREAT LAKES RES, V33, P156, DOI 10.3394/0380-1330(2007)33[156:MAEDBS]2.0.CO;2; Zimmerman MS, 2006, T AM FISH SOC, V135, P1056, DOI 10.1577/T05-237.1; Zimmerman MS, 2009, CAN J FISH AQUAT SCI, V66, P1007, DOI 10.1139/F09-060 109 7 7 3 44 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0380-1330 J GREAT LAKES RES J. Gt. Lakes Res. APR 2016 42 2 193 203 10.1016/j.jglr.2015.07.006 11 Environmental Sciences; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DI7AI WOS:000373651100004 2019-02-21 J Le Bourg, E Le Bourg, Eric The somatotropic axis may not modulate ageing and longevity in humans BIOGERONTOLOGY English Editorial Material Somatotropic axis; IGF-1; Growth hormone; Life history strategies; Longevity; Ageing LIFE-SPAN EXTENSION; DOGS DIE YOUNG; DIETARY RESTRICTION; CAENORHABDITIS-ELEGANS; CALORIC RESTRICTION; GROWTH-HORMONE; RHESUS-MONKEYS; INCREASE LONGEVITY; FOXO3A GENE; ASSOCIATION Studies in nematodes and mice have shown that the somatotropic axis can modulate their longevity and it has been argued that it could also modulate human longevity. Thus, like nematodes and mice, human beings should live longer when facing starvation and genetic variation of the somatotropic axis should be linked to longevity. This article argues that, because the life-history strategies of humans are very different from those of mice, these hypotheses are not warranted. [Le Bourg, Eric] Univ Toulouse, CNRS, UPS, Ctr Rech Cognit Anim,Ctr Biol Integrat, Toulouse, France Le Bourg, E (reprint author), Univ Toulouse, CNRS, UPS, Ctr Rech Cognit Anim,Ctr Biol Integrat, Toulouse, France. eric.le-bourg@univ-tlse3.fr Aguiar-Oliveira MH, 2010, J CLIN ENDOCR METAB, V95, P714, DOI 10.1210/jc.2009-1879; Austad SN, 2012, NATURE, V489, P210, DOI 10.1038/nature11484; Bao JM, 2014, ASIAN J ANDROL, V16, P446, DOI 10.4103/1008-682X.123673; Barbieri M, 2003, AM J PHYSIOL-ENDOC M, V285, pE1064, DOI 10.1152/ajpendo.00296.2003; Bartke A, 2005, ENDOCRINOLOGY, V146, P3718, DOI 10.1210/en.2005-0411; Bartke A, 2013, PHYSIOL REV, V93, P571, DOI 10.1152/physrev.00006.2012; Bertrand HA, 1999, METHODS AGING RES, P271; Besson A, 2003, J CLIN ENDOCR METAB, V88, P3664, DOI 10.1210/jc.2002-021938; Braeckman BP, 2006, BIOGERONTOLOGY, V7, P127, DOI 10.1007/s10522-006-9003-4; Cava E, 2013, AGING-US, V5, P507, DOI 10.18632/aging.100581; Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991; Colman RJ, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4557; Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635; de Cabo R, 2014, CELL, V157, P1515, DOI 10.1016/j.cell.2014.05.031; de Grey ADNJ, 2005, GERONTOLOGY, V51, P73, DOI 10.1159/000082192; Demetrius L, 2005, EMBO REP, V6, pS39, DOI 10.1038/sj.embor.7400422; Flachsbart F, 2009, P NATL ACAD SCI USA, V106, P2700, DOI 10.1073/pnas.0809594106; Fontana L, 2011, HDB BIOL AGING, P447; FRIEDMAN DB, 1988, J GERONTOL, V43, pB102, DOI 10.1093/geronj/43.4.B102; Galis F, 2007, J EXP ZOOL PART B, V308B, P119, DOI 10.1002/jez.b.21116; Gavrilova NS, 2012, GERONTOLOGY, V58, P221, DOI 10.1159/000329894; Hallengren E, 2014, J AM COLL CARDIOL, V64, P1452, DOI 10.1016/j.jacc.2014.03.063; He QM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094385; Heidler T, 2010, BIOGERONTOLOGY, V11, P183, DOI 10.1007/s10522-009-9239-x; HOLLIDAY R, 1989, BIOESSAYS, V10, P125, DOI 10.1002/bies.950100408; HOLZENBERGER M, 1991, ARCH GERONTOL GERIAT, V13, P89, DOI 10.1016/0167-4943(91)90019-M; Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922; Kaeberlein TL, 2006, AGING CELL, V5, P487, DOI 10.1111/j.1474-9726.2006.00238.x; Kemkes-Grottenthaler A, 2005, AM J PHYS ANTHROPOL, V128, P340, DOI 10.1002/ajpa.20146; Kenyon CJ, 2010, NATURE, V464, P504, DOI 10.1038/nature08980; KLASS M, 1976, NATURE, V260, P523, DOI 10.1038/260523a0; KLASS MR, 1983, MECH AGEING DEV, V22, P279, DOI 10.1016/0047-6374(83)90082-9; Kraus C, 2013, AM NAT, V181, P492, DOI 10.1086/669665; Krzisnik Ciril, 2010, Pediatr Endocrinol Rev, V7, P357; Le Bourg E, 2006, BIOGERONTOLOGY, V7, P149, DOI 10.1007/s10522-006-9014-1; Le Bourg E, 2013, BIOGERONTOLOGY, V14, P221, DOI 10.1007/s10522-013-9418-7; Le Bourg E, 2012, GERONTOLOGY, V58, P224, DOI 10.1159/000330405; Le Bourg E, 2012, GERONTOLOGY, V58, P126, DOI 10.1159/000328675; Le Bourg E, 2010, AGEING RES REV, V9, P289, DOI 10.1016/j.arr.2010.01.001; Le Bourg T, 2005, PRESSE MED, V34, P121; Maison P, 1998, BRIT MED J, V316, P1132, DOI 10.1136/bmj.316.7138.1132; Mattison JA, 2012, NATURE, V489, P318, DOI 10.1038/nature11432; Miller DL, 2007, P NATL ACAD SCI USA, V104, P20618, DOI 10.1073/pnas.0710191104; Milman S, 2014, AGING CELL, V13, P769, DOI 10.1111/acel.12213; Nakagawa S, 2012, AGING CELL, V11, P401, DOI 10.1111/j.1474-9726.2012.00798.x; Nygaard M, 2014, EXP GERONTOL, V57, P41, DOI 10.1016/j.exger.2014.04.018; Passtoors WM, 2013, AGING CELL, V12, P24, DOI 10.1111/acel.12015; PHELAN JP, 1989, GROWTH DEVELOP AGING, V53, P4; Phelan JP, 2005, AGEING RES REV, V4, P339, DOI 10.1016/j.arr.2005.06.001; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Piper MDW, 2011, CELL METAB, V14, P154, DOI 10.1016/j.cmet.2011.06.013; Puig O, 2011, ANTIOXID REDOX SIGN, V14, P635, DOI 10.1089/ars.2010.3407; Redman LM, 2011, ANTIOXID REDOX SIGN, V14, P275, DOI 10.1089/ars.2010.3253; Salaris L, 2012, BIODEMOGR SOC BIOL, V58, P1, DOI 10.1080/19485565.2012.666118; Shadyab AH, 2015, AGEING RES REV, V19, P1, DOI 10.1016/j.arr.2014.10.005; Shanley DP, 2006, BIOGERONTOLOGY, V7, P165, DOI 10.1007/s10522-006-9006-1; Soerensen M, 2015, AGING CELL, V14, P60, DOI 10.1111/acel.12295; Soerensen M, 2012, EXP GERONTOL, V47, P379, DOI 10.1016/j.exger.2012.02.010; Soerensen M, 2010, AGING CELL, V9, P1010, DOI 10.1111/j.1474-9726.2010.00627.x; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Stewart ST, 2009, NEW ENGL J MED, V361, P2252, DOI 10.1056/NEJMsa0900459; Swindell WR, 2012, AGEING RES REV, V11, P254, DOI 10.1016/j.arr.2011.12.006; Van Voorhies WA, 2005, BIOL LETTERS, V1, P247, DOI 10.1098/rsbl.2004.0278; Walford RL, 2002, J GERONTOL A-BIOL, V57, pB211, DOI 10.1093/gerona/57.6.B211; Willcox DC, 2006, BIOGERONTOLOGY, V7, P173, DOI 10.1007/s10522-006-9008-z; Ziv E, 2011, AGEING RES REV, V10, P201, DOI 10.1016/j.arr.2010.09.002 66 9 10 0 8 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1389-5729 1573-6768 BIOGERONTOLOGY Biogerontology APR 2016 17 2 421 429 10.1007/s10522-015-9632-6 9 Geriatrics & Gerontology Geriatrics & Gerontology DI2AT WOS:000373298800015 26712318 2019-02-21 J Tartu, S; Bustamante, P; Angelier, F; Lendvai, AZ; Moe, B; Blevin, P; Bech, C; Gabrielsen, GW; Bustnes, JO; Chastel, O Tartu, Sabrina; Bustamante, Paco; Angelier, Frederic; Lendvai, Adam Z.; Moe, Borge; Blevin, Pierre; Bech, Claus; Gabrielsen, Geir W.; Bustnes, Jan Ove; Chastel, Olivier Mercury exposure, stress and prolactin secretion in an Arctic seabird: an experimental study FUNCTIONAL ECOLOGY English Article arctic; black-legged kittiwake; breeding success; contaminants; corticosterone; endocrine disruptors; parental investment; parenting hormone BLACK-LEGGED KITTIWAKES; LONG-LIVED BIRD; REPRODUCTIVE SUCCESS; WANDERING ALBATROSS; PARENTAL BEHAVIOR; NEST ABANDONMENT; CHANGING WORLD; ADELIE PENGUIN; CLIMATE-CHANGE; CORTICOSTERONE Life-history theory predicts that long-lived organisms should reduce parental effort under inclement environmental conditions in order to favour long-term survival. Seabirds are long-lived top predators often exposed to environmental endocrine disrupting chemicals such as mercury (Hg). Hg-contaminated birds show disrupted parental behaviour. Avian parental behaviour is governed by two key hormones in birds: corticosterone (CORT, a glucocorticoid hormone) and prolactin (PRL, a pituitary hormone involved in parental care). Any disruption of these hormones may alter the ability of an individual to adjust parental behaviour to environmental conditions. The first aim of this study was to describe the relationships between blood Hg concentrations, plasma PRL and reproductive performance in Arctic black-legged kittiwakes (Rissa tridactyla). We a found negative relationship between plasma initial PRL and blood Hg concentrations in males. Moreover, Hg concentration was negatively related to breeding success in chick-rearing males. Secondly, to study the effect of a chronic increase in CORT levels on the Hg-PRL relationship, we experimentally increased stress with CORT pellet implantation. We predicted that Hg and CORT would act synergistically on PRL and an increase in CORT concentration would steepen the Hg-PRL relationship. However, adding CORT did not steepen the Hg-PRL relationship. Hatching success was significantly lower in CORT-implanted males than in controls, and breeding success was not reduced in CORT-implanted male kittiwakes with high levels of blood Hg. Our results suggest that Hg may impair reproductive performance through a disruption of PRL secretion. Contrary to our prediction, Hg and CORT did not act synergistically and the underlying mechanisms associating CORT and Hg with PRL might be more complex than a single interaction between two factors. [Tartu, Sabrina; Angelier, Frederic; Blevin, Pierre; Chastel, Olivier] Univ La Rochelle, UMR CNRS 7372, Ctr Etudes Biol Chize, F-79360 Villiers En Bois, France; [Bustamante, Paco] Univ La Rochelle, UMR CNRS 7266, Littoral Environm & Societes, F-17000 La Rochelle, France; [Lendvai, Adam Z.] Univ Debrecen, Dept Evolutionary Zool & Human Biol, Egyet Ter 1, H-4032 Debrecen, Hungary; [Moe, Borge] Norwegian Inst Nat Res NINA, Hogskoleringen 9, N-7034 Trondheim, Norway; [Bech, Claus] Norwegian Univ Sci & Technol, NTNU, Dept Biol, Hogskoleringen 5, N-7491 Trondheim, Norway; [Gabrielsen, Geir W.] NPI, FRAM High North Res Ctr Climate & Environm, N-9296 Tromso, Norway; [Bustnes, Jan Ove] Norwegian Inst Nat Res NINA, FRAM High North Res Ctr Climate & Environm, N-9296 Tromso, Norway Tartu, S (reprint author), Univ La Rochelle, UMR CNRS 7372, Ctr Etudes Biol Chize, F-79360 Villiers En Bois, France. tartu.sabrina@gmail.com Bustamante, Paco/G-5833-2011; Moe, Borge/P-2946-2015; Bech, Claus/C-1086-2011 Bustamante, Paco/0000-0003-3877-9390; Moe, Borge/0000-0002-2306-1899; Bech, Claus/0000-0002-0860-0663 Institut Polaire Francais (IPEV) [330]; Agence Nationale de la Recherche (ANR); CPER 13 (Contrat de Projet Etat Region); Hungarian Scientific Fund [OTKA K113108] This study was supported by the Institut Polaire Francais (IPEV project 330 to O. Chastel), the Agence Nationale de la Recherche (ANR project PolarTop to O. Chastel) and the CPER 13 (Contrat de Projet Etat Region) through the funding of the AMA. During the preparation of the manuscript, AZL held a grant from the Hungarian Scientific Fund (OTKA K113108). The authors thank C. Parenteau, C. Trouve, S. Dano, C. Churlaud and M. Brault-Favrou for their excellent technical assistance in hormones assays, molecular sexing and Hg assays, and two anonymous referees and an associate editor for their constructive and helpful comments. Angelier F, 2007, HORM BEHAV, V52, P482, DOI 10.1016/j.yhbeh.2007.07.003; Angelier F, 2013, GEN COMP ENDOCR, V190, P118, DOI 10.1016/j.ygcen.2013.05.022; Angelier F, 2009, GEN COMP ENDOCR, V163, P142, DOI 10.1016/j.ygcen.2009.03.028; Angelier F, 2009, FUNCT ECOL, V23, P784, DOI 10.1111/j.1365-2435.2009.01545.x; Ariya PA, 2004, TELLUS B, V56, P397, DOI 10.1111/j.1600-0889.2004.00118.x; BARREGARD L, 1994, OCCUP ENVIRON MED, V51, P536, DOI 10.1136/oem.51.8.536; Basu N, 2005, ENVIRON TOXICOL CHEM, V24, P1444, DOI 10.1897/04-048R.1; Ben-Jonathan N, 2001, ENDOCR REV, V22, P724, DOI 10.1210/er.22.6.724; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bole-Feysot C, 1998, ENDOCR REV, V19, P225, DOI 10.1210/er.19.3.225; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Brasso RL, 2008, ECOTOXICOLOGY, V17, P133, DOI 10.1007/s10646-007-0163-z; Buntin J. D., 1996, PARENTAL CARE EVOLUT; Bustamante P, 2006, SCI TOTAL ENVIRON, V368, P585, DOI 10.1016/j.scitotenv.2006.01.038; Carta P, 2003, NEUROTOXICOLOGY, V24, P617, DOI 10.1016/S0161-813X(03)00080-9; CAVANAUGH KP, 1983, ARCH ENVIRON CON TOX, V12, P335, DOI 10.1007/BF01059411; Chastel O, 2005, HORM BEHAV, V47, P459, DOI 10.1016/j.yhbeh.2004.10.009; Clarke A, 2003, ENVIRON CONSERV, V30, P1, DOI 10.1017/S0376892903000018; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Dietz R, 2013, SCI TOTAL ENVIRON, V443, P775, DOI 10.1016/j.scitotenv.2012.11.046; Faro LRF, 2007, BRAZ J MED BIOL RES, V40, P1361, DOI 10.1590/S0100-879X2006005000157; Flinn MV, 1996, HUM NATURE-INT BIOS, V7, P125, DOI 10.1007/BF02692108; Gabrielsen G. W., 2007, ARCTIC ALPINE ECOSYS, P377; GALA RR, 1990, LIFE SCI, V46, P1407, DOI 10.1016/0024-3205(90)90456-2; Gauthier G, 2012, J ORNITHOL, V152, pS457, DOI 10.1007/s10336-010-0541-9; Goutte A, 2014, ECOLOGY, V95, P1075, DOI 10.1890/13-1229.1; Goutte A, 2015, ENVIRON POLLUT, V200, P1, DOI 10.1016/j.envpol.2015.01.033; Goutte A, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3313; Goutte A, 2011, J EXP BIOL, V214, P2005, DOI 10.1242/jeb.051979; Hooper MJ, 2013, ENVIRON TOXICOL CHEM, V32, P32, DOI 10.1002/etc.2043; Jackson AK, 2011, AUK, V128, P759, DOI 10.1525/auk.2011.11106; Jenssen BM, 2006, ENVIRON HEALTH PERSP, V114, P76, DOI 10.1289/ehp.8057; Kitaysky AS, 1999, FUNCT ECOL, V13, P577, DOI 10.1046/j.1365-2435.1999.00352.x; Kitaysky AS, 2001, BEHAV ECOL, V12, P619, DOI 10.1093/beheco/12.5.619; Lucchini R, 2002, Med Lav, V93, P202; Muller C, 2009, GEN COMP ENDOCR, V160, P59, DOI 10.1016/j.ygcen.2008.10.018; Nocera J. J., 1998, CONSERV ECOL, V2, P1; Nunes S, 2001, HORM BEHAV, V39, P70, DOI 10.1006/hbeh.2000.1631; O'Connor CM, 2011, GEN COMP ENDOCR, V170, P215, DOI 10.1016/j.ygcen.2010.11.004; Oliveira FRT, 2006, ECOTOX ENVIRON SAFE, V63, P488, DOI 10.1016/j.ecoenv.2004.12.024; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Piazza PV, 1996, P NATL ACAD SCI USA, V93, P8716, DOI 10.1073/pnas.93.16.8716; R Core Team, 2011, R LANG ENV STAT COMP; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Smetacek V, 2005, NATURE, V437, P362, DOI 10.1038/nature04161; Spee M, 2011, HORM BEHAV, V60, P362, DOI 10.1016/j.yhbeh.2011.07.003; Spee M, 2010, HORM BEHAV, V58, P762, DOI 10.1016/j.yhbeh.2010.07.011; Stearns S, 1992, EVOLUTION LIFE HIST; Storey AE, 2006, CAN J EXP PSYCHOL, V60, P237, DOI 10.1037/cjep2006022; Tan SW, 2009, CRIT REV TOXICOL, V39, P228, DOI 10.1080/10408440802233259; Tartu S, 2015, SCI TOTAL ENVIRON, V505, P180, DOI 10.1016/j.scitotenv.2014.10.008; Tartu S., 2015, DATA MERCURY EXPOSUR, DOI [10.5061/dryad.tv50m, DOI 10.5061/DRYAD.TV50M]; Tartu S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103642; Tartu S, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0317; Verreault J, 2008, GEN COMP ENDOCR, V156, P569, DOI 10.1016/j.ygcen.2008.02.013; Weimerskirch H, 2005, J ANIM ECOL, V74, P285, DOI 10.1111/j.1365-2656.2004.00922.x; Wingfield JC, 2002, INTEGR COMP BIOL, V42, P600, DOI 10.1093/icb/42.3.600; Zhou T, 1999, COMP BIOCHEM PHYS C, V124, P287, DOI 10.1016/S0742-8413(99)00077-8 58 16 16 2 56 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. APR 2016 30 4 596 604 10.1111/1365-2435.12534 9 Ecology Environmental Sciences & Ecology DJ0UV WOS:000373920800011 Bronze 2019-02-21 J Wolff, JN; Pichaud, N; Camus, MF; Cote, G; Blier, PU; Dowling, DK Wolff, J. N.; Pichaud, N.; Camus, M. F.; Cote, G.; Blier, P. U.; Dowling, D. K. Evolutionary implications of mitochondrial genetic variation: mitochondrial genetic effects on OXPHOS respiration and mitochondrial quantity change with age and sex in fruit flies JOURNAL OF EVOLUTIONARY BIOLOGY English Article genome conflict; mitonuclear; Mother's curse; mtDNA; sexual conflict DROSOPHILA-MELANOGASTER; LIFE-SPAN; MATERNAL INHERITANCE; PURIFYING SELECTION; NATURAL-SELECTION; DNA MUTATIONS; SEED BEETLES; MTDNA; NUCLEAR; TRANSMISSION The ancient acquisition of the mitochondrion into the ancestor of modern-day eukaryotes is thought to have been pivotal in facilitating the evolution of complex life. Mitochondria retain their own diminutive genome, with mitochondrial genes encoding core subunits involved in oxidative phosphorylation. Traditionally, it was assumed that there was little scope for genetic variation to accumulate and be maintained within the mitochondrial genome. However, in the past decade, mitochondrial genetic variation has been routinely tied to the expression of life-history traits such as fertility, development and longevity. To examine whether these broad-scale effects on life-history trait expression might ultimately find their root in mitochondrially mediated effects on core bioenergetic function, we measured the effects of genetic variation across twelve different mitochondrial haplotypes on respiratory capacity and mitochondrial quantity in the fruit fly, Drosophila melanogaster. We used strains of flies that differed only in their mitochondrial haplotype, and tested each sex separately at two different adult ages. Mitochondrial haplotypes affected both respiratory capacity and mitochondrial quantity. However, these effects were highly context-dependent, with the genetic effects contingent on both the sex and the age of the flies. These sex- and age-specific genetic effects are likely to resonate across the entire organismal life-history, providing insights into how mitochondrial genetic variation may contribute to sex-specific trajectories of life-history evolution. [Wolff, J. N.; Camus, M. F.; Dowling, D. K.] Monash Univ, Sch Biol Sci, Clayton Campus, Clayton, Vic 3800, Australia; [Pichaud, N.] Univ Moncton, Dept Chim & Biochim, Moncton, NB E1A 3E9, Canada; [Pichaud, N.; Cote, G.; Blier, P. U.] Univ Quebec, Dept Biol, Rimouski, PQ G5L 3A1, Canada Wolff, JN (reprint author), Monash Univ, Sch Biol Sci, Clayton Campus, Clayton, Vic 3800, Australia.; Pichaud, N (reprint author), Univ Moncton, Campus Moncton,Pavillon Leopold Taillon 18, Moncton, NB E1A 3E9, Canada. jonci.wolff@gmail.com; nicolas@wanadoo.fr Dowling, Damian/C-9016-2009 Dowling, Damian/0000-0003-2209-3458; Wolff, Jonci/0000-0002-8809-5010; Pichaud, Nicolas/0000-0002-2820-8124 Australian Research Council Discovery Project Grant [DP1092897]; Natural Sciences and Engineering Research Council of Canada Discovery Grant [RGPIN 155926-2011] We thank two anonymous reviewers for their constructive comments. This work was supported by the Australian Research Council Discovery Project Grant (DP1092897) to DKD, and the Natural Sciences and Engineering Research Council of Canada Discovery Grant (RGPIN 155926-2011) to PUB. We thank Winston Yee for his help with fly husbandry and David Clancy for providing Drosophila melanogaster mitochondrial populations in 2007. The authors have no conflict of interest to declare. Arnqvist G, 2010, EVOLUTION, V64, P3354, DOI 10.1111/j.1558-5646.2010.01135.x; Ballard JWO, 2004, MOL ECOL, V13, P729, DOI 10.1046/j.1365-294X.2003.02063.x; Barreto F. S., 2013, P BIOL SCI, V280, DOI [10.1098/rstb.2013.0438, DOI 10.1098/RSTB.2013.0438]; Beekman M, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0440; BIRKY CW, 1978, ANNU REV GENET, V12, P471, DOI 10.1146/annurev.ge.12.120178.002351; Bjorkholm P, 2015, P NATL ACAD SCI USA, V112, P10154, DOI 10.1073/pnas.1421372112; Blier PU, 2001, TRENDS GENET, V17, P400, DOI 10.1016/S0168-9525(01)02338-1; Burton RS, 2012, MOL ECOL, V21, P4942, DOI 10.1111/mec.12006; Camus MF, 2015, CURR BIOL, V25, P2717, DOI 10.1016/j.cub.2015.09.012; Camus MF, 2012, CURR BIOL, V22, P1, DOI [10.1016/j.cub.2012.07.018, DOI 10.1016/J.CUB.2011.12.009)]; Clancy DJ, 2008, AGING CELL, V7, P795, DOI 10.1111/j.1474-9726.2008.00428.x; Dai Dao-Fu, 2014, Longev Healthspan, V3, P6, DOI 10.1186/2046-2395-3-6; De Benedictis G, 1999, FASEB J, V13, P1532; Dobler R, 2014, J EVOLUTION BIOL, V27, P2021, DOI 10.1111/jeb.12468; Dowling DK, 2009, J EVOLUTION BIOL, V22, P818, DOI 10.1111/j.1420-9101.2009.01692.x; Dowling DK, 2008, TRENDS ECOL EVOL, V23, P546, DOI 10.1016/j.tree.2008.05.011; Dowling DK, 2007, EVOLUTION, V61, P194, DOI 10.1111/j.1558-5646.2007.00016.x; Dowling DK, 2014, BBA-GEN SUBJECTS, V1840, P1393, DOI 10.1016/j.bbagen.2013.11.013; Dowling DK, 2012, CURR BIOL, V22, pR947, DOI 10.1016/j.cub.2012.09.029; Dowling DK, 2010, AM NAT, V176, P131, DOI 10.1086/653671; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Ellison CK, 2008, P NATL ACAD SCI USA, V105, P15831, DOI 10.1073/pnas.0804253105; Frank SA, 1996, NATURE, V383, P224, DOI 10.1038/383224a0; Galtier N, 2009, MOL ECOL, V18, P4541, DOI 10.1111/j.1365-294X.2009.04380.x; Gemmell NJ, 2004, TRENDS ECOL EVOL, V19, P238, DOI 10.1016/j.tree.2004.02.002; Grotewiel MS, 2005, AGEING RES REV, V4, P372, DOI 10.1016/j.arr.2005.04.001; HARMAN D, 1972, J AM GERIATR SOC, V20, P145, DOI 10.1111/j.1532-5415.1972.tb00787.x; Hill GE, 2015, MOL BIOL EVOL, V32, P1917, DOI 10.1093/molbev/msv104; Hill JH, 2014, NAT GENET, V46, P389, DOI 10.1038/ng.2920; Hwang S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022116; Innocenti P, 2011, SCIENCE, V332, P845, DOI 10.1126/science.1201157; James AC, 2003, GENETICS, V164, P187; Kearse M, 2012, BIOINFORMATICS, V28, P1647, DOI 10.1093/bioinformatics/bts199; Larsen S, 2012, J PHYSIOL-LONDON, V590, P3349, DOI 10.1113/jphysiol.2012.230185; Li B, 2009, BIOINFORMATICS, V25, P2744, DOI 10.1093/bioinformatics/btp528; Liu H, 2015, MITOCHONDRION, V21, P49, DOI 10.1016/j.mito.2015.01.004; Lotz C, 2014, J PROTEOME RES, V13, P433, DOI 10.1021/pr400539j; Lynch M, 1997, MOL BIOL EVOL, V14, P914, DOI 10.1093/oxfordjournals.molbev.a025834; Ma HS, 2014, NAT GENET, V46, P393, DOI 10.1038/ng.2919; Maklakov AA, 2006, EVOLUTION, V60, P2081, DOI 10.1554/05-537.1; Medawar P., 1952, COMMUNICATION 1206; Meiklejohn CD, 2007, TRENDS GENET, V23, P259, DOI 10.1016/j.tig.2007.03.008; Meiklejohn CD, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003238; Moreno-Loshuertos R, 2013, FEBS J, V280, P4983, DOI 10.1111/febs.12466; Pichaud N, 2013, MITOCHONDRION, V13, P817, DOI 10.1016/j.mito.2013.05.008; Pichaud N, 2012, EVOLUTION, V66, P3189, DOI 10.1111/j.1558-5646.2012.01683.x; Pichaud N, 2011, AM J PHYSIOL-REG I, V301, pR48, DOI 10.1152/ajpregu.00542.2010; Pinheiro J., 2014, R PACKAGE VERSION, V3, P1; R Core Team, 2013, R LANG ENV STAT COMP; Rand DM, 2004, TRENDS ECOL EVOL, V19, P645, DOI 10.1016/j.tree.2004.10.003; Rand DM, 2006, GENETICS, V172, P329, DOI 10.1534/genetics.105.046698; Raule N, 2014, AGING CELL, V13, P401, DOI 10.1111/acel.12186; Ross JM, 2014, SCI REP-UK, V4, DOI 10.1038/srep06569; Ross JM, 2013, NATURE, V501, P412, DOI 10.1038/nature12474; Ruiz-Pesini E, 2004, SCIENCE, V303, P223, DOI 10.1126/science.1088434; Schattner P, 2005, NUCLEIC ACIDS RES, V33, pW686, DOI 10.1093/nar/gki366; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Smith C, 2010, NUCLEIC ACIDS RES, V38, pW373, DOI 10.1093/nar/gkq316; Smith S, 2010, MOL ECOL, V19, P36, DOI 10.1111/j.1365-294X.2009.04444.x; Stewart JB, 2008, PLOS BIOL, V6, P63, DOI 10.1371/journal.pbio.0060010; Trifunovic A, 2004, NATURE, V429, P417, DOI 10.1038/nature02517; Unckless RL, 2009, J THEOR BIOL, V260, P132, DOI 10.1016/j.jtbi.2009.06.004; Wallace DC, 2005, ANNU REV GENET, V39, P359, DOI 10.1146/annurev.genet.39.110304.095751; Wallace DC, 2007, ANNU REV BIOCHEM, V76, P781, DOI 10.1146/annurev.biochem.76.081205.150955; Wallace DC, 2010, ENVIRON MOL MUTAGEN, V51, P440, DOI 10.1002/em.20586; White DJ, 2008, MOL ECOL, V17, P4925, DOI 10.1111/j.1365-294X.2008.03982.x; Wikelski Martin, 2001, Trends in Ecology and Evolution, V16, P479, DOI 10.1016/S0169-5347(01)02279-0; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wolff JN, 2016, MITOCHONDRIAL DNA A, V27, P4672, DOI 10.3109/19401736.2015.1106496; Wolff JN, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0443; Wolff JN, 2013, BIOESSAYS, V35, P93, DOI 10.1002/bies.201200141; WOLSTENHOLME DR, 1992, INT REV CYTOL, V141, P173, DOI 10.1016/S0074-7696(08)62066-5; Yee WKW, 2013, CURR BIOL, V23, pR55, DOI 10.1016/j.cub.2012.12.002; Zeh JA, 2005, TRENDS GENET, V21, P281, DOI 10.1016/j.tig.2005.03.006; Zhu CT, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004354 75 13 13 0 25 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. APR 2016 29 4 736 747 10.1111/jeb.12822 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DJ0XZ WOS:000373929000006 26728607 Bronze 2019-02-21 J Savkovic, U; Dordevic, M; Jovanovic, DS; Lazarevic, J; Tucic, N; Stojkovic, B Savkovic, Uros; Dordevic, Mirko; Jovanovic, Darka Seslija; Lazarevic, Jelica; Tucic, Nikola; Stojkovic, Biljana Experimentally induced host-shift changes life-history strategy in a seed beetle JOURNAL OF EVOLUTIONARY BIOLOGY English Article phytophagous insects; host-shift; phenotypic plasticity; life-history evolution; population dynamics; Acanthoscelides obtectus Say ACANTHOSCELIDES-OBTECTUS SAY; ALPHA-AMYLASE INHIBITOR; PHENOTYPIC PLASTICITY; PHYTOPHAGOUS INSECTS; GENETIC ASSIMILATION; CALLOSOBRUCHUS-MACULATUS; FEEDING EXPERIENCE; BRUCHID BEETLE; ARIETINUM L.; TRADE-OFFS Expansion of the host range in phytophagous insects depends on their ability to form an association with a novel plant through changes in host-related traits. Phenotypic plasticity has important effects on initial survival of individuals faced with a new plant, as well as on the courses of evolutionary change during long-term adaptation to novel conditions. Using experimental populations of the seed beetle that evolved on ancestral (common bean) or novel (chickpea) host and applying reciprocal transplant at both larval and adult stage on the alternative host plant, we studied the relationship between the initial (plastic) phases of host-shift and the subsequent stages of evolutionary divergence in life-history strategies between populations exposed to the host-shift process. After 48 generations, populations became well adapted to chickpea by evolving the life-history strategy with prolonged larval development, increased body mass, earlier reproduction, shorter lifespan and decreased plasticity of all traits compared with ancestral conditions. In chickpea-adapted beetles, negative fitness consequences of low plasticity of pre-adult development (revealed as severe decrease in egg-to-adult viability on beans) exhibited mismatch with positive effects of low plasticity (i.e. low host sensitivity) in oviposition and fecundity. In contrast, beetles adapted to the ancestral host showed high plasticity of developmental process, which enabled high larval survival on chickpea, whereas elevated plasticity in adult behaviour (i.e. high host sensitivity) resulted in delayed reproduction and decreased fecundity on chickpea. The analysis of population growth parameters revealed significant fluctuation during successive phases of the host-shift process in A. obtectus. [Savkovic, Uros; Dordevic, Mirko; Jovanovic, Darka Seslija; Lazarevic, Jelica; Tucic, Nikola; Stojkovic, Biljana] Univ Belgrade, Inst Biol Res Sinisa Stankovic, Despot Stefan Blvd 142, Belgrade 11060, Serbia; [Stojkovic, Biljana] Univ Belgrade, Fac Biol, Belgrade 11060, Serbia Savkovic, U (reprint author), Univ Belgrade, Inst Biol Res Sinisa Stankovic, Despot Stefan Blvd 142, Belgrade 11060, Serbia. savkovic.uros@ibiss.bg.ac.rs Savkovic, Uros/C-6292-2016; Stojkovic, Biljana/C-2999-2018 Savkovic, Uros/0000-0001-9430-4619; Stojkovic, Biljana/0000-0001-9978-2249; Dordevic, Mirko/0000-0002-5768-0081; Lazarevic, Jelica/0000-0002-7026-9385; Seslija Jovanovic, Darka/0000-0003-3031-8426 Serbian Ministry of Education, Science and Technological development [173007] This study was supported by the Serbian Ministry of Education, Science and Technological development (grant number 173007). We are grateful to three anonymous reviewers and Associate Editor F. Mery for valuable comments on previous versions of the manuscript. Agosta SJ, 2006, OIKOS, V114, P556, DOI 10.1111/j.2006.0030-1299.15025.x; Agrawal AA, 2000, ECOLOGY, V81, P500, DOI 10.1890/0012-9658(2000)081[0500:HREAAT]2.0.CO;2; Allen RM, 2008, AM NAT, V171, P225, DOI 10.1086/524952; Alvarez N, 2005, MOL ECOL, V14, P1015, DOI 10.1111/j.1365-294X.2005.02470.x; Alvarez N, 2006, J ZOOL SYST EVOL RES, V44, P63, DOI 10.1111/j.1439-0469.2005.00344.x; Anderson P, 2013, ANIM BEHAV, V85, P1169, DOI 10.1016/j.anbehav.2013.03.002; Barron AB, 2001, J INSECT BEHAV, V14, P725, DOI 10.1023/A:1013033332535; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Oliveira MRC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070039; Clark ME, 2007, ECOL MODEL, V209, P110, DOI 10.1016/j.ecolmodel.2007.06.008; Crispo E, 2008, J EVOLUTION BIOL, V21, P1460, DOI 10.1111/j.1420-9101.2008.01592.x; Crispo E, 2007, EVOLUTION, V61, P2469, DOI 10.1111/j.1558-5646.2007.00203.x; Cronk Q, 2006, CURR OPIN PLANT BIOL, V9, P99, DOI 10.1016/j.pbi.2006.01.011; Eck DJ, 2015, EVOLUTION, V69, P2525, DOI 10.1111/evo.12744; Fitzpatrick Benjamin M., 2012, International Journal of Ecology, P1; Forsman A, 2015, HEREDITY, V115, P276, DOI 10.1038/hdy.2014.92; Fry JD, 2003, EVOLUTION, V57, P1735; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Ghalambor CK, 2015, NATURE, V525, P372, DOI 10.1038/nature15256; Gripenberg S, 2010, ECOL LETT, V13, P383, DOI 10.1111/j.1461-0248.2009.01433.x; Hao XY, 2009, BIOSCI BIOTECH BIOCH, V73, P1200, DOI 10.1271/bbb.80776; Hoffmann A. A., 1991, EVOLUTIONARY GENETIC; Huang CC, 2005, PHYSIOL ENTOMOL, V30, P381, DOI 10.1111/j.1365-3032.2005.00474.x; ISHIMOTO M, 1992, APPL ENTOMOL ZOOL, V27, P243, DOI 10.1303/aez.27.243; Jankovic-Tomanic M, 2015, J STORED PROD RES, V62, P32, DOI 10.1016/j.jspr.2015.03.008; Katre UV, 2005, ACTA CRYSTALLOGR F, V61, P141, DOI 10.1107/S1744309104032166; Kuhnle A, 2011, ECOL ENTOMOL, V36, P125, DOI 10.1111/j.1365-2311.2010.01256.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Lu CT, 2010, BIOCHEM SYST ECOL, V38, P441, DOI 10.1016/j.bse.2010.02.004; Maia A. H. N., 2006, COM TEC, V33, P11; Maia AHN, 2000, J ECON ENTOMOL, V93, P511; Matsubayashi KW, 2010, ENTOMOL EXP APPL, V134, P1, DOI 10.1111/j.1570-7458.2009.00916.x; Mery F, 2002, P NATL ACAD SCI USA, V99, P14274, DOI 10.1073/pnas.222371199; Messina FJ, 2003, J EVOLUTION BIOL, V16, P501, DOI 10.1046/j.1420-9101.2003.00535.x; Messina FJ, 2009, J STORED PROD RES, V45, P215, DOI 10.1016/j.jspr.2009.02.004; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Orsucci M, 2016, J EVOLUTION BIOL, V29, P114, DOI 10.1111/jeb.12766; Pfennig DW, 2010, TRENDS ECOL EVOL, V25, P459, DOI 10.1016/j.tree.2010.05.006; Pigliucci M, 1996, TRENDS ECOL EVOL, V11, P168, DOI 10.1016/0169-5347(96)10008-2; Pigliucci M, 2003, BASIC APPL ECOL, V4, P297, DOI 10.1078/1439-1791-00161; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; PRATT RC, 1990, PLANT PHYSIOL, V93, P1453, DOI 10.1104/pp.93.4.1453; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; Proffit M, 2015, ECOL LETT, V18, P365, DOI 10.1111/ele.12419; Qureshi IA, 2006, PHYTOCHEM ANALYSIS, V17, P350, DOI 10.1002/pca.925; Reinhold K, 2002, J HERED, V93, P400, DOI 10.1093/jhered/93.6.400; REMBOLD H, 1989, J AGR FOOD CHEM, V37, P659, DOI 10.1021/jf00087a018; Rios RS, 2013, ARTHROPOD-PLANT INTE, V7, P109, DOI 10.1007/s11829-012-9225-0; ROFF DA, 2002, LIFE HIST EVOLUTION; Saeki Y, 2014, OIKOS, V123, P786, DOI 10.1111/oik.00956; SAS Institute Inc., 2010, SAS SYST WIND REL 9; Savkovic U, 2012, J STORED PROD RES, V50, P66, DOI 10.1016/j.jspr.2012.05.004; Scharf I, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136924; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Selija D., 2009, BEHAV ECOL, V20, P547; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Sih A, 2012, ECOL LETT, V15, P278, DOI 10.1111/j.1461-0248.2011.01731.x; Stojkovic B, 2014, BEHAV ECOL, V25, P553, DOI 10.1093/beheco/aru015; Stojkovic B, 2012, POL J ECOL, V60, P387; Stojkovic B, 2011, ETHOLOGY, V117, P812, DOI 10.1111/j.1439-0310.2011.01936.x; THOMPSON JN, 1988, ENTOMOL EXP APPL, V47, P3, DOI 10.1111/j.1570-7458.1988.tb02275.x; Tucic N, 1997, ENTOMOL EXP APPL, V85, P247, DOI 10.1046/j.1570-7458.1997.00255.x; Tucic N, 1996, J EVOLUTION BIOL, V9, P485, DOI 10.1046/j.1420-9101.1996.9040485.x; Vanbergen AJ, 2003, ECOL ENTOMOL, V28, P604, DOI 10.1046/j.1365-2311.2003.00538.x; vansNoordwijk A. J., 1986, AM NAT, V128, P137, DOI DOI 10.1086/284547; Verhoeven KJF, 2009, ECOL LETT, V12, P107, DOI 10.1111/j.1461-0248.2008.01248.x; WADDINGTON C, 1961, ADV GENET, V10, P257, DOI 10.1016/S0065-2660(08)60119-4; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU 70 6 6 3 48 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. APR 2016 29 4 837 847 10.1111/jeb.12831 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DJ0XZ WOS:000373929000014 26790127 Bronze 2019-02-21 J Patel, SA; Surkan, PJ Patel, Shivani A.; Surkan, Pamela J. Unwanted childbearing and household food insecurity in the United States MATERNAL AND CHILD NUTRITION English Article child; child unwanted; food; food insecurity; unintended pregnancy LIFE-HISTORY THEORY; UNINTENDED PREGNANCY; UNPLANNED PREGNANCIES; LESS LIKELIHOOD; HEALTH; CHILD; DEPRESSION; SECURITY; INSUFFICIENCY; CONSEQUENCES Household food insecurity is a population health concern disproportionately affecting families with children in the United States. Unwanted childbearing may place unanticipated strain on families to meet basic needs, heightening the risk for household food insecurity. We investigated the association between mother's and father's report of unwanted childbearing and exposure to household food insecurity among children residing in two-parent households in the United States. Data from the Early Childhood Longitudinal Study - Birth Cohort, a nationally representative cohort of US children (n approximate to 6150), were used to estimate the odds of household food insecurity when children were aged 9 months and 2 years, separately, based on parental report of unwanted childbearing. The majority of children were reported as wanted by both parents (74.4%). Of the sample, report of unwanted childbearing by father-only was 20.0%, mother-only was 3.4% and joint mother and father was 2.2%. Household food insecurity was higher when children were 9 months compared with 2 years. In adjusted models accounting for confounders, children born to mothers and fathers who jointly reported unwanted childbearing were at higher odds of exposure to household food insecurity at 9 months [adjusted odds ratio (AOR)=3.31; 95% confidence interval (CI): 1.97, 5.57] and 2 years (AOR=2.52; 95% CI: 1.12, 5.68). In two-parent households, we found that children raised by parents reporting unwanted childbearing were more likely to be exposed to food insecurity and potentially related stressors. Further studies that prospectively measure wantedness before the child's birth will aid in confirming the direction of this association. [Patel, Shivani A.] Johns Hopkins Univ, Dept Epidemiol, Johns Hopkins Bloomberg Sch Publ Hlth, Baltimore, MD USA; [Patel, Shivani A.] Emory Univ, Dept Global Hlth, Rollins Sch Publ Hlth, Atlanta, GA 30322 USA; [Surkan, Pamela J.] Johns Hopkins Univ, Dept Int Hlth, Johns Hopkins Bloomberg Sch Publ Hlth, Baltimore, MD USA Patel, SA (reprint author), 1518 Clifton Rd,Room 7051, Atlanta, GA 30322 USA. s.a.patel@emory.edu NICHD NIH HHS [R24 HD042854] Alaimo K, 1998, AM J PUBLIC HEALTH, V88, P419, DOI 10.2105/AJPH.88.3.419; Barber JS, 1999, J HEALTH SOC BEHAV, V40, P231, DOI 10.2307/2676350; Belsky DW, 2010, AM J EPIDEMIOL, V172, P809, DOI 10.1093/aje/kwq201; Berglund P., 2010, 2652010 SAS GLOB FOR; Bickel G, 2000, GUIDE MEASURING HOUS; Bitto A, 1997, AM J PUBLIC HEALTH, V87, P338, DOI 10.2105/AJPH.87.3.338; Black M., 2012, J APPL RES CHILDREN, V3, P1; Black MM, 2012, ARCH PEDIAT ADOL MED, V166, P444, DOI 10.1001/archpediatrics.2012.1; BRONARS SG, 1994, AM ECON REV, V84, P1141; Bronte-Tinkew J, 2007, J NUTR, V137, P2160; Campbell A A, 2000, Matern Child Health J, V4, P163, DOI 10.1023/A:1009519329226; Chinebuah B, 2001, J NUTR, V131, P1247; Coleman-Jensen A, 2012, HOUSEHOLD FOOD SECUR; Cook JT, 2008, ANN NY ACAD SCI, V1136, P193, DOI 10.1196/annals.1425.001; D'Angelo DV, 2004, PERSPECT SEX REPRO H, V36, P192, DOI 10.1111/j.1931-2393.2004.tb00022.x; Dean WR, 2011, SOC SCI MED, V72, P1454, DOI 10.1016/j.socscimed.2011.03.015; DESAI S, 1995, POP STUD-J DEMOG, V49, P195, DOI 10.1080/0032472031000148466; Finer LB, 2011, CONTRACEPTION, V84, P478, DOI 10.1016/j.contraception.2011.07.013; Finer LB, 2006, PERSPECT SEX REPRO H, V38, P90, DOI 10.1363/3809006; Gipson JD, 2008, STUD FAMILY PLANN, V39, P18, DOI 10.1111/j.1728-4465.2008.00148.x; Gorton D, 2010, NUTR REV, V68, P1, DOI 10.1111/j.1753-4887.2009.00258.x; Gundersen CG, 2012, J NUTR, V142, P1865, DOI 10.3945/jn.112.162214; Hadley C, 2012, AM J PHYS ANTHROPOL, V149, P72, DOI 10.1002/ajpa.22161; Heflin CM, 2007, SOC SERV REV, V81, P3, DOI 10.1086/511162; Howard LL, 2011, BRIT J NUTR, V105, P1852, DOI 10.1017/S0007114510005623; Hromi-Fiedler AJ, 2006, PUBLIC HEALTH NUTR, V9, P306, DOI [10.1079/PHN2006856, 10.1079/PHN2005856]; Lawson DW, 2012, P ROY SOC B-BIOL SCI, V279, P4755, DOI 10.1098/rspb.2012.1635; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; McCrory C, 2013, PAEDIATR PERINAT EP, V27, P208, DOI 10.1111/ppe.12027; Melchior M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052615; Perez-Escamilla R., 2013, MODERN NUTR HLTH DIS, P1006; Perez-Escamilla R., 2012, J APPL RES CHILDREN, V3, P1; Raghunathan T, 2001, SURV METHODOL, V27, P85, DOI DOI 10.1002/SIM.1186; Rose D, 1999, J NUTR, V129, P517; Santelli J, 2003, PERSPECT SEX REPRO H, V35, P94, DOI 10.1111/j.1931-2393.2003.tb00111.x; Schmiege S, 2005, BMJ-BRIT MED J, V331, P1303, DOI 10.1136/bmj.38623.532384.55; Snow K., 2009, EARLY CHILDHOOD LONG; Stevens CA, 2010, J SPEC PEDIATR NURS, V15, P163, DOI 10.1111/j.1744-6155.2010.00235.x; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Stuart EA, 2009, AM J EPIDEMIOL, V169, P1133, DOI 10.1093/aje/kwp026; Whitaker RC, 2006, PEDIATRICS, V118, pE859, DOI 10.1542/peds.2006-0239; Wu Z, 2005, SOCIOL PERSPECT, V48, P481, DOI 10.1525/sop.2005.48.4.481; Zaslow M, 2009, MATERN CHILD HLTH J, V13, P66, DOI 10.1007/s10995-008-0329-1 43 2 2 2 4 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1740-8695 1740-8709 MATERN CHILD NUTR Matern. Child Nutr. APR 2016 12 2 362 372 10.1111/mcn.12143 11 Nutrition & Dietetics; Pediatrics Nutrition & Dietetics; Pediatrics DI5AO WOS:000373510700014 25138233 Green Accepted 2019-02-21 J Metcalf, CJE Metcalf, C. Jessica E. Invisible Trade-offs: Van Noordwijk and de Jong and Life-History Evolution AMERICAN NATURALIST English Article The first American Naturalist appeared in March 1867. In a countdown to the 150th anniversary, the editors have solicited short commentaries on articles from the past that deserve a second look. [Metcalf, C. Jessica E.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Metcalf, C. Jessica E.] Princeton Univ, Off Populat Res, Princeton, NJ 08544 USA Metcalf, CJE (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA.; Metcalf, CJE (reprint author), Princeton Univ, Off Populat Res, Princeton, NJ 08544 USA. cmetcalf@princeton.edu VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547 1 13 13 2 25 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. APR 2016 187 4 III V 10.1086/685487 3 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DH9PB WOS:000373127000001 27028085 2019-02-21 J Skorping, A; Jensen, KH; Mennerat, A; Hogstedt, G Skorping, Arne; Jensen, Knut Helge; Mennerat, Adele; Hogstedt, Goran When to Reproduce? A New Answer to an Old Question AMERICAN NATURALIST English Article age at maturity; parasitic nematodes; drugs; developmental time; invariant NIPPOSTRONGYLUS-BRASILIENSIS-INFECTION; TRICHINELLA-SPIRALIS INFECTION; PARASITE TRICHURIS-MURIS; LIFE-HISTORY EVOLUTION; CELLULAR IMMUNE-RESPONSES; FREE-RADICAL GENERATION; HAEMONCHUS-CONTORTUS; TRICHOSTRONGYLUS-COLUBRIFORMIS; STRONGYLOIDES-RATTI; OSTERTAGIA-OSTERTAGI We present a life-history model based on the assumptions that juvenile survival follows a negative exponential function and that fecundity gain increases linearly with time to maturity. This model predicts that the optimal fitness is achieved when survival at maturity is 0.368 (e(-1)). Survival at the time of maturity is therefore an invariant. We tested this prediction by using published data from infection experiments with mammalian nematodes, where both the initial number of juveniles colonizing a habitat (host) and the numbers surviving at the time of maturation were known. We found that the mean survival at maturity, both across and within species, was remarkably close to our predicted mean. As a control, we also looked at studies where the parasite species was adapted to a host species other than the one used in the reported experiment. In these experiments the mean survival at maturity differed from what our model predicted. Maturation at a fixed survival probability therefore appears as an adaptive trait evolved in a predictable environment, in this case, a host species. Our result further suggests that measures designed to increase juvenile parasite mortality, such as drugs or vaccines, will select for faster developmental rates. [Skorping, Arne; Jensen, Knut Helge; Mennerat, Adele; Hogstedt, Goran] Univ Bergen, Dept Biol, POB 7803, N-5006 Bergen, Norway; [Mennerat, Adele] UPJV, Unite Ecol & Dynam Syst Anthropises EDYSAN, FRE 3498, CNRS, 1 Rue Louvels, FR-80037 Amiens, France Skorping, A (reprint author), Univ Bergen, Dept Biol, POB 7803, N-5006 Bergen, Norway. arne.skorping@uib.no Mennerat, Adele/0000-0003-0368-7197 ABE T, 1993, PARASITE IMMUNOL, V15, P643, DOI 10.1111/j.1365-3024.1993.tb00578.x; ADAMS DB, 1988, INT J PARASITOL, V18, P575, DOI 10.1016/0020-7519(88)90089-6; ADAMS DB, 1989, INT J PARASITOL, V19, P169, DOI 10.1016/0020-7519(89)90004-0; ALERSTAM T, 1983, OIKOS, V40, P140, DOI 10.2307/3544209; Alford K, 1998, INT J PARASITOL, V28, P343, DOI 10.1016/S0020-7519(97)00184-7; Allen JE, 2011, NAT REV IMMUNOL, V11, P375, DOI 10.1038/nri2992; ALQUAISY HHK, 1987, VET PARASITOL, V24, P221, DOI 10.1016/0304-4017(87)90043-4; Anderson R. C., 2000, NEMATODE PARASITES V; Anthony RM, 2007, NAT REV IMMUNOL, V7, P975, DOI 10.1038/nri2199; Babayan SA, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000525; Bakker N, 2004, VACCINE, V22, P618, DOI 10.1016/j.vaccine.2003.08.025; BANCROFT AJ, 1994, EUR J IMMUNOL, V24, P3113, DOI 10.1002/eji.1830241230; Bao SS, 2000, IMMUNOL CELL BIOL, V78, P646, DOI 10.1046/j.1440-1711.2000.00946.x; Bautista-Garfias CR, 1999, VET PARASITOL, V80, P251, DOI 10.1016/S0304-4017(98)00210-6; BHOPALE VM, 1992, J PARASITOL, V78, P861, DOI 10.2307/3283318; Bleay C, 2007, INT J PARASITOL, V37, P1501, DOI 10.1016/j.ijpara.2007.04.023; BORGSTEEDE FHM, 1991, INT J PARASITOL, V21, P867, DOI 10.1016/0020-7519(91)90157-3; Bozic F, 2000, FOLIA PARASIT, V47, P55, DOI 10.14411/fp.2000.010; Brooker S, 2010, INT J PARASITOL, V40, P1137, DOI 10.1016/j.ijpara.2010.04.004; Charnov Eric L., 1993, P1; Christensen CM, 1995, INT J PARASITOL, V25, P1491, DOI 10.1016/0020-7519(95)00085-2; Christensen CM, 1997, PARASITOLOGY, V114, P273, DOI 10.1017/S003118209600844X; COYNE MJ, 1992, INT J PARASITOL, V22, P315, DOI 10.1016/S0020-7519(05)80009-8; CUMMINS AG, 1987, IMMUNOL CELL BIOL, V65, P357, DOI 10.1038/icb.1987.40; Davies SJ, 2001, SCIENCE, V294, P1358, DOI 10.1126/science.1064462; Dea-Ayuela MA, 2006, VACCINE, V24, P2772, DOI 10.1016/j.vaccine.2006.01.006; Dent LA, 1999, INFECT IMMUN, V67, P989; EBERT D, 1994, SCIENCE, V265, P1084, DOI 10.1126/science.265.5175.1084; ECHEVARRIA FAM, 1992, J PARASITOL, V78, P894, DOI 10.2307/3283324; ELSE KJ, 1991, IMMUNOLOGY, V72, P508; ELSE KJ, 1992, IMMUNOLOGY, V75, P232; ELSE KJ, 1990, PARASITOLOGY, V101, P61, DOI 10.1017/S0031182000079762; EMERY DL, 1993, INT J PARASITOL, V23, P841, DOI 10.1016/0020-7519(93)90047-3; Fakae BB, 1999, RES VET SCI, V66, P147, DOI 10.1053/rvsc.1998.0262; Fujiwara RT, 2006, VACCINE, V24, P501, DOI 10.1016/j.vaccine.2005.07.091; Gandon S, 2001, NATURE, V414, P751, DOI 10.1038/414751a; Gemmill AW, 1999, J EVOLUTION BIOL, V12, P1148, DOI 10.1046/j.1420-9101.1999.00117.x; Gemmill AW, 2000, PARASITOLOGY, V120, P429, DOI 10.1017/S0031182099005478; Gopal RM, 2001, NEW ZEAL VET J, V49, P133, DOI 10.1080/00480169.2001.36220; Goyal PK, 2002, PARASITOL INT, V51, P91, DOI 10.1016/S1383-5769(02)00002-8; Greischar MA, 2007, ECOL LETT, V10, P418, DOI 10.1111/j.1461-0248.2007.01028.x; Grudzinski IP, 1997, ARCH ENVIRON CON TOX, V32, P462, DOI 10.1007/s002449900214; Guinnee MA, 2003, PARASITOLOGY, V127, P507, DOI 10.1017/S0031182003003998; Gurish MF, 2004, J IMMUNOL, V172, P1139, DOI 10.4049/jimmunol.172.2.1139; Gurish MF, 2002, J IMMUNOL, V168, P5730, DOI 10.4049/jimmunol.168.11.5730; Hall A, 2008, MATERN CHILD NUTR, V4, P118, DOI 10.1111/j.1740-8709.2007.00127.x; HILDERSON H, 1993, VET PARASITOL, V47, P255, DOI 10.1016/0304-4017(93)90027-K; Hoekstra R, 1997, INT J PARASITOL, V27, P1395, DOI 10.1016/S0020-7519(97)00126-4; Hokibara S, 1997, J PARASITOL, V83, P1186, DOI 10.2307/3284385; Hyoh Y, 1999, PARASITOLOGY, V119, P199, DOI 10.1017/S003118209900462X; Jacobs HJ, 1999, VACCINE, V17, P362, DOI 10.1016/S0264-410X(98)00206-0; KAMBARA T, 1993, INT J PARASITOL, V23, P471, DOI 10.1016/0020-7519(93)90035-W; Kaminsky R, 2008, NATURE, V452, P176, DOI 10.1038/nature06722; KHAN WI, 1995, PARASITE IMMUNOL, V17, P485, DOI 10.1111/j.1365-3024.1995.tb00919.x; Khan WI, 2001, INFECT IMMUN, V69, P838, DOI 10.1128/IAI.69.2.838-844.2001; Kimura E, 1999, PARASITOLOGY, V119, P221, DOI 10.1017/S0031182099004631; Kolodziej-Sobocinska M, 2006, PARASITOL RES, V99, P194, DOI 10.1007/s00436-006-0144-9; Korenaga M, 2001, IMMUNOLOGY, V102, P218, DOI 10.1046/j.1365-2567.2001.01169.x; Krag L, 2006, J VET MED A, V53, P405, DOI 10.1111/j.1439-0442.2006.00861.x; Krebs CJ, 2001, ECOLOGY EXPT ANAL DI; Kringel H, 2006, VET PARASITOL, V139, P132, DOI 10.1016/j.vetpar.2006.03.002; Lamb EW, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000892; Lawrence CE, 2000, J IMMUNOL, V164, P4229, DOI 10.4049/jimmunol.164.8.4229; LUNN PG, 1988, J NUTR, V118, P121; Lynch PA, 2008, PARASITOLOGY, V135, P1599, DOI 10.1017/S0031182008000309; MAY RM, 1979, NATURE, V280, P455, DOI 10.1038/280455a0; MAYBERRY LF, 1993, J PARASITOL, V79, P962, DOI 10.2307/3283740; MCELROY PJ, 1987, J PARASITOL, V73, P666, DOI 10.2307/3282156; Morand S, 1998, PARASITOL TODAY, V14, P193, DOI 10.1016/S0169-4758(98)01223-X; Morand S, 2000, ECOL LETT, V3, P186; Morimoto M, 2003, PARASITOL RES, V90, P153, DOI 10.1007/s00436-001-0548-5; Negrao-Correa D, 1999, PARASITE IMMUNOL, V21, P287, DOI 10.1046/j.1365-3024.1999.00219.x; Ovington KS, 1998, IMMUNOLOGY, V95, P488; Paterson S, 2007, P R SOC B, V274, P1467, DOI 10.1098/rspb.2006.0433; Pena MT, 2006, VET PARASITOL, V138, P240, DOI 10.1016/j.vetpar.2005.12.026; Peters PJ, 1999, INFECT IMMUN, V67, P4661; Petkevicius S, 2001, PARASITOLOGY, V123, P315, DOI 10.1017/S0031182001008472; POMROY WE, 1989, VET PARASITOL, V33, P283, DOI 10.1016/0304-4017(89)90137-4; Quan FS, 2004, IMMUNOL INVEST, V33, P15, DOI 10.1081/IMM-120027681; RAHMAN WA, 1990, VET PARASITOL, V35, P195, DOI 10.1016/0304-4017(90)90054-F; RAHMAN WA, 1991, BRIT VET J, V147, P569; ROBINSON K, 1995, INFECT IMMUN, V63, P1762; Roff D. A., 1992, LIFE HIST EVOLUTION; Roff Derek A., 1992; Roy EA, 1996, J COMP PATHOL, V115, P441, DOI 10.1016/S0021-9975(96)80077-6; SATRIJA F, 1991, RES VET SCI, V51, P344, DOI 10.1016/0034-5288(91)90091-2; Schallig HDFH, 2000, VET PARASITOL, V88, P61, DOI 10.1016/S0304-4017(99)00193-4; SCHAPER R, 1992, KLEINTIERPRAXIS, V37, P379; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; SHAKER SK, 1992, J HELMINTHOL, V66, P288, DOI 10.1017/S0022149X00014735; Siefker C, 2000, VET PARASITOL, V90, P103, DOI 10.1016/S0304-4017(00)00205-3; SKORPING A, 1991, OIKOS, V60, P365, DOI 10.2307/3545079; Skorping A, 1998, ECOL LETT, V1, P10, DOI 10.1046/j.1461-0248.1998.0007d.x; Skorping A., 2016, AM NATURALIST DRYAD; SMITH NC, 1991, PARASITE IMMUNOL, V13, P571, DOI 10.1111/j.1365-3024.1991.tb00553.x; SMITH NC, 1989, PARASITE IMMUNOL, V11, P147, DOI 10.1111/j.1365-3024.1989.tb00655.x; SMITH NC, 1989, PARASITE IMMUNOL, V11, P161, DOI 10.1111/j.1365-3024.1989.tb00656.x; STADNYK AW, 1990, J PARASITOL, V76, P377, DOI 10.2307/3282670; Stear MJ, 1997, NATURE, V389, P27, DOI 10.1038/37895; Taylor M.A., 2007, VET PARASITOLOGY; Thomsen LE, 2005, PARASITOLOGY, V131, P857, DOI 10.1017/S0031182005008620; Turner H, 2012, J STAT SOFTW, V48, P1; UCHIKAWA R, 1989, J PARASITOL, V75, P577, DOI 10.2307/3282909; Urban JF, 2000, J IMMUNOL, V164, P2046, DOI 10.4049/jimmunol.164.4.2046; Vallance BA, 2000, PARASITE IMMUNOL, V22, P487, DOI 10.1046/j.1365-3024.2000.00328.x; Venables WN, 2002, MODERN APPL STAT S; WANG CI, 1989, J PARASITOL, V75, P373, DOI 10.2307/3282591; WATANABE N, 1988, P NATL ACAD SCI USA, V85, P4460, DOI 10.1073/pnas.85.12.4460; WILLIAMS JC, 1987, VET PARASITOL, V23, P51, DOI 10.1016/0304-4017(87)90024-0 109 1 1 0 29 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. APR 2016 187 4 540 546 10.1086/685423 7 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DH9PB WOS:000373127000016 27028081 Green Published 2019-02-21 J Herman, TA; Bouzat, JL Herman, Timothy A.; Bouzat, Juan L. Range-wide phylogeography of the four-toed salamander: out of Appalachia and into the glacial aftermath JOURNAL OF BIOGEOGRAPHY English Article Appalachian Mountains; Blue Ridge; glaciation; Hemidactylium scutatum; phylogeography; range expansion; riverine barrier NORTH-AMERICAN SALAMANDERS; LIFE-HISTORY EVOLUTION; PLETHODONTID SALAMANDERS; RAPID DIVERSIFICATION; PHYLOGENETIC ANALYSIS; GENUS-PLETHODON; DNA BARCODES; FRESH-WATER; SPECIATION; RATES AimWe assessed the phylogeography of Hemidactylium scutatum across the entire range of the species, quantifying the diversity of populations, and identifying extrinsic factors that may have generated observed patterns of genetic connectivity and distribution. LocationNorth America. MethodsWe performed DNA sequence analysis of the mitochondrial cytochrome oxidase 1 gene of 335 samples collected from 79 field locations distributed throughout the species range. Phylogenetic analyses, patterns of haplotype distribution, DNA mismatch distributions, and partial Mantel tests were performed to estimate divergence times of major clades, identify geographical barriers that determined phylogenetic breaks, and describe a potential scenario for the radiation of the species. ResultsPhylogenetic analyses showed deep sequence divergences with strong support for regional monophyletic groups. Patterns of haplotype distribution suggest that both ancient and modern river drainages acted as barriers to dispersal. Two distinct allopatric clades accounted for all sampling sites within glaciated areas of North America yet showed distinct patterns of recolonization. High levels of haplotype diversity were detected in the southern Appalachians, with several members of widely ranging clades as well as other unique, endemic, and highly divergent lineages. Bayesian analyses estimated the common ancestor of all living Hemidactylium at roughly 8Ma, with the most basal splits confined to the Blue Ridge Mountains. Main conclusionsOur results are consistent with the Out of Appalachia' hypothesis for the origin of Hemidactylium scutatum, lending further support to the importance of this region as a generator of biodiversity in eastern North America. [Herman, Timothy A.; Bouzat, Juan L.] Bowling Green State Univ, Dept Biol Sci, Bowling Green, OH 43403 USA; [Herman, Timothy A.] Toledo Zoo, Toledo, OH USA; [Herman, Timothy A.] Indoor Ecosyst LLC, Whitehouse, OH USA Bouzat, JL (reprint author), Bowling Green State Univ, Dept Biol Sci, Bowling Green, OH 43403 USA. taherman@gmail.com; jbouzat@bgsu.edu Toledo Zoo; Toledo Naturalists' Association We thank Maria Herman and Jeremy Ross for their invaluable support throughout this project, many others who collaborated with sample collection and assisted with identifying collection localities (see Appendix 1 for complete list of collaborators), the Toledo Zoo and The Toledo Naturalists' Association for funding, and R. Andrew Odum and the Toledo Zoo for accommodating TAH collecting trips. We also thank the Associate Editor and four anonymous referees for their constructive suggestions. Bergsten J, 2005, CLADISTICS, V21, P163, DOI 10.1111/j.1096-0031.2005.00059.x; Chalmers RJ, 2006, J HERPETOL, V40, P478, DOI 10.1670/0022-1511(2006)40[478:WAMUBN]2.0.CO;2; Chippindale PT, 2004, EVOLUTION, V58, P2809; CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999; Clement M, 2000, MOL ECOL, V9, P1657, DOI 10.1046/j.1365-294x.2000.01020.x; Crandall KA, 2008, HYDROBIOLOGIA, V595, P295, DOI 10.1007/s10750-007-9120-3; Daniel P. M., 1989, SALAMANDERS OF OHIO, P223; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Edwards S, 2009, MOL ECOL, V18, P2930, DOI 10.1111/j.1365-294X.2009.04270.x; Elliott M. J., 2008, AMPHIBIANS REPTILES, P211; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Felsenstein J., 2004, INFERRING PHYLOGENIE; Fu YX, 1997, GENETICS, V147, P915; Hall TA, 2005, BIOEDIT 7 0 5 BIOL S; Hamed M. K., 2014, THESIS U TENNESSEE K; Hebert PDN, 2003, P ROY SOC B-BIOL SCI, V270, P313, DOI 10.1098/rspb.2002.2218; Hebert PDN, 2004, PLOS BIOL, V2, P1657, DOI 10.1371/journal.pbio.0020312; Herman T., 2009, THESIS BOWLING GREEN; HIGHTON R, 1995, ANNU REV ECOL SYST, V26, P579, DOI 10.1146/annurev.es.26.110195.003051; IUCN, 2015, IUCN RED LIST THREAT; Jelks HL, 2008, FISHERIES, V33, P372, DOI 10.1577/1548-8446-33.8.372; Johnson JA, 2007, MOL ECOL, V16, P2203, DOI 10.1111/j.1365-294X.2007.03285.x; Kozak KH, 2006, MOL ECOL, V15, P191, DOI 10.1111/j.1365-294X.2005.02757.x; Kozak KH, 2005, EVOLUTION, V59, P2000; Lemmon EM, 2007, EVOLUTION, V61, P2086, DOI 10.1111/j.1558-5646.2007.00181.x; Macey JR, 2005, CLADISTICS, V21, P194, DOI 10.1111/j.1096-0031.2005.00054.x; Martinez-Solano I, 2007, MOL ECOL, V16, P4335, DOI 10.1111/j.1365-294X.2007.03527.x; Martinez-Solano I, 2012, MOL PHYLOGENET EVOL, V63, P131, DOI 10.1016/j.ympev.2011.12.026; MOUNT R. H., 1975, REPTILES AMPHIBIANS; Mueller RL, 2006, SYST BIOL, V55, P289, DOI 10.1080/10635150500541672; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; Nylander J. A. A, 2004, MRMODELTEST V2 2; Petranka J. W, 1998, SALAMANDERS US CANAD; PHILLIPS CA, 1999, FIELD GUIDE AMPHIBIA; Quinn J. H., 1958, P ARKANSAS ACAD SCI, V11, P36; RIGGS SR, 1984, SCIENCE, V223, P123, DOI 10.1126/science.223.4632.123; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Schneider S, 1999, GENETICS, V152, P1079; Shen YY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057125; SMOUSE PE, 1986, SYST ZOOL, V35, P627, DOI 10.2307/2413122; Soltis DE, 2006, MOL ECOL, V15, P4261, DOI 10.1111/j.1365-294X.2006.03061.x; Swift C.C., 1986, P213; Swofford DL, 1998, PAUP PHYLOGENETIC AN; TAJIMA F, 1989, GENETICS, V123, P585; Tamura K, 2007, MOL BIOL EVOL, V24, P1596, DOI 10.1093/molbev/msm092; Thurow Gordon R., 1997, Bulletin of the Chicago Herpetological Society, V32, P1; Timpe EK, 2009, MOL PHYLOGENET EVOL, V52, P368, DOI 10.1016/j.ympev.2009.03.023; Toews DPL, 2012, MOL ECOL, V21, P3907, DOI 10.1111/j.1365-294X.2012.05664.x; Vences M, 2005, PHILOS T ROY SOC B, V360, P1859, DOI 10.1098/rstb.2005.1717; Vieites DR, 2007, P NATL ACAD SCI USA, V104, P19903, DOI 10.1073/pnas.0705056104; Wiens JJ, 2006, EVOLUTION, V60, P2585; Wilder I. W., 1920, Copeia New York, V1920 52 5 5 3 25 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0305-0270 1365-2699 J BIOGEOGR J. Biogeogr. APR 2016 43 4 666 678 10.1111/jbi.12679 13 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography DH9ZH WOS:000373154000003 2019-02-21 J Dalongeville, A; Andrello, M; Mouillot, D; Albouy, C; Manel, S Dalongeville, Alicia; Andrello, Marco; Mouillot, David; Albouy, Camille; Manel, Stephanie Ecological traits shape genetic diversity patterns across the Mediterranean Sea: a quantitative review on fishes JOURNAL OF BIOGEOGRAPHY English Review ecological traits; genetic diversity; marine fishes; Mediterranean Sea; microsatellites; mitochondrial DNA; molecular markers; population genetics EFFECTIVE POPULATION-SIZE; BASS DICENTRARCHUS-LABRAX; ATLANTIC BLUEFIN TUNA; LIFE-HISTORY TRAITS; COD GADUS-MORHUA; MARINE POPULATIONS; CLIMATE-CHANGE; MICROSATELLITE MARKERS; GILTHEAD SEA; MITOCHONDRIAL AimWe set out to identify the determinants of the variation in genetic diversity among fish species and test whether multi-species genetic diversity is randomly distributed in space. LocationMediterranean Sea. MethodsWe collected genetic diversity data from 39 published studies on Mediterranean fishes (31 species) along with the spatial coordinates of the sampling sites. We focused on microsatellite heterozygosity (151 data points) and mitochondrial haplotype diversity (201 data points). We used linear regressions to link genetic diversity and 11 ecological traits. We also tested for spatial autocorrelation and trends in the residuals. ResultsAmong-species variation in microsatellite heterozygosity was explained by three ecological traits: vertical distribution, migration type and body length. Variation in mitochondrial haplotype diversity was also explained by vertical distribution and migration type, and by reproductive strategy (semelparity). However, vertical distribution and migration type showed opposite effects on microsatellites and mitochondrial diversity. After accounting for the effects of ecological traits, no spatial pattern was detected, except for one of the species considered. Main conclusionsEcological factors explain an important proportion of the among-species genetic diversity. These results suggest that life history strategies of the species influence the variation of microsatellite diversity indirectly through their effect on effective population size, while the spatial variations of genetic diversity seem to be too complex to be identified in our analysis. We found very different effects of traits on mitochondrial and nuclear DNA diversity, which can be explained by the specificities of mitochondrial DNA (absence of recombination, maternal inheritance and non-neutrality). [Dalongeville, Alicia; Andrello, Marco; Manel, Stephanie] Univ Montpellier 3, Lab Biogeog & Ecol Vertebres, CEFE UMR 5175, EPHE,CNRS, 1919 Route Mende, F-34293 Montpellier 5, France; [Dalongeville, Alicia; Mouillot, David] Univ Montpellier, MARBEC UMR 9190, CNRS, IFREMER,IRD, F-34095 Montpellier, France; [Albouy, Camille] Univ Quebec, Dept Biol Chim & Geog, Rimouski, PQ G5L 3A1, Canada Dalongeville, A (reprint author), Univ Montpellier 3, Lab Biogeog & Ecol Vertebres, CEFE UMR 5175, EPHE,CNRS, 1919 Route Mende, F-34293 Montpellier 5, France. Alicia.dalongeville@cefe.cnrs.fr Andrello, Marco/G-4197-2016; albouy, camille/H-9317-2012 albouy, camille/0000-0003-1629-2389 'Fondation pour la Recherche sur la Biodiversite'; 'Total foundation' through project FISHCONNECT; 'Total foundation' through project SEACONNECT; RAQ Post-Doctoral Fellowship This study was funded by the 'Fondation pour la Recherche sur la Biodiversite' and the 'Total foundation' through the projects FISHCONNECT and SEACONNECT. Camille Albouy was supported by a RAQ Post-Doctoral Fellowship. The authors thank the three anonymous referees for their valuable comments aimed at improving the quality of this paper. Albouy C., 2015, ECOLOGY, V8, P2312; Albouy C, 2013, J BIOGEOGR, V40, P534, DOI 10.1111/jbi.12013; ALLENDORF FW, 1986, ZOO BIOL, V5, P181, DOI 10.1002/zoo.1430050212; Andrello M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068564; Austin MP, 1996, FOREST ECOL MANAG, V85, P95, DOI 10.1016/S0378-1127(96)03753-X; Bahri-Sfar L, 2000, P ROY SOC B-BIOL SCI, V267, P929, DOI 10.1098/rspb.2000.1092; Banks SC, 2013, TRENDS ECOL EVOL, V28, P670, DOI 10.1016/j.tree.2013.08.005; Bazin E, 2006, SCIENCE, V312, P570, DOI 10.1126/science.1122033; Boissin E, 2011, BIOL J LINN SOC, V102, P175, DOI 10.1111/j.1095-8312.2010.01565.x; Borsa P, 1997, VIE MILIEU, V47, P295; Burnham K, 2002, MODEL SELECTION MULT, V2, P49; Carlsson J, 2004, MOL ECOL, V13, P3345, DOI 10.1111/j.1365-294X.2004.02336.x; Casa AM, 2005, THEOR APPL GENET, V111, P23, DOI 10.1007/s00122-005-1952-5; Charlesworth B, 2009, NAT REV GENET, V10, P195, DOI 10.1038/nrg2526; Cheung WWL, 2009, FISH FISH, V10, P235, DOI 10.1111/j.1467-2979.2008.00315.x; CHEVAN A, 1991, AM STAT, V45, P90, DOI 10.2307/2684366; Coll M, 2012, GLOBAL ECOL BIOGEOGR, V21, P465, DOI 10.1111/j.1466-8238.2011.00697.x; COOK RD, 1977, TECHNOMETRICS, V19, P15, DOI 10.2307/1268249; Corbett-Detig RB, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002112; Cowen RK, 2000, SCIENCE, V287, P857, DOI 10.1126/science.287.5454.857; Cowen RK, 2006, SCIENCE, V311, P522, DOI 10.1126/science.1122039; CROW J F, 1970, P591; CROW JF, 1984, P NATL ACAD SCI-BIOL, V81, P6073, DOI 10.1073/pnas.81.19.6073; De Innocentiis S, 2004, FISHERIES SCI, V70, P852, DOI 10.1111/j.1444-2906.2004.00879.x; Debes PV, 2008, MOL ECOL, V17, P3873, DOI 10.1111/j.1365-294X.2008.03872.x; Dufresne F, 2002, MOL ECOL, V11, P113, DOI 10.1046/j.0962-1083.2001.01423.x; Eo SH, 2011, J ZOOL, V283, P220, DOI 10.1111/j.1469-7998.2010.00773.x; Ferchaud AL, 2015, MOL ECOL, V24, P192, DOI 10.1111/mec.13011; Fisher RA, 1930, GENETICAL THEORY NAT; Frankham R, 1997, HEREDITY, V78, P311, DOI 10.1038/hdy.1997.46; Galarza JA, 2009, P NATL ACAD SCI USA, V106, P1473, DOI 10.1073/pnas.0806804106; GREEN RE, 1994, J APPL ECOL, V31, P677, DOI 10.2307/2404158; Guidetti P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0091841; Hale ML, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045170; Hamrick JL, 1996, PHILOS T ROY SOC B, V351, P1291, DOI 10.1098/rstb.1996.0112; Hauser L, 2002, P NATL ACAD SCI USA, V99, P11742, DOI 10.1073/pnas.172242899; Hauser L, 2008, FISH FISH, V9, P333, DOI 10.1111/j.1467-2979.2008.00299.x; Helfman G., 2009, DIVERSITY FISHES BIO; Hellberg ME, 2002, B MAR SCI, V70, P273; Hewitt G, 2000, NATURE, V405, P907, DOI 10.1038/35016000; Hoarau G, 2005, P ROY SOC B-BIOL SCI, V272, P497, DOI 10.1098/rspb.2004.2963; Hoffmann AA, 2008, NAT REV GENET, V9, P421, DOI 10.1038/nrg2339; Hoglund J, 2009, EVOLUTIONARY CONSERVATION GENETICS, P1; Hughes JB, 1997, SCIENCE, V278, P689, DOI 10.1126/science.278.5338.689; HURLBERT SH, 1971, ECOLOGY, V52, P577, DOI 10.2307/1934145; Hutchinson WF, 2003, P ROY SOC B-BIOL SCI, V270, P2125, DOI 10.1098/rspb.2003.2493; Huyse T, 2004, MOL PHYLOGENET EVOL, V32, P324, DOI 10.1016/j.ympev.2003.11.007; Janko K, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-220; Karaiskou N, 2004, MAR ECOL PROG SER, V281, P193, DOI 10.3354/meps281193; Kasapidis P, 2008, FISH RES, V89, P132, DOI 10.1016/j.fishres.2007.09.015; KIMURA M, 1964, GENETICS, V49, P725; Kimura M, 1985, NEUTRAL THEORY MOL E; Landini W, 2005, QUATERN INT, V140, P64, DOI 10.1016/j.quaint.2005.05.019; Lazrek F, 2009, GENETICA, V135, P391, DOI 10.1007/s10709-008-9285-3; Leffler EM, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001388; Lejeusne C, 2010, TRENDS ECOL EVOL, V25, P250, DOI 10.1016/j.tree.2009.10.009; Letourneur Y, 2003, J MAR BIOL ASSOC UK, V83, P193, DOI 10.1017/S0025315403006970h; Lewontin RC, 1974, GENETIC BASIS EVOLUT; Liggins L, 2013, GEOGR COMPASS, V7, P173, DOI 10.1111/gec3.12031; Ludt WB, 2015, J BIOGEOGR, V42, P25, DOI 10.1111/jbi.12416; Luiz OJ, 2013, P NATL ACAD SCI USA, V110, P16498, DOI 10.1073/pnas.1304074110; MAC ARTHUR ROBERT H., 1967; McCusker MR, 2010, MOL ECOL, V19, P4852, DOI 10.1111/j.1365-294X.2010.04822.x; Meiklejohn CD, 2007, TRENDS GENET, V23, P259, DOI 10.1016/j.tig.2007.03.008; Mejri R, 2012, ZOOLOGY, V115, P239, DOI [10.1016/j.zoo1.2012.02.002, 10.1016/j.zool.2012.02.002]; Milana V., 2011, MAR BIOL, V159, P399; MITTON JB, 1989, EVOLUTION, V43, P1712, DOI 10.1111/j.1558-5646.1989.tb02621.x; MORAN PAP, 1950, BIOMETRIKA, V37, P17, DOI 10.2307/2332142; Mouillot D, 2011, CURR BIOL, V21, P1044, DOI 10.1016/j.cub.2011.05.005; Naciri M, 1999, J HERED, V90, P591, DOI 10.1093/jhered/90.6.591; NEI M, 1978, GENETICS, V89, P583; Nei M., 1987, MOL EVOLUTIONARY GEN; Nielsen EE, 2006, MOL ECOL, V15, P3219, DOI 10.1111/j.1365-294X.2006.03025.x; Norberg J, 2012, NAT CLIM CHANGE, V2, P747, DOI [10.1038/nclimate1588, 10.1038/NCLIMATE1588]; Pauls SU, 2013, MOL ECOL, V22, P925, DOI 10.1111/mec.12152; Pinsky ML, 2014, MOL ECOL, V23, P29, DOI 10.1111/mec.12509; Pressey RL, 2007, TRENDS ECOL EVOL, V22, P583, DOI 10.1016/j.tree.2007.10.001; Pruett CL, 2008, J AVIAN BIOL, V39, P252, DOI 10.1111/j.2008.0908-8857.04094.x; Pujolar JM, 2011, MOL PHYLOGENET EVOL, V58, P198, DOI 10.1016/j.ympev.2010.11.019; Quere N, 2012, ECOL EVOL, V2, P3061, DOI 10.1002/ece3.406; R Core Team, 2014, R LANG ENV STAT COMP; Riccioni G, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080105; Riccioni G, 2010, P NATL ACAD SCI USA, V107, P2102, DOI 10.1073/pnas.0908281107; Riginos C, 2013, GEOGR COMPASS, V7, P197, DOI 10.1111/gec3.12032; Romiguier J, 2014, NATURE, V515, P261, DOI 10.1038/nature13685; Ruggeri P, 2013, SCI MAR, V77, P565, DOI 10.3989/scimar.03843.26A; Sala E, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017356; SAUNDERS DA, 1991, CONSERV BIOL, V5, P18, DOI 10.1111/j.1523-1739.1991.tb00384.x; Schunter C, 2011, MOL ECOL, V20, P5167, DOI 10.1111/j.1365-294X.2011.05355.x; Segvic-Bubic T, 2011, AQUACULTURE, V318, P309, DOI 10.1016/j.aquaculture.2011.06.007; Selkoe KA, 2010, MOL ECOL, V19, P3708, DOI 10.1111/j.1365-294X.2010.04658.x; Turan C, 2009, J APPL ICHTHYOL, V25, P142, DOI 10.1111/j.1439-0426.2009.01223.x; Vandergast AG, 2008, BIOL CONSERV, V141, P1648, DOI 10.1016/j.biocon.2008.04.009; Venables WN, 2002, MODERN APPL STAT S; Vinas J, 2010, ICES J MAR SCI, V67, P1222, DOI 10.1093/icesjms/fsq031; Walsh C., 2013, HIER PART HIERARCHIC; Wan QH, 2004, ELECTROPHORESIS, V25, P2165, DOI 10.1002/elps.200305922; Waples RS, 1998, J HERED, V89, P438, DOI 10.1093/jhered/89.5.438; WARD RD, 1994, J FISH BIOL, V44, P213, DOI 10.1111/j.1095-8649.1994.tb01200.x; Watson RA, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8365; White EP, 2007, TRENDS ECOL EVOL, V22, P323, DOI 10.1016/j.tree.2007.03.007; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wright S, 1931, GENETICS, V16, P0097; Zardoya R, 2004, MOL ECOL, V13, P1785, DOI 10.1111/j.1365-294X.2004.02198.x 104 4 4 1 40 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0305-0270 1365-2699 J BIOGEOGR J. Biogeogr. APR 2016 43 4 845 857 10.1111/jbi.12669 13 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography DH9ZH WOS:000373154000018 Bronze 2019-02-21 J Almada, F; Casas, L; Francisco, SM; Villegas-Rios, D; Saborido-Rey, F; Irigoien, X; Robalo, JI Almada, F.; Casas, L.; Francisco, S. M.; Villegas-Rios, D.; Saborido-Rey, F.; Irigoien, X.; Robalo, J. I. On the absence of genetic differentiation between morphotypes of the ballan wrasse Labrus bergylta (Labridae) MARINE BIOLOGY English Article DNA-SEQUENCE DATA; PROTOGYNOUS HERMAPHRODITE; ATLANTIC SALMON; COLOR VARIATION; FISH; MITOCHONDRIAL; SPECIATION; PATTERNS; PRIMERS; BIOLOGY The ballan wrasse, Labrus bergylta (Labridae), is a protogynous hermaphrodite fish common in the north-eastern Atlantic from Norway to Morocco. It is a commercially important resource for local fisheries and is currently being used as cleaner fish to control sea lice in salmon farms in northern Europe. Two distinct colour patterns have been recently reported in the literature: plain and spotted. These individuals follow strikingly different life history strategies raising the question of whether they represent one or two independent taxonomic units. Analyses of mitochondrial (18S, COI and control region) and nuclear (S7) markers revealed no genetic differences between these morphotypes. Alternative explanations for the origin and persistence of distinct morphotypes are discussed. [Almada, F.; Francisco, S. M.; Robalo, J. I.] ISPA Inst Univ, MARE Marine & Environm Sci Ctr, Rua Jardim Tabaco 34, P-1149041 Lisbon, Portugal; [Casas, L.; Irigoien, X.] KAUST, Red Sea Res Ctr, Thuwal, Saudi Arabia; [Villegas-Rios, D.] Flodevigen Marine Res Stn, Inst Marine Res IMR, N-4817 His, Norway; [Saborido-Rey, F.] Inst Marine Res IIM CSIC, Vigo, Spain Almada, F (reprint author), ISPA Inst Univ, MARE Marine & Environm Sci Ctr, Rua Jardim Tabaco 34, P-1149041 Lisbon, Portugal. frederico.almada@gmail.com Irigoien, Xabier/B-8171-2009 Irigoien, Xabier/0000-0002-5411-6741; Robalo, Joana/0000-0002-7470-0574; Almada, Frederico/0000-0002-1389-8951; Francisco, Sara/0000-0003-0907-7453 Eco-Ethology Research Unit' Strategic Plan-Fundacao para a Ciencia e a Tecnologia-FCT (FEDER) [PEst-OE/MAR/UI0331/2011]; FCT [SFRH/BPD/63170/2009, SFRH/BPD/84923/2012]; Marie Curie Intra European Fellowship within the 7th European Community Framework Programme [625852] We thank the help of Patricia Carvalho during field work at Madeira and Sergio Bexiga, Catarina Craveiro, Filipe Tadeu, Ana Patricia Rafael, Catarina Chaves and Ines Castanheira with DNA sequencing. This study was funded by the Eco-Ethology Research Unit' Strategic Plan (PEst-OE/MAR/UI0331/2011)-Fundacao para a Ciencia e a Tecnologia-FCT (partially FEDER funded). F.A. (SFRH/BPD/63170/2009) and S.M.F. (SFRH/BPD/84923/2012) were supported by FCT grants. D.V.R. was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (Grant No. 625852). Almada Vitor, 2002, Arquipelago Boletim da Universidade dos Acores Ciencias Biologicas e Marinhas, V19A, P85; Almada VC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044404; Alonso-Fernandez A, 2011, MAR COAST FISH, V3, P145, DOI 10.1080/19425120.2011.556927; Banon R, 2010, ZOOTAXA, P1; Barreto FS, 2008, EVOLUTION, V62, P226, DOI 10.1111/j.1558-5646.2007.00285.x; Choat JH, 2012, BIOL J LINN SOC, V107, P529, DOI 10.1111/j.1095-8312.2012.01959.x; Chow S, 1998, MOL ECOL, V7, P1255; Clement M, 2000, MOL ECOL, V9, P1657, DOI 10.1046/j.1365-294x.2000.01020.x; Coulson PG, 2009, FISH B-NOAA, V107, P57; D'Arcy J, 2013, ICES J MAR SCI, V70, P685, DOI 10.1093/icesjms/fst018; DIPPER FA, 1979, J ZOOL, V187, P97; Domingues VS, 2007, MOL ECOL, V16, P3592, DOI 10.1111/j.1365-294.X.2007.03405.x; Domingues VS, 2007, J EXP MAR BIOL ECOL, V346, P102, DOI 10.1016/j.jembe.2007.03.002; Elmer KR, 2009, EVOLUTION, V63, P2750, DOI 10.1111/j.1558-5646.2009.00736.x; ELWOOD HJ, 1985, MOL BIOL EVOL, V2, P399; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; Francisco SM, 2011, J EXP MAR BIOL ECOL, V403, P14, DOI 10.1016/j.jembe.2011.03.020; Gavrilets S., 2004, FITNESS LANDSCAPES O; Hanel R, 2002, J MOL EVOL, V55, P776, DOI 10.1007/s00239-002-2373-6; Larkin MA, 2007, BIOINFORMATICS, V23, P2947, DOI 10.1093/bioinformatics/btm404; Maan ME, 2013, SEMIN CELL DEV BIOL, V24, P516, DOI 10.1016/j.semcdb.2013.05.003; Moon-van der Staay SY, 2000, LIMNOL OCEANOGR, V45, P98, DOI 10.4319/lo.2000.45.1.0098; Muncaster S, 2010, J FISH BIOL, V77, P494, DOI 10.1111/j.1095-8649.2010.02691.x; Ostellari L, 1996, ANIM GENET, V27, P423; Puebla O, 2009, J FISH BIOL, V75, P960, DOI 10.1111/j.1095-8649.2009.02358.x; Puebla O, 2007, P R SOC B, V274, P1265, DOI 10.1098/rspb.2006.0435; Quignard JP, 1986, FISHES NE ATLANTIC M; Quintela M, 2014, CONSERV GENET RESOUR, V6, P425, DOI 10.1007/s12686-013-0114-3; Robalo J. I., 2011, ECOL EVOL, V2, P153, DOI DOI 10.1002/ECE3.77; Sambrook J, 2001, MOL CLONING LAB MANU; Sefc KM, 2014, COMP BIOCHEM PHYS A, V173, P42, DOI 10.1016/j.cbpa.2014.03.006; Sherwood GD, 2010, ICES J MAR SCI, V67, P1640, DOI 10.1093/icesjms/fsq094; Skiftesvik AB, 2013, AQUACULTURE, V402, P113, DOI 10.1016/j.aquaculture.2013.03.032; Talbot C, 2012, 54 SCOTT SALM PROD O; TEMPLETON AR, 1992, GENETICS, V132, P619; TREASURER J, 1994, AQUACULTURE, V122, P269, DOI 10.1016/0044-8486(94)90337-9; Villegas-Rios D, 2013, THESIS U VIGO SPAIN; Villegas-Rios D, 2014, J SEA RES, V86, P76, DOI 10.1016/j.seares.2013.11.010; Villegas-Rios D, 2013, MAR FRESHWATER RES, V64, P1156, DOI 10.1071/MF12362; Villegas-Rios D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071591 41 1 1 0 19 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0025-3162 1432-1793 MAR BIOL Mar. Biol. APR 2016 163 4 86 10.1007/s00227-016-2860-8 6 Marine & Freshwater Biology Marine & Freshwater Biology DH8BV WOS:000373019300018 2019-02-21 J Shipley, B; De Bello, F; Cornelissen, JHC; Laliberte, E; Laughlin, DC; Reich, PB Shipley, Bill; De Bello, Francesco; Cornelissen, J. Hans C.; Laliberte, Etienne; Laughlin, Daniel C.; Reich, Peter B. Reinforcing loose foundation stones in trait-based plant ecology OECOLOGIA English Article Comparative ecology; Functional ecology; Intraspecific variation; Environmental gradients RELATIVE GROWTH-RATE; LIFE-HISTORY STRATEGIES; FUNCTIONAL TRAITS; LEAF TRAITS; RAIN-FOREST; INTRASPECIFIC VARIABILITY; SPECIES RANKINGS; ENVIRONMENTAL GRADIENTS; ECOSYSTEM SERVICES; COMMUNITY ECOLOGY The promise of "trait-based" plant ecology is one of generalized prediction across organizational and spatial scales, independent of taxonomy. This promise is a major reason for the increased popularity of this approach. Here, we argue that some important foundational assumptions of trait-based ecology have not received sufficient empirical evaluation. We identify three such assumptions and, where possible, suggest methods of improvement: (i) traits are functional to the degree that they determine individual fitness, (ii) intraspecific variation in functional traits can be largely ignored, and (iii) functional traits show general predictive relationships to measurable environmental gradients. [Shipley, Bill] Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada; [De Bello, Francesco] Acad Sci Czech Republic, FdB Inst Bot, Dukelska 135, Trebon 37982, Czech Republic; [De Bello, Francesco] Univ South Bohemia, Dept Bot, Na Zlate Stoce 1, Ceske Budejovice 37005, Czech Republic; [Cornelissen, J. Hans C.] Vrije Univ Amsterdam, FALW, Dept Ecol Sci, Syst Ecol, Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands; [Laliberte, Etienne] Univ Montreal, IRBV, 4101 Sherbrooke Est, Montreal, PQ H1X 2B1, Canada; [Laughlin, Daniel C.] Univ Waikato, Environm Res Inst, Private Bag 3105, Hamilton 3240, New Zealand; [Laughlin, Daniel C.] Univ Waikato, Sch Sci, Private Bag 3105, Hamilton 3240, New Zealand; [Reich, Peter B.] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA; [Reich, Peter B.] Univ Western Sydney, Hawkesbury Inst Environm, Penrith, NSW 2751, Australia Shipley, B (reprint author), Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada. Bill.Shipley@USherbrooke.ca; d.laughlin@waikato.ac.nz Laliberte, Etienne/B-6855-2008 Laliberte, Etienne/0000-0002-3167-2622; Reich, Peter/0000-0003-4424-662X NSERC This paper has benefited from the comments of Eric Garnier, Sandra Diaz, Phillip Grime, Sandra Lavorel, Hendrik Poorter, Ian Wright, and two anonomous reviewers. Financing was provided by an NSERC Discovery Grant to BS. Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Albert CH, 2012, OIKOS, V121, P116, DOI 10.1111/j.1600-0706.2011.19672.x; Albert CH, 2011, PERSPECT PLANT ECOL, V13, P217, DOI 10.1016/j.ppees.2011.04.003; Albert CH, 2010, FUNCT ECOL, V24, P1192, DOI 10.1111/j.1365-2435.2010.01727.x; Auger S, 2013, J VEG SCI, V24, P419, DOI 10.1111/j.1654-1103.2012.01473.x; BEADLE NCW, 1954, ECOLOGY, V35, P370, DOI 10.2307/1930100; Bradshaw AD, 1987, FUNCT ECOL, V1, P71; Brown AM, 2014, METHODS ECOL EVOL, V5, P344, DOI 10.1111/2041-210X.12163; Calow P, 1987, FUNCT ECOL, V1, P57, DOI 10.2307/2389358; Carter M. R., 1993, SOIL SAMPLING METHOD; Chu CJ, 2014, J VEG SCI, V25, P947, DOI 10.1111/jvs.12106; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; Cornelissen JHC, 2003, J VEG SCI, V14, P311, DOI 10.1111/j.1654-1103.2003.tb02157.x; de Bello F, 2011, METHODS ECOL EVOL, V2, P163, DOI 10.1111/j.2041-210X.2010.00071.x; Dray S, 2008, ECOLOGY, V89, P3400, DOI 10.1890/08-0349.1; Garnier E, 2001, NEW PHYTOL, V152, P69, DOI 10.1046/j.0028-646x.2001.00239.x; Grace J. B, 2006, STRUCTURAL EQUATION; Grime J. P, 1979, PLANT STRATEGIES VEG; Grime J. P., 2001, PLANT STRATEGIES VEG; GRIME JP, 1965, ECOLOGY, V46, P513, DOI 10.2307/1934882; GRIME JP, 1975, J ECOL, V63, P393, DOI 10.2307/2258728; Grime JP, 1988, COMP PLANT ECOLOGY F; Harper J. L., 1977, POPULATION BIOL PLAN; Harper J. L, 1982, PLANT COMMUNITY WORK, P11; Hayes P, 2014, J ECOL, V102, P396, DOI 10.1111/1365-2745.12196; HENDRY GA, 1993, METHODS COMP PLANT E; HUNT R, 1984, J ECOL, V72, P299, DOI 10.2307/2260022; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; Jung V, 2014, J ECOL, V102, P45, DOI 10.1111/1365-2745.12177; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Kazakou E, 2014, J VEG SCI, V25, P235, DOI 10.1111/jvs.12066; KEDDY PA, 1992, J VEG SCI, V3, P157, DOI 10.2307/3235676; Kraft NJB, 2015, P NATL ACAD SCI USA, V112, P797, DOI 10.1073/pnas.1413650112; Kraft NJB, 2010, NEW PHYTOL, V188, P1124, DOI 10.1111/j.1469-8137.2010.03444.x; Lambers H., 1998, PLANT PHYSL ECOLOGY; Lasky JR, 2014, P NATL ACAD SCI USA, V111, P5616, DOI 10.1073/pnas.1319342111; Laughlin DC, 2014, J ECOL, V102, P186, DOI 10.1111/1365-2745.12187; Laughlin DC, 2013, TRENDS PLANT SCI, V18, P584, DOI 10.1016/j.tplants.2013.04.012; Lavorel S, 2012, J ECOL, V100, P128, DOI 10.1111/j.1365-2745.2011.01914.x; Lavorel S, 2011, J ECOL, V99, P135, DOI 10.1111/j.1365-2745.2010.01753.x; Legendre P, 1998, NUMERICAL ECOLOGY; Leps J, 2011, ECOGRAPHY, V34, P856, DOI 10.1111/j.1600-0587.2010.06904.x; Makkonen M, 2012, ECOL LETT, V15, P1033, DOI 10.1111/j.1461-0248.2012.01826.x; McDonald PG, 2003, FUNCT ECOL, V17, P50, DOI 10.1046/j.1365-2435.2003.00698.x; Meziane D, 1999, PLANT CELL ENVIRON, V22, P447, DOI 10.1046/j.1365-3040.1999.00423.x; Meziane D, 1999, FUNCT ECOL, V13, P611, DOI 10.1046/j.1365-2435.1999.00359.x; Meziane D, 2001, ANN BOT-LONDON, V88, P915, DOI 10.1006/anbo.2001.1536; Ordonez JC, 2009, GLOBAL ECOL BIOGEOGR, V18, P137, DOI 10.1111/j.1466-8238.2008.00441.x; Ozinga WA, 2007, J VEG SCI, V18, P489, DOI 10.1658/1100-9233(2007)18[489:LAPOVP]2.0.CO;2; Pearcy R. W., 1991, PLANT PHYSL ECOLOGY; Perez-Harguindeguy N, 2013, AUST J BOT, V61, P167, DOI 10.1071/BT12225; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; Reich PB, 2012, P ROY SOC B-BIOL SCI, V279, P2128, DOI 10.1098/rspb.2011.2270; Roche P, 2004, PLANT ECOL, V174, P37, DOI 10.1023/B:VEGE.0000046056.94523.57; Rose L, 2013, J VEG SCI, V24, P239, DOI 10.1111/j.1654-1103.2012.01455.x; Russo SE, 2010, FUNCT ECOL, V24, P253, DOI 10.1111/j.1365-2435.2009.01670.x; SCOTT D, 1989, NEW ZEAL J ECOL, V12, P89; Shipley B, 2000, PLANT CELL ENVIRON, V23, P1207, DOI 10.1046/j.1365-3040.2000.00635.x; Shipley B, 2000, CAUSE CORRELATION BI; Shipley B, 2007, ANN BOT-LONDON, V99, P965, DOI 10.1093/aob/mcm039; Shipley B, 2014, J VEG SCI, V25, P55, DOI 10.1111/jvs.12077; Shipley B, 2010, ECOLOGY, V91, P2794, DOI 10.1890/09-1255.1; Shipley B, 2010, OIKOS, V119, P604, DOI 10.1111/j.1600-0706.2009.17770.x; Sonnier G, 2012, OIKOS, V121, P1103, DOI 10.1111/j.1600-0706.2011.19871.x; Sonnier G, 2010, J VEG SCI, V21, P1014, DOI 10.1111/j.1654-1103.2010.01210.x; Sterck FJ, 2006, AM NAT, V167, P758, DOI 10.1086/503056; Tilman D, 1988, PLANT STRATEGIES DYN; van Gelder HA, 2006, NEW PHYTOL, V171, P367, DOI 10.1111/j.1469-8137.2006.01757.x; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Violle C, 2012, TRENDS ECOL EVOL, V27, P244, DOI 10.1016/j.tree.2011.11.014; VITOUSEK PM, 1995, ECOLOGY, V76, P712, DOI 10.2307/1939338; Walters MB, 1996, ECOLOGY, V77, P841, DOI 10.2307/2265505; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 76 80 83 15 125 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia APR 2016 180 4 923 931 10.1007/s00442-016-3549-x 9 Ecology Environmental Sciences & Ecology DI0KV WOS:000373186100002 26796410 2019-02-21 J Jourdan, J; Baier, J; Riesch, R; Klimpel, S; Streit, B; Muller, R; Plath, M Jourdan, Jonas; Baier, Jasmin; Riesch, Ruediger; Klimpel, Sven; Streit, Bruno; Muller, Ruth; Plath, Martin Adaptive growth reduction in response to fish kairomones allows mosquito larvae (Culex pipiens) to reduce predation risk AQUATIC SCIENCES English Article Chemical cues; Inducible defense trait; Invasive species; Phenotypic plasticity; Predator-prey interaction; Predator avoidance LIFE-HISTORY EVOLUTION; STICKLEBACK GASTEROSTEUS-ACULEATUS; DIEL VERTICAL MIGRATION; PHENOTYPIC PLASTICITY; BODY-SIZE; BEHAVIORAL-RESPONSES; TRINIDADIAN GUPPIES; DIPTERA-CULICIDAE; POECILIA-MEXICANA; LIVEBEARING FISH Phenotypic plasticity is predicted to evolve when subsequent generations are likely to experience alternating selection pressures; e.g., piscine predation on mosquitoes (Culex pipiens) varies strongly depending on habitat type. A prey-choice experiment (exp. 1) detected a predilection of common mosquito predators (sticklebacks, Gasterosteus aculeatus) for large-bodied mosquito larvae, suggesting that larvae could benefit from suppressing growth under predation risk, and experiment 2 confirmed reduced pupa size and weight when we exposed larvae to stickleback kairomones. In experiment 3, we measured adult (imago) size instead to test if altered larval growth-patterns affect adult life-history traits. We further asked how specific life-history responses are, and thus, also used kairomones from introduced Eastern mosquitofish (Gambusia holbrooki), and from algivorous, non-native catfish (Ancistrus sp.). Adult body mass was equally reduced in all three kairomone treatments, suggesting that a non-specific anti-predator response (e.g., reduced activity) results in reduced food uptake. However, imagines were distinctly smaller only in the stickleback treatment, pointing towards a specific, adaptive life-history shift in response to the presence of a coevolved predator: mosquito larvae appear to suppress growth when exposed to their native predator, which presumably reduces predation risk, but also affects body size after pupation. Our study suggests that (1) not all antipredator responses are necessarily predator-specific, and (2) fluctuation in the cost-benefit ratio of suppressing larval growth has selected for phenotypic plasticity in C. pipiens larval life histories. This implies costs associated with suppressed growth, for example, in the form of lower lifetime reproductive success. [Jourdan, Jonas; Streit, Bruno] Biodivers & Climate Res Ctr BiK F, Senckenberganlage 25, D-60325 Frankfurt, Germany; [Jourdan, Jonas; Baier, Jasmin; Streit, Bruno] Goethe Univ Frankfurt, Dept Ecol & Evolut, Max von Laue Str 13, D-60438 Frankfurt, Germany; [Baier, Jasmin] Goethe Univ Frankfurt, Master Study Program Ecol & Evolut, D-60438 Frankfurt, Germany; [Riesch, Ruediger] Royal Holloway Univ London, Sch Biol Sci, London TW20 0EX, Egham, England; [Klimpel, Sven] Goethe Univ Frankfurt, Dept Integrat Parasitol & Zoophysiol, Max von Laue Str 13, D-60438 Frankfurt, Germany; [Muller, Ruth] Goethe Univ Frankfurt, Inst Occupat Social & Environm Med, Dept Environm Toxicol & Med Entomol, Theodor Stern Kai 7, D-60590 Frankfurt, Germany; [Plath, Martin] Northwest A&F Univ, Coll Anim Sci & Technol, Xinong Rd 22, Yangling 712100, Shaanxi, Peoples R China Jourdan, J (reprint author), Biodivers & Climate Res Ctr BiK F, Senckenberganlage 25, D-60325 Frankfurt, Germany.; Jourdan, J (reprint author), Goethe Univ Frankfurt, Dept Ecol & Evolut, Max von Laue Str 13, D-60438 Frankfurt, Germany.; Plath, M (reprint author), Northwest A&F Univ, Coll Anim Sci & Technol, Xinong Rd 22, Yangling 712100, Shaanxi, Peoples R China. JonasJourdan@googlemail.com; martin_plath@web.de Muller, Ruth/D-2551-2009; Riesch, Rudiger/A-5787-2008; Jourdan, Jonas/Y-7389-2018 Muller, Ruth/0000-0003-3909-3876; Riesch, Rudiger/0000-0002-0223-1254; Jourdan, Jonas/0000-0002-2745-2520 "LOEWE-Landes-Offensive zur Entwicklung Wissenschaftlich-okonomischer Exzellenz'' of the Hessian Ministry of Higher Education, Research, and the Arts We thank H. Geupel and E. Worner, who kindly helped with animal care. We also thank J. Kirchgesser for help with data assessment. Artworks (drawings of C. pipiens larvae and pupae, as well as G. aculeatus) were provided by V. Achenbach (ink-the-ater.com). The present study was prepared at the Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, and financially supported by the research funding program "LOEWE-Landes-Offensive zur Entwicklung Wissenschaftlich-okonomischer Exzellenz'' of the Hessian Ministry of Higher Education, Research, and the Arts. We further thank two anonymous reviewers for their valuable comments that helped to improve the manuscript. The authors do not have any conflict of interests to declare. Afify A, 2015, J MED ENTOMOL, V52, P120, DOI 10.1093/jme/tju024; Agrawal AA, 2001, SCIENCE, V294, P321, DOI 10.1126/science.1060701; ALLAN JD, 1978, LIMNOL OCEANOGR, V23, P1231, DOI 10.4319/lo.1978.23.6.1231; Alvarez M, 2014, ANIM BEHAV, V96, P141, DOI 10.1016/j.anbehav.2014.07.017; Auld JR, 2010, P ROY SOC B-BIOL SCI, V277, P503, DOI 10.1098/rspb.2009.1355; Beketov MA, 2007, ECOL ENTOMOL, V32, P405, DOI 10.1111/j.1365-2311.2007.00889.x; Beklioglu M, 2006, FRESHWATER BIOL, V51, P2200, DOI 10.1111/j.1365-2427.2006.01642.x; Beldade P, 2011, MOL ECOL, V20, P1347, DOI 10.1111/j.1365-294X.2011.05016.x; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; Betancur R R, 2013, PLOS CURR, V5, P5; BRADSHAW WE, 1992, ANN ENTOMOL SOC AM, V85, P274, DOI 10.1093/aesa/85.3.274; BRIEGEL H, 1990, J INSECT PHYSIOL, V36, P165, DOI 10.1016/0022-1910(90)90118-Y; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; Caudill CC, 2003, ECOLOGY, V84, P2133, DOI 10.1890/0012-9658(2003)084[2133:LOABOD]2.0.CO;2; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; DIXON SM, 1988, OECOLOGIA, V76, P200, DOI 10.1007/BF00379953; DODSON S, 1989, BIOSCIENCE, V39, P447, DOI 10.2307/1311136; DODSON SI, 1994, J N AM BENTHOL SOC, V13, P268, DOI 10.2307/1467245; Ferrari MCO, 2010, CAN J ZOOL, V88, P698, DOI 10.1139/Z10-029; FLECKER AS, 1992, ECOLOGY, V73, P438, DOI 10.2307/1940751; Forward RB, 2000, J EXP MAR BIOL ECOL, V245, P277, DOI 10.1016/S0022-0981(99)00169-0; Gilbert S F, 2009, ECOLOGICAL DEV BIOL; HARBACH RE, 1984, P ENTOMOL SOC WASH, V86, P521; HEBERT PDN, 1985, LIMNOL OCEANOGR, V30, P1291, DOI 10.4319/lo.1985.30.6.1291; HEULETT ST, 1995, COPEIA, P97; Huryn AD, 1999, J CHEM ECOL, V25, P2729, DOI 10.1023/A:1020851524335; HYNES HBN, 1950, J ANIM ECOL, V19, P36, DOI 10.2307/1570; Iyengar EV, 2002, MAR ECOL PROG SER, V225, P205, DOI 10.3354/meps225205; Kaufmann C, 2013, BIOL J LINN SOC, V108, P565, DOI 10.1111/j.1095-8312.2012.02042.x; Kesavaraju B, 2004, ANN ENTOMOL SOC AM, V97, P194, DOI 10.1603/0013-8746(2004)097[0194:DBRTWC]2.0.CO;2; Kesavaraju B, 2007, ECOL ENTOMOL, V32, P262, DOI 10.1111/j.1365-2311.2006.00846.x; Kress A, 2014, J PEST SCI, V87, P739, DOI 10.1007/s10340-014-0620-4; KRUEGER DA, 1981, LIMNOL OCEANOGR, V26, P219, DOI 10.4319/lo.1981.26.2.0219; Kumar R, 2006, ZOOL STUD, V45, P447; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Lass S, 2003, HYDROBIOLOGIA, V491, P221, DOI 10.1023/A:1024487804497; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LYIMO EO, 1993, MED VET ENTOMOL, V7, P328, DOI 10.1111/j.1365-2915.1993.tb00700.x; Mack RN, 2000, ECOL APPL, V10, P689, DOI 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2; McCann S, 2009, J VECTOR ECOL, V34, P174, DOI [10.3376/038.034.0202, 10.1111/j.1948-7134.2009.00024.x]; Medlock J.M., 2008, European Mosquito Bulletin, V25, P1; Miyakawa H, 2010, DEV BIOL, V10, P45, DOI DOI 10.1186/1471-213X-10-45; Muller R, 2013, J MED ENTOMOL, V50, P668, DOI 10.1603/ME12094; NEEMS RM, 1990, ANIM BEHAV, V40, P648, DOI 10.1016/S0003-3472(05)80694-3; Nijhout HF, 1996, AM NAT, V148, P40, DOI 10.1086/285910; Nilsson PA, 2000, OIKOS, V88, P539, DOI 10.1034/j.1600-0706.2000.880310.x; OECD, 2004, OECD GUID TEST CHEM; Offill YA, 1999, J AM MOSQUITO CONTR, V15, P380; Ohba SY, 2012, ECOL ENTOMOL, V37, P410, DOI 10.1111/j.1365-2311.2012.01379.x; Palmer MA, 1997, J N AM BENTHOL SOC, V16, P169, DOI 10.2307/1468249; Pease KM, 2014, OECOLOGIA, V174, P241, DOI 10.1007/s00442-013-2745-1; Peckarsky BL, 2001, ECOLOGY, V82, P740, DOI 10.1890/0012-9658(2001)082[0740:VIMSAM]2.0.CO;2; Plath M, 2003, BEHAV ECOL SOCIOBIOL, V54, P303, DOI 10.1007/s00265-003-0625-0; Relyea RA, 2003, ECOLOGY, V84, P1827, DOI 10.1890/0012-9658(2003)084[1827:HPRTCP]2.0.CO;2; Relyea RA, 2001, ECOLOGY, V82, P523, DOI 10.1890/0012-9658(2001)082[0523:MABPOL]2.0.CO;2; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; ROSENHEIM JA, 1995, BIOL CONTROL, V5, P303, DOI 10.1006/bcon.1995.1038; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Salo P, 2007, P ROY SOC B-BIOL SCI, V274, P1237, DOI 10.1098/rspb.2006.0444; Schneider RF, 2014, MOL ECOL, V23, P4511, DOI 10.1111/mec.12851; SIH A, 1986, ECOLOGY, V67, P434, DOI 10.2307/1938587; Snell-Rood EC, 2010, BIOESSAYS, V32, P71, DOI 10.1002/bies.200900132; Sommer RJ, 2011, CURR BIOL, V21, pR758, DOI 10.1016/j.cub.2011.06.034; Spencer M, 2002, ECOLOGY, V83, P669, DOI 10.2307/3071872; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stevens DJ, 1999, P ROY SOC B-BIOL SCI, V266, P1049, DOI 10.1098/rspb.1999.0742; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; TWOHY DW, 1957, AM J HYG, V65, P316, DOI 10.1093/oxfordjournals.aje.a119871; van Uitregt VO, 2012, J ANIM ECOL, V81, P108, DOI 10.1111/j.1365-2656.2011.01880.x; Vidal O, 2010, BIOL INVASIONS, V12, P841, DOI 10.1007/s10530-009-9505-5; Vinogradova EB, 2000, CULEX PIPIENS PIPIEN; Walker JA, 1997, BIOL J LINN SOC, V61, P3, DOI 10.1006/bijl.1996.9999; Wellborn GA, 2005, OECOLOGIA, V143, P308, DOI 10.1007/s00442-004-1786-x; WERNER EE, 1974, J FISH RES BOARD CAN, V31, P1531, DOI 10.1139/f74-186; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435 79 4 4 1 45 SPRINGER BASEL AG BASEL PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND 1015-1621 1420-9055 AQUAT SCI Aquat. Sci. APR 2016 78 2 303 314 10.1007/s00027-015-0432-5 12 Environmental Sciences; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DH2FG WOS:000372599000009 2019-02-21 J Moore, MP; Riesch, R; Martin, RA Moore, Michael P.; Riesch, Ruediger; Martin, Ryan A. The predictability and magnitude of life-history divergence to ecological agents of selection: a meta-analysis in livebearing fishes ECOLOGY LETTERS English Article Divergent natural selection; life-history evolution; maternal investment; Poeciliidae; reproductive allocation GUPPIES POECILIA-RETICULATA; NATURAL-POPULATIONS; TRINIDADIAN GUPPIES; INDIVIDUAL QUALITY; OFFSPRING SIZE; LIVE-BEARING; TRADE-OFF; EVOLUTION; ENVIRONMENTS; COMPETITION Environments causing variation in age-specific mortality - ecological agents of selection - mediate the evolution of reproductive life-history traits. However, the relative magnitude of life-history divergence across selective agents, whether divergence in response to specific selective agents is consistent across taxa and whether it occurs as predicted by theory, remains largely unexplored. We evaluated divergence in offspring size, offspring number, and the trade-off between these traits using a meta-analysis in livebearing fishes (Poeciliidae). Life-history divergence was consistent and predictable to some (predation, hydrogen sulphide) but not all (density, food limitation, salinity) selective agents. In contrast, magnitudes of divergence among selective agents were similar. Finally, there was a negative, asymmetric relationship between offspring-number and offspring-size divergence, suggesting greater costs of increasing offspring size than number. Ultimately, these results provide strong evidence for predictable and consistent patterns of reproductive life-history divergence and highlight the importance of comparing phenotypic divergence across species and ecological selective agents. [Moore, Michael P.; Martin, Ryan A.] Case Western Reserve Univ, Dept Biol, Cleveland, OH 44106 USA; [Riesch, Ruediger] Univ London, Sch Biol Sci, Egham TW20 0EX, Surrey, England Moore, MP (reprint author), Case Western Reserve Univ, Dept Biol, Cleveland, OH 44106 USA. mpm116@case.edu Riesch, Rudiger/A-5787-2008 Riesch, Rudiger/0000-0002-0223-1254 Auer SK, 2010, ECOL LETT, V13, P998, DOI 10.1111/j.1461-0248.2010.01491.x; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Calsbeek R, 2010, NATURE, V465, P613, DOI 10.1038/nature09020; Czesak ME, 2003, EVOLUTION, V57, P1121; Duponchelle F, 2008, P NATL ACAD SCI USA, V105, P15475, DOI 10.1073/pnas.0802343105; Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Ghalambor CK, 2015, NATURE, V525, P372, DOI 10.1038/nature15256; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hamel S, 2009, ECOLOGY, V90, P1981, DOI 10.1890/08-0596.1; Hereford J, 2004, EVOLUTION, V58, P2133; Johnson Jerald B., 2011, P38; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; Kingsolver JG, 2012, EVOL ECOL, V26, P1101, DOI 10.1007/s10682-012-9563-5; Langerhans RB, 2013, CURR ZOOL, V59, P31, DOI 10.1093/czoolo/59.1.31; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Lim JN, 2014, EVOLUTION, V68, P2306, DOI 10.1111/evo.12446; Lind M. I., 2015, P R SOC B, V282, DOI [10.1089/rspb.2015.1651., DOI 10.1089/RSPB.2015.1651]; Lindholm AK, 2006, BIOL LETTERS, V2, P586, DOI 10.1098/rsbl.2006.0546; Losos JB, 2011, EVOLUTION, V65, P1827, DOI 10.1111/j.1558-5646.2011.01289.x; LYNCH M, 1991, EVOLUTION, V45, P1065, DOI 10.1111/j.1558-5646.1991.tb04375.x; MacColl ADC, 2011, TRENDS ECOL EVOL, V26, P514, DOI 10.1016/j.tree.2011.06.009; Martin RA, 2009, AM NAT, V174, P268, DOI 10.1086/600090; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Moore MP, 2015, ECOLOGY, V96, P2499, DOI 10.1890/14-1602.1; Nakagawa S, 2012, EVOL ECOL, V26, P1253, DOI 10.1007/s10682-012-9555-5; Olivera-Tlahuel C, 2015, BIOL J LINN SOC, V116, P787, DOI 10.1111/bij.12662; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Plath M, 2013, EVOLUTION, V67, P2647, DOI 10.1111/evo.12133; Pollux BJA, 2014, NATURE, V513, P233, DOI 10.1038/nature13451; Pollux BJA, 2009, ANNU REV ECOL EVOL S, V40, P271, DOI 10.1146/annurev.ecolsys.110308.120209; POWELL E, 1989, J MAR RES, V47, P887, DOI 10.1357/002224089785076082; QUALLS CP, 1995, OECOLOGIA, V103, P73, DOI 10.1007/BF00328427; R Core Team, 2014, R LANG ENV STAT COMP; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Riesch R, 2014, ECOL LETT, V17, P65, DOI 10.1111/ele.12209; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; ROFF DA, 2002, LIFE HIST EVOLUTION; Rundle HD, 2005, ECOL LETT, V8, P336, DOI 10.1111/j.1461-0248.2004.00715.x; Schlichting CD, 2014, EVOLUTION, V68, P656, DOI 10.1111/evo.12348; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; Swanson C, 1998, J EXP BIOL, V201, P3355; Uller T, 2013, J EVOLUTION BIOL, V26, P2161, DOI 10.1111/jeb.12212; vansNoordwijk A. J., 1986, AM NAT, V128, P137, DOI DOI 10.1086/284547; WADE MJ, 1990, EVOLUTION, V44, P1947, DOI 10.1111/j.1558-5646.1990.tb04301.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956 51 11 11 4 38 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. APR 2016 19 4 435 442 10.1111/ele.12576 8 Ecology Environmental Sciences & Ecology DH2YZ WOS:000372654800009 26879778 2019-02-21 J Unander, S; Pedersen, AO; Soininen, EM; Descamps, S; Hornell-Willebrand, M; Fuglei, E Unander, Sigmund; Pedersen, Ashild O.; Soininen, Eeva M.; Descamps, Sebastien; Hornell-Willebrand, Maria; Fuglei, Eva Populations on the limits: survival of Svalbard rock ptarmigan JOURNAL OF ORNITHOLOGY English Article Climatic variability; Lagopus muta hyperborea; Population dynamics; 'Slow-fast-continuum'; Survival analysis LAGOPUS-MUTUS-HYPERBOREUS; LIFE-HISTORY STRATEGIES; AVIAN CLUTCH SIZE; LATITUDINAL GRADIENTS; EXTREME ENVIRONMENTS; EXPERIMENTAL HARVEST; WILLOW PTARMIGAN; ALPINE PTARMIGAN; CLIMATE; BIRDS Predictable variation in demographic patterns among populations inhabiting extreme environments can be used to direct common management actions. Ptarmigan and other grouse are ecologically important herbivores in Arctic and alpine areas, but survival estimates are lacking for many harvested populations. This hampers more detailed assessment of how this key determinant of population growth rate is related to environmental variability and whether there is predictable between-population variation. In this article, we estimated apparent survival by age and sex of the endemic high-Arctic Svalbard rock ptarmigan (Lagopus muta hyperborea) using a 6-year mark-recapture dataset from the west coast of Spitsbergen (1980-1986). Second, we tested whether seasonal climatic variability explained temporal variation in adult survival rates. Within the Svalbard rock ptarmigan population, annual adult survival did not differ between the sexes, but varied among locations. Temporal variation in adult survival was limited and could not be explained by climatic variability. A review of inter-population comparisons of vital rates (survival and reproduction) of rock ptarmigan populations suggested that the high-Arctic, low-elevation Svalbard rock ptarmigan populations resemble their low-Arctic counterparts, and settles at the 'low survival-high reproduction' end of the 'slow-fast continuum'. The demographic traits of high-Arctic ptarmigan contrast with the 'high survival-low reproduction' of rock ptarmigan populations at low latitudes and high elevations. Our study demonstrated that spatial variation in survival rates exists both within and between Svalbard rock ptarmigan populations. We suggest that further studies focus on ecological gradients underlying the spatial variation of life history and thus shape the population dynamics and long-term resilience. [Unander, Sigmund] Holte, N-4760 Birkeland, Norway; [Pedersen, Ashild O.; Descamps, Sebastien; Fuglei, Eva] Norwegian Polar Res Inst, Fram Ctr, N-9296 Tromso, Norway; [Soininen, Eeva M.] UiT Arctic Univ Norway, N-9037 Tromso, Norway; [Hornell-Willebrand, Maria] Hedmark Univ Coll, Dept Forestry & Wildlife Management, Campus Evenstad, N-2418 Evenstad, Norway; [Hornell-Willebrand, Maria] Swedish Environm Protect Agcy, Res & Assessment Dept, Wildlife Unit, Forskarens Vag 5, Ostersund, Sweden Pedersen, AO (reprint author), Norwegian Polar Res Inst, Fram Ctr, N-9296 Tromso, Norway. sigmund.unander@online.no; aashild.pedersen@npolar.no; eeva.soininen@uit.no; sebastien.descamps@npolar.no; maria.hornell-willebrand@naturvardsverket.se; eva.fuglei@npolar.no Soininen, Eeva/0000-0003-4280-8350 Norwegian Polar Institute; Svalbards Miljovernfond Funding for publishing the capture-mark-recapture Svalbard rock ptarmigan data (1980-1982 and 1984-1986) was provided by the Norwegian Polar Institute and Svalbards Miljovernfond. Hedmark University College, Department of Forestry and Wildlife Management, and UiT The Arctic University of Norway contributed personnel for writing this publication. The fieldwork in Brogger Peninsula and surrounding areas was funded by the Norwegian Polar Institute. Permissions for capturing ptarmigan were obtained from the governor of Svalbard, according to present regulations. The study complied with existing regulations in the 1980s regarding capture of wildlife in Svalbard. We thank Oddveig Oien Orvoll for graphical assistance, Anders Skoglund for converting GIS files, and Brett K. Sandercock and one anonymous reviewer for a careful and constructive review. Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; BERGERUD AT, 1985, CAN J ZOOL, V63, P2240, DOI 10.1139/z85-332; Bergerud AT, 1963, J WILDLIFE MANAGE, V25, P337; BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Chapman DS, 2009, J ANIM ECOL, V78, P476, DOI 10.1111/j.1365-2656.2008.01496.x; Choquet R., 2004, Animal Biodiversity and Conservation, V27, P207; CHOQUET R, 2003, USERS MANUAL U CARE; COTTER RC, 1995, J WILDLIFE MANAGE, V59, P93, DOI 10.2307/3809120; Cotter RC, 1999, ARCTIC, V52, P23; COTTER RC, 1992, J RAPTOR RES, V26, P146; DOBSON FS, 1992, AM NAT, V140, P109, DOI 10.1086/285405; ELVEBAKK A, 1994, J VEG SCI, V5, P791, DOI 10.2307/3236194; ELVEBAKK A, 1999, SPECIES CONCEPT HIGH, P81; Forland EJ, 2012, ADV METEROL, V2012, P1, DOI DOI 10.1155/2011/893790; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Gardarsson A., 1988, P300; Griebeler EM, 2010, J EVOLUTION BIOL, V23, P888, DOI 10.1111/j.1420-9101.2010.01958.x; Griebeler EM, 2004, EVOL ECOL RES, V6, P679; Grosbois V, 2008, BIOL REV, V83, P357, DOI 10.1111/j.1469-185X.2008.00047.x; Hansen BB, 2013, SCIENCE, V339, P313, DOI 10.1126/science.1226766; Hille SM, 2015, BIOL REV, V90, P204, DOI 10.1111/brv.12106; Hoglund N, 1952, MEDDELELSER, V18, P1; Hornell-Willebrand M, 2014, J WILDLIFE MANAGE, V78, P194, DOI 10.1002/jwmg.650; Ims R. A, 2013, SCI PLAN COAT CLIMAT; INNES DGL, 1990, HOLARCTIC ECOL, V13, P207; Pachauri R. K., 2014, CLIMATE CHANGE 2014; Johansen BE, 2012, POLAR REC, V48, P47, DOI 10.1017/S0032247411000647; Kaler RSA, 2010, WILSON J ORNITHOL, V122, P1, DOI 10.1676/08-099.1; KREMENTZ DG, 1984, OIKOS, V43, P256, DOI 10.2307/3544780; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lovenskiold HL, 1964, AVIFAUNA SVALBRDENSI; Martin K, 2004, INTEGR COMP BIOL, V44, P177, DOI 10.1093/icb/44.2.177; Martin K, 2011, GRYFALCONS PTARMIGAN, VI, P45; McKinnon L, 2010, SCIENCE, V327, P326, DOI 10.1126/science.1183010; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Mortensen A, 1985, THESIS U TROMSO TROM; Moss R, 2001, ADV ECOL RES, V32, P53, DOI 10.1016/S0065-2504(01)32011-1; Mossop D.H., 1988, P330; Nordli O, 2014, POLAR RES, V33, DOI 10.3402/polar.v33.21349; Novoa C, 2011, STUD AVIAN BIOL, P267; Pedersen AO, 2007, CAN J ZOOL, V85, P122, DOI 10.1139/Z06-197; Pedersen AO, 2014, EUR J WILDLIFE RES, V60, P201, DOI 10.1007/s10344-013-0766-z; Pedersen AO, 2012, J WILDLIFE MANAGE, V76, P308, DOI 10.1002/jwmg.276; Putkonen J, 2003, GEOPHYS RES LETT, V30, DOI 10.1029/2002GL016326; Ricklefs RE, 2000, CONDOR, V102, P3, DOI 10.1650/0010-5422(2000)102[0003:LSAMTE]2.0.CO;2; Saether BE, 2004, ADV ECOL RES, V35, P185, DOI 10.1016/S0065-2504(04)35009-9; Sandercock BK, 2005, OECOLOGIA, V146, P13, DOI 10.1007/s00442-005-0174-5; Sandercock BK, 2005, ECOLOGY, V86, P2176, DOI 10.1890/04-0563; Sandercock BK, 2006, J WILDLIFE MANAGE, V70, P1504, DOI 10.2193/0022-541X(2006)70[1504:EODPFL]2.0.CO;2; Sandercock BK, 2011, J ANIM ECOL, V80, P244, DOI 10.1111/j.1365-2656.2010.01769.x; STEEN JB, 1985, ORNIS SCAND, V16, P191, DOI 10.2307/3676630; Storch IE, 2007, GROUSE STATUS CONSER; Suzuki A, 2013, WILDLIFE BIOL, V19, P339, DOI 10.2981/13-021; UNANDER S, 1985, ORNIS SCAND, V16, P198, DOI 10.2307/3676631; van der Wal R, 2014, ECOLOGY, V95, P3414, DOI 10.1890/14-0533.1; Wang GM, 2002, CLIM RES, V23, P81, DOI 10.3354/cr023081; Weeden RB, 1965, P N AM WILDLIFE C, V30, P336; Wilson S, 2011, GYRFALCONS PTARMIGAN, VI, P137; Wilson S, 2012, BMC ECOL, V12, DOI 10.1186/1472-6785-12-9; Wilson S, 2010, J AVIAN BIOL, V41, P319, DOI 10.1111/j.1600-048X.2009.04945.x; WILSON SD, 2008, THESIS U BRIT COLUMB 62 3 3 1 33 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 1439-0361 J ORNITHOL J. Ornithol. APR 2016 157 2 407 418 10.1007/s10336-015-1282-6 12 Ornithology Zoology DG7KY WOS:000372264400003 2019-02-21 J Pretelli, MG; Isacch, JP; Cardoni, DA Pretelli, Matias G.; Isacch, Juan P.; Cardoni, Daniel A. Variation in parental care in the spectacled tyrant Hymenops perspicillatus is associated with increased nest predation in grassland fragments JOURNAL OF ORNITHOLOGY English Article Nest predation risk; Behavioral changes; Grassland bird; Nestling feeding rate; South America; Tyrannidae LIFE-HISTORY EVOLUTION; SONG SPARROWS; PAMPAS REGION; REPRODUCTIVE STRATEGIES; NUTRITIONAL STRESS; SUPPLEMENTAL FOOD; MELOSPIZA-MELODIA; TALLGRASS PRAIRIE; BREEDING BIRDS; SITE SELECTION Predation risk on birds is often an important source of natural selection that shapes parental care and may promote behavioral changes. Parents can often estimate certain risks and adjust their behavior to reduce the likelihood of nest predation. The fragmentation of habitats is one of the main consequences of loss of habitats, and in general, for birds breeding in smaller patches, their daily nest-survival rate is lower due to increased nest predation. Since nest survival is an estimate of predation risk in the environment, we evaluated the daily survival rate (DSR) for nests of spectacled tyrants (Hymenops perspicillatus) and parental care behavior on fragmented and unfragmented grasslands. We conducted nest searching and monitoring during the 2012-2013 breeding season in small patches and in a continuous patch of grassland. In addition, parental activity was recorded using video monitoring. We found a lower DSR for the spectacled tyrant in fragmented grasslands, associated with increased nest predation risk; females showed a variation in parental care. This variation was evidenced by larger incubation bouts and lower visitation rate during the incubation period, and by a lower food delivery rate to nestlings, compensated by larger prey sizes. The results show that fragmentation not only reduces the fitness of individuals and impacts adversely on population, but individuals are also subjected to a strong selection pressure, and their reproductive success may depend to some extent on the ability of parents to estimate at least certain predation risk and adjust their behavior in this regard. [Pretelli, Matias G.; Isacch, Juan P.; Cardoni, Daniel A.] Univ Nacl Mar Del Plata, Consejo Nacl Invest Cient & Tecn, Lab Vertebrados, Inst Invest Marinas & Costeras IIMyC, B7602AYJ, RA-3250 Mar Del Plata, Argentina Pretelli, MG (reprint author), Univ Nacl Mar Del Plata, Consejo Nacl Invest Cient & Tecn, Lab Vertebrados, Inst Invest Marinas & Costeras IIMyC, B7602AYJ, RA-3250 Mar Del Plata, Argentina. matiaspretelli@gmail.com Neotropical Grassland Conservancy (NGC); Beca "Conservar la Argentina" (Aves Argentinas); Universidad Nacional de Mar del Plata; Agencia de Promocion Cientifica y Tecnologica [PICT 12-461]; CONICET This paper benefitted from the comments of two anonymous reviewers. We thank Diego Metzadour for the language editing. The research received financial support from Neotropical Grassland Conservancy (NGC), Beca "Conservar la Argentina" (Aves Argentinas), Universidad Nacional de Mar del Plata, and Agencia de Promocion Cientifica y Tecnologica (PICT 12-461). MGP was supported by a doctoral scholarship from CONICET. ANDREN H, 1994, OIKOS, V71, P355, DOI 10.2307/3545823; ARCESE P, 1988, J ANIM ECOL, V57, P119, DOI 10.2307/4768; Cardoni DA, 2012, CONDOR, V114, P803, DOI 10.1525/cond.2012.110186; Baladron AV, 2012, AUST J ZOOL, V60, P238, DOI 10.1071/ZO12037; Baldi G, 2006, AGR ECOSYST ENVIRON, V116, P197, DOI 10.1016/j.agee.2006.02.009; Batary P, 2004, CONSERV BIOL, V18, P389, DOI 10.1111/j.1523-1739.2004.00184.x; Bilenca D, 2004, IDENTIFICACION AREAS; Bollinger EK, 2004, AUK, V121, P767, DOI 10.1642/0004-8038(2004)121[0767:RONBDO]2.0.CO;2; Cabrera A., 1976, ENCICLOPEDIA ARGENTI; Canepuccia AD, 2008, CAN J ZOOL, V86, P407, DOI 10.1139/Z08-007; Cavalli M, 2014, EMU, V114, P184, DOI 10.1071/MU13040; Chalfoun AD, 2002, CONSERV BIOL, V16, P306, DOI 10.1046/j.1523-1739.2002.00308.x; Chalfoun AD, 2010, CONDOR, V112, P701, DOI 10.1525/cond.2010.090242; Conway CJ, 2000, EVOLUTION, V54, P670; Crawley M. J., 2007, R BOOK; Donovan TM, 1997, ECOLOGY, V78, P2064, DOI 10.1890/0012-9658(1997)078[2064:VILSEE]2.0.CO;2; Eggers S, 2005, BEHAV ECOL, V16, P309, DOI 10.1093/beheco/arh163; Ellison KS, 2012, STUD AVIAN BIOL, P149; Ferretti V, 2005, P ROY SOC B-BIOL SCI, V272, P769, DOI 10.1098/rspb.2004.3039; Fitzpatrick J., 2004, HDB BIRDS WORLD, P170; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Ghalambor CK, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0154; Ghalambor CK, 2002, BEHAV ECOL, V13, P101, DOI 10.1093/beheco/13.1.101; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Pretelli MG, 2013, ARDEOLA, V60, P327, DOI 10.13157/arla.60.2.2013.327; Herkert JR, 2003, CONSERV BIOL, V17, P587, DOI 10.1046/j.1523-1739.2003.01418.x; HINES JE, 1989, PROGRAM CONTRAST GEN; JOHNSON RG, 1990, J WILDLIFE MANAGE, V54, P106, DOI 10.2307/3808909; Kearns LJ, 2013, J ORNITHOL, V154, P163, DOI 10.1007/s10336-012-0882-7; Kempster B, 2007, OECOLOGIA, V151, P365, DOI 10.1007/s00442-006-0597-7; Kendeigh S. C., 1952, Illinois Biological Monographs, V22, P1; Kleindorfer S, 2007, IBIS, V149, P730, DOI 10.1111/j.1474-919X.2007.00694.x; KNIGHT RL, 1986, AUK, V103, P318; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lahti D. C., 2001, BIOL CONSERV, V99, P363; LEON R J C, 1984, Phytocoenologia, V12, P201; Lima SL, 1998, BIOSCIENCE, V48, P25, DOI 10.2307/1313225; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; MacDonald IF, 2006, P ROY SOC B-BIOL SCI, V273, P2559, DOI 10.1098/rspb.2006.3547; Martin T.E., 1992, Current Ornithology, V9, P163; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1988, CONDOR, V90, P51, DOI 10.2307/1368432; MARTIN TE, 1993, J FIELD ORNITHOL, V64, P507; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Massaro M, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002331; Mattos E, 2011, 14 REUN ARG ORN CIUD, P105; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Naef-Daenzer B, 1999, J ANIM ECOL, V68, P708, DOI 10.1046/j.1365-2656.1999.00318.x; Nagy LR, 2005, ECOLOGY, V86, P675, DOI 10.1890/04-0155; Paruelo J.M., 2005, CIENCIA HOY, V15, P14; Peluc SI, 2008, BEHAV ECOL, V19, P830, DOI 10.1093/beheco/arn033; Pietz PJ, 2005, AUK, V122, P701, DOI 10.1642/0004-8038(2005)122[0701:PNDOVM]2.0.CO;2; Pretelli MG, 2015, IBIS, V157, P688, DOI 10.1111/ibi.12292; Pretelli MG, 2014, WILSON J ORNITHOL, V126, P754, DOI 10.1676/14-001.1; Pretelli MG, 2013, WILSON J ORNITHOL, V125, P275, DOI 10.1676/12-143.1; Pretelli MG, 2015, THESIS U NACL MAR DE; R Development Core Team, 2013, R LANG ENV STAT COMP; Rastogi AD, 2006, ANIM BEHAV, V72, P933, DOI 10.1016/j.anbehav.2006.03.006; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Siegel S, 1985, ESTADISTICA PARAMETR; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Sofaer HR, 2013, BEHAV ECOL, V24, P698, DOI 10.1093/beheco/ars212; Tremblay I, 2003, ECOLOGY, V84, P3033, DOI 10.1890/02-0663; Viglizzo EF, 2001, AGR ECOSYST ENVIRON, V83, P65, DOI 10.1016/S0167-8809(00)00155-9; Wagner RH, 2010, OIKOS, V119, P203, DOI 10.1111/j.1600-0706.2009.17315.x; Walk JW, 2010, AUK, V127, P328, DOI 10.1525/auk.2009.09180; Ward JM, 1996, AUK, V113, P200; Weidinger K, 2002, J ANIM ECOL, V71, P424, DOI 10.1046/j.1365-2656.2002.00611.x; Wesolowski T, 2004, BEHAV ECOL, V15, P520, DOI 10.1093/beheco/arh039; White GC, 1999, BIRD STUDY, V46, P120; WILCOVE DS, 1985, ECOLOGY, V66, P1211, DOI 10.2307/1939174; Winter M, 2000, CONDOR, V102, P256, DOI 10.1650/0010-5422(2000)102[0256:EFEEOM]2.0.CO;2; Zanette L, 2006, OECOLOGIA, V147, P632, DOI 10.1007/s00442-005-0330-y; Zanette LY, 2011, SCIENCE, V334, P1398, DOI 10.1126/science.1210908; Zar J. H., 1999, BIOSTATISTICAL ANAL 78 4 4 1 31 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 1439-0361 J ORNITHOL J. Ornithol. APR 2016 157 2 451 460 10.1007/s10336-015-1300-8 10 Ornithology Zoology DG7KY WOS:000372264400007 2019-02-21 J Lehtonen, J; Jaatinen, K Lehtonen, Jussi; Jaatinen, Kim Safety in numbers: the dilution effect and other drivers of group life in the face of danger BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Review Selfish herding; Predator-prey interactions; Predation rate; Stochastic process; Group formation; Life-history evolution PREDATOR HUNTING SUCCESS; GROUP-SIZE; FUNCTIONAL-RESPONSE; MARINE INSECT; SELFISH HERD; SHOAL SIZE; BEHAVIOR; EVOLUTION; RISK; VIGILANCE Animals can congregate in groups for many reasons, from reproductive assurance to improved foraging or predation efficiency, to avoiding themselves becoming the target of predation by other animals. It is the last category that is the focus of this review: group living as protection from predation. The drivers of group life in the face of danger are at the same time diverse and interlinked, with much potential for confusion between concepts. Here we review these concepts, using the dilution effect as a starting point. We construct a mathematical model that allows us to examine various features of the dilution effect and their connection to ecology. We also show the importance of including a time scale when modelling the dilution effect and how this translates into more realistic estimation of the fitness consequences of a diluted predation risk. The central role of the dilution effect in creating safety in numbers is underlined by showing how it may affect life-history evolution and result in the emergence of gregarious life-history strategies, even among sessile organisms limited in their abilities to exhibit behavioural responses to predation. Finally, we review the other central processes underpinning group protection from predation: the satiation effect, selfish herding, the confusion effect and group vigilance. [Lehtonen, Jussi] Univ New S Wales, Sch Biol Earth & Environm Sci, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia; [Jaatinen, Kim] Novia Univ Appl Sci, ARONIA Coastal Zone Res Team, Raseborgsvagen 9, FI-10600 Ekenas, Finland Jaatinen, K (reprint author), Novia Univ Appl Sci, ARONIA Coastal Zone Res Team, Raseborgsvagen 9, FI-10600 Ekenas, Finland. kim.jaatinen@gmail.com Kone Foundation; University of New South Wales Vice-Chancellor's Postdoctoral Research Fellowship; Academy of Finland [266208]; Finnish Cultural foundation We are grateful to Hanna Kokko for the many discussions on the topic and for the constructive feedback on early versions of the manuscript. Two anonymous reviewers provided further comments which significantly improved this work. JL was funded by the Kone Foundation and a University of New South Wales Vice-Chancellor's Postdoctoral Research Fellowship. KJ was funded by the Academy of Finland (grant number 266208) and the Finnish Cultural foundation. Ballerini M, 2008, ANIM BEHAV, V76, P201, DOI 10.1016/j.anbehav.2008.02.004; Beauchamp G, 2003, BEHAV PROCESS, V63, P111, DOI 10.1016/S0376-6357(03)00002-0; Beauchamp G, 2003, AM NAT, V161, P672, DOI 10.1086/368225; Bednekoff PA, 2004, P ROY SOC B-BIOL SCI, V271, P1491, DOI 10.1098/rspb.2004.2739; Bednekoff PA, 1998, P ROY SOC B-BIOL SCI, V265, P2021, DOI 10.1098/rspb.1998.0535; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1975, AM NAT, V109, P107, DOI 10.1086/282979; CLARK CW, 1986, THEOR POPUL BIOL, V30, P45, DOI 10.1016/0040-5809(86)90024-9; Cockrem JF, 2002, GEN COMP ENDOCR, V125, P248, DOI 10.1006/gcen.2001.7749; Courchamp F, 1999, TRENDS ECOL EVOL, V14, P405, DOI 10.1016/S0169-5347(99)01683-3; Couzin ID, 2002, J THEOR BIOL, V218, P1, DOI 10.1006/yjtbi.3065; CRESSWELL W, 1994, ANIM BEHAV, V47, P433, DOI 10.1006/anbe.1994.1057; Cresswell W, 2011, J ANIM ECOL, V80, P310, DOI 10.1111/j.1365-2656.2010.01775.x; Curley EAM, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0152; DALE BW, 1994, J ANIM ECOL, V63, P644, DOI 10.2307/5230; Daly D, 2012, ECOL LETT, V15, P576, DOI 10.1111/j.1461-0248.2012.01770.x; Ekman I, 1987, ANIM BEHAV, V35, P445; Eshel I, 2001, J THEOR BIOL, V208, P457, DOI 10.1006/jtbi.2000.2232; Finkbeiner SD, 2012, P ROY SOC B-BIOL SCI, V279, P2769, DOI 10.1098/rspb.2012.0203; Fischer B, 2011, OIKOS, V120, P258, DOI 10.1111/j.1600-0706.2010.18642.x; Fletcher QE, 2010, ECOLOGY, V91, P2673, DOI 10.1890/09-1816.1; Fordyce JA, 2001, J ANIM ECOL, V70, P997, DOI 10.1046/j.0021-8790.2001.00568.x; Gloag R, 2012, P ROY SOC B-BIOL SCI, V279, P1831, DOI 10.1098/rspb.2011.2047; GODIN JGJ, 1988, BEHAVIOUR, V104, P29, DOI 10.1163/156853988X00584; HAMILTON WD, 1971, J THEOR BIOL, V31, P295, DOI 10.1016/0022-5193(71)90189-5; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hawlena D, 2010, AM NAT, V175, P537; Holling C. S., 1959, Canadian Entomologist, V91, P385; Jaatinen K, 2010, BEHAV ECOL, V22, P144; Jaatinen K, 2013, AM NAT, V181, P171, DOI 10.1086/668824; Jaatinen K, 2011, J ANIM ECOL, V80, P49, DOI 10.1111/j.1365-2656.2010.01757.x; Jaatinen K, 2009, ANN ZOOL FENN, V46, P350, DOI 10.5735/086.046.0502; Jordan LA, 2010, BEHAV ECOL SOCIOBIOL, V64, P1099, DOI 10.1007/s00265-010-0924-1; KARBAN R, 1982, ECOLOGY, V63, P321, DOI 10.2307/1938949; Kelly D, 2002, ANNU REV ECOL SYST, V33, P427, DOI 10.1146/annurev.ecolsys.33.020602.095433; Kingman JFC, 1993, OXFORD STUDIES PROBA, V3; Koenig WD, 2003, OIKOS, V102, P581, DOI 10.1034/j.1600-0706.2003.12272.x; Kokko H, 2001, P ROY SOC B-BIOL SCI, V268, P187, DOI 10.1098/rspb.2000.1349; Kokko H, 2006, PHILOS T R SOC B, V361, P319, DOI 10.1098/rstb.2005.1784; KRAKAUER DC, 1995, BEHAV ECOL SOCIOBIOL, V36, P421, DOI 10.1007/s002650050165; Krause J, 1998, J FISH BIOL, V52, P494, DOI 10.1111/j.1095-8649.1998.tb02012.x; KRAUSE J, 1995, ANIM BEHAV, V50, P465, DOI 10.1006/anbe.1995.0260; Krause J., 2002, LIVING GROUPS; Kruuk H., 1972, SPOTTED HYENA STUDY; LAGORY KE, 1986, BEHAVIOUR, V98, P168, DOI 10.1163/156853986X00955; LEMASURIER AD, 1994, J ANIM ECOL, V63, P677; Lengyel S, 2007, BEHAV ECOL SOCIOBIOL, V61, P589, DOI 10.1007/s00265-006-0288-8; Lima SL, 2002, TRENDS ECOL EVOL, V17, P70, DOI 10.1016/S0169-5347(01)02393-X; LIMA SL, 1995, ANIM BEHAV, V49, P11, DOI 10.1016/0003-3472(95)80149-9; Lima SL, 1990, INTERPRETATION EXPLA, P246; Lindstedt C, 2011, EVOL ECOL, V25, P1029, DOI 10.1007/s10682-010-9456-4; Lindstedt C, 2006, OECOLOGIA, V150, P519, DOI 10.1007/s00442-006-0518-9; Miller RC, 1922, ECOLOGY, V3, P122, DOI 10.2307/1929145; MOORING MS, 1992, BEHAVIOUR, V123, P173, DOI 10.1163/156853992X00011; MORGAN MJ, 1985, Z TIERPSYCHOL, V70, P236; NEWTON I, 1994, BIOL CONSERV, V70, P265, DOI 10.1016/0006-3207(94)90172-4; Nielsen CLR, 2008, AUK, V125, P679, DOI 10.1525/auk.2008.07114; Nottestad L, 1999, CAN J ZOOL, V77, P1540, DOI 10.1139/cjz-77-10-1540; Ost M, 2002, ANIM BEHAV, V64, P223, DOI 10.1006/anbe.2002.3064; Otto S., 2007, BIOL GUIDE MATH MODE; PACKER C, 1991, NATURE, V351, P562, DOI 10.1038/351562a0; PITCHER TJ, 1979, MAR BIOL, V54, P383, DOI 10.1007/BF00395444; PULLIAM HR, 1973, J THEOR BIOL, V38, P419, DOI 10.1016/0022-5193(73)90184-7; PULLIAM HR, 1982, J THEOR BIOL, V95, P89, DOI 10.1016/0022-5193(82)90289-2; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Riipi M, 2001, NATURE, V413, P512, DOI 10.1038/35097061; Roberts G, 2005, ANIM BEHAV, V70, P901, DOI 10.1016/j.anbehav.2005.02.006; Rode NO, 2013, ECOL LETT, V16, P493, DOI 10.1111/ele.12074; RUBENSTEIN DI, 1978, PERSPECTIVES ETHOLOG, V3, P205; Scheuerlein A, 2001, P R SOC B, V270, P799; SILLENTULLBERG B, 1988, AM NAT, V132, P723, DOI 10.1086/284884; SMITH J. MAYNARD, 1965, AMER NATUR, V99, P59, DOI 10.1086/282349; SOLOMON ME, 1949, J ANIM ECOL, V18, P1, DOI 10.2307/1578; Stearns, 1992, EVOLUTION LIFE HIST; Stephens PA, 2005, AM NAT, V165, P120, DOI 10.1086/426597; SWEENEY BW, 1982, EVOLUTION, V36, P810, DOI 10.1111/j.1558-5646.1982.tb05447.x; SYMINGTON MM, 1988, BEHAVIOUR, V105, P117; TREHERNE JE, 1980, ANIM BEHAV, V28, P1119, DOI 10.1016/S0003-3472(80)80100-X; TREHERNE JE, 1982, ANIM BEHAV, V30, P536, DOI 10.1016/S0003-3472(82)80066-3; Tucker JK, 2008, BEHAV ECOL, V19, P35, DOI 10.1093/beheco/arm097; TURNER GF, 1986, AM NAT, V128, P228, DOI 10.1086/284556; Wheeler BC, 2008, ANIM BEHAV, V76, P1465, DOI 10.1016/j.anbehav.2008.06.023; Whitfield DP, 2003, J AVIAN BIOL, V34, P163, DOI 10.1034/j.1600-048X.2003.03065.x; WRONA FJ, 1991, AM NAT, V137, P186, DOI 10.1086/285153; Yano S, 2012, BEHAV ECOL SOCIOBIOL, V66, P845, DOI 10.1007/s00265-012-1332-5; Zottl M, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2772 86 18 18 16 139 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. APR 2016 70 4 449 458 10.1007/s00265-016-2075-5 10 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology DG7IO WOS:000372258200001 2019-02-21 J Vallon, M; Heubel, KU Vallon, Martin; Heubel, Katja U. Old but gold: males preferentially cannibalize young eggs BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Foster care; Life history evolution; Offspring age; Paternal care; Reproductive value; Selective filial cannibalism; Kin discrimination FILIAL CANNIBALISM; PARENTAL CARE; DEVELOPMENTAL-STAGE; EVOLUTION; FISH; NEST; STICKLEBACKS; CHOICE; SIZE; EAT Although counterintuitive at first sight, filial cannibalism is common in the animal kingdom and has been recognized as a mechanism to increase the cannibalizing parent's lifetime reproductive success. However, previous evidence is often inconclusive and the adaptiveness of filial cannibalism is still not fully understood. We here address the notion that parents do not cannibalize at random but preferably consume offspring with a particular phenotype. To assess if differences in developmental stage and thus reproductive value of eggs trigger such selectivity, we experimentally presented male common gobies (Pomatoschistus microps) with two differently aged egg clutches within mixed broods. We found that males consumed significantly more young than old eggs. This result indicates that parents are not only able to discriminate between eggs based on developmental stage, but might use this to reduce the cost of partial filial cannibalism by selectively removing eggs of lower reproductive value. [Vallon, Martin; Heubel, Katja U.] Univ Tubingen, Anim Evolutionary Ecol, D-72076 Tubingen, Germany Vallon, M (reprint author), Univ Tubingen, Anim Evolutionary Ecol, D-72076 Tubingen, Germany. martin.vallon@uni-tuebingen.de Heubel, Katja/J-4060-2012 Heubel, Katja/0000-0002-7946-5542 Volkswagen foundation [I/84 846] We thank the staff of Tvarminne Zoological Station for logistical support, Silke Probst for counting fish eggs, Nils Anthes for statistical advice and discussions, and Nils Anthes, Ines Haderer, and Tobias Gerlach for valuable comments on the manuscript. This project was financially supported by a grant from the Volkswagen foundation to KUH (grant number I/84 846). Andren MN, 2014, BEHAV ECOL SOCIOBIOL, V68, P1565, DOI 10.1007/s00265-014-1766-z; Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; BAYLIS JR, 1981, ENVIRON BIOL FISH, V6, P223, DOI 10.1007/BF00002788; Crawley M. J., 2007, R BOOK; Forsgren E, 1996, BEHAV ECOL SOCIOBIOL, V39, P91, DOI 10.1007/s002650050270; Frommen JG, 2007, J FISH BIOL, V70, P1295, DOI 10.1111/j.1095-8649.2007.01390.x; GILBERT SF, 1985, DEV BIOL; GOLDSCHMIDT T, 1993, ANIM BEHAV, V45, P541, DOI 10.1006/anbe.1993.1064; Heubel KU, 2008, BIOL LETTERS, V4, P224, DOI 10.1098/rsbl.2007.0630; Jones JC, 1999, ANIM BEHAV, V57, P181, DOI 10.1006/anbe.1998.0939; Klug H, 2008, BIOL LETTERS, V4, P160, DOI 10.1098/rsbl.2007.0589; Klug H, 2007, AM NAT, V170, P886, DOI 10.1086/522936; Klug H, 2012, EVOLUTION OF PARENTAL CARE, P21; Korner-Nievergelt F., 2015, BAYESIAN DATA ANAL E; Kvarnemo Charlotta, 2010, P451; LINDSTROM K, 1993, ETHOL ECOL EVOL, V5, P97, DOI 10.1080/08927014.1993.9523117; LOISELLE PV, 1983, ETHOL SOCIOBIOL, V4, P1, DOI 10.1016/0162-3095(83)90002-X; Manica A, 2004, ANIM BEHAV, V67, P1015, DOI 10.1016/j.anbehav.2003.09.011; Manica A, 2003, J FISH BIOL, V63, P37, DOI 10.1046/j.1095-8649.2003.00113.x; Manica A, 2002, BIOL REV, V77, P261, DOI 10.1017/S1464793101005905; MARCONATO A, 1986, ANIM BEHAV, V34, P1580, DOI 10.1016/S0003-3472(86)80234-2; Mehlis M, 2010, P ROY SOC B-BIOL SCI, V277, P2627, DOI 10.1098/rspb.2010.0234; Mehlis M, 2009, NATURWISSENSCHAFTEN, V96, P399, DOI 10.1007/s00114-008-0485-6; Nyman K.J., 1953, ACTA SOC FAUNA FLORA, V69, P1; PETERSEN CW, 1989, EVOLUTION, V43, P158, DOI 10.1111/j.1558-5646.1989.tb04214.x; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301; PRESSLEY PH, 1981, EVOLUTION, V35, P282, DOI 10.1111/j.1558-5646.1981.tb04887.x; R Core Team, 2014, R LANG ENV STAT COMP; ROHWER S, 1978, AM NAT, V112, P429, DOI 10.1086/283284; Sargent Robert Craig, 1992, P38; SIKKEL PC, 1994, ANIM BEHAV, V47, P1149, DOI 10.1006/anbe.1994.1153; SIKKEL PC, 1989, ANIM BEHAV, V38, P447, DOI 10.1016/S0003-3472(89)80038-7; Takegaki T, 2011, J ETHOL, V29, P395, DOI 10.1007/s10164-010-0264-7; Vallon M, 2016, ECOL EVOL, V6, P1340, DOI 10.1002/ece3.1966; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 35 5 5 1 19 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. APR 2016 70 4 569 573 10.1007/s00265-016-2074-6 5 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology DG7IO WOS:000372258200011 2019-02-21 J Schwartz, LM; Gibson, DJ; Young, BG Schwartz, Lauren M.; Gibson, David J.; Young, Bryan G. Using integral projection models to compare population dynamics of four closely related species POPULATION ECOLOGY English Article Amaranthaceae; Demography; Exotic species; Invasive species; Matrix modeling GROWTH; WEED Demographic processes, such as survival, growth, and reproduction, can inform us about invasion risk, extinction risk, and trade-offs in life history strategies. The population dynamics of four Amaranthaceae species in southern Illinois, USA were examined using integral projection models (IPMs) to determine whether vital rates reflect life history among these closely related species. Two of the species, Amaranthus palmeri and Amaranthus tuberculatus, are summer annuals and considered to be some of the most problematic agricultural weeds in the US Midwest. Achyranthes japonica is a relatively new invasive exotic species that primarily inhabits forests. Iresine rhizomatosa, is an endangered species in the study area, which also inhabits forests. Two populations of each species were studied from 2012 to 2014 in which height of individuals were measured and used as the state variable in the IPMs. The Amaranthus species and Achyranthes japonica had an estimated population growth rate > 1, projecting increases in population size. By contrast, lambda was < 1 for I. rhizomatosa, projecting a decline in population size demonstrating its endangered status. Germination rates and seed viability were dependent on species and varied over time. Elasticity analyses showed that survival and growth contributed most to lambda for the perennial species; whereas, for the annual species population dynamics were driven primarily by fecundity. Overall, Achyranthes japonica and the Amaranthus species show similar trends in demographic processes that align with their invasive nature and not with their life histories. Furthermore, this study demonstrates that more research on the competitive nature of Achyranthes japonica is needed. [Schwartz, Lauren M.; Gibson, David J.] So Illinois Univ, Ctr Ecol, Dept Plant Biol, Carbondale, IL 62901 USA; [Young, Bryan G.] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA Schwartz, LM (reprint author), So Illinois Univ, Ctr Ecol, Dept Plant Biol, Carbondale, IL 62901 USA. lmschwar@uark.edu Lazaro, Lauren M./0000-0001-8305-4319 Southern Illinois University Carbondale; Department of Plant Biology; Department of Plant Soil and Agricultural Systems; Illinois Department of Natural Resources [13-026W] We would like to thank Southern Illinois University Carbondale and the Departments of Plant Biology and Plant Soil and Agricultural Systems for their support, Julie Young and Joseph Matthews for help with general organization, several undergraduate assistants helped to collect and process samples, and Maria Paniw for editing early versions of this manuscript. In addition, we would like to thank the Max Planck Institute for Demographic Research for teaching us the foundations of IPMs and the Illinois Department of Natural Resources for providing funding (Grant Agreement No.: 13-026W) to work with I. rhizomatosa. BAKER H. G., 1965, The genetics of colonizing species: Proc. 1st Internat, Union biol Sci., Asilomar, California., P147; BAZZAZ FA, 1986, ECOLOGY BIOL INVASIO, P96; BOUTIN C, 1991, J ECOL, V79, P199, DOI 10.2307/2260793; Childs DZ, 2004, P ROY SOC B-BIOL SCI, V271, P425, DOI 10.1098/rspb.2003.2597; Choi Chang-Yong, 2010, Journal of Ecology and Field Biology, V33, P19, DOI 10.5141/JEFB.2010.33.1.019; Crawley M. J, 2013, R BOOK; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.2307/177370; Ferrer-Cervantes ME, 2012, POPUL ECOL, V54, P321, DOI 10.1007/s10144-012-0308-7; Evans C, 2011, NEW INVADER PROFILE, P4; Gibson DJ, 2014, POPULATION DYNAMICS; Grime J. P, 1979, PLANT STRATEGIES VEG; Guo PG, 2003, WEED SCI, V51, P869, DOI 10.1614/P2002-127; Hartzler RG, 1999, WEED SCI, V47, P578; Horak MJ, 2000, WEED SCI, V48, P347, DOI 10.1614/0043-1745(2000)048[0347:GAOFAS]2.0.CO;2; IDNR (Illinois Department of Energy and Natural Resources), 1994, CHANG ILL ENV CRIT T; Merow C, 2014, ECOGRAPHY, V37, P1167, DOI 10.1111/ecog.00839; Metcalf CJE, 2013, METHODS ECOL EVOL, V4, P195, DOI 10.1111/2041-210x.12001; National Weather Service, 2015, NAT WEATH FOR OFF PA; Sage RF, 2007, AM J BOT, V94, P1992, DOI 10.3732/ajb.94.12.1992; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; SCHWARTZ L. M., 2014, JAPANESE CHAFF FLOWE; Schwartz LM, 2016, J TORREY BOT SOC, V143, P93, DOI 10.3159/TORREY-D-14-00014; Simberloff D, 1997, STRANGERS PARADISE I; Sutherland S, 2004, OECOLOGIA, V141, P24, DOI 10.1007/s00442-004-1628-x; Trucco F, 2011, WILD CROP RELATIVES: GENOMIC AND BREEDING RESOURCES - VEGETABLES, P11, DOI 10.1007/978-3-642-20450-0_2; USDA Soil Survey, 2015, SOIL SURV USDA NAT R; Vitousek PM, 1996, AM SCI, V84, P468; Zimdahl R. L., 2004, WEED CROP COMPETITIO 28 3 3 3 35 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. APR 2016 58 2 285 292 10.1007/s10144-016-0537-2 8 Ecology Environmental Sciences & Ecology DG6CF WOS:000372169100006 2019-02-21 J Ducatez, S; Baguette, M Ducatez, Simon; Baguette, Michel Inter-individual variation in shivering behaviour in the migratory painted lady Vanessa cardui ECOLOGICAL ENTOMOLOGY English Article Basking; boldness; butterfly; insect; Lepidoptera; personality; thermoregulation CLIMATE-CHANGE; THERMOREGULATORY BEHAVIOR; BRITISH BUTTERFLIES; RANGE EXPANSION; INSECTS; SHIFTS; NYMPHALIDAE; LEPIDOPTERA; PHENOLOGY; RESPONSES 1. Thermoregulation abilities are likely to play a fundamental role in ectotherms' response to current environmental changes, including through their implication in interspecies and interindividual variations in life-history strategies (e.g. dispersal syndromes). However, differences in thermoregulatory behaviours, and especially interindividual differences, are largely neglected in the literature, and there is still no global understanding of their importance in determining population and evolutionary processes, even in extensively studied taxa such as butterflies. 2. Interindividual variation in shivering in the painted lady, a migratory butterfly, was investigated. This behaviour has been very poorly studied, despite being widespread in insects in general, including butterflies. Using a warming experiment in the laboratory on 94 different individuals caught in the wild during the same migratory event, interindividual variation in shivering behaviour was investigated, and the effects of wing morphology and boldness (a behavioural axis known to be associated with mobility in butterflies) on shivering decision and efficiency were tested. 3. The study shows that individuals strongly differ in their shivering behaviour. Wing morphology affected both individuals' decision on whether or not to use shivering and heating rate while shivering. In contrast, no effect was found of individuals' age and boldness on shivering decision and efficiency. The findings also reveal that shivering strongly increased heating rate and allowed higher flight temperatures to be reached, while bolder individuals also took off at higher temperatures. 4. Overall, the results of the present study underline how variation in a neglected thermoregulatory behaviour could affect general life-history strategies in butterflies, and stress the need to consider this behaviour when investigating butterfly life-history syndromes. [Ducatez, Simon] Museum Natl Hist Nat, Dept Ecol & Gest Biodiversite, F-75231 Paris, France; [Ducatez, Simon] Univ Sydney, Sch Biol Sci, Heydon Laurence Bldg,Room 447, Sydney, NSW 2006, Australia; [Baguette, Michel] Museum Natl Hist Nat, Inst Systemat Evolut Biodiversite, UMR 7205, F-75231 Paris, France; [Baguette, Michel] CNRS, Expt Stn, CNRS USR 2936, Moulis, France Ducatez, S (reprint author), Univ Sydney, Sch Biol Sci, Heydon Laurence Bldg,Room 447, Sydney, NSW 2006, Australia. simon.ducatez@gmail.com Ducatez, Simon/0000-0003-2865-4674 Ministere de l'Enseignement Superieur et de la Recherche; French National Research Agency (ANR) We thank J. Galtier for help with the experimental work. This work was supported by a PhD grant from the Ministere de l'Enseignement Superieur et de la Recherche to S.D. M.B. acknowledges financial support from the French National Research Agency (ANR) programs open call INDHET and 6th extinction MOBIGEN. M.B. is part of the 'Laboratoire d'Excellence' (LABEX) entitled TULIP (ANR-10-LABX-41). ABBOTT CH, 1951, ECOLOGY, V32, P155, DOI 10.2307/1930414; BAGUETTE M, 1994, ECOL ENTOMOL, V19, P1, DOI 10.1111/j.1365-2311.1994.tb00382.x; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Buckley LB, 2012, GLOBAL ECOL BIOGEOGR, V21, P873, DOI 10.1111/j.1466-8238.2011.00737.x; Clusella Trullas S, 2007, J THERM BIOL, V32, P235, DOI 10.1016/j.jtherbio.2007.01.003; Crozier L, 2004, ECOLOGY, V85, P231, DOI 10.1890/02-0607; Crozier L, 2003, OECOLOGIA, V135, P648, DOI 10.1007/s00442-003-1219-2; Diamond SE, 2011, ECOLOGY, V92, P1005, DOI 10.1890/i0012-9658-92-5-1005; DOUGLAS MM, 1986, LIVES BUTTERFLIES; Ducatez S, 2014, ECOGRAPHY, V37, P378, DOI 10.1111/j.1600-0587.2013.00365.x; Ducatez S, 2013, OIKOS, V122, P601, DOI 10.1111/j.1600-0706.2012.20947.x; Ducatez S, 2012, ECOL ENTOMOL, V37, P377, DOI 10.1111/j.1365-2311.2012.01375.x; Forister M. L., 2003, GLOBAL CHANGE BIOL, V12, P1545; Hickling R, 2006, GLOBAL CHANGE BIOL, V12, P450, DOI 10.1111/j.1365-2486.2006.01116.x; Hill JK, 1999, P ROY SOC B-BIOL SCI, V266, P1197, DOI 10.1098/rspb.1999.0763; Hitch AT, 2007, CONSERV BIOL, V21, P534, DOI 10.1111/j.1523-1739.2006.00609.x; IPCC, 2007, CLIMATE CHANGE 2007; Kalmus H, 1941, NATURE, V148, P428, DOI 10.1038/148428a0; Kammer A. E., 1970, Z VERGLEICHENDE PHYS, V68, P334; Kharouba HM, 2014, GLOBAL CHANGE BIOL, V20, P504, DOI 10.1111/gcb.12429; KINGSOLVER JG, 1995, EVOLUTION, V49, P942, DOI 10.1111/j.1558-5646.1995.tb02329.x; KINGSOLVER JG, 1985, OECOLOGIA, V66, P540, DOI 10.1007/BF00379347; KINGSOLVER JG, 1987, EVOLUTION, V41, P472, DOI 10.1111/j.1558-5646.1987.tb05819.x; Konvicka M, 2003, GLOBAL ECOL BIOGEOGR, V12, P403, DOI 10.1046/j.1466-822X.2003.00053.x; Krogh A, 1941, J EXP BIOL, V18, P1; Kwon TS, 2014, CLIMATIC CHANGE, V126, P163, DOI 10.1007/s10584-014-1212-2; Loli D, 2005, BIOSCIENCE REP, V25, P149, DOI 10.1007/s10540-005-2883-8; Maier C., 1996, NOTA LEPID, V18, P127; MASTERS AR, 1988, ECOLOGY, V69, P458, DOI 10.2307/1940444; Mattila N, 2011, INSECT CONSERV DIVER, V4, P239, DOI 10.1111/j.1752-4598.2011.00141.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nesbit RL, 2009, ANIM BEHAV, V78, P1119, DOI 10.1016/j.anbehav.2009.07.039; Parmesan C, 1999, NATURE, V399, P579, DOI 10.1038/21181; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Perry AL, 2005, SCIENCE, V308, P1912, DOI 10.1126/science.1111322; Poyry J, 2009, GLOBAL CHANGE BIOL, V15, P732, DOI 10.1111/j.1365-2486.2008.01789.x; Pollard E., 1998, Diversity and Distributions, V4, P243; RAWLINS JE, 1980, ECOLOGY, V61, P345, DOI 10.2307/1935193; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Roy DB, 2000, GLOB CHANGE BIOL, V6, P407, DOI 10.1046/j.1365-2486.2000.00322.x; RUTOWSKI RL, 1994, ANIM BEHAV, V48, P833, DOI 10.1006/anbe.1994.1307; Shields Oakley, 1992, Journal of the Lepidopterists' Society, V46, P235; SRYGLEY RB, 1994, ANIM BEHAV, V47, P23, DOI 10.1006/anbe.1994.1004; Stefanescu C, 2003, GLOBAL CHANGE BIOL, V9, P1494, DOI 10.1046/j.1365-2486.2003.00682.x; Stefanescu C, 2011, J LEPID SOC, V65, P15; Stefanescu C, 2007, J ANIM ECOL, V76, P888, DOI 10.1111/j.1365-2656.2007.01262.x; Stefanescu C, 2013, ECOGRAPHY, V36, P474, DOI 10.1111/j.1600-0587.2012.07738.x; Stefanescu C, 2012, EUR J ENTOMOL, V109, P85, DOI 10.14411/eje.2012.011; Stevens S. M., 2014, ECOL LETT, V17, P1039; Thomas CD, 2004, NATURE, V427, P145, DOI 10.1038/nature02121; Van Dyck H, 1998, OECOLOGIA, V114, P326, DOI 10.1007/s004420050454; Warren MS, 2001, NATURE, V414, P65, DOI 10.1038/35102054; Wilson RJ, 2005, ECOL LETT, V8, P1138, DOI 10.1111/j.1461-0248.2005.00824.x; Zeuss D, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4874 55 1 1 2 31 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6946 1365-2311 ECOL ENTOMOL Ecol. Entomol. APR 2016 41 2 131 137 10.1111/een.12283 7 Entomology Entomology DF9MP WOS:000371685600002 2019-02-21 J Barahona-Segovia, RM; Grez, AA; Bozinovic, F Barahona-Segovia, Rodrigo M.; Grez, Audrey A.; Bozinovic, Francisco Testing the hypothesis of greater eurythermality in invasive than in native ladybird species: from physiological performance to life-history strategies ECOLOGICAL ENTOMOLOGY English Article Environmental temperature; Eriopis chilensis; Harmonia axyridis; Hippodamia variegata; invasive alien species AXYRIDIS PALLAS COLEOPTERA; VARIEGATA GOEZE COLEOPTERA; CLIMATE-CHANGE; HARMONIA-AXYRIDIS; HIPPODAMIA-VARIEGATA; ARGENTINE ANT; SOUTH-AMERICA; GLOBAL CHANGE; COCCINELLIDAE; TEMPERATURE 1. Global warming and biological invasions are important threats to biodiversity. Nonetheless, there is little information on how these factors influence performance or life-history traits of invasive and native species. 2. The effects of temperature on physiological and fitness traits of two invasive alien species (Harmonia axyridis and Hippodamia variegata) and one native species (Eriopis chilensis) of coccinellid were evaluated, testing a model of eurythermality. Eggs of all species were exposed to four temperature treatments (20, 24, 30 and 33 degrees C). In adult F-2 we measured fecundity, locomotor performance, development time (total and per life stage), survival, and preferred body temperature in a thermal gradient. 3. It was found that H. axyridis had comparatively better performance at low temperatures (i.e. 20 degrees C), while the performance of H. variegata and E. chilensis did not change with temperature or was better at higher temperatures (30 degrees C). The standardised Levins index showed that all species are eurythermic. E. chilensis had a high niche overlap with the invasive alien ladybird species, rejecting the hypothesis of greater eurythermality of invasive species than native species. 4. Although there were differences in the temperature preferences and in the response of some physiological and life-history traits of ladybirds to temperature, both the native and invasive alien species are eurythermic, contrary to the prediction. The better performance of H. axyridis at lower temperatures may result in displacement of its current distribution, and thus not all invasive species will respond favourably to global warming. [Barahona-Segovia, Rodrigo M.; Grez, Audrey A.] Univ Chile, Fac Ciencias Vet & Pecuarias, LEAF, Santiago, Chile; [Barahona-Segovia, Rodrigo M.; Bozinovic, Francisco] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Ctr Appl Ecol & Sustainabil, Dept Ecol, Alameda 340, Santiago, Chile; [Barahona-Segovia, Rodrigo M.; Bozinovic, Francisco] Pontificia Univ Catolica Chile, Fac Ciencias Biol, LINC Global, Alameda 340, Santiago, Chile Barahona-Segovia, RM (reprint author), Univ Chile, Fac Ciencias Vet & Pecuarias, LEAF, Santiago, Chile. rbarahona13@gmail.com CONICYT; Fondo Nacional de Desarrollo Cientifico y Tecnologico [1100159, 1140662, 1130015, FB-0002-2014] R.M.B.-S. is grateful for a CONICYT scholarship that allowed him to pursue a master's programme at the University of Chile and to Roxana Hermosilla Campos for support during this time. We thank E. Gazzano for help in rearing aphids and coccinellids, J. M. Bogdanochi for suggestions on the design of the thermal niche and statistical support, and all laboratory partners at the Pontificia Universidad Catolica de Chile. We thank P. Sabat and C. Veloso and two anonymous referees for providing valuable suggestions on an earlier draft of this manuscript. Funding from the Fondo Nacional de Desarrollo Cientifico y Tecnologico (1100159 and 1140662 to A.A.G., and 1130015 and FB-0002-2014 to F.B.) supported this study. R.M.B.-S., A.A.G. and F.B. conceived, designed, wrote, and discussed the manuscript; R.M.B.-S. performed the experiments and analysed the data. All authors contributed substantially to revisions. Alfaro C, 2013, J THERM BIOL, V38, P502, DOI 10.1016/j.jtherbio.2013.08.003; Anacleto P, 2014, COMP BIOCHEM PHYS A, V175, P28, DOI 10.1016/j.cbpa.2014.05.003; Bahlai CA, 2015, BIOL INVASIONS, V17, P1005, DOI 10.1007/s10530-014-0772-4; Beaumont LJ, 2002, GLOBAL CHANGE BIOL, V8, P954, DOI 10.1046/j.1365-2486.2002.00490.x; Bellard C, 2012, ECOL LETT, V15, P365, DOI 10.1111/j.1461-0248.2011.01736.x; Benelli M, 2015, B INSECTOL, V68, P23; Bidinger K, 2012, J APPL ENTOMOL, V136, P109, DOI 10.1111/j.1439-0418.2010.01598.x; Blanford S, 2009, MALARIA J, V8, DOI 10.1186/1475-2875-8-72; Bozinovic F, 2015, ECOL EVOL, V5, P1025, DOI 10.1002/ece3.1403; Bozinovic F, 2011, ANNU REV ECOL EVOL S, V42, P155, DOI 10.1146/annurev-ecolsys-102710-145055; Bozinovic F, 2011, PHYSIOL BIOCHEM ZOOL, V84, P543, DOI 10.1086/662551; Castaneda LE, 2004, EVOL ECOL RES, V6, P579; Castro CF, 2011, FLA ENTOMOL, V94, P923, DOI 10.1653/024.094.0429; Chown SL, 2007, P R SOC B, V274, P2531, DOI 10.1098/rspb.2007.0772; Chown SL, 2010, CLIM RES, V43, P3, DOI 10.3354/cr00879; COLWELL RK, 1971, ECOLOGY, V52, P567, DOI 10.2307/1934144; Deutsch CA, 2008, P NATL ACAD SCI USA, V105, P6668, DOI 10.1073/pnas.0709472105; Dukes JS, 2011, FIFTY YEARS OF INVASION ECOLOGY: THE LEGACY OF CHARLES ELTON, P345; Dukes JS, 1999, TRENDS ECOL EVOL, V14, P135, DOI 10.1016/S0169-5347(98)01554-7; Etchegaray M. J., 1979, Anales del Museo de Historia Natural de Valparaiso, V12, P185; Evans EW, 2011, BIOCONTROL, V56, P597, DOI 10.1007/s10526-011-9374-6; Cabre MF, 2010, CLIMATIC CHANGE, V98, P449, DOI 10.1007/s10584-009-9737-5; Folguera G, 2009, COMP BIOCHEM PHYS A, V154, P389, DOI 10.1016/j.cbpa.2009.07.008; Fuenzalida H., 2007, ESTUDIO VARIABILIDAD; Glanville EJ, 2006, J EXP BIOL, V209, P4869, DOI 10.1242/jeb.02585; GONZALEZ G, 2014, B SOC ENTOMOLOGICA A, V54, P61; Gonzalez G. F, 2006, COCCINELLIDAE CHILE; GORDON RD, 1987, J NEW YORK ENTOMOL S, V95, P307; GraphPad Software, 2015, GRAPHPAD PRISM VERSI; Grez AA, 2012, ENTOMOL EXP APPL, V142, P36, DOI 10.1111/j.1570-7458.2011.01202.x; Grez A, 2010, CIENC INVESTIG AGRAR, V37, P145, DOI 10.4067/S0718-16202010000300013; Grez AA, 2013, DIVERS DISTRIB, V19, P749, DOI 10.1111/ddi.12027; Gyenge Javier E., 1998, Anais da Sociedade Entomologica do Brasil, V27, P345, DOI 10.1590/S0301-80591998000300004; Hartley S, 2010, ECOGRAPHY, V33, P83, DOI 10.1111/j.1600-0587.2009.06037.x; Hellmann JJ, 2008, CONSERV BIOL, V22, P534, DOI 10.1111/j.1523-1739.2008.00951.x; Hiey R. B., 1979, AM ZOOL, V19, P357; Hodek I., 2012, ECOLOGY BEHAV LADYBI; Hoffman G. E., 2010, ANNU REV PHYSIOL, V72, P127; Hosler JS, 2000, J INSECT PHYSIOL, V46, P621, DOI 10.1016/S0022-1910(99)00148-1; Huang Z, 2008, BIOL CONTROL, V46, P209, DOI 10.1016/j.biocontrol.2008.04.004; Huey RB, 2012, PHILOS T R SOC B, V367, P1665, DOI 10.1098/rstb.2012.0005; Human KG, 1996, OECOLOGIA, V105, P405, DOI 10.1007/BF00328744; Jaksic F, 2007, ECOLOGIA COMUNIDADES; Janion C, 2010, EVOL ECOL, V24, P1365, DOI 10.1007/s10682-010-9405-2; KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868; KOCH RL, 2003, J INSECT SCI, V3, P1, DOI DOI 10.1672/1536-2442(2003)003[0001:TMOAAE]2.0.CO;2; Koch RL, 2006, NEOTROP ENTOMOL, V35, P421, DOI 10.1590/S1519-566X2006000400001; Labrie G, 2006, BIOL INVASIONS, V8, P743, DOI 10.1007/s10530-005-3428-6; Lejeusne C, 2014, ESTUAR COAST SHELF S, V136, P102, DOI 10.1016/j.ecss.2013.11.014; Lombaert E, 2014, MOL ECOL, V23, P5979, DOI 10.1111/mec.12989; Lu X., 2014, ECOL LETT, V18, P48; Lucas Eric, 2012, P343; Lutterschmidt WI, 1997, CAN J ZOOL, V75, P1553, DOI 10.1139/z97-782; Mainka SA, 2010, INTEGR ZOOL, V5, P102, DOI 10.1111/j.1749-4877.2010.00193.x; Mandour NS, 2013, EGYPT J BIOL PEST CO, V23, P151; Molina-Montenegro MA, 2009, ECOL RES, V24, P31, DOI 10.1007/s11284-008-0477-1; Nedved Oldrich, 2012, P54; Obrycki JJ, 1998, ANNU REV ENTOMOL, V43, P295, DOI 10.1146/annurev.ento.43.1.295; Oliveira Ramos T., 2014, ADV ENTOMOLOGY, V2, P42; Osawa N, 2011, BIOCONTROL, V56, P613, DOI 10.1007/s10526-011-9382-6; Pianka E. R., 1973, ANNU REV ECOL SYST, V4, P53, DOI DOI 10.1146/ANNUREV.ES.04.110173.000413; Poutsma J, 2008, BIOCONTROL, V53, P103, DOI 10.1007/s10526-007-9140-y; R Core Team, 2012, R LANG ENV STAT COMP; Radchuk V, 2013, J ANIM ECOL, V82, P275, DOI 10.1111/j.1365-2656.2012.02029.x; Rixon CAM, 2005, BIODIVERS CONSERV, V14, P1365, DOI 10.1007/s10531-004-9663-9; Roy HE, 2015, ECOL ENTOMOL, V40, P336, DOI 10.1111/een.12203; Sala OE, 2000, SCIENCE, V287, P1170; Solomon S, 2013, CLIMATE CHANGE 2013; Therneau T, 2009, PACKAGE SURVIVAL ANA; Urbanski J, 2012, AM NAT, V179, P490, DOI 10.1086/664709; Vila M, 2004, OIKOS, V105, P229, DOI 10.1111/j.0030-1299.2004.12682.x; Vitousek PM, 1997, NEW ZEAL J ECOL, V21, P1; Whitney-Johnson A, 2005, ENVIRON ENTOMOL, V34, P535, DOI 10.1603/0046-225X-34.3.535; Wu XH, 2010, J PEST SCI, V83, P77, DOI 10.1007/s10340-009-0272-y; Yasuda H, 2001, J INSECT BEHAV, V14, P373, DOI 10.1023/A:1011175430247; Zerebecki RA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014806; Zhang S., 2013, J THERMAL BIOL, V30, P40 77 11 11 2 28 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6946 1365-2311 ECOL ENTOMOL Ecol. Entomol. APR 2016 41 2 182 191 10.1111/een.12287 10 Entomology Entomology DF9MP WOS:000371685600007 2019-02-21 J Teitel, Z; Laursen, AE; Campbell, LG Teitel, Z.; Laursen, A. E.; Campbell, L. G. Germination rates of weedy radish populations (Raphanus spp.) altered by crop-wild hybridisation, not human-mediated changes to soil moisture WEED RESEARCH English Article crop-wild hybridisation; evolution; natural selection; Raphanus raphanistrum; Raphanus sativus; seed dormancy; soil moisture SEED DORMANCY; RAPHANISTRUM BRASSICACEAE; AVENA-FATUA; FITNESS; EMERGENCE; SUNFLOWER; EVOLUTION; SATIVUS; HYBRIDS; PLANT Cultivated plants are known to readily hybridise with their wild relatives, sometimes forming populations with weedier life-history strategies than their progenitors. Due to altered precipitation patterns from human-induced global climate change, crop-wild hybrid populations may have new and unpredictable environmental tolerances relative to parental populations, which would further challenge farming and land-management weed control strategies. To recognise the role of seed dormancy variation in weed invasion, we compared seedbank dynamics of two cross-type populations (wild radish, Raphanus raphanistrum, and crop-wild hybrid radish, R.raphanistrumxR.sativus) across a soil moisture gradient. In a seed-burial experiment, we assessed relative rates of seed germination, dormancy and seed mortality over twoyears across cross types (crop-wild hybrid or wild) and watering treatments (where water was withheld, equal to annual rainfall, or double annual rainfall). Weekly population censuses in 2012 and 2013 assessed the frequency and timing of seedling emergence within a growing season. Generally, germination rates were two times higher and seed dormancy was 58% lower in hybrid versus wild populations. Surprisingly, experimental soil moisture conditions did not determine seedbank dynamics over time. Yet, seed bank dynamics changed between years, potentially related to different amounts of annual rainfall. Thus, variation in seedbank dynamics may be driven by crop-wild hybridisation rates and, potentially, annual variation in soil moisture conditions. [Teitel, Z.; Laursen, A. E.; Campbell, L. G.] Ryerson Univ, Dept Chem & Biol, Toronto, ON M5B 2K3, Canada; [Teitel, Z.] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada Campbell, LG (reprint author), Ryerson Univ, Dept Chem & Biol, Toronto, ON M5B 2K3, Canada. lesley.g.campbell@ryerson.ca Ryerson University; NSERC [402325-2011] We thank G. Blakelock, N. Pirimova, R. Parker, R. Ata, P. Chiranji, M. Bhundari, S. Farhoomand, M. Loganathan, A. Lulek, N. Makeen, H. Siddiqui, P. Utomi, A. Weis and staff members at University of Toronto KSR for logistical support. J. Conner and A. Snow kindly provided wild seeds from New York and crop seeds respectively. Comments from M. Liebman, several anonymous reviewers, R. Parker, M. Woods, A. Weis, J. Koprivnikar and K. Mercer improved the manuscript. Funding was provided by Ryerson University and NSERC (no. 402325-2011 to LGC). This is a publication of KSR at Joker's Hill. Alexander HM, 2014, AM J BOT, V101, P1176, DOI 10.3732/ajb.1400088; Baskin CC, 2003, NEW PHYTOL, V158, P229, DOI 10.1046/j.1469-8137.2003.00751.x; Baskin CC, 2001, SEEDS ECOLOGY BIOGEO; BOUWMEESTER HJ, 1993, ANN BOT-LONDON, V72, P463, DOI 10.1006/anbo.1993.1133; Campbell LG, 2015, INT J PLANT SCI, V176, P393, DOI 10.1086/680683; Campbell LG, 2014, CAN J PLANT SCI, V94, P1315, DOI [10.4141/CJPS-2014-070, 10.4141/cjps-2014-070]; CHEAM AH, 1986, WEED RES, V26, P405, DOI 10.1111/j.1365-3180.1986.tb00724.x; CONNER J, 1993, EVOLUTION, V47, P704, DOI 10.1111/j.1558-5646.1993.tb02128.x; Cousens RD, 2010, ANN BOT-LONDON, V105, P101, DOI 10.1093/aob/mcp268; del Cacho M, 2012, J VEG SCI, V23, P280, DOI 10.1111/j.1654-1103.2011.01345.x; Duddu HSN, 2014, WEED SCI, V62, P483, DOI 10.1614/WS-D-13-00125.1; ELLSTRAND NC, 1985, AM NAT, V126, P606, DOI 10.1086/284442; Eslami SV, 2010, INT J PLANT PROD, V4, P159; Eslami SV, 2006, WEED SCI, V54, P749, DOI 10.1614/WS-05-180R2.1; Hegde SG, 2006, EVOLUTION, V60, P1187, DOI 10.1554/05-634.1; Holm L. G., 1997, WORLD WEEDS NATURAL; Hou JQ, 1997, J EXP BOT, V48, P683, DOI 10.1093/jxb/48.3.683; IPCC, 2012, MAN RISKS EXTR EV DI; JENNRICH RI, 1986, BIOMETRICS, V42, P805, DOI 10.2307/2530695; KLINGER T, 1991, CONSERV BIOL, V5, P531, DOI 10.1111/j.1523-1739.1991.tb00360.x; Linhart YB, 1996, ANNU REV ECOL SYST, V27, P237, DOI 10.1146/annurev.ecolsys.27.1.237; MAZER SJ, 1987, EVOLUTION, V41, P355, DOI 10.1111/j.1558-5646.1987.tb05803.x; Mercer KL, 2006, EVOLUTION, V60, P2044, DOI 10.1554/06-020.1; Mercer KL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109001; NAYLOR JM, 1976, CAN J BOT, V54, P306, DOI 10.1139/b76-028; Panestos CA, 1967, GENETICA, V38, P243; Patil V.N., 2009, HDB SEED TESTING, P209; Piepho HP, 2004, J AGRON CROP SCI, V190, P230, DOI 10.1111/j.1439-037X.2004.00097.x; Pirimova N, 2015, AM J UNDERGRADUATE R, V12, P63; REEVES TG, 1981, AUST J EXP AGR, V21, P524, DOI 10.1071/EA9810524; SAS, 2008, MULT STAT METH PRACT; SCHOPFER P, 1993, PLANT CELL ENVIRON, V16, P223, DOI 10.1111/j.1365-3040.1993.tb00864.x; SEILER GJ, 1992, FIELD CROP RES, V30, P195, DOI 10.1016/0378-4290(92)90002-Q; Snow AA, 2005, Crop Ferality and Volunteerism, P193, DOI 10.1201/9781420037999.ch13; Snow AA, 2001, ECOL APPL, V11, P934, DOI 10.1890/1051-0761(2001)011[0934:FOHBWA]2.0.CO;2; Teitel Z, 2014, THESIS RYERSON U TOR; Teo-Sherrell CPA, 1996, THESIS U NEBRASKA LI; Verdu M, 2005, ECOLOGY, V86, P1385, DOI 10.1890/04-1647; Warwick SI, 2005, CAN J PLANT SCI, V85, P709, DOI 10.4141/P04-120 39 3 3 1 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0043-1737 1365-3180 WEED RES Weed Res. APR 2016 56 2 149 158 10.1111/wre.12194 10 Agronomy; Plant Sciences Agriculture; Plant Sciences DG2PF WOS:000371909000006 2019-02-21 J Richardson, GB; Dai, CL; Chen, CC; Nedelec, JL; Swoboda, CM; Chen, WW Richardson, George B.; Dai, Chia-Liang; Chen, Ching-Chen; Nedelec, Joseph L.; Swoboda, Christopher M.; Chen, Wei-Wen Adolescent Life History Strategy in the Intergenerational Transmission and Developmental Stability of Substance Use JOURNAL OF DRUG ISSUES English Article substance use; life history theory; life history strategy; evolution; structural equations EVOLUTIONARY PERSPECTIVE; USE DISORDERS; DRUG-USE; REPRODUCTIVE STRATEGIES; SELF-CONTROL; FIT INDEXES; ADDICTION; TRAJECTORIES; PERSONALITY; ABUSE Research suggests that fast life history strategy (LHS) may be a primary driver of substance use among young adults. However, a recent study reported that (a) young adult fast LHS did not subsume all theorized indicators of LHS during this period and (b) fast LHS among parents did not predict young adult fast LHS or liability for use of common substances. In this study, we used structural equations and national data to test whether these findings generalized to adolescence. In addition, given that LHS and substance use share genetic and neuropsychological bases, we examined whether fast LHS could explain the developmental stability of substance use. Overall, our results extend the findings discussed above and suggest that fast LHS fully explains the developmental stability of substance use among youth. We discuss implications for life history models, research applying life history theory and substance use, and substance abuse prevention and treatment. [Richardson, George B.] Univ Cincinnati, Coll Educ, Substance Abuse Counseling Program, POB 210002, Cincinnati, OH 45221 USA; [Dai, Chia-Liang] Univ Cincinnati, POB 210002, Cincinnati, OH 45221 USA; [Chen, Ching-Chen] Univ Cincinnati, Counseling, POB 210002, Cincinnati, OH 45221 USA; [Nedelec, Joseph L.] Univ Cincinnati, Sch Criminal Justice, POB 210002, Cincinnati, OH 45221 USA; [Swoboda, Christopher M.] Univ Cincinnati, Quantitat & Mixed Methods Res Methodol Concentrat, POB 210002, Cincinnati, OH 45221 USA; [Chen, Wei-Wen] Univ Macau, Educ, Taipa, Peoples R China Richardson, GB (reprint author), Univ Cincinnati, Coll Educ Criminal Justice & Human Serv, POB 210002, Cincinnati, OH 45221 USA. george.richardson@uc.edu Richardson, George/0000-0001-6918-159X AGNEW R, 1992, CRIMINOLOGY, V30, P475, DOI 10.1111/j.1745-9125.1992.tb01113.x; Andersen SL, 2003, NEUROSCI BIOBEHAV R, V27, P3, DOI 10.1016/S0149-7634(03)00005-8; Andersen SL, 2009, NEUROSCI BIOBEHAV R, V33, P516, DOI 10.1016/j.neubiorev.2008.09.009; Barnes JC, 2014, J CRIM JUST, V42, P471, DOI 10.1016/j.jcrimjus.2014.08.003; BENTLER PM, 1987, SOCIOL METHOD RES, V16, P78, DOI 10.1177/0049124187016001004; Bernheim A, 2013, FRONT PHARMACOL, V4, DOI 10.3389/fphar.2013.00118; Berridge KC, 2007, PSYCHOPHARMACOLOGY, V191, P391, DOI 10.1007/s00213-006-0578-x; Boisvert D, 2013, J CRIM JUST, V41, P262, DOI 10.1016/j.jcrimjus.2013.05.007; Bollen K.A., 1989, STRUCTURAL EQUATIONS; Browne MW, 1993, SAGE FOCUS EDITIONS, V154, P136, DOI DOI 10.1080/10705511.2012.687671; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Bureau of Labor Statistics, 2012, NAT LONG SURV YOUTH; Byrne B. M., 2001, STRUCTURAL EQUATION; Caldwell BM, 1984, HOME OBSERVATION MEA; Cavazos-Rehg PA, 2011, AIDS BEHAV, V15, P869, DOI 10.1007/s10461-010-9669-0; Chassin L, 2004, J ABNORM PSYCHOL, V113, P483, DOI 10.1037/0021-843X.113.4.483; Chassin L, 2013, DEV PSYCHOPATHOL, V25, P1567, DOI 10.1017/S0954579413000771; Cheung GW, 2002, STRUCT EQU MODELING, V9, P233, DOI 10.1207/S15328007SEM0902_5; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cloninger CR, 1996, ALCOHOL HEALTH RES W, V20, P18; Copping LT, 2014, EVOL PSYCHOL-US, V12, P200, DOI 10.1177/147470491401200115; David M. Buss, 2007, [心理学报, Acta Psychologica Sinica], V39, P502; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Durrant R, 2003, SUBSTANCE USE ABUSE; Durrant R, 2009, AUST NZ J PSYCHIAT, V43, P1049, DOI 10.3109/00048670903270449; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo A. J., 2012, OXFORD HDB SEXUAL CO, P72; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Flory K, 2004, DEV PSYCHOPATHOL, V16, P193, DOI 10.1017/S0954579404044475; Freed C. R., 2012, APA ADDICTION SYNDRO, V1, P27, DOI [10.1037/13751-002, DOI 10.1037/13751-002]; Friedman NP, 2006, PSYCHOL SCI, V17, P172, DOI 10.1111/j.1467-9280.2006.01681.x; Gilbert P, 1998, BRIT J MED PSYCHOL, V71, P447, DOI 10.1111/j.2044-8341.1998.tb01002.x; Goldman MP, 2006, COGNITION ADDICTION, P31; Goldstein MA, 2011, MASSGENERAL HOSPITAL FOR CHILDREN ADOLESCENT MEDICINE HANDBOOK, P155, DOI 10.1007/978-1-4419-6845-6_19; Goldstein RZ, 2002, AM J PSYCHIAT, V159, P1642, DOI 10.1176/appi.ajp.159.10.1642; Grant J. E., 2012, APA ADDICTION SYNDRO, V1, P121, DOI [10.1037/13751-006, DOI 10.1037/13751-006]; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Herskind AM, 1996, HUM GENET, V97, P319, DOI 10.1007/BF02185763; Heyman Gene M, 2013, Front Psychiatry, V4, P31, DOI 10.3389/fpsyt.2013.00031; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Hummel A, 2013, ADDICTION, V108, P487, DOI 10.1111/add.12055; Jacobus J, 2009, PHARMACOL BIOCHEM BE, V92, P559, DOI 10.1016/j.pbb.2009.04.001; Jones DN, 2007, CURR RES SOC PSYCHOL, V12, P186; Kirk KM, 2001, EVOLUTION, V55, P423; Kline R. B., 2010, PRINCIPLES PRACTICE; Lieberman M., 2007, SOCIAL NEUROSCIENCE, P290; Little R. J. A., 2002, STAT ANAL MISSING DA; Margaron H, 2004, SUBST USE MISUSE, V39, P1423, DOI 10.1081/JA-120039399; Merikangas KR, 2012, HUM GENET, V131, P779, DOI 10.1007/s00439-012-1168-0; Miller JW, 2007, PEDIATRICS, V119, P76, DOI 10.1542/peds.2006-1517; Minkov M, 2015, PERS INDIV DIFFER, V76, P204, DOI 10.1016/j.paid.2014.12.014; MOOS R, 2006, RETHINKING SUBSTANCE, P182; Munaf M. E., 2006, COGNITION ADDICTION; Muthen B., 1997, ROBUST INFEREN UNPUB; National Center on Addiction and Substance Abuse, 2009, SHOV UP; Nedelec JL, 2014, J CRIM JUST, V42, P288, DOI 10.1016/j.jcrimjus.2014.02.002; Nesse RM, 2002, ADDICTION, V97, P470, DOI 10.1046/j.1360-0443.2002.00086.x; NESSE RM, 1994, ETHOL SOCIOBIOL, V15, P339, DOI 10.1016/0162-3095(94)90007-8; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Orlando M, 2004, J CONSULT CLIN PSYCH, V72, P400, DOI 10.1037/0022-006X.72.3.400; Patrick ME, 2012, J STUD ALCOHOL DRUGS, V73, P772, DOI 10.15288/jsad.2012.73.772; Pearl Judea, 2009, CAUSALITY; PEELE S, 1990, J DRUG ISSUES, V20, P639, DOI 10.1177/002204269002000413; Pohlmann JT, 2004, J EDUC RES, V98, P14, DOI 10.3200/JOER.98.1.14-23; Pompili M, 2012, EUR ARCH PSY CLIN N, V262, P469, DOI 10.1007/s00406-012-0292-0; Redish AD, 2008, BEHAV BRAIN SCI, V31, P415, DOI 10.1017/S0140525X0800472X; Richardson GB, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.01194; Richardson GB, 2014, EVOL PSYCHOL-US, V12, P932, DOI 10.1177/147470491401200506; Richardson GB, 2012, EVOL PSYCHOL-US, V10, P731, DOI 10.1177/147470491201000408; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Robinson MJF, 2013, BIOLOGICAL RESEARCH ON ADDICTION: COMPREHENSIVE ADDICTIVE BEHAVIORS AND DISORDERS, VOL 2, P391, DOI 10.1016/B978-0-12-398335-0.00039-X; Rushton JP, 2005, PSYCHOL PUBLIC POL L, V11, P235, DOI 10.1037/1076-8971.11.2.235; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; SAMHSA Results from the 2013 National Survey on Drug Use and Health: Summary of National Findings, 2014, NSDUH SER H, V48; Schafer J., 1997, ANAL INCOMPLETE MULT; Schaffer H. J., 2004, HARVARD REV PSYCHIAT, V12, P367, DOI [10.1080/10673220490905705, DOI 10.1080/10673220490905705]; Schutter D.J.L.G., 2007, SOCIAL NEUROSCIENCE, P197; Staiger PK, 2007, DRUG ALCOHOL REV, V26, P17, DOI 10.1080/09595230601036952; STEIN JA, 1987, PERS INDIV DIFFER, V8, P419, DOI 10.1016/0191-8869(87)90043-2; Substance Abuse and Mental Health Services Administration Office of Applied Studies, 2008, SUBST US DEP FOLL IN; Tarter R. E., 2012, APA ADDICTION SYNDRO, V1, P261, DOI DOI 10.1037/13751-014; Teicher MH, 2003, NEUROSCI BIOBEHAV R, V27, P33, DOI 10.1016/S0149-7634(03)00007-1; Terracciano A, 2008, BMC PSYCHIATRY, V8, DOI 10.1186/1471-244X-8-22; Thornberry TP, 2006, J DRUG ISSUES, V36, P1, DOI 10.1177/002204260603600101; Vanyukov MM, 2012, DRUG ALCOHOL DEPEN, V123, pS3, DOI 10.1016/j.drugalcdep.2011.12.018; Vanyukov MM, 2003, NEUROSCI BIOBEHAV R, V27, P507, DOI 10.1016/j.neubiorev.2003.08.002; Vanyukov MM, 2003, NEUROSCI BIOBEHAV R, V27, P517, DOI 10.1016/j.neubiorev.2003.08.003; Volkow ND, 2004, MOL PSYCHIATR, V9, P557, DOI 10.1038/sj.mp.4001507; Volkow ND, 2007, ARCH NEUROL-CHICAGO, V64, P1575, DOI 10.1001/archneur.64.11.1575; Yucel M, 2007, AUST NZ J PSYCHIAT, V41, P957, DOI 10.1080/00048670701689444 94 3 3 2 20 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0022-0426 1945-1369 J DRUG ISSUES J. Drug Issues APR 2016 46 2 102 121 10.1177/0022042615623986 20 Substance Abuse Substance Abuse DF0PK WOS:000371041100002 2019-02-21 J Frederickson, JA; Cohen, JE; Berry, JL Frederickson, Joseph A.; Cohen, Joshua E.; Berry, Jeff L. Ontogeny and life history of a large lamniform shark from the Early Cretaceous of North America CRETACEOUS RESEARCH English Article Chondrichthyes; Lamniformes; Ontogeny; Early Cretaceous ISURUS-OXYRINCHUS; SHORTFIN MAKO; THRESHER SHARK; GROWTH; AGE; WATERS; CHONDRICHTHYES; REPRODUCTION; NEOSELACHII; CARCHARIAS Due to an incomplete fossil record, little is known about lamniform shark life history from the Early Cretaceous of North America. Recent discoveries have shown that during this time, some lamniformes reached gigantic sizes (>6-8 m in total length) not seen in earlier species. Given the importance of life history to understand how organisms reach such sizes, we conducted an ontogenetic analysis on three very large shark vertebrae, representing a single individual from the Lower Cretaceous (Albian) Duck Creek Formation of Texas. Using three different techniques (computed tomography, histological sectioning, and surface texture analysis), we were able to show that this individual was born at a relatively small size and subsequently grew at rapid rate, achieving a total length of over 6.3 m in approximately 18 years; a rate not observed in any other Cretaceous species. Comparison of the different aging techniques yielded complementary results; however, surface texture analysis produced the most complete ontogenetic record for this specimen. More work is needed to determine broad patterns in the life history evolution of giant Early Cretaceous lamniform sharks. (C) 2015 Elsevier Ltd. All rights reserved. [Frederickson, Joseph A.; Cohen, Joshua E.] Univ Oklahoma, Dept Biol, 730 Van Vleet Oval,Room 314, Norman, OK 73019 USA; [Berry, Jeff L.] Univ Oklahoma, Hlth Sci Ctr, Dept Med Imaging & Radiat Sci, 1200 North Stonewall,AHB-3021, Oklahoma City, OK 73117 USA; [Frederickson, Joseph A.; Cohen, Joshua E.] Sam Noble Oklahoma Museum Nat Hist, 2401 Chautauqua Ave, Norman, OK 73072 USA Frederickson, JA (reprint author), Univ Oklahoma, Dept Biol, 730 Van Vleet Oval,Room 314, Norman, OK 73019 USA.; Frederickson, JA (reprint author), Sam Noble Oklahoma Museum Nat Hist, 2401 Chautauqua Ave, Norman, OK 73072 USA. Joseph.A.Frederickson-1@ou.edu Vertebrate Paleontology Department at OMNH In addition, we thank the Vertebrate Paleontology Department at OMNH for partially funding this research. Ardizzone D., 2006, SPECIAL ISSUE AGE GR, P355; Bass A., 1975, 38 OC RES I S AFR AS, P1; Bishop SDH, 2006, MAR FRESHWATER RES, V57, P143, DOI 10.1071/MF05077; Cailliet G.M., 1985, Memoirs of the Southern California Academy of Sciences, V9, P49; Cailliet G. M., 2006, SPECIAL ISSUE AGE GR, P211; Cailliet GM, 1983, P INT WORKSH AG DET, P179; Campana SE, 2005, FISH RES, V73, P341, DOI 10.1016/j.fishres.2005.01.009; Cook TD, 2011, J VERTEBR PALEONTOL, V31, P8, DOI 10.1080/02724634.2011.539968; Ehret D.J., 2010, THESIS U FLORIDA; Frederickson JA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127162; Friedman M, 2010, SCIENCE, V327, P990, DOI 10.1126/science.1184743; GILMORE RG, 1993, ENVIRON BIOL FISH, V38, P95, DOI 10.1007/BF00842907; Goldman KJ, 2006, ENVIRON BIOL FISH, V77, P241, DOI 10.1007/s10641-006-9128-y; Gottfried MD, 1996, GREAT WHITE SHARKS, P55, DOI 10.1016/B978-012415031-7/50008-2; Hamady LL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084006; Kriwet J, 2008, ZOOL J LINN SOC-LOND, V154, P278, DOI 10.1111/j.1096-3642.2008.00410.x; Liu KM, 1998, FISH B-NOAA, V96, P482; Liu KM, 1999, COPEIA, P68; MATTHEWS LH, 1950, P ZOOL SOC LOND, V120, P535; Natanson L.J., 2006, SPECIAL ISSUE AGE GR, P367; Natanson LJ, 2008, MAR ECOL PROG SER, V361, P267, DOI 10.3354/meps07399; Newbrey M.G., 2013, ACTA PALAEO IN PRESS; Parker H. W., 1965, Zoologische Mededeelingen Leiden, V40, P305; PRATT HL, 1983, CAN J FISH AQUAT SCI, V40, P1944, DOI 10.1139/f83-224; Shimada K, 1997, J PALEONTOL, V71, P522, DOI 10.1017/S0022336000039536; Shimada K., 2015, J VERTEBRATE PALEONT, V35; Shimada K, 2008, J VERTEBR PALEONTOL, V28, P21, DOI 10.1671/0272-4634(2008)28[21:OPALHS]2.0.CO;2; STEVENS JD, 1983, COPEIA, P126, DOI 10.2307/1444706; Stevens JD, 2008, SHARKS OPEN OCEAN BI, P87; TAYLOR L R, 1983, Proceedings of the California Academy of Sciences, V43, P87; The Bureau of Economic Geology, 1992, GEOL OF TAX; Uchida S., 1987, REP JAPANESE GROUP E, V24, P5; Underwood CJ, 2006, PALEOBIOLOGY, V32, P215, DOI 10.1666/04069.1; Welton B.J., 1993, BEFORE TIME, P204; Wintner SP, 1999, FISH B-NOAA, V97, P153 35 1 1 1 33 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0195-6671 1095-998X CRETACEOUS RES Cretac. Res. APR 2016 59 272 277 10.1016/j.cretres.2015.11.007 6 Geology; Paleontology Geology; Paleontology DB5PP WOS:000368566400017 2019-02-21 J Senevirathne, G; Thomas, A; Kerney, R; Hanken, J; Biju, SD; Meegaskumbura, M Senevirathne, Gayani; Thomas, Ashish; Kerney, Ryan; Hanken, James; Biju, S. D.; Meegaskumbura, Madhava From Clinging to Digging: The Postembryonic Skeletal Ontogeny of the Indian Purple Frog, Nasikabatrachus sahyadrensis (Anura: Nasikabatrachidae) PLOS ONE English Article WESTERN-GHATS; AMPHIBIA; TADPOLES; METAMORPHOSIS; MORPHOLOGY; PHYLOGENY; EVOLUTION; CHONDROCRANIUM; LOCOMOTION; HYLIDAE The Indian Purple frog, Nasikabatrachus sahyadrensis, occupies a basal phylogenetic position among neobatrachian anurans and has a very unusual life history. Tadpoles have a large ventral oral sucker, which they use to cling to rocks in torrents, whereas metamorphs possess adaptations for life underground. The developmental changes that underlie these shifts in habits and habitats, and especially the internal remodeling of the cranial and post-cranial skeleton, are unknown. Using a nearly complete metamorphic series from free-living larva to metamorph, we describe the postembryonic skeletal ontogeny of this ancient and unique monotypic lineage. The torrent-dwelling larva possesses a dorsoventrally flattened body and a head with tiny dorsal eyes, robust lower and upper jaw cartilages, well-developed trabecular horns, and a definable gap between the trabecular horns and the tip of the snout. Unlike tadpoles of many other frogs, those of Nasikabatrachus retain larval mouth-parts into late metamorphic stages. This unusual feature enables the larvae to maintain their clinging habit until near the end of metamorphosis. The subsequent ontogenetic shift from clinging to digging is correlated with rapid morphological changes and behavioral modifications. Metamorphs are equipped with a shortened tibiafibula and ossified prehallical elements, which likely facilitate initial digging using the hind limbs. Subsequently, the frogs may shift to headfirst burrowing by using the wedge-shaped skull, anteriorly positioned pectoral girdle, well-developed humeral crests and spatula-shaped forelimbs. The transition from an aquatic life in torrents to a terrestrial life underground entails dramatic changes in skeletal morphology and function that represent an extreme in metamorphic remodeling. Our analysis enhances the scope for detailed comparative studies across anurans, a group renowned for the diversity of its life history strategies. [Senevirathne, Gayani; Meegaskumbura, Madhava] Univ Peradeniya, Fac Sci, Dept Mol Biol & Biotechnol, Peradeniya, Sri Lanka; [Thomas, Ashish; Biju, S. D.] Univ Delhi, Dept Environm Studies, Systemat Lab, Delhi 110007, India; [Kerney, Ryan] Gettysburg Coll, Dept Biol, Gettysburg, PA 17325 USA; [Hanken, James] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA; [Hanken, James] Harvard Univ, Museum Comparat Zool, Cambridge, MA 02138 USA Meegaskumbura, M (reprint author), Univ Peradeniya, Fac Sci, Dept Mol Biol & Biotechnol, Peradeniya, Sri Lanka.; Biju, SD (reprint author), Univ Delhi, Dept Environm Studies, Systemat Lab, Delhi 110007, India. sdbiju@es.du.ac.in; madhava88m@gmail.com Kerney, Ryan/0000-0002-4740-7735; Hanken, James/0000-0003-2782-9671 People Trust for Endangered Species (PTES), London; Evolutionarily Distinct and Globally Endangered species (EDGE), London; Government of India [DU/DST '2015/868']; University of Delhi RD [2007/130, 2007/858, 2008/302]; National Research Council [NRC-11-124] This research was supported by grants to SDB from People Trust for Endangered Species (PTES), London, Evolutionarily Distinct and Globally Endangered species (EDGE), London, and DU/DST '2015/868,' Government of India; and University of Delhi R&D 2007/130, 2007/858, 2008/302. MM is supported by the National Research Council (NRC-11-124). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Aguayo R, 2009, J MORPHOL, V270, P1431, DOI 10.1002/jmor.10768; ALTIG R, 1970, Herpetologica, V26, P180; Altig R, 1999, TADPOLES, P24; ALTIG R, 1972, Journal of Herpetology, V6, P21, DOI 10.2307/1563089; Annandale N., 1918, Records of the Indian Museum, V15; Annandale N, 1917, P ASIATIC SOC BENGAL, V13, P185; Biju SD, 2003, NATURE, V425, P711, DOI 10.1038/nature02019; Bossuyt Franky, 2009, P357; Cannatella D, 1999, TADPOLES, P52; Dempster WT, 1930, J MORPHOL, V50, P71, DOI 10.1002/jmor.1050500104; Duellman W. E., 1986, BIOL AMPHIBIANS; Dutta SK, 2004, CURR SCI INDIA, V86, P211; EMERSON SB, 1976, J MORPHOL, V149, P437, DOI 10.1002/jmor.1051490402; Frost DR, 2006, B AM MUS NAT HIST, P8, DOI 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2; GAIGE H. T., 1920, OCCAS PAP MUS ZOOL U, V84, P1; Gosner K. L., 1960, Herpetologica, V16, P183; Haas A, 2003, CLADISTICS, V19, P23, DOI 10.1016/S0748-3007(03)00006-9; HAAS A, 1995, J MORPHOL, V224, P241, DOI 10.1002/jmor.1052240302; Haas A, 1998, J MORPHOL, V238, P109, DOI 10.1002/(SICI)1097-4687(199811)238:2<109::AID-JMOR1>3.0.CO;2-#; HANKEN J, 1988, J MORPHOL, V195, P247, DOI 10.1002/jmor.1051950303; Hedges SB, 2003, NATURE, V425, P669, DOI 10.1038/425669a; LUTZ BERTHA, 1946, BOL MUS NACION RIO DE JANEIRO ZOOL, V70, P1; Maglia A. M., 2007, J MORPHOL, V268, P193; Meegaskumbura M, 2015, ZOOTAXA, V3911, P245, DOI 10.11646/zootaxa.3911.2.6; METTER DE, 1967, COPEIA, P634, DOI 10.2307/1442243; NODZENSKI E, 1990, COPEIA, P1047, DOI 10.2307/1446488; Nussbaum RA, 2007, ZOOL STUD, V46, P322; Pugener A, 2003, ZOOL J LINN SOC-LOND, V139, P129; Pugener LA, 2009, J MORPHOL, V270, P52, DOI 10.1002/jmor.10665; Pugener LA, 1997, J MORPHOL, V233, P267, DOI 10.1002/(SICI)1097-4687(199709)233:3<267::AID-JMOR6>3.0.CO;2-0; Pyron RA, 2011, MOL PHYLOGENET EVOL, V61, P543, DOI 10.1016/j.ympev.2011.06.012; Raj P, 2012, ZOOTAXA, P65; Ramaswami LS, 1944, J MORPHOL, V74, P347, DOI 10.1002/jmor.1050740303; Roelants K, 2007, P NATL ACAD SCI USA, V104, P887, DOI 10.1073/pnas.0608378104; Scott E, 2005, CLADISTICS, V21, P507, DOI 10.1111/j.1096-0031.2005.00079.x; SOKOL OM, 1981, J MORPHOL, V169, P161, DOI 10.1002/jmor.1051690204; SZARSKI H, 1957, AM NAT, V91, P283, DOI 10.1086/281990; TAYLOR W R, 1985, Cybium, V9, P107; Thomas A, 2015, SALAMANDRA, V51, P252; Thomas A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084809; Trueb L., 1973, P65; TRUEB L, 1983, J ZOOL, V199, P189; Wake Marvalee H., 1993, P197; WASSERSUG RJ, 1982, EVOL BIOL, V15, P223; WASSERSUG RJ, 1979, BIOL J LINN SOC, V12, P225, DOI 10.1111/j.1095-8312.1979.tb00056.x; WASSERSUG RJ, 1977, ECOLOGY, V58, P830, DOI 10.2307/1936218; Zachariah A, 2012, ZOOTAXA, P53; ZUG GR, 1972, COPEIA, P613, DOI 10.2307/1442720 48 2 3 0 10 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAR 30 2016 11 3 e0151114 10.1371/journal.pone.0151114 23 Multidisciplinary Sciences Science & Technology - Other Topics DH9LB WOS:000373116500017 27028113 DOAJ Gold, Green Published 2019-02-21 J Czarna, AZ; Jonason, PK; Dufner, M; Kossowska, M Czarna, Anna Z.; Jonason, Peter K.; Dufner, Michael; Kossowska, Malgorzata The Dirty Dozen Scale: Validation of a Polish Version and Extension of the Nomological Net FRONTIERS IN PSYCHOLOGY English Article Dark Triad; Dirty Dozen; Machiavellianism; psychopathy; narcissism LIFE-HISTORY THEORY; TRIAD PERSONALITY-TRAITS; TERM MATING STRATEGY; DARK TRIAD; INDIVIDUAL-DIFFERENCES; MEASUREMENT INVARIANCE; SOCIAL-CONSEQUENCES; HONESTY-HUMILITY; SELF-ESTEEM; PSYCHOPATHY In five studies (total N = 1300) we developed and validated a Polish version of the Dirty Dozen measure (DTDD-P) that measures the three traits of the Dark Triad, Machiavellianism, psychopathy, and narcissism. We detail the presence and stability of a bifactor structure of the 12 items and present evidence for good internal consistency and test-retest reliability. We examine the nomological network surrounding the Dark Triad and show that both the Dark Triad total score and the subscales have acceptable validity. We also present evidence on the Dark Triad and moral behavior. Dark Triad predicts utilitarian moral choice (e.g., approval for sacrificing somebody's life for the sake of saving others) and this link is mediated by low empathic concern. In total, our results suggest that the Polish Dirty Dozen Parszywa Dwunastka-is valid, stable, and useful for the study of lingering puzzles in the literature. [Czarna, Anna Z.; Kossowska, Malgorzata] Jagiellonian Univ, Inst Psychol, Fac Philosophy, Krakow, Poland; [Jonason, Peter K.] Univ Western Sydney, Sch Social Sci & Psychol, Bankstown, NSW, Australia; [Dufner, Michael] Univ Leipzig, Inst Psychol Personlichkeitspsychol & Psychol Dia, D-04109 Leipzig, Germany Czarna, AZ (reprint author), Jagiellonian Univ, Inst Psychol, Fac Philosophy, Krakow, Poland. anna.czarna@vp.pl Czarna, Anna/0000-0002-9861-9455; Kossowska, Malgorzata/0000-0001-5509-4196 National Science Center in Poland [DEC-2013/09/D/HS6/02982] The present research was supported by a grant awarded to the first author from the National Science Center (DEC-2013/09/D/HS6/02982) in Poland. Aghababaei N, 2014, PERS INDIV DIFFER, V67, P6, DOI 10.1016/j.paid.2014.03.026; Arvan M, 2013, NEUROETHICS-NETH, V6, P51, DOI 10.1007/s12152-012-9155-7; Bartels DM, 2011, COGNITION, V121, P154, DOI 10.1016/j.cognition.2011.05.010; Bushman BJ, 1998, J PERS SOC PSYCHOL, V75, P219, DOI 10.1037//0022-3514.75.1.219; BUSS AH, 1992, J PERS SOC PSYCHOL, V63, P452, DOI 10.1037/0022-3514.63.3.452; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; Byrne B. M., 1998, STRUCTURAL EQUATION; Campbell J, 2009, TWIN RES HUM GENET, V12, P132, DOI 10.1375/twin.12.2.132; Campbell W. K., 2011, HDB NARCISSISM NARCI; Carmines E. G., 1979, QUANTITATIVE APPL SO, V17; Carter GL, 2014, PERS INDIV DIFFER, V56, P57, DOI 10.1016/j.paid.2013.08.021; Christie R, 1970, STUDIES MACHIAVELLIA; Church AT, 2001, J PERS, V69, P979, DOI 10.1111/1467-6494.696172; Czarna AZ, 2015, SOC PSYCHOL PERS SCI, V6, P318, DOI 10.1177/1948550614559652; de Zavala AG, 2009, J PERS SOC PSYCHOL, V97, P1074, DOI 10.1037/a0016904; Drat-Ruszczak K., 2000, CZASOPISMO PSYCHOL, V6, P171; Dufner M, 2013, PERS SOC PSYCHOL B, V39, P870, DOI 10.1177/0146167213483580; Figueredo A.J., 2007, ARIZONA LIFE H UNPUB; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fox J, 2015, PERS INDIV DIFFER, V76, P161, DOI 10.1016/j.paid.2014.12.017; Furnham A, 2013, SOC PERSONAL PSYCHOL, V7, P199, DOI 10.1111/spc3.12018; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Gleichgerrcht E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060418; Glenn AL, 2010, JUDGM DECIS MAK, V5, P497; Gosling SD, 2003, J RES PERS, V37, P504, DOI 10.1016/S0092-6566(03)00046-1; HARE RD, 1985, J CONSULT CLIN PSYCH, V53, P7, DOI 10.1037/0022-006X.53.1.7; Hare RD, 1996, CRIM JUSTICE BEHAV, V23, P25, DOI 10.1177/0093854896023001004; Hayes AF, 2013, INTRO MEDIATION MODE; Jonason P. K., 2013, INDIVIDUAL DIFFERENC, V11, P81; Jonason PK, 2015, PERS INDIV DIFFER, V81, P102, DOI 10.1016/j.paid.2014.10.045; Jonason PK, 2013, PERS INDIV DIFFER, V55, P76, DOI 10.1016/j.paid.2013.02.010; Jonason PK, 2013, EVOL PSYCHOL-US, V11, P172, DOI 10.1177/147470491301100116; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2012, PERS INDIV DIFFER, V52, P449, DOI 10.1016/j.paid.2011.11.008; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jonason PK, 2010, INDIVIDUAL DIFFERENC, V8, P111; Jones DN, 2014, ASSESSMENT, V21, P28, DOI 10.1177/1073191113514105; Kazmierczak M., 2007, PRZEGLAD PSYCHOL, V50, P9; Koenigs M, 2012, SOC COGN AFFECT NEUR, V7, P708, DOI 10.1093/scan/nsr048; Kufner ACP, 2015, DIAGNOSTICA, V61, P76, DOI 10.1026/0012-1924/a000124; Lee K, 2013, EUR J PERSONALITY, V27, P169, DOI 10.1002/per.1860; MAC ARTHUR ROBERT H., 1967; Miller JD, 2012, PSYCHOL ASSESSMENT, V24, P1048, DOI 10.1037/a0028583; Olderbak S, 2009, PERS INDIV DIFFER, V46, P604, DOI 10.1016/j.paid.2008.12.019; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Pilch I., 2008, OSOBOWOSC MAKIAWELIS; RASKIN RN, 1979, PSYCHOL REP, V45, P590, DOI 10.2466/pr0.1979.45.2.590; Rauthmann JF, 2012, SOC PSYCHOL PERS SCI, V3, P487, DOI 10.1177/1948550611427608; Robins RW, 2001, PERS SOC PSYCHOL B, V27, P151, DOI 10.1177/0146167201272002; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Sanocki W., 1980, KWESTIONARIUSZE OSOB; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037//0022-3514.60.6.870; Sorokowski P, 2015, PERS INDIV DIFFER, V85, P123, DOI 10.1016/j.paid.2015.05.004; Steenkamp JBEM, 1998, J CONSUM RES, V25, P78, DOI 10.1086/209528; Szymanska I., 2006, ZWIAZKI ORIENT UNPUB; Tamura A., 2015, JPN J PERS, V1, P26, DOI [10.2132/personality.24.26, DOI 10.2132/PERSONALITY.24.26]; Tucholska S., 1998, STUDIA PSYCHOL KATOL, V9, P369; Vandenberg RJ, 2000, ORGAN RES METHODS, V3, P4, DOI 10.1177/109442810031002; VanLange PAM, 1997, J PERS SOC PSYCHOL, V73, P733, DOI 10.1037/0022-3514.73.6.1330; Webster GD, 2007, J RES PERS, V41, P917, DOI 10.1016/j.jrp.2006.08.007; Webster GD, 2013, PERS INDIV DIFFER, V54, P302, DOI 10.1016/j.paid.2012.08.027; Widaman KF, 2010, CHILD DEV PERSPECT, V4, P10, DOI 10.1111/j.1750-8606.2009.00110.x; Wilson E.O., 1975, P1; Zawadzki B., 1998, INWENTARZ OSOBOWOAZC 70 10 10 1 13 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. MAR 30 2016 7 445 10.3389/fpsyg.2016.00445 12 Psychology, Multidisciplinary Psychology DH5ZE WOS:000372870000002 27065915 DOAJ Gold, Green Published 2019-02-21 J Wolff, PL; Schroeder, C; McAdoo, C; Cox, M; Nelson, DD; Evermann, JF; Ridpath, JF Wolff, Peregrine L.; Schroeder, Cody; McAdoo, Caleb; Cox, Mike; Nelson, Danielle D.; Evermann, James F.; Ridpath, Julia F. Evidence of Bovine viral diarrhea virus Infection in Three Species of Sympatric Wild Ungulates in Nevada: Life History Strategies May Maintain Endemic Infections in Wild Populations FRONTIERS IN MICROBIOLOGY English Article bovine viral diarrhea virus; bighorn sheep; mountain goat; mule deer; Nevada; Odocoileus hemionus; Oreamnos americanum; Ovis canadensis WHITE-TAILED DEER; ODOCOILEUS-VIRGINIANUS; SEROLOGIC SURVEY; BIGHORN SHEEP; PATHOGENS; ANTIBODIES; PNEUMONIA; CERVIDS; TYPE-1; FAWNS Evidence for bovine viral diarrhea virus (BVDV) infection was detected in 2009-2010 while investigating a pneumonia die-off in Rocky Mountain bighorn sheep (Ovis canadensis, canadensis), and sympatric mountain goats (Oreamnos americanum) in adjacent mountain ranges in Elko County, Nevada. Seroprevalence to BVDV-1 was 81% (N = 32) in the bighorns and 100% (N = 3) in the mountain goats. Serosurveillance from 2011 to 2015 of surviving bighorns and mountain goats as well as sympatric mule deer (Odocoileus hemionus), indicated a prevalence of 72% (N = 45), 45% (N = 51), and 51% (N = 342) respectively. All species had antibody titers to BVDV1 and BVDV2. BVDV1 was isolated in cell culture from three bighorn sheep and a mountain goat kid. BVDV2 was isolated from two mule deer. Six deer (N = 96) sampled in 2013 were positive for BVDV by antigen capture ELISA on a single ear notch. Wild ungulates and cattle concurrently graze public and private lands in these two mountain ranges, thus providing potential for interspecies viral transmission. Like cattle, mule deer, mountain goats, and bighorn sheep can be infected with BVDV and can develop clinical disease including immunosuppression. Winter migration patterns that increase densities and species interaction during the first and second trimester of gestation may contribute to the long term maintenance of the virus in these wild ungulates. More studies are needed to determine the population level impacts of BVDV infection on these three species. [Wolff, Peregrine L.; Schroeder, Cody; Cox, Mike] Nevada Dept Wildlife, Reno, NV USA; [McAdoo, Caleb] Nevada Dept Wildlife, Elko, NV USA; [Nelson, Danielle D.] Washington State Univ, Coll Vet Med, Vet Microbiol & Pathol, Pullman, WA 99164 USA; [Evermann, James F.] Washington State Univ, Coll Vet Med, Vet Clin Med, Pullman, WA 99164 USA; [Evermann, James F.] Washington State Univ, Coll Vet Med, Washington Anim Dis Diagnost Lab, Pullman, WA 99164 USA; [Ridpath, Julia F.] USDA ARS, Ruminant Dis & Immunol Res Unit, Natl Anim Dis Ctr, Ames, IA USA Wolff, PL (reprint author), Nevada Dept Wildlife, Reno, NV USA. pwolff@ndow.org Ridpath, Julia/0000-0001-7182-8161 Nevada Department of Wildlife by USFWS Federal Aid Wildlife Restoration Grant [W-48-R-41]; Barrick Gold Corporation; Elko Bighorns Unlimited; Nevada Bighorns Unlimited; Nevada Wildlife Heritage Trust [13-06] This work was supported through the Nevada Department of Wildlife by USFWS Federal Aid Wildlife Restoration Grant W-48-R-41. Additional funding was received from the Barrick Gold Corporation, Elko Bighorns Unlimited, Nevada Bighorns Unlimited and Nevada Wildlife Heritage Trust Account, Grant (#13-06). Besser TE, 2012, EMERG INFECT DIS, V18, P406, DOI 10.3201/eid1803.111554; Cassirer EF, 2013, J ANIM ECOL, V82, P518, DOI 10.1111/1365-2656.12031; Chase CCL, 2008, J WILDLIFE DIS, V44, P753, DOI 10.7589/0090-3558-44.3.753; Cox M., 2012, WILD SHEEP DIS EVENT; Dubay SA, 2006, J WILDLIFE DIS, V42, P844, DOI 10.7589/0090-3558-42.4.844; Duncan C, 2008, J VET DIAGN INVEST, V20, P650, DOI 10.1177/104063870802000521; Evermann JF, 2006, SMALL RUMINANT RES, V61, P201, DOI 10.1016/j.smaltrumres.2005.07.01; Kirchgessner MS, 2013, J VET DIAGN INVEST, V25, P226, DOI 10.1177/1040638713479121; KOCAN AA, 1986, J WILDLIFE DIS, V22, P418, DOI 10.7589/0090-3558-22.3.418; Lawson B., 1987, WILD MAMMALS N AM BI, P1036; Lillehaug A, 2003, J WILDLIFE DIS, V39, P779, DOI 10.7589/0090-3558-39.4.779; Mackie R. J., 1987, WILDS MAMMALS N AM B, P862; Montrose A., 2015, J BIOSENS BIOELECTRO, V6, P174; MORTON J K, 1990, Rangifer, V10, P75; Nelson DD, 2008, J VET DIAGN INVEST, V20, P752, DOI 10.1177/104063870802000606; Nielsen SS, 2000, J WILDLIFE DIS, V36, P584, DOI 10.7589/0090-3558-36.3.584; Passler T, 2007, VET MICROBIOL, V122, P350, DOI 10.1016/j.vetmic.2007.01.028; Passler Thomas, 2010, Animal Health Research Reviews, V11, P191, DOI 10.1017/S1466252309990065; Passler T, 2010, VET RES, V41, DOI 10.1051/vetres/2009068; Passler T, 2008, J VET DIAGN INVEST, V20, P79, DOI 10.1177/104063870802000116; Passler T, 2009, VET MICROBIOL, V134, P362, DOI 10.1016/j.vetmic.2008.08.012; Pogranichniy RM, 2008, J VET DIAGN INVEST, V20, P71, DOI 10.1177/104063870802000114; Raizman EA, 2009, J WILDLIFE DIS, V45, P653, DOI 10.7589/0090-3558-45.3.653; Ridpath JF, 2012, J WILDLIFE DIS, V48, P758, DOI 10.7589/0090-3558-48.3.758; Ridpath JF, 2008, AM J VET RES, V69, P1630, DOI 10.2460/ajvr.69.12.1630; Roug A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050600; Sawyer H., 2014, MULE DEER MIGRATION; Shanthalingam S, 2014, J WILDLIFE DIS, V50, P1, DOI 10.7589/2012-09-225; Taylor SK, 1997, J WILDLIFE DIS, V33, P308, DOI 10.7589/0090-3558-33.2.308; Tessaro SV, 1999, J WILDLIFE DIS, V35, P671, DOI 10.7589/0090-3558-35.4.671; Thurmond MC, 2005, BOVINE VIRAL DIARRHEA VIRUS: DIAGNOSIS, MANAGEMENT, AND CONTROL, P91, DOI 10.1002/9780470344453.ch5; Van Campen H, 2001, J WILDLIFE DIS, V37, P306, DOI 10.7589/0090-3558-37.2.306; Van Campen H., 2003, ISOLATION BOVINE VIR; VanCampen H, 1997, J WILDLIFE DIS, V33, P567; Wigal R. A., 1987, WILD MAMMALS N AM BI, P1008; Wolf KN, 2008, J WILDLIFE DIS, V44, P181, DOI 10.7589/0090-3558-44.1.181; Wolfe L. L., 2009, CHEM IMMOBILIZAITON, P77; World Organization for Animal Health, 2008, MANUAL DIAGNOSTIC TE, P576 38 6 6 3 28 FRONTIERS MEDIA SA LAUSANNE PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND 1664-302X FRONT MICROBIOL Front. Microbiol. MAR 9 2016 7 297 10.3389/fmicb.2016.00292 8 Microbiology Microbiology DF7NL WOS:000371544300001 27014215 DOAJ Gold, Green Published 2019-02-21 J Carrea, C; Burridge, CP; King, CK; Miller, KJ Carrea, Cecilia; Burridge, Christopher P.; King, Catherine K.; Miller, Karen J. Population structure and long-term decline in three species of heart urchins Abatus spp. near-shore in the Vestfold Hills region, East Antarctica MARINE ECOLOGY PROGRESS SERIES English Article Population structure; Demographic change; Microsatellite markers; Abatus; East Antarctica GENETIC DIFFERENTIATION MEASURE; HIERARCHICAL BAYESIAN MODEL; MCMURDO SOUND; PRYDZ BAY; DIVERSITY; DISPERSAL; EXPANSION; SOFTWARE; SHELF; BIODIVERSITY Patterns of fine-scale spatial population structure in Antarctic benthic species are poorly understood. There is a high proportion of brooding species in the Antarctic benthos, and a brooding life history strategy is expected to restrict their dispersal abilities and therefore foster population structure. Additionally, genetic structuring of populations can preserve signals of historic processes (such as Pleistocene glaciations) on species distributions and abundances. We developed a set of 7 microsatellite markers to examine population genetic variation and infer the demographic history of 3 sympatric Antarctic sea urchin species from the order Spatangoida (Abatus ingens, A. shackletoni and A. philippii), all with brooding life history strategies. Samples were collected at 5 sites separated by up to 5 km, in the near-shore area surrounding Davis Station in the Vestfold Hills area of the Australian Antarctic Territory. We found evidence of a long-term population decline in all 3 species, and the estimated timing of the decline precedes anthropogenic activities and is compatible with long-term climate variability. Two genetic clusters in A. ingens and A. shackletoni suggest secondary contact after population differentiation in glacial refugia. Life history is not a good predictor of fine-scale population structure in these species, with gene flow possible at distances of 5 km. Finally, no evidence was found for a potential impact of pollution from Davis Station on genetic variation. The reduced effective population size observed for these Antarctic benthic species highlights their fragility and the need for conservation concern. [Carrea, Cecilia; Burridge, Christopher P.; Miller, Karen J.] Univ Tasmania, Sch Biol Sci, Hobart, Tas 7001, Australia; [King, Catherine K.] Australian Antarctic Div, Channel Highway, Kingston, Tas 7050, Australia; [Miller, Karen J.] Australian Inst Marine Sci, Perth, WA 6009, Australia Carrea, C (reprint author), Univ Tasmania, Sch Biol Sci, Hobart, Tas 7001, Australia. cecilia.carrea@utas.edu.au Miller, Karen/A-7902-2011; Burridge, Christopher/J-2653-2012 Burridge, Christopher/0000-0002-8185-6091; Carrea, Cecilia/0000-0001-6999-9471 Australian Government through Australian Antarctic Science Grants Program [3051, 4100] The authors thank the Davis Station summer marine teams of 2009/10 and 2012/13 for assistance in field collections and laboratory processing of samples; particularly Jonathan Stark, Ian Aitkenhead and Patricia Corbett. This project was supported by the Australian Government through its Australian Antarctic Science Grants Program, awarded to K. J. M. ( Project 3051) and C. K. K. ( Project 4100). Allcock AL, 2012, TRENDS ECOL EVOL, V27, P520, DOI 10.1016/j.tree.2012.05.009; Anderson JB, 2002, QUATERNARY SCI REV, V21, P49, DOI 10.1016/S0277-3791(01)00083-X; Baird HP, 2011, MOL ECOL, V20, P3439, DOI 10.1111/j.1365-294X.2011.05173.x; Baird HP, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034363; Barbosa SS, 2013, BIOL J LINN SOC, V108, P821, DOI 10.1111/bij.12006; Barnes DKA, 2008, CLIM RES, V37, P149, DOI 10.3354/cr00760; Barnes DKA, 2007, PHILOS T R SOC B, V362, P11, DOI 10.1098/rstb.2006.1951; Barnes DKA, 2011, NAT CLIM CHANGE, V1, P365, DOI 10.1038/NCLIMATE1232; Beaumont MA, 1999, GENETICS, V153, P2013; Bradbury IR, 2008, P ROY SOC B-BIOL SCI, V275, P1803, DOI 10.1098/rspb.2008.0216; BREY T, 1991, ANTARCT SCI, V3, P251; Chenuil A, 2004, POLAR BIOL, V27, P177, DOI 10.1007/s00300-003-0576-y; Chikhi L, 2010, GENETICS, V186, P983, DOI 10.1534/genetics.110.118661; DAYTON PK, 1969, SCIENCE, V163, P273, DOI 10.1126/science.163.3864.273; Diaz A, 2012, REV CHIL HIST NAT, V85, P457, DOI 10.4067/S0716-078X2012000400008; Domack E, 1998, ANTARCT SCI, V10, P236, DOI 10.1017/S0954102098000339; Dumont CP, 2007, J EXP MAR BIOL ECOL, V340, P80, DOI 10.1016/j.jembe.2006.08.013; Earl DA, 2011, CONSERV GENET RESOUR, V4, P359, DOI DOI 10.1007/S12686-011-9548-7; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; EXCOFFIER L, 1992, GENETICS, V131, P479; Foll M, 2008, GENETICS, V180, P977, DOI 10.1534/genetics.108.092221; Fontaine MC, 2012, P NATL ACAD SCI USA, V109, pE2569, DOI 10.1073/pnas.1201258109; Frankham R, 1995, ANNU REV GENET, V29, P305, DOI 10.1146/annurev.ge.29.120195.001513; Gautschi B, 2000, MOL ECOL, V9, P2193, DOI 10.1046/j.1365-294X.2000.105321.x; Gautschi B, 2000, MOL ECOL, V9, P2192; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Glaubitz JC, 2004, MOL ECOL NOTES, V4, P309, DOI 10.1111/j.1471-8286.2004.00597.x; Gonzalez-Wevar CA, 2013, MOL ECOL, V22, P5221, DOI 10.1111/mec.12465; Goossens B, 2006, PLOS BIOL, V4, P285, DOI 10.1371/journal.pbio.0040025; Goudet J, 1995, J HERED, V86, P485, DOI 10.1093/oxfordjournals.jhered.a111627; GUO SW, 1992, BIOMETRICS, V48, P361, DOI 10.2307/2532296; Hamilton MB, 1999, BIOTECHNIQUES, V27, P500, DOI 10.2144/99273st03; Hedrick PW, 2005, EVOLUTION, V59, P1633, DOI 10.1111/j.0014-3820.2005.tb01814.x; Held C, 2007, POLAR BIOL, V30, P513, DOI 10.1007/s00300-006-0210-x; Hewitt G, 2000, NATURE, V405, P907, DOI 10.1038/35016000; Hoffman JI, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063954; Hubisz MJ, 2009, MOL ECOL RESOUR, V9, P1322, DOI 10.1111/j.1755-0998.2009.02591.x; Huybrechts P, 2002, QUATERNARY SCI REV, V21, P203, DOI 10.1016/S0277-3791(01)00082-8; Jost L, 2008, MOL ECOL, V17, P4015, DOI 10.1111/j.1365-294X.2008.03887.x; Kalinowski ST, 2005, MOL ECOL NOTES, V5, P187, DOI 10.1111/j.1471-8286.2004.00845.x; Keenan K, 2013, METHODS ECOL EVOL, V4, P782, DOI 10.1111/2041-210X.12067; Laurent A, 2004, NATURE, V429, P623; Ledoux JB, 2012, POLAR BIOL, V35, P611, DOI 10.1007/s00300-011-1106-y; Lischer HEL, 2012, BIOINFORMATICS, V28, P298, DOI 10.1093/bioinformatics/btr642; Meirmans PG, 2006, EVOLUTION, V60, P2399, DOI 10.1111/j.0014-3820.2006.tb01874.x; Miller KJ, 2008, J ANIM ECOL, V77, P713, DOI 10.1111/j.1365-2656.2008.01387.x; NEI M, 1973, P NATL ACAD SCI USA, V70, P3321, DOI 10.1073/pnas.70.12.3321; Nikula R, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.0821; O'Brien PE, 1999, ANTARCT SCI, V11, P78; PALUMBI SR, 2003, ECOL APPL, V13, P146, DOI DOI 10.1890/1051-0761(2003)013[; Peakall R, 2012, BIOINFORMATICS, V28, P2537, DOI 10.1093/bioinformatics/bts460; PEARSE JS, 1990, INVERTEBR REPROD DEV, V17, P181, DOI 10.1080/07924259.1990.9672110; Plummer M., 2006, R NEWS, V6, P7, DOI DOI 10.1159/000323281; Poulin E, 2002, TRENDS ECOL EVOL, V17, P218, DOI 10.1016/S0169-5347(02)02493-X; POULIN E, 1994, ECHINODERMS THROUGH TIME, P837; Pritchard JK, 2000, GENETICS, V155, P945; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Riginos C, 2011, ECOGRAPHY, V34, P566, DOI 10.1111/j.1600-0587.2010.06511.x; Ritchie PA, 2004, MOL BIOL EVOL, V21, P240, DOI 10.1093/molbev/msh012; Rogers AD, 2007, PHILOS T R SOC B, V362, P2191, DOI 10.1098/rstb.2006.1948; Selkoe KA, 2011, MAR ECOL PROG SER, V436, P291, DOI 10.3354/meps09238; Stark JS, 2015, COLD REG SCI TECHNOL, V113, P52, DOI 10.1016/j.coldregions.2015.02.006; Stark JS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098802; Stewart JR, 2010, P ROY SOC B-BIOL SCI, V277, P661, DOI 10.1098/rspb.2009.1272; Storz JF, 2002, MOL BIOL EVOL, V19, P1981, DOI 10.1093/oxfordjournals.molbev.a004022; Storz JF, 2002, EVOLUTION, V56, P154; Thatje S, 2005, TRENDS ECOL EVOL, V20, P534, DOI 10.1016/j.tree.2005.07.010; Thatje S, 2008, ECOLOGY, V89, P682, DOI 10.1890/07-0498.1; Thatje S, 2012, INTEGR COMP BIOL, V52, P470, DOI 10.1093/icb/ics105; Tison JL, 2015, CONSERV GENET, V16, P371, DOI 10.1007/s10592-014-0664-2; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Weir B. S., 1996, GENETIC DATA ANAL, VII; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Wright S, 1943, GENETICS, V28, P114; Zemlak TS, 2008, MOL ECOL, V17, P5049, DOI 10.1111/j.1365-294X.2008.03987.x 76 2 2 0 17 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. MAR 8 2016 545 227 238 10.3354/meps11573 12 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography DH1UZ WOS:000372571700018 Bronze 2019-02-21 J Kramer, KL; Veile, A; Otarola-Castillo, E Kramer, Karen L.; Veile, Amanda; Otarola-Castillo, Erik Sibling Competition & Growth Tradeoffs. Biological vs. Statistical Significance PLOS ONE English Article MIDDLE-INCOME COUNTRIES; LIFE-HISTORY THEORY; REPRODUCTIVE SUCCESS; CHILD UNDERNUTRITION; PARENTAL INVESTMENT; TIME ALLOCATION; LINEAR GROWTH; BIRTH-ORDER; FAMILY-SIZE; WEIGHT-GAIN Early childhood growth has many downstream effects on future health and reproduction and is an important measure of offspring quality. While a tradeoff between family size and child growth outcomes is theoretically predicted in high-fertility societies, empirical evidence is mixed. This is often attributed to phenotypic variation in parental condition. However, inconsistent study results may also arise because family size confounds the potentially differential effects that older and younger siblings can have on young children's growth. Additionally, inconsistent results might reflect that the biological significance associated with different growth trajectories is poorly understood. This paper addresses these concerns by tracking children's monthly gains in height and weight from weaning to age five in a high fertility Maya community. We predict that: 1) as an aggregate measure family size will not have a major impact on child growth during the post weaning period; 2) competition from young siblings will negatively impact child growth during the post weaning period; 3) however because of their economic value, older siblings will have a negligible effect on young children's growth. Accounting for parental condition, we use linear mixed models to evaluate the effects that family size, younger and older siblings have on children's growth. Congruent with our expectations, it is younger siblings who have the most detrimental effect on children's growth. While we find statistical evidence of a quantity/quality tradeoff effect, the biological significance of these results is negligible in early childhood. Our findings help to resolve why quantity/quality studies have had inconsistent results by showing that sibling competition varies with sibling age composition, not just family size, and that biological significance is distinct from statistical significance. [Kramer, Karen L.] Univ Utah, Dept Anthropol, Salt Lake City, UT 84112 USA; [Veile, Amanda; Otarola-Castillo, Erik] Purdue Univ, Dept Anthropol, W Lafayette, IN 47907 USA Veile, A (reprint author), Purdue Univ, Dept Anthropol, W Lafayette, IN 47907 USA. aveile@purdue.edu Otarola-Castillo, Erik/0000-0002-7806-494X National Science Foundation [0964031]; NSF [0964031] This research was supported by National Science Foundation, award #0964031. (nsf.gov). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; Much appreciation to the Maya for their ongoing willingness and patience to participate in this study. We are particularly grateful to Maximiliano Moo Moo and Dra. Ada Fuentes for diligently facilitating the local anthropometry program. We thank Russell Greaves for his assistance in the field and Jeffrey Winking for giving us input on the manuscript. We appreciate the very helpful comments from Ed Hagen and Emily Emmott. This research was supported by NSF award #0964031. Adair LS, 2013, LANCET, V382, P525, DOI 10.1016/S0140-6736(13)60103-8; Bereczkei T, 1998, EVOL HUM BEHAV, V19, P283, DOI 10.1016/S1090-5138(98)00027-0; Black RE, 2008, LANCET, V371, P243, DOI 10.1016/S0140-6736(07)61690-0; Black RE, 2013, LANCET, V382, P427, DOI 10.1016/S0140-6736(13)60937-X; Bodner C, 1998, THORAX, V53, P28, DOI 10.1136/thx.53.1.28; Bogin B, 2002, AM J HUM BIOL, V14, P753, DOI 10.1002/ajhb.10092; Bove RB, 2002, HUM NATURE-INT BIOS, V13, P457, DOI 10.1007/s12110-002-1003-8; Bustamante A, 2015, INT J ENV RES PUB HE, V12, P2905, DOI 10.3390/ijerph120302905; Crittenden AN, 2008, HUM NATURE-INT BIOS, V19, P249, DOI 10.1007/s12110-008-9043-3; de Onis M, 2006, ACTA PAEDIATR, V95, P76, DOI 10.1080/08035320500495548; de Onis M, 2013, MATERN CHILD NUTR, V9, P6, DOI 10.1111/mcn.12075; Draper P, 2000, HUM NATURE-INT BIOS, V11, P117, DOI 10.1007/s12110-000-1016-0; Espo M, 2002, ACTA PAEDIATR, V91, P1364; Ford AC, 2007, INT J EPIDEMIOL, V36, P1327, DOI 10.1093/ije/dym201; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; Godoy R, 2010, AM J HUM BIOL, V22, P336, DOI 10.1002/ajhb.20996; Godoy R, 2010, ECON HUM BIOL, V8, P88, DOI 10.1016/j.ehb.2009.08.002; GOLDSTEIN H, 1980, LANCET, V1, P582; Gurven M, 2012, SOC SCI MED, V75, P2493, DOI 10.1016/j.socscimed.2012.09.030; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; Hagen EH, 2009, CURR ANTHROPOL, V50, P727, DOI 10.1086/605328; Hagen EH, 2001, J BIOSOC SCI, V33, P503, DOI 10.1017/S002193200100503X; Hames R., 1988, HUMAN REPROD BEHAV, P237; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Helfrecht C, 2016, AM J HUM BIOL, V28, P159, DOI 10.1002/ajhb.22763; Hesketh T, 2003, ARCH DIS CHILD, V88, P467, DOI 10.1136/adc.88.6.467; Hill K., 1996, ACHE LIFE HIST; HRDY SB, 2009, MOTHERS OTHERS; Hurtado M, 1992, HUMAN NATURE, V3, P1; Jamison CS, 2002, AM J PHYS ANTHROPOL, V119, P67, DOI 10.1002/ajpa.10070; Johnson DH, 1999, J WILDLIFE MANAGE, V63, P763, DOI 10.2307/3802789; Kaplan H, 2000, ADAPTATION HUMAN BEH, P283; Kaplan HS, 2009, PHILOS T R SOC B, V364, P3289, DOI 10.1098/rstb.2009.0115; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Kirchengast S, 2000, COLLEGIUM ANTROPOL, V24, P121; Kramer K, 2005, MAYA CHILDREN HELPER; Kramer K. L, 2009, SUBSTITUTE PARENTS B, P77; Kramer KL, 2011, TRENDS ECOL EVOL, V26, P533, DOI 10.1016/j.tree.2011.06.002; Kramer KL, 2010, ANNU REV ANTHROPOL, V39, P417, DOI 10.1146/annurev.anthro.012809.105054; Kramer KL, 2010, AM J PHYS ANTHROPOL, V141, P235, DOI 10.1002/ajpa.21139; Kramer KL, 2006, CURR ANTHROPOL, V47, P165, DOI 10.1086/499550; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lawson DW, 2008, INT J EPIDEMIOL, V37, P1408, DOI 10.1093/ije/dyn116; Lawson DW, 2012, P ROY SOC B-BIOL SCI, V279, P4755, DOI 10.1098/rspb.2012.1635; Lee RD, 2002, POPUL DEV REV, V28, P475, DOI 10.1111/j.1728-4457.2002.00475.x; Mace R., 2009, SUBSTITUTE PARENTS B, P50; Magvanjav O, 2013, ANN HUM BIOL, V40, P23, DOI 10.3109/03014460.2012.728621; MAHMOOD TA, 1988, BMJ-BRIT MED J, V297, P515, DOI 10.1136/bmj.297.6647.515; Marins VMR, 2002, ANN HUM BIOL, V29, P609, DOI 10.1080/03014460210140176; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Martorell R, 2010, J NUTR, V140, P348, DOI 10.3945/jn.109.112300; McDade TW, 2008, AM J PHYS ANTHROPOL, V136, P478, DOI 10.1002/ajpa.20831; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; McDade TW, 1998, J DEV BEHAV PEDIATR, V19, P286, DOI 10.1097/00004703-199808000-00008; Meij JJ, 2009, J EVOLUTION BIOL, V22, P1014, DOI 10.1111/j.1420-9101.2009.01713.x; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Mulder VB, 2000, EVOL HUM BEHAV, V21, P391; Nettle D, 2002, HUM NATURE-INT BIOS, V13, P473, DOI 10.1007/s12110-002-1004-7; Pawlowski B, 2000, NATURE, V403, P156, DOI 10.1038/35003107; PELTO GH, 1991, SOC SCI MED, V33, P1135, DOI 10.1016/0277-9536(91)90229-6; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; Pinheiro J, 2012, NLME LINEAR NONLINEA, V3, P1; R Development Core Team, 2012, R LANG ENV STAT COMP; Rice AL, 2000, B WORLD HEALTH ORGAN, V78, P1207; Roff Derek A., 1992; Russell AF, 2009, PHILOS T R SOC B, V364, P1143, DOI 10.1098/rstb.2008.0298; Sear R, 2004, RES ECON ANTHROPOL, V23, P203, DOI 10.1016/S0190-1281(04)23008-6; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Silva S, 2012, ANN HUM BIOL, V39, P11, DOI 10.3109/03014460.2011.632646; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith GCS, 2005, PLOS MED, V2, P871, DOI 10.1371/journal.pmed.0020252; Sokal RR, 1995, FREEMAN, V3, P1995, DOI DOI 10.1016/J.JIP.2003.08.007; Stearns S, 1992, EVOLUTION LIFE HIST; Stephens PA, 2007, TRENDS ECOL EVOL, V22, P192, DOI 10.1016/j.tree.2006.12.003; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Stulp G, 2016, BIOL REV, V91, P206, DOI 10.1111/brv.12165; Tada Yuko, 2002, Southeast Asian Journal of Tropical Medicine and Public Health, V33, P628; TAHA SA, 1979, ECOL FOOD NUTR, V7, P193, DOI 10.1080/03670244.1979.9990530; Urlacher SS, 2016, AM J HUM BIOL, V28, P16, DOI 10.1002/ajhb.22747; Veile A, 2015, J HUM LACT, V31, P145, DOI 10.1177/0890334414557177; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; Walker SP, 2007, J NUTR, V137, P2464; Wells JCK, 2012, AM J PHYS ANTHROPOL, V149, P40, DOI 10.1002/ajpa.22160; World Health Organization (WHO), 2004, LOW BIRTHW COUNTR RE; Yoccoz NG, 1991, B ECOL SOC AM, V72, P106 87 5 5 0 11 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAR 3 2016 11 3 e0150126 10.1371/journal.pone.0150126 17 Multidisciplinary Sciences Science & Technology - Other Topics DG0EB WOS:000371735200053 26938742 DOAJ Gold, Green Published 2019-02-21 J Sever, DM; Siegel, DS; Taylor, MS; Beachy, CK Sever, David M.; Siegel, Dustin S.; Taylor, Michael S.; Beachy, Christopher K. Phylogeny of Mental Glands, Revisited COPEIA English Article; Proceedings Paper 6th Conference on the Biology of Plethodontid Salamanders MAY 18-20, 2014 Univ Tulsa, Tulsa, OK Univ Tulsa SALAMANDER GYRINOPHILUS PORPHYRITICUS; LIFE-HISTORY EVOLUTION; PLETHODONTID SALAMANDERS; COURTSHIP BEHAVIOR; FAMILY PLETHODONTIDAE; SEXUAL ISOLATION; PHEROMONE; AMPHIBIA; BIOGEOGRAPHY; RECEPTIVITY Mental glands and their associated delivery behaviors during courtship are unique to the plethodontid salamanders. Because previous interpretations of the evolution of these features were conducted using older phylogenetic hypotheses, we reanalyzed these traits with newer courtship descriptions and contemporary phylogenetic methods. Using Bayesian ancestral state reconstruction methods that have been developed since the first phylogenetic analyses were conducted in the mid-1990s, we reconstructed mental gland and courtship behavior evolution on a Bayesian phylogeny of the nuclear gene Rag1. The most probable ancestral condition for plethodontids was resolved as presence of a mental gland. Loss of a mental gland occurred in each subfamily and was recovered as the most probable ancestral condition for the Spelerpinae. In contrast, parsimony reconstruction recovered the presence of a mental gland in the ancestor to Spelerpinae with multiple secondary losses. We hypothesize that that absence of a mental gland is possibly ancestral in some clades (i.e., Spelerpinae) and secondary in others (e.g., paedomorphic Eurycea). The most probable ancestral form of the mental gland is likely to be the large pad-type distributed extensively in Plethodontinae and Bolitoglossinae. Desmognathans have the most unique mental glands, occurring in an anterior protrusion or bifurcated form (in Desmognathus wrighti). Fan-shaped mental glands evolved independently in Eurycea and Oedipina. Small pads arose independently in Bolitoglossinae, Plethodontinae, and Spelerpinae. Head-rubbing behavior for mental gland delivery mode was recovered as the most probable and parsimonious ancestral state for the Plethodontidae, with independent losses of this behavior in Plethodontinae and Spelerpinae. Because head-rubbing was observed in outgroups, we hypothesize that head-rubbing behavior predated mental gland evolution. Pulling, snapping, slapping, and biting behaviors evolved independently in the Plethodontinae and Spelerpinae and are not homologous with head-rubbing. All hypotheses of mental gland and courtship evolution invoke homoplasy. [Sever, David M.; Beachy, Christopher K.] SE Louisiana Univ, Dept Biol Sci, Hammond, LA 70402 USA; [Siegel, Dustin S.; Taylor, Michael S.] SE Missouri State Univ, Dept Biol, Cape Girardeau, MO 63701 USA Sever, DM (reprint author), SE Louisiana Univ, Dept Biol Sci, Hammond, LA 70402 USA. dsever@selu.edu; dsiegel@semo.edu; mtaylor@semo.edu; christopher.beachy@selu.edu NIGMS NIH HHS [P20 GM103442] Adams DC, 2009, P ROY SOC B-BIOL SCI, V276, P2729, DOI 10.1098/rspb.2009.0543; ARNOLD SJ, 1976, Z TIERPSYCHOL, V42, P247; Beachy Christopher King, 1995, Herpetological Review, V26, P179; Beachy CK, 1996, COPEIA, P199, DOI 10.2307/1446958; Beachy CK, 1997, HERPETOLOGICA, V53, P289; Bernardo J., 1991, THESIS DUKE U DURHAM; BLOCK BA, 1993, SCIENCE, V260, P210, DOI 10.1126/science.8469974; Bonett RM, 2014, EVODEVO, V5, DOI 10.1186/2041-9139-5-27; Bonett RM, 2014, EVOLUTION, V68, P466, DOI 10.1111/evo.12274; Chippindale PT, 2004, EVOLUTION, V58, P2809; Dyal LA, 2006, J HERPETOL, V40, P55, DOI 10.1670/20-05A.1; Houck LD, 2007, ANIM BEHAV, V73, P315, DOI 10.1016/j.anbehav.2006.07.008; HOUCK LD, 1994, AMPH BIOL, V1, P351; Houck LD, 2008, CHEM SENSES, V33, P623, DOI 10.1093/chemse/bjn027; Kozak KH, 2003, SOUTHEAST NAT, V2, P281, DOI 10.1656/1528-7092(2003)002[0281:SIACBI]2.0.CO;2; Lanza B., 1959, Monitore Zoologico Italiano, V67, P15; LARSON A, 1984, EVOL BIOL, V17, P119; LOMBARD RE, 1986, SYST ZOOL, V35, P532, DOI 10.2307/2413113; Macey JR, 2005, CLADISTICS, V21, P194, DOI 10.1111/j.1096-0031.2005.00054.x; Maddison W.P., 2011, MESQUITE MODULAR SYS; Marvin GA, 1996, ETHOLOGY, V102, P285; MILES DB, 1993, ANNU REV ECOL SYST, V24, P587, DOI 10.1146/annurev.es.24.110193.003103; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; NOBLE G. K., 1929, AMER MUS NOVITATES, V362, P1; NOBLE G. K., 1927, AMER MUS NOVITATES, V249, P1; Nylander J. A. A, 2004, MRMODELTEST V2; ORGAN JA, 1968, COPEIA, P217; Pagel M, 2004, SYST BIOL, V53, P673, DOI 10.1080/10635150490522232; Pyron RA, 2011, MOL PHYLOGENET EVOL, V61, P543, DOI 10.1016/j.ympev.2011.06.012; Ronquist F., 2011, SYST BIOL, V61, P539, DOI DOI 10.1093/SYSBI0/SYS029; Sever D. M., 2016, DRYAD DIGITAL REPOSI; SEVER DM, 1985, HERPETOLOGICA, V41, P71; SEVER DM, 1979, J HERPETOL, V13, P245, DOI 10.2307/1563315; Sever DM, 1976, J HERPETOL, V10, P222; Shimodaira H, 1999, MOL BIOL EVOL, V16, P1114, DOI 10.1093/oxfordjournals.molbev.a026201; SWOFFORD DL, 2000, PAUP PHYLOGENETIC AN; TILLEY SG, 1990, P NATL ACAD SCI USA, V87, P2715, DOI 10.1073/pnas.87.7.2715; TRUFELLI GT, 1954, U KANSAS SCI B, V36, P1; Verrell P, 1999, J ZOOL, V247, P105, DOI 10.1111/j.1469-7998.1999.tb00197.x; Verrell P, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P371; Vieites DR, 2011, MOL PHYLOGENET EVOL, V59, P623, DOI 10.1016/j.ympev.2011.03.012; Wake DB, 2011, SCIENCE, V331, P1032, DOI 10.1126/science.1188545; WAKE DAVID B., 1966, MEM S CALIF ACAD SCI, V4, P1; WANNTORP HE, 1990, OIKOS, V57, P119, DOI 10.2307/3565745 44 5 5 0 3 AMER SOC ICHTHYOLOGISTS & HERPETOLOGISTS MIAMI MAUREEN DONNELLY, SECRETARY FLORIDA INT UNIV BIOLOGICAL SCIENCES, 11200 SW 8TH STREET, MIAMI, FL 33199 USA 0045-8511 1938-5110 COPEIA Copeia MAR 2016 104 1 83 93 10.1643/CH-14-210 11 Zoology Zoology DM2OK WOS:000376185900011 30034038 2019-02-21 J Patterson, EM; Krzyszczyk, E; Mann, J Patterson, Eric M.; Krzyszczyk, Ewa; Mann, Janet Age-specific foraging performance and reproduction in tool-using wild bottlenose dolphins BEHAVIORAL ECOLOGY English Article bottlenose dolphin; foraging performance; life history; reproduction; tool use LIFE-HISTORY EVOLUTION; TURSIOPS SP.; GROUP-SIZE; SHARK BAY; REGRESSION; TRUNCATUS; MODELS; SPECIALIZATION; CHIMPANZEES; LACTATION Effective foraging is necessary for nearly all animals, but most animals are not born with adult-like foraging performance. Instead, foraging skills are developed during an individual's lifetime. Life-history theory predicts that adult-level foraging performance should be reached prior to the start of reproduction, but for most species, we know little about age-specific foraging in the wild. Here, we examine lifetime changes in foraging performance for a group of female wild bottlenose dolphins that use marine sponge tools to forage. After controlling for ecological effects and developmental changes in activity budgets, we show that females continue to improve in 3 aspects of foraging until a peak at around midlife, well after dolphins reach physical and sexual maturity. The factors that lead to this improved performance are unknown, but likely include learning and increasing physical ability. Dolphins' peak in foraging performance also coincided with a peak in reproduction, with middle-aged females maximizing foraging efficiency and having the highest probability of lactating. Thus, inadequate mastery of foraging behaviors, such as tool use in bottlenose dolphins, does not limit the onset of reproduction, but improvement in foraging skill may help maximize age-specific reproduction and lifetime fitness. [Patterson, Eric M.; Krzyszczyk, Ewa; Mann, Janet] Georgetown Univ, Dept Biol, Reiss Sci Bldg,Room 406,3700 O St NW, Washington, DC 20057 USA; [Mann, Janet] Georgetown Univ, Dept Psychol, 306N White Gravenor Hall,3700 O St NW, Washington, DC 20057 USA Patterson, EM (reprint author), Georgetown Univ, Dept Biol, Reiss Sci Bldg,Room 406,3700 O St NW, Washington, DC 20057 USA. emp46@georgetown.edu Georgetown University; National Geographic Society Young Explorers Grant; Explorers Club Exploration Fund Grant; Achievement Rewards for College Scientists; Animal Behavior Society Cetacean Behavior and Conservation Award; American Society of Mammalogists; National Science Foundation [0847922, 0316800, 0918303, 0918308]; Office of Naval Research [10230702] This work was supported by Georgetown University, the National Geographic Society Young Explorers Grant, the Explorers Club Exploration Fund Grant, the Achievement Rewards for College Scientists, the Animal Behavior Society Cetacean Behavior and Conservation Award, and the American Society of Mammalogists Grant in Aid of Research to E.M.P., and by the National Science Foundation (grant numbers 0847922, 0316800, 0918303, and 0918308) and Office of Naval Research (grant number 10230702) to J.M. Bel'kovich VM, 1998, DOLPHIN SOC DISCOVER, P38; Burling MC, 2003, ESTUAR COAST SHELF S, V57, P725, DOI 10.1016/S0272-7714(02)00343-8; Calenge C, 2006, ECOL MODEL, V197, P516, DOI 10.1016/j.ecolmodel.2006.03.017; Charnov EL, 2001, EVOL ECOL RES, V3, P521; CHEAL AJ, 1991, ZOO BIOL, V10, P451, DOI 10.1002/zoo.1430100603; Chivers SJ, 2009, ENCYCLOPEDIA OF MARINE MAMMALS, 2ND EDITION, P215; CLEVELAND WS, 1979, J AM STAT ASSOC, V74, P829, DOI 10.2307/2286407; Clutton-Brock T, 1988, REPROD SUCCESS STUDI; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; COLLETT D, 2003, MODELLING BINARY DAT; DUKAS R, 1995, ANIM BEHAV, V49, P1259, DOI 10.1006/anbe.1995.0158; Dukas R, 2008, ETHOLOGY, V114, P1195, DOI 10.1111/j.1439-0310.2008.01565.x; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Fox J., 2011, R COMPANION APPL REG; Fruet PF, 2015, MAR BIOL, V162, P661, DOI 10.1007/s00227-015-2613-0; Fujii JA, 2015, BEHAV ECOL, V26, P519, DOI 10.1093/beheco/aru220; Getz WM, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000207; Geweke J, 1992, BAYESIAN STAT, V4, P169, DOI DOI 10.1371/J0URNAL.P0NE.0059328; Gittleman J.L., 1988, INTEGR COMP BIOL, V28, P863, DOI DOI 10.1093/ICB/28.3.863; Hadfield JD, 2010, J STAT SOFTW, V33, P1; HASTIE T, 1993, J ROY STAT SOC B MET, V55, P757; HEIDELBERGER P, 1983, OPER RES, V31, P1109, DOI 10.1287/opre.31.6.1109; Helton WS, 2008, ANIM COGN, V11, P99, DOI 10.1007/s10071-007-0093-4; Hooper JNA, 2002, SYSTEMA PORIFERA GUI; Hoppitt W, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042044; Hunt GR, 2012, ETHOLOGY, V118, P423, DOI 10.1111/j.1439-0310.2012.02027.x; Janson C, 2002, JUVENILE PRIMATES LI, P57; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Karniski C, 2014, MAR MAMMAL SCI, V31, P839; Kendal R, 2015, EVOL HUM BEHAV, V36, P65, DOI 10.1016/j.evolhumbehav.2014.09.002; Krutzen M, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0374; Krzyszczyk E, 2012, MAR MAMMAL SCI, V28, P295, DOI 10.1111/j.1748-7692.2011.00483.x; LAVIGNE DM, 1982, J ANIM ECOL, V51, P195, DOI 10.2307/4319; Lecomte VJ, 2010, P NATL ACAD SCI USA, V107, P6370, DOI 10.1073/pnas.0911181107; MacNulty DR, 2009, ECOL LETT, V12, P1347, DOI 10.1111/j.1461-0248.2009.01385.x; Mann J, 1999, MAR MAMMAL SCI, V15, P102, DOI 10.1111/j.1748-7692.1999.tb00784.x; Mann J, 2000, BEHAV ECOL, V11, P210, DOI 10.1093/beheco/11.2.210; Mann J, 2007, MAR MAMMAL SCI, V23, P197, DOI 10.1111/j.1748-7692.2006.00087.x; Mann J, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0424; Mann J, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003868; Marsh H, 1986, REP INT WHAL COMM, V8, P5; Muggeo VMR, 2003, STAT MED, V22, P3055, DOI 10.1002/sim.1545; NARULA SC, 1979, INT STAT REV, V47, P31, DOI 10.2307/1403204; Oftedal OT, 1997, J MAMMARY GLAND BIOL, V2, P205, DOI 10.1023/A:1026328203526; Ottoni EB, 2005, ANIM COGN, V8, P215, DOI 10.1007/s10071-004-0245-8; Patterson E. M., 2015, ANIMAL CREATIVITY IN, P73; Patterson EM, 2012, THESIS GEORGETOWN U, P170; Patterson EM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022243; Plummer M., 2006, R NEWS, V6, P7, DOI DOI 10.1159/000323281; R Core Team, 2015, R LANG ENV STAT COMP; Raftery A., 1992, STAT SCI, V7, P493, DOI DOI 10.1214/SS/1177011143; Randic S, 2012, P ROY SOC B-BIOL SCI, V279, P3083, DOI 10.1098/rspb.2012.0264; Sargeant BL, 2005, CAN J ZOOL, V83, P1400, DOI 10.1139/Z05-136; Sargeant BL, 2007, BEHAV ECOL SOCIOBIOL, V61, P679, DOI 10.1007/s00265-006-0296-8; Sargeant BL, 2009, ANIM BEHAV, V78, P715, DOI 10.1016/j.anbehav.2009.05.037; Schippers MP, 2006, J EXP BIOL, V209, P3828, DOI 10.1242/jeb.02450; Schuppli C, 2012, J HUM EVOL, V63, P843, DOI 10.1016/j.jhevol.2012.08.009; Seed A, 2010, CURR BIOL, V20, pR1032, DOI 10.1016/j.cub.2010.09.042; Sirianni G, 2015, ANIM BEHAV, V100, P152, DOI 10.1016/j.anbehav.2014.11.022; Smolker R, 1997, ETHOLOGY, V103, P454, DOI 10.1111/j.1439-0310.1997.tb00160.x; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stephens DW, 1991, BEHAV ECOL, V2, P77, DOI 10.1093/beheco/2.1.77; Stephens D. W, 1986, FORAGING THEORY; Toms JD, 2003, ECOLOGY, V84, P2034, DOI 10.1890/02-0472; Torres LG, 2009, MAR MAMMAL SCI, V25, P797, DOI 10.1111/j.1748-7692.2009.00297.x; Tsai YJJ, 2013, MAR MAMMAL SCI, V29, P261, DOI 10.1111/j.1748-7692.2011.00559.x; Tyne JA, 2012, MAR ECOL PROG SER, V444, P143, DOI 10.3354/meps09410; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; Whitehead H, 2000, CETACEAN SOCIETIES, P219; WURSIG B, 1977, SCIENCE, V198, P755, DOI 10.1126/science.198.4318.755; Ydenberg Ronald C., 1998, P343 71 11 11 3 42 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. MAR-APR 2016 27 2 401 410 10.1093/beheco/arv164 10 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology DL1NL WOS:000375398800010 Bronze 2019-02-21 J Langen, TA; Berg, EC Langen, Tom A.; Berg, Elena C. WHAT DETERMINES THE TIMING AND DURATION OF THE NESTING SEASON FOR A TROPICAL DRY FOREST BIRD, THE WHITE-THROATED MAGPIE-JAY (CALOCITTA FORMOSA)? WILSON JOURNAL OF ORNITHOLOGY English Article breeding biology; Calocitta formosa; Corvidae; omnivory; Philornis parasitism; seasonality; tropical ecology LIFE-HISTORY EVOLUTION; COSTA-RICA; BREEDING SEASONS; PHILORNIS-DOWNSI; NESTLING GROWTH; BLOOD PARASITES; GROUND FINCH; HOUSE WRENS; FOOD; PREDATION The factors affecting the timing of nesting in tropical birds remain poorly understood. We investigated the phenology of White-throated Magpie-Jay (Calocitta fornzosa) nesting in the dry forest of northwest Costa Rica, a region characterized by a severe 5-month dry season followed by a very rainy wet season. We examined whether nesting was associated with climate, diet, risk of parasite infection to nestlings, risk of nest predation, and opportunity to re-nest. Groups of White-throated Magpie-Jays nested repeatedly, initiating nests over a 7-month period that spanned the transition from the dry to early wet season. The diet of adults and the composition of food fed to broods varied seasonally in parallel with changes in vegetation condition and climate associated with the transition from dry to wet season. Fledgling transition to nutritional independence occurred exclusively in the wet season when caterpillars and other arthropods were a large component of the diet. The timing of groups' last nests was associated with an increase in nestling infections by Philornis botflies. We argue that progress at understanding tropical birds' nesting seasons will be made by looking beyond diet and climate at the time of nesting, to additional factors such as the conditions during the post-fledging period of offspring development, temporal patterns of risk of parasite and pathogen infection to nestlings, and temporal patterns of nest or fledgling predation risk. [Langen, Tom A.] Clarkson Univ, Dept Biol, Potsdam, NY 13699 USA; [Langen, Tom A.] Clarkson Univ, Dept Psychol, Potsdam, NY 13699 USA; [Berg, Elena C.] Amer Univ Paris, Dept Comp Sci Math & Environm Sci, F-75007 Paris, France Langen, TA (reprint author), Clarkson Univ, Dept Biol, Potsdam, NY 13699 USA.; Langen, TA (reprint author), Clarkson Univ, Dept Psychol, Potsdam, NY 13699 USA. tlangen@clarkson.edu ARENDT WJ, 1985, AUK, V102, P270, DOI 10.2307/4086769; Atkinson CT, 2010, J AVIAN BIOL, V41, P357, DOI 10.1111/j.1600-048X.2009.04915.x; BELL GP, 1990, STUD AVIAN BIOL, V13, P416; Berg EC, 2009, MOL ECOL, V18, P3486, DOI 10.1111/j.1365-294X.2009.04284.x; Berg EC, 2005, ANIM BEHAV, V70, P375, DOI 10.1016/j.anbehav.2004.11.008; Brawn JD, 2011, J AVIAN BIOL, V42, P61, DOI 10.1111/j.1600-048X.2010.04897.x; CHAPMAN CA, 1990, B TORREY BOT CLUB, V117, P226, DOI 10.2307/2996691; COEN E, 1983, COSTA RICAN NATURAL, P35; Dudaniec RY, 2007, BIOL CONSERV, V139, P325, DOI 10.1016/j.biocon.2007.07.006; Dudaniec RY, 2006, EMU, V106, P13, DOI 10.1071/MU04040; Ellis JMS, 2009, ANIM BEHAV, V78, P615, DOI 10.1016/j.anbehav.2009.05.024; FOSTER MS, 1974, AUK, V91, P722, DOI 10.2307/4084724; Galligan TH, 2009, BIOL J LINN SOC, V98, P577, DOI 10.1111/j.1095-8312.2009.01309.x; Hau M, 1998, P ROY SOC B-BIOL SCI, V265, P89, DOI 10.1098/rspb.1998.0268; Huber SK, 2008, BIOL CONSERV, V141, P601, DOI 10.1016/j.biocon.2007.11.012; Janzen Daniel H., 1993, P448; JANZEN DH, 1973, ECOLOGY, V54, P687, DOI 10.2307/1935359; JANZEN DH, 1967, EVOLUTION, V21, P620, DOI 10.1111/j.1558-5646.1967.tb03416.x; JANZEN DH, 1988, BIOTROPICA, V20, P120, DOI 10.2307/2388184; Komdeur J, 1996, J BIOL RHYTHM, V11, P333, DOI 10.1177/074873049601100407; Lack D., 1954, NATURAL REGULATION A; Langen TA, 1998, AUK, V115, P327, DOI 10.2307/4089191; Langen TA, 1999, AUK, V116, P131, DOI 10.2307/4089460; Langen TA, 1996, IBIS, V138, P506, DOI 10.1111/j.1474-919X.1996.tb08071.x; Langen TA, 1996, ANIM BEHAV, V51, P575, DOI 10.1006/anbe.1996.0061; Langen TA, 2000, BEHAV ECOL, V11, P367, DOI 10.1093/beheco/11.4.367; LAWTON MF, 1985, CONDOR, V87, P192, DOI 10.2307/1366883; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MOREAU RE, 1950, IBIS, V92, P223, DOI 10.1111/j.1474-919X.1950.tb01750.x; MORTON ES, 1971, SCIENCE, V171, P920, DOI 10.1126/science.171.3974.920; Murton R. K., 1977, AVIAN BREEDING CYCLE; Ogden LJE, 1996, CONDOR, V98, P736, DOI 10.2307/1369855; OPLER PA, 1980, J ECOL, V68, P167, DOI 10.2307/2259250; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; POULIN B, 1992, ECOLOGY, V73, P2295, DOI 10.2307/1941476; Preston KL, 2006, CONDOR, V108, P832, DOI 10.1650/0010-5422(2006)108[832:TROFNP]2.0.CO;2; RICKLEFS RE, 1966, EVOLUTION, V20, P235, DOI 10.1111/j.1558-5646.1966.tb03358.x; Robinson WD, 2010, AUK, V127, P253, DOI 10.1525/auk.2010.127.2.253; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Ryder TB, 2008, J AVIAN BIOL, V39, P355, DOI 10.1111/j.2008.0908-8857.04290.x; SINCLAIR ARE, 1978, IBIS, V120, P480, DOI 10.1111/j.1474-919X.1978.tb06813.x; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1950, IBIS, V92, P185, DOI 10.1111/j.1474-919X.1950.tb01749.x; Skutch AF, 1976, PARENT BIRDS THEIR Y; SNOW D. W., 1964, ZOOLOGICA [NEW YORK], V49, P1; SNOW DW, 1976, IBIS, V118, P366, DOI 10.1111/j.1474-919X.1976.tb02026.x; Steward JS, 2013, CONDOR, V115, P838, DOI 10.1525/cond.2013.120005; Stiles F.G., 1983, P502; Stiles FG, 1989, GUIDE BIRDS COSTA RI; Stouffer PC, 2013, AUK, V130, P529, DOI 10.1525/auk.2013.12179; Stutchbury BJM, 2001, BEHAV ECOLOGY TROPIC; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Tarwater CE, 2011, ECOLOGY, V92, P1271, DOI 10.1890/10-1386.1; Valkiunas G, 2004, J WILDLIFE DIS, V40, P555, DOI 10.7589/0090-3558-40.3.555; Vargas G., 1997, GEOGRAFIA COSTA RICA; Wikelski M, 2000, ECOLOGY, V81, P2458, DOI 10.2307/177467; WINTERSTEIN SR, 1983, WILSON BULL, V95, P256; WUNDERLE JM, 1982, BIOTROPICA, V14, P124, DOI 10.2307/2387741; WYNDHAM E, 1986, AM NAT, V128, P155, DOI 10.1086/284551; YOUNG BE, 1993, J WILDLIFE DIS, V29, P555, DOI 10.7589/0090-3558-29.4.555; YOUNG BE, 1994, CONDOR, V96, P341, DOI 10.2307/1369319; YOUNG BE, 1993, OECOLOGIA, V93, P256, DOI 10.1007/BF00317679; Young H, 2008, OECOLOGIA, V155, P85, DOI 10.1007/s00442-007-0883-z 64 3 3 5 36 WILSON ORNITHOLOGICAL SOC WACO 5400 BOSQUE BLVD, STE 680, WACO, TX 76710 USA 1559-4491 1938-5447 WILSON J ORNITHOL Wilson J. Ornithol. MAR 2016 128 1 32 42 10.1676/wils-128-01-32-42.1 11 Ornithology Zoology DK9HR WOS:000375242000003 2019-02-21 J McFarlin, SC; Terranova, CJ; Zihlman, AL; Bromage, TG McFarlin, Shannon C.; Terranova, Carl J.; Zihlman, Adrienne L.; Bromage, Timothy G. Primary bone microanatomy records developmental aspects of life history in catarrhine primates JOURNAL OF HUMAN EVOLUTION English Article Bone histology; Life history; Growth and development; Old World monkeys; Apes SKELETAL STRUCTURAL ADAPTATIONS; MONKEYS CERCOPITHECUS-AETHIOPS; MECHANICAL USAGE SATMU; BODY-SIZE DIMORPHISM; REDEFINING WOLFF LAW; HUMAN MIDSHAFT FEMUR; HUMAN GROWTH; CORTICAL BONE; DENTAL DEVELOPMENT; PERIOSTEAL BONE A central challenge in human origins research is to understand how evolution has shaped modern human life history. As fossilized remains of our ancestors provide the only direct evidence for life history evolution, efforts to reconstruct life history in paleontological contexts have focused on hard tissues, particularly on dental development. However, among investigators of other vertebrate groups, there is a long tradition of examining primary bone microstructure to decipher growth rates and maturational timing, based on an empirical relationship between the microanatomy of primary bone and the rate at which it is deposited. We examined ontogenetic variation in primary bone microstructure at the mid shaft femur of Chlorocebus aethiops, Hylobates lar, and Pan troglodytes to test whether tissue type proportions vary in accordance with predictions based on body mass growth patterns described previously. In all taxa, younger age classes were characterized by significantly higher percent areas of fibro-lamellar and/or parallel-fibered tissues, while older age classes showed significantly higher proportions of lamellar bone. In prior experimental studies, fibro-lamellar and parallel-fibered tissue types have been associated with faster depositional rates than lamellar bone. Principal components analysis revealed differences among taxa in the timing of this transition, and in the particular tissue types observed among individuals of similar dental emergence status. Among M1 and M2 age classes, higher proportions of parallel-fibered and fibro-lamellar tissues were observed in those taxa characterized by reportedly faster body mass growth rates. Further, persistence of fibro-lamellar tissue throughout DECID, M1 and M2 age classes in chimpanzees contrasts with the pattern reported previously for modern humans. Despite the necessary limitations of our cross-sectional study design and the secondary remodeling of bone in primates, large areas of primary bone remain intact and represent a valuable and independent source of information about the evolution of growth and development in the fossil record. (C) 2016 Elsevier Ltd. All rights reserved. [McFarlin, Shannon C.] George Washington Univ, Ctr Adv Study Human Paleobiol, Dept Anthropol, 800 22nd St NW, Washington, DC 20052 USA; [Terranova, Carl J.] Dauphine St, New Orleans, LA 70117 USA; [Zihlman, Adrienne L.] Univ Calif Santa Cruz, Dept Anthropol, 1156 High St, Santa Cruz, CA 95064 USA; [Bromage, Timothy G.] NYU, Dept Biomat & Biomimet, Coll Dent, 345 East 24th St, New York, NY 10010 USA McFarlin, SC (reprint author), George Washington Univ, Ctr Adv Study Human Paleobiol, Dept Anthropol, 800 22nd St NW, Washington, DC 20052 USA. mcfarlin@gwu.edu; cterrano@tulane.edu; azihlman@ucsc.edu; Tim.Bromage@nyu.edu bromage, timothy/0000-0002-9843-7993 National Science Foundation (SBE-DDIG) [0202823]; Leakey Foundation; City University of New York (Robert E. Gilleece Fellowship); George Washington University's Academic Excellence Initiative; German Federal Ministry of Education and Research; Alexander von Humboldt Foundation This research was inspired by the groundbreaking contributions of Donald H. Enlow, particularly in his efforts to meticulously document and understand bone histodiversity and its ontogenetic foundations. One of us (S.C.M.) had the great fortune of 'cutting teeth' in the world of bone histology by spending innumerable hours studying the impressive comparative slide collection Enlow amassed (now curated at the New York University College of Dentistry), and this research in particular benefitted immeasurably from his feedback as a Ph.D. committee member and colleague. This work was also substantially improved through discussions with and assistance from a number of others, including Johanna Warshaw, Haviva M. Goldman, Debra Bolter, Eric Delson, Fred Szalay, and Chet Sherwood, and from students and other researchers of the Hard Tissue Research Unit, New York Consortium of Evolutionary Primatology, and the Center for the Advanced Study of Human Paleobiology at The George Washington University. We also thank Haviva Goldman, Chet Sherwood and three anonymous reviewers for helpful comments on earlier drafts of this manuscript. Skeletal materials from the Sherwood L. Washburn collection at the University of California Santa Cruz, the Museum of Comparative Zoology of Harvard University, and the Museum fur Naturkunde of the Humboldt University were kindly made available for the current study; numerous individuals at these institutions also provided valuable assistance, including Maria Rutzmoser, Judy Chupasko, Manfred Ade, Peter Giere, Andrea Mess, Detlef Wilborn, and Irene Thomas. This research was supported by the National Science Foundation (SBE-DDIG 0202823; funding to NYCEP), The Leakey Foundation, and the City University of New York (Robert E. Gilleece Fellowship; Dissertation Fellowship). Support to S.C.M. was also provided by funding from The George Washington University's Academic Excellence Initiative to CASHP. Partial research support was also provided by the 2010 Max Planck Research Award to T.G.B., endowed by the German Federal Ministry of Education and Research to the Max Planck Society and the Alexander von Humboldt Foundation in respect of the Hard Tissue Research Program in Human Paleobiomics. ALTMANN J, 1987, OECOLOGIA, V72, P15, DOI 10.1007/BF00385038; Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; Amprino R., 1947, ARCH BIOL, V58, P316; Amprino R., 1947, COMMENT PONTIFICIA A, V11; BALENA R, 1992, J BONE MINER RES, V7, P1475; Bezanson M., 2013, BUILDING BABIES PRIM, P435; Bogin B, 1996, AM J HUM BIOL, V8, P703, DOI 10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U; Bogin B, 2006, SCH AM RES, P197; Bolter DR, 2003, J ZOOL, V260, P99, DOI 10.1017/S0952836903003522; Breuer T, 2009, AM J PRIMATOL, V71, P106, DOI 10.1002/ajp.20628; Brits D, 2014, INT J LEGAL MED, V128, P369, DOI 10.1007/s00414-013-0854-3; Brockelman WY, 1998, BEHAV ECOL SOCIOBIOL, V42, P329, DOI 10.1007/s002650050445; Bromage TG, 2009, SCANNING, V31, P1, DOI 10.1002/sca.20139; BROMAGE TG, 1985, NATURE, V317, P525, DOI 10.1038/317525a0; Bromage Timothy G., 2005, Microscopy and Analysis, V19, P5; Bromage Timothy G., 2003, Anatomical Record, V274B, P157, DOI 10.1002/ar.b.10031; Bromage TG, 2011, CELLS TISSUES ORGANS, V194, P124, DOI 10.1159/000324216; Bromage TG, 2009, CALCIFIED TISSUE INT, V84, P388, DOI 10.1007/s00223-009-9221-2; Burr D.B., 1989, Puerto Rico Health Sciences Journal, V8, P191; BURR DB, 1992, ANAT RECORD, V232, P180, DOI 10.1002/ar.1092320203; Cambra-Moo O, 2014, J ANAT, V224, P634, DOI 10.1111/joa.12172; Cambra-Moo O, 2012, J STRUCT BIOL, V178, P338, DOI 10.1016/j.jsb.2012.04.008; Castanet J, 2006, CR PALEVOL, V5, P629, DOI 10.1016/j.crpv.2005.10.006; Castanet J, 2004, J ZOOL, V263, P31, DOI 10.1017/S0952836904004844; Castanet J, 2000, CR ACAD SCI III-VIE, V323, P543, DOI 10.1016/S0764-4469(00)00181-5; Castanet J, 1996, CR ACAD SCI III-VIE, V319, P301; Castanet J, 1992, BONE, V7, P245; Castanet Jacques, 2001, Biosystema, V19, P133; Chinsamy-Turan A., 2005, MICROSTRUCTURE DINOS; Cuijpers S, 2009, ANTHROPOL ANZ, V67, P181, DOI 10.1127/0003-5548/2009/0021; Currey J, 2002, BONES STRUCTURE MECH; de Margerie E, 2004, J EXP BIOL, V207, P869, DOI 10.1242/jeb.00841; De Margerie E, 2005, ANAT REC PART A, V282A, P49, DOI 10.1002/ar.a.20141; de Margerie E, 2002, J ANAT, V201, P521, DOI 10.1046/j.1469-7580.2002.00118.x; de Margerie E, 2002, CR BIOL, V325, P221, DOI 10.1016/S1631-0691(02)01429-4; de Ricqles A, 1977, Annales de Paleontologie Vertebres, V63, P133; De Ricqles A., 1975, ANN PALEONTOL, V61, P51; De Ricqles A., 1969, ANN PALEONTOLOGIE VE, V55, P1; De Ricqles A., 1991, BONE, P1; de Ricqles AJ, 1993, HISTOLOGY ANCIENT HU, P37; de Ricqles AJ, 2007, CR PALEVOL, V6, P591, DOI 10.1016/j.crpv.2007.09.010; Dean MC, 2014, ANN HUM BIOL, V41, P336, DOI 10.3109/03014460.2014.922614; Dean MC, 2010, PHILOS T R SOC B, V365, P3397, DOI 10.1098/rstb.2010.0052; Dean M. Christopher, 2009, P101, DOI 10.1007/978-1-4020-9980-9_10; DEBUFFRENIL V, 1984, CAN J ZOOL, V62, P2026, DOI 10.1139/z84-297; DEMETER G, 1928, ANAT EMBRYOL, V87, P45; Dirks W, 2003, AM J PRIMATOL, V61, P29, DOI 10.1002/ajp.10106; Dirks W, 2007, J HUM EVOL, V53, P309, DOI 10.1016/j.jhevol.2007.04.007; Doppler Stefanie, 2006, Anthropologischer Anzeiger, V64, P257; Doran Diane M., 1996, P213, DOI 10.1017/CBO9780511752414.018; Drapeau MSM, 2006, AM J PHYS ANTHROPOL, V129, P403, DOI 10.1002/ajpa.20336; ENLOW D, 1982, HDB FACIAL GROWTH; Enlow D, 1966, STUDIES ANATOMY FUNC, P93; Enlow D. E., 1958, Texas Journal of Science, V10, P187; Enlow D. H., 1956, Texas Journal of Science, V8, P405; Enlow D. H., 1957, Texas Journal of Science, V9, P186; Enlow D. H., 1996, ESSENTIALS FACIAL GR; ENLOW DH, 1962, AM J ANAT, V110, P79, DOI 10.1002/aja.1001100202; ENLOW DH, 1963, PRINCIPLES BONE REMO; ENLOW DH, 1976, YEARB PHYS ANTHROPOL, V20, P19; Erickson GM, 2005, TRENDS ECOL EVOL, V20, P677, DOI 10.1016/j.tree.2005.08.012; Fedigan L., 1988, P389; Feik SA, 2000, AM J PHYS ANTHROPOL, V112, P191, DOI 10.1002/(SICI)1096-8644(2000)112:2<191::AID-AJPA6>3.3.CO;2-V; Foote JS, 1916, CONTRIBUTION COMP HI; Francillon-Vieillot H., 1990, P471; FROST HM, 1990, ANAT REC, V226, P403, DOI 10.1002/ar.1092260402; FROST HM, 1990, ANAT RECORD, V226, P414, DOI 10.1002/ar.1092260403; Frost HM, 1973, BONE MODELING SKELET; GARN SM, 1972, AM J PHYS ANTHROPOL, V36, P377, DOI 10.1002/ajpa.1330360308; Godfrey LR, 2004, AM J PHYS ANTHROPOL, V123, P250, DOI 10.1002/ajpa.10315; Goldman HM, 2009, ANAT REC, V292, P48, DOI 10.1002/ar.20778; Goldman HM, 1999, SCANNING, V21, P40; Goldman HM, 2003, ANAT REC PART A, V272A, P434, DOI 10.1002/ar.a.10055; Goodall J., 1986, CHIMPANZEES GOMBE PA; Gosman JH, 2012, Bone Histology: An Anthropological Perspective, P23; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; Hamada Y, 2002, AM J PHYS ANTHROPOL, V118, P268, DOI 10.1002/ajpa.10078; Hamada Y, 1996, PRIMATES, V37, P279, DOI 10.1007/BF02381860; Havill LM, 2004, CALCIFIED TISSUE INT, V74, P95, DOI 10.1007/s00223-003-9038-3; HAWKES K., 2006, EVOLUTION HUMAN LIFE; HERRMANN B, 1994, NATURWISSENSCHAFTEN, V81, P399, DOI 10.1007/s001140050092; Hillier ML, 2007, J FORENSIC SCI, V52, P249, DOI 10.1111/j.1556-4029.2006.00368.x; HORROCKS JA, 1986, INT J PRIMATOL, V7, P31, DOI 10.1007/BF02692308; HUNT KD, 1991, INT J PRIMATOL, V12, P95, DOI 10.1007/BF02547576; Jee W. S. S., 2007, Journal of Musculoskeletal & Neuronal Interactions, V7, P232; JOWSEY J, 1968, CORNELL VET, VS 58, P74; JOWSEY J, 1966, J ANAT, V100, P857; KERLEY ELLIS R., 1966, TULANE STUD ZOOL, V13, P71; Klevezal G. A., 1996, RECORDING STRUCTURES; Kohler M, 2012, NATURE, V487, P358, DOI 10.1038/nature11264; Kohler M, 2009, P NATL ACAD SCI USA, V106, P20354, DOI 10.1073/pnas.0813385106; Kolb C, 2015, PEERJ, V3, DOI 10.7717/peerj.1358; Kuzawa CW, 2014, P NATL ACAD SCI USA, V111, P13010, DOI 10.1073/pnas.1323099111; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Lee AH, 2015, PEERJ, V3, DOI 10.7717/peerj.823; Legendre L, 2013, ZOOL SCR, V42, P44, DOI 10.1111/j.1463-6409.2012.00564.x; Leigh S. R., 2007, PRIMATES PERSPECTIVE, P396; LEIGH SR, 1995, AM J PRIMATOL, V36, P37, DOI 10.1002/ajp.1350360104; Leigh SR, 2001, EVOL ANTHROPOL, V10, P223, DOI 10.1002/evan.20002; Leigh SR, 1996, AM J PHYS ANTHROPOL, V101, P455, DOI 10.1002/(SICI)1096-8644(199612)101:4<455::AID-AJPA2>3.0.CO;2-V; LEIGH SR, 1992, J HUM EVOL, V23, P27, DOI 10.1016/0047-2484(92)90042-8; Leigh SR, 1998, AM J PHYS ANTHROPOL, V107, P331; Leigh SR, 1996, AM J PHYS ANTHROPOL, V99, P43, DOI 10.1002/(SICI)1096-8644(199601)99:1<43::AID-AJPA3>3.0.CO;2-0; Leigh SR, 2006, DEV PRIMATOL-PROG PR, P225; Leighton D.R., 1987, P135; Lieberman DE, 2003, J EXP BIOL, V206, P3125, DOI 10.1242/jeb.00514; Maggiano CM, 2012, BONE HISTOLOGY: AN ANTHROPOLOGICAL PERSPECTIVE, P45; Maggiano IS, 2011, INT J OSTEOARCHAEOL, V21, P743, DOI 10.1002/oa.1159; Martin R. B., 1998, SKELETAL TISSUE MECH; MCFARLIN SC, 2006, THESIS CITY U NEW YO; McFarlin SC, 2008, J ANAT, V213, P308, DOI 10.1111/j.1469-7580.2008.00947.x; Moro M, 1996, BONE, V19, P519, DOI 10.1016/S8756-3282(96)00263-3; Mulhern DM, 2012, Bone Histology: An Anthropological Perspective, P109; Mulhern DM, 2003, AM J PHYS ANTHROPOL, V122, P127, DOI 10.1002/ajpa.10294; Newell-Morris L, 1982, FACTORS MECH INFLUEN, P243; Ortner Donald J, 2003, IDENTIFICATION PATHO; Padian K, 2001, NATURE, V412, P405, DOI 10.1038/35086500; Padian K, 2013, BONE HISTOLOGY OF FOSSIL TETRAPODS: ADVANCING METHODS, ANALYSIS, AND INTERPRETATION, P1; Paine RR, 1997, J ZOOL, V241, P803, DOI 10.1111/j.1469-7998.1997.tb05749.x; Parfitt AM, 2002, J BONE MINER RES, V17, P1741, DOI 10.1359/jbmr.2002.17.10.1741; Parfitt M.A., 1983, BONE HISTOMORPHOMETR, P143; PEABODY FE, 1961, J MORPHOL, V108, P11, DOI 10.1002/jmor.1051080103; Pearson Osbjorn M., 2004, American Journal of Physical Anthropology, P63; Pereira Michael E., 2003, P149; Pfeiffer S., 2006, DOCUMENTA ARCHAEOBIO, P15; PRITCHARD J J, 1972, P1; Pusey AE, 2005, INT J PRIMATOL, V26, P3, DOI 10.1007/s10764-005-0721-2; PUSEY AE, 1978, THESIS STANFORD U; Quekett J.T., 1855, DESCRIPTIVE ILLUSTRA, V1; Raichlen DA, 2015, J HUM EVOL, V81, P1, DOI 10.1016/j.jhevol.2015.01.003; Robinson K., 2006, HDB RES METHODS DEV, P3; RUFF CB, 1994, AM J PHYS ANTHROPOL, V93, P35, DOI 10.1002/ajpa.1330930103; Ruff C, 2007, AM J PHYS ANTHROPOL, V133, P698, DOI 10.1002/ajpa.20568; Ruff Christopher B., 1993, P234; Ruff CB, 2015, J HUM EVOL, V80, P74, DOI 10.1016/j.jhevol.2014.09.005; Sanchez S, 2012, MICROSC MICROANAL, V18, P1095, DOI 10.1017/S1431927612001079; SAUNDERS SR, 1985, GROWTH, V49, P105; SCHAFFLER MB, 1984, AM J PHYS ANTHROPOL, V65, P191, DOI 10.1002/ajpa.1330650211; Schultz AH, 1944, AM J PHYS ANTHROP-NE, V2, P1, DOI 10.1002/ajpa.1330020102; Schwartz GT, 2012, CURR ANTHROPOL, V53, pS395, DOI 10.1086/667591; SINGH IJ, 1974, J MORPHOL, V144, P421, DOI 10.1002/jmor.1051440404; Skedros JG, 2011, J ANAT, V218, P480, DOI 10.1111/j.1469-7580.2011.01348.x; Smith B. Holly, 1993, P195; Smith BH, 2011, J HUM EVOL, V60, P34, DOI 10.1016/j.jhevol.2010.08.006; Smith BH, 1992, EVOL ANTHROPOL, V1, P134, DOI DOI 10.1002/EVAN.1360010406; SMITH JW, 1960, J ANAT, V94, P329; Smith RJ, 1997, J HUM EVOL, V32, P523, DOI 10.1006/jhev.1996.0122; Smith RJ, 1998, J HUM EVOL, V34, P173, DOI 10.1006/jhev.1997.0190; Smith TM, 2010, P NATL ACAD SCI USA, V107, P20923, DOI 10.1073/pnas.1010906107; Sokal RR, 1995, BIOMETRY; Starck JM, 2002, J MORPHOL, V254, P232, DOI 10.1002/jmor.10029; Streeter M, 2012, Bone Histology: An Anthropological Perspective, P135; Tanner J., 1990, FETUS MAN PHYS GROWT; Turner TR, 1997, AM J PHYS ANTHROPOL, V103, P19, DOI 10.1002/(SICI)1096-8644(199705)103:1<19::AID-AJPA3>3.0.CO;2-8; Uchikoshi Makiko, 2007, Gibbon Journal, V3, P66; vanderMeulen MCH, 1996, J ORTHOPAED RES, V14, P22, DOI 10.1002/jor.1100140106; Walker R, 2006, AM J PHYS ANTHROPOL, V129, P577, DOI 10.1002/ajpa.20306; Warshaw J., 2007, THESIS CITY U NEW YO; Warshaw Johanna, 2008, P385, DOI 10.1007/978-1-4020-6997-0_18; Watts David P., 1993, P148; WATTS ES, 1990, MG PRIMATOL, V14, P89; WHITE T. D., 2011, HUMAN OSTEOLOGY; YEN PKJ, 1977, J DENT RES, V56, P961, DOI 10.1177/00220345770560082201; YEN PKJ, 1978, J DENT RES, V57, P388, DOI 10.1177/00220345780570024201; Zihlman A, 2004, P NATL ACAD SCI USA, V101, P10541, DOI 10.1073/pnas.0402635101; Zihlman AL, 2007, J ZOOL, V273, P63, DOI 10.1111/j.1469-7998.2007.00301.x; ZIHLMAN AL, 1992, J HUM EVOL, V22, P315, DOI 10.1016/0047-2484(92)90062-E 167 4 4 1 10 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0047-2484 J HUM EVOL J. Hum. Evol. MAR 2016 92 60 79 10.1016/j.jhevol.2015.12.004 20 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology DJ4TA WOS:000374199700005 26989017 Other Gold 2019-02-21 J Ingley, SJ; Johnson, JB Ingley, Spencer J.; Johnson, Jerald B. Selection is stronger in early-versus-late stages of divergence in a Neotropical livebearing fish BIOLOGY LETTERS English Article matrix modelling; elasticity; mark-recapture; Brachyrhaphis; Fisher's fundamental theorem LIFE-HISTORY EVOLUTION; BRACHYRHAPHIS-RHABDOPHORA; NATURAL-SELECTION; POECILIA-RETICULATA; FITNESS COMPONENTS; POPULATIONS; HERITABILITY; ECOLOGY; TRAITS How selection acts to drive trait evolution at different stages of divergence is of fundamental importance in our understanding of the origins of biodiversity. Yet, most studies have focused on a single point along an evolutionary trajectory. Here, we provide a case study evaluating the strength of divergent selection acting on life-history traits at early-versus-late stages of divergence in Brachyrhaphis fishes. We find that the difference in selection is stronger in the early-diverged population than the late-diverged population, and that trait differences acquired early are maintained over time. [Ingley, Spencer J.; Johnson, Jerald B.] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA; [Johnson, Jerald B.] Brigham Young Univ, Monte L Bean Life Sci Museum, Provo, UT 84602 USA Ingley, SJ (reprint author), Brigham Young Univ, Dept Biol, Provo, UT 84602 USA. sjingley@gmail.com Ingley, Spencer/0000-0002-2414-9892 National Geographic Young Explorers Grant; US-National Science Foundation Graduate Research Fellowship; Brigham Young University Internship Grant; Mentoring Environment Grant S.J.I., National Geographic Young Explorers Grant and US-National Science Foundation Graduate Research Fellowship. J.B.J., Brigham Young University Internship Grant and Mentoring Environment Grant. S.J.I. and J.B.J., Brigham Young University Department of Biology. S.J.I. and J.B.J., Brigham Young University Kennedy Center for International Studies. Belk MC, AM NAT; Benton TG, 1999, TRENDS ECOL EVOL, V14, P467, DOI 10.1016/S0169-5347(99)01724-3; Bolnick DI, 2007, EVOLUTION, V61, P2229, DOI 10.1111/j.1558-5646.2007.00179.x; Bronikowski AM, 2002, ECOLOGY, V83, P2194, DOI 10.2307/3072051; Caswell H., 2001, MATRIX POPULATION MO; CHARLESWORTH B, 1993, P ROY SOC B-BIOL SCI, V251, P47, DOI 10.1098/rspb.1993.0007; Fisher RA, 1930, GENETICAL THEORY NAT; Hendry AP, 2001, EVOLUTION, V55, P459, DOI 10.1554/0014-3820(2001)055[0459:PMATAD]2.0.CO;2; Ingley SJ, 2015, MOL PHYLOGENET EVOL, V89, P104, DOI 10.1016/j.ympev.2015.04.013; Ingley SJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090274; Johnson JB, 2001, BIOL J LINN SOC, V72, P519, DOI 10.1006/bijl.2000.0513; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Johnson JB, 2009, ECOLOGY, V90, P2243, DOI 10.1890/07-1672.1; Kruuk LEB, 2000, P NATL ACAD SCI USA, V97, P698, DOI 10.1073/pnas.97.2.698; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; McFarlane SE, 2014, ECOL EVOL, V4, P1729, DOI 10.1002/ece3.982; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Riesch R, 2014, ECOL LETT, V17, P65, DOI 10.1111/ele.12209; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; White GC, 1999, BIRD STUDY, V46, P120 25 5 5 4 14 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. MAR 1 2016 12 3 20151022 10.1098/rsbl.2015.1022 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology DJ1AE WOS:000373934700007 26979559 Green Published 2019-02-21 J Jauk, E; Neubauer, AC; Mairunteregger, T; Pemp, S; Sieber, KP; Rauthmann, JF Jauk, Emanuel; Neubauer, Aljoscha C.; Mairunteregger, Thomas; Pemp, Stephanie; Sieber, Katharina P.; Rauthmann, John F. How Alluring Are Dark Personalities? The Dark Triad and Attractiveness in Speed Dating EUROPEAN JOURNAL OF PERSONALITY English Article Dark Triad; narcissism; Machiavellianism; psychopathy; mating; speed dating TERM MATING STRATEGY; LIFE-HISTORY THEORY; MATE CHOICES; PHYSICAL ATTRACTIVENESS; ROMANTIC RELATIONSHIPS; 5-FACTOR MODEL; R-PACKAGE; NARCISSISM; MACHIAVELLIANISM; PSYCHOPATHY Dark Triad traits (narcissism, psychopathy, and Machiavellianism) are linked to the pursuit of short-term mating strategies, but they may have differential effects on actual mating success in naturalistic scenarios: Narcissism may be a facilitator for men's short-term mating success, while Machiavellianism and psychopathy may be detrimental. To date, little is known about the attractiveness of Dark Triad traits in women. In a speed-dating study, we assessed participants' Dark Triad traits, Big Five personality traits, and physical attractiveness in N=90 heterosexual individuals (46 women and 44 men). Each participant rated each partner's mate appeal for short- and long-term relationships. Across both sexes, narcissism was positively associated with mate appeal for short- and long-term relationships. Further analyses indicated that these associations were due to the shared variance among narcissism and extraversion in men and narcissism and physical attractiveness in women, respectively. In women, psychopathy was also positively associated with mate appeal for short-term relationships. Regarding mating preferences, narcissism was found to involve greater choosiness in the rating of others' mate appeal (but not actual choices) in men, while psychopathy was associated with greater openness towards short-term relationships in women. Copyright (c) 2016 European Association of Personality Psychology [Jauk, Emanuel; Neubauer, Aljoscha C.; Mairunteregger, Thomas; Pemp, Stephanie; Sieber, Katharina P.] Karl Franzens Univ Graz, Univ Pl 2, A-8010 Graz, Austria; [Rauthmann, John F.] Humboldt Univ, Berlin, Germany Jauk, E (reprint author), Graz Univ, Dept Psychol, Univ Pl 2, A-8010 Graz, Austria. emanuel.jauk@uni-graz.at Jauk, Emanuel/0000-0003-3267-1688 Ackerman RA, 2015, PERS RELATIONSHIP, V22, P92, DOI 10.1111/pere.12065; Asendorpf JB, 2011, EUR J PERSONALITY, V25, P16, DOI 10.1002/per.768; Back MD, 2013, J PERS SOC PSYCHOL, V105, P1013, DOI 10.1037/a0034431; Back MD, 2011, PSYCHOL SCI, V22, P984, DOI 10.1177/0956797611414725; Back MD, 2011, EUR J PERSONALITY, V25, P90, DOI 10.1002/per.811; Back MD, 2011, EUR J PERSONALITY, V25, P120, DOI 10.1002/per.806; Back MD, 2010, J PERS SOC PSYCHOL, V98, P132, DOI 10.1037/a0016338; Baughman HM, 2014, PERS INDIV DIFFER, V67, P47, DOI 10.1016/j.paid.2014.01.034; BRADLEE PM, 1992, PERS INDIV DIFFER, V13, P821, DOI 10.1016/0191-8869(92)90056-U; Buss D. M., 2003, EVOLUTION DESIRE REV; Campbell W. K., 2006, SELF RELATIONSHIPS C, P57; Campbell WK, 2002, PERS SOC PSYCHOL B, V28, P484, DOI 10.1177/0146167202287006; Campbell WK, 2002, J PERS SOC PSYCHOL, V83, P340, DOI 10.1037/0022-3514.83.2.340; Carter GL, 2014, PERS INDIV DIFFER, V56, P159, DOI 10.1016/j.paid.2013.09.001; Carter GL, 2014, PERS INDIV DIFFER, V56, P57, DOI 10.1016/j.paid.2013.08.021; Cattell R. B., 1970, HDB 16 PERSONALITY F; Christie R, 1970, STUDIES MACHIAVELLIA; Cleckley H. M, 1964, MASK SANITY ATTEMPT; Dufner M, 2013, PERS SOC PSYCHOL B, V39, P870, DOI 10.1177/0146167213483580; Eastwick PW, 2007, PSYCHOL SCI, V18, P317, DOI 10.1111/j.1467-9280.2007.01897.x; Egan V, 2007, PERS INDIV DIFFER, V43, P2105, DOI 10.1016/j.paid.2007.06.034; FEHR B, 1992, ADV PERS AS, V9, P77; FEINGOLD A, 1990, J PERS SOC PSYCHOL, V59, P981, DOI 10.1037/0022-3514.59.5.981; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Foster JD, 2006, J SOC PERS RELAT, V23, P367, DOI 10.1177/0265407506064204; Furnham A, 2013, SOC PERSONAL PSYCHOL, V7, P199, DOI 10.1111/spc3.12018; Grijalva E, 2015, PERS PSYCHOL, V68, P1, DOI 10.1111/peps.12072; Hare R. D., 2003, HARE PSYCHOPATHY CHE; HENNING HJ, 1977, Z SOZIALPSYCHOL, V8, P185; Holtzman N. S., 2011, HDB NARCISSISM NARCI, P210, DOI [10.1002/9781118093108.chl19, DOI 10.1002/9781118093108.CH19]; Holtzman Nicholas S, 2013, Evol Psychol, V11, P1101; Holtzman NS, 2013, SOC PSYCHOL PERS SCI, V4, P461, DOI 10.1177/1948550612461284; Holtzman NS, 2010, J RES PERS, V44, P133, DOI 10.1016/j.jrp.2009.10.004; Jonason PK, 2012, PERS INDIV DIFFER, V53, P180, DOI 10.1016/j.paid.2012.03.007; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, PERS INDIV DIFFER, V49, P606, DOI 10.1016/j.paid.2010.05.030; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones D. N, 2011, HDB INTERPERSONAL PS, P249; Kaufman S.B., 2013, MATING INTELLIGENCE; Kenny D.A., 1994, INTERPERSONAL PERCEP; Kenny D. A., 2007, ESTIMATION SRM USING; Kenny DA, 2006, DYADIC DATA ANAL; Kufner ACP, 2013, J PERS, V81, P184, DOI 10.1111/j.1467-6494.2012.00795.x; Lalumiere M. L., 2005, CAUSES RAPE UNDERSTA; Lalumiere ML, 1996, PERS INDIV DIFFER, V21, P33, DOI 10.1016/0191-8869(96)00059-1; Leckelt M, 2015, J PERS SOC PSYCHOL, V109, P856, DOI 10.1037/pspp0000057; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; LEVENSON MR, 1995, J PERS SOC PSYCHOL, V68, P151, DOI 10.1037//0022-3514.68.1.151; Li NP, 2013, J PERS SOC PSYCHOL, V105, P757, DOI 10.1037/a0033777; Luo SH, 2009, J PERS, V77, P933, DOI 10.1111/j.1467-6494.2009.00570.x; Mathieu C, 2013, PERS INDIV DIFFER, V55, P527, DOI 10.1016/j.paid.2013.04.026; McClure MJ, 2014, J PERS SOC PSYCHOL, V106, P89, DOI 10.1037/a0034532; McHoskey JW, 2001, PERS INDIV DIFFER, V31, P779, DOI 10.1016/S0191-8869(00)00180-X; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Morf CC, 2001, PSYCHOL INQ, V12, P243, DOI 10.1207/S15327965PLI1204_3; Nimon K, 2008, BEHAV RES METHODS, V40, P457, DOI 10.3758/BRM.40.2.457; Nimon KF, 2013, ORGAN RES METHODS, V16, P650, DOI 10.1177/1094428113493929; Paulhus DL, 1998, J PERS SOC PSYCHOL, V74, P1197, DOI 10.1037/0022-3514.74.5.1197; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Penke L, 2008, J PERS SOC PSYCHOL, V95, P1113, DOI 10.1037/0022-3514.95.5.1113; Rammstedt B, 2005, DIAGNOSTICA, V51, P195, DOI 10.1026/0012-1924.51.4.195; Rammstedt B., 2004, ZUMA NACHRICHTEN, V55, P5; RASKIN RN, 1979, PSYCHOL REP, V45, P590, DOI 10.2466/pr0.1979.45.2.590; Rauthmann JF, 2013, J PERS ASSESS, V95, P388, DOI 10.1080/00223891.2012.742905; Rauthmann JF, 2013, PERS INDIV DIFFER, V54, P582, DOI 10.1016/j.paid.2012.11.005; Rauthmann JF, 2012, SOC PSYCHOL PERS SCI, V3, P487, DOI 10.1177/1948550611427608; Rauthmann JF, 2012, PERS INDIV DIFFER, V53, P884, DOI 10.1016/j.paid.2012.06.020; Rauthmann JF, 2011, SOC BEHAV PERSONAL, V39, P391, DOI 10.2224/sbp.2011.39.3.391; Roberts BW, 2000, PERS SOC PSYCHOL B, V26, P1284, DOI 10.1177/0146167200262009; Rohmann E, 2011, EUR PSYCHOL, V16, P295, DOI 10.1027/1016-9040/a000025; ROWE DC, 1995, BEHAV BRAIN SCI, V18, P573, DOI 10.1017/S0140525X00039959; Schonbrodt FD, 2012, BEHAV RES METHODS, V44, P455, DOI 10.3758/s13428-011-0150-4; Todd PM, 2007, P NATL ACAD SCI USA, V104, P15011, DOI 10.1073/pnas.0705290104; Vazire S., 2008, J RES PERS, V42, P1436; Vernon PA, 2008, PERS INDIV DIFFER, V44, P445, DOI 10.1016/j.paid.2007.09.007; Zimmermann J., 1994, METRISCHE ERFA UNPUB 79 8 8 4 44 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0890-2070 1099-0984 EUR J PERSONALITY Eur. J. Personal. MAR-APR 2016 30 2 125 138 10.1002/per.2040 14 Psychology, Social Psychology DI8FA WOS:000373735600002 2019-02-21 J Guillaumet, A; Woodworth, BL; Camp, RJ; Paxton, EH Guillaumet, Alban; Woodworth, Bethany L.; Camp, Richard J.; Paxton, Eben H. Comparative demographics of a Hawaiian forest bird community JOURNAL OF AVIAN BIOLOGY English Article GOODNESS-OF-FIT; AVIAN MALARIA; LIFE-HISTORY; ELEVATIONAL GRADIENT; ADAPTIVE RADIATION; GENETIC-STRUCTURE; MARKED ANIMALS; TRADE-OFF; POPULATION; SURVIVAL Estimates of demographic parameters such as survival and reproductive success are critical for guiding management efforts focused on species of conservation concern. Unfortunately, reliable demographic parameters are difficult to obtain for any species, but especially for rare or endangered species. Here we derived estimates of adult survival and recruitment in a community of Hawaiian forest birds, including eight native species (of which three are endangered) and two introduced species at Hakalau Forest National Wildlife Refuge, Hawai?i. Integrated population models (IPM) were used to link mark-recapture data (1994-1999) with long-term population surveys (1987-2008). To our knowledge, this is the first time that IPM have been used to characterize demographic parameters of a whole avian community, and provides important insights into the life history strategies of the community. The demographic data were used to test two hypotheses: 1) arthropod specialists, such as the Akiaplau Hemignathus munroi, are slower' species characterized by a greater relative contribution of adult survival to population growth, i.e. lower fecundity and increased adult survival; and 2) a species' susceptibility to environmental change, as reflected by its conservation status, can be predicted by its life history traits. We found that all species were characterized by a similar population growth rate around one, independently of conservation status, origin (native vs non-native), feeding guild, or life history strategy (as measured by slowness'), which suggested that the community had reached an equilibrium. However, such stable dynamics were achieved differently across feeding guilds, as demonstrated by a significant increase of adult survival and a significant decrease of recruitment along a gradient of increased insectivory, in support of hypothesis 1. Supporting our second hypothesis, we found that slower species were more vulnerable species at the global scale than faster ones. The possible causes and conservation implications of these patterns are discussed. [Guillaumet, Alban; Camp, Richard J.] Univ Hawaii, Hawaii Cooperat Studies Unit, POB 44,Hawaii Natl Pk, Hilo, HI 96718 USA; [Woodworth, Bethany L.] Univ New England, Dept Environm Studies, 11 Hills Beach Rd, Biddeford, ME 04005 USA; [Paxton, Eben H.] US Geol Survey, Pacific Isl Ecosyst Res Ctr, POB 44,Hawaii Natl Pk, Honolulu, HI 96718 USA Guillaumet, A (reprint author), Univ Hawaii, Hawaii Cooperat Studies Unit, POB 44,Hawaii Natl Pk, Hilo, HI 96718 USA. albang@hawaii.edu Paxton, Eben/0000-0001-5578-7689; Camp, Richard/0000-0001-7008-923X U.S. Geological Survey Ecosystems Program; U.S. Fish and Wildlife Service, Ecological Services Division and Inventory and Monitoring Program Funding was provided by the U.S. Geological Survey Ecosystems Program and the U.S. Fish and Wildlife Service, Ecological Services Division and Inventory and Monitoring Program. Steven Fancy (USGS, now NPS) initiated and led the mid-1990s Hakalau Forest Birds Project, and D. Wass, J. Jeffrey, and other staff of Hakalau Forest National Wildlife Refuge gave permission to work on the refuge, provided logistical support, and donated their time and expertise throughout the field projects. This research would not have been possible without the field contributions of Jay T. Nelson, Erik J. Tweed, Michael P. Moore, and dozens of biologists and field assistants over the years. We appreciate comments from Michael Samuel, Wayne J. Arendt and Steffen Oppel that greatly improved earlier drafts of this manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Abadi F, 2010, ECOLOGY, V91, P7, DOI 10.1890/08-2235.1; Ahumada JA, 2004, J MED ENTOMOL, V41, P1157, DOI 10.1603/0022-2585-41.6.1157; Atkinson CT, 1995, PARASITOLOGY, V111, pS59, DOI 10.1017/S003118200007582X; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Banko Paul C., 2009, P159; Beissinger SR, 1998, J WILDLIFE MANAGE, V62, P821, DOI 10.2307/3802534; Benning TL, 2002, P NATL ACAD SCI USA, V99, P14246, DOI 10.1073/pnas.162372399; Besbeas P, 2014, METHODS ECOL EVOL, V5, P1373, DOI 10.1111/2041-210X.12279; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Brown JL, 2013, J AVIAN BIOL, V44, P141, DOI 10.1111/j.1600-048X.2012.05728.x; Calvert AM, 2009, J APPL ECOL, V46, P610, DOI 10.1111/j.1365-2664.2009.01636.x; Camp R. J., 2015, BIRD CONSER IN PRESS; Camp RJ, 2010, CONDOR, V112, P196, DOI 10.1525/cond.2010.080113; CARPENTER FL, 1978, AM ZOOL, V18, P809; CAUGHLEY G, 1994, J ANIM ECOL, V63, P215, DOI 10.2307/5542; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Davis AJ, 2014, ECOL EVOL, V4, P4247, DOI 10.1002/ece3.1290; Eggert LS, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-315; Elphick CS, 2010, BIOL CONSERV, V143, P617, DOI 10.1016/j.biocon.2009.11.026; Fisher DO, 2001, ECOLOGY, V82, P3531, DOI 10.2307/2680170; Foden WB, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065427; Foster JT, 2007, MOL ECOL, V16, P4738, DOI 10.1111/j.1365-294X.2007.03550.x; Freed LA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067914; Fretz JS, 2002, AUK, V119, P166, DOI 10.1642/0004-8038(2002)119[0166:SOFAFA]2.0.CO;2; Friedenberg NA, 2003, ECOL LETT, V6, P953, DOI 10.1046/j.1461-0248.2003.00524.x; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Gimenez O, 2007, ECOL MODEL, V206, P431, DOI 10.1016/j.ecolmodel.2007.03.040; Gimenez O, 2009, ENVIRON ECOL STAT SE, V3, P883, DOI 10.1007/978-0-387-78151-8_41; Gorresen P. Marcos, 2009, P108; Guillaumet A., 2015, DRYAD DIGITAL REPOSI; Hart PJ, 2011, AUK, V128, P113, DOI 10.1525/auk.2011.10031; Hart PJ, 2003, AUK, V120, P82, DOI 10.1642/0004-8038(2003)120[0082:SADOMF]2.0.CO;2; Itonaga N, 2011, IBIS, V153, P636, DOI 10.1111/j.1474-919X.2011.01131.x; Jiguet F, 2007, GLOBAL CHANGE BIOL, V13, P1672, DOI 10.1111/j.1365-2486.2007.01386.x; Kery M, 2012, BAYESIAN POPULATION ANALYSIS USING WINBUGS: A HIERARCHICAL PERSPECTIVE, P1; Kilpatrick AM, 2006, BIOL CONSERV, V128, P475, DOI 10.1016/j.biocon.2005.10.014; Kuntz W. A., 2008, THESIS U HAWAII MANO; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lerner HRL, 2011, CURR BIOL, V21, P1838, DOI 10.1016/j.cub.2011.09.039; Lunn DJ, 2000, STAT COMPUT, V10, P325, DOI 10.1023/A:1008929526011; Mounce HL, 2013, J FIELD ORNITHOL, V84, P32, DOI 10.1111/jofo.12003; MOUNTAINSPRING S, 1985, ECOL MONOGR, V55, P219, DOI 10.2307/1942558; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2002, J THEOR BIOL, V218, P175, DOI 10.1006/yjtbi.3066; Paxton E. H., 2011, STRUCT DEC MAK WORKS; Paxton E. H., 2013, 20131150 US GEOL SUR; Plummer M., 2003, P 3 INT WORKSH DISTR; Pradel R, 1997, BIOMETRICS, V53, P60, DOI 10.2307/2533097; Pratt D., 2005, BIRD FAMILIES WORLD; Pratt TK, 2001, CONDOR, V103, P746, DOI 10.1650/0010-5422(2001)103[0746:HRATOT]2.0.CO;2; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; RALPH CJ, 1994, WILSON BULL, V106, P615; RALPH CJ, 1994, CONDOR, V96, P503, DOI 10.2307/1369332; Ralph CJ, 1998, CONDOR, V100, P468, DOI 10.2307/1369712; RALPH CJ, 1995, CONDOR, V97, P729, DOI 10.2307/1369181; Reif J, 2010, IBIS, V152, P610, DOI 10.1111/j.1474-919X.2010.01036.x; Roff Derek A., 1992; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Samuel MD, 2011, ECOL APPL, V21, P2960, DOI 10.1890/10-1311.1; Sanchez G, 2013, PLS PATH MODELING R; Schaub M, 2013, ECOLOGY, V94, P1828, DOI 10.1890/12-1395.1; Schaub M, 2011, J ORNITHOL, V152, P227, DOI 10.1007/s10336-010-0632-7; Schluter D, 2000, AM NAT, V156, pS4, DOI 10.1086/303412; Schmidt BR, 2002, AMPHIBIA-REPTILIA, V23, P375, DOI 10.1163/15685380260449234; SEVENSTER JG, 1993, J ANIM ECOL, V62, P720, DOI 10.2307/5392; Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353; Tenan S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049187; Thomas L, 2010, J APPL ECOL, V47, P5, DOI 10.1111/j.1365-2664.2009.01737.x; VanderWerf E. A., 1998, BIRDS N AM ONLINE; VanderWerf EA, 2004, ECOLOGY, V85, P770, DOI 10.1890/02-0668; Vanderwerf EA, 2008, CONDOR, V110, P241, DOI 10.1525/cond.2008.8476; Vanderwerf EA, 2009, J WILDLIFE MANAGE, V73, P737, DOI 10.2193/2008-284; VANRIPER C, 1987, CONDOR, V89, P85, DOI 10.2307/1368762; White GC, 1999, BIRD STUDY, V46, P120; Woodworth Bethany L., 2009, P194; Woodworth BL, 2001, STUD AVIAN BIOL-SER, P164 76 1 1 3 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. MAR 2016 47 2 185 196 10.1111/jav.00756 12 Ornithology Zoology DH8AF WOS:000373014800007 2019-02-21 J Ingley, SJ; Johnson, JB Ingley, Spencer J.; Johnson, Jerald B. Divergent natural selection promotes immigrant inviability at early and late stages of evolutionary divergence EVOLUTION English Article Brachyrhaphis; mesocosm; path analysis; poeciliidae; predation; swimming performance FISH BRACHYRHAPHIS-RHABDOPHORA; LIFE-HISTORY EVOLUTION; WITH-GENE-FLOW; ECOLOGICAL SPECIATION; REPRODUCTIVE ISOLATION; PATH-ANALYSIS; SWIMMING PERFORMANCE; INDUCED PLASTICITY; GAMBUSIA-AFFINIS; SEXUAL SELECTION Natural selection's role in speciation has been of fundamental importance since Darwin first outlined his theory. Recently, work has focused on understanding how selection drives trait divergence, and subsequently reproductive isolation. "Immigrant inviability," a barrier that arises from selection against immigrants in their nonnative environment, appears to be of particular importance. Although immigrant inviability is likely ubiquitous, we know relatively little about how selection acts on traits to drive immigrant inviability, and how important immigrant inviability is at early-versus-late stages of divergence. We present a study evaluating the role of predation in the evolution of immigrant inviability in recently diverged population pairs and a well-established species pair of Brachyrhaphis fishes. We evaluate performance in a high-predation environment by assessing survival in the presence of a predator, and swimming endurance in a low-predation environment. We find strong signatures of local adaptation and immigrant inviability of roughly the same magnitude both early and late in divergence. We find remarkably conserved selection for burst-speed swimming (important in predator evasion), and selection for increased size in low-predation environments. Our results highlight the consistency with which selection acts during speciation, and suggest that similar factors might promote initial population differentiation and maintain differentiation at late stages of divergence. [Ingley, Spencer J.; Johnson, Jerald B.] Brigham Young Univ, Dept Biol, Evolutionary Ecol Labs, Provo, UT 84602 USA; [Johnson, Jerald B.] Brigham Young Univ, Monte L Bean Life Sci Museum, Provo, UT 84602 USA Ingley, SJ (reprint author), Brigham Young Univ, Dept Biol, Evolutionary Ecol Labs, Provo, UT 84602 USA. sjingley@gmail.com Ingley, Spencer/0000-0002-2414-9892 National Geographic Young Explorers Grant; National Science Foundation Graduate Research Fellowship; American Museum of Natural History; Explorers Club; American Society of Naturalists; Department of Biology; Kennedy Center for International Studies at Brigham Young University We thank J. Rehm, D. Money, M. Rambo, and I. Ingley for help in the field, and H. Camarillo and H. Willis for help with endurance trials in the lab. Members of SJI's doctoral dissertation committee provided valuable guidance during the initial stages of this project. This work was funded by a National Geographic Young Explorers Grant, a National Science Foundation Graduate Research Fellowship, a Theodore Roosevelt Memorial Grant from the American Museum of Natural History, an Exploration Fund Grant from The Explorers Club, and a student research award from the American Society of Naturalists, all awarded to SJI. Additional funding came from the Department of Biology and the Kennedy Center for International Studies at Brigham Young University. The Smithsonian Tropical Research Institute (STRI) helped acquire collecting and research permits in Panama. Lourdes Vargas Fallas and Javier Guevara of SINAC helped acquire collecting and export permits in Costa Rica. All work was conducted under the approval of STRI and BYU IACUC committees. ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Alcala RE, 2005, ECOLOGY, V86, P2652, DOI 10.1890/04-1340; Arbuckle J. L., 2010, IBM SPSS AMOS 19 USE; ARNOLD SJ, 1983, AM ZOOL, V23, P347; Barrett RDH, 2011, NAT REV GENET, V12, P767, DOI 10.1038/nrg3015; Blake R., 1983, FISH LOCOMOTION; Blake RW, 2004, J FISH BIOL, V65, P1193, DOI 10.1111/j.1095-8949.2004.00568.x; Butlin R, 2012, TRENDS ECOL EVOL, V27, P27, DOI 10.1016/j.tree.2011.09.002; Byrne B. M., 2010, STRUCTURAL EQUATION; Chesson P, 1997, AM NAT, V150, P519, DOI 10.1086/286080; Coyne J. A., 2004, SPECIATION; CRESPI BJ, 1989, EVOLUTION, V43, P18, DOI 10.1111/j.1558-5646.1989.tb04204.x; Dickey AM, 2011, ECOL ENTOMOL, V36, P526, DOI 10.1111/j.1365-2311.2011.01296.x; Dobzhansky T., 1937, GENETICS ORIGIN SPEC; Domenici P, 2003, EXPTL BIOL REV, P137; Egan SP, 2015, ECOL LETT, V18, P817, DOI 10.1111/ele.12460; Feder JL, 2012, TRENDS GENET, V28, P342, DOI 10.1016/j.tig.2012.03.009; FRONTIER S, 1976, J EXP MAR BIOL ECOL, V25, P67, DOI 10.1016/0022-0981(76)90076-9; GODIN JGJ, 1995, P ROY SOC B-BIOL SCI, V259, P193, DOI 10.1098/rspb.1995.0028; Gompert Z, 2013, EVOLUTION, V67, P2498, DOI 10.1111/evo.12021; Gurevitch J, 2000, AM NAT, V155, P435, DOI 10.1086/303337; HASSELL MP, 1975, J ANIM ECOL, V44, P283, DOI 10.2307/3863; Hatfield T, 1999, EVOLUTION, V53, P866, DOI 10.1111/j.1558-5646.1999.tb05380.x; HOLT RD, 1985, J THEOR BIOL, V116, P479, DOI 10.1016/S0022-5193(85)80084-9; Hopwood CJ, 2007, J EARLY INTERVENTION, V29, P262, DOI 10.1177/105381510702900305; Ingley SJ, 2015, J FISH BIOL, V86, P1163, DOI 10.1111/jfb.12603; Ingley S. J., 2014, PLOS ONE, V9; Ingley SJ, 2014, SOUTHWEST NAT, V59, P396, DOI 10.1894/LW-07.1; Ingley SJ, 2015, MOL PHYLOGENET EVOL, V89, P104, DOI 10.1016/j.ympev.2015.04.013; Ingley SJ, 2014, ECOL EVOL, V4, P4361, DOI 10.1002/ece3.1304; Ingley SJ, 2014, BEHAV ECOL SOCIOBIOL, V68, P1577, DOI 10.1007/s00265-014-1767-y; Ingley SJ, 2014, TRENDS ECOL EVOL, V29, P369, DOI 10.1016/j.tree.2014.04.008; JACKSON DA, 1993, ECOLOGY, V74, P2204, DOI 10.2307/1939574; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Johnson JB, 2008, EVOLUTION, V62, P1243, DOI 10.1111/j.1558-5646.2008.00343.x; Johnson JB, 2002, OIKOS, V96, P82, DOI 10.1034/j.1600-0706.2002.960109.x; Johnson JB, 2001, BIOL J LINN SOC, V72, P519, DOI 10.1006/bijl.2000.0513; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Johnson JB, 2009, ECOLOGY, V90, P2243, DOI 10.1890/07-1672.1; Kaplan RH, 2006, EVOLUTION, V60, P142; KINGSOLVER JG, 1991, TRENDS ECOL EVOL, V6, P276, DOI 10.1016/0169-5347(91)90004-H; Kline R, 2005, PRINCIPLES PRACTICE; Kruuk LEB, 1997, P ROY SOC B-BIOL SCI, V264, P105, DOI 10.1098/rspb.1997.0016; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; Langerhans RB, 2007, EVOLUTION, V61, P2056, DOI 10.1111/j.1558-5646.2007.00171.x; Langerhans RB, 2013, EVOL ECOL RES, V15, P633; Langerhans R. Brian, 2010, P200, DOI 10.1201/b10190-8; Langerhans RB, 2009, BIOL LETTERS, V5, P488, DOI 10.1098/rsbl.2009.0179; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; LIGHTHILL MJ, 1975, MATH BIOFLUIDDYNAMIC; Lowry DB, 2008, PHILOS T R SOC B, V363, P3009, DOI 10.1098/rstb.2008.0064; Mayr Ernst, 1942, SYSTEMATICS ORIGIN S; MCHENRY MJ, 1995, J EXP BIOL, V198, P2293; Naisbit RE, 2001, P ROY SOC B-BIOL SCI, V268, P1849, DOI 10.1098/rspb.2001.1753; NIIMI AJ, 1974, CAN J ZOOL, V52, P447, DOI 10.1139/z74-056; Nosil P, 2006, P NATL ACAD SCI USA, V103, P9090, DOI 10.1073/pnas.0601575103; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; Nosil P, 2004, P ROY SOC B-BIOL SCI, V271, P1521, DOI 10.1098/rspb.2004.2751; Nosil P, 2005, EVOLUTION, V59, P705; Nosil P, 2013, EVOLUTION, V67, P2461, DOI 10.1111/evo.12191; Nosil P, 2012, PHILOS T R SOC B, V367, P332, DOI 10.1098/rstb.2011.0263; Nosil P, 2009, TRENDS ECOL EVOL, V24, P145, DOI 10.1016/j.tree.2008.10.011; Plaut I, 2001, COMP BIOCHEM PHYS A, V131, P41, DOI 10.1016/S1095-6433(01)00462-7; Presgraves DC, 2010, NAT REV GENET, V11, P175, DOI 10.1038/nrg2718; R Core Team, 2013, R LANG ENV STAT COMP; Ramsey J, 2003, EVOLUTION, V57, P1520; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Riechert SE, 2000, J EVOLUTION BIOL, V13, P541, DOI 10.1046/j.1420-9101.2000.00176.x; Rohlf F. J., 2005, TPSDIG DIGITIZE LAND; ROHLF FJ, 1990, SYST ZOOL, V39, P40, DOI 10.2307/2992207; ROHLF FJ, 2003, TPSRELW RELATIVE WAR; Rundle HD, 2001, EVOLUTION, V55, P198; Scheiner SM, 2000, J EVOLUTION BIOL, V13, P423, DOI 10.1046/j.1420-9101.2000.00191.x; Schluter D, 2001, TRENDS ECOL EVOL, V16, P372, DOI 10.1016/S0169-5347(01)02198-X; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schluter D, 2009, P NATL ACAD SCI USA, V106, P9955, DOI 10.1073/pnas.0901264106; Schluter D, 2009, SCIENCE, V323, P737, DOI 10.1126/science.1160006; Shipley B, 1997, AM NAT, V149, P1113, DOI 10.1086/286041; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; Sobel JM, 2010, EVOLUTION, V64, P295, DOI 10.1111/j.1558-5646.2009.00877.x; Tobler M, 2009, BIOL LETTERS, V5, P506, DOI 10.1098/rsbl.2009.0272; Vamosi SM, 2002, ANN ZOOL FENN, V39, P237; Videler J.J., 1993, FISH SWIMMING; Vogel S., 1994, LIFE MOVING FLUIDS; WEBB PW, 1984, AM ZOOL, V24, P107; Wesner JS, 2011, BIOL J LINN SOC, V104, P386, DOI 10.1111/j.1095-8312.2011.01715.x; WU TYT, 1971, J FLUID MECH, V46, P337, DOI 10.1017/S0022112071000570 89 14 14 2 40 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution MAR 2016 70 3 600 616 10.1111/evo.12872 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DH0HP WOS:000372464600007 26831519 2019-02-21 J Legrand, J; Bolotin-Fukuhara, M; Bourgais, A; Fairhead, C; Sicard, D Legrand, Judith; Bolotin-Fukuhara, Monique; Bourgais, Aurelie; Fairhead, Cecile; Sicard, Delphine Life-history strategies and carbon metabolism gene dosage in the Nakaseomyces yeasts FEMS YEAST RESEARCH English Article S. cerevisiae; Nakaseomyces; carbon metabolism; life-history traits; metabolism; gene duplication SACCHAROMYCES-CEREVISIAE; KLUYVEROMYCES-LACTIS; CANDIDA-GLABRATA; GLUCOSE-TRANSPORT; SP-NOV; HEXOSE-TRANSPORT; GLYCOLYTIC FLUX; EVOLUTION; POPULATIONS; EXPRESSION The Nakaseomyces clade consists of a group of six hemiascomyceteous yeasts (Candida glabrata, Nakaseomyces delphensis, C. nivarensis, C. bracarensis, C. castelli, N. bacillisporus), phylogenetically close to the yeast Saccharomyces cerevisiae, their representative being the well-known pathogenic yeast C. glabrata. Four species had been previously examined for their carbon assimilation properties and found to have similar properties to S. cerevisiae (repression of respiration in high glucose-i.e. Crabtree positivity-and being a facultative anaerobe). We examined here the complete set of the six species for their carbon metabolic gene content. We also measured different metabolic and life-history traits (glucose consumption rate, population growth rate, carrying capacity, cell size, cell and biomass yield). We observed deviations from the glycolytic gene redundancy observed in S. cerevisiae presumed to be an important property for the Crabtree positivity, especially for the two species C. castelli and N. bacillisporus which frequently have only one gene copy, but different life strategies. Therefore, we show that the decrease in carbon metabolic gene copy cannot be simply associated with a reduction of glucose consumption rate and can be counterbalanced by other beneficial genetic variations. [Legrand, Judith; Bourgais, Aurelie; Sicard, Delphine] Univ Paris 11, Univ Paris Saclay, Genet Quantitat & Evolut Le Moulon UMR8120, UMR 0320, F-91190 Gif Sur Yvette, France; [Bolotin-Fukuhara, Monique; Fairhead, Cecile] Univ Paris 11, Inst Genet & Microbiol, CNRS, UMR 8621, F-91140 Orsay, France; [Bolotin-Fukuhara, Monique; Fairhead, Cecile] Univ Paris Saclay, Genet Quantitat & Evolut Le Moulon UMR8120, CNRS, UMR 0320, F-91190 Gif Sur Yvette, France; [Sicard, Delphine] INRA, UMR Sci Oenol 1083, F-34060 Montpellier 2, France Bolotin-Fukuhara, M (reprint author), Univ Paris 11, Genet Quantitat & Evolut Le Moulon, Batiment 400, F-91405 Orsay, France. monique.bolotin@u-psud.fr Fairhead, Cecile/0000-0002-0456-0377; Bolotin-Fukuhara, Monique/0000-0002-5285-5006 IDEEV (Diversite Ecologie et Evolution du Vivant) Federation This work has been supported by recurrent fundings to the 'Genetique Quantitative et Evolution-Le Moulon' and to 'Institut de Genetique et Microbiologie' Laboratories as well as a special grant for collaborative research from the IDEEV (Diversite Ecologie et Evolution du Vivant) Federation. Albertin W, 2011, APPL ENVIRON MICROB, V77, P2772, DOI 10.1128/AEM.02547-10; Alcoba-Florez J, 2005, J CLIN MICROBIOL, V43, P4107, DOI 10.1128/JCM.43.8.4107-4111.2005; ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999; Bianchi MM, 1996, MOL MICROBIOL, V19, P27, DOI 10.1046/j.1365-2958.1996.346875.x; Billard P, 1996, J BACTERIOL, V178, P5860, DOI 10.1128/jb.178.20.5860-5866.1996; Blein-Nicolas M, 2013, MOL BIOL EVOL, V30, P1368, DOI 10.1093/molbev/mst050; Boles E, 1997, FEMS MICROBIOL REV, V21, P85, DOI 10.1111/j.1574-6976.1997.tb00346.x; Bolotin-Fukuhara M, 2006, TOP CURR GENET, V15, P165, DOI 10.1007/b136677; Bolotin-Fukuhara M, 2014, YEAST, V31, P279, DOI 10.1002/yea.3019; Breunig KD, 2000, ENZYME MICROB TECH, V26, P771, DOI 10.1016/S0141-0229(00)00170-8; Brown CJ, 1998, MOL BIOL EVOL, V15, P931, DOI 10.1093/oxfordjournals.molbev.a026009; CAPRIOTTI A, 1961, J GEN MICROBIOL, V26, P41, DOI 10.1099/00221287-26-1-41; CHEN XJ, 1992, MOL GEN GENET, V233, P97, DOI 10.1007/BF00587566; Conant GC, 2007, MOL SYST BIOL, V3, DOI 10.1038/msb4100170; Cormack BP, 1999, GENETICS, V151, P979; Daniel HM, 2014, ANTON LEEUW INT J G, V106, P67, DOI 10.1007/s10482-014-0170-z; De Hertogh B, 2006, GENETICS, V172, P771, DOI 10.1534/genetics.105.046813; de Kok S, 2012, FEMS YEAST RES, V12, P359, DOI [10.1111/j.1567-1364.2012.00787.x, 10.1111/j.1567-1364.2011.00787.x]; de Smidt O, 2012, FEMS YEAST RES, V12, P33, DOI 10.1111/j.1567-1364.2011.00760.x; Dereeper A, 2008, NUCLEIC ACIDS RES, V36, pW465, DOI 10.1093/nar/gkn180; Diderich JA, 1999, MICROBIOL-SGM, V145, P3447, DOI 10.1099/00221287-145-12-3447; Flores CL, 2000, FEMS MICROBIOL REV, V24, P507, DOI 10.1016/S0168-6445(00)00037-1; Fukuhara H, 2003, FEMS YEAST RES, V3, P327, DOI 10.1016/S1567-1356(03)00112-0; Gabaldon T, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-623; Goffrini P, 2002, J BACTERIOL, V184, P427, DOI 10.1128/JB.184.2.427-432.2002; GOFFRINI P, 1991, MOL GEN GENET, V228, P401; Gonzalez-Siso MI, 2000, ENZYME MICROB TECH, V26, P699, DOI 10.1016/S0141-0229(00)00161-7; Gresham D, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000303; Gudelj I, 2007, J EVOLUTION BIOL, V20, P1882, DOI 10.1111/j.1420-9101.2007.01376.x; Hagman A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068734; Innan H, 2010, NAT REV GENET, V11, P97, DOI 10.1038/nrg2689; Jasmin JN, 2012, P ROY SOC B-BIOL SCI, V279, P4382, DOI 10.1098/rspb.2012.1659; Kangwa M, 2015, AMB EXPRESS, V5, DOI 10.1186/s13568-015-0155-y; Kurtzman CP, 2011, YEASTS: A TAXONOMIC STUDY, VOLS 1-3, 5TH EDITION, P1; LACHANCE MA, 1993, INT J SYST BACTERIOL, V43, P115, DOI 10.1099/00207713-43-1-115; Limtong S, 2011, ANTON LEEUW INT J G, V99, P865, DOI 10.1007/s10482-011-9561-6; Limtong S, 2010, ANTON LEEUW INT J G, V98, P379, DOI 10.1007/s10482-010-9451-3; Lin ZG, 2011, MOL BIOL EVOL, V28, P131, DOI 10.1093/molbev/msq184; MacLean RC, 2006, NATURE, V441, P498, DOI 10.1038/nature04624; Merico A, 2007, FEBS J, V274, P976, DOI 10.1111/j.1742-4658.2007.05645.x; Merikanto I, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113436; MOK WY, 1984, APPL ENVIRON MICROB, V47, P390; Pacheco A, 2012, FEMS YEAST RES, V12, P375, DOI 10.1111/j.1567-1364.2012.00790.x; Piskur J, 2006, TRENDS GENET, V22, P183, DOI 10.1016/j.tig.2006.02.002; Pritchard L, 2002, EUR J BIOCHEM, V269, P3894, DOI 10.1046/j.1432-1033.2002.03055.x; Roetzer A, 2011, FEMS MICROBIOL LETT, V314, P1, DOI 10.1111/j.1574-6968.2010.02102.x; Solis-Escalante D, 2015, EUKARYOT CELL, V14, P804, DOI 10.1128/EC.00064-15; Spor A, 2014, EVOLUTION, V68, P772, DOI 10.1111/evo.12302; Spor A, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-296; Spor A, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001579; Szeto SSW, 2012, J BIOL CHEM, V287, P22509, DOI 10.1074/jbc.M112.344275; Tilloy V, 2014, APPL ENVIRON MICROB, V80, P2623, DOI 10.1128/AEM.03710-13; VAN DER WALT J P, 1956, Antonie Van Leeuwenhoek, V22, P162; Wolfe K, 2004, CURR BIOL, V14, pR392, DOI 10.1016/j.cub.2004.05.015 54 0 0 0 6 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1567-1356 1567-1364 FEMS YEAST RES FEMS Yeast Res. MAR 2016 16 2 fov112 10.1093/femsyr/fov112 14 Biotechnology & Applied Microbiology; Microbiology; Mycology Biotechnology & Applied Microbiology; Microbiology; Mycology DH9FY WOS:000373103000002 26684721 Bronze 2019-02-21 J Mouton, JC; Duckworth, RA; Martin, TE Mouton, J. C.; Duckworth, R. A.; Martin, T. E. Age-specific mortality and avian life history evolution: a role for hormone-mediated maternal effects? INTEGRATIVE AND COMPARATIVE BIOLOGY English Meeting Abstract Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB) JAN 03-07, 2016 Portland, OR Soc Integrat & Comparat Biol Univ Montana, Missoula, MT 59812 USA; Univ Arizona, Tucson, AZ USA; Univ Montana, MTCWRU, USGS, Missoula, MT 59812 USA james.mouton@umontana.edu 0 0 0 0 6 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. MAR 2016 56 1 72-6 E156 E156 1 Zoology Zoology DH0FJ WOS:000372457600624 2019-02-21 J Ouyang, JQ Ouyang, Jenny Q. Endocrine variation as a mediator of life-history evolution: the relationship between hormones and fitness in a fluctuating environment INTEGRATIVE AND COMPARATIVE BIOLOGY English Meeting Abstract Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB) JAN 03-07, 2016 Portland, OR Soc Integrat & Comparat Biol [Ouyang, Jenny Q.] Univ Nevada, Reno, NV 89557 USA j.ouyang@nioo.knaw.nl 0 0 0 1 2 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. MAR 2016 56 1 S6-2 E166 E166 1 Zoology Zoology DH0FJ WOS:000372457601024 2019-02-21 J Reedy, AM; Evans, WJ; Cox, RM Reedy, A. M.; Evans, W. J.; Cox, R. M. Does sexual conflict hinder life-history evolution? A comparative test with lizards INTEGRATIVE AND COMPARATIVE BIOLOGY English Meeting Abstract Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB) JAN 03-07, 2016 Portland, OR Soc Integrat & Comparat Biol [Reedy, A. M.; Evans, W. J.; Cox, R. M.] Univ Virginia, Charlottesville, VA 22903 USA amr3mb@virginia.edu 0 0 0 0 1 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. MAR 2016 56 1 123-3 E180 E180 1 Zoology Zoology DH0FJ WOS:000372457601078 2019-02-21 J Giovas, CM; Fitzpatrick, SM; Kataoka, O; Clark, M Giovas, Christina M.; Fitzpatrick, Scott M.; Kataoka, Osamu; Clark, Meagan Prey body size and anthropogenic resource depression: The decline of prehistoric fishing at Chelechol ra Orrak, Palau JOURNAL OF ANTHROPOLOGICAL ARCHAEOLOGY English Article Resource depression; Foraging theory; Body size change; Micronesia; Parrotfish (Scaridae); Lower pharyngeal grinder FISHERIES-INDUCED EVOLUTION; DIVISION-OF-LABOR; LIFE-HISTORY EVOLUTION; SOUTHERN NEW-ZEALAND; LATE-HOLOCENE; FORAGING EFFICIENCY; TORRES STRAIT; ZOOARCHAEOLOGICAL ANALYSIS; BEHAVIORAL DEPRESSION; EMERYVILLE SHELLMOUND Prior investigation at the Chelechol ra Orrak site (3000/1700-0 BP) in Palau's Rock Islands revealed a decline in fishing and increased reliance on small-bodied, inshore and littoral molluscs, commensurate with evidence for declining foraging efficiency and prey switching that signal potential resource depression. Yet, standard markers for 'overfishing', such as diet-breadth expansion, increased taxonomic richness, and a switch to exploitation of offshore waters, are lacking at the site, undermining the case for anthropogenic resource (exploitation) depression as a cause of the observed patterning. Broad scale climate change similarly fails to account for these shifts. To investigate these conflicting patterns we performed a mean/median size analysis of two parrotfish (Scaridae) taxa, Scarus and Chlorurus, among the most commonly recovered fish at the site. Results indicate that Scarus size remains unchanged through 1500 years of exploitation, while Chlorurus become larger, substantiating previous findings for sustainable resource use at Orrak. With these results in mind, we critically evaluate prey size change as a metric for anthropogenic exploitation depression, noting that size diminution, in particular, may arise epiphenomenally due to multiple causes unrelated to human predation pressure. Results have broader implications for the detection and attribution of resource depression in studies of human paleoecology. (C) 2015 Elsevier Inc. All rights reserved. [Giovas, Christina M.] Univ Queensland, Sch Social Sci, Michie Bldg 9, St Lucia, Qld 4072, Australia; [Giovas, Christina M.; Fitzpatrick, Scott M.; Clark, Meagan] Univ Oregon, Dept Anthropol, Eugene, OR 97403 USA; [Kataoka, Osamu] Kansai Gaidai Univ, Coll Int Language & Commun, Osaka, Japan Giovas, CM (reprint author), Univ Queensland, Sch Social Sci, Michie Bldg 9, St Lucia, Qld 4072, Australia. c.giovas@uq.edu.au United States National Science Foundation [SBR-0001531]; Center for Asian and Pacific Studies at the University of Oregon; Sigma Xi This research was supported by grants to Fitzpatrick from the United States National Science Foundation (SBR-0001531), the Center for Asian and Pacific Studies at the University of Oregon, and a Sigma Xi Grant-in-Aid for Research. We wish to thank the Palau Bureau of Arts & Culture for their long-time and ongoing support of research in Palau, as well as Cai Yan and Dick Drennan who provided statistical software assistance. Thanks go to reviewers whose comments helped to clarify various aspects of the paper. A portion of this research was conducted by Giovas while a Visiting Scholar with the Center for Comparative Archaeology at the University of Pittsburgh. Allen M.S., 1992, ASIAN PERSPECT, V31, P183; Allen Melinda S., 2002, Asian Perspectives, V41, P195, DOI 10.1353/asi.2003.0001; Allen MS, 2012, J ARCHAEOL SCI, V39, P295, DOI 10.1016/j.jas.2011.09.013; Anderson A, 2013, ANTIQUITY, V87, P879, DOI 10.1017/S0003598X00049541; Ash J, 2013, AUST ARCHAEOL, P82; Bellwood D.R., 1994, RECORDS AUSTR MU S20, V20; Bellwood D.R., 2011, P R SOC B; Bellwood D.R., 2001, LIVING MARINE RESO 4, V6, P3468; Binford L., 1978, NUNAMIUT ETHNOARCHAE; Binford L. R., 1981, BONES ANCIENT MEN MO; Bird DW, 2002, J ARCHAEOL SCI, V29, P457, DOI 10.1006/jasc.2001.0734; Bird DW, 1997, J ARCHAEOL SCI, V24, P39, DOI 10.1006/jasc.1995.0095; Bird R, 1999, EVOL ANTHROPOL, V8, P65, DOI 10.1002/(SICI)1520-6505(1999)8:2<65::AID-EVAN5>3.3.CO;2-V; Bird RB, 2007, AM ANTHROPOL, V109, P442, DOI [10.1525/aa.2007.109.3.442, 10.1525/AA.2007.109.3.442]; Blanchard JL, 2005, ICES J MAR SCI, V62, P405, DOI 10.1016/j.icesjms.2005.01.006; Blick JP, 2007, J NAT CONSERV, V15, P174, DOI 10.1016/j.jnc.2007.04.004; Broughton J.M., 1995, THESIS U WASHINGTON; Broughton JM, 2010, J ARCHAEOL METHOD TH, V17, P371, DOI 10.1007/s10816-010-9095-7; Broughton JM, 1997, ANTIQUITY, V71, P845, DOI 10.1017/S0003598X0008577X; BROUGHTON JM, 1994, J ANTHROPOL ARCHAEOL, V13, P371, DOI 10.1006/jaar.1994.1019; Broughton JM, 2002, WORLD ARCHAEOL, V34, P60, DOI 10.1080/00438240220134269; BROWN JK, 1970, AM ANTHROPOL, V72, P1073, DOI 10.1525/aa.1970.72.5.02a00070; Butler Virginia L., 1994, Archaeology in Oceania, V29, P81; Butler VL, 2001, INT J OSTEOARCHAEOL, V11, P88, DOI 10.1002/oa.548; Campbell B, 2015, J ARCHAEOL SCI, V58, P167, DOI 10.1016/j.jas.2015.02.007; Campbell G, 2008, ENVIRON ARCHAEOL, V13, P111, DOI 10.1179/174963108X343236; Campbell SK, 2010, ECOL SOC, V15; Cannon MD, 2000, J ANTHROPOL ARCHAEOL, V19, P317, DOI 10.1006/jaar.2000.0366; Cannon MD, 2003, J ANTHROPOL ARCHAEOL, V22, P1, DOI 10.1016/S0278-4165(03)00002-3; Carder N, 2007, J ARCHAEOL SCI, V34, P588, DOI 10.1016/j.jas.2006.06.014; CHARNOV EL, 1976, AM NAT, V110, P247, DOI 10.1086/283062; Claassen C., 1998, SHELLS; CLARK G, 2006, J ISL COAST ARCHAEOL, V1, P215, DOI DOI 10.1080/15564890600831705; CLARK GR, 2005, ASIAN PERSPECT, V44, P349, DOI DOI 10.1353/ASI.2005.0020; Codding BF, 2015, J ARCHAEOL SCI, V56, P9, DOI 10.1016/j.jas.2015.02.027; Codding BF, 2014, J ISL COAST ARCHAEOL, V9, P145, DOI 10.1080/15564894.2014.881939; Codding BF, 2011, P ROY SOC B-BIOL SCI, V278, P2502, DOI 10.1098/rspb.2010.2403; Codding BF, 2010, J ANTHROPOL ARCHAEOL, V29, P47, DOI 10.1016/j.jaa.2009.10.002; Colin P. L., 2009, MARINE ENV PALAU; Cramp LJE, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2372; Daniels P. S., 2009, THESIS U WASHINGTON; Donaldson TJ, 2002, ENVIRON BIOL FISH, V65, P241, DOI 10.1023/A:1020067931910; Donaldson TJ, 2002, ENVIRON BIOL FISH, V65, P139, DOI 10.1023/A:1020050931158; Ebert TA, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2284; Erlandson JM, 2008, J ARCHAEOL SCI, V35, P2144, DOI 10.1016/j.jas.2008.01.014; Erlandson JM, 2011, J ARCHAEOL SCI, V38, P1127, DOI 10.1016/j.jas.2010.12.009; Faulkner P, 2009, J ARCHAEOL SCI, V36, P821, DOI 10.1016/j.jas.2008.11.005; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Fenberg PB, 2012, AM NAT, V180, P200, DOI 10.1086/666613; Fitzpatrick SM, 2008, INT J OSTEOARCHAEOL, V18, P439, DOI 10.1002/oa.951; Fitzpatrick S. M., 2003, THESIS U OREGON EUGE; Fitzpatrick S. M., 2010, J PACIFIC ARCHAEOL, V2, P100; Fitzpatrick SM, 2010, J PAC ARCHAEOL, V1, P168; Fitzpatrick SM, 2011, ARCHAEOL OCEAN, V46, P6, DOI 10.1002/j.1834-4453.2011.tb00094.x; Fitzpatrick SM, 2003, ANTIQUITY, V77, P719, DOI 10.1017/S0003598X00061664; Folke C, 2004, ANNU REV ECOL EVOL S, V35, P557, DOI 10.1146/annurev.ecolsys.35.021103.105711; Giovas C. M., 2015, PREHISTORIC MO UNPUB; Giovas C.M., 2013, THESIS U WASHINGTON; Giovas CM, 2013, J ARCHAEOL SCI, V40, P4024, DOI 10.1016/j.jas.2013.05.008; Giovas CM, 2010, J ARCHAEOL SCI, V37, P2788, DOI 10.1016/j.jas.2010.06.013; Gremillion KJ, 2014, P NATL ACAD SCI USA, V111, P6171, DOI 10.1073/pnas.1308938110; Grouard Sandrine, 2001, Archaeofauna, V10, P71; Hawkins JP, 2004, BIOL CONSERV, V115, P213, DOI 10.1016/S0006-3207(03)00119-8; Hazell LC, 2006, ARCHAEOL OCEAN, V41, P12, DOI 10.1002/j.1834-4453.2006.tb00601.x; Hilborn R, 2008, B MAR SCI, V83, P95; Jerardino A, 1997, J ARCHAEOL SCI, V24, P1031, DOI 10.1006/jasc.1997.0182; Johannes R. E., 1981, WORDS LAGOON FISHING; Jones EL, 2004, J ARCHAEOL SCI, V31, P307, DOI 10.1016/j.jas.2003.08.011; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Kaplan H., 1992, EVOLUTIONARY ECOLOGY, P167; KEEGAN WF, 1986, AM ANTIQUITY, V51, P816, DOI 10.2307/280868; Krigbaum J., 2009, PAC ARCH 2009 C PAL; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuparinen A, 2012, P ROY SOC B-BIOL SCI, V279, P2571, DOI 10.1098/rspb.2012.0120; Lambrides ABJ, 2015, INT J OSTEOARCHAEOL, V25, P838, DOI 10.1002/oa.2354; Lambrides ABJ, 2015, ARCHAEOL OCEAN, V50, P53, DOI 10.1002/arco.5059; Law Richard, 2005, P232; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Leach F, 2001, INT J OSTEOARCHAEOL, V11, P150, DOI 10.1002/oa.553; Leach F.B., 1993, BRIT ARCHAEOLOGICAL, V584; Lech V, 2011, HUMAN IMPACTS ON SEALS, SEA LIONS, AND SEA OTTERS: INTEGRATING ARCHAEOLOGY AND ECOLOGY IN THE NORTHEAST PACIFIC, P111; LEVITAN DR, 1991, MAR BIOL, V111, P431, DOI 10.1007/BF01319415; Liston J, 2009, ARCHAEOL OCEAN, V44, P56, DOI 10.1002/j.1834-4453.2009.tb00047.x; Lupo KD, 2007, J ARCHAEOL RES, V15, P143, DOI 10.1007/s10814-007-9011-1; Lyman RL, 2008, CAMB MAN ARCHAEOL, P1, DOI 10.1017/CBO9780511813863; Lyman RL, 2004, ZOOARCHAEOLOGY CONSE; Mannino AM, 2002, WORLD ARCHAEOL, V33, P452; Mannino MA, 2001, J ARCHAEOL SCI, V28, P1101, DOI 10.1006/jasc.2001.0658; Masse WB, 2006, QUATERN INT, V151, P106, DOI 10.1016/j.quaint.2006.01.017; Matthews E., 1992, THESIS OREGON STATE; Meehan B., 1982, SHELL BED SHELL MIDD; Milner N, 2007, J ARCHAEOL SCI, V34, P1461, DOI 10.1016/j.jas.2006.11.004; Morrison A., 2009, J ISL COAST ARCHAEOL, V4, P177, DOI DOI 10.1080/15564890903245264; MOSS ML, 1993, AM ANTHROPOL, V95, P631, DOI 10.1525/aa.1993.95.3.02a00050; Myers R. F., 1999, MICRONESIAN REEF FIS; Nagaoka L, 2005, J ARCHAEOL SCI, V32, P1328, DOI 10.1016/j.jas.2005.04.004; Nagaoka L, 2002, J ANTHROPOL ARCHAEOL, V21, P419, DOI 10.1016/S0278-4165(02)00008-9; Nagaoka L, 2001, INT J OSTEOARCHAEOL, V11, P101, DOI 10.1002/oa.549; Nagaoka L., 2000, THESIS U WASHINGTON; Nagaoka Lisa, 1994, Asian Perspectives, V33, P1; Nelson GC, 2006, ANTHROPOL SCI, V114, P1, DOI 10.1537/ase.040710; Nunn P., 1999, ENV CHANGE PACIFIC B; Nunn P.D., 2000, NZ GEOGRAPHER, V56, P46; Nunn P.D., 2010, J PACIFIC ARCHAEOL, V2, P92; Nystrom M, 2000, TRENDS ECOL EVOL, V15, P413, DOI 10.1016/S0169-5347(00)01948-0; Olmo RK, 2013, TERRA AUSTRALIS, V39, P1; Ono R, 2013, TERRA AUSTRALIS, V39, P59; Ono R, 2011, J ISL COAST ARCHAEOL, V6, P255, DOI 10.1080/15564894.2010.540531; Ono R, 2012, INT J OSTEOARCHAEOL, V22, P637, DOI 10.1002/oa.1226; Otaola C, 2015, J ARCHAEOL SCI, V55, P16, DOI 10.1016/j.jas.2014.12.004; Petchey F, 2010, J ISL COAST ARCHAEOL, V5, P236, DOI 10.1080/15564890903155935; Poutiers J.M., 1998, P363; Poutiers J.M., 1998, FAO SPECIES IDENTIFI, P123; Prokop F.P., 2006, AUSTR FISHING GUIDE; Reitz E. J., 2008, ZOOARCHAEOLOGY; REITZ EJ, 1987, AM ANTIQUITY, V52, P304, DOI 10.2307/281782; Reitz EJ, 2014, J ARCHAEOL SCI, V41, P716, DOI 10.1016/j.jas.2013.10.004; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Rick TC, 2011, QUATERN INT, V239, P135, DOI 10.1016/j.quaint.2010.06.008; Roy K, 2003, ECOL LETT, V6, P205, DOI 10.1046/j.1461-0248.2003.00419.x; Seymour Kevin L., 2004, P159; Shin YJ, 2005, ICES J MAR SCI, V62, P384, DOI 10.1016/j.icesjms.2005.01.004; Smith BD, 2015, J ARCHAEOL RES, V23, P215, DOI 10.1007/s10814-015-9081-4; Smith CB, 2014, J ISL COAST ARCHAEOL, V9, P183, DOI 10.1080/15564894.2014.881935; Snyder D. M., 2011, TERRA AUSTRALIS, V35, P155; Stephens D. W, 1986, FORAGING THEORY; Thakar HB, 2011, J ARCHAEOL SCI, V38, P2596, DOI 10.1016/j.jas.2011.05.008; Thomas KD, 2015, J ARCHAEOL SCI, V56, P159, DOI 10.1016/j.jas.2015.01.015; Tupper M., 2015, REEFBASE GLOBAL INFO; Turrero P, 2014, ROY SOC OPEN SCI, V1, DOI 10.1098/rsos.140026; Turrero P, 2013, PALAIOS, V28, P228, DOI 10.2110/palo.2012.p12-114r; UNDERWOOD AJ, 1976, J EXP MAR BIOL ECOL, V23, P145, DOI 10.1016/0022-0981(76)90138-6; Valles H, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086291; Videler H, 1999, J FISH BIOL, V54, P1124, DOI 10.1006/jfbi.1999.0935; Vogel Y., 2005, THESIS U OTAGO DUNED; Vogel Y, 2012, TERRA AUSTRALIS, V37, P115; Whitaker A, 2010, J ARCHAEOL SCI, V37, P2562, DOI 10.1016/j.jas.2010.05.016; Whitaker AR, 2014, J ISL COAST ARCHAEOL, V9, P150, DOI 10.1080/15564894.2014.881934; Whyte T.R., 2005, P 10 S NAT HIST BAH, P165; Wing Elizabeth S., 1995, Journal of Ethnobiology, V15, P119; WING ES, 2001, INT J ZOOARCHAEOL, V11, P14; WINN HE, 1959, ECOLOGY, V40, P296, DOI 10.2307/1930041; Wolverton S., 2008, FARMING, V2; Wolverton S, 2012, J ARCHAEOL METHOD TH, V19, P462, DOI 10.1007/s10816-011-9121-4; Wolverton Steve, 2012, CONSERVATION BIOL AP; Zeder MA, 2015, P NATL ACAD SCI USA, V112, P3191, DOI 10.1073/pnas.1501711112; Zeder MA, 2014, P NATL ACAD SCI USA, V111, pE2827, DOI 10.1073/pnas.1408209111; Zeder MA, 2012, J ANTHROPOL ARCHAEOL, V31, P241, DOI 10.1016/j.jaa.2012.03.003; Zohar I, 1997, INT J OSTEOARCHAEOL, V7, P150 151 9 9 1 3 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0278-4165 1090-2686 J ANTHROPOL ARCHAEOL J. Anthropol. Archaeol. MAR 2016 41 132 146 10.1016/j.jaa.2015.12.001 15 Anthropology; Archaeology Anthropology; Archaeology DH4RE WOS:000372772300008 Other Gold 2019-02-21 J Lindh, M; Johansson, J; Bolmgren, K; Lundstrom, NLP; Brannstrom, A; Jonzen, N Lindh, Magnus; Johansson, Jacob; Bolmgren, Kjell; Lundstrom, Niklas L. P.; Brannstrom, Ake; Jonzen, Niclas Constrained growth flips the direction of optimal phenological responses among annual plants NEW PHYTOLOGIST English Article climate change; constrained growth; flowering; life history; optimal control theory; phenology; productivity; season CLIMATE-CHANGE; FLOWERING PHENOLOGY; ONTOGENIC GROWTH; PERENNIAL PLANT; ALLOCATION PATTERNS; ENERGY ALLOCATION; METABOLIC THEORY; GROWING-SEASON; GENERAL-MODEL; TIME Phenological changes among plants due to climate change are well documented, but often hard to interpret. In order to assess the adaptive value of observed changes, we study how annual plants with and without growth constraints should optimize their flowering time when productivity and season length changes. We consider growth constraints that depend on the plant's vegetative mass: self-shading, costs for nonphotosynthetic structural tissue and sibling competition. We derive the optimal flowering time from a dynamic energy allocation model using optimal control theory. We prove that an immediate switch (bang-bang control) from vegetative to reproductive growth is optimal with constrained growth and constant mortality. Increasing mean productivity, while keeping season length constant and growth unconstrained, delayed the optimal flowering time. When growth was constrained and productivity was relatively high, the optimal flowering time advanced instead. When the growth season was extended equally at both ends, the optimal flowering time was advanced under constrained growth and delayed under unconstrained growth. Our results suggests that growth constraints are key factors to consider when interpreting phenological flowering responses. It can help to explain phenological patterns along productivity gradients, and links empirical observations made on calendar scales with life-history theory. [Lindh, Magnus; Lundstrom, Niklas L. P.; Brannstrom, Ake] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden; [Johansson, Jacob; Jonzen, Niclas] Lund Univ, Dept Biol, Theoret Populat Ecol & Evolut Grp, SE-22362 Lund, Sweden; [Bolmgren, Kjell] Swedish Univ Agr Sci, Unit Field Based Forest Res, SE-36030 Lammhult, Sweden; [Bolmgren, Kjell] Stockholm Univ, Dept Ecol Environm & Plant Sci, SE-10691 Stockholm, Sweden; [Brannstrom, Ake] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria Lindh, M (reprint author), Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden. magnus.lindh@math.umu.se Bolmgren, Kjell/E-1459-2016 Bolmgren, Kjell/0000-0001-9552-9684; Johansson, Jacob/0000-0002-0018-7018 research environment BECC (Biodiversity and Ecosystem services in a Changing Climate); Swedish Research Council [2012-3620]; Swedish Research Council Formas [2012-1008] We would like to thank Stephen M. Welch for introducing us to the concept of physiological time, and for rewriting our model in physiological time, see Eqns 5-8 in the Description section. N.J. and J.J. gratefully acknowledge support from the research environment BECC (Biodiversity and Ecosystem services in a Changing Climate) and the Swedish Research Council (2012-3620 to N.J.). angstrom.B. gratefully acknowledges support from the Swedish Research Council Formas (2012-1008 to angstrom.B.). A special thanks goes to Lai Zhang for help with the figures. Bolmgren K, 2015, OIKOS, V124, P639, DOI 10.1111/oik.01491; Bonhomme R, 2000, EUR J AGRON, V13, P1, DOI 10.1016/S1161-0301(00)00058-7; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; CaraDonna PJ, 2014, P NATL ACAD SCI USA, V111, P4916, DOI 10.1073/pnas.1323073111; Cleland EE, 2006, P NATL ACAD SCI USA, V103, P13740, DOI 10.1073/pnas.0600815103; COHEN D, 1976, AM NAT, V110, P801, DOI 10.1086/283103; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; DeBussche M, 2004, BOT J LINN SOC, V145, P469, DOI 10.1111/j.1095-8339.2004.00298.x; Deng JM, 2012, P NATL ACAD SCI USA, V109, P15823, DOI 10.1073/pnas.1210955109; Ehrlen J, 2015, ECOLOGY, V96, P2280, DOI 10.1890/14-1860.1; Fitter AH, 2002, SCIENCE, V296, P1689, DOI 10.1126/science.1071617; Franks SJ, 2007, P NATL ACAD SCI USA, V104, P1278, DOI 10.1073/pnas.0608379104; Gillooly JF, 2002, NATURE, V417, P70, DOI 10.1038/417070a; Huijser P, 2011, DEVELOPMENT, V138, P4117, DOI 10.1242/dev.063511; Iler AM, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0489; Iler AM, 2013, AM J BOT, V100, P519, DOI 10.3732/ajb.1200491; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; Iwasa Y, 2000, EVOL ECOL RES, V2, P437; Johansson J, 2013, GLOBAL CHANGE BIOL, V19, P197, DOI 10.1111/gcb.12006; JOHNSON SD, 1993, J ECOL, V81, P567, DOI 10.2307/2261535; KING D, 1982, THEOR POPUL BIOL, V21, P194, DOI 10.1016/0040-5809(82)90013-2; KING D, 1983, ECOLOGY, V64, P16, DOI 10.2307/1937324; Koontz TL, 2009, AM J BOT, V96, P877, DOI 10.3732/ajb.0800380; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Menzel A, 1999, NATURE, V397, P659, DOI 10.1038/17709; Menzel A, 2006, GLOBAL CHANGE BIOL, V12, P1969, DOI 10.1111/j.1365-2486.2006.01193.x; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Mironchenko A, 2014, J THEOR BIOL, V354, P12, DOI 10.1016/j.jtbi.2014.03.023; Moses ME, 2008, AM NAT, V171, P632, DOI 10.1086/587073; Munguia-Rosas MA, 2011, ECOL LETT, V14, P511, DOI 10.1111/j.1461-0248.2011.01601.x; Paine CET, 2012, METHODS ECOL EVOL, V3, P245, DOI 10.1111/j.2041-210X.2011.00155.x; Parmesan C, 2007, GLOBAL CHANGE BIOL, V13, P1860, DOI 10.1111/j.1365-2486.2007.01404.x; PIANKA ER, 1976, AM ZOOL, V16, P775; PITELKA LF, 1977, ECOLOGY, V58, P1055, DOI 10.2307/1936925; Price CA, 2012, ECOL LETT, V15, P1465, DOI 10.1111/j.1461-0248.2012.01860.x; Primack RB, 2009, BIOL CONSERV, V142, P2569, DOI 10.1016/j.biocon.2009.06.003; Rafferty NE, 2011, ECOL LETT, V14, P69, DOI 10.1111/j.1461-0248.2010.01557.x; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; Reyes-Fox M, 2014, NATURE, V510, P259, DOI 10.1038/nature13207; Roff Derek A., 1992; Santos-del-Blanco L, 2013, J EVOLUTION BIOL, V26, P1912, DOI 10.1111/jeb.12187; SCHAFFER WM, 1977, THEOR POPUL BIOL, V11, P90, DOI 10.1016/0040-5809(77)90009-0; Shi PJ, 2013, ECOL MODEL, V266, P1, DOI 10.1016/j.ecolmodel.2013.06.025; SHITAKA Y, 1993, OECOLOGIA, V95, P334, DOI 10.1007/BF00320985; Stearns S, 1992, EVOLUTION LIFE HIST; Steltzer H, 2009, SCIENCE, V324, P886, DOI 10.1126/science.1171542; VANSTRAALEN NM, 1983, J THEOR BIOL, V104, P349, DOI 10.1016/0022-5193(83)90111-X; West GB, 1999, NATURE, V400, P664, DOI 10.1038/23251; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; WHITE J, 1970, J ECOL, V58, P467, DOI 10.2307/2258284; Wilczek AM, 2009, SCIENCE, V323, P930, DOI 10.1126/science.1165826; Willis CG, 2008, P NATL ACAD SCI USA, V105, P17029, DOI 10.1073/pnas.0806446105; Wolkovich EM, 2012, NATURE, V485, P494, DOI 10.1038/nature11014 53 2 2 1 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0028-646X 1469-8137 NEW PHYTOL New Phytol. MAR 2016 209 4 1591 1599 10.1111/nph.13706 9 Plant Sciences Plant Sciences DI3DY WOS:000373379800027 26548947 Bronze 2019-02-21 J Lima, LB; Bellay, S; Giacomini, HC; Isaac, A; Lima, DP Lima, L. B.; Bellay, S.; Giacomini, H. C.; Isaac, A.; Lima-Junior, D. P. Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain PARASITOLOGY English Article Ecological networks; phylogenetic signal; host-parasite interactions FRESH-WATER FISHES; UPPER PARANA RIVER; FOOD-WEB STRUCTURE; SPECIES RICHNESS; TROPHIC TRANSMISSION; COMMUNITIES; PATTERNS; SIMILARITY; EVOLUTION; INVASION The patterns of parasite sharing among hosts have important implications for ecosystem structure and functioning, and are influenced by several ecological and evolutionary factors associated with both hosts and parasites. Here we evaluated the influence of fish diet and phylogenetic relatedness on the pattern of infection by parasites with contrasting life history strategies in a freshwater ecosystem of key ecological importance in South America. The studied network of interactions included 52 fish species, which consumed 58 food types and were infected with 303 parasite taxa. Our results show that both diet and evolutionary history of hosts significantly explained parasite sharing; phylogenetically close fish species and/or species sharing food types tend to share more parasites. However, the effect of diet was observed only for endoparasites in contrast to ectoparasites. These results are consistent with the different life history strategies and selective pressures imposed on these groups: endoparasites are in general acquired via ingestion by their intermediate hosts, whereas ectoparasites actively seek and attach to the gills, body surface or nostrils of its sole host, thus not depending directly on its feeding habits. [Lima, L. B.; Lima-Junior, D. P.] Univ Estado Mato Grosso, Programa Posgrad Ecol & Conservacao, Campus Nova Xavantina,BR 158,Km 148, BR-78690000 Nova Xavantina, MT, Brazil; [Lima, L. B.; Lima-Junior, D. P.] Univ Fed Mato Grosso, Lab Ecol & Conservacao Ecossistemas Aquat, Rodovia MT 100,Km 3,5 Setor Univ, BR-78698000 Pontal Do Araguaia, MT, Brazil; [Bellay, S.] Univ Estadual Maringa, Ctr Ciencias Biol, Ave Colombo,5790 Bloco G90 Sala 011, BR-87020900 Maringa, Parana, Brazil; [Giacomini, H. C.] Univ Toronto, Dept Ecol & Evolutionary Biol, Off RW 520B,25 Harbord St, Toronto, ON M5S 3G5L, Canada; [Isaac, A.] Univ Fed Parana, Setor Palotina, Rua Pioneiro,2153,Jardim Dallas, BR-85950000 Palotina, PR, Brazil Lima, LB (reprint author), Univ Estado Mato Grosso, Programa Posgrad Ecol & Conservacao, Campus Nova Xavantina,BR 158,Km 148, BR-78690000 Nova Xavantina, MT, Brazil. lucianobeneditolima@gmail.com Lima, Luciano/D-2701-2018; Sounga, Carine/P-4851-2015 Lima, Luciano/0000-0002-8286-8035; Bellay, Sybelle/0000-0002-2242-9735 Coordination for the Improvement of Higher Education Personnel (CAPES); FAPEMAT; CNPq We thank the Coordination for the Improvement of Higher Education Personnel (CAPES) for the Social Demand scholarship to Luciano Benedito de Lima and FAPEMAT for his Doctor Degree scholarship. Sybelle Bellay thanks CNPq for a Post-doctoral Fellowship. Abelha Milza Celi Fedatto, 2001, Acta Scientiarum Universidade Estadual de Maringa, V23, P425; Agosta SJ, 2010, ZOOLOGIA-CURITIBA, V27, P151, DOI 10.1590/S1984-46702010000200001; Agostinho AA, 2007, AQUAT ECOSYST HEALTH, V10, P174, DOI 10.1080/14634980701341719; Agostinho AA, 2008, BRAZ J BIOL, V68, P1119, DOI 10.1590/S1519-69842008000500019; Agostinho AA, 2007, ECOLOGIA MANEJO RECU; Beaulieu JM, 2012, ECOLOGY, V93, pS4, DOI 10.1890/11-0638.1; Bellay S, 2015, PARASITOLOGY, V142, P901, DOI 10.1017/S0031182015000128; Bellay S, 2015, INT J PARASITOL, V45, P549, DOI 10.1016/j.ijpara.2015.03.003; Bellay S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075710; Bellay S, 2011, PARASITOLOGY, V138, P1945, DOI 10.1017/S0031182011001314; Benesh DP, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1462; Bersier LF, 2008, ECOL COMPLEX, V5, P132, DOI 10.1016/j.ecocom.2007.06.013; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Braga MP, 2015, J ANIM ECOL, V84, P487, DOI 10.1111/1365-2656.12298; Brown SP, 2001, J EVOLUTION BIOL, V14, P815, DOI 10.1046/j.1420-9101.2001.00318.x; Cattin MF, 2004, NATURE, V427, P835, DOI 10.1038/nature02327; Chen HW, 2008, OIKOS, V117, P1847, DOI 10.1111/j.1600-0706.2008.16607.x; Choisy M, 2003, AM NAT, V162, P172, DOI 10.1086/375681; Dallas T, 2014, OIKOS, V123, P866, DOI 10.1111/oik.00707; Dobson A, 2008, P NATL ACAD SCI USA, V105, P11482, DOI 10.1073/pnas.0803232105; Foitzik S, 2003, BEHAV ECOL, V14, P80, DOI 10.1093/beheco/14.1.80; Gido KB, 2007, ECOL FRESHW FISH, V16, P457, DOI 10.1111/j.1600-0633.2007.00235.x; Graca WJ, 2007, PEIXES PLANICIE INUN; Harms CA, 2012, AQUAT INVASIONS, V7, P547, DOI 10.3391/ai.2012.7.4.011; Hayden B, 2014, J FISH BIOL, V84, P1099, DOI 10.1111/jfb.12351; Hoeinghaus DJ, 2009, CONSERV BIOL, V23, P1222, DOI 10.1111/j.1523-1739.2009.01248.x; Isaac A, 2014, BRAZ J BIOL, V74, P16, DOI 10.1590/1519-6984.18312; Joannes A, 2014, J EVOLUTION BIOL, V27, P1623, DOI 10.1111/jeb.12413; Julio HF, 2009, NEOTROP ICHTHYOL, V7, P709, DOI 10.1590/S1679-62252009000400021; Kamiya T, 2014, BIOL REV, V89, P123, DOI 10.1111/brv.12046; Kelly DW, 2009, FRESHWATER BIOL, V54, P1805, DOI 10.1111/j.1365-2427.2009.02228.x; Kelly DW, 2009, ECOLOGY, V90, P2047, DOI 10.1890/08-1085.1; Krasnov BR, 2014, OIKOS, V123, P63, DOI 10.1111/j.1600-0706.2013.00646.x; Krasnov BR, 2012, PARASITOLOGY, V139, P338, DOI 10.1017/S0031182011002058; Lafferty KD, 2006, P NATL ACAD SCI USA, V103, P11211, DOI 10.1073/pnas.0604755103; Lafferty KD, 2009, PHILOS T R SOC B, V364, P1659, DOI 10.1098/rstb.2008.0220; Lima DP, 2012, J ANIM ECOL, V81, P905, DOI 10.1111/j.1365-2656.2012.01967.x; Locke SA, 2014, OECOLOGIA, V174, P253, DOI 10.1007/s00442-013-2757-x; Locke SA, 2013, OIKOS, V122, P73, DOI 10.1111/j.1600-0706.2012.20211.x; Maddison WP, 2015, MESQUITE MODULAR SYS; MAGURRAN A. E., 2004, MESURING BIOL DIVERS; Mouillot D, 2006, ECOGRAPHY, V29, P596, DOI 10.1111/j.0906-7590.2006.04507.x; Naisbit RE, 2012, P ROY SOC B-BIOL SCI, V279, P3291, DOI 10.1098/rspb.2012.0327; Oksanen J, 2013, VEGAN COMMUNITY ECOL; Pariselle Antoine, 2011, International Journal of Evolutionary Biology, V2011, P1, DOI 10.4061/2011/471480; Pendleton RM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084568; Poisot T, 2013, PARASITOLOGY, V140, P1340, DOI 10.1017/S0031182013000851; Poisot T, 2011, ECOL LETT, V14, P841, DOI 10.1111/j.1461-0248.2011.01645.x; POULIN R, 1992, INT J PARASITOL, V22, P753, DOI 10.1016/0020-7519(92)90124-4; Poulin R, 2011, OECOLOGIA, V166, P731, DOI 10.1007/s00442-011-1906-3; Poulin R, 2010, PARASITOLOGY, V137, P733, DOI 10.1017/S0031182009991491; Poulin R, 1997, ANNU REV ECOL SYST, V28, P341, DOI 10.1146/annurev.ecolsys.28.1.341; Poulin R, 2013, J ANIM ECOL, V82, P1265, DOI 10.1111/1365-2656.12101; Poulin R, 2012, EVOL ECOL, V26, P1169, DOI 10.1007/s10682-011-9544-0; Poulin R, 2011, PHILOS T R SOC B, V366, P2379, DOI 10.1098/rstb.2011.0048; R Core Team, 2014, R LANG ENV STAT COMP; Rezende EL, 2009, ECOL LETT, V12, P779, DOI 10.1111/j.1461-0248.2009.01327.x; Seppala O, 2008, BIOL LETTERS, V4, P663, DOI 10.1098/rsbl.2008.0335; Stouffer DB, 2012, SCIENCE, V335, P1489, DOI 10.1126/science.1216556; Stouffer DB, 2011, P NATL ACAD SCI USA, V108, P3648, DOI 10.1073/pnas.1014353108; Strona G, 2015, OIKOS, V124, P685, DOI 10.1111/oik.01850; Takemoto RM, 2009, BRAZ J BIOL, V69, P691, DOI 10.1590/S1519-69842009000300023; Takemoto RM, 2005, J HELMINTHOL, V79, P75, DOI 10.1079/JOH2004264; THATCHER V. E., 2006, AQUATIC BIODIVERSITY, V1; Thebault E, 2010, SCIENCE, V329, P853, DOI 10.1126/science.1188321; Thieltges DW, 2013, OIKOS, V122, P1473, DOI 10.1111/j.1600-0706.2013.00243.x; Thieltges DW, 2009, OECOLOGIA, V160, P163, DOI 10.1007/s00442-009-1276-2; Tillberg CV, 2007, P NATL ACAD SCI USA, V104, P20856, DOI 10.1073/pnas.0706903105; Wiens JJ, 2005, ANNU REV ECOL EVOL S, V36, P519, DOI 10.1146/annurev.ecolsys.36.102803.095431; Woo PTK, 2006, FISH DIS DISORDERS P, V1 70 5 5 1 21 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0031-1820 1469-8161 PARASITOLOGY Parasitology MAR 2016 143 3 343 349 10.1017/S003118201500164X 7 Parasitology Parasitology DH5HD WOS:000372816200009 26647725 2019-02-21 J van Lieshout, SHJ; Kirkby, CA; Siepel, H van Lieshout, Sil Henricus Johannes; Kirkby, Christopher Alexander; Siepel, Henk Avian distribution and life-history strategies in Amazonian terra-firme and floodplain forests TROPICAL CONSERVATION SCIENCE English Article tropical birds; Neotropical forest; avian distribution; relative reproductive investment; conservation INSECTIVOROUS BIRDS; DIVERSITY; EVOLUTION; BIOMASS The diversity of avian populations in the Madre de Dios region of Peru is currently threatened by deforestation and other anthropogenic factors. In this study we assessed differences in bird species composition in two major types of tropical forests: floodplain and terra-firme forest. Abundance of groups of behaviourally similar species showed a higher presence of certain feeding guilds in either floodplain forests or terra-firme forest, whereas no difference in species richness was found. Analysis of the relative reproductive investment (RRI) of these tropical birds showed significant differences between habitats and among families and feeding guilds. Comparison of these families and feeding guilds to their relatives in temperate regions showed that neotropical birds have a smaller RRI, due to both smaller clutch sizes and lower egg mass, even when there are more broods per season. Quantification of RRI as used in this study can be useful to indicate bird species' susceptibility to anthropogenic factors in various habitats. [van Lieshout, Sil Henricus Johannes; Siepel, Henk] Radboud Univ Nijmegen, Dept Anim Ecol & Ecophysiol, Inst Water & Wetland Res, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands; [Kirkby, Christopher Alexander] Fauna Forever, Ave Aeropuerto KM 1, Puerto Maldonado, Madre De Dios, Peru van Lieshout, SHJ (reprint author), Radboud Univ Nijmegen, Dept Anim Ecol & Ecophysiol, Inst Water & Wetland Res, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands. sil@jennis.nl Siepel, Henk/C-2579-2011 Siepel, Henk/0000-0003-4503-4485 Aleixo A, 2004, EVOLUTION, V58, P1303, DOI 10.1111/j.0014-3820.2004.tb01709.x; Beja P, 2010, BIODIVERS CONSERV, V19, P129, DOI 10.1007/s10531-009-9711-6; Bierregaard R.O. Jr, 1990, P217; Bierregaard R.O. Jr, 1990, P333; Costa M.H., 1997, J GEOPHYS RES, V102, P973, DOI DOI 10.1029/97JD01865; Costa MH, 2000, J CLIMATE, V13, P18, DOI 10.1175/1520-0442(2000)013<0018:CEODAD>2.0.CO;2; del Hoyo J., 1992, P1; Dirzo R, 2003, ANNU REV ENV RESOUR, V28, P137, DOI 10.1146/annurev.energy.28.050302.105532; FOGDEN MPL, 1972, IBIS, V114, P307, DOI 10.1111/j.1474-919X.1972.tb00831.x; Foley JA, 2007, FRONT ECOL ENVIRON, V5, P25, DOI 10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2; Gabbe AP, 2002, CONSERV BIOL, V16, P462, DOI 10.1046/j.1523-1739.2002.00460.x; Gotelli NJ, 2011, BIOL DIVERSITY FRONT, V12, P39; Gray MA, 2007, CONSERV BIOL, V21, P133, DOI 10.1111/j.1523-1739.2006.00557.x; Henriques Luiza Magalli Pinto, 2003, Ornitologia Neotropical, V14, P307; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnson EI, 2011, REV BRAS ORNITOL, V19, P1; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; KARR JA, 1981, STUDIES AVIAN BIOL, V6, P62; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Laranjeiras TO, 2014, REV BRAS ORNITOL, V22, P138; Lucas CM, 2014, FOREST ECOL MANAG, V319, P116, DOI 10.1016/j.foreco.2014.02.008; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MUNN CA, 1979, CONDOR, V81, P338, DOI 10.2307/1366956; MURRAY BG, 1985, ORNITHOL MONOGR, V36, P505; Nepstad DC, 1999, NATURE, V398, P505, DOI 10.1038/19066; Nichols E., 2013, PLOS BIOL, V8, P1; Remsen JV, 1996, AUK, V113, P381, DOI 10.2307/4088905; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Roper JJ, 1997, J AVIAN BIOL, V28, P111, DOI 10.2307/3677304; Schonwetter M., 1961, HDB OOLOGIE LIEFERUN, V1-43; Schulenberg TS, 2010, BIRDS PERU REVISED U; SHANNON CE, 1948, BELL SYST TECH J, V27, P623, DOI 10.1002/j.1538-7305.1948.tb00917.x; SIMPSON EH, 1949, NATURE, V163, P688, DOI 10.1038/163688a0; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; Stratford JA, 1999, CONSERV BIOL, V13, P1416, DOI 10.1046/j.1523-1739.1999.98494.x; van Turnhout CAM, 2012, RIVER RES APPL, V28, P269, DOI 10.1002/rra.1455; Willis E.O., 1967, BEHAV BICOLORED ANTI; Wunderle JM, 2005, IBIS, V147, P109 40 0 0 0 21 TROPICAL CONSERVATION SCIENCE MENLO PARK PO BOX 0291, MENLO PARK, CA 94026-0291 USA 1940-0829 TROP CONSERV SCI Trop. Conserv. Sci. MAR 2016 9 1 465 502 10.1177/194008291600900125 38 Biodiversity Conservation Biodiversity & Conservation DI1ZQ WOS:000373295900025 DOAJ Gold 2019-02-21 J Foucaud, J; Moreno, C; Pascual, M; Rezende, EL; Castaneda, LE; Gibert, P; Mery, F Foucaud, Julien; Moreno, Celine; Pascual, Marta; Rezende, Enrico L.; Castaneda, Luis E.; Gibert, Patricia; Mery, Frederic Introduced Drosophila subobscura populations perform better than native populations during an oviposition choice task due to increased fecundity but similar learning ability ECOLOGY AND EVOLUTION English Article Biological invasion; Drosophila; learning; phenotypic plasticity; trade-off INCREASED COMPETITIVE ABILITY; ENEMY RELEASE HYPOTHESIS; LIFE-HISTORY EVOLUTION; PHENOTYPIC PLASTICITY; BIOTIC HOMOGENIZATION; GENETIC ASSIMILATION; SOLIDAGO-GIGANTEA; INVASION SUCCESS; LOCAL ADAPTATION; HOST PREFERENCE The success of invasive species is tightly linked to their fitness in a putatively novel environment. While quantitative components of fitness have been studied extensively in the context of invasive species, fewer studies have looked at qualitative components of fitness, such as behavioral plasticity, and their interaction with quantitative components, despite intuitive benefits over the course of an invasion. In particular, learning is a form of behavioral plasticity that makes it possible to finely tune behavior according to environmental conditions. Learning can be crucial for survival and reproduction of introduced organisms in novel areas, for example, for detecting new predators, or finding mates or oviposition sites. Here we explored how oviposition performance evolved in relation to both fecundity and learning during an invasion, using native and introduced Drosophila subobscura populations performing an ecologically relevant task. Our results indicated that, under comparable conditions, invasive populations performed better during our oviposition task than did native populations. This was because invasive populations had higher fecundity, together with similar cognitive performance when compared to native populations, and that there was no interaction between learning and fecundity. Unexpectedly, our study did not reveal an allocation trade-off (i.e., a negative relationship) between learning and fecundity. On the contrary, the pattern we observed was more consistent with an acquisition trade-off, meaning that fecundity could be limited by availability of resources, unlike cognitive ability. This pattern might be the consequence of escaping natural enemies and/or competitors during the introduction. The apparent lack of evolution of learning may indicate that the introduced population did not face novel cognitive challenges in the new environment (i.e., cognitive "pre-adaptation"). Alternatively, the evolution of learning may have been transient and therefore not detected. [Foucaud, Julien; Moreno, Celine; Mery, Frederic] CNRS 9191, UMR, Lab Evolut Genomes Comportement & Ecol, Gif Sur Yvette, France; [Moreno, Celine] Univ Barcelona, Dept Genet, Ave Diagonal 643, E-08028 Barcelona, Spain; [Moreno, Celine] Univ Barcelona, IrBio, Ave Diagonal 643, E-08028 Barcelona, Spain; [Rezende, Enrico L.] Univ Roehampton, Dept Life Sci, Holybourne Ave, London SW15 4JD, England; [Castaneda, Luis E.] Univ Austral Chile, Inst Ciencias Ambientales & Evolutivas, PO 5090000, Valdivia, Chile; [Gibert, Patricia] Univ Lyon 1, CNRS 5558, UMR, Lab Biometrie & Biol Evolutive, 43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France; [Foucaud, Julien] INRA, UMR 1062, CBGP, IRD,CIRAD,Montpellier SupAgro, 755 Ave Campus Agropolis, F-34988 Montferrier Sur Lez, France Foucaud, J (reprint author), CNRS 9191, UMR, Lab Evolut Genomes Comportement & Ecol, Gif Sur Yvette, France.; Foucaud, J (reprint author), INRA, UMR 1062, CBGP, IRD,CIRAD,Montpellier SupAgro, 755 Ave Campus Agropolis, F-34988 Montferrier Sur Lez, France. foucaud@supagro.inra.fr Rezende, Enrico/B-8029-2012; UBneuro, UBneuro/U-8656-2017; Pascual, Marta/M-7626-2015; Castaneda, Luis/G-5340-2011 Rezende, Enrico/0000-0002-6245-9605; Pascual, Marta/0000-0002-6189-0612; Castaneda, Luis/0000-0001-5484-4573; Gibert, Patricia/0000-0002-9461-6820 European Research Council [209540]; Generalitat de Catalunya [CTM2013-48163]; Fondo Nacional de Desarrollo Cientifico y Tecnologico [FONDECYT 1140066] European Research Council (Grant/Award Number: "FP7/2007-2013/ERC Grant agreement no. 209540"), Generalitat de Catalunya (Grant/Award Number: "CTM2013-48163"), Fondo Nacional de Desarrollo Cientifico y Tecnologico (Grant/Award Number: "FONDECYT 1140066"). Alexander JM, 2009, ECOLOGY, V90, P612, DOI 10.1890/08-0453.1; Amiel JJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018277; BALANYA J, 1994, J HERED, V85, P427, DOI 10.1093/oxfordjournals.jhered.a111496; Barker JSF, 2009, HEREDITY, V102, P389, DOI 10.1038/hdy.2008.127; Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; Battesti M, 2012, CURR BIOL, V22, P309, DOI 10.1016/j.cub.2011.12.050; Bezzina CN, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086271; Blackburn TM, 2011, TRENDS ECOL EVOL, V26, P333, DOI 10.1016/j.tree.2011.03.023; BLOSSEY B, 1995, J ECOL, V83, P887, DOI 10.2307/2261425; Blumenthal DM, 2007, ECOLOGY, V88, P2758, DOI 10.1890/06-2115.1; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; BRNCIC D, 1981, GENETICA, V56, P3; Budnik M, 1997, NETH J ZOOL, V47, P133; Calabria G, 2012, J APPL ENTOMOL, V136, P139, DOI 10.1111/j.1439-0418.2010.01583.x; Canty A., 2015, BOOT BOOTSTRAP R S P; Castaneda LE, 2013, AM NAT, V182, P249, DOI 10.1086/671057; Chapple DG, 2012, TRENDS ECOL EVOL, V27, P57, DOI 10.1016/j.tree.2011.09.010; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; Colautti RI, 2004, ECOL LETT, V7, P721, DOI 10.1111/j.1461-0248.2004.00616.x; Colautti RI, 2015, MOL ECOL, V24, P1999, DOI 10.1111/mec.13162; Crispo E, 2007, EVOLUTION, V61, P2469, DOI 10.1111/j.1558-5646.2007.00203.x; Davidson AM, 2011, ECOL LETT, V14, P419, DOI 10.1111/j.1461-0248.2011.01596.x; Dlugosch KM, 2008, ECOL LETT, V11, P701, DOI 10.1111/j.1461-0248.2008.01181.x; Doak P, 2006, ECOLOGY, V87, P395, DOI 10.1890/05-0647; Dukas R, 2005, BEHAV ECOL, V16, P800, DOI 10.1093/beheco/ari057; Durka W, 2005, MOL ECOL, V14, P1697, DOI 10.1111/j.1365-294X.2005.02521.x; Dybdahl MF, 2005, ECOLOGY, V86, P1592, DOI 10.1890/04-0898; Ebeling SK, 2011, J PLANT ECOL-UK, V4, P209, DOI 10.1093/jpe/rtr007; Egas M, 2001, ECOL LETT, V4, P190, DOI 10.1046/j.1461-0248.2001.00219.x; Iriarte PJF, 2009, J EVOLUTION BIOL, V22, P650, DOI 10.1111/j.1420-9101.2008.01659.x; Fincke OM, 2001, EVOLUTION, V55, P762, DOI 10.1554/0014-3820(2001)055[0762:UOSITD]2.0.CO;2; Foucaud J, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0588; Geiger JH, 2011, INT J PLANT SCI, V172, P655, DOI 10.1086/659457; Gilchrist GW, 2004, EVOLUTION, V58, P768; Horkova K, 2014, KNOWL MANAG AQUAT EC, DOI 10.1051/kmae/2013081; Huey RB, 2000, SCIENCE, V287, P308, DOI 10.1126/science.287.5451.308; Kajita Y, 2012, MOL ECOL, V21, P5473, DOI 10.1111/mec.12059; Kawecki TJ, 2010, POPUL ECOL, V52, P15, DOI 10.1007/s10144-009-0174-0; Keane RM, 2002, TRENDS ECOL EVOL, V17, P164, DOI 10.1016/S0169-5347(02)02499-0; Kotrschal A, 2014, EVOLUTION, V68, P1139, DOI 10.1111/evo.12341; Lande R, 2015, MOL ECOL, V24, P2038, DOI 10.1111/mec.13037; Lavergne S, 2007, P NATL ACAD SCI USA, V104, P3883, DOI 10.1073/pnas.0607324104; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Leger EA, 2003, ECOL LETT, V6, P257, DOI 10.1046/j.1461-0248.2003.00423.x; Long TAF, 2009, J EVOLUTION BIOL, V22, P637, DOI 10.1111/j.1420-9101.2008.01676.x; Lowry H, 2013, BIOL REV, V88, P537, DOI 10.1111/brv.12012; Maron JL, 2004, ECOL MONOGR, V74, P261, DOI 10.1890/03-4027; Maron JL, 2001, OIKOS, V95, P361, DOI 10.1034/j.1600-0706.2001.950301.x; McKinney ML, 2006, BIOL CONSERV, V127, P247, DOI 10.1016/j.biocon.2005.09.005; McKinney ML, 1999, TRENDS ECOL EVOL, V14, P450, DOI 10.1016/S0169-5347(99)01679-1; Merila J, 2000, AM NAT, V155, P301, DOI 10.1086/303330; Mery F, 2002, P NATL ACAD SCI USA, V99, P14274, DOI 10.1073/pnas.222371199; Mery F, 2003, P ROY SOC B-BIOL SCI, V270, P2465, DOI 10.1098/rspb.2003.2548; Mery F, 2004, ANIM BEHAV, V68, P589, DOI 10.1016/j.anbehav.2003.12.005; Meyer G, 2005, OECOLOGIA, V144, P299, DOI 10.1007/s00442-005-0046-z; Meyer GA, 2008, BIOL INVASIONS, V10, P303, DOI 10.1007/s10530-007-9131-z; Mooney H. A, 2000, INVASIVE SPECIES CHA; Moran EV, 2014, ECOL LETT, V17, P637, DOI 10.1111/ele.12262; PAPAJ DR, 1989, ANNU REV ENTOMOL, V34, P315, DOI 10.1146/annurev.en.34.010189.001531; Pascual M, 2007, MOL ECOL, V16, P3069, DOI 10.1111/j.1365-294X.2007.03336.x; PASCUAL M, 1990, GENETICA, V80, P39, DOI 10.1007/BF00120118; Pascual M, 1998, EVOLUTION, V52, P269, DOI 10.1111/j.1558-5646.1998.tb05162.x; Pekkala N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024560; Pigliucci M, 2003, EVOLUTION, V57, P1455; PREVOSTI A, 1988, P NATL ACAD SCI USA, V85, P5597, DOI 10.1073/pnas.85.15.5597; R Core Team, 2008, R LANG ENV STAT COMP; Reed DH, 2004, J EVOLUTION BIOL, V17, P919, DOI 10.1111/j.1420-9101.2004.00718.x; Rey O, 2012, ECOL LETT, V15, P1266, DOI 10.1111/j.1461-0248.2012.01849.x; Rezende EL, 2010, CLIM RES, V43, P103, DOI 10.3354/cr00869; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roth TC, 2010, P ROY SOC B-BIOL SCI, V277, P3187, DOI 10.1098/rspb.2010.0630; Roth TC, 2010, PHILOS T R SOC B, V365, P915, DOI 10.1098/rstb.2009.0208; Roth TC, 2009, P R SOC B, V276, P401, DOI 10.1098/rspb.2008.1184; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Santos J, 2012, J EVOLUTION BIOL, V25, P2607, DOI 10.1111/jeb.12008; Santos M, 2010, THEOR BIOSCI, V129, P97, DOI 10.1007/s12064-010-0086-8; Sgro CM, 1998, EVOLUTION, V52, P134, DOI 10.1111/j.1558-5646.1998.tb05146.x; Simoes P, 2008, EVOLUTION, V62, P1817, DOI 10.1111/j.1558-5646.2008.00423.x; Simoes P, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051625; SMITH JM, 1958, J EXP BIOL, V35, P832; Snell-Rood EC, 2011, BEHAV ECOL, V22, P291, DOI 10.1093/beheco/arq169; Sol D, 2005, P NATL ACAD SCI USA, V102, P5460, DOI 10.1073/pnas.0408145102; Sol D, 2002, ANIM BEHAV, V63, P495, DOI 10.1006/anbe.2001.1953; Sol D, 2008, AM NAT, V172, pS63, DOI 10.1086/588304; Tatem AJ, 2007, P ROY SOC B-BIOL SCI, V274, P1489, DOI 10.1098/rspb.2007.0148; THOMPSON JN, 1991, ANNU REV ENTOMOL, V36, P65, DOI 10.1146/annurev.en.36.010191.000433 87 3 3 0 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAR 2016 6 6 1725 1736 10.1002/ece3.2015 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DH0QI WOS:000372488300014 26925216 DOAJ Gold, Green Published 2019-02-21 J Thorstad, EB; Todd, CD; Uglem, I; Bjorn, PA; Gargan, PG; Vollset, KW; Halttunen, E; Kalas, S; Berg, M; Finstad, B Thorstad, Eva B.; Todd, Christopher D.; Uglem, Ingebrigt; Bjorn, Pal Arne; Gargan, Patrick G.; Vollset, Knut Wiik; Halttunen, Elina; Kalas, Steinar; Berg, Marius; Finstad, Bengt Marine life of the sea trout MARINE BIOLOGY English Review ANADROMOUS BROWN TROUT; SALMO-TRUTTA L.; CHARR SALVELINUS-ALPINUS; REARED ATLANTIC SALMON; NORWEGIAN FJORD SYSTEM; LICE LEPEOPHTHEIRUS-SALMONIS; ARCTIC CHARR; NORTHERN NORWAY; SMOLT MIGRATION; POST-SMOLTS An understanding of when and where sea trout Salmo trutta L. are located at sea is essential to the effective management of local populations and in evaluating their vulnerability to salmon lice and other anthropogenic threats. Here we review the available literature on sea trout life-history strategies, behaviour and habitat use in the marine environment, including feeding, growth, survival and homing. There is considerable variation in life-history strategies among individuals and populations and in the timing and duration of marine migration(s). Females tend to adopt the anadromous strategy more than do males. Smolts typically leave rivers in spring (March-June in European rivers), but also at other times of the year. Postsmolts may remain at sea during the summer and return to freshwater to over-winter; adults thereafter spend summers at sea and winters in freshwater, or they can remain at sea until they later return to freshwater for spawning. Sea trout frequently are recorded at sea during winter and can tolerate full-salinity sea water at water temperatures as low as 1-2 degrees C. Sea trout often remain within 80 km of their river of origin, but also may undertake longer-distance marine migrations (> 500 km). The duration and timing of marine migration both are likely governed by trade-offs between mortality risk and growth potential in different habitats, and the most beneficial strategy may vary among individuals and populations. Reduced marine growth and increased marine mortality will reduce the benefit of marine migrations and may result in selection against anadromy. [Thorstad, Eva B.; Uglem, Ingebrigt; Berg, Marius; Finstad, Bengt] Norwegian Inst Nat Res, N-7485 Trondheim, Norway; [Todd, Christopher D.] Univ St Andrews, St Andrews KY16 8LB, Fife, Scotland; [Bjorn, Pal Arne; Halttunen, Elina] Inst Marine Res, N-9294 Tromso, Norway; [Gargan, Patrick G.] Inland Fisheries Ireland, 3044 Lake Dr,Citywest Business Campus, Dublin 24, Ireland; [Vollset, Knut Wiik] Uni Res Environm, N-5006 Bergen, Norway; [Kalas, Steinar] Radgivende Biologer AS, N-5003 Bergen, Norway Thorstad, EB (reprint author), Norwegian Inst Nat Res, N-7485 Trondheim, Norway. eva.thorstad@nina.no; cdt@st-andrews.ac.uk; ingebrigt.uglem@nina.no; paal.arne.bjorn@imr.no; paddy.gargan@fisheriesireland.ie; knut.vollset@uni.no; elina.halttunen@imr.no; steinar.kalas@radgivende-biologer.no; marius.berg@nina.no; bengt.finstad@nina.no Norwegian Seafood Research Fund [900950] The project was funded by the Norwegian Seafood Research Fund (FHF, project number 900950). We thank Kjell Maroni (FHF) for the cooperation. We also thank Torgeir B. Havn (NINA) for help with editing of references and the NINA library, especially Ruth Bergmann, for accessing literature. Morten A. Bergan (NINA), Jan G. Davidsen (Norwegian University of Science and Technology, NTNU), J. Fernandez, Niels Jepsen (DTU Aqua), Geir Magne Knutsen (Bremnes Seashore AS), Ketil Rykhus (Norwegian Seafood Federation, FHL), Ola Ugedal (NINA) and one anonymous reviewer is thanked for commenting on earlier drafts of the manuscript. Aarestrup K, 1998, HYDROBIOLOGIA, V372, P275, DOI 10.1023/A:1017074011007; Aarestrup K, 2002, HYDROBIOLOGIA, V483, P95, DOI 10.1023/A:1021306907338; Aarestrup K, 2015, MAR ECOL PROG SER, V535, P185, DOI 10.3354/meps11407; Aarestrup K, 2014, MAR ECOL PROG SER, V496, P197, DOI 10.3354/meps10614; [Anonymous], 2013, REP NOR SCI ADVIS CO, V17; Bendall B, 2005, J FISH BIOL, V67, P809, DOI 10.1111/j.1095-8649.2005.00786.x; Berg O.K., 1989, P SALM MIGR DISTR S, P106; BERG OK, 1987, AQUACULTURE, V62, P143, DOI 10.1016/0044-8486(87)90318-8; BERG OK, 1989, ENVIRON BIOL FISH, V24, P23, DOI 10.1007/BF00001607; BERG OK, 1990, ENVIRON BIOL FISH, V29, P145, DOI 10.1007/BF00005031; BERG OK, 1987, J FISH BIOL, V31, P113, DOI 10.1111/j.1095-8649.1987.tb05218.x; BOHLIN T, 1993, CAN J FISH AQUAT SCI, V50, P1132, DOI 10.1139/f93-128; Bohlin T, 1996, J FISH BIOL, V49, P157; Bond MH, 2015, ECOLOGY, V96, P1899, DOI 10.1890/14-1551.1; BORGSTROM R, 1988, Polskie Archiwum Hydrobiologii, V35, P375; Butler J.R.A., 2006, P45; Butler JRA, 2009, FISH RES, V96, P259, DOI 10.1016/j.fishres.2008.12.006; Byrne CJ, 2004, FISH RES, V66, P85, DOI 10.1016/S0165-7836(03)00146-2; Cabballero P, 2006, SEA TROUT BIOL CONSE, P234; CAMPBELL JS, 1977, J FISH BIOL, V11, P217, DOI 10.1111/j.1095-8649.1977.tb04115.x; Carlsen KT, 2004, ENVIRON BIOL FISH, V70, P403, DOI 10.1023/B:EBFI.0000035438.85321.fa; Charles K, 2006, ECOL FRESHW FISH, V15, P255, DOI 10.1111/j.1600-0633.2006.00149.x; Charles K, 2005, AQUAT LIVING RESOUR, V18, P65, DOI 10.1051/alr:2005006; Chernitsky Alexander G., 1995, Nordic Journal of Freshwater Research, V71, P183; Davidsen JG, 2014, J FISH BIOL, V85, P1992, DOI 10.1111/jfb.12485; Davidsen JG, 2014, J FISH BIOL, V85, P586, DOI 10.1111/jfb.12439; de Leeuw JJ, 2007, J SEA RES, V58, P163, DOI 10.1016/j.seares.2006.12.001; Degerman E, 2012, ICES J MAR SCI, V69, P971, DOI 10.1093/icesjms/fss073; del Villar-Guerra D, 2014, ECOL FRESHW FISH, V23, P594, DOI 10.1111/eff.12110; Dieperink C, 2002, J FISH BIOL, V61, P848, DOI 10.1006/jfbi.2002.2090; Dieperink C, 2001, ECOL FRESHW FISH, V10, P177, DOI 10.1034/j.1600-0633.2001.100307.x; Drenner SM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031311; Eldoy SH, 2015, CAN J FISH AQUAT SCI, V72, P1; Elliott J.M., 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V118, P109; ELLIOTT JM, 1993, FISH RES, V17, P123, DOI 10.1016/0165-7836(93)90012-V; Etheridge EC, 2008, J FISH BIOL, V73, P44, DOI 10.1111/j.1095-8649.2008.01905.x; EUZENAT G, 1999, BIOL ECOLOGY BROWN T, P175, DOI DOI 10.1007/978-1-4471-0775-0; FAHY E, 1978, J FISH BIOL, V13, P123, DOI 10.1111/j.1095-8649.1978.tb03420.x; Ferguson A., 2006, P157; Finstad B, 2005, J FISH BIOL, V66, P86, DOI 10.1111/j.1095-8649.2004.00581.x; Finstad Bengt, 2011, P253; Gargan P.G., 2006, P25; Gargan P.G., 2006, P60; Gargan PG, 2003, SALMON AT THE EDGE, P119, DOI 10.1002/9780470995495.ch10; Gjelland KO, 2014, AQUACULT ENV INTERAC, V5, P221, DOI 10.3354/aei00105; GRONVIK S, 1987, POLAR BIOL, V7, P173, DOI 10.1007/BF00259205; GROSS MR, 1988, SCIENCE, V239, P1291, DOI 10.1126/science.239.4845.1291; Halttunen E, 2013, CAN J FISH AQUAT SCI, V70, P1063, DOI 10.1139/cjfas-2012-0525; Haluch M., 1997, B SEA FISH I, V3, P55; Hansen MM, 2002, MOL ECOL, V11, P2523, DOI 10.1046/j.1365-294X.2002.01634.x; Harris GS, 2006, SEA TROUT BIOL CONSE; Hembre B, 2001, ECOL FRESHW FISH, V10, P61, DOI 10.1111/j.1600-0633.2001.tb00195.x; HINDAR K, 1991, HEREDITY, V66, P83, DOI 10.1038/hdy.1991.11; HOGASEN HR, 1998, CANADIAN SPECIAL PUB, V127, P1; HOGSTRAND C, 1985, COMP BIOCHEM PHYS A, V82, P261, DOI 10.1016/0300-9629(85)90852-7; Hovgaard K, 2006, J APPL ICHTHYOL, V22, P57, DOI 10.1111/j.1439-0426.2006.00713.x; ICES, 2013, 2013SSGEF15 ICES CM; Jarvi T. H., 1940, ADA ZOOL FENNICA, V29, P1; Jarvi Torbjorn, 1997, Nordic Journal of Freshwater Research, V72, P52; Jensen AJ, 2012, CAN J FISH AQUAT SCI, V69, P711, DOI 10.1139/F2012-005; Jensen JLA, 2008, J FISH BIOL, V73, P1810, DOI 10.1111/j.1095-8649.2008.02042.x; Jensen JLA, 2014, J FISH BIOL, V84, P1640, DOI 10.1111/jfb.12366; Jensen JLA, 2012, J FISH BIOL, V81, P735, DOI 10.1111/j.1095-8649.2012.03343.x; Jensen K. W., 1968, Report Institute of Freshwater Research Drottningholm, VNo. 48, P187; Jepsen N, 2006, FISHERIES MANAG ECOL, V13, P341, DOI 10.1111/j.1365-2400.2006.00509.x; Jobling M., 1994, FISH BIOENERGETICS; Jonsson B, 2006, J FISH BIOL, V69, P860, DOI 10.1111/j.1095-8649.2006.01160.x; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; Jonsson B, 2015, J FISH BIOL, V87, P187, DOI 10.1111/jfb.12704; Jonsson B, 2011, FISH FISH SER, V33, P1, DOI 10.1007/978-94-007-1189-1; Jonsson B., 2006, P196; Jonsson B, 2009, J FISH BIOL, V74, P621, DOI 10.1111/j.1095-8649.2008.02152.x; JONSSON B, 1993, J FISH BIOL, V43, P1; Jonsson B, 2014, J COAST CONSERV, V18, P79, DOI 10.1007/s11852-012-0224-1; JONSSON N, 1995, J FISH BIOL, V46, P70, DOI 10.1111/j.1095-8649.1995.tb05947.x; Jonsson N, 2002, FRESHWATER BIOL, V47, P1391, DOI 10.1046/j.1365-2427.2002.00873.x; Jonsson N, 1998, J FISH BIOL, V53, P1306, DOI 10.1111/j.1095-8649.1998.tb00250.x; Jutila E., 2006, P128; Kallio-Nyberg I, 2002, ANN ZOOL FENN, V39, P221; Kallio-Nyberg I, 2007, CAN J FISH AQUAT SCI, V64, P1183, DOI 10.1139/F07-084; Kallio-Nyberg I, 2006, FISH RES, V80, P295, DOI 10.1016/j.fishres.2006.03.026; Kallio-Nyberg I, 2015, BOREAL ENVIRON RES, V20, P19; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Knutsen JA, 2004, J FISH BIOL, V64, P89, DOI 10.1111/j.1095-8649.2004.00285.x; Knutsen JA, 2001, J FISH BIOL, V59, P533, DOI 10.1006/jfbi.2001.1662; Koed A, 2006, RIVER RES APPL, V22, P69, DOI 10.1002/rra.894; Koksvik JI, 2005, HYDROBIOLOGIA, V544, P51, DOI 10.1007/s10750-004-8300-7; Kristensen EA, 2011, ECOL FRESHW FISH, V20, P377, DOI 10.1111/j.1600-0633.2010.00451.x; LABEELUND JH, 1989, J ANIM ECOL, V58, P525, DOI 10.2307/4846; LABEELUND JH, 1994, AQUACULTURE, V121, P65, DOI 10.1016/0044-8486(94)90008-6; Landergren P, 2004, FISH RES, V67, P283, DOI 10.1016/j.fishres.2003.10.005; Landergren P, 1998, FISH RES, V35, P229, DOI 10.1016/S0165-7836(98)00073-3; Landergren P, 2001, J FISH BIOL, V58, P591, DOI 10.1006/jfbi.2000.1460; Larsen PF, 2008, BMC GENET, V9, DOI 10.1186/1471-2156-9-12; Larsson S, 2012, CAN J FISH AQUAT SCI, V69, P1, DOI [10.1139/F2011-128, 10.1139/f2011-128]; Limburg KE, 2001, J FISH BIOL, V59, P682, DOI 10.1111/j.1095-8649.2001.tb02372.x; Lucas M, 2001, MIGRATION FRESHWATER; Lyse AA, 1998, J FISH BIOL, V52, P923; Lysfjord G, 1998, AQUACULTURE, V168, P279, DOI 10.1016/S0044-8486(98)00355-X; Marine Scotland Science, 2015, 0115 SCOTT GOV MAR S; McDowall RM, 2001, AQUAT CONSERV, V11, P473, DOI 10.1002/aqc.499; Middlemas SJ, 2013, FISHERIES MANAG ECOL, V20, P68, DOI 10.1111/fme.12010; Middlemas SJ, 2009, J FISH BIOL, V74, P639, DOI 10.1111/j.1095-8649.2008.02154.x; Milner N.J., 2006, P480; Moore A, 1998, AQUACULTURE, V168, P57, DOI 10.1016/S0044-8486(98)00340-8; Moore A., 1994, Fisheries Management and Ecology, V1, P1; Nall GH, 1930, FISH BOARD SCOTL SAL, V5, P1; Nielsen C, 2006, ECOL FRESHW FISH, V15, P229, DOI 10.1111/j.1600-0633.2006.00143.x; O'FARRELL M M, 1989, Polskie Archiwum Hydrobiologii, V36, P273; O'Neal SL, 2011, T AM FISH SOC, V140, P623, DOI 10.1080/00028487.2011.585577; OKLAND F, 1993, J FISH BIOL, V42, P541, DOI 10.1111/j.1095-8649.1993.tb00358.x; Okmus I, 2006, SEA TROUT BIOL CONSE, P115; Olsen EM, 2006, ECOL FRESHW FISH, V15, P446, DOI 10.1111/j.1600-0633.2006.00176.x; Ostergren J, 2008, RIVER RES APPL, V24, P551, DOI 10.1002/rra.1141; PARRY G, 1960, J EXP BIOL, V37, P425; PEMBERTON R, 1976, J FISH BIOL, V9, P195, DOI 10.1111/j.1095-8649.1976.tb04673.x; PEMBERTON R, 1976, J FISH BIOL, V9, P157, DOI 10.1111/j.1095-8649.1976.tb04670.x; Penston MJ, 2009, J FISH DIS, V32, P75, DOI 10.1111/j.1365-2761.2008.00986.x; Poole WR, 1996, FISH MANAG ECOL, V3, P73; Poole WR, 2006, SEA TROUT BIOL CONSE, P107; PRATTEN DJ, 1983, FISH MANAGE, V14, P49; PRATTEN DJ, 1983, FISH MANAGE, V14, P99; Rikardsen AH, 2007, J FISH BIOL, V70, P837, DOI 10.1111/j.1095-8649.2007.01345.x; Rikardsen AH, 2005, J FISH BIOL, V66, P1163, DOI 10.1111/j.1095-8649.2005.00655.x; Rikardsen AH, 2006, ICES J MAR SCI, V63, P466, DOI 10.1016/j.icesjms.2005.07.013; Rikardsen AH, 2004, J FISH BIOL, V65, P711, DOI 10.1111/j.0022-1112.2004.00478.x; Schreiber A, 2005, ECOL FRESHW FISH, V14, P1, DOI 10.1111/j.1600-0633.2004.00072.x; Sivertsgard R, 2007, HYDROBIOLOGIA, V582, P35, DOI 10.1007/s10750-006-0545-x; Skaala O, 2014, MAR BIOL RES, V10, P279, DOI 10.1080/17451000.2013.810756; Skaala O, 2014, MAR BIOL RES, V10, P308, DOI 10.1080/17451000.2013.810758; Solomon D.J., 2006, P224; Sturlaugsson J, 1996, 1996M5 ICES CM, pM; Svardson G., 1982, REPORTS I FRESHWATER, V60, P51; Tanquy JM, 1994, AQUACULTURE, V121, P51; Thorstad EB, 2012, J FISH BIOL, V81, P500, DOI 10.1111/j.1095-8649.2012.03370.x; Thorstad EB, 2004, ENVIRON BIOL FISH, V71, P305, DOI 10.1007/s10641-004-1264-7; Thorstad EB, 2007, HYDROBIOLOGIA, V582, P99, DOI 10.1007/s10750-006-0548-7; Thorstad EB, 2015, AQUACULT ENV INTERAC, V7, P91, DOI 10.3354/aei00142; Thorstad Eva B., 2011, P1; TITUS RG, 1989, J FISH BIOL, V35, P351; TULLY O, 1993, FISH RES, V17, P187, DOI 10.1016/0165-7836(93)90018-3; Ugedal O, 1998, AQUACULTURE, V168, P395, DOI 10.1016/S0044-8486(98)00365-2; Went AEJ, 1962, SCI P ROYAL DUBLIN S, V10, P265 143 13 13 8 69 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0025-3162 1432-1793 MAR BIOL Mar. Biol. MAR 2016 163 3 47 10.1007/s00227-016-2820-3 19 Marine & Freshwater Biology Marine & Freshwater Biology DG7ZQ WOS:000372302600003 2019-02-21 J Hill, SE; Prokosch, ML; DelPriore, DJ; Griskevicius, V; Kramer, A Hill, Sarah E.; Prokosch, Marjorie L.; DelPriore, Danielle J.; Griskevicius, Vladas; Kramer, Andrew Low Childhood Socioeconomic Status Promotes Eating in the Absence of Energy Need PSYCHOLOGICAL SCIENCE English Article life-history theory; childhood socioeconomic status; energy regulation; evolutionary-developmental psychology; thrifty phenotype; eating behavior; open data; open materials BODY-MASS INDEX; LIFE-HISTORY; REPRODUCTIVE STRATEGY; ADULT HEALTH; WEIGHT-GAIN; POVERTY; OBESITY; HUNGER; PALATABILITY; MECHANISMS Life-history theory predicts that exposure to conditions typical of low socioeconomic status (SES) during childhood will calibrate development in ways that promote survival in harsh and unpredictable ecologies. Guided by this insight, the current research tested the hypothesis that low childhood SES will predict eating in the absence of energy need. Across three studies, we measured (Study 1) or manipulated (Studies 2 and 3) participants' energy need and gave them the opportunity to eat provided snacks. Participants also reported their SES during childhood and their current SES. Results revealed that people who grew up in high-SES environments regulated their food intake on the basis of their immediate energy need; they ate more when their need was high than when their need was low. This relationship was not observed among people who grew up in low-SES environments. These individuals consumed comparably high amounts of food when their current energy need was high and when it was low. Childhood SES may have a lasting impact on food regulation. [Hill, Sarah E.; Prokosch, Marjorie L.; DelPriore, Danielle J.; Kramer, Andrew] Texas Christian Univ, Dept Psychol, Ft Worth, TX 76129 USA; [DelPriore, Danielle J.] Univ Arizona, Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA; [Griskevicius, Vladas] Univ Minnesota, Carlson Sch Management, Minneapolis, MN 55455 USA Hill, SE (reprint author), Texas Christian Univ, Dept Psychol, Ft Worth, TX 76129 USA. s.e.hill@tcu.edu Aaroe L, 2013, PSYCHOL SCI, V24, P2550, DOI 10.1177/0956797613495244; Baltrus PT, 2007, ANN EPIDEMIOL, V17, P608, DOI 10.1016/j.annepidem.2007.03.007; Barker DJP, 1997, NUTRITION, V13, P807, DOI 10.1016/S0899-9007(97)00193-7; Barker DJP, 2002, INT J EPIDEMIOL, V31, P1235, DOI 10.1093/ije/31.6.1235; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bateson P. P. G., 1999, DESIGN LIFE BEHAV DE; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Cohen J, 1988, STAT POWER ANAL BEHA; Cohen S, 2010, ANN NY ACAD SCI, V1186, P37, DOI 10.1111/j.1749-6632.2009.05334.x; Danese A, 2014, TRANSL PSYCHIAT, V4, DOI 10.1038/tp.2014.79; Duncan GJ, 2010, CHILD DEV, V81, P306, DOI 10.1111/j.1467-8624.2009.01396.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Evans GW, 2005, PSYCHOL SCI, V16, P560, DOI 10.1111/j.0956-7976.2005.01575.x; Fisher JO, 2002, AM J CLIN NUTR, V76, P226; Flegal KM, 2012, JAMA-J AM MED ASSOC, V307, P491, DOI 10.1001/jama.2012.39; Francis LA, 2013, APPETITE, V64, P32, DOI 10.1016/j.appet.2012.11.008; Galic S, 2010, MOL CELL ENDOCRINOL, V316, P129, DOI 10.1016/j.mce.2009.08.018; Gluckman PD, 2007, P NATL ACAD SCI USA, V104, P12796, DOI 10.1073/pnas.0705667104; Gonzalez A, 2012, BMC PUBLIC HEALTH, V12, DOI 10.1186/1471-2458-12-755; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; HALES CN, 1992, DIABETOLOGIA, V35, P595, DOI 10.1007/BF00400248; Havel PJ, 1999, AM J CLIN NUTR, V70, P305; Hayes AF, 2013, INTRO MEDIATION MODE; Herman C P, 1984, Res Publ Assoc Res Nerv Ment Dis, V62, P141; Hill SE, 2013, J EXP SOC PSYCHOL, V49, P888, DOI 10.1016/j.jesp.2013.03.016; JENSEN EW, 1983, SOC SCI MED, V17, P201, DOI 10.1016/0277-9536(83)90117-X; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kuzawa CW, 2010, P NATL ACAD SCI USA, V107, P16800, DOI 10.1073/pnas.1006008107; Laitinen J, 2001, AM J CLIN NUTR, V74, P287; Lawlor DA, 2002, BRIT MED J, V325, P805, DOI 10.1136/bmj.325.7368.805; Mayo Clinic, 2014, DIAB TESTS DIAGN; Miller GE, 2011, PSYCHOL BULL, V137, P959, DOI 10.1037/a0024768; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Poulton R, 2002, LANCET, V360, P1640, DOI 10.1016/S0140-6736(02)11602-3; Power C, 2003, INT J OBESITY, V27, P1081, DOI 10.1038/sj.ijo.0802323; Preacher KJ, 2004, BEHAV RES METH INS C, V36, P717, DOI 10.3758/BF03206553; ROLLS BJ, 1991, HEALTH PSYCHOL, V10, P133, DOI 10.1037/0278-6133.10.2.133; SPIEGEL TA, 1989, APPETITE, V13, P45, DOI 10.1016/0195-6663(89)90026-3; Wang XT, 2010, PSYCHOL SCI, V21, P183, DOI 10.1177/0956797609358096; Wells NM, 2010, AM J PUBLIC HEALTH, V100, P2507, DOI 10.2105/AJPH.2009.184291; Woods SC, 1998, SCIENCE, V280, P1378, DOI 10.1126/science.280.5368.1378; Yeomans MR, 1997, APPETITE, V29, P61, DOI 10.1006/appe.1997.0092 43 18 19 3 37 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0956-7976 1467-9280 PSYCHOL SCI Psychol. Sci. MAR 2016 27 3 354 364 10.1177/0956797615621901 11 Psychology, Multidisciplinary Psychology DH1CU WOS:000372522800006 26842316 2019-02-21 J Temple, DH Temple, Daniel H. Bioarchaeological approaches to the study of early-life stress: the potential of human skeletal and dental remains to studies of life history theory AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Meeting Abstract 85th Annual Meeting of the American-Association-of-Physical-Anthropologists APR 13-16, 2016 Atlanta, GA Amer Assoc Phys Anthropologists [Temple, Daniel H.] George Mason Univ, Dept Sociol & Anthropol, Fairfax, VA 22030 USA 0 0 0 0 2 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. MAR 2016 159 62 312 312 1 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology DF3OW WOS:000371255202309 2019-02-21 J Riginella, E; Mazzoldi, C; Ashford, J; Jones, CD; Morgan, C; La Mesa, M Riginella, Emilio; Mazzoldi, Carlotta; Ashford, Julian; Jones, Christopher D.; Morgan, Christina; La Mesa, Mario Life history strategies of the Scotia Sea icefish, Chaenocephalus aceratus, along the Southern Scotia Ridge POLAR BIOLOGY English Article Reproduction; Age structure; Chaenocephalus aceratus; Channichthyidae; Connectivity; Source-sink populations TERRA-NOVA BAY; SHETLAND ISLANDS; FISH STOCKS; ROSS SEA; ANTARCTIC PENINSULA; OVARIAN DEVELOPMENT; AGE-DETERMINATION; ELEPHANT ISLAND; ARC REGION; OCEAN Reproductive capacity can influence distribution and abundance over large spatial scales through larval dispersal, even when adult stages remain isolated following settlement. We examined size distribution, reproductive traits and age structure in Scotia Sea icefish, Chaenocephalus aceratus, an abundant benthic species with a long larval pelagic phase found on continental shelves along the Southern Scotia Ridge. In particular, we compared life history strategies between fish caught during surveys undertaken off the South Orkney Islands (SOI) and South Shetland Islands (SSI). Results corroborated regional separation after settlement and suggested distinct life history strategies, in which fish from SOI invested much less in reproduction, and somewhat more in somatic growth earlier in their life history. Compared to SSI, body weight increased faster with length and absolute fecundity was 46 % lower and increased more slowly with size for SOI population. In addition, the proportion of spawning cohorts and L (a) was lower and k higher for SOI. The differences appeared to be a phenotypic response to environmental conditions related to regional hydrography. Lower reproductive capacity around the SOI, and strong eastward flow in the large-scale circulation, suggests that the SSI may be more important in influencing distributions and abundance of icefish along the Southern Scotia Ridge. [Riginella, Emilio; Mazzoldi, Carlotta] Univ Padua, Dept Biol, Padua, Italy; [Riginella, Emilio; La Mesa, Mario] UOS Ancona, CNR, Inst Marine Sci, Ancona, Italy; [Ashford, Julian; Morgan, Christina] Old Dominion Univ, Ctr Quantitat Fisheries Ecol, Norfolk, VA USA; [Jones, Christopher D.] Natl Marine Fisheries Serv, Natl Ocean & Atmospher Adm, Southwest Fisheries Sci Ctr, La Jolla, CA 92038 USA La Mesa, M (reprint author), UOS Ancona, CNR, Inst Marine Sci, Ancona, Italy. m.lamesa@ismar.cnr.it Italian National Program for Antarctic Research (PNRA); MIUR (Ministero dell'Istruzione, dell'Universita e della Ricerca); United States National Science Foundation [NSF-OPP-0338294]; NOAA Antarctic Marine Living Resources Program We thank the Alfred Wegener Institut fur Polar-und Meeresforschung that provided us the opportunity to collect samples during ANT-XXVIII/4 2012 Polarstern cruise. A special thank goes to C. Papetti for helping in the gonad and otolith collection of the Scotia Sea icefish. We thank all the scientific staff, crew members and personnel aboard the RV Polarstern, for their essential support in sampling activities. We thank the crew and scientific team aboard the Yuzhmorgeologiya. Finally, we are grateful to two anonymous referees and to Karl-Hermann Kock, whose suggestions greatly improved the early draft of the manuscript. This research was supported by the Italian National Program for Antarctic Research (PNRA) to MLM and MIUR (Ministero dell'Istruzione, dell'Universita e della Ricerca) to CM; by the United States National Science Foundation (NSF-OPP-0338294) and NOAA Antarctic Marine Living Resources Program to JRA. Anderson M. J., 2008, PERMANOVA PRIMER GUI; Ashford J, 2010, CAN J FISH AQUAT SCI, V67, P1303, DOI 10.1139/F10-065; BAGENAL TB, 1978, INT BIOL PROGRAMME H, V3, P101; BEAMISH RJ, 1981, CAN J FISH AQUAT SCI, V38, P982, DOI 10.1139/f81-132; Begg Gavin A., 2005, P119, DOI 10.1016/B978-012154351-8/50007-1; BILLARD R, 1986, REPROD NUTR DEV, V26, P877, DOI 10.1051/rnd:19860601; Campana SE, 2001, J FISH BIOL, V59, P197, DOI 10.1006/jfbi.2001.1668; *CCAMLR, 1990, STAT B, V1; CHANG WYB, 1982, CAN J FISH AQUAT SCI, V39, P1208, DOI 10.1139/f82-158; Cowen RK, 2009, ANNU REV MAR SCI, V1, P443, DOI 10.1146/annurev.marine.010908.163757; Damerau M, 2012, POLAR BIOL, V35, P1073, DOI 10.1007/s00300-012-1155-x; Detrich HW, 2005, POLAR BIOL, V28, P828, DOI 10.1007/s00300-005-0010-8; Dulvy NK, 2003, FISH FISH, V4, P25, DOI 10.1046/j.1467-2979.2003.00105.x; Eastman JT, 2002, POLAR BIOL, V25, P753, DOI 10.1007/s00300-002-0398-3; Eastman JT, 1993, ANTARCTIC FISH BIOL; Everson I, 1996, J FISH BIOL, V49, P1019, DOI 10.1111/j.1095-8649.1996.tb00097.x; Everson I, 1980, BIOMASS HDB, V8, P1; Ferrando S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090512; Gordon AL, 2001, J GEOPHYS RES-OCEANS, V106, P9005, DOI 10.1029/2000JC000281; Gordon AL, 2010, NAT GEOSCI, V3; GRIER HJ, 1980, AM J ANAT, V159, P331, DOI 10.1002/aja.1001590307; Gubsch G, 1980, FISCHEREI FORSCH, V18, P7; Heywood KJ, 2004, J GEOPHYS RES-OCEANS, V109, DOI 10.1029/2003JC002053; Hunter J.R., 1985, NOAA Technical Report NMFS, V36, P67; Iwami T., 1990, P381; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; Jones CD, 2009, WGFSA0919 CCAMLR; Jones CD, 2003, WGFSA0338 CCAMLR; KIMURA DK, 1980, FISH B-NOAA, V77, P765; Knust Rainer, 2014, Berichte zur Polar- und Meeresforschung, V680, P1; KOCK K-H, 1989, Archiv fuer Fischereiwissenschaft, V39, P171; Kock KH, 2008, POLAR BIOL, V31, P381, DOI 10.1007/s00300-007-0366-z; KOCK KH, 1991, ARCH FISCHEREIWISS, V41, P1; Kock KH, 2000, POLAR BIOL, V23, P825, DOI 10.1007/s003000000159; Kock KH, 2006, ANTARCT SCI, V18, P223, DOI 10.1017/S0954102006000264; Kock KH, 2005, POLAR BIOL, V28, P862, DOI 10.1007/s00300-005-0019-z; Kock KH, 2005, REV FISH SCI, V13, P75, DOI 10.1080/10641260590953900; KOCK KH, 1991, ANTARCT SCI, V3, P125; Kock KH, 2000, CCAMLR SCI, V7, P1; Kock KH, 1990, SC CAMLR SEL SCI PAP, P51; KOCK KH, 1981, MITT I SEEFISCH HAMB, V32, P1; Kompowski A, 1990, REPORTS SEA FISHERIE, V22, P49; Kompowski Andrzej, 1994, Acta Ichthyologica et Piscatoria, V24, P53; La Mesa M, 2004, ANTARCT SCI, V16, P253, DOI 10.1017/S0954102004002044; La Mesa M, 2003, POLAR BIOL, V26, P621, DOI 10.1007/s00300-003-0519-7; La Mesa M, 2002, POLAR BIOL, V25, P384, DOI 10.1007/s00300-002-0358-y; La Mesa M, 2008, POLAR BIOL, V31, P221, DOI 10.1007/s00300-007-0351-6; La Mesa M, 2015, MAR ECOL-EVOL PERSP, V36, P235, DOI 10.1111/maec.12140; La Mesa M, 2006, POLAR BIOL, V29, P963, DOI 10.1007/s00300-006-0138-1; LISOVENKO LA, 1988, J ICHTHYOL, V28, P130; Lucassen M, 2012, BER POLARFORSCH, V652, P1; Munro J. L., 1983, ICLARM FISHBYTE, V1, P5; Murua H., 2003, Journal of Northwest Atlantic Fishery Science, V33, P33, DOI 10.2960/J.v33.a3; NAGAHAMA Y, 1983, FISH PHYSIOL, V9, P223; Nicol S, 2000, CCAMLR SCI, V7, P87; NORTH A W, 1988, Cybium, V12, P107; ORSI AH, 1995, DEEP-SEA RES PT I, V42, P641, DOI 10.1016/0967-0637(95)00021-W; Papetti C, 2007, POLAR BIOL, V30, P1605, DOI 10.1007/s00300-007-0325-8; Papetti C, 2009, MAR ECOL PROG SER, V376, P269, DOI 10.3354/meps07831; Pearse AG, 1985, HISTOCHEMISTRY THEOR; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; Royce W. F., 1972, INTRO FISHERY SCI; Russo A, 2000, POLAR BIOL, V23, P279, DOI 10.1007/s003000050445; SIEGEL V, 1980, MEERESFORSCHUNG, V28, P146; Sinclair M, 1988, MARINE POPULATIONS E; Smith DA, 1999, DEEP-SEA RES PT I, V46, P925, DOI 10.1016/S0967-0637(98)00103-4; Sokal R. R., 1995, BIOMETRY PRINCIPLE P; Sosinski J., 2000, B SEA FISH I, V2, P25; Thompson AF, 2009, J PHYS OCEANOGR, V39, P3, DOI 10.1175/2008JP03995.1; Thorpe SE, 2007, DEEP-SEA RES PT I, V54, P792, DOI 10.1016/j.dsr.2007.01.008; WALLACE RA, 1981, AM ZOOL, V21, P325; Watson JR, 2012, AM NAT, V180, P99, DOI 10.1086/665992; WEST G, 1990, AUST J MAR FRESH RES, V41, P199, DOI 10.1071/MF9900199; White M.G., 1991, P87 74 4 4 4 25 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. MAR 2016 39 3 497 509 10.1007/s00300-015-1802-0 13 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology DF8WD WOS:000371640300007 2019-02-21 J Ferenci, T Ferenci, Thomas Trade-off Mechanisms Shaping the Diversity of Bacteria TRENDS IN MICROBIOLOGY English Review STRESS-INDUCED MUTAGENESIS; OUTER-MEMBRANE PERMEABILITY; SPECIES ESCHERICHIA-COLI; LIFE-HISTORY EVOLUTION; RNA-POLYMERASE; GROWTH-RATE; SIGNAL-TRANSDUCTION; STRAIN VARIATION; MUTATION-RATES; BINDING-SITES Strain-to-strain variations in bacterial biofilm formation, metabolism, motility, virulence, evolvability, DNA repair and resistance (to phage, antibiotics, or environmental stresses) each contribute to bacterial diversity. Microbiologists should be aware that all of these traits are subject to constraints imposed by trade-offs, so adaptations improving one trait may be at the cost of another. A deeper appreciation of trade-offs is thus crucial for assessing the mechanistic limits on important bacterial characteristics. Studies of the negative correlations between various traits have revealed three molecular mechanisms, namely, trade-offs involving resource allocation, design constraint, and information processing. This review further discusses why these trade-off mechanisms are important in the establishment of models capable of predicting bacterial competition, coexistence, and sources of diversity. [Ferenci, Thomas] Univ Sydney, Sch Mol Biosci, Sydney, NSW 2006, Australia Ferenci, T (reprint author), Univ Sydney, Sch Mol Biosci, Sydney, NSW 2006, Australia. tom.ferenci@sydney.edu.au Ferenci, Tom/A-1177-2010 Australian Research Council for Discovery Project I thank Katherine Phan and Ram Maharjan for their valuable input and comments on the manuscript. This work was funded by the Australian Research Council for Discovery Project support. Agrawal A. A., 2010, EVOLUTION SINCE DARW, V150, P243; Al Mamun AM, 2012, SCIENCE, V338, P1344, DOI 10.1126/science.1226683; Battesti A, 2011, ANNU REV MICROBIOL, V65, P189, DOI 10.1146/annurev-micro-090110-102946; Behrends V, 2014, MOL BIOSYST, V10, P2820, DOI 10.1039/c4mb00313f; BENZ R, 1992, BIOCHIM BIOPHYS ACTA, V1104, P299, DOI 10.1016/0005-2736(92)90044-M; Bjedov I, 2003, SCIENCE, V300, P1404, DOI 10.1126/science.1082240; Bohannan BJM, 2002, ANTON LEEUW INT J G, V81, P107, DOI 10.1023/A:1020585711378; Borujeni AE, 2014, NUCLEIC ACIDS RES, V42, P2646, DOI 10.1093/nar/gkt1139; Braendle C, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P3; CHARBIT A, 1988, J MOL BIOL, V201, P487, DOI 10.1016/0022-2836(88)90630-4; D'Souza G, 2014, EVOLUTION, V68, P2559, DOI 10.1111/evo.12468; De Paepe M, 2006, PLOS BIOL, V4, P1248, DOI 10.1371/journal.pbio.0040193; De Paepe M, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002107; Delcour AH, 2009, BBA-PROTEINS PROTEOM, V1794, P808, DOI 10.1016/j.bbapap.2008.11.005; Denamur E, 2002, J BACTERIOL, V184, P605, DOI 10.1128/JB.184.2.605-609.2002; Dong T, 2009, BMC MICROBIOL, V9, DOI 10.1186/1471-2180-9-118; Eames M, 2012, SCIENCE, V336, P911, DOI 10.1126/science.1219083; Ferenci T, 2003, TRENDS MICROBIOL, V11, P457, DOI 10.1016/j.tim.2003.08.003; Ferenci T, 2005, MOL MICROBIOL, V57, P1, DOI 10.1111/j.1365-2958.2005.04649.x; Ferenci T, 1996, FEMS MICROBIOL REV, V18, P301, DOI 10.1016/0168-6445(96)00019-8; Forde SE, 2008, EVOLUTION, V62, P1830, DOI 10.1111/j.1558-5646.2008.00411.x; Foster PL, 2007, CRIT REV BIOCHEM MOL, V42, P373, DOI 10.1080/10409230701648494; FRANCIS G, 1991, MOL MICROBIOL, V5, P2293, DOI 10.1111/j.1365-2958.1991.tb02160.x; Friman VP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0075380; Giraud A, 2001, CURR OPIN MICROBIOL, V4, P582, DOI 10.1016/S1369-5274(00)00254-X; Giraud A, 2001, SCIENCE, V291, P2606, DOI 10.1126/science.1056421; Gudelj I, 2007, J EVOLUTION BIOL, V20, P1882, DOI 10.1111/j.1420-9101.2007.01376.x; HELLER KJ, 1992, ARCH MICROBIOL, V158, P235, DOI 10.1007/BF00245239; Hengge-Aronis R, 2002, MICROBIOL MOL BIOL R, V66, P373, DOI 10.1128/MMBR.66.3.373-395.2002; Hershberg R, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-8-r164; Ishihama A, 2000, ANNU REV MICROBIOL, V54, P499, DOI 10.1146/annurev.micro.54.1.499; Jessup CM, 2008, ECOL LETT, V11, P947, DOI 10.1111/j.1461-0248.2008.01205.x; Johansson M, 2008, CURR OPIN MICROBIOL, V11, P141, DOI 10.1016/j.mib.2008.02.015; Johansson M, 2012, P NATL ACAD SCI USA, V109, P131, DOI 10.1073/pnas.1116480109; King T, 2004, J BACTERIOL, V186, P5614, DOI 10.1128/JB.186.17.5614.5620.2004; Kneitel JM, 2004, ECOL LETT, V7, P69, DOI 10.1046/j.1461-0248.2003.00551.x; Kurabayashi K, 2014, J BACTERIOL, V196, P248, DOI 10.1128/JB.01151-13; Lan G, 2012, NAT PHYS, V8, P422, DOI 10.1038/NPHYS2276; Lang GI, 2009, P NATL ACAD SCI USA, V106, P5755, DOI 10.1073/pnas.0901620106; Lenoir Timothy, 1987, GOETHE SCI REAPPRAIS, P17; Leroi AM, 2001, TRENDS ECOL EVOL, V16, P24, DOI 10.1016/S0169-5347(00)02032-2; Levert M, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1001125; Levins R., 1968, EVOLUTION CHANGING E; Liu XQ, 1998, J BACTERIOL, V180, P3917; MacLean RC, 2013, NAT REV GENET, V14, P221, DOI 10.1038/nrg3415; MacLean R, 2008, HEREDITY, V100, P471, DOI 10.1038/sj.hdy.6801073; Maharjan R, 2014, GENETICS, V198, P1231, DOI 10.1534/genetics.114.170258; Maharjan R, 2013, ECOL LETT, V16, P1267, DOI 10.1111/ele.12159; Maharjan RP, 2012, GENOME BIOL, V13, DOI 10.1186/gb-2012-13-6-r41; Meyer JR, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7278; MIKKOLA R, 1992, MOL BIOL EVOL, V9, P394; Miller JH, 1996, ANNU REV MICROBIOL, V50, P625, DOI 10.1146/annurev.micro.50.1.625; Molenaar D, 2009, MOL SYST BIOL, V5, DOI 10.1038/msb.2009.82; Nadell CD, 2011, P NATL ACAD SCI USA, V108, P14181, DOI 10.1073/pnas.1111147108; Nikaido H, 2003, MICROBIOL MOL BIOL R, V67, P593, DOI 10.1128/MMBR.67.4.593-656.2003; Novak M, 2006, AM NAT, V168, P242, DOI 10.1086/506527; Nystrom T, 2004, MOL MICROBIOL, V54, P855, DOI 10.1111/j.1365-2958.2004.04342.x; Paczia N, 2012, MICROB CELL FACT, V11, DOI 10.1186/1475-2859-11-122; Pages JM, 2008, NAT REV MICROBIOL, V6, P893, DOI 10.1038/nrmicro1994; Peebo K, 2015, MOL BIOSYST, V11, P1184, DOI 10.1039/c4mb00721b; Penterman J, 2014, CELL REP, V6, P293, DOI 10.1016/j.celrep.2013.12.019; Pfeiffer T, 2001, SCIENCE, V292, P504, DOI 10.1126/science.1058079; Phan K, 2013, ISME J, V7, P2034, DOI 10.1038/ismej.2013.82; Porter SS, 2013, EVOLUTION, V67, P599, DOI 10.1111/j.1558-5646.2012.01788.x; Quance MA, 2009, EVOLUTION, V63, P1406, DOI 10.1111/j.1558-5646.2009.00654.x; Ram Y, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1025; Rang CU, 1997, FEBS LETT, V418, P27, DOI 10.1016/S0014-5793(97)01341-0; REES M, 1993, NATURE, V366, P150, DOI 10.1038/366150a0; Riley MA, 1999, TRENDS MICROBIOL, V7, P129, DOI 10.1016/S0966-842X(99)01459-6; Schenk MF, 2015, EVOL APPL, V8, P248, DOI 10.1111/eva.12200; Schwartz DJ, 2013, P NATL ACAD SCI USA, V110, P15530, DOI 10.1073/pnas.1315203110; Skold O, 2000, DRUG RESIST UPDATE, V3, P155, DOI 10.1054/drup.2000.0146; Spira B, 2008, MICROBIOL-SGM, V154, P2887, DOI 10.1099/mic.0.2008/018457-0; Starikova I, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1003043; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stewart AJ, 2012, GENETICS, V192, P973, DOI 10.1534/genetics.112.143370; Tawfik DS, 2014, CURR OPIN CHEM BIOL, V21, P73, DOI 10.1016/j.cbpa.2014.05.008; Tenaillon O, 2004, TRENDS MICROBIOL, V12, P264, DOI 10.1016/j.tim.2004.04.002; Tilman D, 2000, NATURE, V405, P208, DOI 10.1038/35012217; Torres-Barcelo C, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0007; van Ditmarsch D, 2013, CELL REP, V4, P697, DOI 10.1016/j.celrep.2013.07.026; Wang L, 2010, GENOME BIOL EVOL, V2, P478, DOI 10.1093/gbe/evq035; Weissman SJ, 2007, INFECT IMMUN, V75, P3548, DOI 10.1128/IAI.01963-06; Wielgoss S, 2013, P NATL ACAD SCI USA, V110, P222, DOI 10.1073/pnas.1219574110; Winter C, 2010, MICROBIOL MOL BIOL R, V74, P42, DOI 10.1128/MMBR.00034-09; Wirtz KW, 2002, J BIOTECHNOL, V97, P147, DOI 10.1016/S0168-1656(02)00064-0; Yamamoto K, 2011, FEMS MICROBIOL ECOL, V77, P83, DOI 10.1111/j.1574-6941.2011.01087.x; Zakrzewska A, 2011, MOL BIOL CELL, V22, P4435, DOI 10.1091/mbc.E10-08-0721; Zhang E, 1999, FEMS MICROBIOL LETT, V176, P395, DOI 10.1016/S0378-1097(99)00257-8; Zhou YN, 2013, J BIOL CHEM, V288, P2700, DOI 10.1074/jbc.M112.429464 92 23 23 0 54 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0966-842X 1878-4380 TRENDS MICROBIOL Trends Microbiol. MAR 2016 24 3 209 223 10.1016/j.tim.2015.11.009 15 Biochemistry & Molecular Biology; Microbiology Biochemistry & Molecular Biology; Microbiology DF7PT WOS:000371550800010 26705697 2019-02-21 J van Brummen-Girigori, O; Buunk, A van Brummen-Girigori, Odette; Buunk, Abraham Intrasexual competitiveness and non-verbal seduction strategies to attract males: a study among teenage girls from Curacao EVOLUTION AND HUMAN BEHAVIOR English Article Non-verbal seduction strategy; Life history; Father absence; Curacao LIFE-HISTORY THEORY; MATE ATTRACTION; EVOLUTIONARY PERSPECTIVE; REPRODUCTIVE STRATEGY; ENVIRONMENTAL RISK; FATHER ABSENCE; SEX; CHILDHOOD; DAUGHTERS; MENARCHE We hypothesized that teenage girls from the Caribbean island of Curacao who grew up without a father would be more intrasexually competitive than teenage girls who grew up with a father, and would therefore more often use non-verbal seduction strategies to attract males. A pilot study showed a high inter-observer reliability for the observation of non-verbal seduction strategies. In study 1, among 105 teenage girls with a mean age of 1629 years, reliable scales were developed reflecting various non-verbal seduction strategies. Study 2 was conducted among 123 teenage girls with a mean age of 1833 years. Compared to girls who grew up with their father, girls who grew up without their father before the age of fourteen reported overall more intrasexual competitiveness and more non-verbal seduction strategies, including direct flirtation, peacock behavior, the use of hairstyles with waves, the use of facial make-up, the use of conspicuous nail-care, and active and restless behavior in the presence of males. Intrasexual competitiveness was associated with most strategies, and was a significant mediator between father absence and the expression of most non-verbal seduction strategies. From a life-history perspective, we discuss possible explanations for, and implications of, these findings. (C) 2016 Elsevier Inc. All rights reserved. [van Brummen-Girigori, Odette; Buunk, Abraham] Univ Curacao, Fac Social & Behav Sci, Willemstad, Neth Antilles; [Buunk, Abraham] Univ Groningen, Dept Psychol, NL-9700 AB Groningen, Netherlands van Brummen-Girigori, O (reprint author), Univ Curacao, Fac Social & Behav Sci, Willemstad, Neth Antilles. o.girigori@uoc.cw BAENNINGER M, 1993, ETHOL SOCIOBIOL, V14, P293, DOI 10.1016/0162-3095(93)90001-X; Barber N, 1995, ETHOL SOCIOBIOL, V16, P395, DOI 10.1016/0162-3095(95)00068-2; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bjorklund DF, 1999, CURR DIR PSYCHOL SCI, V8, P86, DOI 10.1111/1467-8721.00020; Bullock JG, 2010, J PERS SOC PSYCHOL, V98, P550, DOI 10.1037/a0018933; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; BUSS DM, 1988, J PERS SOC PSYCHOL, V54, P616, DOI 10.1037/0022-3514.54.4.616; Buunk A. P., 2015, EVOLUTION MIND BEHAV; Buunk A. P., 2009, J EVOLUTIONARY PSYCH, V7, P37, DOI DOI 10.1556/JEP.7.2009.1.5; Buunk AP, 2014, EVOL PSYCHOL-US, V12, P1022; Campbell A, 2004, J SEX RES, V41, P16, DOI 10.1080/00224490409552210; Central Bureau of Statistics Curacao, 2011, POVERTY; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Dijkstra P, 2002, EUR J SOC PSYCHOL, V32, P829, DOI 10.1002/ejsp.125; Dubbs SL, 2012, PERS RELATIONSHIP, V19, P712, DOI 10.1111/j.1475-6811.2011.01388.x; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fisher M, 2009, J EVOLUTIONARY PSYCH, V7, P141, DOI DOI 10.1556/JEP.7.2009.2.3; Flinn M. V., 1988, HUMAN REPROD BEHAV D, P189; Grammer K, 2004, J SEX RES, V41, P66, DOI 10.1080/00224490409552214; HETHERINGTON EM, 1972, DEV PSYCHOL, V7, P313, DOI 10.1037/h0033339; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Leenaars LS, 2008, AGGRESSIVE BEHAV, V34, P404, DOI 10.1002/ab.20252; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; MacKinnon D P, 2000, Prev Sci, V1, P173, DOI 10.1023/A:1026595011371; MacKinnon DP, 2015, PERS SOC PSYCHOL REV, V19, P30, DOI 10.1177/1088868314542878; Nettle D, 2009, TRENDS ECOL EVOL, V24, P618, DOI 10.1016/j.tree.2009.05.013; Perilloux C, 2008, EVOL PSYCHOL, V6, P217; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Rucas SL, 2006, EVOL HUM BEHAV, V27, P40, DOI 10.1016/j.evolhumbehav.2005.07.001; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; Schmitt DP, 1996, J PERS SOC PSYCHOL, V70, P1185, DOI 10.1037/0022-3514.70.6.1185; Smith RH, 2007, PSYCHOL BULL, V133, P46, DOI 10.1037/0033-2909.133.1.46; Stearns S, 1992, EVOLUTION LIFE HIST; Symons D., 1979, EVOLUTION HUMAN SEXU; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Van Yperen NW, 2003, J PERS SOC PSYCHOL, V85, P1006, DOI 10.1037/0022-3514.85.6.1006; WALTERS S, 1994, ETHOL SOCIOBIOL, V15, P5, DOI 10.1016/0162-3095(94)90025-6; Webster GD, 2014, EVOL PSYCHOL-US, V12, P273, DOI 10.1177/147470491401200202; Zuckerman M, 2006, PERS SOC PSYCHOL B, V32, P751, DOI 10.1177/0146167205286111 44 5 5 1 14 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. MAR 2016 37 2 134 141 10.1016/j.evolhumbehav.2015.09.007 8 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences DE8LU WOS:000370888300006 2019-02-21 J Jones, NT; Gilbert, B Jones, Natalie T.; Gilbert, Benjamin Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes JOURNAL OF ANIMAL ECOLOGY English Article bet hedging; common garden experiment; diapause; dormancy termination; optimal hatching fraction; resurrection ecology; spring warming; temporal dispersal LIFE-HISTORY; RESTING EGGS; BODY-SIZE; INCUBATION-TEMPERATURE; NATURAL-POPULATIONS; CALANOID COPEPOD; DEVELOPMENT TIME; ANNUAL ROUTINES; DIAPAUSE; PATTERNS In seasonal climates, dormancy is a common strategy that structures biodiversity and is necessary for the persistence of many species. Climate change will likely alter dormancy dynamics in zooplankton, the basis of aquatic food webs, by altering two important hatching cues: mean temperatures during the ice-free season, and mean day length when lakes become ice free. Theory suggests that these changes could alter diversity, hatchling abundances and phenology within lakes, and that these responses may diverge across latitudes due to differences in optimal hatching cues and strategies. To examine the role of temperature and day length on hatching dynamics, we collected sediment from 25 lakes across a 1800km latitudinal gradient and exposed sediment samples to a factorial combination of two photoperiods (12 and 16h) and two temperatures (8 and 12 degrees C) representative of historical southern (short photoperiod, warm) and northern (long photoperiod, cool) lake conditions. We tested whether sensitivity to these hatching cues varies by latitudinal origin and differs among taxa. Higher temperatures advanced phenology for all taxa, and these advances were greatest for cladocerans followed by copepods and rotifers. Although phenology differed among taxa, the effect of temperature did not vary with latitude. The latitudinal origin of the egg bank influenced egg abundance and hatchling abundance and diversity, with these latter effects varying with taxa, temperature and photoperiod. Copepod hatchling abundances peaked at mid-latitudes in the high temperature and long photoperiod treatments, whereas hatchling abundances of other zooplankton were greatest at low latitudes and high temperature. The overall diversity of crustacean zooplankton (copepods and cladocerans) also reflected distinct responses of each taxa to our treatments, with the greatest diversity occurring at mid-latitudes (similar to 56 degrees N) in the shorter photoperiod treatment. Our results demonstrate that hatching cues differ for broad taxonomic groups that vary in developmental and life-history strategies. These differences are predicted to drive latitude-specific shifts in zooplankton emergence with climate change and could alter the base of aquatic food webs. [Jones, Natalie T.; Gilbert, Benjamin] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3G5, Canada Jones, NT (reprint author), Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3G5, Canada. nat.jones@utoronto.ca Gilbert, Benjamin/E-6616-2010 Gilbert, Benjamin/0000-0002-4947-6822; Jones, Natalie/0000-0001-5114-7123 NSERC; Ontario Graduate Scholarships We thank A. Barany, E. Chojecka, V. Jones and N. Lo for sampling assistance and members of the Gilbert lab for helpful comments on a previous version of this manuscript. We also thank the Editor and two anonymous referees whose comments improved this manuscript. This work was supported by NSERC (B.G., Discovery Grant) as well as Ontario Graduate Scholarships (N.T.J.). Adrian R, 2006, GLOBAL CHANGE BIOL, V12, P652, DOI 10.1111/j.1365-2486.2006.01125.x; ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; Angeler D. G., 2011, J N AM BENTHOL SOC, V26, P12; ARNDT H, 1993, HYDROBIOLOGIA, V255, P231, DOI 10.1007/BF00025844; Arnott SE, 2002, ECOL APPL, V12, P138; Barnett AJ, 2007, FRESHWATER BIOL, V52, P796, DOI 10.1111/j.1365-2427.2007.01733.x; Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; BOGDAN KG, 1982, LIMNOL OCEANOGR, V27, P918, DOI 10.4319/lo.1982.27.5.0918; Caceres CE, 2003, ECOLOGY, V84, P1189, DOI 10.1890/0012-9658(2003)084[1189:HLTRTE]2.0.CO;2; Caceres CE, 2001, FRESHWATER BIOL, V46, P1179, DOI 10.1046/j.1365-2427.2001.00737.x; CHESSON P, 1994, THEOR POPUL BIOL, V45, P227, DOI 10.1006/tpbi.1994.1013; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; Conover DO, 2009, ANN NY ACAD SCI, V1168, P100, DOI 10.1111/j.1749-6632.2009.04575.x; Corbet Philip S., 2006, International Journal of Odonatology, V9, P1; Cousyn C, 1998, ERGEB LIMNOL, V52, P127; De Stasio Bart T., 2004, Journal of Limnology, V63, P26; DESTASIO BT, 1989, ECOLOGY, V70, P1377; DESTASIO BT, 1990, LIMNOL OCEANOGR, V35, P1079, DOI 10.4319/lo.1990.35.5.1079; Dossena M, 2012, P ROY SOC B-BIOL SCI, V279, P3011, DOI 10.1098/rspb.2012.0394; Dunne JA, 2004, ECOLOGY, V85, P904, DOI 10.1890/03-8003; Dupuis AP, 2009, FRESHWATER BIOL, V54, P221, DOI 10.1111/j.1365-2427.2008.02103.x; ELLNER S, 1985, THEOR POPUL BIOL, V28, P80, DOI 10.1016/0040-5809(85)90023-1; Ellner SP, 1999, EVOLUTION, V53, P111, DOI 10.1111/j.1558-5646.1999.tb05337.x; Elmendorf SC, 2009, ECOLOGY, V90, P1492, DOI 10.1890/08-1677.1; Environment Canada, 2014, CAN CLIM NORM 1971 2; Ferrari Frank D., 2007, Crustaceana Monographs, V8, P1; GELLER W, 1987, J PLANKTON RES, V9, P1225, DOI 10.1093/plankt/9.6.1225; Gillooly JF, 2000, J ZOOL, V251, P369, DOI 10.1111/j.1469-7998.2000.tb01087.x; Gillooly JF, 2000, J PLANKTON RES, V22, P241, DOI 10.1093/plankt/22.2.241; Hairston JNG, 2000, FRESHWATER BIOL, V45, P133, DOI [10.1046/j.1365-2427.2000.00386.x, DOI 10.1046/J.1365-2427.2000.00386.X]; Hairston NG, 1996, LIMNOL OCEANOGR, V41, P1087, DOI 10.4319/lo.1996.41.5.1087; Hairston NG, 2002, INTEGR COMP BIOL, V42, P481, DOI 10.1093/icb/42.3.481; Hairston NG, 1996, HYDROBIOLOGIA, V320, P27, DOI 10.1007/BF00016802; HAIRSTON NG, 1995, BIOL BULL, V189, P42, DOI 10.2307/1542200; Hance T, 2007, ANNU REV ENTOMOL, V52, P107, DOI 10.1146/annurev.ento.52.110405.091333; Hutchinson G. E., 1967, TREATISE LIMNOLOGY I; Jones N. T., 2015, DRYAD DIGITAL REPOSI; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Kerfoot WC, 2004, J GREAT LAKES RES, V30, P285; Levine JM, 2008, J ECOL, V96, P795, DOI 10.1111/j.1365-2745.2008.01375.x; Levins R, 1969, Symp Soc Exp Biol, V23, P1; Lindsey C. C., 1981, CANADIAN TECHNICAL R, V996, P1; MAIER G, 1994, FRESHWATER BIOL, V31, P77, DOI 10.1111/j.1365-2427.1994.tb00840.x; MARCUS NH, 1990, MAR BIOL, V105, P413, DOI 10.1007/BF01316312; Masaki S., 1961, Bulletin of the Faculty of Agriculture Hirosaki University 1961, Vno. 7, P66; MAY L, 1987, HYDROBIOLOGIA, V147, P335, DOI 10.1007/BF00025763; McNamara JM, 2008, PHILOS T R SOC B, V363, P301, DOI 10.1098/rstb.2007.2141; Molina-Montenegro MA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047620; MOUSSEAU TA, 1989, EVOLUTION, V43, P1483, DOI 10.1111/j.1558-5646.1989.tb02598.x; Patalas K., 1994, CANADIAN TECHNICAL R, VDepartment of Fisheries and Oceans, Central and Arctic Region; PICKETT S T A, 1989, P110; Posledovich D, 2015, OECOLOGIA, V177, P181, DOI 10.1007/s00442-014-3125-1; Preston ND, 2010, HYDROBIOLOGIA, V653, P165, DOI 10.1007/s10750-010-0352-2; Preziosi BM, 2014, J PLANKTON RES, V36, P1381, DOI 10.1093/plankt/fbu056; R Core Team, 2014, R LANG ENV STAT COMP; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; SORGELOOS P, 1973, Marine Biology (Berlin), V22, P75, DOI 10.1007/BF00388912; Stocker T. F., 2013, PHYS SCI BAS, P1313; STROSS RG, 1966, ECOLOGY, V47, P368, DOI 10.2307/1932977; Ugland KI, 2003, J ANIM ECOL, V72, P888, DOI 10.1046/j.1365-2656.2003.00748.x; UYE S, 1979, MAR BIOL, V51, P151, DOI 10.1007/BF00555194; Vandekerkhove J, 2005, FRESHWATER BIOL, V50, P96, DOI 10.1111/j.1365-2427.2004.01312.x; VANDERPLOEG HA, 1992, HYDROBIOLOGIA, V243, P175, DOI 10.1007/BF00007033; Varpe O, 2012, J PLANKTON RES, V34, P267, DOI 10.1093/plankt/fbr108; Venable DL, 2007, ECOLOGY, V88, P1086, DOI 10.1890/06-1495; Weider LJ, 1997, P ROY SOC B-BIOL SCI, V264, P1613, DOI 10.1098/rspb.1997.0225; Whittaker R.H, 1975, COMMUNITIES ECOSYSTE; Williams CM, 2015, BIOL REV, V90, P214, DOI 10.1111/brv.12105; Winder M, 2004, ECOLOGY, V85, P2100, DOI 10.1890/04-0151; Woodward G, 2010, PHILOS T R SOC B, V365, P2093, DOI 10.1098/rstb.2010.0055 70 10 10 4 81 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. MAR 2016 85 2 559 569 10.1111/1365-2656.12474 11 Ecology; Zoology Environmental Sciences & Ecology; Zoology DE9LP WOS:000370959300025 26590065 2019-02-21 J Music, G Music, Graham Adaptation: a contemporary view, revisiting Crichton-Miller's 1925 paper POSTGRADUATE MEDICAL JOURNAL English Review DIFFERENTIAL SUSCEPTIBILITY; SEROTONIN TRANSPORTER; RECEPTOR GENE; LIFE STRESS; MALTREATMENT; ASSOCIATION; DISORDER; AMYGDALA; IMPACT; NEUROBIOLOGY In this paper I discuss a contemporary 'take' on the concept of adaptation in light of Crichton-Miller's original 1926 paper. I look briefly at some of the ways that contemporary thinking is both similar to and different from ideas of 90 years ago. In particular I think about how recent neurobiological findings, epigenetic research and attachment theory have cast new light on our understanding of the ways humans adapt to social and emotional environments. It looks at how psychiatric presentations which are seen as maladaptive might well have an adaptive origin in early life. In this account I emphasise how a more modern version of evolutionary theory can be developed, particularly one influenced by life history theory, and suggest that such ideas have powerful explanatory power as well as being based solidly in good research. [Music, Graham] Tavistock & Portman NHS Fdn Trust, Portman Clin, 8 Fitzjohns Ave, London NW3 5NA, England Music, G (reprint author), Tavistock & Portman NHS Fdn Trust, Portman Clin, 8 Fitzjohns Ave, London NW3 5NA, England. GMusic@tavi-port.nhs.uk Ainsworth MS, 1978, PATTERNS ATTACHMENT; Bakermans-Kranenburg MJ, 2015, ANNU REV PSYCHOL, V66, P381, DOI 10.1146/annurev-psych-010814-015407; Bakermans-Kranenburg MJ, 2011, DEV PSYCHOPATHOL, V23, P39, DOI 10.1017/S0954579410000635; Bateson P, 2011, PLASTICITY ROBUSTNES; Belsky J., 2005, ORIGINS SOCIAL MIND, P139; Belsky J, 2014, WORLD PSYCHIATRY, V13, P87, DOI 10.1002/wps.20092; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Bhandari R, 2014, PHYSIOL BEHAV, V131, P123, DOI 10.1016/j.physbeh.2014.04.028; Canli T, 2008, BIOL PSYCHOL, V79, P118, DOI 10.1016/j.biopsycho.2008.01.004; Carver CS, 2008, PSYCHOL BULL, V134, P912, DOI 10.1037/a0013740; Chen CS, 1999, EVOL HUM BEHAV, V20, P309, DOI 10.1016/S1090-5138(99)00015-X; de Lamarck J. B. de M., 1783, ENCY METHODIQUE ORDR, V1; DECASPER AJ, 1980, SCIENCE, V208, P1174, DOI 10.1126/science.7375928; Dias BG, 2014, NAT NEUROSCI, V17, P89, DOI 10.1038/nn.3594; Eisenberg DTA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-173; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Entringer S, 2011, P NATL ACAD SCI USA, V108, pE513, DOI 10.1073/pnas.1107759108; Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101; Faraone SV, 2001, AM J PSYCHIAT, V158, P1052, DOI 10.1176/appi.ajp.158.7.1052; Felitti VJ, 2010, AM J PREV MED, P245; Gaither SE, 2012, DEVELOPMENTAL SCI, V15, P775, DOI 10.1111/j.1467-7687.2012.01170.x; Gerhardt S., 2014, WHY LOVE MATTERS AFF; GRISKEVICIUS V, 2011, INFLUENCE MORTALITY, V100, P1015, DOI DOI 10.1037/A0022403; Hawkes K, 2013, EVOL ANTHROPOL, V22, P294, DOI 10.1002/evan.21382; Hebb D. O, 1949, ORG BEHAV; Kramer KL, 2015, J HUM EVOL, V84, P16, DOI 10.1016/j.jhevol.2015.01.009; Kuhl PK, 2006, DEVELOPMENTAL SCI, V9, pF13, DOI 10.1111/j.1467-7687.2006.00468.x; Lesch KP, 2011, CURR TOP BEHAV NEURO, V7, P251, DOI 10.1007/7854_2010_109; McCrory E, 2010, J CHILD PSYCHOL PSYC, V51, P1079, DOI 10.1111/j.1469-7610.2010.02271.x; Mehta MA, 2009, J CHILD PSYCHOL PSYC, V50, P943, DOI 10.1111/j.1469-7610.2009.02084.x; Moule R. K., 2013, HDB LIFE COURSE CRIM, P143; Music G., 2010, NURTURING NATURES AT; Music G, 2009, J CHILD PSYCHOTHER, V35, P142, DOI 10.1080/00754170902996064; Perroud N, 2013, TRANSL PSYCHIAT, V3, DOI 10.1038/tp.2012.140; Perry BD, 1995, INFANT MENT HEALTH J, V16, P271, DOI 10.1002/1097-0355(199524)16:4<271::AID-IMHJ2280160404>3.0.CO;2-B; Pluess M., 2015, GENETICS PSYCHOL WEL, P251; Porges S. W, 2011, POLYVAGAL THEORY NEU; Price LH, 2013, BIOL PSYCHIAT, V73, P15, DOI 10.1016/j.biopsych.2012.06.025; Roe JJ, 2013, INT J ENV RES PUB HE, V10, P4086, DOI 10.3390/ijerph10094086; Romens SE, 2015, CHILD DEV, V86, P303, DOI 10.1111/cdev.12270; Scheper- Hughes N., 1992, DEATH WEEPING VIOLEN; SCHWARTZ JM, 2002, MIND BRAIN NEUROPLAS; Shannon C, 2005, AM J PSYCHIAT, V162, P1658, DOI 10.1176/appi.ajp.162.9.1658; Sigurdsson T, 2007, NEUROPHARMACOLOGY, V52, P215, DOI 10.1016/j.neuropharm.2006.06.022; Spencer H., 1895, PRINCIPLES SOCIOLOGY, V6; SROUFE LA, 1977, CHILD DEV, V48, P1184, DOI 10.2307/1128475; Tamayo T, 2010, BMC PUBLIC HEALTH, V10, DOI 10.1186/1471-2458-10-525; Tarter RE, 2009, BIOL PSYCHIAT, V65, P116, DOI 10.1016/j.biopsych.2008.08.032; Teicher MH, 2012, P NATL ACAD SCI USA, V109, pE563, DOI 10.1073/pnas.1115396109; Thomas KM, 2001, ARCH GEN PSYCHIAT, V58, P1057, DOI 10.1001/archpsyc.58.11.1057; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Unternaehrer E, 2012, TRANSL PSYCHIAT, V2, DOI 10.1038/tp.2012.77; Van Niel C, 2014, J DEV BEHAV PEDIATR, V35, P549, DOI 10.1097/DBP.0000000000000102; Wagner JB, 2013, INT J BEHAV DEV, V37, P118, DOI 10.1177/0165025412468064; Wermke K, 2004, BEHAV BRAIN SCI, V27, P474; Yehuda R, 2001, J CLIN PSYCHIAT, V62, P41; Yehuda R, 2014, AM J PSYCHIAT, V171, P872, DOI 10.1176/appi.ajp.2014.13121571; Zak P. J., 2012, MORAL MOL NEW SCI WH 59 0 0 0 1 BMJ PUBLISHING GROUP LONDON BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND 0032-5473 1469-0756 POSTGRAD MED J Postgrad. Med. J. MAR 2016 92 1085 128 133 10.1136/postgradmedj-2015-133708 6 Medicine, General & Internal General & Internal Medicine DE7PV WOS:000370830100003 26908879 2019-02-21 J Garcia-Mederos, AM; Tuya, F; Tuset, VM Garcia-Mederos, Antonio M.; Tuya, Fernando; Tuset, Victor M. Life-history strategies of a conspicuous reef fish, the Canary damsel Similiparma lurida (Pomacentridae) in the northeastern Atlantic SCIENTIA MARINA English Article Pomacentridae; Similiparma lurida; life history; recruitment; coastal fish; spatial distribution; northeastern Atlantic GREAT-BARRIER-REEF; SPAWNING-SITE PREFERENCES; CAPE-VERDE ISLANDS; FEMALE MATE CHOICE; CORAL-REEF; COASTAL FISHES; AGE-DETERMINATION; CHROMIS-CHROMIS; OTOLITH WEIGHT; INTRASPECIFIC COMPETITION Similiparma lurida is a common fish inhabiting shallow-water rocky bottoms of the northeastern Atlantic oceanic archipelagos, and the coasts from Portugal to Senegal. This study was conceptualized to integrate information relative to key population traits of S. lurida, including length and age structure, growth, reproduction and length at maturity, with a description of abundance patterns on shallow reefs, including temporality of recruitment and habitat preferences by juveniles, sub-adults and adults. We then hypothesized that seasonal cycles of spawning and recruitment were synchronized. This species reaches a total length (TL) of up to 15.7 cm and an age of 18 years. Males grow faster and longer (K=0.28 years(-1), L8=14.487 cm TL) than females (K=0.23 years(-1), L8=13.461 cm TL), which affects the overall ratio of males to females (1:0.26). The size at which 50% of sexual maturity is reached was 10.344 cm TL for males and 8.471 cm TL for females. Fish increase growth during the spawning season, which occurs from November to March, including a maximum in February. After two months of this peak, juveniles reached maximum abundances (April) in high relief reef areas. Adults, however, show a preference towards rocky bottoms covered with algae interspersed with sand patches, suggesting ontogenetic changes in microhabitat preferences when juveniles turn into adults. [Garcia-Mederos, Antonio M.; Tuya, Fernando] Univ Las Palmas Gran Canaria, IU ECOAQUA, Las Palmas Gran Canaria 35017, Spain; [Tuset, Victor M.] Inst Ciencias Mar ICM CSIC, Passeig Maritim 37-49, Barcelona 08003, Spain Garcia-Mederos, AM (reprint author), Univ Las Palmas Gran Canaria, IU ECOAQUA, Las Palmas Gran Canaria 35017, Spain. amgm7@yahoo.es Tuset, Victor/A-9132-2019 Tuset, Victor/0000-0001-9032-2844 Afonso P, 2005, ACTA ETHOLOG, V8, P5, DOI 10.1007/s10211-004-0104-2; Afonso P, 2013, J FISH BIOL, V83, P272, DOI 10.1111/jfb.12162; Allen G. R., 2006, ZOOLOGICAL CATALOGUE, V35, P1368; Almany GR, 2004, OECOLOGIA, V141, P105, DOI 10.1007/s00442-004-1617-0; Anderson MJ, 1999, J STAT COMPUT SIM, V62, P271, DOI 10.1080/00949659908811936; Asoh K, 2002, ENVIRON BIOL FISH, V64, P379, DOI 10.1023/A:1016177512353; BAKKER TCM, 1994, BEHAV ECOL, V5, P74, DOI 10.1093/beheco/5.1.74; Balshine S, 2011, ENCYCLOPEDIA OF FISH PHYSIOLOGY: FROM GENOME TO ENVIRONMENT, VOLS 1-3, P670; BECKMAN DW, 1991, FISH B-NOAA, V89, P1; Bessa E, 2012, LAT AM J AQUAT RES, V40, P134, DOI 10.3856/vol40-issue1-fulltext-13; Bleeker P., 1877, NAT VERH HOLL MAATSC, V3, P1; BOEHLERT GW, 1985, FISH B-NOAA, V83, P103; Boyra A, 2004, ENVIRON BIOL FISH, V70, P393, DOI 10.1023/B:EBFI.0000035435.51530.c8; Bracciali C, 2014, J MAR BIOL ASSOC UK, V94, P1053, DOI 10.1017/S0025315414000459; Breder CM, 1966, MODES REPROD FISHES; Brito A., 2002, PECES ISLAS CANARIAS; Brown-Peterson NJ, 2011, MAR COAST FISH, V3, P52, DOI 10.1080/19425120.2011.555724; Caldow C, 2003, MAR ECOL PROG SER, V265, P185, DOI 10.3354/meps265185; Campana SE, 2001, J FISH BIOL, V59, P197, DOI 10.1006/jfbi.2001.1668; Cardinale BJ, 2000, OIKOS, V91, P175, DOI 10.1034/j.1600-0706.2000.910117.x; Carracedo J. C., 2002, GEOLOGY SPAIN, P439; CERRATO RM, 1990, CAN J FISH AQUAT SCI, V47, P1416, DOI 10.1139/f90-160; CHANG WYB, 1982, CAN J FISH AQUAT SCI, V39, P1208, DOI 10.1139/f82-158; Charnov EL, 2008, ENVIRON BIOL FISH, V83, P185, DOI 10.1007/s10641-007-9315-5; Cooper WJ, 2014, COPEIA, P473, DOI 10.1643/CI-13-074; COTE IM, 1989, ANIM BEHAV, V38, P78, DOI 10.1016/S0003-3472(89)80067-3; Cuvier G, 1830, HIST NATURELLE POISS; DEMARTINI EE, 1988, COPEIA, P336; DULCIC J, 1995, FISH RES, V22, P255, DOI 10.1016/0165-7836(94)00318-Q; Eschmeyer W. N., 2015, CATALOG FISHES; Fero K, 2008, BEHAV ECOL SOCIOBIOL, V62, P1119, DOI 10.1007/s00265-007-0540-x; FERREIRA BP, 1994, FISH B-NOAA, V92, P46; FLETCHER WJ, 1991, CAN J FISH AQUAT SCI, V48, P35, DOI 10.1139/f91-005; FOLKVORD A, 1991, AQUACULTURE, V97, P41, DOI 10.1016/0044-8486(91)90278-F; FOWLER AJ, 1992, AUST J MAR FRESH RES, V43, P1057, DOI 10.1071/MF9921057; Frederich B, 2009, ICHTHYOL RES, V56, P10, DOI 10.1007/s10228-008-0053-2; Freitas Mafalda, 2006, Bocagiana (Funchal), P1; Freitas Rui, 2014, Zoologia Caboverdiana, V5, P1; Friedlander AM, 1998, J EXP MAR BIOL ECOL, V224, P1, DOI 10.1016/S0022-0981(97)00164-0; Garcia-Charton JA, 2001, MAR BIOL, V138, P917, DOI 10.1007/s002270000524; Garcia-Mederos AM, 2010, J APPL ICHTHYOL, V26, P872, DOI 10.1111/j.1439-0426.2010.01484.x; Garcia-Mederos A. M., 2015, AQUAT LIVING RESOUR, V1, P1; Gordo L. S., 1996, Fisheries Management and Ecology, V3, P157, DOI 10.1111/j.1365-2400.1996.tb00139.x; Gordon TAC, 2015, CORAL REEFS, V34, P13, DOI 10.1007/s00338-014-1229-z; Hanel R., 2014, J APPL ICHTHYOL, V31, P135; Hobbs JPA, 2004, MAR ECOL PROG SER, V278, P253, DOI 10.3354/meps278253; HOFFMAN SG, 1985, ENVIRON BIOL FISH, V14, P185, DOI 10.1007/BF00000826; Hutchinson D. S., 2006, ENCY FISHES COMPLETE; Kingsford M, 1999, SO SEAS ECOLOGY AUST; KNAPP RA, 1991, BEHAV ECOL, V2, P295, DOI 10.1093/beheco/2.4.295; KNAPP RA, 1995, COPEIA, P78; Krebs J. R., 1973, ENVIRON BIOL FISH, V116, P217; Labropoulou M, 2000, HYDROBIOLOGIA, V440, P281, DOI 10.1023/A:1004199917299; Leitao F, 2008, MAR BIOL, V153, P1233, DOI 10.1007/s00227-007-0898-3; Leite Jonas Rodrigues, 2009, Marine Biodiversity Records, V2, pe145, DOI 10.1017/S1755267209990637; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Linton DM, 2003, OCEAN COAST MANAGE, V46, P261, DOI 10.1016/S0964-5691(03)00007-3; Lirman D., 1994, CORAL REEFS, V180, P71, DOI DOI 10.I016/0022-0981;94)90030-9; Longhurst A, 2006, FISH RES, V81, P107, DOI 10.1016/j.fishres.2006.06.022; LUCKHURST BE, 1978, MAR BIOL, V49, P317, DOI 10.1007/BF00455026; MAPSTONE GM, 1975, J ZOOL, V175, P179, DOI 10.1111/j.1469-7998.1975.tb01395.x; Morales-Nin B., 1992, 322 FAO, P1; Morgan M. Joanne, 2009, Journal of Northwest Atlantic Fishery Science, V41, P37; Navarrete-Fernandez T, 2014, REV CHIL HIST NAT, V87, DOI [10.1186/s40693-014-0030-2, 10.1186/S40693-014-0030-2]; Nelson JS, 2006, FISHES WORLD; Nemeth RS, 2005, MAR ECOL PROG SER, V286, P81, DOI 10.3354/meps286081; Newman SJ, 1996, MAR FRESHWATER RES, V47, P575, DOI 10.1071/MF9960575; OHLHORST SL, 1988, P 6 INT COR REEF S T, V2, P319; Pauly D, 2015, FISHBASE; PAWSON MG, 1990, J FISH BIOL, V36, P521, DOI 10.1111/j.1095-8649.1990.tb03554.x; POPE JA, 1975, FAO FISH TECH PAP, V41, P1; Randall J.E., 1997, FISHES GREAT BARRIER; Randall J. E., 2005, REEF SHORE FISHES S; REZNICK D, 1989, CAN J FISH AQUAT SCI, V46, P108, DOI 10.1139/f89-014; Robertson D.R., 1991, P356; Robertson DR, 1998, CORAL REEFS, V17, P179, DOI 10.1007/s003380050113; ROBERTSON DR, 1990, J EXP MAR BIOL ECOL, V144, P49; de Mitcheson YS, 2008, FISH FISH, V9, P1, DOI 10.1111/j.1467-2979.2007.00266.x; Santos R. S., 1997, ARQUIPELAGO LIFE M S, V1, P1; Scharf FS, 2006, J EXP MAR BIOL ECOL, V335, P167, DOI 10.1016/j.jembe.2006.03.018; Schmale M.C., 1981, ANIM BEHAV, V29, P1179; Schwamborn SHL, 2002, ENVIRON BIOL FISH, V63, P79, DOI 10.1023/A:1013851532298; SECOR DH, 1992, CAN J FISH AQUAT SCI, V49, P1439, DOI 10.1139/f92-159; Smallwood C. B., 2013, 242 DEP FISH; Souza Allan T., 2011, Marine Biodiversity Records, V4; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; THORROLD SR, 1990, MAR BIOL, V105, P375, DOI 10.1007/BF01316308; Thresher R. E, 1984, REPROD REEF FISHES; Tuset VM, 2004, B MAR SCI, V74, P53; Tuya F, 2004, MAR ECOL PROG SER, V278, P157, DOI 10.3354/meps278157; Tuya F, 2011, J FISH BIOL, V79, P217, DOI 10.1111/j.1095-8649.2011.03015.x; Tuya F, 2006, MAR ECOL PROG SER, V311, P15, DOI 10.3354/meps311015; Tuya F, 2014, ESTUAR COAST SHELF S, V137, P41, DOI 10.1016/j.ecss.2013.11.026; Tuya F, 2009, ENVIRON BIOL FISH, V86, P311, DOI 10.1007/s10641-009-9520-5; Tzioumis V., 1999, COPEIA, V1999, P384; Wainwright Peter C., 2002, P33, DOI 10.1016/B978-012615185-5/50004-9; Webster MS, 2000, MAR ECOL PROG SER, V196, P187, DOI 10.3354/meps196187; WEST G, 1990, AUST J MAR FRESH RES, V41, P199, DOI 10.1071/MF9900199; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WILSON CA, 1991, J EXP MAR BIOL ECOL, V151, P209, DOI 10.1016/0022-0981(91)90125-G; Wilson DT, 2002, MAR ECOL PROG SER, V231, P247, DOI 10.3354/meps231247; Wirtz P, 2008, ZOOTAXA, P1; Wirtz P, 2013, SPIXIANA, V36, P113; WORTHINGTON DG, 1995, CAN J FISH AQUAT SCI, V52, P233, DOI 10.1139/f95-023; Xiao YS, 1996, CAN J FISH AQUAT SCI, V53, P1852, DOI 10.1139/f96-106; Zar J. H., 1996, BIOSTAT ANAL, P662 107 1 1 2 14 INST CIENCIAS MAR BARCELONA BARCELONA PG MARITIM DE LA BARCELONETA, 37-49, 08003 BARCELONA, SPAIN 0214-8358 1886-8134 SCI MAR Sci. Mar. MAR 2016 80 1 57 68 10.3989/scimar.04343.28A 12 Marine & Freshwater Biology Marine & Freshwater Biology DF0ZW WOS:000371069200006 DOAJ Gold, Green Published 2019-02-21 J Metz, JAJ; Stankova, K; Johansson, J Metz, Johan A. Jacob; Stankova, Katerina; Johansson, Jacob The canonical equation of adaptive dynamics for life histories: from fitness-returns to selection gradients and Pontryagin's maximum principle JOURNAL OF MATHEMATICAL BIOLOGY English Article Canonical equation of adaptive dynamics; Function valued traits; Pontryagin's maximum principle; Age-dependent resource allocation; Mendelian take on life history theory; Evolution in periodic environments STRUCTURED POPULATION-MODELS; TRAITS; STRATEGIES; EVOLUTION This paper should be read as addendum to Dieckmann et al. (J Theor Biol 241:370-389, 2006) and Parvinen et al. (J Math Biol 67: 509-533, 2013). Our goal is, using little more than high-school calculus, to (1) exhibit the form of the canonical equation of adaptive dynamics for classical life history problems, where the examples in Dieckmann et al. (J Theor Biol 241:370-389, 2006) and Parvinen et al. (J Math Biol 67: 509-533, 2013) are chosen such that they avoid a number of the problems that one gets in this most relevant of applications, (2) derive the fitness gradient occurring in the CE from simple fitness return arguments, (3) show explicitly that setting said fitness gradient equal to zero results in the classical marginal value principle from evolutionary ecology, (4) show that the latter in turn is equivalent to Pontryagin's maximum principle, a well known equivalence that however in the literature is given either ex cathedra or is proven with more advanced tools, (5) connect the classical optimisation arguments of life history theory a little better to real biology (Mendelian populations with separate sexes subject to an environmental feedback loop), (6) make a minor improvement to the form of the CE for the examples in Dieckmann et al. and Parvinen et al. [Metz, Johan A. Jacob] Leiden Univ, Math Inst, NL-2333 CA Leiden, Netherlands; [Metz, Johan A. Jacob] Leiden Univ, Inst Biol, NL-2333 CA Leiden, Netherlands; [Metz, Johan A. Jacob; Johansson, Jacob] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria; [Metz, Johan A. Jacob] Naturalis Biodivers Ctr, Dept Marine Zool, NL-2333 CR Leiden, Netherlands; [Stankova, Katerina] Maastricht Univ, Dept Knowledge Engn, NL-6211 LH Maastricht, Netherlands; [Stankova, Katerina] Delft Univ Technol, Delft Inst Appl Math, NL-2628 CD Delft, Netherlands; [Johansson, Jacob] Lund Univ, Dept Biol, Theoret Populat Ecol & Evolut Grp, S-22362 Lund, Sweden Stankova, K (reprint author), Maastricht Univ, Dept Knowledge Engn, NL-6211 LH Maastricht, Netherlands.; Stankova, K (reprint author), Delft Univ Technol, Delft Inst Appl Math, NL-2628 CD Delft, Netherlands. j.a.j.metz@biology.leidenuniv.nl; k.stankova@maastrichtuniversity.nl; Jacob.Johansson@biol.lu.se Johansson, Jacob/0000-0002-0018-7018; Stankova, Katerina/0000-0002-4519-0325 Chaire Modelisation Mathematique et Biodiversite of Veolia Environnement-Ecole Polytechnique-Museum National d'Histoire Naturelle-Fondation X We thank Kalle Parvinen for a helpful discussion about the topics of this paper. This work benefitted from the support from the "Chaire Modelisation Mathematique et Biodiversite of Veolia Environnement-Ecole Polytechnique-Museum National d'Histoire Naturelle-Fondation X". Bacaer N, 2006, J MATH BIOL, V53, P421, DOI 10.1007/s00285-006-0015-0; Bellman R, 1957, DYNAMIC PROGRAMMING; Champagnat N, 2003, PREPUBLICATION U NAN; Champagnat N, 2011, PROBAB THEORY REL, V151, P45, DOI 10.1007/s00440-010-0292-9; Dercole F, 2008, PRINC SER THEOR COMP, P1; Dieckmann U, 1996, J MATH BIOL, V34, P579, DOI 10.1007/BF02409751; Dieckmann U, 2006, J THEOR BIOL, V241, P370, DOI 10.1016/j.jtbi.2005.12.002; Durinx M, 2008, J MATH BIOL, V56, P673, DOI 10.1007/s00285-007-0134-2; Geritz SAH, 2002, J MATH BIOL, V44, P548, DOI 10.1007/s002850100136; Geritz SAH, 2005, J MATH BIOL, V50, P67, DOI 10.1007/s00285-004-0280-8; Gupta A, 2014, ACTA APPL MATH, V131, P1, DOI 10.1007/s10440-013-9847-y; Gyllenberg M., 2011, MATH DARWINS LEGACY, P235; HEIJMANS HJAM, 1989, SIAM J MATH ANAL, V20, P870, DOI 10.1137/0520059; INTRILLIGATOR M, 1971, MATH OPTIMIZATION EC; KENDALL DG, 1948, ANN MATH STAT, V19, P1, DOI 10.1214/aoms/1177730285; LEON JA, 1976, J THEOR BIOL, V60, P301, DOI 10.1016/0022-5193(76)90062-X; Meleard S, 2009, J MATH BIOL, V58, P881, DOI 10.1007/s00285-008-0202-2; Metz J. A. J., 2011, Journal of Biological Dynamics, V5, P163, DOI 10.1080/17513758.2010.502256; Metz J. A. J., 2008, ENCY ECOLOGY, V2, P1599; Metz J. A. J., 1986, LECT NOTES BIOMATHEM, V68; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Metz JAJ, 2013, INTERFACE FOCUS, V3, DOI 10.1098/rsfs.2013.0025; Naslund B, 1974, MANAGEMENT APPL MODE; Parvinen K, 2006, J MATH BIOL, V52, P1, DOI 10.1007/s00285-005-0329-3; Parvinen K, 2013, J MATH BIOL, V67, P509, DOI 10.1007/s00285-012-0549-2; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Pontryagin L. S., 1964, MATH THEORY OPTIMAL; Ripa J, 2013, EVOLUTION, V67, P1279, DOI 10.1111/evo.12046; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052 30 4 4 1 11 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0303-6812 1432-1416 J MATH BIOL J. Math. Biol. MAR 2016 72 4 SI 1125 1152 10.1007/s00285-015-0938-4 28 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology DD9TS WOS:000370269200014 26586121 Green Published, Other Gold 2019-02-21 J Reedy, AM; Cox, CL; Chung, AK; Evans, WJ; Cox, RM Reedy, Aaron M.; Cox, Christian L.; Chung, Albert K.; Evans, William J.; Cox, Robert M. Both sexes suffer increased parasitism and reduced energy storage as costs of reproduction in the brown anole, Anolis sagrei BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article ectoparasite; endoparasite; energetic trade-off; gonadectomy; immunocompetence handicap hypothesis; life history; sexual selection SEXUAL SIZE DIMORPHISM; TRADE-OFFS; ECOLOGICAL IMMUNOLOGY; EVOLUTIONARY ECOLOGY; IMMUNOCOMPETENCE HANDICAP; TRANSMITTED-DISEASE; IMMUNE FUNCTION; PARENTAL EFFORT; LIFE-SPAN; LIZARD Sexual selection theory proposes that males suffer reduced immune function and increased parasitism as costs of expressing sexual signals. Life-history theory proposes that females suffer the same costs because of inherent trade-offs between reproduction and self-maintenance. Mechanistically, each theory invokes an energetic trade-off, although few experiments have directly compared these costs of reproduction between the sexes as a result of fundamental sex differences in the nature of reproductive investment and a tendency for each theory to focus on a single sex. To test whether males and females experience comparable costs of reproduction in terms of energetics, immune function, and parasitism, we used gonadectomy to eliminate most aspects of reproductive investment in wild brown anole lizards (Anolis sagrei) of both sexes. We compared these nonreproductive males and females with intact, reproductive controls with respect to stored energy (fat bodies), immune function (swelling response to phytohemagglutinin), and the prevalence and intensity of infection by four types of parasite (gastric nematodes, intestinal nematodes, faecal coccidia, and ectoparasitic mites). Gonadectomized anoles experienced dramatic increases in fat storage that were accompanied by decreases in the prevalence of intestinal nematodes and in the intensity of coccidia infection. These costs of reproduction were comparable between males and females, although neither sex exhibited the predicted increase in immune function after gonadectomy. Our results suggest that, despite fundamental sex differences in the nature of reproductive investment, both male and female anoles experience similar costs of reproduction with respect to energy storage and some aspects of parasitism. [Reedy, Aaron M.; Chung, Albert K.; Evans, William J.; Cox, Robert M.] Univ Virginia, Dept Biol, 485 McCormick Rd,POB 400328, Charlottesville, VA 22904 USA; [Cox, Christian L.] Georgia So Univ, Dept Biol, POB 8042, Statesboro, GA 30460 USA Reedy, AM (reprint author), Univ Virginia, Dept Biol, 485 McCormick Rd,POB 400328, Charlottesville, VA 22904 USA. amr3mb@virginia.edu University of Virginia We thank R. Calsbeek and A. Kahrl for assistance with fieldwork; N. Bottomley for permission to work at Regatta Point; and B. Falk and C. McAllister for assistance with parasite identification. We thank C. Alencar, M. Augat, E. D. Brodie III, R. Costello, H. Donald-Cannon, M. Hague, A. Hanninen, B. Sanderson, and C. Wood for their comments on an early version of this manuscript. Additionally, we thank three anonymous reviewers for their helpful comments. Research was conducted under permits from The Bahamas Environment, Science and Technology (BEST) Commission and Ministry of Agriculture and with approval from the Animal Care and Use Committee of the University of Virginia (protocol 3896). This project was supported by start-up funding from the University of Virginia to RMC. ADKINS EK, 1977, HORM BEHAV, V8, P201, DOI 10.1016/0018-506X(77)90037-X; Alexander N, 2012, TROP MED INT HEALTH, V17, P684, DOI 10.1111/j.1365-3156.2012.02987.x; Allander K, 1997, FUNCT ECOL, V11, P358, DOI 10.1046/j.1365-2435.1997.00095.x; ANDREWS R, 1974, ECOLOGY, V55, P1317, DOI 10.2307/1935459; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Arnold AP., 1975, EFFECTS CASTRATION A, V191, P309; BARFIELD RJ, 1972, HORM BEHAV, V3, P247, DOI 10.1016/0018-506X(72)90038-4; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Calsbeek R, 2008, J ANIM ECOL, V77, P103, DOI 10.1111/j.1365-2656.2007.01320.x; Calsbeek R, 2007, EVOL ECOL RES, V9, P495; CHAPMAN B. M., 1964, PROCEED ZOOL SOC LONDON, V143, P121; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Chu C.Y.C., 2012, THEORETICAL POPULATI, V82, P335; CLUTTONBROCK TH, 1992, Q REV BIOL, V67, P437, DOI 10.1086/417793; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Coustau C, 2000, TRENDS ECOL EVOL, V15, P378, DOI 10.1016/S0169-5347(00)01929-7; Cox CL, 2014, FUNCTIONAL ECOLOGY, V29, P758; Cox RM, 2006, J ANIM ECOL, V75, P1361, DOI 10.1111/j.1365-2656.2006.01160.x; Cox RM, 2011, J EVOLUTION BIOL, V24, P343, DOI 10.1111/j.1420-9101.2010.02171.x; Cox RM, 2005, J EXP BIOL, V208, P4679, DOI 10.1242/jeb.01948; Cox RM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P531, DOI 10.1086/430226; Cox RM., 2014, INTEGRATIVE ORGANISM; Cox RM, 2007, FUNCT ECOL, V21, P327, DOI 10.1111/j.1365-2435.2007.01251.x; Cox RM, 2014, J ANIM ECOL, V83, P888, DOI 10.1111/1365-2656.12228; Cox RM, 2010, FUNCT ECOL, V24, P1262, DOI 10.1111/j.1365-2435.2010.01756.x; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; Cox RM, 2010, EVOLUTION, V64, P798, DOI 10.1111/j.1558-5646.2009.00851.x; Cox RM, 2009, PHYSIOL BIOCHEM ZOOL, V82, P686, DOI 10.1086/605391; DERICKSON WK, 1976, AM ZOOL, V16, P711; Dugas MB, 2015, BIOL J LINN SOC, V115, P211, DOI 10.1111/bij.12461; Evans LT, 1938, J COMP PSYCHOL, V25, P97, DOI 10.1037/h0058993; Fedorka KM, 2004, EVOLUTION, V58, P2478; Fisher RA, 1930, GENETICAL THEORY NAT; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GOLDBERG SR, 1989, J WILDLIFE DIS, V25, P425, DOI 10.7589/0090-3558-25.3.425; GOTO N, 1978, POULTRY SCI, V57, P246, DOI 10.3382/ps.0570246; Greiner EC, 2003, SEMIN AVIAN EXOT PET, V12, P49, DOI 10.1053/saep.2003.127880; Gustafsson L, 1997, INFECT POLYMORPHISM, P53; HARDING CF, 1983, HORM BEHAV, V17, P111, DOI 10.1016/0018-506X(83)90021-1; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hoffman CL, 2008, BEHAV ECOL SOCIOBIOL, V62, P1711, DOI 10.1007/s00265-008-0599-z; HURST GDD, 1995, ECOL ENTOMOL, V20, P230, DOI 10.1111/j.1365-2311.1995.tb00452.x; JENSSEN TA, 1995, HERPETOLOGICAL MONOGRAPHS, NO 9, 1995, P41; Jones AG, 2002, P ROY SOC B-BIOL SCI, V269, P2533, DOI 10.1098/rspb.2002.2177; Kennedy MW, 2006, TRENDS ECOL EVOL, V21, P653, DOI 10.1016/j.tree.2006.09.017; KETTERSON ED, 1991, HORM BEHAV, V25, P489, DOI 10.1016/0018-506X(91)90016-B; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kotiaho JS, 2003, J INSECT PHYSIOL, V49, P817, DOI 10.1016/S0022-1910(03)00117-3; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; Langford GJ, 2013, J PARASITOL, V99, P241, DOI 10.1645/12-30.1; LEE JC, 1989, COPEIA, P930, DOI 10.2307/1445979; LEVINE ND, 1968, NEMATODE PARASITES D; LICHT P., 1970, REPROD FAT CYCLES CA; LIN EJI, 1979, J HERPETOL, V13, P113, DOI 10.2307/1563765; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lockhart AB, 1996, BIOL REV, V71, P415, DOI 10.1111/j.1469-185X.1996.tb01281.x; Maklakov AA, 2013, BIOESSAYS, V35, P717, DOI 10.1002/bies.201300021; MARLER CA, 1995, BEHAV ECOL SOCIOBIOL, V37, P225, DOI 10.1007/BF00177401; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; Martin LB, 2006, FUNCT ECOL, V20, P290, DOI 10.1111/j.1365-2435.01094.x; Martin LB, 2011, FUNCT ECOL, V25, P1, DOI 10.1111/j.1365-2435.2010.01820.x; McCurdy DG, 1998, OIKOS, V82, P303, DOI 10.2307/3546970; McKean KA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P299; MICHENER GR, 1990, ECOLOGY, V71, P855, DOI 10.2307/1937357; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Norval G, 2011, PAC SCI, V65, P383, DOI 10.2984/65.3.383; Nunn CL, 2009, PHILOS T R SOC B, V364, P61, DOI 10.1098/rstb.2008.0148; O'Hara RB, 2010, METHODS ECOL EVOL, V1, P118, DOI 10.1111/j.2041-210X.2010.00021.x; Owen JP, 2007, TRENDS ECOL EVOL, V22, P228, DOI 10.1016/j.tree.2007.02.003; Paukku S, 2005, J INSECT PHYSIOL, V51, P1220, DOI 10.1016/j.jinsphys.2005.06.012; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; Queller DC, 1997, P ROY SOC B-BIOL SCI, V264, P1555, DOI 10.1098/rspb.1997.0216; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Rigby MC, 2002, TRENDS PARASITOL, V18, P116, DOI 10.1016/S1471-4922(01)02203-6; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; ROSE MR, 1981, GENETICS, V97, P172; Schmid-Hempel P, 2003, TRENDS ECOL EVOL, V18, P27, DOI 10.1016/S0169-5347(02)00013-7; SEXTON OJ, 1971, ECOLOGY, V52, P201, DOI 10.2307/1934579; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Smits JE, 1999, FUNCT ECOL, V13, P567, DOI 10.1046/j.1365-2435.1999.00338.x; STAMPS JA, 1977, ECOLOGY, V58, P349, DOI 10.2307/1935609; TOKARZ RR, 1986, HORM BEHAV, V20, P364, DOI 10.1016/0018-506X(86)90044-9; Tokarz RR, 1998, PHYSIOL ZOOL, V71, P139, DOI 10.1086/515907; Tokarz RR, 2002, HORM BEHAV, V41, P70, DOI 10.1006/hbeh.2001.1739; Tokarz RR, 1998, HERPETOLOGICA, V54, P388; TOKARZ RR, 1995, ANIM BEHAV, V49, P661; TOKARZ RR, 1985, ANIM BEHAV, V33, P746, DOI 10.1016/S0003-3472(85)80006-3; VASS E, 1993, J PARASITOL, V79, P106, DOI 10.2307/3283286; Velando A, 2003, J ANIM ECOL, V72, P846, DOI 10.1046/j.1365-2656.2003.00756.x; Webberley KM, 2004, J ANIM ECOL, V73, P1, DOI 10.1111/j.1365-2656.2004.00769.x; WEDEKIND C, 1994, AM NAT, V143, P936, DOI 10.1086/285641; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 99 9 9 0 37 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. MAR 2016 117 3 516 527 10.1111/bij.12685 12 Evolutionary Biology Evolutionary Biology DD8EV WOS:000370159100010 Bronze 2019-02-21 J Kivela, SM; Friberg, M; Wiklund, C; Leimar, O; Gotthard, K Kivela, Sami M.; Friberg, Magne; Wiklund, Christer; Leimar, Olof; Gotthard, Karl Towards a mechanistic understanding of insect life history evolution: oxygen-dependent induction of moulting explains moulting sizes BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article development time; growth rate; growth trajectory; larval instars; mechanistic growth model TOBACCO HORNWORM CATERPILLAR; MANDUCA-SEXTA L; BODY-SIZE; DROSOPHILA-MELANOGASTER; RESPIRATORY-FUNCTION; DEVELOPMENT TIME; METABOLIC THEORY; TRACHEAL SYSTEM; GROWTH; METAMORPHOSIS Moults characterise insect growth trajectories, typically following a consistent pattern known as Dyar's rule; proportional size increments remain constant across inter-instar moults. Empirical work suggests that oxygen limitation triggers moulting. The insect respiratory system, and its oxygen supply capacity, grows primarily at moults. It is hypothesized that the oxygen demand increases with increasing body mass, eventually meeting the oxygen supply capacity at an instar-specific critical mass where moulting is triggered. Deriving from this hypothesis, we develop a novel mathematical model for moulting and growth in insect larvae. Our mechanistic model has great success in predicting moulting sizes in four butterfly species, indirectly supporting a size-dependent mechanism underlying moulting. The results demonstrate that an oxygen-dependent induction of moulting mechanism would be sufficient to explain moulting sizes in the study species. Model predictions deviated slightly from Dyar's rule, the deviations being typically negligible within the present data range. The developmental decisions (e.g. moulting) made by growing larvae significantly affect age and size at maturity, which has important life history implications. The successful modelling of moulting presented here provides a novel framework for the development of realistic insect growth models, which are required for a better understanding of life history evolution. [Kivela, Sami M.; Wiklund, Christer; Leimar, Olof; Gotthard, Karl] Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden; [Friberg, Magne] Evolutionary Biol Ctr, Dept Plant Ecol & Evolut, Norbyvagen 18D, SE-75236 Uppsala, Sweden Kivela, SM (reprint author), Univ Oulu, Dept Ecol, POB 3000, Oulu 90014, Finland. sami.kivela@oulu.fi Leimar, Olof/L-3781-2014; Gotthard, Karl/F-1163-2011 Leimar, Olof/0000-0001-8621-6977; Kivela, Sami/0000-0002-6844-9168 strategic research programme EkoKlim at Stockholm University; Knut and Alice Wallenberg Foundation; Swedish Research Council [621-2010-5341, 621-2010-5437, 621-2010-5579]; Royal Swedish Academy for Agriculture and Forestry; Stina Werner Foundation; international fellowship program at Stockholm University We thank Beatrice Svensson for helping in collecting the P. napi data. Toomas Tammaru, John Hutchinson and two anonymous reviewers commented on earlier versions of the manuscript, which greatly helped in improving it. This study was financed by the strategic research programme EkoKlim at Stockholm University (K.G., O.L., C.W.), the Knut and Alice Wallenberg Foundation (K.G., O.L., C.W.), the Swedish Research Council (grant 621-2010-5341 to K.G., 621-2010-5437 to O.L., and 621-2010-5579 to C.W.), the Royal Swedish Academy for Agriculture and Forestry and the Stina Werner Foundation (M.F.), and the international fellowship program at Stockholm University (S.M.K.). ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; AYRES MP, 1987, OIKOS, V48, P273, DOI 10.2307/3565514; Berg M. B., 2009, ENCY INSECTS, P431; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Callier V, 2014, CURR OPIN INSECT SCI, V1, P59, DOI 10.1016/j.cois.2014.05.007; Callier V, 2013, J EXP BIOL, V216, P4334, DOI 10.1242/jeb.093120; Callier V, 2013, BIOL REV, V88, P944, DOI 10.1111/brv.12033; Callier V, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045455; Callier V, 2011, P NATL ACAD SCI USA, V108, P14664, DOI 10.1073/pnas.1106556108; Chapman R. F., 1998, INSECTS STRUCTURE FU; Davidowitz G, 2004, EVOL ECOL RES, V6, P49; Dyar H. G., 1890, PSYCHE, V5, P420, DOI DOI 10.1155/1890/23871; Elmes GW, 2001, BIOL J LINN SOC, V73, P259, DOI 10.1006/bijl.2001.0534; Esperk T, 2004, PHYSIOL ENTOMOL, V29, P56, DOI 10.1111/j.1365-3032.2004.0365.x; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Frazier MR, 2001, PHYSIOL BIOCHEM ZOOL, V74, P641, DOI 10.1086/322172; Ghosh SM, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0174; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; Greenberg S, 1996, J INSECT PHYSIOL, V42, P991, DOI 10.1016/S0022-1910(96)00071-6; Greenlee KJ, 2007, J EXP BIOL, V210, P1288, DOI 10.1242/jeb.001982; Greenlee KJ, 2013, J EXP BIOL, V216, P2293, DOI 10.1242/jeb.082479; Greenlee KJ, 2004, J EXP BIOL, V207, P509, DOI 10.1242/jeb.00766; Greenlee KJ, 2005, J EXP BIOL, V208, P1385, DOI 10.1242/jeb.01521; Greenlee KJ, 2004, J EXP BIOL, V207, P497, DOI 10.1242/jeb.00767; Grunert LW, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127988; Harrison J, 2006, RESP PHYSIOL NEUROBI, V154, P4, DOI 10.1016/j.resp.2006.02.008; Harrison JF, 2014, CURR OPIN INSECT SCI, V4, P54, DOI 10.1016/j.cois.2014.08.012; Harrison JF, 2013, ECOL EVOL, V3, P1305, DOI 10.1002/ece3.551; Harrison JF, 2010, P ROY SOC B-BIOL SCI, V277, P1937, DOI 10.1098/rspb.2010.0001; Helm BR, 2013, J EXP BIOL, V216, P4703, DOI 10.1242/jeb.080648; Hutchinson JMC, 1997, PHILOS T R SOC B, V352, P113, DOI 10.1098/rstb.1997.0007; Kivela SM, 2015, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.5h3k3, DOI 10.5061/DRYAD.5H3K3]; Leimar O, 1996, OIKOS, V76, P228, DOI 10.2307/3546194; NELDER JA, 1965, COMPUT J, V7, P308, DOI 10.1093/comjnl/7.4.308; Nijhout H F, 2006, J Biol, V5, P16, DOI 10.1186/jbiol43; Nijhout HF, 2014, WIRES DEV BIOL, V3, P113, DOI 10.1002/wdev.124; Nijhout HF, 2010, PHILOS T R SOC B, V365, P567, DOI 10.1098/rstb.2009.0249; NIJHOUT HF, 1975, BIOL BULL, V149, P214, DOI 10.2307/1540491; NIJHOUT HF, 1974, J EXP BIOL, V61, P481; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; Pinheiro J., 2013, R PACKAGE VERSION, P1, DOI DOI 10.1016/S0006-3207(01)00201-4; R Core Team, 2013, R LANG ENV STAT COMP; Sears KE, 2012, PHYSIOL BIOCHEM ZOOL, V85, P159, DOI 10.1086/664619; Shingleton AW, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P43; Tammaru T, 2007, FUNCT ECOL, V21, P1099, DOI 10.1111/j.1365-2435.2007.01319.x; VandenBrooks JM, 2012, EVOL BIOL, V39, P83, DOI 10.1007/s11692-011-9138-3 46 7 7 2 24 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. MAR 2016 117 3 586 600 10.1111/bij.12689 15 Evolutionary Biology Evolutionary Biology DD8EV WOS:000370159100015 Bronze 2019-02-21 J Del Giudice, M Del Giudice, Marco The Life History Model of Psychopathology Explains the Structure of Psychiatric Disorders and the Emergence of the p Factor: A Simulation Study CLINICAL PSYCHOLOGICAL SCIENCE English Article epidemiology; evolution; life history theory; p factor; psychopathology MENTAL-DISORDERS; EATING-DISORDERS; CLASSIFICATION; FRAMEWORK; DEPRESSION; OBSESSIONS; ANXIETY In recent years, tremendous progress has been made in mapping the structure of comorbidity between psychiatric disorders. In particular, empirical findings have suggested the existence of a general p factor of susceptibility to psychopathology. In the present study, simulation methods were used to test whether the observed structure of psychiatric disorders can be reproduced by the life history model of psychopathology, a recent classification model based on evolutionary theory. The assumptions of the life history model were used to generate virtual epidemiological samples, which were then analyzed with the methods used by earlier researchers. Analyses of simulated data successfully replicated the key findings by these researchers, including the emergence of the p factor and the switch from positive to negative correlation between internalizing and externalizing symptoms after inclusion of the p factor. These results offer initial support for the validity of the life history model. [Del Giudice, Marco] Univ New Mexico, Albuquerque, NM 87131 USA Del Giudice, M (reprint author), Univ New Mexico, Dept Psychol, Logan Hall,2001 Redondo Dr NE, Albuquerque, NM 87131 USA. marcodg@unm.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 ABDI H, 2007, ENCY MEASUREMENT STA, P849; Brown T. A, 2015, CONFIRMATORY FACTOR; Brune M, 2014, PSYCHOL INQ, V25, P311, DOI 10.1080/1047840X.2014.914120; Brune M, 2008, TXB EVOLUTIONARY PSY; Caspi A, 2014, CLIN PSYCHOL SCI, V2, P119, DOI 10.1177/2167702613497473; Cosgrove VE, 2013, BMC MED, V11, DOI 10.1186/1741-7015-11-127; Crespi B, 2010, P NATL ACAD SCI USA, V107, P1736, DOI 10.1073/pnas.0906080106; Del Giudice M, HDB EVOLUTI IN PRESS; Del Giudice M, 2014, PSYCHOL INQ, V25, P394, DOI 10.1080/1047840X.2014.925339; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2014, EVOL HUM BEHAV, V35, P415, DOI 10.1016/j.evolhumbehav.2014.05.007; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2014, PSYCHOL INQ, V25, P325, DOI 10.1080/1047840X.2014.920596; Hettema JM, 2008, AM J MED GENET C, V148C, P140, DOI 10.1002/ajmg.c.30171; HORN JL, 1973, MULTIVAR BEHAV RES, V8, P131, DOI 10.1207/s15327906mbr0802_1; Insel T, 2010, AM J PSYCHIAT, V167, P748, DOI 10.1176/appi.ajp.2010.09091379; INTERNATIONAL S, 2009, NATURE, V460, P748, DOI DOI 10.1038/NATURE08185; Krueger RF, 1998, J ABNORM PSYCHOL, V107, P216, DOI 10.1037/0021-843X.107.2.216; Lahey BB, 2012, J ABNORM PSYCHOL, V121, P971, DOI 10.1037/a0028355; Lahey BB, 2011, ARCH GEN PSYCHIAT, V68, P181, DOI 10.1001/archgenpsychiatry.2010.192; Lee HJ, 2005, J ANXIETY DISORD, V19, P793, DOI 10.1016/j.janxdis.2004.10.001; Lee HJ, 2003, BEHAV RES THER, V41, P11, DOI 10.1016/S0005-7967(01)00101-2; Martel MM, 2013, PSYCHOL BULL, V139, P1221, DOI 10.1037/a0032247; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; R Core Team, 2012, R LANG ENV STAT COMP; ROFF DA, 2002, LIFE HIST EVOLUTION; Sakamoto S, 1998, J CLIN PSYCHOL, V54, P477, DOI 10.1002/(SICI)1097-4679(199806)54:4<477::AID-JCLP9>3.0.CO;2-K; Stearns S, 1992, EVOLUTION LIFE HIST; Thompson-Brenner H, 2008, COMPR PSYCHIAT, V49, P551, DOI 10.1016/j.comppsych.2008.04.002; Thompson-Brenner H, 2008, J CHILD PSYCHOL PSYC, V49, P170, DOI 10.1111/j.1469-7610.2007.01825.x; Troisi A, 1998, DARWINIAN PSYCHIAT; Verona E, 2011, PSYCHOL ASSESSMENT, V23, P545, DOI 10.1037/a0022055; Watson D, 2005, J ABNORM PSYCHOL, V114, P522, DOI 10.1037/0021-843X.114.4.522; Watson D, 2008, DEPRESS ANXIETY, V25, P282, DOI 10.1002/da.20496; Woodley MA, 2013, INTELLIGENCE, V41, P832, DOI 10.1016/j.intell.2013.02.002; Yeo RA, 2014, PSYCHOL INQ, V25, P389, DOI 10.1080/1047840X.2014.916193 38 12 12 0 2 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 2167-7026 2167-7034 CLIN PSYCHOL SCI Clin. Psychol. Sci. MAR 2016 4 2 299 311 10.1177/2167702615583628 13 Psychology, Clinical Psychology FE9OM WOS:000408533000011 2019-02-21 J Nikhil, KL; Ratna, K; Sharma, VK Nikhil, K. L.; Ratna, Karatgi; Sharma, Vijay Kumar Life-history traits of Drosophila melanogaster populations exhibiting early and late eclosion chronotypes BMC EVOLUTIONARY BIOLOGY English Article Circadian; Adaptive significance; Fitness; Laboratory selection; Life-history evolution PRE-ADULT DEVELOPMENT; BACTROCERA-CUCURBITAE DIPTERA; CIRCADIAN CLOCK; CORRELATED RESPONSES; ADAPTIVE SIGNIFICANCE; DEVELOPMENTAL PERIOD; DRIVING OSCILLATION; ECOLOGICAL GENETICS; BODY SIZE; SELECTION Background: The hypothesis that circadian clocks confer adaptive advantage to organisms has been proposed based on its ubiquity across almost all levels of complexity and organization of life-forms. This thought has received considerable attention, and studies employing diverse strategies have attempted to investigate it. However, only a handful of them have examined how selection for circadian clock controlled rhythmic behaviors influences life-history traits which are known to influence Darwinian fitness. The 'early' and 'late' chronotypes are amongst the most widely studied circadian phenotypes; however, life-history traits associated with these chronotypes, and their consequences on Darwinian fitness remain largely unexplored, primarily due to the lack of a suitable model system. Here we studied several life-history traits of Drosophila melanogaster populations that were subjected to laboratory selection for morning (early) and evening (late) emergence. Results: We report that the late eclosion chronotypes evolved longer pre-adult duration as compared to the early eclosion chronotypes both under light/dark (LD) and constant dark (DD) conditions, and these differences appear to be mediated by both clock dependent and independent mechanisms. Furthermore, longer pre-adult duration in the late chronotypes does not lead to higher body-mass at pupariation or eclosion, but the late females were significantly more fecund and lived significantly shorter as compared to the early females. Conclusions: Coevolution of multiple life-history traits in response to selection on timing of eclosion highlights correlations of the genetic architecture governing timing of eclosion with that of fitness components which suggests that timing ecologically relevant behaviors at specific time of the day might confer adaptive advantage. [Nikhil, K. L.; Ratna, Karatgi; Sharma, Vijay Kumar] Jawaharlal Nehru Ctr Adv Sci Res, Chronobiol Lab, Evolutionary & Organismal Biol Unit, POB 6436, Bangalore 560064, Karnataka, India Sharma, VK (reprint author), Jawaharlal Nehru Ctr Adv Sci Res, Chronobiol Lab, Evolutionary & Organismal Biol Unit, POB 6436, Bangalore 560064, Karnataka, India. vsharma@jncasr.ac.in KL, Nikhil/0000-0003-1814-2069 Scientific and Education Research Board (SERB), New Delhi, India; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India The authors thank G Gupta, M Srivastava, P Kundu, and V Varma for their assistance with the experiments, A Lakshman for assistance with the preparation of the revised manuscript, two anonymous reviewers and Dr. Sheeba Vasu for suggesting useful changes to the manuscript. This study was funded by Scientific and Education Research Board (SERB), New Delhi, India, and Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India. ALLEMAND R, 1973, EXP GERONTOL, V8, P279, DOI 10.1016/0531-5565(73)90040-5; ASCHOFF J., 1967, INT J BIOMETEOROL, V11, P255, DOI 10.1007/BF01426649; Beaver LM, 2003, J BIOL RHYTHM, V18, P463, DOI 10.1177/0748730403259108; Beaver LM, 2002, P NATL ACAD SCI USA, V99, P2134, DOI 10.1073/pnas.032426699; BLUME J, 1962, NATURWISSENSCHAFTEN, V49, P525, DOI 10.1007/BF00636364; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CLOUDSLEYTHOMPSON JL, 1960, COLD SPRING HARB SYM, V25, P345, DOI 10.1101/SQB.1960.025.01.035; COSTA R, 1992, P ROY SOC B-BIOL SCI, V250, P43, DOI 10.1098/rspb.1992.0128; Daan S, 2011, J BIOL RHYTHM, V26, P118, DOI 10.1177/0748730410397645; De J, 2012, J BIOL RHYTHM, V27, P280, DOI 10.1177/0748730412448360; DeCoursey PJ, 1997, PHYSIOL BEHAV, V62, P1099, DOI 10.1016/S0031-9384(97)00263-1; DeCoursey PJ, 2000, J COMP PHYSIOL A, V186, P169, DOI 10.1007/s003590050017; DeCoursey PJ, 1998, J BIOL RHYTHM, V13, P229, DOI 10.1177/074873098129000075; Duffy JF, 1999, J INVEST MED, V47, P141; Duffy JF, 2001, BEHAV NEUROSCI, V115, P895, DOI 10.1037//0735-7044.115.4.895; Dunlap J. C, 2004, CHRONOBIOLOGY BIOL T; Emerson KJ, 2008, EVOLUTION, V62, P979, DOI 10.1111/j.1558-5646.2008.00324.x; Fleury F, 2000, P ROY SOC B-BIOL SCI, V267, P1005, DOI 10.1098/rspb.2000.1103; GARLAND T, 1991, ANNU REV ECOL SYST, V22, P193, DOI 10.1146/annurev.es.22.110191.001205; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; KONOPKA RJ, 1971, P NATL ACAD SCI USA, V68, P2112, DOI 10.1073/pnas.68.9.2112; Kumar S, 2005, CHRONOBIOL INT, V22, P641, DOI 10.1080/07420520500179423; Kumar S, 2007, J EXP BIOL, V210, P906, DOI 10.1242/jeb.001354; Kumar S, 2006, BMC DEV BIOL, V6, DOI 10.1186/1471-213X-6-57; KYRIACOU CP, 1990, HEREDITY, V64, P395, DOI 10.1038/hdy.1990.50; LANKINEN P, 1993, HEREDITY, V71, P210, DOI 10.1038/hdy.1993.126; LANKINEN P, 1986, J COMP PHYSIOL A, V159, P123, DOI 10.1007/BF00612503; Michael TP, 2003, SCIENCE, V302, P1049, DOI 10.1126/science.1082971; Miyatake T, 1997, BEHAV GENET, V27, P489, DOI 10.1023/A:1025682618895; Mukherjee N, 2012, J EXP BIOL, V215, P2960, DOI 10.1242/jeb.071290; Nikhil KL, 2016, CHRONOBIOL INT, V33, P22, DOI 10.3109/07420528.2015.1108981; Nikhil KL, 2014, J BIOL RHYTHM, V29, P427, DOI 10.1177/0748730414553797; Paranjpe DA, 2005, BMC DEV BIOL, V5, DOI 10.1186/1471-213X-5-5; PARTRIDGE L, 1993, GENETICA, V91, P89, DOI 10.1007/BF01435990; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PITTENDRIGH CS, 1970, P NATL ACAD SCI USA, V65, P500, DOI 10.1073/pnas.65.3.500; PITTENDRIGH CS, 1989, J BIOL RHYTHM, V4, P217; PITTENDRIGH CS, 1993, ANNU REV PHYSIOL, V55, P16; PITTENDRIGH CS, 1967, P NATL ACAD SCI USA, V58, P1762, DOI 10.1073/pnas.58.4.1762; PITTENDRIGH CS, 1971, BIOCHRONOMETRY, P212; POULSON TL, 1969, SCIENCE, V165, P971; Qiu J, 1996, J BIOL RHYTHM, V11, P75, DOI 10.1177/074873049601100108; ROBERTSON FW, 1963, GENET RES, V4, P74, DOI 10.1017/S001667230000344X; ROBERTSON FW, 1960, GENET RES, V1, P288, DOI 10.1017/S0016672300000264; Roenneberg T, 2003, J BIOL RHYTHM, V18, P80, DOI 10.1177/0748730402239679; ROSATO E, 1994, GENETICS, V138, P693; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; Saunders D.S., 2002, INSECT CLOCKS; Sawyer LA, 1997, SCIENCE, V278, P2117, DOI 10.1126/science.278.5346.2117; Sawyer LA, 2006, GENETICS, V174, P465, DOI 10.1534/genetics.106.058792; Shimizu T, 1997, HEREDITY, V79, P600, DOI 10.1038/sj.hdy.6882610; SKOPIK SD, 1967, P NATL ACAD SCI USA, V58, P1862, DOI 10.1073/pnas.58.5.1862; Sokal R.R., 1995, BIOMETRY PRINCIPLES; Takahashi KH, 2013, HEREDITY, V110, P312, DOI 10.1038/hdy.2012.88; Tauber E, 2007, SCIENCE, V316, P1895, DOI 10.1126/science.1138412; Vaze KM, 2013, CHRONOBIOL INT, V30, P413, DOI 10.3109/07420528.2012.754457; Vaze KM, 2012, CHRONOBIOL INT, V29, P674, DOI 10.3109/07420528.2012.680557; West AC, 2015, BIOESSAYS, V37, P777, DOI 10.1002/bies.201400173; Yadav P, 2014, BMC DEV BIOL, V14, DOI 10.1186/1471-213X-14-19; Yadav P, 2014, J EXP BIOL, V217, P580, DOI 10.1242/jeb.093864; Yadav P, 2014, BIOGERONTOLOGY, V15, P33, DOI 10.1007/s10522-013-9467-y; Yadav P, 2013, J COMP PHYSIOL B, V183, P333, DOI 10.1007/s00360-012-0716-1 62 1 1 0 20 BMC LONDON CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. FEB 27 2016 16 46 10.1186/s12862-016-0622-3 14 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity DF1TT WOS:000371122800001 26922082 DOAJ Gold, Green Published 2019-02-21 J Engqvist, L; Taborsky, M Engqvist, Leif; Taborsky, Michael The evolution of genetic and conditional alternative reproductive tactics PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article ESS; evolutionary branching; genetic polymorphism; individual-based simulations; sexual selection; sperm competition LIFE-HISTORY EVOLUTION; SPERM COMPETITION; BLUEGILL SUNFISH; SEXUAL SELECTION; CICHLID FISH; GROWTH-RATE; STRATEGIES; SIZE; DIMORPHISM; MORTALITY Frequency-dependent selection may drive adaptive diversification within species. It is yet unclear why the occurrence of alternative reproductive tactics (ARTs) is highly divergent between major animal taxa. Here we aim to clarify the environmental and social conditions favouring the evolution of intra-population variance of male reproductive phenotypes. Our results suggest that genetically determined ARTs that are fixed for life evolve when there is strong selection on body size due to size-dependent competitiveness, in combination with environmental factors reducing size benefits. The latter may result from growth costs or, more generally, from age-dependent but size-independent mortality causes. This generates disruptive selection on growth trajectories underlying tactic choice. In many parameter settings, the model also predicts ARTs to evolve that are flexible and responsive to current conditions. Interestingly, the conditions favouring the evolution of flexible tactics diverge considerably from those favouring genetic variability. Nevertheless, in a restricted but relevant parameter space, our model predicts the simultaneous emergence and maintenance of a mixture of multiple tactics, both genetically and conditionally determined. Important conditions for the emergence of ARTs include size variation of competitors, which is inherently greater in species with indeterminate growth than in taxa reproducing only after reaching their terminal body size. This is probably the reason why ARTs are more common in fishes than in other major taxa. [Engqvist, Leif; Taborsky, Michael] Univ Bern, Inst Ecol & Evolut, Dept Behav Ecol, Bern, Switzerland Engqvist, L (reprint author), Univ Bern, Inst Ecol & Evolut, Dept Behav Ecol, Bern, Switzerland. leif.engqvist@iee.unibe.ch Engqvist, Leif/C-3595-2009 Engqvist, Leif/0000-0002-9434-7130; Taborsky, Michael/0000-0002-1357-4316 Swiss National Science Foundation [310030B_138660] Our research was funded by the Swiss National Science Foundation, grant no. 310030B_138660 to M.T. Alonzo SH, 2010, J EVOLUTION BIOL, V23, P2614, DOI 10.1111/j.1420-9101.2010.02130.x; Alonzo SH, 2000, EVOL ECOL RES, V2, P997; Arnott G, 2009, ANIM BEHAV, V77, P991, DOI 10.1016/j.anbehav.2009.02.010; Baldauf SA, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6233; Benaglia T, 2009, J STAT SOFTW, V36, P1; Brockmann HJ, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P177, DOI 10.1017/CBO9780511542602.009; Buzatto BA, 2015, EVOLUTION, V69, P2613, DOI 10.1111/evo.12766; Buzatto BA, 2014, EVOLUTION OF INSECT MATING SYSTEMS, P106; CHARNOV E L, 1982; Chevin LM, 2013, AM NAT, V182, P13, DOI 10.1086/670613; Darwin C., 1859, ORIGIN SPECIES MEANS; Dieckmann U, 1999, NATURE, V400, P354, DOI 10.1038/22521; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; EBERHARD WG, 1982, AM NAT, V119, P420, DOI 10.1086/283920; Emlen DJ, 2008, ANNU REV ECOL EVOL S, V39, P387, DOI 10.1146/annurev.ecolsys.39.110707.173502; ENQUIST M, 1990, ANIM BEHAV, V40, P1, DOI 10.1016/S0003-3472(05)80660-8; Fu P, 2001, P ROY SOC B-BIOL SCI, V268, P1105, DOI 10.1098/rspb.2001.1625; GADGIL M, 1972, AM NAT, V106, P574, DOI 10.1086/282797; Gross MR, 1996, TRENDS ECOL EVOL, V11, P263; GROSS MR, 1991, PHILOS T R SOC B, V332, P59, DOI 10.1098/rstb.1991.0033; GROSS MR, 1980, P NATL ACAD SCI-BIOL, V77, P6937, DOI 10.1073/pnas.77.11.6937; Hazel W, 2004, AM NAT, V163, P888, DOI 10.1086/386313; LIVELY CM, 1986, AM NAT, V128, P561, DOI 10.1086/284588; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moya-Larano J, 2007, BIOLOGY LETT, V3, P475, DOI 10.1098/rsbl.2007.0300; Neff BD, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0045; Oliveira RF, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P1, DOI 10.1017/CBO9780511542602; Ota K, 2010, NATURWISSENSCHAFTEN, V97, P1113, DOI 10.1007/s00114-010-0725-4; Parker G.A., 1998, SPERM COMPETITION SE; Parker GA, 2010, BIOL REV, V85, P897, DOI 10.1111/j.1469-185X.2010.00140.x; PENN D, 1995, ANIM BEHAV, V49, P1531, DOI 10.1016/0003-3472(95)90074-8; Plaistow SJ, 2004, BEHAV ECOL, V15, P534, DOI 10.1093/beheco/arh029; Pletcher SD, 1999, J EVOLUTION BIOL, V12, P430; Radwan J, 2009, ADV STUD BEHAV, V39, P185, DOI 10.1016/S0065-3454(09)39006-3; Randerson JP, 2001, TRENDS ECOL EVOL, V16, P571, DOI 10.1016/S0169-5347(01)02270-4; Remmel T, 2011, BIOL J LINN SOC, V104, P1, DOI 10.1111/j.1095-8312.2011.01721.x; Rowland JM, 2009, SCIENCE, V323, P773, DOI 10.1126/science.1167345; Rueffler C, 2006, TRENDS ECOL EVOL, V21, P238, DOI 10.1016/j.tree.2006.03.003; Schutz D, 2010, FUNCT ECOL, V24, P131, DOI 10.1111/j.1365-2435.2009.01605.x; Schutz D, 2005, ANIM BEHAV, V70, P539, DOI 10.1016/j.anbehav.2004.11.010; SEBENS KP, 1987, ANNU REV ECOL SYST, V18, P371, DOI 10.1146/annurev.es.18.110187.002103; SHUSTER SM, 1991, NATURE, V350, P608, DOI 10.1038/350608a0; Shuster SM, 2003, MATING SYSTEMS STRAT; SILER W, 1979, ECOLOGY, V60, P750, DOI 10.2307/1936612; Simmons LW, 2007, EVOLUTION, V61, P2684, DOI 10.1111/j.1558-5646.2007.00243.x; Sinervo B, 1996, NATURE, V380, P240, DOI 10.1038/380240a0; Sogard SM, 1997, B MAR SCI, V60, P1129; Stoltz JA, 2006, BEHAV ECOL SOCIOBIOL, V59, P811, DOI 10.1007/s00265-005-0127-3; Svensson EI, 2005, AM NAT, V165, P567, DOI 10.1086/429278; Taborsky B, 2003, P ROY SOC B-BIOL SCI, V270, P713, DOI 10.1098/rspb.2002.2255; Taborsky M, 1998, TRENDS ECOL EVOL, V13, P222, DOI 10.1016/S0169-5347(97)01318-9; Taborsky M, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P251, DOI 10.1017/CBO9780511542602.011; Taborsky M, 2010, ANIMAL BEHAVIOUR: EVOLUTION AND MECHANISMS, P537, DOI 10.1007/978-3-642-02624-9_18; Taborsky M, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P1, DOI 10.1017/CBO9780511542602.002; Tomkins JL, 2002, ANIM BEHAV, V63, P1009, DOI 10.1006/anbe.2001.1994; Tomkins JL, 2004, NATURE, V431, P1099, DOI 10.1038/nature02918; Tomkins JL, 2007, TRENDS ECOL EVOL, V22, P522, DOI 10.1016/j.tree.2007.09.002; VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; Wirtz Ocana S, 2014, P R SOC B, V281, DOI [10.1098/rspb.2014.0253, DOI 10.1098/RSPB.2014.0253]; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001 63 11 11 1 49 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. FEB 24 2016 283 1825 20152945 10.1098/rspb.2015.2945 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology DJ4WC WOS:000374207800006 26911960 Green Published, Bronze 2019-02-21 J Fujiwara, M Fujiwara, Masami Incorporating demographic diversity into food web models: Effects on community structure and dynamics ECOLOGICAL MODELLING English Article Competition; Diversity; Life history evolution; Predator-prey; Structured population; Trophic interactions LIFE-HISTORIES; STABILITY; SIZE; POPULATIONS; ECOSYSTEMS; NETWORKS; PREY Life history strategies affect population dynamics; however, their effects on community dynamics remain poorly understood. A food web model with stage-structured populations (structured food web) and an equivalent model with unstructured populations (unstructured food web) were developed, and their structures and dynamics were compared. Both models incorporated energetic processes and allowed populations to go extinct and invade over time. The results from the two models shared some similarities. For example, all of the initial randomly formed food webs were unstable, but the extinction and invasion rates of populations declined over time. However, there were also clear differences between them. For example, preventing trophic interactions among similar-sized organisms led to a large increase in the number of persisting consumer populations under the unstructured food web, but the number was almost unchanged under the structured food web. Furthermore, an increase in the carrying capacity of primary producers caused an increase in the population extinction rate of consumers under the structured food web, but the extinction rate declined under the unstructured food web. Finally, the average trophic level of consumers in the unstructured food web was often at 2, indicating the food web primarily consisted of herbivores. On the other hand, the average trophic level in the structured food web was significantly higher, indicating the existence of trophic interactions among consumers. These results suggest the importance of incorporating stage structures into food web models to bridge the current theories of food web dynamics and empirical observations because nature consists of structured populations. In particular, I conclude that if one wants to study trophic interactions beyond herbivory, it is crucial to incorporate structured populations into food web models. (C) 2015 Elsevier B.V. All rights reserved. [Fujiwara, Masami] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA Fujiwara, M (reprint author), Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA. fujiwara@tamu.edu Fujiwara, Masami/C-3115-2012 Fujiwara, Masami/0000-0002-9255-6043 National Sea Grant Office, National Oceanic and Atmospheric Administration, U.S. Department of Commerce [NA14OAR4170102] I thank C. Acres, C.B. Piper, K.O. Winemiller, and C. Zhou for valuable feedback on a previous version of this manuscript. I also thank anonymous reviewers whose comments substantially improved the paper. This project was funded in part by an Institutional Grant (NA14OAR4170102) to the Texas Sea Grant College Program from the National Sea Grant Office, National Oceanic and Atmospheric Administration, U.S. Department of Commerce. Allesina S, 2012, NATURE, V483, P205, DOI 10.1038/nature10832; COHEN JE, 1993, J ANIM ECOL, V62, P67, DOI 10.2307/5483; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; De Roos AM, 2003, ECOL LETT, V6, P473, DOI 10.1046/j.1461-0248.2003.00458.x; De Roos AM, 2008, THEOR POPUL BIOL, V73, P47, DOI 10.1016/j.tpb.2007.09.004; DEANGELIS DL, 1975, ECOLOGY, V56, P238; Elton C. S., 1927, ANIMAL ECOLOGY; Fujiwara M., 2011, SCI REP, V1, P8; Fujiwara M, 2007, ECOLOGY, V88, P2345, DOI 10.1890/06-1405.1; Giacomini HC, 2013, ECOL MODEL, V251, P32, DOI 10.1016/j.ecolmodel.2012.12.003; Gross K, 2014, AM NAT, V183, P1, DOI 10.1086/673915; HAIRSTON NG, 1993, AM NAT, V142, P379, DOI 10.1086/285546; Hooper DU, 2005, ECOL MONOGR, V75, P3, DOI 10.1890/04-0922; Ives AR, 2007, SCIENCE, V317, P58, DOI 10.1126/science.1133258; Jeppsson T, 2012, AM NAT, V179, P706, DOI 10.1086/665696; KLEIBER M, 1947, PHYSIOL REV, V27, P511; Lorrilliere R, 2012, ECOL MODEL, V224, P103, DOI 10.1016/j.ecolmodel.2011.10.015; MACARTHUR R, 1955, ECOLOGY, V36, P533, DOI 10.2307/1929601; MacDougall AS, 2013, NATURE, V494, P86, DOI 10.1038/nature11869; Martinson HM, 2012, ECOLOGY, V93, P1779, DOI 10.1890/11-1497.1; MATLAB, 2012, MATLAB VER 7; MAY RM, 1972, NATURE, V238, P413, DOI 10.1038/238413a0; May RM, 2006, TRENDS ECOL EVOL, V21, P394, DOI 10.1016/j.tree.2006.03.013; McCann KS, 2000, NATURE, V405, P228, DOI 10.1038/35012234; Mora C, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1000606; Nakazawa T, 2015, POPUL ECOL, V57, P347, DOI 10.1007/s10144-014-0448-z; Neubert MG, 2000, J MATH BIOL, V41, P103, DOI 10.1007/s002850070001; Nisbet RM, 2000, J ANIM ECOL, V69, P913, DOI 10.1046/j.1365-2656.2000.00448.x; Otto SB, 2007, NATURE, V450, P1226, DOI 10.1038/nature06359; Petchey OL, 2008, P NATL ACAD SCI USA, V105, P4191, DOI 10.1073/pnas.0710672105; Rooney N, 2008, ECOL LETT, V11, P867, DOI 10.1111/j.1461-0248.2008.01193.x; Rooney N, 2012, TRENDS ECOL EVOL, V27, P40, DOI 10.1016/j.tree.2011.09.001; Rudolf VHW, 2011, ECOL LETT, V14, P75, DOI 10.1111/j.1461-0248.2010.01558.x; Rudolf V.H.W., 2013, NAT COMMUN, V4, P7; Rudolf VHW, 2013, ECOLOGY, V94, P1046, DOI 10.1890/12-0378.1; Shurin JB, 2006, P ROY SOC B-BIOL SCI, V273, P1, DOI 10.1098/rspb.2005.3377; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x; Varughese MM, 2011, ECOL COMPLEX, V8, P105, DOI 10.1016/j.ecocom.2010.09.001; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WINEMILLER KO, 1990, ECOL MONOGR, V60, P331, DOI 10.2307/1943061; Wollrab S, 2013, ECOLOGY, V94, P2886, DOI 10.1890/12-1490.1; YODZIS P, 1981, NATURE, V289, P674, DOI 10.1038/289674a0; YODZIS P, 1992, AM NAT, V139, P1151, DOI 10.1086/285380; Yodzis P, 2000, ECOLOGY, V81, P261, DOI 10.2307/177149; Zhou C, 2013, ECOL MODEL, V268, P25, DOI 10.1016/j.ecolmodel.2013.07.028 46 1 1 2 20 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3800 1872-7026 ECOL MODEL Ecol. Model. FEB 24 2016 322 10 18 10.1016/j.ecolmodel.2015.11.015 9 Ecology Environmental Sciences & Ecology DC8DQ WOS:000369450500002 Other Gold 2019-02-21 J Wang, W; Franklin, SB; Lu, ZJ; Rude, BJ Wang, Wei; Franklin, Scott B.; Lu, Zhijun; Rude, Brian J. Delayed Flowering in Bamboo: Evidence from Fargesia qinlingensis in the Qinling Mountains of China FRONTIERS IN PLANT SCIENCE English Article biomass; clonal; delayed flowering; energy allocation; gregarious; habitat modification; predator; satiation LIFE-HISTORY EVOLUTION; VEITCHII VAR. HIRSUTA; FIRE CYCLE HYPOTHESIS; GIANT PANDA RESERVE; DWARF BAMBOO; DIE-OFF; SEMELPAROUS BAMBOO; SOUTHWESTERN CHINA; TREE REGENERATION; TEMPERATE FOREST Gregarious flowering of bamboo species impacts ecosystem properties and conservation, but documentation of these periodic events is difficult. Here, we compare the characteristics of flowering sites and un-flowered patches of an arrow bamboo (Fargesia ginlingensis) in the Qinling Mountains, China, over a 5 -year period (20032007) after a mast flowering event (2003). We examined flowering culm and seedling characteristics in relation to questions regarding the evolution of delayed flowering. Density of live culms decreased over the 5 years in both flowering sites and un-flowered patches. New shoots regenerated only in un-flowered patches. Chemical constituent allocation varied among culm parts (stems, branches, and leaves). Crude protein and extract ether in branches and leaves were less in flowering culms than in un-flowered culms. Seedling density was lower than expected based on floret counts, suggesting predation of seeds. Seedling density was significantly greater in flowering sites than in un-flowered patches and decreased over time. Seedlings performed better in flowering sites than in un-flowered patches based on their height, leaf number per seedling, and average leaf length, while fertilization on flowering sites had no significant effect on seedling growth, suggesting a saturation of resources. This study suggested that the characteristics of bamboos and bamboo stands were dramatically altered during this flowering event, enhancing seedling establishment and growth, and supporting mostly the habitat modification hypothesis of delayed reproduction. [Wang, Wei] Epsilon, Analyt Consulting Grp, Blue Ash, OH USA; [Franklin, Scott B.] Univ Northern Colorado, Sch Biol Sci, Greeley, CO USA; [Lu, Zhijun] Chinese Acad Sci, Wuhan Bot Garden, Key Lab Aquat Bot & Watershed Ecol, Wuhan, Peoples R China; [Rude, Brian J.] Mississippi State Univ, HW Essig Nutr Lab, Starkville, MS USA Lu, ZJ (reprint author), Chinese Acad Sci, Wuhan Bot Garden, Key Lab Aquat Bot & Watershed Ecol, Wuhan, Peoples R China. luzj@wbgcas.cn Memphis Zoo; National Natural Science Foundation of China [30900178]; Ministry of Science and Technology of China [2015FY1103002-4]; CAS Fellowship at the Wuhan Botanical Garden This research was financially supported by the Memphis Zoo, the National Natural Science Foundation of China (grant no. 30900178), the Ministry of Science and Technology of China (grant no. 2015FY1103002-4), and by a CAS Fellowship at the Wuhan Botanical Garden. Abe M, 2002, J VEG SCI, V13, P565, DOI 10.1658/1100-9233(2002)013[0565:TEOSAC]2.0.CO;2; Abe M, 2001, OECOLOGIA, V127, P281, DOI 10.1007/s004420000585; Abe Y, 2014, J FOREST RES-JPN, V19, P268, DOI 10.1007/s10310-013-0413-2; Abe Y, 2012, ECOL RES, V27, P625, DOI 10.1007/s11284-012-0933-9; ABRAHAMSON WG, 1982, ECOLOGY, V63, P982, DOI 10.2307/1937238; Austin AT, 2012, FUNCT ECOL, V26, P265, DOI 10.1111/j.1365-2435.2011.01910.x; Banik R. L., 1995, Bamboo and rattan genetic resources and use. Proceedings of the first INBAR biodiversity, genetic resources and conservation working group, Singapore, 7-9 November 1994., P1; Caccia FD, 2015, J ECOL, V103, P231, DOI 10.1111/1365-2745.12349; Caccia FD, 2009, OECOLOGIA, V161, P771, DOI 10.1007/s00442-009-1412-z; de Carvalho AL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054852; DIERENFELD ES, 1982, J NUTR, V112, P636; Franklin DC, 2004, J BIOGEOGR, V31, P773, DOI 10.1111/j.1365-2699.2003.01057.x; Franklin DC, 2003, AUST J BOT, V51, P529, DOI 10.1071/BT03014; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GADGIL M, 1984, BIOTROPICA, V16, P161, DOI 10.2307/2388050; Gallardo Milton H., 1999, Mastozoologia Neotropical, V6, P103; Gonzalez ME, 2002, PLANT ECOL, V161, P59, DOI 10.1023/A:1020378822847; Grime J. P, 1979, PLANT STRATEGIES VEG; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; Harper J. L., 1977, POPULATION BIOL PLAN; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; Huang H., 1994, J BAMBOO RES, V13, P37; Iler AM, 2013, AM J BOT, V100, P519, DOI 10.3732/ajb.1200491; Jaksic FM, 2003, AUSTRAL ECOL, V28, P237, DOI 10.1046/j.1442-9993.2003.01271.x; JANZEN DH, 1976, ANNU REV ECOL SYST, V7, P347, DOI 10.1146/annurev.es.07.110176.002023; JOHNSON KG, 1988, NATL GEOGR RES, V4, P161; Kakishima S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028140; Keeley JE, 1999, AM NAT, V154, P383, DOI 10.1086/303243; Kitamura Keiko, 2011, Bulletin of the Forestry and Forest Products Research Institute, V10, P1; Kitzberger T, 2007, ECOLOGY, V88, P2541, DOI 10.1890/06-1587.1; Leopold A, 1975, PLANT GROWTH DEV; Li B, 2013, CHINESE SCI BULL, V58, P2128, DOI 10.1007/s11434-012-5641-x; Li Yun, 2003, Acta Botanica Boreali-Occidentalia Sinica, V23, P127; MAKITA A, 1992, ECOL RES, V7, P245, DOI 10.1007/BF02347093; Makita Akifumi, 1998, Plant Species Biology, V13, P85, DOI 10.1111/j.1442-1984.1998.tb00251.x; Marchesini VA, 2009, J VEG SCI, V20, P424, DOI 10.1111/j.1654-1103.2009.05768.x; Matsuo A., 2014, ANN BOT, V114, P1; Miyazaki Y, 2009, J PLANT RES, V122, P523, DOI 10.1007/s10265-009-0241-9; Mizuki I, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105051; Montti L, 2014, ACTA OECOL, V54, P36, DOI 10.1016/j.actao.2013.03.004; Montti L, 2011, FOREST ECOL MANAG, V262, P1360, DOI 10.1016/j.foreco.2011.06.029; Nath AJ, 2010, CURR SCI INDIA, V99, P154; PITELKA LF, 1977, ECOLOGY, V58, P1055, DOI 10.2307/1936925; Qin Z., 1993, DYNAMICS BAMBOO FORE; Qin Z., 1989, J BAMBOO RES, V8, P1; Qin Z. S., 1985, Journal of Bamboo Research, V4, P1; REID DG, 1989, BIOL CONSERV, V49, P85, DOI 10.1016/0006-3207(89)90081-5; Saha S, 2001, AM NAT, V158, P659, DOI 10.1086/323593; SAS Institute, 2013, SAS US GUID STAT 9; Schaller G. B., 1990, RES PROGR BIOL GIANT, P65; SCHALLER GB, 1985, GIANT PANDAS WOLONG; Sertse D., 2011, J BIODIVER ENV SCI, V1, P16; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; Stern MJ, 1999, BIOTROPICA, V31, P365, DOI 10.1111/j.1744-7429.1999.tb00148.x; TAYLOR AH, 1987, J APPL ECOL, V24, P419, DOI 10.2307/2403884; TAYLOR AH, 1993, BIOL CONSERV, V63, P231, DOI 10.1016/0006-3207(93)90717-F; TAYLOR AH, 1991, B TORREY BOT CLUB, V118, P247, DOI 10.2307/2996639; TAYLOR AH, 1988, AM J BOT, V75, P1065, DOI 10.2307/2443774; Tian X., 1991, J BAMBOO RES, V10, P23; Tian X., 1987, J BAMBOO RES, V2, P39; VEBLEN TT, 1982, B TORREY BOT CLUB, V109, P474, DOI 10.2307/2996488; Wang W, 2007, ECOL RES, V22, P467, DOI 10.1007/s11284-006-0027-7; Widmer Y., 1998, J AM BAMBOO SOC, V12, P1; ZHENG LY, 1994, ANN ENTOMOL SOC AM, V87, P91, DOI 10.1093/aesa/87.1.91 64 3 3 4 40 FRONTIERS MEDIA SA LAUSANNE PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND 1664-462X FRONT PLANT SCI Front. Plant Sci. FEB 16 2016 7 151 10.3389/fpls.2016.00151 13 Plant Sciences Plant Sciences DD7SS WOS:000370125000002 26909094 DOAJ Gold, Green Published 2019-02-21 J Martinez, C; Chavarria, C; Sharpe, DMT; De Leon, LF Martinez, Celestino; Chavarria, Carmen; Sharpe, Diana M. T.; De Leon, Luis Fernando Low Predictability of Colour Polymorphism in Introduced Guppy (Poecilia reticulata) Populations in Panama PLOS ONE English Article LIFE-HISTORY EVOLUTION; MALE PREDATION RISK; FEMALE MATE CHOICE; TRINIDADIAN GUPPIES; SEXUAL SELECTION; MATING PREFERENCES; RAPID EVOLUTION; PHENOTYPIC VARIATION; GEOGRAPHIC-VARIATION; ADAPTIVE EVOLUTION Colour polymorphism is a recurrent feature of natural populations, and its maintenance has been studied in a range of taxa in their native ranges. However, less is known about whether (and how) colour polymorphism is maintained when populations are removed from their native environments, as in the case of introduced species. We here address this issue by analyzing variation in colour patterns in recently-discovered introduced populations of the guppy (Poecilia reticulata) in Panama. Specifically, we use classic colour analysis to estimate variation in the number and the relative area of different colour spots across low predation sites in the introduced Panamanian range of the species. We then compare this variation to that found in the native range of the species under low-and high predation regimes. We found aspects of the colour pattern that were both consistent and inconsistent with the classical paradigm of colour evolution in guppies. On one hand, the same colours that dominated in native populations (orange, iridescent and black) were also the most dominant in the introduced populations in Panama. On the other, there were no clear differences between either introduced-low and native low-and high predation populations. Our results are therefore only partially consistent with the traditional role of female preference in the absence of predators, and suggest that additional factors could influence colour patterns when populations are removed from their native environments. Future research on the interaction between female preference and environmental variability (e.g. multifarious selection), could help understand adaptive variation in this widely-introduced species, and the contexts under which variation in adaptive traits parallels (or not) variation in the native range. [Martinez, Celestino; Chavarria, Carmen; De Leon, Luis Fernando] Inst Invest Cient & Serv Alta Tecnol INDICASAT AI, Ctr Biodiversidad & Descubrimiento Drogas, Panama City, Panama; [Sharpe, Diana M. T.] McGill Univ, Dept Biol, 1205 Doctor Penfield Ave, Montreal, PQ H3A 1B1, Canada De Leon, LF (reprint author), Inst Invest Cient & Serv Alta Tecnol INDICASAT AI, Ctr Biodiversidad & Descubrimiento Drogas, Panama City, Panama. luis.deleonreyna@gmail.com Secretaria Nacional de Ciencia, Tecnologia e Innovacion (SENACYT, Panama) [ITE12-002]; Sistema Nacional de Investigacion (SNI); Fonds Quebecois de la Recherche sur la Nature et les Technologies (FRQNT, Canada) Funding was provided by the Secretaria Nacional de Ciencia, Tecnologia e Innovacion (SENACYT, Panama), in the form of a Grant No. ITE12-002 to LFD. LFD and DMTS were supported by the Sistema Nacional de Investigacion (SNI). DMTS was also supported by a post-doctoral fellowship from The Fonds Quebecois de la Recherche sur la Nature et les Technologies (FRQNT, Canada). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Bailey RM, 1963, POECILIID FISHES CYP, V126, P1; Blows MW, 2003, EVOLUTION, V57, P1622; Bond AB, 2007, ANNU REV ECOL EVOL S, V38, P489, DOI 10.1146/annurev.ecolsys.38.091206.095728; BREDEN F, 1987, NATURE, V329, P831, DOI 10.1038/329831a0; BROOKS R, 1995, ANIM BEHAV, V50, P301, DOI 10.1006/anbe.1995.0246; Brooks R, 2002, GENETICA, V116, P343, DOI 10.1023/A:1021228308636; Brooks R, 2001, EVOLUTION, V55, P1002, DOI 10.1554/0014-3820(2001)055[1002:DAISSA]2.0.CO;2; Brooks R, 1999, AM NAT, V154, P37, DOI 10.1086/303219; Brower AVZ, 1996, EVOLUTION, V50, P195, DOI 10.1111/j.1558-5646.1996.tb04486.x; Deacon AE, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024416; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Easty LK, 2011, ANIM BEHAV, V82, P1085, DOI 10.1016/j.anbehav.2011.08.001; Egea-Serrano A, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3266; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; FARR JA, 1977, EVOLUTION, V31, P162, DOI 10.1111/j.1558-5646.1977.tb00993.x; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; Godin JGJ, 2005, ANIM BEHAV, V69, P999, DOI 10.1016/j.anbehav.2004.07.016; Godin JGJ, 2003, BEHAV ECOL, V14, P194, DOI 10.1093/beheco/14.2.194; Godin JGJ, 1996, P NATL ACAD SCI USA, V93, P10262, DOI 10.1073/pnas.93.19.10262; Gonzalez L, 2004, THESIS U PANAMA; Gordon SP, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1244; Gotanda KM, 2013, OECOLOGIA, V172, P155, DOI 10.1007/s00442-012-2485-7; Gotanda KM, 2014, USING ADAPTIVE TRAIT, P108; Gray SM, 2007, TRENDS ECOL EVOL, V22, P71, DOI 10.1016/j.tree.2006.10.005; Gray SM, 2011, CAN J FISH AQUAT SCI, V68, P330, DOI 10.1139/F10-151; Grether GF, 2004, P ROY SOC B-BIOL SCI, V271, P45, DOI 10.1098/rspb.2003.2526; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Hall M, 2004, BMC EVOL BIOL, V4, DOI 10.1186/1471-2148-4-1; HASKINS CP, 1961, POLYMORPHISM POPULAT; Hedrick PW, 2001, MOL ECOL, V10, P851, DOI 10.1046/j.1365-294X.2001.01243.x; Hendry AP, 2013, EVOL ECOL RES, V15, P111; Hildebrand S. F., 1938, Field Museum Publications Chicago Zoological Series, V22, P219; HOAGLAND KE, 1977, BIOL BULL, V152, P360, DOI 10.2307/1540424; Houde A., 1997, SEX COLOR MATE CHOIC; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; Houde AE, 1997, ANIM BEHAV, V53, P343, DOI 10.1006/anbe.1996.0399; Hudon J, 2003, PHYSIOL BIOCHEM ZOOL, V76, P776, DOI 10.1086/378138; Huey RB, 2000, SCIENCE, V287, P308, DOI 10.1126/science.287.5451.308; Hugall AF, 2012, NATURE, V485, P631, DOI 10.1038/nature11050; Hughes KA, 2013, NATURE, V503, P108, DOI 10.1038/nature12717; Ivanova NV, 2006, MOL ECOL NOTES, V6, P998, DOI 10.1111/j.1471-8286.2006.01428.x; Karim N, 2007, J EVOLUTION BIOL, V20, P1339, DOI 10.1111/j.1420-9101.2007.01350.x; Kelehear C, 2012, ECOL LETT, V15, P329, DOI 10.1111/j.1461-0248.2012.01742.x; Kemp DJ, 2009, P R SOC B, V276, P4335, DOI 10.1098/rspb.2009.1226; Kemp DJ, 2008, BIOL J LINN SOC, V95, P734, DOI 10.1111/j.1095-8312.2008.01112.x; Kettlewell B, 1973, EVOLUTION MELANISM S; Kiritome A, 2012, ICHTHYOL RES, V59, P304, DOI 10.1007/s10228-012-0287-x; Kocher TD, 2004, NAT REV GENET, V5, P288, DOI 10.1038/nrg1316; Kodric-Brown A, 2001, BEHAV ECOL SOCIOBIOL, V50, P346, DOI 10.1007/s002650100374; Kolbe JJ, 2012, SCIENCE, V335, P1086, DOI 10.1126/science.1209566; Kordric-Brown A, 1985, BEHAV ECOL SOCIOBIOL, V25, P393; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Lindholm A, 2002, AM NAT, V160, pS214, DOI 10.1086/342898; Lindholm AK, 2014, J EVOLUTION BIOL, V27, P437, DOI 10.1111/jeb.12313; Lindholm AK, 2005, MOL ECOL, V14, P3671, DOI 10.1111/j.1365-294X.2005.02697.x; Locatello L, 2006, J EVOLUTION BIOL, V19, P1595, DOI 10.1111/j.1420-9101.2006.01117.x; Lockwood JL, 2009, INVASION ECOLOGY; Loftin HG, 1965, THESIS FLORIDA STATE; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Millar NP, 2012, ENVIRON BIOL FISH, V94, P513, DOI 10.1007/s10641-011-9801-7; Millar NP, 2006, OIKOS, V113, P1; Mooney HA, 2001, P NATL ACAD SCI USA, V98, P5446, DOI 10.1073/pnas.091093398; MULLER F, 1879, P ENTOMOL SOC LOND, pR20; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1554/0014-3820(2002)056[0776:REOEAI]2.0.CO;2; Olendorf R, 2006, NATURE, V441, P633, DOI 10.1038/nature04646; Phillips BL, 2006, NATURE, V439, P803, DOI 10.1038/439803a; Poulton EB, 1890, THE COLOURS OF ANIMA, DOI [10.5962/bhl.title.11353, DOI 10.5962/BHL.TITLE.11353]; Price AC, 2008, ZEBRAFISH, V5, P297, DOI 10.1089/zeb.2008.0551; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; ROBISSON P, 1993, ETHOLOGY, V94, P279; Rodd FH, 2002, P ROY SOC B-BIOL SCI, V269, P475, DOI 10.1098/rspb.2001.1891; Roulin A, 2004, BIOL REV, V79, P815, DOI 10.1017/S1464793104006487; Ruell EW, 2013, P R SOC B, V280, P2012, DOI DOI 10.1098/RSPB.2012.2019; Schwartz AK, 2010, FUNCT ECOL, V24, P354, DOI 10.1111/j.1365-2435.2009.01652.x; STONER G, 1988, BEHAV ECOL SOCIOBIOL, V22, P285, DOI 10.1007/BF00299844; Team RDC, 2011, R LANG ENV STAT COMP; Templeton CN, 2004, BEHAV ECOL, V15, P673, DOI 10.1093/beheco/arh065; Torres-Dowdall J, 2012, EVOLUTION, V66, P3432, DOI 10.1111/j.1558-5646.2012.01694.x; Tripathi N, 2009, P ROY SOC B-BIOL SCI, V276, P2195, DOI 10.1098/rspb.2008.1930; Vega AJ, 2006, TECNOCIENCIA, V8, P87; Vignal C, 2004, NATURE, V430, P448, DOI 10.1038/nature02645; WINGE O, 1947, HEREDITY, V1, P65, DOI 10.1038/hdy.1947.4; Winge O, 1922, J GENET, V12, P145, DOI 10.1007/BF02983078; ZARET TM, 1971, ECOLOGY, V52, P336, DOI 10.2307/1934593 89 1 1 0 43 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One FEB 10 2016 11 2 e0148040 10.1371/journal.pone.0148040 18 Multidisciplinary Sciences Science & Technology - Other Topics DD6PR WOS:000370046600041 26863538 DOAJ Gold, Green Published 2019-02-21 J Copilas-Ciocianu, D; Boros, BV Copilas-Ciocianu, Denis; Boros, Bianca V. Contrasting life history strategies in a phylogenetically diverse community of freshwater amphipods (Crustacea: Malacostraca) ZOOLOGY English Article Amphipoda; Freshwater amphipods; Life history differences; Native species GAMMARUS-BALCANICUS SCHAFERNA; GAMMARIDEAN AMPHIPODS; CYCLE CHARACTERISTICS; GENUS GAMMARUS; PATTERNS; TRAITS; COEXISTENCE; DIVERSIFICATION; MORPHOLOGY; FOSSARUM Differences in life histories are commonly exhibited within ecological communities, especially among species that display increased variations in body size and morphology and are phylogenetically distant. To examine the relationship between morphological dissimilarity and life history divergence, we investigated three morphologically distinct and distantly related species of freshwater amphipods that co-occur throughout the Danube lowlands - Gammarus balcanicus dacicus, Niphargus valachicus and Synurella ambulans - by collecting monthly samples during a one-year period. Results revealed that the studied species differ significantly with respect to fecundity, size at maturity, number of generations per year, duration and timing of the reproductive period and egg volume. Despite some overlap, each species possesses a unique combination of traits, supporting the hypothesis that life history variation within freshwater amphipod communities can reflect dissimilarities regarding body size, morphology and evolutionary relationships. However, it is not yet clear Which of these factors has the most significant contribution to life history divergence. (C) 2015 Elsevier GmbH. All rights reserved. [Copilas-Ciocianu, Denis] Charles Univ Prague, Dept Ecol, Vinicna 7, CR-12844 Prague, Czech Republic; [Copilas-Ciocianu, Denis; Boros, Bianca V.] West Univ Timisoara, Dept Biol & Chem, Pestalozzi 16A, Timisoara 300115, Romania Copilas-Ciocianu, D (reprint author), Charles Univ Prague, Dept Ecol, Vinicna 7, CR-12844 Prague, Czech Republic. denis.copilas@yahoo.com Copilas-Ciocianu, Denis/0000-0002-6374-2365 Charles University in Prague [GAUK 1398215] We thank Marius G. Berchi, Andreea Alina Zimta and Daniela Duma for their assistance during the fieldwork, Lucian Parvulescu for providing facilities, Egle Sidagyte for help and suggestions with statistical analyses, Chris Johnson for language corrections and Adam Petrusek for helpful comments and advice. Two anonymous reviewers provided constructive criticism that greatly improved the manuscript. DCC was funded by the Charles University in Prague (project GAUK 1398215). Bacela K, 2009, BIOL INVASIONS, V11, P2055, DOI 10.1007/s10530-009-9496-2; Beermann J, 2013, J CRUSTACEAN BIOL, V33, P784, DOI 10.1163/1937240X-00002190; Best J.R., 2013, PLOS ONE, V8; Beyer W.H., 1987, CRC HDB MATH SCI; Bonsall MB, 2004, SCIENCE, V306, P111, DOI 10.1126/science.1100680; Carausu S., 1955, CRUSTACEA; Castiglioni DD, 2008, ACTA OECOL, V33, P36, DOI 10.1016/j.actao.2007.09.007; Cavender-Bares J, 2004, AM NAT, V163, P823, DOI 10.1086/386375; CONOVER DO, 1992, J FISH BIOL, V41, P161, DOI 10.1111/j.1095-8649.1992.tb03876.x; Copilas-Ciocianu D, 2014, ZOOTAXA, V3893, P243, DOI 10.11646/zootaxa.3893.2.5; Costa FO, 1999, ACTA OECOL, V20, P305, DOI 10.1016/S1146-609X(99)00136-8; da Silva Castiglioni D., 1874, J NAT HIST, V41, P1571; Fiser C., 2012, ENCY CAVES, P555, DOI 10.1016/B978-0-12-383832-2.00082-7; Fiser C, 2007, J NAT HIST, V41, P2641, DOI 10.1080/00222930701661225; Fiser C, 2014, BIOSCIENCE, V64, P971, DOI 10.1093/biosci/biu148; Fiser C, 2013, OIKOS, V122, P770, DOI 10.1111/j.1600-0706.2012.20644.x; Fiser C, 2012, BIOL LETTERS, V8, P578, DOI 10.1098/rsbl.2012.0125; Fiser C, 2009, ZOOTAXA, P1; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Gaston KJ, 2001, GLOBAL ECOL BIOGEOGR, V10, P179, DOI 10.1046/j.1466-822x.2001.00225.x; Gittleman John L., 1996, P166; Gledhill T., 1969, Crustaceana, V16, P51, DOI 10.1163/156854068X00179; Grabowski M, 2007, HYDROBIOLOGIA, V590, P75, DOI 10.1007/s10750-007-0759-6; Grabowski M, 2014, LIMNOLOGICA, V47, P44, DOI 10.1016/j.limno.2014.04.001; Grass A., 2014, NAT RESOUR, V5, P583; Herrel A, 2008, P NATL ACAD SCI USA, V105, P4792, DOI 10.1073/pnas.0711998105; Horton T., 2013, WORLD AMPHIPODA DATA; Hou ZG, 2014, CLADISTICS, V30, P352, DOI 10.1111/cla.12055; Hou ZE, 2011, P NATL ACAD SCI USA, V108, P14533, DOI 10.1073/pnas.1104636108; Karaman G.S., 1974, Poljoprivreda Sum, V20, P83; KARAMAN GS, 1987, BIJDR DIERKD, V57, P207; Kevrekidis T, 2005, HYDROBIOLOGIA, V537, P53, DOI 10.1007/s10750-004-1713-5; KOLDING S, 1979, OIKOS, V33, P323, DOI 10.2307/3544009; KOLDING S, 1981, OIKOS, V37, P173, DOI 10.2307/3544462; Konopacka A., 2000, POLSKIE ARCHIWUM HYD, V47, P597; Lowry JK, 2013, ZOOTAXA, V3610, DOI 10.11646/zootaxa.3610.1.1; Lusk CH, 1998, ECOLOGY, V79, P795, DOI 10.1890/0012-9658(1998)079[0795:LHDATS]2.0.CO;2; MacNeil C, 1997, BIOL REV, V72, P349, DOI 10.1017/S0006323196005038; Mamos T, 2014, J ZOOL SYST EVOL RES, V52, P237, DOI 10.1111/jzs.12062; Meijering Meertinus P. D., 1995, Polskie Archiwum Hydrobiologii, V42, P527; MILES DB, 1992, AM NAT, V139, P848, DOI 10.1086/285361; Motas C., 1962, CERCETARI ASUPRA BIO; NELSON WG, 1980, SARSIA, V65, P61; Nesemann H., 1995, Miscellanea Zoologica Hungarica, V10, P49; Pockl M, 2007, FRESHWATER BIOL, V52, P50, DOI 10.1111/j.1365-2427.2006.01671.x; R Development Core Team, 2013, R LANG ENV STAT COMP; SAINTE-MARIE B, 1991, HYDROBIOLOGIA, V223, P189, DOI 10.1007/BF00047641; Sket B., 1996, IUCN RED LIST THREAT; STEELE DH, 1975, CAN J ZOOL, V53, P1116, DOI 10.1139/z75-131; Straskraba M., 1972, B MUS CIV STOR NAT V, V5, P35; WELLBORN GA, 1995, AM MIDL NAT, V133, P322, DOI 10.2307/2426397; WILDISH DJ, 1982, INT J INVER REP DEV, V5, P1; WILDISH DJ, 1991, HYDROBIOLOGIA, V223, P171, DOI 10.1007/BF00047638; Wilhelm FM, 2000, FUNCT ECOL, V14, P413; Wysocka A, 2014, J BIOGEOGR, V41, P1758, DOI 10.1111/jbi.12335; Zganec K, 2011, INT REV HYDROBIOL, V96, P686, DOI 10.1002/iroh.201111370; ZIELINSKI D, 1995, CRUSTACEANA, V68, P61 57 3 3 1 11 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 0944-2006 ZOOLOGY Zoology FEB 2016 119 1 21 29 10.1016/j.zool.2015.11.001 9 Zoology Zoology DX6SX WOS:000384514500004 26643510 2019-02-21 J Nichols, HJ; Zecherle, L; Arbuckle, K Nichols, H. J.; Zecherle, L.; Arbuckle, K. Patterns of philopatry and longevity contribute to the evolution of post-reproductive lifespan in mammals BIOLOGY LETTERS English Article menopause; life-history evolution; kin-selection; dispersal; primate; cetacean MENOPAUSE While menopause has long been known as a characteristic trait of human reproduction, evidence for post-reproductive lifespan (PRLS) has recently been found in other mammals. Adaptive and non-adaptive hypotheses have been proposed to explain the evolution of PRLS, but formal tests of these are rare. We use a phylogenetic approach to evaluate hypotheses for the evolution of PRLS among mammals. In contrast to theoretical models predicting that PRLS may be promoted by male philopatry (which increases relatedness between a female and her group in old age), we find little evidence that male philopatry led to the evolution of a post-reproductive period. However, the proportion of life spent post-reproductive was related to lifespan and patterns of philopatry, suggesting that the duration of PRLS may be impacted by both non-adaptive and adaptive processes. Finally, the proportion of females experiencing PRLS was higher in species with male philopaty and larger groups, in accordance with adaptive models of PRLS. We suggest that the origin of PRLS primarily follows the non-adaptive 'mismatch' scenario, but that patterns of philopatry may subsequently confer adaptive benefits of late-life helping. [Nichols, H. J.; Zecherle, L.] Liverpool John Moores Univ, Sch Nat Sci & Psychol, Liverpool L3 3AF, Merseyside, England; [Arbuckle, K.] Univ Liverpool, Inst Integrat Biol, Liverpool L69 7ZB, Merseyside, England Nichols, HJ (reprint author), Liverpool John Moores Univ, Sch Nat Sci & Psychol, Liverpool L3 3AF, Merseyside, England. h.j.nichols@ljmu.ac.uk Arbuckle, Kevin/0000-0002-9171-5874; Nichols, Hazel/0000-0002-4455-6065 Bininda-Emonds ORP, 2007, NATURE, V446, P507, DOI 10.1038/nature05634; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Cohen AA, 2004, BIOL REV, V79, P733, DOI 10.1017/S1464793103006432; Croft DP, 2015, TRENDS ECOL EVOL, V30, P407, DOI 10.1016/j.tree.2015.04.011; Foster EA, 2012, SCIENCE, V337, P1313, DOI 10.1126/science.1224198; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Johnstone RA, 2010, P ROY SOC B-BIOL SCI, V277, P3765, DOI 10.1098/rspb.2010.0988; Jones NGB, 2002, AM J HUM BIOL, V14, P184, DOI 10.1002/ajhb.10038; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Levitis DA, 2013, EVOL ANTHROPOL, V22, P66, DOI 10.1002/evan.21332; Levitis DA, 2011, METHODS ECOL EVOL, V2, P446, DOI 10.1111/j.2041-210X.2011.00095.x; Maddison W.P., 2011, MESQUITE MODULAR SYS; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; Paradis E, 2002, J THEOR BIOL, V218, P175, DOI 10.1006/yjtbi.3066; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Ricklefs RE, 2003, EXP GERONTOL, V38, P741, DOI 10.1016/S0531-5565(03)00101-3; Shanley DP, 2001, BIOESSAYS, V23, P282, DOI 10.1002/1521-1878(200103)23:3<282::AID-BIES1038>3.3.CO;2-0; Tuljapurkar SD, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000785 18 6 6 1 26 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. FEB 1 2016 12 2 20150992 10.1098/rsbl.2015.0992 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology DK5LW WOS:000374962400008 26888915 Green Published 2019-02-21 J Nilsson, JF; Nilsson, JA Nilsson, Johan F.; Nilsson, Jan-Ake Fluctuating selection on basal metabolic rate ECOLOGY AND EVOLUTION English Article Basal metabolic rate; fluctuating selection; metabolic strategy; winter survival LONG-TERM REPEATABILITY; ZEBRA FINCH; ENERGY-METABOLISM; LABORATORY MICE; DEER MICE; SLOW PACE; GREAT TIT; WINTER; BIRDS; CONSEQUENCES BMR (Basal metabolic rate) is an important trait in animal life history as it represents a significant part of animal energy budgets. BMR has also been shown to be positively related to sustainable work rate and maximal thermoregulatory capacity. To this date, most of the studies have focused on the causes of interspecific and intraspecific variation in BMR, and fairly little is known about the fitness consequences of different metabolic strategies. In this study, we show that winter BMR affects local survival in a population of wild blue tits (Cyanistes caeruleus), but that the selection direction differs between years. We argue that this fluctuating selection is probably a consequence of varying winter climate with a positive relation between survival and BMR during cold and harsh conditions, but a negative relation during mild winters. This fluctuating selection can not only explain the pronounced variation in BMR in wild populations, but will also give us new insights into how energy turnover rates can shape the life-history strategies of animals. Furthermore, the study shows that the process of global warming may cause directional selection for a general reduction in BMR, affecting the general life-history strategy on the population level. [Nilsson, Johan F.; Nilsson, Jan-Ake] Lund Univ, Dept Biol, Evolutionary Ecol, Ecol Bldg, SE-22362 Lund, Sweden Nilsson, JF (reprint author), Lund Univ, Dept Biol, Evolutionary Ecol, Ecol Bldg, SE-22362 Lund, Sweden. johan.nilsson@biol.lu.se Nilsson, Johan/0000-0001-6744-6486 Swedish Research Council; Royal Physiographic Society in Lund Financial support was provided by the Swedish Research Council (to JAN) and by the Royal Physiographic Society in Lund (to JFN). Boratynski Z, 2010, J EVOLUTION BIOL, V23, P1969, DOI 10.1111/j.1420-9101.2010.02059.x; Boratynski Z, 2010, FUNCT ECOL, V24, P1252, DOI 10.1111/j.1365-2435.2010.01764.x; Broggi J, 2007, FUNCT ECOL, V21, P528, DOI 10.1111/j.1365-2435.2007.01255.x; Broggi J, 2005, EVOLUTION, V59, P1600; Broggi J, 2004, J ANIM ECOL, V73, P967, DOI 10.1111/j.0021-8790.2004.00872.x; Broggi J, 2009, FUNCT ECOL, V23, P768, DOI 10.1111/j.1365-2435.2009.01561.x; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Careau V, 2011, J EVOLUTION BIOL, V24, P2153, DOI 10.1111/j.1420-9101.2011.02344.x; Caro SP, 2009, J EXP BIOL, V212, P1994, DOI 10.1242/jeb.026344; Cooper SJ, 2002, PHYSIOL BIOCHEM ZOOL, V75, P386, DOI 10.1086/342256; Gebczynski AK, 2009, J EVOLUTION BIOL, V22, P1212, DOI 10.1111/j.1420-9101.2009.01734.x; Hammond A. K., 1997, NATURE, V386, P457; Jackson M. D., 2001, J ANIM ECOL, V70, P633; Konarzewski M, 2005, INTEGR COMP BIOL, V45, P416, DOI 10.1093/icb/45.3.416; Ksiazek A, 2004, PHYSIOL BIOCHEM ZOOL, V77, P890, DOI 10.1086/425190; Ksiazek A, 2009, J EXP BIOL, V212, P808, DOI 10.1242/jeb.025528; Labocha K. M., 2004, P BIOL SCI, V271, P367; Larivee L. M., 2010, FUNCT ECOL, V24, P597; Liknes ET, 2002, CONDOR, V104, P548, DOI 10.1650/0010-5422(2002)104[0548:SAITAG]2.0.CO;2; Liknes T. E., 1996, J AVIAN BIOL, V27, P279; McKechnie E. A., 2008, J COMP PHYSIOL B, V178, P235; McKechnie E. A., 2007, J EXP BIOL, V210, P97; McNab K. B., 2002, PHYSL ECOLOGY VERTEB; Nilsson JA, 2009, J EVOLUTION BIOL, V22, P1867, DOI 10.1111/j.1420-9101.2009.01798.x; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Nilsson JF, 2011, PHYSIOL BIOCHEM ZOOL, V84, P287, DOI 10.1086/659006; Raichlen DA, 2010, J COMP PHYSIOL B, V180, P301, DOI 10.1007/s00360-009-0399-4; Ronning B, 2007, J EVOLUTION BIOL, V20, P1815, DOI 10.1111/j.1420-9101.2007.01384.x; Ronning B, 2005, J EXP BIOL, V208, P4663, DOI 10.1242/jeb.01941; Sears MW, 2009, FUNCT ECOL, V23, P774, DOI 10.1111/j.1365-2435.2009.01559.x; Smit B, 2010, FUNCT ECOL, V24, P330, DOI 10.1111/j.1365-2435.2009.01646.x; Speakman R. J., 2000, ADV ECOL RES, V30, P177; Swanson DL, 2010, CURR ORNITHOL, V17, P75, DOI 10.1007/978-1-4419-6421-2_3; Tieleman I. B., 2008, BEHAV ECOL, V19, P949; Tieleman I. B., 2003, ECOLOGY, V84, P1800; Tobler M, 2007, BIOLOGY LETT, V3, P408, DOI 10.1098/rsbl.2007.0127; Verhulst S, 2006, BIOL LETT-UK, V2, P478, DOI 10.1098/rsbl.2006.0496; Versteegh A. M., 2008, COMP BIOCH PHYSL A, V150, P452; White CR, 2007, P ROY SOC B-BIOL SCI, V274, P287, DOI 10.1098/rspb.2006.3727; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Withers PC, 2001, AUST J ZOOL, V49, P445, DOI 10.1071/ZO00057; Wone B, 2009, P R SOC B, V276, P3695, DOI 10.1098/rspb.2009.0980; Zhang YF, 2015, J EXP BIOL, V218, P2190, DOI 10.1242/jeb.121822 46 6 7 1 29 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. FEB 2016 6 4 1197 1202 10.1002/ece3.1954 6 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DF1AC WOS:000371069800027 26839687 DOAJ Gold, Green Published 2019-02-21 J Lopez-Idiaquez, D; Vergara, P; Fargallo, JA; Martinez-Padilla, J Lopez-Idiaquez, David; Vergara, Pablo; Antonio Fargallo, Juan; Martinez-Padilla, Jesus Old males reduce melanin-pigmented traits and increase reproductive outcome under worse environmental conditions in common kestrels ECOLOGY AND EVOLUTION English Article Aging; longitudinal approach; long-term monitoring; ornamentation; plumage coloration; sexual selection DEPENDENT SEXUAL ADVERTISEMENT; EURASIAN KESTRELS; MATE CHOICE; EVOLUTIONARY SIGNIFICANCE; NATURAL-SELECTION; FEMALE ORNAMENT; PLUMAGE COLOR; TRADE-OFFS; GOOD GENES; WILD BIRD Secondary sexual traits displayed by males and females may have evolved as a signal of individual quality. However, both individual quality and investment on producing or maintaining enhanced sexual traits change as individuals age. At the same time, the costs associated to produce sexual traits might be attenuated or increased if environmental conditions are benign or worse respectively. Accordingly, environmental conditions are expected to shape the association between the expression of sexual traits and their reproductive outcome as individuals age. Nonetheless, little is known about the environmental influence on the co-variation between sexual traits and reproductive outcome throughout the life of individuals. We studied the age-dependency of the number and size of back spots, a melanin-based and sexual trait in adults of common kestrels (Falco tinnunculus). We analysed the age-dependence of reproductive traits and the environmental influence, defined as vole abundance, using a 10-year individual-based dataset. We broke down age-related changes of reproductive traits into within- and between-individual variation to assess their contribution to population-level patterns. Our results showed a within-individual decrease in the number, but not the size, of back spots in males. The size of back spots was positively correlated with food availability in males. Reproductive performance of males increased as they aged, in agreement with the life-history theory but depending of vole abundance. Remarkably, we found that having fewer back spots was positively associated with clutch size only for old individuals under low-food conditions. We suggest that environmental variation may shape the association between the expression of a sexual signal and reproductive outcome. We speculate that the reliability of sexual traits is higher when environmental conditions are poor only for old individuals. Within an evolutionary context, we suggest that the expression of sexual traits might be constrained by environmental conditions at later stages of life. [Lopez-Idiaquez, David; Vergara, Pablo; Antonio Fargallo, Juan; Martinez-Padilla, Jesus] Museo Nacl Ciencias Nat, Dept Evolutionary Ecol, Jose Gutierrez Abascal 2, Madrid 23006, Spain; [Lopez-Idiaquez, David] Inst Invest Recursos Cineget IREC, Dept Ecol, Ronda de Toledo S-N, Ciudad Real 13005, Spain; [Martinez-Padilla, Jesus] Univ Oviedo, Res Unit Biodivers, CSIC, OU,PA, Mieres 33600, Spain Lopez-Idiaquez, D (reprint author), Museo Nacl Ciencias Nat, Dept Evolutionary Ecol, Jose Gutierrez Abascal 2, Madrid 23006, Spain. davididiaquez@gmail.com Evolutionary Ecology, Ecologia Evolutiva/M-3553-2014; Martinez-Padilla, Jesus/C-6446-2008 Martinez-Padilla, Jesus/0000-0003-2956-5163 Ministerio de Economia y Competitividad of the Spanish Government [CGL2004-04479/BOS, CGL2007-61395/BOS, CGL2010-15726/BOS, CGL2013-42451-P] The long-term monitoring of the study population was financed by several projects of the Ministerio de Economia y Competitividad (CGL2004-04479/BOS, CGL2007-61395/BOS, CGL2010-15726/BOS, CGL2013-42451-P) of the Spanish Government. Andersson M., 1994, SEXUAL SELECTION; Badyaev AV, 2003, J EVOLUTION BIOL, V16, P1065, DOI 10.1046/j.1420-9101.2003.00628.x; Bates D., 2013, LME4 LINEAR MIXED EF; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; Candolin U, 2000, ANIM BEHAV, V60, P417, DOI 10.1006/anbe.2000.1481; Candolin U, 2003, BIOL REV, V78, P575, DOI 10.1017/S1464793103006158; Candolin U, 2000, P ROY SOC B-BIOL SCI, V267, P2425, DOI 10.1098/rspb.2000.1301; Chaine AS, 2008, SCIENCE, V319, P459, DOI 10.1126/science.1149167; Conover DO, 2009, ANN NY ACAD SCI, V1168, P100, DOI 10.1111/j.1749-6632.2009.04575.x; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Cotton S, 2004, P ROY SOC B-BIOL SCI, V271, P771, DOI 10.1098/rspb.2004.2688; Darwin C, 1871, DESCENT MAN SELECTIO; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Evans SR, 2013, J ANIM ECOL, V82, P418, DOI 10.1111/1365-2656.12008; Evans SR, 2011, EVOLUTION, V65, P1623, DOI 10.1111/j.1558-5646.2011.01253.x; Fargallo JA, 2001, BIRD STUDY, V48, P236, DOI 10.1080/00063650109461223; Fargallo JA, 2007, J ANIM ECOL, V76, P201, DOI 10.1111/j.1365-2656.2006.01193.x; Fargallo JA, 2007, EVOL ECOL, V21, P157, DOI 10.1007/s10682-006-0020-1; Fargallo JA, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004311; Forstmeier W, 2006, BEHAV ECOL SOCIOBIOL, V59, P634, DOI 10.1007/s00265-005-0090-z; Galvan I, 2009, FUNCT ECOL, V23, P302, DOI 10.1111/j.1365-2435.2008.01504.x; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Griffith SC, 1999, NATURE, V400, P358, DOI 10.1038/22536; Griffith SC, 2006, ANIM BEHAV, V71, P749, DOI 10.1016/j.anbehav.2005.07.016; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Jawor JM, 2003, AUK, V120, P249, DOI 10.1642/0004-8038(2003)120[0249:MOHASS]2.0.CO;2; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kervinen M, 2015, AM NAT, V185, P13, DOI 10.1086/679012; Kim SY, 2013, HEREDITY, V111, P139, DOI 10.1038/hdy.2013.29; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kokko H, 1996, P ROY SOC B-BIOL SCI, V263, P1533, DOI 10.1098/rspb.1996.0224; Kotiaho JS, 2001, BIOL REV, V76, P365, DOI 10.1017/S1464793101005711; Kuznetsova A, 2013, LMERTEST TEST RANDOM; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Martinez-Padilla J, 2014, HORM BEHAV, V65, P435, DOI 10.1016/j.yhbeh.2014.03.012; Martinez-Padilla J, 2010, J EVOLUTION BIOL, V23, P902, DOI 10.1111/j.1420-9101.2010.01956.x; Miller LK, 2005, EVOLUTION, V59, P2414; MOLLER AP, 1993, BEHAV ECOL SOCIOBIOL, V32, P167; Navarro-Lopez J, 2014, OECOLOGIA, V174, P1215, DOI 10.1007/s00442-013-2855-9; Niecke M, 2003, OECOLOGIA, V137, P153, DOI 10.1007/s00442-003-1307-3; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; PALOKANGAS P, 1994, ANIM BEHAV, V47, P443, DOI 10.1006/anbe.1994.1058; Partridge L, 1996, P ROY SOC B-BIOL SCI, V263, P1365, DOI 10.1098/rspb.1996.0200; Potti J, 2013, J EVOLUTION BIOL, V26, P1445, DOI 10.1111/jeb.12145; Potti J, 2014, IBIS, V156, P879, DOI 10.1111/ibi.12175; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Rivera-Gutierrez HF, 2010, ANIM BEHAV, V80, P451, DOI 10.1016/j.anbehav.2010.06.002; Robinson MR, 2012, ECOL LETT, V15, P611, DOI 10.1111/j.1461-0248.2012.01780.x; Roulin A, 1999, BEHAV ECOL, V10, P688, DOI 10.1093/beheco/10.6.688; Roulin A, 2004, OECOLOGIA, V140, P668, DOI 10.1007/s00442-004-1636-x; Roulin A., 2003, HEREDITY, V50, P6; Torres R, 2007, J ANIM ECOL, V76, P1161, DOI 10.1111/j.1365-2656.2007.01282.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; Velando A, 2010, BIOL LETTERS, V6, P194, DOI 10.1098/rsbl.2009.0759; Vergara P, 2012, J EVOLUTION BIOL, V25, P20, DOI 10.1111/j.1420-9101.2011.02399.x; Vergara P, 2007, ANIM BEHAV, V74, P1505, DOI 10.1016/j.anbehav.2007.03.013; Vergara P, 2012, BIOL J LINN SOC, V107, P788, DOI 10.1111/j.1095-8312.2012.01974.x; Vergara P, 2012, HORM BEHAV, V62, P407, DOI 10.1016/j.yhbeh.2012.07.007; Vergara P, 2012, BEHAV ECOL, V23, P502, DOI 10.1093/beheco/arr216; Vergara P, 2009, BIOL J LINN SOC, V97, P781, DOI 10.1111/j.1095-8312.2009.01263.x; Village A, 1990, THE KESTREL; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 68 9 9 3 30 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. FEB 2016 6 4 1224 1235 10.1002/ece3.1910 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DF1AC WOS:000371069800030 26941948 DOAJ Gold, Green Published 2019-02-21 J Mourocq, E; Bize, P; Bouwhuis, S; Bradley, R; Charmantier, A; de la Cruz, C; Drobniak, SM; Espie, RHM; Herenyi, M; Hotker, H; Kruger, O; Marzluff, J; Moller, AP; Nakagawa, S; Phillips, RA; Radford, AN; Roulin, A; Torok, J; Valencia, J; van de Pol, M; Warkentin, IG; Winney, IS; Wood, AG; Griesser, M Mourocq, Emeline; Bize, Pierre; Bouwhuis, Sandra; Bradley, Russell; Charmantier, Anne; de la Cruz, Carlos; Drobniak, Szymon M.; Espie, Richard H. M.; Herenyi, Marton; Hoetker, Hermann; Krueger, Oliver; Marzluff, John; Moller, Anders P.; Nakagawa, Shinichi; Phillips, Richard A.; Radford, Andrew N.; Roulin, Alexandre; Toeroek, Janos; Valencia, Juliana; van de Pol, Martijn; Warkentin, Ian G.; Winney, Isabel S.; Wood, Andrew G.; Griesser, Michael Life span and reproductive cost explain interspecific variation in the optimal onset of reproduction EVOLUTION English Article Age at first reproduction; comparative method; cost of reproduction; family formation theory; life-history theory DELAYED DISPERSAL; ECOLOGICAL CONSTRAINTS; MULTIMODEL INFERENCE; INDIVIDUAL FITNESS; BEHAVIORAL ECOLOGY; HISTORY EVOLUTION; 1ST REPRODUCTION; MODEL SELECTION; PARENTAL CARE; AGE Fitness can be profoundly influenced by the age at first reproduction (AFR), but to date the AFR-fitness relationship only has been investigated intraspecifically. Here, we investigated the relationship between AFR and average lifetime reproductive success (LRS) across 34 bird species. We assessed differences in the deviation of the Optimal AFR (i.e., the species-specific AFR associated with the highest LRS) from the age at sexual maturity, considering potential effects of life history as well as social and ecological factors. Most individuals adopted the species-specific Optimal AFR and both the mean and Optimal AFR of species correlated positively with life span. Interspecific deviations of the Optimal AFR were associated with indices reflecting a change in LRS or survival as a function of AFR: a delayed AFR was beneficial in species where early AFR was associated with a decrease in subsequent survival or reproductive output. Overall, our results suggest that a delayed onset of reproduction beyond maturity is an optimal strategy explained by a long life span and costs of early reproduction. By providing the first empirical confirmations of key predictions of life-history theory across species, this study contributes to a better understanding of life-history evolution. [Mourocq, Emeline; Drobniak, Szymon M.; Griesser, Michael] Univ Zurich, Anthropol Inst & Museum, Winterthurerstr190, CH-8057 Zurich, Switzerland; [Bize, Pierre] Univ Aberdeen, Inst Biol & Environm Sci, Zoology Bldg,Tillydrone Ave, Aberdeen AB24 2TZ, Scotland; [Bouwhuis, Sandra] Inst Avian Res Vogelwarte Helgoland, Vogelwarte 21, D-26386 Wilhelmshaven, Germany; [Bouwhuis, Sandra] Univ Oxford, Dept Zool, Edward Grey Inst, Tinbergen Bldg,South Parks Rd, Oxford OX1 3PS, England; [Bradley, Russell] Point Blue Conservat Sci, 3820 Cypress Dr 11, Petaluma, CA 94954 USA; [Charmantier, Anne] CNRS UMR 5175, Ctr Ecol Fonct & Evolut, 1919 Route Mende, F-34293 Montpellier, France; [de la Cruz, Carlos] Univ Extremadura, Biol & Ethol Res Grp, Ave Elvas, E-06071 Badajoz, Spain; [Espie, Richard H. M.] Saskatchewan Environm, Tech Resource Branch, 5th Floor,3211 Albert St, Regina S4S 5W6, SK, Canada; [Herenyi, Marton; Toeroek, Janos] Eotvos Lorand Univ, Dept Systemat Zool & Ecol, Behav Ecol Grp, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary; [Herenyi, Marton] Szent Istvan Univ, Dept Zool & Anim Ecol, Pater Karoly Utca 1, H-2100 Godollo, Hungary; [Hoetker, Hermann] Michael Otto Inst NABU, Goosstroot 1, D-24861 Bergenhusen, Germany; [Krueger, Oliver] Univ Bielefeld, Dept Anim Behav, Morgenbreede 45, D-33615 Bielefeld, Germany; [Marzluff, John] Univ Washington, Coll Environm, Sch Environm & Forest Sci, 4000 15th Ave, Seattle, WA 98195 USA; [Moller, Anders P.] Univ Paris 11, CNRS UMR 8079, Lab Ecol Systemat & Evolut, 362 Rue Doyen Andre Guinier, F-91405 Orsay, France; [Nakagawa, Shinichi] Univ Otago, Dept Zool, 340 Great King St,POBox 56, Dunedin 9054, New Zealand; [Nakagawa, Shinichi] Univ New S Wales, Sch Biol Earth & Environm Sci, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia; [Phillips, Richard A.; Wood, Andrew G.] NERC, British Antarctic Survey, Madingley Rd, Cambridge CB3 0ET, England; [Radford, Andrew N.] Univ Bristol, Sch Biol Sci, 24 Tyndall Ave, Bristol BS8 1TH, Avon, England; [Roulin, Alexandre] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland; [Valencia, Juliana] Univ Cordoba, Dept Zool, Catedra Recursos Cineget, Campus Rabanales, E-14071 Cordoba, Spain; [van de Pol, Martijn] Australian Natl Univ, Evolut, Ecol & Genet, Acton, ACT 2601, Australia; [van de Pol, Martijn] Netherlands Inst Ecol NIOO KNAW, Dept Anim Ecol, Droevendaalsesteeg 10, NL-6708 PB Wageningen, Netherlands; [Warkentin, Ian G.] Mem Univ Newfoundland, Environm Sci Program, Corner Brook A2H 6P9, NF, Canada; [Winney, Isabel S.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Mourocq, E (reprint author), Univ Zurich, Anthropol Inst & Museum, Winterthurerstr190, CH-8057 Zurich, Switzerland. emeline.mourocq@uzh.ch Library, Library/A-4320-2012; Drobniak, Szymon/K-4954-2015; Nakagawa, Shinichi/B-5571-2011; Moller, Anders/O-6665-2016; Griesser, Michael/J-4542-2012 Library, Library/0000-0002-3835-159X; Drobniak, Szymon/0000-0001-8101-6247; Nakagawa, Shinichi/0000-0002-7765-5182; Moller, Anders/0000-0003-3739-4675; Griesser, Michael/0000-0002-2220-2637; Winney, Isabel/0000-0001-8606-3720; Valencia, Juliana/0000-0002-8774-8315; Marzluff, John/0000-0002-6266-4975 Swiss National Research Foundation [PPOOP3_123520, PPOOP3_150752]; Natural Environment Research Council [bas0100035] The authors thank B. Hatchwell for contributing the long-tailed tit data, B. Kempenaers and E. Schlicht for contributing blue tit data; B. Sheldon for contributing the blue tit, great tit, and mute swan data; C. Perrins for contributing the mute swan data and T. Burkefor contributing the house sparrow data. They thank E. Postma and J. D. Ibanez Alamo for relevant discussions. They also thank to the numerous fieldworkers and funding agencies that contributed to these long-term studies. This study was financed by the Swiss National Research Foundation (grant numbers PPOOP3_123520 and PPOOP3_150752 to MG). PB, SB, RB, AC, CC, RE, MH, HH, OK, JM, AM, SN, RP, ANR, AR, JT, JV, MVP, IGW, ISW, AW provided unpublished data on lifetime reproductive success. EM compiled the data, performed the statistical analysis, and wrote the first draft of the manuscript. All authors contributed to revisions (especially MG) and gave final approval for publication. MG helped with data compilation and reflection on the manuscript. SMD, SN, and MG helped with the statistical methods and estimation of the indices. SMD wrote the R script to automate the estimation of two indices. The authors have no conflict of interest. Arnold KE, 1998, P ROY SOC B-BIOL SCI, V265, P739, DOI 10.1098/rspb.1998.0355; Barton K. A., 2013, MUMIN MULTIMODEL INF; Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Brommer JE, 2002, ECOL LETT, V5, P802, DOI 10.1046/j.1461-0248.2002.00369.x; Brommer JE, 1998, J ANIM ECOL, V67, P359, DOI 10.1046/j.1365-2656.1998.00201.x; Burnham KP, 2011, BEHAV ECOL SOCIOBIOL, V65, P23, DOI 10.1007/s00265-010-1029-6; CASWELL H, 1980, THEOR POPUL BIOL, V17, P71, DOI 10.1016/0040-5809(80)90015-5; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; Cherrett J. M., 1982, ECOLOGICAL CONCEPTS, P285; CLUTTONBROCK TH, 1988, REPROD SUCCESS; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Cooper NW, 2009, OIKOS, V118, P413, DOI 10.1111/j.1600-0706.2008.16997.x; Covas R, 2007, P ROY SOC B-BIOL SCI, V274, P1349, DOI 10.1098/rspb.2007.0117; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; delsHoyo J, 1992, HDB BIRDS WORLD; Dormann CF, 2013, ECOGRAPHY, V36, P27, DOI 10.1111/j.1600-0587.2012.07348.x; Drobniak SM, 2015, BEHAV ECOL, V26, P805, DOI 10.1093/beheco/arv015; Dugdale HL, 2010, J EVOLUTION BIOL, V23, P282, DOI 10.1111/j.1420-9101.2009.01896.x; Ekman J, 2001, J ANIM ECOL, V70, P317, DOI 10.1046/j.1365-2656.2001.00490.x; Ekman J, 2007, CURR BIOL, V17, pR417, DOI 10.1016/j.cub.2007.04.002; Ekman Jan, 2004, P35, DOI 10.1017/CBO9780511606816.003; EMLEN ST, 1982, AM NAT, V119, P29, DOI 10.1086/283888; ENS BJ, 1995, AM NAT, V146, P625, DOI 10.1086/285818; Estern D., 1979, AFR J ECOL, V17, P185; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; GIBBS HL, 1987, ECOLOGY, V68, P1735, DOI 10.2307/1939865; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; Hansen TF, 2012, SYST BIOL, V61, P413, DOI 10.1093/sysbio/syr122; Hatchwell BJ, 2000, ANIM BEHAV, V59, P1079, DOI 10.1006/anbe.2000.1394; Hawn AT, 2007, CURR BIOL, V17, P844, DOI 10.1016/j.cub.2007.03.036; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Jetz W, 2011, CURR BIOL, V21, P72, DOI 10.1016/j.cub.2010.11.075; Khan MZ, 2002, BEHAV ECOL SOCIOBIOL, V51, P336, DOI 10.1007/s00265-001-0441-3; Kim SY, 2011, OECOLOGIA, V166, P615, DOI 10.1007/s00442-011-1914-3; KOENIG WD, 1992, Q REV BIOL, V67, P111, DOI 10.1086/417552; Komdeur J, 1996, BEHAV ECOL, V7, P417, DOI 10.1093/beheco/7.4.417; Koricheva J., 2013, HDB METAANALYSIS ECO; Kruger O, 2005, J ANIM ECOL, V74, P266, DOI 10.1111/j.1365-2656.2004.00920.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lane JE, 2011, J EVOLUTION BIOL, V24, P1949, DOI 10.1111/j.1420-9101.2011.02334.x; Langen TA, 1996, ANIM BEHAV, V51, P575, DOI 10.1006/anbe.1996.0061; Lewontin R. C., 1965, P77; Link WA, 2002, J APPL STAT, V29, P207, DOI 10.1080/02664760120108700a; LIOU LW, 1993, AM NAT, V141, P507, DOI 10.1086/285488; Martin JGA, 2011, METHODS ECOL EVOL, V2, P362, DOI 10.1111/j.2041-210X.2010.00084.x; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; MCDONALD DB, 1993, BEHAV ECOL, V4, P297, DOI 10.1093/beheco/4.4.297; Millon A, 2010, J ANIM ECOL, V79, P426, DOI 10.1111/j.1365-2656.2009.01637.x; Newton I, 1989, LIFETIME REPROD SUCC; Oli MK, 2002, EVOL ECOL RES, V4, P563; Prevot-Julliard AC, 2001, OECOLOGIA, V127, P62, DOI 10.1007/s004420000564; Pyle P, 1997, BEHAV ECOL, V8, P140, DOI 10.1093/beheco/8.2.140; R Core Team, 2013, R LANG ENV STAT COMP; Ricklefs Robert E., 1983, V1, P1; Roff Derek A., 1992; Russell EM, 2000, EMU, V100, P377, DOI 10.1071/MU0005S; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Santos ESA, 2011, ETHOLOGY, V117, P547, DOI 10.1111/j.1439-0310.2011.01905.x; Schielzeth H, 2010, METHODS ECOL EVOL, V1, P103, DOI 10.1111/j.2041-210X.2010.00012.x; SKUTCH ALEXANDER F., 1961, CONDOR, V63, P198, DOI 10.2307/1365683; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Symonds MRE, 2011, BEHAV ECOL SOCIOBIOL, V65, P13, DOI 10.1007/s00265-010-1037-6; Tettamanti F, 2012, IBIS, V154, P338, DOI 10.1111/j.1474-919X.2012.01215.x; Valcu M, 2014, ECOGRAPHY, V37, P930, DOI 10.1111/ecog.00929; van de Pol M, 2012, METHODS ECOL EVOL, V3, P268, DOI 10.1111/j.2041-210X.2011.00160.x; van de Pol M, 2007, AM NAT, V170, P530, DOI 10.1086/521237; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; vansNoordwijk A. J., 1986, AM NAT, V128, P137, DOI DOI 10.1086/284547; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wooller R.D., 1989, P405; WOOTTON JT, 1987, EVOLUTION, V41, P732, DOI 10.1111/j.1558-5646.1987.tb05849.x; ZACK S, 1992, BEHAVIOUR, V123, P194, DOI 10.1163/156853992X00020; Zhang H, 2015, J ANIM ECOL, V84, P199, DOI 10.1111/1365-2656.12259; Garamszegi LZ, 2011, SYST BIOL, V60, P876, DOI 10.1093/sysbio/syr060 79 9 9 5 67 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution FEB 2016 70 2 296 313 10.1111/evo.12853 18 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DE5HQ WOS:000370662500004 26763090 Green Published 2019-02-21 J Evans, TM; Bauer, JE Evans, T. M.; Bauer, J. E. Using stable isotopes and C:N ratios to examine the life-history strategies and nutritional sources of larval lampreys JOURNAL OF FISH BIOLOGY English Article ammocoetes; Lampetra aepyptera; Lethenteron appendix; MixSIR NORTHERN BROOK LAMPREY; RIVER-BASIN; PETROMYZON-MARINUS; PACIFIC LAMPREY; LAKE-SUPERIOR; MIXING MODELS; FOOD WEBS; NITROGEN; CARBON; TERRESTRIAL Natural abundance stable-isotope analysis (C-13 and N-15) and C:N ratios were used to study the ammocoete phase of two common non-parasitic lamprey species (least brook lamprey Lampetra aepyptera and American brook lamprey Lethenteron appendix) in two tributaries of the Ohio River (U.S.A.). The C:N ratios suggest that each species employs different lipid accumulation strategies to support its metamorphosis and recruitment into an adult animal. Ammocoete C-13 values generally increased with increasing C:N values. In contrast to C-13, ammocoete N-15 values were weakly related to the total length (L-T) in L. aepyptera, but positively correlated to both L-T and C:N ratios in L. appendix. In L. appendix, C:N also correlated positively with L-T, and presumably age. A Bayesian mixing model using C-13 and N-15 was used to estimate nutritional subsidies of different potential food resources to ammocoetes at each site. The models suggested that although nutritional subsidies to ammocoetes varied as a function of site, ammocoetes were generally reliant on large contributions (42-62% at three sites) from aquatic plants. Contributions from aquatic sediment organic matter were also important at all sites (32-63%) for ammocoetes, with terrestrially derived plant materials contributing smaller amounts (4-33%). These findings provide important insights into the feeding ecology and nutrition of two species of lampreys. They also suggest that similar and other quantitative approaches are required to (1) fully understand how the observed stable-isotopes ratios are established in ammocoetes and (2) better assess ammocoete nutritional subsidies in different natal streams. [Evans, T. M.; Bauer, J. E.] Ohio State Univ, Aquat Biogeochem Lab, Dept Evolut Ecol & Organismal Biol, 300 Aronoff Lab,318 W 12th Ave, Columbus, OH 43210 USA Evans, TM (reprint author), SUNY Coll Environm Sci & Forestry, 144 Illick Hall,1 Forestry Dr, Syracuse, NY 13210 USA. tevans03@syr.edu Evans, Thomas/0000-0001-6717-4521 National Science Foundation [DEB-0234533, EAR-0403949, OCE-0961860] We thank A. Barrett and S. Loeffler for assisting in the collection and processing of samples, and A. Bellamy and K. Everson for additional help in the field. This work was partially supported by National Science Foundation awards DEB-0234533, EAR-0403949 and OCE-0961860 to J.E.B. We also thank the Fish Division of The Ohio State University Museum of Biological Diversity for providing advice, collection locations and help in the field. Thanks to S. Ludsin and two anonymous reviewers for comments on an earlier version of this manuscript. Adams CE, 2008, J FISH BIOL, V72, P2456, DOI 10.1111/j.1095-8649.2008.01844.x; Anderson C, 2005, CAN J FISH AQUAT SCI, V62, P333, DOI 10.1139/F04-191; Bilby RE, 1996, CAN J FISH AQUAT SCI, V53, P164, DOI 10.1139/cjfas-53-1-164; Canuel EA, 1997, LIMNOL OCEANOGR, V42, P1570, DOI 10.4319/lo.1997.42.7.1570; Chang CCY, 2002, CAN J FISH AQUAT SCI, V59, P1874, DOI 10.1139/F02-153; Close DA, 2002, FISHERIES, V27, P19, DOI 10.1577/1548-8446(2002)027<0019:TEACIO>2.0.CO;2; Cole JJ, 2001, MAR FRESHWATER RES, V52, P101, DOI 10.1071/MF00084; Cole JJ, 2011, P NATL ACAD SCI USA, V108, P1975, DOI 10.1073/pnas.1012807108; DENIRO MJ, 1977, SCIENCE, V197, P261, DOI 10.1126/science.327543; DOCKER MF, 1991, ENVIRON BIOL FISH, V31, P219, DOI 10.1007/BF00000688; Evans TM, 2015, NORTHEAST NAT, V22, P69, DOI 10.1656/045.022.0107; Fogel ML, 1999, OECOLOGIA, V120, P336, DOI 10.1007/s004420050867; Griffiths RW, 2001, T AM FISH SOC, V130, P289, DOI 10.1577/1548-8659(2001)130<0289:FALSLG>2.0.CO;2; Guenet B, 2010, ECOLOGY, V91, P2850, DOI 10.1890/09-1968.1; Hardisty M. W., 1971, BIOL LAMPREYS, P85; Hardisty MW, 2011, LAMPREYS LIFE JAWS; Harvey CJ, 2008, J GREAT LAKES RES, V34, P434, DOI 10.3394/0380-1330(2008)34[434:SAOVOS]2.0.CO;2; Hoefs J., 2004, STABLE ISOTOPE GEOCH; Inger R, 2010, J APPL ECOL, V47, P121, DOI 10.1111/j.1365-2664.2009.01761.x; Jin SM, 2013, REMOTE SENS ENVIRON, V132, P159, DOI 10.1016/j.rse.2013.01.012; Kelso J. R. M., 1993, Ecology of Freshwater Fish, V2, P108, DOI 10.1111/j.1600-0633.1993.tb00090.x; Kiljunen M, 2006, J APPL ECOL, V43, P1213, DOI 10.1111/j.1365-2664.2006.01224.x; Kim SL, 2012, ENVIRON BIOL FISH, V95, P37, DOI 10.1007/s10641-011-9919-7; Lake JL, 2001, CAN J FISH AQUAT SCI, V58, P870, DOI 10.1139/cjfas-58-5-870; Limm MP, 2011, OIKOS, V120, P1076, DOI 10.1111/j.1600-0706.2010.18903.x; Logan JM, 2008, J ANIM ECOL, V77, P838, DOI 10.1111/j.1365-2656.2008.01394.x; MALLATT J, 1982, BIOL BULL, V163, P197, DOI 10.2307/1541509; Manzon RG, 2015, LAMPREYS BIOL CONSER, V1, P139; Marty J, 2009, RIVER RES APPL, V25, P962, DOI 10.1002/rra.1194; McClelland JW, 1997, LIMNOL OCEANOGR, V42, P930, DOI 10.4319/lo.1997.42.5.0930; Mesa MG, 2009, AM FISH S S, V72, P311; Moore JW, 2008, ECOL LETT, V11, P470, DOI 10.1111/j.1461-0248.2008.01163.x; MOORE JW, 1976, J ANIM ECOL, V45, P699, DOI 10.2307/3576; Morkert Sidney B., 1998, North American Journal of Fisheries Management, V18, P966, DOI 10.1577/1548-8675(1998)018<0966:EFEMOS>2.0.CO;2; Moser ML, 2007, REV FISH BIOL FISHER, V17, P45, DOI 10.1007/s11160-006-9037-3; Mundahl ND, 2005, ENVIRON BIOL FISH, V72, P67, DOI 10.1007/s10641-004-6591-1; O'BOYLE R N, 1977, Environmental Biology of Fishes, V2, P103, DOI 10.1007/BF00005366; Page L.M., 1991, FIELD GUIDE FRESHWAT; PETERSON BJ, 1987, ANNU REV ECOL SYST, V18, P293, DOI 10.1146/annurev.es.18.110187.001453; Post DM, 2007, OECOLOGIA, V152, P179, DOI 10.1007/s00442-006-0630-x; Post DM, 2002, ECOLOGY, V83, P703, DOI 10.2307/3071875; POTTER IC, 1986, OECOLOGIA, V70, P433, DOI 10.1007/BF00379508; POTTER IC, 1980, CAN J FISH AQUAT SCI, V37, P1641, DOI 10.1139/f80-212; PURVIS HA, 1970, COPEIA, P326; Quintella BR, 2003, ECOL FRESHW FISH, V12, P286, DOI 10.1046/j.1600-0633.2002.00030.x; Renaud CB, 1997, APPL ICHTHYOL, V13, P143, DOI DOI 10.1111/J.1439-0426.1997.TB00114.X; Shirakawa Hokuto, 2009, Ecology and Civil Engineering, V12, P87; Solomon CT, 2011, ECOLOGY, V92, P1115, DOI 10.1890/i0012-9658-92-5-1115; Stott AW, 1997, NATURWISSENSCHAFTEN, V84, P82, DOI 10.1007/s001140050354; SUTTON TM, 1994, CAN J FISH AQUAT SCI, V51, P2380, DOI 10.1139/f94-239; Uh C. T., 2014, LARVAL PACIFIC LAMPR; Van Riel M. C., 2006, LIVING RIVERS TRENDS, V187, P39; Weaver DM, 2015, HYDROBIOLOGIA, V760, P57, DOI 10.1007/s10750-015-2302-5; Yap MR, 2003, J GREAT LAKES RES, V29, P15, DOI 10.1016/S0380-1330(03)70475-4 54 3 3 1 42 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 1095-8649 J FISH BIOL J. Fish Biol. FEB 2016 88 2 638 654 10.1111/jfb.12858 17 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology DE7WS WOS:000370848200014 26707340 2019-02-21 J Rosengaus, RB; Reichheld, JL Rosengaus, Rebeca B.; Reichheld, Jennifer L. Phenoloxidase activity in the infraorder Isoptera: unraveling life-history correlates of immune investment SCIENCE OF NATURE English Article Social insects; Immune investment; Disease resistance; Ecological immunology TERMITE ZOOTERMOPSIS-ANGUSTICOLLIS; DAMPWOOD TERMITE; RETICULITERMES-FLAVIPES; EVOLUTIONARY ECOLOGY; ANTIFUNGAL PEPTIDES; INCIPIENT COLONIES; BOMBUS-TERRESTRIS; GRYLLUS-TEXENSIS; TENEBRIO-MOLITOR; APIS-MELLIFERA Within the area of ecological immunology, the quantification of phenoloxidase (PO) activity has been used as a proxy for estimating immune investment. Because termites have unique life-history traits and significant interspecific differences exist regarding their nesting and foraging habits, comparative studies on PO activity can shed light on the general principles influencing immune investment against the backdrop of sociality, reproductive potential, and gender. We quantified PO activity across four termite species ranging from the phylogenetically basal to the most derived, each with their particular nesting/foraging strategies. Our data indicate that PO activity varies across species, with soil-dwelling termites exhibiting significantly higher PO levels than the aboveground wood nester species which in turn have higher PO levels than arboreal species. Moreover, our comparative approach suggests that pathogenic risks can override reproductive potential as a more important driver of immune investment. No gender-based differences in PO activities were recorded. Although termite PO activity levels vary in accordance with a priori predictions made from life-history theory, our data indicate that nesting and foraging strategies (and their resulting pathogenic pressures) can supersede reproductive potential and other life-history traits in influencing investment in PO. Termites, within the eusocial insects, provide a unique perspective for inferring how different ecological pressures may have influenced immune function in general and their levels of PO activity, in particular. [Rosengaus, Rebeca B.; Reichheld, Jennifer L.] Northeastern Univ, Dept Marine & Environm Sci, 134 Mugar Life Sci Bldg,360 Huntington Ave, Boston, MA 02115 USA Rosengaus, RB (reprint author), Northeastern Univ, Dept Marine & Environm Sci, 134 Mugar Life Sci Bldg,360 Huntington Ave, Boston, MA 02115 USA. rosengaus@neu.edu National Science Foundation CAREER award [DEB 0447316] We thank the administrators of the Redwood East Bay Regional Parks, the Smithsonian Tropical Research Institute in Panama, and the Virgin Islands Environmental Resource Station (VIERS) in the Island of St. John, US Virgin Islands for allowing the collection of termite colonies. Drs. Claire Fuller and Marielle Postava-Davignon facilitated the collection and transportation of the N. acajutlae colony. We appreciate the help of Prof. Veronica Godoy (Northeastern University) for the use of the microplate reader and the technical support from Dr. Shelly Adamo during the development of our PO assay. We are indebted to Dr. Tarik Gouhier for statistical support. We appreciate the constructive feedback received from two anonymous referees which improved the clarity of this work. This work was partially supported by a National Science Foundation CAREER award (DEB 0447316 to R.R.). Abe T., 1987, P125; Adamo SA, 2004, ANIM BEHAV, V68, P1443, DOI 10.1016/j.anbehav.2004.05.005; Adamo SA, 2004, J INSECT PHYSIOL, V50, P209, DOI 10.1016/j.jinsphys.2003.11.011; Adamo SA, 2001, ANIM BEHAV, V62, P417, DOI 10.1006/anbe.2001.1786; Armitage SAO, 2005, HEREDITY, V94, P650, DOI 10.1038/sj.hdy.6800675; Ashida M., 1990, P239; Avulova S, 2011, J INSECT PHYSIOL, V57, P966, DOI 10.1016/j.jinsphys.2011.04.009; Baer B, 2005, INSECT SOC, V52, P298, DOI 10.1007/s00040-005-0809-x; Baer B, 2006, ECOL ENTOMOL, V31, P591, DOI 10.1111/j.1365-2311.2006.00825.x; Barnes AI, 2000, P ROY SOC B-BIOL SCI, V267, P177, DOI 10.1098/rspb.2000.0984; Bocher A, 2007, J EVOLUTION BIOL, V20, P2228, DOI 10.1111/j.1420-9101.2007.01424.x; Boomsma J.J., 2005, P139, DOI 10.1079/9780851998121.0139; Bourguignon T, 2015, MOL BIOL EVOL, V32, P406, DOI 10.1093/molbev/msu308; BREY PT, 1993, P NATL ACAD SCI USA, V90, P6275, DOI 10.1073/pnas.90.13.6275; Brune A, 2014, NAT REV MICROBIOL, V12, P168, DOI 10.1038/nrmicro3182; Bulmer MS, 2010, INSECT MOL BIOL, V19, P669, DOI 10.1111/j.1365-2583.2010.01023.x; Bulmer MS, 2004, MOL BIOL EVOL, V21, P2256, DOI 10.1093/molbev/msh236; Bulmer MS, 2006, MOL BIOL EVOL, V23, P317, DOI 10.1093/molbev/msj037; Calleri DV, 2006, INSECT SOC, V53, P204, DOI 10.1007/s00040-005-0859-0; Calleri DV, 2007, PHYSIOL ENTOMOL, V32, P136, DOI 10.1111/j.1365-3032.2007.00559.x; Cerenius L, 2004, IMMUNOL REV, V198, P116, DOI 10.1111/j.0105-2896.2004.00116.x; Chouvenc T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034484; Contreras-Garduno J, 2007, J INSECT PHYSIOL, V53, P612, DOI 10.1016/j.jinphys.2007.03.003; CRUSE A, 1998, THESIS MACQUARIE U; DUNN PE, 1990, BIOSCIENCE, V40, P738, DOI 10.2307/1311506; Evans JD, 1982, ECOL ENTOMOL, V7, P47; FREITAK D, 2003, P ROY SOC LOND B BIO, V270, P220, DOI DOI 10.1098/RSBL.2003.0069; Fuller CA, 2011, ECOL ENTOMOL, V36, P459, DOI 10.1111/j.1365-2311.2011.01289.x; Gerloff CU, 2003, FUNCT ECOL, V17, P582, DOI 10.1046/j.1365-2435.2003.00769.x; Hartke TR, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2563; HAVERTY M I, 1977, Sociobiology, V2, P199; Hillyer JF, 2016, DEV COMP IMMUNOL, V58, P102, DOI 10.1016/j.dci.2015.12.006; Holldobler B., 1984, PSYCHE, V91, P201, DOI DOI 10.1155/1984/70141; Holt JA, 1996, INSECT SOC, V43, P427, DOI 10.1007/BF01258415; HOWARD RW, 1980, ENVIRON ENTOMOL, V9, P458, DOI 10.1093/ee/9.4.458; Inward D, 2007, BIOLOGY LETT, V3, P331, DOI 10.1098/rsbl.2007.0102; Korb J, 2008, BIOL REV, V83, P295, DOI 10.1111/j.1469-185X.2008.00044.x; Krishna Kumar, 2013, Bulletin of the American Museum of Natural History, V377, P1; Kurihara Y, 2008, MYCOSCIENCE, V49, P241, DOI 10.1007/s10267-008-0414-8; Kurtz J, 2001, J INVERTEBR PATHOL, V78, P53, DOI 10.1006/jipa.2001.5040; Laughton AM, 2011, J INSECT PHYSIOL, V57, P1023, DOI 10.1016/j.jinsphys.2011.04.020; Lenz Michael, 1994, P159; Long CE, 2005, THESIS U MARYLAND; McKean KA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-76; Miller ME, 1969, BIOL TERMITES, V1, P283; Nigam Y, 1997, J INVERTEBR PATHOL, V69, P279, DOI 10.1006/jipa.1996.4652; Noirot C, 2000, TERMITES: EVOLUTION, SOCIALITY, SYMBIOSES, ECOLOGY, P121; NOIROT C, 1969, BIOL TERMITES, V1, P311; Pomfret JC, 2006, BEHAV ECOL, V17, P466, DOI 10.1093/beheco/arj050; Postava-Davignon MA, 2010, THESIS NE U; Reeson AF, 1998, P ROY SOC B-BIOL SCI, V265, P1787, DOI 10.1098/rspb.1998.0503; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; Rolff J, 2001, CAN J ZOOL, V79, P2176, DOI 10.1139/cjz-79-12-2176; ROSENGAUS RB, 1993, J INSECT BEHAV, V6, P237, DOI 10.1007/BF01051507; Rosengaus RB, 2001, BEHAV ECOL SOCIOBIOL, V50, P546, DOI 10.1007/s002650100394; Rosengaus RB, 2000, ETHOL ECOL EVOL, V12, P419; Rosengaus RB, 1999, NATURWISSENSCHAFTEN, V86, P588, DOI 10.1007/s001140050679; ROSENGAUS RB, 1991, J INSECT BEHAV, V4, P633, DOI 10.1007/BF01048075; Rosengaus RB, 2003, J INSECT SCI, V3, DOI 10.1093/jis/3.1.31; Rosengaus RB, 2011, BIOLOGY OF TERMITES: A MODERN SYNTHESIS, P165, DOI 10.1007/978-90-481-3977-4_7; Rosengaus RB, 2007, NATURWISSENSCHAFTEN, V94, P25, DOI 10.1007/s00114-006-0151-9; Ruiz-Gonzalez MX, 2006, BEHAV ECOL SOCIOBIOL, V60, P501, DOI 10.1007/s00265-006-0192-2; Schmid-Hempel P, 2005, ANNU REV ENTOMOL, V50, P529, DOI 10.1146/annurev.ento.50.071803.130420; Schmid-Hempel P., 1998, PARASITES SOCIAL INS; Schwarzenbach GA, 2005, J EVOLUTION BIOL, V18, P455, DOI 10.1111/j.1420-9101.2004.00820.x; SHELBY KS, 2006, J INSECT SCI, V13, P1; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Shellman-Reeve Janet S., 1997, P52; Sideri M, 2008, IMMUNOLOGY, V123, P528, DOI 10.1111/j.1365-2567.2007.02722.x; Siva-Jothy MT, 2001, PHYSIOL ENTOMOL, V26, P1, DOI 10.1046/j.1365-3032.2001.00206.x; Soderahall K, 1998, CURR OPIN MICROBIOL, V1, P23; SPSS, 2010, IBM SPSS STAT WIND V; Tarver MR, 2011, J INSECT PHYSIOL, V57, P771, DOI 10.1016/j.jinsphys.2011.02.015; THORNE B L, 1980, Psyche (Cambridge), V87, P235, DOI 10.1155/1980/12305; THORNE BL, 1985, INSECT SOC, V32, P411, DOI 10.1007/BF02224018; Thorne BL, 1996, ANN ENTOMOL SOC AM, V89, P346, DOI 10.1093/aesa/89.3.346; Thorne BL, 2000, ENVIRON ENTOMOL, V29, P256, DOI 10.1603/0046-225X(2000)029[0256:NGASIT]2.0.CO;2; THORNE BL, 1993, ANN ENTOMOL SOC AM, V86, P532, DOI 10.1093/aesa/86.5.532; Thorne BL, 1997, ANNU REV ECOL SYST, V28, P27, DOI 10.1146/annurev.ecolsys.28.1.27; Tunaz H, 2009, NATURWISSENSCHAFTEN, V96, P1115, DOI 10.1007/s00114-009-0572-3; Tyler Elizabeth R, 2006, BMC Physiol, V6, P6, DOI 10.1186/1472-6793-6-6; Vainio L, 2004, EVOL ECOL, V18, P75, DOI 10.1023/B:EVEC.0000017726.73906.b2; Valtonen TM, 2009, EVOL BIOL, V1, P49; Vargo EL, 2009, ANNU REV ENTOMOL, V54, P379, DOI 10.1146/annurev.ento.54.110807.090443; Waller D.A., 1987, P487; Wcislo WT, 1996, J INSECT BEHAV, V9, P643, DOI 10.1007/BF02213885; Wilson EO, 1971, INSECT SOC, P548; Wilson-Rich N, 2008, J INSECT PHYSIOL, V54, P1392, DOI 10.1016/j.jinsphys.2008.07.016; Zhao PC, 2007, INSECT BIOCHEM MOLEC, V37, P952, DOI 10.1016/j.ibmb.2007.05.001 89 1 1 1 15 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0028-1042 1432-1904 SCI NAT-HEIDELBERG Sci. Nat. FEB 2016 103 1-2 UNSP 14 10.1007/s00114-016-1338-3 10 Multidisciplinary Sciences Science & Technology - Other Topics DE8HG WOS:000370876000014 26838762 2019-02-21 J Norton, CG; Newman, BR Norton, Cynthia G.; Newman, Bridget R. Growth, reproduction and longevity in the hermaphroditic freshwater snail Helisoma trivolvis JOURNAL OF MOLLUSCAN STUDIES English Article LIFE-HISTORY TACTICS; LYMNAEA-STAGNALIS L; ENERGY BUDGETS; SPERM STORAGE; POND SNAIL; TRADE-OFF; ANIMALS; FERTILIZATION; ALLOCATION; EVOLUTION Life-history evolution often results in trade-offs between reproduction, growth and longevity. We investigated the relationships among these traits in a hermaphroditic freshwater snail, Helisoma trivolvis, by manipulating opportunities for reproduction and measuring body size and egg production throughout the lifespan. Snails were placed in one of four treatment groups: snails isolated for their entire lives, snails housed with a partner for 1 week at 18 weeks, snails housed with a partner for 1 week at 26 weeks and snails afforded 1 week of mating opportunities six times between 18 and 97 weeks. We monitored egg production and shell diameter regularly throughout the experiment until all snails had died. Isolated snails laid almost no eggs, confirming a low level of self-fertilization in this species. For both groups of snails with only one mating opportunity, the average duration of egg production was 16.8 weeks. Snails in the multiply-mated group continued to lay about 1 egg mass per day with an average of 19-25 eggs per mass for 48 weeks and then egg production decreased. Although all of the snails grew consistently throughout the experiment, when snails were actively laying eggs their growth slowed relative to those no longer producing eggs. There were no significant differences in longevity among snails that were isolated and never mated, those that mated once (either early or later in life) and those that had multiple mating opportunities and continued to lay eggs throughout their lifetimes. These overall patterns of growth demonstrate that costs of reproduction may result in trade-offs in the short term, but not in the long term. [Norton, Cynthia G.; Newman, Bridget R.] St Catherine Univ, Dept Biol, 2004 Randolph Ave, St Paul, MN 55105 USA Norton, CG (reprint author), St Catherine Univ, Dept Biol, 2004 Randolph Ave, St Paul, MN 55105 USA. cgnorton@stkate.edu 3M; Endowed Professorship in the Sciences at St Catherine University We thank the Endowed Professorship in the Sciences at St Catherine University and 3M for supporting CGN and BN, R. Dillon for providing the wild-caught snails, M. Zuk, B. Possidente, J. Koene and anonymous reviewers for valuable comments on the manuscript and B. Sherwood, M. Myers and the R. Shaw lab for statistical advice. ABDELMALEK ET, 1952, AM MIDL NAT, V48, P94, DOI 10.2307/2422134; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BIRKHEAD T.R., 2011, SPERM BIOL EVOLUTION; BROWN KM, 1983, AM NAT, V121, P871, DOI 10.1086/284109; CAIN GL, 1956, BIOL BULL, V111, P45, DOI 10.2307/1539182; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; DEVISSER JAGM, 1994, AM NAT, V144, P861; DILLON RT, 2000, ECOLOGY FRESHWATER M; Edward DA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P137; Escobar JS, 2011, EVOLUTION, V65, P1233, DOI 10.1111/j.1558-5646.2011.01218.x; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; GHISELIN MT, 1969, Q REV BIOL, V44, P189, DOI 10.1086/406066; Hoffer JNA, 2012, ANIM BEHAV, V84, P523, DOI 10.1016/j.anbehav.2012.06.002; HUNTER W. RUSSELL, 1961, PROC ZOOL SOC LONDON, V137, P135; JARNE P, 1993, BIOL J LINN SOC, V49, P99, DOI 10.1006/bijl.1993.1025; Koene JM, 2004, BELG J ZOOL, V134, P41; Koene JM, 2008, J MOLLUS STUD, V74, P331, DOI 10.1093/mollus/eyn020; Koene JM, 2009, EVOL ECOL, V23, P533, DOI 10.1007/s10682-008-9253-5; Nakadera Y, 2014, J MOLLUS STUD, V80, P1, DOI 10.1093/mollus/eyt049; Norton CG, 2006, J MOLLUS STUD, V72, P143, DOI 10.1093/mollus/eyi057; Norton CG, 2008, BEHAV ECOL, V19, P1122, DOI 10.1093/beheco/arn099; PARAENSE W L, 1988, Memorias do Instituto Oswaldo Cruz, V83, P405; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; ROLLO CD, 1988, ECOLOGY, V69, P146, DOI 10.2307/1943169; RUSSELL HUNTER W.D., 1978, MOLLUSCA SYSTEMATI A, V2A, P335; SMITH JM, 1958, J EXP BIOL, V35, P832; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; WETHINGTON AR, 1991, AM MALACOL BULL, V9, P99; WOLFNER M.F., 1999, CURRENT TOPICS DEV B, V41, P68; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; ZONNEVELD C, 1989, FUNCT ECOL, V3, P269, DOI 10.2307/2389365 34 2 2 2 29 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0260-1230 1464-3766 J MOLLUS STUD J. Molluscan Stud. FEB 2016 82 1 178 186 10.1093/mollus/eyv050 9 Marine & Freshwater Biology; Zoology Marine & Freshwater Biology; Zoology DE0FU WOS:000370301100020 Bronze 2019-02-21 J Plough, LV; Shin, G; Hedgecock, D Plough, L. V.; Shin, G.; Hedgecock, D. Genetic inviability is a major driver of type III survivorship in experimental families of a highly fecund marine bivalve MOLECULAR ECOLOGY English Article early life-history mortality; fisheries; genetic load; mutation; recruitment OYSTER CRASSOSTREA-GIGAS; SINGLE NUCLEOTIDE POLYMORPHISMS; LIFE-HISTORY STRATEGIES; REARED MYTILUS-EDULIS; PACIFIC OYSTER; INBREEDING DEPRESSION; LINKAGE MAPS; DROSOPHILA-MELANOGASTER; BROODSTOCK MANAGEMENT; REPRODUCTIVE SUCCESS The offspring of most highly fecund marine fish and shellfish suffer substantial mortality early in the life cycle, complicating prediction of recruitment and fisheries management. Early mortality has long been attributed to environmental factors and almost never to genetic sources. Previous work on a variety of marine bivalve species uncovered substantial genetic inviability among the offspring of inbred crosses, suggesting a large load of early-acting deleterious recessive mutations. However, genetic inviability of randomly bred offspring has not been addressed. Here, genome-wide surveys reveal widespread, genotype-dependent mortality in randomly bred, full-sib progenies of wild-caught Pacific oysters (Crassostrea gigas). Using gene-mapping methods, we infer that 11-19 detrimental alleles per family render 97.9-99.8% of progeny inviable. The variable genomic positions of viability loci among families imply a surprisingly large load of partially dominant or additive detrimental mutations in wild adult oysters. Although caution is required in interpreting the relevance of experimental results for natural field environments, we argue that the observed genetic inviability corresponds with type III survivorship, which is characteristic of both hatchery and field environments and that our results, therefore, suggest the need for additional experiments under the near-natural conditions of mesocosms. We explore the population genetic implications of our results, calculating a detrimental mutation rate that is comparable to that estimated for conifers and other highly fecund perennial plants. Genetic inviability ought to be considered as a potential major source of low and variable recruitment in highly fecund marine animals. [Plough, L. V.] Univ Maryland, Ctr Environm Sci, Horn Point Lab, POB 775, Cambridge, MD 21601 USA; [Shin, G.; Hedgecock, D.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA Hedgecock, D (reprint author), Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. dhedge@usc.edu Hedgecock, Dennis/I-8655-2012; Plough, Louis/E-1413-2014 Hedgecock, Dennis/0000-0002-3995-646X; Plough, Louis/0000-0001-5572-9649 NSF OCE [0412696]; Oakley Family Foundation Fellowship We thank Jonathan Davis and Taylor Shellfish Farms for larval rearing and grow out of the oysters. We thank Philip W. Hedrick (Arizona State University) for helpful comments on the manuscript and, in particular, for advice on population genetic theory. Numerous anonymous reviewers have provided constructive comments. This work was supported by NSF OCE grant 0412696 to D. Hedgecock and the Oakley Family Foundation Fellowship to L. Plough. BEAUMONT AR, 1983, MAR BIOL LETT, V4, P151; BEAUMONT AR, 1990, MAR BIOL, V106, P227, DOI 10.1007/BF01314804; BEAUMONT AR, 1988, HEREDITY, V61, P389, DOI 10.1038/hdy.1988.129; Beddington JR, 2007, SCIENCE, V316, P1713, DOI 10.1126/science.1137362; Beninca E, 2008, NATURE, V451, P822, DOI 10.1038/nature06512; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Bierne N, 1998, GENETICS, V148, P1893; Bos OG, 2006, J SEA RES, V55, P191, DOI 10.1016/j.seares.2005.10.006; Botsford LW, 1997, SCIENCE, V277, P509, DOI 10.1126/science.277.5325.509; BUCKLIN KA, 2002, THESIS U CALIFORNIA; Cowen RK, 2006, SCIENCE, V311, P522, DOI 10.1126/science.1122039; Crnokrak P, 2002, EVOLUTION, V56, P2347, DOI 10.1111/j.0014-3820.2002.tb00160.x; Cushing D. H, 1996, SCI RECRUITMENT FISH; CUSHING DH, 1990, ADV MAR BIOL, V26, P250, DOI DOI 10.1016/S0065-2881(08)60202-3); Dyck Andrew J., 2010, Journal of Bioeconomics, V12, P227, DOI 10.1007/s10818-010-9088-3; Ellegren H, 1997, NAT GENET, V17, P182, DOI 10.1038/ng1097-182; Ernande B, 2003, J EVOLUTION BIOL, V16, P399, DOI 10.1046/j.1420-9101.2003.00543.x; Evans F, 2004, AQUACULTURE, V230, P89, DOI 10.1016/j.aquaculture.2003.09.023; FENAUX L, 1994, LIMNOL OCEANOGR, V39, P84, DOI 10.4319/lo.1994.39.1.0084; FOGARTY MJ, 1991, TRENDS ECOL EVOL, V6, P241, DOI 10.1016/0169-5347(91)90069-A; FOLTZ DW, 1986, BIOCHEM GENET, V24, P941, DOI 10.1007/BF00554530; Fotel FL, 1999, J EXP MAR BIOL ECOL, V233, P213, DOI 10.1016/S0022-0981(98)00136-1; Gabriel S, 2009, CURR PROTOC HUM GENE, V2, P12, DOI DOI 10.1002/0471142905.HG0212S60; GAFFNEY PM, 1984, AQUACULTURE, V42, P289, DOI 10.1016/0044-8486(84)90108-X; GALLAGER SM, 1986, AQUACULTURE, V56, P105, DOI 10.1016/0044-8486(86)90021-9; Gao JJ, 2014, G3-GENES GENOM GENET, V4, P1503, DOI 10.1534/g3.114.011056; Gao JJ, 2011, P NATL ACAD SCI USA, V108, P15914, DOI 10.1073/pnas.1100233108; Harrang E, 2013, G3-GENES GENOM GENET, V3, P333, DOI 10.1534/g3.112.005181; Hedgecock D, 1995, AQUACULTURE, V137, P285, DOI 10.1016/0044-8486(95)01105-6; HEDGECOCK D, 1994, GENETICS AND EVOLUTION OF AQUATIC ORGANISMS, P122; Hedgecock D, 2007, AQUACULTURE, V272, pS17, DOI 10.1016/j.aquaculture.2007.07.226; Hedgecock D, 2015, G3-GENES GENOM GENET, V5, P2007, DOI 10.1534/g3.115.019570; Hedgecock D, 2011, B MAR SCI, V87, P971, DOI 10.5343/bms.2010.1051; Hedrick PW, 1999, HEREDITY, V82, P441, DOI 10.1038/sj.hdy.6885020; Helm MM, 2004, HARCHERY CULTURE BIV; Hjort J., 1914, RAPP P V REUN CONS I, V20, P1; Houde Edward D., 2009, Journal of Northwest Atlantic Fishery Science, V41, P53; Hu YP, 1996, MOL MAR BIOL BIOTECH, V5, P123; HU YP, 1993, J HERED, V84, P254, DOI 10.1093/oxfordjournals.jhered.a111335; Hubert S, 2004, GENETICS, V168, P351, DOI 10.1534/genetics.104.027342; Hubert S, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-191; IBARRA AM, 1995, AQUACULTURE, V134, P37, DOI 10.1016/0044-8486(95)00022-T; Joaquim S, 2014, AQUAC RES, V2014, P1; Karkkainen K, 1996, EVOLUTION, V50, P111, DOI 10.1111/j.1558-5646.1996.tb04477.x; KLEKOWSKI EJ, 1989, NATURE, V340, P389, DOI 10.1038/340389a0; KORRINGA P, 1946, NATURE, V158, P586, DOI 10.1038/158586d0; Korringa P., 1941, ARCH NEERLAND ZOOL, V5, P1; LANDE R, 1994, EVOLUTION, V48, P965, DOI 10.1111/j.1558-5646.1994.tb05286.x; LANDER ES, 1989, GENETICS, V121, P185; LANNAN JE, 1980, AQUACULTURE, V21, P353, DOI 10.1016/0044-8486(80)90070-8; LANNAN JE, 1980, AQUACULTURE, V21, P323, DOI 10.1016/0044-8486(80)90067-8; Launey S, 2001, GENETICS, V159, P255; Li G, 1998, CAN J FISH AQUAT SCI, V55, P1025, DOI 10.1139/cjfas-55-4-1025; Liu JY, 2011, J SHELLFISH RES, V30, P109, DOI 10.2983/035.030.0116; Liu XD, 2006, MAR BIOTECHNOL, V8, P386, DOI 10.1007/s10126-005-6133-7; Llodra ER, 2002, ADV MAR BIOL, V43, P87; LONGWELL A C, 1973, Cytologia (Tokyo), V38, P521; Luo L, 2003, HEREDITY, V90, P459, DOI 10.1038/sj.hdy.6800264; Makova KD, 2002, NATURE, V416, P624, DOI 10.1038/416624a; MALLET AL, 1985, MAR BIOL, V87, P165, DOI 10.1007/BF00539424; MALLET AL, 1984, MAR BIOL, V81, P53, DOI 10.1007/BF00397625; MALLET AL, 1983, AQUACULTURE, V33, P229, DOI 10.1016/0044-8486(83)90403-9; Mann R., 1979, EXOTIC SPECIES MARIC; McGoldrick DJ, 1997, GENETICS, V146, P321; Myburg AA, 2014, NATURE, V510, P356, DOI 10.1038/nature13308; Myers RA, 2001, ICES J MAR SCI, V58, P937, DOI 10.1006/jmsc.2001.1109; Nachman MW, 2000, GENETICS, V156, P297; NEI M, 1968, P NATL ACAD SCI USA, V60, P517, DOI 10.1073/pnas.60.2.517; Pauly D, 2002, NATURE, V418, P689, DOI 10.1038/nature01017; Piepho HP, 2001, GENETICS, V157, P425; Plough LV, 2012, MOL ECOL, V21, P3974, DOI 10.1111/j.1365-294X.2012.05688.x; Plough LV, 2011, GENETICS, V189, P1473, DOI 10.1534/genetics.111.131854; Plough LV, 2011, THESIS U SO CALIFORN; PONTECORVO G, 1980, SCIENCE, V208, P1000, DOI 10.1126/science.208.4447.1000; Quayle D.B., 1988, CAN B FISH AQUAT SCI, V218, P241; R Development Core Team, 2013, R LANG ENV STAT COMP; Remington DL, 2000, GENETICS, V155, P337; Rickman SJ, 2000, CAN J FISH AQUAT SCI, V57, P116, DOI 10.1139/cjfas-57-1-116; Rico-Villa B, 2008, AQUACULTURE, V282, P54, DOI 10.1016/j.aquaculture.2008.06.016; ROUGHGARDEN J, 1988, SCIENCE, V241, P1460, DOI 10.1126/science.11538249; RUMRILL SS, 1990, OPHELIA, V32, P163, DOI 10.1080/00785236.1990.10422030; Sachidanandam R, 2001, NATURE, V409, P928, DOI 10.1038/35057149; *SAS I INC, 2009, SAS 9 1 3 HELP DOC; Sauvage C, 2007, GENE, V406, P13, DOI 10.1016/j.gene.2007.05.011; Shen R, 2005, MUTAT RES-FUND MOL M, V573, P70, DOI 10.1016/j.mrfmmm.2004.07.022; SIMMONS MJ, 1977, ANNU REV GENET, V11, P49, DOI 10.1146/annurev.ge.11.120177.000405; Sodergren E, 2006, SCIENCE, V314, P941, DOI 10.1126/science.1133609; Sommer U, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125239; Steinrucken M, 2013, THEOR POPUL BIOL, V87, P15, DOI 10.1016/j.tpb.2013.01.007; Sun XJ, 2015, AQUACULTURE, V437, P127, DOI 10.1016/j.aquaculture.2014.11.009; Taris N, 2006, J EXP MAR BIOL ECOL, V333, P147, DOI 10.1016/j.jembe.2005.12.007; THIRIOTQUIEVREUX C, 1992, GENOME, V35, P39, DOI 10.1139/g92-007; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Van Ooijen J. W., 2006, JOINMAP 4 SOFTWARE C; Wada K.T., 1975, Bulletin natn Pearl Res Lab, V19, P2152; Wilkins NP, 1976, P 10 EUR S MAR BIOL, V1, P549; Williams G., 1975, SEX EVOLUTION; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Worm B, 2009, SCIENCE, V325, P578, DOI 10.1126/science.1173146; Zhang GF, 2012, NATURE, V490, P49, DOI 10.1038/nature11413; Zheng HP, 2012, AQUACULTURE, V366, P27, DOI 10.1016/j.aquaculture.2012.08.029; Zhu CK, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0082950 102 16 16 3 29 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. FEB 2016 25 4 895 910 10.1111/mec.13524 16 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology DE5EJ WOS:000370653700006 26756438 2019-02-21 J Mata, R; Josef, AK; Hertwig, R Mata, Rui; Josef, Anika K.; Hertwig, Ralph Propensity for Risk Taking Across the Life Span and Around the Globe PSYCHOLOGICAL SCIENCE English Article risk taking; adult development; gender differences; cross-cultural differences; open materials METAANALYSIS; PERSONALITY; PREFERENCE; UNPREDICTABILITY; DETERMINANTS; PERSPECTIVES; NEUROSCIENCE; IMPULSIVITY; EVOLUTION; COGNITION Past empirical work suggests that aging is associated with decreases in risk taking. But are such effects universal? Life-history theory suggests that the link between age and risk taking is a function of specific reproductive strategies that can be more or less risky depending on the ecology. We assessed variation in the age-risk curve using World Values Survey data from 77 countries (N = 147,118). The results suggest that propensity for risk taking tends to decline across the life span in the vast majority of countries. In addition, there is systematic variation among countries: Countries in which hardship (e.g., high infant mortality) is higher are characterized by higher levels of risk taking and flatter age-risk curves. These findings suggest that hardship may function as a cue to guide life-history strategies. Age-risk relations thus cannot be understood without reference to the demands and affordances of the environment. [Mata, Rui] Univ Basel, Dept Psychol, CH-4055 Basel, Switzerland; [Josef, Anika K.; Hertwig, Ralph] Max Planck Inst Human Dev, Ctr Adapt Rat, Berlin, Germany Mata, R (reprint author), Univ Basel, Dept Psychol, Ctr Cognit & Decis Sci, Missionsstr 64A, CH-4055 Basel, Switzerland. rui.mata@unibas.ch Mata, Rui/K-8138-2015; Hertwig, Ralph/B-3468-2015 Mata, Rui/0000-0002-1679-906X; Hertwig, Ralph/0000-0002-9908-9556; Josef, Anika Karina/0000-0001-5748-4497 Swiss National Science Foundation [100014-156172] This work was supported by Swiss National Science Foundation Grant 100014-156172. Anokhin AP, 2009, TWIN RES HUM GENET, V12, P366, DOI 10.1375/twin.12.4.366; Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; Becker A., 2014, ANCIENT ORIGINS CROS; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Benjamin DJ, 2012, P NATL ACAD SCI USA, V109, P8026, DOI 10.1073/pnas.1120666109; Bezdjian S, 2011, CLIN PSYCHOL REV, V31, P1209, DOI 10.1016/j.cpr.2011.07.005; Bleidorn W, 2013, PSYCHOL SCI, V24, P2530, DOI 10.1177/0956797613498396; Cross CP, 2013, SCI REP-UK, V3, DOI 10.1038/srep02486; Cross CP, 2011, PSYCHOL BULL, V137, P97, DOI 10.1037/a0021591; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Dohmen T, 2011, J EUR ECON ASSOC, V9, P522, DOI 10.1111/j.1542-4774.2011.01015.x; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Frankenhuis WE, 2013, CURR DIR PSYCHOL SCI, V22, P407, DOI 10.1177/0963721413484324; Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X; Hsee CK, 1999, J BEHAV DECIS MAKING, V12, P165, DOI 10.1002/(SICI)1099-0771(199906)12:2<165::AID-BDM316>3.0.CO;2-N; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Knox R., 2013, TREATISE MAN DEV FAS; Kuznetsova A, 2015, LMERTEST TESTS LINEA; Lauriola M, 2014, J BEHAV DECIS MAKING, V27, P20, DOI 10.1002/bdm.1784; Mandal B, 2014, ECONOMICA, V81, P522, DOI 10.1111/ecca.12088; Mata R, 2011, ANN NY ACAD SCI, V1235, P18, DOI 10.1111/j.1749-6632.2011.06200.x; McCrae RR, 2000, J PERS SOC PSYCHOL, V78, P173, DOI 10.1037//0022-3514.78.1.173; Mishra S, 2014, PERS SOC PSYCHOL REV, V18, P280, DOI 10.1177/1088868314530517; Mishra S, 2011, PERS INDIV DIFFER, V50, P869, DOI 10.1016/j.paid.2010.11.037; R Development Core Team, 2013, R LANG ENV STAT COMP; Rieger MO, 2015, MANAGE SCI, V61, P637, DOI 10.1287/mnsc.2013.1869; Rieger M, 2015, J GERONTOL B-PSYCHOL, V70, P200, DOI 10.1093/geronb/gbt088; Roberts BW, 2005, J RES PERS, V39, P166, DOI 10.1016/j.jrp.2004.08.002; Roberts BW, 2006, PSYCHOL BULL, V132, P1, DOI 10.1037/0033-2909.132.1.1; ROGERS AR, 1994, AM ECON REV, V84, P460; Schwartz S. H., 2012, ONLINE READINGS PSYC, V2, P1, DOI DOI 10.9707/2307-0919.1116; Sharma L, 2014, PSYCHOL BULL, V140, P374, DOI 10.1037/a0034418; Sih A, 2012, PHILOS T R SOC B, V367, P2762, DOI 10.1098/rstb.2012.0216; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Steinberg L, 2008, DEV REV, V28, P78, DOI 10.1016/j.dr.2007.08.002; Steinberg L, 2013, NAT REV NEUROSCI, V14, P513, DOI 10.1038/nrn3509; Stevenson B., 2008, 14282 NBER; TOOBY J, 1990, ETHOL SOCIOBIOL, V11, P375, DOI 10.1016/0162-3095(90)90017-Z; Ulmer J. T., 2014, NURTURE VERSUS BIOSO, P377, DOI [10.4135/9781483349114.n24, DOI 10.4135/9781483349114.N24]; Vieider FM, 2015, THEOR DECIS, V78, P209, DOI 10.1007/s11238-014-9418-3; Weber EU, 1999, PSYCHON B REV, V6, P611, DOI 10.3758/BF03212969; WHO, 2015, GLOB HLTH OBS DAT RE; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; World Bank, 2015, WORLD DAT; World Values Survey Association, 2014, WAV 6 2010 2014 OFF; World Values Survey Association, 2008, WAV 5 2005 2008 OFF; Zuckerman M., 2007, SENSATION SEEKING RI, DOI [10.1037/11555-000, DOI 10.1037/11555-000] 48 28 28 3 21 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0956-7976 1467-9280 PSYCHOL SCI Psychol. Sci. FEB 2016 27 2 231 243 10.1177/0956797615617811 13 Psychology, Multidisciplinary Psychology DE1XJ WOS:000370419600011 26744068 2019-02-21 J Ducatez, S; Crossland, M; Shine, R Ducatez, S.; Crossland, M.; Shine, R. Differences in developmental strategies between long-settled and invasion-front populations of the cane toad in Australia JOURNAL OF EVOLUTIONARY BIOLOGY English Article bet-hedging; biological invasion; Bufo marinus; larvae; life history evolution; Rhinella marina; stochasticity PHENOTYPIC PLASTICITY; BUFO-MARINUS; ENVIRONMENTAL-CHANGE; TROPICAL AUSTRALIA; EVOLUTIONARY BETS; RHINELLA-MARINA; FITNESS COSTS; GLOBAL CHANGE; PLANTS; METAANALYSIS Phenotypic plasticity can enhance a species' ability to persist in a new and stressful environment, so that reaction norms are expected to evolve as organisms encounter novel environments. Biological invasions provide a robust system to investigate such changes. We measured the rates of early growth and development in tadpoles of invasive cane toads (Rhinella marina) in Australia, from a range of locations and at different larval densities. Populations in long-colonized areas have had the opportunity to adapt to local conditions, whereas at the expanding range edge, the invader is likely to encounter challenges that are both novel and unpredictable. We thus expected invasion-vanguard populations to exhibit less phenotypic plasticity than range-core populations. Compared to clutches from long-colonized areas, clutches from the invasion front were indeed less plastic (i.e. rates of larval growth and development were less sensitive to density). In contrast, those rates were highly variable in clutches from the invasion front, even among siblings from the same clutch under standard conditions. Clutches with highly variable rates of growth and development under constant conditions had lower phenotypic plasticity, suggesting a trade-off between these two strategies. Although these results reveal a strong pattern, further investigation is needed to determine whether these different developmental strategies are adaptive (i.e. adaptive phenotypic plasticity vs. bet-hedging) or instead are driven by geographic variation in genetic quality or parental effects. [Ducatez, S.; Crossland, M.; Shine, R.] Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia Ducatez, S (reprint author), Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia. simon.ducatez@gmail.com Ducatez, Simon/0000-0003-2865-4674 Australian Research Council We thank two anonymous reviewers for suggestions that greatly improved the manuscript, Cameron Hudson for toad collection and maintenance in captivity, Ben Phillips for helpful discussion on the results, the TERF staff for assistance during the experiments and the Australian Research Council for funding. Ethical approval for the study was granted by the University of Sydney Animal Ethics Committee under protocol number 6033. Aubret F, 2010, J EXP BIOL, V213, P735, DOI 10.1242/jeb.040576; Auld JR, 2010, P ROY SOC B-BIOL SCI, V277, P503, DOI 10.1098/rspb.2009.1355; Botero CA, 2015, P NATL ACAD SCI USA, V112, P184, DOI 10.1073/pnas.1408589111; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Brown GP, 2015, ECOL LETT, V18, P57, DOI 10.1111/ele.12390; Brown GP, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1385; Chaput-Bardy A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090026; Chevin M., 2012, PHILOS T R SOC B, V368; Davidson AM, 2011, ECOL LETT, V14, P419, DOI 10.1111/j.1461-0248.2011.01596.x; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Ducatez S, 2011, THESIS MUS NATL HIST; Excoffier L, 2008, TRENDS ECOL EVOL, V23, P347, DOI 10.1016/j.tree.2008.04.004; Excoffier L, 2009, ANNU REV ECOL EVOL S, V40, P481, DOI 10.1146/annurev.ecolsys.39.110707.173414; Frank A.F., 1990, AM NAT, V136, P244; Godoy O, 2011, FUNCT ECOL, V25, P1248, DOI 10.1111/j.1365-2435.2011.01886.x; Gosner K. L., 1960, Herpetologica, V16, P183; Hayes RA, 2009, J CHEM ECOL, V35, P391, DOI 10.1007/s10886-009-9608-6; Lever C., 2001, CANE TOAD HIST ECOLO; Llewellyn D, 2012, BIOL INVASIONS, V14, P999, DOI 10.1007/s10530-011-0135-3; Marshall DJ, 2008, ECOLOGY, V89, P2506, DOI 10.1890/07-0267.1; Matesanz S, 2010, ANN NY ACAD SCI, V1206, P35, DOI 10.1111/j.1749-6632.2010.05704.x; Moran EV, 2014, ECOL LETT, V17, P637, DOI 10.1111/ele.12262; Morrongiello JR, 2012, J ANIM ECOL, V81, P806, DOI 10.1111/j.1365-2656.2012.01961.x; Palacio-Lopez K, 2011, OIKOS, V120, P1393, DOI 10.1111/j.1600-0706.2010.19114.x; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Phillips BL, 2009, BIOL LETTERS, V5, P802, DOI 10.1098/rsbl.2009.0367; Phillips BL, 2006, NATURE, V439, P803, DOI 10.1038/439803a; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Pizzatto L, 2008, BEHAV ECOL SOCIOBIOL, V63, P123, DOI 10.1007/s00265-008-0642-0; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; Shine R, 2012, EVOL APPL, V5, P107, DOI 10.1111/j.1752-4571.2011.00201.x; Simons AM, 2014, J EVOLUTION BIOL, V27, P1047, DOI 10.1111/jeb.12378; Simons AM, 2011, P ROY SOC B-BIOL SCI, V278, P1601, DOI 10.1098/rspb.2011.0176; Slade RW, 1998, P ROY SOC B-BIOL SCI, V265, P769, DOI 10.1098/rspb.1998.0359; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; Starrfelt J, 2012, BIOL REV, V87, P742, DOI 10.1111/j.1469-185X.2012.00225.x; Travis JMJ, 2010, J EVOLUTION BIOL, V23, P2656, DOI 10.1111/j.1420-9101.2010.02123.x; Urban MC, 2008, AM NAT, V171, pE134, DOI 10.1086/527494; Van Buskirk J, 2009, J EVOLUTION BIOL, V22, P852, DOI 10.1111/j.1420-9101.2009.01685.x 39 9 9 3 62 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. FEB 2016 29 2 335 343 10.1111/jeb.12785 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DD6YL WOS:000370070500009 26549779 Bronze 2019-02-21 J Shenoi, VN; Ali, SZ; Prasad, NG Shenoi, V. N.; Ali, S. Z.; Prasad, N. G. Evolution of increased adult longevity in Drosophila melanogaster populations selected for adaptation to larval crowding JOURNAL OF EVOLUTIONARY BIOLOGY English Article experimental evolution; larval crowding; life-history evolution; lifespan DEPENDENT NATURAL-SELECTION; QUANTITATIVE TRAIT LOCI; SEXUAL SIZE DIMORPHISM; AGE-SPECIFIC MORTALITY; PHENOTYPIC PLASTICITY; STRESS RESISTANCE; BODY-SIZE; POSTPONED SENESCENCE; LIFE-SPAN; CORRELATED RESPONSE In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D.melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding. [Shenoi, V. N.; Ali, S. Z.; Prasad, N. G.] Indian Inst Sci Educ & Res Mohali, Sect 81, Mohali 140306, Punjab, India Prasad, NG (reprint author), Indian Inst Sci Educ & Res Mohali, Sect 81, Mohali 140306, Punjab, India. prasad@iisermohali.ac.in Syed, Zeeshan Ali/0000-0002-4476-6257; Prasad, N G/0000-0002-0410-5518 IISER Mohali; MHRD, Government of India The authors thank Prof. Amitabh Joshi, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India, for kindly providing the fly populations, sharing an unpublished manuscript and for his comments on the present manuscript. We thank Bodhisatta Nandy for his key role in experiment including design and data analyses; Vanika Gupta for help in experiment and stock maintenance; and Abhilasha Joshi for help in the laboratory. We also thank Snigdhadip Dey and Dhananjay Tate for sharing the nitty-gritty's of stock maintenance. The authors thank IISER Mohali for funding. VNS thanks IISER Mohali and MHRD, Government of India for Senior Research Fellowship. Archana N., 2010, THESIS JNCASR BANGAL; Bergland AO, 2008, GENETICS, V180, P567, DOI 10.1534/genetics.108.088906; Borash DJ, 2001, J INSECT PHYSIOL, V47, P1349, DOI 10.1016/S0022-1910(01)00108-1; Borash DJ, 1998, AM NAT, V151, P148, DOI 10.1086/286108; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; Dey S, 2012, ECOL EVOL, V2, P941, DOI 10.1002/ece3.227; ECONOMOS AC, 1984, MECH AGEING DEV, V27, P1, DOI 10.1016/0047-6374(84)90078-2; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; GRAVES JL, 1995, GENETICA, V96, P183, DOI 10.1007/BF01439570; Jafari M, 2007, BIOGERONTOLOGY, V8, P639, DOI 10.1007/s10522-007-9105-7; Joshi A, 1996, EVOL ECOL, V10, P463, DOI 10.1007/BF01237879; JOSHI A, 1988, EVOLUTION, V42, P1090, DOI 10.1111/j.1558-5646.1988.tb02527.x; JOSHI A, 1995, EVOLUTION, V49, P616, DOI 10.1111/j.1558-5646.1995.tb02298.x; Joshi A, 2001, J GENET, V80, P63, DOI 10.1007/BF02728332; Joshi A, 1997, CURR SCI INDIA, V72, P255; Lefranc A, 2000, HEREDITAS, V132, P243, DOI 10.1111/j.1601-5223.2000.00243.x; Leips J, 2000, GENETICS, V155, P1773; LUCKINBILL LS, 1985, HEREDITY, V55, P9, DOI 10.1038/hdy.1985.66; MAC ARTHUR ROBERT H., 1967; MILLER RS, 1958, ECOLOGY, V39, P118, DOI 10.2307/1929973; Mueller LD, 2012, EVOLUTION, V66, P263, DOI 10.1111/j.1558-5646.2011.01427.x; MUELLER LD, 1988, P NATL ACAD SCI USA, V85, P4383, DOI 10.1073/pnas.85.12.4383; MUELLER LD, 1990, EVOL ECOL, V4, P290, DOI 10.1007/BF02270928; Mueller LD, 1995, EXP GERONTOL, V30, P553, DOI 10.1016/0531-5565(95)00029-1; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MUELLER LD, 1993, FUNCT ECOL, V7, P469, DOI 10.2307/2390034; Nagarajan A., 2014, BIORXIV011684; Nusbaum TJ, 1996, EXP GERONTOL, V31, P507, DOI 10.1016/0531-5565(96)00002-2; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; Pinheiro J., 2006, P R SOC B, V269, P1821; Pletcher SD, 2000, J GERONTOL A-BIOL, V55, pB381, DOI 10.1093/gerona/55.8.B381; Reeve JP, 1999, HEREDITY, V83, P697, DOI 10.1046/j.1365-2540.1999.00616.x; Reeve JP, 1996, EVOLUTION, V50, P1927, DOI 10.1111/j.1558-5646.1996.tb03580.x; Rice WR, 1996, NATURE, V381, P232, DOI 10.1038/381232a0; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; Santos M, 1997, EVOLUTION, V51, P420, DOI 10.1111/j.1558-5646.1997.tb02429.x; Sarangi M., 2013, THESIS JNCASR BANGAL; Sarangi M., 2015, J GENET, V2015, DOI [10.1101/029249, DOI 10.1101/029249]; SCHEINER SM, 1991, J EVOLUTION BIOL, V4, P23, DOI 10.1046/j.1420-9101.1991.4010023.x; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; Sheeba V, 1998, J BIOSCIENCE, V23, P93, DOI 10.1007/BF02703000; Shiotsugu J., 1997, EVOLUTION, V51, P63; Sokolowski MB, 1997, P NATL ACAD SCI USA, V94, P7373, DOI 10.1073/pnas.94.14.7373; Sorensen JG, 2001, J INSECT PHYSIOL, V47, P1301, DOI 10.1016/S0022-1910(01)00119-6; ZWAAN BJ, 1991, HEREDITY, V66, P29, DOI 10.1038/hdy.1991.4 50 4 4 1 22 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. FEB 2016 29 2 407 417 10.1111/jeb.12795 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DD6YL WOS:000370070500016 26575793 Bronze 2019-02-21 J Stein, LR; Trapp, RM; Bell, AM Stein, Laura R.; Trapp, Rebecca M.; Bell, Alison M. Do reproduction and parenting influence personality traits? Insights from threespine stickleback ANIMAL BEHAVIOUR English Article behavioural syndrome; boldness; fathers; hormones; individual differences; paternal care MALE 3-SPINED STICKLEBACK; GASTEROSTEUS-ACULEATUS L; PREDATION RISK; MALE BLUEGILL; ANTIPREDATOR BEHAVIOR; LEPOMIS-MACROCHIRUS; ANIMAL PERSONALITY; 11-KETOTESTOSTERONE; CORTISOL; PREGNANCY Although one of the hallmarks of personality traits is their consistency over time, we might expect personality traits to change during life history shifts. Becoming a parent is a major life history event, when individuals undergo dramatic behavioural and physiological changes. Here we employ a longitudinal experiment to ask whether personality changes in response to the experience of parenting in male threespine sticklebacks, Gasterosteus aculeatus. Life history theory predicts that males should be less risk averse after successfully parenting, and the neuroendocrinology of parenting suggests that parenting could reorganize the hormonal landscape and behaviour of fathers. We randomly assigned males to either an experimental group (reproduced and parented) or a control group (did not reproduce and parent), and repeatedly measured a personality trait ('boldness') and 11-ketotestosterone levels (11-kT, the major androgen in fishes) in individual males. In the control group, males became bolder over time. However, in the experimental group, boldness did not change. Furthermore, 11-kT changed dramatically in the experimental group, and changes in 11-kT in parents were associated with boldness after parenting ceased. Our study is one of the first to assess proximate and ultimate explanations for changes in personality as a function of reproduction and parenting. (C) 2015 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Stein, Laura R.] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA; [Trapp, Rebecca M.; Bell, Alison M.] Univ Illinois, Sch Integrat Biol, Urbana, IL 61801 USA Stein, LR (reprint author), Colorado State Univ, Dept Biol, Anat Zool E209A, 200 W Lake St, Ft Collins, CO 80523 USA. lrstein@colostate.edu Animal Behavior Society Research Award; National Science Foundation (NSF) Doctoral Dissertation Improvement Grant [IOS 1210696]; NSF Graduate Research Fellowship; NSF IOS [1121980]; National Institutes of Health (NIH) [R01 GM082937] We thank the editor and two anonymous referees for their helpful suggestions in improving this manuscript. This project was supported by an Animal Behavior Society Research Award, a National Science Foundation (NSF) Doctoral Dissertation Improvement Grant (IOS 1210696) and an NSF Graduate Research Fellowship to L.R.S., and NSF IOS grant 1121980 and National Institutes of Health (NIH) grant R01 GM082937 to A.M.B. Alvarez D, 2007, BEHAV PROCESS, V76, P215, DOI 10.1016/j.beproc.2007.05.004; Barber I, 2010, PHILOS T R SOC B, V365, P4077, DOI 10.1098/rstb.2010.0182; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Candolin U, 2003, BEHAV ECOL SOCIOBIOL, V55, P42, DOI 10.1007/s00265-003-0678-0; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Cost KT, 2014, HORM BEHAV, V65, P32, DOI 10.1016/j.yhbeh.2013.10.012; Dammhahn M, 2012, P ROY SOC B-BIOL SCI, V279, P2645, DOI 10.1098/rspb.2012.0212; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Duckworth RA, 2015, ANN NY ACAD SCI, V1360, P54, DOI 10.1111/nyas.12797; Ellis T, 2004, J FISH BIOL, V65, P1233, DOI [10.1111/j.0022-1112.2004.00499.x, 10.1111/j.1095-8649.2004.00499.x]; Franssen CL, 2011, J NEUROENDOCRINOL, V23, P1177, DOI 10.1111/j.1365-2826.2011.02225.x; GILES N, 1987, J FISH BIOL, V31, P37, DOI 10.1111/j.1095-8649.1987.tb05212.x; GILES N, 1984, ANIM BEHAV, V32, P264, DOI 10.1016/S0003-3472(84)80346-2; GODIN JGJ, 1988, NATURE, V333, P69, DOI 10.1038/333069a0; Hadfield JD, 2010, J STAT SOFTW, V33, P1; HUNTINGFORD FA, 1976, ANIM BEHAV, V24, P245, DOI 10.1016/S0003-3472(76)80034-6; Jeronimus BF, 2014, J PERS SOC PSYCHOL, V107, P751, DOI 10.1037/a0037009; KINDLER PM, 1989, GEN COMP ENDOCR, V75, P446, DOI 10.1016/0016-6480(89)90180-9; Krause J, 1996, BEHAV ECOL, V7, P264, DOI 10.1093/beheco/7.3.264; Lastein S, 2008, J CHEM ECOL, V34, P1487, DOI 10.1007/s10886-008-9553-9; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Logan DM, 2014, J CLIN EXP NEUROPSYC, V36, P528, DOI 10.1080/13803395.2014.912614; Macbeth AH, 2010, NEUROSCI BIOBEHAV R, V34, P452, DOI 10.1016/j.neubiorev.2009.08.011; Magee SE, 2006, HORM BEHAV, V49, P598, DOI 10.1016/j.yhbeh.2005.12.003; MAGNHAGEN C, 1991, BEHAV ECOL, V2, P351, DOI 10.1093/beheco/2.4.351; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Neff BD, 2009, HORM BEHAV, V56, P239, DOI 10.1016/j.yhbeh.2009.05.002; Pall MK, 2002, HORM BEHAV, V42, P337, DOI 10.1006/hbeh.2002.1820; Pearish S, 2013, BEHAV ECOL SOCIOBIOL, V67, P765, DOI 10.1007/s00265-013-1500-2; PICKERING AD, 1987, GEN COMP ENDOCR, V68, P249, DOI 10.1016/0016-6480(87)90036-0; Pradhan DS, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0239; PUGESEK BH, 1983, BEHAV ECOL SOCIOBIOL, V13, P161, DOI 10.1007/BF00299919; Reichert BE, 2012, ECOLOGY, V93, P2580, DOI 10.1890/12-0233.1; Rice TK, 2008, ADV GENET, V60, P293, DOI 10.1016/S0065-2660(07)00412-9; Roberts BW, 2000, PSYCHOL BULL, V126, P3, DOI 10.1037//0033-2909.126.1.3; Rodgers EW, 2006, HORM BEHAV, V49, P610, DOI 10.1016/j.yhbeh.2006.01.008; Ros AFH, 2009, ANIM BEHAV, V78, P25, DOI 10.1016/j.anbehav.2009.03.006; Rosenheim JA, 2008, AM NAT, V172, P486, DOI 10.1086/591677; Royle NJ, 2012, EVOLUTION OF PARENTAL CARE, P1; Russell J A, 2001, Prog Brain Res, V133, P1; Saltz JB, 2011, EVOLUTION, V65, P2325, DOI 10.1111/j.1558-5646.2011.01295.x; Saltzman W, 2014, J NEUROENDOCRINOL, V26, P685, DOI 10.1111/jne.12176; Sebire M, 2007, GEN COMP ENDOCR, V152, P30, DOI 10.1016/j.ygcen.2007.02.009; Smith C, 1999, J FISH BIOL, V54, P1132, DOI 10.1006/jfbi.1999.0940; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; UKEGBU AA, 1988, ETHOLOGY, V78, P72, DOI 10.1111/j.1439-0310.1988.tb00220.x; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; WOOTTON RJ, 1984, FUNCTIONAL BIOL STIC 50 3 3 3 62 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. FEB 2016 112 247 254 10.1016/j.anbehay.2015.12.002 8 Behavioral Sciences; Zoology Behavioral Sciences; Zoology DD0NX WOS:000369617800029 26955065 2019-02-21 J Del Giudice, M Del Giudice, Marco The evolutionary future of psychopathology CURRENT OPINION IN PSYCHOLOGY English Article DIFFERENTIAL SUSCEPTIBILITY; SCHIZOTYPAL TRAITS; AUTISTIC-LIKE; STRESS; PERSPECTIVE; PSYCHIATRY; COMPULSIVITY; IMPULSIVITY; ENVIRONMENT; DEPRESSION Evolutionary approaches to psychopathology have made considerable progress over the last years. In this paper, I review recent advances in the field focusing on three core themes: the role of trade-offs and conflicts in the origins mental disorders, the evolution of developmental mechanisms, and the emergence of alternative classification systems based on life history theory. I situate these advances in the context of current research in psychopathology, and highlight their connections with other innovative approaches such as developmental psychopathology and computational psychiatry. In total, I argue that evolutionary psychopathology offers an integrative framework for the study of mental disorders, and allows complementary approaches to connect and cross-fertilize. [Del Giudice, Marco] Univ New Mexico, Dept Psychol, Logan Hall,2001 Redondo Dr NE, Albuquerque, NM 87131 USA Del Giudice, M (reprint author), Univ New Mexico, Dept Psychol, Logan Hall,2001 Redondo Dr NE, Albuquerque, NM 87131 USA. marcodg@unm.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 American Psychiatric Association, 2013, DIAGN STAT MAN MENT; Bakermans-Kranenburg MJ, 2015, ANNU REV PSYCHOL, V66, P381, DOI 10.1146/annurev-psych-010814-015407; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, PSYCHOL INQ, V8, P182, DOI 10.1207/s15327965pli0803_3; Belsky J, 2013, DEV PSYCHOPATHOL, V25, P1243, DOI 10.1017/S095457941300059X; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brune M, 2012, WORLD PSYCHIATRY, V11, P55; Brune M, 2010, CLIN NEUROPSYCHIATR, V7, P3; Brune Martin, 2014, BMC Psychiatry, V14, P1695, DOI 10.1186/s12888-014-0364-y; Byars SG, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0604; Caspi A, 2014, CLIN PSYCHOL SCI, V2, P119, DOI 10.1177/2167702613497473; Cicchetti D., 2015, DEV PSYCHOPATHOLOGY; Cosmides L, 1999, J ABNORM PSYCHOL, V108, P453, DOI 10.1037//0021-843X.108.3.453; Crespi B.J., 2015, BIOL REV; Crespi B, 2008, BEHAV BRAIN SCI, V31, P241, DOI 10.1017/S0140525X08004214; Crespi BJ, 2015, PERS INDIV DIFFER, V79, P39, DOI 10.1016/j.paid.2015.01.052; Cuthbert BN, 2013, BMC MED, V11, DOI 10.1186/1741-7015-11-126; Davies W, 2008, FRONT NEUROENDOCRIN, V29, P413, DOI 10.1016/j.yfrne.2007.12.001; Del Giudice M, 2014, J DEV ORIG HLTH DIS, V5, P270, DOI 10.1017/S2040174414000257; Del Giudice M, 2015, DEV PSYCHOPATHOLOGY; Del Giudice M., 2015, CLIN PSYCHOL SCI; Del Giudice M, 2015, FRONT ZOOL, V12, DOI 10.1186/1742-9994-12-S1-S4; Del Giudice M, 2014, PSYCHOL INQ, V25, P394, DOI 10.1080/1047840X.2014.925339; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2014, EVOL HUM BEHAV, V35, P415, DOI 10.1016/j.evolhumbehav.2014.05.007; Del Giudice M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00041; Durisko Z, 2015, J AFFECT DISORDERS, V172, P315, DOI 10.1016/j.jad.2014.09.032; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Frankenhuis WE, 2015, DEV SCI; Frankenhuis WE, 2013, CURR DIR PSYCHOL SCI, V22, P407, DOI 10.1177/0963721413484324; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Gangestad SW, 2015, HDB EVOLUTIONARY PSY; Gluckman P.D., 2009, PRINCIPLES EVOLUTION; Huys QJM, 2015, CLIN PSYCHOL SCI, V3, P400, DOI 10.1177/2167702614562040; Huys QJM, 2015, ANNU REV NEUROSCI, V38, P1, DOI 10.1146/annurev-neuro-071714-033928; Hyde LW, 2015, DEV PSYCHOPATHOL, V27, P587, DOI 10.1017/S0954579415000188; Jack AI, 2013, NEUROIMAGE, V66, P385, DOI 10.1016/j.neuroimage.2012.10.061; Laceulle O. M., 2015, CLIN PSYCHOL SCI; Lahey BB, 2015, J CHILD PSYCHOL PSYC, V56, P415, DOI 10.1111/jcpp.12300; Martel MM, 2013, PSYCHOL BULL, V139, P1221, DOI 10.1037/a0032247; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Nesse R M, 2001, Med Health Care Philos, V4, P37, DOI 10.1023/A:1009938513897; Nesse RM, 2006, CLIN NEUROPSYCHIATR, V3, P121; Nettle D, 2012, CURR BIOL, V22, pR713; Pluess M, 2015, CHILD DEV PERSPECT, V9, P138, DOI 10.1111/cdep.12120; Robbins TW, 2012, TRENDS COGN SCI, V16, P81, DOI 10.1016/j.tics.2011.11.009; Salmon C, 2009, EVOL PSYCHOL-US, V7, P585; Scott-Phillips TC, 2011, PERSPECT PSYCHOL SCI, V6, P38, DOI 10.1177/1745691610393528; Stearns SC, 2010, P NATL ACAD SCI USA, V107, P1691, DOI 10.1073/pnas.0914475107; Trimmer PC, 2013, BEHAV SCI-BASEL, V3, P501, DOI 10.3390/bs3030501; van IJzendoorn MH, 2015, TRANSL PSYCHIAT, V2, pe147; Voon V, 2015, MOL PSYCHIATR, V20, P345, DOI 10.1038/mp.2014.44; Wang XJ, 2014, NEURON, V84, P638, DOI 10.1016/j.neuron.2014.10.018; Wiecki TV, 2015, CLIN PSYCHOL SCI, V3, P378, DOI 10.1177/2167702614565359; WILKINS JF, 2003, NAT REV GENET, V4, P1, DOI DOI 10.1038/NRG1062) 57 4 4 2 21 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 2352-250X CURR OPIN PSYCHOL Curr. Opin. Psychol. FEB 2016 7 44 50 10.1016/j.copsyc.2015.07.010 7 Psychology, Multidisciplinary Psychology DC9YD WOS:000369576600010 2019-02-21 J Van Leeuwen, TE; McLennan, D; McKelvey, S; Stewart, DC; Adams, CE; Metcalfe, NB Van Leeuwen, Travis E.; McLennan, Darryl; McKelvey, Simon; Stewart, David C.; Adams, Colin E.; Metcalfe, Neil B. The association between parental life history and offspring phenotype in Atlantic salmon JOURNAL OF EXPERIMENTAL BIOLOGY English Article Salmo salar; Early development; Indirect genetic effects; Maternal effects; Parental effects; Paternal effects; Salmonid metabolism METABOLIC-RATE; BROWN TROUT; GEOGRAPHICAL VARIATION; GROWTH-CONDITIONS; COHO SALMON; BODY-SIZE; SALAR; PERFORMANCE; MIGRATION; EVOLUTION In many taxa there is considerable intraspecific variation in life history strategies from within a single population, reflecting alternative routes through which organisms can achieve successful reproduction. Atlantic salmon Salmo salar (Linnaeus) show some of the greatest within-population variability in life history strategies amongst vertebrates, with multiple discrete male and female life histories co-existing and interbreeding on many spawning grounds, although the effect of the various combinations of life histories on offspring traits remains unknown. Using crosses of wild fish we show here that the life history strategy of both parents was significantly associated with a range of offspring traits. Mothers that had spent longer at sea (2 versus 1 year) produced offspring that were heavier, longer and in better condition at the time of first feeding. However, these relationships disappeared shortly after fry had begun feeding exogenously. At this stage, the juvenile rearing environment (i.e. time spent in fresh water as juveniles) of the mother was a better predictor of offspring traits, with mothers that were faster to develop in fresh water (migrating to sea after two rather than three years of age) producing offspring that had higher maximal metabolic rates, aerobic scopes, and that grew faster. Faster developing fathers (1 year old sneaker males) tended to produce offspring that had higher maximal metabolic rates, were in better body condition and grew faster. The results suggest that both genetic effects and those related to parental early and late life history contribute to offspring traits. [Van Leeuwen, Travis E.; Adams, Colin E.] Scottish Ctr Ecol & Nat Environm, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G63 0AW, Lanark, Scotland; [Van Leeuwen, Travis E.; McLennan, Darryl; Metcalfe, Neil B.] Univ Glasgow, Coll Med Vet & Life Sci, Inst Biodivers Anim Hlth & Comparat Med, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland; [McKelvey, Simon] CKD Galbraith, Cromarty Firth Fishery Board, Reay House,17 Old Edinburgh Rd, Inverness IV2 3HF, Scotland; [Stewart, David C.] Freshwater Fisheries Lab, Marine Scotland Sci, Pitlochry PH16 5LB, Perthshire, Scotland Van Leeuwen, TE (reprint author), Scottish Ctr Ecol & Nat Environm, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G63 0AW, Lanark, Scotland.; Van Leeuwen, TE (reprint author), Univ Glasgow, Coll Med Vet & Life Sci, Inst Biodivers Anim Hlth & Comparat Med, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. t.van-leeuwen.1@research.gla.ac.uk Metcalfe, Neil/C-5997-2009 Metcalfe, Neil/0000-0002-1970-9349 European Union INTERREG IVA Programme project [2859]; Natural Sciences and Engineering Council of Canada (NSERC) [PGS-D3]; European Research Council Advanced Grant [322784]; Natural Environment Research Council (NERC) [NE/N002865/1]; NERC [NE/K501098/1] T.E.V.L. was funded by the European Union INTERREG IVA Programme project 2859 'IBIS' and a Natural Sciences and Engineering Council of Canada (NSERC) PGS-D3 grant, N.B.M. was funded by European Research Council Advanced Grant 322784 and Natural Environment Research Council (NERC) grant NE/N002865/1, and D.M.L. by NERC PhD studentship NE/K501098/1. Ab Ghani NI, 2012, BIOL J LINN SOC, V107, P521, DOI 10.1111/j.1095-8312.2012.01956.x; Alvarez D, 2005, CAN J FISH AQUAT SCI, V62, P643, DOI 10.1139/F04-223; Aubin-Horth N, 2004, EVOLUTION, V58, P136; Bates D., 2011, LME4 LINEAR MIXED EF; Bernardo J, 1996, AM ZOOL, V36, P83; Bety J, 2003, AM NAT, V162, P110, DOI 10.1086/375680; Blount JD, 2002, P ROY SOC B-BIOL SCI, V269, P29, DOI 10.1098/rspb.2001.1840; Brockmann HJ, 2001, ADV STUD BEHAV, V30, P1, DOI 10.1016/S0065-3454(01)80004-8; Burton T., 2013, P ROY SOC LOND B BIO, V280; Burton T, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0311; Burton T, 2013, ECOLOGY, V94, P618, DOI 10.1890/12-0462.1; Burton T, 2011, FUNCT ECOL, V25, P1379, DOI 10.1111/j.1365-2435.2011.01897.x; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; Clark TD, 2011, J EXP BIOL, V214, P3074, DOI 10.1242/jeb.060517; Cutts CJ, 2002, FUNCT ECOL, V16, P73, DOI 10.1046/j.0269-8463.2001.00603.x; Dodson JJ, 2013, BIOL REV, V88, P602, DOI 10.1111/brv.12019; Donelson JM, 2009, BIOL LETTERS, V5, P262, DOI 10.1098/rsbl.2008.0642; Ege R., 1914, Internationale Revue der Hydrobiologie Leipzig, V7, DOI 10.1002/iroh.19140070105; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Eliason EJ, 2011, SCIENCE, V332, P109, DOI 10.1126/science.1199158; Finstad AG, 2007, FUNCT ECOL, V21, P905, DOI 10.1111/j.1365-2435.2007.01291.x; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Forseth T, 1999, J ANIM ECOL, V68, P783, DOI 10.1046/j.1365-2656.1999.00329.x; Forstmeier W, 2014, TRENDS ECOL EVOL, V29, P456, DOI 10.1016/j.tree.2014.05.005; Froese R, 2006, J APPL ICHTHYOL, V22, P241, DOI 10.1111/j.1439-0426.2006.00805.x; Fry F. E. J., 1971, FISH PHYSIOL, V34, P1, DOI DOI 10.1016/S1546-5098(08)60146-6; Fry F.E.J., 1957, PHYSIOL FISHES, P1; Garant D, 2002, EVOL ECOL RES, V4, P537; GROSS MR, 1988, SCIENCE, V239, P1291, DOI 10.1126/science.239.4845.1291; Hsu YH, 2014, EVOLUTION, V68, P2873, DOI 10.1111/evo.12475; Jonsson B, 2014, J FISH BIOL, V85, P151, DOI 10.1111/jfb.12432; Killen SS, 2012, P ROY SOC B-BIOL SCI, V279, P357, DOI 10.1098/rspb.2011.1006; Killen SS, 2010, ECOL LETT, V13, P184, DOI 10.1111/j.1461-0248.2009.01415.x; Laugen AT, 2002, BIOL J LINN SOC, V76, P61, DOI 10.1046/j.1095-8312.2002.00048.x; Mehner T, 2011, J ANIM ECOL, V80, P761, DOI 10.1111/j.1365-2656.2011.01823.x; Metcalfe NB, 1998, CAN J FISH AQUAT SCI, V55, P93, DOI 10.1139/cjfas-55-S1-93; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1990, J ANIM ECOL, V59, P135, DOI 10.2307/5163; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Neff BD, 2004, BEHAV ECOL, V15, P327, DOI 10.1093/beheco/arh016; Norin T., 2014, THESIS AARHUS U DENM; Paez DJ, 2011, J EVOLUTION BIOL, V24, P245, DOI 10.1111/j.1420-9101.2010.02159.x; Paez DJ, 2010, J EVOLUTION BIOL, V23, P757, DOI 10.1111/j.1420-9101.2010.01941.x; Paez DJ, 2011, P ROY SOC B-BIOL SCI, V278, P2150, DOI 10.1098/rspb.2010.2045; Regnier T, 2012, J EXP ZOOL PART A, V317A, P347, DOI 10.1002/jez.1728; REIDY SP, 1995, J FISH BIOL, V47, P377, DOI 10.1006/jfbi.1995.0145; Ricker W. E, 1975, B FISH RES BOARD CAN, V191, P1; ROFF DA, 2002, LIFE HIST EVOLUTION; Rosenfeld J, 2015, J ANIM ECOL, V84, P4, DOI 10.1111/1365-2656.12260; Rossignol O, 2010, PHYSIOL BIOCHEM ZOOL, V83, P424, DOI 10.1086/649561; Skov C, 2008, ECOL FRESHW FISH, V17, P406, DOI 10.1111/j.1600-0633.2008.00291.x; Sloman KA, 2010, HORM BEHAV, V58, P433, DOI 10.1016/j.yhbeh.2010.05.010; STEFFENSEN JF, 1989, FISH PHYSIOL BIOCHEM, V6, P49, DOI 10.1007/BF02995809; Stevens D. E., 1992, J APPL PHYSIOL, V72, P801; Taborsky B, 2006, BIOL LETT-UK, V2, P225, DOI 10.1098/rsbl.2005.0422; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Uller T, 2013, J EVOLUTION BIOL, V26, P2161, DOI 10.1111/jeb.12212; Van Leeuwen TE, 2012, J ANIM ECOL, V81, P395, DOI 10.1111/j.1365-2656.2011.01924.x; Van Leeuwen TE, 2011, J ANIM ECOL, V80, P1012, DOI 10.1111/j.1365-2656.2011.01841.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whalen KG, 1999, CAN J FISH AQUAT SCI, V56, P79, DOI 10.1139/cjfas-56-1-79; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 63 4 4 2 34 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. FEB 1 2016 219 3 374 382 10.1242/jeb.122531 9 Biology Life Sciences & Biomedicine - Other Topics DC9JN WOS:000369537800017 26596536 Bronze 2019-02-21 J Pickett, EJ; Stockwell, MP; Clulow, J; Mahony, MJ Pickett, Evan J.; Stockwell, Michelle P.; Clulow, John; Mahony, Michael J. Modelling the population viability of a threatened amphibian with a fast life-history AQUATIC CONSERVATION-MARINE AND FRESHWATER ECOSYSTEMS English Article anuran; conservation; Litoria aurea; population modelling; population viability analysis; R FROG LITORIA-AUREA; SYDNEY OLYMPIC PARK; GOLDEN BELL FROGS; EXTINCTION RISK; EASTERN AUSTRALIA; CHYTRID FUNGUS; GREEN; HABITAT; CONSERVATION; PERSISTENCE 1. A bias in conservation research has meant that population viability analysis has focused primarily on mammals and birds with slow life histories. The global amphibian decline has demonstrated the capacity for fast life-history species to experience decline. However, little is known about the viability of remnant populations of these species as patterns of decline cannot be inferred from other species with different life-history strategies. Population viability analysis was performed on the threatened frog, Litoria aurea, which exhibits high temporal variability in population size due to its fast life-history traits. Projections of population size from the viability model were highly variable, and removing parametric uncertainty only slightly improved overall model certainty, thus demonstrating the limits of population viability analysis for predicting abundance in fast life-history species. Sensitivity analysis identified recruitment of adults, female survival, male survival and rate of maturity as having the most impact on population viability. This population viability model provides a starting point to incorporate future research findings and better elucidate the causes of local extinction in this species. This study also reinforces the importance of egg-juvenile survival for amphibian populations, but also exemplifies the variability of amphibian viability analyses for identifying important parameters. As a case study for amphibian conservation, this analysis shows the utility of population viability analyses for fast life-history species, even with incomplete knowledge of all life-history stages. Copyright (c) 2015 John Wiley & Sons, Ltd. [Pickett, Evan J.; Stockwell, Michelle P.; Clulow, John; Mahony, Michael J.] Univ Newcastle, Sch Environm & Life Sci, Univ Dr, Callaghan, NSW 2308, Australia; [Pickett, Evan J.] Univ Hong Kong, Sch Biol Sci, Kadoorie Biol Sci Bldg,Pok Fu Lam Rd, Hong Kong, Hong Kong, Peoples R China Pickett, EJ (reprint author), Univ Newcastle, Sch Environm & Life Sci, Univ Dr, Callaghan, NSW 2308, Australia. evan.pickett@uon.edu.au ARC linkage project [LP0989459]; Sydney Olympic Park Authority; NSW Roads and Traffic Authority; Strathfield Council; Office of Environment and Heritage; South Australia Museum This study was funded as part of the ARC linkage project (LP0989459). We were supported by the following industry partners: Sydney Olympic Park Authority, NSW Roads and Traffic Authority, Strathfield Council, the Office of Environment and Heritage and the South Australia Museum. The project was conducted under NPWS Scientific Licence (SL100092) and approved by the University of Newcastle Animal Care and Ethics Committee (ACEC number A-2008-165). Alford RA, 2001, NATURE, V412, P499, DOI 10.1038/35087658; Anstis M, 2013, TADPOLES FROGS AUSTR; BANKS B, 1986, J ZOOL, V208, P325; Beissinger SR, 1998, J WILDLIFE MANAGE, V62, P821, DOI 10.2307/3802534; Beissinger SR, 2002, POPULATION VIABILITY; Biek R, 2002, CONSERV BIOL, V16, P728, DOI 10.1046/j.1523-1739.2002.00433.x; Bower DS, 2014, ENDANGER SPECIES RES, V23, P93, DOI 10.3354/esr00559; Bower DS, 2013, AUSTRAL ECOL, V38, P543, DOI 10.1111/j.1442-9993.2012.02452.x; BRADFORD DF, 1993, CONSERV BIOL, V7, P882, DOI 10.1046/j.1523-1739.1993.740882.x; Brook BW, 2000, NATURE, V404, P385, DOI 10.1038/35006050; Clark JA, 2002, SCIENCE, V297, P191; Conroy SDS, 2003, POPUL ECOL, V45, P105, DOI 10.1007/s10144-003-0145-9; Darcovich Kerry, 2008, Australian Zoologist, V34, P236; Di Minin E, 2011, ECOGRAPHY, V34, P162, DOI 10.1111/j.1600-0587.2010.06263.x; Garcia VB, 2008, P R SOC B, V275, P83, DOI 10.1098/rspb.2007.1295; Gimenez O, 2009, ENVIRON ECOL STAT SE, V3, P883, DOI 10.1007/978-0-387-78151-8_41; Goldingay Ross L., 2005, Australian Zoologist, V33, P210; Greenwald KR, 2010, ANIM CONSERV, V13, P115, DOI 10.1111/j.1469-1795.2009.00339.x; Greenwald KR, 2009, BIOL CONSERV, V142, P2493, DOI 10.1016/j.biocon.2009.05.021; Hamer AJ, 2002, OECOLOGIA, V132, P445, DOI 10.1007/s00442-002-0968-7; Hamer AJ, 2007, AUST J ZOOL, V55, P79, DOI 10.1071/ZO06093; Hilderbrand RH, 2003, BIOL CONSERV, V110, P257, DOI 10.1016/S0006-3207(02)00224-0; Hutchings JA, 2012, ECOL APPL, V22, P1061, DOI 10.1890/11-1313.1; Jupp Tony, 1996, Psitta Scene, V8, P8; Kohmann SG, 2005, ECOL MODEL, V183, P77, DOI 10.1016/j.ecolmodel.2004.07.002; LANDE R, 1993, AM NAT, V142, P911, DOI 10.1086/285580; Mahony MJ, 2013, HERPETOL CONSERV BIO, V8, P519; Mawson P, 1997, ECLECTUS, V2, P4; McGowan CP, 2011, BIOL CONSERV, V144, P1400, DOI 10.1016/j.biocon.2011.01.005; MOLONEY CL, 1994, BIOL CONSERV, V70, P195, DOI 10.1016/0006-3207(94)90163-5; Monastersky R, 2014, NATURE, V516, P159, DOI 10.1038/516158a; Muir Glenn W., 2008, Australian Zoologist, V34, P297; Murphy Michael J., 1995, Herpetofauna (Sydney), V25, P19; Naef-Daenzer B, 2005, J EXP BIOL, V208, P4063, DOI 10.1242/jeb.01870; Penman T. D., 2008, Australian Zoologist, V34, P314; Pickett EJ, 2013, BIOL CONSERV, V157, P156, DOI 10.1016/j.biocon.2012.09.014; Pickett EJ, 2012, WILDLIFE RES, V39, P350, DOI 10.1071/WR11193; Pickett EJ, 2014, AUSTRAL ECOL, V39, P244, DOI 10.1111/aec.12080; PIMM SL, 1988, NATURE, V334, P613, DOI 10.1038/334613a0; Purvis A, 2000, P ROY SOC B-BIOL SCI, V267, P1947, DOI 10.1098/rspb.2000.1234; Pyke Graham H., 2002, Australian Zoologist, V32, P12; Pyke Graham H., 2001, Australian Zoologist, V31, P563; R Development Core Team, 2011, R LANG ENV STAT COMP; Reed JM, 2002, CONSERV BIOL, V16, P7, DOI 10.1046/j.1523-1739.2002.99419.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stevens VM, 2008, CONSERV BIOL, V22, P1194, DOI 10.1111/j.1523-1739.2008.00990-x; Stockwell MP, 2010, ANIM CONSERV, V13, P62, DOI 10.1111/j.1469-1795.2010.00407.x; Stockwell M. P., 2008, Australian Zoologist, V34, P379; Stuart SN, 2004, SCIENCE, V306, P1783, DOI 10.1126/science.1103538; Threlfall C. G., 2008, Australian Zoologist, V34, P350; TOPPING MS, 1981, COPEIA, P873; Trenham PC, 2005, ECOL APPL, V15, P1158, DOI 10.1890/04-1150; WAKE DB, 1991, SCIENCE, V253, P860, DOI 10.1126/science.253.5022.860; White Arthur W., 2008, Australian Zoologist, V34, P319; White GC, 2001, P 2 INT INF THEOR ME; Willson JD, 2012, ECOL APPL, V22, P1791, DOI 10.1890/11-0915.1; Zambrano L, 2007, ANIM CONSERV, V10, P297, DOI 10.1111/j.1469-1795.2007.00105.x 57 5 5 2 44 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1052-7613 1099-0755 AQUAT CONSERV Aquat. Conserv.-Mar. Freshw. Ecosyst. FEB 2016 26 1 9 19 10.1002/aqc.2564 11 Environmental Sciences; Marine & Freshwater Biology; Water Resources Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources DC1VH WOS:000369005100002 2019-02-21 J Culumber, ZW Culumber, Zachary W. Variation in the evolutionary integration of melanism with behavioral and physiological traits in Xiphophorus variatus EVOLUTIONARY ECOLOGY English Article Poeciliidae; Life history evolution; Ecological selection; Correlated traits; Phenotypic integration CRITICAL OXYGEN-TENSION; STRESS RESPONSIVENESS; POLYGENIC VARIATION; POECILIA-LATIPINNA; ENVIRONMENT INTERACTIONS; GENETIC-VARIATION; LIVEBEARING FISH; METABOLIC-RATE; RAINBOW-TROUT; COLORATION Vertebrate pigmentation is emerging as a powerful system for studying the evolution of adaptive traits and the maintenance of genetic and phenotypic variation in natural populations. Though melanism has been linked to physiological and behavioral traits in a variety of taxa, the generality of these associations for many taxa such as fishes remains unclear. Here I tested whether variation in melanism in a livebearing fish was correlated with a variety of traits often tested in other taxa: locomotor stress coping style during confinement, boldness in a novel environment, and metabolic rate. There were significant negative associations between an individual's amount of melanistic pigmentation and both activity in confinement and boldness in a novel environment. In contrast with evidence from many prior studies, there was no relationship between melanism and metabolic rate. Overall, the data provide some support for documented relationships between melanism and behavioral traits, but did not support the generally reported relationship between melanism and metabolic rate. Links between melanism and behavioral coping strategies related to environmental stressors may have important implications for the evolution and maintenance of behavioral and morphological variation in natural populations. Nonetheless, these results also suggest variation among taxa in the extent to which pleiotropy has evolved between melanism and diverse organismal traits. [Culumber, Zachary W.] Kansas State Univ, Div Biol, 116 Ackert Hall, Manhattan, KS 66506 USA Culumber, ZW (reprint author), Kansas State Univ, Div Biol, 116 Ackert Hall, Manhattan, KS 66506 USA. zculumber@ksu.edu Consejo Nacional de Ciencia y Tecnologia (CONACyT) Mexico-Clave [0127310] I would like to thank the federal government of Mexico for permission to collect fish. Z.W.C. was supported as a postdoctoral scholar by Consejo Nacional de Ciencia y Tecnologia (CONACyT) Mexico-Clave 0127310 grant in basic science to William Scott Monks. Allen BJ, 2007, FUNCT ECOL, V21, P154, DOI 10.1111/j.1365-2435.2006.01219.x; Basolo AL, 2003, P ROY SOC B-BIOL SCI, V270, P1631, DOI 10.1098/rspb.2003.2388; Burger R, 2002, GENET RES, V80, P31, DOI 10.1017/S0016672302005682; Culumber ZW, 2015, EVOLUTION, V69, P541, DOI 10.1111/evo.12574; Culumber ZW, 2014, BEHAV PROCESS, V107, P158, DOI 10.1016/j.beproc.2014.08.010; Culumber ZW, 2014, ZEBRAFISH, V11, P57, DOI 10.1089/zeb.2013.0939; Culumber ZW, 2014, EVOL ECOL, V28, P117, DOI 10.1007/s10682-013-9663-x; Culumber ZW, 2013, BEHAV ECOL, V24, P1286, DOI 10.1093/beheco/art063; Culumber ZW, EVOLUTION; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; Fargallo JA, 2014, BEHAV ECOL, V25, P76, DOI 10.1093/beheco/art088; FRY FEJ, 1957, PHYSL FISHES, P1; GILLESPIE JH, 1989, GENETICS, V121, P129; Haney DC, 1997, PHYSIOL ZOOL, V70, P511, DOI 10.1086/515867; Hoback WW, 1997, PHYSIOL ENTOMOL, V22, P286, DOI 10.1111/j.1365-3032.1997.tb01170.x; Hoekstra HE, 2006, HEREDITY, V97, P222, DOI 10.1038/sj.hdy.6800861; Hubbard JK, 2010, TRENDS GENET, V26, P231, DOI 10.1016/j.tig.2010.02.002; Johnson JB, 2015, CURR ZOOL, V61, P596, DOI 10.1093/czoolo/61.4.596; Kittilsen S, 2009, HORM BEHAV, V56, P292, DOI 10.1016/j.yhbeh.2009.06.006; Krause J, 1998, P ROY SOC B-BIOL SCI, V265, P2373, DOI 10.1098/rspb.1998.0586; Kronforst MR, 2012, PIGM CELL MELANOMA R, V25, P411, DOI 10.1111/j.1755-148X.2012.01014.x; Mafli A, 2011, ANIM BEHAV, V81, P859, DOI 10.1016/j.anbehav.2011.01.025; Nachman MW, 2003, P NATL ACAD SCI USA, V100, P5268, DOI 10.1073/pnas.0421157100; Norin T, 2011, J EXP BIOL, V214, P1668, DOI 10.1242/jeb.054205; Overli O, 2007, NEUROSCI BIOBEHAV R, V31, P396, DOI 10.1016/j.neubiorev.2006.10.006; Passow CN, 2015, PHYSIOL BIOCHEM ZOOL, V88, P371, DOI 10.1086/681053; Pirozzi I, 2009, COMP BIOCHEM PHYS A, V152, P586, DOI 10.1016/j.cbpa.2009.01.008; Pottinger TG, 2001, HORM BEHAV, V40, P419, DOI 10.1006/hbeh.2001.1707; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Rosenblum EB, 2004, EVOLUTION, V58, P1794, DOI 10.1111/j.0014-3820.2004.tb00462.x; Roulin A, 2011, EUR J PHARMACOL, V660, P226, DOI 10.1016/j.ejphar.2011.01.036; Schartl M, 2013, NAT GENET, V45, P567, DOI 10.1038/ng.2604; Schjolden J, 2005, HORM BEHAV, V48, P537, DOI 10.1016/j.yhbeh.2005.04.008; Seibel BA, 2007, PHILOS T R SOC B, V362, P2061, DOI 10.1098/rstb.2007.2101; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Spichtig M, 2004, AM NAT, V164, P70, DOI 10.1086/421335; STEFFENSEN JF, 1989, FISH PHYSIOL BIOCHEM, V6, P49, DOI 10.1007/BF02995809; Timmerman CM, 2004, PHYSIOL BIOCHEM ZOOL, V77, P601, DOI 10.1086/421754; Timmerman CM, 2004, J FISH BIOL, V65, P635, DOI 10.1111/j.1095-8649.2004.00474.x; Timmerman CM, 2003, ENVIRON BIOL FISH, V68, P293, DOI 10.1023/A:1027300701599; Turelli M, 2004, GENETICS, V166, P1053, DOI 10.1534/genetics.166.2.1053; ULTSCH GR, 1978, ECOLOGY, V59, P99, DOI 10.2307/1936635; van den Brink V, 2012, ETHOLOGY, V118, P673, DOI 10.1111/j.1439-0310.2012.02057.x; VIA S, 1987, GENET RES, V49, P147, DOI 10.1017/S001667230002694X; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Zhang XS, 2005, EVOLUTION, V59, P1237 46 1 1 1 34 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. FEB 2016 30 1 9 20 10.1007/s10682-015-9807-2 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DB7RQ WOS:000368714000002 2019-02-21 J Heaton, LLM; Jones, NS; Fricker, MD Heaton, Luke L. M.; Jones, Nick S.; Fricker, Mark D. Energetic Constraints on Fungal Growth AMERICAN NATURALIST English Article energy allocation; fungal growth; autophagy; life-history strategies HYPHAL GROWTH; COMPETITION; STRATEGIES; TRADEOFFS; NUTRIENTS; AUTOPHAGY; FITNESS; BIOLOGY; BIOMASS; SOIL Saprotrophic fungi are obliged to spend energy on growth, reproduction, and substrate digestion. To understand the trade-offs involved, we developed a model that, for any given growth rate, identifies the strategy that maximizes the fraction of energy that could possibly be spent on reproduction. Our model's predictions of growth rates and bioconversion efficiencies are consistent with empirical findings, and it predicts the optimal investment in reproduction, resource acquisition, and biomass recycling for a given environment and timescale of reproduction. Thus, if the timescale of reproduction is long compared to the time required for the fungus to double in size, the model suggests that the total energy available for reproduction is maximal when a very small fraction of the energy budget is spent on reproduction. The model also suggests that fungi growing on substrates with a high concentration of low-molecular-weight compounds will not benefit from recycling: they should be able to grow more rapidly and allocate more energy to reproduction without recycling. In contrast, recycling offers considerable benefits to fungi growing on recalcitrant substrates, where the individual hyphae are not crowded and the time taken to consume resource is significantly longer than the fungus doubling time. [Heaton, Luke L. M.; Fricker, Mark D.] Univ Oxford, Dept Plant Sci, S Parks Rd, Oxford OX1 3RB, England; [Jones, Nick S.] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England; [Fricker, Mark D.] Univ Oxford, CABDyN Complex Agent Based Dynam Networks Complex, Sad Business Sch, Pk End St, Oxford OX1 1HP, England Heaton, LLM (reprint author), Univ Oxford, Dept Plant Sci, S Parks Rd, Oxford OX1 3RB, England. luke.heaton@gmail.com Fricker, Mark/L-6627-2014 Fricker, Mark/0000-0002-8942-6897 Human Frontiers Science Program [APRWJB0] L.L.M.H. and M.D.F. would like to thank the Human Frontiers Science Program, grant APRWJB0. We would also like to thank I. G. Johnston, A. Pringle, R. Sibly, L. Turnbull, and our anonymous reviewers for their helpful comments. Andrews J. H., 1992, FUNGAL COMMUNITY ITS, P119; Bebber DP, 2007, P R SOC B, V274, P2307, DOI 10.1098/rspb.2007.0459; Boddy L, 2008, BR MYCOL SY, V28, P1; Boddy L, 1999, MYCOLOGIA, V91, P13, DOI 10.2307/3761190; Boddy L, 2014, FUNGAL ECOL, V10, P20, DOI 10.1016/j.funeco.2013.10.006; Boddy L, 2009, MYCOSCIENCE, V50, P9, DOI 10.1007/s10267-008-0450-4; BOLTON RG, 1993, MYCOL RES, V97, P762, DOI 10.1016/S0953-7562(09)80158-5; Deacon JW., 2005, FUNGAL BIOL; Dighton J., 2003, FUNGI ECOSYSTEM PROC; DOWSON CG, 1986, J GEN MICROBIOL, V132, P203; Falconer RE, 2005, P ROY SOC B-BIOL SCI, V272, P1727, DOI 10.1098/rspb.2005.3150; Fathima B. S., 2013, INT J CHEM CHEM ENG, V3, P123; Fricker M., 2007, MYCOTA, VVIII, P307; Gessner M. O., 1997, LIMNETICA, V13, P33; Gessner MO, 1997, LIMNOL OCEANOGR, V42, P496, DOI 10.4319/lo.1997.42.3.0496; Gilchrist MA, 2006, EVOLUTION, V60, P970; HAMILTON NRS, 1987, PROC R SOC SER B-BIO, V232, P35, DOI 10.1098/rspb.1987.0060; Heaton Luke, 2012, Fungal Biology Reviews, V26, P12, DOI 10.1016/j.fbr.2012.02.001; Henn MR, 2002, APPL ENVIRON MICROB, V68, P4956, DOI 10.1128/AEM.68.10.4956-4964.2002; JONES HL, 1995, MYCOLOGIA, V87, P459, DOI 10.2307/3760762; Josefsen L, 2012, AUTOPHAGY, V8, P326, DOI 10.4161/auto.18705; KNOWLES J, 1987, A VAN LEEUW J MICROB, V53, P335, DOI 10.1007/BF00400557; Kooijman S. A. L. M., 2009, DYNAMIC ENERGY BUDGE; Lindahl B. D., 2004, MYCOLOGIST, V18, P79; Madelin MF, 1956, ANN BOT-LONDON, V20, P307; Money Nicholas P., 2008, Fungal Biology Reviews, V22, P71, DOI 10.1016/j.fbr.2008.05.002; MORTON AG, 1961, PROC R SOC SER B-BIO, V153, P548, DOI 10.1098/rspb.1961.0018; Papagianni M, 2004, BIOTECHNOL ADV, V22, P189, DOI 10.1016/j.biotechadv.2003.09.005; PLUNKETT BE, 1953, ANN BOT-LONDON, V17, P193, DOI 10.1093/oxfordjournals.aob.a083347; Pollack JK, 2009, FUNGAL GENET BIOL, V46, P1, DOI 10.1016/j.fgb.2008.10.010; Pringle A, 2002, TRENDS MICROBIOL, V10, P474, DOI 10.1016/S0966-842X(02)02447-2; PUGH GJF, 1980, T BRIT MYCOL SOC, V75, P1; Rayner A. D. M., 1979, Advances in Botanical Research, V7, P333; RITZ K, 1995, FEMS MICROBIOL ECOL, V16, P269, DOI 10.1016/0168-6496(94)00090-J; Schmit JP, 1999, OIKOS, V87, P509, DOI 10.2307/3546815; Schmit JP, 2002, MYCOLOGIA, V94, P40, DOI 10.2307/3761844; Shoji Jun-ya, 2011, Fungal Biology Reviews, V25, P79, DOI 10.1016/j.fbr.2011.04.001; SIMCHEN G, 1966, GENETICS, V53, P1151; Sousa T, 2010, PHILOS T R SOC B, V365, P3413, DOI 10.1098/rstb.2010.0166; Steinberg G, 2007, EUKARYOT CELL, V6, P351, DOI 10.1128/EC.00381-06; Suberkropp K., 1991, MYCOLOGICAL RES, V95, P834; TAYLOR PA, 1975, CAN J MICROBIOL, V21, P90, DOI 10.1139/m75-013; TILMAN D, 1990, OIKOS, V58, P3, DOI 10.2307/3565355; TRINCI APJ, 1971, J GEN MICROBIOL, V67, P325, DOI 10.1099/00221287-67-3-325; WESSELS JGH, 1993, NEW PHYTOL, V123, P397, DOI 10.1111/j.1469-8137.1993.tb03751.x; Wu JZ, 2003, FOOD CHEM, V81, P389, DOI 10.1016/S0308-8146(02)00457-0; XU JP, 1995, GENETICS, V141, P137 47 2 2 0 22 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. FEB 2016 187 2 E27 E40 10.1086/684392 14 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DB5YP WOS:000368590200011 26807754 Green Published 2019-02-21 J Mitteldorf, J Mitteldorf, Josh An epigenetic clock controls aging BIOGERONTOLOGY English Editorial Material Senescence; Programmed aging; Epigenetic; Evolution; Life history; Gene expression LIFE-HISTORY EVOLUTION; TELOMERE LENGTH; DNA METHYLATION; CALORIC RESTRICTION; SKELETAL-MUSCLE; AGE; SENESCENCE; DISEASE; REJUVENATION; MORTALITY We are accustomed to treating aging as a set of things that go wrong with the body. But for more than twenty years, there has been accumulating evidence that much of the process takes place under genetic control. We have seen that signaling chemistry can make dramatic differences in life span, and that single molecules can significantly affect longevity. We are frequently confronted with puzzling choices the body makes which benefit neither present health nor fertility nor long-term survival. If we permit ourselves a shift of reference frame and regard aging as a programmed biological function like growth and development, then these observations fall into place and make sense. This perspective suggests that aging proceeds under control of a master clock, or several redundant clocks. If this is so, we may learn to reset the clocks with biochemical interventions and make an old body behave like a young body, including repair of many of the modes of damage that we are accustomed to regard as independent symptoms of the senescent phenotype, and for which we have assumed that the body has no remedy. [Mitteldorf, Josh] MIT, Dept EAPS, 77 Massachusetts Ave, Cambridge, MA 02139 USA Mitteldorf, J (reprint author), MIT, Dept EAPS, 77 Massachusetts Ave, Cambridge, MA 02139 USA. josh@mathforum.org Mitteldorf, Josh/0000-0001-5083-4474 Baker DJ, 2011, NATURE, V479, P232, DOI 10.1038/nature10600; Behl C, 2000, J NEURAL TRANSM, V107, P1325, DOI 10.1007/s007020070021; Bischoff C, 2005, TWIN RES HUM GENET, V8, P425, DOI 10.1375/twin.8.5.425; Blagosklonny MV, 2010, CELL CYCLE, V9, P3151, DOI 10.4161/cc.9.16.13120; Bonduriansky R, 2002, NATURE, V420, P377, DOI 10.1038/420377a; Bouchard J, 2015, J NEUROCHEM, V132, P5, DOI 10.1111/jnc.12969; Bowles JT, 1998, MED HYPOTHESES, V51, P179, DOI 10.1016/S0306-9877(98)90079-2; Bredesen DE, 2004, AGING CELL, V3, P255, DOI 10.1111/j.1474-9728.2004.00121.x; Bronikowski AM, 2005, TRENDS ECOL EVOL, V20, P271, DOI 10.1016/j.tree.2005.03.011; Brouilette SW, 2007, LANCET, V369, P107, DOI 10.1016/S0140-6736(07)60071-3; Brummendorf TH, 2002, EXP HEMATOL, V30, P1147, DOI 10.1016/S0301-472X(02)00888-3; Bryant MJ, 2004, AM NAT, V163, P55, DOI 10.1086/380650; Calabrese EJ, 2005, TOXICOL APPL PHARM, V204, P1, DOI 10.1016/j.tap.2004.11.015; Calabrese EJ, 1998, ENVIRON HEALTH PERSP, V106, P357, DOI 10.2307/3433938; Campisi J, 2013, ANNU REV PHYSIOL, V75, P685, DOI 10.1146/annurev-physiol-030212-183653; Cawthon RM, 2003, LANCET, V361, P393, DOI 10.1016/S0140-6736(03)12384-7; Clark W R, 2004, Adv Gerontol, V14, P7; Clark W. R., 1999, MEANS END BIOL BASIS; Conboy IM, 2005, NATURE, V433, P760, DOI 10.1038/nature03260; Curtsinger JW, 1995, ANNU REV GENET, V29, P553; de Magalhaes JP, 2013, NAT REV CANCER, V13, P357, DOI 10.1038/nrc3497; de Magalhaes JP, 2012, FASEB J, V26, P4821, DOI 10.1096/fj.12-210872; de Magalhaes JP, 2009, BIOINFORMATICS, V25, P875, DOI 10.1093/bioinformatics/btp073; de Magalhaes JP, 2005, PHYSIOLOGY, V20, P252, DOI 10.1152/physiol.00010.2005; Ebling FJP, 2005, REPRODUCTION, V129, P675, DOI 10.1530/rep.1.00367; Elabd C, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5082; Fabrizio P, 2004, J CELL BIOL, V166, P1055, DOI 10.1083/jcb.200404002; Fisher RA, 1930, GENETICAL THEORY NAT; Fitzpatrick AL, 2007, AM J EPIDEMIOL, V165, P14, DOI 10.1093/aje/kw346; Flatt T, 2009, NATURE, V462, P989, DOI 10.1038/462989a; Froy H., 2012, AGEING RES REV, V12, P214; Fyhrquist F, 2011, J Hum Hypertens, V25, P711, DOI 10.1038/jhh.2011.57; Gavrilova NS, 2004, ANN NY ACAD SCI, V1019, P513, DOI 10.1196/annals.1297.095; Goldsmith TC, 2013, NATURE, V408, P255; Hanson RW, 2008, BIOCHIMIE, V90, P838, DOI 10.1016/j.biochi.2008.03.009; HARDIN G, 1968, SCIENCE, V162, P1243; Harris SE, 2006, NEUROSCI LETT, V406, P260, DOI 10.1016/j.neulet.2006.07.055; Horvath S, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-10-r115; Johnson AA, 2012, REJUV RES, V15, P483, DOI 10.1089/rej.2012.1324; Jones MJ, 2015, AGING CELL IN PRESS; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Katsimpardi L, 2014, SCIENCE, V344, P630, DOI 10.1126/science.1251141; Kenyon C, 2001, CELL, V105, P165, DOI 10.1016/S0092-8674(01)00306-3; Kimura M, 2008, AM J EPIDEMIOL, V167, P799, DOI 10.1093/aje/kwm380; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KLEIN DR, 1968, J WILDLIFE MANAGE, V32, P350, DOI 10.2307/3798981; Ma HX, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020466; Martins ACR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024328; Marzetti E, 2006, EXP GERONTOL, V41, P1234, DOI 10.1016/j.exger.2006.08.011; Masoro Edward J., 2007, V35, P1; Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012; Masoro EJ, 2003, SCI SAGE KE, V2003, P2; Mayack SR, 2010, NATURE, V463, P495, DOI 10.1038/nature08749; MCCAY CM, 1957, GERONTOLOGY, V1, P7, DOI 10.1159/000210677; McKevitt TP, 2002, J NUTR, V132, p1604S, DOI 10.1093/jn/132.6.1604S; Medawar P, 1952, UNSOLVED PROBLEM BIO; MERRY BJ, 1981, EXP GERONTOL, V16, P431, DOI 10.1016/0531-5565(81)90025-5; Mitteldorf J, 2006, EVOL ECOL RES, V8, P561; Mitteldorf J, 2001, EVOLUTION, V55, P1902; Mitteldorf J, 2001, EVOLUTION INT J ORG, V55, P1906; Mitteldorf J., 2016, AGING IS GROUP SELEC; MITTELDORF J, 2004, EVOL ECOL RES, V6, P1; Mitteldorf JJ, 2013, BIOCHEMISTRY-MOSCOW+, V78, P1054, DOI 10.1134/S0006297913090125; Mitteldorf J, 2012, OIKOS, V121, P1370, DOI 10.1111/j.1600-0706.2012.19995.x; Mitteldorf J, 2009, J THEOR BIOL, V260, P186, DOI 10.1016/j.jtbi.2009.05.013; Mitteldorf J, 2014, AM NAT, V184, P289, DOI 10.1086/677387; Mitteldorf J, 2010, FUTURE OF AGING: PATHWAYS TO HUMAN LIFE EXTENSION, P87, DOI 10.1007/978-90-481-3999-6_5; Mitteldorf J, 2010, AGE, V32, P79, DOI 10.1007/s11357-009-9116-1; Pauliny A, 2006, MOL ECOL, V15, P1681, DOI 10.1111/j.1365-294X.2006.02862.x; Pepper J., 2013, J PHYLOGENETICS EVOL, V1, P2; Rando TA, 2012, CELL, V148, P46, DOI 10.1016/j.cell.2012.01.003; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Ricklefs RE, 2007, ECOL LETT, V10, P867, DOI 10.1111/j.1461-0248.2007.01085.x; Rode L, 2015, JNCI-J NATL CANCER I, V107, DOI 10.1093/jnci/djv074; SAGER R, 1991, ENVIRON HEALTH PERSP, V93, P59, DOI 10.2307/3431170; Sharpe FR, 1911, PHILOS MAG, V21, P435, DOI 10.1080/14786440408637050; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Strandberg TE, 2011, J GERONTOL A-BIOL, V66, P815, DOI 10.1093/gerona/glr064; Weindruch R., 1988, RETARDATION AGING DI; Willeit P, 2011, JAMA-J AM MED ASSOC, V306, P42, DOI 10.1001/jama.2011.901; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Yoon C., 2002, NY TIMES; Zykovich A, 2014, AGING CELL, V13, P360, DOI 10.1111/acel.12180 84 7 8 1 34 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1389-5729 1573-6768 BIOGERONTOLOGY Biogerontology FEB 2016 17 1 257 265 10.1007/s10522-015-9617-5 9 Geriatrics & Gerontology Geriatrics & Gerontology DB7QQ WOS:000368711200020 26608516 Green Published 2019-02-21 J Rotheray, EL; Goulson, D; Bussiere, LF Rotheray, Ellen L.; Goulson, Dave; Bussiere, Luc F. Growth, development, and life-history strategies in an unpredictable environment: case study of a rare hoverfly Blera fallax (Diptera, Syrphidae) ECOLOGICAL ENTOMOLOGY English Article Ex-situ conservation; larval growth; Pinus sylvestris; rot hole; semivoltine; starvation LARVAL TREEHOLE MOSQUITOS; BEETLE HARMONIA-AXYRIDIS; RESOURCE LIMITATION; PHENOTYPIC PLASTICITY; COMPENSATORY GROWTH; AEDES-TRISERIATUS; OFFSPRING SIZE; EVOLUTION; MATURITY; INSECTS 1. Development in organisms can vary in response to fluctuating environments. In holometabolous insects, variation in adult phenotypic traits is strongly influenced by growth conditions experienced by larvae. The main aim of this study was to assess how much environmental insight can be gained from analysis of the phenotypic changes in an insect's life history parameters in response to realistic food limitations. 2. This investigation was motivated by a need for more information about the developmental requirements of the endangered pine hoverfly Blera fallax (Linnaeus) (Diptera, Syrphidae) in Scotland. Blera fallax depends on a scarce and often ephemeral habitat, rot holes of Scots pine Pinus sylvestris L. stumps. We studied how rearing conditions affected growth in captive larvae, and compared these responses with a wild population. 3. The growth curve observed in the field was similar to that in resource-limited, lab conditions, suggesting that resources are limiting in nature. The effects of resource availability on development time and body size depended on sex. Adult females were larger but had more variable size at maturity compared with males. In contrast, males typically were not smaller in resource-limited conditions, but rather continued to develop for another year. Between 2% and 20% of larvae extended development over 2 years regardless of growth conditions, perhaps indicating a semivoltine strategy to circumvent extinction during years with a low breeding success. 4. These results identify life history traits that may be important for other saproxylic Diptera in rot holes, and organisms that experience food restrictions during growth. [Rotheray, Ellen L.; Goulson, Dave] Univ Sussex, Sch Life Sci Evolut Behav & Environm, Brighton, E Sussex, England; [Bussiere, Luc F.] Univ Stirling, Sch Nat Sci Biol & Environm Sci, Stirling FK9 4LA, Scotland Rotheray, EL (reprint author), Univ Sussex, Sch Life Sci Evolut Behav & Environm, Brighton, E Sussex, England.; Rotheray, EL (reprint author), Univ Sussex, Sch Life Sci, Brighton, E Sussex, England. e.l.rotheray@sussex.ac.uk Bussiere, Luc/T-2134-2018 Bussiere, Luc/0000-0001-8937-8381; Goulson, Dave/0000-0003-4421-2876 Scottish Natural Heritage (SNH); University of Stirling Strategic Development Fund; Royal Society for the Protection of Birds (RSPB); Forestry Commission Scotland; Malloch Society This research was carried out as part of the PhD research of the lead author, and with support from Scottish Natural Heritage (SNH), the University of Stirling Strategic Development Fund, the Royal Society for the Protection of Birds (RSPB), and in partnership with Forestry Commission Scotland, and The Malloch Society. Thanks to Graham E. Rotheray and Iain MacGowan for information and advice, and Henry J. Beker, John Grant, Stuart Blackhall, Ern Emmet, Jane Sears, Anne Elliot, John Parrott, Pete Moore, Stewart Taylor, Geoffrey Wilkinson, and Tom Prescott for continued assistance, and Tom Houslay for comments. Thanks to two anonymous reviewers for their valuable comments and suggestions. Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Armbruster P, 2002, J MED ENTOMOL, V39, P699, DOI 10.1603/0022-2585-39.4.699; Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; Baty F, 2015, J STAT SOFTW, V66, P1; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; Blanckenhorn WU, 1999, EVOL ECOL, V13, P395, DOI 10.1023/A:1006741222586; BRADSHAW WE, 1992, OECOLOGIA, V90, P227, DOI 10.1007/BF00317180; BRADSHAW WE, 1973, ECOLOGY, V54, P1247, DOI 10.2307/1934187; BROBERG L, 1995, ANN ENTOMOL SOC AM, V88, P465, DOI 10.1093/aesa/88.4.465; CARPENTER SR, 1983, ECOLOGY, V64, P219, DOI 10.2307/1937068; Cayrou J, 2005, AQUAT CONSERV, V15, P559, DOI 10.1002/aqc.739; COLLINS NC, 1980, ECOLOGY, V61, P650, DOI 10.2307/1937431; Crawley M. J., 2007, R BOOK; Crean AJ, 2009, PHILOS T R SOC B, V364, P1087, DOI 10.1098/rstb.2008.0237; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; Dmitriew C, 2007, J EVOLUTION BIOL, V20, P1298, DOI 10.1111/j.1420-9101.2007.01349.x; Dmitriew C, 2009, CAN J ZOOL, V87, P175, DOI 10.1139/Z09-001; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Gotthard K, 2008, BIOSCIENCE, V58, P222, DOI 10.1641/B580308; Hart J., 1997, J INSECT PHYSL, V44, P21; Hou C, 2011, P ROY SOC B-BIOL SCI, V278, P2881, DOI 10.1098/rspb.2011.0047; JULIANO SA, 1992, OIKOS, V63, P465, DOI 10.2307/3544974; Kaufman MG, 1999, APPL ENVIRON MICROB, V65, P2661; Knight TM, 2004, J VECTOR ECOL, V29, P277; LEONARD PM, 1995, ECOL ENTOMOL, V20, P125, DOI 10.1111/j.1365-2311.1995.tb00438.x; Marshall DJ, 2008, ECOLOGY, V89, P2506, DOI 10.1890/07-0267.1; Milankov V, 2010, EUR J ENTOMOL, V107, P305, DOI 10.14411/eje.2010.039; Monro K, 2010, FUNCT ECOL, V24, P676, DOI 10.1111/j.1365-2435.2009.01665.x; Morgan IJ, 2001, P ROY SOC B-BIOL SCI, V268, P295, DOI 10.1098/rspb.2000.1365; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Pinheiro JC, 2012, NLME LINEAR NONLINEA, P1; Plaistow SJ, 2006, AM NAT, V167, P206, DOI 10.1086/499380; R-Team, 2011, R LANG ENV STAT COMP; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Rotheray EL, 2009, J INSECT CONSERV, V13, P569, DOI 10.1007/s10841-008-9204-z; Rotheray E.L., 2012, THESIS U STIRLING ST; Rotheray EL, 2013, ECOL ENTOMOL, V38, P219, DOI 10.1111/een.12009; Rotheray Ellen L., 2010, P21; Rotheray GE, 2000, J INSECT CONSERV, V4, P215, DOI 10.1023/A:1011380316156; Schafer MA, 2013, FUNCT ECOL, V27, P1392, DOI 10.1111/1365-2435.12134; Schmidt-Nielsen K, 1997, ANIMAL PHYSL ADAPTAT; Scottish Natural Heritage, 2007, 5 YEAR SPEC ACT FRAM; Shertzer KW, 2002, ECOLOGY, V83, P2181, DOI 10.2307/3072050; Smith R.L., 2006, ELEMENTS ECOLOGY; Stillwell RC, 2010, ANNU REV ENTOMOL, V55, P227, DOI 10.1146/annurev-ento-112408-085500; TAYLOR F, 1981, AM NAT, V117, P1, DOI 10.1086/283683; Telles-Romero R, 2011, B ENTOMOL RES, V101, P565, DOI 10.1017/S0007485311000150; Therneau T. M., 2015, PACKAGE SURVIVAL ANA; Tinsley MC, 2006, PARASITOLOGY, V132, P767, DOI 10.1017/S0031182006009929 50 5 6 3 23 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6946 1365-2311 ECOL ENTOMOL Ecol. Entomol. FEB 2016 41 1 85 95 10.1111/een.12269 11 Entomology Entomology DB4UE WOS:000368508200011 2019-02-21 J Piliere, AFH; Verberk, WCEP; Grawe, M; Breure, AM; Dyer, SD; Posthuma, L; De Zwart, D; Huijbregts, MAJ; Schipper, AM Piliere, A. F. H.; Verberk, W. C. E. P.; Grawe, M.; Breure, A. M.; Dyer, S. D.; Posthuma, L.; De Zwart, D.; Huijbregts, M. A. J.; Schipper, A. M. On the importance of trait interrelationships for understanding environmental responses of stream macroinvertebrates FRESHWATER BIOLOGY English Article functional group; functional traits; macroinvertebrates; streams; taxonomy FRESH-WATER MACROINVERTEBRATES; SELF-ORGANIZING MAP; LIFE-HISTORY STRATEGIES; INVERTEBRATE COMMUNITIES; REGRESSION TREES; NEURAL-NETWORKS; SPECIES TRAITS; INTEGRITY; HABITAT; ASSEMBLAGES 1. Biological traits of organisms are expected to provide increased mechanistic understanding of species-environment relationships. Linking traits to environmental conditions is, however, not straightforward, as traits are interconnected within species and can affect the adaptive value of each other. The aim of our study was to evaluate the importance of these trait interrelationships for understanding environmental responses of freshwater macroinvertebrates. 2. To this end, we investigated whether environmental responses of macroinvertebrates sharing a given trait were consistent or differed according to their taxonomy or to their other traits. We divided the macroinvertebrates into groups based on single traits (49 single-trait modalities), on taxonomy (10 orders) and on their overall trait profile (10 trait profile groups [TPGs], defined usingself-organising maps clustering). Abundances of each of these 69 groups were related to 24 environmental variables using boosted regression tree (BRT) modelling, to assess the environmental responses of single traits, orders and TPGs. 3. Cross-validated predictive power (R-2) of the BRT models ranged from < 1% to 38%. Environmental responses of macroinvertebrates sharing a given trait were inconsistent and varied according to order and/or TPG. Single-trait responses often reflected the responses of the most abundant taxonomic group expressing the trait, suggesting that analysis of trait responses simply revealed patterns in habitat use by the most abundant species and not necessarily mechanistic relationships. 4. Further, taxa from the same TPG (hence showing large overlap in their traits) but belonging to different orders showed different environmental responses. This indicates that the order a taxon belongs to confers unique information related to its evolutionary history that was not captured by our 49 trait modalities. However, groupings by orders cannot replace trait-based approaches, since TPGs also revealed differences in trait profiles within some orders, which were associated with different environmental responses. 5. Our results highlight the importance of considering multiple rather than single traits when linking macroinvertebrates to environmental variables, including the potential information conveyed by evolutionary history. [Piliere, A. F. H.; Grawe, M.; Breure, A. M.; Huijbregts, M. A. J.; Schipper, A. M.] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Environm Sci, NL-6500 GL Nijmegen, Netherlands; [Verberk, W. C. E. P.] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Anim Ecol, NL-6500 GL Nijmegen, Netherlands; [Breure, A. M.; Posthuma, L.; De Zwart, D.] Natl Inst Publ Hlth & Environm RIVM, Bilthoven, Netherlands; [Dyer, S. D.] Procter & Gamble Co, Cincinnati, OH USA Piliere, AFH (reprint author), Radboud Univ Nijmegen, Fac Sci, Dept Environm Sci, POB 9010, NL-6500 GL Nijmegen, Netherlands. a.piliere@science.ru.nl Verberk, Wilco/E-6337-2011; Huijbregts, Mark/B-8971-2011; Schipper, Aafke/C-2758-2011; Breure, Anton/C-3987-2011 Verberk, Wilco/0000-0002-0691-583X; Huijbregts, Mark/0000-0002-7037-680X; Posthuma, Leo/0000-0003-0399-5499 Allan JD, 1997, FRESHWATER BIOL, V37, P149, DOI 10.1046/j.1365-2427.1997.d01-546.x; Bae MJ, 2014, ECOHYDROLOGY, V7, P115, DOI 10.1002/eco.1326; Bedoya D, 2011, WATER RES, V45, P2359, DOI 10.1016/j.watres.2011.01.007; Bonada N, 2006, ANNU REV ENTOMOL, V51, P495, DOI 10.1146/annurev.ento.51.110104.151124; Buchwalter DB, 2008, P NATL ACAD SCI USA, V105, P8321, DOI 10.1073/pnas.0801686105; Cereghino R, 2001, ECOL MODEL, V146, P167, DOI 10.1016/S0304-3800(01)00304-0; Chon TS, 2011, ECOL INFORM, V6, P50, DOI 10.1016/j.ecoinf.2010.11.002; Clarke RT, 2003, ECOL MODEL, V160, P219, DOI 10.1016/S0304-3800(02)00255-7; Culp Joseph M., 2011, Integrated Environmental Assessment and Management, V7, P187, DOI 10.1002/ieam.128; Dallas HF, 1999, WATER SA, V25, P1; DesZwart D., 2005, ENVIRON TOXICOL CHEM, V24, P2665; Diggins TP, 2009, HYDROBIOLOGIA, V630, P313, DOI 10.1007/s10750-009-9824-7; EFFLER SW, 1996, LIMNOLOGICAL ENG ANA; Elith J, 2008, J ANIM ECOL, V77, P802, DOI 10.1111/j.1365-2656.2008.01390.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Flenner I, 2010, FRESHWATER BIOL, V55, P397, DOI 10.1111/j.1365-2427.2009.02289.x; Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451; Friedman JH, 2003, STAT MED, V22, P1365, DOI 10.1002/sim.1501; Giraudel JL, 2001, ECOL MODEL, V146, P329, DOI 10.1016/S0304-3800(01)00324-6; Kalkman VJ, 2008, HYDROBIOLOGIA, V595, P351, DOI 10.1007/s10750-007-9029-x; Kapo KE, 2014, ENVIRON TOXICOL CHEM, V33, P1665, DOI 10.1002/etc.2557; Lek S, 1999, ECOL MODEL, V120, P65, DOI 10.1016/S0304-3800(99)00092-7; Liess M, 2005, ENVIRON TOXICOL CHEM, V24, P954, DOI 10.1897/03-652.1; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Menezes S, 2010, J APPL ECOL, V47, P711, DOI 10.1111/j.1365-2664.2010.01819.x; Mosisch TD, 1999, AQUAT BOT, V64, P167, DOI 10.1016/S0304-3770(99)00014-5; Ohio EPA, 2006, OHIO EPA TECHN B; Petkovska V, 2015, ECOHYDROLOGY, V8, P67, DOI 10.1002/eco.1489; Piliere A, 2014, FRESHW SCI, V33, P1148, DOI 10.1086/677898; Piliere A, 2014, ECOL INDIC, V43, P215, DOI 10.1016/j.ecolind.2014.02.019; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Pollard AI, 2010, FRESHWATER BIOL, V55, P1420, DOI 10.1111/j.1365-2427.2009.02235.x; Poteat MD, 2015, FRESHWATER BIOL, V60, P1330, DOI 10.1111/fwb.12571; RANKIN ET, 1989, QUALITATIVE HABITAT; RENARD KG, 1991, J SOIL WATER CONSERV, V46, P30; RESH VH, 1994, FRESHWATER BIOL, V31, P539, DOI 10.1111/j.1365-2427.1994.tb01756.x; Rezende EL, 2012, COMPR PHYSIOL, V2, P639, DOI 10.1002/cphy.c100079; Simpson A, 2014, ECOL INDIC, V43, P19, DOI 10.1016/j.ecolind.2014.02.002; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Statzner B, 2004, ECOGRAPHY, V27, P470, DOI 10.1111/j.0906-7590.2004.03836.x; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Tornblom J, 2011, ECOL INDIC, V11, P1366, DOI 10.1016/j.ecolind.2011.02.011; Tullos D. D., 2008, J N AM BENTHOL SOC, V28, P80; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; van Kleef H, 2015, BASIC APPL ECOL, V16, P325, DOI 10.1016/j.baae.2015.02.007; VansKleef H. H., 2006, HYDROBIOLOGIA, V565, P201; vansNoordwijk C. G. E., 2012, ECOLOGICAL INDICATOR, V13, P303; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Vesanto J, 2000, IEEE T NEURAL NETWOR, V11, P586, DOI 10.1109/72.846731; Wehrens R., 2015, PACKAGE KOHONEN VERS; Zhang WJ, 2007, ENVIRON MONIT ASSESS, V130, P415, DOI 10.1007/s10661-006-9432-1 53 15 16 3 51 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. FEB 2016 61 2 181 194 10.1111/fwb.12690 14 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DA8DI WOS:000368034500001 2019-02-21 J Simons, LG; Sutton, TE; Simons, RL; Gibbons, FX; Murry, VM Simons, Leslie Gordon; Sutton, Tara E.; Simons, Ronald L.; Gibbons, Frederick X.; Murry, Velma McBride Mechanisms That Link Parenting Practices to Adolescents' Risky Sexual Behavior: A Test of Six Competing Theories JOURNAL OF YOUTH AND ADOLESCENCE English Article Adolescents; African Americans; Risky sex; Parenting AFRICAN-AMERICAN FAMILIES; RACIAL-DISCRIMINATION; LONGITUDINAL ANALYSIS; ADULT ATTACHMENT; YOUNG ADULTHOOD; ROMANTIC RELATIONSHIPS; HUMAN-PAPILLOMAVIRUS; CORPORAL PUNISHMENT; UNITED-STATES; SUBSTANCE USE Risky sexual behavior, particularly among adolescents, continues to be a major source of concern. In order to develop effective education and prevention programs, there is a need for research that identifies the antecedents of such behavior. This study investigated the mediators that link parenting experiences during early adolescence to subsequent risky sexual behaviors among a diverse sample of African American youth (N = 629, 55 % female). While there is ample evidence that parenting practices (e.g., supportive parenting, harsh parenting, parental management) are antecedent to risky sexual behavior, few studies have examined whether one approach to parenting is more strongly related to risky sex than others. Using a developmental approach, the current study focused on factors associated with six theories of risky sexual behavior. While past research has provided support for all of the theories, few studies have assessed the relative contribution of each while controlling for the processes proposed by the others. The current study addresses these gaps in the literature and reports results separately by gender. Longitudinal analyses using structural equation modeling revealed that the mediating mechanisms associated with social learning and attachment theories were significantly related to the risky sexual behavior of males and females. Additionally, there was support for social control and self-control theories only for females and for life history theory only for males. We did not find support for problem behavior theory, a perspective that dominates the risky sex literature, after controlling for the factors associated with the other theories. Finally, supportive parenting emerged as the parenting behavior most influential with regard to adolescents' risky sexual behavior. These results provide insight regarding efficacious approaches to education and preventative programs designed to reduce risky sexual behaviors among adolescents. [Simons, Leslie Gordon; Sutton, Tara E.; Simons, Ronald L.] Univ Georgia, Dept Sociol, Athens, GA 30602 USA; [Gibbons, Frederick X.] Univ Connecticut, Dept Psychol, Storrs, CT 06269 USA; [Murry, Velma McBride] Vanderbilt Univ, Dept Human & Org Dev, Nashville, TN 37203 USA Simons, LG (reprint author), Univ Georgia, Dept Sociol, 115 Baldwin Hall, Athens, GA 30602 USA. lgsimons@uga.edu Sutton, Tara E./0000-0002-7877-0975 National Institute of Mental Health; Centers for Disease Control; National Institute on Drug Abuse; Owen Institute for Behavioral Research at the University of Georgia This research was supported by the National Institute of Mental Health, the Centers for Disease Control, and the National Institute on Drug Abuse. We would also like to acknowledge the support of the Owen Institute for Behavioral Research at the University of Georgia. Ainsworth M., 1973, REV CHILD DEV RES, V3, P1; Barriger M, 2013, J SEX RES, V50, P84, DOI 10.1080/00224499.2011.607928; Baumrind D., 1991, J EARLY ADOLESC, V11, P56, DOI DOI 10.1177/0272431691111004; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Bogaert AF, 2002, PERS RELATIONSHIP, V9, P191, DOI 10.1111/1475-6811.00012; Brennan K. A., 1998, ATTACHMENT THEORY CL, V1998, P46, DOI DOI 10.2105/AJPH.90.4.553; Brody GH, 2004, CHILD DEV, V75, P900, DOI 10.1111/j.1467-8624.2004.00713.x; Butterworth P., 2012, AUSTR NZ J PSYCHIAT, V46, P363; Campa MI, 2006, J MARRIAGE FAM, V68, P558, DOI 10.1111/j.1741-3737.2006.00275.x; Capaldi DM, 1996, CHILD DEV, V67, P344, DOI 10.2307/1131818; Capaldi DM, 2002, DEV PSYCHOL, V38, P394, DOI 10.1037//0012-1649.38.3.394; Centers for Disease Control, 2012, MMWR, V61; Centers for Disease Control and Prevention (CDC), 2013, SEX RISK BEH HIV STD; Charnigo R, 2013, J SEX RES, V50, P480, DOI 10.1080/00224499.2011.652264; Chaturvedi AK, 2011, J CLIN ONCOL, V29, P4294, DOI 10.1200/JCO.2011.36.4596; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Collins NL, 2004, J PERS SOC PSYCHOL, V87, P363, DOI 10.1037/0022-3514.87.3.363; Conger RD, 2002, DEV PSYCHOL, V38, P179, DOI 10.1037//0012-1649.38.2.179; CONGER RD, 1994, CHILD DEV, V65, P541, DOI 10.2307/1131401; DiClemente RJ, 2006, CURR PEDIATR REV, V2, P369, DOI 10.2174/157339606778699671; DONOVAN JE, 1985, J CONSULT CLIN PSYCH, V53, P890, DOI 10.1037/0022-006X.53.6.890; ELLIOTT DS, 1985, EXPLAINING DELINQUEN; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Epstein M, 2014, J SEX RES, V51, P721, DOI 10.1080/00224499.2013.849652; Evans SZ, 2012, J YOUTH ADOLESCENCE, V41, P1095, DOI 10.1007/s10964-012-9755-x; EYSENCK SBG, 1977, BRIT J SOC CLIN PSYC, V16, P57, DOI 10.1111/j.2044-8260.1977.tb01003.x; Feeney J. A, 2008, HDB ATTACHMENT THEOR, P456; Finer LB, 2011, CONTRACEPTION, V84, P478, DOI 10.1016/j.contraception.2011.07.013; Fraley RC, 2000, J PERS SOC PSYCHOL, V78, P350, DOI 10.1037//0022-3514.78.2.350; Ge X., 2006, J YOUTH ADOLESCENCE, V35, P528, DOI DOI 10.1007/S10964-006-9046-5; Gibbons FX, 2007, DRUG ALCOHOL DEPEN, V88, pS27, DOI 10.1016/j.drugalcdep.2006.12.015; Gibbons FX, 2010, J PERS SOC PSYCHOL, V99, P785, DOI 10.1037/a0019880; Gottfredson M. R., 1990, GEN THEORY CRIME; Hirschi T, 1969, CAUSES DELINQUENCY; Hoyle RH, 2000, J PERS, V68, P1203, DOI 10.1111/1467-6494.00132; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; JESSOR SL, 1977, PROBLEM BEHAV PSYCHO; Kapungu CT, 2006, J YOUTH ADOLESCENCE, V35, P783; KENDALL PC, 1979, J CONSULT CLIN PSYCH, V47, P1020, DOI 10.1037//0022-006X.47.6.1020; Killoren SE, 2014, J YOUTH ADOLESCENCE, V43, P1982, DOI 10.1007/s10964-013-0053-z; Kogan SM, 2015, ARCH SEX BEHAV, V44, P609, DOI 10.1007/s10508-014-0410-3; Kogan SM, 2013, J ADOLESCENT HEALTH, V53, P14, DOI 10.1016/j.jadohealth.2013.01.024; Landor A, 2011, J YOUTH ADOLESCENCE, V40, P296, DOI 10.1007/s10964-010-9598-2; Lansford JE, 2010, J RES ADOLESCENCE, V20, P651, DOI 10.1111/j.1532-7795.2010.00654.x; Lewis MA, 2014, J SEX RES, V51, P86, DOI 10.1080/00224499.2012.710664; Lippold MA, 2014, J FAM ISSUES, V35, P1800, DOI 10.1177/0192513X13484120; LITTLE RJA, 1988, J AM STAT ASSOC, V83, P1198, DOI 10.2307/2290157; Lohman BJ, 2008, J YOUTH ADOLESCENCE, V37, P723, DOI 10.1007/s10964-008-9283-x; Longmore MA, 2009, J MARRIAGE FAM, V71, P969, DOI 10.1111/j.1741-3737.2009.00647.x; Lyerly JE, 2013, ANN EPIDEMIOL, V23, P233, DOI 10.1016/j.annepidem.2013.01.005; Manning WD, 2006, J ADOLESCENT RES, V21, P459, DOI 10.1177/0743558406291692; Martinez G, 2011, VITAL HLTH STAT, V23, P1; Miller KS, 2000, ADOLESCENCE, V35, P313; Moilanen KL, 2010, J RES ADOLESCENCE, V20, P114, DOI 10.1111/j.1532-7795.2009.00628.x; Mollborn S, 2009, J HEALTH SOC BEHAV, V50, P310, DOI 10.1177/002214650905000305; Murry VM, 2013, AM J ORTHOPSYCHIAT, V83, P299, DOI 10.1111/ajop.12035; Muthen L. K. & Muthen B. O., 1998, MPLUS USERS GUIDE; Ostovich JM, 2005, ARCH SEX BEHAV, V34, P197, DOI 10.1007/s10508-005-1797-7; Parkes A, 2011, PERSPECT SEX REPRO H, V43, P30, DOI 10.1363/4303011; PETERSEN AC, 1988, J YOUTH ADOLESCENCE, V17, P117, DOI 10.1007/BF01537962; Plummer M, 2007, J INFECT DIS, V195, P1582, DOI 10.1086/516784; Pogarsky G, 2006, J MARRIAGE FAM, V68, P332, DOI 10.1111/j.1741-3737.2006.00256.x; Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879; Roberts ME, 2012, DEV PSYCHOL, V48, P89, DOI 10.1037/a0025430; Scaramella LV, 1998, DEV PSYCHOL, V34, P1233, DOI 10.1037/0012-1649.34.6.1233; Schafer JL, 2002, PSYCHOL METHODS, V7, P147, DOI 10.1037//1082-989X.7.2.147; Schuster RM, 2013, J YOUTH ADOLESCENCE, V42, P1194, DOI 10.1007/s10964-012-9809-0; Siebenbruner J, 2007, J RES ADOLESCENCE, V17, P179, DOI 10.1111/j.1532-7795.2007.00518.x; Simons L. G., 2012, VIOLENCE VICTIMS, V3, P378; Simons LG, 2014, J FAM PSYCHOL, V28, P368, DOI 10.1037/a0036393; Simons LG, 2013, J YOUTH ADOLESCENCE, V42, P1273, DOI 10.1007/s10964-012-9853-9; Simons LG, 2013, J CHILD FAM STUD, V22, P460, DOI 10.1007/s10826-012-9598-9; Simons R. L., 2005, FAMILIES DELINQUENCY; Simons RL, 2002, J MARRIAGE FAM, V64, P331, DOI 10.1111/j.1741-3737.2002.00331.x; Simons RL, 2006, J HEALTH SOC BEHAV, V47, P373, DOI 10.1177/002214650604700405; Simons RL, 2007, CRIMINOLOGY, V45, P481, DOI 10.1111/j.1745-9125.2007.00086.x; Simons RL, 2012, J SOC PERS RELAT, V29, P77, DOI 10.1177/0265407511406897; Straus M. A., 2013, PRIMORDIAL VIOLENCE; Sutton TE, 2015, J CHILD FAM STUD, V24, P2827, DOI 10.1007/s10826-014-0087-1; Thompson RA, 2008, CHILD DEV PERSPECT, V2, P124, DOI 10.1111/j.1750-8606.2008.00054.x; Wickrama KAS, 2012, FAM RELAT, V61, P297, DOI 10.1111/j.1741-3729.2011.00697.x; Wight D, 2006, J ADOLESCENCE, V29, P473, DOI 10.1016/j.adolescence.2005.08.007 83 13 13 2 38 SPRINGER/PLENUM PUBLISHERS NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0047-2891 1573-6601 J YOUTH ADOLESCENCE J. Youth Adolesc. FEB 2016 45 2 255 270 10.1007/s10964-015-0409-7 16 Psychology, Developmental Psychology DB0KZ WOS:000368198300001 26718543 2019-02-21 J Mesquita, DO; Faria, RG; Colli, GR; Vitt, LJ; Pianka, ER Mesquita, Daniel Oliveira; Faria, Renato Gomes; Colli, Guarino Rinaldi; Vitt, Laurie J.; Pianka, Eric R. Lizard life-history strategies AUSTRAL ECOLOGY English Article POECILIA-RETICULATA; MULTIPLE IMPUTATION; REPRODUCTIVE EFFORT; SQUAMATE REPTILES; PALLID STURGEON; AMERICAN FISHES; MISSING-DATA; PATTERNS; TRAITS; EVOLUTION [Mesquita, Daniel Oliveira] Univ Fed Paraiba, Ctr Ciencias Exatas & Nat, Dept Sistemat & Ecol, BR-58059900 Joao Pessoa, Paraiba, Brazil; [Faria, Renato Gomes] Univ Fed Sergipe, Ctr Ciencias Biol & Saude, Dept Biol, Sao Cristovao, Sergipe, Brazil; [Colli, Guarino Rinaldi] Univ Brasilia, Inst Ciencias Biol, Dept Zool, Brasilia, DF, Brazil; [Vitt, Laurie J.] Univ Oklahoma, Sam Noble Museum, Norman, OK 73019 USA; [Vitt, Laurie J.] Univ Oklahoma, Dept Biol, Norman, OK 73019 USA; [Pianka, Eric R.] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA Mesquita, DO (reprint author), Univ Fed Paraiba, Ctr Ciencias Exatas & Nat, Dept Sistemat & Ecol, Cidade Univ Castelo Branco, BR-58059900 Joao Pessoa, Paraiba, Brazil. danmesq@dse.ufpb.br Colli, Guarino/A-5368-2008; Mesquita, Daniel/I-5007-2012 Colli, Guarino/0000-0002-2628-5652; Mesquita, Daniel/0000-0002-8174-6837 CAPES Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq [303610/2014-0]; University of Oklahoma Research Council; CAPES; CNPq; Fundacao de Apoio a Pesquisa do Distrito Federal - FAPDF Daniel Mesquita would like to thank CAPES Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior for DOM's post-doctorate fellowship and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq for a research fellowship (303610/2014-0). Eric Pianka would like to thank the Denton A. Cooley Centennial Professorship in Zoology at The University of Texas at Austin. Laurie Vitt acknowledges support from the University of Oklahoma Research Council via a George Lynn Cross Research Professorship. Guarino Colli thanks CAPES, CNPq and Fundacao de Apoio a Pesquisa do Distrito Federal - FAPDF for financial support. ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; Amstrup S. C., 2003, WILD MAMMALS N AM BI, P587; Auer SK, 2010, ECOL LETT, V13, P998, DOI 10.1111/j.1461-0248.2010.01491.x; BALTZ DM, 1984, ENVIRON BIOL FISH, V10, P159, DOI 10.1007/BF00001123; BLACKBURN D G, 1982, Amphibia-Reptilia, V3, P185, DOI 10.1163/156853882X00419; BLACKBURN DG, 1985, FORTS ZOOL, V30, P437; Bryan JL, 2007, J APPL ICHTHYOL, V23, P411, DOI 10.1111/j.1439-0426.2007.00889.x; Charnov EL, 2007, AM NAT, V170, pE129, DOI 10.1086/522840; Coates MI, 2008, ANNU REV ECOL EVOL S, V39, P571, DOI 10.1146/annurev.ecolsys.38.091206.095546; Montag LFD, 2011, BIOTA NEOTROP, V11, P93, DOI 10.1590/S1676-06032011000300007; Diniz JAF, 1998, EVOLUTION, V52, P1247, DOI 10.1111/j.1558-5646.1998.tb02006.x; Diniz JAF, 2012, ECOGRAPHY, V35, P239, DOI 10.1111/j.1600-0587.2011.06949.x; Dunham A.E., 1988, Biology of Reptilia, V16, P441; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; Diniz JAF, 2012, EVOLUTION, V66, P1079, DOI 10.1111/j.1558-5646.2011.01499.x; Garcia-Olea J. C., 2004, AVANCES INVESTIGACIO, V8, P1; GILMORE RG, 1993, ENVIRON BIOL FISH, V38, P95, DOI 10.1007/BF00842907; GREENSLADE PJM, 1983, AM NAT, V122, P352, DOI 10.1086/284140; Greer Allen E., 1998, Australian Zoologist, V30, P383; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Guenard G, 2013, METHODS ECOL EVOL, V4, P1120, DOI 10.1111/2041-210X.12111; Hedges SB, 1999, SCIENCE, V283, P998, DOI 10.1126/science.283.5404.998; Hernandez MU, 2004, REV BIOL TROP, V52, P945; Kembel SW, 2010, BIOINFORMATICS, V26, P1463, DOI 10.1093/bioinformatics/btq166; Kohler N. E., 1996, LENGTH LENGTH LENGTH; Losos J, 2009, ECOLOGY ADAPTIVE RAD; Lucifora LO, 2002, ICES J MAR SCI, V59, P553, DOI 10.1006/jmsc.2002.1183; Meiri S, 2012, GLOBAL ECOL BIOGEOGR, V21, P592, DOI 10.1111/j.1466-8238.2011.00700.x; Mesquita Daniel O., 2015, Ecology (Washington D C), V96, P594; MESQUITO D.O, 2010, REPRODUCCION REPTILE, P45; Miaud C, 1999, J ZOOL, V249, P61, DOI 10.1111/j.1469-7998.1999.tb01060.x; MILLAR JS, 1983, ECOLOGY, V64, P631, DOI 10.2307/1937181; Molles M. C., 2010, ECOLOGY CONCEPTS APP; Penone C, 2014, METHODS ECOL EVOL, V5, P961, DOI 10.1111/2041-210X.12232; Pyron RA, 2014, ECOL LETT, V17, P13, DOI 10.1111/ele.12168; Pyron RA, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-93; R Core Team, 2014, R LANG ENV STAT COMP; RHYMER JM, 1988, OECOLOGIA, V75, P20, DOI 10.1007/BF00378809; Rieppel O, 1996, NATURE, V384, P453, DOI 10.1038/384453a0; Rubin DB, 1996, J AM STAT ASSOC, V91, P473; Sani Y., 2010, INT J POULT SCI, V9, P599; Schafer JL, 1998, MULTIVAR BEHAV RES, V33, P545, DOI 10.1207/s15327906mbr3304_5; Scharf I, 2014, GLOBAL ECOL BIOGEOGR, V24, P396; Selvan ST, 2013, INDIAN J ANIM RES, V47, P426; SHINE R, 1988, EVOLUTION, V42, P17, DOI 10.1111/j.1558-5646.1988.tb04104.x; Shine R., 1985, Biology of Reptilia, V15, P605; Snyder D. E., 1999, PALLID SHOVELNOSE ST; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Steffensen KD, 2013, J APPL ICHTHYOL, V29, P687, DOI 10.1111/jai.12196; Swenson NG, 2014, ECOGRAPHY, V37, P105, DOI 10.1111/j.1600-0587.2013.00528.x; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; van Buuren S, 2011, J STAT SOFTW, V45, P1; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; ZAMMUTO RM, 1986, CAN J ZOOL, V64, P2739, DOI 10.1139/z86-398 58 9 9 1 32 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1442-9985 1442-9993 AUSTRAL ECOL Austral Ecol. FEB 2016 41 1 1 5 10.1111/aec.12276 5 Ecology Environmental Sciences & Ecology DA3US WOS:000367725200001 2019-02-21 J Le Feuvre, MC; Dempster, T; Shelley, JJ; Swearer, SE Le Feuvre, Matthew C.; Dempster, Tim; Shelley, James J.; Swearer, Stephen E. Macroecological relationships reveal conservation hotspots and extinction-prone species in Australia's freshwater fishes GLOBAL ECOLOGY AND BIOGEOGRAPHY English Article Dispersal capacity; endemism; extinction risk; rarity; research effort; river condition GEOGRAPHIC RANGE SIZE; LIFE-HISTORY; BODY-SIZE; MARINE FISHES; ABUNDANCE; RISK; PATTERN; BIODIVERSITY; ASSEMBLAGES; PHYLOGENY AimWe (1) investigate the relationship between range size and body size for all Australian freshwater fish, (2) test whether this relationship changes with dispersal capacity, (3) assess whether this macroecological pattern can be used to detect potentially vulnerable, but currently unprotected, species, and (4) identify hotspots of freshwater fish conservation concern in Australia. LocationAll Australian river basins. MethodsWe test for relationships between geographic range size and body size in all Australian freshwater fishes, using quantile regression. We then investigate how these relationships vary with conservation status and dispersal capacity. We identify currently unlisted freshwater fishes that share traits with currently listed species and map their distribution, along with freshwater fish research effort, across Australia. ResultsWe found a positive, triangular relationship between range size and body size. Potamodromous species and species endemic to New Guinea and Australia had the largest geographic ranges, while diadromous and globally distributed species had the smallest geographic ranges. For a given body size, conservation-listed species had a range less than one-tenth the size of unlisted species. Based on this relationship, we identified 55 species that may be vulnerable to extinction. Most of these species are restricted to northern Australia, a climatically sensitive and poorly researched region on the verge of major development. Main conclusionDespite differences in environments, levels of connectivity and life-history strategies, freshwater fishes exhibit a positive relationship between geographic range size and body size consistent with that found in terrestrial fauna. By identifying northern Australia as a hotspot of potentially vulnerable species, we provide an important context for guiding targeted research and informing future conservation management of Australia's freshwater fishes. We suggest macroecological relationships are likely to be useful for identifying species at risk of extinction across most taxa when detailed ecological data are absent. [Le Feuvre, Matthew C.; Dempster, Tim; Shelley, James J.; Swearer, Stephen E.] Univ Melbourne, Sch BioSci, Parkville, Vic 3010, Australia Le Feuvre, MC (reprint author), Univ Melbourne, Sch BioSci, BioSci 4, Parkville, Vic 3010, Australia. mattl@unimelb.edu.au Swearer, Stephen/X-4882-2018 Swearer, Stephen/0000-0001-6381-9943; Dempster, Tim/0000-0001-8041-426X; Le Feuvre, Matthew/0000-0001-9592-5927 Hermon Slade Foundation; Holsworth Wildlife Research Endowment We acknowledge the funding contributions for this project from the Hermon Slade Foundation and the Holsworth Wildlife Research Endowment. We thank Matthew Symonds and two anonymous referees for comments on the manuscript. Eric Treml assisted with mapping. ANGERMEIER PL, 1995, CONSERV BIOL, V9, P143, DOI 10.1046/j.1523-1739.1995.09010143.x; Bertuzzo E, 2009, WATER RESOUR RES, V45, DOI 10.1029/2009WR007997; Blanchet S, 2013, GLOBAL ECOL BIOGEOGR, V22, P1083, DOI 10.1111/geb.12074; Bland LM, 2015, CONSERV BIOL, V29, P250, DOI 10.1111/cobi.12372; BROWN JH, 1987, AM NAT, V130, P1, DOI 10.1086/284694; BROWN JH, 1989, SCIENCE, V243, P1145, DOI 10.1126/science.243.4895.1145; BROWN JH, 1984, AM NAT, V124, P255, DOI 10.1086/284267; Clavel J, 2011, FRONT ECOL ENVIRON, V9, P222, DOI 10.1890/080216; Collen B, 2014, GLOBAL ECOL BIOGEOGR, V23, P40, DOI 10.1111/geb.12096; Dias MS, 2014, ECOL LETT, V17, P1130, DOI 10.1111/ele.12319; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Fattorini S, 2013, J ZOOL SYST EVOL RES, V51, P279, DOI 10.1111/jzs.12026; Gaston KJ, 1996, CONSERV BIOL, V10, P638, DOI 10.1046/j.1523-1739.1996.10020638.x; GASTON KJ, 1991, OIKOS, V61, P434, DOI 10.2307/3545251; Gaston KJ, 1998, NATURE, V394, P229, DOI 10.1038/28288; Gaston KJ, 1996, J ANIM ECOL, V65, P701, DOI 10.2307/5669; GOTELLI NJ, 1991, OIKOS, V62, P30, DOI 10.2307/3545443; Gotelli NJ, 1999, EVOL ECOL RES, V1, P847; Griffiths D, 2006, J ANIM ECOL, V75, P734, DOI 10.1111/j.1365-2656.2006.01094.x; Griffiths D, 2010, BIOL J LINN SOC, V100, P46, DOI 10.1111/j.1095-8312.2010.01404.x; Jenkins DG, 2007, GLOBAL ECOL BIOGEOGR, V16, P415, DOI 10.1111/j.1466-8238.2007.00312.x; Johnson CN, 1998, NATURE, V394, P272, DOI 10.1038/28385; Lawton JH, 1999, OIKOS, V84, P177, DOI 10.2307/3546712; LAWTON JH, 1993, TRENDS ECOL EVOL, V8, P409, DOI 10.1016/0169-5347(93)90043-O; Lintermans M, 2013, ECOLOGY OF AUSTRALIAN FRESHWATER FISHES, P283; Mace GM, 2008, CONSERV BIOL, V22, P1424, DOI 10.1111/j.1523-1739.2008.01044.x; McKinney ML, 1997, ANNU REV ECOL SYST, V28, P495, DOI 10.1146/annurev.ecolsys.28.1.495; Olden JD, 2007, GLOBAL ECOL BIOGEOGR, V16, P694, DOI 10.1111/j.1466-8238.2007.00337.x; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Pritt JJ, 2010, CONSERV BIOL, V24, P1249, DOI 10.1111/j.1523-1739.2010.01488.x; Pyron M, 1999, J BIOGEOGR, V26, P549, DOI 10.1046/j.1365-2699.1999.00303.x; Radinger J, 2014, FISH FISH, V15, P456, DOI 10.1111/faf.12028; Reynolds JD, 2005, P ROY SOC B-BIOL SCI, V272, P2337, DOI 10.1098/rspb.2005.3281; Reynolds JD, 2005, CAN J FISH AQUAT SCI, V62, P854, DOI 10.1139/F05-066; ROFF DA, 1988, ENVIRON BIOL FISH, V22, P133, DOI 10.1007/BF00001543; Rosenfield JA, 2002, GLOBAL ECOL BIOGEOGR, V11, P323, DOI 10.1046/j.1466-822X.2002.00287.x; Scharf FS, 1998, ECOLOGY, V79, P448, DOI 10.2307/176945; Schipper J, 2008, SCIENCE, V322, P225, DOI 10.1126/science.1165115; Smith K. G., 2006, STATUS DISTRIBUTION; Snyder J., 1987, MAP PROJECTIONS WORK; Stein JL, 2002, LANDSCAPE URBAN PLAN, V60, P1, DOI 10.1016/S0169-2046(02)00048-8; Sternberg D, 2013, FRESHWATER BIOL, V58, P1767, DOI 10.1111/fwb.12166; Strona G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049465; TAYLOR CM, 1994, AM NAT, V144, P549, DOI 10.1086/285694; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Thuesen PA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026685; Unmack PJ, 2013, ECOLOGY OF AUSTRALIAN FRESHWATER FISHES, P25 47 3 3 1 35 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1466-822X 1466-8238 GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. FEB 2016 25 2 176 186 10.1111/geb.12397 11 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography DA3VY WOS:000367729100005 2019-02-21 J Dutton, E; van der Linden, D; Lynn, R Dutton, Edward; van der Linden, Dimitri; Lynn, Richard Population differences in androgen levels: A test of the Differential K theory PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history theory; Androgen; Testosterone; Group differences; Differential K LIFE-HISTORY STRATEGY; MIDDLE PHALANGEAL HAIR; 4TH DIGIT RATIO; PROSTATE-CANCER; TESTOSTERONE; RISK; TRAITS; HUMANS; MEN; SEX Differential-K theory proposes that levels of androgen, i.e. male hormone, differ across three large racial groups with Sub-Saharan Africans having the highest levels, East Asians the lowest, and Caucasians (Europeans, North Africans and South Asians) being intermediate. In this study, we found that most of the national-level indicators of androgen - CAG repeats on the AR gene, androgenic hair, prostate cancer incidence, sex frequency and number of sex partners are positively correlated at the population (country) level. East Asians showed signs of the lowest androgen level for most indicators and were lower than Caucasians on all of them. Sub-Saharan Africans showed inconsistent results. The results provide a partial validation of Differential-K theory. (C) 2015 Elsevier Ltd. All rights reserved. [Dutton, Edward] Univ Oulu, Dept Anthropol, SF-90100 Oulu, Finland; [van der Linden, Dimitri] Erasmus Univ, Inst Psychol, NL-3000 DR Rotterdam, Netherlands; [Lynn, Richard] Univ Ulster, Dept Psychol, Coleraine, Londonderry, North Ireland Dutton, E (reprint author), Univ Oulu, Dept Anthropol, SF-90100 Oulu, Finland. ecdutton@hotmail.com Van der Linden, Dimitri/0000-0001-7098-8948 Bancroft J, 2005, J ENDOCRINOL, V186, P411, DOI 10.1677/joe.1.06233; Baskin LS, 1997, J UROLOGY, V158, P1113, DOI 10.1016/S0022-5347(01)64400-8; Calle EE, 2003, NEW ENGL J MED, V348, P1625, DOI 10.1056/NEJMoa021423; Cavalli-Sforza LL, 1994, HIST GEOGRAPHY HUMAN; Chan JM, 2001, AM J CLIN NUTR, V74, P549; Dabbs James McBride, 2000, HEROES ROGUES LOVERS; Durex, 2005, GLOB SEX SURV; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Gann PH, 1996, J NATL CANCER I, V88, P1118, DOI 10.1093/jnci/88.16.1118; Haas GP, 2008, CAN J UROL, V15, P3866; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; HINDLEY SW, 1973, AM J PHYS ANTHROPOL, V39, P191, DOI 10.1002/ajpa.1330390208; Honekopp Johannes, 2013, Front Endocrinol (Lausanne), V4, P185, DOI 10.3389/fendo.2013.00185; Landis SH, 1999, CA-CANCER J CLIN, V49, P8, DOI 10.3322/canjclin.49.1.8; Loehlin J., 2011, PERS INDIV DIFFER, V52, P224; LYNN R, 1990, PSYCHOL REP, V67, P1203; Manning JT, 2004, EARLY HUM DEV, V80, P161, DOI 10.1016/j.earlhumdev.2004.06.004; Manning JT, 2003, EVOL HUM BEHAV, V24, P399, DOI 10.1016/S1090-5138(03)00052-7; Manning JT, 2002, DIGIT RATIO POINTER; McIntosh H, 1997, J NATL CANCER I, V89, P188, DOI 10.1093/jnci/89.3.188; Meisenberg G, 2013, PERS INDIV DIFFER, V55, P273, DOI 10.1016/j.paid.2012.04.016; MILLER EM, 1994, PERS INDIV DIFFER, V17, P227, DOI 10.1016/0191-8869(94)90029-9; Minkov M, 2015, PERS INDIV DIFFER, V76, P204, DOI 10.1016/j.paid.2014.12.014; Minkov M, 2014, PERS INDIV DIFFER, V66, P153, DOI 10.1016/j.paid.2014.03.021; Office for Minority Health, 2012, OB AFR AM; ROSS R, 1986, JNCI-J NATL CANCER I, V76, P45; Rushton J. P., 2000, RACE EVOLUTION BEHAV; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; SALDANHA PH, 1961, HUM BIOL, V33, P237; Sankararaman S, 2014, NATURE, V507, P354, DOI 10.1038/nature12961; WEIZMANN F, 1990, CAN PSYCHOL, V31, P1, DOI 10.1037/h0078934; Westlund N, 2015, HOMO, V66, P316, DOI 10.1016/j.jchb.2015.02.003; Wilson E.O., 1975, P1 36 1 1 0 8 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. FEB 2016 90 289 295 10.1016/j.paid.2015.11.030 7 Psychology, Social Psychology CZ9IQ WOS:000367411700051 2019-02-21 J Tokolyi, J; Bradacs, F; Hoka, N; Kozma, N; Miklos, M; Mucza, O; Lenart, K; Osz, Z; Sebestyen, F; Barta, Z Toekoelyi, Jacint; Bradacs, Flora; Hoka, Nikolett; Kozma, Noemi; Miklos, Mate; Mucza, Orsolya; Lenart, Kinga; Osz, Zsofia; Sebestyen, Flora; Barta, Zoltan Effects of food availability on asexual reproduction and stress tolerance along the fast-slow life history continuum in freshwater hydra (Cnidaria: Hydrozoa) HYDROBIOLOGIA English Article Dietary restriction; Food variability; Hydra; Life history evolution; Resource allocation trade-offs DIETARY RESTRICTION; OXIDATIVE STRESS; TRADE-OFFS; DEMOGRAPHIC TACTICS; MODEL; ALLOCATION; SYMBIOSIS; MITOCHONDRIAL; ACQUISITION; HYPOTHESES Life history theory predicts that reproduction and somatic maintenance are negatively related, but the strength of this relationship is expected to depend on food availability. In this study, we investigated asexual reproduction (budding rate) and oxidative stress tolerance as two opposing facets of life history trade-offs in 17 strains of five freshwater hydra species under experimentally simulated low, medium, and high food availability. Stress tolerance was quantified by exposing animals to exogenous H2O2, which mimics reactive oxygen species arising in vivo. The five species differed in life history traits (low budding rate and high stress tolerance in Hydra vulgaris and H. circumcincta and the opposite in H. oligactis and H. viridissima; low budding rate combined with relatively low stress tolerance in H. oxycnida). Stress tolerance and asexual reproduction increased with food, but there were clear interspecific differences in this relationship. Across all strains, stress tolerance and budding rate were significantly negatively related on the low and medium, but not the high food level. These results suggest that resource allocation trade-offs are involved in determining life history traits in hydra; populations/species can be broadly positioned on a fast-slow life history continuum, and response to variation in food varies along this continuum. [Toekoelyi, Jacint; Bradacs, Flora; Hoka, Nikolett; Kozma, Noemi; Miklos, Mate; Mucza, Orsolya; Lenart, Kinga; Osz, Zsofia; Sebestyen, Flora; Barta, Zoltan] Univ Debrecen, Dept Evolutionary Zool, MTA DE Lendulet Behav Ecol Res Grp, H-4032 Debrecen, Hungary Tokolyi, J (reprint author), Univ Debrecen, Dept Evolutionary Zool, MTA DE Lendulet Behav Ecol Res Grp, Egyet Ter 1, H-4032 Debrecen, Hungary. jtokolyi@vocs.unideb.hu Barta, Zoltan/0000-0002-7121-9865 European Union; European Social Fund; [SROP-4.2.2.B-15/1/KONV-2015-0001] We thank the Associate Editor, Diego Fontaneto, and two anonymous reviewers for their helpful comments on the manuscript. Financial support was provided by the SROP-4.2.2.B-15/1/KONV-2015-0001 project. The project has been supported by the European Union, co-financed by the European Social Fund. Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BODE HR, 1977, J CELL SCI, V24, P31; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; BOSCH TCG, 1988, P NATL ACAD SCI USA, V85, P7927, DOI 10.1073/pnas.85.21.7927; BOSCH TCG, 1986, P NATL ACAD SCI USA, V83, P9478, DOI 10.1073/pnas.83.24.9478; Brennecke T, 1998, EUR J BIOCHEM, V255, P703, DOI 10.1046/j.1432-1327.1998.2550703.x; Bridge D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011686; BRYDEN RR, 1952, ECOL MONOGR, V22, P45, DOI 10.2307/1948528; Christensen RHB, 2013, ORDINAL REGRESSION M; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; COOK CB, 1982, J EXP ZOOL, V222, P1, DOI 10.1002/jez.1402220102; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Glazier DS, 1999, EVOL ECOL, V13, P539, DOI 10.1023/A:1006793600600; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hecker B., 1976, COELENTERATE ECOLOGY, P175; Kaliszewicz A, 2013, ACTA ZOOL-STOCKHOLM, V94, P177, DOI 10.1111/j.1463-6395.2011.00536.x; Kaliszewicz A, 2011, ECOL RES, V26, P147, DOI 10.1007/s11284-010-0771-6; Kelty M. O., 1976, COELENTERATE ECOLOGY, P409; KESSLER E, 1991, BOT ACTA, V104, P58, DOI 10.1111/j.1438-8677.1991.tb00194.x; King EG, 2011, J EVOLUTION BIOL, V24, P256, DOI 10.1111/j.1420-9101.2010.02160.x; Kirk KL, 2001, J GERONTOL A-BIOL, V56, pB123, DOI 10.1093/gerona/56.3.B123; Lenhoff H. M., 1983, HYDRA RES METHODS; Lesser MP, 2006, ANNU REV PHYSIOL, V68, P253, DOI 10.1146/annurev.physiol.68.040104.110001; Martinez DE, 2010, MOL PHYLOGENET EVOL, V57, P403, DOI 10.1016/j.ympev.2010.06.016; Martinez DE, 1998, EXP GERONTOL, V33, P217, DOI 10.1016/S0531-5565(97)00113-7; MUSCATINE L, 1965, COMP BIOCHEM PHYSIOL, V16, P77, DOI 10.1016/0010-406X(65)90165-9; MUSCATINE L, 1965, BIOL BULL-US, V129, P316, DOI 10.2307/1539848; Nakagawa S, 2012, AGING CELL, V11, P401, DOI 10.1111/j.1474-9726.2012.00798.x; O'Brien DM, 2008, CURR BIOL, V18, pR155, DOI 10.1016/j.cub.2008.01.021; Partridge L, 2005, MECH AGEING DEV, V126, P938, DOI 10.1016/j.mad.2005.03.023; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinn B, 2012, INT J DEV BIOL, V56, P613, DOI 10.1387/ijdb.113469bq; REISA J J, 1973, P59; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; ROFF DA, 2002, LIFE HIST EVOLUTION; Schaible R, 2014, GERONTOLOGY, V60, P548, DOI 10.1159/000360397; Schuchert P, 2010, REV SUISSE ZOOL, V117, P337; Schwentner M, 2015, MOL PHYLOGENET EVOL, V91, P41, DOI 10.1016/j.ympev.2015.05.013; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Stearns S, 1992, EVOLUTION LIFE HIST; Tessier AJ, 2000, ECOLOGY, V81, P826, DOI 10.1890/0012-9658(2000)081[0826:AFTOIR]2.0.CO;2; Tokolyi J, 2014, ECOL RES, V29, P867, DOI 10.1007/s11284-014-1176-8; Tomczyk S, 2015, INVERTEBR REPROD DEV, V59, P11, DOI 10.1080/07924259.2014.927805; Turrens JF, 2003, J PHYSIOL-LONDON, V552, P335, DOI 10.1113/jphysiol.2003.049478; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Yoshida K, 2006, GENE, V385, P64, DOI 10.1016/j.gene.2006.06.031; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 50 4 6 2 29 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia FEB 2016 766 1 121 133 10.1007/s10750-015-2449-0 13 Marine & Freshwater Biology Marine & Freshwater Biology CZ6FP WOS:000367196900009 2019-02-21 J Walsh, MR; Castoe, T; Holmes, J; Packer, M; Biles, K; Walsh, M; Munch, SB; Post, DM Walsh, Matthew R.; Castoe, Todd; Holmes, Julian; Packer, Michelle; Biles, Kelsey; Walsh, Melissa; Munch, Stephan B.; Post, David M. Local adaptation in transgenerational responses to predators PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article ecological epigenetics; life-history evolution; maternal effects; phenotypic plasticity LIFE-HISTORY SHIFTS; PHENOTYPIC PLASTICITY; INTRASPECIFIC VARIATION; NONGENETIC INHERITANCE; IMPATIENS-CAPENSIS; FISH PREDATOR; EVOLUTION; ENVIRONMENTS; DAPHNIA; CONSEQUENCES Environmental signals can induce phenotypic changes that span multiple generations. Along with phenotypic responses that occur during development (i.e. 'within-generation' plasticity), such 'transgenerational plasticity' (TGP) has been documented in a diverse array of taxa spanning many environmental perturbations. New theory predicts that temporal stability is a key driver of the evolution of TGP. We tested this prediction using natural populations of zoo-plankton from lakes in Connecticut that span a large gradient in the temporal dynamics of predator-induced mortality. We reared more than 120 clones of Daphnia ambigua from nine lakes for multiple generations in the presence/absence of predator cues. We found that temporal variation in mortality selects for within-generation plasticity while consistently strong (or weak) mortality selects for increased TGP. Such results provide us the first evidence for local adaptation in TGP and argue that divergent ecological conditions select for phenotypic responses within and across generations. [Walsh, Matthew R.; Castoe, Todd; Holmes, Julian; Packer, Michelle; Biles, Kelsey; Walsh, Melissa] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA; [Munch, Stephan B.] Natl Marine Fisheries Serv, 110 Shaffer Rd, Santa Cruz, CA 95060 USA; [Post, David M.] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA Walsh, MR (reprint author), Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA. matthew.walsh@uta.edu Packer, Michelle/E-7484-2016; Post, David/A-6987-2009 Packer, Michelle/0000-0002-6288-2606; Post, David/0000-0003-1434-7729 UTA Research Enhancement Programme grant; NSF We thank Nathan Campbell, Deirdre Whittington, Jennifer Nguyen, Mina Wilson, Ishrat Durdana for help in the laboratory and Andrew Jones and John Park for help in the field. We thank several anonymous reviewers for comments that greatly improved this manuscript. M.W. and T.C. thank a UTA Research Enhancement Programme grant for funding, whereas S.M. and D.P. thank NSF for funding. Auld JR, 2010, P ROY SOC B-BIOL SCI, V277, P503, DOI 10.1098/rspb.2009.1355; Baldwin KJ, 1896, AM NAT, P536, DOI DOI 10.1086/276408; Bashey F, 2006, EVOLUTION, V60, P348, DOI 10.1554/05-087.1; Baythavong BS, 2011, AM NAT, V178, P75, DOI 10.1086/660281; Bonduriansky R, 2012, EVOL APPL, V5, P192, DOI 10.1111/j.1752-4571.2011.00213.x; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; CARPENTER SR, 1992, TRENDS ECOL EVOL, V7, P332, DOI 10.1016/0169-5347(92)90125-U; Crispo E, 2007, EVOLUTION, V61, P2469, DOI 10.1111/j.1558-5646.2007.00203.x; Day T, 2011, AM NAT, V178, pE18, DOI 10.1086/660911; Donohue K, 2000, EVOLUTION, V54, P1956; Dyer AR, 2010, EVOL APPL, V3, P179, DOI 10.1111/j.1752-4571.2010.00118.x; Ezard THG, 2014, FUNCT ECOL, V28, P693, DOI 10.1111/1365-2435.12207; Fischer B, 2011, OIKOS, V120, P258, DOI 10.1111/j.1600-0706.2010.18642.x; Fox CW, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P159; Galloway LF, 2007, SCIENCE, V318, P1134, DOI 10.1126/science.1148766; Galloway LF, 2009, NEW PHYTOL, V182, P1003, DOI 10.1111/j.1469-8137.2009.02803.x; Galloway LF, 2005, NEW PHYTOL, V166, P93, DOI 10.1111/j.1469-8137.2004.01314.x; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Gotelli NJ, 1998, PRIMER ECOLOGY; Herrera CM, 2010, NEW PHYTOL, V187, P867, DOI 10.1111/j.1469-8137.2010.03298.x; Hollander J, 2008, EVOLUTION, V62, P1381, DOI 10.1111/j.1558-5646.2008.00365.x; Hoyle RB, 2012, J R SOC INTERFACE, V9, P2403, DOI 10.1098/rsif.2012.0183; JABLONKA E, 1992, J THEOR BIOL, V158, P245, DOI 10.1016/S0022-5193(05)80722-2; Jablonka E, 2009, Q REV BIOL, V84, P131, DOI 10.1086/598822; Kilham SS, 1998, HYDROBIOLOGIA, V377, P147, DOI 10.1023/A:1003231628456; Kuijper B, 2015, EVOLUTION, V69, P950, DOI 10.1111/evo.12635; Kuijper B, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003550; Laforsch C, 2006, LIMNOL OCEANOGR, V51, P1466, DOI 10.4319/lo.2006.51.3.1466; Leimar O, 2015, AM NAT, V185, pE55, DOI 10.1086/679575; Levins R., 1968, EVOLUTION CHANGING E; Lin SM, 2010, OECOLOGIA, V163, P911, DOI 10.1007/s00442-010-1634-0; Lind MI, 2007, P R SOC B, V275, P1073, DOI DOI 10.1098/RSPB.2007.1737; Miner BE, 2012, P ROY SOC B-BIOL SCI, V279, P1873, DOI 10.1098/rspb.2011.2404; Palkovacs EP, 2008, EVOL ECOL RES, V10, P699; Post DM, 2008, ECOLOGY, V89, P2019, DOI 10.1890/07-1216.1; Richerson Peter J., 2005, NOT GENES ALONE CULT; Riessen HP, 1999, CAN J FISH AQUAT SCI, V56, P2487, DOI 10.1139/cjfas-56-12-2487; Roff D.A., 2012, EVOLUTIONARY QUANTIT; Rossiter MC, 1996, ANNU REV ECOL SYST, V27, P451, DOI 10.1146/annurev.ecolsys.27.1.451; Salinas S, 2012, ECOL LETT, V15, P159, DOI 10.1111/j.1461-0248.2011.01721.x; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; SCHMITT J, 1993, EVOLUTION, V47, P1654, DOI 10.1111/j.1558-5646.1993.tb01258.x; Shea N, 2011, J EVOLUTION BIOL, V24, P1178, DOI 10.1111/j.1420-9101.2011.02235.x; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; Sultan SE, 2009, ECOLOGY, V90, P1831, DOI 10.1890/08-1064.1; Thiede DA, 1998, EVOLUTION, V52, P998, DOI 10.1111/j.1558-5646.1998.tb01829.x; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; Uller T, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0682; Walsh MR, 2012, J EVOLUTION BIOL, V25, P80, DOI 10.1111/j.1420-9101.2011.02403.x; Walsh MR, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2205; Walsh MR, 2014, J ANIM ECOL, V83, P1279, DOI 10.1111/1365-2656.12247; Walsh MR, 2014, EVOL ECOL, V28, P397, DOI 10.1007/s10682-013-9666-7; Walsh MR, 2012, P ROY SOC B-BIOL SCI, V279, P3184, DOI 10.1098/rspb.2012.0496; Walsh MR, 2011, P ROY SOC B-BIOL SCI, V278, P2628, DOI 10.1098/rspb.2010.2634 54 7 7 5 53 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JAN 27 2016 283 1823 20152271 10.1098/rspb.2015.2271 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology DL7ZH WOS:000375858400007 26817775 Green Published, Bronze 2019-02-21 J Gilioli, G; Pasquali, S; Marchesini, E Gilioli, Gianni; Pasquali, Sara; Marchesini, Enrico A modelling framework for pest population dynamics and management: An application to the grape berry moth ECOLOGICAL MODELLING English Article Population dynamics; Stage-structured population; Physiologically based demographic model; Lobesia botrana; Integrated pest management TEMPERATURE-DEPENDENT DEVELOPMENT; LOBESIA-BOTRANA LEPIDOPTERA; TORTRICIDAE; PLANT; COTTON; CALIFORNIA; MULTISTAGE; SCHIFF.; GROWTH; SPAIN Physiologically based demographic models are important tools for the development of sustainable pest management as they can realistically describe the spatio-temporal dynamics of population abundance as function of environmental forcing variables, e.g. temperature and resource availability. The physiological based model presented here is based on a stochastic demographic model for a stage-structured population that has application to a wide range of species across different taxa. The species life-history strategies are described in terms of a set of biodemographic rate functions dependent from the biological characteristics of the species and their environmental driver variables. Model application required parameter estimation of the biodemographic rate functions at two levels: assessing physiological responses at the per capita level and/or using population time series data for rate functions estimation. To explore the usefulness of the modelling framework in pest management, we consider the case study of the grape berry moth Lobesia botrana, a major pest in European vineyard. Most of the model parameters were estimated from data in the literature. An unpublished dataset of population dynamics collected in a vineyard in the Veneto region (Italy) over three years was used to estimate the mortality function. Model validation was performed with a set of independent data. Model simulations provided realistic trajectories of population dynamics obtained with a limited dataset of initial conditions. The suitability of the model as a tool for decision support for grape berry moth management is discussed. (C) 2015 Elsevier B.V. All rights reserved. [Gilioli, Gianni] Univ Brescia, Dept Mol & Translat Med, I-25123 Brescia, Italy; [Gilioli, Gianni] CASAS Global, Kensington, CA 94707 USA; [Pasquali, Sara] CNR, IMATI Enrico Magenes, I-20133 Milan, Italy; [Marchesini, Enrico] AGREA Srl, Ctr Studi, I-37057 San Giovanni Lupatoto, VR, Italy Pasquali, S (reprint author), CNR, IMATI Enrico Magenes, Via Bassini 15, I-20133 Milan, Italy. gianni.gilioli@unibs.it; sara.pasquali@mi.imati.cnr.it; enrico.marchesini@agrea.it Pasquali, Sara/H-9698-2013 Pasquali, Sara/0000-0001-6185-8148 European Union [262059] The research leading to these results was partially funded by the European Union's Seventh Framework Programme managed by REA-Research Executive Agency(http://ec.europa.eu/research/rea) ([FP7/2007-2013] [FP7/2007-2011]) under grant agreement no. [262059]. Ainseba B, 2011, J MATH ANAL APPL, V382, P34, DOI 10.1016/j.jmaa.2011.04.021; Baumgartner J., 1988, B I ENTOMOL U BOLOGN, V43, P157; Briere JF, 1998, ENVIRON ENTOMOL, V27, P94, DOI 10.1093/ee/27.1.94; Briolini G., 1997, IOBC WPRS B, V21, P79; Buffoni G., 1990, DISCRETE STOCHASTIC; Buffoni G., 1990, COMPUTER SCI MATH ME, P12; Buffoni G, 2007, J MATH BIOL, V54, P555, DOI 10.1007/s00285-006-0058-2; Buffoni G, 2013, INT J BIOMATH, V6, DOI 10.1142/S1793524513500393; Buffoni G, 2010, J MATH BIOL, V60, P831, DOI 10.1007/s00285-009-0287-2; CABI, 2014, CABI INV SPEC COMP; Cozzi G, 2006, INT J FOOD MICROBIOL, V111, pS88, DOI 10.1016/j.ijfoodmicro.2006.03.012; Del Tio R, 2001, J APPL ENTOMOL, V125, P9, DOI 10.1046/j.1439-0418.2001.00507.x; Di Cola G., 1998, P45; Di Cola G., 1999, P503; Elliott NC, 2008, AREAWIDE PEST MANAGEMENT: THEORY AND IMPLEMENTATION, P15, DOI 10.1079/9781845933722.0015; Faust RM, 2008, AREAWIDE PEST MANAGEMENT: THEORY AND IMPLEMENTATION, P1, DOI 10.1079/9781845933722.0001; GABEL B, 1981, ANZ SCHADLINGSKD PFL, V54, P83, DOI 10.1007/BF01989858; Gardiner C. W., 1985, HDB STOCHASTIC METHO; GETZ WM, 1982, ANNU REV ENTOMOL, V27, P447, DOI 10.1146/annurev.en.27.010182.002311; GILBERT N, 1973, J ANIM ECOL, V42, P323, DOI 10.2307/3288; Gilioli G, 2007, ECOL MODEL, V200, P109, DOI 10.1016/j.ecolmodel.2006.07.017; Gilioli G, 2014, PEST MANAG SCI, V70, P1611, DOI 10.1002/ps.3734; Gilioli G, 2013, ECOL MODEL, V260, P1, DOI 10.1016/j.ecolmodel.2013.03.020; Gilioli G, 2011, MALARIA J, V10, DOI 10.1186/1475-2875-10-294; Goudriaan J., 1974, SIMULATION ECOLOGICA; Gutierrez A. P., 1984, Canadian Entomologist, V116, P933; Gutierrez A. P., 1996, APPL POPULATION EC S; Gutierrez A.P., 2010, HDB CLIMATE CHANGE A, V1, P209; Gutierrez AP, 2012, AGR FOREST ENTOMOL, V14, P225, DOI 10.1111/j.1461-9563.2011.00566.x; Gutierrez AP, 2013, AGR FOREST ENTOMOL, V15, P272, DOI 10.1111/afe.12015; GUTIERREZ AP, 1975, ENVIRON ENTOMOL, V4, P125, DOI 10.1093/ee/4.1.125; GUTIERREZ AP, 1977, CAN ENTOMOL, V109, P1457, DOI 10.4039/Ent1091457-11; Hardman John Michael, 2012, P37; Kontodimas DC, 2004, ENVIRON ENTOMOL, V33, P1, DOI 10.1603/0046-225X-33.1.1; LACTIN DJ, 1995, ENVIRON ENTOMOL, V24, P68, DOI 10.1093/ee/24.1.68; Lorenz D.H., 1994, VITIC ENOL SCI, V49, P66, DOI DOI 10.1111/J.1755-0238.1995.TB00085.X; Maher N, 2006, CHEMOECOLOGY, V16, P135, DOI 10.1007/s00049-006-0339-7; Manly B.F.J., 1989, ESTIMATION ANAL INSE, P3; Marchesini E., 2004, Informatore Agrario, V60, P75; Marchesini E., 1994, Bollettino di Zoologia Agraria e di Bachicoltura, V26, P201; Marchesini E., 1998, INFORM FITOPATOLOGIC, V9, P3; Martin-Vertedor D, 2010, AGR FOREST ENTOMOL, V12, P169, DOI 10.1111/j.1461-9563.2009.00465.x; MCDONALD L, 1989, ESTIMATION ANAL INSE; Metz JAJ, 1986, DYNAMICS PHYSL STRUC; Norton G.A., 1977, P C PEST MAN 25 29 O; Pasquali S, 2015, RISK ANAL, V35, P1663, DOI 10.1111/risa.12278; Pavan F., 1997, Frustula Entomologica, V20, P18; Pavan F, 2010, ENVIRON ENTOMOL, V39, P1652, DOI 10.1603/EN10069; Picart D, 2014, APPL MATH COMPUT, V247, P573, DOI 10.1016/j.amc.2014.09.014; REGEV U, 1976, AM J AGR ECON, V58, P186, DOI 10.2307/1238969; Schmidt K., 2001, IOBC-WPRS Bulletin, V24, P127; Schmidt K., 2003, OEPP EPPO B, V33, P517; Thiery D, 2005, OECOLOGIA, V143, P548, DOI 10.1007/s00442-005-0022-7; VANSICKLE J, 1977, IEEE T SYST MAN CYB, V7, P635, DOI 10.1109/TSMC.1977.4309800; Varela LG, 2010, PRACT WINERY VINEYAR, P1; Venette RC, 2003, MINI RISK ASSESSMENT; WANG Y, 1977, CAN ENTOMOL, V109, P1359, DOI 10.4039/Ent1091359-10 57 12 12 2 32 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3800 1872-7026 ECOL MODEL Ecol. Model. JAN 24 2016 320 348 357 10.1016/j.ecolmodel.2015.10.018 10 Ecology Environmental Sciences & Ecology DB2BM WOS:000368313300030 2019-02-21 J Durrant, R Durrant, Russil Putting risk factors in their place: an evolutionary-developmental approach to understanding risk PSYCHOLOGY CRIME & LAW English Article evolution; developmental criminology; Risk factors; life history theory SEXUAL OFFENDERS; RECIDIVISM; TESTOSTERONE; METAANALYSIS; MARRIAGE; CHILD; SELECTION; BEHAVIOR; NEEDS The assessment of criminal risk plays a prominent role in the criminal justice systems of many different countries and risk assessment is employed in a number of different domains. Given the importance of risk assessment tools in forensic contexts, and the amount of research devoted to evaluating their accuracy in predicting re-offending, it might be expected that risk assessment tools are grounded in our best theoretical understanding of the causal processes that give rise to criminal actions. However, it is not at all clear that this is the case. In this article, I will argue that one important area of neglect is the failure to fully engage with the literature in developmental and life-course criminology which also has directed an enormous amount of effort in to identifying risk factors for offending. At the heart of this neglect, I will claim, is the failure to fully recognise the key distinction between predicting offending and predicting re-offending. I will further argue that an evolutionary developmental perspective provides the theoretical resources to provide fully explanatory accounts of offending and re-offending, and in which risk factors can be appropriately located. I conclude by briefly considering some implications for theory, research, and practice. [Durrant, Russil] Victoria Univ Wellington, Sch Social & Cultural Studies, Inst Criminol, Wellington, New Zealand Durrant, R (reprint author), Victoria Univ Wellington, Sch Social & Cultural Studies, Inst Criminol, Wellington, New Zealand. russil.durrant@vuw.ac.nz Agnew R., 2011, UNIFIED CRIMINOLOGY; Andrews DA, 2006, CRIME DELINQUENCY, V52, P7, DOI 10.1177/0011128705281756; Andrews DA, 2010, PSYCHOLOGY OF CRIMINAL CONDUCT, 5TH EDITION, P1; Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; Beech AR, 2004, AGGRESS VIOLENT BEH, V10, P31, DOI 10.1016/j.avb.2003.08.002; Bjorklund DF, 2014, DEV REV, V34, P225, DOI 10.1016/j.dr.2014.05.005; Campbell A, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2013.0078; Caspi A, 2000, J PERS SOC PSYCHOL, V78, P158, DOI 10.1037//0022-3514.78.1.158; Caudy MS, 2013, J CRIM JUST, V41, P458, DOI 10.1016/j.jcrimjus.2013.08.004; Craig J. M., 2014, J CRIME JUSTICE, V38, P163, DOI [10.1080/0735648X.2014.884468, DOI 10.1080/0735648X.2014.884468]; Craig JM, 2014, EFFECTIVE INTERVENTI, P19, DOI DOI 10.1007/978-1-4614-8930-6; Daly M., 1988, HOMICIDE; Douglas KS, 2005, PSYCHOL PUBLIC POL L, V11, P347, DOI 10.1037/1076-8971.11.3.347; Durrant R., 2015, EVOLUTIONARY CRIMINO; Elliott M. C., 2015, DEV CRIMINAL ANTISOC, P253, DOI 10. 1007/978-3-319-08720-7; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fagan A. A., 2014, NURTURE VERSUS BIOSO, P10; Farrington D. P., 2015, FORENSIC PSYCHOL, P162; Galvan A, 2013, CURR DIR PSYCHOL SCI, V22, P88, DOI 10.1177/0963721413480859; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; Gray PB, 2007, CURR ANTHROPOL, V48, P750, DOI 10.1086/522061; Hanson RK, 2000, CRIM JUSTICE BEHAV, V27, P6, DOI 10.1177/0093854800027001002; Hanson RK, 2005, J CONSULT CLIN PSYCH, V73, P1154, DOI 10.1037/0022-006X.73.6.1154; Hochberg Z, 2013, BMC MED, V11, DOI 10.1186/1741-7015-11-113; Horney J., 2012, JUVENILE DELINQUENCY, P86; Jespersen AF, 2009, CHILD ABUSE NEGLECT, V33, P179, DOI 10.1016/j.chiabu.2008.07.004; Kazemian L, 2015, DEV CRIMINAL ANTISOC, P295; Kerig P. K., 2015, DEV CRIMINAL ANTISOC, P181, DOI DOI 10.1007/978-3-319-08720-7_12; Kraemer HC, 1997, ARCH GEN PSYCHIAT, V54, P337; Loeber R., 2012, FUTURE CRIMINOLOGY, P11; Loeber R., 2012, JUVENILE DELINQUENCY, P3; Mann RE, 2010, SEX ABUSE-J RES TR, V22, P191, DOI 10.1177/1079063210366039; Mazur A, 1998, SOC FORCES, V77, P315, DOI 10.2307/3006019; Mitchell S. D., 2009, UNSIMPLE TRUTHS SCI; Monahan J., 2014, FEDERAL SENTENCING R, V26, P158, DOI DOI 10.1525/FSR.2014.26.3.158; Nagin DS, 2009, CRIME JUSTICE, V38, P115, DOI 10.1086/599202; Pardini D. A., 2015, DEV CRIMINAL ANTISOC, P201, DOI DOI 10.1007/978-3-319-08720-7_13; Piquero AR, 2015, J DEV LIFE-COURSE CR, V1, P21, DOI 10.1007/s40865-015-0004-3; Portnoy J, 2015, AGGRESS VIOLENT BEH, V22, P33, DOI 10.1016/j.avb.2015.02.004; Puts DA, 2010, EVOL HUM BEHAV, V31, P157, DOI 10.1016/j.evolhumbehav.2010.02.005; Raine A., 2013, ANATOMY VIOLENCE BIO; Simons DA, 2008, CHILD ABUSE NEGLECT, V32, P549, DOI 10.1016/j.chiabu.2007.03.027; SINGH I, 2014, BIOPREDICTION BIOMAR; Singh JP, 2011, CLIN PSYCHOL REV, V31, P499, DOI 10.1016/j.cpr.2010.11.009; Singh JP, 2010, CRIM JUSTICE BEHAV, V37, P965, DOI 10.1177/0093854810374274; Skardhamar T, 2015, CRIME JUSTICE, V44, P385, DOI 10.1086/681557; Skeem JL, 2011, CURR DIR PSYCHOL SCI, V20, P38, DOI 10.1177/0963721410397271; Spear LP, 2013, J ADOLESCENT HEALTH, V52, pS7, DOI 10.1016/j.jadohealth.2012.05.006; Steinberg L, 2010, DEV PSYCHOBIOL, V52, P216, DOI 10.1002/dev.20445; Taxman FS, 2015, CRIMINOL PUBLIC POL, V14, P71, DOI 10.1111/1745-9133.12116; Theobald D, 2015, AUST NZ J CRIMINOL, V48, P3, DOI 10.1177/0004865814537840; Theobald D, 2011, BRIT J CRIMINOL, V51, P136, DOI 10.1093/bjc/azq060; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; United Nations Office on Drugs and Crime, 2014, GLOB STUD HOM 2013; Walton JS, 2015, TRAUMA VIOLENCE ABUS, V16, P401, DOI 10.1177/1524838014537905; Ward T, 2015, CRIMINOL PUBLIC POL, V14, P105, DOI 10.1111/1745-9133.12115; Ward T, 2015, PSYCHOL CRIME LAW, V21, P100, DOI 10.1080/1068316X.2014.917854; Ward T, 2014, J SEX AGGRESS, V20, P130, DOI 10.1080/13552600.2013.870242; Warr M., 2002, COMPANIONS CRIME SOC; Yang M, 2010, PSYCHOL BULL, V136, P740, DOI 10.1037/a0020473 62 3 3 1 9 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 1068-316X 1477-2744 PSYCHOL CRIME LAW Psychol. Crime Law JAN 22 2016 22 1-2 SI 17 32 10.1080/1068316X.2015.1109093 16 Criminology & Penology; Law; Psychology, Multidisciplinary Criminology & Penology; Government & Law; Psychology DE3GG WOS:000370514900003 2019-02-21 J Mollet, FM; Dieckmann, U; Rijnsdorp, AD Mollet, Fabian M.; Dieckmann, Ulf; Rijnsdorp, Adriaan D. Reconstructing the effects of fishing on life-history evolution in North Sea plaice Pleuronectes platessa MARINE ECOLOGY PROGRESS SERIES English Article Fisheries-induced evolution; Eco-genetic model; Individual-based model; Density-dependent growth; Energy allocation; Energy acquisition; Reproductive investment; Maturation reaction norm FISHERIES-INDUCED EVOLUTION; SIZE-DEPENDENT MORTALITY; MATURATION REACTION NORMS; SOLEA-SOLEA L.; CLIMATE-CHANGE; POPULATION-PRODUCTIVITY; PHENOTYPIC PLASTICITY; SELECTIVE MORTALITY; REFERENCE POINTS; GENERAL-MODEL Growing evidence suggests that fishing may induce rapid contemporary evolution in certain life-history traits. This study analyzes fisheries-induced changes in life-history traits describing growth, maturation, and reproduction, using an individual-based eco-genetic model that captures both the population dynamics and changes in genetic trait values. The model was successfully calibrated to match the observed life-history traits of female North Sea plaice Pleuronectes platessa around the years 1900 and 2000. On this basis, we report the following findings. First, the model indicates changes in 3 evolving life-history traits: the intercept of the maturation reaction norm decreases by 27%, the weight-specific reproductive-investment rate increases by 10%, and the weight-specific energy-acquisition rate increases by 1%. Together, these changes reduce the weight at maturation by 46% and the asymptotic body weight by 28% relative to the intensification of fishing around 1900. Second, while the maturation reaction norm and reproductive-investment rate change monotonically over time, the energy-acquisition rate follows a more complex course: after an initial increase during the first 50 yr, it remains constant for about 30 yr and then starts to decline. Third, our analysis indicates that North Sea plaice has not yet attained a new evolutionary equilibrium: it must be expected to evolve further towards earlier maturation, increased reproductive investment, and lower adult body size. Fourth, when fishing continues in our model 100 yr into the future, the pace of evolution slows down for the maturation reaction norm and the rate of energy acquisition, whereas no such slowing down is expected for the rate of reproductive investment. [Mollet, Fabian M.; Dieckmann, Ulf] Int Inst Appl Syst Anal, Evolut & Ecol Program, Schlosspl 1, A-2361 Laxenburg, Austria; [Mollet, Fabian M.; Rijnsdorp, Adriaan D.] Wageningen IMARES Inst Marine Resources & Ecosyst, POB 68, NL-1970 AB Ijmuiden, Netherlands; [Rijnsdorp, Adriaan D.] Wageningen Univ, Aquaculture & Fisheries Grp, POB 338, NL-6700 AH Wageningen, Netherlands; [Mollet, Fabian M.] Blueyou Consulting AG, Zentralstr 156, CH-8003 Zurich, Switzerland Mollet, FM (reprint author), Int Inst Appl Syst Anal, Evolut & Ecol Program, Schlosspl 1, A-2361 Laxenburg, Austria.; Mollet, FM (reprint author), Wageningen IMARES Inst Marine Resources & Ecosyst, POB 68, NL-1970 AB Ijmuiden, Netherlands.; Mollet, FM (reprint author), Blueyou Consulting AG, Zentralstr 156, CH-8003 Zurich, Switzerland. fabian.mollet@blueyou.com Rijnsdorp, Adriaan/A-4217-2008 Rijnsdorp, Adriaan/0000-0003-0785-9662; Dieckmann, Ulf/0000-0001-7089-0393 European Research Training Network on Fisheries-induced Adaptive Changes in Exploited Stocks (FishACE) [MRTN-CT-2204-005578]; European Specific Targeted Research Programme on Fisheries-induced Evolution (FinE) - the European Community's Sixth Framework Programme [SSP-2006-044276]; European Science Foundation (ESF); Austrian Science Fund (FWF); Austrian Ministry of Science and Research (BMWF); Vienna Science and Technology Fund (WWTF); Strategic Research Programme on Sustainable Spatial Development of Ecosystems, Landscapes, Seas and Regions - Dutch Ministry of Agriculture, Nature Conservation and Food Quality This research was supported by the European Research Training Network on Fisheries-induced Adaptive Changes in Exploited Stocks (FishACE; contract MRTN-CT-2204-005578) and by the European Specific Targeted Research Programme on Fisheries-induced Evolution (FinE; contract SSP-2006-044276), funded through the European Community's Sixth Framework Programme. This paper does not necessarily reflect the views of the European Commission and does not anticipate the Commission's future policy in this area. U.D. was funded by the European Science Foundation (ESF), the Austrian Science Fund (FWF), the Austrian Ministry of Science and Research (BMWF), and the Vienna Science and Technology Fund (WWTF). A.D.R. was funded by the Strategic Research Programme on Sustainable Spatial Development of Ecosystems, Landscapes, Seas and Regions funded by the Dutch Ministry of Agriculture, Nature Conservation and Food Quality. Andersen KH, 2007, ECOL MODEL, V204, P246, DOI 10.1016/j.ecolmodel.2007.01.002; Andersen KH, 2006, AM NAT, V168, P54, DOI 10.1086/504849; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Audzijonyte A, 2013, EVOL APPL, V6, P585, DOI 10.1111/eva.12044; Audzijonyte A, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1103; Bennema FP, 2015, FISH RES, V161, P384, DOI 10.1016/j.fishres.2014.09.001; BEUKEMA JJ, 1986, OPHELIA, V26, P55, DOI 10.1080/00785326.1986.10421978; Beverton RJH, 1964, RAPP P V REUN CONS I, V155, P103; Bolle LJ, 2004, J SEA RES, V51, P313, DOI 10.1016/j.seares.2004.01.001; Colijn F, 2002, HYDROBIOLOGIA, V484, P133, DOI 10.1023/A:1021361206529; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Dieckmann U., 2009, ICES INSIGHT, V46, P34; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dulvy NK, 2008, J APPL ECOL, V45, P1029, DOI 10.1111/j.1365-2664.2008.01488.x; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2009, EVOL APPL, V2, P371, DOI 10.1111/j.1752-4571.2009.00089.x; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Enberg K, 2010, CAN J FISH AQUAT SCI, V67, P1708, DOI 10.1139/F10-090; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Engelhard GH, 2011, ICES J MAR SCI, V68, P1090, DOI 10.1093/icesjms/fsr031; Engelhard GH, 2008, ADVANCES IN FISHERIES SCIENCE: 50 YEARS ON FROM BEVERTON AND HOLT, P1, DOI 10.1002/9781444302653.ch1; Fock HO, 2014, FISH RES, V154, P26, DOI 10.1016/j.fishres.2014.02.001; FONDS M, 1992, NETH J SEA RES, V29, P127, DOI 10.1016/0077-7579(92)90014-6; Freitas V, 2010, PHILOS T R SOC B, V365, P3553, DOI 10.1098/rstb.2010.0049; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 2002, B MAR SCI, V70, P639; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Heino M, 2008, B MAR SCI, V83, P69; Heino M, 2015, ANNU REV ECOL EVOL S, V46, P461, DOI 10.1146/annurev-ecolsys-120213-054339; Heino M, 2013, ICES J MAR SCI, V70, P707, DOI 10.1093/icesjms/fst077; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; ICES, 2014, ICES ADV 2014; ICES, 2011, ICES ADV 2011; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Kerby K., 2012, REV FISH BIOL FISHER, V22, P621; Kraak SBM, 2007, MAR ECOL PROG SER, V335, P295, DOI 10.3354/meps335295; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuparinen A, 2014, EVOL APPL, V7, P1218, DOI 10.1111/eva.12217; Kuparinen A, 2012, P ROY SOC B-BIOL SCI, V279, P2571, DOI 10.1098/rspb.2012.0120; Kuparinen A, 2011, OECOLOGIA, V167, P435, DOI 10.1007/s00442-011-1989-x; Laugen AT, 2014, FISH FISH, V15, P65, DOI 10.1111/faf.12007; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Mackenzie BR, 2007, GLOBAL CHANGE BIOL, V13, P1335, DOI 10.1111/j.1365-2486.2007.01360.x; Marshall CT, 2007, MAR ECOL PROG SER, V335, P249, DOI 10.3354/meps335249; Mollet FM, 2016, CAN J FISH AQUAT SCI, V73, P1126, DOI 10.1139/cjfas-2014-0568; Mollet FM, 2010, OIKOS, V119, P10, DOI 10.1111/j.1600-0706.2009.17746.x; Mollet FM, 2010, THESIS WAGENINGEN U; Okamoto KW, 2009, EVOL APPL, V2, P415, DOI 10.1111/j.1752-4571.2009.00095.x; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Philippart CJM, 2007, ECOSYSTEMS, V10, P95, DOI 10.1007/s10021-006-9006-7; Rijnsdorp A.D., 1989, CONSEIL PERMANENT IN, V46, P35; Rijnsdorp AD, 2001, J SEA RES, V45, P219, DOI 10.1016/S1385-1101(01)00047-8; Rijnsdorp AD, 1996, ICES J MAR SCI, V53, P1170, DOI 10.1006/jmsc.1996.0142; RIJNSDORP AD, 1992, MAR ECOL PROG SER, V88, P19, DOI 10.3354/meps088019; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Rijnsdorp AD, 2005, CAN J FISH AQUAT SCI, V62, P833, DOI 10.1139/F05-039; Rijnsdorp AD, 1996, ICES J MAR SCI, V53, P1199, DOI 10.1006/jmsc.1996.0145; RIJNSDORP AD, 1993, EXPLOITATION EVOLVIN, P19; SCHEFFER M, 1995, ECOL MODEL, V80, P161, DOI 10.1016/0304-3800(94)00055-M; Sinclair AF, 2002, CAN J FISH AQUAT SCI, V59, P361, DOI 10.1139/F02-015; Sparre P., 1998, FAO FISHERIES TECHNI; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stokes T. K., 1993, LECT NOTES BIOMATHEM, V99; Taborsky B, 2003, P ROY SOC B-BIOL SCI, V270, P713, DOI 10.1098/rspb.2002.2255; Taborsky B, 2012, EVOLUTION, V66, P3534, DOI 10.1111/j.1558-5646.2012.01692.x; Teal LR, 2008, MAR ECOL PROG SER, V358, P219, DOI 10.3354/meps07367; Teal LR, 2012, GLOBAL CHANGE BIOL, V18, P3291, DOI 10.1111/j.1365-2486.2012.02795.x; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; van Aken HM, 2010, J SEA RES, V63, P143, DOI 10.1016/j.seares.2009.11.005; van der Veer HW, 2001, J SEA RES, V45, P303, DOI 10.1016/S1385-1101(01)00061-2; van Hal R, 2016, J SEA RES, V107, P14, DOI 10.1016/j.seares.2015.06.020; van Keeken OA, 2007, J SEA RES, V57, P187, DOI 10.1016/j.seares.2006.09.002; Van Neer Wim, 2002, Environmental Archaeology, V7, P61; van Walraven L, 2010, J SEA RES, V64, P85, DOI 10.1016/j.seares.2009.07.003; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; Wright PJ, 2014, MAR BIOL, V161, P2781, DOI 10.1007/s00227-014-2543-2 86 3 3 1 44 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. JAN 19 2016 542 195 208 10.3354/meps11441 14 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography DC0QN WOS:000368922900015 2019-02-21 J Pamminger, T; Treanor, D; Hughes, WOH Pamminger, Tobias; Treanor, David; Hughes, William O. H. Pleiotropic effects of juvenile hormone in ant queens and the escape from the reproduction - immunocompetence trade-off PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article social insects; immunology; juvenile hormone; Lasius niger; life history; trade-off SOLENOPSIS-INVICTA; NATURAL-SELECTION; DROSOPHILA-MELANOGASTER; VITELLOGENIN SYNTHESIS; LOCUSTA-MIGRATORIA; LIFE-HISTORY; LASIUS-NIGER; HONEY-BEE; IMMUNITY; INSECTS The ubiquitous trade-off between survival and costly reproduction is one of the most fundamental constraints governing life-history evolution. In numerous animals, gonadotropic hormones antagonistically suppressing immunocompetence cause this trade-off. The queens of many social insects defy the reproduction-survival trade-off, achieving both an extraordinarily long life and high reproductive output, but how they achieve this is unknown. Here we show experimentally, by integrating quantification of gene expression, physiology and behaviour, that the long-lived queens of the ant Lasius niger have escaped the reproduction-immunocompetence trade-off by decoupling the effects of a key endocrine regulator of fertility and immunocompetence in solitary insects, juvenile hormone (JH). This modification of the regulatory architecture enables queens to sustain a high reproductive output without elevated JH titres and suppressed immunocompetence, providing an escape from the reproduction-immunocompetence trade-off that may contribute to the extraordinary lifespan of many social insect queens. [Pamminger, Tobias; Treanor, David; Hughes, William O. H.] Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England Pamminger, T (reprint author), Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England. t.pamminger@sussex.ac.uk Pamminger, Tobias/0000-0003-1257-3829 DFG [PA 2460/1-1]; EC FP7 Marie Curie Fellowship [PIEF-GA-2013-626585]; University of Sussex The work was funded by the DFG PA 2460/1-1 and an EC FP7 Marie Curie Fellowship PIEF-GA-2013-626585 (T.P.), and by the University of Sussex (D.T.). Adamo SA, 2001, ANIM BEHAV, V62, P417, DOI 10.1006/anbe.2001.1786; Bloch G, 2009, HORMONES, BRAIN AND BEHAVIOR, VOLS 1-5, 2ND EDITION, P1027; Bocher A, 2007, J EVOLUTION BIOL, V20, P2228, DOI 10.1111/j.1420-9101.2007.01424.x; Brent CS, 2003, J INSECT PHYSIOL, V49, P967, DOI 10.1016/S0022-1910(03)00166-5; Bulet P, 2005, PROTEIN PEPTIDE LETT, V12, P3, DOI 10.2174/0929866053406011; CHANG ES, 1993, ANNU REV ENTOMOL, V38, P161, DOI 10.1146/annurev.en.38.010193.001113; CHEN TT, 1979, DEV BIOL, V69, P59, DOI 10.1016/0012-1606(79)90274-4; CHINZEI Y, 1985, J INSECT PHYSIOL, V31, P441, DOI 10.1016/0022-1910(85)90090-3; Corona M, 2007, P NATL ACAD SCI USA, V104, P7128, DOI 10.1073/pnas.0701909104; Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; Flatt T, 2008, J EXP BIOL, V211, P2712, DOI 10.1242/jeb.014878; Franssens V, 2006, DEV COMP IMMUNOL, V30, P735, DOI 10.1016/j.dci.2005.10.010; Galvez D, 2014, ECOL EVOL, V4, P1761, DOI 10.1002/ece3.1070; Gillespie JP, 1997, ANNU REV ENTOMOL, V42, P611, DOI 10.1146/annurev.ento.42.1.611; HAJEK AE, 1994, ANNU REV ENTOMOL, V39, P293, DOI 10.1146/annurev.en.39.010194.001453; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hartfelder K, 2002, INSECT BIOCHEM MOLEC, V32, P211, DOI 10.1016/S0965-1748(01)00100-X; Holldobler B., 1990, ANTS; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; Hughes WOH, 2004, J INVERTEBR PATHOL, V85, P46, DOI 10.1016/j.jip.2003.12.005; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Keller L, 1998, INSECT SOC, V45, P235, DOI 10.1007/s000400050084; Keller L, 2006, EXP GERONTOL, V41, P553, DOI 10.1016/j.exger.2006.04.002; Konrad M, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001300; Leroi AM, 2001, TRENDS ECOL EVOL, V16, P24, DOI 10.1016/S0169-5347(00)02032-2; Libbrecht R, 2013, P NATL ACAD SCI USA, V110, P11050, DOI 10.1073/pnas.1221781110; Morales M., 2011, SCIPLOT SCI GRAPHING; Nijhout HF., 1998, INSECT HORMONES; Nishikori K, 2009, J INSECT PHYSIOL, V55, P351, DOI 10.1016/j.jinsphys.2009.01.001; ODONNELL S, 1993, PHYSIOL ENTOMOL, V18, P189, DOI 10.1111/j.1365-3032.1993.tb00467.x; Oster G. F., 1979, CASTE ECOLOGY SOCIAL; PAN ML, 1971, SCIENCE, V174, P503, DOI 10.1126/science.174.4008.503; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; Pull CD, 2013, NATURWISSENSCHAFTEN, V100, P1125, DOI 10.1007/s00114-013-1115-5; R Core Team, 2014, R LANG ENV STAT COMP; Rankin SM, 1997, ARCH INSECT BIOCHEM, V35, P427, DOI 10.1002/(SICI)1520-6327(1997)35:4<427::AID-ARCH6>3.3.CO;2-T; Rantala MJ, 2003, P ROY SOC B-BIOL SCI, V270, P2257, DOI 10.1098/rspb.2003.2472; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Robinson GE, 1997, ARCH INSECT BIOCHEM, V35, P559, DOI 10.1002/(SICI)1520-6327(1997)35:4<559::AID-ARCH13>3.0.CO;2-9; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; Roulston TH, 2000, ECOL MONOGR, V70, P617, DOI 10.1890/0012-9615(2000)070[0617:WGPCOP]2.0.CO;2; Rus F, 2013, EMBO J, V32, P1626, DOI 10.1038/emboj.2013.100; SASAGAWA H, 1989, APPL ENTOMOL ZOOL, V24, P66, DOI 10.1303/aez.24.66; SCHNEIRLA T. C., 1957, INSECTES SOCIAUX, V4, P259, DOI 10.1007/BF02222158; Schrempf A, 2005, CURR BIOL, V15, P267, DOI 10.1016/j.cub.2005.01.036; Serbielle C, 2009, BIOL CHEM, V390, P493, DOI 10.1515/BC.2009.061; Soller M, 1999, DEV BIOL, V208, P337, DOI 10.1006/dbio.1999.9210; SOMMER K, 1995, ANIM BEHAV, V50, P287, DOI 10.1006/anbe.1995.0244; SOMMER K, 1993, ETHOLOGY, V94, P162; Tan KL, 2014, CURR BIOL, V24, P1145, DOI 10.1016/j.cub.2014.03.062; Therneau TM, 2015, PACKAGE SURVIVAL R P; Tryselius Y, 1997, INSECT MOL BIOL, V6, P173, DOI 10.1111/j.1365-2583.1997.tb00085.x; Tsuji K, 1996, NATURWISSENSCHAFTEN, V83, P577; VARGO EL, 1992, BEHAV ECOL SOCIOBIOL, V31, P205; VARGO EL, 1994, J INSECT PHYSIOL, V40, P601, DOI 10.1016/0022-1910(94)90147-3; Viljakainen L, 2005, INSECT MOL BIOL, V14, P335, DOI 10.1111/j.1365-2583.2005.00564.x; WHEELER DE, 1984, J INSECT PHYSIOL, V30, P127, DOI 10.1016/0022-1910(84)90116-1; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson E. O., 1971, INSECT SOC; Wyatt GR, 1996, ADV INSECT PHYSIOL, V26, P1, DOI 10.1016/S0065-2806(08)60030-2; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 63 10 10 3 42 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JAN 13 2016 283 1822 20152409 10.1098/rspb.2015.2409 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology DB3VN WOS:000368441200018 26763704 Green Published, Bronze 2019-02-21 J Ziomkiewicz, A; Sancilio, A; Galbarczyk, A; Klimek, M; Jasienska, G; Bribiescas, RG Ziomkiewicz, Anna; Sancilio, Amelia; Galbarczyk, Andrzej; Klimek, Magdalena; Jasienska, Grazyna; Bribiescas, Richard G. Evidence for the Cost of Reproduction in Humans: High Lifetime Reproductive Effort Is Associated with Greater Oxidative Stress in Post-Menopausal Women PLOS ONE English Article CARDIOVASCULAR-DISEASE; FEMALE REPRODUCTION; HISTORY EVOLUTION; OVARIAN-FUNCTION; MENSTRUAL-CYCLE; OLDER WOMEN; TRADE-OFFS; MORTALITY; NUMBER; LACTATION Life history theory predicts trade-offs between reproductive effort and maternal survivorship in energy-restricted environments. However, empirical evidence for the positive association between maternal mortality and reproductive effort from energetically challenged human populations are mixed and physiological mechanisms that may underlie this association are poorly understood. We hypothesized that increases in aerobic metabolism during repeated periods of pregnancy and lactation result in increased oxidative stress that may contribute to somatic deterioration, vulnerability to illness, and accelerated aging. We therefore predicted that lifetime gravidity and parity would be related to levels of biomarkers of oxidative stress, as well as antioxidative defence enzymes in post-menopausal women. Our hypothesis was supported by positive linear associations between levels of 8-OHdG, a biomarker of DNA oxidative damage (beta = 0.21, p<0.05), levels of antioxidative defence enzyme Cu-Zn SOD (beta = 0.25, p<0.05), and number of lifetime pregnancies. Furthermore, independent of age and health status, post-menopausal women with higher gravidity and parity (> = 4 pregnancies per lifetime) had 20% higher levels of 8-OHdG and 60% higher levels of Cu-Zn SOD compared to women with lower gravidity and parity (<4 pregnancies per lifetime). Our results present the first evidence for oxidative stress as a possible cost of reproductive effort in humans. [Ziomkiewicz, Anna] Polish Acad Sci, Anthropol Unit Wroclaw, Wroclaw, Poland; [Ziomkiewicz, Anna; Sancilio, Amelia; Jasienska, Grazyna; Bribiescas, Richard G.] Yale Univ, Dept Anthropol, New Haven, CT 06520 USA; [Galbarczyk, Andrzej; Klimek, Magdalena; Jasienska, Grazyna] Jagiellonian Univ, Coll Med, Fac Hlth Sci, Dept Environm Hlth, Krakow, Poland Ziomkiewicz, A (reprint author), Polish Acad Sci, Anthropol Unit Wroclaw, Wroclaw, Poland. aziomkiewicz-wichary@antropologia.pan.pl Jasienska, Grazyna/0000-0001-8716-6342; Galbarczyk, Andrzej/0000-0002-7879-9735; Ziomkiewicz, Anna/0000-0002-1842-3314 Fulbright Commission; Polish National Science Centre [N N404 273440]; Polish Ministry of Sciences and Higher Education [IdP2011 000161]; Yale University; Salus Publica Foundation This work was supported by Fulbright Commission (Senior Advanced Research Award to A. Ziomkiewicz): http://www.fulbright.edu.pl/en/home/, Polish National Science Centre (Grant no N N404 273440 to G. Jasienska): https://www.ncn.gov.pl/?language=en, Polish Ministry of Sciences and Higher Education (Grant no IdP2011 000161 to G. Jasienska): http://www.nauka.gov.pl/en/, Yale University, and Salus Publica Foundation: https://www.facebook.com/saluspublica. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Agarwal A, 2005, REPROD BIOL ENDOCRIN, V3, DOI 10.1186/1477-7827-3-28; Agarwal A, 2012, REPROD BIOL ENDOCRIN, V10, DOI 10.1186/1477-7827-10-49; Albera E, 2011, REPROD DOMEST ANIM, V46, P763, DOI 10.1111/j.1439-0531.2010.01737.x; Albera E, 2010, REPROD DOMEST ANIM, V45, pe417, DOI 10.1111/j.1439-0531.2010.01592.x; Atsma F, 2008, MENOPAUSE, V15, P899, DOI 10.1097/gme.0b013e3181653d7d; Beeri MS, 2009, NEUROBIOL AGING, V30, P1184, DOI 10.1016/j.neurobiolaging.2007.11.011; Bonda DJ, 2010, NEUROPHARMACOLOGY, V59, P290, DOI 10.1016/j.neuropharm.2010.04.005; Brown L, 2010, MATERNAL FETAL NUTR; Butte NF, 2005, PUBLIC HEALTH NUTR, V8, P1010, DOI 10.1079/PHN2005793; BUTTE NF, 2000, AM J CLIN NUTR, V71, P1256; Ceriello A, 2004, ARTERIOSCL THROM VAS, V24, P816, DOI 10.1161/01.ATV.0000122852.22604.78; Dekker JM, 1993, NEW ENGL J MED, V329, P1894, DOI 10.1056/NEJM199312163292515; Del Rio D, 2005, NUTR METAB CARDIOVAS, V15, P316, DOI 10.1016/j.numecd.2005.05.003; Doblhammer G, 2003, P ROY SOC B-BIOL SCI, V270, P1541, DOI 10.1098/rspb.2003.2400; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Dribe M, 2004, POP STUD-J DEMOG, V58, P297, DOI 10.1080/0032472042000272357; FAO/ WHO/ UNU Expert Consultation, 1985, TECH REP SER WHO, V724; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fisher G, 2011, J APPL PHYSIOL, V110, P730, DOI 10.1152/japplphysiol.00575.2010; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; Gagnon A, 2015, FERTIL STERIL, V103, P1109, DOI 10.1016/j.fertnstert.2015.03.030; Guan HB, 2013, CANCER EPIDEM BIOMAR, V22, P2345, DOI 10.1158/1055-9965.EPI-13-0759-T; Hank K, 2010, POP STUD-J DEMOG, V64, P275, DOI 10.1080/00324728.2010.506243; HARMAN D, 1992, MUTAT RES, V275, P257, DOI 10.1016/0921-8734(92)90030-S; Hung TH, 2010, REPROD SCI, V17, P401, DOI 10.1177/1933719109359704; Hurt LS, 2006, POP STUD-J DEMOG, V60, P55, DOI 10.1080/00324720500436011; Hurt LS, 2006, P ROY SOC B-BIOL SCI, V273, P149, DOI 10.1098/rspb.2005.3270; Idogun E, 2008, PAK J MED SCI Q, V24, P2; Idonije O. B., 2011, Research Journal of Obstetrics & Gynecology, V4, P28; Jasienska G, 2006, AM J HUM BIOL, V18, P422, DOI 10.1002/ajhb.20497; Jasienska G, 2004, AM J HUM BIOL, V16, P563, DOI 10.1002/ajhb.20063; Jasienska G, 1998, P ROY SOC B-BIOL SCI, V265, P1847, DOI 10.1098/rspb.1998.0511; Jasienska G., 2013, FRAGILE WISDOM EVOLU; Jasienska G, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2395; Jasienska G, 2009, AM J HUM BIOL, V21, P524, DOI 10.1002/ajhb.20931; Karowicz-Bilinska A, 2008, REDOX REP, V13, P237, DOI 10.1179/135100008X308993; Keaney JF, 2003, ARTERIOSCL THROM VAS, V23, P434, DOI 10.1161/01.ATV.0000058402.34138.11; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Kontush A, 2003, ARTERIOSCL THROM VAS, V23, P1881, DOI 10.1161/01.ATV.0000091338.93223.E8; Lycett JE, 2000, P ROY SOC B-BIOL SCI, V267, P31, DOI 10.1098/rspb.2000.0962; Miller MW, 2014, MOL PSYCHIATR, V19, P1156, DOI 10.1038/mp.2014.111; Mobbs Charles V., 2007, V35, P39; Mutlu B, 2012, J MATERN-FETAL NEO M, V25, P802, DOI 10.3109/14767058.2011.594920; Naver KV, 2011, DIABETIC MED, V28, P43, DOI 10.1111/j.1464-5491.2010.03169.x; NESS RB, 1993, NEW ENGL J MED, V328, P1528, DOI 10.1056/NEJM199305273282104; Pawlak K, 2005, CLIN BIOCHEM, V38, P700, DOI 10.1016/j.clinbiochem.2005.02.009; Sarban S, 2005, CLIN BIOCHEM, V38, P981, DOI 10.1016/j.clinbiochem.2005.08.003; Schottker B, 2015, J GERONTOL A-BIOL, V70, P518, DOI 10.1093/gerona/glu111; Seet RCS, 2011, FREE RADICAL BIO MED, V50, P1787, DOI 10.1016/j.freeradbiomed.2011.03.019; Semba RD, 2007, J AM GERIATR SOC, V55, P1421, DOI 10.1111/j.1532-5415.2007.01308.x; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Stuebe AM, 2009, AM J PERINAT, V26, P81, DOI 10.1055/s-0028-1103034; Tigas S, 2002, J CLIN ENDOCR METAB, V87, P302, DOI 10.1210/jc.87.1.302; Valavanidis A, 2009, J ENVIRON SCI HEAL C, V27, P120, DOI 10.1080/10590500902885684; Wactawski-Wende J, 2009, PAEDIATR PERINAT EP, V23, P171, DOI 10.1111/j.1365-3016.2008.00985.x 58 13 14 0 29 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JAN 13 2016 11 1 e0145753 10.1371/journal.pone.0145753 14 Multidisciplinary Sciences Science & Technology - Other Topics DA8CX WOS:000368033100019 26761206 DOAJ Gold, Green Published 2019-02-21 J Williams, KEG; Sng, O; Neuberg, SL Williams, Keelah E. G.; Sng, Oliver; Neuberg, Steven L. Ecology-driven stereotypes override race stereotypes PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article race stereotypes; life history theory; stereotype content; ecology; affordance management RACIAL STEREOTYPES; SOCIAL-PERCEPTION; EVOLUTION; HYPOTHESIS; GENDER; SEX; AGE Why do race stereotypes take the forms they do? Life history theory posits that features of the ecology shape individuals' behavior. Harsh and unpredictable ("desperate") ecologies induce fast strategy behaviors such as impulsivity, whereas resource-sufficient and predictable ("hopeful") ecologies induce slow strategy behaviors such as future focus. We suggest that individuals possess a lay understanding of ecology's influence on behavior, resulting in ecology-driven stereotypes. Importantly, because race is confounded with ecology in the United States, we propose that Americans' stereotypes about racial groups actually reflect stereotypes about these groups' presumed home ecologies. Study 1 demonstrates that individuals hold ecology stereotypes, stereotyping people from desperate ecologies as possessing faster life history strategies than people from hopeful ecologies. Studies 2-4 rule out alternative explanations for those findings. Study 5, which independently manipulates race and ecology information, demonstrates that when provided with information about a person's race (but not ecology), individuals' inferences about blacks track stereotypes of people from desperate ecologies, and individuals' inferences about whites track stereotypes of people from hopeful ecologies. However, when provided with information about both the race and ecology of others, individuals' inferences reflect the targets' ecology rather than their race: black and white targets from desperate ecologies are stereotyped as equally fast life history strategists, whereas black and white targets from hopeful ecologies are stereotyped as equally slow life history strategists. These findings suggest that the content of several predominant race stereotypes may not reflect race, per se, but rather inferences about how one's ecology influences behavior. [Williams, Keelah E. G.; Sng, Oliver; Neuberg, Steven L.] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA Williams, KEG (reprint author), Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA. keelah.williams@asu.edu; steven.neuberg@asu.edu US National Science Foundation [1348983]; Arizona State University Foundation for a New American University This work was supported by US National Science Foundation Grant 1348983 and funding from the Arizona State University Foundation for a New American University (to S.L.N.). Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Charnov Eric L., 1993, P1; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, P88; DEVINE PG, 1995, PERS SOC PSYCHOL B, V21, P1139, DOI 10.1177/01461672952111002; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Gibson J. J., 1979, ECOLOGICAL APPROACH; Haselton MG, 2006, PERS SOC PSYCHOL REV, V10, P47, DOI 10.1207/s15327957pspr1001_3; Jussim L, 2009, HDB PREJUDICE STEREO, P199; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Katz D, 1933, J ABNORM SOC PSYCH, V28, P280, DOI 10.1037/h0074049; Kurzban R, 2001, P NATL ACAD SCI USA, V98, P15387, DOI 10.1073/pnas.251541498; Madon S, 2001, PERS SOC PSYCHOL B, V27, P996, DOI 10.1177/0146167201278007; MASSEY DS, 2004, DU BOIS REV, V1, P1; MCARTHUR LZ, 1983, PSYCHOL REV, V90, P215, DOI 10.1037//0033-295X.90.3.215; McDonald MM, 2012, PHILOS T R SOC B, V367, P670, DOI 10.1098/rstb.2011.0301; Navarrete CD, 2010, J PERS SOC PSYCHOL, V98, P933, DOI 10.1037/a0017931; Nesse RM, 2005, EVOL HUM BEHAV, V26, P88, DOI 10.1016/j.evolhumbehav.2004.08.002; Neuberg S. L., 2010, HDB SOCIAL PSYCHOL, P761; Neuberg SL, 2013, SOC COGNITION, V31, P696, DOI 10.1521/soco.2013.31.6.696; Pietraszewski D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088534; Roff Derek A., 1992; Sampson RJ, 1997, SCIENCE, V277, P918, DOI 10.1126/science.277.5328.918; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Sng O, 2015, CAMBRIDGE H IN PRESS; Stearns S, 1992, EVOLUTION LIFE HIST; SWIM JK, 1994, J PERS SOC PSYCHOL, V66, P21, DOI 10.1037//0022-3514.66.1.21; Wilson WJ, 1980, DECLINING SIGNIFICAN; Woods T, 2005, J YOUTH ADOLESCENCE, V34, P437, DOI 10.1007/s10964-005-7261-0; Zebrowitz L. A., 2006, EVOLUTION SOCIAL PSY, P81 30 14 14 0 10 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JAN 12 2016 113 2 310 315 10.1073/pnas.1519401113 6 Multidisciplinary Sciences Science & Technology - Other Topics DA5ZO WOS:000367881500037 26712013 Bronze, Green Published 2019-02-21 J van den Heuvel, J; English, S; Uller, T van den Heuvel, Joost; English, Sinead; Uller, Tobias Disposable Soma Theory and the Evolution of Maternal Effects on Ageing PLOS ONE English Article LIFE-HISTORY EVOLUTION; OFFSPRING SURVIVAL; POPULATION-DYNAMICS; OXIDATIVE DAMAGE; LIVE-BEARING; TRADE-OFF; AGE; SENESCENCE; GROWTH; STRESS Maternal effects are ubiquitous in nature and affect a wide range of offspring phenotypes. Recent research suggests that maternal effects also contribute to ageing, but the theoretical basis for these observations is poorly understood. Here we develop a simple model to derive expectations for (i) if maternal effects on ageing evolve; (ii) the strength of maternal effects on ageing relative to direct environmental effects; and (iii) the predicted relationships between environmental quality, maternal age and offspring lifespan. Our model is based on the disposable soma theory of ageing, and the key assumption is thus that mothers trade off their own somatic maintenance against investment in offspring. This trade-off affects the biological age of offspring at birth in terms of accumulated damage, as indicated by bio-markers such as oxidative stress or telomere length. We find that the optimal allocation between investment in maternal somatic investment and investment in offspring results in old mothers and mothers with low resource availability producing offspring with reduced life span. Furthermore, the effects are interactive, such that the strongest maternal age effects on offspring lifespan are found under low resource availability. These findings are broadly consistent with results from laboratory studies investigating the onset and rate of ageing and field studies examining maternal effects on ageing in the wild. [van den Heuvel, Joost] Newcastle Univ, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE4 5PL, Tyne & Wear, England; [van den Heuvel, Joost] Wageningen Univ, Genet Lab, Plant Sci Grp, NL-6708 PB Wageningen, Netherlands; [English, Sinead; Uller, Tobias] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford, England; [English, Sinead] Univ Cambridge, Dept Zool, Behav Ecol Grp, Cambridge CB2 3EJ, England; [Uller, Tobias] Lund Univ, Dept Biol, Lund, Sweden van den Heuvel, J (reprint author), Newcastle Univ, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE4 5PL, Tyne & Wear, England. jvdh.science@gmail.com English, Sinead/0000-0003-2898-2301 European Union [259679]; Royal Society of London; Knut and Alice Wallenberg Foundation This research was funded by the European Union's Seventh Framework Programme (FP7/2007-2011) under grant agreement no 259679 (IDEAL). TU is supported by the Royal Society of London and the Knut and Alice Wallenberg Foundation. Asghar M, 2015, SCIENCE, V347, P436, DOI 10.1126/science.1261121; Asghar M, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2263; Barnes SK, 2011, PROG BIOPHYS MOL BIO, V106, P323, DOI 10.1016/j.pbiomolbio.2010.12.005; Beamonte-Barrientos R, 2014, AM NAT, V175, P469; Belsky DW, 2015, P NATL ACAD SCI USA, pE4101; Benton TG, 2008, J ANIM ECOL, V77, P1038, DOI 10.1111/j.1365-2656.2008.01434.x; Bernardo J, 1996, AM ZOOL, V36, P83; Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179; Boonekamp JJ, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3287; Bouwhuis S, 2010, J EVOLUTION BIOL, V23, P636, DOI 10.1111/j.1420-9101.2009.01929.x; Bouwhuis S, 2015, EVOLUTION, V69, P1760, DOI 10.1111/evo.12692; Brakefield PM, 2005, MECH AGEING DEV, V126, P431, DOI 10.1016/j.mad.2004.07.013; Burton T, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0311; Cadby CD, 2011, J EXP BIOL, V214, P4234, DOI 10.1242/jeb.057349; Noguera JC, 2012, BIOL LETTERS, V8, P61, DOI 10.1098/rsbl.2011.0756; Champagne FA, 2011, HORM BEHAV, V60, P4, DOI 10.1016/j.yhbeh.2011.02.016; Clark C, 2000, DYNAMIC STATE VARIAB; COX DR, 1972, J R STAT SOC B, V34, P187; Dantzer B, 2013, SCIENCE, V340, P1215, DOI 10.1126/science.1235765; de Rooij SR, 2010, P NATL ACAD SCI USA, V107, P16881, DOI 10.1073/pnas.1009459107; Dowling DK, 2014, J EVOLUTION BIOL, V27, P88, DOI 10.1111/jeb.12276; Ducatez S, 2012, EVOLUTION, V66, P3558, DOI 10.1111/j.1558-5646.2012.01704.x; Entringer S, 2011, PNAS, V108, pES13; Gavrilov LA, 2004, ANN NY ACAD SCI, V1019, P496, DOI 10.1196/annals.1297.091; Geiger S, 2012, MOL ECOL, V21, P1500, DOI 10.1111/j.1365-294X.2011.05331.x; Gillespie DOS, 2013, EVOLUTION, V67, P1964, DOI 10.1111/evo.12078; Gribble KE, 2014, AGING CELL, V13, P623, DOI 10.1111/acel.12217; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P329, DOI 10.1016/j.neubiorev.2004.12.002; Halliwell B, FREE RADICALS BIOL M; Haussmann MF, 2012, P ROY SOC B-BIOL SCI, V279, P1447, DOI 10.1098/rspb.2011.1913; Hayward AD, 2010, PARASITOLOGY, V137, P1261, DOI [10.1017/S0031182010000193, 10.1017/S0031182100000193]; Hayward Adam D., 2013, Evolution Medicine and Public Health, P106, DOI 10.1093/emph/eot007; Hayward LS, 2006, GEN COMP ENDOCR, V146, P144, DOI 10.1016/j.ygcen.2005.10.016; Heidinger BJ, 2011, PNAS, V109, P1; Houston A.l, 1999, MODELS ADAPTIVE BEHA; Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5; Jennings BJ, 1999, FEBS LETT, V448, P4, DOI 10.1016/S0014-5793(99)00336-1; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; Kindsvater HK, 2010, EVOL ECOL RES, V12, P327; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; LaMontagne JM, 2001, ECOL LETT, V4, P64, DOI 10.1046/j.1461-0248.2001.00197.x; LANSING AI, 1947, J GERONTOL, V2, P228; Lee WS, 2011, AM NAT, V178, P774, DOI 10.1086/662671; Levine ME, 2013, J GERONTOL A-BIOL, V68, P667, DOI 10.1093/gerona/gls233; Lindholm AK, 2006, BIOL LETTERS, V2, P586, DOI 10.1098/rsbl.2006.0546; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Love OP, 2008, HORM BEHAV, V54, P496, DOI 10.1016/j.yhbeh.2008.01.006; Maestripieri D., 2010, MATERNAL EFFECTS MAM; Mangel M, 2008, FUNCT ECOL, V22, P422, DOI 10.1111/j.1365-2435.2008.01410.x; Mangel M, 2001, J THEOR BIOL, V213, P559, DOI 10.1006/jtbi.2001.2431; Mangel M, 1988, DYNAMIC MODELING BEH; Mangel M, 2005, AM NATURALIST, V166; McNamara JM, 2005, BEHAV ECOL, V16, P1008, DOI 10.1093/beheco/ari087; McNamara JM, 2009, P ROY SOC B-BIOL SCI, V276, P4061, DOI 10.1098/rspb.2009.0959; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Ozanne SE, 2004, NATURE, V427, P411, DOI 10.1038/427411b; Plaistow SJ, 2006, AM NAT, V167, P206, DOI 10.1086/499380; Priest NK, 2002, EVOLUTION, V56, P927; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; Reznick D, 1996, AM ZOOL, V36, P147; Roseboom T, 2006, EARLY HUM DEV, V82, P485, DOI 10.1016/j.earlhumdev.2006.07.001; Royle NJ, 2012, EVOLUTION OF PARENTAL CARE, P1; Schroeder J, 2015, P NATL ACAD SCI USA, V112, P4021, DOI 10.1073/pnas.1422715112; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; Tarry-Adkins JL, 2009, FASEB J, V23, P1521, DOI 10.1096/fj.08-122796; Tarry-Adkins JL, 2014, P NUTR SOC, V73, P289, DOI 10.1017/S002966511300387X; Tissier ML, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097705; Uller T, 2013, J EVOLUTION BIOL, V26, P2161, DOI 10.1111/jeb.12212; Uller T, 2012, EVOLUTION OF PARENTAL CARE, P247; van Abeelen AFM, 2012, AM J CLIN NUTR, V95, P179, DOI 10.3945/ajcn.111.022038; van den Heuvel J, 2013, AM NAT, V181, pE28, DOI 10.1086/668818; Wilkin TA, 2009, CURR BIOL, V19, P1998, DOI 10.1016/j.cub.2009.09.065; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wolf JB, 2009, PHILOS T R SOC B, V364, P1107, DOI 10.1098/rstb.2008.0238; Yearsley JM, 2005, J THEOR BIOL, V235, P305, DOI 10.1016/j.jtbi.2005.01.009 80 8 8 4 52 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JAN 11 2016 11 1 e0145544 10.1371/journal.pone.0145544 17 Multidisciplinary Sciences Science & Technology - Other Topics DA6CA WOS:000367888100017 26752635 DOAJ Gold, Green Published 2019-02-21 J Barha, CK; Hanna, CW; Salvante, KG; Wilson, SL; Robinson, WP; Altman, RM; Nepomnaschy, PA Barha, Cindy K.; Hanna, Courtney W.; Salvante, Katrina G.; Wilson, Samantha L.; Robinson, Wendy P.; Altman, Rachel M.; Nepomnaschy, Pablo A. Number of Children and Telomere Length in Women: A Prospective, Longitudinal Evaluation PLOS ONE English Article OXIDATIVE STRESS; LIFE-SPAN; REPLICATIVE SENESCENCE; ENERGY-EXPENDITURE; ELDERLY-MEN; REPRODUCTION; POPULATION; MORTALITY; HUMANS; CELLS Life history theory (LHT) predicts a trade-off between reproductive effort and the pace of biological aging. Energy invested in reproduction is not available for tissue maintenance, thus having more offspring is expected to lead to accelerated senescence. Studies conducted in a variety of non-human species are consistent with this LHT prediction. Here we investigate the relationship between the number of surviving children born to a woman and telomere length (TL, a marker of cellular aging) over 13 years in a group of 75 Kaqchikel Mayan women. Contrary to LHT's prediction, women who had fewer children exhibited shorter TLs than those who had more children (p = 0.045) after controlling for TL at the onset of the 13-year study period. An "ultimate" explanation for this apparently protective effect of having more children may lay with human's cooperative-breeding strategy. In a number of socioeconomic and cultural contexts, having more chilren appears to be linked to an increase in social support for mothers (e.g., allomaternal care). Higher social support, has been argued to reduce the costs of further reproduction. Lower reproductive costs may make more metabolic energy available for tissue maintenance, resulting in a slower pace of cellular aging. At a "proximate" level, mechanisms involved may include the actions of the gonadal steroid estradiol, which increases dramatically during pregnancy. Estradiol is known to protect TL from the effects of oxidative stress as well as increase telomerase activity, an enzyme that maintains TL. Future research should explore the potential role of social support as well as that of estradiol and other potential biological pathways in the trade-offs between reproductive effort and the pace of cellular aging within and among human as well as in non-human populations. [Barha, Cindy K.; Salvante, Katrina G.; Nepomnaschy, Pablo A.] Simon Fraser Univ, Fac Hlth Sci, Maternal & Child Hlth Lab, Burnaby, BC V5A 1S6, Canada; [Hanna, Courtney W.; Wilson, Samantha L.; Robinson, Wendy P.] Univ British Columbia, Dept Med Genet, Vancouver, BC, Canada; [Hanna, Courtney W.; Wilson, Samantha L.; Robinson, Wendy P.] Child & Family Res Inst, Vancouver, BC V6T 1Z4, Canada; [Salvante, Katrina G.; Nepomnaschy, Pablo A.] Simon Fraser Univ, Human Evolutionary Studies Program, Burnaby, BC V5A 1S6, Canada; [Altman, Rachel M.] Simon Fraser Univ, Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada Nepomnaschy, PA (reprint author), Simon Fraser Univ, Fac Hlth Sci, Maternal & Child Hlth Lab, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada. pablo_nepomnaschy@sfu.ca Robinson, Wendy/I-9590-2014 Robinson, Wendy/0000-0002-2010-6174; Wilson, Samantha/0000-0003-4346-9696; Hanna, Courtney/0000-0002-4063-5575; Wilson, Sarah L./0000-0001-8347-5156; Nepomnaschy, Pablo/0000-0002-8989-7381 Canadian Institutes of Health Research Post-Doctoral Fellowship; Canadian Institutes of Health Research Training Grant; Child and Family Research Institute Graduate Studentship; Child and Family Research Institute; Natural Sciences and Engineering Research Council of Canada Discovery Grant; Canadian Institutes of Health Research (Institute for Gender and Health) Operating Grant [106705]; Simon Fraser University President's Start-up Grant; Simon Fraser University Community Trust Endowment Fund Grant through Simon Fraser University's Human Evolutionary Studies Program; Michael Smith Foundation for Health Research Career Investigator Scholar Award This project was funded by a Canadian Institutes of Health Research Post-Doctoral Fellowship to CKB (http://www.cihr-irsc.gc.ca/e/193.html); a Canadian Institutes of Health Research Training Grant to CWH (http://www.cihr-irsc.gc.ca/e/193.html); a Child and Family Research Institute Graduate Studentship to SLW (http://www.cfri.ca/); a Child and Family Research Institute salary award to WPR (http://www.cfri.ca/); a Natural Sciences and Engineering Research Council of Canada Discovery Grant to RMA (http://www.nserc-crsng.gc.ca/index_eng.asp); a Canadian Institutes of Health Research (Institute for Gender and Health) Operating Grant #106705 (http://www.cihr-irsc.gc.ca/e/193.html), a Simon Fraser University President's Start-up Grant (https://www.sfu.ca/vpacademic/FinBdgt_Mgmnt/prsg.html), a Simon Fraser University Community Trust Endowment Fund Grant through Simon Fraser University's Human Evolutionary Studies Program (https://www.sfu.ca/vpresearch/ctef.html), and a Michael Smith Foundation for Health Research Career Investigator Scholar Award (http://www.msfhr.org/) to PAN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Aubert G, 2008, PHYSIOL REV, V88, P557, DOI 10.1152/physrev.00026.2007; Aubert G, 2012, MUTAT RES-FUND MOL M, V730, P59, DOI 10.1016/j.mrfmmm.2011.04.003; Aviv Abraham, 2004, Sci Aging Knowledge Environ, V2004, ppe43; Aviv A, 2011, NUCLEIC ACIDS RES, V39, DOI 10.1093/nar/gkr634; Bakaysa SL, 2007, AGING CELL, V6, P769, DOI 10.1111/j.1474-9726.2007.00340.x; Barrett ELB, 2011, AGING CELL, V10, P913, DOI 10.1111/j.1474-9726.2011.00741.x; Bauch C, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2540; BEHL C, 1995, BIOCHEM BIOPH RES CO, V216, P473, DOI 10.1006/bbrc.1995.2647; Benetos A, 2001, HYPERTENSION, V37, P381, DOI 10.1161/01.HYP.37.2.381; Benetos A, 2013, AGING CELL, V12, P615, DOI 10.1111/acel.12086; Blackburn EH, 2005, FEBS LETT, V579, P859, DOI 10.1016/j.febslet.2004.11.036; Boonekamp JJ, 2014, ECOL LETT, V17, P599, DOI 10.1111/ele.12263; Boudreau L, 2014, ANIM REPROD SCI, V145, P86, DOI 10.1016/j.anireprosci.2014.01.004; Campisi J, 2007, NAT REV MOL CELL BIO, V8, P729, DOI 10.1038/nrm2233; Carroll JE, 2013, PSYCHOSOM MED, V75, P171, DOI 10.1097/PSY.0b013e31828233bf; Cawthon RM, 2003, LANCET, V361, P393, DOI 10.1016/S0140-6736(03)12384-7; Cawthon RM, 2002, NUCLEIC ACIDS RES, V30, DOI 10.1093/nar/30.10.e47; Criscuolo F, 2006, PHYSIOL BIOCHEM ZOOL, V79, P514, DOI 10.1086/501065; Daniali L, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2602; Ehrlenbach S, 2009, INT J EPIDEMIOL, V38, P1725, DOI 10.1093/ije/dyp273; Ellison PT, 2003, FERTIL STERIL, V80, P1279, DOI 10.1016/S0015-0282(03)02158-7; Finch C.E, 1990, LONGEVITY SENESCENCE; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Gadalla SM, 2010, AGING-US, V2, P867, DOI 10.18632/aging.100235; Gao J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125674; Garratt M, 2013, J EXP BIOL, V216, P2879, DOI 10.1242/jeb.082669; Gray KE, 2014, EPIDEMIOLOGY, V25, P139, DOI 10.1097/EDE.0000000000000017; Gurven M, 2012, EXP GERONTOL, V47, P807, DOI 10.1016/j.exger.2012.05.006; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Hanna CW, 2009, HUM REPROD, V24, P1206, DOI 10.1093/humrep/dep007; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hayflick Leonard, 1998, Keio Journal of Medicine, V47, P174; Heidinger BJ, 2012, P NATL ACAD SCI USA, V109, P1743, DOI 10.1073/pnas.1113306109; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; Houben JMJ, 2011, J GERONTOL A-BIOL, V66, P38, DOI 10.1093/gerona/glq164; Itagaki T, 2005, GUT, V54, P1782, DOI 10.1136/gut.2005.053278; Jasienska G, 2001, FOUND HUM B, P59; Kenyon C, 2010, ANN NY ACAD SCI, V1204, P156, DOI 10.1111/j.1749-6632.2010.05640.x; Kimura M, 2008, AM J EPIDEMIOL, V167, P799, DOI 10.1093/aje/kwm380; King EDA, 2013, ECOL EVOL, V3, P4161, DOI 10.1002/ece3.786; Kipling D, 2001, MATURITAS, V38, P25, DOI 10.1016/S0378-5122(00)00189-4; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; Kotrschal A, 2007, BIOL LETTERS, V3, P128, DOI 10.1098/rsbl.2006.0594; Kramer KL, 2010, EVOL ANTHROPOL, V19, P136, DOI 10.1002/evan.20265; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Kuznetsova T, 2010, AM J EPIDEMIOL, V172, P440, DOI 10.1093/aje/kwq142; Kyo S, 1999, CANCER RES, V59, P5917; Llodra ER, 2002, ADV MAR BIOL, V43, P87; Martin-Ruiz CM, 2015, INT J EPIDEMIOL, V44, P1673, DOI 10.1093/ije/dyu191; Masi S, 2014, EUR HEART J, V35, P3296, DOI 10.1093/eurheartj/ehu226; Mather KA, 2011, J GERONTOL A-BIOL, V66, P202, DOI 10.1093/gerona/glq180; McCracken J, 2010, ENVIRON HEALTH PERSP, V118, P1564, DOI 10.1289/ehp.0901831; Meehan CL, 2013, AM J HUM BIOL, V25, P42, DOI 10.1002/ajhb.22336; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nepomnaschy PA, 2004, AM J HUM BIOL, V16, P523, DOI 10.1002/ajhb.20057; O'Brien RM, 2007, QUAL QUANT, V41, P673, DOI 10.1007/s11135-006-9018-6; OLOVNIKOV AM, 1973, J THEOR BIOL, V41, P181, DOI 10.1016/0022-5193(73)90198-7; Plot V, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040855; Puterman E, 2012, SOC PERSONAL PSYCHOL, V6, P807, DOI 10.1111/j.1751-9004.2012.00465.x; Reichert S., 2014, FRONT ECOL EVOL, V2, P9, DOI DOI 10.3389/FEV0.2014.00009; Reichert S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081496; Ricklefs RE, 2010, AGING CELL, V9, P273, DOI 10.1111/j.1474-9726.2009.00542.x; Stearns S, 1992, EVOLUTION LIFE HIST; Sudyka J, 2014, J EVOLUTION BIOL, V27, P2258, DOI 10.1111/jeb.12479; Takubo K, 2002, EXP GERONTOL, V37, P523, DOI 10.1016/S0531-5565(01)00218-2; Theall KP, 2013, SOC SCI MED, V85, P50, DOI 10.1016/j.socscimed.2013.02.030; Valdes AM, 2010, NEUROBIOL AGING, V31, P986, DOI 10.1016/j.neurobiolaging.2008.07.012; Von Zglinicki T, 2000, ANN NY ACAD SCI, V908, P99, DOI 10.1111/j.1749-6632.2000.tb06639.x; WATSON JD, 1972, NATURE-NEW BIOL, V239, P197; Wong LSM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023118; Yaffe K, 2011, NEUROBIOL AGING, V32, P2055, DOI 10.1016/j.neurobiolaging.2009.12.006 72 13 13 2 14 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JAN 5 2016 11 1 e0146424 10.1371/journal.pone.0146424 12 Multidisciplinary Sciences Science & Technology - Other Topics DA4VZ WOS:000367801400174 26731744 DOAJ Gold, Green Published 2019-02-21 J Salguero-Gomez, R; Jones, OR; Jongejans, E; Blomberg, SP; Hodgson, DJ; Mbeau-Ache, C; Zuidema, PA; de Kroon, H; Buckley, YM Salguero-Gomez, Roberto; Jones, Owen R.; Jongejans, Eelke; Blomberg, Simon P.; Hodgson, David J.; Mbeau-Ache, Cyril; Zuidema, Pieter A.; de Kroon, Hans; Buckley, Yvonne M. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article life history strategy; iteroparity; generation time; matrix population model; phylogenetic signal TRADE-OFFS; MAMMALIAN POPULATIONS; ECONOMICS SPECTRUM; TRAITS; SIZE; DEMOGRAPHY; PATTERNS; COVARIATION; DYNAMICS; TACTICS The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast-slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast-slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how lifehistory strategies are structured inmammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments. [Salguero-Gomez, Roberto; Blomberg, Simon P.; Buckley, Yvonne M.] Univ Queensland, Sch Biol Sci, Ctr Biodivers & Conservat Sci, St Lucia, Qld 4072, Australia; [Salguero-Gomez, Roberto] Max Planck Inst Demog Res, Evolutionary Demog Lab, D-18057 Rostock, Germany; [Jones, Owen R.] Univ Southern Denmark, Max Planck Odense Ctr Biodemog Aging, DK-5230 Odense M, Denmark; [Jones, Owen R.] Univ Southern Denmark, Dept Biol, DK-5230 Odense M, Denmark; [Jongejans, Eelke] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Anim Ecol & Physiol, NL-6500 GL Nijmegen, Netherlands; [Hodgson, David J.] Univ Exeter, Ctr Ecol & Conservat, Tremough TR10 9EZ, England; [Mbeau-Ache, Cyril] Univ Plymouth, Sch Biol Sci, Plymouth PL4 8AA, Devon, England; [Zuidema, Pieter A.] Wageningen Univ, Forest Ecol & Forest Management Grp, NL-6700 AA Wageningen, Netherlands; [de Kroon, Hans] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Expt Plant Ecol, NL-6500 GL Nijmegen, Netherlands; [Buckley, Yvonne M.] Univ Dublin Trinity Coll, Sch Nat Sci, Dublin 2, Ireland; [Buckley, Yvonne M.] Univ Dublin Trinity Coll, Trinity Ctr Biodivers Res, Zool, Dublin 2, Ireland Salguero-Gomez, R (reprint author), Univ Queensland, Sch Biol Sci, Ctr Biodivers & Conservat Sci, St Lucia, Qld 4072, Australia. r.salguero@uq.edu.au Salguero-Gomez, Roberto/N-6016-2016; de Kroon, Hans/B-3359-2009; Jones, Owen/B-8439-2008; Buckley, Yvonne/B-1281-2008; Zuidema, Pieter/C-8951-2009; Blomberg, Simone/B-7613-2008; Jongejans, Eelke/B-4832-2008 Salguero-Gomez, Roberto/0000-0002-6085-4433; de Kroon, Hans/0000-0001-6151-3561; Jones, Owen/0000-0001-5720-4686; Buckley, Yvonne/0000-0001-7599-3201; Zuidema, Pieter/0000-0001-8100-1168; Blomberg, Simone/0000-0003-1062-0839; Jongejans, Eelke/0000-0003-1148-7419; Hodgson, Dave/0000-0003-4220-2076 Max Planck Institute for Demographic Research; Australian Research Council [DE140100505]; Marie-Curie Career Integration Grant; Natural Environment Research Council [NE/N006798/1, NE/L007770/1, NE/M018458/1] M. Franco provided the phylogenetic tree. We thank H. Possingham, D. Koons, and F. Colchero for feedback and the COMPADRE Plant Matrix Database team for data digitalization and error-checking. This work was supported by the Max Planck Institute for Demographic Research, Australian Research Council Grant DE140100505 (to R.S.-G.), and a Marie-Curie Career Integration Grant (to Y.M.B.). Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Alvarado AS, 2009, NATURE, V460, P39, DOI 10.1038/460039a; Baskin CC, 2001, SEEDS ECOLOGY BIOGEO, P667; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; Besansky NJ, 2014, NATURE, V516, P334, DOI 10.1038/nature14073; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; BIERZYCHUDEK P, 1982, ECOL MONOGR, V52, P335, DOI 10.2307/2937350; Blair C, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-57; Brasfield SM, 2008, ZOO BIOL, V27, P36, DOI 10.1002/zoo.20159; Buckley YM, 2005, J APPL ECOL, V42, P1020, DOI 10.1111/j.1365-2664.2005.01100.x; Caswell H., 2001, MATRIX POPULATION MO; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Chen YT, 2013, PLANT BIOLOGY, V15, P27, DOI 10.1111/j.1438-8677.2012.00622.x; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Crone EE, 2011, ECOL LETT, V14, P1, DOI 10.1111/j.1461-0248.2010.01540.x; de Kroon H, 1997, ECOLOGY EVOLUTION CL; Del Tredici P., 1999, ARNOLDIA WIN, P11; Doak DF, 2010, NATURE, V467, P959, DOI 10.1038/nature09439; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; Espino S, 2009, NEW PHYTOL, V183, P142, DOI 10.1111/j.1469-8137.2009.02828.x; FRANCO M, 1990, EVOL TREND PLANT, V4, P74; FRANCO M, 1994, J ECOL, V82, P958, DOI 10.2307/2261458; Franco M, 1997, LIFE HIST VARIATION, P210; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Gamelon M, 2014, AM NAT, V184, P673, DOI 10.1086/677929; Hall VR, 1996, ECOLOGY, V77, P950, DOI 10.2307/2265514; Harper J. L., 1974, Annual Review of Ecology and Systematics, V5, P419, DOI 10.1146/annurev.es.05.110174.002223; Hubbell Stephen P., 2001, V32, pi; Jongejans E, 2008, PLANT ECOL, V198, P225, DOI 10.1007/s11258-008-9397-y; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Legendre P., 2012, NUMERICAL ECOLOGY, P1006; Matsuura K, 2009, SCIENCE, V323, P1687, DOI 10.1126/science.1169702; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Moles AT, 2009, J ECOL, V97, P923, DOI 10.1111/j.1365-2745.2009.01526.x; Moles AT, 2004, J ECOL, V92, P372, DOI 10.1111/j.0022-0477.2004.00884.x; Morris WF, 2002, QUANTITATIVE CONSERV; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; Neubert MG, 2004, RISK ANAL, V24, P817, DOI 10.1111/j.0272-4332.2004.00481.x; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Olson DM, 2001, BIOSCIENCE, V51, P933, DOI 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2; Penuelas J, 2010, NEW PHYTOL, V187, P564, DOI 10.1111/j.1469-8137.2010.03360.x; Raunkiaer C., 1934, LIFE FORMS PLANTS ST; REES M, 1993, NATURE, V366, P150, DOI 10.1038/366150a0; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Revell LJ, 2013, R PACKAGE PHYTOOLS A; Rosindell J, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001406; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Salguero-Gomez R, 2011, NEW PHYTOL, V189, P229, DOI 10.1111/j.1469-8137.2010.03447.x; Salguero-Gomez R, 2010, AM NAT, V176, P710, DOI 10.1086/657044; Salguero-Gomez R, 2010, J ECOL, V98, P312, DOI 10.1111/j.1365-2745.2009.01616.x; Sandrelli F, 2007, SCIENCE, V316, P1898, DOI 10.1126/science.1138426; SHEA K, 1994, J ECOL, V82, P951, DOI 10.2307/2261457; Shefferson RP, 2009, J ECOL, V97, P1000, DOI 10.1111/j.1365-2745.2009.01525.x; Silvertown J, 1996, CONSERV BIOL, V10, P591, DOI 10.1046/j.1523-1739.1996.10020591.x; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Stearns SC, 1999, EVOLUTION LIFE HIST, P249; Stott I, 2010, J ECOL, V98, P302, DOI 10.1111/j.1365-2745.2009.01632.x; Svenning JC, 2004, ECOLOGY, V85, P2526, DOI 10.1890/03-0396; Toien O, 2011, SCIENCE, V331, P906, DOI 10.1126/science.1199435; WATKINSON AR, 1986, PHILOS T ROY SOC B, V313, P31, DOI 10.1098/rstb.1986.0024; West GB, 2009, P NATL ACAD SCI USA, V106, P7040, DOI 10.1073/pnas.0812294106; WESTERN D, 1979, AFR J ECOL, V17, P185, DOI 10.1111/j.1365-2028.1979.tb00256.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 68 61 62 5 90 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JAN 5 2016 113 1 230 235 10.1073/pnas.1506215112 6 Multidisciplinary Sciences Science & Technology - Other Topics DA0XH WOS:000367520400061 26699477 Green Published, Bronze 2019-02-21 J Lloyd, P; Martin, TE; Taylor, A; Braae, A; Altwegg, R Lloyd, Penn; Martin, Thomas E.; Taylor, Andrew; Braae, Anne; Altwegg, Res Age, sex and social influences on adult survival in the cooperatively breeding Karoo Scrub-robin EMU English Article cost of reproduction; delayed dispersal; juvenile survival; life history LIFE-HISTORY EVOLUTION; SOUTH TEMPERATE BIRDS; DELAYED DISPERSAL; REPRODUCTIVE SUCCESS; HABITAT-SATURATION; PHILETAIRUS-SOCIUS; POSTFLEDGING CARE; TERRITORY QUALITY; HELPING-BEHAVIOR; MARKED ANIMALS Among cooperatively breeding species, helpers are hypothesised to increase the survival of breeders by reducing breeder workload in offspring care and increased group vigilance against predators. Furthermore, parental nepotism or other benefits of group living may provide a survival benefit to young that delay dispersal to help. We tested these hypotheses in the Karoo Scrub-robin (Cercotrichas coryphaeus), a long-lived, and facultative cooperatively breeding species in which male helpers make substantial contributions to the care of young. We found that annual breeder survival in the presence of helpers did not differ detectably from breeders without helpers or breeders that lost helpers. Furthermore, helpers did not gain a survival benefit from deferred breeding; apparent survival did not differ detectably between male helpers and male breeders followed from one year old. These results are consistent with other studies suggesting a lack of adult survival benefits among species where breeders do not substantially reduce workloads when helpers are present. They are also consistent with the hypothesis that males that delay dispersal make the 'best of a bad job' by helping on their natal territory to gain indirect fitness benefits when they are unable to obtain a territory vacancy nearby. [Lloyd, Penn; Taylor, Andrew; Braae, Anne] Univ Cape Town, Natl Res Fdn Ctr Excellence, Dept Sci & Technol, Percy FitzPatrick Inst, Private Bag X3, ZA-7701 Rondebosch, South Africa; [Lloyd, Penn] Biodivers Assessment & Management Pty Ltd, POB 1376, Cleveland, Qld 4163, Australia; [Martin, Thomas E.] Univ Montana, US Geol Survey, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA; [Taylor, Andrew] Endangered Wildlife Trust, Private Bag X11, ZA-1609 Johannesburg, South Africa; [Braae, Anne] Univ Nottingham, Queens Med Ctr, Sch Life Sci, Translat Cell Sci, Nottingham NG7 2UH, England; [Altwegg, Res] Univ Cape Town, Dept Stat Sci, Ctr Stat Ecol Environm & Conservat, ZA-7701 Rondebosch, South Africa; [Altwegg, Res] Univ Cape Town, African Climate & Dev Initiat, ZA-7701 Rondebosch, South Africa Lloyd, P (reprint author), Univ Cape Town, Natl Res Fdn Ctr Excellence, Dept Sci & Technol, Percy FitzPatrick Inst, Private Bag X3, ZA-7701 Rondebosch, South Africa.; Lloyd, P (reprint author), Biodivers Assessment & Management Pty Ltd, POB 1376, Cleveland, Qld 4163, Australia. penn@baamecology.com National Research Foundation grants; National Science Foundation grants [INT-9906030, DEB-0841764, DEB-1241041] We thank volunteer banders from the Tygerberg Bird Club for extensive assistance with colour-banding birds, particularly Margaret McCall, Bob Ellis, Lee Silks, and Bridget de Kok. Many field assistants helped locate and monitor nests and resight the colour-band combinations of breeding adults each year, particularly Sonya Auer, Ron Bassar, Simon Davies, David Nkosi, Davide Gaglio, Pierre-Yves Perroi, Justin Shew, Anna Chalfoun, Riccardo Ton, Alexander Neu, Julia Taubman and Bettina Christ. We thank Gert Greef and Hilton Westman for permission to work at ESKOM's Koeberg Nature Reserve. We thank Adrian Craig and two anonymous reviewers for comments that have improved the manuscript. This work was supported in part through National Research Foundation grants (to PL and RA) and National Science Foundation grants (INT-9906030, DEB-0841764, DEB-1241041 to TEM). Capture and banding activities were licenced by the Western Cape Nature Conservation Board and SAFRING, the South African bird-banding scheme, and approved by the Animal Ethics Committee, University of Cape Town and IACUC #059-10TMMCWRU at the University of Montana. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the USA Government. Brouwer L, 2006, J ANIM ECOL, V75, P1321, DOI 10.1111/j.1365-2656.2006.01155.x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CLOBERT J, 1988, J ANIM ECOL, V57, P287, DOI 10.2307/4779; Cockburn A, 1998, ANNU REV ECOL SYST, V29, P141, DOI 10.1146/annurev.ecolsys.29.1.141; Cockburn A, 2008, J ANIM ECOL, V77, P430, DOI 10.1111/j.1365-2656.2007.01351.x; Covas R, 2004, AUK, V121, P1199, DOI 10.1642/0004-8038(2004)121[1199:JAASIT]2.0.CO;2; Covas R, 2008, BEHAV ECOL SOCIOBIOL, V63, P103, DOI 10.1007/s00265-008-0640-2; Covas R, 2007, P ROY SOC B-BIOL SCI, V274, P1349, DOI 10.1098/rspb.2007.0117; CRICK HQP, 1992, IBIS, V134, P56, DOI 10.1111/j.1474-919X.1992.tb07230.x; Dickinson Janis L., 2004, P48, DOI 10.1017/CBO9780511606816.004; DUPLESSIS MA, 1992, OECOLOGIA, V90, P205, DOI 10.1007/BF00317177; Ekman J, 1999, P ROY SOC B-BIOL SCI, V266, P911, DOI 10.1098/rspb.1999.0723; Ekman J, 2000, BEHAV ECOL, V11, P416, DOI 10.1093/beheco/11.4.416; Green DJ, 2001, J ANIM ECOL, V70, P505, DOI 10.1046/j.1365-2656.2001.00503.x; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Hatchwell BJ, 2000, ANIM BEHAV, V59, P1079, DOI 10.1006/anbe.2000.1394; Hollen LI, 2008, CURR BIOL, V18, P576, DOI 10.1016/j.cub.2008.02.078; Holmes RT, 1996, J ANIM ECOL, V65, P183, DOI 10.2307/5721; Khan MZ, 2002, BEHAV ECOL SOCIOBIOL, V51, P336, DOI 10.1007/s00265-001-0441-3; Kingma SA, 2010, J ANIM ECOL, V79, P757, DOI 10.1111/j.1365-2656.2010.01697.x; KOENIG WD, 1992, Q REV BIOL, V67, P111, DOI 10.1086/417552; KOMDEUR J, 1992, NATURE, V358, P493, DOI 10.1038/358493a0; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Lebreton JD, 2002, J APPL STAT, V29, P353, DOI 10.1080/02664760120108638; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Li YH, 2015, IBIS, V157, P567, DOI 10.1111/ibi.12266; Lloyd P, 2016, IBIS, V158, P135, DOI 10.1111/ibi.12325; Lloyd P, 2014, J AVIAN BIOL, V45, P493, DOI 10.1111/jav.00454; Lloyd P, 2009, J AVIAN BIOL, V40, P400, DOI 10.1111/j.1600-048X.2008.04642.x; Low A. B, 1996, VEGETATION S AFRICA; Luck GW, 2001, AUST J ZOOL, V49, P515, DOI 10.1071/ZO00087; Magrath RD, 1997, J ANIM ECOL, V66, P658, DOI 10.2307/5919; MARTIN K, 1995, AM ZOOL, V35, P340; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2014, AM NAT, V183, P313, DOI 10.1086/674966; McGowan A, 2003, J ANIM ECOL, V72, P491, DOI 10.1046/j.1365-2656.2003.00719.x; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Paquet M, 2015, J ANIM ECOL, V84, P1354, DOI 10.1111/1365-2656.12377; PULLIAM HR, 1973, J THEOR BIOL, V38, P419, DOI 10.1016/0022-5193(73)90184-7; Ribeiro AM, 2012, MOL ECOL, V21, P662, DOI 10.1111/j.1365-294X.2011.05236.x; Ridley AR, 2007, BEHAV ECOL, V18, P324, DOI 10.1093/beheco/arl092; Ridley AR, 2008, J AVIAN BIOL, V39, P389, DOI 10.1111/j.2008.0908-8857.04479.x; Ridley AR, 2007, BEHAV ECOL, V18, P994, DOI 10.1093/beheco/arm074; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; STACEY PB, 1987, AM NAT, V130, P654, DOI 10.1086/284737; Tarwater CE, 2010, ANIM BEHAV, V80, P535, DOI 10.1016/j.anbehav.2010.06.017; White GC, 1999, BIRD STUDY, V46, P120; Woxvold IA, 2004, AUST J ZOOL, V52, P561, DOI 10.1071/ZO04031 50 1 1 1 5 CSIRO PUBLISHING CLAYTON UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA 0158-4197 1448-5540 EMU Emu 2016 116 4 394 401 10.1071/MU15076 8 Ornithology Zoology EJ4PN WOS:000393199400010 2019-02-21 J de Lima, AMX; Roper, JJ Xavier de Lima, Andre Magnani; Roper, James Joseph A tropical bird with a short breeding season and high rates of nesting success: the breeding ecology of the Star-throated Antwren (Rhopias gularis: Thamnophilidae) in subtropical Brazil EMU English Article behavioural ecology; passerines; population; productivity; South American birds LIFE-HISTORY EVOLUTION; SOUTH TEMPERATE BIRDS; AVIAN CLUTCH SIZE; PARENTAL CARE; PREDATION RATES; ATLANTIC FOREST; REPRODUCTIVE STRATEGIES; NEOTROPICAL BIRD; ANNUAL FECUNDITY; PASSERINE BIRDS We studied nesting in marked pairs of Star-throated Antwrens (Rhopias gularis) over 3 years to examine whether breeding traits in subtropical Brazil are more similar to temperate patterns of breeding than is typical of the patterns observed within the mostly tropical Thamnophilidae. This Antwren is socially monogamous and permanently territorial, as are all Thamnophilidae, and has a long incubation period (18 days) and shorter nestling period (13 days). Its breeding season is relatively short (<4 months) and nesting success high (36%) compared with those traits of tropical antbirds. Daily nest-survival rate (DSR) during incubation was fairly low and declined throughout the breeding season, whereas DSR was greater and constant during the nestling period. Thus, early nests were more successful and, after hatching, nestlings had a very high probability of fledging (up to 90%). Only males built nests, which can be reused, apparently reducing reproductive demand on females. Pairs did not re-nest in the same season after a successful nesting attempt. Average fecundity was 1.0 +/- 0.3 fledglings female(-1) year(-1), similar to that of tropical thamnophilids. We argue that the timing of breeding and reproductive effort are adjusted to reduce breeding costs in a subtropical climate, resulting in a unique combination of life-history traits for a bird of tropical origin. [Xavier de Lima, Andre Magnani; Roper, James Joseph] Univ Fed Parana, Grad Program Ecol & Conservat, BR-81531980 Curitiba, PR, Brazil; [Xavier de Lima, Andre Magnani] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA; [Roper, James Joseph] Univ Vila Velha, Grad Program Ecosyst Ecol, BR-29100020 Vila Velha, ES, Brazil de Lima, AMX (reprint author), Univ Fed Parana, Grad Program Ecol & Conservat, BR-81531980 Curitiba, PR, Brazil.; de Lima, AMX (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. andremxlima@gmail.com Roper, James/H-7986-2012 Roper, James/0000-0002-2947-5136 Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES/REUNI); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Steven Beissinger Laboratory in University of California Berkeley (Starker Leopold Chair Funds); CNPq productivity fellowship We thank Leila Denise Bona and Jeferson Bellenda, who allowed us to carry out this research on their private reserves. We also thank all the undergraduate students that helped as field interns in the Brazilian Ecosystem Program of Antioch College. We thank our colleagues Andre Guaraldo, Lilian Manica, Marcos Bornschein, Marcio Efe, Goncalo Ferraz, Mauricio Moura, Fernando Passos and three anonymous reviewers for their thorough comments on this or earlier versions of the manuscript. A. M. X. Lima was supported by a PhD scholarship through the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES/REUNI), a post-doctoral fellowship through the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and by the Steven Beissinger Laboratory in University of California Berkeley (Starker Leopold Chair Funds). J. J. Roper was supported by a CNPq productivity fellowship. All methods followed standards of ethics under Brazilian law. Aitken KEH, 2002, AUK, V119, P391, DOI 10.1642/0004-8038(2002)119[0391:NSRPFA]2.0.CO;2; Altamirano TA, 2015, AUK, V132, P826, DOI 10.1642/AUK-15-28.1; Auer SK, 2007, CONDOR, V109, P321, DOI 10.1650/0010-5422(2007)109[321:BBOPIA]2.0.CO;2; Baker JR, 1939, P ZOOL SOC LOND A-GE, V108, P557; Batalha H, 2016, J ZOOL SYST EVOL RES, V54, P137, DOI 10.1111/jzs.12118; Bears H, 2009, J ANIM ECOL, V78, P365, DOI 10.1111/j.1365-2656.2008.01491.x; Beebe K, 2005, FUNCT ECOL, V19, P505, DOI 10.1111/j.1365-2435.2005.00994.x; Behling H, 1998, REV PALAEOBOT PALYNO, V99, P143, DOI 10.1016/S0034-6667(97)00044-4; Belmonte-Lopes R, 2012, ZOOTAXA, P1; Bergin TM, 1997, WILSON BULL, V109, P735; Bernardon B, 2014, REV BRAS ORNITOL, V22, P270; Bohning-Gaese K, 2000, EVOL ECOL RES, V2, P823; Borgmann KL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065909; Bornschein MR, 2015, WILSON J ORNITHOL, V127, P98, DOI 10.1676/14-074.1; Brawn JD, 2011, J AVIAN BIOL, V42, P61, DOI 10.1111/j.1600-048X.2010.04897.x; Burnham KP, 2011, BEHAV ECOL SOCIOBIOL, V65, P23, DOI 10.1007/s00265-010-1029-6; Calenge C, 2006, ECOL MODEL, V197, P516, DOI 10.1016/j.ecolmodel.2006.03.017; Carnaval AC, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1461; Cavitt JF, 1999, CONDOR, V101, P859, DOI 10.2307/1370076; Chalfoun AD, 2010, OECOLOGIA, V163, P885, DOI 10.1007/s00442-010-1679-0; Chaparro-Herrera Sergio, 2014, Ornitologia Colombiana, V14, P136; de la Pena M., 2013, NIDOS REPROD AVES AR; Di Giacomo Alejandro G., 1998, Hornero, V15, P29; Du B, 2014, J AVIAN BIOL, V45, P466, DOI 10.1111/jav.00449; ENEMAR A, 1980, ORNIS SCAND, V11, P223, DOI 10.2307/3676127; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Ghalambor CK, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0154; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gill SA, 2012, J AVIAN BIOL, V43, P461, DOI 10.1111/j.1600-048X.2012.05637.x; Grant TA, 2005, AUK, V122, P661, DOI 10.1642/0004-8038(2005)122[0661:TVIPNS]2.0.CO;2; Greenberg R, 1997, J AVIAN BIOL, V28, P103, DOI 10.2307/3677303; Greeney HF, 2013, J ORNITHOL, V154, P1049, DOI 10.1007/s10336-013-0973-0; Griebeler EM, 2010, J EVOLUTION BIOL, V23, P888, DOI 10.1111/j.1420-9101.2010.01958.x; Gruebler MU, 2010, J ANIM ECOL, V79, P334, DOI 10.1111/j.1365-2656.2009.01650.x; Hille SM, 2015, BIOL REV, V90, P204, DOI 10.1111/brv.12106; Instituto Agronomico do Parana, 2015, MED CLIM HIST MUN PA; Instituto Nacional de Meterologia, 2015, BANC DAD MET ENS PES; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Kottek M, 2006, METEOROL Z, V15, P259, DOI 10.1127/0941-2948/2006/0130; Laake J. L, 2013, RMARK R INTERFACE AN; Lara Kelrene M, 2012, Pap. Avulsos Zool. (São Paulo), V52, P349, DOI 10.1590/S0031-10492012021000001; LENS L, 1994, BEHAV ECOL SOCIOBIOL, V35, P431, DOI 10.1007/BF00165846; Lima A. M. X., 2009, J TROP ECOL, V25, P605; Lloyd P, 2014, J AVIAN BIOL, V45, P493, DOI 10.1111/jav.00454; MAACK R, 2002, GEOGRAFIA FISICA EST; Marques MCM, 2004, PLANT ECOL, V173, P203, DOI 10.1023/B:VEGE.0000029325.85031.90; Marques OAV, 2014, HERPETOLOGICA, V70, P407, DOI 10.1655/HERPETOLOGICA-D-14-00012; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1993, J FIELD ORNITHOL, V64, P507; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Martin TE, 2015, AM NAT, V186, P223, DOI 10.1086/681986; Martin TE, 2014, AM NAT, V183, P313, DOI 10.1086/674966; MAYFIELD HF, 1975, WILSON BULL, V87, P456; Mezquida ET, 2001, J AVIAN BIOL, V32, P287, DOI 10.1111/j.0908-8857.2001.320401.x; Moore IT, 2005, BEHAV ECOL, V16, P755, DOI 10.1093/beheco/ari049; Moreno J, 2010, ACTA ORNITHOL, V45, P139, DOI 10.3161/000164510X551291; Morton ES, 2000, J FIELD ORNITHOL, V71, P493, DOI 10.1648/0273-8570-71.3.493; Morton ES, 2000, BEHAV ECOL, V11, P648, DOI 10.1093/beheco/11.6.648; ONIKI Y, 1975, AN ACAD BRAS CIENC, V47, P477; Oppel S, 2013, IBIS, V155, P464, DOI 10.1111/ibi.12052; Perrella DF, 2015, WILSON J ORNITHOL, V127, P319, DOI 10.1676/wils-127-02-319-323.1; Pienaar J, 2013, ECOL LETT, V16, P571, DOI 10.1111/ele.12077; R Core Team, 2013, R LANG ENV STAT COMP; Redmond LJ, 2007, CONDOR, V109, P463, DOI 10.1650/0010-5422(2007)109[463:NRBEKA]2.0.CO;2; Reichert BE, 2012, ECOLOGY, V93, P2580, DOI 10.1890/12-0233.1; Reinert BL, 2012, WILSON J ORNITHOL, V124, P286; Reinert BL, 2008, THESIS; Remes V, 2012, J AVIAN BIOL, V43, P435, DOI 10.1111/j.1600-048X.2012.05599.x; Repenning M, 2011, EMU, V111, P268, DOI 10.1071/MU10018; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Ricklefs RE, 2002, J AVIAN BIOL, V33, P207, DOI 10.1034/j.1600-048X.2002.330301.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; RICKLEFS RE, 1977, AUK, V94, P86; Ricklefs RE, 2013, J ORNITHOL, V154, P145, DOI 10.1007/s10336-012-0880-9; Ricklefs RE, 2010, AM NAT, V175, P350, DOI 10.1086/650371; Ridgely R. S., 1994, BIRDS S AM, V2; Ridgely RS, 1994, BIRDS S AM, V1; Robertson EP, 2015, AUK, V132, P37, DOI 10.1642/AUK-14-73.1; Robinson WD, 2000, J AVIAN BIOL, V31, P151, DOI 10.1034/j.1600-048X.2000.310207.x; Roper JJ, 2010, OIKOS, V119, P719, DOI 10.1111/j.1600-0706.2009.18047.x; Roper JJ, 2005, ORNITOL NEOTROP, V16, P253; Roper JJ, 1997, J AVIAN BIOL, V28, P111, DOI 10.2307/3677304; Rose AP, 2013, ECOLOGY, V94, P1327, DOI 10.1890/12-0953.1; Russell EM, 2000, EMU, V100, P377, DOI 10.1071/MU0005S; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Santos F. M., 2016, ORNITOL NEOTROP, V26, P363; Segura LN, 2012, J FIELD ORNITHOL, V83, P343, DOI 10.1111/j.1557-9263.2012.00384.x; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SKUTCH AF, 1969, PACIFIC COAST AVIFAU, V35; Sousa NOM, 2013, EMU, V113, P8, DOI 10.1071/MU11102; Stouffer PC, 2013, AUK, V130, P529, DOI 10.1525/auk.2013.12179; Stutchbury BJM, 2001, BEHAV ECOLOGY TROPIC; Styrsky JN, 2011, CONDOR, V113, P194, DOI 10.1525/cond.2011.100051; Styrsky JN, 2005, CONDOR, V107, P133, DOI 10.1650/7609; Tarwater CE, 2010, J AVIAN BIOL, V41, P479, DOI 10.1111/j.1600-048X.2010.05006.x; Uejima A. M. K., 2004, THESIS; Villellas J, 2015, ECOL LETT, V18, P1139, DOI 10.1111/ele.12505; White GC, 1999, BIRD STUDY, V46, P120; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wiersma P, 2012, J EXP BIOL, V215, P1662, DOI 10.1242/jeb.065144; Wikelski M, 2000, ECOLOGY, V81, P2458, DOI 10.2307/177467; Willis E. O., 1983, REV BRAS ZOOL, P153, DOI [10.1590/S0101-81751983000300006, DOI 10.1590/S0101-81751983000300006]; Woltmann S, 2011, WILSON J ORNITHOL, V123, P15, DOI 10.1676/10-017.1; WYNDHAM E, 1986, AM NAT, V128, P155, DOI 10.1086/284551; Yanes M, 1997, ACTA OECOL, V18, P413, DOI 10.1016/S1146-609X(97)80032-X; YOMTOV Y, 1994, CONDOR, V96, P170, DOI 10.2307/1369074; Zimmer K. I., 2016, HDB BIRDS WORLD ALIV; Zyskowski K., 2013, REV BRAS ORNITOL, V16, P246 114 0 1 4 11 CSIRO PUBLISHING CLAYTON UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA 0158-4197 1448-5540 EMU Emu 2016 116 4 411 422 10.1071/MU15120 12 Ornithology Zoology EJ4PN WOS:000393199400012 2019-02-21 J Minocher, R; Sommer, V Minocher, Riana; Sommer, Volker Why do Mothers Harm their Babies? Evolutionary Perspectives INTERDISCIPLINARY SCIENCE REVIEWS English Article infanticide; life-history theory; neglect; sex-differential mortality PARENTAL INVESTMENT; DEMOGRAPHIC-TRANSITION; MATERNAL INFANTICIDE; REPRODUCTIVE SUCCESS; SPONTANEOUS-ABORTION; ANOREXIA-NERVOSA; CHILD-ABUSE; SEX-RATIOS; RISK; CONTRACEPTIVES Young conspecifics are killed in many animal species, often by unrelated males. The role that females - particularly mothers - play in harming infants is often overlooked, as it appears an evolutionary paradox. Life-history theory offers potential explanations, as females are under pressure to time births optimally, produce an optimal number of offspring and secure paternal investment. Furthermore, socio-cultural circumstances across human societies may favour sex-specific infanticide. These constraints can lead mothers to terminate pre- or post-natal investment in current offspring. Incorporating evolutionary theory in policy making may offer opportunities to assess which measures are likely to reduce the rate of maternally committed infanticide. [Minocher, Riana; Sommer, Volker] UCL, Dept Anthropol, London WC1 E6BT, England Minocher, R; Sommer, V (reprint author), UCL, Dept Anthropol, London WC1 E6BT, England. riana.minocher@gmail.com Agoramoorthy G., 1988, HUM EVOL, V3, P297, DOI DOI 10.1007/BF02435859; Attia E, 2009, INT J EAT DISORDER, V42, P581, DOI 10.1002/eat.20720; Ball HL, 1996, CURR ANTHROPOL, V37, P856, DOI 10.1086/204569; Banister J., 2004, Journal of Population Research, V21, P19; Beise J., 2002, HIST FAMILY, V7, P515; Berkowitz RL, 1996, AM J OBSTET GYNECOL, V174, P1265, DOI 10.1016/S0002-9378(96)70669-5; Bluestein D., 1990, FAMILY MED, V23, P271; BOSERUP E, 1989, WOMANS ROLE EC DEV; Bugos P., 1984, INFANTICIDE COMP EVO, P503; Candib LM, 1999, WOMEN STUD INT FORUM, V22, P185, DOI 10.1016/S0277-5395(99)00006-0; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Chen CY, 2008, APPL ANIM BEHAV SCI, V109, P238, DOI 10.1016/j.applanim.2007.02.008; Cobb JC, 1997, AM J PUBLIC HEALTH, V87, P1380, DOI 10.2105/AJPH.87.8.1380; Creatsas G. K., 2015, FRONTIERS GYNECOLOGI, P41; Cronk L, 1991, Hum Nat, V2, P387, DOI 10.1007/BF02692198; CRONK L, 1989, AM ANTHROPOL, V91, P414, DOI 10.1525/aa.1989.91.2.02a00090; Curtin R, 1977, KROEBER ANTHR SOC PA, V50, P27; CURTIN R, 1979, SCI TODAY, V13, P35; DALY M, 1985, ETHOL SOCIOBIOL, V6, P197, DOI 10.1016/0162-3095(85)90012-3; DALY M, 1988, SCIENCE, V242, P519, DOI 10.1126/science.3175672; Daly M., 1984, INFANTICIDE COMP EVO, P487; Das Gupta M, 2003, J DEV STUD, V40, P153, DOI 10.1080/00220380412331293807; DASGUPTA M, 1987, POPUL DEV REV, V13, P77; DICKEMAN M, 1975, ANNU REV ECOL SYST, V6, P107, DOI 10.1146/annurev.es.06.110175.000543; DICKEMANN M, 1979, SOC SCI INFORM, V18, P163, DOI 10.1177/053901847901800201; DIGBY L, 1995, BEHAV ECOL SOCIOBIOL, V37, P51, DOI 10.1007/BF00173899; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Fehring RJ, 2007, JOGNN-J OBST GYN NEO, V36, P152, DOI 10.1111/J.1552-6909.2007.00129.x; Fischer B, 2011, OIKOS, V120, P258, DOI 10.1111/j.1600-0706.2010.18642.x; FRISCH RE, 1984, BIOL REV, V59, P161, DOI 10.1111/j.1469-185X.1984.tb00406.x; Gibson MA, 2007, J BIOSOC SCI, V39, P287, DOI 10.1017/S0021932006001441; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; HARTUNG J, 1982, CURR ANTHROPOL, V23, P1, DOI 10.1086/202775; Heylighen F., 2004, SOCIAL INDICATORS RE, P1; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Holden CJ, 2003, P ROY SOC B-BIOL SCI, V270, P2425, DOI 10.1098/rspb.2003.2535; Hrdy S. B., 1984, INFANTICIDE COMP EVO; Hrdy Sarah Blaffer, 1999, MOTHER NATURE HIST M; HRDY SB, 1974, FOLIA PRIMATOL, V22, P19; HRDY SB, 1985, AM ANTHROPOL, V87, P719, DOI 10.1525/aa.1985.87.3.02a00610; HRDY SB, 1993, HUM NATURE-INT BIOS, V4, P1, DOI 10.1007/BF02734088; Hurtado A. M, 1992, FATHER CHILD RELATIO, P31; Jones O. D., 1994, J CONT HLTH LAW POLI, V10, P265; Jotkowitz AB, 2006, J MED ETHICS, V32, P157, DOI 10.1136/jme.2005.012476; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan HS, 2003, OFFSPRING, P170; KEMPE CH, 1984, JAMA-J AM MED ASSOC, V251, P3288, DOI 10.1001/jama.251.24.3288; Kirk D, 1996, POP STUD-J DEMOG, V50, P361, DOI 10.1080/0032472031000149536; KLINE JZ, 1980, LANCET, V316, P176; Knickmeyer RC, 2008, J NEUROSCI, V28, P12176, DOI 10.1523/JNEUROSCI.3479-08.2008; Kuzawa CW, 1998, YEARB PHYS ANTHROPOL, V41, P177; Landy HJ, 1998, HUM REPROD UPDATE, V4, P177, DOI 10.1093/humupd/4.2.177; LEBOEUF BJ, 1977, MAMMALIA, V41, P167, DOI 10.1515/mamm.1977.41.2.167; Lukas D, 2014, SCIENCE, V346, P841, DOI 10.1126/science.1257226; Lycett JE, 1999, P ROY SOC B-BIOL SCI, V266, P2355, DOI 10.1098/rspb.1999.0931; Maestripieri D, 2011, AM J PRIMATOL, V73, P516, DOI 10.1002/ajp.20882; Major B, 2009, AM PSYCHOL, V64, P863, DOI 10.1037/a0017497; Miller B. D., 1997, ENDANGERED SEX NEGLE; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Mulder MB, 1998, HUM NATURE-INT BIOS, V9, P119, DOI 10.1007/s12110-998-1001-6; Mulder VB, 2000, EVOL HUM BEHAV, V21, P391; Nelson Sarah E, 2009, Pharm Hist, V51, P57; Ness RB, 1999, NEW ENGL J MED, V340, P333, DOI 10.1056/NEJM199902043400501; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Neuhauser M, 2007, NATURWISSENSCHAFTEN, V94, P117, DOI 10.1007/s00114-006-0165-3; NHS UK, 2015, NHS CHOIC YOUR CONTR; Nunn C.L., 2011, COMP APPROACH EVOLUT; Overpeck MD, 1998, NEW ENGL J MED, V339, P1211, DOI 10.1056/NEJM199810223391706; PACKER C, 1983, AM NAT, V121, P716, DOI 10.1086/284097; Patil E, 2015, CURR OBSTET GYNECOL, V4, P69, DOI 10.1007/s13669-014-0109-4; Pearlstein T, 2009, AM J OBSTET GYNECOL, V200, P357, DOI 10.1016/j.ajog.2008.11.033; Porter T, 2010, TRAUMA VIOLENCE ABUS, V11, P99, DOI 10.1177/1524838010371950; Potts M, 2007, J FAM PLAN REPROD H, V33, P233, DOI 10.1783/147118907782101904; PUFFER R R, 1975, Pan American Health Organization Scientific Publication, V294, P1; Regan L, 2000, BEST PRACT RES CL OB, V14, P839, DOI 10.1053/beog.2000.0123; Remez L, 2000, FAM PLANN PERSPECT, V32, P298, DOI 10.2307/2648199; RIDDLE JM, 1992, AM SCI, V80, P226; Rivera R, 1999, AM J OBSTET GYNECOL, V181, P1263, DOI 10.1016/S0002-9378(99)70120-1; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rowe RE, 2004, PUBLIC HEALTH, V118, P177, DOI 10.1016/j.puhe.2003.08.004; Sahni M, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002224; SANTOW G, 1995, POP STUD-J DEMOG, V49, P19, DOI 10.1080/0032472031000148226; Scott-Phillips TC, 2011, PERSPECT PSYCHOL SCI, V6, P38, DOI 10.1177/1745691610393528; Scrimshaw S., 1984, INFANTICIDE COMP EVO, P439; Sedgh G, 2015, J ADOLESCENT HEALTH, V56, P223, DOI 10.1016/j.jadohealth.2014.09.007; Sherris J, 2005, INT J GYNECOL OBSTET, V88, P76, DOI 10.1016/j.ijgo.2004.09.006; SIEFF DF, 1990, CURR ANTHROPOL, V31, P25, DOI 10.1086/203801; SIMMS M, 1986, J MED ETHICS, V12, P72, DOI 10.1136/jme.12.2.72; SOMMER V, 2000, INFANTICIDE MALES IT, P9; Spinelli MG, 2004, AM J PSYCHIAT, V161, P1548, DOI 10.1176/appi.ajp.161.9.1548; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Sudha S, 1999, DEV CHANGE, V30, P585, DOI 10.1111/1467-7660.00130; Sussman R. W., 1994, EVOLUTIONARY ANTHR I, V3, P311; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; TOBIASCH E, 1994, J MED VIROL, V44, P215, DOI 10.1002/jmv.1890440218; Tooley GA, 2006, EVOL HUM BEHAV, V27, P224, DOI 10.1016/j.evolhumbahev.2005.10.001; Townsend SW, 2007, CURR BIOL, V17, pR355, DOI 10.1016/j.cub.2007.03.020; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; Van der Wijden C., 2003, COCHRANE DB SYST REV, V1, P14; van Schaik CP, 2000, INFANTICIDE MALES IT; VANDENBERGHE PL, 1977, AM ANTHROPOL, V79, P809, DOI 10.1525/aa.1977.79.4.02a00030; Vlachova M., 2005, WOMEN INSECURE WORLD; VOLAND E, 1990, BEHAV ECOL SOCIOBIOL, V26, P65; VOLAND E, 1991, ETHOL SOCIOBIOL, V12, P105, DOI 10.1016/0162-3095(91)90016-J; VOLAND E, 1989, ETHOL SOCIOBIOL, V10, P223, DOI 10.1016/0162-3095(89)90001-0; WATTS DP, 1989, ETHOLOGY, V81, P1; WILSON MI, 1980, J BIOSOC SCI, V12, P333; Zhu Wei Xing, 2009, BRIT MED J, V338, P1 108 0 0 3 10 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 0308-0188 1743-2790 INTERDISCIPL SCI REV Interdiscip. Sci. Rev. 2016 41 4 335 350 10.1080/03080188.2016.1256593 16 Multidisciplinary Sciences; Social Sciences, Interdisciplinary Science & Technology - Other Topics; Social Sciences - Other Topics EJ1RP WOS:000392988200006 2019-02-21 J Schaaf, AA; Peralta, G; Diaz, A; Luczywo, A; Peluc, SI Schaaf, Alejandro A.; Peralta, Giovana; Diaz, Agustin; Luczywo, Ayelen; Peluc, Susana I. Incubation behavior of Great Antshrike (Taraba major) and Variable Antshrike (Thamnophilus caerulescens) in Argentina ORNITOLOGIA NEOTROPICAL Spanish Article Breeding biology; Parental care; Reproduction; Taraba major; Thamnophilidae; Thamnophilus caerulescens LIFE-HISTORY EVOLUTION; BIRDS; TEMPERATURE The Thamnophilidae family comprises approximately 200 species of passeriforme birds. Even though in the last years there has been advancement in the knowledge of the reproductive biology of many of those species, there are still species for which several reproductive parameters are unknown. With this work we contribute to the knowledge of the reproductive biology of the Great Antshrike (Taraba major) and the Variable Antshrike (Thamnophilus caerulescens) mainly providing data on their incubation behavior in the province of Cordoba, Argentina, corresponding to their southernmost distribution. We recorded clutch size, total duration of the incubation period, and other variables associated with incubation behavior by means of remote sensors and direct observations. In both species, adults shared incubation duties and nest attentiveness was high (T. major: 91.46%; T. caerulescens: 92.52%). The pattern of incubation for daylight hours was different between the species. In the case of T. major, the duration of on and off bouts increased during the course of the day, and the number of bouts decreased. In contrast, for T. caerulescens both variables remained constant throughout the day. The data provided in this study enriches our knowledge of the reproductive biology of understudied Thamnophilidae species, and are useful as baseline information to investigate the factors that shape parental care behaviors in these birds. [Schaaf, Alejandro A.] Consejo Nacl Invest Cient & Tecn CONICET, Ctr Invest & Transferencia Jujuy, Av Bolivia 1711, RA-4600 San Salvador De Jujuy, Jujuy, Argentina; [Schaaf, Alejandro A.] Fdn CEBio, Roca 44, RA-4600 San Salvador De Jujuy, Jujuy, Argentina; [Peralta, Giovana; Peluc, Susana I.] Consejo Nacl Invest Cient & Tecn CONICET, IDEA, San Salvador De Jujuy, Jujuy, Argentina; [Diaz, Agustin; Luczywo, Ayelen; Peluc, Susana I.] Univ Nacl Cordoba, Fac Ciencias Exactas Fis & Nat, Velez Sarsfield 299, RA-5000 Cordoba, Argentina Schaaf, AA (reprint author), Consejo Nacl Invest Cient & Tecn CONICET, Ctr Invest & Transferencia Jujuy, Av Bolivia 1711, RA-4600 San Salvador De Jujuy, Jujuy, Argentina.; Schaaf, AA (reprint author), Fdn CEBio, Roca 44, RA-4600 San Salvador De Jujuy, Jujuy, Argentina. schaaf.alejandro@gmail.com Ar A, 2002, OX ORN SER, V13, P143; Cabido Marcelo, 1998, Candollea, V53, P321; CABRERA AL, 1971, B SOC ARGENT BOT, V14, P1; Conway CJ, 2000, BEHAV ECOL, V11, P178, DOI 10.1093/beheco/11.2.178; de la Pena MR, 2016, COMUNICACIONES MUSEO, V20, P1; de la Pena MR, 2005, MONOGRAFIA, V20; Deeming DC, 2002, AVIAN INCUBATION BEH; DI GIACOMO A. G., 2005, TEMAS NATURALEZA CON, P201; FRAGA R, 1985, NIDIFICACION AVES AR; Gavier GI, 2004, ACAD NACL CIENCIAS, V101, P4; Geffen E, 2000, J ANIM ECOL, V69, P59, DOI 10.1046/j.1365-2656.2000.00370.x; Greeney HF, 2004, ORNITOL NEOTROP, V15, P349; Isler ML, 2006, P BIOL SOC WASH, V119, P522, DOI 10.2988/0006-324X(2006)119[522:EANGOA]2.0.CO;2; Joyce EM, 2001, J FIELD ORNITHOL, V72, P369, DOI 10.1648/0273-8570-72.3.369; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Narosky T, 2010, AVES ARGENTINA URUGU; Oniki Yoshika, 1999, Ornitologia Neotropical, V10, P91; Peralta GC, 2015, NUESTRAS AVES, V60, P18; Sheldon KS, 2008, ORNITOL NEOTROP, V19, P293; Skutch AF., 1996, ANTBIRDS OVENBIRDS T; Skutch Alexander F., 1945, AUK, V62, P8; Stutchbury BJM, 2008, WILSON J ORNITHOL, V120, P26, DOI 10.1676/07-018.1; Vergara-Tabares DL, 2013, ORNITOL NEOTROP, V24, P267; Weidinger K, 2006, J FIELD ORNITHOL, V77, P357, DOI 10.1111/j.1557-9263.2006.00063.x; Zimmer K. I., 2016, HDB BIRDS WORLD ALIV; Zimmer K.J., 2003, P448 27 0 0 0 7 NEOTROPICAL ORNITHOLOGICAL SOC, USGS PATUXENT WILDLIFE RESEARCH CTR ATHENS UNIV GEORGIA, WARNELL SCH FOREST RESOURCES, ATHENS, GA 30602-2152 USA 1075-4377 ORNITOL NEOTROP ORNITOL. NEOTROP. 2016 27 137 143 7 Ornithology Zoology EI1XG WOS:000392279200001 2019-02-21 J Folt, B; Jensen, JB; Teare, A; Rostal, D Folt, Brian; Jensen, John B.; Teare, Amber; Rostal, David Establishing Reference Demography for Conservation: A Case Study of Macrochelys temminckii in Spring Creek, Georgia HERPETOLOGICAL MONOGRAPHS English Article Alligator Snapping Turtles; Conservation; Demography; Macrochelys temminckii; Mark-recapture; Population model; Population structure; Survival ALLIGATOR SNAPPING TURTLE; LOGGERHEAD SEA-TURTLES; LONG-LIVED ORGANISMS; CHELYDRA-SERPENTINA; POPULATION-STRUCTURE; GOPHERUS-POLYPHEMUS; MANAGEMENT; PATTERNS; GROWTH; MODEL The conservation of large, long-lived turtle species can be a challenging issue because their life-history strategies make populations sensitive to changes in adult survivorship and populations may be difficult to sample. The Alligator Snapping Turtle (Macrochelys temminckii) is a large freshwater turtle species occurring in North America for which commercial harvest has severely reduced populations throughout the species range. Given recent population declines and a general deficit of demographic knowledge for Macrochelys, we conducted a mark-recapture study of M. temminckii from 1997-2013 in Spring Creek, Georgia, USA. We made 166 captures of 75 individuals using baited hoop-net traps and skin-diving searches. The observed and estimated population structure described the adult sex ratio as even and adults as more abundant than juveniles. Apparent survival was higher for adult males (0.98) and females (0.95) than for juveniles (0.86), and we estimated a population density of 13-14 turtles/stream kilometer. The survival estimates for adult M. temminckii are among the highest of all freshwater turtle species reported in the literature. We used the empirical demographic parameters described here and a literature review to build an updated population model for M. temminckii; the model estimated a finite rate of population increase consistent with a growing population (lambda = 1.036) at Spring Creek, and population viability analysis found the population growing over the next 50 yr in 100% of simulations. Application of our model to published survival estimates from two impacted western populations indicated a declining population (lambda = 0.563) with a high risk of extirpation in Oklahoma and a population with a slow rate of decline (lambda = 0.978) but approaching stability in Arkansas. Simulations identified combinations of survival values which generate viable populations and also characterized population structure resulting from viable scenarios. This is the first study to document a stable and viable population of Macrochelys. We suggest that the population parameters described at Spring Creek are the best approximation of reference demographic conditions for Macrochelys to date, and this study provides a general framework applicable for large, long-lived, endangered turtle species for which demographic data are unavailable. [Folt, Brian] Auburn Univ, Dept Biol Sci, 331 Funchess Hall, Auburn, AL 36849 USA; [Folt, Brian] Auburn Univ, Museum Nat Hist, 331 Funchess Hall, Auburn, AL 36849 USA; [Jensen, John B.] Georgia Dept Nat Resources, Nongame Conservat Sect, 116 Rum Creek Dr, Forsyth, GA 31029 USA; [Teare, Amber; Rostal, David] Georgia Southern Univ, Dept Biol, 4324 Old Register Rd, Statesboro, GA 30460 USA Folt, B (reprint author), Auburn Univ, Dept Biol Sci, 331 Funchess Hall, Auburn, AL 36849 USA.; Folt, B (reprint author), Auburn Univ, Museum Nat Hist, 331 Funchess Hall, Auburn, AL 36849 USA. brian.folt@gmail.com Georgia Department of Natural Resources; US Fish and Wildlife Service; Georgia Southern University (GSU) Faculty Research and Service Grants; GSU Graduate Student Professional Development Fund; GSU College of Science and Technology Academic Excellence Grant; Organization for Tropical Studies Graduate Research Fellowship (Christiane and Christopher Tyson fellowship); Organization for Tropical Studies Graduate Research Fellowship (Dole Food fellowship) Funding for field work was provided by the Georgia Department of Natural Resources, the US Fish and Wildlife Service, Georgia Southern University (GSU) Faculty Research and Service Grants, GSU Graduate Student Professional Development Fund, and GSU College of Science and Technology Academic Excellence Grant, and BF was supported by an Organization for Tropical Studies Graduate Research Fellowship (Christiane and Christopher Tyson and Dole Food fellowships) while preparing the manuscript. The funding sources had no influence in the study design, data collection, analysis, or preparation of the manuscript. All work was done in accordance with animal care and use protocols approved by the Institutional Animal Care and Usage Committee at GSU, and all the necessary research permits were obtained. We are incredibly grateful for individuals who assisted with collection efforts including B. Barr, B. Bechtel, M. Bewig, B. Birkhead, R. Birkhead, B. Blihovde, B. Boone, K. Buhlmann, W. Carruth, K. Chaffin, A. Day, K. Dyer, P. Eager, T. Floyd, M. Frick, J. W. Gibbons, L. Giovanetto, S. Graham, J. Greene, B. Herrington, P. Howze, J. Humphries, J. MacGuire, D. MacLendon, M. MacLendon, B. Mansell, P. Marley, B. Means, R. Means, P. Meylan, L. Mitchell, S. Mitchell, P. Moler, A. Moss, J. Norman, T. Norton, B. Osborn, J. Ozier, H. Reheis, J. Shelby, C. Skelton, M. Skinner, L. Smith, D. Steen, S. Sterrett, D. Stevenson, D. Swan, C. Ten Brink, R. Thompson, B. Timpe, T. Tuberville, J. Waldron, C. Ward, K. Williams, and J. Wisniewski. Chris Canolos graciously created the map of the study site, R Gitzen helped us conceptualize mark-recapture analyses, and C. McGowan introduced us to population modeling. C. Guyer, D. Steen, J. Chivers, C. Murray, M. Miller, and S. Goetz provided discussion on a draft of the manuscript. We thank three anonymous reviewers for comments which improved the manuscript. This paper is contribution No. 726 of the Auburn University Museum of Natural History. AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; ALFORD RA, 1980, J HERPETOL, V14, P177, DOI 10.2307/1563851; Baxley DL, 2014, SOUTHEAST NAT, V13, P337, DOI 10.1656/058.013.0214; Bluett Robert D., 2011, Transactions of the Illinois State Academy of Science, V104, P63; Boundy J, 2006, CHELONIAN CONSERV BI, V5, P3, DOI 10.2744/1071-8443(2006)5[3:TSRFTA]2.0.CO;2; Box G. E. P., 1979, ROBUSTNESS STAT, P201, DOI DOI 10.1016/B978-0-12-438150-6.50018-2; BROOKS RJ, 1991, CAN J ZOOL, V69, P1314, DOI 10.1139/z91-185; Burnham K. P, 2002, MODEL SELECTION MULT; Bury R.B., 1979, P571; CAGLE FRED R., 1939, COPEIA, V1939, P170, DOI 10.2307/1436818; Caswell H., 2001, MATRIX POPULATION MO; Close Lisa M., 1997, Chelonian Conservation and Biology, V2, P563; CONGDON JD, 1993, CONSERV BIOL, V7, P826, DOI 10.1046/j.1523-1739.1993.740826.x; CONGDON JD, 1994, AM ZOOL, V34, P397; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; Cunnington DC, 1996, CAN J ZOOL, V74, P291, DOI 10.1139/z96-036; Das Indraneil, 1997, P295; DOBIE JL, 1971, COPEIA, P645; Doody JS, 2013, ETHOLOGY, V119, P95, DOI 10.1111/eth.12047; East MB, 2013, WILDLIFE RES, V40, P77, DOI 10.1071/WR12075; Ernst C. H., 2009, TURTLES US CANADA; EWERT MA, 1994, J EXP ZOOL, V270, P3, DOI 10.1002/jez.1402700103; Ewert Michael A., 2006, Chelonian Research Monographs, V3, P58; Ferrara CR, 2013, J COMP PSYCHOL, V127, P24, DOI 10.1037/a0029656; Folt B, 2015, ZOOTAXA, V3947, P447, DOI 10.11646/zootaxa.3947.3.11; Folt B, 2013, CHELONIAN CONSERV BI, V12, P211, DOI 10.2744/CCB-1036.1; Fordham DA, 2007, J ANIM ECOL, V76, P1231, DOI 10.1111/j.1365-2656.2007.01298.x; GALBRAITH DA, 1987, CAN J ZOOL, V65, P1581, DOI 10.1139/z87-247; Gamble T, 2004, WILDLIFE SOC B, V32, P1269, DOI 10.2193/0091-7648(2004)032[1269:COHANP]2.0.CO;2; Gibbons J.W., 1990, P171; GIBBONS JW, 1987, BIOSCIENCE, V37, P262, DOI 10.2307/1310589; Gibbons JW, 2000, BIOSCIENCE, V50, P653, DOI 10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2; Guyer C, 2014, BIOLOGY AND CONSERVATION OF NORTH AMERICAN TORTOISES, P102; Harlan R., 1835, GENERA N AM REPTILIA, P84; Harrel JB, 1996, AM MIDL NAT, V135, P60, DOI 10.2307/2426872; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Holcomb SR, 2011, CHELONIAN CONSERV BI, V10, P222, DOI 10.2744/1071-8443-10.2.222; Howey CAF, 2009, J HERPETOL, V43, P589, DOI 10.1670/08-105.1; Howey C. A. F., 2013, COPEIA, V2013, P58; IVERSON JB, 1991, CAN J ZOOL, V69, P385, DOI 10.1139/z91-060; Jensen JB, 2003, SOUTHEAST NAT, V2, P25, DOI 10.1656/1528-7092(2003)002[0025:DASOTA]2.0.CO;2; Jensen John B., 1998, Chelonian Conservation and Biology, V3, P109; Jian W., 2013, CHELONIAN CONSERV BI, V12, P177; KLEMENS MW, 1995, BIODIVERS CONSERV, V4, P281, DOI 10.1007/BF00055974; Laake J. L., 2013, 201301 AFSC NAT OC A; Laake JL, 2013, METHODS ECOL EVOL, V4, P885, DOI 10.1111/2041-210X.12065; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lescher TC, 2013, CHELONIAN CONSERV BI, V12, P163; Lovich Jeffrey E., 1993, Catalogue of American Amphibians and Reptiles, V562, P1; Mazerolle MJ, 2007, J HERPETOL, V41, P672, DOI 10.1670/07-061.1; MOLL D, 2004, ECOLOGY EXPLOITATION; Penaloza C. L., 2013, COPEIA, V2013, P111; Platt SG, 2000, CHELON RES MONOGR, P95; Pritchard P.C.H., 1967, LIVING TURTLES WORLD; Pritchard P.C.H., 1989, ALLIGATOR SNAPPING T; Pritchard P. C. H., 1984, TURTLES VENEZUELA SO, V2; R Core Team, 2015, R LANG ENV STAT COMP; Reed R.N., 2002, ALLIGATOR SNAPPING T; Riedle JD, 2008, CHELONIAN CONSERV BI, V7, P100, DOI 10.2744/CCB-0646.1; Riedle JD, 2006, SOUTHWEST NAT, V51, P35, DOI 10.1894/0038-4909(2006)51[35:MUHRAM]2.0.CO;2; Riedle JD, 2005, SOUTHWEST NAT, V50, P79, DOI 10.1894/0038-4909(2005)050<0079:SADOTA>2.0.CO;2; Rostal DC, 2005, CHELONIAN CONSERV BI, V4, P788; SHINE R, 1995, OIKOS, V72, P343, DOI 10.2307/3546119; Shipman PA, 2008, SOUTHEAST NAT, V7, P331, DOI 10.1656/1528-7092(2008)7[331:SADOTA]2.0.CO;2; Sloan K. N., 1987, ANNUAL CONFERENCE OF, V41, P343; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Sterrett S. C., 2010, ANIMAL CONSERVATION, V14, P38; Stubben C, 2007, J STAT SOFTW, V22, P1; Swingland I. R., 1989, CONSERVATION BIOL TO, P105; Teare A. R., 2010, THESIS; Thomas TM, 2014, ZOOTAXA, V3786, P141, DOI 10.11646/zootaxa.3786.2.4; Thorbjarnarson J, 2000, TURTLE CONSERVATION, P33; TINKLE DW, 1979, BIOSCIENCE, V29, P717, DOI 10.1093/bioscience/29.12.717; Tuberville TD, 2014, J WILDLIFE MANAGE, V78, P1151, DOI 10.1002/jwmg.773; Tucker Anton D., 1997, Chelonian Conservation and Biology, V2, P587; Vogt R. C, 2012, REPTILE BIODIVERSITY, P181; Ward G. M., 2005, RIVERS N AM, P125; Webb JK, 2002, ECOL RES, V17, P59, DOI 10.1046/j.1440-1703.2002.00463.x; Wharton C. H., 1978, GEORGIA GEOLOGIC SUR, V114; White GC, 1999, BIRD STUDY, V46, P120 80 2 2 2 13 HERPETOLOGISTS LEAGUE EMPORIA EMPORIA STATE UNIV, DIVISION BIOLOGICAL SCIENCES, 1200 COMMERCIAL ST, EMPORIA, KS 66801-5087 USA 0733-1347 1938-5137 HERPETOL MONOGR Herpetol. Monogr. 2016 30 21 33 10.1655/HERPMONOGRAPHS-D-15-00004 13 Zoology Zoology EH4IG WOS:000391734300002 2019-02-21 J Wang, JC; Wang, TL; Fu, SH; Brauth, SE; Cui, JG Wang, J. C.; Wang, T. L.; Fu, S. H.; Brauth, S. E.; Cui, J. G. Auditory brainstem responses in the Chinese tiger frog Hoplobatrachus chinensis (Osbeck, 1765) (Anura: Dicroglossidae) reveal sexually dimorphic hearing sensitivity ITALIAN JOURNAL OF ZOOLOGY English Article Auditory brainstem responses; Chinese tiger frog; sexual dimorphism; sexual selection; tympanic membrane BODY-SIZE; AMERICAN BULLFROG; RANA-CATESBEIANA; XENOPUS-LAEVIS; EVOLUTION; FREQUENCY; SELECTION; LEVEL; CALLS; EAR Hearing sensitivity affects survival and reproduction in animals that communicate vocally. The Chinese tiger frog exhibits sexual dimorphism in body size, reflecting the evolution of mating behaviour and life-history strategies. In this study, we recorded auditory brainstem responses (ABRs) to determine hearing sensitivity in both female and male frogs. We also compared male and female hearing characteristics with the shape of the tympanic membrane in light of previous studies showing that smaller middle ear cavities improve hearing sensitivity. We found that ABR thresholds differ significantly between males and females, with the greatest sensitivities in both sexes at frequencies close to the dominant frequency of male calls. ABR thresholds were significantly lower in females compared to males for frequencies in the 0.9-1.3 kHz range and at 1.6 kHz. The tympanic membrane diameter was significantly smaller in females (5.94 +/- 0.87 mm) than in males (6.71 +/- 0.49 mm). Our results indicate that sexual selection has in all likelihood differentially affected male and female hearing sensitivity as well as the shape of the tympanic membrane in frogs. [Wang, J. C.; Wang, T. L.; Fu, S. H.] Hainan Normal Univ, Coll Life Sci, Key Lab Trop Anim & Plant Ecol, Minist Educ, Haikou, Peoples R China; [Brauth, S. E.] Univ Maryland, Dept Psychol, College Pk, MD 20742 USA; [Cui, J. G.] Chinese Acad Sci, Chengdu Inst Biol, Chengdu, Peoples R China Cui, JG (reprint author), Chinese Acad Sci, Chengdu Inst Biol, Dept Herpetol, 9 Sect 4,Renmin South Rd, Chengdu 610041, Sichuan, Peoples R China. cuijg@cib.ac.cn National Natural Science Foundation of China [31260518]; Education Department of Hainan Province [00501023523] This work was supported by the National Natural Science Foundation of China [31260518 to JW]; and the Education Department of Hainan Province [00501023523]. Andersson M., 1994, SEXUAL SELECTION; BASOLO AL, 1990, SCIENCE, V250, P808, DOI 10.1126/science.250.4982.808; BORG E, 1983, ACTA OTO-LARYNGOL, V95, P19, DOI 10.3109/00016488309130911; Brittan-Powell EF, 2002, J ACOUST SOC AM, V112, P999, DOI 10.1121/1.1494807; Brittan-Powell EF, 2010, J ACOUST SOC AM, V128, P787, DOI 10.1121/1.3458813; Buerkle NP, 2014, COMP BIOCHEM PHYS A, V178, P68, DOI 10.1016/j.cbpa.2014.08.005; Butler MA, 2002, ECOL MONOGR, V72, P541, DOI 10.1890/0012-9615(2002)072[0541:MSDSSA]2.0.CO;2; CAPRANICA RR, 1983, ADV VERTEBRATE NEURO, P701, DOI DOI 10.1007/978-1-4684-4412-4_36; CAREY MB, 1993, HEARING RES, V70, P216, DOI 10.1016/0378-5955(93)90160-3; CHEVERUD JM, 1985, EVOLUTION, V39, P1335, DOI 10.1111/j.1558-5646.1985.tb05699.x; CHRISTENSENDALSGAARD J, 1995, J COMP PHYSIOL A, V176, P317; Cui JG, 2011, ASIAN HERPETOL RES, V2, P149, DOI 10.3724/SP.J.1245.2011.00149; Darwin C, 1871, DESCENT MAN SELECTIO; EMERSON SB, 1994, AM NAT, V143, P848, DOI 10.1086/285636; Fei L, 2012, COLORED ATLAS CHINES; Feng AS, 2006, NATURE, V440, P333, DOI 10.1038/nature04416; Gall MD, 2011, ANIM BEHAV, V81, P973, DOI 10.1016/j.anbehav.2011.01.032; GIBBONS MM, 1986, J ZOOL, V209, P579, DOI 10.1111/j.1469-7998.1986.tb03613.x; Gutierrez G, 2002, AMPHIBIA-REPTILIA, V23, P281, DOI 10.1163/15685380260449162; HETHERINGTON TE, 1994, J ACOUST SOC AM, V96, P1186, DOI 10.1121/1.410326; Higgs DM, 2002, J COMP PHYSIOL A, V188, P217, DOI 10.1007/s00359-002-0296-8; Katbamna B, 2006, J COMP PHYSIOL A, V192, P381, DOI 10.1007/s00359-005-0076-3; Katsikaros K, 1997, BIOL J LINN SOC, V60, P39, DOI 10.1111/j.1095-8312.1997.tb01482.x; KEDDYHECTOR AC, 1992, BRAIN BEHAV EVOLUT, V39, P238, DOI 10.1159/000114121; Kelley DB, 2004, CURR OPIN NEUROBIOL, V14, P751, DOI 10.1016/j.conb.2004.10.015; Kenyon TN, 1998, J COMP PHYSIOL A, V182, P307, DOI 10.1007/s003590050181; Kratochvil L, 2002, BIOL J LINN SOC, V76, P303, DOI 10.1046/j.1095-8312.2002.00064.x; Ladich F, 2013, REV FISH BIOL FISHER, V23, P317, DOI 10.1007/s11160-012-9297-z; LEMCKERT FL, 1993, J HERPETOL, V27, P420, DOI 10.2307/1564830; Lin ZH, 2007, ZOOLOGICAL RES, V26, P255; Liu WR, 2014, J COMP PHYSIOL A, V200, P311, DOI 10.1007/s00359-014-0885-3; Lohr B, 2013, J ACOUST SOC AM, V133, P337, DOI 10.1121/1.4770255; Narins P. M., 2006, HEARING SOUND COMMUN; Owens IPF, 1998, P ROY SOC B-BIOL SCI, V265, P397, DOI 10.1098/rspb.1998.0308; PAYNE RB, 1984, ORNITHOL MONOGR, V33, P1, DOI DOI 10.2307/40166729; Ron SR, 2008, ANIM BEHAV, V76, P1783, DOI 10.1016/j.anbehav.2008.07.024; RYAN MJ, 1991, BIOL J LINN SOC, V44, P249, DOI 10.1111/j.1095-8312.1991.tb00619.x; Schrode KM, 2014, J COMP PHYSIOL A, V200, P221, DOI 10.1007/s00359-014-0880-8; Shen JX, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1339; SHINE R, 1979, COPEIA, P297, DOI 10.2307/1443418; SHINE R, 1989, Q REV BIOL, V64, P419, DOI 10.1086/416458; Song L, 2006, J ACOUST SOC AM, V119, P2242, DOI 10.1121/1.2180533; Stapells DR, 1997, AUDIOL NEURO-OTOL, V2, P257, DOI 10.1159/000259252; SUPIN AY, 1993, J COMP PHYSIOL A, V173, P649; Thom MD, 2004, OIKOS, V105, P525, DOI 10.1111/j.0030-1299.2004.12830.x; van Dijk P, 2002, HEARING RES, V173, P100, DOI 10.1016/S0378-5955(02)00605-6; Wang JC, 2012, ASIAN HERPETOL RES, V3, P205, DOI 10.3724/SP.J.1245.2012.00205; WEBSTER MS, 1992, EVOLUTION, V46, P1621, DOI 10.1111/j.1558-5646.1992.tb01158.x; Wei Li, 2011, Zoological Research, V32, P456, DOI 10.3724/SP.J.1141.2011.04456; WENSTRUP JJ, 1984, J COMP PHYSIOL, V155, P75, DOI 10.1007/BF00610933; Werner YL, 2009, J EXP BIOL, V212, P2204, DOI 10.1242/jeb.027516; Wilczynski W, 2001, BRAIN BEHAV EVOLUT, V58, P137, DOI 10.1159/000047268; Witte K, 2005, BEHAV ECOL, V16, P571, DOI 10.1093/beheco/ari032; WOOLBRIGHT LL, 1983, AM NAT, V121, P110, DOI 10.1086/284042; Yan HY, 2000, J COMP PHYSIOL A, V186, P435, DOI 10.1007/s003590050443; Zhang D, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045792; Zhao E., 1993, HERPETOLOGY CHINA 57 1 1 1 2 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 1125-0003 1748-5851 ITAL J ZOOL Ital. J. Zoolog. 2016 83 4 482 489 10.1080/11250003.2016.1222638 8 Zoology Zoology EF4RV WOS:000390320600004 Bronze, Green Published 2019-02-21 J Ainsworth, SE; Baumeister, RF; Vohsc, KD Ainsworth, Sarah E.; Baumeister, Roy F.; Vohsc, Kathleen D. Differentiating selves facilitates group outcomes BEHAVIORAL AND BRAIN SCIENCES English Article GROUP DECISION-MAKING; SOCIAL IDENTITY THEORY; INTERINDIVIDUAL-INTERGROUP DISCONTINUITY; KNOWLEDGE-SHARING DILEMMAS; NORMATIVE CONFLICT MODEL; SELF-PRESENTATIONAL VIEW; COLLECTIVIST GROUP NORMS; LIFE-HISTORY STRATEGIES; TOP MANAGEMENT TEAMS; GROUP-LEVEL TRAITS The target article proposed that differentiation of selves is a crucial moderator of group outcomes, such that differentiation of selves contributes to beneficial outcomes of groups while limiting undesirable outcomes. In this response, we aim to complement the target article by refining and expanding several aspects of the theory. We address our conceptualization of optimal group functioning, clarify the term differentiation of selves, comment on the two-step nature of our model, offer theoretical connections and extensions, and discuss applications and opportunities for future research. [Ainsworth, Sarah E.] Univ North Florida, Dept Psychol, Jacksonville, FL 32224 USA; [Baumeister, Roy F.] Florida State Univ, Dept Psychol, Tallahassee, FL 32306 USA; [Vohsc, Kathleen D.] Univ Minnesota, Carlson Sch Management, Dept Mkt, Minneapolis, MN 55455 USA Ainsworth, SE (reprint author), Univ North Florida, Dept Psychol, Jacksonville, FL 32224 USA. s.ainsworth@unf.edu; baumeister@psy.fsu.edu; vohsx005@umn.edu Baumeister, Roy/R-7232-2016 Baumeister, Roy/0000-0003-1413-3296 0 0 0 1 5 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0140-525X 1469-1825 BEHAV BRAIN SCI Behav. Brain Sci. 2016 39 e167 10.1017/S0140525X15001697 16 Psychology, Biological; Behavioral Sciences; Neurosciences Psychology; Behavioral Sciences; Neurosciences & Neurology EE4VB WOS:000389602500076 28355803 2019-02-21 J Velasque, M; Briffa, M Velasque, Mariana; Briffa, Mark The opposite effects of routine metabolic rate and metabolic rate during startle responses on variation in the predictability of behaviour in hermit crabs BEHAVIOUR English Article pace-of-life syndrome; intraindividual variation; personality; predictability; life-history strategies CONSISTENT INDIVIDUAL-DIFFERENCES; GENERALIZED LINEAR-MODELS; RANA-DALMATINA TADPOLES; EUROPEAN SEA BASS; LIFE-HISTORY; ANIMAL PERSONALITY; PAGURUS-BERNHARDUS; INTRAINDIVIDUAL VARIABILITY; NATURAL-SELECTION; SEXUAL SELECTION Studies on animal behaviour have suggested a link between personality and energy expenditure. However, most models assume constant variation within individuals, even though individuals vary between observations. Such variation is called intraindividual variation in behaviour (IIV). We investigate if IIV in the duration of the startle response is associated with metabolic rates (MR) in the hermit crab Pagurus bernhardus. We repeatedly measured startle response durations and MR during each observation. We used double hierarchical generalized linear models to ask whether among and IIV in behaviour was underpinned by MR. We found no association between the mean duration of the startle responses and either routine MR orMR during startle response. Nevertheless, we found that IIV increased with MR during startle responses and decreased with routine MR. These results indicate that crabs with higher MR during startle responses behave less predictably, and that predictability is reduced during exposure to elevated temperatures. [Velasque, Mariana; Briffa, Mark] Univ Plymouth, Marine Biol & Ecol Res Ctr, 6th Floor,Davy Bldg, Plymouth PL4 8AA, Devon, England Velasque, M (reprint author), Univ Plymouth, Marine Biol & Ecol Res Ctr, 6th Floor,Davy Bldg, Plymouth PL4 8AA, Devon, England. mariana.velasqueborges@plymouth.ac.uk Briffa, Mark/M-9041-2013 Briffa, Mark/0000-0003-2520-0538 CAPES, Coordination for the Improvement of Higher Education-Brazil, Science Without Borders Program, CsF This research was supported by CAPES, Coordination for the Improvement of Higher Education-Brazil, Science Without Borders Program, CsF. We are also grateful to two anonymous reviewers, whose insightful comments have helped us to improve this study. Adriaenssens B, 2013, ECOL LETT, V16, P47, DOI 10.1111/ele.12011; Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; Alexander R. M., 1999, ENERGY ANIMAL LIFE; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; Bell AM, 2007, P ROY SOC B-BIOL SCI, V274, P755, DOI 10.1098/rspb.2006.0199; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bergmuller Ralph, 2007, BMC Ecology, V7, P12, DOI 10.1186/1472-6785-7-12; Bielak AAM, 2010, PSYCHOL AGING, V25, P575, DOI 10.1037/a0019503; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2015, ANIM BEHAV, V105, P223, DOI 10.1016/j.anbehav.2015.04.008; Biro PA, 2013, AM NAT, V182, P621, DOI 10.1086/673213; Brembs B, 2011, P ROY SOC B-BIOL SCI, V278, P930, DOI 10.1098/rspb.2010.2325; Bridger D, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2492; Briffa M, 2001, ANIM BEHAV, V62, P505, DOI 10.1006/anbe.2001.1764; Briffa M, 2008, P R SOC B, V275, P1305, DOI 10.1098/rspb.2008.0025; Briffa M, 2007, ANIM BEHAV, V73, P605, DOI 10.1016/j.anbehav.2006.06.008; Briffa M, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0592; Briffa M, 2013, ANIM BEHAV, V86, P47, DOI 10.1016/j.anbehav.2013.04.009; Briffa M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021963; Briffa M, 2009, CAN J ZOOL, V87, P597, DOI 10.1139/Z09-047; Broggi J, 2007, FUNCT ECOL, V21, P528, DOI 10.1111/j.1365-2435.2007.01255.x; Brommer JE, 2013, BEHAV ECOL SOCIOBIOL, V67, P1027, DOI 10.1007/s00265-013-1527-4; Brown C, 2004, ANIM BEHAV, V68, P1325, DOI 10.1016/j.anbehav.2004.04.004; BRYANT DM, 1994, ANIM BEHAV, V48, P447, DOI 10.1006/anbe.1994.1258; Butler D. G, 2009, ASREML R REFERENCE M; Calosi P, 2013, INTEGR COMP BIOL, V53, P660, DOI 10.1093/icb/ict041; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Careau V, 2011, J EVOLUTION BIOL, V24, P2153, DOI 10.1111/j.1420-9101.2011.02344.x; Careau V, 2012, PHYSIOL BIOCHEM ZOOL, V85, P543, DOI 10.1086/666970; Charmantier A, 2007, P R SOC B, V274, P1757, DOI 10.1098/rspb.2007.0012; Cleasby IR, 2015, METHODS ECOL EVOL, V6, P27, DOI 10.1111/2041-210X.12281; Coppens CM, 2010, PHILOS T R SOC B, V365, P4021, DOI 10.1098/rstb.2010.0217; Cote J, 2008, P ROY SOC B-BIOL SCI, V275, P2851, DOI 10.1098/rspb.2008.0783; Cowlishaw G, 1996, ETHOLOGY, V102, P272; Dall SRX, 1997, OIKOS, V80, P197, DOI 10.2307/3546535; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; Delgado RA, 2006, INT J PRIMATOL, V27, P5, DOI 10.1007/s10764-005-9001-4; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Drent PJ, 2003, P ROY SOC B-BIOL SCI, V270, P45, DOI 10.1098/rspb.2002.2168; Dupont-Prinet A, 2010, J EXP BIOL, V213, P1143, DOI 10.1242/jeb.037812; Elwood RW, 2001, ADV STUD BEHAV, V30, P53, DOI 10.1016/S0065-3454(01)80005-X; Fresneau N, 2014, BEHAV ECOL, V25, P359, DOI 10.1093/beheco/aru008; Garamszegi LZ, 2013, BEHAV ECOL, V24, P1068, DOI 10.1093/beheco/art033; Gosling SD, 1999, CURR DIR PSYCHOL SCI, V8, P69, DOI 10.1111/1467-8721.00017; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Hayes JP, 1997, J MAMMAL, V78, P274, DOI 10.2307/1382882; Hille SM, 2015, BIOL REV, V90, P204, DOI 10.1111/brv.12106; Jobling Malcolm, 1997, V61, P225; Ketola T, 2012, BIOL J LINN SOC, V105, P309, DOI 10.1111/j.1095-8312.2011.01790.x; Killen SS, 2011, J ANIM ECOL, V80, P1024, DOI 10.1111/j.1365-2656.2011.01844.x; Krams I, 2013, ACTA ETHOL, V16, P163, DOI 10.1007/s10211-013-0147-3; Lee Y, 2006, J R STAT SOC C-APPL, V55, P139, DOI 10.1111/j.1467-9876.2006.00538.x; Lee Y, 1996, J ROY STAT SOC B MET, V58, P619; Liberto R, 2014, LIMNOLOGY, V15, P57, DOI 10.1007/s10201-013-0413-0; MacDonald SWS, 2009, PSYCHOL AGING, V24, P792, DOI 10.1037/a0017798; Magnhagen C, 2008, ANIM BEHAV, V75, P509, DOI 10.1016/j.anbehav.2007.06.007; Mathot K.J., 2015, TRENDS ECOL EVOL, V20, P1; Maye A, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000443; McCarthy ID, 2000, J FISH BIOL, V57, P224, DOI 10.1111/j.1095-8649.2000.tb00788.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nespolo RF, 2007, J EXP BIOL, V210, P2000, DOI 10.1242/jeb.02780; Nesselroade J.R., 1991, J APPL PSYCHOL, V85, P190; Niemela PT, 2012, FUNCT ECOL, V26, P450, DOI 10.1111/j.1365-2435.2011.01939.x; Petersen JH, 2001, CAN J FISH AQUAT SCI, V58, P1831, DOI 10.1139/cjfas-58-9-1831; PORTER RK, 1995, AM J PHYSIOL-REG I, V269, pR226; Raderschall CA, 2011, J EXP BIOL, V214, P4209, DOI 10.1242/jeb.061614; Ram N, 2009, PSYCHOL AGING, V24, P778, DOI 10.1037/a0017915; Rankin CH, 2009, NEUROBIOL LEARN MEM, V92, P135, DOI 10.1016/j.nlm.2008.09.012; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P3937, DOI 10.1098/rstb.2010.0222; Rogers TL, 2002, BEHAVIOUR, V139, P1267, DOI 10.1163/156853902321104154; Salthouse TA, 2007, NEUROPSYCHOLOGY, V21, P401, DOI 10.1037/0894-4105.21.4.401; Schurch R, 2010, BEHAV ECOL, V21, P588, DOI 10.1093/beheco/arq024; SIEGLER RS, 1994, CURR DIR PSYCHOL SCI, V3, P1, DOI 10.1111/1467-8721.ep10769817; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2008, ADV STUD BEHAV, V38, P227, DOI 10.1016/S0065-3454(08)00005-3; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stamps JA, 2012, ANIM BEHAV, V83, P1325, DOI 10.1016/j.anbehav.2012.02.017; Stearns S, 1992, EVOLUTION LIFE HIST; STEVENS ED, 1992, J APPL PHYSIOL, V72, P801; Sundt-Hansen L, 2009, FUNCT ECOL, V23, P551, DOI 10.1111/j.1365-2435.2008.01532.x; THORPE WH, 1956, LEARNING INSTINCT AN; Urszan TJ, 2015, ECOL EVOL, V5, pS847, DOI 10.1002/ece3.1804; Urszan TJ, 2015, OECOLOGIA, V178, P129, DOI 10.1007/s00442-014-3207-0; Widdows J., 2006, ICES TECHNIQUES MARI, V40, P1; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x; Garamszegi LZ, 2012, BEHAV ECOL SOCIOBIOL, V66, P1651, DOI 10.1007/s00265-012-1439-8 88 3 3 0 11 BRILL ACADEMIC PUBLISHERS LEIDEN PLANTIJNSTRAAT 2, P O BOX 9000, 2300 PA LEIDEN, NETHERLANDS 0005-7959 1568-539X BEHAVIOUR Behaviour 2016 153 13-14 SI 1545 1566 10.1163/1568539X-00003371 22 Behavioral Sciences; Zoology Behavioral Sciences; Zoology EC3BA WOS:000387998100003 2019-02-21 J Rodger, AW; Mayes, KB; Winemiller, KO Rodger, Anthony W.; Mayes, Kevin B.; Winemiller, Kirk O. Larval fish abundance in relation to environmental variables in two Texas Gulf Coast rivers JOURNAL OF FRESHWATER ECOLOGY English Article Drift; flow regime; hydrology; life history strategy; seasonality; spawning FLOW REGULATION; STREAM FISHES; ASSEMBLAGE; CYPRINID; PLAINS; PATTERNS; REGIME; BASIN Phenology of fish spawning in lotic ecosystems depends on interactions between species life history strategies and patterns of environmental variation related to hydrology and seasonality. To further study these relationships, we examined patterns of larval fish abundance in relation to discharge and other environmental variables in the Brazos and Trinity rivers, Texas. From March 2013 to March 2014, environmental data and larval fishes were collected twice each month using drift nets. Multivariate analyses indicated that, at both study sites, water temperature was the primary mechanism driving temporal and taxonomic variation in larval fish assemblage structure at the family level. However, in the Trinity River, assemblage structure was significantly associated with discharge, albeit to a lesser degree than with water temperature. Cyprinid protolarvae dominated catches in both rivers and did not seem to be constrained by any aspect of the flow regime, as evidenced by their high abundance throughout the reproductive season (April-September). Analysis of larval fish abundance at the family level compromised our ability to infer spawning dynamics of species classified as fluvial specialists. Further research enabling identification of larvae to species-level is needed to elucidate how flow regime components influence reproduction and recruitment of fluvial specialists. [Rodger, Anthony W.; Winemiller, Kirk O.] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA; [Mayes, Kevin B.] Inland Fisheries River Studies, Texas Parks & Wildlife Dept, San Marcos, TX USA Rodger, AW (reprint author), Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA. anthony.rodger@odwc.ok.gov Rodger, Anthony/0000-0002-1258-7043 Texas State Wildlife Grant Program; U.S. Fish and Wildlife Service, Wildlife and Sport Fish Restoration Program [T-60-1]; Texas Water Resources Institute through a Mills Scholarship Texas State Wildlife Grant Program in cooperation with the U.S. Fish and Wildlife Service, Wildlife and Sport Fish Restoration Program [grant number T-60-1]; Texas Water Resources Institute through a Mills Scholarship. Auer NA, 1982, GREAT LAKES FISHERY, V82-3; BONE Q, 1995, BIOL FISHES; Bonner TH, 2000, J FRESHWATER ECOL, V15, P189, DOI 10.1080/02705060.2000.9663736; BOTTRELL CLYDE E., 1964, TRANS AMER MICROSCOP SOC, V83, P391, DOI 10.2307/3224757; Bowen ZH, 2003, T AM FISH SOC, V132, P809, DOI 10.1577/T02-079; [Brazos BBEST] Brazos River Basin and Bay Expert Science Team, 2012, BRAZ RIV BAS BAY EXP; COPP GH, 1992, ENVIRON BIOL FISH, V33, P181, DOI 10.1007/BF00002563; Dudley RK, 2007, ECOL APPL, V17, P2074, DOI 10.1890/06-1252.1; Durham BW, 2008, ECOL FRESHW FISH, V17, P528, DOI 10.1111/j.1600-0633.2008.00303.x; Durham BW, 2006, T AM FISH SOC, V135, P1644, DOI 10.1577/T05-133.1; Durham BW, 2014, AQUAT ECOL, V48, P91, DOI 10.1007/s10452-014-9469-0; Finger T.R., 1987, P86; FUIMAN LA, 1989, MAR ECOL PROG SER, V51, P291, DOI 10.3354/meps051291; FUIMAN LA, 1983, T AM FISH SOC, V112, P319, DOI 10.1577/1548-8659(1983)112<319:SOTAOI>2.0.CO;2; Grossman GD, 2010, AM FISH S S, V73, P63; Grossman GD, 1998, ECOL MONOGR, V68, P395, DOI 10.1890/0012-9615(1998)068[0395:AOISFE]2.0.CO;2; HARVEY BC, 1991, CAN J FISH AQUAT SCI, V48, P1476, DOI 10.1139/f91-175; Hoagstrom C.W., 2013, FISH FISH, DOI [10.1111/faf.12054, DOI 10.1111/FAF.12054]; Hoagstrom CW, 2011, BIOL CONSERV, V144, P21, DOI 10.1016/j.biocon.2010.07.015; Holland-Bartels L.E., 1990, GUIDE LARVAL FISHES; Humphries P, 1999, ENVIRON BIOL FISH, V56, P129, DOI 10.1023/A:1007536009916; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; Legendre P, 1998, NUMERICAL ECOLOGY; Luttrell GR, 1999, COPEIA, P981, DOI 10.2307/1447973; Mann RHK, 1997, REGUL RIVER, V13, P295, DOI 10.1002/(SICI)1099-1646(199705)13:3<295::AID-RRR457>3.0.CO;2-5; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Moore George A., 1944, COPEIA, V1944, P209, DOI 10.2307/1438675; Oksanen J, 2015, VEGAN COMMUNITY ECOL; Olden JD, 2010, AM FISH S S, V73, P83; Penry Williams C., 2011, THESIS; Perkin JS, 2011, FISHERIES, V36, P371, DOI 10.1080/03632415.2011.597666; Phillips JD, 2004, GEOMORPHOLOGY, V62, P17, DOI 10.1016/j.geomorph.2004.02.004; Platania SP, 1998, COPEIA, P559, DOI 10.2307/1447786; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Reeves KS, 2010, J APPL ICHTHYOL, V26, P571, DOI 10.1111/j.1439-0426.2010.01481.x; Roach KA, 2011, T AM FISH SOC, V140, P84, DOI 10.1080/00028487.2010.550533; SCHLOSSER IJ, 1985, ECOLOGY, V66, P1484, DOI 10.2307/1938011; Snyder DE, 1998, CATOSTOMID LARVAE EA; Snyder DE, 2008, COMPUTER INTERACTIVE; [Trinity BBEST] Trinity and San Jacinto and Galveston Bay River Basin and Bay Expert Science Team, 2009, BAS BAY EXP SCI TEAM; Wallus R., 2008, REPROD BIOL EARLY LI, V6; Wilde GR, 2008, T AM FISH SOC, V137, P1657, DOI 10.1577/T07-075.1; Winemiller KO, 2010, AM FISH S S, V73, P23; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Zeug SC, 2008, ECOLOGY, V89, P1733, DOI 10.1890/07-1064.1 45 1 1 0 7 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 0270-5060 2156-6941 J FRESHWATER ECOL J. Freshw. Ecol. 2016 31 4 625 640 10.1080/02705060.2016.1216902 16 Ecology; Limnology Environmental Sciences & Ecology; Marine & Freshwater Biology EB2CZ WOS:000387166100012 Bronze 2019-02-21 J Dugas, MB; Richards-Zawacki, CL Dugas, M. B.; Richards-Zawacki, C. L. Conspicuous and cryptic morphs of a polytypic poison frog differ in reproductive output because of differences in tadpole performance, not parental effort ETHOLOGY ECOLOGY & EVOLUTION English Article cross-fostering; Dendrobatidae; egg feeding; life history; parental care DENDROBATES-PUMILIO; OOPHAGA-PUMILIO; THREESPINE STICKLEBACK; POPULATION DIVERGENCE; PREDATION RISK; BROOD CARE; SELECTION; BEHAVIOR; INVESTMENT; COLORATION Predation risk can drive life-history evolution in prey, with high adult mortality favouring the prioritization of current over future reproduction. Populations that evolve or adopt different or differently effective strategies to avoid predation, then, should evolve different life-history strategies. We compared reproductive output, under identical captive breeding conditions, of three allopatric morphs of polytypic poison frog (Oophaga pumilio) that likely experience different predation risk. We predicted that pairs of a well-defended (conspicuous and highly toxic) morph would prioritize future reproduction, and thus reproduce less often than a poorly defended (cryptic and less toxic) morph, while a cryptic but highly toxic lineage would be intermediate. These predictions were generally met: the conspicuous, toxic morph produced fewer juveniles than the cryptic morphs. However, the results of cross-fostering tadpoles among morphs suggested that these differences arose not from the quality of care parents provided, as predicted by life-history theory, but rather from differences expressed in tadpoles. Moreover, all cross-fostered tadpoles were less successful than tadpoles reared by their own parents, perhaps suggesting that parents discriminate against unrelated tadpoles or that parental care and offspring solicitation behaviours have diverged among populations. These results suggest opportunities for comparative studies exploring the entire complexity of the selective landscapes experienced by these polytypic frogs. [Dugas, M. B.; Richards-Zawacki, C. L.] Tulane Univ, Dept Ecol & Evolutionary Biol, New Orleans, LA 70118 USA; [Dugas, M. B.] Case Western Reserve Univ, Dept Biol, DeGrace Hall,2080 Adelbert Rd, Cleveland, OH 44106 USA Dugas, MB (reprint author), Case Western Reserve Univ, Dept Biol, DeGrace Hall,2080 Adelbert Rd, Cleveland, OH 44106 USA. matthew.b.dugas@gmail.com National Science Foundation [0701165, 1146370]; Smithsonian Institution; University of California President's Office We thank D. Gonzalez, R. Cossio, G. Zawacki and numerous students for frog care. The Smithsonian Tropical Research Institute (STRI) provided logistical support, and we particularly thank G. Jacome and P. Gondola of the Bocas del Toro Research Station. Two anonymous reviewers made comments that greatly improved the quality of this manuscript. This study was supported by a fellowship and grant from the National Science Foundation [Award Nos 0701165, 1146370], and fellowships from the Smithsonian Institution and the University of California President's Office (all to CL. Richards-Zawacki). The Panamanian National Authority for the Environment provided research, collection and export permission. This work complied with Institutional Animal Care and Use Committee (IACUC) protocols (Tulane University: Nos 0382, 0382R and STRI: No. 2007-17-12-15-07, 2012-0519-2015). Agrawal AF, 2001, SCIENCE, V292, P1710, DOI 10.1126/science.1059910; Beck CW, 1998, ANIM BEHAV, V55, P439, DOI 10.1006/anbe.1997.0619; Brown JL, 2010, J BIOGEOGR, V37, P891, DOI 10.1111/j.1365-2699.2009.02260.x; Brust D.G, 1990, THESIS; BRUST DG, 1993, J HERPETOL, V27, P96, DOI 10.2307/1564914; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; Dugas MB, 2015, BIOL J LINN SOC, V115, P211, DOI 10.1111/bij.12461; Dugas MB, 2013, ZOO BIOL, V32, P655, DOI 10.1002/zoo.21102; Gehara M, 2013, EVOL ECOL, V27, P797, DOI 10.1007/s10682-013-9652-0; Ghalambor CK, 2000, ANIM BEHAV, V60, P263, DOI 10.1006/anbe.2000.1472; Haase A, 2002, AMPHIBIA-REPTILIA, V23, P129, DOI 10.1163/156853802760061778; Hager R, 2003, NATURE, V421, P533, DOI 10.1038/nature01239; Hegna RH, 2013, EVOL ECOL, V27, P831, DOI 10.1007/s10682-012-9605-z; Herczeg G, 2009, J EVOLUTION BIOL, V22, P544, DOI 10.1111/j.1420-9101.2008.01674.x; Hinde CA, 2010, SCIENCE, V327, P1373, DOI 10.1126/science.1186056; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Langerhans R. Brian, 2007, P177, DOI 10.1007/978-3-540-46046-6_10; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Maan ME, 2012, AM NAT, V179, pE1, DOI 10.1086/663197; Parker GA, 2002, PHILOS T R SOC B, V357, P295, DOI 10.1098/rstb.2001.0950; Prohl H, 2007, ETHOLOGY, V113, P825, DOI 10.1111/j.1439-0310.2007.01396.x; Prohl H, 2011, EVOL ECOL, V25, P993, DOI 10.1007/s10682-010-9455-5; Prohl H, 1999, BEHAV ECOL SOCIOBIOL, V46, P215, DOI 10.1007/s002650050612; Reimchen TE, 2004, EVOLUTION, V58, P1274, DOI 10.1111/j.0014-3820.2004.tb01706.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Rudh A, 2007, MOL ECOL, V16, P4284, DOI 10.1111/j.1365-294X.2007.03479.x; Rudh A, 2013, BIOL J LINN SOC, V108, P116, DOI 10.1111/j.1095-8312.2012.02006.x; Rudh A, 2011, EVOLUTION, V65, P1271, DOI 10.1111/j.1558-5646.2010.01210.x; Saporito RA, 2007, COPEIA, P1006, DOI 10.1643/0045-8511(2007)7[1006:EEFAIT]2.0.CO;2; Saporito RA, 2006, J CHEM ECOL, V32, P795, DOI 10.1007/s10886-006-9034-y; Saporito RA, 2012, CHEMOECOLOGY, V22, P159, DOI 10.1007/s00049-011-0088-0; Schulte L, 2014, ANIM COGN, V17, P267, DOI 10.1007/s10071-013-0659-2; Siddiqi A, 2004, J EXP BIOL, V207, P2471, DOI 10.1242/jeb.01047; Simpson P, 2004, P 29 ANN SAS US GROU, V214-29, P1; Speed M. P., 2004, AVOIDING ATTACK EVOL; Stearns S, 1992, EVOLUTION LIFE HIST; Stynoski J.L, 2012, THESIS; Stynoski JL, 2009, ANIM BEHAV, V78, P1351, DOI 10.1016/j.anbehav.2009.09.002; WELLS KD, 1977, ANIM BEHAV, V25, P666, DOI 10.1016/0003-3472(77)90118-X; WEYGOLDT P, 1980, BEHAV ECOL SOCIOBIOL, V7, P329, DOI 10.1007/BF00300674; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Willink B, 2013, EVOLUTION, V67, P2783, DOI 10.1111/evo.12153 43 5 5 0 9 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0394-9370 1828-7131 ETHOL ECOL EVOL Ethol. Ecol. Evol. 2016 28 4 441 451 10.1080/03949370.2015.1076527 11 Behavioral Sciences; Zoology Behavioral Sciences; Zoology DX7DW WOS:000384547700007 2019-02-21 J Hart, MM; Zaitsoff, PD; van der Heyde, M; Pither, J Hart, Miranda M.; Zaitsoff, P. Dylan; van der Heyde, Mieke; Pither, Jason Testing life history and trait-based predictions of AM fungal community assembly PEDOBIOLOGIA English Article Life history strategies; AM fungi; r; Glomeraceae K; Stress tolerance; Ruderal; Old growth ARBUSCULAR MYCORRHIZAL FUNGI; VERY-LOW ENDEMISM; FUNCTIONAL DIVERSITY; LAND-USE; GLOBAL ASSESSMENT; BETA DIVERSITY; PLANT-GROWTH; ROOTS; SOIL; COLONIZATION Arbuscular mycorrhizal (AM) fungal disturbance response is thought to be moderated by life history strategies (LHS). Research suggests that disturbance-tolerant taxa may be represented by fungi in the Glomerales, those in culture collections, and by cosmopolitan taxa due to their generalist growth habit. The corollary is that these taxa should be less common in undisturbed systems. Although widely accepted, these ideas originate from research conducted in previously disturbed systems. Whether they hold up to comparisons of disturbed versus undisturbed systems remains to be seen. We addressed this question by surveying logged and intact sites within forests dominated an AM fungal host (western redcedar; Thuja plicata). We predicted that old-growth sites would host fewer taxa from the Glomerales, fewer cultured taxa, and fewer cosmopolitan taxa compared to logged sites. Contrary to our predictions, the logged and intact sites did not differ with respect the putative disturbance-tolerant taxa. However, taxonomic composition differed, driven primarily by variation in relative abundance rather than loss or gain of taxa. Multiple analyses of indicator taxa revealed no consistent indicators of either undisturbed or disturbed habitats. Based on these findings, the current paradigm for a phylogenetically based LHS of AM fungi warrants re-examination. Crown Copyright (C) 2016 Published by Elsevier GmbH. All rights reserved. [Hart, Miranda M.; Zaitsoff, P. Dylan; van der Heyde, Mieke; Pither, Jason] Univ British Columbia Okanagan, Biol, Kelowna, BC V1V 1V7, Canada Hart, MM (reprint author), Univ British Columbia Okanagan, Biol, Kelowna, BC V1V 1V7, Canada. Miranda.hart@ubc.ca Pither, Jason/0000-0002-7490-6839 NSERC; IKBSAS Undergraduate Research Awards MMH and JP acknowledge the support of NSERC Discovery Grants. DZ acknowledges the support of the IKBSAS Undergraduate Research Awards. Aguilar-Trigueros CA, 2015, FUNGAL BIOL REV, V29, P34, DOI 10.1016/j.fbr.2015.03.001; ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999; Avio L, 2006, NEW PHYTOL, V172, P347, DOI 10.1111/j.1469-8137.2006.01839.x; Barton K., 2015, MUMIN MULTIMODEL INF; Bates D., 2015, J STAT SOFTW UNPUB; Bennett AE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0083241; BRAY JR, 1957, ECOL MONOGR, V27, P326; Brundrett MC, 2013, PLANT SOIL, V370, P419, DOI 10.1007/s11104-013-1613-4; Bruns TD, 2016, SCIENCE, V351, DOI 10.1126/science.aad4228; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303; Chagnon PL, 2013, TRENDS PLANT SCI, V18, P484, DOI 10.1016/j.tplants.2013.05.001; Croll D, 2009, NEW PHYTOL, V181, P924, DOI 10.1111/j.1469-8137.2008.02726.x; Dai ML, 2013, APPL ENVIRON MICROB, V79, P6719, DOI 10.1128/AEM.01333-13; Davison J, 2015, SCIENCE, V349, P970, DOI 10.1126/science.aab1161; Davison J, 2011, FEMS MICROBIOL ECOL, V78, P103, DOI 10.1111/j.1574-6941.2011.01103.x; Douds DD, 1999, AGR ECOSYST ENVIRON, V74, P77, DOI 10.1016/S0167-8809(99)00031-6; Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2; Dumbrell AJ, 2011, NEW PHYTOL, V190, P794, DOI 10.1111/j.1469-8137.2010.03636.x; Edgar RC, 2010, BIOINFORMATICS, V26, P2460, DOI 10.1093/bioinformatics/btq461; Flynn DFB, 2009, ECOL LETT, V12, P22, DOI 10.1111/j.1461-0248.2008.01255.x; Gotelli NJ, 2000, ECOLOGY, V81, P2606, DOI 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2; GRIME JP, 1974, NATURE, V250, P26, DOI 10.1038/250026a0; Haas BJ, 2011, GENOME RES, V21, P494, DOI 10.1101/gr.112730.110; Hart Miranda M., 2004, Tropical Ecology, V45, P97; Hart MM, 2015, NEW PHYTOL, V207, P235, DOI 10.1111/nph.13340; Hart MM, 2014, BOTANY, V92, DOI 10.1139/cjb-2013-0185; Hart MM, 2005, PEDOBIOLOGIA, V49, P269, DOI 10.1016/j.pedobi.2004.12.001; Hart MM, 2002, NEW PHYTOL, V153, P335, DOI 10.1046/j.0028-646X.2001.00312.x; Hart MM, 2001, MYCOLOGIA, V93, P1186, DOI 10.2307/3761678; HEBDA RJ, 1995, GEOGR PHYS QUATERN, V49, P55, DOI 10.7202/033030ar; Helgason T, 1998, NATURE, V394, P431, DOI 10.1038/28764; Hijri I, 2006, MOL ECOL, V15, P2277, DOI 10.1111/j.1365-294X.2006.02921.x; Jaccard P., 1912, NEW PHYTOL, DOI [10.1111/j.1469-8137.1912.tb05611.x, DOI 10.1111/J.1469-8137.1912.TB05611.X]; Jansa J, 2002, MYCORRHIZA, V12, P225, DOI [10.1007/s00572-002-0163-z, 10.1007/s005572-002-0163-z]; JASPER DA, 1989, NEW PHYTOL, V112, P93, DOI 10.1111/j.1469-8137.1989.tb00313.x; Jasper DA, 2007, RESTOR ECOL, V15, pS74, DOI 10.1111/j.1526-100X.2007.00295.x; JOHNSON NC, 1991, OECOLOGIA, V86, P349, DOI 10.1007/BF00317600; Kivlin SN, 2011, SOIL BIOL BIOCHEM, V43, P2294, DOI 10.1016/j.soilbio.2011.07.012; Klironomos JN, 2002, MYCORRHIZA, V12, P181, DOI 10.1007/s00572-002-0169-6; Koch AM, 2004, P NATL ACAD SCI USA, V101, P2369, DOI 10.1073/pnas.0306441101; Legendre P, 2005, ECOL MONOGR, V75, P435, DOI 10.1890/05-0549; Legendre P, 2001, OECOLOGIA, V129, P271, DOI 10.1007/s004420100716; Legendre P, 2013, ECOL LETT, V16, P951, DOI 10.1111/ele.12141; Lekberg Y, 2007, J ECOL, V95, P95, DOI 10.1111/j.1365-2745.2006.01193.x; Lekberg Y, 2012, J ECOL, V100, P151, DOI 10.1111/j.1365-2745.2011.01894.x; Maherali H, 2007, SCIENCE, V316, P1746, DOI 10.1126/science.1143082; Martinez-Garcia LB, 2015, NEW PHYTOL, V205, P1565, DOI 10.1111/nph.13226; McGonigle TP, 1996, SOIL BIOL BIOCHEM, V28, P263, DOI 10.1016/0038-0717(95)00129-8; Melo CD, 2014, SYMBIOSIS, V64, P73, DOI 10.1007/s13199-014-0303-1; Merryweather JW, 1998, MYCORRHIZA, V8, P87, DOI 10.1007/s005720050217; Morris EK, 2013, BIODIVERS CONSERV, V22, P2193, DOI 10.1007/s10531-013-0527-z; Munkvold L, 2004, NEW PHYTOL, V164, P357, DOI 10.1111/j.1469-8137.2004.01169.x; Oehl F, 2010, SOIL BIOL BIOCHEM, V42, P724, DOI 10.1016/j.soilbio.2010.01.006; Oehl F, 2009, AGR ECOSYST ENVIRON, V134, P257, DOI 10.1016/j.agee.2009.07.008; Ohsowski BM, 2014, NEW PHYTOL, V204, P171, DOI 10.1111/nph.12894; Oksanen K., 2015, VEGAN COMMUNITY ECOL; Opik M, 2010, NEW PHYTOL, V188, P223, DOI 10.1111/j.1469-8137.2010.03334.x; Opik M., 2013, DNA BASED DETECTION; Opik M, 2008, NEW PHYTOL, V179, P867, DOI 10.1111/j.1469-8137.2008.02515.x; Peyret-Guzzon M., 2015, ARBUSCULAR MYCORRHIZ; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Powell JR, 2016, PEDOBIOLOGIA, V59, P11, DOI 10.1016/j.pedobi.2015.12.001; Powell JR, 2009, P ROY SOC B-BIOL SCI, V276, P4237, DOI 10.1098/rspb.2009.1015; R Core Team, 2015, R LANG ENV STAT COMP; Roberts DW., 2015, LABDSV ORDINATION MU; Schnoor TK, 2011, MYCORRHIZA, V21, P211, DOI 10.1007/s00572-010-0325-3; Sikes BA, 2012, OIKOS, V121, P1791, DOI 10.1111/j.1600-0706.2012.20160.x; Sykorova Z, 2007, MYCORRHIZA, V18, P1, DOI 10.1007/s00572-007-0147-0; Vallino M, 2006, ENVIRON MICROBIOL, V8, P971, DOI 10.1111/j.1462-2920.2005.00980.x; van der Heijden MGA, 2007, NEW PHYTOL, V174, P244, DOI 10.1111/j.1469-8137.2007.02041.x; Verbruggen E, 2010, EVOL APPL, V3, P547, DOI 10.1111/j.1752-4571.2010.00145.x; Voets L, 2006, NEW PHYTOL, V172, P185, DOI 10.1111/j.1469-8137.2006.01873.x; Wang Y., 2015, MVABUND STAT METHODS; Wubet T, 2003, CAN J BOT, V81, P255, DOI [10.1139/B03-020, 10.1139/b03-020] 74 5 5 4 27 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 0031-4056 PEDOBIOLOGIA Pedobiologia 2016 59 4 203 213 10.1016/j.pedobi.2016.06.001 11 Ecology; Soil Science Environmental Sciences & Ecology; Agriculture DU6QG WOS:000382339100005 2019-02-21 J Menz, L; Gibb, H; Murphy, NP Menz, L.; Gibb, H.; Murphy, N. P. Dispersal-limited detritivores in fire-prone environments: persistence and population structure of terrestrial amphipods (Talitridae) INTERNATIONAL JOURNAL OF WILDLAND FIRE English Article detritivore; diversity; ecology; fire; invertebrate; population genetics CLIMATE-CHANGE; SOUTHEASTERN AUSTRALIA; SPECIES DELIMITATION; LITTER DECOMPOSITION; FOREST; DNA; INVERTEBRATES; SOIL; CONSERVATION; COMMUNITIES Invertebrate detritivores play a critical role in the decomposition of litter, an important component of wildfire fuel. Knowledge of invertebrate response to fire is often hampered by taxonomic resolution; however, genetic species identification can enable analysis of fine-scale assemblages and the interaction between dispersal and population recovery. In this study, we ask: do terrestrial amphipod assemblages differ following increasing fire severities and does population structure indicate in situ survival or recolonisation following severe fires? Using seven replicate sites over three fire severities, we measured amphipod abundance at the site of the catastrophic 2009 'Black Saturday' fires in south-east Australia. Genetic analyses to distinguish species and population structure revealed 16 species. Populations of Arcitalitrus sylvaticus were highly structured, suggesting limited dispersal. Amphipod abundance and species richness were not affected by fire severity 3 years after fire. Localised population structure within A. sylvaticus suggests that in situ survival enabled amphipods to repopulate severely burnt sites. The genetic analyses used in this study enabled the detection of unrecognised diversity and population structure in these detritivores. With many detritivores showing similar life history strategies, studies that combine a genetic and ecological approach are essential for understanding the impact of fire on litter decomposition. [Menz, L.; Gibb, H.; Murphy, N. P.] La Trobe Univ, Dept Ecol Environm & Evolut, Kingsbury Dr, Bundoora, Vic 3086, Australia Murphy, NP (reprint author), La Trobe Univ, Dept Ecol Environm & Evolut, Kingsbury Dr, Bundoora, Vic 3086, Australia. n.murphy@latrobe.edu.au Gibb, Heloise/B-8338-2013 Murphy, Nick/0000-0002-0907-4642; Gibb, Heloise/0000-0001-7194-0620 Department of the Environment and Primary Industries, Victoria We thank the Department of the Environment and Primary Industries, Victoria for funding and Parks Victoria for access to sites. Sebastian Buckingham, Manoli Photakis, James Buxton and Daniel Flaim assisted in the field. Natasha Robinson aided in site selection and Angie Haslem assisted with statistical analyses. Tony Friend provided expertise on amphipods and their identification. ABBOTT I, 1984, AUST J SOIL RES, V22, P463, DOI 10.1071/SR9840463; Andersen AN, 2000, AUSTRAL ECOL, V25, P199, DOI 10.1111/j.1442-9993.2000.tb00020.x; Animal Genomics Laboratory, 2001, EXTR DNA TISS HIGH S; ASHTON DH, 1975, AUST J BOT, V23, P413, DOI 10.1071/BT9750413; Barton K., 2015, MUMIN MULTIMODEL INF; Bengtsson J, 2002, EUR J SOIL BIOL, V38, P119, DOI 10.1016/S1164-5563(02)01133-0; Bowman DMJS, 2009, SCIENCE, V324, P481, DOI 10.1126/science.1163886; Bradstock RA, 2010, GLOBAL ECOL BIOGEOGR, V19, P145, DOI 10.1111/j.1466-8238.2009.00512.x; Brennan KEC, 2009, GLOBAL CHANGE BIOL, V15, P2958, DOI 10.1111/j.1365-2486.2009.02011.x; Burnham K. P, 2002, MODEL SELECTION MULT; Carstens BC, 2013, MOL ECOL, V22, P4369, DOI 10.1111/mec.12413; Cary G. J., 2002, Flammable Australia: the fire regimes and biodiversity of a continent, P26; Clark D, 1954, THESIS; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; FRIEND J. A., 1977, ECOL B STOCKHOLM, V25, P24; FRIEND JA, 1986, ANNU REV ENTOMOL, V31, P25, DOI 10.1146/annurev.en.31.010186.000325; Friend JA, 1975, THESIS; Gonzalez G, 2001, ECOLOGY, V82, P955, DOI 10.1890/0012-9658(2001)082[0955:SFAPLD]2.0.CO;2; HANSEN JD, 1986, GREAT BASIN NAT, V46, P721; Hanula JL, 2003, FOREST ECOL MANAG, V175, P163, DOI 10.1016/S0378-1127(02)00130-5; Hurley D. E., 1959, Pacific Science, V13, P107; Joly S, 2014, MOL ECOL RESOUR, V14, P221, DOI 10.1111/1755-0998.12173; LUSSENHOP J, 1992, ADV ECOL RES, V23, P1, DOI 10.1016/S0065-2504(08)60145-2; McKenzie D, 2004, CONSERV BIOL, V18, P890, DOI 10.1111/j.1523-1739.2004.00492.x; Moretti M, 2006, OECOLOGIA, V149, P312, DOI 10.1007/s00442-006-0450-z; Neary DG, 1999, FOREST ECOL MANAG, V122, P51, DOI 10.1016/S0378-1127(99)00032-8; NEUMANN FG, 1991, AUST J ECOL, V16, P315, DOI 10.1111/j.1442-9993.1991.tb01060.x; New TR, 2010, J INSECT CONSERV, V14, P567, DOI 10.1007/s10841-010-9284-4; O'Hanlon RP, 1999, APPL SOIL ECOL, V11, P29, DOI 10.1016/S0929-1393(98)00134-6; Pons J, 2006, SYST BIOL, V55, P595, DOI 10.1080/10635150600852011; Pryke JS, 2012, J INSECT CONSERV, V16, P177, DOI 10.1007/s10841-011-9404-9; PURDIE RW, 1977, AUST J BOT, V25, P21, DOI 10.1071/BT9770021; R Core Team, 2011, R LANG ENV STAT COMP; Ripley B, 2015, R PACKAGE MASS; Schmuki C, 2006, MOL ECOL, V15, P1481, DOI 10.1111/j.1365-294X.2006.02849.x; Seastedt T, 1986, P 9 N AM PRAIR C 19; SEASTEDT TR, 1984, ANNU REV ENTOMOL, V29, P25, DOI 10.1146/annurev.en.29.010184.000325; SPICER JI, 1987, PROC R SOC SER B-BIO, V232, P95, DOI 10.1098/rspb.1987.0063; TAJIMA F, 1989, GENETICS, V123, P585; Teasdale LC, 2013, AUSTRAL ECOL, V38, P874, DOI 10.1111/aec.12024; Thomas CD, 2000, P ROY SOC B-BIOL SCI, V267, P139, DOI 10.1098/rspb.2000.0978; Victorian Bushfires Royal Commission, 2009, 2009 VICT BUSHF ROYA; WALSH PS, 1991, BIOTECHNIQUES, V10, P506; Wardle DA, 2003, SCIENCE, V300, P972, DOI 10.1126/science.1082709; Whelan RJ, 1995, ECOLOGY FIRE; Whelan Robert J., 2002, P94; White JD, 1996, INT J WILDLAND FIRE, V6, P125, DOI 10.1071/WF9960125; Williams AAJ, 2001, CLIMATIC CHANGE, V49, P171, DOI 10.1023/A:1010706116176; Yang Guang, 2011, Journal of Forestry Research (Harbin), V22, P249, DOI 10.1007/s11676-011-0158-8; York A, 1999, J INSECT CONSERV, V3, P191, DOI 10.1023/A:1009643627781 51 0 0 0 8 CSIRO PUBLISHING CLAYTON UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA 1049-8001 1448-5516 INT J WILDLAND FIRE Int. J. Wildland Fire 2016 25 7 753 761 10.1071/WF15005 9 Forestry Forestry DR8FN WOS:000380133900004 2019-02-21 J Litt, AR; Steidl, RJ Litt, Andrea R.; Steidl, Robert J. Complex demographic responses of a common small mammal to a plant invasion WILDLIFE RESEARCH English Article Eragrostis lehmanniana; grasslands; habitat quality; life-history strategy; non-native plants; Sigmodon arizonae LIFE-HISTORY STRATEGIES; RATS SIGMODON HISPIDUS; MIGRATORY SONGBIRD; LEHMANN LOVEGRASS; DIETARY-PROTEIN; UNITED-STATES; REPRODUCTION; HABITAT; POPULATIONS; IMPACTS Context Invasions by non-native plants can alter the abundance and distribution of resources that can affect habitat quality for native animals. Aims We sought to understand the demographic consequences of a plant invasion on a functionally and numerically important rodent in a grassland ecosystem. Specifically, we evaluated how abundance, survival, reproductive activity and population structure of Arizona cotton rats (Sigmodon arizonae) varied across a gradient of invasion by Eragrostis lehmanniana (Lehmann lovegrass), a bunchgrass native to Africa that has invaded grasslands in North America. Methods Over a four-year period, we used capture-recapture methods to survey small mammals on 54 1-ha plots between 10 and 13 times. We used vegetation data collected each autumn to quantify biomass of non-native grass, total biomass and vegetation heterogeneity to characterise vegetation structure on each plot. Key results We captured 1344 individual cotton rats during 106560 trap-nights across all sampling periods. In areas dominated by non-native grass, abundance of cotton rats increased 7- to 10-fold and survival increased by 117% relative to areas dominated by native grasses. In contrast, reproductive activity of adults decreased by 62% for females and 28% for males, and the proportion of adults in the population decreased by 20% in these same areas. Conclusions Demography of Arizona cotton rats differed markedly in areas invaded by a non-native plant relative to native grasslands, supporting the long-held idea that life histories can reflect local environmental conditions. Because distributions of many non-native plants are predicted to increase in response to future changes in natural and anthropogenic drivers, the potential breadth of these complex effects on communities of native animal is immense. Implications The complex variation in demographic responses across the invasion gradient suggests that it may be necessary to evaluate a suite of vital rates to fully understand the consequences of plant invasions on animals. This is especially important for species of conservation concern because single demographic parameters, which are used frequently as targets to gauge the success of conservation and management activities, could be misleading. [Litt, Andrea R.] Montana State Univ, Dept Ecol, POB 173460, Bozeman, MT 59717 USA; [Steidl, Robert J.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA Litt, AR (reprint author), Montana State Univ, Dept Ecol, POB 173460, Bozeman, MT 59717 USA. andrea.litt@montana.edu US Department of Defence's Legacy Resource Management Program; Fort Huachuca Military Installation; Buenos Aires National Wildlife Refuge of the US Fish and Wildlife Service We are grateful to S. Stone for facilitating our field efforts, E. Geiger for providing vegetation data, innumerable technicians for their field assistance, and R. W. Mannan, W. J. Matter and two anonymous reviewers for their constructive comments on an earlier versions of this paper. Financial and logistical support was provided by the US Department of Defence's Legacy Resource Management Program, Fort Huachuca Military Installation, and the Buenos Aires National Wildlife Refuge of the US Fish and Wildlife Service. ANABLE ME, 1992, BIOL CONSERV, V61, P181, DOI 10.1016/0006-3207(92)91114-8; Bahre Conrad J., 1995, P230; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; BOWERS MA, 1979, ECOLOGY, V60, P869, DOI 10.2307/1936854; Bradley BA, 2010, TRENDS ECOL EVOL, V25, P310, DOI 10.1016/j.tree.2009.12.003; Brown J, 1993, BIOL HETEROMYIDAE, P618; Cameron GN, 1996, J MAMMAL, V77, P220, DOI 10.2307/1382723; CAMERON GN, 1981, MAMM SPECIES, V158, P1; Cameron GN, 2008, J MAMMAL, V89, P126, DOI 10.1644/07-MAMM-A-092.1; COX JR, 1990, J RANGE MANAGE, V43, P367, DOI 10.2307/3898933; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; DAVIDSON DW, 1993, OIKOS, V68, P23, DOI 10.2307/3545305; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ferdinands K, 2005, WILDLIFE RES, V32, P447, DOI 10.1071/WR04036; FLEHARTY ED, 1969, J MAMMAL, V50, P475, DOI 10.2307/1378774; Geiger E. L., 2006, THESIS; HEINRICH B, 1983, ECOLOGY, V64, P592, DOI 10.2307/1939978; Jacob J, 2000, OIKOS, V91, P131, DOI 10.1034/j.1600-0706.2000.910112.x; Kunz Thomas H., 1996, P279; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; Litt AR, 2011, WILDLIFE MONOGR, P1, DOI 10.1002/wmon.2; Litt AR, 2010, BIOL INVASIONS, V12, P3449, DOI 10.1007/s10530-010-9743-6; Litt AR, 2010, J AGR BIOL ENVIR ST, V15, P228, DOI 10.1007/s13253-009-0017-7; Littell RC, 2006, SAS MIXED MODELS; Marshall MR, 2004, ECOLOGY, V85, P432, DOI 10.1890/02-0548; Mattos KJ, 2010, BEHAV ECOL, V21, P556, DOI 10.1093/beheco/arq020; McAdam AG, 1999, J ANIM ECOL, V68, P733, DOI 10.1046/j.1365-2656.1999.00320.x; McGrath LJ, 2009, J ANIM ECOL, V78, P22, DOI 10.1111/j.1365-2656.2008.01464.x; McLaughlin SP, 2002, AZ S DES M, P47; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MILLAR JS, 1975, CAN J ZOOL, V53, P967, DOI 10.1139/z75-112; MORRISON M. L., 2006, WILDLIFE HABITAT REL; Noss R. F., 1995, ENDANGERED ECOSYSTEM; Olson DM, 1998, CONSERV BIOL, V12, P502, DOI 10.1046/j.1523-1739.1998.012003502.x; Orrock JL, 2010, ECOL LETT, V13, P11, DOI 10.1111/j.1461-0248.2009.01412.x; Ortega YK, 2006, OECOLOGIA, V149, P340, DOI 10.1007/s00442-006-0438-8; Pearson DE, 2009, OECOLOGIA, V159, P549, DOI 10.1007/s00442-008-1241-5; RANDOLPH JC, 1991, J MAMMAL, V72, P300, DOI 10.2307/1382100; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; Rodriguez LF, 2006, BIOL INVASIONS, V8, P927, DOI 10.1007/s10530-005-5103-3; Roff Derek A., 1992; SAMSON F, 1994, BIOSCIENCE, V44, P418, DOI 10.2307/1312365; Schetter TA, 1998, J ANIM ECOL, V67, P705, DOI 10.1046/j.1365-2656.1998.00240.x; Schooley RL, 1996, CAN J ZOOL, V74, P157, DOI 10.1139/z96-020; Sikes RS, 2011, J MAMMAL, V92, P235, DOI 10.1644/10-MAMM-F-355.1; SINERVO B, 1991, J EXP BIOL, V155, P323; SNELL HL, 1988, EVOL ECOL, V2, P353, DOI 10.1007/BF02207566; Sogge MK, 2008, RESTOR ECOL, V16, P146, DOI 10.1111/j.1526-100X.2008.00357.x; Spencer RJ, 2005, AUSTRAL ECOL, V30, P876; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Taylor R.J., 1984, PREDATION; Tear TH, 2005, BIOSCIENCE, V55, P835, DOI 10.1641/0006-3568(2005)055[0835:HMIETR]2.0.CO;2; Tinbergen N, 2005, ANIM BIOL, V55, P297, DOI 10.1163/157075605774840941; Vadell MV, 2014, WILDLIFE RES, V41, P172, DOI 10.1071/WR14005; VANHORNE B, 1983, J WILDLIFE MANAGE, V47, P893; Vila M, 2011, ECOL LETT, V14, P702, DOI 10.1111/j.1461-0248.2011.01628.x; Vitousek PM, 1996, AM SCI, V84, P468; White EM, 2006, DIVERS DISTRIB, V12, P443, DOI 10.1111/j.1366-9516.2006.00265.x; White GC, 1999, BIRD STUDY, V46, P120; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; Zavaleta ES, 2001, TRENDS ECOL EVOL, V16, P454, DOI 10.1016/S0169-5347(01)02194-2 63 0 0 2 16 CSIRO PUBLISHING CLAYTON UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA 1035-3712 1448-5494 WILDLIFE RES Wildl. Res. 2016 43 4 304 312 10.1071/WR15147 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology DR6TD WOS:000380033300004 2019-02-21 J Minton, MM; Barber, NA; Gordon, LL Minton, Michelle M.; Barber, Nicholas A.; Gordon, Lindsey L. Effects of arbuscular mycorrhizal fungi on herbivory defense in two Solanum (Solanaceae) species PLANT ECOLOGY AND EVOLUTION English Article Arbuscular mycorrhizal fungi; induced defense; herbivore; indirect effects; aboveground; belowground; Solanum ptycanthum; Solanum dulcamara INDUCED RESISTANCE; PLANT-RESPONSES; POLYPHENOL OXIDASE; MANDUCA-SEXTA; TOMATO PLANTS; STRATEGIES; INHIBITORS; PHYLOGENY; DIVERSITY; EVOLUTION Background and aims - Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil organisms that interact with plant roots and exchange soil nutrients for plant-derived carbohydrates, frequently resulting in growth and fitness benefits for plants. These benefits may be due partly to AMF effects on plants' resistance to insect herbivores, particularly through enhancement of induced defenses. Here we studied the impacts of AMF colonization on constitutive and induced resistance in two species of nightshades, Solanum ptycanthum and S. dulcamara. Methods - We used a factorial design manipulating AMF presence and jasmonic acid application to determine if constitutive and induced resistance differ in the presence and absence of mycorrhizae. We measured three protein-based chemical defenses and performed a bioassay by feeding leaves of experimental plants to a specialist herbivore, Manduca sexta. Key results - The presence of AMF influenced chemical defenses in S. dulcamara, including an interaction with jasmonic acid application for polyphenol oxidase activity. Solanum ptycanthum defenses were unaffected by AMF. Caterpillar growth was also unaffected by AMF but reduced by jasmonic acid treatments, indicating that, while AMF may influence certain chemical defenses in some plant species, this does not always translate to resistance against herbivores. Conclusions - Our results emphasize the context dependency of fungi plant herbivore interactions and suggest that mycorrhizal effects on plant defense may vary with other plant traits or life history strategies. [Minton, Michelle M.; Barber, Nicholas A.; Gordon, Lindsey L.] Northern Illinois Univ, Dept Biol Sci, De Kalb, IL 60115 USA; [Minton, Michelle M.] Coll DuPage, Hlth & Sci Div, Glen Ellyn, IL 60137 USA; [Barber, Nicholas A.] Northern Illinois Univ, Inst Study Environm Sustainabil & Energy, De Kalb, IL 60115 USA Barber, NA (reprint author), Northern Illinois Univ, Dept Biol Sci, De Kalb, IL 60115 USA.; Barber, NA (reprint author), Northern Illinois Univ, Inst Study Environm Sustainabil & Energy, De Kalb, IL 60115 USA. nbarber@niu.edu Northern Illinois University; NIU Office of Student Engagement and Experiential Learning; NIU Institute for the Study of the Environment, Sustainability, and Energy This project was funded in part by Northern Illinois University, the NIU Office of Student Engagement and Experiential Learning, and a research grant from the NIU Institute for the Study of the Environment, Sustainability, and Energy. Alguacil MM, 2012, SOIL BIOL BIOCHEM, V49, P132, DOI 10.1016/j.soilbio.2012.02.024; Alyokhin A, 2008, AM J POTATO RES, V85, P395, DOI 10.1007/s12230-008-9052-0; Barbehenn R, 2010, OECOLOGIA, V164, P993, DOI 10.1007/s00442-010-1733-y; Bari R, 2009, PLANT MOL BIOL, V69, P473, DOI 10.1007/s11103-008-9435-0; Bennett AE, 2009, OECOLOGIA, V160, P771, DOI 10.1007/s00442-009-1338-5; Bosch M, 2014, BMC PLANT BIOL, V14, DOI 10.1186/s12870-014-0257-8; Burketova L, 2015, BIOTECHNOL ADV, V33, P994, DOI 10.1016/j.biotechadv.2015.01.004; Cameron DD, 2013, TRENDS PLANT SCI, V18, P539, DOI 10.1016/j.tplants.2013.06.004; Campbell SA, 2013, P NATL ACAD SCI USA, V110, P3973, DOI 10.1073/pnas.1213867110; Cipollini DF, 1999, J CHEM ECOL, V25, P271; Constabel C. Peter, 2008, P253, DOI 10.1007/978-1-4020-8182-8_12; Constabel CP, 1998, PHYTOCHEMISTRY, V47, P507, DOI 10.1016/S0031-9422(97)00539-6; Evans W. C, 1979, BIOL TAXONOMY SOLANA, P241; FARMER EE, 1992, PLANT CELL, V4, P129; GANGE AC, 1993, FUNCT ECOL, V7, P616, DOI 10.2307/2390139; Gehring C, 2009, ENVIRON ENTOMOL, V38, P93, DOI 10.1603/022.038.0111; GREEN TR, 1972, SCIENCE, V175, P776, DOI 10.1126/science.175.4023.776; HARLEY J L, 1987, New Phytologist, V105, P1, DOI 10.1111/j.1469-8137.1987.tb00674.x; Hartl M, 2010, PLANT CELL, V22, P4158, DOI 10.1105/tpc.109.073395; Jung SC, 2012, J CHEM ECOL, V38, P651, DOI 10.1007/s10886-012-0134-6; Kempel A, 2010, FUNCT ECOL, V24, P293, DOI 10.1111/j.1365-2435.2009.01647.x; Klironomos JN, 2000, ECOL LETT, V3, P137, DOI 10.1046/j.1461-0248.2000.00131.x; Koricheva J, 2009, ECOLOGY, V90, P2088, DOI 10.1890/08-1555.1; Madden A. H., 1945, USDA TECHNICAL B, V896; Moore JP, 2003, FUNCT ECOL, V17, P549, DOI 10.1046/j.1365-2435.2003.00767.x; Opik M, 2006, J ECOL, V94, P778, DOI 10.1111/j.1365-2745.2006.01136.x; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paszkowski U, 2006, CURR OPIN PLANT BIOL, V9, P364, DOI 10.1016/j.pbi.2006.05.008; Perez M, 2009, MYCORRHIZA, V19, P517, DOI 10.1007/s00572-009-0254-1; PFLEGER FL, 1994, MYCORRHIZAE PLANT HL; Pieterse CMJ, 2009, NAT CHEM BIOL, V5, P308, DOI 10.1038/nchembio.164; Pozo MJ, 2007, CURR OPIN PLANT BIOL, V10, P393, DOI 10.1016/j.pbi.2007.05.004; Pozo MJ, 2010, ARBUSCULAR MYCORRHIZAS: PHYSIOLOGY AND FUNCTION, P193, DOI 10.1007/978-90-481-9489-6_9; Pozo MJ, 2004, J PLANT GROWTH REGUL, V23, P211, DOI 10.1007/s00344-004-003105; Pozo MJ, 2002, J EXP BOT, V53, P525, DOI 10.1093/jexbot/53.368.525; R Development Core Team, 2012, R LANG ENV STAT COMP; Reinhart KO, 2012, ECOL LETT, V15, P689, DOI 10.1111/j.1461-0248.2012.01786.x; Samuels J, 2015, RESOURCES-BASEL, V4, P277, DOI 10.3390/resources4020277; Schuman MC, 2012, ELIFE, V1, DOI 10.7554/eLife.00007; Schussler A, 2001, MYCOL RES, V105, P1413, DOI 10.1017/S0953756201005196; Smith SE, 2011, ANNU REV PLANT BIOL, V62, P227, DOI 10.1146/annurev-arplant-042110-103846; Smith SE, 2008, MYCORRHIZAL SYMBIOSIS, 3RD EDITION, P1; Thaler JS, 1996, J CHEM ECOL, V22, P1767, DOI 10.1007/BF02028503; Van der Ent S, 2009, PHYTOCHEMISTRY, V70, P1581, DOI 10.1016/j.phytochem.2009.06.009; Vannette RL, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00361; Weese TL, 2007, SYST BOT, V32, P445, DOI 10.1600/036364407781179671; Wilson GWT, 1998, AM J BOT, V85, P1732, DOI 10.2307/2446507; Wink M, 2002, CHEMOECOLOGY, V12, P29, DOI 10.1007/s00049-002-8324-2; YAMAMOTO ROBERT T., 1960, ANN ENT SOC AMER, V53, P503 49 7 7 10 54 SOC ROYAL BOTAN BELGIQUE MEISE NIEUWELAAN 38, B-1860 MEISE, BELGIUM 2032-3913 2032-3921 PLANT ECOL EVOL Plant Ecol. Evol. 2016 149 2 157 164 10.5091/plecevo.2016.1176 8 Plant Sciences Plant Sciences DQ7AO WOS:000379359100003 2019-02-21 J Liu, Y; Wang, TL; El-Kassaby, YA Liu, Yang; Wang, Tongli; El-Kassaby, Yousry A. Contributions of dynamic environmental signals during life-cycle transitions to early life-history traits in lodgepole pine (Pinus contorta Dougl.) BIOGEOSCIENCES English Article WESTERN UNITED-STATES; RECENT CLIMATE-CHANGE; SEXUAL REPRODUCTION; SEED DORMANCY; EVOLUTIONARY RESPONSES; ARABIDOPSIS-THALIANA; PLANTAGO-LANCEOLATA; NATURAL-SELECTION; FUTURE CLIMATES; GENE ACTIVITY Environmental signals are important triggers in the life-cycle transitions and play a crucial role in the life-history evolution. Yet very little is known about the leading ecological factors contributing to the variations of life-history traits in perennial plants. This paper explores both the causes and consequences for the evolution of life-history traits (i.e., seed dormancy and size) in lodgepole pine (Pinus contorta Dougl.) across British Columbia (B.C.), Canada. We selected 83 logepole pine populations covering 22 ecosystem zones of B.C. and through their geographic coordinate, 197 climatic variables were generated accordingly for the reference (1961-1990) and future (2041-2070) periods. We found that dynamic climatic variables rather than constant geographic variables are the true environmental driving forces in seed dormancy and size variations and thus provide reliable predictors in response to global climate change. Evapotranspiration and precipitation in the plant-to-seed chronology are the most critical climate variables for seed dormancy and size variations, respectively. Hence, we predicted that levels of seed dormancy in lodgepole pine would increase across large tracts of B.C. in 2050s. Winter-chilling is able to increase the magnitude of life-history plasticity and lower the bet-hedge strategy in the seed-to-plant transition; however, winter-chilling is likely to be insufficient in the north of 49A degrees aEuro-N in 2050s, which may delay germination while unfavorable conditions during dry summers may result in adverse consequences in the survival of seedlings owing to extended germination span. These findings provide useful information to studies related to assessments of seed transfer and tree adaptation. [Liu, Yang; Wang, Tongli; El-Kassaby, Yousry A.] Univ British Columbia, Dept Forest & Conservat Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada El-Kassaby, YA (reprint author), Univ British Columbia, Dept Forest & Conservat Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. y.el-kassaby@ubc.ca El-Kassaby, Yousry/K-9856-2016 El-Kassaby, Yousry/0000-0002-4887-8977; LIU, Yang/0000-0002-3479-9223 Johnson's Family Forest Biotechnology Endowment; National Science and Engineering Research Council of Canada This work was supported by the Johnson's Family Forest Biotechnology Endowment and the National Science and Engineering Research Council of Canada Discovery and Industrial Research Chair to ousry A. El-Kassaby. Abdi H., 2007, PARTIAL LEAST SQUARE; Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Aitken SN, 2008, EVOL APPL, V1, P95, DOI 10.1111/j.1752-4571.2007.00013.x; Ali-Rachedi S, 2004, PLANTA, V219, P479, DOI 10.1007/s00425-004-1251-4; Amasino R, 2010, PLANT J, V61, P1001, DOI 10.1111/j.1365-313X.2010.04148.x; Baskin C. C, 1998, SEEDS ECOLOGY BIOGEO; Batlla D, 2010, PLANT MOL BIOL, V73, P3, DOI 10.1007/s11103-010-9601-z; Belmonte MF, 2013, P NATL ACAD SCI USA, V110, pE435, DOI 10.1073/pnas.1222061110; BENTSINK L, 2007, SEED DEV DORMANCY GE; Bossdorf O, 2008, ECOL LETT, V11, P106, DOI 10.1111/j.1461-0248.2007.01130.x; Bradshaw WE, 2008, MOL ECOL, V17, P157, DOI 10.1111/j.1365-294X.2007.03509.x; Bradshaw WE, 2001, P NATL ACAD SCI USA, V98, P14509, DOI 10.1073/pnas.241391498; Breshears DD, 2008, P NATL ACAD SCI USA, V105, P11591, DOI 10.1073/pnas.0806579105; Calow P., 1998, ENCY ECOLOGY ENV MAN; CANNELL MGR, 1986, J APPL ECOL, V23, P177, DOI 10.2307/2403090; Carrascal LM, 2009, OIKOS, V118, P681, DOI 10.1111/j.1600-0706.2008.16881.x; Caruso CM, 2006, EVOLUTION, V60, P980, DOI 10.1554/06-050.1; Chen IC, 2011, SCIENCE, V333, P1024, DOI 10.1126/science.1206432; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Childs DZ, 2010, P ROY SOC B-BIOL SCI, V277, P3055, DOI 10.1098/rspb.2010.0707; Chinnusamy V, 2008, J INTEGR PLANT BIOL, V50, P1187, DOI 10.1111/j.1744-7909.2008.00727.x; Cleland EE, 2007, TRENDS ECOL EVOL, V22, P357, DOI 10.1016/j.tree.2007.04.003; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; Crossa J, 2013, AGRON J, V105, P1; Davis MB, 2005, ECOLOGY, V86, P1704, DOI 10.1890/03-0788; Donohue K, 2010, ANNU REV ECOL EVOL S, V41, P293, DOI 10.1146/annurev-ecolsys-102209-144715; Donohue K, 2009, PHILOS T R SOC B, V364, P1059, DOI 10.1098/rstb.2008.0291; Duffy PB, 2006, J CLIMATE, V19, P873, DOI 10.1175/JCLI3669.1; El-Kassaby YA, 2008, FOREST SCI, V54, P220; Eriksson O, 2000, AM NAT, V156, P47, DOI 10.1086/303367; Etterson JR, 2001, SCIENCE, V294, P151, DOI 10.1126/science.1063656; Finch-Savage WE, 2006, NEW PHYTOL, V171, P501, DOI 10.1111/j.1469-8137.2006.01787.x; Footitt S, 2014, NEW PHYTOL, V202, P929, DOI 10.1111/nph.12694; Footitt S, 2011, P NATL ACAD SCI USA, V108, P20236, DOI 10.1073/pnas.1116325108; Forbis TA, 2002, EVOLUTION, V56, P2112; Fowells H.A, 1965, SILVICS FOREST TREES; Franks SJ, 2014, EVOL APPL, V7, P123, DOI 10.1111/eva.12112; Garcia D, 2005, PLANT CELL, V17, P52, DOI 10.1105/tpc.104.027136; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Hedhly A, 2009, TRENDS PLANT SCI, V14, P30, DOI 10.1016/j.tplants.2008.11.001; Heschel MS, 2007, NEW PHYTOL, V174, P735, DOI 10.1111/j.1469-8137.2007.02044.x; Huang XQ, 2010, MOL ECOL, V19, P1335, DOI 10.1111/j.1365-294X.2010.04557.x; Johnsen O, 1996, EUPHYTICA, V92, P67, DOI 10.1007/BF00022830; Jump AS, 2009, TRENDS PLANT SCI, V14, P51, DOI 10.1016/j.tplants.2008.10.002; Jump AS, 2005, ECOL LETT, V8, P1010, DOI 10.1111/j.1461-0248.2005.00796.x; Lacey EP, 1996, EVOLUTION, V50, P865, DOI 10.1111/j.1558-5646.1996.tb03895.x; Lande R, 1996, EVOLUTION, V50, P434, DOI 10.1111/j.1558-5646.1996.tb04504.x; Le BH, 2010, P NATL ACAD SCI USA, V107, P8063, DOI 10.1073/pnas.1003530107; Lenoir J, 2008, SCIENCE, V320, P1768, DOI 10.1126/science.1156831; Leung LR, 2004, CLIMATIC CHANGE, V62, P75, DOI 10.1023/B:CLIM.0000013692.50640.55; Liu XD, 2013, P NATL ACAD SCI USA, V110, P15485, DOI 10.1073/pnas.1304651110; Liu Y, 2013, SEED SCI TECHNOL, V41, P321, DOI 10.15258/sst.2013.41.3.01; Liu Y, 2015, BMC PLANT BIOL, V15, DOI 10.1186/s12870-015-0638-7; Liu Y, 2015, SEED SCI RES, V25, P29, DOI 10.1017/S0960258514000361; MANLY B., 2005, MULTIVARIATE STAT ME; Morin X, 2009, GLOBAL CHANGE BIOL, V15, P961, DOI 10.1111/j.1365-2486.2008.01735.x; Mote P., 2008, SCEANARIOS FUTURE CL; Muller K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051532; MURRAY MB, 1989, J APPL ECOL, V26, P693, DOI 10.2307/2404093; Nathan R, 2008, TRENDS ECOL EVOL, V23, P638, DOI 10.1016/j.tree.2008.08.003; OWENS JN, 1981, CAN J BOT, V59, P1828, DOI 10.1139/b81-244; OWENS JN, 1982, CAN J BOT, V60, P2071, DOI 10.1139/b82-254; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Penfield S, 2005, CURR BIOL, V15, P1998, DOI 10.1016/j.cub.2005.11.010; Penfield S, 2008, NEW PHYTOL, V179, P615, DOI 10.1111/j.1469-8137.2008.02478.x; Penfield S, 2012, PHILOS T R SOC B, V367, P291, DOI 10.1098/rstb.2011.0186; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Plomion C., 2007, V7, P29; POURRAT Y, 1975, PLANT SCI LETT, V4, P273, DOI 10.1016/0304-4211(75)90286-2; Raudenbush S. W., 2001, HIERARCHICAL LINEAR; Robeson SM, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2003GL019019; SCHMITT J, 1992, AM NAT, V139, P451, DOI 10.1086/285338; Schwartz MD, 2006, GLOBAL CHANGE BIOL, V12, P343, DOI 10.1111/j.1365-2486.2005.01097.x; Shimizu KK, 2011, ANN BOT-LONDON, V108, P777, DOI 10.1093/aob/mcr180; Simons AM, 2014, J EVOLUTION BIOL, V27, P1047, DOI 10.1111/jeb.12378; Simons AM, 2009, P ROY SOC B-BIOL SCI, V276, P1987, DOI 10.1098/rspb.2008.1920; Skroppa T, 2010, TREE GENET GENOMES, V6, P93, DOI 10.1007/s11295-009-0231-z; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; Stocker T. F., 2013, CLIMATE CHANGE 2013, V2013, P33, DOI DOI 10.1017/CBO9781107415324.005; Tabachnick B, 2012, USING MULTIVARIATE S; Thompson J, 2013, P NATL ACAD SCI USA, V110, P2893, DOI 10.1073/pnas.1215833110; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; Volis S, 2014, HEREDITY, V113, P268, DOI 10.1038/hdy.2014.25; Walck JL, 2011, GLOBAL CHANGE BIOL, V17, P2145, DOI 10.1111/j.1365-2486.2010.02368.x; Walter H, 2002, WALTERS VEGETATION E; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Wang T, 2006, GLOBAL CHANGE BIOL, V12, P2404, DOI 10.1111/j.1365-2486.2006.01271.x; Wang TL, 2012, J APPL METEOROL CLIM, V51, P16, DOI 10.1175/JAMC-D-11-043.1; WARING RH, 1979, SCIENCE, V204, P1380, DOI 10.1126/science.204.4400.1380; West BT, 2007, LINEAR MIXED MODELS; WOODWARD FI, 1987, VEGETATIO, V69, P189, DOI 10.1007/BF00038700; Yakovlev I, 2012, SEED SCI RES, V22, P63, DOI 10.1017/S0960258511000535; Yamauchi Y, 2004, PLANT CELL, V16, P367, DOI 10.1105/tpc.018143; Yan W, 2006, CAN J PLANT SCI, V86, P623, DOI 10.4141/P05-169; Yan WK, 2001, AGRON J, V93, P1111, DOI 10.2134/agronj2001.9351111x 96 3 3 0 13 COPERNICUS GESELLSCHAFT MBH GOTTINGEN BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY 1726-4170 1726-4189 BIOGEOSCIENCES Biogeosciences 2016 13 10 2945 2958 10.5194/bg-13-2945-2016 14 Ecology; Geosciences, Multidisciplinary Environmental Sciences & Ecology; Geology DP2WT WOS:000378354900006 DOAJ Gold 2019-02-21 J Cerabolini, BEL; Pierce, S; Verginella, A; Brusa, G; Ceriani, RM; Armiraglio, S Cerabolini, B. E. L.; Pierce, S.; Verginella, A.; Brusa, G.; Ceriani, R. M.; Armiraglio, S. Why are many anthropogenic agroecosystems particularly species-rich? PLANT BIOSYSTEMS English Article Functional diversity; functional traits; plant functional type; species richness; universal adaptive strategy theory FUNCTIONAL DIVERSITY; BIOMASS; TRAITS; SIZE; GRADIENT; CONSERVATION; PRODUCTIVITY; BIODIVERSITY; MANAGEMENT; GRASSLAND Species-rich meadow and pasture habitats are recognised by the European Union Habitats Directive as targets for biodiversity conservation. High species richness is hypothesised to be associated with diversity in plant functional traits and life-history strategies, which are potentially restricted in situations of extremely high and low biomass production. However, variability in functional traits has yet to be investigated across a broad biomass range in nature. We measured variability in a range of functional traits and Grime's competitor, stress-tolerator, ruderal (CSR) strategies for species comprising lowland meadows, subalpine pastures, abandoned grassland and field margins at sites in northern Italy, alongside peak above-ground biomass. The factor most highly and positively correlated with species richness was strategy richness (the number of CSR strategies; Pearson's r = 0.864, P < 0.0001, n = 39), followed by variance in traits involved in leaf resource economics and the timing of flowering. Species richness, trait variance and strategy richness were greatest at intermediate biomass. Thus whilst extremes of biomass production were associated with relatively few taxa exhibiting similar trait values and specialised strategies, greater species richness was apparent in meadows and pastures in which species exhibited divergence in resource economics trait values, reproductive timing and strategy richness. [Cerabolini, B. E. L.; Verginella, A.; Brusa, G.] Univ Insubria, Dept Theoret & Appl Sci, Via JH Dunant 3, I-21100 Varese, Italy; [Pierce, S.] Univ Milan, Dept Agr & Environm Sci DiSAA, Via G Celoria 2, I-20133 Milan, Italy; [Verginella, A.; Armiraglio, S.] Museum Nat Hist, Dept Bot, Via Ozanam 4, I-25128 Brescia, Italy; [Ceriani, R. M.] CFA, Native Flora Ctr Lombardy Reg, Consorzio Parco Monte Barro,Via Bertarelli 11, IT-23851 Galbiate, LC, Italy Cerabolini, BEL (reprint author), Univ Insubria, Dept Theoret & Appl Sci, Via JH Dunant 3, I-21100 Varese, Italy. bruno.cerabolini@uninsubria.it Pierce, Simon/G-6785-2017 Pierce, Simon/0000-0003-1182-987X; Cerabolini, Bruno Enrico Leone/0000-0002-3793-0733 Ministry of Education, Universities and Research (MIUR), Republic of Italy; Native Flora Centre of the Lombardy Region (CFA); Parco Monte Barro, Galbiate, Lecco, Italy A.V. was supported by a grant from the Ministry of Education, Universities and Research (MIUR), Republic of Italy, fieldwork was funded by the Native Flora Centre of the Lombardy Region (CFA) and Parco Monte Barro, Galbiate, Lecco, Italy. Adler PB, 2011, SCIENCE, V333, P1750, DOI 10.1126/science.1204498; Aeschimann D, 2004, FLORA ALPINA, V3; Albert CH, 2010, FUNCT ECOL, V24, P1192, DOI 10.1111/j.1365-2435.2010.01727.x; ALMUFTI MM, 1977, J ECOL, V65, P759, DOI 10.2307/2259378; Bhattarai KR, 2004, FOLIA GEOBOT, V39, P57, DOI 10.1007/BF02803264; BLACKBURN TM, 1992, OIKOS, V65, P107, DOI 10.2307/3544892; Cerabolini B, 2010, PLANT ECOL, V207, P333, DOI 10.1007/s11258-009-9677-1; Cerabolini BEL, 2010, PLANT ECOL, V210, P253, DOI 10.1007/s11258-010-9753-6; Chanteloup P, 2013, BASIC APPL ECOL, V14, P208, DOI 10.1016/j.baae.2013.01.002; Chytry M, 2003, J VEG SCI, V14, P563, DOI 10.1658/1100-9233(2003)014[0563:PSUFPS]2.0.CO;2; Conti F., 2005, ANNOTATED CHECKLIST; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; Cornwell WK, 2009, ECOL MONOGR, V79, P109, DOI 10.1890/07-1134.1; Espinar JL, 2006, J VEG SCI, V17, P227, DOI 10.1111/j.1654-1103.2006.tb02441.x; Farris E, 2013, PLANT BIOSYST, V147, P931, DOI 10.1080/11263504.2013.778911; FERNANDEZ RJ, 1991, J RANGE MANAGE, V44, P434, DOI 10.2307/4002739; Garnier E, 2004, ECOLOGY, V85, P2630, DOI 10.1890/03-0799; Grabherr G, 1993, PFLANZENGESELLSCHA 2; Grace JB, 2001, OIKOS, V92, P193, DOI 10.1034/j.1600-0706.2001.920201.x; Graham JH, 2011, INT J ECOLOGY, V2011; Grime J., 2012, EVOLUTIONARY STRATEG; Grime J. P., 2001, PLANT STRATEGIES VEG; GRIME JP, 1973, J ENVIRON MANAGE, V1, P151; Guo QF, 1998, ECOLOGY, V79, P2555, DOI 10.2307/176844; Hodgson JG, 1999, OIKOS, V85, P282, DOI 10.2307/3546494; Houseman GR, 2006, OIKOS, V115, P148; Kelemen A, 2013, J VEG SCI, V24, P1195, DOI 10.1111/jvs.12027; Lomba A, 2013, PLANT BIOSYST, V147, P328, DOI 10.1080/11263504.2012.716794; Messier J, 2010, ECOL LETT, V13, P838, DOI 10.1111/j.1461-0248.2010.01476.x; Mittelbach GG, 2001, ECOLOGY, V82, P2381; Mucina L, 1993, PFLANZENGESELLSCHA 1; Navas ML, 2009, COMMUNITY ECOL, V10, P131, DOI 10.1556/ComEc.10.2009.1.15; Pal RW, 2013, PLANT BIOSYST, V147, P343, DOI 10.1080/11263504.2012.753485; Pan XB, 2012, SCIENCE, V335, DOI [10.1126/science.1214786, 10.1126/science.1215042]; Pierce S, 2007, J ECOL, V95, P698, DOI 10.1111/j.1365-2745.2007.01242.x; Pierce S, 2014, FUNCT ECOL, V28, P253, DOI 10.1111/1365-2435.12147; Pierce S, 2013, FUNCT ECOL, V27, P1002, DOI 10.1111/1365-2435.12095; Pierce S, 2012, ANN BOT-LONDON, V109, P1047, DOI 10.1093/aob/mcs021; Rapson GL, 1997, J ECOL, V85, P99, DOI 10.2307/2960632; Schaffers AP, 2002, PLANT ECOL, V158, P247, DOI 10.1023/A:1015545821845; Spasojevic MJ, 2012, J ECOL, V100, P652, DOI 10.1111/j.1365-2745.2011.01945.x; Venterink HO, 2001, J ECOL, V89, P1033, DOI 10.1046/j.0022-0477.2001.00616.x; Wilson JB, 2012, J VEG SCI, V23, P796, DOI 10.1111/j.1654-1103.2012.01400.x 43 7 7 1 17 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 1126-3504 1724-5575 PLANT BIOSYST Plant Biosyst. 2016 150 3 550 557 10.1080/11263504.2014.987848 8 Plant Sciences Plant Sciences DN5NO WOS:000377116600024 2019-02-21 J Flack, A; Fiedler, W; Blas, J; Pokrovsky, I; Kaatz, M; Mitropolsky, M; Aghababyan, K; Fakriadis, I; Makrigianni, E; Jerzak, L; Azafzaf, H; Feltrup-Azafzaf, C; Rotics, S; Mokotjomela, TM; Nathan, R; Wikelski, M Flack, Andrea; Fiedler, Wolfgang; Blas, Julio; Pokrovsky, Ivan; Kaatz, Michael; Mitropolsky, Maxim; Aghababyan, Karen; Fakriadis, Ioannis; Makrigianni, Eleni; Jerzak, Leszek; Azafzaf, Hichem; Feltrup-Azafzaf, Claudia; Rotics, Shay; Mokotjomela, Thabiso M.; Nathan, Ran; Wikelski, Martin Costs of migratory decisions: A comparison across eight white stork populations SCIENCE ADVANCES English Article CICONIA-CICONIA; BIRD MIGRATION; MOVEMENT ECOLOGY; BREEDING SUCCESS; CLIMATE-CHANGE; SPEED; ACCELERATION; SURVIVAL; ISRAEL; RATES Annual migratory movements can range from a few tens to thousands of kilometers, creating unique energetic requirements for each specific species and journey. Even within the same species, migration costs can vary largely because of flexible, opportunistic life history strategies. We uncover the large extent of variation in the lifetime migratory decisions of young white storks originating from eight populations. Not only did juvenile storks differ in their geographically distinct wintering locations, their diverse migration patterns also affected the amount of energy individuals invested for locomotion during the first months of their life. Overwintering in areas with higher human population reduced the stork's overall energy expenditure because of shorter daily foraging trips, closer wintering grounds, or a complete suppression of migration. Because migrants can change ecological processes in several distinct communities simultaneously, understanding their life history decisions helps not only to protect migratory species but also to conserve stable ecosystems. [Flack, Andrea; Fiedler, Wolfgang; Pokrovsky, Ivan; Wikelski, Martin] Max Planck Inst Ornithol, Dept Migrat & Immunoecol, D-78315 Radolfzell am Bodensee, Germany; [Flack, Andrea; Fiedler, Wolfgang; Pokrovsky, Ivan; Wikelski, Martin] Univ Konstanz, Dept Biol, D-78457 Constance, Germany; [Blas, Julio] CSIC, Estn Biol Donana, Seville 41092, Spain; [Kaatz, Michael] Vogelschutzwarte Storchenhof Loburg eV, D-39279 Loburg, Germany; [Mitropolsky, Maxim] Tyumen State Univ, Tyumen 625003, Russia; [Aghababyan, Karen] Amer Univ Armenia, Acopian Ctr Environm, Yerevan 0019, Armenia; [Fakriadis, Ioannis; Makrigianni, Eleni] Evros Delta Management Author, Alexandroupolis 68100, Greece; [Jerzak, Leszek] Univ Zielona Gora, Inst Biotechnol & Environm Protect, Fac Biol Sci, PL-65516 Zielona Gora, Poland; [Azafzaf, Hichem; Feltrup-Azafzaf, Claudia] Assoc Les Amis Oiseaux BirdLife Tunisia, Aryanah 2080, Tunisia; [Rotics, Shay; Nathan, Ran] Hebrew Univ Jerusalem, Dept Ecol Evolut & Behav, Movement Ecol Lab, IL-91904 Jerusalem, Israel; [Mokotjomela, Thabiso M.] Univ Witwatersrand, Sch Geog Archaeol & Environm Studies, ZA-2050 Johannesburg, South Africa Flack, A (reprint author), Max Planck Inst Ornithol, Dept Migrat & Immunoecol, D-78315 Radolfzell am Bodensee, Germany.; Flack, A (reprint author), Univ Konstanz, Dept Biol, D-78457 Constance, Germany. aflack@orn.mpg.de Flack, Andrea/E-6247-2016; Blas, Julio/A-2487-2012; Nathan, Ran/A-9380-2008; CSIC, EBD Donana/C-4157-2011; Pokrovsky, Ivan/B-5144-2010 Flack, Andrea/0000-0002-9099-2802; Blas, Julio/0000-0003-0589-3322; CSIC, EBD Donana/0000-0003-4318-6602; Pokrovsky, Ivan/0000-0002-6533-674X; Fakriadis, Ioannis/0000-0001-7180-3642 German Aerospace Center (DLR); Spanish Consejo Superior de Investigaciones Cientificas [i-link0564, CGL2012-32544, 511/2012]; National Parks; National Ministries; FEDER (European Regional Development Fund) funds; Deutsch-Israelische Projektkooperation grants (Deutsche Forschungsgemeinschaft) [NA 846/1-1, WI 3576/1-1] A.F. was supported by the German Aerospace Center (DLR); J.B. was supported by projects i-link0564, CGL2012-32544, and 511/2012 from the Spanish Consejo Superior de Investigaciones Cientificas, National Parks, National Ministries, and FEDER (European Regional Development Fund) funds. We acknowledge the support of Deutsch-Israelische Projektkooperation grants (Deutsche Forschungsgemeinschaft) NA 846/1-1 and WI 3576/1-1. Alerstam T, 2006, ANIM BEHAV, V71, P555, DOI 10.1016/j.anbehav.2005.05.016; Alerstam T., 1990, P331; Altizer S, 2011, SCIENCE, V331, P296, DOI 10.1126/science.1194694; Andronov V. A., 2011, BIRDS RUSSIA ADJACEN; Bates D., 2009, PACKAGE LME4 VERSION; Bauer S, 2014, SCIENCE, V344, P54, DOI 10.1126/science.1242552; Bohrer G, 2012, ECOL LETT, V15, P96, DOI 10.1111/j.1461-0248.2011.01713.x; Creutz G., 1985, WEISSTORCH CICONIA C; Dodge S, 2013, MOV ECOL, V1, DOI 10.1186/2051-3933-1-3; Fiedler W, 2004, ADV ECOL RES, V35, P49, DOI 10.1016/S0065-2504(04)35003-8; Flack A., 2015, DATA MIGRATION COSTS; Fuller MR, 1998, J AVIAN BIOL, V29, P433, DOI 10.2307/3677162; Gleiss AC, 2011, METHODS ECOL EVOL, V2, P23, DOI 10.1111/j.2041-210X.2010.00057.x; Halsey LG, 2011, COMP BIOCHEM PHYS A, V158, P305, DOI 10.1016/j.cbpa.2010.09.002; HEDENSTROM A, 1993, PHILOS T ROY SOC B, V342, P353, DOI 10.1098/rstb.1993.0164; Holland RA, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0008264; Kays R, 2015, SCIENCE, V348, DOI 10.1126/science.aaa2478; Klaassen RHG, 2008, BEHAV ECOL SOCIOBIOL, V62, P1427, DOI 10.1007/s00265-008-0572-x; Kranstauber B, 2011, ENVIRON MODELL SOFTW, V26, P834, DOI 10.1016/j.envsoft.2010.12.005; Leshem Y, 1996, IBIS, V138, P188, DOI 10.1111/j.1474-919X.1996.tb04328.x; Leshem Y, 1996, IBIS, V138, P667, DOI 10.1111/j.1474-919X.1996.tb04768.x; Massemin-Challet S, 2006, IBIS, V148, P503, DOI 10.1111/j.1474-919X.2006.00550.x; Menu S, 2005, AUK, V122, P479, DOI 10.1642/0004-8038(2005)122[0479:SOYGSG]2.0.CO;2; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19052, DOI 10.1073/pnas.0800375105; Newton I, 2008, MIGRATION ECOLOGY OF BIRDS, P1; Pennycuick CJ, 2008, THEOR ECOL SER, P1; Pulido F, 2010, P NATL ACAD SCI USA, V107, P7341, DOI 10.1073/pnas.0910361107; R Development Core Team, 2009, R LANG ENV STAT COMP; Sapir N, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013956; Schaub M, 2005, J ANIM ECOL, V74, P656, DOI 10.1111/j.1365-2656.2005.00961.x; Sergio F, 2014, NATURE, V515, P410, DOI 10.1038/nature13696; Shamoun-Baranes J, 2003, J AVIAN BIOL, V34, P97, DOI 10.1034/j.1600-048X.2003.03079.x; Shamoun-Baranes J, 2006, GLOBAL ECOL BIOGEOGR, V15, P541, DOI 10.1111/j.1466-822x.2006.00261.x; Tortosa FS, 2002, WATERBIRDS, V25, P39, DOI 10.1675/1524-4695(2002)025[0039:EORDOB]2.0.CO;2; Tryjanowski P, 2006, WHITE STORK POLAND S; van Loon EE, 2011, J THEOR BIOL, V270, P112, DOI 10.1016/j.jtbi.2010.10.038; Visser ME, 2009, GLOBAL CHANGE BIOL, V15, P1859, DOI 10.1111/j.1365-2486.2009.01865.x; Wilcove DS, 2008, PLOS BIOL, V6, P1361, DOI 10.1371/journal.pbio.0060188; Williams TM, 2014, SCIENCE, V346, P81, DOI 10.1126/science.1254885; Wilson RP, 2006, J ANIM ECOL, V75, P1081, DOI 10.1111/j.1365-2656.2006.01127.x 41 34 35 4 36 AMER ASSOC ADVANCEMENT SCIENCE WASHINGTON 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA 2375-2548 SCI ADV Sci. Adv. JAN 2016 2 1 UNSP e1500931 10.1126/sciadv.1500931 7 Multidisciplinary Sciences Science & Technology - Other Topics DN3OU WOS:000376972900009 26844294 DOAJ Gold, Green Published 2019-02-21 J Espinosa-Rodriguez, CA; Rivera-De la Parra, L; Martinez-Tellez, A; Gomez-Cabral, GC; Sarma, SSS; Nandini, S Espinosa-Rodriguez, Cristian A.; Rivera-De la Parra, Ligia; Martinez-Tellez, Aurora; Gomez-Cabral, Gisela C.; Sarma, S. S. S.; Nandini, Sarma Allelopathic interactions between the macrophyte Egeria densa and plankton (alga, Scenedesmus acutus and cladocerans, Simocephalus spp.): a laboratory study JOURNAL OF LIMNOLOGY English Article; Proceedings Paper 6th National Congress of Limnology NOV 11-14, 2014 Univ Nacl Autonoma Mexico, Ciudad Universitaria, Inst Ciencias Mar & Limno, Mexico City, MEXICO Univ Nacl Autonoma Mexico, Ciudad Universitaria, Inst Ciencias Mar & Limno Allelopathy; life-table variables; zooplankton; allelochemicals; phytoplankton SUBMERGED MACROPHYTES; PLANT-COMMUNITIES; GROWTH-INHIBITION; ELODEA-NUTTALLII; FISH KAIROMONES; GREEN-ALGA; DAPHNIA; PHYTOPLANKTON; ZOOPLANKTON; MYRIOPHYLLUM Allelopathic interactions between macrophytes and zooplankton are important to understand the plankton dynamics in shallow waterbodies. Egeria densa is a native, perennial, submerged macrophyte in the tropical and subtropical zones of South America. It has been introduced to Central and North America and is now common in many Mexican lakes. This macrophyte produces chemical substances that negatively affect some phytoplankton species. However, it is not clear how zooplankton species adapt different life history strategies in the chemical presence of this macrophyte. Here, we tested the direct and indirect effects of allelochemicals released by E. densa on the population growth of Scenedesmus acutus and on the demographic variables of three species of Simocephalus, S. exspinosus, S. serrulatus and S. mixtus (via alga exposed to the macrophyte allelochemicals). To quantify the effect of E. densa on S. acutus we set up four treatments: control, artificial Egeria, natural Egeria and allelochemicals from Egeria. To test the allelochemical effects on Simocephalus species, we compared four treatments: Control, indirect effect (using S. acutus grown on Egeria-allelochemicals), direct effect (using Egeria-conditioned medium) and together with direct and indirect effects. Scenedesmus had the highest cell density in the presence of allelochemicals from Egeria, followed by controls. The specific algal growth rate (mu) between control and allelochemicals treatment was not significant (P<0.05). However, the mu of alga in the presence of artificial or natural Egeria was significantly lower than in controls or in treatments involving allelochemicals. The age-specific survivorship of the three cladoceran species was longer in treatments containing Egeria-conditioned medium. Cladocerans receiving Egeria conditioned-medium and algae cultured on macrophyte-allelochemicals also had a longer survivorship. Daily fecundity of S. serrulatus increased after reaching mid-age while S. expinosus and S. mixtus showed continuous reproduction starting from the first week. In general, Egeria-allelochemicals enhanced the age-specific reproductive output for all the three cladoceran species. The average lifespan of the three Simocephalus varied from 17 to 46 days, depending on the cladoceran species and treatment. S. serrulatus had lower lifespan compared to other two cladoceran species. For the three species, lifespan significantly increased in treatments containing macrophyte-conditioned medium + algae grown on the plant-allelochemicals; also under these conditions, both gross and net reproductive rates were significantly enhanced. This stimulatory effect was also evident in generation time (about 50% higher). The rate of population increase ranged from 0.23 to 0.38 per day for the three tested Simocephalus species but there were no significant differences (P>0.05) among treatments. Our results suggest that the biological activity as well as physical structure of E. densa had negative effects on S. acutus population growth but had stimulatory effects on the demography of Simocephalus. [Espinosa-Rodriguez, Cristian A.; Martinez-Tellez, Aurora; Gomez-Cabral, Gisela C.] Univ Nacl Autonoma Mexico, Postgrad Programme Marine Sci & Limnol, Ciudad Univ,Ave Univ 3000, Mexico City 04510, DF, Mexico; [Rivera-De la Parra, Ligia] Univ Nacl Autonoma Mexico, Postgrad Programme Biol Sci, CU, Postgrad Studies Bldg, Mexico City 04510, DF, Mexico; [Sarma, S. S. S.; Nandini, Sarma] Univ Nacl Autonoma Mexico, Div Res & Postgrad Studies, Lab Aquat Zool, Campus Iztacala,Ave Barrios 1, Los Reyes Iztacala 54090, Tlalnepantla, Mexico Sarma, SSS (reprint author), Univ Nacl Autonoma Mexico, Div Res & Postgrad Studies, Lab Aquat Zool, Campus Iztacala,Ave Barrios 1, Los Reyes Iztacala 54090, Tlalnepantla, Mexico. sarma@unam.mx Sarma, Dr. S.S.S./G-3634-2010 Sarma, Dr. S.S.S./0000-0003-2820-1579 BOROWITZKA M. A, 1988, MICROALGAL BIOTECHNO; Burks RL, 2000, OIKOS, V88, P139, DOI 10.1034/j.1600-0706.2000.880116.x; Burns CW, 1999, HYDROBIOLOGIA, V400, P41, DOI 10.1023/A:1003798827352; Calabrese EJ, 2004, EMBO REP, V5, pS37, DOI 10.1038/sj.embor.7400222; Cerbin S, 2007, AQUAT ECOL, V41, P263, DOI 10.1007/s10452-007-9091-5; Conde-Porcuna JM, 1998, J PLANKTON RES, V20, P1637, DOI 10.1093/plankt/20.8.1637; Dawidowicz P, 2013, ECOL ENG, V58, P262, DOI 10.1016/j.ecoleng.2013.06.040; Dodson Stanley I., 2001, P849, DOI 10.1016/B978-012690647-9/50022-3; Doksaeter A, 2001, HYDROBIOLOGIA, V442, P207, DOI 10.1023/A:1017537012727; Dong J, 2013, AQUAT BIOL, V19, P265, DOI 10.3354/ab00533; Duke SO, 2011, DOSE-RESPONSE, V9, P76, DOI 10.2203/dose-response.10-038.Duke; Dumont HJ, 2002, BRANCHIOPODA; Dutartre A, 1999, HYDROBIOLOGIA, V415, P243, DOI 10.1023/A:1003864024365; Erhard D, 2006, AQUAT BOT, V85, P203, DOI 10.1016/j.aquabot.2006.04.002; Fernandez R, 2014, INVERTEBR BIOL, V133, P371, DOI 10.1111/ivb.12069; Gutierrez MF, 2014, LIMNOLOGY, V15, P37, DOI 10.1007/s10201-013-0411-2; Garria-Flores JL, 2007, J ENVIRON BIOL, V28, P691; Gilbert JJ, 2009, FRESHWATER BIOL, V54, P1933, DOI 10.1111/j.1365-2427.2009.02246.x; GOPAL B, 1993, BOT REV, V59, P155, DOI 10.1007/BF02856599; Gross EM, 2003, CRIT REV PLANT SCI, V22, P313, DOI 10.1080/713610859; Hilt S, 2008, BASIC APPL ECOL, V9, P422, DOI 10.1016/j.baae.2007.04.003; Hilt S, 2006, AQUAT BOT, V85, P252, DOI 10.1016/j.aquabot.2006.05.004; Iglesias C, 2007, HYDROBIOLOGIA, V584, P179, DOI 10.1007/s10750-007-0599-4; Korner S, 2002, J PHYCOL, V38, P862, DOI 10.1046/j.1529-8817.2002.t01-1-02001.x; Krebs CJ, 1985, ECOLOGY EXPT ANAL DI; Lass S, 2003, HYDROBIOLOGIA, V491, P221, DOI 10.1023/A:1024487804497; Lot A., 2004, ICONOGRAFIA ESTUDIO; Lurling M, 2006, HYDROBIOLOGIA, V556, P209, DOI 10.1007/s10750-005-1168-3; MACHACEK J, 1991, HYDROBIOLOGIA, V225, P193, DOI 10.1007/BF00028397; MALHOTRA Y R, 1991, Journal of the Indian Institute of Science, V71, P523; Mayeli SM, 2004, AQUAT ECOL, V38, P515, DOI 10.1007/s10452-004-0329-1; Meerhoff M, 2006, FRESHWATER BIOL, V51, P1320, DOI 10.1111/j.1365-2427.2006.01574.x; Mulderij G, 2007, HYDROBIOLOGIA, V584, P89, DOI 10.1007/s10750-007-0602-0; Muylaert K, 2010, HYDROBIOLOGIA, V653, P79, DOI 10.1007/s10750-010-0345-1; Nakai S, 1999, WATER SCI TECHNOL, V39, P47, DOI 10.1016/S0273-1223(99)00185-7; Nandini S, 2006, ACTA HYDROCH HYDROB, V34, P474, DOI 10.1002/aheh.200600642; Nandini S, 2004, HYDROBIOLOGIA, V526, P245; Orlova-Bienkowskaja MY, 2001, CLADOCERA ANOMOPODA; PENNAK R W, 1973, Internationale Revue der Gesamten Hydrobiologie, V58, P569, DOI 10.1002/iroh.19730580406; Santos MJ, 2011, BIOL INVASIONS, V13, P443, DOI 10.1007/s10530-010-9840-6; Sarma SSS, 2006, J ENVIRON SCI HEAL B, V41, P1417, DOI 10.1080/03601230600964316; Sarma SSS, 2005, HYDROBIOLOGIA, V542, P315, DOI 10.1007/s10750-004-3247-2; SCHEFFER M, 1993, TRENDS ECOL EVOL, V8, P275, DOI 10.1016/0169-5347(93)90254-M; Scheffer M., 2004, ECOLOGY SHALLOW LAKE; Sokal R. R, 2000, BIOMETRY; van Donk E, 2002, AQUAT BOT, V72, P261, DOI 10.1016/S0304-3770(01)00205-4; Vanderstukken M, 2014, FRESHWATER BIOL, V59, P930, DOI 10.1111/fwb.12316; Vanderstukken M, 2011, FRESHWATER BIOL, V56, P1837, DOI 10.1111/j.1365-2427.2011.02624.x; WEBER C. I., 1993, EPA600490027F; Wojtal A, 2003, HYDROBIOLOGIA, V506, P339, DOI 10.1023/B:HYDR.0000008627.55462.e1 50 2 2 1 33 PAGEPRESS PUBL PAVIA MEDITGROUP, VIA G BELLI, 4, PAVIA, 27100, ITALY 1129-5767 1723-8633 J LIMNOL J. Limnol. 2016 75 1 151 160 10.4081/jlimnol.2016.1397 10 Limnology Marine & Freshwater Biology DL5ZF WOS:000375715100015 DOAJ Gold 2019-02-21 J Hain, TJA; Garner, SR; Ramnarine, IW; Neff, BD Hain, Timothy J. A.; Garner, Shawn R.; Ramnarine, Indar W.; Neff, Bryan D. Multiple mating predicts intensity but not mechanism of kin recognition BEHAVIORAL ECOLOGY English Article fish; guppies; kin recognition; multiple mating; Poecilia reticulata; promiscuity; relatedness; social behavior GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; NESTMATE RECOGNITION; REPRODUCTIVE SKEW; TRINIDADIAN GUPPY; NATURAL-SELECTION; GROUND-SQUIRRELS; ARCTIC CHARR; POPULATIONS; PREDATION Understanding how animals recognize their kin has been a major challenge in biology. Most animals use one of 2 mechanisms: "familiarity" whereby kin are remembered from interactions early in life, such as in a nest, or "phenotype matching" whereby putative kin are compared with a template of what kin should look, smell, or sound like. Cross-species studies suggest that there is a link between which of these 2 mechanisms are used and the degree of female promiscuity (multiple mating). Phenotype matching is more likely to be used by promiscuous species because these species have lower average brood relatedness than monogamous species and familiarity is thus an unreliable cue of relatedness. However, it is unclear if this relationship holds within species, across populations that differ in their degree of promiscuity. Here, we take advantage of variation in brood relatedness across populations of guppies (Poecilia reticulata) to examine the relationship between kin recognition mechanisms and multiple mating within a single species. Contrary to the established hypothesis, we show that variation in recognition mechanism across populations is not governed by multiple mating. Instead, our data show that kin recognition, quantified as association preferences for shoalmates, is strongest when brood relatedness is high, consistent with Hamilton's rule, but multiple mating does not otherwise influence the specific recognition mechanism used. [Hain, Timothy J. A.; Garner, Shawn R.; Neff, Bryan D.] Univ Western Ontario, Dept Biol, 1151 Richmond St, London, ON N6A 5B7, Canada; [Ramnarine, Indar W.] Univ W Indies, Dept Life Sci, St Augustine, Trinid & Tobago Neff, BD (reprint author), Univ Western Ontario, Dept Biol, 1151 Richmond St, London, ON N6A 5B7, Canada. bneff@uwo.ca Natural Sciences and Engineering Research Council of Canada [250071-2012 RGPIN] This study supported by the Natural Sciences and Engineering Research Council of Canada (scholarship to T.J.A.H. and grant #250071-2012 RGPIN to B.D.N.). Adams ES, 2007, BEHAV ECOL SOCIOBIOL, V61, P1195, DOI 10.1007/s00265-007-0349-7; Alvergne A, 2009, ANIM BEHAV, V78, P61, DOI 10.1016/j.anbehav.2009.03.019; Becher SA, 2002, MOL ECOL NOTES, V2, P456, DOI 10.1046/j.1471-8286.2002.00276.x; BEECHER MD, 1985, AUK, V102, P600; Brosnan SF, 2010, PHILOS T R SOC B, V365, P2699, DOI 10.1098/rstb.2010.0154; Brown GE, 1996, BEHAV ECOL, V7, P24, DOI 10.1093/beheco/7.1.24; Croft DP, 2009, P ROY SOC B-BIOL SCI, V276, P1899, DOI 10.1098/rspb.2008.1928; El-Showk S, 2010, J EVOLUTION BIOL, V23, P397, DOI 10.1111/j.1420-9101.2009.01912.x; Elgee KE, 2012, ECOL FRESHW FISH, V21, P109, DOI 10.1111/j.1600-0633.2011.00528.x; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Evans JP, 2002, J FISH BIOL, V60, P495, DOI 10.1006/jfbi.2001.1849; Ferguson-Gow H, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1411; GETZ WM, 1983, NATURE, V302, P147, DOI 10.1038/302147a0; GREENBERG L, 1979, SCIENCE, V206, P1095, DOI 10.1126/science.206.4422.1095; Griffiths SW, 1999, BEHAV ECOL SOCIOBIOL, V45, P437, DOI 10.1007/s002650050582; Griffiths SW, 1997, ANIM BEHAV, V53, P945, DOI 10.1006/anbe.1996.0315; GROSBERG RK, 1986, NATURE, V322, P456, DOI 10.1038/322456a0; Hain TJA, 2009, J FISH BIOL, V75, P728, DOI 10.1111/j.1095-8649.2009.02343.x; Hain TJA, 2007, MOL ECOL, V16, P3938, DOI 10.1111/j.1365-294X.2007.03443.x; Hain TJA, 2006, CURR BIOL, V16, P1807, DOI 10.1016/j.cub.2006.07.021; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hatchwell BJ, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0565; Hauber ME, 2001, TRENDS NEUROSCI, V24, P609, DOI 10.1016/S0166-2236(00)01916-0; Hinz C, 2013, SCI REP-UK, V3, DOI 10.1038/srep02800; HOGENDOORN K, 1988, NATURWISSENSCHAFTEN, V75, P412, DOI 10.1007/BF00377820; HOLMES WG, 1982, AM ZOOL, V22, P491; Houde A., 1997, SEX COLOR MATE CHOIC; Lize A, 2014, ISME J, V8, P469, DOI 10.1038/ismej.2013.157; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; Mateo JM, 2004, ANN ZOOL FENN, V41, P729; Mateo JM, 2003, ANIM COGN, V6, P73, DOI 10.1007/s10071-003-0165-z; Neff BD, 2000, T AM FISH SOC, V129, P584, DOI 10.1577/1548-8659(2000)129<0584:MMIF>2.0.CO;2; Neff BD, 2001, J HERED, V92, P111, DOI 10.1093/jhered/92.2.111; Neff BD, 2008, MOL ECOL, V17, P2975, DOI 10.1111/j.1365-294X.2008.03816.x; Olsen KH, 1998, ANIM BEHAV, V56, P319, DOI 10.1006/anbe.1998.0837; Olsson SB, 2006, J CHEM ECOL, V32, P1635, DOI 10.1007/s10886-006-9098-8; Paterson IG, 2005, MOL ECOL NOTES, V5, P269, DOI 10.1111/j.1471-8286.2005.00895.x; Petrie M, 1999, NATURE, V401, P155, DOI 10.1038/43651; Pirk CWW, 2001, BEHAV ECOL SOCIOBIOL, V49, P366, DOI 10.1007/s002650000315; Piyapong C, 2011, HEREDITY, V106, P749, DOI 10.1038/hdy.2010.115; Power M, 2005, J FISH BIOL, V67, P255, DOI 10.1111/j.1095-8649.2005.00734.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2007, ANN ZOOL FENN, V44, P152; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Rodd FH, 1997, ECOLOGY, V78, P405; Ruxton GD, 2007, BEHAV ECOL, V18, P590, DOI 10.1093/beheco/arm009; SHERMAN PW, 1977, SCIENCE, V197, P1246, DOI 10.1126/science.197.4310.1246; Tsutsui ND, 2003, P NATL ACAD SCI USA, V100, P1078, DOI 10.1073/pnas.0234412100; van der Jeugd HP, 2002, BEHAV ECOL, V13, P786, DOI 10.1093/beheco/13.6.786; Viblanc VA, 2010, P ROY SOC B-BIOL SCI, V277, P989, DOI 10.1098/rspb.2009.1960; Wang JL, 2004, GENETICS, V166, P1963, DOI 10.1534/genetics.166.4.1963; WHITEHOUSE MEA, 1995, INSECT SOC, V42, P157, DOI 10.1007/BF01242452; WU HMH, 1980, NATURE, V285, P225, DOI 10.1038/285225a0 55 5 5 1 17 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. JAN-FEB 2016 27 1 93 100 10.1093/beheco/arv126 8 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology DK2TW WOS:000374768300018 2019-02-21 J Uggla, C; Mace, R Uggla, Caroline; Mace, Ruth Local ecology influences reproductive timing in Northern Ireland independently of individual wealth BEHAVIORAL ECOLOGY English Article adult sex ratio; census; extrinsic mortality rate; life-history theory; Northern Ireland; reproduction LIFE-HISTORY VARIATION; PARENTAL INVESTMENT; 1ST REPRODUCTION; FATHER ABSENCE; DYING YOUNG; LIVING FAST; SEX-RATIOS; FERTILITY; POPULATION; EXPECTANCY Evolutionary models of human life-history predict that ecological characteristics drive variability in reproductive timing by altering anticipated returns to inclusive fitness. Local extrinsic mortality rate (EMR), crime (CR), and female-biased sex ratios have all been predicted to accelerate reproduction. However, previous research has failed to isolate the impact of these ecological characteristics from individual factors, such as wealth. Here, we utilize a unique longitudinal dataset from Northern Ireland (570 electoral wards; 62 339 individuals) that enables us to address this issue and to apply a novel measure of extrinsic mortality based on a definition from public health. We demonstrate that high ward-level EMR, CR, and female-biased sex ratios have additive positive impact on the risk of early motherhood and that CR and EMR predict early fatherhood. These effects remained significant after adjustment for potentially confounding factors but were greatly attenuated when individual-level socioeconomic characteristics were adjusted for. Our findings suggest that young individuals in this population are sensitive to several ecological cues, including local crime and adult sex ratio, which speed up first birth over and above the strong effects of individual wealth. [Uggla, Caroline; Mace, Ruth] UCL, Dept Anthropol, 14 Taviton St, London WC1H 0BW, England Uggla, C (reprint author), UCL, Dept Anthropol, 14 Taviton St, London WC1H 0BW, England. caroline.uggla.09@ucl.ac.uk ERC [AdG 249347]; UCL; Health and Social Care Research and Development Division of the Public Health Agency (HSC RD Division); NISRA; ESRC; Northern Irish Government Funding was provided by the ERC (grant AdG 249347) and a UCL Impact Award. This research would not be possible without the assistance of the Northern Ireland Longitudinal Study (NILS) and NILS Research Support Unit. The NILS is funded by the Health and Social Care Research and Development Division of the Public Health Agency (HSC R&D Division) and NISRA. The NILS-RSU is funded by the ESRC and the Northern Irish Government. Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Alvergne A, 2008, PHYSIOL BEHAV, V95, P625, DOI 10.1016/j.physbeh.2008.09.005; Anderson KG, 2010, HUM NATURE-INT BIOS, V21, P103, DOI 10.1007/s12110-010-9087-z; Barber N, 2001, J CROSS CULT PSYCHOL, V32, P259, DOI 10.1177/0022022101032003001; Box-Steffensmeier JM, 2002, J POLIT, V64, P1069, DOI 10.1111/1468-2508.00163; Burnham K. P, 2002, MODEL SELECTION MULT; Caudell MA, 2012, HUM BIOL, V84, P101, DOI 10.3378/027.084.0201; Charnov Eric L., 1993, P1; Chipman A, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0027; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Clutton-Brock T, 1982, RED DEER BEHAV ECOLO; Copping LT, 2013, HUM NATURE-INT BIOS, V24, P137, DOI 10.1007/s12110-013-9163-2; Davis J, 2008, HUM NATURE-INT BIOS, V19, P426, DOI 10.1007/s12110-008-9052-2; Davis J, 2012, EVOL HUM BEHAV, V33, P647, DOI 10.1016/j.evolhumbehav.2012.04.002; Dickins T. E., 2012, J SOCIAL EVOLUTIONAR, V6, P344; Geronimus AT, 1996, SOC SCI MED, V42, P589, DOI 10.1016/0277-9536(95)00159-X; Geronimus AT, 1999, SOC SCI MED, V49, P1623, DOI 10.1016/S0277-9536(99)00246-4; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; Hill K., 1996, ACHE LIFE HIST ECOLO; Kaplan H, 2003, LIFE SPAN: EVOLUTIONARY, ECOLOGICAL, AND DEMOGRAPHIC PERSPECTIVES, P152; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Liker A, 2014, CURR BIOL, V24, P880, DOI 10.1016/j.cub.2014.02.059; Liu JH, 2011, EVOL HUM BEHAV, V32, P433, DOI 10.1016/j.evolhumbehav.2010.10.007; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Low BS, 2013, CROSS-CULT RES, V47, P198, DOI 10.1177/1069397112471807; Merlo J, 2009, J EPIDEMIOL COMMUN H, V63, P1043, DOI 10.1136/jech.2009.088310; Nettle D, 2011, PHILOS T R SOC B, V366, P357, DOI 10.1098/rstb.2010.0073; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; NISRA, 2005, NO IR MULT DEPR MEAS; O'Reilly D, 2012, INT J EPIDEMIOL, V41, P634, DOI 10.1093/ije/dyq271; Page A, 2006, AUSTR NZ ATLAS AVOID; Pedersen F A, 1991, Hum Nat, V2, P271, DOI 10.1007/BF02692189; Pollet TV, 2008, BIOL LETTERS, V4, P31, DOI 10.1098/rsbl.2007.0543; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Roff Derek A., 1992; Schacht R, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.140402; Sheppard P, 2014, HUM NATURE-INT BIOS, V25, P213, DOI 10.1007/s12110-014-9195-2; Stearns S, 1992, EVOLUTION LIFE HIST; Uggla C, 2015, EVOL HUM BEHAV, V36, P1, DOI 10.1016/j.evolhumbehav.2014.07.008; Wagenmakers EJ, 2004, PSYCHON B REV, V11, P192, DOI 10.3758/BF03206482; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Waynforth D, 2012, P ROY SOC B-BIOL SCI, V279, P2998, DOI 10.1098/rspb.2012.0220; Wheller L., 2007, HLTH STAT Q, V34, P6; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wood R, 2006, J EPIDEMIOL COMMUN H, V60, P1089, DOI 10.1136/jech.2005.044941 48 9 9 1 5 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. JAN-FEB 2016 27 1 158 165 10.1093/beheco/arv133 8 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology DK2TW WOS:000374768300026 2019-02-21 J Shaoul, R; Tiosano, D; Hochberg, Z Shaoul, Ron; Tiosano, Dov; Hochberg, Ze'ev Evo-devo of Child Growth: The Role of Weaning in the Transition from Infancy to Childhood CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION English Review Evolution; weaning; breastfeeding; nutrition; growth BREAST-FED INFANTS; HUMAN-MILK; SMALL-INTESTINE; COMPLEMENTARY FOODS; HORMONE DEFICIENCY; EPITHELIAL GROWTH; BODY-COMPOSITION; FEEDING PRACTICE; HEALTHY INFANTS; GHRELIN CELL Homo sapiens are unique in having a life history phase of childhood, which follows infancy, as defined by breastfeeding. This review uses evolutionary life history theory in understanding child growth in a broad evolutionary perspective, using the data and theory of evolutionary predictive adaptive growth-related strategies for transition from infancy to childhood. We have previously shown that a delayed infancy-childhood transition has a lifelong impact on stature. Feeding practices during infancy are fundamental elements of nutrition as they program for future growth and body composition. A relationship between the duration of breastfeeding and the nature of weaning has been suggested as a possible cause for later obesity and growth patterns. This review highlights the role that breast milk feeding and variations in the weaning age have on transition to childhood, growth, and body composition. [Shaoul, Ron] Technion Israel Inst Technol, Rambam Med Ctr, Rappaport Famil Fac Med, Pediat Gastroenterol & Nutr Unit,Meyer Childrens, Haifa, Israel; [Shaoul, Ron; Tiosano, Dov; Hochberg, Ze'ev] Technion Israel Inst Technol, Res Inst, Haifa, Israel; [Tiosano, Dov; Hochberg, Ze'ev] Technion Israel Inst Technol, Rambam Med Ctr, Rappaport Famil Fac Med, Pediat Endocrinol Div,Meyers Childrens Hosp Haifa, Haifa, Israel Shaoul, R (reprint author), Rambam Med Ctr, Meyer Childrens Hosp Haifa, Pediat Gastroenterol & Nutr Unit, POB 9602, IL-31096 Haifa, Israel. shaoul_r@012.net.il Shaoul, Ron/0000-0001-5667-8759 Dr. Y. Rabinovitz Research Fund Supported by Dr. Y. Rabinovitz Research Fund. Adcock CJ, 1997, PEDIATR RES, V42, P66, DOI 10.1203/00006450-199707000-00011; ADRIAN TE, 1983, ACTA PAEDIATR SCAND, V72, P251, DOI 10.1111/j.1651-2227.1983.tb09706.x; Agostoni C, 2008, J PEDIATR GASTR NUTR, V46, P99, DOI 10.1097/01.mpg.0000304464.60788.bd; ANDERSON MA, 1995, B WORLD HEALTH ORGAN, V73, P165; Bjorkqvist M, 2002, REGUL PEPTIDES, V108, P73, DOI 10.1016/S0167-0115(02)00111-8; Black RE, 2003, LANCET, V361, P2226, DOI 10.1016/S0140-6736(03)13779-8; BOLLING K, 2007, INFANT FEEDING SURVE; Boudry G, 2004, J NUTR, V134, P2256; Boudry G, 2002, J PEDIATR GASTR NUTR, V34, P180, DOI 10.1097/00005176-200202000-00014; BROWN KH, 1995, AM J CLIN NUTR, V62, P13; Burdette HL, 2006, AM J CLIN NUTR, V83, P550; Cole TJ, 2002, ACTA PAEDIATR, V91, P1296, DOI 10.1080/08035250216095; Cordido F, 1996, J CLIN ENDOCR METAB, V81, P914, DOI 10.1210/jc.81.3.914; Cummins AG, 2002, GUT, V51, P748, DOI 10.1136/gut.51.5.748; de Onis M, 2002, AM J CLIN NUTR, V76, P620; DEWEY KG, 1995, PEDIATRICS, V96, P495; DEZEGHER F, 1990, BIOL NEONATE, V58, P188; Fak F, 2007, J ENDOCRINOL, V192, P345, DOI [10.1677/joe.1.07077, 10.1677/JOE.1.07077]; Faruque ASG, 2008, J HEALTH POPUL NUTR, V26, P325; Feinle-Bisset C, 2005, AM J PHYSIOL-ENDOC M, V289, pE948, DOI 10.1152/ajpendo.00220.2005; FORSYTH JS, 1993, BMJ-BRIT MED J, V306, P1572, DOI 10.1136/bmj.306.6892.1572; GIRARD J, 1993, P NUTR SOC, V52, P325, DOI 10.1079/PNS19930068; GIRARD J, 1994, FASEB J, V8, P36; Gluckman P. D., 2005, THE FETAL MATRIX; GLUCKMAN PD, 1981, ENDOCR REV, V2, P363, DOI 10.1210/edrv-2-4-363; HAMILL PVV, 1979, AM J CLIN NUTR, V32, P607; Hayashida T, 2002, J ENDOCRINOL, V173, P239, DOI 10.1677/joe.0.1730239; Hochberg Z, 2008, ARCH DIS CHILD, V93, P534, DOI 10.1136/adc.2008.137570; Hochberg Z, 2008, PEDIATR RES, V64, P2, DOI 10.1203/PDR.0b013e318177590f; Hochberg Z, 2010, HORM RES PAEDIAT, V73, P430, DOI 10.1159/000282109; Hochberg Z, 2009, EUR J ENDOCRINOL, V160, P135, DOI 10.1530/EJE-08-0445; Hu J, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007178; KARLBERG J, 1988, ACTA PAEDIATR SCAND, V77, P385, DOI 10.1111/j.1651-2227.1988.tb10665.x; KARLBERG J, 1994, EUR J CLIN NUTR, V48, pS25; KARLBERG J, 1987, ACTA PAEDIATR SCAND, V76, P478, DOI 10.1111/j.1651-2227.1987.tb10503.x; Kojima M, 1999, NATURE, V402, P656, DOI 10.1038/45230; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Larnkjaer A, 2009, GROWTH HORM IGF RES, V19, P82, DOI 10.1016/j.ghir.2008.06.003; Leger J, 1996, PEDIATR RES, V40, P94, DOI 10.1203/00006450-199607000-00017; LITTLE MTE, 1990, FASEB J, V4, P2605; Liu XR, 1999, DRUG METAB DISPOS, V27, P637; Liu YX, 1998, J PEDIATR ENDOCR MET, V11, P247; Liu YX, 2000, PEDIATR RES, V47, P475, DOI 10.1203/00006450-200004000-00011; Martin LJ, 2006, AM J CLIN NUTR, V83, P1106; Meyer DL, 2005, J ANIM SCI, V83, P2752; Milsom SR, 2008, HORM RES, V69, P307, DOI 10.1159/000114863; Montagne L, 2007, BRIT J NUTR, V97, P45, DOI 10.1017/S000711450720580X; Montemitro E, 2008, SLEEP, V31, P47, DOI 10.1093/sleep/31.1.47; Muller GB, 2007, NAT REV GENET, V8, P943, DOI 10.1038/nrg2219; Ng PC, 2001, CLIN ENDOCRINOL, V54, P673, DOI 10.1046/j.1365-2265.2001.01231.x; Noble S, 2006, J HUM NUTR DIET, V19, P303, DOI 10.1111/j.1365-277X.2006.00708.x; Odhiambo JF, 2009, J ANIM SCI, V87, P2428, DOI 10.2527/jas.2008-1138; Robinson S, 2007, BRIT J NUTR, V98, P1029, DOI 10.1017/S0007114507750936; Robinson SM, 2009, J CLIN ENDOCR METAB, V94, P2799, DOI 10.1210/jc.2009-0030; SALMENPERA L, 1988, J PEDIATR GASTR NUTR, V7, P651; Savino F, 2005, ACTA PAEDIATR, V94, P531, DOI 10.1080/08035250510027642; SCHMIDTNIELSEN K, 1975, J EXP ZOOL, V194, P287, DOI 10.1002/jez.1401940120; Sellen DW, 2009, ADV EXP MED BIOL, V639, P253, DOI 10.1007/978-1-4020-8749-3_18; Sellen DW, 2007, ANNU REV NUTR, V27, P123, DOI 10.1146/annurev.nutr.25.050304.092557; Sellen DW, 2001, J NUTR, V131, P2707; Shrimpton R, 2001, PEDIATRICS, V107, part. no., DOI 10.1542/peds.107.5.e75; Thompson FM, 1996, GASTROENTEROLOGY, V111, P37, DOI 10.1053/gast.1996.v111.pm8698223; Tschernig T, 2006, THORAX, V61, P986, DOI 10.1136/thx.2006.060335; Wan ZX, 2010, BRIT J NUTR, V103, P913, DOI 10.1017/S0007114509992455; WANG HS, 1992, J ENDOCRINOL, V132, P11, DOI 10.1677/joe.0.1320011; Wierup N, 2002, REGUL PEPTIDES, V107, P63, DOI 10.1016/S0167-0115(02)00067-8; WIT JM, 1992, ARCH DIS CHILD, V67, P920, DOI 10.1136/adc.67.7.920; Woo JG, 2009, BREASTFEED MED, V4, P101, DOI 10.1089/bfm.2008.0137; Xu X, 2002, PEDIATR RES, V51, P377, DOI 10.1203/00006450-200203000-00018; Ynsley-Green A., 1977, ARCH DIS CHILD, V52, P291; Yoshimura A, 2007, NAT REV IMMUNOL, V7, P454, DOI 10.1038/nri2093; Zverev Y, 2004, ANN HUM BIOL, V31, P29, DOI 10.1080/03014460310001620135 72 1 1 1 12 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 1040-8398 1549-7852 CRIT REV FOOD SCI Crit. Rev. Food Sci. Nutr. 2016 56 6 887 895 10.1080/10408398.2012.732623 9 Food Science & Technology; Nutrition & Dietetics Food Science & Technology; Nutrition & Dietetics DK2XK WOS:000374777500001 26017813 2019-02-21 J Vieira, C; Keshavmurthy, S; Ju, SJ; Hyeong, K; Seo, I; Kang, CK; Hong, HK; Chen, CA; Choi, KS Vieira, Christophe; Keshavmurthy, Shashank; Ju, Se-Jong; Hyeong, Kiseong; Seo, Inah; Kang, Chang-Keun; Hong, Hyun-Ki; Chen, Chaolun Allen; Choi, Kwang-Sik Population dynamics of a high-latitude coral Alveopora japonica Eguchi from Jeju Island, off the southern coast of Korea MARINE AND FRESHWATER RESEARCH English Article age- and size-frequency distribution; Alveopora japonica; growth rate; life-history strategies; lifespan REEF-BUILDING CORALS; PARTIAL MORTALITY; COLONY SIZE; JAPAN; CONSEQUENCES; PENINSULA; BAY; AGE Although coral reefs are facing severe challenges from a variety of natural and anthropogenic stresses, there is anecdotal evidence that the high-latitude coral species Alveopora japonica Eguchi, 1968, has increased its population over the past two decades around Jeju Island, off the southern coast of Korea. The present study provides the first ecological data on this species. Alveopora japonica is opportunistically occupying the empty space left vacant following the recent kelp-forest decline. Colony abundance, age-and size-frequency distributions, lifespan, growth rates and biological characteristics such as surface area, weight and volume of two A. japonica populations in Jeju Island were investigated. Alveopora japonica around Jeju Island is characterised by a mean colony size of 30 cm(2), a slow growth rate (4.8 mm year(-1)), and a short lifespan of 12-13 years, as determined by X-radiographic measurements. Alveopora japonica presented a dense population of 120 colonies m(-2) on average. Population-age and -size structures at both sites reflected a healthy status and indicated a local stability, with a stationary size structure allowing population maintenance over time. The present study provided data to develop population-dynamics models to predict the potential outcomes of A. japonica populations to alternative management scenarios in Jeju Island. [Vieira, Christophe; Keshavmurthy, Shashank; Hong, Hyun-Ki; Choi, Kwang-Sik] Jeju Natl Univ, Sch Marine Biomed Sci PLUS BK21, 102 Jejudaehakno, Jeju 690756, South Korea; [Keshavmurthy, Shashank; Chen, Chaolun Allen] Acad Sinica BRCAS, Biodivers Res Ctr, 128 Acad Rd Sec 2, Taipei 115, Taiwan; [Ju, Se-Jong; Hyeong, Kiseong; Seo, Inah] KIOST, Deep Sea & Seabed Resources Res Div, Ansan 425744, South Korea; [Kang, Chang-Keun] Gwangju Inst Sci & Technol, Sch Environm Sci & Engn, Gwangju 500712, South Korea; [Vieira, Christophe] Univ Paris 06, Sorbonne Univ, IFD, 4 Pl Jussieu, F-75252 Paris 05, France; [Ju, Se-Jong] Univ Sci & Technol, Dept Marine Biol, Daejeon 305350, South Korea; [Seo, Inah] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151747, South Korea Choi, KS (reprint author), Jeju Natl Univ, Sch Marine Biomed Sci PLUS BK21, 102 Jejudaehakno, Jeju 690756, South Korea. skchoi@jejunu.ac.kr keshavmurthy, shashank/C-3672-2013 projects 'Long-term change of structure and function in marine ecosystems of Korea'; Ministry of Oceans and Fisheries, Korea; Ministry of Oceans and Fisheries of Korea; International Collaboration Funds from International Cooperation Department in KIOST [PO00135]; Academia Sinica; Academia Sinica Thematic Grant We thank the staff of Shellfish Research and Aquaculture Laboratory at Jeju National University, for the laboratory analysis. We are also grateful to Mr Sungwhan Cho of the Institute of Coastal Eco-Technology in Jeju, for SCUBA diving. We also thank the two reviewers including Dr James Reimer for their invaluable comments and suggestions to help improve the manuscript. This work was supported by the projects 'Long-term change of structure and function in marine ecosystems of Korea', funded by the Ministry of Oceans and Fisheries, Korea, and 'Assessment of the impact of climate change on marine ecosystem in the Southern Sea of Korea' from the Ministry of Oceans and Fisheries of Korea and International Collaboration Funds (PO00135) from International Cooperation Department in KIOST. S. Keshavmurthy is supported by the Academia Sinica postdoctoral fellowship (2012-2014). C. A. Chen is supported by the Academia Sinica Thematic Grant (2011-2013)'. Bak R.P.M., 1997, P27; Bak RPM, 1998, MAR ECOL PROG SER, V162, P301, DOI 10.3354/meps162301; Brouns J. J., 1994, P59; CHAMBERLAIN JA, 1978, PALEOBIOLOGY, V4, P419; CONNELL JH, 1973, BIOLOGY GEOLOGY CORA, V2, P205; Denis V, 2015, B MAR SCI, V91, P85, DOI 10.5343/bms.2014.1032; Denis V, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054330; Eguchi M, 1968, HYDROCORALS SCLERACT, P1; Harii S, 2001, CORAL REEFS, V20, P19; Helmle K. P., 2003, CORALXDS CORAL X RAD; HUGHES TP, 1987, MAR ECOL PROG SER, V35, P259, DOI 10.3354/meps035259; HUGHES TP, 1984, AM NAT, V123, P778, DOI 10.1086/284239; HUGHES TP, 1980, SCIENCE, V209, P713, DOI 10.1126/science.209.4457.713; Kang Rae-Seon, 2010, Bulletin of Fisheries Research Agency, P25; Kim D. H., 2006, THESIS; MARSH JA, 1970, ECOLOGY, V51, P254; Meesters EH, 1997, J SEA RES, V37, P131, DOI 10.1016/S1385-1101(96)00004-4; Meesters EH, 1996, B MAR SCI, V58, P838; NEVILL AM, 1994, J APPL PHYSIOL, V77, P2870; Ohno M, 1985, KAIYO KAGAKU, V17, P706; R Development Core Team, 2014, R LANG ENV STAT COMP; SCHUHMACHER H, 1984, MAR ECOL PROG SER, V20, P93, DOI 10.3354/meps020093; Serisawa Y, 2004, FISHERIES SCI, V70, P189, DOI 10.1111/j.0919-9268.2004.00788.x; Serrano E, 2012, CORAL REEFS, V31, P1199, DOI 10.1007/s00338-012-0939-3; Sheppard A., 2008, IUCN 2010 IUCN RED L; Short FT, 1999, AQUAT BOT, V63, P169, DOI 10.1016/S0304-3770(98)00117-X; Smith LD, 2005, MAR POLLUT BULL, V51, P399, DOI 10.1016/j.marpolbul.2004.11.021; Sokal R.R., 1995, BIOMETRY PRINCIPLES; SOONG K, 1993, CORAL REEFS, V12, P77, DOI 10.1007/BF00302106; Szabo PG, 2007, SPRINGER SER OPTIM A, V6, P1, DOI 10.1007/978-0-387-45676-8; Tanaka K, 2012, ECOL EVOL, V2, P2854, DOI 10.1002/ece3.391; TRIBBLE GW, 1986, CORAL REEFS, V4, P151, DOI 10.1007/BF00427936; van Moorsel G. W. N. M., 1989, JUVENILE ECOLOGY REP; Vermeij M. J. A., 2002, P 9 INT COR REEF S 2, P598; Veron J. E. N, 2000, CORALS WORLD; Wainwright S.A., 1982, MECH DESIGN ORGANISM; Wernberg T, 2010, ECOL LETT, V13, P685, DOI 10.1111/j.1461-0248.2010.01466.x; Wilkinson C., 2004, STATUS CORAL REEFS W; Yamano H, 2011, GEOPHYS RES LETT, V38, DOI 10.1029/2010GL046474; YOKOHAMA Y, 1987, BOT MAG TOKYO, V100, P129, DOI 10.1007/BF02488318 40 3 3 0 5 CSIRO PUBLISHING CLAYTON UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA 1323-1650 1448-6059 MAR FRESHWATER RES Mar. Freshw. Res. 2016 67 5 594 604 10.1071/MF14330 11 Fisheries; Limnology; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography DK7GW WOS:000375094200007 2019-02-21 J Jonason, PK; Icho, A; Ireland, K Jonason, Peter K.; Icho, Adiba; Ireland, Katie Resources, Harshness, and Unpredictability: The Socioeconomic Conditions Associated With the Dark Triad Traits EVOLUTIONARY PSYCHOLOGY English Article Dark Triad; psychopathy; narcissism; Machiavellianism; resources; life history theory LIFE-HISTORY STRATEGIES; TERM MATING STRATEGY; DIRTY DOZEN; PERSONALITY-TRAITS; COSTS; ENVIRONMENTS; PEOPLE; SCALE; BIG-5; RISK We sought to test the hypothesis that the Dark Triad traits are condition-dependent responses to a particular set of socio-ecological conditions in childhood. In three cross-sectional studies (N = 1,403), we examined how the Dark Triad traits were correlated with measures of resource availability, harshness, and unpredictability in one's childhood and adulthood. The Dark Triad traits were correlated with self-reports of an unpredictable childhood when using both the Short Dark Triad and the Dirty Dozen measures. These effects were somewhat stronger in men than in women and were replicable across samples. We also replicated sex differences in the Dark Triad traits but found none for our measures of socioecological conditions. Results are discussed in terms of the recurrent unpredictability in evolutionary history necessitating the sensitivity and responsiveness to such features to enable survival and reproduction. We contend that the Dark Triad traits might be condition-sensitive adaptations to socioecological unpredictability that all people could have if properly motivated. [Jonason, Peter K.; Icho, Adiba; Ireland, Katie] Univ Western Sydney, Sch Social Sci & Psychol, Penrith, NSW 1797, Australia Jonason, PK (reprint author), Univ Western Sydney, Sch Social Sci & Psychol, Penrith, NSW 1797, Australia. p.jonason@westernsydney.edu.au Western Sydney University The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Research was funded by a Seed Grant to the first author from Western Sydney University. Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Bowlby J., 1979, MAKING BREAKING AFFE; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buhrmester M, 2011, PERSPECT PSYCHOL SCI, V6, P3, DOI 10.1177/1745691610393980; Carter GL, 2015, PERS INDIV DIFFER, V83, P185, DOI 10.1016/j.paid.2015.04.012; Carter GL, 2014, PERS INDIV DIFFER, V56, P57, DOI 10.1016/j.paid.2013.08.021; COSTA PT, 1995, J PERS ASSESS, V64, P21, DOI 10.1207/s15327752jpa6401_2; Donnellan MB, 2006, PSYCHOL ASSESSMENT, V18, P192, DOI 10.1037/1040-3590.18.2.192; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2015, EVOL PSYCHOL-US, V13, P435; Furnham A, 2013, SOC PERSONAL PSYCHOL, V7, P199, DOI 10.1111/spc3.12018; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Harpur T. J., 1989, PSYCHOL ASSESSMENT J, V1, P6, DOI DOI 10.1037/1040-3590.1.1.6; Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X; Hodson G, 2009, J RES PERS, V43, P686, DOI 10.1016/j.jrp.2009.02.005; Jonason P. K., 2013, PERSONALITY INDIVIDU, V57, P572; Jonason P. K., 2015, EXPLOITIVE MAT UNPUB, V6; Jonason P. K., 2013, INDIVIDUAL DIFFERENC, V11, P81; Jonason PK, 2015, PERS INDIV DIFFER, V78, P5, DOI 10.1016/j.paid.2015.01.008; Jonason PK, 2013, PERS INDIV DIFFER, V55, P538, DOI 10.1016/j.paid.2013.05.001; Jonason PK, 2013, PERS INDIV DIFFER, V55, P76, DOI 10.1016/j.paid.2013.02.010; Jonason PK, 2013, EVOL PSYCHOL-US, V11, P172, DOI 10.1177/147470491301100116; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jonason PK, 2010, INDIVIDUAL DIFFERENC, V8, P111; Jones DN, 2014, ASSESSMENT, V21, P28, DOI 10.1177/1073191113514105; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Lyons M., 2013, INDIVIDUAL DIFFERENC, V11, P149; Maples JL, 2014, PSYCHOL ASSESSMENT, V26, P326, DOI 10.1037/a0035084; Miller JD, 2012, PSYCHOL ASSESSMENT, V24, P1048, DOI 10.1037/a0028583; Petrides KV, 2011, TWIN RES HUM GENET, V14, P35, DOI 10.1375/twin.14.1.35; Slaughter V., 2011, NARCISSISM MACHIAVEL, P177, DOI DOI 10.1037/12352-010; Spain S.M., 2014, JOURNAL OF ORGANIZAT, V53, pS41; STRAHAN R, 1972, J CLIN PSYCHOL, V28, P191, DOI 10.1002/1097-4679(197204)28:2<191::AID-JCLP2270280220>3.0.CO;2-G; Vernon PA, 2008, PERS INDIV DIFFER, V44, P445, DOI 10.1016/j.paid.2007.09.007 45 15 15 1 23 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. JAN-MAR 2016 14 1 10.1177/1474704915623699 11 Psychology, Experimental Psychology DI3EA WOS:000373380000004 DOAJ Gold 2019-02-21 J Weiss, SL Weiss, Stacey L. Ornamentation, age, and survival of female striped plateau lizards, Sceloporus virgatus SCIENCE OF NATURE English Article Age-dependent; Female ornament; Life history theory; Multiple message signals; Sexual selection; Survival prospects MELANIN-BASED COLORATION; GOOD GENES; MUTUAL ORNAMENTATION; PREDATION RISK; OLD-AGE; REPRODUCTION; QUALITY; MALES; MODEL; ADVERTISEMENT Individuals with greater expression of secondary sexual traits are often older and have higher survivorship than individuals with lower expression; if so, assessment of such indicator traits may provide genetic and/or direct benefits to potential mates. I examined the relationship between ornament expression, age, and survival in the striped plateau lizard, Sceloporus virgatus, a species with female-specific ornamentation that honestly signals reproductive quality. I followed a group of females from 2008 to 2013, examined ornament color and size as females aged, and compared ornamentation of survivors versus non-survivors. In addition, I explored whether other (non-ornamental) phenotypic characters predicted survival. I found that peak ornament expression (both color and size) of individual females changed year to year but appeared to be a weak signal of age due to high among-female variation in ornament expression that occurred independent of age and a non-linear pattern of change for ornament color. However, both absolute and relative ornament size did increase significantly as an individual aged and therefore may provide some age-related information such as reproductive investment, which is expected to increase as residual reproductive value declines with age. Individual survival was unrelated to peak ornament expression and to other phenotypic variables measured, providing no support for the ornament as a viability indicator and suggesting that individual survival prospects are affected by stochastic and environmental factors. [Weiss, Stacey L.] Univ Puget Sound, 1500 N Warner St 1088, Tacoma, WA 98416 USA Weiss, SL (reprint author), Univ Puget Sound, 1500 N Warner St 1088, Tacoma, WA 98416 USA. sweiss@pugetsound.edu Murdock Charitable Trust; University of Puget Sound I thank Carla Abrams, Kieran Bates, Erica Bender, Chris Brachna, Robby Brower, Tony Charvoz, Min Young Chun, Sabrina Duncan, Alexa Fritzsche, Jay Goldberg, Emily Mulligan, Juliane Schaer, Alisa Wallace, and Laura Wisdom for assistance in the field, and the American Museum of Natural History's Southwestern Research Station (SWRS) for logistical support. Funding was provided by the Murdock Charitable Trust and the University of Puget Sound. Abell AJ, 2000, OIKOS, V88, P630, DOI 10.1034/j.1600-0706.2000.880320.x; Amundsen T, 2000, TRENDS ECOL EVOL, V15, P149, DOI 10.1016/S0169-5347(99)01800-5; Andersson M., 1994, SEXUAL SELECTION; Bateman PW, 2009, J ZOOL, V277, P1, DOI 10.1111/j.1469-7998.2008.00484.x; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; BURLEY NT, 1992, AUK, V109, P13, DOI 10.2307/4088263; Descamps S, 2007, J ANIM ECOL, V76, P1192, DOI 10.1111/j.1365-2656.2007.01301.x; Dreiss AN, 2010, BIOL J LINN SOC, V101, P689, DOI 10.1111/j.1095-8312.2010.01503.x; Dubin ME, 2009, EFFECT FEMALE ORNAME; Fitzpatrick CL, 2015, ETHOLOGY, V121, P1; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Galvan I, 2009, FUNCT ECOL, V23, P302, DOI 10.1111/j.1365-2435.2008.01504.x; Garamszegi LZ, 2007, ETHOLOGY, V113, P246, DOI 10.1111/j.1439-0310.2007.01337.x; Gil D, 2001, ANIM BEHAV, V62, P689, DOI 10.1006/anbe.2001.1812; Hahn S, 2003, EMU, V103, P37, DOI 10.1071/MU02012; Hansen TF, 1995, J EVOLUTION BIOL, V8, P759, DOI 10.1046/j.1420-9101.1995.8060759.x; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Husak JF, 2006, ETHOLOGY, V112, P572, DOI 10.1111/j.1439-0310.2005.01189.x; Jennions MD, 2001, Q REV BIOL, V76, P3, DOI 10.1086/393743; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Komdeur J, 2005, BEHAV ECOL, V16, P805, DOI 10.1093/beheco/ari059; Kraaijeveld K, 2007, ANIM BEHAV, V74, P657, DOI 10.1016/j.anbehav.2006.12.027; Lehikoinen A, 2010, BIOL LETTERS, V6, P225, DOI 10.1098/rsbl.2009.0744; MANNING JT, 1985, J THEOR BIOL, V116, P349, DOI 10.1016/S0022-5193(85)80273-3; MANNING JT, 1989, J EVOLUTION BIOL, V2, P379, DOI 10.1046/j.1420-9101.1989.2050379.x; Martin M, 2013, BIOL J LINN SOC, V110, P128, DOI 10.1111/bij.12104; Massot M, 2011, FUNCT ECOL, V25, P848, DOI 10.1111/j.1365-2435.2011.01837.x; Miller LK, 2005, EVOLUTION, V59, P2414; OLSSON M, 1993, ANIM BEHAV, V46, P410, DOI 10.1006/anbe.1993.1207; Osborne J, 2010, PRACTICAL ASSESSMENT, V15, P1; Proulx SR, 2002, P ROY SOC B-BIOL SCI, V269, P2291, DOI 10.1098/rspb.2002.2129; ROSE B, 1981, ECOLOGY, V62, P706, DOI 10.2307/1937739; Servedio MR, 2006, EVOLUTION, V60, P674; Smith GR, 1996, CAN J ZOOL, V74, P2025, DOI 10.1139/z96-230; SMITH GR, 1995, HERPETOLOGICA, V51, P342; Stearns S, 1992, EVOLUTION LIFE HIST; Stuart-Fox DM, 2003, ANIM BEHAV, V66, P541, DOI 10.1006/anbe.2003.2235; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Vergara P, 2009, BIOL J LINN SOC, V97, P781, DOI 10.1111/j.1095-8312.2009.01263.x; VINEGAR MB, 1975, ECOLOGY, V56, P172, DOI 10.2307/1935309; Warner DA, 2002, BIOL J LINN SOC, V76, P105, DOI 10.1111/j.1095-8312.2002.tb01718.x; Weiss SL, 2012, COMP BIOCHEM PHYS B, V161, P117, DOI 10.1016/j.cbpb.2011.10.004; Weiss SL, 2002, GEN COMP ENDOCR, V128, P238, DOI 10.1016/S0016-6480(02)00506-3; Weiss SL, 2002, ETHOLOGY, V108, P793, DOI 10.1046/j.1439-0310.2002.00819.x; Weiss SL, 2006, BEHAV ECOL, V17, P726, DOI 10.1093/beheco/arl001; Weiss SL, 2013, J EXP BIOL, V216, P2641, DOI 10.1242/jeb.080937; Weiss SL, 2011, J ANIM ECOL, V80, P519, DOI 10.1111/j.1365-2656.2010.01801.x; Weiss SL, 2009, BEHAV ECOL, V20, P1063, DOI 10.1093/beheco/arp098 49 2 2 3 16 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0028-1042 1432-1904 SCI NAT-HEIDELBERG Sci. Nat. 2016 103 3-4 16 10.1007/s00114-016-1339-2 8 Multidisciplinary Sciences Science & Technology - Other Topics DH4JV WOS:000372752800002 26842787 2019-02-21 S Schwenke, RA; Lazzaro, BP; Wolfner, MF Berenbaum, MR Schwenke, Robin A.; Lazzaro, Brian P.; Wolfner, Mariana F. Reproduction-Immunity Trade-Offs in Insects ANNUAL REVIEW OF ENTOMOLOGY, VOL 61 Annual Review of Entomology English Review; Book Chapter life-history trade-off; resource allocation; signaling pleiotropy; hormones; egg production; infection FEMALE DROSOPHILA-MELANOGASTER; JUVENILE-HORMONE BIOSYNTHESIS; PEPTIDE GENE-EXPRESSION; LIFE-HISTORY EVOLUTION; GENOME-WIDE ANALYSIS; HOST-PLANT QUALITY; SEX-PEPTIDE; FAT-BODY; ANOPHELES-GAMBIAE; VITELLOGENIN PRODUCTION Immune defense and reproduction are physiologically and energetically demanding processes and have been observed to trade off in a diversity of female insects. Increased reproductive effort results in reduced immunity, and reciprocally, infection and activation of the immune system reduce reproductive output. This trade-off can manifest at the physiological level (within an individual) and at the evolutionary level (genetic distinction among individuals in a population). The resource allocation model posits that the trade-off arises because of competition for one or more limiting resources, and we hypothesize that pleiotropic signaling mechanisms regulate allocation of that resource between reproductive and immune processes. We examine the role of juvenile hormone, 20-hydroxyecdysone, and insulin/insulin-like growth factor-like signaling in regulating both oogenesis and immune system activity, and propose a signaling network that may mechanistically regulate the trade-off. Finally, we discuss implications of the trade-off in an ecological and evolutionary context. [Schwenke, Robin A.; Lazzaro, Brian P.; Wolfner, Mariana F.] Cornell Univ, Field Genet Genom & Dev, Ithaca, NY 14853 USA; [Schwenke, Robin A.; Lazzaro, Brian P.] Cornell Univ, Dept Entomol, Ithaca, NY 14853 USA; [Wolfner, Mariana F.] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA Lazzaro, BP; Wolfner, MF (reprint author), Cornell Univ, Field Genet Genom & Dev, Ithaca, NY 14853 USA.; Lazzaro, BP (reprint author), Cornell Univ, Dept Entomol, Ithaca, NY 14853 USA.; Wolfner, MF (reprint author), Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA. ras599@cornell.edu; bplazzaro@cornell.edu; mfw5@cornell.edu NIAID NIH HHS [R01 AI083932]; NICHD NIH HHS [R01 HD038921, R01-HD038921] Abrisqueta M, 2014, INSECT BIOCHEM MOLEC, V49, P14, DOI 10.1016/j.ibmb.2014.03.005; ABUHAKIMA R, 1977, J EXP BIOL, V69, P33; Adamo SA, 2007, BRAIN BEHAV IMMUN, V21, P292, DOI 10.1016/j.bbi.2006.10.006; Ahmed AM, 2006, MICROBES INFECT, V8, P308, DOI 10.1016/j.micinf.2005.06.026; Ahmed AM, 2002, OIKOS, V97, P371, DOI 10.1034/j.1600-0706.2002.970307.x; Armitage SAO, 2003, J EVOLUTION BIOL, V16, P1038, DOI 10.1046/j.1420-9101.2003.00551.x; Armitage SAO, 2005, HEREDITY, V94, P650, DOI 10.1038/sj.hdy.6800675; Arrese EL, 2010, ANNU REV ENTOMOL, V55, P207, DOI 10.1146/annurev-ento-112408-085356; Attardo GM, 2005, INSECT BIOCHEM MOLEC, V35, P661, DOI 10.1016/j.ibmb.2005.02.013; Avila FW, 2011, ANNU REV ENTOMOL, V56, P21, DOI 10.1146/annurev-ento-120709-144823; Awmack CS, 2002, ANNU REV ENTOMOL, V47, P817, DOI 10.1146/annurev.ento.47.091201.145300; Ayres JS, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000150; Badisco L., 2013, FRONT PHYSIOL, V4, P1; Baer B, 2006, NATURE, V441, P872, DOI 10.1038/nature04698; Bajgar A, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002135; Barnes AI, 2008, P ROY SOC B-BIOL SCI, V275, P1675, DOI 10.1098/rspb.2008.0139; Bashir-Tanoli S, 2014, FUNCT ECOL, V28, P1011, DOI 10.1111/1365-2435.12236; Becker T, 2010, NATURE, V463, P369, DOI 10.1038/nature08698; BROOKES VJ, 1969, DEV BIOL, V20, P459, DOI 10.1016/0012-1606(69)90026-8; Buning J., 1994, INSECT OVARY ULTRAST; Carvalho GB, 2006, CURR BIOL, V16, P692, DOI 10.1016/j.cub.2006.02.064; Castella G, 2009, J EVOLUTION BIOL, V22, P564, DOI 10.1111/j.1420-9101.2008.01664.x; Castillo JC, 2011, TRENDS PARASITOL, V27, P537, DOI 10.1016/j.pt.2011.09.001; Catalan TP, 2011, EVOL ECOL RES, V13, P711; Cavaliere V, 2008, DEV DYNAM, V237, P2061, DOI 10.1002/dvdy.21625; Chen SL, 2012, J INSECT PHYSIOL, V58, P763, DOI 10.1016/j.jinsphys.2011.12.007; CHINZEI Y, 1985, J INSECT PHYSIOL, V31, P441, DOI 10.1016/0022-1910(85)90090-3; Clifton ME, 2014, J INSECT PHYSIOL, V64, P40, DOI 10.1016/j.jinsphys.2014.03.006; Clifton ME, 2011, J INSECT PHYSIOL, V57, P1274, DOI 10.1016/j.jinsphys.2011.06.002; Cotter SC, 2004, J EVOLUTION BIOL, V17, P421, DOI 10.1046/j.1420-9101.2003.00655.x; Cotter SC, 2011, FUNCT ECOL, V25, P186, DOI 10.1111/j.1365-2435.2010.01766.x; Cressler CE, 2014, ECOL LETT, V17, P284, DOI 10.1111/ele.12229; DiAngelo JR, 2009, P NATL ACAD SCI USA, V106, P20853, DOI 10.1073/pnas.0906749106; Dimarcq JL, 1997, INSECT BIOCHEM MOLEC, V27, P877, DOI 10.1016/S0965-1748(97)00072-6; Dionne MS, 2006, CURR BIOL, V16, P1977, DOI 10.1016/j.cub.2006.08.052; DIXON AFG, 1963, J ANIM ECOL, V32, P33, DOI 10.2307/2516; Domanitskaya EV, 2007, FEBS J, V274, P5659, DOI 10.1111/j.1742-4658.2007.06088.x; Drummond-Barbosa D, 2001, DEV BIOL, V231, P265, DOI 10.1006/dbio.2000.0135; du Plessis H, 2012, ENTOMOL EXP APPL, V145, P209, DOI 10.1111/eea.12001; Duneau D, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001271; Fan YL, 2000, INSECT BIOCHEM MOLEC, V30, P805, DOI 10.1016/S0965-1748(00)00052-7; Fedorka KM, 2007, P R SOC B, V274, P1211, DOI 10.1098/rspb.2006.0394; Fedorka KM, 2004, EVOLUTION, V58, P2478; Fellowes MDE, 1999, J EVOLUTION BIOL, V12, P123, DOI 10.1046/j.1420-9101.1999.00018.x; FERDIG MT, 1993, AM J TROP MED HYG, V49, P756, DOI 10.4269/ajtmh.1993.49.756; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Fisher RA, 1930, GENETICAL THEORY NAT; Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; Flatt T, 2008, J EXP BIOL, V211, P2712, DOI 10.1242/jeb.014878; Flatt T, 2007, EVOLUTION, V61, P1980, DOI 10.1111/j.1558-5646.2007.00151.x; FLEIG R, 1995, INT J INSECT MORPHOL, V24, P427, DOI 10.1016/0020-7322(95)98841-Z; Foley K, 2012, J INVERTEBR PATHOL, V111, P68, DOI 10.1016/j.jip.2012.06.006; Gabrieli P, 2014, P NATL ACAD SCI USA, V111, P16353, DOI 10.1073/pnas.1410488111; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gonzalez-Santoyo I, 2012, ENTOMOL EXP APPL, V142, P1, DOI 10.1111/j.1570-7458.2011.01187.x; Gruntenko NE, 2008, J INSECT PHYSIOL, V54, P902, DOI 10.1016/j.jinsphys.2008.04.004; Gupta V, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-185; Gwynn DM, 2005, P ROY SOC B-BIOL SCI, V272, P1803, DOI 10.1098/rspb.2005.3089; Hansen IA, 2014, FRONT PHYSIOL, V5, DOI 10.3389/fphys.2014.00103; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hepat R, 2014, J INSECT PHYSIOL, V63, P40, DOI 10.1016/j.jinsphys.2014.02.008; Hoffmann JA, 2003, NATURE, V426, P33, DOI 10.1038/nature02021; Hogg JC, 1995, PARASITOLOGY, V111, P555, DOI 10.1017/S0031182000077027; Hosken DJ, 2001, CURR BIOL, V11, pR379, DOI 10.1016/S0960-9822(01)00211-1; Hosken DJ, 2001, CURR BIOL, V11, P489, DOI 10.1016/S0960-9822(01)00146-4; Hossain MS, 2013, INSECT BIOCHEM MOLEC, V43, P829, DOI 10.1016/j.ibmb.2013.06.007; Howick VM, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-56; Hsu HJ, 2009, P NATL ACAD SCI USA, V106, P1117, DOI 10.1073/pnas.0809144106; Hurd H, 2001, TRENDS PARASITOL, V17, P363, DOI 10.1016/S1471-4922(01)01927-4; Innocenti P, 2009, J EVOLUTION BIOL, V22, P964, DOI 10.1111/j.1420-9101.2009.01708.x; ISAAC PG, 1982, EUR J BIOCHEM, V123, P527; Kelly CD, 2011, BIOL J LINN SOC, V104, P38, DOI 10.1111/j.10958312.2011.01714.x; Kim Y, 2008, J INSECT PHYSIOL, V54, P909, DOI 10.1016/j.jinsphys.2008.03.012; Klemola N, 2007, ENTOMOL EXP APPL, V123, P167, DOI 10.1111/j.1570-7458.2007.00533.x; Knell RJ, 2004, BIOL REV, V79, P557, DOI 10.1017/S1464793103006365; Kokoza VA, 2001, GENE, V274, P47, DOI 10.1016/S0378-1119(01)00602-3; Kraaijeveld AR, 2011, DEV COMP IMMUNOL, V35, P857, DOI 10.1016/j.dci.2011.03.019; Kraaijeveld AR, 2002, PARASITOLOGY, V125, pS71, DOI 10.1017/S0031182002001750; LaFever L, 2005, SCIENCE, V309, P1071, DOI 10.1126/science.1111410; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Lawniczak MKN, 2007, TRENDS ECOL EVOL, V22, P48, DOI 10.1016/j.tree.2006.09.012; Lawniczak MKN, 2004, GENOME, V47, P900, DOI 10.1139/G04-050; Lazzaro BP, 2009, PHILOS T R SOC B, V364, P15, DOI 10.1098/rstb.2008.0141; Lazzaro BP, 2008, PLOS PATHOG, V4, DOI 10.1371/journal.ppat.1000025; Lee KP, 2008, FUNCT ECOL, V22, P1052, DOI 10.1111/j.1365-2435.2008.01459.x; Libert S, 2008, MOL IMMUNOL, V45, P810, DOI 10.1016/j.molimm.2007.06.353; Luong LT, 2007, EVOLUTION, V61, P1391, DOI 10.1111/j.1558-5646.2007.00116.x; Mack PD, 2006, P NATL ACAD SCI USA, V103, P10358, DOI 10.1073/pnas.0604046103; McGraw LA, 2004, CURR BIOL, V14, P1509, DOI 10.1016/j.cub.2004.08.028; McKean KA, 2001, P NATL ACAD SCI USA, V98, P7904, DOI 10.1073/pnas.131216398; McKean KA, 2005, EVOLUTION, V59, P1510; McKean KA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-76; McKean KA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P299; McNamara KB, 2014, J EVOLUTION BIOL, V27, P133, DOI 10.1111/jeb.12278; Meister M, 2003, CELL MICROBIOL, V5, P573, DOI 10.1046/j.1462-5822.2003.00302.x; Miest TS, 2008, FLY, V2; Mirth CK, 2014, P NATL ACAD SCI USA, V111, P7018, DOI 10.1073/pnas.1313058111; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Nijhout H.F., 1994, INSECT HORMONES; Nystrand M, 2014, J EVOLUTION BIOL, V27, P876, DOI 10.1111/jeb.12364; Parthasarathy R, 2011, INSECT BIOCHEM MOLEC, V41, P294, DOI 10.1016/j.ibmb.2011.01.006; Peng J, 2005, CURR BIOL, V15, P1690, DOI 10.1016/j.cub.2005.08.048; Polak M, 1996, ECOLOGY, V77, P1379, DOI 10.2307/2265535; Povey S, 2014, J ANIM ECOL, V83, P245, DOI 10.1111/1365-2656.12127; Bascunan-Garcia AP, 2010, J INSECT PHYSIOL, V56, P204, DOI 10.1016/j.jinsphys.2009.10.005; Reaney LT, 2010, BEHAV ECOL, V21, P1367, DOI 10.1093/beheco/arq139; Regan JC, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003720; Ribeiro C, 2010, CURR BIOL, V20, P1000, DOI 10.1016/j.cub.2010.03.061; Richard DS, 2005, J INSECT PHYSIOL, V51, P455, DOI 10.1016/j.jinsphys.2004.12.013; Roff Derek A., 1992; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; Rose MR, 1998, OIKOS, V83, P443, DOI 10.2307/3546672; Rus F, 2013, EMBO J, V32, P1626, DOI 10.1038/emboj.2013.100; Sander JD, 2014, NAT BIOTECHNOL, V32, P347, DOI 10.1038/nbt.2842; Schilder RJ, 2006, P NATL ACAD SCI USA, V103, P18805, DOI 10.1073/pnas.0603156103; Schmid-Hempel P, 2005, ANNU REV ENTOMOL, V50, P529, DOI 10.1146/annurev.ento.50.071803.130420; Sheng ZT, 2011, J BIOL CHEM, V286, P41924, DOI 10.1074/jbc.M111.269845; Shoemaker KL, 2006, ANIM BEHAV, V71, P371, DOI 10.1016/j.anbehav.2005.05.007; Short SM, 2012, J INSECT PHYSIOL, V58, P1192, DOI 10.1016/j.jinsphys.2012.06.002; Short SM, 2010, P ROY SOC B-BIOL SCI, V277, P3649, DOI 10.1098/rspb.2010.0937; Siva-Jothy MT, 1998, PHYSIOL ENTOMOL, V23, P274, DOI 10.1046/j.1365-3032.1998.233090.x; Soller M, 1999, DEV BIOL, V208, P337, DOI 10.1006/dbio.1999.9210; Sorrentino RP, 2002, DEV BIOL, V243, P65, DOI 10.1006/dbio.2001.0542; Stahlschmidt ZR, 2013, FUNCT ECOL, V27, P800, DOI 10.1111/1365-2435.12071; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Strand MR, 2008, INSECT IMMUNOLOGY, P25, DOI 10.1016/B978-012373976-6.50004-5; Suren-Castillo S, 2012, INSECT BIOCHEM MOLEC, V42, P491, DOI 10.1016/j.ibmb.2012.03.006; Tan KL, 2014, CURR BIOL, V24, P1145, DOI 10.1016/j.cub.2014.03.062; Terashima J, 2004, GENETICS, V167, P1711, DOI 10.1534/genetics.103.024323; Toivonen JM, 2009, MOL CELL ENDOCRINOL, V299, P39, DOI 10.1016/j.mce.2008.07.005; Tsukamoto Y, 2014, FRONT PHYSIOL, V5, DOI 10.3389/fphys.2014.00095; Tu MP, 2005, GEN COMP ENDOCR, V142, P347, DOI 10.1016/j.ygcen.2005.02.009; Valtonen TM, 2010, PARASITOLOGY, V137, P985, DOI 10.1017/S0031182009992009; Wang MC, 2005, CELL, V121, P115, DOI 10.1016/j.cell.2005.02.030; Wheeler D, 1996, ANNU REV ENTOMOL, V41, P407, DOI 10.1146/annurev.en.41.010196.002203; WIGGLESWORTH VB, 1960, P NUTR SOC, V19, P18, DOI 10.1079/PNS19600007; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wu Q, 2006, ANNU REV ENTOMOL, V51, P1, DOI 10.1146/annurev.ento.51.110104.151011; Yan G, 1997, EVOLUTION, V51, P441, DOI 10.1111/j.1558-5646.1997.tb02431.x; Ye YXH, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000385; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615; Zerofsky M, 2005, AGING CELL, V4, P103, DOI 10.1111/j.1474-9728.2005.00147.x; Zhang Z, 2009, INSECT MOL BIOL, V18, P595, DOI 10.1111/j.1365-2583.2009.00901.x 145 57 57 36 176 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA 0066-4170 978-0-8243-0161-3 ANNU REV ENTOMOL Annu. Rev. Entomol. 2016 61 239 256 10.1146/annurev-ento-010715-023924 18 Entomology Entomology BE5AB WOS:000372413800014 26667271 Green Accepted 2019-02-21 J Fong, CR Fong, Caitlin R. HIGH DENSITY AND STRONG AGGREGATION DO NOT INCREASE PREVALENCE OF THE ISOPOD HEMIONISCUS BALANI (BUCHHOLZ, 1866), A PARASITE OF THE ACORN BARNACLE CHTHAMALUS FISSUS (DARWIN, 1854) IN CALIFORNIA JOURNAL OF CRUSTACEAN BIOLOGY English Article aggregation; California; host density; parasitic castration; parasitism; rocky intertidal SPATIAL HETEROGENEITY; SELFISH HERD; HOST; STABILITY; DISEASES; SIZE; EPIDEMIOLOGY; TRANSMISSION; TERRESTRIAL; DIVERSITY Parasitism is a common life history strategy among animals and has been the topic of empirical and theoretical study for decades. Many classic mathematical models assume increased spatial aggregation and density increase prevalence in a host population. Parasites can nevertheless take on a diversity of life history strategies that could result in deviations from these assumptions. I investigated the importance of density and aggregation of hosts on the prevalence, or percent of hosts infected by a parasitic castrator with a complex life cycle. An isopod parasite, Hemioniscus balani (Buchholz, 1866), infects an intertidal barnacle, Chthamalus fissus (Darwin, 1854), and renders the barnacle unable to produce eggs. To test the assumptions that density and aggregation increase parasitism, I conducted a survey of density, aggregation, and parasitism in the rocky intertidal zone in Santa Barbara County, CA, USA. I found spatial patterns of host density and aggregation did not lead to increases in parasitism. Furthermore, there was no evidence of a selfish herd effect, whereby the per capita risk of infection decreases with population size. Understanding patterns and drivers of infection is particularly important in marine systems, which are understudied compared to terrestrial diseases, and work done in terrestrial systems could not correspond to patterns and processes in marine systems. [Fong, Caitlin R.] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, 552 Univ Rd, Santa Barbara, CA 93106 USA Fong, CR (reprint author), Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, 552 Univ Rd, Santa Barbara, CA 93106 USA. cat.fong@lifesci.ucsb.edu ANDERSON RM, 1978, J ANIM ECOL, V47, P219, DOI 10.2307/3933; Arneberg P, 1998, P ROY SOC B-BIOL SCI, V265, P1283, DOI 10.1098/rspb.1998.0431; Begon Michael, 2008, P12; Beldomenico PM, 2008, J ANIM ECOL, V77, P984, DOI 10.1111/j.1365-2656.2008.01413.x; BLOWER SM, 1988, OECOLOGIA, V75, P512, DOI 10.1007/BF00776413; BLOWER SM, 1989, OECOLOGIA, V78, P138, DOI 10.1007/BF00377209; BUCHHOLZ R, 1966, Z WISS ZOOL, V16, P303; CONNELL JH, 1961, ECOLOGY, V42, P710, DOI 10.2307/1933500; CRISP DJ, 1968, J FISH RES BOARD CAN, V25, P1161, DOI 10.1139/f68-102; Darwin C. R., 1854, MONOGRAPH SUBCLASS C, V2; de Meeus T, 2002, TRENDS PARASITOL, V18, P247, DOI 10.1016/S1471-4922(02)02269-9; Ebert D, 2000, AM NAT, V156, P459, DOI 10.1086/303404; Fauchald P, 2007, OIKOS, V116, P491, DOI 10.1111/j.2006.0030-1299.15390.x; HAMILTON WD, 1971, J THEOR BIOL, V31, P295, DOI 10.1016/0022-5193(71)90189-5; Hansen F, 2004, INT J PARASITOL, V34, P37, DOI [10.1016/j.ijpara.2003.10.003, 10.1016/j.ipara.2003.10.003]; Harvell CD, 1999, SCIENCE, V285, P1505, DOI 10.1126/science.285.5433.1505; Harvell CD, 2002, SCIENCE, V296, P2158, DOI 10.1126/science.1063699; HASSELL MP, 1973, J ANIM ECOL, V42, P693, DOI 10.2307/3133; HASSELL MP, 1974, J ANIM ECOL, V43, P567, DOI 10.2307/3384; KURIS AM, 1974, Q REV BIOL, V49, P129, DOI 10.1086/408018; Lafferty KD, 2002, TRENDS ECOL EVOL, V17, P507, DOI 10.1016/S0169-5347(02)02615-0; Lafferty KD, 2004, ANNU REV ECOL EVOL S, V35, P31, DOI 10.1146/annurev.ecolsys.35.021103.105704; Lafferty KD, 2009, TRENDS PARASITOL, V25, P564, DOI 10.1016/j.pt.2009.09.003; Long ZT, 2012, J EXP MAR BIOL ECOL, V416, P115, DOI 10.1016/j.jembe.2012.02.017; MAY RM, 1979, NATURE, V280, P455, DOI 10.1038/280455a0; McCallum HI, 2004, TRENDS ECOL EVOL, V19, P585, DOI 10.1016/j.tree.2004.08.009; Morisita M., 1959, MEM FS KYUSHU U E, V2, P5; Nicholson AJ, 1935, P ZOOL SOC LOND, V3, P551, DOI DOI 10.1111/J.1096-3642.1935.TB01680.X; Pilsbry H.A., 1916, B US NATN MUS, V93, P1, DOI DOI 10.5479/SI.03629236.93.1; Smith NF, 2001, OECOLOGIA, V127, P115, DOI 10.1007/s004420000560; Thieltges DW, 2008, PARASITOLOGY, V135, P1111, DOI 10.1017/S0031182008004526; Thieltges DW, 2007, OECOLOGIA, V150, P569, DOI 10.1007/s00442-006-0557-2; Ward JR, 2004, PLOS BIOL, V2, P542, DOI 10.1371/journal.pbio.0020120; Whitton TA, 2012, J EXP MAR BIOL ECOL, V432, P29, DOI 10.1016/j.jembe.2012.07.014; Wood CL, 2013, TRENDS ECOL EVOL, V28, P239, DOI 10.1016/j.tree.2012.10.011 35 3 3 1 9 CRUSTACEAN SOC SAN ANTONIO 840 EAST MULBERRY, SAN ANTONIO, TX 78212 USA 0278-0372 1937-240X J CRUSTACEAN BIOL J. Crustac. Biol. JAN 2016 36 1 46 49 10.1163/1937240X-00002398 4 Marine & Freshwater Biology; Zoology Marine & Freshwater Biology; Zoology DG0KJ WOS:000371753400006 Bronze 2019-02-21 J Dillingham, PW; Moore, JE; Fletcher, D; Cortes, E; Curtis, KA; James, KC; Lewison, RL Dillingham, Peter W.; Moore, Jeffrey E.; Fletcher, David; Cortes, Enric; Curtis, K. Alexandra; James, Kelsey C.; Lewison, Rebecca L. Improved estimation of intrinsic growth r(max) for long-lived species: integrating matrix models and allometry ECOLOGICAL APPLICATIONS English Article allometric (rT) models; Bayesian analysis; demography; integrated population models; intrinsic growth rate; life-table models; long-lived species; population dynamics; Procellaria; white shark; Carcharodon carcharias WHITE-CHINNED PETRELS; POPULATION-GROWTH; INCORPORATING UNCERTAINTY; INCREASE; MAMMALS; RATES; MANAGEMENT; FISHERIES; AGE; CONSERVATION Intrinsic population growth rate (r(max)) is an important parameter for many ecological applications, such as population risk assessment and harvest management. However, r(max) can be a difficult parameter to estimate, particularly for long-lived species, for which appropriate life table data or abundance time series are typically not obtainable. We describe a method for improving estimates of r(max) for long-lived species by integrating life-history theory (allometric models) and population-specific demographic data (life table models). Broad allometric relationships, such as those between life history traits and body size, have long been recognized by ecologists. These relationships are useful for deriving theoretical expectations for r(max), but r(max) for real populations may vary from simple allometric estimators for "archetypical" species of a given taxa or body mass. Meanwhile, life table approaches can provide population-specific estimates of r(max) from empirical data, but these may have poor precision from imprecise and missing vital rate parameter estimates. Our method borrows strength from both approaches to provide estimates that are consistent with both life-history theory and population-specific empirical data, and are likely to be more robust than estimates provided by either method alone. Our method uses an allometric constant: the product of r(max) and the associated generation time for a stable-age population growing at this rate. We conducted a meta-analysis to estimate the mean and variance of this allometric constant across well-studied populations from three vertebrate taxa (birds, mammals, and elasmobranchs) and found that the mean was approximately 1.0 for each taxon. We used these as informative Bayesian priors that determine how much to "shrink" imprecise vital rate estimates for a data-limited population toward the allometric expectation. The approach ultimately provides estimates of r(max) (and other vital rates) that reflect a balance of information from the individual studied population, theoretical expectation, and meta-analysis of other populations. We applied the method specifically to an archetypical petrel (representing the genus Procellaria) and to white sharks (Carcharodon carcharias) in the context of estimating sustainable fishery bycatch limits. [Dillingham, Peter W.] Univ New England, Sch Sci & Technol, Armidale, NSW 2351, Australia; [Dillingham, Peter W.] Clark Univ, George Perkins Marsh Inst, 950 Main St, Worcester, MA 01610 USA; [Moore, Jeffrey E.; Curtis, K. Alexandra] NOAA, Marine Mammal & Turtle Div, SW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 8901 La Jolla Shores Dr, La Jolla, CA 92037 USA; [Fletcher, David] Univ Otago, Dept Math & Stat, POB 56, Dunedin, New Zealand; [Cortes, Enric] NOAA, Panama City Lab, Southeast Fisheries Sci Ctr, Natl Marine Fisheries Serv, 3500 Delwood Beach Rd, Panama City, FL 32408 USA; [James, Kelsey C.] Univ Rhode Isl, Dept Biol Sci, 120 Flagg Rd, Kingston, RI 02881 USA; [Lewison, Rebecca L.] San Diego State Univ, Dept Biol, 5500 Campanile Dr, San Diego, CA 92182 USA Dillingham, PW (reprint author), Univ New England, Sch Sci & Technol, Armidale, NSW 2351, Australia.; Dillingham, PW (reprint author), Clark Univ, George Perkins Marsh Inst, 950 Main St, Worcester, MA 01610 USA. pdillingham@une.edu.au Dillingham, Peter/B-3972-2014 Dillingham, Peter/0000-0001-6302-3275; Lewison, Rebecca/0000-0003-3065-2926; Curtis, Katherine Alexandra/0000-0001-7284-944X Lenfest Ocean Program Funding for this project was provided from the Lenfest Ocean Program. Ideas for this paper were originally presented at a workshop hosted by the Southwest Fisheries Science Center, 5-7 December 2012, entitled "Calculating productivity and related estimates for sharks," and we thank the participants for their helpful input. J. Barlow and T. Eguchi provided detailed comments that improved the manuscript. We thank S. Heppell and anonymous reviewers for their comments and suggestions. ACAP (Agreement on the Conservation of Albatrosses and Petrels), 2013, ACAP SPEC ASS VAR SP; Balazs GH, 2004, BIOL CONSERV, V117, P491, DOI 10.1016/j.biocon.2003.08.008; Barbraud C, 2009, ANIM CONSERV, V12, P258, DOI 10.1111/j.1469-1795.2009.00248.x; Barbraud C, 2008, J APPL ECOL, V45, P1460, DOI 10.1111/j.1365-2664.2008.01537.x; BEST PB, 1993, ICES J MAR SCI, V50, P169, DOI 10.1006/jmsc.1993.1018; BirdLife International, 2013, SPEC FACTSH VAR SPEC; BROOKE M, 2004, ALBATROSSES PETRELS; Caswell H., 2001, MATRIX POPULATION MO; Caughley G, 1977, ANAL VERTEBRATE POPU; Charnov EL, 2005, EVOL ECOL RES, V7, P1221; Charnov Eric L., 1993, P1; Clark F, 2010, METHODS ECOL EVOL, V1, P253, DOI 10.1111/j.2041-210X.2010.00029.x; Cortes E, 2002, CONSERV BIOL, V16, P1048, DOI 10.1046/j.1523-1739.2002.00423.x; Cortes E, 2010, AQUAT LIVING RESOUR, V23, P25, DOI 10.1051/alr/2009044; Curtis KA, 2013, AQUAT CONSERV, V23, P441, DOI 10.1002/aqc.2308; De Valpine P, 2002, ECOL MONOGR, V72, P57, DOI 10.1890/0012-9615(2002)072[0057:FPMIPN]2.0.CO;2; Dewar H., 2014, NOAATMNMFSSWFSC523; Dillingham PW, 2008, BIOL CONSERV, V141, P1783, DOI 10.1016/j.biocon.2008.04.022; Dillingham PW, 2012, J ORNITHOL, V153, P205, DOI 10.1007/s10336-011-0729-7; Dillingham PW, 2011, BIOL CONSERV, V144, P1885, DOI 10.1016/j.biocon.2011.04.014; Dillingham PW, 2010, ECOL MODEL, V221, P895, DOI 10.1016/j.ecolmodel.2009.12.008; Duncan RP, 2007, ECOLOGY, V88, P324, DOI 10.1890/0012-9658(2007)88[324:TTMTOE]2.0.CO;2; EBERHARDT LL, 1992, J WILDLIFE MANAGE, V56, P603, DOI 10.2307/3808878; Ernest SKM, 2003, ECOLOGY, V84, P3402, DOI 10.1890/02-9002; Fagan WF, 2010, OIKOS, V119, P455, DOI 10.1111/j.1600-0706.2009.18002.x; Fletcher D., 2008, MODELLING IMPACTS FI; FOWLER CW, 1988, EVOL ECOL, V2, P197, DOI 10.1007/BF02214283; Gedamke T, 2007, N AM J FISH MANAGE, V27, P605, DOI 10.1577/M05-157.1; Ginzburg LR, 2010, BIOL LETTERS, V6, P850, DOI 10.1098/rsbl.2010.0452; HENNEMANN WW, 1983, OECOLOGIA, V56, P104, DOI 10.1007/BF00378224; Heppell Selina S., 2005, P211; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; Heppell SS, 1999, AM FISH S S, V23, P137; Hobday AJ, 2011, FISH RES, V108, P372, DOI 10.1016/j.fishres.2011.01.013; Hone J, 2010, J APPL ECOL, V47, P507, DOI 10.1111/j.1365-2664.2010.01812.x; Jones Kate E., 2009, Ecology (Washington D C), V90, P2648, DOI 10.1890/08-1494.1; Kenchington TJ, 2014, FISH FISH, V15, P533, DOI 10.1111/faf.12027; Kolokotrones T, 2010, NATURE, V464, P753, DOI 10.1038/nature08920; Lebreton J.-D., 1981, CONTRIBUTION DYNAMIQ; LESLIE PH, 1966, J ANIM ECOL, V35, P291, DOI 10.2307/2396; Lewison RL, 2004, TRENDS ECOL EVOL, V19, P598, DOI 10.1016/j.tree.2004.09.004; Lunn DJ, 2000, STAT COMPUT, V10, P325, DOI 10.1023/A:1008929526011; Lynch HJ, 2009, ECOLOGY, V90, P1116, DOI 10.1890/08-0286.1; Moore JE, 2013, ENVIRON CONSERV, V40, P329, DOI 10.1017/S037689291300012X; Morris WF, 2002, QUANTITATIVE CONSERV; Niel C, 2005, CONSERV BIOL, V19, P826, DOI 10.1111/j.1523-1739.2005.00310.x; O'Connor MP, 2007, AM NAT, V170, P431, DOI 10.1086/519459; R Development Core Team, 2013, R LANG ENV STAT COMP; Richard Y., 2013, 108 MIN PRIM IND; Savage VM, 2004, FUNCT ECOL, V18, P257, DOI 10.1111/j.0269-8463.2004.00856.x; Savage VM, 2006, SCIENCE, V312, p198B, DOI 10.1126/science.1123679; Savage VM, 2004, AM NAT, V163, P429, DOI 10.1086/381872; Sibly RM, 2005, SCIENCE, V309, P607, DOI 10.1126/science.1110760; Simpfendorfer C, 2008, INTEGRATED APPROACH; Skalski JR, 2008, ECOL MODEL, V212, P528, DOI 10.1016/j.ecolmodel.2007.11.012; Sturtz S, 2005, J STAT SOFTW, V12, P1; Tacutu R, 2013, NUCLEIC ACIDS RES, V41, pD1027, DOI 10.1093/nar/gks1155; Taylor BL, 2000, CONSERV BIOL, V14, P1243, DOI 10.1046/j.1523-1739.2000.99409.x; Thomas A., 2006, R NEWS, V6, P12; Wade PR, 1998, MAR MAMMAL SCI, V14, P1, DOI 10.1111/j.1748-7692.1998.tb00688.x; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 62 4 4 3 38 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. JAN 2016 26 1 322 333 10.1890/14-1990 12 Ecology; Environmental Sciences Environmental Sciences & Ecology DC8ZY WOS:000369511000025 27039528 2019-02-21 J Reznick, D Reznick, David Hard and Soft Selection Revisited: How Evolution by Natural Selection Works in the Real World JOURNAL OF HEREDITY English Article density-dependent selection; eco-evo dynamics; frequency-dependent selection; integral projection models; life-history evolution LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; PREDATOR-PREY SYSTEM; TRINIDADIAN GUPPIES; RAPID EVOLUTION; DARWIN FINCHES; DROSOPHILA-PSEUDOOBSCURA; GENIC HETEROZYGOSITY; ECOLOGICAL DYNAMICS; RIVULUS-HARTII The modern synthesis of evolutionary biology unified Darwin's natural selection with Mendelian genetics, but at the same time it created the dilemma of genetic load. Lewontin and Hubby's (1966) and Harris's (1966) characterization of genetic variation in natural populations increased the apparent burden of this load. Neutrality or near neutrality of genetic variation was one mechanism proposed for the revealed excessive genetic variation. Bruce Wallace coined the term "soft selection" to describe an alternative way for natural selection to operate that was consistent with observed variation. He envisioned nature as presenting ecological vacancies that could be filled by diverse genotypes. Survival and successful reproduction was a combined function of population density, genotype, and genotype frequencies, rather than a fixed value of the relative fitness of each genotype. My goal in this review is to explore the importance of soft selection in the real world. My motive and that of my colleagues as described here is not to explain what maintains genetic variation in natural populations, but rather to understand the factors that shape how organisms adapt to natural environments. We characterize how feedbacks between ecology and evolution shape both evolution and ecology. These feedbacks are mediated by density-and frequency-dependent selection, the mechanisms that underlie soft selection. Here, I report on our progress in characterizing these types of selection with a combination of a consideration of the published literature and the results from my collaborators' and my research on natural populations of guppies. [Reznick, David] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Reznick, David] Acad Nat Sci, Philadelphia, PA USA; [Reznick, David] Univ Maryland, Dept Zool, College Pk, MD 20742 USA Reznick, D (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA.; Reznick, D (reprint author), Acad Nat Sci, Philadelphia, PA USA.; Reznick, D (reprint author), Univ Maryland, Dept Zool, College Pk, MD 20742 USA. david.reznick@ucr.edu reznick, david/0000-0002-1144-0568 National Science Foundation [DEB-0623632EF, DEB-1258231] National Science Foundation (DEB-0623632EF and DEB-1258231). Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Alexander HJ, 2006, EVOLUTION, V60, P2352, DOI 10.1111/j.0014-3820.2006.tb01870.x; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Auer SK, 2012, J ANIM ECOL, V81, P818, DOI 10.1111/j.1365-2656.2012.01964.x; Bassar RD, 2013, AM NAT, V181, P25, DOI 10.1086/668590; Bassar RD, 2012, AM NAT, V180, P167, DOI 10.1086/666611; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; BOAG PT, 1981, SCIENCE, V214, P82, DOI 10.1126/science.214.4516.82; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charlesworth B, 2013, EVOLUTION, V67, P3354, DOI 10.1111/evo.12195; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; DOBZHANSKY T, 1962, AM NAT, V96, P321, DOI 10.1086/282241; Duffy MA, 2008, AM NAT, V171, P499, DOI 10.1086/528998; Duffy MA, 2012, SCIENCE, V335, P1636, DOI 10.1126/science.1215429; Duffy MA, 2009, ECOLOGY, V90, P1441, DOI 10.1890/08-1130.1; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Estes JA, 2013, AM NAT, V181, pS76, DOI 10.1086/668120; Estes JA, 2011, SCIENCE, V333, P301, DOI 10.1126/science.1205106; Foerster K, 2007, NATURE, V447, P1107, DOI 10.1038/nature05912; Ford E.B., 1971, ECOLOGICAL GENETICS; Fraser DF, 2013, ECOLOGY, V94, P640, DOI 10.1890/12-0803.1; Fussmann GF, 2000, SCIENCE, V290, P1358, DOI 10.1126/science.290.5495.1358; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; GRANT BR, 1989, AM NAT, V133, P377, DOI 10.1086/284924; GRANT BR, 1993, P ROY SOC B-BIOL SCI, V251, P111, DOI 10.1098/rspb.1993.0016; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; GRANT PR, 1995, EVOLUTION, V49, P241, DOI 10.1111/j.1558-5646.1995.tb02236.x; HALDANE J. B. S., 1957, JOUR GENETICS, V55, P511, DOI 10.1007/BF02984069; Haldane JBS, 1937, AM NAT, V71, P337, DOI 10.1086/280722; HARRIS H, 1966, PROC R SOC SER B-BIO, V164, P298, DOI 10.1098/rspb.1966.0032; Haskins C. P., 1961, VERTEBRATE SPECIATIO; HUBBY JL, 1966, GENETICS, V54, P577; Hutchinson GE, 1965, ECOLOGICAL THEATER E; Kohler TJ, 2012, FRESHW SCI, V31, P1019, DOI 10.1899/11-141.1; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEVENE H, 1953, AM NAT, V87, P331, DOI 10.1086/281792; LEWONTIN RC, 1966, GENETICS, V54, P595; Lewontin RC, 1974, GENETIC BASIS EVOLUT; Lopez-Sepulcre A, 2013, P ROYAL SOC B, V280, P1763; Marris E, 2014, NATURE, V507, P158, DOI 10.1038/507158a; ORIANS GH, 1962, AM NAT, V96, P257, DOI 10.1086/282233; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; Palkovacs EP, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018879; Penczykowski RM, 2014, LIMNOL OCEANOGR, V59, P340, DOI 10.4319/lo.2014.59.2.0340; PIMENTEL D, 1961, AM NAT, V95, P65, DOI 10.1086/282160; PIMENTEL D, 1968, SCIENCE, V159, P1432, DOI 10.1126/science.159.3822.1432; PRICE TD, 1984, NATURE, V309, P787, DOI 10.1038/309787a0; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK D, 1982, AM NAT, V120, P181, DOI 10.1086/283981; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick D, 2007, ANN ZOOL FENN, V44, P152; Reznick DN, 2012, EVOLUTION, V66, P2903, DOI 10.1111/j.1558-5646.2012.01650.x; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Reznick DN, 1997, EXP GERONTOL, V32, P245, DOI 10.1016/S0531-5565(96)00129-5; Ripple WJ, 2012, BIOL CONSERV, V145, P205, DOI 10.1016/j.biocon.2011.11.005; Rodd FH, 1997, ECOLOGY, V78, P405; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Shertzer KW, 2002, J ANIM ECOL, V71, P802, DOI 10.1046/j.1365-2656.2002.00645.x; Sinervo B, 1996, NATURE, V380, P240, DOI 10.1038/380240a0; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; Sinervo B, 2007, AM NAT, V170, P663, DOI 10.1086/522092; Torres-Dowdall J, 2012, FUNCT ECOL, V26, P616, DOI 10.1111/j.1365-2435.2012.01980.x; Travis J, 2013, AM NAT, V181, pS9, DOI 10.1086/669970; WALLACE B, 1975, EVOLUTION, V29, P465, DOI 10.1111/j.1558-5646.1975.tb00836.x; Walsh MR, 2011, EVOLUTION, V65, P1021, DOI 10.1111/j.1558-5646.2010.01188.x; Walsh MR, 2011, FUNCT ECOL, V25, P227, DOI 10.1111/j.1365-2435.2010.01786.x; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; Willing EM, 2010, MOL ECOL, V19, P968, DOI 10.1111/j.1365-294X.2010.04528.x; Yoshida T, 2004, P ROY SOC B-BIOL SCI, V271, P1947, DOI 10.1098/rspb.2004.2818; Yoshida T, 2003, NATURE, V424, P303, DOI 10.1038/nature01767; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x 84 10 11 6 85 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 0022-1503 1465-7333 J HERED J. Hered. JAN 2016 107 1 SI 3 14 10.1093/jhered/esv076 12 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity DD6VW WOS:000370063700002 26424874 Bronze 2019-02-21 J Bjorkvoll, E; Lee, AM; Grotan, V; Saether, BE; Stien, A; Engen, S; Albon, S; Loe, LE; Hansen, BB Bjorkvoll, Eirin; Lee, Aline M.; Grotan, Vidar; Saether, Bernt-Erik; Stien, Audun; Engen, Steinar; Albon, Steve; Loe, Leif Egil; Hansen, Brage Bremset Demographic buffering of life histories? Implications of the choice of measurement scale ECOLOGY English Article age structure; demographic buffering; elasticity; integrated population modeling; life history; matrix models; measurement scale; Svalbard reindeer; variance constraints POPULATION-DYNAMICS; VITAL-RATES; VARIABLE ENVIRONMENTS; TEMPORAL VARIATION; LARGE HERBIVORES; VARIABILITY; FITNESS; CLIMATE; HYPOTHESIS; SURVIVAL Life-history theory predicts that the vital rates that influence population growth the most should be buffered against environmental fluctuations due to selection for reduced variation. However, it remains unclear whether populations actually are influenced by such demographic buffering, because variation in vital rates can be compared on different measurement scales, and there has been little attempt to investigate whether the choice of scale influences the chance of detecting demographic buffering. We compared two statistical approaches to examine whether demographic buffering has influenced vital rates in wild Svalbard reindeer (Rangifer tarandus platyrhynchus). To account for statistical variance constraints on vital rates limited between 0 and 1 in analyses of demographic buffering, one approach is to scale observed variation by the maximum possible variation on the arithmetic scale. When applying this approach, the results suggested that demographic buffering was occurring. However, when we applied an alternative approach that identified statistical variance constraints on the logit scale, there was no evidence for demographic buffering. Thus, the choice of measurement scale must be carefully considered before one can fully understand whether demographic buffering influences life histories. Defining the appropriate scale may require an understanding of the mechanisms through which demographic buffering may have evolved. [Bjorkvoll, Eirin; Lee, Aline M.; Grotan, Vidar; Saether, Bernt-Erik; Engen, Steinar; Hansen, Brage Bremset] Norwegian Univ Sci & Technol, Ctr Biodivers Dynam, NO-7491 Trondheim, Norway; [Lee, Aline M.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA; [Stien, Audun] Norwegian Inst Nat Res, Arctic Ecol Dept, Fram Ctr, NO-9296 Tromso, Norway; [Albon, Steve] Craigiebuckler, James Hutton Inst, Aberdeen AB15 8QH, Scotland; [Loe, Leif Egil] Norwegian Univ Life Sci, Ecol & Nat Resource Management, NO-1432 As, Norway; [Bjorkvoll, Eirin] Norwegian Environm Agcy, Postboks 5672, NO-7485 Trondheim, Norway Bjorkvoll, E (reprint author), Norwegian Environm Agcy, Postboks 5672, NO-7485 Trondheim, Norway. eirin.bjorkvoll@miljodir.no Loe, Leif Egil/M-5798-2016; ALBON, Stephen/C-6304-2011; Hansen, Brage/B-9942-2008 Loe, Leif Egil/0000-0003-4804-2253; ALBON, Stephen/0000-0002-0811-1333; Hansen, Brage/0000-0001-8763-4361; Stien, Audun/0000-0001-8046-7337; Lee, Aline/0000-0001-9272-4249 European Research Council (ERC) [AdG 268562]; Research Council of Norway (RCN) (SFF-III project) [223257]; Research Council of Norway (RCN) (NORKLIMA project) [178561/S30]; Research Council of Norway (RCN) (POLARPROG project) [216051]; RCN; Macaulay Development Trust; UK Natural Environment Research Council This study was financed by the European Research Council (ERC-2010-AdG 268562) and the Research Council of Norway (RCN) (SFF-III project 223257, NORKLIMA project 178561/S30, and POLARPROG project 216051). We are grateful to Christophe Pelabon, Justin Irvine, Erik Ropstad, Vebjorn Veiberg, Rolf Langvatn, Odd Halvorsen, and students and staff at The University Centre in Svalbard (UNIS) for contributions to the study. We also thank J. M. Gaillard and one anonymous reviewer for constructive comments improving the manuscript. Data collection was mainly financed by RCN, UK Natural Environment Research Council, and the Macaulay Development Trust. Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Burns JH, 2010, J ECOL, V98, P334, DOI 10.1111/j.1365-2745.2009.01634.x; Caswell H., 2001, MATRIX POPULATION MO; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Hansen BB, 2013, SCIENCE, V339, P313, DOI 10.1126/science.1226766; Houle D, 2011, Q REV BIOL, V86, P3, DOI 10.1086/658408; Jakalaniemi A, 2013, EVOL ECOL, V27, P533, DOI 10.1007/s10682-012-9606-y; Jongejans E, 2010, ECOL LETT, V13, P736, DOI 10.1111/j.1461-0248.2010.01470.x; Kery M, 2012, BAYESIAN POPULATION ANALYSIS USING WINBUGS: A HIERARCHICAL PERSPECTIVE, P1; Lande R., 2003, STOCHASTIC POPULATIO; Lee AM, 2015, OIKOS, V124, P806, DOI 10.1111/oik.01924; Morris WF, 2004, AM NAT, V163, P579, DOI 10.1086/382550; Morris WF, 2011, AM NAT, V177, pE14, DOI 10.1086/657443; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Rotella JJ, 2012, J ANIM ECOL, V81, P162, DOI 10.1111/j.1365-2656.2011.01902.x; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; Solberg EJ, 2001, ECOGRAPHY, V24, P441, DOI 10.1034/j.1600-0587.2001.d01-200.x; Stien A, 2012, BIOL LETTERS, V8, P1002, DOI 10.1098/rsbl.2012.0764; TULJAPURKAR SD, 1980, THEOR POPUL BIOL, V18, P314, DOI 10.1016/0040-5809(80)90057-X; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P114, DOI 10.1016/0040-5809(82)90009-0 24 8 8 0 43 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology JAN 2016 97 1 40 47 10.1890/15-0317.1 8 Ecology Environmental Sciences & Ecology DD3VZ WOS:000369852600006 27008773 Bronze 2019-02-21 J Shen, XX; Liang, D; Chen, MY; Mao, RL; Wake, DB; Zhang, P Shen, Xing-Xing; Liang, Dan; Chen, Meng-Yun; Mao, Rong-Li; Wake, David B.; Zhang, Peng Enlarged Multilocus Data set Provides Surprisingly Younger Time of Origin for the Plethodontidae, the Largest Family of Salamanders SYSTEMATIC BIOLOGY English Article Dispersal; molecular dating; paleogeography; phylogenomics; species tree; timetree COMPLETE MITOCHONDRIAL GENOMES; NORTH-AMERICAN SALAMANDERS; LIFE-HISTORY EVOLUTION; DIVERGENCE TIME; PHYLOGENETIC ANALYSIS; MAXIMUM-LIKELIHOOD; AMPHIBIA-CAUDATA; PALEONTOLOGICAL EVIDENCE; RAPID DIVERSIFICATION; GLOBAL PATTERNS Deep phylogenetic relationships of the largest salamander family Plethodontidae have been difficult to resolve, probably reflecting a rapid diversification early in their evolutionary history. Here, data from 50 independent nuclear markers (total 48,582 bp) are used to reconstruct the phylogeny and divergence times for plethodontid salamanders, using both concatenation and coalescence-based species tree analyses. Our results robustly resolve the position of the enigmatic eastern North American four-toed salamander (Hemidactylium) as the sister taxon of Batrachoseps + Tribe Bolitoglossini, thus settling a long-standing question. Furthermore, we statistically reject sister taxon status of Karsenia and Hydromantes, the only plethodontids to occur outside the Americas, leading us to new biogeographic hypotheses. Contrary to previous long-standing arguments that plethodontid salamanders are an old lineage originating in the Cretaceous (more than 90 Ma), our analyses lead to the hypothesis that these salamanders are much younger, arising close to the K-T boundary (similar to 66 Ma). These time estimates are highly stable using alternative calibration schemes and dating methods. Our data simulation highlights the potential risk of making strong arguments about phylogenetic timing based on inferences from a handful of nuclear genes, a common practice. Based on the newly obtained timetree and ancestral area reconstruction results, we argue that (i) the classic "Out of Appalachia" hypothesis of plethodontid origins is problematic; (ii) the common ancestor of extant plethodontids may have originated in northwestern North America in the early Paleocene; (iii) origins of Eurasian plethodontids likely result from two separate dispersal events from western North America via Beringia in the late Eocene (similar to 42 Ma) and the early Miocene (similar to 23 Ma), respectively. [Shen, Xing-Xing; Liang, Dan; Chen, Meng-Yun; Mao, Rong-Li; Zhang, Peng] Sun Yat Sen Univ, Sch Life Sci, Coll Ecol & Evolut, State Key Lab Biocontrol, Guangzhou 510275, Guangdong, Peoples R China; [Wake, David B.] Univ Calif Berkeley, Museum Vertebrate Zool, 3101 Valley Life Sci Bldg, Berkeley, CA 94720 USA; [Wake, David B.] Univ Calif Berkeley, Dept Integrat Biol, 3101 Valley Life Sci Bldg, Berkeley, CA 94720 USA Zhang, P (reprint author), Sun Yat Sen Univ, Sch Life Sci, Higher Educ Mega Ctr, PZ 434, Guangzhou 510006, Guangdong, Peoples R China.; Wake, DB (reprint author), Univ Calif Berkeley, DBW 3101 Valley Life Sci Bldg, Berkeley, CA 94720 USA. wakelab@berkeley.edu; alarzhang@gmail.com Shen, Xing-Xing/0000-0001-5765-1419 National Natural Science Foundation of China [31372172, 31172075]; National Science Fund for Excellent Young Scholars of China [31322049] This work was supported by National Natural Science Foundation of China (grants No. 31372172 and No. 31172075 to P. Zhang) and the National Science Fund for Excellent Young Scholars of China to P. Zhang (No. 31322049). Adkins RM, 2001, MOL BIOL EVOL, V18, P777, DOI 10.1093/oxfordjournals.molbev.a003860; Aljanabi SM, 1997, NUCLEIC ACIDS RES, V25, P4692, DOI 10.1093/nar/25.22.4692; AmphibiaWeb, 2015, INF AMPH BIOL CONS; BEACHY CK, 1992, AM NAT, V139, P839, DOI 10.1086/285360; Benton MJ, 2007, MOL BIOL EVOL, V24, P26, DOI 10.1093/molbev/msl150; BLAKEY R. C, 2011, PALEOGEOGRAPHY GEOLO; Boardman GS, 2011, PALAEONTOL ELECTRON, V14; Bonett RM, 2014, EVODEVO, V5, DOI 10.1186/2041-9139-5-27; Bonett RM, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0200; Briggs J. C., 1995, GLOBAL BIOGEOGRAPHY; Carranza S, 2008, J BIOGEOGR, V35, P724, DOI 10.1111/j.1365-2699.2007.01817.x; Castresana J, 2000, MOL BIOL EVOL, V17, P540, DOI 10.1093/oxfordjournals.molbev.a026334; Chippindale PT, 2004, EVOLUTION, V58, P2809; Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109; Delfino Massimo, 2005, Annali del Museo Civico di Storia Naturale Giacomo Doria, V97, P45; Dos Reis M, 2014, SYST BIOL, V63, P555, DOI 10.1093/sysbio/syu020; dos Reis M, 2012, P ROY SOC B-BIOL SCI, V279, P3491, DOI 10.1098/rspb.2012.0683; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Evans S.E., 1993, Proceedings of the Yorkshire Geological Society, V49, P229; Frost DR, 2006, B AM MUS NAT HIST, P8, DOI 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2; Gao KQ, 2001, NATURE, V410, P574, DOI 10.1038/35069051; Gao KQ, 2003, NATURE, V422, P424, DOI 10.1038/nature01491; Gardner JD, 2003, J VERTEBR PALEONTOL, V23, P769, DOI 10.1671/1828-4; Guindon S, 2010, SYST BIOL, V59, P307, DOI 10.1093/sysbio/syq010; Jones R.W., 2011, APPL PALEONTOLOGY TE; Kozak KH, 2009, EVOLUTION, V63, P1769, DOI 10.1111/j.1558-5646.2009.00680.x; Kozak KH, 2005, EVOLUTION, V59, P2000; Lanfear R, 2012, MOL BIOL EVOL, V29, P1695, DOI 10.1093/molbev/mss020; LANZA B, 1981, MONIT ZOOL ITAL, V15, P117; Lanza B., 1995, MONOGRAFIE REGIONALE, VXVI; Lanza Benedetto, 2005, Atti del Museo Civico di Storia Naturale di Trieste, V52, P5; Liu LA, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-302; Loytynoja A, 2008, PHILOS T R SOC B, V363, P3913, DOI 10.1098/rstb.2008.0170; Macey JR, 2005, CLADISTICS, V21, P194, DOI 10.1111/j.1096-0031.2005.00054.x; Min MS, 2005, NATURE, V435, P87, DOI 10.1038/nature03474; Mueller RL, 2006, SYST BIOL, V55, P289, DOI 10.1080/10635150500541672; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; Mulcahy DG, 2012, MOL PHYLOGENET EVOL, V65, P974, DOI 10.1016/j.ympev.2012.08.018; Near TJ, 2012, P NATL ACAD SCI USA, V109, P13698, DOI 10.1073/pnas.1206625109; Pyron RA, 2014, SYST BIOL, V63, P779, DOI 10.1093/sysbio/syu042; Pyron RA, 2011, MOL PHYLOGENET EVOL, V61, P543, DOI 10.1016/j.ympev.2011.06.012; Pyron RA, 2011, SYST BIOL, V60, P466, DOI 10.1093/sysbio/syr047; Pyron RA, 2010, SYST BIOL, V59, P185, DOI 10.1093/sysbio/syp090; RAGE J-C, 1989, Palaeontographica Abteilung A Palaeozoologie-Stratigraphie, V206, P1; RAMBAUT A, 2007, TRACER VERSION 1 4; Ree RH, 2008, SYSTEMATIC BIOL, V57, P4, DOI 10.1080/10635150701883881; Roelants K, 2007, P NATL ACAD SCI USA, V104, P887, DOI 10.1073/pnas.0608378104; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; RUBEN JA, 1989, AM NAT, V134, P161, DOI 10.1086/284973; Scotese C.R., 2001, PALEOMAP PROJECT; Shen XX, 2013, MOL BIOL EVOL, V30, P2235, DOI 10.1093/molbev/mst122; Shimodaira H, 2001, BIOINFORMATICS, V17, P1246, DOI 10.1093/bioinformatics/17.12.1246; Springer MS, 2003, P NATL ACAD SCI USA, V100, P1056, DOI 10.1073/pnas.0334222100; Stamatakis A, 2006, BIOINFORMATICS, V22, P2688, DOI 10.1093/bioinformatics/btl446; Swofford D. L., 2002, PAUP PHYLOGENETIC AN; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Tan G., 2015, SYST BIOL, P1; Thorne JL, 2002, SYST BIOL, V51, P689, DOI 10.1080/10635150290102456; TIFFNEY BH, 1985, J ARNOLD ARBORETUM, V66, P243, DOI 10.5962/bhl.part.13183; Tiffney BH, 2001, INT J PLANT SCI, V162, pS3, DOI 10.1086/323880; TIHEN JA, 1981, J HERPETOL, V15, P35, DOI 10.2307/1563644; Venczel M, 2005, AMPHIBIA-REPTILIA, V26, P408, DOI 10.1163/156853805774408586; Vieites DR, 2007, P NATL ACAD SCI USA, V104, P19903, DOI 10.1073/pnas.0705056104; Vieites DR, 2011, MOL PHYLOGENET EVOL, V59, P623, DOI 10.1016/j.ympev.2011.03.012; Wake DB, 2013, AMPHIBIA-REPTILIA, V34, P323, DOI 10.1163/15685381-00002893; Wake DB, 2012, ZOOTAXA, P75; Wake DB, 2009, ANNU REV ECOL EVOL S, V40, P333, DOI 10.1146/annurev.ecolsys.39.110707.173552; WAKE DAVID B., 1966, MEM S CALIF ACAD SCI, V4, P1; WAKE DB, 1991, AM NAT, V138, P543, DOI 10.1086/285234; WAKE DB, 1978, EVOLUTION, V32, P529, DOI 10.1111/j.1558-5646.1978.tb04595.x; Wiens JJ, 2007, AM NAT, V170, pS86, DOI 10.1086/519396; Wiens JJ, 2006, EVOLUTION, V60, P2585; WILDER IW, 1920, COPEIA, V84, P63; Yang ZH, 2007, MOL BIOL EVOL, V24, P1586, DOI 10.1093/molbev/msm088; Zachos J, 2001, SCIENCE, V292, P686, DOI 10.1126/science.1059412; Zhang P, 2005, SYST BIOL, V54, P391, DOI 10.1080/10635150590945278; Zhang P, 2009, MOL PHYLOGENET EVOL, V53, P492, DOI 10.1016/j.ympev.2009.07.010; Zheng YC, 2011, MOL BIOL EVOL, V28, P2521, DOI 10.1093/molbev/msr072; Zhu TQ, 2015, SYST BIOL, V64, P267, DOI 10.1093/sysbio/syu109 79 23 23 3 27 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1063-5157 1076-836X SYST BIOL Syst. Biol. JAN 2016 65 1 66 81 10.1093/sysbio/syv061 16 Evolutionary Biology Evolutionary Biology DD5IA WOS:000369955500005 26385618 Bronze, Green Published 2019-02-21 J Zeller, M; Koella, JC Zeller, Michael; Koella, Jacob C. Effects of food variability on growth and reproduction of Aedes aegypti ECOLOGY AND EVOLUTION English Article Aedes aegypti; compensatory growth; diet restriction; life-history evolution LIFE-HISTORY TRAITS; COMPENSATORY GROWTH; CALORIC RESTRICTION; REACTION NORMS; PHENOTYPIC PLASTICITY; POECILIA-RETICULATA; BODY-SIZE; EVOLUTION; DROSOPHILA; LONGEVITY Despite a large body of knowledge about the evolution of life histories, we know little about how variable food availability during an individual's development affects its life history. We measured the effects of manipulating food levels during early and late larval development of the mosquito Aedes aegypti on its growth rate, life history and reproductive success. Switching from low to high food led to compensatory growth: individuals grew more rapidly during late larval development and emerged at a size close to that of mosquitoes consistently reared at high food. However, switching to high food had very little effect on longevity, and fecundity and reproductive success were considerably lower than in consistently well-fed mosquitoes. Changing from high to low food led to adults with similar size as in consistently badly nourished mosquitoes, but even lower fecundity and reproductive success. A rapid response of growth to changing resources can thus have unexpected effects in later life and in lifetime reproductive success. More generally, our study emphasizes the importance of varying developmental conditions for the evolutionary pressures underlying life-history evolution. [Zeller, Michael; Koella, Jacob C.] Univ Neuchatel, Inst Biol, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland Zeller, M (reprint author), Univ Neuchatel, Inst Biol, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland. mich.zeller@gmail.com Swiss National Science Foundation (SNF) [31003A_144207] This work was funded by grant 31003A_144207 of the Swiss National Science Foundation (SNF). Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Auer SK, 2010, ECOL LETT, V13, P998, DOI 10.1111/j.1461-0248.2010.01491.x; Bashey F, 2006, EVOLUTION, V60, P348, DOI 10.1554/05-087.1; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; De Block M, 2008, P R SOC B, V275, P781, DOI 10.1098/rspb.2007.1515; Dhahbi JM, 2004, P NATL ACAD SCI USA, V101, P5524, DOI 10.1073/pnas.0305300101; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Ernande B, 2004, J EVOLUTION BIOL, V17, P342, DOI 10.1046/j.1420-9101.2003.00674.x; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; Hentschel BT, 2000, ECOLOGY, V81, P3495, DOI 10.2307/177509; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; Kirkwood TBL, 2005, MECH AGEING DEV, V126, P1011, DOI 10.1016/j.mad.2005.03.021; Koella JC, 1996, J MED ENTOMOL, V33, P261, DOI 10.1093/jmedent/33.2.261; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; LEIPS J, 1994, ECOLOGY, V75, P1345, DOI 10.2307/1937459; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; LYIMO EO, 1993, MED VET ENTOMOL, V7, P328, DOI 10.1111/j.1365-2915.1993.tb00700.x; Mair W, 2003, SCIENCE, V301, P1731, DOI 10.1126/science.1086016; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012; McCann S, 2009, J VECTOR ECOL, V34, P174, DOI [10.3376/038.034.0202, 10.1111/j.1948-7134.2009.00024.x]; Merry BJ, 2002, INT J BIOCHEM CELL B, V34, P1340, DOI 10.1016/S1357-2725(02)00038-9; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; R Development Core Team, 2015, R LANG ENV STAT COMP; Rasband W. S., 1997, IMAGEJ; Reiskind MH, 2009, MED VET ENTOMOL, V23, P62, DOI 10.1111/j.1365-2915.2008.00782.x; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; Spindler SR, 2005, MECH AGEING DEV, V126, P960, DOI 10.1016/j.mad.2005.03.016; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Weindruch R, 1996, TOXICOL PATHOL, V24, P742, DOI 10.1177/019262339602400618; Yearsley JM, 2004, FUNCT ECOL, V18, P563, DOI 10.1111/j.0269-8463.2004.00879.x 36 6 6 2 27 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JAN 2016 6 2 552 559 10.1002/ece3.1888 8 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DC4BJ WOS:000369164400014 26843938 DOAJ Gold, Green Published 2019-02-21 J Hookham, B; Page, LR Hookham, Brenda; Page, Louise R. How did phytoplankton-feeding larvae re-evolve within muricid gastropods? A view from developmental morphology MARINE BIOLOGY English Article LIFE-HISTORY EVOLUTION; MARINE-INVERTEBRATES; ECHINODERM LARVAE; NONFEEDING LARVAE; ECHINOIDS; MOLLUSCA; PATTERNS; CAENOGASTROPODA; NEOGASTROPODA; PROBOSCIS Post-Paleozoic life history transitions in mollusks and echinoderms have been biased toward switches from feeding, planktonic larvae (planktotrophic), to one of the non-feeding developmental modes, such as maternally provisioned planktonic larvae, fully encapsulated larvae, or direct development. Nevertheless, rare resurrections of feeding larvae from fully encapsulated larvae have occurred within calyptraeid and muricid gastropods. The only previous study on the developing foregut of a muricid with encapsulated larvae (Nucella lapillus) indicated loss of the larval esophagus, a potential barrier to evolutionary re-emergence of larval planktotrophy. However, histological and ultrastructural examination of foregut development in two other nucellids, Nucella lamellosa and N. ostrina, both with fully encapsulated development, revealed a transient larval esophagus in both, as identified by anatomical position, tissue composition, interconnections to other structures, and fate at metamorphosis. The larval esophagus is difficult to recognize in nucellids without a comparative framework and a complete developmental series extending from early veliger stages through to juveniles. Both the larval mouth and distal larval esophagus are completely destroyed at metamorphosis. Surprisingly, encapsulated larvae of N. lamellosa also developed all three velar ciliary tracts needed for capture and ingestion of particles, despite absence of nurse egg feeding by encapsulated larvae of this species and despite apparent absence of phytoplankton-feeding larvae in this genus since its origin 20 million years ago. Retention of a larval esophagus and a full complement of velar ciliary tracts needed for particle capture and ingestion in encapsulated larvae of some muricids may help explain how larval planktotrophy re-emerged within this clade. [Hookham, Brenda; Page, Louise R.] Univ Victoria, Dept Biol, STN CSC, POB 1700, Victoria, BC V8W 2Y2, Canada Page, LR (reprint author), Univ Victoria, Dept Biol, STN CSC, POB 1700, Victoria, BC V8W 2Y2, Canada. lpage@uvic.ca Natural Sciences and Engineering Research Council of Canada [RGPIN138169-2009] Funding was provided by the Natural Sciences and Engineering Research Council of Canada by way of a postgraduate scholarship awarded to BH and a Discovery Grant (RGPIN138169-2009) to LRP. Abro AM, 1969, THESIS U READING BER; Ball AD, 1997, J MOLLUS STUD, V63, P87, DOI 10.1093/mollus/63.1.87; Ball AD, 1997, J MOLLUS STUD, V63, P245, DOI 10.1093/mollus/63.2.245; Ball AD, 2002, B MALACOL S, V4, P51; BONAR DB, 1974, J EXP MAR BIOL ECOL, V16, P227, DOI 10.1016/0022-0981(74)90027-6; Chaparro OR, 2002, BIOL BULL, V203, P80, DOI 10.2307/1543460; CLONEY RA, 1968, Z ZELLFORSCH MIK ANA, V89, P250, DOI 10.1007/BF00347297; Collin R, 2004, EVOLUTION, V58, P1488; Collin R, 2007, BIOL BULL-US, V212, P83, DOI 10.2307/25066586; Collins TM, 1996, EVOLUTION, V50, P2287, DOI 10.1111/j.1558-5646.1996.tb03617.x; Cowen RK, 2009, ANNU REV MAR SCI, V1, P443, DOI 10.1146/annurev.marine.010908.163757; Cunningham JA, 2009, BIOL LETTERS, V5, P647, DOI 10.1098/rsbl.2009.0302; Duda RF, 1999, P NATL ACAD SCI USA, V96, P10272, DOI [10.1073/pnas96.10272, DOI 10.1073/PNAS96.10272]; Duda TF, 2005, MOL ECOL, V14, P267, DOI 10.1111/j.1365-294X.2004.02397.x; Fiala JC, 2005, J MICROSC-OXFORD, V218, P52, DOI 10.1111/j.1365-2818.2005.01466.x; Fioroni P, 1966, REV SUISSE ZOOL, V73, P45; Fretter V., 1969, Proceedings of the Malacological Society of London, V38, P375; Fretter V., 1994, BRIT PROSOBRANCH GAS; FRETTER VERA, 1967, PROC MALACOL SOC LONDON, V37, P357; Golding RE, 2010, ZOOMORPHOLOGY, V129, P81, DOI 10.1007/s00435-009-0101-0; Graham A, 1941, P R SOC EDINBURGH B, V61, P87; HADFIELD MG, 1989, B MAR SCI, V45, P377; Hall B, 1994, HOMOLOGY; Hall BK, 2003, BIOL REV, V78, P409, DOI 10.1017/S1464793102006097; Hart M, 2000, SEMIN CELL DEV BIOL, V11, P411, DOI 10.1006/scdb.2000.0194; Hart MW, 1997, EVOLUTION, V51, P1848, DOI 10.1111/j.1558-5646.1997.tb05108.x; Hofstee J, 2011, BIOL BULL-US, V221, P239, DOI 10.1086/BBLv221n3p239; HUNTER T, 1986, J EXP MAR BIOL ECOL, V96, P303, DOI 10.1016/0022-0981(86)90209-1; JABLONSKI D, 1986, B MAR SCI, V39, P565; Jagersten G., 1972, EVOLUTION METAZOAN L; Jeffery CH, 2003, EVOLUTION, V57, P1031; KEMPF SC, 1989, J MAR BIOL ASSOC UK, V69, P659, DOI 10.1017/S0025315400031052; Levin Lisa A., 1995, P1; LIEBERMAN BS, 1993, PALEOBIOLOGY, V19, P205; Lindberg DR, 2003, EVOL DEV, V5, P494, DOI 10.1046/j.1525-142X.2003.03055.x; Marko PB, 2003, VELIGER, V46, P77; Marko PB, 2014, J MOLLUS STUD, V80, P341, DOI 10.1093/mollus/eyu024; Marshall DJ, 2012, ANNU REV ECOL EVOL S, V43, P97, DOI 10.1146/annurev-ecolsys-102710-145004; McEdward LR, 2000, SEMIN CELL DEV BIOL, V11, P403, DOI 10.1006/scdb.2000.0193; MCEDWARD LR, 1993, BIOL BULL, V184, P255, DOI 10.2307/1542444; McEdward LR, 1997, BIOL J LINN SOC, V60, P381; Page LR, 2011, BIOL BULL-US, V221, P176, DOI 10.1086/BBLv221n2p176; Page LR, 2005, J MORPHOL, V264, P327, DOI 10.1002/jmor.10335; Page LR, 1998, INVERTEBR BIOL, V117, P208, DOI 10.2307/3226987; Page LR, 2000, EVOL DEV, V2, P25, DOI 10.1046/j.1525-142x.2000.00017.x; Page LR, 2002, J MORPHOL, V252, P202, DOI 10.1002/jmor.1099; Pappalardo P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094104; Parries SC, 2003, CAN J ZOOL, V81, P1650, DOI 10.1139/Z03-154; Paulay G, 2006, INTEGR COMP BIOL, V46, P269, DOI 10.1093/icb/icj027; Pernet B, 2003, BIOL BULL-US, V205, P295, DOI 10.2307/1543293; Pernet B, 2010, EVOL DEV, V12, P618, DOI 10.1111/j.1525-142X.2010.00446.x; Ponder Winston F., 2008, P331; Raff RA, 2006, HEREDITY, V97, P244, DOI 10.1038/sj.hdy.6800866; REID DG, 1989, PHILOS T R SOC B, V324, P1, DOI 10.1098/rstb.1989.0040; RICHARDSON KC, 1960, STAIN TECHNOL, V35, P313, DOI 10.3109/10520296009114754; RIVEST BR, 1992, BIOL BULL, V182, P305, DOI 10.2307/1542251; Romero MR, 2010, BIOL BULL-US, V218, P145, DOI 10.1086/BBLv218n2p145; Scholtz G, 2005, THEOR BIOSCI, V124, P121, DOI 10.1016/j.thbio.2005.09.002; Shubin Neil H., 1994, P249; SMITH AB, 1995, PHILOS T ROY SOC B, V349, P11, DOI 10.1098/rstb.1995.0085; STOCKMANNBOSBACH R, 1988, J MOLLUS STUD, V54, P181; STOCKMANNBOSBACH R, 1988, CAH BIOL MAR, V29, P247; STRATHMANN RR, 1994, AM ZOOL, V34, P502; STRATHMANN RR, 1979, BIOL BULL, V157, P524, DOI 10.2307/1541035; STRATHMANN RR, 1993, ANNU REV ECOL SYST, V24, P89, DOI 10.1146/annurev.es.24.110193.000513; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Strathmann RR, 1978, EVOLUTION, V32, P899; THIRI3TQ.C, 1969, VIE MILIEU A BIOL MA, V20, P347; von Werner B, 1955, HELGOL WISS MEERESUN, V5, P169; WRAY GA, 1991, TRENDS ECOL EVOL, V6, P45, DOI 10.1016/0169-5347(91)90121-D; Wray GA, 1996, SYST BIOL, V45, P308, DOI 10.2307/2413566 71 1 1 1 14 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0025-3162 1432-1793 MAR BIOL Mar. Biol. JAN 2016 163 1 11 10.1007/s00227-015-2784-8 15 Marine & Freshwater Biology Marine & Freshwater Biology DC5EH WOS:000369243700005 2019-02-21 J Sueiro, MC; Palacios, MG Cruz Sueiro, Maria; Gabriela Palacios, Maria Immunological and health-state parameters in the Patagonian rockfish Sebastes oculatus. Their relation to chemical stressors and seasonal changes FISH & SHELLFISH IMMUNOLOGY English Article Innate immunity; Hematology; Body condition; Anthropogenic pollution; Wild fish; Seasonality; Patagonia IMMUNE-RESPONSE; OREOCHROMIS-MOSSAMBICUS; POPULATION-LEVEL; HEAVY-METALS; FISH; INNATE; EXPOSURE; POLLUTION; OIL; HYDROCARBONS We present the results of a field study that evaluates whether exposure to anthropogenic pollution impacts immunological and health-state parameters of wild marine fish during the breeding and non breeding periods. We assessed aspects of innate immunity (bactericidal capacity, bacterial agglutination, and leukocyte profile) and general health-related parameters (neutrophil to lymphocyte ratio, hematocrit, and condition factor) in the Patagonian rockfish (Sebastes oculatus) sampled from polluted (exposed) and reference (control) sites during winter (i.e., coolest temperatures and active reproductive period) and in summer (i.e., warmest temperatures and non-reproductive period). Results showed lower bactericidal competence, hematocrit, and condition factor in fish from exposed sites independently of season, whereas lymphocytes were higher and monocytes lower at the exposed site only during summer. Moreover, fish sampled during winter displayed lower bactericidal competence, hematocrit, and condition factor than those sampled in summer independently of site, whereas the opposite pattern was found for bacterial agglutination. These results could be explained by life-history theory, which predicts a re-allocation of resources between reproduction and other physiological functions (including immunity) during the most energetically demanding season. The present results show an alteration in immunological and health-state parameters of wild marine fish exposed to anthropogenic pollution independently of season, which could potentially result in higher susceptibility to disease and in turn population decline. (C) 2015 Elsevier Ltd. All rights reserved. [Cruz Sueiro, Maria; Gabriela Palacios, Maria] Consejo Nacl Invest Cient & Tecn, CENPAT, Ctr Nacl Patagon, Blvd Brown 2915 U9120ACD, Puerto Madryn, Chubut, Argentina Sueiro, MC (reprint author), Consejo Nacl Invest Cient & Tecn, CENPAT, Ctr Nacl Patagon, Blvd Brown 2915 U9120ACD, Puerto Madryn, Chubut, Argentina. cruz@cenpat.edu.ar; gpalacios@cenpat.edu.ar Adger WN, 2005, SCIENCE, V309, P1036, DOI 10.1126/science.1112122; Ali AO, 2014, MAR POLLUT BULL, V79, P87, DOI 10.1016/j.marpolbul.2013.12.036; Beldomenico PM, 2008, J ANIM ECOL, V77, P984, DOI 10.1111/j.1365-2656.2008.01413.x; Bigatti G, 2009, MAR POLLUT BULL, V58, P695, DOI 10.1016/j.marpolbul.2009.01.001; Bols NC, 2001, DEV COMP IMMUNOL, V25, P853, DOI 10.1016/S0145-305X(01)00040-4; Bovcon N.D., 2007, SPECIAL PUBLICATION; Bowden TJ, 2007, FISH SHELLFISH IMMUN, V22, P695, DOI 10.1016/j.fsi.2006.08.016; Campbell T., 2007, AVIAN EXOTIC ANIMAL, P304; Cazenave J, 2014, ECOL INDIC, V38, P104, DOI 10.1016/j.ecolind.2013.10.029; Cazenave J, 2009, ENVIRON POLLUT, V157, P3025, DOI 10.1016/j.envpol.2009.05.055; Clauss Tonya M., 2008, Veterinary Clinics of North America Exotic Animal Practice, V11, P445, DOI 10.1016/j.cvex.2008.03.007; Commendatore MG, 2007, ENVIRON MANAGE, V40, P814, DOI 10.1007/s00267-005-0221-3; Commendatore MG, 2000, MAR POLLUT BULL, V40, P989, DOI 10.1016/S0025-326X(00)00042-4; Danion M, 2011, AQUAT TOXICOL, V105, P300, DOI 10.1016/j.aquatox.2011.06.022; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; DECROUX MJP, 1990, J APPL ICHTHYOL, V6, P189, DOI 10.1111/j.1439-0426.1990.tb00578.x; DUNIER M, 1993, FISH SHELLFISH IMMUN, V3, P423, DOI 10.1006/fsim.1993.1042; Dupuy C, 2015, MAR POLLUT BULL, V95, P634, DOI 10.1016/j.marpolbul.2014.11.033; El-Boshy ME, 2011, NAT SCI, V9, P7; ELLIS AE, 1977, J FISH BIOL, V11, P453, DOI 10.1111/j.1095-8649.1977.tb04140.x; Fair J, 2007, IBIS, V149, P535, DOI 10.1111/j.1474-919X.2007.00680.x; Froese R, 2006, J APPL ICHTHYOL, V22, P241, DOI 10.1111/j.1439-0426.2006.00805.x; Fulton T. W., 1904, 22 ANN REP FISH BOAR, P141; Galvan David E., 2009, Open Fish Science Journal, V2, P90; Gil MN, 1999, B ENVIRON CONTAM TOX, V63, P52, DOI 10.1007/s001289900947; GOEDE RW, 1990, AM FISHERIES SOC S, V8, P93; Guardiola FA, 2015, FISH SHELLFISH IMMUN, V45, P112, DOI 10.1016/j.fsi.2015.02.010; Halpern BS, 2008, SCIENCE, V319, P948, DOI 10.1126/science.1149345; Harabawy ASA, 2014, ECOTOX ENVIRON SAFE, V103, P61, DOI 10.1016/j.ecoenv.2013.09.022; Hedayati A., 2013, Comparative Clinical Pathology, V22, P1117; Hoeger B, 2004, AQUAT TOXICOL, V70, P345, DOI 10.1016/j.aquatox.2004.10.010; Holmstrup M, 2010, SCI TOTAL ENVIRON, V408, P3746, DOI 10.1016/j.scitotenv.2009.10.067; Hosseini S.A., 2014, Journal of Applied Biological Sciences, V8, P81; Iwanowicz LR, 2009, AQUAT TOXICOL, V93, P70, DOI 10.1016/j.aquatox.2009.03.008; James R, 1999, B ENVIRON CONTAM TOX, V62, P222, DOI 10.1007/s001289900863; Kennedy CJ, 2008, ENVIRON POLLUT, V153, P638, DOI 10.1016/j.envpol.2007.09.003; Kohler HR, 2013, SCIENCE, V341, P759, DOI 10.1126/science.1237591; Kreutz LC, 2012, FISH SHELLFISH IMMUN, V33, P1055, DOI 10.1016/j.fsi.2012.08.006; Lezcano H.N., 2015, MAR POLLUT B, V91, P524; Lohner TW, 2001, ECOTOX ENVIRON SAFE, V50, P203, DOI 10.1006/eesa.2001.2097; Machado-Schiaffino G, 2009, ESTUAR COAST, V32, P813, DOI 10.1007/s12237-009-9173-9; Magnadottir B, 2005, FISH SHELLFISH IMMUN, V19, P429, DOI 10.1016/j.fsi.2005.03.010; Magnadottir B., 2009, COMP BIOCH PHYSL, V154; Marcinkevicius M.S., 2015, 4 S ARG ICT MAR PLAT; Marcinkevicius M.S., 2009, 2 C LAT CULT PEC NAT; Marquez F., 2012, ECOL INDIC, V11, P248; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; Massara Paletto V., 2008, MAR POLLUT B, V56, P2082; Matson KD, 2006, PHYSIOL BIOCHEM ZOOL, V79, P556, DOI 10.1086/501057; Matson KD, 2005, DEV COMP IMMUNOL, V29, P275, DOI 10.1016/j.dci.2004.07.006; MATTHEWS KR, 1990, CAN J ZOOL, V68, P2243, DOI 10.1139/z90-312; NUSSEY G, 1995, COMP BIOCHEM PHYS C, V111, P381, DOI 10.1016/0742-8413(95)00064-X; O'Halloran Kathryn, 1998, Australasian Journal of Ecotoxicology, V4, P9; Ochsenbein AF, 2000, IMMUNOL TODAY, V21, P624, DOI 10.1016/S0167-5699(00)01754-0; Ortiz N, 2006, J MOLLUS STUD, V72, P321, DOI 10.1093/mollus/eyl011; Palacios MG, 2009, DEV COMP IMMUNOL, V33, P456, DOI 10.1016/j.dci.2008.09.006; Plumb J.A., 1990, DEV COMP IMMUNOL, V4; Prabakaran M, 2007, ECOTOX ENVIRON SAFE, V68, P372, DOI 10.1016/j.ecoenv.2006.11.016; Prophete C, 2006, FISH SHELLFISH IMMUN, V21, P325, DOI 10.1016/j.fsi.2005.12.009; Rands MRW, 2010, SCIENCE, V329, P1298, DOI 10.1126/science.1189138; ROITT I, 2001, IMMUNOLOGY; Sahoo PK, 2008, FISH SHELLFISH IMMUN, V25, P163, DOI 10.1016/j.fsi.2008.04.003; SINDERMANN CJ, 1979, FISH B-NOAA, V76, P717; Sparkman AM, 2009, J ANIM ECOL, V78, P1242, DOI 10.1111/j.1365-2656.2009.01587.x; TAHIR A, 1993, AQUAT TOXICOL, V27, P71, DOI 10.1016/0166-445X(93)90048-6; Venerus L.A., 2006, THESIS U BUENOS AIRE; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; ZAPATA AG, 1992, IMMUNOL TODAY, V13, P142, DOI 10.1016/0167-5699(92)90112-K; ZELIKOFF JT, 1993, ANN REV FISH DIS, V2, P305 69 8 8 1 8 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 1050-4648 1095-9947 FISH SHELLFISH IMMUN Fish Shellfish Immunol. JAN 2016 48 71 78 10.1016/j.fsi.2015.11.021 8 Fisheries; Immunology; Marine & Freshwater Biology; Veterinary Sciences Fisheries; Immunology; Marine & Freshwater Biology; Veterinary Sciences DC1BY WOS:000368953000009 26584758 2019-02-21 J Lloyd, P; Martin, TE Lloyd, Penn; Martin, Thomas E. Fledgling survival increases with development time and adult survival across north and south temperate zones IBIS English Article adult survival; evolution; fledgling survival; life history LIFE-HISTORY EVOLUTION; POSTFLEDGING SURVIVAL; PARENTAL CARE; EMBRYONIC TEMPERATURE; GEOGRAPHIC-VARIATION; TROPICAL BIRDS; CLUTCH-SIZE; HABITAT-USE; MORTALITY; DISPERSAL Slow life histories are characterized by high adult survival and few offspring, which are thought to allow increased investment per offspring to increase juvenile survival. Consistent with this pattern, south temperate zone birds are commonly longer-lived and have fewer young than north temperate zone species. However, comparative analyses of juvenile survival, including during the first few weeks of the post-fledging period when most juvenile mortality occurs, are largely lacking. We combined our measurements of fledgling survival for eight passerines in South Africa with estimates from published studies of 57 north and south temperate zone songbird species to test three predictions: (1) fledgling survival increases with length of development time in the nest; (2) fledgling survival increases with adult survival and reduced brood size controlled for development time; and (3) south temperate zone species, with their higher adult survival and smaller brood sizes, exhibit higher fledgling survival than north temperate zone species controlled for development time. We found that fledgling survival was higher among south temperate zone species and generally increased with development time and adult survival within and between latitudinal regions. Clutch size did not explain additional variation, but was confounded with adult survival. Given the importance of age-specific mortality to life history evolution, understanding the causes of these geographical patterns of mortality is important. [Lloyd, Penn] Univ Cape Town, DST NRF Ctr Excellence, Percy FitzPatrick Inst, Private Bag X3, ZA-7701 Rondebosch, South Africa; [Lloyd, Penn] Biodivers Assessment & Management Pty Ltd, POB 1376, Cleveland, Qld 4163, Australia; [Martin, Thomas E.] Univ Montana, US Geol Survey, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA Lloyd, P (reprint author), Univ Cape Town, DST NRF Ctr Excellence, Percy FitzPatrick Inst, Private Bag X3, ZA-7701 Rondebosch, South Africa.; Lloyd, P (reprint author), Biodivers Assessment & Management Pty Ltd, POB 1376, Cleveland, Qld 4163, Australia. penn@baamecology.com Martin, Thomas E/0000-0002-4028-4867 National Science Foundation [INT-9906030, DEB-0841764, DEB-1241041]; National Research Foundation We thank the many field assistants and co-workers who helped locate and monitor nests and the survival of post-fledging young each year, particularly Sonya Auer, Justin Shew, Anna Chalfoun, David Nkosi, Andrew Taylor, Simon Davies, Riccardo Ton and Ron Bassar. We thank Gert Greef, Hilton Westman and ESKOM for permission to work at Koeberg Nature Reserve. Comments from Richard Major and two anonymous reviewers considerably improved the manuscript. This work was supported in part through National Science Foundation grants (INT-9906030, DEB-0841764, DEB-1241041 to T.E.M.) and National Research Foundation grants (to P.L.). Research and banding activities were licensed by the CapeNature and SAFRING, the South African bird-ringing scheme that issued the numbered metal rings, and approved by the Animal Ethics Committee, University of Cape Town and IACUC #059-10TMMCWRU at the University of Montana. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government. Anders AD, 1997, CONSERV BIOL, V11, P698, DOI 10.1046/j.1523-1739.1997.95526.x; Both C, 1999, P ROY SOC B-BIOL SCI, V266, P465, DOI 10.1098/rspb.1999.0660; Cheng YR, 2012, AM NAT, V180, P285, DOI 10.1086/667214; Cox WA, 2014, J WILDLIFE MANAGE, V78, P183, DOI 10.1002/jwmg.670; Dial KP, 2006, BIOSCIENCE, V56, P437, DOI 10.1641/0006-3568(2006)056[0437:WUIHAW]2.0.CO;2; Dobzhansky T., 1950, American Scientist, V38, P209; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fisher RJ, 2011, BIOL CONSERV, V144, P263, DOI 10.1016/j.biocon.2010.08.024; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gill SA, 2012, J AVIAN BIOL, V43, P461, DOI 10.1111/j.1600-048X.2012.05637.x; Green DJ, 2001, J ANIM ECOL, V70, P505, DOI 10.1046/j.1365-2656.2001.00503.x; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; Jackson AK, 2011, J WILDLIFE MANAGE, V75, P1082, DOI 10.1002/jwmg.154; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Kokko H, 2001, AM NAT, V157, P188, DOI 10.1086/318632; KREMENTZ DG, 1989, ECOLOGY, V70, P646, DOI 10.2307/1940216; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; Lloyd P, 2014, J AVIAN BIOL, V45, P493, DOI 10.1111/jav.00454; Lloyd P, 2009, J AVIAN BIOL, V40, P400, DOI 10.1111/j.1600-048X.2008.04642.x; MAC ARTHUR ROBERT H., 1967; Maddison W.P., 2011, MESQUITE MODULAR SYS; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2008, P NATL ACAD SCI USA, V105, P9268, DOI 10.1073/pnas.0709366105; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Martin TE, 2015, AM NAT, V186, P223, DOI 10.1086/681986; Martin TE, 2014, AM NAT, V183, P313, DOI 10.1086/674966; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Naef-Daenzer Beat, 2001, Avian Science, V1, P15; Nalwanga D, 2004, OSTRICH, V75, P250, DOI 10.2989/00306520409485452; Orme D., 2013, CAPER PACKAGE COMP A; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Remes V, 2002, EVOLUTION, V56, P2505; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Rivera JHV, 1998, CONDOR, V100, P69, DOI 10.2307/1369898; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; Sankamethawee W, 2009, CONDOR, V111, P675, DOI 10.1525/cond.2009.090006; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Streby HM, 2011, ECOSPHERE, V2, DOI 10.1890/ES10-00187.1; Streby HM, 2013, IBIS, V155, P327, DOI 10.1111/ibi.12018; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Tarwater CE, 2011, ECOLOGY, V92, P1271, DOI 10.1890/10-1386.1; Tarwater CE, 2010, J AVIAN BIOL, V41, P479, DOI 10.1111/j.1600-048X.2010.05006.x; White JD, 2008, WILSON J ORNITHOL, V120, P62, DOI 10.1676/06-142.1 51 8 8 2 33 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0019-1019 1474-919X IBIS Ibis JAN 2016 158 1 135 143 10.1111/ibi.12325 9 Ornithology Zoology DB7WM WOS:000368727700012 2019-02-21 J Mordecai, EA; Gross, K; Mitchell, CE Mordecai, Erin A.; Gross, Kevin; Mitchell, Charles E. Within-Host Niche Differences and Fitness Trade-offs Promote Coexistence of Plant Viruses AMERICAN NATURALIST English Article coexistence; competition; pathogen; plant; barley yellow dwarf viruses (BYDVs) YELLOW-DWARF-VIRUS; RHOPALOSIPHUM-PADI HOMOPTERA; ANTHER-SMUT PATHOGEN; COMPETITIVE-EXCLUSION; DEPENDENT TRANSMISSION; CALIFORNIA GRASSLANDS; APPARENT COMPETITION; UNTRANSFORMED WHEAT; SPECIES-DIVERSITY; NASSELLA-PULCHRA Pathogens live in diverse, competitive communities, yet the processes that maintain pathogen diversity remain elusive. Here, we use a species-rich, well-studied plant virus system, the barley yellow dwarf viruses, to examine the mechanisms that regulate pathogen diversity. We empirically parameterized models of three viruses, their two aphid vectors, and one perennial grass host. We found that high densities of both aphids maximized virus diversity and that competition limited the coexistence of two closely related viruses. Even limited ability to simultaneously infect (coinfect) host individuals strongly promoted virus coexistence; preventing coinfection led to priority effects. Coinfection generated stabilizing niche differences by allowing viruses to share hosts. However, coexistence also required trade-offs between vector generalist and specialist life-history strategies. Our predicted outcomes broadly concur with previous field observations. These results show how competition within individual hosts and vectors may lead to unexpected population-level outcomes between pathogens, including coexistence, competitive exclusion, and priority effects, and how contemporary coexistence theory can help to predict these outcomes. [Mordecai, Erin A.] Stanford Univ, Dept Biol, 371 Serra Mall, Stanford, CA 94305 USA; [Gross, Kevin] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA; [Mitchell, Charles E.] Univ N Carolina, Dept Biol & Curriculum Environm & Ecol, Chapel Hill, NC 27599 USA Mordecai, EA (reprint author), Stanford Univ, Dept Biol, 371 Serra Mall, Stanford, CA 94305 USA. erin.mordecai@stanford.edu Mitchell, Charles/0000-0002-1633-1993; Mordecai, Erin/0000-0002-4402-5547 National Science Foundation (NSF) Postdoctoral Research Fellowship in Biology [DEB-1202892]; NSF/National Institutes of Health program Ecology and Evolution of Infectious Diseases [DEB-1015825, DEB-1015909] M. E. Welsh provided aphid density data from an unpublished study by M. E. Welsh, J. P. Cronin, and C. E. M. K. Marchetto and S. Power provided unpublished data on virus titer and infected plant biomass. This work was supported by a National Science Foundation (NSF) Postdoctoral Research Fellowship in Biology (DEB-1202892) to E.A.M. and by the NSF/National Institutes of Health program Ecology and Evolution of Infectious Diseases (DEB-1015825 to K.G. and DEB-1015909 to C.E.M.). AAPOLA AIE, 1971, VIROLOGY, V46, P127, DOI 10.1016/0042-6822(71)90012-2; Ackleh AS, 2003, J MATH BIOL, V47, P153, DOI 10.1007/s00285-003-0207-9; Adler PB, 2012, J ECOL, V100, P478, DOI 10.1111/j.1365-2745.2011.01930.x; Ajayi B. O., 1983, ANN APPL BIOL, V103, P1; ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; ANDREASEN V, 1995, J THEOR BIOL, V177, P159; Borer ET, 2007, P NATL ACAD SCI USA, V104, P5473, DOI 10.1073/pnas.0608573104; Borer ET, 2010, ECOL LETT, V13, P810, DOI 10.1111/j.1461-0248.2010.01475.x; Borer ET, 2009, ECOL APPL, V19, P1187, DOI 10.1890/08-1205.1; BREMERMANN HJ, 1989, J MATH BIOL, V27, P179, DOI 10.1007/BF00276102; Carroll IT, 2011, ECOLOGY, V92, P1157; CASTILLOCHAVEZ C, 1989, J MATH BIOL, V27, P233, DOI 10.1007/BF00275810; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Cobey S, 2013, AM NAT, V181, P12, DOI 10.1086/668598; Cobey S, 2012, SCIENCE, V335, P1376, DOI 10.1126/science.1215947; Colijn C, 2010, J R SOC INTERFACE, V7, P905, DOI 10.1098/rsif.2009.0400; Comas J, 1996, J PHYTOPATHOL, V144, P273, DOI 10.1111/j.1439-0434.1996.tb01528.x; Comas J, 1995, J PHYTOPATHOL, V143, P609, DOI 10.1111/j.1439-0434.1995.tb00209.x; Corbin JD, 2004, ECOLOGY, V85, P1273, DOI 10.1890/02-0744; Cronin JP, 2010, ECOL LETT, V13, P1221, DOI 10.1111/j.1461-0248.2010.01513.x; D'Arcy C.J., 1995, BARLEY YELLOW DWARF; DOBSON AP, 1985, PARASITOLOGY, V91, P317, DOI 10.1017/S0031182000057401; Dyer AR, 2003, RESTOR ECOL, V11, P291, DOI 10.1046/j.1526-100X.2003.00168.x; Dyer AR, 1997, ECOL APPL, V7, P484; Fitt BDL, 2006, ANNU REV PHYTOPATHOL, V44, P163, DOI 10.1146/annurev.phyto.44.070505.143417; Gatto M, 1998, J MATH BIOL, V37, P467, DOI 10.1007/s002850050138; GILDOW FE, 1980, VIROLOGY, V104, P97, DOI 10.1016/0042-6822(80)90368-2; Gold Alexander, 2009, BMC Ecology, V9, P11, DOI 10.1186/1472-6785-9-11; Graham AL, 2008, P NATL ACAD SCI USA, V105, P566, DOI 10.1073/pnas.0707221105; Gray S, 2003, ANNU REV PHYTOPATHOL, V41, P539, DOI 10.1146/annurev.phyto.41.012203.105815; GUPTA S, 1994, P ROY SOC B-BIOL SCI, V256, P231, DOI 10.1098/rspb.1994.0075; Holt RD, 2003, ECOL LETT, V6, P837, DOI 10.1046/j.1461-0248.2003.00501.x; Hood ME, 2003, AM NAT, V162, P122, DOI 10.1086/375539; HU JS, 1988, PHYTOPATHOLOGY, V78, P1326, DOI 10.1094/Phyto-78-1326; Ingwell LL, 2012, SCI REP-UK, V2, DOI 10.1038/srep00578; Jimenez-Martinez ES, 2004, ENVIRON ENTOMOL, V33, P1207, DOI 10.1603/0046-225X-33.5.1207; Jimenez-Martinez ES, 2004, J ECON ENTOMOL, V97, P203, DOI 10.1603/0022-0493-97.2.203; Kedem H., 2013, ECOLOGY, V95, P1173; Keeling MJ, 2008, MODELING INFECT DIS; Leventhal GE, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7101; Levine JM, 2009, NATURE, V461, P254, DOI 10.1038/nature08251; Lipsitch M, 2009, EPIDEMICS-NETH, V1, P2, DOI 10.1016/j.epidem.2008.07.001; Lloyd-Smith JO, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0150; Malmstrom CM, 2005, OECOLOGIA, V145, P153, DOI 10.1007/s00442-005-0099-z; Malmstrom CM, 2005, NEW PHYTOL, V168, P217, DOI 10.1111/j.1469-8137.2005.01479.x; Medina-Ortega KJ, 2009, ENVIRON ENTOMOL, V38, P836, DOI 10.1603/022.038.0337; Mordecai EA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134355; Pedersen AB, 2007, TRENDS ECOL EVOL, V22, P133, DOI 10.1016/j.tree.2006.11.005; Pepin KM, 2008, BMC MICROBIOL, V8, DOI 10.1186/1471-2180-8-28; Perefarres F, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3374; PONS X, 1995, J APPL ENTOMOL, V119, P171, DOI 10.1111/j.1439-0418.1995.tb01266.x; POWER AG, 1991, ECOLOGY, V72, P232, DOI 10.2307/1938917; Power AG, 1996, ECOLOGY, V77, P1004, DOI 10.2307/2265571; Raberg L, 2006, AM NAT, V168, P41, DOI 10.1086/505160; Read AF, 2001, SCIENCE, V292, P1099, DOI 10.1126/science.1059410; Recker M, 2009, P ROY SOC B-BIOL SCI, V276, P2541, DOI 10.1098/rspb.2009.0331; ROCHOW WF, 1969, PHYTOPATHOLOGY, V59, P1580; ROCHOW WF, 1970, SCIENCE, V167, P875, DOI 10.1126/science.167.3919.875; ROCHOW WF, 1979, PHYTOPATHOLOGY, V69, P655, DOI 10.1094/Phyto-69-655; ROCHOW WF, 1983, PHYTOPATHOLOGY, V73, P919, DOI 10.1094/Phyto-73-919; ROCHOW WF, 1982, PHYTOPATHOLOGY, V72, P302; Schmidt MH, 2003, P ROY SOC B-BIOL SCI, V270, P1905, DOI 10.1098/rspb.2003.2469; Seabloom EW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055675; Seabloom EW, 2009, AM NAT, V173, pE79, DOI 10.1086/596529; TURELLI M, 1978, THEOR POPUL BIOL, V13, P244, DOI 10.1016/0040-5809(78)90045-X; Vannette RL, 2014, ECOL LETT, V17, P115, DOI 10.1111/ele.12204; WEN F, 1991, J GEN VIROL, V72, P791, DOI 10.1099/0022-1317-72-4-791 67 8 8 5 40 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JAN 2016 187 1 E13 E26 10.1086/684114 14 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DB5MW WOS:000368559300002 27277413 2019-02-21 J Emaresi, G; Henry, I; Gonzalez, E; Roulin, A; Bize, P Emaresi, Guillaume; Henry, Isabelle; Gonzalez, Esther; Roulin, Alexandre; Bize, Pierre Sex- and melanism-specific variations in the oxidative status of adult tawny owls in response to manipulated reproductive effort JOURNAL OF EXPERIMENTAL BIOLOGY English Article Brood size manipulation; Colour polymorphism; Glutathione; Life history traits; ROS production; Oxidative stress LIFE-HISTORY TRAJECTORIES; STRIX-ALUCO; COLOR POLYMORPHISM; ANTIOXIDANT CAPACITY; MELANOCORTIN SYSTEM; ZEBRA FINCH; TRADE-OFFS; WILD BIRD; STRESS; EVOLUTION Oxidative stress, determined by the balance between the production of damaging reactive oxygen species (ROS) and antioxidant defences, is hypothesized to play an important role in shaping the cost of reproduction and life history trade-offs. To test this hypothesis, we manipulated reproductive effort in 94 breeding pairs of tawny owls (Strix aluco) to investigate the sex-and melanism-specific effects on markers of oxidative stress in red blood cells (RBCs). This colour polymorphic bird species shows sex-specific division of labour and melanism-specific history strategies. Brood sizes at hatching were experimentally enlarged or reduced to increase or decrease reproductive effort, respectively. We obtained an integrative measure of the oxidative balance by measuring ROS production by RBCs, intracellular antioxidant glutathione levels and membrane resistance to ROS. We found that light melanic males (the sex undertaking offspring food provisioning) produced more ROS than darker conspecifics, but only when rearing an enlarged brood. In both sexes, light melanic individuals had also a larger pool of intracellular antioxidant glutathione than darker owls under relaxed reproductive conditions (i.e. reduced brood), but not when investing substantial effort in current reproduction (enlarged brood). Finally, resistance to oxidative stress was differently affected by the brood size manipulation experiment in males and females independently of their plumage coloration. Altogether, our results support the hypothesis that reproductive effort can alter the oxidative balance in a sex-and colour-specific way. This further emphasizes the close link between melanin-based coloration and life history strategies. [Emaresi, Guillaume; Henry, Isabelle; Gonzalez, Esther; Roulin, Alexandre; Bize, Pierre] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland; [Bize, Pierre] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland Bize, P (reprint author), Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland.; Bize, P (reprint author), Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland. pierre.bize@abdn.ac.uk Swiss National Science Foundation [PPOA-102913, 3100AO_120517, 31003A_124988] This work was supported by the Swiss National Science Foundation [grants PPOA-102913 and 3100AO_120517 to A.R. and 31003A_124988 to P.B.]. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Bize P, 2014, OECOLOGIA, V174, P1097, DOI 10.1007/s00442-013-2840-3; Blount J. D., 2015, BIOL REV, DOI [10.1111/brv.12179, DOI 10.1111/BRV.12179]; Brommer JE, 2005, P ROY SOC B-BIOL SCI, V272, P935, DOI 10.1098/rspb.2005.3052; Casagrande S, 2012, BEHAV ECOL SOCIOBIOL, V66, P1319, DOI 10.1007/s00265-012-1387-3; Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Cohen AA, 2009, OECOLOGIA, V161, P673, DOI 10.1007/s00442-009-1423-9; Costantini D, 2014, OXIDATIVE STRESS HOR; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Da Silva A, 2013, BEHAV ECOL SOCIOBIOL, V67, P1041, DOI 10.1007/s00265-013-1529-2; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; Emaresi G, 2014, AM NAT, V183, P269, DOI 10.1086/674444; Emaresi G, 2013, MOL ECOL, V22, P4915, DOI 10.1111/mec.12438; Emaresi Guillaume, 2011, P242; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Galeotti P, 1996, J AVIAN BIOL, V27, P15, DOI 10.2307/3676956; Galvan I, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013369; Galvan I, 2009, PIGM CELL MELANOMA R, V22, P339, DOI 10.1111/j.1755-148X.2009.00559.x; Galvan I, 2009, P R SOC B, V276, P3089, DOI 10.1098/rspb.2009.0774; Galvan I, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003335; Gasparini J, 2009, J ANIM ECOL, V78, P608, DOI 10.1111/j.1365-2656.2008.01521.x; Glutz von Blotzheim U. N., 1980, HDB VOGEL MITTELEURO; Halliwell B, 2007, FREE RADICALS BIOL M; Horak P, 2010, FUNCT ECOL, V24, P960, DOI 10.1111/j.1365-2435.2010.01755.x; Ito S, 2003, PIGM CELL RES, V16, P230, DOI 10.1034/j.1600-0749.2003.00037.x; Karell P, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1213; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Losdat S, 2011, BEHAV ECOL, V22, P1218, DOI 10.1093/beheco/arr116; Marko G, 2011, J COMP PHYSIOL B, V181, P73, DOI 10.1007/s00360-010-0502-x; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; MONTGOMERIE R, 2006, BIRD COLORATION, V1, P90; Mukhopadhyay P, 2007, BIOCHEM BIOPH RES CO, V358, P203, DOI 10.1016/j.bbrc.2007.04.106; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; Piault R, 2009, AM NAT, V174, P548, DOI 10.1086/605374; Prevedello JA, 2013, J ANIM ECOL, V82, P927, DOI 10.1111/1365-2656.12072; Reichert S., 2014, FRONT ECOL EVOL, V2, P9, DOI DOI 10.3389/FEV0.2014.00009; Roulin A, 2008, BEHAV ECOL SOCIOBIOL, V62, P507, DOI 10.1007/s00265-007-0475-2; Roulin A, 2004, BIOL REV, V79, P815, DOI 10.1017/S1464793104006487; Roulin A, 2004, EVOL ECOL RES, V6, P1253; Roulin A, 2011, OECOLOGIA, V166, P913, DOI 10.1007/s00442-011-1955-7; Roulin A, 2011, EUR J PHARMACOL, V660, P226, DOI 10.1016/j.ejphar.2011.01.036; Ruffino L., 2014, FRONT ZOOL, V11, P453; Sasvari L, 2009, ACTA ORNITHOL, V44, P59, DOI 10.3161/000164509X464894; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Stier A, 2015, EXP GERONTOL, V71, P118, DOI 10.1016/j.exger.2015.09.001; Stier A, 2014, J EXP BIOL, V217, P3579, DOI 10.1242/jeb.103945; Stier A, 2014, J EXP BIOL, V217, P624, DOI 10.1242/jeb.092700; Stier A, 2013, FRONT ZOOL, V10, DOI 10.1186/1742-9994-10-33; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Sunde P, 2008, J AVIAN BIOL, V39, P242, DOI 10.1111/j.2008.0908-8857.04194.x; Tobler M, 2009, J EXP BIOL, V212, P89, DOI 10.1242/jeb.020826; Vina J, 2005, FEBS LETT, V579, P2541, DOI 10.1016/j.febslet.2005.03.090; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171 60 9 9 2 18 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. JAN 1 2016 219 1 73 79 10.1242/jeb.128959 7 Biology Life Sciences & Biomedicine - Other Topics DB5GF WOS:000368541900017 26567343 Bronze, Green Published 2019-02-21 J Zilioli, S; Ponzi, D; Henry, A; Kubicki, K; Nickels, N; Wilson, MC; Maestripieri, D Zilioli, Samuele; Ponzi, Davide; Henry, Andrea; Kubicki, Konrad; Nickels, Nora; Wilson, M. Claire; Maestripieri, Dario Interest in Babies Negatively Predicts Testosterone Responses to Sexual Visual Stimuli Among Heterosexual Young Men PSYCHOLOGICAL SCIENCE English Article life-history theory; mating; parenting trade-off; testosterone reactivity; interest in babies; sexual stimuli LIFE-HISTORY STRATEGY; K-FACTOR; INFANTS; FATHERS Men's testosterone may be an important physiological mechanism mediating motivational and behavioral aspects of the mating/parenting trade-off not only over time but also in terms of stable differences between mating-oriented and parenting-oriented individuals. In this study, we tested the hypothesis that self-reported interest in babies is inversely related to testosterone reactivity to cues of short-term mating among heterosexual young men. Among 100 participants, interest in babies was related to a slow life-history strategy, as assessed by the Mini-K questionnaire, and negatively related to testosterone responses to an erotic video. Interest in babies was not associated with baseline testosterone levels or with testosterone reactivity to nonsexual social stimuli. These results provide the first evidence that differential testosterone reactivity to sexual stimuli may be an important aspect of individual differences in life-history strategies among human males. [Zilioli, Samuele] Wayne State Univ, Dept Psychol, Wayne, NJ USA; [Ponzi, Davide; Henry, Andrea; Kubicki, Konrad; Nickels, Nora; Wilson, M. Claire; Maestripieri, Dario] Univ Chicago, Inst Mind & Biol, 940 E 57th St, Chicago, IL 60637 USA Maestripieri, D (reprint author), Univ Chicago, Inst Mind & Biol, 940 E 57th St, Chicago, IL 60637 USA. dario@uchicago.edu CARANI C, 1990, PSYCHONEUROENDOCRINO, V15, P207, DOI 10.1016/0306-4530(90)90031-4; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Fekedulegn DB, 2007, PSYCHOSOM MED, V69, P651, DOI 10.1097/PSY.0b013e31814c405c; Figueredo A. J., 2014, J METHODS MEASUREMEN, V5, P76; Figueredo A. J., 2014, EVOLUTIONARY BEHAV S, V8, P148, DOI DOI 10.1037/H0099837; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2004, SOC BIOL, V51, P121; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; Gray Peter B., 2009, ENDOCRINOLOGY SOCIAL, P270; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; KIRSCHBAUM C, 1993, NEUROPSYCHOBIOLOGY, V28, P76, DOI 10.1159/000119004; Maestripieri D, 2002, HUM NATURE-INT BIOS, V13, P327, DOI 10.1007/s12110-002-1018-1; Maestripieri D., 2014, EVOLUTIONARY BEHAV S, V8, P96; Mascaro JS, 2013, P NATL ACAD SCI USA, V110, P15746, DOI 10.1073/pnas.1305579110; Roney JR, 2006, P R SOC B, V273, P2169, DOI 10.1098/rspb.2006.3569; Roney JR, 2015, CURR OPIN PSYCHOL, V1, P81, DOI 10.1016/j.copsyc.2014.11.003; Storey AE, 2000, EVOL HUM BEHAV, V21, P79, DOI 10.1016/S1090-5138(99)00042-2 17 9 9 3 6 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0956-7976 1467-9280 PSYCHOL SCI Psychol. Sci. JAN 2016 27 1 114 118 10.1177/0956797615615868 5 Psychology, Multidisciplinary Psychology DB5ZI WOS:000368592300012 26626441 2019-02-21 J Ellen, ED; Peeters, K; Verhoeven, M; Gols, R; Harvey, JA; Wade, MJ; Dicke, M; Bijma, P Ellen, Esther D.; Peeters, Katrijn; Verhoeven, Merel; Gols, Rieta; Harvey, Jeffrey A.; Wade, Michael J.; Dicke, Marcel; Bijma, Piter Direct and indirect genetic effects in life-history traits of flour beetles (Tribolium castaneum) EVOLUTION English Article Development time; growth rate; IGE; pupal body mass; social interactions GROUP SELECTION; MULTILEVEL SELECTION; KIN SELECTION; EVOLUTIONARY CONSEQUENCES; DROSOPHILA-MELANOGASTER; INTERACTING PHENOTYPES; HERITABLE VARIATION; POPULATION-DENSITY; DEVELOPMENT TIME; CONFUSUM DUVAL Indirect genetic effects (IGEs) are the basis of social interactions among conspecifics, and can affect genetic variation of nonsocial and social traits. We used flour beetles (Tribolium castaneum) of two phenotypically distinguishable populations to estimate genetic (co)variances and the effect of IGEs on three life-history traits: development time (DT), growth rate (GR), and pupal body mass (BM). We found that GR was strongly affected by social environment with IGEs accounting for 18% of the heritable variation. We also discovered a sex-specific social effect: male ratio in a group significantly affected both GR and BM; that is, beetles grew larger and faster in male-biased social environments. Such sex-specific IGEs have not previously been demonstrated in a nonsocial insect. Our results show that beetles that achieve a higher BM do so via a slower GR in response to social environment. Existing models of evolution in age-structured or stage-structured populations do not account for IGEs of social cohorts. It is likely that such IGEs have played a key role in the evolution of developmental plasticity shown by Tenebrionid larvae in response to density. Our results document an important source of genetic variation for GR, often overlooked in life-history theory. [Ellen, Esther D.; Peeters, Katrijn; Verhoeven, Merel; Bijma, Piter] Wageningen Univ, Anim Breeding & Genom Ctr, NL-6700 AH Wageningen, Netherlands; [Peeters, Katrijn] Hendrix Genet, Res & Technol Ctr, NL-5831 CK Boxmeer, Netherlands; [Gols, Rieta; Dicke, Marcel] Wageningen Univ, Entomol Lab, NL-6700 AH Wageningen, Netherlands; [Harvey, Jeffrey A.] Netherlands Inst Ecol, Dept Terr Ecol, NL-6700 AB Wageningen, Netherlands; [Wade, Michael J.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA Ellen, ED (reprint author), Wageningen Univ, Anim Breeding & Genom Ctr, NL-6700 AH Wageningen, Netherlands. Esther.Ellen@wur.nl Library, Library/A-4320-2012; Harvey, Jeffrey/B-7439-2008; Dicke, Marcel/B-2300-2010 Library, Library/0000-0002-3835-159X; Harvey, Jeffrey/0000-0002-4227-7935; Dicke, Marcel/0000-0001-8565-8896; Gols, Rieta/0000-0002-6839-8225 Dutch science council (NWO) The authors acknowledge F. Bartels, I. van den Anker, and M. Ooms for helping with the experiment, and B. Ducro and H. Bovenhuis for statistical advice. Both EDE and PB are financially supported by the Dutch science council (NWO) and part of this work was coordinated by the Netherlands Technology Foundation (STW). NIH R01GM084238 to MJW. Agrawal AF, 2001, AM NAT, V158, P308, DOI 10.1086/321324; Andersson M, 2006, TRENDS ECOL EVOL, V21, P296, DOI 10.1016/j.tree.2006.03.015; Archer MS, 1998, AUST J ENTOMOL, V37, P158, DOI 10.1111/j.1440-6055.1998.tb01564.x; Benrey B, 1997, ECOLOGY, V78, P987, DOI 10.2307/2265852; Bergsma R, 2008, GENETICS, V178, P1559, DOI 10.1534/genetics.107.084236; Bijma P, 2008, J EVOLUTION BIOL, V21, P1175, DOI 10.1111/j.1420-9101.2008.01550.x; Bijma P, 2010, J EVOLUTION BIOL, V23, P194, DOI 10.1111/j.1420-9101.2009.01895.x; Bijma P, 2007, GENETICS, V175, P277; Bijma P, 2007, GENETICS, V175, P289, DOI 10.1534/genetics.106.062729; Bijma P, 2011, GENETICS, V189, P1347, DOI 10.1534/genetics.111.130617; Bijma P, 2010, GENETICS, V186, P1013, DOI 10.1534/genetics.110.120493; BONDARI K, 1978, J ANIM SCI, V47, P358; Brichette I, 2001, AQUACULTURE, V192, P155, DOI 10.1016/S0044-8486(00)00439-7; Cappa EP, 2008, SILVAE GENET, V57, P45, DOI 10.1515/sg-2008-0008; Charlesworth B., 2010, ELEMENTS EVOLUTIONAR; CHARNOV E L, 1982; Cheverud James M., 1994, P67; Clutton-Brock T, 2002, SCIENCE, V296, P69, DOI 10.1126/science.296.5565.69; Costa e Silva J., 2013, NEW PHYTOL, V197, P631; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Ellen ED, 2008, POULTRY SCI, V87, P233, DOI 10.3382/ps.2007-00374; ENFIELD FD, 1966, GENETICS, V54, P523; ENGLERT DC, 1970, GENETICS, V64, P541; ENGLERT DC, 1969, CAN J GENET CYTOL, V11, P896, DOI 10.1139/g69-104; File AL, 2012, P ROY SOC B-BIOL SCI, V279, P209, DOI 10.1098/rspb.2011.1995; Fisher RA, 1930, GENETICAL THEORY NAT; Garcia-Gonzalez F, 2007, CURR BIOL, V17, P32, DOI 10.1016/j.cub.2006.10.054; Gilmour AR, 2009, ASREML USER GUIDE RE; Goldberg D. E., 1990, Perspectives on plant competition., P27; Griffing B., 1977, Proceedings of the International Conference on Quantitative Genetics, August 16-21, 1976., P413; GRIFFING B, 1967, AUST J BIOL SCI, V20, P127, DOI 10.1071/BI9670127; Hahn DA, 2005, J INSECT PHYSIOL, V51, P1210, DOI 10.1016/j.jinsphys.2005.06.011; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Harvey JA, 2002, ECOLOGY, V83, P2439, DOI 10.1890/0012-9658(2002)083[2439:TDSOEW]2.0.CO;2; Head ML, 2012, EVOLUTION, V66, P3570, DOI 10.1111/j.1558-5646.2012.01699.x; Henderson C. R., 1984, APPL LINEAR MODELS A; HENDERSON CR, 1950, ANN MATH STAT, V21, P309; HENDERSON CR, 1975, BIOMETRICS, V31, P423, DOI 10.2307/2529430; Hunt J, 2002, P NATL ACAD SCI USA, V99, P6828, DOI 10.1073/pnas.092676199; Kingsolver JG, 2004, EVOLUTION, V58, P1608; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Lewontin R. C., 1965, P77; LEWONTIN RC, 1955, EVOLUTION, V9, P27, DOI 10.1111/j.1558-5646.1955.tb01511.x; LEWONTIN RC, 1963, P NATL ACAD SCI USA, V49, P270, DOI 10.1073/pnas.49.2.270; Linksvayer TA, 2006, EVOLUTION, V60, P2552, DOI 10.1554/06-011.1; Lynch M, 1998, GENETICS ANAL QUANTI; MARTIN MM, 1991, PHILOS T R SOC B, V333, P281, DOI 10.1098/rstb.1991.0078; MCCAULEY DE, 1980, EVOLUTION, V34, P813, DOI 10.1111/j.1558-5646.1980.tb04020.x; McGlothlin JW, 2010, EVOLUTION, V64, P2558, DOI 10.1111/j.1558-5646.2010.01012.x; McGlothlin JW, 2009, EVOLUTION, V63, P1785, DOI 10.1111/j.1558-5646.2009.00676.x; Mertz D.B., 1972, Annual Rev Ecol Syst, V3, P51, DOI 10.1146/annurev.es.03.110172.000411; MERTZ D B, 1970, Ecology (Washington D C), V51, P989, DOI 10.2307/1933625; Moore AJ, 1997, EVOLUTION, V51, P1352, DOI 10.1111/j.1558-5646.1997.tb01458.x; Muir WM, 2005, GENETICS, V170, P1247, DOI 10.1534/genetics.104.035956; Mutic JJ, 2007, MOL ECOL, V16, P2371, DOI 10.1111/j.1365-294X.2007.03259.x; NAKAKITA H, 1982, APPL ENTOMOL ZOOL, V17, P269, DOI 10.1303/aez.17.269; PAMILO P, 1991, AM NAT, V137, P83, DOI 10.1086/285147; Park T, 1938, J EXP ZOOL, V79, P51, DOI 10.1002/jez.1400790105; Park T, 1934, Q REV BIOL, V9, P36, DOI 10.1086/394454; PARK THOMAS, 1964, PHYSIOL ZOOL, V37, P97; PARKER GA, 1970, BIOL REV, V45, P525, DOI 10.1111/j.1469-185X.1970.tb01176.x; Pearl R, 1941, AM NAT, V75, P5, DOI 10.1086/280925; Peeters K, 2012, GENETICS, V192, P705, DOI 10.1534/genetics.112.142554; Petfield D, 2005, P NATL ACAD SCI USA, V102, P6045, DOI 10.1073/pnas.0409378102; Rauter CM, 2002, J EVOLUTION BIOL, V15, P407, DOI 10.1046/j.1420-9101.2002.00412.x; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; SAS, 2004, SAS US GUID REL 9 2; Simmons L. W., 2001, SPERM COMPETITION IT; Stearns S. C., 1992, EVOLUTION LIFE HITOR; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEVENS L, 1989, EVOLUTION, V43, P169, DOI 10.1111/j.1558-5646.1989.tb04215.x; STEVENS L, 1985, BEHAV GENET, V15, P549, DOI 10.1007/BF01065450; Stillwell RC, 2007, OECOLOGIA, V153, P309, DOI 10.1007/s00442-007-0748-5; TSCHINKEL WR, 1971, J EXP ZOOL, V176, P137, DOI 10.1002/jez.1401760203; Ueno H, 2001, HEREDITY, V87, P1, DOI 10.1046/j.1365-2540.2001.00860.x; UENO H, 1994, RES POPUL ECOL, V36, P121, DOI 10.1007/BF02515093; Wade Michael J., 2000, P213; WADE MJ, 1985, AM NAT, V125, P61, DOI 10.1086/284328; WADE MJ, 1991, SCIENCE, V253, P1015, DOI 10.1126/science.1887214; WADE MJ, 1976, P NATL ACAD SCI USA, V73, P4604, DOI 10.1073/pnas.73.12.4604; WADE MJ, 1979, EVOLUTION, V33, P749, DOI 10.1111/j.1558-5646.1979.tb04727.x; WADE MJ, 1977, EVOLUTION, V31, P134, DOI 10.1111/j.1558-5646.1977.tb00991.x; Wald A, 1943, T AM MATH SOC, V54, P426, DOI 10.2307/1990256; Wang J, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000127; Wang J, 2013, NATURE, V493, P664, DOI 10.1038/nature11832; WILLHAM RL, 1963, BIOMETRICS, V19, P18, DOI 10.2307/2527570; Wilson AJ, 2011, J EVOLUTION BIOL, V24, P772, DOI 10.1111/j.1420-9101.2010.02212.x; Wilson AJ, 2009, P R SOC B, V276, P533, DOI 10.1098/rspb.2008.1193; Windig JJ, 1999, HEREDITY, V82, P57, DOI 10.1038/sj.hdy.6884510; Wolf JB, 2003, P NATL ACAD SCI USA, V100, P4655, DOI 10.1073/pnas.0635741100; Wolf JB, 1998, TRENDS ECOL EVOL, V13, P64, DOI 10.1016/S0169-5347(97)01233-0; YOUNG SSY, 1970, GENETICS, V66, P541 93 5 5 0 52 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JAN 2016 70 1 207 217 10.1111/evo.12835 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DB1DW WOS:000368249200017 26660947 2019-02-21 J Olivieri, I; Tonnabel, J; Ronce, O; Mignot, A Olivieri, Isabelle; Tonnabel, Jeanne; Ronce, Ophelie; Mignot, Agnes Why evolution matters for species conservation: perspectives from three case studies of plant metapopulations EVOLUTIONARY APPLICATIONS English Review conservation genetics; contemporary evolution; dispersal; management; mating systems; natural selection; phylogenetics CENTAUREA-CORYMBOSA ASTERACEAE; MEDITERRANEAN-CLIMATE ECOSYSTEMS; STRIGOSA WILLD. MARSILEACEAE; SCALE GENETIC-STRUCTURE; CANOPY SEED STORAGE; LIFE-HISTORY TRAITS; POPULATION-GENETICS; BRASSICA-INSULARIS; POURRET ASTERACEAE; LOCAL ADAPTATION We advocate the advantage of an evolutionary approach to conservation biology that considers evolutionary history at various levels of biological organization. We review work on three separate plant taxa, spanning from one to multiple decades, illustrating extremes in metapopulation functioning. We show how the rare endemics Centaurea corymbosa (Clape Massif, France) and Brassica insularis in Corsica (France) may be caught in an evolutionary trap: disruption of metapopulation functioning due to lack of colonization of new sites may have counterselected traits such as dispersal ability or self-compatibility, making these species particularly vulnerable to any disturbance. The third case study concerns the evolution of life history strategies in the highly diverse genus Leucadendron of the South African fynbos. There, fire disturbance and the recolonization phase after fires are so integral to the functioning of populations that recruitment of new individuals is conditioned by fire. We show how past adaptation to different fire regimes and climatic constraints make species with different life history syndromes more or less vulnerable to global changes. These different case studies suggest that management strategies should promote evolutionary potential and evolutionary processes to better protect extant biodiversity and biodiversification. [Olivieri, Isabelle; Tonnabel, Jeanne; Ronce, Ophelie; Mignot, Agnes] Univ Montpellier, Inst Sci Evolut, CNRS, IRD,EPHE,CC65, F-34095 Montpellier 5, France; [Tonnabel, Jeanne] Univ Lausanne, Dept Ecol & Evolut, UNIL SORGE, Lausanne, Switzerland Olivieri, I (reprint author), Univ Montpellier, Inst Sci Evolut, CNRS, IRD,EPHE,CC65, Pl Eugene Bataillon, F-34095 Montpellier 5, France. isabelle.olivieri@univ-montp2.fr Olivieri, Isabelle/E-5872-2016 ALLENDORF FW, 1986, TRENDS ECOL EVOL, V1, P88, DOI 10.1016/0169-5347(86)90030-3; Angeloni F, 2012, EVOL APPL, V5, P130, DOI 10.1111/j.1752-4571.2011.00217.x; Augustine DJ, 2015, RANGELAND ECOL MANAG, V68, P40, DOI 10.1016/j.rama.2014.12.010; Augustine DJ, 2012, J WILDLIFE MANAGE, V76, P721, DOI 10.1002/jwmg.334; Baker JA, 2010, BIOL CONSERV, V143, P1184, DOI 10.1016/j.biocon.2010.02.026; Bena G, 1998, P ROY SOC B-BIOL SCI, V265, P1141, DOI 10.1098/rspb.1998.0410; Bergman NM, 2004, AM J SCI, V304, P397, DOI 10.2475/ajs.304.5.397; Bilney RJ, 2014, AUSTRAL ECOL, V39, P875, DOI 10.1111/aec.12145; Brachet S, 1999, J THEOR BIOL, V198, P479, DOI 10.1006/jtbi.1999.0926; Bradshaw SD, 2011, TRENDS PLANT SCI, V16, P69, DOI 10.1016/j.tplants.2010.10.007; Cheptou PO, 2008, P NATL ACAD SCI USA, V105, P3796, DOI 10.1073/pnas.0708446105; Cheptou PO, 2011, NEW PHYTOL, V189, P395, DOI 10.1111/j.1469-8137.2010.03541.x; Colas B, 1996, ACTA BOT GALLICA, V143, P191, DOI 10.1080/12538078.1996.10515339; Colas B, 2001, BIOL CONSERV, V99, P375, DOI 10.1016/S0006-3207(00)00229-9; Colas B, 1997, P NATL ACAD SCI USA, V94, P3471, DOI 10.1073/pnas.94.7.3471; Colas B, 2008, J APPL ECOL, V45, P1468, DOI 10.1111/j.1365-2664.2008.01536.x; Corey SJ, 2008, DIVERS DISTRIB, V14, P614, DOI 10.1111/j.1472-4642.2007.00448.x; Cotto O, 2013, J EVOLUTION BIOL, V26, P944, DOI 10.1111/jeb.12100; Cotto O, 2014, AM NAT, V183, P384, DOI 10.1086/675064; COUVET D, 1985, GENET SEL EVOL, V17, P407, DOI 10.1186/1297-9686-17-3-407; COWLING RM, 1987, J APPL ECOL, V24, P645, DOI 10.2307/2403899; Cramer MD, 2009, AUSTRAL ECOL, V34, P653, DOI 10.1111/j.1442-9993.2009.01971.x; Crisp MD, 2013, ANNU REV ECOL EVOL S, V44, P303, DOI 10.1146/annurev-ecolsys-110512-135910; Crowley PH, 2002, AM NAT, V159, P190, DOI 10.1086/324790; Darwin C., 1859, ORIGIN SPECIES MEANS; de Jong TJ, 2000, EVOL ECOL, V14, P213, DOI 10.1023/A:1011063625087; Dellasala DA, 2004, CONSERV BIOL, V18, P976, DOI 10.1111/j.1523-1739.2004.00529.x; Enright NJ, 1999, PLANT ECOL, V144, P71, DOI 10.1023/A:1009839800864; Enright NJ, 1998, J ECOL, V86, P946, DOI 10.1046/j.1365-2745.1998.00312.x; ENRIGHT NJ, 1989, J ECOL, V77, P1111, DOI 10.2307/2260826; Fagan WF, 2006, ECOL LETT, V9, P51, DOI 10.1111/j.1461-0248.2005.00845.x; Ferriere R., 2004, CAMBRIDGE STUDIES AD; Ferriere R, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0081; Frankham R, 2005, BIOL CONSERV, V126, P131, DOI 10.1016/j.biocon.2005.05.002; Frankham R, 2010, BIOL CONSERV, V143, P1919, DOI 10.1016/j.biocon.2010.05.011; Freville H, 2000, MOL ECOL, V9, P1671, DOI 10.1046/j.1365-294x.2000.01045-7.x; Freville H, 2004, ECOLOGY, V85, P694, DOI 10.1890/03-0119; Freville H, 2001, MOL ECOL, V10, P879, DOI 10.1046/j.1365-294X.2001.01249.x; Freville H, 1998, CONSERV BIOL, V12, P1269, DOI 10.1046/j.1523-1739.1998.96483.x; Freville H., 2001, THESIS U MONTPELLIER; Freville H, 2007, ECOLOGY, V88, P2662, DOI 10.1890/06-1453.1; Fuhlendorf SD, 2006, ECOL APPL, V16, P1706, DOI 10.1890/1051-0761(2006)016[1706:SHBTBF]2.0.CO;2; Gandon S, 1996, P ROY SOC B-BIOL SCI, V263, P1003, DOI 10.1098/rspb.1996.0148; Glemin S, 2006, HEREDITY, V97, P304, DOI 10.1038/sj.hdy.6800870; Glemin S, 2005, GENETICS, V171, P279, DOI 10.1534/genetics.104.035915; Glemin S, 2001, GENETICS, V159, P1217; Glemin S, 2008, CONSERV BIOL, V22, P216, DOI 10.1111/j.1523-1739.2007.00864.x; Godelle B, 1998, GENET SEL EVOL, V30, pS15, DOI 10.1051/gse:19980701; Gomez-Gonzalez S, 2011, P NATL ACAD SCI USA, V108, P18743, DOI 10.1073/pnas.1108863108; Gonzalez A, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0404; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; Hansen MM, 2012, MOL ECOL, V21, P1311, DOI 10.1111/j.1365-294X.2011.05463.x; HANSKI I, 1989, TRENDS ECOL EVOL, V4, P113, DOI 10.1016/0169-5347(89)90061-X; Hardy OJ, 2004, J EVOLUTION BIOL, V17, P795, DOI 10.1111/j.1420-9101.2004.00713.x; Hardy OJ, 2004, GENETICS, V168, P1601, DOI 10.1534/genetics.104.027714; HARRISON S, 1988, AM NAT, V132, P360, DOI 10.1086/284858; He TH, 2012, NEW PHYTOL, V194, P751, DOI 10.1111/j.1469-8137.2012.04079.x; He TH, 2011, NEW PHYTOL, V191, P184, DOI 10.1111/j.1469-8137.2011.03663.x; Hedrick PW, 2010, CONSERV GENET, V11, P615, DOI 10.1007/s10592-009-9999-5; Helms BS, 2015, HYDROBIOLOGIA, V755, P283, DOI 10.1007/s10750-015-2311-4; Igic B, 2004, NEW PHYTOL, V161, P97, DOI 10.1046/j.1469-8137.2003.00952.x; Imbert E, 2006, PLANT SPEC BIOL, V21, P109, DOI 10.1111/j.1442-1984.2006.00156.x; Imbert E, 2012, J PLANT ECOL-UK, V5, P305, DOI 10.1093/jpe/rtr033; Jetz W, 2014, CURR BIOL, V24, P919, DOI 10.1016/j.cub.2014.03.011; Kawecki TJ, 2012, TRENDS ECOL EVOL, V27, P547, DOI 10.1016/j.tree.2012.06.001; Keeley JE, 2012, ISR J ECOL EVOL, V58, P123, DOI 10.1560/IJEE.58.2-3.123; Keeley JE, 2011, TRENDS PLANT SCI, V16, P406, DOI 10.1016/j.tplants.2011.04.002; Keller LF, 2002, TRENDS ECOL EVOL, V17, P230, DOI 10.1016/S0169-5347(02)02489-8; Kirchner F, 2005, OIKOS, V111, P130, DOI 10.1111/j.0030-1299.2005.14022.x; Kraaij T., 2013, KOEDOE, V55; LACY RC, 1993, WILDLIFE RES, V20, P45, DOI 10.1071/WR9930045; Laikre L.F., 2009, CONSERV BIOL, V24, P86; Lamont B. B., 2012, BMC EVOLUTIONARY BIO, V12, P1; LAMONT BB, 1991, BOT REV, V57, P277, DOI 10.1007/BF02858770; Lavergne S, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0091; Lecointre G, 2011, CR PALEVOL, V10, P331, DOI 10.1016/j.crpv.2011.03.005; Leducq JB, 2010, CONSERV GENET, V11, P497, DOI 10.1007/s10592-010-0055-2; Legendre S, 1995, J APPL STAT, V22, P817, DOI 10.1080/02664769524649; Leimu R, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0004010; Levins R, 1968, MONOGRAPHS POPULATIO, V2; Linnaeus C., 1735, SYSTEMA NATURAE SIVE, P1; Lopez S, 2008, J EVOLUTION BIOL, V21, P294, DOI 10.1111/j.1420-9101.2007.01442.x; Losos JB, 2011, EVOLUTION, V65, P1827, DOI 10.1111/j.1558-5646.2011.01289.x; MANICACCI D, 1992, LANDSCAPE ECOL, V6, P147; Marchin RM, 2009, PLANT ECOL, V205, P249, DOI 10.1007/s11258-009-9614-3; Mathias A, 2001, EVOLUTION, V55, P246; McMahon BJ, 2014, EVOL APPL, V7, P999, DOI 10.1111/eva.12193; McNair CM, 2015, J PHARM PHARMACOL, V67, P351, DOI 10.1111/jphp.12368; Menges ES, 1998, J ECOL, V86, P63, DOI 10.1046/j.1365-2745.1998.00234.x; Merila J, 2014, EVOL APPL, V7, P1, DOI 10.1111/eva.12137; Midgley J, 2000, AUSTRAL ECOL, V25, P65, DOI 10.1046/j.1442-9993.2000.01011.x; Mignot A., 2005, ACTES BRG, V5, P37; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; Noel F, 2010, CONSERV GENET, V11, P509, DOI 10.1007/s10592-010-0056-1; NOSS RF, 1990, CONSERV BIOL, V4, P355, DOI 10.1111/j.1523-1739.1990.tb00309.x; Oliver AK, 2013, PHYTOPATHOLOGY, V103, P107; Olivier L., 1995, LIVRE ROUGE FLORE ME, VI; OLIVIERI I, 1995, AM NAT, V146, P202, DOI 10.1086/285795; OLIVIERI I, 1990, TRENDS ECOL EVOL, V5, P207, DOI 10.1016/0169-5347(90)90132-W; Olivieri I., 2001, INTEGRATING ECOLOGY, P245; Olivieri I., 1985, STRUCTURE FUNCTIONIN, P77; Olivieri Isabelle, 1997, P293, DOI 10.1016/B978-012323445-2/50017-1; Olivieri Isabelle, 2000, Evolutionary Ecology, V14, piii; Oostermeijer JGB, 2003, BIOL CONSERV, V113, P389, DOI 10.1016/S0006-3207(03)00127-7; Orr HA, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004551; Ouborg NJ, 2010, BIOL LETTERS, V6, P3, DOI 10.1098/rsbl.2009.0590; Pannell JR, 2001, THEOR POPUL BIOL, V59, P145, DOI 10.1006/tpbi.2000.1496; Petit C, 2001, BIOL CONSERV, V100, P21, DOI 10.1016/S0006-3207(00)00204-4; RABINOWITZ D, 1981, BIOL ASPECTS RARE PL, P205; Radies D, 2009, FOREST ECOL MANAG, V259, P86, DOI 10.1016/j.foreco.2009.09.046; Ravigne V, 2004, EVOL ECOL RES, V6, P125; Ravigne V, 2006, EVOLUTION, V60, P2257, DOI 10.1554/05-352.1; Ravigne V, 2009, AM NAT, V174, pE141, DOI 10.1086/605369; Realini M. F., 2015, PLANT SYST EVOL, V30, P1123; Rebelo A. G., 2001, FIELD GUIDE PROTEAS; Rebelo A. G., 1992, PROTEA ATLAS MANUAL; Riba M, 2005, EVOL ECOL, V19, P241, DOI 10.1007/s10682-005-0913-4; Riba M., 2001, BOCCONEA, V13, P173; Riba M, 2009, NEW PHYTOL, V183, P667, DOI 10.1111/j.1469-8137.2009.02948.x; Ronce O, 2005, J ECOL, V93, P431, DOI 10.1111/j.1365-2745.2005.00972.x; Ronce O, 2000, AM NAT, V155, P485, DOI 10.1086/303341; Ronce O, 1997, AM NAT, V150, P220, DOI 10.1086/286064; Ronce O, 2000, EVOL ECOL, V14, P233, DOI 10.1023/A:1011068005057; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Ronce Ophelie, 2004, P227, DOI 10.1016/B978-012323448-3/50012-X; Rosenzweig F, 2014, GENOMICS, V104, pV, DOI 10.1016/j.ygeno.2014.11.008; Santamaria L, 2012, EVOL APPL, V5, P202, DOI 10.1111/j.1752-4571.2011.00229.x; Schlesinger MD, 2011, J INSECT CONSERV, V15, P839, DOI 10.1007/s10841-011-9382-y; SCHULZE RE, 1997, TT8296 WAT RES COMM; Shafer ABA, 2015, TRENDS ECOL EVOL, V30, P78, DOI 10.1016/j.tree.2014.11.009; Simon MF, 2012, INT J PLANT SCI, V173, P711, DOI 10.1086/665973; SLATKIN M, 1978, P NATL ACAD SCI USA, V75, P3531, DOI 10.1073/pnas.75.7.3531; Snogerup S., 1990, Willdenowia, V19, P271; Syphard AD, 2009, CONSERV BIOL, V23, P758, DOI 10.1111/j.1523-1739.2009.01223.x; Tallmon DA, 2004, TRENDS ECOL EVOL, V19, P489, DOI 10.1016/j.tree.2004.07.003; Thomson R. C., 2010, MOL ECOL, V19, P21; Tonnabel J, 2014, EVOLUTION, V68, P2775, DOI 10.1111/evo.12480; Tonnabel J, 2012, J ECOL, V100, P1464, DOI 10.1111/j.1365-2745.2012.02023.x; Tyson P, 2002, GLO CH IGBP, P3; Van Valen Leigh, 1971, Evolution, V25, P591, DOI 10.1111/j.1558-5646.1971.tb01919.x; van Wilgen BW, 2010, J APPL ECOL, V47, P631, DOI 10.1111/j.1365-2664.2010.01800.x; van Woesik R, 2012, P ROY SOC B-BIOL SCI, V279, P2448, DOI 10.1098/rspb.2011.2621; Vander Wal E., 2013, PHILOS T R SOC B, V368, DOI DOI 10.1098/RSTB.2012.0090); Vitalis R, 2002, AM J BOT, V89, P1142, DOI 10.3732/ajb.89.7.1142; Vitalis R, 2004, AM NAT, V163, P295, DOI 10.1086/381041; Vitalis R, 2001, MOL ECOL NOTES, V1, P64, DOI 10.1046/j.1471-8278 .2001.00026.x; Vitalis R., 2014, EVOLUTION, V67, P1676; Wagenius S, 2007, AM NAT, V169, P383, DOI 10.1086/511313; Weekley CW, 2010, AM J BOT, V97, P144, DOI 10.3732/ajb.0900106; Weill M, 2013, PATHOG GLOB HEALTH, V107, P433; WEISS PW, 1984, AUST J ECOL, V9, P99, DOI 10.1111/j.1442-9993.1984.tb01348.x; Whiteley AR, 2015, TRENDS ECOL EVOL, V30, P42, DOI 10.1016/j.tree.2014.10.009; WIDLER B E, 1979, Candollea, V34, P133; Wilson GA, 2003, GENETICS, V163, P1177 154 7 7 5 123 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. JAN 2016 9 1 SI 196 211 10.1111/eva.12336 16 Evolutionary Biology Evolutionary Biology DB1EJ WOS:000368250500013 27087848 DOAJ Gold, Green Published 2019-02-21 J Tobler, M; Alba, DM; Arias-Rodriguez, L; Jeyasingh, PD Tobler, Michael; Alba, Danielle M.; Arias-Rodriguez, Lenin; Jeyasingh, Punidan D. Using replicated evolution in extremophile fish to understand diversification in elemental composition and nutrient excretion FRESHWATER BIOLOGY English Article ecological stoichiometry; hydrogen sulphide springs; intraspecific variation; Poecilia mexicana (Poeciliidae); sulphur LIFE-HISTORY EVOLUTION; ECOLOGICAL STOICHIOMETRY; GENETIC DIFFERENTIATION; EXTREME ENVIRONMENTS; HYDROGEN-SULFIDE; PHOSPHORUS; ECOSYSTEM; CONVERGENCE; PLASTICITY; PATTERNS 1. Ecological sources of selection are key drivers of evolutionary change in populations. Information on the ecological relevance of such evolutionary shifts is comparatively sparse and has received renewed interest. The framework of ecological stoichiometry is useful to investigate the reciprocal effects between ecology and evolution, because data on somatic stoichiometry of ancestral and descendent populations can be used to predict ecological functions, such as nutrient recycling, using mass balance-based models. 2. Here, we investigated whether divergent populations of livebearing fishes (genus Poecilia) have diverged in elemental composition. We tested whether adaptation to local environmental conditions is manifested in changes of somatic stoichiometry by measuring carbon (C), nitrogen (N), phosphorus (P) and sulphur (S) contents of wild-caught individuals inhabiting sulphidic (extreme) and non-sulphidic (benign) habitats. We also attempted to isolate the sources (i.e. genetic, environmental and their interaction) of intraspecific variation in stoichiometry. Finally, we tested whether shifts in somatic stoichiometry impinge on the rates at which key nutrients (N and P) are excreted. 3. We found significant differentiation in somatic stoichiometry between fish from the two different habitat types in two of three river drainages, with fish from sulphidic habitats having lower C but higher P and S contents. Even though there was evidence for temporal variation and plasticity in elemental composition, differences between sulphidic and non-sulphidic populations in P and S contents were maintained in laboratory populations over multiple generations. Finally, some sulphidic and non-sulphidic population pairs differed in the rates of N and P excretions, although excretion rates were not related to somatic stoichiometry. 4. Together, these results show that the elemental composition of organisms appears to have the characteristics typically observed in the evolution of biochemical, physiological and morphological traits. Studying taxa that have undergone replicated evolution illuminate some of the evolutionary mechanisms that drive variation in somatic elemental composition. Applying stoichiometric principles to such variation, as we have performed here, is a useful, yet underutilised approach to understand the ecological relevance of evolutionary change. [Tobler, Michael] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA; [Alba, Danielle M.; Jeyasingh, Punidan D.] Oklahoma State Univ, Dept Integrat Biol, Stillwater, OK 74078 USA; [Arias-Rodriguez, Lenin] Univ Juarez Autonoma Tabasco, Div Acad Ciencias Biol, Villahermosa, Tabasco, Mexico Tobler, M (reprint author), Kansas State Univ, Div Biol, 116 Ackert Hall, Manhattan, KS 66506 USA. tobler@ksu.edu ARIAS RODRIGUEZ, LENIN/0000-0002-8025-5569 National Science Foundation [IOS-1121832, IOS-0924401]; Southwestern Association of Naturalists Howard McCarley Research Award We thank Courtney Passow and Maura Palacios for assistance during sample collections in Mexico. We thank the Mexican government for issuing collection permits (DGOPA 09004.041111.3088), as well as the Centro de Investigacion e Innovacion para la Ensenanza y Aprendizaje (CIIEA) and Villa Luz Nature Park for their hospitality. We also thank Ingo Schlupp for samples donated to this project. We are indebted to Anthony Balda, David Hall, Priyanka Roy Chowdhury and Jared Goos for assistance with elemental analyses. This work is approved by IACUC ACUP AS-13-15. This project was supported by the National Science Foundation (IOS-1121832 to MT and IOS-0924401 to PDJ), as well as the Southwestern Association of Naturalists Howard McCarley Research Award to DMA. Alba D. M., 2015, THESIS; Alvarez J., 1947, ANALES ESCUELA NACL, V5, P275; American Public Health Association (APHA), 1992, STANDARD METHODS EXA; Bassar RD, 2012, AM NAT, V180, P167, DOI 10.1086/666611; Bertram SM, 2006, ANIM BEHAV, V72, P899, DOI 10.1016/j.anbehav.2006.02.012; Capps KA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054093; Carroll SP, 2007, FUNCT ECOL, V21, P387, DOI 10.1111/j.1365-2435.2007.01289.x; El-Sabaawi RW, 2015, FRESHWATER BIOL, V60, P590, DOI 10.1111/fwb.12507; El-Sabaawi RW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032713; Elser JJ, 1999, ECOLOGY, V80, P735, DOI 10.2307/177013; Elser JJ, 2000, J EVOLUTION BIOL, V13, P845; Endler J. A., 1986, NATURAL SELECTION WI; Evans-White MA, 2005, FRESHWATER BIOL, V50, P1786, DOI 10.1111/j.1365-2427.2005.01455.x; Gonzalez AL, 2010, OIKOS, V119, P779, DOI 10.1111/j.1600-0706.2009.18549.x; Goos JM, 2014, HYDROBIOLOGIA, V722, P93, DOI 10.1007/s10750-013-1682-7; Greenway Ryan, 2014, Diversity-Basel, V6, P597; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Jeyasingh PD, 2005, ECOL LETT, V8, P1021, DOI 10.1111/j.1461-0248.2005.00803.x; Jeyasingh PD, 2007, MOL ECOL, V16, P4649, DOI 10.1111/j.1365-294X.2007.03558.x; Jeyasingh PD, 2014, ECOL EVOL, V4, P528, DOI 10.1002/ece3.950; Jeyasingh PD, 2009, ECOL LETT, V12, P1229, DOI 10.1111/j.1461-0248.2009.01368.x; KAEUFFER R, 2011, EVOLUTION, V0066; Kay AD, 2005, OIKOS, V109, P6, DOI 10.1111/j.0030-1299.2005.14048.x; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Leroux SJ, 2012, P ROY SOC B-BIOL SCI, V279, P4183, DOI 10.1098/rspb.2012.1315; Li L, 2011, ANNU REV PHARMACOL, V51, P169, DOI 10.1146/annurev-pharmtox-010510-100505; Lind PR, 2015, EVOL ECOL, V29, P551, DOI 10.1007/s10682-015-9760-0; Losos JB, 1998, SCIENCE, V279, P2115, DOI 10.1126/science.279.5359.2115; McIntyre PB, 2008, ECOLOGY, V89, P2335, DOI 10.1890/07-1552.1; Mehner T, 2005, LIMNOL OCEANOGR, V50, P2022, DOI 10.4319/lo.2005.50.6.2022; Miller RR, 2005, FRESHWATER FISHES ME; Moody EK, 2015, FRESHWATER BIOL, V60, P456, DOI 10.1111/fwb.12500; Morehouse NI, 2010, OIKOS, V119, P766, DOI 10.1111/j.1600-0706.2009.18569.x; Nickum J, 2004, GUIDELINES USE FISHE; Norton HL, 2007, MOL BIOL EVOL, V24, P710, DOI 10.1093/molbev/msl203; Ojeda RA, 1999, J ARID ENVIRON, V41, P443, DOI 10.1006/jare.1999.0496; Palacios M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071069; Passow CN, 2015, PHYSIOL BIOCHEM ZOOL, V88, P371, DOI 10.1086/681053; Pfenninger M, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4873; Plath M, 2013, EVOLUTION, V67, P2647, DOI 10.1111/evo.12133; Plath M, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-256; Riesch R, 2015, EXTREMOPHILE FISHES, P137; Riesch R, 2014, ECOL LETT, V17, P65, DOI 10.1111/ele.12209; Roach KA, 2011, ECOLOGY, V92, P2056, DOI 10.1890/11-0276.1; Rosenblum EB, 2010, P NATL ACAD SCI USA, V107, P2113, DOI 10.1073/pnas.0911042107; Ruber L, 2001, J EVOLUTION BIOL, V14, P325, DOI 10.1046/j.1420-9101.2001.00269.x; Salt DE, 2008, ANNU REV PLANT BIOL, V59, P709, DOI 10.1146/annurev.arplant.59.032607.092942; Schaus MH, 1997, LIMNOL OCEANOGR, V42, P1386, DOI 10.4319/lo.1997.42.6.1386; Schindler DE, 1997, ECOLOGY, V78, P1816; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Sterner R. W., 2002, ECOLOGICAL STOICHIOM; Stipanuk MH, 2004, ANNU REV NUTR, V24, P539, DOI 10.1146/annurev.nutr.24.012003.132418; TATRAI I, 1986, FRESHWATER BIOL, V16, P417, DOI 10.1111/j.1365-2427.1986.tb00982.x; Tobler M, 2009, J EVOLUTION BIOL, V22, P2298, DOI 10.1111/j.1420-9101.2009.01844.x; Tobler M, 2008, BIOL J LINN SOC, V95, P517, DOI 10.1111/j.1095-8312.2008.01063.x; Tobler M, 2015, FRESHWATER BIOL, V60, P768, DOI 10.1111/fwb.12530; Tobler M, 2014, COMP BIOCHEM PHYS A, V175, P7, DOI 10.1016/j.cbpa.2014.04.012; Tobler M, 2011, EVOLUTION, V65, P2213, DOI 10.1111/j.1558-5646.2011.01298.x; Turner C. B., 2015, BIORXIV; Vanni MJ, 2002, ANNU REV ECOL SYST, V33, P341, DOI 10.1146/annurev.ecolsys.33.010802.150519; Vrede T, 2011, OIKOS, V120, P886, DOI 10.1111/j.1600-0706.2010.18939.x; Wallenstein MD, 2012, BIOGEOCHEMISTRY, V109, P35, DOI 10.1007/s10533-011-9641-8; Whiles MR, 2009, LIMNOL OCEANOGR-METH, V7, P1 64 9 9 0 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. JAN 2016 61 1 158 171 10.1111/fwb.12691 14 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology DA8DG WOS:000368034300014 2019-02-21 J Hunt, VL; Zhong, WH; McClure, CD; Mlynski, DT; Duxbury, EML; Priest, NK Hunt, Vicky L.; Zhong, Weihao; McClure, Colin D.; Mlynski, David T.; Duxbury, Elizabeth M. L.; Priest, Nicholas K. Cold-seeking behaviour mitigates reproductive losses from fungal infection in Drosophila JOURNAL OF ANIMAL ECOLOGY English Article behavioural anapyrexia; behavioural fever; Drosophila melanogaster; Fecundity; life-history traits; Metarhizium robertsii; temperature preference HOST-PATHOGEN INTERACTIONS; METARHIZIUM-ANISOPLIAE; ECOLOGICAL IMMUNOLOGY; EVOLUTIONARY ECOLOGY; CLIMATE-CHANGE; DESERT LOCUST; RADIAL GROWTH; TRADE-OFFS; TEMPERATURE; FEVER 1. Animals must tailor their life-history strategies to suit the prevailing conditions and respond to hazards in the environment. Animals with lethal infections are faced with a difficult choice: to allocate more resources to reproduction and suffer higher mortality or to reduce reproduction with the expectation of enhanced immunity and late-age reproduction. However, the strategies employed to mediate shifts in life-history traits are largely unknown. 2. Here, we investigate the temperature preference of the fruit fly, Drosophila melanogaster, during infection with the fungal pathogen, Metarhizium robertsii, and the consequence of temperature preference on life-history traits. 3. We have measured the temperature preference of fruit flies under different pathogen conditions. We conducted multiple fitness assays of the host and the pathogen under different thermal conditions. From these data, we estimated standard measures of fitness and used age-specific methodologies to test for the fitness trade-offs that are thought to underlie differences in life-history strategy. 4. We found that fungus-infected fruit flies seek out cooler temperatures, which facilitates an adaptive shift in their life-history strategy. The colder temperatures preferred by infected animals were detrimental to the pathogen because it increased resistance to infection. But, it did not provide net benefits that were specific to infected animals, as cooler temperatures increased lifetime reproductive success and survival whether or not the animals were infected. Instead, we find that cold-seeking benefits infected animals by increasing their late-age reproductive output, at a cost to their early-age reproductive output. In contrast, naive control flies prefer warmer temperatures that optimize early-age reproductive, at a cost to reproductive output at late ages. 5. These findings show that infected animals exhibit fundamentally different reproductive strategies than their healthy counterparts. Temperature preference can facilitate shifts in strategy, but not without inevitable trade-offs. [Hunt, Vicky L.] Univ Bath, Milner Ctr Evolut, Bath BA2 7AY, Avon, England; Univ Bath, Dept Biol & Biochem, Bath BA2 7AY, Avon, England Hunt, VL (reprint author), Univ Bath, Milner Ctr Evolut, Claverton Down, Bath BA2 7AY, Avon, England. V.L.Hunt@bristol.ac.uk; n.priest@bath.ac.uk Hunt, Vicky/0000-0002-7094-044X; Priest, Nicholas/0000-0002-8253-2697 University of Bath URS studentship; Royal Society Research Grant; BBSRC; Defra; NERC; Scottish Government; Wellcome Trust [BB/I000836/1]; Biotechnology and Biological Sciences Research Council [BB/I000836/1] We thank S.E. Reynolds and L.D. Hurst for comments on the manuscript, F. Shaw for advice with the mortality analysis and I. Greenhalgh for constructive criticism. This work was financially supported by a University of Bath URS studentship to VLH, BBSRC studentships to CDM and WZ, and by a Royal Society Research Grant and a BBSRC, Defra, NERC, Scottish Government, and Wellcome Trust grant, BB/I000836/1, to NKP. Adamo SA, 1998, J PARASITOL, V84, P529, DOI 10.2307/3284717; Anderson JL, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-157; Anderson RD, 2013, ECOL ENTOMOL, V38, P1, DOI 10.1111/j.1365-2311.2012.01394.x; Ayres JS, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000150; Ayres JS, 2008, PLOS BIOL, V6, P2764, DOI 10.1371/journal.pbio.0060305; Baucom RS, 2011, FUNCT ECOL, V25, P18, DOI 10.1111/j.1365-2435.2010.01742.x; Berdahl A, 2013, SCIENCE, V339, P574, DOI 10.1126/science.1225883; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Charlesworth B., 1994, EVOLUTION AGE STRUCT; de Roode Jacobus C., 2012, Insects, V3, P789, DOI 10.3390/insects3030789; Dillon ME, 2007, J EXP BIOL, V210, P2897, DOI 10.1242/jeb.007591; Dillon ME, 2009, J THERM BIOL, V34, P109, DOI 10.1016/j.jtherbio.2008.11.007; Dimbi S, 2004, BIOCONTROL, V49, P83, DOI 10.1023/B:BICO.0000009397.84153.79; Elliot SL, 2002, P ROY SOC B-BIOL SCI, V269, P1599, DOI 10.1098/rspb.2002.2067; Fisher MC, 2012, NATURE, V484, P186, DOI 10.1038/nature10947; FORBES MRL, 1993, OIKOS, V67, P444, DOI 10.2307/3545356; Gvozdik L, 2012, BIOL LETTERS, V8, P262, DOI 10.1098/rsbl.2011.0960; HUEY RB, 1995, HEREDITY, V74, P216, DOI 10.1038/hdy.1995.30; Huey RB, 2001, AM NAT, V158, P204, DOI 10.1086/321314; Hunt VL, 2011, J THERM BIOL, V36, P443, DOI 10.1016/j.jtherbio.2011.07.008; Hunt VL, 2011, J INSECT PHYSIOL, V57, P1341, DOI 10.1016/j.jinsphys.2011.06.008; Hunt V.L., 2015, DRYAD DIGITAL REPOSI; Hurd H, 2003, ANNU REV ENTOMOL, V48, P141, DOI 10.1146/annurev.ento.48.091801.112722; Hurd H, 2001, TRENDS PARASITOL, V17, P363, DOI 10.1016/S1471-4922(01)01927-4; Kearney M, 2009, P NATL ACAD SCI USA, V106, P3835, DOI 10.1073/pnas.0808913106; Lazzaro BP, 2009, PHILOS T R SOC B, V364, P15, DOI 10.1098/rstb.2008.0141; Lazzaro BP, 2008, PLOS PATHOG, V4, DOI 10.1371/journal.ppat.1000025; Lemaitre B, 2007, ANNU REV IMMUNOL, V25, P697, DOI 10.1146/annurev.immunol.25.022106.141615; Linder JE, 2008, J INSECT PHYSIOL, V54, P297, DOI 10.1016/j.jinsphys.2007.10.001; Martin TL, 2008, AM NAT, V171, pE102, DOI 10.1086/527502; McClure CD, 2014, EVOLUTION, V68, P2225, DOI 10.1111/evo.12453; Moret Y, 2004, ECOL LETT, V7, P146, DOI 10.1046/j.1461-0248.2003.00561.x; MULLER CB, 1993, NATURE, V363, P65, DOI 10.1038/363065a0; Murdock CC, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2030; Ouedraogo A, 1997, MYCOPATHOLOGIA, V137, P37, DOI 10.1023/A:1006882621776; Ouedraogo RM, 2003, J INVERTEBR PATHOL, V82, P103, DOI 10.1016/S0022-2011(02)00185-4; Paaijmans KP, 2013, GLOBAL CHANGE BIOL, V19, P2373, DOI 10.1111/gcb.12240; Parker BJ, 2011, TRENDS ECOL EVOL, V26, P242, DOI 10.1016/j.tree.2011.02.005; Prasad NG, 2003, J GENET, V82, P45, DOI 10.1007/BF02715881; R Core Team, 2012, LANG ENV STAT COMP; Ramdya P., 2014, NATURE, V519, P233, DOI DOI 10.1038/NATURE14024; Sayeed O, 1996, P NATL ACAD SCI USA, V93, P6079, DOI 10.1073/pnas.93.12.6079; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Siddiqui W.H., 1972, ANN ENTOMOLOGICAL SO, V65, P9; Sinclair BJ, 2013, INTEGR COMP BIOL, V53, P545, DOI 10.1093/icb/ict004; TAYLOR F, 1981, AM NAT, V117, P1, DOI 10.1086/283683; Tefera T, 2003, BIOCONTROL SCI TECHN, V13, P699, DOI 10.1080/0958315031000151756; Thomas MB, 2003, TRENDS ECOL EVOL, V18, P344, DOI 10.1016/S0169-5347(03)00069-7; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; WATSON DW, 1993, J INVERTEBR PATHOL, V61, P10, DOI 10.1006/jipa.1993.1003; Webb TJ, 1999, P ROY SOC B-BIOL SCI, V266, P1537, DOI 10.1098/rspb.1999.0812; Zbikowska E, 2012, J INVERTEBR PATHOL, V109, P269, DOI 10.1016/j.jip.2011.12.006; Zhong WH, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2018 54 5 8 2 31 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2016 85 1 178 186 10.1111/1365-2656.12438 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology DA9PI WOS:000368141400018 26332860 Green Published, Other Gold 2019-02-21 J Dargent, F; Rolshausen, G; Hendry, AP; Scott, ME; Fussmann, GF Dargent, F.; Rolshausen, G.; Hendry, A. P.; Scott, M. E.; Fussmann, G. F. Parting ways: parasite release in nature leads to sex-specific evolution of defence JOURNAL OF EVOLUTIONARY BIOLOGY English Article enemy release; experimental evolution; Gyrodactylus turnbulli; Poecilia reticulata; resistance; sexual dimorphism GUPPIES POECILIA-RETICULATA; MHC CLASS IIB; LIFE-HISTORY EVOLUTION; GYRODACTYLUS-BULLATARUDIS; TRADE-OFFS; PHENOTYPIC PLASTICITY; TRINIDADIAN GUPPY; FOOD AVAILABILITY; FEMALE CHOICE; POPULATIONS We evaluated the extent to which males and females evolve along similar or different trajectories in response to the same environmental shift. Specifically, we used replicate experimental introductions in nature to consider how release from a key parasite (Gyrodactylus) generates similar or different defence evolution in male vs. female guppies (Poecilia reticulata). After 4-8 generations of evolution, guppies were collected from the ancestral (parasite still present) and derived (parasite now absent) populations and bred for two generations in the laboratory to control for nongenetic effects. These F2 guppies were then individually infected with Gyrodactylus, and infection dynamics were monitored on each fish. We found that parasite release in nature led to sex-specific evolutionary responses: males did not show much evolution of resistance, whereas females showed the evolution of increased resistance. Given that male guppies in the ancestral population had greater resistance to Gyrodactylus than did females, evolution in the derived populations led to reduction of sexual dimorphism in resistance. We argue that previous selection for high resistance in males constrained (relative to females) further evolution of the trait. We advocate more experiments considering sex-specific evolutionary responses to environmental change. [Dargent, F.; Fussmann, G. F.] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada; [Rolshausen, G.; Hendry, A. P.] McGill Univ, Redpath Museum, Montreal, PQ H3A 2K6, Canada; [Scott, M. E.] McGill Univ, Inst Parasitol, Montreal, PQ, Canada; [Scott, M. E.] McGill Univ, Ctr Host Parasite Interact, Montreal, PQ, Canada Dargent, F (reprint author), McGill Univ, Dept Biol, 1205 Dr Penfield Av, Montreal, PQ H3A 1B1, Canada. felipe.dargent@mail.mcgill.ca Dargent, Felipe/F-8749-2012 Dargent, Felipe/0000-0002-4510-0086; Fussmann, Gregor/0000-0001-9576-0122 Natural Sciences and Engineering Research Council of Canada through a Special Research Opportunity grant [356373-07]; Natural Sciences and Engineering Research Council of Canada through a Vanier CGS; Natural Sciences and Engineering Research Council of Canada through a NSERC-RTI; FQRNT Regroupement; National Science Foundation's Faculty Early Career grant [DEB-0846175]; United States National Science Foundation - Frontiers in Integrative Biological Research grant [EF-0623632] We thank D. Reznick, C. Ghalambor, E. Ruell, D. Fraser and the FIBR team for supplying us with guppies derived from the FIBR sites in Trinidad, for their support, and for their advice. We thank S. Portalier, E. Pedersen, A. Reddon and D. Adams for advice on data analysis, A. Lopez-Sepulcre, L. Jacquin, J. Raeymaekers and two anonymous reviewers for comments on the manuscript, and C. Tadiri, N. Okere and A. Howard for laboratory work. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada through a Special Research Opportunity grant (G.F.F., M.E.S., and A.P.H. - # 356373-07), a Vanier CGS to F.D., and a NSERC-RTI to A.P.H. Research at the Institute of Parasitology is supported by an FQRNT Regroupement. Research at the Ghalambor lab was supported by a National Science Foundation's Faculty Early Career grant to C.K.G. (DEB-0846175). The guppy introductions were funded by a United States National Science Foundation - Frontiers in Integrative Biological Research grant to D. Reznick P.I. (EF-0623632). A.P.H. also thanks Darwin's pub the George and Dragon in Downe, England, for the inspiration necessary to facilitate his final comments. Adams DC, 2009, EVOLUTION, V63, P1143, DOI 10.1111/j.1558-5646.2009.00649.x; ANDERSON RM, 1978, J ANIM ECOL, V47, P219, DOI 10.2307/3933; Arendt JD, 2014, EVOLUTION, V68, P2343, DOI 10.1111/evo.12445; Badyaev AV, 2002, TRENDS ECOL EVOL, V17, P369, DOI 10.1016/S0169-5347(02)02569-7; Bakke TA, 2007, ADV PARASIT, V64, P161, DOI 10.1016/S0065-308X(06)64003-7; Bell G, 2007, SELECTION MECH EVOLU; Bonneaud C, 2011, P NATL ACAD SCI USA, V108, P7866, DOI 10.1073/pnas.1018580108; BOOTS M, 1993, FUNCT ECOL, V7, P528, DOI 10.2307/2390128; Boots M, 2009, PHILOS T R SOC B, V364, P27, DOI 10.1098/rstb.2008.0160; Butler MA, 2007, NATURE, V447, P202, DOI 10.1038/nature05774; Cable J, 2007, INT J PARASITOL, V37, P1449, DOI 10.1016/j.ijpara.2007.04.013; Cable J, 2011, ECOLOGY EVOLUTION PO; Carroll S. P., 2014, SCIENCE, V346; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; Collyer ML, 2007, ECOLOGY, V88, P683, DOI 10.1890/06-0727; CUSACK R, 1986, J FISH DIS, V9, P169, DOI 10.1111/j.1365-2761.1986.tb01000.x; Dargent F, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2371; Dargent F, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056789; Darwin C., 1872, DESCENT MAN SELECTIO; Delph LF, 2005, AM NAT, V166, pS1, DOI 10.1086/462434; desRoij J., 2011, FUNCT ECOL, V25, P217; Duncan AB, 2011, EVOLUTION, V65, P3462, DOI 10.1111/j.1558-5646.2011.01388.x; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Forbes MR, 2007, TRENDS ECOL EVOL, V22, P111, DOI 10.1016/j.tree.2006.12.004; Frankel VM, 2015, INT J PARASITOL, V45, P703, DOI 10.1016/j.ijpara.2015.03.012; Fraser BA, 2009, J FISH BIOL, V75, P2299, DOI 10.1111/j.1095-8649.2009.02449.x; Fraser BA, 2010, HEREDITY, V104, P155, DOI 10.1038/hdy.2009.99; Fraser BA, 2010, EVOLUTION, V64, P2086, DOI 10.1111/j.1558-5646.2010.00965.x; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Gotanda KM, 2013, OECOLOGIA, V172, P155, DOI 10.1007/s00442-012-2485-7; Graham AL, 2005, ANNU REV ECOL EVOL S, V36, P373, DOI 10.1146/annurev.ecolsys.36.102003.152622; Griffiths SW, 1996, J FISH BIOL, V48, P891; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Handelsman CA, 2013, INTEGR COMP BIOL, V53, P975, DOI 10.1093/icb/ict057; HARRIS PD, 1992, J PARASITOL, V78, P912, DOI 10.2307/3283329; HEDRICK AV, 1989, TRENDS ECOL EVOL, V4, P136, DOI 10.1016/0169-5347(89)90212-7; Hendry AP, 2010, EVOLUTION, V64, P1517, DOI 10.1111/j.1558-5646.2010.00947.x; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; HERRE EA, 1993, SCIENCE, V259, P1442, DOI 10.1126/science.259.5100.1442; HOUDE AE, 1992, BEHAV ECOL, V3, P346, DOI 10.1093/beheco/3.4.346; Jokela J, 2003, BIOL J LINN SOC, V79, P165, DOI 10.1046/j.1095-8312.2003.00181.x; Kelly DW, 2009, ECOLOGY, V90, P2047, DOI 10.1890/08-1085.1; Kitano J, 2012, J FISH BIOL, V80, P131, DOI 10.1111/j.1095-8649.2011.03161.x; Kohler TJ, 2012, FRESHW SCI, V31, P1019, DOI 10.1899/11-141.1; Kolluru GR, 2006, BIOL J LINN SOC, V89, P301, DOI 10.1111/j.1095-8312.2006.00675.x; Kolluru GR, 2008, BEHAV ECOL, V20, P131, DOI [10.1093/beheco/arn124, DOI 10.1093/BEHECO/ARN124]; Koskella B, 2012, P ROY SOC B-BIOL SCI, V279, P1896, DOI 10.1098/rspb.2011.2259; Lahti DC, 2009, TRENDS ECOL EVOL, V24, P487, DOI 10.1016/j.tree.2009.03.010; LECREN ED, 1951, J ANIM ECOL, V20, P201; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lopez S, 1998, P ROY SOC B-BIOL SCI, V265, P717, DOI 10.1098/rspb.1998.0352; Lopez-Sepulcre A., 2013, P R SOC LOND B, V280; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MARSHALL I. D., 1958, JOUR HYGIENE, V56, P288; Mastitsky SE, 2010, PARASITOL RES, V106, P667, DOI 10.1007/s00436-010-1730-4; Merila J, 2014, EVOL APPL, V7, P1, DOI 10.1111/eva.12137; Murphy KP, 2008, JANEWAYS IMMUNOBIOLO; Nunn CL, 2009, PHILOS T R SOC B, V364, P61, DOI 10.1098/rstb.2008.0148; Ostfeld RS, 2000, CONSERV BIOL, V14, P722, DOI 10.1046/j.1523-1739.2000.99014.x; Pennisi E, 2012, SCIENCE, V337, P904, DOI 10.1126/science.337.6097.904; Perez-Jvostov F, 2015, INT J PARASITOL, V45, P409, DOI 10.1016/j.ijpara.2015.01.010; Perez-Jvostov F, 2012, OECOLOGIA, V170, P77, DOI 10.1007/s00442-012-2289-9; R Development Core Team, 2014, R LANG ENV STAT COMP; Reimchen TE, 2001, BIOL J LINN SOC, V73, P51, DOI 10.1006/bijl.2001.0523; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Reznick DN, 2005, INTEGR COMP BIOL, V45, P456, DOI 10.1093/icb/45.3.456; Richards EL, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013285; Roy BA, 2000, EVOLUTION, V54, P51, DOI 10.1111/j.0014-3820.2000.tb00007.x; Ruell E. W., 2013, P R SOC LOND B, V280; SchmidHempel P, 2011, EVOLUTIONARY PARASITOLOGY: THE INTEGRATED STUDY OF INFECTIONS, IMMUNOLOGY, ECOLOGY, AND GENETICS, P1; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Schulte RD, 2010, P NATL ACAD SCI USA, V107, P7359, DOI 10.1073/pnas.1003113107; SCOTT ME, 1984, PARASITOLOGY, V89, P159, DOI 10.1017/S0031182000001207; SCOTT ME, 1982, PARASITOLOGY, V85, P217, DOI 10.1017/S0031182000055207; SCOTT ME, 1985, J FISH DIS, V8, P495, DOI 10.1111/j.1365-2761.1985.tb00964.x; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sorci G, 2013, PATHOGENS, V2, P71, DOI 10.3390/pathogens2010071; Thoney D. A., 1991, Annual Review of Fish Diseases, V1, P133, DOI 10.1016/0959-8030(91)90027-H; Torchin ME, 2003, NATURE, V421, P628, DOI 10.1038/nature01346; Travis J, 2014, ADV ECOL RES, V50, P1, DOI 10.1016/B978-0-12-801374-8.00001-3; vansOosterhout C., 2007, INT J PARASITOL, V37, P805; Weese DJ, 2011, EVOL APPL, V4, P354, DOI 10.1111/j.1752-4571.2010.00169.x; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4 87 4 4 1 28 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JAN 2016 29 1 23 34 10.1111/jeb.12758 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity DA8RX WOS:000368074900002 26356531 Bronze 2019-02-21 J Jarvisto, PE; Calhim, S; Schuett, W; Velmala, W; Laaksonen, T Jarvisto, P. E.; Calhim, S.; Schuett, W.; Velmala, W.; Laaksonen, T. Sex-dependent responses to increased parental effort in the pied flycatcher BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Current reproduction; Fitness cost; Future reproduction; Local survival; Melanin-based coloration; Optimal brood size; Secondary sexual trait; Sexual conflict MALE COLLARED FLYCATCHERS; BROOD SIZE MANIPULATION; LIFE-HISTORY EVOLUTION; HEALTH STATE INDEXES; TIT PARUS-MAJOR; FICEDULA-HYPOLEUCA; REPRODUCTIVE COSTS; LEUKOCYTE PROFILES; PLUMAGE COLORATION; PASSERINE BIRDS The optimal number of offspring for males and females may differ, as males and females invest differently in different aspects of reproduction. This creates potential for a sexual conflict leading to reduced residual reproductive value of the sex that experiences exploitation by the other sex. We experimentally investigated (by changing the brood size by one offspring) the effects of increased or decreased parental effort on the future local survival and breeding success of adult pied flycatchers (Ficedula hypoleuca), and on the future expression of male ornamentation. In addition, we studied how experimentally changing the brood size affected offspring condition and their recruitment. We show that females (but not males) rearing enlarged broods had lower local survival compared to those rearing reduced or control broods. This indicates a sexual conflict concerning optimal brood size. However, even though brood size manipulation did not affect the local survival of males, it did have an influence on the dorsal melanin coloration of young males. Young males rearing enlarged broods showed a stronger increase in plumage darkness from the current to the next breeding season than those rearing reduced or control broods. This suggests that stress experienced during reproduction might have carry-over effects that influence the complicated melanocortin system and lead to changes in the expression of melanin-based coloration. Alternatively, successful breeding might have stimulated young males to further invest in reproduction in the following season. Taken together these results indicate that both sexes are affected by brood demands, but in different ways. [Jarvisto, P. E.; Velmala, W.; Laaksonen, T.] Univ Turku, Sect Ecol, Dept Biol, FI-20014 Turku, Finland; [Calhim, S.] Univ Jyvaskyla, Sect Ecol & Evolutionary Biol, Dept Biol & Environm Sci, Jyvaskyla, Finland; [Schuett, W.] Univ Hamburg, Museum & Inst Zool, Hamburg, Germany Jarvisto, PE (reprint author), Univ Turku, Sect Ecol, Dept Biol, FI-20014 Turku, Finland. peteer@utu.fi Laaksonen, Toni/B-4241-2014 Laaksonen, Toni/0000-0001-9035-7131; Schuett, Wiebke/0000-0002-4149-6095 Academy of Finland We thank Jenni Kuismin, Jenna Ruohonen, Kirsi Ukkola, Matias Ukkola, and Ina-Sabrina Tirri for the great help in the field. The study was supported by the Academy of Finland (grants to TL). Alonso-Alvarez C, 2012, EVOLUTION OF PARENTAL CARE, P40; ASKENMO C, 1979, AM NAT, V114, P748, DOI 10.1086/283523; Blomquist GE, 2009, BIOL LETTERS, V5, P339, DOI 10.1098/rsbl.2009.0009; BREIEHAGEN T, 1992, ANIM BEHAV, V44, P987, DOI 10.1016/S0003-3472(05)80595-0; Burness GP, 2000, J EXP BIOL, V203, P3513; Charmandari E, 2005, ANNU REV PHYSIOL, V67, P259, DOI 10.1146/annurev.physiol.67.040403.120816; Dale S, 1999, EVOLUTION, V53, P1235, DOI 10.1111/j.1558-5646.1999.tb04536.x; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Fraser GS, 2002, CONDOR, V104, P413, DOI 10.1650/0010-5422(2002)104[0413:MFDIPC]2.0.CO;2; Galvan I, 2009, IBIS, V151, P541, DOI 10.1111/j.1474-919X.2009.00944.x; Garant D, 2004, EVOLUTION, V58, P634, DOI 10.1111/j.0014-3820.2004.tb01685.x; Garcia-Berthou E, 2001, J ANIM ECOL, V70, P708, DOI 10.1046/j.1365-2656.2001.00524.x; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Hamer KC, 2006, BEHAV ECOL, V17, P132, DOI 10.1093/beheco/arj008; Hemborg C, 1999, J ANIM ECOL, V68, P429, DOI 10.1046/j.1365-2656.1999.00295.x; Hoglund J, 1998, OIKOS, V83, P478, DOI 10.2307/3546675; Horak P, 1998, FUNCT ECOL, V12, P750, DOI 10.1046/j.1365-2435.1998.00244.x; Ilmonen P, 2003, OECOLOGIA, V136, P148, DOI 10.1007/s00442-003-1243-2; Jacobs SR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054594; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; JARVI T, 1987, BEHAV ECOL SOCIOBIOL, V20, P161, DOI 10.1007/BF00299729; Jarvisto PE, 2015, BEHAV ECOL SOCIOBIOL, V69, P335, DOI 10.1007/s00265-014-1846-0; Jarvisto PE, 2013, ETHOLOGY, V119, P662, DOI 10.1111/eth.12107; KHORRAM O, 1985, ENDOCRINOLOGY, V117, P2483, DOI 10.1210/endo-117-6-2483; Kilgas P, 2006, PHYSIOL BIOCHEM ZOOL, V79, P565, DOI 10.1086/502817; Kokko H, 2012, EVOLUTION OF PARENTAL CARE, P101; Laaksonen T, 2011, BEHAV ECOL SOCIOBIOL, V65, P257, DOI 10.1007/s00265-010-1034-9; LACK D, 1948, EVOLUTION, V2, P95, DOI 10.2307/2405371; Lehtonen PK, 2009, ANIM BEHAV, V77, P1103, DOI 10.1016/j.anbehav.2009.01.014; Lessells CM, 2012, EVOLUTION OF PARENTAL CARE, P150; Lobato E, 2005, ECOSCIENCE, V12, P27, DOI 10.2980/i1195-6860-12-1-27.1; Lundberg A., 1992, PIED FLYCATCHER; McGraw KJ, 2003, BEHAV ECOL SOCIOBIOL, V53, P116, DOI 10.1007/s00265-002-0558-z; McGraw KJ, 2002, J EXP BIOL, V205, P3747; Messina Frank J., 2001, P113; Moller AP, 2014, METHODS ECOL EVOL, V5, P353, DOI 10.1111/2041-210X.12160; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Morales J, 2007, ECOSCIENCE, V14, P31, DOI 10.2980/1195-6860(2007)14[31:EMILSA]2.0.CO;2; MORENO J, 1995, J ANIM ECOL, V64, P721, DOI 10.2307/5851; Moreno J, 2011, ACTA ORNITHOL, V46, P65, DOI 10.3161/000164511X589929; Nakagawa S, 2007, J EVOLUTION BIOL, V20, P1674, DOI 10.1111/j.1420-9101.2007.01403.x; Norris DR, 2004, SCIENCE, V306, P2249, DOI 10.1126/science.1103542; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; POTTI J, 1991, ORNIS SCAND, V22, P45, DOI 10.2307/3676620; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff Derek A., 1992; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; Roulin A, 2013, SEMIN CELL DEV BIOL, V24, P594, DOI 10.1016/j.semcdb.2013.05.005; Royle NJ, 2002, NATURE, V416, P733, DOI 10.1038/416733a; SAETRE GP, 1995, J ANIM ECOL, V64, P21, DOI 10.2307/5824; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Sanz JJ, 1997, J AVIAN BIOL, V28, P157, DOI 10.2307/3677309; Senar JC, 2003, NATURWISSENSCHAFTEN, V90, P234, DOI 10.1007/s00114-003-0414-7; Sheldon BC, 1998, P ROY SOC B-BIOL SCI, V265, P1737, DOI 10.1098/rspb.1998.0496; Siefferman L, 2005, BIOL LETTERS, V1, P208, DOI 10.1098/rsbl.2004.0274; Siefferman L, 2008, IBIS, V150, P32; Siikamaki P, 1998, OECOLOGIA, V115, P579, DOI 10.1007/s004420050555; Sirkia PM, 2009, ANIM BEHAV, V78, P1051, DOI 10.1016/j.anbehav.2009.06.022; Sirkia PM, 2011, THESIS, P262; SLAGSVOLD T, 1986, J ANIM ECOL, V55, P1115, DOI 10.2307/4437; Smiseth PT, 2012, EVOLUTION OF PARENTAL CARE, P1; Smith HG, 2000, P ROY SOC B-BIOL SCI, V267, P2163, DOI 10.1098/rspb.2000.1264; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Svensson L., 1992, IDENTIFICATION GUIDE; Thomson RL, 2014, OECOLOGIA, V176, P423, DOI 10.1007/s00442-014-3020-9; Torok J, 2003, BEHAV ECOL, V14, P382, DOI 10.1093/beheco/14.3.382; Trivers R., 1972, PARENTAL INVESTMENT; Westneat DF, 2003, ANNU REV ECOL EVOL S, V34, P365, DOI 10.1146/annurev.ecolsys.34.011802.132439; WHITTINGHAM LA, 1989, BEHAV ECOL SOCIOBIOL, V25, P73, DOI 10.1007/BF00299713; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 76 3 3 0 29 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JAN 2016 70 1 157 169 10.1007/s00265-015-2034-6 13 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology DA3GW WOS:000367686200014 2019-02-21 J Ibanez, CM; Arguelles, J; Yamashiro, C; Sepulveda, RD; Pardo-Gandarillas, MC; Keyl, F Ibanez, Christian M.; Argueelles, Juan; Yamashiro, Carmen; Sepulveda, Roger D.; Cecilia Pardo-Gandarillas, M.; Keyl, Friedemann Population dynamics of the squids Dosidicus gigas (Oegopsida: Ommastrephidae) and Doryteuthis gahi (Myopsida: Loliginidae) in northern Peru FISHERIES RESEARCH English Article Squid; Thermal anomalies; Population dynamics; Time series HUMBOLDT CURRENT SYSTEM; DELAYED DENSITY-DEPENDENCE; NINO-SOUTHERN-OSCILLATION; JUMBO SQUID; RECRUITMENT VARIABILITY; EASTERN PACIFIC; RANGE EXPANSION; TIME-SERIES; CHILE; COAST Pelagic squids of continental shelf ecosystems mostly include oceanic and migratory species of the family Ommastrephidae and neritic species of the family Loliginidae. These two families have contrasting life history strategies; ommastrephids spawn in the open ocean and are thought to have a high dispersal potential, while loliginids spawn on the bottom and are likely to have a low dispersal potential. Consequently, these squid species should display different patterns in their population dynamics, which can be inferred through commercial catches. To study the population dynamics of the Ommastrephidae and the Loliginidae families, monthly time series catches of Dosidicus gigas and Dotyteuthis gahi were used. These artisanal fishery catches were made in northern Peru from 1999 to 2010. They were standardized to construct autocorrelation functions so that the relationship between catch dynamics and short-term environmental change (thermal anomalies of sea surface temperature were used as a proxy) could be studied. The results revealed that increases in catches of D. gigas and D. gahi are not related to thermal anomalies, but rather a pattern of drastic fluctuations in D. gahi catch sizes are seen. In, both species, temporal relationships indicate that the annual growth rate and changes in abundance can modelled as a function of the catch density observed in previous years. We propose that these population differences result from the contrasting life history strategies and differential habitat use of these two squid species. (C) 2015 Elsevier B.V. All rights reserved. [Ibanez, Christian M.] Univ Andres Bello, Fac Ecol & Recursos Nat, Dept Ecol & Biodiversidad, Santiago, Chile; [Argueelles, Juan; Yamashiro, Carmen] Inst del Mar Peru, Unidad Invest Invertebrados Marinas, Chucuito, Callao, Peru; [Sepulveda, Roger D.] Univ Austral Chile, Fac Ciencias, Inst Ciencias Ambientales & Evolut, Valdivia, Chile; [Cecilia Pardo-Gandarillas, M.] Univ Chile, Fac Ciencias, Dept Ciencias Ecol, Santiago, Chile; [Keyl, Friedemann] Fed Res Inst Rural Areas Forestry & Fisheries, Johann Heinrich von Thunen Inst, D-22767 Hamburg, Germany Ibanez, CM (reprint author), Univ Andres Bello, Fac Ecol & Recursos Nat, Dept Ecol & Biodiversidad, Republ 440, Santiago, Chile. christian.ibanez@unab.cl Ibanez, Christian/B-9700-2009; Pardo-Gandarillas, Maria/L-3790-2017 Pardo-Gandarillas, Maria/0000-0003-2626-8243; Ibanez, Christian/0000-0002-7390-2617 Universidad de Chile; CONICYT-Chile We are grateful to Sara Purca (IMARPE) for improving early versions of this manuscript. C.M. Ibanez was funded by Universidad de Chile internships abroad grants and CONICYT-Chile Doctoral Fellowship during 2006-2010. AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Anderson CIH, 2001, FISH RES, V54, P133, DOI 10.1016/S0165-7836(01)00378-2; Arkhipkin AI, 2013, DEEP-SEA RES PT II, V95, P7, DOI 10.1016/j.dsr2.2012.07.003; Berryman A.A., 1999, PRINCIPLES POPULATIO; Boyle P, 2005, CEPHALOPODS: ECOLOGY AND FISHERIES, P1, DOI 10.1002/9780470995310; Boyle PR, 1996, PHILOS T ROY SOC B, V351, P985, DOI 10.1098/rstb.1996.0089; Camus Patricio A., 2008, International Journal of Environment and Health, V2, P5, DOI 10.1504/IJENVH.2008.018668; Cardoso F., 1998, PERU REV PERU BIOL, V5, P9; Cardoso F., 1991, BIOTA, V15, P2; Cardoso Franz, 2005, Rev. peru biol., V12, P369; Chong Javier, 2005, Gayana (Concepc.), V69, P319, DOI 10.4067/S0717-65382005000200012; Dawe EG, 2007, FISH OCEANOGR, V16, P303, DOI 10.1111/j.1365-2419.2006.00431.x; Field JC, 2007, CAL COOP OCEAN FISH, V48, P131; Ibanez CM, 2007, SCI MAR, V71, P123; Ibanez CM, 2012, J MAR BIOL ASSOC UK, V92, P197, DOI 10.1017/S0025315411000440; Ibanez CM, 2011, MAR ECOL PROG SER, V431, P163, DOI 10.3354/meps09133; Jereb P., 2010, FAO SPECIES CATALOGU, V4, P51; Keyl F, 2008, CAL COOP OCEAN FISH, V49, P119; Lima M, 1999, AM NAT, V153, P476, DOI 10.1086/303191; Lima M, 2001, REV CHIL HIST NAT, V74, P317; Lima M, 2000, MAR ECOL PROG SER, V207, P97, DOI 10.3354/meps207097; LIMA M, 1995, REV CHIL HIST NAT, V68, P251; Lima M., 2006, INVESTIGACION CI JUL, V2006, P46; Ibanez CM, 2014, HIDROBIOLOGICA, V24, P1; Montecino V., 2005, BIOPHYSICAL INTERACT, P329; Nigmatullin CM, 2001, FISH RES, V54, P9, DOI 10.1016/S0165-7836(01)00371-X; ODOR RK, 1991, J EXP BIOL, V160, P93; Pedraza-Garcia M, 2008, ENVIRON BIOL FISH, V82, P111, DOI 10.1007/s10641-007-9260-3; R Development Core Team, 2011, R LANG ENV STAT COMP; Rocha F, 2003, FISH RES, V60, P151, DOI 10.1016/S0165-7836(02)00080-2; Rocha F, 2001, BIOL REV, V76, P291, DOI 10.1017/S1464793101005681; Rodhouse PG, 2001, FISH RES, V54, P3, DOI 10.1016/S0165-7836(01)00370-8; Rosa R., 2013, ADV SQUID BIOL ECO 2, P169; Royama T., 1992, ANAL POPULATION DYNA; Semmens JM, 2007, REV FISH BIOL FISHER, V17, P401, DOI 10.1007/s11160-007-9048-8; Staaf DJ, 2008, J MAR BIOL ASSOC UK, V88, P759, DOI 10.1017/S0025315408001422; Stenseth NC, 2003, P ROY SOC B-BIOL SCI, V270, P2087, DOI 10.1098/rspb.2003.2415; Stenseth NC, 2002, SCIENCE, V297, P1292, DOI 10.1126/science.1071281; Taipe A, 2001, FISH RES, V54, P21, DOI 10.1016/S0165-7836(01)00377-0; Thiel M, 2007, OCEANOGR MAR BIOL, V45, P195; TURCHIN P, 1992, ECOLOGY, V73, P289, DOI 10.2307/1938740; Villegas P, 2001, FISH RES, V54, P123, DOI 10.1016/S0165-7836(01)00376-9; Waluda CM, 2006, FISH RES, V79, P56, DOI 10.1016/j.fishres.2006.02.017; Waluda CM, 2006, MAR ECOL PROG SER, V310, P25, DOI 10.3354/meps310025; Zeidberg L. D., 2007, Proceedings of the National Academy of Sciences of the United States of America, V104, P12948, DOI 10.1073/pnas.0702043104; Zuniga MJ, 2008, CIENC MAR, V34, P91, DOI 10.7773/cm.v34i1.1138 46 3 3 1 11 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. JAN 2016 173 2 SI 151 158 10.1016/j.fishres.2015.06.014 8 Fisheries Fisheries DA4MO WOS:000367774200007 2019-02-21 J Arnold, PA; Cassey, P; White, CR Arnold, Pieter A.; Cassey, Phillip; White, Craig R. Maturity matters for movement and metabolic rate: trait dynamics across the early adult life of red flour beetles ANIMAL BEHAVIOUR English Article body size; dispersal; locomotion; metabolism; routine MR; speed; spontaneous activity; tortuosity; Tribolium castaneum COLEOPTERA-TENEBRIONIDAE; DISPERSAL; BEHAVIOR; TRIBOLIUM; PATTERNS; INSECTS; COST; AGE; EVOLUTION; PREDATION Transitioning between life stages involves significant changes to the physiology, structural morphology, biochemistry and behaviour of an organism. Eclosion, metamorphosis and the onset of sexual maturity have consequences for the life history evolution of an organism by initiating reproductive and dispersalrelated behaviours that are both energetically costly and directly related to fitness. Animal movement, particularly dispersal when sexually mature, is critical for mate location, controlling population density and promoting gene flow. Here we examined changes in dispersal-related and physiological traits during a significant transitional period in red flour beetles, Tribolium castaneum. We measured the metabolic rate, spontaneous activity, body size and movement behaviour traits of individuals of known age and sex. Traits were compared between immature and sexually mature adults as well as during early adult life when there is a strong tendency to disperse and reproduce. Spontaneous activity, movement speed and metabolic rate were distinctly reduced in immature adults prior to the onset of sexual maturity, and immature individuals moved more intermittently than mature ones. We found that these traits increased with age following eclosion, up to a relatively stable mean once sexual maturity was attained. The reduced metabolic expenditure found in immature individuals was attributable to a reduced energy demand due to relative inactivity, which we hypothesize to be a protective mechanism from conspecifics while the cuticle is undergoing sclerotization. Understanding the precise developmental trajectories of behavioural and physiological traits allows us to interpret the trait syndromes that underlie dispersal and their evolution. (C) 2015 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Arnold, Pieter A.; White, Craig R.] Univ Queensland, Sch Biol Sci, Brisbane, Qld, Australia; [Cassey, Phillip] Univ Adelaide, Sch Biol Sci, Adelaide, SA 5005, Australia Arnold, PA (reprint author), Univ Queensland, Sch Biol Sci, St Lucia, Qld 4072, Australia. p.arnold1@uq.edu.au Arnold, Pieter/H-1481-2016; White, Craig/F-9062-2010 Arnold, Pieter/0000-0002-6158-7752; White, Craig/0000-0002-0200-2187; Cassey, Phillip/0000-0002-2626-0172 ARC Future Fellowships [FT0991420, FT130101493] We thank Daniel Ortiz-Barrientos, Robbie Wilson, Julian Beaman and two anonymous referees for their helpful feedback on the manuscript. P.C. and C.R.W. were both supported by ARC Future Fellowships (FT0991420 and FT130101493). ANHOLT BR, 1995, ECOLOGY, V76, P2230, DOI 10.2307/1941696; Arnaud L, 1999, BEHAVIOUR, V136, P67, DOI 10.1163/156853999500677; Bartumeus F, 2009, OIKOS, V118, P488, DOI 10.1111/j.1600-0706.2009.17313.x; Bates D, 2014, LME4 LINEAR MIXED EF; BELL WJ, 1990, ANNU REV ENTOMOL, V35, P447, DOI 10.1146/annurev.en.35.010190.002311; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Bishop CD, 2006, INTEGR COMP BIOL, V46, P655, DOI 10.1093/icb/icl004; Chown SL, 1999, BIOL REV, V74, P87, DOI 10.1017/S000632319800526X; Cuddington K, 2002, AM NAT, V160, P119, DOI 10.1086/340611; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; HALSTEAD D. G. H., 1963, Bulletin of Entomological Research, V54, P119; HAPP GM, 1970, ANN ENTOMOL SOC AM, V63, P1782, DOI 10.1093/aesa/63.6.1782; Hedrick TL, 2008, BIOINSPIR BIOMIM, V3, DOI 10.1088/1748-3182/3/3/034001; Heidinger IMM, 2010, INSECT CONSERV DIVER, V3, P205, DOI 10.1111/j.1752-4598.2010.00089.x; Kleiber M., 1961, FIRE LIFE INTRO ANIM; Konarzewski M, 2013, J COMP PHYSIOL B, V183, P27, DOI 10.1007/s00360-012-0698-z; Lighton J.R.B., 2008, MEASURING METABOLIC; Mancinelli G, 2010, MAR FRESHW BEHAV PHY, V43, P321, DOI 10.1080/10236244.2010.512728; Martin JR, 2003, BEHAV PROCESS, V64, P145, DOI 10.1016/S0376-6357(03)00132-3; Mathot KJ, 2015, TRENDS ECOL EVOL, V30, P199, DOI 10.1016/j.tree.2015.01.010; Norris M. J., 1954, Anti-Locust Bulletin, Vno. 18, P1; OGDEN JC, 1970, PHYSIOL ZOOL, V43, P124, DOI 10.1086/physzool.43.2.30155521; Perez-Mendoza J, 2011, J ECON ENTOMOL, V104, P443, DOI 10.1603/EC10430; PITNICK S, 1995, P NATL ACAD SCI USA, V92, P10614, DOI 10.1073/pnas.92.23.10614; Potenza L, 2010, ITAL J ZOOL, V77, P354, DOI 10.1080/11250000903449860; PRUS TADEUSZ, 1966, EKOL POLSKA SER A, V14, P547; R Core Team, 2014, R LANG ENV STAT COMP; Reinhold K, 1999, FUNCT ECOL, V13, P217, DOI 10.1046/j.1365-2435.1999.00300.x; Sekar S, 2012, J ANIM ECOL, V81, P174, DOI 10.1111/j.1365-2656.2011.01909.x; SOHAL RS, 1982, AGE, V5, P21, DOI 10.1007/BF02431719; SOKOLOFF A, 1974, BIOL TRIBOLIUM, V2; SOLIMAN MH, 1987, ARCH GERONTOL GERIAT, V6, P43, DOI 10.1016/0167-4943(87)90038-0; Stevens VM, 2013, EVOL APPL, V6, P630, DOI 10.1111/eva.12049; Teal Peter E.A., 2002, IOBC-WPRS Bulletin, V25, P167; Terblanche JS, 2004, J INSECT PHYSIOL, V50, P419, DOI 10.1016/j.jinsphys.2004.02.009; Therneau T., 2014, PACKAGE SURVIVAL ANA; Thompson JJW, 2002, PHYSIOL ENTOMOL, V27, P136, DOI 10.1046/j.1365-3032.2002.00278.x; TUCKER VA, 1975, AM SCI, V63, P413; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; White CR, 2013, J COMP PHYSIOL B, V183, P1, DOI 10.1007/s00360-012-0676-5; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; Wilson RP, 2013, ECOL LETT, V16, P1145, DOI 10.1111/ele.12149; WITH KA, 1994, FUNCT ECOL, V8, P477, DOI 10.2307/2390072; Yoder JM, 2004, BEHAV ECOL, V15, P469, DOI 10.1093/beheco/arh037; ZIEGLER JR, 1976, EVOLUTION, V30, P579, DOI 10.1111/j.1558-5646.1976.tb00935.x; Ziegler R., 1985, P95 47 4 4 4 50 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. JAN 2016 111 181 188 10.1016/j.anbehav.2015.10.023 8 Behavioral Sciences; Zoology Behavioral Sciences; Zoology CZ8UG WOS:000367374000022 2019-02-21 J Paquette, M; Boudreault, C; Fenton, N; Pothier, D; Bergeron, Y Paquette, M.; Boudreault, C.; Fenton, N.; Pothier, D.; Bergeron, Y. Bryophyte species assemblages in fire and clear-cut origin boreal forests FOREST ECOLOGY AND MANAGEMENT English Article Bryophytes; Boreal forest; Tree species composition; Chronosequence; Clear-cut logging; Life-history strategies PICEA-ABIES FOREST; UNDERSTORY VEGETATION; PLANT-COMMUNITIES; MANAGED FORESTS; WOODY DEBRIS; DIVERSITY; GROWTH; STAND; SUCCESSION; ABUNDANCE Natural and anthropogenic disturbances could have different impacts on understory plant communities. Investigating these differences could help improve silvicultural and management practices in order to better achieve biodiversity protection objectives. Using post-fire (20-90 years) and post-clearcutting (20-70 years) forest chronosequences placed on similar sites, we examined which environmental factors are the main drivers of bryophyte community assembly in eastern Canadian boreal forests, using information on bryophyte life-history strategies (colonist: high reproductive effort but a short potential life span; perennial: low reproductive effort and a long potential life span) to interpret the resulting patterns. The fire origin stands were affected by high-severity fires followed by natural regeneration, whereas the clear-cut stands were regenerated through the advance regeneration present in the understory of the harvested stands. Our results indicate that by killing the existing mosses and baring the mineral soil, fire tends to decrease the cover of perennial species (such as Pleurozium scherberii) and increase the presence of colonist species compared with clear-cut. Overall species richness does not increase much in older stands, but some species that have been identified by previous studies as being more sensitive to management activities, such as liverworts, tend to be strongly associated with balsam fir basal area, which is higher in mature clear-cut origin stands. This tree species tends to be heavily affected by partial mortality events after >50 years (insect outbreaks, windthrow), which could accelerate the creation of heterogeneous canopy structure and generate a greater diversity of microhabitats suitable for sensitive bryophyte species. More research needs to be conducted to better understand the underlying functional relationships between overstory tree composition and bryophyte communities. (C) 2015 Elsevier B.V. All rights reserved. [Paquette, M.; Fenton, N.; Bergeron, Y.] Univ Quebec Abitibi Temiscamingue, Ctr Etud Foret, NSERC UQAT UQAM Ind Chair Sustainable Forest Mana, Rouyn Noranda, PQ J9X 5E4, Canada; [Boudreault, C.; Bergeron, Y.] Univ Quebec, Ctr Etud Foret, Montreal, PQ H3C 3P8, Canada; [Boudreault, C.; Bergeron, Y.] Univ Quebec, Nat Sci & Engn Res Council, UQAM UQAT Ind Chair Sustainable Forest Management, Montreal, PQ H3C 3P8, Canada; [Boudreault, C.; Pothier, D.] Univ Laval, Ctr Etud Foret, Fac Foresterie Geog & Geomat, Quebec City, PQ G1V 0A6, Canada Boudreault, C (reprint author), Univ Quebec, Ctr Etud Foret, CP 8888,Succursale Ctr Ville, Montreal, PQ H3C 3P8, Canada. myriam.paquette@uqat.ca; boudreault.catheri-ne@courrier.uqam.ca; nicole.fenton@uqat.ca; david.pothier@sbf.ulaval.ca; yves.bergeron@uqat.ca Fenton, Nicole/0000-0002-3782-2361 Fonds de recherche sur la nature et les technologies du Quebec (FQRNT); NSERC-Laval University Industrial Research Chair in Silviculture and Wildlife; NSERC-UQAT-UQAM Industrial Chair in Sustainable Forest Management Funding was provided by the Fonds de recherche sur la nature et les technologies du Quebec (FQRNT), the NSERC-Laval University Industrial Research Chair in Silviculture and Wildlife, and the NSERC-UQAT-UQAM Industrial Chair in Sustainable Forest Management. We thank M. Bouchard for comments on an earlier version of this manuscript. We are grateful to J-P. Roussy, E. Lachance, and A. Allard-Duchene for their help in the field, and to M. Lapointe for her logistic help. ANDERSSON LI, 1991, HOLARCTIC ECOL, V14, P121; Arseneault J, 2012, CAN J FOREST RES, V42, P1467, DOI [10.1139/X2012-054, 10.1139/x2012-054]; Barbier S, 2008, FOREST ECOL MANAG, V254, P1, DOI 10.1016/j.foreco.2007.09.038; Barrette J, 2013, CAN J FOREST RES, V43, P234, DOI 10.1139/cjfr-2012-0270; Beatty Susan W., 2003, P177; Bouchard M, 2008, CAN J FOREST RES, V38, P1621, DOI 10.1139/X07-201; Bouchard M, 2011, FOREST ECOL MANAG, V261, P811, DOI 10.1016/j.foreco.2010.11.020; Brassard BW, 2006, CRIT REV PLANT SCI, V25, P115, DOI 10.1080/07352680500348857; Burnham K. P, 2002, MODEL SELECTION MULT; Burton P.J., 2010, IUFRO WORLD SERIES, P249; Caners RT, 2013, FOREST ECOL MANAG, V289, P489, DOI 10.1016/j.foreco.2012.09.044; Cyr D, 2007, LANDSCAPE ECOL, V22, P1325, DOI 10.1007/s10980-007-9109-3; Cyr D, 2009, FRONT ECOL ENVIRON, V7, P519, DOI 10.1890/080088; De Grandpre L, 2000, J VEG SCI, V11, P791, DOI 10.2307/3236549; De'Ath G, 2002, ECOLOGY, V83, P1105, DOI 10.2307/3071917; Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2; During Heinjo J., 1992, P1; Dynesius M, 2008, APPL VEG SCI, V11, P345, DOI 10.3170/2008-7-18457; DYRNESS CT, 1973, ECOLOGY, V54, P57, DOI 10.2307/1934374; Environnement Canada, 2009, NORM MOYENN CLIM; Faubert J., 2012, FLORE BRYOPHYTES QUE, V1; Fenton NJ, 2008, BIOL CONSERV, V141, P1389, DOI 10.1016/j.biocon.2008.03.019; Fenton NJ, 2006, J VEG SCI, V17, P65, DOI 10.1658/1100-9233(2006)017[0065:FSIABB]2.0.CO;2; Fenton NJ, 2005, BIOL CONSERV, V122, P417, DOI 10.1016/j.biocon.2004.09.003; Forsman H., 2008, THESIS; Fourrier A, 2013, FOREST ECOL MANAG, V310, P10, DOI 10.1016/j.foreco.2013.08.011; Fraver S, 2007, CAN J FOREST RES, V37, P627, DOI 10.1139/X06-269; Frego K.A., 1996, CAN J BOT, V74, P937; Gelman A, 2008, STAT MED, V27, P2865, DOI 10.1002/sim.3107; Hart SA, 2008, ECOL MONOGR, V78, P123, DOI 10.1890/06-2140.1; Hart SA, 2006, CRIT REV PLANT SCI, V25, P381, DOI 10.1080/007352600819286; Harvey B, 2002, CAN J FOREST RES, V32, P653, DOI 10.1139/X02-006; Hunter Jr. M.L., 1990, PRINCIPLES MANAGING, P370; Hylander K, 2005, ECOL APPL, V15, P674, DOI 10.1890/04-0570; Hylander K, 2009, ECOLOGY, V90, P160, DOI 10.1890/08-0042.1; Hylander K, 2010, J VEG SCI, V21, P1099, DOI 10.1111/j.1654-1103.2010.01220.x; Ireland R.R., 1982, MOSS FLORA MARITINE; Kimmerer RW, 2005, BRYOLOGIST, V108, P391, DOI 10.1639/0007-2745(2005)108[0391:PODAEO]2.0.CO;2; Lachance E, 2013, ECOSCIENCE, V20, P252, DOI 10.2980/20-3-3608; LAROI GH, 1976, CAN J BOT, V54, P619; Littell RC, 1996, SAS SYSTEM MIXED MOD; Lohmus A, 2008, RESTOR ECOL, V16, P231, DOI 10.1111/j.1526-100X.2007.00266.x; LONGTON RE, 1969, ANN BOT-LONDON, V33, P83, DOI 10.1093/oxfordjournals.aob.a084275; Mazerolle M. J., 2012, PACKAGE AICCMODAVG; McArdle BH, 2001, ECOLOGY, V82, P290, DOI 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2; Messier C, 1998, J VEG SCI, V9, P511, DOI 10.2307/3237266; Mills SE, 2005, BRYOLOGIST, V108, P86, DOI 10.1639/0007-2745(2005)108[86:FIBAAD]2.0.CO;2; Momeau C., 2007, GUIDE RECONNAISSANCE; Muhle H, 1975, J HATTORI BOT LAB, V39, P1; Nguyen-Xuan T, 2000, CAN J FOREST RES, V30, P1353, DOI 10.1139/cjfr-30-9-1353; Okland T, 2003, FOREST ECOL MANAG, V177, P17, DOI 10.1016/S0378-1127(02)00331-6; Oksanen J., 2008, VEGAN COMMUNITY ECOL; Paquette M., J VEG SCI UNPUB; Rambo TR, 1998, BRYOLOGIST, V101, P366; Rees DC, 2002, FOREST ECOL MANAG, V155, P291, DOI 10.1016/S0378-1127(01)00566-7; Rydgren K, 1998, J VEG SCI, V9, P763, DOI 10.2307/3237042; Rydin H, 1997, CONSERV BIOL, V11, P628, DOI 10.1046/j.1523-1739.1997.96437.x; Schmalholz M, 2011, BIODIVERS CONSERV, V20, P2575, DOI 10.1007/s10531-011-0092-2; Schmalholz M, 2011, ECOGRAPHY, V34, P637, DOI 10.1111/j.1600-0587.2010.06652.x; Silvola Jouko, 1991, Lindbergia, V17, P5; SODERSTROM L, 1988, BIOL CONSERV, V45, P169, DOI 10.1016/0006-3207(88)90137-1; Tews J, 2004, J BIOGEOGR, V31, P79, DOI 10.1046/j.0305-0270.2003.00994.x; Tilman David, 1993, P13; Timoney KP, 1997, FOREST ECOL MANAG, V93, P101, DOI 10.1016/S0378-1127(96)03929-1; Vanha-Majamaa I, 2007, FOREST ECOL MANAG, V250, P77, DOI 10.1016/j.foreco.2007.03.012; Williams TG, 1998, PLANT CELL ENVIRON, V21, P555, DOI 10.1046/j.1365-3040.1998.00292.x 66 4 4 4 48 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0378-1127 1872-7042 FOREST ECOL MANAG For. Ecol. Manage. JAN 1 2016 359 99 108 10.1016/j.foreco.2015.09.031 10 Forestry Forestry CZ0IX WOS:000366789500012 2019-02-21 J Husak, JF Husak, Jerry F. Measuring Selection on Physiology in the Wild and Manipulating Phenotypes (in Terrestrial Nonhuman Vertebrates) COMPREHENSIVE PHYSIOLOGY English Article DARK-EYED JUNCOS; BASAL METABOLIC-RATE; EXPERIMENTALLY-ELEVATED TESTOSTERONE; GALAPAGOS MARINE IGUANAS; WHOLE-ANIMAL PERFORMANCE; LIZARD UTA-STANSBURIANA; LIFE-HISTORY EVOLUTION; SIDE-BLOTCHED LIZARDS; SEXUALLY ANTAGONISTIC SELECTION; PREDICT SURVIVAL PROBABILITIES To understand why organisms function the way that they do, we must understand how evolution shapes physiology. This requires knowledge of how selection acts on physiological traits in nature. Selection studies in the wild allow us to determine how variation in physiology causes variation in fitness, revealing how evolution molds physiology over evolutionary time. Manipulating phenotypes experimentally in a selection study shifts the distribution of trait variation in a population to better explore potential constraints and the adaptive value of physiological traits. There is a large database of selection studies in the wild on a variety of traits, but very few of those are physiological traits. Nevertheless, data available so far suggest that physiological traits, including metabolic rate, thermal physiology, whole-organism performance, and hormone levels, are commonly subjected to directional selection in nature, with stabilizing and disruptive selection less common than predicted if physiological traits are optimized to an environment. Selection studies on manipulated phenotypes, including circulating testosterone and glucocorticoid levels, reinforce this notion, but reveal that trade-offs between survival and reproduction or correlational selection can constrain the evolution of physiology. More studies of selection on physiological traits in nature that quantify multiple traits are necessary to better determine the manner in which physiological traits evolve and whether different types of traits (dynamic performance vs. regulatory) evolve differently. (C) 2016 American Physiological Society. [Husak, Jerry F.] Univ St Thomas, Dept Biol, St Paul, MN 55105 USA Husak, JF (reprint author), Univ St Thomas, Dept Biol, St Paul, MN 55105 USA. jerry.husak@stthomas.edu Adkins-Regan E., 2005, HORMONES ANIMAL SOCI; Aerts P, 2000, NETH J ZOOL, V50, P261, DOI 10.1163/156854200505865; Alatalo RV, 1996, P ROY SOC B-BIOL SCI, V263, P1697, DOI 10.1098/rspb.1996.0248; Almasi B, 2013, HORM BEHAV, V64, P161, DOI 10.1016/j.yhbeh.2013.03.001; Anderson RA, 2008, BIOL J LINN SOC, V93, P709, DOI 10.1111/j.1095-8312.2007.00905.x; Andersson M., 1994, SEXUAL SELECTION; Angilletta MJ, 2006, J THERM BIOL, V31, P541, DOI 10.1016/j.jtherbio.2006.06.002; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; Angilletta MJ, 2003, TRENDS ECOL EVOL, V18, P234, DOI 10.1016/S0169-5347(03)00087-9; Angilletta MJ, 2002, J THERM BIOL, V27, P249, DOI 10.1016/S0306-4565(01)00094-8; ARNOLD SJ, 1983, AM ZOOL, V23, P347; Arnqvist G, 2005, SEXUAL CONFLICT; Artacho P, 2009, EVOLUTION, V63, P1044, DOI 10.1111/j.1558-5646.2008.00603.x; AUSTIN CC, 1992, FUNCT ECOL, V6, P145, DOI 10.2307/2389748; Baird TA, 1996, COPEIA, P336; Baird TA, 2001, ETHOLOGY, V107, P15, DOI 10.1046/j.1439-0310.2001.00628.x; Bartholomew G.A., 1987, P11; BARTHOLOMEW GA, 1986, BIOSCIENCE, V36, P324, DOI 10.2307/1310237; BARTHOLOMEW GA, 1982, AM ZOOL, V22, P227; Bartholomew GA, 1958, ZOOGEOGRAPHY, P81; Baugh AT, 2014, GEN COMP ENDOCR, V208, P154, DOI 10.1016/j.ygcen.2014.08.014; BAUWENS D, 1995, EVOLUTION, V49, P848, DOI 10.1111/j.1558-5646.1995.tb02321.x; Bech C, 1999, P ROY SOC B-BIOL SCI, V266, P2161, DOI 10.1098/rspb.1999.0903; Bennett A.F., 1990, Oxford Surveys in Evolutionary Biology, V7, P251; BENNETT AF, 1989, LIFE SCI R, V45, P191; BENNETT AF, 1991, J EXP BIOL, V160, P1; BENNETT AF, 1979, SCIENCE, V206, P649, DOI 10.1126/science.493968; Bennett AF, 1997, HDB PHYSL COMP PHY 3, VI, P1; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; BERTHOLD AA, 1849, ARCH ANAT PHYSL WISS, V16, P42; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Blackmer AL, 2005, BEHAV ECOL, V16, P906, DOI 10.1093/beheco/ari069; Blas J, 2007, P NATL ACAD SCI USA, V104, P8880, DOI 10.1073/pnas.0700232104; Blows MW, 2007, J EVOLUTION BIOL, V20, P1, DOI 10.1111/j.1420-9101.2006.01164.x; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bonduriansky R, 2014, EVOLUTION, V68, P595, DOI 10.1111/evo.12272; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; Bonine KE, 2001, J MORPHOL, V250, P265; Bonine KE, 1999, J ZOOL, V248, P255, DOI 10.1017/S0952836999006123; Boratynski Z, 2010, FUNCT ECOL, V24, P1252, DOI 10.1111/j.1365-2435.2010.01764.x; Boratynski Z, 2009, FUNCT ECOL, V23, P330, DOI 10.1111/j.1365-2435.2008.01505.x; BORGIA G, 1991, CONDOR, V93, P935, DOI 10.2307/3247728; Brand MD, 2000, EXP GERONTOL, V35, P811, DOI 10.1016/S0531-5565(00)00135-2; Brandt Y, 2003, P ROY SOC B-BIOL SCI, V270, P1061, DOI 10.1098/rspb.2003.2343; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; Breuner CW, 2013, FUNCT ECOL, V27, P24, DOI 10.1111/1365-2435.12016; Breuner CW, 2011, HORMONES AND REPRODUCTION OF VERTEBRATES, VOL 4: BIRDS, P129; Breuner CW, 2002, J ENDOCRINOL, V175, P99, DOI 10.1677/joe.0.1750099; Breuner CW, 1998, GEN COMP ENDOCR, V111, P386, DOI 10.1006/gcen.1998.7128; BRODIE ED, 1995, TRENDS ECOL EVOL, V10, P313, DOI 10.1016/S0169-5347(00)89117-X; BRODIE ED, 1992, EVOLUTION, V46, P1284, DOI 10.1111/j.1558-5646.1992.tb01124.x; Brown CR, 2005, ECOLOGY, V86, P1034, DOI 10.1890/04-0740; BROWN JH, 1993, AM NAT, V142, P573, DOI 10.1086/285558; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Byers J, 2010, ANIM BEHAV, V79, P771, DOI 10.1016/j.anbehav.2010.01.009; Cabezas S, 2007, HORM BEHAV, V51, P313, DOI 10.1016/j.yhbeh.2006.11.004; Calsbeek R, 2008, EVOL ECOL RES, V10, P197; Calsbeek R, 2007, EVOLUTION, V61, P2493, DOI 10.1111/j.1558-5646.2007.00206.x; Calsbeek R, 2007, EVOLUTION, V61, P1071, DOI 10.1111/j.1558-5646.2007.00098.x; Cam E, 2003, J ANIM ECOL, V72, P411, DOI 10.1046/j.1365-2656.2003.00708.x; Cano JM, 2006, FUNCT ECOL, V20, P464, DOI 10.1111/j.1365-2435.2006.01129.x; Careau V, 2013, OECOLOGIA, V171, P11, DOI 10.1007/s00442-012-2385-x; Careau V, 2012, PHYSIOL BIOCHEM ZOOL, V85, P543, DOI 10.1086/666970; Casto JM, 2001, AM NAT, V157, P408, DOI 10.1086/319318; CHANDLER CR, 1994, ANIM BEHAV, V47, P1445, DOI 10.1006/anbe.1994.1191; Chapman T, 2006, CURR BIOL, V16, pR744, DOI 10.1016/j.cub.2006.08.020; Chappell MA, 1997, BEHAVIOUR, V134, P511, DOI 10.1163/156853997X00502; CHAPPELL MA, 1995, FUNCT ECOL, V9, P498, DOI 10.2307/2390015; Chappell MA, 2007, J EXP BIOL, V210, P4179, DOI 10.1242/jeb.006163; Clobert J, 2000, FUNCT ECOL, V14, P675, DOI 10.1046/j.1365-2435.2000.00477.x; Clotfelter ED, 2004, HORM BEHAV, V46, P171, DOI 10.1016/j.yhbeh.2004.03.003; Cockrem JF, 2002, GEN COMP ENDOCR, V125, P197, DOI 10.1006/gcen.2001.7750; Cohen AA, 2012, TRENDS ECOL EVOL, V27, P428, DOI 10.1016/j.tree.2012.04.008; Collins CE, 2013, ZOOLOGY, V116, P151, DOI 10.1016/j.zool.2013.01.001; Comendant T, 2003, J EVOLUTION BIOL, V16, P948, DOI 10.1046/j.1420-9101.2003.00598.x; Congdon JD, 1999, OECOLOGIA, V121, P224, DOI 10.1007/s004420050924; Cote J, 2006, HORM BEHAV, V49, P320, DOI 10.1016/j.yhbeh.2005.08.004; Cox RM, 2007, FUNCT ECOL, V21, P327, DOI 10.1111/j.1365-2435.2007.01251.x; Cox RM, 2009, PHYSIOL BIOCHEM ZOOL, V82, P686, DOI 10.1086/605391; Cox RM, 2009, AM NAT, V173, P176, DOI 10.1086/595841; Coyle E F, 1999, J Sci Med Sport, V2, P181; CREWS D, 1985, PHYSIOL BEHAV, V35, P569, DOI 10.1016/0031-9384(85)90142-8; Darwin C., 1859, ORIGIN SPECIES MEANS; Davis JL, 2010, J EXP BIOL, V213, P1844, DOI 10.1242/jeb.041129; DENARDO DF, 1994, HORM BEHAV, V28, P273, DOI 10.1006/hbeh.1994.1023; DENARDO DF, 1993, HORM BEHAV, V27, P184, DOI 10.1006/hbeh.1993.1014; DENARDO DF, 1994, HORM BEHAV, V28, P53, DOI 10.1006/hbeh.1994.1005; Deutsch CA, 2008, P NATL ACAD SCI USA, V105, P6668, DOI 10.1073/pnas.0709472105; Dickinson MH, 2000, SCIENCE, V288, P100, DOI 10.1126/science.288.5463.100; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Dohm MR, 1996, EVOLUTION, V50, P1688, DOI 10.1111/j.1558-5646.1996.tb03940.x; Domenici P, 2000, EXPTL BIOL REV, P1; Eikenaar C, 2012, AM NAT, V180, P642, DOI 10.1086/667891; Endler J. A., 1986, NATURAL SELECTION WI; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; Enstrom DA, 1997, ANIM BEHAV, V54, P1135, DOI 10.1006/anbe.1997.0555; Evans MR, 2006, J EVOLUTION BIOL, V19, P343, DOI 10.1111/j.1420-9101.2005.01034.x; Fabre AC, 2014, J MORPHOL, V275, P1016, DOI 10.1002/jmor.20278; Falconer D. S., 1996, INTRO QUANTITATIVE G; Feder ME, 2000, ANNU REV ECOL SYST, V31, P315, DOI 10.1146/annurev.ecolsys.31.1.315; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Fisher RA, 1930, GENETICAL THEORY NAT; Fletcher QE, 2015, FUNCT ECOL, V29, P195, DOI 10.1111/1365-2435.12313; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; FOX SF, 1975, EVOLUTION, V29, P95, DOI 10.1111/j.1558-5646.1975.tb00818.x; FOX SF, 1978, ECOLOGY, V59, P834, DOI 10.2307/1938787; Fox SF, 1983, STUDIES MODEL ORG, P149; Garland Jr T, 1993, BIOL WHIPTAIL LIZARD, P163; GARLAND T, 1988, EVOLUTION, V42, P335, DOI 10.1111/j.1558-5646.1988.tb04137.x; GARLAND T, 1987, AM J PHYSIOL, V252, pR439; GARLAND T, 1984, AM J PHYSIOL, V247, pR806; GARLAND T, 1994, ANNU REV PHYSIOL, V56, P579, DOI 10.1146/annurev.ph.56.030194.003051; GARLAND T, 1985, J ZOOL, V207, P425; GARLAND T, 1990, FUNCT ECOL, V4, P243, DOI 10.2307/2389343; Garland Theodore Jr., 1994, P240; Garland T, 2014, CURR BIOL, V24, pR60, DOI 10.1016/j.cub.2013.11.036; Gerlach NM, 2013, HORM BEHAV, V63, P782, DOI 10.1016/j.yhbeh.2013.03.005; GLEESON TT, 1988, AM J PHYSIOL, V255, pR470; Goymann W, 2004, AM NAT, V164, P327, DOI 10.1086/422856; Goymann W, 2007, HORM BEHAV, V51, P463, DOI 10.1016/j.yhbeh.2007.01.007; Grant PR, 2006, SCIENCE, V313, P224, DOI 10.1126/science.1128374; Guimaraes TB, 2013, INT J MORPHOL, V31, P747, DOI 10.4067/S0717-95022013000200064; Hall MD, 2008, EVOLUTION, V62, P2305, DOI 10.1111/j.1558-5646.2008.00436.x; Hall MD, 2010, FUNCT ECOL, V24, P159, DOI 10.1111/j.1365-2435.2009.01611.x; Hammond KA, 1997, NATURE, V386, P457, DOI 10.1038/386457a0; Hammond KA, 2000, J EXP BIOL, V203, P2053; Haramizu S, 2009, J APPL PHYSIOL, V106, P871, DOI 10.1152/japplphysiol.90804.2008; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Hartstone-Rose A, 2012, ANAT REC, V295, P1336, DOI 10.1002/ar.22518; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Hayes JP, 1999, EVOLUTION, V53, P1280, DOI 10.1111/j.1558-5646.1999.tb04540.x; Henderson KK, 2002, J APPL PHYSIOL, V93, P1265, DOI 10.1152/japplphysiol.00809.2001; Hendry AP, 2009, P R SOC B, V276, P753, DOI 10.1098/rspb.2008.1321; Henningsen JP, 2012, FUNCT ECOL, V26, P3, DOI 10.1111/j.1365-2435.2011.01893.x; Herrel A, 2007, J EXP BIOL, V210, P1762, DOI 10.1242/jeb.003426; Herrel A, 2006, PHYSIOL BIOCHEM ZOOL, V79, P31, DOI 10.1086/498193; Herrel A, 2005, FUNCT ECOL, V19, P43, DOI 10.1111/j.0269-8463.2005.00923.x; Herrel A, 2001, AM ZOOL, V41, P1311, DOI 10.1668/0003-1569(2001)041[1311:TEOFMP]2.0.CO;2; Herrel A, 1998, NETH J ZOOL, V48, P1; Herrel A, 1998, J ZOOL, V244, P135, DOI 10.1111/j.1469-7998.1998.tb00015.x; Herrel A, 2001, J EXP ZOOL, V290, P101, DOI 10.1002/jez.1039; Herrel A, 1999, FUNCT ECOL, V13, P289, DOI 10.1046/j.1365-2435.1999.00305.x; Herrel A, 2008, J EXP BIOL, V211, P86, DOI 10.1242/jeb.012211; Herrel A, 2007, BIOL J LINN SOC, V91, P111, DOI 10.1111/j.1095-8312.2007.00772.x; Hersch EI, 2004, EVOLUTION, V58, P479, DOI 10.1111/j.0014-3820.2004.tb01671.x; HERTZ PE, 1988, AM ZOOL, V28, P927; HERTZ PE, 1993, AM NAT, V142, P796, DOI 10.1086/285573; Higham TE, 2011, J EXP BIOL, V214, P1685, DOI 10.1242/jeb.051045; Hill RW, 2012, ANIMAL PHYSIOLOGY, THIRD EDITION, P1, DOI 10.1093/aobpla/pls004; Hirschenhauser K, 2006, ANIM BEHAV, V71, P265, DOI 10.1016/j.anbehav.2005.04.014; Hirschenhauser K, 2004, ANIM BEHAV, V68, P741, DOI 10.1016/j.anbehav.2003.12.015; Hirschenhauser K, 2003, HORM BEHAV, V43, P508, DOI 10.1016/S0018-506X(03)00027-8; Hoekstra HE, 2001, P NATL ACAD SCI USA, V98, P9157, DOI 10.1073/pnas.161281098; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Huey RB, 2012, PHILOS T R SOC B, V367, P1665, DOI 10.1098/rstb.2012.0005; Huey RB, 2009, P ROY SOC B-BIOL SCI, V276, P1939, DOI 10.1098/rspb.2008.1957; HUEY RB, 1979, AM ZOOL, V19, P357; Huey RB, 2003, AM NAT, V161, P357, DOI 10.1086/346135; HUEY RB, 1993, AM NAT, V142, pS21, DOI 10.1086/285521; HUEY RB, 1989, TRENDS ECOL EVOL, V4, P131, DOI 10.1016/0169-5347(89)90211-5; HUEY RB, 1987, EVOLUTION, V41, P1116, DOI 10.1111/j.1558-5646.1987.tb05880.x; Husak JF, 2006, FUNCT ECOL, V20, P1080, DOI 10.1111/j.1365-2435.2006.01195.x; Husak JF, 2006, EVOLUTION, V60, P1888; Husak JF, 2008, EVOL ECOL RES, V10, P213; Husak JF, 2008, ANIM BEHAV, V75, P1725, DOI 10.1016/j.anbehav.2007.10.028; Husak JF, 2006, EVOLUTION, V60, P2122, DOI 10.1111/j.0014-3820.2006.tb01849.x; Husak JF, 2006, COPEIA, P301, DOI 10.1643/0045-8511(2006)6[301:BPPDIM]2.0.CO;2; Husak JF, 2014, CURR ZOOL, V60, P755, DOI 10.1093/czoolo/60.6.755; Husak JF, 2009, INTEGR COMP BIOL, V49, P349, DOI 10.1093/icb/icp030; Husak JF, 2009, BIOL J LINN SOC, V96, P840, DOI 10.1111/j.1095-8312.2008.01176.x; Husak JF, 2006, FUNCT ECOL, V20, P174, DOI 10.1111/j.1365-2435.2006.01069.x; Huyghe K, 2005, FUNCT ECOL, V19, P800, DOI 10.1111/j.1365-2435.2005.01038.x; Huyghe K, 2014, BEHAV ECOL SOCIOBIOL, V68, P1357, DOI 10.1007/s00265-014-1746-3; Huyghe K, 2013, BIOL J LINN SOC, V110, P658, DOI 10.1111/bij.12140; Huyghe K, 2012, ZOOLOGY, V115, P217, DOI 10.1016/j.zool.2011.11.001; Huyghe K, 2009, BIOL J LINN SOC, V96, P13, DOI 10.1111/j.1095-8312.2008.01103.x; Irschick DJ, 1999, AM NAT, V154, P293, DOI 10.1086/303239; Irschick DJ, 2003, INTEGR COMP BIOL, V43, P396, DOI 10.1093/icb/43.3.396; Irschick DJ, 2001, ANNU REV ECOL SYST, V32, P367, DOI 10.1146/annurev.ecolsys.32.081501.114048; Irschick DJ, 2002, INTEGR COMP BIOL, V42, P278, DOI 10.1093/icb/42.2.278; Irschick D, 2007, PHYSIOL BIOCHEM ZOOL, V80, P557, DOI 10.1086/521203; Irschick DJ, 2008, EVOL ECOL RES, V10, P177; Irschick DJ, 2007, OECOLOGIA, V153, P489, DOI 10.1007/s00442-007-0726-y; Jackson DM, 2001, J ANIM ECOL, V70, P633, DOI 10.1046/j.1365-2656.2001.00518.x; Janzen FJ, 1998, EVOLUTION, V52, P1564, DOI 10.1111/j.1558-5646.1998.tb02237.x; JANZEN FJ, 1993, ECOLOGY, V74, P332, DOI 10.2307/1939296; Jawor JM, 2006, GEN COMP ENDOCR, V149, P182, DOI 10.1016/j.ygcen.2006.05.013; JAYNE BC, 1990, EVOLUTION, V44, P1204, DOI 10.1111/j.1558-5646.1990.tb05226.x; JAYNE BC, 1990, J ZOOL, V220, P257, DOI 10.1111/j.1469-7998.1990.tb04307.x; Jenkins BR, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1302; John-Alder HB, 2009, INTEGR COMP BIOL, V49, P393, DOI 10.1093/icb/icp060; JOHNALDER HB, 1984, J COMP PHYSIOL, V154, P409, DOI 10.1007/BF00684448; Jones ZM, 2012, J EXP BIOL, V215, P2096, DOI 10.1242/jeb.067413; Joyner MJ, 2008, J PHYSIOL-LONDON, V586, P35, DOI 10.1113/jphysiol.2007.143834; Kaliontzopoulou A, 2012, EVOL ECOL, V26, P825, DOI 10.1007/s10682-011-9538-y; Kempenaers B, 2008, PHILOS T R SOC B, V363, P1711, DOI 10.1098/rstb.2007.0001; KENAGY GJ, 1990, J ANIM ECOL, V59, P73, DOI 10.2307/5159; Ketola T, 2012, J EVOLUTION BIOL, V25, P1209, DOI 10.1111/j.1420-9101.2012.02513.x; Ketterson E.D., 2001, P19; Ketterson ED, 1996, IBIS, V138, P70; Ketterson ED, 2005, AM NAT, V166, pS85, DOI 10.1086/444602; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; KETTERSON ED, 1991, HORM BEHAV, V25, P489, DOI 10.1016/0018-506X(91)90016-B; KETTERSON ED, 1992, AM NAT, V140, P980, DOI 10.1086/285451; Ketterson Ellen D., 1998, Ornithological Monographs, V49, P81; Ketterson ED, 2009, INTEGR COMP BIOL, V49, P365, DOI 10.1093/icb/icp057; King RB, 2004, J ZOOL, V264, P143, DOI 10.1017/S0952836904005655; Kingsolver JG, 2003, INTEGR COMP BIOL, V43, P361, DOI 10.1093/icb/43.3.361; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kingsolver JG, 2007, BIOSCIENCE, V57, P561, DOI 10.1641/B570706; Kingsolver JG, 2013, FUNCT ECOL, V27, P1415, DOI 10.1111/1365-2435.12145; Kingsolver JG, 2011, AM NAT, V177, P346, DOI 10.1086/658341; Klukowski M, 2001, BEHAV ECOL SOCIOBIOL, V49, P289, DOI 10.1007/s002650000298; Konarzewski M, 2005, INTEGR COMP BIOL, V45, P416, DOI 10.1093/icb/45.3.416; Konarzewski M, 2013, J COMP PHYSIOL B, V183, P27, DOI 10.1007/s00360-012-0698-z; Lailvaux SP, 2006, ANIM BEHAV, V72, P263, DOI 10.1016/j.anbehav.2006.02.003; Lailvaux SP, 2014, Q REV BIOL, V89, P285, DOI 10.1086/678567; Lailvaux SP, 2010, ECOLOGY, V91, P1530, DOI 10.1890/09-0963.1; Lailvaux SP, 2004, P ROY SOC B-BIOL SCI, V271, P2501, DOI 10.1098/rspb.2004.2891; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Langerhans RB, 2009, BIOL LETTERS, V5, P488, DOI 10.1098/rsbl.2009.0179; Lappin AK, 2006, BIOL J LINN SOC, V88, P215, DOI 10.1111/j.1095-8312.2006.00615.x; Lappin AK, 2005, AM NAT, V166, P426, DOI 10.1086/432564; Larivee ML, 2010, FUNCT ECOL, V24, P597, DOI 10.1111/j.1365-2435.2009.01680.x; Le Galliard JF, 2004, NATURE, V432, P502, DOI 10.1038/nature03057; Leal M, 2012, AM NAT, V180, P815, DOI 10.1086/668077; Loeschcke V, 2007, AM NAT, V169, P175, DOI 10.1086/510632; Logan ML, 2014, P NATL ACAD SCI USA, V111, P14165, DOI 10.1073/pnas.1404885111; Lopez P, 2002, BIOL J LINN SOC, V77, P201, DOI 10.1046/j.1095-8312.2002.00103.x; Lopez-Rull I, 2009, BEHAV PROCESS, V82, P312, DOI 10.1016/j.beproc.2009.07.012; Losos JB, 2009, ORGANISM ENVIRON, V10, P1; Lutterschmidt WI, 1997, CAN J ZOOL, V75, P1561, DOI 10.1139/z97-783; Mappes T, 2004, EVOLUTION, V58, P645, DOI 10.1111/j.0014-3820.2004.tb01686.x; MARLER CA, 1988, BEHAV ECOL SOCIOBIOL, V23, P21, DOI 10.1007/BF00303053; Mathot KJ, 2013, HEREDITY, V111, P175, DOI 10.1038/hdy.2013.35; McCormick SD, 2009, INTEGR COMP BIOL, V49, P408, DOI 10.1093/icb/icp044; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; McEwen BS, 1997, BRAIN RES REV, V23, P79, DOI 10.1016/S0165-0173(96)00012-4; McGlothlin JW, 2008, PHILOS T R SOC B, V363, P1611, DOI 10.1098/rstb.2007.0002; McGlothlin JW, 2010, EVOLUTION, V64, P1377, DOI 10.1111/j.1558-5646.2009.00914.x; McGlothlin JW, 2010, AM NAT, V175, P687, DOI 10.1086/652469; McGlothlin JW, 2005, EVOLUTION, V59, P658; McNab B.K., 2002, PHYSL ECOLOGY VERTEB; Meek TH, 2009, J EXP BIOL, V212, P2908, DOI 10.1242/jeb.028886; Meffe GK, 1995, CAN J FISH AQUAT SCI, V52, P2704, DOI 10.1139/f95-259; Merila J, 2001, GENETICA, V112, P199, DOI 10.1023/A:1013391806317; Meylan S, 2005, HORM BEHAV, V48, P44, DOI 10.1016/j.yhbeh.2004.11.022; Miles DB, 2007, FUNCT ECOL, V21, P653, DOI 10.1111/j.1365-2435.2007.01304.x; Miles DB, 2004, EVOL ECOL RES, V6, P63; Miles DB, 2000, EVOLUTION, V54, P1386; Miles DB, 2001, EVOL ECOL RES, V3, P795; Miles DB, 2007, HORM BEHAV, V51, P548, DOI 10.1016/j.yhbeh.2007.02.005; Mills SC, 2008, AM NAT, V171, P339, DOI 10.1086/527520; Mills SC, 2007, P R SOC B, V274, P143, DOI 10.1098/rspb.2006.3639; Mills SC, 2009, AM NAT, V173, P475, DOI 10.1086/597222; MITCHELLOLDS T, 1987, EVOLUTION, V41, P1149, DOI 10.1111/j.1558-5646.1987.tb02457.x; Mitton J., 1997, SELECTION NATURAL PO; Moore IT, 2000, PHYSIOL BIOCHEM ZOOL, V73, P307, DOI 10.1086/316748; MOORE MC, 1991, HORM BEHAV, V25, P154, DOI 10.1016/0018-506X(91)90048-M; Moreno J, 1997, OIKOS, V79, P559, DOI 10.2307/3546900; Morrissey MB, 2012, EVOLUTION, V66, P435, DOI 10.1111/j.1558-5646.2011.01444.x; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Moyes CD, 2008, PRINCIPLES ANIMAL PH; Muller W, 2005, J ANIM ECOL, V74, P735, DOI 10.1111/j.1365-2656.2005.00964.x; Munoz MM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2433; Nespolo RF, 2005, EVOLUTION, V59, P1829; Nespolo RF, 2003, EVOLUTION, V57, P1679; Nespolo RF, 2007, J EXP BIOL, V210, P2000, DOI 10.1242/jeb.02780; O'Neal DM, 2008, HORM BEHAV, V54, P571, DOI 10.1016/j.yhbeh.2008.05.017; Odeh FM, 2003, POULTRY SCI, V82, P31, DOI 10.1093/ps/82.1.31; Patterson SH, 2014, J EVOLUTION BIOL, V27, P259, DOI 10.1111/jeb.12286; Perry G, 2004, ANIM BEHAV, V67, P37, DOI 10.1016/j.anbehav.2003.02.003; Peters A, 2000, P ROY SOC B-BIOL SCI, V267, P883, DOI 10.1098/rspb.2000.1085; PHILLIPS PC, 1989, EVOLUTION, V43, P1209, DOI 10.1111/j.1558-5646.1989.tb02569.x; PLOMIN R, 1990, BEHAV GENETICS; POUGH FH, 1989, PHYSIOL ZOOL, V62, P199, DOI 10.1086/physzool.62.2.30156169; Randall D, 2002, ECKERT ANIMAL PHYSL; Raouf SA, 1997, P ROY SOC B-BIOL SCI, V264, P1599, DOI 10.1098/rspb.1997.0223; Reed WL, 2006, AM NAT, V167, P667, DOI 10.1086/503054; Reilly Stephen M., 1994, P339; Rezende EL, 2006, J APPL PHYSIOL, V101, P477, DOI 10.1152/japplphysiol.00042.2006; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robson MA, 2000, FUNCT ECOL, V14, P338, DOI 10.1046/j.1365-2435.2000.00427.x; Robson MA, 2000, THESIS; Romero LM, 2010, P ROY SOC B-BIOL SCI, V277, P3157, DOI 10.1098/rspb.2010.0678; Romero LM, 2009, HORM BEHAV, V55, P375, DOI 10.1016/j.yhbeh.2008.12.009; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Romero LM, 2001, P NATL ACAD SCI USA, V98, P7366, DOI 10.1073/pnas.131091498; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Ronning B, 2007, J EVOLUTION BIOL, V20, P1815, DOI 10.1111/j.1420-9101.2007.01384.x; Rosvall KA, 2012, P ROY SOC B-BIOL SCI, V279, P3547, DOI 10.1098/rspb.2012.0442; RYAN MJ, 1982, AM NAT, V119, P136, DOI 10.1086/283899; Sadowska ET, 2005, EVOLUTION, V59, P672; Salvador A, 1996, BEHAV ECOL, V7, P145, DOI 10.1093/beheco/7.2.145; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Savage VM, 2004, AM NAT, V163, P429, DOI 10.1086/381872; Sayer AA, 2002, P NUTR SOC, V61, P79, DOI 10.1079/PNS2001138; Schjolden J, 2005, PHYSIOL BIOCHEM ZOOL, V78, P715, DOI 10.1086/432153; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Schmidt-Nielsen K, 1997, ANIMAL PHYSL ADAPTAT; Schroderus E, 2010, AM NAT, V176, pE90, DOI 10.1086/656264; SCHWABL H, 1991, HORM BEHAV, V25, P180, DOI 10.1016/0018-506X(91)90049-N; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Sinervo B, 2002, HEREDITY, V89, P329, DOI 10.1038/sj.hdy.6800148; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; Sinervo B, 2000, HORM BEHAV, V38, P222, DOI 10.1006/hbeh.2000.1622; Sinervo B, 2003, INTEGR COMP BIOL, V43, P419, DOI 10.1093/icb/43.3.419; Sinervo Barry, 1996, P149; SNELL HL, 1988, EVOL ECOL, V2, P353, DOI 10.1007/BF02207566; SORCI G, 1995, PHYSIOL ZOOL, V68, P698, DOI 10.1086/physzool.68.4.30166352; Speakman JR, 2011, BIOESSAYS, V33, P255, DOI 10.1002/bies.201000132; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Sustaita D, 2010, J EXP BIOL, V213, P2617, DOI 10.1242/jeb.041731; Svensson EI, 2006, EVOLUTION, V60, P1242; Szafranska PA, 2007, FUNCT ECOL, V21, P731, DOI 10.1111/j.1365-2435.2007.01273.x; Terblanche JS, 2007, P ROY SOC B-BIOL SCI, V274, P2935, DOI 10.1098/rspb.2007.0985; Tewksbury JJ, 2008, SCIENCE, V320, P1296, DOI 10.1126/science.1159328; Thomas DW, 2001, SCIENCE, V291, P2598, DOI 10.1126/science.1057487; Tokarz RR, 2002, HORM BEHAV, V41, P70, DOI 10.1006/hbeh.2001.1739; Tokarz RR, 1987, HORM BEHAV, V21, P39; TRAVIS J, 1989, ANNU REV ECOL SYST, V20, P279; TSUJI JS, 1989, EVOL ECOL, V3, P240, DOI 10.1007/BF02270725; Van Damme R, 2001, FUNCT ECOL, V15, P186, DOI 10.1046/j.1365-2435.2001.00513.x; van der Meij MAA, 2004, J EXP BIOL, V207, P2745, DOI 10.1242/jeb.01091; van der Meij MAA, 2008, J EXP BIOL, V211, P1668, DOI 10.1242/jeb.015289; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vasseur DA, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2612; Veiga JP, 2008, AM NAT, V172, P42, DOI 10.1086/587850; Wada H, 2008, GEN COMP ENDOCR, V156, P441, DOI 10.1016/j.ygcen.2008.02.004; Wade J, 2011, HORM BEHAV, V59, P637, DOI 10.1016/j.yhbeh.2010.08.014; WADE MJ, 1989, EVOLUTION, V43, P1567, DOI 10.1111/j.1558-5646.1989.tb02606.x; WADE MJ, 1990, EVOLUTION, V44, P1947, DOI 10.1111/j.1558-5646.1990.tb04301.x; Wagner EC, 2007, PHYSIOL BIOCHEM ZOOL, V80, P293, DOI 10.1086/512586; Warner DA, 2002, BIOL J LINN SOC, V76, P105, DOI 10.1111/j.1095-8312.2002.tb01718.x; Warner DA, 2005, EVOLUTION, V59, P2209; Welcker J, 2010, J ANIM ECOL, V79, P205, DOI 10.1111/j.1365-2656.2009.01626.x; White CR, 2013, J COMP PHYSIOL B, V183, P1, DOI 10.1007/s00360-012-0676-5; Wikelski M, 2005, BEHAV ECOL, V16, P260, DOI 10.1093/beheco/arh160; Wikelski M, 1999, J COMP PHYSIOL A, V185, P463, DOI 10.1007/s003590050407; Williams Geroge C, 1966, ADAPTATION NATURAL S; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Wilson RS, 2010, P ROY SOC B-BIOL SCI, V277, P1923, DOI 10.1098/rspb.2009.2196; Wingfield J.C., 1985, P92; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield John C., 1993, Avian Biology, V9, P163; WOLF L, 1991, AUK, V108, P371; Zani PA, 1996, J ZOOL, V240, P201, DOI 10.1111/j.1469-7998.1996.tb05280.x; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615 361 4 4 1 41 WILEY HOBOKEN 111 RIVER ST, HOBOKEN, NJ 07030 USA 2040-4603 COMPR PHYSIOL Compr. Physiol. JAN 2016 6 1 63 85 10.1002/cphy.c140061 23 Physiology Physiology CY8GS WOS:000366647400003 26756627 2019-02-21 J Brune, M Bruene, Martin Borderline Personality Disorder Why 'fast and furious'? EVOLUTION MEDICINE AND PUBLIC HEALTH English Review The term 'Borderline Personality Disorder' (BPD) refers to a psychiatric syndrome that is characterized by emotion dysregulation, impulsivity, risk-taking behavior, irritability, feelings of emptiness, self-injury and fear of abandonment, as well as unstable interpersonal relationships. BPD is not only common in psychiatric populations but also more prevalent in the general community than previously thought, and thus represents an important public health issue. In contrast to most psychiatric disorders, some symptoms associated with BPD may improve over time, even without therapy, though impaired social functioning and interpersonal disturbances in close relationships often persist. Another counterintuitive and insufficiently resolved question is why depressive symptoms and risk-taking behaviors can occur simultaneously in the same individual. Moreover, there is an ongoing debate about the nosological position of BPD, which impacts on research regarding sex differences in clinical presentation and patterns of comorbidity. In this review, it is argued that many features of BPD may be conceptualized within an evolutionary framework, namely behavioral ecology. According to Life History Theory, BPD reflects a pathological extreme or distortion of a behavioral 'strategy' which unconsciously aims at immediate exploitation of resources, both interpersonal and material, based on predictions shaped by early developmental experiences. Such a view is consistent with standard medical conceptualizations of BPD, but goes beyond classic 'deficit'-oriented models, which may have profound implications for therapeutic approaches. [Bruene, Martin] Ruhr Univ Bochum, LWL Univ Hosp, Dept Psychiat Psychotherapy & Psychiat Prevent Me, Div Cognit Neuropsychiat & Psychiat Prevent Med, Bochum, Germany Brune, M (reprint author), Ruhr Univ Bochum, LWL Univ Hosp, Dept Psychiat Psychotherapy & Prevent Med, Div Cognit Neuropsychiat & Psychiat Prevent Med, Alexandrinenstr 1, D-44791 Bochum, Germany. martin.bruene@rub.de Abed R, 2012, SCI WORLD J, DOI 10.1100/2012/290813; Agrawal HR, 2004, HARVARD REV PSYCHIAT, V12, P94, DOI 10.1080/10673220490447218; Amad A, 2014, NEUROSCI BIOBEHAV R, V40, P6, DOI 10.1016/j.neubiorev.2014.01.003; America Psychiatric Association, 2013, DSM 5 DIAGN STAT MAN; Bakermans-Kranenburg MJ, 2007, J CHILD PSYCHOL PSYC, V48, P1160, DOI 10.1111/j.1469-7610.2007.01801.x; Barrachina J, 2011, COMPR PSYCHIAT, V52, P725, DOI 10.1016/j.comppsych.2010.11.009; Bayes A, 2014, CURR OPIN PSYCHIATR, V27, P14, DOI 10.1097/YCO.0000000000000021; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2009, MOL PSYCHIATR, V14, P746, DOI 10.1038/mp.2009.44; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2011, J CHILD PSYCHOL PSYC, V52, P619, DOI 10.1111/j.1469-7610.2010.02327.x; Bierer LM, 2003, CNS SPECTRUMS, V8, P737, DOI 10.1017/S1092852900019118; Bowlby J, ATTACHMENT LOSS, V1; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; BOYCE WT, 1995, PSYCHOSOM MED, V57, P411, DOI 10.1097/00006842-199509000-00001; Bradley B, 2013, EUR J PSYCHOTRAUMATO, V4, DOI 10.3402/ejpt.v4i0.21659; Bradley B, 2011, DEV PSYCHOPATHOL, V23, P439, DOI 10.1017/S0954579411000162; Bradley R, 2007, SAGE HDB PERSONALITY, P167; Bribiescas RG, 2012, CURR ANTHROPOL, V53, pS424, DOI 10.1086/667538; Brune M, 2013, HUM PSYCHOPHARM CLIN, V28, P552, DOI 10.1002/hup.2343; Brune M, 2012, BMC MED, V10, DOI 10.1186/1741-7015-10-38; Brune M, 2012, WORLD PSYCHIATRY, V11, P55; Brune M, 2010, CLIN NEUROPSYCHIATR, V7, P3; Brune M, 2013, CLIN EXP, DOI [10.1002/hup.2343, DOI 10.1002/HUP.2343]; Brune M., 2015, TXB EVOLUTIONARY PSY; Burt SA, 2006, ARCH GEN PSYCHIAT, V63, P890, DOI 10.1001/archpsyc.63.8.890; Cantor C, 2009, AUST NZ J PSYCHIAT, V43, P1038, DOI 10.3109/00048670903270407; Carvalho Fernando S, 2012, PSYCHONEUROENDOCRINO, V37, P1659, DOI DOI 10.1016/J.PSYNEUEN.2012.02.012; Chen EY, 2007, J NERV MENT DIS, V195, P125, DOI 10.1097/01.nmd.0000254745.35582.f6; Chen EY, 2009, PSYCHIAT RES, V170, P86, DOI 10.1016/j.psychres.2009.03.006; Chen FS, 2011, P NATL ACAD SCI USA, V108, P19937, DOI 10.1073/pnas.1113079108; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Chisholm JS, 1999, HUM NATURE, V10, P5; Christie R, 1970, STUDIES MACHIAVELLIA; Cicchetti D, 2014, DEV PSYCHOPATHOL, V26, P831, DOI 10.1017/S095457941400042X; Cloninger C. R., 1994, TEMPERAMENT CHARACTE; Dannlowski U, 2012, BIOL PSYCHIAT, V71, P286, DOI 10.1016/j.biopsych.2011.10.021; Davidson RJ, 2012, NAT NEUROSCI, V15, P689, DOI 10.1038/nn.3093; De Genna NM, 2012, WOMEN HEALTH ISS, V22, pE371, DOI 10.1016/j.whi.2012.05.002; Del Giudice M, 2016, CLIN PSYCHOL SCI, V4, P299, DOI 10.1177/2167702615583628; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2012, J THEOR BIOL, V297, P48, DOI 10.1016/j.jtbi.2011.12.004; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dinsdale N, 2013, J PERS DISORD, V27, P172, DOI 10.1521/pedi.2013.27.2.172; Douglas B., 2009, HDB COUNSELLING PSYC, P23; Ebert A, 2013, SOC NEUROSCI-UK, V8, P305, DOI 10.1080/17470919.2013.807301; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Feldman R, 2016, BIOL PSYCHIAT, V79, P174, DOI 10.1016/j.biopsych.2015.08.008; Feldman R, 2011, DEVELOPMENTAL SCI, V14, P752, DOI 10.1111/j.1467-7687.2010.01021.x; Few LR, 2016, PSYCHOL ASSESSMENT, V28, P39, DOI 10.1037/pas0000142; Fonagy P, 2000, PSYCHIAT CLIN N AM, V23, P103, DOI 10.1016/S0193-953X(05)70146-5; Fonagy P., 2007, J MENTAL HLTH, V16, P1; Fossati A, 2001, J PERS DISORD, V15, P390, DOI 10.1521/pedi.15.5.390.19197; Franzen N, 2011, PSYCHIAT RES, V187, P224, DOI 10.1016/j.psychres.2010.11.012; Gaher RM, 2013, COGNITIVE THER RES, V37, P466, DOI 10.1007/s10608-012-9515-y; Gilbert P, 2015, SOC PERSONAL PSYCHOL, V9, P239, DOI 10.1111/spc3.12176; Graber JA, 2013, HORM BEHAV, V64, P262, DOI 10.1016/j.yhbeh.2013.04.003; Grant BF, 2008, J CLIN PSYCHIAT, V69, P533, DOI 10.4088/JCP.v69n0404; Gunderson JG, 2008, J PERS DISORD, V22, P22, DOI 10.1521/pedi.2008.22.1.22; Hammen C, 2015, J PERS DISORD, V29, P177, DOI 10.1521/pedi_2014_28_152; Harned MS, 2011, J NERV MENT DIS, V199, P832, DOI 10.1097/NMD.0b013e318234c02c; Jovev M, 2012, PSYCHIAT RES, V199, P44, DOI 10.1016/j.psychres.2012.03.027; King-Casas B, 2008, SCIENCE, V321, P806, DOI 10.1126/science.1156902; Kishida KT, 2010, NEURON, V67, P543, DOI 10.1016/j.neuron.2010.07.021; LABONTE E, 1993, CAN J PSYCHIAT, V38, P638, DOI 10.1177/070674379303801003; Lang A, 2015, PERS INDIV DIFFER, V80, P28, DOI 10.1016/j.paid.2015.02.022; Lien L, 2006, SOC SCI MED, V63, P285, DOI 10.1016/j.socscimed.2006.01.003; Linehan M, 1993, COGNITIVE BEHAV TREA; Luca M, 2012, PSYCHIAT QUART, V83, P281, DOI 10.1007/s11126-011-9198-7; McCormick B, 2007, COMPR PSYCHIAT, V48, P406, DOI 10.1016/j.comppsych.2007.05.005; McQuaid RJ, 2013, FRONT NEUROSCI-SWITZ, V7, DOI 10.3389/fnins.2013.00128; Meyer-Lindenberg A, 2012, NAT NEUROSCI, V15, P663, DOI 10.1038/nn.3083; MONROE SM, 1991, PSYCHOL BULL, V110, P406, DOI 10.1037//0033-2909.110.3.406; Morgan TA, 2013, J PSYCHIATR RES, V47, P1507, DOI 10.1016/j.jpsychires.2013.06.009; Murgatroyd C, 2009, NAT NEUROSCI, V12, P1559, DOI 10.1038/nn.2436; Nesse RM, 2004, PHILOS T ROY SOC B, V359, P1333, DOI 10.1098/rstb.2004.1511; Nicol K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073440; Olesen TB, 2012, EUR J PUBLIC HEALTH, V22, P220, DOI 10.1093/eurpub/ckr055; Pagura J, 2010, J PSYCHIATR RES, V44, P1190, DOI 10.1016/j.jpsychires.2010.04.016; PARIS J, 1992, CAN J PSYCHIAT, V37, P125, DOI 10.1177/070674379203700210; Paris J, 2007, COMPR PSYCHIAT, V48, P145, DOI 10.1016/j.comppsych.2006.10.001; Paris Joel, 2004, Curr Psychiatry Rep, V6, P71, DOI 10.1007/s11920-004-0042-8; Paris J, 2013, COMPR PSYCHIAT, V54, P321, DOI 10.1016/j.comppsych.2012.10.006; Polanczyk G, 2009, ARCH GEN PSYCHIAT, V66, P978, DOI 10.1001/archgenpsychiatry.2009.114; Power RA, 2013, JAMA PSYCHIAT, V70, P22, DOI 10.1001/jamapsychiatry.2013.268; Rodrigues SM, 2009, P NATL ACAD SCI USA, V106, P21437, DOI 10.1073/pnas.0909579106; Rosenvinge J H, 2000, Eat Weight Disord, V5, P52; Rusch N, 2011, EUR ARCH PSY CLIN N, V261, P369, DOI 10.1007/s00406-010-0174-2; Sansone RA, 2008, INT J PSYCHIAT MED, V38, P53, DOI 10.2190/PM.38.1.e; Sansone Randy A, 2004, Psychiatry (Edgmont), V1, P19; Sansone RA, 2014, INT J PSYCHIAT CLIN, V18, P145, DOI 10.3109/13651501.2013.865755; Sansone Randy A, 2011, Innov Clin Neurosci, V8, P13; Sansone RA, 2011, INT J PSYCHIAT CLIN, V15, P69, DOI 10.3109/13651501.2010.507871; Shackelford TK, 2005, PERS RELATIONSHIP, V12, P447, DOI 10.1111/j.1475-6811.2005.00125.x; Silove D, 1998, PSYCHIATRY, V61, P181, DOI 10.1080/00332747.1998.11024830; Skodol AE, 2003, PSYCHIAT QUART, V74, P349, DOI 10.1023/A:1026087410516; Smoski MJ, 2008, J BEHAV THER EXP PSY, V39, P567, DOI 10.1016/j.jbtep.2008.01.004; Sontag LM, 2008, J ABNORM CHILD PSYCH, V36, P1159, DOI 10.1007/s10802-008-9239-3; Stanley B, 2010, AM J PSYCHIAT, V167, P24, DOI 10.1176/appi.ajp.2009.09050744; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stepp SD, 2012, PERSONAL DISORD, V3, P76, DOI 10.1037/a0023081; Teicher MH, 2014, BIOL PSYCHIAT, V76, P297, DOI 10.1016/j.biopsych.2013.09.016; Teicher MH, 2012, P NATL ACAD SCI USA, V109, pE563, DOI 10.1073/pnas.1115396109; Teicher MH, 2003, NEUROSCI BIOBEHAV R, V27, P33, DOI 10.1016/S0149-7634(03)00007-1; Tragesser SL, 2012, J PERS DISORD, V26, P334, DOI 10.1521/pedi.2012.26.3.334; Tybur JM, 2009, J PERS SOC PSYCHOL, V97, P103, DOI 10.1037/a0015474; Unoka Z, 2009, J PERS DISORD, V23, P399, DOI 10.1521/pedi.2009.23.4.399; Volker KA, 2009, PSYCHOTHER PSYCH MED, V59, P264, DOI 10.1055/s-2008-1067437; Walum H, 2012, BIOL PSYCHIAT, V71, P419, DOI 10.1016/j.biopsych.2011.09.002; Whalley HC, 2015, NEUROIMAGE-CLIN, V7, P476, DOI 10.1016/j.nicl.2015.01.016; WIDIGER TA, 1991, HOSP COMMUNITY PSYCH, V42, P1015; Wischniewski J, 2013, J PERS DISORD, V27, P531, DOI 10.1521/pedi_2012_26_036; Wolf RC, 2012, EUR ARCH PSY CLIN N, V262, P677, DOI 10.1007/s00406-012-0303-1; Zanarini MC, 2003, AM J PSYCHIAT, V160, P274, DOI 10.1176/appi.ajp.160.2.274; ZWEIGFRANK H, 1991, AM J PSYCHIAT, V148, P648 117 10 10 0 0 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2050-6201 EVOL MED PUBLIC HLTH Evol. Med. Public Health. 2016 1 52 66 10.1093/emph/eow002 15 Evolutionary Biology; Public, Environmental & Occupational Health Evolutionary Biology; Public, Environmental & Occupational Health DZ5TY WOS:000385925600005 26929090 DOAJ Gold, Green Published 2019-02-21 J Aktipis, A Aktipis, Athena Life history theory and breast cancer risk: methodological and theoretical challenges Response to "Is estrogen receptor negative breast cancer risk associated with a fast life history strategy?" EVOLUTION MEDICINE AND PUBLIC HEALTH English Editorial Material In a meta-analysis published by myself and co-authors, we report differences in the life history risk factors for estrogen receptor negative (ER-) and estrogen receptor positive (ER+) breast cancers. Our meta-analysis did not find the association of ER- breast cancer risk with fast life history characteristics that Hidaka and Boddy suggest in their response to our article. There are a number of possible explanations for the differences between their conclusions and the conclusions we drew from our meta-analysis, including limitations of our meta-analysis and methodological challenges in measuring and categorizing estrogen receptor status. These challenges, along with the association of ER+ breast cancer with slow life history characteristics, may make it challenging to find a clear signal of ER- breast cancer with fast life history characteristics, even if that relationship does exist. The contradictory results regarding breast cancer risk and life history characteristics illustrate a more general challenge in evolutionary medicine: often different sub-theories in evolutionary biology make contradictory predictions about disease risk. In this case, life history models predict that breast cancer risk should increase with faster life history characteristics, while the evolutionary mismatch hypothesis predicts that breast cancer risk should increase with delayed reproduction. Whether life history tradeoffs contribute to ER- breast cancer is still an open question, but current models and several lines of evidence suggest that it is a possibility. [Aktipis, Athena] Arizona State Univ, Dept Psychol, Ctr Evolut & Med, Ctr Social Dynam & Complex, Tempe, AZ 85287 USA Aktipis, A (reprint author), Arizona State Univ, Dept Psychol, Ctr Evolut & Med, Ctr Social Dynam & Complex, Tempe, AZ 85287 USA. aktipis@asu.edu Archey WB, 2002, ONCOGENE, V21, P7034, DOI 10.1038/sj.onc.1205844; Badve SS, 2008, J CLIN ONCOL, V26, P2473, DOI 10.1200/JCO.2007.13.6424; Bauer KR, 2007, CANCER, V109, P1721, DOI 10.1002/cncr.22618; Boddy AM, 2015, BIOESSAYS, V15, P21; Boddy AM, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2014.0220; Dhimolea E, 2013, INT J CANCER, V133, P835, DOI 10.1002/ijc.28077; Harbeck N, 2012, J CLIN ONCOL, V30, P686, DOI 10.1200/JCO.2011.38.9619; Hidaka Brandon H., 2016, EVOLUTION MED PUBLIC, V2016, P17; Rhodes A, 2000, J CLIN PATHOL, V53, P292, DOI 10.1136/jcp.53.4.292 9 0 0 0 0 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2050-6201 EVOL MED PUBLIC HLTH Evol. Med. Public Health. 2016 1 177 179 10.1093/emph/eov035 3 Evolutionary Biology; Public, Environmental & Occupational Health Evolutionary Biology; Public, Environmental & Occupational Health DZ5TY WOS:000385925600016 26874356 DOAJ Gold, Green Published 2019-02-21 J Georgiev, AV; Kuzawa, CW; McDade, TW Georgiev, Alexander V.; Kuzawa, Christopher W.; McDade, Thomas W. Early developmental exposures shape trade-offs between acquired and innate immunity in humans EVOLUTION MEDICINE AND PUBLIC HEALTH English Article Background and objectives: Life history theory predicts resource allocation trade-offs between competing functions and processes. We test the hypothesis that relative investment towards innate versus acquired immunity in humans is subject to such trade-offs and that three types of early developmental exposures are particularly salient in shaping adult immunophenotype: (i) pathogen exposure, (ii) nutritional resources; and (iii) extrinsic mortality cues. Methodology: We quantified one aspect each of innate and acquired immune function, via C-reactive protein and Epstein-Barr virus antibodies, respectively, in a sample of 1248 men and women from the Philippines (ca. 21.5 years old). Early developmental exposures were assessed via long-term data collected prospectively since participants' birth (1983-4). We calculated a standardized ratio to assess relative bias towards acquired versus innate immune function and examined its relationship to a suite of predictors via multiple regression. Results: In partial support of our predictions, some of the measures of higher pathogen exposure, greater availability of nutritional resources, and lower extrinsic mortality cues in early life were associated with a bias toward acquired immunity in both men and women. The immune profile of women, in particular, appeared to be more sensitive to early life pathogen exposures than those of men. Finally, contrary to prediction, women exhibited a greater relative investment toward innate, not acquired, immunity. Conclusions and implications: Early environments can exert considerable influence on the development of immunity. They affect trade-offs between innate and acquired immunity, which show adaptive plasticity and may differ in their influence in men and women. [Georgiev, Alexander V.; Kuzawa, Christopher W.; McDade, Thomas W.] Northwestern Univ, Dept Anthropol, 1810 Hinman Ave, Evanston, IL 60208 USA Georgiev, AV (reprint author), Northwestern Univ, Dept Anthropol, 1810 Hinman Ave, Evanston, IL 60208 USA. alexander.georgiev@northwestern.edu Abrams ET, 2011, AM J PHYS ANTHROPOL, V146, P134, DOI 10.1002/ajpa.21621; Adair LS, 2011, INT J EPIDEMIOL, V40, P619, DOI 10.1093/ije/dyq085; Ardia DR, 2007, ECOGRAPHY, V30, P23, DOI 10.1111/j.2006.0906-7590.04939.x; Asghar M, 2015, SCIENCE, V347, P436, DOI 10.1126/science.1261121; Black S, 2004, J BIOL CHEM, V279, P48487, DOI 10.1074/jbc.R400025200; Blum CA, 2005, J CLIN ENDOCR METAB, V90, P3230, DOI 10.1210/jc.2005-0231; Cabeza de Baca T, 2016, ADAPT HUM BEHAV PHYS, P1; Capobianco G, 2010, ARCH GYNECOL OBSTET, V282, P207, DOI 10.1007/s00404-010-1432-2; Charnov Eric L., 1993, P1; Chiang JJ, 2015, DEV PSYCHOBIOL, V57, P887, DOI 10.1002/dev.21329; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clancy KBH, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064807; Clancy KBH, 2013, AM J HUM BIOL, V25, P389, DOI 10.1002/ajhb.22386; Clancy KBH, 2013, BUILDING BABIES PRIM, P3; Clough S, 2011, SOC SCI MED, V72, P486, DOI 10.1016/j.socscimed.2010.11.021; Danese A, 2009, ARCH PEDIAT ADOL MED, V163, P1135, DOI 10.1001/archpediatrics.2009.214; Demas G, 2012, ECOIMMUNOLOGY; Desantis AS, 2015, AM J HUM BIOL, V27, P458, DOI 10.1002/ajhb.22668; Devereux G, 2006, NAT REV IMMUNOL, V6, P869, DOI 10.1038/nri1958; Dowd JB, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064921; Downs CJ, 2014, INTEGR COMP BIOL, V54, P340, DOI 10.1093/icb/icu082; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fanning JR, 2015, BIOL PSYCHOL, P1; Fox J., 2011, R COMPANION APPL REG; Furman D, 2014, P NATL ACAD SCI USA, V111, P869, DOI 10.1073/pnas.1321060111; Genuneit J, 2014, AM J RESP CRIT CARE, V190, P588, DOI 10.1164/rccm.201403-0428LE; Gettler LT, 2015, AM J PHYS ANTHROPOL, V158, P175, DOI 10.1002/ajpa.22783; Giefing-Kroll C, 2015, AGING CELL, V14, P309, DOI 10.1111/acel.12326; GLASER R, 1991, BRAIN BEHAV IMMUN, V5, P219, DOI 10.1016/0889-1591(91)90018-6; GLASER R, 1987, Brain Behavior and Immunity, V1, P7, DOI 10.1016/0889-1591(87)90002-X; GLASER R, 1993, HEALTH PSYCHOL, V12, P435, DOI 10.1037//0278-6133.12.6.435; Hasselquist D, 2012, ANIM BEHAV, V83, P1303, DOI 10.1016/j.anbehav.2012.03.025; Henle W, 1982, HUMAN HERPESVIRUS IN, P151; Horrocks NPC, 2015, OECOLOGIA, V177, P281, DOI 10.1007/s00442-014-3136-y; Hothorn T, 2016, PACKAGE MULTCOMP SIM; Jilma B, 1997, J LAB CLIN MED, V130, P69, DOI 10.1016/S0022-2143(97)90060-3; Klasing KC, P 22 INT ORN C DURB; Klasing Kirk C., 2004, Acta Zoologica Sinica, V50, P961; Klein SL, 2015, T ROY SOC TROP MED H, V109, P9, DOI 10.1093/trstmh/tru167; Kuo HK, 2006, J GERONTOL A-BIOL, V61, P380, DOI 10.1093/gerona/61.4.380; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Kuzawa CW, 2010, P NATL ACAD SCI USA, V107, P16800, DOI 10.1073/pnas.1006008107; Kuzawa CW, 2003, AM J HUM BIOL, V15, P688, DOI 10.1002/ajhb.10200; Lai YP, 2009, TRENDS IMMUNOL, V30, P131, DOI 10.1016/j.it.2008.12.003; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Li QT, 2002, NAT REV IMMUNOL, V2, P725, DOI 10.1038/nri910; Lindstrom KM, 2004, P ROY SOC B-BIOL SCI, V271, P1513, DOI 10.1098/rspb.2004.2752; Lorenz Tierney K., 2015, Evolution Medicine and Public Health, P304, DOI 10.1093/emph/eov029; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; Martin LB, 2007, ECOLOGY, V88, P2516, DOI 10.1890/07-0060.1; MARTORELL R, 1995, J NUTR, V125, pS1060; Wegner KM, 2007, EVOL ECOL, V21, P473, DOI 10.1007/s10682-006-9129-5; Mcdade TW, 2007, DEMOGRAPHY, V44, P899, DOI 10.1353/dem.2007.0038; McDade TW, 2016, EVOL MED PUBLIC HLTH, P1, DOI 10.1093/emph/eov033; McDade TW, 2013, BRAIN BEHAV IMMUN, V31, P23, DOI 10.1016/j.bbi.2012.08.010; McDade TW, 2012, P NATL ACAD SCI USA, V109, P17281, DOI 10.1073/pnas.1202244109; McDade TW, 2011, AM J HUM BIOL, V23, P313, DOI 10.1002/ajhb.21128; McDade TW, 2010, P ROY SOC B-BIOL SCI, V277, P1129, DOI 10.1098/rspb.2009.1795; McDade TW, 2009, AM J CLIN NUTR, V89, P1237, DOI 10.3945/ajcn.2008.27080; McDade TW, 2000, PSYCHOSOM MED, V62, P560, DOI 10.1097/00006842-200007000-00015; McDade TW, 2005, ANNU REV ANTHROPOL, V34, P495, DOI 10.1146/annurev.anthro.34.081804.120348; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; McDade TW, 2001, AM J CLIN NUTR, V74, P543; McDade TW, 2016, J NUTR, P1; McDade TW, 2014, P R SOC B, V281, DOI 20133116-6; Miller EM, 2015, ANN HUM BIOL, V42, P76, DOI 10.3109/03014460.2014.941398; Miller GE, 2010, PSYCHOL SCI, V21, P848, DOI 10.1177/0956797610370161; Miller GE, 2009, P NATL ACAD SCI USA, V106, P14716, DOI 10.1073/pnas.0902971106; Moore SE, 2004, AM J CLIN NUTR, V80, P453; Moret Y, 2003, OIKOS, V102, P213, DOI 10.1034/j.1600-0706.2003.12496.x; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; Nathan C, 2008, MOL MED, V14, P485, DOI 10.2119/2008-00038.Nathan; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Paul WE, 2013, FUNDAMENTAL IMMUNOLO, P1; Pearson TA, 2003, CIRCULATION, V107, P499, DOI 10.1161/01.CIR.0000052939.59093.45; POPKIN BM, 1993, J BIOSOC SCI, V25, P359; Pradhan AD, 2001, JAMA-J AM MED ASSOC, V286, P327, DOI 10.1001/jama.286.3.327; Previtali MA, 2012, OIKOS, V121, P1483, DOI 10.1111/j.1600-0706.2012.020215.x; R Development Core Team, 2014, R LANG ENV STAT COMP; Raqib R, 2007, AM J CLIN NUTR, V85, P845; Ridker PM, 2003, CIRCULATION, V107, P391, DOI 10.1161/01.CIR.0000055014.62083.05; Ring J, 2001, CURR OPIN IMMUNOL, V13, P701, DOI 10.1016/S0952-7915(01)00282-5; Rook GAW, 2004, SPRINGER SEMIN IMMUN, V25, P237, DOI 10.1007/s00281-003-0148-9; Rook GAW, 2015, BRAIN RES, V1617, P47, DOI 10.1016/j.brainres.2014.04.004; Sandmeier FC, 2014, INTEGR COMP BIOL, V54, P387, DOI 10.1093/icb/icu021; Sattar N, 2004, ARTERIOSCL THROM VAS, V24, P583, DOI 10.1161/01.ATV.0000118277.41584.63; Slopen N, 2013, BRAIN BEHAV IMMUN, V28, P63, DOI 10.1016/j.bbi.2012.10.018; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2015, BOST STUD PHILOS HIS, V307, P131, DOI 10.1007/978-94-017-9412-1_6; Straub RH, 2016, EVOL MED PUBLIC HLTH, P37, DOI 10.1093/emph/eow001; Taylor SE, 2006, BIOL PSYCHIAT, V60, P819, DOI 10.1016/j.biopsych.2006.03.016; Thayer ZM, 2012, AM J HUM BIOL, V24, P1, DOI 10.1002/ajhb.21226; Trigunaite A, 2015, CELL IMMUNOL, V294, P87, DOI 10.1016/j.cellimm.2015.02.004; Wander K, 2008, AM J PHYS ANTHROPOL, V136, P138, DOI 10.1002/ajpa.20785; Yazdanbakhsh M, 2002, SCIENCE, V296, P490, DOI 10.1126/science.296.5567.490 96 5 5 0 1 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2050-6201 EVOL MED PUBLIC HLTH Evol. Med. Public Health. 2016 1 256 269 10.1093/emph/eow022 14 Evolutionary Biology; Public, Environmental & Occupational Health Evolutionary Biology; Public, Environmental & Occupational Health DZ5TY WOS:000385925600025 27530543 DOAJ Gold, Green Published 2019-02-21 J Byars, SG; Boomsma, JJ Byars, Sean G.; Boomsma, Jacobus J. Opposite differential risks for autism and schizophrenia based on maternal age, paternal age, and parental age differences EVOLUTION MEDICINE AND PUBLIC HEALTH English Article Background and objectives: Effects of maternal and paternal age on offspring autism and schizophrenia risks have been studied for over three decades, but inconsistent risks have often been found, precluding well-informed speculation on why these age-related risks might exist. Methodology: To help clarify this situation we analysed a massive single population sample from Denmark including the full spectrum of autistic and schizophrenic disorders (eliminating between-study confounding), used up to 30 follow-up years, controlled for over 20 potentially confounding factors and interpret the ultimate causation of the observed risk patterns using generally accepted principles of parent-offspring conflict and life-history theory. Results: We evaluated the effects of paternal age, maternal age and parental age difference on offspring mental disorders and found consistently similar risk patterns for related disorders and markedly different patterns between autistic and schizophrenic disorders. Older fathers and mothers both conferred increased risk for autistic but not schizophrenic disorders, but autism risk was reduced in younger parents and offspring of younger mothers had increased risk for many schizophrenic disorders. Risk for most disorders also increased when parents were more dissimilarly aged. Monotonically increasing autism risk is consistent with mutation accumulation as fathers' age, but this explanation is invalid for schizophrenic disorders, which were not related to paternal age and were negatively correlated with maternal age. Conclusions and implications: We propose that the observed maternally induced risk patterns ultimately reflect a shifting ancestral life-history trade-off between current and future reproduction, mediated by an initially high but subsequently decreasing tendency to constrain foetal provisioning as women proceed from first to final pregnancy. [Byars, Sean G.; Boomsma, Jacobus J.] Univ Copenhagen, Dept Biol, Ctr Social Evolut, Copenhagen, Denmark; [Byars, Sean G.] Univ Melbourne, Dept Pathol, Parkville, Vic 3010, Australia; [Byars, Sean G.] Univ Melbourne, Sch BioSci, Ctr Syst Genom, Bldg 184, Parkville, Vic 3010, Australia Byars, SG (reprint author), Univ Melbourne, Sch BioSci, Ctr Syst Genom, Bldg 184, Parkville, Vic 3010, Australia. sean.byars@unimelb.edu.au Boomsma, Jacobus/M-2785-2014 Boomsma, Jacobus/0000-0002-3598-1609; Byars, Sean/0000-0002-3797-8112 Adkins RM, 2011, BMC MED GENET, V12, DOI 10.1186/1471-2350-12-47; ANDERSON RM, 1992, PHILOS T R SOC B, V336, P135, DOI 10.1098/rstb.1992.0052; Badcock C, 2008, NATURE, V454, P1054, DOI 10.1038/4541054a; Bakker R, 2011, BJOG-INT J OBSTET GY, V118, P500, DOI 10.1111/j.1471-0528.2010.02823.x; Barnes J, 2014, EUR J DEV PSYCHOL, V11, P397, DOI 10.1080/17405629.2013.863728; Brown AS, 2002, AM J PSYCHIAT, V159, P1528, DOI 10.1176/appi.ajp.159.9.1528; Buizer-Voskamp JE, 2011, SCHIZOPHR RES, V129, P128, DOI 10.1016/j.schres.2011.03.021; Byars SG, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0604; Byrne M, 2003, ARCH GEN PSYCHIAT, V60, P673, DOI 10.1001/archpsyc.60.7.673; Callaway E, 2012, NATURE, V488, P439, DOI 10.1038/488439a; Chiang T, 2012, BIOL REPROD, V86, DOI 10.1095/biolreprod.111.094367; Constancia M, 2002, NATURE, V417, P945, DOI 10.1038/nature00819; Crespi B, 2008, BEHAV BRAIN SCI, V31, P241, DOI 10.1017/S0140525X08004214; Crespi B, 2010, P NATL ACAD SCI USA, V107, P1736, DOI 10.1073/pnas.0906080106; Croen LA, 2007, ARCH PEDIAT ADOL MED, V161, P334, DOI 10.1001/archpedi.161.4.334; Durkin MS, 2008, AM J EPIDEMIOL, V168, P1268, DOI 10.1093/aje/kwn250; Eggermann T, 2008, TRENDS GENET, V24, P195, DOI 10.1016/j.tig.2008.01.003; Fergusson DM, 1999, J CHILD PSYCHOL PSYC, V40, P479, DOI 10.1111/1469-7610.00464; Fisher RA, 1930, GENETICAL THEORY NAT, Vxiv, P272; Frans EM, 2008, ARCH GEN PSYCHIAT, V65, P1034, DOI 10.1001/archpsyc.65.9.1034; Frans EM, 2013, JAMA PSYCHIAT, V70, P516, DOI 10.1001/jamapsychiatry.2013.1180; Geschwind DH, 2009, ANNU REV MED, V60, P367, DOI 10.1146/annurev.med.60.053107.121225; GILLBERG C, 1982, ACTA PSYCHIAT SCAND, V66, P471; GILLBERG C, 1983, J AUTISM DEV DISORD, V13, P153, DOI 10.1007/BF01531816; HAFNER H, 1993, BRIT J PSYCHIAT, V162, P80, DOI 10.1192/bjp.162.1.80; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haig D, 1992, SEMIN DEV BIOL, V3, P153; Hamilton W.D., 1972, Annual Rev Ecol Syst, V3, P193; Hultman CM, 2011, MOL PSYCHIATR, V16, P1203, DOI 10.1038/mp.2010.121; Jaffe AE, 2014, MOL PSYCHIATR, V19, P274, DOI 10.1038/mp.2013.76; Johnson AM, 2001, LANCET, V358, P1835, DOI 10.1016/S0140-6736(01)06883-0; Kaytor MD, 1997, HUM MOL GENET, V6, P2135, DOI 10.1093/hmg/6.12.2135; Kong A, 2012, NATURE, V488, P471, DOI 10.1038/nature11396; Lampi KM, 2013, J AUTISM DEV DISORD, V43, P2526, DOI 10.1007/s10803-013-1801-3; Lundstrom S, 2010, J CHILD PSYCHOL PSYC, V51, P850, DOI 10.1111/j.1469-7610.2010.02223.x; Malaspina D, 2001, ARCH GEN PSYCHIAT, V58, P361, DOI 10.1001/archpsyc.58.4.361; Markunas CA, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156361; Martin RH, 2008, REPROD BIOMED ONLINE, V16, P523, DOI 10.1016/S1472-6483(10)60459-2; McGrath JJ, 2014, JAMA PSYCHIAT, V71, P301, DOI 10.1001/jamapsychiatry.2013.4081; Menezes PR, 2010, PSYCHOL MED, V40, P477, DOI 10.1017/S003329170999064X; Miller B, 2011, SCHIZOPHRENIA BULL, V37, P1039, DOI 10.1093/schbul/sbq011; MOORE T, 1991, TRENDS GENET, V7, P45, DOI 10.1016/0168-9525(91)90230-N; Nicholls RD, 1998, TRENDS GENET, V14, P194, DOI 10.1016/S0168-9525(98)01432-2; Parner ET, 2012, ANN EPIDEMIOL, V22, P143, DOI 10.1016/j.annepidem.2011.12.006; Petersen L, 2011, AM J PSYCHIAT, V168, P82, DOI 10.1176/appi.ajp.2010.10020252; Petherick A, 2010, NATURE, V468, pS5, DOI 10.1038/468S5a; Queller DC, 2003, BMC EVOL BIOL, V3, DOI 10.1186/1471-2148-3-15; Rasmussen F, 2006, EUR J ENDOCRINOL, V155, pS65, DOI 10.1530/eje.1.02264; Roff DA, 2002, LIFE HIST EVOLUTION, pvii527; Roff Derek A., 1992; Royle NJ, 2012, EVOLUTION PARENTAL C, Vxix, P356; Sandin S, 2012, J AM ACAD CHILD PSY, V51, P660, DOI 10.1016/j.jaac.2012.05.001; Sandovici I, 2011, P NATL ACAD SCI USA, V108, P5449, DOI 10.1073/pnas.1019007108; Sasanfar R, 2010, MOL AUTISM, V1, DOI 10.1186/2040-2392-1-2; Schlomer GL, 2011, PSYCHOL REV, V118, P496, DOI 10.1037/a0024043; Shelton JF, 2010, AUTISM RES, V3, P30, DOI 10.1002/aur.116; Sipos A, 2004, BMJ-BRIT MED J, V329, P1070, DOI 10.1136/bmj.38243.672396.55; Stearns S. C., 1992, EVOLUTION LIFE HIST, P249; Stigum H, 1997, AM J EPIDEMIOL, V145, P636; Sutcliffe AG, 2012, BRIT MED J, V345, DOI 10.1136/bmj.e5116; TRIVERS RL, 1974, AM ZOOL, V14, P249; Trivers RL, 1972, SEXUAL SELECTION DES; Tsuchiya KJ, 2005, SCHIZOPHR RES, V76, P337, DOI 10.1016/j.schres.2005.03.004; Ubeda F, 2010, EVOLUTION, V64, P2587, DOI 10.1111/j.1558-5646.2010.01015.x; van Balkom IDC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045090; Wohl M, 2007, EUR PSYCHIAT, V22, P22, DOI 10.1016/j.eurpsy.2006.08.007; Wong WSW, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10486; Wu YJ, 2012, PSYCHIAT RES, V198, P353, DOI 10.1016/j.psychres.2012.01.020; Yurov YB, 2007, J MED GENET, V44, P521, DOI 10.1136/jmg.2007.049312; Zammit S, 2003, BRIT J PSYCHIAT, V183, P405, DOI 10.1192/bjp.183.5.405 70 5 5 0 2 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2050-6201 EVOL MED PUBLIC HLTH Evol. Med. Public Health. 2016 1 286 298 10.1093/emph/eow023 13 Evolutionary Biology; Public, Environmental & Occupational Health Evolutionary Biology; Public, Environmental & Occupational Health DZ5TY WOS:000385925600027 27637201 DOAJ Gold, Green Published 2019-02-21 J Beaulieu, M Beaulieu, Michael A Bird in the House: The Challenge of Being Ecologically Relevant in Captivity FRONTIERS IN ECOLOGY AND EVOLUTION English Review captivity; corticosterone; ethics; housing conditions; oxidative stress Ecologists have acknowledged the fact that environmental conditions strongly affect life-history strategies in the wild. However, when working in captivity, they appear to overlook these effects. This approach appears precarious, as it likely contributes to increase the inconsistency of results across ecological studies. To illustrate this point, I reviewed here the conditions under which captive zebra finches (Taeniopygia guttata) are kept in studies examining stress parameters that mediate life-history strategies, and compared these conditions to the conditions their wild counterparts experience in their native habitat. I found that captive zebra finches are typically kept under conditions that mostly reflect a paradoxical season in terms of temperature, light and humidity that would never be encountered in the wild. Most importantly, I also found that these conditions are associated with elevated stress levels. This suggests that most studies using captive zebra finches are conducted under stressful conditions, and therefore give a biased and limited view of how birds regulate life-history strategies. This example strongly suggests that we have to rethink our approach when examining ecological questions in captivity, by carefully considering conditions under which animals are kept in view of their current and future ecology. [Beaulieu, Michael] Ernst Moritz Arndt Univ Greifswald, Zool Inst & Museum, Greifswald, Germany Beaulieu, M (reprint author), Ernst Moritz Arndt Univ Greifswald, Zool Inst & Museum, Greifswald, Germany. miklvet@hotmail.fr University of Greifswald MB received financial support from the University of Greifswald. Australian Government Bureau of Meteorology, 2014, CLIM ZON; Bateson M, 2016, BIOESSAYS, V38, P201, DOI 10.1002/bies.201500127; Bateson M, 2010, ILAR J, V51, P394, DOI 10.1093/ilar.51.4.394; Bauchinger U, 2010, J EXP BIOL, V213, P526, DOI 10.1242/jeb.037408; Beamonte-Barrientos R, 2013, J COMP PHYSIOL B, V183, P675, DOI 10.1007/s00360-013-0745-4; Beaulieu M, 2015, EVOLUTION, V69, P1786, DOI 10.1111/evo.12697; Beaulieu M, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou014; Beaulieu M, 2014, J EXP BIOL, V217, P370, DOI 10.1242/jeb.092825; Burness G, 2010, J EXP BIOL, V213, P1386, DOI 10.1242/jeb.027011; CALDER WILLIAM A., 1964, PHYSIOL ZOOL, V37, P400; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; CSIRO, 2015, CLIM CHANG AUSTR; Dantzer B, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou023; de Bruijn R, 2013, COMP BIOCHEM PHYS A, V164, P512, DOI 10.1016/j.cbpa.2012.12.017; de Bruijn R, 2011, COMP BIOCHEM PHYS A, V160, P260, DOI 10.1016/j.cbpa.2011.06.011; Eraud C, 2007, J EXP BIOL, V210, P3571, DOI 10.1242/jeb.005496; Forstmeier W, 2007, MOL ECOL, V16, P4039, DOI 10.1111/j.1365-294X.2007.03444.x; Griffith SC, 2010, EMU, V110, pV, DOI 10.1071/MUv110n3_ED; Holberton RL, 1999, GEN COMP ENDOCR, V116, P49, DOI 10.1006/gcen.1999.7336; IUCN, 2015, IUCN RED LIST THREAT; Mainwaring MC, 2010, BIOL J LINN SOC, V100, P763, DOI 10.1111/j.1095-8312.2010.01460.x; MARSCHALL U, 1991, J ORNITHOL, V132, P319, DOI 10.1007/BF01640540; Martins TLF, 2007, HORM BEHAV, V52, P445, DOI 10.1016/j.yhbeh.2007.06.007; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Navara KJ, 2007, J PINEAL RES, V43, P215, DOI 10.1111/j.1600-079X.2007.00473.x; Olson Christopher R, 2014, Cold Spring Harb Protoc, V2014, P1243, DOI 10.1101/pdb.prot084780; Perfito N, 2007, FUNCT ECOL, V21, P291, DOI 10.1111/j.1365-2435.2006.01237.x; Perfito N, 2010, EMU, V110, P199, DOI 10.1071/MU09091; Raap T, 2015, SCI REP-UK, V5, DOI 10.1038/srep13557; Ricklefs RE, 2007, ECOL LETT, V10, P867, DOI 10.1111/j.1461-0248.2007.01085.x; Roberts ML, 2007, ANIM BEHAV, V74, P921, DOI 10.1016/j.anbehav.2006.12.021; Roth TC, 2010, PHILOS T R SOC B, V365, P945, DOI 10.1098/rstb.2009.0209; RSPCA Research Animal Department, 2011, ZEBR FINCH GOOD PRAC; Salvante KG, 2007, J EXP BIOL, V210, P1325, DOI 10.1242/jeb.02745; Salvante KG, 2003, GEN COMP ENDOCR, V130, P205, DOI 10.1016/S0016-6480(02)00637-8; Schmidt MF, 2010, ILAR J, V51, P424, DOI 10.1093/ilar.51.4.424; Snyder JM, 2013, J AM ASSOC LAB ANIM, V52, P301; Sossinka R., 1982, AVIAN BIOL, P373; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stier A, 2014, J COMP PHYSIOL B, V184, P1021, DOI 10.1007/s00360-014-0856-6; Taff CC, 2016, TRENDS ECOL EVOL, V31, P476, DOI 10.1016/j.tree.2016.03.005; Tschirren B, 2009, J EVOLUTION BIOL, V22, P387, DOI 10.1111/j.1420-9101.2008.01656.x; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; Williamson K, 2008, NATURWISSENSCHAFTEN, V95, P1143, DOI 10.1007/s00114-008-0436-2; Wingfield JC, 2015, GEN COMP ENDOCR, V222, P44, DOI 10.1016/j.ygcen.2015.08.022; Wingfield JC, 2013, ANIM BEHAV, V85, P1127, DOI 10.1016/j.anbehav.2013.02.018; Wingfield JC, 2013, FUNCT ECOL, V27, P37, DOI 10.1111/1365-2435.12039; Zuk M, 2016, AM NAT, V188, pS1, DOI 10.1086/687546 50 6 6 0 0 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 2296-701X FRONT ECOL EVOL Front. Ecol. Evol. 2016 4 141 10.3389/fevo.2016.00141 7 Ecology Environmental Sciences & Ecology VH2SA WOS:000452062600002 DOAJ Gold 2019-02-21 J Larson, PG; Daly, M Larson, Paul G.; Daly, Marymegan Phylogenetic analysis reveals an evolutionary transition from internal to external brooding in Epiactis Verrill (Cnidaria: Anthozoa: Actiniaria) and rejects the validity of the genus Cnidopus Carlgren MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Sea anemone; Character correlation; Life-history evolution; Sex allocation SEA-ANEMONES CNIDARIA; MATING SYSTEMS; ADULT SIZE; REPRODUCTION; CLASSIFICATION; HERMAPHRODITISM; COELENTERATA; STARFISH; EQUINA; SOUND Reproductive behaviors in the sea anemone genus Epiactis provide an opportunity for investigating the evolution of reproductive phenomena such as brooding and sex allocation (hermaphroditic vs. gonochoric) in a group of closely related and easily accessible species. However, given its broad geographic distribution, the striking diversity in reproductive behaviors, and the lack of synapomorphy for the genus, the monophyly of Epiactis is questionable. Here we perform phylogenetic analyses to test the monophyly of Epiactis and the validity of Cnidopus, which consists entirely of species once assigned to Epiactis. We use the large number of brooding species in Epiactis to investigate evolutionary patterns in brooding modes and characteristics associated with them. We find a monophyletic group of North Pacific Epiactis species: this group includes the type species of the genus and species that brood internally or externally, and that are hermaphroditic or gonochoric. Based on the results, we reject the genus Cnidopus because its circumscription renders Epiactis sensu stricto paraphyletic. Ancestral character state reconstruction indicates that in the North Pacific, externally brooding species evolved from internally brooding ancestors and that sex allocation is highly labile. Species relationships in Epiactis and Aulactinia appear to conform to geographic patterns more strongly than to taxonomic hypotheses. Contrary to expectations based on other invertebrates, we fail to find a strong correlation between brooding and hermaphroditism. (C) 2015 Elsevier Inc. All rights reserved. [Larson, Paul G.; Daly, Marymegan] Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Columbus, OH 43212 USA Larson, PG (reprint author), Ohio State Univ, Dept Evolut Ecol & Organismal Biol, 1315 Kinnear Rd, Columbus, OH 43212 USA. Larson.309@osu.edu; Daly.66@osu.edu NSF East Asia Pacific Summer Institute [1015216]; Japan Society for Promotion of Science Summer Program; Ohio State University Alumni Grants; American Museum of Natural History Lerner-Gray Fund; NSF Cnidarian Tree of Life grant [0531779] This work was funded in part by NSF East Asia Pacific Summer Institute (award # 1015216), Japan Society for Promotion of Science Summer Program, Ohio State University Alumni Grants for Graduate Research and Scholarship, American Museum of Natural History Lerner-Gray Fund for Marine Research to P. Larson; and an NSF Cnidarian Tree of Life grant (award # 0531779) to M. Daly. We would like to thank Dr. Satoshi Wada (Hokkaido University, Hakodate), Dr. Sara Gerken (University of Alaska, Anchorage), Eric Munk (Kodiak Fisheries research Center), Raymond O'Neill, and the Adak and Shumagin tribal corporations for logistical support, hosting, and sampling suggestions in Alaska and Japan, and land access permissions. Drs. Alison Young and Terry Gosliner (California Academy of Sciences) and Jackie Sones (Bodega Marine Laboratory) provided critical field support and advice in California. One tissue sample each of Epiactis fernaldi, E. handi, E. lisbethae, and E. prohfera was provided by Dr. Lisbeth Francis (Shannon Point Marine Center). BOSCH I, 1990, MAR BIOL, V104, P41, DOI 10.1007/BF01313155; Brandt J. F., 1835, PRODROMUS DESCRIPTIO; Byrne M, 1996, MAR BIOL, V125, P551; Carlgren O., 1924, Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kjobenhavn, V77, P179; Carlgren O., 1950, Arkiv for Zoologi Stockholm (2), V1, P131; Carlgren O., 1921, ACTINIARIA; Carlgren O., 1939, T ROY SOC EDINBURGH, V49, P791; Carlgren O, 1893, OFVERS KONG VETENSK, V4, P231; Carlgren O., 1927, ACTINIARIA ZOANTHARI; CARLGREN OSKAR, 1940, JOUR WASHINGTON ACAD SCI, V30, P21; CARLGREN OSKAR, 1949, K SVENSKA VETENSKAPSAKAD HANDL, V1, P1; CARLGREN OSKAR, 1951, PROC U S NATION MUS, V101, P415; CARLGREN OSKAR, 1934, JOUR WASHINGTON ACAD SCI, V24, P348; CARTER MA, 1979, J MAR BIOL ASSOC UK, V59, P989, DOI 10.1017/S0025315400036985; Chia F.S., 1974, Thalassia Jugosl, V10, P121; CHIA FS, 1976, COELENTERATE ECOLOGY, P261; Collin R, 2004, EVOLUTION, V58, P1488; Daly M, 2008, MOL PHYLOGENET EVOL, V48, P292, DOI 10.1016/j.ympev.2008.02.022; Daly M., 1668, ZOOTAXA, V1668, P127; Daly M, 2010, INTEGR COMP BIOL, V50, P371, DOI 10.1093/icb/icq081; DUNN DF, 1975, BIOL BULL, V148, P199, DOI 10.2307/1540543; DUNN DF, 1975, NATURE, V253, P528, DOI 10.1038/253528a0; DUNN DF, 1980, CAN J ZOOL, V58, P2071, DOI 10.1139/z80-284; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; EDMANDS S, 1991, Records of the Western Australian Museum, V15, P59; EDMANDS S, 1995, MAR BIOL, V123, P723, DOI 10.1007/BF00349115; Edmands S, 1996, INVERTEBR REPROD DEV, V30, P227, DOI 10.1080/07924259.1996.9672549; Fautin D, 2015, HEXACORALLIANS WORLD; FAUTIN DG, 1986, CAN J ZOOL, V64, P1665, DOI 10.1139/z86-250; Fernandez M, 2006, MAR ECOL PROG SER, V309, P213, DOI 10.3354/meps309213; Garrabou J, 1999, MAR ECOL PROG SER, V178, P193, DOI 10.3354/meps178193; GHISELIN MT, 1969, Q REV BIOL, V44, P189, DOI 10.1086/406066; Goloboff PA, 2008, CLADISTICS, V24, P774, DOI 10.1111/j.1096-0031.2008.00217.x; HAND C, 1974, Wasmann Journal of Biology, V32, P187; HAND CADET, 1955, WASMANN JOUR BIOL, V13, P37; Hart MW, 1997, EVOLUTION, V51, P1848, DOI 10.1111/j.1558-5646.1997.tb05108.x; Heath J.D., 1979, J THEOR BIOL, V81, P151; Heath J.D., 1977, J THEOR BIOL, V64, P363; HOEGHGULDBERG O, 1995, AM ZOOL, V35, P415; Ishimura M., 2002, J ETHOL, V21, P93; Kerr AM, 2011, P ROY SOC B-BIOL SCI, V278, P75, DOI 10.1098/rspb.2010.1196; Kluge AG, 1998, CLADISTICS, V14, P151, DOI 10.1111/j.1096-0031.1998.tb00328.x; Lanfear R, 2012, MOL BIOL EVOL, V29, P1695, DOI 10.1093/molbev/mss020; Larson P.G., 2015, J MAR BIOL ASS UK, V16; Larson Paul G., 2012, Zootaxa, V3523, P69; Linnaeus C., 1761, FAUNA SVECICA; Maddison W.P., 2011, MESQUITE MODULAR SYS; McFadden C.S., 2001, EVOLUTION, V55, P154; MENGE BA, 1975, MAR BIOL, V31, P87, DOI 10.1007/BF00390651; ORR J, 1982, MAR ECOL PROG SER, V7, P227, DOI 10.3354/meps007227; PARRY G., 1951, REC CANTERBURY MUS, V6, P83; Pearse JS, 2009, SMITHSONIAN AT THE POLES: CONTRIBUTIONS TO INTERNATIONAL POLAR YEAR SCIENCE, P181, DOI 10.5479/si.097884601X.13; Pearse JS, 2004, DEEP-SEA RES PT II, V51, P1533, DOI 10.1016/j.dsr2.2004.06.023; Rodriguez E., 2012, MAR BIOL, V160, P1; Rodriguez E, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096998; Rodriguez E, 2012, CLADISTICS, V28, P375, DOI 10.1111/j.1096-0031.2012.00391.x; Rodriguez E, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010958; Sanamyan N.P., 1998, Zoosystematica Rossica, V7, P1; Simpson GG., 1953, MAJOR FEATURES EVOLU; Stamatakis A., 2014, BIOINFORMATICS; Stephenson T.A., 1918, BR ANTARCT TERRA NOV, V1910, P1; Stephenson TA, 1922, Q J MICROSC SCI, V66, P247; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; STRATHMANN RR, 1984, AM NAT, V123, P796, DOI 10.1086/284240; Stuckey F.G.A., 1909, T NZ I, V42, P370; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Thorson G., 1936, LARVAL DEV GROWTH ME; Torrey H. B., 1902, P WASH ACAD SCI, V4, P373; Uchida T., 1954, Journal of the Faculty of Science Hokkaido University Zoology, V12, P220; Uchida T., 1934, Journal of the Faculty of Science Hokkaido Zoology, V3, P17; Verrill A. E., 1899, AM J SCI ARTS, V7, P375; Verrill A.E., 1869, P ESSEX I SALEM, V1866-67, P315; Verrill AE, 1864, MEM BOST SOC NAT HIS, V1, P1; Verrill AE, 1869, T CONNECTICUT ACAD A, V1, P422; Young C. M., 1994, REPROD LARVAL BIOL R 75 3 3 1 18 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 1095-9513 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. JAN 2016 94 B 548 558 10.1016/j.ympev.2015.10.008 11 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity CY5JG WOS:000366443300008 26477737 2019-02-21 J Hampson, SE; Andrews, JA; Barckley, M; Gerrard, M; Gibbons, FX Hampson, Sarah E.; Andrews, Judy A.; Barckley, Maureen; Gerrard, Meg; Gibbons, Frederick X. Harsh environments, life history strategies, and adjustment: A longitudinal study of Oregon youth PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Evolutionary development theory; Prototype willingness model; Substance use; Risky sex; Emerging adulthood SUBSTANCE USE; REPRODUCTIVE STRATEGY; RISK BEHAVIOR; MARIJUANA USE; ADOLESCENCE; SCHOOL; HEALTH; MODEL; DISCRIMINATION; WILLINGNESS We modeled the effects of harsh environments in childhood on adjustment in early emerging adulthood, through parenting style and the development of fast Life History Strategies (LHS; risky beliefs and behaviors) in adolescence. Participants were from the Oregon Youth Substance Use Project (N = 988; 85.7% White). Five cohorts of children in Grades 1-5 at recruitment were assessed through one-year post high school. Greater environmental harshness (neighborhood quality and family poverty) in Grades 1-6 predicted less parental investment at Grade 8. This parenting style was related to the development of fast LHS (favorable beliefs about substance users and willingness to use substances at Grade 9, and engagement in substance use and risky sexual behavior assessed across Grades 10-12). The indirect path from harsh environment through parenting and LHS to (less) psychological adjustment (indicated by lower life satisfaction, self-rated health, trait sociability, and higher depression) was significant (indirect effect -.024,p =.011,95% CI =-.043,-.006). This chain of development was comparable to that found by Gibbons et al. (2012) for an African-American sample that, unlike the present study, included perceived racial discrimination in the assessment of harsh environment (C) 2015 Elsevier Ltd. All rights reserved. [Hampson, Sarah E.; Andrews, Judy A.; Barckley, Maureen] Oregon Res Inst, Eugene, OR 97403 USA; [Gerrard, Meg; Gibbons, Frederick X.] Univ Connecticut, Dept Psychol, Storrs, CT 06269 USA Hampson, SE (reprint author), Oregon Res Inst, 1776 Millrace Dr, Eugene, OR 97403 USA. sarah@ori.org National Institute on Drug Abuse [DA10767, DA021898] This research was supported by grants from the National Institute on Drug AbuseDA10767and DA021898. Andrews JA, 2003, J CLIN CHILD ADOLESC, V32, P556, DOI 10.1207/S15374424JCCP3204_8; Andrews JA, 2008, PSYCHOL ADDICT BEHAV, V22, P96, DOI 10.1037/0893-164X.22.1.96; Andrews Judy A, 2006, J Subst Use, V11, P305, DOI 10.1080/14659890500419774; Andrews JA, 2011, ADDICT BEHAV, V36, P448, DOI 10.1016/j.addbeh.2010.12.011; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bollen K. A., 1990, SOCIOL METHODOL, V20, P115, DOI DOI 10.2307/271084; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Dodge KA, 2012, DEV PSYCHOL, V48, P624, DOI 10.1037/a0027683; Ellis BJ, 2012, DEV PSYCHOL, V48, P591, DOI 10.1037/a0027651; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ennett ST, 1997, J HEALTH SOC BEHAV, V38, P55, DOI 10.2307/2955361; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Gerrard M, 2005, J PEDIATR PSYCHOL, V30, P305, DOI 10.1093/jpepsy/jsi026; Gerrard M, 2008, DEV REV, V28, P29, DOI 10.1016/j.dr.2007.10.001; Gibbons FX, 2012, DEV PSYCHOL, V48, P722, DOI 10.1037/a0026599; Greenberg MT, 1999, DEV PSYCHOL, V35, P403, DOI 10.1037//0012-1649.35.2.403; Hendershot CS, 2010, PSYCHOL ADDICT BEHAV, V24, P404, DOI 10.1037/a0019844; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Hurd NM, 2014, DEV PSYCHOL, V50, P1910, DOI 10.1037/a0036438; JESSOR R, 1977, PROBLEM BEHAV PSYCHO; John O. P, 2008, HDB PERSONALITY THEO, P114, DOI DOI 10.1037/0021-9010.87.3.530; McArdle J. J., 1988, HDB MULTIVARIATE EXP, P561, DOI DOI 10.1007/978-1-4613-0893-5_17; Muthen L. K. & Muthen B. O., 1998, MPLUS USERS GUIDE; Olderbak S., 2014, PERSONALITY INDIVIDU, P5882; Olderbak S, 2009, PERS INDIV DIFFER, V46, P604, DOI 10.1016/j.paid.2008.12.019; Patrick ME, 2012, PREV SCI, V13, P532, DOI 10.1007/s11121-012-0279-0; RADLOFF L S, 1977, Applied Psychological Measurement, V1, P385, DOI 10.1177/014662167700100306; Roberts R E, 1983, Eval Program Plann, V6, P373, DOI 10.1016/0149-7189(83)90016-2; Shelton KK, 1996, J CLIN CHILD PSYCHOL, V25, P317, DOI 10.1207/s15374424jccp2503_8; Shrout PE, 2002, PSYCHOL METHODS, V7, P422, DOI 10.1037//1082-989X.7.4.422; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Staff J, 2010, DEV PSYCHOPATHOL, V22, P917, DOI 10.1017/S0954579410000544; Steinberg L, 2008, DEV REV, V28, P78, DOI 10.1016/j.dr.2007.08.002; Westling E, 2008, J ADOLESCENT HEALTH, V42, P555, DOI 10.1016/j.jadohealth.2007.11.002; Wills TA, 2000, HEALTH PSYCHOL, V19, P253, DOI 10.1037//0278-6133.19.3.253 35 7 7 1 22 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JAN 2016 88 120 124 10.1016/j.paid.2015.08.052 5 Psychology, Social Psychology CU8XV WOS:000363828300022 26451065 Green Accepted 2019-02-21 J Stach, T; Anselmi, C Stach, Thomas; Anselmi, Chiara High-precision morphology: bifocal 4D-microscopy enables the comparison of detailed cell lineages of two chordate species separated for more than 525 million years BMC BIOLOGY English Article Ascidian; Development; Evolution; Larvacean; Neural crest; Tunicate CIONA-INTESTINALIS; ASCIDIAN EMBRYOS; NEURAL CREST; NERVOUS-SYSTEM; EVOLUTION; TUNICATES; PHYLOGENY; FATE; MORPHOGENESIS; SPECIFICATION Background: Understanding the evolution of divergent developmental trajectories requires detailed comparisons of embryologies at appropriate levels. Cell lineages, the accurate visualization of cleavage patterns, tissue fate restrictions, and morphogenetic movements that occur during the development of individual embryos are currently available for few disparate animal taxa, encumbering evolutionarily meaningful comparisons. Tunicates, considered to be close relatives of vertebrates, are marine invertebrates whose fossil record dates back to 525 million years ago. Life-history strategies across this subphylum are radically different, and include biphasic ascidians with free swimming larvae and a sessile adult stage, and the holoplanktonic larvaceans. Despite considerable progress, notably on the molecular level, the exact extent of evolutionary conservation and innovation during embryology remain obscure. Results: Here, using the innovative technique of bifocal 4D-microscopy, we demonstrate exactly which characteristics in the cell lineages of the ascidian Phallusia mammillata and the larvacean Oikopleura dioica were conserved and which were altered during evolution. Our accurate cell lineage trees in combination with detailed three-dimensional representations clearly identify conserved correspondence in relative cell position, cell identity, and fate restriction in several lines from all prospective larval tissues. At the same time, we precisely pinpoint differences observable at all levels of development. These differences comprise fate restrictions, tissue types, complex morphogenetic movement patterns, numerous cases of heterochronous acceleration in the larvacean embryo, and differences in bilateral symmetry. Conclusions: Our results demonstrate in extraordinary detail the multitude of developmental levels amenable to evolutionary innovation, including subtle changes in the timing of fate restrictions as well as dramatic alterations in complex morphogenetic movements. We anticipate that the precise spatial and temporal cell lineage data will moreover serve as a high-precision guide to devise experimental investigations of other levels, such as molecular interactions between cells or changes in gene expression underlying the documented structural evolutionary changes. Finally, the quantitative amount of digital high-precision morphological data will enable and necessitate software-based similarity assessments as the basis of homology hypotheses. [Stach, Thomas] Humboldt Univ, Kompetenzzentrum Elektronenmikroskopie, Inst Biol, D-1410115 Berlin, Germany; [Anselmi, Chiara] Univ Padua, Dipartimento Biol, I-35131 Padua, Italy Stach, T (reprint author), Humboldt Univ, Kompetenzzentrum Elektronenmikroskopie, Inst Biol, Philippstr 13, D-1410115 Berlin, Germany. thomas.stach@hu-berlin.de German Research Foundation (DFG) [STA655/4, STA655/5]; ERASMUS Financial support by the German Research Foundation (DFG-grants STA655/4 & STA655/5) and by ERASMUS is gratefully acknowledged. Abitua PB, 2012, NATURE, V492, P104, DOI 10.1038/nature11589; Alwes F, 2004, ZOOMORPHOLOGY, V123, P125, DOI 10.1007/s00435-004-0095-6; Burighel P, 1997, MICROSCOPICAL ANATOM, V15, P221; Christiaen L., 2009, COLD SPRING HARB PRO, V2009; CLONEY RA, 1982, CELL TISSUE RES, V222, P547; Cole AG, 2004, DEV BIOL, V271, P239, DOI 10.1016/j.ydbio.2004.04.001; Conklin E. G., 1905, J ACAD NATL SCI PHIL, V13, P1, DOI DOI 10.5962/BHL.TITLE.4801; Davidson B, 2005, DEVELOPMENT, V132, P4811, DOI 10.1242/dev.02051; Delsman HC, 1910, VERH RIJKSINST ONDER, V3, P1; Delsuc F, 2006, NATURE, V439, P965, DOI 10.1038/nature04336; Dunn CW, 2014, ANNU REV ECOL EVOL S, V45, P371, DOI 10.1146/annurev-ecolsys-120213-091627; Fedonkin MA, 2012, PALEONTOL J+, V46, P1, DOI 10.1134/S0031030112010042; Garcia-Bellido DC, 2014, BMC EVOL BIOL, V14, DOI 10.1186/s12862-014-0214-z; Garstang W, 1921, LINNEAN J ZOOL, V35, P81; Govindarajan AF, 2011, J PLANKTON RES, V33, P843, DOI 10.1093/plankt/fbq157; Harrington MJ, 2009, MOL REPROD DEV, V76, P954, DOI 10.1002/mrd.21085; Hejnol A, 2005, DEVELOPMENT, V132, P1349, DOI 10.1242/dev.01701; Hejnol A, 2008, PHILOS T R SOC B, V363, P1493, DOI 10.1098/rstb.2007.2239; Hejnol A, 2007, DEV BIOL, V305, P63, DOI 10.1016/j.ydbio.2007.01.044; Hirakow R., 1994, Acta Anatomica Nipponica, V69, P1; Hudson C, 2011, DEVELOPMENT, V138, P1643, DOI 10.1242/dev.055426; Iseto T, 1999, DEV GROWTH DIFFER, V41, P601; Jeffery WR, 2008, DEV BIOL, V324, P152, DOI 10.1016/j.ydbio.2008.08.022; Kalinka AT, 2012, TRENDS ECOL EVOL, V27, P385, DOI 10.1016/j.tree.2012.03.007; Kuratani S, 2004, J EXP ZOOL PART B, V302B, P458, DOI 10.1002/jez.b.21011; Kuratani S, 2002, GENESIS, V34, P175, DOI 10.1002/gene.10142; Lemaire P, 2002, DEV BIOL, V252, P151, DOI 10.1006/dbio.2002.0861; Lemaire P, 2011, DEVELOPMENT, V138, P2143, DOI 10.1242/dev.048975; Lemaire P, 2009, DEV BIOL, V332, P48, DOI 10.1016/j.ydbio.2009.05.540; Lohmann H, 1956, HDB ZOOLOGIE, V5.2, P15; Lowery LA, 2004, MECH DEVELOP, V121, P1189, DOI 10.1016/j.mod.2004.04.022; Mancuso V, 1969, ACTA EMBYROLOGICA EX, V12, P231; Nakamura MJ, 2012, DEV BIOL, V372, P274, DOI 10.1016/j.ydbio.2012.09.007; Nielsen C, 2015, J EXP BIOL, V218, P629, DOI 10.1242/jeb.109603; NISHIDA H, 1987, DEV BIOL, V121, P526, DOI 10.1016/0012-1606(87)90188-6; NISHIDA H, 1986, DEV GROWTH DIFFER, V28, P191; Nishida H, 2014, ZOOL SCI, V31, P645, DOI 10.2108/zs140117; Oisi Y, 2013, NATURE, V493, P175, DOI 10.1038/nature11794; Onai T, 2014, ANNU REV GENOM HUM G, V15, P443, DOI 10.1146/annurev-genom-091212-153404; Ota KG, 2007, NATURE, V446, P672, DOI 10.1038/nature05633; Richter S, 2014, J ZOOL SYST EVOL RES, V52, P338, DOI 10.1111/jzs.12061; SATOH N, 1994, DEV BIOL ASCIDIANS; Satoh N, 2014, GENESIS, V52, P925, DOI 10.1002/dvg.22831; Schnabel R, 1997, DEV BIOL, V184, P234, DOI 10.1006/dbio.1997.8509; Scholtz G., 2013, BILDWELTEN WISSENS, V9, P30; Schulze J, 2011, EVODEVO, V2, DOI 10.1186/2041-9139-2-18; Shu DG, 2014, GONDWANA RES, V25, P884, DOI 10.1016/j.gr.2013.09.001; Stach T, 2008, J ZOOL, V276, P117, DOI 10.1111/j.1469-7998.2008.00497.x; Stach T, 2008, P NATL ACAD SCI USA, V105, P7229, DOI 10.1073/pnas.0710196105; Stach Thomas, 2000, Bonner Zoologische Monographien, V47, P1; Stach TG, 2009, ZOOMORPHOLOGY, V128, P97, DOI 10.1007/s00435-008-0076-2; Swalla BJ, 2008, PHILOS T R SOC B, V363, P1557, DOI 10.1098/rstb.2007.2246; Thompson H, 2015, ZOOL SCI, V32, P217, DOI 10.2108/zs140231; Tsagkogeorga G, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-187; Veeman M, 2015, GENESIS, V53, P143, DOI 10.1002/dvg.22828; Vogt L, 2013, J MORPHOL, V274, P793, DOI 10.1002/jmor.20138; Whittaker JR, 1979, DETERMINANTS SPATIAL, P29; WRAY GA, 1994, AM ZOOL, V34, P353; ZALOKAR M, 1984, DEV BIOL, V102, P195, DOI 10.1016/0012-1606(84)90184-2 59 4 4 2 13 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1741-7007 BMC BIOL BMC Biol. DEC 23 2015 13 113 10.1186/s12915-015-0218-1 11 Biology Life Sciences & Biomedicine - Other Topics CZ4CO WOS:000367050800002 26700477 DOAJ Gold, Green Published 2019-02-21 J van Denderen, PD; Bolam, SG; Hiddink, JG; Jennings, S; Kenny, A; Rijnsdorp, AD; van Kooten, T van Denderen, P. Daniel; Bolam, Stefan G.; Hiddink, Jan Geert; Jennings, Simon; Kenny, Andrew; Rijnsdorp, Adriaan D.; van Kooten, Tobias Similar effects of bottom trawling and natural disturbance on composition and function of benthic communities across habitats MARINE ECOLOGY PROGRESS SERIES English Article Bottom trawling; Benthic community; Biological trait approach; Bed shear stress; Ecosystem function; Disturbance; Beam trawling; Otter trawling GREATER NORTH-SEA; FISHING DISTURBANCE; INVERTEBRATE COMMUNITIES; INFAUNAL COMMUNITIES; TROPHIC STRUCTURE; SPECIES RICHNESS; ECOSYSTEM; IMPACTS; MANAGEMENT; FISHERIES Bottom trawl fishing has widespread impacts on benthic habitats and communities. The benthic response to trawling seems to be smaller or absent in areas exposed to high natural disturbance, leading to the hypothesis that natural and trawl disturbance affect benthic communities in a similar way. However, systematic tests of this hypothesis at large spatial scales and with data from sites spanning a large range of natural disturbance do not exist. Here, we examine the effects of trawl and natural (tidal-bed shear stress) disturbance on benthic communities over gradients of commercial bottom trawling effort in 8 areas in the North and Irish Seas. Using a trait-based approach, that classified species by life-history strategies or by characteristics that provide a proxy for their role in community function, we found support for the hypothesis that trawl and natural disturbance affect benthic communities in similar ways. Both sources of disturbance caused declines in long-living, hard-bodied (exoskeleton) and suspension-feeding organisms. Given these similar impacts, there was no detectable trawling effect on communities exposed to high natural disturbance. Conversely, in 3 out of 5 areas with low bed shear stress, responses to trawling were detected and resulted in community compositions comparable with those in areas subject to high natural disturbance, with communities being composed of either small-sized, deposit-feeding animals or mobile scavengers and predators. The findings highlight that knowledge of the interacting effects of trawl and natural disturbance will help to identify areas that are more or less resilient to trawling and support the development of management plans that account for the environmental effects of fishing. [van Denderen, P. Daniel; Rijnsdorp, Adriaan D.; van Kooten, Tobias] Wageningen Inst Marine Resources & Ecosyst Studie, NL-1970 AB Ijmuiden, Netherlands; [van Denderen, P. Daniel; Rijnsdorp, Adriaan D.] Wageningen Univ, Aquaculture & Fisheries, NL-6700 AH Wageningen, Netherlands; [Bolam, Stefan G.; Jennings, Simon; Kenny, Andrew] Lowestoft Lab, CEFAS, Lowestoft NR33 0HT, Suffolk, England; [Hiddink, Jan Geert] Bangor Univ, Sch Ocean Sci, Menai Bridge LL59 5AB, Anglesey, Wales van Denderen, PD (reprint author), Tech Univ Denmark, Natl Inst Aquat Resources, DK-2920 Charlottenlund, Denmark. pdvd@aqua.dtu.dk Jennings, Simon/F-5085-2012; Hiddink, Jan Geert/C-1238-2009; Rijnsdorp, Adriaan/A-4217-2008 Jennings, Simon/0000-0002-2390-7225; Hiddink, Jan Geert/0000-0001-7114-830X; Rijnsdorp, Adriaan/0000-0003-0785-9662; van Denderen, Daniel/0000-0001-6351-0241 policy support research programme (BO) of the Dutch Ministry of Economic Affairs; FP7 project BENTHIS [312088]; Schure Beijerinck Popping Fund of the Royal Netherlands Academy of Arts and Sciences We thank the anonymous reviewers for their helpful suggestions to improve the manuscript and J. Aldridge, N. T. Hintzen and P. Ruardij for their help in assembling the data. This research was partially supported through grants from the policy support research programme (BO) of the Dutch Ministry of Economic Affairs to P.D.vD. and T.vK., the FP7 project BENTHIS (312088) to A.D.R., T.vK and J.G.H., and the Schure Beijerinck Popping Fund of the Royal Netherlands Academy of Arts and Sciences to P.D.vD. BARETTA J., 1995, J SEA RES, V33, P233, DOI [10.1016/0077-7579(95)90047-0, DOI 10.1016/0077-7579(95)90047-0]; Bergman MJN, 2000, ICES J MAR SCI, V57, P1321, DOI 10.1006/jmsc.2000.0917; Bolam SG, 2014, J SEA RES, V85, P162, DOI 10.1016/j.seares.2013.05.003; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; BRANDER K, 1980, HELGOLANDER MEERESUN, V33, P687, DOI 10.1007/BF02414789; Bremner J., 2003, Aquatic Ecosystem Health & Management, V6, P131, DOI 10.1080/14634980301470; Bremner J, 2008, J EXP MAR BIOL ECOL, V366, P37, DOI 10.1016/j.jembe.2008.07.007; Callaway R, 2007, MAR ECOL PROG SER, V346, P27, DOI 10.3354/meps07038; CHEVENET F, 1994, FRESHWATER BIOL, V31, P295, DOI 10.1111/j.1365-2427.1994.tb01742.x; Collie JS, 2000, ICES J MAR SCI, V57, P987, DOI 10.1006/jmsc.2000.0584; Collie JS, 2000, J ANIM ECOL, V69, P785, DOI 10.1046/j.1365-2656.2000.00434.x; de Juan S, 2007, MAR ECOL PROG SER, V334, P117; DEGROOT SJ, 1984, OCEAN MANAGE, V9, P177, DOI 10.1016/0302-184X(84)90002-7; Diesing M, 2013, ICES J MAR SCI, V70, P1085, DOI 10.1093/icesjms/fst066; Dinmore TA, 2003, ICES J MAR SCI, V60, P371, DOI 10.1016/S1054-3139(03)00010-9; Eastwood PD, 2007, ICES J MAR SCI, V64, P453, DOI 10.1093/icesjms/fsm001; Ebenhoh W, 1997, J SEA RES, V38, P173, DOI 10.1016/S1385-1101(97)00043-9; Eigaard OR, 2016, ICES J MAR SCI, V73, P27, DOI 10.1093/icesjms/fsv099; Eleftheriou A., 2005, P160, DOI 10.1002/9780470995129.ch5; FAO, 2009, STAT WORLD FISH AQ 2; Foden J, 2011, MAR ECOL PROG SER, V428, P33, DOI 10.3354/meps09064; FOLK RL, 1954, J GEOL, V62, P344, DOI 10.1086/626171; Gili JM, 1998, TRENDS ECOL EVOL, V13, P316, DOI 10.1016/S0169-5347(98)01365-2; Hiddink JG, 2011, J APPL ECOL, V48, P1441, DOI 10.1111/j.1365-2664.2011.02036.x; Hiddink JG, 2008, CAN J FISH AQUAT SCI, V65, P1393, DOI 10.1139/F08-064; Hiddink JG, 2006, CAN J FISH AQUAT SCI, V63, P721, DOI 10.1139/F05-266; Hinz H, 2009, ECOL APPL, V19, P761, DOI 10.1890/08-0351.1; Holland DS, 2000, LAND ECON, V76, P133, DOI 10.2307/3147262; Hollertz K, 2001, MAR BIOL, V139, P951; Hunt HL, 1997, MAR ECOL PROG SER, V155, P269, DOI 10.3354/meps155269; Jennings S, 1998, ADV MAR BIOL, V34, P201, DOI 10.1016/S0065-2881(08)60212-6; Jennings S, 2002, MAR ECOL PROG SER, V243, P251, DOI 10.3354/meps243251; Jennings S, 2001, MAR ECOL PROG SER, V213, P127, DOI 10.3354/meps213127; Jennings S, 2001, J ANIM ECOL, V70, P459, DOI 10.1046/j.1365-2656.2001.00504.x; Johnson AF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2336; Kaiser MJ, 2006, MAR ECOL PROG SER, V311, P1, DOI 10.3354/meps311001; Kaiser MJ, 2002, FISH FISH, V3, P114, DOI 10.1046/j.1467-2979.2002.00079.x; Kaiser MJ, 1998, CONSERV BIOL, V12, P1230, DOI 10.1046/j.1523-1739.1998.0120061230.x; Kaiser MJ, 1996, J ANIM ECOL, V65, P348, DOI 10.2307/5881; Kenchington EL, 2007, J SEA RES, V58, P220, DOI 10.1016/j.seares.2007.04.001; Lambert GI, 2014, J APPL ECOL, V51, P1326, DOI 10.1111/1365-2664.12277; Lohrer AM, 2004, NATURE, V431, P1092, DOI 10.1038/nature03042; Lohrer AM, 2013, ECOLOGY, V94, P136, DOI 10.1890/11-1779.1; Morris AW, 1998, CONT SHELF RES, V18, P1203, DOI 10.1016/S0278-4343(98)00040-5; Oksanen J, 2013, VEGAN COMMUNITY ECOL; Pearson TH, 2001, OCEANOGR MAR BIOL, V39, P233; PROBERT PK, 1984, J MAR RES, V42, P893, DOI 10.1357/002224084788520837; Queiros AM, 2006, J EXP MAR BIOL ECOL, V335, P91, DOI 10.1016/j.jembe.2006.03.001; Snelgrove PVR, 1999, BIOSCIENCE, V49, P129, DOI 10.2307/1313538; Stachowicz JJ, 2001, BIOSCIENCE, V51, P235, DOI 10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2; Suzuki R, 2006, BIOINFORMATICS, V22, P1540, DOI 10.1093/bioinformatics/btl117; THISTLE D, 1981, MAR ECOL PROG SER, V6, P223, DOI 10.3354/meps006223; THRUSH SF, 1992, J EXP MAR BIOL ECOL, V159, P253, DOI 10.1016/0022-0981(92)90040-H; Thrush SF, 2010, ANNU REV MAR SCI, V2, P419, DOI 10.1146/annurev-marine-120308-081129; Tillin HM, 2006, MAR ECOL PROG SER, V318, P31, DOI 10.3354/meps318031; van Denderen PD, 2014, ECOSYSTEMS, V17, P1216, DOI 10.1007/s10021-014-9789-x; van Denderen PD, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1883; van Nes EH, 2007, MAR ECOL PROG SER, V330, P39, DOI 10.3354/meps330039; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; Witbaard R, 1999, J MAR BIOL ASSOC UK, V79, P907, DOI 10.1017/S0025315498001076 60 26 26 5 50 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. DEC 15 2015 541 31 43 10.3354/meps11550 13 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography CZ9BQ WOS:000367393200003 2019-02-21 J Ringsby, TH; Jensen, H; Parn, H; Kvalnes, T; Boner, W; Gillespie, R; Holand, H; Hagen, IJ; Ronning, B; Saether, BE; Monaghan, P Ringsby, Thor Harald; Jensen, Henrik; Parn, Henrik; Kvalnes, Thomas; Boner, Winnie; Gillespie, Robert; Holand, Hakon; Hagen, Ingerid Julie; Ronning, Bernt; Saether, Bernt-Erik; Monaghan, Pat On being the right size: increased body size is associated with reduced telomere length under natural conditions PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article body size; telomere length; life-history trade-off; longevity; Passer domesticus; selection experiment SPARROW PASSER-DOMESTICUS; LIFE-HISTORY EVOLUTION; REPRODUCTIVE SUCCESS; DIE YOUNG; GROWTH; SPAN; LONGEVITY; SELECTION; HERITABILITY; POPULATIONS Evolution of body size is likely to involve trade-offs between body size, growth rate and longevity. Within species, larger body size is associated with faster growth and ageing, and reduced longevity, but the cellular processes driving these relationships are poorly understood. One mechanism that might play a key role in determining optimal body size is the relationship between body size and telomere dynamics. However, we know little about how telomere length is affected when selection for larger size is imposed in natural populations. We report here on the relationship between structural body size and telomere length in wild house sparrows at the beginning and end of a selection regime for larger parent size that was imposed for 4 years in an isolated population of house sparrows. A negative relationship between fledgling size and telomere length was present at the start of the selection; this was extended when fledgling size increased under the selection regime, demonstrating a persistent covariance between structural size and telomere length. Changes in telomere dynamics, either as a correlated trait or a consequence of larger size, could reduce potential longevity and the consequent trade-offs could thereby play an important role in the evolution of optimal body size. [Ringsby, Thor Harald; Jensen, Henrik; Parn, Henrik; Kvalnes, Thomas; Holand, Hakon; Hagen, Ingerid Julie; Ronning, Bernt; Saether, Bernt-Erik] Norwegian Univ Sci & Technol, Dept Biol, Ctr Biodivers Dynam, N-7491 Trondheim, Norway; [Boner, Winnie; Gillespie, Robert; Monaghan, Pat] Univ Glasgow, Coll Med Vet & Life Sci, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland Ringsby, TH (reprint author), Norwegian Univ Sci & Technol, Dept Biol, Ctr Biodivers Dynam, N-7491 Trondheim, Norway. thor.h.ringsby@ntnu.no Jensen, Henrik/B-5085-2011; Monaghan, Pat/E-6810-2015 Jensen, Henrik/0000-0001-7804-1564; European Research Council [ERC-2010-AdG 268562]; Research Council of Norway [221956, 2232571F50]; ERC Advanced grant [268926] This work was funded by the European Research Council (ERC-2010-AdG 268562) and the Research Council of Norway (221956 and 2232571F50). The laboratory work in Glasgow was supported by ERC Advanced grant no. 268926. ALLSOPP RC, 1995, EXP CELL RES, V220, P194, DOI 10.1006/excr.1995.1306; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Asghar M., 2014, P R SOC B, V282, DOI DOI 10.1098/RSPB.2014.2263; Aubert G, 2008, PHYSIOL REV, V88, P557, DOI 10.1152/physrev.00026.2007; Austad SN, 2010, J COMP PATHOL, V141, pS10, DOI 10.1016/j.jcpa.2009.10.024; Austad SN, 2010, COMPARATIVE BIOLOGY OF AGING, P27, DOI 10.1007/978-90-481-3465-6_2; AUSUBEL FM, 1989, CURRENT PROTOCOLS MO; Aviv A, 2013, INT J EPIDEMIOL, V42, P457, DOI 10.1093/ije/dys236; Bartke A, 2012, GERONTOLOGY, V58, P337, DOI 10.1159/000335166; Bates D., 2015, J STAT SOFTW, DOI 10.18637/jss.v067.i01; Bernstein RM, 2010, AM J PHYS ANTHROPOL, P46, DOI 10.1002/ajpa.21440; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Broer L, 2013, EUR J HUM GENET, V21, P1163, DOI 10.1038/ejhg.2012.303; Cleasby Ian R., 2011, BMC Research Notes, V4, DOI 10.1186/1756-0500-4-431; Criscuolo F, 2009, J AVIAN BIOL, V40, P342, DOI 10.1111/j.1600-048X.2008.04623.x; Dawson DA, 2012, MOL ECOL RESOUR, V12, P501, DOI 10.1111/j.1755-0998.2012.03115.x; Fick LJ, 2012, CELL REP, V2, P1530, DOI 10.1016/j.celrep.2012.11.021; Graakjaer J, 2006, HUM GENET, V119, P344, DOI 10.1007/s00439-006-0137-x; Griffith SC, 1999, BIOL J LINN SOC, V68, P303, DOI 10.1006/bijl.1999.0343; Griffith SC, 2007, MOL ECOL NOTES, V7, P333, DOI 10.1111/j.1471-8286.2006.01598.x; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Hagen IJ, 2013, MOL ECOL RESOUR, V13, P429, DOI 10.1111/1755-0998.12088; Heidinger BJ, 2012, P NATL ACAD SCI USA, V109, P1743, DOI 10.1073/pnas.1113306109; Henderson ND, 1997, BEHAV GENET, V27, P145, DOI 10.1023/A:1025689425738; Herborn KA, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3151; Horn T, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017199; Jensen H, 2004, J ANIM ECOL, V73, P599, DOI 10.1111/j.0021-8790.2004.00837.x; Jensen H, 2003, J EVOLUTION BIOL, V16, P1296, DOI 10.1046/j.1420-9101.2003.00614.x; Jensen H, 2008, EVOLUTION, V62, P1275, DOI 10.1111/j.1558-5646.2008.00395.x; Killpack TL, 2012, J EXP BIOL, V215, P1806, DOI 10.1242/jeb.066316; Kingsolver JG, 2011, AM NAT, V177, P346, DOI 10.1086/658341; Kraus C, 2013, AM NAT, V181, P492, DOI 10.1086/669665; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Lynch M, 1998, GENETICS ANAL QUANTI; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Merila J, 2001, CURR ORNITHOL, V16, P179; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Miller RA, 2000, J GERONTOL A-BIOL, V55, pB455, DOI 10.1093/gerona/55.9.B455; Miller RA, 2002, AGING CELL, V1, P22, DOI 10.1046/j.1474-9728.2002.00006.x; Monaghan P, 2010, ANN NY ACAD SCI, V1206, P130, DOI 10.1111/j.1749-6632.2010.05705.x; Neumann K, 1996, MOL ECOL, V5, P307; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Njajou OT, 2007, P NATL ACAD SCI USA, V104, P12135, DOI 10.1073/pnas.0702703104; Nussey DH, 2014, METHODS ECOL EVOL, V5, P299, DOI 10.1111/2041-210X.12161; Olsson M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017473; Parn H, 2012, P R SOC B, V279, P144, DOI [10.1098/rspb.2011.0673, DOI 10.1098/RSPB.2011.0673]; Patronek GJ, 1997, J GERONTOL A-BIOL, V52, pB171, DOI 10.1093/gerona/52A.3.B171; Postma E, 2014, QUANTITATIVE GENETICS IN THE WILD, P16; R Core Team, 2013, R FDN STAT COMP; Reichert S, 2015, HEREDITY, V114, P10, DOI 10.1038/hdy.2014.60; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Reznick DN, 1997, EXP GERONTOL, V32, P245, DOI 10.1016/S0531-5565(96)00129-5; Richter T, 2007, EXP GERONTOL, V42, P1039, DOI 10.1016/j.exger.2007.08.005; Ringsby TH, 2002, ECOLOGY, V83, P561, DOI 10.1890/0012-9658(2002)083[0561:ASDOAH]2.0.CO;2; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Samaras TT, 2009, EXP GERONTOL, V44, P83, DOI 10.1016/j.exger.2008.02.002; Skjelseth S, 2007, P R SOC B, V274, P1763, DOI 10.1098/rspb.2007.0338; Stearns S, 1992, EVOLUTION LIFE HIST; Tarry-Adkins JL, 2009, FASEB J, V23, P1521, DOI 10.1096/fj.08-122796; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Voillemot M, 2012, BMC ECOL, V12, DOI 10.1186/1472-6785-12-17 63 15 15 1 40 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. DEC 7 2015 282 1820 20152331 10.1098/rspb.2015.2331 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology DA8ZI WOS:000368095200016 26631569 Green Published, Bronze 2019-02-21 J Garcia-Davila, C; Castro-Ruiz, D; Renno, JF; Chota-Macuyama, W; Carvajal-Vallejos, FM; Sanchez, H; Angulo, C; Nolorbe, C; Alvarado, J; Estivals, G; Nunez-Rodriguez, J; Duponchelle, F Garcia-Davila, C.; Castro-Ruiz, D.; Renno, J. -F.; Chota-Macuyama, W.; Carvajal-Vallejos, F. M.; Sanchez, H.; Angulo, C.; Nolorbe, C.; Alvarado, J.; Estivals, G.; Nunez-Rodriguez, J.; Duponchelle, F. Using barcoding of larvae for investigating the breeding seasons of pimelodid catfishes from the Maranon, Napo and Ucayali rivers in the Peruvian Amazon JOURNAL OF APPLIED ICHTHYOLOGY English Article; Proceedings Paper 4th International Conference of the Research Network on Amazonian Ichthyofauna SEP 30-OCT 02, 2014 Cochabamba, BOLIVIA Univ San Simon, French Res Inst Dev, Unit Limnol & Aquat Resources FRESH-WATER FISHES; COMMERCIAL FISH; IDENTIFICATION; SILURIFORMES; SOUTH; ICHTHYOPLANKTON; CONSERVATION; DIVERSITY; AUSTRALIA; TELEOSTEI Amazonian ichthyofauna has one of the richest specific diversities on earth. However, life history strategies of most species remain poorly-known owing to logistical difficulties, although this information is essential for species conservation and sustainable fisheries management. An inventory of specific diversity in plankton samples might be an efficient way of studying breeding seasons and breeding localities of fish species, providing their precise taxonomic identification can be ensured. Herein, using barcoding of the cytochrome c oxidase subunit I (COI) gene, species were identified in monthly plankton samples collected in the lower reaches of the Napo, Maranon and Ucayali rivers. A total of 16 species of pimelodid catfish were identified. For the most abundant species, two tendencies were observed, with breeding periods preferentially occurring during rising and high water periods (Brachyplatystoma filamentosum, Pimelodus blochii) or during receding and low water periods (Brachyplatystoma rousseauxii, Brachyplatystoma platynemum, Brachyplatystoma vaillantii, Hypophthalmus edentatus, Hypophthalmus marginatus). For all of these species except for B.rousseauxii, this is new information for the Peruvian Amazon. Their reproductive behaviours are discussed in term of adaptive strategies to environmental conditions, where hydrological cycles play essential roles in resource accessibility and dispersal capabilities. [Garcia-Davila, C.; Castro-Ruiz, D.; Angulo, C.; Nolorbe, C.; Alvarado, J.] IIAP, LBGM, Iquitos, Peru; [Garcia-Davila, C.; Castro-Ruiz, D.; Renno, J. -F.; Chota-Macuyama, W.; Carvajal-Vallejos, F. M.; Sanchez, H.; Angulo, C.; Nolorbe, C.; Alvarado, J.; Estivals, G.; Nunez-Rodriguez, J.; Duponchelle, F.] LMI EDIA, Iquitos, Peru; [Renno, J. -F.; Estivals, G.; Nunez-Rodriguez, J.; Duponchelle, F.] IRD, UMR BOREA, MNHN, CNRS 7208,UPMC,UCBN,IRD 207, Montpellier, France; [Chota-Macuyama, W.; Sanchez, H.] AQUAREC, IIAP, Iquitos, Peru; [Carvajal-Vallejos, F. M.] UMSS, ULRA, Cochabamba, Bolivia; [Carvajal-Vallejos, F. M.] FAUNAGUA NGO, Cochabamba, Bolivia; [Carvajal-Vallejos, F. M.] ECOSINTEGRALES Ecol Res & Integral Serv Sustainab, Cochabamba, Bolivia Garcia-Davila, C (reprint author), IIAP, LBGM, Loreto Dept, 4-5 Km Iquitos Nauta Rd, Iquitos, Peru. cdavila19@yahoo.com Nunez, Jesus/J-4015-2016; Duponchelle, Fabrice/K-1998-2016; Renno, Jean-Francois/L-1082-2017 Nunez, Jesus/0000-0003-3668-5446; Angulo, Carlos/0000-0001-5480-6219; DUPONCHELLE, Fabrice/0000-0003-0497-2264; Nolorbe Payahua, Christian Deyvis/0000-0001-6961-4420; Garcia-Davila, Carmen/0000-0003-4125-5563; CASTRO RUIZ, DIANA/0000-0001-7735-8965 Instituto de Investigaciones de la Amazonia Peruana (IIAP); Institut de Recherche pour le Developpement (IRD) The study was funded by the Instituto de Investigaciones de la Amazonia Peruana (IIAP) and the Institut de Recherche pour le Developpement (IRD). Cordoba EA, 2013, NEOTROP ICHTHYOL, V11, P637, DOI 10.1590/S1679-62252013000300017; Agudelo E, 2000, BAGRES AMAZONIA COLO; Akaike H., 1973, P 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_15; Angelini R, 2006, AFR J AGRIC RES, V1, P151; Araujo-Lima C.A.R.M., 1988, Acta Amazonica, V18, P351; Araujo-Lima C. A. R. M., 2000, BRAZ J BIOL, V61, P357; Araujo-Lima CARM, 1998, J FISH BIOL, V53, P297, DOI 10.1006/jfbi.1998.0815; Ardura A, 2010, FOOD RES INT, V43, P1549, DOI 10.1016/j.foodres.2010.03.016; Ardura A, 2010, BIOL CONSERV, V143, P1438, DOI 10.1016/j.biocon.2010.03.019; Barthem R. B., 2014, BIODIVERSITY DYNAMIC, P137; Barthem R. B., 1997, BIOL RESOURCE MANAGE; Barthem R. B., 2007, ECOSISTEMA INESPERAD; Canas CM, 2011, RIVER RES APPL, V27, P602, DOI 10.1002/rra.1377; Canas CM, 2012, HYDROL PROCESS, V26, P996, DOI 10.1002/hyp.8192; Carvajal-Vallejos F. M., 2013, THESIS U MONTPELLIER; CARVALHO F M, 1980, Acta Amazonica, V10, P379; Castello L, 2013, CONSERV LETT, V6, P217, DOI 10.1111/conl.12008; Cella-Ribeiro A, 2015, J FISH BIOL, V86, P1429, DOI 10.1111/jfb.12630; Cramer Christian A., 2008, Bulletin of Fish Biology, V9, P51; de Carvalho DC, 2011, MITOCHONDR DNA, V22, P80, DOI 10.3109/19401736.2011.588214; de Lima AC, 2004, FRESHWATER BIOL, V49, P787, DOI 10.1111/j.1365-2427.2004.01228.x; Diaz-Viloria N, 2013, ICHTHYOL RES, V60, P390, DOI 10.1007/s10228-013-0359-6; Doyle J. J., 1987, PHYTOCHEMISTRY B, V19, P11, DOI DOI 10.2307/4119796; Fernandez Fredman, 1997, BioLlania, V13, P119; Finer M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035126; FORSBERG BR, 1988, LIMNOL OCEANOGR, V33, P41, DOI 10.4319/lo.1988.33.1.0041; Vasquez AG, 2009, J FISH BIOL, V75, P2527, DOI 10.1111/j.1095-8649.2009.02444.x; Garcia-Davila C., 2011, BIOL POBLACIONES PEC, P61; Garcia-Davila Carmen Rosa, 2014, Folia Amazonica, V23, P67; Goulding M., 1980, FISHES FISHERIES FOR; Habit E, 2003, REV CHIL HIST NAT, V76, P3, DOI 10.4067/S0716-078X2003000100001; Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008; Hubert N, 2010, MOL PHYLOGENET EVOL, V55, P1195, DOI 10.1016/j.ympev.2010.02.023; Ismino Rosa, 2014, Folia Amazonica, V23, P139; Kahn JR, 2014, ENERGIES, V7, P6063, DOI 10.3390/en7096063; Kossowski C, 1996, AQUAT LIVING RESOUR, V9, P189, DOI 10.1051/alr:1996053; Kurtz Janis C., 2001, Ecological Indicators, V1, P49, DOI 10.1016/S1470-160X(01)00004-8; Leis JM, 2007, MAR BIOL, V153, P103, DOI 10.1007/s00227-007-0794-x; Leite R. G., 2007, LARVAS GRANDES BAGRE; Leite Rosseval Galdino, 2006, Acta Amaz., V36, P557, DOI 10.1590/S0044-59672006000400018; Loh WKW, 2014, J FISH BIOL, V85, P307, DOI 10.1111/jfb.12422; López-Casas Silvia, 2007, Actu Biol, V29, P193; Lowe-McConnell RH, 1987, ECOLOGICAL STUDIES T; Mabragana E, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028655; Marcano D, 2007, GEN COMP ENDOCR, V153, P371, DOI 10.1016/j.ygcen.2007.01.042; Martinez E. R. M., 2007, MOL PHYLOGENY UNPUB; Matarese AC, 2011, ICHTHYOL RES, V58, P170, DOI 10.1007/s10228-010-0198-7; Nakatani E., 2001, OVOS LARVAS PEIXES A; Nakatani M, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-177; Ogawa M., 2008, B TECNICO CIENTIFICO, V8, P83; Oliveira Edinbergh Caldas De, 1998, Revista Brasileira de Biologia, V58, P349; Paine MA, 2008, ICHTHYOL RES, V55, P7, DOI 10.1007/s10228-007-0003-4; Pappalardo AM, 2015, HYDROBIOLOGIA, V749, P155, DOI 10.1007/s10750-014-2161-5; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Paradis E., 2006, ANAL PHYLOGENETICS E; Parisi Beatrice M., 2009, Notulae Naturae (Philadelphia), V480, P1; Pegg GG, 2006, SCI MAR, V70, P7, DOI 10.3989/scimar.2006.70s27; Petrere M, 2004, REV FISH BIOL FISHER, V14, P403, DOI 10.1007/s11160-004-8362-7; Rojas María, 2007, Rev. peru biol., V13, P263; Saitoh K, 2003, J MOL EVOL, V56, P464, DOI 10.1007/s00239-002-2417-y; Sullivan JP, 2008, P ACAD NAT SCI PHILA, V157, P51, DOI 10.1635/0097-3157(2008)157[51:MEFDOT]2.0.CO;2; Tamura K, 2007, MOL BIOL EVOL, V24, P1596, DOI 10.1093/molbev/msm092; THOMPSON JD, 1994, NUCLEIC ACIDS RES, V22, P4673, DOI 10.1093/nar/22.22.4673; Valdez-Moreno M, 2009, J FISH BIOL, V74, P377, DOI 10.1111/j.1095-8649.2008.02077.x; Vari RP, 2009, NEOTROP ICHTHYOL, V7, P289, DOI 10.1590/S1679-62252009000300001; Ward RD, 2005, PHILOS T R SOC B, V360, P1847, DOI 10.1098/rstb.2005.1716 66 3 3 4 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0175-8659 1439-0426 J APPL ICHTHYOL J. Appl. Ichthyol. DEC 2015 31 4 40 51 10.1111/jai.12987 12 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology DD6BM WOS:000370008700006 2019-02-21 J Souza, UP; Ferreira, FC; Carmo, MAF; Braga, FMS Souza, Ursulla P.; Ferreira, Fabio C.; Carmo, Michele A. F.; Braga, Francisco M. S. Feeding and reproductive patterns of Astyanax intermedius in a headwater stream of Atlantic Rainforest ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS English Article Characidae fishes; niche overlap; niche width; spawning type MAR STATE-PARK; OLIGOSARCUS-HEPSETUS CUVIER; LIFE-HISTORY STRATEGIES; SANTA VIRGINIA UNIT; FRESH-WATER FISH; SAO-PAULO STATE; SUL RIVER-BASIN; SERRA-DO-MAR; TROPICAL STREAM; SPECIES COMPLEX In this paper, we determined diet composition, reproductive periodicity and fecundity of Astyanax intermedius in a headwater stream of a State Park of an Atlantic rainforest. We also evaluated the influence of rainfall, water temperature and fish size on niche width and niche overlap. Sampling was conducted monthly throughout one year in the Ribeirao Grande stream, southeastern Brazil. Diet consisted of 31 food items with equal contribution of allochthonous and autochthonous items. Females were larger than males, and the mean sizes at first maturation were 4.44 cm and 3.92 cm, respectively. Based on 212 pairs of mature ovaries, the number of oocytes per female ranged from 538 to 6,727 (mean = 2,688.7). Niche width and niche overlap were not related to rainfall nor water temperature and only niche width increased with fish size, suggesting that as fish grow, more items are included in diet. Our results suggested that A. intermedius fit as a typical opportunistic strategist which may explain the prevalence of this species in several isolated headwater basins of vegetated Atlantic forested streams where food resources are abundant and distributed throughout the year. [Souza, Ursulla P.] Univ Santa Cecilia, Programa Posgrad Sustentabilidade Ecossistemas Co, Rua Cesario Mota 08, BR-11045040 Santos, SP, Brazil; [Ferreira, Fabio C.] Univ Fed Sao Paulo, Dept Ciencias Mar, BR-11030400 Santos, SP, Brazil; [Carmo, Michele A. F.] Univ Santa Cecilia, Programa Posgrad Sustentabilidade Ecossistemas Co, Lab Pesquisa Recursos Pesqueiros, BR-11045040 Santos, SP, Brazil; [Braga, Francisco M. S.] Univ Estadual Paulista, Dept Zool, Inst Biociencias, BR-13506910 Rio Claro, SP, Brazil Souza, UP (reprint author), Univ Santa Cecilia, Programa Posgrad Sustentabilidade Ecossistemas Co, Rua Cesario Mota 08, BR-11045040 Santos, SP, Brazil. upsouza@gmail.com Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [140180/2005-2]; Fundacao de Amparo Pesquisa do Estado de Sao Paulo (FAPESP) [04/12669-3] This project was partially supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq process 140180/2005-2) by means of a PhD scholarship provided to the first author, and by the Fundacao de Amparo Pesquisa do Estado de Sao Paulo (FAPESP process 04/12669-3) by providing funding for fieldwork. The Universidade Estadual Paulista (UNESP), Department of Biology, Rio Claro campus provided the institutional support. We thank Dr. Leandro M. Gomiero for providing logistical support during fieldwork and laboratory analyses, Dr. Heraldo A. Britski and Dr. Vinicius A. Bertaco for taxonomic identification and IBAMA (process 02027.000234/2005-05) for issuing the collection license. Abelha Milza Celi Fedatto, 2001, Acta Scientiarum Universidade Estadual de Maringa, V23, P425; Abilhoa V, 2007, REV BRAS ZOOL, V24, P997, DOI 10.1590/S0101-81752007000400016; Alkins-Koo M, 2000, ENVIRON BIOL FISH, V57, P49, DOI 10.1023/A:1007566609881; Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1046/j.1442-9993.2001.01070.x; ANGERMEIER PL, 1983, ENVIRON BIOL FISH, V9, P117, DOI 10.1007/BF00690857; BAGENAL TB, 1971, J FISH BIOL, V3, P207, DOI 10.1111/j.1095-8649.1971.tb03665.x; Barbieri G., 1988, Revista Ceres, V35, P64; Barbieri Geraldo, 1992, Revista Brasileira de Biologia, V52, P589; Barbieri Geraldo, 1992, Revista Brasileira de Biologia, V52, P579; Barreto AP, 2006, REV BRAS ZOOL, V23, P779, DOI 10.1590/S0101-81752006000300023; Bertaco VA, 2006, NEOTROP ICHTHYOL, V4, P53, DOI 10.1590/S1679-62252006000100004; Blanck A, 2007, FRESHWATER BIOL, V52, P843, DOI 10.1111/j.1365-2427.2007.01736.x; Borror DJ, 1969, INTRO ESTUDO INSETOS; Botelho MLLA, 2007, Braz. J. Biol., V67, P741, DOI 10.1590/S1519-69842007000400022; BRAGA F M D S, 1991, Naturalia (Rio Claro), V16, P55; BRAGA FMS, 1999, ACTA SCI-BIOL SCI, V21, P291; Braga MR, 2006, ESTUD BIOL, V28, P13; BRITSKI HA, 1972, POLUICAO PISCICULTUR, P79; CARAMASCHI EP, 1986, THESIS UFSCAR; Casatti Lilian, 1998, Ichthyological Exploration of Freshwaters, V9, P229; Castro Ricardo M.C., 1997, Ichthyological Exploration of Freshwaters, V7, P337; Castro RMC, 2001, SERIE BIODIVERSIDADE; Costa C., 2006, INSETOS IMATUROS MET; de Souza Braga Francisco Manoel, 2007, Acta Scientiarum Biological Sciences, V29, P281; Esteves KE, 1999, OECOLOGIA BRASILIENS, VVI, P157; GARUTTI V, 1989, Revista Brasileira de Biologia, V49, P489; Gennari Filho Osvaldo, 1996, Revista UNIMAR, V18, P241; Gerking S. D., 1994, FEEDING ECOLOGY FISH; Gomiero LM, 2008, BRAZ J BIOL, V68, P321, DOI 10.1590/S1519-69842008000200013; Gomiero LM, 2008, BRAZ J BIOL, V68, P187, DOI 10.1590/S1519-69842008000100027; Gomiero LM, 2012, BRAZ J BIOL, V72, P379, DOI 10.1590/S1519-69842012000200020; Gomiero Leandro Muller, 2007, Biota Neotropica, V7, P1; Gomiero Leandro Muller, 2006, Acta Scientiarum Biological Sciences, V28, P213; GREGORY SV, 1991, BIOSCIENCE, V41, P540, DOI 10.2307/1311607; Gurgel Hélio de Castro Bezerra, 2004, Rev. Bras. Zool., V21, P131, DOI 10.1590/S0101-81752004000100022; HENRY R, 1994, PROC INT ASSOC THEOR, V25, P1866; Hojo Renê Eiji Souza, 2004, Rev. Bras. Zool., V21, P519, DOI 10.1590/S0101-81752004000300015; Kavalco KF, 2007, GENET MOL BIOL, V30, P529, DOI 10.1590/S1415-47572007000400005; Kavalco KF, 2004, CYTOGENET GENOME RES, V106, P107, DOI 10.1159/000078567; Kavalco KF, 2003, CARYOLOGIA, V56, P453, DOI 10.1080/00087114.2003.10589358; KRAMER DL, 1978, ECOLOGY, V59, P976, DOI 10.2307/1938549; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.1890/0012-9658(2002)083[1792:ICOSFC]2.0.CO;2; Lampert Vinicius Renner, 2004, Neotrop. ichthyol., V2, P209, DOI 10.1590/S1679-62252004000400003; Levins R., 1968, EVOLUTION CHANGING E; Lima F. C. T., 2003, CHECK LIST FRESHWATE, P106; Luiz Elaine Antoniassi, 1998, Revista Brasileira de Biologia, V58, P273; Matthews W. J., 1998, PATTERNS FRESHWATER; Mazzoni R., 2005, Braz. J. Biol., V65, P643, DOI 10.1590/S1519-69842005000400012; Mazzoni R, 2006, REV BRAS ZOOL, V23, P228, DOI 10.1590/S0101-81752006000100016; McArdle BH, 2001, ECOLOGY, V82, P290, DOI 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2; Montana CG, 2011, NEOTROP ICHTHYOL, V9, P647, DOI 10.1590/S1679-62252011005000028; MOREIRA O, 1991, REV BRAS GENET, V14, P331; Motta R. L., 2004, Braz. J. Biol., V64, P809, DOI 10.1590/S1519-69842004000500010; MOTTA RL, 1996, THESIS UNESP; NEEDHAM JG, 1982, GUIA STUDIO SERES VI; Nikol'skii G. V, 1969, THEORY FISH POPULATI; Oksanen J, 2013, VEGAN COMMUNITY ECOL; OLIVEIRA CO, 2005, BIOTA NEOTROP, V5, P1; Orsi Mário Luís, 2004, Rev. Bras. Zool., V21, P207, DOI 10.1590/S0101-81752004000200008; PAULO SAO, 1998, PLANOS MANEJO UNIDAD; Pianka E. R., 1973, ANNU REV ECOL SYST, V4, P53, DOI DOI 10.1146/ANNUREV.ES.04.110173.000413; Pusey BJ, 2003, MAR FRESHWATER RES, V54, P1, DOI 10.1071/MF02041; Rodrigues Arlete Mota, 1995, Boletim do Instituto de Pesca (Sao Paulo), V22, P133; Rodrigues Arlete Mota, 1989, Boletim do Instituto de Pesca (Sao Paulo), V16, P97; ROQUE FO, 2003, ECOTONOS INTERFACES, P313; Souza UP, 2015, ECOL FRESHW FISH, V24, P123, DOI 10.1111/eff.12131; Stearns S, 1992, EVOLUTION LIFE HIST; STRAHLER AN, 1952, GEOL SOC AM BULL, V63, P1117, DOI 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Truemper HA, 2005, J FISH BIOL, V66, P135, DOI 10.1111/j.1095-8649.2004.0058.x; Uieda VS, 2011, COMMUNITY ECOL, V12, P31, DOI 10.1556/ComEc.12.2011.1.5; Uieda Virginia Sanches, 1997, Anais da Academia Brasileira de Ciencias, V69, P243; Uieda Virginia Sanches, 1996, Naturalia (Rio Claro), V21, P31; Vazzoler A. E. A. M., 1996, BIOL REPROD PEIXES T; Vitule Jean Ricardo Simoes, 2002, Acta Biologica Paranaense, V31, P137; WEST G, 1990, AUST J MAR FRESH RES, V41, P199, DOI 10.1071/MF9900199; WINEMILLER KO, 1990, ECOL MONOGR, V60, P331, DOI 10.2307/1943061; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WOOTON RJ, 1992, FISH ECOLOGY 80 1 2 0 4 ACAD BRASILEIRA DE CIENCIAS RIO JANEIRO RUA ANFILOFIO DE CARVALHO, 29, 3 ANDAR, 20030-060 RIO JANEIRO, BRAZIL 0001-3765 1678-2690 AN ACAD BRAS CIENC An. Acad. Bras. Cienc. DEC 2015 87 4 2151 2162 10.1590/0001-3765201520140673 12 Multidisciplinary Sciences Science & Technology - Other Topics DB9XA WOS:000368869800021 26628029 DOAJ Gold 2019-02-21 J Speakman, JR; Blount, JD; Bronikowski, AM; Buffenstein, R; Isaksson, C; Kirkwood, TBL; Monaghan, P; Ozanne, SE; Beaulieu, M; Briga, M; Carr, SK; Christensen, LL; Cocheme, HM; Cram, DL; Dantzer, B; Harper, JM; Jurk, D; King, A; Noguera, JC; Salin, K; Sild, E; Simons, MJP; Smith, S; Stier, A; Tobler, M; Vitikainen, E; Peaker, M; Selman, C Speakman, John R.; Blount, Jonathan D.; Bronikowski, Anne M.; Buffenstein, Rochelle; Isaksson, Caroline; Kirkwood, Tom B. L.; Monaghan, Pat; Ozanne, Susan E.; Beaulieu, Michael; Briga, Michael; Carr, Sarah K.; Christensen, Louise L.; Cocheme, Helena M.; Cram, Dominic L.; Dantzer, Ben; Harper, Jim M.; Jurk, Diana; King, Annette; Noguera, Jose C.; Salin, Karine; Sild, Elin; Simons, Mirre J. P.; Smith, Shona; Stier, Antoine; Tobler, Michael; Vitikainen, Emma; Peaker, Malcolm; Selman, Colin Oxidative stress and life histories: unresolved issues and current needs ECOLOGY AND EVOLUTION English Article Aging; disposable soma theory; free radicals; life-history theory; oxidative stress NAKED-MOLE-RAT; FREE-RADICAL THEORY; MN SUPEROXIDE-DISMUTASE; LONGEST-LIVING RODENT; TITS PARUS-MAJOR; ANTIOXIDANT DEFENSE; ENERGY-EXPENDITURE; LIPID-PEROXIDATION; CAENORHABDITIS-ELEGANS; FOOD-SUPPLEMENTATION Life-history theory concerns the trade-offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life-history trade-offs, but the details remain obscure. As life-history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life-history trade-offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life-history information is available, cannot generally be performed without compromising the aims of the studies that generated the life-history data. There is a need therefore for novel non-invasive measurements of multi-tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life-history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life-history trade-offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting predictions might be based. Fifth, there is an enormous diversity of life-history variation to test the idea that oxidative stress may be a key mediator. So far we have only scratched the surface. Broadening the scope may reveal new strategies linked to the processes of oxidative damage and repair. Finally, understanding the trade-offs in life histories and understanding the process of aging are related but not identical questions. Scientists inhabiting these two spheres of activity seldom collide, yet they have much to learn from each other. [Speakman, John R.; Christensen, Louise L.] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland; [Speakman, John R.] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Mol Dev Biol, Beijing, Peoples R China; [Blount, Jonathan D.; Vitikainen, Emma] Univ Exeter, Ctr Ecol & Conservat, Exeter TR10 9FE, Cornwall, England; [Bronikowski, Anne M.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA; [Buffenstein, Rochelle] UTHSCSA, Barshop Inst Aging & Longev Res, Physiol, San Antonio, TX 78245 USA; [Isaksson, Caroline; Tobler, Michael] Lund Univ, Dept Biol, S-22362 Lund, Sweden; [Kirkwood, Tom B. L.; Jurk, Diana; King, Annette] Newcastle Univ, Inst Ageing, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE4 5PL, Tyne & Wear, England; [Monaghan, Pat; Noguera, Jose C.; Salin, Karine; Smith, Shona; Selman, Colin] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland; [Ozanne, Susan E.; Carr, Sarah K.] Univ Cambridge, Metab Res Labs, Cambridge CB2 0QQ, England; [Ozanne, Susan E.; Carr, Sarah K.] Addenbrookes Hosp, Wellcome Trust MRC Inst Metab Sci, MRC Metab Dis Unit, Cambridge CB2 0QQ, England; [Beaulieu, Michael] Ernst Moritz Arndt Univ Greifswald, Museum & Inst Zool, D-17489 Greifswald, Germany; [Briga, Michael] Univ Groningen, Behav Biol, NL-9747 AG Groningen, Netherlands; [Cocheme, Helena M.] Univ London Imperial Coll Sci Technol & Med, MRC Clin Sci Ctr, London W12 0NN, England; [Cram, Dominic L.] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England; [Dantzer, Ben] Univ Michigan, Dept Psychol, Ann Arbor, MI 48109 USA; [Harper, Jim M.] Sam Houston State Univ, Dept Biol Sci, Huntsville, TX 77341 USA; [Simons, Mirre J. P.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Stier, Antoine] Univ Strasbourg, IPHC UMR7178, Dept Ecol Physiol & Ethol, F-67087 Strasbourg, France; [Peaker, Malcolm] Rushmere, Alloway KA7 4QX, England Speakman, JR (reprint author), Univ Aberdeen, Inst Biol & Environm Sci, Tillydrone Ave, Aberdeen AB24 2TZ, Scotland. j.speakman@abdn.ac.uk; Colin.Selman@glasgow.ac.uk Tobler, Michael/B-2754-2013; Vitikainen, Emma/F-2099-2010; Dantzer, Ben/E-9779-2011; Monaghan, Pat/E-6810-2015 Tobler, Michael/0000-0001-5895-6302; Vitikainen, Emma/0000-0003-3718-0941; Dantzer, Ben/0000-0002-3058-265X; Stier, Antoine/0000-0002-5445-5524; Salin, Karine/0000-0002-3368-9639; Cram, Dominic/0000-0002-8790-8294; Simons, Mirre/0000-0001-7406-7708; Selman, Colin/0000-0002-8727-0593; Jurk, Diana/0000-0003-4486-0857; Ozanne, Susan/0000-0001-8753-5144; Briga, Michael/0000-0003-3160-0407 Rank prize funds; Biotechnology and Biological Sciences Research Council [BEP17042, BB/C008200/1]; British Heart Foundation [FS/09/029/27902]; Medical Research Council [MC_UU_12012/4]; National Institute for Health Research [NF-SI-0508-10260]; Natural Environment Research Council [NE/M005941/1] This study was the result of a week-long workshop sponsored by the Rank Prize Funds attended by all the authors Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Andziak B, 2006, AGING CELL, V5, P525, DOI 10.1111/j.1474-9726.2006.00246.x; Andziak B, 2006, AGING CELL, V5, P463, DOI 10.1111/j.1474-9726.2006.00237.x; Barga G., 2013, ANTIOXID REDOX SIGN, V19, P1420; Barja G., 2013, J GERONTOL A-BIOL, V69, P1096; Beaulieu M, 2014, J EXP BIOL, V217, P2629, DOI 10.1242/jeb.104851; Beaulieu M, 2013, ANIM BEHAV, V86, P17, DOI 10.1016/j.anbehav.2013.05.022; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blount J. D., 2015, BIOL REV CAMB PHILOS, V9; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Brand MD, 2000, EXP GERONTOL, V35, P811, DOI 10.1016/S0531-5565(00)00135-2; Buffenstein R, 2008, AGE, V30, P99, DOI 10.1007/s11357-008-9058-z; Castillo C, 2005, VET J, V169, P286, DOI 10.1016/j.tvjl.2004.02.001; Chamberlain SA, 2012, ECOL LETT, V15, P627, DOI 10.1111/j.1461-0248.2012.01776.x; Costantini D, 2006, J COMP PHYSIOL B, V176, P329, DOI 10.1007/s00360-005-0055-6; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2010, IBIS, V152, P793, DOI 10.1111/j.1474-919X.2010.01052.x; Cram DL, 2015, FUNCT ECOL, V29, P229, DOI 10.1111/1365-2435.12317; da Silva ACA, 2013, BIOGERONTOLOGY, V14, P411, DOI 10.1007/s10522-013-9440-9; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; De Waal EM, 2013, BIOCHEM BIOPH RES CO, V434, P815, DOI 10.1016/j.bbrc.2013.04.019; Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Elliott KH, 2014, J ANIM ECOL, V83, P136, DOI 10.1111/1365-2656.12126; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; Garratt M, 2013, J EXP BIOL, V216, P2879, DOI 10.1242/jeb.082669; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Gems D, 2013, ANNU REV PHYSIOL, V75, P621, DOI 10.1146/annurev-physiol-030212-183712; Gems D, 2009, CELL CYCLE, V8, P1681, DOI 10.4161/cc.8.11.8595; Hamilton ML, 2001, P NATL ACAD SCI USA, V98, P10469, DOI 10.1073/pnas.171202698; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Harper JM, 2007, AGING CELL, V6, P1, DOI 10.1111/j.1474-9726.2006.00255.x; Harper JM, 2011, J EXP BIOL, V214, P1902, DOI 10.1242/jeb.054643; Hermes-Lima M, 2002, COMP BIOCHEM PHYS C, V133, P537, DOI 10.1016/S1532-0456(02)00080-7; Isaksson C, 2013, ECOL EVOL, V3, P2730, DOI 10.1002/ece3.663; Isaksson C, 2011, INTEGR ZOOL, V6, P140, DOI 10.1111/j.1749-4877.2011.00237.x; Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5; Jang YC, 2009, J GERONTOL A-BIOL, V64, P1114, DOI 10.1093/gerona/glp100; Johnson MS, 2001, J EXP BIOL, V204, P1937; Kaushik S, 2003, CLIN CHIM ACTA, V333, P69, DOI 10.1016/S0009-8981(03)00171-2; Keipert S, 2011, AGING CELL, V10, P122, DOI 10.1111/j.1474-9726.2010.00648.x; Kenyon C, 2011, PHILOS T R SOC B, V366, P9, DOI 10.1098/rstb.2010.0276; Kirkwood TBL, 2012, BIOESSAYS, V34, P692, DOI 10.1002/bies.201200014; Krol E, 2003, J EXP BIOL, V206, P4267, DOI 10.1242/jeb.00675; Lewis KN, 2013, ANTIOXID REDOX SIGN, V19, P1388, DOI 10.1089/ars.2012.4911; Marko G, 2011, J COMP PHYSIOL B, V181, P73, DOI 10.1007/s00360-010-0502-x; Meitern R, 2013, J EXP BIOL, V216, P2713, DOI 10.1242/jeb.087528; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452; Passos JF, 2010, MOL SYST BIOL, V6, DOI 10.1038/msb.2010.5; Pearl R., 1928, RATE LIVING; Perez VI, 2008, FREE RADICAL BIO MED, V44, P882, DOI 10.1016/j.freeradbiomed.2007.11.018; Perez VI, 2009, BBA-GEN SUBJECTS, V1790, P1005, DOI 10.1016/j.bbagen.2009.06.003; Perez VI, 2009, AGING CELL, V8, P73, DOI 10.1111/j.1474-9726.2008.00449.x; Perez VI, 2009, P NATL ACAD SCI USA, V106, P3059, DOI 10.1073/pnas.0809620106; Peterson BL, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031568; Rashidi A, 2009, MECH AGEING DEV, V130, P216, DOI 10.1016/j.mad.2008.12.007; Rizzo A, 2013, ANIMAL, V7, P118, DOI 10.1017/S1751731112001048; Robert KA, 2007, AGING CELL, V6, P395, DOI 10.1111/j.1474-9726.2007.00287.x; Robert KA, 2010, AM NAT, V175, P147, DOI 10.1086/649595; Rodriguez KA, 2014, BBA-MOL BASIS DIS, V1842, P2060, DOI 10.1016/j.bbadis.2014.07.005; Sainz RM, 2000, J REPROD FERTIL, V119, P143, DOI 10.1530/reprod/119.1.143; Salmon AB, 2005, AM J PHYSIOL-ENDOC M, V289, pE23, DOI 10.1152/ajpendo.00575.2004; Salmon AB, 2010, FREE RADICAL BIO MED, V48, P642, DOI 10.1016/j.freeradbiomed.2009.12.015; Schmidt C. M., 2014, PLOS ONE, V28; Schneeberger K, 2014, NATURWISSENSCHAFTEN, V101, P285, DOI 10.1007/s00114-014-1155-5; Schwanz L, 2011, J EXP BIOL, V214, P88, DOI 10.1242/jeb.046813; Schwartz TS, 2013, INTEGR COMP BIOL, V53, pE192; Schwartz TS, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P193; Schwartz TS, 2013, MOL ECOL, V22, P739, DOI 10.1111/j.1365-294X.2012.05750.x; Selman C, 2002, ARCH BIOCHEM BIOPHYS, V401, P255, DOI 10.1016/S0003-9861(02)00050-4; Selman C, 2002, FREE RADICAL BIO MED, V33, P259, DOI 10.1016/S0891-5849(02)00874-2; Selman C, 2008, P ROY SOC B-BIOL SCI, V275, P1907, DOI 10.1098/rspb.2008.0355; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sorge RE, 2014, NAT METHODS, V11, P629, DOI [10.1038/NMETH.2935, 10.1038/nmeth.2935]; Speakman J. R., 2004, ENERGY METABOLISM LI, P35; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Speakman JR, 2011, BIOESSAYS, V33, P255, DOI 10.1002/bies.201000132; Speakman JR, 2011, J EXP BIOL, V214, P230, DOI 10.1242/jeb.048603; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Stier A., 2012, FRONT ZOOL, V9; Stier A, 2014, J EXP BIOL, V217, P624, DOI 10.1242/jeb.092700; Stuart Jeffrey A, 2014, Longev Healthspan, V3, P4, DOI 10.1186/2046-2395-3-4; Tan DX, 2010, BIOL REV, V85, P607, DOI 10.1111/j.1469-185X.2009.00118.x; Tinbergen JM, 2000, J ANIM ECOL, V69, P323, DOI 10.1046/j.1365-2656.2000.00395.x; URISON NT, 1995, PHYSIOL ZOOL, V68, P402, DOI 10.1086/physzool.68.3.30163776; van de Crommenacker J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026423; Velando A, 2008, BIOESSAYS, V30, P1212, DOI 10.1002/bies.20838; Veskoukis AS, 2009, FREE RADICAL BIO MED, V47, P1371, DOI 10.1016/j.freeradbiomed.2009.07.014; Vezina F, 2002, INTEGR COMP BIOL, V42, P1327; Welcker J, 2010, J ANIM ECOL, V79, P205, DOI 10.1111/j.1365-2656.2009.01626.x; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Wilhelm D, 2007, COMP BIOCHEM PHYS C, V146, P214, DOI 10.1016/j.cbpc.2006.11.015; Williams TD, 2009, J EXP BIOL, V212, P1101, DOI 10.1242/jeb.026815; Xu YC, 2014, FUNCT ECOL, V28, P402, DOI 10.1111/1365-2435.12168; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049; Yang W, 2007, GENETICS, V177, P2063, DOI 10.1534/genetics.107.080788; Zhang YQ, 2009, J GERONTOL A-BIOL, V64, P1212, DOI 10.1093/gerona/glp132 104 70 71 5 84 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. DEC 2015 5 24 S745 S757 10.1002/ece3.1790 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology DA9NP WOS:000368136600001 26811750 DOAJ Gold, Green Published 2019-02-21 J Weber, AAT; Merigot, B; Valiere, S; Chenuil, A Weber, A. A. -T.; Merigot, B.; Valiere, S.; Chenuil, A. Influence of the larval phase on connectivity: strong differences in the genetic structure of brooders and broadcasters in the Ophioderma longicauda species complex MOLECULAR ECOLOGY English Article DNA barcoding; echinoderms; life history evolution; phylogeography; population genetics - empirical LIFE-HISTORY; POPULATION-STRUCTURE; MARINE-INVERTEBRATES; COMPARATIVE PHYLOGEOGRAPHY; SEA STAR; MEDITERRANEAN POPULATIONS; ECHINODERMATA OPHIUROIDEA; CONTRASTING PATTERNS; REPRODUCTIVE SUCCESS; CRYPTIC SPECIATION Closely related species with divergent life history traits are excellent models to infer the role of such traits in genetic diversity and connectivity. Ophioderma longicauda is a brittle star species complex composed of different genetic clusters, including brooders and broadcasters. These species diverged very recently and some of them are sympatric and ecologically syntopic, making them particularly suitable to study the consequences of their trait differences. At the scale of the geographic distribution of the broadcasters (Mediterranean Sea and northeastern Atlantic), we sequenced the mitochondrial marker COI and genotyped an intron (i51) for 788 individuals. In addition, we sequenced 10 nuclear loci newly developed from transcriptome sequences, for six sympatric populations of brooders and broadcasters from Greece. At the large scale, we found a high genetic structure within the brooders (COI: 0.07 < F-ST < 0.65) and no polymorphism at the nuclear locus i51. In contrast, the broadcasters displayed lower genetic structure (0 < F-ST < 0.14) and were polymorphic at locus i51. At the regional scale, the multilocus analysis confirmed the contrasting genetic structure between species, with no structure in the broadcasters (global F-ST < 0.001) and strong structure in the brooders (global F-ST = 0.49), and revealed a higher genetic diversity in broadcasters. Our study showed that the lecithotrophic larval stage allows on average a 50-fold increase in migration rates, a 280-fold increase in effective size and a threefold to fourfold increase in genetic diversity. Our work, investigating complementary genetic markers on sympatric and syntopic taxa, highlights the strong impact of the larval phase on connectivity and genetic diversity. [Weber, A. A. -T.; Chenuil, A.] Aix Marseille Univ, Inst Mediterraneen Biodiversite & Ecol Marine & C, CNRS, IRD,UAPV,Stn Marine Endoume, F-13007 Marseille, France; [Weber, A. A. -T.] Univ Basel, Inst Zool, CH-4051 Basel, Switzerland; [Merigot, B.] Univ Montpellier, UMR MARine Biodivers Exploitat & Conservat MARBEC, Ctr Rech Halieut Mediterraneenne & Trop, IRD,IFREMER,UM,CNRS, F-34203 Sete, France; [Valiere, S.] INRA, UAR1209, Dept Genet Anim, Get PlaGe,Genotoul, F-31326 Castanet Tolosan, France Weber, AAT (reprint author), Aix Marseille Univ, Inst Mediterraneen Biodiversite & Ecol Marine & C, CNRS, IRD,UAPV,Stn Marine Endoume, Chemin Batterie Lions, F-13007 Marseille, France. Alexandra.weber@univ-amu.fr Merigot, Bastien/H-7754-2018 Merigot, Bastien/0000-0001-5264-4324; Weber, Alexandra/0000-0002-7980-388X CCMAR Institute of Faro [227799]; Assemble European program [227799] We are grateful to Laurent Abi-Rached for his help in genetic marker selection. We are very grateful to Joao Reis, Joao Rodrigues, the CCMAR Institute of Faro and the Assemble European program that provided funding for the sampling in Portugal (ASSEMBLE grant agreement no. 227799). We thank Sabine Stohr, Marine Pratlong, Zined Marzouk, Helmut Zibrowius, Emilie Egea, Frederic Zuberer, Laurent Vanbostal, David Luquet, Anne Haguenauer, Didier Weber, Thi Weber, Philipp Moser and the national park of Port Cros for providing precious samples or helping during the sampling. The authors thank the genomic platform Genotoul (INRA, Toulouse) for the sequencing of transcriptome-based markers. We are grateful to Abigail Cahill for language editing and useful comments to improve this manuscript. Finally, we thank the Subject Editor C. Riginos, M.N. Dawson and three anonymous reviewers for their constructive comments on an earlier version of the manuscript. Arndt A, 1998, MOL ECOL, V7, P1053, DOI 10.1046/j.1365-294x.1998.00429.x; Ayre DJ, 2009, MOL ECOL, V18, P1887, DOI 10.1111/j.1365-294X.2009.04127.x; Ayre DJ, 2000, EVOLUTION, V54, P1590; Bandelt HJ, 1999, MOL BIOL EVOL, V16, P37, DOI 10.1093/oxfordjournals.molbev.a026036; Barbosa SS, 2013, BIOL J LINN SOC, V108, P821, DOI 10.1111/bij.12006; Baus E, 2005, MOL ECOL, V14, P3373, DOI 10.1111/j.1365-294X.2005.02681.x; Beerli P, 2001, P NATL ACAD SCI USA, V98, P4563, DOI 10.1073/pnas.081068098; Belkhir K., 2004, GENETIX 4 05 POPULAT; BERGER EM, 1973, BIOL BULL-US, V145, P83, DOI 10.2307/1540349; Bohonak AJ, 1999, Q REV BIOL, V74, P21, DOI 10.1086/392950; Boissin E, 2011, MOL ECOL, V20, P4737, DOI 10.1111/j.1365-294X.2011.05309.x; Chenuil A, 2012, J EVOLUTION BIOL, V25, P949, DOI 10.1111/j.1420-9101.2012.02488.x; Chenuil A, 2008, J MOL EVOL, V67, P539, DOI 10.1007/s00239-008-9171-8; Collin R, 2001, MOL ECOL, V10, P2249, DOI 10.1046/j.1365-294X.2001.01372.x; Crandall ED, 2008, MOL ECOL, V17, P611, DOI 10.1111/j.1365-294X.2007.03600.x; CROOKS KR, 2006, CONSERV BIOL SER, V14, P1; Dawson MN, 2014, ECOL MONOGR, V84, P435, DOI 10.1890/13-0871.1; Dawson MN, 2014, J BIOGEOGR, V41, P52, DOI 10.1111/jbi.12190; Dawson MN, 2012, MOL ECOL, V21, P987, DOI 10.1111/j.1365-294X.2011.05417.x; Dawson MN, 2002, MOL ECOL, V11, P1065, DOI 10.1046/j.1365-294X.2002.01503.x; Dawson MN, 2014, FRONT BIOGEOGR, V6, P11; De Wit P, 2015, MOL ECOL, V24, P2310, DOI 10.1111/mec.13165; De Wit P, 2012, MOL ECOL RESOUR, V12, P1058, DOI 10.1111/1755-0998.12003; DESCHUYTENEER M, 1978, ANN I OCEANOGR PARIS, V54, P127; DUFFY JE, 1993, MAR BIOL, V116, P459, DOI 10.1007/BF00350063; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; Edmands S, 2001, MOL ECOL, V10, P1743, DOI 10.1046/j.0962-1083.2001.01306.x; EMLET RB, 1995, EVOLUTION, V49, P476, DOI 10.1111/j.1558-5646.1995.tb02280.x; EXCOFFIER L, 1992, GENETICS, V131, P479; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; FENAUX L, 1969, CAH BIOL MAR, V10, P59; FENAUX L, 1972, Internationale Revue der Gesamten Hydrobiologie, V57, P257, DOI 10.1002/iroh.19720570205; Foltz DW, 2004, GENETICA, V122, P115, DOI 10.1023/B:GENE.0000041002.97173.1e; Foltz DW, 2003, J MOL EVOL, V57, P607, DOI 10.1007/s00239-003-2495-5; FU YX, 1993, GENETICS, V133, P693; Fu YX, 1997, GENETICS, V147, P915; Gouy M, 2010, MOL BIOL EVOL, V27, P221, DOI 10.1093/molbev/msp259; Hart MW, 2010, INTEGR COMP BIOL, V50, P643, DOI 10.1093/icb/icq068; Haye PA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088613; Hedgecock D, 2011, B MAR SCI, V87, P971, DOI 10.5343/bms.2010.1051; Hedrick P, 2005, EVOLUTION, V59, P1596; Hellberg ME, 1996, EVOLUTION, V50, P1167, DOI 10.1111/j.1558-5646.1996.tb02357.x; Hellberg ME, 2002, B MAR SCI, V70, P273; Hellberg ME, 2009, ANNU REV ECOL EVOL S, V40, P291, DOI 10.1146/annurev.ecolsys.110308.120223; Hey J, 2010, MOL BIOL EVOL, V27, P905, DOI 10.1093/molbev/msp296; Hoareau TB, 2013, J BIOGEOGR, V40, P2167, DOI 10.1111/jbi.12155; Hoffman JI, 2011, MAR BIOL, V158, P287, DOI 10.1007/s00227-010-1558-6; Hoskin MG, 1997, MAR BIOL, V127, P647, DOI 10.1007/s002270050055; HUNT A, 1993, MAR ECOL PROG SER, V92, P179, DOI 10.3354/meps092179; Keever CC, 2009, EVOLUTION, V63, P3214, DOI 10.1111/j.1558-5646.2009.00801.x; KIMURA M, 1969, GENETICS, V61, P893; Knowlton Nancy, 1993, P200; Kyle CJ, 2000, MAR BIOL, V137, P835, DOI 10.1007/s002270000412; Laine AL, 2005, J EVOLUTION BIOL, V18, P930, DOI 10.1111/j.1420-9101.2005.00933.x; Ledoux JB, 2012, POLAR BIOL, V35, P611, DOI 10.1007/s00300-011-1106-y; Lee HJE, 2009, MOL ECOL, V18, P2165, DOI 10.1111/j.1365-294X.2009.04169.x; Librado P, 2009, BIOINFORMATICS, V25, P1451, DOI 10.1093/bioinformatics/btp187; Lischer HEL, 2012, BIOINFORMATICS, V28, P298, DOI 10.1093/bioinformatics/btr642; Luiz OJ, 2013, P NATL ACAD SCI USA, V110, P16498, DOI 10.1073/pnas.1304074110; Marko PB, 2004, MOL ECOL, V13, P597, DOI 10.1046/j.1365-294X.2004.02096.x; Marko PB, 2011, TRENDS ECOL EVOL, V26, P448, DOI 10.1016/j.tree.2011.05.007; MCMILLAN WO, 1992, EVOLUTION, V46, P1299, DOI 10.1111/j.1558-5646.1992.tb01125.x; PALMER AR, 1981, OECOLOGIA, V48, P308, DOI 10.1007/BF00346487; PALUMBI SR, 2003, ECOL APPL, V13, P146, DOI DOI 10.1890/1051-0761(2003)013[; Pechenik JA, 1999, MAR ECOL PROG SER, V177, P269, DOI 10.3354/meps177269; Poulin E, 1996, EVOLUTION, V50, P820, DOI 10.1111/j.1558-5646.1996.tb03891.x; Puritz JB, 2012, P ROY SOC B-BIOL SCI, V279, P3914, DOI 10.1098/rspb.2012.1343; Rabinowitz A, 2010, BIOL CONSERV, V143, P939, DOI 10.1016/j.biocon.2010.01.002; Riginos C, 2014, AM NAT, V184, P52, DOI 10.1086/676505; Riginos C, 2011, ECOGRAPHY, V34, P566, DOI 10.1111/j.1600-0587.2010.06511.x; Romiguier J, 2014, NATURE, V515, P261, DOI 10.1038/nature13685; Sanford E, 2011, ANNU REV MAR SCI, V3, P509, DOI 10.1146/annurev-marine-120709-142756; Schloss PD, 2009, APPL ENVIRON MICROB, V75, P7537, DOI 10.1128/AEM.01541-09; Selkoe KA, 2011, MAR ECOL PROG SER, V436, P291, DOI 10.3354/meps09238; SHANKS AL, 2003, ECOL APPL, V13, P159, DOI DOI 10.1890/1051-0761(2003)013[; Shanks AL, 2009, BIOL BULL-US, V216, P373; Sherman CDH, 2008, BIOL J LINN SOC, V95, P106, DOI 10.1111/j.1095-8312.2008.01044.x; Siegel DA, 2003, MAR ECOL PROG SER, V260, P83, DOI 10.3354/meps260083; Steele CA, 2009, MOL ECOL, V18, P1629, DOI 10.1111/j.1365-294X.2009.04135.x; Stohr S, 2009, ZOOTAXA, P1; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; TAJIMA F, 1989, GENETICS, V123, P585; Tarnowska K, 2012, ESTUAR COAST SHELF S, V107, P150, DOI 10.1016/j.ecss.2012.05.007; Teske PR, 2007, MAR BIOL, V152, P697, DOI 10.1007/s00227-007-0724-y; TORTONESE E, 1983, Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, V124, P21; Warner RR, 2003, SCIENCE, V300, P1658; Weber AA-T, 2015, ETUDE ECOLOGIQUE GEN; Weber AAT, 2014, CR BIOL, V337, P553, DOI 10.1016/j.crvi.2014.07.007; Weber AAT, 2013, CR BIOL, V336, P572, DOI 10.1016/j.crvi.2013.10.004; Webster MS, 2002, TRENDS ECOL EVOL, V17, P76, DOI 10.1016/S0169-5347(01)02380-1; Weersing K, 2009, MAR ECOL PROG SER, V393, P1, DOI 10.3354/meps08287 91 15 15 1 38 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. DEC 2015 24 24 6080 6094 10.1111/mec.13456 15 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology DA6IM WOS:000367906700006 26547515 2019-02-21 J Monro, K; Marshall, DJ Monro, Keyne; Marshall, Dustin J. The biogeography of fertilization mode in the sea GLOBAL ECOLOGY AND BIOGEOGRAPHY English Article Developmental mode; fertilization mode; functional biogeography; life histories; marine invertebrates; metazoans; reproductive strategies LIFE-HISTORY EVOLUTION; MARINE-INVERTEBRATES; COMPARATIVE BIOLOGY; DEVELOPMENTAL MODE; LARVAL DISPERSAL; OFFSPRING SIZE; PARENTAL CARE; COMPETITION; VIVIPARITY; STRATEGIES Aim Knowledge of the biogeography of life histories is central to understanding and predicting the impacts of global change on key functional traits that shape species distributions and transcend taxonomic boundaries. Whether species are internal or external fertilizers is a fundamental aspect of reproductive diversity in the sea, and has profound ecological and evolutionary consequences. However, geographic variation in this trait and the factors that potentially drive it (e.g. transitions in associated life-history traits, ecological conditions that favour one mode over the other or the evolutionary history of species) remain poorly characterized. Location Oceans world-wide. Methods We collated life-history data (modes of fertilization and development), geographic data and biophysical data (sea-surface temperatures and food availability) for 1532 marine species spanning 17 invertebrate phyla. We used standard and phylogenetic logistic regressions to evaluate latitudinal gradients in fertilization mode, plus their interactions with development (transitions from planktonic to aplanktonic development, or fromfeeding to non-feeding larvae) and taxonomy. We also explored the dependence of fertilization mode on biophysical variables to understand how ecology potentially contributes to geographic variation in this trait. Results Fertilization mode often varies predictably with latitude, but the exact nature of this relationship depends on developmental mode and the phylum under consideration. Some commonalities were evident, however, with the likelihood of internal fertilization declining at higher latitudes for Annelida and Echinodermata with aplanktonic development, but increasing at higher latitudes for Cnidaria and Porifera with non-feeding, planktonic larvae. Synergistic effects of temperature and food availability may potentially shape some of these patterns. Main conclusions There are latitudinal gradients in fertilization mode in the sea. The variation among phyla and developmental modes, however, is a complexity that is unexplained by existing theory. Combined effects of recent adaptation and deeper phylogenetic history have probably shaped this systematic variation in the reproductive ecology of marine organisms. [Monro, Keyne; Marshall, Dustin J.] Monash Univ, Sch Biol Sci, Melbourne, Vic 3800, Australia Monro, K (reprint author), Monash Univ, Sch Biol Sci, Melbourne, Vic 3800, Australia. keyne.monro@monash.edu; dustin.marshall@monash.edu Marshall, Dustin/C-3450-2016 Australian Research Council's Discovery Projects funding scheme This study was supported by fellowships and grants awarded under the Australian Research Council's Discovery Projects funding scheme. We thank the three anonymous referees whose constructive comments greatly improved the final version. We also thank Jacquie Burgin, Carly Cook, Kurt Davies, Amy Hooper, Hanna Ritchie, Matthew Thompson and Henry Wootton for help with data collation. We are especially grateful to Craig White for help with extracting biophysical data. The data used in this effort were acquired as part of the activities of NASA's Science Mission Directorate, and are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center DISC). Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Byrne M, 2013, INTEGR COMP BIOL, V53, P582, DOI 10.1093/icb/ict049; Chia F.S., 1974, Thalassia Jugosl, V10, P121; Dunn CW, 2014, ANNU REV ECOL EVOL S, V45, P371, DOI 10.1146/annurev-ecolsys-120213-091627; Einum S, 2002, AM NAT, V160, P756, DOI 10.1086/343876; EMLET RB, 1995, EVOLUTION, V49, P476, DOI 10.1111/j.1558-5646.1995.tb02280.x; Freckleton RP, 2009, P R SOC B, V276, P21, DOI 10.1098/rspb.2008.0905; Green JL, 2008, SCIENCE, V320, P1039, DOI 10.1126/science.1153475; GROSS MR, 1981, EVOLUTION, V35, P775, DOI 10.1111/j.1558-5646.1981.tb04937.x; Hart MW, 1997, EVOLUTION, V51, P1848, DOI 10.1111/j.1558-5646.1997.tb05108.x; Henshaw JM, 2014, AM NAT, V184, pE32, DOI 10.1086/676641; Ho LST, 2014, SYST BIOL, V63, P397, DOI 10.1093/sysbio/syu005; Ives AR, 2010, SYST BIOL, V59, P9, DOI 10.1093/sysbio/syp074; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; KEOUGH M. J., 2014, EXPT DESIGN DATA ANA; Kerr AM, 2011, P ROY SOC B-BIOL SCI, V278, P75, DOI 10.1098/rspb.2010.1196; KOHN AJ, 1994, LIFE HIST BIOGEOGRAP; Krug PJ, 2009, BIOL BULL-US, V216, P355; Kupiyanova E.K., 2001, OCEANOGRAPHY MARINE, P1; LEVITAN DR, 1995, TRENDS ECOL EVOL, V10, P228, DOI 10.1016/S0169-5347(00)89071-0; Losos JB, 2011, AM NAT, V177, P709, DOI 10.1086/660020; Maddison W.P., 2011, MESQUITE MODULAR SYS; Marshall DJ, 2008, AM NAT, V171, P214, DOI 10.1086/524954; Marshall DJ, 2012, ANNU REV ECOL EVOL S, V43, P97, DOI 10.1146/annurev-ecolsys-102710-145004; McHugh D, 1998, TRENDS ECOL EVOL, V13, P182, DOI 10.1016/S0169-5347(97)01285-8; MENGE BA, 1975, MAR BIOL, V31, P87, DOI 10.1007/BF00390651; Mercier A, 2013, GLOBAL ECOL BIOGEOGR, V22, P517, DOI 10.1111/geb.12018; Moles AT, 2009, ECOGRAPHY, V32, P78, DOI 10.1111/j.1600-0587.2008.05613.x; Morgan Steven G., 1995, P279; O'Connor MI, 2007, P NATL ACAD SCI USA, V104, P1266, DOI 10.1073/pnas.0603422104; Petersen C., 2001, CONSERVATION EXPLOIT, P281; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; ROUSE G, 1994, ZOOL SCR, V23, P271, DOI 10.1111/j.1463-6409.1994.tb00390.x; Rouse G., 2001, POLYCHAETES; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; Stockley P, 1997, AM NAT, V149, P933, DOI 10.1086/286031; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; STRATHMANN RR, 1990, AM ZOOL, V30, P197; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Symonds M.R.E., 2014, MODERN PHYLOGENETIC, P104; Thorson G., 1936, Meddelelser om Gronland, V100, P1; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; THORSON GUNNAR, 1946, MEDDEL KOMM DANMARKS FISKERI OG HAVUNDERSOGELSER SER PLANKTON, V4, P1; Turner CL, 1947, SCI MON, V65, P508; Violle C, 2014, P NATL ACAD SCI USA, V111, P13690, DOI 10.1073/pnas.1415442111; Williams G., 1975, SEX EVOLUTION; WoRMS Editorial Board, 2015, WORLD REG MAR SPEC W; WOURMS JP, 1992, AM ZOOL, V32, P276; Wray Gregory A., 1995, P413 50 9 9 0 31 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1466-822X 1466-8238 GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. DEC 2015 24 12 1499 1509 10.1111/geb.12358 11 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography DA3AJ WOS:000367668000013 Bronze 2019-02-21 J Ibanez-Alamo, JD; Magrath, RD; Oteyza, JC; Chalfoun, AD; Haff, TM; Schmidt, KA; Thomson, RL; Martin, TE Ibanez-Alamo, J. D.; Magrath, R. D.; Oteyza, J. C.; Chalfoun, A. D.; Haff, T. M.; Schmidt, K. A.; Thomson, R. L.; Martin, T. E. Nest predation research: recent findings and future perspectives JOURNAL OF ORNITHOLOGY English Article; Proceedings Paper 26th International Ornithological Congress (IOC) AUG 18-24, 2014 Rikkyo Univ, Tokyo, JAPAN Rikkyo Univ Animal behavior; Conservation biology; Evolution; Nest predation; Population ecology BREEDING HABITAT SELECTION; LIFE-HISTORY EVOLUTION; EMBRYONIC-DEVELOPMENT RATES; HETEROSPECIFIC ALARM CALLS; AGE-SPECIFIC MORTALITY; SOCIAL INFORMATION USE; CLUTCH-SIZE; PUBLIC INFORMATION; PIED FLYCATCHER; SITE FIDELITY Nest predation is a key source of selection for birds that has attracted increasing attention from ornithologists. The inclusion of new concepts applicable to nest predation that stem from social information, eavesdropping or physiology has expanded our knowledge considerably. Recent methodological advancements now allow focus on all three players within nest predation interactions: adults, offspring and predators. Indeed, the study of nest predation now forms a vital part of avian research in several fields, including animal behaviour, population ecology, evolution and conservation biology. However, within nest predation research there are important aspects that require further development, such as the comparison between ecological and evolutionary antipredator responses, and the role of anthropogenic change. We hope this review of recent findings and the presentation of new research avenues will encourage researchers to study this important and interesting selective pressure, and ultimately will help us to better understand the biology of birds. [Ibanez-Alamo, J. D.] Univ Groningen, Ctr Ecol & Evolutionary Studies, Anim Ecol Grp, NL-9700 CC Groningen, Netherlands; [Ibanez-Alamo, J. D.] CSIC, Estac Biol Donana, Dept Wetland Ecol, Seville 41092, Spain; [Magrath, R. D.; Haff, T. M.] Australian Natl Univ, Res Sch Biol, Div Evolut Ecol & Genet, Canberra, ACT 2601, Australia; [Oteyza, J. C.] Univ Montana, Montana Cooperat Wildlife Res Unit, Wildlife Biol Program, Missoula, MT 59812 USA; [Chalfoun, A. D.] Univ Wyoming, US Geol Survey, Wyoming Cooperat Fish & Wildlife Res Unit, Dept Zool & Physiol, Laramie, WY 82071 USA; [Schmidt, K. A.] Texas Tech Univ, Dept Biol Sci, Lubbock, TX 79424 USA; [Thomson, R. L.] Univ Turku, Sect Ecol, Dept Biol, Turku 20014, Finland; [Thomson, R. L.] Univ Cape Town, DST NRF Ctr Excellence, Percy Fitzpatrick Inst African Ornithol, ZA-7701 Rondebosch, South Africa; [Martin, T. E.] Univ Montana, US Geol Survey, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA Ibanez-Alamo, JD (reprint author), Univ Groningen, Ctr Ecol & Evolutionary Studies, Anim Ecol Grp, POB 11103, NL-9700 CC Groningen, Netherlands. j.d.ibanez-alamo@rug.nl Magrath, Robert/C-9661-2009; Thomson, Robert/B-9637-2012; CSIC, EBD Donana/C-4157-2011 Magrath, Robert/0000-0002-9109-609X; Thomson, Robert/0000-0002-6958-1259; CSIC, EBD Donana/0000-0003-4318-6602 Australian Research Council; University of Turku Collegium for Science and Medicine We would like to thank the organizers of the 26th International Ornithological Congress (IOC) for hosting our symposium, the seed for this paper. JDIA would like to thank his family for constant support. RDM and TMH would like to thank all who have helped in this work, especially Golo Maurer and Dirk Platzen, and the Australian Research Council for funding. JCO would like to thank the Wildlife Biology program at the University of Montana and the IOU for travel support to attend the IOC. ADC would like to thank the International Programs at the University of Wyoming for travel support to the IOC. RLT would like to thank the University of Turku Collegium for Science and Medicine for the funding to cover travel to the IOC. Amo L, 2008, FUNCT ECOL, V22, P289, DOI 10.1111/j.1365-2435.2007.01361.x; Amo L, 2011, ARDEA, V99, P177, DOI 10.5253/078.099.0207; Benson TJ, 2010, J ANIM ECOL, V79, P225, DOI 10.1111/j.1365-2656.2009.01604.x; Biancucci L, 2010, J ANIM ECOL, V79, P1086, DOI 10.1111/j.1365-2656.2010.01720.x; Biancucci L, 2008, WILSON J ORNITHOL, V120, P856, DOI 10.1676/07-020.1; BOLLINGER EK, 1989, AUK, V106, P584; Bonnington C, 2013, J APPL ECOL, V50, P15, DOI 10.1111/1365-2664.12025; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; Boulinier T, 1997, EVOL ECOL, V11, P505, DOI 10.1007/s10682-997-1507-0; Butler LK, 2009, GEN COMP ENDOCR, V162, P313, DOI 10.1016/j.ygcen.2009.04.008; Campobello D, 2012, BEHAV ECOL, V23, P425, DOI 10.1093/beheco/arr207; Canestrari D, 2014, SCIENCE, V343, P1350, DOI 10.1126/science.1249008; Caro SP, 2010, J COMP PHYSIOL A, V196, P751, DOI 10.1007/s00359-010-0534-4; Caro TM, 2005, ANTIPREDATOR DEFENCE; Chace JF, 2006, LANDSCAPE URBAN PLAN, V74, P46, DOI 10.1016/j.landurbplan.2004.08.007; Chalfoun AD, 2002, ECOL APPL, V12, P858, DOI 10.2307/3060994; Chalfoun AD, 2002, CONSERV BIOL, V16, P306, DOI 10.1046/j.1523-1739.2002.00308.x; Chalfoun AD, 2010, CONDOR, V112, P701, DOI 10.1525/cond.2010.090242; Chalfoun AD, 2010, OECOLOGIA, V163, P885, DOI 10.1007/s00442-010-1679-0; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Cheng YR, 2012, AM NAT, V180, P285, DOI 10.1086/667214; Clinchy M, 2004, P ROY SOC B-BIOL SCI, V271, P2473, DOI 10.1098/rspb.2004.2913; Clinchy M, 2013, FUNCT ECOL, V27, P56, DOI 10.1111/1365-2435.12007; Clinchy M, 2011, OECOLOGIA, V166, P607, DOI 10.1007/s00442-011-1915-2; CONSTANTINI D, 2014, OXIDATIVE STRESS; Constantini D., 2014, OXIDATIVE STRESS HOR; Coslovsky M, 2012, GEN COMP ENDOCR, V176, P211, DOI 10.1016/j.ygcen.2012.01.013; Coslovsky M, 2011, FUNCT ECOL, V25, P878, DOI 10.1111/j.1365-2435.2011.01834.x; Cott H. B., 1940, ADAPTIVE COLORATION; Cox WA, 2013, AUK, V130, P784, DOI 10.1525/auk.2013.13033; Cox WA, 2012, STUD AVIAN BIOL, P185; Cox WA, 2012, LANDSCAPE ECOL, V27, P659, DOI 10.1007/s10980-012-9711-x; Cox WA, 2012, AUK, V129, P147, DOI 10.1525/auk.2012.11169; Cresswell W, 2008, IBIS, V150, P3, DOI 10.1111/j.1474-919X.2007.00793.x; Dall SRX, 2005, TRENDS ECOL EVOL, V20, P187, DOI 10.1016/j.tree.2005.01.010; Dalziell AH, 2015, BIOL REV, V90, P643, DOI 10.1111/brv.12129; Davies NB, 2004, P ROY SOC B-BIOL SCI, V271, P2297, DOI 10.1098/rspb.2004.2835; DeGregorio BA, 2014, J AVIAN BIOL, V45, P325, DOI 10.1111/jav.00364; DeGregorio BA, 2014, ECOL EVOL, V4, P1589, DOI 10.1002/ece3.1049; Ibanez-Alamo JD, 2014, J ORNITHOL, V155, P491, DOI 10.1007/s10336-013-1031-7; Ibanez-Alamo JD, 2012, J ORNITHOL, V153, P801, DOI 10.1007/s10336-011-0797-8; Ibanez-Alamo JD, 2010, BIOL J LINN SOC, V101, P759, DOI 10.1111/j.1095-8312.2010.01543.x; Ibanez-Alamo JD, 2010, J AVIAN BIOL, V41, P208, DOI 10.1111/j.1600-048X.2009.04805.x; Doligez B, 2003, ANIM BEHAV, V66, P973, DOI 10.1006/anbe.2002.2270; Doligez B, 2002, SCIENCE, V297, P1168, DOI 10.1126/science.1072838; Dufty AM, 2005, J FIELD ORNITHOL, V76, P319, DOI 10.1648/0273-8570-76.4.319; Dumbacher John P., 1996, Current Ornithology, V13, P137; DUNN E, 1977, J ANIM ECOL, V46, P633, DOI 10.2307/3835; Eggers S, 2006, P ROY SOC B-BIOL SCI, V273, P701, DOI 10.1098/rspb.2005.3373; Eichholz MW, 2012, AUK, V129, P638, DOI 10.1525/auk.2012.12040; Emmering QC, 2011, J ANIM ECOL, V80, P1305, DOI 10.1111/j.1365-2656.2011.01869.x; Fletcher RJ, 2008, ECOL APPL, V18, P1764, DOI 10.1890/07-1850.1; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Fontaine JJ, 2011, CONDOR, V113, P825, DOI 10.1525/cond.2011.110027; Forsman JT, 2013, BEHAV ECOL, V24, P262, DOI 10.1093/beheco/ars162; Forsman JT, 2009, OIKOS, V118, P464, DOI 10.1111/j.1600-0706.2008.17000.x; Francis CD, 2011, LANDSCAPE ECOL, V26, P1269, DOI 10.1007/s10980-011-9609-z; Francis CD, 2009, CURR BIOL, V19, P1415, DOI 10.1016/j.cub.2009.06.052; Fridinger RW, 2007, J FIELD ORNITHOL, V78, P93, DOI 10.1111/j.1557-9263.2006.00090.x; Gartner GEA, 2008, J ZOOL, V275, P368, DOI 10.1111/j.1469-7998.2008.00448.x; Ghalambor CK, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0154; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Giese M, 1996, BIOL CONSERV, V75, P157, DOI 10.1016/0006-3207(95)00060-7; Glutz von Blotzheim UN, 1980, HDB VOGEL MITTELEURO, V9; Goedert D, 2014, ANIM BEHAV, V91, P161, DOI 10.1016/j.anbehav.2014.03.012; Goodale E, 2010, TRENDS ECOL EVOL, V25, P354, DOI 10.1016/j.tree.2010.01.002; GREIGSMITH PW, 1982, ORNIS SCAND, V13, P232, DOI 10.2307/3676304; Haff TM, 2015, J AVIAN BIOL, V46, P289, DOI 10.1111/jav.00622; Haff TM, 2010, ANIM BEHAV, V79, P487, DOI 10.1016/j.anbehav.2009.11.036; Haff TM, 2013, ANIM BEHAV, V85, P411, DOI 10.1016/j.anbehav.2012.11.016; Haff TM, 2012, ANIM BEHAV, V84, P1401, DOI 10.1016/j.anbehav.2012.09.005; Haff TM, 2011, BIOL LETTERS, V7, P493, DOI 10.1098/rsbl.2010.1125; Hagelin JC, 2007, AUK, V124, P741, DOI 10.1642/0004-8038(2007)124[741:BOAOCS]2.0.CO;2; Hakkila M, 2012, J ORNITHOL, V153, P199, DOI 10.1007/s10336-011-0727-9; Hatchett ES, 2013, AUK, V130, P520, DOI 10.1525/auk.2013.12187; Hethcoat MG, 2015, BIOL CONSERV, V184, P327, DOI 10.1016/j.biocon.2015.02.009; Hettena AM, 2014, ETHOLOGY, V120, P427, DOI 10.1111/eth.12219; HILDEN OLAVL, 1965, ANN ZOOL FEN NICI, V2, P53; Hoover JP, 2003, ECOLOGY, V84, P416, DOI 10.1890/0012-9658(2003)084[0416:DRFSFI]2.0.CO;2; Hua FY, 2014, BEHAV ECOL, V25, P509, DOI 10.1093/beheco/aru017; Hua FY, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0762; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Ibanez-Alamo JD, 2012, BEHAV ECOL SOCIOBIOL, V66, P1067, DOI 10.1007/s00265-012-1357-9; Ibanez-Alamo JD, 2011, GEN COMP ENDOCR, V171, P232, DOI 10.1016/j.ygcen.2011.01.016; Ibanez-Alamo JD, 2013, ANN ZOOL FENN, V50, P71, DOI 10.5735/086.050.0106; Ibanez-Alamo JD, 2012, IBIS, V154, P5, DOI 10.1111/j.1474-919X.2011.01186.x; Jones HP, 2008, CONSERV BIOL, V22, P16, DOI 10.1111/j.1523-1739.2007.00859.x; Kearns LJ, 2013, J ORNITHOL, V154, P163, DOI 10.1007/s10336-012-0882-7; Kilner RM, 2006, BIOL REV, V81, P383, DOI 10.1017/S1464793106007044; Kitaysky AS, 2003, HORM BEHAV, V43, P140, DOI 10.1016/S0018-506X(02)00030-2; Kleindorfer S, 2009, BIOL J LINN SOC, V98, P313, DOI 10.1111/j.1095-8312.2009.01264.x; Krama T, 2005, BEHAV ECOL, V16, P37, DOI 10.1093/beheco/arh116; Krams I, 2007, BEHAV ECOL, V18, P1082, DOI 10.1093/beheco/arm079; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lahti DC, 2001, BIOL CONSERV, V99, P365, DOI 10.1016/S0006-3207(00)00222-6; Lamanna JA, 2015, ECOLOGY, V96, P1670, DOI 10.1890/14-1333.1; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Lebeau CW, 2014, J WILDLIFE MANAGE, V78, P522, DOI 10.1002/jwmg.679; Lee W. S., 2013, P R SOC B, V280, P2012; Libsch MM, 2008, CONDOR, V110, P166, DOI 10.1525/cond.2008.110.1.166; Lima SL, 2002, TRENDS ECOL EVOL, V17, P70, DOI 10.1016/S0169-5347(01)02393-X; Lima SL, 1998, BIOSCIENCE, V48, P25, DOI 10.2307/1313225; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; Lindsay K, 2008, TOURISM MANAGE, V29, P730, DOI 10.1016/j.toutman.2007.08.001; Loukola OJ, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-32; Loukola OJ, 2012, ANIM BEHAV, V83, P629, DOI 10.1016/j.anbehav.2011.12.004; Madden JR, 2005, ANIM BEHAV, V70, P619, DOI 10.1016/j.anbehav.2004.11.019; Magrath RD, 2007, ANIM BEHAV, V74, P1117, DOI 10.1016/j.anbehav.2007.01.025; Magrath RD, 2006, P R SOC B, V273, P2335, DOI 10.1098/rspb.2006.3610; Magrath RD, 2015, BIOL REV, V90, P560, DOI 10.1111/brv.12122; Magrath RD, 2010, ADV STUD BEHAV, V41, P187, DOI 10.1016/S0065-3454(10)41006-2; Martin T.E., 1992, Current Ornithology, V9, P163; Martin TE, 2006, EVOLUTION, V60, P390; MARTIN TE, 1988, ECOLOGY, V69, P74, DOI 10.2307/1943162; MARTIN TE, 1993, AM NAT, V141, P897, DOI 10.1086/285515; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 1991, ACTA C INT ORNITHOLO, V20, P1595; Martin TE, 2008, PHILOS T R SOC B, V363, P1663, DOI 10.1098/rstb.2007.0009; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; Martin TE, 2015, AM NAT, V185, P380, DOI 10.1086/679612; Martin TE, 2014, AM NAT, V183, P313, DOI 10.1086/674966; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; Martin TE, 1988, EVOL ECOL, V2, P37, DOI 10.1007/BF02071587; Martin TE, 2009, ANN NY ACAD SCI, V1168, P201, DOI 10.1111/j.1749-6632.2009.04577.x; Marzluff JM, 2006, BIOL CONSERV, V130, P301, DOI 10.1016/j.biocon.2005.12.026; Matson KD, 2006, P ROY SOC B-BIOL SCI, V273, P815, DOI 10.1098/rspb.2005.3376; Maynard Smith John, 2003, ANIMAL SIGNALS; McCay C M, 1933, Science, V77, P410, DOI 10.1126/science.77.2000.410; McDonald PG, 2009, BEHAV ECOL, V20, P821, DOI 10.1093/beheco/arp066; McKinnon L, 2014, AUK, V131, P619, DOI 10.1642/AUK-13-154.1; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Monkkonen M, 2007, J ANIM ECOL, V76, P619, DOI 10.1111/j.1365-2656.2007.01233.x; Monkkonen M, 2009, BIOL LETTERS, V5, P176, DOI 10.1098/rsbl.2008.0631; Moore RP, 2004, ECOLOGY, V85, P1562, DOI 10.1890/03-0088; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Morosinotto C, 2013, BEHAVIOUR, V150, P1767, DOI 10.1163/1568539X-00003119; Morosinotto C, 2013, J AVIAN BIOL, V44, P427, DOI 10.1111/j.1600-048X.2013.00084.x; Morosinotto C, 2012, OECOLOGIA, V170, P507, DOI 10.1007/s00442-012-2320-1; Mutzel A, 2013, ANIM BEHAV, V85, P1459, DOI 10.1016/j.anbehav.2013.03.043; Nogales M, 2013, BIOSCIENCE, V63, P804, DOI 10.1525/bio.2013.63.10.7; Olsson M, 2002, EVOLUTION, V56, P1867; Oppel S, 2014, J APPL ECOL, V51, P1246, DOI 10.1111/1365-2664.12292; Owings DH, 2002, J COMP PSYCHOL, V116, P197, DOI 10.1037//0735-7036.116.2.197; Pakanen VM, 2014, OECOLOGIA, V174, P1159, DOI 10.1007/s00442-013-2847-9; Parejo D, 2008, ANIM BEHAV, V75, P483, DOI 10.1016/j.anbehav.2007.05.012; Parejo D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068862; Part T, 2011, J ANIM ECOL, V80, P1227, DOI 10.1111/j.1365-2656.2011.01854.x; Pelech SA, 2010, OIKOS, V119, P841, DOI 10.1111/j.1600-0706.2009.17786.x; Peluc SI, 2008, BEHAV ECOL, V19, P830, DOI 10.1093/beheco/arn033; Piper WH, 2011, BEHAV ECOL SOCIOBIOL, V65, P1329, DOI 10.1007/s00265-011-1195-1; Platzen D, 2005, P ROY SOC B-BIOL SCI, V272, P1101, DOI 10.1098/rspb.2005.3055; Polak M, 2014, ECOL RES, V29, P949, DOI 10.1007/s11284-014-1183-9; Price CJ, 2012, P NATL ACAD SCI USA, V109, P19304, DOI 10.1073/pnas.1210981109; Quinn JL, 2008, IBIS, V150, P146, DOI 10.1111/j.1474-919X.2008.00823.x; Rajchard J, 2009, VET MED-CZECH, V54, P351; Remes V, 2002, EVOLUTION, V56, P2505; Remes V, 2007, J EVOLUTION BIOL, V20, P320, DOI 10.1111/j.1420-9101.2006.01191.x; Ribic CA, 2012, STUD AVIAN BIOL, P1, DOI 10.1525/california/9780520273139.001.0001; Richardson TW, 2009, J WILDLIFE MANAGE, V73, P287, DOI 10.2193/2007-566; Ricklefs RE, 2000, CONDOR, V102, P3, DOI 10.1650/0010-5422(2000)102[0003:LSAMTE]2.0.CO;2; Rivers JW, 2011, ETHOLOGY, V117, P374, DOI 10.1111/j.1439-0310.2011.01883.x; Rodewald AD, 2013, BIOL CONSERV, V160, P32, DOI 10.1016/j.biocon.2012.12.034; Rodewald AD, 2011, CONDOR, V113, P899, DOI 10.1525/cond.2011.100132; Rollo CD, 2002, EVOL DEV, V4, P55, DOI 10.1046/j.1525-142x.2002.01053.x; Roth TC, 2008, ANIM BEHAV, V76, P2021, DOI 10.1016/j.anbehav.2008.08.022; ROWE MP, 1986, ETHOLOGY, V72, P53; Rubenstahl TG, 2012, SOUTHWEST NAT, V57, P189, DOI 10.1894/0038-4909-57.2.189; Saino N, 2003, P ROY SOC B-BIOL SCI, V270, P2485, DOI 10.1098/rspb.2003.2534; Schmidt KA, 2004, OIKOS, V106, P335, DOI 10.1111/j.0030-1299.2004.13093.x; Schmidt KA, 1999, OIKOS, V85, P151, DOI 10.2307/3546801; Schmidt KA, 2001, EVOL ECOL RES, V3, P633; Schmidt KA, 2001, ECOLOGY, V82, P2937, DOI 10.1890/0012-9658(2001)082[2937:INPISB]2.0.CO;2; Schmidt KA, 2007, ISR J ECOL EVOL, V53, P389, DOI 10.1560/IJEE.53.3.389; Schmidt KA, 2015, OIKOS, V124, P69, DOI 10.1111/oik.01483; Schmidt KA, 2010, OIKOS, V119, P304, DOI 10.1111/j.1600-0706.2009.17573.x; Schmidt KA, 2010, OIKOS, V119, P245, DOI 10.1111/j.1600-0706.2009.17824.x; Schwabl H, 2007, AM NAT, V170, P196, DOI 10.1086/519397; Selva N, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090740; Seppanen JT, 2007, ECOLOGY, V88, P1622, DOI 10.1890/06-1757.1; Seppanen JT, 2007, CURR BIOL, V17, P1248, DOI 10.1016/j.cub.2007.06.034; Seppanen JT, 2010, P ROY SOC LOND B BIO, V278, P1736, DOI DOI 10.1098/RSPB.2010.1610; Shaw P, 2014, J ORNITHOL, V155, P481, DOI 10.1007/s10336-013-1029-1; Sheriff MJ, 2014, OECOLOGIA, V176, P607, DOI 10.1007/s00442-014-3105-5; Silverin B, 1998, ANIM BEHAV, V55, P1411, DOI 10.1006/anbe.1997.0717; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Skutch AF, 1976, PARENT BIRDS THEIR Y; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sofaer HR, 2014, ECOL EVOL, V4, P2738, DOI 10.1002/ece3.1127; SONERUD GA, 1987, ORNIS SCAND, V18, P323, DOI 10.2307/3676904; Steadman D. W., 2006, EXTINCTION BIOGEOGRA; Stoddard MC, 2011, AVIAN BIOL RES, V4, P196, DOI 10.3184/175815511X13207484398647; Suzuki TN, 2011, CURR BIOL, V21, pR15, DOI 10.1016/j.cub.2010.11.027; Szymkowiak J, 2015, BEHAV ECOL, V26, P601, DOI 10.1093/beheco/aru237; Thompson FR, 2003, J WILDLIFE MANAGE, V67, P408; Thomson RL, 2006, ECOGRAPHY, V29, P507; Thomson RL, 2013, BEHAV ECOL SOCIOBIOL, V67, P905, DOI 10.1007/s00265-013-1513-x; Thomson RL, 2010, ECOLOGY, V91, P1832, DOI 10.1890/09-0989.1; Tilgar V, 2010, HORM BEHAV, V57, P481, DOI 10.1016/j.yhbeh.2010.02.006; TINBERGEN N., 1962, BEHAVIOUR, V19, P74, DOI 10.1163/156853961X00213; TOMIALOJC L, 1980, Polish Ecological Studies, V5, P141; Travers M, 2010, ECOL LETT, V13, P980, DOI 10.1111/j.1461-0248.2010.01488.x; Vetter D, 2013, BIOL CONSERV, V159, P382, DOI 10.1016/j.biocon.2012.12.023; Villard MA, 2004, CONSERV BIOL, V18, P371, DOI 10.1111/j.1523-1739.2004.00485.x; VONHAARTMAN L, 1957, EVOLUTION, V11, P339, DOI 10.2307/2405797; Weatherhead PJ, 2004, J AVIAN BIOL, V35, P185, DOI 10.1111/j.0908-8857.2004.03336.x; Wegrzyn E, 2015, IBIS, V157, P356, DOI 10.1111/ibi.12231; Weidinger K, 2001, BEHAV ECOL SOCIOBIOL, V49, P456, DOI 10.1007/s002650100324; Weidinger K, 2008, AUK, V125, P859, DOI 10.1525/auk.2008.07016; Weidinger K, 2010, J ORNITHOL, V151, P729, DOI 10.1007/s10336-010-0512-1; Weidinger K, 2010, OIKOS, V119, P138, DOI 10.1111/j.1600-0706.2009.17649.x; Weidinger K, 2009, IBIS, V151, P352, DOI 10.1111/j.1474-919X.2009.00907.x; Wesolowski T, 2009, BIRD STUDY, V56, P26, DOI 10.1080/00063650802681540; Wiebe K.L., 2008, BIRDS N AM ONLINE; Zanette L, 2002, BIOL CONSERV, V103, P323, DOI 10.1016/S0006-3207(01)00143-4; Zanette LY, 2014, OECOLOGIA, V176, P637, DOI 10.1007/s00442-014-3057-9; Zanette LY, 2013, OECOLOGIA, V172, P1031, DOI 10.1007/s00442-012-2570-y; Zanette LY, 2011, SCIENCE, V334, P1398, DOI 10.1126/science.1210908 224 48 49 5 84 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 1439-0361 J ORNITHOL J. Ornithol. DEC 2015 156 1 S247 S262 10.1007/s10336-015-1207-4 16 Ornithology Zoology CZ9ZT WOS:000367457200021 Green Published, Other Gold 2019-02-21 J Williams, TD; Fowler, MA Williams, Tony D.; Fowler, Melinda A. Individual variation in workload during parental care: can we detect a physiological signature of quality or cost of reproduction? JOURNAL OF ORNITHOLOGY English Article; Proceedings Paper 26th International Ornithological Congress (IOC) AUG 18-24, 2014 Rikkyo Univ, Tokyo, JAPAN Rikkyo Univ Parental care; Exercise physiology; Workload; Sturnus vulgaris; Cost of reproduction; Physiological costs IN-HOUSE MICE; DAILY ENERGY-EXPENDITURE; WHEEL-RUNNING ACTIVITY; HISTORY TRADE-OFFS; IMMUNE FUNCTION; CLUTCH SIZE; BROOD SIZE; BLUE TITS; BODY-MASS; ARTIFICIAL SELECTION How hard do birds work during parental care, chick rearing, or provisioning of their nestlings? And if birds do work hard, can we detect a physiological signature of individual variation in workload ability (perhaps related to 'quality') or costs associated with high workload? Here, we provide a broad conceptual perspective on these questions. Life-history theory predicts (or requires) that (1) parental care is hard work, (2) individuals that invest more in parental care benefit in terms of rearing more, larger, fitter offspring, but that (3) increased investment in parental care comes at a cost: decreased future fecundity and/or survival. However, we start by highlighting studies that are inconsistent with this conventional view, e.g., (1) females often do not pay a survival cost of increased workload (though males do), (2) some (high quality?) individuals appear to maximise numerous life-history traits, and (3) workload during parental care often does not predict productivity. We suggest that an "exercise physiology" perspective on parental care might be informative, but highlight the fact that existing models of exercise often involve conditions very different from that free-living animals experience while foraging (e.g., using forced exercise) and are often divorced from the critical relationship in free-living animals between exercise and acquisition of resources. We briefly review studies looking at physiological effects of workload during parental care in freeliving birds, but again highlight our surprising lack of knowledge in this area especially where experimental manipulation of workload is coupled with comprehensive, physiological analysis. Finally, we make three recommendations for how can we advance the study of physiology of parental care in chick-rearing birds: (1) experimental manipulation of workload, (2) obtaining better measures of workload, for large numbers of known-individuals, and (3) better assessment of physiology of individual quality, and identification of specific metrics of workload-induced 'wear and tear'. [Williams, Tony D.; Fowler, Melinda A.] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada Williams, TD (reprint author), Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada. tdwillia@sfu.ca NSERC This work was funded by NSERC Discovery Grant and Accelerator funding to T.D.W. We thank Allison Cornell, Megan Rogers, James Hou, and Jessica Leung for help with fieldwork and laboratory analysis; this MS benefited greatly from discussions T.D.W. had with Jeff Yap and Mitchell Serota during a Directed Readings course on the "Physiology of exercise". Adamo SA, 2004, ANIM BEHAV, V68, P1443, DOI 10.1016/j.anbehav.2004.05.005; Bijleveld AI, 2009, BEHAV ECOL, V20, P736, DOI 10.1093/beheco/arp054; Borer K., 2003, EXERCISE ENDOCRINOLO; Buehler DM, 2012, J EVOLUTION BIOL, V25, P1600, DOI 10.1111/j.1420-9101.2012.02543.x; Burness GP, 1998, PHYSIOL ZOOL, V71, P247, DOI 10.1086/515917; Burnett NJ, 2014, PHYSIOL BIOCHEM ZOOL, V87, P587, DOI 10.1086/677219; Clutton-Brock T, 1988, REPROD SUCCESS STUDI; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Dawson RD, 2003, CAN J ZOOL, V81, P852, DOI 10.1139/Z03-064; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Dor R, 2010, J EVOLUTION BIOL, V23, P1605, DOI 10.1111/j.1420-9101.2010.02023.x; DRENT RH, 1980, ARDEA, V68, P225; Drent RH, 2006, ARDEA, V94, P305; Duclos M, 2008, INT SPORTMED J, V9, P56; Eliason EJ, 2011, SCIENCE, V332, P109, DOI 10.1126/science.1199158; Elliott KH, 2014, J ANIM ECOL, V83, P136, DOI 10.1111/1365-2656.12126; Elliott KH, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.0919; Fonseca IAT, 2014, J EXP BIOL, V217, P3274, DOI 10.1242/jeb.108191; Frost PC, 2014, INTEGR COMP BIOL, V54, P873, DOI 10.1093/icb/icu054; Garcia-Navas V, 2012, BIRD STUDY, V59, P236, DOI 10.1080/00063657.2012.662939; Garcia-Navas V, 2010, ETHOLOGY, V116, P744, DOI 10.1111/j.1439-0310.2010.01788.x; Garland T, 2011, P ROY SOC B-BIOL SCI, V278, P574, DOI 10.1098/rspb.2010.1584; Garland T, 2011, J EXP BIOL, V214, P206, DOI 10.1242/jeb.048397; Girard I, 2002, BEHAV PROCESS, V57, P37, DOI 10.1016/S0376-6357(01)00206-6; Guindre-Parker S, 2013, J EVOLUTION BIOL, V26, P2558, DOI 10.1111/jeb.12256; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hegemann A, 2013, FRONT ZOOL, V10, DOI 10.1186/1742-9994-10-77; Horak P, 1999, OECOLOGIA, V119, P293, DOI 10.1007/s004420050789; Horvathova T, 2012, P ROY SOC B-BIOL SCI, V279, P163, DOI 10.1098/rspb.2011.0663; Hug M, 2003, BEST PRACT RES CL EN, V17, P191, DOI 10.1053/ybeem.2003.247; Husak JF, 2006, FUNCT ECOL, V20, P1080, DOI 10.1111/j.1365-2435.2006.01195.x; Irschick DJ, 2003, INTEGR COMP BIOL, V43, P396, DOI 10.1093/icb/43.3.396; Jacobs SR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054594; Joyner MJ, 2008, J PHYSIOL-LONDON, V586, P35, DOI 10.1113/jphysiol.2007.143834; Keil D, 2001, J IMMUNOL, V167, P4543, DOI 10.4049/jimmunol.167.8.4543; Kern M, 2005, CONDOR, V107, P665, DOI 10.1650/0010-5422(2005)107[0665:BMACLI]2.0.CO;2; Klomberg KF, 2002, PHYSIOL BEHAV, V77, P27, DOI 10.1016/S0031-9384(02)00767-9; Koetsier E, 2011, J EXP BIOL, V214, P1225, DOI 10.1242/jeb.050336; Lescroel A, 2009, J ANIM ECOL, V78, P798; Love OP, 2008, AM NAT, V172, pE135, DOI 10.1086/590959; Low M, 2012, BEHAV ECOL, V23, P25, DOI 10.1093/beheco/arr145; MacColl ADC, 2003, EVOLUTION, V57, P2191; Malisch JL, 2007, PHYSIOL BIOCHEM ZOOL, V80, P146, DOI 10.1086/508828; Mariette MM, 2011, AUK, V128, P26, DOI 10.1525/auk.2011.10117; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Mitchell GW, 2012, J ANIM ECOL, V81, P1024, DOI 10.1111/j.1365-2656.2012.01978.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Murray A, 2012, BMC MED, V10, DOI 10.1186/1741-7015-10-76; Nakagawa S, 2007, J EVOLUTION BIOL, V20, P1674, DOI 10.1111/j.1420-9101.2007.01403.x; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19052, DOI 10.1073/pnas.0800375105; NEUFER PD, 1989, SPORTS MED, V8, P302, DOI 10.2165/00007256-198908050-00004; Newton I, 1989, LIFETIME REPROD BIRD; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Norte AC, 2010, CONDOR, V112, P79, DOI 10.1525/cond.2010.080071; NUR N, 1984, OECOLOGIA, V65, P125, DOI 10.1007/BF00384475; Piersma T, 2011, FLEXIBLE PHENOTYPE B; Piersma T, 2011, J EXP BIOL, V214, P295, DOI 10.1242/jeb.046748; Ringsby TH, 2009, J ORNITHOL, V150, P469, DOI 10.1007/s10336-008-0365-z; Ryder TB, 2012, BIOL LETTERS, V8, P917, DOI 10.1098/rsbl.2012.0536; Salvante KG, 2006, AUK, V123, P575, DOI 10.1642/0004-8038(2006)123[575:TFSIIF]2.0.CO;2; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Scantlebury DM, 2014, SCIENCE, V346, P79, DOI 10.1126/science.1256424; Schroeder J, 2012, J EVOLUTION BIOL, V25, P149, DOI 10.1111/j.1420-9101.2011.02412.x; Schroeder J, 2013, J AVIAN BIOL, V44, P133, DOI 10.1111/j.1600-048X.2012.00010.x; Schwagmeyer PL, 2008, ANIM BEHAV, V75, P291, DOI 10.1016/j.anbehav.2007.05.023; Schwagmeyer PL, 2003, ETHOLOGY, V109, P303, DOI 10.1046/j.1439-0310.2003.00868.x; Simons MJP, 2014, BEHAV ECOL, V25, P945, DOI 10.1093/beheco/aru062; Sinclair ELE, 2014, FUNCT ECOL, V28, P652, DOI 10.1111/1365-2435.12198; SLAGSVOLD T, 1988, ECOLOGY, V69, P1918, DOI 10.2307/1941168; Speakman J, 1997, P NUTR SOC, V56, P1119, DOI 10.1079/PNS19970115; Spivey RJ, 2013, J R SOC INTERFACE, V10, DOI 10.1098/rsif.2013.0404; Stearns S, 1992, EVOLUTION LIFE HIST; Stodola KW, 2010, J AVIAN BIOL, V41, P515, DOI 10.1111/j.1600-048X.2009.04751.x; Swallow JG, 1999, J EXP BIOL, V202, P2513; Swallow JG, 1998, BEHAV GENET, V28, P227, DOI 10.1023/A:1021479331779; Tieleman BI, 2008, BEHAV ECOL, V19, P949, DOI 10.1093/beheco/arn051; Tieleman BI, 2010, COMP BIOCHEM PHYS A, V156, P537, DOI 10.1016/j.cbpa.2010.04.011; TINBERGEN JM, 1994, FUNCT ECOL, V8, P563, DOI 10.2307/2389916; Toigo C, 2013, OECOLOGIA, V173, P1261, DOI 10.1007/s00442-013-2700-1; Travers M, 2010, ECOL LETT, V13, P980, DOI 10.1111/j.1461-0248.2010.01488.x; Tremblay I, 2003, ECOLOGY, V84, P3033, DOI 10.1890/02-0663; Versteegh MA, 2014, J EXP BIOL, V217, P1510, DOI 10.1242/jeb.097105; Wikelski M, 2003, NATURE, V423, P704, DOI 10.1038/423704a; Williams T. D., 2012, PHYSL ADAPTATIONS BR; Williams TM, 2014, SCIENCE, V346, P81, DOI 10.1126/science.1254885; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Winkler DW, 1995, AUK, V112, P737; WRIGHT J, 1989, BEHAV ECOL SOCIOBIOL, V25, P171, DOI 10.1007/BF00302916; Wright J, 1998, J ANIM ECOL, V67, P620 90 14 14 1 46 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 1439-0361 J ORNITHOL J. Ornithol. DEC 2015 156 1 S441 S451 10.1007/s10336-015-1213-6 11 Ornithology Zoology CZ9ZT WOS:000367457200040 2019-02-21 J Neuheimer, AB; Hartvig, M; Heuschele, J; Hylander, S; Kiorboe, T; Olsson, KH; Sainmont, J; Andersen, KH Neuheimer, A. B.; Hartvig, M.; Heuschele, J.; Hylander, S.; Kiorboe, T.; Olsson, K. H.; Sainmont, J.; Andersen, K. H. Adult and offspring size in the ocean over 17 orders of magnitude follows two life history strategies ECOLOGY English Article adult size; carbon mass; evolution; life history; marine animals; offspring size; reproductive strategy SPAWNING MARINE-INVERTEBRATES; EGG-SIZE; PROPAGULE SIZE; EVOLUTION; MORTALITY; FISHES; NUMBER; MODEL; ZOOPLANKTON; CONSTRAINTS Explaining variability in offspring vs. adult size among groups is a necessary step to determine the evolutionary and environmental constraints shaping variability in life history strategies. This is of particular interest for life in the ocean where a diversity of offspring development strategies is observed along with variability in physical and biological forcing factors in space and time. We compiled adult and offspring size for 407 pelagic marine species covering more than 17 orders of magnitude in body mass including Cephalopoda, Cnidaria, Crustaceans, Ctenophora, Elasmobranchii, Mammalia, Sagittoidea, and Teleost. We find marine life following one of two distinct strategies, with offspring size being either proportional to adult size (e.g., Crustaceans, Elasmobranchii, and Mammalia) or invariant with adult size (e.g., Cephalopoda, Cnidaria, Sagittoidea, Teleosts, and possibly Ctenophora). We discuss where these two strategies occur and how these patterns (along with the relative size of the offspring) may be shaped by physical and biological constraints in the organism's environment. This adaptive environment along with the evolutionary history of the different groups shape observed life history strategies and possible group-specific responses to changing environmental conditions (e.g., production and distribution). [Neuheimer, A. B.; Hartvig, M.; Heuschele, J.; Hylander, S.; Kiorboe, T.; Olsson, K. H.; Sainmont, J.; Andersen, K. H.] Tech Univ Denmark, Natl Inst Aquat Resources, Ctr Ocean Life, Charlottenlund Slot, DK-2920 Charlottenlund, Denmark; [Neuheimer, A. B.; Hartvig, M.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Macroecol Evolut & Climate, DK-2100 Copenhagen, Denmark; [Neuheimer, A. B.] Univ Hawaii Manoa, Dept Oceanog, Honolulu, HI 96822 USA; [Hartvig, M.] Univ Gottingen, JF Blumenbach Inst Zool & Anthropol, Syst Conservat Biol, D-37073 Gottingen, Germany; [Hylander, S.] Linnaeus Univ, EEMiS, Ctr Ecol & Evolut Microbial Model Syst, SE-39182 Kalmar, Sweden Neuheimer, AB (reprint author), Tech Univ Denmark, Natl Inst Aquat Resources, Ctr Ocean Life, Charlottenlund Slot, Jaegersborg Alle, DK-2920 Charlottenlund, Denmark. abneuheimer@gmail.com Heuschele, Jan/A-8794-2013; Neuheimer, Anna/Q-3023-2017 Heuschele, Jan/0000-0001-8203-0542; Neuheimer, Anna/0000-0002-9470-7140; Andersen, Ken Haste/0000-0002-8478-3430 Danish National Research Foundation; Villum Kann Rasmussen Foundation The authors thank the Danish National Research Foundation for support to the Center for Macroecology, Evolution and Climate and the Villum Kann Rasmussen Foundation for support to the Centre for Ocean Life. Andersen KH, 2008, THEOR POPUL BIOL, V73, P490, DOI 10.1016/j.tpb.2008.02.001; Andersen KH, 2006, AM NAT, V168, P54, DOI 10.1086/504849; Andersen K. H., 2016, ANN REV MARINE SCI; Barnes C, 2010, ECOLOGY, V91, P222, DOI 10.1890/08-2061.1; BERRILL NJ, 1949, BIOL REV, V24, P393, DOI 10.1111/j.1469-185X.1949.tb00581.x; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Caval-Holme F, 2013, EVOLUTION, V67, P3537, DOI 10.1111/evo.12210; Charnov EL, 2006, AM NAT, V167, P578, DOI 10.1086/501141; CHIA FS, 1984, CAN J ZOOL, V62, P1205, DOI 10.1139/z84-176; China V, 2014, P NATL ACAD SCI USA, V111, P8083, DOI 10.1073/pnas.1323205111; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; de Jong G, 2005, SCIENCE, V309, P1193, DOI 10.1126/science.1117591; DUARTE CM, 1989, OECOLOGIA, V80, P401, DOI 10.1007/BF00379043; Einum S, 2002, P ROY SOC B-BIOL SCI, V269, P2325, DOI 10.1098/rspb.2002.2150; Falster DS, 2008, AM NAT, V172, P299, DOI 10.1086/589889; FEIGENBAUM DL, 1984, OCEANOGR MAR BIOL, V22, P343; Freedman JA, 2002, REV FISH BIOL FISHER, V12, P403, DOI 10.1023/A:1025365210414; GRONDAHL F, 1989, MAR ECOL PROG SER, V56, P119, DOI 10.3354/meps056119; Hendry AP, 2003, EVOL ECOL RES, V5, P421; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; Kiflawi M, 2006, OIKOS, V113, P168, DOI 10.1111/j.0030-1299.2001.14378.x; Kinnison MT, 2001, EVOLUTION, V55, P1656; Kiorboe T, 2013, LIMNOL OCEANOGR, V58, P1843, DOI 10.4319/lo.2013.58.5.1843; Kiorboe T, 2009, P NATL ACAD SCI USA, V106, P12394, DOI 10.1073/pnas.0903350106; Krogh A., 1959, COMP PHYSL RESP MECH; Levitan DR, 2006, INTEGR COMP BIOL, V46, P298, DOI 10.1093/icb/icj025; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; Levitan DR, 1996, AM NAT, V148, P174, DOI 10.1086/285917; Margulis L, 2009, KINGDOMS AND DOMAINS: AN ILLUSTRATED GUIDE TO THE PHYLA OF LIFE ON EARTH, 4TH EDITION, P1, DOI 10.1016/B978-0-12-373621-5.00017-9; Martens EA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1346; MAUCHLINE J., 1959, PROC ZOOL SOC LONDON, V132, P627; Moles AT, 2006, OIKOS, V113, P91, DOI 10.1111/j.0030-1299.2006.14194.x; Moran AL, 2004, EVOLUTION, V58, P2718; Moran AL, 2009, BIOL BULL-US, V216, P226; MUNK WH, 1952, J MAR RES, V11, P215; Ohman MD, 2001, NATURE, V412, P638, DOI 10.1038/35088068; Olsson K., 2015, THESIS; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; PETERSON WT, 1994, LIMNOL OCEANOGR, V39, P1594, DOI 10.4319/lo.1994.39.7.1594; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; R Development Core Team, 2013, R LANG ENV STAT COMP; Regnier T, 2013, ECOL FRESHW FISH, V22, P169, DOI 10.1111/eff.12018; Ricciardi A, 1998, MAR ECOL PROG SER, V163, P245, DOI 10.3354/meps163245; Rombough PJ, 2007, CAN J FISH AQUAT SCI, V64, P692, DOI 10.1139/F07-047; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Thygesen UH, 2005, P ROY SOC B-BIOL SCI, V272, P1323, DOI 10.1098/rspb.2005.3094; Tiselius P, 2013, LIMNOL OCEANOGR, V58, P1657, DOI 10.4319/lo.2013.58.5.1657; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Warton DI, 2012, METHODS ECOL EVOL, V3, P257, DOI 10.1111/j.2041-210X.2011.00153.x; Yoshizawa M, 2008, J EXP BIOL, V211, P292, DOI 10.1242/jeb.012864 55 14 14 2 43 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 1939-9170 ECOLOGY Ecology DEC 2015 96 12 3303 3311 10.1890/14-2491.1 9 Ecology Environmental Sciences & Ecology CZ7OE WOS:000367287900017 26909435 2019-02-21 J Wenk, EH; Falster, DS Wenk, Elizabeth Hedi; Falster, Daniel S. Quantifying and understanding reproductive allocation schedules in plants ECOLOGY AND EVOLUTION English Article Functional traits; growth strategy; iteroparous; life history; maximum height; reproductive allocation CERBERIOPSIS-CANDELABRA APOCYNACEAE; LIFE-HISTORY EVOLUTION; RAIN-FOREST TREE; FUNCTIONAL TRAITS; SEED PRODUCTION; COMPARATIVE DEMOGRAPHY; POPULATION-DYNAMICS; RESOURCE-ALLOCATION; ECONOMICS SPECTRUM; COMMUNITY ECOLOGY A plant's reproductive allocation (RA) schedule describes the fraction of surplus energy allocated to reproduction as it increases in size. While theorists use RA schedules as the connection between life history and energy allocation, little is known about RA schedules in real vegetation. Here we review what is known about RA schedules for perennial plants using studies either directly quantifying RA or that collected data from which the shape of an RA schedule can be inferred. We also briefly review theoretical models describing factors by which variation in RA may arise. We identified 34 studies from which aspects of an RA schedule could be inferred. Within those, RA schedules varied considerably across species: some species abruptly shift all resources from growth to reproduction; most others gradually shift resources into reproduction, but under a variety of graded schedules. Available data indicate the maximum fraction of energy allocated to production ranges from 0.1 to 1 and that shorter lived species tend to have higher initial RA and increase their RA more quickly than do longer-lived species. Overall, our findings indicate, little data exist about RA schedules in perennial plants. Available data suggest a wide range of schedules across species. Collection of more data on RA schedules would enable a tighter integration between observation and a variety of models predicting optimal energy allocation, plant growth rates, and biogeochemical cycles. [Wenk, Elizabeth Hedi; Falster, Daniel S.] Macquarie Univ, Biol Sci, N Ryde, NSW 2109, Australia Wenk, EH (reprint author), Macquarie Univ, Biol Sci, N Ryde, NSW 2109, Australia. ehwenk@gmail.com Falster, Daniel/0000-0002-9814-092X Australian Research Council [DP110102086, FL100100080] Australian Research Council (Grant/Award Number: 'DP110102086', 'FL100100080'). ALVAREZBUYLLA ER, 1992, J ECOL, V80, P275, DOI 10.2307/2261011; ASHMAN TL, 1994, AM NAT, V144, P300, DOI 10.1086/285676; Barot S, 2005, EVOL ECOL RES, V7, P1051; Bazzaz F. A., 2000, Seeds: the ecology of regeneration in plant communities, P1, DOI 10.1079/9780851994321.0001; Bender MH, 2000, BOT REV, V66, P311, DOI 10.1007/BF02868921; Bonser SP, 2009, PERSPECT PLANT ECOL, V11, P31, DOI 10.1016/j.ppees.2008.10.003; Burns JH, 2010, J ECOL, V98, P334, DOI 10.1111/j.1365-2745.2009.01634.x; CHAPIN FS, 1987, BIOSCIENCE, V37, P49, DOI 10.2307/1310177; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Chen H, 2010, AM J BOT, V97, P611, DOI 10.3732/ajb.0900204; Cleary MB, 2008, J ARID ENVIRON, V72, P285, DOI 10.1016/j.jaridenv.2007.07.013; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COMPS B, 1994, ANN SCI FOREST, V51, P11, DOI 10.1051/forest:19940102; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; Cornwell WK, 2014, J ECOL, V102, P345, DOI 10.1111/1365-2745.12208; Davies SJ, 1999, AM J BOT, V86, P1786, DOI 10.2307/2656675; DesKauwe M. G., 2014, NEW PHYTOL, V203, P883; desRidder F., 1992, ECOGRAPHY, V15, P144; desRidder F., 1992, ECOGRAPHY, V15, P129; DesWit CT, 1978, SIMULATION ASSIMILAT; Ehlers BK, 2004, PLANT ECOL, V174, P71, DOI 10.1023/B:VEGE.0000046060.77491.b9; ENGEN S, 1994, THEOR POPUL BIOL, V46, P232, DOI 10.1006/tpbi.1994.1026; ENRIGHT NJ, 1985, AUST J ECOL, V10, P461, DOI 10.1111/j.1442-9993.1985.tb00907.x; Falster DS, 2011, J ECOL, V99, P148, DOI 10.1111/j.1365-2745.2010.01735.x; Falster DS, 2005, OIKOS, V111, P57, DOI 10.1111/j.0030-1299.2005.13383.x; Fisher R, 2010, NEW PHYTOL, V187, P666, DOI 10.1111/j.1469-8137.2010.03340.x; Forbis TA, 2004, AM J BOT, V91, P1147, DOI 10.3732/ajb.91.7.1147; Franco M, 2004, ECOLOGY, V85, P531, DOI 10.1890/02-0651; Garcia MB, 2008, AM J BOT, V95, P258, DOI 10.3732/ajb.95.2.258; Genet H, 2010, TREE PHYSIOL, V30, P177, DOI 10.1093/treephys/tpp105; GREENE DF, 1994, ECOLOGY, V75, P642, DOI 10.2307/1941722; Gurney WSC, 1996, FUNCT ECOL, V10, P602, DOI 10.2307/2390170; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; Hemborg M., 1998, OIKOS, V82, P149; Henery ML, 2001, OIKOS, V92, P479, DOI 10.1034/j.1600-0706.2001.920309.x; Herrera CM, 2010, ECOLOGY, V91, P422, DOI 10.1890/09-0849.1; HERRERA CM, 1991, ECOLOGY, V72, P1436, DOI 10.2307/1941116; Hirayama D, 2008, ECOL RES, V23, P451, DOI 10.1007/s11284-007-0398-4; Hirayama D, 2004, PLANT SPEC BIOL, V19, P185, DOI 10.1111/j.1442-1984.2004.00114.x; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; Jasienski M, 1999, OIKOS, V84, P321, DOI 10.2307/3546729; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; KARLSSON PS, 1990, OIKOS, V59, P393, DOI 10.2307/3545151; Katsukawa Y, 2002, POPUL ECOL, V44, P265, DOI 10.1007/s101440200030; Kelly D, 2002, ANNU REV ECOL SYST, V33, P427, DOI 10.1146/annurev.ecolsys.33.020602.095433; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; KLINKHAMER PGL, 1992, FUNCT ECOL, V6, P308, DOI 10.2307/2389522; Klinkhamer PGL, 1997, J EVOLUTION BIOL, V10, P529; KOHYAMA T, 1982, BOT MAG TOKYO, V95, P167, DOI 10.1007/BF02488583; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozowski J., 1987, EVOLUTIONARY ECOLOGY, V1, P231; Kozowski J., 1987, EVOL BIOL, V1, P214; Lord JM, 2006, OECOLOGIA, V150, P310, DOI 10.1007/s00442-006-0523-z; Makela A, 1997, FOREST SCI, V43, P7; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; McNamara JM, 2009, P ROY SOC B-BIOL SCI, V276, P4061, DOI 10.1098/rspb.2009.0959; Miller TEX, 2008, AM NAT, V171, P141, DOI 10.1086/524961; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; Moorcroft PR, 2001, ECOL MONOGR, V71, P557, DOI 10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2; Muller Ivo, 2000, Perspectives in Plant Ecology Evolution and Systematics, V3, P115, DOI 10.1078/1433-8319-00007; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; MYERS RA, 1983, CAN J FISH AQUAT SCI, V40, P612, DOI 10.1139/f83-080; Nakashizuka T, 1997, J PLANT RES, V110, P7, DOI 10.1007/BF02506837; Niinemets U, 2002, TREE PHYSIOL, V22, P515, DOI 10.1093/treephys/22.8.515; Niklas KJ, 2003, EVOL ECOL RES, V5, P79; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; OYAMA K, 1990, J ECOL, V78, P648, DOI 10.2307/2260890; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; PINERO D, 1982, J ECOL, V70, P473, DOI 10.2307/2259916; Pino J, 2002, ACTA OECOL, V23, P321, DOI 10.1016/S1146-609X(02)01161-X; PITELKA LF, 1977, ECOLOGY, V58, P1055, DOI 10.2307/1936925; Poorter L, 2005, J ECOL, V93, P268, DOI 10.1111/j.1365-2745.2005.00958.x; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; PRITTS MP, 1983, AM J BOT, V70, P216, DOI 10.2307/2443266; PRITTS MP, 1985, AM J BOT, V72, P446, DOI 10.2307/2443537; PUGLIESE A, 1990, EVOL ECOL, V4, P75, DOI 10.1007/BF02270717; R Core Team, 2014, R LANG ENV STAT COMP; Read J, 2008, AM J BOT, V95, P558, DOI 10.3732/ajb.2007194; Read J, 2006, J TROP ECOL, V22, P621, DOI 10.1017/S0266467406003464; Reekie E. G., 2005, REPROD ALLOCATION PL, P247; REEKIE EG, 1987, AM NAT, V129, P897, DOI 10.1086/284682; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; REINARTZ JA, 1984, J ECOL, V72, P897, DOI 10.2307/2259539; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Sakai A, 2003, EVOL ECOL RES, V5, P671; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; Santos-del-Blanco L, 2012, ANN BOT-LONDON, V110, P1449, DOI 10.1093/aob/mcs210; Santos-del-Blanco L, 2010, FOR SYST, V19, P381; Scheiter S, 2013, NEW PHYTOL, V198, P957, DOI 10.1111/nph.12210; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; Smith HM, 2013, PLANT SCI, V207, P158, DOI 10.1016/j.plantsci.2013.02.014; Stearns S, 1992, EVOLUTION LIFE HIST; SVENSSON BM, 1993, J ECOL, V81, P635, DOI 10.2307/2261662; Thomas SC, 1996, OIKOS, V76, P145, DOI 10.2307/3545756; Thomas SC, 2011, TREE PHYSIOL-NETH, V4, P33, DOI 10.1007/978-94-007-1242-3_2; Thomas SC, 2010, TREE PHYSIOL, V30, P555, DOI 10.1093/treephys/tpq005; THORNLEY JH, 1972, ANN BOT-LONDON, V36, P419, DOI 10.1093/oxfordjournals.aob.a084601; Turner I. M., 2001, ECOLOGY TREES TROPIC; Weiner J, 2004, PERSPECT PLANT ECOL, V6, P207, DOI 10.1078/1433-8319-00083; Weiner J, 2009, J ECOL, V97, P1220, DOI 10.1111/j.1365-2745.2009.01559.x; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; WILSON AM, 1989, FUNCT ECOL, V3, P297, DOI 10.2307/2389369; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright SJ, 2005, J TROP ECOL, V21, P307, DOI 10.1017/S0266467405002294; Young T. P., 2010, NATURE ED KNOWLEDGE, V3, P2; YOUNG TP, 1984, J ECOL, V72, P637, DOI 10.2307/2260073; ZAMMIT CA, 1993, J ECOL, V81, P499, DOI 10.2307/2261528 110 21 23 1 48 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. DEC 2015 5 23 5521 5538 10.1002/ece3.1802 18 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology CZ9QV WOS:000367433000008 27069603 DOAJ Gold, Green Published 2019-02-21 J Kitchen, SG; Meyer, SE; Carlson, SL Kitchen, Stanley G.; Meyer, Susan E.; Carlson, Stephanie L. Mechanisms for maintenance of dominance in a nonclonal desert shrub ECOSPHERE English Article age structure; blackbrush; Coleogyne ramosissima; Colorado Plateau; dendrochronology; growth rate; life-history strategies; masting; Mojave Desert; seedling bank; stress tolerance BLACKBRUSH COLEOGYNE-RAMOSISSIMA; MOJAVE-DESERT; PLANT-COMMUNITIES; SOUTHWESTERN UTAH; SEED-GERMINATION; PERENNIAL PLANTS; COLORADO PLATEAU; SONORAN DESERT; UNITED-STATES; COMPETITION Blackbrush (Coleogyne ramosissima: Rosaceae) is a slow-growing, non-clonal shrub that is regionally dominant on xeric, shallow soils in the North American Mojave Desert-Great Basin transition zone and southern Colorado Plateau. Blackbrush seed production is concentrated in mast years, and most seeds are cached and later consumed by heteromyid rodents. Vegetation histories show that blackbrush stands can persist apparently unchanged for over a century. We used dendrochronological techniques to examine plant age distributions, recruitment patterns and growth rates, to ascertain how blackbrush achieves this long-term population stability. Our study addressed the following questions: (1) What is the role of within-clump recruitment in long-term patterns of clump persistence? Do blackbrush clumps accrue new cohorts through time? (2) How does recruitment vary temporally, specifically in relation to years of mast seed production and climate variability? (3) What impact does intra-specific competition have on plant growth rates? To address these questions, we aged stems from 208 clumps in five Mojave Desert and four Colorado Plateau populations. Individual plant age estimates ranged from 3 to 122 years. Clumps comprised of multiple-aged cohorts were ubiquitous. Within clumps, plant and cohort number increased with clump age, suggesting a steady accumulation of new cohorts over time. Clumps in Colorado Plateau populations accumulated cohorts at a significantly faster rate than clumps in Mojave Desert populations. Recruitment occurred in relatively frequent pulses. It was only partially synchronized with mast years, with some seedling establishment following years of low seed production. Individuals that recruited into established clumps averaged half the radial growth rate of individuals that recruited into openings. Blackbrush recruitment is bimodal, with initial colonization of open spaces from rodent caches but with long-term clump persistence a product of periodic, within-clump recruitment of new plants. This dual recruitment strategy provides a mechanism for continued community dominance in an abiotically stressful environment under low levels of disturbance. [Kitchen, Stanley G.; Meyer, Susan E.; Carlson, Stephanie L.] US Forest Serv, USDA, Rocky Mt Res Stn, Shrub Sci Lab, Provo, UT 84606 USA Kitchen, SG (reprint author), US Forest Serv, USDA, Rocky Mt Res Stn, Shrub Sci Lab, Provo, UT 84606 USA. skitchen@fs.fed.us ACKERMAN T L, 1979, Southwestern Naturalist, V24, P399, DOI 10.2307/3671296; Ackerman T. L., 1974, PHENOLOGY SEASONALIT, P215; Ackerman T. L., 1980, GREAT BASIN NAT, V4, P4; Auger J., 2005, THESIS; BEATLEY JC, 1976, J MAMMAL, V57, P67, DOI 10.2307/1379513; Bowns J. E., 1976, 27 UT AGR EXP STAT; Bowns J. E., 1973, THESIS; Brooker RW, 2008, J ECOL, V96, P18, DOI 10.1111/j.1365-2745.2007.01295.x; Brooks ML, 2006, J ARID ENVIRON, V67, P148, DOI 10.1016/j.jaridenv.2006.09.027; Brooks M. L., 2007, RMRSGTR202 USDA FOR, P57; Brooks ML, 2003, WEST N AM NATURALIST, V63, P283; CALLISON J, 1985, J RANGE MANAGE, V38, P535, DOI 10.2307/3899747; CALLISON J, 1985, GREAT BASIN NAT, V45, P321; CAWKER KB, 1980, J BIOGEOGR, V7, P237, DOI 10.2307/2844630; Christensen E. M., 1963, J RANGE MANAGE, V16, P118; Coats LL, 2008, QUATERNARY RES, V70, P322, DOI 10.1016/j.yqres.2008.04.006; Cody ML, 2000, J VEG SCI, V11, P351, DOI 10.2307/3236627; Cole K.L., 1990, PACKRAT MIDDENS LAST; COLE KL, 1990, PALAEOGEOGR PALAEOCL, V76, P349, DOI 10.1016/0031-0182(90)90120-V; Cook ER, 2004, SCIENCE, V306, P1015, DOI 10.1126/science.1102586; Eugenio M, 2012, J ARID ENVIRON, V76, P30, DOI 10.1016/j.jaridenv.2011.07.001; Genova M, 2013, AN JARDIN BOT MADRID, V70, P178, DOI 10.3989/ajbm.2359; Grime J. P., 1979, BOT J SCOTLAND, V43, P151; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Holmgren M, 1997, ECOLOGY, V78, P1966, DOI 10.2307/2265937; HUNTER KL, 1994, QUATERNARY RES, V42, P216, DOI 10.1006/qres.1994.1071; Hunter R., 1989, W N AM NAT, V49, P79; Jones LC, 2014, RESTOR ECOL, V22, P692, DOI 10.1111/rec.12128; Kay C., 2014, PUBLICATION USDI; Kelly D, 2002, ANNU REV ECOL SYST, V33, P427, DOI 10.1146/annurev.ecolsys.33.020602.095433; KING JE, 1977, QUATERNARY RES, V8, P191, DOI 10.1016/0033-5894(77)90045-X; Lambert SE, 2011, J ARID ENVIRON, V75, P106, DOI 10.1016/j.jaridenv.2010.09.019; Lin GH, 1996, OECOLOGIA, V106, P8, DOI 10.1007/BF00334402; McAuliffe JR, 2007, J ARID ENVIRON, V69, P96, DOI 10.1016/j.jaridenv.2006.08.007; MCAULIFFE JR, 1988, AM NAT, V131, P459, DOI 10.1086/284802; MCAULIFFE JR, 1986, ECOLOGY, V67, P276, DOI 10.2307/1938533; Meko DM, 2007, GEOPHYS RES LETT, V34, DOI 10.1029/2007GL029988; Meyer S. E., 2015, ACTA OECOL, P65; Meyer SE, 2005, PLANT ECOL, V178, P171, DOI 10.1007/s11258-004-3038-x; Meyer SE, 2015, AM J BOT, V102, P1666, DOI 10.3732/ajb.1500209; Milton SJ, 1997, J ARID ENVIRON, V37, P487, DOI 10.1006/jare.1996.0292; Miriti MN, 2006, J ECOL, V94, P973, DOI 10.1111/j.1365-2745.2006.01138.x; Montgomery RA, 2010, ECOLOGY, V91, P3641, DOI 10.1890/09-1663.1; Myers-Smith IH, 2015, EARTH-SCI REV, V140, P1, DOI 10.1016/j.earscirev.2014.10.004; Olano JM, 2011, AM J BOT, V98, P1016, DOI 10.3732/ajb.1000505; Pendleton B. K., 2008, AGR HDB, V727, P422; Pendleton BK, 2004, J ARID ENVIRON, V59, P229, DOI 10.1016/j.jaridenv.2003.12.009; PENDLETON BK, 1995, USDA INTERM, V315, P223; Poore RE, 2009, WEST N AM NATURALIST, V69, P556, DOI 10.3398/064.069.0416; Richardson BA, 2014, ECOL APPL, V24, P413, DOI 10.1890/13-0587.1; Richardson BA, 2012, BOTANY, V90, P293, DOI [10.1139/B2012-002, 10.1139/b2012-002]; ROUGHTON RD, 1972, ECOLOGY, V53, P615, DOI 10.2307/1934775; Schweingruber F. H., 2005, Forest Snow and Landscape Research, V79, P195; Schwinning S, 1998, OECOLOGIA, V113, P447, DOI 10.1007/s004420050397; Seligman NG, 2000, J VEG SCI, V11, P893, DOI 10.2307/3236559; Silvertown J., 2001, INTRO PLANT POPULATI; SMITH SD, 2004, PHOTOSYNTHETIC ADAPT, P262; Srur AM, 2009, J ARID ENVIRON, V73, P1074, DOI 10.1016/j.jaridenv.2009.06.008; Stokes M. A, 1968, INTRO TREE RING DATI; Summers HA, 2009, J ARID ENVIRON, V73, P1, DOI 10.1016/j.jaridenv.2008.09.010; Tachiki Y, 2010, J ECOL, V98, P1398, DOI 10.1111/j.1365-2745.2010.01729.x; Valladares F, 2008, ANN BOT-LONDON, V102, P923, DOI 10.1093/aob/mcn182; VANDEVENDER TR, 1990, PACKRAT MIDDENS LAST; Webb R. H., 2011, PARK SCI, V28, P73; WEBB RH, 1987, ECOLOGY, V68, P478, DOI 10.2307/1938453; West N. E., 1983, TEMPERATE DESERTS SE, P399; WHITTAKER RH, 1965, SCIENCE, V147, P250, DOI 10.1126/science.147.3655.250; Wright A, 2014, ECOLOGY, V95, P2213, DOI 10.1890/13-1855.1 68 1 1 1 25 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 2150-8925 ECOSPHERE Ecosphere DEC 2015 6 12 252 10.1890/ES15-00083.1 15 Ecology Environmental Sciences & Ecology CZ7WS WOS:000367311800005 DOAJ Gold 2019-02-21 J Smith, WE; Kwak, TJ Smith, William E.; Kwak, Thomas J. Tropical insular fish assemblages are resilient to flood disturbance ECOSPHERE English Article Agonostomus monticola; amphidromous fishes; assemblage; Caribbean island; community; disturbance; Eleotris perniger; flooding; Gobiomorus dormitor; Sicydium; stochastic processes; tropical stream fishes REGULATED CALIFORNIA STREAM; LIFE-HISTORY STRATEGIES; COMMUNITY STRUCTURE; PUERTO-RICO; REGIMES; STOCHASTICITY; DISPERSAL; DIVERSITY; ABUNDANCE; DYNAMICS Periods of stable environmental conditions, favoring development of ecological communities regulated by density-dependent processes, are interrupted by random periods of disturbance that may restructure communities. Disturbance may affect populations via habitat alteration, mortality, or displacement. We quantified fish habitat conditions, density, and movement before and after a major flood disturbance in a Caribbean island tropical river using habitat surveys, fish sampling and population estimates, radio telemetry, and passively monitored PIT tags. Native stream fish populations showed evidence of acute mortality and downstream displacement of surviving fish. All fish species were reduced in number at most life stages after the disturbance, but populations responded with recruitment and migration into vacated upstream habitats. Changes in density were uneven among size classes for most species, indicating altered size structures. Rapid recovery processes at the population level appeared to dampen effects at the assemblage level, as fish assemblage parameters (species richness and diversity) were unchanged by the flooding. The native fish assemblage appeared resilient to flood disturbance, rapidly compensating for mortality and displacement with increased recruitment and recolonization of upstream habitats. [Smith, William E.] N Carolina State Univ, Dept Biol, North Carolina Cooperat Fish & Wildlife Res Unit, Raleigh, NC 27695 USA; [Kwak, Thomas J.] N Carolina State Univ, US Geol Survey, North Carolina Cooperat Fish & Wildlife Res Unit, Dept Biol, Raleigh, NC 27695 USA Smith, WE (reprint author), North Carolina Dept Nat Resources, Div Marine Fisheries, Morehead City, NC 28557 USA. wes2316@gmail.com Puerto Rico Department of Natural and Environmental Resources through Federal Aid in Sport Fish Restoration Funds [F-50] This research was funded by grants from the Puerto Rico Department of Natural and Environmental Resources through Federal Aid in Sport Fish Restoration Funds (Project F-50). Jose Berrios Diaz, Miguel Garcia Bermudez, Craig Lilyestrom, Patrick Cooney, Wendy Moore, Brennan Dooley, Phillip Epperly, and Steve Williams assisted with administration, logistics, and field work. This work benefitted from comments and manuscript reviews by James Gilliam, Kevin Gross, Ernie Hain, Joseph Hightower, Craig Lilyestrom, and three anonymous reviewers. The North Carolina Cooperative Fish and Wildlife Research Unit is jointly supported by North Carolina State University, North Carolina Wildlife Resources Commission, U.S. Geological Survey, U.S. Fish and Wildlife Service, and Wildlife Management Institute. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Annear T, 2004, INSTREAM FLOWS RIVER; Aymes JC, 2009, ECOL FRESHW FISH, V18, P507, DOI 10.1111/j.1600-0633.2009.00373.x; Bell K.N.I., 1994, THESIS; Bovee KD, 1978, 5 US FISH WILDL SERV; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Cooney PB, 2013, BIOSCIENCE, V63, P176, DOI 10.1525/bio.2013.63.3.6; Covich AP, 2006, J N AM BENTHOL SOC, V25, P99, DOI 10.1899/0887-3593(2006)25[99:EODAHD]2.0.CO;2; Covich AP, 1996, BIOTROPICA, V28, P484, DOI 10.2307/2389090; Cross WF, 2011, ECOL APPL, V21, P2016, DOI 10.1890/10-1719.1; Dauwalter DC, 2007, N AM J FISH MANAGE, V27, P162, DOI 10.1577/M06-008.1; DAYTON PK, 1971, ECOL MONOGR, V41, P351, DOI 10.2307/1948498; Death R. G., 2008, Aquatic insects: challenges to populations, P103, DOI 10.1079/9781845933968.0103; Death RG, 1996, OECOLOGIA, V108, P567, DOI 10.1007/BF00333735; Death RG, 2010, RIVER RES APPL, V26, P15, DOI 10.1002/rra.1302; ERDMAN D. S., 1961, BULL MAR SCI GULF AND CARIBBEAN, V11, P448; Falke JA, 2010, AM FISH S S, V73, P207; Fausch KD, 2001, ECOL APPL, V11, P1438, DOI 10.2307/3060931; FITZSIMONS JM, 1995, ENVIRON BIOL FISH, V43, P39, DOI 10.1007/BF00001816; GROSSMAN GD, 1985, AM NAT, V126, P275, DOI 10.1086/284415; GROSSMAN GD, 1982, AM NAT, V120, P423, DOI 10.1086/284004; Gunderson LH, 2000, ANNU REV ECOL SYST, V31, P425, DOI 10.1146/annurev.ecolsys.31.1.425; HARMELINVIVIEN ML, 1986, CORAL REEFS, V5, P55, DOI 10.1007/BF00270353; Hayes Daniel B., 2007, P327; Hein CL, 2011, FRESHWATER BIOL, V56, P1002, DOI 10.1111/j.1365-2427.2010.02537.x; Holmquist JG, 1998, CONSERV BIOL, V12, P621, DOI 10.1046/j.1523-1739.1998.96427.x; Houde ED, 2005, CRC PUBLICATION, P05; Hubbell Stephen P., 2001, V32, pi; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/f00-239; Johnson Pieter T.J., 2008, Frontiers in Ecology and the Environment, V6, P357, DOI 10.1890/070156; Kiernan JD, 2012, ECOL APPL, V22, P1472; Koster WM, 2013, MAR FRESHWATER RES, V64, P31, DOI 10.1071/MF12196; Kwak T. J., 2007, FISHERY POPULATION H; Kwak Thomas J., 2007, P677; Ludwig D, 2001, ANNU REV ECOL SYST, V32, P481, DOI 10.1146/annurev.ecolsys.32.081501.114116; Lugo AE, 2012, CARIBBEAN FOREST TAP, P3; Lunn D, 2009, STAT MED, V28, P3049, DOI 10.1002/sim.3680; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Marchetti MP, 2001, ECOL APPL, V11, P530, DOI 10.2307/3060907; Martinuzzi S, 2007, LANDSCAPE URBAN PLAN, V79, P288, DOI 10.1016/j.landurbplan.2006.02.014; MATTHEWS WJ, 1982, AM MIDL NAT, V107, P42, DOI 10.2307/2425187; McDowall RM, 2010, REV FISH BIOL FISHER, V20, P87, DOI 10.1007/s11160-009-9125-2; McDowall RM, 1999, ICES J MAR SCI, V56, P410, DOI 10.1006/jmsc.1999.0450; McDowall RM, 1988, DIADROMY FISHES MIGR; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Peterson JT, 2004, T AM FISH SOC, V133, P462, DOI 10.1577/03-044; Pickett S. T. A., 1985, ECOLOGY PATCH DISTUR; Pike AS, 2010, EARTH SURF PROC LAND, V35, P1402, DOI 10.1002/esp.1978; Poff NL, 2010, FRESHWATER BIOL, V55, P194, DOI 10.1111/j.1365-2427.2009.02272.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1989, CAN J FISH AQUAT SCI, V46, P1805, DOI 10.1139/f89-228; Pringle CM, 1997, J N AM BENTHOL SOC, V16, P425, DOI 10.2307/1468028; R Development Core Team, 2012, R LANG ENV STAT COMP; Ramirez A, 2009, J N AM BENTHOL SOC, V28, P1070, DOI 10.1899/08-165.1; RESH VH, 1988, J N AM BENTHOL SOC, V7, P433, DOI 10.2307/1467300; Schoenfuss Heiko L., 2007, Bishop Museum Bulletin in Cultural and Environmental Studies, V3, P125; Shannon CE., 1949, MATH THEORY COMMUNIC; SHMIDA A, 1985, J BIOGEOGR, V12, P1, DOI 10.2307/2845026; Smith WE, 2014, J FISH BIOL, V84, P897, DOI 10.1111/jfb.12316; Smith WE, 2014, J FISH BIOL, V84, P913, DOI 10.1111/jfb.12317; SOUSA WP, 1984, ANNU REV ECOL SYST, V15, P353, DOI 10.1146/annurev.es.15.110184.002033; Stanley EH, 2010, J N AM BENTHOL SOC, V29, P67, DOI 10.1899/08-027.1; STRANGE EM, 1993, ENVIRON BIOL FISH, V36, P1, DOI 10.1007/BF00005973; SWINGLE HS, 1956, T N AM WILDL C, V21, P298; Thompson R, 2006, J ANIM ECOL, V75, P476, DOI 10.1111/j.1365-2656.2006.01068.x; Townsend CR, 1997, LIMNOL OCEANOGR, V42, P938, DOI 10.4319/lo.1997.42.5.0938; USGS, 2011, NAT WAT INF SYST; Valdez RA, 2001, ECOL APPL, V11, P686, DOI 10.2307/3061110; Waide R. B., 2012, CARIBBEAN FOREST TAP, P42; Walters C. J, 1992, QUANTITATIVE FISHERI; Williams B. K., 2002, ANAL MANAGEMENT ANIM; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Winemiller KO, 1995, ENCY ENV BIOL, V2, P49; Wyatt RJ, 2002, CAN J FISH AQUAT SCI, V59, P695, DOI 10.1139/F02-041; YANT PR, 1984, AM NAT, V124, P573, DOI 10.1086/284296; Zeug S. C., 2011, CANADIAN J FISHERIES, V64, P1291 76 3 3 1 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2150-8925 ECOSPHERE Ecosphere DEC 2015 6 12 279 10.1890/ES15-00224.1 16 Ecology Environmental Sciences & Ecology CZ7WS WOS:000367311800032 DOAJ Gold 2019-02-21 J Ashu, EE; Xu, JP Ashu, Eta Ebasi; Xu, Jianping The roles of sexual and asexual reproduction in the origin and dissemination of strains causing fungal infectious disease outbreaks INFECTION GENETICS AND EVOLUTION English Review Pathogenic fungi; Sex; Outbreaks; Selection; Muller's Ratchet; Life-history theory WHITE-NOSE SYNDROME; PYRENOPHORA-TRITICI-REPENTIS; F-SP CUBENSE; INVASIVE ASPERGILLOSIS; CRYPTOCOCCUS-GATTII; POPULATION-STRUCTURE; GENETIC DIVERSITY; BATRACHOCHYTRIUM-DENDROBATIDIS; FUSARIUM-PSEUDOGRAMINEARUM; MYCOSPHAERELLA-GRAMINICOLA Sexual reproduction commonly refers to the reproductive process in which genomes from two sources are combined into a single cell through mating and then the zygote genomes are partitioned to progeny cells through meiosis. Reproduction in the absence of mating and meiosis is referred to as asexual or clonal reproduction. One major advantage of sexual reproduction is that it generates genetic variation among progeny which may allow for faster adaptation of the population to novel and/or stressful environments. However, adaptation to stressful or new environments can still occur through mutation, in the absence of sex. In this review, we analyzed the relative contributions of sexual and asexual reproduction in the origin and spread of strains causing fungal infectious diseases outbreaks. The necessity of sex and the ability of asexual fungi to initiate outbreaks are discussed. We propose a framework that relates the modes of reproduction to the origin and propagation of fungal disease outbreaks. Our analyses suggest that both sexual and asexual reproduction can play critical roles in the origin of outbreak strains and that the rapid spread of outbreak strains is often accomplished through asexual expansion. (C) 2015 Elsevier B.V. All rights reserved. [Ashu, Eta Ebasi; Xu, Jianping] McMaster Univ, Dept Biol, Hamilton, ON L8S 4K1, Canada Xu, JP (reprint author), McMaster Univ, Dept Biol, 1280 Main St W, Hamilton, ON L8S 4K1, Canada. jpxu@mcmaster.ca Xu, Jianping/0000-0003-2915-2780 Natural Science and Engineering Research Council (NSERC) of Canada [531998] We thank Professor Jim Quinn for comments. We also want to acknowledge Dr. Elizabeth Akinnawo for her comments and suggestions. Research in our lab on fungal infectious diseases is supported by the Natural Science and Engineering Research Council (NSERC) (531998) of Canada. Aboukhaddour R, 2011, CAN J PLANT PATHOL, V33, P389, DOI 10.1080/07060661.2011.590821; Aboukhaddour R, 2013, CAN J PLANT PATHOL, V35, P256, DOI 10.1080/07060661.2013.782470; Akinsanmi OA, 2006, PLANT PATHOL, V55, P494, DOI 10.1111/j.1365-3059.2006.01398.x; Atallah ZK, 2010, FUNGAL GENET BIOL, V47, P416, DOI 10.1016/j.fgb.2010.02.003; Balajee SA, 2007, EUKARYOT CELL, V6, P1392, DOI 10.1128/EC.00164-07; Baldwin A, 2004, INFECT IMMUN, V72, P1537, DOI 10.1128/IAI.72.3.1538-1547.2004; Benedict K, 2014, EMERG INFECT DIS, V20, P349, DOI 10.3201/eid2003.131230; Berger L, 1998, P NATL ACAD SCI USA, V95, P9031, DOI 10.1073/pnas.95.15.9031; Billmyre RB, 2014, MBIO, V5, DOI 10.1128/mBio.01494-14; Blackwell M, 2011, AM J BOT, V98, P426, DOI 10.3732/ajb.1000298; Blehert DS, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002779; Blehert DS, 2009, SCIENCE, V323, P227, DOI 10.1126/science.1163874; Bovers M, 2009, FEMS YEAST RES, V9, P489, DOI 10.1111/j.1567-1364.2009.00494.x; Byrnes EJ, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000850; Camus V, 2014, MYCOPATHOLOGIA, V177, P319, DOI 10.1007/s11046-014-9746-4; Carvalho CR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026387; Chamberlain M., 1997, ADV BOT RES; Chang CC, 2008, J HOSP INFECT, V69, P33, DOI 10.1016/j.jhin.2008.02.010; Chen RS, 1996, GENETICS, V142, P1119; Chiller TM, 2013, NEW ENGL J MED, V369, P1610, DOI 10.1056/NEJMoa1304879; Chowdhary A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052871; Cogliati M, 2013, SCIENTIFICA, V2013; Costa SN, 2015, PLANT PATHOL, V64, P137, DOI 10.1111/ppa.12242; Dagenais TRT, 2009, CLIN MICROBIOL REV, V22, P447, DOI 10.1128/CMR.00055-08; de Jonge R, 2013, GENOME RES, V23, P1271, DOI 10.1101/gr.152660.112; Deitsch KW, 1997, MICROBIOL MOL BIOL R, V61, P281; Denning DW, 2011, FUTURE MICROBIOL, V6, P1229, DOI [10.2217/fmb.11.118, 10.2217/FMB.11.118]; Dong Y., 2015, PLOS PATHOG, V11; Dutech C, 2010, HEREDITY, V105, P220, DOI 10.1038/hdy.2009.164; Ene IV, 2014, NAT REV MICROBIOL, V12, P239, DOI 10.1038/nrmicro3236; Engering A, 2013, EMERG MICROBES INFEC, V2, DOI 10.1038/emi.2013.5; Etienne KA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049989; Farrer RA, 2011, P NATL ACAD SCI USA, V108, P18732, DOI 10.1073/pnas.1111915108; Feretzaki M, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003674; Finlay BB, 1997, MICROBIOL MOL BIOL R, V61, P136; Fisher MC, 2012, NATURE, V484, P186, DOI 10.1038/nature10947; Fisher MC, 2009, ANNU REV MICROBIOL, V63, P291, DOI 10.1146/annurev.micro.091208.073435; Fisher MC, 2000, J CLIN MICROBIOL, V38, P807; FLYNN NM, 1979, NEW ENGL J MED, V301, P358, DOI 10.1056/NEJM197908163010705; Fontaneto D, 2007, PLOS BIOL, V5, P914, DOI 10.1371/journal.pbio.0050087; Fourie G, 2009, APPL ENVIRON MICROB, V75, P4770, DOI 10.1128/AEM.00370-09; Fraser JA, 2005, NATURE, V437, P1360, DOI 10.1038/nature04220; Friesen TL, 2006, NAT GENET, V38, P953, DOI 10.1038/ng1839; Gardiner DM, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002952; Gascon C., 2007, AMPH CONS ACT PLAN P; Gomez-Moracho T, 2015, INFECT GENET EVOL, V31, P87, DOI 10.1016/j.meegid.2015.01.002; Gouveia MMC, 2005, MYCOLOGIA, V97, P396, DOI 10.3852/mycologia.97.2.396; Guinea J, 2011, J CLIN MICROBIOL, V49, P3498, DOI 10.1128/JCM.01159-11; Guo LJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095543; Gurung S, 2013, FUNGAL GENET BIOL, V52, P32, DOI 10.1016/j.fgb.2013.01.003; Hadrich I, 2013, EUR J CLIN MICROBIOL, V32, P277, DOI 10.1007/s10096-012-1740-5; Hagen F, 2015, FUNGAL GENET BIOL, V78, P16, DOI 10.1016/j.fgb.2015.02.009; Hagen F, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071148; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hawksworth DL, 2001, MYCOL RES, V105, P1422, DOI 10.1017/S0953756201004725; James TY, 2006, NATURE, V443, P818, DOI 10.1038/nature05110; James TY, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000458; Jezic M, 2012, MOL ECOL, V21, P87, DOI 10.1111/j.1365-294X.2011.05369.x; Jimenez-Diaz RM, 2006, PHYTOPATHOLOGY, V96, P288, DOI 10.1094/PHYTO-96-0288; Jin Y, 2008, PLANT DIS, V92, P923, DOI 10.1094/PDIS-92-6-0923; Jones KE, 2008, NATURE, V451, P990, DOI 10.1038/nature06536; Kentish F., 2015, IS THIS END BANANA; Khankhet J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0104684; Kidd SE, 2005, EUKARYOT CELL, V4, P1629, DOI 10.1128/EC.4.10.1629-1638.2005; Kidd SE, 2004, P NATL ACAD SCI USA, V101, P17258, DOI 10.1073/pnas.0402981101; Kolecka A, 2013, J CLIN MICROBIOL, V51, P2491, DOI 10.1128/JCM.00470-13; KONDRASHOV AS, 1988, NATURE, V336, P435, DOI 10.1038/336435a0; Kueck Ulrich, 2009, Fungal Biology Reviews, V23, P86, DOI 10.1016/j.fbr.2009.10.004; Lee SC, 2010, MICROBIOL MOL BIOL R, V74, P298, DOI 10.1128/MMBR.00005-10; Leenders A, 1996, J CLIN MICROBIOL, V34, P345; Leopardi S, 2015, CURR BIOL, V25, pR217, DOI 10.1016/j.cub.2015.01.047; Lin SJ, 2001, CLIN INFECT DIS, V32, P358, DOI 10.1086/318483; Lin XR, 2005, NATURE, V434, P1017, DOI 10.1038/nature03448; Litvintseva AP, 2014, J CLIN MICROBIOL, V52, P3216, DOI 10.1128/JCM.00936-14; Liu F, 2009, PLANT SYST EVOL, V277, P61, DOI 10.1007/s00606-008-0103-2; LIVELY CM, 1990, NATURE, V344, P864, DOI 10.1038/344864a0; Longcore JE, 1999, MYCOLOGIA, V91, P219, DOI 10.2307/3761366; Malkin E., 2014, NY TIMES; Mandel MA, 2007, EUKARYOT CELL, V6, P1189, DOI 10.1128/EC.00117-07; Martel A, 2014, SCIENCE, V346, P630, DOI 10.1126/science.1258268; Maruthachalam K, 2010, PHYTOPATHOLOGY, V100, P1222, DOI 10.1094/PHYTO-04-10-0122; Mellado E, 2000, CLIN MICROBIOL INFEC, V6, P543, DOI 10.1046/j.1469-0691.2000.00154.x; Milgroom MG, 1996, MYCOLOGIA, V88, P179, DOI 10.2307/3760921; Mishra PK, 2006, INT MICROBIOL, V9, P65; Moran GP, 2011, EUKARYOT CELL, V10, P34, DOI 10.1128/EC.00242-10; Morgan JAT, 2007, P NATL ACAD SCI USA, V104, P13845, DOI 10.1073/pnas.0701838104; Morran LT, 2011, SCIENCE, V333, P216, DOI 10.1126/science.1206360; Moskin J., 2009, NY TIMES; Nespolo RF, 2009, EVOLUTION, V63, P2402, DOI 10.1111/j.1558-5646.2009.00706.x; Odds FC, 2007, EUKARYOT CELL, V6, P1041, DOI 10.1128/EC.00041-07; Oliver RP, 2008, PHYTOPATHOLOGY, V98, P488, DOI 10.1094/PHYTO-98-5-0488; Otto SP, 2002, NAT REV GENET, V3, P252, DOI 10.1038/nrg761; Ouellet M, 2005, CONSERV BIOL, V19, P1431, DOI 10.1111/j.1523-1739.2005.00108.x; Palmer JM, 2014, G3-GENES GENOM GENET, V4, P1755, DOI 10.1534/g3.114.012641; Pelaez T, 2012, CLIN INFECT DIS, V54, pE24, DOI 10.1093/cid/cir771; Pelin A, 2015, ENVIRON MICROBIOL, V17, P4443, DOI 10.1111/1462-2920.12883; Perlroth J, 2007, MED MYCOL, V45, P321, DOI 10.1080/13693780701218689; Pettit AC, 2012, NEW ENGL J MED, V367, P2119, DOI 10.1056/NEJMoa1212292; Pretorius ZA, 2000, PLANT DIS, V84, P924, DOI 10.1094/PDIS.2000.84.8.924A; Puechmaille SJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019167; Raynes Y, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-158; Richards Thomas A., 2011, Fungal Biology Reviews, V25, P98, DOI 10.1016/j.fbr.2011.04.003; RICHARDSON MD, 1991, J ANTIMICROB CHEMOTH, V28, P1; Ritter JM, 2013, AM J PATHOL, V183, P881, DOI 10.1016/j.ajpath.2013.05.007; Rodrigues AM, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002281; Ronsheim ML, 2000, AM J BOT, V87, P1769, DOI 10.2307/2656827; Rozo Y, 2012, J PHYTOPATHOL, V160, P732, DOI 10.1111/jph.12024; Rypien KL, 2008, MOL ECOL, V17, P4068, DOI 10.1111/j.1365-294X.2008.03894.x; Saint-Jean M, 2007, CAN J INFECT DIS MED, V18, P200, DOI 10.1155/2007/384743; Saleh D, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-42; Saunders DGO, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0029847; Schumann G.L., 2000, PLANT HLTH INSTR; Scott JB, 2006, MYCOL RES, V110, P1413, DOI 10.1016/j.mycres.2006.09.008; Shaver AC, 2002, GENETICS, V162, P557; Short DPG, 2015, ENVIRON MICROBIOL, V17, P2824, DOI 10.1111/1462-2920.12789; Short DPG, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112145; Skerratt LF, 2007, ECOHEALTH, V4, P125, DOI 10.1007/s10393-007-0093-5; Springer JC, 2013, PHYTOPATHOLOGY, V103, P1280, DOI 10.1094/PHYTO-10-12-0273-R; Subramanian G, 2001, MOL DIAGN, V6, P243, DOI 10.1054/modi.2001.28062; Sugui JA, 2011, MBIO, V2, DOI 10.1128/mBio.00234-11; Sutherland R, 2013, S AFR J SCI, V109, DOI 10.1590/sajs.2013/20120023; SUTHERLAND S, 1988, OECOLOGIA, V76, P330, DOI 10.1007/BF00377025; Taha MK, 2002, TRENDS MICROBIOL, V10, P376, DOI 10.1016/S0966-842X(02)02402-2; Teixeira MD, 2015, EUKARYOT CELL, V14, P158, DOI 10.1128/EC.00153-14; Tenaillon O, 1999, GENETICS, V152, P485; Thangavelu R, 2012, MOL BIOTECHNOL, V51, P203, DOI 10.1007/s12033-011-9457-8; Tharreau D, 2009, ADVANCES IN GENETICS, GENOMICS AND CONTROL OF RICE BLAST DISEASE, P209, DOI 10.1007/978-1-4020-9500-9_21; Tibayrenc M, 2012, P NATL ACAD SCI USA, V109, pE3305, DOI 10.1073/pnas.1212452109; Valway SE, 1998, NEW ENGL J MED, V338, P633, DOI 10.1056/NEJM199803053381001; Vaux S, 2014, MBIO, V5, DOI 10.1128/mBio.02309-14; Visser B, 2009, MOL PLANT PATHOL, V10, P213, DOI 10.1111/j.1364-3703.2008.00525.x; Visser B, 2011, EUPHYTICA, V179, P119, DOI 10.1007/s10681-010-0269-x; Voelz K, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003771; Vonberg RP, 2006, J HOSP INFECT, V63, P246, DOI 10.1016/j.jhin.2006.02.014; Warnecke L, 2012, P NATL ACAD SCI USA, V109, P6999, DOI 10.1073/pnas.1200374109; Warny M, 2005, LANCET, V366, P1079, DOI 10.1016/S0140-6736(05)67420-X; Weldon C, 2004, EMERG INFECT DIS, V10, P2100, DOI 10.3201/eid1012.030804; Xu JP, 2010, MICROBIAL POPULATION GENETICS, P189; Xu JP, 2009, MOL ECOL, V18, P2628, DOI 10.1111/j.1365-294X.2009.04227.x; Xu JP, 2004, GENOME, V47, P775, DOI 10.1139/G04-037; Zhan J, 2007, INT J PARASITOL, V37, P861, DOI 10.1016/j.ijpara.2007.03.003; Zhan J, 2003, FUNGAL GENET BIOL, V38, P286, DOI [10.1016/S1087-1845(02)00538-8, 10.1016/S0187-1845(02)00538-8] 142 6 7 1 51 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1567-1348 1567-7257 INFECT GENET EVOL Infect. Genet. Evol. DEC 2015 36 199 209 10.1016/j.meegid.2015.09.019 11 Infectious Diseases Infectious Diseases DA1IA WOS:000367548300025 26394109 2019-02-21 J Lanna, E; Paranhos, R; Paiva, PC; Klautau, M Lanna, Emilio; Paranhos, Rodolfo; Paiva, Paulo C.; Klautau, Michelle Environmental effects on the reproduction and fecundity of the introduced calcareous sponge Paraleucilla magna in Rio de Janeiro, Brazil MARINE ECOLOGY-AN EVOLUTIONARY PERSPECTIVE English Article Calcarea; life history evolution; population biology; Porifera; temperature GREAT-BARRIER-REEF; SEXUAL REPRODUCTION; LARVAL DEVELOPMENT; PORIFERA CALCAREA; MEDITERRANEAN SEA; ASEXUAL REPRODUCTION; MARINE-INVERTEBRATES; ATLANTIC-OCEAN; FLOW-CYTOMETRY; CLIMATE-CHANGE The calcareous sponge Paraleucilla magna (Porifera, Calcarea) has been the subject of several studies in the last decade. It was first described along the Brazilian coast, where it is considered cryptogenic, and was subsequently found in the Mediterranean, where it is considered invasive. The wide artificial distribution of this species allows us to compare different aspects of the biology of an introduced species in different locations. Here, we analysed the effects of selected environmental parameters on the reproductive dynamics of P. magna in Rio de Janeiro (Brazil) over 18 months and compared our results with those obtained for the same species in the Mediterranean Sea. Specimens were collected monthly and analysed through histological methods. The density of reproductive elements in each month was calculated, and the effects of environmental parameters (photoperiod, precipitation, temperature, phytoplankton and bacterioplankton) were analysed using a regression tree analysis. Paraleucilla magna was reproductive throughout the study period. The densities of the reproductive elements (oocytes, embryos and larvae) showed no seasonality, and this species presented one of the highest reproductive efforts documented to date in the phylum Porifera (99.0 oocytes . mm(-3); 89.0 embryos . mm(-3); 319.0 larvae . mm(-3)). The main environmental parameters related to the reproduction of P. magna were temperature, photoperiod and bacterioplankton. Temperature was the main driver associated with the densities of oocytes and embryos, while bacterioplankton was the main driver of larvae (positive relationships). In Rio de Janeiro, larvae were present and continuously released. This strategy is different from that observed in the Mediterranean, where a larger larval output was observed but only during the summer months. Our results show that P. magna is a species with a strong invasive potential, considering its high and continuous reproductive effort. This high fecundity stimulated by high temperatures may be a key factor contributing to the growth of P. magna populations and its invasion of new areas. [Lanna, Emilio] Univ Fed Bahia, Inst Biol, Dept Biol Geral, Salvador, BA, Brazil; [Lanna, Emilio; Paiva, Paulo C.; Klautau, Michelle] Univ Fed Rio de Janeiro, Inst Biol, Dept Zool, BR-21941902 Rio De Janeiro, Brazil; [Paranhos, Rodolfo] Univ Fed Rio de Janeiro, Inst Biol, Dept Biol Marinha, BR-21941902 Rio De Janeiro, Brazil Klautau, M (reprint author), Univ Fed Rio de Janeiro, Inst Biol, Dept Zool, BR-21941902 Rio De Janeiro, Brazil. mklautau@biologia.ufrj.br Klautau, Michelle/I-2041-2012; Paiva, Paulo/I-6174-2012 Klautau, Michelle/0000-0002-5959-0776; Paiva, Paulo/0000-0003-1061-6549 PPGDA (Programa de Pos-Graduacao em Diversidade Animal; PROPCI/UFBA (Pro-Reitoria de Pesquisa, Criacao e Inovacao da Universidade Federal da Bahia); Rio de Janeiro State Research Foundation (Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estxado do Rio de Janeiro - FAPERJ); Brazilian National Council of Technological and Scientific Development (CNPq); CNPq; Coordination of Superior Level Staff Improvement (CAPES) We would like to thank the staff of the Laboratorio de Biologia de Porifera (LaBiPor) for helping in the collection of specimens, and the staff of the Laboratorio de Hidrobiologia for the analyses of different environmental parameters. We thank PPGDA (Programa de Pos-Graduacao em Diversidade Animal and PROPCI/UFBA (Pro-Reitoria de Pesquisa, Criacao e Inovacao da Universidade Federal da Bahia) for funding the revision of the English language. Sponge specimens were sampled with permission of the Brazilian authorities (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaveis - IBAMA and Instituto Chico Mendes de Conservacao da Biodiversidade - ICMBIO). This study was funded by the Rio de Janeiro State Research Foundation (Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estxado do Rio de Janeiro - FAPERJ) and the Brazilian National Council of Technological and Scientific Development (CNPq). M.K., P.C.P. and R.P. received research fellowships from CNPq. E.L. received a scholarship from the Coordination of Superior Level Staff Improvement (CAPES). This work was part of the M.Sc. thesis of E.L. presented to the Graduation Program in Zoology of the Museu Nacional do Rio de Janeiro/UFRJ. Abdo DA, 2008, AQUAT BIOL, V1, P291, DOI 10.3354/ab00032; Agell G, 2012, CONSERV GENET RESOUR, V4, P403, DOI 10.1007/s12686-011-9560-y; Albuquerque E.F., 1999, SERIE OECOLOGIA BRAS, P229; Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1046/j.1442-9993.2001.01070.x; Andrade L, 2003, J MICROBIOL METH, V55, P841, DOI 10.1016/.j.mimet.2003.08.002; Asa S., 2000, P 9 INT COR REEF S B, V1, P421; AYLING AL, 1980, BIOL BULL, V158, P271, DOI 10.2307/1540854; Baldacconi R, 2007, MAR BIOL, V152, P969, DOI 10.1007/s00227-007-0747-4; Batista D, 2014, ENVIRON SCI POLLUT R, V21, P5785, DOI 10.1007/s11356-014-2530-7; Bautista-Guerrero E, 2010, INVERTEBR BIOL, V129, P285, DOI 10.1111/j.1744-7410.2010.00209.x; Cavalcanti FF, 2013, MAR ECOL-EVOL PERSP, V34, P280, DOI 10.1111/maec.12013; Chung IF, 2010, ZOOL STUD, V49, P601; Cohen J., 1988, STAT POWER ANAL BEHA, DOI [DOI 10.1234/12345678, 10.1234/12345678]; Corriero G, 1996, MAR BIOL, V126, P175, DOI 10.1007/BF00347442; Corriero G, 1998, MAR BIOL, V131, P319, DOI 10.1007/s002270050325; Crawley M. J., 2007, R BOOK; Cvitkovic I, 2013, ACTA ADRIAT, V54, P93; Fernandes LDD, 2012, J PLANKTON RES, V34, P236, DOI 10.1093/plankt/fbr106; De'ath G, 2000, ECOLOGY, V81, P3178, DOI 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2; ELVIN DW, 1976, BIOL BULL-US, V151, P108, DOI 10.2307/1540709; Ereskovsky AV, 2013, MAR BIOL, V160, P423, DOI 10.1007/s00227-012-2100-9; Ereskovsky AV, 2000, BIOL BULL, V198, P77, DOI 10.2307/1542805; Ettinger-Epstein P, 2007, MAR BIOL, V153, P171, DOI 10.1007/s00227-007-0793-y; Fell P. E., 1974, REPRODUCTION MARINE, V1, P51; FELL PE, 1976, BIOL BULL-US, V150, P200, DOI 10.2307/1540468; FELL PE, 1993, REPROD BIOL, V6, P1; FRANZEN W, 1988, ZOOMORPHOLOGY, V107, P349, DOI 10.1007/BF00312218; Fridley J., 2010, LECT NOTES BIO793 PL; FROMONT J, 1994, CORAL REEFS, V13, P119, DOI 10.1007/BF00300772; FROMONT J, 1994, CORAL REEFS, V13, P127, DOI 10.1007/BF00300773; FROMONT J, 1994, SPONGES IN TIME AND SPACE, P307; Gasol JM, 2000, SCI MAR, V64, P197, DOI 10.3989/scimar.2000.64n2197; Geller JB, 2010, ANNU REV MAR SCI, V2, P367, DOI 10.1146/annurev.marine.010908.163745; Gravili C, 2010, CHEM ECOL, V26, P121, DOI 10.1080/02757541003627654; Guardiola M, 2012, HYDROBIOLOGIA, V687, P71, DOI 10.1007/s10750-011-0948-1; JOHNSON MF, 1978, MAR BIOL, V50, P73, DOI 10.1007/BF00390543; Johnston Emma L., 2009, V204, P133; Klautau M, 2004, ZOOTAXA, P1; Lanna E, 2012, ZOOMORPHOLOGY, V131, P277, DOI 10.1007/s00435-012-0160-5; Lanna E, 2010, ZOOMORPHOLOGY, V129, P249, DOI 10.1007/s00435-010-0117-5; Lanna Emilio, 2007, V28, P413; Lawrence AJ, 2004, IBIS, V146, P29, DOI 10.1111/j.1474-919X.2004.00325.x; Longo C, 2007, J MAR BIOL ASSOC UK, V87, P1749, DOI 10.1017/S0025315407057748; Longo C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042392; Maldonado M, 2008, TREBALLS SOC CATALAN, V59, P29, DOI DOI 10.2436/20.1501.02.56; Maldonado M, 2009, MAR BIOL, V156, P2181, DOI 10.1007/s00227-009-1248-4; Mariani S, 2005, J PLANKTON RES, V27, P249, DOI 10.1093/plankt/fbh173; Mercier A, 2009, ADV MAR BIOL, V55, P1, DOI 10.1016/S0065-2881(09)55001-8; Mercurio M, 2007, MAR BIOL, V151, P1491, DOI 10.1007/s00227-006-0584-x; Mercurio M., 2013, MAR ECOL, V34, P394; Meroz-Fine E, 2005, MAR BIOL, V147, P243, DOI 10.1007/s00227-004-1532-2; Monteiro LC, 2004, J MAR BIOL ASSOC UK, V84, P681, DOI 10.1017/S0025315404009750h; Occhipinti-Ambrogi A, 2011, BIOL INVASIONS, V13, P215, DOI 10.1007/s10530-010-9803-y; Oksanen J, 2013, VEGAN COMMUNITY ECOL; OLIVE PJW, 1995, J THERM BIOL, V20, P79, DOI 10.1016/0306-4565(94)00030-M; Orton J. H., 1914, J MAR BIOL ASSOC UK, V10, P312; Orton J. H., 1920, J MAR BIOL ASSOC UK, V12, P312; Padua A, 2013, J MAR BIOL ASSOC UK, V93, P889, DOI 10.1017/S0025315412001804; Padua A, 2013, MAR ECOL-EVOL PERSP, V34, P56, DOI 10.1111/j.1439-0485.2012.00524.x; Parsons T. R, 1984, MANUAL CHEM BIOL MET, V184; Perez-Porro AR, 2012, HYDROBIOLOGIA, V687, P315, DOI 10.1007/s10750-011-0919-6; Pierri C, 2010, J MAR BIOL ASSOC UK, V90, P159, DOI 10.1017/S0025315409990798; Piscitelli M, 2011, INVERTEBR BIOL, V130, P1, DOI 10.1111/j.1744-7410.2010.00216.x; Przeslawski R, 2008, GLOBAL CHANGE BIOL, V14, P2773, DOI 10.1111/j.1365-2486.2008.01693.x; R Core Team, 2012, R LANG ENV STAT COMP; R Development Core Team, 2014, LANG ENV STAT COMP; REISWIG H M, 1974, Journal of Experimental Marine Biology and Ecology, V14, P231, DOI 10.1016/0022-0981(74)90005-7; Ribes M, 1999, MAR ECOL PROG SER, V176, P179, DOI 10.3354/meps176179; Riesgo A, 2007, MAR FRESHWATER RES, V58, P398, DOI 10.1071/MF06052; Riesgo A, 2008, INVERTEBR BIOL, V127, P357, DOI 10.1111/j.1744-7410.2008.00128.x; Ripley B., 2014, TREE CLASSIFICATION; Rossi A.L., 2014, ACTA BIOMATER, V1, P529; Ruiz GM, 2002, INVASIVE AQUATIC SPECIES OF EUROPE: DISTRIBUTION, IMPACTS AND MANAGEMENT, P529; Sara M., 1975, Pubblicazioni Staz zool Napoli, V39, P618; Stabili L, 2006, WATER RES, V40, P3083, DOI 10.1016/j.watres.2006.012; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Turque A.S., 2010, PLOS ONE, V5, P10; Uriz MJ, 1998, MAR ECOL PROG SER, V167, P137, DOI 10.3354/meps167137; Vacelet J., 1964, RECUEIL TRAVAUX STAT, V34, P1; van Koolwijk T., 1982, Bulletin Zoologisch Museum Universiteit van Amsterdam, V8, P89; Whalan S, 2007, CORAL REEFS, V26, P655, DOI 10.1007/s00338-007-0236-8; WITTE U, 1994, SPONGES IN TIME AND SPACE, P297; YONESHIGUEVALEN.Y, 1992, COASTAL PLANT COMMUN, P31; Zammit PP, 2009, MEDITERR MAR SCI, V10, P135, DOI 10.12681/mms.114 84 10 10 1 25 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0173-9565 1439-0485 MAR ECOL-EVOL PERSP Mar. Ecol.-Evol. Persp. DEC 2015 36 4 1075 1087 10.1111/maec.12202 13 Marine & Freshwater Biology Marine & Freshwater Biology CZ9CR WOS:000367395900018 2019-02-21 J Payo-Payo, A; Oro, D; Igual, JM; Jover, L; Sanpera, C; Tavecchia, G Payo-Payo, Ana; Oro, Daniel; Igual, Jose Manuel; Jover, Lluis; Sanpera, Carolina; Tavecchia, Giacomo Population control of an overabundant species achieved through consecutive anthropogenic perturbations ECOLOGICAL APPLICATIONS English Article adult survival; anthropogenic perturbation; Dragonera Island, Spain; food availability; Larus michahellis; pest; population size; predictable anthropogenic food subsidies; seabird; stable isotope analysis; Yellow-legged Gull YELLOW-LEGGED GULL; HERRING GULL; CAPTURE-RECAPTURE; FOOD AVAILABILITY; LARUS-AUDOUINII; BREEDING SUCCESS; STABLE-ISOTOPES; FEEDING ECOLOGY; MARKED ANIMALS; DIET CHOICE The control of overabundant vertebrates is often problematic. Much work has focused on population-level responses and overabundance due to anthropogenic subsidies. However, far less work has been directed at investigating responses following the removal of subsidies. We investigate the consequences of two consecutive perturbations, the closure of a landfill and an inadvertent poisoning event, on the trophic ecology (delta C-13, delta N-15, and delta S-34), survival, and population size of an overabundant generalist seabird species, the Yellow-legged Gull (Larus michahellis). We expected that the landfill closure would cause a strong dietary shift and the inadvertent poisoning a decrease in gull population size. As a long-lived species, we also anticipated adult survival to be buffered against the decrease in food availability but not against the inadvertent poisoning event. Stable isotope analysis confirmed the dietary shift towards marine resources after the disappearance of the landfill. Although the survival model was inconclusive, it did suggest that the perturbations had a negative effect on survival, which was followed by a recovery back to average values. Food limitation likely triggered dispersal to other populations, while poisoning may have increased mortality; these two processes were likely responsible for the large fall in population size that occurred after the two consecutive perturbations. Life-history theory suggests that perturbations may encourage species to halt existing breeding investment in order to ensure future survival. However, under strong perturbation pulses the resilience threshold might be surpassed and changes in population density can arise. Consecutive perturbations may effectively manage overabundant species. [Payo-Payo, Ana; Oro, Daniel; Igual, Jose Manuel; Tavecchia, Giacomo] IMEDEA CSIC UIB, Populat Ecol Grp, Esporles 07190, Spain; [Jover, Lluis] Univ Barcelona, Fac Med, Dept Salut Publ, Barcelona 08036, Spain; [Sanpera, Carolina] Univ Barcelona, Fac Biol, Dept Biol Anim Vertebrats, E-08028 Barcelona, Spain Payo-Payo, A (reprint author), IMEDEA CSIC UIB, Populat Ecol Grp, Miguel Marques 21, Esporles 07190, Spain. anapayopayo@imedea.uib-csic.es sanpera, carolina/B-5461-2013; Jover, Lluis/D-2192-2011 sanpera, carolina/0000-0002-5198-6514; Jover, Lluis/0000-0003-0631-1398; Igual, Jose Manuel/0000-0002-8369-3150 Spanish Ministry of Education [FPU2012-000869]; Balearic Government (FEDER Program); Spanish Ministry of Economy [CGL2013-42203-R] We thank Nathalie Chardon for editing and correction of the paper. We also thank the PEG staff at IMEDEA for their help with the fieldwork. J. Muntaner and SKUA provided rings and information on Yellow-legged Gull. Thanks are also due to Marti Mayol and the staff of the Dragonera Natural Reserve for their help. Mike Lockwood improved the English. The comments of the editor and two anonymous reviewers helped to improve the quality of the manuscript. Permits were provided by the OAPN (Spanish Ministry of the Environment) and Balearic Regional Government. A. Payo-Payo was supported by a fellowship from the Spanish Ministry of Education (ref. FPU2012-000869). Funds were also partially provided by the Balearic Government (FEDER Program) and the Spanish Ministry of Economy (ref. CGL2013-42203-R). Anderson JGT, 1999, BIOL CONSERV, V90, P175, DOI 10.1016/S0006-3207(99)00018-X; Annett CA, 1999, ECOLOGY, V80, P288, DOI 10.2307/176997; Aplin KP, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026357; Arizaga J, 2013, MAR ENVIRON RES, V87-88, P19, DOI 10.1016/j.marenvres.2013.02.016; Baker PJ, 2006, EUR J WILDLIFE RES, V52, P99, DOI 10.1007/s10344-005-0018-y; Bartumeus F, 2010, CURR BIOL, V20, P215, DOI 10.1016/j.cub.2009.11.073; Beasley JC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058982; Begon M, 1996, POPULATION ECOLOGY U; Bino G, 2010, J APPL ECOL, V47, P1262, DOI 10.1111/j.1365-2664.2010.01882.x; Bond AL, 2012, WATERBIRDS, V35, P324, DOI 10.1675/063.035.0213; Bosch M, 2000, J APPL ECOL, V37, P369, DOI 10.1046/j.1365-2664.2000.00501.x; Bosch M., 2000, ECOLOGY YELLOW LEGGE; Bosch Marc, 1994, Avocetta, V18, P135; Brooks EN, 2001, ECOL MODEL, V136, P269, DOI 10.1016/S0304-3800(00)00430-0; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Burnham K. P., 1998, MODEL SELECTION INFE; Burnham K. P, 2002, MODEL SELECTION MULT; Choquet R., 2005, U CARE 2 2 USER MANU; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Crawley M. J., 2007, STAT PAP, V50, P445, DOI DOI 10.1007/S00362-008-0118-3>.ACCESSED:28; Duhem C, 2008, POPUL ECOL, V50, P91, DOI 10.1007/s10144-007-0059-z; Fernandez-Chacon A, 2013, ECOGRAPHY, V36, P1117, DOI 10.1111/j.1600-0587.2013.00246.x; Genovart M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009774; Gremillet D, 2008, P R SOC B, V275, P1149, DOI 10.1098/rspb.2007.1763; Hadler MR, 1992, P 15 VERT PEST C; Harding AMA, 2011, OECOLOGIA, V167, P49, DOI 10.1007/s00442-011-1971-7; Harris MP, 1997, J AVIAN BIOL, V28, P287, DOI 10.2307/3676941; Hatch Jeremy J., 1996, International Journal of Environmental Health Research, V6, P5, DOI 10.1080/09603129609356867; Hobson KA, 2008, BIRD CONSERV INT, V18, pS174, DOI 10.1017/S0959270908000361; Lebreton JD, 1999, BIRD STUDY, V46, P39; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lott CA, 2003, OECOLOGIA, V134, P505, DOI 10.1007/s00442-002-1153-8; Martinez-Abrain A, 2012, J APPL ECOL, V49, P109, DOI 10.1111/j.1365-2664.2011.02080.x; Mate KE, 1998, ANIM REPROD SCI, V53, P65, DOI 10.1016/S0378-4320(98)00127-4; Mayol J., 2012, Aliens: The Invasive Species Bulletin, P29; Mayol J., 2012, QUERCUS, V314, P26; McMinn M., 2010, GAVINA LARUS MICHAHE; Merrill JA, 2006, J WILDLIFE MANAGE, V70, P268, DOI 10.2193/0022-541X(2006)70[268:MAODPB]2.0.CO;2; Moreno R, 2010, MAR BIOL, V157, P545, DOI 10.1007/s00227-009-1340-9; MORGAN BJT, 2000, APPL STOCHASTIC MODE; Motis A., 1989, GAVIA ARGENTAT LARUS; Natsumeda T, 2015, FISHERIES SCI, V81, P131, DOI 10.1007/s12562-014-0823-x; Navarro J, 2010, MAR BIOL, V157, P2453, DOI 10.1007/s00227-010-1509-2; Newsome TM, 2015, GLOBAL ECOL BIOGEOGR, V24, P1, DOI 10.1111/geb.12236; Oro D, 2007, ANIM CONSERV, V10, P117, DOI 10.1111/j.1469-1795.2006.00082.x; Oro D, 2000, J ANIM ECOL, V69, P119, DOI 10.1046/j.1365-2656.2000.00379.x; Oro D, 2004, P ROY SOC B-BIOL SCI, V271, P387, DOI 10.1098/rspb.2003.2609; Oro D, 2002, ECOLOGY, V83, P2516; Oro D, 1996, MAR ECOL PROG SER, V132, P43, DOI 10.3354/meps132043; ORO D, 1995, IBIS, V137, P547, DOI 10.1111/j.1474-919X.1995.tb03265.x; Oro D, 2003, SCI MAR, V67, P13, DOI 10.3989/scimar.2003.67s213; Oro D, 1999, OECOLOGIA, V118, P438, DOI 10.1007/s004420050746; Oro D., 2003, SCI MARINA S2, V67, P3; ORO D, 1999, P 22 INT ORN C DURB, P717; Oro D, 2013, ECOL LETT, V16, P1501, DOI 10.1111/ele.12187; Parnell A., 2008, SIAR STABLE ISOTOPE; Pedro PI, 2013, EUR J WILDLIFE RES, V59, P833, DOI 10.1007/s10344-013-0737-4; Pedrocchi V, 1996, ORNIS FENNICA, V73, P124; PIEROTTI R, 1991, ECOLOGY, V72, P319, DOI 10.2307/1938925; PONS JM, 1995, J ANIM ECOL, V64, P592, DOI 10.2307/5802; PONS JM, 1992, ARDEA, V80, P143; Pradel R, 2003, BIOMETRICS, V59, P43, DOI 10.1111/1541-0420.00006; PUGESEK BH, 1990, ECOLOGY, V71, P811, DOI 10.2307/1940332; Ramos R, 2009, J ORNITHOL, V150, P265, DOI 10.1007/s10336-008-0346-2; Ramos R, 2011, DIVERS DISTRIB, V17, P338, DOI 10.1111/j.1472-4642.2010.00736.x; Saether BE, 1996, OIKOS, V77, P217, DOI 10.2307/3546060; Sanz-Aguilar A, 2008, ECOLOGY, V89, P3195, DOI 10.1890/08-0431.1; Seber G. A. F., 2002, ESTIMATION ANIMAL AB; Servei de Proteccio d'especies, 2011, INF FIN DES CAMP DES; Steigerwald EC, 2015, IBIS, V157, P439, DOI 10.1111/ibi.12252; THOMAS G J, 1972, Biological Conservation, V4, P117, DOI 10.1016/0006-3207(72)90012-2; TIRME [Parque de Tecnologias Ambientales de Mallorca], 2003, INF ACT PROJ CONTR G; Twigg LE, 1999, ECOL LETT, V2, P281, DOI 10.1046/j.1461-0248.1999.00085.x; Verdu del Campo M., 1995, CHIOGLOSSA, V1, P35; Vidal E, 1998, BIODIVERS CONSERV, V7, P1013, DOI 10.1023/A:1008805030578; Vitousek PM, 1997, SCIENCE, V277, P494, DOI 10.1126/science.277.5325.494; Warburton B, 2009, J WILDLIFE MANAGE, V73, P158, DOI 10.2193/2007-313; White GC, 1999, BIRD STUDY, V46, P120; Williams BK, 2001, ANAL MANAGEMENT ANIM; WITT HH, 1981, IBIS, V123, P519, DOI 10.1111/j.1474-919X.1981.tb04058.x; Zar JH, 2010, BIOSTATISTICAL ANAL; Zotier R, 1999, J BIOGEOGR, V26, P297, DOI 10.1046/j.1365-2699.1999.00260.x; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 83 9 9 4 22 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. DEC 2015 25 8 2228 2239 10.1890/14-2090.1.sm 12 Ecology; Environmental Sciences Environmental Sciences & Ecology CZ6KR WOS:000367210700013 26910951 Other Gold 2019-02-21 J Piou, C; Taylor, MH; Papaix, J; Prevost, E Piou, Cyril; Taylor, Marc H.; Papaix, Julien; Prevost, Etienne Modelling the interactive effects of selective fishing and environmental change on Atlantic salmon demogenetics JOURNAL OF APPLIED ECOLOGY English Article anadromous fish; climate change; fisheries-induced evolution; fishing regulations; individual-based model; life-history strategies; Salmo salar FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY VARIATION; INDIVIDUAL-BASED MODEL; CLIMATE-CHANGE; SALAR L.; POPULATION-DYNAMICS; REACTION NORMS; MATURATION; SIZE; AGE Changes in life-history traits have been observed in many fish species over past decades. This led to the fisheries-induced evolution' hypothesis proposing that fisheries may be causing genetic changes to populations through selective harvesting. Another hypothesis, which is not mutually exclusive, is that observed changes are due to phenotypic plasticity in response to environmental changes. Using an individual-based demogenetic model, we investigate the relative importance of selective fishing and environmental change scenarios on the Atlantic salmon Salmo salar. In simulation experiments, results show that poor oceanic growth conditions resulting from environmental change drove mainly phenotypic responses, such as a shift towards a multiple-sea-winter life history accompanied by a decline in population size. These changes were attributable to the longer time needed to reach maturation and the resulting increase in cumulative mortality during the oceanic phase. Increased selective fishing against multiple-sea-winter fish mainly induced an evolutionary effect in the form of a lower maturation threshold in females, increasing the proportion of one sea-winter fish. The maturation threshold of males was not modified by selective fishing due to their earlier reproduction and return after a single winter at sea, thereby avoiding most of the selective effects of fishing.Policy implications. The results suggest that given the present configuration of traditional fisheries, fishing is likely to worsen the effects of oceanic environmental change. Management strategies avoiding targeting multiple-sea-winter fish may need to be considered in order to ensure the populations' resilience to poor oceanic conditions for growth. [Piou, Cyril; Papaix, Julien; Prevost, Etienne] INRA, UMR ECOBIOP 1224, Aquapole, F-64310 Quartier Ibarron, Saint Pee Sur N, France; [Piou, Cyril; Papaix, Julien; Prevost, Etienne] Univ Pau & Pays Adour, UMR ECOBIOP 1224, UFR Cote Basque, F-64600 Anglet, France; [Piou, Cyril] CIRAD, UMR CBGP, F-34398 Montpellier, France; [Taylor, Marc H.] Leibniz Ctr Trop Marine Ecol, Bremen, Germany; [Papaix, Julien] INRA, UR BIOGER CPP 1290, F-78850 Thiverval Grignon, France; [Papaix, Julien] INRA, UR MIAJ 341, F-78352 Jouy En Josas, France; [Papaix, Julien] CNRS, UMR CEFE 5175, F-34293 Montpellier 5, France Piou, C (reprint author), INRA, UMR ECOBIOP 1224, Aquapole, F-64310 Quartier Ibarron, Saint Pee Sur N, France. cyril.piou@cirad.fr Papaix, Julien/S-3431-2016 Taylor, Marc/0000-0001-9730-6994 ONEMA-INRA This work was financed under the ONEMA-INRA 2008-2010 conventions. We thank three anonymous reviewers. Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Bromaghin JF, 2011, NAT RESOUR MODEL, V24, P1, DOI 10.1111/j.1939-7445.2010.00077.x; Browman HI, 2008, SCIENCE, V320, P47, DOI 10.1126/science.320.5872.47b; Brown CJ, 2008, MAR ECOL PROG SER, V369, P257, DOI 10.3354/meps07601; Buoro M, 2010, EVOLUTION, V64, P2629, DOI 10.1111/j.1558-5646.2010.01029.x; Chaput G, 2012, ICES J MAR SCI, V69, P1538, DOI 10.1093/icesjms/fss013; Consuegra S, 2005, J FISH BIOL, V67, P129, DOI 10.1111/j.1095-8649.2005.00844.x; Crozier WW, 2004, ICES J MAR SCI, V61, P1344, DOI 10.1016/j.icesjms.2004.08.013; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Friedland KD, 2009, ICES J MAR SCI, V66, P289, DOI 10.1093/icesjms/fsn210; Grimm V, 2005, SCIENCE, V310, P987, DOI 10.1126/science.1116681; Hard JJ, 2008, EVOL APPL, V1, P388, DOI 10.1111/j.1752-4571.2008.00020.x; Healey MC, 2009, ECOL SOC, V14; Heino M, 2013, ICES J MAR SCI, V70, P707, DOI 10.1093/icesjms/fst077; Hilborn R, 2008, B MAR SCI, V83, P95; Hindar K., 2007, P299, DOI 10.1002/9780470995846.ch10; Hutchings JA, 2011, HEREDITY, V106, P421, DOI 10.1038/hdy.2010.166; HUTCHINGS JA, 1994, EVOL ECOL, V8, P256, DOI 10.1007/BF01238277; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Jager HI, 2001, ECOL MODEL, V144, P61, DOI 10.1016/S0304-3800(01)00362-3; Jonsson B, 2009, J FISH BIOL, V75, P2381, DOI 10.1111/j.1095-8649.2009.02380.x; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; KAITALA V, 1995, J MATH BIOL, V33, P521, DOI 10.1007/BF00163041; Kendall NW, 2014, EVOL APPL, V7, P313, DOI 10.1111/eva.12123; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Kraak SBM, 2007, MAR ECOL PROG SER, V335, P295, DOI 10.3354/meps335295; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Landguth EL, 2014, ECOL APPL, V24, P1505, DOI 10.1890/13-0499.1; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; MANGEL M, 1994, DEEP-SEA RES PT II, V41, P75, DOI 10.1016/0967-0645(94)90063-9; Marshall CT, 2007, MAR ECOL PROG SER, V335, P301, DOI 10.3354/meps335301; Martinez-Garmendia J, 1998, ECOL MODEL, V111, P37, DOI 10.1016/S0304-3800(98)00093-3; Mills KE, 2013, GLOBAL CHANGE BIOL, V19, P3046, DOI 10.1111/gcb.12298; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Ormseth OA, 2009, ICES J MAR SCI, V66, P349, DOI 10.1093/icesjms/fsn156; Pauly D, 2003, SCIENCE, V302, P1359, DOI 10.1126/science.1088667; Piou C, 2013, GLOBAL CHANGE BIOL, V19, P711, DOI 10.1111/gcb.12085; Piou C, 2012, ECOL MODEL, V231, P37, DOI 10.1016/j.ecolmodel.2012.01.025; Potter ECE, 2004, ICES J MAR SCI, V61, P1359, DOI 10.1016/j.icesjms.2004.05.012; Prevost E, 2005, FISH RES, V73, P111, DOI 10.1016/j.fishres.2005.01.002; R Development Core Team, 2012, R LANG ENV STAT COMP; Reed TE, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020380; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; Roessig JM, 2004, REV FISH BIOL FISHER, V14, P251, DOI 10.1007/s11160-004-6749-0; ROFF DA, 2002, LIFE HIST EVOLUTION; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Stenseth NC, 2009, NATURE, V457, P803, DOI 10.1038/457803a; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; Walters C, 1996, CAN J FISH AQUAT SCI, V53, P148, DOI 10.1139/f95-151; Western D, 2001, P NATL ACAD SCI USA, V98, P5458, DOI 10.1073/pnas.101093598; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279 57 4 4 1 52 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8901 1365-2664 J APPL ECOL J. Appl. Ecol. DEC 2015 52 6 1629 1637 10.1111/1365-2664.12512 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology CZ4TK WOS:000367095400024 Bronze 2019-02-21 J Roosa, KA; Place, NJ Roosa, Kristen A.; Place, Ned J. Mate preference for dominant vs. subordinate males in young female Syrian hamsters (Mesocricetus auratus) following chemically-accelerated ovarian follicle depletion PHYSIOLOGY & BEHAVIOR English Article Mate preference; Hamster; Ovary; Aging GOLDEN-HAMSTERS; 4-VINYLCYCLOHEXENE DIEPOXIDE; MOUSE MODEL; CHOICE; PERIMENOPAUSE; BEHAVIOR; FAILURE; AGE; MENOPAUSE; HYPOTHALAMUS Life history theory predicts that selectivity for mates generally declines as females age. We previously demonstrated this phenomenon in Syrian hamsters (Mesocricetus auratus), in that older females showed reduced preference for dominant over subordinate males. To test the hypothesis that decreased reproductive quality due to aging reduces mate preference, we decoupled reproductive and chronological age by treating young female hamsters with 4-vinylcyclohexene diepoxide (VCD), which destroys ovarian follicles and functionally accelerates ovarian follicle depletion without compromising the general health of rodents. In this study, VCD effectively reduced follicle numbers in young Syrian hamsters. VCD-treated and control females were allowed to choose between a dominant and a subordinate male in a Y-maze on the day of proestrus. Both VCD-treated and control females demonstrated preference for the dominant male by leaving a greater proportion of vaginal scent marks near him, which is a behavior that females display when soliciting prospective mates. However, there was no effect of treatment on the proportion of vaginal scent marks left for the dominant male. Furthermore, ovarian follicle numbers were not significantly correlated with any behaviors in either group. We conclude that accelerated ovarian follicle depletion does not reduce mate preference in young female hamsters. (C) 2015 Elsevier Inc. All rights reserved. [Roosa, Kristen A.; Place, Ned J.] Cornell Univ, Dept Populat Med & Diagnost Sci, Ithaca, NY 14853 USA Roosa, KA (reprint author), Cornell Univ, Coll Vet Med, S2-072 Schurman Hall, Ithaca, NY 14853 USA. Kar277@cornell.edu NSF [1407020] The Y maze and the arena used to establish male dominance relationships were bequeathed to us from Professor Robert Johnston's lab shortly after his passing in December 2014. The authors wish to thank Bob for sharing his wealth of knowledge about hamster behavior. The authors are grateful to Bob's graduate student Marcela Fernandez Peters for advice in working with Syrian hamsters and for providing 15-month-old hamsters for the follicle count comparisons. We acknowledge Dianne Vernon for scoring the video-recordings of Y-maze tests, David Peck and Ni Feng for their critical reviews of the manuscript, and the staff of Laboratory Animal Services at Cornell University, especially to Jackie Belliveau for her exceptional care of the hamsters. This study was supported by NSF grant 1407020 to N. J. Place and K. A Roosa. Acosta JI, 2009, ENDOCRINOLOGY, V150, P4248, DOI 10.1210/en.2008-1802; AUSTAD SN, 1994, EXP GERONTOL, V29, P255, DOI 10.1016/0531-5565(94)90005-1; BROWN PS, 1988, HORM BEHAV, V22, P143, DOI 10.1016/0018-506X(88)90060-8; Cotton S, 2006, CURR BIOL, V16, pR755, DOI 10.1016/j.cub.2006.08.022; Edwards HE, 1998, BIOL REPROD, V58, P842, DOI 10.1095/biolreprod58.3.842; FERRIS CF, 1984, SCIENCE, V224, P521, DOI 10.1126/science.6538700; Frye JB, 2012, COMPARATIVE MED, V62, P193; Gray DA, 1999, J INSECT BEHAV, V12, P691, DOI 10.1023/A:1020983821436; Hoyer PB, 2001, TOXICOL PATHOL, V29, P91, DOI 10.1080/019262301301418892; HUCK UW, 1986, ANIM BEHAV, V34, P971, DOI 10.1016/S0003-3472(86)80156-7; HUCK UW, 1988, J REPROD FERTIL, V83, P209; Huck W. U., 1985, PHYSIOL BEHAV, V35, P389; Jagarlamudi K, 2010, MOL CELL ENDOCRINOL, V315, P1, DOI 10.1016/j.mce.2009.07.016; Johnston R. E., 1985, The hamster - reproduction and behavior., P121; Kodric-Brown A, 2001, AM NAT, V157, P316, DOI 10.1086/319191; Ligout S, 2012, ETHOLOGY, V118, P740, DOI 10.1111/j.1439-0310.2012.02064.x; LISK RD, 1983, BEHAV NEURAL BIOL, V39, P105, DOI 10.1016/S0163-1047(83)90671-4; Lohff JC, 2005, COMPARATIVE MED, V55, P523; MALSBURY CW, 1977, PHYSIOL BEHAV, V19, P223, DOI 10.1016/0031-9384(77)90331-6; Martinez LA, 2010, PHYSIOL BEHAV, V101, P685, DOI 10.1016/j.physbeh.2010.08.007; Mayer LP, 2005, ARTERIOSCL THROM VAS, V25, P1910, DOI 10.1161/01.ATV.0000175767.46520.6a; Mayer LP, 2004, BIOL REPROD, V71, P130, DOI 10.1095/biolreprod.103.016113; Moore PJ, 2001, P NATL ACAD SCI USA, V98, P9171, DOI 10.1073/pnas.161154598; PARKENING TA, 1982, J REPROD FERTIL, V64, P37; Perez JN, 2013, COMPARATIVE MED, V63, P233; Place NJ, 2014, BEHAV PROCESS, V108, P166, DOI 10.1016/j.beproc.2014.11.002; Place NJ, 2004, BIOL REPROD, V71, P987, DOI 10.1095/biolreprod.104.029900; Reis FMCV, 2014, PSYCHONEUROENDOCRINO, V49, P130, DOI 10.1016/j.psyneuen.2014.06.019; Ronald KL, 2012, ANIM BEHAV, V84, P1283, DOI 10.1016/j.anbehav.2012.09.015; Roosa KA, 2015, REPROD TOXICOL, V51, P40, DOI 10.1016/j.reprotox.2014.12.003; Sahambi SK, 2008, REPROD TOXICOL, V26, P116, DOI 10.1016/j.reprotox.2008.07.005; TAKAHASHI LK, 1985, PHYSIOL BEHAV, V34, P233, DOI 10.1016/0031-9384(85)90111-8; TAKAHASHI LK, 1987, BRAIN RES, V425, P337, DOI 10.1016/0006-8993(87)90516-6; Van Kempen TA, 2014, ENDOCRINOLOGY, V155, P3610, DOI 10.1210/en.2014-1190; VANDENBE.JG, 1971, ANIM BEHAV, V19, P589, DOI 10.1016/S0003-3472(71)80116-1; WHITE PJ, 1986, PHYSIOL BEHAV, V37, P273, DOI 10.1016/0031-9384(86)90232-5; Williams JK, 2005, ARTERIOSCL THROM VAS, V25, P1765, DOI 10.1161/01.ATV.0000175757.28698.c2 37 1 1 0 15 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0031-9384 PHYSIOL BEHAV Physiol. Behav. DEC 1 2015 152 A 41 46 10.1016/j.physbeh.2015.08.036 6 Psychology, Biological; Behavioral Sciences Psychology; Behavioral Sciences CZ2RZ WOS:000366953600006 26335038 Other Gold 2019-02-21 J Bates, EM; Koczur, LM; Ballard, BM Bates, Elizabeth M.; Koczur, Lianne M.; Ballard, Bart M. Post-fledging Survival and Dispersal of Juvenile Reddish Egrets (Egretta rufescens) WATERBIRDS English Article dispersal; Egretta rufescens; juvenile; Reddish Egret; survival; Texas SUCCESS; OWLS The Reddish Egret (Egretta rufescens) is a species of conservation concern on an international scale, yet relatively little is known about its life history strategies and demographics. To estimate post-fledging survival and examine dispersal patterns/rates, Reddish Egrets (n = 30 fledglings) were monitored and marked with VHF radio transmitters in the Laguna Madre, Texas, in 2006. Overall daily survival rate was 0.78 (SE = 0.11). Reddish Egrets dispersed from their natal colony at 12-15 weeks after hatching, and the average distance traveled in the Laguna Madre ranged from 0 to 488 km. These results help fill a knowledge gap during this little-known time period of the Reddish Egret. Furthermore, these results show that the Laguna Madre is an important system during this critical stage of development as many of the juveniles remained in this lagoon through the duration of our 6-month study. [Bates, Elizabeth M.; Koczur, Lianne M.; Ballard, Bart M.] Texas A&M Univ, Caesar Kleberg Wildlife Res Inst, Kingsville, TX 78363 USA Koczur, LM (reprint author), Texas A&M Univ, Caesar Kleberg Wildlife Res Inst, MSC 218,700 Univ Blvd, Kingsville, TX 78363 USA. LianneKoczur@gmail.com Walter Fondren III Fellowship in Shorebird; Wading Bird Research at the Caesar Kleberg Wildlife Research Institute Funding for this project was provided by the Walter Fondren III Fellowship in Shorebird and Wading Bird Research at the Caesar Kleberg Wildlife Research Institute. We thank American Bird Conservancy staff who observed and reported the Reddish Egret that dispersed to Colombia, South America. Finally, we thank our friend and pilot, Anse Windham, for aerial surveys. Two anonymous reviewers provided constructive suggestions. Trapping was conducted under U.S. Geological Survey banding permit #21314. This is manuscript #15-107 of the Caesar Kleberg Wildlife Research Institute. Bates E. M., 2011, THESIS; Bates EM, 2014, WATERBIRDS, V37, P191, DOI 10.1675/063.037.0213; Bates EM, 2009, WATERBIRDS, V32, P430, DOI 10.1675/063.032.0308; Erwin RM, 1996, AUK, V113, P119, DOI 10.2307/4088940; Ganey JL, 1998, WILSON BULL, V110, P206; Geary B., 2012, THESIS; Green M. C., 2006, STATUS REPORT UNPUB; Hafner H, 1998, J AVIAN BIOL, V29, P216, DOI 10.2307/3677103; Hylton RA, 2006, CONDOR, V108, P97, DOI 10.1650/0010-5422(2006)108[0097:EONHOP]2.0.CO;2; Lowther P.E., 2002, BIRDS N AM ONLINE; Parker Nadine, 2003, Marine Ornithology, V31, P207; Paul R. T, 1991, STATUS REPORT UNPUB; SAS Institute Inc, 2008, SAS STAT SOFTW V 9 2; Servello F. A., 2000, WATERBIRDS, V23, P440; Sprunt A., 1976, Stinapa, VNo. 11, P34; Todd LD, 2003, J WILDLIFE MANAGE, V67, P512, DOI 10.2307/3802709; Tunnel J. W., 2002, LAGUNA MADRE TEXAS T, P7 17 2 2 1 15 WATERBIRD SOC WASHINGTON NATL MUSEUM NATURAL HISTORY SMITHSONIAN INST, WASHINGTON, DC 20560 USA 1524-4695 1938-5390 WATERBIRDS Waterbirds DEC 2015 38 4 401 406 6 Ornithology Zoology CZ6FF WOS:000367195900009 2019-02-21 J Oldakowski, L; Wasiluk, A; Sadowska, ET; Koteja, P; Taylor, JRE Oldakowski, Lukasz; Wasiluk, Aleksandra; Sadowska, Edyta T.; Koteja, Pawel; Taylor, Jan R. E. Reproduction is not costly in terms of oxidative stress JOURNAL OF EXPERIMENTAL BIOLOGY English Article Cost of reproduction; Manipulation of litter size; Oxidative stress; Oxidative damage; Antioxidants; Myodes glareolus BASAL METABOLIC-RATE; HISTORY TRADE-OFFS; LABORATORY MICE; BANK VOLE; CONCURRENT PREGNANCY; LITTER SIZE; SKELETAL-MUSCLE; DAMAGE; LACTATION; MECHANISMS One of the core assumptions of life-history theory is the negative trade-off between current and future reproduction. Investment in current reproduction is expected to decrease future reproductive success or survival, but the physiological mechanisms underlying these costs are still obscure. To test for a role of oxidative stress, we measured oxidative damage to lipids and proteins in liver, heart, kidneys and muscles, as well as the level of antioxidants (total glutathione and catalase), in breeding and non-breeding bank voles. We used females from lines selected for high aerobic metabolism and non-selected control lines and manipulated their reproductive investment by decreasing or increasing litter size. Unlike in most previous studies, the females reared four consecutive litters (the maximum possible during a breeding season). Contrary to predictions, oxidative damage in reproducing females was decreased or not changed, and did not differ between the selected and control lines. Oxidative damage to lipids and proteins in the liver was lower in females that weaned enlarged litters than in non-breeding ones, and was intermediate in those with reduced litters. Oxidative damage to proteins in the heart also tended to be lower in breeding females than in non-breeding ones. A negative relationship between the level of oxidative damage and activity of catalase in kidneys indicated a protective action of antioxidants. In conclusion, our study falsified the hypothesis that oxidative stress is a part of the proximate physiological mechanism underlying the fundamental life-history trade-off between current and future reproduction. [Oldakowski, Lukasz; Wasiluk, Aleksandra; Taylor, Jan R. E.] Univ Bialystok, Inst Biol, Dept Anim Ecol, PL-15245 Bialystok, Poland; [Sadowska, Edyta T.; Koteja, Pawel] Jagiellonian Univ, Inst Environm Sci, PL-30387 Krakow, Poland Taylor, JRE (reprint author), Univ Bialystok, Inst Biol, Dept Anim Ecol, Ciolkowskiego 1 J, PL-15245 Bialystok, Poland. taylor@uwb.edu.pl Oldakowski, Lukasz/0000-0002-8631-5227; Koteja, Pawel/0000-0003-0077-4957; Sadowska, Edyta T./0000-0003-1240-4814 National Science Centre [NN304280840] The main source of funding was the National Science Centre [NN304280840 to J.R.E.T.]. The cost of the source animals was covered by the National Science Centre [NN303 816740] and Jagiellonian University [DS/WBINOZ/INOS/757] to P.K. Aebi H., 1983, METHODS ENZYME ANAL, P273; Anderson ME, 1996, FREE RADICALS PRACTI, P213; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179; Boonekamp JJ, 2014, ECOL LETT, V17, P599, DOI 10.1111/ele.12263; Borras C, 2010, BBA-MOL BASIS DIS, V1802, P205, DOI 10.1016/j.bbadis.2009.09.007; Brzek P, 2014, J EXP BIOL, V217, P1504, DOI 10.1242/jeb.100073; BUJALSKA G, 1984, ACTA THERIOL, V29, P147, DOI 10.4098/AT.arch.84-15; Clutton-Brock T, 1982, RED DEER BEHAV ECOLO; Cretegny C, 2006, COMP BIOCHEM PHYS A, V144, P125, DOI 10.1016/j.cbpa.2005.10.030; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DRENT RH, 1980, ARDEA, V68, P225; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; Garratt M, 2013, J EXP BIOL, V216, P2879, DOI 10.1242/jeb.082669; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; GUSTAFSSON T, 1980, CAN J ZOOL, V58, P1016, DOI 10.1139/z80-142; Halliwell B, 1996, ANNU REV NUTR, V16, P33, DOI 10.1146/annurev.nu.16.070196.000341; Huh K, 1994, Arch Pharm Res, V17, P109, DOI 10.1007/BF02974233; Jentzsch AM, 1996, FREE RADICAL BIO MED, V20, P251, DOI 10.1016/0891-5849(95)02043-8; Johnson MS, 2001, J EXP BIOL, V204, P1947; King EDA, 2013, ECOL EVOL, V3, P4161, DOI 10.1002/ece3.786; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Konarzewski M, 1995, EVOLUTION, V49, P1239, DOI 10.1111/j.1558-5646.1995.tb04450.x; Konczal M, 2015, MOL BIOL EVOL, V32, P1461, DOI 10.1093/molbev/msv038; Ksiazek A, 2004, PHYSIOL BIOCHEM ZOOL, V77, P890, DOI 10.1086/425190; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; LEVINE RL, 1994, METHOD ENZYMOL, V233, P346; LOWRY OH, 1951, J BIOL CHEM, V193, P265; MAPPES T, 1995, P ROY SOC B-BIOL SCI, V261, P19, DOI 10.1098/rspb.1995.0111; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3; Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452; OSWALD C, 1990, J MAMMAL, V71, P500, DOI 10.2307/1381788; OSWALD C, 1987, J EXP ZOOL, V241, P343, DOI 10.1002/jez.1402410310; Persky AM, 2000, P SOC EXP BIOL MED, V223, P59, DOI 10.1046/j.1525-1373.2000.22308.x; PETERSON GL, 1977, ANAL BIOCHEM, V83, P346, DOI 10.1016/0003-2697(77)90043-4; Plumel MI, 2014, FRONT ZOOL, V11, DOI 10.1186/1742-9994-11-41; Roff Derek A., 1992; Sadowska ET, 2008, PHYSIOL BIOCHEM ZOOL, V81, P627, DOI 10.1086/590164; Sadowska ET, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0025; Schmidt CM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103286; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Speakman JR, 1996, PHYSIOL ZOOL, V69, P746, DOI 10.1086/physzool.69.4.30164228; STADTMAN ER, 1991, J BIOL CHEM, V266, P2005; Stearns S, 1992, EVOLUTION LIFE HIST; STEVEN DM, 1957, NATURE, V179, P33, DOI 10.1038/179033a0; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Van Remmen H, 2001, EXP GERONTOL, V36, P957; Vasilaki A, 2006, AGING CELL, V5, P109, DOI 10.1111/j.1474-9726.2006.00198.x; Xu YC, 2014, FUNCT ECOL, V28, P402, DOI 10.1111/1365-2435.12168; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049 58 6 6 1 17 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. DEC 2015 218 24 3901 3910 10.1242/jeb.126557 10 Biology Life Sciences & Biomedicine - Other Topics CY8FZ WOS:000366645500009 26519508 Bronze 2019-02-21 J Fletcher, QE; Dantzer, B; Boonstra, R Fletcher, Quinn E.; Dantzer, Ben; Boonstra, Rudy The impact of reproduction on the stress axis of free-living male northern red backed voles (Myodes rutilus) GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Glucocorticoids; Hypothalamic-pituitary-adrenal (HPA) stress axis; Glucocorticoid (GR) and mineralocorticoid (MR) receptors; Individual variation; Life-history theory; Costs of reproduction ARCTIC GROUND-SQUIRRELS; PITUITARY-ADRENAL AXIS; CLETHRIONOMYS-RUFOCANUS-BEDFORDIAE; CORTICOTROPIN-RELEASING HORMONE; YELLOW-PINE CHIPMUNKS; HISTORY TRADE-OFFS; SEASONAL-CHANGES; MICROTUS-PENNSYLVANICUS; MESSENGER-RNA; GLUCOCORTICOID CONCENTRATIONS Activation of the hypothalamic-pituitary-adrenal (HPA) axis culminates in the release of glucocorticoids (henceforth CORT), which have wide-reaching physiological effects. Three hypotheses potentially explain seasonal variation in CORT. The enabling hypothesis predicts that reproductive season CORT exceeds post-reproductive season CORT because CORT enables reproductive investment. The inhibitory hypothesis predicts the opposite because CORT can negatively affect reproductive function. The costs of reproduction hypothesis predicts that HPA axis condition declines over and following the reproductive season. We tested these hypotheses in wild male red-backed voles (Myodes rutilus) during the reproductive and post-reproductive seasons. We quantified CORT levels in response to restraint stress tests consisting of three blood samples (initial, stress-induced, and recovery). Mineralocorticoid (MR) and glucocorticoid (GR) receptor mRNA levels in the brain were also quantified over the reproductive season. Total CORT (tCORT) in the initial and stress-induced samples were greater in the post-reproductive than in the reproductive season, which supported the inhibitory hypothesis. Conversely, free CORT (fCORT) did not differ between the reproductive and post-reproductive seasons, which was counter to both the enabling and inhibitory hypotheses. Evidence for HPA axis condition decline in CORT as well as GR and MR mRNA over the reproductive season (i.e. costs of reproduction hypothesis) was mixed. Moreover, all of the parameters that showed signs of declining condition over the reproductive season did not also show signs of declining condition over the post-reproductive season suggesting that the costs resulting from reproductive investment had subsided. In conclusion, our results suggest that different aspects of the HPA axis respond differently to seasonal changes and reproductive investment. (C) 2015 Elsevier Inc. All rights reserved. [Fletcher, Quinn E.; Boonstra, Rudy] Univ Toronto, Ctr Neurobiol Stress, Scarborough, ON M1C 1A4, Canada; [Dantzer, Ben] Univ Michigan, Dept Psychol, Ann Arbor, MI 48109 USA; [Dantzer, Ben] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA Fletcher, QE (reprint author), Univ Winnipeg, Dept Biol, Winnipeg, MB R3B 2E9, Canada. q.fletcher@gmail.com; dantzer@umich.edu; boonstra@utsc.utoronto.ca Dantzer, Ben/E-9779-2011 Dantzer, Ben/0000-0002-3058-265X Natural Sciences and Engineering Research Council of Canada We thank the Natural Sciences and Engineering Research Council of Canada for research funding to RB and for a scholarship to QEF. We would also like to thank the Arctic Institute of North America for use of the Kluane Lake Base, B. Delehanty for helpful comments on the manuscript, S. Slater for assistance in the field, and J. Castillo for assistance in the lab. We thank C.J. Krebs, A.J. Kenney, E.J. Hofer, and S. Boutin, and all other people that have been involved in the Community Ecological Monitoring Program, (CEMP) for the long-term trapping data in the Yukon. AMIRAT Z, 1980, GEN COMP ENDOCR, V40, P36, DOI 10.1016/0016-6480(80)90093-3; ANDREWS RV, 1972, COMP BIOCHEM PHYSIOL, V41, P149, DOI 10.1016/0300-9629(72)90043-6; ARMITAGE KB, 1991, COMP BIOCHEM PHYS A, V98, P47, DOI 10.1016/0300-9629(91)90576-X; Barry TP, 2001, J FISH BIOL, V59, P1673, DOI 10.1006/jfbi.2001.1798; BARTSH SS, 1992, CAN J ZOOL, V70, P680, DOI 10.1139/z92-102; Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; Bauer CM, 2014, GEN COMP ENDOCR, V197, P26, DOI 10.1016/j.ygcen.2013.11.025; Bizon JL, 2001, EUR J NEUROSCI, V14, P1739, DOI 10.1046/j.0953-816x.2001.01781.x; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; BOONSTRA R, 1993, J MAMMAL, V74, P224, DOI 10.2307/1381924; Boonstra R, 2001, CAN J ZOOL, V79, P49, DOI 10.1139/cjz-79-1-49; Boonstra R, 2005, ENVIRON TOXICOL CHEM, V24, P334, DOI 10.1897/03-163R.1; Boonstra R, 1998, ECOL MONOGR, V68, P371, DOI 10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2; BOONSTRA R, 1992, J ANIM ECOL, V61, P339, DOI 10.2307/5326; Boonstra R, 2001, ECOSYSTEM DYNAMICS OF THE BOREAL FOREST, P215; BOONSTRA R, 1993, GEN COMP ENDOCR, V91, P126, DOI 10.1006/gcen.1993.1113; Boonstra R, 2001, ECOLOGY, V82, P1930, DOI 10.2307/2680058; Boonstra R, 2005, J MAMMAL, V86, P236, DOI 10.1644/BHE-001.1; Boonstra R, 2006, J ANIM ECOL, V75, P1269, DOI 10.1111/j.1365-2656.2006.01149.x; Boonstra R, 2012, OECOLOGIA, V168, P601, DOI 10.1007/s00442-011-2120-z; BOSWELL T, 1994, GEN COMP ENDOCR, V96, P339, DOI 10.1006/gcen.1994.1189; Bradley A. J., 2003, PREDATORS POUCHES BI, P250; Breuner CW, 2013, FUNCT ECOL, V27, P24, DOI 10.1111/1365-2435.12016; Breuner CW, 2001, J NEUROENDOCRINOL, V13, P412, DOI 10.1046/j.1365-2826.2001.00646.x; Breuner CW, 2002, AVIAN ENDOCRINOLOGY, P385; Carruth LL, 2000, COMP BIOCHEM PHYS C, V127, P123, DOI 10.1016/S0742-8413(00)00140-7; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DALLMAN MF, 1987, RECENT PROG HORM RES, V43, P113; De Kloet ER, 1998, ENDOCR REV, V19, P269, DOI 10.1210/er.19.3.269; Delehanty B, 2011, PHYSIOL BIOCHEM ZOOL, V84, P417, DOI 10.1086/660809; Dickens MJ, 2013, GEN COMP ENDOCR, V191, P177, DOI 10.1016/j.ygcen.2013.06.014; Dickhoff Walton W., 1989, P253; EDOZIEN JC, 1977, J NUTR, V107, P1016; Elias SP, 2006, J MAMMAL, V87, P440, DOI 10.1644/05-MAMM-A-170R1.1; Fletcher QE, 2006, J ZOOL, V270, P473, DOI 10.1111/j.1469-7998.2006.00153.x; FRANZMAN AW, 1978, J WILDLIFE MANAGE, V42, P334, DOI 10.2307/3800270; GILBERT BS, 1991, HOLARCTIC ECOL, V14, P250; GILBERT BS, 1981, OECOLOGIA, V51, P326, DOI 10.1007/BF00540901; GILBERT BS, 1986, J ANIM ECOL, V55, P543, DOI 10.2307/4737; GIPPS JHW, 1985, J ANIM ECOL, V54, P351, DOI 10.2307/4483; Girard-Buttoz C, 2009, PHYSIOL BEHAV, V98, P168, DOI 10.1016/j.physbeh.2009.05.005; HANDA RJ, 1994, HORM BEHAV, V28, P464, DOI 10.1006/hbeh.1994.1044; HELLGREN EC, 1993, J MAMMAL, V74, P304, DOI 10.2307/1382385; Herman JP, 1998, J NEUROSCI, V18, P7462; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; Huber S, 2003, GEN COMP ENDOCR, V130, P48, DOI 10.1016/S0016-6480(02)00535-X; INNES DGL, 1994, MAMMAL REV, V24, P179, DOI 10.1111/j.1365-2907.1994.tb00142.x; KAIKUSALO A, 1972, Annales Zoologici Fennici, V9, P219; KAWATA M, 1988, J ANIM ECOL, V57, P217, DOI 10.2307/4774; KAWATA M, 1985, OIKOS, V45, P181, DOI 10.2307/3565704; Kenagy GJ, 2000, GEN COMP ENDOCR, V117, P189, DOI 10.1006/gcen.1999.7397; Kirby ED, 2009, P NATL ACAD SCI USA, V106, P11324, DOI 10.1073/pnas.0901176106; Klose SM, 2006, J COMP PHYSIOL A, V192, P341, DOI 10.1007/s00359-005-0067-4; Korpimaki E, 2005, P ROY SOC B-BIOL SCI, V272, P193, DOI 10.1098/rspb.2004.2860; Krebs CJ, 2010, J MAMMAL, V91, P500, DOI 10.1644/09-MAMM-A-005.1; KREBS CJ, 1985, CAN FIELD NAT, V99, P51; Krishna A, 1998, J EXP ZOOL, V281, P201, DOI 10.1002/(SICI)1097-010X(19980615)281:3<201::AID-JEZ5>3.0.CO;2-R; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Lane JE, 2010, J ANIM ECOL, V79, P27, DOI 10.1111/j.1365-2656.2009.01592.x; Lattin CR, 2012, GEN COMP ENDOCR, V179, P214, DOI 10.1016/j.ygcen.2012.08.007; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; LOCHMILLER RL, 1986, COMP BIOCHEM PHYS A, V83, P477, DOI 10.1016/0300-9629(86)90132-5; MAKINO S, 1995, ENDOCRINOLOGY, V136, P3299, DOI 10.1210/en.136.8.3299; Makino S, 2002, PHARMACOL BIOCHEM BE, V73, P147, DOI 10.1016/S0091-3057(02)00791-8; MARTELL AM, 1979, CAN J ZOOL, V57, P2106, DOI 10.1139/z79-278; Matthews S.G., 1995, AM J PHYSL ENDOCRINO, V31, pE1096; MCDONALD IR, 1981, GEN COMP ENDOCR, V44, P292, DOI 10.1016/0016-6480(81)90004-6; MCDONALD IR, 1982, CAN J ZOOL, V60, P2264, DOI 10.1139/z82-292; Medina CO, 2013, GEN COMP ENDOCR, V193, P27, DOI 10.1016/j.ygcen.2013.07.008; MENDEL CM, 1992, J ANDROL, V13, P107; MENDEL CM, 1989, ENDOCR REV, V10, P232, DOI 10.1210/edrv-10-3-232; MORANO MI, 1994, MOL CELL NEUROSCI, V5, P400, DOI 10.1006/mcne.1994.1050; Naya DE, 2008, PHYSIOL BIOCHEM ZOOL, V81, P186, DOI 10.1086/527453; Nunes S, 2006, GEN COMP ENDOCR, V146, P136, DOI 10.1016/j.ygcen.2005.10.013; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Place NJ, 2000, J COMP PHYSIOL B, V170, P245, DOI 10.1007/s003600050282; R Development Core Team, 2011, R LANG ENV STAT COMP; REDEI E, 1994, NEUROENDOCRINOLOGY, V60, P113, DOI 10.1159/000126741; REUL JMHM, 1985, ENDOCRINOLOGY, V117, P2505, DOI 10.1210/endo-117-6-2505; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; Romero LM, 2008, AM J PHYSIOL-REG I, V294, pR614, DOI 10.1152/ajpregu.00752.2007; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; SAPOLSKY RM, 1985, ENDOCRINOLOGY, V116, P2273, DOI 10.1210/endo-116-6-2273; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; SAPOLSKY RM, 1983, EXP GERONTOL, V18, P55, DOI 10.1016/0531-5565(83)90051-7; Sapolsky RM, 1999, EXP GERONTOL, V34, P721, DOI 10.1016/S0531-5565(99)00047-9; SAPOLSKY RM, 1984, P NATL ACAD SCI-BIOL, V81, P6174, DOI 10.1073/pnas.81.19.6174; Schoech SJ, 2013, FUNCT ECOL, V27, P1100, DOI 10.1111/1365-2435.12142; Schradin C, 2008, HORM BEHAV, V53, P573, DOI 10.1016/j.yhbeh.2008.01.003; Schreck CB, 2001, AQUACULTURE, V197, P3, DOI 10.1016/S0044-8486(01)00580-4; Sheriff MJ, 2011, OECOLOGIA, V166, P593, DOI 10.1007/s00442-011-1907-2; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; SIRINATHSINGHJI DJS, 1990, NEUROSCIENCE, V34, P675, DOI 10.1016/0306-4522(90)90174-3; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; SPENCER RL, 1990, BRAIN RES, V514, P37, DOI 10.1016/0006-8993(90)90433-C; Stearns S, 1992, EVOLUTION LIFE HIST; SUTANTO W, 1987, ENDOCRINOLOGY, V121, P1405, DOI 10.1210/endo-121-4-1405; Tait J.R, 1964, THE HORMONES, V5, P441; Vera F, 2013, J ZOOL, V289, P111, DOI 10.1111/j.1469-7998.2012.00967.x; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x; Wingfield J.C., 2001, HDB PHYSL 7, V4, P211, DOI DOI 10.1002/CPHY.CP070411; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield JC, 1998, AM ZOOL, V38, P191; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 108 7 7 0 13 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 1095-6840 GEN COMP ENDOCR Gen. Comp. Endocrinol. DEC 1 2015 224 136 147 10.1016/j.ygcen.2015.07.004 12 Endocrinology & Metabolism Endocrinology & Metabolism CY5HJ WOS:000366438400013 26188715 2019-02-21 J Ruuskanen, S Ruuskanen, Suvi Hormonally-mediated maternal effects in birds: Lessons from the flycatcher model system GENERAL AND COMPARATIVE ENDOCRINOLOGY English Review Maternal allocation; Ficedula; Steroids; Parent-offspring conflict; Life-history; Passerine YOLK ANDROGEN LEVELS; LONG-LASTING CONSEQUENCES; SPARROW PASSER-DOMESTICUS; ZEBRA FINCH; FICEDULA-HYPOLEUCA; PIED FLYCATCHERS; IMMUNE FUNCTION; EGG-YOLK; TESTOSTERONE LEVELS; NESTLING GROWTH Maternal effects are a crucial mechanism in many taxa in generating phenotypic variation, affecting offspring development and fitness and thereby potentially adapting them to their expected environments. Androgen hormones in bird eggs have attracted considerable interest in past years, and it is frequently assumed that their concentrations in eggs are shaped by Darwinian selection. Currently, however, the data is scattered over species with very different life-history strategies, environments and selection pressures, making it difficult to draw any firm conclusions as to their functional significance for a given system. I review the evidence available as to the function, variation and potential adaptive value of yolk androgens (testosterone, T and androstenedione, A4) using one well-studied wild bird model system, the European flycatchers Ficedula hypoleuca and Ficedula albicollis. These species both show genetic and environmental variation in yolk androgen levels, along with fitness correlations for the female, suggesting the potential for selection. However, variation in yolk T and A4 seem to be differentially affected, suggesting that maternal constraints/costs shape the transfer of the yolk steroids differently. Most of the environmental variation is consistent with the idea of high yolk androgen levels under poor rearing conditions, although the effect sizes in relation to environmental variation are rather small in relation to genetic among-female variation. Importantly, within-clutch patterns too vary in relation to environmental conditions. Yolk androgens seem to have multiple short- and long-term effects on phenotype and behavior; importantly, they are also correlated with the fitness of offspring and mothers. However, the effects are often sex-dependent, and not universally beneficial for the offspring. Unfortunately, conclusive data as to the adaptive benefits of clutch mean androgen levels or within clutch-patterns in different environmental conditions is still lacking. (C) 2015 Elsevier Inc. All rights reserved. [Ruuskanen, Suvi] Univ Turku, Dept Biol, Sect Ecol, SF-20500 Turku, Finland Ruuskanen, S (reprint author), Univ Turku, Dept Biol, Sect Ecol, SF-20500 Turku, Finland. skruus@utu.fl ruuskanen, suvi/A-1790-2013 ruuskanen, suvi/0000-0001-5582-9455 Academy of Finland - Finland [258419] I thank my colleagues for inspiring me to write this review article and Dr. Valle for language consultancy. I also thank three anonymous reviewers for their constructive comments, which have significantly improved the article. The study was financed by the Academy of Finland - Finland (Project Grant 258419 to S.R.). Boncoraglio G, 2011, AM NAT, V178, P64, DOI 10.1086/660278; Carere C, 2007, TRENDS ENDOCRIN MET, V18, P73, DOI 10.1016/j.tem.2007.01.003; Noguera JC, 2011, BIOL LETTERS, V7, P93, DOI 10.1098/rsbl.2010.0421; Coslovsky M, 2012, GEN COMP ENDOCR, V176, P211, DOI 10.1016/j.ygcen.2012.01.013; Darras V.M., 2015, J AVIAN BIOL; Doligez B, 2008, J ANIM ECOL, V77, P1199, DOI 10.1111/j.1365-2656.2008.01446.x; Duckworth RA, 2015, SCIENCE, V347, P875, DOI 10.1126/science.1260154; Eising CM, 2001, P ROY SOC B-BIOL SCI, V268, P839, DOI 10.1098/rspb.2001.1594; Eising CM, 2006, BIOL LETTERS, V2, P20, DOI 10.1098/rsbl.2005.0391; Fargallo JA, 2007, J ANIM ECOL, V76, P201, DOI 10.1111/j.1365-2656.2006.01193.x; Galloway LF, 2005, NEW PHYTOL, V166, P93, DOI 10.1111/j.1469-8137.2004.01314.x; Gasparini J, 2007, J EVOLUTION BIOL, V20, P874, DOI 10.1111/j.1420-9101.2007.01315.x; Gil D, 2006, J EVOLUTION BIOL, V19, P123, DOI 10.1111/j.1420-9101.2005.00981.x; Gil D, 2004, HORM BEHAV, V45, P64, DOI 10.1016/j.yhbeh.2003.08.005; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; Gil D, 2008, ADV STUD BEHAV, V38, P337, DOI 10.1016/S0065-3454(08)00007-7; Gil D, 2007, AM NAT, V169, P802, DOI 10.1086/516652; Gil D, 2006, ARDEOLA, V53, P307; Groothuis TG, 2002, FUNCT ECOL, V16, P281; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P329, DOI 10.1016/j.neubiorev.2004.12.002; Groothuis TGG, 2008, PHILOS T R SOC B, V363, P1647, DOI 10.1098/rstb.2007.0007; Hargitai R, 2009, BEHAV ECOL SOCIOBIOL, V63, P869, DOI 10.1007/s00265-009-0727-4; Hegyi G, 2011, BEHAV ECOL, V22, P29, DOI 10.1093/beheco/arq165; Hegyi G, 2010, J AVIAN BIOL, V41, P258, DOI 10.1111/j.1600-048X.2009.04787.x; Horvathova T, 2012, P ROY SOC B-BIOL SCI, V279, P163, DOI 10.1098/rspb.2011.0663; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; KETTERSON ED, 1992, AM NAT, V140, P980, DOI 10.1086/285451; Laaksonen T, 2004, OIKOS, V104, P616, DOI 10.1111/j.0030-1299.2004.12858.x; Laaksonen T, 2011, BEHAV ECOL SOCIOBIOL, V65, P257, DOI 10.1007/s00265-010-1034-9; Lehtonen PK, 2009, MOL ECOL, V18, P4463, DOI 10.1111/j.1365-294X.2009.04364.x; Lopez-Rull I, 2009, BEHAV PROCESS, V82, P312, DOI 10.1016/j.beproc.2009.07.012; Love OP, 2005, AM NAT, V166, P751, DOI 10.1086/497440; Lundberg A., 1992, PIED FLYCATCHER; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; Mazuc J, 2003, ECOL LETT, V6, P1084, DOI 10.1046/j.1461-0248.2003.00535.x; McNabb F.M.A., 1997, AM ZOOL, V37, P533; McNabb FMA, 2007, CRIT REV TOXICOL, V37, P163, DOI 10.1080/10408440601123552; Meylan S, 2012, PHILOS T R SOC B, V367, P1647, DOI 10.1098/rstb.2012.0020; Michl G, 2005, BEHAV ECOL, V16, P383, DOI 10.1093/beheco/ari002; Morosinotto C, 2013, J AVIAN BIOL, V44, P427, DOI 10.1111/j.1600-048X.2013.00084.x; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Muller W, 2005, P ROY SOC B-BIOL SCI, V272, P1971, DOI 10.1098/rspb.2005.3178; Muller W., 2012, GEN COMP ENDOCR, V75, P337; Muller W, 2007, AM NAT, V169, pE84, DOI 10.1086/511962; Muller W, 2009, BEHAV ECOL SOCIOBIOL, V63, P809, DOI 10.1007/s00265-009-0714-9; Muller W, 2009, HORM BEHAV, V55, P175, DOI 10.1016/j.yhbeh.2008.09.012; Muriel J, 2015, J EVOLUTION BIOL, V28, P1476, DOI 10.1111/jeb.12668; Muriel J., 2015, J EXP BIOL ADV; Muriel J, 2013, GEN COMP ENDOCR, V194, P175, DOI 10.1016/j.ygcen.2013.09.013; Navara K.J., 2005, PHYSIOL BIOCHEM ZOOL, V78, P287; Nilsson JF, 2011, PHYSIOL BIOCHEM ZOOL, V84, P287, DOI 10.1086/659006; Okuliarova M., 2012, AM NAT, V177, P824; Olofsson H, 2009, P ROY SOC B-BIOL SCI, V276, P2963, DOI 10.1098/rspb.2009.0500; Paitz RT, 2013, INTEGR COMP BIOL, V53, P895, DOI 10.1093/icb/ict027; Paitz RT, 2011, P ROY SOC B-BIOL SCI, V278, P99, DOI 10.1098/rspb.2010.0813; Partecke J, 2008, DEV NEUROBIOL, V68, P1538, DOI 10.1002/dneu.20676; PHOENIX CH, 1959, ENDOCRINOLOGY, V65, P369, DOI 10.1210/endo-65-3-369; Pilz KM, 2004, HORM BEHAV, V46, P179, DOI 10.1016/j.yhbeh.2004.03.004; Pilz KM, 2004, FUNCT ECOL, V18, P58, DOI 10.1111/j.1365-2435.2004.00811.x; Pilz KM, 2003, ANIM BEHAV, V65, P841, DOI 10.1006/anbe.2003.2094; Pitala N, 2009, J AVIAN BIOL, V40, P225, DOI 10.1111/j.1600-048X.2009.04452.x; Podlas K., 2013, PLOS ONE, V8; Postma E, 2014, OECOLOGIA, V174, P631, DOI 10.1007/s00442-013-2803-8; Qvarnstrom A, 2000, NATURE, V405, P344, DOI 10.1038/35012605; Rasanen K, 2007, FUNCT ECOL, V21, P408, DOI 10.1111/j.1365-2435.2007.01246.x; Ruuskanen S., 2011, PLOS ONE, V6; Ruuskanen S, 2013, J AVIAN BIOL, V44, P331, DOI 10.1111/j.1600-048X.2013.00073.x; Ruuskanen S, 2013, BEHAV ECOL SOCIOBIOL, V67, P361, DOI 10.1007/s00265-012-1456-7; Ruuskanen S, 2012, BEHAV ECOL SOCIOBIOL, V66, P1201, DOI 10.1007/s00265-012-1373-9; Ruuskanen S, 2012, FUNCT ECOL, V26, P884, DOI 10.1111/j.1365-2435.2012.01994.x; Ruuskanen S, 2011, BEHAV ECOL SOCIOBIOL, V65, P983, DOI 10.1007/s00265-010-1099-5; Ruuskanen S, 2010, HORM BEHAV, V57, P119, DOI 10.1016/j.yhbeh.2009.09.017; Ruuskanen S, 2009, HORM BEHAV, V55, P514, DOI 10.1016/j.yhbeh.2009.01.010; Sandell M.I., 2009, J EXP BIOL, V6, P815; Schwabl H, 1997, NATURE, V386, P231, DOI 10.1038/386231a0; Schwabl H, 1997, NATURWISSENSCHAFTEN, V84, P406, DOI 10.1007/s001140050418; Schwabl H, 1996, COMP BIOCHEM PHYS A, V114, P271, DOI 10.1016/0300-9629(96)00009-6; Schwabl H., 1993, P NATL ACAD SCI USA, V90, P11466; Schwabl H, 2007, AM NAT, V170, P196, DOI 10.1086/519397; Shama LNS, 2014, FUNCT ECOL, V28, P1482, DOI 10.1111/1365-2435.12280; Siikamaki P, 1996, IBIS, V138, P471, DOI 10.1111/j.1474-919X.1996.tb08067.x; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.2307/176797; Siitari H, 2002, ANIM BEHAV, V63, P97, DOI 10.1006/anbe.2001.1870; Sirkia PM, 2009, ANIM BEHAV, V78, P1051, DOI 10.1016/j.anbehav.2009.06.022; Smiseth PT, 2011, ANIM BEHAV, V81, P507, DOI 10.1016/j.anbehav.2010.11.029; Strasser R, 2004, BEHAV ECOL SOCIOBIOL, V56, P491, DOI 10.1007/s00265-004-0810-9; Tanvez A, 2004, GEN COMP ENDOCR, V138, P113, DOI 10.1016/j.ygcen.2004.05.010; Thomson RL, 2010, ECOLOGY, V91, P1832, DOI 10.1890/09-0989.1; Tobler M, 2007, OECOLOGIA, V151, P731, DOI 10.1007/s00442-006-0610-1; Tobler M, 2007, BIOLOGY LETT, V3, P408, DOI 10.1098/rsbl.2007.0127; Tobler M, 2013, PHYSIOL BIOCHEM ZOOL, V86, P333, DOI 10.1086/670194; Tobler M, 2009, J EXP BIOL, V212, P89, DOI 10.1242/jeb.020826; Treidel LA, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0684; Tschirren B, 2005, J ANIM ECOL, V74, P675, DOI 10.1111/j.1365-2656.2005.00963.x; Tschirren B, 2004, P ROY SOC B-BIOL SCI, V271, P1371, DOI 10.1098/rspb.2004.2730; Tschirren B, 2007, AM NAT, V169, P87, DOI 10.1086/509945; Tschirren B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133673; Tschirren B, 2014, ECOL LETT, V17, P1310, DOI 10.1111/ele.12339; Tschirren B, 2009, AM NAT, V174, P557, DOI 10.1086/605379; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; Vassallo BG, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2014.0502; Verboven N, 2003, P ROY SOC B-BIOL SCI, V270, P2223, DOI 10.1098/rspb.2003.2496; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; von Engelhardt N, 2011, HORMONES AND REPRODUCTION OF VERTEBRATES, VOL 4: BIRDS, P91; von Engelhardt N, 2009, GEN COMP ENDOCR, V163, P175, DOI 10.1016/j.ygcen.2009.04.004; Williams T. D., 2012, PHYSL ADAPTATIONS BR 107 5 5 2 42 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 1095-6840 GEN COMP ENDOCR Gen. Comp. Endocrinol. DEC 1 2015 224 283 293 10.1016/j.ygcen.2015.09.016 11 Endocrinology & Metabolism Endocrinology & Metabolism CY5HJ WOS:000366438400028 26393309 2019-02-21 J Cox, CL; Peaden, RT; Cox, RM Cox, Christian L.; Peaden, Robert T.; Cox, Robert M. The Metabolic Cost of Mounting an Immune Response in Male Brown Anoles (Anolis sagrei) JOURNAL OF EXPERIMENTAL ZOOLOGY PART A-ECOLOGICAL GENETICS AND PHYSIOLOGY English Article TRADE-OFFS; EVOLUTIONARY ECOLOGY; PHYTOHEMAGGLUTININ; STRESS; LIZARD; BIRDS; IMMUNOSUPPRESSION; TEMPERATURE; EXPENDITURE; STRATEGIES The tradeoff between reproduction and survival is central to life-history theory and is thought to reflect underlying energetic tradeoffs between reproduction and self-maintenance. Immune responses to parasites and pathogens are important components of self-maintenance in many species, but whether these defenses impose significant energetic costs has only been tested in a handful of organisms. We tested for a metabolic cost of mounting an immune response in the male brown anole (Anolis sagrei), a lizard in which we have previously shown that reproduction causes a marked reduction in immune response to the novel antigen phytohaemagglutinin (PHA). We treated captive male anoles with a subcutaneous injection of either PHA, which induces an immune response that manifests as localized swelling, or saline vehicle as a control. Prior to injection and at 24, 48, and 72 hr post-injection, we measured swelling at the site of injection and whole-animal resting metabolic rate (RMR) using stop-flow respirometry. Although we detected a robust swelling response to PHA at 24, 48, and 72 hr post-injection, mean RMR did not differ between treatments at any of these time points. However, within the PHA treatment group, RMR increased with the extent of swelling, suggesting a variable metabolic cost that scales with the magnitude of the induced immune response. Although individual anoles varied considerably in the extent to which they responded to PHA challenge, our results suggest that an immune response can impose a substantial metabolic cost (potentially as much as 63% above baseline RMR) for individuals that do respond maximally. (C) 2015 Wiley Periodicals, Inc. [Cox, Christian L.] Georgia So Univ, Dept Biol, Statesboro, GA 30458 USA; [Cox, Christian L.; Peaden, Robert T.; Cox, Robert M.] Univ Virginia, Dept Biol, Charlottesville, VA USA Cox, CL (reprint author), Georgia So Univ, Dept Biol, Statesboro, GA 30458 USA. clcox@georgiasouthern.edu University of Virginia Grant sponsor: University of Virginia. Adelman JS, 2015, INTEGRATIVE ORGANISMAL BIOLOGY, P169; Amo L, 2007, J EXP ZOOL PART A, V307A, P106, DOI 10.1002/jez.a.353; Boughton RK, 2007, J EXP ZOOL PART A, V307A, P479, DOI 10.1002/jez.402; Brace AJ, 2015, FUNCT ECOL, V29, P924, DOI 10.1111/1365-2435.12402; Calsbeek R, 2008, EVOLUTION, V62, P1137, DOI 10.1111/j.1558-5646.2008.00356.x; Calsbeek R, 2008, J ANIM ECOL, V77, P103, DOI 10.1111/j.1365-2656.2007.01320.x; Cohen AA, 2012, TRENDS ECOL EVOL, V27, P428, DOI 10.1016/j.tree.2012.04.008; Cox RM, 2011, J EVOLUTION BIOL, V24, P343, DOI 10.1111/j.1420-9101.2010.02171.x; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; Cox RM, 2009, PHYSIOL BIOCHEM ZOOL, V82, P686, DOI 10.1086/605391; Derting TL, 2003, PHYSIOL BIOCHEM ZOOL, V76, P744, DOI 10.1086/375662; Downs Cynthia J., 2013, Proceedings of the Royal Society Biological Sciences Series B, V280, P1; Eraud C, 2005, FUNCT ECOL, V19, P110, DOI 10.1111/j.0269-8463.2005.00934.x; Graham AL, 2005, ANNU REV ECOL EVOL S, V36, P373, DOI 10.1146/annurev.ecolsys.36.102003.152622; HART BL, 1988, NEUROSCI BIOBEHAV R, V12, P123, DOI 10.1016/S0149-7634(88)80004-6; Kennedy MW, 2006, TRENDS ECOL EVOL, V21, P653, DOI 10.1016/j.tree.2006.09.017; KLASING KC, 1988, J NUTR, V118, P1158; Klasing Kirk C., 2004, Acta Zoologica Sinica, V50, P961; Lighton J.R.B., 2008, MEASURING METABOLIC; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; Martin LB, 2006, FUNCT ECOL, V20, P290, DOI 10.1111/j.1365-2435.01094.x; Martin LB, 2015, INTEGRATIVE ORGANISMAL BIOLOGY, P1; Merlo JL, 2014, COMP BIOCHEM PHYS A, V175, P90, DOI 10.1016/j.cbpa.2014.05.021; Meylan S, 2013, PHYSIOL BIOCHEM ZOOL, V86, P127, DOI 10.1086/668637; Nagy KA, 1999, ANNU REV NUTR, V19, P247, DOI 10.1146/annurev.nutr.19.1.247; Ots I, 2001, P ROY SOC B-BIOL SCI, V268, P1175, DOI 10.1098/rspb.2001.1636; POUGH FH, 1980, AM NAT, V115, P92, DOI 10.1086/283547; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Sears MW, 2005, COMP BIOCHEM PHYS A, V140, P171, DOI 10.1016/j.cbpb.2004.12.003; Secor SM, 2007, J COMP PHYSIOL B, V177, P165, DOI 10.1007/s00360-006-0119-2; Streicher JW, 2012, J EXP BIOL, V215, P1137, DOI 10.1242/jeb.061143; Svensson E, 1998, FUNCT ECOL, V12, P912, DOI 10.1046/j.1365-2435.1998.00271.x; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; Vinkler M, 2012, ANIM BEHAV, V83, P17, DOI 10.1016/j.anbehav.2011.10.001; Vinkler M, 2010, FUNCT ECOL, V24, P1081, DOI 10.1111/j.1365-2435.2010.01711.x 37 3 3 2 39 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1932-5223 1932-5231 J EXP ZOOL PART A J. Exp. Zool. Part A DEC 1 2015 323 10 689 695 10.1002/jez.1960 7 Zoology Zoology CX8RB WOS:000365970300001 26350753 2019-02-21 J Szepsenwol, O; Simpson, JA; Griskevicius, V; Raby, KL Szepsenwol, Ohad; Simpson, Jeffry A.; Griskevicius, Vladas; Raby, K. Lee The Effect of Unpredictable Early Childhood Environments on Parenting in Adulthood JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY English Article parenting; early-life stress; social development; life history theory; attachment LIFE-HISTORY STRATEGIES; INTERGENERATIONAL TRANSMISSION; ATTACHMENT INTERVIEW; REPRODUCTIVE STRATEGIES; ALTERNATIVE MODELS; AFRICAN-AMERICAN; SELF-REPORTS; RISK; STRESS; METAANALYSIS Life history theory suggests that individual differences in parenting are partially rooted in environmental conditions experienced early in life. Whereas certain conditions should promote increased investment in parenting, unpredictable and/or harsh environments should promote decreased investment in parenting, especially in men. We tested this hypothesis in 3 studies. In Study 1a, we conducted analyses on 112 parents taking part in the Minnesota Longitudinal Study of Risk and Adaptation (MLSRA), all of whom have been continuously studied starting before they were born. Parenting orientations were assessed at age 32 via an interview. Findings showed that experiencing more unpredictability at ages 0-4 (i.e., frequent changes in parental employment status, cohabitation status, and residence) prospectively forecasted more negative parenting orientations among men, but not women. This effect was serially mediated by lower early maternal supportive presence measured at ages 0-4 and insecure attachment assessed at ages 19 and 26. In Study 1b, we replicated these findings on 96 parents from the MLSRA using behavioral observations of their parental supportive presence. In Study 2, we replicated the effect of early-life unpredictability on men's parenting orientations with a sample of 435 parents. This effect was mediated by adult attachment anxiety and avoidance. Across all studies, greater early-life harshness (low socioeconomic status [SES]) did not predict adult parenting outcomes. These findings suggest that greater early-life unpredictability may be conveyed to children through less supportive parenting, which results in insecure attachment representations in adulthood. Among men, this process culminates in less positive adult parenting orientations and less supportive parenting. [Szepsenwol, Ohad; Simpson, Jeffry A.] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA; [Griskevicius, Vladas] Univ Minnesota, Carlson Sch Management, Minneapolis, MN 55455 USA; [Raby, K. Lee] Univ Delaware, Dept Psychol & Brain Sci, Newark, DE 19716 USA Szepsenwol, O (reprint author), Univ Minnesota, Dept Psychol, 75 East River Rd,Suite N355, Minneapolis, MN 55455 USA. ohad.sheps@gmail.com Szepsenwol, Ohad/0000-0002-0561-172X; Simpson, Jeff/0000-0003-1899-2493 National Science Foundation [1057482] This research was supported by National Science Foundation Grant # 1057482 awarded to Jeffry A. Simpson and Vladas Griskevicius. Adam EK, 2004, CHILD DEV, V75, P110, DOI 10.1111/j.1467-8624.2004.00657.x; AMATO PR, 1991, PSYCHOL BULL, V110, P26, DOI 10.1037/0033-2909.110.1.26; Amato PR, 1998, MEN IN FAMILIES, P241; Belsky J, 2005, CHILD DEV, V76, P384, DOI 10.1111/j.1467-8624.2005.00852.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J., 2006, DEV PSYCHOPATHOL, P38; Belsky J, 2012, DEV PSYCHOL, V48, P1570, DOI 10.1037/a0027599; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Bolstad W.M., 2004, INTRO BAYESIAN STAT; Bowlby J., 1969, ATTACHMENT LOSS, V1; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buss David M, 2003, EVOLUTION DESIRE STR; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Capaldi DM, 2008, J ABNORM CHILD PSYCH, V36, P347, DOI 10.1007/s10802-007-9182-8; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cicchetti D., 1981, NEW DIR CHILD ADOLES, V11, P31, DOI DOI 10.1002/CD.23219811104; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Cochran M, 2002, HDB PARENTING, P123; COCHRANE R, 1973, J PSYCHOSOM RES, V17, P135, DOI 10.1016/0022-3999(73)90014-7; Collins WA, 2000, AM PSYCHOL, V55, P218, DOI 10.1037//0003-066X.55.2.218; Conger RD, 2009, DEV PSYCHOL, V45, P1276, DOI 10.1037/a0016911; Conger RD, 2002, DEV PSYCHOL, V38, P179, DOI 10.1037//0012-1649.38.2.179; Crnic K., 2002, HDB PARENTING, V5, P243; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DUNCAN OD, 1961, OCCUPATIONS SOCIAL S, P109; Dupont WD, 1998, CONTROL CLIN TRIALS, V19, P589, DOI 10.1016/S0197-2456(98)00037-3; EGELAND B, 1980, J CONSULT CLIN PSYCH, V48, P195, DOI 10.1037/0022-006X.48.2.195; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Enders C. K., 2010, APPL MISSING DATA AN; Fagan J, 2009, DEV PSYCHOL, V45, P1389, DOI 10.1037/a0015210; Florsheim P, 1996, J CONSULT CLIN PSYCH, V64, P1222, DOI 10.1037/0022-006X.64.6.1222; Fraley RC, 2013, DEV PSYCHOL, V49, P109, DOI 10.1037/a0027852; FYFFE CE, 1997, BIENN M SOC RES CHIL; Gamerman D., 2006, MARKOV CHAIN MONTE C; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; George C., 2008, HDB ATTACHMENT THEOR, P833; George C., 1985, ADULT ATTACHME INTER; Gray P. B, 2010, FATHERHOOD EVOLUTION; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hill K., 1996, ACHE LIFE HIST ECOLO; Jones JD, 2015, PERS SOC PSYCHOL REV, V19, P44, DOI 10.1177/1088868314541858; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kaplan HS, 2003, OFFSPRING, P170; Kerr DCR, 2009, DEV PSYCHOL, V45, P1257, DOI 10.1037/a0015863; Klahr AM, 2014, PSYCHOL BULL, V140, P544, DOI 10.1037/a0034205; Kline R. B., 2010, PRINCIPLES PRACTICE; LAMB ME, 1985, DEV PSYCHOL, V21, P768, DOI 10.1037/0012-1649.21.5.768; Lawson DW, 2010, HUM NATURE-INT BIOS, V21, P39, DOI 10.1007/s12110-010-9080-6; Macho S, 2011, PSYCHOL METHODS, V16, P34, DOI 10.1037/a0021763; Main M., 1998, ADULT ATTACHME UNPUB; McGuire S, 2012, PARENT-SCI PRACT, V12, P192, DOI 10.1080/15295192.2012.683357; MCLOYD VC, 1990, CHILD DEV, V61, P311, DOI 10.1111/j.1467-8624.1990.tb02781.x; McLoyd VC, 1998, AM PSYCHOL, V53, P185, DOI 10.1037/0003-066X.53.2.185; Mikulincer M., 2007, ATTACHMENT ADULTHOOD; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; OLIVER MB, 1993, PSYCHOL BULL, V114, P29, DOI 10.1037/0033-2909.114.1.29; PARKE RD, 1996, FATHERHOOD; Pettit GS, 1997, CHILD DEV, V68, P908, DOI 10.1111/j.1467-8624.1997.tb01970.x; Phelps JL, 1998, DEV PSYCHOPATHOL, V10, P21, DOI 10.1017/S0954579498001515; Pierce S. L., 1999, THESIS; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Raby KL, 2015, DEV PSYCHOL, V51, P115, DOI 10.1037/a0038336; Raby KL, 2013, J CHILD PSYCHOL PSYC, V54, P1223, DOI 10.1111/jcpp.12093; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Roisman G I, 2001, Attach Hum Dev, V3, P156, DOI 10.1080/14616730110056946; Roisman GI, 2007, J PERS SOC PSYCHOL, V92, P678, DOI 10.1037/0022-3514.92.4.678; Schachner DA, 2004, PERS RELATIONSHIP, V11, P179, DOI 10.1111/j.1475-6811.2004.00077.x; Shaffer A, 2009, DEV PSYCHOL, V45, P1227, DOI 10.1037/a0015361; Shaver PR, 2000, PERS RELATIONSHIP, V7, P25, DOI 10.1111/j.1475-6811.2000.tb00002.x; Shlafer RJ, 2015, ATTACH HUM DEV, V17, P83, DOI 10.1080/14616734.2014.962064; Simpson J. A., HDB ATTACHM IN PRESS; Simpson JA, 1996, J PERS SOC PSYCHOL, V71, P899, DOI 10.1037/0022-3514.71.5.899; SIMPSON JA, 1999, HDB ATTACHMENT THEOR, P115; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Spera C., 2005, EDUC PSYCHOL REV, V17, P125, DOI [10.1007/s10648-005-3950-1, DOI 10.1007/S10648-005-3950-1]; Sroufe L. A., 2005, DEV PERSON MINNESOTA; Sroufe LA, 2010, DEV REV, V30, P36, DOI 10.1016/j.dr.2009.12.002; Stearns S, 1992, EVOLUTION LIFE HIST; STEVENS G, 1981, SOC SCI RES, V10, P364, DOI 10.1016/0049-089X(81)90011-9; VAN IJZENDOORN MH, 1995, PSYCHOL BULL, V117, P387, DOI 10.1037/0033-2909.117.3.387; Woodward L, 2001, J MARRIAGE FAM, V63, P1170, DOI 10.1111/j.1741-3737.2001.01170.x 88 20 21 0 67 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0022-3514 1939-1315 J PERS SOC PSYCHOL J. Pers. Soc. Psychol. DEC 2015 109 6 1045 1067 10.1037/pspi0000032 23 Psychology, Social Psychology CY3NE WOS:000366315700006 26461797 2019-02-21 J von Wyschetzki, K; Rueppell, O; Oettler, J; Heinze, J von Wyschetzki, Katharina; Rueppell, Olav; Oettler, Jan; Heinze, Juergen Transcriptomic Signatures Mirror the Lack of the Fecundity/Longevity Trade-Off in Ant Queens MOLECULAR BIOLOGY AND EVOLUTION English Article fecundity/longevity trade-off; transcriptome; aging; mating; social insect; RNA-Seq GENOME-WIDE ANALYSIS; LIFE-SPAN; JUVENILE-HORMONE; OXIDATIVE STRESS; DIMORPHIC MALES; LONG-LIFE; REPRODUCTION; LONGEVITY; EXPRESSION; EVOLUTIONARY Life-history theory predicts a trade-off between reproductive investment and self-maintenance. The negative association between fertility and longevity found throughout multicellular organisms supports this prediction. As an important exception, the reproductives of many eusocial insects (ants, bees, and termites) are simultaneously very long-lived and highly fertile. Here, we examine the proximate basis for this exceptional relationship by comparing whole-body transcriptomes of differently aged queens of the ant Cardiocondyla obscurior. We show that the sets of genes differentially expressed with age significantly overlap with age-related expression changes previously found in female Drosophila melanogaster. We identified several developmental processes, such as the generation of neurons, as common signatures of aging. More generally, however, gene expression in ant queens and flies changes with age mainly in opposite directions. In contrast to flies, reproduction-associated genes were upregulated and genes associated with metabolic processes and muscle contraction were downregulated in old relative to young ant queens. Furthermore, we searched for putative C. obscurior longevity candidates associated with the previously reported lifespan-prolonging effect of mating by comparing the transcriptomes of queens that differed in mating and reproductive status. We found 21 genes, including the putative aging candidate NLaz (an insect homolog of APOD), which were consistently more highly expressed in short-lived, unmated queens than in long-lived, mated queens. Our study provides clear evidence that the alternative regulation of conserved molecular pathways that mediate the interplay among mating, egg laying, and aging underlies the lack of the fecundity/longevity trade-off in ant queens. [von Wyschetzki, Katharina; Oettler, Jan; Heinze, Juergen] Univ Regensburg, LS Zool Evolut Biol, D-93053 Regensburg, Germany; [Rueppell, Olav] Univ N Carolina, Dept Biol, Greensboro, NC 27412 USA von Wyschetzki, K (reprint author), Univ Regensburg, LS Zool Evolut Biol, D-93053 Regensburg, Germany. katharina.wyschetzki@ur.de Rueppell, Olav/0000-0001-5370-4229 Deutsche Forschungsgemeinschaft [He1623/31]; Regensburger Universitatsstiftung; NIA [R21AG046837]; QMUL Research-IT; EPSRC [EP/K000128/1]; Engineering and Physical Sciences Research Council [EP/K000128/1, EP/K000233/1] This work was supported by Deutsche Forschungsgemeinschaft (He1623/31). Collection of colonies of C. obscurior was possible through permit SISBIO 20324-1. The study was also supported by Regensburger Universitatsstiftung and NIA (R21AG046837) to O.R. The authors thank Alexandra Schrempf, Abel Bernadou, and two anonymous referees for valuable comments on the manuscript. This research utilized Queen Mary's MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. Anders S, 2015, BIOINFORMATICS, V31, P166, DOI 10.1093/bioinformatics/btu638; Andrews S., 2010, FASTQC; Ashburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Budovskaya YV, 2008, CELL, V134, P291, DOI 10.1016/j.cell.2008.05.044; Camacho C, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-421; Cardoen D, 2011, MOL ECOL, V20, P4070, DOI 10.1111/j.1365-294X.2011.05254.x; Carey JR, 2001, EXP GERONTOL, V36, P713, DOI 10.1016/S0531-5565(00)00237-0; Corona M, 2005, MECH AGEING DEV, V126, P1230, DOI 10.1016/j.mad.2005.07.004; Corona M, 2007, P NATL ACAD SCI USA, V104, P7128, DOI 10.1073/pnas.0701909104; de Magalhaes JP, 2012, FASEB J, V26, P4821, DOI 10.1096/fj.12-210872; de Magalhaes JP, 2005, PHYSIOLOGY, V20, P252, DOI 10.1152/physiol.00010.2005; Doroszuk A, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-167; Eady PE, 2007, P ROY SOC B-BIOL SCI, V274, P247, DOI 10.1098/rspb.2006.3710; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; Flatt T, 2007, EVOLUTION, V61, P1980, DOI 10.1111/j.1558-5646.2007.00151.x; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Girardot F, 2006, BMC GENOMICS, V7, DOI 10.1186/1471-2164-7-69; Grozinger CM, 2007, MOL ECOL, V16, P4837, DOI 10.1111/j.1365-294X.2007.03545.x; Haddad LS, 2007, EXP GERONTOL, V42, P601, DOI 10.1016/j.exger.2007.02.008; Havukainen H, 2013, J BIOL CHEM, V288, P28369, DOI 10.1074/jbc.M113.465021; Heinze J, 2006, INSECT SOC, V53, P1, DOI 10.1007/s00040-005-0847-4; Heinze J, 2005, STUD NEOTROP FAUNA E, V40, P187, DOI 10.1080/01650520500175250; HEINZE J, 1993, P NATL ACAD SCI USA, V90, P8412, DOI 10.1073/pnas.90.18.8412; Heinze J, 2008, GERONTOLOGY, V54, P160, DOI 10.1159/000122472; Heinze J, 2013, BEHAV ECOL SOCIOBIOL, V67, P1555, DOI 10.1007/s00265-013-1567-9; Heinze J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035201; Huang DW, 2009, NAT PROTOC, V4, P44, DOI 10.1038/nprot.2008.211; Hughes KA, 2005, ANNU REV ENTOMOL, V50, P421, DOI 10.1146/annurev.ento.50.071803.130409; Hull-Thompson J, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000460; Jemielity S, 2005, AGE, V27, P241, DOI 10.1007/s11357-005-2916-z; Jemielity S, 2007, AGING CELL, V6, P225, DOI 10.1111/j.1474-9726.2007.00279.x; Kanehisa M, 2000, NUCLEIC ACIDS RES, V28, P27, DOI 10.1093/nar/28.1.27; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Keller L, 1998, INSECT SOC, V45, P235, DOI 10.1007/s000400050084; KINOMURA K, 1987, J ETHOL, V5, P75, DOI 10.1007/BF02347897; Kocher SD, 2010, INSECT MOL BIOL, V19, P153, DOI 10.1111/j.1365-2583.2009.00965.x; Kocher SD, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-232; Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/nmeth.1923, 10.1038/NMETH.1923]; Love MI, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0550-8; Lu HL, 2011, INSECT MOL BIOL, V20, P637, DOI 10.1111/j.1365-2583.2011.01094.x; Martin M., 2011, EMBNET J, V17, P10, DOI DOI 10.14806/EJ.17.1.200; Mattila J, 2009, MOL CELL BIOL, V29, P5357, DOI 10.1128/MCB.00302-09; McGraw LA, 2004, CURR BIOL, V14, P1509, DOI 10.1016/j.cub.2004.08.028; Micallef L, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101717; Michod RE, 2006, J THEOR BIOL, V239, P257, DOI 10.1016/j.jtbi.2005.08.043; Okada Y, 2010, J INSECT PHYSIOL, V56, P288, DOI 10.1016/j.jinsphys.2009.10.013; Oksanen J, 2015, VEGAN COMMUNMITY ECO; Parker JD, 2004, P NATL ACAD SCI USA, V101, P3486, DOI 10.1073/pnas.0400222101; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; Pletcher SD, 2002, CURR BIOL, V12, P712, DOI 10.1016/S0960-9822(02)00808-4; R Core Team, 2014, R FDN STAT COMP; Remolina SC, 2008, AGE, V30, P177, DOI 10.1007/s11357-008-9061-4; Ritchie ME, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv007; Rose MR, 1990, EVOLUTIONARY BIOL AG; Ruiz M, 2011, EXP GERONTOL, V46, P579, DOI 10.1016/j.exger.2011.02.014; Schmidt CM, 2013, AFR ZOOL, V48, P193; Schneider SA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014601; Schrader L, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6495; Schrempf A, 2005, CURR BIOL, V15, P267, DOI 10.1016/j.cub.2005.01.036; Schrempf A, 2015, MOL ECOL, V24, P3618, DOI 10.1111/mec.13267; Schrempf A, 2011, J EVOLUTION BIOL, V24, P1455, DOI 10.1111/j.1420-9101.2011.02278.x; Seehuus SC, 2006, P NATL ACAD SCI USA, V103, P962, DOI 10.1073/pnas.0502681103; Seifert B, 2002, SO ANN NATURHISTORIS, V104B, p203 ; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STUART RJ, 1987, NATURWISSENSCHAFTEN, V74, P548, DOI 10.1007/BF00367076; Tabatabaie V, 2011, AGING-US, V3, P1202, DOI 10.18632/aging.100415; Tacutu R, 2012, NUCLEIC ACIDS RES, V1, P7; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; Tatar M, 1996, GENETICS, V143, P849; Trapnell C, 2009, BIOINFORMATICS, V25, P1105, DOI 10.1093/bioinformatics/btp120; TREVITT S, 1991, J INSECT PHYSIOL, V37, P471, DOI 10.1016/0022-1910(91)90057-7; Wang Y, 2012, J EXP BIOL, V215, P124, DOI 10.1242/jeb.060889; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; Zhou S, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-927; Zou S, 2000, P NATL ACAD SCI USA, V97, P13726, DOI 10.1073/pnas.260496697 78 20 20 2 33 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0737-4038 1537-1719 MOL BIOL EVOL Mol. Biol. Evol. DEC 2015 32 12 3173 3185 10.1093/molbev/msv186 13 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity CX2ED WOS:000365507300011 26341296 Green Published, Bronze 2019-02-21 J Hanan, A; He, XZ; Shakeel, M; Khetran, MA; Wang, Q Hanan, Abdul; He, Xiong Z.; Shakeel, Muhammad; Khetran, Munir A.; Wang, Qiao Eretmocerus warrae prefer to attack mid-aged hosts to gain fitness for both adults and their offspring BIOLOGICAL CONTROL English Article Host stage preference; Behaviour; Fitness gain; Strategy; Thelytoky ENCARSIA-FORMOSA HYMENOPTERA; TABACI BIOTYPE-B; BEMISIA-ARGENTIFOLII HOMOPTERA; LIFE-HISTORY; TRIALEURODES-VAPORARIORUM; BIOLOGICAL-CONTROL; FURUHASHII HYMENOPTERA; IMMATURE DEVELOPMENT; ALEYRODIDAE INSTARS; MUNDUS HYMENOPTERA Eretmocerus warrae Nauman and Schmidt (Hymenoptera: Aphelinidae) is an important ecto-endoparasitoid of greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). However, prior to the present study little was known about its life history strategies, making it difficult to develop a biological control program with this parasitoid. Using T. vaporariorum as hosts we carried out a series of experiments in the laboratory to determine the host stage preference by the foraging adults and its effect on the fitness of both adults and their offspring. The parasitoid females prefer to feed on and parasitize the second and third instar nymphs to gain maximal fitness for themselves and their offspring. Among the optimal hosts attacked, E. warrae allocate >80% of them for parasitization and <20% for feeding. The first instar larvae do not penetrate the host nymphs until the latter molt into the fourth instar regardless of the host stages parasitized. Therefore, after penetration all juveniles live in similar environment, feed on hosts with similar quality and quantity of nutrition, and achieve similar survival rate. The lower fitness gain and higher mortality of E. warrae juveniles when the first instar hosts are parasitized result from longer waiting time and starvation before penetration. The higher mortality of E. warrae juveniles if the fourth instar nymphs are attacked may stem from the fact that when E. warrae eggs hatch, the host nymphs have already developed to the pharate adult stage which the first instar larvae have difficulty penetrating. (C) 2015 Elsevier Inc. All rights reserved. [Hanan, Abdul; Khetran, Munir A.] Balochistan Agr Res Ctr, Quetta, Pakistan; [He, Xiong Z.; Wang, Qiao] Massey Univ, Inst Agr & Environm, Palmerston North, New Zealand; [Shakeel, Muhammad] Pakistan Agr Res Council, Islamabad, Pakistan Wang, Q (reprint author), Massey Univ, Inst Agr & Environm, Private Bag 11222, Palmerston North, New Zealand. Q.Wang@massey.ac.nz Wang, Qiao/P-3121-2018 Wang, Qiao/0000-0001-6494-2097 Higher Education Commission of Pakistan We are grateful to the Higher Education Commission of Pakistan for providing the senior author with an Overseas Scholarship for this study at Massey University, New Zealand. We also thank BioForce Ltd., Auckland, New Zealand, for providing insects for this study, the staff of the Institute of Agriculture and Environment and Plant Growth Unit, Massey University, for providing materials and technical assistance, and two anonymous reviewers for constructive comments. Ardeh M.J., 2004, THESIS; BYRNE DN, 1991, ANNU REV ENTOMOL, V36, P431, DOI 10.1146/annurev.en.36.010191.002243; Castillo JA, 2011, BIOCONTROL, V56, P843, DOI 10.1007/s10526-011-9358-6; CHAN MS, 1993, EVOL ECOL, V7, P593, DOI 10.1007/BF01237823; De Barro PJ, 2001, ENTOMOL EXP APPL, V99, P225, DOI 10.1046/j.1570-7458.2001.00821.x; EDWARDS RL, 1954, Q J MICROSC SCI, V95, P459; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; FOLTYN S, 1985, ENTOMOL EXP APPL, V38, P255, DOI 10.1111/j.1570-7458.1985.tb03527.x; FRANSEN JJ, 1987, J APPL ENTOMOL, V103, P55, DOI 10.1111/j.1439-0418.1987.tb00960.x; Gelman D. B., 2005, J INSECT SCI, V5, P1536; Gelman DB, 2002, J INSECT PHYSIOL, V48, P63, DOI 10.1016/S0022-1910(01)00146-9; GERLING D, 1990, ARCH INSECT BIOCHEM, V13, P247, DOI 10.1002/arch.940130311; Gerling D, 1998, BIOCONTROL, V43, P289, DOI 10.1023/A:1009905525300; GERLING D, 1966, CAN ENTOMOL, V98, P1316, DOI 10.4039/Ent981316-12; Gerling D., 1991, Redia, V74, P411; Gerling D, 2013, ARTHROPOD STRUCT DEV, V42, P309, DOI 10.1016/j.asd.2013.03.003; Gerling D, 2009, BIOL CONTROL, V49, P201, DOI 10.1016/j.biocontrol.2009.02.009; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Hanan A., 2012, New Zealand Plant Protection, V65, P133; Hanan A., 2010, New Zealand Plant Protection, V63, P113; Hanan A., 2009, New Zealand Plant Protection, V62, P156; Hanan A, 2015, J ENTOMOL RES SOC, V17, P51; HARDY ICW, 1992, J ANIM ECOL, V61, P121, DOI 10.2307/5515; Harvey JA, 2004, ECOL ENTOMOL, V29, P35, DOI 10.1111/j.0307-6946.2004.00568.x; Headrick D.H., 1995, ENVIRON ENTOMOL, V24, P412; Headrick DH, 1996, ENTOMOPHAGA, V41, P15, DOI 10.1007/BF02893288; HEIMPEL GE, 1995, J ANIM ECOL, V64, P153, DOI 10.2307/5751; Henneberry T.J., 1998, Recent Research Developments in Entomology, V2, P151; Hoddle M.S., 2008, ERETMOCERUS EREMICUS; Hoddle MS, 1999, FLA ENTOMOL, V82, P556, DOI 10.2307/3496473; Hu JS, 2002, ARCH INSECT BIOCHEM, V49, P125, DOI 10.1002/arch.10015.abs; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; Jones WA, 1999, BIOCONTROL, V44, P13, DOI 10.1023/A:1009992421012; Jones WA, 1998, ENVIRON ENTOMOL, V27, P1569, DOI 10.1093/ee/27.6.1569; Karut K, 2007, J PEST SCI, V80, P93, DOI 10.1007/s10340-006-0157-2; KIDD NAC, 1991, RES POPUL ECOL, V33, P13, DOI 10.1007/BF02514570; Lauziere I, 2001, BIOL CONTROL, V21, P128, DOI 10.1006/bcon.2000.0909; Liu TX, 2007, BIOL CONTROL, V42, P77, DOI 10.1016/j.biocontrol.2007.03.008; Liu TX, 2015, ANNU REV ENTOMOL, V60, P273, DOI 10.1146/annurev-ento-010814-021101; Mackauer M., 1993, PARASITES PATHOGENS, VVI, P1; McAuslane HJ, 1996, ANN ENTOMOL SOC AM, V89, P686, DOI 10.1093/aesa/89.5.686; Murdoch WW, 1997, J ANIM ECOL, V66, P542, DOI 10.2307/5948; NECHOLS JR, 1977, ENVIRON ENTOMOL, V6, P143, DOI 10.1093/ee/6.1.143; Qiu BL, 2005, B ENTOMOL RES, V95, P313, DOI 10.1079/BER2005362; Qiu BL, 2007, BIOCONTROL SCI TECHN, V17, P823, DOI 10.1080/09583150701595042; Qiu YT, 2004, EUR J ENTOMOL, V101, P83, DOI 10.14411/eje.2004.017; Urbaneja A, 2004, BIOCONTROL, V49, P153, DOI 10.1023/B:BICO.0000017365.37010.e0; VANLENTEREN JC, 1976, ENTOMOL EXP APPL, V20, P123; VanLenteren JC, 1996, BIOL CONTROL, V6, P1, DOI 10.1006/bcon.1996.0001; VANROERMUND HJW, 1995, ENTOMOL EXP APPL, V76, P313; Workman P., 2008, NZ PLANT PROTECTION, V61, P386; Yang NW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041189; Yang NW, 2011, BIOL CONTROL, V59, P313, DOI 10.1016/j.biocontrol.2011.07.019; Zang LS, 2008, ENTOMOL EXP APPL, V127, P55, DOI 10.1111/j.1570-7458.2008.00667.x; Zaviezo T, 2000, J ANIM ECOL, V69, P1047, DOI 10.1046/j.1365-2656.2000.00460.x; Zhang YB, 2014, ECOL ENTOMOL, V39, P723, DOI 10.1111/een.12154 56 3 3 0 8 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1049-9644 1090-2112 BIOL CONTROL Biol. Control DEC 2015 91 10 16 10.1016/j.biocontrol.2015.07.005 7 Biotechnology & Applied Microbiology; Entomology Biotechnology & Applied Microbiology; Entomology CW2EA WOS:000364802700002 2019-02-21 J Chipman, A; Morrison, E Chipman, Abby; Morrison, Edward Experimentally induced stress decreases ideal female reproductive timing PSYCHONEUROENDOCRINOLOGY English Article Life history strategy; Cold pressor test; Acute stress; Childhood adversity; Female reproductive timing; Marital ideals; Time preference EVOLUTIONARY-DEVELOPMENTAL THEORY; BIOLOGICAL SENSITIVITY; FATHER ABSENCE; MENARCHE; AGE; REACTIVITY; CHILDHOOD; MORTALITY; PREGNANCY; CONTEXT Previous correlational research shows that childhood adversity is associated with earlier age of reproduction in humans and other species. Such studies, however, cannot show that stressful conditions cause earlier reproduction. Using the cold-pressor task, we built on previous work to test the idea that acute stress influences human reproductive and marital ideals, and that individual stress responses depend on adaptive life history strategies shaped by exposure to adversity during childhood. Acute stress shifted ideal ages of first birth and marriage to earlier ages. We also tested a competing hypothesis, whether stress had a more general impact on time preference, but found no evidence that it did. Furthermore, there was an interaction between childhood adversity and acute stress. Individuals who reported more exposure to childhood adversity responded to acute stress by reporting even earlier reproductive ideals. These findings offer experimental evidence that physiological stress can alter reproductive decision making in humans. (C) 2015 Elsevier Ltd. All rights reserved. [Chipman, Abby; Morrison, Edward] Univ Portsmouth, Dept Psychol, Ctr Comparat & Evolutionary Psychol, Portsmouth PO1 2DY, Hants, England Chipman, A (reprint author), Univ Portsmouth, Dept Psychol, Portsmouth PO1 2DY, Hants, England. abby.chipman@port.ac.uk Morrison, Edward/0000-0001-7136-5072 University of Portsmouth This research was undertaken as part of a PhD program and funded by the University of Portsmouth. Bagot RC, 2009, NEUROBIOL LEARN MEM, V92, P292, DOI 10.1016/j.nlm.2009.03.004; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bogaert AF, 2008, J BIOSOC SCI, V40, P623, DOI 10.1017/S0021932007002386; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brody S, 2002, PSYCHONEUROENDOCRINO, V27, P933, DOI 10.1016/S0306-4530(02)00007-0; Chesson HW, 2006, J RISK UNCERTAINTY, V32, P217, DOI 10.1007/s11166-006-9520-1; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; Cohen J., 2013, STAT POWER ANAL BEHA; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dickerson SS, 2004, PSYCHOL BULL, V130, P355, DOI 10.1037/0033-2909.130.3.355; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Lancaster LT, 2008, J EVOLUTION BIOL, V21, P556, DOI 10.1111/j.1420-9101.2007.01478.x; Levine S, 2005, PSYCHONEUROENDOCRINO, V30, P939, DOI 10.1016/j.psyneuen.2005.03.013; Mikach SM, 1999, EVOL HUM BEHAV, V20, P141, DOI 10.1016/S1090-5138(98)00045-2; Nettle D., 2010, P ROYAL SOC B, V278, P1721; Nettle D., 2013, P ROYAL SOC B, V280, P1; Nettle D, 2011, PHILOS T R SOC B, V366, P357, DOI 10.1098/rstb.2010.0073; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; Schoen R, 1999, J MARRIAGE FAM, V61, P790, DOI 10.2307/353578; Schwabe L, 2008, PSYCHONEUROENDOCRINO, V33, P890, DOI 10.1016/j.psyneuen.2008.03.001; Sear R., 2007, J EVOL PSYCHOL, V1, P3; United Nations Department of Economic and Social Affairs, 2004, WORLD POP MON 2002 R; Wisman A, 2005, J PERS SOC PSYCHOL, V89, P46, DOI 10.1037/0022-3514.89.1.46 26 5 5 1 9 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0306-4530 PSYCHONEUROENDOCRINO Psychoneuroendocrinology DEC 2015 62 89 95 10.1016/j.psyneuen.2015.07.611 7 Endocrinology & Metabolism; Neurosciences; Psychiatry Endocrinology & Metabolism; Neurosciences & Neurology; Psychiatry CW5UU WOS:000365062900011 26263545 2019-02-21 J Ory, NC; van Son, TC; Thiel, M Ory, Nicolas Christian; van Son, Thijs Christiaan; Thiel, Martin Mating rock shrimp hedge their bets: old males take greater risk, but only after careful assessment of the investment scenario BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Age; Mate-guarding; Mating behavior; Predation risk; Residual reproductive value; Risk-taking strategies RHYNCHOCINETES-TYPUS DECAPODA; RESIDUAL REPRODUCTIVE VALUE; MALE-DOMINANCE HIERARCHY; PREDATION RISK; TERMINAL INVESTMENT; SEXUAL SELECTION; ANTIPREDATORY BEHAVIOR; FERTILIZATION SUCCESS; INTERSEXUAL CONFLICT; POPULATION-STRUCTURE Mature organisms often have to trade reproductive opportunities against the need to survive, especially in species with exaggerated, sexually selected traits. Life history theory predicts that old males with low residual reproductive value (RRV) would accept greater risk for current reproduction than their younger counterparts. Accordingly, we tested the prediction that, under predation risk, old males of the rock shrimp Rhynchocinetes typus pair with females faster and for a longer time than young males do. We exposed young and old dominant males (in the final ontogenetic stage, called "robustus") to a female in the absence and presence of a predator. As predicted, older robustus males modified their mating behavior when exposed to a predator. However, in contrast to the prediction, they delayed female seizure under predation risk, possibly to carefully assess the actual threat before initiating female guarding. Once they had established the mate-guarding position, old robustus males did not interrupt it until the end of female spawning and, in the presence of predators, even guarded the female significantly longer than in predator-free treatments. In contrast, younger robustus males did not delay female seizure but abandoned the female repeatedly when a predator was present, suggesting that they perceived and responded to the predation risk. Our results suggest that older robustus males have the experience to assess threats before engaging in risky behaviors that bolster their reproductive success. Although consistent with the theory that low RRV individuals should accept greater reproductive risk, we suggest that old individuals do not recklessly engage in risky behaviors but rather cautiously evaluate the threats before investing in a potentially terminal reproductive event. [Ory, Nicolas Christian; van Son, Thijs Christiaan; Thiel, Martin] Univ Catolica Norte, Fac Ciencias Mar, Coquimbo, Chile; [Ory, Nicolas Christian; Thiel, Martin] Millennium Nucleus Ecol & Sustainable Management, Coquimbo, Chile; [van Son, Thijs Christiaan] Geol Survey Norway, Marine Geol, N-7491 Trondheim, Norway; [Thiel, Martin] Ctr Estudios Avanzados Zonas Aridas, Coquimbo, Chile Ory, NC (reprint author), Univ Catolica Norte, Fac Ciencias Mar, Larrondo 1281, Coquimbo, Chile. nory@ucn.cl State Educational Loan Fund of Norway; Fondo Nacional de Desarrollo Cientifico y Technologico (FONDECYT) of the Chilean Ministry of Education [3150636]; Chilean Millennium Initiative grant [NC120030] TCvS was supported by a grant from the State Educational Loan Fund of Norway. NCO was supported by a grant from the Fondo Nacional de Desarrollo Cientifico y Technologico (FONDECYT, post-octoral project 3150636) of the Chilean Ministry of Education. This work was also supported by the Chilean Millennium Initiative (NC120030) grant. Andersson M., 1994, SEXUAL SELECTION; ARNQVIST G, 1989, ANIM BEHAV, V38, P749, DOI 10.1016/S0003-3472(89)80107-1; Arnqvist G, 1999, EVOLUTION, V53, P147, DOI 10.1111/j.1558-5646.1999.tb05340.x; ARTISS T, 1995, ANIM BEHAV, V49, P1249, DOI 10.1006/anbe.1995.0157; Bailie DA, 2014, J CRUSTACEAN BIOL, V34, P658, DOI 10.1163/1937240X-00002254; Bauer RT, 2011, CHEMICAL COMMUNICATION IN CRUSTACEANS, P277, DOI 10.1007/978-0-387-77101-4_14; Billing AM, 2007, BEHAV ECOL, V18, P535, DOI 10.1093/beheco/arm007; Borowski Z, 2002, CAN J ZOOL, V80, P1520, DOI 10.1139/Z02-154; Brown C, 2003, FISH FISH, V4, P280, DOI 10.1046/j.1467-2979.2003.00122.x; Cameron EZ, 2000, BEHAV ECOL SOCIOBIOL, V47, P243, DOI 10.1007/s002650050661; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; Christy John H., 2007, P211; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cooper WE, 1999, BEHAV ECOL SOCIOBIOL, V47, P54, DOI 10.1007/s002650050649; Cordes N, 2014, BEHAV ECOL, V25, P409, DOI 10.1093/beheco/art128; Correa C, 2000, J CRUSTACEAN BIOL, V20, P628, DOI 10.1651/0278-0372(2000)020[0628:MBAFSO]2.0.CO;2; Correa C, 2003, REV CHIL HIST NAT, V76, P187, DOI 10.4067/S0716-078X2003000200006; Correa C, 2003, J CRUSTACEAN BIOL, V23, P849, DOI 10.1651/C-2388; Correa C, 2003, J CRUSTACEAN BIOL, V23, P33, DOI 10.1651/0278-0372(2003)023[0033:MDHAMT]2.0.CO;2; Dennenmoser S, 2008, ETHOLOGY, V114, P327, DOI 10.1111/j.1439-0310.2007.01464.x; Dennenmoser S, 2007, BEHAVIOUR, V144, P33, DOI 10.1163/156853907779947382; Diaz ER, 2004, BIOL BULL-US, V206, P134, DOI 10.2307/1543637; Dunn AM, 2008, ANIM BEHAV, V76, P1289, DOI 10.1016/j.anbehav.2008.06.013; FAIRBAIRN DJ, 1993, BEHAV ECOL, V4, P224, DOI 10.1093/beheco/4.3.224; Fischer K, 2008, P ROY SOC B-BIOL SCI, V275, P1517, DOI 10.1098/rspb.2007.1455; Frost AJ, 2007, P ROY SOC B-BIOL SCI, V274, P333, DOI 10.1098/rspb.2006.3751; GODIN JGJ, 1995, OECOLOGIA, V103, P224, DOI 10.1007/BF00329084; GWYNNE DT, 1989, TRENDS ECOL EVOL, V4, P54, DOI 10.1016/0169-5347(89)90144-4; HARTNOLL RG, 1978, J NAT HIST, V12, P501, DOI 10.1080/00222937800770361; Hinojosa I, 2003, ANIM BEHAV, V66, P449, DOI 10.1006/anbe.2003.2220; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Jivoff P, 1997, BEHAV ECOL SOCIOBIOL, V40, P175, DOI 10.1007/s002650050331; Jormalainen V, 1998, Q REV BIOL, V73, P275, DOI 10.1086/420306; Kemp DJ, 2006, BIOL J LINN SOC, V88, P565, DOI 10.1111/j.1095-8312.2006.00643.x; Kemp DJ, 2002, P ROY SOC B-BIOL SCI, V269, P1341, DOI 10.1098/rspb.2002.2000; Koga T, 1998, P ROY SOC B-BIOL SCI, V265, P1385, DOI 10.1098/rspb.1998.0446; Koga T, 2001, ANIM BEHAV, V62, P201, DOI 10.1006/anbe.2001.1740; Kotiaho J, 1998, J ANIM ECOL, V67, P287, DOI 10.1046/j.1365-2656.1998.00192.x; Lafaille M, 2010, BEHAV ECOL SOCIOBIOL, V64, P1485, DOI 10.1007/s00265-010-0963-7; Lasley-Rasher RS, 2012, LIMNOL OCEANOGR, V57, P433, DOI 10.4319/lo.2012.57.2.0433; Lima SL, 1998, BIOSCIENCE, V48, P25, DOI 10.2307/1313225; Lima SL, 1998, ADV STUD BEHAV, V27, P215; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Loonstedt OM, 2012, P ROY SOC LOND B BIO, V279, P2091; MAGNHAGEN C, 1990, BEHAV ECOL SOCIOBIOL, V26, P331; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; MAGURRAN AE, 1990, BEHAVIOUR, V112, P194, DOI 10.1163/156853990X00194; Maier G, 2000, J PLANKTON RES, V22, P1977, DOI 10.1093/plankt/22.10.1977; Mathis A, 1997, ETHOLOGY, V103, P33; McCormick MI, 2006, J FISH BIOL, V68, P969, DOI 10.1111/j.1095-8649.2006.00982.x; Medina Marianela, 2004, Investigaciones Marinas Universidad Catolica de Valparaiso, V32, P33; MIRANDA O, 1970, BIOL PESQUERA CHILE, V4, P41; Munoz AA, 1997, ENVIRON BIOL FISH, V49, P471, DOI 10.1023/A:1007305426073; Niemela PT, 2012, ANIM BEHAV, V84, P129, DOI 10.1016/j.anbehav.2012.04.019; Oku K, 2008, J ETHOL, V26, P261, DOI 10.1007/s10164-007-0057-9; Ory NC, 2012, MAR BIOL, V159, P2075, DOI 10.1007/s00227-012-1994-6; PARKER GA, 1974, J THEOR BIOL, V47, P223, DOI 10.1016/0022-5193(74)90111-8; PART T, 1992, AM NAT, V140, P868, DOI 10.1086/285445; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Quinn G. P., 2002, EXPT DESIGN DATA ANA; Rodriguez-Munoz R, 2011, CURR BIOL, V21, P1716, DOI 10.1016/j.cub.2011.08.053; Sakia R., 1992, STATISTICIAN, P169; SIH A, 1990, AM NAT, V135, P284, DOI 10.1086/285044; SIVINSKI J, 1980, ANN ENTOMOL SOC AM, V73, P553, DOI 10.1093/aesa/73.5.553; Thiel M, 2004, BEHAV ECOL SOCIOBIOL, V57, P62, DOI 10.1007/s00265-004-0828-z; Thiel M, 2003, BEHAV ECOL SOCIOBIOL, V55, P113, DOI 10.1007/s00265-003-0677-1; Thiel M, 2010, J CRUSTACEAN BIOL, V30, P580, DOI 10.1651/09-3272.1; TRAVERS SE, 1991, ECOLOGY, V72, P2123, DOI 10.2307/1941564; Trumbo ST, 2012, BEHAV ECOL SOCIOBIOL, V66, P1511, DOI 10.1007/s00265-012-1406-4; Trumbo ST, 2009, BEHAV ECOL, V20, P951, DOI 10.1093/beheco/arp082; Turnell BR, 2015, EVOLUTION, V69, P2094, DOI 10.1111/evo.12721; Vargas M, 1999, REV BIOL TROP, V47, P601; VERRELL PA, 1985, BEHAVIOUR, V95, P198, DOI 10.1163/156853985X00127; WILBER DH, 1989, BEHAV ECOL SOCIOBIOL, V24, P445, DOI 10.1007/BF00293274; Wilgers DJ, 2012, BEHAV ECOL SOCIOBIOL, V66, P29, DOI 10.1007/s00265-011-1248-5; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Yates D., 1999, PRACTICE STAT; Zeiss C, 1999, CAN J ZOOL, V77, P1013, DOI 10.1139/cjz-77-6-1013; Zuk M, 1998, Q REV BIOL, V73, P415, DOI 10.1086/420412 79 4 4 3 30 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. DEC 2015 69 12 1975 1984 10.1007/s00265-015-2009-7 10 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology CW5ZV WOS:000365076900008 2019-02-21 J Rodhouse, TJ; Ormsbee, PC; Irvine, KM; Vierling, LA; Szewczak, JM; Vierling, KT Rodhouse, Thomas J.; Ormsbee, Patricia C.; Irvine, Kathryn M.; Vierling, Lee A.; Szewczak, Joseph M.; Vierling, Kerri T. Establishing conservation baselines with dynamic distribution models for bat populations facing imminent decline DIVERSITY AND DISTRIBUTIONS English Article Bayesian hierarchical model; Chiroptera; keystone structures; life history; spatio-temporal variation; species distribution modelling; species-energy theory; trend; turnover WIND ENERGY FACILITIES; WHITE-NOSE SYNDROME; LONG-LEGGED MYOTIS; PACIFIC-NORTHWEST; UNITED-STATES; DAY ROOSTS; NORTHERN CALIFORNIA; OCCUPANCY MODELS; EXTINCTION RISK; CENTRAL OREGON Aim Bat mortality rates from white-nose syndrome and wind power development are unprecedented. Cryptic and wide-ranging behaviours of bats make them difficult to survey, and population estimation is often intractable. We advance a model-based framework for making spatially explicit predictions about summertime distributions of bats from capture and acoustic surveys. Motivated by species-energy and life-history theory, our models describe hypotheses about spatio-temporal variation in bat distributions along environmental gradients and life-history attributes, providing a statistical basis for conservation decision-making. Location Oregon and Washington, USA. Methods We developed Bayesian hierarchical models for 14 bat species from an 8-year monitoring dataset across a similar to 430,000km(2) study area. Models accounted for imperfect detection and were temporally dynamic. We mapped predicted occurrence probabilities and prediction uncertainties as baselines for assessing future declines. Results Forest cover, snag abundance and cliffs were important predictors for most species. Species occurrence patterns varied along elevation and precipitation gradients, suggesting a potential hump-shaped diversity-productivity relationship. Annual turnover in occurrence was generally low, and occurrence probabilities were stable among most species. We found modest evidence that turnover covaried with the relative riskiness of bat roosting and migration. The fringed myotis (Myotis thysanodes), canyon bat (Parastrellus hesperus) and pallid bat (Antrozous pallidus) were rare; fringed myotis occurrence probabilities declined over the study period. We simulated anticipated declines to demonstrate that mapped occurrence probabilities, updated over time, provide an intuitive way to assess bat conservation status for a broad audience. Main conclusions Landscape keystone structures associated with roosting habitat emerged as regionally important predictors of bat distributions. The challenges of bat monitoring have constrained previous species distribution modelling efforts to temporally static presence-only approaches. Our approach extends to broader spatial and temporal scales than has been possible in the past for bats, making a substantial increase in capacity for bat conservation. [Rodhouse, Thomas J.] Upper Columbia Basin Network, Natl Pk Serv, Bend, OR 97701 USA; [Ormsbee, Patricia C.] US Forest Serv, Bur Land Management Reg, Springfield, OR 97477 USA; [Irvine, Kathryn M.] US Geol Survey, Northern Rocky Mt Sci Ctr, Bozeman, MT 59715 USA; [Vierling, Lee A.] Univ Idaho, Geospatial Lab Environm Dynam, Moscow, ID 83844 USA; [Szewczak, Joseph M.] Humboldt State Univ, Dept Biol Sci, Arcata, CA 95521 USA; [Vierling, Kerri T.] Univ Idaho, Dept Fish & Wildlife, Moscow, ID 83844 USA Rodhouse, TJ (reprint author), Upper Columbia Basin Network Inventory & Monitori, Natl Pk Serv, 63095 Deschutes Market Rd, Bend, OR 97701 USA. tom_rodhouse@nps.gov Vierling, Kerri/N-6653-2016 Rodhouse, Thomas/0000-0001-5953-9113 U.S. Forest Service; Bureau of Land Management; Department of Defense Legacy Program; National Park Service Funding for the Bat Grid was provided by the U.S. Forest Service, Bureau of Land Management, and Department of Defense Legacy Program. The National Park Service provided additional funding and support. We thank the contributors to the Bat Grid. L. Cousineau provided data management support. J. Hobson provided GIS support. J. Sauer provided helpful comments during preparation of this manuscript. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Adams RA, 2010, ECOLOGY, V91, P2437, DOI 10.1890/09-0091.1; Arnett EB, 2008, J WILDLIFE MANAGE, V72, P61, DOI 10.2193/2007-221; Arnett Edward B., 2013, P435; Arnett EB, 2009, J WILDLIFE MANAGE, V73, P214, DOI 10.2193/2007-532; Baker MD, 2008, NORTHWEST SCI, V82, P269, DOI 10.3955/0029-344X-82.4.269; Barclay RMR, 2003, BAT ECOLOGY, P209; Barclay RMR, 2001, AM MIDL NAT, V146, P80, DOI 10.1674/0003-0031(2001)146[0080:YTYROT]2.0.CO;2; Barlow KE, 2015, BIOL CONSERV, V182, P14, DOI 10.1016/j.biocon.2014.11.022; Bellamy C, 2013, J APPL ECOL, V50, P892, DOI 10.1111/1365-2664.12117; Clement MJ, 2014, J APPL ECOL, V51, P1460, DOI 10.1111/1365-2664.12303; COSEWIC, 2013, COSEWIC ASS STAT REP; Daly C, 2008, INT J CLIMATOL, V28, P2031, DOI 10.1002/joc.1688; Evans KL, 2005, BIOL REV, V80, P1, DOI 10.1017/S1464793104006517; FENTON M B, 1980, Mammalian Species, P1, DOI 10.2307/3503792; Fielding AH, 1997, ENVIRON CONSERV, V24, P38, DOI 10.1017/S0376892997000088; Frick WF, 2010, SCIENCE, V329, P679, DOI 10.1126/science.1188594; Guisan A, 2005, ECOL LETT, V8, P993, DOI 10.1111/j.1461-0248.2005.00792.x; Hayes G., 2013, WASHINGTON BAT CONSE; Hayes John P., 2003, P81, DOI 10.1017/CBO9780511615757.005; Hayes John P., 2009, P112; Hayes MA, 2013, BIOSCIENCE, V63, P975, DOI 10.1525/bio.2013.63.12.10; Holt AR, 2002, BASIC APPL ECOL, V3, P1, DOI 10.1078/1439-1791-00083; HUMPHREY SR, 1975, J MAMMAL, V56, P321, DOI 10.2307/1379364; Humphries MM, 2002, NATURE, V418, P313, DOI 10.1038/nature00828; Huso MMP, 2014, BIOSCIENCE, V64, P546, DOI 10.1093/biosci/biu056; Jaberg C, 2001, J APPL ECOL, V38, P1169, DOI 10.1046/j.0021-8901.2001.00668.x; Jones Gareth, 2009, Endangered Species Research, V8, P93, DOI 10.3354/esr00182; Jones KE, 2003, AM NAT, V161, P601, DOI 10.1086/368289; Lacki MJ, 2007, J MAMMAL, V88, P967, DOI 10.1644/06-MAMM-A-255R.1; Lacki MJ, 2010, J WILDLIFE MANAGE, V74, P1218, DOI 10.2193/2009-274; Landscape Ecology Modeling Mapping and Analysis (LEMMA), 2014, GRAD NEAR NEIGHB STR; LEWIS SE, 1995, J MAMMAL, V76, P481, DOI 10.2307/1382357; Loeb SC, 2015, SRS208 USDA FOR SERV; LUCE RJ, 2007, SPOTTED BAT EUDERMA; MacKenzie D. I., 2006, OCCUPANCY ESTIMATION; Maher SP, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms2301; McCain CM, 2007, GLOBAL ECOL BIOGEOGR, V16, P1, DOI 10.1111/j.1466-822X.2006.00263.x; Mckann PC, 2013, J WILDLIFE MANAGE, V77, P172, DOI 10.1002/jwmg.433; MCNAB BK, 1980, AM NAT, V116, P106, DOI 10.1086/283614; Meyer CFJ, 2015, MAMM BIOL, V80, P159, DOI 10.1016/j.mambio.2014.11.002; Milne DJ, 2006, BIOL CONSERV, V130, P370, DOI 10.1016/j.biocon.2005.12.031; Northwest GAP Analysis Project (GAP), 2008, LAND COV; Ntzoufras I., 2009, BAYESIAN MODELING US; Ohmann JL, 2002, CAN J FOREST RES, V32, P725, DOI [10.1139/x02-011, 10.1139/X02-011]; ORMSBEE P. C., 2006, BAT RES NEWS, V47, P4; Ormsbee PC, 1998, J WILDLIFE MANAGE, V62, P596, DOI 10.2307/3802335; PRISM Climate Group, 2015, PRISM CLIM DAT; Rodhouse TJ, 2014, WEST N AM NATURALIST, V74, P241, DOI 10.3398/064.074.0212; Rodhouse TJ, 2012, ECOL APPL, V22, P1098, DOI 10.1890/11-1662.1; Rodhouse TJ, 2011, J WILDLIFE MANAGE, V75, P1094, DOI 10.1002/jwmg.151; Rodhouse TJ, 2005, WEST N AM NATURALIST, V65, P215; Rosenzweig Michael L., 1993, P52; Royle J. A., 2008, HIERARCHICAL MODELIN; Safi K, 2004, CONSERV BIOL, V18, P1293, DOI 10.1111/j.1523-1739.2004.00155.x; Sattler T, 2007, J APPL ECOL, V44, P1188, DOI 10.1111/j.1365-2664.2007.01328.x; Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353; Tews J, 2004, J BIOGEOGR, V31, P79, DOI 10.1046/j.0305-0270.2003.00994.x; Thogmartin WE, 2012, J MAMMAL, V93, P1086, DOI 10.1644/11-MAMM-A-355.1; Verts B. J., 1998, LAND MAMMALS OREGON; Weller TJ, 2008, BIOL CONSERV, V141, P2279, DOI 10.1016/j.biocon.2008.06.018; Weller TJ, 2001, J WILDLIFE MANAGE, V65, P489, DOI 10.2307/3803102; Western Bat Working Group (WBWG), 2005, W BAT SPECIES; WRIGHT DH, 1983, OIKOS, V41, P496, DOI 10.2307/3544109; Yackulic CB, 2013, METHODS ECOL EVOL, V4, P236, DOI 10.1111/2041-210x.12004 64 9 9 7 125 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1366-9516 1472-4642 DIVERS DISTRIB Divers. Distrib. DEC 2015 21 12 1401 1413 10.1111/ddi.12372 13 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology CV5TM WOS:000364334100004 Other Gold 2019-02-21 J Tarkan, AS; Vilizzi, L Tarkan, Ali Serhan; Vilizzi, Lorenzo Patterns, latitudinal clines and countergradient variation in the growth of roach Rutilus rutilus (Cyprinidae) in its Eurasian area of distribution REVIEWS IN FISH BIOLOGY AND FISHERIES English Review Growth index; von Bertalanffy growth function; Latitudinal clines; Countergradient growth variation; Koppen-Geiger; Piecewise regression; Mixed effects models LIFE-HISTORY TRAITS; FRESH-WATER FISH; GEIGER CLIMATE CLASSIFICATION; PERCH PERCA-FLUVIATILIS; LEUCISCUS-LEUCISCUS L; STOCK IDENTIFICATION; OPTIMAL ALLOCATION; SIZE STRUCTURE; WORLD MAP; LAKE The roach Rutilus rutilus is a eurythermal generalist that has been translocated and introduced mainly beyond the southern limits of its native Eurasian range of distribution. Although largely studied in most aspects of its ecology, no global assessment is available on its growth. Such information is critical for management purposes, especially in view of further dispersal of this 'potential pest' and climate change predictions. To address this knowledge gap, a meta-analysis was carried out of the age and growth of 301 roach populations from 231 water bodies across the species' native and translocated/introduced Eurasian range of distribution with the aim to identify habitat and climate-related differences in growth patterns, latitudinal clines, and the possible presence of countergradient growth variation (CGV). Faster growth rates were identified under warm relative to temperate and cold climates, and these were related to optimised resource allocation. Latitudinal clines indicated decreasing trends with increasing latitude in growth and body size, in line with life-history theory. However, the presence of thresholds encompassing the previously-reported 50A degrees N latitude value suggested a 'plateau' or decrease in growth at lower latitudes, and CGV was identified for 1+ to 10+ fish. It is argued that increased water temperatures are likely to cause a northern shift in the observed thresholds and a 'homogenisation' of the species' population dynamics resulting in faster growth rates, but with more pronounced effects in continental Eurasia. [Tarkan, Ali Serhan; Vilizzi, Lorenzo] Mugla Sitki Kocman Univ, Fac Fisheries, TR-48000 Kotekli, Mugla, Turkey Vilizzi, L (reprint author), Mugla Sitki Kocman Univ, Fac Fisheries, TR-48000 Kotekli, Mugla, Turkey. lorenzo.vilizzi@gmail.com Tarkan, Ali Serhan/0000-0001-8628-0514; Vilizzi, Lorenzo/0000-0001-8103-885X Scientific AMP; Technological Research Council of Turkey (TUBITAK); Department of Science Fellowships AMP; Grant Programs (BIDEB) We are grateful to Borek Drozd (University of South Bohemia, Czech Republic), Gordon H. Copp and Phil Davison (Cefas, UK), Hui Wei (Chinese Academy of Fishery Sciences, China), Riikka Puntila (University of Helsinki, Finland) and Tamsin Vicary (Freshwater Biological Association, UK) for contributing key references towards the literature review. Contribution to this study by LV was through a 2221 Fellowship Programme granted by The Scientific & Technological Research Council of Turkey (TUBITAK) and The Department of Science Fellowships & Grant Programs (BIDEB). Almeida D, 2013, RISK ANAL, V33, P1404, DOI 10.1111/risa.12050; Angilletta MJ, 2003, AM NAT, V162, P332; Bajer PG, 2010, BIOL INVASIONS, V12, P1101, DOI 10.1007/s10530-009-9528-y; Bates D, 2014, LME4 LINEAR MIXED EF; Bates DM, 2010, LME4 MIXED EFFECTS M; Begg GA, 1999, FISH RES, V43, P1, DOI 10.1016/S0165-7836(99)00062-4; Begg GA, 1999, FISH RES, V43, P35, DOI 10.1016/S0165-7836(99)00065-X; Belk MC, 2002, AM NAT, V160, P803, DOI 10.1086/343880; BEVERTON RJH, 1987, EVOLUTION LONGEVITY, P161; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; BOLKER B, 2014, BBMLE TOOLS GENERAL; Britton JR, 2007, J APPL ICHTHYOL, V23, P555, DOI 10.1111/j.1439-0426.2007.00845.x; Britton JR, 2013, ECOL FRESHW FISH, V22, P21, DOI 10.1111/j.1600-0633.2012.00588.x; Brown GP, 2005, ECOLOGY, V86, P2763, DOI 10.1890/04-1805; Burnham KP, 2003, MODEL SELECTION MULT; BURROUGH RJ, 1979, J FISH BIOL, V15, P93, DOI 10.1111/j.1095-8649.1979.tb03574.x; Chavarie L, 2010, HYDROBIOLOGIA, V650, P161, DOI 10.1007/s10750-009-0043-z; Chezik KA, 2014, CAN J FISH AQUAT SCI, V71, P47, DOI 10.1139/cjfas-2013-0295; Chitravadivelu K., 1974, Acta Universitatis Carolinae Biologica, V1972, P1; Conover DO, 1997, CAN J FISH AQUAT SCI, V54, P2401, DOI 10.1139/cjfas-54-10-2401; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; Copp GH, 2005, J APPL ICHTHYOL, V21, P242, DOI 10.1111/j.1439-0426.2005.00690.x; Copp GH, 2004, FOLIA ZOOL, V53, P237; Copp GH, 2009, FISH FISH, V10, P252, DOI 10.1111/j.1467-2979.2008.00321.x; Costello A, 2011, PHILOS T R SOC A, V369, P1866, DOI 10.1098/rsta.2011.0007; COWX IG, 1988, J FISH BIOL, V33, P59, DOI 10.1111/j.1095-8649.1988.tb05448.x; CRAGGHINE D, 1969, J FISH BIOL, V1, P59, DOI 10.1111/j.1095-8649.1969.tb03845.x; EPLER P, 2005, ACTA SCI POLON PISC, V4, P59; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Frimodt C., 1995, MULTILINGUAL ILLUSTR; Froese R., 2014, FISHBASE; Garcia-Berthou E, 1999, ARCH HYDROBIOL, V146, P239; GAYANILO F, 2005, FAO ICLARM STOCK ASS; Giannetto D, 2014, KNOWL MANAG AQUAT EC, p07P1, DOI 10.1051/kmae/2014001; GOLDSPINK CR, 1978, J FISH BIOL, V12, P421, DOI 10.1111/j.1095-8649.1978.tb04185.x; GOLDSPINK CR, 1977, J FISH BIOL, V11, P599, DOI 10.1111/j.1095-8649.1977.tb05717.x; GOLDSPINK CR, 1979, J FISH BIOL, V15, P473, DOI 10.1111/j.1095-8649.1979.tb03632.x; Graham CT, 2009, J FISH BIOL, V74, P1143, DOI 10.1111/j.1095-8649.2009.02180.x; Griffiths D, 1997, J APPL ICHTHYOL, V13, P9, DOI 10.1111/j.1439-0426.1997.tb00091.x; Harrod C, 2001, J FISH BIOL, V59, P339, DOI 10.1006/jfbi.2001.1755; HARTLEY PHT, 1947, COARSE FISHES BRIT; HELLAWELL JM, 1972, J FISH BIOL, V4, P469, DOI 10.1111/j.1095-8649.1972.tb05696.x; Hickley P., 1979, FISHERIES MANAGEMENT, V10, P147; HOLCIK JURAJ, 1966, VESTNIK CESK SPOLECNOSTI ZOOL, V30, P22; HORPPILA J, 1994, HYDROBIOLOGIA, V294, P35, DOI 10.1007/BF00017623; JAMET JL, 1994, INT REV GES HYDROBIO, V79, P305, DOI 10.1002/iroh.19940790216; KASYANOV AN, 1995, GROWTH ROACH RUTILUS, V35, P256; Ketmaier V, 2008, MOL PHYLOGENET EVOL, V49, P362, DOI 10.1016/j.ympev.2008.07.012; KIPLING C, 1983, J ANIM ECOL, V52, P989, DOI 10.2307/4469; KITCHELL JF, 1977, J FISH RES BOARD CAN, V34, P1922, DOI 10.1139/f77-258; Kottek M, 2006, METEOROL Z, V15, P259, DOI 10.1127/0941-2948/2006/0130; Kovac V, 2009, J APPL ICHTHYOL, V25, P33, DOI 10.1111/j.1439-0426.2009.01189.x; Kozlovskiy S. V., 1992, Journal of Ichthyology, V32, P134; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Lappalainen A, 2005, MAR BIOL, V147, P323, DOI 10.1007/s00227-005-1598-5; Lappalainen J, 2007, J FISH BIOL, V70, P441, DOI 10.1111/j.1095-8649.2007.01315.x; Lappalainen J, 2008, FRESHWATER BIOL, V53, P1491, DOI 10.1111/j.1365-2427.2008.01977.x; Larmuseau MHD, 2009, J FISH BIOL, V75, P332, DOI 10.1111/j.1095-8649.2009.02322.x; Li Hong, 2009, Journal of Huazhong Agricultural University, V28, P202; LINFIELD RSJ, 1979, J FISH BIOL, V15, P275, DOI 10.1111/j.1095-8649.1979.tb03608.x; LobonCervia J, 1996, J FISH BIOL, V48, P1074, DOI 10.1111/j.1095-8649.1996.tb01805.x; MAGNUSON JJ, 1979, AM ZOOL, V19, P331; MANN RHK, 1973, J FISH BIOL, V5, P707, DOI 10.1111/j.1095-8649.1973.tb04506.x; MANN RHK, 1991, CYPRINID FISHES SYST, P456; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Michel Pascal, 1995, Cybium, V19, P5; MILLS CA, 1988, J FISH BIOL, V33, P545, DOI 10.1111/j.1095-8649.1988.tb05498.x; MILLS CA, 1981, FISH MANAGE, V12, P49; Naddafi R, 2005, J APPL ICHTHYOL, V21, P492, DOI 10.1111/j.1439-0426.2005.00669.x; New M, 1999, J CLIMATE, V12, P829, DOI 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2; OGLE DH, 2014, FSA FISHERIES STOCK; Okgerman H, 2009, J ANIM VET ADV, V8, P441; PAPADOPOL M, 1970, VESTN CESK SPOL ZOOL, V33, P240; PAPAGEORGIOU NK, 1979, J FISH BIOL, V14, P529; PECZALSKA A, 1968, Polskie Archiwum Hydrobiologii, V15, P103; Peel MC, 2007, HYDROL EARTH SYST SC, V11, P1633, DOI 10.5194/hess-11-1633-2007; PERSSON L, 1983, OIKOS, V41, P126, DOI 10.2307/3544354; Pierce RB, 2003, N AM J FISH MANAGE, V23, P331, DOI 10.1577/1548-8675(2003)023<0331:DDIGAS>2.0.CO;2; PONTON D, 1987, B FR PECHE PISCIC, P43, DOI 10.1051/kmae:1987006; Power M, 1997, T AM FISH SOC, V126, P549, DOI 10.1577/1548-8659(1997)126<0549:LVILSS>2.3.CO;2; Przybylski Miroslaw, 2004, Ecohydrology & Hydrobiology, V4, P183; R Core Team: R, 2014, LANG ENV STAT COMP; Ricker W. E, 1975, FISHERIES RES BOARD, V191; Roff Derek A., 1992; RYPEL AL, 2012, J FISH AQUAT SCI, V69, P1261; Rypel AL, 2014, OIKOS, V123, P279, DOI 10.1111/j.1600-0706.2013.00530.x; Rypel AL, 2012, ECOL FRESHW FISH, V21, P521, DOI 10.1111/j.1600-0633.2012.00570.x; Silverstein JT, 1999, J FISH BIOL, V54, P607, DOI 10.1006/jfbi.1998.0895; Sonderegger D, 2012, SIZER SIGNIFICANT ZE; Sonderegger DL, 2009, FRONT ECOL ENVIRON, V7, P190, DOI 10.1890/070179; Stefan H. G, 1996, 398 U MINN ST ANTH F; Tarkan AS, 2006, ECOL FRESHW FISH, V15, P131, DOI 10.1111/j.1600-0633.2006.00133.x; Tsoumani M, 2014, BIOCHEM SYST ECOL, V54, P172, DOI 10.1016/j.bse.2014.02.006; van Dijk PLM, 2002, OECOLOGIA, V130, P496, DOI 10.1007/s00442-001-0830-3; Vazquez DP, 2004, AM NAT, V164, pE1, DOI 10.1086/421445; Vilizzi L, 2013, KNOWL MANAG AQUAT EC, DOI 10.1051/kmae/2013054; Vilizzi L, 2015, ECOL FRESHW FISH, V24, P165, DOI 10.1111/eff.12141; Vilizzi L, 2014, FISH FISH, V15, P523, DOI 10.1111/faf.12048; VOLLESTAD LA, 1987, ENVIRON BIOL FISH, V18, P219, DOI 10.1007/BF00000361; Volta P, 2008, J LIMNOL, V67, P163, DOI 10.4081/jlimnol.2008.163; Vostradovsky J, 1973, FRESHWATER FISHES; WHITE RWG, 1978, J FISH BIOL, V13, P379, DOI 10.1111/j.1095-8649.1978.tb03446.x; Wieski Kazimierz, 2000, Acta Ichthyologica et Piscatoria, V30, P3; WILLIAMS WP, 1967, J ANIM ECOL, V36, P695, DOI 10.2307/2821; WILSON RS, 1971, J FISH BIOL, V3, P129, DOI 10.1111/j.1095-8649.1971.tb03655.x; ZAUGG B, 1987, THESIS U NEUCHATEK; Zivkov Mladen, 2001, Acta Zoologica Bulgarica, V53, P47 108 6 6 2 35 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0960-3166 1573-5184 REV FISH BIOL FISHER Rev. Fish. Biol. Fish. DEC 2015 25 4 587 602 10.1007/s11160-015-9398-6 16 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology CV8YU WOS:000364575100001 2019-02-21 J O'Rourke, CF; Renn, SCP O'Rourke, Cynthia F.; Renn, Suzy C. P. Integrating adaptive trade-offs between parental care and feeding regulation CURRENT OPINION IN BEHAVIORAL SCIENCES English Review Animals respond to external and internal stimuli to decide which behaviors to produce. Only by addressing the mechanistic relationships between the regulation of different behaviors, and by doing so in an ecological context, will we fully understand the decision process. For example, regulatory mechanisms for feeding behavior and those for parental care behavior are studied largely in isolation, though these behaviors are inextricably linked. Understanding this fundamental behavioral trade-off between investment in current and future reproductive output requires an integrative approach. We identify direct cross-talk mechanisms in neuropeptide signaling pathways that regulate both behaviors and indirect cross-talk mechanisms as factors that impinge on crucial neuropeptides. Furthermore, external cross-talk exists through behavioral feedback. A deliberately integrative approach is necessary to understand behavioral decisions that are fundamental to predictions of life history theory. [O'Rourke, Cynthia F.; Renn, Suzy C. P.] Reed Coll, Dept Biol, 3203 SE Woodstock Blvd, Portland, OR 97202 USA Renn, SCP (reprint author), Reed Coll, Dept Biol, 3203 SE Woodstock Blvd, Portland, OR 97202 USA. orourcy@reed.edu National Science Foundation [0818957] This work was supported by a grant from the National Science Foundation (# 0818957) to SCPR. We are grateful to Rose Driscoll for editing and suggestions. Abizaid A, 2008, NEUROSCI LETT, V440, P206, DOI 10.1016/j.neulet.2008.05.105; Adams GK, 2012, CURR OPIN NEUROBIOL, V22, P982, DOI 10.1016/j.conb.2012.07.009; Afonso VM, 2009, HORM BEHAV, V56, P11, DOI 10.1016/j.yhbeh.2009.02.003; Amdam GV, 2003, J THEOR BIOL, V223, P451, DOI 10.1016/S0022-5193(03)00121-8; Angelier F, 2009, GEN COMP ENDOCR, V163, P142, DOI 10.1016/j.ygcen.2009.03.028; Archie EA, 2014, BEHAV ECOL SOCIOBIOL, V68, P1183, DOI 10.1007/s00265-014-1729-4; Balsa JA, 1998, NEUROENDOCRINOLOGY, V68, P326, DOI 10.1159/000054381; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bosch OJ, 2007, PSYCHONEUROENDOCRINO, V32, P267, DOI 10.1016/j.psyneuen.2006.12.012; Bosch OJ, 2012, HORM BEHAV, V61, P293, DOI 10.1016/j.yhbeh.2011.11.002; Campbell JC, 2009, PHYSIOL BEHAV, V98, P367, DOI 10.1016/j.physbeh.2009.06.014; Crossin GT, 2012, AM NAT, V180, pE31, DOI 10.1086/666001; Crowley WR, 2007, PEPTIDES, V28, P447, DOI 10.1016/j.peptides.2006.09.025; Crowley WR, 2015, COMPR PHYSIOL, V5, P255, DOI 10.1002/cphy.c140029; Forsatkar MN, 2014, ECOTOXICOLOGY, V23, P1794, DOI 10.1007/s10646-014-1345-0; Freeman ME, 2000, PHYSIOL REV, V80, P1523; Friedman JM, 1998, NATURE, V395, P763, DOI 10.1038/27376; Gammie SC, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001974; Garcia MC, 2003, FASEB J, V17, P1392, DOI 10.1096/fj.02-0933com; Gesto M, 2014, J NEUROENDOCRINOL, V26, P89, DOI 10.1111/jne.12126; Grattan DR, 2008, J NEUROENDOCRINOL, V20, P752, DOI 10.1111/j.1365-2826.2008.01736.x; Guidugli KR, 2005, FEBS LETT, V579, P4961, DOI 10.1016/j.febslet.2005.07.085; HALL TR, 1984, ACTA ENDOCRINOL-COP, V105, P455, DOI 10.1530/acta.0.1050455; Hardman CA, 2012, PHYSIOL BEHAV, V105, P1202, DOI 10.1016/j.physbeh.2011.12.022; Hinuma S, 1998, NATURE, V393, P272, DOI 10.1038/30515; Hofmann HA, 2014, TRENDS ECOL EVOL, V29, P581, DOI 10.1016/j.tree.2014.07.008; Insel TR, 2001, NAT REV NEUROSCI, V2, P129, DOI 10.1038/35053579; JAMES VA, 1984, GEN COMP ENDOCR, V56, P231, DOI 10.1016/0016-6480(84)90035-2; Kaiya H, 2003, COMP BIOCHEM PHYS B, V135, P421, DOI 10.1016/S1096-4959(03)00109-X; Khong HK, 2009, COMP BIOCHEM PHYS B, V153, P18, DOI 10.1016/j.cbpb.2009.01.005; Kokay IC, 2006, AM J PHYSIOL-REG I, V290, pR1216, DOI 10.1152/ajpregu.00730.2005; Laque A, 2015, MOL METAB, V4, P706, DOI 10.1016/j.molmet.2015.07.002; Libbrecht R, 2013, P NATL ACAD SCI USA, V110, P11050, DOI 10.1073/pnas.1221781110; Makarova E N, 2010, Neurosci Behav Physiol, V40, P263, DOI 10.1007/s11055-010-9253-0; Manica A, 2002, BIOL REV, V77, P261, DOI 10.1017/S1464793101005905; Meddle SL, 2007, ENDOCRINOLOGY, V148, P5095, DOI 10.1210/en.2007-0615; Miljic D, 2006, J CLIN ENDOCR METAB, V91, P1491, DOI 10.1210/jc.2005-2304; Numan M, 2008, NEUROBIOLOGY OF THE PARENTAL BRAIN, P3; Numan M, 2009, FRONT NEUROENDOCRIN, V30, P46, DOI 10.1016/j.yfrne.2008.10.002; O'Connell LA, 2012, HORM BEHAV, V61, P725, DOI 10.1016/j.yhbeh.2012.03.009; Ochner CN, 2013, PHYSIOL BEHAV, V120, P106, DOI 10.1016/j.physbeh.2013.07.009; Olszewski PK, 2010, PHARMACOL BIOCHEM BE, V97, P47, DOI 10.1016/j.pbb.2010.05.026; Panaitof SC, 2004, J INSECT PHYSIOL, V50, P715, DOI 10.1016/j.jinsphys.2004.05.008; Reinhoffer V, 2013, OBSTET GYNECOL; Reynolds JD, 2002, PHILOS T R SOC B, V357, P269, DOI 10.1098/rstb.2001.0930; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Riley LG, 2002, ZOOL SCI, V19, P797, DOI 10.2108/zsj.19.797; Rilling JK, 2014, SCIENCE, V345, P771, DOI 10.1126/science.1252723; Royle NJ, 2014, SCIENCE, V345, P776, DOI 10.1126/science.1253294; Saltzman W, 2014, J NEUROENDOCRINOL, V26, P685, DOI 10.1111/jne.12176; Schneider JE, 2004, PHYSIOL BEHAV, V81, P289, DOI 10.1016/j.physbeh.2004.02.007; Schradin C, 2003, J COMP PSYCHOL, V117, P166, DOI 10.1037/0735-7036.117.2.166; Schultz DL, 1999, COPEIA, P906; Scott MP, 2005, J INSECT PHYSIOL, V51, P323, DOI 10.1016/j.jinsphys.2004.12.014; Shahjahan M, 2014, FRONT ENDOCRINOL, V5, P1; Sohn JW, 2013, TRENDS NEUROSCI, V36, P504, DOI 10.1016/j.tins.2013.05.003; Sokolowska E, 2013, COMP BIOCHEM PHYS A, V165, P237, DOI 10.1016/j.cbpa.2013.03.018; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Strader AD, 2003, J NEUROENDOCRINOL, V15, P1046, DOI 10.1046/j.1365-2826.2003.01092.x; STRICKER E, 2004, NEUROBIOLOGY FOOD FL; Therrien JF, 2008, ANIM BEHAV, V75, P235, DOI 10.1016/j.anbehav.2007.04.030; Thompson ME, 2012, BEHAV ECOL, V23, P1234, DOI 10.1093/beheco/ars107; Tipsmark CK, 2008, J ENDOCRINOL, V196, P275, DOI 10.1677/JOE-07-0540; Truman JW, 2002, ANNU REV ENTOMOL, V47, P467, DOI 10.1146/annurev.ento.47.091201.145230; VANCASSEL M, 1984, GEN COMP ENDOCR, V56, P444, DOI 10.1016/0016-6480(84)90087-X; Vega C, 2010, AM J PHYSIOL-REG I, V299, pR1701, DOI 10.1152/ajpregu.00575.2010; Wang B, 2015, HORM BEHAV, V67, P73, DOI 10.1016/j.yhbeh.2014.11.013; Whittington CM, 2013, GEN COMP ENDOCR, V191, P123, DOI 10.1016/j.ygcen.2013.05.027; Wilkanowska A, 2014, FOLIA BIOL-KRAKOW, V62, P1, DOI 10.3409/fb62_1.1; Windle RJ, 2013, ENDOCRINOLOGY, V154, P749, DOI 10.1210/en.2012-1779; Wisner KL, 2002, NEW ENGL J MED, V347, P194, DOI 10.1056/NEJMcp011542; Wong RY, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-348; Woodside B, 2012, FRONT NEUROENDOCRIN, V33, P301, DOI 10.1016/j.yfrne.2012.09.002; Wu Z, 2014, NATURE, V509, P325, DOI 10.1038/nature13307; Xie RH, 2010, AUST NZ J OBSTET GYN, V50, P340, DOI 10.1111/j.1479-828X.2010.01185.x; Yamashita M, 2013, J NEUROENDOCRINOL, V25, P455, DOI 10.1111/jne.12019; Yang YL, 2011, CELL, V146, P991, DOI 10.1016/j.cell.2011.07.039; Zhang H. M., 2013, PLOS ONE, V8; Ziegler TE, 1996, HORM BEHAV, V30, P287, DOI 10.1006/hbeh.1996.0035 79 4 4 0 1 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 2352-1546 2352-1554 CURR OPIN BEHAV SCI Curr. Opin. Behav. Sci. DEC 2015 6 160 167 10.1016/j.cobeha.2015.11.010 8 Behavioral Sciences; Neurosciences; Psychology, Experimental Behavioral Sciences; Neurosciences & Neurology; Psychology V3O8R WOS:000218452000025 Other Gold 2019-02-21 J Anderson, KG Anderson, Kermyt G. Father Absence, Childhood Stress, and Reproductive Maturation in South Africa HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Menarche; Pregnancy; Father absence; First sex; South Africa 1ST SEXUAL INTERCOURSE; LIFE-HISTORY THEORY; MATERNAL DEPRESSION; FAMILY ENVIRONMENT; SCHOOL ENROLLMENT; TEENAGE PREGNANCY; ADOLESCENT GIRLS; GENETIC FATHERS; ALBUQUERQUE MEN; MENARCHEAL AGE The hypothesis that father absence during childhood, as well as other forms of childhood psychosocial stress, might influence the timing of sexual maturity and adult reproductive behaviors has been the focus of considerable research. However, the majority of studies that have examined this prediction have used samples of women of European descent living in industrialized, low-fertility nations. This paper tests the father-absence hypothesis using the Cape Area Panel Study (CAPS), which samples young adults in Cape Town, South Africa. The sample contains multiple racial groups (blacks, coloureds [mixed race], and whites) and includes both males and females. Dependent variables include age at menarche, age at first sexual intercourse, and age at first pregnancy. Childhood stress is measured by father absence by age six (either never lived with father or lived with father some but not all years) and an index of childhood exposure to violence (measuring threatened or actual verbal or physical abuse). The hypothesis received no support for effect on age at menarche but was supported for age at first sex and first pregnancy. The model showed stronger support for coloureds and whites than blacks and had no predictive power at all for black males. Univ Oklahoma, Dept Anthropol, Norman, OK 73019 USA Anderson, KG (reprint author), Univ Oklahoma, Dept Anthropol, Norman, OK 73019 USA. kganders@ou.edu US National Institute for Child Health and Human Development; Andrew W. Mellon Foundation; National Institute on Aging; NICHD through University of Michigan I thank Ann M. Beutel, Paula Sheppard, and three anonymous reviewers for comments on the paper. The Cape Area Panel Study Waves 1-2-3 were collected between 2002 and 2005 by the University of Cape Town and the University of Michigan, with funding provided by the US National Institute for Child Health and Human Development and the Andrew W. Mellon Foundation. Wave 4 was collected in 2006 by the University of Cape Town, University of Michigan and Princeton University. Major funding for wave 4 was provided by the National Institute on Aging through a grant to Princeton University, in addition to funding provided by NICHD through the University of Michigan. Allison CM, 2013, SEX ROLES, V68, P55, DOI 10.1007/s11199-011-9993-5; Alvergne A, 2008, PHYSIOL BEHAV, V95, P625, DOI 10.1016/j.physbeh.2008.09.005; Anderson KG, 2006, AM J PHYS ANTHROPOL, V131, P560, DOI 10.1002/ajpa.20452; Anderson KG, 2005, HUM NATURE-INT BIOS, V16, P1, DOI 10.1007/s12110-005-1005-4; Anderson KG, 2001, SOC DYNAMICS, V27, P37; Anderson KG, 1999, EVOL HUM BEHAV, V20, P433, DOI 10.1016/S1090-5138(99)00022-7; Anderson KG, 1999, EVOL HUM BEHAV, V20, P405, DOI 10.1016/S1090-5138(99)00023-9; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Bereczkei T, 1996, HUM NATURE-INT BIOS, V7, P257, DOI 10.1007/BF02733397; Beutel A. M., 2013, J SOCIAL SCI, V9, P1; Blinn-Pike L, 2002, PERSPECT SEX REPRO H, V34, P68, DOI 10.2307/3030209; Bogaert AF, 2005, J ADOLESCENCE, V28, P541, DOI 10.1016/j.adolescence.2004.10.008; Bowles S, 2005, NATURE, V434, P380, DOI 10.1038/nature03420; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; Campbell B, 2006, AM J HUM BIOL, V18, P569, DOI 10.1002/ajhb.20528; Case A, 1998, ECON J, V108, P1330, DOI 10.1111/1468-0297.00345; Case A, 2004, DEMOGRAPHY, V41, P483, DOI 10.1353/dem.2004.0019; Case A, 2006, DEMOGRAPHY, V43, P401, DOI 10.1353/dem.2006.0022; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cichello PL, 2003, SOC DYNAMICS, V29, P177, DOI 10.1080/02533950308628680; Comings DE, 2002, CHILD DEV, V73, P1046, DOI 10.1111/1467-8624.00456; Copping LT, 2013, HUM NATURE-INT BIOS, V24, P137, DOI 10.1007/s12110-013-9163-2; Culpin I, 2014, J ADOLESCENCE, V37, P291, DOI 10.1016/j.adolescence.2014.02.003; Deardorff J, 2011, J ADOLESCENT HEALTH, V48, P441, DOI 10.1016/j.jadohealth.2010.07.032; Doughty D., 2000, GENETIC INFLUENCES H, P167; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2012, DEV PSYCHOPATHOL, V24, P317, DOI 10.1017/S095457941100085X; Ellis PD, 2010, ESSENTIAL GUIDE TO EFFECT SIZES: STATISTICAL POWER, META-ANALYSIS AND THE INTERPRETATION OF RESEARCH RESULTS, P1; FLINN MV, 1988, ETHOL SOCIOBIOL, V9, P1, DOI 10.1016/0162-3095(88)90002-7; Fuller B., 1999, CRIT PERSPECT, P181; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.1111/j.1467-8624.1995.tb00875.x; Grainger S, 2004, HUM NATURE-INT BIOS, V15, P133, DOI 10.1007/s12110-004-1017-5; Gray P. B, 2010, FATHERHOOD EVOLUTION; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; Kiernan KE, 1997, POP STUD-J DEMOG, V51, P41, DOI 10.1080/0032472031000149716; KING BM, 2008, STAT REASONING BEHAV; Koehler N, 2007, EVOLUTIONARY PSYCHOL, V5, P184; Koehler N, 2009, J SEX RES, V46, P366, DOI 10.1080/00224490902773996; Lam D, 2008, CAPE AREA PANEL STUD; Lu Y, 2011, SOC FORCES, V89, P1119, DOI 10.1093/sf/89.4.1119; Maestripieri D, 2004, DEVELOPMENTAL SCI, V7, P560, DOI 10.1111/j.1467-7687.2004.00380.x; Matchock RL, 2006, AM J HUM BIOL, V18, P481, DOI 10.1002/ajhb.20508; Mendle J, 2009, CHILD DEV, V80, P1463, DOI 10.1111/j.1467-8624.2009.01345.x; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.1111/j.1467-8624.1992.tb03594.x; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Operario D, 2008, J RES ADOLESCENCE, V18, P173, DOI 10.1111/j.1532-7795.2008.00555.x; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; Posel D, 2001, SOC DYNAMICS, V27, P165; Posner RB, 2006, SEX ROLES, V54, P315, DOI 10.1007/s11199-006-9003-5; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Rowe DC, 2002, EVOL HUM BEHAV, V23, P365, DOI 10.1016/S1090-5138(02)00102-2; Scelza BA, 2010, CURR ANTHROPOL, V51, P295, DOI 10.1086/651051; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Segal NL, 2007, HUM BIOL, V79, P623; Shenk MK, 2013, HUM NATURE-INT BIOS, V24, P76, DOI 10.1007/s12110-013-9160-5; Sheppard P, 2014, HUM NATURE-INT BIOS, V25, P213, DOI 10.1007/s12110-014-9195-2; Sheppard P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089539; Sheppard P, 2012, BIOL LETTERS, V8, P237, DOI 10.1098/rsbl.2011.0747; Siqwana-Ndulo N, 1998, J COMP FAM STUD, V29, P407; Statistics South Africa, 2011, MID POP EST 2011; Stormer C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0083633; Stroeken K, 2012, AIDS CARE, V24, P186, DOI 10.1080/09540121.2011.596519; SURBEY MK, 1990, MG PRIMATOL, V13, P11; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; UCLA Institute for Digital Research and Education, 2012, CAN I DO POW ROB AN; Vacha-Haase T, 2004, J COUNS PSYCHOL, V51, P473, DOI 10.1037/0022-0167.51.4.473; Waynforth D., 1998, EVOL HUM BEHAV, V19, P387; Waynforth D, 2012, P ROY SOC B-BIOL SCI, V279, P2998, DOI 10.1098/rspb.2012.0220; WILCOX AJ, 1988, NEW ENGL J MED, V319, P189, DOI 10.1056/NEJM198807283190401; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wood J., 1994, DYNAMICS HUMAN REPRO; Zimmerman FJ, 2003, J HUM RESOUR, V38, P557, DOI 10.2307/1558768 80 8 8 1 15 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. DEC 2015 26 4 401 425 10.1007/s12110-015-9243-6 25 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences CV0NU WOS:000363948300004 26471378 2019-02-21 J Lodjak, J; Magi, M; Rooni, U; Tilgar, V Lodjak, Jaanis; Maegi, Marko; Rooni, Uku; Tilgar, Vallo Context-dependent effects of feather corticosterone on growth rate and fledging success of wild passerine nestlings in heterogeneous habitat OECOLOGIA English Article Glucocorticoids; Great tit; Hormone; Phenotypic plasticity; Stress TITS PARUS-MAJOR; GREAT TITS; BROOD SIZE; REPRODUCTIVE SUCCESS; PHYSIOLOGICAL STRESS; SIBLING COMPETITION; BEGGING BEHAVIOR; PIED FLYCATCHERS; FIELD EXPERIMENT; IMMUNE FUNCTION Life history theory seeks answers to questions about how suites of traits, like growth rate, body mass and survival, have coevolved to maximize the fitness of individuals. In stochastic environments, individual fitness may be closely linked to environmental conditions experienced early in life. When conditions deteriorate, animals have to adapt physiologically to avoid detrimental effects to growth and survival. Hormones such as glucocorticoids are potentially important mediators of developmental plasticity, although their function is quite poorly understood in free-living animals to date. In this study, we used brood-size manipulation in wild great tits (Parus major) to see whether resource (e.g. food) availability can change feather corticosterone levels, somatic growth and fledging success in nestlings raised in habitats of different quality. Recent studies suggest that feather corticosterone offers a long-term hormonal measure for the main avian glucocorticoid by integrating the plasma levels of corticosterone over the whole nestling period. We showed that feather corticosterone, growth rate and fledging success were significantly affected by the treatment only in coniferous forests where growth conditions had a tendency to be poorer than in deciduous forests. We also found that feather corticosterone was negatively related to fledging success, and this effect was more pronounced in coniferous habitat. Our results suggest that feather corticosterone could offer an important physiological measure for nestling performance, mediated by a context-dependent developmental trade-off between immediate and future survival. [Lodjak, Jaanis; Maegi, Marko; Rooni, Uku; Tilgar, Vallo] Univ Tartu, Inst Ecol & Earth Sci, Dept Zool, EE-51014 Tartu, Estonia Lodjak, J (reprint author), Univ Tartu, Inst Ecol & Earth Sci, Dept Zool, 46 Vanemuise St, EE-51014 Tartu, Estonia. jaanis.lodjak@ut.ee Magi, Marko/0000-0003-0736-5638; Lodjak, Jaanis/0000-0001-8089-948X Estonian Science Foundation [8985]; Estonian Research Council [653]; Estonian Ministry of Education and Research [0180004s09, 34-8]; European Regional Development Fund (Centre of Excellence FIBIR) We thank Grete Alt, Marianne Lind and Kadri Moks for help with fieldwork. We also thank anonymous referees for valuable suggestions. The present study was financially supported by the Estonian Science Foundation (grant no. 8985 to Marko Magi), the Estonian Research Council (grant PUT no. 653 of Elin Sild), the Estonian Ministry of Education and Research (target-financing project no. 0180004s09, institutional research funding IUT no. 34-8) and the European Regional Development Fund (Centre of Excellence FIBIR). The study complies with the current laws of Estonia, and was approved by the Animal Procedures Committee (licence nos. 100 and 108) from the Estonian Ministry of Agriculture. Anacker C, 2013, NEUROPSYCHOPHARMACOL, V38, P872, DOI 10.1038/npp.2012.253; Angelier F, 2010, BIOL LETTERS, V6, P846, DOI 10.1098/rsbl.2010.0376; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Belanto JJ, 2010, NEUROMUSCULAR DISORD, V20, P111, DOI 10.1016/j.nmd.2009.12.003; BELLOWS CG, 1987, ENDOCRINOLOGY, V121, P1985, DOI 10.1210/endo-121-6-1985; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Boonstra R, 2013, FUNCT ECOL, V27, P11, DOI 10.1111/1365-2435.12008; Bortolotti GR, 2008, FUNCT ECOL, V22, P494, DOI 10.1111/j.1365-2435.2008.01387.x; Bortolotti GR, 2009, J EXP BIOL, V212, P1477, DOI 10.1242/jeb.022152; Canalis E, 2007, OSTEOPOROSIS INT, V18, P1319, DOI 10.1007/s00198-007-0394-0; Capellan E, 2007, J ANIM ECOL, V76, P1026, DOI 10.1111/j.1365-2656.2007.01281.x; Charmandari E, 2005, ANNU REV PHYSIOL, V67, P259, DOI 10.1146/annurev.physiol.67.040403.120816; Fairhurst GD, 2013, J EXP BIOL, V216, P4071, DOI 10.1242/jeb.091280; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Gebhardt-Henrich Sabine, 1998, Oxford Ornithology Series, V8, P324; Heath J, 1997, CONDOR, V99, P806, DOI 10.2307/1370493; Heath JA, 1998, PHYSIOL ZOOL, V71, P67, DOI 10.1086/515888; Horak P, 1999, OECOLOGIA, V121, P316, DOI 10.1007/s004420050934; HOWARD E, 1975, BRAIN RES, V92, P73, DOI 10.1016/0006-8993(75)90528-4; Kern M, 2001, PHYSIOL BIOCHEM ZOOL, V74, P651, DOI 10.1086/322927; Kitaysky AS, 2003, HORM BEHAV, V43, P140, DOI 10.1016/S0018-506X(02)00030-2; Kitaysky AS, 2001, BEHAV ECOL, V12, P619, DOI 10.1093/beheco/12.5.619; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Lattin CR, 2011, J AVIAN BIOL, V42, P247, DOI 10.1111/j.1600-048X.2010.05310.x; Lenth R.V., 2014, LSMEANS LEAST SQUARE; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lodjak J, 2014, FUNCT ECOL, V28, P159, DOI 10.1111/1365-2435.12164; Loiseau C, 2008, GEN COMP ENDOCR, V155, P101, DOI 10.1016/j.ygcen.2007.03.004; Love OP, 2013, FUNCT ECOL, V27, P81, DOI 10.1111/j.1365-2435.2012.02040.x; Magi M, 2004, ECOSCIENCE, V11, P361; Magi M, 2009, ECOSCIENCE, V16, P145, DOI 10.2980/16-2-3215; Mand R, 2005, BIODIVERS CONSERV, V14, P1823, DOI 10.1007/s10531-004-1039-7; Mand R, 2009, IBIS, V151, P487, DOI 10.1111/j.1474-919X.2009.00929.x; Maness T. J., 2013, ORNITHOLOGICAL MONOG, V78, P1, DOI DOI 10.1525/0M.2013.78.1.1; Martin LB, 2009, GEN COMP ENDOCR, V163, P70, DOI 10.1016/j.ygcen.2009.03.008; Mazziotti G, 2013, NAT REV ENDOCRINOL, V9, P265, DOI 10.1038/nrendo.2013.5; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; McEwen BS, 1997, BRAIN RES REV, V23, P79, DOI 10.1016/S0165-0173(96)00012-4; Meitern R, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067545; Mitchell GW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028838; Morici LA, 1997, J EXP ZOOL, V279, P156, DOI 10.1002/(SICI)1097-010X(19971001)279:2<156::AID-JEZ6>3.3.CO;2-Y; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Neuenschwander S, 2003, BEHAV ECOL, V14, P457, DOI 10.1093/beheco/arg025; Nilsson JA, 2001, ANIM BEHAV, V61, P357, DOI 10.1006/anbe.2000.1602; Patterson AGL, 2015, J AVIAN BIOL, V46, P18, DOI 10.1111/jav.00397; Pettifor RA, 2001, J ANIM ECOL, V70, P62, DOI 10.1046/j.1365-2656.2001.00465.x; PICKERING AD, 1984, GEN COMP ENDOCR, V53, P252, DOI 10.1016/0016-6480(84)90250-8; Pravosudov VV, 2006, GEN COMP ENDOCR, V145, P25, DOI 10.1016/j.ygcen.2005.06.011; R Development Core Team, 2014, R LANG ENV STAT COMP; Remmel T, 2009, ECOL ENTOMOL, V34, P98, DOI 10.1111/j.1365-2311.2008.01044.x; Robson H, 2002, PEDIATR RES, V52, DOI 10.1023/01.PDR.0000023494.70201.1C; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Saaltink DJ, 2014, CELL MOL LIFE SCI, V71, P2499, DOI 10.1007/s00018-014-1568-5; Sanz JJ, 1999, BEHAV ECOL, V10, P598, DOI 10.1093/beheco/10.5.598; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schulkin J, 2011, BRAIN RES, V1392, P27, DOI 10.1016/j.brainres.2011.03.055; Schultner J, 2013, FUNCT ECOL, V27, P45, DOI 10.1111/j.1365-2435.2012.02058.x; SIEGEL HS, 1980, BIOSCIENCE, V30, P529, DOI 10.2307/1307973; Sisask E, 2010, BIRD STUDY, V57, P447, DOI 10.1080/00063657.2010.489202; SMITH HG, 1988, BEHAV ECOL SOCIOBIOL, V22, P447, DOI 10.1007/BF00294983; SMITH R, 1990, THORAX, V45, P573, DOI 10.1136/thx.45.8.573; Stearns S, 1992, EVOLUTION LIFE HIST; Sui N, 1997, DEV BRAIN RES, V101, P269, DOI 10.1016/S0165-3806(97)00054-0; Tarwater CE, 2011, ECOLOGY, V92, P1271, DOI 10.1890/10-1386.1; Tilgar V, 2006, EVOL ECOL, V20, P217, DOI 10.1007/s10682-005-5877-x; Tilgar V, 2002, J AVIAN BIOL, V33, P407, DOI 10.1034/j.1600-048X.2002.02990.x; Tilgar V, 2008, AUK, V125, P456, DOI 10.1525/auk.2008.07008; Tilgar V, 2010, J ORNITHOL, V151, P61, DOI 10.1007/s10336-009-0426-y; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; Wada H, 2008, J EXP BIOL, V211, P1696, DOI 10.1242/jeb.009191; Will AP, 2014, J EXP BIOL, V217, P2371, DOI 10.1242/jeb.098533; Zanette L, 2006, OECOLOGIA, V147, P632, DOI 10.1007/s00442-005-0330-y 72 12 12 3 73 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia DEC 2015 179 4 937 946 10.1007/s00442-015-3357-8 10 Ecology Environmental Sciences & Ecology CV4HE WOS:000364226900002 26025576 2019-02-21 J Olivera-Tlahuel, C; Ossip-Klein, AG; Espinosa-Perez, HS; Zuniga-Vega, JJ Olivera-Tlahuel, Claudia; Ossip-Klein, Alison G.; Espinosa-Perez, Hector S.; Jaime Zuniga-Vega, J. Have superfetation and matrotrophy facilitated the evolution of larger offspring in poeciliid fishes? BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article lecithotrophy; offspring size; phylogenetic comparative methods; Poeciliidae; simultaneous broods; viviparous fishes LIFE-HISTORY EVOLUTION; VIVIPARITY-DRIVEN-CONFLICT; TREXLER-DEANGELIS MODEL; MOLECULAR PHYLOGENETIC-RELATIONSHIPS; MOSQUITOFISH GAMBUSIA-HOLBROOKI; MITOCHONDRIAL-DNA SEQUENCES; LIVE-BEARING FISH; HETERANDRIA-FORMOSA; LIVEBEARING FISH; CYPRINODONTIFORMES POECILIIDAE Superfetation is the ability of females to simultaneously carry multiple broods of embryos, with each brood at a different developmental stage. Matrotrophy is the post-fertilization maternal provisioning of nutrients to developing embryos throughout gestation. Several studies have demonstrated that, in viviparous fishes, superfetation and matrotrophy have evolved in a correlated way, such that species capable of bearing several simultaneous broods also exhibit advanced degrees of post-fertilization provisioning. The adaptive value of the concurrent presence of both reproductive modes may be associated with the production of larger newborns, which in turn may result in enhanced offspring fitness. In this study, we tested two hypotheses: (1) species with superfetation and moderate or extensive matrotrophy give birth to larger offspring compared with species without superfetation or matrotrophy; (2) species with higher degrees of superfetation and matrotrophy (i.e. more simultaneous broods and increased amounts of post-fertilization provisioning) give birth to larger offspring compared with species with relatively low degrees of superfetation and matrotrophy (i.e. fewer simultaneous broods and lesser amounts of post-fertilization provisioning). Using different phylogenetic comparative methods and data on 44 species of viviparous fishes of the family Poeciliidae, we found a lack of association between offspring size and the combination of superfetation and matrotrophy. Therefore, the concurrent presence of superfetation and moderate or extensive matrotrophy has not facilitated the evolution of larger offspring. In fact, these traits have evolved differently. Superfetation and matrotrophy have accumulated gradual changes that largely can be explained by Brownian motion, whereas offspring size has evolved fluidly, experiencing changes that probably resulted from selective responses to the local conditions. (C) 2015 The Linnean Society of London. [Olivera-Tlahuel, Claudia] Univ Nacl Autonoma Mexico, Fac Ciencias, Ciencias Biol, Mexico City 04510, DF, Mexico; [Ossip-Klein, Alison G.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA; [Espinosa-Perez, Hector S.] Univ Nacl Autonoma Mexico, Inst Biol, Colecc Nacl Peces, Mexico City 04510, DF, Mexico; [Jaime Zuniga-Vega, J.] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Mexico City 04510, DF, Mexico Zuniga-Vega, JJ (reprint author), Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Ciudad Univ, Mexico City 04510, DF, Mexico. jzuniga@ciencias.unam.mx Mexican Research Council (Consejo Nacional de Ciencia y Tecnologia, CONACyT) [368782/245650, SEP-CONACyT-129675]; Common Themes in Reproductive Diversity training grant [NIH-NICD 5T32HD049336-10] This research was supported by the Mexican Research Council (Consejo Nacional de Ciencia y Tecnologia, CONACyT) through a doctorate scholarship awarded to C.O.-T. (368782/245650) and through grant SEP-CONACyT-129675. A.G.O.K. was supported by a Common Themes in Reproductive Diversity training grant (NIH-NICD 5T32HD049336-10). This paper is a requisite for C.O.-T. to obtain the PhD degree in the Posgrado en Ciencias Biologicas of Universidad Nacional Autonoma de Mexico. We thank Alecandria Ader, Alejandro Molina-Moctezuma, Jerald Johnson, Joseph Travis, Matthew Schrader, Mark Belk, Michael Jennions, Patricia Frias-Alvarez and Rudiger Riesch for providing us with their data sets and Norma Moreno-Mendoza and Maricela Villagran-Santa Cruz for academic advice. We also thank Patricia Frias-Alvarez, Marcelo Pires and the anonymous reviewers for their helpful comments. Alcaraz C, 2007, BIOL CONSERV, V139, P83, DOI 10.1016/j.biocon.2007.06.006; Arias AL, 2000, COPEIA, P792, DOI 10.1643/0045-8511(2000)000[0792:LHOPCA]2.0.CO;2; Banet AI, 2008, FUNCT ECOL, V22, P323, DOI 10.1111/j.1365-2435.2007.01367.x; Banet AI, 2010, EVOLUTION, V64, P3172, DOI 10.1111/j.1558-5646.2010.01059.x; Bashey F, 2006, EVOLUTION, V60, P348, DOI 10.1554/05-087.1; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Bassar RD, 2014, FUNCT ECOL, V28, P999, DOI 10.1111/1365-2435.12233; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BROWNPETERSON N, 1990, ENVIRON BIOL FISH, V27, P33, DOI 10.1007/BF00004902; CHEONG RT, 1984, COPEIA, P720; Cooley LR, 2000, INVERTEBR BIOL, V119, P299; Crespi B, 2004, AM NAT, V163, P635, DOI 10.1086/382734; Doadrio I, 2009, MOL PHYLOGENET EVOL, V50, P16, DOI 10.1016/j.ympev.2008.09.014; Downhower JF, 2000, ENVIRON BIOL FISH, V59, P415, DOI 10.1023/A:1026552527018; DOWNHOWER JF, 1975, NATURE, V256, P345, DOI 10.1038/256345a0; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fraser EA, 1940, Q J MICROSC SCI, V81, P479; Frias-Alvarez P, 2014, NATURWISSENSCHAFTEN, V101, P1085, DOI 10.1007/s00114-014-1247-2; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Gomes JL, 2007, J FISH BIOL, V71, P1799, DOI 10.1111/j.1095-8649.2007.01653.x; Gordon SP, 2009, AM NAT, V174, P34, DOI 10.1086/599300; Grether GF, 2011, ECOLOGY EVOLUTION PO, P28; GROVE BD, 1991, J MORPHOL, V209, P265, DOI 10.1002/jmor.1052090304; GUNN JS, 1991, ENVIRON BIOL FISH, V31, P323, DOI 10.1007/BF00002357; Hansen TF, 1997, EVOLUTION, V51, P1341, DOI 10.1111/j.1558-5646.1997.tb01457.x; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HAYNES JL, 1995, COPEIA, P147; Housworth EA, 2004, AM NAT, V163, P84, DOI 10.1086/380570; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Jennions MD, 2006, ENVIRON BIOL FISH, V76, P211, DOI 10.1007/s10641-006-9022-7; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; JOLLIE WP, 1964, J MORPHOL, V114, P479, DOI 10.1002/jmor.1051140308; KNIGHT FM, 1985, J MORPHOL, V185, P131, DOI 10.1002/jmor.1051850110; Kwan L, 2015, J MORPHOL, V276, P707, DOI 10.1002/jmor.20381; Langerhans RB, 2012, J FISH BIOL, V81, P1514, DOI 10.1111/j.1095-8649.2012.03397.x; Langerhans R. Brian, 2010, P200, DOI 10.1201/b10190-8; Leips J, 1999, J ANIM ECOL, V68, P595, DOI 10.1046/j.1365-2656.1999.00311.x; Leips J, 2009, EVOLUTION, V63, P1341, DOI 10.1111/j.1558-5646.2009.00631.x; LOMBARDI J, 1985, J MORPHOL, V184, P277, DOI 10.1002/jmor.1051840304; LYDEARD C, 1995, SYST BIOL, V44, P221, DOI 10.2307/2413708; LYNCH M, 1991, EVOLUTION, V45, P1065, DOI 10.1111/j.1558-5646.1991.tb04375.x; Macias-Garcia Constantino, 2005, P289; Maddison W. P., 2009, MESQUITE MODULAR SYS; Marsh-Matthews E, 2005, OECOLOGIA, V144, P12, DOI 10.1007/s00442-005-0030-7; Marsh-Matthews E, 2011, ECOLOGY EVOLUTION PO, P28; Marsh-Matthews E, 2006, ECOLOGY, V87, P3014, DOI 10.1890/0012-9658(2006)87[3014:RAOPAT]2.0.CO;2; Martin SB, 2009, AQUAT BIOL, V8, P15, DOI 10.3354/ab00203; Martins EP, 1996, EVOLUTION, V50, P12, DOI 10.1111/j.1558-5646.1996.tb04468.x; MARTINS EP, 1991, EVOLUTION, V45, P534, DOI 10.1111/j.1558-5646.1991.tb04328.x; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; MARTINS EP, 2004, COMPARE VERSION 4 6; Mazzoni R, 2014, STUDIES NEOTROPICAL, V49, P1; MEFFE GK, 1990, COPEIA, P10, DOI 10.2307/1445816; Meredith RW, 2011, MOL PHYLOGENET EVOL, V59, P148, DOI 10.1016/j.ympev.2011.01.014; Meredith RW, 2010, MOL PHYLOGENET EVOL, V55, P631, DOI 10.1016/j.ympev.2009.11.006; Meyer MK, 2011, VERTEBR ZOOL, V61, P91; Miller R.R., 1975, Occasional Papers of the Museum of Zoology University of Michigan, VNo. 672, P1; Mojica CL, 1997, COPEIA, P298, DOI 10.2307/1447750; Molina-Moctezuma A, 2011, THESIS U NACL AUTONO; Molina-Moctezuma A, 2015, THESIS U NACL AUTONO; Morales-Cazan A, 2012, NEOTROP ICHTHYOL, V10, P19, DOI 10.1590/S1679-62252012000100003; MOSSMAN HW, 1991, PLACENTA, V12, P1, DOI 10.1016/0143-4004(91)90504-9; Pires MN, 2007, J EXP ZOOL PART A, V307A, P113, DOI 10.1002/jez.a.356; Pires Marcelo N., 2011, P28; Pires MN, 2011, FUNCT ECOL, V25, P757, DOI 10.1111/j.1365-2435.2011.01842.x; Pires MN, 2010, BIOL J LINN SOC, V99, P784, DOI 10.1111/j.1095-8312.2010.01391.x; Plaut I, 2002, FUNCT ECOL, V16, P290, DOI 10.1046/j.1365-2435.2002.00638.x; Pollux BJA, 2014, NATURE, V513, P233, DOI 10.1038/nature13451; Pollux BJA, 2009, ANNU REV ECOL EVOL S, V40, P271, DOI 10.1146/annurev.ecolsys.110308.120209; Pollux BJA, 2011, FUNCT ECOL, V25, P747, DOI 10.1111/j.1365-2435.2011.01831.x; Ptacek MB, 1998, J FISH BIOL, V53, P64, DOI 10.1111/j.1095-8649.1998.tb01018.x; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D.N., 1989, P125; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick D, 2007, EVOLUTION, V61, P2570, DOI 10.1111/j.1558-5646.2007.00207.x; Reznick D, 2007, BIOL J LINN SOC, V92, P77, DOI 10.1111/j.1095-8312.2007.00869.x; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Riesch Ruediger, 2012, Aqua, V18, P95; Riesch Ruediger, 2011, Aqua, V17, P95; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; Riesch R, 2010, NATURWISSENSCHAFTEN, V97, P133, DOI 10.1007/s00114-009-0613-y; Roellig K, 2011, BIOL REV, V86, P77, DOI 10.1111/j.1469-185X.2010.00135.x; Schrader M, 2012, ECOL EVOL, V2, P1480, DOI 10.1002/ece3.255; Schrader M, 2008, AM NAT, V172, P806, DOI 10.1086/592999; SCHULTZ RJ, 1961, EVOLUTION, V15, P302, DOI 10.2307/2406230; Scrimshaw Nevin S., 1944, COPEIA, V1944, P180, DOI 10.2307/1437814; Shields Patrick A., 1996, Alaska Fishery Research Bulletin, V3, P81; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Soucy S, 2003, J EVOLUTION BIOL, V16, P1328, DOI 10.1046/j.1420-9101.2003.00608.x; STEARNS SC, 1980, EVOLUTION, V34, P65, DOI 10.1111/j.1558-5646.1980.tb04789.x; STEARNS SC, 1983, AM ZOOL, V23, P65; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; THIBAULT RE, 1974, NATURE, V251, P138, DOI 10.1038/251138a0; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; TRAVIS J, 1987, ECOLOGY, V68, P611, DOI 10.2307/1938466; TRAVIS J, 1990, COPEIA, P722, DOI 10.2307/1446438; Trexler JC, 1997, ECOLOGY, V78, P1370; Trexler JC, 2003, AM NAT, V162, P574, DOI 10.1086/378822; TREXLER JC, 1985, COPEIA, P999, DOI 10.2307/1445254; Trexler JC, 2010, VIVIPAROUS FISHES, P231; TRIVERS RL, 1974, AM ZOOL, V14, P249; Turner CL, 1937, BIOL BULL-US, V72, P145, DOI 10.2307/1537249; Turner CL, 1940, J MORPHOL, V67, P59, DOI 10.1002/jmor.1050670103; TURNER JS, 1984, ENVIRON BIOL FISH, V10, P89, DOI 10.1007/BF00001665; WEEKS SC, 1993, COPEIA, P1003; Weldele ML, 2014, SW NATURALIST, V59, P449; Wourms J.P., 1988, P1; WOURMS JP, 1981, AM ZOOL, V21, P473; Zane L, 1999, J EVOLUTION BIOL, V12, P61, DOI 10.1046/j.1420-9101.1999.00006.x; Zeh DW, 2000, BIOESSAYS, V22, P938, DOI 10.1002/1521-1878(200010)22:10<938::AID-BIES9>3.0.CO;2-9; Zeh JA, 2008, ANN NY ACAD SCI, V1133, P126, DOI 10.1196/annals.1438.006; Zuniga-Vega JJ, 2011, J FISH BIOL, V79, P1029, DOI 10.1111/j.1095-8649.2011.03081.x; Zuniga-Vega J. J., 2010, VIVIPAROUS FISHES, P241; Zuniga-Vega JJ, 2007, OIKOS, V116, P995, DOI 10.1111/j.2007.0030-1299.15763.x 116 5 5 2 16 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. DEC 2015 116 4 787 804 10.1111/bij.12662 18 Evolutionary Biology Evolutionary Biology CU4QS WOS:000363515200005 26617418 Green Accepted, Bronze 2019-02-21 J Sambucetti, P; Loeschcke, V; Norry, FM Sambucetti, P.; Loeschcke, V.; Norry, F. M. Patterns of longevity and fecundity at two temperatures in a set of heat-selected recombinant inbred lines of Drosophila melanogaster BIOGERONTOLOGY English Article Antagonistic pleiotropy; Quantitative trait loci (QTL); Senescence; Early fecundity; Temperature-specific QTL QUANTITATIVE TRAIT LOCI; LIFE-HISTORY EVOLUTION; INTERCONTINENTAL SET; LARVAL DENSITY; SPAN; SENESCENCE; REPRODUCTION; PLEIOTROPY; RESISTANCE; BUZZATII Quantitative trait loci (QTL) were mapped for longevity and fecundity at two temperatures, 20 and 30 degrees C, in two sets of recombinant inbred lines (RIL) highly differing in thermotolerance. Early fecundity (EF) and longevity showed a negative association between temperatures. For instance, longevity was higher and fecundity was lower in the RIL panel showing higher life span at 30 degrees C. One X-linked QTL (7B3-12E) co-localized for longevity and EF at 20 degrees C, with one QTL allele showing a positive additive effect on longevity and a negative effect on EF. The across-RIL genetic correlation between longevity and EF was not significant within each temperature, and most QTL that affect life span have no effect on EF at each temperature. EF and longevity can mostly be genetically uncoupled in the thermotolerance-divergent RIL within each temperature as opposed to between temperatures. QTL were mostly temperature specific, although some trait-specific QTL showed possible antagonistic effects between temperatures. [Sambucetti, P.; Norry, F. M.] Univ Buenos Aires, Dept Ecol Genet & Evoluc, Fac Ciencias Exactas & Nat, IEGEBA,CONICET, Buenos Aires, DF, Argentina; [Loeschcke, V.] Aarhus Univ, Dept Biosci, DK-8000 Aarhus C, Denmark Sambucetti, P (reprint author), Univ Buenos Aires, Dept Ecol Genet & Evoluc, Fac Ciencias Exactas & Nat, IEGEBA,CONICET, C-1428-EHA, Buenos Aires, DF, Argentina. pablosambucetti@ege.fcen.uba.ar Loeschcke, Volker/J-2527-2013 Loeschcke, Volker/0000-0003-1450-0754 Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET); Universidad de Buenos Aires (UBACYT); Agencia Nacional de Investigaciones Cientificas y Tecnicas; Danish Natural Sciences Research Council We thank the anonymous reviewers for helpful comments. This research was supported by Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) and grants from CONICET, Universidad de Buenos Aires (UBACYT) and Agencia Nacional de Investigaciones Cientificas y Tecnicas to FMN and by frame grants from the Danish Natural Sciences Research Council to VL. Arias LN, 2012, J EXP BIOL, V215, P2220, DOI 10.1242/jeb.069831; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/jss.v067.i01; Bergland AO, 2012, PLOS GENET, V8, P4; Curtsinger JW, 2002, MECH AGEING DEV, V123, P81, DOI 10.1016/S0047-6374(01)00345-1; Defays R, 2011, EXP GERONTOL, V46, P819, DOI 10.1016/j.exger.2011.07.003; Di Rienzo J.A., 2014, INFOSTAT VERSION 201; Dupuis J, 1999, GENETICS, V151, P373; Flatt T, 2007, SCIENCE, V318, P1255, DOI 10.1126/science.1147491; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Gagnon A, 2015, FERTIL STERIL, V103, P1109, DOI 10.1016/j.fertnstert.2015.03.030; Kengeri SS, 2013, AGE, V35, P2503, DOI 10.1007/s11357-013-9529-8; Khazaeli AA, 2013, J GERONTOL A-BIOL, V68, P546, DOI 10.1093/gerona/gls226; Kimber CM, 2013, CURR BIOL, V23, P2283, DOI 10.1016/j.cub.2013.09.049; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Klepsatel P, 2013, EVOLUTION, V67, P3573, DOI 10.1111/evo.12221; Le Bourg E, 2007, AGEING RES REV, V6, P141, DOI 10.1016/j.arr.2007.04.002; Leips J, 2000, GENETICS, V155, P1773; Leips J, 2006, GENETICS, V172, P1595, DOI 10.1534/genetics.105.048520; Leroi AM, 2005, MECH AGEING DEV, V126, P421, DOI 10.1016/j.mad.2004.07.012; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; Lynch M, 1998, GENETICS ANAL QUANTI; Mackay TFC, 2001, NAT REV GENET, V2, P11, DOI 10.1038/35047544; Mackay TFC, 2002, MECH AGEING DEV, V123, P95, DOI 10.1016/S0047-6374(01)00330-X; Medawar P, 1952, UNSOLVED PROBLEM BIO; Morgan TJ, 2006, HEREDITY, V96, P232, DOI 10.1038/sj.hdy.6800786; Norry FM, 2006, GENETICA, V128, P81, DOI 10.1007/s10709-005-5537-7; Norry FM, 2008, MOL ECOL, V17, P4570, DOI 10.1111/j.1365-294X.2008.03945.x; Nuzhdin SV, 1997, P NATL ACAD SCI USA, V94, P9734, DOI 10.1073/pnas.94.18.9734; Nuzhdin SV, 2005, GENETICS, V170, P718; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; Pasyukova EG, 2004, AGING CELL, V3, P297, DOI 10.1111/j.1474-9728.2004.00114.x; R Core Team, 2014, R LANG ENV STAT COMP; Remolina SC, 2012, EVOLUTION, V66, P3390, DOI 10.1111/j.1558-5646.2012.01710.x; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; Sambucetti P, 2005, EVOL ECOL RES, V7, P915; Sambucetti P, 2013, J EXP BIOL, V216, P2953, DOI 10.1242/jeb.079830; Scannapieco AC, 2009, BIOL J LINN SOC, V97, P738, DOI 10.1111/j.1095-8312.2009.01223.x; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; Sorensen JG, 2007, J EVOLUTION BIOL, V20, P1624, DOI 10.1111/j.1420-9101.2007.01326.x; Tarin JJ, 2014, REPROD BIOL ENDOCRIN, V12, DOI 10.1186/1477-7827-12-84; Tower J, 2011, EXP GERONTOL, V46, P355, DOI 10.1016/j.exger.2010.09.002; Vieira C, 2000, GENETICS, V154, P213; Wang S, 2010, WINDOWS QTL CARTOGRA; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wit J, 2013, EXP GERONTOL, V48, P349, DOI 10.1016/j.exger.2013.01.008; ZENG ZB, 1994, GENETICS, V136, P1457; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x 49 1 1 0 18 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1389-5729 1573-6768 BIOGERONTOLOGY Biogerontology DEC 2015 16 6 801 810 10.1007/s10522-015-9606-8 10 Geriatrics & Gerontology Geriatrics & Gerontology CT5WP WOS:000362882100009 26404666 2019-02-21 J Aramayo, V Aramayo, Victor Lower selectivity can help heavily exploited fish populations FISHERIES RESEARCH English Article Exploited fish populations; Selectivity; Population recovery LIFE-HISTORY EVOLUTION; MATURATION REACTION NORMS; GADUS-MORHUA; ATLANTIC COD; FISHERIES; COLLAPSE; AGE; SIZE; TRENDS; SALMON Large-scale marine fisheries are recognized as one of the main threats to population stability of many commercially important fish species. Selectivity-driven detrimental changes on the population structure (e.g. declines in mean lengths affecting phenotypic traits of the exploited species), and the growing trend toward earlier maturation (reproductive changes); represents a worldwide phenomenon affecting the recovery of several exploited fish species, all which might contribute with a highly unfavourable scenario of exploitation. Large and long-lived individuals are especially (although not restrictively) vulnerable. A lower fishing selectivity (plus other protection measurements) might gradually favour to those heavily exploited fish populations and balance the catch to all exploitable individuals. This approach might also positively contribute to the fishery sustainability, by protecting old, big females, which are important for growth, fecundity, offspring, and survival of the population. All this supposes a major transformation in the universal way for fish exploitation, and a huge challenge, because it will have to deal with other factors such as short-term economic vision that dominates the main fisheries worldwide. (C) 2015 Elsevier B.V. All rights reserved. San Marcos Univ, Fac Biol Sci, Lima 100, Peru Aramayo, V (reprint author), San Marcos Univ, Fac Biol Sci, POB 1898, Lima 100, Peru. varamayon@unmsm.edu.pe Aramayo, Victor/0000-0003-2026-4487 Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; Ballon M, 2008, PROG OCEANOGR, V79, P300, DOI 10.1016/j.pocean.2008.10.016; Barot S, 2005, ICES J MAR SCI, V62, P56, DOI 10.1016/j.icesjms.2004.10.004; Beamish RJ, 2006, PROG OCEANOGR, V68, P289, DOI 10.1016/j.pocean.2006.02.005; Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; Birkeland C, 2005, TRENDS ECOL EVOL, V20, P356, DOI 10.1016/j.tree.2005.03.015; Carr JP, 2009, BIOL CONSERV, V142, P477, DOI 10.1016/j.biocon.2008.10.004; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Engelhard GH, 2004, FISH RES, V66, P299, DOI 10.1016/S0165-7836(03)00195-4; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; GJERDE B, 1984, AQUACULTURE, V38, P229, DOI 10.1016/0044-8486(84)90147-9; Hamon TR, 2000, T AM FISH SOC, V129, P1300, DOI 10.1577/1548-8659(2000)129<1300:SOMOSW>2.0.CO;2; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; Heino M, 2008, B MAR SCI, V83, P69; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Hsieh CH, 2010, AQUAT SCI, V72, P165, DOI 10.1007/s00027-009-0122-2; Hutchings JA, 1999, CAN J FISH AQUAT SCI, V56, P1612, DOI 10.1139/cjfas-56-9-1612; HUTCHINGS JA, 1994, CAN J FISH AQUAT SCI, V51, P2126, DOI 10.1139/f94-214; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; Murawski S. A., 2001, ICES J MAR SCI, V58, P1001; Myers RA, 1997, ECOL APPL, V7, P91, DOI 10.1890/1051-0761(1997)007[0091:WDFSCT]2.0.CO;2; O'Leary BC, 2011, MAR POLLUT BULL, V62, P2642, DOI 10.1016/j.marpolbul.2011.09.032; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Palumbi SR, 2004, NATURE, V430, P621, DOI 10.1038/430621a; Planque B, 2010, J MARINE SYST, V79, P403, DOI 10.1016/j.jmarsys.2008.12.018; Pontecorvo G, 2012, MAR POLICY, V36, P1178, DOI 10.1016/j.marpol.2012.03.005; Post J. R., 2008, PNAS, V105, P2919; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Rose GA, 2002, ICES J MAR SCI, V59, P1018, DOI 10.1006/jmsc.2002.1252; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Shelton AO, 2011, P NATL ACAD SCI USA, V108, P7075, DOI 10.1073/pnas.1100334108; Uusi-Heikkila S, 2008, TRENDS ECOL EVOL, V23, P419, DOI 10.1016/j.tree.2008.04.006; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Watson RA, 2013, FISH FISH, V14, P493, DOI 10.1111/j.1467-2979.2012.00483.x; Worm B, 2009, SCIENCE, V325, P578, DOI 10.1126/science.1173146 41 1 1 0 30 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. DEC 2015 172 261 264 10.1016/j.fishres.2015.07.028 4 Fisheries Fisheries CS5SP WOS:000362138700029 2019-02-21 J Cram, DL; Blount, JD; Young, AJ Cram, Dominic L.; Blount, Jonathan D.; Young, Andrew J. The oxidative costs of reproduction are group-size dependent in a wild cooperative breeder PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article oxidative stress; offspring care; antioxidants; cooperative breeding; costs of reproduction; life-history trade-offs BROWED SPARROW WEAVER; HISTORY TRADE-OFFS; PHYSIOLOGICAL COSTS; PLOCEPASSER-MAHALI; STRESS; SURVIVAL; EVOLUTION; FECUNDITY; BEHAVIOR; SUCCESS Life-history theory assumes that reproduction entails a cost, and research on cooperatively breeding societies suggests that the cooperative sharing of workloads can reduce this cost. However, the physiological mechanisms that underpin both the costs of reproduction and the benefits of cooperation remain poorly understood. It has been hypothesized that reproductive costs may arise in part from oxidative stress, as reproductive investment may elevate exposure to reactive oxygen species, compromising survival and future reproduction and accelerating senescence. However, experimental evidence of oxidative costs of reproduction in the wild remains scarce. Here, we use a clutch-removal experiment to investigate the oxidative costs of reproduction in a wild cooperatively breeding bird, the white-browed sparrow weaver, Plocepasser mahali. Our results reveal costs of reproduction that are dependent on group size: relative to individuals in groups whose eggs were experimentally removed, individuals in groups that raised offspring experienced an associated cost (elevated oxidative damage and reduced body mass), but only if they were in small groups containing fewer or no helpers. Furthermore, during nestling provisioning, individuals that provisioned at higher rates showed greater within-individual declines in body mass and antioxidant protection. Our results provide rare experimental evidence that reproduction can negatively impact both oxidative status and body mass in the wild, and suggest that these costs can be mitigated in cooperative societies by the presence of additional helpers. These findings have implications for our understanding of the energetic and oxidative costs of reproduction, and the benefits of cooperation in animal societies. [Cram, Dominic L.; Blount, Jonathan D.; Young, Andrew J.] Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Exeter TR10 9FE, Cornwall, England Cram, DL (reprint author), Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Penryn Campus, Exeter TR10 9FE, Cornwall, England. dom.cram@gmail.com; a.j.young@exeter.ac.uk Cram, Dominic/0000-0002-8790-8294 BBSRC David Phillips Fellowship; Royal Society; NERC; Royal Society University Research Fellowship This study was funded by a BBSRC David Phillips Fellowship and a Royal Society Research Grant to A.J.Y. and an NERC studentship to D.L.C. J.D.B. was supported by a Royal Society University Research Fellowship. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blount JD, 2015, BIOL REV, DOI [10.1111/brv.12179, DOI 10.1111/BRY.12179]; BROWN JL, 1982, SCIENCE, V215, P421, DOI 10.1126/science.215.4531.421; Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Clutton-Brock TH, 1998, P ROY SOC B-BIOL SCI, V265, P185, DOI 10.1098/rspb.1998.0281; Cockburn A, 1998, ANNU REV ECOL SYST, V29, P141, DOI 10.1146/annurev.ecolsys.29.1.141; Cohen A, 2007, COMP BIOCHEM PHYS B, V147, P110, DOI 10.1016/j.cbpb.2006.12.015; COLLIAS NE, 1978, AUK, V95, P472; Costantini D, 2014, NATURWISSENSCHAFTEN, V101, P541, DOI 10.1007/s00114-014-1190-2; Costantini D, 2009, COMP BIOCHEM PHYS A, V153, P339, DOI 10.1016/j.cbpa.2009.03.010; Cox RM, 2010, FUNCT ECOL, V24, P1262, DOI 10.1111/j.1365-2435.2010.01756.x; Cram DL, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122421; Cram DL, 2015, FUNCT ECOL, V29, P229, DOI 10.1111/1365-2435.12317; Crawley M. J., 2007, R BOOK, DOI [10.1002/9780470515075, DOI 10.1002/9780470515075]; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Garratt M, 2012, FUNCT ECOL, V26, P423, DOI 10.1111/j.1365-2435.2011.01952.x; Halliwell Barry, 1993, American Journal of Clinical Nutrition, V57, p715S, DOI 10.1093/ajcn/57.5.715S; Harrison X, 2013, BEHAV ECOL SOCIOBIOL, V67, P1915, DOI 10.1007/s00265-013-1599-1; Hatchwell BJ, 1999, AM NAT, V154, P205, DOI 10.1086/303227; Heinsohn Robert G., 2004, P67, DOI 10.1017/CBO9780511606816.005; Horak P, 2010, FUNCT ECOL, V24, P960, DOI 10.1111/j.1365-2435.2010.01755.x; Khan MZ, 2002, BEHAV ECOL SOCIOBIOL, V51, P336, DOI 10.1007/s00265-001-0441-3; Koenig WD, 2004, ECOLOGY EVOLUTION CO; KOMDEUR J, 1994, BEHAV ECOL SOCIOBIOL, V34, P175, DOI 10.1007/BF00167742; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; Lewin N, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2014.0991; LEWIS DM, 1981, BEHAV ECOL SOCIOBIOL, V9, P83, DOI 10.1007/BF00293579; LEWIS DM, 1982, IBIS, V124, P511, DOI 10.1111/j.1474-919X.1982.tb03795.x; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Parkes TL, 1998, NAT GENET, V19, P171, DOI 10.1038/534; R Development Core Team, 2013, R LANG ENV STAT COMP; REYER HU, 1984, ANIM BEHAV, V32, P1163, DOI 10.1016/S0003-3472(84)80233-X; Roberts G, 1996, ANIM BEHAV, V51, P1077, DOI 10.1006/anbe.1996.0109; Russell AF, 2003, BEHAV ECOL, V14, P486, DOI 10.1093/beheco/arg022; Saino N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019593; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Solomon NG, 1997, COOPERATIVE BREEDING; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stier A., 2012, FRONTIERS ZOOLOGY, V9, P1, DOI DOI 10.1186/1742-9994-9-37); van de Crommenacker J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026423; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; York JE, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2013.0970; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zottl M, 2013, ANIM BEHAV, V85, P1471, DOI 10.1016/j.anbehav.2013.03.045 54 11 11 0 34 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 22 2015 282 1819 20152031 10.1098/rspb.2015.2031 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology DA1NM WOS:000367562500019 26582023 Green Published, Other Gold 2019-02-21 J Pettersen, AK; White, CR; Marshall, DJ Pettersen, Amanda K.; White, Craig R.; Marshall, Dustin J. Why does offspring size affect performance? Integrating metabolic scaling with life-history theory PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article egg size; allometry; maternal effect MARINE INVERTEBRATE; EGG SIZE; BODY-SIZE; DROSOPHILA-MELANOGASTER; EVOLUTIONARY ECOLOGY; OXYGEN-CONSUMPTION; 3/4-POWER LAW; LARVAL FISHES; ANIMALS; SELECTION Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed. [Pettersen, Amanda K.; Marshall, Dustin J.] Monash Univ, Sch Biol Sci, Melbourne, Vic 3800, Australia; [White, Craig R.] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia Pettersen, AK (reprint author), Monash Univ, Sch Biol Sci, Melbourne, Vic 3800, Australia. amanda.pettersen@monash.edu Pettersen, Amanda/O-7554-2017; Marshall, Dustin/C-3450-2016; White, Craig/F-9062-2010 Pettersen, Amanda/0000-0001-6191-6563; White, Craig/0000-0002-0200-2187 Australian Postgraduate Award; Australian Research Council This research was supported by an Australian Postgraduate Award (A.K.P.) and grants from the Australian Research Council (D.J.M. and C.R.W.). Allen RM, 2008, AM NAT, V171, P225, DOI 10.1086/524952; Alton LA, 2012, FUNCT ECOL, V26, P94, DOI 10.1111/j.1365-2435.2011.01900.x; Arnold PA, 2013, J EXP BIOL, V216, P3350, DOI 10.1242/jeb.088138; Aubret F, 2012, AM NAT, V179, P756, DOI 10.1086/665653; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Burgess SC, 2013, FUNCT ECOL, V27, P757, DOI 10.1111/1365-2435.12080; Burgess SC, 2011, MAR ECOL PROG SER, V440, P151, DOI 10.3354/meps09374; Bushuev AV, 2012, J ZOOL, V288, P245, DOI 10.1111/j.1469-7998.2012.00947.x; Cameron J., 1986, PRINCIPLES PHYSL MEA, P254; CHAMBERS RC, 1989, FISH B-NOAA, V87, P515; Chen BJW, 2014, ANN BOT-LONDON, V114, P937, DOI 10.1093/aob/mcu162; CHEVERUD JM, 1982, AM J PHYS ANTHROPOL, V59, P139, DOI 10.1002/ajpa.1330590204; Clutton-Brock TH, 1991, THE EVOLUTION OF PAR; Crisp D. J., 1971, P197; DAMME K, 1987, POULTRY SCI, V66, P881, DOI 10.3382/ps.0660881; Dyke GJ, 2010, REC AUST MUS, V62, P207, DOI 10.3853/j.0067-1975.62.2010.1547; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; GIGUERE LA, 1988, MAR ECOL PROG SER, V50, P13, DOI 10.3354/meps050013; Glazier DS, 2010, BIOL REV, V85, P111, DOI 10.1111/j.1469-185X.2009.00095.x; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; Glazier DS, 2006, BIOSCIENCE, V56, P325, DOI 10.1641/0006-3568(2006)56[325:TPLINU]2.0.CO;2; Greenlee KJ, 2004, J EXP BIOL, V207, P509, DOI 10.1242/jeb.00766; HART MW, 1995, AM NAT, V146, P415, DOI 10.1086/285807; Heymsfield SB, 2002, AM J PHYSIOL-ENDOC M, V282, pE132; HOEGHGULDBERG O, 1995, J EXP BIOL, V198, P19; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; JAECKLE WB, 1989, MAR BIOL, V103, P87, DOI 10.1007/BF00391067; Janzen FJ, 2000, J EVOLUTION BIOL, V13, P947, DOI 10.1046/j.1420-9101.2000.00234.x; KAPLAN RH, 1992, ECOLOGY, V73, P280, DOI 10.2307/1938739; Kinoshita J, 1997, HYDROBIOLOGIA, V347, P51, DOI 10.1023/A:1002942806113; Koster M, 2008, MAR ECOL PROG SER, V353, P157, DOI 10.3354/meps07185; Kooijman S. A. L. M, 2010, DYNAMIC ENERGY BUDGE; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Labocha MK, 2004, P ROY SOC B-BIOL SCI, V271, P367, DOI 10.1098/rspb.2003.2612; LITVAK MK, 1992, MAR ECOL PROG SER, V81, P13, DOI 10.3354/meps081013; Marshall DJ, 2003, ECOLOGY, V84, P3131, DOI 10.1890/02-0311; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; Marshall DJ, 2008, AM NAT, V171, P214, DOI 10.1086/524954; Marshall DJ, 2013, EVOLUTION, V67, P328, DOI 10.1111/j.1558-5646.2012.01749.x; MCEDWARD LR, 1987, EVOLUTION, V41, P914, DOI 10.1111/j.1558-5646.1987.tb05865.x; Moran AL, 2007, BIOL BULL-US, V212, P143, DOI 10.2307/25066591; Niklas KJ, 2014, INT J PLANT SCI, V175, P754, DOI 10.1086/677238; Pelabon C, 2013, AM NAT, V181, P195, DOI 10.1086/668820; Plaistow SJ, 2006, AM NAT, V167, P206, DOI 10.1086/499380; Post JR, 1996, CAN J FISH AQUAT SCI, V53, P910, DOI 10.1139/cjfas-53-4-910; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Riisgard HU, 1998, ECOL LETT, V1, P71; RIVEST BR, 1983, J EXP MAR BIOL ECOL, V69, P217, DOI 10.1016/0022-0981(83)90071-0; Roff Derek A., 1992; Rogowitz GL, 2000, J EXP BIOL, V203, P1131; Schimpf NG, 2013, J EVOLUTION BIOL, V26, P1588, DOI 10.1111/jeb.12093; Sinervo B., 1990, UNITY EVOLUTIONARY B, P725; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Snelling EP, 2011, J EXP BIOL, V214, P3218, DOI 10.1242/jeb.058420; Stearns S, 1992, EVOLUTION LIFE HIST; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Svetlichny LS, 2004, MAR BIOL, V145, P585, DOI 10.1007/s00227-004-1336-4; Van Voorhies WA, 2004, J INSECT PHYSIOL, V50, P445, DOI 10.1016/j.jinsphys.2004.03.002; vanVoorhies WA, 1996, EVOLUTION, V50, P1259, DOI 10.1111/j.1558-5646.1996.tb02366.x; Vogt JT, 1999, J INSECT PHYSIOL, V45, P655, DOI 10.1016/S0022-1910(99)00036-0; Wendt DE, 2000, BIOL BULL, V198, P346, DOI 10.2307/1542690; White CR, 2014, COMPR PHYSIOL, V4, P231, DOI 10.1002/cphy.c110049; White CR, 2011, AM NAT, V178, P746, DOI 10.1086/662666; ZEUTHEN E, 1953, Q REV BIOL, V28, P1, DOI 10.1086/399308 64 15 15 2 50 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 22 2015 282 1819 20151946 10.1098/rspb.2015.1946 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology DA1NM WOS:000367562500025 26559952 Bronze, Green Published 2019-02-21 J Pistorius, PA; Hindell, MA; Tremblay, Y; Rishworth, GM Pistorius, Pierre A.; Hindell, Mark A.; Tremblay, Yann; Rishworth, Gavin M. Weathering a Dynamic Seascape: Influences of Wind and Rain on a Seabird's Year-Round Activity Budgets PLOS ONE English Article GANNETS MORUS-CAPENSIS; URIA-AALGE; ALGOA BAY; BEHAVIOR; PATTERNS; ALBATROSSES; POPULATION; PREDATOR; FLIGHT; FOOD How animals respond to varying environmental conditions is fundamental to ecology and is a question that has gained impetus due to mounting evidence indicating negative effects of global change on biodiversity. Behavioural plasticity is one mechanism that enables individuals and species to deal with environmental changes, yet for many taxa information on behavioural parameters and their capacity to change are lacking or restricted to certain periods within the annual cycle. This is particularly true for seabirds where year-round behavioural information is intrinsically challenging to acquire due to their reliance on the marine environment where they are difficult to study. Using data from over 13,000 foraging trips throughout the annual cycle, acquired using new-generation automated VHF technology, we described sex-specific, year-round activity budgets in Cape gannets. Using these data we investigated the role of weather (wind and rain) on foraging activity and time allocated to nest attendance. Foraging activity was clearly influenced by wind speed, wind direction and rainfall during and outside the breeding season. Generally, strong wind conditions throughout the year resulted in relatively short foraging trips. Birds spent longer periods foraging when rainfall was moderate. Nest attendance, which was sex-specific outside of the breeding season, was also influenced by meteorological conditions. Large amounts of rainfall (> 2.5 mm per hour) and strong winds (> 13 m s(-1)) resulted in gannets spending shorter amounts of time at their nests. We discuss these findings in terms of life history strategies and implications for the use of seabirds as bio-indicators. [Pistorius, Pierre A.; Rishworth, Gavin M.] Nelson Mandela Metropolitan Univ, Percy FitzPatrick Inst, Dept Zool, DST NRF Ctr Excellence, ZA-6031 Summerstrand, South Africa; [Hindell, Mark A.] Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas 7001, Australia; [Tremblay, Yann] Ctr Rech Halieut Mediterraneenne & Tropicale, Inst Rech Dev, UMR EME Exploited Marine Ecosyst 212, F-34203 Sete, France Pistorius, PA (reprint author), Nelson Mandela Metropolitan Univ, Percy FitzPatrick Inst, Dept Zool, DST NRF Ctr Excellence, ZA-6031 Summerstrand, South Africa. ppistorius@nmmu.ac.za Tremblay, Yann/0000-0002-4653-9269; Hindell, Mark/0000-0002-7823-7185 National Research Foundation (NRF) of South Africa This research was funded by the National Research Foundation (NRF) of South Africa. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; The National Research Foundation (NRF) of South Africa is thanked for funding this research. South African National Parks (SANParks) provided logistical support and accommodation on Bird Island. The field assistance of David Green and Maelle Connan is greatly appreciated. The South African Weather Service (SAWS) and Wayne Goschen are thanked for making meteorological data available to this project. AINLEY DG, 1977, ADAPTATIONS ANTARCTI, P669; Amelineau F, 2014, J EXP BIOL, V217, P876, DOI 10.1242/jeb.097915; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Barbraud C, 2003, P ROY SOC B-BIOL SCI, V270, P2111, DOI 10.1098/rspb.2003.2488; Barton K. A., 2013, MUMIN MULTIMODEL INF; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/jss.v067.i01; Benvenuti S, 2002, POLAR BIOL, V25, P474, DOI 10.1007/s00300-002-0372-0; BURGER AE, 1990, STUD AVIAN BIOL, V14, P71; Cairns D.K., 1992, Current Ornithology, V9, P37; CAIRNS D K, 1987, Biological Oceanography, V5, P261; CRAWFORD R. J. M, 2005, ROBERTS BIRDS SO AFR, P565; Crawford RJM, 2007, ICES J MAR SCI, V64, P169, DOI 10.1093/icesjms/fsl011; Daunt F, 2006, BEHAV ECOL SOCIOBIOL, V59, P381, DOI 10.1007/s00265-005-0061-4; Dehnhard N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079487; Dias MP, 2011, P ROY SOC B-BIOL SCI, V278, P1786, DOI 10.1098/rspb.2010.2114; Durant JM, 2009, CLIM RES, V39, P115, DOI 10.3354/cr00798; Elliott KH, 2015, MAR BIOL, V162, P1739, DOI 10.1007/s00227-015-2701-1; Elliott KH, 2014, MOV ECOL, V2, DOI 10.1186/s40462-014-0017-2; Finney SK, 1999, J AVIAN BIOL, V30, P23, DOI 10.2307/3677239; Fort J, 2012, FRONT ECOL ENVIRON, V10, P237, DOI 10.1890/110194; Furness RW, 1996, ECOLOGY, V77, P1181, DOI 10.2307/2265587; GABRIELSEN GW, 1987, CONDOR, V89, P126, DOI 10.2307/1368766; Garthe S, 2009, MAR ECOL PROG SER, V391, P243, DOI 10.3354/meps08170; Goschen WS, 2012, AFR J MAR SCI, V34, P525, DOI 10.2989/1814232X.2012.749810; Green D., 2013, ALGOA BAY OSTRICH, V84, P123, DOI DOI 10.2989/00306525.2013.830652; Green DB, 2015, MAR ECOL PROG SER, V537, P277, DOI 10.3354/meps11428; Green DB, 2015, ICES J MAR SCI, V72, P771, DOI 10.1093/icesjms/fsu203; Hamer KC, 1997, IBIS, V139, P31, DOI 10.1111/j.1474-919X.1997.tb04501.x; HANEY JC, 1994, AUK, V111, P427, DOI 10.2307/4088606; Harding AMA, 2007, MAR ECOL PROG SER, V352, P269, DOI 10.3354/meps07072; HATCH SA, 1987, AUK, V104, P450, DOI 10.2307/4087544; HUNT GL, 1987, FEEDING ECOLOGY SEAB, P7; Ismar SMH, 2011, WILSON J ORNITHOL, V123, P121, DOI 10.1676/10-072.1; Jaquemet S, 2008, ESTUAR COAST SHELF S, V80, P374, DOI 10.1016/j.ecss.2008.08.019; KLAGES NTW, 1994, OSTRICH, V65, P218, DOI 10.1080/00306525.1994.9639685; Kowalczyk ND, 2015, OECOLOGIA, V178, P967, DOI 10.1007/s00442-015-3294-6; Lewis S, 2006, OECOLOGIA, V147, P606, DOI 10.1007/s00442-005-0321-z; Lund U, 2012, CIRCSTATS CIRCULAR S; Mullers RHE, 2009, ICES J MAR SCI, V66, P2244, DOI 10.1093/icesjms/fsp210; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nelson J. B., 1978, SULIDAE GANNETS BOOB, P231; Nelson J.B., 2002, THE ATLANTIC GANNET; Nelson JB, 2005, CORMORANTS THEIR REL; Newton I, 2008, MIGRATION ECOLOGY OF BIRDS, P1; O'Donoghue SH, 2010, AFR J MAR SCI, V32, P279, DOI 10.2989/1814232X.2010.501584; Patrick SC, 2014, OIKOS, V123, P33, DOI 10.1111/j.1600-0706.2013.00406.x; Pennycuick C. J., 1989, BIRD FLIGHT PERFORMA; PENNYCUICK CJ, 1982, PHILOS T ROY SOC B, V300, P75, DOI 10.1098/rstb.1982.0158; Posada D, 2004, SYST BIOL, V53, P793, DOI 10.1080/10635150490522304; R Core Team, 2012, R LANG ENV STAT COMP; RANDALL R, 1979, OSTRICH, V50, P168, DOI 10.1080/00306525.1979.9634106; Rarmirez I, 2013, MARINE ECOLOGY PROGR, V476, P269, DOI [10.3354/meps10083, DOI 10.3354/MEPS10083]; Reed TE, 2009, J ANIM ECOL, V78, P376, DOI 10.1111/j.1365-2656.2008.01503.x; Rishworth GM, 2015, MAR ECOL PROG SER, V530, P153, DOI 10.3354/meps11317; Rishworth GM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0116544; Rishworth GM, 2014, METHODS ECOL EVOL, V5, P854, DOI 10.1111/2041-210X.12213; Rishworth GM, 2014, AFR ZOOL, V49, P107, DOI 10.3377/004.049.0115; Sandvik H, 2008, GLOBAL CHANGE BIOL, V14, P703, DOI 10.1111/j.1365-2486.2007.01533.x; Schreiber E. A., 2001, BIOL MARINE BIRDS, P179; SCHREIBER RW, 1984, SCIENCE, V225, P713, DOI 10.1126/science.225.4663.713; Shoji A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017760; Spear LB, 1997, IBIS, V139, P221, DOI 10.1111/j.1474-919X.1997.tb04620.x; Spruzen FL, 2002, POLAR BIOL, V25, P296, DOI 10.1007/s00300-001-0344-9; Stearns S, 1992, EVOLUTION LIFE HIST; Thiebault A, 2014, BEHAV ECOL, V25, P1302, DOI 10.1093/beheco/aru132; Thiebault A, 2014, AUK, V131, P595, DOI 10.1642/AUK-13-209.1; Tremblay Y, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088424; UTTLEY JD, 1994, IBIS, V136, P205, DOI 10.1111/j.1474-919X.1994.tb01086.x; Weidinger K, 1996, POLAR BIOL, V16, P339; Weimerskirch H, 2000, P ROY SOC B-BIOL SCI, V267, P1869, DOI 10.1098/rspb.2000.1223; WEIMERSKIRCH H, 1995, OECOLOGIA, V102, P37, DOI 10.1007/BF00333308; Westneat DF, 2003, ANNU REV ECOL EVOL S, V34, P365, DOI 10.1146/annurev.ecolsys.34.011802.132439; Wolfaardt Anton C., 2012, Marine Ornithology, V40, P129 73 6 6 1 32 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One NOV 18 2015 10 11 e0142623 10.1371/journal.pone.0142623 17 Multidisciplinary Sciences Science & Technology - Other Topics CW7CD WOS:000365154600051 26581108 DOAJ Gold, Green Published 2019-02-21 J Kilminster, K; McMahon, K; Waycott, M; Kendrick, GA; Scanes, P; McKenzie, L; O'Brien, KR; Lyons, M; Ferguson, A; Maxwell, P; Glasby, T; Udy, J Kilminster, Kieryn; McMahon, Kathryn; Waycott, Michelle; Kendrick, Gary A.; Scanes, Peter; McKenzie, Len; O'Brien, Katherine R.; Lyons, Mitchell; Ferguson, Angus; Maxwell, Paul; Glasby, Tim; Udy, James Unravelling complexity in seagrass systems for management: Australia as a microcosm SCIENCE OF THE TOTAL ENVIRONMENT English Article Life-history; Transitory; Monitoring; Decision-making; Environmental management; Policy; Seagrasses ZOSTERA-MARINA; WESTERN-AUSTRALIA; NORTHERN QUEENSLAND; POSIDONIA-OCEANICA; GENETIC DIVERSITY; CYMODOCEA-NODOSA; DYNAMICS; RESILIENCE; MEADOWS; ESTUARY Environmental decision-making applies transdisciplinary knowledge to deliver optimal outcomes. Here we synthesise various aspects of seagrass ecology to aid environmental decision-making, management and policy. Managers often mediate conflicting values and opinions held by different stakeholders. Critical to this role is understanding the drivers for change, effects of management actions and societal benefits. We use the diversity of seagrass habitats in Australia to demonstrate that knowledge from numerous fields is required to understand seagrass condition and resilience. Managers are often time poor and need access to synthesised assessments, commonly referred to as narratives. However, there is no single narrative for management of seagrass habitats in Australia, due to the diversity of seagrass meadows and dominant pressures. To assist the manager, we developed a classification structure based on attributes of seagrass life history, habitat and meadow form. Seagrass communities are formed from species whose life history strategies can be described as colonising, opportunistic or persistent. They occupy habitats defined by the range and variability of their abiotic environment. This results in seagrass meadows that are either transitory or enduring. Transitory meadows may come and go and able to re-establish from complete loss through sexual reproduction. Enduring meadows may fluctuate in biomass but maintain a presence by resisting pressures across multiple scales. This contrast reflects the interaction between the spatial and temporal aspects of species life history and habitat variability. Most management and monitoring strategies in place today favour enduring seagrasses. We adopt a functional classification of seagrass habitats based on modes of resilience to inform management for all seagrass communities. These concepts have world-wide relevance as the Australian case-studies have many analogues throughout the world. Additionally, the approach used to classify primary scientific knowledge into synthesised categories to aid management has value for many other disciplines interfacing with environmental decision-making. (C) 2015 Elsevier B.V. All rights reserved. [Kilminster, Kieryn] WA Dept Water, Perth, WA 6842, Australia; [McMahon, Kathryn] Edith Cowan Univ, Sch Nat Sci, Mt Lawley, WA 6027, Australia; [McMahon, Kathryn] Edith Cowan Univ, Ctr Marine Ecosyst Res, Mt Lawley, WA 6027, Australia; [Waycott, Michelle] Univ Adelaide, Adelaide, SA 5005, Australia; [Waycott, Michelle] Plant Biodivers Ctr, Dept Environm & Nat Resources, Adelaide, SA, Australia; [Kendrick, Gary A.] Univ Western Australia, Oceans Inst M470, Crawley, WA 6009, Australia; [Kendrick, Gary A.] Univ Western Australia, Sch Plant Biol, Crawley, WA 6009, Australia; [Scanes, Peter; Ferguson, Angus] NSW Off Environm & Heritage, Sydney South, NSW 1232, Australia; [McKenzie, Len] James Cook Univ, Ctr Trop Water & Aquat Ecosyst Res TropWATER, Cairns, Qld 4870, Australia; [O'Brien, Katherine R.; Maxwell, Paul] Univ Queensland, Sch Chem Engn, St Lucia, Qld 4072, Australia; [Lyons, Mitchell] Univ New S Wales, Sch Biol Earth & Environm Sci, Ctr Ecosyst Sci, Sydney, NSW 2052, Australia; [Maxwell, Paul; Udy, James] Hlth Waterways, Brisbane, Qld 4003, Australia; [Glasby, Tim] NSW Dept Primary Ind, Fisheries NSW, Nelson Bay, NSW 2315, Australia Kilminster, K (reprint author), WA Dept Water, POB K822, Perth, WA 6842, Australia. kieryn.kilminster@water.wa.gov.au Kendrick, Gary/B-3460-2011; McMahon, Kathryn/A-6619-2008; O'Brien, Katherine/J-3198-2014 Kendrick, Gary/0000-0002-0276-6064; McMahon, Kathryn/0000-0003-4355-6247; O'Brien, Katherine/0000-0001-8972-9161; Glasby, Tim/0000-0001-5011-7731; McKenzie, Leonard/0000-0003-1294-3770 Australian Centre for Environmental Analysis and Synthesis (ACEAS), a facility of the Terrestrial Ecosystem Research Network - Australian Government National Collaborative Research Infrastructure Strategy (NCRIS) We would like to thank all of the respondents of the Australian management survey and the National Estuaries Network. Funding for this research was partly supported by the Australian Centre for Environmental Analysis and Synthesis (ACEAS), a facility of the Terrestrial Ecosystem Research Network (www.tern.org.au) funded by the Australian Government National Collaborative Research Infrastructure Strategy (NCRIS). We also recognise the contribution from the authors' institutions for their support of the ACEAS working group on Australian Seagrass Habitats. We acknowledge the Terrestrial Ecosystem Research Network (TERN) and the Western Australian Department of Water for their contributions to publication costs. We would additionally like to acknowledge Lynda Radke, Jeff Ross, Alistair Hirst, Patricia von Baumgarten, Gregory West, Carla Ganassin, Karen Astles, Chris Roelfsema, Bill Dennison and Vanessa Lucieer for sharing their knowledge of Australian seagrass habitats and support of this synthesis. The authors also wish to express gratitude to the three anonymous reviewers whose efforts have improved this manuscript. Aires T, 2011, MAR ECOL PROG SER, V421, P117, DOI 10.3354/meps08879; Alberto F, 2005, MOL ECOL, V14, P2669, DOI 10.1111/j.1365-294X.2005.02640.x; Aragones L, 2000, CONSERV BIOL, V5, P277; Arber A., 1920, WATER PLANTS STUDY A; Arnaud-Haond S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030454; Barbier EB, 2011, ECOL MONOGR, V81, P169, DOI 10.1890/10-1510.1; Benson MH, 2011, ENVIRON MANAGE, V48, P392, DOI 10.1007/s00267-011-9693-5; Bernhardt JR, 2013, ANNU REV MAR SCI, V5, P371, DOI 10.1146/annurev-marine-121211-172411; Bos AR, 2007, ESTUAR COAST SHELF S, V74, P344, DOI 10.1016/j.ecss.2007.04.006; Bryars S, 2004, AQUAT BOT, V80, P283, DOI 10.1016/j.aquabot.2004.09.001; Campbell SJ, 2002, AQUAT BOT, V73, P33, DOI 10.1016/S0304-3770(02)00002-5; Campey ML, 2000, AQUAT BOT, V66, P41, DOI 10.1016/S0304-3770(99)00015-7; Carruthers T.J.B., 2007, J EXP MAR BIOL ECOL, P350; Carruthers TJB, 2002, B MAR SCI, V71, P1153; Choney GE, 2014, MAR FRESHWATER RES, V65, P738, DOI 10.1071/MF13126; Christianen MJA, 2012, J ECOL, V100, P546, DOI 10.1111/j.1365-2745.2011.01900.x; COLES RG, 1993, AUST J MAR FRESH RES, V44, P193; Coles R, 2009, MAR ECOL PROG SER, V392, P57, DOI 10.3354/meps08197; COLLIER C, 2009, DRIVERS CHANGE SEAGR; Costanza R, 1997, NATURE, V387, P253, DOI 10.1038/387253a0; Cullen-Unsworth L.C., 2013, MAR POLLUT B, V83, P387; de Bruin WB, 2013, P NATL ACAD SCI USA, V110, P14062, DOI 10.1073/pnas.1212729110; Den Hartog C., 1970, VERHOMDELINGEN KONIN, V59, P275; Dennison WC, 1999, MORETON BAY STUDY SC; Department of Primary Industries, 2013, POL GUID FISH HAB CO, P80; Dietz T, 2013, P NATL ACAD SCI USA, V110, P14081, DOI 10.1073/pnas.1212740110; Duarte CM, 2010, GLOBAL BIOGEOCHEM CY, V24, DOI 10.1029/2010GB003793; DUARTE CM, 1994, MAR ECOL PROG SER, V107, P195, DOI 10.3354/meps107195; Ebrahim A, 2014, MAR ECOL PROG SER, V511, P83, DOI 10.3354/meps10901; Eklof JS, 2009, MAR FRESHWATER RES, V60, P1317, DOI 10.1071/MF09008; Environmental Protection Agency, 2009, ENV ASS GUID, P41; Ernst A, 2014, EUR PSYCHOL, V19, P118, DOI 10.1027/1016-9040/a000174; Evans SM, 2014, CONSERV GENET, V15, P717, DOI 10.1007/s10592-014-0573-4; Fitzpatrick R.W., 2003, ADV REGOLITH, P122; Folke C, 2004, ANNU REV ECOL EVOL S, V35, P557, DOI 10.1146/annurev.ecolsys.35.021103.105711; Forbes V.R., 2014, WATER SCI TECHNICAL; Fourqurean JW, 2012, NAT GEOSCI, V5, P505, DOI 10.1038/ngeo1477; Fourqurean JW, 2010, MAR ECOL PROG SER, V419, P223, DOI 10.3354/meps08853; FOURQUREAN JW, 1992, MAR BIOL, V114, P57; Grime J. P, 1979, PLANT STRATEGIES VEG; Guidetti P, 2002, MAR ECOL-P S Z N I, V23, P51, DOI 10.1046/j.1439-0485.2002.02722.x; Heiss WM, 2000, NEW ZEAL J MAR FRESH, V34, P689, DOI 10.1080/00288330.2000.9516970; HILLMAN K, 1995, AQUAT BOT, V51, P1, DOI 10.1016/0304-3770(95)00466-D; Inglis GJ, 2001, GLOBAL SEAGRASS RESEARCH METHODS, P123, DOI 10.1016/B978-044450891-1/50007-4; JACOBS RPWM, 1981, AQUAT BOT, V10, P241, DOI 10.1016/0304-3770(81)90026-7; Janssen T, 2004, BOT J LINN SOC, V146, P385, DOI 10.1111/j.1095-8339.2004.00345.x; Jensen HS, 1998, LIMNOL OCEANOGR, V43, P799, DOI 10.4319/lo.1998.43.5.0799; Kantrud H.A., 1991, WIGEONGRASS RUPPIA M; Kendrick GA, 2000, ESTUAR COAST SHELF S, V50, P341, DOI 10.1006/ecss.1999.0569; Kendrick GA, 2008, ECOGRAPHY, V31, P191, DOI 10.1111/j.0906-7590.2008.5252.x; Kendrick GA, 2012, BIOSCIENCE, V62, P56, DOI 10.1525/bio.2012.62.1.10; Kenworthy W. Judson, 2000, Pacific Conservation Biology, V5, P260; KENWORTHY WJ, 1989, MAR ECOL PROG SER, V51, P277, DOI 10.3354/meps051277; Kim SH, 2014, MAR ECOL PROG SER, V509, P1, DOI 10.3354/meps10899; Kirkman H., 1997, SEAGRASSES AUSTR AUS, P36; Koch EW, 2006, SEAGRASSES: BIOLOGY, ECOLOGY AND CONSERVATION, P193; van Dijk JK, 2010, AQUAT BOT, V92, P63, DOI 10.1016/j.aquabot.2009.10.005; Lanyon J.M., 1991, NUTR ECOLOGY DUGONG; LANYON JM, 1989, BIOL SEAGRASSES TREA, P610; Lavery PS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073748; Les DH, 1997, SYST BOT, V22, P443, DOI 10.2307/2419820; Lupia A, 2013, P NATL ACAD SCI USA, V110, P14048, DOI 10.1073/pnas.1212726110; Lyons M, 2011, REMOTE SENS-BASEL, V3, P42, DOI 10.3390/rs3010042; Lyons MB, 2013, ESTUAR COAST SHELF S, V120, P42, DOI 10.1016/j.ecss.2013.01.015; MAC ARTHUR ROBERT H., 1967; MacKenzie DI, 2003, ECOLOGY, V84, P2200, DOI 10.1890/02-3090; Mateo MA, 2006, SEAGRASSES: BIOLOGY, ECOLOGY AND CONSERVATION, P159; McMahon K., 2005, RECOVERY SUBTROPICAL; McMahon K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0878; Meling-Lopez AE, 1999, AQUAT BOT, V65, P59, DOI 10.1016/S0304-3770(99)00031-5; Mellors J, 2002, B MAR SCI, V71, P1215; NIENHUIS PH, 1986, MAR ECOL PROG SER, V29, P29, DOI 10.3354/meps029029; PERGENT G, 1989, MAR ECOL-P S Z N I, V10, P221, DOI 10.1111/j.1439-0485.1989.tb00474.x; PREEN A, 1995, MAR ECOL PROG SER, V124, P201, DOI 10.3354/meps124201; PREEN AR, 1995, AQUAT BOT, V52, P3, DOI 10.1016/0304-3770(95)00491-H; Rasheed MA, 2014, MAR POLLUT BULL, V83, P491, DOI 10.1016/j.marpolbul.2014.02.013; Santamaria-Gallegos NA, 2000, AQUAT BOT, V66, P329, DOI 10.1016/S0304-3770(99)00082-0; Saunders MI, 2013, GLOBAL CHANGE BIOL, V19, P2569, DOI 10.1111/gcb.12218; Sculthorpe C. D, 1967, BIOL AQUATIC VASCULA; Short F, 2007, J EXP MAR BIOL ECOL, V350, P3, DOI 10.1016/j.jembe.2007.06.012; Short FT, 2011, BIOL CONSERV, V144, P1961, DOI 10.1016/j.biocon.2011.04.010; SILBERSTEIN K, 1986, AQUAT BOT, V24, P355, DOI 10.1016/0304-3770(86)90102-6; Sinclair EA, 2014, MAR ECOL PROG SER, V506, P87, DOI 10.3354/meps10812; Strazisar T., 2014, ESTUAR COAST, P1; Strazisar T, 2013, J EXP MAR BIOL ECOL, V445, P129, DOI 10.1016/j.jembe.2013.02.045; TOMLINSON PB, 1974, AQUACULTURE, V4, P107, DOI 10.1016/0044-8486(74)90027-1; VANLENT F, 1994, AQUAT BOT, V48, P31, DOI 10.1016/0304-3770(94)90072-8; Walker D. I., 1999, SEAGRASS AUSTR STRAT, P1; WATSON RA, 1993, AUST J MAR FRESH RES, V44, P211; Waycott M, 1998, MOL ECOL, V7, P793, DOI 10.1046/j.1365-294x.1998.00375.x; Waycott M., 2014, GUIDE SO TEMPERATE S; Waycott M., 2007, VULNERABILITY SEAGRA; Waycott M., 2004, GUIDE TROPICAL SEAGR; Waycott M., 2011, VULNERABILITY MANGRO; Waycott M., 2006, SEAGRASSES BIOL ECOL, P25; Waycott M, 2009, P NATL ACAD SCI USA, V106, P12377, DOI 10.1073/pnas.0905620106; Williams R., 2013, WET EBOOK WORKBOOK M; WILLIAMS SL, 1988, MAR ECOL PROG SER, V42, P63, DOI 10.3354/meps042063; Woodward H.P., 1917, WA DEP MINES ANN REP, P49 99 53 54 5 74 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0048-9697 1879-1026 SCI TOTAL ENVIRON Sci. Total Environ. NOV 15 2015 534 97 109 10.1016/j.scitotenv.2015.04.061 13 Environmental Sciences Environmental Sciences & Ecology CQ0MK WOS:000360290100010 25917445 2019-02-21 J Dolbeth, M; Doledec, S; Pardal, MA Dolbeth, Marina; Doledec, Sylvain; Pardal, Miguel Angelo Relationship between functional diversity and benthic secondary production in a disturbed estuary MARINE ECOLOGY PROGRESS SERIES English Article Secondary production; Functional diversity; Benthic community; Estuarine environments; Mass ratio hypothesis LIFE-HISTORY STRATEGIES; SPECIES TRAITS; COMMUNITY; SEAGRASS; ECOSYSTEMS; BIODIVERSITY; ECOLOGY; RESTORATION; MANAGEMENT; FRAMEWORK We investigated the relationship between functional diversity and secondary production in an estuarine system subjected to anthropogenic impacts and climate events. Data consisted of a 14 yr long study of benthic invertebrate production from a seagrass bed and a sandflat. We used generalized linear models to test whether secondary production was explained by a functional identity effect (dominant traits in the community), by a complementarity effect (dissimilarity in trait measurements) or by their combined effects. From a priori correlations among community-weighted means for all traits, we identified 3 main life-history groups in the estuarine communities, reflecting different strategies to cope with disturbance and resulting in different production levels: species with an opportunist strategy, large slow-growing species and species with attributes providing higher competitive advantages, such as high mobility and omnivore feeding. The functional identity effect, also known as mass ratio hypothesis, was tested with a model combining these life-history groups. Overall, the functional identity/mass ratio effect model best explained variability in secondary production compared to the complementarity and combined effects models. In general, species with an opportunist strategy had higher production. These species ex plained a higher proportion of the production changes during the study period than the other 2 life-history groups. Nevertheless, this type of production, sustained by large numbers of small opportunist species with a rapid completion of their life cycle, may contribute towards an impoverishment of overall ecosystem functioning. In addition, we discuss the variation of all functional diversity measurements for the sites along the study period and relative to the changes in production. [Dolbeth, Marina; Pardal, Miguel Angelo] Univ Coimbra, CFE, Dept Life Sci, Calcada Martim de Freitas, P-3000456 Coimbra, Portugal; [Dolbeth, Marina] Univ Aveiro, CESAM, P-3810193 Aveiro, Portugal; [Dolbeth, Marina] Univ Aveiro, Dept Biol, P-3810193 Aveiro, Portugal; [Doledec, Sylvain] Univ Lyon 1, UMR 5023, Biodiversite Ecosyst Lot, LEHNA, F-69622 Villeurbanne, France Dolbeth, M (reprint author), Univ Coimbra, CFE, Dept Life Sci, Calcada Martim de Freitas, P-3000456 Coimbra, Portugal. mdolbeth@ci.uc.pt Pardal, Miguel Angelo/C-3984-2009; Dolbeth, Marina/I-3840-2013; CESAM, UA/M-3762-2015 Pardal, Miguel Angelo/0000-0001-6048-7007; Dolbeth, Marina/0000-0002-8775-0351; Doledec, Sylvain/0000-0002-0280-7866 FCT (Portuguese Foundation for Science and Technology) [SFRH/BPD/41117/2007]; BIOCHANGED project - European Social Fund [PTDC/MAR/111901/2009]; MCTES (Portuguese Ministry of Science, Technology and Higher Education); POPH (Human Potential Operational Programme); QREN (National Strategic Reference Framework); COMPETE (Programa Operacional Factores de Competitividade) This research was supported by the FCT (Portuguese Foundation for Science and Technology), through a grant attributed to M.D, (SFRH/BPD/41117/2007); and the BIOCHANGED project (PTDC/MAR/111901/2009), subsidized by the European Social Fund and MCTES (Portuguese Ministry of Science, Technology and Higher Education), POPH (Human Potential Operational Programme), QREN (National Strategic Reference Framework) and COMPETE (Programa Operacional Factores de Competitividade). Baeta A, 2009, MAR BIOL, V156, P2107, DOI 10.1007/s00227-009-1241-y; Barton K, 2014, PACKAGE MUMIN MULTIM; Bolam SG, 2014, J SEA RES, V88, P47, DOI 10.1016/j.seares.2014.01.001; Bostrom C, 2006, ESTUAR COAST SHELF S, V68, P383, DOI 10.1016/j.ecss.2006.01.026; Bremner J., 2005, THESIS, P198; Cardoso PG, 2010, MAR POLLUT BULL, V60, P601, DOI 10.1016/j.marpolbul.2009.11.004; Clarke KR., 2014, CHANGE MARINE COMMUN; Daz S., 2007, P NATL ACAD SCI USA, V104, P20684, DOI DOI 10.1073/PNAS.0704716104;PMID:18093933; de Bello F, 2010, BIODIVERS CONSERV, V19, P2873, DOI 10.1007/s10531-010-9850-9; Dolbeth M, 2007, MAR POLLUT BULL, V54, P576, DOI 10.1016/j.marpolbul.2006.12.005; Dolbeth M, 2012, CAN J FISH AQUAT SCI, V69, P1230, DOI 10.1139/F2012-050; Dolbeth M, 2011, ESTUAR COAST SHELF S, V92, P10, DOI 10.1016/j.ecss.2010.12.006; Dolbeth M, 2014, J SEA RES, V85, P404, DOI 10.1016/j.seares.2013.07.012; Dolbeth M, 2013, MAR POLLUT BULL, V72, P47, DOI 10.1016/j.marpolbul.2013.05.001; Doledec S, 2008, FRESHWATER BIOL, V53, P617, DOI 10.1111/j.1365-2427.2007.01924.x; Duffy JE, 2006, MAR ECOL PROG SER, V311, P233, DOI 10.3354/meps311233; Duffy JE, 2009, FRONT ECOL ENVIRON, V7, P437, DOI 10.1890/070195; Elliott M, 2011, ESTUAR COAST SHELF S, V94, P306, DOI 10.1016/j.ecss.2011.06.016; Emmerson MC, 2012, MARINE BIODIVERSITY AND ECOSYSTEM FUNCTIONING: FRAMEWORKS, METHODOLOGIES, AND INTEGRATION, P85; Gagic V, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2620; GREENSLADE PJM, 1983, AM NAT, V122, P352, DOI 10.1086/284140; Griffin JN, 2009, OIKOS, V118, P37, DOI 10.1111/j.1600-0706.2008.16960.x; Grilo TF, 2011, MAR POLLUT BULL, V62, P303, DOI 10.1016/j.marpolbul.2010.10.010; Grime J., 2012, EVOLUTIONARY STRATEG; Grime JP, 1998, J ECOL, V86, P902, DOI 10.1046/j.1365-2745.1998.00306.x; Haddad NM, 2008, ECOL LETT, V11, P348, DOI 10.1111/j.1461-0248.2007.01149.x; Haines-Young R.H., 2013, EEAIEA09003 U NOTT; Laliberte E, 2010, ECOLOGY, V91, P299, DOI 10.1890/08-2244.1; Lavorel S, 2013, J VEG SCI, V24, P942, DOI 10.1111/jvs.12083; Leps J, 2011, ECOGRAPHY, V34, P856, DOI 10.1111/j.1600-0587.2010.06904.x; McArthur LC, 2006, ECOL MODEL, V196, P163, DOI 10.1016/j.ecolmodel.2006.02.030; McLusky D. S., 2004, ESTUARINE ECOSYSTEM; Mouchet MA, 2010, FUNCT ECOL, V24, P867, DOI 10.1111/j.1365-2435.2010.01695.x; Mouillot D, 2007, OECOLOGIA, V152, P729, DOI 10.1007/s00442-007-0688-0; Mouillot D, 2013, TRENDS ECOL EVOL, V28, P167, DOI 10.1016/j.tree.2012.10.004; Naeem S., 2009, BIODIVERSITY ECOSYST; Naeem S, 2012, SCIENCE, V336, P1401, DOI 10.1126/science.1215855; Neto J.M., 2010, ESTUAR COAST, V33, P1327, DOI DOI 10.1007/S12237-010-9326-X; Nyitrai D, 2012, AQUAT ECOL, V46, P201, DOI 10.1007/s10452-012-9392-1; Queiros AM, 2013, ECOL EVOL, V3, P3958, DOI 10.1002/ece3.769; R Development Core Team, 2012, R LANG ENV STAT COMP; Roscher C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036760; Schleuter D, 2010, ECOL MONOGR, V80, P469, DOI 10.1890/08-2225.1; Solan M, 2012, MARINE BIODIVERSITY AND ECOSYSTEM FUNCTIONING: FRAMEWORKS, METHODOLOGIES, AND INTEGRATION, P127; Stachowicz JJ, 2007, ANNU REV ECOL EVOL S, V38, P739, DOI 10.1146/annurev.ecolsys.38.091206.095659; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verissimo H, 2012, ECOL INDIC, V23, P312, DOI 10.1016/j.ecolind.2012.04.020; Verissimo H, 2012, ECOL INDIC, V19, P130, DOI 10.1016/j.ecolind.2011.06.014; Villeger S, 2008, ECOLOGY, V89, P2290, DOI 10.1890/07-1206.1; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; WHN Mason, 2005, OIKOS, V111, P112; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Worm B, 2006, SCIENCE, V314, P787, DOI 10.1126/science.1132294; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 55 5 5 3 57 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. NOV 12 2015 539 33 46 10.3354/meps11473 14 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography CW6EQ WOS:000365090700003 2019-02-21 J Faber-Hammond, J; Samanta, MP; Whitchurch, EA; Manning, D; Sisneros, JA; Coffin, AB Faber-Hammond, Joshua; Samanta, Manoj P.; Whitchurch, Elizabeth A.; Manning, Dustin; Sisneros, Joseph A.; Coffin, Allison B. Saccular Transcriptome Profiles of the Seasonal Breeding Plainfin Midshipman Fish (Porichthys notatus), a Teleost with Divergent Sexual Phenotypes PLOS ONE English Article SENSORY HAIR-CELLS; SNELLS-WALTZER MICE; INNER-EAR; VOCAL FISH; GENE-EXPRESSION; FREQUENCY SENSITIVITY; REPRODUCTIVE TACTICS; HEREDITARY DEAFNESS; SIGNALING PATHWAY; ACOUSTIC-SIGNALS Acoustic communication is essential for the reproductive success of the plainfin midshipman fish (Porichthys notatus). During the breeding season, type I males use acoustic cues to advertise nest location to potential mates, creating an audible signal that attracts reproductive females. Type II (sneaker) males also likely use this social acoustic signal to find breeding pairs from which to steal fertilizations. Estrogen-induced changes in the auditory system of breeding females are thought to enhance neural encoding of the advertisement call, and recent anatomical data suggest the saccule (the main auditory end organ) as one possible target for this seasonal modulation. Here we describe saccular transcriptomes from all three sexual phenotypes (females, type I and II males) collected during the breeding season as a first step in understanding the mechanisms underlying sexual phenotype-specific and seasonal differences in auditory function. We used RNA-Seq on the Ion Torrent platform to create a combined transcriptome dataset containing over 79,000 assembled transcripts representing almost 9,000 unique annotated genes. These identified genes include several with known inner ear function and multiple steroid hormone receptors. Transcripts most closely matched to published genomes of nile tilapia and large yellow croaker, inconsistent with the phylogenetic relationship between these species but consistent with the importance of acoustic communication in their life-history strategies. We then compared the RNA-Seq results from the saccules of reproductive females with a separate transcriptome from the non-reproductive female phenotype and found over 700 differentially expressed transcripts, including members of the Wnt and Notch signaling pathways that mediate cell proliferation and hair cell addition in the inner ear. These data constitute a valuable resource for furthering our understanding of the molecular basis for peripheral auditory function as well as a range of future midshipman and cross-species comparative studies of the auditory periphery. [Faber-Hammond, Joshua; Manning, Dustin; Coffin, Allison B.] Washington State Univ, Coll Arts & Sci, Vancouver, WA 98686 USA; [Samanta, Manoj P.] Systemix Inst, Redmond, WA USA; [Whitchurch, Elizabeth A.] Humboldt State Univ, Dept Biol Sci, Arcata, CA 95521 USA; [Sisneros, Joseph A.] Univ Washington, Dept Psychol, Seattle, WA 98195 USA; [Coffin, Allison B.] Washington State Univ, Dept Integrat Physiol & Neurosci, Vancouver, WA USA Coffin, AB (reprint author), Washington State Univ, Coll Arts & Sci, Vancouver, WA 98686 USA. Allison.coffin@wsu.edu Sisneros, Joseph/0000-0002-3114-773X Capita Foundation; Washington State University Vancouver This work was funded by a Capita Foundation (http://www.capitafoundation.org/) grant and by start-up funds and a mini-grant from Washington State University Vancouver (http://www.vancouver.wsu.edu/), all to ABC. No grant numbers are available. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Anders S, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-10-r106; Arch VS, 2009, HEARING RES, V252, P15, DOI 10.1016/j.heares.2009.01.001; Avraham KB, 1997, HUM MOL GENET, V6, P1225, DOI 10.1093/hmg/6.8.1225; Bass AH, 2007, FISH PHYSL SENSORY S, V25; BASS AH, 1999, NEURAL MECH COMMUNIC, P493; Bass AH, 2012, P NATL ACAD SCI USA, V109, P10677, DOI 10.1073/pnas.1201886109; Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837; Betancur-R R, 2013, PLOS CURR-TREE LIFE, DOI 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288; BRANTLEY RK, 1994, ETHOLOGY, V96, P213, DOI 10.1111/j.1439-0310.1994.tb01011.x; BRANTLEY RK, 1993, HORM BEHAV, V27, P332, DOI 10.1006/hbeh.1993.1025; Cai TT, 2015, J NEUROSCI, V35, P5870, DOI 10.1523/JNEUROSCI.5083-14.2015; Caras ML, 2012, J NEUROSCI, V32, P17597, DOI 10.1523/JNEUROSCI.3938-12.2012; Coffin AB, 2012, J NEUROSCI, V32, P1366, DOI 10.1523/JNEUROSCI.4928-11.2012; Ernest S, 2000, HUM MOL GENET, V9, P2189, DOI 10.1093/hmg/9.14.2189; Fan JZ, 2014, MOL CELL BIOCHEM, V392, P85, DOI 10.1007/s11010-014-2021-7; Feng NY, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1577-2; Fergus DJ, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1940-3; Forlano PM, 2010, J COMP NEUROL, V518, P493, DOI 10.1002/cne.22233; Forlano PM, SPRINGER HDB AUDITOR, V57; Fraser BA, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-202; Haddon C, 1998, DEVELOPMENT, V125, P4637; Hertzano R, 2012, HEARING RES, V288, P77, DOI 10.1016/j.heares.2012.01.002; Jacques BE, 2014, DEV NEUROBIOL, V74, P438, DOI 10.1002/dneu.22134; Johnson J, 1999, DEV DYNAM, V216, P499, DOI 10.1002/(SICI)1097-0177(199912)216:4/5<499::AID-DVDY18>3.0.CO;2-S; Kang YJ, 2008, JARO-J ASSOC RES OTO, V9, P436, DOI 10.1007/s10162-008-0137-8; Kazmierczak P, 2012, TRENDS NEUROSCI, V35, P220, DOI 10.1016/j.tins.2011.10.007; Kouzmenko AP, 2004, J BIOL CHEM, V279, P40244; Li WY, 2015, P NATL ACAD SCI USA, V112, P166, DOI 10.1073/pnas.1415901112; Liang Y, 1999, GENOMICS, V61, P243, DOI 10.1006/geno.1999.5976; Longrie N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061467; Ma EY, 2008, J NEUROSCI, V28, P2261, DOI 10.1523/JNEUROSCI.4372-07.2008; MayerGostan N, 1997, CELL TISSUE RES, V289, P53, DOI 10.1007/s004410050851; McDermott BM, 2007, P NATL ACAD SCI USA, V104, P11820, DOI 10.1073/pnas.0704476104; McKibben JR, 1998, J ACOUST SOC AM, V104, P3520, DOI 10.1121/1.423938; McKibben JR, 2001, J COMP PHYSIOL A, V187, P271, DOI 10.1007/s003590100199; Melchionda S, 2001, AM J HUM GENET, V69, P635, DOI 10.1086/323156; Moeller G, 2009, MOL CELL ENDOCRINOL, V301, P7, DOI 10.1016/j.mce.2008.10.040; Mora C, 1999, SCAND J UROL NEPHROL, V33, P63; Murayama E, 2005, MECH DEVELOP, V122, P791, DOI 10.1016/j.mod.2005.03.002; Nelson J. S., 1994, FISHES WORLD; Pan BF, 2013, NEURON, V79, P504, DOI 10.1016/j.neuron.2013.06.019; Patel M, 2013, NEUROSCIENCE, V248, P1, DOI 10.1016/j.neuroscience.2013.05.038; Payan P, 1997, J EXP BIOL, V200, P1905; Powers TR, 2012, BMC GENOMICS, V13, P1, DOI 10.1186/1471-2164-13-225; Ramcharttar J, 2006, T AM FISH SOC, V135, P1409, DOI 10.1577/T05-207.1; Rohmann KN, 2013, CURR BIOL, V23, P678, DOI 10.1016/j.cub.2013.03.014; Rohmann KN, 2011, J EXP BIOL, V214, P1931, DOI 10.1242/jeb.054114; Rohmann KN, 2009, MOL BIOL EVOL, V26, P1509, DOI 10.1093/molbev/msp060; Romero-Carvajal A, 2015, DEV CELL, V34, P267, DOI 10.1016/j.devcel.2015.05.025; Ruiz-Palmero I, 2011, J NEUROENDOCRINOL, V23, P355, DOI 10.1111/j.1365-2826.2011.02110.x; SAIDEL WM, 1990, HEARING RES, V47, P139, DOI 10.1016/0378-5955(90)90171-K; Scheffer DI, 2015, J NEUROSCI, V35, P6366, DOI 10.1523/JNEUROSCI.5126-14.2015; Schuck JB, 2011, BMC NEUROSCI, V12, DOI 10.1186/1471-2202-12-88; Seiler C, 2004, DEV BIOL, V272, P328, DOI 10.1016/j.ydbio.2004.05.004; Sisneros JA, 2004, SCIENCE, V305, P404, DOI 10.1126/science.1097218; Sisneros JA, 2004, GEN COMP ENDOCR, V136, P101, DOI 10.1016/j.ygcen.2003.12.007; Sisneros JA, 2003, J NEUROSCI, V23, P1049; Sisneros JA, 2007, J COMP PHYSIOL A, V193, P413, DOI 10.1007/s00359-006-0195-5; Sisneros JA, 2009, J NEUROPHYSIOL, V102, P1121, DOI 10.1152/jn.00236.2009; Sollner C, 2004, NATURE, V428, P955, DOI 10.1038/nature02484; Steigelman KA, 2011, J NEUROSCI, V31, P12241, DOI 10.1523/JNEUROSCI.6531-10.2011; Stooke-Vaughan GA, 2015, DEVELOPMENT, V142, P1137, DOI 10.1242/dev.116632; Tomkins JL, 2002, ANIM BEHAV, V63, P1009, DOI 10.1006/anbe.2001.1994; Vahava O, 1998, SCIENCE, V279, P1950, DOI 10.1126/science.279.5358.1950; Varea O, 2010, STEROIDS, V75, P565, DOI 10.1016/j.steroids.2009.09.006; Wainwright PC, 2012, SYST BIOL, V61, P1001, DOI 10.1093/sysbio/sys060; Wang SZ, 2013, J NEUROSCI, V33, P12242, DOI 10.1523/JNEUROSCI.5736-12.2013; Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349; Yin XH, 2015, EXP CELL RES, V335, P107, DOI 10.1016/j.yexcr.2015.04.020 69 0 0 2 9 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One NOV 11 2015 10 11 e0142814 10.1371/journal.pone.0142814 22 Multidisciplinary Sciences Science & Technology - Other Topics CV7DR WOS:000364433100129 26560106 DOAJ Gold, Green Published 2019-02-21 J Baumard, N; Chevallier, C Baumard, Nicolas; Chevallier, Coralie The nature and dynamics of world religions: a life-history approach PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review life history theory; psychosocial acceleration theory; religion; cooperation REPRODUCTIVE STRATEGIES; INDIVIDUAL-DIFFERENCES; SELF-CONTROL; EVOLUTION; MATERIALISM; PERSONALITY; ASSOCIATIONS; INEQUALITY; ATTACHMENT; DEATH In contrast with tribal and archaic religions, world religions are characterized by a unique emphasis on extended prosociality, restricted sociosexuality, delayed gratification and the belief that these specific behaviours are sanctioned by some kind of supernatural justice. Here, we draw on recent advances in life history theory to explain this pattern of seemingly unrelated features. Life history theory examines how organisms adaptively allocate resources in the face of trade-offs between different life-goals (e.g. growth versus reproduction, exploitation versus exploration). In particular, recent studies have shown that individuals, including humans, adjust their life strategy to the environment through phenotypic plasticity: in a harsh environment, organisms tend to adopt a 'fast' strategy, pursuing smaller but more certain benefits, while in more affluent environments, organisms tend to develop a 'slow' strategy, aiming for larger but less certain benefits. Reviewing a range of recent research, we show that world religions are associated with a form of 'slow' strategy. This framework explains both the promotion of 'slow' behaviours such as altruism, self-regulation and monogamy in modern world religions, and the condemnation of 'fast' behaviours such as selfishness, conspicuous sexuality and materialism. This ecological approach also explains the diffusion pattern of world religions: why they emerged late in human history (500-300 BCE), why they are currently in decline in the most affluent societies and why they persist in some places despite this overall decline. [Baumard, Nicolas] Ecole Normale Super, CNRS, Inst Jean Nicod, UMR 8129, F-75231 Paris, France; [Chevallier, Coralie] Ecole Normale Super, Dept Etudes Cognit, INSERM U960, Lab Neurosci Cognit, F-75231 Paris, France Baumard, N (reprint author), Ecole Normale Super, CNRS, Inst Jean Nicod, UMR 8129, 24 Rue Lhomond, F-75231 Paris, France. nbaumard@gmail.com Chevallier, Coralie/L-3120-2017 Chevallier, Coralie/0000-0002-7358-4962 [ANR-10-LABX-0087 IEC]; [ANR-10-IDEX-0001-02 PSL*] This study is funded by ANR-10-LABX-0087 IEC and ANR-10-IDEX-0001-02 PSL*. Abramson P., 1995, VALUE CHANGE GLOBAL; Atkinson QD, 2011, EVOL HUM BEHAV, V32, P41, DOI 10.1016/j.evolhumbehav.2010.07.008; AXELROD R, 1981, SCIENCE, V211, P1390, DOI 10.1126/science.7466396; Bal M, 2012, PERS SOC PSYCHOL B, V38, P835, DOI 10.1177/0146167212442970; Banerjee R, 2008, PERS SOC PSYCHOL B, V34, P17, DOI 10.1177/0146167207309196; Bateson M, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2140; Baumard Nicolas, 2015, Commun Integr Biol, V8, pe1046657, DOI 10.1080/19420889.2015.1046657; Baumard N, 2015, CURR BIOL, V25, P10, DOI 10.1016/j.cub.2014.10.063; Baumard N, 2013, TRENDS COGN SCI, V17, P272, DOI 10.1016/j.tics.2013.04.003; Baumard N, 2013, BEHAV BRAIN SCI, V36, P59, DOI 10.1017/S0140525X11002202; Begue L, 2014, J APPL SOC PSYCHOL, V44, P71, DOI 10.1111/jasp.12201; Bellah Robert N., 2011, RELIG HUMAN EVOLUTIO; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Benenson JF, 2007, EVOL HUM BEHAV, V28, P168, DOI 10.1016/j.evolhumbehav.2006.10.003; Blume M, 2009, FRONT COLLECT, P117, DOI 10.1007/978-3-642-00128-4_8; Bos KJ, 2009, FRONT BEHAV NEUROSCI, V3, DOI 10.3389/neuro.08.016.2009; Boyer P, OXFORD HDB EVOLUTION; Boyer P, 2001, MAN CREATES GOD RELI; Boyer P, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040750; Brezina T., 2004, YOUTH VIOLENCE JUV J, V2, P303, DOI DOI 10.1177/1541204004267780; Briers B, 2006, PSYCHOL SCI, V17, P939, DOI 10.1111/j.1467-9280.2006.01808.x; Brown Peter, 1988, BODY SOC MEN WOMEN S; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Burkert Walter, 1985, GREEK RELIG; Burnside WR, 2012, BIOL REV, V87, P194, DOI 10.1111/j.1469-185X.2011.00192.x; Carver CS, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.01357; Chang LC, 2002, PSYCHOL MARKET, V19, P389, DOI 10.1002/mar.10016; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clark CJ, 2014, J PERS SOC PSYCHOL, V106, P501, DOI 10.1037/a0035880; Cohen P, 1996, LIFE VALUES ADOLESCE; Coleman Simon, 2000, GLOBALISATION CHARIS; Curry OS, 2008, PERS INDIV DIFFER, V44, P780, DOI 10.1016/j.paid.2007.09.023; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Daly M, 2001, Nebr Symp Motiv, V47, P1; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Delamontagne RG, 2010, EVOL PSYCHOL-US, V8, P617; Diamond Jared, 1997, GUNS GERMS STEEL FAT; Dixon S., 1992, THE ROMAN FAMILY; Dubois L, 2006, PEDIATR INT, V48, P470, DOI 10.1111/j.1442-200X.2006.02256.x; Duckworth AL, 2013, FRONT PSYCHOL, V3, DOI 10.3389/fpsyg.2012.00608; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Espin AM, 2012, P ROY SOC B-BIOL SCI, V279, P4923, DOI 10.1098/rspb.2012.2043; Fawcett TW, 2012, BEHAV PROCESS, V89, P128, DOI 10.1016/j.beproc.2011.08.015; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Hafer CL, 2005, SOCIAL JUSTICE RES, V18, P429, DOI [10.1007/s11211-005-8569-3, DOI 10.1007/S11211-005-8569-3]; Harper K, 2013, FROM SHAME TO SIN; Harris AC, 2002, PSYCHOL REC, V52, P429, DOI 10.1007/BF03395196; Haushofer J, 2013, PSYCHOL POVERTY EVID; Heaven PCL, 2007, BRIT J PSYCHOL, V98, P681, DOI 10.1348/000712607X187777; Henrich J, 2010, SCIENCE, V327, P1480, DOI 10.1126/science.1182238; Hill E., 2008, J SOCIO-ECON, V37, P1381, DOI DOI 10.1016/J.S0CEC.2006.12.081; Holland J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043294; Hood Ralph W., 2009, PSYCHOL RELIG EMPIRI; Hostinar CE, 2012, P NATL ACAD SCI USA, V109, P17208, DOI 10.1073/pnas.1121246109; Jenkins P., 2006, NEW FACES CHRISTIANI; Jonason PK, 2012, PERS INDIV DIFFER, V53, P180, DOI 10.1016/j.paid.2012.03.007; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kaplan HS, 2009, PHILOS T R SOC B, V364, P3289, DOI 10.1098/rstb.2009.0115; Kasser T, 2000, PSYCHOL SCI, V11, P348, DOI 10.1111/1467-9280.00269; KASSER T, 1995, DEV PSYCHOL, V31, P907, DOI 10.1037/0012-1649.31.6.907; Kidd C, 2013, COGNITION, V126, P109, DOI 10.1016/j.cognition.2012.08.004; Kocher MG, 2013, 1988286 SOC SCI RES; Kohlhuber M, 2008, BRIT J NUTR, V99, P1127, DOI 10.1017/S0007114508864835; Kortenkamp KV, 2006, PERS SOC PSYCHOL B, V32, P603, DOI 10.1177/0146167205284006; Kurzban R., 2011, WHY EVERYONE ELSE IS; Kurzban R, 2010, P ROY SOC B-BIOL SCI, V277, P3501, DOI 10.1098/rspb.2010.0608; Lambert S, LOW SES CHILDR UNPUB; Li JZ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040316; Little LK., 1983, RELIG POVERTY PROFIT; MacMullen R., 1999, CHRISTIANITY PAGANIS; MacMullen R, 2009, 2 CHURCH POPULAR CHR; McCullough ME, 2005, J PERS SOC PSYCHOL, V89, P78, DOI 10.1037/0022-3514.89.1.78; McCullough ME, 2009, PSYCHOL BULL, V135, P69, DOI 10.1037/a0014213; Morris I, 2013, MEASURE OF CIVILIZATION: HOW SOCIAL DEVELOPMENT DECIDES THE FATE OF NATIONS, P1; Mortensen LH, 2008, J EPIDEMIOL COMMUN H, V62, P325, DOI 10.1136/jech.2007.061473; Nettle D, 2012, DEV PSYCHOL, V48, P718, DOI 10.1037/a0027507; Nettle D, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026922; Nettle D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013371; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nettle D, 2009, PSYCHOLOGIST, V22, P934; Neusner J, 2009, GOLDEN RULE ETHICS R; Norenzayan A, 2016, BEHAV BRAIN SCI, V39, DOI 10.1017/S0140525X14001356; Norris Pippa, 2011, SACRED SECULAR RELIG; Ober J, 2010, T AM PHILOLOGICAL AS; Paul R, 2005, J AUTISM DEV DISORD, V35, P861, DOI 10.1007/s10803-005-0031-8; Pedersen EJ, 2014, EMOTION, V14, P920, DOI 10.1037/a0036752; Pedersen EJ, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2723; Pepper GV, 2013, EVOL HUM BEHAV, V34, P433, DOI 10.1016/j.evolhumbehav.2013.08.004; Pepper GV, 2013, PEER J PREPRINTS, V1; Pew Research Center, 2012, GLOB REL LANDSC; Pu M., 1998, SEARCH PERSONAL WELF; Putnam R. D, 2012, AM GRACE RELIG DIVID; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Quinlan RJ, 2007, AM ANTHROPOL, V109, P164, DOI 10.1525/AA.2007.109.1.164; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Rakita Goldin Paul, 2002, CULTURE SEX ANCIENT; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Rindfleisch A, 1997, J CONSUM RES, V23, P312, DOI 10.1086/209486; Rowatt WC, 2003, J SCI STUD RELIG, V42, P455, DOI 10.1111/1468-5906.00194; Saroglou V, 2002, PERS INDIV DIFFER, V32, P15, DOI 10.1016/S0191-8869(00)00233-6; Schmitt DP, 2008, CROSS-CULT RES, V42, P220, DOI 10.1177/1069397108317485; Schmitt DP, 2009, J RES PERS, V43, P830, DOI 10.1016/j.jrp.2009.05.008; Schroeder KB, 2014, PEERJ, V2, DOI 10.7717/peerj.450; Sheldon KM, 2008, MOTIV EMOTION, V32, P37, DOI 10.1007/s11031-008-9081-5; Sih A, 2012, PHILOS T R SOC B, V367, P2762, DOI 10.1098/rstb.2012.0216; Silva AS, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1435; Simpson JA, 2011, CURR DIR PSYCHOL SCI, V20, P355, DOI 10.1177/0963721411418468; Solt F, 2011, SOC SCI QUART, V92, P447, DOI 10.1111/j.1540-6237.2011.00777.x; Stark R, 2003, REV RELIG RES, V45, P5, DOI 10.2307/3512496; Stearns S, 1992, EVOLUTION LIFE HIST; Trivers R., 2011, FOLLY FOOLS LOGIC DE; TRIVERS RL, 1971, Q REV BIOL, V46, P35, DOI 10.1086/406755; Twenge JM, 2013, PERS SOC PSYCHOL B, V39, P883, DOI 10.1177/0146167213484586; Van Gulik RH, 2003, SEXUAL LIFE ANCIENT; Vauchez A., 1993, SPIRITUALITY MEDIEVA; Vauchez A, 2005, SAINTHOOD LATER MIDD; Veyne P, 2010, OUR WORLD BECAME CHR, P312; Veyne P., 1992, HIST PRIVATE LIFE PA; Weber Max, 1998, PROTESTANT ETHIC SPI; Weeden J, 2008, EVOL HUM BEHAV, V29, P327, DOI 10.1016/j.evolhumbehav.2008.03.004; Weeden J, 2013, EVOL HUM BEHAV, V34, P440, DOI 10.1016/j.evolhumbehav.2013.08.006; Wilkinson R, 2008, SPIRIT LEVEL; Williams GC, 2000, J APPL SOC PSYCHOL, V30, P1756, DOI 10.1111/j.1559-1816.2000.tb02466.x; Wilson DS, 2009, EVOL HUM BEHAV, V30, P190, DOI 10.1016/j.evolhumbehav.2008.12.002; Wink P, 2007, J PERS, V75, P1051, DOI 10.1111/j.1467-6494.2007.00466.x; Wright R., 2009, THE EVOLUTION OF GOD; Wu MS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080668 135 9 9 1 36 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 7 2015 282 1818 20151593 10.1098/rspb.2015.1593 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology CW2VC WOS:000364850200008 26511055 Green Published, Bronze 2019-02-21 J Okamoto, KW Okamoto, Kenichi W. The dynamics of strangling among forest trees JOURNAL OF THEORETICAL BIOLOGY English Article Ficus; Plant life history strategies; Strangling; Evolutionarily stable strategies (ESS); Hemiepiphytism ECOLOGICAL CHARACTER DISPLACEMENT; ECO-EVOLUTIONARY FEEDBACKS; HEMI-EPIPHYTIC FIGS; BORNEAN RAIN-FOREST; ADAPTIVE DYNAMICS; FLORISTIC COMPOSITION; POPULATION-DYNAMICS; BARRO COLORADO; FICUS; COMMUNITIES Strangler trees germinate and grow on other trees, eventually enveloping and potentially even girdling their hosts. This allows them to mitigate fitness costs otherwise incurred by germinating and competing with other trees on the forest floor, as well as minimize risks associated with host tree-fall. If stranglers can themselves host other strangler trees, they may not even seem to need non-stranglers to persist. Yet despite their high fitness potential, strangler trees neither dominate the communities in which they occur nor is the strategy particularly common outside of figs (genus Ficus). Here we analyze how dynamic interactions between strangling and non-strangling trees can shape the adaptive landscape for strangling mutants and mutant trees that have lost the ability to strangle. We find a threshold which strangler germination rates must exceed for selection to favor the evolution of strangling, regardless of how effectively hemiepiphytic stranglers may subsequently replace their hosts. This condition describes the magnitude of the phenotypic displacement in the ability to germinate on other trees necessary for invasion by a mutant tree that could potentially strangle its host following establishment as an epiphyte. We show how the relative abilities of strangling and non-strangling trees to occupy empty sites can govern whether strangling is an evolutionarily stable strategy, and obtain the conditions for strangler coexistence with non-stranglers. We then elucidate when the evolution of strangling can disrupt stable coexistence between commensal epiphytic ancestors and their non-strangling host trees. This allows us to highlight parallels between the invasion fitness of strangler trees arising from commensalist ancestors, and cases where strangling can arise in concert with the evolution of hemiepiphytism among free-standing ancestors. Finally, we discuss how our results can inform the evolutionary ecology of antagonistic interactions more generally. (C) 2015 Elsevier Ltd. All rights reserved. Yale Univ, Yale Inst Biospher Studies, New Haven, CT 06511 USA Okamoto, KW (reprint author), Yale Univ, Yale Inst Biospher Studies, New Haven, CT 06511 USA. kenich.okamoto@yale.edu Abrams PA, 1999, AM NAT, V153, P83, DOI 10.1086/303154; Abrams PA, 2001, ECOL LETT, V4, P166, DOI 10.1046/j.1461-0248.2001.00199.x; ABRAMS PA, 1990, OIKOS, V57, P147, DOI 10.2307/3565752; Alizon S, 2013, ECOL LETT, V16, P556, DOI 10.1111/ele.12076; ANDERSON RM, 1979, NATURE, V280, P361, DOI 10.1038/280361a0; ANDERSON RM, 1981, PHILOS T R SOC B, V291, P451, DOI 10.1098/rstb.1981.0005; Athreya VR, 1999, J TROP ECOL, V15, P589, DOI 10.1017/S0266467499001030; Benzing D.H., 1990, VASCULAR EPIPHYTES G; BLOSSEY B, 1995, J ECOL, V83, P887, DOI 10.2307/2261425; Bolker BM, 1999, AM NAT, V153, P575, DOI 10.1086/303199; Brooker RW, 2008, J ECOL, V96, P18, DOI 10.1111/j.1365-2745.2007.01295.x; Comer E.J.H, 1952, WAYSIDE TREES MALAYA; Condit R, 1999, PHILOS T R SOC B, V354, P1739, DOI 10.1098/rstb.1999.0517; Condit R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049826; Cook James M., 2001, Trends in Ecology and Evolution, V16, P11, DOI 10.1016/S0169-5347(00)02038-3; DANIELS JD, 1991, J ECOL, V79, P129, DOI 10.2307/2260788; Darwin C, 1859, ORIGIN SPECIES; Dayan T, 2005, ECOL LETT, V8, P875, DOI 10.1111/j.1461-0248.2005.00791.x; DIECKMANN U, 1995, J THEOR BIOL, V176, P91, DOI 10.1006/jtbi.1995.0179; Dieckmann U, 1996, J MATH BIOL, V34, P579, DOI 10.1007/BF02409751; Dieckmann U, 1997, TRENDS ECOL EVOL, V12, P128, DOI 10.1016/S0169-5347(97)01004-5; Dobzhansky T, 1954, SCI AM, V190, P78; Ebert D, 2003, TRENDS MICROBIOL, V11, P15, DOI 10.1016/S0966-842X(02)00003-3; Ewald P.W., 2005, ADAPTIVE DYNAMICS IN, P10; Feng YL, 2009, P NATL ACAD SCI USA, V106, P1853, DOI 10.1073/pnas.0808434106; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; Gause G.F., 1934, STRUGGLE EXISTENCE; GOLDBERG DE, 1992, AM NAT, V139, P771, DOI 10.1086/285357; GRACE JB, 1990, PERSPECTIVES PLANT C; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; GUY P R, 1977, Kirkia, V10, P559; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Hao GY, 2013, PHYSIOL PLANTARUM, V148, P74, DOI 10.1111/j.1399-3054.2012.01694.x; Harrison RD, 2003, BIOL J LINN SOC, V78, P439, DOI 10.1046/j.0024-4066.2002.00205.x; Harrison RD, 2006, J TROP ECOL, V22, P477, DOI 10.1017/S0266467406003294; KOCHUMMEN K M, 1990, Journal of Tropical Forest Science, V3, P1; Kraft NJB, 2010, ECOL MONOGR, V80, P401, DOI 10.1890/09-1672.1; LAMAN TG, 1995, ECOLOGY, V76, P2617, DOI 10.2307/2265832; Lankau RA, 2011, ANNU REV ECOL EVOL S, V42, P335, DOI 10.1146/annurev-ecolsys-102710-145100; Lawton R.O, 1986, BRENESIA, V25, P273; LENSKI RE, 1994, J THEOR BIOL, V169, P253, DOI 10.1006/jtbi.1994.1146; NADKARNI NM, 1995, J TROP ECOL, V11, P481, DOI 10.1017/S0266467400009020; Patel A, 1996, J BIOGEOGR, V23, P409, DOI 10.1111/j.1365-2699.1996.tb00002.x; POLIS GA, 1989, ANNU REV ECOL SYST, V20, P297, DOI 10.1146/annurev.es.20.110189.001501; Poorter L, 1999, FUNCT ECOL, V13, P396, DOI 10.1046/j.1365-2435.1999.00332.x; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; Putz EF, 1989, AM J BOT, V76, P781; PUTZ F E, 1986, Selbyana, V9, P61; Ramirez W, 1977, BRENESIA, V12-13, P11; Schluter D, 2000, AM NAT, V156, pS4, DOI 10.1086/303412; Strauss SY, 2014, OIKOS, V123, P257, DOI 10.1111/j.1600-0706.2013.01093.x; Stuart YE, 2013, TRENDS ECOL EVOL, V28, P402, DOI 10.1016/j.tree.2013.02.014; Swagel EN, 1997, AM J BOT, V84, P716, DOI 10.2307/2445908; Taper M.L., 1992, Oxford Surveys in Evolutionary Biology, V8, P63; Theilade I, 2011, NORD J BOT, V29, P71, DOI 10.1111/j.1756-1051.2010.01003.x; THOMSON JD, 1991, SCIENCE, V254, P1214, DOI 10.1126/science.254.5035.1214; TODZIA C, 1986, BIOTROPICA, V18, P22, DOI 10.2307/2388357; Vasseur DA, 2011, AM NAT, V178, pE96, DOI 10.1086/662161; Wright S, 1931, GENETICS, V16, P0097; Wright SJ, 2002, OECOLOGIA, V130, P1, DOI 10.1007/s004420100809; ZOBEL M, 1992, OIKOS, V65, P314, DOI 10.2307/3545024; Zotz G, 2013, ANN BOT-LONDON, V111, P1015, DOI 10.1093/aob/mct085 62 0 0 5 49 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 1095-8541 J THEOR BIOL J. Theor. Biol. NOV 7 2015 384 95 104 10.1016/j.jtbi.2015.07.014 10 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology CT2DY WOS:000362613400010 26231418 2019-02-21 J Sirot, C; Darnaude, AM; Guilhaumon, F; Ramos-Miranda, J; Flores-Hernandez, D; Panfili, J Sirot, Charlotte; Darnaude, Audrey M.; Guilhaumon, Francois; Ramos-Miranda, Julia; Flores-Hernandez, Domingo; Panfili, Jacques Linking temporal changes in the demographic structure and individual growth to the decline in the population of a tropical fish ESTUARINE COASTAL AND SHELF SCIENCE English Article American Silver Perch; tropical lagoon; somatic growth; size distribution; model comparison; nursery OREOCHROMIS-NILOTICUS L.; LIFE-HISTORY STRATEGIES; BAIRDIELLA-CHRYSOURA; TERMINOS LAGOON; SCIAENID FISHES; SILVER PERCH; RECRUITMENT; OTOLITHS; HABITAT; AGE The exceptional biodiversity and productivity of tropical coastal lagoons can only be preserved by identifying the causes for the decline in the populations living in these vulnerable ecosystems. The Terminos lagoon in Mexico provided an opportunity for studying this issue as some of its fish populations, in particular the Silver Perch (Bairdiella chrysoura), have declined significantly since the 1980s. Fish sampling campaigns carried out over the whole lagoon area in 1979-81 and again in 2006-2011 revealed the mechanisms which may have been responsible for this decline. Based on biometrical data for 295 juveniles and adults from the two periods and on somatic growth derived from 173 otoliths, a study of the temporal changes in the demographic structure and life history traits (individual growth and body condition) made it possible to distinguish the causes of the decline in the B. chrysoura population. Growth models for the lagoon in 1980-1981 and 2006-2011 showed no significant change in the growth parameters of the population over the last 30 years with a logistic model giving an accurate estimate (R-2 = 0.66) of the size-at-age for both periods. The decline in the B. chrysoura population could not be explained by an overall decrease in individual size and condition in the lagoon, the average standard length (SL) and Fulton index (H) having increased slightly since 1980-1981 (4.6 mm and 0.02 for juveniles and 5.42 mm and 0.07 for adults). However, the size structure of the population in the lagoon has changed, with a significant shift in the size distribution of juveniles with a marked reduction in the proportion of juveniles <= 60 mm in the captures (90.9% fewer than in 1980-1981). As the otolith growth rate of fish during the first 4 months also decreased significantly between the two sampling periods (-15%), it is suggested that the main reason for the decline in the abundance and biomass of B. chrysoura within this system may be that its habitats are less suitable for fish growth and survival in the initial months after settlement. Environmental conditions in the lagoon appear to allow compensatory growth of the individuals that survive this early demographic bottleneck. The key for the conservation of B. chrysoura probably lies in the identification and restoration of the habitats required by its larvae and juveniles. (C) 2015 Elsevier Ltd. All rights reserved. [Sirot, Charlotte; Darnaude, Audrey M.; Guilhaumon, Francois; Panfili, Jacques] Univ Montpellier, UMR MARBEC 9190, IRD Ifremer CNRS UM2, CC 93,Pl Eugene Bataillon, F-34095 Montpellier 5, France; [Ramos-Miranda, Julia; Flores-Hernandez, Domingo] Univ Autonoma Campeche, Inst Ecol Pesquerias & Oceanog Golfo Mexico EPOME, Campeche 24029, Mexico Sirot, C (reprint author), Univ Montpellier, UMR MARBEC 9190, IRD Ifremer CNRS UM2, CC 93,Pl Eugene Bataillon, F-34095 Montpellier 5, France. charlotte.sirot@free.fr PANFILI, JACQUES/J-9397-2016 PANFILI, JACQUES/0000-0003-0504-2384; Guilhaumon, Francois/0000-0003-4707-8932 French ANR; Mexican CONACYT through the "BIODIVNEK" project [C004, 2009-01, 111465] This study was funded by the French ANR and the Mexican CONACYT through the "BIODIVNEK" project (C004, 2009-01, 111465, coordinators: Pr. David Mouillot and Dr. Julia RamosMiranda). We are grateful to all the members of the EPOMEX laboratory and the local fishermen involved in sampling Terminos since 1980 and collecting the valuable data set used in this work. We should also like to thank Fanny Witkowski for providing help in otolith preparation. Admassu D, 2000, HYDROBIOLOGIA, V418, P15, DOI 10.1023/A:1003883419105; Amara R, 2007, MAR ECOL PROG SER, V351, P201, DOI 10.3354/meps07154; Ashfield LA, 1998, ENVIRON TOXICOL CHEM, V17, P679; Ayala-Perez L. A., 2006, Thalassas, V22, P9; Bach L, 2005, MANAGING FRESHWATER; BLAKE C, 1978, J FISH BIOL, V13, P287, DOI 10.1111/j.1095-8649.1978.tb03436.x; Blewett David A., 2006, Gulf and Caribbean Research, V18, P1; Botello A. V., 1988, ECOLOGIA ECOSISTEMAS, P415; Burnham K. P, 2002, MODEL SELECTION MULT; Bwanika GN, 2007, HYDROBIOLOGIA, V589, P287, DOI 10.1007/s10750-007-0746-y; CAMPANA SE, 1990, CAN J FISH AQUAT SCI, V47, P2219, DOI 10.1139/f90-246; CAMPANA SE, 1985, CAN J FISH AQUAT SCI, V42, P1014, DOI 10.1139/f85-127; Carvalho FP, 2009, CHEMOSPHERE, V74, P988, DOI 10.1016/j.chemosphere.2008.09.092; CHAO LN, 1977, FISH B-NOAA, V75, P657; Chavance R, 1984, ECOLOGIA BIOL DINAMI; CHEN Y, 1992, CAN J FISH AQUAT SCI, V49, P1228, DOI 10.1139/f92-138; Chessman BC, 2013, BIOL CONSERV, V160, P40, DOI 10.1016/j.biocon.2012.12.032; Costanza R, 1997, NATURE, V387, P253, DOI 10.1038/387253a0; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; Diouf K, 2009, ESTUAR COAST SHELF S, V83, P115, DOI 10.1016/j.ecss.2009.02.031; Fonseca VF, 2007, REV FISH BIOL FISHER, V17, P545, DOI 10.1007/s11160-007-9054-x; GIBSON RN, 1994, NETH J SEA RES, V32, P191, DOI 10.1016/0077-7579(94)90040-X; Grammer Gretchen L., 2009, Gulf of Mexico Science, V27, P62; HALES LS, 1991, ESTUARIES, V14, P199, DOI 10.2307/1351694; Halpern BS, 2008, SCIENCE, V319, P948, DOI 10.1126/science.1149345; Heupel MR, 2002, MAR FRESHWATER RES, V53, P543, DOI 10.1071/MF01132; Houde E.D., 1987, American Fisheries Society Symposium, P17; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Hutchings JA, 2005, PHILOS T ROY SOC B, V360, P315, DOI 10.1098/rstb.2004.1586; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; Joyeux JC, 1998, ADV MAR BIOL, V34, P73, DOI 10.1016/S0065-2881(08)60211-4; KVALSETH TO, 1985, AM STAT, V39, P279, DOI 10.2307/2683704; Layman CA, 2011, ECOL APPL, V21, P343, DOI 10.1890/10-1339.1; Lecomte F., 1989, Aquatic Living Resources, V2, P63, DOI 10.1051/alr:1989007; Lotze HK, 2009, TRENDS ECOL EVOL, V24, P254, DOI 10.1016/j.tree.2008.12.004; Lotze HK, 2006, SCIENCE, V312, P1806, DOI 10.1126/science.1128035; Luczkovich Joseph J., 2000, Bioacoustics, V10, P323; Mercier L, 2011, ESTUAR COAST SHELF S, V92, P534, DOI 10.1016/j.ecss.2011.02.001; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; Miranda JR, 2005, MAR ECOL PROG SER, V304, P1; R Development Core Team, 2014, R LANG ENV STAT COMP; Ramos-Miranda J, 2005, J FISH BIOL, V66, P513, DOI 10.1111/j.1095-8649.2005.00619.x; Ricker W. E, 1975, FISHERIES RES BOARD, V191; Rochette S, 2010, J SEA RES, V64, P34, DOI 10.1016/j.seares.2009.08.003; Rooker JR, 1998, ESTUARIES, V21, P318, DOI 10.2307/1352478; SHEPHERD JG, 1980, J CONSEIL, V39, P160; Sirot C, 2015, ECOL INDIC, V48, P147, DOI 10.1016/j.ecolind.2014.07.038; Smith AC, 2011, AUSTRAL ECOL, V36, P830, DOI 10.1111/j.1442-9993.2010.02223.x; Vasconcelos RP, 2011, ECOL INDIC, V11, P1123, DOI 10.1016/j.ecolind.2010.12.012; Villeger S., 2008, DYNAMIQUE DIVERSITE; Villeger S, 2010, ECOL APPL, V20, P1512, DOI 10.1890/09-1310.1; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Waggy G. L., 2006, 57 GULF CARIBB FISH; Waggy GL, 2007, SOUTHEAST NAT, V6, P743, DOI 10.1656/1528-7092(2007)6[743:FHAMMO]2.0.CO;2; Willoughby N. G., 1974, ECOLOGY GENUS SYNODO; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Winker H, 2010, J FISH BIOL, V77, P2210, DOI 10.1111/j.1095-8649.2010.02797.x; Yailez-Arancibia A., 1982, OCEANOL ACTA, VV; Zar J. H., 1999, BIOSTATISTICAL ANAL 59 1 1 0 18 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0272-7714 1096-0015 ESTUAR COAST SHELF S Estuar. Coast. Shelf Sci. NOV 5 2015 165 166 175 10.1016/j.ecss.2015.05.012 10 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography CZ5CH WOS:000367119500019 2019-02-21 J Peckarsky, BL; McIntosh, AR; Alvarez, M; Moslemi, JM Peckarsky, Barbara L.; McIntosh, Angus R.; Alvarez, Maruxa; Moslemi, Jennifer M. Disturbance legacies and nutrient limitation influence interactions between grazers and algae in high elevation streams ECOSPHERE English Article benthic algae; Colorado; USA; disturbance legacies; grazer-algal interactions; in-stream channel experiments; invertebrate drift; mayfly and caddisfly grazers; mesocosms; nutrient limitation; predator effects; streams; trophic cascades RIVER FOOD WEBS; LIFE-HISTORY EVOLUTION; BOTTOM-UP; TOP-DOWN; TROPHIC CASCADES; SPATIAL HETEROGENEITY; SPECIES INTERACTIONS; CURRENT VELOCITY; MOUNTAIN STREAM; BED DISTURBANCE Debate about control of interaction strength among species is fueled by variation in environmental contexts affecting food webs. We used extensive surveys and two field experiments to test the individual and interactive influences of variation in the assemblages and associated traits of grazers as shaped by the legacy of disturbance, nutrient limitation and the presence of top predators on the accrual of basal resources. We quantified hydrologic variation and streambed movement to describe the legacy of disturbance and sampled biota of 20 streams over five years in a high-elevation catchment in Colorado, USA. Grazer assemblages switched from caddisfly-dominated to mayfly-dominated as disturbance increased. We manipulated the composition of grazer assemblages and the availability of nutrients (N and P) within flow-through mesocosms assembled adjacent to 10 streams, and also deployed larger in-stream channels manipulating the presence of top predators (brook trout) in five streams varying in disturbance regimes. In both experiments we compared the rate of accrual of benthic algae and the strength of grazer-algal interactions among treatments. We observed no indirect effects of top predators on grazer mobility, grazer consumption of algae, or accrual of algal biomass (no trophic cascades). However, in both experiments accrual rates of algae yielded a unimodal pattern and grazer impacts on algae decreased with increasing disturbance, but only at ambient (limiting) nutrient conditions. When nutrients were amended in the mesocosm experiment, algal accrual was uniformly high and grazer impacts on algae were consistently low. Reduced algae accrual at high disturbance levels may be explained by direct effects of environmental harshness on algae, and at low disturbance by indirect effects on grazer traits (behaviors) rather than on grazer density. In more benign streams per capita and per unit biomass grazer impacts on algae were high and drift dispersal was low, both behaviors that reduced accrual of algae. We conclude that nutrient limitation and indirect effects of disturbance on accrual of algae mediated by grazer traits can be stronger than indirect effects of predators on algae, providing a new contribution to the debate about the influence of environmental context on the strength of food web interactions. [Peckarsky, Barbara L.] Univ Wisconsin, Dept Zool, Madison, WI 53706 USA; [Peckarsky, Barbara L.; Alvarez, Maruxa] Rocky Mt Biol Labs, Crested Butte, CO 81224 USA; [McIntosh, Angus R.] Univ Canterbury, Sch Biol Sci, Christchurch 8140, New Zealand; [Alvarez, Maruxa] Univ Vigo, Dept Ecol & Biol Anim, Vigo 36200, Spain; [Moslemi, Jennifer M.] CaravanLab, Seattle, WA 98105 USA Peckarsky, BL (reprint author), Univ Wisconsin, Dept Zool, Madison, WI 53706 USA. peckarsky@wisc.edu McIntosh, Angus/B-2992-2011 McIntosh, Angus/0000-0003-2696-8813 National Science Foundation [DEB 0516035]; Doctoral Dissertation Improvement Grant [DEB-0710031]; University of Canterbury; Royal Society of New Zealand Marsden Fund [UoC0801]; University of Vigo; Spanish Ministry of Science and Innovation through the National Program for Fundamental Research [CGL 2009-07904] We thank Marge Penton, Wendy Brown, Steve Horn, Sandye and Oakley Adams, Marita Davison, Helen Warburton, and Maria Alp for help in the field and lab, and Rick Lindroth for use of his leaf area meter. Steve Horn constructed and engineered the mesocosm installation and the in-stream fish channels, with help from Bryan Horn. Discussions with John Orrock, Pete McIntyre, Evan Childress, Mary Power, Claudio Gratton, Tony Ives, Emily Stanley, Steve Carpenter, LeRoy Poff, and Rex Lowe and comments by Amy Rosemond and two anonymous reviewers improved this paper. Funding was received from the National Science Foundation (DEB 0516035) to B. L. Peckarsky and A. R. McIntosh, Doctoral Dissertation Improvement Grant (DEB-0710031) to J. M. Moslemi, the University of Canterbury and the Royal Society of New Zealand Marsden Fund (UoC0801) to A. R. McIntosh, and the University of Vigo and the Spanish Ministry of Science and Innovation through the National Program for Fundamental Research (CGL 2009-07904) to M. Alvarez. Abrams PA, 2000, ECOLOGY, V81, P2902, DOI 10.1890/0012-9658(2000)081[2902:TIOHSO]2.0.CO;2; ABRAMS PA, 1995, AM NAT, V146, P112, DOI 10.1086/285789; ALLAN JD, 1981, CAN J FISH AQUAT SCI, V38, P184, DOI 10.1139/f81-024; Arar E. J, 1997, IN VITRO DETERMINATI; Berlow EL, 1999, ECOLOGY, V80, P2206, DOI 10.1890/0012-9658(1999)080[2206:QVITSO]2.0.CO;2; Biggs Barry J. F., 1996, P31, DOI 10.1016/B978-012668450-6/50031-X; Biggs BJF, 1999, OIKOS, V85, P95, DOI 10.2307/3546795; Biggs BJF, 2000, CAN J FISH AQUAT SCI, V57, P1380, DOI 10.1139/cjfas-57-7-1380; Bolker B, 2003, ECOLOGY, V84, P1101, DOI 10.1890/0012-9658(2003)084[1101:CTAESO]2.0.CO;2; BORCHARDT MA, 1996, ALGAL ECOLOGY FRESHW, P184; BOULTON AJ, 1988, ARCH HYDROBIOL, V113, P551; BOWLBY JN, 1986, ECOLOGY, V67, P1670, DOI 10.2307/1939099; DEATH RG, 1995, ECOLOGY, V76, P1446, DOI 10.2307/1938147; DODSON SI, 1972, ECOLOGY, V53, P1011, DOI 10.2307/1935414; Effenberger M, 2011, J ANIM ECOL, V80, P603, DOI 10.1111/j.1365-2656.2011.01807.x; Englund G, 1997, ECOLOGY, V78, P2316; Feminella JW, 1995, J N AM BENTHOL SOC, V14, P465, DOI 10.2307/1467536; Flecker AS, 2002, ECOLOGY, V83, P1831, DOI 10.1890/0012-9658(2002)083[1831:IBHFAL]2.0.CO;2; Forrester GE, 1999, LIMNOL OCEANOGR, V44, P1187, DOI 10.4319/lo.1999.44.5.1187; Hintz WD, 2013, AQUAT ECOL, V47, P235, DOI 10.1007/s10452-013-9438-z; HUNTER MD, 1992, ECOLOGY, V73, P724; Ivarez M., 2005, OECOLOGIA, V142, P576; Ivarez M., 2013, FRESHWATER BIOL, V58, P1982; Kimbro DL, 2014, ECOL LETT, V17, P845, DOI 10.1111/ele.12293; Letourneau DK, 2004, ECOLOGY, V85, P2144, DOI 10.1890/03-0525; lvarez M., 2014, OIKOS, V123, P120; Lytle DA, 2002, ECOLOGY, V83, P370; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; Matthaei CD, 2000, OECOLOGIA, V125, P119, DOI 10.1007/PL00008883; McIntosh AR, 2002, FRESHWATER BIOL, V47, P1497, DOI 10.1046/j.1365-2427.2002.00889.x; McIntosh AR, 2004, ECOLOGY, V85, P2279, DOI 10.1890/03-0196; McIntosh AR, 1996, OECOLOGIA, V108, P174, DOI 10.1007/BF00333229; McPeek MA, 1998, ECOLOGY, V79, P867, DOI 10.2307/176586; Moslemi J., 2010, THESIS; Murphy J. A. M. E. S., 1962, ANAL CHIM ACTA, V27, P31, DOI DOI 10.1016/S0003-2670(00)88444-5; Nystrom P, 2003, OECOLOGIA, V136, P596, DOI 10.1007/s00442-003-1297-1; Nystrom P, 2003, OECOLOGIA, V136, P279, DOI 10.1007/s00442-003-1250-3; OKSANEN L, 1981, AM NAT, V118, P240, DOI 10.1086/283817; Paine RT, 2002, SCIENCE, V296, P736, DOI 10.1126/science.1069811; Peckarsky BL, 2008, OECOLOGIA, V156, P431, DOI 10.1007/s00442-008-1004-3; Peckarsky BL, 2014, FRESHW SCI, V33, P716, DOI 10.1086/677215; Peckarsky BL, 2013, ECOSPHERE, V4, DOI 10.1890/ES13.00084.1; Peckarsky BL, 1998, OECOLOGIA, V113, P565, DOI 10.1007/s004420050410; Peckarsky BL, 2001, ECOLOGY, V82, P740, DOI 10.1890/0012-9658(2001)082[0740:VIMSAM]2.0.CO;2; Persson Lennart, 1996, P396; Peterson Christopher G., 1996, P375, DOI 10.1016/B978-012668450-6/50042-4; Pfankuch D. J., 1975, STREAM REACH INVENTO; Poff NL, 1996, FRESHWATER BIOL, V36, P71, DOI 10.1046/j.1365-2427.1996.00073.x; Power ME, 2008, ECOL MONOGR, V78, P263, DOI 10.1890/06-0902.1; POWER ME, 1992, ECOLOGY, V73, P733, DOI 10.2307/1940153; POWER ME, 1990, SCIENCE, V250, P811, DOI 10.1126/science.250.4982.811; Power ME, 2002, ECOL RES, V17, P451, DOI 10.1046/j.1440-1703.2002.00503.x; POWER ME, 1992, ARCH HYDROBIOL, V125, P385; POWER ME, 1992, ECOLOGY, V73, P1675, DOI 10.2307/1940019; Rader RB, 1997, CAN J FISH AQUAT SCI, V54, P1211, DOI 10.1139/cjfas-54-6-1211; Riley RH, 2004, FOOD WEB AT THE LANDSCAPE LEVEL, P241; ROBINSON C T, 1986, Journal of the North American Benthological Society, V5, P237, DOI 10.2307/1467711; Roll SK, 2005, OIKOS, V108, P386; ROSEMOND AD, 1993, ECOLOGY, V74, P1264, DOI 10.2307/1940495; Schmitz OJ, 2004, ECOL LETT, V7, P153, DOI 10.1111/j.1461-0248.2003.00560.x; Segura C, 2011, ECOHYDROLOGY, V4, P411, DOI 10.1002/eco.142; Silliman BR, 2013, ANNU REV ECOL EVOL S, V44, P503, DOI 10.1146/annurev-ecolsys-110512-135753; Taylor BW, 2007, J N AM BENTHOL SOC, V26, P167, DOI 10.1899/0887-3593(2007)26[167:ITFAMM]2.0.CO;2; Taylor BW, 2002, LIMNOL OCEANOGR, V47, P893, DOI 10.4319/lo.2002.47.3.0893; Terborgh J., 2010, TROPHIC CASCADES PRE; Tessier AJ, 2002, ECOLOGY, V83, P1263, DOI 10.1890/0012-9658(2002)083[1263:CTCAAG]2.0.CO;2; Tilman David, 1993, P13; Townsend CR, 1997, FRESHWATER BIOL, V37, P367, DOI 10.1046/j.1365-2427.1997.00166.x; TOWNSEND CR, 1989, J N AM BENTHOL SOC, V8, P36, DOI 10.2307/1467400; Trussell GC, 2006, ECOLOGY, V87, P2979, DOI 10.1890/0012-9658(2006)87[2979:TFOBER]2.0.CO;2; Weissburg M., AM NATURALIST, V184, P141; Wellnitz T, 2006, FRESHWATER BIOL, V51, P2114, DOI 10.1111/j.1365-2427.2006.01644.x; Wilcox AC, 2008, ECOHYDROLOGY, V1, P176, DOI 10.1002/eco.16; Woodward G, 2002, FRESHWATER BIOL, V47, P777, DOI 10.1046/j.1365-2427.2002.00908.x; Woodward G, 2008, OIKOS, V117, P683, DOI 10.1111/j.2008.0030-1299.16500.x; Wootton JT, 1996, SCIENCE, V273, P1558, DOI 10.1126/science.273.5281.1558 76 4 4 5 43 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 2150-8925 ECOSPHERE Ecosphere NOV 2015 6 11 241 10.1890/ES15-00236.1 15 Ecology Environmental Sciences & Ecology CZ7WH WOS:000367310600032 DOAJ Gold 2019-02-21 J Gergs, A; Kulkarni, D; Preuss, TG Gergs, Andre; Kulkarni, Devdutt; Preuss, Thomas G. Body size-dependent toxicokinetics and toxicodynamics could explain intra- and interspecies variability in sensitivity ENVIRONMENTAL POLLUTION English Article General unified threshold model of survival (GUTS); Toxicokinetic-toxicodynamic (TK-TD) model; Body size; Species sensitivity ECOLOGICAL RISK-ASSESSMENT; LIFE-HISTORY STRATEGIES; DAPHNIA-MAGNA; TRIPHENYLTIN HYDROXIDE; SPECIES SENSITIVITY; BIOLOGICAL TRAITS; ACUTE TOXICITY; FRESH-WATER; BIOCONCENTRATION; SUSCEPTIBILITY Ecological risk assessment of chemicals aims at quantifying the likelihood of adverse effects posed to non-target populations and the communities they constitute, often based on lethal concentration estimates for standard test species. There may, however, be intra- and interspecific differences in responses to chemical exposure. Here with the help of a toxicokinetic-toxicodynamic model, we explored whether differential body sizes might explain the observed variability in sensitivity between species and between life-stages of each individual species, for three model organisms, Daphnia magna, Chaoborus crystallinus and Mesocyclops leuckarti. While body size-dependent toxicokinetics could be used to predict intra-species variation in sensitivity, our results also suggest that changes in both toxicokinetic and toxicodynamic parameters might be needed to describe differential species sensitivity. Accounting for biological traits, like body size, in mechanistic effect models will allow more accurate predictions of chemical effects in size structured populations, ultimately providing mechanistic explanations for species sensitivity distributions. (C) 2015 Elsevier Ltd. All rights reserved. [Gergs, Andre; Kulkarni, Devdutt; Preuss, Thomas G.] Rhein Westfal TH Aachen, Inst Environm Res, D-52074 Aachen, Germany; [Kulkarni, Devdutt] Univ Namur, Lab Environm Ecosyst Ecol, Res Unit Environm & Evolutionary Biol URBE, B-5000 Namur, Belgium; [Preuss, Thomas G.] Bayer CropSci, D-40789 Monheim, Germany Gergs, A (reprint author), Rhein Westfal TH Aachen, Inst Environm Res, Worringer Weg 1, D-52074 Aachen, Germany. andre.gergs@bio5.rwth-aachen.de European Union [PITN-GA-2009-238148] This research has been financially supported by the European Union under the 7th Framework Programme (project acronym CREAM, contract number PITN-GA-2009-238148). We would like to thank two anonymous reviewers for their valuable comments and suggestions. Agatz A, 2015, ECOTOXICOLOGY, V24, P1385, DOI 10.1007/s10646-015-1490-0; Al-Ghais SM, 1999, B ENVIRON CONTAM TOX, V62, P207, DOI 10.1007/s001289900861; Antes F.G., 2013, ARCH ENV CONTAM TOXI, V65, P4733; Arnold CG, 1997, ENVIRON SCI TECHNOL, V31, P2596, DOI 10.1021/es970009+; Ashauer R, 2010, J ENVIRON MONITOR, V12, P2056, DOI 10.1039/c0em00234h; Baas J, 2015, ECOTOXICOLOGY, V24, P657, DOI 10.1007/s10646-014-1413-5; Baird DJ, 2007, ECOTOX ENVIRON SAFE, V67, P296, DOI 10.1016/j.ecoenv.2006.07.001; Bezerra-Neto J. F., 2002, ACTA LIMNOL BRAS, V14, P61; BRUNER KA, 1994, J GREAT LAKES RES, V20, P725, DOI 10.1016/S0380-1330(94)71190-4; CHANDRA S, 1989, CHEM-BIOL INTERACT, V71, P21, DOI 10.1016/0009-2797(89)90088-4; Chapman PM, 1998, ENVIRON TOXICOL CHEM, V17, P99, DOI 10.1897/1551-5028(1998)017<0099:ACEOSU>2.3.CO;2; Dahms U.H., 1993, INT REV GESAMTEN HYD, V78, P589; Dantzig G. B, 1963, LINEAR PROGRAMMING E; EFSA PPR Panel, 2013, EFSA J, V11, P268, DOI DOI 10.2903/J.EFSA.2013.3295; ELENDT BP, 1990, WATER RES, V24, P1157, DOI 10.1016/0043-1354(90)90180-E; Forbes VE, 2011, HUM ECOL RISK ASSESS, V17, P287, DOI 10.1080/10807039.2011.552391; Forbes VE, 2002, HUM ECOL RISK ASSESS, V8, P473, DOI 10.1080/20028091057033; Gergs A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0091503; Gergs A, 2013, SCI REP-UK, V3, DOI 10.1038/srep02036; Gerritsen A, 1998, ECOTOX ENVIRON SAFE, V39, P227, DOI 10.1006/eesa.1997.1578; Hommen Udo, 2010, Integrated Environmental Assessment and Management, V6, P325, DOI 10.1002/ieam.69; Jager T, 2015, ECOL MODEL, V299, P114, DOI 10.1016/j.ecolmodel.2014.12.011; Jager T, 2013, ENVIRON SCI TECHNOL, V47, P1664, DOI 10.1021/es303870g; Jager T, 2012, ECOL MODEL, V225, P74, DOI 10.1016/j.ecolmodel.2011.11.012; Jager T, 2011, ENVIRON SCI TECHNOL, V45, P2529, DOI 10.1021/es103092a; Jager T, 2009, ECOTOXICOLOGY, V18, P187, DOI 10.1007/s10646-008-0271-4; JARVINEN AW, 1988, ENVIRON POLLUT, V52, P289, DOI 10.1016/0269-7491(88)90131-5; KLINE ER, 1989, ENVIRON POLLUT, V56, P11, DOI 10.1016/0269-7491(89)90117-6; KLUTTGEN B, 1994, WATER RES, V28, P743, DOI 10.1016/0043-1354(94)90157-0; Kooijman SALM, 2008, BIOL REV, V83, P533, DOI 10.1111/j.1469-185X.2008.00053.x; Kooijman SALM, 2013, OIKOS, V122, P348, DOI 10.1111/j.1600-0706.2012.00098.x; Kooijman S. A. L. M, 2010, DYNAMIC ENERGY BUDGE; Kulkarni D, 2013, CHEMOSPHERE, V92, P1145, DOI 10.1016/j.chemosphere.2013.01.076; MEEKER WQ, 1995, AM STAT, V49, P48, DOI 10.2307/2684811; O'Hagan A., 2005, 55605 U SHEFF DEP PR; OECD, 2004, GUID TEST CHEM; Pieters BJ, 2006, ECOTOXICOLOGY, V15, P601, DOI 10.1007/s10646-006-0100-6; Preuss TG, 2008, ENVIRON POLLUT, V156, P1211, DOI 10.1016/j.envpol.2008.03.018; Preuss TG, 2009, ECOL MODEL, V220, P310, DOI 10.1016/j.ecolmodel.2008.09.018; R Core Team, 2013, R LANG ENV STAT COMP; Ritz C, 2005, J STAT SOFTW, V12, P1; Roessink I, 2006, ECOTOXICOLOGY, V15, P267, DOI 10.1007/s10646-006-0058-4; Rubach M.N., 2010, THESIS; Rubach Mascha N., 2011, Integrated Environmental Assessment and Management, V7, P172, DOI 10.1002/ieam.105; Rubach MN, 2010, ENVIRON TOXICOL CHEM, V29, P476, DOI 10.1002/etc.55; Solomon KR, 1996, ENVIRON TOXICOL CHEM, V15, P31, DOI 10.1897/1551-5028(1996)015<0031:ERAOAI>2.3.CO;2; Stark JD, 2004, BIOL CONTROL, V29, P392, DOI 10.1016/j.biocontrol.2003.07.003; Stark JD, 2004, P NATL ACAD SCI USA, V101, P732, DOI 10.1073/pnas.0304903101; Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621; Tarsi K, 2012, NAT ED KNOWL, V3, P3; Yi XianLiang [Yi X. L. A. ], 2014, Ecotoxicology, V23, P1314 51 6 7 5 25 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0269-7491 1873-6424 ENVIRON POLLUT Environ. Pollut. NOV 2015 206 449 455 10.1016/j.envpol.2015.07.045 7 Environmental Sciences Environmental Sciences & Ecology CY2JV WOS:000366235700054 26275729 2019-02-21 J Stephenson, JF; van Oosterhout, C; Cable, J Stephenson, J. F.; van Oosterhout, C.; Cable, J. Pace of life, predators and parasites: predator-induced life-history evolution in Trinidadian guppies predicts decrease in parasite tolerance BIOLOGY LETTERS English Article scaled mass index; pace of life hypothesis; parasite tolerance; enemy ecology; trait-mediated indirect effects POECILIA-RETICULATA; IMMUNE DEFENSE; INFECTION; POPULATIONS A common evolutionary response to predation pressure is increased investment in reproduction, ultimately resulting in a fast life history. Theory and comparative studies suggest that short-lived organisms invest less in defence against parasites than those that are longer lived (the pace of life hypothesis). Combining these tenets of evolutionary theory leads to the specific, untested prediction that within species, populations experiencing higher predation pressure invest less in defence against parasites. The Trinidadian guppy, Poecilia reticulata, presents an excellent opportunity to test this prediction: guppy populations in lower courses of rivers experience higher predation pressure, and as a consequence have evolved faster life histories, than those in upper courses. Data from a large-scale field survey showed that fish infected with Gyrodactylus parasites were of a lower body condition (quantified using the scaled mass index) than uninfected fish, but only in lower course populations. Although the evidence we present is correlational, it suggests that upper course guppies sustain lower fitness costs of infection, i.e. are more tolerant, than lower course guppies. The data are therefore consistent with the pace of life hypothesis of parasite defence allocation, and suggest that life-history traits mediate the indirect effect of predators on the parasites of their prey. [Stephenson, J. F.; Cable, J.] Cardiff Univ, Sch Biosci, Cardiff CF10 3AX, S Glam, Wales; [van Oosterhout, C.] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England Stephenson, JF (reprint author), Swiss Fed Inst Aquat Sci & Technol, EAWAG, CH-8600 Dubendorf, Switzerland. jfrstephenson@gmail.com Cable, Joanne/A-4360-2010 Cable, Joanne/0000-0002-8510-7055; van Oosterhout, Cock/0000-0002-5653-738X; Stephenson, Jessica/0000-0001-8939-5149 Fisheries Society of the British Isles; Natural Environment Research Council, UK [NER/J/S/2002/00706]; ELSA, the Earth and Life Systems Alliance This work was funded by the Fisheries Society of the British Isles (PhD studentship to J.F.S.) the Natural Environment Research Council, UK (advanced fellowship to J.C.; NER/J/S/2002/00706) and ELSA, the Earth and Life Systems Alliance (C.v.O.). Arendt JD, 2014, EVOLUTION, V68, P2343, DOI 10.1111/evo.12445; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Blasco-Costa I, 2013, PARASITOLOGY, V140, P266, DOI 10.1017/S0031182012001527; Croft DP, 2003, OECOLOGIA, V137, P62, DOI 10.1007/s00442-003-1268-6; Dargent F, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2371; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gotanda KM, 2013, OECOLOGIA, V172, P155, DOI 10.1007/s00442-012-2485-7; Johnson PTJ, 2012, P NATL ACAD SCI USA, V109, P9006, DOI 10.1073/pnas.1201790109; Johnson PTJ, 2012, ECOL LETT, V15, P235, DOI 10.1111/j.1461-0248.2011.01730.x; Legendre P., 2014, LMODEL2 MODEL 2 REGR; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Marcogliese DJ, 2011, TRENDS PARASITOL, V27, P123, DOI 10.1016/j.pt.2010.11.002; Martin CH, 2007, BEHAV ECOL SOCIOBIOL, V61, P1897, DOI 10.1007/s00265-007-0430-2; Pap PL, 2015, OECOLOGIA, V177, P147, DOI 10.1007/s00442-014-3108-2; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; R Core Team, 2013, R LANG ENV STAT COMP; Raberg L, 2009, PHILOS T R SOC B, V364, P37, DOI 10.1098/rstb.2008.0184; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rigby MC, 2000, P ROY SOC B-BIOL SCI, V267, P171, DOI 10.1098/rspb.2000.0983; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; SchmidHempel P, 2011, EVOLUTIONARY PARASITOLOGY: THE INTEGRATED STUDY OF INFECTIONS, IMMUNOLOGY, ECOLOGY, AND GENETICS, P1; SCOTT ME, 1984, PARASITOLOGY, V89, P221, DOI 10.1017/S0031182000001256; Sparkman AM, 2009, J ANIM ECOL, V78, P1242, DOI 10.1111/j.1365-2656.2009.01587.x; Stephenson JF, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0541; Stephenson JF, 2015, ECOLOGY, V96, P489, DOI 10.1890/14-0495.1; van Boven M, 2004, AM NAT, V163, P277, DOI 10.1086/381407; van Oosterhout C, 2006, EVOLUTION, V60, P2562, DOI 10.1554/06-286.1 29 6 6 1 30 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. NOV 1 2015 11 11 20150806 10.1098/rsbl.2015.0806 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology CW2VJ WOS:000364850900015 26538541 Green Published, Bronze 2019-02-21 J Dantzer, B; Fletcher, QE Dantzer, Ben; Fletcher, Quinn E. Telomeres shorten more slowly in slow-aging wild animals than in fast-aging ones EXPERIMENTAL GERONTOLOGY English Article Aging; Inter-specific comparative study; Maximum lifespan; Pace-of-life; Senescence; Survival LONG-LIVED BIRDS; LIFE-HISTORY EVOLUTION; OXIDATIVE STRESS; HUMAN LONGEVITY; IMMUNE-SYSTEM; SAMPLE-SIZE; BODY-MASS; CELLULAR SENESCENCE; COMPARATIVE BIOLOGY; TROPICAL BIRDS Research on the physiological causes of senescence aim to identify common physiological mechanisms that explain age-related declines in fitness across taxonomic groups. Telomeres are repetitive nucleotide sequences found on the ends of eukaryotic chromosomes. Past research indicates that telomere attrition is strongly correlated with inter-specific rates of aging, though these studies cannot distinguish whether telomere attrition is a cause or consequence of the aging process. We extend previous research on this topic by incorporating recent studies to test the hypothesis that telomeres shorten more slowly with age in slow-aging animals than in fast-aging ones. We assembled all studies that have quantified cross-sectional (i.e. between-individual) telomere rates of change (TROC) over the lifespans of wild animals. This included 22 estimates reflecting absolute TROC (TROCabs, bp/yr, primarily measured using the terminal restriction fragment length method), and 10 estimates reflecting relative TROC (TROCrel, relative telomere length/yr, measured using qPCR), from five classes (Aves, Mammalia, Bivalvia, Reptilia, and Actinopterygii). In 14 bird species, we correlated between-individual (i.e. cross-sectional) TROCabs estimates with both maximum lifespan and a phylogenetically-corrected principle component axis (pcPC1) that reflected the slow-fast axis of life-history variation. Bird species characterized by faster life-histories and shorter maximum lifespans had faster TROCabs. In nine studies, both between individual and within-individual TROC estimates were available (n = 8 for TROCabs, n = 1 for TROCrel). Within-individual TROC estimates were generally greater than between-individual TROC estimates, which is indicative of selective disappearance of individuals with shorter telomeres. However, the difference between within-and between-individual TROC estimates was only significant in two out of nine studies. The relationship between within-individual TROCabs and maximum lifespan did not differ from the relationship of between individual TROCabs and maximum lifespan. Overall, our results provide additional support for the hypothesis that TROC is correlated with inter-specific rates of aging and complement the intra-specific research that also find relationships between telomere attrition and components of fitness. (C) 2015 Elsevier Inc. All rights reserved. [Dantzer, Ben] Univ Michigan, Dept Psychol, Ann Arbor, MI 48109 USA; [Dantzer, Ben] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA; [Fletcher, Quinn E.] Univ Winnipeg, Dept Biol, Winnipeg, MB R3B 2E9, Canada; [Fletcher, Quinn E.] Univ Winnipeg, Ctr Forest Interdisciplinary Res, Winnipeg, MB R3B 2E9, Canada Dantzer, B (reprint author), Univ Michigan, Dept Psychol, 580 Union Dr, Ann Arbor, MI 48109 USA. dantzer@umich.edu Dantzer, Ben/E-9779-2011 Dantzer, Ben/0000-0002-3058-265X Natural Sciences and Engineering Research Council (NSERC) of Canada Thanks to J. Sudyka for directing us to archived data and to C. Beirne, P. Bize, B. Almroth, K. Kazama, Y. Mizutani, the Seychelles Warbler Project, and A. J. Young for sending us raw or unpublished data used in these analyses. Thanks to D. Richardson for clarifying the units used in Barrett et al. (2013). Thanks also to the three reviewers that provided excellent and helpful comments on an earlier version of this paper. QF was funded by a post-doctoral fellowship from the Natural Sciences and Engineering Research Council (NSERC) of Canada. Thanks to C. Selman for inviting us to contribute to this special issue. Ackermann M., 2007, EVOLUTION HLTH DIS, P242; Almroth BC, 2012, BIOL OPEN, V1, P922, DOI 10.1242/bio.20121446; Angelier F, 2013, FUNCT ECOL, V27, P342, DOI 10.1111/1365-2435.12041; Armanios M, 2012, NAT REV GENET, V13, P693, DOI 10.1038/nrg3246; Asghar M, 2015, SCIENCE, V347, P436, DOI 10.1126/science.1261121; Asghar M, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2263; Barrett ELB, 2013, MOL ECOL, V22, P249, DOI 10.1111/mec.12110; Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; Bauch C., 2012, DRYAD DIGIT REPOSITO; Bauch C, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2540; Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; Beirne C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108964; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; Blackburn EH, 2000, NATURE, V408, P53, DOI 10.1038/35040500; Blackburn EH, 2001, CELL, V106, P661, DOI 10.1016/S0092-8674(01)00492-5; BLACKBURN EH, 1991, NATURE, V350, P569, DOI 10.1038/350569a0; Blasco MA, 2005, NAT REV GENET, V6, P611, DOI 10.1038/nrg1656; Bodnar AG, 1998, SCIENCE, V279, P349, DOI 10.1126/science.279.5349.349; Boonekamp JJ, 2013, AGING CELL, V12, P330, DOI 10.1111/acel.12050; Boonstra R, 2014, ARCTIC, V67, P82, DOI 10.14430/arctic4357; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Bronikowski AM, 2008, AGE, V30, P169, DOI 10.1007/s11357-008-9060-5; Burnham K. P, 2002, MODEL SELECTION MULT; Campisi J, 2001, TRENDS CELL BIOL, V11, pS27, DOI 10.1016/S0962-8924(01)02151-1; Campisi J, 2001, EXP GERONTOL, V36, P1619, DOI 10.1016/S0531-5565(01)00160-7; Campisi J, 2005, CELL, V120, P513, DOI 10.1016/j.cell.2005.02.003; Capper R, 2007, GENE DEV, V21, P2495, DOI 10.1101/gad.439107; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Dantzer B, 2012, BIOL REV, V87, P414, DOI 10.1111/j.1469-185X.2011.00204.x; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; Donate LE, 2011, PHILOS T R SOC B, V366, P76, DOI 10.1098/rstb.2010.0291; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Effros RB, 2011, EXP GERONTOL, V46, P135, DOI 10.1016/j.exger.2010.08.027; Epel ES, 2009, AGING-US, V1, P81; Ericson P.G., 2006, BIOL LETT, V2; Finkel T, 2007, NATURE, V448, P767, DOI 10.1038/nature05985; Flatt T., 2009, BIOCHIM BIOPHYS ACTA, V130, P3; Flurkey K, 2002, MECH AGEING DEV, V123, P121, DOI 10.1016/S0047-6374(01)00339-6; Flurkey K., 2007, MOUSE BIOMEDICAL RES, P637, DOI [DOI 10.1016/B978-012369454-6/50074-1, 10. 1016/b978-012369454-6/50074-1]; Foote C. G., 2010, BEHAV ECOLOGY, V22, P156; Franceschi C, 2000, ANN NY ACAD SCI, V908, P244; Freckleton RP, 2009, J EVOLUTION BIOL, V22, P1367, DOI 10.1111/j.1420-9101.2009.01757.x; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Garamszegi L.Z., 2014, MODERN PHYLOGENETIC; Garamszegi LZ, 2010, BIOL REV, V85, P797, DOI 10.1111/j.1469-185X.2010.00126.x; Garde E, 2010, J MAMMAL, V91, P1365, DOI 10.1644/10-MAMM-A-080.1; Godwin R, 2012, MAR BIOL, V159, P77, DOI 10.1007/s00227-011-1791-7; Godwin RM, 2011, ICES J MAR SCI, V68, P2053, DOI 10.1093/icesjms/fsr144; Gomes NMV, 2011, AGING CELL, V10, P761, DOI 10.1111/j.1474-9726.2011.00718.x; Gorbunova V, 2009, MECH AGEING DEV, V130, P3, DOI 10.1016/j.mad.2008.02.008; GREIDER CW, 1985, CELL, V43, P405, DOI 10.1016/0092-8674(85)90170-9; Gruber H, 2014, EXP GERONTOL, V51, P38, DOI 10.1016/j.exger.2013.12.014; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; Hamalainen A, 2015, OECOLOGIA, V178, P1063, DOI 10.1007/s00442-015-3297-3; Hall ME, 2004, P ROY SOC B-BIOL SCI, V271, P1571, DOI 10.1098/rspb.2004.2768; HARLEY CB, 1990, NATURE, V345, P458, DOI 10.1038/345458a0; Harmon L, 2014, GEIGER ANAL EVOLUTIO; Harmon LJ, 2005, EVOLUTION, V59, P2705; Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221; Hau M, 2015, FRONT ZOOL, V12, DOI 10.1186/s12983-015-0095-z; Haussmann MF, 2007, EXP GERONTOL, V42, P610, DOI 10.1016/j.exger.2007.03.004; Haussmann MF, 2005, BIOL LETT-UK, V1, P212, DOI 10.1098/rsbl.2005.0301; Haussmann MF, 2003, EXP GERONTOL, V38, P787, DOI 10.1016/S0531-5565(03)00109-8; Haussmann MF, 2003, P ROY SOC B-BIOL SCI, V270, P1387, DOI 10.1098/rspb.2003.2385; Hayflick L, 2000, NATURE, V408, P267, DOI 10.1038/35041709; HAYFLICK L, 1961, EXP CELL RES, V25, P585, DOI 10.1016/0014-4827(61)90192-6; Holmes D, 2009, AUK, V126, P1, DOI 10.1525/auk.2009.1109; Horn T, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017199; Hornsby PJ, 2006, AGING CELL, V5, P577, DOI 10.1111/j.1474-9726.2006.00249.x; Hughes KA, 2005, ANNU REV ENTOMOL, V50, P421, DOI 10.1146/annurev.ento.50.071803.130409; Ilmonen P, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002143; Ives AR, 2007, SYSTEMATIC BIOL, V56, P252, DOI 10.1080/10635150701313830; Izzo C, 2014, COPEIA, P87, DOI 10.1643/CI-11-162; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Juola FA, 2006, AUK, V123, P775, DOI 10.1642/0004-8038(2006)123[775:TSIALM]2.0.CO;2; Kawanishi S, 2004, ANN NY ACAD SCI, V1019, P278, DOI 10.1196/annals.1297.047; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Kong CM, 2013, FEBS J, V280, P3180, DOI 10.1111/febs.12326; Kotrschal A, 2007, BIOL LETTERS, V3, P128, DOI 10.1098/rsbl.2006.0594; KREMENTZ DG, 1989, OIKOS, V56, P203, DOI 10.2307/3565337; Larbi A, 2008, PHYSIOLOGY, V23, P64, DOI 10.1152/physiol.00040.2007; Lewin N, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2014.0991; Londono GA, 2015, FUNCT ECOL, V29, P338, DOI 10.1111/1365-2435.12348; Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039; LUPIEN S, 1994, J NEUROSCI, V14, P2893; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MCEACHERN MJ, 1995, NATURE, V376, P403, DOI 10.1038/376403a0; Miller RA, 1996, SCIENCE, V273, P70, DOI 10.1126/science.273.5271.70; Mizutani Y, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0511; Monaghan P, 2006, TRENDS ECOL EVOL, V21, P47, DOI 10.1016/j.tree.2005.11.007; Monaghan P, 2014, J EXP BIOL, V217, P57, DOI 10.1242/jeb.090043; Monaghan P, 2010, ANN NY ACAD SCI, V1206, P130, DOI 10.1111/j.1749-6632.2010.05705.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; Olovnikov AM, 1996, EXP GERONTOL, V31, P443, DOI 10.1016/0531-5565(96)00005-8; Olsen M.T., 2014, NAMMCO SCI PUBL, V10; Olsson M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017473; Olsson M, 2011, MOL ECOL, V20, P2085, DOI 10.1111/j.1365-294X.2011.05085.x; Olsson M, 2010, BIOL LETTERS, V6, P651, DOI 10.1098/rsbl.2010.0126; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; Partridge L, 2006, TRENDS ECOL EVOL, V21, P334, DOI 10.1016/j.tree.2006.02.008; Pauli JN, 2011, J MAMMAL, V92, P500, DOI 10.1644/10-MAMM-A-252.1; Pauliny A, 2006, MOL ECOL, V15, P1681, DOI 10.1111/j.1365-294X.2006.02862.x; Pauliny A, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-257; Pawlikowska L, 2009, AGING CELL, V8, P460, DOI 10.1111/j.1474-9726.2009.00493.x; Perry G, 2002, ECOLOGY, V83, P1870, DOI 10.2307/3071771; Plot V, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040855; Poisot T, 2011, R J, V3, P25; PROMISLOW DEL, 1994, J THEOR BIOL, V170, P291, DOI 10.1006/jtbi.1994.1190; PROMISLOW DEL, 1993, J GERONTOL, V48, pB115, DOI 10.1093/geronj/48.4.B115; Rattiste K, 2015, BIOGERONTOLOGY, V16, P435, DOI 10.1007/s10522-015-9564-1; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Richards SA, 2005, ECOLOGY, V86, P2805, DOI 10.1890/05-0074; Richards SA, 2008, J APPL ECOL, V45, P218, DOI 10.1111/j.1365-2664.2007.01377.x; Ricklefs RE, 2008, FUNCT ECOL, V22, P379, DOI 10.1111/j.1365-2435.2008.01420.x; Ricklefs RE, 2001, EXP GERONTOL, V36, P845, DOI 10.1016/S0531-5565(00)00245-X; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Roach DA, 2014, ANNU REV ECOL EVOL S, V45, P421, DOI 10.1146/annurev-ecolsys-120213-091730; Rubolini D., 2015, CURR ZOOL IN PRESS; Salomons HM, 2009, P ROY SOC B-BIOL SCI, V276, P3157, DOI 10.1098/rspb.2009.0517; SAPOLSKY RM, 1986, ENDOCR REV, V7, P284, DOI 10.1210/edrv-7-3-284; Sapolsky RM, 1999, EXP GERONTOL, V34, P721, DOI 10.1016/S0531-5565(99)00047-9; Scott NM, 2006, SOUTHEAST NAT, V5, P685, DOI 10.1656/1528-7092(2006)5[685:TLSWBL]2.0.CO;2; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Seluanov A, 2007, AGING CELL, V6, P45, DOI 10.1111/j.1474-9726.2006.00262.x; Sharpless NE, 2004, J CLIN INVEST, V113, P160, DOI 10.1172/JCI200420761; Short KR, 2005, P NATL ACAD SCI USA, V102, P5618, DOI 10.1073/pnas.0501559102; Simons M.J.P., 2015, AGEING RES IN PRESS; Stuart JA, 2010, MECH AGEING DEV, V131, P591, DOI 10.1016/j.mad.2010.08.005; Sudyka J, 2014, J EVOLUTION BIOL, V27, P2258, DOI 10.1111/jeb.12479; Sudyka J., 2014, DRYAD DIGIT REPOSITO; Swanson EM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2458; Team R Core, 2013, R LANGUAGE ENV STAT; Ujvari B, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007493; Valenzano DR, 2006, CURR BIOL, V16, P296, DOI 10.1016/j.cub.2005.12.038; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; van Heemst D, 2005, AGING CELL, V4, P79, DOI 10.1111/j.1474-9728.2005.00148.x; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Vleck CM, 2007, J ORNITHOL, V148, pS611, DOI 10.1007/s10336-007-0186-5; Vleck CM, 2003, EXP GERONTOL, V38, P791, DOI 10.1016/S0531-5565(03)00110-4; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; von Zglinicki T, 2005, CURR MOL MED, V5, P197; Wang CX, 2004, MECH AGEING DEV, V125, P629, DOI 10.1016/j.mad.2004.07.003; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams JB, 2010, INTEGR COMP BIOL, V50, P855, DOI 10.1093/icb/icq024; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Xie ZW, 2015, CELL, V160, P928, DOI 10.1016/j.cell.2015.02.002; Young RC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074931; Yu BP, 2001, DIABETES RES CLIN PR, V54, pS73, DOI 10.1016/S0168-8227(01)00338-2; Garamszegi LZ, 2012, BEHAV ECOL SOCIOBIOL, V66, P1363, DOI 10.1007/s00265-012-1370-z 157 24 25 4 56 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0531-5565 1873-6815 EXP GERONTOL Exp. Gerontol. NOV 2015 71 38 47 10.1016/j.exger.2015.08.012 10 Geriatrics & Gerontology Geriatrics & Gerontology CW4UC WOS:000364988800006 26348426 2019-02-21 J Olsen, AM Olsen, Aaron M. Exceptional avian herbivores: multiple transitions toward herbivory in the bird order Anseriformes and its correlation with body mass Ecology and Evolution English Article Aves; behavior; diet evolution; life-history evolution; macroevolution; morphological evolution FOOD-INTAKE; PHYLOGENETIC ANALYSIS; RETENTION TIME; FUNCTIONAL CONVERGENCE; MAMMALIAN HERBIVORES; CECAL FERMENTATION; WILLOW PTARMIGAN; DIET COMPOSITION; FEEDING ECOLOGY; INGESTA PASSAGE Herbivory is rare among birds and is usually thought to have evolved predominately among large, flightless birds due to energetic constraints or an association with increased body mass. Nearly all members of the bird order Anseriformes, which includes ducks, geese, and swans, are flighted and many are predominately herbivorous. However, it is unknown whether herbivory represents a derived state for the order and how many times a predominately herbivorous diet may have evolved. Compiling data from over 200 published diet studies to create a continuous character for herbivory, models of trait evolution support at least five independent transitions toward a predominately herbivorous diet in Anseriformes. Although a nonphylogenetic correlation test recovers a significant positive correlation between herbivory and body mass, this correlation is not significant when accounting for phylogeny. These results indicate a lack of support for the hypothesis that a larger body mass confers an advantage in the digestion of low-quality diets but does not exclude the possibility that shifts to a more abundant food source have driven shifts toward herbivory in other bird lineages. The exceptional number of transitions toward a more herbivorous diet in Anseriformes and lack of correlation with body mass prompts a reinterpretation of the relatively infrequent origination of herbivory among flighted birds. [Olsen, Aaron M.] Univ Chicago, Dept Organismal Biol & Anat, Chicago, IL 60637 USA; [Olsen, Aaron M.] Field Museum Nat Hist, Bird Div, Chicago, IL 60605 USA Olsen, AM (reprint author), 1027 E 57th St, Chicago, IL 60637 USA. aolsen@uchicago.edu Olsen, Aaron/0000-0003-4398-3126 NSF [DGE-1144082, DGE-0903637] This work was supported by an NSF Graduate Research Fellowship (DGE-1144082) and an NSF Integrative Graduate Education and Research Traineeship grant (DGE-0903637). Bailey M, 2008, J WILDLIFE MANAGE, V72, P726, DOI 10.2193/2007-133; BARNES GG, 1987, CAN J ZOOL, V65, P1812, DOI 10.1139/z87-274; BJORNDAL KA, 1980, MAR BIOL, V56, P147, DOI 10.1007/BF00397131; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; BRODSKY LM, 1985, CONDOR, V87, P33, DOI 10.2307/1367128; Bucher EH, 2003, J AVIAN BIOL, V34, P211, DOI 10.1034/j.1600-048X.2003.03020.x; Burleigh J. G., 2014, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.r6b87, DOI 10.5061/DRYAD.R6B87]; Burleigh JG, 2015, MOL PHYLOGENET EVOL, V84, P53, DOI 10.1016/j.ympev.2014.12.003; Butler MA, 2004, AM NAT, V164, P683, DOI 10.1086/426002; Choat JH, 1998, ANNU REV ECOL SYST, V29, P375, DOI 10.1146/annurev.ecolsys.29.1.375; Clarke JA, 2005, NATURE, V433, P305, DOI 10.1038/nature03150; Clarke SJ, 2006, QUATERNARY SCI REV, V25, P2343, DOI 10.1016/j.quascirev.2006.02.001; Clauss M, 2008, COMP BIOCHEM PHYS A, V150, P274, DOI 10.1016/j.cbpa.2008.03.012; Clauss M, 2007, COMP BIOCHEM PHYS A, V148, P249, DOI 10.1016/j.cbpa.2007.05.024; Clauss M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0068714; Clements J. F., 2014, EBIRD CLEMENTS CHECK; Cooper WE, 2002, J ZOOL, V257, P487, DOI 10.1017/S0952836902001085; Cork SJ, 1996, AUST J ECOL, V21, P10, DOI 10.1111/j.1442-9993.1996.tb00581.x; Darwin C., 1872, ORIGIN SPECIES MEANS; DAVIES SJJF, 1978, AUST J ECOL, V3, P411, DOI 10.1111/j.1442-9993.1978.tb01189.x; Delacour Jean, 1945, WILSON BULL, V57, P3; DEMMENT MW, 1985, AM NAT, V125, P641, DOI 10.1086/284369; Dial KP, 2003, AUK, V120, P941, DOI 10.1642/0004-8038(2003)120[0941:EOALCO]2.0.CO;2; Donne-Gousse C, 2002, MOL PHYLOGENET EVOL, V23, P339, DOI 10.1016/S1055-7903(02)00019-2; DUDLEY R, 1992, FUNCT ECOL, V6, P101; Dunning J., 2008, CRC HDB AVIAN BODY M; Ebbinge B., 1975, Wildfowl, V26, P5; FELSENSTEIN J, 1973, AM J HUM GENET, V25, P471; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Franz R, 2011, COMP BIOCHEM PHYS A, V158, P94, DOI 10.1016/j.cbpa.2010.09.007; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Frei S., 2014, AUK ORNITHOL ADV, V132, P119; Fritz J, 2012, COMP BIOCHEM PHYS A, V163, P56, DOI 10.1016/j.cbpa.2012.05.184; Fulton TL, 2012, P ROY SOC B-BIOL SCI, V279, P2339, DOI 10.1098/rspb.2011.2599; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GASAWAY WC, 1976, COMP BIOCHEM PHYS A, V53, P115, DOI 10.1016/S0300-9629(76)80022-9; GASTON KJ, 1995, PHILOS T R SOC B, V347, P205, DOI 10.1098/rstb.1995.0022; GEIST V, 1974, AM ZOOL, V14, P205; Gonzalez J, 2009, J ZOOL, V279, P310, DOI 10.1111/j.1469-7998.2009.00622.x; GRAJAL A, 1989, SCIENCE, V245, P1236, DOI 10.1126/science.245.4923.1236; GUILLEMETTE M, 1994, AUK, V111, P900, DOI 10.2307/4088822; Gurd B. D., 2006, ZOOLOGY JENA, V109, P120; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Havera S. P., 1998, WATERFOWL ILLINOIS S; Hiiemae Karen M., 2000, P411, DOI 10.1016/B978-012632590-4/50014-9; Iwaniuk AN, 2004, J ZOOL, V263, P317, DOI 10.1017/S0952836904005308; James HF, 1997, BIOL J LINN SOC, V62, P279, DOI 10.1111/j.1095-8312.1997.tb01627.x; Janis Christine M., 2000, P168, DOI 10.1017/CBO9780511549717.008; Johnsgard P A, 1978, DUCKS GEESE SWANS WO; Johnson KP, 1998, MOL PHYLOGENET EVOL, V10, P82, DOI 10.1006/mpev.1997.0481; Karasov W. H., 1990, STUD AVIAN BIOL, V13, P1; KEAR J, 2005, BIRD FAMILIES WORLD; KINGSFORD RT, 1989, EMU, V89, P119, DOI 10.1071/MU9890119; KLAGES NTW, 1992, J ZOOL, V227, P385, DOI 10.1111/j.1469-7998.1992.tb04401.x; Klasing K. C., 1998, COMP AVIAN NUTR; KOOLOOS JGM, 1989, ZOOMORPHOLOGY, V108, P269, DOI 10.1007/BF00312160; KORSCHGEN C E, 1988, P237; LANDERS JL, 1977, J WILDLIFE MANAGE, V41, P118, DOI 10.2307/3800100; Aguero ML, 2014, WATERBIRDS, V37, P88, DOI 10.1675/063.037.0111; LAVERY H J, 1971, Queensland Journal of Agricultural and Animal Sciences, V28, P255; Lavin SR, 2008, PHYSIOL BIOCHEM ZOOL, V81, P526, DOI 10.1086/590395; Legendre P., 2014, LMODEL2 MODEL 2 REGR; LEOPOLD AS, 1953, J WILDLIFE MANAGE, V17, P197, DOI 10.2307/3796715; Livezey BC, 1997, ZOOL J LINN SOC-LOND, V121, P361, DOI 10.1111/j.1096-3642.1997.tb01285.x; LIVEZEY BC, 1986, AUK, V103, P737; Marchant S., 1990, HDB AUSTR NZ ANTARCT; MASMAN D, 1987, AUK, V104, P603; Mayhew Peter W., 1993, Wildfowl, V44, P174; MCBEE RH, 1969, CONDOR, V71, P54, DOI 10.2307/1366048; McCracken KG, 1999, SYST BIOL, V48, P683, DOI 10.1080/106351599259979; MCNAB BK, 1994, AM NAT, V144, P628, DOI 10.1086/285697; MIDDLETON B A, 1987, Wildfowl, V38, P94; MILLS JA, 1977, J ANIM ECOL, V46, P939, DOI 10.2307/3651; MILTON SJ, 1994, J WILDLIFE MANAGE, V58, P234, DOI 10.2307/3809386; Mitchell KJ, 2014, SCIENCE, V344, P898, DOI 10.1126/science.1251981; Morton E.S., 1978, P123; MOSA SG, 1993, STUD NEOTROP FAUNA E, V28, P123, DOI 10.1080/01650529309360895; Muller DWH, 2013, COMP BIOCHEM PHYS A, V164, P129, DOI 10.1016/j.cbpa.2012.09.018; MUNSON ES, 1992, AUK, V109, P917; NARANJO LG, 1986, WILSON BULL, V98, P243; Olson S. L., 1991, ORNITHOL MONOGR, V45, P1, DOI [10. 2307/40166794, DOI 10.2307/40166794]; OLSON SL, 1980, SMITHSON CONTRIB ZOO, V323, P1; OWEN M, 1972, J ANIM ECOL, V41, P79, DOI 10.2307/3507; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; PAULUS S L, 1988, P135; PAULUS SL, 1984, J WILDLIFE MANAGE, V48, P371, DOI 10.2307/3801168; PERRY MC, 1988, ESTUARIES, V11, P57, DOI 10.2307/1351718; POOLE A, 2005, BIRDS N AM ONLINE; POUGH FH, 1973, ECOLOGY, V54, P837, DOI 10.2307/1935678; Price SA, 2015, BIOL J LINN SOC, V115, P173, DOI 10.1111/bij.12495; PROP J, 1992, FUNCT ECOL, V6, P180, DOI 10.2307/2389753; R Core Team, 2015, R LANG ENV STAT COMP; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Revell LJ, 2010, METHODS ECOL EVOL, V1, P319, DOI 10.1111/j.2041-210X.2010.00044.x; ROBERTS CM, 1987, J EXP MAR BIOL ECOL, V111, P61, DOI 10.1016/0022-0981(87)90020-7; SCHLUTER D, 1984, OIKOS, V43, P291, DOI 10.2307/3544146; Schluter D, 1997, EVOLUTION, V51, P1699, DOI 10.1111/j.1558-5646.1997.tb05095.x; Sedinger JS, 1997, CONDOR, V99, P314, DOI 10.2307/1369937; SIBLEY CG, 1969, CONDOR, V71, P155, DOI 10.2307/1366077; SIBLEY CG, 1988, AUK, V105, P409; Smith ND, 2012, EVOLUTION, V66, P1059, DOI 10.1111/j.1558-5646.2011.01494.x; Sokal R. R, 2012, BIOMETRY; Sorenson MD, 1999, P ROY SOC B-BIOL SCI, V266, P2187, DOI 10.1098/rspb.1999.0907; SQUIRES JR, 1995, AM MIDL NAT, V133, P274, DOI 10.2307/2426391; Sraml M, 1996, AUST J ZOOL, V44, P47, DOI 10.1071/ZO9960047; Stayton CT, 2006, EVOLUTION, V60, P824; Steuer P, 2014, FUNCT ECOL, V28, P1127, DOI 10.1111/1365-2435.12275; Steuer P, 2011, COMP BIOCHEM PHYS A, V160, P355, DOI 10.1016/j.cbpa.2011.07.005; STRAHL SD, 1988, IBIS, V130, P483, DOI 10.1111/j.1474-919X.1988.tb02714.x; SWANSON GA, 1974, J WILDLIFE MANAGE, V38, P396, DOI 10.2307/3800869; SWANSON GA, 1970, J WILDLIFE MANAGE, V34, P739, DOI 10.2307/3799138; Trewick Steve, 1996, Notornis, V43, P79; Van Der Leeuw AHJ, 2003, ANIM BIOL, V53, P259, DOI 10.1163/157075603322539453; Warton DI, 2011, ECOLOGY, V92, P3, DOI 10.1890/10-0340.1; WELLER M W, 1972, Wildfowl, V23, P25; WINTERBOTTOM R, 1993, EVOLUTION, V47, P1557, DOI 10.1111/j.1558-5646.1993.tb02175.x; Wishart R. A., 1983, THESIS U MANITOBA WI; Wood JR, 2008, QUATERNARY SCI REV, V27, P2593, DOI 10.1016/j.quascirev.2008.09.019; ZWEERS G, 1995, CONDOR, V97, P297, DOI 10.2307/1369017 121 13 13 1 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. NOV 2015 5 21 5016 5032 10.1002/ece3.1787 17 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology CV5WF WOS:000364341400025 26640679 DOAJ Gold, Green Published 2019-02-21 J Kamilar, JM; Tecot, SR Kamilar, J. M.; Tecot, S. R. Connecting proximate mechanisms and evolutionary patterns: pituitary gland size and mammalian life history JOURNAL OF EVOLUTIONARY BIOLOGY English Article bats; brain evolution; growth factor; macroevolution; phylogenetic comparative methods; primates; proximate mechanisms; ungulates GROWTH-FACTOR-I; CENTRAL VASOPRESSIN; BRAIN GROWTH; BODY-SIZE; ECOLOGY; PRIMATE; SPAN; TESTOSTERONE; STRESS; BATS At the proximate level, hormones are known to play a critical role in influencing the life history of mammals, including humans. The pituitary gland is directly responsible for producing several hormones, including those related to growth and reproduction. Although we have a basic understanding of how hormones affect life history characteristics, we still have little knowledge of this relationship in an evolutionary context. We used data from 129 mammal species representing 14 orders to investigate the relationship between pituitary gland size and life history variation. Because pituitary gland size should be related to hormone production and action, we predicted that species with relatively large pituitaries should be associated with fast life histories, especially increased foetal and post-natal growth rates. Phylogenetic analyses revealed that total pituitary size and the size of the anterior lobe of the pituitary significantly predicted a life history axis that was correlated with several traits including body mass, and foetal and post-natal growth rates. Additional models directly examining the association between relative pituitary size and growth rates produced concordant results. We also found that relative pituitary size variation across mammals was best explained by an Ornstein-Uhlenbeck model of evolution, suggesting an important role of stabilizing selection. Our results support the idea that the size of the pituitary is linked to life history variation through evolutionary time. This pattern is likely due to mediating hormone levels but additional work is needed. We suggest that future investigations incorporating endocrine gland size may be critical for understanding life history evolution. [Kamilar, J. M.] Univ Massachusetts, Dept Anthropol, Amherst, MA 01007 USA; [Kamilar, J. M.] Univ Massachusetts, Grad Program Organism & Evolutionary Biol, Amherst, MA 01007 USA; [Kamilar, J. M.] Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ USA; [Tecot, S. R.] Univ Arizona, Sch Anthropol, Tucson, AZ USA; [Tecot, S. R.] Univ Arizona, Lab Evolutionary Endocrinol Primates, Tucson, AZ USA Kamilar, JM (reprint author), Univ Massachusetts, Dept Anthropol, 240 Hicks Dr, Amherst, MA 01007 USA. jkamilar@umass.edu TECOT, STACEY/0000-0002-6640-5049 ALLMAN J, 1993, P NATL ACAD SCI USA, V90, P118, DOI 10.1073/pnas.90.1.118; ALLMAN JM, 1993, P NATL ACAD SCI USA, V90, P3559, DOI 10.1073/pnas.90.8.3559; AUSTAD SN, 1991, J GERONTOL, V46, pB47, DOI 10.1093/geronj/46.2.B47; Ayuk J, 2004, J CLIN ENDOCR METAB, V89, P1613, DOI 10.1210/jc.2003-031584; Bartke A, 2005, ENDOCRINOLOGY, V146, P3718, DOI 10.1210/en.2005-0411; Barton RA, 2006, EVOL ANTHROPOL, V15, P224, DOI 10.1002/evan.00000; Barton RA, 2013, P NATL ACAD SCI USA, V110, P9001, DOI 10.1073/pnas.1215723110; Barton RA, 2011, P NATL ACAD SCI USA, V108, P6169, DOI 10.1073/pnas.1019140108; BAUCHOT R, 1978, MAMMALIA, V42, P235, DOI 10.1515/mamm.1978.42.2.235; Bininda-Emonds ORP, 2008, NATURE, V456, P274, DOI 10.1038/nature07347; Bininda-Emonds ORP, 2007, NATURE, V446, P507, DOI 10.1038/nature05634; Braendle C, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P3; Bribiescas RG, 2001, YEARB PHYS ANTHROPOL, V44, P148, DOI 10.1002/ajpa.10025; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Buffenstein R, 2009, MOL CELL ENDOCRINOL, V299, P101, DOI 10.1016/j.mce.2008.04.021; Burnham K. P, 2002, MODEL SELECTION MULT; Burnham TC, 2003, HORM BEHAV, V44, P119, DOI 10.1016/S0018-506X(03)00125-9; Calder III WA, 1984, SIZE FUNCTION LIFE H; Catlett KK, 2010, AM J PHYS ANTHROPOL, V142, P391, DOI 10.1002/ajpa.21236; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Cooper N, 2011, P ROY SOC B-BIOL SCI, V278, P2384, DOI 10.1098/rspb.2010.2207; Cooper N, 2010, AM NAT, V175, P727, DOI 10.1086/652466; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; Dantzer B, 2012, BIOL REV, V87, P414, DOI 10.1111/j.1469-185X.2011.00204.x; ELLISON PT, 2001, REPROD ECOLOGY HUMAN; Flurkey K, 2001, P NATL ACAD SCI USA, V98, P6736, DOI 10.1073/pnas.111158898; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Gaillard JM, 2003, LIFE SPAN: EVOLUTIONARY, ECOLOGICAL, AND DEMOGRAPHIC PERSPECTIVES, P39; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; Gillooly JF, 2002, NATURE, V417, P70, DOI 10.1038/417070a; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Harmon LJ, 2010, EVOLUTION, V64, P2385, DOI 10.1111/j.1558-5646.2010.01025.x; HARVEY PH, 1991, AM NAT, V137, P556, DOI 10.1086/285183; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Holekamp KE, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0350; Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298; Insel TR, 2010, NEURON, V65, P768, DOI 10.1016/j.neuron.2010.03.005; Jones Kate E., 2009, Ecology (Washington D C), V90, P2648, DOI 10.1890/08-1494.1; Kamilar JM, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0341; Kamilar JM, 2010, BIOL LETTERS, V6, P736, DOI 10.1098/rsbl.2010.0348; Kappeler P. M., 2003, PRIMATE LIFE HIST SO; Kenyon CJ, 2010, NATURE, V464, P504, DOI 10.1038/nature08980; Leigh SR, 2004, AM J PRIMATOL, V62, P139, DOI 10.1002/ajp.20012; Lessells CM, 2008, PHILOS T R SOC B, V363, P1589, DOI 10.1098/rstb.2007.0008; Lindenfors P, 2002, J EVOLUTION BIOL, V15, P595, DOI 10.1046/j.1420-9101.2002.00422.x; Maney DL, 2008, GEN COMP ENDOCR, V157, P275, DOI 10.1016/j.ygcen.2008.03.023; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Melmed S, 2011, PITUITARY, 3RD EDITION, P1; Mitani JC, 1997, BEHAV ECOL SOCIOBIOL, V40, P213, DOI 10.1007/s002650050335; NELSON ML, 1982, J MORPHOL, V174, P133, DOI 10.1002/jmor.1051740202; Nunn C.L, 2011, COMP METHOD EVOLUTIO; OBOUSSIER H., 1940, ZOOL ANZ, V132, P197; Orme C. D. L., 2014, CAPER COMP ANAL PHYL; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Pontzer H, 2010, P NATL ACAD SCI USA, V107, P14048, DOI 10.1073/pnas.1001031107; Pontzer H, 2009, P NATL ACAD SCI USA, V106, P192, DOI 10.1073/pnas.0806105106; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; R Development Core Team, 2014, R LANG ENV STAT COMP; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; RICHARDSON BA, 1979, J REPROD FERTIL, V56, P379; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roff Derek A., 1992; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Safi K, 2011, PHILOS T R SOC B, V366, P2536, DOI 10.1098/rstb.2011.0024; Stearns S, 1992, EVOLUTION LIFE HIST; Stuart JA, 2010, MECH AGEING DEV, V131, P591, DOI 10.1016/j.mad.2010.08.005; Swanson EM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2458; Tacutu R, 2013, NUCLEIC ACIDS RES, V41, pD1027, DOI 10.1093/nar/gks1155; Tecot SR, 2012, BEHAV ECOL SOCIOBIOL, V66, P1375, DOI 10.1007/s00265-012-1393-5; Venditti C, 2011, NATURE, V479, P393, DOI 10.1038/nature10516; Vierimaa O, 2006, SCIENCE, V312, P1228, DOI 10.1126/science.1126100; Wang ZX, 1996, J COMP NEUROL, V366, P726; WESTERN D, 1979, AFR J ECOL, V17, P185, DOI 10.1111/j.1365-2028.1979.tb00256.x; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x; Williams TD, 2012, GEN COMP ENDOCR, V176, P286, DOI 10.1016/j.ygcen.2011.11.028; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; WINSLOW JT, 1993, NATURE, V365, P545, DOI 10.1038/365545a0 80 0 0 1 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. NOV 2015 28 11 1997 2008 10.1111/jeb.12715 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity CV9XM WOS:000364641900008 26249034 Bronze 2019-02-21