PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Thys, B; Eens, M; Aerts, S; Delory, A; Iserbyt, A; Pinxten, R Thys, Bert; Eens, Marcel; Aerts, Silke; Delory, Amandine; Iserbyt, Arne; Pinxten, Rianne Exploration and sociability in a highly gregarious bird are repeatable across seasons and in the long term but are unrelated ANIMAL BEHAVIOUR English Article animal personality; behavioural syndrome; (co)variance partitioning; long term; seasonal context; social behaviour; Sturnus vulgaris STARLINGS STURNUS-VULGARIS; CONSISTENT INDIVIDUAL-DIFFERENCES; BEHAVIORAL SYNDROMES; ANIMAL PERSONALITY; GREAT TITS; CORRELATED BEHAVIORS; TRADE-OFFS; PHENOTYPIC CORRELATIONS; ADAPTIVE PERSONALITIES; FITNESS CONSEQUENCES Personality traits and behavioural syndromes are often assumed to relate to life history strategies and lifetime fitness variation and hence may be generally under selection. Key in this regard is the, often untested, assumption that individual differences in (correlated) behaviours are maintained across contexts and over an individual's lifetime. Here, we tested this assumption, using a population of 30 captive male starlings, Sturnus vulgaris, a highly gregarious avian species. We repeatedly assayed novel environment exploration and different aspects of sociability towards a female conspecific, across seasonal contexts (spring and autumn) and across a 2-year period, which represents a substantial portion of a starling's life span. We found that, regardless of plasticity at the population level, both exploration behaviour and sociability traits investigated were moderately repeatable across seasons and years, with no significant differences between repeatability estimates over different timescales. However, no evidence was found for significant between-individual correlations between the investigated traits, including different aspects of sociability. Taken together, our results provide empirical evidence that exploration and sociability are personality traits that are stable across seasons and in the long term but do not form behavioural syndromes. Given the recent evidence that personality traits are often heritable, the traits assessed in our study might have the potential to evolve independently under selection. This long-term consistency in exploration and sociability might have important implications for the social organization within complex social environments and influence a wide variety of ecologically relevant processes. (C) 2016 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Thys, Bert; Eens, Marcel; Aerts, Silke; Delory, Amandine; Iserbyt, Arne; Pinxten, Rianne] Univ Antwerp, Dept Biol, Behav Ecol & Ecophysiol Grp, Antwerp, Belgium; [Pinxten, Rianne] Univ Antwerp, Fac Social Sci, Antwerp Sch Educ, Antwerp, Belgium Thys, B (reprint author), Campus Drie Eiken,Bldg D Room 1-23,Univ Pl 1, B-2610 Antwerp, Belgium. bert.thys@uantwerpen.be Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO); University of Antwerp We thank Geert Eens for technical support and building the test room, Peter Scheys for animal care and Sofie Brems for preparing Fig. 1. Thomas Raap, AlexanderWeiss and two anonymous referees provided valuable feedback on the manuscript. This work was financially supported by the Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO) and the University of Antwerp. The authors declare that they have no conflict of interest. Apfelbeck B, 2008, HORM BEHAV, V54, P435, DOI 10.1016/j.yhbeh.2008.04.003; Aplin LM, 2015, ANIM BEHAV, V108, P117, DOI 10.1016/j.anbehav.2015.07.016; Bates D, 2015, J STAT SOFTW, V67, P1; Baugh AT, 2014, GEN COMP ENDOCR, V208, P154, DOI 10.1016/j.ygcen.2014.08.014; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; BOAKE CRB, 1989, EVOL ECOL, V3, P173, DOI 10.1007/BF02270919; Boogert NJ, 2006, ANIM BEHAV, V72, P1229, DOI 10.1016/j.anbehav.2006.02.021; Boulton K, 2014, BEHAV ECOL SOCIOBIOL, V68, P791, DOI 10.1007/s00265-014-1692-0; Brommer JE, 2015, FRONT ZOOL, V12, DOI 10.1186/1742-9994-12-S1-S2; Budaev SV, 1997, J COMP PSYCHOL, V111, P399, DOI 10.1037/0735-7036.111.4.399; Class B, 2016, BEHAV ECOL SOCIOBIOL, V70, P733, DOI 10.1007/s00265-016-2096-0; Class B, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2777; Cote J, 2008, P ROY SOC B-BIOL SCI, V275, P2851, DOI 10.1098/rspb.2008.0783; Cote J, 2007, P R SOC B, V274, P383, DOI 10.1098/rspb.2006.3734; Cote J, 2010, P ROY SOC B-BIOL SCI, V277, P1571, DOI 10.1098/rspb.2009.2128; Dammhahn M., 2012, P ROYAL SOC B, V84, P1131; David M, 2012, ETHOLOGY, V118, P932, DOI 10.1111/j.1439-0310.2012.02085.x; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Dingemanse NJ, 2014, QUANTITATIVE GENETICS IN THE WILD, P54; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dochtermann NA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2201; Dochtermann NA, 2013, BEHAV ECOL, V24, P806, DOI 10.1093/beheco/art002; Dochtermann NA, 2011, EVOLUTION, V65, P1814, DOI 10.1111/j.1558-5646.2011.01264.x; EENS M, 1993, BEHAVIOUR, V125, P51, DOI 10.1163/156853993X00182; EENS M, 1990, BIRD STUDY, V37, P48, DOI 10.1080/00063659009477038; Eens M, 1997, ADV STUD BEHAV, V26, P355, DOI 10.1016/S0065-3454(08)60384-8; Farine DR, 2015, J EVOLUTION BIOL, V28, P547, DOI 10.1111/jeb.12587; Feare C., 1984, STARLING; FEARE CJ, 1995, IBIS, V137, P379, DOI 10.1111/j.1474-919X.1995.tb08036.x; Formica VA, 2012, J EVOLUTION BIOL, V25, P130, DOI 10.1111/j.1420-9101.2011.02411.x; Funghi C, 2015, ETHOLOGY, V121, P84, DOI 10.1111/eth.12318; Garamszegi LZ, 2013, BEHAV ECOL, V24, P1068, DOI 10.1093/beheco/art033; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Gelman Andrew, 2015, ARM DATA ANAL USING; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Gwinner H, 2002, HORM BEHAV, V42, P21, DOI 10.1006/hbeh.2002.1795; Haage M, 2013, BEHAV PROCESS, V100, P103, DOI 10.1016/j.beproc.2013.08.009; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hall ML, 2015, FRONT ECOL EVOL, V3, P28; Hamede RK, 2009, ECOL LETT, V12, P1147, DOI 10.1111/j.1461-0248.2009.01370.x; Kluen E, 2013, BEHAV ECOL, V24, P650, DOI 10.1093/beheco/ars221; Koski S. E., 2014, FRONTIERS ECOLOGY EV, V2, P70, DOI DOI 10.3389/FEV0.2014.00070; Koski SE, 2011, BEHAV ECOL SOCIOBIOL, V65, P2161, DOI 10.1007/s00265-011-1224-0; McCowan LSC, 2015, BEHAV ECOL, V26, P735, DOI 10.1093/beheco/aru239; McEvoy J, 2015, J ZOOL, V296, P58, DOI 10.1111/jzo.12217; McGhee KE, 2010, ANIM BEHAV, V79, P497, DOI 10.1016/j.anbehav.2009.11.037; Minderman J, 2010, BEHAV ECOL, V21, P1321, DOI 10.1093/beheco/arq151; Mutzel A, 2011, ANIM BEHAV, V81, P731, DOI 10.1016/j.anbehav.2011.01.001; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nicolaus M, 2012, P ROY SOC B-BIOL SCI, V279, P4885, DOI 10.1098/rspb.2012.1936; Niemela PT, 2012, FUNCT ECOL, V26, P450, DOI 10.1111/j.1365-2435.2011.01939.x; Niemela PT, 2014, TRENDS ECOL EVOL, V29, P245, DOI 10.1016/j.tree.2014.02.007; Oh KP, 2010, AM NAT, V176, pE80, DOI 10.1086/655216; Pike TW, 2008, P ROY SOC B-BIOL SCI, V275, P2515, DOI 10.1098/rspb.2008.0744; PINXTEN R, 1990, ANIM BEHAV, V40, P1035, DOI 10.1016/S0003-3472(05)80171-X; Pinxten R, 2003, HORM BEHAV, V44, P103, DOI 10.1016/S0018-506X(03)00120-X; Pinxten R, 2003, HORM BEHAV, V43, P394, DOI 10.1016/S0018-506X(03)00012-6; Reale D., 2012, ANIMAL PERSONALITY; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reale D, 2010, PHILOS T R SOC B, V365, P3937, DOI 10.1098/rstb.2010.0222; RENNER MJ, 1990, PSYCHOBIOLOGY, V18, P16; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Schielzeth H, 2010, METHODS ECOL EVOL, V1, P103, DOI 10.1111/j.2041-210X.2010.00012.x; Schuett W, 2009, ANIM BEHAV, V77, P1041, DOI 10.1016/j.anbehav.2008.12.024; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sinervo B, 2002, HEREDITY, V89, P329, DOI 10.1038/sj.hdy.6800148; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Svenson L., 1984, IDENTIFICATION GUIDE; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; VERBEEK MEM, 1994, ANIM BEHAV, V48, P1113, DOI 10.1006/anbe.1994.1344; Webster MM, 2011, BIOL REV, V86, P759, DOI 10.1111/j.1469-185X.2010.00169.x; WITTER MS, 1995, BEHAV ECOL, V6, P343, DOI 10.1093/beheco/6.3.343; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2014, TRENDS ECOL EVOL, V29, P306, DOI 10.1016/j.tree.2014.03.008; Wolf M, 2011, P ROY SOC B-BIOL SCI, V278, P440, DOI 10.1098/rspb.2010.1051; Wuerz Y., 2015, FRONTIERS ZOOLOGY, V12, P1; Garamszegi LZ, 2015, BEHAV ECOL SOCIOBIOL, V69, P2005, DOI 10.1007/s00265-015-2012-z; Garamszegi LZ, 2012, BEHAV ECOL SOCIOBIOL, V66, P1651, DOI 10.1007/s00265-012-1439-8; Garamszegi LZ, 2012, EVOL ECOL, V26, P1213, DOI 10.1007/s10682-012-9589-8; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 88 3 3 2 38 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. JAN 2017 123 339 348 10.1016/j.anbehav.2016.11.014 10 Behavioral Sciences; Zoology Behavioral Sciences; Zoology EH5VK WOS:000391840900036 2019-02-21 J Honsey, AE; Staples, DF; Venturelli, PA Honsey, Andrew E.; Staples, David F.; Venturelli, Paul A. Accurate estimates of age at maturity from the growth trajectories of fishes and other ectotherms ECOLOGICAL APPLICATIONS English Article age at maturity; biphasic growth; Lester biphasic growth model; life history; profile likelihood; Sander vitreus DENSITY-DEPENDENT GROWTH; LIFE-HISTORY TRAITS; REACTION NORMS; PHENOTYPIC PLASTICITY; SEXUAL-MATURITY; EFFECTS MODELS; SIZE; MATURATION; REPRODUCTION; POPULATIONS Age at maturity (AAM) is a key life history trait that provides insight into ecology, evolution, and population dynamics. However, maturity data can be costly to collect or may not be available. Life history theory suggests that growth is biphasic for many organisms, with a change-point in growth occurring at maturity. If so, then it should be possible to use a biphasic growth model to estimate AAM from growth data. To test this prediction, we used the Lester biphasic growth model in a likelihood profiling framework to estimate AAM from length at age data. We fit our model to simulated growth trajectories to determine minimum data requirements (in terms of sample size, precision in length at age, and the cost to somatic growth of maturity) for accurate AAM estimates. We then applied our method to a large walleye Sander vitreus data set and show that our AAM estimates are in close agreement with conventional estimates when our model fits well. Finally, we highlight the potential of our method by applying it to length at age data for a variety of ectotherms. Our method shows promise as a tool for estimating AAM and other life history traits from contemporary and historical samples. [Honsey, Andrew E.] Univ Minnesota, Ecol Evolut & Behav Grad Program, 1987 Upper Buford Circle, St Paul, MN 55108 USA; [Honsey, Andrew E.; Venturelli, Paul A.] Univ Minnesota, Dept Fisheries Wildlife & Conservat Biol, 2003 Upper Buford Circle, St Paul, MN 55108 USA; [Staples, David F.] Minnesota Dept Nat Resources, Div Fish & Wildlife, 5463-C West Broadway, Forest Lake, MN 55025 USA Honsey, AE (reprint author), Univ Minnesota, Ecol Evolut & Behav Grad Program, 1987 Upper Buford Circle, St Paul, MN 55108 USA.; Honsey, AE (reprint author), Univ Minnesota, Dept Fisheries Wildlife & Conservat Biol, 2003 Upper Buford Circle, St Paul, MN 55108 USA. honse018@umn.edu Venturelli, Paul/A-2337-2008 Venturelli, Paul/0000-0002-7329-7517 Moos Fellowship in Aquatic Biology; University of Minnesota; Minnesota Department of Natural Resources We thank Tyler Imfeld, Monica Watson, Nigel Lester, Brian Shuter, Cindy Chu, Henrique Giacomini, and the Venturelli lab for their assistance with analysis and data collection. We are also indebted to Richard Bruce, Beth Matta, Mike Palmer, Paul Rago, Sandra Orsatti, Daniel Nadeau, Michel Legault, the Ontario Ministry of Natural Resources and Forestry, the Quebec Ministry of Natural Resources and Wildlife, and the Minnesota Department of Natural Resources (copyright 2016, Minnesota Department of Natural Resources) for providing data. Finally, we thank two anonymous reviewers for their helpful comments and suggestions. This work was funded by the Moos Fellowship in Aquatic Biology, the University of Minnesota, and the Minnesota Department of Natural Resources. Andersen KH, 2015, FISH FISH, V16, P1, DOI 10.1111/faf.12042; AUGERT D, 1993, CAN J ZOOL, V71, P26, DOI 10.1139/z93-005; Baulier L, 2008, J FISH BIOL, V73, P2452, DOI 10.1111/j.1095-8649.2008.02088.x; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; Beverton R. J. H., 1957, FISHERIES INVESTIG 2, V19, P1; Boukal DS, 2014, J THEOR BIOL, V359, P199, DOI 10.1016/j.jtbi.2014.05.022; Bozek MA, 2011, BIOLOGY, MANAGEMENT, AND CULTURE OF WALLEYE AND SAUGER, P233; Brunel T, 2013, OECOLOGIA, V172, P631, DOI 10.1007/s00442-012-2527-1; Canty A., 2015, BOOT BOOTSTRAP R S P; Castanet J, 1996, HERPETOLOGICA, V52, P160; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; Chavarie L, 2016, J GREAT LAKES RES, V42, P193, DOI 10.1016/j.jglr.2015.07.006; CHEN Y, 1994, AQUAT SCI, V56, P206, DOI 10.1007/BF00879965; Chezik KA, 2014, CAN J FISH AQUAT SCI, V71, P47, DOI 10.1139/cjfas-2013-0295; Daniel W., 2013, BIOSTATISTICS FDN AN; Davison A. C., 1997, BOOTSTRAP METHODS TH; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; DEMASTER DP, 1978, J FISH RES BOARD CAN, V35, P912, DOI 10.1139/f78-148; EBERT D, 1994, OIKOS, V69, P309, DOI 10.2307/3546152; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Engelhard GH, 2003, ICES J MAR SCI, V60, P304, DOI 10.1016/S1054-3139(03)00017-1; Fox J., 2011, R COMPANION APPL REG; Glazier DS, 2010, BIOL REV, V85, P111, DOI 10.1111/j.1469-185X.2009.00095.x; Hacking I., 1965, LOGIC STAT INFERENCE; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Herczeg G, 2012, EVOL ECOL, V26, P109, DOI 10.1007/s10682-011-9491-9; Hixon MA, 2014, ICES J MAR SCI, V71, P2171, DOI 10.1093/icesjms/fst200; Hoekstra R. J., 2005, EVOLUTION; HUBERT JJ, 1984, BIOASSAY; KALBFLEI.JD, 1970, J ROY STAT SOC B, V32, P175; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuwamura T, 1996, BEHAV ECOL SOCIOBIOL, V38, P365, DOI 10.1007/s002650050253; LAIRD NM, 1982, BIOMETRICS, V38, P963, DOI 10.2307/2529876; Lester NP, 2014, ECOL APPL, V24, P38, DOI 10.1890/12-2020.1; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Logsdon D. E., 2006, 535 MINN DEP NAT RES; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Matta ME, 2007, ENVIRON BIOL FISH, V80, P309, DOI 10.1007/s10641-007-9223-8; Minte-Vera CV, 2016, FISH RES, V180, P31, DOI 10.1016/j.fishres.2015.10.023; Mollet FM, 2010, OIKOS, V119, P10, DOI 10.1111/j.1600-0706.2009.17746.x; Morgan G.E., 2002, MANUAL INSTRUCTIONS; Ohnishi S, 2012, FISH B-NOAA, V110, P223; Pawitan Y., 2013, ALL LIKELIHOOD STAT; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; R Core Team, 2015, R LANG ENV STAT COMP; Raue A, 2009, BIOINFORMATICS, V25, P1923, DOI 10.1093/bioinformatics/btp358; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; Rijnsdorp AD, 1995, BEL BAR LIB, P581; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Roff Derek A., 1992; Royall R, 2004, NATURE OF SCIENTIFIC EVIDENCE, P119; Royall RM, 1997, STAT EVIDENCE LIKELI; Scott RD, 2012, MAR ECOL PROG SER, V450, P147, DOI 10.3354/meps09565; Sober E, 2008, EVIDENCE EVOLUTION L; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Taper ML, 2011, HBK PHILOS SCI, V7, P513; TRIPPEL EA, 1991, CAN J FISH AQUAT SCI, V48, P1446, DOI 10.1139/f91-172; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Uusi-Heikkila S., 2015, EVOLUTIONARY APPL, V8, P579; Venturelli PA, 2010, CAN J FISH AQUAT SCI, V67, P1057, DOI 10.1139/F10-041; Von Bertalanffy L., 1938, HUM BIOL, V10, P181, DOI DOI 10.2307/41447359; Walters C. J, 1992, QUANTITATIVE FISHERI; WARE DM, 1978, J FISH RES BOARD CAN, V35, P220, DOI 10.1139/f78-036; West GB, 1999, SCIENCE, V284, P1677, DOI 10.1126/science.284.5420.1677; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122 69 1 1 3 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. JAN 2017 27 1 182 192 10.1002/eap.1421 11 Ecology; Environmental Sciences Environmental Sciences & Ecology EH7XG WOS:000391985300015 27973729 2019-02-21 J Wang, HY; Chen, YS; Hsu, CC; Shen, SF Wang, Hui-Yu; Chen, Ying-Shiuan; Hsu, Chien-Chung; Shen, Sheng-Feng Fishing-induced changes in adult length are mediated by skipped-spawning ECOLOGICAL APPLICATIONS English Article adult demography; eco-genetic individual-based modeling; fisheries selectivity; fishing-induced evolution; life history trade-offs; Pacific bluefin tuna; Thunnus orientalis PACIFIC BLUEFIN TUNA; INDUCED DISRUPTIVE SELECTION; DEPENDENT ENERGY ALLOCATION; LIFE-HISTORY EVOLUTION; COD GADUS-MORHUA; AGE-STRUCTURE; THUNNUS-ORIENTALIS; BIPHASIC GROWTH; NORTH PACIFIC; FISHERIES Elucidating fishing effects on fish population dynamics is a critical step toward sustainable fisheries management. Despite previous studies that have suggested age or size truncation in exploited fish populations, other aspects of fishing effects on population demography, e. g., via altering life histories and density, have received less attention. Here, we investigated the fishing effects altering adult demography via shifting reproductive trade-offs in the iconic, overexploited, Pacific bluefin tuna Thunnus orientalis. We found that, contrary to our expectation, mean lengths of catch increased over time in longline fisheries. On the other hand, mean catch lengths for purse seine fisheries did not show such increasing trends. We hypothesized that the size-dependent energetic cost of the spawning migration and elevated fishing mortality on the spawning grounds potentially drive size-dependent skipped spawning for adult tuna, mediating the observed changes in the catch lengths. Using eco-genetic individual-based modeling, we demonstrated that fishing-induced evolution of skipped spawning and size truncation interacted to shape the observed temporal changes in mean catch lengths for tuna. Skipped spawning of the small adults led to increased mean catch lengths for the longline fisheries, while truncation of small adults by the purse seines could offset such a pattern. Our results highlight the eco-evolutionary dynamics of fishing effects on population demography and caution against using demographic traits as a basis for fisheries management of the Pacific bluefin tuna as well as other migratory species. [Wang, Hui-Yu; Chen, Ying-Shiuan; Hsu, Chien-Chung] Natl Taiwan Univ, Inst Oceanog, 1,Sec 4,Roosevelt Rd, Taipei 106, Taiwan; [Shen, Sheng-Feng] Acad Sinica, Biodivers Res Ctr, Taipei 115, Taiwan Wang, HY (reprint author), Natl Taiwan Univ, Inst Oceanog, 1,Sec 4,Roosevelt Rd, Taipei 106, Taiwan. huiyuwang@ntu.edu.tw WANG, HUI-YU/0000-0002-9100-321X Ministry of Science and Technology (a.k.a., National Science Council), Taiwan [NSC 102-2611-M-002-001, MOST 103-2611-M-002-015] We thank Tomas Hook's laboratory at Purdue University, Mikko Heino, Lori Ivan, Francis Juanes, Jin Gao, and Chih-hao Hsieh for providing invaluable comments and suggestions on the manuscript. Funding was provided by the Ministry of Science and Technology (a.k.a., National Science Council), Taiwan. Projects NSC 102-2611-M-002-001 and MOST 103-2611-M-002-015. BAYLIFF WH, 1994, FAO FISH TECH PAP, V336, P244; Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; Block BA, 2011, NATURE, V475, P86, DOI 10.1038/nature10082; Boustany AM, 2010, PROG OCEANOGR, V86, P94, DOI 10.1016/j.pocean.2010.04.015; Brunel T, 2013, ICES J MAR SCI, V70, P270, DOI 10.1093/icesjms/fss184; Brunel T, 2010, ICES J MAR SCI, V67, P1921, DOI 10.1093/icesjms/fsq032; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Chapman EW, 2011, CAN J FISH AQUAT SCI, V68, P1934, DOI 10.1139/F2011-109; Chen KS, 2006, FISHERIES SCI, V72, P985, DOI 10.1111/j.1444-2906.2006.01247.x; Collette B. B., 1983, FAO FISHERY SYNOPSIS, V125, P122; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Durant JM, 2013, MAR ECOL PROG SER, V480, P277, DOI 10.3354/meps10308; Edeline E, 2009, P R SOC B, V276, P4163, DOI 10.1098/rspb.2009.1106; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Farley JH, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096392; Francis RC, 2007, FISHERIES, V32, P217, DOI 10.1577/1548-8446(2007)32[217:TCFBFS]2.0.CO;2; Hidalgo M, 2011, MAR ECOL PROG SER, V426, P1, DOI 10.3354/meps09077; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Hsieh CH, 2010, AQUAT SCI, V72, P165, DOI 10.1007/s00027-009-0122-2; Hsu CC, 2000, FISHERIES SCI, V66, P485, DOI 10.1046/j.1444-2906.2000.00078.x; IATTC, 2014, INT TROP TUN COMM SC; International Scientific Committee (ISC) for Tuna and Tuna-like Species in the North Pacific Ocean, 2011, PAC BLUEF TUN WORK G; International Scientific Committee (ISC) for Tuna and Tuna-like Species in the North Pacific Ocean, 2014, ISC14PLENARYINFO18; International Scientific Committee (ISC) for Tuna and Tuna-like Species in the North Pacific Ocean, 2012, PAC BLUEF TUN WORK G; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Landi P, 2015, J THEOR BIOL, V365, P204, DOI 10.1016/j.jtbi.2014.10.017; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Lester NP, 2014, ECOL APPL, V24, P38, DOI 10.1890/12-2020.1; Margulies D, 2007, FISH B-NOAA, V105, P249; Masuma S., 2009, COLLECT VOL SCI PAP, V63, P207; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Ottersen G, 2006, FISH OCEANOGR, V15, P230, DOI 10.1111/j.1365-2419.2006.00404.x; Quince C, 2008, J THEOR BIOL, V254, P207, DOI 10.1016/j.jtbi.2008.05.030; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; ROFF DA, 1991, AM ZOOL, V31, P205; Rouyer T, 2011, GLOBAL CHANGE BIOL, V17, P3046, DOI 10.1111/j.1365-2486.2011.02443.x; Secor D. H., 2007, COL VOL SCI PAP ICCA, V60, P1141; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Shimose T, 2009, FISH RES, V100, P134, DOI 10.1016/j.fishres.2009.06.016; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Wang HY, 2009, EVOL APPL, V2, P438, DOI 10.1111/j.1752-4571.2009.00088.x; Ware D. M., 1980, CANADIAN J FISHERIES, V37, P207; WARE DM, 1982, CAN J FISH AQUAT SCI, V39, P3, DOI 10.1139/f82-002; Whitlock RE, 2016, FISH RES, V181, P248, DOI 10.1016/j.fishres.2016.03.010; Whitlock RE, 2012, FISH RES, V119, P115, DOI 10.1016/j.fishres.2011.12.015; Yamada H., 2009, COLLECT VOL SCI PAP, V63, P195 53 1 1 1 11 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. JAN 2017 27 1 274 284 10.1002/eap.1441 11 Ecology; Environmental Sciences Environmental Sciences & Ecology EH7XG WOS:000391985300022 28052500 2019-02-21 J Dennenmoser, S; Vamosi, SM; Nolte, AW; Rogers, SM Dennenmoser, Stefan; Vamosi, Steven M.; Nolte, Arne W.; Rogers, Sean M. Adaptive genomic divergence under high gene flow between freshwater and brackish-water ecotypes of prickly sculpin (Cottus asper) revealed by Pool-Seq MOLECULAR ECOLOGY English Article adaptation; amphidromy; atp1a1a; Pool-Seq; salinity genes; whole-genome scan RECOMBINATION RATE VARIATION; LOCAL ADAPTATION; THREESPINE STICKLEBACKS; ATLANTIC SALMON; NEXT-GENERATION; DIFFERENTIAL EXPRESSION; ECOLOGICAL SPECIATION; 3-SPINED STICKLEBACK; POPULATION-STRUCTURE; SALINITY TOLERANCE Understanding the genomic basis of adaptive divergence in the presence of gene flow remains a major challenge in evolutionary biology. In prickly sculpin (Cottus asper), an abundant euryhaline fish in northwestern North America, high genetic connectivity among brackish-water (estuarine) and freshwater (tributary) habitats of coastal rivers does not preclude the build-up of neutral genetic differentiation and emergence of different life history strategies. Because these two habitats present different osmotic niches, we predicted high genetic differentiation at known teleost candidate genes underlying salinity tolerance and osmoregulation. We applied whole-genome sequencing of pooled DNA samples (Pool-Seq) to explore adaptive divergence between two estuarine and two tributary habitats. Paired-end sequence reads were mapped against genomic contigs of European Cottus, and the gene content of candidate regions was explored based on comparisons with the threespine stickleback genome. Genes showing signals of repeated differentiation among brackish-water and freshwater habitats included functions such as ion transport and structural permeability in freshwater gills, which suggests that local adaptation to different osmotic niches might contribute to genomic divergence among habitats. Overall, the presence of both repeated and unique signatures of differentiation across many loci scattered throughout the genome is consistent with polygenic adaptation from standing genetic variation and locally variable selection pressures in the early stages of life history divergence. [Dennenmoser, Stefan; Nolte, Arne W.] Max Planck Inst Evolutionary Biol, August Thienemann Str 2, D-24306 Plon, Germany; [Dennenmoser, Stefan; Vamosi, Steven M.; Rogers, Sean M.] Univ Calgary, Dept Biol Sci, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada; [Nolte, Arne W.] Carl von Ossietzky Univ Oldenburg, Inst Biol, Carl von Ossietzky Str 9-11, D-26111 Oldenburg, Germany Dennenmoser, S (reprint author), Max Planck Inst Evolutionary Biol, August Thienemann Str 2, D-24306 Plon, Germany.; Dennenmoser, S (reprint author), Univ Calgary, Dept Biol Sci, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. dennenmoser@evolbio.mpg.de Nolte, Arne/I-4661-2017; Vamosi, Steven/C-8126-2009 Vamosi, Steven/0000-0003-3903-5000 NSERC; Alberta Innovates Technology Futures New Faculty Award; Alberta Innovates Technology Futures Postgraduate scholarship; European Research Council Field assistance by Jonathan Lowey is greatly appreciated. This research was supported by NSERC Discovery Grants (SMR and SMV), an Alberta Innovates Technology Futures New Faculty Award (SMR), an Alberta Innovates Technology Futures Postgraduate scholarship (SD) and an European Research Council starting grant (AN). SMR would like to thank the Bamfield Marine Sciences Centre (BMSC) for resources while working on this study. ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999; Anderson EC, 2014, MOL ECOL, V23, P502, DOI 10.1111/mec.12609; Aykanat T, 2011, GENETICA, V139, P233, DOI 10.1007/s10709-010-9540-2; Barrio AM, 2016, ELIFE, V5, DOI 10.7554/eLife.12081; Beaumont MA, 1996, P ROY SOC B-BIOL SCI, V263, P1619, DOI 10.1098/rspb.1996.0237; Bekkevold D, 2005, EVOLUTION, V59, P2656; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Berg PR, 2015, GENOME BIOL EVOL, V7, P1644, DOI 10.1093/gbe/evv093; BOHN A, 1965, CAN J ZOOLOG, V43, P977, DOI 10.1139/z65-101; Bourret V, 2014, MOL ECOL, V23, P4444, DOI 10.1111/mec.12798; Burri R, 2015, GENOME RES, V25, P1656, DOI 10.1101/gr.196485.115; Butlin RK, 2014, EVOLUTION, V68, P935, DOI 10.1111/evo.12329; CHARLESWORTH B, 1993, GENETICS, V134, P1289; Cheng J, 2013, HEREDITY, V111, P520, DOI 10.1038/hdy.2013.76; Cheng J, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0746; Conesa A, 2005, BIOINFORMATICS, V21, P3674, DOI 10.1093/bioinformatics/bti610; Coyne J. A., 2004, SPECIATION; Cruickshank TE, 2014, MOL ECOL, V23, P3133, DOI 10.1111/mec.12796; Dalziel AC, 2009, MOL ECOL, V18, P4997, DOI 10.1111/j.1365-294X.2009.04427.x; DeFaveri J, 2014, J EVOLUTION BIOL, V27, P290, DOI 10.1111/jeb.12289; DeFaveri J, 2011, EVOLUTION, V65, P1800, DOI 10.1111/j.1558-5646.2011.01247.x; Delmore KE, 2015, MOL ECOL, V24, P1873, DOI 10.1111/mec.13150; Dennenmoser S, 2015, J BIOGEOGR, V42, P1626, DOI 10.1111/jbi.12527; Dennenmoser S, 2014, BIOL J LINN SOC, V113, P943, DOI 10.1111/bij.12384; Endler J. A., 1986, NATURAL SELECTION WI; Ern R, 2014, J FISH BIOL, V84, P1210, DOI 10.1111/jfb.12330; Evans DH, 2008, AM J PHYSIOL-REG I, V295, pR704, DOI 10.1152/ajpregu.90337.2008; Evans DH, 2005, PHYSIOL REV, V85, P97, DOI 10.1152/physrev.00050.2003; Feder JL, 2014, J HERED, V105, P810, DOI 10.1093/jhered/esu038; Feder JL, 2012, TRENDS GENET, V28, P342, DOI 10.1016/j.tig.2012.03.009; Ferretti L, 2013, MOL ECOL, V22, P5561, DOI 10.1111/mec.12522; Feulner PGD, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1004966; Flaxman SM, 2014, MOL ECOL, V23, P4074, DOI 10.1111/mec.12750; Foll M, 2008, GENETICS, V180, P977, DOI 10.1534/genetics.108.092221; Fracassetti M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0140462; Futschik A, 2010, GENETICS, V186, P207, DOI 10.1534/genetics.110.114397; Gagnaire PA, 2013, EVOLUTION, V67, P2483, DOI 10.1111/evo.12075; Gautier M, 2013, MOL ECOL, V22, P3766, DOI 10.1111/mec.12360; Goto A, 2015, ENVIRON BIOL FISH, V98, P307, DOI 10.1007/s10641-014-0262-7; Gow JL, 2007, J EVOLUTION BIOL, V20, P2173, DOI 10.1111/j.1420-9101.2007.01427.x; Guo BC, 2015, BMC BIOL, V13, DOI 10.1186/s12915-015-0130-8; Haasl RJ, 2016, MOL ECOL, V25, P5, DOI 10.1111/mec.13339; Hemmer-Hansen J, 2013, MOL ECOL, V22, P2653, DOI 10.1111/mec.12284; Hoffmann AA, 2008, ANNU REV ECOL EVOL S, V39, P21, DOI 10.1146/annurev.ecolsys.39.110707.173532; Hohenlohe PA, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000862; Holliday JA, 2016, NEW PHYTOL, V209, P1240, DOI 10.1111/nph.13643; Hwang PP, 2011, AM J PHYSIOL-REG I, V301, pR28, DOI 10.1152/ajpregu.00047.2011; Ito Y, 2013, FRONT PHYSIOL, V4, DOI 10.3389/fphys.2013.00059; Jones FC, 2012, NATURE, V484, P55, DOI 10.1038/nature10944; Jones FC, 2012, CURR BIOL, V22, P83, DOI 10.1016/j.cub.2011.11.045; Kaeuffer R, 2012, EVOLUTION, V66, P402, DOI 10.1111/j.1558-5646.2011.01440.x; Kinziger AP, 2010, ZOOTAXA, P50; Kirkpatrick M, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000501; Kofler R, 2011, BIOINFORMATICS, V27, P3435, DOI 10.1093/bioinformatics/btr589; Kofler R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015925; Kozak GM, 2014, EVOLUTION, V68, P63, DOI 10.1111/evo.12265; Lamichhaney S, 2012, P NATL ACAD SCI USA, V109, P19345, DOI 10.1073/pnas.1216128109; Langerhans RB, 2013, CURR ZOOL, V59, P31, DOI 10.1093/czoolo/59.1.31; Larsen PF, 2008, BMC GENET, V9, DOI 10.1186/1471-2156-9-12; Le Corre V, 2012, MOL ECOL, V21, P1548, DOI 10.1111/j.1365-294X.2012.05479.x; Leder EH, 2010, MOL BIOL EVOL, V27, P1495, DOI 10.1093/molbev/msq031; Lee CE, 2011, EVOLUTION, V65, P2229, DOI 10.1111/j.1558-5646.2011.01308.x; Li H, 2009, BIOINFORMATICS, V25, P2078, DOI 10.1093/bioinformatics/btp352; Lohse K, 2015, EVOLUTION, V69, P1178, DOI 10.1111/evo.12650; MacPherson A, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.1570; Malinsky M, 2015, SCIENCE, V350, P1493, DOI 10.1126/science.aac9927; Mayr E., 1963, ANIMAL SPECIES EVOLU; McAllister DE, 1961, B NATL MUSEUM CANADA, V172, P66; McCairns RJS, 2008, MOL ECOL, V17, P3901, DOI 10.1111/j.1365-294X.2008.03884.x; McCairns RJS, 2010, EVOLUTION, V64, P1029, DOI 10.1111/j.1558-5646.2009.00886.x; McGaughran A, 2016, MOL BIOL EVOL, V33, P2257, DOI 10.1093/molbev/msw093; McPhail J. D., 2007, FRESHWATER FISHES BR; Mobasheri A, 2000, BIOSCIENCE REP, V20, P51, DOI 10.1023/A:1005580332144; Nachman MW, 2012, PHILOS T R SOC B, V367, P409, DOI 10.1098/rstb.2011.0249; Nei M., 1987, MOL EVOLUTIONARY GEN; Nielsen R, 2005, ANNU REV GENET, V39, P197, DOI 10.1146/annurev.genet.39.073003.112420; Nilsen TO, 2007, J EXP BIOL, V210, P2885, DOI 10.1242/jeb.002873; Norman JD, 2011, BMC GENET, V12, DOI 10.1186/1471-2156-12-81; Nosil P, 2013, EVOLUTION, V67, P2461, DOI 10.1111/evo.12191; Nosil P, 2012, PHILOS T R SOC B, V367, P332, DOI 10.1098/rstb.2011.0263; Papakostas S, 2012, MOL ECOL, V21, P3516, DOI 10.1111/j.1365-294X.2012.05553.x; Perrier C, 2013, MOL ECOL, V22, P5577, DOI 10.1111/mec.12500; Prunier J, 2012, MOL ECOL, V21, P4270, DOI 10.1111/j.1365-294X.2012.05691.x; Ravinet M, 2016, MOL ECOL, V25, P287, DOI 10.1111/mec.13332; Rellstab C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080422; Renaut S, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2833; Roesti M, 2012, MOL ECOL, V21, P2852, DOI 10.1111/j.1365-294X.2012.05509.x; Ruegg K, 2014, MOL ECOL, V23, P4757, DOI 10.1111/mec.12842; Rundle HD, 2000, SCIENCE, V287, P306, DOI 10.1126/science.287.5451.306; Sambrook J, 2001, MOL CLONING LAB MANU; Schlotterer C, 2014, NAT REV GENET, V15, P749, DOI 10.1038/nrg3803; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schluter D, 2009, SCIENCE, V323, P737, DOI 10.1126/science.1160006; Sedlazeck FJ, 2013, BIOINFORMATICS, V29, P2790, DOI 10.1093/bioinformatics/btt468; Seehausen O, 2014, NAT REV GENET, V15, P176, DOI 10.1038/nrg3644; Sexton JP, 2014, EVOLUTION, V68, P1, DOI 10.1111/evo.12258; Shafer ABA, 2013, ECOL LETT, V16, P940, DOI 10.1111/ele.12120; Shikano T, 2010, MOL ECOL, V19, P1147, DOI 10.1111/j.1365-294X.2010.04553.x; Shimada Y, 2011, MOL BIOL EVOL, V28, P181, DOI 10.1093/molbev/msq181; Smadja CM, 2012, EVOLUTION, V66, P2723, DOI 10.1111/j.1558-5646.2012.01612.x; Smolka M, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0803-1; Stemshorn KC, 2011, MOL ECOL, V20, P1475, DOI 10.1111/j.1365-294X.2010.04997.x; Stephan W, 2016, MOL ECOL, V25, P79, DOI 10.1111/mec.13288; Sutherland BJG, 2014, MOL ECOL, V23, P1952, DOI 10.1111/mec.12713; TAJIMA F, 1989, GENETICS, V123, P585; Tigano A, 2016, MOL ECOL, V25, P2144, DOI 10.1111/mec.13606; Tsai JR, 2007, J EXP BIOL, V210, P620, DOI 10.1242/jeb.02684; Turner TL, 2005, PLOS BIOL, V3, P1572, DOI 10.1371/journal.pbio.0030285; Urbina MA, 2013, J COMP PHYSIOL B, V183, P345, DOI 10.1007/s00360-012-0719-y; Velotta JP, 2014, OECOLOGIA, V175, P1081, DOI 10.1007/s00442-014-2961-3; Wadsworth CB, 2015, HEREDITY, V114, P593, DOI 10.1038/hdy.2014.128; Wang YF, 2009, AM J PHYSIOL-REG I, V296, pR1650, DOI 10.1152/ajpregu.00119.2009; Whitehead A, 2013, MOL ECOL, V22, P3780, DOI 10.1111/mec.12316; Whitehead A, 2011, P NATL ACAD SCI USA, V108, P6193, DOI 10.1073/pnas.1017542108; Wu CI, 2001, J EVOLUTION BIOL, V14, P851, DOI 10.1046/j.1420-9101.2001.00335.x; Yan BQ, 2013, MOL BIOL REP, V40, P925, DOI 10.1007/s11033-012-2133-7; Yeaman S, 2013, P NATL ACAD SCI USA, V110, pE1743, DOI 10.1073/pnas.1219381110; Yeaman S, 2011, EVOLUTION, V65, P1897, DOI 10.1111/j.1558-5646.2011.01269.x; Zikos A, 2014, COMP BIOCHEM PHYS A, V178, P121, DOI 10.1016/j.cbpa.2014.08.016 119 12 12 5 58 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. JAN 2017 26 1 SI 25 42 10.1111/mec.13805 18 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology EH7GJ WOS:000391940600003 27541083 2019-02-21 J van der Linden, D; Pekaar, KA; Bakker, AB; Schermer, JA; Vernon, PA; Dunkel, CS; Petrides, KV van der Linden, Dimitri; Pekaar, Keri A.; Bakker, Arnold B.; Schermer, Julie Aitken; Vernon, Philip A.; Dunkel, Curtis S.; Petrides, K. V. Overlap Between the General Factor of Personality and Emotional Intelligence: A Meta-Analysis PSYCHOLOGICAL BULLETIN English Article general factor of personality; emotional intelligence; meta-analysis; social effectiveness; trait EI HIGHER-ORDER FACTORS; CRITERION-RELATED VALIDITY; SITUATIONAL JUDGMENT TEST; CAREER DECISION-MAKING; CORE-SELF-EVALUATIONS; INVENTORY-SHORT-FORM; LIFE-HISTORY THEORY; BIG 5; INCREMENTAL VALIDITY; PREDICTIVE-VALIDITY We examine the relationship between the general factor of personality (GFP) and emotional intelligence (EI) and specifically test the hypothesis that the GFP is a social effectiveness factor overlapping conceptually with EI. Presented is an extensive meta-analysis in which the associations between the GFP, extracted from the Big Five dimensions, with various EI measures is examined. Based on a total sample of k = 142 data sources (N = 36,268) the 2 major findings from the meta-analysis were (a) a large overlap between the GFP and trait EI (r approximate to .85); and (b) a positive, but more moderate, correlation with ability EI (r approximate to .28). These findings show that high-GFP individuals score higher on trait and ability EI, supporting the notion that the GFP is a social effectiveness factor. The findings also suggest that the GFP is very similar, perhaps even synonymous, to trait EI. [van der Linden, Dimitri; Pekaar, Keri A.; Bakker, Arnold B.] Erasmus Univ, Inst Psychol, POB 9104, NL-3000 DR Rotterdam, Netherlands; [Schermer, Julie Aitken] Univ Western Ontario, Management & Org Studies, London, ON, Canada; [Vernon, Philip A.] Univ Western Ontario, Dept Psychol, London, ON, Canada; [Dunkel, Curtis S.] Western Illinois Univ, Dept Psychol, Macomb, IL USA; [Petrides, K. V.] UCL, London Psychometr Lab, London, England van der Linden, D (reprint author), Erasmus Univ, Inst Psychol, POB 9104, NL-3000 DR Rotterdam, Netherlands. vanderlinden@fsw.eur.nl Van der Linden, Dimitri/0000-0001-7098-8948; Pekaar, Keri/0000-0002-4612-0476 AFOLABI OA, 2005, TEAM PERFORMANCE MAN, V11, P280, DOI DOI 10.1108/13527590510635161; Andrei F, 2016, J PERS ASSESS, V98, P261, DOI 10.1080/00223891.2015.1084630; Andrei F, 2013, PSIHOLOGIJA, V46, P5, DOI 10.2298/PSI1301005A; Anusic I, 2009, J PERS SOC PSYCHOL, V97, P1142, DOI 10.1037/a0017159; Arteche A, 2008, INT J SELECT ASSESS, V16, P421, DOI 10.1111/j.1468-2389.2008.00446.x; Ashton MC, 2007, PERS SOC PSYCHOL REV, V11, P150, DOI 10.1177/1088868306294907; Ashton MC, 2009, PERS SOC PSYCHOL REV, V13, P79, DOI 10.1177/1088868309338467; Atta M, 2013, INT J BUSINESS SOCIA, V4, P253; Austin EJ, 2005, PERS INDIV DIFFER, V38, P547, DOI 10.1016/j.paid.2004.05.009; Austin EJ, 2008, PERS INDIV DIFFER, V44, P679, DOI 10.1016/j.paid.2007.10.001; Austin EJ, 2007, PERS INDIV DIFFER, V43, P179, DOI 10.1016/j.paid.2006.11.019; Austin EJ, 2010, BRIT J PSYCHOL, V101, P563, DOI 10.1348/000712609X474370; Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; Bastian VA, 2005, PERS INDIV DIFFER, V39, P1135, DOI 10.1016/j.paid.2005.04.006; BLOCK J, 1995, PSYCHOL BULL, V117, P187, DOI 10.1037/0033-2909.117.2.187; Brackett MA, 2004, PERS INDIV DIFFER, V36, P1387, DOI 10.1016/S0191-8869(03)00236-8; Brackett MA, 2003, PERS SOC PSYCHOL B, V29, P1147, DOI 10.1177/0146167203254596; Brannick MT, 2009, MED EDUC, V43, P1062, DOI 10.1111/j.1365-2923.2009.03430.x; Byrne JC, 2007, INT J SELECT ASSESS, V15, P341, DOI 10.1111/j.1468-2389.2007.00393.x; Perez-Gonzalez JC, 2014, PERS INDIV DIFFER, V65, P53, DOI 10.1016/j.paid.2014.01.021; CARROLL JB, 1991, INTELLIGENCE, V15, P423, DOI 10.1016/0160-2896(91)90004-W; Caruso DR, 2002, J PERS ASSESS, V79, P306, DOI 10.1207/S15327752JPA7902_12; Caspi A, 2014, CLIN PSYCHOL SCI, V2, P119, DOI 10.1177/2167702613497473; Cavazotte F, 2012, LEADERSHIP QUART, V23, P443, DOI 10.1016/j.leaqua.2011.10.003; Chamorro-Premuzic T, 2007, PERS INDIV DIFFER, V42, P1633, DOI 10.1016/j.paid.2006.10.029; Chamorro-Premuzic T, 2012, PSYCHOL MUSIC, V40, P285, DOI 10.1177/0305735610381591; Chang LY, 2012, J PERS SOC PSYCHOL, V102, P408, DOI 10.1037/a0025559; Chapman B. P., 2005, THESIS; Chapman BP, 2005, J PERS ASSESS, V85, P154, DOI 10.1207/s15327752jpa8502_08; Charbonneau D, 2002, PERS INDIV DIFFER, V33, P1101, DOI 10.1016/S0191-8869(01)00216-1; Ciarrochi JV, 2000, PERS INDIV DIFFER, V28, P539, DOI 10.1016/S0191-8869(99)00119-1; Collins E, 2012, PERS INDIV DIFFER, V52, P133, DOI 10.1016/j.paid.2011.09.015; Connelly BS, 2010, PSYCHOL BULL, V136, P1092, DOI 10.1037/a0021212; Cote S, 2006, ADMIN SCI QUART, V51, P1, DOI 10.2189/asqu.51.1.1; Cote S, 2014, ANNU REV ORGAN PSYCH, V1, P459, DOI 10.1146/annurev-orgpsych-031413-091233; Cote S, 2011, PSYCHOL SCI, V22, P1073, DOI 10.1177/0956797611416251; Cote S, 2010, IND ORGAN PSYCHOL-US, V3, P127, DOI 10.1111/j.1754-9434.2010.01211.x; CRONBACH LJ, 1955, PSYCHOL BULL, V52, P281, DOI 10.1037/h0040957; Davies M, 1998, J PERS SOC PSYCHOL, V75, P989, DOI 10.1037/0022-3514.75.4.989; Davies SE, 2015, PERS INDIV DIFFER, V81, P13, DOI 10.1016/j.paid.2015.01.006; Davis SK, 2012, J ADOLESCENCE, V35, P1369, DOI 10.1016/j.adolescence.2012.05.007; Dawda D, 2000, PERS INDIV DIFFER, V28, P797, DOI 10.1016/S0191-8869(99)00139-7; Day AL, 2005, EUR J PERSONALITY, V19, P519, DOI 10.1002/per.552; Day AL, 2004, PERS INDIV DIFFER, V36, P1443, DOI 10.1016/S0191-8869(03)00240-X; De Raad B, 2005, PERS INDIV DIFFER, V38, P673, DOI 10.1016/j.paid.2004.05.022; de Vries RE, 2011, J RES PERS, V45, P229, DOI 10.1016/j.jrp.2010.12.002; Depue RA, 1999, BEHAV BRAIN SCI, V22, P491; DeYoung CG, 2002, PERS INDIV DIFFER, V33, P533, DOI 10.1016/S0191-8869(01)00171-4; Di Fabio A, 2013, J CAREER ASSESSMENT, V21, P42, DOI 10.1177/1069072712454698; Di Fabio A, 2012, J EMPLOYMENT COUNS, V49, P118, DOI 10.1002/j.2161-1920.2012.00012.x; Di Fabio A, 2009, INT J EDUC VOCAT GUI, V9, P135, DOI 10.1007/s10775-009-9162-3; Di Fabio A, 2011, J CAREER ASSESSMENT, V19, P21, DOI 10.1177/1069072710382530; Digman JM, 1997, J PERS SOC PSYCHOL, V73, P1246, DOI 10.1037/0022-3514.73.6.1246; Douglas C., 2004, J LEADERSH ORG STUD, V10, P2, DOI DOI 10.1177/107179190401000301; Downey LA, 2011, INT J SELECT ASSESS, V19, P280, DOI 10.1111/j.1468-2389.2011.00557.x; DULEWICZ V, 1999, LEADERSHIP ORG DEV J, V20, P242, DOI DOI 10.1108/01437739910287117; Dunkel C. S., 2014, HUMAN ETHOLOGY B, V29, P14; Dunkel C. S., 2014, HUMAN ETHOLOGY B, V29, P4; Dunkel CS, 2014, INTELLIGENCE, V47, P72, DOI 10.1016/j.intell.2014.09.003; Dunkel CS, 2014, PERS INDIV DIFFER, V64, P147, DOI 10.1016/j.paid.2014.02.030; Dunkel CS, 2014, PERS INDIV DIFFER, V61-62, P13, DOI 10.1016/j.paid.2013.12.017; Dunkel CS, 2013, INTELLIGENCE, V41, P423, DOI 10.1016/j.intell.2013.06.010; Emery C, 2012, SOC NETWORKS, V34, P429, DOI 10.1016/j.socnet.2012.02.001; Extremera N, 2011, PERS INDIV DIFFER, V51, P11, DOI 10.1016/j.paid.2011.02.029; Eysenck H. J, 1975, MANUAL EYSENCK PERSO; Ferguson FJ, 2010, PERS INDIV DIFFER, V49, P414, DOI 10.1016/j.paid.2010.04.009; Ferrando M, 2011, J PSYCHOEDUC ASSESS, V29, P150, DOI 10.1177/0734282910374707; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fiori M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098827; Fiori M, 2011, PERS INDIV DIFFER, V50, P329, DOI 10.1016/j.paid.2010.10.010; FISKE DW, 1949, J ABNORM SOC PSYCH, V44, P329, DOI 10.1037/h0057198; Freudenthaler HH, 2008, PERS INDIV DIFFER, V45, P673, DOI 10.1016/j.paid.2008.07.014; Freudenthaler HH, 2008, J INDIVID DIFFER, V29, P105, DOI 10.1027/1614-0001.29.2.105; Freudenthaler HH, 2005, PERS INDIV DIFFER, V39, P569, DOI 10.1016/j.paid.2005.02.004; Fukunishi I, 2001, PSYCHOL REP, V89, P625, DOI 10.2466/PR0.89.7.625-632; Gallagher EN, 2008, PERS INDIV DIFFER, V44, P1551, DOI 10.1016/j.paid.2008.01.011; GALTON F, 1887, FORTNIGHTLY REV, V42, P21; Gannon N, 2005, PERS INDIV DIFFER, V38, P1353, DOI 10.1016/j.paid.2004.09.001; Ghiabi B., 2011, SOCIAL BEHAV SCI, V30, P98; Godse A. S., 2010, SINGAPORE MANAGEMENT, V32, P69; GOLDBERG LR, 1990, J PERS SOC PSYCHOL, V59, P1216, DOI 10.1037//0022-3514.59.6.1216; Gottfredson L. S., 1997, INTELLIGENCE, V24, P24, DOI DOI 10.1016/S0160-2896(97)90014-3; Greven C, 2008, PERS INDIV DIFFER, V44, P1562, DOI 10.1016/j.paid.2008.01.012; Grubb WL, 2007, HUM PERFORM, V20, P43, DOI 10.1207/s15327043hup2001_3; Gugliandolo MC, 2015, PERS INDIV DIFFER, V74, P16, DOI 10.1016/j.paid.2014.09.032; Hafen CA, 2011, J HAPPINESS STUD, V12, P807, DOI 10.1007/s10902-010-9228-4; Hayduk L. A., 1987, STRUCTURAL EQUATIONS; Hopwood CJ, 2011, J RES PERS, V45, P468, DOI 10.1016/j.jrp.2011.06.002; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Hunter J. E., 2004, METHODS METAANALYSIS; Iliescu D, 2013, EUR J PSYCHOL ASSESS, V29, P121, DOI 10.1027/1015-5759/a000132; Iliescu D, 2012, INT J SELECT ASSESS, V20, P347, DOI 10.1111/j.1468-2389.2012.00605.x; Irwing P., 2013, PERSONALITY INDIVIDU, V55, P534, DOI DOI 10.1016/J.PAID.2013.03.002; Irwing P, 2012, INTELLIGENCE, V40, P296, DOI 10.1016/j.intell.2012.03.001; Ivcevic Z, 2007, J PERS, V75, P199, DOI 10.1111/j.1467-6494.2007.00437.x; James C, 2012, J PSYCHOEDUC ASSESS, V30, P425, DOI 10.1177/0734282912449448; JENSEN AR, 1994, INTELLIGENCE, V18, P231, DOI 10.1016/0160-2896(94)90029-9; Jensen AR, 1998, G FACTOR SCI MENTAL; Johnson SJ, 2009, PERS INDIV DIFFER, V47, P470, DOI 10.1016/j.paid.2009.04.025; Joseph DL, 2015, J APPL PSYCHOL, V100, P298, DOI 10.1037/a0037681; Joseph DL, 2010, J APPL PSYCHOL, V95, P54, DOI 10.1037/a0017286; Karim J, 2010, CROSS-CULT RES, V44, P374, DOI 10.1177/1069397110377603; Killian KD, 2012, J MARITAL FAM THER, V38, P502, DOI 10.1111/j.1752-0606.2011.00233.x; Kim HJ, 2011, INT J HOSP MANAG, V30, P588, DOI 10.1016/j.ijhm.2010.11.003; Kluemper D. H., 2006, THESIS; Kluemper DH, 2008, PERS INDIV DIFFER, V44, P1402, DOI 10.1016/j.paid.2007.12.008; Kluemper DH, 2013, J MANAGE, V39, P878, DOI 10.1177/0149206311407326; Law KS, 2004, J APPL PSYCHOL, V89, P483, DOI 10.1037/0021-9010.89.3.483; Libbrecht N, 2014, EMOTION, V14, P64, DOI 10.1037/a0034392; Libbrecht N, 2012, INT J PSYCHOL, V47, P438, DOI 10.1080/00207594.2012.682063; Linden D. van der, 2015, EVOLUTIONARY BEHAV S, V9, P145, DOI [DOI 10.1037/EBS0000027, 10.1037/ebs0000027]; Livingstone HA, 2005, EDUC PSYCHOL MEAS, V65, P757; Loehlin JC, 2012, J RES PERS, V46, P258, DOI 10.1016/j.jrp.2012.02.003; Loehlin JC, 2011, J RES PERS, V45, P44, DOI 10.1016/j.jrp.2010.11.008; Lopes PN, 2004, PERS SOC PSYCHOL B, V30, P1018, DOI 10.1177/0146167204264762; Lopes PN, 2003, PERS INDIV DIFFER, V35, P641, DOI 10.1016/S0191-8869(02)00242-8; Lyusin D., 2006, J RUSS E EUR PSYCHOL, V44, P54, DOI DOI 10.2753/RP01061-0405440604; Marsh HW, 2005, MULTIVAR APPL SER, P275; Martins A, 2010, PERS INDIV DIFFER, V49, P554, DOI 10.1016/j.paid.2010.05.029; Maul A, 2012, EMOT REV, V4, P394, DOI 10.1177/1754073912445811; Mayer JD, 1999, INTELLIGENCE, V27, P267, DOI 10.1016/S0160-2896(99)00016-1; MCCRAE RR, 1986, AM PSYCHOL, V41, P1001; McIntyre HH, 2010, PERS INDIV DIFFER, V48, P617, DOI 10.1016/j.paid.2009.12.019; Mikolajczak M, 2007, J PERS ASSESS, V88, P338, DOI 10.1080/00223890701333431; Miyake A, 2012, CURR DIR PSYCHOL SCI, V21, P8, DOI 10.1177/0963721411429458; Montasem A, 2013, J APPL SOC PSYCHOL, V43, P1097, DOI 10.1111/jasp.12074; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Newsome S, 2000, PERS INDIV DIFFER, V29, P1005, DOI 10.1016/S0191-8869(99)00250-0; O'Boyle EH, 2011, J ORGAN BEHAV, V32, P788, DOI 10.1002/job.714; O'Connor RM, 2003, PERS INDIV DIFFER, V35, P1893, DOI 10.1016/S0191-8869(03)00038-2; O'Sullivan M., 2007, SCI EMOTIONAL INTELL, P258; Oh IS, 2011, J APPL PSYCHOL, V96, P762, DOI 10.1037/a0021832; Ono M, 2011, CRIM JUSTICE BEHAV, V38, P471, DOI 10.1177/0093854811399406; Parker JDA, 2011, PSYCHOL ASSESSMENT, V23, P762, DOI 10.1037/a0023289; PEABODY D, 1989, J PERS SOC PSYCHOL, V57, P552, DOI 10.1037//0022-3514.57.3.552; Pelt D. H. M., 2015, C INT SOC STUD IND D; Petrides KV, 2007, COGNITION EMOTION, V21, P26, DOI 10.1080/02699930601038912; Petrides KV, 2007, BRIT J PSYCHOL, V98, P273, DOI 10.1348/00712606X120618; Petrides KV, 2006, PSICOTHEMA, V18, P101; Petrides KV, 2010, IND ORGAN PSYCHOL-US, V3, P136, DOI 10.1111/j.1754-9434.2010.01213.x; Petrides KV, 2011, PERS INDIV DIFFER, V50, P874, DOI 10.1016/j.paid.2010.12.029; Petrides KV, 2010, PERS INDIV DIFFER, V48, P906, DOI 10.1016/j.paid.2010.02.019; Petrides KV, 2009, SPRINGER SER HUM EXC, P85, DOI 10.1007/978-0-387-88370-0_5; Petrides K. V., 2011, BLACKWELL WILEY HDB; Petrides KV, 2001, EUR J PERSONALITY, V15, P425, DOI 10.1002/per.416; Petrides KV, 2000, PERS INDIV DIFFER, V29, P313, DOI 10.1016/S0191-8869(99)00195-6; Pettersson E, 2012, EUR J PERSONALITY, V26, P292, DOI 10.1002/per.839; Prentice C, 2013, INT J HOSP MANAG, V32, P287, DOI 10.1016/j.ijhm.2012.06.004; Qualter P, 2012, LEARN INDIVID DIFFER, V22, P83, DOI 10.1016/j.lindif.2011.11.007; REE MJ, 1994, J APPL PSYCHOL, V79, P518, DOI 10.1037/0021-9010.79.4.518; Revelle W, 2013, J RES PERS, V47, P493, DOI 10.1016/j.jrp.2013.04.012; Rey L, 2013, J PSYCHOSOC ONCOL, V31, P51, DOI 10.1080/07347332.2012.703770; Rieck T, 2013, TRAIN EDUC PROF PSYC, V7, P42, DOI 10.1037/a0031659; Roberts RD, 2001, EMOTION, V1, P196, DOI 10.1037//1528-3542.1.3.196; Rode JC, 2008, INTELLIGENCE, V36, P350, DOI 10.1016/j.intell.2007.07.002; Rossen E, 2009, J RES PERS, V43, P60, DOI 10.1016/j.jrp.2008.12.002; Rushton J. P., 2011, WILEY BLACKWELL HDB, P132; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Russo PM, 2012, J PSYCHOEDUC ASSESS, V30, P274, DOI 10.1177/0734282911426412; Saklofske DH, 2003, PERS INDIV DIFFER, V34, P707, DOI 10.1016/S0191-8869(02)00056-9; Saklofske DH, 2007, J HEALTH PSYCHOL, V12, P937, DOI 10.1177/1359105307082458; Saklofske DH, 2007, PERS INDIV DIFFER, V42, P491, DOI 10.1016/j.paid.2006.08.006; Saklofske DH, 2012, LEARN INDIVID DIFFER, V22, P251, DOI 10.1016/j.lindif.2011.02.010; Salovey P., 1990, IMAGINATION COGNITIO, V9, P185, DOI DOI 10.2190/DUGG-P24E-52WK-6CDG; Sanchez-Ruiz MJ, 2013, PERS INDIV DIFFER, V54, P658, DOI 10.1016/j.paid.2012.11.013; SAUCIER G, 1994, J PERS ASSESS, V63, P506, DOI 10.1207/s15327752jpa6303_8; Schmidt FL, 2002, HUM PERFORM, V15, P187, DOI 10.1207/S15327043HUP1501&02_12; Schulte MJ, 2004, PERS INDIV DIFFER, V37, P1059, DOI 10.1016/j.paid.2003.11.014; Sharma S, 2013, INT J SELECT ASSESS, V21, P57, DOI 10.1111/ijsa.12017; Shi JQ, 2007, PERS INDIV DIFFER, V43, P377, DOI 10.1016/j.paid.2006.12.012; Siegling AB, 2015, J PERS ASSESS, V97, P525, DOI 10.1080/00223891.2015.1013219; Siegling AB, 2013, PERS INDIV DIFFER, V54, P81, DOI 10.1016/j.paid.2012.08.010; Siegling AB, 2012, PERS INDIV DIFFER, V52, P776, DOI 10.1016/j.paid.2012.01.003; Singh M, 2008, J APPL SOC PSYCHOL, V38, P635, DOI 10.1111/j.1559-1816.2007.00320.x; Sitser T, 2013, HUM PERFORM, V26, P126, DOI 10.1080/08959285.2013.765877; Sjoberg L, 2001, EUR PSYCHOL, V6, P79, DOI 10.1027//1016-9040.6.2.79; Song LJ, 2010, INTELLIGENCE, V38, P137, DOI 10.1016/j.intell.2009.09.003; Spearman C, 1904, AM J PSYCHOL, V15, P201, DOI 10.2307/1412107; Stankov L., 2005, G FACTOR ISSUES DESI; Sy T, 2006, J VOCAT BEHAV, V68, P461, DOI 10.1016/j.jvb.2005.10.003; Tok S, 2009, SOC BEHAV PERSONAL, V37, P921, DOI 10.2224/sbp.2009.37.7.921; Vakola M., 2004, J MANAGERIAL PSYCHOL, V19, P88, DOI DOI 10.1108/02683940410526082; van der Linden D, 2016, PERS INDIV DIFFER, V101, P98, DOI 10.1016/j.paid.2016.05.020; Van der Linden D, 2012, PERS INDIV DIFFER, V53, P175, DOI 10.1016/j.paid.2012.03.001; van der Linden D, 2011, PERS INDIV DIFFER, V51, P836, DOI 10.1016/j.paid.2011.07.010; van der Linden D, 2011, INT J SELECT ASSESS, V19, P157, DOI 10.1111/j.1468-2389.2011.00543.x; van der Linden D, 2010, J RES PERS, V44, P669, DOI 10.1016/j.jrp.2010.08.007; van der Linden D, 2010, J RES PERS, V44, P315, DOI 10.1016/j.jrp.2010.03.003; Van Rooy DL, 2004, J VOCAT BEHAV, V65, P71, DOI 10.1016/S0001-8791(03)00076-9; Van Rooy DL, 2005, PERS INDIV DIFFER, V38, P689, DOI 10.1016/j.paid.2004.05.023; Veselka L., 2010, EUROPES J PSYCHOL, V3, P9; Veselka L, 2009, TWIN RES HUM GENET, V12, P420, DOI 10.1375/twin.12.5.420; Warwick J, 2004, PERS INDIV DIFFER, V37, P1091, DOI 10.1016/j.paid.2003.12.003; Webb CA, 2013, INTELLIGENCE, V41, P149, DOI 10.1016/j.intell.2013.01.004; Webb E., 1915, CHARACTER INTELLIGEN; Wilhelm O., 2005, INT HDB EMOTIONAL IN, P131; Wong C. S., 2007, ASIA PACIFIC J MANAG, V24, P43, DOI [10.1007/s10490-006-9024-1, DOI 10.1007/S10490-006-9024-1]; Wong CS, 2007, INTELLIGENCE, V35, P141, DOI 10.1016/j.intell.2006.04.008; Zeidner M, 2008, EUR PSYCHOL, V13, P64, DOI 10.1027/1016-9040.13.1.64; Zeidner M, 2010, PERS INDIV DIFFER, V48, P431, DOI 10.1016/j.paid.2009.11.011 201 27 27 16 87 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0033-2909 1939-1455 PSYCHOL BULL Psychol. Bull. JAN 2017 143 1 36 52 10.1037/bul0000078 17 Psychology; Psychology, Multidisciplinary Psychology EH2BC WOS:000391571200002 27841449 2019-02-21 J Hurst, JE; Kavanagh, PS Hurst, Jessie E.; Kavanagh, Phillip S. Life history strategies and psychopathology: the faster the life strategies, the more symptoms of psychopathology EVOLUTION AND HUMAN BEHAVIOR English Article Life history theory; Life history strategy; Psychopathology; Aggression; Attachment; Self-harm DELIBERATE SELF-HARM; AGGRESSION; ATTACHMENT; DISORDER; QUESTIONNAIRE; ADOLESCENTS; PERSONALITY; ADAPTATION; MATURATION; BEHAVIOR There is little extant empirical literature examining the associations between life history strategies and symptoms of psychopathology. The current study (N = 138) investigated the associations between life history strategies, symptoms of psychopathology, aggression, incidence of self-harm behaviour, and attachment (perceived parental support) in sample drawn from the general population and community mental health service providers. The results from the study indicate those with a faster life strategy report greater levels of aggression and symptoms of psychopathology. Further, perceptions of poorer parental support were associated with a faster life history strategy. Implications for life history theory, conceptualising psychopathology, and future research directions are discussed. Crown Copyright (C) 2016 Published by Elsevier Inc. All rights reserved. [Hurst, Jessie E.; Kavanagh, Phillip S.] Univ South Australia, Adelaide, SA, Australia Kavanagh, PS (reprint author), Univ South Australia, Sch Psychol Social Work & Social Policy, GPO Box 2471, Adelaide, SA 5001, Australia. phil.kavanagh@unisa.edu.au Kavanagh, Phil/0000-0003-1090-4188 Akiskal KK, 2005, J AFFECT DISORDERS, V85, P231, DOI 10.1016/j.jad.2004.08.002; American Psychiatric Association, 2013, DSM 5 SELF RAT LEV 1; American Psychiatric Association, 2013, DIAGN STAT MAN MENT; American Psychiatric Association, 2000, DIAGN STAT MAN MENT; Andrews PW, 2009, PSYCHOL REV, V116, P620, DOI 10.1037/a0016242; BARTHOLOMEW K, 1991, J PERS SOC PSYCHOL, V61, P226, DOI 10.1037//0022-3514.61.2.226; Beauchaine TP, 2013, CHILD ADOLESCENT PSY, P111; BUSS AH, 1992, J PERS SOC PSYCHOL, V63, P452, DOI 10.1037/0022-3514.63.3.452; Buss D., 2005, HDB EVOLUTIONARY PSY; Buss DM, 1997, CLIN PSYCHOL REV, V17, P605, DOI 10.1016/S0272-7358(97)00037-8; Campbell A, 2008, BIOL PSYCHOL, V77, P1, DOI 10.1016/j.biopsycho.2007.09.001; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Coccaro EF, 1997, PSYCHIAT RES, V73, P147, DOI 10.1016/S0165-1781(97)00119-4; Crawford C, 2000, ANN NY ACAD SCI, V907, P21; Crawford TN, 2006, J PERS DISORD, V20, P331, DOI 10.1521/pedi.2006.20.4.331; CRICK NR, 1995, CHILD DEV, V66, P710, DOI 10.2307/1131945; DALY M, 1985, ETHOL SOCIOBIOL, V6, P197, DOI 10.1016/0162-3095(85)90012-3; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Dunkel CS, 2011, PERS INDIV DIFFER, V51, P34, DOI 10.1016/j.paid.2011.03.005; Ellis B. J., 2013, CHILD ADOLESCENT PSY, P251; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Fanti KA, 2014, J EARLY ADOLESCENCE; Figueredo A.J., 2012, OXFORD HDB SEXUAL CO; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, HUM NATURE-INT BIOS, V20, P317, DOI 10.1007/s12110-009-9068-2; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Gratz KL, 2001, J PSYCHOPATHOL BEHAV, V23, P253, DOI 10.1023/A:1012779403943; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hayes AF, 2013, INTRO MEDIATION MODE; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K, 2012, CLIN CHILD PSYCHOL P, V17, P459, DOI 10.1177/1359104511423364; Hinshaw S. P., 2013, CHILD ADOLESCENT PSY, P3; Howell D, 2002, STAT METHODS PSYCHOL; Ivancic L., 2014, YOUTH MENTAL HLTH RE; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kerig P. K., 2012, DEV PSYCHOPATHOLOGY; Klonsky ED, 2003, AM J PSYCHIAT, V160, P1501, DOI 10.1176/appi.ajp.160.8.1501; Koh J-B, 2015, J INTERPERSONAL VIOL; Laye-Gindhu A, 2005, J YOUTH ADOLESCENCE, V34, P447, DOI 10.1007/s10964-005-7262-z; Mangnall J, 2008, PERSPECT PSYCHIATR C, V44, P175, DOI 10.1111/j.1744-6163.2008.00172.x; Marcus RF, 2001, J GENET PSYCHOL, V162, P260, DOI 10.1080/00221320109597483; Mash E. J., 2003, CHILD PSYCHOPATHOLOG, P3; Mishra S, 2014, EVOL HUM BEHAV, V35, P126, DOI 10.1016/j.evolhumbehav.2013.11.006; Murphy D., 2000, EVOLUTION HUMAN MIND, P62; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rodham K., 2005, PSYCHIAT TIMES, V22, P36; Simons KJ, 2001, J EARLY ADOLESCENCE, V21, P182, DOI 10.1177/0272431601021002003; Spataro J, 2004, BRIT J PSYCHIAT, V184, P416, DOI 10.1192/bjp.184.5.416; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Volk AA, 2012, AGGRESSIVE BEHAV, V38, P222, DOI 10.1002/ab.21418; WAKEFIELD JC, 1992, AM PSYCHOL, V47, P373, DOI 10.1037//0003-066X.47.3.373; West M, 1998, J YOUTH ADOLESCENCE, V27, P661, DOI 10.1023/A:1022891225542; Wolfe V. V., 2007, ASSESSMENT CHILDHOOD, P685 60 13 13 1 9 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2017 38 1 1 8 10.1016/j.evolhumbehav.2016.06.001 8 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences EG9AS WOS:000391350000001 2019-02-21 J Voland, E; Willfuhr, KP Voland, Eckart; Willfuehr, Kai P. Why does paternal death accelerate the transition to first marriage in the C18-C19 Krummhorn population? EVOLUTION AND HUMAN BEHAVIOR English Article Paternal absence effect; Krummhorn; Family reconstitution study; Sibling interaction PARENT-OFFSPRING CONFLICT; LIFE-HISTORY THEORY; FATHER ABSENCE; REPRODUCTIVE STRATEGY; INVESTMENT; MATURATION; EVOLUTION; MENARCHE; OUTCOMES; SUCCESS Among the population of the Krummhorn region (Ostfriesland, Germany) in the 18th and 19th centuries, the death of the father in the family led on average to the accelerated marriage of his children. Three evolutionary explanations are offered for this "paternal absence" effect in the literature: namely, (i) the assumption of an adaptive "psychosocial acceleration" of the children with prepubertal experience of uncertainty; (ii) an opportunistic adjustment of life and reproduction decisions as an adaptive reaction to the personal cost-benefit balances that are changed by the father's death; and (iii) given the genetic parent-offspring conflict, an increase in the reproductive autonomy of offspring after the loss of the dominant father figure. Our models, which are based on the analyses of the vital statistics data derived from church registers and tax rolls and compiled into a family reconstitution study, attribute the greatest explanatory power for the patterns found in the Krummhorn to the opportunistic adjustment approach (ii). (C) 2016 The Authors. Published by Elsevier Inc. [Voland, Eckart] Univ Giessen, Inst Philosophy, Rathenaustr 8, D-35394 Giessen, Germany; [Willfuehr, Kai P.] Max Planck Inst Demog Res, Konrad Zuse Str 1, D-18057 Rostock, Germany Voland, E (reprint author), Univ Giessen, Inst Philosophy, Rathenaustr 8, D-35394 Giessen, Germany. eckart.voland@phil.uni-giessen.de; willfuehr@demogr.mpg.de Deutsche Forschungsgemeinschaft (DFG) [Vo 310/16-1] We thank two anonymous reviewers for their very helpful comments and Jonathan F. Fox for his highly valuable input and advice on modeling. Financial support came from Deutsche Forschungsgemeinschaft (DFG), Vo 310/16-1. Allison Paul D., 2009, FIXED EFFECTS REGRES; Apostolou M, 2014, SEXUAL SELECTION UNDER PARENTAL CHOICE: THE EVOLUTION OF HUMAN MATING BEHAVIOR, P1; Beise J., 2001, THESIS; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; COX DR, 1972, J R STAT SOC B, V34, P187; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; EMLEN ST, 1982, AM NAT, V119, P40, DOI 10.1086/283889; Flinn M. V., 1988, HUMAN REPROD BEHAV D, P189; Gettler LT, 2015, AM J PHYS ANTHR; Kramer KL, 2009, AM J HUM BIOL, V21, P430, DOI 10.1002/ajhb.20930; Mattison SM, 2014, AM ANTHROPOL, V116, P591, DOI 10.1111/aman.12125; Nettle D, 2015, P ROY SOC B-BIOL SCI, V282, P23, DOI 10.1098/rspb.2015.1005; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nitsch A, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2313; Ohling GD., 1963, ACHT IHRE SIEBEN SIE, P17; Pollet T. V., 2011, OXFORD HDB EVOLUTION, P128, DOI DOI 10.1093/OXFORDHB/9780195396690.013.0009; Reiches MW, 2009, AM J HUM BIOL, V21, P421, DOI 10.1002/ajhb.20906; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Scelza BA, 2010, CURR ANTHROPOL, V51, P295, DOI 10.1086/651051; Shenk MK, 2013, HUM NATURE-INT BIOS, V24, P76, DOI 10.1007/s12110-013-9160-5; Shenk MK, 2012, J BIOSOC SCI, V44, P549, DOI 10.1017/S0021932012000053; Sheppard P, 2014, HUM NATURE-INT BIOS, V25, P213, DOI 10.1007/s12110-014-9195-2; Stormer C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0083633; SWART F, 1910, FRIESISCHEN AGRARGES; TRIVERS RL, 1974, AM ZOOL, V14, P249; van den Berg P, 2013, EVOL HUM BEHAV, V34, P405, DOI 10.1016/j.evolhumbehav.2013.07.004; Voland E, 2000, EVOL ANTHROPOL, V9, P134; VOLAND E, 1990, ETHOLOGY, V84, P144; VOLAND E, 1990, BEHAV ECOL SOCIOBIOL, V26, P65; VOLAND E, 2014, ANTHROPOL REV, V77, P251, DOI DOI 10.2478/anre-2014-0020; Webster GD, 2014, EVOL PSYCHOL-US, V12, P273, DOI 10.1177/147470491401200202; Willfuhr KP, 2013, BIODEMOGR SOC BIOL, V59, P191, DOI 10.1080/19485565.2013.833803; Willfuhr KP, 2015, HIST LIFE COURSE STU, V2, P58; Winking J, 2011, EVOL HUM BEHAV, V32, P79, DOI 10.1016/j.evolhumbehav.2010.08.002 38 0 0 0 10 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2017 38 1 125 135 10.1016/j.evolhumbehav.2016.08.001 11 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences EG9AS WOS:000391350000015 Other Gold 2019-02-21 J Young, CM; Cain, KE; Svedin, N; Backwell, PRY; Pryke, SR Young, Catherine M.; Cain, Kristal E.; Svedin, Nina; Backwell, Patricia R. Y.; Pryke, Sarah R. Nesting Success in Crimson Finches: Chance or Choice? ETHOLOGY English Article nest predation; nest defence; nest-site; breeding success LIFE-HISTORY EVOLUTION; DEFENSE BEHAVIOR; SYLVIA-ATRICAPILLA; PARENTAL BEHAVIOR; NEOCHMIA-PHAETON; PREDATION RISK; NORTH-AMERICA; CLUTCH-SIZE; BIRDS; SITE In avian systems, nest predation is one of the most significant influences on reproductive success. Selection for mechanisms and behaviours to minimise predation rates should be favoured. To avoid predation, breeding birds can often deter predators through active nest defence or by modifying behaviours around the nest (e.g. reducing feeding rates and vocalisations). Birds might also benefit from concealing nests or placing them in inaccessible locations. The relative importance of these strategies (behaviour vs. site selection) can be difficult to disentangle and may differ according to life history. Tropical birds are thought to experience higher rates of predation than temperate birds and invest less energy in nest defence. We monitored a population of crimson finches (Neochmia phaeton), in the Australian tropics, over two breeding seasons. We found no relationship between adult nest defence behaviour (towards a model reptile predator) and the likelihood of nest success. However, nest success was strongly related to the visibility of the nest and the structure of the vegetation. We found no evidence that adult nest building decisions were influenced by predation risk; individuals that re-nested after a predation event did not build their nest in a more concealed location. Therefore, predator avoidance, and hence nest success, appears to be largely due to chance rather than due to the behaviour of the birds or their choice of nesting sites. To escape high predation pressures, multiple nesting attempts both within and between seasons may be necessary to increase reproductive success. Alternatively, birds may be limited in their nest-site options; that is, high-quality individuals dominate quality nest sites. [Young, Catherine M.; Cain, Kristal E.; Svedin, Nina; Backwell, Patricia R. Y.; Pryke, Sarah R.] Australian Natl Univ, Res Sch Biol, Div Ecol Evolut & Genet, Bldg 44 Daley Rd, Canberra, ACT 2601, Australia Young, CM (reprint author), Australian Natl Univ, Res Sch Biol, Div Ecol Evolut & Genet, Bldg 44 Daley Rd, Canberra, ACT 2601, Australia. catherine.young@anu.edu.au Backwell, Patricia/C-8883-2009 Cain, Kristal/0000-0002-6908-7015 Australian Research Council; A.N.U PhD scholarship; Australian Bird Study Association This work was supported by Australian Research Council Grants (S.R.P), an A.N.U PhD scholarship (C.M.Y) and a Fund for Avian Research grant from The Australian Bird Study Association (C.M.Y). We thank Fiona Finch and Sophie Keats for help in the field as well as Save The Gouldian Fund for providing access to their field station. We are grateful to David Hamilton and reviewers for helpful comments on the manuscript, Thomas Merkling and Liam Bailey for assistance with R software. All work was approved by the Australian National University's Animal Ethics Committee (A2012/55). Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; BEST LB, 1978, AUK, V95, P9, DOI 10.2307/4085491; BURGHARDT G. M., 1970, ADV CHEMORECEPTION, P241; Caro TM, 2005, ANTIPREDATOR DEFENCE; Collias NE, 1984, NEST BUILDING BIRD B; Colombelli-Negrel D, 2009, ECOL RES, V24, P921, DOI 10.1007/s11284-008-0569-y; COOPER WE, 1989, ETHOLOGY, V81, P250; Cresswell W, 1997, ANIM BEHAV, V53, P93, DOI 10.1006/anbe.1996.0281; Dale S, 1996, BEHAV ECOL SOCIOBIOL, V39, P31, DOI 10.1007/s002650050264; FILLIATER TS, 1994, CONDOR, V96, P761, DOI 10.2307/1369479; FLASSKAMP A, 1994, ETHOLOGY, V96, P322; Gelman A, 2014, ARM DATA ANAL USING; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Goawski A., 2008, FOLIA ZOOL, V57, P403; Godard RD, 2007, J AVIAN BIOL, V38, P128, DOI 10.1111/j.2007.0908-8857.03788.x; Grim T, 2008, J ORNITHOL, V149, P169, DOI 10.1007/s10336-007-0257-7; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; Hakkarainen H, 1998, OECOLOGIA, V114, P574, DOI 10.1007/s004420050482; Higgins PJ, 2006, HDB AUSTR NZ ANTARCT, V7; Kleindorfer S, 2005, ANIM BEHAV, V69, P307, DOI 10.1016/j.anbehav.2004.06.003; Kleindorfer S, 1996, ANIM BEHAV, V51, P1199, DOI 10.1006/anbe.1996.0125; Kleindorfer Sonia, 2003, Avian Science, V3, P21; KNIGHT RL, 1988, CONDOR, V90, P193, DOI 10.2307/1368448; KOTLER BP, 1992, ANN ZOOL FENN, V29, P199; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LAWLER SP, 1989, ANIM BEHAV, V38, P1039, DOI 10.1016/S0003-3472(89)80142-3; Lima SL, 1998, ADV STUD BEHAV, V27, P215; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P455; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Mazerolle M., 2013, AICCMODAVG MODEL SEL; Milenkaya O, 2011, EMU, V111, P312, DOI 10.1071/MU10088; Misenhelter MD, 2000, ECOLOGY, V81, P2892, DOI 10.2307/177349; Moller AP, 2013, BEHAV ECOL, V24, P267, DOI 10.1093/beheco/ars163; MOLLER AP, 1990, OIKOS, V57, P237, DOI 10.2307/3565945; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Muchai M, 2005, J AVIAN BIOL, V36, P110, DOI 10.1111/j.0908-8857.2005.03312.x; Muchai M., 2001, SCOPUS, V22, P23; Muller M, 2005, OECOLOGIA, V143, P37, DOI 10.1007/s00442-004-1770-5; Olendorf R, 2000, IBIS, V142, P365, DOI 10.1111/j.1474-919X.2000.tb04432.x; PATTERSON TL, 1980, BEHAV ECOL SOCIOBIOL, V7, P227, DOI 10.1007/BF00299368; Polak M, 2013, J ETHOL, V31, P1, DOI 10.1007/s10164-012-0340-2; R Development Core Team, 2014, R LANG ENV STAT COMP; Remes V, 2005, BEHAV ECOL SOCIOBIOL, V58, P326, DOI 10.1007/s00265-005-0910-1; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Rompre Ghislain, 2008, Ecotropica-Bonn, V14, P81; Roper JJ, 2005, ORNITOL NEOTROP, V16, P253; Roper JJ, 1997, J AVIAN BIOL, V28, P111, DOI 10.2307/3677304; Saether BE, 1996, TRENDS ECOL EVOL, V11, P311, DOI 10.1016/0169-5347(96)30032-3; Schmidt KA, 2010, OIKOS, V119, P245, DOI 10.1111/j.1600-0706.2009.17824.x; SIH A, 1992, ECOLOGY, V73, P1418, DOI 10.2307/1940687; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Soanes R, 2015, EMU, V115, P317, DOI 10.1071/MU14046; Stake MM, 2005, J HERPETOL, V39, P215, DOI 10.1670/150-04A; Symonds MRE, 2011, BEHAV ECOL SOCIOBIOL, V65, P13, DOI 10.1007/s00265-010-1037-6; Thompson FR, 2007, IBIS, V149, P98, DOI 10.1111/j.1474-919X.2007.00697.x; Todd Michael K., 2002, Australian Bird Watcher, V19, P161; VERBEEK NAM, 1993, EMU, V93, P53, DOI 10.1071/MU9930053; Weatherhead PJ, 2004, J AVIAN BIOL, V35, P185, DOI 10.1111/j.0908-8857.2004.03336.x 65 1 1 1 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology JAN 2017 123 1 41 50 10.1111/eth.12422 10 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology EG0CG WOS:000390697900003 2019-02-21 J Murillo-Rincon, AP; Kolter, NA; Laurila, A; Orizaola, G Murillo-Rincon, Andrea P.; Kolter, Nora A.; Laurila, Anssi; Orizaola, German Intraspecific priority effects modify compensatory responses to changes in hatching phenology in an amphibian JOURNAL OF ANIMAL ECOLOGY English Article amphibians; compensatory growth; competition; development; life-history strategies; metamorphosis; phenology; synchrony EXPERIMENTAL POND COMMUNITIES; LIFE-HISTORY PLASTICITY; TIME CONSTRAINTS; CLIMATE-CHANGE; ANURAN LARVAE; LOCAL ADAPTATION; INTERFERENCE COMPETITION; PHENOTYPIC PLASTICITY; AMBYSTOMA-TALPOIDEUM; GEOGRAPHIC-VARIATION 1. In seasonal environments, modifications in the phenology of life-history events can alter the strength of time constraints experienced by organisms. Offspring can compensate for a change in timing of hatching by modifying their growth and development trajectories. However, intra-and interspecific interactions may affect these compensatory responses, in particular if differences in phenology between cohorts lead to significant priority effects (i.e. the competitive advantage that early-hatching individuals have over late-hatching ones). 2. Here, we conducted a factorial experiment to determine whether intraspecific priority effects can alter compensatory phenotypic responses to hatching delay in a synchronic breeder by rearing moor frog (Rana arvalis) tadpoles in different combinations of phenological delay and food abundance. 3. Tadpoles compensated for the hatching delay by speeding up their development, but only when reared in groups of individuals with identical hatching phenology. In mixed phenology groups, strong competitive effects by non-delayed tadpoles prevented the compensatory responses and delayed larvae metamorphosed later than in single phenology treatments. Non-delayed individuals gained advantage from developing with delayed larvae by increasing their developmental and growth rates as compared to single phenology groups. 4. Food shortage prolonged larval period and reduced mass at metamorphosis in all treatments, but it did not prevent compensatory developmental responses in larvae reared in single phenology groups. 5. This study demonstrates that strong intraspecific priority effects can constrain the compensatory growth and developmental responses to phenological change, and that priority effects can be an important factor explaining the maintenance of synchronic life histories (i.e. explosive breeding) in seasonal environments. [Murillo-Rincon, Andrea P.; Kolter, Nora A.; Laurila, Anssi; Orizaola, German] Uppsala Univ, Anim Ecol, Dept Ecol & Genet, Evolutionary Biol Ctr, S-75236 Uppsala, Sweden; [Murillo-Rincon, Andrea P.] Christian Albrechts Univ Kiel, Inst Zool, D-24118 Kiel, Germany Orizaola, G (reprint author), Uppsala Univ, Anim Ecol, Dept Ecol & Genet, Evolutionary Biol Ctr, S-75236 Uppsala, Sweden. german.orizaola@ebc.uu.se Orizaola, German/A-5217-2008 Orizaola, German/0000-0002-6748-966X Helge Ax:son Johnsons Stiftelse; Stiftelsen Oscar och Lili Lamms Minne [FO2011-0004]; Spanish Ministry of Education and Culture [MEC2007-0944]; Formas [2007-903] We thank Frank Johansson and Alex Richter-Boix for comments on a previous draft of the manuscript. Comments from the Associate Editor and three anonymous reviewers significantly improved the final version of the manuscript. The animals were collected with a permit from Uppsala County Board (521-3019-09), and the experiment was conducted with a permit from the Ethical committee for Animal Experiments in Uppsala (C92/9). This study was supported by Helge Ax:son Johnsons Stiftelse (to GO), Stiftelsen Oscar och Lili Lamms Minne (grant FO2011-0004; to GO), Spanish Ministry of Education and Culture (postdoctoral fellowship MEC2007-0944; to GO) and Formas (2007-903; to AL). Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ALFORD RA, 1985, ECOLOGY, V66, P1097, DOI 10.2307/1939161; Altwegg R, 2003, EVOLUTION, V57, P872; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.2307/3071813; Baker GC, 2000, AMPHIBIA-REPTILIA, V21, P25, DOI 10.1163/156853800507255; BEEBEE TJC, 1995, NATURE, V374, P219, DOI 10.1038/374219a0; BEEBEE TJC, 1992, PHYSIOL ZOOL, V65, P815, DOI 10.1086/physzool.65.4.30158541; Boone MD, 2002, COPEIA, P511, DOI 10.1643/0045-8511(2002)002[0511:EOHTFL]2.0.CO;2; Capellan E, 2007, J ANIM ECOL, V76, P1026, DOI 10.1111/j.1365-2656.2007.01281.x; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Cleland EE, 2007, TRENDS ECOL EVOL, V22, P357, DOI 10.1016/j.tree.2007.04.003; Dahl E, 2012, J ANIM ECOL, V81, P1233, DOI 10.1111/j.1365-2656.2012.02009.x; De Block M, 2004, OECOLOGIA, V140, P68, DOI 10.1007/s00442-004-1575-6; De Meester L, 2002, ACTA OECOL, V23, P121, DOI 10.1016/S1146-609X(02)01145-1; De Meester L, 2016, TRENDS ECOL EVOL, V31, P136, DOI 10.1016/j.tree.2015.12.009; Diez JM, 2012, ECOL LETT, V15, P545, DOI 10.1111/j.1461-0248.2012.01765.x; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; DRAKE JA, 1991, AM NAT, V137, P1, DOI 10.1086/285143; Dunbar RIM, 2009, BIOL REV, V84, P413, DOI 10.1111/j.1469-185X.2009.00080.x; Earl JE, 2015, COPEIA, V103, P297, DOI 10.1643/CH-14-128; Easterling DR, 2000, SCIENCE, V289, P2068, DOI 10.1126/science.289.5487.2068; Eitam A, 2005, OECOLOGIA, V146, P36, DOI 10.1007/s00442-005-0185-2; Frisbie M, 2000, CAN J ZOOL, V78, P1032, DOI 10.1139/cjz-78-6-1032; Gosner K. L., 1960, Herpetologica, V16, P183; GOTTHARD K, 2001, ANIMAL DEV ECOLOGY, P287; GRIFFITHS RA, 1993, J ANIM ECOL, V62, P274, DOI 10.2307/5358; Hedengren I., 1987, THESIS; Hernandez JP, 2012, OIKOS, V121, P259, DOI 10.1111/j.1600-0706.2011.19221.x; Hopper KR, 1996, ECOLOGY, V77, P191, DOI 10.2307/2265668; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.2307/177071; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; LAWLER SP, 1993, ECOLOGY, V74, P174, DOI 10.2307/1939512; Loman J, 2009, J ZOOL, V279, P64, DOI 10.1111/j.1469-7998.2009.00589.x; Mangel M, 2001, EVOL ECOL RES, V3, P583; Menzel A, 2006, GLOBAL ECOL BIOGEOGR, V15, P498, DOI 10.1111/j.1466-822x.2006.00247.x; Mikolajewski DJ, 2015, ECOLOGY, V96, P1128, DOI 10.1890/14-0262.1; Olito C, 2009, AM NAT, V173, P354, DOI 10.1086/596538; Orizaola G., 2016, FIGSHARE; Orizaola G, 2016, ECOLOGY, V97, P2470, DOI 10.1002/ecy.1464; Orizaola G, 2013, OECOLOGIA, V171, P873, DOI 10.1007/s00442-012-2456-z; Orizaola G, 2010, OIKOS, V119, P980, DOI 10.1111/j.1600-0706.2009.17956.x; Parmesan C, 2000, B AM METEOROL SOC, V81, P443, DOI 10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2; Phillimore AB, 2010, P NATL ACAD SCI USA, V107, P8292, DOI 10.1073/pnas.0913792107; Rasanen K, 2003, EVOLUTION, V57, P352, DOI 10.1554/0014-3820(2003)057[0352:GVIAST]2.0.CO;2; Rasmussen NL, 2015, ECOLOGY, V96, P1754, DOI 10.1890/14-1919.1; Rasmussen NL, 2014, J ANIM ECOL, V83, P1206, DOI 10.1111/1365-2656.12203; Richter-Boix A, 2014, ECOLOGY, V95, P2715, DOI 10.1890/13-1996.1; Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Rudolf VHW, 2013, OECOLOGIA, V173, P1043, DOI 10.1007/s00442-013-2675-y; Ryan TJ, 2004, OECOLOGIA, V140, P46, DOI 10.1007/s00442-004-1563-x; Segers FHID, 2012, BEHAV ECOL, V23, P665, DOI 10.1093/beheco/ars013; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; STEINWASCHER K, 1978, ECOLOGY, V59, P1039, DOI 10.2307/1938556; Stoks R, 2006, ECOLOGY, V87, P809, DOI 10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Strobbe F, 2004, BIOL J LINN SOC, V83, P187, DOI 10.1111/j.1095-8312.2004.00379.x; Sunahara T, 2002, ECOL ENTOMOL, V27, P346, DOI 10.1046/j.1365-2311.2002.00417.x; Urban MC, 2009, P R SOC B, V276, P4129, DOI 10.1098/rspb.2009.1382; van Asch M, 2010, FUNCT ECOL, V24, P1103, DOI 10.1111/j.1365-2435.2010.01734.x; Visser ME, 2006, OECOLOGIA, V147, P164, DOI 10.1007/s00442-005-0299-6; Vitt LJ, 2014, HERPETOLOGY INTRO BI; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; WERNER EE, 1994, ECOLOGY, V75, P197, DOI 10.2307/1939394; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; Werner EE, 1996, ECOLOGY, V77, P157, DOI 10.2307/2265664; WILBUR HM, 1985, ECOLOGY, V66, P1106, DOI 10.2307/1939162; Yearsley JM, 2004, FUNCT ECOL, V18, P563, DOI 10.1111/j.0269-8463.2004.00879.x 69 2 2 6 36 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2017 86 1 128 135 10.1111/1365-2656.12605 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology EF4TR WOS:000390325400014 27779740 Bronze 2019-02-21 S King, B; Harris, BP; Rose, CS IEEE King, Brianna; Harris, Bradley P.; Rose, Craig S. Quantifying seafloor contact in commercial fishing gear OCEANS 2017 - ANCHORAGE OCEANS-IEEE English Proceedings Paper Conference on OCEANS SEP 18-21, 2017 Anchorage, AK commercial fishing; conservation engineering; engineering; seafloor; bottom contact; sensors MARINE-BENTHOS All commercial fishery species harvested globally either live on or near the seabed (also referred to as the benthos or benthic environment) or employ life history strategies or behaviors linked to benthic processes. The act of pursuing and catching benthic and demersal species requires operating fishing gear on or very near the seabed, resulting in direct gear-seabed contact. It is essential to further quantify bottom contact, given that contact made by commercial fishing gear with the benthos is considered one of the most significant human impacts on the oceanic environment. There are several devices that measure bottom contact; these devices, however, usually address only one point of contact, such as the center of the footrope, when other components of the fishing gear may be making contact as well. An NPRB-funded study by Rose et al. (2016) used multiple bottom contact sensors (accelerometers) hung from the footrope of a trawl net to quantify bottom contact; however, this study was not conducted under real fishing conditions (the codend was open). Rose et al. provided statistical analyses of the gear configurations as they relate to habitat susceptibility, but examination in terms of components, material, and clearance was beyond the scope of the work. Here I propose an algorithm to examine these covariates as estimators of habitat susceptibility by reassessing the imagery/data from the field, constructing quantitative models based on these covariates, re-running the applicable models, and examining the spatial distribution of seabed clearance for each material and component combination. These data, along with an assessment of the current state of science and technology in bottom contact sensors, will aid in determining the best methods for measuring bottom contact and/orseabed clearance in future field-based portions of this study [King, Brianna; Harris, Bradley P.] Alaska Pacific Univ, FAST Lab, Anchorage, AK 99508 USA; [Rose, Craig S.] FishNext Res, Seattle, WA USA King, B (reprint author), Alaska Pacific Univ, FAST Lab, Anchorage, AK 99508 USA. bking@alaskapacific.edu; bharris@alaskapacific.edu; fishnextresearch@gmail.com Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Cressie N., 1993, STAT SPATIAL DATA; Deleanu D., 2008, CONSTANTA MARIT U AN, V11, P341; Grabowski JH, 2014, REV FISH SCI AQUAC, V22, P142, DOI 10.1080/10641262.2013.846292; Isaaks EH, 1989, INTRO APPL GEOSTATIS; Kaiser MJ, 2016, FISH FISH, V17, P637, DOI 10.1111/faf.12134; National Research Council Committee on Ecosystem Effects of Fishing, 2002, EFF TRAWL DREDG SEAF; New England Fishery Management Council (NEFMC), 2011, SWEPT AR SEAB IMP SA; NMFS, 2015, FISH US 2015; Rose C. S., 2016, 1319 NPRB; Rose CS, 1998, FISH RES, V36, P139, DOI 10.1016/S0165-7836(98)00099-X; Watling L, 1998, CONSERV BIOL, V12, P1178, DOI 10.1046/j.1523-1739.1998.0120061178.x 12 0 0 0 0 IEEE NEW YORK 345 E 47TH ST, NEW YORK, NY 10017 USA 0197-7385 OCEANS-IEEE 2017 4 Engineering, Marine; Engineering, Electrical & Electronic; Oceanography Engineering; Oceanography BL7GR WOS:000455012000173 2019-02-21 J Sethi, SA; Gerken, J; Ashline, J Sethi, Suresh Andrew; Gerken, Jonathon; Ashline, Joshua Accurate aging of juvenile salmonids using fork lengths FISHERIES RESEARCH English Article Aging; Juvenile fish; Length frequency; Mixture models; Pacific salmon TUNA THUNNUS-MACCOYII; FREQUENCY DATA; AGE VALIDATION; COHO SALMON; GROWTH; SIZE; STEELHEAD; DENSITY; HABITAT; STREAMS Juvenile salmon life history strategies, survival, and habitat interactions may vary by age cohort. However, aging individual juvenile fish using scale reading is time consuming and can be error prone. Fork length data are routinely measured while sampling juvenile salmonids. We explore the performance of aging juvenile fish based solely on fork length data, using finite Gaussian mixture models to describe multimodal size distributions and estimate optimal age-discriminating length thresholds. Fork length-based ages are compared against a validation set of juvenile coho salmon, Oncorynchus kisutch, aged by scales. Results for juvenile coho salmon indicate greater than 95% accuracy can be achieved by aging fish using length thresholds estimated from mixture models. Highest accuracy is achieved when aged fish are compared to length thresholds generated from samples from the same drainage, time of year, and habitat type (lentic versus lotic), although relatively high aging accuracy can still be achieved when thresholds are extrapolated to fish from populations in different years or drainages. Fork length-based aging thresholds are applicable for taxa for which multiple age cohorts coexist sympatrically. Where applicable, the method of aging individual fish is relatively quick to implement and can avoid ager interpretation bias common in scale-based aging. Published by Elsevier B.V. [Sethi, Suresh Andrew] Cornell Univ, New York Cooperat Fish & Wildlife Res Unit, US Geol Survey, 211 Fernow Hall, Ithaca, NY 14853 USA; [Gerken, Jonathon; Ashline, Joshua] US Fish & Wildlife Serv, Anchorage Field Off, 4700 BLM Rd, Anchorage, AK 99507 USA Sethi, SA (reprint author), Cornell Univ, New York Cooperat Fish & Wildlife Res Unit, US Geol Survey, 211 Fernow Hall, Ithaca, NY 14853 USA. suresh.sethi@cornell.edu Alaska Sustainable Salmon Fund; U.S. Fish and Wildlife Service; U.S. Geological Survey We thank two anonymous reviwers, A.E. Punt, and other journal editorial staff for comments that improved this article. Funding for this project was provided by the Alaska Sustainable Salmon Fund, the U.S. Fish and Wildlife Service, and the U.S. Geological Survey. We thank the private landowners throughout the Big Lake watershed and the Alaska Department of fish and game for providing access for study sampling. Numerous U.S. Fish and Wildlife Service field technicians are thanked for their sampling efforts. The findings and conclusions in this article are those,of the author(s) and do not necessarily represent the views of the U.S. Fish and Wildlife Service. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. BEAMISH RJ, 1983, T AM FISH SOC, V112, P735, DOI 10.1577/1548-8659(1983)112<735:TFRFAV>2.0.CO;2; BISSON PA, 1988, T AM FISH SOC, V117, P262, DOI 10.1577/1548-8659(1988)117<0262:CHHUAB>2.3.CO;2; Bradley C., 2016, ECOL FRESHW IN PRESS; Campana SE, 2001, J FISH BIOL, V59, P197, DOI 10.1006/jfbi.2001.1668; Carlson SM, 2008, FUNCT ECOL, V22, P663, DOI 10.1111/j.1365-2435.2008.01416.x; Clements S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021406; Crone R.A., 1974, FISH B, V74, P897; DOLLOFF CA, 1990, CAN J FISH AQUAT SCI, V47, P2297, DOI 10.1139/f90-256; FOURNIER DA, 1990, CAN J FISH AQUAT SCI, V47, P301, DOI 10.1139/f90-032; Fraley C, 2002, J AM STAT ASSOC, V97, P611, DOI 10.1198/016214502760047131; GADOMSKI DM, 1994, ENVIRON BIOL FISH, V39, P191, DOI 10.1007/BF00004937; Gilbert C. H., 1912, FISH B, V32, P1; Groot C., 1991, PACIFIC SALMON LIFE; Hogan E.V., 1995, GEOLOGICAL SURVEY OP, P95; Hunt L, 1999, AUST NZ J STAT, V41, P153; Jearld A. Jr, 1983, P301; Keith RM, 1998, T AM FISH SOC, V127, P889, DOI 10.1577/1548-8659(1998)127<0889:ROJSTR>2.0.CO;2; Laslett GM, 2004, ICES J MAR SCI, V61, P218, DOI 10.1016/j.icesjms.2003.12.006; Leigh GM, 2000, MAR FRESHWATER RES, V51, P143, DOI 10.1071/MF99029; MACDONALD PDM, 1979, J FISH RES BOARD CAN, V36, P987, DOI 10.1139/f79-137; Maceina MJ, 2007, FISHERIES, V32, P329, DOI 10.1577/1548-8446(2007)32[329:CSAROF]2.0.CO;2; McLachlan G.J., 2000, FINITE MIXTURE MODEL; Mosher K.H., 1968, FISHERY B, V67, P243; Myrvold KM, 2015, T AM FISH SOC, V144, P577, DOI 10.1080/00028487.2015.1022220; Quist MC, 2012, FISHERIES TECHNIQUES, THIRD EDITION, P677; R Core Team, 2015, R LANG ENV STAT COMP; Richardson N., 2016, ECOL FRESHW IN PRESS; Van Beveren E, 2014, MAR BIOL, V161, P1809, DOI 10.1007/s00227-014-2463-1; Zhu XH, 2013, T AM FISH SOC, V142, P333, DOI 10.1080/00028487.2012.741554 29 1 1 2 12 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. JAN 2017 185 161 168 10.1016/j.fishres.2016.09.012 8 Fisheries Fisheries ED3XA WOS:000388780600019 2019-02-21 J Jonason, PK; Zeigler-Hill, V; Okan, C Jonason, Peter K.; Zeigler-Hill, Virgil; Okan, Ceylan Good v. evil: Predicting sinning with dark personality traits and moral foundations PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Narcissism; Psychopathy; Machiavellianism; Sadism; Spitefulness; Morality; Sins TRIAD; BEHAVIORS; INVENTORY; DIRTY Using life history theory, we provided (N = 1236) insight into individual differences in the engagement in human vice or sin (e.g., lust) by examining individual differences in dark personality traits and morality. Moral foundations were associated with sin through the individualizing aspects of morality. Dark personality traits accounted for almost six times more variance in individual differences in sinning than the moral foundations which suggests that it is personality rather than morality that is responsible for sinning behaviors. While sadism and spitefulness accounted for unique and significantly more variance, this was a small and specialized amount We replicated effects suggesting men are more strongly embodied by dark personality traits and behaviors than women are, and women are more morally virtuous than men are, but showed these sex differences were a function of dark personality traits in particular and moral foundations. Overwhelmingly, dark personality traits trump participant' sex and moral foundations. in accounting for variance in sin. (C) 2016 Elsevier Ltd. All rights reserved. [Jonason, Peter K.; Okan, Ceylan] Univ Western Sydney, Penrith, NSW 1797, Australia; [Zeigler-Hill, Virgil] Oakland Univ, Rochester, MI 48063 USA Jonason, PK (reprint author), Univ Western Sydney, Sch Social Sci & Psychol, Penrith, NSW 2751, Australia. p.jonason@westernsydney.edu.au Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buckels EE, 2013, PSYCHOL SCI, V24, P2201, DOI 10.1177/0956797613490749; Campbell J, 2009, TWIN RES HUM GENET, V12, P132, DOI 10.1375/twin.12.2.132; Christie R, 1970, STUDIES MACHIAVELLIA; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; de Waal F., 1996, GOOD NATURED; Figueredo AJ, 2015, EVOL PSYCHOL-US, V13, P435; Gioia GA, 2000, CHILD NEUROPSYCHOL, V6, P235, DOI 10.1076/chin.6.3.235.3152; Graham J, 2011, J PERS SOC PSYCHOL, V101, P366, DOI 10.1037/a0021847; Hayes AF, 2013, INTRO MEDIATION MODE; Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X; James S, 2014, PERS INDIV DIFFER, V68, P211, DOI 10.1016/j.paid.2014.04.020; Jonason PK, 2015, PERS INDIV DIFFER, V81, P102, DOI 10.1016/j.paid.2014.10.045; Jonason PK, 2015, PERS INDIV DIFFER, V78, P43, DOI 10.1016/j.paid.2015.01.028; Jonason PK, 2013, EVOL PSYCHOL-US, V11, P172, DOI 10.1177/147470491301100116; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2015, PERS INDIV DIFFER, V86, P360, DOI 10.1016/j.paid.2015.06.021; Kajonius PJ, 2015, PERS INDIV DIFFER, V77, P173, DOI 10.1016/j.paid.2014.12.055; Kavanagh PS, 2013, PERS INDIV DIFFER, V55, P666, DOI 10.1016/j.paid.2013.05.019; Marcus DK, 2014, PSYCHOL ASSESSMENT, V26, P563, DOI 10.1037/a0036039; Medina John J., 2000, GENETIC INFERNO INSI; Paulhus D. L., 2013, COMPREHENSIVE UNPUB; Paulhus D. L., 2009, MANUAL SELF REPORT P; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Schimmel S., 1997, 7 DEADLY SINS JEWISH; Veselka L, 2014, PERS INDIV DIFFER, V67, P75, DOI 10.1016/j.paid.2014.01.055; Wilson E.O., 1975, P1 30 11 11 1 37 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JAN 2017 104 180 185 10.1016/j.paid.2016.08.002 6 Psychology, Social Psychology EA2DG WOS:000386402400029 2019-02-21 J Eikeset, AM; Dunlop, ES; Heino, M; Storvik, G; Stenseth, NC; Dieckmann, U Eikeset, Anne Maria; Dunlop, Erin S.; Heino, Mikko; Storvik, Geir; Stenseth, Nils C.; Dieckmann, Ulf Roles of density-dependent growth and life history evolution in accounting for fisheries-induced trait changes PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article phenotypic plasticity; eco-evolutionary dynamics; management; genetic adaptation; genetic variance NORTHEAST ARCTIC COD; MATURATION REACTION NORMS; EXPLOITED FISH STOCKS; ECO-GENETIC MODEL; LONG-TERM CHANGES; GADUS-MORHUA; ATLANTIC COD; SELECTIVE MORTALITY; SIZE; CONSEQUENCES The relative roles of density dependence and life history evolution in contributing to rapid fisheries-induced trait changes remain debated. In the 1930s, northeast Arctic cod (Gadus morhua), currently the world's largest cod stock, experienced a shift from a traditional spawning-ground fishery to an industrial trawl fishery with elevated exploitation in the stock's feeding grounds. Since then, age and length at maturation have declined dramatically, a trend paralleled in other exploited stocks worldwide. These trends can be explained by demographic truncation of the population's age structure, phenotypic plasticity in maturation arising through density-dependent growth, fisheries-induced evolution favoring faster-growing or earlier-maturing fish, or a combination of these processes. Here, we use a multitrait eco-evolutionary model to assess the capacity of these processes to reproduce 74 y of historical data on age and length at maturation in northeast Arctic cod, while mimicking the stock's historical harvesting regime. Our results show that model predictions critically depend on the assumed density dependence of growth: when this is weak, life history evolution might be necessary to prevent stock collapse, whereas when a stronger density dependence estimated from recent data is used, the role of evolution in explaining fisheries-induced trait changes is diminished. Our integrative analysis of density-dependent growth, multitrait evolution, and stock-specific time series data underscores the importance of jointly considering evolutionary and ecological processes, enabling a more comprehensive perspective on empirically observed stock dynamics than previous studies could provide. [Eikeset, Anne Maria; Stenseth, Nils C.] Univ Oslo, Dept Biol, N-0316 Oslo, Norway; [Eikeset, Anne Maria; Stenseth, Nils C.] Univ Oslo, CEES, N-0316 Oslo, Norway; [Eikeset, Anne Maria; Dunlop, Erin S.; Heino, Mikko; Dieckmann, Ulf] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria; [Eikeset, Anne Maria] Princeton Univ, Ctr BioComplex, Princeton, NJ 08544 USA; [Eikeset, Anne Maria] Princeton Univ, Princeton Environm Inst, Princeton, NJ 08544 USA; [Eikeset, Anne Maria] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Dunlop, Erin S.] Ontario Minist Nat Resources & Forestry, Aquat Res & Monitoring Sect, Peterborough, ON K9L 0G2, Canada; [Dunlop, Erin S.; Heino, Mikko] Inst Marine Res, N-5817 Bergen, Norway; [Dunlop, Erin S.; Heino, Mikko] Univ Bergen, Dept Biol, N-5020 Bergen, Norway; [Dunlop, Erin S.; Heino, Mikko] Univ Bergen, Hjort Ctr Marine Ecosyst Dynam, N-5020 Bergen, Norway; [Storvik, Geir] Univ Oslo, Stat Div, Dept Math, N-0316 N- Oslo, Norway Eikeset, AM; Stenseth, NC (reprint author), Univ Oslo, Dept Biol, N-0316 Oslo, Norway.; Eikeset, AM; Stenseth, NC (reprint author), Univ Oslo, CEES, N-0316 Oslo, Norway.; Eikeset, AM (reprint author), Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria.; Eikeset, AM (reprint author), Princeton Univ, Ctr BioComplex, Princeton, NJ 08544 USA.; Eikeset, AM (reprint author), Princeton Univ, Princeton Environm Inst, Princeton, NJ 08544 USA.; Eikeset, AM (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. a.m.eikeset@ibv.uio.no; n.c.stenseth@ibv.uio.no Heino, Mikko/C-7241-2009 Heino, Mikko/0000-0003-2928-3940; Dieckmann, Ulf/0000-0001-7089-0393; Storvik, Geir Olve/0000-0001-8198-1426 Norwegian Research Council; NordForsk (GreenMAR); Bergen Research Foundation; European Research Training Network on Fisheries-Induced Adaptive Changes in Exploited Stocks (FishACE) [MRTN-CT-2204-005578]; European Specific Targeted Research Programme on Fisheries-induced Evolution (FinE) [SSP-2006-044276]; European Science Foundation; Austrian Science Fund; Austrian Ministry of Science and Research; Vienna Science and Technology Fund We are grateful to the Research Computing Services at the University of Oslo for access to computing resources crucial for this study. We thank A. Hylen, K. Nedreaas, B. Bogstad, and O. S. Kjesbu for kindly providing data on biomass and reproduction, and C. T. Marshall for data on length at age. We sincerely appreciate comments provided by J. Hutchings, C. T. Marshall, N. L. Hjort, O. R. Godo, T. Hansen, B. Shuter, K. Brander, and E. Kenchington, and discussions with K. Enberg and C. Jorgensen on the model and results. This work was supported by the Norwegian Research Council (A.M.E., E.S.D., M.H., and N. C. S.), NordForsk (GreenMAR) (A.M.E. and N. C. S.), the Bergen Research Foundation (M.H.), the European Research Training Network on Fisheries-Induced Adaptive Changes in Exploited Stocks (FishACE; Grant MRTN-CT-2204-005578) (to E.S.D., M.H., and U.D.), the European Specific Targeted Research Programme on Fisheries-induced Evolution (FinE; Grant SSP-2006-044276) (to A.M.E., E.S.D., M.H., N. C. S., and U.D.), the European Science Foundation (U.D.), the Austrian Science Fund (U.D.), the Austrian Ministry of Science and Research (U.D.), and the Vienna Science and Technology Fund (U.D.). Aglen A, 2004, P 10 NORW RUSS S, P27; AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Bangera R, 2015, J MAR SCI ENG, V3, P412, DOI 10.3390/jmse3020412; Baskett ML, 2005, ECOL APPL, V15, P882, DOI 10.1890/04-0723; Bromaghin JF, 2011, NAT RESOUR MODEL, V24, P1, DOI 10.1111/j.1939-7445.2010.00077.x; Browman HI, 2008, SCIENCE, V320, P47, DOI 10.1126/science.320.5872.47b; Burnham K. P, 2002, MODEL SELECTION MULT; Cameron TC, 2013, ECOL LETT, V16, P754, DOI 10.1111/ele.12107; Casini M, 2014, PLOS ONE, V9; Castellani M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0138444; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Conover DO, 2007, FISHERIES, V32, P90; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; de Roos AM, 2006, P ROY SOC B-BIOL SCI, V273, P1873, DOI 10.1098/rspb.2006.3518; Devore J. L, 2012, MODERN MATH STAT APP; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2015, ECOL APPL, V25, P1860, DOI 10.1890/14-1862.1; Dunlop ES, 2009, EVOL APPL, V2, P371, DOI 10.1111/j.1752-4571.2009.00089.x; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Eikeset AM, 2013, P NATL ACAD SCI USA, V110, P12259, DOI 10.1073/pnas.1212593110; Eikeset AM, 2013, MAR POLICY, V39, P172, DOI 10.1016/j.marpol.2012.10.020; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Feiner ZS, 2015, EVOL APPL, V8, P724, DOI 10.1111/eva.12285; Fraser DJ, 2013, CAN J FISH AQUAT SCI, V70, P1417, DOI 10.1139/cjfas-2013-0171; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Gjerde B, 2004, AQUACULTURE, V236, P167, DOI 10.1016/j.aquaculture.2004.03.004; Gobin J, 2015, J GREAT LAKES RES, V41, P405, DOI 10.1016/j.jglr.2015.03.003; Godo OR, 2003, FISH FISH, V4, P121, DOI 10.1046/j.1467-2979.2003.00112.x; GODO OR, 1987, FISH RES, V5, P235, DOI 10.1016/0165-7836(87)90043-9; Godo OR, 2000, IR00024 IIASA; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M., 2002, ICES CM Y, V2002 Y, P14; Hilborn R, 2006, FISHERIES, V31, P554; Hjermann DO, 2007, P ROY SOC B-BIOL SCI, V274, P661, DOI 10.1098/rspb.2006.0069; HOULE D, 1992, GENETICS, V130, P195; Hsieh CH, 2010, AQUAT SCI, V72, P165, DOI 10.1007/s00027-009-0122-2; Huse G, 2004, ICES J MAR SCI, V61, P1201, DOI 10.1016/j.icesjms.2004.06.011; HUTCHINGS JA, 1994, CAN J FISH AQUAT SCI, V51, P2126, DOI 10.1139/f94-214; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Hylen A., 2002, ICES MARINE SCI S, V215, P543; ICES, 2013, 2013ACOM05 ICES CM; ICES, 2009, 2009ACOM01 ICES CM; Ivan LN, 2015, CAN J FISH AQUAT SCI, V72, P1243, DOI 10.1139/cjfas-2014-0197; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; JORGENSEN T, 1992, ICES J MAR SCI, V49, P263, DOI 10.1093/icesjms/49.3.263; JORGENSEN T, 1990, J CONSEIL, V46, P235; Kinnison MT, 2009, P NATL ACAD SCI USA, V106, pE115, DOI 10.1073/pnas.09007871106; Kjesbu OS, 2014, P NATL ACAD SCI USA, V111, P3478, DOI 10.1073/pnas.1316342111; Kjesbu OS, 1998, J SEA RES, V40, P303, DOI 10.1016/S1385-1101(98)00029-X; Korsbrekke K, 2001, ICES J MAR SCI, V58, P763, DOI 10.1006/jmsc.2001.1064; Kuparinen A, 2014, EVOL APPL, V7, P1218, DOI 10.1111/eva.12217; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Marshall CT, 2004, CAN J FISH AQUAT SCI, V61, P1900, DOI 10.1139/F04-128; Marty L, 2015, EVOL APPL, V8, P47, DOI 10.1111/eva.12220; MCEVOY LA, 1992, J FISH BIOL, V41, P125, DOI 10.1111/j.1095-8649.1992.tb03874.x; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Nussle S, 2009, EVOL APPL, V2, P200, DOI 10.1111/j.1752-4571.2008.00054.x; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Palkovacs EP, 2012, EVOL APPL, V5, P183, DOI 10.1111/j.1752-4571.2011.00212.x; Pardoe H, 2009, CAN J FISH AQUAT SCI, V66, P1719, DOI 10.1139/F09-132; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Piou C, 2012, ECOL MODEL, V231, P37, DOI 10.1016/j.ecolmodel.2012.01.025; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2005, CAN J FISH AQUAT SCI, V62, P791, DOI 10.1139/F05-079; Roff Derek A., 1992; SAETERSDAL G, 1964, FISKERIDIREKTORATE H, V13, P56; Scheffer M, 1995, ECOL MODEL, V80, P161; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Tenhumberg B, 2004, ECOLOGY, V85, P2003, DOI 10.1890/03-4111; Traill LW, 2014, P NATL ACAD SCI USA, V111, P13223, DOI 10.1073/pnas.1407508111; Vainikka A, 2012, FISH RES, V113, P8, DOI 10.1016/j.fishres.2011.09.004; Vainikka A, 2009, ICES J MAR SCI, V66, P248, DOI 10.1093/icesjms/fsn199; van Wijk SJ, 2013, FRONT ECOL ENVIRON, V11, P181, DOI 10.1890/120229; Wang HY, 2009, EVOL APPL, V2, P438, DOI 10.1111/j.1752-4571.2009.00088.x; Yoneda M, 2004, MAR ECOL PROG SER, V276, P237, DOI 10.3354/meps276237; Zimmermann F, 2015, CAN J FISH AQUAT SCI, V72, P612, DOI 10.1139/cjfas-2014-0006; Zuykova NV, 2009, MAR BIOL RES, V5, P66, DOI 10.1080/17451000802454874 93 14 14 1 57 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. DEC 27 2016 113 52 15030 15035 10.1073/pnas.1525749113 6 Multidisciplinary Sciences Science & Technology - Other Topics EG5NL WOS:000391090800046 27940913 Green Published, Bronze 2019-02-21 J Boratynski, Z; Arias, JM; Garcia, C; Mappes, T; Mousseau, TA; Moller, AP; Pajares, AJM; Piwczynski, M; Tukalenko, E Boratynski, Zbyszek; Arias, Javi Miranda; Garcia, Cristina; Mappes, Tapio; Mousseau, Timothy A.; Moller, Anders P.; Munoz Pajares, Antonio Jesus; Piwczynski, Marcin; Tukalenko, Eugene Ionizing radiation from Chernobyl affects development of wild carrot plants SCIENTIFIC REPORTS English Article LIFE-HISTORY EVOLUTION; TRADE-OFFS; OXIDATIVE STRESS; ADAPTATION; GROWTH; EXPRESSION; ANIMALS; DNA; POPULATIONS; FUKUSHIMA Radioactivity released from disasters like Chernobyl and Fukushima is a global hazard and a threat to exposed biota. To minimize the deleterious effects of stressors organisms adopt various strategies. Plants, for example, may delay germination or stay dormant during stressful periods. However, an intense stress may halt germination or heavily affect various developmental stages and select for life history changes. Here, we test for the consequence of exposure to ionizing radiation on plant development. We conducted a common garden experiment in an uncontaminated greenhouse using 660 seeds originating from 33 wild carrots (Daucus carota) collected near the Chernobyl nuclear power plant. These maternal plants had been exposed to radiation levels that varied by three orders of magnitude. We found strong negative effects of elevated radiation on the timing and rates of seed germination. In addition, later stages of development and the timing of emergence of consecutive leaves were delayed by exposure to radiation. We hypothesize that low quality of resources stored in seeds, damaged DNA, or both, delayed development and halted germination of seeds from plants exposed to elevated levels of ionizing radiation. We propose that high levels of spatial heterogeneity in background radiation may hamper adaptive life history responses. [Boratynski, Zbyszek; Arias, Javi Miranda; Garcia, Cristina; Munoz Pajares, Antonio Jesus] Univ Porto, Associated Lab, Res Ctr Biodivers & Genet Resources, CIBIO InBIO, P-4485661 Vairao, PT, Portugal; [Boratynski, Zbyszek; Mappes, Tapio; Tukalenko, Eugene] Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, FI-40014 Jyvaskyla, Finland; [Mousseau, Timothy A.] Univ South Carolina, Dept Biol Sci, Columbia, SC 29208 USA; [Mousseau, Timothy A.] Chubu Univ, Dept Environm Biol, Kasugai, Aichi 4878501, Japan; [Moller, Anders P.] Univ Paris Sud, CNRS UMR 8079, Lab Ecol Systemat & Evolut, Batiment 362, F-91405 Orsay, France; [Piwczynski, Marcin] Nicolaus Copernicus Univ, Chair Ecol & Biogeog, Lwowska 1, PL-87100 Torun, Poland; [Tukalenko, Eugene] Taras Shevchenko Natl Univ Kyiv, Inst Biol, UA-03022 Kiev, Ukraine Boratynski, Z (reprint author), Univ Porto, Associated Lab, Res Ctr Biodivers & Genet Resources, CIBIO InBIO, P-4485661 Vairao, PT, Portugal.; Boratynski, Z (reprint author), Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, FI-40014 Jyvaskyla, Finland. boratyns@jyu.fi Piwczynski, Marcin/E-4016-2014 Piwczynski, Marcin/0000-0002-1756-5580; Munoz-Pajares, A. Jesus/0000-0002-2505-8116; Boratynski, Zbyszek/0000-0003-4668-4922; GARCIA, CRISTINA/0000-0001-7970-1245 Academy of Finland [268670]; Portuguese Foundation for Science and Technology (FCT) [RH/BPD/84822/2012, SFRH/BPD/111015/2015]; Portuguese Foundation for Science and Technology (FCT) - European Program COMPETE [FCT-ANR/BIA-BIC/0010/2013, PTDC/BIA-BIC/5223/2014, FCOMP-01-0124-FEDER-019772]; Project "Genomics and Evolutionary Biology" - North Portugal Regional Operational Programme (ON.2 - O Novo Norte) under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF); Polish National Science Centre [2015/18/E/NZ8/00716]; Samuel Freeman Charitable Trust; CNRS (France); American Council of Learned Societies; University of South Carolina College of Arts and Sciences We gratefully acknowledge the help and support of Gennadi Milinevsky, Laura Martinez-Rodriguez, Margarida Isabel Oliveira Barros and Ricardo Guerreiro during field work and greenhouse experiment, and Nikolaos Evangeliou for help in calculations of exposure to ground contamination (http://radio.nilu.no). The study was financially supported by the Academy of Finland to TM (Grant No. 268670). AJMP and ZB were funded by the Portuguese Foundation for Science and Technology (FCT: RH/BPD/84822/2012 and SFRH/BPD/111015/2015). CG was supported by the Portuguese Foundation for Science and Technology (FCT) through the Investigador Programme and two research grants (FCT-ANR/BIA-BIC/0010/2013 and PTDC/BIA-BIC/5223/2014) co-funded by the European Program COMPETE (FCOMP-01-0124-FEDER-019772), and by the Project "Genomics and Evolutionary Biology" cofinanced by North Portugal Regional Operational Programme 2007/2013 (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). MP was supported by the Polish National Science Centre (grant no. 2015/18/E/NZ8/00716). Additional support to TAM and APM came from the Samuel Freeman Charitable Trust, the CNRS (France), the American Council of Learned Societies, and the University of South Carolina College of Arts and Sciences. Bates D., 2014, J STAT SOFTWAR UNPUB, DOI DOI 10.18637/JSS.V067.I01; Boratynski Z, 2014, SCI REP-UK, V4, DOI 10.1038/srep07141; Boubriak II, 2008, ANN BOT-LONDON, V101, P267, DOI 10.1093/aob/mcm276; COLEY PD, 1988, OECOLOGIA, V74, P531, DOI 10.1007/BF00380050; Einor D, 2016, SCI TOTAL ENVIRON, V548, P463, DOI 10.1016/j.scitotenv.2016.01.027; Evangeliou N., 2016, ENV POLLUT; Galvan I, 2014, FUNCT ECOL, V28, P1387, DOI 10.1111/1365-2435.12283; GRAY D, 1984, J EXP BOT, V35, P459, DOI 10.1093/jxb/35.4.459; Hall ME, 2010, FUNCT ECOL, V24, P365, DOI 10.1111/j.1365-2435.2009.01635.x; Hayashi G, 2015, PLANT SIGNAL BEHAV, V10, DOI 10.1080/15592324.2015.1103406; Hayashi G, 2014, J HERED, V105, P723, DOI 10.1093/jhered/esu025; Hereford J, 2009, AM NAT, V173, P579, DOI 10.1086/597611; Hinton TG, 2007, HEALTH PHYS, V93, P427, DOI 10.1097/01.HP.0000281179.03443.2e; KOLLER P. C., 1943, Proceedings of the Royal Society of Edinburgh, V61, P398; Kovalchuk I, 2004, PLANT PHYSIOL, V135, P357, DOI 10.1104/pp.104.040477; Kovalchuk O, 2000, NATURE, V407, P583, DOI 10.1038/35036692; LACEY EP, 1986, J ECOL, V74, P73, DOI 10.2307/2260349; Leck Mary Allessio, 2008, P3; Lind EM, 2013, ECOL LETT, V16, P513, DOI 10.1111/ele.12078; Moller AP, 2013, BIOL REV, V88, P226, DOI 10.1111/j.1469-185X.2012.00249.x; Moller AP, 2015, SCI REP-UK, V5, DOI 10.1038/srep08363; Moller AP, 1998, OIKOS, V81, P444, DOI 10.2307/3546765; Moller AP, 1997, J THEOR BIOL, V185, P415, DOI 10.1006/jtbi.1996.0332; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Mousseau TA, 2000, ADAPTIVE GENETIC VARIATION IN THE WILD, P219; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Mousseau TA, 2014, J HERED, V105, P704, DOI 10.1093/jhered/esu040; Mousseau TA, 2013, TREES-STRUCT FUNCT, V27, P1443, DOI 10.1007/s00468-013-0891-z; Nakanishi T. M., 2016, AGR IMPLICATIONS FUK; Nascimento WM, 2013, SEED SCI TECHNOL, V41, P164, DOI 10.15258/sst.2013.41.1.19; Prati D, 2000, OIKOS, V90, P442, DOI 10.1034/j.1600-0706.2000.900303.x; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Sidler C, 2015, RADIAT RES, V183, P219, DOI 10.1667/RR13840.1; Smith SA, 2008, SCIENCE, V322, P86, DOI 10.1126/science.1163197; SPARROW A. H., 1961, RADIATION BOT, V1, P10, DOI 10.1016/S0033-7560(61)80003-3; Stearns S C, 1987, Experientia Suppl, V55, P337; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Sultan SE, 2000, TRENDS PLANT SCI, V5, P537, DOI 10.1016/S1360-1385(00)01797-0; WOODWELL GM, 1963, SCIENCE, V139, P222, DOI 10.1126/science.139.3551.222 42 5 5 4 36 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep DEC 16 2016 6 39282 10.1038/srep39282 8 Multidisciplinary Sciences Science & Technology - Other Topics EE9UM WOS:000389971700001 27982121 DOAJ Gold, Green Published 2019-02-21 J Jourdan, J; Krause, ST; Lazar, VM; Zimmer, C; Sommer-Trembo, C; Arias-Rodriguez, L; Klaus, S; Riesch, R; Plath, M Jourdan, Jonas; Krause, Sarah T.; Lazar, V. Max; Zimmer, Claudia; Sommer-Trembo, Carolin; Arias-Rodriguez, Lenin; Klaus, Sebastian; Riesch, Rudiger; Plath, Martin Shared and unique patterns of phenotypic diversification along a stream gradient in two congeneric species SCIENTIFIC REPORTS English Article LIFE-HISTORY EVOLUTION; GUPPY POECILIA-RETICULATA; FISH BRACHYRHAPHIS-RHABDOPHORA; GAMBUSIA-EURYSTOMA MILLER; TOXIC HYDROGEN-SULFIDE; SEXUAL SIZE DIMORPHISM; LIVEBEARING FISH; POSTPLEISTOCENE RADIATION; ECOLOGICAL SPECIATION; MEXICANA POECILIIDAE Stream ecosystems show gradual variation of various selection factors, which can result in a zonation of species distributions and gradient evolution of morphological and life-history traits within species. Identifying the selective agents underlying such phenotypic evolution is challenging as different species could show shared and/or unique (species-specific) responses to components of the river gradient. We studied a stream gradient inhabited by two mosquitofishes (genus Gambusia) in the Rio Grijalva basin in southern Mexico and found a patchy distribution pattern of both congeners along a stretch of 100 km, whereby one species was usually dominant at a given site. We uncovered both shared and unique patterns of diversification: some components of the stream gradient, including differences in piscine predation pressure, drove shared patterns of phenotypic divergence, especially in females. Other components of the gradient, particularly abiotic factors (max. annual temperature and temperature range) resulted in unique patterns of divergence, especially in males. Our study highlights the complexity of selective regimes in stream ecosystems. It exemplifies that even closely related, congeneric species can respond in unique ways to the same components of the river gradient and shows how both sexes can exhibit quite different patterns of divergence in multivariate phenotypic character suites. [Jourdan, Jonas; Zimmer, Claudia; Plath, Martin] Northwest A&F UNiv, Coll Anim Sci & Technol, Yangling 712100, Shaanxi, Peoples R China; [Jourdan, Jonas; Krause, Sarah T.; Lazar, V. Max; Zimmer, Claudia; Sommer-Trembo, Carolin; Klaus, Sebastian] Goethe Univ Frankfurt, Dept Ecol & Evolut, Max von Laue Str 13, D-60438 Frankfurt, Germany; [Jourdan, Jonas] Senckenberg Res Inst, Dept River Ecol & Conservat, Gelnhausen, Germany; [Jourdan, Jonas] Nat Hist Museum Frankfurt, Gelnhausen, Germany; [Arias-Rodriguez, Lenin] Univ Juarez Autonoma Tabasco, Div Acad Ciencias Biol, Villahermosa 86150, Tabasco, Mexico; [Riesch, Rudiger] Royal Holloway Univ London, Sch Biol Sci, Egham TW20 0EX, Surrey, England Jourdan, J (reprint author), Northwest A&F UNiv, Coll Anim Sci & Technol, Yangling 712100, Shaanxi, Peoples R China.; Jourdan, J (reprint author), Goethe Univ Frankfurt, Dept Ecol & Evolut, Max von Laue Str 13, D-60438 Frankfurt, Germany.; Jourdan, J (reprint author), Senckenberg Res Inst, Dept River Ecol & Conservat, Gelnhausen, Germany.; Jourdan, J (reprint author), Nat Hist Museum Frankfurt, Gelnhausen, Germany. JonasJourdan@googlemail.com Riesch, Rudiger/A-5787-2008; Jourdan, Jonas/Y-7389-2018 Riesch, Rudiger/0000-0002-0223-1254; Klaus, Sebastian/0000-0001-5822-7978; ARIAS RODRIGUEZ, LENIN/0000-0002-8025-5569; Jourdan, Jonas/0000-0002-2745-2520 Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M; 'LOEWE-Landes-Offensive zur Entwicklung Wissenschaftlich-okonomischer Exzellenz' of Hesse's Ministry of Higher Education, Research, and the Arts We thank J.R. Indy, A.L.D'artola Barcelo, K. Lipkowski, S. Hornung, and Y. Verel for helping us collect fish. We are indebted to R. Velazquez Pacheco for giving us the opportunity to use the facilities of the Centro de Investigacion e Innovacion para la Ensenanza y el Apredizaje in Teapa. The present study was supported by the Biodiversity and Climate Research Centre (BiK-F), Frankfurt a. M. Funding was provided by the research funding programme 'LOEWE-Landes-Offensive zur Entwicklung Wissenschaftlich-okonomischer Exzellenz' of Hesse's Ministry of Higher Education, Research, and the Arts. Collection of fish and experimental work in Mexico were conducted under the authorization and regulations of the Mexican Federal Agency CONAPESCA: PRMN/DGOPA-003/2014 and PRMN/DGOPA-009/2015. Allan J. D., 1995, STREAM ECOLOGY; Anderson EC, 2002, GENETICS, V160, P1217; Arif S, 2007, EVOL ECOL RES, V9, P843; Banet AI, 2016, OECOLOGIA, V181, P87, DOI 10.1007/s00442-015-3542-9; Belk MC, 2010, OIKOS, V119, P163, DOI 10.1111/j.1600-0706.2009.17742.x; BISAZZA A, 1995, ETHOL ECOL EVOL, V7, P169, DOI 10.1080/08927014.1995.9522963; BLACK DA, 1979, COPEIA, P509; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; CARTER HJ, 1981, COPEIA, P694; Coyne JA, 2004, SPECIATION, V37; Culumber ZW, 2011, MOL ECOL, V20, P342, DOI 10.1111/j.1365-294X.2010.04949.x; Culumber ZW, 2016, AQUAT CONSERV, V26, P1155, DOI 10.1002/aqc.2640; Dayan T, 2005, ECOL LETT, V8, P875, DOI 10.1111/j.1461-0248.2005.00791.x; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Earl DA, 2012, CONSERV GENET RESOUR, V4, P359, DOI 10.1007/s12686-011-9548-7; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; Endler J. A., 1986, NATURAL SELECTION WI; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Farr J.A., 1989, P91; Fink W.L., 1971, Publ Gulf Coast Res Lab Mus (Ocean Springs Miss), V2, P11; Franssen NR, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2715; Franssen NR, 2011, EVOL APPL, V4, P791, DOI 10.1111/j.1752-4571.2011.00200.x; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Gillespie RG, 2012, TRENDS ECOL EVOL, V27, P47, DOI 10.1016/j.tree.2011.08.009; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Gomez-Mestre I, 2004, EVOLUTION, V58, P2343; GOMEZGONZALEZ AE, 2015, CHECK LIST, V11, pNIL65, DOI DOI 10.15560/11.1726; Goudet J, 1995, J HERED, V86, P485, DOI 10.1093/oxfordjournals.jhered.a111627; GREENFIELD DW, 1985, COPEIA, P368, DOI 10.2307/1444846; GREENFIELD DW, 1983, COPEIA, P598; GREENFIELD DW, 1982, COPEIA, P128; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Haas TC, 2010, BIOL LETTERS, V6, P803, DOI 10.1098/rsbl.2010.0401; Hangartner S, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-366; Heibo E, 2005, ECOLOGY, V86, P3377, DOI 10.1890/04-1620; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Hijmans R. J., 2004, DIVA GIS VERSION 7 5; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Hodkinson ID, 2005, BIOL REV, V80, P489, DOI 10.1017/S1464793105006767; Horstkotte J, 2005, BIOL J LINN SOC, V85, P125, DOI 10.1111/j.1095-8312.2005.00476.x; Hudson P. F., 2005, RIVERS N AM, P1031, DOI DOI 10.1016/B978-012088253-3/50026-2; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/f00-239; Jansen M., 2016, AMPHIBIA-REPTILIA, DOI [10.1163/15685381-00003038, DOI 10.1163/15685381-00003038]; Jennions MD, 2002, OIKOS, V97, P79, DOI 10.1034/j.1600-0706.2002.970108.x; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Keller I, 2012, MOL ECOL, V21, P782, DOI 10.1111/j.1365-294X.2011.05397.x; Klingenberg CP, 2011, MOL ECOL RESOUR, V11, P353, DOI 10.1111/j.1755-0998.2010.02924.x; KOCHER TD, 1989, P NATL ACAD SCI USA, V86, P6196, DOI 10.1073/pnas.86.16.6196; KRUMHOLZ LA, 1948, ECOL MONOGR, V18, P1, DOI 10.2307/1948627; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P2231, DOI 10.1111/j.1420-9101.2009.01839.x; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; Langerhans RB, 2007, EVOLUTION, V61, P2056, DOI 10.1111/j.1558-5646.2007.00171.x; Langerhans RB, 2009, BIOL LETTERS, V5, P488, DOI 10.1098/rsbl.2009.0179; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Laverty G, 2015, EXTREMOPHILE FISHES, P85; Lindholm AK, 2014, J EVOLUTION BIOL, V27, P437, DOI 10.1111/jeb.12313; LYDEARD C, 1995, SYST BIOL, V44, P221, DOI 10.2307/2413708; LYDEARD C, 1995, CAN J ZOOL, V73, P213, DOI 10.1139/z95-025; MacLaren RD, 2012, ENVIRON BIOL FISH, V93, P105, DOI 10.1007/s10641-011-9896-x; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Martin RA, 2014, EVOLUTION, V68, P397, DOI 10.1111/evo.12277; Matthews W. J., 1998, PATTERNS FRESHWATER; Meyer A, 2006, MOL ECOL, V15, P721, DOI 10.1111/j.1365-294X.2006.02810.x; Miller RR, 2005, FRESHWATER FISHES ME; Moore MP, 2016, ECOL LETT, V19, P435, DOI 10.1111/ele.12576; Nelson J., 2015, EXTREMOPHILE FISHES, P193; Palacios M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071069; Palo JU, 2003, MOL ECOL, V12, P1963, DOI 10.1046/j.1365-294X.2003.01865.x; Plath M, 2005, BEHAV ECOL SOCIOBIOL, V58, P144, DOI 10.1007/s00265-005-0918-6; Plath M, 2003, BEHAV ECOL SOCIOBIOL, V54, P303, DOI 10.1007/s00265-003-0625-0; Plath M, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-256; Pritchard JK, 2000, GENETICS, V155, P945; Purcell KM, 2011, CONSERV GENET RESOUR, V3, P361, DOI 10.1007/s12686-010-9362-7; Pyke GH, 2005, REV FISH BIOL FISHER, V15, P339, DOI 10.1007/s11160-006-6394-x; RAKOCINSKI CF, 1985, STUD NEOTROP FAUNA E, V20, P157, DOI 10.1080/01650528509360684; Rambaut A., 2013, TRACER V1 6; RAUCHENBERGER M, 1990, AM MUS NOVIT, P1; Rauchenberger M, 1989, AM MUS NOVIT, V2951, P1; Reeve JP, 1999, HEREDITY, V83, P697, DOI 10.1046/j.1365-2540.1999.00616.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Riesch R, 2011, J EVOLUTION BIOL, V24, P596, DOI 10.1111/j.1420-9101.2010.02194.x; Riesch R, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0705-1; Riesch R, 2016, SCI REP-UK, V6, DOI 10.1038/srep22968; Riesch R, 2014, ECOL LETT, V17, P65, DOI 10.1111/ele.12209; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Riesch R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027377; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; Rios-Cardenas O., 2011, ECOLOGY EVOLUTION PO, P188; Rodriguez G., 1986, Crustacean Issues, V4, P51; Rohlf F. J, 2010, TPSDIG2 VERSION 2 16; Rohlf F. J., 2013, TPSUTIL VERSION 1 58; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; Sexton JP, 2009, ANNU REV ECOL EVOL S, V40, P415, DOI 10.1146/annurev.ecolsys.110308.120317; Spencer CC, 1999, MOL ECOL, V8, P157; Stearns S. C., 1992, EVOLUTION LIFE HIST, V249; Stuart YE, 2014, SCIENCE, V346, P463, DOI 10.1126/science.1257008; Taniguchi Y, 2000, ECOLOGY, V81, P2027, DOI 10.1890/0012-9658(2000)081[2027:CSCIFT]2.0.CO;2; TERBRAAK CJF, 1986, ECOLOGY, V67, P1167; Tobler M, 2008, J FISH BIOL, V72, P523, DOI 10.1111/j.1095-8649.2007.01716.x; Tobler M, 2009, ENVIRON BIOL FISH, V85, P251, DOI 10.1007/s10641-009-9481-8; Torres-Dowdall J, 2013, BIOL J LINN SOC, V108, P790, DOI 10.1111/bij.12031; Torres-Dowdall J, 2012, FUNCT ECOL, V26, P616, DOI 10.1111/j.1365-2435.2012.01980.x; Watt C, 2010, OIKOS, V119, P89, DOI 10.1111/j.1600-0706.2009.17959.x; Wesner JS, 2011, BIOL J LINN SOC, V104, P386, DOI 10.1111/j.1095-8312.2011.01715.x; Wetzel R. G., 2001, LIMNOLOGY LAKE RIVER; Wiens JJ, 2010, ECOL LETT, V13, P1310, DOI 10.1111/j.1461-0248.2010.01515.x; WINEMILLER KO, 1992, ENVIRON BIOL FISH, V34, P29, DOI 10.1007/BF00004783; WOURMS JP, 1981, AM ZOOL, V21, P473; XLSTAT, 2016, ADD; Zandona E, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136079; Zelditch ML, 2012, GEOMETRIC MORPHOMETRICS FOR BIOLOGISTS: A PRIMER, 2ND EDITION, P1 119 7 7 3 17 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep DEC 16 2016 6 38971 10.1038/srep38971 20 Multidisciplinary Sciences Science & Technology - Other Topics EE8NS WOS:000389883400001 27982114 DOAJ Gold, Green Published 2019-02-21 J de Souza, FC; Dexter, KG; Phillips, OL; Brienen, RJW; Chave, J; Galbraith, DR; Gonzalez, GL; Mendoza, AM; Pennington, RT; Poorter, L; Alexiades, M; Alvarez-Davila, E; Andrade, A; Aragao, LEOC; Araujo-Murakami, A; Arets, EJMM; Aymard, GA; Baraloto, C; Barroso, JG; Bonal, D; Boot, RGA; Camargo, JLC; Comiskey, JA; Valverde, FC; de Camargo, PB; Di Fiore, A; Elias, F; Erwin, TL; Feldpausch, TR; Ferreira, L; Fyllas, NM; Gloor, E; Herault, B; Herrera, R; Higuchi, N; Coronado, ENH; Killeen, TJ; Laurance, WF; Laurance, S; Lloyd, J; Lovejoy, TE; Malhi, Y; Maracahipes, L; Marimon, BS; Marimon, BH; Mendoza, C; Morandi, P; Neill, DA; Vargas, PN; Oliveira, EA; Lenza, E; Palacios, WA; Penuela-Mora, MC; Pipoly, JJ; Pitman, NCA; Prieto, A; Quesada, CA; Ramirez-Angulo, H; Rudas, A; Ruokolainen, K; Salomao, RP; Silveira, M; Stropp, J; ter Steege, H; Thomas-Caesar, R; van der Hout, P; van der Heijden, GMF; van der Meer, PJ; Vasquez, RV; Vieira, SA; Vilanova, E; Vos, VA; Wang, O; Young, KR; Zagt, RJ; Baker, TR de Souza, Fernanda Coelho; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Gonzalez, Gabriela Lopez; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Alvarez-Davila, Esteban; Andrade, Ana; Aragao, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C., Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, Jose L. C.; Comiskey, James A.; Cornejo Valverde, Fernando; de Camargo, Plinio B.; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Euridice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Nunez Vargas, Percy; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Penuela-Mora, Maria C.; Pipoly, John J., III; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomao, Rafael P.; Silveira, Marcos; Stropp, Juliana; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R. Evolutionary heritage influences Amazon tree ecology PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article tropical tree; trait; convergent evolution; divergent selection; phylogenetic signal PHYLOGENETIC NICHE CONSERVATISM; FUNCTIONAL TRAITS; WOOD DENSITY; RAIN-FOREST; COMMUNITY ECOLOGY; SIGNAL; BIOMASS; GROWTH; PRODUCTIVITY; SIZE Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. [de Souza, Fernanda Coelho; Phillips, Oliver L.; Brienen, Roel J. W.; Galbraith, David R.; Gonzalez, Gabriela Lopez; Aragao, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C., Gerardo A.; Baraloto, Christopher; Fyllas, Nikolaos M.; Gloor, Emanuel; Baker, Timothy R.] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England; [Dexter, Kyle G.] Univ Edinburgh, Sch Geosci, 201 Crew Bldg,Kings Bldg, Edinburgh EH9 3FF, Midlothian, Scotland; [Dexter, Kyle G.; Pennington, R. Toby] Royal Bot Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, Midlothian, Scotland; [Chave, Jerome] Univ Paul Sabatier, CNRS, UMR 5174, Evolut & Diversite Biol, Batiment 4R1, F-31062 Toulouse, France; [Monteagudo Mendoza, Abel; Vasquez, Rodolfo V.] Jardin Bot Missouri, Prolongac Bolognesi Mz E,Lote 6, Oxapampa, Pasco, Peru; [Poorter, Lourens] Wageningen Univ & Res, Forest Ecol & Forest Management Grp, POB 47, NL-6700 AA Wageningen, Netherlands; [Alexiades, Miguel] Univ Kent, Sch Anthropol & Conservat, Marlowe Bldg, Canterbury CT2 7NR, Kent, England; [Alvarez-Davila, Esteban] Fdn Con Vida, Cra 48 20-114, Medellin, Colombia; [Andrade, Ana; Camargo, Jose L. C.] INPA, Biol Dynam Forest Fragment Project, CP 478, BR-69011970 Manaus, Amazonas, Brazil; [Andrade, Ana; Camargo, Jose L. C.] STRI, CP 478, BR-69011970 Manaus, Amazonas, Brazil; [Aragao, Luis E. O. C.; Feldpausch, Ted R.] Univ Exeter, Coll Life & Environm Sci, Geog, Exeter EX4 4RJ, Devon, England; [Aragao, Luis E. O. C.] Natl Inst Space Res INPE, Sao Paulo, Brazil; [Araujo-Murakami, Alejandro] Univ Autonoma Gabriel Rene Moreno, Museo Hist Nat Noel Kempff Mercado, Casilla 2489,Ave Irala 565, Santa Cruz, Bolivia; [Arets, Eric J. M. M.] Wageningen Univ & Res Ctr, Alterra, POB 47, NL-6700 AA Wageningen, Netherlands; [Aymard C., Gerardo A.] Herbario Univ PORT, UNELLEZ Guanare, Programa Agro & Mar, Estado Portuguesa 3350, Mesa De Cavacas, Venezuela; [Baraloto, Christopher] Florida Int Univ, Dept Biol Sci, Int Ctr Trop Bot, Miami, FL 33199 USA; [Barroso, Jorcely G.] Univ Fed Acre, Campus Cruzeiro Sul, Acre, Brazil; [Bonal, Damien] INRA, UMR 1137, Ecol & Ecophysiol Forestiere, F-54280 Champenoux, France; [Boot, Rene G. A.; Zagt, Roderick J.] Tropenbos Int, POB 232, NL-6700 AE Wageningen, Netherlands; [Comiskey, James A.] Natl Pk Serv, 120 Chatham Lane, Fredericksburg, VA 22405 USA; [Comiskey, James A.] Smithsonian Inst, 1100 Jefferson Dr SW, Washington, DC 20560 USA; [Cornejo Valverde, Fernando] Proyecto Castana, Madre De Dios, Peru; [de Camargo, Plinio B.] Univ Sao Paulo, Ctr Energia Nucl Agr, Sao Paulo, SP, Brazil; [Di Fiore, Anthony] Univ Texas Austin, Dept Anthropol, SAC Room 5-150,2201 Speedway Stop C3200, Austin, TX 78712 USA; [Elias, Fernando; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Morandi, Paulo; Oliveira, Edmar A.; Lenza, Eddie] Univ Estado Mato Grosso, Campus Nova Xavantina,Caixa Postal 08, BR-78690000 Nova Xavantina, MG, Brazil; [Erwin, Terry L.] Smithsonian Inst, Dept Entomol, POB 37012,MRC 187, Washington, DC 20013 USA; [Ferreira, Leandro; Salomao, Rafael P.] Museu Paraense Emilio Goeldi, CP 399, BR-66040170 Belem, Para, Brazil; [Herault, Bruno] Univ Guyane, Univ Antilles, CNRS, Cirad,UMR EcoFoG,AgroParisTech,Inra, Campus Agron, Kourou 97310, French Guiana; [Herrera, Rafael] Ctr Ecol IVIC, Caracas, Venezuela; [Herrera, Rafael] Univ Vienna, Inst Geog & Reg Forsch, Vienna, Austria; [Higuchi, Niro; Quesada, Carlos A.] INPA, Ave Andre Araujo 2-936, BR-69067375 Manaus, Amazonas, Brazil; [Honorio Coronado, Euridice N.] Inst Invest Amazonia Peruana, Apartado 784, Iquitos, Peru; [Killeen, Timothy J.] AGTECA Amazonica, Santa Cruz, Bolivia; [Laurance, William F.; Laurance, Susan] James Cook Univ, Ctr Trop Environm & Sustainabil Sci TESS, Cairns, Qld 4878, Australia; [Laurance, William F.; Laurance, Susan] James Cook Univ, Coll Sci & Engn, Cairns, Qld 4878, Australia; [Lloyd, Jon] Imperial Coll London, Dept Life Sci, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, Berks, England; [Lovejoy, Thomas E.] George Mason Univ, Environm Sci & Policy, Washington, DC USA; [Lovejoy, Thomas E.] George Mason Univ, Dept Publ & Int Affairs, Washington, DC USA; [Malhi, Yadvinder] Univ Oxford, Sch Geog & Environm, Environm Change Inst, Oxford, England; [Maracahipes, Leandro] Univ Fed Goias, Programa Posgrad Ecol & Evolucao, Goiania, Go, Brazil; [Mendoza, Casimiro] Univ Mayor San Simon, Unidad Acad Trop, Escuela Ciencias Forest, Sacta, Bolivia; [Neill, David A.] Univ Estatal Amazonica, Puyo, Pastaza, Ecuador; [Palacios, Walter A.] Univ Nacl San Antonio Abad Cusco, Ave Cultura 733, Cuzco, Peru; [Palacios, Walter A.] Univ Tcen Norte, Casilla 17-21-1787,Ave Rio Coca E6-115, Quito, Ecuador; [Palacios, Walter A.] Herbario Nacl Ecuador, Casilla 17-21-1787,Ave Rio Coca E6-115, Quito, Ecuador; [Penuela-Mora, Maria C.] Univ Reg Amazonica IKIAM, Tena, Ecuador; [Pipoly, John J., III] Broward Cty Pk & Recreat Div, 950 NW 38th St, Oakland Pk, FL 33309 USA; [Pitman, Nigel C. A.] Duke Univ, Ctr Trop Conservat, POB 90381, Durham, NC 27708 USA; [Prieto, Adriana; Rudas, Agustin] Univ Ciol Colombia, Doctorado Inst Ciencias Nat, Bogota, Colombia; [Ramirez-Angulo, Hirma] Univ Los Andes, Fac Ciencias Forestales & Ambientales, Inst Invest Desarrollo Forestal INDEFOR, Merida 5101, Venezuela; [Ruokolainen, Kalle] Univ Turku, Dept Geog & Geol, Turku 20014, Finland; [Silveira, Marcos] Univ Fed Acre, Museu Univ, BR-69910900 Rio Branco, AC, Brazil; [Stropp, Juliana] Univ Fed Alagoas, ICBS, Maceio, AL, Brazil; [ter Steege, Hans] Naturalis Biodivers Ctr, Vondellaan 55,Postbus 9517, NL-2300 RA Leiden, Netherlands; [Thomas-Caesar, Raquel] Iwokrama Intertiol Ctr Rainforest Conservat & Dev, 77 High St Kingston, Georgetown, Guyana; [van der Hout, Peter] Van der Hout Forestry Consulting, Jan Trooststr 6, NL-3078 HP Rotterdam, Netherlands; [van der Heijden, Geertje M. F.] Univ Nottingham, Sch Geog, Univ Pk, Nottingham NG7 2RD, England; [van der Meer, Peter J.] Van Hall Larenstein Univ Appl Sci, POB 9001, NL-6880 GB Velp, Netherlands; [Vieira, Simone A.] Univ Estadual Campinas, Nucleo Estudos & Pesquisas Ambientais NEPAM, Campinas, SP, Brazil; [Vilanova, Emilio] Univ Los Andes, Fac Ciencias Forest & Ambient, Merida, Venezuela; [Vos, Vincent A.] Ctr Invest & Promoc Campesinado Reg Norte Amazoni, C Nicanor Gonzalo Salvatierra 362,Casilla 16, Riberalta, Bolivia; [Vos, Vincent A.] Univ Autonoma Beni, Campus Univ, Riberalta, Bolivia; [Wang, Ophelia] No Arizona Univ, Flagstaff, AZ 86011 USA; [Young, Kenneth R.] Univ Texas Austin, Dept Geog & Environm, Austin, TX 78712 USA de Souza, FC (reprint author), Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England. fecoelhos@gmail.com Silveira, Marcos/H-7906-2013; Marimon Junior, Ben Hur/E-7330-2013; Marimon, Beatriz/J-6389-2012; Feldpausch, Ted/D-3436-2009; Lloyd, Jonathan/F-8893-2010; Lenza, Eddie/E-7232-2013; Elias, Fernando/P-4400-2014; Dexter, Kyle/D-5589-2018; Phillips, Oliver/A-1523-2011; Vieira, Simone/H-1225-2011; Maracahipes, Leandro/F-8674-2012; ter Steege, Hans/B-5866-2011; vieira, Sabrina/X-1702-2018; Herault, Bruno/B-2765-2011; James Cook University, TESS/B-8171-2012 Silveira, Marcos/0000-0003-0485-7872; Marimon, Beatriz/0000-0003-3105-2914; Feldpausch, Ted/0000-0002-6631-7962; Lloyd, Jonathan/0000-0002-5458-9960; Lenza, Eddie/0000-0001-9139-5949; Elias, Fernando/0000-0001-9190-1733; Dexter, Kyle/0000-0001-9232-5221; Phillips, Oliver/0000-0002-8993-6168; Vieira, Simone/0000-0002-0129-4181; Maracahipes, Leandro/0000-0002-6148-3291; ter Steege, Hans/0000-0002-8738-2659; Herault, Bruno/0000-0002-6950-7286; Poorter, Lourens/0000-0003-1391-4875; Laurance, Susan/0000-0002-2831-2933; Arets, Eric/0000-0001-7209-9028; Young, Kenneth R./0000-0003-0866-1260; Fyllas, Nikolaos/0000-0002-5651-5578; Baraloto, Christopher/0000-0001-7322-8581; Vos, Vincent Antoine/0000-0002-0388-8530 Gordon and Betty Moore Foundation; European Union [283080, 282664]; ERC; Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grant 'AMAZONICA' [NE/ F005806/1]; Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grant 'TROBIT' [NE/D005590/1]; Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grant 'Niche Evolution of South American Trees' [NE/I028122/1]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico of Brazil (CNPq); project Programa de Pesquisas Ecologicas de Longa Duracao [PELD-403725/2012-7]; Coordination for the Improvement of Higher Education Personnel - Brasil (CAPES) [117913-6]; Royal Society-Wolfson Research Merit Award; Leverhulme Trust [RF-2015-653] The field data used in this study have been generated by the RAINFOR network, which has been supported by a Gordon and Betty Moore Foundation grant, the European Union's Seventh Framework Programme projects 283080, 'GEOCARBON'; and 282664, 'AMAZALERT'; ERC grant 'Tropical Forests in the Changing Earth System'), and Natural Environment Research Council (NERC) Urgency, Consortium and Standard Grants 'AMAZONICA' (NE/ F005806/1), 'TROBIT' (NE/D005590/1) and 'Niche Evolution of South American Trees' (NE/I028122/1). Additional data were included from the Tropical Ecology Assessment and Monitoring (TEAM) Network - a collaboration between Conservation International, the Missouri Botanical Garden, the Smithsonian Institution and the Wildlife Conservation Society, and partly funded by these institutions, the Gordon and Betty Moore Foundation, and other donors. Fieldwork was also partially supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico of Brazil (CNPq), project Programa de Pesquisas Ecologicas de Longa Duracao (PELD-403725/2012-7). F.C.S. is supported by a PhD scholarship from Coordination for the Improvement of Higher Education Personnel - Brasil (CAPES) (117913-6). O.L.P. is supported by an ERC Advanced Grant and is a Royal Society-Wolfson Research Merit Award holder and T.R.B. acknowledges support from a Leverhulme Trust Research Fellowship (RF-2015-653). Arroyo-Rodriguez V, 2012, J ECOL, V100, P702, DOI 10.1111/j.1365-2745.2011.01952.x; Baker TR, 2014, ECOL LETT, V17, P527, DOI 10.1111/ele.12252; Baker TR, 2004, GLOBAL CHANGE BIOL, V10, P545, DOI 10.1111/j.1529-8817.2003.00751.x; Baker TR, 2004, PHILOS T ROY SOC B, V359, P353, DOI 10.1098/rstb.2003.1422; Baraloto C, 2012, J ECOL, V100, P690, DOI 10.1111/j.1365-2745.2012.01966.x; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Boyle B, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-16; Burns JH, 2012, ECOLOGY, V93, pS126, DOI 10.1890/11-0401.1; Cadotte MW, 2008, P NATL ACAD SCI USA, V105, P17012, DOI 10.1073/pnas.0805962105; Cadotte MW, 2013, P NATL ACAD SCI USA, V110, P8996, DOI 10.1073/pnas.1301685110; Cavender-Bares J, 2009, ECOL LETT, V12, P693, DOI 10.1111/j.1461-0248.2009.01314.x; Chave J, 2014, GLOBAL CHANGE BIOL, V20, P3177, DOI 10.1111/gcb.12629; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Conner JK, 2004, A PRIMER OF ECOLOGIC; Crisp MD, 2012, NEW PHYTOL, V196, P681, DOI 10.1111/j.1469-8137.2012.04298.x; Davies TJ, 2012, ECOLOGY, V93, P242, DOI 10.1890/11-1360.1; DENSLOW JS, 1987, ANNU REV ECOL SYST, V18, P431, DOI 10.1146/annurev.es.18.110187.002243; Dexter K, 2016, PEERJ, V4, DOI 10.7717/peerj.2402; Dowle M, 2014, 2014 DATA TABLE EXTE; El-Lithy ME, 2004, PLANT PHYSIOL, V135, P444, DOI 10.1104/pp.103.036822; Enquist BJ, 2007, NATURE, V449, P218, DOI 10.1038/nature06061; Fan ZX, 2012, J ECOL, V100, P732, DOI 10.1111/j.1365-2745.2011.01939.x; Fauset S, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7857; Feeley KJ, 2007, ECOL LETT, V10, P461, DOI 10.1111/j.1461-0248.2007.01033.x; Fine PVA, 2014, EVOLUTION, V68, P1988, DOI 10.1111/evo.12414; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Geber MA, 2003, INT J PLANT SCI, V164, pS21, DOI 10.1086/368233; Goodman RC, 2013, FOREST ECOL MANAG, V310, P994, DOI 10.1016/j.foreco.2013.09.045; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Ives AR, 2007, SYSTEMATIC BIOL, V56, P252, DOI 10.1080/10635150701313830; Kamilar JM, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0341; Kitajima K, 2008, TROPICAL FOREST COMM, P160; Krasnov BR, 2011, ECOGRAPHY, V34, P114, DOI 10.1111/j.1600-0587.2010.06502.x; Lines ER, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013212; Lopez-Gonzalez G, 2011, J VEG SCI, V22, P610, DOI 10.1111/j.1654-1103.2011.01312.x; Losos JB, 2008, ECOL LETT, V11, P995, DOI 10.1111/j.1461-0248.2008.01229.x; Nascimento HEM, 2005, J VEG SCI, V16, P625, DOI 10.1658/1100-9233(2005)016[0625:DALCFA]2.0.CO;2; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Phillips OL, 2004, PHILOS T ROY SOC B, V359, P381, DOI 10.1098/rstb.2003.1438; Quesada CA, 2010, BIOGEOSCIENCES, V7, P1515, DOI 10.5194/bg-7-1515-2010; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Revell LJ, 2008, SYST BIOL, V57, P591, DOI 10.1080/10635150802302427; Ribeiro EMS, 2016, ECOLOGY, V97, P1583, DOI 10.1890/15-1122.1; Santos BA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113109; Swenson NG, 2007, AM J BOT, V94, P451, DOI 10.3732/ajb.94.3.451; Swenson NG, 2012, ECOLOGY, V93, P490, DOI 10.1890/11-1180.1; Talbot J, 2014, FOREST ECOL MANAG, V320, P30, DOI 10.1016/j.foreco.2014.02.021; Team R. D. C, 2014, R A LANGUAGE AND ENV; ter Steege H, 2013, SCIENCE, V342, P325, DOI 10.1126/science.1243092; Uriarte M, 2010, ECOL LETT, V13, P1503, DOI 10.1111/j.1461-0248.2010.01541.x; Webb CO, 2005, MOL ECOL NOTES, V5, P181, DOI 10.1111/j.1471-8286.2004.00829.x; Webb CO, 2002, ANNU REV ECOL SYST, V33, P475, DOI 10.1146/annurev.ecolysis.33.010802.150448; Yang J, 2014, FUNCT ECOL, V28, P520, DOI 10.1111/1365-2435.12176; Zanne A. E, 2009, DRYAD DIGITAL REPOSI, DOI 10.5061/dryad.234 55 5 5 5 42 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. DEC 14 2016 283 1844 20161587 10.1098/rspb.2016.1587 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology EF5XW WOS:000390404200010 Green Published, Other Gold 2019-02-21 J Mittal, C; Griskevicius, V Mittal, Chiraag; Griskevicius, Vladas Silver Spoons and Platinum Plans: How Childhood Environment Affects Adult Health Care Decisions JOURNAL OF CONSUMER RESEARCH English Article health insurance; childhood socioeconomic status; risk perception; risk propensity; financial threat FAMILY UNPREDICTABILITY SCALE; LIFE-HISTORY STRATEGIES; SOCIOECONOMIC-STATUS; UNREALISTIC OPTIMISM; RISK-TAKING; INSURANCE DECISIONS; SELF-POSITIVITY; BEHAVIOR; STRESS; PREFERENCE Can socioeconomic status in childhood influence desire for health coverage in adulthood? We develop and test a model that yielded two sets of findings across five experiments. First, people who grew up poor were generally less interested in health coverage compared to those who grew up wealthy. This effect was independent of people's current level of socioeconomic status, emerged most strongly when adults were experiencing financial threat, and was mediated by differences in willingness to take risks between people from poor versus wealthy childhoods. Second, we show that this effect reverses when people are provided with baserate information about disease. When information about the average likelihood of getting sick is made available, people who grew up poor were consistently more likely to seek health coverage than people who grew up wealthy. This effect was again strongest when people felt a sense of financial threat, and it was driven by people from poor versus wealthy childhoods differing in their perceptions of the likelihood of becoming sick. Overall, we show how, why, and when childhood socioeconomic status influences desire for health coverage. [Mittal, Chiraag] Texas A&M Univ, Mkt, Mays Business Sch, 220 Wehner Bldg,4113 TAMU, College Stn, TX 77843 USA; [Griskevicius, Vladas] Univ Minnesota, Mkt, Carlson Sch Management, 321 19th Ave South,Suite 3-150, Minneapolis, MN 55455 USA Mittal, C (reprint author), Texas A&M Univ, Mkt, Mays Business Sch, 220 Wehner Bldg,4113 TAMU, College Stn, TX 77843 USA. cmittal@tamu.edu; vladasg@umn.edu Adler NE, 2002, HEALTH AFFAIR, V21, P60, DOI 10.1377/hlthaff.21.2.60; Aiken LS, 1991, MULTIPLE REGRESSION; American Psychological Association, 2015, STRESS AM PAYING OUR; Anderson LR, 2008, J HEALTH ECON, V27, P1260, DOI 10.1016/j.jhealeco.2008.05.011; Arrow K., 1971, ESSAYS THEORY RISK B; Baicker K, 2012, MILBANK Q, V90, P107, DOI 10.1111/j.1468-0009.2011.00656.x; Barnett J, 2001, RISK ANAL, V21, P171, DOI 10.1111/0272-4332.211099; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Blais AR, 2006, JUDGM DECIS MAK, V1, P33; BLOCK LG, 1995, J MARKETING RES, V32, P192, DOI 10.2307/3152047; Bradley RH, 2002, ANNU REV PSYCHOL, V53, P371, DOI 10.1146/annurev.psych.53.100901.135233; Brady SS, 2002, J PEDIATR PSYCHOL, V27, P575, DOI 10.1093/jpepsy/27.7.575; Breakwell G. M., 2014, PSYCHOL RISK; Brewer NT, 2007, HEALTH PSYCHOL, V26, P136, DOI 10.1037/0278-6133.26.2.136; BrooksGunn J, 1997, FUTURE CHILD, V7, P55, DOI 10.2307/1602387; Bundorf MK, 2006, J HEALTH ECON, V25, P650, DOI 10.1016/j.jhealeco.2005.11.003; CAMERER CF, 1989, J POLICY ANAL MANAG, V8, P565, DOI 10.2307/3325045; Chaplin LN, 2007, J CONSUM RES, V34, P480, DOI 10.1086/518546; Chen E, 2004, CURR DIR PSYCHOL SCI, V13, P112, DOI 10.1111/j.0963-7214.2004.00286.x; Chen E, 2012, PERSPECT PSYCHOL SCI, V7, P135, DOI 10.1177/1745691612436694; Cohen S, 2010, ANN NY ACAD SCI, V1186, P37, DOI 10.1111/j.1749-6632.2009.05334.x; Connell PM, 2014, J CONSUM RES, V41, P119, DOI 10.1086/675218; de Meza D, 2001, RAND J ECON, V32, P249, DOI 10.2307/2696408; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; DeNavas-Walt Carmen, 2013, INCOME POVERTY HLTH, P50; Diener E, 2002, SOC INDIC RES, V57, P119, DOI 10.1023/A:1014411319119; Duncan GJ, 2002, AM J PUBLIC HEALTH, V92, P1151, DOI 10.2105/AJPH.92.7.1151; Duncan GJ, 2010, CHILD DEV, V81, P306, DOI 10.1111/j.1467-8624.2009.01396.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Evans GW, 2004, AM PSYCHOL, V59, P77, DOI 10.1037/0003-066X.59.2.77; Fischhoff B, 2003, J RISK UNCERTAINTY, V26, P137, DOI 10.1023/A:1024163023174; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Guo G, 2000, DEMOGRAPHY, V37, P431, DOI 10.2307/2648070; Hanoch Y, 2006, PSYCHOL SCI, V17, P300, DOI 10.1111/j.1467-9280.2006.01702.x; Harris P, 1996, J SOC CLIN PSYCHOL, V15, P9, DOI 10.1521/jscp.1996.15.1.9; Hayes AF, 2013, INTRO MEDIATION MODE; Helweg-Larsen M, 2001, PERS SOC PSYCHOL REV, V5, P74, DOI 10.1207/S15327957PSPR0501_5; Hill SE, 2013, J EXP SOC PSYCHOL, V49, P888, DOI 10.1016/j.jesp.2013.03.016; HOGARTH RM, 1995, J RISK UNCERTAINTY, V10, P15, DOI 10.1007/BF01211526; HOORENS V, 1993, J APPL SOC PSYCHOL, V23, P291, DOI 10.1111/j.1559-1816.1993.tb01088.x; Horton R, 2009, LANCET, V373, P355, DOI 10.1016/S0140-6736(09)60116-1; Hsee CK, 2000, J RISK UNCERTAINTY, V20, P141, DOI 10.1023/A:1007876907268; Irwin JR, 2001, J MARKETING RES, V38, P100, DOI 10.1509/jmkr.38.1.100.18835; JENSEN EW, 1983, SOC SCI MED, V17, P201, DOI 10.1016/0277-9536(83)90117-X; Jiang Y., 2016, BASIC FACTS LOW INCO; JOHNSON EJ, 1993, J RISK UNCERTAINTY, V7, P35, DOI 10.1007/BF01065313; KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185; Keller RA, 2002, J CONSUM RES, V29, P57; Klein CTF, 2002, PSYCHOL HEALTH, V17, P437, DOI 10.1080/0887044022000004920; Kunreuther H, 1996, J RISK UNCERTAINTY, V12, P171, DOI 10.1007/BF00055792; Kunreuther H., 2006, FDN TRENDS MICROECON, V1, P63; Chaplin LN, 2014, J PUBLIC POLICY MARK, V33, P78, DOI 10.1509/jppm.13.050; Laran J, 2013, PSYCHOL SCI, V24, P167, DOI 10.1177/0956797612450033; Lejuez CW, 2002, J EXP PSYCHOL-APPL, V8, P75, DOI 10.1037//1076-898X.8.2.75; Levy H, 2008, INQUIRY-J HEALTH CAR, V45, P365, DOI 10.5034/inquiryjrnl_45.04.365; LICHTENSTEIN S, 1971, J EXP PSYCHOL, V89, P46, DOI 10.1037/h0031207; LICHTENSTEIN S, 1973, J EXP PSYCHOL, V101, P16, DOI 10.1037/h0035472; Lin YC, 2003, J CONSUM PSYCHOL, V13, P464, DOI 10.1207/S15327663JCP1304_13; LINK BG, 1995, J HEALTH SOC BEHAV, V35, P80, DOI 10.2307/2626958; Loewenstein GF, 2001, PSYCHOL BULL, V127, P267, DOI 10.1037//0033-2909.127.2.267; Marjanovic Z, 2013, J ECON PSYCHOL, V36, P1, DOI 10.1016/j.joep.2013.02.005; MATHENY AP, 1995, J APPL DEV PSYCHOL, V16, P429, DOI 10.1016/0193-3973(95)90028-4; McEwen BS, 2012, P NATL ACAD SCI USA, V109, P17180, DOI 10.1073/pnas.1121254109; MCEWEN BS, 1993, ARCH INTERN MED, V153, P2093, DOI 10.1001/archinte.153.18.2093; MCKENNA FP, 1993, BRIT J PSYCHOL, V84, P39, DOI 10.1111/j.2044-8295.1993.tb02461.x; MECHANIC D, 1980, PREV MED, V9, P805, DOI 10.1016/0091-7435(80)90023-7; Menon G, 2007, HDB CONSUMER PSYCHOL, P981; Menon G, 2009, ORGAN BEHAV HUM DEC, V108, P39, DOI 10.1016/j.obhdp.2008.05.001; Miller GE, 2009, P NATL ACAD SCI USA, V106, P14716, DOI 10.1073/pnas.0902971106; Minsky Hyman P, 1986, STABILIZING UNSTABLE; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Mittal C, 2014, J PERS SOC PSYCHOL, V107, P621, DOI 10.1037/a0037398; MOORMAN C, 1993, J CONSUM RES, V20, P208, DOI 10.1086/209344; Moss JH, 2014, HUM NATURE-INT BIOS, V25, P328, DOI 10.1007/s12110-014-9210-7; MOSSIN J, 1968, J POLIT ECON, V76, P553, DOI 10.1086/259427; Muller D, 2005, J PERS SOC PSYCHOL, V89, P852, DOI 10.1037/0022-3514.89.6.852; Nes LS, 2006, PERS SOC PSYCHOL REV, V10, P235, DOI 10.1207/s15327957pspr1003_3; Nicholson N, 2005, J RISK RES, V8, P157, DOI 10.1080/1366987032000123856; Pampel FC, 2010, ANNU REV SOCIOL, V36, P349, DOI 10.1146/annurev.soc.012809.102529; PERLOFF LS, 1986, J PERS SOC PSYCHOL, V50, P502, DOI 10.1037//0022-3514.50.3.502; Petrolia DR, 2013, LAND ECON, V89, P227, DOI 10.3368/le.89.2.227; Raghubir P, 1998, J CONSUM RES, V25, P52, DOI 10.1086/209526; Richins ML, 2015, J CONSUM RES, V41, P1333, DOI 10.1086/680087; Rindfleisch A, 1997, J CONSUM RES, V23, P312, DOI 10.1086/209486; Ross LT, 2008, J CHILD FAM STUD, V17, P13, DOI 10.1007/s10826-007-9138-1; Ross LT, 2000, J MARRIAGE FAM, V62, P549, DOI 10.1111/j.1741-3737.2000.00549.x; Roux Caroline, 2014, ADV CONSUM RES, V42, P216; Samuelson William, 1988, J RISK UNCERTAINTY, V1, P7, DOI DOI 10.1007/BF00055564; SCHLESINGER H, 1991, J RISK INSUR, V58, P109, DOI 10.2307/3520051; SCHOEMAKER PJH, 1979, J RISK INSUR, V46, P603, DOI 10.2307/252533; Sharma E, 2012, J CONSUM RES, V39, P545, DOI 10.1086/664038; Shonkoff JP, 2012, PEDIATRICS, V129, pE460, DOI 10.1542/peds.2011-0366; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SITKIN SB, 1992, ACAD MANAGE REV, V17, P9, DOI 10.2307/258646; SLOVIC P, 1987, SCIENCE, V236, P280, DOI 10.1126/science.3563507; SLOVIC P, 1977, J RISK INSUR, V44, P237, DOI 10.2307/252136; SMITH VL, 1968, J POLIT ECON, V76, P68, DOI 10.1086/259382; Spinnewijn J, 2013, ECON J, V123, P606, DOI 10.1111/ecoj.12008; Sunstein CR, 2011, ENVIRON RESOUR ECON, V48, P435, DOI 10.1007/s10640-010-9449-3; Taylor SE, 2004, J PERS, V72, P1365, DOI 10.1111/j.1467-6494.2004.00300.x; TAYLOR SE, 1988, PSYCHOL BULL, V103, P193, DOI 10.1037/0033-2909.103.2.193; Taylor SE, 2010, P NATL ACAD SCI USA, V107, P8507, DOI 10.1073/pnas.1003890107; Thompson Debora V., 2015, ADV CONSUM RES, V46, P230; Troxel WM, 2004, CLIN CHILD FAM PSYCH, V7, P29, DOI 10.1023/B:CCFP.0000020191.73542.b0; US Department of Health and Human Services, 2013, HLTH INS MARK PREM 2; VISCUSI WK, 1987, RAND J ECON, V18, P465, DOI 10.2307/2555636; Wambach A, 2008, MICROECONOMIC INSURA, V4, P1; Watson, 1988, J PERS SOC PSYCHOL, V54, P1063; WEINSTEIN ND, 1980, J PERS SOC PSYCHOL, V39, P806, DOI 10.1037//0022-3514.39.5.806; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919; Yan DF, 2013, J CONSUM RES, V39, P931, DOI 10.1086/666596; Zhao XS, 2010, J CONSUM RES, V37, P197, DOI 10.1086/651257 115 5 5 7 11 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 0093-5301 1537-5277 J CONSUM RES J. Consum. Res. DEC 2016 43 4 636 656 10.1093/jcr/ucw046 21 Business Business & Economics EQ3AK WOS:000397943100009 2019-02-21 J Xue, X; Adhikari, BN; Perkes, A; Martin, M; Wall, DH; Adams, BJ Xue, X.; Adhikari, B. N.; Perkes, A.; Martin, M.; Wall, D. H.; Adams, B. J. LIFE HISTORY EVOLUTION OF AN ANTARCTIC NEMATODE: ELEMENTAL STOICHIOMETRY AND THE GROWTH RATE HYPOTHESIS JOURNAL OF NEMATOLOGY English Meeting Abstract [Xue, X.; Perkes, A.; Martin, M.; Adams, B. J.] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA; [Xue, X.; Perkes, A.; Martin, M.; Adams, B. J.] Brigham Young Univ, Evolutionary Ecol Labs, Provo, UT 84602 USA; [Adhikari, B. N.] ARS, USDA, Tucson, AZ USA; [Wall, D. H.] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA; [Wall, D. H.] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA; [Perkes, A.] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA; [Martin, M.] Midwestern Univ, Arizona Coll Osteopath Med, Glendale, AZ USA Adams, Byron/C-3808-2009 Adams, Byron/0000-0002-7815-3352 0 0 0 1 5 SOC NEMATOLOGISTS MARCELINE PO BOX 311, MARCELINE, MO 64658 USA 0022-300X J NEMATOL J. Nematol. DEC 2016 48 4 384 385 2 Zoology Zoology EJ1FL WOS:000392955800235 2019-02-21 J Prati, D; Peintinger, M; Fischer, M Prati, Daniel; Peintinger, Markus; Fischer, Markus Genetic composition, genetic diversity and small-scale environmental variation matter for the experimental reintroduction of a rare plant JOURNAL OF PLANT ECOLOGY English Article conservation management; global change; lakeshore; Ranunculus reptans LIFE-HISTORY EVOLUTION; CLONAL PLANT; RANUNCULUS-REPTANS; POPULATION-SIZE; GENTIANELLA-GERMANICA; GENOTYPIC DIVERSITY; PHENOTYPIC PLASTICITY; LAKE CONSTANCE; RAPD VARIATION; SELECTION Aims Reintroduction has become an important tool for the management of endangered plant species. We tested the little-explored effects of small-scale environmental variation, genotypic composition (i.e. identity of genotypes) and genotypic diversity on the population survival of the regionally rare clonal plant Ranunculus reptans. For this species of periodically inundated lakeshores, genetic differentiation had been reported between populations and between short-flooded and long-flooded microsites within populations. Methods We established 306 experimental test populations at a previously unoccupied lakeshore, comprising either monocultures of 32 genotypes, mixtures of genotypes within populations or mixtures of genotypes between populations. In 2000, three years after planting out at the experimental site, a long-lasting flood caused the death of half of the experimental populations. In 2003, an extreme drought resulted in the lowest summer water levels ever measured. Important Findings Despite these climatic extremes, 27% of the established populations survived in December 2003. The success of experimental populations largely differed between microsites. Moreover, the success of genotype monocultures depended on genotype and source population. Genetic differentiation between microsites played a minor role for the success of reintroduction. After the flood, populations planted with genotypes from different source populations increased in abundance, whereas populations with genotypes from single source populations and genotype monocultures decreased. In 2014, several small patches of Ranunculus clones were still present, but plants were strongly intermingled, which precluded their assignment to the original treatments. We conclude that sources for reintroductions need to be selected carefully. Moreover, mixtures of plants from different populations appear to be the best choice for successful reintroduction, at least in unpredictably varying environments. [Prati, Daniel; Fischer, Markus] Univ Bern, Inst Plant Sci, Altenbergrain 21, CH-3013 Bern, Switzerland; [Prati, Daniel; Fischer, Markus] Univ Bern, Oeschger Ctr Climate Change Res, Zahringerstr 25, CH-3012 Bern, Switzerland; [Peintinger, Markus] WSL Eidgenoss Forsch Anstalt Wald Schnee & Landsc, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland Prati, D (reprint author), Univ Bern, Inst Plant Sci, Altenbergrain 21, CH-3013 Bern, Switzerland. daniel.prati@ips.unibe.ch Fischer, Markus/C-6411-2008 Fischer, Markus/0000-0002-5589-5900 Swiss National Science Foundation [31-49728.96, 31-56809.99, 31-67876.02]; Institute of Environmental Sciences of the University of Zurich Swiss National Science Foundation (grants 31-49728.96, 31-56809.99, 31-67876.02); Bernhard Schmid and the Institute of Environmental Sciences of the University of Zurich. ARGYRES AZ, 1991, EVOLUTION, V45, P178, DOI 10.1111/j.1558-5646.1991.tb05276.x; BARRETT SCH, 1993, AQUAT BOT, V44, P105, DOI 10.1016/0304-3770(93)90068-8; Crawford KM, 2012, J ECOL, V100, P1512, DOI 10.1111/j.1365-2745.2012.02016.x; Crutsinger GM, 2006, SCIENCE, V313, P966, DOI 10.1126/science.1128326; Dienst M, 1999, MITTEILUNGEN BADISCH, V17, P389; Eriksson O, 1999, BIOL CONSERV, V87, P319, DOI 10.1016/S0006-3207(98)00075-5; Falk D. A, 1996, RESTORING DIVERSITY; Fischer M, 2000, AM J BOT, V87, P1128, DOI 10.2307/2656649; Fischer M, 1998, J ECOL, V86, P195, DOI 10.1046/j.1365-2745.1998.00246.x; Fischer M, 2004, J EVOLUTION BIOL, V17, P331, DOI 10.1046/j.1420-9101.2003.00677.x; Fischer M, 1998, ECOGRAPHY, V21, P269, DOI 10.1111/j.1600-0587.1998.tb00564.x; Fischer M, 1998, AM J BOT, V85, P811, DOI 10.2307/2446416; Frankham R, 2002, INTRO CONSERVATION G; Helenurm K, 1998, CONSERV BIOL, V12, P118, DOI 10.1046/j.1523-1739.1998.96316.x; Hess HE, 1980, FLORA SCHWEIZ; Johnk KD, 2004, LIMNOLOGICA, V34, P15, DOI 10.1016/S0075-9511(04)80017-3; Johnson MTJ, 2006, ECOL LETT, V9, P24, DOI 10.1111/j.1461-0248.2005.00833.x; Korneck D., 1996, SCHRIFTENREIHE VEGET, V28, P21; Krauss SL, 2002, CONSERV BIOL, V16, P986, DOI 10.1046/j.1523-1739.2002.01105.x; Lande R, 1999, GENETICS AND THE EXTINCTION OF SPECIES, P1; Lang G, 1967, ARCH HYDROBIOLOGIE S, V32, P437; LEBERG PL, 1993, CONSERV BIOL, V7, P194, DOI 10.1046/j.1523-1739.1993.07010194.x; Lenssen JPM, 2004, J ECOL, V92, P696, DOI 10.1111/j.0022-0477.2004.00895.x; LINHART YB, 1974, EVOLUTION, V28, P232, DOI 10.1111/j.1558-5646.1974.tb00742.x; Loreau M, 2001, NATURE, V412, P72, DOI 10.1038/35083573; Luijten SH, 2000, CONSERV BIOL, V14, P1776, DOI 10.1046/j.1523-1739.2000.99345.x; Moser DMDM, 2002, ROTE LISTE GEFAHRDET; Newman D, 1997, EVOLUTION, V51, P354, DOI 10.1111/j.1558-5646.1997.tb02422.x; Newman JA, 1997, ECOLOGY, V78, P1312; Peintinger M., 1997, Zeitschrift fur Okologie und Naturschutz, V6, P75; Prati D, 2000, OIKOS, V90, P442, DOI 10.1034/j.1600-0706.2000.900303.x; Prati D, 2000, FLORA, V195, P135; Pullin A. S., 2002, CONSERVATION BIOL; SCHMID B, 1994, J ECOL, V82, P165, DOI 10.2307/2261395; SOMMER U, 1993, OECOLOGIA, V93, P276, DOI 10.1007/BF00317682; Storfer A, 1996, TRENDS ECOL EVOL, V11, P343, DOI 10.1016/0169-5347(96)20051-5; STRATTON DA, 1994, EVOLUTION, V48, P1607, DOI 10.1111/j.1558-5646.1994.tb02199.x; Van Kleunen M, 2000, J EVOLUTION BIOL, V13, P237; Van Kleunen M, 2001, ECOLOGY, V82, P3309, DOI 10.2307/2680154; van Kleunen M, 2002, EVOLUTION, V56, P2168, DOI 10.1554/0014-3820(2002)056[2168:ELHESO]2.0.CO;2; vanTienderen PH, 1997, EVOLUTION, V51, P1372, DOI 10.1111/j.1558-5646.1997.tb01460.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; von Ende Carl N., 1993, P113; Wang XY, 2012, MOL ECOL, V21, P2542, DOI 10.1111/j.1365-294X.2012.05531.x; Willi Y, 2004, THESIS; Zhu YY, 2000, NATURE, V406, P718, DOI 10.1038/35021046 46 1 1 2 11 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1752-9921 1752-993X J PLANT ECOL J. Plant Ecol. DEC 2016 9 6 805 813 10.1093/jpe/rtv067 9 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology EJ2JO WOS:000393036400015 Bronze 2019-02-21 J Gonzalez, MZ; Allen, JP; Coan, JA Gonzalez, Marlen Z.; Allen, Joseph P.; Coan, James A. Lower neighborhood quality in adolescence predicts higher mesolimbic sensitivity to reward anticipation in adulthood Developmental Cognitive Neuroscience English Article NUCLEUS-ACCUMBENS; REPRODUCTIVE STRATEGY; CHICAGO NEIGHBORHOODS; SOCIOECONOMIC-STATUS; DEPRESSIVE SYMPTOMS; NEURAL RESPONSE; BRAIN; STRESS; CORTEX; SOCIALIZATION Life history theory suggests that adult reward sensitivity should be best explained by childhood, but not current, socioeconomic conditions. In this functional magnetic resonance imaging (fMRI) study, 83 participants from a larger longitudinal sample completed the monetary incentive delay (MID) task in adulthood (25 years old). Parent-reports of neighborhood quality and parental SES were collected when participants were 13 years of age. Current income level was collected concurrently with scanning. Lower adolescent neighborhood quality, but neither lower current income nor parental SES, was associated with heightened sensitivity to the anticipation of monetary gain in putative mesolimbic reward areas. Lower adolescent neighborhood quality was also associated with heightened sensitivity to the anticipation of monetary loss activation in visuo-motor areas. Lower current income was associated with heightened sensitivity to anticipated loss in occipital areas and the operculum. We tested whether externalizing behaviors in childhood or adulthood could better account for neighborhood quality findings, but they did not. Findings suggest that neighborhood ecology in adolescence is associated with greater neural reward sensitivity in adulthood above the influence of parental SES or current income and not mediated through impulsivity and externalizing behaviors. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. [Gonzalez, Marlen Z.; Allen, Joseph P.; Coan, James A.] Univ Virginia, Charlottesville, VA 22903 USA Gonzalez, MZ; Coan, JA (reprint author), Univ Virginia, Charlottesville, VA 22903 USA. mzg7uv@virginia.edu; jcoan@virginia.edu National Institute of Mental Health [R01MH080725, 9R01 HD058305-11A1, R01-MH58066]; National Institute of Child Health and Human Development This work was supported by a grant from the National Institute of Mental Health (R01MH080725) awarded to James A. Coan and grants from the National Institute of Child Health and Human Development and the National Institute of Mental Health (9R01 HD058305-11A1 & R01-MH58066) awarded to Joseph P. Allen. Achenbach T. M., 2003, ASEBA ADULT FORMS PR; Achenbach T. M., 1991, MANUAL CHILD BEHAV C; Bates D., 2015, STAT SOFTWARE, V67, P1; Beck A, 2009, BIOL PSYCHIAT, V66, P734, DOI 10.1016/j.biopsych.2009.04.035; Beckes L, 2011, SOC PERSONAL PSYCHOL, V5, P976, DOI 10.1111/j.1751-9004.2011.00400.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J., 2010, DEV REPROD STRATEGY; Belsky J, 2015, DEV PSYCHOL, V51, P816, DOI 10.1037/dev0000017; Bradley RH, 2002, ANNU REV PSYCHOL, V53, P371, DOI 10.1146/annurev.psych.53.100901.135233; BUCKNER JC, 1988, AM J COMMUN PSYCHOL, V16, P771, DOI 10.1007/BF00930892; Bush G, 2002, P NATL ACAD SCI USA, V99, P523, DOI 10.1073/pnas.012470999; Cabeza de Baca T., 2016, ADAPT HUM BEHAV PHYS, P93; Carlson DL, 2014, J YOUTH ADOLESCENCE, V43, P1536, DOI 10.1007/s10964-013-0052-0; Cavanagh J, 2013, CEREBELLUM, V12, P882, DOI 10.1007/s12311-013-0497-4; Coan JA, 2013, INT J PSYCHOPHYSIOL, V88, P224, DOI 10.1016/j.ijpsycho.2013.04.006; Cooper JC, 2008, NEUROIMAGE, V39, P538, DOI 10.1016/j.neuroimage.2007.08.009; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; ElKhodor BF, 1997, EXP NEUROL, V145, P118, DOI 10.1006/exnr.1997.6437; Ellis B. J., 2009, HUM NAT, V20; Evans G. W., 2002, CHILD DEV; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fiorillo CD, 2003, SCIENCE, V299, P1898, DOI 10.1126/science.1077349; Furr-Holden C. D. M., 2012, J ADOLESC, V50; Gianaros PJ, 2007, SOC COGN AFFECT NEUR, V2, P161, DOI 10.1093/scan/nsm013; Gonzales N. A., 1996, ONE YEAR PROSPECTIVE, V24, P365; Gregory SG, 2009, BMC MED, V7, DOI 10.1186/1741-7015-7-62; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hahn T, 2009, NEUROIMAGE, V46, P1148, DOI 10.1016/j.neuroimage.2009.03.038; Hair NL, 2015, JAMA PEDIATR, V169, P822, DOI 10.1001/jamapediatrics.2015.1475; Hanson JL, 2015, BIOL PSYCHIAT, V78, P598, DOI 10.1016/j.biopsych.2015.05.010; Hare AL, 2011, J YOUTH ADOLESCENCE, V40, P744, DOI 10.1007/s10964-010-9586-6; Hariri AR, 2006, J NEUROSCI, V26, P13213, DOI 10.1523/JNEUROSCI.3446-06.2006; Martinez-Tellez RI, 2009, SYNAPSE, V63, P794, DOI 10.1002/syn.20664; Jenkinson M, 2002, NEUROIMAGE, V17, P825, DOI 10.1006/nimg.2002.1132; Knutson B, 2001, J NEUROSCI, V21, part. no., DOI 10.1523/JNEUROSCI.21-16-j0002.2001; Knutson B, 2008, BIOL PSYCHIAT, V63, P686, DOI 10.1016/j.biopsych.2007.07.023; Liu X, 2011, NEUROSCI BIOBEHAV R, V35, P1219, DOI 10.1016/j.neubiorev.2010.12.012; Mair C, 2008, J EPIDEMIOL COMMUN H, V62, P940, DOI 10.1136/jech.2007.066605; Mani A, 2013, SCIENCE, V342, DOI 10.1126/science.1246799; McArthur S, 2005, J NEUROENDOCRINOL, V17, P475, DOI 10.1111/j.1365-2826.2005.01331.x; McEwen BS, 2011, ANNU REV MED, V62, P431, DOI 10.1146/annurev-med-052209-100430; Michaelson L, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00355; O'Doherty J, 2001, NAT NEUROSCI, V4, P95; OLDS J, 1954, J COMP PHYSIOL PSYCH, V47, P419, DOI 10.1037/h0058775; Otto AR, 2012, SOC PSYCHOL PERS SCI, V3, P131, DOI 10.1177/1948550611411311; Padmala S, 2011, J COGNITIVE NEUROSCI, V23, P3419, DOI 10.1162/jocn_a_00011; Plichta MM, 2014, NEUROSCI BIOBEHAV R, V38, P125, DOI 10.1016/j.neubiorev.2013.07.012; Robbins T. W., 1996, CURR OPIN NEUROBIOL; Romens SE, 2015, J CHILD PSYCHOL PSYC, V56, P1177, DOI 10.1111/jcpp.12410; Ross CE, 2001, J HEALTH SOC BEHAV, V42, P258, DOI 10.2307/3090214; Rossiter S, 2012, DRUG ALCOHOL DEPEN, V125, P89, DOI 10.1016/j.drugalcdep.2012.03.017; Sampson RJ, 1997, J ADOLESCENT RES, V12, P227, DOI 10.1177/0743554897122005; Shackman J. E., 2007, Emotion. JOUR, Patent No. 537068190; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Smith SM, 2002, HUM BRAIN MAPP, V17, P143, DOI 10.1002/hbm.10062; Spear L., 2000, NEUROSCI BIOBEHAV RE, V24; Spielberg JM, 2015, HUM BRAIN MAPP, V36, P3194, DOI 10.1002/hbm.22838; Sturge-Apple M. L., 2016, PSYCHOL SCI; Sweitzer MM, 2016, PSYCHOPHARMACOLOGY, V233, P751, DOI 10.1007/s00213-015-4152-2; Teasdale B, 2009, SOC PROBL, V56, P205, DOI 10.1525/sp.2008.56.1.205; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 62 2 2 2 12 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 1878-9293 1878-9307 DEV COGN NEUROS-NETH Dev. Cogn. Neurosci. DEC 2016 22 48 57 10.1016/j.dcn.2016.10.003 10 Psychology, Developmental; Neurosciences Psychology; Neurosciences & Neurology EI7XD WOS:000392716900006 27838595 DOAJ Gold, Green Accepted 2019-02-21 J Waterton, J; Cleland, EE Waterton, Joseph; Cleland, Elsa E. Trade-off between early emergence and herbivore susceptibility mediates exotic success in an experimental California plant community ECOLOGY AND EVOLUTION English Article community assembly; emergence; germination; herbivory; invasion; phenology; seedlings ENEMY RELEASE HYPOTHESIS; SEEDLING HERBIVORY; PERENNIAL GRASSES; ANNUAL GRASSLAND; PHENOLOGY; INVASIONS; PRIORITY; BIODIVERSITY; GERMINATION; EVOLUTION Ecological trade-offs are fundamental to theory in community ecology; critical for understanding species coexistence in diverse plant communities, as well as the evolution of diverse life-history strategies. Invasions by exotic species can provide insights into the importance of trade-offs in community assembly, because the ecological strategies of invading species often differ from those present in the native species pool. Exotic annual species have invaded many Mediterranean-climate areas around the globe, and often germinate and emerge earlier in the growing season than native species. Early-season growth can enable exotic annual species to preempt space and resources, competitively suppressing later-emerging native species; however, early-emerging individuals may also be more apparent to herbivores. This suggests a potential trade-off between seasonal phenology and susceptibility to herbivory. To evaluate this hypothesis, we monitored the emergence and growth of 12 focal species (six each native and exotic) in monoculture and polyculture, while experimentally excluding generalist herbivores both early and later in the growing season. Consistent with past studies, the exotic species emerged earlier than native species. Regardless of species origin, earlier-emerging species achieved greater biomass by the end of the experiment, but were more negatively impacted by herbivory, particularly in the early part of the growing season. This greater impact of early-season herbivory on early-active species led to a reduction in the competitive advantage of exotic species growing in polyculture, and improved the performance of later-emerging natives. Such a trade-off between early growth and susceptibility to herbivores could be an important force in community assembly in seasonal herbaceous-dominated ecosystems. These results also show how herbivore exclusion favors early-active exotic species in this system, with important implications for management in many areas invaded by early-active exotic species. [Waterton, Joseph; Cleland, Elsa E.] Univ Calif San Diego, Ecol Behav & Evolut Sect, 9500 Gilman Dr, La Jolla, CA 92093 USA Waterton, J (reprint author), Univ Calif San Diego, Ecol Behav & Evolut Sect, 9500 Gilman Dr, La Jolla, CA 92093 USA. jwaterto@ucsd.edu Cleland, Elsa/0000-0003-3920-0029; Waterton, Joseph/0000-0003-3177-7667 Jeanne M. Messier Memorial Fellowship Jeanne M. Messier Memorial Fellowship Abraham JK, 2009, PLANT ECOL, V201, P445, DOI 10.1007/s11258-008-9467-1; Anderson JT, 2012, P ROY SOC B-BIOL SCI, V279, P3843, DOI 10.1098/rspb.2012.1051; Augspurger CK, 2013, ECOLOGY, V94, P41, DOI 10.1890/12-0200.1; BARTOLOME JW, 1979, J ECOL, V67, P273, DOI 10.2307/2259350; Barton KE, 2013, ANN BOT-LONDON, V112, P643, DOI 10.1093/aob/mct139; Beck JJ, 2015, ECOL APPL, V25, P1259, DOI 10.1890/14-1093.1; Boege K, 2005, TRENDS ECOL EVOL, V20, P441, DOI 10.1016/j.tree.2005.05.001; Burt-Smith GS, 2003, OIKOS, V101, P345, DOI 10.1034/j.1600-0706.2003.11052.x; Cleland EE, 2006, ECOLOGY, V87, P686, DOI 10.1890/05-0529; Cleland EE, 2016, ECOSYSTEMS OF CALIFORNIA, P429; Cleland EE, 2015, OIKOS, V124, P33, DOI 10.1111/oik.01433; Colautti RI, 2004, ECOL LETT, V7, P721, DOI 10.1111/j.1461-0248.2004.00616.x; Crawley MJ, 2007, THEORETICAL ECOLOGY, P62; Cushman JH, 2011, J ECOL, V99, P524, DOI 10.1111/j.1365-2745.2010.01776.x; Deering RH, 2006, GRASSLANDS, V16, P14; Fenner M, 2005, ECOLOGY SEEDS; Fox J., 2011, R COMPANION APPL REG; Fridley JD, 2012, NATURE, V485, P359, DOI 10.1038/nature11056; Fukami T, 2015, ANNU REV ECOL EVOL S, V46, P1, DOI 10.1146/annurev-ecolsys-110411-160340; Funk JL, 2015, RESTOR ECOL, V23, P122, DOI 10.1111/rec.12162; Godoy O, 2011, FUNCT ECOL, V25, P1248, DOI 10.1111/j.1365-2435.2011.01886.x; Grman E, 2010, RESTOR ECOL, V18, P664, DOI 10.1111/j.1526-100X.2008.00497.x; Hanley ME, 2007, PLANT CELL ENVIRON, V30, P812, DOI 10.1111/j.1365-3040.2007.01671.x; Hanley ME, 2009, ANN BOT-LONDON, V103, P1347, DOI 10.1093/aob/mcp081; Hanley Mick E., 1998, Perspectives in Plant Ecology Evolution and Systematics, V1, P191, DOI 10.1078/1433-8319-00058; HEADY HF, 1958, ECOLOGY, V39, P402, DOI 10.2307/1931750; Hobbs RJ, 2001, CONSERV BIOL, V15, P1522, DOI 10.1046/j.1523-1739.2001.01092.x; Holmgren Milena, 2002, Biological Invasions, V4, P25, DOI 10.1023/A:1020535628776; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; HULME PE, 1994, J ECOL, V82, P873, DOI 10.2307/2261451; Keane RM, 2002, TRENDS ECOL EVOL, V17, P164, DOI 10.1016/S0169-5347(02)02499-0; Kempel A, 2015, ECOLOGY, V96, P2923, DOI 10.1890/14-2125.1; Lambers J. Hille Ris, 2010, J ECOL, V98, P1147; Lambrinos JG, 2006, OECOLOGIA, V147, P327, DOI 10.1007/s00442-005-0259-1; Leishman MR, 2007, NEW PHYTOL, V176, P635, DOI 10.1111/j.1469-8137.2007.02189.x; Loreau M, 1998, OIKOS, V82, P600, DOI 10.2307/3546381; Marushia RG, 2010, J APPL ECOL, V47, P1290, DOI 10.1111/j.1365-2664.2010.01881.x; Menke JW, 1992, FREMONTIA, V20, P22; Norden N, 2009, FUNCT ECOL, V23, P203, DOI 10.1111/j.1365-2435.2008.01477.x; Parker JD, 2006, SCIENCE, V311, P1459, DOI 10.1126/science.1121407; Pau S, 2011, GLOBAL CHANGE BIOL, V17, P3633, DOI 10.1111/j.1365-2486.2011.02515.x; Perez-Fernandez MA, 2000, ACTA OECOL, V21, P323, DOI 10.1016/S1146-609X(00)01084-5; Peters HA, 2007, J VEG SCI, V18, P175, DOI 10.1658/1100-9233(2007)18[175:TSOSHI]2.0.CO;2; Pinheiro J., 2015, R PACKAGE VERSION, V3, P1, DOI DOI 10.1016/J.BSE.2009.03.010; Quintero C, 2014, ECOLOGY, V95, P2589, DOI 10.1890/13-2249.1; R Core Team, 2015, R LANG ENV STAT COMP; Reynolds Sally A., 2001, Madrono, V48, P230; RICE KJ, 1987, ECOLOGY, V68, P1113, DOI 10.2307/1938386; Rinella MJ, 2009, J APPL ECOL, V46, P796, DOI 10.1111/j.1365-2664.2009.01676.x; Roche CT, 2001, WEED SCI, V49, P439, DOI 10.1614/0043-1745(2001)049[0439:BOCCAY]2.0.CO;2; Sala OE, 2000, SCIENCE, V287, P1770, DOI 10.1126/science.287.5459.1770; Semchenko M, 2012, J ECOL, V100, P459, DOI 10.1111/j.1365-2745.2011.01936.x; Skaer MJ, 2013, J VEG SCI, V24, P332, DOI 10.1111/j.1654-1103.2012.01460.x; Strauss SY, 1999, TRENDS ECOL EVOL, V14, P179, DOI 10.1016/S0169-5347(98)01576-6; Sullivan AT, 2009, ECOLOGY, V90, P1346, DOI 10.1890/08-0629.1; Underwood EC, 2009, DIVERS DISTRIB, V15, P188, DOI 10.1111/j.1472-4642.2008.00518.x; Underwood N, 2014, Q REV BIOL, V89, P1, DOI 10.1086/674991; van Kleunen M, 2010, ECOL LETT, V13, P235, DOI 10.1111/j.1461-0248.2009.01418.x; Vaughn KJ, 2015, ECOL APPL, V25, P791, DOI 10.1890/14-0922.1; Vila M, 1998, ECOL APPL, V8, P1196, DOI 10.2307/2640972; Wainwright CE, 2013, BIOL INVASIONS, V15, P2253, DOI 10.1007/s10530-013-0449-4; Wainwright CE, 2012, J APPL ECOL, V49, P234, DOI 10.1111/j.1365-2664.2011.02088.x; Wolkovich EM, 2014, AOB PLANTS, V6, DOI 10.1093/aobpla/plu013; Wolkovich EM, 2011, FRONT ECOL ENVIRON, V9, P287, DOI 10.1890/100033; Xu J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098601 65 1 1 3 22 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. DEC 2016 6 24 8942 8953 10.1002/ece3.2610 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology EH9AF WOS:000392063300026 28035282 DOAJ Gold, Green Published 2019-02-21 J Boddy, L; Hiscox, J Boddy, Lynne; Hiscox, Jennifer Fungal Ecology: Principles and Mechanisms of Colonization and Competition by Saprotrophic Fungi MICROBIOLOGY SPECTRUM English Article VOLATILE ORGANIC-COMPOUNDS; INTERSPECIFIC MYCELIAL INTERACTIONS; DIFFERENTIAL GENE-EXPRESSION; IN-VITRO INTERACTIONS; CORD-FORMING FUNGI; WOOD DECAY FUNGI; WHITE-ROT FUNGI; TRICHODERMA-HARZIANUM; FUSARIUM-VERTICILLIOIDES; HETEROBASIDION-ANNOSUM Decomposer fungi continually deplete the organic resources they inhabit, so successful colonization of new resources is a crucial part of their ecology. Colonization success can be split into (i) the ability to arrive at, gain entry into, and establish within a resource and (ii) the ability to persist within the resource until reproduction and dissemination. Fungi vary in their life history strategies, the three main drivers of which are stress (S-selected), disturbance (ruderal, or R-selected), and incidence of competitors (C-selected); however, fungi often have combinations of characteristics from different strategies. Arrival at a new resource may occur as spores or mycelium, with successful entry and establishment (primary resource capture) within the resource largely dependent on the enzymatic ability of the fungus. The communities that develop in a newly available resource depend on environmental conditions and, in particular, the levels of abiotic stress present (e.g., high temperature, low water availability). Community change occurs when these initial colonizers are replaced by species that are either more combative (secondary resource capture) or better able to tolerate conditions within the resource, either through changing abiotic conditions or due to modification of the resource by the initial colonizers. Competition for territory may involve highly specialized species-specific interactions such as mycoparasitism or may be more general; in both cases combat involves changes in morphology, metabolism, and reactive oxygen species production, and outcomes of these interactions can be altered under different environmental conditions. In summary, community development is not a simple ordered sequence, but a complex ever-changing mosaic. [Boddy, Lynne; Hiscox, Jennifer] Cardiff Univ, Sch Biosci, Cardiff CF10 3AX, S Glam, Wales Boddy, L (reprint author), Cardiff Univ, Sch Biosci, Cardiff CF10 3AX, S Glam, Wales. boddyl@cf.ac.uk Boddy, Lynne/0000-0003-1845-6738 Abraham WR, 2001, CURR MED CHEM, V8, P583, DOI 10.2174/0929867013373147; Arfi Y, 2013, APPL ENVIRON MICROB, V79, P6626, DOI 10.1128/AEM.02316-13; Baldrian P, 2004, FEMS MICROBIOL ECOL, V50, P245, DOI 10.1016/j.femsec.2004.07.005; Baxter A, 2014, J EXP BOT, V65, P1229, DOI 10.1093/jxb/ert375; BELL AA, 1986, ANNU REV PHYTOPATHOL, V24, P411, DOI 10.1146/annurev.py.24.090186.002211; BODDY L, 1983, NEW PHYTOL, V94, P623, DOI 10.1111/j.1469-8137.1983.tb04871.x; BODDY L, 1985, T BRIT MYCOL SOC, V85, P201, DOI 10.1016/S0007-1536(85)80183-2; BODDY L, 1993, MYCOL RES, V97, P641, DOI 10.1016/S0953-7562(09)80141-X; Boddy L, 1999, MYCOLOGIA, V91, P13, DOI 10.2307/3761190; Boddy L, 2000, FEMS MICROBIOL ECOL, V31, P185, DOI 10.1016/S0168-6496(99)00093-8; Boddy L., 1984, ECOLOGY PHYSL FUNGAL, P261; Boddy L., 2008, BIOPHYSICAL CHEM FRA, P239; Boddy L, 2006, 8 INT MYC C P MED IT, P13; BODDY L, 2007, BR MYCOL SY, P112; Boddy L, 2017, FUNGAL COMMUNITY ITS, P169; Boddy L, 2011, FUNGAL ECOL, V4, P163, DOI 10.1016/j.funeco.2010.10.001; Boddy L, 2008, BR MYCOL SY, V28, P211; Cairney JWG, 2005, MYCOL RES, V109, P7, DOI 10.1017/S0953756204001753; Cupul WC, 2014, ELECTRON J BIOTECHN, V17, P114, DOI 10.1016/j.ejbt.2014.04.007; Chen YN, 2015, ENVIRON SCI POLLUT R, V22, P9807, DOI 10.1007/s11356-015-4149-8; COATES D, 1985, NEW PHYTOL, V101, P153, DOI 10.1111/j.1469-8137.1985.tb02823.x; Cooke R. C., 1984, ECOLOGY SAPROTROPHIC; Crowther TW, 2014, FRONT MICROBIOL, V5, DOI 10.3389/fmicb.2014.00579; Dickie IA, 2012, ECOL LETT, V15, P133, DOI 10.1111/j.1461-0248.2011.01722.x; Dix NJ, 1995, FUNGAL ECOLOGY; DOWSON CG, 1989, NEW PHYTOL, V111, P699, DOI 10.1111/j.1469-8137.1989.tb02365.x; El Ariebi N, 2016, FUNGAL ECOL, V20, P144, DOI 10.1016/j.funeco.2015.12.013; Sanchez-Fernandez RE, 2016, MICROB ECOL, V71, P347, DOI 10.1007/s00248-015-0679-3; Estrada AER, 2011, FUNGAL GENET BIOL, V48, P874, DOI 10.1016/j.fgb.2011.06.006; Evans JA, 2008, FUNGAL ECOL, V1, P57, DOI 10.1016/j.funeco.2008.06.001; Eyre C, 2010, FUNGAL BIOL-UK, V114, P646, DOI 10.1016/j.funbio.2010.05.006; Ferguson BA, 2003, CAN J FOREST RES, V33, P612, DOI 10.1139/x03-065; Fischer G, 1999, CHEMOSPHERE, V39, P795; FREITAG M, 1992, CAN J MICROBIOL, V38, P317, DOI 10.1139/m92-053; Fricker MD, 2008, BR MYCOL SY, V28, P3; Fukami T, 2015, ANNU REV ECOL EVOL S, V46, P1, DOI 10.1146/annurev-ecolsys-110411-160340; Fukami T, 2010, ECOL LETT, V13, P675, DOI 10.1111/j.1461-0248.2010.01465.x; Gao Y, 2005, J INTEGR PLANT BIOL, V47, P499, DOI 10.1111/j.1744-7909.2005.00081.x; Garbelotto MM, 1997, MYCOLOGIA, V89, P92, DOI 10.2307/3761177; Goh YK, 2010, MYCOLOGIA, V102, P757, DOI 10.3852/09-171; GRIFFITH GS, 1991, NEW PHYTOL, V117, P259, DOI 10.1111/j.1469-8137.1991.tb04907.x; Hallenberg N, 2001, NORD J BOT, V21, P431, DOI 10.1111/j.1756-1051.2001.tb00793.x; Hallenberg Nils, 1995, Acta Universitatis Upsaliensis Symbolae Botanicae Upsalienses, V30, P95; Heaton Luke, 2012, Fungal Biology Reviews, V26, P12, DOI 10.1016/j.fbr.2012.02.001; HEDGER J, 1990, Mycologist, V4, P200; Heilmann-Clausen J, 2005, MICROB ECOL, V49, P399, DOI 10.1007/s00248-004-0240-2; Heilmann-Clausen J, 2004, FOREST ECOL MANAG, V201, P105, DOI 10.1016/j.foreco.2004.07.010; Henson JM, 1999, ANNU REV PHYTOPATHOL, V37, P447, DOI 10.1146/annurev.phyto.37.1.447; Hiscox J, 2016, ENVIRON MICROBIOL, V18, P1954, DOI 10.1111/1462-2920.13141; Hiscox J, 2016, FUNGAL ECOL, V21, P32, DOI 10.1016/j.funeco.2016.01.011; Hiscox J, 2015, ISME J, V9, P2246, DOI 10.1038/ismej.2015.38; Hiscox J, 2010, FUNGAL GENET BIOL, V47, P562, DOI 10.1016/j.fgb.2010.03.007; Holmer L, 1997, OIKOS, V79, P77, DOI 10.2307/3546092; Humphris SN, 2002, FEMS MICROBIOL LETT, V210, P215, DOI 10.1016/S0378-1097(02)00604-3; Hynes J, 2007, J CHEM ECOL, V33, P43, DOI 10.1007/s10886-006-9209-6; Iakovlev A, 2000, MICROB ECOL, V39, P236; JEFFRIES P, 1995, CAN J BOT, V73, pS1284; Jonkers W, 2012, APPL ENVIRON MICROB, V78, P3656, DOI 10.1128/AEM.07841-11; Keddy P. A, 1989, COMPETITION; Ladygina N, 2006, PROCESS BIOCHEM, V41, P1001, DOI 10.1016/j.procbio.2005.12.007; Lang E, 1998, FEMS MICROBIOL LETT, V167, P239, DOI 10.1111/j.1574-6968.1998.tb13234.x; Lemfack MC, 2014, NUCLEIC ACIDS RES, V42, pD744, DOI 10.1093/nar/gkt1250; Lindahl BD, 2006, NEW PHYTOL, V169, P389, DOI 10.1111/j.1469-8137.2005.01581.x; Lindner DL, 2011, FUNGAL ECOL, V4, P449, DOI 10.1016/j.funeco.2011.07.001; Lumsden R., 2005, FUNGAL COMMUNITY ITS, P275; Malik M, 1999, STRUCTURE DYNAMICS F, P123; Niemela T, 1995, ANN BOT FENN, V32, P141; Norden B, 2000, NORD J BOT, V20, P215, DOI 10.1111/j.1756-1051.2000.tb01572.x; Osono T, 2005, MYCOLOGIA, V97, P589, DOI 10.3852/mycologia.97.3.589; Ottosson E., 2013, THESIS; Ottosson E, 2014, FUNGAL ECOL, V11, P17, DOI 10.1016/j.funeco.2014.03.003; Ovaskainen O, 2010, FUNGAL ECOL, V3, P274, DOI 10.1016/j.funeco.2010.01.001; Peiris D, 2008, METABOLOMICS, V4, P52, DOI 10.1007/s11306-007-0100-4; Polizzi V, 2012, FUNGAL BIOL-UK, V116, P941, DOI 10.1016/j.funbio.2012.06.001; Pouska V, 2013, POL J ECOL, V61, P119; PUGH GJF, 1988, P ROY SOC EDINB B, V94, P3; Rajala T, 2011, FUNGAL ECOL, V4, P437, DOI 10.1016/j.funeco.2011.05.005; Rayner A. D. M., 1985, DEV BIOL HIGHER FUNG, P249; RAYNER ADM, 1987, FEMS MICROBIOL ECOL, V45, P53, DOI 10.1016/0378-1097(87)90042-5; RAYNER ADM, 1994, BIOCHEM SOC T, V22, P389, DOI 10.1042/bst0220389; Read Nick D., 2012, Fungal Biology Reviews, V26, P1, DOI 10.1016/j.fbr.2012.02.003; Redfern DB, 2001, FORESTRY, V74, P53, DOI 10.1093/forestry/74.1.53; Richardson MJ, 2002, FUNGAL DIVERS, V10, P101; Rosado IV, 2007, FUNGAL GENET BIOL, V44, P950, DOI 10.1016/j.fgb.2007.01.001; Rosecke J, 2000, PHYTOCHEMISTRY, V54, P747, DOI 10.1016/S0031-9422(00)00138-2; Schoeman MW, 1996, MYCOL RES, V100, P1454, DOI 10.1016/S0953-7562(96)80077-3; Score AJ, 1997, INT BIODETER BIODEGR, V39, P225, DOI 10.1016/S0964-8305(97)00012-7; Sharma P, 2011, AFR J BIOTECHNOL, V10, P19898, DOI 10.5897/AJBX11.041; Silar P, 2005, MYCOL RES, V109, P137, DOI 10.1017/S0953756204002230; Smith ME, 2015, FUNGAL ECOL, V13, P211, DOI 10.1016/j.funeco.2014.08.010; Snajdr J, 2011, FEMS MICROBIOL ECOL, V78, P80, DOI 10.1111/j.1574-6941.2011.01123.x; Stenlid J, 2008, BR MYCOL SY, V28, P105; Strobel GA, 2001, MICROBIOL-SGM, V147, P2943, DOI 10.1099/00221287-147-11-2943; THOMPSON W, 1983, T BRIT MYCOL SOC, V81, P333, DOI 10.1016/S0007-1536(83)80085-0; Thompson W, 1984, ECOLOGY PHYSL FUNGAL, P185; Tordoff GM, 2006, MYCOL RES, V110, P335, DOI 10.1016/j.mycres.2005.11.012; Tornberg K, 2002, FEMS MICROBIOL ECOL, V40, P13, DOI [10.1111/j.1574-6941.2002.tb00931.x, 10.1016/S0168-6496(02)00200-3]; Ujor VC, 2012, LETT APPL MICROBIOL, V54, P336, DOI 10.1111/j.1472-765X.2012.03215.x; van der Wal A, 2013, FEMS MICROBIOL REV, V37, P477, DOI 10.1111/1574-6976.12001; Verma P, 2002, APPL BIOCHEM BIOTECH, V102, P109, DOI 10.1385/ABAB:102-103:1-6:109; VILGALYS R, 1994, MYCOLOGIA, V86, P270, DOI 10.2307/3760649; Watkinson S, 2015, FUNGI; Wheatley R, 1997, INT BIODETER BIODEGR, V39, P199, DOI 10.1016/S0964-8305(97)00015-2; Wheatley RE, 2002, ANTON LEEUW INT J G, V81, P357, DOI 10.1023/A:1020592802234; Whipps John M., 2007, P223, DOI 10.1007/978-1-4020-5799-1_12; WHITE NA, 1992, FEMS MICROBIOL LETT, V98, P75; Zhao YX, 2015, APPL MICROBIOL BIOT, V99, P4361, DOI 10.1007/s00253-014-6367-2 107 4 4 12 57 AMER SOC MICROBIOLOGY WASHINGTON 1752 N ST NW, WASHINGTON, DC 20036-2904 USA 2165-0497 MICROBIOL SPECTR Microbiol. Spectr. DEC 2016 4 6 UNSP FUNK-0019-2016 10.1128/microbiolspec.FUNK-0019-2016 16 Microbiology Microbiology EI1AU WOS:000392208200007 28087930 2019-02-21 J Akcay, C; Lendvai, AZ; Stanback, M; Haussmann, M; Moore, IT; Bonier, F Akcay, Caglar; Lendvai, Adam Z.; Stanback, Mark; Haussmann, Mark; Moore, Ignacio T.; Bonier, Fran Strategic adjustment of parental care in tree swallows: life-history trade-offs and the role of glucocorticoids ROYAL SOCIETY OPEN SCIENCE English Article corticosterone; nestling begging; provisioning; brood value; latitude; fitness TACHYCINETA-BICOLOR; STRESS-RESPONSE; PASSERINE BIRD; DIFFERENTIAL-ALLOCATION; CORTICOSTERONE; REPRODUCTION; MODULATION; INVESTMENT; INCREASES; BEHAVIOR Life-history theory predicts that optimal strategies of parental investment will depend on ecological and social factors, such as current brood value and offspring need. Parental care strategies are also likely to be mediated in part by the hypothalamic-pituitary-adrenal axis and glucocorticoid hormones. Here, we present an experiment in tree swallows (Tachycineta bicolor), a biparental songbird with wide geographical distribution, asking whether parental care is strategically adjusted in response to signals of offspring need and brood value and if so, whether glucocorticoids are involved in these adjustments. Using an automated playback system, we carried out playbacks of nestling begging calls specifically to females in two populations differing in their brood value: a northern population in Ontario, Canada (relatively higher brood value) and a southern population in North Carolina, USA (relatively lower brood value). We quantified female offspring provisioning rates before and during playbacks and plasma corticosterone levels (cort) once during late incubation and once immediately after playbacks. Females in both populations increased feeding rates temporarily during the first 2 h of playback but the increase was not sustained for the entire duration of playback (6 h). Cort levels from samples at the end of the playback did not differ between control females and females that received playbacks. However, females that had higher increases in cort between the incubation and nestling period had greater fledging success. These results suggest that females are able to strategically respond to offspring need, although the role of glucocorticoids in this strategic adjustment remains unclear. [Akcay, Caglar; Lendvai, Adam Z.; Moore, Ignacio T.; Bonier, Fran] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA; [Lendvai, Adam Z.] Univ Debrecen, Dept Evolutionary Zool & Human Biol, Egyet Ter 1, H-4032 Debrecen, Hungary; [Stanback, Mark] Davidson Coll, Dept Biol, Davidson, NC 28036 USA; [Haussmann, Mark] Bucknell Univ, Dept Biol, Lewisburg, PA 17837 USA; [Bonier, Fran] Queens Univ, Dept Biol, Kingston, ON, Canada Akcay, C; Lendvai, AZ (reprint author), Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA. akcay.caglar@gmail.com; az.lendvai@gmail.com Akcay, Caglar/F-7145-2010 Akcay, Caglar/0000-0003-0635-9586 U.S. National Science Foundation (NSF) grant [IOS-1145625]; Natural Sciences and Engineering Research Council of Canada Banting Postdoctoral Fellowship; Hungarian Research Fund [OTKA K 113108] This work was supported by a U.S. National Science Foundation (NSF) grant (F.B., I.T.M. and M.H.; IOS-1145625), and by the Natural Sciences and Engineering Research Council of Canada Banting Postdoctoral Fellowship (F.B.). During the preparation of the manuscript, A.Z.L. was supported by a grant from the Hungarian Research Fund (OTKA K 113108). Angelier F, 2007, HORM BEHAV, V52, P482, DOI 10.1016/j.yhbeh.2007.07.003; Angelier F, 2009, GEN COMP ENDOCR, V163, P142, DOI 10.1016/j.ygcen.2009.03.028; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Barton K., 2013, MUMLN MULTIMODEL INF; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bonier F, 2011, BIOL LETTERS, V7, P944, DOI 10.1098/rsbl.2011.0391; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; Bridge ES, 2011, J FIELD ORNITHOL, V82, P52, DOI 10.1111/j.1557-9263.2010.00307.x; BURLEY N, 1988, AM NAT, V132, P611, DOI 10.1086/284877; Crossin GT, 2012, AM NAT, V180, pE31, DOI 10.1086/666001; Dakin R, 2016, ANIM BEHAV, V111, P111, DOI 10.1016/j.anbehav.2015.10.006; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; Hinde CA, 2006, BEHAV ECOL, V17, P6, DOI 10.1093/beheco/ari092; Hinde CA, 2007, P ROY SOC B-BIOL SCI, V274, P53, DOI 10.1098/rspb.2006.3692; HUSSELL DJT, 1988, AM NAT, V131, P175, DOI 10.1086/284785; Lendvai AZ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0141194; Lendvai AZ, 2015, PEERJ, V3, DOI 10.7717/peerj.877; Lendvai AZ, 2008, HORM BEHAV, V53, P395, DOI 10.1016/j.yhbeh.2007.11.011; Lendvai AZ, 2007, P R SOC B, V274, P391, DOI 10.1098/rspb.2006.3735; Leonard M, 1996, BEHAV ECOL SOCIOBIOL, V38, P341, DOI 10.1007/s002650050250; Leonard ML, 2006, ETHOLOGY, V112, P1020, DOI 10.1111/j.1439-0310.2006.01259.x; Leonard ML, 2015, ANIM BEHAV, V109, P1, DOI 10.1016/j.anbehav.2015.07.036; Leonard ML, 2009, J AVIAN BIOL, V40, P243, DOI 10.1111/j.1600-048X.2009.04672.x; Leonard ML, 2001, BEHAV ECOL, V12, P501, DOI 10.1093/beheco/12.4.501; Leonard ML, 2001, BEHAV ECOL SOCIOBIOL, V49, P170, DOI 10.1007/s002650000290; Love OP, 2004, HORM BEHAV, V46, P59, DOI 10.1016/j.yhbeh.2004.02.001; Lucass C, 2016, ECOL EVOL, V6, P1825, DOI 10.1002/ece3.1976; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; McCarty JP, 2002, J FIELD ORNITHOL, V73, P9, DOI 10.1648/0273-8570-73.1.9; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Mock DW, 2011, BEHAV ECOL, V22, P909, DOI 10.1093/beheco/arr091; Moore IT, 2000, PHYSIOL BIOCHEM ZOOL, V73, P307, DOI 10.1086/316748; Moore IT, 2003, HORM BEHAV, V43, P39, DOI 10.1016/S0018-506X(02)00038-7; Ottosson U, 1997, BEHAV ECOL SOCIOBIOL, V41, P381, DOI 10.1007/s002650050399; Ouyang JQ, 2013, HORM BEHAV, V63, P776, DOI 10.1016/j.yhbeh.2013.03.002; Ouyang JQ, 2011, P ROY SOC B-BIOL SCI, V278, P2537, DOI 10.1098/rspb.2010.2490; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; Silverin B, 1997, FUNCT ECOL, V11, P376, DOI 10.1046/j.1365-2435.1997.00097.x; Sol D, 2012, SCIENCE, V337, P580, DOI 10.1126/science.1221523; Stearns S, 1992, EVOLUTION LIFE HIST; Symonds MRE, 2011, BEHAV ECOL SOCIOBIOL, V65, P13, DOI 10.1007/s00265-010-1037-6; Westneat DF, 2011, AM NAT, V178, P652, DOI 10.1086/662173; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; WINGFIELD JC, 1992, J EXP ZOOL, V264, P419, DOI 10.1002/jez.1402640407; Wingfield JC, 1998, AM ZOOL, V38, P191; Winkler D. W., 2011, BIRDS N AM ONLINE; Winkler DW, 2004, CONDOR, V106, P768, DOI 10.1650/7634 51 2 2 6 33 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 2054-5703 ROY SOC OPEN SCI R. Soc. Open Sci. DEC 2016 3 12 UNSP 160740 10.1098/rsos.160740 12 Multidisciplinary Sciences Science & Technology - Other Topics EH4HH WOS:000391731800024 28083111 DOAJ Gold, Green Published 2019-02-21 J Gilbert, J; Uggla, C; Mace, R Gilbert, James; Uggla, Caroline; Mace, Ruth Knowing your neighbourhood: local ecology and personal experience predict neighbourhood perceptions in Belfast, Northern Ireland ROYAL SOCIETY OPEN SCIENCE English Article life-history theory; ecological perceptions; mortality risk; morbidity risk REPRODUCTION; DEATH Evolutionary theory predicts that humans should adjust their life-history strategies in response to local ecological threats and opportunities in order to maximize their reproductive success. Cues representing threats to individuals' lives and health in modern, Western societies may come in the form of local ages at death, morbidity rate and crime rate in their local area, whereas the adult sex ratio represents a measure of the competition for reproductive partners. These characteristics are believed to have a strong influence over a wide range of behaviours, but whether they are accurately perceived has not been robustly tested. Here, we investigate whether perceptions of four neighbourhood characteristics are accurate across eight neighbourhoods in Belfast, Northern Ireland. We find that median age at death and morbidity rates are accurately perceived, whereas adult sex ratios and crime rates are not. We suggest that both neighbourhood characteristics and personal experiences contribute to the formation of perceptions. This should be considered by researchers looking for associations between area-level factors. [Gilbert, James; Uggla, Caroline; Mace, Ruth] UCL, Dept Anthropol, 14 Taviton St, London WC1H 0BW, England; [Uggla, Caroline] Stockholm Univ, Dept Sociol, Demog Unit, S-10691 Stockholm, Sweden; [Mace, Ruth] Lanzhou Univ, Life Sci, 222 Tianshui South Rd, Lanzhou 73000, Gansu, Peoples R China Gilbert, J (reprint author), UCL, Dept Anthropol, 14 Taviton St, London WC1H 0BW, England.; Mace, R (reprint author), Lanzhou Univ, Life Sci, 222 Tianshui South Rd, Lanzhou 73000, Gansu, Peoples R China. james.gilbert.14@ucl.ac.uk; r.mace@ucl.ac.uk Gilbert, James/0000-0003-2808-2004; Mace, Ruth/0000-0002-6137-7739; uggla, caroline/0000-0003-1639-3307 ERC [ERC AdG249347] This research was funded by the ERC advanced grant to R.M. (ERC AdG249347). ARK, 2014, 2015 NO IR LIF TIM S; Baldini R., 2015, BIORXIV, DOI [10.1101/014647, DOI 10.1101/014647]; Copping LT, 2015, EVOL HUM BEHAV, V36, P182, DOI 10.1016/j.evolhumbehav.2014.10.005; Copping LT, 2013, HUM NATURE-INT BIOS, V24, P137, DOI 10.1007/s12110-013-9163-2; Dixon M, 2006, UNEQUAL IMPACT CRIME; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hox J. J, 1998, CLASSIFICATION DATA, P147, DOI [10.1007/978-3-642-72087-1_17, DOI 10.1007/978-3-642-72087-1_17]; Jamieson S, 2004, MED EDUC, V38, P1217, DOI 10.1111/j.1365-2929.2004.02012.x; Johns SE, 2011, HEALTH PLACE, V17, P122, DOI 10.1016/j.healthplace.2010.09.006; Kalmijn M, 1998, ANNU REV SOCIOL, V24, P395, DOI 10.1146/annurev.soc.24.1.395; Marmot M, 2005, LANCET, V365, P1099, DOI 10.1016/S0140-6736(05)71146-6; MARMOT MG, 1987, ANNU REV PUBL HEALTH, V8, P111, DOI 10.1146/annurev.pu.08.050187.000551; Nettle D, 2014, PEERJ, V2, DOI 10.7717/peerj.236; Nettle D, 2012, HUM NATURE-INT BIOS, V23, P375, DOI 10.1007/s12110-012-9153-9; NISRA, 2014, MED AG AT DEATH; NISRA [Northern Ireland Statistics and Research Agency], 2012, CENS 2011 KEY STAT N; Norman G, 2010, ADV HEALTH SCI EDUC, V15, P625, DOI 10.1007/s10459-010-9222-y; Northern Ireland Statistics and Research Agency, 2010, NO IR MULT DEPR MEAS; Pepper GV, 2013, EVOL HUM BEHAV, V34, P433, DOI 10.1016/j.evolhumbehav.2013.08.004; R CoreTeam, 2014, R LANG ENV STAT COMP; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Roff D., 1993, EVOLUTION LIFE HIST; Schacht R, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.140402; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Sullivan Gail M, 2013, J Grad Med Educ, V5, P541, DOI 10.4300/JGME-5-4-18; Uggla C, 2016, BEHAV ECOL, V27, P158, DOI 10.1093/beheco/arv133; Uggla Caroline, 2015, Evolution Medicine and Public Health, P266, DOI 10.1093/emph/eov020; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 29 5 5 0 3 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 2054-5703 ROY SOC OPEN SCI R. Soc. Open Sci. DEC 2016 3 12 160468 10.1098/rsos.160468 8 Multidisciplinary Sciences Science & Technology - Other Topics EH4HH WOS:000391731800008 28083095 DOAJ Gold, Green Published 2019-02-21 J Ebneter, C; Pick, JL; Tschirren, B Ebneter, Christina; Pick, Joel L.; Tschirren, Barbara A trade-off between reproductive investment and maternal cerebellum size in a precocial bird BIOLOGY LETTERS English Article life-history evolution; trade-off; brain size; parental care; cost of reproduction; reproductive investment BRAIN SIZE; ARTIFICIAL SELECTION; EGG SIZE; EVOLUTION; ENVIRONMENTS; SURVIVAL; ADULTS; COSTS Natural selection favours increased investment in reproduction, yet considerable variation in parental investment is observed in natural populations. Life-history theory predicts that this variation is maintained by a trade-off between the benefits of increased reproductive investment and its associated costs for the parents. The nature of these costs of reproduction, however, remains poorly understood. The brain is an energetically highly expensive organ and increased reproductive investment may, therefore, negatively affect brain maintenance. Using artificial selection lines for high and low prenatal maternal investment in a precocial bird, the Japanese quail (Coturnix japonica), we provide experimental evidence for this hypothesis by showing that increased prenatal provisioning negatively affects the size of a particular brain region of the mother, the cerebellum. Our finding suggests that cognitive demands may constrain the evolution of parental investment, and vice versa, contributing to the maintenance of variation in reproductive behaviour in animal populations. [Ebneter, Christina; Pick, Joel L.; Tschirren, Barbara] Univ Zurich, Dept Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland; [Tschirren, Barbara] Univ Exeter, Ctr Ecol & Conservat, Penryn TR10 9FE, England Tschirren, B (reprint author), Univ Zurich, Dept Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland.; Tschirren, B (reprint author), Univ Exeter, Ctr Ecol & Conservat, Penryn TR10 9FE, England. barbara.tschirren@ieu.uzh.ch Pick, Joel L/0000-0002-6295-3742; Tschirren, Barbara/0000-0003-4806-4102 Swiss National Science Foundation [PP00P3_128386, PP00P3_157455]; Georges und Antoine Claraz-Schenkung This work was supported by the Swiss National Science Foundation (PP00P3_128386, PP00P3_157455 to B.T.) and the Georges und Antoine Claraz-Schenkung (to C.E.). Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2012, EVOLUTION OF PARENTAL CARE, P40; Barton RA, 2014, CURR BIOL, V24, P2440, DOI 10.1016/j.cub.2014.08.056; Bates D., 2011, LME4 LINEAR MIXED EF; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Deaner RO, 2007, BRAIN BEHAV EVOLUT, V70, P115, DOI 10.1159/000102973; Ebneter C, 2016, DRYAD DIGITAL REPOSI; Hogan MJ, 2011, CORTEX, V47, P441, DOI 10.1016/j.cortex.2010.01.001; Isler K, 2006, BIOL LETTERS, V2, P557, DOI 10.1098/rsbl.2006.0538; Isler K, 2009, J HUM EVOL, V57, P392, DOI 10.1016/j.jhevol.2009.04.009; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Kotrschal A, 2015, ECOL LETT, V18, P646, DOI 10.1111/ele.12441; Kotrschal A, 2013, CURR BIOL, V23, P168, DOI 10.1016/j.cub.2012.11.058; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Maklakov AA, 2011, BIOL LETTERS, V7, P730, DOI 10.1098/rsbl.2011.0341; MINK JW, 1981, AM J PHYSIOL, V241, pR203; Oatridge A, 2002, AM J NEURORADIOL, V23, P19; Pick JL, 2016, HEREDITY, V116, P542, DOI 10.1038/hdy.2016.16; Pick JL, 2016, AM NAT, V188, P628, DOI 10.1086/688918; Raz N, 2001, AM J NEURORADIOL, V22, P1161; Sol D, 2005, P NATL ACAD SCI USA, V102, P5460, DOI 10.1073/pnas.0408145102; Stearns S, 1992, EVOLUTION LIFE HIST; Strick PL, 2009, ANNU REV NEUROSCI, V32, P413, DOI 10.1146/annurev.neuro.31.060407.125606; van der Bijl W, 2015, P ROY SOC B-BIOL SCI, V282, P116, DOI 10.1098/rspb.2015.1132 25 1 1 2 26 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. DEC 1 2016 12 12 20160659 10.1098/rsbl.2016.0659 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology EG5SV WOS:000391105500005 28003519 Green Published, Bronze 2019-02-21 J Popkov, VA; Silachev, DN; Jankauskas, SS; Zorova, LD; Pevzner, IB; Babenko, VA; Plotnikov, EY; Zorov, DB Popkov, V. A.; Silachev, D. N.; Jankauskas, S. S.; Zorova, L. D.; Pevzner, I. B.; Babenko, V. A.; Plotnikov, E. Y.; Zorov, D. B. Molecular and cellular interactions between mother and fetus. Pregnancy as a rejuvenating factor BIOCHEMISTRY-MOSCOW English Review pregnancy; rejuvenation; aging LIFE-HISTORY EVOLUTION; MULTIPLE-SCLEROSIS; MYOCARDIAL-INFARCTION; PROGENITOR CELLS; FETAL CELLS; STEM-CELLS; TISSUE REGENERATION; COGNITIVE FUNCTION; GENDER-DIFFERENCES; SEX-DIFFERENCES Aging is associated with a decline of various body functions, including ability to regenerate. Over recent decades, it has been demonstrated that some of these changes could be reversed in response to factors originating from a young organism, for example, fetal stem cells or "young blood" in models of heterochronic parabiosis. Pregnancy might be considered as parabiotic model of the interaction between two organisms of different age. In this work, we analyzed and summarized data on the effects of pregnancy on the maternal organism that confirm the hypothesis that pregnancy rejuvenates the mother's organism or slows its aging. [Popkov, V. A.; Silachev, D. N.; Jankauskas, S. S.; Pevzner, I. B.; Plotnikov, E. Y.; Zorov, D. B.] Lomonosov Moscow State Univ, Belozersky Inst Phys Chem Biol, Moscow 119991, Russia; [Popkov, V. A.; Babenko, V. A.] Lomonosov Moscow State Univ, Fac Bioengn & Bioinformat, Moscow 119991, Russia; [Zorova, L. D.] Lomonosov Moscow State Univ, Ctr Int Laser, Moscow 119991, Russia; [Babenko, V. A.] Res Ctr Obstet, Gynecol & Perinatol, Moscow 117997, Russia Plotnikov, EY; Zorov, DB (reprint author), Lomonosov Moscow State Univ, Belozersky Inst Phys Chem Biol, Moscow 119991, Russia. plotnikov@genebee.msu.ru; zorov@genebee.msu.su Zorova, Ljubava/J-3554-2017; Popkov, Vasily/N-9030-2016 Zorova, Ljubava/0000-0001-9046-712X; Popkov, Vasily/0000-0003-2913-5091 Russian Foundation for Basic Research [14-04-00542, 14-04-00300, 15-34-20074, 16-34-01314] This work was supported by the Russian Foundation for Basic Research (projects Nos. 14-04-00542, 14-04-00300, 15-34-20074, and 16-34-01314). Anand SS, 2008, EUR HEART J, V29, P932, DOI 10.1093/eurheartj/ehn018; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; Bae SC, 2005, J PHARMACOL EXP THER, V315, P1125, DOI 10.1124/jpet.105.090803; Balistreri CR, 2016, AGEING RES REV, V29, P50, DOI 10.1016/j.arr.2016.06.004; Bianchi DW, 1996, P NATL ACAD SCI USA, V93, P705, DOI 10.1073/pnas.93.2.705; Cavasin MA, 2006, AM J PHYSIOL-HEART C, V290, pH2043, DOI 10.1152/ajpheart.01121.2005; Chen C, 2009, SCI SIGNAL, V2, DOI 10.1126/scisignal.2000559; Chen J, 2013, TISSUE ENG PART B-RE, V19, P516, DOI [10.1089/ten.teb.2012.0672, 10.1089/ten.TEB.2012.0672]; Chereji E, 2013, J GERONTOL A-BIOL, V68, P499, DOI 10.1093/gerona/gls218; Conboy IM, 2005, CELL CYCLE, V4, P407, DOI 10.4161/cc.4.3.1518; Conboy IM, 2005, NATURE, V433, P760, DOI 10.1038/nature03260; Conboy IM, 2003, SCIENCE, V302, P1575, DOI 10.1126/science.1087573; Costenbader KH, 2007, ARTHRITIS RHEUM-US, V56, P1251, DOI 10.1002/art.22510; Deswal A, 2006, AM J CARDIOL, V97, P1228, DOI 10.1016/j.amjcard.2005.11.042; Dimitrow P P, 1997, J Cardiovasc Risk, V4, P33; Felker GM, 2000, NEW ENGL J MED, V342, P1077, DOI 10.1056/NEJM200004133421502; Freitas-Rodriguez S., 2016, ONCOTARGET, DOI 10.18632/oncotarget.11096; Gagnon A, 2009, AM J HUM BIOL, V21, P533, DOI 10.1002/ajhb.20893; Gielchinsky Y, 2010, GENE DEV, V24, P543, DOI 10.1101/gad.563110; Glass DJ, 2016, CELL METAB, V24, P7, DOI 10.1016/j.cmet.2016.06.017; Gold J. J., 1987, GYNECOLOGIC ENDOCRIN; Gregg C, 2007, J NEUROSCI, V27, P1812, DOI 10.1523/JNEUROSCI.4441-06.2007; Grodstein F, 1996, NEW ENGL J MED, V335, P453, DOI 10.1056/NEJM199608153350701; Grundy E, 2005, SOC SCI MED, V61, P217, DOI 10.1016/j.socscimed.2004.11.046; Harrison DE, 2009, NATURE, V460, P392, DOI 10.1038/nature08221; Harrison-Bernard L M, 2000, Curr Hypertens Rep, V2, P202, DOI 10.1007/s11906-000-0083-2; Heer T, 2006, AM J CARDIOL, V98, P160, DOI 10.1016/j.amjcard.2006.01.072; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; Hinken AC, 2016, AGING CELL, V15, P582, DOI 10.1111/acel.12475; Hochman JS, 1997, J AM COLL CARDIOL, V30, P141, DOI 10.1016/S0735-1097(97)00107-1; Hsieh YC, 2006, FASEB J, V20, P1109, DOI 10.1096/fj.05-5549com; Humphries KH, 2001, CIRCULATION, V103, P2365; Hybertson BM, 2014, CLIN GENET, V86, P447, DOI 10.1111/cge.12474; Ishii Tetsuya, 2014, World J Stem Cells, V6, P404, DOI 10.4252/wjsc.v6.i4.404; Jaffe D, 2015, ANN EPIDEMIOL, V25, P387, DOI 10.1016/j.annepidem.2014.12.002; James PR, 2004, INT J CLIN PRACT, V58, P363; Johnson SC, 2015, INTERD T GERONT GERI, V40, P107, DOI 10.1159/000364974; Kara RJ, 2012, CIRC RES, V110, P82, DOI 10.1161/CIRCRESAHA.111.249037; Katsimpardi L, 2014, SCIENCE, V344, P630, DOI 10.1126/science.1251141; Khosrotehrani K, 2007, HUM REPROD, V22, P654, DOI 10.1093/humrep/del426; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kleeberger W, 2003, AM J PATHOL, V162, P1487, DOI 10.1016/S0002-9440(10)64281-2; Lee JongUn, 2016, Chonnam Med J, V52, P81, DOI 10.4068/cmj.2016.52.2.81; Liu S, 2016, INT J MOL SCI, V17, DOI 10.3390/ijms17060982; Loffredo FS, 2013, CELL, V153, P828, DOI 10.1016/j.cell.2013.04.015; McArdle PF, 2006, J GERONTOL A-BIOL, V61, P190, DOI 10.1093/gerona/61.2.190; MCCAY CM, 1957, GERONTOLOGY, V1, P7, DOI 10.1159/000210677; Michaeli TF, 2015, AGING CELL, V14, P698, DOI 10.1111/acel.12286; Min KJ, 2012, CURR BIOL, V22, pR792, DOI 10.1016/j.cub.2012.06.036; Nassar Dany, 2012, Chimerism, V3, P45, DOI 10.4161/chim.20739; Olson KA, 2015, EUR HEART J, V36, P3426, DOI 10.1093/eurheartj/ehv385; Pandey MK, 2016, THERANOSTICS, V6, P571, DOI 10.7150/thno.14334; Poggioli T, 2016, CIRC RES, V118, P29, DOI 10.1161/CIRCRESAHA.115.307521; Ponsonby AL, 2012, NEUROLOGY, V78, P867, DOI 10.1212/WNL.0b013e31824c4648; Popkov VA, 2015, BIOCHEMISTRY-MOSCOW+, V80, P1560, DOI 10.1134/S0006297915120032; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Ro Angela, 2006, Cardiol Rev, V14, P35, DOI 10.1097/01.crd.0000174805.68081.f7; Rosen CJ, 2005, NEW ENGL J MED, V353, P595, DOI 10.1056/NEJMcp043801; Ruckh JM, 2012, CELL STEM CELL, V10, P96, DOI 10.1016/j.stem.2011.11.019; RUNMARKER B, 1995, BRAIN, V118, P253, DOI 10.1093/brain/118.1.253; Sandberg K, 2008, GENDER MED, V5, P10, DOI 10.1016/j.genm.2008.03.016; Sarkar S., 2008, COMPANION PHILOS BIO; Singh H, 2007, HYPERTENSION, V50, P123, DOI 10.1161/HYPERTENSIONAHA.107.089599; Sinha M, 2014, SCIENCE, V344, P649, DOI 10.1126/science.1251152; Smith GA, 2015, J INHERIT METAB DIS, V38, P753, DOI 10.1007/s10545-015-9838-4; Smith KR, 2002, SOC BIOL, V49, P185; Sorenson CM, 2004, BBA-MOL CELL RES, V1644, P169, DOI 10.1016/j.bbamcr.2003.08.010; Sun XF, 2007, HISTOL HISTOPATHOL, V22, P1387, DOI 10.14670/HH-22.1387; Szekacs B, 2000, BRIT J OBSTET GYNAEC, V107, P1017, DOI 10.1111/j.1471-0528.2000.tb10406.x; VANWALDERVEEN MAA, 1994, NEUROLOGY, V44, P327, DOI 10.1212/WNL.44.2.327; Vellai T, 2003, NATURE, V426, P620, DOI 10.1038/426620a; Villeda SA, 2014, NAT MED, V20, P659, DOI 10.1038/nm.3569; Villeda SA, 2011, NATURE, V477, P90, DOI 10.1038/nature10357; Vukusic S, 2006, CLIN NEUROL NEUROSUR, V108, P266, DOI 10.1016/j.clineuro.2005.11.016; Vukusic S, 2004, BRAIN, V127, P1353, DOI 10.1093/brain/awh152; Wang Y, 2004, BIOCHEM BIOPH RES CO, V325, P961, DOI 10.1016/j.bbrc.2004.10.105; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; Whitehead H, 2015, CURR BIOL, V25, pR225, DOI 10.1016/j.cub.2015.02.002; World Health Organization, 2012, ANN REPORT; Xiao JJ, 2014, INT J CLIN EXP PATHO, V7, P229; Zeng XX, 2010, STEM CELLS DEV, V19, P1819, DOI 10.1089/scd.2010.0046; Zorov DB, 2014, BIOCHEMISTRY-MOSCOW+, V79, P1017, DOI 10.1134/S0006297914100046; Zorov DB, 2013, BIOCHEMISTRY-MOSCOW+, V78, P979, DOI 10.1134/S0006297913090034; Zorov DB, 2012, BIOCHEMISTRY-MOSCOW+, V77, P742, DOI 10.1134/S0006297912070073 84 3 4 2 9 MAIK NAUKA/INTERPERIODICA/SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013-1578 USA 0006-2979 1608-3040 BIOCHEMISTRY-MOSCOW+ Biochem.-Moscow DEC 2016 81 12 1480 1487 10.1134/S0006297916120099 8 Biochemistry & Molecular Biology Biochemistry & Molecular Biology EF1NZ WOS:000390092900009 28259125 2019-02-21 J Lofgren, ET; Egizi, AM; Fefferman, NH Lofgren, Eric T.; Egizi, Andrea M.; Fefferman, Nina H. Patients as Patches: Ecology and Epidemiology in Healthcare Environments INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY English Editorial Material CLOSTRIDIUM-DIFFICILE INFECTION; LIFE-HISTORY EVOLUTION; HUMAN MICROBIOME; TRANSMISSION; DIVERSITY; PATHOGENS; URBANIZATION; BIODIVERSITY; HOSPITALS; SURFACES The modern healthcare system involves complex interactions among microbes, patients, providers, and the built environment. It represents a unique and challenging setting for control of the emergence and spread of infectious diseases. We examine an extension of the perspectives and methods from ecology (and especially urban ecology) to address these unique issues, and we outline 3 examples: (1) viewing patients as individual microbial ecosystems; (2) the altered ecology of infectious diseases specifically within hospitals; and (3) ecosystem management perspectives for infection surveillance and control. In each of these cases, we explore the accuracy and relevance of analogies to existing urban ecological perspectives, and we demonstrate a few of the potential direct uses of this perspective for altering research into the control of healthcare-associated infections. Infect Control Hosp Epidemiol. 2016;1507-1512 [Lofgren, Eric T.] Washington State Univ, Paul G Allen Sch Global Anim Hlth, Pullman, WA 99164 USA; [Lofgren, Eric T.] Washington State Univ, Community Hlth Analyt Initiat, Pullman, WA 99164 USA; [Lofgren, Eric T.; Fefferman, Nina H.] CCICADA, Piscataway, NJ USA; [Egizi, Andrea M.] Tick Borne Dis Lab, Monmouth Cty Mosquito Control Div, Tinton Falls, NJ USA; [Egizi, Andrea M.] Rutgers State Univ, Dept Entomol, Ctr Vector Biol, New Brunswick, NJ USA; [Fefferman, Nina H.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN USA Fefferman, NH (reprint author), Dept Ecol & Evolutionary Biol, 569 Dabney Hall, Knoxville, TN 37996 USA. feffermn@dimacs.rutgers.edu Egizi, Andrea/0000-0002-4604-045X Abir M, 2012, ACAD EMERG MED, V19, P280, DOI 10.1111/j.1553-2712.2011.01278.x; Adler F.R., 2013, URBAN ECOSYSTEMS ECO; Al-Nassir WN, 2008, ANTIMICROB AGENTS CH, V52, P2403, DOI 10.1128/AAC.00090-08; Alberti M, 2005, INT REGIONAL SCI REV, V28, P168, DOI 10.1177/0160017605275160; Buffie CG, 2012, INFECT IMMUN, V80, P62, DOI 10.1128/IAI.05496-11; Cadotte MW, 2011, J APPL ECOL, V48, P1079, DOI 10.1111/j.1365-2664.2011.02048.x; Calfee DP, 2012, ANNU REV MED, V63, P359, DOI 10.1146/annurev-med-081210-144458; Chang JY, 2008, J INFECT DIS, V197, P435, DOI 10.1086/525047; Costello EK, 2012, SCIENCE, V336, P1255, DOI 10.1126/science.1224203; Deasy AM, 2015, CLIN INFECT DIS, V60, P1512, DOI 10.1093/cid/civ098; Dethlefsen L, 2008, PLOS BIOL, V6, P2383, DOI 10.1371/journal.pbio.0060280; Edmond M, 2015, SHEA C MAY 14 ORL FL; Fisman D, 2012, CLIN MICROBIOL INFEC, V18, P946, DOI 10.1111/j.1469-0691.2012.03968.x; Galea S, 2005, ANNU REV PUBL HEALTH, V26, P341, DOI 10.1146/annurev.publhealth.26.021304.144708; Gaston K. J., 2010, URBAN ECOLOGY; Gerding DN, 2015, JAMA-J AM MED ASSOC, V313, P1719, DOI 10.1001/jama.2015.3725; Gilbert-Norton L, 2010, CONSERV BIOL, V24, P660, DOI 10.1111/j.1523-1739.2010.01450.x; Grimm NB, 2008, SCIENCE, V319, P756, DOI 10.1126/science.1150195; Hillebrand H, 2008, ECOLOGY, V89, P1510, DOI 10.1890/07-1053.1; Hilty J. A, 2006, CORRIDOR ECOLOGY SCI; Hirshberg A, 2005, J TRAUMA ACUTE CARE, P58; Hooper DU, 2005, ECOL MONOGR, V75, P3, DOI 10.1890/04-0922; Jarchum I, 2011, CURR OPIN IMMUNOL, V23, P353, DOI 10.1016/j.coi.2011.03.001; Jesse M, 2008, J THEOR BIOL, V254, P331, DOI 10.1016/j.jtbi.2008.05.038; Johnson PTJ, 2015, SCIENCE, V349, DOI 10.1126/science.1259504; Jombart T, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003457; Kembel SW, 2012, ISME J, V6, P1469, DOI 10.1038/ismej.2011.211; King AA, 2009, AM NAT, V173, P446, DOI 10.1086/597217; King GM, 2014, J MICROBIOL, V52, P721, DOI 10.1007/s12275-014-4364-x; Kurokawa K, 2007, DNA RES, V14, P169, DOI 10.1093/dnares/dsm018; Lal A, 2013, PLOS ONE, V7; Lax S, 2015, TRENDS MOL MED, V21, P427, DOI 10.1016/j.molmed.2015.03.005; Lee BY, 2013, MED CARE, V51, P205, DOI 10.1097/MLR.0b013e3182836dc2; Lemon KP, 2012, SCI TRANSL MED, V4, DOI 10.1126/scitranslmed.3004183; Lloyd-Smith JO, 2013, PHILOS T R SOC B, P368; Lofgren E, 2007, J VIROL, V81, P5429, DOI 10.1128/JVI.01680-06; Lofgren ET, 2014, INFECT CONT HOSP EP, V35, P18, DOI 10.1086/674394; Magill SS, 2014, JAMA-J AM MED ASSOC, V312, P1438, DOI 10.1001/jama.2014.12923; McDonnell MJ, 2011, URBAN ECOLOGY: PATTERNS, PROCESSES, AND APPLICATIONS, P5; McKinney M. L., 2008, Urban Ecosystems, V11, P161, DOI 10.1007/s11252-007-0045-4; McKinney ML, 2006, BIOL CONSERV, V127, P247, DOI 10.1016/j.biocon.2005.09.005; O'Brien-Pallas L, 2010, J NURS MANAGE, V18, P1073, DOI 10.1111/j.1365-2834.2010.01167.x; O'Keefe KJ, 2005, J THEOR BIOL, V233, P55, DOI 10.1016/j.jtbi.2004.09.005; Otter JA, 2011, INFECT CONT HOSP EP, V32, P687, DOI 10.1086/660363; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; Phillips DP, 2010, J GEN INTERN MED, V25, P774, DOI 10.1007/s11606-010-1356-3; Pickett S. T. A, 1985, ECOLOGY NATURAL DIST; Relman DA, 2012, NUTR REV, V70, pS2, DOI 10.1111/j.1753-4887.2012.00489.x; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Robinson CJ, 2010, MICROBIOL MOL BIOL R, V74, P453, DOI 10.1128/MMBR.00014-10; Septimus E, 2014, INFECT CONT HOSP EP, V35, P797, DOI [10.1017/S0899823X00193808, 10.1086/676535]; Shochat E, 2010, BIOSCIENCE, V60, P199, DOI 10.1525/bio.2010.60.3.6; Smith D, 2013, STAND GENOMIC SCI, V8, P112, DOI 10.4056/sigs.3717348; Smith Val H., 2015, Evolution Medicine and Public Health, P179, DOI 10.1093/emph/eov014; Sullivan A, 2001, Lancet Infect Dis, V1, P101, DOI 10.1016/S1473-3099(01)00066-4; Turnbaugh PJ, 2009, NATURE, V457, P480, DOI 10.1038/nature07540; Weber DJ, 2010, AM J INFECT CONTROL, V38, pS25, DOI 10.1016/j.ajic.2010.04.196; Weinstock GM, 2012, NATURE, V489, P250, DOI 10.1038/nature11553; Weissman JS, 2007, MED CARE, V45, P448, DOI 10.1097/01.mlr.0000257231.86368.09; Zipperer A, 2016, NATURE, V535, P511, DOI 10.1038/nature18634 60 0 0 3 12 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0899-823X 1559-6834 INFECT CONT HOSP EP Infect. Control Hosp. Epidemiol. DEC 2016 37 12 1507 1512 10.1017/ice.2016.224 6 Public, Environmental & Occupational Health; Infectious Diseases Public, Environmental & Occupational Health; Infectious Diseases EF5DW WOS:000390351900020 27760571 2019-02-21 J Perlut, NG; Strong, AM Perlut, Noah G.; Strong, Allan M. Comparative analysis of factors associated with first-year survival in two species of migratory songbirds JOURNAL OF AVIAN BIOLOGY English Article SPARROWS PASSERCULUS-SANDWICHENSIS; LIFE-HISTORY STRATEGIES; POSTFLEDGING SURVIVAL; JUVENILE SURVIVAL; PASSERINE BIRDS; HOUSE SPARROW; RECRUITMENT; DISTANCE; DISPERSAL; SIZE Our understanding of the full life cycle of most migratory birds remains limited. Estimates of survival rates, particularly for first-year birds are notably lacking. This knowledge gap results in imprecise parameters in population models and limits our ability to fully understand life history trade-offs. We used eleven years of field data to estimate first-year apparent survival (phi(1)st) for two species of migratory grassland songbirds that breed in the same managed habitats but have substantially different migration distances. We used a suite of life-history, habitat and individually-based covariates to explore causes of variation in phi(1)st. The interaction between fledge date and body mass was the best supported model of apparent survival. We found differential effects of fledging date based on nestling body mass. Overall, lighter nestlings had greater apparent survival than heavier nestlings; average or heavy nestlings within-brood had greater apparent survival when they fledged earlier in the summer. We hypothesize that heavier birds that fledge earlier in the season have a longer window of opportunity to evaluate potential breeding sites and are more likely to disperse greater distances from the natal region, thus confounding survival with permanent emigration. L ighter birds, particularly those fledged late in the breeding season may spend more time on self-maintenance and consequently have less time to evaluate potential future breeding sites, showing greater fidelity to their natal region. We found no support for management treatment (timing of mowing), sex, brood size, or species as important covariates in explaining apparent survival. Our results suggest that differential migration distances may not have a strong effect on first-year apparent survival. [Perlut, Noah G.] Univ New England, Dept Environm Studies, Biddeford, ME 04005 USA; [Strong, Allan M.] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT USA Perlut, NG (reprint author), Univ New England, Dept Environm Studies, Biddeford, ME 04005 USA. nperlut@une.edu Univ. of New England; Rubenstein School of Environment and Natural Resources; Initiative for Future Agricultural and Food Systems; National Research Initiative of the USDA Cooperative State Research, Education and Extension Service [2001-52103-11351, 03-35101-13817]; U.S. Dept of Agriculture/National Inst. of Food and Agriculture Managed Ecosystems Program [2009-35304-05349]; Natural Resource Conservation Service's Wildlife Habitat Management Inst; Galipeau family This project was supported by the Univ. of New England, the Rubenstein School of Environment and Natural Resources, and the Initiative for Future Agricultural and Food Systems and the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant numbers 2001-52103-11351 and 03-35101-13817, respectively and the U.S. Dept of Agriculture/National Inst. of Food and Agriculture Managed Ecosystems Program (award no. 2009-35304-05349). Additional funding was provided by the Natural Resource Conservation Service's Wildlife Habitat Management Inst. and the Galipeau family. We thank Shelburne Farms, the Galipeau, Ross, Maile and Stern families for generous access to their land. Thanks to each summer's army of research assistants for their excellent work. Adams AAY, 2006, ECOLOGY, V87, P178, DOI 10.1890/04-1922; Anders AD, 1997, CONSERV BIOL, V11, P698, DOI 10.1046/j.1523-1739.1997.95526.x; Brown C. R., 1996, COLONALITY CLIFF SWA; Bryant D.M., 1988, P173; Buehler DM, 2008, PHILOS T R SOC B, V363, P247, DOI 10.1098/rstb.2007.2138; Chamberlain CP, 1997, OECOLOGIA, V109, P132, DOI 10.1007/s004420050067; Cleasby IR, 2010, BIOL J LINN SOC, V101, P680, DOI 10.1111/j.1095-8312.2010.01515.x; Cooper CB, 2008, ECOLOGY, V89, P3349, DOI 10.1890/08-0315.1; Cox WA, 2014, J WILDLIFE MANAGE, V78, P183, DOI 10.1002/jwmg.670; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; Faaborg J, 2010, ECOL MONOGR, V80, P3, DOI 10.1890/09-0395.1; Fajardo N, 2009, AUK, V126, P310, DOI 10.1525/auk.2009.07097; Green DJ, 2001, J ANIM ECOL, V70, P505, DOI 10.1046/j.1365-2656.2001.00503.x; Gruebler MU, 2008, ECOLOGY, V89, P2736, DOI 10.1890/07-0786.1; Gruebler MU, 2014, ECOL EVOL, V4, P756, DOI 10.1002/ece3.984; Han JI, 2009, AUK, V126, P779, DOI 10.1525/auk.2009.08203; Hobson KA, 1997, OECOLOGIA, V109, P142, DOI 10.1007/s004420050068; Hovick TJ, 2011, CONDOR, V113, P429, DOI 10.1525/cond.2011.100135; LACK D, 1966, POPULATION STUDIES B; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Maness TJ, 2013, ORNITHOL MONOGR, P1, DOI 10.1525/om.2013.78.1.1; Marra PP, 2000, BEHAV ECOL, V11, P299, DOI 10.1093/beheco/11.3.299; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; McKim-Louder MI, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056059; Middleton HA, 2008, CAN J ZOOL, V86, P875, DOI 10.1139/Z08-069; Mitchell GW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028838; Molina-Morales M, 2012, ANIM BEHAV, V83, P671, DOI 10.1016/j.anbehav.2011.12.011; Monros JS, 2002, OIKOS, V99, P481, DOI 10.1034/j.1600-0706.2002.11909.x; NASS (National Agriculture Statistics Survey), 2010, CENS AGR; PARRISH JD, 1994, AUK, V111, P38, DOI 10.2307/4088503; Perkins DG, 2013, AUK, V130, P512, DOI 10.1525/auk.2013.12163; Perlut NG, 2008, ECOLOGY, V89, P1941, DOI 10.1890/07-0900.1; Perlut NG, 2006, ECOL APPL, V16, P2235, DOI 10.1890/1051-0761(2006)016[2235:GSIADM]2.0.CO;2; Perlut NG, 2014, AUK, V131, P224, DOI 10.1642/AUK-13-183.1; Perlut NG, 2011, J WILDLIFE MANAGE, V75, P1657, DOI 10.1002/jwmg.199; Reilly JR, 2009, J ANIM ECOL, V78, P990, DOI 10.1111/j.1365-2656.2009.01576.x; Renfrew RB, 2013, DIVERS DISTRIB, V19, P1008, DOI 10.1111/ddi.12080; Ringsby TH, 1999, OIKOS, V85, P419, DOI 10.2307/3546691; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; Streby HM, 2011, ECOSPHERE, V2, DOI 10.1890/ES10-00187.1; Streby HM, 2014, WILDLIFE SOC B, V38, P305, DOI 10.1002/wsb.406; Streby HM, 2014, AUK, V131, P718, DOI 10.1642/AUK-14-69.1; Stutchbury BJM, 2009, SCIENCE, V323, P896, DOI 10.1126/science.1166664; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; Tarof SA, 2011, AUK, V128, P716, DOI 10.1525/auk.2011.11087; Tarwater CE, 2011, ECOLOGY, V92, P1271, DOI 10.1890/10-1386.1; Vitz AC, 2011, CONDOR, V113, P400, DOI 10.1525/cond.2011.100023; WEATHERHEAD PJ, 1994, BEHAV ECOL, V5, P426, DOI 10.1093/beheco/5.4.426; Wells KMS, 2007, CONDOR, V109, P781, DOI 10.1650/0010-5422(2007)109[781:SOPGBI]2.0.CO;2; Wheelwright N. T., 2008, BIRDS N AM, V45; White GC, 1999, BIRD STUDY, V46, P120; Zalik NJ, 2008, AUK, V125, P700, DOI 10.1525/auk.2008.07106 52 3 3 4 16 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. DEC 2016 47 6 858 864 10.1111/jav.00892 7 Ornithology Zoology EF4UG WOS:000390326900013 2019-02-21 J Cameron, H; Monro, K; Malerba, M; Munch, S; Marshall, D Cameron, Hayley; Monro, Keyne; Malerba, Martino; Munch, Stephan; Marshall, Dustin Why do larger mothers produce larger offspring? A test of classic theory ECOLOGY English Article density dependence; life-history theory; offspring performance; optimal offspring size; siblingcompetition COLONIAL MARINE INVERTEBRATE; BRYOZOAN BUGULA-NERITINA; OPTIMAL EGG SIZE; MATERNAL PHENOTYPE; TRADE-OFFS; COMPETITION; QUALITY; DISPERSAL; NUMBER; GROWTH Across a wide range of taxa, larger mothers produce larger offspring. Theory assumes that larger, more fecund mothers create higher local densities of siblings, and so larger mothers produce larger offspring to offset sibling competition. This assumption has beendebated for over 30yr, but direct empirical tests are surprisingly rare. Here, we test two key assumptions of classic theories that predict sibling competition drives maternal-size-offspring-size (MSOS) correlations: (1) independent effects of offspring size and sibling density on offspring performance or (2) as a product of an interaction between these two factors. To simultaneously test these alternative assumptions, we manipulate offspring size and sibling density in the marine invertebrate, Bugula neritina, and monitor offspring performance in the field. We found that, depending on the fitness metric being considered, offspring size and sibling density can either independently or interactively affect offspring performance. Yet sibling density did not affect offspring performance in the ways that classic theories assume. Given our results, it is unlikely that sibling competition drives the positive MSOS correlation observed in this species. Empirical support for these classic theories remains lacking, suggesting alternative explanations are necessary. [Cameron, Hayley; Monro, Keyne; Malerba, Martino; Marshall, Dustin] Monash Univ, Sch Biol Sci, Ctr Geometr Biol, Melbourne, Vic 3800, Australia; [Munch, Stephan] NOAA, Natl Marine Fisheries Serv, Fisheries Ecol Div, Southwest Fisheries Sci Ctr, Santa Cruz, CA 95060 USA Cameron, H (reprint author), Monash Univ, Sch Biol Sci, Ctr Geometr Biol, Melbourne, Vic 3800, Australia. Hayley.Cameron@monash.edu Malerba, Martino E./0000-0002-7480-4779 Aguirre JD, 2013, OIKOS, V122, P881, DOI 10.1111/j.1600-0706.2012.20827.x; Aguirre JD, 2012, ECOLOGY, V93, P1134, DOI 10.1890/11-1448.1; Allen RM, 2008, AM NAT, V171, P225, DOI 10.1086/524952; Beckerman AP, 2006, P ROY SOC B-BIOL SCI, V273, P485, DOI 10.1098/rspb.2005.3315; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Burgess SC, 2011, MAR ECOL PROG SER, V440, P151, DOI 10.3354/meps09374; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; Eberhart A, 2012, J ARID ENVIRON, V76, P23, DOI 10.1016/j.jaridenv.2011.08.009; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Filin I, 2015, J THEOR BIOL, V364, P168, DOI 10.1016/j.jtbi.2014.09.007; Gardner JL, 2011, TRENDS ECOL EVOL, V26, P285, DOI 10.1016/j.tree.2011.03.005; Hart SP, 2012, ECOLOGY, V93, P2015, DOI 10.1890/11-2248.1; Hart SP, 2009, ECOLOGY, V90, P1485, DOI 10.1890/08-1813.1; Hendry AP, 2003, EVOL ECOL RES, V5, P421; Hixon MA, 2014, ICES J MAR SCI, V71, P2171, DOI 10.1093/icesjms/fst200; Johnson SL, 2007, MOL ECOL, V16, P3253, DOI 10.1111/j.1365-294X.2007.03366.x; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; KEOUGH MJ, 1984, EVOLUTION, V38, P142, DOI 10.1111/j.1558-5646.1984.tb00267.x; KEOUGH MJ, 1987, ECOLOGY, V68, P199, DOI 10.2307/1938820; Kindsvater HK, 2010, EVOL ECOL RES, V12, P327; Kosman ET, 2011, MAR ECOL PROG SER, V429, P67, DOI 10.3354/meps09096; Lim JN, 2014, EVOLUTION, V68, P2306, DOI 10.1111/evo.12446; Marshall DJ, 2006, ECOLOGY, V87, P214, DOI 10.1890/05-0350; Marshall DJ, 2004, MAR ECOL PROG SER, V272, P301, DOI 10.3354/meps272301; Marshall DJ, 2003, ECOLOGY, V84, P3131, DOI 10.1890/02-0311; Marshall DJ, 2003, MAR ECOL PROG SER, V255, P145, DOI 10.3354/meps255145; Marshall DJ, 2010, ECOLOGY, V91, P2862, DOI 10.1890/09-0156.1; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Pettersen A. K., 2015, P ROY SOC LOND B BIO, V282, P819; Quinn G. P., 2002, EXPT DESIGN DATA ANA; Rollinson N, 2016, BIOL REV, V91, P1134, DOI 10.1111/brv.12214; Rollinson N, 2010, EVOL ECOL RES, V12, P949; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; Sinervo B, 2003, SCIENCE, V300, P1949, DOI 10.1126/science.1083109; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Svensson JR, 2015, ECOLOGY, V96, P819, DOI 10.1890/14-0665.1; Takahashi T., 2005, EVOLUTIONARY ECOLOGY, V7, P1201; Thompson ML, 2015, MAR ECOL PROG SER, V522, P115, DOI 10.3354/meps11178; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413; Wendt DE, 1998, BIOL BULL-US, V195, P126, DOI 10.2307/1542820 43 4 4 0 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology DEC 2016 97 12 3452 3459 10.1002/ecy.1590 8 Ecology Environmental Sciences & Ecology EE2WC WOS:000389444800022 27912014 2019-02-21 J Adler, MI; Telford, M; Bonduriansky, R Adler, M. I.; Telford, M.; Bonduriansky, R. Phenotypes optimized for early-life reproduction exhibit faster somatic deterioration with age, revealing a latent cost of high condition JOURNAL OF EVOLUTIONARY BIOLOGY English Article ageing; condition; development; diet; life-history; lifespan; neriid fly Telostylinus angusticollis; nutrition; reproduction-soma trade-off; somatic maintenance TELOSTYLINUS-ANGUSTICOLLIS DIPTERA; ONTHOPHAGUS-ACUMINATUS COLEOPTERA; CONDITION-DEPENDENT TRAITS; SEXUAL SELECTION; TRADE-OFFS; TELEOGRYLLUS-COMMODUS; NATURAL-SELECTION; FIELD CRICKETS; ADULT DIET; BODY-SIZE High condition enables individuals to express a phenotype with greater reproductive potential. However, life-history theory predicts that reproduction will trade off with somatic maintenance and viability, and several studies have reported faster age-related decline in performance in high-condition individuals, suggesting that high condition in early life is associated with accelerated somatic deterioration. This trade-off may be especially pronounced in males, which often express condition-dependent secondary sexual traits that can impose viability costs during development and through damage-inflicting adult sexual behaviours. To test this prediction, we reared larvae of the neriid fly Telostylinus angusticollis on diets of varying nutrient content and quantified somatic deterioration in solitary males, males housed in all-male or mixed-sex groups and immobilized males subjected to mechanical stress. We found that males reared on a nutrient-rich larval diet (high-condition males) suffered a higher rate of somatic deterioration with age, particularly when housed in groups. Perhaps as a result of accelerated somatic deterioration, high-condition males did not outlive low-condition males. In addition, high-condition males housed in all-male groups experienced a greater reduction in escape response with age than males housed in mixed-sex groups, suggesting that male-male combat promotes somatic deterioration. However, even when immobilized, high-condition males were still found to be more susceptible to somatic damage than low-condition males. Our findings suggest that a high-condition male phenotype is more prone to somatic damage, both as a result of associated behaviours such as combat, and because of the inherent fragility of the high-condition body. [Adler, M. I.; Telford, M.; Bonduriansky, R.] Univ New South Wales, Evolut & Ecol Res Ctr, Sydney, NSW, Australia; [Adler, M. I.; Telford, M.; Bonduriansky, R.] Univ New South Wales, Sch Biol Earth & Environm Sci, Sydney, NSW, Australia; [Telford, M.] Univ Pompeu Fabra, Inst Biol Evolutiva, Barcelona, Spain Adler, MI (reprint author), UNSW, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia.; Adler, MI (reprint author), UNSW, Sch BEES, Sydney, NSW 2052, Australia. margo.adler@gmail.com Bonduriansky, Russell/0000-0002-5786-6951 University of New South Wales; Evolution & Ecology Research Centre; Australian Research Council We thank Ditka Jeran, Matheus Guimaraes, Rob Champion, Aidan Runagall-McNaull, David Tran, Eleanor Bath, Alexander Sentinella and Mark Brown for help with the experiment, and Bart Adriaenssens for generously sharing his statistics wisdom. We also thank Viktor Nilsson-Ortman for thoughtful discussions and suggesting relevant papers, and Luc Bussiere and Wolf Blanckenhorn for thorough and very helpful comments and suggestions on an earlier version of the manuscript. The research was funded through a PhD scholarship to MA from the University of New South Wales and the Evolution & Ecology Research Centre, and an Australian Research Council research fellowship and Discovery grant to RB. The authors have no conflict of interests to declare. Adler MI, 2011, J EVOLUTION BIOL, V24, P1169, DOI 10.1111/j.1420-9101.2011.02250.x; Adler MI, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a017566; Adler MI, 2013, EVOL BIOL, V40, P288, DOI 10.1007/s11692-012-9211-6; Adler MI, 2013, EXP GERONTOL, V48, P539, DOI 10.1016/j.exger.2013.03.007; Agrawal A. A., 2010, EVOLUTION SINCE DARW, V150, P243; Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; Allen BJ, 2007, FUNCT ECOL, V21, P154, DOI 10.1111/j.1365-2435.2006.01219.x; ANDERSSON M, 1982, BIOL J LINN SOC, V17, P375, DOI 10.1111/j.1095-8312.1982.tb02028.x; Bath E, 2012, ANIM BEHAV, V84, P1331, DOI 10.1016/j.anbehav.2012.08.025; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bonduriansky R, 2007, J EVOLUTION BIOL, V20, P2379, DOI 10.1111/j.1420-9101.2007.01409.x; Bonduriansky R, 2005, J EVOLUTION BIOL, V18, P1332, DOI 10.1111/j.1420-9101.2005.00957.x; Bonduriansky R, 2006, J MORPHOL, V267, P602, DOI 10.1002/jmor.10426; Bonduriansky R, 2005, EVOLUTION, V59, P138, DOI 10.1111/j.0014-3820.2005.tb00901.x; Bonduriansky R, 2002, NATURE, V420, P377, DOI 10.1038/420377a; Bonduriansky R, 2007, AM NAT, V169, P9, DOI 10.1086/510214; BOYD R, 1982, ANIM BEHAV, V30, P972, DOI 10.1016/S0003-3472(82)80185-1; Burkhard DU, 2002, ECOL ENTOMOL, V27, P514, DOI 10.1046/j.1365-2311.2002.00453.x; Bussiere L.F., 2012, ELS 2012; CARTAR RV, 1992, J ANIM ECOL, V61, P225, DOI 10.2307/5525; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; Christensen R. H. B., 2015, ORDINAL REGRESSION M; CORBET PS, 1960, NATURE, V187, P525, DOI 10.1038/187525a0; Cotton S, 2004, P ROY SOC B-BIOL SCI, V271, P771, DOI 10.1098/rspb.2004.2688; Dingle H., 2001, Insect movement: mechanisms and consequences. Proceedings of the Royal Entomological Society's 20th Symposium, London, UK, September 1999, P159, DOI 10.1079/9780851994567.0159; Dmitriew C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017399; Downer G.H., 1983, ENDOCRINOLOGY INSECT; Emlen DJ, 1997, P ROY SOC B-BIOL SCI, V264, P567, DOI 10.1098/rspb.1997.0081; EMLEN DJ, 1994, P ROY SOC B-BIOL SCI, V256, P131, DOI 10.1098/rspb.1994.0060; Engqvist L, 2011, BIOL J LINN SOC, V102, P199, DOI 10.1111/j.1095-8312.2010.01560.x; Griffith SC, 1999, NATURE, V400, P358, DOI 10.1038/22536; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hadfield JD, 2014, MCMCGLMM COURSE NOTE; Hayes EJ, 1999, PHYSIOL ENTOMOL, V24, P1, DOI 10.1046/j.1365-3032.1999.00104.x; Hill GE, 2011, ECOL LETT, V14, P625, DOI 10.1111/j.1461-0248.2011.01622.x; Houslay TM, 2015, J EVOLUTION BIOL, V28, P1067, DOI 10.1111/jeb.12630; Hughes KA, 2005, ANNU REV ENTOMOL, V50, P421, DOI 10.1146/annurev.ento.50.071803.130409; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Jennions MD, 2001, Q REV BIOL, V76, P3, DOI 10.1086/393743; Kawasaki N, 2008, AM NAT, V172, P346, DOI 10.1086/589519; Koehl MAR, 1996, ANNU REV ECOL SYST, V27, P501, DOI 10.1146/annurev.ecolsys.27.1.501; Krause J., 2002, LIVING GROUPS; Lailvaux SP, 2011, EVOLUTION, V65, P3138, DOI 10.1111/j.1558-5646.2011.01358.x; Ljubuncic P, 2009, GERONTOLOGY, V55, P205, DOI 10.1159/000200772; Maklakov AA, 2015, BIOESSAYS, V37, P802, DOI 10.1002/bies.201500025; Marden JH, 2000, ANNU REV PHYSIOL, V62, P157, DOI 10.1146/annurev.physiol.62.1.157; Muhlhauser C, 2002, BEHAV ECOL, V13, P359, DOI 10.1093/beheco/13.3.359; NUR N, 1984, J THEOR BIOL, V110, P275, DOI 10.1016/S0022-5193(84)80059-4; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Rasband W. S., 1997, IMAGEJ; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Robinson MR, 2006, EVOLUTION, V60, P2168, DOI 10.1111/j.0014-3820.2006.tb01854.x; Roff DA, 1996, Q REV BIOL, V71, P3, DOI 10.1086/419266; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Shevtsova E, 2011, P NATL ACAD SCI USA, V108, P668, DOI 10.1073/pnas.1017393108; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Swallow JG, 2000, J COMP PHYSIOL B, V170, P481, DOI 10.1007/s003600000124; Ungar P.S., 2010, MAMMAL TEETH ORIGIN; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zajitschek F, 2009, FUNCT ECOL, V23, P602, DOI 10.1111/j.1365-2435.2008.01520.x; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 66 3 3 0 17 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. DEC 2016 29 12 2436 2446 10.1111/jeb.12968 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity EE7ZT WOS:000389844700008 27546615 2019-02-21 J Gantz, A; Yanez, M Gantz, Alberto; Yanez, Miguel Breeding Biology of the Black-faced Ibis (Theristicus melanopis) in Southern Chile WATERBIRDS English Article breeding success; clutch size; ibis; Mayfield estimator; nest predation; pastures; reproduction; southern Chile PARAKEET ENICOGNATHUS-LEPTORHYNCHUS; LIFE-HISTORY EVOLUTION; CAVITY-NESTING BIRDS; SCARLET IBIS; CLUTCH SIZE; REPRODUCTIVE SUCCESS; GERONTICUS-EREMITA; HABITAT SELECTION; FOOD AVAILABILITY; PREY SELECTION The breeding parameters of the Black-faced Ibis (Theristicus melanopis) in pastures of southern Chile between 5 July and 30 November 2014 were evaluated. Thirty active nests were monitored in an area of 31 km(2), using a mirror mounted on a 13-m retractable aluminum pole. Each nest was visited once a week. The Black-faced Ibis presented an asynchronous posture period, with a maximum of three egg clutches. The first eggs were laid on 6 August 2014, and the mean incubation period was 28.66 (+/- 4.41) days. Mean clutch size during the first posture was 2.23 (+/- 0.73) with a range of one to three eggs per nest. None of the structural parameters of the nesting site evaluated were related to clutch size. The nests were oriented with a mean angle of 218 SW. Hatching of the chicks began on 25 September 2014, and the mean period of parental care lasted 36.67 (+/- 14.49) days. The apparent hatching success was 0.54, the fledging success was 0.40, and the total breeding cycle success was 0.23 independent young per nest. Predation explained the 56.7% nest loss. Chimango Caracara (Milvago chimango) was the main predator of eggs and chicks. The Mayfield estimator indicated a daily survival probability of 4.4% for the incubation cycle, 26.2% for the fledglings and 11.3% for the total breeding cycle. [Gantz, Alberto] Univ Los Lagos, Lab Ecol, Dept Ciencias Biol & Biodiversidad, Ave Fuchslocher 1305,Casilla 933, Osorno, Chile; [Yanez, Miguel] Univ Bio Bio, Dept Estadist, Ave Collao 1202,Casilla 5-C, Concepcion, Chile Gantz, A (reprint author), Univ Los Lagos, Lab Ecol, Dept Ciencias Biol & Biodiversidad, Ave Fuchslocher 1305,Casilla 933, Osorno, Chile. agantz@ulagos.cl Yanez Alvarado, Miguel/0000-0001-5483-3428 Borges FJA, 2010, BIODIVERS CONSERV, V19, P223, DOI 10.1007/s10531-009-9718-z; Araya B., 1984, GUIA CAMPO AYES CHIL; Ardia DR, 2006, J AVIAN BIOL, V37, P252, DOI 10.1111/j.2006.0908-8857.03624.x; Beerens JM, 2011, AUK, V128, P651, DOI 10.1525/auk.2011.10165; Belhadj G., 2007, EUROPEAN J SCI RES, V19, P58; Birdlife International, 2013, SPEC FACTSH THER MEL; Boatman ND, 2004, IBIS, V146, P131, DOI 10.1111/j.1474-919X.2004.00347.x; Bowden CGR, 2003, IBIS, V145, P419, DOI 10.1046/j.1474-919X.2003.00181.x; Bradbury RB, 2000, J APPL ECOL, V37, P789, DOI 10.1046/j.1365-2664.2000.00552.x; Campbell B, 1985, DICT OF BIRDS; Carneiro APB, 2012, CONDOR, V114, P166, DOI 10.1525/cond.2011.100127; Corporacion Nacional del Medio Ambiente, 2008, BIOD CHIL PERSP DES; DOBKIN DS, 1995, CONDOR, V97, P694, DOI 10.2307/1369178; DONAZAR JA, 1994, CONDOR, V96, P994, DOI 10.2307/1369108; Fjeldsa J, 1990, BIRDS HIGH ANDES; Gonzalez JA, 1999, J FIELD ORNITHOL, V70, P18; Hancock JA, 1992, STORKS IBISES SPOONB; Hatchwell BJ, 1999, AUK, V116, P355, DOI 10.2307/4089370; Heath JA, 2003, GEN COMP ENDOCR, V133, P118, DOI 10.1016/S0016-6480(03)00155-2; Hellmayr C. E., 1932, THE BIRDS OF CHILE; Hoekman ST, 2002, WILSON BULL, V114, P450, DOI 10.1676/0043-5643(2002)114[0450:GBONRT]2.0.CO;2; Housse P. R., 1945, AYES CHILE CLASIFICA; Jimenez JE, 2011, ORNITOL NEOTROP, V22, P465; JOHNSON AW, 1965, BIRDS CHILE ADJACENT, V1; JOHNSON DH, 1979, AUK, V96, P651; KUSHLAN JA, 1979, CONDOR, V81, P376, DOI 10.2307/1366963; Lehner PN, 1996, HDB ETHOLOGICAL METH; Long AM, 2009, CONDOR, V111, P395, DOI 10.1525/cond.2009.080076; Lorenz JJ, 2009, ECOL INDIC, V9, pS96, DOI 10.1016/j.ecolind.2008.10.008; Lueber F., 2006, SINOPSIS BIOCLIMATIC; Luneau MD, 2010, J FIELD ORNITHOL, V81, P176, DOI 10.1111/j.1557-9263.2010.00275.x; Manolis JC, 2000, AUK, V117, P615, DOI 10.1642/0004-8038(2000)117[0615:UNFISS]2.0.CO;2; Margalida A, 2009, IBIS, V151, P235; Martin Paul R., 1993, MEASURING BEHAV INTR; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; MARTIN TE, 1993, AM NAT, V142, P937, DOI 10.1086/285582; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martinez C, 1999, J FIELD ORNITHOL, V70, P558; Martinez D., 2004, AYES CHILE NUEVA GUI; MATHEU E, 1992, HDB BIRDS WORLD, V1, P472; MAYFIELD HF, 1975, WILSON BULL, V87, P456; Mino C. I., 2009, ECOLOGIA BRASILIENSE, V13, P141; Morrison JL, 1999, CONDOR, V101, P505, DOI 10.2307/1370180; MURRAY BG, 1985, ORNITHOL MONOGR, V36, P505; Naef-Daenzer L, 2000, J AVIAN BIOL, V31, P206, DOI 10.1034/j.1600-048X.2000.310212.x; Neigh AM, 2007, ECOTOX ENVIRON SAFE, V66, P107, DOI 10.1016/j.ecoenv.2005.10.004; Olmos F, 2003, IBIS, V145, pE12, DOI 10.1046/j.1474-919X.2003.00134.x; Olmos F, 2001, WATERBIRDS, V24, P58, DOI 10.2307/1522244; Olmos Fabio, 2002, Ornitologia Neotropical, V13, P17; Petry MV, 2005, ACTA ZOOL-STOCKHOLM, V86, P217, DOI 10.1111/j.1463-6395.2005.00200.x; Raimilla V, 2015, STUD NEOTROP FAUNA E, V50, P130, DOI 10.1080/01650521.2015.1057425; Rotella J. J., 2004, Animal Biodiversity and Conservation, V27, P187; Samraoui F, 2007, OSTRICH, V78, P481, DOI 10.2989/OSTRICH.2007.78.2.58.172; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; Smith KW, 2008, IBIS, V150, P728, DOI 10.1111/j.1474-919X.2008.00844.x; Subiabre A., 1994, GEOGRAFFA FISICA REG; Torres R, 2006, ORNITOL NEOTROP, V17, P63; URBAN EK, 1974, IBIS, V116, P263, DOI 10.1111/j.1474-919X.1974.tb00124.x; van Wieringen M., 1990, IWRB SPECIAL PUBLICA, V11, P7; Vizcarra Jhonson K., 2009, Boletin Chileno de Ornitologia, V15, P104; YOMTOV Y, 1994, CONDOR, V96, P170, DOI 10.2307/1369074; Zar J.H, 1984, BIOSTATISTICAL ANAL 64 2 2 0 9 WATERBIRD SOC WASHINGTON NATL MUSEUM NATURAL HISTORY SMITHSONIAN INST, WASHINGTON, DC 20560 USA 1524-4695 1938-5390 WATERBIRDS Waterbirds DEC 2016 39 4 346 355 10.1675/063.039.0404 10 Ornithology Zoology EE9SH WOS:000389966000003 2019-02-21 J Kwan, L; Dobkin, AN; Rodd, FH; Rowe, L Kwan, Lucia; Dobkin, Adam N.; Rodd, F. Helen; Rowe, Locke A Potential Cost of Long Genitalia in Male Guppies: the Effects of Current Speed on Reproductive Behaviour ETHOLOGY English Article gonopodium; current speed; Poecilia reticulata; mating tatics LIFE-HISTORY EVOLUTION; POECILIA-RETICULATA; SWIMMING PERFORMANCE; TRINIDADIAN GUPPIES; COURTSHIP BEHAVIOR; SEXUAL SEGREGATION; PREDATION RISK; PATTERNS; SELECTION; CONFLICT In the fish family Poeciliidae, male genitalia, the gonopodia, are remarkably diverse across species; however, we still do not have a good understanding of the evolutionary processes promoting this diversity. For one trait, gonopodium length, several studies support a role for sexual conflict in selection for longer gonopodia. However, genital elongation may come at a cost of reduced locomotor abilities (e.g. resulting from greater drag and resistance). In this study, we were interested in the potential role of natural selection on the evolution of gonopodium length in poeciliids. Specifically, we asked whether a greater genital length impedes male reproductive behaviours at higher flow rates in the Trinidadian guppy, Poecilia reticulata. Using a flow chamber, males were placed with females in low- and high-flow regimes and reproductive behaviours were measured. We did not find evidence for a cost of bearing a longer gonopodium at high flow. However, males did alter their mating tactics in response to current flow. We discuss the implications of our findings, in the light of habitat selection, on the forms of selection operating on gonopodium length and the mating interactions between the sexes in poeciliids. [Kwan, Lucia; Dobkin, Adam N.; Rodd, F. Helen; Rowe, Locke] Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Willcocks St, Toronto, ON M5S 3B2, Canada Kwan, L (reprint author), Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Willcocks St, Toronto, ON M5S 3B2, Canada. luciaokwan@gmail.com Natural Sciences and Engineering Research Council of Canada (NSERC); NSERC; Canada Research Chair We would like to thank the Rodd and Rowe laboratories, Hernan Lopez-Fernandez, and John Stinchcombe for useful feedback and discussion; the anonymous referees for their suggestions; Pedro Peres-Neto and his Canada Foundation for Innovation grant for the use of his the flow chamber; Bill Sloan, Scott Ferguson, and Liset Cruz-Font for assistance with transporting the flow chamber; Lauren Malatesta for significant contributions to the development of the design and methods of this experiment; and Stephen De Lisle and Alex De Serrano for statistical advice. This study was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) scholarship to LK, NSERC grants to FHR and LR, and Canada Research Chair funding to LR. Arnqvist G, 1997, BIOL J LINN SOC, V60, P365; Basolo AL, 2003, P ROY SOC B-BIOL SCI, V270, P1631, DOI 10.1098/rspb.2003.2388; Blumstein DT, 2000, JWATCHER; CHAMBERS J, 1987, J FISH BIOL, V30, P389, DOI 10.1111/j.1095-8649.1987.tb05764.x; Cheng YY., 2004, THESIS; CLARK EUGENIE, 1951, ZOOLOGICA [NEW YORK], V36, P49; Constantz G.D., 1989, P33; Croft DP, 2006, AM NAT, V167, P867, DOI 10.1086/504853; Croft DP, 2004, ENVIRON BIOL FISH, V71, P127, DOI 10.1007/s10641-003-0092-5; Eberhard W. G, 1985, SEXUAL SELECTION ANI; Engqvist L, 2005, ANIM BEHAV, V70, P967, DOI 10.1016/j.anbehav.2005.01.016; Evans JP, 2011, P ROY SOC B-BIOL SCI, V278, P2611, DOI 10.1098/rspb.2010.2453; Farr J.A., 1989, P91; Gasparini C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022329; Ghalambor CK, 2003, INTEGR COMP BIOL, V43, P431, DOI 10.1093/icb/43.3.431; Head ML, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015279; Hosken DJ, 2004, TRENDS ECOL EVOL, V19, P87, DOI 10.1016/j.tree.2003.11.012; Houde A., 1997, SEX COLOR MATE CHOIC; Kahn AT, 2010, BIOL LETTERS, V6, P55, DOI 10.1098/rsbl.2009.0637; Kelly CD, 2000, CAN J ZOOL, V78, P1674, DOI 10.1139/cjz-78-9-1674; Kodric-Brown A, 2005, ENVIRON BIOL FISH, V73, P299, DOI 10.1007/s10641-005-1598-9; Kwan L, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0267; Langerhans R. Brian, 2011, P228; Langerhans R. Brian, 2010, P200, DOI 10.1201/b10190-8; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Langerhans RB, 2005, P NATL ACAD SCI USA, V102, P7618, DOI 10.1073/pnas.0500935102; Leonard J, 2010, EVOLUTION PRIMARY SE; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; Magellan K, 2006, ANIM BEHAV, V72, P75, DOI 10.1016/j.anbehav.2005.09.022; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Magurran AE, 2001, GENETICA, V112, P463, DOI 10.1023/A:1013339822246; Magurran Anne E., 2011, P209; Martin S. B., 2010, VIVIPAROUS FISHES, VII, P451; Nicoletto PF, 1996, BEHAV ECOL, V7, P272, DOI 10.1093/beheco/7.3.272; Nicoletto PF, 1999, ENVIRON BIOL FISH, V55, P227, DOI 10.1023/A:1007587809618; Ptacek MB, 1998, ANIM BEHAV, V56, P1044, DOI 10.1006/anbe.1998.0874; Quinn G. P., 2002, EXPT DESIGN DATA ANA; Rasband W. S., 1997, IMAGEJ; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Rohlf F. J., 2010, TPS SOFTWARE SUITE; Rohlf F. J., 2014, TPS SOFTWARE SUITE; Rosen D. E., 1963, Bulletin of the American Museum of Natural History, V126, P1; ROSEN DE, 1961, COPEIA, P201, DOI 10.2307/1439999; ROSEN DONN ERIC, 1953, ZOOLOGICA [NEW YORK], V38, P1; Slice D. E., 2002, MORPHEUS ETAL MULTIP; Sokal RR, 1995, FREEMAN, V3, P1995, DOI DOI 10.1016/J.JIP.2003.08.007; Zelditch M. L, 2004, GEOMETRIC MORPHOMETR; Zuniga-Vega JJ, 2011, J FISH BIOL, V79, P1029, DOI 10.1111/j.1095-8649.2011.03081.x 50 0 0 4 29 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology DEC 2016 122 12 945 953 10.1111/eth.12564 9 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology EC1EN WOS:000387846800003 2019-02-21 J Midwood, JD; Larsen, MH; Aarestrup, K; Cooke, SJ Midwood, Jonathan D.; Larsen, Martin H.; Aarestrup, Kim; Cooke, Steven J. Stress and food deprivation: linking physiological state to migration success in a teleost fish JOURNAL OF EXPERIMENTAL BIOLOGY English Article Glucocorticoid; Stress; Starvation; Passive integrated transponder tags; Freshwater; Brown trout TROUT SALMO-TRUTTA; JUVENILE CHINOOK SALMON; BROWN TROUT; ATLANTIC SALMON; LIFE-HISTORY; RAINBOW-TROUT; ENVIRONMENTAL-FACTORS; SWIMMING PERFORMANCE; SEAWATER ADAPTATION; GROWTH COMPENSATION Food deprivation is a naturally occurring stressor that is thought to influence the ultimate life-history strategy of individuals. Little is known about how food deprivation interacts with other stressors to influence migration success. European populations of brown trout (Salmo trutta) exhibit partial migration, whereby a portion of the population smoltifies and migrates to the ocean, and the rest remain in their natal stream. This distinct, natural dichotomy of life-history strategies provides an excellent opportunity to explore the roles of energetic state (as affected by food deprivation) and activation of the glucocorticoid stress response in determining life-history strategy and survival of a migratory species. Using an experimental approach, the relative influences of short-term food deprivation and experimental cortisol elevation (i. e. intra-coelomic injection of cortisol suspended in cocoa butter) on migratory status, survival and growth of juvenile brown trout relative to a control were evaluated. Fewer fish migrated in both the food deprivation and cortisol treatments; however, migration of fish in cortisol and control treatments occurred at the same time while that of fish in the food deprivation treatment was delayed for approximately 1 week. A significantly greater proportion of trout in the food deprivation treatment remained in their natal stream, but unlike the cortisol treatment, there were no long-term negative effects of food deprivation on growth, relative to the control. Overall survival rates were comparable between the food deprivation and control treatments, but significantly lower for fish in the cortisol treatment. Food availability and individual energetic state appear to dictate the future life-history strategy (migrate or remain resident) of juvenile salmonids while experimental elevation of the stress hormone cortisol causes impaired growth and reduced survival of both resident and migratory individuals. [Midwood, Jonathan D.; Cooke, Steven J.] Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada; [Midwood, Jonathan D.; Cooke, Steven J.] Carleton Univ, Inst Environm Sci, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada; [Larsen, Martin H.; Aarestrup, Kim] Tech Univ Denmark, Freshwater Fisheries, Natl Inst Aquat Resources, Vejlsovej 39, DK-8600 Silkeborg, Denmark Midwood, JD (reprint author), Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada.; Midwood, JD (reprint author), Carleton Univ, Inst Environm Sci, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada. midwoodj@gmail.com Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant; Danish National Fishing License Funds; Svenska Forskningsradet Formas; Canada Research Chairs program Funding for this project was provided by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant awarded to S.J.C. and grants to the Technical University of Denmark from the Danish National Fishing License Funds, and the Svenska Forskningsradet Formas. S.J.C. is further supported by the Canada Research Chairs program. Aarestrup K, 2002, HYDROBIOLOGIA, V483, P95, DOI 10.1023/A:1021306907338; Adriaenssens B, 2013, ECOL LETT, V16, P47, DOI 10.1111/ele.12011; Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; Alerstam T, 2003, OIKOS, V103, P247, DOI 10.1034/j.1600-0706.2003.12559.x; ANDERSEN DE, 1991, CAN J FISH AQUAT SCI, V48, P1811, DOI 10.1139/f91-214; Barton B.A., 1991, Annual Review of Fish Diseases, V1, P3, DOI 10.1016/0959-8030(91)90019-G; BARTON BA, 1988, PROG FISH CULT, V50, P16, DOI 10.1577/1548-8640(1988)050<0016:FADCAS>2.3.CO;2; BARTON BA, 1985, GEN COMP ENDOCR, V59, P468, DOI 10.1016/0016-6480(85)90406-X; Barton BA, 2002, INTEGR COMP BIOL, V42, P517, DOI 10.1093/icb/42.3.517; BARTON BA, 1987, DIS AQUAT ORGAN, V2, P173; Boel M, 2014, PHYSIOL BIOCHEM ZOOL, V87, P334, DOI 10.1086/674869; BOHLIN T, 1993, CAN J FISH AQUAT SCI, V50, P1132, DOI 10.1139/f93-128; Boonstra R, 2013, FUNCT ECOL, V27, P7, DOI 10.1111/1365-2435.12048; Boonstra R, 2013, FUNCT ECOL, V27, P11, DOI 10.1111/1365-2435.12008; BUTTIKER B, 1992, J FISH BIOL, V41, P673, DOI 10.1111/j.1095-8649.1992.tb02697.x; Bystrom P, 2006, OIKOS, V115, P43, DOI 10.1111/j.2006.0030-1299.15014.x; Cai L, 2014, AQUAT BIOL, V20, P69, DOI 10.3354/ab00546; Calow P, 1998, COMP BIOCHEM PHYS A, V120, P11, DOI 10.1016/S1095-6433(98)10003-X; Caruso G, 2011, MAR ENVIRON RES, V72, P46, DOI 10.1016/j.marenvres.2011.04.005; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; Costa DP, 2004, ANNU REV PHYSIOL, V66, P209, DOI 10.1146/annurev.physiol.66.032102.114245; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; Crossin GT, 2016, FUNCT ECOL, V30, P116, DOI 10.1111/1365-2435.12482; Dantzer B, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou023; Espelid S, 1996, FISH SHELLFISH IMMUN, V6, P95, DOI 10.1006/fsim.1996.0011; FEDER ME, 1991, FUNCT ECOL, V5, P136, DOI 10.2307/2389251; FOLMAR LC, 1980, AQUACULTURE, V21, P1, DOI 10.1016/0044-8486(80)90123-4; Forseth T, 1999, J ANIM ECOL, V68, P783, DOI 10.1046/j.1365-2656.1999.00329.x; GAMPERL AK, 1994, REV FISH BIOL FISHER, V4, P215, DOI 10.1007/BF00044129; Gibbons JW, 2004, BIOSCIENCE, V54, P447, DOI 10.1641/0006-3568(2004)054[0447:PTSTAI]2.0.CO;2; Gilmour KM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P669, DOI 10.1086/432144; Gregory TR, 1999, PHYSIOL BIOCHEM ZOOL, V72, P286, DOI 10.1086/316673; Halver J.E., 2002, FISH NUTR; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hoogenboom MO, 2011, J FISH BIOL, V79, P587, DOI 10.1111/j.1095-8649.2011.03039.x; Johnsson JI, 2006, P R SOC B, V273, P1281, DOI 10.1098/rspb.2005.3437; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; Jonsson N, 1998, J FISH BIOL, V53, P1306, DOI 10.1111/j.1095-8649.1998.tb00250.x; Kleiber M., 1961, FIRE LIFE INTRO ANIM; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Krimmer AN, 2011, J FISH BIOL, V79, P707, DOI 10.1111/j.1095-8649.2011.03053.x; Larsen MH, 2013, ANIM BIOTELEM, V1, P19, DOI DOI 10.1186/2050-3385-1-19; LECREN ED, 1951, J ANIM ECOL, V20, P201; Mangum CP, 1998, PHYSIOL ZOOL, V71, P471, DOI 10.1086/515953; MASON JC, 1976, J WILDLIFE MANAGE, V40, P775, DOI 10.2307/3800576; McCue MD, 2010, COMP BIOCHEM PHYS A, V156, P1, DOI 10.1016/j.cbpa.2010.01.002; MCNAMARA JM, 1987, ECOLOGY, V68, P1515, DOI 10.2307/1939235; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; Midwood JD, 2015, J EXP ZOOL PART A, V323, P645, DOI 10.1002/jez.1955; Midwood JD, 2014, MAR ECOL PROG SER, V496, P135, DOI 10.3354/meps10524; Mommsen TP, 1999, REV FISH BIOL FISHER, V9, P211, DOI 10.1023/A:1008924418720; Nicieza AG, 1997, ECOLOGY, V78, P2385; O'Connor CM, 2014, ECOSPHERE, V5, DOI 10.1890/ES13-00388.1; Pankhurst NW, 2011, GEN COMP ENDOCR, V170, P265, DOI 10.1016/j.ygcen.2010.07.017; Pascual P, 2003, CHEM-BIOL INTERACT, V145, P191, DOI 10.1016/S0009-2797(03)00002-4; PICKERING AD, 1989, FRESHWATER BIOL, V21, P47, DOI 10.1111/j.1365-2427.1989.tb01347.x; PICKERING AD, 1982, J FISH BIOL, V20, P229, DOI 10.1111/j.1095-8649.1982.tb03923.x; PICKERING AD, 1984, J FISH BIOL, V24, P731, DOI 10.1111/j.1095-8649.1984.tb04844.x; PORTER WP, 1969, ECOL MONOGR, V39, P227, DOI 10.2307/1948545; POUGH FH, 1989, PHYSIOL ZOOL, V62, P199, DOI 10.1086/physzool.62.2.30156169; Quigley JT, 2006, J THERM BIOL, V31, P429, DOI 10.1016/j.jtherbio.2006.02.003; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Romero LM, 2000, GEN COMP ENDOCR, V118, P113, DOI 10.1006/gcen.1999.7446; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; SCHRECK CB, 1990, METHODS FISH BIOL; SHERIDAN MA, 1989, AQUACULTURE, V82, P191, DOI 10.1016/0044-8486(89)90408-0; Sheriff MJ, 2011, OECOLOGIA, V166, P593, DOI 10.1007/s00442-011-1907-2; Small BC, 2006, DOMEST ANIM ENDOCRIN, V31, P340, DOI 10.1016/j.domaniend.2005.12.003; Somero GN, 2000, ANNU REV PHYSIOL, V62, P927, DOI 10.1146/annurev.physiol.62.1.927; Sopinka NM, 2015, CONSERV PHYSIOL, V3, DOI 10.1093/conphys/cov031; Spicer JI, 1999, PHYSL DIVERSITY ECOL; Wang T, 2006, ANNU REV PHYSIOL, V68, P223, DOI 10.1146/annurev.physiol.68.040104.105739; Willmer P., 2009, ENV PHYSL ANIMALS; Wingfield JC, 2013, FUNCT ECOL, V27, P37, DOI 10.1111/1365-2435.12039; Zydlewski GB, 2006, FISHERIES, V31, P492, DOI 10.1577/1548-8446(2006)31[492:RMOFIS]2.0.CO;2 75 9 9 0 21 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. DEC 1 2016 219 23 3712 3718 10.1242/jeb.140665 7 Biology Life Sciences & Biomedicine - Other Topics ED4IV WOS:000388812200011 27618858 Green Published, Bronze 2019-02-21 J Peron, G; Gaillard, JM; Barbraud, C; Bonenfant, C; Charmantier, A; Choquet, R; Coulson, T; Grosbois, V; Loison, A; Marzolin, G; Owen-Smith, N; Pardo, D; Plard, F; Pradel, R; Toigo, C; Gimenez, O Peron, Guillaume; Gaillard, Jean-Michel; Barbraud, Christophe; Bonenfant, Christophe; Charmantier, Anne; Choquet, Remi; Coulson, Tim; Grosbois, Vladimir; Loison, Anne; Marzolin, Gilbert; Owen-Smith, Norman; Pardo, Deborah; Plard, Floriane; Pradel, Roger; Toigo, Carole; Gimenez, Olivier Evidence of reduced individual heterogeneity in adult survival of long-lived species EVOLUTION English Article Capture-recapture; comparative analyses; individual differences; life-history evolution; mixture models; random-effect models; vertebrates CAPTURE-RECAPTURE MODELS; LIFE-HISTORY TRAITS; JOLLY-SEBER MODEL; GENERATION TIME; MARKED ANIMALS; POPULATIONS; SENESCENCE; AGE; MORTALITY; EVOLUTION The canalization hypothesis postulates that the rate at which trait variation generates variation in the average individual fitness in a population determines how buffered traits are against environmental and genetic factors. The ranking of a species on the slow-fast continuum - the covariation among life-history traits describing species-specific life cycles along a gradient going from a long life, slow maturity, and low annual reproductive output, to a short life, fast maturity, and high annual reproductive output - strongly correlates with the relative fitness impact of a given amount of variation in adult survival. Under the canalization hypothesis, long-lived species are thus expected to display less individual heterogeneity in survival at the onset of adulthood, when reproductive values peak, than short-lived species. We tested this life-history prediction by analysing long-term time series of individual-based data in nine species of birds and mammals using capture-recapture models. We found that individual heterogeneity in survival was higher in species with short-generation time (< 3 years) than in species with long generation time (> 4 years). Our findings provide the first piece of empirical evidence for the canalization hypothesis at the individual level from the wild. [Peron, Guillaume] Natl Zool Pk, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA; [Peron, Guillaume; Gaillard, Jean-Michel; Bonenfant, Christophe; Plard, Floriane] UCB Lyon 1, UMR 5558, CNRS, LBBE Biometrie & Biol Evolut, F-69622 Villeurbanne, France; [Barbraud, Christophe] Univ La Rochelle, CNRS, Ctr Etud Biol Chize, UMR 7372, F-79360 Villiers En Bois, France; [Charmantier, Anne; Choquet, Remi; Marzolin, Gilbert; Pardo, Deborah; Pradel, Roger; Gimenez, Olivier] Univ Paul Valery Montpellier, EPHE, Univ Montpellier, CEFE,UMR 5175,CNRS, 1919 Route Mende, F-34293 Montpellier 5, France; [Coulson, Tim] Univ Oxford, Dept Zool, Oxford OX1 3PS, England; [Grosbois, Vladimir] UR AGIRs Anim & Gest Integree Risques, TA C 22-E Campus Int Baillarguet, F-34398 Montpellier 5, France; [Loison, Anne] Univ Savoie Mt Blanc, Lab Ecol Alpine, F-73376 Le Bourget Du Lac, France; [Loison, Anne] CNRS, Lab Ecol Alpine, F-38000 Grenoble, France; [Owen-Smith, Norman] Univ Witwatersrand, Sch Anim Plant & Environm Sci, Ctr African Ecol, ZA-2050 Johannesburg, South Africa; [Plard, Floriane] Swiss Ornithol Inst, CH-6204 Sempach, Switzerland; [Toigo, Carole] ONCFS Unite Faune Montagne, 5 Allee Bethleem, F-38610 Zi De Mayencin, Gieres, France Peron, G (reprint author), Natl Zool Pk, Smithsonian Conservat Biol Inst, Front Royal, VA 22630 USA.; Peron, G (reprint author), UCB Lyon 1, UMR 5558, CNRS, LBBE Biometrie & Biol Evolut, F-69622 Villeurbanne, France. peron_guillaume@yahoo.fr Choquet, Remi/F-6462-2011; Gimenez, Olivier/G-4281-2010 PERON, Guillaume/0000-0002-6311-4377; Owen-Smith, Norman/0000-0001-8429-1201; Bonenfant, Christophe/0000-0002-9924-419X IPEV program [109]; Office National de la Chasse et de la Faune Sauvage; BioAdapt grant [ANR-12-ADAP-0006-02-PEPS]; ANR grant [08-JCJC-0028-01] We thank everyone involved in fieldwork and data management for the long-term monitoring of marked individuals. Critical support for the longterm studies was provided by IPEV program no109, Zone Atelier Antarctique, and TAAF; Office National de la Chasse et de la Faune Sauvage; BioAdapt grant ANR-12-ADAP-0006-02-PEPS to A.C.; ANR grant 08-JCJC-0028-01 to O.G. This is a contribution of the GDR 3645 "Statistical Ecology." We are most grateful to Stephen Dobson for insightful comments on an earlier draft of this article. Barbraud C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060353; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Brown J.H., 2000, SCALING BIOL; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2014, DEMOGR RES, V31, P553, DOI 10.4054/DemRes.2014.31.19; Charlesworth B, 2000, GENETICS, V156, P927; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Gaillard J.M., 2016, ENCY EVOLUT IN PRESS, DOI [10.1016/B978-0-12-800049-6.00085-8, DOI 10.1016/B978-0-12-800049-6.00085-8]; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Gimenez O, 2010, ECOLOGY, V91, P951, DOI 10.1890/09-1903.1; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Knape J, 2011, ECOLOGY, V92, P813, DOI 10.1890/10-0183.1; Koons DN, 2009, OIKOS, V118, P972, DOI 10.1111/j.1600-0706.2009.16399.x; Lebreton JD, 2005, ECOL MODEL, V188, P22, DOI 10.1016/j.ecolmodel.2005.05.003; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; Nevoux M, 2010, ECOLOGY, V91, P2416, DOI 10.1890/09-0143.1; Peron G, 2010, OIKOS, V119, P524, DOI 10.1111/j.1600-1706.2009.17882.x; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Pledger S, 2003, BIOMETRICS, V59, P786, DOI 10.1111/j.0006-341X.2003.00092.x; Pradel R, 2009, ENVIRON ECOL STAT SE, V3, P781, DOI 10.1007/978-0-387-78151-8_36; Royle JA, 2008, BIOMETRICS, V64, P364, DOI 10.1111/j.1541-0420.2007.00891.x; Saether BE, 2013, AM NAT, V182, P743, DOI 10.1086/673497; Service PM, 2000, AM NAT, V156, P1, DOI 10.1086/303371; STEARNS SC, 1994, EVOLUTION, V48, P1438, DOI 10.1111/j.1558-5646.1994.tb02186.x; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; WADDINGTON CH, 1953, EVOLUTION, V7, P118, DOI 10.2307/2405747 33 14 14 0 32 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution DEC 2016 70 12 2909 2914 10.1111/evo.13098 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity ED1SD WOS:000388624300020 27813056 2019-02-21 J Pamminger, T; Buttstedt, A; Norman, V; Schierhorn, A; Botias, C; Jones, JC; Bosley, K; Hughes, WOH Pamminger, T.; Buttstedt, A.; Norman, V.; Schierhorn, A.; Botias, C.; Jones, J. C.; Bosley, K.; Hughes, W. O. H. The effects of juvenile hormone on Lasius niger reproduction JOURNAL OF INSECT PHYSIOLOGY English Article Social insects; Ants; Endocrinology; Regulatory architecture; Gonadotropin HONEY-BEE; QUEENS; ANT; VITELLOGENIN; GONADOTROPIN; HYMENOPTERA; LONGEVITY; PROTEINS; WORKERS; COSTS Reproduction has been shown to be costly for survival in a wide diversity of taxa. The resulting trade-off, termed the reproduction-survival trade-off, is thought to be one of the most fundamental forces of life history evolution. In insects the pleiotropic effect of juvenile hormone OH), antagonistically regulating reproduction and pathogen resistance, is suggested to underlie this phenomenon. In contrast to the majority of insects, reproductive individuals in many eusocial insects defy this trade-off and live both long and prosper. By remodelling the gonadotropic effects of JH in reproductive regulation, the queens of the long-lived black garden ant Lasius niger (living up to 27 years), have circumvented the reproduction-survival trade off enabling them to maximize both reproduction and pathogen resistance simultaneously. In this study we measure fertility, vitellogenin gene expression and protein levels after experimental manipulation of hormone levels. We use these measurements to investigate the mechanistic basis of endocrinological role remodelling in reproduction and determine how JH suppresses reproduction in this species, rather then stimulating it, like in the majority of insects. We find that JH likely inhibits three key aspects of reproduction both during vitellogenesis and oogenesis, including two previously unknown mechanisms. In addition, we document that juvenile hormone, as in the majority of insects, has retained some stimulatory function in regulating vitellogenin expression. We discuss the evolutionary consequences of this complex regulatory architecture of reproduction in L. niger, which might enable the evolution of similar reproductive phenotypes by alternate regulatory pathways, and the surprising flexibility regulatory role of juvenile hormone in this process. (C) 2016 Elsevier Ltd. All rights reserved. [Pamminger, T.; Norman, V.; Botias, C.; Jones, J. C.; Bosley, K.; Hughes, W. O. H.] Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England; [Buttstedt, A.] Martin Luther Univ Halle Wittenberg, Inst Biol, Mol Okol, D-06099 Halle, Germany; [Schierhorn, A.] Martin Luther Univ Halle Wittenberg, Inst Biochem, D-06099 Halle, Germany Pamminger, T (reprint author), Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England. t.pamminger@sussex.ac.uk Botias, Cristina/L-4918-2017; Buttstedt, Anja/B-5281-2012 Botias, Cristina/0000-0002-3891-9931; Buttstedt, Anja/0000-0003-2299-7000; Pamminger, Tobias/0000-0003-1257-3829; Jones, Julia C/0000-0002-3557-1941 FP7 Marie Curie Fellowship [PIEF-GA-2013-626585]; Biotechnology and Biological Sciences Research Council [1284276] TP was funded by FP7 Marie Curie Fellowship PIEF-GA-2013-626585. BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Bloch G, 2009, HORMONES, BRAIN AND BEHAVIOR, VOLS 1-5, 2ND EDITION, P1027; Brent CS, 2016, J COMP PHYSIOL B, V186, P169, DOI 10.1007/s00360-015-0953-1; Brent CS, 2003, J INSECT PHYSIOL, V49, P967, DOI 10.1016/S0022-1910(03)00166-5; CHIU AY, 1979, P NATL ACAD SCI USA, V76, P6656, DOI 10.1073/pnas.76.12.6656; Corona M, 2007, P NATL ACAD SCI USA, V104, P7128, DOI 10.1073/pnas.0701909104; Dolezal AG, 2013, J INSECT PHYSIOL, V59, P519, DOI 10.1016/j.jinsphys.2013.02.008; EDWARDS JP, 1975, B ENTOMOL RES, V65, P75, DOI 10.1017/S0007485300005782; Engel KC, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms11035; Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; Flatt T, 2008, J EXP BIOL, V211, P2712, DOI 10.1242/jeb.014878; Graff J, 2007, MOL ECOL, V16, P675, DOI 10.1111/j.1365-294X.2007.03162.x; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hartfelder K, 2000, BRAZ J MED BIOL RES, V33, P157, DOI 10.1590/S0100-879X2000000200003; Hartfelder K, 2002, INSECT BIOCHEM MOLEC, V32, P211, DOI 10.1016/S0965-1748(01)00100-X; Heinze J, 2013, BEHAV ECOL SOCIOBIOL, V67, P1555, DOI 10.1007/s00265-013-1567-9; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; Kelstrup HC, 2015, BEHAV ECOL SOCIOBIOL, V69, P2043, DOI 10.1007/s00265-015-2015-9; Kramer BH, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137969; LAEMMLI UK, 1970, NATURE, V227, P680, DOI 10.1038/227680a0; LAUFER H, 1993, AM ZOOL, V33, P365; Lensnoff M., 2012, AOD ANAL OVERDISPERS; Libbrecht R, 2013, P NATL ACAD SCI USA, V110, P11050, DOI 10.1073/pnas.1221781110; Lindemans M, 2009, P NATL ACAD SCI USA, V106, P1642, DOI 10.1073/pnas.0809881106; Morales M., 2011, SCIPLOT SCI GRAPHING; Nijhout HF., 1998, INSECT HORMONES; OLIVE PJW, 1980, INT J INVER REP DEV, V2, P205; Pamminger T, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2409; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; R Core Team, 2014, R LANG ENV STAT COMP; RAIKHEL AS, 1992, ANNU REV ENTOMOL, V37, P217, DOI 10.1146/annurev.en.37.010192.001245; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Robinson GE, 1997, ARCH INSECT BIOCHEM, V35, P559, DOI 10.1002/(SICI)1520-6327(1997)35:4<559::AID-ARCH13>3.0.CO;2-9; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; Ronai I, 2016, ADV STUD BEHAV, V48, P251, DOI 10.1016/bs.asb.2016.03.002; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; SCHNEIRLA T. C., 1957, INSECTES SOCIAUX, V4, P259, DOI 10.1007/BF02222158; Schrempf A, 2005, CURR BIOL, V15, P267, DOI 10.1016/j.cub.2005.01.036; SOMMER K, 1995, ANIM BEHAV, V50, P287, DOI 10.1006/anbe.1995.0244; Vandesompele J, 2002, GENOME BIOL, V3, DOI 10.1186/gb-2002-3-7-research0034; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson E. O., 1971, INSECT SOC 42 5 5 0 34 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. DEC 2016 95 1 7 10.1016/j.jinsphys.2016.09.004 7 Entomology; Physiology; Zoology Entomology; Physiology; Zoology ED8GM WOS:000389110000001 27614175 2019-02-21 J Hordyk, AR; Ono, K; Prince, JD; Walters, CJ Hordyk, Adrian R.; Ono, Kotaro; Prince, Jeremy D.; Walters, Carl J. A simple length-structured model based on life history ratios and incorporating size-dependent selectivity: application to spawning potential ratios for data-poor stocks CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article SMALL-SCALE FISHERIES; BERTALANFFY GROWTH-PARAMETERS; NATURAL MORTALITY; INDIVIDUAL VARIABILITY; FREQUENCY DATA; RED GROUPER; FISH; MANAGEMENT; AGE; STRATEGIES Selectivity in fish is often size-dependent, which results in differential fishing mortality rates across fish of the same age, an effect known as "Lee's Phenomenon". We extend previous work on using length composition to estimate the spawning potential ratio (SPR) for data-limited stocks by developing a computationally efficient length-structured per-recruit model that splits the population into a number of subcohorts, or growth-type-groups, to account for size-dependent fishing mortality rates. Two simple recursive equations, using the life history ratio of the natural mortality rate to the von Bertalanffy growth parameter (M/K), were developed to generate length composition data, reducing the complexity of the previous approach. Using simulated and empirical data, we demonstrate that ignoring Lee's Phenomenon results in overestimates of fishing mortality and negatively biased estimates of SPR. We also explored the behaviour of the model under various scenarios, including alternative life history strategies and the presence of size-dependent natural mortality. The model developed in this paper may be a useful tool to estimate the SPR for data-limited stock where it is not possible to apply more conventional methods. [Hordyk, Adrian R.; Prince, Jeremy D.] Murdoch Univ, Ctr Fish & Fisheries Res, 90 South St, Murdoch, WA 6150, Australia; [Ono, Kotaro] Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA; [Prince, Jeremy D.] Biospherics Pty Ltd, POB 168, South Fremantle, WA 6162, Australia; [Walters, Carl J.] Univ British Columbia, Inst Oceans & Fisheries, Vancouver, BC V6T 1Z4, Canada Hordyk, AR (reprint author), Murdoch Univ, Ctr Fish & Fisheries Res, 90 South St, Murdoch, WA 6150, Australia. a.hordyk@murdoch.edu.au Hordyk, Adrian/P-2539-2017 Hordyk, Adrian/0000-0001-5620-3446 David and Lucille Packard Foundation; Murdoch University; Joint Institute for the Study of the Atmosphere and Ocean under NOAA [NA15OAR4320063, 2653] We are grateful to the David and Lucille Packard Foundation for funding and support for this study. A.H. was also supported by Murdoch University. This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2653. We thank J. Cope, T. Gedamke, H. Geremont, N. Gutierrez, A. MacCall, and S. Valencia for valuable comments and suggestions in a workshop relating to this research. N. Loneragan also provided useful comments that improved the quality of the paper. We are grateful to the editor and three anonymous reviewers, whose comments and suggestions greatly improved the paper. Andersen KH, 2015, FISH FISH, V16, P1, DOI 10.1111/faf.12042; Andrew NL, 2007, FISH FISH, V8, P227, DOI 10.1111/j.1467-2679.2007.00252.x; Bene C, 2003, WORLD DEV, V31, P949, DOI 10.1016/S0305-750X(03)00045-7; Bentley N, 2015, ICES J MAR SCI, V72, P186, DOI 10.1093/icesjms/fsu023; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; Botsford L. W., 1979, P 13 EUR MAR BIOL S, P73; BOTSFORD LW, 1981, AM NAT, V117, P38, DOI 10.1086/283685; BOTSFORD LW, 1981, J MATH BIOL, V12, P265, DOI 10.1007/BF00276917; Bull B., 2012, 135 NIWA CASAL; Charnov EL, 2014, EVOL ECOL RES, V16, P435; Charnov EL, 2013, FISH FISH, V14, P213, DOI 10.1111/j.1467-2979.2012.00467.x; Costello C, 2012, SCIENCE, V338, P517, DOI 10.1126/science.1223389; Dowling NA, 2015, FISH RES, V171, P141, DOI 10.1016/j.fishres.2014.11.005; ERZINI K, 1990, FISH RES, V9, P355, DOI 10.1016/0165-7836(90)90053-X; Eveson JP, 2007, CAN J FISH AQUAT SCI, V64, P602, DOI 10.1139/F07-036; Francis RICC, 2016, FISH RES, V180, P77, DOI 10.1016/j.fishres.2015.02.018; Gerritsen H. D., 2006, FISHERY B, V106, P116; GOODYEAR CP, 1995, T AM FISH SOC, V124, P746, DOI 10.1577/1548-8659(1995)124<0746:MSAAAE>2.3.CO;2; Hampton J, 2000, CAN J FISH AQUAT SCI, V57, P1002, DOI 10.1139/cjfas-57-5-1002; Heery EC, 2009, T AM FISH SOC, V138, P218, DOI 10.1577/T07-226.1; Hilborn R, 2007, AMBIO, V36, P296, DOI 10.1579/0044-7447(2007)36[296:MTSBLF]2.0.CO;2; Hilborn R, 2014, ICES J MAR SCI, V71, P1040, DOI 10.1093/icesjms/fsu034; Honey K., 2010, MAN DAT POOR FISH WO, P159; Hordyk A, 2015, ICES J MAR SCI, V72, P217, DOI 10.1093/icesjms/fsu004; Hordyk A, 2015, ICES J MAR SCI, V72, P204, DOI 10.1093/icesjms/fst235; Hordyk AR, 2015, FISH RES, V171, P20, DOI 10.1016/j.fishres.2014.12.018; Kelly CJ, 2006, FISH RES, V79, P233, DOI 10.1016/j.fishres.2006.03.007; Kenchington TJ, 2014, FISH FISH, V15, P533, DOI 10.1111/faf.12027; Kent G, 1997, FOOD POLICY, V22, P393, DOI 10.1016/S0306-9192(97)00030-4; Lee R, 1912, J CONS INT EXPLOR S, V1, P3, DOI DOI 10.1093/ICESJMS/S1.63.3; Lorenzen K, 1996, J FISH BIOL, V49, P627, DOI 10.1006/jfbi.1996.0192; Lorenzen K, 2000, CAN J FISH AQUAT SCI, V57, P2374, DOI 10.1139/cjfas-57-12-2374; Magnusson A, 2013, FISH FISH, V14, P325, DOI 10.1111/j.1467-2979.2012.00473.x; Mangel M, 2007, EVOLUTION, V61, P1208, DOI 10.1111/j.1558-5646.2007.00094.x; Maunder MN, 2013, FISH RES, V142, P61, DOI 10.1016/j.fishres.2012.07.025; McGarvey R, 2007, CAN J FISH AQUAT SCI, V64, P1157, DOI 10.1139/F07-080; Methot RD, 2013, FISH RES, V142, P86, DOI 10.1016/j.fishres.2012.10.012; PENNINGS SC, 1990, MAR ECOL PROG SER, V62, P95, DOI 10.3354/meps062095; Pilling GM, 2002, CAN J FISH AQUAT SCI, V59, P424, DOI 10.1139/F02-022; Pitcher TJ, 2013, MAR POLLUT BULL, V74, P506, DOI 10.1016/j.marpolbul.2013.05.045; Prince J, 2015, FISH RES, V171, P42, DOI 10.1016/j.fishres.2015.06.008; Prince J, 2015, ICES J MAR SCI, V72, P194, DOI 10.1093/icesjms/fsu011; Punt AE, 1997, REV FISH BIOL FISHER, V7, P35, DOI 10.1023/A:1018419207494; Punt AE, 2002, MAR FRESHWATER RES, V53, P615, DOI 10.1071/MF01007; Punt AE, 2013, ICES J MAR SCI, V70, P16, DOI 10.1093/icesjms/fss185; Quinn T. J., 1999, QUANTITATIVE FISH DY; R Core Team, 2015, R LANG ENV STAT COMP; SAINSBURY KJ, 1980, CAN J FISH AQUAT SCI, V37, P241, DOI 10.1139/f80-031; SCHEFFER M, 1995, ECOL MODEL, V80, P161, DOI 10.1016/0304-3800(94)00055-M; Shelton AO, 2013, AM NAT, V181, P799, DOI 10.1086/670198; SULLIVAN PJ, 1990, CAN J FISH AQUAT SCI, V47, P184, DOI 10.1139/f90-021; Taylor IG, 2013, FISH RES, V142, P75, DOI 10.1016/j.fishres.2012.08.021; VAUGHAN DS, 1994, T AM FISH SOC, V123, P1, DOI 10.1577/1548-8659(1994)123<0001:EOVBGP>2.3.CO;2; Walmsley S, 2006, OCEAN COAST MANAGE, V49, P812, DOI 10.1016/j.ocecoaman.2006.08.006; Walters C. J., 2004, FISHERIES ECOLOGY MA; Walters C. J, 1992, QUANTITATIVE FISHERI; WANG YG, 1995, CAN J FISH AQUAT SCI, V52, P252, DOI 10.1139/f95-025; Wang YG, 1998, CAN J FISH AQUAT SCI, V55, P2393, DOI 10.1139/cjfas-55-11-2393; WANG YG, 1995, CAN J FISH AQUAT SCI, V52, P1368, DOI 10.1139/f95-132; Worm B, 2012, TRENDS ECOL EVOL, V27, P594, DOI 10.1016/j.tree.2012.07.005 60 5 6 1 15 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. DEC 2016 73 12 1787 1799 10.1139/cjfas-2015-0422 13 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology EC4QO WOS:000388118700010 Green Published 2019-02-21 J Samsing, F; Oppedal, F; Dalvin, S; Johnsen, I; Vagseth, T; Dempster, T Samsing, Francisca; Oppedal, Frode; Dalvin, Sussie; Johnsen, Ingrid; Vagseth, Tone; Dempster, Tim Salmon lice (Lepeophtheirus salmonis) development times, body size, and reproductive outputs follow universal models of temperature dependence CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article LIFE-HISTORY STRATEGIES; ATLANTIC SALMON; EGG SIZE; SEA LICE; MARINE-INVERTEBRATES; PARASITIC COPEPODS; CALIGUS-ELONGATUS; VAN NOORDWIJK; JONG MODEL; TRADE-OFFS Temperatures regulate metabolism of marine ectotherms and thereby influence development, reproduction, and, as a consequence, dispersal. Despite the importance of water temperatures in the epidemiology of marine diseases, for the parasitic copepod Lepeophtheirus salmonis, the effect of high and low temperatures has not been methodically investigated. Here, we examined the effects of a wide temperature range (3-20 degrees C) on L. salmonis larval development, adult body size, reproductive outputs, and infestation success. Further, we tested if dispersal of salmon lice differed with two temperature-dependent development times to the infective stage (30 and 60 degree-days) using an individual-based dispersal model. Development times followed universal models of temperature dependence described for other marine ectotherms. Water temperatures had a negative relationship with development times, adult body size, and reproductive outputs, except at 3 degrees C, where larvae failed to reach the infective stage and all parameters were decreased, indicating low temperatures are more detrimental than high temperatures. The predictable effect of temperatures on lice development and reproduction will have important applications, such as predicting dispersal and population connectivity, to assist in controlling lice epidemics. [Samsing, Francisca; Dempster, Tim] Univ Melbourne, Sch BioSci, SALTT, Melbourne, Vic 3010, Australia; [Oppedal, Frode; Dalvin, Sussie; Johnsen, Ingrid; Vagseth, Tone; Dempster, Tim] Inst Marine Res, POB 1870, N-5817 Bergen, Norway Samsing, F (reprint author), Univ Melbourne, Sch BioSci, SALTT, Melbourne, Vic 3010, Australia. samsing@student.unimelb.edu.au Samsing, Francisca/0000-0002-6343-2295; Dempster, Tim/0000-0001-8041-426X Norwegian Seafood Research Fund [901073]; Research Council of Norway [14567]; Australian Research Council Future Fellowship This work was conducted with the assistance of Karen Anita Kvestad, Lise Dyrhovden, and Marita Larsen from the Institute of Marine Research. The project was funded by a Norwegian Seafood Research Fund grant to SD (Temperaturens innflytelse pa lakseluslarver: overlevelse og smittbarhet; grant No. 901073), a Research Council of Norway grant to FO, SD, and TD (Regional lice assessment-towards a model based management system; grant No. 14567), and an Australian Research Council Future Fellowship to TD. All experiments were conducted in accordance with the laws and regulations of the Norwegian Regulation on Animal Experimentation 1996 under the permit No. 7754. Albretsen J., 2011, FISK HAV, V2, P1; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Asplin L, 2014, MAR BIOL RES, V10, P216, DOI 10.1080/17451000.2013.810755; Asplin L, 2011, SALMON LICE: AN INTEGRATED APPROACH TO UNDERSTANDING PARASITE ABUNDANCE AND DISTRIBUTION, P31; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Behradek J., 1930, BIOL REV, V5, P30, DOI [10.1111/j.1469-185X.1930.tb00892.x, DOI 10.1111/J.1469-185X.1930.TB00892.X]; Besnier F, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-937; Boxaspen K, 2000, CONTRIB ZOOL, V69, P51; BRON JE, 1991, J ZOOL, V224, P201, DOI 10.1111/j.1469-7998.1991.tb04799.x; Brown CA, 2003, EVOLUTION, V57, P2184, DOI 10.1111/j.0014-3820.2003.tb00397.x; Cavaleiro FI, 2014, INT J PARASITOL, V44, P173, DOI 10.1016/j.ijpara.2013.10.009; Christians JK, 2000, FUNCT ECOL, V14, P497, DOI 10.1046/j.1365-2435.2000.00444.x; Costello MJ, 2006, TRENDS PARASITOL, V22, P475, DOI 10.1016/j.pt.2006.08.006; Costello MJ, 2009, P R SOC B, V276, P3385, DOI 10.1098/rspb.2009.0771; Costello MJ, 2009, J FISH DIS, V32, P115, DOI 10.1111/j.1365-2761.2008.01011.x; Crossan J, 2007, EVOLUTION, V61, P675, DOI 10.1111/j.1558-5646.2007.00057.x; Espedal PG, 2013, AQUACULTURE, V416, P111, DOI 10.1016/j.aquaculture.2013.09.001; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Glover KA, 2011, MAR ECOL PROG SER, V427, P161, DOI 10.3354/meps09045; Graham EM, 2008, CORAL REEFS, V27, P529, DOI 10.1007/s00338-008-0361-z; Gravil H. R., 1996, STUDIES BIOL ECOLOGY; Groner ML, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088465; Hamre LA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073539; Hamre LA, 2009, PARASITOL INT, V58, P451, DOI 10.1016/j.parint.2009.08.009; Heuch PA, 2009, J FISH DIS, V32, P89, DOI 10.1111/j.1365-2761.2008.01002.x; Heuch PA, 2005, AQUACULTURE, V246, P79, DOI 10.1016/aquaculture.2004.12.027; Heuch PA, 2002, J MAR BIOL ASSOC UK, V82, P887, DOI 10.1017/S0025315402006306; Heuch PA, 2000, AQUAC RES, V31, P805, DOI 10.1046/j.1365-2109.2000.00512.x; JOHANNESSEN A, 1978, SARSIA, V63, P169; Johnsen IA, 2014, AQUACULT ENV INTERAC, V5, DOI 10.3354/aei00098; JOHNSON SC, 1991, CAN J ZOOL, V69, P929, DOI 10.1139/z91-138; Kinnison MT, 2001, EVOLUTION, V55, P1656; Krkosek M, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2359; Krkosek M, 2011, P NATL ACAD SCI USA, V108, P14700, DOI 10.1073/pnas.1101845108; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; McCallum HI, 2004, TRENDS ECOL EVOL, V19, P585, DOI 10.1016/j.tree.2004.08.009; MCKINNEY ML, 1984, PALEOBIOLOGY, V10, P407; Mennerat A, 2010, EVOL BIOL, V37, P59, DOI 10.1007/s11692-010-9089-0; Murray AG, 2009, PREV VET MED, V88, P167, DOI 10.1016/j.prevetmed.2008.09.006; Nordhagen JR, 2000, CONTRIB ZOOL, V69, P99; Nordi GA, 2015, AQUACULT ENV INTERAC, V7, P15, DOI 10.3354/aei00134; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; O'Connor MI, 2007, P NATL ACAD SCI USA, V104, P1266, DOI 10.1073/pnas.0603422104; PEARSE JS, 1991, AM ZOOL, V31, P65; Pike A W, 1999, Adv Parasitol, V44, P233, DOI 10.1016/S0065-308X(08)60233-X; Pike A.W., 1993, P99; POULIN R, 1995, EVOLUTION, V49, P325, DOI 10.1111/j.1558-5646.1995.tb02245.x; POULIN R, 1989, BEHAV ECOL SOCIOBIOL, V24, P251, DOI 10.1007/BF00295205; Quinn G. P., 2002, EXPT DESIGN DATA ANA; R Development Core Team, 2009, R LANG ENV STAT COMP; Ritchie G., 1993, P153; Saksida S, 2007, J FISH DIS, V30, P357, DOI 10.1111/j.1365-2761.2007.00814.x; Salama NKG, 2013, AQUACULT ENV INTERAC, V4, P91, DOI 10.3354/aei00077; Samsing F, 2014, AQUACULT ENV INTERAC, V6, P81, DOI 10.3354/aei00118; Stien A, 2005, MAR ECOL PROG SER, V290, P263, DOI 10.3354/meps290263; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Timi JT, 2005, PARASITOL RES, V95, P1, DOI 10.1007/s00436-004-1242-1; Treml EA, 2008, LANDSCAPE ECOL, V23, P19, DOI 10.1007/s10980-007-9138-y; Tucker CS, 2002, FISH PATHOL, V37, P107, DOI 10.3147/jsfp.37.107; Tucker CS, 2000, FISH PATHOL, V35, P137, DOI 10.3147/jsfp.35.137; Vollset KW, 2016, FISH FISH, V17, P714, DOI 10.1111/faf.12141; Vollset KW, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2013.0896; WOOTTEN R, 1982, P ROY SOC EDINB B, V81, P185, DOI 10.1017/S0269727000003389 63 23 23 4 43 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. DEC 2016 73 12 1841 1851 10.1139/cjfas-2016-0050 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology EC4QO WOS:000388118700014 2019-02-21 J Nolin, DA; Ziker, JP Nolin, David A.; Ziker, John P. Reproductive Responses to Economic Uncertainty Fertility Decline in Post-Soviet Ust'-Avam, Siberia HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Demographic transition; Hunter-gatherers; Life history theory; Birth spacing; Birth stopping; Birth postponement UNITED-STATES; DEMOGRAPHIC-TRANSITION; DELAYED REPRODUCTION; NORTHERN SIBERIA; NATURAL DISASTER; DEVELOPED WORLD; ENVIRONMENTS; STRATEGIES; RUSSIA; BIRTH In the face of economic and political changes following the end of the Soviet Union, total fertility rates fell significantly across the post-Soviet world. In this study we examine the dramatic fertility transition in one community in which the total fertility rate fell from approximately five children per woman before 1993 to just over one child per woman a decade later. We apply hypotheses derived from evolutionary ecology and demography to the question of fertility transition in the post-Soviet period, focusing on an indigenous community (Ust'-Avam) in the Taimyr Region, northern Russia. We employ a mixed parametric accelerated failure-time model that allows comparison of age at first birth, interbirth interval, and reproductive postponement or cessation prior to and following 1993. We find that short-term reproductive delay alone does not explain the dramatic drop in fertility in Ust'-Avam. Age at first birth remains constant. Interbirth intervals increase moderately. The estimated fraction of women who have ceased or indefinitely postponed reproducing doubles (for parities 2 through 4) or triples (for nulliparous women). We caution against assuming that environmental harshness necessarily leads to earlier and more rapid reproduction. An evolutionary theory of fertility responses to acute environmental shocks remains relatively undeveloped. In such contexts it is possible that selection favors a conservative reproductive strategy while more information is learned about the new environment. When investigating fertility responses to environmental stressors we suggest researchers examine postponement and stopping behavior in addition to changes in age at first birth and interbirth interval. [Nolin, David A.] Univ Missouri, Dept Anthropol, 112 Swallow Hall, Columbia, MO 65211 USA; [Nolin, David A.] Univ Missouri, Life Sci & Soc Program, 112 Swallow Hall, Columbia, MO 65211 USA; [Ziker, John P.] Boise State Univ, Dept Anthropol, 1910 Univ Dr,MS 1950, Boise, ID 83725 USA Nolin, DA (reprint author), Univ Missouri, Dept Anthropol, 112 Swallow Hall, Columbia, MO 65211 USA.; Nolin, DA (reprint author), Univ Missouri, Life Sci & Soc Program, 112 Swallow Hall, Columbia, MO 65211 USA. nolind@missouri.edu American Council of Teachers of Russian; International Research and Exchanges Board; National Science Foundation [OPP 9528936, OPP 0631970]; L.B.S. Leakey Foundation; Max Planck Institute for Social Anthropology This research would not have been possible without the hospitality, goodwill, and cooperation of the people of the study community in the Taimyr Region. Thanks to Mary Shenk for helpful comments on earlier versions of this analysis, to Darryl Holman for assistance with his mle event-history analysis programming language, and to three anonymous reviewers for their helpful comments. Funding for this research was provided by the American Council of Teachers of Russian (1993, 1996, and 2001), the International Research and Exchanges Board (1996), the National Science Foundation (1997) (OPP 9528936), the L.B.S. Leakey Foundation (2001), the Max Planck Institute for Social Anthropology (2003), and the National Science Foundation (2006) (OPP 0631970). This study was performed in accordance with the ethical standards of the institutional review boards at U Alaska Fairbanks and Boise State University, and with the 1964 Helsinki declaration and its amendments or comparable ethical standards. All conclusions are our own. Adsera A, 2011, POP STUD-J DEMOG, V65, P37, DOI 10.1080/00324728.2010.530291; Agadjanian V, 2002, DEMOGRAPHY, V39, P215, DOI 10.1353/dem.2002.0013; Avdeyeva OA, 2011, SOC POLIT, V18, P361, DOI 10.1093/sp/jxr013; Baldini R., 2015, BIORXIV, DOI [10.1101/014647, DOI 10.1101/014647]; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Blanc AK, 2004, STUD FAMILY PLANN, V35, P236, DOI 10.1111/j.0039-3665.2004.00028.x; Bogoyavlenskiy D, 2010, SIBIRICA, V9, P91, DOI 10.3167/sib.2010.090305; Bumpass L. L., 1978, SOCIAL DEMOGRAPHY, P15; BUTZ WP, 1979, AM ECON REV, V69, P318; Caldwell JC, 2004, J FAM HIST, V29, P382, DOI 10.1177/0363199004267744; Charnov Eric L., 1993, P1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1988, SOCIOBIOLOGICAL PERS, P78, DOI DOI 10.1007/978-1-4612-3760-0_3; Cohan CL, 2002, J FAM PSYCHOL, V16, P14, DOI 10.1037//0893-3200.16.1.14; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Dorzhu Z.Y., 2016, SIBIRICA IN PRESS, V15; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLISON PT, 2001, FERTILE GROUND NATUR; Evans RW, 2010, J POPUL ECON, V23, P1, DOI 10.1007/s00148-008-0219-2; Finlay J., 2009, WPS4883 WORLD BANK; Forsyth J., 1992, HIST PEOPLES SIBERIA; Frejka T, 2013, POPUL DEV REV, V39, P635, DOI 10.1111/j.1728-4457.2013.00631.x; Goldstein JR, 2009, POPUL DEV REV, V35, P663, DOI 10.1111/j.1728-4457.2009.00304.x; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Hauer M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067226; Heleniak T., 2014, 82806 NAT COUNC EUR; Heleniak T, 2010, MARRIAGE FAM REV, V46, P79, DOI 10.1080/01494921003648613; Heuveline P, 2007, DEMOGRAPHY, V44, P405, DOI 10.1353/dem.2007.0012; Holman D., 2003, MLE PROGRAMMING LANG; Holman D., 2003, 0304 U WASH CTR STUD; Jacobsen L.A., 2011, POPULATION B UPDATE; Knight F. H., 1921, RISK UNCERTAINTY PRO; Kohler HP, 2002, EUR J POPUL, V18, P233, DOI 10.1023/A:1019701812709; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Kreyenfeld M, 2005, 2005034 MPIDR WP; Leslie P, 2002, AM J HUM BIOL, V14, P168, DOI 10.1002/ajhb.10044; Lightbourne Robert E., 1985, REPROD CHANGE DEV CO, P165; Lindstrom DP, 1999, DEMOGRAPHY, V36, P247, DOI 10.2307/2648112; Livingston Gretchen, 2011, EC FEWER BIRTHS; MORGAN SP, 1982, DEMOGRAPHY, V19, P315, DOI 10.2307/2060974; MORGAN SP, 1981, DEMOGRAPHY, V18, P267, DOI 10.2307/2060997; Moultrie TA, 2012, POP STUD-J DEMOG, V66, P241, DOI 10.1080/00324728.2012.701660; Myrskyla M, 2013, POPUL DEV REV, V39, P31, DOI 10.1111/j.1728-4457.2013.00572.x; Nakamura K, 2008, J ASSIST REPROD GEN, V25, P47, DOI 10.1007/s10815-008-9206-5; Nobles J, 2015, DEMOGRAPHY, V52, P15, DOI 10.1007/s13524-014-0362-1; OGAWA NAOHIRO, 2003, J POPULATION RES, V20, P89, DOI DOI 10.1007/BF03031797; Phillips RL, 2000, AM FAM PHYSICIAN, V62, P782; Raschky P. A., 2012, SOCIAL SCI RES NETWO, DOI [10.2139/ssrn.2175387, DOI 10.2139/SSRN.2175387]; Rodgers JL, 2005, DEMOGRAPHY, V42, P675, DOI 10.1353/dem.2005.0034; Sobotka T, 2011, POPUL DEV REV, V37, P267, DOI 10.1111/j.1728-4457.2011.00411.x; Stearns S, 1992, EVOLUTION LIFE HIST; Timaeus I. M., 2008, POPUL DEV REV, V34, P383; Tong V, 2011, MATERN CHILD HLTH J, V15, P281, DOI 10.1007/s10995-010-0576-9; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; Wilbur HM, 2006, AM NAT, V168, P398, DOI 10.1086/506258; Winterhalder B, 2002, EVOL HUM BEHAV, V23, P59, DOI 10.1016/S1090-5138(01)00089-7; YAMAGUCHI K, 1992, J AM STAT ASSOC, V87, P284; YAMAGUCHI K, 1995, AM SOCIOL REV, V60, P272, DOI 10.2307/2096387; Zakharov S, 2008, DEMOGR RES, V19, P907, DOI 10.4054/DemRes.2008.19.24; Zakharov SV, 1996, RAND CONF PROC, P36; Ziker J., 2015, SUSTAIN SCI, V11, P45; Ziker JP, 2007, ECOL FOOD NUTR, V46, P445, DOI 10.1080/03670240701486743; Ziker JP, 2016, CURR ANTHROPOL, V57, P221, DOI 10.1086/685730; Ziker John P., 2002, PEOPLES TUNDRA NO SI; Ziker JP, 1998, RES ECON AN, V19, P191 71 2 2 0 14 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. DEC 2016 27 4 SI 351 371 10.1007/s12110-016-9267-6 21 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences EC5WW WOS:000388209000002 27595735 2019-02-21 J Naslund, J; Johnsson, JI Naslund, Joacim; Johnsson, Jorgen I. State-dependent behavior and alternative behavioral strategies in brown trout (Salmo trutta L.) fry BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Animal personality; Behavioral syndrome; Compensatory growth; Food restriction; Mirror aggression; Open-field activity; Repeatability JUVENILE COHO SALMON; CHARR SALVELINUS-FONTINALIS; LIFE-HISTORY STRATEGIES; WILD SEA-TROUT; PACE-OF-LIFE; ATLANTIC SALMON; GROWTH-RATE; BODY-SIZE; FOOD AVAILABILITY; RAINBOW-TROUT Animals generally adjust their behavior in response to bodily state (e.g., size and energy reserves) to optimize energy intake in relation to mortality risk, weighing predation probability against the risk of starvation. Here, we investigated whether brown trout Salmo trutta adjust their behavior in relation to energetic status and body size during a major early-life selection bottleneck, when fast growth is important. Over two consecutive time periods (P1 and P2; 12 and 23 days, respectively), food availability was manipulated, using four different combinations of high (H) and low (L) rations (i.e., HH, HL, LH, and LL; first and second letter denoting ration during P1 and P2, respectively). Social effects were excluded through individual isolation. Following the treatment periods, fish in the HL treatment were on average 15-21 % more active than the other groups in a forced open-field test, but large within-treatment variation provided only weak statistical support for this effect. Furthermore, fish on L-ration during P2 tended to be more actively aggressive towards their mirror image than fish on H-ration. Body size was related to behavioral expression, with larger fish being more active and aggressive. Swimming activity and active aggression were positively correlated, forming a behavioral syndrome in the studied population. Based on these behavioral traits, we could also distinguish two behavioral clusters: one consisting of more active and aggressive individuals and the other consisting of less active and aggressive individuals. This indicates that brown trout fry adopt distinct behavioral strategies early in life. This paper provides information on the state-dependence of behavior in animals, in particular young brown trout. On the one hand, our data suggest a weak energetic state feedback where activity and aggression is increased as a response to short term food restriction. This suggests a limited scope for behavioral alterations in the face of starvation. On the other hand, body size is linked to higher activity and aggression, likely as a positive feedback between size and dominance. The experiment was carried out during the main population survival bottleneck, and the results indicate that growth is important during this stage, as 1) behavioral compensation to increase growth is limited, and 2) growth likely increases the competitive ability. However, our data also suggests that the population separates into two clusters, based on combined scores of activity and aggression (which are positively linked within individuals). Thus, apart from an active and aggressive strategy, there seems to be another more passive behavioral strategy. [Naslund, Joacim; Johnsson, Jorgen I.] Univ Gothenburg, Dept Biol & Environm Sci, Box 463, S-40530 Gothenburg, Sweden Naslund, J (reprint author), Univ Gothenburg, Dept Biol & Environm Sci, Box 463, S-40530 Gothenburg, Sweden. joacim.naslund@gmail.com Helge Ax:son Johnsons stiftelse; Wilhelm och Martina Lundgrens Vetenskapsfond; Swedish Research Council Formas We thank Lin Sandquist and Christina Claesson for their assistance during field collection and in the laboratory. We are also grateful to the comments from three anonymous reviewers on a previous version of this manuscript. This study was funded by Helge Ax:son Johnsons stiftelse (JN), Wilhelm och Martina Lundgrens Vetenskapsfond (JN), and the Swedish Research Council Formas (JIJ). Adriaenssens B, 2013, ECOL LETT, V16, P47, DOI 10.1111/ele.12011; Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; Alanara A, 2001, J ANIM ECOL, V70, P980, DOI 10.1046/j.0021-8790.2001.00550.x; Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; Bell AM, 2007, P ROY SOC B-BIOL SCI, V274, P755, DOI 10.1098/rspb.2006.0199; BOHLIN T, 1994, CAN J FISH AQUAT SCI, V51, P1920, DOI 10.1139/f94-193; Bohlin T, 1996, J FISH BIOL, V49, P157; BOHLIN T, 1993, CAN J FISH AQUAT SCI, V50, P224, DOI 10.1139/f93-025; Brett J. R, 1979, FISH PHYSIOL, V8, P599; Brodin T, 2011, J ETHOL, V29, P107, DOI 10.1007/s10164-010-0230-4; Brown MR, 1957, PHYSIOL FISHES, V1, P361, DOI DOI 10.1016/B978-1-4832-2817-4.50015-9; Budaev SV, 2010, ETHOLOGY, V116, P472, DOI 10.1111/j.1439-0310.2010.01758.x; Burton T, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2441; Burton T, 2011, FUNCT ECOL, V25, P1379, DOI 10.1111/j.1365-2435.2011.01897.x; CHANDLER GL, 1988, T AM FISH SOC, V117, P432, DOI 10.1577/1548-8659(1988)117<0432:AGAIOJ>2.3.CO;2; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Conceicao LEC, 1998, AQUACULTURE, V161, P95, DOI 10.1016/S0044-8486(97)00260-3; Conrad JL, 2011, J FISH BIOL, V78, P395, DOI 10.1111/j.1095-8649.2010.02874.x; Cuinat R, 1979, B FR PISCIC, V274, P1; Degerman E, 2001, FISKERIVERKET INFORM; DELLEFORS C, 1988, J FISH BIOL, V33, P741, DOI 10.1111/j.1095-8649.1988.tb05519.x; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Elliott J. M., 1994, QUANTITATIVE ECOLOGY; ELLIOTT JM, 1990, J ANIM ECOL, V59, P803, DOI 10.2307/5015; Farwell M, 2014, BEHAV ECOL SOCIOBIOL, V68, P781, DOI 10.1007/s00265-014-1691-1; Farwell M, 2009, BEHAV ECOL, V20, P913, DOI 10.1093/beheco/arp059; Fiksen O, 2011, MAR ECOL PROG SER, V432, P207, DOI 10.3354/meps09148; Geffroy B, 2015, BEHAVIOUR, V152, P147, DOI 10.1163/1568539X-00003236; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; GRANT JWA, 1987, J ANIM ECOL, V56, P1001, DOI 10.2307/4962; Grimm V, 2005, INDIVIDUAL BASED MOD; Groothuis TGG, 2011, DEV PSYCHOBIOL, V53, P641, DOI 10.1002/dev.20574; Heithaus MR, 2007, J ANIM ECOL, V76, P837, DOI 10.1111/j.1365-2656.2007.01260.x; Heland M, 1999, BIOL ECOLOGY BROWN S, P115; Hojesjo J, 1999, J FISH BIOL, V55, P1009, DOI 10.1006/jfbi.1999.1113; Hojesjo J, 2004, BEHAV ECOL SOCIOBIOL, V56, P286, DOI 10.1007/s00265-004-0784-7; Hojesjo J, 2011, BEHAV ECOL SOCIOBIOL, V65, P1801, DOI 10.1007/s00265-011-1188-0; Hoogenboom MO, 2013, BEHAV ECOL, V24, P253, DOI 10.1093/beheco/ars161; Hopkins Kevin D., 1992, Journal of the World Aquaculture Society, V23, P173, DOI 10.1111/j.1749-7345.1992.tb00766.x; Huntingford F, 2005, BEHAVIOUR, V142, P1207, DOI 10.1163/156853905774539382; Johnsson JI, 2006, P R SOC B, V273, P1281, DOI 10.1098/rspb.2005.3437; Johnsson JI, 1999, J FISH BIOL, V54, P469, DOI 10.1006/jfbi.1998.0881; JOHNSSON JI, 1994, ANIM BEHAV, V48, P177, DOI 10.1006/anbe.1994.1224; Johnsson JI, 1996, HORM BEHAV, V30, P13, DOI 10.1006/hbeh.1996.0003; Jonsson B, 2014, J FISH BIOL, V85, P151, DOI 10.1111/jfb.12432; Jonsson B, 2011, FISH FISH SER, V33, P1, DOI 10.1007/978-94-007-1189-1; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kortet R, 2014, BEHAV ECOL SOCIOBIOL, V68, P927, DOI 10.1007/s00265-014-1705-z; Kotrschal A, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000351; LIMA SL, 1986, ECOLOGY, V67, P377, DOI 10.2307/1938580; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; MASON JC, 1965, J FISH RES BOARD CAN, V22, P173, DOI 10.1139/f65-015; McNamara JM, 2013, SCIENCE, V340, P1084, DOI 10.1126/science.1230599; METCALFE NB, 1992, J FISH BIOL, V41, P93, DOI 10.1111/j.1095-8649.1992.tb03871.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; MITTELBACH GG, 1981, ECOLOGY, V62, P1370, DOI 10.2307/1937300; Morrongiello JR, 2012, J ANIM ECOL, V81, P806, DOI 10.1111/j.1365-2656.2012.01961.x; Naslund J, 2017, ECOL FRESHW FISH, V26, P462, DOI 10.1111/eff.12291; Naslund J, 2015, OECOLOGIA, V177, P1221, DOI 10.1007/s00442-015-3263-0; Nicieza AG, 1997, ECOLOGY, V78, P2385; Nilsson N-A, 1956, REP I FRESHWATER RES, V38, P154; Orpwood JE, 2006, J ANIM ECOL, V75, P677, DOI 10.1111/j.1365-2656.2006.01088.x; Peck MA, 2015, ENVIRON BIOL FISH, V98, P1117, DOI 10.1007/s10641-014-0345-5; Pedersen BH, 1997, AQUACULTURE, V155, P259, DOI 10.1016/S0044-8486(97)00127-0; Perez KO, 2010, EVOLUTION, V64, P2450, DOI 10.1111/j.1558-5646.2010.00994.x; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; Pettersson JCE, 2002, THESIS; PETTERSSON LB, 1993, OECOLOGIA, V95, P353, DOI 10.1007/BF00320988; PICKERING AD, 1982, J FISH BIOL, V20, P229, DOI 10.1111/j.1095-8649.1982.tb03923.x; R Core Team, 2014, R LANG ENV STAT COMP; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Regnier T, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150441; Regnier T, 2012, J EXP ZOOL PART A, V317A, P347, DOI 10.1002/jez.1728; Reid D, 2012, J ANIM ECOL, V81, P868, DOI 10.1111/j.1365-2656.2012.01969.x; Reinhardt UG, 1999, ANIM BEHAV, V57, P923, DOI 10.1006/anbe.1998.1051; Revelle W, 2015, PSYCH PROCEDURES PER; SIH A, 1980, SCIENCE, V210, P1041, DOI 10.1126/science.210.4473.1041; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Skoglund H, 2006, J FISH BIOL, V68, P507, DOI [10.1111/j.0022-1112.2006.00938.x, 10.1111/j.1095-8649.2006.00938.x]; SPSS Inc, 2001, SPSS TWOSTEP CLUST C; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Sundstrom LF, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063287; Sundstrom LF, 2004, BEHAV ECOL, V15, P192, DOI 10.1093/beheco/arg089; TRAVIS J, 1985, OIKOS, V45, P59, DOI 10.2307/3565222; Vehanen T, 2003, J FISH BIOL, V63, P1034, DOI 10.1046/j.1095-8649.2003.00228.x; Vollestad LA, 2003, ANIM BEHAV, V66, P561, DOI 10.1006/anbe.2003.2237; Wengstrom N, 2016, ETHOLOGY, V122, P769, DOI 10.1111/eth.12524; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Wolf M, 2012, AM NAT, V179, P679, DOI 10.1086/665656; Zavorka L, 2015, BEHAV ECOL, V26, P877, DOI 10.1093/beheco/arv029 96 11 11 2 42 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. DEC 2016 70 12 2111 2125 10.1007/s00265-016-2215-y 15 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology EB8QW WOS:000387656900012 27881895 Other Gold, Green Published 2019-02-21 J Galatowitsch, ML; McIntosh, AR Galatowitsch, Mark L.; McIntosh, Angus R. Developmental constraints control generalist invertebrate distributions across a gradient of unpredictable disturbance FRESHWATER SCIENCE English Article life-history flexibility; unpredictable disturbance; predator-permanence gradient; freshwater temporary ponds LIFE-HISTORY PLASTICITY; PHENOTYPIC PLASTICITY; TIME CONSTRAINTS; NEW-ZEALAND; TRADE-OFFS; HETEROGENEOUS ENVIRONMENTS; GROWTH; EVOLUTION; COMMUNITIES; SPECIALISTS Mechanisms underpinning flexible life-history strategies have rarely been tested in hydrologically unpredictable ecosystems where generalists may have life-history trade-offs and developmental constraints that limit their distributions. We investigated in situ nymphal growth and developmental strategies of 2 generalists, Xanthocnemis zealandica and Sigara arguta, across a habitat-permanence gradient. In response to temporary pond drying, we anticipated a flexible generalist response with rapid growth and shorter development, resulting in smaller adult size. In comparison, we expected nymphs living in permanent lakes with predatory fish to extend growth and development in favor of larger adult size. Both species maximized growth rates in temporary ponds but had different developmental strategies that influenced their distribution. Xanthocnemis zealandica had longer development requirements (125 d), which limited their distribution in less predictable temporary ponds, whereas S. arguta were less constrained in development (56 d) and inhabited more temporary ponds. The longer development time of X. zealandica meant they benefited from flexible life-history traits: shorter development, limited desiccation tolerance in temporary ponds, and extended development and predator avoidance in permanent habitats. Sigara arguta had an opportunistic life-history strategy with a fixed, rapid developmental response across the permanence gradient and rapid colonization of refilled temporary ponds. This fixed strategy meant S. arguta was intolerant of drying and, in permanent lakes, was found only in shallow refuges from fish. Neither species differed in adult size across the permanence gradient. Our study shows how life-history strategies enable generalists to achieve broad distributions in a heterogeneous waterscape, and that resilience and flexibility to local selection pressures depend on the constraints of their phenologies. [Galatowitsch, Mark L.; McIntosh, Angus R.] Univ Canterbury, Sch Biol Sci, Ctr Integrat Ecol, Christchurch, New Zealand; [Galatowitsch, Mark L.] Ctr Coll Danville, Dept Biol, 600 West Walnut St, Danville, KY 40422 USA Galatowitsch, ML (reprint author), Univ Canterbury, Sch Biol Sci, Ctr Integrat Ecol, Christchurch, New Zealand.; Galatowitsch, ML (reprint author), Ctr Coll Danville, Dept Biol, 600 West Walnut St, Danville, KY 40422 USA. mark.galatowitsch@centre.edu; angus.mcintosh@canterbury.ac.nz McIntosh, Angus/B-2992-2011 McIntosh, Angus/0000-0003-2696-8813 Miss E. L. Hellaby Indigenous Grasslands Trust; Educate New Zealand International Doctoral Scholarship This research was funded by the Miss E. L. Hellaby Indigenous Grasslands Trust with further financial support from an Educate New Zealand International Doctoral Scholarship to MLG. Justyna Giejsztowt, Amanda Klemmer, Steve Pohe, and Sophie Hunt assisted in the field, and Linda Morris and Nicole Lauren-Manuera provided laboratory and technical support. We are grateful to the Department of Conservation (DOC) and Craigieburn and Molesworth Stations for access to field sites and to the University of Canterbury (UC) for use of the Cass field station. Additional hydrology data were provided by Hugh Robertson (DOC). Precipitation data were provided by Environment Canterbury, the National Institute of Water and Atmospheric Research CliFlo database, and University of Canterbury (UC) Center for Atmospheric Research. We thank UC's Freshwater Ecology Research Group for support, and Christoph Matthaei, Jenny Davis, Michael Winterbourn, and 2 anonymous referees for comments that improved the manuscript. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.2307/3071813; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; Barahona J, 2005, FRESHWATER BIOL, V50, P2101, DOI 10.1111/j.1365-2427.2005.01463.x; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/jss.v067.i01; BHATTACHARYA CG, 1967, BIOMETRICS, V23, P115, DOI 10.2307/2528285; Bogan MT, 2013, FRESHWATER BIOL, V58, P1016, DOI 10.1111/fwb.12105; Caley MJ, 2003, P ROY SOC B-BIOL SCI, V270, pS175, DOI 10.1098/rsbl.2003.0040; Carpenter SR, 1998, ECOSYSTEMS, V1, P1, DOI 10.1007/s100219900001; Clavel J, 2011, FRONT ECOL ENVIRON, V9, P222, DOI 10.1890/080216; De Block M, 2004, OECOLOGIA, V140, P68, DOI 10.1007/s00442-004-1575-6; De Block M, 2005, OIKOS, V108, P485; de Meeus T, 2000, EVOL ECOL RES, V2, P981; Deacon K. G., 1979, THESIS; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Dmitriew C, 2005, OECOLOGIA, V142, P150, DOI 10.1007/s00442-004-1712-2; Galatowitsch ML, 2016, FRESHWATER BIOL, V61, P862, DOI 10.1111/fwb.12747; Greig H. S., 2008, THESIS; Greig HS, 2013, J ANIM ECOL, V82, P598, DOI 10.1111/1365-2656.12042; Greig HS, 2010, ECOLOGY, V91, P836, DOI 10.1890/08-1871.1; Hothorn T., 2014, SIMULTANEOUS INFEREN; Jannot JE, 2008, BIOL J LINN SOC, V95, P495, DOI 10.1111/j.1095-8312.2008.01061.x; Jannot JE, 2009, OECOLOGIA, V161, P267, DOI 10.1007/s00442-009-1389-7; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Kisdi E, 2002, AM NAT, V159, P579, DOI 10.1086/339989; Kuznetsova A, 2013, TESTS RANDOM FIXED E; Laurila A, 2002, EVOLUTION, V56, P617; Lytle DA, 2002, ECOLOGY, V83, P370; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; Lytle DA, 2008, P R SOC B, V275, P453, DOI 10.1098/rspb.2007.1157; Massol F, 2013, ECOL COMPLEX, V16, P9, DOI 10.1016/j.ecocom.2012.05.004; McCauley SJ, 2007, OIKOS, V116, P121, DOI 10.1111/j.2006.0030-1299.15105.x; Mccauley SJ, 2008, FRESHWATER BIOL, V53, P253, DOI 10.1111/j.1365-2427.2007.01889.x; McPeek MA, 1998, ECOLOGY, V79, P867, DOI 10.2307/176586; McPeek MA, 1996, AM NAT, V148, pS124, DOI 10.1086/285906; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; OSCARSON HG, 1987, OIKOS, V49, P133, DOI 10.2307/3566018; Relyea RA, 2002, AM NAT, V159, P272, DOI 10.1086/338540; Rowe RJ, 1987, DRAGONFLIES NZ; Rudolf VHW, 2007, EVOL ECOL, V21, P121, DOI 10.1007/s10682-006-0017-9; Sparre P., 2005, FAO COMPUTERIZED INF, V8; Stevens DJ, 2000, P ROY SOC B-BIOL SCI, V267, P1511, DOI 10.1098/rspb.2000.1172; Stoffels RJ, 2003, NEW ZEAL J MAR FRESH, V37, P449, DOI 10.1080/00288330.2003.9517179; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Thibert-Plante X, 2011, J EVOLUTION BIOL, V24, P326, DOI 10.1111/j.1420-9101.2010.02169.x; VANTIENDEREN PH, 1991, EVOLUTION, V45, P1317, DOI 10.1111/j.1558-5646.1991.tb02638.x; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; Verberk WCEP, 2010, J ANIM ECOL, V79, P589, DOI 10.1111/j.1365-2656.2010.01660.x; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; Whiles MR, 2005, WETLANDS, V25, P462, DOI 10.1672/20; Williams DD, 1996, J N AM BENTHOL SOC, V15, P634, DOI 10.2307/1467813; Winterbourn M. J., 2006, B ENTOMOL SOC, V5, P1; WINTERBOURN MJ, 1981, NEW ZEAL J MAR FRESH, V15, P321, DOI 10.1080/00288330.1981.9515927; Wissinger SA, 2003, FRESHWATER BIOL, V48, P255, DOI 10.1046/j.1365-2427.2003.00997.x; Wissinger SA, 2006, FRESHWATER BIOL, V51, P2009, DOI 10.1111/j.1365-2427.2006.01629.x; Wissinger SA, 2009, J N AM BENTHOL SOC, V28, P12, DOI 10.1899/08-007.1; Young E. C., 2010, WATER BOATMEN BACKSW 59 1 1 3 18 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 2161-9549 2161-9565 FRESHW SCI Freshw. Sci. DEC 2016 35 4 1300 1311 10.1086/688959 12 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology EC4FC WOS:000388080700020 2019-02-21 J Henriques-Silva, R; Pinel-Alloul, B; Peres-Neto, PR Henriques-Silva, Renato; Pinel-Alloul, Bernadette; Peres-Neto, Pedro R. Climate, history and life-history strategies interact in explaining differential macroecological patterns in freshwater zooplankton GLOBAL ECOLOGY AND BIOGEOGRAPHY English Article Allee effect; cladocerans; copepods; latitudinal diversity gradient; Rapoport's rule; temperate lakes GEOGRAPHIC RANGE SIZE; LATITUDINAL DIVERSITY GRADIENT; SPECIES-RICHNESS; CRUSTACEAN ZOOPLANKTON; BETA DIVERSITY; GENE FLOW; COMMUNITY; DISPERSAL; LIMITS; SCALE AimWe investigated how freshwater microcrustaceans with different susceptibilities to Allee effects differ in the distribution of their geographical range size (GRS) and diversity along latitudinal gradients, evaluating the importance of climatic and historical factors in explaining these differences. We hypothesized that sexual copepods would have a smaller GRS and that their distribution would be linked to historical processes due to mate-finding Allee effects during colonization. Given that cyclic parthenogenetic cladocerans avoid these Allee effects, we predicted that they would exhibit a larger GRS and their distribution would be related to climatic factors rather than dispersal limitation. LocationCanadian watersheds, North America. MethodsWe used a database containing the presence-absence of freshwater zooplankton across 1665 Canadian lakes along a latitudinal gradient of 40 degrees. We computed GRS using minimum convex polygons encompassing all lakes in which each species was present. We pooled the diversity of lakes within watersheds, and computed linear regressions models between watershed diversity and average GRS with the average latitude, distance from a glacial refugium and environmental variables of the watershed. All analyses were performed separately for cladocerans and copepods. ResultsCladocerans exhibited, on average, a GRS 70% larger than that of copepods. We found a strong relationship between diversity (negative) and average GRS (positive) with latitude for cladocerans but not for copepods. Cladoceran macroecological patterns were mainly explained by climatic factors, whereas the lack of latitudinal gradients in copepods was potentially due to the influence of a northern glacial refuge and dispersal limitation. Main conclusionsOur results show that Allee effects are strongly and negatively associated with GRS, influencing the relative importance of environmental filtering and dispersal limitation on species diversity patterns. We suggest that studies should avoid lumping species with large differences in their susceptibility to Allee effects in order to better disentangle the multiple processes affecting large-scale patterns. [Henriques-Silva, Renato; Peres-Neto, Pedro R.] Univ Quebec, Dept Biol Sci, CP 8888,Succ Ctr Ville, Montreal, PQ H3C 3P8, Canada; [Henriques-Silva, Renato; Pinel-Alloul, Bernadette; Peres-Neto, Pedro R.] Quebec Ctr Biodivers Sci, Montreal, PQ H3A 1B1, Canada; [Pinel-Alloul, Bernadette] Univ Montreal, Dept Biol Sci, Montreal, PQ H3C 3J7, Canada; [Pinel-Alloul, Bernadette] Univ Montreal, GRIL, Grp Rech Interuniv Limnol & Environm Aquat, CP 6128,Succ Ctr Ville, Montreal, PQ, Canada Henriques-Silva, R (reprint author), Univ Quebec, Dept Biol Sci, CP 8888,Succ Ctr Ville, Montreal, PQ H3C 3P8, Canada. renatohenriques@gmail.com Peres Neto, Pedro/0000-0002-5629-8067; Pinel-Alloul, Bernadette/0000-0002-1070-2968; Henriques da Silva, Renato/0000-0003-2731-2023 FQRNT (Fonds Quebecois de Recherche Nature et Technologies, Quebec, Canada) team research project programme grant; National Science and Engineering Research Council (NSERC); Canada Research Chair in Spatial Modelling and Biodiversity; NSERC discovery grant We are grateful to K. Patalas and A. Salki for compiling and providing the dataset as well as Mark C. Urban and Luc De Meester and three anonymous referees for fruitful comments on earlier versions of this manuscript. R.H.-S. was supported by a FQRNT (Fonds Quebecois de Recherche Nature et Technologies, Quebec, Canada) team research project programme grant. B.P.-A. was supported by discovery grants from the National Science and Engineering Research Council (NSERC). P.R.P.-N. was supported by the Canada Research Chair in Spatial Modelling and Biodiversity and an NSERC discovery grant. ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; ANDERSON RS, 1971, J FISH RES BOARD CAN, V28, P311, DOI 10.1139/f71-043; Barnett AJ, 2007, FRESHWATER BIOL, V52, P796, DOI 10.1111/j.1365-2427.2007.01733.x; Baselga A, 2012, METHODS ECOL EVOL, V3, P808, DOI 10.1111/j.2041-210X.2012.00224.x; Baselga A, 2012, GLOBAL ECOL BIOGEOGR, V21, P1106, DOI 10.1111/j.1466-8238.2011.00753.x; Baselga A, 2010, GLOBAL ECOL BIOGEOGR, V19, P134, DOI 10.1111/j.1466-8238.2009.00490.x; Blanchet FG, 2008, ECOLOGY, V89, P2623, DOI 10.1890/07-0986.1; Blanchet S, 2013, GLOBAL ECOL BIOGEOGR, V22, P1083, DOI 10.1111/geb.12074; Courchamp F, 1999, TRENDS ECOL EVOL, V14, P405, DOI 10.1016/S0169-5347(99)01683-3; Decaestecker E, 2009, LOST SEX: THE EVOLUTIONARY BIOLOGY OF PARTHENOGENESIS, P295, DOI 10.1007/978-90-481-2770-2_15; DesMeester L., 2002, ACTA OECOL, V23, P121, DOI [10.1016/S1146-609X(02)01145-1, DOI 10.1016/S1146-609X(02)01145-1]; DesMeester L., 2016, TRENDS ECOL EVOL, V31, P136; Dufresne F, 1997, P ROY SOC B-BIOL SCI, V264, P201, DOI 10.1098/rspb.1997.0028; Dynesius M, 2000, P NATL ACAD SCI USA, V97, P9115, DOI 10.1073/pnas.97.16.9115; Figuerola J, 2005, AM NAT, V165, P274, DOI 10.1086/427092; Fox J., 2011, R COMPANION APPL REG; Francis AP, 2003, AM NAT, V161, P523, DOI 10.1086/368223; Frisch D, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040205; Fukami T, 2015, ANNU REV ECOL EVOL S, V46, P1, DOI 10.1146/annurev-ecolsys-110411-160340; Gaston KJ, 2009, P R SOC B, V276, P1395, DOI 10.1098/rspb.2008.1480; Gray DK, 2012, J APPL ECOL, V49, P1216, DOI 10.1111/j.1365-2664.2012.02203.x; Gross J., 2015, 5 OMNIBUS TESTS COMP; Grossenbacher D, 2015, ECOL LETT, V18, P706, DOI 10.1111/ele.12449; Guisande C, 2003, OECOLOGIA, V136, P627, DOI 10.1007/s00442-003-1306-4; Havel JE, 2004, LIMNOL OCEANOGR, V49, P1229, DOI 10.4319/lo.2004.49.4_part_2.1229; Hawkins BA, 2003, ECOLOGY, V84, P3105, DOI 10.1890/03-8006; Hebert PDN, 2007, LIMNOL OCEANOGR, V52, P2507, DOI 10.4319/lo.2007.52.6.2507; HEBERT PDN, 1986, CAN J FISH AQUAT SCI, V43, P1416, DOI 10.1139/f86-175; Hessen DO, 2007, ECOGRAPHY, V30, P749, DOI 10.1111/j.2007.0906-7590.05259.x; Hillebrand H, 2004, AM NAT, V163, P192, DOI 10.1086/381004; Holt RD, 2011, AM NAT, V178, pS6, DOI 10.1086/661784; Hortal J, 2011, ECOL LETT, V14, P741, DOI 10.1111/j.1461-0248.2011.01634.x; Hothorn T., 2014, TESTING LINEAR REGRE; Jeffery NW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018364; Kramer AM, 2008, ECOLOGY, V89, P2760, DOI 10.1890/07-1505.1; Kubisch A, 2014, OIKOS, V123, P5, DOI 10.1111/j.1600-0706.2013.00706.x; Leibold MA, 2010, ECOL LETT, V13, P1290, DOI 10.1111/j.1461-0248.2010.01523.x; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; Louette G, 2007, OIKOS, V116, P419, DOI 10.1111/j.2006.0030-1299.15381.x; Marquet P. A., 2004, FRONTIERS BIOGEOGRAP; Mazaris AD, 2010, J BIOGEOGR, V37, P1341, DOI 10.1111/j.1365-2699.2010.02294.x; Mittelbach GG, 2007, ECOL LETT, V10, P315, DOI 10.1111/j.1461-0248.2007.01020.x; PALMER MW, 1990, ECOLOGY, V71, P1195, DOI 10.2307/1937387; Pantel JH, 2015, ECOL LETT, V18, P992, DOI 10.1111/ele.12480; PATALAS K, 1990, INT VER THEOR ANGEW, V24, P360; Patalas K., 1994, CANADIAN TECHNICAL R, VDepartment of Fisheries and Oceans, Central and Arctic Region; Pine-Alloul Bemadette, 2007, P203, DOI 10.1007/978-1-4020-6216-2_8; Pinel-Alloul B, 2013, GLOBAL ECOL BIOGEOGR, V22, P784, DOI 10.1111/geb.12041; PINELALLOUL B, 1995, HYDROBIOLOGIA, V300, P17; Quinn RM, 1996, OECOLOGIA, V107, P179, DOI 10.1007/BF00327901; Rahbek C, 2005, ECOL LETT, V8, P224, DOI 10.1111/j.1461-0248.2004.00701.x; Rapoport E. H., 1975, AREOGRAFIA ESTRATEGI; Santer B, 2006, ARCH HYDROBIOL, V167, P301, DOI 10.1127/0003-9136/2006/0167-0301; Sexton JP, 2009, ANNU REV ECOL EVOL S, V40, P415, DOI 10.1146/annurev.ecolsys.110308.120317; Shaw AK, 2015, AM NAT, V185, P631, DOI 10.1086/680511; Shurin JB, 2000, ECOLOGY, V81, P3062, DOI 10.1890/0012-9658(2000)081[3062:LARZSR]2.0.CO;2; Shurin JB, 2007, ECOL LETT, V10, P127, DOI 10.1111/j.1461-0248.2006.01009.x; Stemberger RS, 1995, CAN J FISH AQUAT SCI, V52, P2197, DOI 10.1139/f95-812; STEVENS GC, 1989, AM NAT, V133, P240, DOI 10.1086/284913; Sun XY, 2016, PALAEOWORLD, V25, P303, DOI 10.1016/j.palwor.2015.02.003; TASH JC, 1967, ECOLOGY, V48, P129, DOI 10.2307/1933424; Urban MC, 2009, P R SOC B, V276, P4129, DOI 10.1098/rspb.2009.1382; US Geological Survey, 2012, HYDRO1K; VansDoorslaer W., 2009, GLOBAL CHANGE BIOL, V15, P3046; Vavrek M.J., 2011, PALAEONTOL ELECTRON, V14, P1; Vogt RJ, 2013, OIKOS, V122, P1700, DOI 10.1111/j.1600-0706.2013.00039.x 66 8 8 2 17 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1466-822X 1466-8238 GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. DEC 2016 25 12 1454 1465 10.1111/geb.12505 12 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography EB9YA WOS:000387752800005 2019-02-21 J Mondy, CP; Munoz, I; Doledec, S Mondy, Cedric P.; Munoz, Isabel; Doledec, Sylvain Life-history strategies constrain invertebrate community tolerance to multiple stressors: A case study in the Ebro basin SCIENCE OF THE TOTAL ENVIRONMENT English Article Aquatic invertebrates; Trait combinations; Habitat template; Boosted regression trees; Mediterranean streams; Water scarcity STREAM MACROINVERTEBRATE COMMUNITIES; FRESH-WATER MACROINVERTEBRATES; LARGE EUROPEAN RIVERS; BIOLOGICAL TRAITS; SPECIES TRAITS; AQUATIC ECOSYSTEMS; HABITAT; SEDIMENT; ECOLOGY; TEMPLET Context: Multiple stressors constitute a serious threat to aquatic ecosystems, particularly in the Mediterranean region where water scarcity is likely to interact with other anthropogenic stressors. Biological traits potentially allow the unravelling of the effects of multiple stressors. However, thus far, trait-based approaches have failed to fully deliver on their promise and still lack strong predictive power when multiple stressors are present. Goal: We aimed to quantify specific community tolerances against six anthropogenic stressors and investigate the responses of the underlying macroinvertebrate biological traits and their combinations. Methods: We built and calibrated boosted regression tree models to predict community tolerances using multiple biological traits with a priori hypotheses regarding their individual responses to specific stressors. We analysed the combinations of traits underlying community tolerance and the effect of trait association on this tolerance. Results: Our results validated the following three hypotheses: (i) the community tolerance models efficiently and robustly related trait combinations to stressor intensities and, to a lesser extent, to stressors related to the presence of dams and insecticides; (ii) the effects of traits on community tolerance not only depended on trait identity but also on the trait associations emerging at the community level from the co-occurrence of different traits in species; and (iii) the community tolerances and the underlying trait combinations were specific to the different stressors. Conclusion: This study takes a further step towards predictive tools in community ecology that consider combinations and associations of traits as the basis of stressor tolerance. Additionally, the community tolerance concept has potential application to help stream managers in the decision process regarding management options. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. [Mondy, Cedric P.; Doledec, Sylvain] Univ Lyon 1, LEHNA, UMR 5023, Biodiversite & Plasticite Hydrosyst, Villeurbanne, France; [Munoz, Isabel] Univ Barcelona, Dept Ecol, Barcelona, Spain Mondy, CP (reprint author), Univ Lyon 1, LEHNA, UMR 5023, Biodiversite & Plasticite Hydrosyst, Villeurbanne, France. cedric.mondy@gmail.com Mondy, Cedric/0000-0003-2788-0936; Munoz, Isabel/0000-0001-8110-9435 European Communities 7th Framework Program [603629-ENV-2013-6.2.1-Globaqua] This work has been supported by the European Communities 7th Framework Program Funding under Grant agreement no. 603629-ENV-2013-6.2.1-Globaqua. AHRENS WH, 1990, WEED SCI, V38, P452; Arce E, 2014, FRESHW SCI, V33, P1060, DOI 10.1086/678673; Archaimbault V, 2010, FRESHWATER BIOL, V55, P1430, DOI 10.1111/j.1365-2427.2009.02281.x; Baird DJ, 2007, ECOTOX ENVIRON SAFE, V67, P296, DOI 10.1016/j.ecoenv.2006.07.001; Bonada N, 2006, ANNU REV ENTOMOL, V51, P495, DOI 10.1146/annurev.ento.51.110104.151124; Bonada N, 2004, ENVIRON POLLUT, V132, P509, DOI 10.1016/j.envpol.2004.05.006; Bonada N, 2011, LIMNETICA, V30, P129; Bonada N, 2007, HYDROBIOLOGIA, V589, P91, DOI 10.1007/s10750-007-0723-5; Bonada N, 2007, GLOBAL CHANGE BIOL, V13, P1658, DOI 10.1111/j.1365-2486.2007.01375.x; Brabec K, 2004, HYDROBIOLOGIA, V516, P331, DOI 10.1023/B:HYDR.0000025274.47757.85; Brack W, 2015, SCI TOTAL ENVIRON, V503, P22, DOI 10.1016/j.scitotenv.2014.05.143; Brandt SA, 2000, CATENA, V40, P375, DOI 10.1016/S0341-8162(00)00093-X; Buendia C, 2013, ECOL INDIC, V25, P184, DOI 10.1016/j.ecolind.2012.09.027; CHEVENET F, 1994, FRESHWATER BIOL, V31, P295, DOI 10.1111/j.1365-2427.1994.tb01742.x; CLIFFORD HUGH F., 1966, INVEST INDIANA LAKES STREAMS, V7, P57; Coats JR, 2012, INSECTICIDE MODE ACT; Core Team R, 2016, R LANG ENV STAT COMP; Crain CM, 2008, ECOL LETT, V11, P1304, DOI 10.1111/j.1461-0248.2008.01253.x; Dewson ZS, 2007, J N AM BENTHOL SOC, V26, P401, DOI 10.1899/06-110.1; Doledec S, 2006, J N AM BENTHOL SOC, V25, P44, DOI 10.1899/0887-3593(2006)25[44:COSAFA]2.0.CO;2; Doledec S, 1999, FRESHWATER BIOL, V42, P737, DOI 10.1046/j.1365-2427.1999.00509.x; Doledec S, 2008, FRESHWATER BIOL, V53, P617, DOI 10.1111/j.1365-2427.2007.01924.x; Elith J, 2008, J ANIM ECOL, V77, P802, DOI 10.1111/j.1365-2656.2008.01390.x; ETC/ICM, 2012, 12012 ETCICM; European Environment Agency (EEA), 2012, 82012 EEA; Gayraud S, 2003, FRESHWATER BIOL, V48, P2045, DOI 10.1046/j.1365-2427.2003.01139.x; HARPER PP, 1970, ECOLOGY, V51, P925; Hering D, 2015, SCI TOTAL ENVIRON, V503, P10, DOI 10.1016/j.scitotenv.2014.06.106; Hering D, 2010, SCI TOTAL ENVIRON, V408, P4007, DOI 10.1016/j.scitotenv.2010.05.031; Ings TC, 2009, J ANIM ECOL, V78, P253, DOI 10.1111/j.1365-2656.2008.01460.x; Kuster EC, 2008, J ECOL, V96, P860, DOI 10.1111/j.1365-2745.2008.01406.x; Lange K, 2014, FRESHWATER BIOL, V59, P2431, DOI 10.1111/fwb.12437; Lawton JH, 1999, OIKOS, V84, P177, DOI 10.2307/3546712; Lessard JL, 2003, RIVER RES APPL, V19, P721, DOI 10.1002/rra.713; Liess M, 2005, ENVIRON TOXICOL CHEM, V24, P954, DOI 10.1897/03-652.1; Ludwig R, 2011, ENVIRON SCI POLICY, V14, P794, DOI 10.1016/j.envsci.2011.04.003; Malaj E, 2014, P NATL ACAD SCI USA, V111, P9549, DOI 10.1073/pnas.1321082111; Diaz AM, 2008, FRESHWATER BIOL, V53, P1, DOI 10.1111/j.1365-2427.2007.01854.x; Mondy CP, 2013, SCI TOTAL ENVIRON, V461, P750, DOI 10.1016/j.scitotenv.2013.05.072; Mondy CP, 2012, ECOL INDIC, V18, P452, DOI 10.1016/j.ecolind.2011.12.013; MUNOZ I, 1989, Regulated Rivers Research and Management, V3, P345, DOI 10.1002/rrr.3450030132; Navarro-Ortega A, 2015, SCI TOTAL ENVIRON, V503, P3, DOI 10.1016/j.scitotenv.2014.06.081; Ormerod SJ, 2010, FRESHWATER BIOL, V55, P1, DOI 10.1111/j.1365-2427.2009.02395.x; Oudin LC, 2003, SYSTEME EVALUATION Q; Pardo Isabel, 2002, Limnetica, V21, P115; Pollard AI, 2010, FRESHWATER BIOL, V55, P1420, DOI 10.1111/j.1365-2427.2009.02235.x; Rabeni CF, 2005, AQUAT SCI, V67, P395, DOI 10.1007/s00027-005-0793-2; RESH VH, 1994, FRESHWATER BIOL, V31, P539, DOI 10.1111/j.1365-2427.1994.tb01756.x; Sabater S, 2009, RIVERS OF EUROPE, 1ST EDITION, P113, DOI 10.1016/B978-0-12-369449-2.00004-7; Sarriquet PE, 2007, RIVER RES APPL, V23, P815, DOI 10.1002/rra.1013; Schafer RB, 2011, ENVIRON SCI TECHNOL, V45, P1665, DOI 10.1021/es103227q; Scheiner SM, 2008, THEOR ECOL, V1, P21, DOI 10.1007/s12080-007-0002-0; Singer MB, 2007, RIVER RES APPL, V23, P55, DOI 10.1002/rra.968; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SPRAGUE JB, 1970, WATER RES, V4, P3, DOI 10.1016/0043-1354(70)90018-7; Statzner B, 1997, FRESHWATER BIOL, V38, P109, DOI 10.1046/j.1365-2427.1997.00195.x; Statzner B, 2007, BIODIVERS CONSERV, V16, P3609, DOI 10.1007/s10531-007-9150-1; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Townsend CR, 2008, J APPL ECOL, V45, P1810, DOI 10.1111/j.1365-2664.2008.01548.x; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Usseglio-Polatera P, 2010, INVERTEBRES EAU DOUC; Usseglio-Polatera Philippe, 2001, Archiv fuer Hydrobiologie Supplement, V139, P53; Van Looy K, 2014, ECOL INDIC, V37, P10, DOI 10.1016/j.ecolind.2013.10.006; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Von Der Ohe PC, 2004, ENVIRON TOXICOL CHEM, V23, P150; Wooster DE, 2012, RIVER RES APPL, V28, P1630, DOI 10.1002/rra.1555 69 11 11 2 22 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0048-9697 1879-1026 SCI TOTAL ENVIRON Sci. Total Environ. DEC 1 2016 572 196 206 10.1016/j.scitotenv.2016.07.227 11 Environmental Sciences Environmental Sciences & Ecology EC0RA WOS:000387807200021 27498381 Other Gold 2019-02-21 J Loehle, C Loehle, Craig Biomechanical constraints on tree architecture TREES-STRUCTURE AND FUNCTION English Article Allocation; Allometry; Biomechanics; Crown shape; Evolution; Mechanical support; Mortality; Wind EFFECTIVE LEAF AREA; PIPE MODEL-THEORY; TERMINALIA-BRANCHING PATTERN; CROWN ARCHITECTURE; LIGHT INTERCEPTION; SIMULATION-MODEL; WIND DAMAGE; FOREST; GEOMETRY; GROWTH Mechanical properties of wood constrain most conifers to an excurrent form and limit the width of tree crowns. Development of support tissue alters allometric relations during ontogeny. Biomechanical constraints on tree architecture are explored. Torque on a tree branch is a multiplicative function of mass and moment arm. As such, the need for support rises faster than branch length, which leads to increased taper as branch size increases. This violates assumptions of models, such as the pipe-model theory, for large trees and causes changing allometry with tree size or exposure. Thus, assumptions about optimal design for light capture, self-similarity, or optimal hydraulic architecture need to be modified to account for mechanical constraints and costs. In particular, it is argued that mechanical limitations of compression wood in conifers prevent members of this taxon from developing large branches. With decurrent form ruled out (for larger species), only a conical or excurrent form can develop. Wind is shown to be a major mortality risk for trees. Adaptations for wind include dynamic responses of wood properties and height. It is argued that an adaptation to wind could be the development of an open crown in larger trees to let the wind penetrate, thereby reducing wind-throw risk. It is thus argued that crown shape and branching may result not just from optimal light capture considerations but also from adaptation to and response to wind as well as from mechanical constraints. Results have implications for allometric theory, life history theory, and simulations of tree architecture. [Loehle, Craig] Natl Council Air & Stream Improvement Inc, 1258 Windemere Ave, Naperville, IL 60564 USA Loehle, C (reprint author), Natl Council Air & Stream Improvement Inc, 1258 Windemere Ave, Naperville, IL 60564 USA. cloehle@ncasi.org Almeras T, 2005, TREES-STRUCT FUNCT, V19, P457, DOI 10.1007/s00468-005-0407-6; Almeras T, 2004, ANN BOT-LONDON, V93, P455, DOI 10.1093/aob/mch054; Almeras T, 2009, J THEOR BIOL, V256, P370, DOI 10.1016/j.jtbi.2008.10.011; Almeras T, 2009, J EXP BOT, V60, P4397, DOI 10.1093/jxb/erp276; Ancelin P, 2004, FOREST ECOL MANAG, V203, P101, DOI 10.1016/j.foreco.2004.07.067; Anderson-Teixeira KJ, 2015, FUNCT ECOL, V29, P1587, DOI 10.1111/1365-2435.12470; Antin C, 2013, TREES-STRUCT FUNCT, V27, P1485, DOI 10.1007/s00468-013-0896-7; Bao FC, 2001, WOOD SCI TECHNOL, V35, P363, DOI 10.1007/s002260100099; Bentley LP, 2013, ECOL LETT, V16, P1069, DOI 10.1111/ele.12127; BORCHERT R, 1984, AM J BOT, V71, P958, DOI 10.2307/2443666; BORCHERT R, 1981, BOT GAZ, V142, P394, DOI 10.1086/337238; Chiba Y, 1998, ECOL MODEL, V108, P219, DOI 10.1016/S0304-3800(98)00030-1; Coutand C, 2014, TREES-STRUCT FUNCT, V28, P687, DOI 10.1007/s00468-014-0981-6; Dean TJ, 2002, TREES-STRUCT FUNCT, V16, P559, DOI 10.1007/s00468-002-0208-0; Eloy C, 2011, PHYS REV LETT, V107, DOI 10.1103/PhysRevLett.107.258101; Enquist BJ, 2002, TREE PHYSIOL, V22, P1045, DOI 10.1093/treephys/22.15-16.1045; FARNSWORTH KD, 1995, FUNCT ECOL, V9, P355, DOI 10.2307/2389997; FISHER JB, 1979, AM J BOT, V66, P645, DOI 10.2307/2442409; FISHER JB, 1982, AM J BOT, V69, P690, DOI 10.2307/2442959; FISHER JB, 1981, BOT GAZ, V142, P82, DOI 10.1086/337199; FISHER JB, 1979, AM J BOT, V66, P633, DOI 10.2307/2442408; FISHER JB, 1992, INT J PLANT SCI, V153, pS137, DOI 10.1086/297071; FRANKLIN JF, 1988, CAN J FOREST RES, V18, P633, DOI 10.1139/x88-093; FRANKLIN JF, 1987, BIOSCIENCE, V37, P550, DOI 10.2307/1310665; Gehring E, 2015, TREES-STRUCT FUNCT, V29, P321, DOI 10.1007/s00468-014-1093-z; Godin C, 1999, ANN BOT-LONDON, V84, P343, DOI 10.1006/anbo.1999.0923; Greenberg CH, 1998, FOREST ECOL MANAG, V104, P179, DOI 10.1016/S0378-1127(97)00246-6; Greenhill G, 1881, P CAMBRIDGE PHILOS S, V4, P65; Groover A, 2016, NEW PHYTOL, V211, P790, DOI 10.1111/nph.13968; Hamant O, 2013, CURR OPIN PLANT BIOL, V16, P654, DOI 10.1016/j.pbi.2013.06.006; Hamant O, 2010, NEW PHYTOL, V185, P369, DOI 10.1111/j.1469-8137.2009.03100.x; HARCOMBE PA, 1983, OECOLOGIA, V57, P49, DOI 10.1007/BF00379561; HONDA H, 1978, SCIENCE, V199, P888, DOI 10.1126/science.199.4331.888; HORN H S, 1971, P144; Kane B, 2014, TREES-STRUCT FUNCT, V28, P151, DOI 10.1007/s00468-013-0938-1; KING DA, 1986, ECOLOGY, V67, P980, DOI 10.2307/1939821; KING DA, 1990, AM NAT, V135, P809, DOI 10.1086/285075; Loehle C, 2000, AM NAT, V156, P14, DOI 10.1086/303369; Loehle C, 1996, OIKOS, V75, P299, DOI 10.2307/3546253; LOEHLE C, 1986, AM MIDL NAT, V116, P190, DOI 10.2307/2425951; Mandelbrot B. B., 1983, FRACTAL GEOMETRY NAT; Mandelbrot BB, 1978, GEOMETRICAL PROBABIL, P235; MCMAHON TA, 1976, J THEOR BIOL, V59, P443, DOI 10.1016/0022-5193(76)90182-X; Niklas KJ, 1998, REV PALAEOBOT PALYNO, V102, P1, DOI 10.1016/S0034-6667(98)00011-6; NIKLAS KJ, 1991, AM J BOT, V78, P989, DOI 10.2307/2445178; NIKLAS KJ, 1995, ANN BOT-LONDON, V75, P217, DOI 10.1006/anbo.1995.1015; Nishimura TB, 2005, FOREST ECOL MANAG, V215, P295, DOI 10.1016/j.foreco.2005.05.018; Ogawa K, 2015, TREES-STRUCT FUNCT, V29, P695, DOI 10.1007/s00468-014-1147-2; Pearcy RW, 2005, NEW PHYTOL, V166, P791, DOI 10.1111/j.1469-8137.2005.01328.x; Perttunen J, 2005, ECOL MODEL, V181, P479, DOI 10.1016/j.ecolmodel.2004.06.034; Peterson CJ, 2007, FOREST ECOL MANAG, V250, P96, DOI 10.1016/j.foreco.2007.03.013; Peterson CJ, 2000, FOREST ECOL MANAG, V135, P237, DOI 10.1016/S0378-1127(00)00283-8; Pittermann J, 2006, PLANT CELL ENVIRON, V29, P1618, DOI 10.1111/1365-3040.2006.01539.x; Pot G, 2014, TREES-STRUCT FUNCT, V28, P1235, DOI 10.1007/s00468-014-1033-y; Raulier F, 1996, CAN J FOREST RES, V26, P1742, DOI 10.1139/x26-198; Read J, 2006, AM J BOT, V93, P1546, DOI 10.3732/ajb.93.10.1546; Richter JP, 1880, NOTEBOOKS L DAVINCI; Roden JS, 2003, TREES-STRUCT FUNCT, V17, P117, DOI 10.1007/s00468-002-0213-3; Rouvinen S, 1997, CAN J FOREST RES, V27, P890, DOI 10.1139/cjfr-27-6-890; Scott RE, 2005, FOREST ECOL MANAG, V218, P193, DOI 10.1016/j.foreco.2005.07.012; Shinozaki K., 1964, JAPANESE J ECOL, V14, P97, DOI DOI 10.18960/SEITAI.14.3_97; Shinozaki K, 1964, JAPANESE J ECOL, V14, P133; Sievanen R, 2000, ANN FOREST SCI, V57, P399; Sillett SC, 2015, ECOL MONOGR, V85, P181, DOI 10.1890/14-1016.1; Skatter S, 2000, FOREST ECOL MANAG, V135, P97, DOI 10.1016/S0378-1127(00)00301-7; Smith DD, 2014, NEW PHYTOL, V201, P217, DOI 10.1111/nph.12487; SMITH WK, 1994, AM NAT, V143, P528, DOI 10.1086/285618; Sperry JS, 2008, PLANT CELL ENVIRON, V31, P632, DOI 10.1111/j.1365-3040.2007.01765.x; Stathers R. J., 1994, WINDTHROW HDB BRIT C; TAKENAKA A, 1994, J PLANT RES, V107, P321, DOI 10.1007/BF02344260; TOMLINSON PB, 1987, ANNU REV ECOL SYST, V18, P1; VOGEL S, 1989, J EXP BOT, V40, P941, DOI 10.1093/jxb/40.8.941; Vogel S, 2007, J BIOSCIENCES, V32, P643, DOI 10.1007/s12038-007-0064-6; Yamazaki K, 2011, BIOL J LINN SOC, V104, P738, DOI 10.1111/j.1095-8312.2011.01776.x; Yang XD, 2015, TREES-STRUCT FUNCT, V29, P43, DOI 10.1007/s00468-014-1054-6; Zeide B, 1998, CAN J FOREST RES, V28, P106, DOI 10.1139/cjfr-28-1-106 76 0 0 5 37 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0931-1890 1432-2285 TREES-STRUCT FUNCT Trees-Struct. Funct. DEC 2016 30 6 2061 2070 10.1007/s00468-016-1433-2 10 Forestry Forestry EB9NX WOS:000387723300014 2019-02-21 J Kuan, SH Kuan, Shu-Hui Metamorphic strategies of the Indian rice frog, Fejervarya limnocharis, in response to irrigation regimes TAIWANIA English Article ANURAN LARVAL GROWTH; LIFE-HISTORY; RANA-TEMPORARIA; PHENOTYPIC PLASTICITY; NATURAL-SELECTION; TEMPERATURE; TADPOLES; SIZE; PERFORMANCE; FITNESS Organisms gain benefits from phenotypic plasticity by possessing traits better cope with environmental variations. Although cohort-dependent life-history strategy may be ubiquitous in amphibians, it is rarely studied. I investigated whether Indian rice frog, Fejervarya limnocharis, populations from cultivated fields with different irrigation regimes have differential cohort-dependent metamorphic strategies. I tested the hypothesis that populations inhabiting temporally disrupted breeding habitats would, while populations inhabiting temporally constant breeding habitats would not show cohort-dependent metamorphic strategies in response to seasonal temperature variation. I assessed cohort-dependent strategies by comparing metamorphic weight, age, and growth rate between spring and summer cohorts in response to low and high temperatures in a factorial common garden experiment. The results showed that the plasticity of metamorphic weight and age were both very extensive in the Indian rice frog. Tadpoles from disrupted irrigation (rice paddy) populations had cohort-dependent metamorphic strategies. In contrast, tadpoles from constant irrigation (water bamboo field) populations did not show cohort-dependent metamorphic strategies. More research on cohort-dependent life-history traits is badly needed to further our understanding the evolution of life history strategies. [Kuan, Shu-Hui] Natl Taiwan Univ, Inst Ecol & Evolutionary Biol, 1,Sect 4,Roosevelt Rd, Taipei 10617, Taiwan Kuan, SH (reprint author), Natl Taiwan Univ, Inst Ecol & Evolutionary Biol, 1,Sect 4,Roosevelt Rd, Taipei 10617, Taiwan. d94b44004@ntu.edu.tw Alexander P.S., 1979, Journal of Asian Ecology, V1, P68; Altwegg R, 2003, EVOLUTION, V57, P872; Alvarez D, 2002, FUNCT ECOL, V16, P640, DOI 10.1046/j.1365-2435.2002.00658.x; Atkinson D, 1996, OIKOS, V77, P359, DOI 10.2307/3546078; Beck CW, 2000, FUNCT ECOL, V14, P32, DOI 10.1046/j.1365-2435.2000.00386.x; BERVEN KA, 1979, EVOLUTION, V33, P609, DOI 10.1111/j.1558-5646.1979.tb04714.x; BERVEN KA, 1983, AM ZOOL, V23, P85; Blouin MS, 2000, OECOLOGIA, V125, P358, DOI 10.1007/s004420000458; Cabrera-Guzman E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070121; Castaneda LE, 2006, PHYSIOL BIOCHEM ZOOL, V79, P919, DOI 10.1086/506006; Chuang M.F.A., 2006, THESIS; Gosner K. L., 1960, Herpetologica, V16, P183; HARKEY GA, 1988, COPEIA, P1001; Hsu JL, 2012, HERPETOLOGICA, V68, P184; Kaplan RH, 2006, EVOLUTION, V60, P142; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; Kuan SH, 2011, J ZOOL, V285, P165, DOI 10.1111/j.1469-7998.2011.00836.x; Kuan S.-H., 2016, THESIS; Lai Su-Ju, 2002, Acta Zoologica Taiwanica, V13, P11; Laugen AT, 2003, J EVOLUTION BIOL, V16, P996, DOI 10.1046/j.1420-9101.2003.00560.x; Liess A, 2013, J ANIM ECOL, V82, P1316, DOI 10.1111/1365-2656.12107; Lind MI, 2007, J EVOLUTION BIOL, V20, P1288, DOI 10.1111/j.1420-9101.2007.01353.x; Lind M.I., 2009, THESIS; Merila J, 2004, EVOL ECOL RES, V6, P727; Miner BG, 2005, TRENDS ECOL EVOL, V20, P685, DOI 10.1016/j.tree.2005.08.002; Mogali SM, 2011, CURR SCI INDIA, V101, P1219; Morey S, 2001, ECOLOGY, V82, P510, DOI 10.2307/2679876; NEWMAN RA, 1994, COPEIA, P372; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; POUGH FH, 1984, OECOLOGIA, V65, P138, DOI 10.1007/BF00384476; Relyea RA, 2007, OECOLOGIA, V152, P389, DOI 10.1007/s00442-007-0675-5; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; SINSCH U, 1988, OECOLOGIA, V76, P399, DOI 10.1007/BF00377035; Stahlberg F, 2001, J EVOLUTION BIOL, V14, P755, DOI 10.1046/j.1420-9101.2001.00333.x; Watkins TB, 2006, PHYSIOL BIOCHEM ZOOL, V79, P140, DOI 10.1086/498182; Wells K.D., 2007, ECOLOGY BEHAV AMPHIB, P559 37 0 0 1 1 NATL TAIWAN UNIV PRESS TAIPEI NO 1 SECTION 4, ROOSEVELT RD, TAIPEI, 106, TAIWAN 0372-333X TAIWANIA Taiwania DEC 2016 61 4 271 278 10.6165/tai.2016.61.271 8 Plant Sciences; Horticulture Plant Sciences; Agriculture EE9SE WOS:000389965700001 DOAJ Gold 2019-02-21 J Bradley, BJ; Snowdon, CT; McGrew, WC; Lawler, RR; Guevara, EE; McIntosh, A; O'Connor, T Bradley, Brenda J.; Snowdon, Charles T.; McGrew, William C.; Lawler, Richard R.; Guevara, Elaine E.; McIntosh, Annick; O'Connor, Timothy Non-human primates avoid the detrimental effects of prenatal androgen exposure in mixed-sex litters: combined demographic, behavioral, and genetic analyses AMERICAN JOURNAL OF PRIMATOLOGY English Article aromatase; callitrichid; CYP19A1; strepsirrhine; testosterone; twins TWINS REDUCE FITNESS; COTTON-TOP TAMARINS; FEMALE CO-TWINS; SAGUINUS-OEDIPUS; AMNIOTIC-FLUID; OPPOSITE-SEX; EVOLUTION; SIZE; AROMATASE; NUMBER Producing single versus multiple births has important life history trade-offs, including the potential benefits and risks of sharing a common in utero environment. Sex hormones can diffuse through amniotic fluid and fetal membranes, and females with male littermates risk exposure to high levels of fetal testosterone, which are shown to have masculinizing effects and negative fitness consequences in many mammals. Whereas most primates give birth to single offspring, several New World monkey and strepsirrhine species regularly give birth to small litters. We examined whether neonatal testosterone exposure might be detrimental to females in mixed-sex litters by compiling data from long-term breeding records for seven primate species (Saguinus oedipus; Varecia variegata, Varecia rubra, Microcebus murinis, Mirza coquereli, Cheirogaleus medius, Galago moholi). Litter sex ratios did not differ from the expected 1:2:1 (MM:MF:FF for twins) and 1:2:2:1 (MMM:MMF:MFF:FFF for triplets). Measures of reproductive success, including female survivorship, offspring-survivorship, and inter-birth interval, did not differ between females born in mixed-sex versus all-female litters, indicating that litter-producing non-human primates, unlike humans and rodents, show no signs of detrimental effects from androgen exposure in mixed sex litters. Although we found no evidence for CYP19A1 gene duplicationsa hypothesized mechanism for coping with androgen exposurearomatase protein evolution shows patterns of convergence among litter-producing taxa. That some primates have effectively found a way to circumvent a major cost of multiple births has implications for understanding variation in litter size and life history strategies across mammals. [Bradley, Brenda J.] George Washington Univ, Dept Anthropol, Washington, DC USA; [Bradley, Brenda J.; Guevara, Elaine E.; McIntosh, Annick] Yale Univ, Dept Anthropol, New Haven, CT 06520 USA; [Snowdon, Charles T.] Univ Wisconsin, Dept Psychol, 1202 W Johnson St, Madison, WI 53706 USA; [McGrew, William C.] Univ Cambridge, Dept Archaeol & Anthropol, Cambridge, England; [Lawler, Richard R.] James Madison Univ, Dept Sociol & Anthropol, Harrisonburg, VA 22807 USA; [O'Connor, Timothy] Univ Maryland, Sch Med, Inst Genome Sci, Baltimore, MD 21201 USA; [O'Connor, Timothy] Univ Maryland, Sch Med, Program Personalized & Genom Med, Baltimore, MD 21201 USA; [O'Connor, Timothy] Univ Maryland, College Pk, MD 20742 USA Bradley, BJ (reprint author), George Washington Univ, Sci & Engn Hall,Suite 6000 CASHP,800 22nd NW, Washington, DC 20052 USA. bradleyjbrenda@gwu.edu Guevara, Elaine/0000-0003-1480-474X; O'Connor, Timothy/0000-0002-0276-1896 Yale Institute for Biospheric Studies - Program in Reproductive Ecology; Yale Reproductive Ecology Laboratory; USPHS [MH 029775, MH 035215] This research was supported by Yale Institute for Biospheric Studies - Program in Reproductive Ecology, Yale Reproductive Ecology Laboratory and USPHS MH 029775 and MH 035215. Adzhubei IA, 2010, NAT METHODS, V7, P248, DOI 10.1038/nmeth0410-248; Ahrenfeldt L, 2015, HORM BEHAV, V69, P123, DOI 10.1016/j.yhbeh.2015.01.007; Altschul SF, 1998, TRENDS BIOCHEM SCI, V23, P444, DOI 10.1016/S0968-0004(98)01298-5; [Anonymous], 2015, DUK LEM CTR DAT; Baden AL, 2013, BEHAV ECOL SOCIOBIOL, V67, P1939, DOI 10.1007/s00265-013-1601-y; Bromberg Y, 2007, NUCLEIC ACIDS RES, V35, P3823, DOI 10.1093/nar/gkm238; Brown GR, 2002, P NATL ACAD SCI USA, V99, P11252, DOI 10.1073/pnas.162360599; Carlson B. M., 2014, HUMAN EMBRYOLOGY DEV, P520; Chiang EFL, 2001, J EXP ZOOL, V290, P709, DOI 10.1002/jez.1121; CLARK MM, 1991, PHYSIOL BEHAV, V49, P239, DOI 10.1016/0031-9384(91)90038-P; CLARK MM, 1992, ANIM BEHAV, V43, P215, DOI 10.1016/S0003-3472(05)80217-9; CLUTTONBROCK TH, 1986, Q REV BIOL, V61, P339, DOI 10.1086/415033; COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037//0033-2909.112.1.155; Conrad DF, 2010, NATURE, V464, P704, DOI 10.1038/nature08516; Corbin CJ, 2003, MOL CELL ENDOCRINOL, V206, P147, DOI 10.1016/S0303-7207(02)00422-7; Curtis JT, 2010, PHYSIOL BEHAV, V101, P93, DOI 10.1016/j.physbeh.2010.04.020; EVEN MD, 1992, J REPROD FERTIL, V96, P709; Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146; FRENCH JA, 1984, ANIM BEHAV, V32, P615, DOI 10.1016/S0003-3472(84)80299-7; French JA, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2013.0084; French JA, 2013, AM J PRIMATOL, V75, P212, DOI 10.1002/ajp.22077; Gaucher EA, 2004, BMC BIOL, V2, DOI 10.1186/1741-7007-2-19; Ginther AJ, 2002, BIOL REPROD, V66, P282, DOI 10.1095/biolreprod66.2.282; Ginther AJ, 2001, ANIM BEHAV, V61, P65, DOI 10.1006/anbe.2000.1587; Gish W., 1996, BLAST 2 0 WU BLAST; Gursky S. L., 2015, THE SPECTRAL TARSIER, P256; Harris RA, 2014, P NATL ACAD SCI USA, V111, P1467, DOI 10.1073/pnas.1316037111; Helle S, 2004, EVOLUTION, V58, P430, DOI 10.1111/j.0014-3820.2004.tb01658.x; HENIKOFF S, 1992, P NATL ACAD SCI USA, V89, P10915, DOI 10.1073/pnas.89.22.10915; Hunter J., 1779, PHILOS T ROY SOC LON, V69, P279; Husen B, 2003, BIOL REPROD, V68, P2092, DOI 10.1095/biolreprod.102.012476; Jaquish CE, 1996, J MED PRIMATOL, V25, P57, DOI 10.1111/j.1600-0684.1996.tb00194.x; JONES DT, 1992, COMPUT APPL BIOSCI, V8, P275; Kang JH, 2006, TOXICOLOGY, V226, P79, DOI 10.1016/j.tox.2006.06.009; Kappeler PM, 2016, INT J PRIMATOL, V37, P10, DOI 10.1007/s10764-015-9873-x; Kappeler PM, 1998, AM J PRIMATOL, V46, P7; Kearse M, 2012, BIOINFORMATICS, V28, P1647, DOI 10.1093/bioinformatics/bts199; Kent WJ, 2002, GENOME RES, V12, P656, DOI [10.1101/gr.229202, 10.1101/gr.229202. Article published online before March 2002]; Kiesling NMJ, 2015, MOL PHYLOGENET EVOL, V82, P386, DOI 10.1016/j.ympev.2014.03.027; Kontopoulos DG, 2013, COMPUT METH PROG BIO, V111, P711, DOI 10.1016/j.cmpb.2013.05.021; Korsten P, 2009, BIOL LETTERS, V5, P663, DOI 10.1098/rsbl.2009.0366; KRACKOW S, 1995, BIOL REV, V70, P225, DOI 10.1111/j.1469-185X.1995.tb01066.x; Kragie L, 2002, ENDOCR RES, V28, P121, DOI 10.1081/ERC-120015041; Kumar P, 2009, NAT PROTOC, V4, P1073, DOI 10.1038/nprot.2009.86; LEUTENEGGER W, 1979, AM NAT, V114, P525, DOI 10.1086/283499; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Luckett W., 1976, CONTRIB PRIMATOL, V3, P142; Lummaa V, 2007, P NATL ACAD SCI USA, V104, P10915, DOI 10.1073/pnas.0605875104; Martin R. D., 1990, PRIMATE ORIGINS EVOL, P804; McIntosh AM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047760; Medland SE, 2008, TWIN RES HUM GENET, V11, P481, DOI 10.1375/twin.11.5.481; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MILLER EM, 1994, PERS INDIV DIFFER, V17, P511, DOI 10.1016/0191-8869(94)90088-4; Mo ZP, 2012, CLIN CHEM LAB MED, V50, P649, DOI [10.1515/cclm.2011.833, 10.1515/CCLM.2011.833]; Monclus R, 2012, J ANIM ECOL, V81, P80, DOI 10.1111/j.1365-2656.2011.01888.x; Murrell B, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002764; Nadeau NJ, 2010, TRENDS GENET, V26, P484, DOI 10.1016/j.tig.2010.08.004; Nielsen R, 1998, GENETICS, V148, P929; Petty JMA, 2015, SCI REP-UK, V5, DOI 10.1038/srep09631; Pond SLK, 2005, MOL BIOL EVOL, V22, P1208, DOI 10.1093/molbev/msi105; Pond SLK, 2005, MOL BIOL EVOL, V22, P478, DOI 10.1093/molbev/msi031; Pond SLK, 2005, BIOINFORMATICS, V21, P676, DOI 10.1093/bioinformatics/bti079; Ross C, 2001, INT J PRIMATOL, V22, P749, DOI 10.1023/A:1012065332758; Ross CN, 2007, P NATL ACAD SCI USA, V104, P6278, DOI 10.1073/pnas.0607426104; Rutherford J. N., 2014, PLOS ONE, V9; Ryan BC, 2002, NEUROSCI BIOBEHAV R, V26, P665, DOI 10.1016/S0149-7634(02)00038-6; RYAN KJ, 1961, ENDOCRINOLOGY, V69, P613, DOI 10.1210/endo-69-3-613; Schultz AH, 1948, AM J PHYS ANTHROP-NE, V6, P1, DOI 10.1002/ajpa.1330060108; SHORT RV, 1970, PHILOS T ROY SOC B, V259, P141, DOI 10.1098/rstb.1970.0054; Sim NL, 2012, NUCLEIC ACIDS RES, V40, pW452, DOI 10.1093/nar/gks539; Springer MS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049521; Stajich JE, 2002, GENOME RES, V12, P1611, DOI 10.1101/gr.361602; Tapp AL, 2011, HORM BEHAV, V60, P713, DOI 10.1016/j.yhbeh.2011.08.011; Tardif SD, 1997, AM J PRIMATOL, V42, P323, DOI 10.1002/(SICI)1098-2345(1997)42:4<323::AID-AJP7>3.0.CO;2-Z; Tchoudakova A, 1998, ENDOCRINOLOGY, V139, P2179, DOI 10.1210/en.139.4.2179; Tietz N. W., 1976, FUNDAMENTALS CLIN CH, P1917; Vom Saal F. S., 1983, HORMONES BEHAVIOR HI, P159; VOMACHKA AJ, 1986, HORM BEHAV, V20, P181, DOI 10.1016/0018-506X(86)90016-4; Weber KS, 2001, DEV BRAIN RES, V126, P217, DOI 10.1016/S0165-3806(00)00138-3; Wildman DE, 2006, P NATL ACAD SCI USA, V103, P3203, DOI 10.1073/pnas.0511344103; Windle CP, 1999, J MED PRIMATOL, V28, P73, DOI 10.1111/j.1600-0684.1999.tb00254.x; Wislocki GB, 1929, CONTRIB EMBRYOL, V20, P53; Wislocki GB, 1939, AM J ANAT, V64, P445, DOI 10.1002/aja.1000640305; Worley KC, 2014, NAT GENET, V46, P850, DOI 10.1038/ng.3042; Yang ZH, 2007, MOL BIOL EVOL, V24, P1586, DOI 10.1093/molbev/msm088; Zahed SR, 2010, AM J PRIMATOL, V72, P296, DOI 10.1002/ajp.20782; Zarrei M, 2015, NAT REV GENET, V16, P172, DOI 10.1038/nrg3871; Zehr SM, 2014, SCI DATA, V1, DOI 10.1038/sdata.2014.19; ZIEGLER TE, 1995, HORM BEHAV, V29, P407, DOI 10.1006/hbeh.1995.1028; ZIEGLER TE, 1987, BIOL REPROD, V37, P618, DOI 10.1095/biolreprod37.3.618 90 3 3 0 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0275-2565 1098-2345 AM J PRIMATOL Am. J. Primatol. DEC 2016 78 12 1304 1315 10.1002/ajp.22583 12 Zoology Zoology EB0ZZ WOS:000387077200006 27434275 2019-02-21 J Amundsen, PA Amundsen, Per-Arne Contrasting life-history strategies facilitated by cannibalism in a stunted Arctic charr population HYDROBIOLOGIA English Article Life-history tradeoffs; Piscivory; Reproduction; Salvelinus alpinus; Sexual maturation; Somatic growth SALVELINUS-ALPINUS L.; SIZE-STRUCTURED POPULATIONS; PHENOTYPIC PLASTICITY; ONTOGENIC NICHE; POLYMORPHISM; COMPETITION; DYNAMICS; LAKES; SPECIALIZATION; SPECIATION Life-history tradeoffs between energy investments in reproduction versus somatic growth may be highly important for fish populations suffering from food limitations. This study addresses life-history tradeoffs in a stunted Arctic charr population from a subarctic lake sampled annually over a 12-year period. The vast majority of charr matured early, grew slowly toward average adult sizes of 13-14 cm, and had a short longevity with few fish reaching ages older than 6 years. Some gender differences in life-history strategies related to sexual maturation were revealed, likely due to energetic constraints from high cost of egg production. Some charr followed a highly different growth trajectory, growing rapidly and attaining lengths > 40 cm. These fast-growing individuals matured later and reached higher ages than the stunted fish. Hence, there was a distinct tradeoff between early versus late sexual maturation, the former strategy resulting in short generation time enhancing the survival up to first spawning and the latter being related to a dietary shift to cannibalism resulting in increased growth and body size, and reproduction at a postponed maturation age. This dual pattern was sustained over the 12-year study period, apparently reflecting two contrasting stable strategies. [Amundsen, Per-Arne] UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, Tromso, Norway Amundsen, PA (reprint author), UiT Arctic Univ Norway, Fac Biosci Fisheries & Econ, Dept Arctic & Marine Biol, Tromso, Norway. per-arne.amundsen@uit.no Adams CE, 1998, J FISH BIOL, V52, P1259, DOI 10.1006/jfbi.1998.0676; Agresti A., 2002, CATEGORICAL DATA ANA; AMUNDSEN PA, 1994, J FISH BIOL, V45, P181, DOI 10.1111/j.1095-8649.1994.tb01092.x; AMUNDSEN PA, 1995, ENVIRON BIOL FISH, V43, P285, DOI 10.1007/BF00005860; Amundsen PA, 1999, ECOL FRESHW FISH, V8, P43, DOI 10.1111/j.1600-0633.1999.tb00051.x; Amundsen PA, 2007, J ANIM ECOL, V76, P149, DOI 10.1111/j.1365-2656.2006.01179.x; Amundsen PA, 2008, ENVIRON BIOL FISH, V83, P45, DOI 10.1007/s10641-007-9262-1; Arrington DA, 2002, ECOLOGY, V83, P2145, DOI 10.1890/0012-9658(2002)083[2145:HODFRO]2.0.CO;2; Berg OK, 2010, HYDROBIOLOGIA, V652, P337, DOI 10.1007/s10750-010-0366-9; Borgstrom R, 2015, POLAR BIOL, V38, P309, DOI 10.1007/s00300-014-1587-6; Bystrom P, 2006, J ANIM ECOL, V75, P434, DOI 10.1111/j.1365-2656.2006.01064.x; Claessen D, 2000, AM NAT, V155, P219, DOI 10.1086/303315; Claessen D, 2002, ECOLOGY, V83, P1660, DOI 10.2307/3071986; Curtis M.A., 1984, P395; Finstad AG, 2006, OIKOS, V112, P73, DOI 10.1111/j.0030-1299.2006.13990.x; Finstad AG, 2000, CAN J FISH AQUAT SCI, V57, P1718, DOI 10.1139/cjfas-57-8-1718; Finstad AG, 2004, CAN J FISH AQUAT SCI, V61, P2151, DOI 10.1139/F04-157; Finstad AG, 2001, ECOL FRESHW FISH, V10, P220, DOI 10.1034/j.1600-0633.2001.100404.x; Hammar J, 2014, J FISH BIOL, V85, P81, DOI 10.1111/jfb.12321; Hammar J, 2000, OIKOS, V88, P33, DOI 10.1034/j.1600-0706.2000.880105.x; Henriksen EH, 2016, HYDROBIOLOGIA, V783, P37, DOI 10.1007/s10750-015-2589-2; Holden M.J., 1974, MANUAL FISHERIES SCI; Jensen H, 2012, J FISH BIOL, V80, P2448, DOI 10.1111/j.1095-8649.2012.03294.x; Jonsson B, 2001, J FISH BIOL, V58, P605, DOI 10.1006/jfbi.2000.1515; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Klemetsen A., 2013, J ICHTHYOL, V53, P781; Klemetsen Anders, 2010, Freshwater Reviews, V3, P49, DOI 10.1608/FRJ-3.1.3; Knudsen R, 2016, HYDROBIOLOGIA, V783, P65, DOI 10.1007/s10750-015-2601-x; PARKER HH, 1991, J FISH BIOL, V38, P123, DOI 10.1111/j.1095-8649.1991.tb03098.x; Persson L, 2000, ECOLOGY, V81, P1058; SKULASON S, 1995, TRENDS ECOL EVOL, V10, P366, DOI 10.1016/S0169-5347(00)89135-1; Smalas A, 2013, J ICHTHYOL+, V53, P856, DOI DOI 10.1134/S0032945213100111; SNORRASON SS, 1994, BIOL J LINN SOC, V52, P1; Stearns S, 1992, EVOLUTION LIFE HIST; Svanback R, 2009, AM NAT, V174, P176, DOI 10.1086/600112; Svenning M. A., 1993, THESIS; Svenning MA, 2005, J FISH BIOL, V66, P957, DOI 10.1111/j.0022-1112.2005.00646.x; Svenning Martin-A., 1995, Nordic Journal of Freshwater Research, V71, P424; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Werner EE, 1986, COMMUNITY ECOLOGY, P344; Woods PJ, 2013, J FISH BIOL, V82, P569, DOI 10.1111/jfb.12011; Woods PJ, 2012, EVOL ECOL RES, V14, P973; WOOTTON RJ, 1998, ECOLOGY TELEOST FISH 43 2 2 1 21 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia DEC 2016 783 1 11 19 10.1007/s10750-015-2600-y 9 Marine & Freshwater Biology Marine & Freshwater Biology EB2WE WOS:000387222500002 2019-02-21 J Nash, KL; Graham, NAJ Nash, Kirsty L.; Graham, Nicholas A. J. Ecological indicators for coral reef fisheries management FISH AND FISHERIES English Article Artisanal fisheries; ecosystem function; indicator selection; reference points; sensitivity; specificity ECOSYSTEM-BASED MANAGEMENT; DATA-POOR FISHERIES; LIFE-HISTORY STRATEGIES; SIZE-BASED INDICATORS; MARINE FOOD WEBS; FISH COMMUNITIES; REFERENCE POINTS; BODY-SIZE; FUNCTIONAL DIVERSITY; HARVEST STRATEGIES Coral reef fisheries are of great importance both economically and for food security, but many reefs are showing evidence of overfishing, with significant ecosystem-level consequences for reef condition. In response, ecological indicators have been developed to assess the state of reef fisheries and their broader ecosystem-level impacts. To date, use of fisheries indicators for coral reefs has been rather piecemeal, with no overarching understanding of their performance with respect to highlighting fishing effects. Here, we provide a review of multispecies fishery-independent indicators used to evaluate fishing impacts on coral reefs. We investigate the consistency with which indicators highlight fishing effects on coral reefs. We then address questions of statistical power and uncertainty, type of fishing gradient, scale of analysis, the influence of other variables and the need for more work to set reference points for empirical, fisheries-independent indicators on coral reefs. Our review provides knowledge that will help underpin the assessment of the ecological effects of fishing, offering essential support for the development and implementation of coral reef fisheries management plans. [Nash, Kirsty L.; Graham, Nicholas A. J.] James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia; [Nash, Kirsty L.] Univ Tasmania, Ctr Marine Socioecol, Inst Marine & Antarctic Studies, Hobart, Tas 7000, Australia; [Graham, Nicholas A. J.] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 4YQ, England Nash, KL (reprint author), IMAS Hobart, Private Bag 129, Hobart, Tas 7001, Australia. nashkirsty@gmail.com Nash, Kirsty/B-5456-2015; Graham, Nicholas/C-8360-2014 Nash, Kirsty/0000-0003-0976-3197; Graham, Nicholas/0000-0002-0304-7467 Australian Research Council; Royal Society This work was supported by the Australian Research Council. Nick Graham is supported by the Royal Society. Thank you to Jessica Blythe and Paul Markey for their comments on the manuscript. We thank four anonymous reviewers for their comments, which prompted significant improvements to the manuscript. Abesamis RA, 2014, REV FISH BIOL FISHER, V24, P1033, DOI 10.1007/s11160-014-9362-x; Amand M, 2004, AQUAT LIVING RESOUR, V17, P139, DOI 10.1051/alr:2004022; Appeldoorn RS, 2008, ENVIRON CONSERV, V35, P232, DOI 10.1017/S0376892908005018; Aswani S, 2015, FRONTIERS MARINE, V2, P50, DOI [10.3389/fmars.2015.00050, DOI 10.3389/FMARS.2015.00050]; Ault JS, 2014, ECOL INDIC, V44, P164, DOI 10.1016/j.ecolind.2014.04.013; Babcock EA, 2013, FISH RES, V147, P434, DOI 10.1016/j.fishres.2013.03.011; Babcock EA, 2011, CAN J FISH AQUAT SCI, V68, P343, DOI 10.1139/F10-146; Bartlett CY, 2009, CONSERV BIOL, V23, P1475, DOI 10.1111/j.1523-1739.2009.01293.x; Beets C. J., 1997, P 8 INT COR REEF S, V2, P2009; Bejarano S, 2013, MAR ECOL PROG SER, V482, P197, DOI 10.3354/meps10270; Bellwood DR, 2004, NATURE, V429, P827, DOI 10.1038/nature02691; Bianchi G, 2000, ICES J MAR SCI, V57, P558, DOI 10.1006/jmsc.2000.0727; Branch TA, 2010, NATURE, V468, P431, DOI 10.1038/nature09528; Bundy A, 2010, ICES J MAR SCI, V67, P745, DOI 10.1093/icesjms/fsp283; Caddy J., 1998, 04299345 FAO UN; Caddy J.F., 1995, FAO FISH TECH PAP, P83; Cesar H., 2003, EC WORLDWIDE CORAL R; Chabanet P, 2005, AQUAT LIVING RESOUR, V18, P215, DOI 10.1051/alr:2005028; Christensen NL, 1996, ECOL APPL, V6, P665, DOI 10.2307/2269460; Christie P, 2009, COAST MANAGE, V37, P349, DOI 10.1080/08920750902851740; Cinner JE, 2012, GLOBAL ENVIRON CHANG, V22, P651, DOI 10.1016/j.gloenvcha.2012.03.002; Cinner JE, 2013, CONSERV BIOL, V27, P453, DOI 10.1111/j.1523-1739.2012.01933.x; CLARKE KR, 1993, MAR ECOL PROG SER, V92, P205, DOI 10.3354/meps092205; Clua E, 2005, AQUAT LIVING RESOUR, V18, P199, DOI 10.1051/alr:2005026; Clua E, 2008, AQUAT LIVING RESOUR, V21, P339, DOI 10.1051/alr:2008036; Cohen PJ, 2013, MAR POLICY, V37, P278, DOI 10.1016/j.marpol.2012.05.010; Colegrave N, 2003, BEHAV ECOL, V14, P446, DOI 10.1093/beheco/14.3.446; Cope JM, 2009, CAN J FISH AQUAT SCI, V66, P1256, DOI 10.1139/F09-084; Costello C, 2012, SCIENCE, V338, P517, DOI 10.1126/science.1223389; Coulthard S, 2011, GLOBAL ENVIRON CHANG, V21, P453, DOI 10.1016/j.gloenvcha.2011.01.003; Darling ES, 2013, GLOBAL CHANGE BIOL, V19, P1930, DOI 10.1111/gcb.12191; DICKIE LM, 1987, ECOL MONOGR, V57, P233, DOI 10.2307/2937082; Dowling NA, 2015, FISH RES, V171, P130, DOI 10.1016/j.fishres.2014.09.013; Dowling NA, 2008, FISH RES, V94, P380, DOI 10.1016/j.fishres.2008.09.033; Dulvy NK, 2004, ECOL LETT, V7, P410, DOI 10.1111/j.1461-0248.2004.00593.x; Dulvy NK, 2004, CAN J FISH AQUAT SCI, V61, P466, DOI 10.1139/F03-169; Edwards CTT, 2012, REV FISH SCI, V20, P136, DOI 10.1080/10641262.2012.683210; Erisman BE, 2014, FISH RES, V159, P75, DOI 10.1016/j.fishres.2014.05.013; Essington TE, 2006, P NATL ACAD SCI USA, V103, P3171, DOI 10.1073/pnas.0510964103; Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF; FAO, 1999, IND SUST DEV MAR CAP, V8; Francis RICC, 1997, CAN J FISH AQUAT SCI, V54, P1699, DOI 10.1139/f97-100; Friedlander AM, 2007, ECOL APPL, V17, P715, DOI 10.1890/06-0536; Friedlander AM, 2002, MAR ECOL PROG SER, V230, P253, DOI 10.3354/meps230253; Frisch AJ, 2014, MAR BIOL, V161, P61, DOI 10.1007/s00227-013-2315-4; Froese R, 2004, FISH FISH, V5, P86, DOI 10.1111/j.1467-2979.2004.00144.x; Fulton EA, 2005, ICES J MAR SCI, V62, P540, DOI 10.1016/j.icesjms.2004.12.012; Galal N, 2002, MAR FRESHWATER RES, V53, P199, DOI 10.1071/MF01158; Gislason H, 1998, ICES J MAR SCI, V55, P362, DOI 10.1006/jmsc.1997.0323; Gonzalez A, 2009, ANNU REV ECOL EVOL S, V40, P393, DOI 10.1146/annurev.ecolsys.39.110707.173349; Grace-McCaskey C. A., 2012, 12 INT COR REEF S SO, V22; Graham NAJ, 2013, CORAL REEFS, V32, P315, DOI 10.1007/s00338-012-0984-y; Graham NAJ, 2005, CORAL REEFS, V24, P118, DOI 10.1007/s00338-004-0466-y; Graham NAJ, 2015, NATURE, V518, P94, DOI 10.1038/nature14140; Greenstreet SPR, 2006, ICES J MAR SCI, V63, P573, DOI 10.1016/j.icesjms.2005.12.009; Guillemot N, 2014, ECOL INDIC, V43, P227, DOI 10.1016/j.ecolind.2014.02.015; Gurevitch J, 1999, ECOLOGY, V80, P1142, DOI 10.2307/177061; Harborne AR, 2008, J APPL ECOL, V45, P1010, DOI 10.1111/j.1365-2664.2008.01490.x; Hatcher BG, 1997, CORAL REEFS, V16, pS77, DOI 10.1007/s003380050244; HELSTROM CW, 1968, STAT THEORY SIGNAL D; Henriques S, 2014, J APPL ECOL, V51, P623, DOI 10.1111/1365-2664.12235; Hicks CC, 2014, P NATL ACAD SCI USA, V111, P17791, DOI 10.1073/pnas.1413473111; Hicks CC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036022; Hilborn R, 2007, AMBIO, V36, P296, DOI 10.1579/0044-7447(2007)36[296:MTSBLF]2.0.CO;2; Hoegh-Guldberg O, 2007, SCIENCE, V318, P1737, DOI 10.1126/science.1152509; Hoggarth D. D., 2006, FAO FISHERIES TECHNI, V487; Houle JE, 2012, CAN J FISH AQUAT SCI, V69, P1065, DOI 10.1139/F2012-044; Hughes TP, 2010, TRENDS ECOL EVOL, V25, P633, DOI 10.1016/j.tree.2010.07.011; Jackson JBC, 1997, CORAL REEFS, V16, pS23, DOI 10.1007/s003380050238; Jennings S, 1998, ADV MAR BIOL, V34, P201, DOI 10.1016/S0065-2881(08)60212-6; Jennings S, 2005, ICES J MAR SCI, V62, P397, DOI 10.1016/j.icesjms.2004.07.030; Jennings S, 2005, FISH FISH, V6, P212, DOI 10.1111/j.1467-2979.2005.00189.x; Jennings S, 2001, J ANIM ECOL, V70, P934, DOI 10.1046/j.0021-8790.2001.00552.x; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; Jennings S, 1996, AMBIO, V25, P44; Johnson AE, 2013, FISH FISH, V14, P281, DOI 10.1111/j.1467-2979.2012.00468.x; Jupiter Stacy D., 2014, Pacific Conservation Biology, V20, P165; Karnauskas M, 2014, ECOL INDIC, V46, P454, DOI 10.1016/j.ecolind.2014.07.006; Karnauskas M, 2011, FISH RES, V111, P40, DOI 10.1016/j.fishres.2011.06.010; Karr KA, 2015, J APPL ECOL, V52, P402, DOI 10.1111/1365-2664.12388; Kelly CJ, 2006, FISH RES, V79, P233, DOI 10.1016/j.fishres.2006.03.007; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Laliberte E, 2010, ECOLOGY, V91, P299, DOI 10.1890/08-2244.1; Large SI, 2013, ICES J MAR SCI, V70, P755, DOI 10.1093/icesjms/fst067; Leigh G., 2014, STOCK ASSESSMENT QUE; Levine M, 2001, PHARMACOTHERAPY, V21, P405, DOI 10.1592/phco.21.5.405.34503; Lindfield SJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0092628; Link JS, 2010, ICES J MAR SCI, V67, P787, DOI 10.1093/icesjms/fsp258; Link JS, 2005, ICES J MAR SCI, V62, P569, DOI 10.1016/j.icesjms.2004.12.015; Link JS, 2002, CAN J FISH AQUAT SCI, V59, P1429, DOI 10.1139/F02-115; Lokrantz J, 2008, CORAL REEFS, V27, P967, DOI 10.1007/s00338-008-0394-3; MacNeil MA, 2015, NATURE, V520, P341, DOI 10.1038/nature14358; Madin EMP, 2010, ECOLOGY, V91, P3563, DOI 10.1890/09-2174.1; Mangi SC, 2007, OCEAN COAST MANAGE, V50, P463, DOI 10.1016/j.ocecoaman.2006.10.003; Mardle S, 2002, J ENVIRON MANAGE, V65, P49, DOI 10.1006/jema.2001.0518; Martin J, 2009, ECOL APPL, V19, P1079, DOI 10.1890/08-0255.1; McClanahan TR, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1938; McClanahan TR, 2015, CONSERV BIOL, V29, P409, DOI 10.1111/cobi.12430; McClanahan TR, 2012, MAR ECOL PROG SER, V469, P121, DOI 10.3354/meps10009; McClanahan TR, 2011, FISHERIES MANAG ECOL, V18, P50, DOI 10.1111/j.1365-2400.2010.00768.x; McClanahan TR, 2011, P NATL ACAD SCI USA, V108, P17230, DOI 10.1073/pnas.1106861108; MCCLANAHAN TR, 1994, HYDROBIOLOGIA, V286, P109, DOI 10.1007/BF00008501; McGilliard CR, 2011, ICES J MAR SCI, V68, P201, DOI 10.1093/icesjms/fsq151; Micheli F, 2014, BIOL CONSERV, V171, P186, DOI 10.1016/j.biocon.2013.12.029; Mouillot D, 2014, P NATL ACAD SCI USA, V111, P13757, DOI 10.1073/pnas.1317625111; Mullon C., 2012, J BIOECON, V14, P267, DOI DOI 10.1007/s10818-011-9124-y; Mumby PJ, 2016, FISH FISH, V17, P266, DOI 10.1111/faf.12078; Nash KL, 2013, ECOL APPL, V23, P1632, DOI 10.1890/12-2031.1; Nash KL, 2013, ECOSYSTEMS, V16, P478, DOI 10.1007/s10021-012-9625-0; Newson Stuart E., 2009, Endangered Species Research, V7, P101, DOI 10.3354/esr00162; Newton K, 2007, CURR BIOL, V17, P655, DOI 10.1016/j.cub.2007.02.054; Nystrom M, 2012, ECOSYSTEMS, V15, P695, DOI 10.1007/s10021-012-9530-6; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; PAULY D, 1995, TRENDS ECOL EVOL, V10, P430, DOI 10.1016/S0169-5347(00)89171-5; Pazhayamadom DG, 2013, FISH RES, V145, P114, DOI 10.1016/j.fishres.2013.02.002; Pestle WJ, 2013, J ISL COAST ARCHAEOL, V8, P228, DOI 10.1080/15564894.2013.797943; PETERMAN RM, 1992, MAR POLLUT BULL, V24, P231, DOI 10.1016/0025-326X(92)90559-O; Piet GJ, 2004, ICES J MAR SCI, V61, P1305, DOI 10.1016/j.icesjms.2004.08.009; Punt AE, 2001, MAR FRESHWATER RES, V52, P819, DOI 10.1071/MF00095; Rice J, 2003, OCEAN COAST MANAGE, V46, P235, DOI 10.1016/S0964-5691(03)00006-1; Rice JC, 2005, ICES J MAR SCI, V62, P516, DOI 10.1016/j.icesjms.2005.01.003; Rochet MJ, 2003, CAN J FISH AQUAT SCI, V60, P86, DOI 10.1139/F02-164; Rogers SI, 2005, MAR POLLUT BULL, V50, P9, DOI 10.1016/j.marpolbul.2004.10.028; Rouyer T, 2008, P NATL ACAD SCI USA, V105, P5420, DOI 10.1073/pnas.0709034105; Ruckelshaus M, 2008, BIOSCIENCE, V58, P53, DOI 10.1641/B580110; Russ Garry R., 2002, P421, DOI 10.1016/B978-012615185-5/50024-4; Sadovy Y, 2005, FISH FISH, V6, P167, DOI 10.1111/j.1467-2979.2005.00186.x; Sainsbury KJ, 2000, ICES J MAR SCI, V57, P731, DOI 10.1006/jmsc.2000.0737; Salomon AK, 2011, B MAR SCI, V87, P251, DOI 10.5343/bms.2010.1089; Samhouri JF, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008907; Scandol J. P., 2004, FISHERIES RESOURCE A, V96; SHELDON RW, 1972, LIMNOL OCEANOGR, V17, P327, DOI 10.4319/lo.1972.17.3.0327; Shin YJ, 2005, ICES J MAR SCI, V62, P384, DOI 10.1016/j.icesjms.2005.01.004; Shin YJ, 2012, REV FISH BIOL FISHER, V22, P835, DOI 10.1007/s11160-012-9252-z; Shin YJ, 2010, ICES J MAR SCI, V67, P692, DOI 10.1093/icesjms/fsp294; SMITH AH, 1992, EPIDEMIOLOGY, V3, P449, DOI 10.1097/00001648-199209000-00011; Smith D, 2009, MAR COAST FISH, V1, P244, DOI 10.1577/C08-041.1; Starr RM, 2010, MAR COAST FISH, V2, P159, DOI 10.1577/C08-056.1; Steneck RS, 2014, MAR ECOL PROG SER, V506, P115, DOI 10.3354/meps10764; Tallis H, 2010, MAR POLICY, V34, P340, DOI 10.1016/j.marpol.2009.08.003; Taylor BM, 2014, CORAL REEFS, V33, P869, DOI 10.1007/s00338-014-1187-5; Taylor BM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2423; Teh LSL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065397; Thorson JT, 2015, FISH FISH, V16, P342, DOI 10.1111/faf.12061; Thorson JT, 2012, CAN J FISH AQUAT SCI, V69, P1556, DOI 10.1139/F2012-077; Thrush SF, 2010, ANNU REV MAR SCI, V2, P419, DOI 10.1146/annurev-marine-120308-081129; Travis J, 2014, P NATL ACAD SCI USA, V111, P581, DOI 10.1073/pnas.1305853111; Trenkel VM, 2003, CAN J FISH AQUAT SCI, V60, P67, DOI 10.1139/F02-163; Valles H, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086291; Villeger S, 2008, ECOLOGY, V89, P2290, DOI 10.1890/07-1206.1; Wagner T, 2013, FISHERIES, V38, P309, DOI 10.1080/03632415.2013.799466; Weijerman M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063797; Wiedenmann J, 2013, N AM J FISH MANAGE, V33, P845, DOI 10.1080/02755947.2013.811128; Willis TJ, 2001, J FISH BIOL, V59, P1408, DOI 10.1006/jfbi.2001.1721; Wilson SK, 2008, GLOBAL CHANGE BIOL, V14, P2796, DOI 10.1111/j.1365-2486.2008.01696.x; Wilson SK, 2007, MAR BIOL, V151, P1069, DOI 10.1007/s00227-006-0538-3; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Worm B, 2012, TRENDS ECOL EVOL, V27, P594, DOI 10.1016/j.tree.2012.07.005; Worm B, 2009, SCIENCE, V325, P578, DOI 10.1126/science.1173146; Yemane D, 2005, ICES J MAR SCI, V62, P374, DOI 10.1016/j.icesjms.2005.01.009; Yodzis P, 2000, ECOLOGY, V81, P261, DOI 10.2307/177149 161 10 10 3 68 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. DEC 2016 17 4 1029 1054 10.1111/faf.12157 26 Fisheries Fisheries EA9CO WOS:000386938900006 2019-02-21 J Zera, AJ Zera, Anthony J. Juvenile Hormone and the endocrine regulation of wing polymorphism in insects: new insights from circadian and functional-genomic studies in Gryllus crickets PHYSIOLOGICAL ENTOMOLOGY English Review Circadian rhythm; Gryllus firmus; hormone receptor; hormone titre; insulin-signalling; Juvenile Hormone (JH); wing polymorphism HEMOLYMPH JH TITER; HONEY-BEE COLONIES; DIVISION-OF-LABOR; EVOLUTIONARY ENDOCRINOLOGY; DROSOPHILA-MELANOGASTER; ENVIRONMENTAL-FACTORS; PYRRHOCORIS-APTERUS; NILAPARVATA-LUGENS; SIGNALING PATHWAY; BROWN PLANTHOPPER For decades, Juvenile Hormone (JH) has been a major focus of studies investigating the endocrine regulation of wing-polymorphism. The most general model postulates a single threshold, above which JH causes the expression of traits that define the short-winged morph (SW), and below which JH causes the expression of traits that define the long-winged morph (LW). Early studies in aphids and crickets reported ambiguous results as a result of the small size of aphids or the very low JH titre in nymphal crickets. Detailed studies in wing morphs of adult Gryllus firmus Scudder uncovered an unexpected and novel morph-specific JH titre circadian cycle (cycling in LW but not in SW) in both the laboratory and field. This finding clearly contradicts the classic model. Morph-specific daily rhythms in global gene expression are strongly associated with (and are possibly caused by) the morph-specific JH titre rhythm. Daily rhythms for hormonal traits and gene expression, which are largely ignored in studies of life-history evolution, may be common and play an important role in adaptation. Juvenile Hormone has likely evolved a specialized within-morph function in G. firmus, regulating aspects of daily flight in the LW morph, which exhibits circadian flight. Other hormones, such as insulin-like peptides and ecdysteroids, possibly regulate the expression of chronic (long-term, noncircadian) differences between LW and SW morphs. Future studies should aim to investigate JH titres in more detail, as well as other hormones, most notably peptides and biogenic amines, which are largely ignored in endocrine studies of wing polymorphism. [Zera, Anthony J.] Univ Nebraska, Sch Biol Sci, 1184 T St, Lincoln, NE 68588 USA Zera, AJ (reprint author), Univ Nebraska, Sch Biol Sci, 1184 T St, Lincoln, NE 68588 USA. azera1@unl.edu National Science Foundation (U.S.A.) [IOS-1122075] The author gratefully acknowledges the National Science Foundation (U.S.A.), which has supported his studies of wing polymorphism during the past 25 years, most recently by award # IOS-1122075. Adkins-Regan E., 2005, HORMONES ANIMAL SOCI; Amsalem E, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-45; Badisco L, 2008, J MOL ENDOCRINOL, V40, P137, DOI 10.1677/JME-07-0161; Badisco L, 2011, PEPTIDES, V32, P573, DOI 10.1016/j.peptides.2010.11.008; Beaver LM, 2003, J BIOL RHYTHM, V18, P463, DOI 10.1177/0748730403259108; Bertuso AG, 2002, J INSECT PHYSIOL, V48, P221, DOI 10.1016/S0022-1910(01)00167-6; Bloch G, 2013, J INSECT PHYSIOL, V59, P56, DOI 10.1016/j.jinsphys.2012.10.012; Bonilla ML, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-2327-1; Corona M, 2007, P NATL ACAD SCI USA, V104, P7128, DOI 10.1073/pnas.0701909104; Crossin GT, 2016, FUNCT ECOL, V30, P116, DOI 10.1111/1365-2435.12482; Dai Hua-guo, 2001, Acta Entomologica Sinica, V44, P27; de Azevedo SV, 2008, J INSECT PHYSIOL, V54, P1064, DOI 10.1016/j.jinsphys.2008.04.009; de Paula RM, 2008, CELL CYCLE, V7, P2630, DOI 10.4161/cc.7.17.6516; Dunlap J. C, 2004, CHRONOBIOLOGY BIOL T; Elekonich MM, 2001, J INSECT PHYSIOL, V47, P1119, DOI 10.1016/S0022-1910(01)00090-7; Emlen DJ, 2012, SCIENCE, V337, P860, DOI 10.1126/science.1224286; Fassold K, 2010, J COMP PHYSIOL A, V196, P271, DOI 10.1007/s00359-010-0513-9; Goodman W.G., 2005, P319; Goodman W. G., 2012, INSECT ENDOCRINOLOGY, P310, DOI DOI 10.1016/B978-0-12-384749-2-10008-1; Gotoh H, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004098; Guerra PA, 2011, BIOL REV, V86, P813, DOI 10.1111/j.1469-185X.2010.00172.x; Hardie J., 1985, COMPREHENSIVE INSECT, V8, P441; Harrison C, 2014, J CELL COMMUN SIGNAL, V8, P195, DOI 10.1007/s12079-014-0236-8; HARRISON RG, 1980, ANNU REV ECOL SYST, V11, P95, DOI 10.1146/annurev.es.11.110180.000523; Hartfelder K, 2012, INSECT ENDOCRINOLOGY, P464; Henrich V. C., 2009, INSECT DEV MORPHOGEN, P177; Ishikawa A, 2012, INSECT MOL BIOL, V21, P49, DOI 10.1111/j.1365-2583.2011.01111.x; Jindra M, 2013, ANNU REV ENTOMOL, V58, P181, DOI 10.1146/annurev-ento-120811-153700; Liu SH, 2008, J INSECT PHYSIOL, V54, P1495, DOI 10.1016/j.jinsphys.2008.08.010; MASAKI S, 1987, EVOL BIOL, V21, P349; Maxova A, 2001, EUR J ENTOMOL, V98, P433, DOI 10.14411/eje.2001.063; Mello TRP, 2014, FRONT GENET, V5, DOI 10.3389/fgene.2014.00445; NELSON RJ, 1995, INTRO BEHAV ENDOCRIN; Neufeld-Cohen A, 2016, P NATL ACAD SCI USA, V113, pE1673, DOI 10.1073/pnas.1519650113; Nijhout H.F., 1994, INSECT HORMONES; Nijhout HF, 1999, BIOSCIENCE, V49, P181, DOI 10.2307/1313508; Pener M. P., 1985, COMPREHENSIVE INSECT, P491; Qi MS, 2005, J CELL SCI, V118, P3569, DOI 10.1242/jcs.02470; Rankin M.A., 1978, P5; RANKIN MA, 1992, ANNU REV ENTOMOL, V37, P533; Riddiford L., 1985, COMPREHENSIVE INSECT, P35; Robinson GE, 1997, ARCH INSECT BIOCHEM, V35, P559, DOI 10.1002/(SICI)1520-6327(1997)35:4<559::AID-ARCH13>3.0.CO;2-9; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; Rosvall KA, 2012, P ROY SOC B-BIOL SCI, V279, P3547, DOI 10.1098/rspb.2012.0442; Saunders D.S., 2002, INSECT CLOCKS; Schipper I, 1998, J CLIN ENDOCR METAB, V83, P1292, DOI 10.1210/jc.83.4.1292; Schwartzberg EG, 2008, J INSECT PHYSIOL, V54, P1332, DOI 10.1016/j.jinsphys.2008.04.025; Smykal V, 2014, INSECT BIOCHEM MOLEC, V45, P69, DOI 10.1016/j.ibmb.2013.12.003; Stay B, 2010, J INSECT PHYSIOL, V56, P266, DOI 10.1016/j.jinsphys.2009.10.012; STEPIEN G, 1988, INSECT BIOCHEM, V18, P313, DOI 10.1016/0020-1790(88)90096-0; Stout J, 1998, J COMP PHYSIOL A, V182, P635, DOI 10.1007/s003590050209; Sullivan JP, 2003, J EXP BIOL, V206, P2287, DOI 10.1242/jeb.00432; Taniguchi CM, 2006, NAT REV MOL CELL BIO, V7, P85, DOI 10.1038/nrm1837; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; Tawfik AI, 1999, P NATL ACAD SCI USA, V96, P7083, DOI 10.1073/pnas.96.12.7083; TOBE SS, 1985, ADV INSECT PHYSIOL, V18, P305; Toma DP, 2000, P NATL ACAD SCI USA, V97, P6914, DOI 10.1073/pnas.97.12.6914; Trumbo ST, 2014, ANIM BEHAV, V92, P203, DOI 10.1016/j.anbehav.2014.04.004; Tu MP, 2005, GEN COMP ENDOCR, V142, P347, DOI 10.1016/j.ygcen.2005.02.009; Vellichirammal NN, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0082129; WALKER TJ, 1986, FLA ENTOMOL, V69, P678, DOI 10.2307/3495213; Wang XH, 2014, ANNU REV ENTOMOL, V59, P225, DOI 10.1146/annurev-ento-011613-162019; WEEKS JC, 1992, DEV BIOL, V149, P185, DOI 10.1016/0012-1606(92)90275-L; Wigglesworth V. B., 1961, Symposia Royal Entomological Society London, Vno. 1, P103; Wu Q, 2006, ANNU REV ENTOMOL, V51, P1, DOI 10.1146/annurev.ento.51.110104.151011; Xu HJ, 2015, NATURE, V519, P464, DOI 10.1038/nature14286; Zeng Y, 2015, ANN ENTOMOL SOC AM, V108, P1053, DOI 10.1093/aesa/sav085; Zera A. J., 2009, Phenotypic plasticity of insects: mechanisms and consequences, P609; Zera AJ, 1999, EVOLUTION, V53, P837, DOI 10.1111/j.1558-5646.1999.tb05377.x; ZERA AJ, 1989, J INSECT PHYSIOL, V35, P501, DOI 10.1016/0022-1910(89)90057-7; Zera AJ, 1997, PHYSIOL ZOOL, V70, P519, DOI 10.1086/515865; Zera AJ, 2003, INTEGR COMP BIOL, V43, P607, DOI 10.1093/icb/43.5.607; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2001, PHYSIOL BIOCHEM ZOOL, V74, P293, DOI 10.1086/319664; Zera AJ, 2001, EVOLUTION, V55, P538, DOI 10.1554/0014-3820(2001)055[0538:TEGBOL]2.0.CO;2; ZERA AJ, 1989, J INSECT PHYSIOL, V35, P7, DOI 10.1016/0022-1910(89)90031-0; Zera AJ, 2007, PHYSIOL BIOCHEM ZOOL, V80, P592, DOI 10.1086/521803; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615; Zera AJ, 2007, EVOL DEV, V9, P499, DOI 10.1111/j.1525-142X.2007.00181.x; Zera AJ, 2006, COMP BIOCHEM PHYS A, V144, P365, DOI 10.1016/j.cbpa.2005.11.026; Zera AJ, 2016, INTEGR COMP BIOL, V56, P159, DOI 10.1093/icb/icw027; Zera AJ, 2013, QSAR ENVIRON HEALTH, P31; Zera AJ, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P63; Zera AJ, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P311; Zera AJ, 2009, J INSECT PHYSIOL, V55, P450, DOI 10.1016/j.jinsphys.2008.11.012; Zhang XP, 2009, J APPL PHYSIOL, V107, P1647, DOI 10.1152/japplphysiol.00725.2009; Zhao ZW, 2004, J INSECT PHYSIOL, V50, P965, DOI 10.1016/j.jinsphys.2004.07.008; Zhao ZW, 2004, J INSECT PHYSIOL, V50, P93, DOI 10.1016/j.jinsphys.2003.10.003 88 5 5 5 49 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6962 1365-3032 PHYSIOL ENTOMOL Physiol. Entomol. DEC 2016 41 4 313 326 10.1111/phen.12166 14 Entomology Entomology EA9DK WOS:000386941200006 Bronze 2019-02-21 J Arnqvist, G; Novicic, ZK; Castro, JA; Sayadi, A Arnqvist, Goran; Novicic, Zorana Kurbalija; Castro, Jose A.; Sayadi, Ahmed Negative frequency dependent selection on sympatric mtDNA haplotypes in Drosophila subobscura HEREDITAS English Article Balancing selection; mtDNA; Life history evolution; Polymorphism; Negative frequency dependent selection; SimuPop MITOCHONDRIAL-DNA HAPLOTYPES; OLD-WORLD POPULATIONS; CYTOPLASMIC TRANSMISSION; CHROMOSOMAL ARRANGEMENTS; DIFFERENTIAL SELECTION; LINKAGE DISEQUILIBRIA; NATURAL-SELECTION; GENETIC-VARIATION; METABOLIC-RATE; NUCLEAR GENES Background: Recent experimental evidence for selection on mitochondrial DNA (mtDNA) has prompted the question as to what processes act to maintain within-population variation in mtDNA. Balancing selection though negative frequency dependent selection (NFDS) among sympatric haplotypes is a possibility, but direct empirical evidence for this is very scarce. Findings: We extend the previous findings of a multi-generation replicated cage experiment in Drosophila subobscura, where mtDNA polymorphism was maintained in a laboratory setting. First, we use a set of Monte Carlo simulations to show that the haplotype frequency dynamics observed are inconsistent with genetic drift alone and most closely match those expected under NFDS. Second, we show that haplotype frequency changes over time were significantly different from those expected under either genetic drift or positive selection but were consistent with those expected under NFSD. Conclusions: Collectively, our analyses provide novel support for NFDS on mtDNA haplotypes, suggesting that mtDNA polymorphism may at least in part be maintained by balancing selection also in natural populations. We very briefly discuss the possible mechanisms that might be involved. [Arnqvist, Goran; Novicic, Zorana Kurbalija; Sayadi, Ahmed] Uppsala Univ, Dept Ecol & Genet, Anim Ecol, Norbyv 18D, SE-75236 Uppsala, Sweden; [Novicic, Zorana Kurbalija] Univ Belgrade, Inst Biol Res Sinisa Stankovic, Despot Stefan Blvd 142, Belgrade 11000, Serbia; [Castro, Jose A.] Univ Illes Balears, Fac Ciencies, Dept Biol, Lab Genet, Edifici Guillem Colom,Campus UIB, Palma de Mallorca 07122, Balears, Spain Arnqvist, G (reprint author), Uppsala Univ, Dept Ecol & Genet, Anim Ecol, Norbyv 18D, SE-75236 Uppsala, Sweden. Goran.Arnqvist@ebc.uu.se Arnqvist, Goran/E-6782-2015 Arnqvist, Goran/0000-0002-3501-3376; Castro, Jose A./0000-0001-8262-560X European Research Council [GENCON AdG-294333]; Swedish Research Council [621-2014-4523] This contribution was supported by the European Research Council (GENCON AdG-294333) and the Swedish Research Council (621-2014-4523). AFONSO JM, 1990, MOL BIOL EVOL, V7, P123; Agresti A, 1998, AM STAT, V52, P119, DOI 10.2307/2685469; Arnqvist G, 2010, EVOLUTION, V64, P3354, DOI 10.1111/j.1558-5646.2010.01135.x; Babcock CS, 1996, GENETICS, V144, P839; Babcock CS, 1998, GENETICS, V149, P2063; Ballard JWO, 2007, EVOLUTION, V61, P1735, DOI 10.1111/j.1558-5646.2007.00133.x; Ballard JWO, 2005, ANNU REV ECOL EVOL S, V36, P621, DOI 10.1146/annurev.ecolsys.36.091704.175513; Ballard JWO, 2004, MOL ECOL, V13, P729, DOI 10.1046/j.1365-294X.2003.02063.x; Castro JA, 2003, GENETICA, V119, P295, DOI 10.1023/B:GENE.0000003656.19330.ba; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Christie JS, 2004, HEREDITY, V93, P371, DOI 10.1038/sj.hdy.6800513; CLARK AG, 1984, GENETICS, V107, P679; CLARK AG, 1985, GENETICS, V111, P97; Dobler R, 2014, J EVOLUTION BIOL, V27, P2021, DOI 10.1111/jeb.12468; Dowling DK, 2007, GENETICS, V175, P235, DOI 10.1534/genetics.105.052050; Dowling DK, 2007, EVOLUTION, V61, P194, DOI 10.1111/j.1558-5646.2007.00016.x; Fitzpatrick MJ, 2007, NATURE, V447, P210, DOI 10.1038/nature05764; FOS M, 1990, P NATL ACAD SCI USA, V87, P4198, DOI 10.1073/pnas.87.11.4198; Garcia-Martinez J, 1998, GENETICS, V149, P1377; GONZALEZ A, 1994, J EVOLUTION BIOL, V7, P29, DOI 10.1046/j.1420-9101.1994.7010029.x; GREGORIUS HR, 1984, GENETICS, V107, P165; Jelic M, 2015, BMC EVOL BIOL, V15, DOI 10.1186/s12862-015-0421-2; Jelic M, 2012, GENOME, V55, P214, DOI [10.1139/G2012-004, 10.1139/g2012-004]; Jenkins TM, 1996, GENETICS, V142, P189; Kassen R, 2002, J EVOLUTION BIOL, V15, P173, DOI 10.1046/j.1420-9101.2002.00377.x; Kazancioglu E, 2014, ECOL LETT, V17, P22, DOI 10.1111/ele.12195; Kent CF, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000609; LATORRE A, 1986, P NATL ACAD SCI USA, V83, P8649, DOI 10.1073/pnas.83.22.8649; LATORRE A, 1992, HEREDITY, V68, P15, DOI 10.1038/hdy.1992.2; Lewontin RC, 1974, GENETIC BASIS EVOLUT; Lovlie H, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1039; MACRAE AF, 1988, GENETICS, V120, P485; Maklakov AA, 2006, EVOLUTION, V60, P2081, DOI 10.1554/05-537.1; MOYA A, 1993, GENOME, V36, P890, DOI 10.1139/g93-117; MYERS RH, 2002, RESPONSE SURFACE MET; Novicic ZK, 2015, J EVOLUTION BIOL, V28, P338, DOI 10.1111/jeb.12565; Oliver P, 2005, GENOME, V48, P1010, DOI 10.1139/G05-077; Oliver P, 2002, HEREDITY, V89, P133, DOI 10.1038/sj.hdy.6800116; Peng B, 2012, FORWARD-TIME POPULATION GENETICS SIMULATIONS: METHODS, IMPLEMENTATION, AND APPLICATIONS, P1, DOI 10.1002/9781118180358; Rand DM, 1996, MOL BIOL EVOL, V13, P735, DOI 10.1093/oxfordjournals.molbev.a025634; Rand DM, 2001, GENETICS, V159, P173; ROZAS J, 1990, MOL BIOL EVOL, V7, P103; Wolf M, 2012, AM NAT, V179, P679, DOI 10.1086/665656; Wolff JN, 2016, J EVOLUTION BIOL, V29, P736, DOI 10.1111/jeb.12822; Wolff JN, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0443 45 0 0 0 4 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 0018-0661 1601-5223 HEREDITAS Hereditas NOV 24 2016 153 15 10.1186/s41065-016-0020-2 6 Genetics & Heredity Genetics & Heredity EH3TS WOS:000391695500001 28096777 DOAJ Gold, Green Published 2019-02-21 J Dahlgren, JP; Colchero, F; Jones, OR; Oien, DI; Moen, A; Sletvold, N Dahlgren, Johan Petter; Colchero, Fernando; Jones, Owen R.; Oien, Dag-Inge; Moen, Asbjorn; Sletvold, Nina Actuarial senescence in a long-lived orchid challenges our current understanding of ageing PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article demographic senescence; demography; life-history theory; mortality; rate of ageing; survival-reproduction trade-off MORTALITY PLATEAUS; LIFE-HISTORY; AGE; REPRODUCTION; COSTS; SURVIVAL; DEMOGRAPHY; DYNAMICS; ECOLOGY; PLANTS The dominant evolutionary theory of actuarial senescence-an increase in death rate with advancing age-is based on the concept of a germ cell line that is separated from the somatic cells early in life. However, such a separation is not clear in all organisms. This has been suggested to explain the paucity of evidence for actuarial senescence in plants. We used a 32 year study of Dactylorhiza lapponica that replaces its organs each growing season, to test whether individuals of this tuberous orchid senesce. We performed a Bayesian survival trajectory analysis accounting for reproductive investment, for individuals under two types of land use, in two climatic regions. The mortality trajectory was best approximated by a Weibull model, showing clear actuarial senescence. Rates of senescence in this model declined with advancing age, but were slightly higher in mown plots and in the more benign climatic region. At older ages, senescence was evident only when accounting for a positive effect of reproductive investment on mortality. Our results demonstrate actuarial senescence as well as a survival-reproduction trade-off in plants, and indicate that environmental context may influence senescence rates. This knowledge is crucial for understanding the evolution of demographic senescence and for models of plant population dynamics. [Dahlgren, Johan Petter; Colchero, Fernando; Jones, Owen R.] Univ Southern Denmark, Max Planck Odense Ctr Biodemog Aging, DK-5230 Odense, Denmark; [Dahlgren, Johan Petter; Jones, Owen R.] Univ Southern Denmark, Dept Biol, DK-5230 Odense, Denmark; [Colchero, Fernando] Univ Southern Denmark, Dept Math & Comp Sci, DK-5230 Odense, Denmark; [Oien, Dag-Inge; Moen, Asbjorn] Norwegian Univ Sci & Technol, NTNU Univ Museum, Dept Nat Hist, N-7491 Trondheim, Norway; [Sletvold, Nina] Uppsala Univ, Evolutionary Biol Ctr, Dept Ecol & Genet, S-75236 Uppsala, Sweden Dahlgren, JP (reprint author), Univ Southern Denmark, Max Planck Odense Ctr Biodemog Aging, DK-5230 Odense, Denmark.; Dahlgren, JP (reprint author), Univ Southern Denmark, Dept Biol, DK-5230 Odense, Denmark. dahlgren@biology.sdu.dk Colchero, Fernando/0000-0001-8613-4568; Jones, Owen/0000-0001-5720-4686 Research Council of Norway; Directorate for Nature Management; Max Planck Society; Swedish Research Council Formas The field study was conducted with financial support from the Research Council of Norway and the Directorate for Nature Management (to A.M. and D.I.O.). J.P.D., F.C. and O.R.J. acknowledge funding by the Max Planck Society and N.S. by the Swedish Research Council Formas. Baudisch A, 2013, J ECOL, V101, P596, DOI 10.1111/1365-2745.12084; Baudisch A, 2012, SCIENCE, V338, P618, DOI 10.1126/science.1226467; BjOrndalen JE, 2015, EUR J ENVIRON SCI, V5, P121, DOI 10.14712/23361964.2015.85; Bronikowski AM, 2002, P NATL ACAD SCI USA, V99, P9591, DOI 10.1073/pnas.142675599; Bronikowski AM, 2011, SCIENCE, V331, P1325, DOI 10.1126/science.1201571; Caswell H, 2013, J ECOL, V101, P585, DOI 10.1111/1365-2745.12088; Celeux G, 2006, BAYESIAN ANAL, V1, P651, DOI 10.1214/06-BA122; Colchero F, 2012, METHODS ECOL EVOL, V3, P466, DOI 10.1111/j.2041-210X.2012.00186.x; Colchero F, 2012, J ANIM ECOL, V81, P139, DOI 10.1111/j.1365-2656.2011.01898.x; Dahlgren JP, 2016, DRYAD DIGITAL REPOSI; Dahlgren JP, EVOLUTION SENESCENCE; Delforge P, 2006, ORCHIDS OF EUROPE NO; Ehrlen J, 2001, J ECOL, V89, P237, DOI 10.1046/j.1365-2745.2001.00546.x; Fair J, 1999, J ECOL, V87, P233, DOI 10.1046/j.1365-2745.1999.00344.x; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; Gompertz B., 1825, PHILOS T ROY SOC LON, V115, P513, DOI [10.1098/rstl.1825.0026, DOI 10.1098/RSTL.1825.0026]; Grime J. P., 2001, PLANT STRATEGIES VEG; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARPER JL, 1967, J APPL ECOL, V4, P267, DOI 10.2307/2401336; Horvitz CC, 2008, AM NAT, V172, P203, DOI 10.1086/589453; Hutchings MJ, 2010, J ECOL, V98, P867, DOI 10.1111/j.1365-2745.2010.01661.x; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Kaplan HS, 2009, P R SOC B, V276, P1837, DOI 10.1098/rspb.2008.1831; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Kirkwood TBL, 2011, CURR BIOL, V21, pR701, DOI 10.1016/j.cub.2011.07.020; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Lemaitre JF, 2013, EXP GERONTOL, V48, P162, DOI 10.1016/j.exger.2012.12.004; Missov TI, 2015, SIAM REV, V57, P61, DOI 10.1137/130912992; Moen A, 2002, NORD J BOT, V22, P435, DOI 10.1111/j.1756-1051.2002.tb01398.x; Moen A, 1990, GUNNERIA, V63, P1; Moen A, 2012, NORD J BOT, V30, P226, DOI 10.1111/j.1756-1051.2011.01253.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Oien DI, 2008, ANN BOT FENN, V45, P161, DOI 10.5735/085.045.0301; Oien DI, 2002, TRENDS AND FLUCTUATIONS AND UNDERLYING MECHANISMS IN TERRESTRIAL ORCHID POPULATIONS, P3; Oien DI, 2003, NORD J BOT, V23, P441, DOI 10.1111/j.1756-1051.2003.tb00418.x; Partridge L, 2010, PHILOS T R SOC B, V365, P147, DOI 10.1098/rstb.2009.0222; Pico FX, 2008, PLANT BIOLOGY, V10, P374, DOI 10.1111/j.1438-8677.2008.00044.x; PINDER JE, 1978, ECOLOGY, V59, P175; Pletcher SD, 1999, J EVOLUTION BIOL, V12, P430; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Ricklefs RE, 2000, J AVIAN BIOL, V31, P103, DOI 10.1034/j.1600-048X.2000.210201.x; ROACH DA, 1993, GENETICA, V91, P53, DOI 10.1007/BF01435987; Roach DA, 2009, ECOLOGY, V90, P1427, DOI 10.1890/08-0981.1; ROFF DA, 2002, LIFE HIST EVOLUTION; Sletvold N, 2015, J ECOL, V103, P1205, DOI 10.1111/1365-2745.12430; Sletvold N, 2015, ECOL LETT, V18, P357, DOI 10.1111/ele.12417; Sletvold N, 2013, GLOBAL CHANGE BIOL, V19, P2729, DOI 10.1111/gcb.12167; Sletvold N, 2011, OECOLOGIA, V167, P461, DOI 10.1007/s00442-011-2006-0; Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353; Stearns S, 1992, EVOLUTION LIFE HIST; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; VAUPEL JW, 1986, POP STUD-J DEMOG, V40, P147, DOI 10.1080/0032472031000141896 58 3 3 1 27 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 16 2016 283 1842 20161217 10.1098/rspb.2016.1217 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology ED2ZL WOS:000388718700003 Green Published, Bronze 2019-02-21 J Morris, H; Brodersen, C; Schwarze, FWMR; Jansen, S Morris, Hugh; Brodersen, Craig; Schwarze, Francis W. M. R.; Jansen, Steven The Parenchyma of Secondary Xylem and Its Critical Role in Tree Defense against Fungal Decay in Relation to the CODIT Model FRONTIERS IN PLANT SCIENCE English Article ray parenchyma; axial parenchyma; CODIT; reaction zone; secondary xylem; fungi; barrier zone BARRIER-ZONE FORMATION; DUTCH-ELM-DISEASE; BASIDIOMYCETE INONOTUS-HISPIDUS; LIFE-HISTORY STRATEGIES; LONG-DISTANCE TRANSPORT; ROBINIA-PSEUDOACACIA L; LIVING WOOD FIBERS; QUERCUS-ROBUR L; FOREST TREES; CLIMATE-CHANGE This review examines the roles that ray and axial parenchyma (RAP) plays against fungal pathogens in the secondary xylem of wood within the context of the CODIT model (Compartmentalization of Decay in Trees), a defense concept first conceived in the early 1970s by Alex Shigo. This model, simplistic in its design, shows how a large woody perennial is highly compartmented. Anatomical divisions in place at the time of infection or damage, (physical defense) alongside the 'active' response by the RAP during and after wounding work together in forming boundaries that function to restrict air or decay spread. The living parenchyma cells play a critical role in all of the four walls (differing anatomical constructs) that the model comprises. To understand how living cells in each of the walls of CODIT cooperate, we must have a clear vision of their complex interconnectivity from a three-dimensional perspective, along with knowledge of the huge variation in ray parenchyma (RP) and axial parenchyma (AP) abundance and patterns. Crucial patterns for defense encompass the symplastic continuum between both RP and AP and the dead tissues, with the latter including the vessel elements, libriform fibers, and imperforate tracheary elements (i.e., vasicentric and vascular tracheids). Also, the heartwood, a chemically altered antimicrobial nonliving substance that forms the core of many trees, provides an integral part of the defense system. In the heartwood, dead RAP can play an important role in defense, depending on the genetic constitution of the species. Considering the array of functions that RAP are associated with, from capacitance, through to storage, and long-distance water transport, deciding how their role in defense fits into this suite of functions is a challenge for plant scientists, and likely depends on a range of factors. Here, we explore the important role of RAP in defense against fungal pathogens and the tradeoffs involved from a viewpoint for structure-function relations, while also examining how fungi can breach the defense system using an array of enzymes in conjunction with the physically intrusive hyphae. [Morris, Hugh; Jansen, Steven] Univ Ulm, Inst Systemat Bot & Ecol, Ulm, Germany; [Brodersen, Craig] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT USA; [Schwarze, Francis W. M. R.] Empa Swiss Fed Labs Mat Testing & Res, Lab Appl Wood Mat, St Gallen, Switzerland Morris, H (reprint author), Univ Ulm, Inst Systemat Bot & Ecol, Ulm, Germany. hugh.morris@uni-ulm.de Jansen, Steven/A-9868-2012 Jansen, Steven/0000-0002-4476-5334; Brodersen, Craig/0000-0002-0924-2570 German Science Foundation (DFG) [JA2175/3-1] HM and SJ acknowledge financial support from the German Science Foundation (DFG, JA2175/3-1). Addison A, 2015, J THEOR BIOL, V368, P55, DOI 10.1016/j.jtbi.2014.12.011; Aitken SN, 2008, EVOL APPL, V1, P95, DOI 10.1111/j.1752-4571.2007.00013.x; Alves ES, 2002, IAWA J, V23, P391; Anderegg WRL, 2015, NEW PHYTOL, V208, P674, DOI 10.1111/nph.13477; Anderegg WRL, 2012, TRENDS PLANT SCI, V17, P693, DOI 10.1016/j.tplants.2012.09.006; Anderson PK, 2004, TRENDS ECOL EVOL, V19, P535, DOI 10.1016/j.tree.2004.07.021; Arbellay E, 2012, J EXP BOT, V63, P3271, DOI 10.1093/jxb/ers050; Arbellay E, 2010, TREE PHYSIOL, V30, P1290, DOI 10.1093/treephys/tpq065; AzconAguilar C, 1997, SCI HORTIC-AMSTERDAM, V68, P1, DOI 10.1016/S0304-4238(96)00954-5; BANFIELD W. M., 1968, Phytopathologische Zeitschrift, V62, P21; Bari E, 2015, INT BIODETER BIODEGR, V104, P231, DOI 10.1016/j.ibiod.2015.03.033; Baum S, 2002, NEW PHYTOL, V154, P481, DOI 10.1046/j.1469-8137.2002.00390.x; Bayliss J. S., 1908, J EC BIOL, V3, P1; BEERY WH, 1983, WOOD FIBER SCI, V15, P395; BIGGS AR, 1986, CAN J BOT, V64, P2319, DOI 10.1139/b86-303; BIGGS AR, 1986, PHYTOPATHOLOGY, V76, P905, DOI 10.1094/Phyto-76-905; BIGGS AR, 1987, PHYTOPATHOLOGY, V77, P718, DOI 10.1094/Phyto-77-718; Biggs AR, 1992, DEFENSE MECH WOODY P, P13; Blanchette R. A., 1992, DEFENSE MECH WOODY P, P76, DOI DOI 10.1007/978-3-662-01642-8_5; BLANCHETTE RA, 1982, PHYTOPATHOLOGY, V72, P1272, DOI 10.1094/Phyto-77-1272; BLANCHETTE RA, 1982, CAN J FOREST RES, V12, P304, DOI 10.1139/x82-044; BODDY L, 1983, NEW PHYTOL, V94, P623, DOI 10.1111/j.1469-8137.1983.tb04871.x; Boddy L., 1992, DEFENSE MECH WOODY P, P96; BONSEN K J M, 1991, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zuerich, V136, P13; BONSEN KJM, 1990, IAWA BULL, V11, P393, DOI 10.1163/22941932-90000528; BONSEN KJM, 1985, IAWA BULL, V6, P71, DOI 10.1163/22941932-90000916; Breda N, 2006, ANN FOREST SCI, V63, P625, DOI 10.1051/forest:2006042; Brodersen CR, 2016, AM J BOT, V103, P184, DOI 10.3732/ajb.1500532; Brodersen CR, 2013, IAWA J, V34, P408, DOI 10.1163/22941932-00000033; Brodersen CR, 2010, PLANT PHYSIOL, V154, P1088, DOI 10.1104/pp.110.162396; BROWN CL, 1962, AM J BOT, V49, P683, DOI 10.2307/2439160; Buisman C., 1935, REV APPL MYCOL, V41, P104; Burdekin D. A., 1979, COMMON DECAY FUNGI B; Burgert I, 2001, TREES-STRUCT FUNCT, V15, P168, DOI 10.1007/s004680000086; Burgert I, 1999, HOLZ ROH WERKST, V57, P397, DOI 10.1007/s001070050367; Carbone MS, 2013, NEW PHYTOL, V200, P1145, DOI 10.1111/nph.12448; Carlquist S., 2001, COMP WOOD ANATOMY SY; Carmona D, 2011, FUNCT ECOL, V25, P358, DOI 10.1111/j.1365-2435.2010.01794.x; Chapotin SM, 2006, AM J BOT, V93, P1251, DOI 10.3732/ajb.93.9.1251; CHATTAWAY MM, 1951, AUST J SCI RES SER B, V4, P12, DOI 10.1071/BI9510012; CHATTAWAY MM, 1949, AUST J SCI RES SER B, V2, P227; Choat B, 2012, NATURE, V491, P752, DOI 10.1038/nature11688; Clerivet A, 2000, TREES-STRUCT FUNCT, V15, P25, DOI 10.1007/s004680000063; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; Courtois H, 1963, HOLZFORSCH HOLZVERW, V15, P89; Deflorio G, 2008, FOREST ECOL MANAG, V255, P2373, DOI 10.1016/j.foreco.2007.12.040; Desprez-Loustau ML, 2006, ANN FOREST SCI, V63, P597, DOI 10.1051/forest:2006040; DOBBINS DR, 1986, BOT GAZ, V147, P278, DOI 10.1086/337595; Dujesiefken D, 2001, FORSTWISS CENTRALBL, V120, P80, DOI 10.1007/BF02796083; Duncan C. G., 1960, 2173 USDA FOR PROD L; Dutton MV, 1996, CAN J MICROBIOL, V42, P881, DOI 10.1139/m96-114; Esau K., 1953, PLANT ANATOMY; Evert RF., 2006, ESAUS PLANT ANATOMY; Ewers FW, 2007, IAWA J, V28, P373, DOI 10.1163/22941932-90001650; Eyles A, 2003, CAN J FOREST RES, V33, P2331, DOI [10.1139/x03-149, 10.1139/X03-149]; FAHN A., 1963, N PHYTOL, V62, P91, DOI 10.1111/j.1469-8137.1963.tb06317.x; FAHN A, 1986, WOOD ANATOMY IDENTIF; Ferrenberg S, 2014, FUNCT ECOL, V28, P837, DOI 10.1111/1365-2435.12228; FISHER JB, 1981, IAWA BULL, V2, P193, DOI 10.1163/22941932-90000732; FISHER JB, 1989, BOT GAZ, V150, P251, DOI 10.1086/337770; Fisher JB, 1991, BIOL VINES, P99; Franceschi VR, 2005, NEW PHYTOL, V167, P353, DOI 10.1111/j.1469-8137.2005.01436.x; Frank A. B., 1895, KRANKHEITEN PFLANZEN; Frankenstein C, 2005, J APPL BOT FOOD QUAL, V79, P44; Fujii T, 1981, MOKUZAI GAKKAISHI, V27, P149; GARTNER BL, 1991, OECOLOGIA, V87, P180, DOI 10.1007/BF00325255; Gleason SM, 2004, TREE PHYSIOL, V24, P1087, DOI 10.1093/treephys/24.10.1087; Green F, 1997, INT BIODETER BIODEGR, V39, P113, DOI 10.1016/S0964-8305(96)00063-7; GRIFFITH GS, 1990, NEW PHYTOL, V116, P407, DOI 10.1111/j.1469-8137.1990.tb00526.x; Haberlandt G, 1914, PHYSL PLANT ANATOMY; Hacke UG, 2017, PLANT CELL ENVIRON, V40, P831, DOI 10.1111/pce.12777; Hartig R., 1878, ZERSETZUNGSERSCHEINU; Hartmann H, 2016, NEW PHYTOL, V211, P386, DOI 10.1111/nph.13955; Hepting G. H., 1935, USDA B, V409, P1; Hepting GH, 1936, PHYTOPATHOLOGY, V26, P62; Herbette S, 2015, ANN BOT-LONDON, V115, P187, DOI 10.1093/aob/mcu232; HERMS DA, 1992, Q REV BIOL, V67, P283, DOI 10.1086/417659; HESS ROBT. W., 1950, TROPICAL WOOD, V96, P1; Hillis W, 1987, HEARTWOOD TREE EXUDA; Hillis W. E., 1977, STRUCTURE BIOSYNTHES, P247; Holl W, 1975, TRANSPORT PLANTS, P432; Hudgins JW, 2004, PLANT PHYSIOL, V135, P2134, DOI 10.1104/pp.103.037929; Hudgins JW, 2003, NEW PHYTOL, V159, P677, DOI 10.1046/j.1469-8137.2003.00839.x; Jane FW, 1934, NATURE, V133, P534, DOI 10.1038/133534a0; Jupa R, 2016, TREE PHYSIOL, V36, P756, DOI 10.1093/treephys/tpw020; Keel SG, 2007, PLANT CELL ENVIRON, V30, P963, DOI 10.1111/j.1365-3040.2007.01688.x; Kile G. A., 1991, AGR HDB, P102; Kirisits T., 2007, BARK WOOD BORING INS, P185; Klepsch MM, 2016, AOB PLANTS, V8, DOI 10.1093/aobpla/plw052; Knipfer T, 2016, PLANT PHYSIOL, V171, P1024, DOI 10.1104/pp.16.00136; Koenigs J. W., 1974, Wood and Fiber, V6, P66; KOENIGS JW, 1972, PHYTOPATHOLOGY, V62, P100, DOI 10.1094/Phyto-62-100; Koyani R. D., 2010, Mycology - An International Journal on Fungal Biology, V1, P204, DOI 10.1080/21501203.2010.516409; Koyani RD, 2015, J SUSTAIN FOREST, V34, P502, DOI 10.1080/10549811.2015.1033554; KOZLOWSKI TT, 1992, BOT REV, V58, P107, DOI 10.1007/BF02858600; Kuster E., 1913, PATHOLOGICAL PLANT A; Lamarre GPA, 2012, ECOLOGY, V93, pS195, DOI 10.1890/11-0397.1; LIESE W, 1966, HOLZ ROH WERKST, V24, P454, DOI 10.1007/BF02612874; Liese W., 1964, Holz als Roh- und Werkstoff, V22, P289, DOI 10.1007/BF02608320; Liese W., 1996, P21; Liese W., 1989, P S AUSGEWAHLTE PROB, P75; Liese W., 1970, REC ANN CONV BR WOOD, V4, P1, DOI [10.1186/s13075-015-0844-6, DOI 10.1186/S13075-015-0844-6]; Lodge D. J, 1993, BMS S SERIES, P37; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Loepfe L, 2007, J THEOR BIOL, V247, P788, DOI 10.1016/j.jtbi.2007.03.036; MAGEL E, 1994, TREES-STRUCT FUNCT, V8, P165; Martin JA, 2009, CAN J FOREST RES, V39, P420, DOI 10.1139/X08-183; Martinez-Cabrera HI, 2009, AM J BOT, V96, P1388, DOI 10.3732/ajb.0800237; Martinez-Vilalta J, 2012, AM J BOT, V99, P1189, DOI 10.3732/ajb.1100384; McDougall D. N., 1996, J ARBORICULT, V22, P205; MCNABB H S JR, 1970, Netherlands Journal of Plant Pathology, V76, P196, DOI 10.1007/BF01974331; Meinzer FC, 2009, FUNCT ECOL, V23, P922, DOI 10.1111/j.1365-2435.2009.01577.x; MERRILL W, 1979, PHYTOPATHOLOGY, V69, P1158, DOI 10.1094/Phyto-69-1158; Mildner M, 2014, OECOLOGIA, V175, P747, DOI 10.1007/s00442-014-2935-5; MOORE KE, 1978, CAN J FOREST RES, V8, P389, DOI 10.1139/x78-058; Morris H, 2016, IAWA J, V37, P1, DOI 10.1163/22941932-20160117; Morris H, 2016, NEW PHYTOL, V209, P1553, DOI 10.1111/nph.13737; MUELLER WC, 1984, ANN BOT-LONDON, V53, P107, DOI 10.1093/oxfordjournals.aob.a086658; MUHAMMAD AF, 1984, IAWA BULL, V5, P237, DOI 10.1163/22941932-90000897; MULHERN J, 1979, FOREST SCI, V25, P311; Nagy NE, 2012, MOL PLANT MICROBE IN, V25, P1450, DOI 10.1094/MPMI-02-12-0029-R; Nardini A, 2013, NEW PHYTOL, V200, P322, DOI 10.1111/nph.12288; Nardini A, 2011, J EXP BOT, V62, P4701, DOI 10.1093/jxb/err208; NEWBANKS D, 1983, PHYTOPATHOLOGY, V73, P1060, DOI 10.1094/Phyto-73-1060; Niklas K., 1992, PLANT BIOMECHANICS E; Nutman FJ, 1929, ANN APPL BIOL, V16, P40, DOI 10.1111/j.1744-7348.1929.tb07120.x; O'Brien MJ, 2015, NEW PHYTOL, V205, P1083, DOI 10.1111/nph.13134; O'Brien MJ, 2014, NAT CLIM CHANGE, V4, P710, DOI [10.1038/nclimate2281, 10.1038/NCLIMATE2281]; Orians CM, 2004, TREES-STRUCT FUNCT, V18, P501, DOI 10.1007/s00468-004-0326-y; Orians CM, 2002, AM J BOT, V89, P270, DOI 10.3732/ajb.89.2.270; OUELLETTE GB, 2004, INVEST AGRAR-SIST R, V13, P119; Paine CET, 2010, FUNCT ECOL, V24, P1202, DOI 10.1111/j.1365-2435.2010.01736.x; Parfitt D, 2010, FUNGAL ECOL, V3, P338, DOI 10.1016/j.funeco.2010.02.001; PEARCE RB, 1984, PHYSIOL PLANT PATHOL, V24, P71, DOI 10.1016/0048-4059(84)90075-4; PEARCE RB, 1991, PHYSIOL MOL PLANT P, V39, P41, DOI 10.1016/0885-5765(91)90030-L; PEARCE RB, 1981, PHYSIOL PLANT PATHOL, V19, P359; PEARCE RB, 1990, EUR J FOREST PATHOL, V20, P275; PEARCE RB, 1986, PHYSIOL MOL PLANT P, V29, P197, DOI 10.1016/S0048-4059(86)80021-2; Pearce RB, 1996, NEW PHYTOL, V132, P203, DOI 10.1111/j.1469-8137.1996.tb01842.x; PHILLIPS E. W. J., 1948, FOR PROD RES B, V22, P1; Plavcova L, 2016, AM J BOT, V103, P603, DOI 10.3732/ajb.1500489; Plavcova L, 2011, NEW PHYTOL, V192, P885, DOI 10.1111/j.1469-8137.2011.03842.x; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; Pouzoulet J, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00253; PRATT C, 1974, AM J ENOL VITICULT, V25, P131; Putz F, 1991, BIOL VINES, P73; RADEMACHER P, 1984, IAWA BULL, V5, P141, DOI 10.1163/22941932-90000879; Rayner ADM, 1988, FUNGAL DECOMPOSITION; Rayner Alan D. M., 1993, Arboricultural Journal, V17, P171; Reed DE, 2014, ENVIRON RES LETT, V9, DOI 10.1088/1748-9326/9/10/105004; Reiterer A, 2002, J MATER SCI, V37, P935, DOI 10.1023/A:1014339612423; Richardson AD, 2013, NEW PHYTOL, V197, P850, DOI 10.1111/nph.12042; Rioux D, 1998, PHYTOPATHOLOGY, V88, P494, DOI 10.1094/PHYTO.1998.88.6.494; RIOUX D, 1995, PLANTA, V196, P125; RIOUX D, 1991, CAN J BOT, V69, P2055, DOI 10.1139/b91-258; RIOUX D, 1991, CAN J BOT, V69, P2074, DOI 10.1139/b91-259; Rolshausen PE, 2010, AM J ENOL VITICULT, V61, P113; Romero C, 2008, CAN J FOREST RES, V38, P611, DOI 10.1139/X07-205; Rosas T, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00400; Rosell JA, 2016, NEW PHYTOL, V211, P90, DOI 10.1111/nph.13889; SAUTER JJ, 1986, PLANTA, V168, P377, DOI 10.1007/BF00392363; SAVORY JG, 1954, ANN APPL BIOL, V41, P336, DOI 10.1111/j.1744-7348.1954.tb01126.x; SCHENCK H, 1893, BOT MITTHEILUNGEN TR, P1; Schenk HJ, 2008, P NATL ACAD SCI USA, V105, P11248, DOI 10.1073/pnas.0804294105; Schmidt O, 2006, WOOD TREE FUNGI BIOL; SCHMITT U, 1993, TREES-STRUCT FUNCT, V8, P23; SCHMITT U, 1992, WOOD SCI TECHNOL, V26, P405; SCHMITT U, 1994, IAWA J, V15, P157, DOI 10.1163/22941932-90001357; SCHMITT U, 1990, IAWA BULL, V11, P413, DOI 10.1163/22941932-90000531; Schmitt U., 2007, PLANT CELL WALL RECE, P119; Schmitt Uwe, 2006, New Zealand Journal of Forestry Science, V36, P72; Schmitt Uwe, 2009, New Zealand Journal of Forestry Science, V39, P233; SCHOENEWEISS DF, 1959, PHYTOPATHOLOGY, V49, P335; Schwarze F, 2000, FUNGAL STRATEGIES WO; Schwarze FMWR, 2000, MYCOLOGICAL RES, V104, P126, DOI DOI 10.1017/S0953756200002525; Schwarze Francis W. M. R., 2007, Fungal Biology Reviews, V21, P133, DOI 10.1016/j.fbr.2007.09.001; Schwarze FWMR, 1995, EUR J FOREST PATHOL, V25, P327; Schwarze FWMR, 1998, NEW PHYTOL, V139, P721, DOI 10.1046/j.1469-8137.1998.00238.x; SCHWARZE FWMR, 1995, MYCOL RES, V99, P813, DOI 10.1016/S0953-7562(09)80732-6; Schwarze FWMR, 1997, MYCOL RES, V101, P1207, DOI 10.1017/S0953756297003808; Schwarze FWMR, 1998, HOLZFORSCHUNG, V52, P117, DOI 10.1515/hfsg.1998.52.2.117; Schwarze FWMR, 2000, MYCOL RES, V104, P846, DOI 10.1017/S0953756299002063; Schwarze FWMR, 2003, MYCOLOGICAL PROGR, V2, P26, DOI DOI 10.1007/S11557-006-0064-1; Schwarze FWMR, 2008, DIAGNOSIS PROGNOSIS; Sevanto S, 2014, PLANT CELL ENVIRON, V37, P153, DOI 10.1111/pce.12141; SHAIN L, 1979, PHYTOPATHOLOGY, V69, P1143, DOI 10.1094/Phyto-69-1143; SHAIN L, 1971, PHYTOPATHOLOGY, V61, P301, DOI 10.1094/Phyto-61-301; SHAIN L, 1967, PHYTOPATHOLOGY, V57, P1034; Shain Louis, 1995, P383, DOI 10.1016/B978-012276460-8/50019-9; Sharples A, 1933, ANN BOT-LONDON, V47, P827, DOI 10.1093/oxfordjournals.aob.a090419; SHIGO A, 1981, PLANT DIS, V65, P715, DOI 10.1094/PD-65-715; SHIGO A L, 1977, U S Department of Agriculture Agriculture Information Bulletin, V405, P1; Shigo A. L., 1980, Journal of Arboriculture, V6, P96; Shigo A. L., 1982, RESISTANCE FOREST TR, P103; Shigo A. L., 1976, MATERIAL ORGANISME S, V3, P221; Shigo A. L., 1979, USDA FOR SER AGRIC I, V419, P1; Shigo A. L., 1970, LAVAL U B, P7; SHIGO AL, 1984, ANNU REV PHYTOPATHOL, V22, P189, DOI 10.1146/annurev.py.22.090184.001201; SHIGO AL, 1973, ANNU REV PHYTOPATHOL, V11, P197, DOI 10.1146/annurev.py.11.090173.001213; SHIGO AL, 1977, FOREST SCI, V23, P179; SHIGO AL, 1969, PHYTOPATHOLOGY, V59, P1164; SIEBER M, 1980, IAWA BULL, V1, P49, DOI 10.1163/22941932-90000804; Sikes BA, 2010, PLANT SIGNAL BEHAV, V5, P763, DOI 10.4161/psb.5.6.11776; Singh AP, 2006, WOOD SCI TECHNOL, V40, P16, DOI 10.1007/s00226-005-0056-3; Solla A, 2005, NEW PHYTOL, V166, P1025, DOI 10.1111/j.1469-8137.2005.01384.x; SPERRY JS, 1994, PLANT CELL ENVIRON, V17, P1233, DOI 10.1111/j.1365-3040.1994.tb02021.x; Spicer R, 2007, PLANT CELL ENVIRON, V30, P934, DOI 10.1111/j.1365-3040.2007.01677.x; Spicer R, 2014, J EXP BOT, V65, P1829, DOI 10.1093/jxb/ert459; Spicer R, 2010, NEW PHYTOL, V186, P577, DOI 10.1111/j.1469-8137.2010.03236.x; Spicer Rachel, 2005, P457, DOI 10.1016/B978-012088457-5/50024-1; Stobbe H, 2002, ANN BOT-LONDON, V89, P773, DOI 10.1093/aob/mcf137; Sturrock RN, 2011, PLANT PATHOL, V60, P133, DOI 10.1111/j.1365-3059.2010.02406.x; Sun Q, 2007, PLANT PHYSIOL, V145, P1629, DOI 10.1104/pp.107.100537; Taylor FW., 1969, WOOD FIBER SCI, V1, P142; TIPPETT JT, 1981, IAWA BULL, V2, P163, DOI 10.1163/22941932-90000724; TRUE R. P., 1955, JOUR FOREST, V53, P412; Tyree MT, 2002, XYLEM STRUCTURE ASCE; von Aufsess H, 1974, EUR J FOREST PATHOL, V4, P193, DOI [10.1111/j.1439-0329.1974.tb00437.x, DOI 10.1111/J.1439-0329.1974.TB00437.X]; WAGENFUHR R., 2007, HOLZATLAS; Wargo MP, 1977, CANADIAN J FOREST RE, V7, P410, DOI DOI 10.1139/X77-051; Wheeler EA, 2007, IAWA J, V28, P229, DOI 10.1163/22941932-90001638; WHEELER EA, 1991, IAWA BULL, V12, P275, DOI 10.1163/22941932-90001256; Wheeler EA, 1989, IAWA B, V10, P219, DOI DOI 10.1163/22941932-90000496; Wheeler JK, 2005, PLANT CELL ENVIRON, V28, P800, DOI 10.1111/j.1365-3040.2005.01330.x; Wilczek A, 2014, NAT J-OPOLE, V47, P31; WISNIEWSKI M, 1995, TREES-STRUCT FUNCT, V9, P253; WOLKINGER F, 1971, HOLZFORSCHUNG, V25, P29, DOI 10.1515/hfsg.1971.25.1.29; WOLKINGER F, 1970, PHYTON-ANN REI BOT A, V14, P55; Woods A, 2005, BIOSCIENCE, V55, P761, DOI 10.1641/0006-3568(2005)055[0761:IAUDNB]2.0.CO;2; Woodward S, 1992, DEFENSE MECH WOODY P, P62; WU J, 1992, HOLZFORSCHUNG, V46, P181, DOI 10.1515/hfsg.1992.46.3.181; Yadeta K, 2013, FRONT PLANT SCI, V4, DOI [10.3389/fpls.2013.00097, 10.3389/fpls.2013.00086]; Yamada Y, 2011, TREES-STRUCT FUNCT, V25, P607, DOI 10.1007/s00468-010-0537-3; Yilgor N, 2013, BIORESOURCES, V8, P2805; Zanne AE, 2006, FUNCT ECOL, V20, P200, DOI 10.1111/j.1365-2435.2006.01101.x; Zanne AE, 2014, NATURE, V506, P89, DOI 10.1038/nature12872; Zheng JM, 2013, ANN BOT-LONDON, V112, P927, DOI 10.1093/aob/mct153; Zieminska K, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124892; Zieminska K, 2013, AOB PLANTS, V5, DOI 10.1093/aobpla/plt046; Zimmermann M. H., 1979, IAWA B, V2, P51; Zimmermann T., 1997, ABTEILUNGS ARBEITSBE, V35, P1 241 10 10 5 48 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-462X FRONT PLANT SCI Front. Plant Sci. NOV 9 2016 7 1665 10.3389/fpls.2016.01665 18 Plant Sciences Plant Sciences EB3OW WOS:000387276000001 27881986 DOAJ Gold, Green Published 2019-02-21 J Aguilar, RJAO; Jahn, GA; Soto-Gamboa, M; Novaro, AJ; Carmanchahi, P Ovejero Aguilar, Ramiro J. A.; Jahn, Graciela A.; Soto-Gamboa, Mauricio; Novaro, Andres J.; Carmanchahi, Pablo The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos PEERJ English Article Stress ecology; Reproduction; Lama guanicoe; Sociality; Non-invasive methods; Hormonal profiles in wildlife FECAL GLUCOCORTICOID METABOLITES; LAMA-GUANICOE; CORTICOSTERONE LEVELS; CORTISOL METABOLITES; SEASONAL-VARIATION; ENDOCRINE CONTROL; GROUND-SQUIRRELS; TESTOSTERONE; REPRODUCTION; VALIDATION Background. Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life's challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. Methods. All of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. Results. As expected, there was a marked adrenal (p-value =.3.4e-12) and gonadal (p-value = 0.002656) response due to seasonal variation in Lama guanicae. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value = 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value = 1.952e-11, COR = 0.50) between the adrenal and gonadal system. The marked endocrine (r(2) = 0.806) and gonad (r(2) = 0.7231) response due to seasonal variation in male guanaco individuals highlights the individual's energetic demands according to life-history strategies. This is a remarkable result because noinhibition was found between the axes as theory suggests Finally, the dataset was used to build a reactive scope model for guanacos. Discussion. Guanacos cope with the trade-off between sociability and reproductive benefits and costs, by regulating their GCs and T levels on a seasonal basis, suggesting an adaptive role of both axes to different habitat pressures. The results presented here highlight the functional role of stress and gonad axes on a critical phase of a male mammal's life the mating period when all of the resources are at the disposal of the male and must be used to maximize the chances for reproductive success. [Ovejero Aguilar, Ramiro J. A.; Soto-Gamboa, Mauricio] Univ Austral Chile, Fac Ciencias, Inst Ciencias Ambient & Evolut, Lab Ecol Conductual, Valdivia, Chile; [Ovejero Aguilar, Ramiro J. A.] CONICET MENDOZA LIE IADIZA, Inst Invest Zonas Aridas, Lab Interacc Ecol, Mendoza, Argentina; [Ovejero Aguilar, Ramiro J. A.; Carmanchahi, Pablo] Univ Nacl Comahue INIBIOMA CONICET AUSMA UNCo, AUSMA, Grp Invest Ecofisiol Fauna Silvestre GIEFAS, Neuquen, Argentina; [Jahn, Graciela A.] Univ Mendoza IMBECU CCT MENDOZA, Lab Reprod & Lactancia, Mendoza, Argentina; [Novaro, Andres J.] Programa Estepa Andino Patagon CONICET PATAGONIA, Neuquen, Argentina Aguilar, RJAO (reprint author), Univ Austral Chile, Fac Ciencias, Inst Ciencias Ambient & Evolut, Lab Ecol Conductual, Valdivia, Chile.; Aguilar, RJAO (reprint author), CONICET MENDOZA LIE IADIZA, Inst Invest Zonas Aridas, Lab Interacc Ecol, Mendoza, Argentina.; Aguilar, RJAO (reprint author), Univ Nacl Comahue INIBIOMA CONICET AUSMA UNCo, AUSMA, Grp Invest Ecofisiol Fauna Silvestre GIEFAS, Neuquen, Argentina. rovejero@mendoza-conicet.gob.ar Rufford Small Grant Foundation (RSGF) [120608]; Scientific Research Society/Sigma-Xi; FONDECYT-CONICYT-PROGRAM [3140237]; FONDECYT [11060132] This study has been funded by the Rufford Small Grant Foundation (RSGF #120608); The Scientific Research Society/Sigma-Xi and FONDECYT-CONICYT-PROGRAM (No 3140237). We thank for partial support by FONDECYT #11060132 (MSG)". The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acebes P, 2009, MAMMALIA, P57; ASTHEIMER LB, 1992, ORNIS SCAND, V23, P355, DOI 10.2307/3676661; Bank MS, 2003, BIOL CONSERV, V112, P427, DOI 10.1016/S0006-3207(02)00342-7; Becker JB., 2002, BEHAV ENDOCRINOLOGY, P1; Blanchard RJ, 2001, PHYSIOL BEHAV, V73, P261, DOI 10.1016/S0031-9384(01)00449-8; Bonacic C, 2003, ANIM WELFARE, V12, P387; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; BOONSTRA R, 1993, GEN COMP ENDOCR, V91, P126, DOI 10.1006/gcen.1993.1113; Boonstra R, 2001, ECOLOGY, V82, P1930, DOI 10.2307/2680058; Boonstra R, 2005, J MAMMAL, V86, P236, DOI 10.1644/BHE-001.1; Boonstra Rudy, 2007, P139; Bozinovic F., 2002, PHYSL ECOLOGY EVOLUT, P531; Buchanan KL, 2004, ANIM BEHAV, V67, P183, DOI 10.1016/j.anbehav.2003.09.002; Busch DS, 2009, BIOL CONSERV, V142, P2844, DOI 10.1016/j.biocon.2009.08.013; Carmanchahi PD, 2011, WILDLIFE RES, V38, P61, DOI 10.1071/WR10170; Cavigelli SA, 2000, HORM BEHAV, V37, P246, DOI 10.1006/hbeh.2000.1585; Cavigelli SA, 1999, ANIM BEHAV, V57, P935, DOI 10.1006/anbe.1998.1054; Clutton-Brock TH, 2001, SCIENCE, V291, P478, DOI 10.1126/science.291.5503.478; Cote SD, 2000, BEHAVIOUR, V137, P1541, DOI 10.1163/156853900502718; Creel S, 2001, TRENDS ECOL EVOL, V16, P491, DOI 10.1016/S0169-5347(01)02227-3; Creel S, 2013, FUNCT ECOL, V27, P66, DOI 10.1111/j.1365-2435.2012.02029.x; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; Dallman MF, 2007, J PHYSIOL-LONDON, V583, P431, DOI 10.1113/jphysiol.2007.136051; DALLMAN MF, 1993, FRONT NEUROENDOCRIN, V14, P303, DOI 10.1006/frne.1993.1010; Darwin C., 1859, ORIGIN SPECIES MEANS; de Lamo DA, 1998, CAN J ZOOL, V76, P1388, DOI 10.1139/cjz-76-7-1388; Enstrom DA, 1997, ANIM BEHAV, V54, P1135, DOI 10.1006/anbe.1997.0555; Faulkes Christopher G., 1997, P302; Franklin W.L., 1983, Special Publication American Society of Mammalogists, P573; Goymann W, 2004, ANIM BEHAV, V67, P591, DOI 10.1016/j.anbehav.2003.08.007; Hirschenhauser K, 2006, ANIM BEHAV, V71, P265, DOI 10.1016/j.anbehav.2005.04.014; Holberton RL, 1999, GEN COMP ENDOCR, V116, P49, DOI 10.1006/gcen.1999.7336; Holberton RL, 1996, AUK, V113, P558, DOI 10.2307/4088976; Jacobs JD, 2000, CONDOR, V102, P35, DOI 10.1650/0010-5422(2000)102[0035:ECOLCS]2.0.CO;2; John TM., 1965, PAVO, V4, P9; Kenagy GJ, 2000, GEN COMP ENDOCR, V117, P189, DOI 10.1006/gcen.1999.7397; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; Knapp R, 1997, GEN COMP ENDOCR, V107, P273, DOI 10.1006/gcen.1997.6923; Le PP, 2005, PLOS GENET, V1, P159, DOI 10.1371/journal.pgen.0010016; LEVINE S, 2005, HDB STRESS BRAIN, P3; LOFTS B., 1960, IBIS, V102, P209, DOI 10.1111/j.1474-919X.1960.tb07113.x; Marino A, 2008, ETHOLOGY, V114, P413, DOI 10.1111/j.1439-0310.2008.01485.x; Marino A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089060; MARLER P, 1988, NATURE, V336, P770, DOI 10.1038/336770a0; Mateo JM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P1069, DOI 10.1086/432855; Mattocks PW, 1976, THESIS; McEwen BS, 2010, HORM BEHAV, V57, P105, DOI 10.1016/j.yhbeh.2009.09.011; McGlothlin JW, 2010, AM NAT, V175, P687, DOI 10.1086/652469; MOBERG GP, 1991, J DAIRY SCI, V74, P304, DOI 10.3168/jds.S0022-0302(91)78174-5; Montes MC, 2006, J ARID ENVIRON, V64, P616, DOI 10.1016/j.jaridenv.2005.05.008; Mostl E, 2005, ANN NY ACAD SCI, V1046, P17, DOI 10.1196/annals.1343.004; Mostl E, 2002, DOMEST ANIM ENDOCRIN, V23, P67, DOI 10.1016/S0739-7240(02)00146-7; Moyer K. E., 1968, Communications in Behavioral Biology (Ser A), V2, P65; Muller MN, 2004, ANIM BEHAV, V67, P113, DOI 10.1016/j.anbehav.2003.03.013; NAIK D. V., 1963, PAVO INDIAN J ORNITHOL, V1, P103; Nespolo RF, 2003, EVOLUTION, V57, P1679; OREILLY KM, 1995, AM ZOOL, V35, P222; Ostner J, 2002, BEHAV ECOL SOCIOBIOL, V52, P485, DOI 10.1007/s00265-002-0532-9; Ovejero R, 2012, P 2 LAT AM MAMM C; Ovejero R, 2011, EUROPEAN J WILDLIFE, V57, P1, DOI [10.1007/s10344-010-0477-7, DOI 10.1007/S10344-010-0477-7]; Ovejero R, 2013, THESIS; PECZELY P, 1976, GEN COMP ENDOCR, V30, P1, DOI 10.1016/0016-6480(76)90060-5; Pereira RJG, 2006, HORM BEHAV, V49, P114, DOI 10.1016/j.yhbeh.2005.05.012; Pride RE, 2005, BIOL LETT-UK, V1, P60, DOI 10.1098/rsbl.2004.0245; Puig S., 1995, TECNICAS MANEJO GUAN, P97; PUIG S, 1995, TECNICAS MANEJO GUAN, P57; Puig S, 2008, STUD NEOTROP FAUNA E, V43, P1, DOI 10.1080/01650520701461319; R Development Core Team, 2012, R LANG ENV STAT COMP; Radovani N, 2004, 2 REUN BIN ARG CHIL, P232; Raedeke K. J., 1979, THESIS; Raouf SA, 2006, ANIM BEHAV, V71, P39, DOI 10.1016/j.anbehav.2005.03.027; Roff Derek A., 1992; Romero LM, 2009, HORM BEHAV, V55, P375, DOI 10.1016/j.yhbeh.2008.12.009; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Romero LM, 2000, GEN COMP ENDOCR, V119, P52, DOI 10.1006/gcen.2000.7491; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Rubenstein DR, 2009, AM NAT, V173, P650, DOI 10.1086/597606; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Sapolsky RM., 2002, BEHAV ENDOCRINOLOGY, P409; Schradin C, 2008, HORM BEHAV, V53, P573, DOI 10.1016/j.yhbeh.2008.01.003; SCHWABL H, 1984, AUK, V101, P499; Sheriff MJ, 2011, OECOLOGIA, V166, P869, DOI 10.1007/s00442-011-1943-y; Sheriff MJ, 2009, J COMP PHYSIOL B, V179, P305, DOI 10.1007/s00360-008-0314-4; Sinervo B, 2000, HORM BEHAV, V38, P222, DOI 10.1006/hbeh.2000.1622; Smith JE, 2012, GEN COMP ENDOCR, V178, P417, DOI 10.1016/j.ygcen.2012.06.015; Soto-Gamboa M, 2005, HORM BEHAV, V47, P311, DOI 10.1016/j.yhbeh.2004.11.010; Soto-Gamboa M, 2009, J EXP ZOOL PART A, V311A, P496, DOI 10.1002/jez.546; Stearns S, 1992, EVOLUTION LIFE HIST; Taraborelli P, 2014, ACTA THERIO IN PRESS; Tarlow EM, 2007, APPL ANIM BEHAV SCI, V102, P429, DOI 10.1016/j.applanim.2006.05.040; Tempel DJ, 2004, CONSERV BIOL, V18, P538, DOI 10.1111/j.1523-1739.2004.00372.x; Touma C, 2005, ANN NY ACAD SCI, V1046, P54, DOI 10.1196/annals.1343.006; Vera F, 2012, J EXP ZOOL PART A, V317A, P173, DOI 10.1002/jez.1711; von Holst D, 1998, ADV STUD BEHAV, V27, P1; Wasser SK, 2000, GEN COMP ENDOCR, V120, P260, DOI 10.1006/gcen.2000.7557; Wingfield JC, 2005, J MAMMAL, V86, P248, DOI 10.1644/BHE-004.1; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; WINGFIELD JC, 1986, HORM BEHAV, V20, P405, DOI 10.1016/0018-506X(86)90003-6; Wingfield John C., 1997, P95; Young AJ, 2006, P NATL ACAD SCI USA, V103, P12005, DOI 10.1073/pnas.0510038103; Young JK, 2004, REV CHIL HIST NAT, V77, P617, DOI 10.4067/S0716-078X2004000400005; Zapata B, 2004, ANIM WELFARE, V13, P439; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 104 0 0 3 30 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ NOV 2 2016 4 e2640 10.7717/peerj.2640 21 Multidisciplinary Sciences Science & Technology - Other Topics EB2EG WOS:000387169900004 DOAJ Gold, Green Published 2019-02-21 J Hoenig, JM; Then, AYH; Babcock, EA; Hall, NG; Hewitt, DA; Hesp, SA Hoenig, John M.; Then, Amy Y. -H.; Babcock, Elizabeth A.; Hall, Norman G.; Hewitt, David A.; Hesp, Sybrand A. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate ICES JOURNAL OF MARINE SCIENCE English Article biological reference points; data selection bias; empirical relationships; F-msy; hierarchical Bayesian models; indirect methods; intrinsic rate of population growth; life history correlates; mixed effects models; steepness parameter; stock-recruit relationships BAYESIAN HIERARCHICAL-MODELS; FISH STOCKS; MORPHOEDAPHIC INDEX; GROWTH-PARAMETERS; SPECIES RICHNESS; TEMPERATURE; METAANALYSIS; INFORMATION; RECRUITMENT; FISHERIES There are a number of key parameters in population dynamics that are difficult to estimate, such as natural mortality rate, intrinsic rate of population growth, and stock-recruitment relationships. Often, these parameters of a stock are, or can be, estimated indirectly on the basis of comparative life history studies. That is, the relationship between a difficult to estimate parameter and life history correlates is examined over a wide variety of species in order to develop predictive equations. The form of these equations may be derived from life history theory or simply be suggested by exploratory data analysis. Similarly, population characteristics such as potential yield can be estimated by making use of a relationship between the population parameter and bio-chemico-physical characteristics of the ecosystem. Surprisingly, little work has been done to evaluate how well these indirect estimators work and, in fact, there is little guidance on how to conduct comparative life history studies and how to evaluate them. We consider five issues arising in such studies: (i) the parameters of interest may be ill-defined idealizations of the real world, (ii) true values of the parameters are not known for any species, (iii) selecting data based on the quality of the estimates can introduce a host of problems, (iv) the estimates that are available for comparison constitute a non-random sample of species from an ill-defined population of species of interest, and (v) the hierarchical nature of the data (e.g. stocks within species within genera within families, etc., with multiple observations at each level) warrants consideration. We discuss how these issues can be handled and how they shape the kinds of questions that can be asked of a database of life history studies. [Hoenig, John M.; Then, Amy Y. -H.] Coll William & Mary, Virginia Inst Marine Sci, POB 1346, Gloucester Point, VA 23062 USA; [Then, Amy Y. -H.] Univ Malaya, Inst Biol Sci, Fac Sci, Kuala Lumpur 50603, Malaysia; [Babcock, Elizabeth A.] Univ Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 USA; [Hall, Norman G.] Murdoch Univ, Ctr Fish & Fisheries Res, 90 South St, Murdoch, WA 6150, Australia; [Hall, Norman G.; Hesp, Sybrand A.] Western Australian Fisheries & Marine Res Labs, Dept Fisheries, POB 20, Perth, WA 6920, Australia; [Hewitt, David A.] US Geol Survey, Western Fisheries Res Ctr, Klamath Falls Field Stn, 2795 Anderson Ave Suite 106, Klamath Falls, OR 97603 USA Hoenig, JM (reprint author), Coll William & Mary, Virginia Inst Marine Sci, POB 1346, Gloucester Point, VA 23062 USA. hoenig@vims.edu Hewitt, David/0000-0002-5387-0275 NMFS Stock Assessment Improvement Grant; Virginia Sea Grant; Malaysian Ministry of Higher Education-University of Malaya; NOAA grant through the Cooperative Institute for Marine and Atmospheric Studies at the University of Miami [NA150AR4320064] This study was funded by an NMFS Stock Assessment Improvement Grant awarded to the Southeast Fisheries Science Centre and was supported by Virginia Sea Grant and by the Malaysian Ministry of Higher Education-University of Malaya scholarship awarded to A.Y.-H.T. The work of E.A.B. was supported in part by a NOAA grant through the Cooperative Institute for Marine and Atmospheric Studies at the University of Miami (Award Number NA150AR4320064). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. We thank Andre Punt and an anonymous reviewer for helpful comments. This article is Contribution No. 3548 of the Virginia Institute of Marine Science, College of William & Mary. Ault JS, 1998, FISH B-NOAA, V96, P395; Bayliff W. H., 1967, COMMISSION B, V12, P365; BEST PB, 1993, ICES J MAR SCI, V50, P169, DOI 10.1006/jmsc.1993.1018; Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Brodziak J., 2011, NFMSFSPO119 NOAA; Charnov E. L, 1993, LIFE HIST INVARIANTS, V6; Charnov EL, 2013, FISH FISH, V14, P213, DOI 10.1111/j.1467-2979.2012.00467.x; Cubillos LA, 1999, FISH RES, V42, P147, DOI 10.1016/S0165-7836(99)00042-9; Donald D.B., 1989, North American Journal of Fisheries Management, V9, P177, DOI 10.1577/1548-8675(1989)009<0177:EOEAAM>2.3.CO;2; Dorazio RM, 2006, ECOLOGY, V87, P842, DOI 10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO;2; Dorn MW, 2002, N AM J FISH MANAGE, V22, P280, DOI 10.1577/1548-8675(2002)022<0280:AOWCRH>2.0.CO;2; Fryer G., 1972, CICHLID FISHES GREAT; Gedamke T, 2007, N AM J FISH MANAGE, V27, P605, DOI 10.1577/M05-157.1; Gelman A., 2007, DATA ANAL USING REGR; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Hamel OS, 2015, ICES J MAR SCI, V72, P62, DOI 10.1093/icesjms/fsu131; Hastie T, 2009, ELEMENTS STAT LEARNI; Helser TE, 2004, ECOL MODEL, V178, P399, DOI 10.1016/j.ecolmodel.2004.02.013; HERON AC, 1972, OECOLOGIA, V10, P294, DOI 10.1007/BF00345734; Hewit DA, 2007, T AM FISH SOC, V136, P1030, DOI 10.1577/T06-078.1; Hewitt D. A., 2005, FISHERY B, V103, P443; HOENIG JM, 1983, FISH B-NOAA, V81, P898; Johnson KF, 2015, ICES J MAR SCI, V72, P137, DOI 10.1093/icesjms/fsu055; Jones R., 1982, ICLARM C P, V9, P195; Kenchington TJ, 2014, FISH FISH, V15, P533, DOI 10.1111/faf.12027; Kery M, 2008, J APPL ECOL, V45, P589, DOI 10.1111/j.1365-2664.2007.01441.x; Lester NP, 2004, T AM FISH SOC, V133, P588, DOI 10.1577/T02-111.1; Liermann M., 1997, CANADIAN J FISHERIES, V15, P1976; Lorenzen K, 1996, J FISH BIOL, V49, P627, DOI 10.1006/jfbi.1996.0192; Lunn D., 2014, BUGS BOOK PRACTICAL; Marten Gerald, 1982, ICLARM C P, V9, P255; Maunder MN, 2011, FISH RES, V111, P92, DOI 10.1016/j.fishres.2011.06.016; McDermid JL, 2010, T AM FISH SOC, V139, P21, DOI 10.1577/T08-130.1; Melnychuk MC, 2012, FISH FISH, V13, P267, DOI 10.1111/j.1467-2979.2011.00429.x; Myers RA, 1998, ECOL APPL, V8, pS165, DOI 10.2307/2641375; Myers RA, 2001, ICES J MAR SCI, V58, P937, DOI 10.1006/jmsc.2001.1109; MYERS RA, 1995, CAN TECH REP FISH AQ, V2024, P327; Nakagawa S, 2008, TRENDS ECOL EVOL, V23, P592, DOI 10.1016/j.tree.2008.06.014; Ohsumi S., 1979, International Whaling Commission Report of the Commission, P397; PASCUAL MA, 1993, FISH RES, V16, P17, DOI 10.1016/0165-7836(93)90107-I; PAULY D, 1980, J CONSEIL, V39, P175; Pauly D, 2015, FISHBASE; Pauly D., 1984, ICLARM STUDIES REV, V8; Punt AE, 2011, ICES J MAR SCI, V68, P972, DOI 10.1093/icesjms/fsr039; Royle J. A., 2008, HIERARCHICAL MODELIN; Royle JA, 2008, BIOMETRICS, V64, P364, DOI 10.1111/j.1541-0420.2007.00891.x; Royle JA, 2009, BIOMETRICS, V65, P267, DOI 10.1111/j.1541-0420.2008.01038.x; RYDER RA, 1965, T AM FISH SOC, V94, P214, DOI 10.1577/1548-8659(1965)94[214:AMFETP]2.0.CO;2; RYDER RA, 1982, T AM FISH SOC, V111, P154, DOI 10.1577/1548-8659(1982)111<154:TMIAAF>2.0.CO;2; RYDER RA, 1974, J FISH RES BOARD CAN, V31, P663, DOI 10.1139/f74-097; Schmidt JH, 2009, J WILDLIFE MANAGE, V73, P720, DOI 10.2193/2008-262; Shuter BJ, 1998, CAN J FISH AQUAT SCI, V55, P2161, DOI 10.1139/cjfas-55-9-2161; SPOF (Strategic Planning for Ontario Fisheries), 1982, PART YIELDS EST MORP; Then AY, 2015, ICES J MAR SCI, V72, P82, DOI 10.1093/icesjms/fsu136; Thorson JT, 2015, FISH FISH, V16, P342, DOI 10.1111/faf.12061; Tyrrell MC, 2008, ICES J MAR SCI, V65, P1689, DOI 10.1093/icesjms/fsn185; WALTERS CJ, 1981, CAN J FISH AQUAT SCI, V38, P704, DOI 10.1139/f81-093; WELCOMME RL, 1985, FAO FISHERIES TECHNI, V262, P330; Zhang CI, 2006, T AM FISH SOC, V135, P620, DOI 10.1577/T04-173.1; Zhang ZN, 2009, FISH RES, V95, P289, DOI 10.1016/j.fishres.2008.09.035; Zhou SJ, 2012, CAN J FISH AQUAT SCI, V69, P1292, DOI 10.1139/F2012-060 62 6 6 0 4 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1054-3139 1095-9289 ICES J MAR SCI ICES J. Mar. Sci. NOV 2016 73 10 2453 2467 10.1093/icesjms/fsw089 15 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography EW3DW WOS:000402376300003 Bronze, Green Published 2019-02-21 J Zworykin, DD Zworykin, D. D. Phylogenesis of reproductive strategies in labyrinth fishes (Anabantoidei) and their sisterly groups ZHURNAL OBSHCHEI BIOLOGII Russian Article PERCH ANABAS-TESTUDINEUS; CICHLASOMA OCTOFASCIATUM TELEOSTEI; PARENTAL INVESTMENT THEORY; LIFE-HISTORY EVOLUTION; RAY-FINNED FISHES; FILIAL CANNIBALISM; CICHLID FISHES; FRESH-WATER; TROPHEUS-MOORII; MATE DESERTION Clado- and semogenetic approaches, when used in concert, make it possible to resolve questions concerning phylogenetic relationships between a group representatives as well as phylogenesis of those representatives' traits. Parental care patterns and other forms of reproductive behavior, along, with a reproductive strategy as a whole, can be subjects for semogenetic analysis to no lesser extent than morphological structures sensu stricto. One of the highly specialized forms of parental care in fishes, including suborder of labyrinth fishes and their sisterly groups, appears to be parental food provisioning. In my view, evolutionary origin of post-embryonic brood provisioning in bony fishes is related with three distinctive features, namely: 1) In fishes, different forms of post-embryonic food provisioning are convergent in their origin. 2) Any kind of brood provisioning is realized through exploiting the trait already existent and maintained by selection due to offspring fitness enhancement. 3) The main evolutionary path of this phenomenon emergence and development consists in the function expansion and replacement. This hypothesis does have the heuristic power, since it allows predicting the presence of the reproductive strategy component in question through identification of adequate basic adaptations. Despite the fact that parental care occurs in a majority of anabantoid fishes, there still are several species for which such care is not known. On cladogram, these species by no means take the basal position but are surrounded by fishes providing care for their eggs or even hatchlings. The parsimony principle leads to the suggestion that parental care is a plesiomorphic trait in the suborder Anabantoidei (or in the order Anabantiformes). It seems that the ancestors of present day non-caring species that take various positions within this phylogenetic group were fishes showing parental care. Later on, their reproductive strategy has changed as a result of gamma-selection. If this hypothesis is correct, the absence of parental care should be considered as a case of reproductive strategy degradation. It is quite probable that parental food provisioning was a component of the ancestral reproductive strategies. It is also possible that reproductive strategy of the present day Anabantiformes supposedly not caring for their offspring, actually includes some optional forms of parental care. [Zworykin, D. D.] RAS, AN Severtsov Inst Ecol & Evolut, Leninsky Pr 33, Moscow 119071, Russia Zworykin, DD (reprint author), RAS, AN Severtsov Inst Ecol & Evolut, Leninsky Pr 33, Moscow 119071, Russia. d.zworykin@gmail.com Zworykin, Dmitry/0000-0001-6198-3299 Atz J. W., 1970, P53; Axelrod H. R., 1971, EXOTIC TROPICAL FISH; Balon E.K., 1984, P35; Balon E.K., 1990, GUELPH ICHTHYOL REV, V1, P1; Balshine S, 2012, EVOLUTION OF PARENTAL CARE, P62; Bandoli JH, 2002, BEHAV ECOL SOCIOBIOL, V51, P222, DOI 10.1007/S00265-001-0428-0; BANERJI SR, 1981, INDIAN J ANIM SCI, V51, P651; BANERJI SR, 1981, HYDROBIOLOGIA, V79, P147, DOI 10.1007/BF00006122; Barlow G.W., 1991, P173; BARLOW GW, 1968, J ZOOL, V156, P415; Betancur R. R., 2014, PHYLOGENETIC CLASSIF; Binoy VV, 2008, J FISH BIOL, V73, P1053, DOI 10.1111/j.1095-8649.2008.01987.x; BLUMER LS, 1982, ZOOL J LINN SOC-LOND, V75, P1, DOI 10.1111/j.1096-3642.1982.tb01939.x; Breder CM, 1966, MODES REPROD FISHES; BRITZ R, 1995, JPN J ICHTHYOL, V42, P71; Britz Ralf, 1997, American Museum Novitates, V3195, P1; Britz Ralf, 2000, Ichthyological Exploration of Freshwaters, V11, P305; Buckley J, 2010, J EXP BIOL, V213, P3787, DOI 10.1242/jeb.042929; Chen WJ, 2003, MOL PHYLOGENET EVOL, V26, P262, DOI 10.1016/S1055-7903(02)00371-8; Clotfelter ED, 2007, BRAIN BEHAV EVOLUT, V69, P169, DOI 10.1159/000096985; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Cole B., 1999, CENT TROP SUBTROP AQ, V135; COLEMAN RM, 1991, TRENDS ECOL EVOL, V6, P404, DOI 10.1016/0169-5347(91)90163-R; Collins RA, 2015, J ZOOL SYST EVOL RES, V53, P259, DOI 10.1111/jzs.12103; Corning PA, 2014, BIOL J LINN SOC, V112, P242, DOI 10.1111/bij.12061; Courtenay W.R., 2004, USGS CIRCULAR, V1251, P143; DAOULAS C, 1993, J FISH BIOL, V42, P749; DAVIS CC, 1959, LIMNOL OCEANOGR, V4, P352, DOI 10.4319/lo.1959.4.3.0352; DAWKINS R, 1976, NATURE, V262, P131, DOI 10.1038/262131a0; Dawson KJ, 1996, J THEOR BIOL, V183, P139, DOI 10.1006/jtbi.1996.0208; Devine JA, 2000, J FISH BIOL, V56, P1488, DOI 10.1006/jfbi.2000.1275; Dillman CB, 2016, CLADISTICS, V32, P276, DOI 10.1111/cla.12127; DOKINZ R, 2010, RASSHIRENNYY FENOTIP, P512; DORN FA, 1937, PROISKHOZHDENIE POZV, P195; Drew JA, 2015, ETHOLOGY, V121, P2, DOI 10.1111/eth.12329; Duckworth RA, 2009, EVOL ECOL, V23, P513, DOI 10.1007/s10682-008-9252-6; Duponchelle F, 2008, P NATL ACAD SCI USA, V105, P15475, DOI 10.1073/pnas.0802343105; Dzerzhinskiy K. F., 2016, Voprosy Ikhtiologii, V56, P86, DOI 10.7868/S0042875216010045; DZERZHINSKIY KF, 2012, EKOLOGIYA EVOLYUTSIY, P245; Ereshefsky M, 2007, BIOL PHILOS, V22, P659, DOI 10.1007/s10539-007-9091-9; FABRI KE, 1999, OSNOVY ZOOPSIKHOLOGI, P464; Favorito Sandra E., 2005, Neotrop. ichthyol., V3, P319, DOI 10.1590/S1679-62252005000300001; Felsenstein J., 2004, INFERRING PHYLOGENIE; Field J, 2005, BEHAV ECOL, V16, P770, DOI 10.1093/beheco/ari054; GEBHARDT MD, 1987, ENVIRON BIOL FISH, V19, P69, DOI 10.1007/BF00002739; GITTLEMAN JL, 1981, ANIM BEHAV, V29, P936, DOI 10.1016/S0003-3472(81)80031-0; GOLOVIN SYU, 1998, SLOVAR PRAKTICHESKOG, P660; Gonzalez-Voyer A, 2009, P ROY SOC B-BIOL SCI, V276, P161, DOI 10.1098/rspb.2008.0979; GOODWIN NB, 1998, BIOL SCI, V265, P2265; Greene Harry W., 1994, P369; Gross M. R., 1984, Fish reproduction: strategies and tactics., P55; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; GROSS MR, 1985, AM ZOOL, V25, P807; GURZHIY A, 2010, AKVARIUM, P6; Hanel R, 2002, J MOL EVOL, V55, P776, DOI 10.1007/s00239-002-2373-6; Harrington RC, 2015, MOL PHYLOGENET EVOL, V84, P158, DOI 10.1016/j.ympev.2015.01.002; Harz W., 2001, AQUARISTIK FACHMAGAZ, V31, P26; Hennig W., 1966, PHYLOGENETIC SYSTEMA; Houston AI, 2013, ANIM BEHAV, V86, P667, DOI 10.1016/j.anbehav.2013.08.001; Huey RB, 2003, AM NAT, V161, P357, DOI 10.1086/346135; Jacob E, 2014, THESIS; Jacob P. K., 2005, THESIS; Jennions MD, 2001, BEHAV ECOL, V12, P84, DOI 10.1093/oxfordjournals.beheco.a000383; Johnston C.E., 1993, P600; KASYANOV VL, 1989, REPRODUKTIVNAYA STRA, P179; KAWASE H, 1995, ENVIRON BIOL FISH, V43, P241, DOI 10.1007/BF00005856; Keenleyside M.H.A., 1991, P191; KHLEBOSOLOV EI, 2004, LEKTSII TEORII EVOLT, P264; Kidd MR, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031236; Kitching IJ, 1998, CLADISTICS THEORY PR; Klett V, 2002, MOL BIOL EVOL, V19, P865, DOI 10.1093/oxfordjournals.molbev.a004144; KLYUGE NYU, 2000, SOVREMENNAYA SISTEMA, P336; KLYUGE NYU, 2012, ENTOMOL OBOZR, V1, P63; Kokshajskij N.V., 1980, P37; Kokshaysky N. V., 1966, P169; Kokshaysky NV, 1997, ZOOL ZH, V76, P883; Kolm N, 2006, J EVOLUTION BIOL, V19, P66, DOI 10.1111/j.1420-9101.2005.00984.x; KRAMER DL, 1973, BEHAVIOUR, V47, P14, DOI 10.1163/156853973X00256; Kullander SO, 1999, REV FISH BIOL FISHER, V9, P325, DOI 10.1023/A:1008959313491; KUWAMURA T, 1986, Physiology and Ecology Japan, V23, P31; LAUDER G V, 1983, Bulletin of the Museum of Comparative Zoology, V150, P95; Leach B, 2000, BEHAV ECOL SOCIOBIOL, V49, P31, DOI 10.1007/s002650000268; Lehtonen TK, 2011, BEHAV ECOL SOCIOBIOL, V65, P607, DOI 10.1007/s00265-010-1061-6; Li B, 2009, MOL PHYLOGENET EVOL, V50, P345, DOI 10.1016/j.ympev.2008.11.013; Liem K. F., 1963, ILLINOIS BIOL MONOGR, V30; Lim K. K. P., 2008, FISHES SINGAPORE RE, P145; LORENTS K, 1994, AGRESSIYA TAK NAZYVA, P272; Lorenz K., 1939, MOTIVATION HUMAN ANI, P1; Lorenz K., 1939, Z TIERPSYCHOL, V2, P1, DOI [DOI 10.1111/J.1439-0310.1939.TB01558.X, 10.1111/j.1439-0310.1939.tb01558.x]; Lowe-McConnell RH, 1987, ECOLOGICAL STUDIES T; Makeeva A. P., 2000, Voprosy Ikhtiologii, V40, P780; MAKFARLEND D, 1988, POVEDENIYE ZHIVOTNYK, P520; MAKHLIN MD, 1983, ZHIZN ZHIVOTNYKH, V4, P468; Manica A, 2002, BIOL REV, V77, P261, DOI 10.1017/S1464793101005905; Mank JE, 2006, J FISH BIOL, V69, P1, DOI 10.1111/j.1095-8649.2006.01132.x; Mank JE, 2005, EVOLUTION, V59, P1570; MANTEYFEL BP, 1987, EKOLOGICHESKIE EVOLY, P272; Martin E, 1997, BEHAV ECOL SOCIOBIOL, V41, P311, DOI 10.1007/s002650050391; MASLOV SP, 1980, UROVNI ORG BIOL SIST, P8; Matsumoto S, 2010, ICHTHYOL RES, V57, P71, DOI 10.1007/s10228-009-0125-y; McNamara JM, 2002, ANIM BEHAV, V64, P147, DOI 10.1006/anbe.2002.3038; Mehlis M, 2010, P ROY SOC B-BIOL SCI, V277, P2627, DOI 10.1098/rspb.2010.0234; Mercy TVA, 2003, CURR SCI INDIA, V84, P1468; MILLER R J, 1974, Zeitschrift fuer Tierpsychologie, V34, P484; MILLER RJ, 1983, BEHAVIOUR, V83, P155, DOI 10.1163/156853982X00076; Moitra A., 1979, BIOLL B INDIA, P31; Near TJ, 2013, P NATL ACAD SCI USA, V110, P12738, DOI 10.1073/pnas.1304661110; Ord T.J., 2014, ANIMAL BEHAV WHY ANI, V2, P339; Ord Terry J., 2010, P108; Ota K., 2012, INT J EVOLUTIONARY B; Panijpan B, 2015, META GENE, V4, P17, DOI 10.1016/j.mgene.2015.02.003; Panijpan B, 2014, META GENE, V2, P862, DOI 10.1016/j.mgene.2014.10.007; Panov E.N., 1983, Itogi Nauki i Tekhniki Seriya Zoologiya Pozvonochnykh, V12, P5; PANOV EN, 1982, ZOOL ZH, V61, P988; PANOV EN, 1983, POVEDENIE ZHIVOTNYKH, P423; PARAMESWARAN S, 1971, INDIAN ACAD SCI, V73, P132; PAVLINOV IYA, 2005, VVEDENIE SOVREMENNYY, P392; PAVLOV DS, 2014, EKOLOGIYA VNUTRENNIY, P279; Perry JC, 2006, OIKOS, V112, P706; Plate L, 1913, HANDWORTERBUCH NATUR, V2; POTAPOVA EG, 2013, TR ZIN RAN, P53; RASNITSYM AP, 2005, IZBRANNYE TRUDY EVOL, P347; Rendall D, 2007, J HUM EVOL, V52, P504, DOI 10.1016/j.jhevol.2006.11.014; Reynolds JD, 2002, PHILOS T R SOC B, V357, P269, DOI 10.1098/rstb.2001.0930; Richter H.-J, 1983, BUCH LABYRINTHFISCHE; Riehl R, 1991, AQUARIEN ATLAS, V1; Roberts T.R., 1989, MEMOIRS CALIFORNIA A, V14, P210; Robillard T, 2006, CLADISTICS, V22, P602, DOI 10.1111/j.1096-0031.2006.00125.x; Rosen D.E., 1976, Bulletin Am Mus nat Hist, V157, P1; Ruber L, 2004, EVOLUTION, V58, P799; Ruber L., 2006, SYST BIOL, V55, P374; Ruggiero MA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0119248; Ryan Michael J., 1996, P1; Ryder JA., 1886, AM NAT, V20, P986; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; Sayer M.D.J., 1991, Reviews in Fish Biology and Fisheries, V1, P159, DOI 10.1007/BF00157583; Schnieder M., 2001, AQUARISTIK FACHMAGAZ, V31, P38; Schurch R, 2005, BEHAVIOUR, V142, P265, DOI 10.1163/1568539053778274; Schutz M, 1997, FISH PHYSIOL BIOCHEM, V16, P11, DOI 10.1007/BF00004536; SEVERTSOV AN, 1967, GLAVNYE NAPRAVLENIYA, P203; SEVERTSOV AN, 1987, OSNOVY TEORII EVOLYU, P320; SEVERTSOV AN, 1990, NAPRAVLENNOST EVOLYU, P272; Severtzov A. N., 1939, P610; SHEPHARD KL, 1994, REV FISH BIOL FISHER, V4, P401, DOI 10.1007/BF00042888; Silva HMA, 2011, AN ACAD BRAS CIENC, V83, P483, DOI 10.1590/S0001-37652011000200010; Sloman KA, 2011, ENCYCLOPEDIA OF FISH PHYSIOLOGY: FROM GENOME TO ENVIRONMENT, VOLS 1-3, P678; Smiseth PT, 2012, EVOLUTION OF PARENTAL CARE, P1; Smith HM., 1945, FRESH WATER FISHES S; Sneath PHA, 1973, NUMERICAL TAXONOMY P; Sober E., 1988, RECONSTRUCTING PARSI; Sparks JS, 2004, CLADISTICS, V20, P501, DOI 10.1111/j.1096-0031.2004.00038.x; Sterelny Kim, 2003, DAWKINS VS GOULD SUR; Stiassny Melanie L. J., 1994, V50, P235; Stiassny MLJ, 1999, SCI AM, V280, P64, DOI 10.1038/scientificamerican0299-64; STURMBAUER C, 1993, MOL BIOL EVOL, V10, P751; Suraiya S., 2012, J INNOVATION DEV ST, V6, P63; TATARINOV L P, 1976, P258; Thomaz A.T., 2015, BMC EVOLUTIONARY BIO, V15, pe146; Tsuboi M, 2015, BIOL LETT, V11; UKHTOMSKIY AA, 1950, SOBRANIE SOCHINENIY, V1, P329; van Velzen J, 1998, NETH J ZOOL, V48, P305, DOI 10.1163/156854298X00011; VIERKE J, 1975, Zeitschrift fuer Tierpsychologie, V38, P163; Vierke J., 1991, Aquarium (Bornheim), P15; Wade MJ, 2002, AM NAT, V160, P285, DOI 10.1086/341520; WELCOMME RL, 1985, FAO FISHERIES TECHNI, V262, P330; WENZEL JW, 1992, ANNU REV ECOL SYST, V23, P361, DOI 10.1146/annurev.es.23.110192.002045; Wiley E.O., 2010, P123; Wimberger Peter H., 1998, P509; WISENDEN BD, 1995, ANIM BEHAV, V49, P623; WISENDEN BD, 1994, BEHAV ECOL, V5, P439, DOI 10.1093/beheco/5.4.439; Wong BBM, 2015, BEHAV ECOL, V26, P665, DOI 10.1093/beheco/aru183; Wootton R.J., 1984, P1; YANAGISAWA Y, 1990, ENVIRON BIOL FISH, V27, P43, DOI 10.1007/BF00004903; Yanagisawa Y, 1996, ENVIRON BIOL FISH, V47, P191, DOI 10.1007/BF00005042; Yudin K.A., 1974, Trudy zool Inst Leningr, V53, P5; Zalina I., 2012, Journal of Fisheries and Aquatic Science, V7, P291, DOI 10.3923/jfas.2012.291.306; ZORINA ZA, 2002, OSNOVY ETOLOGII GENE, P384; ZVORKIN DD, 2006, VOPR IKHTIOLOGII, V46, P694; Zvorykin D. D., 2012, Voprosy Ikhtiologii, V52, P469; Zworykin D.D., 2001, CICHLID RES STATE AR, P269; Zworykin D.D., 2000, J ICHTHYOL S2, V40, P271; Zworykin DD, 1998, ETHOLOGY, V104, P771; Zworykin DD, 2000, ENVIRON BIOL FISH, V57, P443, DOI 10.1023/A:1007654729430; Zworykin DD, 1998, MAR FRESHW BEHAV PHY, V31, P185, DOI 10.1080/10236249809387072 184 0 0 0 7 MEZHDUNARODNAYA KNIGA MOSCOW 39 DIMITROVA UL., MOSCOW, 113095, RUSSIA 0044-4596 ZH OBSHCH BIOL Zhurnal Obshchei Biol. NOV-DEC 2016 77 6 464 481 18 Biology Life Sciences & Biomedicine - Other Topics EJ5EY WOS:000393241600006 30024673 2019-02-21 J Skinner, HM; Durso, AM; Neuman-Lee, LA; Durham, SL; Mueller, SD; French, SS Skinner, Heather M.; Durso, Andrew M.; Neuman-Lee, Lorin A.; Durham, Susan L.; Mueller, Sarah D.; French, Susannah S. Effects of Diet Restriction and Diet Complexity on Life History Strategies in Side-Blotched Lizards (Uta stansburiana) JOURNAL OF EXPERIMENTAL ZOOLOGY PART A-ECOLOGICAL GENETICS AND PHYSIOLOGY English Article TRADE-OFFS; ENERGY ALLOCATION; NUTRIENT COMPOSITION; UROSAURUS-ORNATUS; FOOD RESTRICTION; OXIDATIVE STRESS; IMMUNE-SYSTEMS; TREE LIZARDS; BODY-SIZE; REPRODUCTION Organisms must balance energy invested into self-maintenance, reproduction, and somatic growth over their lifetime. In this study, the effects of diet restriction and diet complexity on side-blotched lizards (Uta stansburiana) were analyzed. Thirty male lizards, housed in the laboratory, were fed either an ad libitum or a restricted diet for 18 days (phase 1). Individuals from both treatments were then assigned to a diet of the same quantity of food that was either simple (only crickets) or complex (crickets, cockroaches, waxworms, and mealworms) for 35 days (phase 2). We evaluated (1) how diet restriction affected life history strategies and (2) how diet complexity affected recovery from diet restriction as measured at the end of phase 2 by body mass, snout-vent length, calculated body condition score, wound healing, tail regrowth, bacterial killing ability, oxidative stress, and plasma testosterone and corticosterone concentrations. Lizards without diet restriction allocated more energy to self-maintenance (i.e., maintaining higher body condition scores, healing wounds more quickly) than lizards with diet restriction. Lizards with diet restriction had higher plasma testosterone concentrations and larger increases in snout-vent lengths than those fed ad libitum, which may reflect allocations toward reproduction and somatic growth. A complex diet resulted in better body condition and faster tail regrowth than a simple diet, suggesting that a complex diet enhanced recovery from diet restriction, although long-term life history choices remained unaltered. Finally, lizards on a complex diet consumed substantially less food while maintaining higher body condition, suggesting that key nutrients may be lacking from a simple diet. [Skinner, Heather M.] Washington State Univ, WIMU Reg Program Vet Med, Pullman, WA 99164 USA; [Durso, Andrew M.; Neuman-Lee, Lorin A.; French, Susannah S.] Utah State Univ, Dept Biol, 5305 Old Main Hill, Logan, UT 84322 USA; [Durso, Andrew M.; Durham, Susan L.; French, Susannah S.] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA; [Mueller, Sarah D.] Univ Puget Sound, Dept Biol, Tacoma, WA 98416 USA Skinner, HM (reprint author), Utah State Univ, Dept Biol, 5305 Old Main Hill, Logan, UT 84322 USA. heatherjones@vetmed.wsu.edu National Science Foundation [IOS-1350070]; Utah Agricultural Experiment Station Project [UTA01104] Grant sponsor: National Science Foundation; grant number: IOS-1350070. Grant sponsor: Utah Agricultural Experiment Station Project # UTA01104. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Fernandez A, 2012, J EXP MAR BIOL ECOL, V416, P8, DOI 10.1016/j.jembe.2012.02.001; Alonzo SH, 2001, BEHAV ECOL SOCIOBIOL, V49, P176, DOI 10.1007/s002650000265; Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001; Barker D, 1998, ZOO BIOL, V17, P123, DOI 10.1002/(SICI)1098-2361(1998)17:2<123::AID-ZOO7>3.0.CO;2-B; Bernard J. B, 1997, NUTR ADVISORY GROUP, V3, P1; Bjelakovic G, 2007, J Basic Clin Physiol Pharmacol, V18, P115; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; Casto JM, 2001, AM NAT, V157, P408, DOI 10.1086/319318; Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Cohen PG, 1999, MED HYPOTHESES, V52, P49, DOI 10.1054/mehy.1997.0624; Costantini D, 2011, J COMP PHYSIOL B, V181, P447, DOI 10.1007/s00360-011-0566-2; Cox RM, 2014, J ANIM ECOL, V83, P888, DOI 10.1111/1365-2656.12228; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; DENARDO DF, 1994, HORM BEHAV, V28, P273, DOI 10.1006/hbeh.1994.1023; Dickens MJ, 2013, GEN COMP ENDOCR, V191, P177, DOI 10.1016/j.ygcen.2013.06.014; Durso A, J EXP BIOL IN PRESS; Fidgett A. L., 2014, International Zoo Yearbook, V48, P116, DOI 10.1111/izy.12057; Finke MD, 2002, ZOO BIOL, V21, P269, DOI 10.1002/zoo.10031; French SS, 2006, GEN COMP ENDOCR, V145, P128, DOI 10.1016/j.ygcen.2005.08.005; French SS, 2007, J EXP BIOL, V210, P2859, DOI 10.1242/jeb.005348; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; French SS, 2012, BIOL OPEN, V1, P482, DOI 10.1242/bio.2012919; French SS, 2010, HORM BEHAV, V58, P792, DOI 10.1016/j.yhbeh.2010.08.001; GLAZIER DS, 1992, OECOLOGIA, V90, P540, DOI 10.1007/BF01875448; Goymann W, 2014, BEHAV ECOL, V25, P685, DOI 10.1093/beheco/aru019; Guarnieri DJ, 2012, BIOL PSYCHIAT, V71, P358, DOI 10.1016/j.biopsych.2011.06.028; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hasselquist D, 2012, ANIM BEHAV, V83, P1303, DOI 10.1016/j.anbehav.2012.03.025; Hoby S, 2010, J NUTR, V140, P1923, DOI 10.3945/jn.110.120998; Hoppmann E, 2007, J EXOT PET MED, V16, P210, DOI 10.1053/j.jepm.2007.10.001; Jonsson N, 2003, CAN J FISH AQUAT SCI, V60, P506, DOI [10.1139/f03-042, 10.1139/F03-042]; Keeley ER, 1998, BEHAVIOUR, V135, P65; Kitaysky AS, 2001, J COMP PHYSIOL B, V171, P701, DOI 10.1007/s003600100230; Klasing KC, 2007, BRIT POULTRY SCI, V48, P525, DOI 10.1080/00071660701671336; Kogut MH, 2009, J APPL POULTRY RES, V18, P103, DOI 10.3382/japr.2008-00080; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; LATSHAW JD, 1991, VET IMMUNOL IMMUNOP, V30, P111; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lucas LD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049895; MAC ARTHUR ROBERT H., 1967; Martin P, 1997, SCIENCE, V276, P75, DOI 10.1126/science.276.5309.75; MCCANCE RA, 1962, PROC R SOC SER B-BIO, V156, P326; McWilliams D., 2006, INT ZOO YB, V39, P69; MILSTEAD WW, 1969, AM MIDL NAT, V81, P491, DOI 10.2307/2423984; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; MOORE MC, 1986, J COMP PHYSIOL A, V158, P159, DOI 10.1007/BF01338559; Morgan KN, 2007, APPL ANIM BEHAV SCI, V102, P262, DOI 10.1016/j.applanim.2006.05.032; Nagy KA, 1999, ANNU REV NUTR, V19, P247, DOI 10.1146/annurev.nutr.19.1.247; Neuman-Lee LA, 2015, FUNCT ECOL, V29, P1453, DOI 10.1111/1365-2435.12457; Neuman-Lee LA, 2014, J COMP PHYSIOL B, V184, P623, DOI 10.1007/s00360-014-0826-z; Noble R.C., 1991, P17, DOI 10.1017/CBO9780511585739.003; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; NUSSBAUM R A, 1976, Northwest Science, V50, P243; Pankhurst NW, 2011, MAR FRESHWATER RES, V62, P1015, DOI 10.1071/MF10269; PARKER WS, 1975, COPEIA, P615; Reedy AM, 2016, BIOL J LINN SOC, V117, P516, DOI 10.1111/bij.12685; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roff Derek A., 1992; Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x; SCHWARZKOPF L, 1994, LIZARD ECOLOGY, P7; Sibly RM, 2013, METHODS ECOL EVOL, V4, P151, DOI 10.1111/2041-210x.12002; Sinervo B, 2000, HORM BEHAV, V38, P222, DOI 10.1006/hbeh.2000.1622; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TANNER W W, 1972, Brigham Young University Science Bulletin Biological Series, V15, P1; Tinkle D. W., 1967, Miscellaneous Publications Museum of Zoology University of Michigan, VNo. 132, P1; URIST MR, 1961, J GEN PHYSIOL, V44, P743, DOI 10.1085/jgp.44.4.743; Verhulst S, 2005, J AVIAN BIOL, V36, P22, DOI 10.1111/j.0908-8857.2005.03342.x; WADA K, 1993, MAR BIOL, V115, P47, DOI 10.1007/BF00349385; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 74 1 1 4 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1932-5223 1932-5231 J EXP ZOOL PART A J. Exp. Zool. Part A NOV 2016 325 9 626 637 10.1002/jez.2056 12 Zoology Zoology EI9DW WOS:000392808700006 28102007 2019-02-21 J Correll, MD; Wiest, WA; Olsen, BJ; Shriver, WG; Elphick, CS; Hodgman, TP Correll, Maureen D.; Wiest, Whitney A.; Olsen, Brian J.; Shriver, W. Gregory; Elphick, Chris S.; Hodgman, Thomas P. Habitat specialization explains avian persistence in tidal marshes ECOSPHERE English Article climate change; niche; specialism; species conservation; tidal marsh NEW-ENGLAND; ECOLOGICAL SPECIALIZATION; MODELS; POPULATION; GENERALISTS; SPECIALISTS; DIVERSITY; FRAGMENTATION; MECHANISMS; ABUNDANCE Habitat specialists are declining at alarming rates worldwide, driving biodiversity loss of the earth's next mass extinction. Specialist organisms maintain smaller functional niches than their generalist counterparts, and tradeoffs exist between these contrasting life history strategies, creating conservation challenges for specialist taxa. There is little work, however, explicitly quantifying "specialization"; such information is necessary for the development of focused conservation strategies in light of the rapidly changing landscapes of the modern world. In this study, we tested whether habitat specialism explains the persistence of breeding bird populations in tidal marshes of the northeastern United States. We used the North American Breeding Bird Survey (BBS) together with contemporary marsh bird surveys to develop a Marsh Specialization Index (MSI) for 106 bird species that regularly use tidal marshes during the breeding season. We produced four metrics of species persistence (occupancy, abundance, total biomass supported, and 14-yr population trends) and compared them to MSI values in one of the first community-scale demonstrations of specialist loss in disturbed landscapes. Our results confirm that tidal marsh specialism has short-term benefits but long-term consequences for bird persistence in coastal marsh systems, results that are generalizable across many changing landscapes. We then use this robust support of niche theory to recommend MSI as a tool for quantitatively identifying species of conservation concern in disturbed and rapidly changing landscapes such as tidal marsh. [Correll, Maureen D.; Olsen, Brian J.] Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA; [Wiest, Whitney A.; Shriver, W. Gregory] Univ Delaware, Dept Entomol & Wildlife Ecol, Newark, DE 19716 USA; [Elphick, Chris S.] Univ Connecticut, Ctr Conservat & Biodivers, Dept Ecol & Evolutionary Biol, Storrs, CT 06269 USA; [Hodgman, Thomas P.] Maine Dept Inland Fisheries & Wildlife, Bangor, ME 04401 USA Correll, MD (reprint author), Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA. maureen.correll@maine.edu Competitive State Wildlife Grant via Federal Aid in Sportfish and Wildlife Restoration to the States of Delaware, Maryland, Connecticut, and Maine [U2-5-R-1]; National Science Foundation [DGE-1144423]; United States Fish and Wildlife Service [P11AT00245, 50154-0-G-004A]; United States Department of Agriculture [ME0-H-6-00492-12]; Maine Association of Wetland Scientists We received primary funding through a Competitive State Wildlife Grant (U2-5-R-1) via Federal Aid in Sportfish and Wildlife Restoration to the States of Delaware, Maryland, Connecticut, and Maine. Additional funding was provided through a National Science Foundation Integrated Graduate Education and Research Traineeship (DGE-1144423), the United States Fish and Wildlife Service (P11AT00245, 50154-0-G-004A), the United States Department of Agriculture (ME0-H-6-00492-12), and the Maine Association of Wetland Scientists. This is Maine Agricultural and Forest Experiment Station Publication Number #3491. We thank the Maine Department of Inland Fisheries and Wildlife, University of Delaware, Rachel Carson National Wildlife Refuge (NWR), Parker River NWR, Monomoy NWR, Bombay Hook NWR, Massachusetts Audubon, New Hampshire Audubon, Audubon New York, New Jersey Audubon, The Meadowlands Field Commission, the Smithsonian Institution, SHARP field crews and landowners for data contributions, land access, and field support. Thank you also to J.C. Avise (barn swallow), L. Blumin, J. Taggert (song sparrow), M. Eising (American black duck), M. Baird (Virginia rail), J. Wolf (great egret), D. Berganza (clapper rail), D. Pancamo (common yellowthroat), F. Schulenberg (snowy egret), A. Reago (Nelson's sparrow), M. Baird (Virginia rail), Wikimedia Creative Commons, Clipart-Finder.com, Photogra-phicClipart.com, and Cliparts.co for providing images of focal species for use in our figures. We also thank E. Adams and D. Rosco for support during analysis and two anonymous reviewers whose suggestions greatly improved earlier versions of this manuscript. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of our sponsors. Barnosky AD, 2011, NATURE, V471, P51, DOI 10.1038/nature09678; Barton K., 2015, MUMIN MULTIMODEL INF; Bates D, 2015, J STAT SOFTW, V67, P1; Bertness MD, 2002, P NATL ACAD SCI USA, V99, P1395, DOI 10.1073/pnas.022447299; Blonder B, 2014, GLOBAL ECOL BIOGEOGR, V23, P595, DOI 10.1111/geb.12146; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Burnham K. P., 2002, ECOLOGICAL MODELLING; Carter MF, 2000, AUK, V117, P541, DOI 10.1642/0004-8038(2000)117[0541:SCPFLI]2.0.CO;2; Chase J. M., 2003, ECOLOGICAL NICHES LI; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Clavel J, 2011, FRONT ECOL ENVIRON, V9, P222, DOI 10.1890/080216; Colles A, 2009, ECOL LETT, V12, P849, DOI 10.1111/j.1461-0248.2009.01336.x; Correll M. D., 2016, CONSERVATIO IN PRESS; Dennis RLH, 2011, BIOL J LINN SOC, V104, P725, DOI 10.1111/j.1095-8312.2011.01789.x; Dettmers R., 2000, PARTNERS FLIGHT CONS; Devictor V, 2008, OIKOS, V117, P507, DOI 10.1111/j.2008.0030-1299.16215.x; Devictor V, 2010, J APPL ECOL, V47, P15, DOI 10.1111/j.1365-2664.2009.01744.x; Elton C. S., 1927, ANIMAL ECOLOGY; EMLEN JT, 1971, AUK, V88, P323, DOI 10.2307/4083883; Enquist Brian, 2012, Biodiversity Ecol, V4, P288, DOI 10.7809/b-e.00086; Fischer J, 2007, GLOBAL ECOL BIOGEOGR, V16, P265, DOI 10.1111/j.1466-8238.2007.00287; Fiske IJ, 2011, J STAT SOFTW, V43, P1; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; Gaston KJ, 1997, J ANIM ECOL, V66, P579, DOI 10.2307/5951; Gedan KB, 2009, ANNU REV MAR SCI, V1, P117, DOI 10.1146/annurev.marine.010908.163930; Geraci M, 2014, J STAT SOFTW, V57, P1; Grinnell J., 1917, Auk Cambridge Mass, V34; Hodgman T., 2000, PARTNERS FLIGHT CONS; Holt RD, 2009, P NATL ACAD SCI USA, V106, P19659, DOI 10.1073/pnas.0905137106; Hutchinson G. E, 1978, INTRO POPULATION ECO; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P415, DOI 10.1101/SQB.1957.022.01.039; IUCN, 2013, IUCN RED LIST INT UN; Jonsen ID, 1997, LANDSCAPE ECOL, V12, P185, DOI 10.1023/A:1007961006232; Julliard R, 2006, ECOL LETT, V9, P1237, DOI 10.1111/j.1461-0248.2006.00977.x; KAWECKI TJ, 1994, AM NAT, V144, P833, DOI 10.1086/285709; Kroodsma D. E., 2014, BIRDS N AM; LEIBOLD MA, 1995, ECOLOGY, V76, P1371, DOI 10.2307/1938141; Levins R., 1968, EVOLUTION CHANGING E; Lotts K., 2016, BUTTERFLIES MOTHS N; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; MacArthur R., 1972, GEOGRAPHICAL ECOLOGY; Partners in Flight Science Committee, 2012, SPEC ASS DAT VERS 20; R Core Team, 2015, R LANG ENV STAT COMP; RMBO, 2014, INT MON BIRD CONS RE; Rosenberg K. V, 2014, STATE BIRDS 2014 WAT; Royle JA, 2004, BIOMETRICS, V60, P108, DOI 10.1111/j.0006-341X.2004.00142.x; Ruskin K, 2015, THESIS; Sallenger AH, 2012, NAT CLIM CHANGE, V2, P884, DOI [10.1038/nclimate1597, 10.1038/NCLIMATE1597]; Sauer J. R, 2014, N AM BREEDING BIRD S; Shea K, 2002, TRENDS ECOL EVOL, V17, P170, DOI 10.1016/S0169-5347(02)02495-3; Shepard CC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027374; Shriver WG, 2004, BIOL CONSERV, V119, P545, DOI 10.1016/j.biocon.2004.01.016; Silliman BR, 2004, CONSERV BIOL, V18, P1424, DOI 10.1111/j.1523-1739.2004.00112.x; The Birds of North America, 2015, BIRDS N AM; Urban MC, 2015, SCIENCE, V348, P571, DOI 10.1126/science.aaa4984; Watts B., 1999, PARTNERS FLIGHT CONS; Wiest W., 2015, THESIS; Wiest WA, 2016, CONDOR, V118, P274, DOI 10.1650/CONDOR-15-30.1; Wilkinson J. W., 2012, NATL AMPHIBIAN REPTI; WILSON DS, 1994, AM NAT, V144, P692, DOI 10.1086/285702 60 5 5 2 20 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2150-8925 ECOSPHERE Ecosphere NOV 2016 7 11 e01506 10.1002/ecs2.1506 13 Ecology Environmental Sciences & Ecology EI1AP WOS:000392207600005 DOAJ Gold 2019-02-21 J Rull, J; Abraham, S; Tadeo, E; Rodriguez, CL Rull, Juan; Abraham, Solana; Tadeo, Eduardo; Luis Rodriguez, Christian Life History and Mating Behavior of Rhagoletis solanophaga (Diptera: Tephritidae), a Non-Diapausing Species with Highly Variable Mating Duration JOURNAL OF INSECT BEHAVIOR English Article Mate guarding; sperm competition; copulation duration; paternity assurance CRYPTIC FEMALE CHOICE; FLY DRYOMYZA ANILIS; YELLOW DUNG FLIES; POMONELLA DIPTERA; APPLE MAGGOT; WALNUT FLY; SPERM COMPETITION; JUGLANDIS DIPTERA; DIAPAUSE; INSECTS As an initial contribution to understanding the adaptive value of behavioral and life-history strategies, the life cycle and mating behavior of an unstudied species of tephritid fruit fly in the genus Rhagoletis are characterized for the first time. Over a 9-month fruiting period, a small proportion of Solanum appendiculatum Dunal (< 10 %) was found to be infested with a single larva of Rhagoletis solanophaga (Hernandez & Frias). The average duration of R. solanophaga lifecycle (c.a. 140 days from egg laying to death of adults) exceeded the three month fruitless period. Additionally, R. solanophaga is capable of exploiting Solanaceous plants in at least two genera. These features could have selected for a non-diapausing species of Rhagoletis, a genus where most species are univoltine. Nevertheless, some individuals in the population became dormant. As other members of the genus, R. solanophaga exhibited a resource defense mating system with forced copulations and multiple mating. Both males and females could be highly promiscuous and individual mating success exhibited a wide range of outcomes. Regardless of mating success, mated females stored similar amounts of sperm in two spherical spermathecae. Long copulations were observed, perhaps functioning as a form of mate guarding with probable disadvantages for females. We outline hypotheses and opportunities for future comparative studies examining sperm competition and mate guarding. [Rull, Juan; Abraham, Solana] PROIMI Biotecnol CONICET, LIEMEN Div Control Biol Plagas, Ave Belgrano & Pje Caseros,T4001MVB, San Miguel De Tucuman, Tucuman, Argentina; [Tadeo, Eduardo; Luis Rodriguez, Christian] Inst Ecol AC, Red Manejo Biorrac Plagas & Vectores, Xalapa 91070, Veracruz, Mexico Rull, J (reprint author), PROIMI Biotecnol CONICET, LIEMEN Div Control Biol Plagas, Ave Belgrano & Pje Caseros,T4001MVB, San Miguel De Tucuman, Tucuman, Argentina. pomonella@gmail.com Rodriguez-Enriquez, Christian Luis/0000-0001-6339-3882 Instituto de Ecologia A.C. This study was funded by the Instituto de Ecologia A.C. to Juan Rull. AlonsoPimentel H, 1996, BEHAV ECOL SOCIOBIOL, V39, P171, DOI 10.1007/s002650050278; AVERILL AL, 1987, ECOLOGY, V68, P878, DOI 10.2307/1938359; BOLLER EF, 1976, ANNU REV ENTOMOL, V21, P223, DOI 10.1146/annurev.en.21.010176.001255; BUSH GUY L., 1966, BULL MUS COMP ZOOL HARVARD UNIV, V134, P431; Carsten LD, 2005, BEHAV ECOL, V16, P528, DOI 10.1093/beheco/ari026; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; Danks H.V., 1991, P231; DENLINGER DL, 1986, ANNU REV ENTOMOL, V31, P239, DOI 10.1146/annurev.en.31.010186.001323; Denlinger DL, 2002, ANNU REV ENTOMOL, V47, P93, DOI 10.1146/annurev.ento.47.091201.145137; DICKINSON JL, 1986, BEHAV ECOL SOCIOBIOL, V18, P331, DOI 10.1007/BF00299664; Dodson GN, 1997, ANN ENTOMOL SOC AM, V90, P496, DOI 10.1093/aesa/90.4.496; EBERHARD WG, 1994, EVOLUTION, V48, P711, DOI 10.1111/j.1558-5646.1994.tb01356.x; EBERHARD WG, 1991, BIOL REV, V66, P1, DOI 10.1111/j.1469-185X.1991.tb01133.x; Feder JL, 2010, ENTOMOL EXP APPL, V136, P31, DOI 10.1111/j.1570-7458.2010.01003.x; Filchak KE, 1999, EVOLUTION, V53, P187, DOI 10.1111/j.1558-5646.1999.tb05344.x; Foote RH, 1981, TECH B, V1607, P75; Frias D., 2008, Fruit Flies of Economic Importance to Applied Knowledge. Proceedings of the 7th International Symposium on Fruit Flies of Economic Importance, 10-15 September 2006, Salvador, Brazil, P29; FRIAS D, 1984, ANN ENTOMOL SOC AM, V77, P548, DOI 10.1093/aesa/77.5.548; Frias D., 1986, BIOLOGIA, V13, P75; Frias DA, 2001, REV CHIL HIST NAT, V74, P73; FRIAS-L D, 1991, Acta Entomologica Chilena, V16, P193; HEADRICK DH, 1994, STUDIA DIPTEROLOGICA, V1, P194; Hernandez-Ortiz V, 1999, INS MUND, V13, P11; Huestis DL, 2014, INFECT GENET EVOL, V28, P648, DOI 10.1016/j.meegid.2014.05.027; Keller LF, 2002, TRENDS ECOL EVOL, V17, P230, DOI 10.1016/S0169-5347(02)02489-8; Kostal V, 2006, J INSECT PHYSIOL, V52, P113, DOI 10.1016/j.jinsphys.2005.09.008; LALONDE RG, 1994, J ANIM ECOL, V63, P583, DOI 10.2307/5224; Mattsson M, 2015, ECOL EVOL, V5, pS823, DOI 10.1002/ece3.1826; Nufio CR, 2000, ENVIRON ENTOMOL, V29, P994, DOI 10.1603/0046-225X-29.5.994; OPP SB, 1990, ANN ENTOMOL SOC AM, V83, P521, DOI 10.1093/aesa/83.3.521; Opp SB, 1996, FRUIT FLY PESTS, P43; Opp SB, 2000, J INSECT BEHAV, V13, P901, DOI 10.1023/A:1007818719058; OTRONEN M, 1991, BEHAV ECOL SOCIOBIOL, V29, P33, DOI 10.1007/BF00164292; Otronen M, 1997, P ROY SOC B-BIOL SCI, V264, P777, DOI 10.1098/rspb.1997.0110; Otronen M, 1998, BEHAV ECOL SOCIOBIOL, V42, P185, DOI 10.1007/s002650050430; PAPAJ DR, 1994, BEHAV ECOL SOCIOBIOL, V34, P187, DOI 10.1007/s002650050032; Parker GA, 1999, ANIM BEHAV, V57, P795, DOI 10.1006/anbe.1998.1034; PROKOPY RJ, 1968, CAN ENTOMOL, V100, P318, DOI 10.4039/Ent100318-3; Prokopy RJ, 2000, FRUIT FLIES (TEPHRITIDAE): PHYLOGENY AND EVOLUTION OF BEHAVIOR, P219; Ramirez CC, 2008, NEOTROP ENTOMOL, V37, P651, DOI 10.1590/S1519-566X2008000600005; Rull J, 2016, J INS BEHAV UNPUB; Rull J, 2016, B ENTOMOL R IN PRESS; Rull J, 2010, BIOL J LINN SOC, V100, P213, DOI 10.1111/j.1095-8312.2010.01403.x; Schofl G, 2002, BEHAV ECOL SOCIOBIOL, V52, P426, DOI 10.1007/s00265-002-0524-9; Segura DF, 2013, J APPL ENTOMOL, V137, P19, DOI 10.1111/j.1439-0418.2010.01534.x; SIMMONS LW, 1992, EVOLUTION, V46, P366, DOI 10.1111/j.1558-5646.1992.tb02044.x; Smith JJ, 2000, FRUIT FLIES (TEPHRITIDAE): PHYLOGENY AND EVOLUTION OF BEHAVIOR, P187; Smyth E. Graywood., 1960, Bulletin of the California Department of Agriculture, V49, P16; Tauber M.J., 1986, SEASONAL ADAPTATIONS; Wilkinson Gerald S., 2005, P312 50 1 1 2 9 SPRINGER/PLENUM PUBLISHERS NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0892-7553 1572-8889 J INSECT BEHAV J. Insect Behav. NOV 2016 29 6 629 642 10.1007/s10905-016-9586-9 14 Entomology Entomology EF3WD WOS:000390254700003 2019-02-21 J Caudell, M; Quinlan, R Caudell, Mark; Quinlan, Robert Life-history theory and climate change: resolving population and parental investment paradoxes Royal Society Open Science English Article life-history theory; climate change; ecological psychology; sustainability; environmental risk CARBON-DIOXIDE EMISSIONS; CO2 EMISSIONS; UNIVERSITY-STUDENTS; FUTURE ORIENTATION; TIME PERSPECTIVE; K-SELECTION; R-SELECTION; BEHAVIOR; IMPACT; DETERMINANTS Population growth in the next half-century is on pace to raise global carbon emissions by half. Carbon emissions are associated with fertility as a by-product of somatic and parental investment, which is predicted to involve time orientation/preference as a mediating psychological mechanism. Here, we draw upon life-history theory (LHT) to investigate associations between future orientation and fertility, and their impacts on carbon emissions. We argue 'K-strategy' life history (LH) in high-income countries has resulted in parental investment behaviours involving future orientation that, paradoxically, promote unsustainable carbon emissions, thereby lowering the Earth's K or carrying capacity. Increasing the rate of approach towards this capacity are 'r-strategy' LHs in low-income countries that promote population growth. We explore interactions between future orientation and development that might slow the rate of approach towards global K. Examination of 67 000 individuals across 75 countries suggests that future orientation interacts with the relationship between environmental risk and fertility and with development related parental investment, particularly investment in higher education, to slow population growth and mitigate per capita carbon emissions. Results emphasize that LHT will be an important tool in understanding the demographic and consumption patterns that drive anthropogenic climate change. [Caudell, Mark] Washington State Univ, Paul G Allen Sch Global Anim Hlth, Pullman, WA 99164 USA; [Quinlan, Robert] Washington State Univ, Dept Anthropol, Pullman, WA 99164 USA Caudell, M (reprint author), Washington State Univ, Paul G Allen Sch Global Anim Hlth, Pullman, WA 99164 USA. mcaudell@vetmed.wsu.edu NSF EEID [DEB1216040]; Washington State University M.C. is a postdoctoral researcher whose work is funded by an NSF EEID grant (DEB1216040). Washington State University supported the work of R.Q. as an academic staff member. Alan S, 2014, GOOD THING COME THOS, DOI [10.2139/ssrn.2566405, DOI 10.2139/SSRN.2566405]; Apostolidis T, 2006, ADDICT BEHAV, V31, P2339, DOI 10.1016/j.addbeh.2006.03.008; Ashkanasy NM, 2004, CULTURE LEADERSHIP O, P282; Baiocchi G, 2010, J IND ECOL, V14, P50, DOI 10.1111/j.1530-9290.2009.00216.x; Bar M, 2010, REV ECON DYNAM, V13, P424, DOI 10.1016/j.red.2009.03.002; Boserup E, 1983, INT J HLTH SERV, V13, P15, DOI [10.2190/A06B-VVUX-41ME-TKYJ, DOI 10.2190/A06B-VVUX-41ME-TKYJ]; Boyd J, 2005, UNDERSTANDING BEHAV; Buchs M, 2013, ECOL ECON, V90, P114, DOI 10.1016/j.ecolecon.2013.03.007; Burger O, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0157; Burger O, 2011, SCI REP-UK, V1, DOI 10.1038/srep00056; Burnside WR, 2012, BIOL REV, V87, P194, DOI 10.1111/j.1469-185X.2011.00192.x; Caldwell RM, 2006, J YOUTH ADOLESCENCE, V35, P591, DOI 10.1007/s10964-006-9031-z; Carmi N, 2014, SOC NATUR RESOUR, V27, P1304, DOI 10.1080/08941920.2014.928393; Caudell MA, 2015, CROSS-CULT RES, V49, P358, DOI 10.1177/1069397115591152; Caudell MA, 2012, HUM BIOL, V84, P101, DOI 10.3378/027.084.0201; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Coale A J, 1984, Pak Dev Rev, V23, P531; Cohen JE, 2010, P AM PHILOS SOC, V154, P158; DeLong JP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130547; DeLong JP, 2013, FRONT ECOL ENVIRON, V11, P65, DOI 10.1890/13.WB.004; Dietz T, 1997, P NATL ACAD SCI USA, V94, P175, DOI 10.1073/pnas.94.1.175; Duarte R, 2012, ENERG POLICY, V44, P441, DOI 10.1016/j.enpol.2012.02.020; Ebreo A, 2001, ENVIRON BEHAV, V33, P424, DOI 10.1177/00139160121973061; EHRLICH PR, 1971, SCIENCE, V171, P1212, DOI 10.1126/science.171.3977.1212; Fang T., 2003, INT J CROSS CULTURAL, V3, P347, DOI DOI 10.1177/1470595803003003006; Folke C, 2006, GLOBAL ENVIRON CHANG, V16, P253, DOI 10.1016/j.gloenvcha.2006.04.002; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; Friedl B, 2003, ECOL ECON, V45, P133, DOI 10.1016/S0921-8009(03)00008-9; Gant L, 2009, SOC WORK PUBLIC HLTH, V24, P39, DOI 10.1080/19371910802569435; Giudice DM, 2015, HDB EVOLUTIONARY PSY, P68; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Han LY, 2015, J CLEAN PROD, V103, P219, DOI 10.1016/j.jclepro.2014.08.078; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hofstede G., 2001, CULTURES CONSEQUENCE; Horstmanshof L, 2007, BRIT J EDUC PSYCHOL, V77, P703, DOI 10.1348/000709906X160778; Johnson CY, 2004, ENVIRON BEHAV, V36, P157, DOI 10.1177/0013916503251478; Joireman JA, 2004, ENVIRON BEHAV, V36, P187, DOI 10.1177/0013916503251476; Jorgenson AK, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057107; KAPLAN H, 1996, AM J PHYS ANTHROPOL, V101, P91, DOI DOI 10.1002/(SICI)1096-8644(1996)23+<91::AID-AJPA4>3.0.CO;2-C; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Lenzen M, 2006, ENERGY, V31, P181, DOI 10.1016/j.energy.2005.01.009; Lindsay JJ, 1997, J APPL SOC PSYCHOL, V27, P1799, DOI 10.1111/j.1559-1816.1997.tb01626.x; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; MAC ARTHUR ROBERT H., 1967; Mattison SM, 2016, HUM NATURE-INT BIOS, V27, P335, DOI 10.1007/s12110-016-9270-y; Milfont TL, 2006, J ENVIRON PSYCHOL, V26, P72, DOI 10.1016/j.jenvp.2006.03.001; Minkov M., 2007, WHAT MAKES US DIFFER; Minkov M, 2012, J CROSS CULT PSYCHOL, V43, P3, DOI 10.1177/0022022110388567; Minx J, 2013, ENVIRON RES LETT, V8, DOI 10.1088/1748-9326/8/3/035039; Murtaugh PA, 2009, GLOBAL ENVIRON CHANG, V19, P14, DOI 10.1016/j.gloenvcha.2008.10.007; Myrskyla M, 2011, HIGH DEV FERTILITY O; Myrskyla M, 2009, NATURE, V460, P741, DOI 10.1038/nature08230; Nassen J, 2014, ENERGY, V66, P98, DOI 10.1016/j.energy.2014.01.019; O'Neill BC, 2012, LANCET, V380, P157, DOI 10.1016/S0140-6736(12)60958-1; O'Neill BC, 2010, P NATL ACAD SCI USA, V107, P17521, DOI 10.1073/pnas.1004581107; Odling-Smee FJ, 2003, NICHE CONSTRUCTION N; Olli E, 2001, ENVIRON BEHAV, V33, P181, DOI 10.1177/0013916501332002; Peetsma T. T. D., 2000, SCAND J EDUC RES, V44, P177; Pepper GV, 2013, EVOL HUM BEHAV, V34, P433, DOI 10.1016/j.evolhumbehav.2013.08.004; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Ramos D, 2013, J RES ADOLESCENCE, V23, P95, DOI 10.1111/j.1532-7795.2012.00796.x; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; ROFF DA, 2002, LIFE HIST EVOLUTION; Ross L, 2016, BIOSCIENCE, V66, P363, DOI 10.1093/biosci/biw025; Schechter DE, 2010, HUM NATURE-INT BIOS, V21, P140, DOI 10.1007/s12110-010-9084-2; Schultz PW, 2001, J ENVIRON PSYCHOL, V21, P327; Shi AQ, 2003, ECOL ECON, V44, P29, DOI 10.1016/S0921-8009(02)00223-9; Skrondal A., 2012, MULTILEVEL LONGITUDI; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stephenson J, 2010, J PUBLIC HEALTH-UK, V32, P150, DOI 10.1093/pubmed/fdq038; Swim J, 2010, PSYCHOL GLOBAL CLIMA; Trivers RL, 1972, SEXUAL SELECTION DES; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Wall G, 1995, CAN REV SOC ANTHROP, V32, P465; World Bank, 2009, WORLD DEV IND; Xu XB, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121604; Zimbardo P. G., 2015, TIME PERSPECTIVE THE, P17, DOI DOI 10.1007/978-3-319-07368-2_2; Zimbardo PG, 1999, J PERS SOC PSYCHOL, V77, P1271, DOI 10.1037/0022-3514.77.6.1271 82 0 0 6 23 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 2054-5703 ROY SOC OPEN SCI R. Soc. Open Sci. NOV 2016 3 11 160470 10.1098/rsos.160470 8 Multidisciplinary Sciences Science & Technology - Other Topics EE0DR WOS:000389244400023 28018631 DOAJ Gold, Green Published 2019-02-21 J Alvarenga, LDP; Porto, KC; Coelho, MLP; Zartman, CE Alvarenga, Lisi D. P.; Porto, Ktia C.; Coelho, Maria L. P.; Zartman, Charles E. How does reproductive strategy influence demography? A case study in the tropical, unisexual epiphyllous moss Crossomitrium patrisiae AMERICAN JOURNAL OF BOTANY English Article bryophyte; demography; epiphyll; Hookeriaceae; metapopulation; rainforest; reproductive strategy; tropics HEPATIC ANASTROPHYLLUM-HELLERIANUM; RAIN-FOREST LEAVES; HYLOCOMIUM-SPLENDENS; SEXUAL REPRODUCTION; METAPOPULATION DYNAMICS; TETRAPHIS-PELLUCIDA; DESERT MOSS; POPULATION; DISPERSAL; PATTERNS PREMISE OF THE STUDY: Leaf-inhabiting organisms off er an experimentally tractable model system within which to investigate the influence of alternative reproductive strategies on plant metapopulation dynamics. We conducted a field study to determine whether (1) threshold colony sizes exist for the onset of sexual and asexual expression, and (2) alternative reproductive strategies differentially influence within-patch dynamics of the tropical pleurocarpous moss Crossomitrium patrisiae. METHODS: The growth, reproduction, and fate of 2101 colonies of C. patrisiae were followed over 2 years to investigate threshold size and age for sporophyte and brood branch formation and their influence on within-patch growth rates and longevity. KEY RESULTS: Asexual expression rather than sexual onset was limited by a minimal colony size. Age was uncoupled with threshold sizes. Colonies bearing brood branches survived nearly twice as long as sterile and solely sporophytic colonies. However, no effect of reproductive strategies on colony growth rates was found. CONCLUSIONS: This study is among the few attempts to correlate life history strategies with demographic parameters of terrestrial plants. Specifically, we provide evidence for differential influence of reproductive strategies on metapopulation survivorship. [Alvarenga, Lisi D. P.; Porto, Ktia C.; Coelho, Maria L. P.] Univ Fed Pernambuco, Dept Bot, Moraes Rego Av S-N, BR-50670901 Recife, PE, Brazil; [Zartman, Charles E.] Natl Inst Amazonian Res INPA, Dept Bot, Andre Av 2936, BR-69083000 Manaus, Amazonas, Brazil Alvarenga, LDP (reprint author), Univ Fed Pernambuco, Dept Bot, Moraes Rego Av S-N, BR-50670901 Recife, PE, Brazil. lisidamaris@yahoo.com.br Fundacao O Boticario de Protecao a Natureza (FBPN); Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); Brazil MCT/CNPq (Cooperacao Internacional-Acordos bilaterais) [017/2013] L.D.P.A. thanks the Fundacao O Boticario de Protecao a Natureza (FBPN) and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for financial support and the Centro de Pesquisas Ambientais do Nordeste (CEPAN) for logistic support, and Dr. Nicholas McLetchie (University of Kentucky), Paul Wilson, and two anonymous reviewers for valuable comments during the preparation of this manuscript. C.E.Z. acknowledges financial support from grant No 017/2013 from the Brazil MCT/CNPq (Cooperacao Internacional-Acordos bilaterais) while writing the manuscript. Allen B., 1990, TROPICAL BRYOLOGY, V2, P3; Alvarenga LDP, 2009, BIOTROPICA, V41, P682, DOI 10.1111/j.1744-7429.2009.00532.x; Anthony PA, 2002, FUNCT ECOL, V16, P808, DOI 10.1046/j.1365-2435.2002.00688.x; Bisang I, 2006, AM J BOT, V93, P1313, DOI 10.3732/ajb.93.9.1313; Buck William R., 1998, Memoirs of the New York Botanical Garden, V82, P1; COLEY PD, 1993, ECOLOGY, V74, P619, DOI 10.2307/1939322; CONVEY P, 1993, OIKOS, V68, P293, DOI 10.2307/3544842; Crawley M. J., 2007, R BOOK; Cronberg N, 2006, ECOGRAPHY, V29, P95, DOI 10.1111/j.2006.0906-7590.04361.x; de Oliveira SM, 2015, J ECOL, V103, P441, DOI 10.1111/1365-2745.12359; DUCKETT JG, 1993, J BRYOL, V17, P541, DOI 10.1179/jbr.1993.17.4.541; During Heinjo J., 1992, P1; Ehrlen J, 2000, PLANT ECOL, V149, P207, DOI 10.1023/A:1026531122302; Ferreira T., 2012, IMAGEJ USER GUIDE IJ; Gilbert GS, 2007, ECOLOGY, V88, P575, DOI 10.1890/05-1170; Gonzalez-Mancebo J. M., 1997, Lindbergia, V22, P36; Gradstein SR, 1997, ABSTR BOT, V21, P15; Hassel K, 2005, PLANT ECOL, V179, P207, DOI 10.1007/s11258-005-8065-8; Hock Z, 2009, PLANT ECOL, V202, P123, DOI 10.1007/s11258-008-9541-8; Johansson V, 2012, ECOLOGY, V93, P235, DOI 10.1890/11-0760.1; JONSSON BG, 1988, J BRYOL, V15, P315, DOI 10.1179/jbr.1988.15.2.315; KIMMERER RW, 1991, BRYOLOGIST, V94, P255, DOI 10.2307/3243962; KIMMERER RW, 1994, BRYOLOGIST, V97, P20, DOI 10.2307/3243344; Laaka-Lindberg S, 2001, OIKOS, V94, P525, DOI 10.1034/j.1600-0706.2001.940314.x; Lobel S, 2009, OECOLOGIA, V161, P569, DOI 10.1007/s00442-009-1402-1; Lobel S, 2009, J ECOL, V97, P176, DOI 10.1111/j.1365-2745.2008.01459.x; Longton R. E., 1983, NEW MANUAL BRYOLOGY, P386; LUCKING R, 2008, FLORA NEOTROPICA MON, V103; Maciel-Silva A. S., 2014, REPROD BIOL PLANTS, P57; Magdefrau K, 1982, BRYOPHYTE ECOLOGY, P59; Marino P. C., 1993, LINDBERGIA, V17, P91; Maynard Smith J, 1978, EVOLUTION SEX; McLetchie DN, 2000, OIKOS, V90, P227, DOI 10.1034/j.1600-0706.2000.900203.x; Alvarenga LDP, 2013, J BRYOL, V35, P88, DOI 10.1179/174328213X13662092820316; Pohjamo M, 2004, PLANT ECOL, V173, P73, DOI 10.1023/B:VEGE.0000026330.62021.0a; Pohjamo M, 2004, PERSPECT PLANT ECOL, V6, P159; Pohjamo M, 2006, EVOL ECOL, V20, P415, DOI 10.1007/s10682-006-0011-2; Roads Estne, 2006, Lindbergia, V31, P63; Ruete A, 2012, P ROY SOC B-BIOL SCI, V279, P3098, DOI 10.1098/rspb.2012.0428; Rydgren K, 2002, J BRYOL, V24, P207, DOI 10.1179/037366802125001376; Rydgren K, 1998, OIKOS, V82, P5, DOI 10.2307/3546912; Schuster R. M., 1988, J HATTORI BOT LAB, V64, P237; Shaw A. J., 2000, BRYOPHYTE BIOL, P368; Soderstrom L, 2005, J BRYOL, V27, P261, DOI 10.1179/174328205X70010; Sonnleitner M, 2009, J TROP ECOL, V25, P321, DOI 10.1017/S0266467409006002; Stark L, 2001, PLANT ECOL, V157, P181; Stark LR, 2000, AM J BOT, V87, P1599, DOI 10.2307/2656736; Stark LR, 2004, AM J BOT, V91, P1, DOI 10.3732/ajb.91.1.1; STONEBURNER A, 1992, BRYOLOGIST, V95, P324, DOI 10.2307/3243491; The R Development Core Team, 2007, R LANG ENV STAT COMP; van Dulmen A, 2001, PLANT ECOL, V153, P73, DOI 10.1023/A:1017577305193; Vanderpoorten A, 2009, INTRODUCTION TO BRYOPHYTES, P1, DOI 10.1017/CBO9780511626838; Veloso H. P, 1991, CLASSIFICACAO VEGETA; Vorholt JA, 2012, NAT REV MICROBIOL, V10, P828, DOI 10.1038/nrmicro2910; Wiklund K, 2004, BRYOLOGIST, V107, P293, DOI 10.1639/0007-2745(2004)107[0293:CEONPM]2.0.CO;2; Wu P.-C., 1987, S BIOL HUNGARICA, V35, P27; Wyatt R., 1984, EXPT BIOL BRYOPHYTES, P39; Zartman CE, 2006, BIOL CONSERV, V127, P46, DOI 10.1016/j.biocon.2005.07.012; Zartman CE, 2015, BIOTROPICA, V47, P172, DOI 10.1111/btp.12201; Zartman CE, 2012, J ECOL, V100, P980, DOI 10.1111/j.1365-2745.2012.01969.x 60 0 0 0 7 BOTANICAL SOC AMER INC ST LOUIS PO BOX 299, ST LOUIS, MO 63166-0299 USA 0002-9122 1537-2197 AM J BOT Am. J. Bot. NOV 2016 103 11 1921 1927 10.3732/ajb.1600202 7 Plant Sciences Plant Sciences ED7IR WOS:000389037800008 27849159 Bronze 2019-02-21 J Liang, K; Elias, RJ; Choh, SJ; Lee, DC; Lee, DJ Liang, Kun; Elias, Robert J.; Choh, Suk-Joo; Lee, Dong-Chan; Lee, Dong-Jin Morphometrics and paleoecology of Catenipora (Tabulata) from the Xiazhen Formation (Upper Ordovician), Zhuzhai, South China JOURNAL OF PALEONTOLOGY English Article LIFE-HISTORY STRATEGIES; MONTASTRAEA-ANNULARIS; SPECIES BOUNDARIES; CORAL; CANADA; MANITOBA; COMPLEX; GROWTH; EVOLUTION; REEFS Catenipora is one of the most common tabulate coral genera occurring in various lithofacies in the Upper Ordovician Xiazhen Formation at Zhuzhai in South China. A combination of traditional multivariate analysis and geometric morphometrics is applied to a large number of specimens to distinguish and identify species. Based on three major principal components extracted from 11 morphological characters, three major groups as determined by the cluster-analysis dendrogram are considered to be morphospecies. Their validity and distinctiveness are confirmed by discriminant analysis, descriptive statistics, and bivariate plots. Tabularium area and common wall thickness are the most meaningful characters to distinguish the three morphospecies. Geometric morphometrics is adopted to compare the morphospecies with types and/or figured specimens of species previously reported from the vicinity of Zhuzhai. Despite discrepancies in corallite size, principal component analysis and discriminant analysis, as well as consideration of overall morphological characteristics, indicate that the morphospecies represent C. zhejiangensis Yu in Yu et al., 1963, C. shiyangensis Lin and Chow, 1977, and C. dianbiancunensis Lin and Chow, 1977. Catenipora occurs in seven stratigraphic intervals in the Xiazhen Formation at Zhuzhai, representing a variety of heterogeneous environments. The coralla preservation is variable due to differential compaction; coralla preserved in limestones are commonly intact and in growth position, whereas those in shales are mostly crushed or fragmentary. The size and shape of corallites are considered primarily to be species-specific characters, but are also related to the depositional environments. In all species, morphological characters, including corallite size, septal development, and shape and size of lacunae, show high variability in accordance with lithofacies and stratigraphic position. The intraspecific differences in corallite size at various localities in the Zhuzhai area may indicate responses to local environmental factors, but may also reflect genetic differences if there was limited connection among populations. [Liang, Kun] Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, Key Lab Econ Stratig & Palaeogeog, Beijing 100864, Peoples R China; [Elias, Robert J.] Univ Manitoba, Dept Geol Sci, Winnipeg, MB R3T 2N2, Canada; [Choh, Suk-Joo] Korea Univ, Dept Earth & Environm Sci, Seoul 136701, South Korea; [Lee, Dong-Chan] Chungbuk Natl Univ, Dept Earth Sci Educ, Cheongju 361763, South Korea; [Lee, Dong-Jin] Andong Natl Univ, Dept Earth & Environm Sci, Andong 760749, South Korea Liang, K (reprint author), Chinese Acad Sci, Nanjing Inst Geol & Palaeontol, Key Lab Econ Stratig & Palaeogeog, Beijing 100864, Peoples R China. kliang@nigpas.ac.cn; eliasrj@cc.umanitoba.ca; sjchoh@korea.ac.kr; dclee@chungbuk.ac.kr; djlee@andong.ac.kr Choh, Suk-Joo/0000-0002-1110-0416 National Science Foundation of China [41402013, J1210006]; National Research Foundation of Korea [NRF-2013R1A2A2A01067612, NRF-2014K2A2A2000787] This study was supported by grants from the National Science Foundation of China (Grant No. 41402013 and J1210006) and from the National Research Foundation of Korea (NRF-2013R1A2A2A01067612 and NRF-2014K2A2A2000787). We thank N. Sun, Y. Wang, and L. Guan for their assistance in the field and lab. We are grateful to an anonymous reviewer and editors P. Harries and B. Pratt for their constructive comments, which were helpful in improving the manuscript. Bae BY, 2008, J PALEONTOL, V82, P78, DOI 10.1666/05-146.1; Bae BY, 2006, J PALEONTOL, V80, P885; Bae BY, 2006, LETHAIA, V39, P141, DOI 10.1080/00241160600623723; Bae BY, 2013, LETHAIA, V46, P98, DOI 10.1111/j.1502-3931.2012.00326.x; Bian L. Z., 1990, J NANJING U EARTH SC, V3, P1; Bian L. Z., 1996, ANCIENT ORGANIC REEF, P4; Bookstein FL., 1991, MORPHOMETRIC TOOLS L; Budd AE, 2004, PALEOBIOLOGY, V30, P396, DOI 10.1666/0094-8373(2004)030<0396:OSBAHW>2.0.CO;2; BUDD AF, 1994, PALEOBIOLOGY, V20, P484; Budd AF, 2001, J PALEONTOL, V75, P527, DOI 10.1666/0022-3360(2001)075<0527:TOAEEO>2.0.CO;2; Budd AF, 2012, EVOL ECOL, V26, P265, DOI 10.1007/s10682-010-9460-8; Budd AF, 2010, SCIENCE, V328, P1558, DOI 10.1126/science.1188947; Buehler E. J., 1955, PEABODY MUSEUM NATUR, V8; Cairns S.D., 1989, Memoir of the Association of Australasian Palaeontologists, V8, P61; CHEETHAM AH, 1987, PALEOBIOLOGY, V13, P286; Chen X., 1987, J STRATIGRAPHY, V11, P23; Copper P., 2012, GEOSCIENCES, V2, P65; Deng Z.Q., 1984, STRATIGRAPHY PALAE 4, P1; DIXON OA, 1974, J PALEONTOL, V48, P568; Dryden LL, 1998, STAT SHAPE ANAL; Ehrenberg C. G., 1834, ABHANDLUNGEN KONIGLI, P225; ELIAS RJ, 1993, J PALEONTOL, V67, P922, DOI 10.1017/S0022336000025221; Foster A.B., 1984, PALAEONTOGRAPHICA AM, V54, P58; FOSTER AB, 1979, J EXP MAR BIOL ECOL, V39, P25, DOI 10.1016/0022-0981(79)90003-0; FOSTER AB, 1985, J PALEONTOL, V59, P1359; FOSTER AB, 1980, B MAR SCI, V30, P678; Fukami H, 2004, EVOLUTION, V58, P324, DOI 10.1111/j.0014-3820.2004.tb01648.x; GOODALL C, 1991, J ROY STAT SOC B MET, V53, P285; Hamada T., 1957, J FACULTY SCI, V10, P393; Hill D., 1981, TREATISE INVERT F S1, V2, p[F430, F379]; Hubmann B., 1992, Anzeiger der Oesterreichischen Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse, V128, P113; JACKSON JBC, 1990, SCIENCE, V248, P579, DOI 10.1126/science.248.4955.579; Jackson JE, 1991, USERS GUIDE PRINCIPA; Jolliffe I. T., 2002, SPRINGER SERIES STAT; Klaamann E., 1966, INKOMMUNIKATNYE TABU; Klaus JS, 2003, PALAIOS, V18, P3, DOI 10.1669/0883-1351(2003)018<0003:COCCRC>2.0.CO;2; Kwon SW, 2012, SEDIMENT GEOL, V267, P15, DOI 10.1016/j.sedgeo.2012.04.001; LAMARCK J.B.P.A. DE M., 1816, HIST NATURELLE ANIMA, V2; Laub R.S., 1979, Bulletins of American Paleontology, V75, P1; LEE DJ, 1990, LETHAIA, V23, P179, DOI 10.1111/j.1502-3931.1990.tb01359.x; LEE DJ, 1991, J PALEONTOL, V65, P191, DOI 10.1017/S0022336000020424; Lee DC, 2013, ACTA PALAEONTOL POL, V58, P855, DOI 10.4202/app.2010.0036; Lee DC, 2012, ALCHERINGA, V36, P387, DOI 10.1080/03115518.2012.658724; Li Y, 2004, PALAEOGEOGR PALAEOCL, V205, P235, DOI 10.1016/j.palaeo.2003.12.010; Lin B.Y., 1977, Professional Papers of Stratigraphy and Palaeontology, V3, P108; Milne-Edwards H., 1850, PALAEONTOGRAPHICAL S, V3, p[i, 1]; Milne-Edwards H., 1849, CR HEBD ACAD SCI, V29, P257; ROHLF FJ, 1990, SYST ZOOL, V39, P40, DOI 10.2307/2992207; ROHLF FJ, 1993, TRENDS ECOL EVOL, V8, P129, DOI 10.1016/0169-5347(93)90024-J; Rong J.-y., 1987, Acta Palaeontologica Sinica, V26, P507; Rong JY, 2010, SCI CHINA EARTH SCI, V53, P1, DOI 10.1007/s11430-010-0005-3; Schmidt F., 1858, ARCH NATURKUNDE LIV, V2, P1; Sokolov BS, 1947, BIOL MOSKOVSKOE OBSH, V22, P19; Stasinska A., 1967, ACTA PALAEONTOLOGICA, V18, P1; Tchernychev B.B., 1937, VSESOIUZNOE ARKTIKI, V91, P67; Wang Guang-xu, 2010, Acta Palaeontologica Sinica, V49, P478; Watkins R, 2000, LETHAIA, V33, P55, DOI 10.1080/00241160050150302; WEBBY BD, 2002, SEPM SPECIAL PUBLICA, V72, P129, DOI DOI 10.2110/PEC.02.72.0095; [吴浩若 Wu Haoruo], 2003, [古地理学报, Journal of palaeogeography], V5, P328; Yan DT, 2009, PALAEOGEOGR PALAEOCL, V274, P32, DOI 10.1016/j.palaeo.2008.12.016; Yu C.M., 1963, CHINESE CORAL FOSSIL, P291; Yu C.M., 1960, ACTA PALAEONTOLOGICA, V8, P65; Yu J. -H., 1992, J NANJING U EARTH SC, V4, P1; Zhan R.B., 2007, ORDOVICIAN LLANDOVER; Zhan RB, 2008, PROG NAT SCI-MATER, V18, P1, DOI 10.1016/j.pnsc.2007.07.004; Zhang Y. D., 2007, ORDOVICIAN SILURIAN 66 3 3 1 2 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0022-3360 1937-2337 J PALEONTOL J. Paleontol. NOV 2016 90 6 1027 1048 10.1017/jpa.2016.60 22 Paleontology Paleontology ED3JR WOS:000388745900002 2019-02-21 J Scheele, BC; Hunter, DA; Banks, SC; Pierson, JC; Skerratt, LF; Webb, R; Driscoll, DA Scheele, Ben C.; Hunter, David A.; Banks, Sam C.; Pierson, Jennifer C.; Skerratt, Lee F.; Webb, Rebecca; Driscoll, Don A. High adult mortality in disease-challenged frog populations increases vulnerability to drought JOURNAL OF ANIMAL ECOLOGY English Article amphibian declines; chytrid fungus; demography; environmental stochasticity; life history; niche contraction; population dynamics; recruitment failure AMPHIBIAN CHYTRID FUNGUS; EMERGING INFECTIOUS-DISEASE; LIFE-HISTORY EVOLUTION; BATRACHOCHYTRIUM-DENDROBATIDIS; FISH POPULATIONS; TASMANIAN DEVIL; RAPID EVOLUTION; GROWTH RATE; CHYTRIDIOMYCOSIS; EXTINCTION 1. Pathogen emergence can drive major changes in host population demography, with implications for population dynamics and sensitivity to environmental fluctuations. The amphibian disease chytridiomycosis, caused by infection with the fungal pathogen Batrachochytrium dendrobatidis (Bd), is implicated in the severe decline of over 200 amphibian species. In species that have declined but not become extinct, Bd persists and can cause substantial ongoing mortality. High rates of mortality associated with Bd may drive major changes in host demography, but this process is poorly understood. 2. Here, we compared population age structure of Bd-infected populations, Bd-free populations and museum specimens collected prior to Bd emergence for the endangered Australian frog, Litoria verreauxii alpina (alpine tree frog). We then used population simulations to investigate how pathogen-associated demographic shifts affect the ability of populations to persist in stochastic environments. 3. We found that Bd-infected populations have a severely truncated age structure associated with very high rates of annual adult mortality. Near-complete annual adult turnover in Bdinfected populations means that individuals breed once, compared with Bd-free populations where adults may breed across multiple years. 4. Our simulations showed that truncated age structure erodes the capacity of populations to withstand periodic recruitment failure; a common challenge for species reproducing in uncertain environments. 5. We document previously undescribed demographic shifts associated with a globally emerging pathogen and demonstrate how these shifts alter host ecology. Truncation of age structure associated with Bd effectively reduces host niche width and can help explain the contraction of L. v. alpina to perennial waterbodies where the risk of drought-induced recruitment failure is low. Reduced capacity to tolerate other sources of mortality may explain variation in decline severity among other chytridiomycosis-challenged species and highlights the potential to mitigate disease impacts through minimizing other sources of mortality. [Scheele, Ben C.; Banks, Sam C.; Pierson, Jennifer C.] Australian Natl Univ, Coll Med Biol & Environm, Fenner Sch Environm & Soc, Canberra, ACT 0200, Australia; [Scheele, Ben C.; Skerratt, Lee F.; Webb, Rebecca] James Cook Univ, Coll Publ Hlth Med & Vet Sci, Hlth Res Grp 1, 1 James Cook Dr, Townsville, Qld 4811, Australia; [Hunter, David A.] NSW Off Environm & Heritage, POB 544, Albury, NSW 2640, Australia; [Driscoll, Don A.] Deakin Univ, Sch Life & Environm Sci, Ctr Integrat Ecol, Burwood, Vic 3125, Australia Scheele, BC (reprint author), Australian Natl Univ, Coll Med Biol & Environm, Fenner Sch Environm & Soc, Canberra, ACT 0200, Australia.; Scheele, BC (reprint author), James Cook Univ, Coll Publ Hlth Med & Vet Sci, Hlth Res Grp 1, 1 James Cook Dr, Townsville, Qld 4811, Australia. ben.scheele@anu.edu.au /0000-0003-2415-0057; Driscoll, Don/0000-0002-1560-5235; Skerratt, Lee/0000-0003-3471-7512; Scheele, Benjamin/0000-0001-7284-629X Taronga Zoo Field Conservation Grant; New South Wales Office of Environment and Heritage; Australian Research Council [LP110200240] Funding was provided by a Taronga Zoo Field Conservation Grant, the New South Wales Office of Environment and Heritage and Australian Research Council grant LP110200240. C. Scheele and S. Kearney provided field assistance and K. Smith and L. Brannelly helped facilitate museum sampling. C. Foster provided useful comments on an earlier draft of this manuscript. Research was conducted under scientific permits SL100436 and SL10006052 issued by the New South Wales Office of Environment and Heritage and ethics approval from the Australian National University (A2011/19) and the University of Canberra (CEAE 98/7). An D, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0018; Anstis M., 2002, TADPOLES S E AUSTRAL; Australian Government, 2006, BACKGR DOC THREAR AB; Bates D. M., 2012, LME4 LINEAR MIXED EF; Berger L, 1998, P NATL ACAD SCI USA, V95, P9031, DOI 10.1073/pnas.95.15.9031; Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; Boyle DG, 2004, DIS AQUAT ORGAN, V60, P141, DOI 10.3354/dao060141; Briggs CJ, 2010, P NATL ACAD SCI USA, V107, P9695, DOI 10.1073/pnas.0912886107; Burnham K. P, 2002, MODEL SELECTION MULT; Caughley G, 1977, ANAL VERTEBRATE POPU; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Daszak P, 2000, SCIENCE, V287, P443, DOI 10.1126/science.287.5452.443; de Castro F, 2005, ECOL LETT, V8, P117, DOI 10.1111/j.1461-0248.2004.00693.x; Fisher MC, 2012, NATURE, V484, P186, DOI 10.1038/nature10947; Fisher MC, 2009, ANNU REV MICROBIOL, V63, P291, DOI 10.1146/annurev.micro.091208.073435; Gandon S, 2002, AM NAT, V160, P374, DOI 10.1086/341525; Gillespie GR, 2001, BIOL CONSERV, V100, P187, DOI 10.1016/S0006-3207(01)00021-0; Harkonen T, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000887; Hunter DA, 2010, DIS AQUAT ORGAN, V92, P209, DOI 10.3354/dao02118; Hyatt AD, 2007, DIS AQUAT ORGAN, V73, P175, DOI 10.3354/dao073175; Jones ME, 2008, P NATL ACAD SCI USA, V105, P10023, DOI 10.1073/pnas.0711236105; Keesing F, 2010, NATURE, V468, P647, DOI 10.1038/nature09575; Lachish S, 2009, J ANIM ECOL, V78, P427, DOI 10.1111/j.1365-2656.2008.01494.x; Lachish S, 2007, J ANIM ECOL, V76, P926, DOI 10.1111/j.1365-2656.2007.01272.x; Lips KR, 2006, P NATL ACAD SCI USA, V103, P3165, DOI 10.1073/pnas.0506889103; Martel A, 2014, SCIENCE, V346, P630, DOI 10.1126/science.1258268; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Murray KA, 2009, CONSERV BIOL, V23, P1242, DOI 10.1111/j.1523-1739.2009.01211.x; Muths E, 2011, J APPL ECOL, V48, P873, DOI 10.1111/j.1365-2664.2011.02005.x; Ohlberger J, 2011, P ROY SOC B-BIOL SCI, V278, P35, DOI 10.1098/rspb.2010.0960; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Olson DH, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056802; OSBORNE W, 1999, DECLINES DISAPPEARAN, P145; OSBORNE WS, 1989, AUST WILDLIFE RES, V16, P537; Packer A, 2000, SCIENCE, V404, P278; Phillott AD, 2013, CONSERV BIOL, V27, P1058, DOI 10.1111/cobi.12073; Pilliod DS, 2010, CONSERV BIOL, V24, P1259, DOI 10.1111/j.1523-1739.2010.01506.x; R Development Core Team, 2014, R LANG ENV STAT COMP; Rachowicz LJ, 2006, ECOLOGY, V87, P1671, DOI 10.1890/0012-9658(2006)87[1671:EIDAAP]2.0.CO;2; Retallick RWR, 2004, PLOS BIOL, V2, P1965, DOI 10.1371/journal.pbio.0020351; Rogers LM, 1998, P ROY SOC B-BIOL SCI, V265, P1269, DOI 10.1098/rspb.1998.0429; Romiguier J, 2014, NATURE, V515, P261, DOI 10.1038/nature13685; Rouyer T, 2012, ECOL LETT, V15, P658, DOI 10.1111/j.1461-0248.2012.01781.x; RYAN MJ, 1988, AM ZOOL, V28, P885; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Scheele B. C., 2016, DRYAD DIGITAL REPOSI; Scheele BC, 2015, BIOL CONSERV, V182, P36, DOI 10.1016/j.biocon.2014.11.032; Scheele BC, 2014, CONSERV BIOL, V28, P1195, DOI 10.1111/cobi.12322; Scheele B, 2014, BIOL CONSERV, V170, P86, DOI 10.1016/j.biocon.2013.12.034; Skerratt LF, 2007, ECOHEALTH, V4, P125, DOI 10.1007/s10393-007-0093-5; SMIRINA EM, 1994, GERONTOLOGY, V40, P133, DOI 10.1159/000213583; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Vredenburg VT, 2010, P NATL ACAD SCI USA, V107, P9689, DOI 10.1073/pnas.0914111107; Wake DB, 2008, P NATL ACAD SCI USA, V105, P11466, DOI 10.1073/pnas.0801921105; Wilbur HM, 2006, AM NAT, V168, P398, DOI 10.1086/506258; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435 57 19 19 1 31 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. NOV 2016 85 6 1453 1460 10.1111/1365-2656.12569 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology EC7XK WOS:000388354200005 27380945 Bronze 2019-02-21 J Fayet, AL; Freeman, R; Shoji, A; Kirk, HL; Padget, O; Perrins, CM; Guilford, T Fayet, Annette L.; Freeman, Robin; Shoji, Akiko; Kirk, Holly L.; Padget, Oliver; Perrins, Chris M.; Guilford, Tim Carry-over effects on the annual cycle of a migratory seabird: an experimental study JOURNAL OF ANIMAL ECOLOGY English Article cost of reproduction; cross-fostering; etho-informatics; geolocation; life-history theory; migration; phenology SHEARWATERS PUFFINUS-PUFFINUS; NORTH-ATLANTIC OSCILLATION; MANX SHEARWATER; ECOLOGICAL CONDITIONS; PARENTAL INVESTMENT; PELAGIC SEABIRD; LONG-DISTANCE; EGG-SIZE; WINTER; BIRD 1. Long-lived migratory animals must balance the cost of current reproduction with their own condition ahead of a challenging migration and future reproduction. In these species, carry-over effects, which occur when events in one season affect the outcome of the subsequent season, may be particularly exacerbated. However, how carry-over effects influence future breeding outcomes and whether (and how) they also affect behaviour during migration and wintering is unclear. 2. Here we investigate carry-over effects induced by a controlled, bidirectional manipulation of the duration of reproductive effort on the migratory, wintering and subsequent breeding behaviour of a long-lived migratory seabird, the Manx shearwater Puffinus puffinus. By cross-fostering chicks of different age between nests, we successfully prolonged or shortened by similar to 25% the chick-rearing period of 42 breeding pairs. We tracked the adults with geolocators over the subsequent year and combined migration route data with at-sea activity budgets obtained from high-resolution saltwater-immersion data. Migratory behaviour was also recorded during non-experimental years (the year before and/or two years after manipulation) for a subset of birds, allowing comparison between experimental and non-experimental years within treatment groups. 3. All birds cared for chicks until normal fledging age, resulting in birds with a longer breeding period delaying their departure on migration; however, birds that finished breeding earlier did not start migrating earlier. Increased reproductive effort resulted in less time spent at the wintering grounds, a reduction in time spent resting daily and a delayed start of breeding with lighter eggs and chicks and lower breeding success the following breeding season. Conversely, reduced reproductive effort resulted in more time resting and less time foraging during the winter, but a similar breeding phenology and success compared with control birds the following year, suggesting that 'positive' carry-over effects may also occur but perhaps have a less long-lasting impact than those incurred from increased reproductive effort. 4. Our results shed light on how carry-over effects can develop and modify an adult animal's behaviour year-round and reveal how a complex interaction between current and future reproductive fitness, individual condition and external constraints can influence life-history decisions. [Fayet, Annette L.; Shoji, Akiko; Kirk, Holly L.; Padget, Oliver; Guilford, Tim] Univ Oxford, Dept Zool, Oxford Nav Grp, Oxford, England; [Freeman, Robin] Zool Soc London, Inst Zool, London, England; [Perrins, Chris M.] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford, England Fayet, AL; Guilford, T (reprint author), Univ Oxford, Dept Zool, Oxford Nav Grp, Oxford, England. annette.fayet@gmail.com; tim.guilford@zoo.ox.ac.uk Kirk, Holly/0000-0002-8724-3210; Fayet, Annette/0000-0001-6373-0500 Biotechnology and Biological Sciences Research Council; Microsoft Research Cambridge; British Council; Mary Griffiths Foundation; British Federation for Women Graduates; Biotechnology and Biological Sciences Research Council [1095480] We thank Philip Collins, Jennifer Roberts, Ben Dean, Will Whittington, Nia Stevens, Marwa Kavelaars, Ignacio Juarez-Martinez, Lewis Yates, Sarah Bond and many other volunteers for their invaluable help in the field, and Chris Taylor, Birgitta Buche, Eddie Stubbings and the Wildlife Trust of South and West Wales for their support and for allowing us to carry out this study on Skomer. We are grateful to colleagues from the OxNav group, Rhiannon Meier and Nick Golding for helpful discussion on this manuscript. A.F. was funded by scholarships from the Biotechnology and Biological Sciences Research Council, Microsoft Research Cambridge, the British Council, the Mary Griffiths Foundation and the British Federation for Women Graduates. Alerstam T, 1990, BIRD MIGRATION; Bety J, 2003, AM NAT, V162, P110, DOI 10.1086/375680; Bogdanova MI, 2011, P ROY SOC B-BIOL SCI, V278, P2412, DOI 10.1098/rspb.2010.2601; Brooke M., 1990, POYSER MONOGRAPHS; BROOKE MDL, 1978, J ANIM ECOL, V47, P477, DOI 10.2307/3795; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Catry P, 2006, ANIM BEHAV, V72, P383, DOI 10.1016/j.anbehav.2005.10.030; Catry P, 2013, ECOLOGY, V94, P1230, DOI 10.1890/12-2177.1; COLEMAN RM, 1985, BEHAV ECOL SOCIOBIOL, V18, P59; CROXALL JP, 1992, IBIS, V134, P219, DOI 10.1111/j.1474-919X.1992.tb03803.x; Daunt F, 2014, ECOLOGY, V95, P2077, DOI 10.1890/13-1797.1; Dean B, 2012, J R SOC INTERFACE, V10, P1; Dean B, 2015, MAR ECOL PROG SER, V538, P239, DOI 10.3354/meps11443; Dean B, 2013, J R SOC INTERFACE, V10, DOI 10.1098/rsif.2012.0570; DRENT RH, 1980, ARDEA, V68, P225; Erikstad KE, 2009, ECOLOGY, V90, P3197, DOI 10.1890/08-1778.1; Fayet A.L., 2016, DRYAD DIGITAL REPOSI; Forchhammer MC, 2002, J ANIM ECOL, V71, P1002, DOI 10.1046/j.1365-2656.2002.00664.x; Guilford T, 2009, P ROY SOC B-BIOL SCI, V276, P1215, DOI 10.1098/rspb.2008.1577; Guilford T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033753; Gunnarsson TG, 2005, P ROY SOC B-BIOL SCI, V272, P2319, DOI 10.1098/rspb.2005.3214; Gunnarsson TG, 2006, J ANIM ECOL, V75, P1119, DOI 10.1111/j.1365-2656.2006.01131.x; HAMER KC, 1994, J AVIAN BIOL, V25, P198, DOI 10.2307/3677075; HARRIS MP, 1966, IBIS, V108, P17, DOI 10.1111/j.1474-919X.1966.tb07249.x; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hinks AE, 2015, AM NAT, V186, P84, DOI 10.1086/681572; Huppop O, 2003, P ROY SOC B-BIOL SCI, V270, P233, DOI 10.1098/rspb.2002.2236; JOHNSEN I, 1994, OIKOS, V71, P273, DOI 10.2307/3546276; Jonker RM, 2011, BEHAV ECOL, V22, P326, DOI 10.1093/beheco/arq208; Kokko H, 1999, J ANIM ECOL, V68, P940, DOI 10.1046/j.1365-2656.1999.00343.x; Marra PP, 1998, SCIENCE, V282, P1884, DOI 10.1126/science.282.5395.1884; McNamara JM, 1998, J AVIAN BIOL, V29, P416, DOI 10.2307/3677160; Mitchell GW, 2012, J ANIM ECOL, V81, P1024, DOI 10.1111/j.1365-2656.2012.01978.x; Norris DR, 2006, BIOL LETT-UK, V2, P148, DOI 10.1098/rsbl.2005.0397; Norris DR, 2004, P ROY SOC B-BIOL SCI, V271, P59, DOI 10.1098/rspb.2003.2569; O'Connor CM, 2014, ECOSPHERE, V5, DOI 10.1890/ES13-00388.1; OWEN M, 1991, BIRD POPULATION STUD, P360; PARSONS J, 1970, NATURE, V228, P1221, DOI 10.1038/2281221a0; Perrins C., 2013, 294 JNCC WILDL TRUST; Perrins C., 2012, 293 JNCC WILDL TRUST; PERRINS CM, 1973, IBIS, V115, P535, DOI 10.1111/j.1474-919X.1973.tb01991.x; PERRINS CM, 1966, IBIS, V108, P132, DOI 10.1111/j.1474-919X.1966.tb07259.x; R Core Development Team, 2016, R LANG ENV STAT COMP; Regular PM, 2014, ECOSPHERE, V5, DOI 10.1890/ES14-00182.1; Rehling A, 2012, ANIM BEHAV, V83, P35, DOI 10.1016/j.anbehav.2011.10.003; Richardson W.J., 1990, P78; Riou S, 2012, BEHAV ECOL, V23, P1102, DOI 10.1093/beheco/ars079; Saino N, 2004, ECOL LETT, V7, P21, DOI 10.1046/j.1461-0248.2003.00553.x; Saino N, 2004, P ROY SOC B-BIOL SCI, V271, P681, DOI 10.1098/rspb.2003.2656; SCHIFFER.L, 1973, IBIS, V115, P549, DOI 10.1111/j.1474-919X.1973.tb01992.x; Senner NR, 2015, P ROY SOC B-BIOL SCI, V282, P5, DOI 10.1098/rspb.2015.1050; Shaw AK, 2013, J MATH BIOL, V66, P685, DOI 10.1007/s00285-012-0603-0; Shoji A, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0671; Sillett TS, 2000, SCIENCE, V288, P2040, DOI 10.1126/science.288.5473.2040; SWANSON LJ, 1980, BEHAV NEURAL BIOL, V28, P172, DOI 10.1016/S0163-1047(80)91519-8; TRIVERS RL, 1974, AM ZOOL, V14, P249; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 57 6 6 4 50 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. NOV 2016 85 6 1516 1527 10.1111/1365-2656.12580 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology EC7XK WOS:000388354200011 27576353 Green Published, Other Gold 2019-02-21 J Balasubramaniam, P; Rotenberry, JT Balasubramaniam, Priya; Rotenberry, John T. Elevation and latitude interact to drive life-history variation in precocial birds: a comparative analysis using galliformes JOURNAL OF ANIMAL ECOLOGY English Article altitude; clutch size; egg mass; elevation; fecundity vs. offspring quality galliformes; interspecific variation; life-history trade-off; phylogenetic comparative methods CLUTCH SIZE; NEST PREDATION; INCUBATION BEHAVIOR; REPRODUCTIVE EFFORT; FLEDGING SUCCESS; TROPICAL BIRDS; AVIAN EGGS; EVOLUTION; SURVIVAL; FOOD 1. Elevational gradients provide a powerful laboratory for understanding the environmental and ecological drivers of geographic variation in avian life-history strategies. Environmental variation across elevational gradients is hypothesized to select for a trade-off of reduced fecundity (lower clutch size and/or fewer broods) for higher offspring quality (larger eggs and/or increased parental care) in higher elevation species and populations. In birds, a focus on altricial species from north temperate latitudes has prevented an evaluation of the generality of this trade-off, and how it is affected by latitude and intrinsic factors (development mode). 2. We performed a comparative analysis controlling for body size and phylogenetic relationships on a global data set of 135 galliform species to test (i) whether higher elevation precocial species have lower fecundity (smaller clutch and/or fewer broods) and invest more in offspring quality (greater egg mass) and (ii) whether latitude influences the traits involved and/or the trade-off, and (iii) to identify ecological and environmental drivers of life-history variation along elevational gradients. 3. Life-history traits showed significant interaction effects across elevation and latitude: temperate higher elevation species had smaller clutches and clutch mass, larger eggs and shorter incubation periods, whereas more tropical species had larger clutches, eggs and clutch mass, and longer incubation periods as elevation increased. Number of broods and body mass did not vary with elevation or latitude. Latitudinal gradient in clutch size was observed only for low-elevation species. 4. Significantly, an overlooked latitude-by-elevation interaction confounds our traditional view of clutch size variation across a tropical-to-temperate gradient. Across all latitudes, higher elevation species invested in offspring quality via larger eggs but support for reduced fecundity resulting from smaller clutches was found only along temperate elevational gradients; contrary to expectations, tropical high-elevation species showed increased fecundity. Variation in nest predation risk could explain differences between temperate and tropical elevational gradients, but we lack a consistent mechanism to explain why predation risk should vary in this manner. Alternatively, a resource availability hypothesis based on physical attributes that globally differ between elevation and latitude (seasonality in day length and temperature) seems more plausible. [Balasubramaniam, Priya; Rotenberry, John T.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Rotenberry, John T.] Univ Minnesota, Dept Ecol Evolut & Behav, 1987 Upper Buford Circle, St Paul, MN 55108 USA Balasubramaniam, P (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. pbala001@ucr.edu ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Badyaev AV, 1997, OECOLOGIA, V11