PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Pettersen, AK; White, CR; Bryson-Richardson, RJ; Marshall, DJ Pettersen, Amanda K.; White, Craig R.; Bryson-Richardson, Robert J.; Marshall, Dustin J. Linking life-history theory and metabolic theory explains the offspring size-temperature relationship ECOLOGY LETTERS English Article Development; egg size; embryo size; incubation; larval size; maternal investment; metabolism EGG-SIZE; INCUBATION-TEMPERATURE; EVOLUTIONARY ECOLOGY; LARGER; NUMBER; GROWTH; OXYGEN; SCALE; COST; ENVIRONMENTS Temperature often affects maternal investment in offspring. Across and within species, mothers in colder environments generally produce larger offspring than mothers in warmer environments, but the underlying drivers of this relationship remain unresolved. We formally evaluated the ubiquity of the temperature-offspring size relationship and found strong support for a negative relationship across a wide variety of ectotherms. We then tested an explanation for this relationship that formally links life-history and metabolic theories. We estimated the costs of development across temperatures using a series of laboratory experiments on model organisms, and a meta-analysis across 72 species of ectotherms spanning five phyla. We found that both metabolic and developmental rates increase with temperature, but developmental rate is more temperature sensitive than metabolic rate, such that the overall costs of development decrease with temperature. Hence, within a species' natural temperature range, development at relatively cooler temperatures requires mothers to produce larger, better provisioned offspring. [Pettersen, Amanda K.; White, Craig R.; Marshall, Dustin J.] Monash Univ, Ctr Geometr Biol, Sch Biol Sci, Melbourne, Vic, Australia; [Bryson-Richardson, Robert J.] Monash Univ, Sch Biol Sci, Melbourne, Vic, Australia Pettersen, AK (reprint author), Monash Univ, Ctr Geometr Biol, Sch Biol Sci, Melbourne, Vic, Australia. amanda.pettersen@biol.lu.se Australian Postgraduate Award; Australian Research Council We are grateful to D. Barneche, C. Bywater, G. Ghedini, W. Verberk, and three anonymous reviewers for comments on earlier versions of the manuscript, and S. Auer and D. Johnson for comments on the original thesis chapter. We thank C. Mirth and C. Williams for use of equipment and technical assistance. This work was funded by an Australian Postgraduate Award to A.K.P and Australian Research Council grants to C.R.W, R.J.B, and D.J.M. Akbar SM, 2016, ENVIRON ENTOMOL, V45, P229, DOI 10.1093/ee/nvv144; Angilletta MJ, 2000, ECOLOGY, V81, P2957, DOI 10.1890/0012-9658(2000)081[2957:TEOTEO]2.0.CO;2; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Atkinson D, 2001, EXPTL BIOL REV, P269; Benton TG, 2006, P R SOC B, V273, P1173, DOI 10.1098/rspb.2006.3495; Blanckenhorn WU, 2000, EVOL ECOL, V14, P627, DOI 10.1023/A:1010911017700; Blaxter J. H. S., 1969, P177; BLAXTER JHS, 1969, J MAR BIOL ASSOC UK, V49, P557, DOI 10.1017/S0025315400037140; Booth D.T., 1991, P325, DOI 10.1017/CBO9780511585739.021; BOOTH DT, 1987, PHYSIOL ZOOL, V60, P437, DOI 10.1086/physzool.60.4.30157905; Borenstein M, 2011, INTRO METAANALYSIS; Bownds C, 2010, J EXP BIOL, V213, P3796, DOI 10.1242/jeb.043356; Bryson-Richardson R., 2011, ATLAS ZEBRAFISH DEV; Burgess SC, 2011, J EXP BIOL, V214, P2329, DOI 10.1242/jeb.054718; Caamal-Monsreal C, 2016, AQUACULTURE, V451, P156, DOI 10.1016/j.aquaculture.2015.09.011; Clarke A, 2004, FUNCT ECOL, V18, P243, DOI 10.1111/j.0269-8463.2004.00841.x; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; Costello DP, 1934, J CELL COMPAR PHYSL, V4, P421, DOI 10.1002/jcp.1030040403; DuRant SE, 2011, PHYSIOL BIOCHEM ZOOL, V84, P451, DOI 10.1086/661749; Efford I. E., 1969, Crustaceana, V16, P15, DOI 10.1163/156854068X00133; Einum S, 2002, P ROY SOC B-BIOL SCI, V269, P2325, DOI 10.1098/rspb.2002.2150; Fischer K, 2003, ECOLOGY, V84, P3138, DOI 10.1890/02-0733; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Forster J, 2011, AM NAT, V178, P668, DOI 10.1086/662174; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Gillooly JF, 2002, NATURE, V417, P70, DOI 10.1038/417070a; Gilmour AR, 2009, ASREML USER GUIDE RE; GOPHEN M, 1976, OECOLOGIA, V25, P271, DOI 10.1007/BF00345104; GUTZKE WHN, 1987, HERPETOLOGICA, V43, P393; Hachicho N, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134755; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; HARVEY GT, 1983, CAN ENTOMOL, V115, P1103, DOI 10.4039/Ent1151103-9; Hinchliff CE, 2015, P NATL ACAD SCI USA, V112, P12764, DOI 10.1073/pnas.1423041112; Hoefnagel KN, 2018, ECOL EVOL, V8, P3828, DOI 10.1002/ece3.3933; Irlich UM, 2009, AM NAT, V174, P819, DOI 10.1086/647904; Kamler E., 1992, EARLY LIFE HIST FISH; Laptikhovsky V, 2006, MAR ECOL-EVOL PERSP, V27, P7, DOI 10.1111/j.1439-0485.2006.00077.x; Lee CE, 1998, AM NAT, V151, P293, DOI 10.1086/286120; Loeb J, 1911, BIOCHEM Z, V36, P345; Loeb J, 1915, J EXP ZOOL, V19, P559, DOI 10.1002/jez.1400190407; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; Marshall DJ, 2018, FUNCT ECOL, V32, P1436, DOI 10.1111/1365-2435.13099; Marshall DJ, 2012, ANNU REV ECOL EVOL S, V43, P97, DOI 10.1146/annurev-ecolsys-102710-145004; MARSLAND D, 1950, J CELL COMPAR PHYSL, V36, P205, DOI 10.1002/jcp.1030360207; Martin RA, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009117; McLAREN IAN A., 1965, LIMNOL OCEANOGR, V10, P528; Michonneau F, 2016, METHODS ECOL EVOL, V7, P1476, DOI 10.1111/2041-210X.12593; Moher D, 2009, BMJ-BRIT MED J, V339, DOI [10.1002/14651858.CD008216.pub4, 10.1002/14651858.CD008242.pub3, 10.1136/bmj.c869, 10.1136/bmj.b2535, 10.1016/j.jclinepi.2010.02.006, 10.1016/j.jclinepi.2010.03.004, 10.1371/journal.pmed.1000097]; Morgulis Sergius., 1909, American Naturalist, V43, DOI 10.1086/279020; Mueller CA, 2015, J COMP PHYSIOL B, V185, P315, DOI 10.1007/s00360-015-0886-8; Nakagawa S, 2016, J EVOLUTION BIOL, V29, P1914, DOI 10.1111/jeb.12945; Orme D., 2013, CAPER PACKAGE COMP A; Partridge L, 1997, EVOLUTION, V51, P632, DOI 10.1111/j.1558-5646.1997.tb02454.x; Perrin N, 1988, FUNCT ECOL, V2, P283, DOI 10.2307/2389399; Pettersen A. K., 2015, P ROYAL SOC B, V282, P1; Pettersen AK, 2018, FUNCT ECOL, V32, P762, DOI 10.1111/1365-2435.13015; Pinheiro J., 2011, R PACKAGE VERSION, V3, P1; ROSS RM, 1988, J EXP MAR BIOL ECOL, V121, P55, DOI 10.1016/0022-0981(88)90023-8; Scott GR, 2012, P NATL ACAD SCI USA, V109, P14247, DOI 10.1073/pnas.1205012109; SEYMOUR RS, 1995, PHYSIOL ZOOL, V68, P1; SEYMOUR RS, 1991, PHYSIOL ZOOL, V64, P688, DOI 10.1086/physzool.64.3.30158201; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sniegula S, 2016, ECOL ENTOMOL, V41, P459, DOI 10.1111/een.12314; Spence R, 2008, BIOL REV, V83, P13, DOI 10.1111/j.1469-185X.2007.00030.x; Stearns S, 1992, EVOLUTION LIFE HIST; Thorson G., 1936, MEDDELELSER GRONLAND, V100, P155; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; vanderHave TM, 1996, J THEOR BIOL, V183, P329, DOI 10.1006/jtbi.1996.0224; Wendt DE, 2000, BIOL BULL, V198, P346, DOI 10.2307/1542690; Woods HA, 1999, AM ZOOL, V39, P244; Wootton R.J., 2014, REPROD LIFE HIST EVO, P323; Yampolsky LY, 1996, AM NAT, V147, P86, DOI 10.1086/285841; Zuo WY, 2012, P ROY SOC B-BIOL SCI, V279, P1840, DOI 10.1098/rspb.2011.2000 76 0 0 3 3 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. MAR 2019 22 3 518 526 10.1111/ele.13213 9 Ecology Environmental Sciences & Ecology HK3PT WOS:000457829800010 30618178 2019-02-21 J Aronoff, JE; DeCaro, JA Aronoff, Jacob E.; DeCaro, Jason A. Life history theory and human behavior: Testing associations between environmental harshness, life history strategies and testosterone PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history strategies; Harsher environments; Testosterone; Evolutionary psychology FATHER ABSENCE; RISK; EVOLUTION; MATURATION; STRESS; SIZE This study was a test of associations between measures of harsher environments and indicators of a "faster" life history strategy, including higher aggression, risk taking and a sociosexuality preference for short term and uncommitted sexual relationships. Hypotheses were derived from previous literature in evolutionary psychology proposing that harsher environments promote these faster life history strategies. Additionally, due to the potential for testosterone to act as a hormonal mechanism calibrating life history strategies, associations were tested between salivary testosterone and harsher environments and faster life history strategy indicators. Based on a sample of young adult male undergraduates (n = 99), the results of this study do not support hypothesized associations between harsher environments and faster life history strategies. The majority of tests between environmental harshness and life history strategy indicators were non-significant, with two being significant in the expected direction and one being significant in the unexpected direction. However, none of these remained significant after adjustment for multiple comparisons. There were no significant associations between testosterone and environmental harshness or life history strategy indicators. The results of this study suggest reconsideration of current uses of life history theory within evolutionary psychology intended to explain relationships between environments and psychology and behavior. [Aronoff, Jacob E.; DeCaro, Jason A.] Univ Alabama, Dept Anthropol, 350 Marrs Spring Rd, Tuscaloosa, AL 35401 USA Aronoff, JE (reprint author), Northwestern Univ, Dept Anthropol, 1810 Hinman, Evanston, IL 60208 USA. jacobaronoff2022@u.northwestern.edu University of Alabama Graduate Student Association; University of Alabama College of Arts and Sciences Research and Travel Fund; Developmental Ecology and Human Biology Laboratory at The University of Alabama This research was supported by funds from The University of Alabama Graduate Student Association, The University of Alabama College of Arts and Sciences Research and Travel Fund, and the Developmental Ecology and Human Biology Laboratory at The University of Alabama. Adler N., 2007, MACARTHUR SCALE SUBJ; Alvarado LC, 2013, EVOL APPL, V6, P117, DOI 10.1111/eva.12036; Apicella CL, 2008, EVOL HUM BEHAV, V29, P384, DOI 10.1016/j.evolhumbehav.2008.07.001; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; BOOTH A, 1993, SOC FORCES, V72, P463, DOI 10.2307/2579857; Booth A, 2006, SOC FORCES, V85, P167, DOI 10.1353/sof.2006.0116; Burnham TC, 2003, HORM BEHAV, V44, P119, DOI 10.1016/S0018-506X(03)00125-9; BUSS AH, 1992, J PERS SOC PSYCHOL, V63, P452, DOI 10.1037/0022-3514.63.3.452; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Colleran H., 2018, POPULATION ECOLOGY, P1; DABBS JM, 1990, PSYCHOL SCI, V1, P209, DOI 10.1111/j.1467-9280.1990.tb00200.x; Del Giudice M, 2014, J DEV ORIG HLTH DIS, V5, P270, DOI 10.1017/S2040174414000257; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Edelstein RS, 2014, HORM BEHAV, V65, P401, DOI 10.1016/j.yhbeh.2014.03.003; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Figueredo A. J., 2014, EVOLUTIONARY BEHAV S, V8, P148, DOI DOI 10.1037/H0099837; Geniole SN, 2011, BIOL PSYCHOL, V87, P137, DOI 10.1016/j.biopsycho.2011.02.020; Gettler LT, 2015, AM J PHYS ANTHROPOL, V158, P175, DOI 10.1002/ajpa.22783; Gettler LT, 2013, HORM BEHAV, V64, P755, DOI 10.1016/j.yhbeh.2013.08.019; Gettler LT, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041559; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; Halpern CT, 1998, ARCH SEX BEHAV, V27, P445, DOI 10.1023/A:1018700529128; HETHERINGTON EM, 1972, DEV PSYCHOL, V7, P313, DOI 10.1037/h0033339; Humphreys KL, 2015, DEV PSYCHOBIOL, V57, P313, DOI 10.1002/dev.21293; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Jonason PK, 2017, PERS INDIV DIFFER, V116, P38, DOI 10.1016/j.paid.2017.04.027; Mazur A, 1998, BEHAV BRAIN SCI, V21, P353; Mehta PH, 2010, J COGNITIVE NEUROSCI, V22, P2357, DOI 10.1162/jocn.2009.21389; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Ronay R, 2010, SOC PSYCHOL PERS SCI, V1, P57, DOI 10.1177/1948550609352807; Schwartz GT, 2012, CURR ANTHROPOL, V53, pS395, DOI 10.1086/667591; Sear R., 2018, OSF PREPRINTS; Sheppard P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089539; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; Sibly RM, 2009, AM NAT, V173, pE185, DOI 10.1086/598680; Sohn K, 2017, HUM NATURE-INT BIOS, V28, P407, DOI 10.1007/s12110-017-9299-6; Stanton SJ, 2011, HORM BEHAV, V59, P252, DOI 10.1016/j.yhbeh.2010.12.003; Stearns S, 1992, EVOLUTION LIFE HIST; Udry J. R., 1990, ADOLESCENCE PUBERTY, P70; van Wingen G., 2010, PSYCHONEUROENDOCRINO; Weber EU, 2002, J BEHAV DECIS MAKING, V15, P263, DOI 10.1002/bdm.414; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 47 0 0 0 0 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. MAR 1 2019 139 110 115 10.1016/j.paid.2018.11.015 6 Psychology, Social Psychology HI9GV WOS:000456764200017 2019-02-21 J Roast, MJ; Aulsebrook, AE; Fan, M; Aranzamendi, NH; Teunissen, N; Peters, A Roast, Michael J.; Aulsebrook, Anne E.; Fan, Marie; Aranzamendi, Nataly Hidalgo; Teunissen, Niki; Peters, Anne Short-Term Climate Variation Drives Baseline Innate Immune Function and Stress in a Tropical Bird: A Reactive Scope Perspective* PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article immunocompetence; ecoimmunology; Maluridae; individual variation; multimodel inference; vertebrate; avian TRADE-OFF; ECOLOGICAL IMMUNOLOGY; LIFE-HISTORY; LEUKOCYTE PROFILES; SEASONAL PATTERNS; ANNUAL-CYCLE; DEFENSE; DISEASE; WILD; IMMUNOCOMPETENCE Investment in immune function can be costly, and life-history theory predicts trade-offs between immune function and other physiological demands. Environmental heterogeneity may constrain or change the optimal strategy and thereby alter baseline immune function (possibly mediated by stress responses). We tested several hypotheses relating variation in climatic, ecological, and social environments to chronic stress and levels of baseline innate immunity in a wild, cooperatively breeding bird, the purple-crowned fairy-wren (Malurus coronatus coronatus). From samples collected biannually over 5 yr, we quantified three indexes of constitutive innate immune function (haptoglobin/PIT54, natural antibodies, complement activity) and one index of chronic stress (heterophil-lymphocyte ratio; n=513-647). Using an information-theoretic and multimodel inference statistical approach, we found that habitat quality and social group size did not affect any immune index, despite hypothesized links to resource abundance and parasite pressure. Rather, short-term variation in temperature and rainfall was related to immune function, while overall differences between seasons were small or absent, despite substantial seasonal variation in climate. Contrary to our expectation, we found no evidence that physiological stress mediated any effects of short-term climatic variables on immune indexes, and alternative mechanisms may be involved. Our results may be interpreted from the perspective of reactive scope models, whereby predictive homeostasis maintains standing immune function relative to long-term demands, while short-term environmental change, being less predictable, has a greater influence on baseline immune function. [Roast, Michael J.; Aulsebrook, Anne E.; Fan, Marie; Aranzamendi, Nataly Hidalgo; Teunissen, Niki; Peters, Anne] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia; [Aulsebrook, Anne E.] Univ Melbourne, Sch BioSci, Parkville, Vic 3010, Australia; [Peters, Anne] Max Planck Inst Ornithol, Vogelwarte Radolfzell, D-78315 Radolfzell am Bodensee, Germany Roast, MJ (reprint author), Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia. michaeljroast@gmail.com Bird Life Australia; Holsworth Wildlife Research Endowment; Australian Research Council [FT10100505, DP150103595]; Max Planck Society We thank the handling editor and three anonymous reviewers for their helpful suggestions that improved the manuscript. This research was approved by the Australian Bird and Bat Banding Scheme (license 2230), the Western Australia Department of Parks and Wildlife, the Australian Wildlife Conservancy, and the School of Biological Sciences ethics committee at Monash University. This work was funded by Bird Life Australia and the Holsworth Wildlife Research Endowment (to M.R.), the Australian Research Council (FT10100505 and DP150103595 to A.P.), and the Max Planck Society (to A.P.). We thank all volunteers for assistance in the field and laboratory. Special thanks to staff at the Australian Wildlife Conservancy's Mornington Wildlife Sanctuary for their continued support and advice. Andersen CBF, 2017, ANTIOXID REDOX SIGN, V26, P814, DOI 10.1089/ars.2016.6793; Aranzamendi NH, 2016, BEHAV ECOL, V27, P1808, DOI 10.1093/beheco/arw101; Aranzamendi NH, 2017, THESIS; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Ashley NT, 2012, ANNU REV ECOL EVOL S, V43, P385, DOI 10.1146/annurev-ecolsys-040212-092530; Babayan SA, 2011, ANN NY ACAD SCI, V1236, P17, DOI 10.1111/j.1749-6632.2011.06251.x; Bailly J, 2016, OECOLOGIA, V182, P1053, DOI 10.1007/s00442-016-3730-2; Bartolomucci A, 2007, FRONT NEUROENDOCRIN, V28, P28, DOI 10.1016/j.yfrne.2007.02.001; Bates D, 2015, J STAT SOFTW, V67, P1; Briga M, 2015, SCI REP-UK, V5, DOI 10.1038/srep16600; Brzek P, 2007, J EXP BIOL, V210, P2361, DOI 10.1242/jeb.003517; Buchanan KL, 2000, TRENDS ECOL EVOL, V15, P156, DOI 10.1016/S0169-5347(99)01812-1; Buehler DM, 2008, AM NAT, V172, P783, DOI 10.1086/592865; Bureau of Meteorology, CLIM DAT ONL; Burnham K. P, 2002, MODEL SELECTION MULT; Butler MW, 2013, AM NAT, V181, P761, DOI 10.1086/670191; Campbell TW, 2015, EXOTIC ANIMAL HEMATOLOGY AND CYTOLOGY, 4TH EDITION, P165; Cirule D, 2012, J ORNITHOL, V153, P161, DOI 10.1007/s10336-011-0719-9; Cyr NE, 2007, GEN COMP ENDOCR, V154, P59, DOI 10.1016/j.ygcen.2007.06.016; Cyr NE, 2007, GEN COMP ENDOCR, V151, P82, DOI 10.1016/j.ygcen.2006.12.003; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Davis AK, 2005, J FIELD ORNITHOL, V76, P334, DOI 10.1648/0273-8570-76.4.334; Davis AK, 2018, METHODS ECOL EVOL, V9, P1556, DOI 10.1111/2041-210X.13020; Dhabhar FS, 2009, NEUROIMMUNOMODULAT, V16, P300, DOI 10.1159/000216188; DuRant SE, 2016, GEN COMP ENDOCR, V236, P115, DOI 10.1016/j.ygcen.2016.07.013; Eeva T, 2013, PARASITOLOGY, V140, P1384, DOI 10.1017/S0031182013000796; El-Tarabany MS, 2016, INT J BIOMETEOROL, V60, P957, DOI 10.1007/s00484-015-1088-5; Fair JM, 2008, WILSON J ORNITHOL, V120, P813, DOI 10.1676/06-052.1; Fokidis HB, 2008, J AVIAN BIOL, V39, P300, DOI [10.1111/j.2008.0908-8857.04248.x, 10.1111/j.0908-8857.2008.04248.x]; Forbes MR, 2007, TRENDS ECOL EVOL, V22, P111, DOI 10.1016/j.tree.2006.12.004; French SS, 2008, J COMP PHYSIOL B, V178, P997, DOI 10.1007/s00360-008-0290-8; Gelman A, 2008, STAT MED, V27, P2865, DOI 10.1002/sim.3107; Georgieva T. M., 2010, Bulgarian Journal of Veterinary Medicine, V13, P1; Gerson AR, 2014, PHYSIOL BIOCHEM ZOOL, V87, P782, DOI 10.1086/678956; Gobel T. W., 2014, AVIAN IMMUNOLOGY, P121; Gormally BMG, 2018, PEERJ, V6, DOI 10.7717/peerj.4961; Gould J, 1857, P ZOOL SOC LOND, V25, P220, DOI [10.1111/j.1096-3642.1857.tb01230.x, DOI 10.1111/J.1096-3642.1857.TB01230.X]; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; Hall ML, 2008, ANIM BEHAV, V76, P65, DOI 10.1016/j.anbehav.2008.01.010; Hall ML, 2009, BEHAV ECOL, V20, P222, DOI 10.1093/beheco/arn139; Hanssen SA, 2003, OECOLOGIA, V136, P457, DOI 10.1007/s00442-003-1282-8; Hawley DM, 2011, FUNCT ECOL, V25, P48, DOI 10.1111/j.1365-2435.2010.01753.x; Hawley DM, 2006, HORM BEHAV, V49, P417, DOI 10.1016/j.yhbeh.2005.09.003; Hegemann A, 2012, OECOLOGIA, V170, P605, DOI 10.1007/s00442-012-2339-3; Horrocks NPC, 2015, OECOLOGIA, V177, P281, DOI 10.1007/s00442-014-3136-y; Horrocks NPC, 2012, PHYSIOL BIOCHEM ZOOL, V85, P504, DOI 10.1086/666988; Houston AI, 2007, P ROY SOC B-BIOL SCI, V274, P2835, DOI 10.1098/rspb.2007.0934; Ilmonen P, 2003, OECOLOGIA, V136, P148, DOI 10.1007/s00442-003-1243-2; Jayasekera JP, 2007, J VIROL, V81, P3487, DOI 10.1128/JVI.02128-06; Kingma SA, 2013, BEHAV ECOL, V24, P1390, DOI 10.1093/beheco/art078; Kingma SA, 2011, AM NAT, V177, P486, DOI 10.1086/658989; Kingma SA, 2011, BEHAV ECOL SOCIOBIOL, V65, P1203, DOI 10.1007/s00265-010-1133-7; Kingma SA, 2010, J ANIM ECOL, V79, P757, DOI 10.1111/j.1365-2656.2010.01697.x; Kingma Sjouke A., 2009, BMC Ecology, V9, P15, DOI 10.1186/1472-6785-9-15; Klasing Kirk C., 2004, Acta Zoologica Sinica, V50, P961; Krams I, 2012, COMP BIOCHEM PHYS A, V161, P422, DOI 10.1016/j.cbpa.2011.12.018; Lazzaro BP, 2009, PHILOS T R SOC B, V364, P15, DOI 10.1098/rstb.2008.0141; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Maizels RM, 2013, NAT IMMUNOL, V14, P879, DOI 10.1038/ni.2643; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin LB, 2009, GEN COMP ENDOCR, V163, P70, DOI 10.1016/j.ygcen.2009.03.008; Mashaly M. M., 2002, SEASONAL PATTERNS ST; Mashaly MM, 2004, POULTRY SCI, V83, P889, DOI 10.1093/ps/83.6.889; Matson KD, 2005, DEV COMP IMMUNOL, V29, P275, DOI 10.1016/j.dci.2004.07.006; Matson KD, 2012, COMP BIOCHEM PHYS A, V162, P7, DOI 10.1016/j.cbpa.2012.01.010; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; Moller AP, 2006, OIKOS, V115, P463; Moller AP, 2001, AM NAT, V158, P136, DOI 10.1086/321308; Moreno J, 2004, ARDEOLA, V51, P471; Moreno-Rueda G, 2010, J EVOLUTION BIOL, V23, P2229, DOI 10.1111/j.1420-9101.2010.02090.x; Nazar FN, 2011, STRESS, V14, P166, DOI 10.3109/10253890.2010.523093; Nelson RJ, 2004, CURR DIR PSYCHOL SCI, V13, P198, DOI 10.1111/j.0963-7214.2004.00307.x; Nelson RJ, 1995, J PINEAL RES, V19, P149, DOI 10.1111/j.1600-079X.1995.tb00184.x; Nkuo-Akenji T, 2008, AFR J HLTH SCI, V13, P40; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ochsenbein AF, 1999, SCIENCE, V286, P2156, DOI 10.1126/science.286.5447.2156; Ortego J, 2007, IBIS, V149, P386, DOI 10.1111/j.1474-919X.2007.00656.x; Ots I, 1996, P ROY SOC B-BIOL SCI, V263, P1443, DOI 10.1098/rspb.1996.0210; Patterson JEH, 2013, PARASITOLOGY, V140, P803, DOI 10.1017/S0031182012002259; Pedersen AB, 2007, TRENDS ECOL EVOL, V22, P133, DOI 10.1016/j.tree.2006.11.005; Pedersen AB, 2011, MOL ECOL, V20, P872, DOI 10.1111/j.1365-294X.2010.04938.x; Pigeon G, 2013, ECOL EVOL, V3, P1091, DOI 10.1002/ece3.504; Quaye IK, 2008, T ROY SOC TROP MED H, V102, P735, DOI 10.1016/j.trstmh.2008.04.010; R Core Team, 2017, R LANG ENV STAT COMP; Rajan B, 2005, J IMMUNOL, V175, P1827, DOI 10.4049/jimmunol.175.3.1827; Rapaka RR, 2010, J EXP MED, V207, P2907, DOI 10.1084/jem.20100034; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Romero LM, 2009, HORM BEHAV, V55, P375, DOI 10.1016/j.yhbeh.2008.12.009; Rubenstein DR, 2008, GEN COMP ENDOCR, V159, P10, DOI 10.1016/j.ygcen.2008.07.013; Sandland GJ, 2003, TRENDS PARASITOL, V19, P571, DOI 10.1016/j.pt.2003.10.006; Sanz JJ, 2004, J ANIM ECOL, V73, P441, DOI 10.1111/j.0021-8790.2004.00815.x; Schmid-Hempel P, 2003, TRENDS ECOL EVOL, V18, P27, DOI 10.1016/S0169-5347(02)00013-7; Schulenburg H, 2009, PHILOS T R SOC B, V364, P3, DOI 10.1098/rstb.2008.0249; Schultz EM, 2017, J EXP BIOL, V220, P722, DOI 10.1242/jeb.149898; Skroblin A, 2012, AUSTRAL ECOL, V37, P874, DOI 10.1111/j.1442-9993.2011.02331.x; Snyder-Mackler N, 2016, SCIENCE, V354, P1041, DOI 10.1126/science.aah3580; Spottiswoode CN, 2008, BEHAV ECOL SOCIOBIOL, V62, P963, DOI 10.1007/s00265-007-0521-0; Stahlschmidt ZR, 2017, PHYSIOL BIOCHEM ZOOL, V90, P434, DOI 10.1086/691315; Stahlschmidt ZR, 2015, COMP BIOCHEM PHYS A, V187, P1, DOI 10.1016/j.cbpa.2015.04.007; Stoffel MA, 2017, METHODS ECOL EVOL, V8, P1639, DOI 10.1111/2041-210X.12797; Tella JL, 2001, P ROY SOC B-BIOL SCI, V268, P1455, DOI 10.1098/rspb.2001.1688; Teunissen N, 2018, BEHAV ECOL, V29, P1316, DOI 10.1093/beheco/ary120; Tieleman BI, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2464-z; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Trouw LA, 2011, IMMUNOL LETT, V138, P35, DOI 10.1016/j.imlet.2011.02.014; Tschirren B, 2006, P R SOC B, V273, P1773, DOI 10.1098/rspb.2006.3524; Vermeulen A, 2015, SCI TOTAL ENVIRON, V508, P297, DOI 10.1016/j.scitotenv.2014.11.095; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; Walton JC, 2011, FRONT NEUROENDOCRIN, V32, P303, DOI 10.1016/j.yfrne.2010.12.003; Wicher KB, 2006, P NATL ACAD SCI USA, V103, P4168, DOI 10.1073/pnas.0508723103; Wicher KB, 2010, ANTIOXID REDOX SIGN, V12, P249, DOI 10.1089/ars.2009.2760; Wilson GR, 2004, COMP BIOCHEM PHYS A, V139, P389, DOI 10.1016/j.cbpb.2004.10.009; Wood MJ, 2007, MOL ECOL, V16, P3263, DOI 10.1111/j.1365-294X.2007.03362.x; Xie SZ, 2017, PHYSIOL BIOCHEM ZOOL, V90, P348, DOI 10.1086/690484; Zylberberg M, 2015, J EXP BIOL, V218, P757, DOI 10.1242/jeb.111716; Zylberberg M, 2013, CONSERV BIOL, V27, P103, DOI 10.1111/j.1523-1739.2012.01944.x 118 0 0 4 4 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. MAR 1 2019 92 2 140 151 10.1086/702310 12 Physiology; Zoology Physiology; Zoology HJ2GL WOS:000456985000001 30689489 2019-02-21 J Vanoni, M; Cailleret, M; Hulsmanna, L; Bugmann, H; Bigler, C Vanoni, Marco; Cailleret, Maxime; Huelsmanna, Lisa; Bugmann, Harald; Bigler, Christof How do tree mortality models from combined tree-ring and inventory data affect projections of forest succession? FOREST ECOLOGY AND MANAGEMENT English Article Survival model; ForClim; Radial growth; Forest dynamics LIFE-HISTORY STRATEGIES; SPECIES COMPOSITION; GROWTH-PATTERNS; CLIMATE; ACCURACY; DEATH; DYNAMICS; DROUGHT; PREDICT; TIME Tree mortality is caused by complex interactions between multiple biotic and abiotic factors. Processes of tree mortality that are not induced by natural disturbances are often reflected in distinct radial growth patterns of trees, which typically serve as reliable indicators of impending tree mortality. However, it remains unclear whether empirical mortality models that are based on tree size and growth result in more realistic projections of forest succession in dynamic vegetation models (DVMs). We used a combination of tree-ring and inventory data from unmanaged Swiss natural forest reserves to derive species-specific survival models for six Central European tree species (Abies alba, Fagus sylvatica, Larix decidua, Picea abies, Pima cembra and Quercus spp.). We jointly used 528 tree-ring samples and inventory data from eight forest reserves. We implemented the estimated parameters of the survival models into the DVM ForClim and performed simulations of forest succession that were validated using the inventory data of the forest reserves. Size- and growth-dependent variables (i.e., diameter at breast height and mean ring width) over the last few years prior to tree death were reliable predictors to distinguish between dying and living trees. Very low mean ring widths over several preceding years as well as small and large trees, respectively, reflected low survival probabilities. However, the small sample sizes of small and large trees resulted in considerable uncertainty of the survival probabilities. The implementation of these survival models in ForClim yielded plausible projections in short-term simulations and for some sites improved the predictions compared to the current ForClim version. Stand basal area, however, tended to be overestimated. Long-term simulations of ForClim based on the empirical survival models resulted in realistic predictions only if the uncertainty of the predicted survival probabilities was considered. We conclude that the combination of different data sources in combination with the consideration of intra-specific trait variability yields robust predictions of tree survival probabilities, thus paving the way towards better tree mortality models and more reliable projections of future forest dynamics. [Vanoni, Marco; Cailleret, Maxime; Huelsmanna, Lisa; Bugmann, Harald; Bigler, Christof] Swiss Fed Inst Technol, Forest Ecol, Inst Terr Ecosyst, Dept Environm Syst Sci, Univ Str 16, CH-8092 Zurich, Switzerland; [Cailleret, Maxime] Swiss Fed Inst Forest Snow & Landscape Res WSL, Res Unit Forest Dynam, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland; [Huelsmanna, Lisa] Swiss Fed Inst Forest Snow & Landscape Res WSL, Res Unit Forest Resources & Management, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland; [Huelsmanna, Lisa] Univ Regensburg, Theoret Ecol, Univ Str 31, D-93053 Regensburg, Germany Vanoni, M (reprint author), Amt Wald & Naturgefahren, Loestr 14, CH-7000 Chur, Switzerland. marco.vanoni@gmail.com Bigler, Christof/C-6271-2009; Hulsmann, Lisa/B-6680-2017 Hulsmann, Lisa/0000-0003-4252-2715 Swiss National Science Foundation [140968]; FOEN; Swiss National Park This study was supported by the Swiss National Science Foundation within the project "Predicting growth-dependent tree mortality: a key challenge for population ecology" (project number 140968). The financial support by the FOEN for the Swiss network of strict forest reserves and by the Swiss National Park is gratefully acknowledged. Aakala T, 2009, J VEG SCI, V20, P1016, DOI 10.1111/j.1654-1103.2009.01100.x; Adams HD, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00438; AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Allen CD, 2010, FOREST ECOL MANAG, V259, P660, DOI 10.1016/j.foreco.2009.09.001; Anderegg WRL, 2015, NEW PHYTOL, V208, P674, DOI 10.1111/nph.13477; Bigler C, 2004, ECOL APPL, V14, P902, DOI 10.1890/03-5011; Bigler C, 2003, CAN J FOREST RES, V33, P210, DOI [10.1139/x02-180, 10.1139/X02-180]; Bigler C, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0150402; Bigler C, 2013, TREES-STRUCT FUNCT, V27, P1703, DOI 10.1007/s00468-013-0917-6; Bircher N, 2015, ECOL APPL, V25, P1303, DOI 10.1890/14-1462.1; Brandli U.-B, 2010, SCHWEIZERISCHES LAND; Brang P, 2011, WALDRESERVATE 50 JAH; Bravo-Oviedo A, 2006, FOREST ECOL MANAG, V222, P88, DOI 10.1016/j.foreco.2005.10.016; Brullhardt M, 2015, CAN J FOREST RES, V45, P607, DOI 10.1139/cjfr-2014-0358; BRZEZIECKI B, 1994, FOREST ECOL MANAG, V69, P167, DOI 10.1016/0378-1127(94)90227-5; Bugmann HKM, 1996, ECOLOGY, V77, P2055, DOI 10.2307/2265700; Cailleret M, 2017, GLOBAL CHANGE BIOL, V23, P1675, DOI 10.1111/gcb.13535; Cailleret M, 2016, ECOL APPL, V26, P1827, DOI 10.1890/15-1402.1; Cailleret M, 2014, FOREST ECOL MANAG, V328, P179, DOI 10.1016/j.foreco.2014.05.030; Clyatt KA, 2016, FOREST ECOL MANAG, V361, P23, DOI 10.1016/j.foreco.2015.10.049; Coomes DA, 2007, J ECOL, V95, P27, DOI 10.1111/j.1365-2745.2006.01179.x; Csillery K, 2013, FOREST ECOL MANAG, V292, P64, DOI 10.1016/j.foreco.2012.12.022; Das AJ, 2007, CAN J FOREST RES, V37, P580, DOI 10.1139/X06-262; Das AJ, 2016, ECOLOGY, V97, P2616, DOI 10.1002/ecy.1497; Das AJ, 2015, CAN J FOREST RES, V45, P920, DOI 10.1139/cjfr-2014-0368; Didion M, 2009, CAN J FOREST RES, V39, P1092, DOI 10.1139/X09-041; Dobbertin M, 2005, EUR J FOREST RES, V124, P319, DOI 10.1007/s10342-005-0085-3; Eid T, 2001, FOREST ECOL MANAG, V154, P69, DOI 10.1016/S0378-1127(00)00634-4; Ellenberg H, 2010, VEGETATION MITTELEUR; Evans MEK, 2017, ECOSPHERE, V8, DOI 10.1002/ecs2.1889; FRANKLIN JF, 1987, BIOSCIENCE, V37, P550, DOI 10.2307/1310665; Friend AD, 2014, P NATL ACAD SCI USA, V111, P3280, DOI 10.1073/pnas.1222477110; Fritts H. C., 1976, TREE RINGS CLIMATE; Grote R, 2016, TREES-STRUCT FUNCT, P1; Gutierrez AG, 2016, GLOBAL ECOL BIOGEOGR, V25, P347, DOI 10.1111/geb.12421; Hillgarter F.-W, 1971, WALDBAULICHE ERTRAGS; HOLMES R L, 1983, Tree-Ring Bulletin, V43, P69; Holzwarth F, 2013, J ECOL, V101, P220, DOI 10.1111/1365-2745.12015; Hulsmann L, 2017, CAN J FOREST RES, V47, P890, DOI 10.1139/cjfr-2016-0224; Hulsmann L, 2018, ECOL APPL, V28, P522, DOI 10.1002/eap.1668; Hurst JM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026670; Krumm F, 2012, EUR J FOREST RES, V131, P1571, DOI 10.1007/s10342-012-0625-6; Levesque M, 2013, GLOBAL CHANGE BIOL, V19, P3184, DOI 10.1111/gcb.12268; Lines ER, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013212; Lorimer CG, 2001, J ECOL, V89, P960, DOI 10.1046/j.0022-0477.2001.00619.x; Manusch C, 2012, ECOL MODEL, V243, P101, DOI 10.1016/j.ecolmodel.2012.06.008; Mina M., 2015, REGIONAL ENV CHANGE, V17, P49; Monserud RA, 1999, FOREST ECOL MANAG, V113, P109, DOI 10.1016/S0378-1127(98)00419-8; Nehrbass-Ahles C, 2014, GLOBAL CHANGE BIOL, V20, P2867, DOI 10.1111/gcb.12599; Pine MR, 2015, DENDROCHRONOLOGIA, V36, P60, DOI 10.1016/j.dendro.2015.10.003; R Core Team, 2015, R LANG ENV STAT COMP; Rasche L, 2012, ECOL MODEL, V232, P133, DOI 10.1016/j.ecolmodel.2012.03.004; Rohner B, 2016, FOREST ECOL MANAG, V360, P159, DOI 10.1016/j.foreco.2015.10.022; Ruosch M, 2016, GLOBAL CHANGE BIOL, V22, P727, DOI 10.1111/gcb.13075; SHEIL D, 1995, J ECOL, V83, P331, DOI 10.2307/2261571; SWETS JA, 1988, SCIENCE, V240, P1285, DOI 10.1126/science.3287615; van Mantgem PJ, 2009, SCIENCE, V323, P521, DOI 10.1126/science.1165000; Vanoni M, 2016, FOREST ECOL MANAG, V382, P51, DOI 10.1016/j.foreco.2016.10.001; Wehrli A, 2005, FOREST ECOL MANAG, V205, P149, DOI 10.1016/j.foreco.2004.10.043; Wunder J, 2008, OIKOS, V117, P815, DOI 10.1111/j.2008.0030-1299.16371.x; Wyckoff PH, 2002, J ECOL, V90, P604, DOI 10.1046/j.1365-2745.2002.00691.x; Zuur Alain F., 2009, P1 62 0 0 0 0 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0378-1127 1872-7042 FOREST ECOL MANAG For. Ecol. Manage. FEB 15 2019 433 606 617 10.1016/j.foreco.2018.11.042 12 Forestry Forestry HJ1DQ WOS:000456902500061 2019-02-21 J Knowles, JP; Evans, NJ; Burke, D Knowles, Johanne P.; Evans, Nathan J.; Burke, Darren Some Evidence for an Association Between Early Life Adversity and Decision Urgency FRONTIERS IN PSYCHOLOGY English Article early life adversity; decision urgency; life history theory; cognitive modeling; evidence accumulation models CHILDHOOD EXPERIENCES; DEVELOPMENTAL PLASTICITY; MENTAL-HEALTH; HISTORY; STRESS; PARAMETER; ABUSE; MODEL; DISTRIBUTIONS; ENVIRONMENTS The relationship between early life adversity and adult outcomes is traditionally investigated relative to risk and protective factors (e.g., resilience, cognitive appraisal), and poor self-control or decision-making. However, life history theory suggests this relationship may be adaptive-underpinned by mechanisms that use early environmental cues to alter the developmental trajectory toward more short-term strategies. These short-term strategies have some theoretical overlap with the most common process models of decision-making-evidence accumulation models-which model decision urgency as a decision threshold. The current study examined the relationship between decision urgency (through the linear ballistic accumulator) and early life adversity. A mixture of analysis methods, including a joint model analysis designed to explicitly account for uncertainty in estimated decision urgency values, revealed weak-to-strong evidence in favor of a relationship between decision urgency and early life adversity, suggesting a possible effect of life history strategy on even the most basic decisions. [Knowles, Johanne P.; Burke, Darren] Univ Newcastle, Sch Psychol, Callaghan, NSW, Australia; [Evans, Nathan J.] Univ Amsterdam, Dept Psychol, Amsterdam, Netherlands Knowles, JP (reprint author), Univ Newcastle, Sch Psychol, Callaghan, NSW, Australia. johanne.knowles@uon.edu.au Australian Postgraduate Award Scholarship by the Australian Government JK was supported by an Australian Postgraduate Award Scholarship provided by the Australian Government. AIHW, 2014, AUSTR HLTH 2014; Anand P, 2011, J ECON PSYCHOL, V32, P284, DOI 10.1016/j.joep.2010.11.004; Australian Bureau of Statistics, 2014, GEN SOC SURV GSS HOU; Bateson P, 2014, J PHYSIOL-LONDON, V592, P2357, DOI 10.1113/jphysiol.2014.271460; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bertrand M, 2004, AM ECON REV, V94, P419, DOI 10.1257/0002828041302019; Boehm U, 2018, BEHAV RES METHODS, V50, P1614, DOI 10.3758/s13428-018-1054-3; Bray J. R., 2001, HARDSHIP AUSTR ANAL; Bremner JD, 1999, AM J PSYCHIAT, V156, P1787; Brim O. G., 2000, NATL SURVEY MIDLIFE; Brown SD, 2008, COGNITIVE PSYCHOL, V57, P153, DOI 10.1016/j.cogpsych.2007.12.002; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Centers for Disease Control and Prevention [CDC], 2018, ADV CHILDH EXP STUD; Chisholm J. S., 1999, DEATH HOPE AND SEX, DOI [10.1017/CBO9780511605932, DOI 10.1017/CBO9780511605932]; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Couper JW, 2013, MED J AUSTRALIA, V199, P13, DOI 10.5694/mjao12.10522; Danese A, 2012, PHYSIOL BEHAV, V106, P29, DOI 10.1016/j.physbeh.2011.08.019; Danko MJ, 2018, EVOL BIOL, V45, P395, DOI 10.1007/s11692-018-9458-7; DAVIS TMA, 1994, HEART LUNG, V23, P140; de Hollander Gilles, 2016, Biol Psychiatry Cogn Neurosci Neuroimaging, V1, P101, DOI 10.1016/j.bpsc.2015.11.004; Del Giudice M, 2014, J DEV ORIG HLTH DIS, V5, P270, DOI 10.1017/S2040174414000257; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Denver RJ, 2010, J DEV ORIG HLTH DIS, V1, P282, DOI 10.1017/S2040174410000279; Devilly GJ, 1999, J ANXIETY DISORD, V13, P131, DOI 10.1016/S0887-6185(98)00044-9; Edwards VJ, 2003, AM J PSYCHIAT, V160, P1453, DOI 10.1176/appi.ajp.160.8.1453; Evans N. J., 2018, ROLE PASSING TIME DE, DOI [10.31234/osf.io/3wq6g, DOI 10.31234/OSF.IO/3WQ6G]; Evans NJ, 2019, COGNITION, V184, P11, DOI 10.1016/j.cognition.2018.11.014; Evans NJ, 2018, COGNITIVE SCI, V42, P1925, DOI 10.1111/cogs.12627; Evans NJ, 2017, MEM COGNITION, V45, P1193, DOI 10.3758/s13421-017-0718-z; Evans NJ, 2017, PSYCHON B REV, V24, P597, DOI 10.3758/s13423-016-1135-1; Fawcett TW, 2012, BEHAV PROCESS, V89, P128, DOI 10.1016/j.beproc.2011.08.015; Felitti VJ, 1998, AM J PREV MED, V14, P245, DOI 10.1016/S0749-3797(98)00017-8; Forstmann BU, 2010, P NATL ACAD SCI USA, V107, P15916, DOI 10.1073/pnas.1004932107; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hemmingsson E, 2014, OBES REV, V15, P882, DOI 10.1111/obr.12216; Hill E., 2008, J SOCIO-ECON, V37, P1381, DOI DOI 10.1016/J.S0CEC.2006.12.081; Hill EM, 2002, ADDICTION, V97, P375, DOI 10.1046/j.1360-0443.2002.t01-1-00057.x; HILL EM, 1994, ALCOHOL CLIN EXP RES, V18, P1083, DOI 10.1111/j.1530-0277.1994.tb00085.x; JASP Team, 2018, JASP VERS 0 8 6; Kendall PC, 2005, COGN BEHAV PRACT, V12, P136, DOI 10.1016/S1077-7229(05)80048-3; Kidd C, 2013, COGNITION, V126, P109, DOI 10.1016/j.cognition.2012.08.004; Koenen K. C., 2010, IMPACT EARLY LIFE TR, P13, DOI 10.1017/CBO9780511777042.003; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Kruschke JK, 2018, PSYCHON B REV, V25, P155, DOI [10.3758/s13423-016-1221-4, 10.3758/s13423-017-1272-1]; Kruschke JK, 2011, PERSPECT PSYCHOL SCI, V6, P299, DOI 10.1177/1745691611406925; Lindley D. V., 1972, BAYESIAN STAT REV, V2, DOI [10.1137/1.978161197, DOI 10.1137/1.978161197]; LINDLEY DV, 1957, BIOMETRIKA, V44, P187; Lovallo WR, 2012, BIOL PSYCHIAT, V71, P344, DOI 10.1016/j.biopsych.2011.10.018; Marks G. N., 2007, AUSTR GOV SOC POL RE, DOI [10.2139/ssrn.1728587, DOI 10.2139/SSRN.1728587]; Mathot KJ, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2459-9; Matzke D., 2017, COLLABRA PSYCHOL, V3, P25, DOI [10.1525/collabra.78, DOI 10.1525/COLLABRA.78]; Mersky JP, 2013, CHILD ABUSE NEGLECT, V37, P917, DOI 10.1016/j.chiabu.2013.07.011; Mischel W, 2011, SOC COGN AFFECT NEUR, V6, P252, DOI 10.1093/scan/nsq081; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Nettle D., 2019, EVOLUTION LIFE HIST, DOI [10.1101/510826, DOI 10.1101/510826]; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Paal T, 2015, PEERJ, V3, DOI 10.7717/peerj.964; Pilly PK, 2009, VISION RES, V49, P1599, DOI 10.1016/j.visres.2009.03.019; R Core Team, 2013, R LANG ENV STAT COMP; Rae B, 2014, J EXP PSYCHOL LEARN, V40, P1226, DOI 10.1037/a0036801; Ratcliff R., 1978, THEORY MEMORY RETRIE, V8, DOI [10.1037/0033-295X.85.2.59, DOI 10.1037/0033-295X.85.2.59]; Roff Derek A., 1992; Rouder JN, 2012, J MATH PSYCHOL, V56, P356, DOI 10.1016/j.jmp.2012.08.001; Saunders P, 2008, AUST J SOC ISSUES, V43, P175, DOI 10.1002/j.1839-4655.2008.tb00097.x; Schmiedek F, 2007, J EXP PSYCHOL GEN, V136, P414, DOI 10.1037/0096-3445.136.3.414; Shadlen MN, 1996, P NATL ACAD SCI USA, V93, P628, DOI 10.1073/pnas.93.2.628; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Ter Braak CJF, 2006, STAT COMPUT, V16, P239, DOI 10.1007/s11222-006-8769-1; Turner BM, 2013, PSYCHOL METHODS, V18, P368, DOI 10.1037/a0032222; van Ravenzwaaij D, 2011, COGNITION, V119, P381, DOI 10.1016/j.cognition.2011.02.002; Wagenmakers EJ, 2010, COGNITIVE PSYCHOL, V60, P158, DOI 10.1016/j.cogpsych.2009.12.001; Wolpe J., 1990, PRACTICE BEHAV THE A, V4a 74 0 0 0 0 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. FEB 11 2019 10 243 10.3389/fpsyg.2019.00243 14 Psychology, Multidisciplinary Psychology HK9AJ WOS:000458280900001 DOAJ Gold 2019-02-21 J Harrison, AO; Moore, RM; Polson, SW; Wommack, KE Harrison, Amelia O.; Moore, Ryan M.; Polson, Shawn W.; Wommack, K. Eric Reannotation of the Ribonucleotide Reductase in a Cyanophage Reveals Life History Strategies Within the Virioplankton FRONTIERS IN MICROBIOLOGY English Article cyanophage; ribonucleotide reductase; marker gene; misannotation; cyanobacteria; viral ecology; phylogenetic analysis; virome PHOTOSYNTHESIS GENES; METAL HOMEOSTASIS; DNA-REPLICATION; MARINE VIRUSES; RADICAL SITE; NITRIC-OXIDE; CD-HIT; PROTEIN; SYNECHOCOCCUS; CYANOBACTERIA Ribonucleotide reductases (RNRs) are ancient enzymes that catalyze the reduction of ribonucleotides to deoxyribonucleotides. They are required for virtually all cellular life and are prominent within viral genomes. RNRs share a common ancestor and must generate a protein radical for direct ribonucleotide reduction. The mechanisms by which RNRs produce radicals are diverse and divide RNRs into three major classes and several subclasses. The diversity of radical generation methods means that cellular organisms and viruses typically contain the RNR best-suited to the environmental conditions surrounding DNA replication. However, such diversity has also fostered high rates of RNR misannotation within subject sequence databases. These misannotations have resulted in incorrect translative presumptions of RNR biochemistry and have diminished the utility of this marker gene for ecological studies of viruses. We discovered a misannotation of the RNR gene within the Prochlorococcus phage P-SSP7 genome, which caused a chain of misannotations within commonly observed RNR genes from marine virioplankton communities. These RNRs are found in marine cyanopodo- and cyanosiphoviruses and are currently misannotated as Class II RNRs, which are O-2-independent and require cofactor B-12. In fact, these cyanoviral RNRs are Class I enzymes that are O-2-dependent and may require a di-metal cofactor made of Fe, Mn, or a combination of the two metals. The discovery of an overlooked Class I beta subunit in the P-SSP7 genome, together with phylogenetic analysis of the alpha and beta subunits confirms that the RNR from P-SSP7 is a Class I RNR. Phylogenetic and conserved residue analyses also suggest that the P-SSP7 RNR may constitute a novel Class I subclass. The reannotation of the RNR Glade represented by P-SSP7 means that most lytic cyanophage contain Class I RNRs, while their hosts, B-12-producing Synechococcus and Prochlorococcus, contain Class II RNRs. By using a Class I RNR, cyanophage avoid a dependence on host-produced B-12, a more effective strategy for a lytic virus. The discovery of a novel RNR beta subunit within cyanopodoviruses also implies that some unknown viral genes may be familiar cellular genes that are too divergent for homology-based annotation methods to identify. [Harrison, Amelia O.; Wommack, K. Eric] Univ Delaware, Sch Marine Sci & Policy, Newark, DE 19716 USA; [Moore, Ryan M.; Polson, Shawn W.] Univ Delaware, Ctr Bioinformat & Computat Biol, Newark, DE USA Wommack, KE (reprint author), Univ Delaware, Sch Marine Sci & Policy, Newark, DE 19716 USA. wommack@dbi.udei.edu National Science Foundation Office of Integrated Activities [1736030]; National Science Foundation Division of Biological Infrastructure [1356374]; Delaware INBRE [NIH P20 GM103446]; Delaware Biotechnology Institute This work was supported by the National Science Foundation Office of Integrated Activities, grant number 1736030 and the National Science Foundation Division of Biological Infrastructure, grant number 1356374. Computational support by the University of Delaware Center for Bioinformatics and Computational Biology Core Facility was made possible by funding from Delaware INBRE (NIH P20 GM103446) and the Delaware Biotechnology Institute. Acland A, 2014, NUCLEIC ACIDS RES, V42, pD7, DOI 10.1093/nar/gkt1146; Ahmad MF, 2012, J MOL BIOL, V419, P315, DOI 10.1016/j.jmb.2012.03.014; Aravind L, 2000, J MOL MICROB BIOTECH, V2, P191; Barnett JP, 2012, ANAL BIOANAL CHEM, V402, P3371, DOI 10.1007/s00216-011-5708-6; Berggren G, 2017, ENCY INORGANIC BIOIN, DOI [10.1002/9781119951438.eibc2480, DOI 10.1002/9781119951438.EIBC2480]; Blaesi EJ, 2018, P NATL ACAD SCI USA, V115, P10022, DOI 10.1073/pnas.1811993115; BLAKLEY RL, 1964, BIOCHEM BIOPH RES CO, V16, P391, DOI 10.1016/0006-291X(64)90363-8; BROWN NC, 1969, J MOL BIOL, V46, P39, DOI 10.1016/0022-2836(69)90056-4; Browning TJ, 2017, NATURE, V551, P242, DOI 10.1038/nature24063; Chen F, 2002, APPL ENVIRON MICROB, V68, P2589, DOI 10.1128/AEM.68.5.2589-2594.2002; Chen F, 2009, ENVIRON MICROBIOL, V11, P2884, DOI 10.1111/j.1462-2920.2009.02033.x; Chopyk J, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.00792; Clark K, 2016, NUCLEIC ACIDS RES, V44, pD67, DOI 10.1093/nar/gkv1276; Cotruvo JA, 2013, J AM CHEM SOC, V135, P4027, DOI 10.1021/ja312457t; Cotruvo JA, 2011, ANNU REV BIOCHEM, V80, P733, DOI 10.1146/annurev-biochem-061408-095817; Dolja VV, 2018, VIRUS RES, V244, P36, DOI 10.1016/j.virusres.2017.10.020; Dwivedi B, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-33; EISERICH JP, 1995, BIOCHEM J, V310, P745, DOI 10.1042/bj3100745; ELIASSON R, 1992, J BIOL CHEM, V267, P25541; Eriksson M, 1997, STRUCTURE, V5, P1077, DOI 10.1016/S0969-2126(97)00259-1; Fontecave M, 2002, PROG NUCLEIC ACID RE, V72, P95, DOI 10.1016/S0079-6603(02)72068-0; Fu LM, 2012, BIOINFORMATICS, V28, P3150, DOI 10.1093/bioinformatics/bts565; Gerlt JA, 2015, BBA-PROTEINS PROTEOM, V1854, P1019, DOI 10.1016/j.bbapap.2015.04.015; Gogarten JP, 2002, ANNU REV MICROBIOL, V56, P263, DOI 10.1146/annurev.micro.56.012302.160741; Gonzalez PJ, 2006, J INORG BIOCHEM, V100, P1015, DOI 10.1016/j.jinorgbio.2005.11.024; Greene BL, 2017, J AM CHEM SOC, V139, P16657, DOI 10.1021/jacs.7b08192; Grinberg IR, 2018, J BIOL CHEM, V293, P15889, DOI 10.1074/jbc.RA118.004991; Grinberg IR, 2018, ELIFE, V7, DOI 10.7554/eLife.31529; Guerrero M. G., 1985, Techniques in bioproductivity and photosynthesis, P165; Hawco NJ, 2018, LIMNOL OCEANOGR, V63, P2229, DOI 10.1002/lno.10935; Heal KR, 2017, P NATL ACAD SCI USA, V114, P364, DOI 10.1073/pnas.1608462114; Helliwell KE, 2016, CURR BIOL, V26, P999, DOI 10.1016/j.cub.2016.02.041; Herrick J, 2007, MOL MICROBIOL, V63, P22, DOI 10.1111/j.1365-2958.2006.05493.x; Hogbom M, 2004, SCIENCE, V305, P245, DOI 10.1126/science.1098419; Huang SJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0142962; Iranzo J, 2016, MBIO, V7, DOI 10.1128/mBio.00978-16; Jonna VR, 2015, J BIOL CHEM, V290, P17339, DOI 10.1074/jbc.M115.649624; Jordan A, 1998, ANNU REV BIOCHEM, V67, P71, DOI 10.1146/annurev.biochem.67.1.71; Jose Huertas Maria, 2014, Life-Basel, V4, P865, DOI 10.3390/life4040865; Jover LF, 2014, NAT REV MICROBIOL, V12, P519, DOI 10.1038/nrmicro3289; Katoh K, 2013, MOL BIOL EVOL, V30, P772, DOI 10.1093/molbev/mst010; Kazlauskas D, 2016, NUCLEIC ACIDS RES, V44, P4551, DOI 10.1093/nar/gkw322; Keren N, 2004, PLANT PHYSIOL, V135, P1666, DOI 10.1104/pp.104.042770; Keren N, 2002, BIOCHEMISTRY-US, V41, P15085, DOI 10.1021/bi026892s; KING DS, 1995, BIOCHEM BIOPH RES CO, V206, P731, DOI 10.1006/bbrc.1995.1103; Klotz Alexander, 2015, Life-Basel, V5, P888, DOI 10.3390/life5010888; Kolberg M, 2004, BBA-PROTEINS PROTEOM, V1699, P1, DOI 10.1016/j.bbapap.2004.02.007; Krishnamurthy SR, 2017, VIRUS RES, V239, P136, DOI 10.1016/j.virusres.2017.02.002; Krupovic M, 2018, VIRUS RES, V244, P181, DOI 10.1016/j.virusres.2017.11.025; Laber CP, 2018, NAT MICROBIOL, V3, P537, DOI 10.1038/s41564-018-0128-4; Li WZ, 2006, BIOINFORMATICS, V22, P1658, DOI 10.1093/bioinformatics/btl158; Licht S, 1996, SCIENCE, V271, P477, DOI 10.1126/science.271.5248.477; Lindell D, 2005, NATURE, V438, P86, DOI 10.1038/nature04111; Lindell D, 2004, P NATL ACAD SCI USA, V101, P11013, DOI 10.1073/pnas.0401526101; Lindell D, 2007, NATURE, V449, P83, DOI 10.1038/nature06130; Logan DT, 1999, SCIENCE, V283, P1499, DOI 10.1126/science.283.5407.1499; Lundin Daniel, 2015, Life-Basel, V5, P604, DOI 10.3390/life5010604; Lundin D, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-383; Lundin D, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-589; Marchler-Bauer A, 2017, NUCLEIC ACIDS RES, V45, pD200, DOI 10.1093/nar/gkw1129; Mathews CK, 2006, FASEB J, V20, P1300, DOI 10.1096/fj.06-5730rev; Moore CM, 2013, NAT GEOSCI, V6, P701, DOI [10.1038/ngeo1765, 10.1038/NGEO1765]; Moore R. M, 2018, BIORXIV, DOI [10.1101/106138, DOI 10.1101/106138]; Mowa MB, 2009, J BACTERIOL, V191, P985, DOI 10.1128/JB.01409-08; MULLIEZ E, 1993, J BIOL CHEM, V268, P2296; NORDLUND P, 1993, J MOL BIOL, V232, P123, DOI 10.1006/jmbi.1993.1374; Nordlund N, 2006, ANNU REV BIOCHEM, V75, P681, DOI 10.1146/annurev.biochem.75.103004.142443; O'Leary Nuala A, 2016, Nucleic Acids Res, V44, pD733, DOI 10.1093/nar/gkv1189; Palenik B, 2003, NATURE, V424, P1037, DOI 10.1038/nature01943; Perez AA, 2016, J BACTERIOL, V198, P2753, DOI 10.1128/JB.00476-16; Perler FB, 1997, NUCLEIC ACIDS RES, V25, P1087, DOI 10.1093/nar/25.6.1087; Preimesberger MR, 2017, J INORG BIOCHEM, V177, P171, DOI 10.1016/j.jinorgbio.2017.09.018; Price MN, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009490; Puxty RJ, 2016, CURR BIOL, V26, P1585, DOI 10.1016/j.cub.2016.04.036; Radi R, 2004, P NATL ACAD SCI USA, V101, P4003, DOI 10.1073/pnas.0307446101; Rastelli E, 2017, ENVIRON MICROBIOL, V19, P4432, DOI 10.1111/1462-2920.13890; REICHARD P, 1993, SCIENCE, V260, P1773, DOI 10.1126/science.8511586; Rodionov DA, 2003, J BIOL CHEM, V278, P41148, DOI 10.1074/jbc.M305837200; Rose HR, 2018, BIOCHEMISTRY-US, V57, P2679, DOI 10.1021/acs.biochem.8b00247; Sabehi G, 2012, P NATL ACAD SCI USA, V109, P2037, DOI 10.1073/pnas.1115467109; Sakowski EG, 2014, P NATL ACAD SCI USA, V111, P15786, DOI 10.1073/pnas.1401322111; Schmidt HF, 2014, ISME J, V8, P103, DOI 10.1038/ismej.2013.124; Shannon P, 2003, GENOME RES, V13, P2498, DOI 10.1101/gr.1239303; Shcolnick S, 2006, PLANT PHYSIOL, V141, P805, DOI 10.1104/pp.106.079251; Smoot ME, 2011, BIOINFORMATICS, V27, P431, DOI 10.1093/bioinformatics/btq675; Srinivas V, 2018, NATURE, V563, P416, DOI 10.1038/s41586-018-0653-6; Sullivan MB, 2005, PLOS BIOL, V3, P790, DOI 10.1371/journal.pbio.0030144; Sunda WG, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.00561; SUTTLE CA, 1993, MAR ECOL PROG SER, V92, P99, DOI 10.3354/meps092099; Suttle CA, 2005, NATURE, V437, P356, DOI 10.1038/nature04160; Suttle CA, 2007, NAT REV MICROBIOL, V5, P801, DOI 10.1038/nrmicro1750; TABOR S, 1987, P NATL ACAD SCI USA, V84, P4767, DOI 10.1073/pnas.84.14.4767; Tang K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041204; Tanioka Y, 2009, J NUTR SCI VITAMINOL, V55, P518, DOI 10.3177/jnsv.55.518; UHLIN U, 1994, NATURE, V370, P533, DOI 10.1038/370533a0; Waldron KJ, 2009, NATURE, V460, P823, DOI 10.1038/nature08300; Wang K, 2008, ENVIRON MICROBIOL, V10, P300, DOI 10.1111/j.1462-2920.2007.01452.x; Warren MJ, 2002, NAT PROD REP, V19, P390, DOI 10.1039/B108967F 98 0 0 0 0 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-302X FRONT MICROBIOL Front. Microbiol. FEB 5 2019 10 134 10.3389/fmicb.2019.00134 16 Microbiology Microbiology HK2ZA WOS:000457780700001 DOAJ Gold 2019-02-21 J Uerling, CC; Hamel, MJ; Pegg, MA Uerling, Caleb C.; Hamel, Martin J.; Pegg, Mark A. Fish community response to habitat variables in two restored side channels of the lower Platte River, Nebraska RIVER RESEARCH AND APPLICATIONS English Article fish community; floodplain; mitigation; restoration; side channel THERMAL REFUGIA; MISSOURI RIVER; CONNECTIVITY; ECOSYSTEMS; CHANNELIZATION; RECRUITMENT; FLOODPLAINS Anthropogenic alterations to large rivers ranging from impoundments to channelization and levees have caused many rivers to no longer access the floodplain in a meaningful capacity. Floodplain habitats are important to many riverine fishes to complete their life-history strategies. The fish community and species of fish that inhabit floodplain habitats are often dictated by the type of habitat and the conditions within that habitat (e.g., temperature, water velocity, depth, and discharge). As mitigation and restoration projects are undertaken, it is imperative that managers understand how various habitat components will affect the fish community in floodplain habitats. We collected fish and habitat data from two restored side channels with different structural designs on the lower Platte River, Nebraska, to determine how habitat variables predicted species diversity and individual species presence. We found a decrease in discharge in the main-stem river resulted in increased diversity in one of the side channels, with the greatest diversity values occurring during summer. No habitat variables performed well for predicting fish species diversity for an adjacent side channel with more uniform depth and velocity and no groundwater inputs. However, several native riverine fish species in this side channel were shown to be associated with high temperature, dissolved oxygen, main-stem discharge, and discharge variability. These results highlight the importance of considering the physical design of restored floodplain habitats when attempting to enhance fish communities. [Uerling, Caleb C.; Hamel, Martin J.; Pegg, Mark A.] Univ Nebraska, Sch Nat Resources, Lincoln, NE 68583 USA Uerling, CC (reprint author), Univ Nebraska, 3310 Holdrege St, Lincoln, NE 68583 USA. caleb.uerling@mt.go Nebraska Army National Guard Larry Vrtiska; Nebraska Army National Guard Amoros C, 2002, FRESHWATER BIOL, V47, P761, DOI 10.1046/j.1365-2427.2002.00905.x; Amoros C, 2001, ENVIRON MANAGE, V28, P805, DOI 10.1007/s002670010263; Arthington AH, 2010, MAR FRESHWATER RES, V61, P842, DOI 10.1071/MF09096; Bowen ZH, 2003, T AM FISH SOC, V132, P809, DOI 10.1577/T02-079; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Burnham KP, 2003, MODEL SELECTION MULT; Durham B. W., 2006, SW NATURALIST, V51, P395, DOI [10.1894/0038-4909(2006)51[397:TFKIAF]2.0.CO;2, DOI 10.1894/0038-4909(2006)51[397:TFKIAF]2.0.C0;2]; Ebersole JL, 2003, J AM WATER RESOUR AS, V39, P355, DOI 10.1111/j.1752-1688.2003.tb04390.x; Fotherby LM, 2009, GEOMORPHOLOGY, V103, P562, DOI 10.1016/j.geomorph.2008.08.001; Galat DL, 2001, J N AM BENTHOL SOC, V20, P266, DOI 10.2307/1468321; GUNDERSON DR, 1968, J WILDLIFE MANAGE, V32, P507, DOI 10.2307/3798929; Hadley R, 1987, REGUL RIVER, V1, P331; Hamel MJ, 2016, RIVER RES APPL, V32, P320, DOI 10.1002/rra.2850; Heiler G, 1995, REGUL RIVER, V11, P351, DOI 10.1002/rrr.3450110309; Hein T, 2003, FRESHWATER BIOL, V48, P220, DOI 10.1046/j.1365-2427.2003.00981.x; HOLLAND R S, 1992, North American Journal of Fisheries Management, V12, P237, DOI 10.1577/1548-8675(1992)012<0237:DCBHNO>2.3.CO;2; Jacobson R. B., 2004, 20041071 US GEOL SUR; Jacobson RB, 2001, WATER SCI APPL, V4, P199; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; JURAJDA P, 1995, REGUL RIVER, V10, P207, DOI 10.1002/rrr.3450100215; King AJ, 2003, CAN J FISH AQUAT SCI, V60, P773, DOI 10.1139/F03-057; Kurylyk BL, 2015, ECOHYDROLOGY, V8, P1095, DOI 10.1002/eco.1566; LIGON FK, 1995, BIOSCIENCE, V45, P183, DOI 10.2307/1312557; Manly Bryan FJ, 2016, MULTIVARIATE STAT ME; Martens KD, 2014, T AM FISH SOC, V143, P757, DOI 10.1080/00028487.2014.880740; Matthews WJ, 2003, FRESHWATER BIOL, V48, P1232, DOI 10.1046/j.1365-2427.2003.01087.x; Murphy P. J., 2004, PLATTE RIVER CHANNEL; Nilsson C, 2000, BIOSCIENCE, V50, P783, DOI 10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2; Oscoz J, 2005, HYDROBIOLOGIA, V543, P191, DOI 10.1007/s10750-004-7422-2; PALOUMPIS ANDREAS A., 1958, IOWA STATE COLL JOUR SCI, V32, P547; Peters E. J., 2005, V45, P239; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; R Core Team, 2015, R LANG ENV STAT COMP; Reeves G. H., 1979, THESIS; Reinhold AM, 2016, FRESHWATER BIOL, V61, P1611, DOI 10.1111/fwb.12796; ROSS ST, 1983, AM MIDL NAT, V109, P1, DOI 10.2307/2425509; SCHLOSSER IJ, 1991, BIOSCIENCE, V41, P704, DOI 10.2307/1311765; SEDELL JR, 1990, ENVIRON MANAGE, V14, P711, DOI 10.1007/BF02394720; SPARKS RE, 1995, BIOSCIENCE, V45, P168, DOI 10.2307/1312556; Spurgeon JJ, 2016, RIVER RES APPL, V32, P1841, DOI 10.1002/rra.3041; Stanford J. A., 1992, WATERSHED MANAGEMENT, P91, DOI 10.1007/978-1-4612-4382-3_5; STANFORD JA, 1993, J N AM BENTHOL SOC, V12, P48, DOI 10.2307/1467685; Steffensen Kirk D., 2014, Transactions of the Nebraska Academy of Sciences, V34, P49; Stevens BS, 2011, N AM J FISH MANAGE, V31, P683, DOI 10.1080/02755947.2011.611037; United States Geological Survey, 2004, USITC PUBL, V2004-1071; WARD JV, 1995, REGUL RIVER, V11, P105, DOI 10.1002/rrr.3450110109; Yager LA, 2013, RIVER RES APPL, V29, P493, DOI 10.1002/rra.1614; Yager L. A., 2010, THESIS 48 0 0 0 0 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1535-1459 1535-1467 RIVER RES APPL River Res. Appl. FEB 2019 35 2 178 187 10.1002/rra.3390 10 Environmental Sciences; Water Resources Environmental Sciences & Ecology; Water Resources HK3DH WOS:000457792400008 2019-02-21 J Serota, MW; Williams, TD Serota, Mitchell W.; Williams, Tony D. Adjustment of total activity as a response to handicapping European starlings during parental care ANIMAL BEHAVIOUR English Article activity; automated telemetry; costs of reproduction; handicapping; parental care INDIVIDUAL VARIATION; RADIO TRANSMITTERS; BROOD SIZE; REPRODUCTION; MANIPULATIONS; INVESTMENT; BEHAVIOR; PRODUCTIVITY; METAANALYSIS; FEMALES Parental care is widely assumed to be costly, and life-history theory predicts that individuals that invest more in parental care should benefit in terms of number of offspring produced but that increased parental care might come at a cost in terms of decreased future fecundity and/or survival. However, the notion that parents that work 'harder', commonly measured by the rate at which parents visit the nestbox to provision their chicks, produce more, fitter chicks is surprisingly poorly supported. One potential reason for this apparent lack of relationship between measured workload during parental care and breeding productivity is that nest visit rate does not provide a good measure of foraging effort. Here, we used an automated radiotelemetry system to measure activity of individual female European starlings, Sturnus vulgaris, during breeding, combined with a handicapping experiment (combination of radiotransmitters and wing clipping) and measures of foraging metrics, current breeding productivity, future fecundity and return rate. Handicapping decreased current breeding success due to higher abandonment and nest failure, but among successful birds (fledging >= 1 chick) there was no effect of handicapping on brood size at fledging for the current breeding attempt. Handicapping decreased future fecundity, the probability of initiating a second brood, and return rate, but there was no evidence for additive costs of reproduction in wing-clipped females. Handicapping had no effect on provisioning rate but automated tracking data showed that, during chick rearing, wing-clipped females had 22% lower activity compared to females with radios only. Our data provide an explanation for the often contradictory effects of handicapping reported on reproductive effort and costs of reproduction: individuals can use behavioural flexibility - decreasing overall activity while maintaining provisioning rate - along with changes in mass and nestling diet to mitigate putative effects of increased workload imposed by handicapping. (C) 2018 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Serota, Mitchell W.; Williams, Tony D.] Simon Fraser Univ, Dept Biol Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada Serota, MW (reprint author), Simon Fraser Univ, Dept Biol Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada. mserota@sfu.ca Natural Sciences and Engineering Research Council [155395-2012, 429387-2012] We thank David Davis and the Davis Family for their continued support for our European starling work on the Davistead Farm in Langley, BC. Allison Cornell and Zoe Crysler provided invaluable assistance with fieldwork. This work was funded by Natural Sciences and Engineering Research Council Discovery (155395-2012) and Accelerator (429387-2012) grants. Adelman JS, 2010, FUNCT ECOL, V24, P813, DOI 10.1111/j.1365-2435.2010.01702.x; Barron DG, 2013, CONDOR, V115, P669, DOI 10.1525/cond.2013.120149; Barron DG, 2010, METHODS ECOL EVOL, V1, P180, DOI 10.1111/j.2041-210X.2010.00013.x; Bell G.P., 1990, Studies in Avian Biology, P416; Bijleveld AI, 2009, BEHAV ECOL, V20, P736, DOI 10.1093/beheco/arp054; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Dunnet G. M., 1955, Ibis, V97, P619, DOI 10.1111/j.1474-919X.1955.tb01925.x; Feare C., 1984, STARLING; Fowler M. A., PRELIMINARY DA UNPUB; Fowler MA, 2017, AM NAT, V190, P762, DOI 10.1086/694123; Fowler MA, 2015, ECOL EVOL, V5, P3585, DOI 10.1002/ece3.1625; Garcia-Navas V, 2011, IBIS, V153, P59, DOI 10.1111/j.1474-919X.2010.01077.x; Greives TJ, 2015, FUNCT ECOL, V29, P1300, DOI 10.1111/1365-2435.12440; Griggio M, 2005, BEHAV ECOL, V16, P435, DOI 10.1093/beheco/ari009; Hegemann A, 2013, FRONT ZOOL, V10, DOI 10.1186/1742-9994-10-77; Jacobs SR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054594; KESSEL BRINA, 1957, AMER MIDLAND NAT, V58, P257, DOI 10.2307/2422615; Killen SS, 2017, INTEGR COMP BIOL, V57, P185, DOI 10.1093/icb/icx083; Lind J, 2001, P ROY SOC B-BIOL SCI, V268, P1915, DOI 10.1098/rspb.2001.1740; Love OP, 2008, AM NAT, V172, pE135, DOI 10.1086/590959; Mariette MM, 2011, AUK, V128, P26, DOI 10.1525/auk.2011.10117; Mathot KJ, 2017, BEHAV ECOL, V28, P1402, DOI 10.1093/beheco/arx083; MORENO J, 1995, J ANIM ECOL, V64, P721, DOI 10.2307/5851; Neudorf DL, 1997, J FIELD ORNITHOL, V68, P64; NORBERG RA, 1981, AM NAT, V118, P838, DOI 10.1086/283874; RAPPOLE JH, 1991, J FIELD ORNITHOL, V62, P335; Rhymer CM, 2012, BIRD STUDY, V59, P426, DOI 10.1080/00063657.2012.725026; Rivers JW, 2017, FUNCT ECOL, V31, P235, DOI 10.1111/1365-2435.12719; Royle NJ, 2012, EVOLUTION OF PARENTAL CARE, P1; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Schwagmeyer PL, 2008, ANIM BEHAV, V75, P291, DOI 10.1016/j.anbehav.2007.05.023; SLAGSVOLD T, 1988, ECOLOGY, V69, P1918, DOI 10.2307/1941168; Stauss MJ, 2005, J AVIAN BIOL, V36, P47, DOI 10.1111/j.0908-8857.2005.02855.x; Stearns S, 1992, EVOLUTION LIFE HIST; Steiger SS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1016; Tieleman BI, 2008, BEHAV ECOL, V19, P949, DOI 10.1093/beheco/arn051; TINBERGEN JM, 1981, ARDEA, V69, P1; Velando A, 2002, BEHAV ECOL, V13, P443, DOI 10.1093/beheco/13.4.443; Velando A, 2003, J ANIM ECOL, V72, P846, DOI 10.1046/j.1365-2656.2003.00756.x; Ward MP, 2014, ANIM BEHAV, V88, P175, DOI 10.1016/j.anbehav.2013.11.024; Weimerskirch H, 1999, J AVIAN BIOL, V30, P165, DOI 10.2307/3677126; WEIMERSKIRCH H, 1995, BEHAV ECOL SOCIOBIOL, V36, P11; Williams T. D., 2012, PHYSL ADAPTATIONS BR; Williams TD, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.169433; Wilmers CC, 2015, ECOLOGY, V96, P1741, DOI 10.1890/14-1401.1; Winkler DW, 1995, AUK, V112, P737; WRIGHT J, 1989, BEHAV ECOL SOCIOBIOL, V25, P171, DOI 10.1007/BF00302916; Wright J, 1998, J ANIM ECOL, V67, P620; Zuniga D, 2016, SCI REP-UK, V6, DOI 10.1038/srep34207 49 0 0 0 0 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. FEB 2019 148 19 27 10.1016/j.anbehav.2018.11.009 9 Behavioral Sciences; Zoology Behavioral Sciences; Zoology HK0YK WOS:000457630500003 2019-02-21 J Bruckerhoff, LA; Leasure, DR; Magoulick, DD Bruckerhoff, Lindsey A.; Leasure, Douglas R.; Magoulick, Daniel D. Flow-ecology relationships are spatially structured and differ among flow regimes JOURNAL OF APPLIED ECOLOGY English Article environmental flows; fish; hydrology; life-history strategies; spatial autocorrelation; spatial stream network models; streams; traits LIFE-HISTORY STRATEGIES; MOVING-AVERAGE APPROACH; GLOBAL-SCALE ANALYSIS; FRESH-WATER FISHES; HYDROLOGIC ALTERATION; STATISTICAL-MODELS; CLIMATE-CHANGE; STREAM; TRAITS; DIVERSIFICATION In streams, hydrology is a predominant driver of ecological structure and function. Providing adequate flows to support aquatic life, or environmental flows, is therefore a top management priority in stream systems. Flow regime classification is a widely accepted approach for establishing environmental flow guidelines. However, it is surprisingly difficult to quantify relationships between hydrology and ecology (flow-ecology relationships) while describing how these relationships vary across classified flow regimes. Developing such relationships is complicated by several sources of spatial bias, such as autocorrelation due to spatial design, flow regime classification and other environmental or ecological sources of spatial bias. We used mixed moving-average spatial stream network models to develop flow-ecology relationships across classified flow regimes and to assess spatial patterns of these relationships. We compared relationships between fish traits and life-history strategies with hydrologic metrics across flow regimes and assessed whether spatial autocorrelation influenced these relationships. Trait-hydrology relationships varied between flow regimes and across all streams combined. Some relationships between traits and hydrologic metrics fit predictions based on life-history theory, while others exhibited unexpected relationships with hydrology. Spatial factors described a large proportion of variability in fish traits and different patterns of spatial autocorrelation were observed in different flow regimes. Synthesis and applications. Further work is needed to understand why flow-ecology relationships vary across classified flow regimes and why these relationships may not fit predictions based on life-history theories. Managers determining environmental flow standards need to be aware that different hydrologic metrics are often important drivers of fish trait diversity in different flow regimes. Flow-ecology relationships may therefore be confounded by spatial structure inherent in flow regime classification and much existing biological data. Complex patterns of spatial bias should be considered when managing stream systems within an environmental flows framework. [Bruckerhoff, Lindsey A.] Univ Arkansas, Dept Biol Sci, Arkansas Cooperat Fish & Wildlife Res Unit, Fayetteville, AR 72701 USA; [Leasure, Douglas R.] Univ Georgia, River Basin Ctr, Odum Sch Ecol, Athens, GA 30602 USA; [Magoulick, Daniel D.] Univ Arkansas, Dept Biol Sci, US Geol Survey, Arkansas Cooperat Fish & Wildlife Res Unit, Fayetteville, AR 72701 USA Bruckerhoff, LA (reprint author), Univ Arkansas, Dept Biol Sci, Arkansas Cooperat Fish & Wildlife Res Unit, Fayetteville, AR 72701 USA. lbrucke@ksu.edu University of Arkansas Cooperative Fish and Wildlife Research Unit University of Arkansas Cooperative Fish and Wildlife Research Unit Arthington AH, 2006, ECOL APPL, V16, P1311, DOI 10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2; Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324; Brisbane Declaration, 2007, 10 INT RIV S INT ENV; Bruckerhoff L. B., 2018, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.2f7h7t6, DOI 10.5061/DRYAD.2F7H7T6]; Buchanan C, 2013, FRESHWATER BIOL, V58, P2632, DOI 10.1111/fwb.12240; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Chinnayakanahalli KJ, 2011, FRESHWATER BIOL, V56, P1248, DOI 10.1111/j.1365-2427.2010.02560.x; COLWELL RK, 1974, ECOLOGY, V55, P1148, DOI 10.2307/1940366; Cressie N., 1993, STAT SPATIAL DATA; Doll P, 2010, HYDROL EARTH SYST SC, V14, P783, DOI 10.5194/hess-14-783-2010; Doll P, 2009, HYDROL EARTH SYST SC, V13, P2413; Domisch S, 2015, FUND APPL LIMNOL, V186, P45, DOI 10.1127/fal/2015/0627; Environmental Systems Research Institute (ESRI), 2016, ARCGIS DESKT 10 4; Eros T, 2010, FRESHWATER BIOL, V55, P2391, DOI 10.1111/j.1365-2427.2010.02438.x; Falcone JA, 2010, ECOL INDIC, V10, P264, DOI 10.1016/j.ecolind.2009.05.005; Freeman MC, 2001, ECOL APPL, V11, P179, DOI 10.1890/1051-0761(2001)011[0179:FAHEOJ]2.0.CO;2; Frimpong EA, 2009, FISHERIES, V34, P487, DOI 10.1577/1548-8446-34.10.487; Garreta V, 2010, ENVIRONMETRICS, V21, P439, DOI 10.1002/env.995; GITTLEMAN JL, 1992, ANNU REV ECOL SYST, V23, P383; Heino J, 2013, FRESHWATER BIOL, V58, P1539, DOI 10.1111/fwb.12164; Henriksen J. A., 2006, 20061093 US GEOL SUR; Hoef JMV, 2014, J STAT SOFTW, V56, P1; Humphries P, 2000, REGUL RIVER, V16, P421, DOI 10.1002/1099-1646(200009/10)16:5<421::AID-RRR594>3.0.CO;2-4; Humphries P, 2002, FRESHWATER BIOL, V47, P1307, DOI 10.1046/j.1365-2427.2002.00871.x; Infante DM, 2006, AM FISH S S, V48, P339; Isaak DJ, 2014, WIRES WATER, V1, P277, DOI 10.1002/wat2.1023; Jepsen DB, 1999, J FISH BIOL, V55, P433; Kennard MJ, 2010, FRESHWATER BIOL, V55, P171, DOI 10.1111/j.1365-2427.2009.02307.x; Leasure DR, 2016, RIVER RES APPL, V32, P18, DOI 10.1002/rra.2838; LEGENDRE P, 1993, ECOLOGY, V74, P1659, DOI 10.2307/1939924; Liaw A., 2002, R NEWS, V2, P18, DOI DOI 10.1177/154405910408300516; McManamay RA, 2015, ECOHYDROLOGY, V8, P460, DOI 10.1002/eco.1517; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; McManamay RA, 2012, RIVER RES APPL, V28, P1019, DOI 10.1002/rra.1493; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Missouri Resource Assessment Partnership (MORAP), 2009, DEV STREAM REACH SCA; Monk WA, 2006, RIVER RES APPL, V22, P595, DOI 10.1002/rra.933; Near TJ, 2011, SYST BIOL, V60, P565, DOI 10.1093/sysbio/syr052; Nelson JS, 2006, FISHES WORLD; Nesler T. P., 1988, 11 ANN LARV FISH C B, V5; Olden J. D, 2010, AM FISHERIES SOC S, V73, P109; Olden JD, 2003, RIVER RES APPL, V19, P101, DOI 10.1002/rra.700; Palmer MA, 2008, FRONT ECOL ENVIRON, V6, P81, DOI 10.1890/060148; Peterson EE, 2014, J STAT SOFTW, V56, P1; Peterson EE, 2010, ECOLOGY, V91, P644, DOI 10.1890/08-1668.1; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Poff NL, 2013, CURR OPIN ENV SUST, V5, P667, DOI 10.1016/j.cosust.2013.11.006; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; POFF NL, 1989, CAN J FISH AQUAT SCI, V46, P1805, DOI 10.1139/f89-228; Postel S., 2003, RIVERS LIFE MANAGING; R Core Team, 2014, R LANG ENV STAT COMP; Richter BD, 1996, CONSERV BIOL, V10, P1163, DOI 10.1046/j.1523-1739.1996.10041163.x; Rolls RJ, 2014, ECOL INDIC, V39, P179, DOI 10.1016/j.ecolind.2013.12.017; SCHLUTER D, 1986, ECOLOGY, V67, P1073, DOI 10.2307/1939830; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Statzner B, 2004, ECOGRAPHY, V27, P470, DOI 10.1111/j.0906-7590.2004.03836.x; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Ver Hoef JM, 2006, ENVIRON ECOL STAT, V13, P449, DOI 10.1007/s10651-006-0022-8; Ver Hoef JM, 2010, J AM STAT ASSOC, V105, P6, DOI 10.1198/jasa.2009.ap08248; Webb JA, 2013, FRESHWATER BIOL, V58, P2439, DOI 10.1111/fwb.12234; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 67 0 0 0 0 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8901 1365-2664 J APPL ECOL J. Appl. Ecol. FEB 2019 56 2 398 412 10.1111/1365-2664.13297 15 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology HK0HW WOS:000457580700013 2019-02-21 J Determeyer-Wiedmann, N; Sadowsky, A; Convey, P; Ott, S Determeyer-Wiedmann, Nadine; Sadowsky, Andres; Convey, Peter; Ott, Sieglinde Physiological life history strategies of photobionts of lichen species from Antarctic and moderate European habitats in response to stressful conditions POLAR BIOLOGY English Article Stress conditions; Adaptation; Photosystem II and I; Electron transport; Ratio LET to CET ELECTRON-TRANSPORT; CULTURE EXPERIMENTS; PHOTOSYSTEM-II; WATER; SELECTIVITY; DIVERSITY; TREBOUXIA; PHOTOINHIBITION; PARTNERSHIPS; RESISTANCE The vegetation of many terrestrial habitats across Antarctica is dominated by poikilohydric symbiotic lichens. Terrestrial habitats generally are characterised by extended exposure to desiccation and high irradiation. Physiological adaptation mechanisms of the algal partner (photobiont) are key factors in the successful colonisation of lichens of locations under severe environmental conditions. This study focused on isolated photobionts of the genus Trebouxia, from the continental Antarctic lichens Buellia frigida, Pleopsidium chlorophanum, the maritime Antarctic lichen Umbilicaria antarctica, and the Swedish lichen Fulgensia bracteata from a moderate temperate ecosystem at sea level. The photosystems PS II and PS I and the ratio of linear to cyclic electron transport were studied to elucidate adaptation mechanisms in the physiology of the photobionts in response to desiccation and light stress. The photobionts of the Antarctic lichens demonstrated striking tolerance to the stress conditions studied. Although the photobionts of U. antarctica and P. chlorophanum were genetically identical based on non-coding internally transcribed spacer (ITS), their physiological responses were clearly different, possibly indicating ecotypic differentiation. The photobiont of F. bracteata showed clearly different responses to those of the Antarctic photobionts. The response differences of the photobionts studied point to fundamental differences in life history strategies. [Determeyer-Wiedmann, Nadine; Ott, Sieglinde] Heinrich Heine Univ, Inst Bot, Univ Str 1, D-40225 Dusseldorf, Germany; [Sadowsky, Andres] Heinrich Heine Univ, Cluster Excellence Plant Sci CEPLAS, Univ Str 1, D-40225 Dusseldorf, Germany; [Sadowsky, Andres] Heinrich Heine Univ, Inst Plant Biochem, Univ Str 1, D-40225 Dusseldorf, Germany; [Convey, Peter] British Antarctic Survey, Nat Environm Res Council, Madingley Rd, Cambridge CB3 0ET, England Ott, S (reprint author), Heinrich Heine Univ, Inst Bot, Univ Str 1, D-40225 Dusseldorf, Germany. otts@hhu.de German Research Foundation (DFG) [Ot 96/15-1, SPP 1158]; NERC We thank Eva Posthoff for her invaluable help with the photobiont cultures. The authors are especially grateful to Ulrike Ruprecht for her invaluable help and support on the molecular identification of the photobionts. Particular thanks for hergreat effort. Thanks are also due to the organising committee of the XIIth SCAR Biology Symposium 2017, Leuven, Belgium. SO is grateful to the German Research Foundation (DFG) for financing the Research Project Ot 96/15-1 as part of the Antarctic Priority Program (SPP 1158). PC is supported by NERC core funding to the British Antarctic Survey's 'Biodiversity, Evolution and Adaptation' Team. Special thanks are due to the Bundesanstalt fur Geologie und Rohstoffe (Andreas Laufer, Detlef Damaske) as well as to the British Antarctic Survey for the opportunity to collect the lichen samples used in this study. Thanks are also due to the staff at Rothera Station and Gondwana Station for logistic support. The authors also thank the reviewers for their invaluable comments. AHMADJIAN V, 1960, AM J BOT, V47, P677, DOI 10.2307/2439519; Ahmadjian V, 1967, PHYCOLOGIA, V6, P127, DOI [10.2216/i0031-8884-6-2-127.1, DOI 10.2216/I0031-8884-6-2-127.1]; Allakhverdiev SI, 2005, PLANT PHYSIOL, V137, P263, DOI 10.1104/pp.104.054478; Backhaus T, 2015, INT J ASTROBIOL, V14, P479, DOI 10.1017/S1473550414000470; BENDALL DS, 1995, BBA-BIOENERGETICS, V1229, P23, DOI 10.1016/0005-2728(94)00195-B; Block W, 1996, EUR J ENTOMOL, V93, P325; Convey P, 2014, ECOL MONOGR, V84, P203, DOI 10.1890/12-2216.1; de Vera JP, 2004, ADV SPACE RES, V33, P1236, DOI 10.1016/j.asr.2003.10.035; de Vera JP, 2003, INT J ASTROBIOL, V1, P285; del Hoyo A, 2011, ANN BOT-LONDON, V107, P109, DOI 10.1093/aob/mcq206; Engelen A, 2016, POLAR BIOL, V39, P2403, DOI 10.1007/s00300-016-1915-0; Fernandez-Marin B, 2010, PLANTA, V231, P1335, DOI 10.1007/s00425-010-1129-6; Gasulla F, 2009, PLANTA, V231, P195, DOI 10.1007/s00425-009-1019-y; GENTY B, 1989, BIOCHIM BIOPHYS ACTA, V990, P87, DOI 10.1016/S0304-4165(89)80016-9; Green T. G. Allan, 1994, Cryptogamic Botany, V4, P166; Haranczyk H, 2012, ANTARCT SCI, V24, P342, DOI 10.1017/S0954102012000041; HEBER U, 1992, PLANT PHYSIOL, V100, P1621, DOI 10.1104/pp.100.4.1621; Honegger R, 2009, OKOLOGISCHE ASPEKTE, V36, P25; Huang W, 2010, PLANT CELL PHYSIOL, V51, P1922, DOI 10.1093/pcp/pcq144; Jahns HM, 1988, CRC HDB LICHENOLOGY, P95; Sanchez FJ, 2014, INT J ASTROBIOL, V13, P1, DOI 10.1017/S147355041300027X; Kappen L, 1996, ADV SPACE RES, V18, P119, DOI 10.1016/0273-1177(96)00007-5; Kappen L, 2000, ANTARCT SCI, V12, P314; KENNEDY AD, 1993, ARCTIC ALPINE RES, V25, P308, DOI 10.2307/1551914; Kramer DM, 2004, PHOTOSYNTH RES, V79, P209, DOI 10.1023/B:PRES.0000015391.99477.0d; Kranner I, 2005, P NATL ACAD SCI USA, V102, P3141, DOI 10.1073/pnas.0407716102; Krause GH, 2004, ADV PHOTO RESPIRAT, V19, P463; Lange OL, 1998, FUNCT ECOL, V12, P195, DOI 10.1046/j.1365-2435.1998.00192.x; LARSON DW, 1979, NEW PHYTOL, V82, P713, DOI 10.1111/j.1469-8137.1979.tb01666.x; Leavitt SD, 2015, MOL ECOL, V24, P3779, DOI 10.1111/mec.13271; McKersie B. D., 2013, STRESS STRESS COPING; Meeen J, 2013, SYMBIOSIS, V59, P121, DOI [10.1007/s13199-013-0232-4, DOI 10.1007/S13199-013-0232-4]; Meessen J, 2013, ORIGINS LIFE EVOL B, V43, P501, DOI 10.1007/s11084-013-9348-z; Meessen J, 2013, ORIGINS LIFE EVOL B, V43, P283, DOI 10.1007/s11084-013-9337-2; Nash TH, 1996, LICHEN BIOL; Ovstedal DO, 2001, LICHENS ANTARCTICA S; Pannewitz S, 2003, OECOLOGIA, V135, P30, DOI 10.1007/s00442-002-1162-7; Pfundel E., 2008, PAM APPL NOTES, V1, P21; RICHTER M, 1990, PHOTOSYNTH RES, V24, P229, DOI 10.1007/BF00032310; Romeike J, 2002, MOL BIOL EVOL, V19, P1209, DOI 10.1093/oxfordjournals.molbev.a004181; Ruprecht U, 2014, BIODIVERS CONSERV, V23, P1771, DOI 10.1007/s10531-014-0662-1; Sadowsky A, 2015, THESIS; Sadowsky A, 2016, PHYCOLOGIA, V55, P703, DOI 10.2216/15-127.1; Sadowsky A, 2016, POLAR BIOL, V39, P139, DOI 10.1007/s00300-015-1677-0; Sadowsky A, 2012, SYMBIOSIS, V58, P81, DOI 10.1007/s13199-012-0198-7; Schaper T, 2003, PLANT BIOLOGY, V5, P441, DOI 10.1055/s-2003-42711; Schlensog M, 2000, ANTARCTIC ECOSYSTEMS, P175; Schreiber U., 2008, PAM APPL NOTES, V1, P15; Schroeter B, 2017, ANTARCT SCI, V29, P517, DOI 10.1017/S095410201700027X; Schroeter B, 2011, POLAR BIOL, V34, P13, DOI 10.1007/s00300-010-0851-7; Stocker-Worgotter E, 2001, BRYOLOGIST, V104, P576, DOI 10.1639/0007-2745(2001)104[0576:ELAMOL]2.0.CO;2; Wornik S, 2010, MICROB ECOL, V59, P150, DOI 10.1007/s00248-009-9584-y; Yoshimura Isao, 2002, P3 53 0 0 2 2 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. FEB 2019 42 2 395 405 10.1007/s00300-018-2430-2 11 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology HJ5MB WOS:000457224500012 2019-02-21 J Saitoh, M; Kanazawa, K Saitoh, Masaya; Kanazawa, Ken'ichi Different Life Histories and Life Styles in Spatangoid Echinoids Living in the Shallow Sublittoral Zone in the Oki-Islands, Japan ZOOLOGICAL SCIENCE English Article spatangoid; life history; habitat-stability; trade-off; echinoids; sea urchins ECHINOCARDIUM-CORDATUM ECHINODERMATA; HEART-URCHIN; BURROWING BEHAVIOR; SEA; SEDIMENT; GROWTH; REWORKING; BIOLOGY; AQABA; CYCLE The growth rate, reproduction, recruitment and feeding of four spatangoid species in the Oki-Islands in the Japan Sea were investigated over five years. Nacospatangus alta, which inhabits unstable surface sediments, grows rapidly, reaches sexual maturity early, and has a short life span, indicating that it should be a ruderal, whereas Metalia spatagus and Brissus agassizii, which inhabit relatively stable deep sediment, grow slowly, reach sexual maturity late, and have a long life span, suggesting that they are stress-tolerators. Lovenia elongata, however, inhabits unstable surface sediment but has an exceptional life history; it grows rapidly, but does not reach sexual maturity early and has a long life span, likely because the specific morphology of its spines and tubercles allow it to cope with surface disturbances caused by storms. Lovenia elongata seems to be a competitive ruderal. A trade-off between test formation and gonad development may occur; N. alta constructs a fragile test with very thin plates, allowing the echinoid to allocate energy to increasing test size and developing the gonad to sexual maturity within a year. Lovenia elongata, with thick plates supporting the specific stout spines and tubercles, needs 2 years to reach sexual maturity with a similar rate of test growth to that of N. alta; M. spatagus and B. agassizii construct robust tests with thick plates, presumably necessary for these species, which burrow and live deep in sand under high pressure from surrounding sand. These echinoids do not reach sexual maturity until over 2 years of age. The flexible trade-off related to stress and disturbance associated with burrowing depth in different habitats allows the spatangoids to have different life-history strategies. [Saitoh, Masaya] Kanagawa Univ, Res Inst Integrated Sci, Hiratsuka, Kanagawa 2591293, Japan; [Kanazawa, Ken'ichi] Kanagawa Univ, Dept Biol Sci, Fac Sci, Hiratsuka, Kanagawa 2591293, Japan Saitoh, M (reprint author), Kanagawa Univ, Res Inst Integrated Sci, Hiratsuka, Kanagawa 2591293, Japan. ss196450uf@kanagawa-u.ac.jp BEUKEMA JJ, 1985, NETH J SEA RES, V19, P129, DOI 10.1016/0077-7579(85)90017-1; BUCHANAN JB, 1966, J MAR BIOL ASSOC UK, V46, P97, DOI 10.1017/S0025315400017574; CHESHER RH, 1969, B MAR SCI, V19, P72; CHESHER RICHARD H., 1963, BULL MAR SCI GULF AND CARIBBEAN, V13, P549; CLARK GR, 1974, ANNU REV EARTH PL SC, V2, P77, DOI 10.1146/annurev.ea.02.050174.000453; Dashfield SL, 2008, J EXP MAR BIOL ECOL, V365, P46, DOI 10.1016/j.jembe.2008.07.039; de Ridder C., 1985, Echinoderms, V1984, P245; DeRidder C., 1991, P153; DERIDDER C, 1987, MAR BIOL, V94, P613, DOI 10.1007/BF00431408; Dorgan KM, 2005, NATURE, V433, P475, DOI 10.1038/433475a; EBERT TA, 1982, ECOL MONOGR, V52, P353, DOI 10.2307/2937351; FERBER I, 1976, J EXP MAR BIOL ECOL, V22, P207, DOI 10.1016/0022-0981(76)90001-0; Ghiold J., 1989, BIOL OCEANOGRAPHY, V6, P79; Grime J. P, 1979, PLANT STRATEGIES VEG; Hollertz K, 2001, MAR BIOL, V139, P951; JANGOUX M, 1977, J EXP MAR BIOL ECOL, V30, P165, DOI 10.1016/0022-0981(77)90010-7; KANAZAWA K, 1992, PALAEONTOLOGY, V35, P733; Keesing JK, 2013, ECHINODERMS IN A CHANGING WORLD, P165; KIER PM, 1974, J PALEONTOL, V48, P1; Kroh A, 2010, J SYST PALAEONTOL, V8, P147, DOI 10.1080/14772011003603556; LAWRENCE JM, 1990, ZOOL SCI, V7, P17; Lohrer AM, 2005, J EXP MAR BIOL ECOL, V321, P155, DOI 10.1016/j.jembe.2005.02.002; LOWRY OH, 1951, J BIOL CHEM, V193, P265; Manasrah RS, 2006, ESTUAR COAST SHELF S, V69, P567, DOI 10.1016/j.ecss.2006.05.024; MARSH JB, 1966, J LIPID RES, V7, P574; MCNAMARA KJ, 1987, PALEOBIOLOGY, V13, P312; Mortensen T, 1951, MONOGRAPH ECHINOIDEA, Vv; Nakamura Y, 2001, J MAR BIOL ASSOC UK, V81, P289, DOI 10.1017/S0025315401003769; NICHOLS D, 1959, PHILOS T ROY SOC B, V242, P347, DOI 10.1098/rstb.1959.0007; Nunes CDAP, 2004, INVERTEBR REPROD DEV, V45, P41, DOI 10.1080/07924259.2004.9652572; Saitoh M, 2012, ZOOSYMPOSIA, V7, P255; SATO S, 1994, MAR BIOL, V118, P663, DOI 10.1007/BF00347514; Shigei M, 1986, SEA URCHINS SAGAMI B; Smith A.B., 1980, Special Papers in Palaeontology, P1; Smith AB, 2005, ZOOL J LINN SOC-LOND, V144, P15, DOI 10.1111/j.1096-3642.2005.00161.x; SMITH AB, 1980, PHILOS T ROY SOC B, V289, P3; Smith AB, 1984, ECHINOID PALEOBIOLOG; Stockley B, 2005, ZOOL SCR, V34, P447, DOI 10.1111/j.1463-6409.2005.00201.x 38 0 0 1 1 ZOOLOGICAL SOC JAPAN TOKYO HONGO MT BUILDING 4F, HONGO 7-2-2, BUNKYO-KU, TOKYO, 113-0033, JAPAN 0289-0003 ZOOL SCI Zool. Sci. FEB 2019 36 1 38 51 10.2108/zs180043 14 Zoology Zoology HJ6KN WOS:000457297200006 2019-02-21 J Reznick, DN; Losos, J; Travis, J Reznick, David N.; Losos, Jonathan; Travis, Joseph From low to high gear: there has been a paradigm shift in our understanding of evolution ECOLOGY LETTERS English Article Conservation biology; contemporary evolution; eco-evo dynamics; ecosystems ecology; evolution; fisheries biology; genetics of adaptation; invasive species; pest management; wildlife biology LIFE-HISTORY EVOLUTION; NATURAL-SELECTION; RAPID EVOLUTION; INTRASPECIFIC VARIATION; GENIC HETEROZYGOSITY; COMPETITIVE ABILITY; GENETIC-VARIATION; LOCAL ADAPTATION; RACE FORMATION; POPULATIONS Experimental studies of evolution performed in nature and the associated demonstration of rapid evolution, observable on a time scale of months to years, were an acclaimed novelty in the 1980-1990s. Contemporary evolution is now considered ordinary and is an integrated feature of many areas of research. This shift from extraordinary to ordinary reflects a change in the perception of evolution. It was formerly thought of as a historical process, perceived through the footprints left in the fossil record or living organisms. It is now seen as a contemporary process that acts in real time. Here we review how this shift occurred and its consequences for fields as diverse as wildlife management, conservation biology, and ecosystems ecology. Incorporating contemporary evolution in these fields has caused old questions to be recast, changed the answers, caused new and previously inconceivable questions to be addressed, and inspired the development of new subdisciplines. We argue further that the potential of contemporary evolution has yet to be fulfilled. Incorporating evolutionary dynamics in any research program can provide a better assessment of how and why organisms and communities came to be as they are than is attainable without an explicit treatment of these dynamics. [Reznick, David N.] Univ Calif Riverside, Dept Evolut Ecol & Organismal Biol, Riverside, CA 92521 USA; [Losos, Jonathan] Washington Univ, Dept Biol, Campus Box 1137, St Louis, MO 63130 USA; [Travis, Joseph] Florida State Univ, Dept Biol Sci, B-157, Tallahassee, FL 32306 USA Reznick, DN (reprint author), Univ Calif Riverside, Dept Evolut Ecol & Organismal Biol, Riverside, CA 92521 USA. david.reznick@ucr.edu reznick, david/0000-0002-1144-0568 Guggenheim Foundation; Keely visiting fellowship from Wadham College, Oxford University; National Science Foundation of the United States [DEB-1556884] DR acknowledges the support of the Guggenheim Foundation and a Keely visiting fellowship from Wadham College, Oxford University. DR and JT acknowledge the support of the National Science Foundation of the United States (DEB-1556884). Abrams PA, 1997, EVOLUTION, V51, P1742, DOI 10.1111/j.1558-5646.1997.tb05098.x; Aitken SN, 2016, EVOL APPL, V9, P271, DOI 10.1111/eva.12293; Allendorf FW, 2008, TRENDS ECOL EVOL, V23, P327, DOI 10.1016/j.tree.2008.02.008; Allendorf FW, 2009, P NATL ACAD SCI USA, V106, P9987, DOI 10.1073/pnas.0901069106; Anderson E. D., 1998, J NW ATLANTIC FISHER, V23, P75; ANTONOVICS J, 1971, AM SCI, V59, P593; Antonovics J., 1992, Plant resistance to herbivores and pathogens: ecology, evolution, and genetics., P426; ARNOLD ML, 1992, ANNU REV ECOL SYST, V23, P237, DOI 10.1146/annurev.es.23.110192.001321; Badyaev AV, 2011, AUK, V128, P467, DOI 10.1525/auk.2011.11103; Badyaev AV, 2010, PHILOS T R SOC B, V365, P1111, DOI 10.1098/rstb.2009.0285; Barrett RDH, 2008, SCIENCE, V322, P255, DOI 10.1126/science.1159978; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Bassar RD, 2012, AM NAT, V180, P167, DOI 10.1086/666611; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; BLOSSEY B, 1995, J ECOL, V83, P887, DOI 10.2307/2261425; BOAG PT, 1981, SCIENCE, V214, P82, DOI 10.1126/science.214.4516.82; Branco P, 2018, AM NAT, V192, pE1, DOI 10.1086/697472; BULMER MG, 1976, GENET RES, V28, P101, DOI 10.1017/S0016672300016797; Buntgen U, 2018, J ANIM ECOL, V87, P1069, DOI 10.1111/1365-2656.12839; Burt A, 2003, P ROY SOC B-BIOL SCI, V270, P921, DOI 10.1098/rspb.2002.2319; Burt A, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.0776; Byrne K, 1999, HEREDITY, V82, P7, DOI 10.1038/sj.hdy.6884120; Carlson SM, 2014, TRENDS ECOL EVOL, V29, P521, DOI 10.1016/j.tree.2014.06.005; Carroll S.B., 2008, CONSERVATION BIOL EV; Charlesworth B, 2015, P NATL ACAD SCI USA, V112, P1662, DOI 10.1073/pnas.1423275112; CHITTY DENNIS, 1960, CANADIAN JOUR ZOOL, V38, P99, DOI 10.1139/z60-011; Colosimo PF, 2005, SCIENCE, V307, P1928, DOI 10.1126/science.1107239; Compson ZG, 2018, ECOLOGY, V99, P1759, DOI 10.1002/ecy.2224; Compson ZG, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1331; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Coulson T, 2018, J WILDLIFE MANAGE, V82, P46, DOI 10.1002/jwmg.21261; Darwin C., 1859, ORIGIN SPECIES MEANS; Dean AM, 2017, GENETICS, V205, P1271, DOI 10.1534/genetics.116.192914; Des Roches S, 2018, NAT ECOL EVOL, V2, P57, DOI 10.1038/s41559-017-0402-5; Dobzhansky T, 1943, GENETICS, V28, P162; Doebeli M, 1997, J THEOR BIOL, V188, P109, DOI 10.1006/jtbi.1997.0454; Duffy MA, 2007, ECOL LETT, V10, P44, DOI 10.1111/j.1461-0248.2006.00995.x; Duffy MA, 2012, SCIENCE, V335, P1636, DOI 10.1126/science.1215429; Duffy MA, 2009, ECOLOGY, V90, P1441, DOI 10.1890/08-1130.1; El-Sabaawi RW, 2015, OIKOS, V124, P1181, DOI 10.1111/oik.01769; Ellstrand NC, 2000, P NATL ACAD SCI USA, V97, P7043, DOI 10.1073/pnas.97.13.7043; Endler J. A., 1986, NATURAL SELECTION WI; Endler J.A., 1992, GENES ECOLOGY, P315; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Esvelt KM, 2014, ELIFE, V3, DOI 10.7554/eLife.03401; Ewens W. J., 2004, MATH POPULATION GENE; Feder JL, 2003, P NATL ACAD SCI USA, V100, P10314, DOI 10.1073/pnas.1730757100; Feder JL, 2003, GENETICS, V163, P939; Ferriere R., 2004, EVOLUTIONARY CONSERV; Festa-Bianchet M, 2017, MAMMAL REV, V47, P76, DOI 10.1111/mam.12078; Ford E.B., 1971, ECOLOGICAL GENETICS; FORD H. D., 1930, TRANS ENT SOC LONDON, V78, P345; Frankel O. H., 1981, CONSERVATION EVOLUTI; Fryxell DC, 2017, COPEIA, V105, P523, DOI 10.1643/CE-16-527; Fussmann GF, 2000, SCIENCE, V290, P1358, DOI 10.1126/science.290.5495.1358; Gantz VM, 2015, P NATL ACAD SCI USA, V112, pE6736, DOI 10.1073/pnas.1521077112; GOMULKIEWICZ R, 1995, EVOLUTION, V49, P201, DOI 10.1111/j.1558-5646.1995.tb05971.x; Gould F, 2018, SCIENCE, V360, P728, DOI 10.1126/science.aar3780; Gould SJ, 1997, NAT HIST, V106, P12; Grant P. R., 2014, 40 YEARS EVOLUTION D; Gulisija D, 2015, EVOLUTION, V69, P979, DOI 10.1111/evo.12630; HAIRSTON NG, 1986, P NATL ACAD SCI USA, V83, P4831, DOI 10.1073/pnas.83.13.4831; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; HALDANE J. B. S., 1957, JOUR GENETICS, V55, P511, DOI 10.1007/BF02984069; Hammond A, 2016, NAT BIOTECHNOL, V34, P78, DOI 10.1038/nbt.3439; Hansen TF, 2011, EVOL BIOL, V38, P258, DOI 10.1007/s11692-011-9127-6; HARRIS H, 1966, PROC R SOC SER B-BIO, V164, P298, DOI 10.1098/rspb.1966.0032; Heino M, 2015, ANNU REV ECOL EVOL S, V46, P461, DOI 10.1146/annurev-ecolsys-120213-054339; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Heredia SM, 2014, AM J BOT, V101, P2043, DOI 10.3732/ajb.1400036; Hilborn R, 2006, FISHERIES, V31, P554; Hiltunen T, 2014, ADV ECOL RES, V50, P41, DOI 10.1016/B978-0-12-801374-8.00002-5; HUBBY JL, 1966, GENETICS, V54, P577; KaramiNejadRanjbar M, 2018, P NATL ACAD SCI USA, V115, P6189, DOI 10.1073/pnas.1713825115; KETTLEWELL H. B. D., 1956, HEREDITY, V10, P287, DOI 10.1038/hdy.1956.28; KETTLEWELL H. B. D., 1955, HEREDITY, V9, P323, DOI 10.1038/hdy.1955.36; KETTLEWELL HBD, 1955, NATURE, V175, P943, DOI 10.1038/175943a0; KIDWELL MG, 1992, PARASITOL TODAY, V8, P325, DOI 10.1016/0169-4758(92)90065-A; KIMURA M, 1974, P NATL ACAD SCI USA, V71, P2848, DOI 10.1073/pnas.71.7.2848; Koehn R. K., 1978, Evolutionary biology. Volume 11., P39; Kolbe JJ, 2004, NATURE, V431, P177, DOI 10.1038/nature02807; Kuhn T. S., 2012, STRUCTURE SCI REVOLU; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; Lapiedra O, 2018, SCIENCE, V360, P1017, DOI 10.1126/science.aap9289; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; LENSKI RE, 1994, P NATL ACAD SCI USA, V91, P6808, DOI 10.1073/pnas.91.15.6808; LeRoy CJ, 2007, J N AM BENTHOL SOC, V26, P426, DOI 10.1899/06-113.1; Lescak EA, 2015, P NATL ACAD SCI USA, V112, pE7204, DOI 10.1073/pnas.1512020112; LEWONTIN RC, 1966, GENETICS, V54, P595; Lewontin RC, 1974, GENETIC BASIS EVOLUT; Losos JB, 1997, NATURE, V387, P70, DOI 10.1038/387070a0; MCNEILLY T, 1968, HEREDITY, V23, P205, DOI 10.1038/hdy.1968.29; Messer PW, 2016, TRENDS GENET, V32, P408, DOI 10.1016/j.tig.2016.04.005; Mooney HA, 2001, P NATL ACAD SCI USA, V98, P5446, DOI 10.1073/pnas.091093398; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Mueller LO, 2017, ECOSPHERE, V8, DOI 10.1002/ecs2.1743; Munoz M.M., 2016, EVOLUTION SHAPES OUR, P238; National Academies of Science Engineering and Medicine, 2016, GEN DRIV HOR ADV SCI; Noble C, 2018, ELIFE, V7, DOI 10.7554/eLife.33423; ODUM EP, 1969, SCIENCE, V164, P262, DOI 10.1126/science.164.3877.262; Odum H.T., 1983, SYSTEMS ECOLOGY; Pauly D., 1979, ICLARM STUD REV, V1, P1; Pigeon G, 2016, EVOL APPL, V9, P521, DOI 10.1111/eva.12358; PIMENTEL D, 1961, AM NAT, V95, P65, DOI 10.1086/282160; PIMENTEL D, 1963, AM NAT, V97, P141, DOI 10.1086/282265; PIMENTEL D, 1968, SCIENCE, V159, P1432, DOI 10.1126/science.159.3822.1432; Post DM, 2008, ECOLOGY, V89, P2019, DOI 10.1890/07-1216.1; Prentis PJ, 2008, TRENDS PLANT SCI, V13, P288, DOI 10.1016/j.tplants.2008.03.004; Reid NM, 2016, SCIENCE, V354, P1305, DOI 10.1126/science.aah4993; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Rudman SM, 2015, P ROY SOC B-BIOL SCI, V282, P125, DOI 10.1098/rspb.2015.1234; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Schoener TW, 2017, COPEIA, V105, P543, DOI 10.1643/CE-16-549; Shertzer KW, 2002, J ANIM ECOL, V71, P802, DOI 10.1046/j.1365-2656.2002.00645.x; Simon TN, 2017, COPEIA, V105, P504, DOI 10.1643/CE-16-517; Smith AB, 2017, GLOBAL CHANGE BIOL, V23, P4365, DOI 10.1111/gcb.13666; Stoddard H.L., 1931, BOBWHITE QUAIL ITS H; Thompson JN, 1998, TRENDS ECOL EVOL, V13, P329, DOI 10.1016/S0169-5347(98)01378-0; Traill LW, 2014, P NATL ACAD SCI USA, V111, P13223, DOI 10.1073/pnas.1407508111; Travis J, 2014, ADV ECOL RES, V50, P1, DOI 10.1016/B978-0-12-801374-8.00001-3; Travis J, 2013, B MAR SCI, V89, P317, DOI 10.5343/bms.2012.1024; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Urban MC, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0859; Weldon W.F.R., 1899, BRIT ASS REPT BRISTO, P887; Welles SR, 2016, AM J BOT, V103, P663, DOI 10.3732/ajb.1500430; Whiteley AR, 2015, TRENDS ECOL EVOL, V30, P42, DOI 10.1016/j.tree.2014.10.009; Whitham TG, 2003, ECOLOGY, V84, P559, DOI 10.1890/0012-9658(2003)084[0559:CAEGAC]2.0.CO;2; Wilcox Bruce A., 1980, CONSERVATION BIOL EV; Yoshida T, 2004, P ROY SOC B-BIOL SCI, V271, P1947, DOI 10.1098/rspb.2004.2818; Yoshida T, 2003, NATURE, V424, P303, DOI 10.1038/nature01767 137 0 0 7 7 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. FEB 2019 22 2 233 244 10.1111/ele.13189 12 Ecology Environmental Sciences & Ecology HH9TT WOS:000456083800002 30478871 2019-02-21 J McLean, MJ; Mouillot, D; Goascoz, N; Schlaich, I; Auber, A McLean, Matthew J.; Mouillot, David; Goascoz, Nicolas; Schlaich, Ivan; Auber, Arnaud Functional reorganization of marine fish nurseries under climate warming GLOBAL CHANGE BIOLOGY English Article Atlantic Multidecadal Oscillation; climate change; ecosystem function; English Channel; fisheries; functional traits; life history; recruitment LIFE-HISTORY STRATEGIES; ATLANTIC MULTIDECADAL OSCILLATION; ENGLISH-CHANNEL; FUZZY-LOGIC; R-SELECTION; IN-SITU; ESTUARINE; COMMUNITY; ECOSYSTEM; CONNECTIVITY While climate change is rapidly impacting marine species and ecosystems worldwide, the effects of climate warming on coastal fish nurseries have received little attention despite nurseries' fundamental roles in recruitment and population replenishment. Here, we used a 26-year time series (1987-2012) of fish monitoring in the Bay of Somme, a nursery in the Eastern English Channel (EEC), to examine the impacts of environmental and human drivers on the spatial and temporal dynamics of fish functional structure during a warming phase of the Atlantic Multidecadal Oscillation (AMO). We found that the nursery was initially dominated by fishes with r-selected life-history traits such as low trophic level, low age and size at maturity, and small offspring, which are highly sensitive to warming. The AMO, likely superimposed on climate change, induced rapid warming in the late 1990s (over 1 degrees C from 1998 to 2003), leading to functional reorganization of fish communities, with a roughly 80% decline in overall fish abundance and increased dominance by K-selected fishes. Additionally, historical overfishing likely rendered the bay more vulnerable to climatic changes due to increased dominance by fishing-tolerant, yet climatically sensitive species. The drop in fish abundance not only altered fish functional structure within the Bay of Somme, but the EEC was likely impacted, as the EEC has been unable to recover from a regime shift in the late 1990s potentially, in part, due to failed replenishment from the bay. Given the collapse of r-selected fishes, we discuss how the combination of climate cycles and global warming could threaten marine fish nurseries worldwide, as nurseries are often dominated by r-selected species. [McLean, Matthew J.; Auber, Arnaud] IFREMER, Unite Halieut Manche & Mer Nord, Boulogne Sur Mer, France; [McLean, Matthew J.; Mouillot, David] Univ Montpellier, MARBEC, CNRS, IFREMER,IRD, Montpellier, France; [Mouillot, David] James Cook Univ, Australian Res Council Ctr Excellence Coral Reef, Townsville, Qld, Australia; [Goascoz, Nicolas; Schlaich, Ivan] IFREMER, Lab Ressources Halieut, Port En Bessin, France McLean, MJ (reprint author), IFREMER, Unite Halieut Manche & Mer Nord, Boulogne Sur Mer, France. mcleamj@gmail.com McLean, Matthew/0000-0001-6518-6043 EDF; IFREMER; Region Hauts-de-France; Foundation for Research on Biodiversity EDF; IFREMER; Region Hauts-de-France; Foundation for Research on Biodiversity Able KW, 2005, ESTUAR COAST SHELF S, V64, P5, DOI 10.1016/j.ecss.2005.02.002; ALDRIDGE JN, 1993, J PHYS OCEANOGR, V23, P207, DOI 10.1175/1520-0485(1993)023<0207:AHRTDH>2.0.CO;2; Amorim E, 2017, ESTUAR COAST SHELF S, V197, P244, DOI 10.1016/j.ecss.2017.08.043; Auber A, 2017, ESTUAR COAST SHELF S, V189, P189, DOI 10.1016/j.ecss.2017.03.010; Auber A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129883; Baptista J, 2015, MAR POLLUT BULL, V97, P125, DOI 10.1016/j.marpolbul.2015.06.025; Beaugrand G, 2004, PROG OCEANOGR, V60, P245, DOI 10.1016/j.pocean.2004.02.018; Beck MW, 2001, BIOSCIENCE, V51, P633, DOI 10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2; Blanchard JL, 2011, THEOR ECOL-NETH, V4, P289, DOI 10.1007/s12080-010-0078-9; Boeuf G, 2001, COMP BIOCHEM PHYS C, V130, P411, DOI 10.1016/S1532-0456(01)00268-X; Bolnick DI, 2010, P ROY SOC B-BIOL SCI, V277, P1789, DOI 10.1098/rspb.2010.0018; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Bradshaw WE, 2006, SCIENCE, V312, P1477, DOI 10.1126/science.1127000; Buisson L, 2013, GLOBAL CHANGE BIOL, V19, P387, DOI 10.1111/gcb.12056; Burrows MT, 2011, SCIENCE, V334, P652, DOI 10.1126/science.1210288; Cai WJ, 2014, NAT CLIM CHANGE, V4, P111, DOI [10.1038/nclimate2100, 10.1038/NCLIMATE2100]; Cheung WWL, 2005, BIOL CONSERV, V124, P97, DOI 10.1016/j.biocon.2005.01.017; Chevillot X., 2018, ECOSYSTEMS, V21, P1, DOI [10.1007/s10021-018-0282-9, DOI 10.1007/S10021-018-0282-9]; Chevillot X, 2016, MAR ECOL PROG SER, V549, P137, DOI 10.3354/meps11681; CLARKE KR, 1993, AUST J ECOL, V18, P117, DOI 10.1111/j.1442-9993.1993.tb00438.x; CLIFFORD P, 1989, BIOMETRICS, V45, P123, DOI 10.2307/2532039; CLOERN JE, 1983, ESTUAR COAST SHELF S, V16, P415, DOI 10.1016/0272-7714(83)90103-8; Cochard M. L., 2002, DRVRHDT2002009; Comte L, 2017, NAT CLIM CHANGE, V7, P718, DOI 10.1038/NCLIMATE3382; Daan N, 2005, ICES J MAR SCI, V62, P177, DOI 10.1016/j.icesjms.2004.08.020; Dahlgren CP, 2006, MAR ECOL PROG SER, V312, P291, DOI 10.3354/meps312291; de Bello F, 2010, BIODIVERS CONSERV, V19, P2873, DOI 10.1007/s10531-010-9850-9; Devictor V, 2012, NAT CLIM CHANGE, V2, P121, DOI 10.1038/NCLIMATE1347; Dias M, 2016, MAR BIOL RES, V12, P331, DOI 10.1080/17451000.2016.1143106; Dickson R., 2000, OCEAN LIFE ATLANTIC; Diffenbaugh NS, 2017, P NATL ACAD SCI USA, V114, P4881, DOI 10.1073/pnas.1618082114; Dreves L., 2010, DOPLER201005; Dulvy NK, 2008, J APPL ECOL, V45, P1029, DOI 10.1111/j.1365-2664.2008.01488.x; Edwards M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057212; Enfield DB, 2001, GEOPHYS RES LETT, V28, P2077, DOI 10.1029/2000GL012745; Engelhard GH, 2011, ICES J MAR SCI, V68, P580, DOI 10.1093/icesjms/fsq183; Finke DL, 2005, ECOL LETT, V8, P1299, DOI 10.1111/j.1461-0248.2005.00832.x; Fossheim M, 2015, NAT CLIM CHANGE, V5, P673, DOI 10.1038/NCLIMATE2647; Frainer A, 2017, P NATL ACAD SCI USA, V114, P12202, DOI 10.1073/pnas.1706080114; Frolicher TL, 2018, NATURE, V560, P360, DOI 10.1038/s41586-018-0383-9; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; Gallagher RV, 2013, ECOGRAPHY, V36, P531, DOI 10.1111/j.1600-0587.2012.07514.x; Gillanders BM, 2002, MAR ECOL PROG SER, V240, P215, DOI 10.3354/meps240215; Gillanders BM, 2003, MAR ECOL PROG SER, V247, P281, DOI 10.3354/meps247281; Givan O, 2018, GLOBAL CHANGE BIOL, V24, pE80, DOI 10.1111/gcb.13835; Gohin F, 2011, OCEAN SCI, V7, P705, DOI 10.5194/os-7-705-2011; Graham NAJ, 2011, ECOL LETT, V14, P341, DOI 10.1111/j.1461-0248.2011.01592.x; Griffiths JR, 2017, GLOBAL CHANGE BIOL, V23, P2179, DOI 10.1111/gcb.13642; Hallett TB, 2004, NATURE, V430, P71, DOI 10.1038/nature02708; Henriques S, 2017, FISH FISH, V18, P752, DOI 10.1111/faf.12203; Henson SA, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14682; Hermant M, 2010, J SEA RES, V64, P45, DOI 10.1016/j.seares.2009.07.001; Houk P, 2018, ECOL MONOGR, V88, P109, DOI 10.1002/ecm.1278; Hughes TP, 2018, SCIENCE, V359, P80, DOI 10.1126/science.aan8048; Hurrell J. W., 2003, N ATLANTIC OSCILLATI, P1; Ippen A. T., 1966, ESTUARY COASTLINE HY; Izzo C, 2016, ECOL INDIC, V69, P739, DOI 10.1016/j.ecolind.2016.05.019; Jiguet F, 2007, GLOBAL CHANGE BIOL, V13, P1672, DOI 10.1111/j.1365-2486.2007.01386.x; Jones MC, 2018, GLOBAL CHANGE BIOL, V24, pE719, DOI 10.1111/gcb.13869; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Kjelland Michael E., 2015, Environment Systems & Decisions, V35, P334, DOI 10.1007/s10669-015-9557-2; Kuo TC, 2016, ECOLOGY, V97, P1251, DOI 10.1890/15-1270.1; Leps J, 2006, PRESLIA, V78, P481; LesPape O., 2005, HABITATS HALIEUTIQUE; Lindegren M, 2012, GLOBAL CHANGE BIOL, V18, P3491, DOI 10.1111/j.1365-2486.2012.02799.x; Lipcius RN, 2008, REV FISH SCI, V16, P101, DOI 10.1080/10641260701812574; Liquete C, 2016, ECOL INDIC, V63, P249, DOI 10.1016/j.ecolind.2015.11.058; Ljunggren L, 2010, ICES J MAR SCI, V67, P1587, DOI 10.1093/icesjms/fsq109; Loarie SR, 2009, NATURE, V462, P1052, DOI 10.1038/nature08649; Lynam CP, 2017, P NATL ACAD SCI USA, V114, P1952, DOI 10.1073/pnas.1621037114; McHugh M, 2011, J SEA RES, V65, P187, DOI 10.1016/j.seares.2010.09.006; McLean M, 2018, CURR BIOL, V28, P3654, DOI 10.1016/j.cub.2018.09.050; Miller DD, 2018, GLOBAL CHANGE BIOL, V24, pE1, DOI 10.1111/gcb.13829; Molfese C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101506; Montero-Serra I, 2015, GLOBAL CHANGE BIOL, V21, P144, DOI 10.1111/gcb.12747; Moore GWK, 2017, SCI REP-UK, V7, DOI 10.1038/srep40861; Mouillot D, 2013, TRENDS ECOL EVOL, V28, P167, DOI 10.1016/j.tree.2012.10.004; Murrell MC, 2018, ESTUAR COAST, V41, P690, DOI 10.1007/s12237-017-0328-9; Myers RA, 1996, MAR ECOL PROG SER, V138, P293, DOI 10.3354/meps138293; Nagelkerken I, 2017, MAR ECOL PROG SER, V568, P137, DOI 10.3354/meps12062; Nash KL, 2017, NAT ECOL EVOL, V1, P1625, DOI 10.1038/s41559-017-0319-z; Nicolas D, 2010, ESTUAR COAST SHELF S, V88, P329, DOI 10.1016/j.ecss.2010.04.010; Nicolas D, 2011, REG ENVIRON CHANGE, V11, P639, DOI 10.1007/s10113-010-0196-3; Pace ML, 1999, TRENDS ECOL EVOL, V14, P483, DOI 10.1016/S0169-5347(99)01723-1; Pankhurst NW, 2011, MAR FRESHWATER RES, V62, P1015, DOI 10.1071/MF10269; Pauly D, 2002, NATURE, V418, P689, DOI 10.1038/nature01017; Pauly D., 2003, PERFECT OCEAN STATE, V1; Payne MR, 2009, ICES J MAR SCI, V66, P272, DOI 10.1093/icesjms/fsn211; Pecuchet L, 2017, GLOBAL ECOL BIOGEOGR, V26, P812, DOI 10.1111/geb.12587; Perry AL, 2005, SCIENCE, V308, P1912, DOI 10.1126/science.1111322; Petchey OL, 2006, ECOL LETT, V9, P741, DOI 10.1111/j.1461-0248.2006.00924.x; Petitgas P, 2013, FISH OCEANOGR, V22, P121, DOI 10.1111/fog.12010; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Poloczanska ES, 2013, NAT CLIM CHANGE, V3, P919, DOI [10.1038/NCLIMATE1958, 10.1038/nclimate1958]; Rayner NA, 2003, J GEOPHYS RES-ATMOS, V108, DOI 10.1029/2002JD002670; Reis-Santos P, 2013, MAR ECOL PROG SER, V491, P177, DOI 10.3354/meps10458; Rijnsdorp AD, 2009, ICES J MAR SCI, V66, P1570, DOI 10.1093/icesjms/fsp056; Rooney N, 2006, NATURE, V442, P265, DOI 10.1038/nature04887; Rutterford LA, 2015, NAT CLIM CHANGE, V5, P569; Rybarczyk H, 2003, ESTUAR COAST SHELF S, V58, P405, DOI 10.1016/s0272-7714(03)00294-9; Saulquin B, 2010, INT J REMOTE SENS, V31, P4069, DOI 10.1080/01431160903199155; Schofield O, 2010, SCIENCE, V328, P1520, DOI 10.1126/science.1185779; Schweiger O, 2008, ECOLOGY, V89, P3472, DOI 10.1890/07-1748.1; Seitz RD, 2014, ICES J MAR SCI, V71, P648, DOI 10.1093/icesjms/fst152; Shaffer G, 2009, NAT GEOSCI, V2, P105, DOI 10.1038/NGEO420; Simpson SD, 2011, CURR BIOL, V21, P1565, DOI 10.1016/j.cub.2011.08.016; Sloterdijk H, 2017, ESTUAR COAST SHELF S, V197, P10, DOI 10.1016/j.ecss.2017.08.003; Steele J. H., 2009, ENCY OCEAN SCI; Sunday JM, 2017, NAT CLIM CHANGE, V7, P81, DOI [10.1038/nclimate3161, 10.1038/NCLIMATE3161]; Teichert N, 2017, ESTUAR COAST SHELF S, V188, P18, DOI 10.1016/j.ecss.2017.02.006; THOMSON DA, 1976, J EXP MAR BIOL ECOL, V22, P1, DOI 10.1016/0022-0981(76)90106-4; Ting MF, 2009, J CLIMATE, V22, P1469, DOI 10.1175/2008JCLI2561.1; Tolan JM, 2007, ESTUAR COAST SHELF S, V72, P247, DOI 10.1016/j.ecss.2006.10.018; Tournois J, 2017, LIMNOL OCEANOGR, V62, P1219, DOI 10.1002/lno.10496; Uiblein F, 2003, MAR ECOL PROG SER, V257, P223, DOI 10.3354/meps257223; Vasconcelos RP, 2011, ECOL INDIC, V11, P1123, DOI 10.1016/j.ecolind.2010.12.012; Vasconcelos RP, 2010, ESTUAR COAST SHELF S, V86, P613, DOI 10.1016/j.ecss.2009.11.029; Villeger S, 2017, AQUAT SCI, V79, P783, DOI 10.1007/s00027-017-0546-z; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Ware DM, 2005, SCIENCE, V308, P1280, DOI 10.1126/science.1109049; Wiens JJ, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.2001104 121 0 0 7 7 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1354-1013 1365-2486 GLOBAL CHANGE BIOL Glob. Change Biol. FEB 2019 25 2 660 674 10.1111/gcb.14501 15 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology HH9BN WOS:000456028900022 30367735 Green Published 2019-02-21 J Wright, J; Bolstad, GH; Araya-Ajoy, YG; Dingemanse, NJ Wright, Jonathan; Bolstad, Geir H.; Araya-Ajoy, Yimen G.; Dingemanse, Niels J. Life-history evolution under fluctuating density-dependent selection and the adaptive alignment of pace-of-life syndromes BIOLOGICAL REVIEWS English Article fluctuating selection; frequency-dependent selection; environmental stochasticity; eco-evolutionary dynamics; animal personality; behavioural syndromes; correlational selection; plasticity; phenotypic integration; bet-hedging FAST-SLOW CONTINUUM; ANIMAL PERSONALITY; K-SELECTION; POPULATION-DYNAMICS; R-SELECTION; ENVIRONMENTAL-CHANGE; BEHAVIORAL SYNDROMES; GENETIC-VARIATION; NATAL DISPERSAL; REACTION NORMS We present a novel perspective on life-history evolution that combines recent theoretical advances in fluctuating density-dependent selection with the notion of pace-of-life syndromes (POLSs) in behavioural ecology. These ideas posit phenotypic co-variation in life-history, physiological, morphological and behavioural traits as a continuum from the highly fecund, short-lived, bold, aggressive and highly dispersive 'fast' types at one end of the POLS to the less fecund, long-lived, cautious, shy, plastic and socially responsive 'slow' types at the other. We propose that such variation in life histories and the associated individual differences in behaviour can be explained through their eco-evolutionary dynamics with population density - a single and ubiquitous selective factor that is present in all biological systems. Contrasting regimes of environmental stochasticity are expected to affect population density in time and space and create differing patterns of fluctuating density-dependent selection, which generates variation in fast versus slow life histories within and among populations. We therefore predict that a major axis of phenotypic co-variation in life-history, physiological, morphological and behavioural traits (i.e. the POLS) should align with these stochastic fluctuations in the multivariate fitness landscape created by variation in density-dependent selection. Phenotypic plasticity and/or genetic (co-)variation oriented along this major POLS axis are thus expected to facilitate rapid and adaptively integrated changes in various aspects of life histories within and among populations and/or species. The fluctuating density-dependent selection POLS framework presented here therefore provides a series of clear testable predictions, the investigation of which should further our fundamental understanding of life-history evolution and thus our ability to predict natural population dynamics. [Wright, Jonathan; Araya-Ajoy, Yimen G.] Norwegian Univ Sci & Technol NTNU, CBD, Dept Biol, N-7491 Trondheim, Norway; [Bolstad, Geir H.] Norwegian Inst Nat Res NINA, N-7485 Trondheim, Norway; [Dingemanse, Niels J.] Ludwig Maximilian Univ Munich LMU, Dept Biol, Behav Ecol, D-82152 Planegg Martinsried, Germany Wright, J (reprint author), Norwegian Univ Sci & Technol NTNU, CBD, Dept Biol, N-7491 Trondheim, Norway. jonathan.wright@bio.ntnu.no Bolstad, Geir H./0000-0003-1356-8239; Wright, Jonathan/0000-0002-5848-4736 Volkswagen Stiftung; European Research Council [ERC-2010-AdG 268562]; Research Council of Norway [SFF-III 223257/F50] For comments and input on earlier versions of these ideas, thanks to members of CBD (NTNU) and to the organisers (Melanie Dammhahn, Petri Niemela, Denis Reale) and participants of the 2015 and 2016 workshops 'Towards a general theory of the pace-of-life syndrome', Hannover, Germany (funded by the Volkswagen Stiftung). We thank the two referees and the editor for improvements to the final manuscript. This work was supported by the European Research Council (ERC-2010-AdG 268562) and the Research Council of Norway (SFF-III 223257/F50). Abbey-Lee RN, 2016, BEHAV ECOL, V27, P857, DOI 10.1093/beheco/arv228; Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Araya-Ajoy YG, 2017, J ANIM ECOL, V86, P227, DOI 10.1111/1365-2656.12621; Araya-Ajoy YG, 2016, EVOLUTION, V70, P2308, DOI 10.1111/evo.13024; Araya-Ajoy YG, 2016, BEHAV ECOL, V27, P377, DOI 10.1093/beheco/arv187; Armbruster WS, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0245; Banavar JR, 2010, P NATL ACAD SCI USA, V107, P15816, DOI 10.1073/pnas.1009974107; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Benton TG, 2005, ADV ECOL RES, V37, P143, DOI 10.1016/S0065-2504(04)37005-4; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Bjorkvoll E, 2012, AM NAT, V180, P372, DOI 10.1086/666983; Bolstad GH, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0255; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Botero CA, 2015, P NATL ACAD SCI USA, V112, P184, DOI 10.1073/pnas.1408589111; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; Brommer JE, 2013, BEHAV ECOL SOCIOBIOL, V67, P1027, DOI 10.1007/s00265-013-1527-4; Brook BW, 2006, ECOLOGY, V87, P1445, DOI 10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO;2; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; BULL JJ, 1987, EVOLUTION, V41, P303, DOI 10.1111/j.1558-5646.1987.tb05799.x; Burger R, 2002, GENET RES, V80, P31, DOI 10.1017/S0016672302005682; Burger R, 1999, GENETICS, V153, P1055; Burger R., 2000, MATH THEORY SELECTIO; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Carere C, 2013, ANIMAL PERSONALITIES; Carter AJR, 2005, THEOR POPUL BIOL, V68, P179, DOI 10.1016/j.tpb.2005.05.002; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHEVERUD JM, 1988, EVOLUTION, V42, P958, DOI 10.1111/j.1558-5646.1988.tb02514.x; Chevin L.-M., 2015, EVOLUTION, V69, P1; CHITTY DENNIS, 1960, CANADIAN JOUR ZOOL, V38, P99, DOI 10.1139/z60-011; Clobert J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P1, DOI 10.1093/acprof:oso/9780199608898.001.0001; Cote J, 2008, P ROY SOC B-BIOL SCI, V275, P2851, DOI 10.1098/rspb.2008.0783; Cote J, 2007, P R SOC B, V274, P383, DOI 10.1098/rspb.2006.3734; Cote J., 2009, P ROY SOC LOND B BIO, V277, P1571; CROW J F, 1970, P591; Dammhahn M, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2473-y; Delgado MD, 2011, BIOL REV, V86, P717, DOI 10.1111/j.1469-185X.2010.00167.x; Dingemanse N. J., 2013, ANIMAL PERSONALITIES; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; Dingemanse NJ, 2003, P ROY SOC B-BIOL SCI, V270, P741, DOI 10.1098/rspb.2002.2300; Dochtermann NA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2201; Dochtermann NA, 2011, EVOLUTION, V65, P1814, DOI 10.1111/j.1558-5646.2011.01264.x; Duckworth RA, 2008, AM NAT, V172, pS4, DOI 10.1086/588289; Duckworth RA, 2007, P NATL ACAD SCI USA, V104, P15017, DOI 10.1073/pnas.0706174104; Duckworth RA, 2006, BEHAV ECOL, V17, P1011, DOI 10.1093/beheco/arl035; Duckworth RA, 2015, SCIENCE, V347, P875, DOI 10.1126/science.1260154; Duckworth RA, 2009, EVOLUTION, V63, P968, DOI 10.1111/j.1558-5646.2009.00625.x; Edelaar P, 2008, EVOLUTION, V62, P2462, DOI 10.1111/j.1558-5646.2008.00459.x; ELLNER S, 1994, AM NAT, V143, P403, DOI 10.1086/285610; Engen S, 2017, EVOLUTION, V71, P167, DOI 10.1111/evo.13104; Engen S, 2016, OIKOS, V125, P1577, DOI 10.1111/oik.03111; Engen S, 2013, AM NAT, V181, P725, DOI 10.1086/670257; FRANK SA, 1990, AM NAT, V136, P244, DOI 10.1086/285094; Gabriel W, 2005, AM NAT, V166, P339, DOI 10.1086/432558; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; Giraldeau L.-A., 2000, SOCIAL FORAGING THEO; Goodwin NB, 2006, CAN J FISH AQUAT SCI, V63, P494, DOI 10.1139/f05-234; Grafen A., 1984, BEHAV ECOLOGY EVOLUT; Hadfield JD, 2007, J EVOLUTION BIOL, V20, P549, DOI 10.1111/j.1420-9101.2006.01262.x; HAIRSTON NG, 1984, AM NAT, V123, P733, DOI 10.1086/284236; Hamalainen A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09724-x; Hansen TF, 2008, J EVOLUTION BIOL, V21, P1201, DOI 10.1111/j.1420-9101.2008.01573.x; Hansen TF, 2008, EVOLUTION, V62, P1965, DOI 10.1111/j.1558-5646.2008.00412.x; Hermisson J, 2003, AM NAT, V161, P708, DOI 10.1086/374204; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Houston AI, 2010, PHILOS T R SOC B, V365, P3969, DOI 10.1098/rstb.2010.0161; Johansson F, 2000, FRESHWATER BIOL, V43, P149, DOI 10.1046/j.1365-2427.2000.00532.x; Kawecki TJ, 2000, EVOLUTION, V54, P1; Kokko H., 2001, EVOLUTIONARY ECOLOGY, V3, P603; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Krebs C. J., 2013, POPULATION FLUCTUATI; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R, 2017, P NATL ACAD SCI USA, V114, P11582, DOI 10.1073/pnas.1710679114; Lande R, 2009, PHILOS T R SOC B, V364, P1511, DOI 10.1098/rstb.2009.0017; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; LAYZER D, 1980, AM NAT, V115, P809, DOI 10.1086/283602; Le Galliard JF, 2013, FUNCT ECOL, V27, P136, DOI 10.1111/1365-2435.12017; Le Rouzic A, 2013, EVOL BIOL, V40, P317, DOI 10.1007/s11692-012-9218-z; LEVINS R, 1962, AM NAT, V96, P361, DOI 10.1086/282245; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; Lynch M, 1998, GENETICS ANAL QUANTI; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MARQUET PA, 1995, J ANIM ECOL, V64, P325, DOI 10.2307/5894; Mathot KJ, 2012, OIKOS, V121, P1009, DOI 10.1111/j.1600-0706.2012.20339.x; McElreath R, 2006, ANIM BEHAV, V72, P1135, DOI 10.1016/j.anbehav.2006.04.001; Moritz C, 2013, SCIENCE, V341, P504, DOI 10.1126/science.1237190; Morrissey MB, 2014, EVOLUTION, V68, P1748, DOI 10.1111/evo.12385; Mougeot F, 2003, NATURE, V421, P737, DOI 10.1038/nature01395; Mueller LD, 1997, ANNU REV ECOL SYST, V28, P269, DOI 10.1146/annurev.ecolsys.28.1.269; Nicolaus M, 2013, J EVOLUTION BIOL, V26, P2031, DOI 10.1111/jeb.12210; Nicolaus M, 2016, ECOL LETT, V19, P478, DOI 10.1111/ele.12584; Nicolaus M, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2405; Nicolaus M, 2012, P ROY SOC B-BIOL SCI, V279, P4885, DOI 10.1098/rspb.2012.1936; Niemela PT, 2017, J ANIM ECOL, V86, P1033, DOI 10.1111/1365-2656.12688; Nowak MA, 2004, SCIENCE, V303, P793, DOI 10.1126/science.1093411; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Orr HA, 2009, NAT REV GENET, V10, P531, DOI 10.1038/nrg2603; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; Pelabon C, 2010, EVOLUTION, V64, P1912, DOI 10.1111/j.1558-5646.2010.00979.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pigliucci M., 2004, STUDYING ECOLOGY EVO; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reale D, 2010, PHILOS T R SOC B, V365, P3937, DOI 10.1098/rstb.2010.0222; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roff D. A., 2002, EVOLUTION LIFE HIST; Royaute R, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2472-z; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Saether BE, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2411; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salzman TC, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2460-3; Santostefano F, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.1567; SCHLICHTING CD, 1989, BIOSCIENCE, V39, P460, DOI 10.2307/1311138; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Schluter D, 1996, AM NAT, V148, pS40, DOI 10.1086/285901; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Sih A, 2012, PHILOS T R SOC B, V367, P2762, DOI 10.1098/rstb.2012.0216; Simons AM, 2006, EVOLUTION, V60, P2280, DOI 10.1554/05-396.1; Simons AM, 2011, P ROY SOC B-BIOL SCI, V278, P1601, DOI 10.1098/rspb.2011.0176; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Starrfelt J, 2012, BIOL REV, V87, P742, DOI 10.1111/j.1469-185X.2012.00225.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stirling DG, 2002, J EVOLUTION BIOL, V15, P277, DOI 10.1046/j.1420-9101.2002.00389.x; Tieleman BI, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2464-z; Tufto J, 2015, EVOLUTION, V69, P2034, DOI 10.1111/evo.12716; Tuljapurkar S., 1990, POPULATION DYNAMICS; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wagner GP, 1996, AM ZOOL, V36, P36; Waxman D, 2005, J EVOLUTION BIOL, V18, P1139, DOI 10.1111/j.1420-9101.2005.00948.x; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Westneat DF, 2015, BIOL REV, V90, P729, DOI 10.1111/brv.12131; Wolf M, 2008, P NATL ACAD SCI USA, V105, P15825, DOI 10.1073/pnas.0805473105; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, AM NAT, V179, P679, DOI 10.1086/665656; Wolf M, 2011, P ROY SOC B-BIOL SCI, V278, P440, DOI 10.1098/rspb.2010.1051; Wolf M, 2010, PHILOS T R SOC B, V365, P3959, DOI 10.1098/rstb.2010.0215; Garamszegi LZ, 2012, EVOL ECOL, V26, P1213, DOI 10.1007/s10682-012-9589-8 150 0 0 3 3 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. FEB 2019 94 1 230 247 10.1111/brv.12451 18 Biology Life Sciences & Biomedicine - Other Topics HH9PR WOS:000456071400012 30019372 2019-02-21 J Jurjako, M Jurjako, Marko Is psychopathy a harmful dysfunction? BIOLOGY & PHILOSOPHY English Article Psychopathy; Mental disorder; Harmful dysfunctions; Frequency-dependent selection; Life-history theory VENTROMEDIAL PREFRONTAL CORTEX; CALLOUS-UNEMOTIONAL TRAITS; ANTISOCIAL-BEHAVIOR; AMYGDALA ACTIVATION; MENTAL-DISORDERS; PERSONALITY; LIFE; DISEASE; HEALTH; HERITABILITY In their paper Is psychopathy a mental disease?, Thomas Nadelhoffer and Walter Sinnott-Armstrong argue that according to any plausible account of mental disorder, neural and psychological abnormalities correlated with psychopathy should be regarded as signs of a mental disorder. I oppose this conclusion by arguing that at least on a naturalistically grounded account, such as Wakefield's Harmful Dysfunction' view, currently available empirical data and evolutionary considerations indicate that psychopathy is not a mental disorder. [Jurjako, Marko] Univ Rijeka, Fac Humanities & Social Sci Rijeka, Dept Philosophy, Sveucilisna Ave 4, Rijeka 51000, Croatia Jurjako, M (reprint author), Univ Rijeka, Fac Humanities & Social Sci Rijeka, Dept Philosophy, Sveucilisna Ave 4, Rijeka 51000, Croatia. mjurjako@uniri.hr Jurjako, Marko/S-2488-2018 Jurjako, Marko/0000-0002-7252-8627 University of Rijeka [17.05.2.2.04]; Croatian Science Foundation [HRZZ-UIP-2017-05-4308] I wish to thank Justin Garson, Luca Malatesti, Zdenka Brzovi, and Janko Mededovi for reading and giving valuable comments on previous versions of this paper. I am grateful to two anonymous reviewers of Biology and Philosophy for giving extensive and very useful comments. Thanks also to the University of Rijeka for supporting early career researchers (small Grant 17.05.2.2.04). This paper is an output of project Harm, Intentions, and Responsibility (HIRe) that is financed by the Croatian Science Foundation (Grant HRZZ-UIP-2017-05-4308). Adriaens PR, 2011, MALADAPTING MINDS PH; [Anonymous], 2013, DIAGNOSTIC STAT MANU; Aspinwall LG, 2012, SCIENCE, V337, P846, DOI 10.1126/science.1219569; Blair RJR, 2008, PHILOS T R SOC B, V363, P2557, DOI 10.1098/rstb.2008.0027; Blair RJR, 2007, TRENDS COGN SCI, V11, P387, DOI 10.1016/j.tics.2007.07.003; Blair RJ, 2005, PSYCHOPATH EMOTION B; Blonigen DM, 2005, PSYCHOL MED, V35, P637, DOI 10.1017/S0033291704004180; Blonigen DM, 2003, PERS INDIV DIFFER, V35, P179, DOI 10.1016/S0191-8869(02)00184-8; Bolton D, 2008, WHAT IS MENTAL DISOR; Book AS, 2004, PERS INDIV DIFFER, V36, P33, DOI 10.1016/S0191-8869(03)00049-7; BOORSE C, 1977, PHILOS SCI, V44, P542, DOI 10.1086/288768; Boorse C, 2014, J MED PHILOS, V39, P683, DOI 10.1093/jmp/jhu035; Brzovic Z, 2017, INT STUD PHILOS SCI, V31, P189, DOI 10.1080/02698595.2018.1424761; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; Cartwright S, 1851, DEBOWS REV, VXI; Colman A, 1997, LEGAL CRIMINOL PSYCH, V2, P23, DOI DOI 10.1111/J.2044-8333.1997.TB00330.X; Cooke DJ, 1998, NATO ADV SCI I D-BEH, V88, P13; Cooper R., 2002, STUD HIST PHILOS M P, V33, P263, DOI [10.1016/S0039-3681(02)00018-3, DOI 10.1016/S0039-3681(02)00018-3]; Curry O, 2011, PERS INDIV DIFFER, V50, P804, DOI 10.1016/j.paid.2010.12.036; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Donald D. T., 2013, INFRASTRUCTURE ACCOU, pvii; Faucher L., 2012, BALTIC YB COGNITION, V7, P1; Fowler KA, 2013, HDB PSYCHOPATHY LAW, P34; Gao Y, 2010, PSYCHOL MED, V40, P1007, DOI 10.1017/S0033291709991279; Garson J., 2016, CRITICAL OVERVIEW BI; Glenn A. L., 2014, PSYCHOPATHY INTRO BI; Glenn AL, 2011, EMOT REV, V3, P302, DOI 10.1177/1754073911402372; Glenn AL, 2011, AGGRESS VIOLENT BEH, V16, P371, DOI 10.1016/j.avb.2011.03.009; Gluckman P.D., 2009, PRINCIPLES EVOLUTION; GODFREYSMITH P, 1994, NOUS, V28, P344, DOI 10.2307/2216063; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Griffiths PE, 2018, BRIT J PHILOS SCI, V69, P301, DOI 10.1093/bjps/axw021; Hare R. D., 2003, HARE PSYCHOPATHY CHE; Hare RD, 1999, WITHOUT CONSCIENCE; Hausman DM, 2012, PHILOS SCI, V79, P519, DOI 10.1086/668005; Hoppenbrouwers SS, 2016, PSYCHOL BULL, V142, P573, DOI 10.1037/bul0000040; Ishikawa SS, 2001, J ABNORM PSYCHOL, V110, P423, DOI 10.1037//0021-843X.110.3.423; Jefferson A, 2018, EUR J ANAL PHILOS, V14, P79, DOI [10.31820/ejap.14.1.5, DOI 10.31820/EJAP.14.1.5]; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jurjako M, 2018, ERKENNTNIS, V83, P1003, DOI 10.1007/s10670-017-9924-0; Jurjako M, 2016, PHILOS PSYCHOL, V29, P717, DOI 10.1080/09515089.2016.1144876; Kacelnik Alex, 2006, P87; Keller MC, 2006, BEHAV BRAIN SCI, V29, P385, DOI 10.1017/S0140525X06009095; KENDELL RE, 1975, BRIT J PSYCHIAT, V127, P305, DOI 10.1192/bjp.127.4.305; Kiehl KA, 2013, HDB PSYCHOPATHY LAW; Kiehl KA, 2006, PSYCHIAT RES, V142, P107, DOI 10.1016/j.psychres.2005.09.013; Kiehl Kent A, 2011, Jurimetrics, V51, P355; Kingma E, 2014, J MED PHILOS, V39, P590, DOI 10.1093/jmp/jhu037; Koenigs M, 2013, HDB PSYCHOPATHY LAW, P93; Krupp DB, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00139; Krupp DB, 2012, FRONT PSYCHOL, V3, DOI 10.3389/fpsyg.2012.00305; Lalumiere M, 2008, EVOLUTIONARY FORENSI, P176; Larson CL, 2013, COGN AFFECT BEHAV NE, V13, P757, DOI 10.3758/s13415-013-0172-8; Larsson H, 2008, CRIM JUSTICE BEHAV, V35, P197, DOI 10.1177/0093854807310225; Latzman RD, 2016, CLIN PSYCHOL SCI, V4, P50, DOI 10.1177/2167702615568989; Lauder George V., 1996, P55; Leedom LJ, 2012, FRONT PSYCHOL, V3, DOI 10.3389/fpsyg.2012.00549; Lilienfeld SO, 2013, PERSONAL DISORD, V4, P85, DOI 10.1037/a0027544; Lykken D. T., 1995, ANTISOCIAL PERSONALI; Maes JHR, 2013, PSYCHIAT RES, V210, P1265, DOI 10.1016/j.psychres.2013.09.028; Malatesti L, 2010, RESPONSIBILITY PSYCH; Malatesti L, 2014, ETICA POLITICA, V16, P1138; Matthewson J, 2017, J MED PHILOS, V42, P447, DOI 10.1093/jmp/jhx004; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P304, DOI 10.1017/S0140525X00038589; Mededovic J., 2017, EVOLUTIONARY PSYCHOL, V3, P306, DOI [10.1007/s40806-017-0097-5, DOI 10.1007/S40806-017-0097-5]; Meloy JR, 2018, VIOLENCE GEND, V5, P153, DOI 10.1089/vio.2018.0012; Mokros A, 2008, J ABNORM PSYCHOL, V117, P406, DOI 10.1037/0021-843X.117.2.406; Moul C, 2012, PSYCHOL REV, V119, P789, DOI 10.1037/a0029342; Murphy D, 2005, BIOL PHILOS, V20, P745, DOI 10.1007/s10539-004-2279-3; Murphy D, 2006, PSYCHIAT SCI IMAGE; Murphy D., 2000, PHILOS PSYCHIAT PSYC, V7, P241; Nadelhoffer T, 2013, NEUROSCIENCE LEGAL R, P229; NEANDER K, 1991, PHILOS SCI, V58, P168, DOI 10.1086/289610; Nesse R M, 2001, Med Health Care Philos, V4, P37, DOI 10.1023/A:1009938513897; Nesse RM, 1997, MALADAPTED MIND CLAS, P1; Neumann CS, 2008, J CONSULT CLIN PSYCH, V76, P893, DOI 10.1037/0022-006X.76.5.893; Neumann CS, 2012, BEHAV SCI LAW, V30, P557, DOI 10.1002/bsl.2038; Neumann CS, 2010, RESPONSIBILITY PSYCH, P93, DOI DOI 10.1093/MED/9780199551637.001.0001; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Power RA, 2013, JAMA PSYCHIAT, V70, P22, DOI 10.1001/jamapsychiatry.2013.268; Reimer M, 2008, NEUROETHICS-NETH, V1, P185, DOI 10.1007/s12152-008-9017-5; Rilling JK, 2007, BIOL PSYCHIAT, V61, P1260, DOI 10.1016/j.biopsych.2006.07.021; Sadler JZ, 2008, PHILOS PSYCHIATR PSY, V15, P1, DOI 10.1353/ppp.0.0152; Schwartz PH, 2007, PHILOS SCI, V74, P364, DOI 10.1086/521970; Skeem JL, 2011, PSYCHOL SCI PUBL INT, V12, P95, DOI 10.1177/1529100611426706; Sobus J., 1987, ETHOL SOCIOBIOL, V8, P63, DOI DOI 10.1016/0162-3095(87)90019-7; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Sterelny K, 1999, SEX DEATH INTRO PHIL; SZASZ TS, 1960, AM PSYCHOL, V15, P113, DOI 10.1037/h0046535; Tabery J., 2014, VERSUS STRUGGLE UNDE; Varga S, 2015, NATURALISM INTERPRET; Viding E, 2005, J CHILD PSYCHOL PSYC, V46, P592, DOI 10.1111/j.1469-7610.2004.00393.x; Viding E, 2008, DEVELOPMENTAL SCI, V11, P17, DOI 10.1111/j.1467-7687.2007.00648.x; Vieira JB, 2014, SOC COGN AFFECT NEUR, V9, P1099, DOI 10.1093/scan/nst093; Wakefield J, 2011, MALADAPTING MINDS PH, P143; WAKEFIELD JC, 1992, AM PSYCHOL, V47, P373, DOI 10.1037//0003-066X.47.3.373; Wakefield JC, 2000, PHILOS PSYCHIAT PSYC, V7, P253; Wakefield JC, 2011, INT J LAW PSYCHIAT, V34, P195, DOI 10.1016/j.ijlp.2011.04.012 100 0 0 3 3 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0169-3867 1572-8404 BIOL PHILOS Biol. Philos. FEB 2019 34 1 UNSP 5 10.1007/s10539-018-9668-5 23 History & Philosophy Of Science History & Philosophy of Science HG2GW WOS:000454782400001 2019-02-21 J Kavish, N; Anderson, JL Kavish, Nicholas; Anderson, Jaime L. Associations between life history speed and sexually coercive behavior PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history speed; Life history theory; Rape; Sexual coercion MATING EFFORT; K-FACTOR; STRATEGY; VIOLENCE; CRIME; RAPE; PERSONALITY; ATTITUDES; WEALTH; IMPACT The current study seeks to further understand risk factors for sexually coercive behavior by evaluating how Indicators of population level average Life History Speed (LHS; e.g., teen birth rate) compare to typical criminogenic variables (e.g., Socioeconomic status) as predictors of state variation in rape rates across the 50 United States, as well as the relationship between individuals LHS and self-reported proclivity for, and perpetration of, sexually coercive behaviors in a community sample (n = 162), LH strategies are described as a continuum of "LH speeds," and variation in LHS has been connected to variation in aggressive and violent behavior. The current project extends this research by testing population level variation in LHS indicators and individual variation in psychometric LHS as a predictor of variation in sexually coercive behavior. At the U.S. state level, the teen birth rate (B = 0,63, p = .016) was the strongest predictor of between-state variation in rape rates. Although significant bivariate associations were found between psychometric LHS and sexually coercive behavior, at the multivariate level, facets of LHS were linked to self-reported propensity to engage in sexual coercion, but less so with actual perpetration. [Kavish, Nicholas; Anderson, Jaime L.] Sam Houston State Univ, Dept Psychol & Philosophy, 1901 Ave 1, Huntsville, TX 77341 USA Kavish, N (reprint author), Sam Houston State Univ, Dept Psychol, Campus Box 2447, Huntsville, TX 77341 USA. nak012@shsu.edu Barnett M, 2016, J CANCER SURVIV, V10, P814, DOI 10.1007/s11764-016-0527-6; Beaver Kevin M, 2008, Biodemography Soc Biol, V54, P47, DOI 10.1080/19485565.2008.9989131; Belknap J., 1987, CRIMINAL JUSTICE POL, V2, P337; Bohner G, 1998, EUR J SOC PSYCHOL, V28, P257, DOI 10.1002/(SICI)1099-0992(199803/04)28:2<257::AID-EJSP871>3.0.CO;2-1; Boutwell BB, 2015, AGGRESS VIOLENT BEH, V25, P343, DOI 10.1016/j.avb.2015.09.003; Breiding MJ, 2014, MMWR SURVEILL SUMM, V63, P1; Capozza M. V, 1997, MASTERS ABSTRACTS IN, V35, P707; Charles KE, 2005, PERS INDIV DIFFER, V38, P1035, DOI 10.1016/j.paid.2004.06.021; Connolly E.J., 2017, CRIMINAL JUSTICE REV, V42, P237; Copping LT, 2013, HUM NATURE-INT BIOS, V24, P137, DOI 10.1007/s12110-013-9163-2; DeGue S, 2010, SEX ABUSE-J RES TR, V22, P402, DOI 10.1177/1079063210372140; Dunkel C. S, 2011, EVOLUTIONARY PSYCHOL, V9; Eyssel F, 2006, SWISS J PSYCHOL, V65, P93, DOI 10.1024/1421-0185.65.2.93; Figueredo A. J, 2007, ARIZONA LIFE HIST BA; Figueredo A. J., 2014, EVOLUTIONARY BEHAV S, V8, P148, DOI DOI 10.1037/H0099837; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; HELSON R, 1992, PSYCHOL AGING, V7, P46, DOI 10.1037/0882-7974.7.1.46; Kanazawa S, 2006, INTELLIGENCE, V34, P593, DOI 10.1016/j.intell.2006.04.003; Kavish N, 2017, EVOL PSYCHOL-SER, P171, DOI 10.1007/978-3-319-60576-0_7; Koss M. P, 2006, SEXUAL EXPERIENCES L; Lalumiere M. L., 2005, CAUSES RAPE UNDERSTA; Lalumiere ML, 1996, ETHOL SOCIOBIOL, V17, P299, DOI 10.1016/S0162-3095(96)00076-3; Lalumiere ML, 1996, PERS INDIV DIFFER, V21, P33, DOI 10.1016/0191-8869(96)00059-1; Mardorossian CM, 2002, SIGNS, V27, P743, DOI 10.1086/337938; Minkov M, 2016, PERS INDIV DIFFER, V97, P186, DOI 10.1016/j.paid.2016.03.063; Moffitt TE, 2011, P NATL ACAD SCI USA, V108, P2693, DOI 10.1073/pnas.1010076108; Morgan AB, 2000, CLIN PSYCHOL REV, V20, P113, DOI 10.1016/S0272-7358(98)00096-8; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Patch EA, 2017, PERS INDIV DIFFER, V115, P108, DOI 10.1016/j.paid.2016.04.023; RUBINSTEIN M, 1993, AM J PSYCHIAT, V150, P262; Rushton JP, 2009, INTELLIGENCE, V37, P341, DOI 10.1016/j.intell.2009.04.003; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Sefcek J. A, 2007, THESIS; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; Stearns S. C., 1992, EVOLUTION LIFE HIST, V249; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Templer DI, 2011, INTELLIGENCE, V39, P437, DOI 10.1016/j.intell.2011.08.001; THORNHILL R, 1983, ETHOL SOCIOBIOL, V4, P137, DOI 10.1016/0162-3095(83)90027-4; Thornhill R, 2000, NATURAL HIST RAPE BI; Truman J. L., 2015, CRIMINAL VICTIMIZATI; WOLFLE LM, 1980, SOCIOL EDUC, V53, P104, DOI 10.2307/2112492; Woodley MA, 2013, INTELLIGENCE, V41, P832, DOI 10.1016/j.intell.2013.02.002 47 0 0 2 2 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. FEB 1 2019 138 11 18 10.1016/j.paid.2018.09.008 8 Psychology, Social Psychology HD5RH WOS:000452587100003 2019-02-21 J Jones, DN; Neria, AL Jones, Daniel Nelson; Neria, Adon Lee Incentive salience & psychopathy: A bio-behavioral exploration PERSONALITY AND INDIVIDUAL DIFFERENCES English Review Psychopathy; Incentive salience; Impulsivity; Aggression; Antisocial behavior; Behavioral reinforcement SUBTHALAMIC NUCLEUS LESIONS; LIFE-HISTORY THEORY; DARK TRIAD; INDIVIDUAL-DIFFERENCES; PERSONALITY-TRAITS; PASSIVE-AVOIDANCE; GOAL-TRACKING; COGNITIVE NEUROSCIENCE; ORBITOFRONTAL CORTEX; SELECTIVE ATTENTION Not all individuals attribute incentive salience to conditional stimuli. For some, reward-cues are more motivating than are actual rewards. Individuals disproportionately attracted to reward-cues are referred to as sign-trackers whereas those attracted to actual rewards are referred to as goal-trackers. In nonhuman animals, sign-tracking is associated with addiction, impulsivity, behavioral persistence, and reinstatement of misbehavior, whereas goal-tracking is associated with intact inhibitory control, reward focus, and the ability to extinguish learned behaviors. In humans, psychopathy is a personality trait that exhibits many sign-tracking characteristics, leading to self- and other-destructive behaviors. Thus, incentive salience may be useful for defining patterns of antisocial behavior within psychopathy. [Jones, Daniel Nelson] Univ Nevada, Reno, NV 89557 USA; [Neria, Adon Lee] Univ Texas El Paso, El Paso, TX 79968 USA Jones, DN (reprint author), Univ Nevada, Managerial Sci, 1664 N Virginia Ave, Reno, NV 89557 USA. Djones2@unr.edu Aharoni E, 2013, NEUROPREDICTION FUTU; Alterman A. I., 1993, PSYCHOL ASSESSMENT, V5, P442, DOI DOI 10.1037/1040-3590.5.4.442; Alvarez JA, 2006, NEUROPSYCHOL REV, V16, P17, DOI 10.1007/s11065-006-9002-x; Anselme P, 2013, BEHAV BRAIN RES, V238, P53, DOI 10.1016/j.bbr.2012.10.006; BABIAK P, 1995, APPL PSYCHOL-INT REV, V44, P171, DOI 10.1111/j.1464-0597.1995.tb01073.x; Babiak P., 2006, SNAKES IN SUITS; Baunez C, 1997, EUR J NEUROSCI, V9, P2086, DOI 10.1111/j.1460-9568.1997.tb01376.x; Baunez C, 1999, NEUROSCIENCE, V92, P1343, DOI 10.1016/S0306-4522(99)00065-2; Bereczkei T, 2013, BRAIN COGNITION, V82, P108, DOI 10.1016/j.bandc.2013.02.012; Bernstein A, 2000, PSYCHOL SCI, V11, P414, DOI 10.1111/1467-9280.00280; Berridge KC, 2001, PSYCHOL LEARN MOTIV, V40, P223; Berridge KC, 2009, CURR OPIN PHARMACOL, V9, P65, DOI 10.1016/j.coph.2008.12.014; Bevilacqua L, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0380; Birbaumer N, 2005, ARCH GEN PSYCHIAT, V62, P799, DOI 10.1001/archpsyc.62.7.799; Blair KS, 2006, NEUROPSYCHOLOGY, V20, P153, DOI 10.1037/0894-4105.20.2.153; Blair RJR, 2007, TRENDS COGN SCI, V11, P387, DOI 10.1016/j.tics.2007.07.003; Blair RJR, 2008, NEUROETHICS-NETH, V1, P149, DOI 10.1007/s12152-008-9016-6; Blonigen DM, 2012, PERSONAL DISORD, V3, P406, DOI 10.1037/a0026184; Brinkley CA, 1999, PERS INDIV DIFFER, V26, P873, DOI 10.1016/S0191-8869(98)00189-5; Brinkley CA, 1999, PERS INDIV DIFFER, V27, P519, DOI 10.1016/S0191-8869(98)00261-X; Brown SL, 1997, J CONSULT CLIN PSYCH, V65, P848, DOI 10.1037//0022-006X.65.5.848; Buckels EE, 2013, PSYCHOL SCI, V24, P2201, DOI 10.1177/0956797613490749; Buckholtz JW, 2010, NAT NEUROSCI, V13, P419, DOI 10.1038/nn.2510; Camilleri JA, 2009, ARCH SEX BEHAV, V38, P959, DOI 10.1007/s10508-008-9377-2; Campbell J, 2009, TWIN RES HUM GENET, V12, P132, DOI 10.1375/twin.12.2.132; Chabrol H, 2009, PERS INDIV DIFFER, V47, P734, DOI 10.1016/j.paid.2009.06.020; Chang SE, 2012, NEUROBIOL LEARN MEM, V97, P441, DOI 10.1016/j.nlm.2012.03.008; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clark JJ, 2012, CURR OPIN NEUROBIOL, V22, P1054, DOI 10.1016/j.conb.2012.06.004; Cleckley HC, 1976, MASK SANITY; DeLisi M, 2010, J PSYCHOPATHOL BEHAV, V32, P169, DOI 10.1007/s10862-009-9147-z; Desai P. J., 2009, THESIS; DiFeliceantonio AG, 2012, BEHAV BRAIN RES, V230, P399, DOI 10.1016/j.bbr.2012.02.032; Dion AM, 2011, BEHAV BRAIN RES, V218, P341, DOI 10.1016/j.bbr.2010.11.048; Douglas K. S, 2006, HDB PSYCHOPATHY, P533; Dvorak-Bertsch JD, 2009, PSYCHOPHYSIOLOGY, V46, P913, DOI 10.1111/j.1469-8986.2009.00833.x; FARWELL BJ, 1979, LEARN MOTIV, V10, P295, DOI 10.1016/0023-9690(79)90035-3; Figueredo A. J, 2007, ECOLOGICAL CONSTRAIN, P335; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Finger BC, 2011, J NEUROSCI PSYCHOL E, V4, P217; Flagel SB, 2008, BEHAV BRAIN RES, V186, P48, DOI 10.1016/j.bbr.2007.07.022; Flagel SB, 2007, PSYCHOPHARMACOLOGY, V191, P599, DOI 10.1007/s00213-006-0535-8; Flagel SB, 2014, NEUROPHARMACOLOGY, V76, P425, DOI 10.1016/j.neuropharm.2013.04.033; Flagel SB, 2011, NATURE, V469, P53, DOI 10.1038/nature09588; Flagel SB, 2010, NEUROPSYCHOPHARMACOL, V35, P388, DOI 10.1038/npp.2009.142; Flagel SB, 2009, NEUROPHARMACOLOGY, V56, P139, DOI 10.1016/j.neuropharm.2008.06.027; Frick PJ, 2000, PSYCHOL ASSESSMENT, V12, P382, DOI 10.1037//1040-3590.12.4.382; Gao Y, 2010, BEHAV SCI LAW, V28, P194, DOI 10.1002/bsl.924; Guitart-Masip M, 2012, NEUROIMAGE, V62, P154, DOI 10.1016/j.neuroimage.2012.04.024; Hare R. D., 2003, MANUAL REVISED PSYCH; Hare RD, 1996, CRIM JUSTICE BEHAV, V23, P25, DOI 10.1177/0093854896023001004; Hare RD, 1999, CONSCIENCE DISTURBIN; Hare RD, 2008, ANNU REV CLIN PSYCHO, V4, P217, DOI 10.1146/annurev.clinpsy.3.022806.091452; Hare RD, 2010, PSYCHOL ASSESSMENT, V22, P446, DOI 10.1037/a0013635; HARRIS GT, 1991, LAW HUMAN BEHAV, V15, P625, DOI 10.1007/BF01065856; He ZM, 2011, Q J EXP PSYCHOL, V64, P2334, DOI 10.1080/17470218.2011.616933; Hearst E, 1974, MONOGRAPH PSYCHONOMI; HEILBRUN AB, 1982, J CONSULT CLIN PSYCH, V50, P546, DOI 10.1037//0022-006X.50.4.546; Heinzen H, 2011, INT J LAW PSYCHIAT, V34, P336, DOI 10.1016/j.ijlp.2011.08.002; HEMPHILL JF, 1994, J PERS DISORD, V8, P169, DOI 10.1521/pedi.1994.8.3.169; Hiatt KD, 2004, NEUROPSYCHOLOGY, V18, P50, DOI 10.1037/0894-4105.18.1.50; Hoenicka J, 2007, NEUROTOX RES, V11, P51, DOI 10.1007/BF03033482; Hoppenbrouwers SS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072375; Hosking JG, 2017, NEURON, V95, P221, DOI 10.1016/j.neuron.2017.06.030; Huertas E, 2010, GENES BRAIN BEHAV, V9, P103, DOI 10.1111/j.1601-183X.2009.00543.x; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones D. N., 2011, PERSONALITY INDIVIDU, V51, P670, DOI DOI 10.1016/J.JECP.2011.10.004; Jones DN, 2010, SOC PSYCHOL PERS SCI, V1, P12, DOI 10.1177/1948550609347591; Jupp B, 2013, DIS MODEL MECH, V6, P302, DOI 10.1242/dmm.010934; Kiehl KA, 2001, J PSYCHOPHYSIOL, V15, P221, DOI 10.1027//0269-8803.15.4.221; Kiehl KA, 2006, PSYCHIAT RES, V142, P107, DOI 10.1016/j.psychres.2005.09.013; Kiehl KA, 2006, J ABNORM PSYCHOL, V115, P443, DOI 10.1037/0021-843X.115.3.443; Koob GF, 2009, PHARMACOPSYCHIATRY, V42, pS32, DOI 10.1055/s-0029-1216356; Kruger D. J., 2006, PSYCHOL TOPICS, V15, P351; LeBreton J. M., 2006, COMPREHENSIVE HDB PE, VI, P388; Lilienfeld SO, 2012, PERSONAL DISORD, V3, P327, DOI 10.1037/a0026987; Lilienfeld SO, 1996, J PSYCHOPATHOL BEHAV, V18, P285, DOI 10.1007/BF02229050; Lomanowska AM, 2011, BEHAV BRAIN RES, V220, P91, DOI 10.1016/j.bbr.2011.01.033; Loney BR, 2007, AGGRESSIVE BEHAV, V33, P14, DOI 10.1002/ab.20163; Losel F, 2004, J ABNORM PSYCHOL, V113, P522, DOI 10.1037/0021-843X.113.4.522; Lovic V, 2011, BEHAV BRAIN RES, V223, P255, DOI 10.1016/j.bbr.2011.04.006; Lynam DR, 2012, PERSONAL DISORD, V3, P341, DOI 10.1037/a0028296; Mahler SV, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015475; Mahmut MK, 2008, J RES PERS, V42, P679, DOI 10.1016/j.jrp.2007.09.002; Marcia JE, 2006, J PERS DISORD, V20, P577, DOI 10.1521/pedi.2006.20.6.577; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Meyer PJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038987; Miedl SF, 2012, ARCH GEN PSYCHIAT, V69, P177, DOI 10.1001/archgenpsychiatry.2011.1552; Miedl SF, 2010, PSYCHIAT RES-NEUROIM, V181, P165, DOI 10.1016/j.pscychresns.2009.11.008; Mitchell DGV, 2002, NEUROPSYCHOLOGIA, V40, P2013, DOI 10.1016/S0028-3932(02)00056-8; Moeller AA, 2003, ACTA PSYCHIAT SCAND, V107, P203, DOI 10.1034/j.1600-0447.2003.02377.x; MOORE JW, 1982, PHYSIOL PSYCHOL, V10, P202, DOI 10.3758/BF03332937; Morgan AB, 2000, CLIN PSYCHOL REV, V20, P113, DOI 10.1016/S0272-7358(98)00096-8; Morrow JD, 2015, BEHAV BRAIN RES, V276, P59, DOI 10.1016/j.bbr.2014.04.002; Morrow JD, 2011, BEHAV BRAIN RES, V220, P238, DOI 10.1016/j.bbr.2011.02.013; Muller JL, 2008, PSYCHIAT RES-NEUROIM, V163, P213, DOI 10.1016/j.pscychresns.2007.08.010; Mullins-Sweatt SN, 2010, J RES PERS, V44, P554, DOI 10.1016/j.jrp.2010.05.010; Newman JP, 2010, BIOL PSYCHIAT, V67, P66, DOI 10.1016/j.biopsych.2009.07.035; NEWMAN JP, 1986, J ABNORM PSYCHOL, V95, P252, DOI 10.1037/0021-843X.95.3.252; NEWMAN JP, 1985, J PERS SOC PSYCHOL, V48, P1316, DOI 10.1037/0022-3514.48.5.1316; Newman JP, 2005, J ABNORM PSYCHOL, V114, P319, DOI 10.1037/0021-843X.114.2.319; NEWMAN JP, 1987, J RES PERS, V21, P464, DOI 10.1016/0092-6566(87)90033-X; NEWMAN JP, 1987, J ABNORM PSYCHOL, V96, P145, DOI 10.1037//0021-843X.96.2.145; Newman JP, 1997, PSYCHOL INQ, V8, P236, DOI 10.1207/s15327965pli0803_14; NEWMAN JP, 1990, PERS INDIV DIFFER, V11, P1101, DOI 10.1016/0191-8869(90)90021-I; NEWMAN JP, 1998, PSYCHOPATHY THEORY R, V88, P81; O'Boyle EH, 2013, J RES PERS, V47, P789, DOI 10.1016/j.jrp.2013.08.001; OBrien BS, 1996, J ABNORM CHILD PSYCH, V24, P223, DOI 10.1007/BF01441486; Ogloff JRP, 2004, PSYCHOL CRIME LAW, V10, P229, DOI 10.1080/0683160410001662735; Patrick CJ, 2005, J PERS DISORD, V19, P339, DOI 10.1521/pedi.2005.19.4.339; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Pavlov I. P., 1927, CONDITIONED REFLEXES; PEDEN BF, 1977, J EXP PSYCHOL ANIM B, V3, P377, DOI 10.1037/0097-7403.3.4.377; Raine A, 2004, BIOL PSYCHIAT, V55, P185, DOI 10.1016/S0006-3223(03)00727-3; Reidy DE, 2008, AGGRESSIVE BEHAV, V34, P319, DOI 10.1002/ab.20238; Reidy DE, 2007, J RES PERS, V41, P1244, DOI 10.1016/j.jrp.2007.03.001; Reise SP, 1996, J RES PERS, V30, P128, DOI 10.1006/jrpe.1996.0009; RESCORLA RA, 1988, AM PSYCHOL, V43, P151, DOI 10.1037//0003-066X.43.3.151; RESCORLA RA, 1977, LEARN MOTIV, V8, P429, DOI 10.1016/0023-9690(77)90044-3; Richard JM, 2011, J NEUROSCI, V31, P12866, DOI 10.1523/JNEUROSCI.1339-11.2011; Rilling JK, 2007, BIOL PSYCHIAT, V61, P1260, DOI 10.1016/j.biopsych.2006.07.021; ROBINSON TE, 1993, BRAIN RES REV, V18, P247, DOI 10.1016/0165-0173(93)90013-P; Robinson TE, 2014, NEUROPHARMACOLOGY, V76, P450, DOI 10.1016/j.neuropharm.2013.05.040; Robinson TE, 2009, BIOL PSYCHIAT, V65, P869, DOI 10.1016/j.biopsych.2008.09.006; Roesch MR, 2006, NEURON, V51, P509, DOI 10.1016/j.neuron.2006.06.027; Salamone JD, 2012, NEURON, V76, P470, DOI 10.1016/j.neuron.2012.10.021; Saunders BT, 2013, NEUROSCI BIOBEHAV R, V37, P1955, DOI 10.1016/j.neubiorev.2013.02.008; SIEGEL RA, 1978, J ABNORM PSYCHOL, V87, P514, DOI 10.1037//0021-843X.87.5.514; Skeem JL, 2010, PSYCHOL ASSESSMENT, V22, P433, DOI 10.1037/a0008512; Skeem JL, 2001, J CONSULT CLIN PSYCH, V69, P358, DOI 10.1037//0022-006X.69.3.358; Smith S, 2014, AM PSYCH LAW SOC NEW; SMITH SS, 1990, J ABNORM PSYCHOL, V99, P430, DOI 10.1037//0021-843X.99.4.430; Uslaner JM, 2008, NEUROPSYCHOPHARMACOL, V33, P2352, DOI 10.1038/sj.npp.1301653; Vernon PA, 2008, PERS INDIV DIFFER, V44, P445, DOI 10.1016/j.paid.2007.09.007; Vitale JE, 2005, J ABNORM CHILD PSYCH, V33, P461, DOI 10.1007/s10802-005-5727-X; Walters GD, 2003, BEHAV SCI LAW, V21, P89, DOI 10.1002/bsl.519; Williams KM, 2010, J EXP PSYCHOL-APPL, V16, P293, DOI 10.1037/a0020773; Williams KM, 2009, CRIM JUSTICE BEHAV, V36, P198, DOI 10.1177/0093854808327277; Winstanley CA, 2006, CEREB CORTEX, V16, P106, DOI 10.1093/cercor/bhi088; Wischniewski J, 2009, NEUROSCI BIOBEHAV R, V33, P305, DOI 10.1016/j.neubiorev.2008.09.008; Yager LM, 2010, BEHAV BRAIN RES, V214, P30, DOI 10.1016/j.bbr.2010.04.021; Zener K, 1937, AM J PSYCHOL, V50, P384, DOI 10.2307/1416644; Zuckerman M, 2002, NEUROBIOLOGY CRIMINA, P27 145 0 0 4 4 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. FEB 1 2019 138 167 176 10.1016/j.paid.2018.09.037 10 Psychology, Social Psychology HD5RH WOS:000452587100026 2019-02-21 J Yu, QL; Zhang, QY; Xiong, Q; Jin, SH; Zou, H; Guo, YF Yu, Quanlei; Zhang, Qiuying; Xiong, Qing; Jin, Shenghua; Zou, Hong; Guo, Yafei The more similar, the more warmth: The effect of parent-child perceived facial resemblance on parenting behavior PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Perceived parent-child facial resemblance; Parenting behaviors; Parents gender; Paternal uncertainty; Life history theory SEX-DIFFERENCES; PATERNAL RESEMBLANCE; SOCIOECONOMIC-STATUS; INVESTMENT; ATTACHMENT; CONFIDENCE Via internal fertilization, fathers face the risk of paternal uncertainty. Parent-child facial resemblance is a good index to assess genetic resemblance. Previous studies have shown that parent-child facial resemblance significantly influences parental investment. Therefore, parent-child facial resemblance may predict father's parenting behaviors, but not the mother's behaviors. The purpose of the present study was to explore the effect of parent-child facial resemblance for parenting behaviors. We recruited 114 parents of secondary school students from 114 independent families and measured participants' perceived parent-child facial resemblance and parenting behaviors. Results showed that, after controlling for participants age and socioeconomic status, parents' gender moderated the effect of perceived parent-child facial resemblance on supportive/engaged parenting, but not hostile/coercive parenting. Further analysis of a simple slope effect test showed that perceived father-child facial resemblance significantly predicted a father's supportive/engaged parenting. But the effect of perceived mother-child facial resemblance for a mother's supportive/engaged parenting was not significant. These findings enriched the attach theory from the life history perspective. [Yu, Quanlei] Cent China Normal Univ, Sch Psychol, 152 Luoyu Rd, Wuhan 430079, Hubei, Peoples R China; [Zhang, Qiuying] Univ Miami, Sch Educ & Human Dev, Dept Teaching & Learning, 1507 Levante Ave,Max Orovitz Bldg Rm 308A, Coral Gables, FL 33146 USA; [Xiong, Qing] Jiangxi Univ Finance & Econ, Sch Humanity, Yu Ping St, Nanchang 330032, Jiangxi, Peoples R China; [Jin, Shenghua] Fuzhou Univ, Inst Pychol & Cognit Sci, 2 Xueyuan Rd, Fuzhou 350116, Fujian, Peoples R China; [Zou, Hong] Beijing Normal Univ, Beijing Key Lab Appl Expt Psychol, Sch Psychol, 19 Xinjiekouwai St,New Main Bldg,Rm 1422, Beijing 100875, Peoples R China; [Guo, Yafei] ShanghaiTech Univ, Sch Entrepreneurship & Management, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China Zou, H (reprint author), Beijing Normal Univ, Beijing Key Lab Appl Expt Psychol, Sch Psychol, 19 Xinjiekouwai St,New Main Bldg,Rm 1422, Beijing 100875, Peoples R China. yulei19881987@mail.ccnu.edu.cn.com; q.zhang10@umiami.edu; xiongqing@jxufe.edu.cn; hongz@bnu.edu.cn National Social Sciences Main Project [13ZD073]; Ministry of Education of Humanities and Social Science [14JJD190003]; Ministry of Education (MOE) Project of Key Research Institutes of Humanities and Social Science at Universities [16JJD880007] This research was supported by a grant from the National Social Sciences Main Project (13&ZD073), a grant from the Ministry of Education of Humanities and Social Science for the key research (14JJD190003), and a Ministry of Education (MOE) Project of Key Research Institutes of Humanities and Social Science at Universities (16JJD880007). Aiken LS, 1991, MULTIPLE REGRESSION; Alvergne A, 2009, ANIM BEHAV, V78, DOI [10.1016/j.anbehay.2009.03.019, DOI 10.1016/J.ANBEHAY.2009.03.019]; Alvergne A, 2007, EVOL HUM BEHAV, V28, P135, DOI 10.1016/j.evolhumbehav.2006.08.008; Alvergne A, 2010, EVOL HUM BEHAV, V31, P7, DOI 10.1016/j.evolhumbehav.2009.09.002; Apicella CL, 2004, EVOL HUM BEHAV, V25, P371, DOI 10.1016/j.evolhumbehav.2004.06.003; Belsky J, 2010, PSICOTHEMA, V22, P28; Bowlby J., 1979, MAKING BREAKING AFFE; Brooks J. B, 2013, PROCESS PARENTING; Buss D., 2014, EVOLUTIONARY PSYCHOL; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; Chang L, 2007, EVOLUTIONARY PSYCHOL; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; Del Giudice M, 2010, CHILD DEV PERSPECT, V4, P97, DOI 10.1111/j.1750-8606.2010.00125.x; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Dunkel CS, 2015, EVOL HUM BEHAV, V36, P374, DOI 10.1016/j.evolhumbehav.2015.02.006; Eastwick P., 2018, HDB EVOLUTIONARY PSY; Emmen RAG, 2013, J FAM PSYCHOL, V27, P896, DOI 10.1037/a0034693; Finley GE, 1998, J GENET PSYCHOL, V159, P505, DOI 10.1080/00221329809596167; GAULIN SJC, 1980, ETHOL SOCIOBIOL, V1, P301, DOI 10.1016/0162-3095(80)90015-1; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Hoff E, 2002, HDB PARENTING, V2, P231; Jonason P. K., 2012, J SOCIAL EVOLUTIONAR, V6, P181; Kraus MW, 2009, J PERS SOC PSYCHOL, V97, P992, DOI 10.1037/a0016357; Krupp DB, 2008, EVOL HUM BEHAV, V29, P49, DOI 10.1016/j.evolhumbehav.2007.08.002; Larsen R. J, 2008, PERSONALITY PSYCHOLO; [林镇超 Lin Zhenchao], 2015, [心理科学进展, Advances in Psychological Science], V23, P721; Lovejoy MC, 1999, PSYCHOL ASSESSMENT, V11, P534, DOI 10.1037/1040-3590.11.4.534; McLain DK, 2000, EVOL HUM BEHAV, V21, P11, DOI 10.1016/S1090-5138(99)00029-X; Pedersen F A, 1991, Hum Nat, V2, P271, DOI 10.1007/BF02692189; Pinquart M, 2014, J PEDIATR PSYCHOL, V39, P381, DOI 10.1093/jpepsy/jst144; Platek SM, 2003, EVOL HUM BEHAV, V24, P81, DOI 10.1016/S1090-5138(02)00117-4; Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9101.88.5.879; REGALSKI JM, 1993, ETHOL SOCIOBIOL, V14, P97, DOI 10.1016/0162-3095(93)90010-F; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Shaffer D. R, 2008, SOCIAL AND PERSONALI; Simpson J. A., 2016, HDB ATTACHMENT THEOR, P91; Smuts B. B, 1992, FATHER CHILD RELATIO, P1; Yu QL, 2017, PERS INDIV DIFFER, V116, P359, DOI 10.1016/j.paid.2017.05.016; Yu QL, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.00658 39 0 0 3 3 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. FEB 1 2019 138 358 362 10.1016/j.paid.2018.10.027 5 Psychology, Social Psychology HD5RH WOS:000452587100056 2019-02-21 J Desrosiers, M; Usseglio-Polatera, P; Archaimbault, V; Larras, F; Methot, G; Pinel-Alloul, B Desrosiers, Melanie; Usseglio-Polatera, Philippe; Archaimbault, Virginie; Larras, Florian; Methot, Ginette; Pinel-Alloul, Bernadette Assessing anthropogenic pressure in the St. Lawrence River using traits of benthic macroinvertebrates SCIENCE OF THE TOTAL ENVIRONMENT English Article Macroinvertebrates; Functional traits; Large river; Bioassessment; Stressor-specific models; Random forests FRESH-WATER MACROINVERTEBRATES; LIFE-HISTORY STRATEGIES; LARGE EUROPEAN RIVERS; LAKE SAINT-PIERRE; SPECIES TRAITS; INVERTEBRATE TRAITS; MULTIPLE STRESSORS; ECOLOGICAL TRAITS; AQUATIC ECOSYSTEMS; INITIAL ASSESSMENT This study aims to evaluate the anthropogenic pressure in the St. Lawrence River by assessing the relationships between chemical contamination of sediments and benthic community structure with the trait-based approach. Organic and inorganic contaminants as well as other sediment variables (sediment grain size, total organic carbon, nutrients, etc.) and benthic invertebrate assemblages were determined in 59 sites along the river. Biological and ecological traits of taxa were coded, taking into account regional dimate and ecosystem conditions. The aims of this study were to (1) describe the relationships between traits and macroinvertebrate taxa and identify homogeneous dusters of taxa with the same combinations of functional traits, (2) describe spatial patterns in traits of macroinvertebrates in the St. Lawrence River, (3) link trait-based metrics and site groups to sediment quality and (4) define a trait-based strategy for diagnosing the ecological quality of the St. Lawrence River. Seven groups of taxa sharing similar trait-category attributes were defined. Moreover, four groups of sites were identified using the 'K-mean' non-hierarchical clustering approach. The 'IndVal' method enabled us to specifically defined trait categories corresponding to site groups on the basis of their indicator value. The relative abundances of taxa from five functional groups significantly varied among site groups. For example, some indicator traits such as multivolline cycle, long life span, fixed dutches, tegumental respiration, asexual reproduction, and collector/gatherer feeding habit were associated to the most heavily polluted sites located in the Montreal harbour which showed the highest sediment concentrations in Pb. Zn and Cu. Three trait-based pressure-specific models were built, based on the random forest approach, for respectively (1) heavy metals. (2) BPCs and PAHs, and (3) TBTs occurring in the environment. These models could be applied to assess sediment quality using macroinvertebrate assemblages in a large Canadian river. (C) 2018 Elsevier B.V. All rights reserved. [Desrosiers, Melanie] Minist Dev Durable Environm & Lutte Changements C, Ctr Expertise Anal Environm Quebec, 2700 Rue Einstein, Quebec City, PQ G1P 3W8, Canada; [Usseglio-Polatera, Philippe; Larras, Florian] Univ Lorraine, LIEC, CNRS UMR 7360, Ave Gen Delestraint, F-57070 Metz, France; [Archaimbault, Virginie] HBAN, IRSTEA, 1 Rue Pierre Gilles de Gennes,CS10030, F-92761 Antony, France; [Methot, Ginette; Pinel-Alloul, Bernadette] Univ Montreal, GRIL, Dept Sci Biol, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada; [Larras, Florian] UFZ Helmholtz Ctr Environm Res, Dept Bioanalyt Ecotoxicol, Leipzig, Germany Desrosiers, M (reprint author), Minist Dev Durable Environm & Lutte Changements C, Ctr Expertise Anal Environm Quebec, 2700 Rue Einstein, Quebec City, PQ G1P 3W8, Canada. melanie.desrosiers@mddelcc.gouv.qc.ca; philippe.usseglio-polatera@univ-lorraine.fr; evelyne.tales@irstea.fr; floriane.larras@ufz.de; bernadette.pinel-alloul@umontreal.ca Pinel-Alloul, Bernadette/0000-0002-1070-2968 Commission Permanente de Cooperation Franco-Quebecoise This study is a component of a collaborative program included in the St. Lawrence Plan for Sustainable Development, and realised with the active participation of Environment and Climate Change Canada (Environmental Protection Operations Division and Science and Technology Branch), the Ministere du Developpement durable, de l'Environnement et de la Lutte contre les changements climatiques (Centre d'expertise en analyse environnementale du Quebec; Direction des evaluations environnementales des projets hydriques et industriels; Direction generale du suivi de l'etat de l'environnement), and the IRSTEA from Lyon (France). We acknowledge the contribution of the Commission Permanente de Cooperation Franco-Quebecoise for travel funding, and the contribution of the project steering committee members: M. Pelletier, C. Gagnon, M. Cormier, S. Thibodeau, and S. Lepage, from Environment and Climate change Canada; P. Michon, L. Boudreau, G. Triffaut-Bouchet, and L. Martel from the Ministere du Developpement durable, de l'Environnement et de la Lutte contre les changements climatiques du Quebec, and S. Masson from the Parc Aquarium du Quebec. Archaimbault V, 2005, HYDROBIOLOGIA, V551, P171, DOI 10.1007/s10750-005-4459-9; Archaimbault V, 2010, FRESHWATER BIOL, V55, P1430, DOI 10.1111/j.1365-2427.2009.02281.x; Artigas J, 2012, ENVIRON POLLUT, V160, P201, DOI 10.1016/j.envpol.2011.08.011; Bady P, 2005, FRESHWATER BIOL, V50, P159, DOI 10.1111/j.1365-2427.2004.01287.x; Bailey R. C., 2004, BIOASSESSMENT FRESHW; Beketov M. A., 2008, ENVIRON POLLUT, P1; Bonada N, 2006, ANNU REV ENTOMOL, V51, P495, DOI 10.1146/annurev.ento.51.110104.151124; Brabec K, 2004, HYDROBIOLOGIA, V516, P331, DOI 10.1023/B:HYDR.0000025274.47757.85; CARIGNAN R, 1994, CAN J FISH AQUAT SCI, V51, P1088, DOI 10.1139/f94-108; CHEVENET F, 1994, FRESHWATER BIOL, V31, P295, DOI 10.1111/j.1365-2427.1994.tb01742.x; Clews E, 2009, RIVER RES APPL, V25, P348, DOI 10.1002/rra.1166; DArcy P., 2004, NAVIGATION CONSENSUS, P111; Desrosiers M, 2008, SCI TOTAL ENVIRON, V389, P101, DOI 10.1016/j.scitotenv.2007.08.019; Desrosiers Melanie, 2010, Integrated Environmental Assessment and Management, V6, P225, DOI 10.1897/IEAM_2009-026.1; Desy JC, 2000, CAN J FISH AQUAT SCI, V57, P164, DOI 10.1139/cjfas-57-S1-164; Doledec S, 1999, FRESHWATER BIOL, V42, P737, DOI 10.1046/j.1365-2427.1999.00509.x; Doledec S., 2008, FRESHW BIOL, V53; Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2; EC MDDEP, 2007, CRIT ASS SED QUAL QU, P39; Fawcett T, 2006, PATTERN RECOGN LETT, V27, P861, DOI 10.1016/j.patrec.2005.10.010; Fortin G., 1994, SYNTHESE CONNAISSANC; Furse M, 2006, HYDROBIOLOGIA, V566, P3, DOI 10.1007/s10750-006-0067-6; Gayraud S, 2003, FRESHWATER BIOL, V48, P2045, DOI 10.1046/j.1365-2427.2003.01139.x; Glendell M., 2014, FRESHWATER BIOL, V59, P653; Heino J, 2008, LIMNOL OCEANOGR, V53, P1446, DOI 10.4319/lo.2008.53.4.1446; Hering D, 2015, SCI TOTAL ENVIRON, V503, P10, DOI 10.1016/j.scitotenv.2014.06.106; Hering D, 2010, SCI TOTAL ENVIRON, V408, P4007, DOI 10.1016/j.scitotenv.2010.05.031; Hoss S, 2011, ENVIRON INT, V37, P940, DOI 10.1016/j.envint.2011.03.013; Hudon C, 2008, CAN J FISH AQUAT SCI, V65, P1165, DOI 10.1139/F08-069; Ilg C, 2006, FRESHWATER BIOL, V51, P840, DOI 10.1111/j.1365-2427.2006.01533.x; Jungwirth M, 2002, FRESHWATER BIOL, V47, P867, DOI 10.1046/j.1365-2427.2002.00914.x; Klemm D. J., 1990, MACROINVERTEBRATE FI, P206; Larras F, 2017, SCI TOTAL ENVIRON, V586, P1101, DOI 10.1016/j.scitotenv.2017.02.096; Legendre P., 2012, DEV ENV MODELLING, V24, P1006; Legendre P, 2011, METHODS ECOL EVOL, V2, P269, DOI 10.1111/j.2041-210X.2010.00078.x; Li L., 2010, PROCEDIA ENV SCI, V2; Liaw A., 2002, R NEWS, V2, P18, DOI DOI 10.1177/154405910408300516; Liess M, 2005, ENVIRON TOXICOL CHEM, V24, P954, DOI 10.1897/03-652.1; Liess M, 2008, SCI TOTAL ENVIRON, V406, P484, DOI 10.1016/j.scitotenv.2008.05.054; Lorenz A, 2004, HYDROBIOLOGIA, V516, P107, DOI 10.1023/B:HYDR.0000025261.79761.b3; Masson S, 2010, HYDROBIOLOGIA, V647, P35, DOI 10.1007/s10750-009-9915-5; Menezes S, 2010, J APPL ECOL, V47, P711, DOI 10.1111/j.1365-2664.2010.01819.x; Merritt R. M., 1996, INTRO AQUATIC INSECT; Mondy CP, 2016, SCI TOTAL ENVIRON, V572, P196, DOI 10.1016/j.scitotenv.2016.07.227; Mondy CP, 2013, SCI TOTAL ENVIRON, V461, P750, DOI 10.1016/j.scitotenv.2013.05.072; Mondy CP, 2012, ECOL INDIC, V18, P452, DOI 10.1016/j.ecolind.2011.12.013; Navarro-Ortega A, 2015, SCI TOTAL ENVIRON, V503, P3, DOI 10.1016/j.scitotenv.2014.06.081; Pelletier M., 2014, BUTYLTINS SEDIMENT S; Peru N, 2010, ECOL INDIC, V10, P1025, DOI 10.1016/j.ecolind.2010.02.011; Picazo F, 2012, FRESHWATER BIOL, V57, P2192, DOI 10.1111/j.1365-2427.2012.02859.x; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; RAO CR, 1982, THEOR POPUL BIOL, V21, P24, DOI 10.1016/0040-5809(82)90004-1; RESH VH, 1994, FRESHWATER BIOL, V31, P539, DOI 10.1111/j.1365-2427.1994.tb01756.x; Reyjol Y, 2014, SCI TOTAL ENVIRON, V497, P332, DOI 10.1016/j.scitotenv.2014.07.119; Reynoldson TB, 2001, CAN J FISH AQUAT SCI, V58, P1395, DOI 10.1139/cjfas-58-7-1395; Reynoldson TB, 1997, J N AM BENTHOL SOC, V16, P833, DOI 10.2307/1468175; Schafer RB, 2011, SCI TOTAL ENVIRON, V409, P2055, DOI 10.1016/j.scitotenv.2011.01.053; Sing T, 2005, BIOINFORMATICS, V21, P3940, DOI 10.1093/bioinformatics/bti623; Smith AJ, 2007, ECOL INDIC, V7, P371, DOI 10.1016/j.ecolind.2006.03.001; Sneath P. H. A, 1973, NUMERICAL TAXONOMY P, P573; Statzner B, 2005, FRESHWATER BIOL, V50, P2136, DOI 10.1111/j.1365-2427.2005.01447.x; Statzner B, 2001, BASIC APPL ECOL, V2, P73, DOI 10.1078/1439-1791-00039; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Strobl C, 2007, BMC BIOINFORMATICS, V8, DOI 10.1186/1471-2105-8-25; SWETS JA, 1988, SCIENCE, V240, P1285, DOI 10.1126/science.3287615; Tall L, 2008, J GREAT LAKES RES, V34, P599, DOI 10.3394/0380-1330-34.4.599; Tall L, 2016, HYDROBIOLOGIA, V778, P221, DOI 10.1007/s10750-015-2531-7; Thorp J. H., 2001, ECOLOGY CLASSIFICATI; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; Usseglio-Polatera P, 2000, HYDROBIOLOGIA, V422, P153, DOI 10.1023/A:1017042921298; Usseglio-Polatera Philippe, 2001, Archiv fuer Hydrobiologie Supplement, V139, P53; Van den Brink Paul J., 2011, Integrated Environmental Assessment and Management, V7, P198, DOI 10.1002/ieam.109; Van den Brink Paul J., 2011, Integrated Environmental Assessment and Management, V7, P169, DOI 10.1002/ieam.103; Verberk W. C. E. P., 2013, FRESHW SCI, V32; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Vieira N. K. M., 2006, DATA SERIES US GEOLO, V187; von der Ohe PC, 2013, SCI TOTAL ENVIRON, V444, P480, DOI 10.1016/j.scitotenv.2012.12.001; WARD JH, 1963, J AM STAT ASSOC, V58, P236, DOI 10.2307/2282967; Willby NJ, 2000, FRESHWATER BIOL, V43, P43, DOI 10.1046/j.1365-2427.2000.00523.x; 2009, RIVERS EUROPE, P1 83 0 0 66 66 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0048-9697 1879-1026 SCI TOTAL ENVIRON Sci. Total Environ. FEB 1 2019 649 233 246 10.1016/j.scitotenv.2018.08.267 14 Environmental Sciences Environmental Sciences & Ecology GV4NL WOS:000446076500021 30173032 2019-02-21 J Harcourt, R; van der Hoop, J; Kraus, S; Carroll, EL Harcourt, Rob; van der Hoop, Julie; Kraus, Scott; Carroll, Emma L. Future Directions in Eubalaena spp.: Comparative Research to Inform Conservation FRONTIERS IN MARINE SCIENCE English Review right whale; conservation; cumulative effects analysis; conservation technology; threats; recovery SOUTHERN RIGHT WHALES; ATLANTIC RIGHT WHALES; SOUTHEASTERN BERING-SEA; PENINSULA VALDES; POPULATION-STRUCTURE; STABLE-ISOTOPES; BOWHEAD WHALES; SOVIET CATCHES; FECAL GLUCOCORTICOIDS; REPRODUCTIVE SUCCESS All three extant right whales [Eubalaena australis (Southern; SRW), glacialis (North Atlantic; NARW), and japonica (North Pacific; NPRW)] were heavily exploited, and the status of the two northern hemisphere species remains precarious. Recently, limited gains made by the NARW have been reversed and urgent changes to management approaches are needed if extinction is to be averted. By contrast, some SRW populations are recovering. Given their close phylogenetic relationship, morphological, demographic, and ecological similarities, the contrasting recovery rates between populations and species provide an opportunity to apply a comparative approach to inform the differences in recovery as follows. (1) Recovery: All right whale species were internationally protected in 1931, but NARW, eastern NPRW and some SRW populations have barely recovered from whaling, while others are doing so at maximal rates. Are these differences a legacy of extreme depletion (e.g., loss of genetic diversity and cultural knowledge) or primarily due to anthropogenic factors (e.g., high mortality from ship strike and fisheries entanglement)? If modern anthropogenic threats are not affecting remote SRW populations, can these serve as baseline populations for comparison with NARW and NPRW? (2) Linking individuals to population-level responses: In wild mammals, strong links exist between reproductive indices and environmental conditions within the context of life-history strategies. Individual identification of whales provides the ability to track survival, reproduction and other demographic parameters, and their population-level consequences, providing the tools with which to uncover these links. Robust life-history analyses are now available for NARW and several SRW populations, linking demography with environmental conditions, providing the potential for teasing out important influencing factors. (3) Adapting to shifting resources: Recent reproductive declines in NARW appear linked to changing food resources. While we know some large-scale movement patterns for NARW and a few SRW populations, we know little of mesoscale movements. For NPRW and some SRW populations, even broad-scale movements are poorly understood. In the face of climate change, can methodological advances help identify Eubalaena distributional and migratory responses? (4) Emergent diseases and the vulnerability of populations under stress: Marine mammals are vulnerable to infectious diseases, [Harcourt, Rob] Macquarie Univ, Dept Biol Sci, Sydney, NSW, Australia; [van der Hoop, Julie] Aarhus Univ, Dept Biosci, Zoophysiol, Aarhus, Denmark; [Kraus, Scott] New England Aquarium, Anderson Cabot Ctr Ocean Life, Boston, MA USA; [Carroll, Emma L.] Univ St Andrews, Scottish Oceans Inst, Sea Mammal Res Unit, St Andrews, Fife, Scotland; [Carroll, Emma L.] Univ Auckland, Sch Biol Sci, Auckland, New Zealand Harcourt, R (reprint author), Macquarie Univ, Dept Biol Sci, Sydney, NSW, Australia. robert.harcourt@mq.edu.au Aguayo-Lobo A, 2008, REV BIOL MAR OCEANOG, V43, P653, DOI 10.4067/S0718-19572008000300024; Allee W. C, 1931, ANIMAL AGGREGATIONS, DOI [10.5962/bhl.title.7313, DOI 10.5962/BHL.TITLE.7313, 10. 5962/bhl. title. 7313]; Allen B. M, 2012, NOAATMAFSC245 NPRW; Allen G. M, 1916, MEMOIRS BOSTON SOC N, V8, P107; ALLENDORF FW, 1986, ZOO BIOL, V5, P181, DOI 10.1002/zoo.1430050212; Andrews RD, 2008, POLAR BIOL, V31, P1461, DOI 10.1007/s00300-008-0487-z; Apprill A, 2017, MSYSTEMS, V2, DOI 10.1128/mSystems.00119-17; Arias M, 2018, P ANN M INT WHAL COM, P24; Baker CS, 2018, FRONT MAR SCI, V5, DOI 10.3389/fmars.2018.00133; Baker CS, 1999, MAR BIOL, V134, P1, DOI 10.1007/s002270050519; Baker CS, 2004, TRENDS ECOL EVOL, V19, P365, DOI 10.1016/j.tree.2004.05.005; Bannister J., 2017, A7 HON ASS; Bannister JL, 1999, MAR MAMMAL SCI, V15, P1337, DOI 10.1111/j.1748-7692.1999.tb00895.x; Barendse J, 2014, MAR MAMMAL SCI, V30, P1358, DOI 10.1111/mms.12116; Barratclough A, 2014, MAR MAMMAL SCI, V30, P1589, DOI 10.1111/mms.12132; Baumgartner Mark F., 2014, Journal of the Acoustical Society of America, V136, DOI 10.1121/1.4899622; Baumgartner MF, 2017, MAR ECOL PROG SER, V581, P165, DOI 10.3354/meps12315; Baumgartner MF, 2015, METHODS ECOL EVOL, V6, P289, DOI 10.1111/2041-210X.12325; Baumgartner MF, 2014, MAR TECHNOL SOC J, V48, P40, DOI 10.4031/MTSJ.48.5.2; Baumgartner MF, 2013, MAR ECOL PROG SER, V490, P267, DOI 10.3354/meps10457; Baumgartner MF, 2013, J ACOUST SOC AM, V134, P1814, DOI 10.1121/1.4816406; Baumgartner MF, 2011, J ACOUST SOC AM, V129, P2889, DOI 10.1121/1.3562166; Baumgartner MF, 2005, CAN J FISH AQUAT SCI, V62, P527, DOI 10.1139/F04-238; Baumgartner MF, 2003, MAR ECOL PROG SER, V264, P137, DOI 10.3354/meps264137; Baumgartner MF, 2003, MAR ECOL PROG SER, V264, P123, DOI 10.3354/meps264123; Arguelles MB, 2016, AQUAT MAMM, V42, P104, DOI 10.1578/AM.42.1.2016.104; Best PB, 1996, MAR BIOL, V124, P483, DOI 10.1007/BF00351030; BEST PB, 1993, MAR MAMMAL SCI, V9, P227, DOI 10.1111/j.1748-7692.1993.tb00451.x; BEST PB, 1990, S AFR J ZOOL, V25, P114; BEST PB, 1992, J ZOOL, V228, P595, DOI 10.1111/j.1469-7998.1992.tb04458.x; Best PB, 2015, MAR MAMMAL SCI, V31, P520, DOI 10.1111/mms.12168; Bogomolni AL, 2008, DIS AQUAT ORGAN, V81, P13, DOI 10.3354/dao01936; Bogucki Robert, 2018, Conserv Biol, DOI 10.1111/cobi.13226; Bort J, 2015, ENDANGER SPECIES RES, V26, P271, DOI 10.3354/esr00650; BRAHAM HW, 1984, MAR FISH REV, V46, P38; Brandao A, 2018, UPDATED APPL PHOTO I; Brillant SW, 2017, MAR POLICY, V81, P160, DOI 10.1016/j.marpol.2017.03.030; Brillant SW, 2015, ENDANGER SPECIES RES, V27, P141, DOI 10.3354/esr00651; Brownell R. J, 2018, GLOBAL BALEEN WHALE, P12; Brownell Robert L. Jr, 2001, Journal of Cetacean Research and Management Special Issue, V2, P269; Browning CL, 2010, MAR MAMMAL SCI, V26, P648, DOI 10.1111/j.1748-7692.2009.00361.x; Burdin A, 2004, CASES ENTANGLEMENT W, P95; Burgess EA, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-28200-8; Carroll E, 2011, MAR ECOL PROG SER, V432, P257, DOI 10.3354/meps09145; Carroll EL, 2019, HEREDITY, V122, P53, DOI 10.1038/s41437-018-0077-y; Carroll EL, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146590; Carroll EL, 2015, SCI REP-UK, V5, DOI 10.1038/srep16182; Carroll EL, 2013, ECOL APPL, V23, P1677, DOI 10.1890/12-1657.1; Carroll EL, 2014, MAR MAMMAL SCI, V30, P206, DOI 10.1111/mms.12031; Carroll EL, 2012, MOL ECOL, V21, P3960, DOI 10.1111/j.1365-294X.2012.05676.x; Cassoff RM, 2011, DIS AQUAT ORGAN, V96, P175, DOI 10.3354/dao02385; Charlton C. M., 2017, THESIS; Childerhouse S, 2010, SATELLITE TRACKING S, P5; Christiansen F, 2018, MAR ECOL PROG SER, V592, P267, DOI 10.3354/meps12522; Clapham P. J, 2012, FINAL REP BUREAU OCE, V144; Clapham PJ, 2008, MAR MAMMAL SCI, V24, P183, DOI 10.1111/j.1748-7692.2007.00175.x; Clapham Phillip J., 2004, Journal of Cetacean Research and Management, V6, P1; Clapham PJ, 1999, MAMMAL REV, V29, P35; Cole TVN, 2013, ENDANGER SPECIES RES, V21, P55, DOI 10.3354/esr00507; Cooke J, 2015, SW ATLANTIC RIGHT WH; Corkeron P, 2018, ROY SOC OPEN SCI, V5, DOI 10.1098/rsos.180892; Corkeron P, 2017, CONSERV PHYSIOL, V5, DOI 10.1093/conphys/cox006; Corkeron PJ, 1999, MAR MAMMAL SCI, V15, P1228, DOI 10.1111/j.1748-7692.1999.tb00887.x; Courchamp F, 1999, TRENDS ECOL EVOL, V14, P405, DOI 10.1016/S0169-5347(99)01683-3; Cox NJ, 2000, ANNU REV MED, V51, P407, DOI 10.1146/annurev.med.51.1.407; Crespo E. A, 2018, MAR MAMMAL SCI, V35, P93, DOI [10.1111/mms.12526, DOI 10.1111/MMS.12526]; Cubaynes H. C, 2018, MAR MAMMAL SCI, DOI [10.1111/mms.12544, DOI 10.1111/MMS.12544]; D'Agostino VC, 2018, CONT SHELF RES, V164, P45, DOI 10.1016/j.csr.2018.06.003; Dautenhahn K, 2002, IMITATION ANIMALS AR, DOI [10.7551/mitpress/3676.001.0001, DOI 10.7551/MITPRESS/3676.001.0001]; Davies KTA, 2014, MAR ECOL PROG SER, V497, P69, DOI 10.3354/meps10584; Davies KTA, 2013, MAR ECOL PROG SER, V479, P263, DOI 10.3354/meps10189; Davis GE, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-13359-3; Davis R, 2016, OCEANS 2016 MTS IEEE, P1; Dawbin W., 1986, REPORT INT WHALING C, V10, P261; De Oliveira LR, 2009, J MAR BIOL ASSOC UK, V89, P1003, DOI 10.1017/S0025315409003178; Doucette GJ, 2012, ENVIRON RES, V112, P67, DOI 10.1016/j.envres.2011.09.010; Du Pasquier T, 1986, REPORT INT WHALING C, V10, P268; Durban JW, 2015, J UNMANNED VEH SYST, V3, P131, DOI 10.1139/juvs-2015-0020; Durbin E, 2002, HARMFUL ALGAE, V1, P243, DOI 10.1016/S1568-9883(02)00046-X; Elwen SH, 2004, MAR MAMMAL SCI, V20, P567, DOI 10.1111/j.1748-7692.2004.tb01180.x; Fazio A, 2012, MAR BIOL, V159, P1981, DOI 10.1007/s00227-012-1985-7; Figueiredo GC, 2017, AQUAT MAMM, V43, P52, DOI 10.1578/AM.43.1.2017.52; Fiorito C, 2015, DIS AQUAT ORGAN, V116, P157, DOI 10.3354/dao02918; Fleishman E, 2016, MAR MAMMAL SCI, V32, P1004, DOI 10.1111/mms.12310; Foote AD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041781; Forcada J, 2012, BIOL CONSERV, V149, P40, DOI 10.1016/j.biocon.2012.02.002; Ford John K. B., 2016, Marine Biodiversity Records, V9, P50, DOI 10.1186/s41200-016-0036-3; Ford JKB, 2010, BIOL LETTERS, V6, P139, DOI 10.1098/rsbl.2009.0468; Fortune SME, 2013, MAR ECOL PROG SER, V478, P253, DOI 10.3354/meps10000; Fowler C. W., 1984, REPORT INT WHALING C, P373; Frasier TR, 2007, MOL ECOL, V16, P5277, DOI 10.1111/j.1365-294X.2007.03570.x; Fretwell PT, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088655; Fujiwara M, 2001, NATURE, V414, P537, DOI 10.1038/35107054; Vernazzani BG, 2014, MAR MAMMAL SCI, V30, P389, DOI 10.1111/mms.12030; Geoghegan JL, 2018, VIRUSES-BASEL, V10, DOI 10.3390/v10060300; Geraci J. R, 1999, CONSERVATION MANAGEM, P471; Gillespie D., 2008, CAN ACOUST, V36, P20; Givens GH, 2016, ENVIRONMETRICS, V27, P134, DOI 10.1002/env.2379; Goddard PD, 1998, MAR MAMMAL SCI, V14, P344, DOI 10.1111/j.1748-7692.1998.tb00725.x; Good C, 2010, P AL MAR SCI S HOT C, P71; Goodyear J. D., 1996, THESIS; Greene CH, 2004, FRONT ECOL ENVIRON, V2, P29, DOI 10.1890/1540-9295(2004)002[0029:CATCBO]2.0.CO;2; Gregr EJ, 2009, PROG OCEANOGR, V80, P188, DOI 10.1016/j.pocean.2008.12.004; Groch K, 2018, COAST RES LIBR, V22, P441, DOI 10.1007/978-3-319-56985-7_16; Groch Karina R., 2005, Latin American Journal of Aquatic Mammals, V4, P41; Groth M, 2014, INFECT GENET EVOL, V24, P183, DOI 10.1016/j.meegid.2014.03.026; Gulland FMD, 2007, ECOHEALTH, V4, P135, DOI 10.1007/s10393-007-0097-1; Hain JHW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054340; Hakamada T, 2016, SC F16 JR13 IWC SC J; Hall AJ, 2006, ENVIRON HEALTH PERSP, V114, P704, DOI 10.1289/ehp.8222; Hamilton Philip K., 2007, P75; HAMNER WM, 1988, FISH B-NOAA, V86, P143; Hayes S. A, 2017, 241 NOAA NMFSNE; Hiby Lex, 2001, Journal of Cetacean Research and Management Special Issue, V2, P291; Hillman G. R, 2008, PHOTOIDENTIFICATION; Hlista BL, 2009, MAR ECOL PROG SER, V394, P289, DOI 10.3354/meps08267; Hoffmeyer MS, 2010, REV BIOL MAR OCEANOG, V45, P131, DOI 10.4067/S0718-19572010000100013; Houser D. S, 2016, NATURAL VARIATION ST, P467; Hunt KE, 2006, GEN COMP ENDOCR, V148, P260, DOI 10.1016/j.ygcen.2006.03.012; Hunt KE, 2016, CONSERV PHYSIOL, V4, DOI 10.1093/conphys/cow014; Hunt KE, 2015, INTEGR COMP BIOL, V55, P577, DOI 10.1093/icb/icv071; International Whaling Commission [IWC], 2012, WORKSH ASS SO RIGHT; International Whaling Commission [IWC], 2011, J CETACEAN RES MANAG, V12, P367; International Whaling Commission [IWC], 2001, J CETACEAN RES MANAG, V2, P1; Ivashchenko Y. V., 2013, Journal of Cetacean Research and Management, V13, P59; Ivashchenko Yulia V., 2012, Endangered Species Research, V18, P201, DOI 10.3354/esr00443; Jackson JA, 2008, MOL ECOL, V17, P236, DOI 10.1111/j.1365-294X.2007.03497.x; Jackson JA, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.150669; Jacobs E, 2018, MAR MAMMAL SCI, V35, P284, DOI [10.1111/mms.12519, DOI 10.1111/MMS.12519]; Jiang MS, 2007, MAR ECOL PROG SER, V349, P183, DOI 10.3354/meps07088; Johnson M, 2014, MULTIWEEK BEHAV SAMP; Johnson MP, 2003, IEEE J OCEANIC ENG, V28, P3, DOI 10.1109/JOE.2002.808212; KASUYA T, 1991, MAR MAMMAL SCI, V7, P230, DOI 10.1111/j.1748-7692.1991.tb00100.x; Katona Steven K., 1999, P311; Keith SA, 2017, ECOGRAPHY, V40, DOI 10.1111/ecog.02481; Keller Cherie A., 2012, Endangered Species Research, V18, P73, DOI 10.3354/esr00413; Kemper Catherine, 2008, Journal of Cetacean Research and Management, V10, P1; Kennedy AS, 2012, MAR MAMMAL SCI, V28, pE539, DOI 10.1111/j.1748-7692.2011.00539.x; Kenney Robert D., 2001, Journal of Cetacean Research and Management Special Issue, V2, P251; Klumov S. K., 1962, BIOL MAR STUD T I OC, V58, P202; Kniest E, 2010, MAR MAMMAL SCI, V26, P744, DOI 10.1111/j.1748-7692.2009.00368.x; Knowlton A. R, 2012, STATUS REPROD FEMALE, P41; Knowlton AR, 2012, MAR ECOL PROG SER, V466, P293, DOI 10.3354/meps09923; KNOWLTON AR, 1994, CAN J ZOOL, V72, P1297, DOI 10.1139/z94-173; KNOWLTON AR, 1992, MAR MAMMAL SCI, V8, P397, DOI 10.1111/j.1748-7692.1992.tb00054.x; Koski WR, 2015, J UNMANNED VEH SYST, V3, P22, DOI 10.1139/juvs-2014-0014; Kraus S, 2014, ENHANCING VISIBILITY, P67; Kraus S. D, 2007, URBAN WHALE N ATLANT; Kraus S. D, 1986, USE PHOTOGRAPHS IDEN, P145; Kraus Scott D., 2001, Journal of Cetacean Research and Management Special Issue, V2, P237; Kraus Scott D., 2001, Journal of Cetacean Research and Management Special Issue, V2, P231; Krumhansl KA, 2018, PROG OCEANOGR, V162, P202, DOI 10.1016/j.pocean.2018.02.018; Krzystan AM, 2018, ENDANGER SPECIES RES, V36, P279, DOI 10.3354/esr00902; Lanyon JM, 2016, AQUAT MAMM, V42, P470, DOI 10.1578/AM.42.4.2016.470; Leaper R, 2006, BIOL LETTERS, V2, P289, DOI 10.1098/rsbl.2005.0431; LeDuc R. G., 2012, Endangered Species Research, V18, P163, DOI 10.3354/esr00440; Leiter SM, 2017, ENDANGER SPECIES RES, V34, P45, DOI 10.3354/esr00827; Leroy G, 2018, EVOL APPL, V11, P1066, DOI 10.1111/eva.12564; LOCKYER CH, 1985, CAN J ZOOL, V63, P2328, DOI 10.1139/z85-345; Lysiak N. S. J., 2009, THESIS; Lysiak NSJ, 2018, FRONT MAR SCI, V5, DOI 10.3389/fmars.2018.00168; Malik S, 1999, CAN J ZOOL, V77, P1217, DOI 10.1139/cjz-77-8-1217; Maron CF, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139291; Marques Tiago A., 2011, Endangered Species Research, V13, P163, DOI 10.3354/esr00325; Mate B, 1992, APPL REMOTE SENSING, P183; Mate BR, 2011, MAR MAMMAL SCI, V27, P455, DOI 10.1111/j.1748-7692.2010.00412.x; Mate BR, 1997, J WILDLIFE MANAGE, V61, P1393, DOI 10.2307/3802143; Mate B, 2007, DEEP-SEA RES PT II, V54, P224, DOI 10.1016/j.dsr2.2006.11.021; Mate BR, 2017, ECOL EVOL, V7, P585, DOI 10.1002/ece3.2649; Matthews J. N., 2001, Journal of Cetacean Research and Management, V3, P271; Mayo C. A., 2001, Journal of Cetacean Research and Management Special Issue, P225; MAYO CA, 1990, CAN J ZOOL, V68, P2214, DOI 10.1139/z90-308; Mayo CA, 2018, MAR MAMMAL SCI, V34, P979, DOI 10.1111/mms.12511; McEwen BS, 2010, HORM BEHAV, V57, P105, DOI 10.1016/j.yhbeh.2009.09.011; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; McLeod BA, 2008, ARCTIC, V61, P61; McLeod BA, 2010, CONSERV GENET, V11, P339, DOI 10.1007/s10592-009-9811-6; Mellinger DK, 2007, MAR MAMMAL SCI, V23, P856, DOI 10.1111/j.1748-7692.2007.00144.x; Mellinger DK, 2011, BIOL LETTERS, V7, P411, DOI 10.1098/rsbl.2010.1191; Mellinger DK, 2004, MAR MAMMAL SCI, V20, P872, DOI 10.1111/j.1748-7692.2004.tb01198.x; Meyer-Gutbrod EL, 2018, GLOBAL CHANGE BIOL, V24, P455, DOI 10.1111/gcb.13929; Miller CA, 2012, MAR ECOL PROG SER, V459, P135, DOI 10.3354/meps09675; Miller CA, 2011, MAR ECOL PROG SER, V438, P267, DOI 10.3354/meps09174; Miller MA, 2002, INT J PARASITOL, V32, P997, DOI 10.1016/S0020-7519(02)00069-3; Miyashita T, 1998, RECENT DATA STATUS R; Moore M. J., 2004, CETACEAN RES MANAGEM, V6, P199; Moore M. J, 2017, P 22 BIENN C BIOL MA; Moore M, 2013, MAR MAMMAL SCI, V29, pE98, DOI 10.1111/j.1748-7692.2012.00591.x; Moore MJ, 2017, J EXP BIOL, V220, P3717, DOI 10.1242/jeb.165282; Moore MJ, 2013, DIS AQUAT ORGAN, V103, P229, DOI 10.3354/dao02566; Moore MJ, 1999, MAR MAMMAL SCI, V15, P1287, DOI 10.1111/j.1748-7692.1999.tb00891.x; Morano JL, 2012, CONSERV BIOL, V26, P698, DOI 10.1111/j.1523-1739.2012.01866.x; Munger LM, 2008, MAR MAMMAL SCI, V24, P795, DOI 10.1111/j.1748-7692.2008.00219.x; MURISON LD, 1989, CAN J ZOOL, V67, P1411, DOI 10.1139/z89-200; Muto M. M, 2017, ALASKA MARINE MAMMAL; NARWC, 2018, N ATL RIGHT WHAL CON; National Academies of Sciences and Engineering and Medicine, 2017, APPR UND CUM EFF STR; Nei M, 1975, MOL POPULATION GENET, DOI [10.3354/meps10547, DOI 10.3354/MEPS10547]; New LF, 2014, MAR ECOL PROG SER, V496, P99, DOI 10.3354/meps10547; New Zealand Blue Book, 1841, BLUE BOOK STAT 1841, P1502; NOAA, 2017, 2017 2018 N ATL RIGH, DOI [10.1111/mms.12443, DOI 10.1111/MMS.12443]; NOAA, 2008, NMFSOPR39 NOAA; Norman SA, 2018, MAR MAMMAL SCI, V34, P27, DOI 10.1111/mms.12443; Nousek-McGregor AE, 2014, PHYSIOL BIOCHEM ZOOL, V87, P160, DOI 10.1086/671811; Nowacek DP, 2004, P ROY SOC B-BIOL SCI, V271, P227, DOI 10.1098/rspb.2003.2570; Nowacek DP, 2001, P ROY SOC B-BIOL SCI, V268, P1811, DOI 10.1098/rspb.2001.1730; NRC, 2005, MAR MAMM POP OC NOIS; Omura H., 1969, Scientific Reports of the Whales Research Institute Tokyo, VNo. 21, P1; Ovsyanikova E, 2015, MAR MAMMAL SCI, V31, P1559, DOI 10.1111/mms.12243; Pace RM, 2017, ECOL EVOL, V7, P8730, DOI 10.1002/ece3.3406; Parks S. E., 2011, Endangered Species Research, V15, P63, DOI 10.3354/esr00368; Parks SE, 2012, BIOL LETTERS, V8, P57, DOI 10.1098/rsbl.2011.0578; Pastene L, 2018, POPULATION GENETIC S, P18; Patenaude Nathalie J., 2001, Journal of Cetacean Research and Management Special Issue, V2, P111; Patenaude NJ, 2007, J HERED, V98, P147, DOI 10.1093/jhered/esm005; Patenaude NJ, 1998, MAR MAMMAL SCI, V14, P350, DOI 10.1111/j.1748-7692.1998.tb00726.x; Patrician MR, 2010, J PLANKTON RES, V32, P1685, DOI 10.1093/plankt/fbq073; Patrician MR, 2009, MAR MAMMAL SCI, V25, P462, DOI 10.1111/j.1748-7692.2008.00261.x; Payne R., 1986, Reports of the International Whaling Commission Special Issue, P161; Payne R, 1981, EXTERNAL FEATURES SO; Peel D, 2018, FRONT MAR SCI, V5, DOI 10.3389/fmars.2018.00069; Pendleton Daniel E., 2012, Endangered Species Research, V18, P147, DOI 10.3354/esr00433; Pettis H, 2015, N ATLANTIC RIGHT WHA; Pettis H. M, 2009, N ATLANTIC RIGHT WHA; Pettis HM, 2017, ENDANGER SPECIES RES, V32, P237, DOI 10.3354/esr00800; Pettis HM, 2004, CAN J ZOOL, V82, P8, DOI [10.1139/z03-207, 10.1139/Z03-207]; Pirotta E, 2018, ECOL EVOL, V8, P9934, DOI 10.1002/ece3.4458; Pirotta V, 2018, FRONT ECOL ENVIRON, DOI [10.1002/fee.1987, DOI 10.1002/FEE.1987]; Pirotta V., 2017, FRONT MAR SCI, V4, P425, DOI [10.3389/fmars.2017.00425, DOI 10.3389/FMARS.2017.00425]; Pirzl R, 2009, MAR MAMMAL SCI, V25, P455, DOI 10.1111/j.1748-7692.2008.00276.x; Rastogi T, 2004, CAN J ZOOL, V82, P1647, DOI 10.1139/Z04-146; Rayment W, 2012, NEW ZEAL J MAR FRESH, V46, P431, DOI 10.1080/00288330.2012.697072; Rayment W, 2018, MAR BIOL, V165, DOI 10.1007/s00227-017-3264-0; Rayment W, 2015, J BIOGEOGR, V42, P463, DOI 10.1111/jbi.12443; Reeves R. R, 2007, NEAR ANNIHILATION SP, P39; Reeves R. R, 1992, RIGHT WHAL W N ATL M, P5; Reeves R. R., 2006, TAXONOMY WORLD WHALI, P82; Reeves R, 2012, MAR POLICY, V36, P454, DOI 10.1016/j.marpol.2011.08.005; REEVES RR, 1999, MAR FISH REV, V61, P1; Reid Keith, 2000, Journal of Cetacean Research and Management, V2, P143; Richards R, 2009, NEW ZEAL J ZOOL, V36, P447, DOI 10.1080/03014223.2009.9651477; Rocha Robert C. Jr, 2014, U S National Marine Fisheries Service Marine Fisheries Review, V76, P37; Rolland RM, 2005, GEN COMP ENDOCR, V142, P308, DOI 10.1016/j.ygcen.2005.02.002; Rolland RM, 2017, ENDANGER SPECIES RES, V34, P417, DOI 10.3354/esr00866; Rolland RM, 2016, MAR ECOL PROG SER, V542, P265, DOI 10.3354/meps11547; Rolland RM, 2012, P ROY SOC B-BIOL SCI, V279, P2363, DOI 10.1098/rspb.2011.2429; Rone BK, 2012, MAR MAMMAL SCI, V28, pE528, DOI 10.1111/j.1748-7692.2012.00573.x; Rosenbaum HC, 2000, MOL ECOL, V9, P1793, DOI 10.1046/j.1365-294x.2000.01066.x; Rowntree V. J, 2008, FORAGING BEHAV SO RI; Rowntree V. J., 2001, J CETACEAN RES MANAG; Rowntree VJ, 2013, MAR ECOL PROG SER, V493, P275, DOI 10.3354/meps10506; Rowntree Victoria J., 2001, Journal of Cetacean Research and Management Special Issue, V2, P133; Rowntree VJ, 1998, MAR MAMMAL SCI, V14, P99, DOI 10.1111/j.1748-7692.1998.tb00693.x; Scarff J. E., 1991, REPORT INT WHALING C, V41, P467; Scarff J. E., 1986, REP INT WHAL COMMN S, V10, P43; Scarff James E., 2001, Journal of Cetacean Research and Management Special Issue, V2, P261; SCHAEFF CM, 1993, CAN J ZOOL, V71, P339, DOI 10.1139/z93-047; Schick RS, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064166; Schick RS, 2009, CAN J FISH AQUAT SCI, V66, P1399, DOI 10.1139/F09-115; Schlaepfer MA, 2002, TRENDS ECOL EVOL, V17, P474, DOI 10.1016/S0169-5347(02)02580-6; Sekiguchi K, 2014, MAR MAMMAL SCI, V30, P1199, DOI 10.1111/mms.12105; Seyboth E, 2016, SCI REP-UK, V6, DOI 10.1038/srep28205; Shelden KEW, 2005, MAMMAL REV, V35, P129, DOI 10.1111/j.1365-2907.2005.00065.x; Sierra E, 2016, EMERG INFECT DIS, V22, P740, DOI 10.3201/eid2204.150954; Sierra E, 2014, EMERG INFECT DIS, V20, P269, DOI 10.3201/eid2002.131463; Sigsgaard EE, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-016-0004; Sironi M, 2009, KELP GULLS LARUS DOM; Sirovic A, 2015, MAR MAMMAL SCI, V31, P800, DOI 10.1111/mms.12189; Smith TD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034905; Suisted R, 2004, DEP CONSERVATION MAR; Thomas PO, 2016, MAR MAMMAL SCI, V32, P682, DOI 10.1111/mms.12281; Tormosov DD, 1998, BIOL CONSERV, V86, P185, DOI 10.1016/S0006-3207(98)00008-1; Torres LG, 2017, POLAR BIOL, V40, P95, DOI 10.1007/s00300-016-1926-x; Torres LG, 2013, DIVERS DISTRIB, V19, P1138, DOI 10.1111/ddi.12069; Trathan PN, 2003, FISH OCEANOGR, V12, P569, DOI 10.1046/j.1365-2419.2003.00268.x; Tsoularis A, 2002, MATH BIOSCI, V179, P21, DOI 10.1016/S0025-5564(02)00096-2; Tynan CT, 2001, SCIENCE, V294, P1894, DOI 10.1126/science.1065682; Valenzuela LO, 2018, MAR ECOL PROG SER, V603, P243, DOI 10.3354/meps12722; Valenzuela LO, 2010, AQUAT MAMM, V36, P138, DOI 10.1578/AM.36.2.2010.138; Valenzuela LO, 2009, MOL ECOL, V18, P782, DOI 10.1111/j.1365-294X.2008.04069.x; Van Bressem MF, 2009, DIS AQUAT ORGAN, V86, P143, DOI 10.3354/dao02101; van der Hoop J, 2017, ECOL EVOL, V7, P92, DOI 10.1002/ece3.2615; van der Hoop J, 2014, MAR MAMMAL SCI, V30, P282, DOI 10.1111/mms.12042; van der Hoop JM, 2017, MAR POLLUT BULL, V115, P91, DOI 10.1016/j.marpolbul.2016.11.060; van der Hoop JM, 2017, ENDANGER SPECIES RES, V32, P1, DOI 10.3354/esr00781; van der Hoop JM, 2016, MAR MAMMAL SCI, V32, P619, DOI 10.1111/mms.12292; van der Hoop JM, 2015, CONSERV LETT, V8, P24, DOI 10.1111/conl.12105; Van der Hoop JM, 2013, CONSERV BIOL, V27, P121, DOI 10.1111/j.1523-1739.2012.01934.x; van der Hoop JM, 2012, ECOL APPL, V22, P2021, DOI 10.1890/11-1841.1; Van Parijs SM, 2015, MAR TECHNOL SOC J, V49, P70, DOI 10.4031/MTSJ.49.2.16; Van Parijs SM, 2009, MAR ECOL PROG SER, V395, P21, DOI 10.3354/meps08123; van Waerebeek Koen, 2009, Boletin del Museo Nacional de Historia Natural Chile, V58, P75; Vanderlaan A. S. M, 2010, THESIS; Wada S., 1973, Report Int Commn Whaling, V23, P164; Wade P. R., 2011, Endangered Species Research, V13, P99, DOI 10.3354/esr00324; Wade P, 2006, BIOL LETT-UK, V2, P417, DOI 10.1098/rsbl.2006.0460; Wade PR, 2011, BIOL LETTERS, V7, P83, DOI 10.1098/rsbl.2010.0477; Waite Janice M., 2003, Northwestern Naturalist, V84, P38, DOI 10.2307/3536721; Waldick RC, 2002, MOL ECOL, V11, P2241, DOI 10.1046/j.1365-294X.2002.01605.x; Webster TA, 2016, J ACOUST SOC AM, V140, P322, DOI 10.1121/1.4955066; Whitebead H, 2007, J THEOR BIOL, V245, P341, DOI 10.1016/j.jtbi.2006.10.001; Whitehead H, 2001, ECOLOGY, V82, P1417, DOI 10.1890/0012-9658(2001)082[1417:AOAMUO]2.0.CO;2; Whitehead H, 1978, MAMMALS SEAS REPORT, V3, P189; Whitehead H, 2010, LEARN BEHAV, V38, P329, DOI 10.3758/LB.38.3.329; Wiley D., 2013, COAST GUARD J SAF SE, V70, P10, DOI DOI 10.1017/CB09781107415324.004; Winn H.E., 1986, Reports of the International Whaling Commission Special Issue, P129; WINN HE, 1995, CONT SHELF RES, V15, P593, DOI 10.1016/0278-4343(94)00061-Q; WISHNER KF, 1995, CONT SHELF RES, V15, P475, DOI 10.1016/0278-4343(94)00057-T; Wright D, 2017, J ACOUST SOC AM, V142, P2503, DOI [10.1121/1.501439, DOI 10.1121/1.501439]; Wright D. L., 2015, SIMULTANEOUS IDENTIF, P63; Wright D. L, 2018, MAR MAMMAL SCI, V35, P311, DOI [10.1111/mms.1254, DOI 10.1111/MMS.1254]; Wright D. L, 2016, PASSIVE ACOUSTIC MON, P56; Zakardjian BA, 2003, J GEOPHYS RES-OCEANS, V108, DOI 10.1029/2002JC001410; Zerbini A. N, 2016, TRACKING SO RIGHT WH, P1; Zerbini AN, 2015, MAR ECOL PROG SER, V532, P269, DOI 10.3354/meps11366 315 0 0 0 0 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 2296-7745 FRONT MAR SCI Front. Mar. Sci. JAN 30 2019 5 10.3389/fmars.2018.00530 25 Environmental Sciences; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology HK3ON WOS:000457826000001 DOAJ Gold 2019-02-21 J Pesendorfer, MB; Bogdziewicz, M; Koenig, WD; Ledwon, M; Zywiec, M Pesendorfer, Mario B.; Bogdziewicz, Michal; Koenig, Walter D.; Ledwon, Mateusz; Zywiec, Magdalena Declining fruit production before death in a widely distributed tree species, Sorbus aucuparia L. ANNALS OF FOREST SCIENCE English Article Reproductive trade-offs; Fruit production; Senescence; Sorbus aucuparia; Terminal investment; Rosaceae TERMINAL INVESTMENT; REPRODUCTIVE EFFORT; NATURAL-SELECTION; SENESCENCE; POPULATION; TRAITS; GROWTH; COSTS Key messageTrees are commonly thought to increase their seed production before death. We tested this terminal investment hypothesis using long-term data on rowan trees (Sorbus aucuparia) and found no support. Rather, seed production declined significantly before death, which points to the potential detrimental effects of reproductive senescence on regeneration in stands of old trees.ContextAging poses a fundamental challenge for long-lived organisms. As mortality changes with with age due to actuarial senescence, reproductive senescence may also lead to declines in fertility. However, life history theory predicts that reproductive investment should increase before mortality to maximize lifetime reproductive success, a phenomenon termed terminal investment.AimsTo date, it is unclear whether long-lived, indeterminantly growing trees experience reproductive senescence or display terminal investment.MethodsWe investigated fruit production of rowan (Sorbus aucuparia L.), widely distributed trees that live up to 150years, as they approached death.ResultsIn our study population in Poland's Carpathian Mountains, 79 trees that died produced up to 20% fewer fruits in the years before their demise compared to 199 surviving trees of the same population.ConclusionThe pattern of reproductive investment in S. aucuparia is suggestive of age-independent reproductive senescence rather than terminal investment. These findings highlight that the understanding of the generality of life history strategies across diverse taxa of perennial plants is still in its infancy. [Pesendorfer, Mario B.; Koenig, Walter D.] Cornell Lab Ornithol, Ithaca, NY 14850 USA; [Pesendorfer, Mario B.; Koenig, Walter D.] Univ Calif Carmel Valley, Hastings Nat Hist Reservat, Carmel Valley, CA USA; [Bogdziewicz, Michal] Adam Mickiewicz Univ, Dept Systemat Zool, Poznan, Poland; [Bogdziewicz, Michal] Univ Autonoma Barcelona, Ctr Ecol Res & Forestry Applicat, Barcelona, Spain; [Koenig, Walter D.] Cornell Univ, Dept Neurobiol & Behav, Ithaca, NY 14853 USA; [Ledwon, Mateusz] Polish Acad Sci, Inst Systemat & Evolut Anim, Krakow, Poland; [Zywiec, Magdalena] Univ Lisbon, Inst Super Agron, Ctr Ecol Aplicada Prof Baeta Neves CEABN InBIO, Lisbon, Portugal; [Zywiec, Magdalena] Polish Acad Sci, Wladyslaw Szafer Inst Bot, Krakow, Poland Pesendorfer, MB (reprint author), Cornell Lab Ornithol, Ithaca, NY 14850 USA.; Pesendorfer, MB (reprint author), Univ Calif Carmel Valley, Hastings Nat Hist Reservat, Carmel Valley, CA USA. mario.pesendorfer@yahoo.com Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Ally D, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000454; Barringer BC, 2013, OECOLOGIA, V171, P129, DOI 10.1007/s00442-012-2386-9; Baudisch A, 2013, J ECOL, V101, P596, DOI 10.1111/1365-2745.12084; Brooks ME, 2017, BIORXIV, DOI [10.1101/132753, DOI 10.1101/132753, 10. 1101/132753]; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Feraandez-Martinez M, 2015, PLANT ECOL, V216, P1061, DOI 10.1007/s11258-015-0489-1; Fisher RA, 1930, GENETICAL THEORY NAT; Grime JP, 1988, COMP PLANT ECOLOGY F; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hammers M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040413; Hartig F, 2018, DHARMA RESIDUAL DIAG; Holeksa J, 2017, FOREST ECOL MANAG, V388, P79, DOI 10.1016/j.foreco.2016.08.026; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Kirkwood T B, 1987, Basic Life Sci, V42, P209; Knops JMH, 2007, P NATL ACAD SCI USA, V104, P16982, DOI 10.1073/pnas.0704251104; Koenig WD, 2017, AM NAT, V189, P564, DOI 10.1086/691161; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; Magnusson A., 2017, GLMMTMB GEN LINEAR M; Martin JGA, 2011, ECOL LETT, V14, P576, DOI 10.1111/j.1461-0248.2011.01621.x; Medawar P, 1952, UNSOLVED PROBLEM BIO; Munne-Bosch S, 2008, TRENDS PLANT SCI, V13, P216, DOI 10.1016/j.tplants.2008.02.002; Munne-Bosch S, 2015, TRENDS PLANT SCI, V20, P713, DOI 10.1016/j.tplants.2015.07.009; Pearse IS, 2016, NEW PHYTOL, V212, P546, DOI 10.1111/nph.14114; Pedersen BS, 1998, ECOL MODEL, V105, P347, DOI 10.1016/S0304-3800(97)00162-2; Pesendorfer MB, 2016, J ECOL, V104, P637, DOI 10.1111/1365-2745.12554; Pesendorfer MB, 2018, DATA DECLINING FRUIT, DOI [10. 6084/m9. figshare. 7330052. v1, DOI 10.6084/M9.FIGSHARE.7330052.V1]; R Core Team, 2018, R LANG ENV STAT COMP; Raspe O, 2000, J ECOL, V88, P910, DOI 10.1046/j.1365-2745.2000.00502.x; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Salguero-Gomez R, 2013, J ECOL, V101, P545, DOI 10.1111/1365-2745.12089; Satake A, 2004, OIKOS, V104, P540, DOI 10.1111/j.0030-1299.2004.12694.x; Shefferson RP, 2013, J ECOL, V101, P577, DOI 10.1111/1365-2745.12079; Sletvold N, 2015, ECOL LETT, V18, P357, DOI 10.1111/ele.12417; Sperens U, 1997, ECOGRAPHY, V20, P521, DOI 10.1111/j.1600-0587.1997.tb00421.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Thomas H, 2013, NEW PHYTOL, V197, P696, DOI 10.1111/nph.12047; Tifferet S., 2010, LETT EVOLUTIONARY BE, V1, P27; Vacchiano G, 2018, ECOL MODEL, V376, P40, DOI 10.1016/j.ecolmodel.2018.03.004; Weismann A., 1893, GERM PLASM THEORY HE; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wohlleben P, 2016, HIDDEN LIFE TREES; Yoccoz NG, 2002, P ROY SOC B-BIOL SCI, V269, P1523, DOI 10.1098/rspb.2002.2047; Zuur Alain F., 2009, P1; Zywiec M, 2008, PLANT ECOL, V194, P283, DOI 10.1007/s11258-007-9291-z; Zywiec M, 2018, J ECOL, V106, P1307, DOI 10.1111/1365-2745.12896; Zywiec M, 2013, TREES-STRUCT FUNCT, V27, P1365, DOI 10.1007/s00468-013-0884-y; Zywiec M, 2012, PLANT ECOL, V213, P993, DOI 10.1007/s11258-012-0059-8 52 0 0 0 0 SPRINGER FRANCE PARIS 22 RUE DE PALESTRO, PARIS, 75002, FRANCE 1286-4560 1297-966X ANN FOREST SCI Ann. For. Sci. JAN 30 2019 76 1 11 10.1007/s13595-018-0791-x 7 Forestry Forestry HJ5TB WOS:000457243900001 2019-02-21 J Merklinger-Gruchala, A; Jasienska, G; Kapiszewska, M Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria Paternal investment and low birth weight - The mediating role of parity PLOS ONE English Article FATHER INVOLVEMENT; INFANT-MORTALITY; PARTNER SUPPORT; SOCIAL SUPPORT; LIFE-HISTORY; PREGNANCY; STRESS; EVOLUTION; HEALTH; CONSEQUENCES According to life-history theory, paternal investment affects the well-being of offspring. We hypothesized that environmental stress caused by a lack of paternal investment may diminish maternal resource allocation during pregnancy, especially for women who already have dependent children. Our study was conducted on a representative group of more than 80,500 singleton, live-born, full-term infants born in Krakow, Poland in the period 1995-2009. Birth data were obtained from the birth registry. We found that missing data about fathers (a proxy measure of low paternal investment) was associated with higher probability of multiparous mothers giving birth to low-birth-weight infants (1.48; 95% CI 1.05-2.08), but this was not the case with primiparous mothers (1.19; 95% CI 0.89-1.59). The statistically significant synergistic effect between parity and paternal investment was found (Synergy Factor = 2.12; 95% CI 1.47-3.05, p<0.001). These findings suggest that in situations of low paternal investment, multiparous mothers face trade-offs between investing in existing versus unborn children, therefore investment in the latter is lower. Such a strategy may benefit maternal fitness due to investment in older children, who have higher reproductive value. [Merklinger-Gruchala, Anna; Kapiszewska, Maria] Andrzej Frycz Modrzewski Krakow Univ, Fac Med & Hlth Sci, Krakow, Poland; [Jasienska, Grazyna] Jagiellonian Univ, Med Coll, Fac Hlth Sci, Dept Environm Hlth, Krakow, Poland Merklinger-Gruchala, A (reprint author), Andrzej Frycz Modrzewski Krakow Univ, Fac Med & Hlth Sci, Krakow, Poland. amerklinger@afm.edu.pl Ministry of Science and Higher Education [WZiNM/DS/6/2017] This study was carried out within the Framework of a Project No. N N404 055 136, financed by the Ministry of Science and Higher Education (to Maria Kapiszewska), and Project No WZiNM/DS/6/2017 financed by the Ministry of Science and Higher Education (to Anna Merklinger-Gruchala). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Aiello LC, 2002, AM J HUM BIOL, V14, P551, DOI 10.1002/ajhb.10069; Alio AP, 2011, J COMMUN HEALTH, V36, P63, DOI 10.1007/s10900-010-9280-3; Aliyu MH, 2005, BIRTH-ISS PERINAT C, V32, P1, DOI 10.1111/j.0730-7659.2005.00339.x; Anderson KG, 2017, HUM NATURE-INT BIOS, V28, P168, DOI 10.1007/s12110-017-9284-0; Anderson KG, 2003, BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY, P57; BARKER DJP, 1995, BRIT MED J, V311, P171, DOI 10.1136/bmj.311.6998.171; Bentley GR, 2009, STUDIES BIOSOCIAL SO, V3; Bracero L, 2009, J MATERN-FETAL NEO M, V22, P342, DOI 10.1080/14767050802663178; Bribiescas RG, 2010, EVOLUTIONARY ENDOCRI, P127; Bribiescas RG, 2012, CURR ANTHROPOL, V53, pS424, DOI 10.1086/667538; Buss D., 2015, EVOLUTIONARY PSYCHOL; Bussieres EL, 2015, DEV REV, V36, P179, DOI 10.1016/j.dr.2015.04.001; Chamie J., 2017, OUT OF WEDLOCK BIRTH; Cheng ER, 2016, J WOMENS HEALTH, V25, P672, DOI 10.1089/jwh.2015.5462; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; Cohen K, 2016, MATERN CHILD HLTH J, V20, P2291, DOI 10.1007/s10995-016-2048-3; Cortina-Borja Mario, 2009, BMC Res Notes, V2, P105, DOI 10.1186/1756-0500-2-105; Coussons-Read ME, 2007, BRAIN BEHAV IMMUN, V21, P343, DOI 10.1016/j.bbi.2006.08.006; Dunkel Schetter C, 2010, HDB HLTH PSYCHOL; Dunkel-Schetter C., 1996, HDB SOCIAL SUPPORT F, P375; Elsenbruch S, 2007, HUM REPROD, V22, P869, DOI 10.1093/humrep/del432; Field T, 2006, INFANT BEHAV DEV, V29, P445, DOI 10.1016/j.infbeh.2006.03.003; Gaudino JA, 1999, SOC SCI MED, V48, P253, DOI 10.1016/S0277-9536(98)00342-6; Geary D. C, 1998, MALE FEMALE EVOLUTIO; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Hinkle SN, 2014, PAEDIATR PERINAT EP, V28, P106, DOI 10.1111/ppe.12099; Hobel CJ, 2008, CLIN OBSTET GYNECOL, V51, P333, DOI 10.1097/GRF.0b013e31816f2709; Hornstra G, 2000, AM J CLIN NUTR, V71, p1262S, DOI 10.1093/ajcn/71.5.1262s; Hrdy SB, FAM RELAT, DOI [10.1093/acprof:oso/9780195320510.001.0001, DOI 10.1093/ACPROF:OSO/9780195320510.001.0001]; Jasienska G., 2017, ARC LIFE EVOLUTION H, P159; Jasienska G., 2013, FRAGILE WISDOM EVOLU; Jasienska G, 2009, AM J HUM BIOL, V21, P524, DOI 10.1002/ajhb.20931; Kalantaridou SN, 2010, J REPROD IMMUNOL, V85, P33, DOI 10.1016/j.jri.2010.02.005; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Lewandowski P, 2012, ADMITTING PATERNAL A, P7; Mann J., 1992, ADAPTED MIND EVOLUTI, P367; Martin LT, 2007, MATERN CHILD HLTH J, V11, P595, DOI 10.1007/s10995-007-0209-0; McDade TW, 2006, PSYCHOSOM MED, V68, P376, DOI 10.1097/01.psy.0000221371.43607.64; Midi H, 2010, J INTERDISCIP MATH, V13, P253, DOI 10.1080/09720502.2010.10700699; O'Donnell MH, 2017, THESIS; Padilla YC, 2001, CHILD YOUTH SERV REV, V23, P427, DOI 10.1016/S0190-7409(01)00136-0; Parker VJ, 2010, J REPROD IMMUNOL, V85, P86, DOI 10.1016/j.jri.2009.10.011; Pathak Priyali, 2004, Indian Journal of Pediatrics, V71, P1007; REDONDO T, 1989, BEHAV ECOL SOCIOBIOL, V25, P369, DOI 10.1007/BF00302995; Rini C, 2006, PERS RELATIONSHIP, V13, P207, DOI 10.1111/j.1475-6811.2006.00114.x; Schetter CD, 2011, ANNU REV PSYCHOL, V62, P531, DOI 10.1146/annurev.psych.031809.130727; Sear R., 2011, EVOLUTIONARY PSYCHOL, P215; Shah PS, 2011, MATERN CHILD HLTH J, V15, P1097, DOI 10.1007/s10995-010-0654-z; Shah PS, 2010, ACTA OBSTET GYN SCAN, V89, P862, DOI 10.3109/00016349.2010.486827; Shenk MK, 2011, FRONT COLLECT, P17, DOI 10.1007/978-3-642-13968-0_2; Stearns S, 1992, EVOLUTION LIFE HIST; Su Q, 2015, PEDIATR NEONATOL, V56, P376, DOI 10.1016/j.pedneo.2015.02.002; Szukalski P., 2017, B INFORM, V6; Tan H., 2004, BMC PREGNANCY CHILDB, V4, P21, DOI DOI 10.1186/1471-2393-4-21; Teitler JO, 2001, CHILD YOUTH SERV REV, V23, P403, DOI 10.1016/S0190-7409(01)00137-2; Trevathan WR, 2017, HUMAN BIRTH EVOLUTIO; Trivers R., 1972, SEXUAL SELECTION DES, P1871; TRIVERS RL, 1974, AM ZOOL, V14, P249; Wells JCK, 2003, J THEOR BIOL, V221, P143, DOI 10.1006/jtbi.2003.3183 59 0 0 0 0 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JAN 24 2019 14 1 e0210715 10.1371/journal.pone.0210715 14 Multidisciplinary Sciences Science & Technology - Other Topics HI8IY WOS:000456700400025 30677049 DOAJ Gold 2019-02-21 J Ziegler, CM; Frisk, MG Ziegler, Catherine M.; Frisk, Michael G. Flatfish utilize sediment blanket to facilitate thermoregulation MARINE ECOLOGY PROGRESS SERIES English Article Behavioral strategy; Behavioral thermoregulation; Climate change; Environmental extremes; Burial; Acoustic telemetry PSEUDOPLEURONECTES-AMERICANUS WALBAUM; WINTER FLOUNDER; BEHAVIOR; FISH; ENDOTHERMY Animals confront thermoregulatory constraints that define species ranges, impact productivity, and limit their ability to cope with long-term environmental change. Marine poikilothermic species are assumed to have a body temperature comparable to ambient temperatures as well as possess a limited ability to behaviorally regulate body temperature. Winter flounder Pseudopleuronectes americanus is a migratory species with a complex life history that places it in environments that exceed the species' thermal tolerance. To determine if winter flounder use temperature refuge during seasonally cold and warm periods, we evaluated internal body temperature relative to water temperature, utilizing acoustic telemetry in a southern New England estuary. The internal body temperature of individuals commonly exceeded that of ambient water during the winter, and conversely, remained lower than ambient water during the summer. During a 3 mo trial, Kalman filter time series analysis indicated that internal body temperatures of winter flounder exhibited greater similarity to sediment temperature recorded at depths of 3, 6 and 9 cm compared to water temperature, indicating that winter flounder use burial as a strategy for thermoregulation. Such discoveries have the potential to transform our understanding of the complex interaction between environmental conditions and behavior, providing critical insight into phenomena that underpin species' life history strategies. [Ziegler, Catherine M.] New York State Dept Environm Conservat, East Setauket, NY 11733 USA; [Ziegler, Catherine M.; Frisk, Michael G.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA Ziegler, CM (reprint author), New York State Dept Environm Conservat, East Setauket, NY 11733 USA.; Ziegler, CM (reprint author), SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. catherine.ziegler@dec.ny.gov Army Corps of Engineers and Tetra Tech This project was made possible by funding from the Army Corps of Engineers and Tetra Tech. We thank Robert Cerrato and Janet Nye for their input on the research, Jill Olin and Matthew Siskey for their comments on the manuscript, and Oliver Shipley for his comments and help with the figures. We also thank Joshua Zacharias for his assistance with field sampling and Bill Pfeiffer for diving. We greatly appreciate the assistance of Captains Christian Harter, Jason Schweitzer, and David Bowman, as well as Strong's Marina. ANSELL AD, 1993, J FISH BIOL, V43, P837, DOI 10.1006/jfbi.1993.1188; Bailey H, 2016, SCI REP-UK, V6, DOI 10.1038/srep30280; BERMAN CH, 1991, J FISH BIOL, V39, P301, DOI 10.1111/j.1095-8649.1991.tb04364.x; Bernal D, 2005, NATURE, V437, P1349, DOI 10.1038/nature04007; BERNATCHEZ L, 1987, CAN J FISH AQUAT SCI, V44, P399, DOI 10.1139/f87-049; BLOCK BA, 1993, SCIENCE, V260, P210, DOI 10.1126/science.8469974; CAREY FG, 1971, AM ZOOL, V11, P137; CECH JJ, 1976, CAN J ZOOL, V54, P1383, DOI 10.1139/z76-156; Divver MM, 2012, THESIS; DUMAN JG, 1974, NATURE, V247, P237, DOI 10.1038/247237a0; Durbin J, 2001, TIME SERIES ANAL STA, P11; Frisk MG, 2014, FISH FISH, V15, P242, DOI 10.1111/faf.12014; Graham JB, 2004, J EXP BIOL, V207, P4015, DOI 10.1242/jcb.01267; Grothues TM, 2012, J EXP MAR BIOL ECOL, V438, P125, DOI 10.1016/j.jembe.2012.09.006; Heupel MR, 2005, 1066 MOT MAR LAB; Klein-MacPhee G, 2002, BIGELOW SCHROEDERS F, P560; LINTHICUM D S, 1972, Comparative Biochemistry and Physiology A, V43, P425; Lobell MJ, 1939, 28 NEW YORK STAT 1 S, P63; McCauley MM, 2014, T AM FISH SOC, V143, P1330, DOI 10.1080/00028487.2014.938193; MEINHOLD RJ, 1983, AM STAT, V37, P123, DOI 10.2307/2685871; Mendonca PC, 2010, COMP BIOCHEM PHYS A, V155, P245, DOI 10.1016/j.cbpa.2009.11.006; MINCKLEY CO, 1969, COPEIA, P200; MINCKLEY W L, 1971, Southwestern Naturalist, V15, P459, DOI 10.2307/3670225; Nye JA, 2009, MAR ECOL PROG SER, V393, P111, DOI 10.3354/meps08220; OLLA BL, 1969, T AM FISH SOC, V98, P717, DOI 10.1577/1548-8659(1969)98[717:BOWFIA]2.0.CO;2; Perlmutter A., 1947, Bulletin of the Bingham Oceanographic Collection, V11, P1; Pinsky ML, 2013, SCIENCE, V341, P1239, DOI 10.1126/science.1239352; Sagarese SR, 2011, MAR COAST FISH, V3, P295, DOI 10.1080/19425120.2011.603957; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; Wegner NC, 2015, SCIENCE, V348, P786, DOI 10.1126/science.aaa8902; Welsh JQ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033187; Ziegler CM, 2017, THESIS 32 0 0 0 0 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. JAN 17 2019 609 179 186 10.3354/meps12817 8 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography HI1LQ WOS:000456207300012 2019-02-21 J Whelan, J; Hingston, ST; Thomson, M Whelan, Jodie; Hingston, Sean T.; Thomson, Matthew Does growing up rich and insecure make objects seem more human? Childhood material and social environments interact to predict anthropomorphism PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Anthropomorphism; Childhood socioeconomic status; Attachment style; Anxiety; Avoidance; Communication style FAMILY COMMUNICATION PATTERNS; LIFE-HISTORY STRATEGIES; ATTACHMENT STYLE; INDIVIDUAL-DIFFERENCES; SOCIOECONOMIC-STATUS; ADULT ATTACHMENT; ROMANTIC RELATIONSHIPS; EFFECTANCE MOTIVATION; SECURITY BLANKETS; CONNECTION Despite broad, multi-disciplinary interest in the phenomenon of anthropomorphism, the psychological determinants of individual differences in anthropomorphic tendencies remain largely unaddressed. In an effort to address this gap, this research investigates the relationship between childhood material and social environments and adult anthropomorphic tendencies. Specifically, we hypothesize that people who grew up wealthy and insecurely attached are the most likely to anthropomorphize because of their simultaneously high needs for effectance and sociality. Consistent with this prediction, three studies find that people with high childhood socioeconomic status (SES) and insecure attachment styles are the most likely to anthropomorphize. Furthermore, in support of our theorizing, we show that childhood SES interacts with attachment style to predict anthropomorphic tendencies because the parents of those who grew up wealthy tended to use a family communication style that emphasized autonomy and mastery. Ultimately, our findings suggest that individual differences in adult anthropomorphic tendencies are rooted in childhood environments. [Whelan, Jodie] York Univ, Sch Adm Studies, 4700 Keele St, Toronto, ON M3J 1P3, Canada; [Hingston, Sean T.] Western Univ, DAN Dept Management & Org Studies, London, ON, Canada; [Thomson, Matthew] Western Univ, Richard Ivey Sch Business, London, ON, Canada Whelan, J (reprint author), York Univ, Sch Adm Studies, 4700 Keele St, Toronto, ON M3J 1P3, Canada. whelanj@yorku.ca Social Sciences and Humanities Research Council of Canada (SSHRC) [430-2017-00786] This research was supported by a grant from the Social Sciences and Humanities Research Council of Canada (SSHRC; 430-2017-00786). SSHRC did not have any involvement in study design; collection, analysis, interpretation of data; the writing of the report; or the decision to submit the article for publication. Ainsworth MS, 1978, PATTERNS ATTACHMENT; Asquith P.J., 1986, P61; Baker AM, 2016, J CONSUM BEHAV, V15, P291, DOI 10.1002/cb.1579; Barbaro N, 2019, J INTERPERS VIOLENCE, V34, P240, DOI 10.1177/0886260516640548; BARTHOLOMEW K, 1991, J PERS SOC PSYCHOL, V61, P226, DOI 10.1037//0022-3514.61.2.226; Bartz JA, 2016, PSYCHOL SCI, V27, P1644, DOI 10.1177/0956797616668510; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Bergkvist L, 2007, J MARKETING RES, V44, P175, DOI 10.1509/jmkr.44.2.175; Bowlby J., 1973, ATTACHMENT LOSS SEPA, V2; Bowlby J., 1969, ATTACHMENT LOSS ATTA; Bowlby J., 1980, ATTACHMENT LOSS LOSS, V3; BRENNAN KA, 1995, PERS SOC PSYCHOL B, V21, P267, DOI 10.1177/0146167295213008; Carey RM, 2017, CURR OPIN PSYCHOL, V18, P123, DOI 10.1016/j.copsyc.2017.08.031; Carey S., 1985, CONCEPTUAL CHANGE CH; Chen C, 2015, PERS INDIV DIFFER, V76, P177, DOI 10.1016/j.paid.2014.12.001; Cheon BK, 2017, P NATL ACAD SCI USA, V114, P72, DOI 10.1073/pnas.1607330114; Cullen H, 2014, SOC COGN AFFECT NEUR, V9, P1276, DOI 10.1093/scan/nst109; David ME, 2017, PERS INDIV DIFFER, V109, P44, DOI 10.1016/j.paid.2016.12.042; Donate-Bartfield E, 2004, J FAM PSYCHOL, V18, P453, DOI 10.1037/0893-3200.18.3.453; Dubois D, 2015, J PERS SOC PSYCHOL, V108, P436, DOI 10.1037/pspi0000008; Epley N, 2008, SOC COGNITION, V26, P143, DOI 10.1521/soco.2008.26.2.143; Epley N, 2008, PSYCHOL SCI, V19, P114, DOI 10.1111/j.1467-9280.2008.02056.x; Epley N, 2007, PSYCHOL REV, V114, P864, DOI 10.1037/0033-295X.114.4.864; FEENEY JA, 1992, AUST J PSYCHOL, V44, P69, DOI 10.1080/00049539208260145; FEENEY JA, 1990, J PERS SOC PSYCHOL, V58, P281, DOI 10.1037//0022-3514.58.2.281; Fraley RC, 2015, J PERS SOC PSYCHOL, V109, P354, DOI 10.1037/pspp0000027; Gerber J, 2009, PERSPECT PSYCHOL SCI, V4, P468, DOI 10.1111/j.1745-6924.2009.01158.x; Gray HM, 2007, SCIENCE, V315, P619, DOI 10.1126/science.1134475; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Grougiou V, 2015, J CONSUM BEHAV, V14, P115, DOI 10.1002/cb.1505; Guthrie S., 1993, FACES CLOUDS NEW THE; Hayes AF, 2013, INTRO MEDIATION MODE; Hill SE, 2013, J EXP SOC PSYCHOL, V49, P888, DOI 10.1016/j.jesp.2013.03.016; Huang LN, 1999, COMMUNICATION Q, V47, P230, DOI DOI 10.1080/01463379909370136; Hume D., 1957, NATURAL HIST RELIG; Kasser T., 2002, HIGH PRICE MAT; Keefer LA, 2012, J EXP SOC PSYCHOL, V48, P912, DOI 10.1016/j.jesp.2012.02.007; Kirkpatrick LA, 1998, PERS SOC PSYCHOL B, V24, P961, DOI 10.1177/0146167298249004; Kohn M., 1989, CLASS CONFORMITY STU; KOHN ML, 1982, AM J SOCIOL, V87, P1257, DOI 10.1086/227593; Kraus MW, 2012, PSYCHOL REV, V119, P546, DOI 10.1037/a0028756; Kraus MW, 2011, CURR DIR PSYCHOL SCI, V20, P246, DOI 10.1177/0963721411414654; Kraus MW, 2009, J PERS SOC PSYCHOL, V97, P992, DOI 10.1037/a0016357; Kusserow AS, 1999, ETHOS, V27, P210, DOI 10.1525/eth.1999.27.2.210; Kwok C, 2018, PERS INDIV DIFFER, V127, P1, DOI 10.1016/j.paid.2018.01.037; Letheren K, 2016, EUR J MARKETING, V50, P973, DOI 10.1108/EJM-05-2014-0291; Malakoff ME, 1998, AM J ORTHOPSYCHIAT, V68, P630, DOI 10.1037/h0080371; Markus HR, 2003, NEBR SYM MOTIV, V49, P1; McLeod J. M, 1972, TELEVISION SOCIAL BE, V3, P239; Mead NL, 2011, J CONSUM RES, V37, P902, DOI 10.1086/656667; Mikulincer M., 2007, ATTACHMENT ADULTHOOD; Mittal C, 2016, J CONSUM RES, V43, P636, DOI 10.1093/jcr/ucw046; Mittal C, 2014, J PERS SOC PSYCHOL, V107, P621, DOI 10.1037/a0037398; MOSCHIS GP, 1985, J CONSUM RES, V11, P898, DOI 10.1086/209025; Mourey JA, 2017, J CONSUM RES, V44, P414, DOI 10.1093/jcr/ucx038; Neave N, 2016, PERS INDIV DIFFER, V99, P33, DOI 10.1016/j.paid.2016.04.067; Neel R, 2016, J PERS SOC PSYCHOL, V110, P887, DOI 10.1037/pspp0000068; Newton FJ, 2017, J BUS RES, V75, P229, DOI 10.1016/j.jbusres.2016.07.020; Paetzold RL, 2015, REV GEN PSYCHOL, V19, P146, DOI 10.1037/gpr0000042; PASSMAN RH, 1987, J CONSULT CLIN PSYCH, V55, P825, DOI 10.1037/0022-006X.55.6.825; Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9101.88.5.879; Price LL, 1999, J MARKETING, V63, P38, DOI 10.2307/1251973; Richins ML, 2015, J CONSUM RES, V41, P1333, DOI 10.1086/680087; Ritchie LD, 1997, COMMUN RES, V24, P175, DOI 10.1177/009365097024002004; Schrodt P, 2008, COMMUN MONOGR, V75, P248, DOI 10.1080/03637750802256318; Selterman DF, 2013, MOTIV EMOTION, V37, P765, DOI 10.1007/s11031-013-9340-y; Snibbe AC, 2005, J PERS SOC PSYCHOL, V88, P703, DOI 10.1037/0022-3514.88.4.703; Sproull L, 1996, HUM-COMPUT INTERACT, V11, P97, DOI 10.1207/s15327051hci1102_1; Stephens NM, 2007, J PERS SOC PSYCHOL, V93, P814, DOI 10.1037/0022-3514.93.5.814; Su L, 2017, J CONSUM RES, V44, P99, DOI 10.1093/jcr/ucw075; Szepsenwol Ohad, 2019, Curr Opin Psychol, V25, P65, DOI 10.1016/j.copsyc.2018.03.005; Tam KP, 2013, J EXP SOC PSYCHOL, V49, P514, DOI 10.1016/j.jesp.2013.02.001; Thomson M, 2006, PSYCHOL MARKET, V23, P711, DOI 10.1002/mar.20125; Thomson M, 2012, J CONSUM PSYCHOL, V22, P289, DOI 10.1016/j.jcps.2011.04.006; Uleman J. S, 2005, OTHER MINDS HUMANS B, P253; Warburton WA, 2006, J EXP SOC PSYCHOL, V42, P213, DOI 10.1016/j.jesp.2005.03.005; Waytz A, 2014, J EXP SOC PSYCHOL, V52, P113, DOI 10.1016/j.jesp.2014.01.005; Waytz A, 2012, J EXP SOC PSYCHOL, V48, P70, DOI 10.1016/j.jesp.2011.07.012; Waytz A, 2010, J PERS SOC PSYCHOL, V99, P410, DOI 10.1037/a0020240; Waytz A, 2010, PERSPECT PSYCHOL SCI, V5, P219, DOI 10.1177/1745691610369336; Wei MF, 2007, J PERS ASSESS, V88, P187, DOI 10.1080/00223890701268041; Weininger EB, 2009, J MARRIAGE FAM, V71, P680, DOI 10.1111/j.1741-3737.2009.00626.x; Whelan J, 2018, J CONSUM PSYCHOL, V28, P477, DOI 10.1002/jcpy.1029; Whelan J, 2016, PSYCHOL MARKET, V33, P465, DOI 10.1002/mar.20891; Whelan J, 2016, MARKET LETT, V27, P285, DOI 10.1007/s11002-014-9340-z; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919; WHITE RW, 1959, PSYCHOL REV, V66, P297, DOI 10.1037/h0040934 88 0 0 5 5 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JAN 15 2019 137 86 96 10.1016/j.paid.2018.08.015 11 Psychology, Social Psychology GZ5FE WOS:000449443800016 Other Gold 2019-02-21 J Wang, A; Luan, HH; Medzhitov, R Wang, Andrew; Luan, Harding H.; Medzhitov, Ruslan An evolutionary perspective on immunometabolism SCIENCE English Article NECROSIS-FACTOR-ALPHA; BETA-HYDROXYBUTYRATE; OXIDATIVE STRESS; MACROPHAGE METABOLISM; SICKNESS BEHAVIOR; CELL-ACTIVATION; MOLECULAR-BASIS; DENDRITIC CELL; GROWTH-HORMONE; NITRIC-OXIDE Metabolism is at the core of all biological functions. Anabolic metabolism uses building blocks that are either derived from nutrients or synthesized de novo to produce the biological infrastructure, whereas catabolic metabolism generates energy to fuel all biological processes. Distinct metabolic programs are required to support different biological functions. Thus, recent studies have revealed how signals regulating cell quiescence, proliferation, and differentiation also induce the appropriate metabolic programs. In particular, a wealth of new studies in the field of immunometabolism has unveiled many examples of the connection among metabolism, cell fate decisions, and organismal physiology. We discuss these findings under a unifying framework derived from the evolutionary and ecological principles of life history theory. [Wang, Andrew] Yale Univ, Sch Med, Dept Med Rheumatol, New Haven, CT 06520 USA; [Luan, Harding H.; Medzhitov, Ruslan] Yale Univ, Sch Med, Dept Immunobiol, New Haven, CT 06520 USA; [Medzhitov, Ruslan] Yale Univ, Sch Med, Howard Hughes Med Inst, New Haven, CT 06520 USA Medzhitov, R (reprint author), Yale Univ, Sch Med, Dept Immunobiol, New Haven, CT 06520 USA.; Medzhitov, R (reprint author), Yale Univ, Sch Med, Howard Hughes Med Inst, New Haven, CT 06520 USA. ruslan.medzhitov@yale.edu HHMI; Else Kroner Fresenius Foundation; Blavatnik Family Foundation; NIH [T32 AI007019, K08 AI128745]; Gruber Science Fellowship Supported by the HHMI, Else Kroner Fresenius Foundation, and the Blavatnik Family Foundation (R.M.); NIH grant K08 AI128745 (A.W.); and NIH grant T32 AI007019 and the Gruber Science Fellowship (H.H.L.). Acevedo-Rodriguez A, 2018, J NEUROENDOCRINOL, V30, DOI 10.1111/jne.12590; Adams WC, 2016, CELL REP, V17, P3142, DOI 10.1016/j.celrep.2016.11.065; Allen WE, 2017, SCIENCE, V357, P1149, DOI 10.1126/science.aan6747; Ayres JS, 2012, ANNU REV IMMUNOL, V30, P271, DOI 10.1146/annurev-immunol-020711-075030; Bengsch B, 2016, IMMUNITY, V45, P358, DOI 10.1016/j.immuni.2016.07.008; Blank T, 2016, IMMUNITY, V44, P901, DOI 10.1016/j.immuni.2016.04.005; Boron W., 1992, MED PHYSL; Buck MD, 2017, CELL, V169, P570, DOI 10.1016/j.cell.2017.04.004; Buck MD, 2016, CELL, V166, P63, DOI 10.1016/j.cell.2016.05.035; Buck MD, 2015, J EXP MED, V212, P1345, DOI 10.1084/jem.20151159; Budd A, 2007, ANTIMICROB AGENTS CH, V51, P2965, DOI 10.1128/AAC.00219-07; Burnell AM, 2005, EXP GERONTOL, V40, P850, DOI 10.1016/j.exger.2005.09.006; Camara-Lemarroy CR, 2015, EXP THER MED, V9, P1018, DOI 10.3892/etm.2015.2190; Cao WP, 2008, NAT IMMUNOL, V9, P1157, DOI 10.1038/ni.1645; Carroll KC, 2013, J LEUKOCYTE BIOL, V94, P1113, DOI 10.1189/jlb.0313157; Chang CH, 2013, CELL, V153, P1239, DOI 10.1016/j.cell.2013.05.016; Chen YH, 2018, CELL REP, V22, P860, DOI 10.1016/j.celrep.2017.12.087; Clementi E, 1998, P NATL ACAD SCI USA, V95, P7631, DOI 10.1073/pnas.95.13.7631; Covarrubias AJ, 2015, SEMIN IMMUNOL, V27, P286, DOI 10.1016/j.smim.2015.08.001; Cui GL, 2015, CELL, V161, P750, DOI 10.1016/j.cell.2015.03.021; Dantzer R, 2007, BRAIN BEHAV IMMUN, V21, P153, DOI 10.1016/j.bbi.2006.09.006; de La Serre CB, 2015, PHYSIOL BEHAV, V139, P188, DOI 10.1016/j.physbeh.2014.10.032; Dietrich MO, 2013, TRENDS NEUROSCI, V36, P65, DOI 10.1016/j.tins.2012.12.005; Du W, 2016, STEM CELLS, V34, P960, DOI 10.1002/stem.2260; Efeyan A, 2015, NATURE, V517, P302, DOI 10.1038/nature14190; Everts B, 2012, BLOOD, V120, P1422, DOI 10.1182/blood-2012-03-419747; Feingold KR, 2012, ENDOCRINOLOGY, V153, P2689, DOI 10.1210/en.2011-1496; Feng ZH, 2010, TRENDS CELL BIOL, V20, P427, DOI 10.1016/j.tcb.2010.03.004; Fielenbach N, 2008, GENE DEV, V22, P2149, DOI 10.1101/gad.1701508; Florant G. L., 1998, INTEGR COMP BIOL, V38, P331; Freemerman AJ, 2014, J BIOL CHEM, V289, P7884, DOI 10.1074/jbc.M113.522037; Grunwell JR, 2018, J IMMUNOL, V200, P2115, DOI 10.4049/jimmunol.1701325; Hashimoto T, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12808; Hasselgren P O, 1999, Curr Opin Clin Nutr Metab Care, V2, P201, DOI 10.1097/00075197-199905000-00002; Herman AP, 2010, ANIM REPROD SCI, V120, P105, DOI 10.1016/j.anireprosci.2010.03.011; Hotamisligil GS, 2017, IMMUNITY, V47, P406, DOI 10.1016/j.immuni.2017.08.009; HOTAMISLIGIL GS, 1993, SCIENCE, V259, P87, DOI 10.1126/science.7678183; Humpton TJ, 2016, CSH PERSPECT MED, V6, DOI 10.1101/cshperspect.a026146; Iaizzo PA, 2012, INTEGR ZOOL, V7, P48, DOI [10.1111/j.1749-4877.2012.00275.x, 10.1111/j.1749-4877.2011.00280.x]; Ip WKE, 2017, SCIENCE, V356, P513, DOI 10.1126/science.aal3535; Jantsch J, 2008, J IMMUNOL, V180, P4697, DOI 10.4049/jimmunol.180.7.4697; Jin S, 2016, SCI REP-UK, V6, DOI 10.1038/srep29424; Kageyama Kazunori, 2013, Front Endocrinol (Lausanne), V4, P12, DOI 10.3389/fendo.2013.00012; Kim DY, 2007, J NEUROCHEM, V101, P1316, DOI 10.1111/j.1471-4159.2007.04483.x; Kim MS, 2015, NAT IMMUNOL, V16, P525, DOI 10.1038/ni.3133; Kultz D, 2005, ANNU REV PHYSIOL, V67, P225, DOI 10.1146/annurev.physiol.67.040403.103635; Lam TKT, 2005, SCIENCE, V309, P943, DOI 10.1126/science.1112085; Lam TKT, 2005, NAT NEUROSCI, V8, P579, DOI 10.1038/nn1456; Laurencikiene J, 2007, J LIPID RES, V48, P1069, DOI 10.1194/jlr.M600471-JLR200; Lee YS, 2018, CELL, V172, P22, DOI 10.1016/j.cell.2017.12.025; Leon LR, 1998, AM J PHYSIOL-REG I, V275, pR269; Li RL, 2012, J BIOL CHEM, V287, P17942, DOI 10.1074/jbc.M112.358051; Lichtenstein L, 2010, CELL METAB, V12, P580, DOI 10.1016/j.cmet.2010.11.002; Lin WHW, 2015, CELL REP, V13, P2203, DOI 10.1016/j.celrep.2015.10.072; Liu LL, 2016, P NATL ACAD SCI USA, V113, P1564, DOI 10.1073/pnas.1518000113; LORSBACH RB, 1993, J BIOL CHEM, V268, P1908; Majmundar AJ, 2010, MOL CELL, V40, P294, DOI 10.1016/j.molcel.2010.09.022; Mali B, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-168; Matarese G, 2013, P NATL ACAD SCI USA, V110, P6193, DOI 10.1073/pnas.1210644110; Matos-Cruz V, 2017, CELL REP, V21, P3329, DOI 10.1016/j.celrep.2017.11.083; Melmed S, 2015, WILLIAMS TXB ENDOCRI; Moon JS, 2015, CELL REP, V12, P102, DOI 10.1016/j.celrep.2015.05.046; Moon JS, 2015, J CLIN INVEST, V125, P665, DOI 10.1172/JCI78253; Moreno-Marin N, 2018, ISCIENCE, V4, P44, DOI 10.1016/j.isci.2018.05.006; Nish SA, 2017, TRENDS CELL BIOL, V27, P946, DOI 10.1016/j.tcb.2017.07.005; NONOGAKI K, 1995, ENDOCRINOLOGY, V136, P2143, DOI 10.1210/en.136.5.2143; O'Neill LAJ, 2016, J EXP MED, V213, P15, DOI 10.1084/jem.20151570; Olofsson LE, 2013, P NATL ACAD SCI USA, V110, pE697, DOI 10.1073/pnas.1218284110; Otis JP, 2017, J COMP PHYSIOL B, V187, P639, DOI 10.1007/s00360-017-1056-y; Padilla SL, 2017, P NATL ACAD SCI USA, V114, P2413, DOI 10.1073/pnas.1621065114; Park C, 1999, ARCH BIOCHEM BIOPHYS, V362, P217, DOI 10.1006/abbi.1998.1004; Patsoukis N, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7692; Pearce Erika L, 2013, Science, V342, P1242454, DOI 10.1126/science.1242454; Pollizzi KN, 2016, NAT IMMUNOL, V17, P704, DOI 10.1038/ni.3438; Rahman M, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4944; Ranke MB, 2018, NAT REV ENDOCRINOL, V14, P285, DOI 10.1038/nrendo.2018.22; Redman LM, 2018, CELL METAB, V27, P805, DOI 10.1016/j.cmet.2018.02.019; Roa J, 2012, ENDOCRINOLOGY, V153, P5587, DOI 10.1210/en.2012-1470; Rodriguez-Prados JC, 2010, J IMMUNOL, V185, P605, DOI 10.4049/jimmunol.0901698; Ron-Harel N, 2016, CELL METAB, V24, P104, DOI 10.1016/j.cmet.2016.06.007; Sag D, 2008, J IMMUNOL, V181, P8633, DOI 10.4049/jimmunol.181.12.8633; Sakharova AA, 2008, J CLIN ENDOCR METAB, V93, P2755, DOI 10.1210/jc.2008-0079; Saper CB, 2012, NAT NEUROSCI, V15, P1088, DOI 10.1038/nn.3159; Sasanuma H, 2017, MOL METAB, V6, P428, DOI 10.1016/j.molmet.2017.02.003; Saxton RA, 2017, CELL, V168, P960, DOI [10.1016/j.cell.2017.02.004, 10.1016/j.cell.2017.03.035]; Schenone AL, 2016, RESUSCITATION, V108, P102, DOI 10.1016/j.resuscitation.2016.07.238; Sena LA, 2013, IMMUNITY, V38, P225, DOI 10.1016/j.immuni.2012.10.020; Shimazu T, 2013, SCIENCE, V339, P211, DOI 10.1126/science.1227166; Singh N, 2014, IMMUNITY, V40, P128, DOI 10.1016/j.immuni.2013.12.007; Singh R, 2011, CELL METAB, V13, P495, DOI 10.1016/j.cmet.2011.04.004; Smith Sean M, 2006, Dialogues Clin Neurosci, V8, P383; Soares MP, 2014, TRENDS IMMUNOL, V35, P483, DOI 10.1016/j.it.2014.08.001; Stearns S, 1992, EVOLUTION LIFE HIST; Takahama M, 2018, IMMUNOL REV, V281, P62, DOI 10.1111/imr.12613; Tan CL, 2016, CELL, V167, P47, DOI 10.1016/j.cell.2016.08.028; Tannahill GM, 2013, NATURE, V496, P238, DOI 10.1038/nature11986; Tjeerdema N, 2014, BMJ OPEN DIAB RES CA, V2, DOI 10.1136/bmjdrc-2014-000034; Umlawska W, 2010, ARCH MED SCI, V6, P19, DOI 10.5114/aoms.2010.13501; Vats D, 2006, CELL METAB, V4, P13, DOI 10.1016/j.cmet.2006.05.011; Verbist KC, 2016, NATURE, V532, P389, DOI 10.1038/nature17442; Vidal RL, 2013, CELL RES, V23, P463, DOI 10.1038/cr.2013.9; Wang A, 2016, CELL, V166, P1512, DOI 10.1016/j.cell.2016.07.026; Xu C, 2009, MOL ENDOCRINOL, V23, P1161, DOI 10.1210/me.2008-0464; Yellon DM, 2005, NAT CLIN PRACT CARD, V2, P568, DOI 10.1038/ncpcardio0346; Youm YH, 2015, NAT MED, V21, P263, DOI 10.1038/nm.3804; Zhao ZD, 2017, P NATL ACAD SCI USA, V114, P2042, DOI 10.1073/pnas.1616255114; Zimmerman CA, 2016, NATURE, V537, P680, DOI 10.1038/nature18950 107 0 0 5 5 AMER ASSOC ADVANCEMENT SCIENCE WASHINGTON 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA 0036-8075 1095-9203 SCIENCE Science JAN 11 2019 363 6423 140 + eaar3932 10.1126/science.aar3932 9 Multidisciplinary Sciences Science & Technology - Other Topics HG9IL WOS:000455320600037 30630899 2019-02-21 J Young, ES; Simpson, JA; Griskevicius, V; Huelsnitz, CO; Fleck, C Young, Ethan S.; Simpson, Jeffry A.; Griskevicius, Vladas; Huelsnitz, Chloe O.; Fleck, Cory Childhood attachment and adult personality: A life history perspective SELF AND IDENTITY English Article Attachment; adult personality; life history theory; social development HIGHER-ORDER FACTORS; INFANT ATTACHMENT; ENVIRONMENT; EXPERIENCE; EXPRESSION; SECURITY; STRESS; BIG-5 According to attachment theory, being securely attached to one's primary caregiver early in life should be related to personality adulthood. However, no studies to date have investigated this key premise using prospective data. To address this gap, we discuss evolutionary-based models of attachment and use them to examine how secure versus insecure children might score differently on Big 5 traits that underlie the meta-trait stability. We modeled data from Minnesota Longitudinal Study of Risk and Adaptation (N = 170), which has followed participants across 30 years. Participant's early attachment status was assessed in Ainsworth's Strange at 12 and 18 months and personality was assessed on Big 5 measures at age 32. Being securely attached early in childhood predicted three of the Big 5 traits known to tap the meta-trait stability. Specifically, participants rated as secure early in life scored higher on agreeableness and conscientiousness and lower on neuroticism in adulthood, whereas those rated as insecure scored lower on agreeableness and conscientiousness and higher on neuroticism. Exploratory mediation analyses revealed that neither adult attachment representations nor internalizing/externalizing symptoms mediated the association between early security and stability. The implications of these findings for understanding the origins of personality variation are discussed. [Young, Ethan S.; Simpson, Jeffry A.; Huelsnitz, Chloe O.; Fleck, Cory] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA; [Griskevicius, Vladas] Univ Minnesota, Carlson Sch Management, Minneapolis, MN 55455 USA Young, ES; Simpson, JA (reprint author), Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA. youn0737@umn.edu; simps108@umn.edu Achenbach T. M, 1997, MANUAL YOUNG ADULT S; Ainsworth M. D. S., 1969, DETERMINANTS INFANT, V4, P49; Ainsworth MS, 1978, PATTERNS ATTACHMENT; Bakermans-Kranenburg M. J., 2016, HDB ATTACHMENT THEOR, P155; BELSKY J, 1984, DEV PSYCHOL, V20, P406, DOI 10.1037/0012-1649.20.3.406; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; Bohlin G, 2000, SOC DEV, V9, P24, DOI 10.1111/1467-9507.00109; Bokhorst CL, 2003, CHILD DEV, V74, P1769, DOI 10.1046/j.1467-8624.2003.00637.x; Bouchard TJ, 2001, BEHAV GENET, V31, P243; Bouchard TJ, 2004, CURR DIR PSYCHOL SCI, V13, P148, DOI 10.1111/j.0963-7214.2004.00295.x; Bowlby J., 1973, ATTACHMENT LOSS SEPA, V2; Bowlby J., 1979, MAKING BREAKING AFFE; Bowlby J., 1969, ATTACHMENT LOSS ATTA; Bowlby J., 1980, ATTACHMENT LOSS LOSS, V3; Cassidy J, 1994, Monogr Soc Res Child Dev, V59, P228, DOI 10.2307/1166148; DeKlyen M., 2016, HDB ATTACHMENT THEOR, P639; DeYoung CG, 2002, PERS INDIV DIFFER, V33, P533, DOI 10.1016/S0191-8869(01)00171-4; DeYoung CG, 2006, J PERS SOC PSYCHOL, V91, P1138, DOI 10.1037/0022-3514.91.6.1138; Duncan Otis D, 1961, OCCUPATIONS SOCIAL S, P109; EGELAND B, 1984, CHILD DEV, V55, P753, DOI 10.2307/1130127; Fearon R. M. P., 2016, HDB ATTACHMENT THEOR, P291; Fraley R. C., 2008, HDB PERSONALITY THEO, P518; Fraley R. C., 2004, ADULT ATTACHMENT THE, P86; Gray JA, 1997, BEHAV BRAIN RES, V88, P27, DOI 10.1016/S0166-4328(97)02313-9; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Hagekull Berit, 2003, Attach Hum Dev, V5, P2, DOI 10.1080/1461673031000078643; Hesse E., 2016, HDB ATTACHMENT THEOR, P553; Jacobsen T, 1997, J GENET PSYCHOL, V158, P411, DOI 10.1080/00221329709596679; John O. P, 2008, HDB PERSONALITY THEO, P114, DOI DOI 10.1037/0021-9010.87.3.530; John O. P., 1991, THE BIG FIVE INVENTO, DOI DOI 10.1037/t07550-000; Krueger RF, 2014, ANNU REV CLIN PSYCHO, V10, P477, DOI 10.1146/annurev-clinpsy-032813-153732; Main M, 2000, J AM PSYCHOANAL ASS, V48, P1055, DOI 10.1177/00030651000480041801; Main M., 2003, ADULT ATTACHME UNPUB; Main M., 1981, BEHAV DEV BIELEFELD, P651; Markon KE, 2005, J PERS SOC PSYCHOL, V88, P139, DOI 10.1037/0022-3514.88.1.139; Marvin R. S, 2016, HDB ATTACHMENT THEOR, P273; Meaney MJ, 2001, ANNU REV NEUROSCI, V24, P1161, DOI 10.1146/annurev.neuro.24.1.1161; MELTZER HY, 1990, ANN NY ACAD SCI, V600, P486, DOI 10.1111/j.1749-6632.1990.tb16904.x; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; O'Connor TG, 2001, CHILD DEV, V72, P1501, DOI 10.1111/1467-8624.00362; Roisman GI, 2007, J PERS SOC PSYCHOL, V92, P678, DOI 10.1037/0022-3514.92.4.678; Rosseel Y, 2012, J STAT SOFTW, V48, P1; Rothbart MK, 2000, J PERS SOC PSYCHOL, V78, P122, DOI 10.1037//0022-3514.78.1.122; Shiner R, 2003, J CHILD PSYCHOL PSYC, V44, P2, DOI 10.1111/1469-7610.00101; Simpson J. A., 2016, HDB ATTACHMENT THEOR, P91; Simpson J. A., 2011, HDB INTERPERSONAL PS, P75; Simpson J. A., 2017, EVOLUTIONARY ECOLOGI; Simpson JA, 2007, J PERS SOC PSYCHOL, V92, P355, DOI 10.1037/0022-3514.92.2.355; Simpson JA, 2012, ADV EXP SOC PSYCHOL, V45, P279, DOI 10.1016/B978-0-12-394286-9.00006-8; Sroufe L. A., 2005, DEV PERSON; VAN IJZENDOORN MH, 1995, PSYCHOL BULL, V117, P387, DOI 10.1037/0033-2909.117.3.387; Waters SF, 2010, J PSYCHOPATHOL BEHAV, V32, P37, DOI 10.1007/s10862-009-9163-z; Weinfield N. S., 2008, HDB ATTACHMENT THEOR, P637 54 2 2 4 4 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 1529-8868 1529-8876 SELF IDENTITY Self Identity JAN 2 2019 18 1 SI 22 38 10.1080/15298868.2017.1353540 17 Psychology, Social Psychology HH1AW WOS:000455452500003 2019-02-21 J Beall, AT; Schaller, M Beall, Alec T.; Schaller, Mark Evolution, motivation, and the mating/parenting trade-off SELF AND IDENTITY English Article Mating orientation; parental care; motivation; life history theory INDIVIDUAL-DIFFERENCES; RISK-TAKING; TESTOSTERONE; INCREASES; MOTIVES; DISEASE; SOCIOSEXUALITY; AGGRESSION; TENDERNESS; PERCEPTION An evolutionary perspective on motivation implies an inverse relation between two motivational systems - one that regulates mate acquisition and the other that regulates parental care-giving. Study 1 (N = 2252) used correlational methods to test whether an inverse relation manifests at the level of chronic individual differences. Results revealed that short-term mating orientation (STMO) was inversely associated with a nurturant disposition toward children, but was positively associated with a protective disposition toward children. Studies 2 and 3 used experimental methods to test whether the inverse relation manifests at the level of temporary cognitive accessibility. Study 2 (N = 92) revealed that women (but not men) reported lower levels of STMO following an experimental procedure designed to activate the parental care motivational system. Conversely, results from Study 3 (n = 308) suggest that both men and women reported lower levels of tender emotional responses towards infants following an experimental procedure designed to activate the mate acquisition motivational system. Together, these results provide novel evidence bearing on the psychological manifestations of a mating/parenting trade-off, while also implicating additional variables that may affect the nature of these manifestations. [Beall, Alec T.; Schaller, Mark] Univ British Columbia, Dept Psychol, Vancouver, BC, Canada Beall, AT (reprint author), Univ British Columbia, Dept Psychol, Vancouver, BC, Canada. alec@psych.ubc.ca Social Sciences and Humanities Research Council of Canada [435-2012-0519] This work was spported by Social Sciences and Humanities Research Council of Canada [grant number 435-2012-0519]. Ariely D, 2006, J BEHAV DECIS MAKING, V19, P87, DOI 10.1002/bdm.501; Baker MD, 2008, EVOL HUM BEHAV, V29, P391, DOI 10.1016/j.evolhumbehav.2008.06.001; Beall AT, 2017, SOC PERSONAL PSYCHOL, V11, DOI 10.1111/spc3.12303; Beall AT, 2014, PERS INDIV DIFFER, V68, P112, DOI 10.1016/j.paid.2014.03.049; Buckels EE, 2015, J PERS SOC PSYCHOL, V108, P497, DOI 10.1037/pspp0000023; CACIOPPO JT, 1982, J PERS SOC PSYCHOL, V42, P116, DOI 10.1037/0022-3514.42.1.116; Chivers ML, 2012, ARCH SEX BEHAV, V41, P185, DOI 10.1007/s10508-012-9937-3; De Baca TC, 2012, PARENT-SCI PRACT, V12, P94, DOI 10.1080/15295192.2012.680396; Del Giudice M., 2016, HDB EVOLUTIONARY PSY, P88; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Eibach RP, 2011, J EXP SOC PSYCHOL, V47, P694, DOI 10.1016/j.jesp.2010.12.009; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Fessler DMT, 2014, EVOL HUM BEHAV, V35, P109, DOI 10.1016/j.evolhumbehav.2013.11.004; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Gilead M, 2014, PSYCHOL SCI, V25, P1380, DOI 10.1177/0956797614531439; Glocker ML, 2009, ETHOLOGY, V115, P257, DOI 10.1111/j.1439-0310.2008.01603.x; Gluckman PD, 2005, P ROY SOC B-BIOL SCI, V272, P671, DOI 10.1098/rspb.2004.3001; Gray PB, 2002, EVOL HUM BEHAV, V23, P193, DOI 10.1016/S1090-5138(01)00101-5; Griskevicius V, 2006, J PERS SOC PSYCHOL, V91, P63, DOI 10.1037/0022-3514.91.1.63; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hahn AC, 2015, HORM BEHAV, V67, P54, DOI 10.1016/j.yhbeh.2014.11.010; Hahn-Holbrook J, 2011, PSYCHOL SCI, V22, P1288, DOI 10.1177/0956797611420729; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Kalawski JP, 2010, MOTIV EMOTION, V34, P158, DOI 10.1007/s11031-010-9164-y; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Kuzawa CW, 2010, HORM BEHAV, V57, P441, DOI 10.1016/j.yhbeh.2010.01.014; Li YJ, 2012, J PERS SOC PSYCHOL, V102, P550, DOI 10.1037/a0025844; Maner JK, 2005, J PERS SOC PSYCHOL, V88, P63, DOI [10.1037/0022-3514.88.1.63, 10.1037/0022-3514.1.63]; Montoya ER, 2012, MOTIV EMOTION, V36, P65, DOI 10.1007/s11031-011-9264-3; Murray DR, 2013, PERS INDIV DIFFER, V54, P103, DOI 10.1016/j.paid.2012.08.021; Neel R, 2016, J PERS SOC PSYCHOL, V110, P887, DOI 10.1037/pspp0000068; Neuberg SL, 2013, SOC COGNITION, V31, P696, DOI 10.1521/soco.2013.31.6.696; Okabe S, 2013, PHYSIOL BEHAV, V118, P159, DOI 10.1016/j.physbeh.2013.05.017; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Rilling JK, 2013, NEUROPSYCHOLOGIA, V51, P731, DOI 10.1016/j.neuropsychologia.2012.12.017; Ronay R, 2010, SOC PSYCHOL PERS SCI, V1, P57, DOI 10.1177/1948550609352807; Schaller M, 2008, J PERS SOC PSYCHOL, V95, P212, DOI 10.1037/0022-3514.95.1.212; Schaller M, 2017, SOC PERSONAL PSYCHOL, V11, DOI 10.1111/spc3.12319; Sherman GD, 2009, EMOTION, V9, P282, DOI 10.1037/a0014904; Simpson J. A., 2011, HDB INTERPERSONAL PS, P75; SIMPSON JA, 1992, J PERS, V60, P31, DOI 10.1111/j.1467-6494.1992.tb00264.x; Tooby J, 2008, HANDBOOK OF APPROACH AND AVOIDANCE MOTIVATION, P251; van Anders SM, 2007, HORM BEHAV, V51, P454, DOI 10.1016/j.yhbeh.2007.01.002; van Anders SM, 2012, HORM BEHAV, V61, P31, DOI 10.1016/j.yhbeh.2011.09.012; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919; Williams KEG, 2016, P NATL ACAD SCI USA, V113, P310, DOI 10.1073/pnas.1519401113 46 2 2 0 0 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 1529-8868 1529-8876 SELF IDENTITY Self Identity JAN 2 2019 18 1 SI 39 59 10.1080/15298868.2017.1356366 21 Psychology, Social Psychology HH1AW WOS:000455452500004 2019-02-21 J Gotanda, KM; Pack, A; LeBlond, C; Hendry, AP Gotanda, Kiyoko M.; Pack, Amy; LeBlond, Caroline; Hendry, Andrew P. Do replicates of independent guppy lineages evolve similarly in a predator-free laboratory environment? ECOLOGY AND EVOLUTION English Article convergent evolution; experimental evolution; natural selection; parallel evolution; phenotypic trajectory; Poecilia reticulata; sexual selection LIFE-HISTORY EVOLUTION; POECILIA-RETICULATA; NATURAL-SELECTION; SEXUAL SELECTION; MALE COLOR; MATE PREFERENCE; FEMALE CHOICE; CAROTENOID LIMITATION; PARALLEL EVOLUTION; GENETIC-DIVERGENCE The Trinidadian guppy is emblematic of parallel and convergent evolution, with repeated demonstrations that predation regime is a driver of adaptive trait evolution. A classic and foundational experiment in this system was conducted by John Endler 40 years ago, where male guppies placed into low-predation environments in the laboratory evolved increased color in a few generations. However, Endler's experiment did not employ the now typical design for a parallel/convergent evolution study, which would employ replicates of different ancestral lineages. We therefore implemented an experiment that seeded replicate mesocosms with small founding populations of guppies originating from high-predation populations of two very different lineages. The different mesocosms were maintained identically, and male guppy color was quantified every four months. After one year, we tested whether male color had increased, whether replicates within a lineage had parallel phenotypic trajectories, and whether the different lineages converged on a common phenotype. Results showed that male guppy color generally increased through time, primarily due to changes in melanic color, whereas the other colors showed inconsistent and highly variable trajectories. Most of the nonparallelism in phenotypic trajectories was among mesocosms containing different lineages. In addition to this mixture of parallelism and nonparallelism, convergence was not evident in that the variance in color among the mesocosms actually increased through time. We suggest that our results reflect the potential importance of high variation in female preference and stochastic processes such as drift and founder effects, both of which could be important in nature. [Gotanda, Kiyoko M.; Pack, Amy; LeBlond, Caroline; Hendry, Andrew P.] McGill Univ, Redpath Museum, Montreal, PQ, Canada; [Gotanda, Kiyoko M.; Pack, Amy; LeBlond, Caroline; Hendry, Andrew P.] McGill Univ, Dept Biol, Montreal, PQ, Canada; [Gotanda, Kiyoko M.] Univ Cambridge, Dept Zool, Cambridge, England; [Pack, Amy] Hlth Stand Org, Global Programs, Ottawa, ON, Canada Gotanda, KM (reprint author), Univ Cambridge, Dept Zool, Cambridge, England. kg419@cam.ac.uk Natural Sciences and Engineering Research Council of Canada; Fonds Quebecois de la Recherche sur la Nature et les Technologies Natural Sciences and Engineering Research Council of Canada; Fonds Quebecois de la Recherche sur la Nature et les Technologies Adams DC, 2009, EVOLUTION, V63, P1143, DOI 10.1111/j.1558-5646.2009.00649.x; Alexander HJ, 2006, EVOLUTION, V60, P2352, DOI 10.1111/j.0014-3820.2006.tb01870.x; Angilletta MJ, 2006, PHYSIOL BIOCHEM ZOOL, V79, P282, DOI 10.1086/499990; Arendt J, 2008, TRENDS ECOL EVOL, V23, P26, DOI 10.1016/j.tree.2007.09.011; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Barton K, 2016, R PACKAGE VERSION, V1, P6, DOI DOI 10.18637/JSS.V067.I01; Bassar RD, 2013, AM NAT, V181, P25, DOI 10.1086/668590; Bates D, 2015, J STAT SOFTW, V67, P1; Baxter SW, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000794; Blount ZD, 2008, P NATL ACAD SCI USA, V105, P7899, DOI 10.1073/pnas.0803151105; Bolnick DI, 2018, ANNU REV ECOL EVOL S, V49, P303, DOI 10.1146/annurev-ecolsys-110617-062240; Bonduriansky R, 2011, AM NAT, V178, P729, DOI 10.1086/662665; Brooks R, 2002, GENETICA, V116, P343, DOI 10.1023/A:1021228308636; Brooks R, 2001, EVOLUTION, V55, P1644; Burns JG, 2016, BEHAV ECOL SOCIOBIOL, V70, P1187, DOI 10.1007/s00265-016-2127-x; CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; CLARKE B, 1975, GENETICS, V79, P101; Clusella Trullas S, 2007, J THERM BIOL, V32, P235, DOI 10.1016/j.jtherbio.2007.01.003; Crispo E, 2006, MOL ECOL, V15, P49, DOI 10.1111/j.1365-294X.2005.02764.x; Dale James, 2006, P36; Dargent F, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2371; Deacon AE, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024416; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; Elmer KR, 2011, TRENDS ECOL EVOL, V26, P298, DOI 10.1016/j.tree.2011.02.008; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; Endler J. A., 1984, EVOLUTIONARY ECOLOGY, P95; Endler J. A., 1986, NATURAL SELECTION WI; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1991, VISION RES, V31, P587, DOI 10.1016/0042-6989(91)90109-I; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Fitzpatrick SW, 2017, COPEIA, V105, P462, DOI 10.1643/CI-16-559; Fitzpatrick SW, 2014, AM NAT, V183, P290, DOI 10.1086/674611; Foster SA, 2004, TRENDS ECOL EVOL, V19, P456, DOI 10.1016/j.tree.2004.07.004; Fox J., 2011, R COMPANION APPL REG; Fraser BA, 2015, MOL ECOL, V24, P389, DOI 10.1111/mec.13022; Gordon SP, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1244; Gordon SP, 2009, AM NAT, V174, P34, DOI 10.1086/599300; Gotanda KM, 2014, BIOL J LINN SOC, V112, P108, DOI 10.1111/bij.12261; Gotanda KM, 2013, OECOLOGIA, V172, P155, DOI 10.1007/s00442-012-2485-7; Grether GF, 2000, EVOLUTION, V54, P1712; Grether GF, 1999, P ROY SOC B-BIOL SCI, V266, P1317, DOI 10.1098/rspb.1999.0781; Griffith SC, 2006, ANIM BEHAV, V71, P749, DOI 10.1016/j.anbehav.2005.07.016; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Houde A., 1997, SEX COLOR MATE CHOIC; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; HOUDE AE, 1992, BEHAV ECOL, V3, P346, DOI 10.1093/beheco/3.4.346; Huttegger SM, 2011, EVOL BIOL, V38, P335, DOI 10.1007/s11692-011-9123-x; Jacquin L, 2016, J EVOLUTION BIOL, V29, P1406, DOI 10.1111/jeb.12880; JONES R, 1992, EVOLUTION, V46, P353, DOI 10.1111/j.1558-5646.1992.tb02043.x; Kaeuffer R, 2012, EVOLUTION, V66, P402, DOI 10.1111/j.1558-5646.2011.01440.x; Karim N, 2007, J EVOLUTION BIOL, V20, P1339, DOI 10.1111/j.1420-9101.2007.01350.x; Karino K, 2004, BEHAVIOUR, V141, P585, DOI 10.1163/1568539041166672; Kelley JL, 2003, BEHAV ECOL SOCIOBIOL, V54, P225, DOI 10.1007/s00265-003-0621-4; Kemp DJ, 2009, P R SOC B, V276, P4335, DOI 10.1098/rspb.2009.1226; Kemp DJ, 2008, BIOL J LINN SOC, V95, P734, DOI 10.1111/j.1095-8312.2008.01112.x; Kenny J. S., 1995, VIEWS BRIDGE MEMOIR; Kent M, 2015, BIOL OPEN, V4, P547, DOI 10.1242/bio.20149829; KILIAS G, 1980, EVOLUTION, V34, P730, DOI 10.1111/j.1558-5646.1980.tb04012.x; KODRICBROWN A, 1993, BEHAV ECOL SOCIOBIOL, V32, P415, DOI 10.1007/BF00168825; KODRICBROWN A, 1985, BEHAV ECOL SOCIOBIOL, V17, P199, DOI 10.1007/BF00300137; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; Kolluru GR, 2006, BIOL J LINN SOC, V89, P301, DOI 10.1111/j.1095-8312.2006.00675.x; Kuznetsova A, 2017, J STAT SOFTW, V82, P1; Labonne J, 2010, AM NAT, V176, P26, DOI 10.1086/652992; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; LENSKI RE, 1994, P NATL ACAD SCI USA, V91, P6808, DOI 10.1073/pnas.91.15.6808; Lindholm AK, 2014, J EVOLUTION BIOL, V27, P437, DOI 10.1111/jeb.12313; Lopez-Sepulcre A, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1116; LOSOS JB, 1992, SYST BIOL, V41, P403, DOI 10.2307/2992583; Losos JB, 2011, EVOLUTION, V65, P1827, DOI 10.1111/j.1558-5646.2011.01289.x; Maan ME, 2011, ECOL LETT, V14, P591, DOI 10.1111/j.1461-0248.2011.01606.x; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; McGraw KJ, 2002, J EXP BIOL, V205, P3747; Millar NP, 2012, ENVIRON BIOL FISH, V94, P513, DOI 10.1007/s10641-011-9801-7; Millar NP, 2006, OIKOS, V113, P1; NAKATSURU K, 1982, SCIENCE, V216, P753, DOI 10.1126/science.216.4547.753; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1554/0014-3820(2002)056[0776:REOEAI]2.0.CO;2; Odell JP, 2003, J EXP BIOL, V206, P3707, DOI 10.1242/jeb.00613; Oke KB, 2017, AM NAT, V190, P1, DOI 10.1086/691989; Perez-Jvostov F, 2016, OIKOS, V125, P790, DOI 10.1111/oik.02499; Perez-Jvostov F, 2015, INT J PARASITOL, V45, P409, DOI 10.1016/j.ijpara.2015.01.010; Phillip D. A. T., 2001, ILLUSTRATED GUIDE FR; Phillip D. A. T., 1998, BIODIVERSITY FRESHWA; Price AC, 2008, ZEBRAFISH, V5, P297, DOI 10.1089/zeb.2008.0551; Price T, 2000, AM NAT, V156, P354, DOI 10.1086/303397; Revell LJ, 2007, EVOLUTION, V61, P2898, DOI 10.1111/j.1558-5646.2007.00225.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 2005, INTEGR COMP BIOL, V45, P456, DOI 10.1093/icb/45.3.456; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Rodd FH, 2002, P ROY SOC B-BIOL SCI, V269, P475, DOI 10.1098/rspb.2001.1891; Romero A, 2011, AM SCI, V99, P144, DOI 10.1511/2011.89.144; Rosenblum EB, 2017, AM NAT, V190, pS44, DOI 10.1086/692138; Rosenblum EB, 2014, ANNU REV ECOL EVOL S, V45, P203, DOI 10.1146/annurev-ecolsys-120213-091851; Roulin A, 2011, EUR J PHARMACOL, V660, P226, DOI 10.1016/j.ejphar.2011.01.036; Sandkam B, 2015, MOL ECOL, V24, P596, DOI 10.1111/mec.13058; Saxer G, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014184; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schwartz AK, 2007, EVOL ECOL RES, V9, P71; Seghers B. H., 1973, ANAL GEOGRAPHIC VARI; SHAW PW, 1991, J FISH BIOL, V39, P203, DOI 10.1111/j.1095-8649.1991.tb05084.x; Simoes P, 2008, EVOLUTION, V62, P1817, DOI 10.1111/j.1558-5646.2008.00423.x; Simon TN, 2017, COPEIA, V105, P504, DOI 10.1643/CE-16-517; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; Stuart YE, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0158; Torres-Dowdall J, 2012, FUNCT ECOL, V26, P616, DOI 10.1111/j.1365-2435.2012.01980.x; Travis J, 2014, ADV ECOL RES, V50, P1, DOI 10.1016/B978-0-12-801374-8.00001-3; TRAVISANO M, 1995, SCIENCE, V267, P87, DOI 10.1126/science.7809610; van Oosterhout C, 2007, INT J PARASITOL, V37, P805, DOI 10.1016/j.ijpara.2006.12.016; Wake DB, 2011, SCIENCE, V331, P1032, DOI 10.1126/science.1188545; Wang B, 2006, MYCORRHIZA, V16, P299, DOI 10.1007/s00572-005-0033-6; Weese DJ, 2010, EVOLUTION, V64, P1802, DOI 10.1111/j.1558-5646.2010.00945.x; Weinreich DM, 2005, EVOLUTION, V59, P1165; WINEMILLER KO, 1990, ENVIRON BIOL FISH, V29, P179, DOI 10.1007/BF00002218; Yeaman S, 2009, EVOLUTION, V63, P2926, DOI 10.1111/j.1558-5646.2009.00773.x 117 0 0 2 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JAN 2019 9 1 36 51 10.1002/ece3.4585 16 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology HK0VV WOS:000457622300004 30680094 DOAJ Gold 2019-02-21 J Konschak, M; Zubrod, JP; Bandy, P; Englert, D; Herrmann, B; Schulz, R; Bundschuh, M Konschak, M.; Zubrod, J. P.; Bandy, P.; Englert, D.; Herrmann, B.; Schulz, R.; Bundschuh, M. Waterborne and diet-related effects of inorganic and organic fungicides on the insect leaf shredder Chaetopteryx villosa (Trichoptera) AQUATIC TOXICOLOGY English Article Aquatic hyphomycetes; Caddisfly larvae; Copper; Ecosystem functioning; Feeding; Leaf litter breakdown DIGESTIVE ENZYME-ACTIVITIES; LITTER DECOMPOSITION; LIFE-CYCLE; AQUATIC INSECTS; HYALELLA-AZTECA; GAMMARUS-PULEX; COPPER; TOXICITY; STREAM; GROWTH It is well-documented that fungicides can affect crustacean leaf shredders via two effect pathways, namely waterborne exposure and their diet (i.e., via dietary uptake of fungicides adsorbed to leaf material and an altered microorganism-mediated food quality). As a consequence of different life history strategies, the relevance of these effect pathways for aquatic shredders belonging to other taxonomic classes, for instance insects, remains unclear. Therefore, we investigated waterborne and diet-related effects in larvae of the caddisfly leaf shredder Chaetopteryx villosa (Insecta: Trichoptera) and compared our observations to previous reports on effects in adults of the crustacean leaf shredder Gammarus fossarum (Malacostraca: Amphipoda). We assessed acute waterborne effects of an organic fungicide mixture (OFM) and the inorganic fungicide copper (Cu) on the leaf consumption (n = 30) of the fourth-/fifth-instar larvae of C. villosa and their food choice (n = 49) when offered leaf material, which was either conditioned in presence or in absence of the respective fungicide(s). Moreover, the larval leaf consumption (n = 50) and physiological fitness (i.e., growth as well as lipid and protein content) were examined after subjecting C. villosa for 24 days towards the combination of both effect pathways at environmentally relevant concentrations. G. fossarum and C. villosa exhibited similar sensitivities and the same effect direction when exposed to the OFM (either waterborne or dietary pathways). Both shredders also showed the same effect direction when exposed to dietary Cu, while with regards to mortality and leaf consumption C. villosa was less sensitive to waterborne Cu than G. fossarum. Finally, as observed for G. fossarum, the combined exposure to OFM over 24 days negatively affected leaf consumption and the physiology (i.e., growth and lipid reserves) of C. villosa. While no combined Cu effects were observed for larval leaf consumption, contrasting to the observations for G. fossarum, the physiology of both shredders was negatively affected, despite partly differing effect sizes and directions. Our results suggest that C. villosa and G. fossarum are of comparable sensitivity towards waterborne and diet-related organic fungicide exposure, whereas the trichopteran is less sensitive to Cubased waterborne fungicide exposure. However, when both pathways act jointly, organic and inorganic fungicides can affect the physiology of shredder species with completely different life history strategies. As caddisflies represent a subsidy for terrestrial consumers, these observations indicate that fungicide exposure might not only affect aquatic ecosystem functioning but also the flux of energy across ecosystem boundaries. [Konschak, M.; Zubrod, J. P.; Bandy, P.; Englert, D.; Herrmann, B.; Schulz, R.; Bundschuh, M.] Univ Koblenz Landau, Inst Environm Sci, Fortstr 7, D-76829 Landau, Palatinate, Germany; [Zubrod, J. P.; Schulz, R.] Univ Koblenz Landau, Eusserthal Ecosyst Res Stn, Birkenthalstr 13, D-76857 Eusserthal, Germany; [Bundschuh, M.] Swedish Univ Agr Sci, Dept Aquat Sci & Assessment, Lennart Hjelms Vag 9, SWE-75007 Uppsala, Sweden Konschak, M; Bundschuh, M (reprint author), Univ Koblenz Landau, Inst Environm Sci, Fortstr 7, D-76829 Landau, Palatinate, Germany. konschak@uni-landau.de; bundschuh@uni-landau.de Schulz, Ralf/G-3674-2011 Schulz, Ralf/0000-0002-6348-6971 German Research Foundation, Project AQUA-REG (DFG) [SCHU2271/14-1] The authors thank T. Biirgi for the HPLC analyses as well as R. R. Rosenfeldt for the ICP-MS analyses. Moreover, we thank S. Brendel, A. Feckler, B. Frombold and J. Wolfram for laboratory assistance. The study was co-funded by the German Research Foundation, Project AQUA-REG (DFG; SCHU2271/14-1). Amrhein V, 2017, PEERJ, V5, P1; ANDERSEN T, 1984, AQUAT INSECT, V6, P217, DOI 10.1080/01650428409361187; Arrese EL, 2010, ANNU REV ENTOMOL, V55, P207, DOI 10.1146/annurev-ento-112408-085356; ARSUFFI T L, 1988, Journal of the North American Benthological Society, V7, P205, DOI 10.2307/1467420; ARSUFFI TL, 1989, OECOLOGIA, V79, P30, DOI 10.1007/BF00378236; Barlocher F, 2009, MYCOSCIENCE, V50, P3, DOI 10.1007/s10267-008-0449-x; Barlocher F, 2003, OIKOS, V101, P247, DOI 10.1034/j.1600-0706.2003.12559.x; BARLOCHER F, 1975, OECOLOGIA, V20, P359, DOI 10.1007/BF00345526; Baudy P, 2017, ENVIRON POLLUT, V222, P458, DOI 10.1016/j.envpol.2016.11.079; Bereswill R, 2012, AGR ECOSYST ENVIRON, V146, P81, DOI 10.1016/j.agee.2011.10.010; Borgmann U, 1996, ARCH ENVIRON CON TOX, V30, P356; Bowen H. J. M., 1979, Environmental chemistry of the elements.; Buchwalter DB, 2007, ENVIRON SCI TECHNOL, V41, P4821, DOI 10.1021/es070464y; Buesing N, 2005, METHODS STUDY LITTER, P203; Bundschuh M, 2016, FRESHWATER BIOL, V61, P2063, DOI 10.1111/fwb.12608; Bundschuh M, 2011, AQUAT TOXICOL, V104, P32, DOI 10.1016/j.aquatox.2011.03.010; Bundschuh M, 2009, ENVIRON TOXICOL CHEM, V28, P197, DOI 10.1897/08-075.1; Cain DJ, 2006, ENVIRON TOXICOL CHEM, V25, P1042, DOI 10.1897/05-255R.1; Cain DJ, 2004, ENVIRON TOXICOL CHEM, V23, P1463, DOI 10.1897/03-291; Cargill A.S. II, 1985, FRESHWATER INVERTEBRATE BIOLOGY, V4, P64; Chen Z, 2002, ENVIRON TOXICOL CHEM, V21, P1243, DOI 10.1002/etc.5620210618; Chung N, 2009, FRESHWATER BIOL, V54, P2212, DOI 10.1111/j.1365-2427.2009.02260.x; Clements WH, 2000, ECOL APPL, V10, P626, DOI 10.1890/1051-0761(2000)010[0626:HMSBCI]2.0.CO;2; Clements WH, 2013, ENVIRON SCI TECHNOL, V47, P7506, DOI 10.1021/es401255h; Dang CK, 2005, ECOL LETT, V8, P1129, DOI 10.1111/j.1461-0248.2005.00815.x; Dangles O, 2002, CAN J FISH AQUAT SCI, V59, P1563, DOI 10.1139/F02-122; De Schamphelaere KAC, 2004, ENVIRON TOXICOL CHEM, V23, P2038, DOI 10.1897/03-411; Dimitrov MR, 2014, SCI TOTAL ENVIRON, V490, P1002, DOI 10.1016/j.scitotenv.2014.05.073; Donnachie RL, 2014, ENVIRON POLLUT, V194, P17, DOI 10.1016/j.envpol.2014.07.008; Duarte S, 2006, OECOLOGIA, V147, P658, DOI 10.1007/s00442-005-0300-4; Feckler A, 2016, SCI TOTAL ENVIRON, V571, P992, DOI 10.1016/j.scitotenv.2016.07.088; Fernandez D, 2015, SCI TOTAL ENVIRON, V533, P40, DOI 10.1016/j.scitotenv.2015.06.090; Foucreau N, 2013, FRESHWATER BIOL, V58, P1672, DOI 10.1111/fwb.12158; Fungicide Resistance Action Committee, 2018, FRAC COD LIST FUNG S; Gessner MO, 1996, APPL ENVIRON MICROB, V62, P415; Gessner MO, 1999, OIKOS, V85, P377, DOI 10.2307/3546505; GRACA MAS, 1993, OECOLOGIA, V96, P304, DOI 10.1007/BF00317498; Graf N, 2017, BIOL LETTERS, V13, DOI 10.1098/rsbl.2017.0129; Hieber M, 2002, ECOLOGY, V83, P1026, DOI 10.2307/3071911; Hill GM, 2000, J ANIM SCI, V78, P1010; Ivic D, 2010, FUNGICIDES, P3; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; KIRCHGESSNER M, 1976, BRIT J NUTR, V36, P15, DOI 10.1079/BJN19760054; Knabel A, 2014, ENVIRON SCI TECHNOL, V48, P455, DOI 10.1021/es4048329; Komarek M, 2010, ENVIRON INT, V36, P138, DOI 10.1016/j.envint.2009.10.005; Luo XG, 1996, J ANIM SCI, V74, P1888; Macneil C, 1999, BIOL REV, V74, P375, DOI 10.1017/S0006323199005368; Malaj E, 2012, ENVIRON TOXICOL CHEM, V31, P1754, DOI 10.1002/etc.1868; MALMQVIST B, 1984, FRESHWATER BIOL, V14, P649, DOI 10.1111/j.1365-2427.1984.tb00184.x; Maltby L, 1999, ECOL APPL, V9, P431, DOI 10.2307/2641131; Maltby L, 2009, ENVIRON SCI TECHNOL, V43, P7556, DOI 10.1021/es901461c; MCCAHON CP, 1989, HYDROBIOLOGIA, V185, P153, DOI 10.1007/BF00010812; NAYLOR C, 1989, HYDROBIOLOGIA, V188, P517, DOI 10.1007/BF00027819; Nikolcheva LG, 2005, ENVIRON MICROBIOL, V7, P270, DOI 10.1111/j.1462-2920.2004.00709.x; Oliver R. P, 2014, FUNGICIDES CROP PROT, P190; Pestana JLT, 2009, AQUAT TOXICOL, V93, P138, DOI 10.1016/j.aquatox.2009.04.008; Piscart C, 2009, ENVIRON POLLUT, V157, P1011, DOI 10.1016/j.envpol.2008.10.010; R Development Core Team, 2016, R LANG ENV STAT COMP; Rabiet M, 2010, ENVIRON POLLUT, V158, P737, DOI 10.1016/j.envpol.2009.10.014; Rasmussen JJ, 2012, AQUAT TOXICOL, V118, P54, DOI 10.1016/j.aquatox.2012.03.015; Rosenfeldt RR, 2014, ENVIRON SCI TECHNOL, V48, P6965, DOI 10.1021/es405396a; Schulz R, 2015, SCI TOTAL ENVIRON, V538, P246, DOI 10.1016/j.scitotenv.2015.08.038; Stauber J. L., 2000, Environmental Reviews, V8, P255, DOI 10.1139/er-8-4-255; Stenersen J, 2004, CHEM PESTICIDES MODE, P276; Stuijfzand S. C, 1999, THESIS; SUBERKROPP K, 1983, APPL ENVIRON MICROB, V46, P237; Suss A., 2006, Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, V58, P28; Tagliaferro M, 2017, ECOL INDIC; Tattersfield L. J, 1993, THESIS; Tiwari ON, 2017, INT J ENVIRON SCI TE, V14, P49, DOI 10.1007/s13762-016-1123-z; VANHANDEL E, 1985, J AM MOSQUITO CONTR, V1, P302; Von Der Ohe PC, 2004, ENVIRON TOXICOL CHEM, V23, P150; WAGNER R, 1990, HOLARCTIC ECOL, V13, P247; Warwick O.W.T, 1997, THESIS; Willming MM, 2016, ENVIRON POLLUT, V211, P435, DOI 10.1016/j.envpol.2015.11.029; Wogram J, 2001, B ENVIRON CONTAM TOX, V67, P360; Zar J. H, 2010, BIOSTAT ANAL, P944; Zubrod JP, 2015, AQUAT TOXICOL, V169, P105, DOI 10.1016/j.aquatox.2015.10.008; Zubrod JP, 2015, ENVIRON POLLUT, V205, P16, DOI 10.1016/j.envpol.2015.05.015; Zubrod JP, 2014, AQUAT TOXICOL, V150, P133, DOI 10.1016/j.aquatox.2014.03.002; Zubrod J. P., 2018, FUNGICIDES OVE UNPUB; Zubrod JP, 2015, J APPL ECOL, V52, P310, DOI 10.1111/1365-2664.12393; Zubrod JP, 2015, ENVIRON SCI TECHNOL, V49, P1173, DOI 10.1021/es5050453; Zubrod JP, 2011, ENVIRON TOXICOL CHEM, V30, P2718, DOI 10.1002/etc.679 84 0 0 3 3 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0166-445X 1879-1514 AQUAT TOXICOL Aquat. Toxicol. JAN 2019 206 33 42 10.1016/j.aquatox.2018.10.021 10 Marine & Freshwater Biology; Toxicology Marine & Freshwater Biology; Toxicology HJ9GD WOS:000457506000004 30445370 2019-02-21 J Santana, CA; Tondato, KK; Suarez, YR Santana, C. A.; Tondato, K. K.; Suarez, Y. R. Reproductive biology of Hyphessobrycon eques (Characiformes: Characidae) in Southern Pantanal, Brazil BRAZILIAN JOURNAL OF BIOLOGY English Article sex ratio; fish; reproductive biology; life history; Paraguay River LIFE-HISTORY STRATEGIES; UPPER PARANA RIVER; CUIABA RIVER; FLOOD REGIME; FISH; BASIN; RESERVOIR; ECOLOGY; TRAITS; STREAM Population and reproductive aspects allow the knowledge and understanding of population dynamics and the influence of environmental factors, in addition to ensure the success of a species continuity. Thus, the aim of this study was to analyze population and reproductive traits of the species Hyphessobrycon eques in southern Pantanal, Brazil. Monthly samplings were conducted from February/2009 to January/2011, with 617 individuals analyzed, being 365 females and 262 males. A similar form of distribution in length and weight between the sexes was observed. There was no significant variation in sex ratio over time, with higher proportion of females during the entire sampled period. Both sexes presented a angular coefficient of Weight/Length (b) relationship greater than 3, with speed of increase in weight greater than in length. For females, a long reproductive period was observed, with greater reproductive intensity from January through June. No significant correlation was observed between the Gonadosomatic Index (GSI) and the average temperature, rainfall and river level, despite the fact that reproductive activity occurs in autumn/winter, when there are favorable conditions due to flooding. The size at first maturation (L-50) was 20.2 mm, with confidence interval varying from 19.7 through 20.7 mm. The average fecundity was 191.9 oocytes/females and was significantly related to the standard length and total weight (g), demonstrating a relation with energy accumulation to invest in reproduction. The long reproductive period, intensified by partial spawning, higher proportion of females and low L-50, show that the species has strategies necessary for survival and rapid population growth, common in small species characterized as r-strategists. [Santana, C. A.; Suarez, Y. R.] Univ Estadual Mato Grosso do Sul UEMS, Ctr Estudos Recursos Nat CERNA, Lab Ecol, Programa Posgrad Recursos Nat PGRN, Rod Dourados Itahum,Km 12, BR-79804970 Dourados, MS, Brazil; [Tondato, K. K.] Univ Fed Mato Grosso UFMT, Inst Ciencias Exatas & Nat, Dept Ciencias Biol, Lab Anal Hidr & Ecol Aplicada,LEOA, Rod Rondonopolis,Guiratinga Km 06, BR-78735901 Rondonopolis, MT, Brazil Santana, CA (reprint author), Univ Estadual Mato Grosso do Sul UEMS, Ctr Estudos Recursos Nat CERNA, Lab Ecol, Programa Posgrad Recursos Nat PGRN, Rod Dourados Itahum,Km 12, BR-79804970 Dourados, MS, Brazil. santana.avila@gmail.com FUNDECT; CNPq [302794/2014-0]; CPP/MCT The authors thank UEMS for logistic support; FUNDECT and CPP/MCT for financial support; W. Vicentin, M. M. Souza, M. J. Pereira, G. S. V. Duarte, F. S. Ferreira, and others who helped in field work. To CNPq for individual financial support to YRS (grant #302794/2014-0). We also thank ICMBio for research permits (#13.458-1). Abilhoa Vinicius, 2008, Estudos de Biologia (Curitiba), V29, P23; ADEBISI AA, 1987, ARCH HYDROBIOL, V111, P151; Agostinho AA, 2004, REV FISH BIOL FISHER, V14, P11, DOI 10.1007/s11160-004-3551-y; Agostinho AA, 1999, THEORETICAL RESERVOIR ECOLOGY AND ITS APPLICATIONS, P227; Agostinho Angelo Antonio, 2003, P19; Angulo-Valencia Mirtha A., 2016, Lakes & Reservoirs Research and Management, V21, P362, DOI 10.1111/lre.12151; Arantes FP, 2011, J APPL ICHTHYOL, V27, P847, DOI 10.1111/j.1439-0426.2010.01583.x; Bailly D, 2008, RIVER RES APPL, V24, P1218, DOI 10.1002/rra.1147; Barbieri Geraldo, 2004, Acta Scientiarum Biological Sciences, V26, P169; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; BUCKUP P. A, 2007, CATALOGO ESPECIES PE; Cianciaruso Marcus Vinicius, 2009, Biota Neotrop., V9, P93, DOI 10.1590/S1676-06032009000300008; Cunha NL., 2007, Braz. J. Biol., V67, P293, DOI 10.1590/S1519-69842007000200014; Da Silva JD, 1998, PESQUI AGROPECU BRAS, V33, P1703; Dagosta FCP, 2016, COPEIA, V104, P250, DOI 10.1643/CI-15-243; de Merona B, 2009, NEOTROP ICHTHYOL, V7, P683, DOI 10.1590/S1679-62252009000400018; Fantin-Cruz I, 2011, J HYDROL, V399, P376, DOI 10.1016/j.jhydrol.2011.01.014; Gonçalves Cristina da Silva, 2013, Acta Limnol. Bras., V25, P398, DOI 10.1590/S2179-975X2013000400005; Hojo Renê Eiji Souza, 2004, Rev. Bras. Zool., V21, P519, DOI 10.1590/S0101-81752004000300015; Humphries P, 1999, ENVIRON BIOL FISH, V56, P129, DOI 10.1023/A:1007536009916; Jones RE, 1999, AQUACULT ENG, V20, P261, DOI 10.1016/S0144-8609(99)00020-5; Lacerda Rego Ana Carolina, 2008, Revista Brasileira de Zoociencias, V10, P13; Lourenco LD, 2008, REV BRAS ZOOL, V25, P20, DOI 10.1590/S0101-81752008000100004; Lourenco LD, 2012, ZOOLOGIA-CURITIBA, V29, P300, DOI 10.1590/S1984-46702012000400003; Mateus LAF, 2007, REV BRAS ZOOL, V24, P87, DOI 10.1590/S0101-81752007000100012; Monaco Isabelle de Almeida, 2014, Acta Scientiarum Biological Sciences, V36, P181, DOI 10.4025/actascibiolsci.v36i2.21394; Olden JD, 2010, AM FISH S S, V73, P83; Paschoalini AL, 2013, NEOTROP ICHTHYOL, V11, P615, DOI 10.1590/S1679-62252013000300015; Pelicice FM, 2006, ECOL FRESHW FISH, V15, P10, DOI 10.1111/j.1600-0633.2005.00121.x; Roa R, 1999, FISH B-NOAA, V97, P570; Souza UP, 2015, ECOL FRESHW FISH, V24, P123, DOI 10.1111/eff.12131; Suarez YR, 2017, ENVIRON BIOL FISH, V100, P775, DOI 10.1007/s10641-017-0604-3; Suarez YR, 2009, NEOTROP ICHTHYOL, V7, P49, DOI 10.1590/S1679-62252009000100007; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Tondato K. K., 2012, OECOL AUST, V16, P878, DOI [10.4257/oeco.2012.1604.11, DOI 10.4257/OECO.2012.1604.11]; Tondato KK, 2014, ENVIRON BIOL FISH, V97, P13, DOI 10.1007/s10641-013-0119-5; VAZZOLER A. E. A. M, 1992, REV BRAS BIOL, V52, P626; Vazzoler A. E. A. M., 1996, BIOL REPROD PEIXES T; Vicentini R. N., 2003, Braz. J. Biol., V63, P559, DOI 10.1590/S1519-69842003000400003; WINEMILLER K. O., 2003, COASTAL REALM CONSER, P106; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WOOTTON R, 1999, ECOLOGY TELEOST FISH; Zeug SC, 2008, RIVER RES APPL, V24, P90, DOI 10.1002/rra.1061 43 1 1 0 0 INT INST ECOLOGY SAO CARLOS RUA BENTO CARLOS, 750 - CENTRO, SAO CARLOS, SP 00000, BRAZIL 1519-6984 1678-4375 BRAZ J BIOL Braz. J. Biol. JAN-MAR 2019 79 1 70 79 10.1590/1519-6984.176273 10 Biology Life Sciences & Biomedicine - Other Topics HJ7AJ WOS:000457344500010 29538483 DOAJ Gold 2019-02-21 J Nandini, S; Sarma, SSS Nandini, S.; Sarma, S. S. S. Reproductive strategies of Moina (Cladocera) in relation to their habitat LIMNETICA English Article Crustacea; males; ephippia; reproduction; starvation DAPHNIA-PULEX CRUSTACEA; POPULATION-GROWTH Some Moina species are predominantly found in large ponds and lakes while others are restricted to temporary pools or estuaries. The life history strategies and resistance to starvation of different species of Moina depend on their habitat. We compared the demography and starvation resistance in three species of the genus: Moina macrocopa (isolated from a reservoir), M. cf. micrura (from a small lake) and M. cf. wierzejskii (from a temporary pool). Population growth of the three Moina species was followed for 15 days using Chlorella vulgaris at a density of 1 x 10(6) cells/ml. Daily the females, males and ephippia produced by each cladoceran species were enumerated and transferred to a fresh test medium. We also tested the differences in resistance to starvation of the adults and the neonates by comparing the days until all the unfed individuals had died. Population growth curves of Moina macrocopa, M. cf. micrura and M. cf. wierzejskii showed significantly different trends. Moina macrocopa had higher peak densities (5-6 ind/ml) and higher population growth rates (0.33 per day) than the other two species. However, M. cf. wierzejskii had higher production of both, males and ephippia (0.3-0.4 ind/ ml and 0.7-0.8 ind/ml, respectively) than the rest. Regardless of the species, neonates were less resistant to starvation than adults. We discuss here adaptations of the life history strategies of these taxa in relation to their habitat. [Nandini, S.; Sarma, S. S. S.] Univ Nacl Autonoma Mexico, Div Invest & Postgrad Studies, Lab Aquat Zool, UMF Bldg,Campus Iztacala,AP 314, Tlalnepantla 54090, State Of Mexico, Mexico Nandini, S (reprint author), Univ Nacl Autonoma Mexico, Div Invest & Postgrad Studies, Lab Aquat Zool, UMF Bldg,Campus Iztacala,AP 314, Tlalnepantla 54090, State Of Mexico, Mexico. nandini@unam.mx Sarma, Dr. S.S.S./G-3634-2010 Sarma, Dr. S.S.S./0000-0003-2820-1579 CONACyT [20520, 18723]; PASPA (UNAM); DIP, UNAM FES Iztacala We thank CONACyT (20520 and 18723), PASPA (UNAM) and DIP, UNAM FES Iztacala for financial support. Alekseev V, 2001, NATURE, V414, P899, DOI 10.1038/414899a; BLEDZKI L. A, 2016, FRESHWATER CRUSTACEA; BOROWITZKA M. A, 1988, MICROALGAL BIOTECHNO; Brendonck L, 2017, HYDROBIOLOGIA, V796, P201, DOI 10.1007/s10750-016-3006-1; Burge DRL, 2018, EVOL APPL, V11, P42, DOI 10.1111/eva.12556; Burke NW, 2018, ECOL EVOL, V8, P2698, DOI 10.1002/ece3.3895; Caceres CE, 1998, ERGEB LIMNOL, V52, P163; CARVALHO GR, 1983, FRESHWATER BIOL, V13, P37, DOI 10.1111/j.1365-2427.1983.tb00655.x; DODSON S. I., 2001, ECOLOGY CLASSIFICATI, P850; Forro L, 2008, HYDROBIOLOGIA, V595, P177, DOI 10.1007/s10750-007-9013-5; Garcia CE, 2003, ACTA HYDROCH HYDROB, V31, P120, DOI 10.1002/aheh.200300480; Gerhard M, 2017, HYDROBIOLOGIA, V798, P75, DOI 10.1007/s10750-016-2654-5; GOULDEN CE, 1968, T AM PHILOS SOC, V58, P5; GROSS J. B., 2012, ENCY LIFE SCI, DOI [10.1002/9780470015902.a0023628, DOI 10.1002/9780470015902.A0023628]; Hairston NG, 1996, HYDROBIOLOGIA, V320, P27, DOI 10.1007/BF00016802; Innes DJ, 2000, BIOL J LINN SOC, V71, P771, DOI 10.1006/bijl.2000.0474; JIMENEZ B, 1987, HYDROBIOLOGIA, V145, P293, DOI 10.1007/BF02530290; KIRK K. L., 2012, COMP PHYSL FASTING S, P25, DOI [10.1007/978-3-642-29056-5_3, DOI 10.1007/978-3-642-29056-5_3]; Krebs CJ, 1985, ECOLOGY EXPT ANAL DI; Nandini S, 2006, ACTA HYDROCH HYDROB, V34, P474, DOI 10.1002/aheh.200600642; Nandini S, 2003, HYDROBIOLOGIA, V491, P211, DOI 10.1023/A:1024410314313; SMIRNOV N. N., 2017, PHYSL CLADOCERA; Sommer S, 2016, J LIMNOL, V75, P30, DOI 10.4081/jlimnol.2016.1292; Stearns S, 1992, EVOLUTION LIFE HIST; WEBER C. I, 1993, METHODS MEASURING AC; Winsor GL, 2002, FRESHWATER BIOL, V47, P441, DOI 10.1046/j.1365-2427.2002.00817.x; Zadereev YS, 2003, AQUAT ECOL, V37, P251, DOI 10.1023/A:1025850417717 27 0 0 2 2 ASOC ESPAN LIMNOL-MISLATA MISLATA (VALENCIA) C/ LOS ANGELES, 33, MISLATA (VALENCIA), SPAIN 0213-8409 1989-1806 LIMNETICA Limnetica 2019 38 1 137 145 10.23818/limn.38.15 9 Limnology; Marine & Freshwater Biology Marine & Freshwater Biology HJ4XN WOS:000457181700009 2019-02-21 S Ellis, BJ; Del Giudice, M Fiske, ST Ellis, Bruce J.; Del Giudice, Marco Developmental Adaptation to Stress: An Evolutionary Perspective ANNUAL REVIEW OF PSYCHOLOGY, VOL 70 Annual Review of Psychology English Review; Book Chapter developmental plasticity; developmental programming; differential susceptibility; evolution; life history theory; puberty; childhood stress; stress response systems SENSORY PROCESSING SENSITIVITY; ADAPTIVE CALIBRATION MODEL; LIFE-HISTORY THEORY; DIFFERENTIAL SUSCEPTIBILITY; PUBERTAL DEVELOPMENT; ENVIRONMENT INTERACTION; BIOLOGICAL SENSITIVITY; CHILDHOOD ADVERSITY; REPRODUCTIVE STRATEGY; PHENOTYPIC PLASTICITY The assumption that early stress leads to dysregulation and impairment is widespread in developmental science and informs prevailing models (e.g., toxic stress). An alternative evolutionary-developmental approach, which complements the standard emphasis on dysregulation, proposes that early stress may prompt the development of costly but adaptive strategies that promote survival and reproduction under adverse conditions. In this review, we survey this growing theoretical and empirical literature, highlighting recent developments and outstanding questions. We review concepts of adaptive plasticity and conditional adaptation, introduce the life history framework and the adaptive calibration model, and consider how physiological stress response systems and related neuroendocrine processes may function as plasticity mechanisms. We then address the evolution of individual differences in susceptibility to the environment, which engenders systematic person-environment interactions in the effects of stress on development. Finally, we discuss stress-mediated regulation of pubertal development as a case study of how an evolutionary-developmental approach can foster theoretical integration. [Ellis, Bruce J.] Univ Utah, Dept Psychol, Salt Lake City, UT 84112 USA; [Ellis, Bruce J.] Univ Utah, Dept Anthropol, Salt Lake City, UT 84112 USA; [Del Giudice, Marco] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA Ellis, BJ (reprint author), Univ Utah, Dept Psychol, Salt Lake City, UT 84112 USA.; Ellis, BJ (reprint author), Univ Utah, Dept Anthropol, Salt Lake City, UT 84112 USA. bruce.ellis@psych.utah.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 Alink LRA, 2008, DEV PSYCHOBIOL, V50, P427, DOI 10.1002/dev.20300; Allegrini AG, 2018, DEV PSYCHOPATHOL; Allsworth JE, 2005, ANN EPIDEMIOL, V15, P438, DOI 10.1016/j.annepidem.2004.12.010; Arim RG, 2011, J YOUTH ADOLESCENCE, V40, P1423, DOI 10.1007/s10964-011-9638-6; Aron EN, 2012, PERS SOC PSYCHOL REV, V16, P262, DOI 10.1177/1088868311434213; Baams L, 2015, J ADOLESCENT HEALTH, V56, P586, DOI 10.1016/j.jadohealth.2014.11.019; Bakermans-Kranenburg MJ, 2015, ANNU REV PSYCHOL, V66, P381, DOI 10.1146/annurev-psych-010814-015407; Bakermans-Kranenburg MJ, 2011, DEV PSYCHOPATHOL, V23, P39, DOI 10.1017/S0954579410000635; Barbaro N, 2017, EVOL HUM BEHAV, V38, P357, DOI 10.1016/j.evolhumbehav.2016.11.007; Bateson P, 2014, J PHYSIOL-LONDON, V592, P2357, DOI 10.1113/jphysiol.2014.271460; Baumeister D, 2016, MOL PSYCHIATR, V21, P642, DOI 10.1038/mp.2015.67; Belles S, 2010, PERS SOC PSYCHOL B, V36, P703, DOI 10.1177/0146167210366305; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, PSYCHOL INQ, V8, P182, DOI 10.1207/s15327965pli0803_3; Belsky J., 2005, ORIGINS SOCIAL MIND, P139; Belsky J., 2016, DEV PSYCHOPATHOL, V2, P59; Belsky J, 2007, CURR DIR PSYCHOL SCI, V16, P300, DOI 10.1111/j.1467-8721.2007.00525.x; Belsky J, 2016, DEV PSYCHOPATHOL, V28, P1367, DOI 10.1017/S0954579416000900; Belsky J, 2015, DEV PSYCHOPATHOL, V27, P725, DOI 10.1017/S0954579414000844; Belsky J, 2015, DEV PSYCHOL, V51, P816, DOI 10.1037/dev0000017; Belsky J, 2013, J CHILD PSYCHOL PSYC, V54, P1135, DOI 10.1111/jcpp.12075; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2011, J CHILD PSYCHOL PSYC, V52, P619, DOI 10.1111/j.1469-7610.2010.02327.x; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Black CJ, 2017, EVOL PSYCHOL-US, V15, DOI 10.1177/1474704916670402; Black SR, 2018, BIOL PSYCHOL, V132, P252, DOI 10.1016/j.biopsycho.2017.11.004; Bleil ME, 2012, HUM REPROD, V27, P2720, DOI 10.1093/humrep/des214; Bleil ME, 2013, BIOL PSYCHOL, V93, P213, DOI 10.1016/j.biopsycho.2013.02.005; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; BOYCE WT, 1995, PSYCHOSOM MED, V57, P411, DOI 10.1097/00006842-199509000-00001; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Bunea IM, 2017, TRANSL PSYCHIAT, V7, DOI 10.1038/s41398-017-0032-3; Cameron Nicole M, 2011, Front Evol Neurosci, V3, P10, DOI 10.3389/fnevo.2011.00010; Chang L, 2018, EVOL HUM BEHAV, V39, P59, DOI 10.1016/j.evolhumbehav.2017.10.003; Chen FR, 2018, AGGRESSIVE BEHAV, V44, P18, DOI 10.1002/ab.21720; Cicchetti D, 2012, DEV PSYCHOPATHOL, V24, P411, DOI 10.1017/S0954579412000077; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; Conradt E, 2018, DEV PSYCHOPATHOL, V30, P807, DOI 10.1017/S0954579418000469; Copping LT, 2015, EVOL HUM BEHAV, V36, P182, DOI 10.1016/j.evolhumbehav.2014.10.005; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Day FR, 2015, SCI REP-UK, V5, DOI 10.1038/srep11208; Del Giudice M, 2014, J DEV ORIG HLTH DIS, V5, P270, DOI 10.1017/S2040174414000257; Del Giudice M., 2015, HDB BIOBEHAVIORAL AP, P25, DOI DOI 10.1007/978-1-4939-1236-0_3; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Del Giudice M, 2018, PSYCHONEUROENDOCRINO, V90, P165, DOI 10.1016/j.psyneuen.2018.02.025; Del Giudice M, 2017, CHILD DEV, V88, P1897, DOI 10.1111/cdev.12710; Del Giudice M, 2017, DEV PSYCHOPATHOL, V29, P1267, DOI 10.1017/S0954579416001292; Del Giudice M, 2016, DEV PSYCHOL, V52, P1330, DOI 10.1037/dev0000153; Del Giudice M, 2015, FRONT ZOOL, V12, DOI 10.1186/1742-9994-12-S1-S4; Del Giudice M, 2014, CHILD DEV PERSPECT, V8, P193, DOI 10.1111/cdep.12084; Del Giudice M, 2012, DEV PSYCHOL, V48, P775, DOI 10.1037/a0026519; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; del Giudice Marco, 2011, EVOLUTION PERSONALIT, P154; DeWitt T. J, 2004, PHENOTYPIC PLASTICIT; Dick DM, 2015, PERSPECT PSYCHOL SCI, V10, P37, DOI 10.1177/1745691614556682; Dickerson SS, 2004, PSYCHOL BULL, V130, P355, DOI 10.1037/0033-2909.130.3.355; Doom JR, 2014, J AM ACAD CHILD PSY, V53, P1206, DOI 10.1016/j.jaac.2014.08.006; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2017, CHILD ADOLESCENT PSY, P237; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2017, PERSPECT PSYCHOL SCI, V12, P561, DOI 10.1177/1745691617693054; Ellis BJ, 2017, DEV PSYCHOPATHOL, V29, P1001, DOI 10.1017/S0954579416000985; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2013, HORM BEHAV, V64, P215, DOI 10.1016/j.yhbeh.2013.02.012; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2012, DEV PSYCHOPATHOL, V24, P317, DOI 10.1017/S095457941100085X; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P85, DOI 10.1017/S0954579410000660; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Evans GW, 2013, PSYCHOL BULL, V139, P1342, DOI 10.1037/a0031808; Fawcett TW, 2015, FRONT ZOOL, V12, DOI 10.1186/1742-9994-12-S1-S3; Fearon RMP, 2017, DEV PSYCHOPATHOL, V29, P449, DOI 10.1017/S0954579417000104; Feurer C, 2017, J ABNORM PSYCHOL, V126, P1017, DOI 10.1037/abn0000316; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Foster H, 2008, J HEALTH SOC BEHAV, V49, P162, DOI 10.1177/002214650804900204; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; Frankenhuis WE, 2011, P ROY SOC B-BIOL SCI, V278, P3558, DOI 10.1098/rspb.2011.0055; Gaydosh L, 2018, DEMOGRAPHY, V55, P1245, DOI 10.1007/s13524-018-0696-1; Georgiev AV, 2016, EVOL MED PUBLIC HLTH, P256, DOI 10.1093/emph/eow022; Gibbons FX, 2012, DEV PSYCHOL, V48, P722, DOI 10.1037/a0026599; Graber JA, 1997, J AM ACAD CHILD PSY, V36, P1768, DOI 10.1097/00004583-199712000-00026; Gunnar MR, 2009, PSYCHONEUROENDOCRINO, V34, P62, DOI 10.1016/j.psyneuen.2008.08.013; Harden KP, 2016, PSYCHONEUROENDOCRINO, V73, P79, DOI 10.1016/j.psyneuen.2016.07.216; Hartman S, 2017, DEV PSYCHOPATHOL, V29, P1839, DOI 10.1017/S0954579417001432; Hartman S, 2015, DEV PSYCHOPATHOL, V27, P747, DOI 10.1017/S0954579414000856; Herringa Ryan J, 2016, Biol Psychiatry Cogn Neurosci Neuroimaging, V1, P326; Hertzman C, 2012, P NATL ACAD SCI USA, V109, P17160, DOI 10.1073/pnas.1202203109; Hiatt RA, 2017, CANCER EPIDEM BIOMAR, V26, P1714, DOI 10.1158/1055-9965.EPI-17-0496; Hill SE, 2016, ADAPT HUM BEHAV PHYS, V2, P116, DOI 10.1007/s40750-015-0040-6; Ibitoye M, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0178884; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Jeschke JM, 2008, ENCY ECOL, V4, P3113; Johns SE, 2011, HEALTH PLACE, V17, P122, DOI 10.1016/j.healthplace.2010.09.006; Jolicoeur-Martineau A, 2017, ARXIV171204058STATAP; Joos CM, 2018, DEV REV, V48, P1, DOI 10.1016/j.dr.2018.05.001; Juster RP, 2011, DEV PSYCHOPATHOL, V23, P725, DOI 10.1017/S0954579411000289; Keers R, 2017, DEV PSYCHOPATHOL, V29, P1921, DOI 10.1017/S0954579417001493; Kopp EB, 2009, EVOL APPL, V2, P132, DOI 10.1111/j.1752-4571.2008.00062.x; Kuzawa CW, 2009, ANNU REV ANTHROPOL, V38, P131, DOI 10.1146/annurev-anthro-091908-164350; Kyweluk MA, 2018, EVOL HUM BEHAV, V39, P76, DOI 10.1016/j.evolhumbehav.2017.10.002; Laurent HK, 2014, DEV PSYCHOBIOL, V56, P340, DOI 10.1002/dev.21103; Lei MK, 2018, HEALTH PSYCHOL, V37, P613, DOI 10.1037/hea0000609; LIAN QG, 2018, PEERJ, V6, DOI DOI 10.7717/PEERJ.5085; Lupein SJ, 2006, DEV PSYCHOPATHOL, P578, DOI DOI 10.1002/9780470939390.CH14; Magnus MC, 2018, J EPIDEMIOL COMMUN H, V72, P34, DOI 10.1136/jech-2017-209488; Manuck SB, 2011, DEV PSYCHOPATHOL, V23, P69, DOI 10.1017/S0954579410000659; Mathot KJ, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2459-9; MCEWEN BS, 1993, ARCH INTERN MED, V153, P2093, DOI 10.1001/archinte.153.18.2093; Mell H, 2018, EVOL HUM BEHAV, V39, P1, DOI 10.1016/j.evolhumbehav.2017.08.006; Mendle J, 2006, DEV PSYCHOL, V42, P533, DOI 10.1037/0012-1649.42.3.233; Mendle J, 2016, J RES ADOLESCENCE, V26, P595, DOI 10.1111/jora.12201; Mendle J, 2014, J RES ADOLESCENCE, V24, P689, DOI 10.1111/jora.12075; Miller GE, 2007, PSYCHOL BULL, V133, P25, DOI 10.1037/0033-2909.133.1.25; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Moore SR, 2016, PSYCHOL BULL, V142, P107, DOI 10.1037/bul0000028; Murren CJ, 2015, HEREDITY, V115, P293, DOI 10.1038/hdy.2015.8; Najman JM, 2009, AUST NZ J CRIMINOL, V42, P369, DOI 10.1375/acri.42.3.369; Negriff S, 2015, J ADOLESCENT HEALTH, V56, P625, DOI 10.1016/j.jadohealth.2015.02.012; Nusslock R, 2016, BIOL PSYCHIAT, V80, P23, DOI 10.1016/j.biopsych.2015.05.017; Obradovic J, 2012, DEV PSYCHOPATHOL, V24, P371, DOI 10.1017/S0954579412000053; Peckins MK, 2015, DEV PSYCHOPATHOL, V27, P1461, DOI 10.1017/S0954579415000875; Pluess M, 2018, DEV PSYCHOL, V54, P51, DOI 10.1037/dev0000406; Pluess M, 2015, CHILD DEV PERSPECT, V9, P138, DOI 10.1111/cdep.12120; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Richardson GB, 2017, EVOL PSYCHOL-US, V15, DOI 10.1177/1474704916666840; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Robles TF, 2018, DEV PSYCHOPATHOL, V30, P235, DOI 10.1017/S0954579417000591; Roisman GI, 2012, DEV PSYCHOPATHOL, V24, P389, DOI 10.1017/S0954579412000065; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; RUTTER M, 1993, J ADOLESCENT HEALTH, V14, P626, DOI 10.1016/1054-139X(93)90196-V; Ruttle PL, 2015, DEV PSYCHOBIOL, V57, P688, DOI 10.1002/dev.21138; Saxbe DE, 2015, DEV PSYCHOPATHOL, V27, P819, DOI 10.1017/S0954579414000790; Sefcek JA, 2010, BIODEMOGR SOC BIOL, V56, P42, DOI 10.1080/19485561003709214; Sheppard P, 2016, AM J HUM BIOL, V28, P356, DOI 10.1002/ajhb.22793; Shonkoff JP, 2012, PEDIATRICS, V129, pE232, DOI 10.1542/peds.2011-2663; Shulman EP, 2016, DEV COGN NEUROS-NETH, V17, P103, DOI 10.1016/j.dcn.2015.12.010; Sijtsema JJ, 2013, DEV PSYCHOPATHOL, V25, P699, DOI 10.1017/S0954579413000114; Silveira PP, 2017, DEV PSYCHOPATHOL, V29, P1601, DOI 10.1017/S0954579417001262; Simmons JG, 2015, DEV PSYCHOBIOL, V57, P670, DOI 10.1002/dev.21275; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Slagt M, 2018, DEV PSYCHOL, V54, P543, DOI 10.1037/dev0000431; Slagt M, 2016, PSYCHOL BULL, V142, P1068, DOI 10.1037/bul0000061; South SC, 2017, J PERS, V85, P22, DOI 10.1111/jopy.12231; Sumner JA, 2018, BIOL PSYCHIAT; Sun Y, 2017, PEDIATRICS, V139, DOI 10.1542/peds.2016-4099; Sun Y, 2017, JAMA PEDIATR, V171, P596, DOI 10.1001/jamapediatrics.2017.0038; Sung S, 2016, PSYCHOL SCI, V27, P667, DOI 10.1177/0956797616631958; Szepsenwol O, 2015, J PERS SOC PSYCHOL, V109, P1045, DOI 10.1037/pspi0000032; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Trickett PK, 2014, CHILD MALTREATMENT, V19, P27, DOI 10.1177/1077559513520466; Trickett PK, 2011, DEV PSYCHOPATHOL, V23, P453, DOI 10.1017/S0954579411000174; Trickett PK, 2010, DEV PSYCHOPATHOL, V22, P165, DOI 10.1017/S0954579409990332; Van Buskirk J, 1998, BIOL J LINN SOC, V65, P301, DOI 10.1006/bijl.1998.0249; van IJzendoorn MH, 2012, TRANSL PSYCHIAT, V2, DOI 10.1038/tp.2012.73; van Ijzendoorn MH, 2015, DEV PSYCHOPATHOL, V27, P151, DOI 10.1017/S0954579414001369; Volk AA, 2013, EVOL HUM BEHAV, V34, P182, DOI 10.1016/j.evolhumbehav.2012.11.007; Webster GD, 2014, EVOL PSYCHOL-US, V12, P273, DOI 10.1177/147470491401200202; Wells JC, 2017, THE ARC OF LIFE, P21, DOI DOI 10.1007/978-1-4939-4038-7; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WILSON DS, 1994, AM NAT, V144, P692, DOI 10.1086/285702; Young ES, 2018, J PERS SOC PSYCHOL, V114, P891, DOI 10.1037/pspi0000124 165 0 0 7 7 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA 0066-4308 978-0-8243-0270-2 ANNU REV PSYCHOL Annu. Rev. Psychol 2019 70 111 139 10.1146/annurev-psych-122216-011732 29 Psychology; Psychology, Multidisciplinary Psychology BL8ID WOS:000456388300006 30125133 2019-02-21 J Ware, IM; Fitzpatrick, CR; Senthilnathan, A; Bayliss, SLJ; Beals, KK; Mueller, LO; Summers, JL; Wooliver, RC; Van Nuland, ME; Kinnison, MT; Palkovacs, EP; Schweitzer, JA; Bailey, JK Ware, Ian M.; Fitzpatrick, Connor R.; Senthilnathan, Athmanathan; Bayliss, Shannon L. J.; Beals, Kendall K.; Mueller, Liam O.; Summers, Jennifer L.; Wooliver, Rachel C.; Van Nuland, Michael E.; Kinnison, Michael T.; Palkovacs, Eric P.; Schweitzer, Jennifer A.; Bailey, Joseph K. Feedbacks link ecosystem ecology and evolution across spatial and temporal scales: Empirical evidence and future directions FUNCTIONAL ECOLOGY English Review eco-evolutionary feedbacks; ecosystem function; geographic mosaic theory of co-evolution; niche construction LIFE-HISTORY EVOLUTION; PLANT-SOIL FEEDBACKS; INTRASPECIFIC VARIATION; NICHE CONSTRUCTION; CONTEMPORARY EVOLUTION; GROWTH-RESPONSES; RAPID EVOLUTION; COMMUNITY; SELECTION; HERBIVORY Unifying ecosystem ecology and evolutionary biology promises a more complete understanding of the processes that link different levels of biological organization across space and time. Feedbacks across levels of organization link theory associated with eco-evolutionary dynamics, niche construction and the geographic mosaic theory of co-evolution. We describe a conceptual model, which builds upon previous work that shows how feedback among different levels of biological organization can link ecosystem and evolutionary processes over space and time. We provide empirical examples across terrestrial and aquatic systems that indicate broad generality of the conceptual framework and discuss its macroevolutionary consequences. Our conceptual model is based on three premises: genetically based species interactions can vary spatially and temporally from positive to neutral (i.e. no net feedback) to negative and drive evolutionary change; this evolutionary change can drive divergence in niche construction and ecosystem function; and lastly, such ecosystem-level effects can reinforce spatiotemporal variation in evolutionary dynamics. Just as evolution can alter ecosystem function locally and across the landscape differently, variation in ecosystem processes can drive evolution locally and across the landscape differently. By highlighting our current knowledge of eco-evolutionary feedbacks in ecosystems, as well as information gaps, we provide a foundation for understanding the interplay between biodiversity and ecosystem function through an eco-evolutionary lens. [Ware, Ian M.; Senthilnathan, Athmanathan; Bayliss, Shannon L. J.; Beals, Kendall K.; Mueller, Liam O.; Summers, Jennifer L.; Wooliver, Rachel C.; Schweitzer, Jennifer A.; Bailey, Joseph K.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA; [Fitzpatrick, Connor R.] Univ Toronto, Dept Biol, Mississauga, ON, Canada; [Van Nuland, Michael E.] Stanford Univ, Dept Biol, Stanford, CA 94305 USA; [Kinnison, Michael T.] Univ Maine, Sch Biol & Ecol, Orono, ME USA; [Palkovacs, Eric P.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA Ware, IM (reprint author), Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. ianmware@gmail.com Agrawal AA, 2012, SCIENCE, V338, P113, DOI 10.1126/science.1225977; Anstett DN, 2015, ECOL LETT, V18, P1376, DOI 10.1111/ele.12532; Auer SK, 2018, ECOL LETT, V21, P287, DOI 10.1111/ele.12894; Bailey JK, 2004, ECOLOGY, V85, P603, DOI 10.1890/03-3049; Bailey JK, 2014, FUNCT ECOL, V28, P3, DOI 10.1111/1365-2435.12235; Bailey JK, 2009, PHILOS T R SOC B, V364, P1607, DOI 10.1098/rstb.2008.0336; Bassar RD, 2013, AM NAT, V181, P25, DOI 10.1086/668590; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Becerra JX, 2009, P NATL ACAD SCI USA, V106, P18062, DOI 10.1073/pnas.0904456106; Belovsky GE, 2000, P NATL ACAD SCI USA, V97, P14412, DOI 10.1073/pnas.250483797; Benkman CW, 1999, AM NAT, V153, pS75, DOI 10.1086/303213; Best RJ, 2017, NAT ECOL EVOL, V1, P1757, DOI 10.1038/s41559-017-0308-2; Brodersen J, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9115; Brodie ED, 2002, EVOLUTION, V56, P2067; Brunner FS, 2017, P NATL ACAD SCI USA, V114, P3678, DOI 10.1073/pnas.1619147114; Carlson SM, 2011, HEREDITY, V106, P438, DOI 10.1038/hdy.2010.163; Chapin F. S., 2012, PRINCIPLES TERRESTRI; Classen AT, 2007, J ECOL, V95, P1181, DOI 10.1111/j.1365-2745.2007.01297.x; Classen AT, 2013, ECOSPHERE, V4, DOI 10.1890/ES12-00411.1; Cregger MA, 2018, MICROBIOME, V6, DOI 10.1186/s40168-018-0413-8; Declerck SAJ, 2015, ECOL LETT, V18, P553, DOI 10.1111/ele.12436; Des Roches S, 2018, NAT ECOL EVOL, V2, P57, DOI 10.1038/s41559-017-0402-5; Des Roches S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059644; El-Sabaawi RW, 2015, FRESHWATER BIOL, V60, P590, DOI 10.1111/fwb.12507; Fitzpatrick CR, 2015, ECOLOGY, V96, P2632, DOI [10.1890/14-2333.1.sm, 10.1890/14-2333.1]; Fryxell DC, 2017, COPEIA, V105, P523, DOI 10.1643/CE-16-527; Futuyma DJ, 2009, P NATL ACAD SCI USA, V106, P18054, DOI 10.1073/pnas.0904106106; Genung MA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0053718; Genung MA, 2011, FUNCT ECOL, V25, P408, DOI 10.1111/j.1365-2435.2010.01797.x; GOULD F, 1991, AM SCI, V79, P496; Harmon LJ, 2009, NATURE, V458, P1167, DOI 10.1038/nature07974; Hendry A. P., 2017, ECOEVOLUTIONARY DYNA; Huss M, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0275; JANZEN DH, 1980, EVOLUTION, V34, P611, DOI 10.1111/j.1558-5646.1980.tb04849.x; Jenny H., 1941, FACTORS SOIL FORMATI; JONES CG, 1994, OIKOS, V69, P373, DOI 10.2307/3545850; Kagata H, 2013, POPUL ECOL, V55, P69, DOI 10.1007/s10144-012-0342-5; Kant MR, 2008, P R SOC B, V275, P443, DOI 10.1098/rspb.2007.1277; Katayama N, 2013, ECOL ENTOMOL, V38, P627, DOI 10.1111/een.12049; Kinnison MT, 2015, ANN NY ACAD SCI, V1360, P120, DOI 10.1111/nyas.12974; Kylafis G, 2008, ECOL LETT, V11, P1072, DOI 10.1111/j.1461-0248.2008.01220.x; Labandeira C, 2007, INSECT SCI, V14, P259, DOI 10.1111/j.1744-7917.2007.00152.x; Limberger R., 2018, OIKOS, DOI [10.1111/oik.05673, DOI 10.1111/0IK.05673]; Lindeman RL, 1942, ECOLOGY, V23, P399, DOI 10.2307/1930126; Matthews B, 2016, CURR BIOL, V26, P483, DOI 10.1016/j.cub.2015.11.070; Matthews B, 2014, ECOL MONOGR, V84, P245, DOI 10.1890/13-0953.1; Matthews B, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026700; Matthews B, 2011, ECOL LETT, V14, P690, DOI 10.1111/j.1461-0248.2011.01627.x; Miner BE, 2012, P ROY SOC B-BIOL SCI, V279, P1873, DOI 10.1098/rspb.2011.2404; Odling-Smee FJ, 2003, NICHE CONSTRUCTION N; Odling-Smee J, 2013, Q REV BIOL, V88, P3, DOI 10.1086/669266; OLSON EC, 1966, ECOLOGY, V47, P291, DOI 10.2307/1933776; Ousterhout BH, 2018, FUNCT ECOL, V32, P1554, DOI 10.1111/1365-2435.13102; Palkovacs EP, 2008, EVOL ECOL RES, V10, P699; Palkovacs EP, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018879; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Parchman TL, 2016, MOL ECOL, V25, P5705, DOI 10.1111/mec.13825; Pennings SC, 2005, ECOLOGY, V86, P2310, DOI 10.1890/04-1022; Pineda A, 2013, FUNCT ECOL, V27, P574, DOI 10.1111/1365-2435.12050; Post DM, 2008, ECOLOGY, V89, P2019, DOI 10.1890/07-1216.1; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; Pregitzer CC, 2010, EVOL ECOL, V24, P1045, DOI 10.1007/s10682-010-9363-8; Reinhardt T, 2013, OECOLOGIA, V173, P281, DOI 10.1007/s00442-013-2592-0; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Schmitz OJ, 2008, ECOLOGY, V89, P2436, DOI 10.1890/07-1030.1; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Schweitzer J. A., 2012, TRAIT MEDIATED INDIR, P371; Schweitzer J. A., 2018, ABOVEGROUND BELOWGRO, P69; Schweitzer JA, 2005, ECOLOGY, V86, P2834, DOI 10.1890/04-1955; Schweitzer JA, 2004, ECOL LETT, V7, P127, DOI 10.1111/j.1461-0248.2003.00562.x; Schweitzer JA, 2008, ECOLOGY, V89, P773, DOI 10.1890/07-0337.1; Schweitzer JA, 2014, FUNCT ECOL, V28, P55, DOI 10.1111/1365-2435.12201; Senior JK, 2018, ECOSPHERE, V9, DOI 10.1002/ecs2.2409; Sues HD, 1998, TRENDS ECOL EVOL, V13, P141, DOI 10.1016/S0169-5347(97)01257-3; Thompson J. N, 2005, INTERSPEC INTERACT; Thompson JN, 1998, TRENDS ECOL EVOL, V13, P329, DOI 10.1016/S0169-5347(98)01378-0; Treseder KK, 2001, ECOLOGY, V82, P946, DOI 10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2; Tuckett QM, 2017, COPEIA, V105, P483, DOI [10.1643/ot-16-540, 10.1643/OT-16-540]; Turcotte MM, 2011, ECOL LETT, V14, P1084, DOI 10.1111/j.1461-0248.2011.01676.x; Turley NE, 2015, OECOLOGIA, V178, P747, DOI 10.1007/s00442-015-3276-8; Urban MC, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0859; Utsumi S, 2011, POPUL ECOL, V53, P23, DOI 10.1007/s10144-010-0253-2; van der Putten WH, 2016, FUNCT ECOL, V30, P1109, DOI 10.1111/1365-2435.12657; Van Nuland ME, 2019, FUNCT ECOL, V33, P95, DOI 10.1111/1365-2435.13259; Van Nuland ME, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0150; Van Nuland ME, 2016, FUNCT ECOL, V30, P1032, DOI 10.1111/1365-2435.12690; VIA S, 1990, ANNU REV ENTOMOL, V35, P421, DOI 10.1146/annurev.en.35.010190.002225; Vitousek P, 2004, NUTR CYCLING LIMITAT; Walsh MR, 2011, P ROY SOC B-BIOL SCI, V278, P2628, DOI 10.1098/rspb.2010.2634; Weber MG, 2017, TRENDS ECOL EVOL, V32, P291, DOI 10.1016/j.tree.2017.01.003; Whitham TG, 2006, NAT REV GENET, V7, P510, DOI 10.1038/nrg1877; Wiens JJ, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9370; Wooliver R, 2016, FUNCT ECOL, V30, P1099, DOI 10.1111/1365-2435.12648; Wooliver RC, 2018, J ECOL, V106, P2161, DOI 10.1111/1365-2745.12983; Wooliver RC, 2017, ECOLOGY, V98, P2120, DOI 10.1002/ecy.1896; Yang LH, 2014, CURR OPIN INSECT SCI, V2, P26, DOI 10.1016/j.cois.2014.06.004; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x; Zytynska SE, 2016, OECOLOGIA, V180, P735, DOI 10.1007/s00442-015-3488-y 99 1 1 6 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JAN 2019 33 1 31 42 10.1111/1365-2435.13267 12 Ecology Environmental Sciences & Ecology HI8FV WOS:000456691600004 2019-02-21 J Theodosiou, L; Hiltunen, T; Becks, L Theodosiou, Loukas; Hiltunen, Teppo; Becks, Lutz The role of stressors in altering eco-evolutionary dynamics FUNCTIONAL ECOLOGY English Article eco-evolutionary dynamics; genetic architecture; genetic variation; migration; predator-prey interaction; trade-off PREDATOR-PREY DYNAMICS; LIFE-HISTORY EVOLUTION; HIGH MUTATION-RATES; RAPID EVOLUTION; PSEUDOMONAS-AERUGINOSA; BENEFICIAL MUTATIONS; TRINIDADIAN GUPPIES; POPULATION-GENETICS; LETHAL MUTAGENESIS; ESCHERICHIA-COLI We review and synthesize evidence from the fields of ecology, evolutionary biology and population genetics to investigate how the presence of abiotic stress can affect the feedback between ecological and evolutionary dynamics. To obtain a better insight of how, and under what conditions, an abiotic stressor can influence eco-evolutionary dynamics, we use a conceptual predator-prey model where the prey can rapidly evolve antipredator defences and stress resistance. We show how abiotic stress influences eco-evolutionary dynamics by changing the pace and in some case the potential for evolutionary change and thus the evolution-to-ecology link. Whether and how the abiotic stress influences this link depends on the effect on population sizes, mutation rates, the presence of gene flow and the genetic architecture underlying the traits involved. Overall, we report ecological and population genetic mechanisms that have so far not been considered in studies on eco-evolutionary dynamics and suggest future research directions and experiments to develop an understanding of the role of eco-evolutionary dynamics in more complex ecological and evolutionary scenarios. [Theodosiou, Loukas; Becks, Lutz] Max Planck Inst Evolutionary Biol, Community Dynam Grp, Plon, Germany; [Theodosiou, Loukas] Max Planck Inst Evolutionary Biol, Dept Microbial Populat Biol, Plon, Germany; [Hiltunen, Teppo] Univ Helsinki, Dept Microbiol, Helsinki, Finland; [Hiltunen, Teppo] Univ Turku, Dept Biol, Turku, Finland; [Becks, Lutz] Univ Konstanz, Limnol Inst, Limnol Aquat Ecol & Evolut, Constance, Germany Theodosiou, L (reprint author), Max Planck Inst Evolutionary Biol, Community Dynam Grp, Plon, Germany.; Theodosiou, L (reprint author), Max Planck Inst Evolutionary Biol, Dept Microbial Populat Biol, Plon, Germany. theodosiou@evolbio.mpg.de German Research Foundation [9]; Finnish Academy [294666]; Helsinki Institute of Life Science (HiLIFE) German Research Foundation, Grant/Award Number: 9; Finnish Academy, Grant/Award Number: 294666; Helsinki Institute of Life Science (HiLIFE) Abrams PA, 1997, EVOLUTION, V51, P1742, DOI 10.1111/j.1558-5646.1997.tb05098.x; Agrawal AF, 2009, P ROY SOC B-BIOL SCI, V276, P1183, DOI 10.1098/rspb.2008.1671; Alberti M, 2015, TRENDS ECOL EVOL, V30, P114, DOI 10.1016/j.tree.2014.11.007; Alberto FJ, 2013, GLOBAL CHANGE BIOL, V19, P1645, DOI 10.1111/gcb.12181; Andrade-Dominguez A, 2014, ISME J, V8, P1041, DOI 10.1038/ismej.2013.208; Barbosa P., 2005, ECOLOGY PREDATOR PRE; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Becks L, 2010, ECOL LETT, V13, P989, DOI 10.1111/j.1461-0248.2010.01490.x; Bell G, 2009, ECOL LETT, V12, P942, DOI 10.1111/j.1461-0248.2009.01350.x; Breen MS, 2012, NATURE, V490, P535, DOI 10.1038/nature11510; Brockhurst MA, 2007, EVOLUTION, V61, P1238, DOI 10.1111/j.1558-5646.2007.00087.x; Brunner FS, 2017, P NATL ACAD SCI USA, V114, P3678, DOI 10.1073/pnas.1619147114; Bull JJ, 2007, J VIROL, V81, P2930, DOI 10.1128/JVI.01624-06; Cairns J, 2017, MOL ECOL, V26, P1848, DOI 10.1111/mec.13950; Cameron TC, 2014, ADV ECOL RES, V50, P171, DOI 10.1016/B978-0-12-801374-8.00005-0; CHARLESWORTH B, 1971, ECOLOGY, V52, P469, DOI 10.2307/1937629; Chen PQ, 2009, GENETICS, V183, P639, DOI 10.1534/genetics.109.106492; Chou HH, 2011, SCIENCE, V332, P1190, DOI 10.1126/science.1203799; Cooper VS, 2000, NATURE, V407, P736, DOI 10.1038/35037572; Cortez MH, 2018, ECOL MONOGR, V88, P353, DOI 10.1002/ecm.1304/full; Coulter LB, 2014, VIRUSES-BASEL, V6, P3778, DOI 10.3390/v6103778; DeLong JP, 2017, AM NAT, V189, P592, DOI 10.1086/691100; DeLong JP, 2016, ECOL EVOL, V6, P935, DOI 10.1002/ece3.1959; DeLong JP, 2016, ECOL EVOL, V6, P573, DOI 10.1002/ece3.1899; DeLong JP, 2014, FUNCT ECOL, V28, P487, DOI 10.1111/1365-2435.12199; Ehrlich E, 2017, ECOLOGY, V98, P3188, DOI 10.1002/ecy.2047; Elena SF, 1997, NATURE, V390, P395, DOI 10.1038/37108; Escobar-Paramo P, 2012, EVOL APPL, V5, P583, DOI 10.1111/j.1752-4571.2012.00248.x; Frickel J, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03990-7; Frickel J, 2016, ECOL LETT, V19, P450, DOI 10.1111/ele.12580; Fronhofer EA, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7844; Giraud A, 2001, SCIENCE, V291, P2606, DOI 10.1126/science.1056421; Gomez P, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2297; GOMULKIEWICZ R, 1995, EVOLUTION, V49, P201, DOI 10.1111/j.1558-5646.1995.tb05971.x; Gomulkiewicz R, 2009, AM NAT, V174, pE218, DOI 10.1086/645086; Gonzalez A, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0079; Govaert L, 2019, FUNCT ECOL, V33, P13, DOI 10.1111/1365-2435.13241; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Hanski I, 2006, PLOS BIOL, V4, P719, DOI 10.1371/journal.pbio.0040129; Harrison Susan, 1994, P111; Hendry A. P., 2017, ECOEVOLUTIONARY DYNA, P1; HILL WG, 1972, THEOR POPUL BIOL, V3, P27, DOI 10.1016/0040-5809(72)90032-9; Hiltunen T, 2018, NAT ECOL EVOL, V2, P1974, DOI 10.1038/s41559-018-0701-5; Hiltunen Teppo, 2017, Proc Biol Sci, V284, DOI 10.1098/rspb.2017.0415; Hiltunen T, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0013; Hiltunen T, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6226; HORNFELDT B, 1978, OECOLOGIA, V32, P141, DOI 10.1007/BF00366068; Huang W, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01957-8; Jones AG, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-119; Jones EI, 2009, AM NAT, V174, P780, DOI 10.1086/647971; Jones LE, 2007, J MATH BIOL, V55, P541, DOI 10.1007/s00285-007-0094-6; Jones LE, 2004, B MATH BIOL, V66, P1547, DOI 10.1016/j.bulm.2004.02.006; Jousimo J, 2014, SCIENCE, V344, P1289, DOI 10.1126/science.1253621; Kasada M, 2014, P NATL ACAD SCI USA, V111, P16035, DOI 10.1073/pnas.1406357111; Khan AI, 2011, SCIENCE, V332, P1193, DOI 10.1126/science.1203801; Kimura M., 1983, NEUTRAL THEORY MOL E; Knezevic P, 2013, RES MICROBIOL, V164, P55, DOI 10.1016/j.resmic.2012.08.008; Kouyos RD, 2007, TRENDS ECOL EVOL, V22, P308, DOI 10.1016/j.tree.2007.02.014; KREBS CJ, 1995, SCIENCE, V269, P1112, DOI 10.1126/science.269.5227.1112; Lagator M, 2014, EVOLUTION, V68, P2296, DOI 10.1111/evo.12440; Lenormand T, 2009, TRENDS ECOL EVOL, V24, P157, DOI 10.1016/j.tree.2008.09.014; Lion S, 2015, J EVOLUTION BIOL, V28, P10, DOI 10.1111/jeb.12551; Lopez-Pascua LDC, 2008, J EVOLUTION BIOL, V21, P853, DOI 10.1111/j.1420-9101.2008.01501.x; Low-Decarie E, 2015, P NATL ACAD SCI USA, V112, P14307, DOI 10.1073/pnas.1513125112; Lynch M, 2010, TRENDS GENET, V26, P345, DOI 10.1016/j.tig.2010.05.003; MacLean RC, 2010, NAT REV GENET, V11, P405, DOI 10.1038/nrg2778; Macnair Mark R., 1997, V83, P3; Martin G, 2010, PHILOS T R SOC B, V365, P1953, DOI 10.1098/rstb.2010.0058; Matthews B, 2016, CURR BIOL, V26, P483, DOI 10.1016/j.cub.2015.11.070; Meyer JR, 2006, P NATL ACAD SCI USA, V103, P10690, DOI 10.1073/pnas.0600434103; Morgan AD, 2005, NATURE, V437, P253, DOI 10.1038/nature03913; Oliver A, 2000, SCIENCE, V288, P1251, DOI 10.1126/science.288.5469.1251; Oliver A, 2010, CLIN MICROBIOL INFEC, V16, P798, DOI 10.1111/j.1469-0691.2010.03250.x; Orr HA, 2000, GENETICS, V155, P961; Pascua LL, 2014, ECOL LETT, V17, P1380, DOI 10.1111/ele.12337; PIMENTEL D, 1968, SCIENCE, V159, P1432, DOI 10.1126/science.159.3822.1432; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; Rainey PB, 1999, CURR BIOL, V9, pR371, DOI 10.1016/S0960-9822(99)80230-9; Raynes Y, 2014, HEREDITY, V113, P375, DOI 10.1038/hdy.2014.49; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Rosenthal JP, 1997, EVOL ECOL, V11, P337, DOI 10.1023/A:1018420504439; Sackman AM, 2018, GENETICS, V208, P339, DOI [10.1534/genetics.117.300513, 10.1534/genetics.117.300451]; Sniegowski PD, 1997, NATURE, V387, P703, DOI 10.1038/42701; Steinberg DS, 2014, P NATL ACAD SCI USA, V111, P9187, DOI 10.1073/pnas.1407190111; Steiner Christopher F, 2013, F1000Res, V2, P43, DOI 10.12688/f1000research.2-43.v1; Stewart GS, 2017, EVOL APPL, V10, P731, DOI 10.1111/eva.12489; Travis J, 2014, ADV ECOL RES, V50, P1, DOI 10.1016/B978-0-12-801374-8.00001-3; Turchin P, 2003, NATURE, V424, P257, DOI 10.1038/424257a; Turchin P., 2003, COMPLEX POPULATION D; Turcotte MM, 2013, AM NAT, V181, pS46, DOI 10.1086/668078; Uecker H, 2016, GENETICS, V202, P721, DOI 10.1534/genetics.115.180299; UTIDA S, 1957, ECOLOGY, V38, P442, DOI 10.2307/1929888; van Velzen E, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-17019-4; Walsh MR, 2011, P ROY SOC B-BIOL SCI, V278, P2628, DOI 10.1098/rspb.2010.2634; Welch JJ, 2008, J THEOR BIOL, V251, P667, DOI 10.1016/j.jtbi.2007.12.015; Wright S, 1931, GENETICS, V16, P0097; Wright S., 1968, EVOLUTION GENETICS P; Yamamichi M, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2926; Yamamichi M, 2014, ECOLOGY, V95, P2303, DOI 10.1890/13-1527.1; Yoshida T, 2003, NATURE, V424, P303, DOI 10.1038/nature01767; Yoshida T, 2007, PLOS BIOL, V5, P1868, DOI 10.1371/journal.pbio.0050235 104 1 1 1 1 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JAN 2019 33 1 73 83 10.1111/1365-2435.13263 11 Ecology Environmental Sciences & Ecology HI8FV WOS:000456691600007 2019-02-21 J Bonte, D; Bafort, Q Bonte, Dries; Bafort, Quinten The importance and adaptive value of life-history evolution for metapopulation dynamics JOURNAL OF ANIMAL ECOLOGY English Article demography; extinction; fitness; invasion; systems' ecology; Tetranychus urticae; Translocation POPULATION-DYNAMICS; CONTEMPORARY EVOLUTION; RAPID EVOLUTION; DISPERSAL; HETEROGENEITY; TRAIT The spatial configuration and size of patches influence metapopulation dynamics by altering colonisation-extinction dynamics and local density dependency. This spatial forcing as determined by the metapopulation typology then imposes strong selection pressures on life-history traits, which will in turn feed back on the ecological metapopulation dynamics. Given the relevance of metapopulation persistence for biological conservation, and the potential rescuing role of evolution, a firm understanding of the relevance of these eco-evolutionary processes is essential. We here follow a systems' modelling approach to quantify the importance of spatial forcing and experimentally observed life-history evolution for metapopulation demography as quantified by (meta)population size and variability. We therefore developed an individual-based model matching an earlier experimental evolution with spider mites to perform virtual translocation and invasion experiments that would have been otherwise impossible to conduct. We show that (a) metapopulation demography is more affected by spatial forcing than by life-history evolution, but that life-history evolution contributes substantially to changes in local- and especially metapopulation-level population sizes, (b) extinction rates are minimised by evolution in classical metapopulations, and (c) evolution is optimising individual performance in metapopulations when considering the importance of more cryptic stress resistance evolution. Ecological systems' modelling opens up a promising avenue to quantify the importance of eco-evolutionary feedbacks in spatially structured populations. Metapopulation sizes are especially impacted by evolution, but its variability is mainly determined by the spatial forcing. Eco-evolutionary dynamics can increase the persistence of classical metapopulations. Conservation of genetic variation and, hence, adaptive potential is thus not only essential in the face of environmental change; it also generates putative rescuing feedbacks that impact metapopulation persistence. [Bonte, Dries] Univ Ghent, Dept Biol, Res Grp Terr Ecol, Ghent, Belgium; [Bafort, Quinten] Univ Ghent, Dept Biol, Res Grp Phycol Bioinformat & Evolutionary Genom, Ghent, Belgium Bonte, D (reprint author), Univ Ghent, Dept Biol, Res Grp Terr Ecol, Ghent, Belgium. dries.bonte@ugent.be Bonte, Dries/0000-0002-3320-7505 FWO [G.018017N]; FWO Research Network EVENET [W0.003.16N] FWO, Grant/Award Number: G.018017N; FWO Research Network EVENET, Grant/Award Number: W0.003.16N Aspi J, 2003, EVOLUTION, V57, P509; Becks L, 2010, ECOL LETT, V13, P989, DOI 10.1111/j.1461-0248.2010.01490.x; Bell G, 2011, SCIENCE, V332, P1327, DOI 10.1126/science.1203105; Bonte D., 2018, DBONTE ECOEVO MITEME, DOI [10.5281/zenodo.1483949, DOI 10.5281/ZENODO.1483949]; Bonte D, 2018, CURR OPIN INSECT SCI, V29, P64, DOI 10.1016/j.cois.2018.06.003; Bonte D, 2017, OIKOS, V126, P472, DOI 10.1111/oik.03801; Bullock JM, 2018, TRENDS ECOL EVOL, V33, P958, DOI 10.1016/j.tree.2018.09.008; Cheptou P. O., 2017, P ROYAL SOC B, V372, P1712; Coulson T, 2012, OIKOS, V121, P1337, DOI 10.1111/j.1600-0706.2012.00035.x; Coulson T, 2011, SCIENCE, V334, P1275, DOI 10.1126/science.1209441; De Roissart A, 2016, FUNCT ECOL, V30, P1408, DOI 10.1111/1365-2435.12612; De Roissart A, 2015, J ANIM ECOL, V84, P1565, DOI 10.1111/1365-2656.12400; DeAngelis DL, 2016, J MATH BIOL, V72, P239, DOI 10.1007/s00285-015-0879-y; Delgado MD, 2011, BIOL REV, V86, P717, DOI 10.1111/j.1469-185X.2010.00167.x; Di Leo M., 2018, EVOLUTION LETT, DOI [10.1101/409003, DOI 10.1101/409003]; Duplouy A, 2013, ECOL EVOL, V3, P5141, DOI 10.1002/ece3.885; Ellner SP, 2011, ECOL LETT, V14, P603, DOI 10.1111/j.1461-0248.2011.01616.x; Evans MR, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1452; Evans MR, 2012, PHILOS T R SOC B, V367, P163, DOI 10.1098/rstb.2011.0191; Ezard THG, 2009, PHILOS T R SOC B, V364, P1491, DOI 10.1098/rstb.2009.0006; Fahrig L, 2003, ANNU REV ECOL EVOL S, V34, P487, DOI 10.1146/annurev.ecolsys.34.011802.132419; Fountain T., 2016, P NATL ACAD SCI USA, V113; Fronhofer EA, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7844; Hanski I, 1998, NATURE, V396, P41, DOI 10.1038/23876; Hanski I., 1997, METAPOPULATION BIOL, P512; Hanski I, 2006, PLOS BIOL, V4, P719, DOI 10.1371/journal.pbio.0040129; Hanski I, 2012, ANN NY ACAD SCI, V1249, P1, DOI 10.1111/j.1749-6632.2011.06419.x; Hanski I, 2011, ECOL LETT, V14, P1025, DOI 10.1111/j.1461-0248.2011.01671.x; Hanski I, 2011, AM NAT, V177, P29, DOI 10.1086/657625; HOLT RD, 1985, THEOR POPUL BIOL, V28, P181, DOI 10.1016/0040-5809(85)90027-9; Jousimo J, 2014, SCIENCE, V344, P1289, DOI 10.1126/science.1253621; Kinnison MT, 2007, FUNCT ECOL, V21, P444, DOI 10.1111/j.1365-2435.2007.01278.x; Laiolo P, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038526; LEVINS R, 1969, Bulletin of the Entomological Society of America, V15, P237; Molofsky J, 2005, P NATL ACAD SCI USA, V102, P3726, DOI 10.1073/pnas.0404576102; Oksanen J., 2016, R PACKAGE VERSION, V2, P3, DOI DOI 10.4135/9781412971874.N145; OLIVIERI I, 1990, TRENDS ECOL EVOL, V5, P207, DOI 10.1016/0169-5347(90)90132-W; Olivieri I, 2016, EVOL APPL, V9, P196, DOI 10.1111/eva.12336; Smallegange IM, 2013, TRENDS ECOL EVOL, V28, P143, DOI 10.1016/j.tree.2012.07.021; Travis JMJ, 2013, OIKOS, V122, P1532, DOI 10.1111/j.1600-0706.2013.00399.x; Turcotte MM, 2013, AM NAT, V181, pS46, DOI 10.1086/668078; Turcotte MM, 2011, ECOL LETT, V14, P1084, DOI 10.1111/j.1461-0248.2011.01676.x; Van Petegem K, 2018, ECOL LETT, V21, P225, DOI 10.1111/ele.12887; Vindenes Y, 2015, ECOL LETT, V18, P417, DOI 10.1111/ele.12421; Walter JA, 2017, ECOL LETT, V20, P801, DOI 10.1111/ele.12782; Wang SP, 2015, PEERJ, V3, DOI 10.7717/peerj.1295; Zhang B, 2017, ECOL LETT, V20, P1118, DOI 10.1111/ele.12807 47 0 0 3 3 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2019 88 1 24 34 10.1111/1365-2656.12928 11 Ecology; Zoology Environmental Sciences & Ecology; Zoology HI8FN WOS:000456690800004 30536978 2019-02-21 J Cayuela, H; Schmidt, BR; Weinbach, A; Besnard, A; Joly, P Cayuela, Hugo; Schmidt, Benedikt R.; Weinbach, Avril; Besnard, Aurelien; Joly, Pierre Multiple density-dependent processes shape the dynamics of a spatially structured amphibian population JOURNAL OF ANIMAL ECOLOGY English Article amphibian; density dependence; dispersal; population growth rate; spatially structured populations; survival; Triturus cristatus NEWTS TRITURUS-CRISTATUS; CAPTURE-RECAPTURE; METAPOPULATION DYNAMICS; DEMOGRAPHIC RESPONSES; MOVEMENT BEHAVIOR; AMBYSTOMA-OPACUM; LARVAL DENSITY; CRESTED NEWTS; TIME-SERIES; ALPINE NEWT Understanding the mechanisms that regulate the dynamics of spatially structured populations (SSP) is a critical challenge for ecologists and conservation managers. Internal population processes such as births and deaths occur at a local level, while external processes such as dispersal take place at an inter-population level. At both levels, density dependence is expected to play a critical role. At a patch scale, demographic traits (e.g., survival, breeding success) and the population growth rate can be influenced by density either negatively (e.g., competition effect) or positively (e.g., Allee effects). At the scale of an SSP, although positive density-dependent dispersal has been widely reported, an increasing number of studies have highlighted negative density-dependent dispersal. While many studies have investigated the effects of density on population growth or on dispersal, few have simultaneously examined density-dependent effects at the scale of both the local population and the entire SSP. In this study, we examine how density is related to demographic processes at both the pond level (survival and population growth) and the SSP level (between-pond dispersal) in a pond-breeding amphibian, the great crested newt (Triturus cristatus). The study was based on 20 years of individual capture-recapture (CR) data (from 1996 to 2015) gathered from an SSP made up of 12 experimental ponds ("patches"). We first used a CR multievent model to estimate both survival and dispersal rates in specific ponds as a function of distance between ponds. Then, using a second CR multievent model, we examined whether survival and recapture rates were influenced by population density in a pond. Lastly, we used state-space time series models to investigate whether density affected population growth in each pond. Our results found a positive density-dependent effect on survival and a negative density-dependent effect on departure. In addition, the findings indicate that population growth was negatively related to density in all 12 ponds. These results support the hypothesis that in SSPs, density may have multiple and contrasting effects on demographic parameters and growth rates within local populations as well as on dispersal. This study underlines the need to better understand how density dependence may influence potential trade-offs between life-history strategies and life-history stages. [Cayuela, Hugo; Weinbach, Avril; Joly, Pierre] Univ Lyon, CNRS, UMR LEHNA 5023, ENTPE, Villeurbanne, France; [Cayuela, Hugo; Besnard, Aurelien] UM, PSL Res Univ, CNRS, EPHE,SupAgro,IRD,INRA,UMR CEFE 5175, Montpellier, France; [Schmidt, Benedikt R.] UniMail, Info Fauna Karch, Neuchatel, Switzerland; [Schmidt, Benedikt R.] Univ Zurich, Inst Evolut Biol & Umweltwissensch, Zurich, Switzerland Joly, P (reprint author), Univ Lyon, CNRS, UMR LEHNA 5023, ENTPE, Villeurbanne, France. pierre.joly@univ-lyon1.fr Schmidt, Benedikt/B-8491-2008 Schmidt, Benedikt/0000-0002-4023-1001 Institut Universitaire de France Institut Universitaire de France Altwegg R, 2003, OECOLOGIA, V136, P46, DOI 10.1007/s00442-003-1248-x; Altwegg R, 2003, EVOLUTION, V57, P872; Amburgey SM, 2018, GLOBAL CHANGE BIOL, V24, P439, DOI 10.1111/gcb.13817; Anderson DR, 2000, J WILDLIFE MANAGE, V64, P912, DOI 10.2307/3803199; Andrewartha H. G., 1954, DISTRIBUTION ABUNDAN; Angulo E, 2007, CONSERV BIOL, V21, P1082, DOI 10.1111/j.1523-1739.2007.00721.x; ARNTZEN JW, 1990, HOLARCTIC ECOL, V13, P325; Berec L, 2007, TRENDS ECOL EVOL, V22, P185, DOI 10.1016/j.tree.2006.12.002; Bncil R. I., 2015, ECOGRAPHY, V39, P449; Bonenfant C, 2009, ADV ECOL RES, V41, P313, DOI 10.1016/S0065-2504(09)00405-X; Bourbeau-Lemieux A, 2011, ECOL LETT, V14, P358, DOI 10.1111/j.1461-0248.2011.01595.x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Brook BW, 2006, ECOLOGY, V87, P1445, DOI 10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO;2; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; Broseth H, 2010, BIOL CONSERV, V143, P113, DOI 10.1016/j.biocon.2009.09.012; BULMER MG, 1975, BIOMETRICS, V31, P901, DOI 10.2307/2529815; Buxton VL, 2017, BIOSCIENCE, V67, P25, DOI 10.1093/biosci/biw149; Cayuela H, 2018, ECOLOGY, V99, P1150, DOI 10.1002/ecy.2195; Cayuela H, 2017, GLOBAL CHANGE BIOL, V23, P4620, DOI 10.1111/gcb.13672; Cayuela H, 2017, METHODS ECOL EVOL, V8, P1124, DOI 10.1111/2041-210X.12717; Chelgren ND, 2006, ECOL APPL, V16, P250, DOI 10.1890/04-0329; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Clutton-Brock TH, 2012, MOL ECOL, V21, P472, DOI 10.1111/j.1365-294X.2011.05232.x; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; Courchamp F, 1999, TRENDS ECOL EVOL, V14, P405, DOI 10.1016/S0169-5347(99)01683-3; Courchamp F., 2008, ENVIRON CONSERV, V36, P80, DOI DOI 10.1017/S0376892909005384; Danchin E, 2004, SCIENCE, V305, P487, DOI 10.1126/science.1098254; De Valpine P, 2002, ECOL MONOGR, V72, P57, DOI 10.1890/0012-9615(2002)072[0057:FPMIPN]2.0.CO;2; Dickinson JL, 2005, P ROY SOC B-BIOL SCI, V272, P2423, DOI 10.1098/rspb.2005.3269; Doherty PF, 2012, J ORNITHOL, V152, pS317, DOI 10.1007/s10336-010-0598-5; Donahue MJ, 2006, OECOLOGIA, V149, P33, DOI 10.1007/s00442-006-0419-y; Engen S, 2003, ECOLOGY, V84, P2378, DOI 10.1890/02-0123; Festa-Bianchet M, 2003, J ANIM ECOL, V72, P640, DOI 10.1046/j.1365-2656.2003.00735.x; Forchhammer MC, 2001, J ANIM ECOL, V70, P721, DOI 10.1046/j.0021-8790.2001.00532.x; FORRESTER GE, 1995, OECOLOGIA, V103, P275, DOI 10.1007/BF00328615; FOWLER CW, 1981, ECOLOGY, V62, P602, DOI 10.2307/1937727; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gamble LR, 2007, BIOL CONSERV, V139, P247, DOI 10.1016/j.biocon.2007.07.001; Gascoigne JC, 2004, J APPL ECOL, V41, P801, DOI 10.1111/j.0021-8901.2004.00944.x; Gascoigne J, 2009, POPUL ECOL, V51, P355, DOI 10.1007/s10144-009-0146-4; Gelman A., 2006, DATA ANAL USING REGR, DOI [10.1017/CBO9780511790942, DOI 10.1017/CB09780511790942, 10.1017/CB09780511790942]; Gilpin M., 2012, METAPOPULATION DYNAM; Gilroy JJ, 2016, J ANIM ECOL, V85, P1182, DOI 10.1111/1365-2656.12545; GREEN AJ, 1989, ETHOLOGY, V83, P129; Greene CM, 2001, ECOLOGY, V82, P2091; GREENWOOD PJ, 1980, ANIM BEHAV, V28, P1140, DOI 10.1016/S0003-3472(80)80103-5; Hagstrom T., 1980, ASRA J, V1, P1; Halliday T.R., 1990, Advances in the Study of Behavior, V19, P137, DOI 10.1016/S0065-3454(08)60202-8; HANSKI I, 1991, BIOL J LINN SOC, V42, P3, DOI 10.1111/j.1095-8312.1991.tb00548.x; HANSKI I, 1990, PHILOS T ROY SOC B, V330, P141, DOI 10.1098/rstb.1990.0188; Hanski I., 2004, ECOLOGY GENETICS EVO; HASTINGS A, 1994, ANNU REV ECOL SYST, V25, P167; HEDLUND L, 1990, J ZOOL, V220, P33, DOI 10.1111/j.1469-7998.1990.tb04292.x; HEDLUND L, 1989, ETHOLOGY, V80, P111; Henderson PA, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1336; IUCN, 2016, IUCN RED LIST THREAT; Jehle R, 2000, J ZOOL, V251, P297, DOI 10.1111/j.1469-7998.2000.tb01080.x; Joly P, 2001, CONSERV BIOL, V15, P239, DOI 10.1046/j.1523-1739.2001.99200.x; Kim SY, 2009, ECOLOGY, V90, P230, DOI 10.1890/08-0133.1; Kramer AM, 2009, POPUL ECOL, V51, P341, DOI 10.1007/s10144-009-0152-6; Kuparinen A, 2014, ROY SOC OPEN SCI, V1, DOI 10.1098/rsos.140075; Lagrange P, 2014, ECOLOGY, V95, P2316, DOI 10.1890/13-1564.1; Lande R, 2002, AM NAT, V159, P321, DOI 10.1086/338988; Luque GM, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1413; Marsh DM, 2001, CONSERV BIOL, V15, P40, DOI 10.1046/j.1523-1739.2001.00129.x; MARTIN E, 1982, CR ACAD SCI III-VIE, V294, P1105; Matthysen E, 2005, ECOGRAPHY, V28, P403, DOI 10.1111/j.0906-7590.2005.04073.x; Matthysen E, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P3; MIAUD C, 1993, CAN J ZOOL, V71, P1874, DOI 10.1139/z93-267; MIAUD C, 1994, COPEIA, P535; Miaud Claude, 1995, Amphibia-Reptilia, V16, P265, DOI 10.1163/156853895X00064; Molnar PK, 2008, P R SOC B, V275, P217, DOI 10.1098/rspb.2007.1307; Pellet J, 2006, OECOLOGIA, V149, P65, DOI 10.1007/s00442-006-0432-1; Perret N, 2002, HERPETOLOGICA, V58, P131, DOI 10.1655/0018-0831(2002)058[0131:IOTAPO]2.0.CO;2; PETRANKA JW, 1989, ECOLOGY, V70, P1752, DOI 10.2307/1938109; Plummer M., 2003, P 3 INT WORKSH DISTR, P125; POLLOCK KH, 1982, J WILDLIFE MANAGE, V46, P752, DOI 10.2307/3808568; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; REED JM, 1993, TRENDS ECOL EVOL, V8, P253, DOI 10.1016/0169-5347(93)90201-Y; Revilla E, 2008, P NATL ACAD SCI USA, V105, P19120, DOI 10.1073/pnas.0801725105; Rodenhouse NL, 2003, P ROY SOC B-BIOL SCI, V270, P2105, DOI 10.1098/rspb.2003.2438; Ruxton GD, 1996, B MATH BIOL, V58, P643; Saether BE, 1999, P ROY SOC B-BIOL SCI, V266, P113, DOI 10.1098/rspb.1999.0610; Schaub M, 2012, ANIM CONSERV, V15, P125, DOI 10.1111/j.1469-1795.2012.00531.x; Schmidt BR, 2012, ECOLOGY, V93, P657, DOI 10.1890/11-0892.1; SCOTT DE, 1990, ECOLOGY, V71, P296, DOI 10.2307/1940269; SCOTT DE, 1994, ECOLOGY, V75, P1383, DOI 10.2307/1937462; Seber GAF, 2002, J APPL STAT, V29, P5, DOI 10.1080/02664760120108700; Shaw AK, 2014, J ANIM ECOL, V83, P1256, DOI 10.1111/1365-2656.12232; Smith MA, 2005, ECOGRAPHY, V28, P110; Stephens PA, 1999, OIKOS, V87, P185, DOI 10.2307/3547011; Taylor ML, 2014, TRENDS ECOL EVOL, V29, P376, DOI 10.1016/j.tree.2014.04.005; Thomas CD, 1999, J ANIM ECOL, V68, P647, DOI 10.1046/j.1365-2656.1999.00330.x; Travis JMJ, 1999, P ROY SOC B-BIOL SCI, V266, P1837, DOI 10.1098/rspb.1999.0854; Trochet A, 2016, Q REV BIOL, V91, P297, DOI 10.1086/688097; TURCHIN P, 1990, NATURE, V344, P660, DOI 10.1038/344660a0; VANBUSKIRK J, 1991, ECOLOGY, V72, P1747; Weinbach A, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-33111-9; Yoshida K, 2013, FRESHWATER BIOL, V58, P2065, DOI 10.1111/fwb.12191 99 1 1 3 3 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2019 88 1 164 177 10.1111/1365-2656.12906 14 Ecology; Zoology Environmental Sciences & Ecology; Zoology HI8FN WOS:000456690800015 30280381 2019-02-21 J Graham, JL; Bauer, CM; Heidinger, BJ; Ketterson, ED; Greives, TJ Graham, Jessica L.; Bauer, Carolyn M.; Heidinger, Britt J.; Ketterson, Ellen D.; Greives, Timothy J. Early-breeding females experience greater telomere loss MOLECULAR ECOLOGY English Article biological ageing; life history evolution; reproductive timing; telomeres LONG-LIVED BIRD; REPRODUCTIVE SUCCESS; OXIDATIVE STRESS; POSTFLEDGING SURVIVAL; PHYSIOLOGICAL COSTS; SEASONAL-VARIATION; QUANTITATIVE PCR; GROUND-SQUIRREL; IMMUNE FUNCTION; HATCHING DATE Annual reproductive success is often highest in individuals that initiate breeding early, yet relatively few individuals start breeding during this apparently optimal time. This suggests that individuals, particularly females who ultimately dictate when offspring are born, incur costs by initiating reproduction early in the season. We hypothesized that increases in the ageing rate of somatic cells may be one such cost. Telomeres, the repetitive DNA sequences on the ends of chromosomes, may be good proxies of biological wear and tear as they shorten with age and in response to stress. Using historical data from a long-term study population of dark-eyed juncos (Junco hyemalis), we found that telomere loss between years was greater in earlier breeding females, regardless of chronological age. There was no relationship between telomere loss and the annual number of eggs laid or chicks that reached independence. However, telomere loss was greater when temperatures were cooler, and cooler temperatures generally occur early in the season. This suggests that environmental conditions could be the primary cause of accelerated telomere loss in early breeders. [Graham, Jessica L.; Heidinger, Britt J.; Greives, Timothy J.] North Dakota State Univ, Dept Biol Sci, Fargo, ND 58102 USA; [Bauer, Carolyn M.] Adelphi Univ, Dept Biol, Garden City, NY USA; [Ketterson, Ellen D.] Indiana Univ, Dept Biol, Bloomington, IN USA; [Graham, Jessica L.] CNRS, Behav Ecol, Ctr Ecol Fonct & Evolut, Montpellier, France Graham, JL (reprint author), North Dakota State Univ, Dept Biol Sci, Fargo, ND 58102 USA.; Graham, JL (reprint author), CNRS, Behav Ecol, Ctr Ecol Fonct & Evolut, Montpellier, France. jessica.graham@cefe.cnrs.fr Division of Integrative Organismal Systems [IOS-1257474, IOS-1257527]; Office of Experimental Program to Stimulate Competitive Research; Wilson Ornithological Society; North Dakota State University; Sigma Xi: The Scientific Research Society; American Ornithologists Union Hesse Research Award; North Dakota EPSCoR Doctoral Dissertation Assistantship Division of Integrative Organismal Systems, Grant/Award Number: IOS-1257474 and IOS-1257527; Office of Experimental Program to Stimulate Competitive Research; Wilson Ornithological Society; North Dakota State University; Sigma Xi: The Scientific Research Society through Grants-In-Aid of Research; American Ornithologists Union Hesse Research Award; North Dakota EPSCoR Doctoral Dissertation Assistantship Angelier F, 2007, BEHAV ECOL SOCIOBIOL, V61, P611, DOI 10.1007/s00265-006-0290-1; Angelier F, 2013, FUNCT ECOL, V27, P342, DOI 10.1111/1365-2435.12041; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Arnold KE, 2010, BIOL J LINN SOC, V99, P708, DOI 10.1111/j.1095-8312.2010.01377.x; Badas EP, 2015, J EVOLUTION BIOL, V28, P896, DOI 10.1111/jeb.12615; Bakdash JZ, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00456; Ball GF, 2008, PHILOS T R SOC B, V363, P231, DOI 10.1098/rstb.2007.2137; Barnes RP, 2019, MECH AGEING DEV, V177, P37, DOI 10.1016/j.mad.2018.03.013; Bates D, 2015, J STAT SOFTW, V67, P1; Bateson M, 2017, AGING CELL, V16, P312, DOI 10.1111/acel.12555; Bauch C, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2540; Bauer CM, 2018, AM NAT, V191, P777, DOI 10.1086/697224; Bauer CM, 2016, AUK, V133, P649, DOI 10.1642/AUK-16-56.1; BAUWENS D, 1985, J HERPETOL, V19, P353, DOI 10.2307/1564263; Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; BERRY DA, 1984, BIOMETRICS, V40, P1109, DOI 10.2307/2531162; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; Blackburn EH, 2005, FEBS LETT, V579, P859, DOI 10.1016/j.febslet.2004.11.036; Boonekamp JJ, 2014, ECOL LETT, V17, P599, DOI 10.1111/ele.12263; BOURDON RM, 1983, J ANIM SCI, V57, P1412; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; BRADBURY JW, 1977, BEHAV ECOL SOCIOBIOL, V2, P19, DOI 10.1007/BF00299285; Brown CR, 2008, ANIM BEHAV, V76, P1201, DOI 10.1016/j.anbehav.2008.03.028; Buzadzic B, 1997, COMP BIOCHEM PHYS C, V117, P141, DOI 10.1016/S0742-8413(97)00061-3; Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Cawthon RM, 2002, NUCLEIC ACIDS RES, V30, DOI 10.1093/nar/30.10.e47; Cerchiara JA, 2017, ECOL EVOL, V7, P5682, DOI 10.1002/ece3.3128; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Conway CJ, 2000, EVOLUTION, V54, P670; Cox RM, 2010, FUNCT ECOL, V24, P1262, DOI 10.1111/j.1365-2435.2010.01756.x; Cox WA, 2012, AUK, V129, P147, DOI 10.1525/auk.2012.11169; Criscuolo F, 2009, J AVIAN BIOL, V40, P342, DOI 10.1111/j.1600-048X.2008.04623.x; Dawson RD, 2000, CONDOR, V102, P930, DOI 10.1650/0010-5422(2000)102[0930:EOHDAE]2.0.CO;2; Debes PV, 2016, MOL ECOL, V25, P5412, DOI 10.1111/mec.13856; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Doody JS, 2004, BIOL J LINN SOC, V81, P1, DOI 10.1111/j.1095-8312.2004.00250.x; Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101; Fairlie J, 2016, AGING CELL, V15, P140, DOI 10.1111/acel.12417; FESTABIANCHET M, 1988, J ZOOL, V214, P653, DOI 10.1111/j.1469-7998.1988.tb03764.x; Fischer K, 2008, P ROY SOC B-BIOL SCI, V275, P1517, DOI 10.1098/rspb.2007.1455; FOWLER GS, 1995, AM ZOOL, V35, P318; Froy H, 2013, ECOL LETT, V16, P642, DOI 10.1111/ele.12092; Gomes NMV, 2010, FEBS LETT, V584, P3741, DOI 10.1016/j.febslet.2010.07.031; Graham JL, 2017, CAN J ZOOL, V95, P263, DOI 10.1139/cjz-2016-0131; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hau M, 2015, FRONT ZOOL, V12, DOI 10.1186/s12983-015-0095-z; Haussmann MF, 2010, CURR ZOOL, V56, P714; Haussmann MF, 2003, P ROY SOC B-BIOL SCI, V270, P1387, DOI 10.1098/rspb.2003.2385; Heidinger BJ, 2006, P ROY SOC B-BIOL SCI, V273, P2227, DOI 10.1098/rspb.2006.3557; Heidinger BJ, 2012, P NATL ACAD SCI USA, V109, P1743, DOI 10.1073/pnas.1113306109; Herborn KA, 2016, FUNCT ECOL, V30, P913, DOI 10.1111/1365-2435.12578; Hoelzl F, 2016, J EXP BIOL, V219, P2469, DOI 10.1242/jeb.140871; Holand O, 2006, P ROY SOC B-BIOL SCI, V273, P293, DOI 10.1098/rspb.2005.3330; Ilmonen P, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002143; Joeng KS, 2004, NAT GENET, V36, P607, DOI 10.1038/ng1356; Kotrschal A, 2007, BIOL LETTERS, V3, P128, DOI 10.1098/rsbl.2006.0594; Kunz T. H., 2004, ENCY ENERGY, V5, P423, DOI DOI 10.1016/B0-12-176480-X/00061-9; LANDA K, 1992, EVOLUTION, V46, P121, DOI 10.1111/j.1558-5646.1992.tb01989.x; Liu L, 2003, J BIOL CHEM, V278, P31998, DOI 10.1074/jbc.M303553200; Low M, 2015, J AVIAN BIOL, V46, P325, DOI 10.1111/jav.00623; Martin-Ruiz CM, 2015, INT J EPIDEMIOL, V44, P1673, DOI 10.1093/ije/dyu191; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Miles DB, 2000, EVOLUTION, V54, P1386; Mizutani Y, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0511; Monaghan P, 2006, TRENDS ECOL EVOL, V21, P47, DOI 10.1016/j.tree.2005.11.007; Monros JS, 2002, OIKOS, V99, P481, DOI 10.1034/j.1600-0706.2002.11909.x; MORIN PJ, 1990, ECOLOGY, V71, P1590, DOI 10.2307/1938294; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; NICOL S, 1995, ANTARCT SCI, V7, P25; Nolan V., 2002, BIRDS N AM; Nord A, 2010, FUNCT ECOL, V24, P1031, DOI 10.1111/j.1365-2435.2010.01719.x; Nordfjall K, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000375; Nussey DH, 2014, METHODS ECOL EVOL, V5, P299, DOI 10.1111/2041-210X.12161; Olsson M, 2010, BIOL LETTERS, V6, P651, DOI 10.1098/rsbl.2010.0126; PERDECK AC, 1992, J ANIM ECOL, V61, P13, DOI 10.2307/5504; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; Piper WH, 2011, BEHAV ECOL SOCIOBIOL, V65, P1329, DOI 10.1007/s00265-011-1195-1; Plot V, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040855; Pretzlaff I, 2010, NATURWISSENSCHAFTEN, V97, P353, DOI 10.1007/s00114-010-0647-1; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; R Core Team, 2015, LANG ENV STAT COMP; Reichert S, 2017, BIOL LETTERS, V13, DOI 10.1098/rsbl.2017.0463; RIBBLE DO, 1992, J ANIM ECOL, V61, P457, DOI 10.2307/5336; Rieger JF, 1996, OECOLOGIA, V107, P463, DOI 10.1007/BF00333936; Salomons HM, 2009, P ROY SOC B-BIOL SCI, V276, P3157, DOI 10.1098/rspb.2009.0517; Salvante KG, 2013, J BIOL RHYTHM, V28, P38, DOI 10.1177/0748730412468087; Schmidt JE, 2016, EXP GERONTOL, V85, P28, DOI 10.1016/j.exger.2016.09.011; SEDINGER JS, 1995, ECOLOGY, V76, P2404, DOI 10.2307/2265816; Selman C, 2002, FREE RADICAL BIO MED, V33, P259, DOI 10.1016/S0891-5849(02)00874-2; SMITH JM, 1958, J EXP BIOL, V35, P832; Sockman KW, 2004, BIOL REPROD, V71, P979, DOI 10.1095/biolreprod.104.029751; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Stier A, 2014, J COMP PHYSIOL B, V184, P1021, DOI 10.1007/s00360-014-0856-6; Tarry-Adkins JL, 2008, FASEB J, V22, P2037, DOI 10.1096/fj.07-099523; Tattersall GJ, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1500951; TEJEDO M, 1992, J ZOOL, V228, P545, DOI 10.1111/j.1469-7998.1992.tb04454.x; Teramoto S, 1998, J CLIN BIOCHEM NUTR, V24, P69; Tricola GM, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0445; Tulp I, 2009, AUK, V126, P155, DOI 10.1525/auk.2009.07181; Turbill C, 2012, BIOL LETTERS, V8, P304, DOI 10.1098/rsbl.2011.0758; Ujvari B, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007493; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; Verhulst S, 2013, EUR J EPIDEMIOL, V28, P859, DOI 10.1007/s10654-013-9845-4; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; Wilbourn RV, 2017, BIOL LETTERS, V13, DOI 10.1098/rsbl.2017.0434; Williams T. D., 2012, PHYSL ADAPTATIONS BR; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Young AJ, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0452 112 0 0 0 0 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. JAN 2019 28 1 114 126 10.1111/mec.14952 13 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology HI6ZP WOS:000456604600009 30565787 2019-02-21 J Hartmann, AC; Marhaver, KL; Klueter, A; Lovci, MT; Closek, CJ; Diaz, E; Chamberland, VF; Archer, FI; Deheyn, DD; Vermeij, MJA; Medina, M Hartmann, Aaron C.; Marhaver, Kristen L.; Klueter, Anke; Lovci, Michael T.; Closek, Collin J.; Diaz, Erika; Chamberland, Valerie F.; Archer, Frederick I.; Deheyn, Dimitri D.; Vermeij, Mark J. A.; Medina, Monica Acquisition of obligate mutualist symbionts during the larval stage is not beneficial for a coral host MOLECULAR ECOLOGY English Article cnidarians; coral reefs; larval ecology; life history evolution; Symbiodiniaceae LIPID-COMPOSITION; PLANULA LARVAE; SYMBIODINIUM; EVOLUTION; SURVIVAL; SPECIFICITY; SETTLEMENT; APOPTOSIS; ECOLOGY; METAMORPHOSIS Theory suggests that the direct transmission of beneficial endosymbionts (mutualists) from parents to offspring (vertical transmission) in animal hosts is advantageous and evolutionarily stable, yet many host species instead acquire their symbionts from the environment (horizontal acquisition). An outstanding question in marine biology is why some scleractinian corals do not provision their eggs and larvae with the endosymbiotic dinoflagellates that are necessary for a juvenile's ultimate survival. We tested whether the acquisition of photosynthetic endosymbionts (family Symbiodiniaceae) during the planktonic larval stage was advantageous, as is widely assumed, in the ecologically important and threatened Caribbean reef-building coral Orbicella faveolata. Following larval acquisition, similar changes occurred in host energetic lipid use and gene expression regardless of whether their symbionts were photosynthesizing, suggesting the symbionts did not provide the energetic benefit characteristic of the mutualism in adults. Larvae that acquired photosymbionts isolated from conspecific adults on their natal reef exhibited a reduction in swimming, which may interfere with their ability to find suitable settlement substrate, and also a decrease in survival. Larvae exposed to two cultured algal species did not exhibit differences in survival, but decreased their swimming activity in response to one species. We conclude that acquiring photosymbionts during the larval stage confers no advantages and can in fact be disadvantageous to this coral host. The timing of symbiont acquisition appears to be a critical component of a host's life history strategy and overall reproductive fitness, and this timing itself appears to be under selective pressure. [Hartmann, Aaron C.; Deheyn, Dimitri D.] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Marine Biodivers & Conservat, La Jolla, CA 92093 USA; [Marhaver, Kristen L.; Chamberland, Valerie F.; Vermeij, Mark J. A.] CARMABI Fdn, Willemstad, Curacao; [Klueter, Anke] SUNY Univ Buffalo, Buffalo, NY USA; [Lovci, Michael T.] Univ Calif San Diego, Dept Cellular & Mol Med, La Jolla, CA 92093 USA; [Closek, Collin J.; Diaz, Erika; Medina, Monica] Penn State Univ, Dept Biol, University Pk, PA 16802 USA; [Chamberland, Valerie F.; Vermeij, Mark J. A.] Univ Amsterdam, Aquat Microbiol, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands; [Chamberland, Valerie F.] SECORE Int, Hilliard, OH USA; [Archer, Frederick I.] NOAA NMFS, Southwest Fisheries Sci Ctr, La Jolla, CA USA; [Hartmann, Aaron C.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA; [Closek, Collin J.] Stanford Univ, Stanford Ctr Ocean Solut, Stanford, CA 94305 USA; [Closek, Collin J.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA; [Diaz, Erika] Emory Univ, Dept Biol, Atlanta, GA 30322 USA Hartmann, AC (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Ctr Marine Biodivers & Conservat, La Jolla, CA 92093 USA.; Hartmann, AC (reprint author), Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. aaron.hartmann@gmail.com PADI Foundation; CARMABI Foundation; Scripps Institution of Oceanography Graduate Office; National Science Foundation (NSF) GK-12 Fellowship; NSF Graduate Research Fellowship [IOS-1146880, OCE-0926822, OCE-1442206, OCE-1642311] PADI Foundation; CARMABI Foundation; Scripps Institution of Oceanography Graduate Office, Grant/Award Number: Graduate Office; National Science Foundation (NSF) GK-12 Fellowship, NSF Graduate Research Fellowship, Grant/Award Number: GK-12 Fellowship, Graduate Research Fellowship, IOS-1146880, OCE-0926822, OCE-1442206 and OCE-1642311 Adams LM, 2009, MAR ECOL PROG SER, V377, P149, DOI 10.3354/meps07834; Ainsworth TD, 2011, SCI REP-UK, V1, DOI 10.1038/srep00160; Alamaru A, 2009, MAR ECOL PROG SER, V383, P85, DOI 10.3354/meps07958; ARAI T, 1993, CORAL REEFS, V12, P71; Aranda M, 2011, MOL ECOL, V20, P2955, DOI 10.1111/j.1365-294X.2011.05153.x; Archer F, 2016, RFPERMUTE ESTIMATE P, DOI 10.5281/zenodo.60414; Baird AH, 2009, ANNU REV ECOL EVOL S, V40, P551, DOI 10.1146/annurev.ecolsys.110308.120220; Baird AH, 2009, TRENDS ECOL EVOL, V24, P16, DOI 10.1016/j.tree.2008.09.005; Baker AC, 2003, ANNU REV ECOL EVOL S, V34, P661, DOI 10.1146/annurev.ecolsys.34.011802.132417; Barott KL, 2015, P NATL ACAD SCI USA, V112, P607, DOI 10.1073/pnas.1413483112; Bay Line Kolind, 2011, Diversity, V3, P356; Belda-Baillie CA, 1999, J EXP MAR BIOL ECOL, V241, P207, DOI 10.1016/S0022-0981(99)00079-9; Bennett CE, 2005, MAR FRESHW BEHAV PHY, V38, P21, DOI 10.1080/10236240400029333; BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911; Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324; Budd AF, 2012, ZOOL J LINN SOC-LOND, V166, P465, DOI 10.1111/j.1096-3642.2012.00855.x; BULL JJ, 1991, EVOLUTION, V45, P875, DOI 10.1111/j.1558-5646.1991.tb04356.x; Chamberland VF, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.0852; Closek CJ, 2014, ISME J, V8, P2411, DOI 10.1038/ismej.2014.85; Coffroth MA, 2001, MAR ECOL PROG SER, V222, P85, DOI 10.3354/meps222085; COLLEY NJ, 1983, PROC R SOC SER B-BIO, V219, P61, DOI 10.1098/rspb.1983.0059; Cumbo VR, 2013, CORAL REEFS, V32, P111, DOI 10.1007/s00338-012-0951-7; d'Auriac G., 2018, P ROY SOC LOND B BIO, V285, DOI 10.1098/rspb.2018.1307; d'Auriac IG, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.1307; Doebeli M, 1998, P NATL ACAD SCI USA, V95, P8676, DOI 10.1073/pnas.95.15.8676; Dunn SR, 2009, ENVIRON MICROBIOL, V11, P268, DOI 10.1111/j.1462-2920.2008.01774.x; Ellis J., 1786, NATURAL HIST MANY CU, P208; EWALD PW, 1987, ANN NY ACAD SCI, V503, P295, DOI 10.1111/j.1749-6632.1987.tb40616.x; Gaither MR, 2010, J EXP MAR BIOL ECOL, V386, P45, DOI 10.1016/j.jembe.2010.02.003; Ramos MG, 2014, MAR BIOTECHNOL, V16, P193, DOI 10.1007/s10126-013-9536-x; Grasso LC, 2011, DEV BIOL, V353, P411, DOI 10.1016/j.ydbio.2011.02.010; Grasso LC, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-540; Harii S, 2007, MAR ECOL PROG SER, V346, P89, DOI 10.3354/meps07114; Harii S, 2010, MAR BIOL, V157, P1215, DOI 10.1007/s00227-010-1401-0; Hartmann A. C., 2017, CURR BIOL, V27, P1; Hartmann A. C., 2018, CONSERV LETT, V11, P1; Hartmann AC, 2013, ECOLOGY, V94, P1966, DOI 10.1890/13-0161.1; Hill M, 2012, BIOL REV, V87, P804, DOI 10.1111/j.1469-185X.2012.00223.x; Jesenberger V, 2002, NAT REV MOL CELL BIO, V3, P112, DOI 10.1038/nrm731; Kikuchi Y, 2007, APPL ENVIRON MICROB, V73, P4308, DOI 10.1128/AEM.00067-07; Kvitt H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028665; LaJeunesse TC, 2004, MAR ECOL PROG SER, V284, P147, DOI 10.3354/meps284147; LaJeunesse TC, 2001, J PHYCOL, V37, P866, DOI 10.1046/j.1529-8817.2001.01031.x; LaJeunesse TC, 2018, CURR BIOL, V28, P2570, DOI 10.1016/j.cub.2018.07.008; Littman RA, 2008, J EXP MAR BIOL ECOL, V364, P48, DOI 10.1016/j.jembe.2008.06.034; LUCAS MI, 1979, MAR BIOL, V55, P221, DOI 10.1007/BF00396822; Marhaver KL, 2013, ECOLOGY, V94, P146, DOI 10.1890/12-0985.1; McIlroy SE, 2017, CORAL REEFS, V36, P927, DOI 10.1007/s00338-017-1584-7; McIlroy SE, 2016, J PHYCOL, V52, P1114, DOI 10.1111/jpy.12471; Meyer E, 2011, MOL ECOL, V20, P3599, DOI 10.1111/j.1365-294X.2011.05205.x; Mies M, 2017, FRONT ECOL EVOL, V5, DOI 10.3389/fevo.2017.00056; Mohamed AR, 2016, MOL ECOL, V25, P3127, DOI 10.1111/mec.13659; MORSE DE, 1994, BIOL BULL, V186, P172, DOI 10.2307/1542051; MORSE DE, 1991, BIOL BULL, V181, P104, DOI 10.2307/1542493; MUSCATINE L, 1977, BIOSCIENCE, V27, P454, DOI 10.2307/1297526; Mykles DL, 1998, INT REV CYTOL, V184, P157, DOI 10.1016/S0074-7696(08)62181-6; Nesa B, 2012, ZOOL STUD, V51, P12; Nishiguchi MK, 1998, APPL ENVIRON MICROB, V64, P3209; Nitschke MR, 2015, CORAL REEFS, V34, P161, DOI 10.1007/s00338-014-1220-8; Nyholm SV, 2004, NAT REV MICROBIOL, V2, P632, DOI 10.1038/nrmicro957; Olsen K, 2013, MAR BIOL, V160, P2609, DOI 10.1007/s00227-013-2255-z; Paxton CW, 2013, J EXP BIOL, V216, P2813, DOI 10.1242/jeb.087858; Poland DM, 2017, CORAL REEFS, V36, P119, DOI 10.1007/s00338-016-1514-0; Polato NR, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011221; Quinn RA, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0469; Quistad SD, 2014, P NATL ACAD SCI USA, V111, P9567, DOI 10.1073/pnas.1405912111; Raimondi PT, 2000, ECOLOGY, V81, P3193, DOI 10.1890/0012-9658(2000)081[3193:TCOCLB]2.0.CO;2; Reyes-Bermudez A, 2009, MAR GENOM, V2, P149, DOI 10.1016/j.margen.2009.07.002; RICHMOND RH, 1987, MAR BIOL, V93, P527, DOI 10.1007/BF00392790; Rodriguez-Lanetty M, 2006, MAR BIOL, V149, P713, DOI 10.1007/s00227-006-0272-x; ROWAN R, 1995, P NATL ACAD SCI USA, V92, P2850, DOI 10.1073/pnas.92.7.2850; Sachs JL, 2006, P ROY SOC B-BIOL SCI, V273, P425, DOI 10.1098/rspb.2005.3346; Sachs JL, 2011, TRENDS ECOL EVOL, V26, P202, DOI 10.1016/j.tree.2011.01.010; Saeed AI, 2003, BIOTECHNIQUES, V34, P374, DOI 10.2144/03342mt01; Santos SR, 2003, MAR BIOTECHNOL, V5, P130, DOI 10.1007/s10126-002-0076-9; Schnitzler CE, 2010, MAR GENOM, V3, P107, DOI 10.1016/j.margen.2010.08.002; Schwarz JA, 1999, BIOL BULL-US, V196, P70, DOI 10.2307/1543169; Schwarz JA, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-97; Siboni N, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037774; Suzuki G, 2013, MAR ECOL PROG SER, V494, P149, DOI 10.3354/meps10548; Tchernov D, 2011, P NATL ACAD SCI USA, V108, P9905, DOI 10.1073/pnas.1106924108; Tebben J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019082; Vermeij MJA, 2006, MAR ECOL PROG SER, V310, P119, DOI 10.3354/meps310119; Vermeij MJA, 2013, CARIBB J SCI, V47, P31; Vermeij MJA, 2002, MAR ECOL PROG SER, V233, P105, DOI 10.3354/meps233105; Voolstra CR, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-627; Voolstra CR, 2009, MOL ECOL, V18, P1823, DOI 10.1111/j.1365-294X.2009.04167.x; Wendt DE, 2000, AM ZOOL, V40, P1255; Wilkinson DM, 2001, OIKOS, V92, P377, DOI 10.1034/j.1600-0706.2001.920222.x; Yakovleva IM, 2009, MAR ECOL PROG SER, V378, P105, DOI 10.3354/meps07857; Yuyama I, 2012, MAR ENVIRON RES, V76, P41, DOI 10.1016/j.marenvres.2011.09.004 91 0 0 4 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. JAN 2019 28 1 141 155 10.1111/mec.14967 15 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology HI6ZP WOS:000456604600011 30506836 2019-02-21 J Hernandez, JMR; Alvarado, NP; Velez, KC; Nemeth, R; Appeldoorn, R; Shervette, V Hernandez, Jesus M. Rivera; Pena Alvarado, Noemi; Velez, Karlen Correa; Nemeth, Richard; Appeldoorn, Richard; Shervette, Virginia Queen Triggerfish Reproductive Biology in US Caribbean Waters TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article GRAY TRIGGERFISH; BATCH FECUNDITY; EGG CARE; GROWTH; AGE; FISH; BALISTIDAE; COAST; STRATEGIES; EVOLUTION Effective fisheries management requires a detailed understanding of the life history strategies of managed species. The Queen Triggerfish Balistes vetula supports productive fisheries in the western Atlantic, including the U.S. Caribbean. We utilized a combination of fishery-dependent and fishery-independent samples to assess the size structure, sex ratio, size at maturity, spawning season, and spawning frequency for a Queen Triggerfish population in the U.S. Caribbean. From 2013 to 2018, 1,148 samples were collected, ranging in size from 67 to 434 mm FL. This study provides important life history information from an exploited population and is the first to describe Queen Triggerfish reproductive biology in detail for the Caribbean. We documented that the Queen Triggerfish is a sexually dimorphic species characterized by a medium size at maturity. The smallest sexually mature male and female were 184 and 215 mm FL, respectively. Lengths at 50% sexual maturity (L-50) for males sampled from Puerto Rico and St. Croix, U.S. Virgin Islands, were similar (206 and 211 mm FL, respectively) and were significantly smaller than the L-50 values for females (Puerto Rico: 256 mm FL; St. Croix: 245 mm FL). Queen Triggerfish, nesting benthic spawners, exhibited group-synchronous oogenesis and indeterminate fecundity over the spawning season that started as early as the week after the full moon in December and extended until August. Spawning interval, defined as the number of days between spawning events in a female, was 54-55 d, indicating that a female could spawn up to five times over the estimated 241-267-d spawning season. As regulations on grouper and snapper species in the Caribbean increase, Queen Triggerfish will experience increasing fishing pressure. Managers should continue to evaluate potential impacts of this pressure and establish management regulations that consider the region-specific reproductive season and size at maturity. [Hernandez, Jesus M. Rivera] Univ Puerto Rico Mayaguez, Grad Program Marine Sci, POB 9000, Mayaguez, PR 00681 USA; [Hernandez, Jesus M. Rivera; Velez, Karlen Correa; Shervette, Virginia] Univ South Carolina Aiken, Fish Fisheries Conservat Lab, Dept Biol & Geol, 471 Univ Pkwy, Aiken, SC 29801 USA; [Pena Alvarado, Noemi] Puerto Rico Dept Recursos Nat & Ambientales, Lab Invest Pesqueras, POB 3665, Mayaguez, PR 00681 USA; [Nemeth, Richard] Univ Virgin Isl, Ctr Marine & Environm Studies, St Thomas, VI 00802 USA Shervette, V (reprint author), Univ South Carolina Aiken, Fish Fisheries Conservat Lab, Dept Biol & Geol, 471 Univ Pkwy, Aiken, SC 29801 USA. shervette@gmail.com National Oceanic and Atmospheric Administration Marine Fisheries Initiative Grant (National Marine Fisheries Service) [NA11NMF4330130]; Department of Biology and Geology at the University of South Carolina (USC), Aiken; USC Office of Research Explanation of authors' contributions: this paper is based on the Master of Science thesis of J.M.R.H. As the principal investigator of the larger study on reef fish life history and as the research advisor, V.S. worked closely with J.M.R.H. in the organization and writing of the thesis and co-wrote this paper. N.P.A. taught and mentored J.M.R.H. on fish reproduction and histology and provided guidance and assistance in the collection and analyses of PR reproduction data. K.C.V. assisted in sample collection, processing, database management, and manuscript review. R.A. was J.M.R.H.'s thesis advisor; R.A. and R.N. were co-investigators on the larger reef life history study with V.S. and provided important direction, resources, and feedback during the development of the project. This study was funded by a National Oceanic and Atmospheric Administration Marine Fisheries Initiative Grant awarded to V.S., N.P.A., R. A., and R. N. (NA11NMF4330130; National Marine Fisheries Service); the Department of Biology and Geology at the University of South Carolina (USC), Aiken; and the USC Office of Research. We thank Amanda Kelly-Stormer for initial guidance in reading triggerfish histology slides. This work would not have been possible without the extensive assistance of the Fisheries Research Laboratory at the Puerto Rico Departamento de Recursos Naturales y Ambientales (Wilfredo Torres, Grisel Rodriguez, Veronica Seda, Luis A. Rivera, and Wilson Santiago), The Nature Conservancy in STX, the fishers that collaborated with us to obtain samples (Gerardo Ramirez, Pedro Silva, Benigno Rodriguez, Felix Diaz, Gerson Martinez, Bobby Thomas, and Felix Lugo), and the people that assisted during processing in PR and STX (Kayley Kirkland, Kristin Garlick, Sara Thomas, Graham Wagner, and Jeff Lokken). There is no conflict of interest declared in this article. Aggrey-Fynn J., 2012, West African Journal of Applied Ecology, V20, P1; Aiken K., 1983, CARIBBEAN CORAL REEF, P191; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; Barroso-Soto I, 2007, PAC SCI, V61, P121, DOI 10.1353/psc.2007.0002; BERNARDES R. A., 2000, REV BRAS ZOOL, V17, P687; Bernardes RA, 2002, SCI MAR, V66, P167; Biggs CR, 2016, MAR ECOL PROG SER, V558, P129, DOI 10.3354/meps11846; Bryan M. D, 2012, SUMMARY RECREATIONAL; Chale-Matsau JR, 2001, FISH RES, V51, P87, DOI 10.1016/S0165-7836(00)00235-6; de Albuquerque CQ, 2011, BRAZ J OCEANOGR, V59, P231, DOI 10.1590/S1679-87592011000300003; DEMARTINI EE, 1981, FISH B-NOAA, V79, P547; Donaldson TJ, 2011, P GULF CARIB FISH I, V64, P227; Durie Christopher J., 2001, Florida Scientist, V64, P20; Ferreira Menezes M, 1979, ARQUIVO CIENCIAS MAR, V19, P57; FITZHUGH GR, 1993, FISH B-NOAA, V91, P244; FRICKE HW, 1980, Z TIERPSYCHOL, V53, P105; Ganias K, 2004, FISH RES, V67, P13, DOI 10.1016/j.fishres.2003.08.008; Ganias K, 2009, ESTUAR COAST SHELF S, V84, P402, DOI 10.1016/j.ecss.2009.07.004; GLADSTONE W, 1994, ENVIRON BIOL FISH, V39, P249, DOI 10.1007/BF00005127; Gledhill C., 2005, P GULF CARIBBEAN FIS, V56, P424; Harris PJ, 2007, T AM FISH SOC, V136, P1534, DOI 10.1577/T06-113.1; Hood P. B., 1997, STUDY AGE STRUCTURE; Howard D. W., 2004, NOSNCCOS5 NOAA; HUNTER JR, 1992, FISH B-NOAA, V90, P101; IBM, 2012, IBM SPSS STAT WIND V; Ingram G. W, 2001, STOCK STRUCTURE GRAY; Ishihara M, 1996, ICHTHYOL RES, V43, P307, DOI 10.1007/BF02347602; JOHANNES R E, 1978, Environmental Biology of Fishes, V3, P65, DOI 10.1007/BF00006309; Kacem H, 2015, J MAR BIOL ASSOC UK, V95, P1061, DOI 10.1017/S0025315414002148; Kacem H, 2014, J MAR BIOL ASSOC UK, V94, P1531, DOI 10.1017/S0025315414000824; Kawase H, 2003, ENVIRON BIOL FISH, V66, P211, DOI 10.1023/A:1023978722744; Kelly-Stormer A, 2017, T AM FISH SOC, V146, P523, DOI 10.1080/00028487.2017.1281165; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Kuwamura T, 1997, ETHOLOGY, V103, P1015, DOI 10.1111/j.1439-0310.1997.tb00143.x; LAMBERT TC, 1984, CAN J FISH AQUAT SCI, V41, P1565, DOI 10.1139/f84-194; Lang ET, 2015, MAR COAST FISH, V7, P338, DOI 10.1080/19425120.2015.1069428; LOBEL PS, 1980, ENVIRON BIOL FISH, V5, P251, DOI 10.1007/BF00005359; Lowerre-Barbieri SK, 2011, MAR COAST FISH, V3, P71, DOI 10.1080/19425120.2011.556932; MANOOCH CS, 1987, FISH RES, V6, P53, DOI 10.1016/0165-7836(87)90006-3; Matos-Caraballo D, 2012, NA07NMF4340039 DEP N; Matos-Caraballo D., 2007, P GULF CARIBBEAN FIS, V60, P143; Matsuura K, 2015, ICHTHYOL RES, V62, P72, DOI 10.1007/s10228-014-0444-5; McBride RS, 2015, FISH FISH, V16, P23, DOI 10.1111/faf.12043; McCarthy K. J, 2012, COMMERCIAL FISHERY L; Murua H., 2003, Journal of Northwest Atlantic Fishery Science, V33, P23, DOI 10.2960/J.v33.a2; NAKAZONO A, 1993, AUST J MAR FRESH RES, V44, P699; NMFS (National Marine Fisheries Service), 2009, STAT US FISH 3 QUART; OFORI-DANSON P K, 1990, Tropical Ecology, V31, P1; Parenti LR, 2004, INTEGR COMP BIOL, V44, P333, DOI 10.1093/icb/44.5.333; Parker RO, 1998, T AM FISH SOC, V127, P908, DOI 10.1577/1548-8659(1998)127<0908:CIANCR>2.0.CO;2; Ramdeen R., 2015, RECONSTRUCTION TOTAL; Randall J, 1963, CARIBB J SCI, V3, P1; RStudio Team, 2013, RSTUDIO INT DEV R; SADOVY Y, 1994, ENVIRON BIOL FISH, V41, P269, DOI 10.1007/BF02197849; SEDAR (Southeast Data Assessment and Review), 2006, STOCK ASS REP SEDAR; SEDAR (Southeast Data Assessment and Review), 2013, SEDAR 30 STOCK ASS U; SEDBERRY GR, 1984, ENVIRON BIOL FISH, V11, P241, DOI 10.1007/BF00001372; Simmons CM, 2012, B MAR SCI, V88, P197, DOI 10.5343/bms.2011.1012; SMITH CL, 1972, T AM FISH SOC, V101, P257, DOI 10.1577/1548-8659(1972)101<257:ASAONG>2.0.CO;2; Stanley DR, 2003, AM FISH S S, V36, P123; WALKER MG, 1994, SARSIA, V79, P13, DOI 10.1080/00364827.1994.10413543; Wright PJ, 2009, FISH FISH, V10, P283, DOI 10.1111/j.1467-2979.2008.00322.x; Yoneda M, 1998, J FISH BIOL, V52, P94, DOI 10.1111/j.1095-8649.1998.tb01555.x; Zanini C, 2012, ENVIRON HEALTH-GLOB, V11, DOI 10.1186/1476-069X-11-59 64 0 0 1 1 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. JAN 2019 148 1 134 147 10.1002/tafs.10124 14 Fisheries Fisheries HI1NO WOS:000456212400010 2019-02-21 J Martin, J; Branas-Garza, P; Espin, AM; Gamella, JF; Herrmann, B Martin, Jesus; Branas-Garza, Pablo; Espin, Antonio M.; Gamella, Juan F.; Herrmann, Benedikt The appropriate response of Spanish Gitanos: short-run orientation beyond current socio-economic status EVOLUTION AND HUMAN BEHAVIOR English Article Romani; Delay discounting; Impatience; Adaptation; Evolutionary psychology; Life history DISCOUNT RATES; TIME-PREFERENCE; DELAY; CHOICE; RISK; AGE; ADOLESCENCE; PERSONALITY; POPULATION; DIMENSIONS Humans differ greatly in their tendency to discount future events, but the reasons underlying such inter-individual differences remain poorly understood. Based on the evolutionary framework of Life History Theory, influential models predict that the extent to which individuals discount the future should be influenced by socioecological factors such as mortality risk, environmental predictability and resource scarcity. However, little empirical work has been conducted to compare the discounting behavior of human groups facing different socioecological conditions. In a lab-in-the-field economic experiment, we compared the delay discounting of a sample of Romani people from Southern Spain (Gitanos) with that of their non-Romani neighbors (i.e., the majority Spanish population). The Romani-Gitano population constitutes the main ethnic minority in all of Europe today and is characterized by lower socio-economic status (SES), lower life expectancy and poorer health than the majority, along with a historical experience of discrimination and persecution. According to those Life History Theory models, Gitanos will tend to adopt "faster" life history strategies (e.g., earlier marriage and reproduction) as an adaptation to such ecological conditions and, therefore, should discount the future more heavily than the majority. Our results support this prediction, even after controlling for the individuals' current SES (income and education). Moreover, group-level differences explain a large share of the individual-level differences. Our data suggest that human inter-group discrimination might shape group members' time preferences through its impact on the environmental harshness and unpredictability conditions they face. [Martin, Jesus; Gamella, Juan F.] Univ Granada, Campus Cartuja S-N, E-18071 Granada, Spain; [Branas-Garza, Pablo; Espin, Antonio M.] Univ Loyola Andalucia, Loyola Behav Lab, Cordoba 14003, Spain; [Espin, Antonio M.] Middlesex Univ London, Hendon Campus, London NW4 4BT, England; [Herrmann, Benedikt] Univ Nottingham, Nottingham NG7 2RD, England Branas-Garza, P (reprint author), Univ Loyola Andalucia, Loyola Behav Lab, Cordoba 14003, Spain. pablob@uloyola.es Branas-Garza, Pablo/0000-0001-8456-6009 Spanish Ministry of Science and Innovation [ECO2013-44879-R]; Regional Government of Andalusia [P11-SEJ-8286, P12-SEJ-1436] Financial support from the Spanish Ministry of Science and Innovation (ECO2013-44879-R) and the Regional Government of Andalusia (P11-SEJ-8286) and (P12-SEJ-1436) is gratefully acknowledged. AINSLIE G, 1975, PSYCHOL BULL, V82, P463, DOI 10.1037/h0076860; Andersen S, 2008, ECONOMETRICA, V76, P583, DOI 10.1111/j.1468-0262.2008.00848.x; Andersen S, 2014, EUR ECON REV, V71, P15, DOI 10.1016/j.euroecorev.2014.06.009; Anokhin AP, 2015, BIOL PSYCHIAT, V77, P887, DOI 10.1016/j.biopsych.2014.10.022; Anokhin AP, 2011, BEHAV GENET, V41, P175, DOI 10.1007/s10519-010-9384-7; Aycinena D, 2018, FRONT BEHAV NEUROSCI, V11, DOI 10.3389/fnbeh.2017.00257; Baker F, 2003, J ABNORM PSYCHOL, V112, P382, DOI 10.1037/0021-843X.112.3.382; Barkley RA, 2001, J ABNORM CHILD PSYCH, V29, P541, DOI 10.1023/A:1012233310098; Becker GS, 1997, Q J ECON, V112, P729, DOI 10.1162/003355397555334; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Bevilacqua L, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0380; Bickel WK, 2001, ADDICTION, V96, P73, DOI 10.1046/j.1360-0443.2001.961736.x; Bittles A. H., 2012, CONSANGUINITY CONTEX, V63; Boyd R., 1988, CULTURE EVOLUTIONARY; Branas-Garza P, 2006, EXP ECON, V9, P253, DOI 10.1007/s10683-006-9126-0; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Bulley A, 2017, EVOL HUM BEHAV, V38, P652, DOI 10.1016/j.evolhumbehav.2017.05.002; Bulley A, 2017, BEHAV BRAIN SCI, V40, DOI 10.1017/S0140525X16000996; Casals M., 2011, EUROPEAN J PUBLIC HL; Cavalli-Sforza L. L., 2004, MG POP BIOL, V39; Cavalli-Sforza LL, 1981, CULTURAL TRANSMISSIO; Cerezo A. I., 2016, EUROPEAN J CRIMINAL, V23, P133; Chabris CF, 2008, J RISK UNCERTAINTY, V37, P237, DOI 10.1007/s11166-008-9053-x; Chipman A, 2015, PSYCHONEUROENDOCRINO, V62, P89, DOI 10.1016/j.psyneuen.2015.07.611; Cook B, 2013, INT J PUBLIC HEALTH, V58, P885, DOI 10.1007/s00038-013-0518-6; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Dickins T. E., 2012, J SOCIAL EVOLUTIONAR, V6, P344; Dombrovski AY, 2011, BIOL PSYCHIAT, V70, P138, DOI 10.1016/j.biopsych.2010.12.025; Eisenstein SA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133621; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Espin A. M., 2018, BRINGING TOGET UNPUB; Espin AM, 2015, FRONT BEHAV NEUROSCI, V9, DOI 10.3389/fnbeh.2015.00214; Espin AM, 2012, P ROY SOC B-BIOL SCI, V279, P4923, DOI 10.1098/rspb.2012.2043; Feintuch S., 2013, THESIS; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; Fraser A., 1995, GYPSIES; Frederick S, 2002, J ECON LIT, V40, P351, DOI 10.1257/002205102320161311; Gamella J. F., 1996, POBLACION GITANA AND; Gamella J. F., 2007, ETUDES TSIGANES, V30, P110; Gamella J. F., 2014, SOCIOLOGIA REV FACUL, P175; Gamella J. F., 2011, HIST EXITO MODELOS R; Gamella JF, 2017, DEMOGR RES, V36, P945, DOI 10.4054/DemRes.2017.36.33; Gamella JF, 2013, COLLEGIUM ANTROPOL, V37, P723; Green L, 1996, PSYCHOL AGING, V11, P79, DOI 10.1037/0882-7974.11.1.79; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Harrison GW, 2002, AM ECON REV, V92, P1606, DOI 10.1257/000282802762024674; Hill E., 2008, J SOCIO-ECON, V37, P1381, DOI DOI 10.1016/J.S0CEC.2006.12.081; Johns S. E., 2011, J EVOLUTIONARY PSYCH, V9, P3, DOI DOI 10.1556/JEP.9.2011.37.1; Kaaydjieva L, 2005, BIOESSAYS, V27, P1084, DOI 10.1002/bies.20287; Kalaydjieva L, 2001, BMC Med Genet, V2, P5, DOI 10.1186/1471-2350-2-5; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kidd C, 2013, COGNITION, V126, P109, DOI 10.1016/j.cognition.2012.08.004; Kirby KN, 2002, J ECON PSYCHOL, V23, P291, DOI 10.1016/S0167-4870(02)00078-8; Kirby KN, 2009, PSYCHON B REV, V16, P457, DOI 10.3758/PBR.16.3.457; Casado DL, 2016, ETHNIC HEALTH, V21, P468, DOI 10.1080/13557858.2015.1093096; Lee AJ, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.0304; Lopez-Guzman S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0191357; Lumsden C. J., 1981, GENES MIND CULTURE C; Martin E., 2005, HIST FAMILY, V10, P45, DOI DOI 10.1016/J.HISFAM.2004.03.004; Mathot KJ, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2459-9; Matras Y., 2015, THE ROMANI GYPSIES; McCullough M. E., 2013, P ROY SOC LOND B BIO, V280; McElreath R, 2003, CURR ANTHROPOL, V44, P122, DOI 10.1086/345689; McGuire JT, 2013, PSYCHOL REV, V120, P395, DOI 10.1037/a0031910; Meier S, 2012, PSYCHOL SCI, V23, P56, DOI 10.1177/0956797611425931; Meier S, 2010, AM ECON J-APPL ECON, V2, P193, DOI 10.1257/app.2.1.193; Mejia-Cruz D, 2016, PSYCHOPHARMACOLOGY, V233, P2705, DOI 10.1007/s00213-016-4316-8; Mell H, 2018, EVOL HUM BEHAV, V39, P1, DOI 10.1016/j.evolhumbehav.2017.08.006; Ministerio de Sanidad y Consumo-Fundacion Secretariado Gitano, 2005, HLTH ROM COMM; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; Nunez Negrillo A. M., 2016, THESIS; Ohmura Y, 2006, EXP CLIN PSYCHOPHARM, V14, P318, DOI 10.1037/1064-1297.14.3.318; Pender JL, 1996, J DEV ECON, V50, P257, DOI 10.1016/S0304-3878(96)00400-2; Pepper GV, 2017, BEHAV BRAIN SCI, V40, DOI 10.1017/S0140525X1600234X; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; RACHLIN H, 1972, J EXP ANAL BEHAV, V17, P15, DOI 10.1901/jeab.1972.17-15; Ramos D, 2013, J RES ADOLESCENCE, V23, P95, DOI 10.1111/j.1532-7795.2012.00796.x; Rawls J., 1971, THEORY JUSTICE; Read D, 1998, ORGAN BEHAV HUM DEC, V76, P189, DOI 10.1006/obhd.1998.2803; Read D, 2004, ORGAN BEHAV HUM DEC, V94, P22, DOI 10.1016/j.obhdp.2004.01.002; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reimers S, 2009, PERS INDIV DIFFER, V47, P973, DOI 10.1016/j.paid.2009.07.026; Reynolds B, 2006, PERS INDIV DIFFER, V40, P305, DOI 10.1016/j.paid.2005.03.024; Roff D., 1993, EVOLUTION LIFE HIST; Salali GD, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0137806; Sen A, 1992, INEQUALITY REEXAMINE; Sozou PD, 2003, P ROY SOC B-BIOL SCI, V270, P1047, DOI 10.1098/rspb.2003.2344; Stojek MM, 2014, APPETITE, V80, P81, DOI 10.1016/j.appet.2014.05.004; Sutter M, 2013, AM ECON REV, V103, P510, DOI 10.1257/aer.103.1.510; Tanaka T, 2010, AM ECON REV, V100, P557, DOI 10.1257/aer.100.1.557; Weller RE, 2008, APPETITE, V51, P563, DOI 10.1016/j.appet.2008.04.010; Woodburn J, 1980, US SOVIET W ANTHR; Woodburn J, 1982, DEATH REGENERATION L, P187; Worthman CM, 2003, OFFSPRING, P289; Yi R, 2010, IMPULSIVITY BEHAV NE, P191, DOI [10.1037/12069-007, DOI 10.1037/12069-007]; Zietsch BP, 2016, CURR OPIN PSYCHOL, V7, P71, DOI 10.1016/j.copsyc.2015.08.014 100 0 0 0 0 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2019 40 1 12 22 10.1016/j.evolhumbehav.2018.07.002 11 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences HH2OS WOS:000455558600002 2019-02-21 J Williams, KEG; Votruba, AM; Neuberg, SLA; Saks, MJ Williams, Keelah E. G.; Votruba, Ashley M.; Neuberg, Steven L. A.; Saks, Michael J. Capital and punishment: Resource scarcity increases endorsement of the death penalty EVOLUTION AND HUMAN BEHAVIOR English Article Death penalty; Scarcity; Resource availability; Punishment LIFE-HISTORY STRATEGIES; SOCIOECONOMIC-STATUS; MORTALITY; ATTITUDES Faced with punishing severe offenders, why do some prefer imprisonment whereas others impose death? Previous research exploring death penalty attitudes has primarily focused on individual and cultural factors. Adopting a functional perspective, we propose that environmental features may also shape our punishment strategies. Individuals are attuned to the availability of resources within their environments. Due to heightened concerns with the costliness of repeated offending, we hypothesize that individuals tend towards elimination focused punishments during times of perceived scarcity. Using global and United States data sets (studies 1 and 2), we find that indicators of resource scarcity predict the presence of capital punishment. In two experiments (studies 3 and 4), we find that activating concerns about scarcity causes people to increase their endorsement for capital punishment, and this effect is statistically mediated by a reduced willingness to risk repeated offenses. Perceived resource scarcity shapes our punishment preferences, with important policy implications. [Williams, Keelah E. G.] Hamilton Coll, Dept Psychol, Clinton, NY 13323 USA; [Votruba, Ashley M.] Univ Nebraska Lincoln, Dept Psychol, Lincoln, NE USA; [Neuberg, Steven L. A.; Saks, Michael J.] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA; [Saks, Michael J.] Arizona State Univ, Sandra Day OConnor Coll Law, Phoenix, AZ USA Williams, KEG (reprint author), Hamilton Coll, Taylor Sci Ctr, 198 Coll Hill Rd, Clinton, NY 13323 USA. kewillia@hamilton.edu Arizona State University Foundation for a New American University This research was financially supported by research funds provided to Steven L. Neuberg by the Arizona State University Foundation for a New American University. Alarcon A. L., 2012, LOYOLA LOS ANGELES L, V46, pS1; Allen TJ, 2011, PSYCHOL SCI, V22, P331, DOI 10.1177/0956797611399291; Amnesty International, 2017, DEATH PEN; Amnesty International, 2012, DEATH PEN; [Anonymous], 2011, INEQUALITY ADJUSTED; [Anonymous], 2012, GALLUP STATE IDEOLOG; Ariely D., 2008, PREDICTABLY IRRATION; Boehm C, 2012, BEHAV BRAIN SCI, V35, DOI 10.1017/S0140525X11001403; Boyd R, 2006, ROOTS HUMAN SOCIALIT, P453; Chakravarthy M. V, 2004, EATING EXERCISE THRI; Daly M, 2016, KILLING COMPETITION; ELLSWORTH PC, 1983, CRIME DELINQUENCY, V29, P116, DOI 10.1177/001112878302900105; Gelfand MJ, 2011, SCIENCE, V332, P1100, DOI 10.1126/science.1197754; Graham J., 2008, MORAL FDN QUESTIONNA; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Haselton MG, 2006, PERS SOC PSYCHOL REV, V10, P47, DOI 10.1207/s15327957pspr1001_3; Hill SE, 2012, J PERS SOC PSYCHOL, V103, P275, DOI 10.1037/a0028657; Jost JT, 2004, POLIT PSYCHOL, V25, P881, DOI 10.1111/j.1467-9221.2004.00402.x; Kahneman D, 2011, THINKING FAST SLOW; Kenrick DT, 2012, SYD SYM SOC PSYCHOL, P23; Laran J, 2013, PSYCHOL SCI, V24, P167, DOI 10.1177/0956797612450033; Lee AJ, 2011, BIOL LETTERS, V7, P892, DOI 10.1098/rsbl.2011.0454; Liang B, 2006, BRIT J CRIMINOL, V46, P119, DOI 10.1093/bjc/azi048; Measure of America, 2014, MEAS AM 2013 2014; Miethe TD, 2005, INT CRIM JUSTICE REV, V15, P115, DOI 10.1177/1057567705283954; Neapolitan JL, 2001, INT J OFFENDER THER, V45, P691, DOI 10.1177/0306624X01456005; Nesse RM, 2005, EVOL HUM BEHAV, V26, P88, DOI 10.1016/j.evolhumbehav.2004.08.002; Neuberg SL, 2008, GROUP DYN-THEOR RES, V12, P63, DOI 10.1037/1089-2699.12.1.63; Neuberg SL, 2016, CURR OPIN PSYCHOL, V7, P1, DOI 10.1016/j.copsyc.2015.06.004; Nolan JJ, 2004, J CRIM JUST, V32, P547, DOI 10.1016/j.jcrimjus.2004.08.002; O'Neil KM, 2004, PSYCHOL PUBLIC POL L, V10, P443, DOI 10.1037/1076-8971.10.4.443; Oreopoulos P, 2013, FUTURE CHILD, V23, P41, DOI 10.1353/foc.2013.0001; Otterbein K. F., 1986, ULTIMATE COERCIVE SA; Petersen MB, 2012, EVOL HUM BEHAV, V33, P682, DOI 10.1016/j.evolhumbehav.2012.05.003; Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879; PRENTICE DA, 1992, PSYCHOL BULL, V112, P160, DOI 10.1037/0033-2909.112.1.160; Rodeheffer CD, 2012, PSYCHOL SCI, V23, P1476, DOI 10.1177/0956797612450892; Sarat A, 2001, WHEN THE STATE KILLS; Sharma E, 2014, ORGAN BEHAV HUM DEC, V123, P90, DOI 10.1016/j.obhdp.2013.09.001; Sng O, 2018, PSYCHOL REV, V125, P714, DOI 10.1037/rev0000104; Soss J, 2003, J POLIT, V65, P397, DOI 10.1111/1468-2508.t01-2-00006; Stringhini S, 2017, LANCET, V389, P1229, DOI 10.1016/S0140-6736(16)32380-7; Todd AR, 2015, J EXP PSYCHOL GEN, V144, P374, DOI 10.1037/xge0000048; U.S. Census Bureau, 2012, POPULATION; U.S. Department of Commerce, 2011, BUR EC AN; White AE, 2013, J PERS SOC PSYCHOL, V105, P924, DOI 10.1037/a0033808; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919 48 0 0 5 5 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2019 40 1 65 73 10.1016/j.evolhumbehav.2018.08.002 9 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences HH2OS WOS:000455558600007 2019-02-21 J Vincenzi, S; Crivelli, AJ; Jesensek, D; Campbell, E; Garza, JC Vincenzi, Simone; Crivelli, Alain J.; Jesensek, Dusan; Campbell, Ellen; Garza, John C. Effects of species invasion on population dynamics, vital rates and life histories of the native species POPULATION ECOLOGY English Article demography; growth; marble trout; pedigree reconstruction; rainbow trout; random-effects models TROUT SALMO-MARMORATUS; BROWN TROUT; TRADE-OFFS; STRATEGIES; SIZE; TEMPERATURE; EVOLUTION; SYNCHRONY; ECOLOGY; BIOLOGY Invasions occurring in natural environments provide the opportunity to study how vital rates change and life histories evolve in the presence of a competing species. In this work, we estimate differences in reproductive traits, individual growth trajectories, survival, life histories and population dynamics between a native species living in allopatry and in sympatry with an invasive species of the same taxonomic Family. We used as a model system marble trout Salmo marmoratus (native species) and rainbow trout Oncorhynchus mykiss (non-native) living in the Idrijca River (Slovenia). An impassable waterfall separates the stream into two sectors only a few 100 meters apart: a downstream sector in which marble trout live in sympatry with rainbow trout and an upstream sector in which marble trout live in allopatry. We used an overarching modelling approach that uses tag-recapture and genetic data (>2,500 unique marble and rainbow trout were sampled and genotyped) to reconstruct pedigrees, test for synchrony of population dynamics and model survival and growth, while accounting for individual heterogeneity. The population dynamics of the two marble trout populations and of rainbow trout were synchronous. We found higher prevalence of younger parents, higher mortality and lower population density in marble trout living in sympatry with rainbow trout than in marble trout living in allopatry. There were no differences in the average individual growth trajectories between the two marble trout populations. Faster life histories of marble trout living in sympatry with rainbow trout are consistent with predictions of life history theory. [Vincenzi, Simone; Campbell, Ellen; Garza, John C.] Univ Calif Santa Cruz, Inst Marine Sci, 110 McAllister Way, Santa Cruz, CA 95060 USA; [Vincenzi, Simone; Campbell, Ellen; Garza, John C.] Natl Marine Fisheries Serv, Southwest Fisheries Sci Ctr, Fisheries Ecol Div, Santa Cruz, CA USA; [Crivelli, Alain J.] Stn Biol Tour Valat, Arles, France; [Jesensek, Dusan] Tolmin Angling Assoc, Most Na Soci, Slovenia Vincenzi, S (reprint author), Univ Calif Santa Cruz, Inst Marine Sci, 110 McAllister Way, Santa Cruz, CA 95060 USA. simon.vincenz@gmail.com MAVA Foundation MAVA Foundation Allendorf FW, 2003, CONSERV BIOL, V17, P24, DOI 10.1046/j.1523-1739.2003.02365.x; ALM GUNNAR, 1959, REPT INST FRESHWATER RES DROTTNINGHOLM, V40, P5; Amundsen PA, 2012, BIOL INVASIONS, V14, P1501, DOI 10.1007/s10530-012-0175-3; Anderson E. C., 2012, STAT APPL GENETICS M, V11; Anderson EC, 2006, GENETICS, V172, P2567, DOI 10.1534/genetics.105.048074; Bajec SS, 2015, BIOL CONSERV, V184, P239, DOI 10.1016/j.biocon.2015.01.033; Berg OK, 1998, CAN J FISH AQUAT SCI, V55, P47, DOI 10.1139/cjfas-55-1-47; Burnham K. P, 2002, MODEL SELECTION MULT; Burton OJ, 2010, ECOL LETT, V13, P1210, DOI 10.1111/j.1461-0248.2010.01505.x; Cadotte MW, 2007, ECOLOGY, V88, P823, DOI 10.1890/06-1117; Capellini I, 2015, ECOL LETT, V18, P1099, DOI 10.1111/ele.12493; CARLE FL, 1978, BIOMETRICS, V34, P621, DOI 10.2307/2530381; CARLIN BORJE, 1955, REPT INST FRESHWATER RES DROTTNINGHOLM, V36, P57; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Carroll SP, 2007, ECOL RES, V22, P892, DOI 10.1007/s11284-007-0352-5; Cattaneo F, 2003, OIKOS, V100, P43, DOI 10.1034/j.1600-0706.2003.11912.x; CRAIG JF, 1985, CAN J ZOOL, V63, P1, DOI 10.1139/z85-001; Crozier LG, 2010, J ANIM ECOL, V79, P342, DOI 10.1111/j.1365-2656.2009.01641.x; Elliott J. M., 1994, QUANTITATIVE ECOLOGY; Fay R, 2016, ECOLOGY, V97, P1842, DOI 10.1890/15-1485.1; Fumagalli L, 2002, MOL ECOL, V11, P2711, DOI 10.1046/j.1365-294X.2002.01648.x; GALL GAE, 1992, AQUACULTURE, V100, P1, DOI 10.1016/0044-8486(92)90333-G; Garcia de Leaniz C, 2007, BIOL REV, V82, P173, DOI 10.1111/j.1469-185X.2006.00004.x; Hendry AP, 2008, BIOL PHILOS, V23, P673, DOI 10.1007/s10539-008-9126-x; Jimenez MA, 2011, ECOL LETT, V14, P1227, DOI 10.1111/j.1461-0248.2011.01693.x; Jones PE, 2015, FRESHWATER BIOL, V60, P2127, DOI 10.1111/fwb.12637; Jonsson B, 2013, J ANIM ECOL, V82, P201, DOI 10.1111/j.1365-2656.2012.02022.x; Jonsson B, 2011, FISH FISH SER, V33, P1, DOI 10.1007/978-94-007-1189-1_1; Korsu K, 2010, BIOL INVASIONS, V12, P1363, DOI 10.1007/s10530-009-9553-x; Kurz ML, 2016, EVOL ECOL RES, V17, P225; Laake JL, 2013, METHODS ECOL EVOL, V4, P885, DOI 10.1111/2041-210X.12065; Linhart Y. B., 1996, ANNU REV ECOL SYST, V134, P237; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; Meldgaard T, 2007, BIOL CONSERV, V136, P602, DOI 10.1016/j.biocon.2007.01.004; Musseau C., 2017, ECOL FRESHW FISH, V27, P720; Ogle DH, 2018, FSA FISHERIES STOCK; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Peterson DP, 2004, ECOL APPL, V14, P754, DOI 10.1890/02-5395; PLATT JR, 1964, SCIENCE, V146, P347, DOI 10.1126/science.146.3642.347; R Development Core Team, 2014, R LANG ENV STAT COMP; Ranta E, 1997, OIKOS, V78, P136, DOI 10.2307/3545809; Riester M, 2009, BIOINFORMATICS, V25, P2134, DOI 10.1093/bioinformatics/btp064; Roff D., 2007, LIFE HIST EVOLUTION; Ruesink JL, 2005, CONSERV BIOL, V19, P1883, DOI 10.1111/j.1523-1739.2005.00289.x; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Simon KS, 2003, FRESHWATER BIOL, V48, P982, DOI 10.1046/j.1365-2427.2003.01069.x; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Stankovic D, 2015, REV FISH SCI AQUAC, V23, P39, DOI 10.1080/23308249.2015.1024825; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns S. C., 2003, EVOLUTION ILLUMINATE; Strauss SY, 2006, ECOL LETT, V9, P354, DOI 10.1111/j.1461-0248.2005.00874.x; Thomson DL, 2009, ENVIRON ECOL STAT SE, V3, P1, DOI 10.1007/978-0-387-78151-8; Valentini A, 2009, TRENDS ECOL EVOL, V24, P110, DOI 10.1016/j.tree.2008.09.011; Vincenzi S, 2008, BIOL CONSERV, V141, P198, DOI 10.1016/j.biocon.2007.09.013; Vincenzi S, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2016.2118; Vincenzi S, 2016, ECOL APPL, V26, P2086, DOI 10.1890/15-1808.1; Vincenzi S, 2016, ECOL APPL, V26, P1535, DOI 10.1890/15-1177; Vincenzi S, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003828; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; Yano A, 2013, EVOL APPL, V6, P486, DOI 10.1111/eva.12032 60 0 0 4 4 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. JAN 2019 61 1 25 34 10.1002/1438-390X.1004 10 Ecology Environmental Sciences & Ecology HH0WV WOS:000455441600004 2019-02-21 J Booton, R; Yamaguchi, R; Iwasa, Y Booton, Ross; Yamaguchi, Ryo; Iwasa, Yoh A population model for diapausing multivoltine insects under asymmetric cannibalism POPULATION ECOLOGY English Article Byasa alcinous; insect cannibalism; life-history; population dynamics; voltinism LIFE-HISTORY STRATEGIES; PHOTOPERIODIC RESPONSE; UNIVOLTINE; HETEROPTERA; INDUCTION; EVOLUTION; VOLTINISM; GERRIDAE Pupa-eating cannibalism occurs naturally in several insect species. Byasa alcinous is a multivoltine species of Red-bodied Swallowtail butterfly found in East Asia, which diapauses as pupa over the winter and whose larvae cannibalize eggs and pupae. We investigate the effects on population dynamics of increasing the asymmetric cannibalistic attack rate of a general insect species in different environmental conditions. We do this by theoretically formulating a generalized system of univoltine and bivoltine larvae over two generations in the spring and summer months. We predict that a lack of resources over the summer can force the population to become entirely univoltine, unless the second-generation bivoltine larvae increase their cannibalistic attack rate, and consume the diapausing pupae from the first generation. The model shows that under extreme environmental conditions, the persistence of univoltine larvae is favoured when faced with the threat of extinction. The model also predicts the conditions for the coexistence of both univoltine and bivoltine larvae, and the degree to which they can both coexist, which decreases as the resource in the second generation increases. This work provides the grounding for future theoretical and experimental consideration of the role of cannibalism in determining insect voltinism. [Booton, Ross] Univ Sheffield, Dept Anim & Plant Sci, Alfred Denny Bldg,Western Bank, Sheffield, S Yorkshire, England; [Yamaguchi, Ryo] Tokyo Metropolitan Univ, Dept Biol Sci, Tokyo, Japan; [Iwasa, Yoh] Kyushu Univ, Dept Biol, Fac Sci, Fukuoka, Fukuoka, Japan Booton, R (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Alfred Denny Bldg,Western Bank, Sheffield, S Yorkshire, England. rdbooton@gmail.com Japan Society for the Promotion of Science; University of Sheffield This work was supported by a Japan Society for the Promotion of Science Summer Fellowship and a University of Sheffield PhD scholarship to R.B. Aalberg Haugen IM, 2012, J EVOLUTION BIOL, V25, P1377, DOI 10.1111/j.1420-9101.2012.02525.x; Amundsen PA, 2016, HYDROBIOLOGIA, V783, P11, DOI 10.1007/s10750-015-2600-y; BRADFORD MJ, 1995, OECOLOGIA, V103, P319, DOI 10.1007/BF00328620; Bradford MJ, 1997, ECOLOGY, V78, P442; BRANNEN JP, 1975, J THEOR BIOL, V49, P179, DOI 10.1016/S0022-5193(75)80026-9; Claessen D, 2004, P ROY SOC B-BIOL SCI, V271, P333, DOI 10.1098/rspb.2003.2555; COHEN D, 1970, AM NAT, V104, P389, DOI 10.1086/282672; CRESPI BJ, 1990, J INSECT BEHAV, V3, P61, DOI 10.1007/BF01049195; CROWLEY PH, 1989, J N AM BENTHOL SOC, V8, P211, DOI 10.2307/1467324; CROWLEY PH, 1994, AM NAT, V143, P117, DOI 10.1086/285598; CUSHING JM, 1991, MATH BIOSCI, V107, P47, DOI 10.1016/0025-5564(91)90071-P; Danilevskii A.S., 1965, PHOTOPERIODISM SEASO; Danks H. V., 1987, INSECT DORMANCY ECOL, V1; De Block M, 2004, FRESHWATER BIOL, V49, P775, DOI 10.1111/j.1365-2427.2004.01224.x; DIEKMANN O, 1986, MATH BIOSCI, V78, P21, DOI 10.1016/0025-5564(86)90029-5; Elgar M., 1992, CANNIBALISM ECOLOGY; FAIRBAIRN DJ, 1985, CAN J ZOOL, V63, P2594, DOI 10.1139/z85-388; FOX LR, 1975, ANNU REV ECOL SYST, V6, P87, DOI 10.1146/annurev.es.06.110175.000511; HASTINGS A, 1991, J ANIM ECOL, V60, P471, DOI 10.2307/5292; Henson SM, 1997, J MATH BIOL, V36, P201, DOI 10.1007/s002850050098; Henson SM, 1999, J MATH BIOL, V39, P217, DOI 10.1007/s002850050169; Hopper KR, 1996, ECOLOGY, V77, P191, DOI 10.2307/2265668; Hou C, 2008, SCIENCE, V322, P736, DOI 10.1126/science.1162302; Huang LL, 2013, PHYSIOL ENTOMOL, V38, P126, DOI 10.1111/phen.12009; Igarashi S., 1997, LIFE HIST ASIAN BUTT, V1; Igarashi S., 2000, LIFE HIST ASIAN BUTT, V2; IWASA Y, 1992, ECOL RES, V7, P55, DOI 10.1007/BF02348597; IWASA Y, 1991, RES POPUL ECOL, V33, P213, DOI 10.1007/BF02513550; Iwasa Y., 1994, EVOLUTIONARY STABLE; Kato Y, 2005, APPL ENTOMOL ZOOL, V40, P347, DOI 10.1303/aez.2005.347; Kato Yoshiomi, 2000, Transactions of the Lepidopterological Society of Japan, V51, P233; Kivela SM, 2011, J ANIM ECOL, V80, P1184, DOI 10.1111/j.1365-2656.2011.01864.x; KOHLMEIER C, 1995, B MATH BIOL, V57, P401, DOI 10.1016/S0092-8240(05)81775-6; Kozuki Y., 2004, JAPANESE J ENV ENTOM, V15, P157; LANDAHL HD, 1975, B MATH BIOL, V37, P11, DOI 10.1007/BF02463488; Masaki S., 1978, P72; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; NISHIDA R, 1989, J CHEM ECOL, V15, P2549, DOI 10.1007/BF01014731; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301; Pritchard G, 1996, BIOL J LINN SOC, V58, P221, DOI 10.1006/bijl.1996.0033; Rault J, 2013, ACTA BIOTHEOR, V61, P119, DOI 10.1007/s10441-013-9172-x; Richardson ML, 2010, ANNU REV ENTOMOL, V55, P39, DOI 10.1146/annurev-ento-112408-085314; SOTA T, 1988, RES POPUL ECOL, V30, P135, DOI 10.1007/BF02512608; SPENCE JR, 1986, OECOLOGIA, V70, P68, DOI 10.1007/BF00377112; SPENCE JR, 1989, CAN J ZOOL, V67, P2432, DOI 10.1139/z89-344; Takagi S, 2008, ANN ENTOMOL SOC AM, V101, P392, DOI 10.1603/0013-8746(2008)101[392:HPQIDI]2.0.CO;2; Tauber M.J., 1986, SEASONAL ADAPTATIONS; TAUBER MJ, 1976, ANNU REV ENTOMOL, V21, P81, DOI 10.1146/annurev.en.21.010176.000501; Tobin PC, 2008, GLOBAL CHANGE BIOL, V14, P951, DOI 10.1111/j.1365-2486.2008.01561.x; Trudgill DL, 2005, ANN APPL BIOL, V146, P1, DOI 10.1111/j.1744-7348.2005.04088.x; TURNOCK WJ, 1973, CAN ENTOMOL, V105, P399, DOI 10.4039/Ent105399-3; VANDENBOSCH F, 1988, J MATH BIOL, V26, P619, DOI 10.1007/BF00276144; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; VONBERTALANFFY L, 1951, AM NAT, V85, P111, DOI 10.1086/281659; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076 56 0 0 1 1 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. JAN 2019 61 1 35 44 10.1002/1438-390X.1012 10 Ecology Environmental Sciences & Ecology HH0WV WOS:000455441600005 2019-02-21 J Bull, JK; Flynn, JM; Chain, FJJ; Cristescu, ME Bull, James K.; Flynn, Jullien M.; Chain, Frederic J. J.; Cristescu, Melania E. Fitness and Genomic Consequences of Chronic Exposure to Low Levels of Copper and Nickel in Daphnia pulex Mutation Accumulation Lines G3-GENES GENOMES GENETICS English Article genetic load; life-history evolution; mutational decay; mutation rate; metal pollution STRESS-INDUCED MUTAGENESIS; DELETERIOUS MUTATIONS; DROSOPHILA-MELANOGASTER; EVOLUTIONARY GENETICS; SELECTION; TRAITS; RATES; LOAD; TEMPERATURE; DEPENDENCE In at least some unicellular organisms, mutation rates are temporarily raised upon exposure to environmental stress, potentially contributing to the evolutionary response to stress. Whether this is true for multicellular organisms, however, has received little attention. This study investigated the effects of chronic mild stress, in the form of low-level copper and nickel exposure, on mutational processes in Daphnia pulex using a combination of mutation accumulation, whole genome sequencing and life-history assays. After over 100 generations of mutation accumulation, we found no effects of metal exposure on the rates of single nucleotide mutations and of loss of heterozygosity events, the two mutation classes that occurred in sufficient numbers to allow statistical analysis. Similarly, rates of decline in fitness, as measured by intrinsic rate of population increase and of body size at first reproduction, were negligibly affected by metal exposure. We can reject the possibility that Daphnia were insufficiently stressed to invoke genetic responses as we have previously shown rates of large-scale deletions and duplications are elevated under metal exposure in this experiment. Overall, the mutation accumulation lines did not significantly depart from initial values for phenotypic traits measured, indicating the lineage used was broadly mutationally robust. Taken together, these results indicate that the mutagenic effects of chronic low-level exposure to these metals are restricted to certain mutation classes and that fitness consequences are likely minor and therefore unlikely to be relevant in determining the evolutionary responses of populations exposed to these stressors. [Bull, James K.; Cristescu, Melania E.] McGill Univ, Dept Biol, 1205 Docteur Penfield, Montreal, PQ H3A 1B1, Canada; [Flynn, Jullien M.] Cornell Univ, Mol Biol & Genet, New York, NY 14853 USA; [Chain, Frederic J. J.] Univ Massachusetts, Dept Biol Sci, Lowell, MA 01854 USA Bull, JK (reprint author), McGill Univ, Dept Biol, 1205 Docteur Penfield, Montreal, PQ H3A 1B1, Canada. james.bull.au@gmail.com NSERC CREATE fellowship; NSERC; NSERC CREATE training program on Aquatic Ecosystem Health; NSERC Discovery Grant; Canada Research Chair This project was made possible by an NSERC CREATE fellowship to FJJC, an NSERC scholarship to JMF and an NSERC CREATE training program on Aquatic Ecosystem Health, an NSERC Discovery Grant, and a Canada Research Chair to MEC. The life history experiments may have literally killed JKB if not for the wonderful assistance of A. Maldonado Machado and A. Abraham. Students too numerous to mention contributed to maintaining the MA lines throughout the experiment. G. Fussman and D. Schoen provided helpful suggestions on the design and execution of the life history experiment. The manuscript reports research conducted as part of a thesis that was examined by LC. Latta, whose feedback and insights greatly improved the final version and who the authors would like to thank. CF. Baer and one anonymous reviewer provided feedback on an earlier version of this manuscript, which greatly improved this final version. Agrawal AF, 2008, PLOS BIOL, V6, P389, DOI 10.1371/journal.pbio.0060030; Arutyunyan RM, 1999, MUTAT RES-FUND MOL M, V426, P117, DOI 10.1016/S0027-5107(99)00052-4; Asselman J, 2012, AQUAT TOXICOL, V110, P54, DOI 10.1016/j.aquatox.2011.12.010; Baer CF, 2005, P NATL ACAD SCI USA, V102, P5785, DOI 10.1073/pnas.0406056102; Baer CF, 2008, PLOS BIOL, V6, P233, DOI 10.1371/journal.pbio.0060052; Baym M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128036; Bell G, 2009, ECOL LETT, V12, P942, DOI 10.1111/j.1461-0248.2009.01350.x; Beyersmann D, 2008, ARCH TOXICOL, V82, P493, DOI 10.1007/s00204-008-0313-y; Bjedov I, 2003, SCIENCE, V300, P1404, DOI 10.1126/science.1082240; Caballero A, 2002, EVOLUTION, V56, P1150; Celis-Salgado MP, 2008, INT VER THEOR ANGEW, V30, P265; Celis-Salgado MP, 2016, J LIMNOL, V75, P36, DOI 10.4081/jlimnol.2016.1271; Chain F. J., 2018, BIORXIV; Colbourne JK, 2011, SCIENCE, V331, P555, DOI 10.1126/science.1197761; Davies EK, 1999, SCIENCE, V285, P1748, DOI 10.1126/science.285.5434.1748; De Meester L, 1999, LIMNOL OCEANOGR, V44, P1248, DOI 10.4319/lo.1999.44.5.1248; Doyle J. J., 1987, PHYTOCHEMISTRY B, V19, P11, DOI DOI 10.2307/4119796; Drake JW, 2006, GENETICS, V173, P1; ECHOLS H, 1981, CELL, V25, P1, DOI 10.1016/0092-8674(81)90223-3; Eyre-Walker A, 2007, NAT REV GENET, V8, P610, DOI 10.1038/nrg2146; Fernandez J, 1996, GENETICS, V143, P829; Fernandez-Gonzalez MA, 2011, REV CHIL HIST NAT, V84, P195, DOI 10.4067/S0716-078X2011000200005; Fields PD, 2015, MOL ECOL, V24, P4521, DOI 10.1111/mec.13324; Fitzgerald DM, 2017, ANNU REV CANCER BIOL, V1, P119, DOI 10.1146/annurev-cancerbio-050216-121919; Flynn JM, 2017, MOL BIOL EVOL, V34, P160, DOI 10.1093/molbev/msw234; Fu J, 2009, NAT GENET, V41, P166, DOI 10.1038/ng.308; Galhardo RS, 2007, CRIT REV BIOCHEM MOL, V42, P399, DOI 10.1080/10409230701648502; Griffiths A., 2015, INTRO GENETIC ANAL; Guecheva T, 2001, MUTAT RES-GEN TOX EN, V497, P19, DOI 10.1016/S1383-5718(01)00244-3; Haldane JBS, 1937, AM NAT, V71, P337, DOI 10.1086/280722; Halligan DL, 2009, ANNU REV ECOL EVOL S, V40, P151, DOI 10.1146/annurev.ecolsys.39.110707.173437; Houle D, 1996, GENETICS, V143, P1467; HOULE D, 1992, NATURE, V359, P58, DOI 10.1038/359058a0; Jiang CF, 2014, GENOME RES, V24, P1821, DOI 10.1101/gr.177659.114; Katju V, 2015, EVOLUTION, V69, P104, DOI 10.1111/evo.12554; Katju Vaishali, 2013, Frontiers in Genetics, V4, P273, DOI 10.3389/fgene.2013.00273; Keightley PD, 2003, EVOLUTION, V57, P683; Keith N, 2016, GENOME RES, V26, P60, DOI 10.1101/gr.191338.115; KELLER W, 1991, CAN J FISH AQUAT SCI, V48, P1635, DOI 10.1139/f91-194; KIMURA M, 1967, GENET RES, V9, P23, DOI 10.1017/S0016672300010284; KIMURA M, 1966, GENETICS, V54, P1337; KLEKOWSKI EJ, 1994, MAR POLLUT BULL, V28, P166, DOI 10.1016/0025-326X(94)90393-X; KLEKOWSKI EJ, 1976, AM J BOT, V63, P1024, DOI 10.2307/2441762; KONDRASHOV AS, 1988, NATURE, V336, P435, DOI 10.1038/336435a0; Latta LC, 2013, GENETICS, V193, P539, DOI 10.1534/genetics.112.146571; Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324; Lieber MR, 2010, ANNU REV BIOCHEM, V79, P181, DOI 10.1146/annurev.biochem.052308.093131; Long HA, 2016, P NATL ACAD SCI USA, V113, pE2498, DOI 10.1073/pnas.1601208113; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; Lynch M, 1998, EVOLUTION, V52, P727, DOI 10.1111/j.1558-5646.1998.tb03697.x; LYNCH M, 1989, ECOLOGY, V70, P246, DOI 10.2307/1938430; LYNCH M, 1990, EVOLUTION, V44, P1725, DOI 10.1111/j.1558-5646.1990.tb05244.x; Lynch M., 2007, ORIGINS GENOME ARCHI; Lynch M, 1998, GENETICS ANAL QUANTI; Lynch M, 2017, GENETICS, V206, P315, DOI 10.1534/genetics.116.190611; Lynch M, 2016, NAT REV GENET, V17, P704, DOI 10.1038/nrg.2016.104; Lynch M, 2010, TRENDS GENET, V26, P345, DOI 10.1016/j.tig.2010.05.003; MacKenzie JL, 2005, GENETICS, V171, P715, DOI 10.1534/genetics.105.042002; MacLean RC, 2013, NAT REV GENET, V14, P221, DOI 10.1038/nrg3415; Masel J, 2009, TRENDS GENET, V25, P395, DOI 10.1016/j.tig.2009.07.005; Matsuba C, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.0334; McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110; Meier B, 2014, GENOME RES, V24, P1624, DOI 10.1101/gr.175547.114; MUKAI T, 1964, GENETICS, V50, P1; Muller HJ, 1928, GENETICS, V13, P279; Ness RW, 2015, GENOME RES, V25, P1739, DOI 10.1101/gr.191494.115; OGUR M, 1960, GENETICS, V45, P189; Olson ND, 2015, FRONT GENET, V6, DOI 10.3389/fgene.2015.00235; Omilian AR, 2006, P NATL ACAD SCI USA, V103, P18638, DOI 10.1073/pnas.0606435103; Peters AD, 2003, GENETICS, V165, P589; Plough HH, 1917, J EXP ZOOL, V24, P147, DOI 10.1002/jez.1400240202; R Core Team, 2015, R LANG ENV STAT COMP; Robinson JT, 2011, NAT BIOTECHNOL, V29, P24, DOI 10.1038/nbt.1754; Rose W. L., 2005, ENCY TOXICOLOGY, P126, DOI 10.1016/B0-12-369400-0/00449-X; Sharp NP, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002419; Sharp NP, 2012, P NATL ACAD SCI USA, V109, P6142, DOI 10.1073/pnas.1118918109; Shaw RG, 2000, GENETICS, V155, P369; Somers CM, 2004, SCIENCE, V304, P1008, DOI 10.1126/science.1095815; Strauss C, 2017, MBIO, V8, DOI 10.1128/mBio.01021-17; Sung W, 2016, G3-GENES GENOM GENET, V6, P2583, DOI [10.1534/g3.116.030890/-/DC1, 10.1534/g3.116.030890]; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; TKESHELASHVILI LK, 1991, J BIOL CHEM, V266, P6401; Untergasser A, 2012, NUCLEIC ACIDS RES, V40, DOI 10.1093/nar/gks596; Valko M, 2006, CHEM-BIOL INTERACT, V160, P1, DOI 10.1016/j.cbi.2005.12.009; Vassilieva LL, 1999, GENETICS, V151, P119; Vassilieva LL, 2000, EVOLUTION, V54, P1234; Xu S, 2015, GENETICS, V201, P31, DOI 10.1534/genetics.115.179028; Ye ZQ, 2017, G3-GENES GENOM GENET, V7, P1405, DOI 10.1534/g3.116.038638; Zhong WH, 2011, BEHAV ECOL SOCIOBIOL, V65, P493, DOI 10.1007/s00265-010-1117-7 89 1 1 2 2 GENETICS SOCIETY AMERICA BETHESDA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA 2160-1836 G3-GENES GENOM GENET G3-Genes Genomes Genet. JAN 2019 9 1 61 71 10.1534/g3.118.200797 11 Genetics & Heredity Genetics & Heredity HG7WM WOS:000455206600006 30389796 DOAJ Gold 2019-02-21 J Erkinaro, J; Czorlich, Y; Orell, P; Kuusela, J; Falkegard, M; Lansman, M; Pulkkinen, H; Primmer, CR; Niemela, E Erkinaro, Jaakko; Czorlich, Yann; Orell, Panu; Kuusela, Jorma; Falkegard, Morten; Lansman, Maija; Pulkkinen, Henni; Primmer, Craig R.; Niemela, Eero Life history variation across four decades in a diverse population complex of Atlantic salmon in a large subarctic river CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article CLIMATE-CHANGE; TEMPORAL VARIATION; GENETIC-STRUCTURE; MIRAMICHI RIVER; NORTH-ATLANTIC; BARENTS SEA; MALE PARR; SALAR; FISH; AGE We used over 154 000 scale samples collected from salmon fisheries in the large River Teno system over a 40-year period to quantify life history diversity and long-term trends. We identified 120 different life history strategies, including combinations of smolt (2-8) and sea ages (1-5) and previous spawning events. Most strategies were rare; 60% of individuals matured after 1 year at sea following 3-5 years in fresh water. Age at maturity changed with an increase in two-sea-winter salmon and previous spawners and a decline in three-sea-winter fish. Smolt age distribution showed a decreasing proportion of age-3 smolts, while that of age-5 smolts increased. Fishing gear and fishing season times selected for fish differing in life history strategies. Temporal variation in life histories reflected changes in both fisheries and the changing environment. There was an inverse relationship between years spent in fresh water and sea age. Biocomplexity was manifested by the multiple year classes (6-11) present in annual runs, which increased with years, reflecting an increase both in previous spawners and sampling effort. The high number of cohorts spawning simultaneously each year indicates strong generational overlap, which has been suggested to maintain genetic diversity and thereby resilience via the portfolio effect. [Erkinaro, Jaakko; Czorlich, Yann; Orell, Panu; Pulkkinen, Henni] Nat Resources Inst Finland Luke, POB 413, FI-90014 Oulu, Finland; [Czorlich, Yann] Univ Turku, Div Genet & Physiol, Dept Biol, Itainen Pitkakatu 4, FI-20520 Turku, Finland; [Kuusela, Jorma; Lansman, Maija; Niemela, Eero] Nat Resources Inst Finland Luke, FI-99980 Utsjoki, Finland; [Falkegard, Morten] Norwegian Inst Nat Res, POB 6606, N-9296 Tromso, Norway; [Primmer, Craig R.] Univ Helsinki, Inst Biotechnol, Dept Biosci, POB 56, FI-00014 Helsinki, Finland Erkinaro, J (reprint author), Nat Resources Inst Finland Luke, POB 413, FI-90014 Oulu, Finland. jaakko.erkinaro@luke.fi Academy of Finland [286334] We thank the numerous fishers and their affiliated organizations in the River Teno system who helped to collect the large data set over a 40-year period; Jari Haantie, Jorma Ollila, and Matti Kylmaaho for analyzing scale material; and two anonymous reviewers for helpful comments. Funding was partly provided by the Academy of Finland (project No. 286334). Abrahamsen B., 1968, JAKT FISKE FRILUFTSL, V9, P1; [Anonymous], 2016, STATUS RIVER TANA SA; [Anonymous], 2018, STATUS TANA TENO RIV; [Anonymous], 2017, STATUS NORSKE LAKSEB; Aykanat T, 2015, MOL ECOL, V24, P5158, DOI 10.1111/mec.13383; Bal G, 2017, J FISH BIOL, V90, P2375, DOI 10.1111/jfb.13314; Barson NJ, 2015, NATURE, V528, P405, DOI 10.1038/nature16062; Bolstad GH, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0124; CHADWICK EMP, 1987, CAN J FISH AQUAT SCI, V44, P1320, DOI 10.1139/f87-156; Chao A, 2014, ECOL MONOGR, V84, P45, DOI 10.1890/13-0133.1; Chaput G., 2006, 2006015 CAN SCI ADV; Chaput G, 2012, ICES J MAR SCI, V69, P1656, DOI 10.1093/icesjms/fss055; Chaput G, 2012, ICES J MAR SCI, V69, P1538, DOI 10.1093/icesjms/fss013; Consuegra S, 2005, J FISH BIOL, V67, P129, DOI 10.1111/j.1095-8649.2005.00844.x; Crozier LG, 2008, EVOL APPL, V1, P252, DOI 10.1111/j.1752-4571.2008.00033.x; Erkinaro J, 1997, J FISH BIOL, V51, P1174, DOI 10.1111/j.1095-8649.1997.tb01134.x; Erkinaro J., 2017, 15 ICES WORK GROUP N; Erkinaro J, 2010, CAN J FISH AQUAT SCI, V67, P130, DOI 10.1139/F09-173; Fiske Peder, 2005, P659, DOI 10.1016/B978-012154351-8/50032-0; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Frainer A, 2017, P NATL ACAD SCI USA, V114, P12202, DOI 10.1073/pnas.1706080114; Friedland KD, 2009, ICES J MAR SCI, V66, P289, DOI 10.1093/icesjms/fsn210; Gaggiotti OE, 1999, CAN J FISH AQUAT SCI, V56, P1376, DOI 10.1139/cjfas-56-8-1376; Gauthier-Ouellet M, 2009, CAN J FISH AQUAT SCI, V66, P2040, DOI 10.1139/F09-147; Gjoen HM, 1997, ICES J MAR SCI, V54, P1009, DOI 10.1006/jmsc.1997.0299; Glebe B. D., 1986, CAN SPEC PUBL FISH A, V89, P24; Greene CM, 2010, BIOL LETTERS, V6, P382, DOI 10.1098/rsbl.2009.0780; Harvey AC, 2017, ECOL EVOL, V7, P7490, DOI 10.1002/ece3.3304; Hatun H, 2009, PROG OCEANOGR, V80, P149, DOI 10.1016/j.pocean.2009.03.001; Heinimaa S, 2004, BOREAL ENVIRON RES, V9, P55; Heinimaa S, 2004, J FISH BIOL, V64, P219, DOI 10.1111/j.1095-8649.2004.00308.x; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; HILL MO, 1973, ECOLOGY, V54, P427, DOI 10.2307/1934352; Hoegh-Guldberg O, 2010, SCIENCE, V328, P1523, DOI 10.1126/science.1189930; Hutchings JA, 1998, CAN J FISH AQUAT SCI, V55, P22, DOI 10.1139/cjfas-55-S1-22; Hutchinson WF, 2008, BIOL LETTERS, V4, P693, DOI 10.1098/rsbl.2008.0443; ICES, 2017, 2017ACOM 20 ICES CM; ICES, 2011, 2011ACOM 44 ICES CM; Jarvi T. H., 1948, PERIODICITY SALMON R; Jensen AJ, 1999, ICES J MAR SCI, V56, P84, DOI 10.1006/jmsc.1998.0419; Johnsen K.-M, 2010, REGISTRERING STENGSE; Jonsson B, 2016, J FISH BIOL, V88, P618, DOI 10.1111/jfb.12854; Jonsson B, 2011, FISH FISH SER, V33, P1, DOI 10.1007/978-94-007-1189-1_1; JONSSON N, 1991, J ANIM ECOL, V60, P937, DOI 10.2307/5423; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Karlsson S, 2016, ICES J MAR SCI, V73, P2488, DOI 10.1093/icesjms/fsw121; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Kortsch S, 2015, P ROY SOC B-BIOL SCI, V282, P31, DOI 10.1098/rspb.2015.1546; Kuparinen A, 2016, EVOL APPL, V9, P658, DOI 10.1111/eva.12373; L'Abee-Lund JH, 2004, T AM FISH SOC, V133, P743, DOI 10.1577/T03-108.1; Laugen AT, 2014, FISH FISH, V15, P65, DOI 10.1111/faf.12007; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Lenth RV, 2016, J STAT SOFTW, V69, P1, DOI 10.18637/jss.v069.i01; METCALFE NB, 1990, J ANIM ECOL, V59, P135, DOI 10.2307/5163; Moore D.S., 1995, Canadian Special Publication of Fisheries and Aquatic Sciences, V123, P229; Moore JW, 2014, J ANIM ECOL, V83, P1035, DOI 10.1111/1365-2656.12212; Moore JW, 2010, CONSERV LETT, V3, P340, DOI 10.1111/j.1755-263X.2010.00119.x; MYERS RA, 1986, CAN J FISH AQUAT SCI, V43, P1242, DOI 10.1139/f86-154; Niemela E, 2006, J FISH BIOL, V69, P1151, DOI 10.1111/j.1095-8649.2006.01193.x; Niemela E, 2006, J FISH BIOL, V68, P1222, DOI 10.1111/j.1095-8649.2006.01012.x; Niemela E, 2005, ICES J MAR SCI, V62, P1617, DOI 10.1016/j.icesjms.2005.07.002; Niemela E, 2004, CAN J FISH AQUAT SCI, V61, P2384, DOI 10.1139/f04-208; Niemela E., 2009, ATLANTIN LOHI SALMO; Niemela E., 2004, THESIS; Niemela E., 2012, 10 KOL ENPI CBC; Ohlberger J, 2018, FISH FISH, V19, P533, DOI 10.1111/faf.12272; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Otero J, 2012, ECOL EVOL, V2, P2192, DOI 10.1002/ece3.337; Pasanen L, 2017, J APPL STAT, V44, P2317, DOI 10.1080/02664763.2016.1252731; Perry AL, 2005, SCIENCE, V308, P1912, DOI 10.1126/science.1111322; R Core Team, 2015, R LANG ENV STAT COMP; Reid JE, 2012, ICES J MAR SCI, V69, P1678, DOI 10.1093/icesjms/fss091; Rogers LA, 2008, OIKOS, V117, P1578, DOI 10.1111/j.2008.0030-1299.16758.x; SAUNDERS RL, 1985, CAN J FISH AQUAT SCI, V42, P615, DOI 10.1139/f85-080; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; SHEARER WM, 1992, ATLANTIC SALMON NATU; Stearns S, 1992, EVOLUTION LIFE HIST; Strothotte E, 2005, J FISH BIOL, V67, P1585, DOI 10.1111/j.1095-8649.2005.00865.x; Studenov I., 2008, ATLANTIC SALMON SALM; Thorley JL, 2005, ICES J MAR SCI, V62, P809, DOI 10.1016/j.icesjms.2005.01.016; Thorpe JE, 1998, B MAR SCI, V62, P465; Uusi-Heikkila S, 2015, EVOL APPL, V8, P597, DOI 10.1111/eva.12268; Vaha JP, 2017, CAN J FISH AQUAT SCI, V74, P327, DOI 10.1139/cjfas-2015-0606; Vaha JP, 2008, EVOL APPL, V1, P137, DOI 10.1111/j.1752-4571.2007.00007.x; Vaha JP, 2007, MOL ECOL, V16, P2638, DOI 10.1111/j.1365-294X.2007.03329.x; Vaha JP, 2011, EVOL APPL, V4, P39, DOI 10.1111/j.1752-4571.2010.00131.x; Whoriskey F. G., 1996, Polskie Archiwum Hydrobiologii, V43, P167; Wood SN, 2011, J R STAT SOC B, V73, P3, DOI 10.1111/j.1467-9868.2010.00749.x; Youngson AF, 2002, ICES J MAR SCI, V59, P836, DOI 10.1006/jmsc.2002.1195 90 2 2 6 6 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. JAN 2019 76 1 42 55 10.1139/cjfas-2017-0343 14 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology HG4IO WOS:000454939000005 2019-02-21 J Laisk, T; Tsuiko, O; Jatsenko, T; Horak, P; Otala, M; Lahdenpera, M; Lummaa, V; Tuuri, T; Salumets, A; Tapanainen, JS Laisk, Triin; Tsuiko, Olga; Jatsenko, Tatjana; Horak, Peeter; Otala, Marjut; Lahdenpera, Mirkka; Lummaa, Virpi; Tuuri, Timo; Salumets, Andres; Tapanainen, Juha S. Demographic and evolutionary trends in ovarian function and aging HUMAN REPRODUCTION UPDATE English Review menopause; folliculogenesis; reproductive aging; reproductive lifespan; life history theory; ovarian aging; antagonistic pleiotropy GENOME-WIDE ASSOCIATION; LIFE-STYLE FACTORS; NATURAL MENOPAUSE; FOLLICLE ACTIVATION; MATERNAL AGE; CHROMOSOME SEGREGATION; REPRODUCTIVE CONFLICT; MEIOTIC RECOMBINATION; PRIMORDIAL FOLLICLES; EXPRESSION PROFILES BACKGROUND: The human female reproductive lifespan is regulated by the dynamics of ovarian function, which in turn is influenced by several factors: from the basic molecular biological mechanisms governing folliculogenesis, to environmental and lifestyle factors affecting the ovarian reserve between conception and menopause. From a broader point of view, global and regional demographic trends play an additional important role in shaping the female reproductive lifespan, and finally, influences on an evolutionary scale have led to the reproductive senescence that precedes somatic senescence in humans. OBJECTIVE AND RATIONALE: The narrative review covers reproductive medicine, by integrating the molecular mechanisms of ovarian function and aging with short-term demographic and long-term evolutionary trends. SEARCH METHODS: PubMed and Google Scholar searches were performed with relevant keywords (menopause, folliculogenesis, reproductive aging, reproductive lifespan and life history theory). The reviewed articles and their references were restricted to those written in English. OUTCOMES: We discuss and summarize the rapidly accumulating information from large-scale population-based and single-reproductive-cell genomic studies, their constraints and advantages in the context of female reproductive aging as well as their possible evolutionary significance on the life history trajectory from foetal-stage folliculogenesis until cessation of ovarian function in menopause. The relevant environmental and lifestyle factors and demographic trends are also discussed in the framework of predominant evolutionary hypotheses explaining the origin and maintenance of menopause. WIDER IMPLICATIONS: The high speed at which new data are generated has so far raised more questions than it has provided solid answers and has been paralleled by a lack of satisfactory interpretations of the findings in the context of human life history theory. Therefore, the recent flood of data could offer an unprecedented tool for future research to possibly confirm or rewrite human evolutionary reproductive history, at the same time providing novel grounds for patient counselling and family planning strategies. [Laisk, Triin; Tsuiko, Olga; Jatsenko, Tatjana; Salumets, Andres] Competence Ctr Hlth Technol, Tiigi 61b, EE-50410 Tartu, Estonia; [Laisk, Triin; Salumets, Andres] Univ Tartu, Dept Obstet & Gynaecol, Inst Clin Med, L Puusepa 8, EE-50406 Tartu, Estonia; [Tsuiko, Olga; Salumets, Andres] Univ Tartu, Dept Biomed, Inst Biomed & Translat Med, Ravila 19, EE-50411 Tartu, Estonia; [Horak, Peeter] Univ Tartu, Dept Zool, Vanemuise 46, EE-51003 Tartu, Estonia; [Otala, Marjut; Tuuri, Timo; Salumets, Andres; Tapanainen, Juha S.] Univ Helsinki, Dept Obstet & Gynecol, Haartmaninkatu 2, FIN-00014 Helsinki, Finland; [Otala, Marjut; Tuuri, Timo; Salumets, Andres; Tapanainen, Juha S.] Helsinki Univ Hosp, Haartmaninkatu 2, Helsinki 00014, Finland; [Lahdenpera, Mirkka; Lummaa, Virpi] Univ Turku, Dept Biol, Turku 20014, Finland; [Tapanainen, Juha S.] Univ Oulu, Univ Hosp Oulu, Med Res Ctr Oulu, Dept Obstet & Gynecol, POB 23, FI-90029 Oys Oulu, Finland; [Tapanainen, Juha S.] PEDEGO Res Unit, POB 23, FI-90029 Oys Oulu, Finland Tapanainen, JS (reprint author), Univ Helsinki, Dept Obstet & Gynecol, Haartmaninkatu 2, FIN-00014 Helsinki, Finland.; Tapanainen, JS (reprint author), Helsinki Univ Hosp, Haartmaninkatu 2, Helsinki 00014, Finland.; Tapanainen, JS (reprint author), Univ Oulu, Univ Hosp Oulu, Med Res Ctr Oulu, Dept Obstet & Gynecol, POB 23, FI-90029 Oys Oulu, Finland.; Tapanainen, JS (reprint author), PEDEGO Res Unit, POB 23, FI-90029 Oys Oulu, Finland. juha.tapanainen@helsinki.fi Estonian Ministry of Education and Research [IUT34-16, IUT34-8, PUTJD726]; Academy of Finland; Sigrid Juselius Foundation; Horizon 2020 innovation programme (WIDENLIFE) [692065]; Enterprise Estonia [EU48695]; European Union FP7 Marie Curie Industry-Academia Partnerships and Pathways funding (IAPP, SARM) [EU324509]; MSCA-RISE-2015 project MOMENDO [691058] The Estonian Ministry of Education and Research (IUT34-16, IUT34-8, PUTJD726), Academy of Finland, Enterprise Estonia (EU48695), Sigrid Juselius Foundation, the Horizon 2020 innovation programme (WIDENLIFE, 692065), European Union FP7 Marie Curie Industry-Academia Partnerships and Pathways funding (IAPP, SARM, EU324509) and the MSCA-RISE-2015 project MOMENDO (691058). Adhikari D, 2010, HUM MOL GENET, V19, P397, DOI 10.1093/hmg/ddp483; Adhikari D, 2009, MOL HUM REPROD, V15, P765, DOI 10.1093/molehr/gap092; Anderson RA, 2014, MOL HUM REPROD, V20, P42, DOI 10.1093/molehr/gat059; Aydos Sena E., 2005, Archives of Gynecology and Obstetrics, V272, P113, DOI 10.1007/s00404-004-0690-2; Babayev E, 2016, MATURITAS, V93, P121, DOI 10.1016/j.maturitas.2016.06.015; Baerwald AR, 2012, HUM REPROD UPDATE, V18, P73, DOI 10.1093/humupd/dmr039; Ballal RD, 2009, J BIOL CHEM, V284, P36083, DOI 10.1074/jbc.M109.025825; Bell Ruth, 2008, Hum Fertil (Camb), V11, P1, DOI 10.1080/14647270701654369; Ben-Eliezer I, 2015, FASEB J, V29, P4670, DOI 10.1096/fj.15-274522; Blagosklonny MV, 2010, AGING-US, V2, P265, DOI 10.18632/aging.100149; Bolund E, 2015, EVOLUTION, V69, P747, DOI 10.1111/evo.12598; Broekmans FJ, 2009, ENDOCR REV, V30, P465, DOI 10.1210/er.2009-0006; Bulik-Sullivan B, 2015, NAT GENET, V47, P1236, DOI 10.1038/ng.3406; Byars SG, 2010, P NATL ACAD SCI USA, V107, P1787, DOI 10.1073/pnas.0906199106; Cant MA, 2008, P NATL ACAD SCI USA, V105, P5332, DOI 10.1073/pnas.0711911105; Carbone L, 2015, SYST BIOL REPROD MED, V61, P321, DOI 10.3109/19396368.2015.1073406; Carty CL, 2013, HUM REPROD, V28, P1695, DOI 10.1093/humrep/det071; Caserta D, 2013, ARCH GYNECOL OBSTET, V287, P813, DOI 10.1007/s00404-012-2643-5; Caspari R, 2004, P NATL ACAD SCI USA, V101, P10895, DOI 10.1073/pnas.0402857101; Castrillon DH, 2003, SCIENCE, V301, P215, DOI 10.1126/science.1086336; Chen CTL, 2014, HUM MOL GENET, V23, P3327, DOI 10.1093/hmg/ddu041; Chen CTL, 2012, HUM MOL GENET, V21, P1419, DOI 10.1093/hmg/ddr570; Chiang T, 2011, BIOL REPROD, V85, P1279, DOI 10.1095/biolreprod.111.094094; Cloutier CT, 2015, AGE, V37, DOI 10.1007/s11357-015-9746-4; Corbett S, 2018, NAT REV GENET, V19, P419, DOI 10.1038/s41576-018-0012-3; Cresswell JL, 1997, EARLY HUM DEV, V49, P143, DOI 10.1016/S0378-3782(97)00028-5; Croft DP, 2015, TRENDS ECOL EVOL, V30, P407, DOI 10.1016/j.tree.2015.04.011; Day FR, 2015, NAT GENET, V47, P1294, DOI 10.1038/ng.3412; Day FR, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9464; de Bruin JP, 2001, HUM REPROD, V16, P2014, DOI 10.1093/humrep/16.9.2014; de Bruin JP, 2001, EARLY HUM DEV, V60, P179, DOI 10.1016/S0378-3782(00)00118-3; de Vries E, 2001, HUM REPROD, V16, P1657; Destouni A, 2016, GENOME RES, V26, P567, DOI 10.1101/gr.200527.115; Dewailly D, 2014, HUM REPROD UPDATE, V20, P370, DOI 10.1093/humupd/dmt062; Driancourt MA, 2000, REV REPROD, V5, P143, DOI 10.1530/revreprod/5.3.143; Durlinger ALL, 2002, REPRODUCTION, V124, P601, DOI 10.1530/rep.0.1240601; Ellis S, 2018, ECOL EVOL, V8, P2482, DOI 10.1002/ece3.3856; Fragouli E, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005241; Franasiak JM, 2014, FERTIL STERIL, V101, P656, DOI 10.1016/j.fertnstert.2013.11.004; French JD, 2006, GENE CHROMOSOME CANC, V45, P277, DOI 10.1002/gcc.20290; Gold EB, 2001, AM J EPIDEMIOL, V153, P865, DOI 10.1093/aje/153.9.865; Goriely A, 2010, NAT REV GENET, V11, P589, DOI 10.1038/nrg2809-c1; Gosden RG, 2007, HUM REPROD, V22, P610, DOI 10.1093/humrep/del382; GOUGEON A, 1987, J REPROD FERTIL, V81, P433; Gougeon A, 1996, ENDOCR REV, V17, P121, DOI 10.1210/er.17.2.121; Greco E, 2015, NEW ENGL J MED, V373, P2089, DOI 10.1056/NEJMc1500421; Grondahl ML, 2010, HUM REPROD, V25, P957, DOI 10.1093/humrep/deq014; Grondahl ML, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172456; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; Hanevik HI, 2016, HUM REPROD, V31, P1397, DOI 10.1093/humrep/dew089; Hardy R, 2002, HUM REPROD, V17, P2474, DOI 10.1093/humrep/17.9.2474; Hassold T, 2001, NAT REV GENET, V2, P280, DOI 10.1038/35066065; Hatch EE, 2006, AM J EPIDEMIOL, V164, P682, DOI 10.1093/aje/kwj257; Hawkes K, 2004, NATURE, V428, P128, DOI 10.1038/428128a; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; Henderson KD, 2008, AM J EPIDEMIOL, V167, P1287, DOI 10.1093/aje/kwn046; Horikoshi M, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-04398-z; John GB, 2008, DEV BIOL, V321, P197, DOI 10.1016/j.ydbio.2008.006.017; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Kirk KM, 2001, EVOLUTION, V55, P423; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lahdenpera M, 2016, SCI REP-UK, V6, DOI 10.1038/srep27213; Lahdenpera M, 2014, FRONT ZOOL, V11, DOI 10.1186/s12983-014-0054-0; Lahdenpera M, 2012, ECOL LETT, V15, P1283, DOI 10.1111/j.1461-0248.2012.01851.x; Laisk T, 2018, HUM MOL GENET, V27, P4323, DOI 10.1093/hmg/ddy317; Lamb NE, 2005, CYTOGENET GENOME RES, V111, P250, DOI 10.1159/000086896; Lamb NE, 2005, AM J HUM GENET, V76, P91, DOI 10.1086/427266; Laplante M, 2012, CELL, V149, P274, DOI 10.1016/j.cell.2012.03.017; Lenormand T, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2016.0001; Levine ME, 2016, P NATL ACAD SCI USA, V113, P9327, DOI 10.1073/pnas.1604558113; Li J, 2010, P NATL ACAD SCI USA, V107, P10280, DOI 10.1073/pnas.1001198107; Lummaa V., 2007, OXFORD HDB EVOLUTION, P397; MANOVA K, 1993, DEV BIOL, V157, P85, DOI 10.1006/dbio.1993.1114; May-Panloup P, 2005, HUM REPROD, V20, P593, DOI 10.1093/humrep/deh667; May-Panloup P, 2016, HUM REPROD UPDATE, V22, P725, DOI 10.1093/humupd/dmw028; Mbarek H, 2016, AM J HUM GENET, V98, P898, DOI 10.1016/j.ajhg.2016.03.008; McGee EA, 2000, ENDOCR REV, V21, P200, DOI 10.1210/er.21.2.200; McLaughlin M, 2014, MOL HUM REPROD, V20, P736, DOI 10.1093/molehr/gau037; Miao YL, 2009, HUM REPROD UPDATE, V15, P573, DOI 10.1093/humupd/dmp014; Mikkelsen TF, 2007, BMC PUBLIC HEALTH, V7, DOI 10.1186/1471-2458-7-149; Mishra G, 2007, MENOPAUSE, V14, P717, DOI 10.1097/gme.0b013e31802f3156; Mishra GD, 2017, HUM REPROD, V32, P679, DOI 10.1093/humrep/dew350; Mishra GD, 2009, WOMENS HEALTH, V5, P175, DOI 10.2217/17455057.5.2.175; Morris DH, 2012, AM J EPIDEMIOL, V175, P998, DOI 10.1093/aje/kwr447; Nagaoka SI, 2011, CURR BIOL, V21, P651, DOI 10.1016/j.cub.2011.03.003; Nakagawa S, 2017, CURR BIOL, V27, P1040, DOI 10.1016/j.cub.2017.02.025; Oken E, 2013, NESTLE NUTR WORKS SE, V71, P103, DOI 10.1159/000342576; Ossewaarde ME, 2005, EPIDEMIOLOGY, V16, P556, DOI 10.1097/01.ede.0000165392.35273.d4; Ottolini CS, 2015, NAT GENET, V47, P727, DOI 10.1038/ng.3306; Palmer JR, 2003, AM J PUBLIC HEALTH, V93, P299, DOI 10.2105/AJPH.93.2.299; Peccei JS, 2001, EVOL ANTHROPOL, V10, P43, DOI 10.1002/evan.1013; Peccei JS, 2001, AM J HUM BIOL, V13, P434, DOI 10.1002/ajhb.1076; Pelosi E, 2015, FRONT GENET, V6, DOI 10.3389/fgene.2015.00308; Pelosi E, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2861; Perry JRB, 2016, HUM MOL GENET, V25, P382, DOI 10.1093/hmg/ddv465; Persani L, 2014, HUM REPROD UPDATE, V20, P869, DOI 10.1093/humupd/dmu036; Philipp T, 2004, PRENATAL DIAG, V24, P276, DOI 10.1002/pd.789; Plante BJ, 2010, MENOPAUSE, V17, P571, DOI 10.1097/gme.0b013e3181c7deba; Rajareddy S, 2007, MOL ENDOCRINOL, V21, P2189, DOI 10.1210/me.2007-0172; Reddy P, 2008, SCIENCE, V319, P611, DOI 10.1126/science.1152257; Richards JS, 2010, J CLIN INVEST, V120, P963, DOI 10.1172/JCI41350; Richardson MC, 2014, HUM REPROD UPDATE, V20, P353, DOI 10.1093/humupd/dmt057; Roa J, 2009, ENDOCRINOLOGY, V150, P5016, DOI 10.1210/en.2009-0096; Rodstrom K, 2003, MENOPAUSE, V10, P538, DOI 10.1097/01.GME.0000094395.59028.0F; ROGERS AR, 1993, EVOL ECOL, V7, P406, DOI 10.1007/BF01237872; Ruth KS, 2016, SCI REP-UK, V6, DOI 10.1038/srep24710; Ruth KS, 2016, HUM REPROD, V31, P473, DOI 10.1093/humrep/dev318; Ruth KS, 2016, EUR J HUM GENET, V24, P284, DOI 10.1038/ejhg.2015.102; Saatcioglu HD, 2016, PLOS GENET, V12, DOI 10.1371/journal.pgen.1006215; Sadrzadeh S, 2018, J DEV ORIG HLTH DIS, V9, P127, DOI 10.1017/S2040174417000952; Salazar-Roa M, 2017, TRENDS CELL BIOL, V27, P69, DOI 10.1016/j.tcb.2016.08.009; Savage PM, 2013, J OBSTET GYNAECOL, V33, P406, DOI 10.3109/01443615.2013.771159; Schoenaker DAJM, 2014, INT J EPIDEMIOL, V43, P1542, DOI 10.1093/ije/dyu094; Schuh-Huerta SM, 2012, HUM GENET, V131, P1709, DOI 10.1007/s00439-012-1184-0; Schuh-Huerta SM, 2012, HUM REPROD, V27, P594, DOI 10.1093/humrep/der391; Sebire NJ, 2002, BJOG-INT J OBSTET GY, V109, P99, DOI 10.1016/S1470-0328(02)01037-6; Shen C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058766; Smith KR, 2013, CURR OPIN OBSTET GYN, V25, P207, DOI 10.1097/GCO.0b013e32835f1731; Smith KR, 2012, P ROY SOC B-BIOL SCI, V279, P1389, DOI 10.1098/rspb.2011.1697; Smith KR, 2009, J GERONTOL A-BIOL, V64, P740, DOI 10.1093/gerona/glp055; Snopkowski K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0580; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Steiner AZ, 2010, AM J EPIDEMIOL, V172, P140, DOI 10.1093/aje/kwq092; Steuerwald NM, 2007, REPROD BIOMED ONLINE, V14, P700, DOI 10.1016/S1472-6483(10)60671-2; Stolk L, 2012, NAT GENET, V44, P260, DOI 10.1038/ng.1051; Strohsnitter WC, 2008, AM J EPIDEMIOL, V167, P727, DOI 10.1093/aje/kwm351; Sun QY, 2004, THERIOGENOLOGY, V62, P245, DOI 10.1016/j.theriogenology.2003.10.015; Sun YC, 2017, INT J BIOL SCI, V13, P449, DOI 10.7150/ijbs.18836; Takemoto Y, 2016, SCI REP-UK, V6, DOI 10.1038/srep31396; Tanskanen AO, 2018, INTERGENERATIONAL FA; Tarnawa ED, 2013, BIOL REPROD, V88, DOI 10.1095/biolreprod.112.105791; Tawfik H, 2015, MENOPAUSE, V22, P1076, DOI 10.1097/GME.0000000000000444; Ting AY, 2017, BIOL REPROD, V96, DOI 10.1093/biolre/iox034; Tom SE, 2010, HUM REPROD, V25, P791, DOI 10.1093/humrep/dep451; Treloar SA, 2000, HUM REPROD, V15, P55; Truman AM, 2017, MOL CELL ENDOCRINOL, V445, P74, DOI 10.1016/j.mce.2016.10.012; Tsuiko O, 2017, HUM REPROD, V32, P2348, DOI 10.1093/humrep/dex286; Tsutsumi M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096710; Ulloa-Aguirre A, 2007, ENDOCRINE, V32, P251, DOI 10.1007/s12020-008-9041-6; Vabre P, 2017, ENVIRON HEALTH-GLOB, V16, DOI 10.1186/s12940-017-0242-4; van Disseldorp J, 2011, REPROD BIOMED ONLINE, V22, P382, DOI 10.1016/j.rbmo.2010.12.006; Vanneste E, 2009, NAT MED, V15, P577, DOI 10.1038/nm.1924; Wallace WHB, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008772; Wang N, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10033-6; Wang S, 2017, CELL, V168, P977, DOI 10.1016/j.cell.2017.02.002; Webster A, 2017, TRENDS CELL BIOL, V27, P55, DOI 10.1016/j.tcb.2016.09.002; Weenen C, 2004, MOL HUM REPROD, V10, P77, DOI 10.1093/molehr/gah015; Wells JCK, 2017, LANCET, V390, P500, DOI 10.1016/S0140-6736(17)30572-X; Wijayarathna R, 2016, HUM REPROD UPDATE, V22, P342, DOI 10.1093/humupd/dmv058; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wood JW, 2000, HOMO, V51, pS149; Wood MA, 2013, SEMIN REPROD MED, V31, P399, DOI 10.1055/s-0033-1356476; Wortzman GB, 2005, MOL HUM REPROD, V11, P1, DOI 10.1093/molehr/gah125; Xie WH, 2014, SCI REP-UK, V4, DOI 10.1038/srep05580; Xiong JQ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139824; Yu C, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9017; Zhang H, 2015, HUM REPROD UPDATE, V21, P779, DOI 10.1093/humupd/dmv037; Zhang H, 2014, CURR BIOL, V24, P2501, DOI 10.1016/j.cub.2014.09.023; Zhang X, 2006, CELL RES, V16, P841, DOI 10.1038/sj.cr.7310095; Zhang Y, 2011, J MOL CELL BIOL, V3, P132, DOI 10.1093/jmcb/mjq043; Zheng J, 2017, BIOINFORMATICS, V33, P272, DOI 10.1093/bioinformatics/btw613; Zhou L, 2014, MOL HUM REPROD, V20, P271, DOI 10.1093/molehr/gat081; Zou K, 2009, NAT CELL BIOL, V11, P631, DOI 10.1038/ncb1869 164 0 0 5 5 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1355-4786 1460-2369 HUM REPROD UPDATE Hum. Reprod. Update JAN-FEB 2019 25 1 34 50 10.1093/humupd/dmy031 17 Obstetrics & Gynecology; Reproductive Biology Obstetrics & Gynecology; Reproductive Biology HG4XH WOS:000454977900004 30346539 2019-02-21 J Shima, JS; Swearer, SE Shima, Jeffrey S.; Swearer, Stephen E. Moonlight enhances growth in larval fish ECOLOGY English Article chronobiology; developmental history; larval dispersal; larval growth; life history variation; lunar periodicity; marine ecosystems; reef fish LIFE-HISTORY STAGES; CORAL-REEF FISH; PREDATION RISK; VERTICAL MIGRATION; LUNAR CYCLES; TEMPERATURE; RECRUITMENT; DISPERSAL; MORTALITY; BEHAVIOR Moonlight mediates trophic interactions and shapes the evolution of life-history strategies for nocturnal organisms. Reproductive cycles and important life-history transitions for many marine organisms coincide with moon phases, but few studies consider the effects of moonlight on pelagic larvae at sea. We evaluated effects of moonlight on growth of pelagic larvae of a temperate reef fish using "master chronologies" of larval growth constructed from age-independent daily increment widths recorded in otoliths of 321 individuals. We found that daily growth rates of fish larvae were enhanced by lunar illumination after controlling for the positive influence of temperature and the negative influence of cloud cover. Collectively, these results indicate that moonlight enhances growth rates of larval fish. This pattern is likely the result of moonlight's combined effects on foraging efficiency and suppression of diel migrations of mesopelagic predators, and has the potential to drive evolution of marine life histories. [Shima, Jeffrey S.] Victoria Univ Wellington, Sch Biol Sci, Wellington 6140, New Zealand; [Swearer, Stephen E.] Univ Melbourne, Sch BioSci, Melbourne, Vic 3010, Australia Shima, JS (reprint author), Victoria Univ Wellington, Sch Biol Sci, Wellington 6140, New Zealand. jeffrey.shima@vuw.ac.nz Swearer, Stephen/X-4882-2018 Swearer, Stephen/0000-0001-6381-9943; Shima, Jeffrey/0000-0001-5770-4859 Royal Society of New Zealand Field and laboratory assistance provided by V. Hernaman, C. McDermott, M. Forsyth, S. Geange, B. Dudley, L. Liggins, J. Allen, R. Williamson, J. Long, D., McNaughtan, and J. Ford. Funding provided by two Marsden grants from the Royal Society of New Zealand (2003-2004, to J. S. Shima and S. E. Swearer; and 2016-2020 to J. S. Shima, S. E. Swearer, E. Noonburg, S. Alonzo, and C. Osenberg). J. S. Shima and S. E. Swearer conceived the ideas, designed the research, and collected the empirical data. J. S. Shima analysed the data authored the paper with input from S. E. Swearer, Su Sponaugle, Mark Hixon, and Lorenzo Ciannelli provided helpful comments on versions of this manuscript. Acosta CA, 1999, LIMNOL OCEANOGR, V44, P494, DOI 10.4319/lo.1999.44.3.0494; AIRS Science Team/Joao Texeira, 2013, AIRS AQ L3 DAIL STAN; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Ashworth E. C., 2015, CANADIAN J FISHERIES, V74, P680; BAILEY KM, 1989, ADV MAR BIOL, V25, P1; Black BA, 2008, FISH OCEANOGR, V17, P368, DOI 10.1111/j.1365-2419.2008.00484.x; Byrne M, 2011, OCEANOGR MAR BIOL, V49, P1; Caley MJ, 1996, ANNU REV ECOL SYST, V27, P477, DOI 10.1146/annurev.ecolsys.27.1.477; CAMPANA SE, 1984, MAR BIOL, V80, P239, DOI 10.1007/BF00392818; Catul V, 2011, REV FISH BIOL FISHER, V21, P339, DOI 10.1007/s11160-010-9176-4; Claydon JAB, 2014, J FISH BIOL, V84, P1136, DOI 10.1111/jfb.12355; CONNELL JH, 1961, ECOLOGY, V42, P710, DOI 10.2307/1933500; Cowen Robert K., 2002, P149, DOI 10.1016/B978-012615185-5/50010-4; Cushing D. H., 1975, MARINE ECOLOGY FISHE; Drazen JC, 2011, DEEP-SEA RES PT I, V58, P557, DOI 10.1016/j.dsr.2011.03.002; Feary DA, 2006, J FISH BIOL, V69, P1031, DOI 10.1111/j.1095-8649.2006.01179.x; FORWARD RB, 1988, OCEANOGR MAR BIOL, V26, P361; Forward RB, 2001, OCEANOGR MAR BIOL, V39, P305; Foster T, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03175-2; Gaston KJ, 2017, ANNU REV ECOL EVOL S, V48, P49, DOI 10.1146/annurev-ecolsys-110316-022745; Harvey J. T., 2000, 150 NOAA NMFS; Hayashi A, 2001, FISHERIES SCI, V67, P811, DOI 10.1046/j.1444-2906.2001.00327.x; Hernandez-Leon S, 2010, LIMNOL OCEANOGR, V55, P2503, DOI 10.4319/lo.2010.55.6.2503; HOUDE ED, 1989, FISH B-NOAA, V87, P471; JOHANNES R E, 1978, Environmental Biology of Fishes, V3, P65, DOI 10.1007/BF00006309; Kronfeld-Schor N, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.3088; Kyba CCM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017307; Lasker R., 1981, MARINE FISH LARVAE M; Last KS, 2016, CURR BIOL, V26, P244, DOI 10.1016/j.cub.2015.11.038; Leis JM, 2010, ICHTHYOL RES, V57, P325, DOI 10.1007/s10228-010-0177-z; Linkowski TB, 1996, MAR BIOL, V124, P495, DOI 10.1007/BF00351031; Lohmann KJ, 2008, J EXP BIOL, V211, P1719, DOI 10.1242/jeb.015792; MACARTHUR RH, 1966, AM NAT, V100, P603, DOI 10.1086/282454; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moginie BF, 2018, MAR ECOL PROG SER, V592, P197, DOI 10.3354/meps12506; Morales-Nin B, 2000, FISH RES, V46, P53, DOI 10.1016/S0165-7836(00)00133-8; Mukherjee S, 2009, OECOLOGIA, V159, P661, DOI 10.1007/s00442-008-1243-3; Noonburg EG, 2015, ECOLOGY, V96, P1159, DOI 10.1890/14-1531.1; O'Connor MI, 2007, P NATL ACAD SCI USA, V104, P1266, DOI 10.1073/pnas.0603422104; Palmer MS, 2017, ECOL LETT, V20, P1364, DOI 10.1111/ele.12832; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P503, DOI 10.1139/f91-065; Plaza G, 2013, J MAR BIOL ASSOC UK, V93, P389, DOI 10.1017/S0025315412000859; Prihartato PK, 2016, MAR ECOL PROG SER, V544, P65, DOI 10.3354/meps11612; Prugh LR, 2014, J ANIM ECOL, V83, P504, DOI 10.1111/1365-2656.12148; Robertson D.R., 1991, P356; ROBERTSON DR, 1990, ECOL MONOGR, V60, P311, DOI 10.2307/1943060; Shima JS, 2018, ECOLOGY, V99, P116, DOI 10.1002/ecy.2048; Shima JS, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2014.0778; Shima JS, 2012, J EXP MAR BIOL ECOL, V416, P162, DOI 10.1016/j.jembe.2012.02.020; Shima JS, 2010, J ANIM ECOL, V79, P1308, DOI 10.1111/j.1365-2656.2010.01733.x; Shima JS, 2010, ECOLOGY, V91, P1215, DOI 10.1890/08-2058.1; Shima JS, 2009, MAR ECOL PROG SER, V394, P223, DOI 10.3354/meps08298; Shima JS, 2009, ECOLOGY, V90, P1255, DOI 10.1890/08-0029.1; Sinclair M, 1988, MARINE POPULATIONS E; Sogard SM, 1997, B MAR SCI, V60, P1129; Sponaugle S, 2006, MAR ECOL PROG SER, V308, P1, DOI 10.3354/meps308001; Sponaugle S, 2004, MAR ECOL PROG SER, V267, P267, DOI 10.3354/meps267267; Staby A, 2011, MAR ECOL PROG SER, V422, P265, DOI 10.3354/meps08938; STOLOV HL, 1965, J GEOPHYS RES, V70, P4921, DOI 10.1029/JZ070i019p04921; Swearer SE, 2010, MAR ECOL PROG SER, V417, P229, DOI 10.3354/meps08801; Tarling GA, 1999, J PLANKTON RES, V21, P1475, DOI 10.1093/plankt/21.8.1475; Thomsen SK, 2016, ECOLOGY, V97, P3530, DOI 10.1002/ecy.1614; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Treml EA, 2015, MOV ECOL, V3, DOI 10.1186/s40462-015-0045-6 64 0 0 12 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology JAN 2019 100 1 UNSP e02563 10.1002/ecy.2563 8 Ecology Environmental Sciences & Ecology HG1IL WOS:000454706400020 30422325 2019-02-21 J Cannon, C; Goldsmith, K; Roux, C Cannon, Christopher; Goldsmith, Kelly; Roux, Caroline A Self-Regulatory Model of Resource Scarcity JOURNAL OF CONSUMER PSYCHOLOGY English Review Resource scarcity; Financial deprivation; Commodity theory; Life history theory; Self-regulation; Compensatory consumption CONSUMER-BEHAVIOR; COPING PROCESSES; SEX-RATIO; CHOICE; FOOD; MATERIALISM; DEPRIVATION; PSYCHOLOGY; POVERTY; IMPACT Academics have shown a growing interest in the effects of resource scarcity-a discrepancy between one's current resource levels and a higher, more desirable reference point. However, the existing literature lacks an overarching theory to explain the breadth of findings across different types of resources. To address this, we introduce a self-regulatory model of resource scarcity. In it, we propose that consumers respond to resource scarcity through two distinct psychological pathways: a scarcity-reduction route aimed at reducing the discrepancy in resources and a control-restoration route aimed at reestablishing diminished personal control by attaining security in other domains. We explain how a key determinant of which route the consumer will pursue is the perceived mutability of the resource discrepancy. We also specify moderators, based on our proposed model, to identify when each of the two routes is pursued. This model is assessed in the context of alternative theoretical perspectives, including commodity theory, life history theory, and models of compensatory behavior. Finally, we provide a research agenda for those interested in studying the psychology of resource scarcity from a self-regulatory perspective. [Cannon, Christopher] Northwestern Univ, Evanston, IL 60208 USA; [Goldsmith, Kelly] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA; [Roux, Caroline] Concordia Univ, Montreal, PQ, Canada Cannon, C (reprint author), Northwestern Univ, Kellogg Sch Management, 2211 Campus Dr, Evanston, IL 60208 USA. c-cannon@kellogg.northwestern.edu Aaroe L, 2013, PSYCHOL SCI, V24, P2550, DOI 10.1177/0956797613495244; Abele AE, 2007, J PERS SOC PSYCHOL, V93, P751, DOI 10.1037/0022-3514.93.5.751; Abrams P. A., 1992, RESOURCE, P282; Aggarwal P, 2011, J ADVERTISING, V40, P19, DOI 10.2753/JOA0091-3367400302; Allen MW, 2005, APPETITE, V45, P314, DOI 10.1016/j.appet.2005.06.005; Anderson C, 2012, J PERS, V80, P313, DOI 10.1111/j.1467-6494.2011.00734.x; Ansburg PI, 2003, PERS INDIV DIFFER, V34, P1141, DOI 10.1016/S0191-8869(02)00104-6; Bakan D, 1966, DUALITY HUMAN EXISTE; Ball CT, 1998, ORGAN BEHAV HUM DEC, V76, P70, DOI 10.1006/obhd.1998.2798; BANDURA A, 1988, J PERS SOC PSYCHOL, V55, P479, DOI 10.1037//0022-3514.55.3.479; BOZZOLO AM, 1992, BASIC APPL SOC PSYCH, V13, P93, DOI 10.1207/s15324834basp1301_8; Brannon LA, 2001, J CONSUM PSYCHOL, V10, P135, DOI 10.1207/s15327663jcp1003_2; Brannon LA, 2001, PERS SOC PSYCHOL B, V27, P365, DOI 10.1177/0146167201273010; Brehm JW, 1966, THEORY PSYCHOL REACT; Briers B., 2006, PSYCHOL SCI, V85, P20; Briers B, 2013, J MARKETING RES, V50, P767, DOI 10.1509/jmr.10.0513; Brock T. C., 1968, PSYCHOL FDN ATTITUDE, P243, DOI DOI 10.1016/B978-1-4832-3071-9.50016-7; BROCK TC, 1992, BASIC APPL SOC PSYCH, V13, P135, DOI 10.1207/s15324834basp1301_11; BROWN JD, 1988, J PERS SOC PSYCHOL, V55, P445, DOI 10.1037/0022-3514.55.3.445; CACIOPPO JT, 1982, J PERS SOC PSYCHOL, V42, P116, DOI 10.1037/0022-3514.42.1.116; Carver C. S., 2004, HDB SELF REGULATION; CARVER CS, 1990, PSYCHOL REV, V97, P19, DOI 10.1037//0033-295X.97.1.19; Chou EY, 2016, PSYCHOL SCI, V27, P443, DOI 10.1177/0956797615625640; Cialdini R. B., 2009, INFLUENCE SCI PRACTI; Claro S, 2016, P NATL ACAD SCI USA, V113, P8664, DOI 10.1073/pnas.1608207113; CLEE MA, 1980, J CONSUM RES, V6, P389, DOI 10.1086/208782; Debenedetti A, 2014, J CONSUM RES, V40, P904, DOI 10.1086/673469; DIENER E, 1995, J PERS SOC PSYCHOL, V68, P926, DOI 10.1037//0022-3514.68.5.926; Duhachek A, 2012, J MARKETING RES, V49, P928, DOI 10.1509/jmr.10.0244; Durante KM, 2015, J CONSUM RES, V42, P435, DOI 10.1093/jcr/ucv023; Durante KM, 2012, J PERS SOC PSYCHOL, V103, P121, DOI 10.1037/a0027949; DWECK CS, 1995, PSYCHOL INQ, V6, P267, DOI 10.1207/s15327965pli0604_1; Elliot AJ, 2006, MOTIV EMOTION, V30, P111, DOI 10.1007/s11031-006-9028-7; ELLIOTT ES, 1988, J PERS SOC PSYCHOL, V54, P5, DOI 10.1037//0022-3514.54.1.5; Elliott R, 1996, PSYCHOL MARKET, V13, P753, DOI 10.1002/(SICI)1520-6793(199612)13:8<753::AID-MAR3>3.0.CO;2-E; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Eysenck M. W, 1982, ATTENTION AROUSAL CO, DOI [10.1007/978-3-642-68390-9, DOI 10.1007/978-3-642-68390-9]; Fernbach PM, 2015, J CONSUM RES, V41, P1204, DOI 10.1086/679118; FOLKMAN S, 1984, J PERS SOC PSYCHOL, V46, P839, DOI 10.1037/0022-3514.46.4.839; Fried M, 2000, J ENVIRON PSYCHOL, V20, P193, DOI 10.1006/jevp.1999.0154; Fritsche I, 2011, SOC ISS POLICY REV, V5, P101, DOI 10.1111/j.1751-2409.2011.01027.x; Fritsche I, 2013, J EXP SOC PSYCHOL, V49, P19, DOI 10.1016/j.jesp.2012.07.014; Gal D, 2012, J MARKETING RES, V49, P487, DOI 10.1509/jmr.11.0272; Galinsky AD, 2012, PSYCHOL INQ, V23, P339, DOI 10.1080/1047840X.2012.730978; Gierl H, 2010, INT J RES MARK, V27, P225, DOI 10.1016/j.ijresmar.2010.02.002; Gray K, 2017, PERSPECT PSYCHOL SCI, V12, P731, DOI 10.1177/1745691617691949; Greenaway KH, 2015, J EXP SOC PSYCHOL, V56, P235, DOI 10.1016/j.jesp.2014.10.009; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2012, J PERS SOC PSYCHOL, V102, P69, DOI 10.1037/a0024761; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hall CC, 2014, PSYCHOL SCI, V25, P619, DOI 10.1177/0956797613510949; Han D., 2015, CAMBRIDGE HDB CONSUM, P282, DOI [10. 1017/CBO9781107706552, DOI 10.1017/CBO9781107706552]; Han D, 2015, J CONSUM PSYCHOL, V25, P531, DOI 10.1016/j.jcps.2015.02.001; Heine SJ, 2006, PERS SOC PSYCHOL REV, V10, P88, DOI 10.1207/s15327957pspr1002_1; Higgins E. T., 1990, HDB PERSONALITY THEO, P301; Higgins ET, 1997, AM PSYCHOL, V52, P1280, DOI 10.1037//0003-066X.52.12.1280; Hill RP, 2012, MARKET LETT, V23, P731, DOI 10.1007/s11002-012-9175-4; Hill SE, 2012, J PERS SOC PSYCHOL, V103, P275, DOI 10.1037/a0028657; Inman JJ, 1997, J CONSUM RES, V24, P68, DOI 10.1086/209494; Jonas E, 2014, ADV EXP SOC PSYCHOL, V49, P219, DOI 10.1016/B978-0-12-800052-6.00004-4; Kamakura WA, 2012, J CONSUM RES, V39, P229, DOI 10.1086/662611; Kim S, 2012, J CONSUM RES, V39, P815, DOI 10.1086/665832; Kristofferson K, 2017, J CONSUM RES, V43, P683, DOI 10.1093/jcr/ucw056; Krosch AR, 2014, P NATL ACAD SCI USA, V111, P9079, DOI 10.1073/pnas.1404448111; Kruglanski AW, 2002, ADV EXP SOC PSYCHOL, V34, P331, DOI 10.1016/S0065-2601(02)80008-9; Kurtz JL, 2008, PSYCHOL SCI, V19, P1238, DOI 10.1111/j.1467-9280.2008.02231.x; Chaplin LN, 2014, J PUBLIC POLICY MARK, V33, P78, DOI 10.1509/jppm.13.050; Landau MJ, 2015, PSYCHOL BULL, V141, P694, DOI 10.1037/a0038703; Laran J, 2013, PSYCHOL SCI, V24, P167, DOI 10.1177/0956797612450033; Lazarus RS, 1984, STRESS APPRAISAL COP; Levontin L, 2015, J CONSUM PSYCHOL, V25, P257, DOI 10.1016/j.jcps.2014.08.001; LYNN M, 1989, J ECON PSYCHOL, V10, P257, DOI 10.1016/0167-4870(89)90023-8; Lynn M., 1991, PSYCHOL MARKET, V8, P43, DOI DOI 10.1002/MAR.4220080105; Maier SF, 2005, NEUROSCI BIOBEHAV R, V29, P829, DOI 10.1016/j.neubiorev.2005.03.021; Mandel N, 2017, J CONSUM PSYCHOL, V27, P133, DOI 10.1016/j.jcps.2016.05.003; Mani A, 2013, SCIENCE, V341, P976, DOI 10.1126/science.1238041; Martin KD, 2012, J CONSUM RES, V38, P1155, DOI 10.1086/661528; Mead NL, 2011, J CONSUM RES, V37, P902, DOI 10.1086/656667; Mehta R, 2016, J CONSUM RES, V42, P767, DOI 10.1093/jcr/ucv051; Mittal C, 2014, J PERS SOC PSYCHOL, V107, P621, DOI 10.1037/a0037398; Molden DC, 2012, PSYCHOL SCI, V23, P1137, DOI 10.1177/0956797612439069; Mullainathan S., 2013, SCARCITY WHY HAVING; Nelson LD, 2005, PSYCHOL SCI, V16, P167, DOI 10.1111/j.0956-7976.2005.00798.x; Nes LS, 2006, PERS SOC PSYCHOL REV, V10, P235, DOI 10.1207/s15327957pspr1003_3; Netchaeva E, 2016, PSYCHOL SCI, V27, P1157, DOI 10.1177/0956797616654677; Petersen MB, 2014, POLIT PSYCHOL, V35, P757, DOI 10.1111/pops.12062; Pham MT, 1996, J CONSUM RES, V22, P373, DOI 10.1086/209456; Phipps M, 2017, J CONSUM RES, V44, P361, DOI 10.1093/jcr/ucx040; Pitesa M, 2014, PSYCHOL SCI, V25, P702, DOI 10.1177/0956797613514092; Proulx T, 2012, PSYCHOL INQ, V23, P317, DOI 10.1080/1047840X.2012.702372; Rindfleisch A, 2009, J CONSUM RES, V36, P1, DOI 10.1086/595718; Rodeheffer CD, 2012, PSYCHOL SCI, V23, P1476, DOI 10.1177/0956797612450892; Roese NJ, 2007, PERSPECT PSYCHOL SCI, V2, P124, DOI 10.1111/j.1745-6916.2007.00033.x; Rose GM, 2007, PSYCHOL MARKET, V24, P743, DOI 10.1002/mar.20182; ROTTER JB, 1975, J CONSULT CLIN PSYCH, V43, P56, DOI 10.1037/h0076301; Roux C., 2013, NA ADV CONSUMER RES, V41; Roux C, 2015, J CONSUM RES, V42, P615, DOI 10.1093/jcr/ucv048; Rucker DD, 2008, J CONSUM RES, V35, P257, DOI 10.1086/588569; Sevilla J, 2014, J MARKETING RES, V51, P205, DOI 10.1509/jmr.12.0090; Shah AK, 2015, PSYCHOL SCI, V26, P402, DOI 10.1177/0956797614563958; Shah AK, 2012, SCIENCE, V338, P682, DOI 10.1126/science.1222426; Sharma E, 2014, ORGAN BEHAV HUM DEC, V123, P90, DOI 10.1016/j.obhdp.2013.09.001; Sharma E, 2012, J CONSUM RES, V39, P545, DOI 10.1086/664038; Sherman DK, 2006, ADV EXP SOC PSYCHOL, V38, P183, DOI 10.1016/S0065-2601(06)38004-5; Spiller SA, 2011, J CONSUM RES, V38, P595, DOI 10.1086/660045; Steele C. M., 1988, ADV EXPT SOCIAL PSYC, V21, P261, DOI DOI 10.1016/S0065-2601(08)60229-4; Stephens NM, 2014, PSYCHOL SCI, V25, P943, DOI 10.1177/0956797613518349; Sujan M., 1999, EUROPEAN ADV CONSUME, V4, P182; Suri R, 2007, J ACAD MARKET SCI, V35, P89, DOI 10.1007/s11747-006-0008-y; Tangney JP, 2007, ANNU REV PSYCHOL, V58, P345, DOI 10.1146/annurev.psych.56.091103.070145; Taylor SE, 1999, ANN NY ACAD SCI, V896, P210, DOI 10.1111/j.1749-6632.1999.tb08117.x; Taylor SE, 2007, ANNU REV CLIN PSYCHO, V3, P377, DOI 10.1146/annurev.clinpsy.3.022806.091520; Tian D., 2015, NA ADV CONSUMER RES, V43, P234; Tully SM, 2015, J CONSUM RES, V42, P59, DOI 10.1093/jcr/ucv007; VERHALLEN TMM, 1994, J ECON PSYCHOL, V15, P315, DOI 10.1016/0167-4870(94)90007-8; VERHALLEN TMM, 1982, J ECON PSYCHOL, V2, P299, DOI 10.1016/0167-4870(82)90034-4; Vohs KD, 2013, SCIENCE, V341, P969, DOI 10.1126/science.1244172; Walasek L, 2015, PSYCHOL SCI, V26, P527, DOI 10.1177/0956797614567511; Warburton WA, 2006, J EXP SOC PSYCHOL, V42, P213, DOI 10.1016/j.jesp.2005.03.005; White AE, 2013, J PERS SOC PSYCHOL, V105, P924, DOI 10.1037/a0033808; Whitson JA, 2008, SCIENCE, V322, P115, DOI 10.1126/science.1159845; WOOD R, 1989, J PERS SOC PSYCHOL, V56, P407, DOI 10.1037//0022-3514.56.3.407; Woodruffe H. R., 1997, MARK INTELL PLAN, V15, P325, DOI DOI 10.1108/02634509710193172; WORCHEL S, 1975, J PERS SOC PSYCHOL, V32, P906, DOI 10.1037/0022-3514.32.5.906; Wrosch C, 2003, SELF IDENTITY, V2, P1, DOI 10.1080/15298860390129818; Xu Q., 2012, J CONSUM PSYCHOL, V25, P219; Yam KC, 2014, ORGAN BEHAV HUM DEC, V125, P123, DOI 10.1016/j.obhdp.2014.07.002; Yeager DS, 2012, EDUC PSYCHOL-US, V47, P302, DOI 10.1080/00461520.2012.722805; Yoon S, 2018, J CONSUM RES, V44, P1141, DOI 10.1093/jcr/ucx091; Zhu M, 2015, J MARKETING RES, V52, P13, DOI 10.1509/jmr.13.0451 130 0 0 3 3 JOHN WILEY & SONS LTD CHICHESTER THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND 1057-7408 1532-7663 J CONSUM PSYCHOL J. Consum. Psychol. JAN-MAR 2019 29 1 104 127 10.1002/jcpy.1035 24 Business; Psychology, Applied Business & Economics; Psychology HF9TC WOS:000454584400008 2019-02-21 J Hughes, MR; Hooker, OE; Van Leeuwen, TE; Kettle-White, A; Thorne, A; Prodohl, P; Adams, CE Hughes, Martin R.; Hooker, Oliver E.; Van Leeuwen, Travis E.; Kettle-White, Alan; Thorne, Alastair; Prodohl, Paulo; Adams, Colin E. Alternative routes to piscivory: Contrasting growth trajectories in brown trout (Salmo trutta) ecotypes exhibiting contrasting life history strategies ECOLOGY OF FRESHWATER FISH English Article diet switch; ferox trout; life history; ontogenetic shift; piscivory; Salmo trutta SALVELINUS-ALPINUS L.; GENETIC DIFFERENTIATION; LOUGH MELVIN; FEROX TROUT; POPULATIONS; CHARR; ONTOGENY; COLONIZATION; POLYMORPHISM Large and long-lived piscivorous brown trout, Salmo trutta, colloquially known as ferox trout, have been described from a number of oligotrophic lakes in Britain and Ireland. The "ferox" life history strategy is associated with accelerated growth following an ontogenetic switch to piscivory and extended longevity (up to 23 years in the UK). Thus, ferox trout often reach much larger sizes and older ages than sympatric lacustrine invertebrate-feeding trout. Conventional models suggest that S. trutta adopting this life history strategy grow slowly before a size threshold is reached, after which, this gape-limited predator undergoes a diet switch to a highly nutritional prey source (fish) resulting in a measurable growth acceleration. This conventional model of ferox trout growth was tested by comparing growth trajectories and age structures of ferox trout and sympatric invertebrate-feeding trout in multiple lake systems in Scotland. In two of the three lakes examined, fish displaying alternative life history strategies, but living in sympatry, exhibited distinctly different growth trajectories. In the third lake, a similar pattern of growth was observed between trophic groups. Piscivorous trout were significantly older than sympatric invertebrate-feeding trout at all sites, but ultimate body size was greater in only two of three sites. This study demonstrates that there are multiple ontogenetic growth pathways to achieving piscivory in S. trutta and that the adoption of a piscivorous diet may be a factor contributing to the extension of lifespan. [Hughes, Martin R.; Hooker, Oliver E.; Van Leeuwen, Travis E.; Adams, Colin E.] Univ Glasgow, Scottish Ctr Ecol & Nat Environm, IBAHCM, Glasgow, Lanark, Scotland; [Van Leeuwen, Travis E.] Cape Eleuthera Inst, Eleuthera, Bahamas; [Kettle-White, Alan] Argyll Fishery Trust, Inveraray, Argyll, Scotland; [Thorne, Alastair] Marine Scotland Sci, Freshwater Lab, Pitlochry, Scotland; [Prodohl, Paulo] Queens Univ Belfast, Sch Biol Sci, Belfast, Antrim, North Ireland Adams, CE (reprint author), Univ Glasgow, Scottish Ctr Ecol & Nat Environm, IBAHCM, Glasgow, Lanark, Scotland. colin.adams@glasgow.ac.uk Prodohl, Paulo/0000-0001-8570-9964 European Union's INTERREG IVA Programme [2859] European Union's INTERREG IVA Programme, Grant/Award Number: Project 2859 "IBIS" ALLAN IRH, 1977, J CONSEIL, V37, P293; Appelberg M, 1995, WATER AIR SOIL POLL, V85, P401, DOI 10.1007/BF00476862; BERG A, 1967, Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi, V21, P225; CAMPBELL RN, 1971, J FISH BIOL, V3, P1, DOI 10.1111/j.1095-8649.1971.tb05902.x; CAMPBELL RN, 1979, J FISH BIOL, V14, P1; CAWDERY S A H, 1988, Polskie Archiwum Hydrobiologii, V35, P267; Duguid RA, 2006, J FISH BIOL, V69, P89, DOI 10.1111/j.1095-8649.2006.01118.x; Elliott JM, 2000, FRESHWATER BIOL, V44, P237, DOI 10.1046/j.1365-2427.2000.00560.x; FERGUSON A, 1991, BIOL J LINN SOC, V43, P221, DOI 10.1111/j.1095-8312.1991.tb00595.x; FERGUSON A, 1981, J FISH BIOL, V18, P629, DOI 10.1111/j.1095-8649.1981.tb03805.x; Ferguson A., 2004, P ROYAL IRISH ACAD B, V104B, P33; Ford JKB, 2010, BIOL LETTERS, V6, P139, DOI 10.1098/rsbl.2009.0468; Fraser D, 1998, ECOL FRESHW FISH, V7, P184, DOI 10.1111/j.1600-0633.1998.tb00185.x; Freyhof J., 2008, SALMO FEROX IUCN RED, V2008; Greer R., 1995, FEROX TROUT ARCTIC C; Grey J, 2001, ECOL FRESHW FISH, V10, P168, DOI 10.1034/j.1600-0633.2001.100306.x; HAMILTON KE, 1989, J FISH BIOL, V35, P651, DOI 10.1111/j.1095-8649.1989.tb03017.x; Hughes MR, 2016, J FISH BIOL, V88, P1648, DOI 10.1111/jfb.12919; Hughes MR, 2018, ECOL FRESHW FISH, V27, P62, DOI 10.1111/eff.12323; Jacobs A, 2018, GENES-BASEL, V9, DOI 10.3390/genes9060280; Jensen H, 2012, J FISH BIOL, V80, P2448, DOI 10.1111/j.1095-8649.2012.03294.x; Jensen H, 2008, CAN J FISH AQUAT SCI, V65, P1831, DOI 10.1139/F08-096; Jonsson N, 1999, J FISH BIOL, V55, P1129, DOI 10.1006/jfbi.1999.1115; Juanes Francis, 1994, Belle W. Baruch Library in Marine Science, V18, P79; Kahilainen K, 2003, J FISH BIOL, V63, P659, DOI 10.1046/j.1095-8649.2003.00179.x; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; L'Abee-Lund JH, 2002, ECOL FRESHW FISH, V11, P260, DOI 10.1034/j.1600-0633.2002.00020.x; LABEELUND JH, 1992, J FISH BIOL, V41, P91, DOI 10.1111/j.1095-8649.1992.tb03172.x; Maitland P. S., 2018, ARCTIC CHARR LOCHS S; Mangel M, 1996, EVOL ECOL, V10, P249, DOI 10.1007/BF01237683; Mangel M., 2001, EXPT GERONTOLOGY, V36, P65; McKeown NJ, 2010, J FISH BIOL, V76, P319, DOI 10.1111/j.1095-8649.2009.02490.x; McMeel OM, 2001, MOL ECOL, V10, P29, DOI 10.1046/j.1365-294x.2001.01166.x; Mittelbach GG, 1998, CAN J FISH AQUAT SCI, V55, P1454, DOI 10.1139/f98-041; PRODOHL PA, 1992, HEREDITAS, V117, P45, DOI 10.1111/j.1601-5223.1992.tb00006.x; R Core Team, 2016, R LANG ENV STAT COMP; Sanchez-Hernandez J, 2015, ECOL FRESHW FISH, V24, P148, DOI 10.1111/eff.12139; SHEARER WM, 1992, ATLANTIC SALMON NATU; Sikkink KL, 2016, MOL ECOL, V25, P6009, DOI 10.1111/mec.13926; Steingrimsson SO, 2002, ENVIRON BIOL FISH, V63, P417, DOI 10.1023/A:1014976612970; TAGGART J, 1981, COMP BIOCHEM PHYS B, V69, P393, DOI 10.1016/0305-0491(81)90330-8; Thorne A, 2016, PEERJ, V4, DOI 10.7717/peerj.2646; Wollebaek J, 2018, ECOL EVOL, V8, P2729, DOI 10.1002/ece3.3828 43 0 0 4 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish JAN 2019 28 1 4 10 10.1111/eff.12421 7 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology HE7JG WOS:000453609900001 2019-02-21 J Ruokonen, TJ; Kiljunen, M; Erkinaro, J; Orell, P; Sivonen, O; Vestola, E; Jones, RI Ruokonen, Timo J.; Kiljunen, Mikko; Erkinaro, Jaakko; Orell, Panu; Sivonen, Olli; Vestola, Eero; Jones, Roger I. Migration strategies of brown trout (Salmo trutta) in a subarctic river system as revealed by stable isotope analysis ECOLOGY OF FRESHWATER FISH English Article anadromy; life-history strategies; partial migration; residency; salmonid FISH SCALES; HYDROGEN; CARBON; L.; POPULATIONS; SIGNATURES; DIVERSITY; STABILITY; VALUES; OXYGEN We estimated the proportions of anadromous and freshwater-resident brown trout (Salmo trutta) in different parts of the subarctic River Naatamojoki/Neidenelva system (Finland and Norway) using carbon, nitrogen and hydrogen stable isotope analyses of archived scales as identifiers of migration strategy. Our results showed that carbon stable isotope values were the best predictor of migration strategy. Most individuals fell into two clearly distinct groups representing anadromous (47%) or freshwater-resident (42%) individuals, but some fish had intermediate carbon values suggesting repeated movement between freshwater and the sea. The proportion of anadromous individuals decreased steadily with distance from the sea forming a spatial continuum in migration strategies which is probably maintained by the combination of several factors such as divergent availability of food resources, variable migration costs and genetic differences. These within-catchment differences in migration strategies should be taken into account in fisheries management practices. [Ruokonen, Timo J.; Kiljunen, Mikko; Sivonen, Olli; Vestola, Eero; Jones, Roger I.] Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, Jyvaskyla 40014, Finland; [Erkinaro, Jaakko; Orell, Panu] Univ Oulu, Nat Resources Inst Finland, Oulu, Finland Ruokonen, TJ (reprint author), Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, Jyvaskyla 40014, Finland. timo.j.ruokonen@jyu.fi Erkinaro, Jaakko/0000-0002-7843-0364 Maj & Tor Nessling Foundation [201500037, 201600074] Maj & Tor Nessling Foundation, Grant/Award Number: 201500037; 201600074 Aarestrup K, 2018, ECOL FRESHW FISH, V27, P513, DOI 10.1111/eff.12335; Bohlin T, 2001, J ANIM ECOL, V70, P112, DOI 10.1046/j.1365-2656.2001.00466.x; Briers RA, 2013, ECOL FRESHW FISH, V22, P137, DOI 10.1111/eff.12011; Chapman BB, 2012, J FISH BIOL, V81, P456, DOI 10.1111/j.1095-8649.2012.03342.x; Charles K, 2004, MAR FRESHWATER RES, V55, P185, DOI 10.1071/MF03173; Cucherousset J, 2005, CAN J FISH AQUAT SCI, V62, P1600, DOI 10.1139/F05-057; DANSGAARD W, 1964, TELLUS, V16, P436; Dixon HJ, 2015, FISH RES, V164, P112, DOI 10.1016/j.fishres.2014.10.009; Doucett RR, 1999, CAN J FISH AQUAT SCI, V56, P2172, DOI 10.1139/cjfas-56-11-2172; Elliot D. M, 1994, QUANTITATIVE ECOLOGY; Erkinaro J, 2019, CAN J FISH AQUAT SCI, V76, P42, DOI 10.1139/cjfas-2017-0343; Etheridge EC, 2008, J FISH BIOL, V73, P44, DOI 10.1111/j.1095-8649.2008.01905.x; Hanson NN, 2010, RAPID COMMUN MASS SP, V24, P2491, DOI 10.1002/rcm.4646; Hard JJ, 2008, EVOL APPL, V1, P388, DOI 10.1111/j.1752-4571.2008.00020.x; Hobson KA, 2008, TERR ECOL SER, V2, P1; Hutchinson JJ, 2006, J FISH BIOL, V69, P1874, DOI 10.1111/j.1095-8649.2006.01234.x; Huusko A., 2017, BROWN TROUT BIOL ECO; Jensen AJ, 2018, CAN J FISH AQUAT SCI, V75, P663, DOI 10.1139/cjfas-2017-0077; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; Jonsson B., 2017, BROWN TROUT BIOL ECO; Jonsson N, 2002, FRESHWATER BIOL, V47, P1391, DOI 10.1046/j.1365-2427.2002.00873.x; Jonsson N., 2004, SEA TROUT BIOL CONSE; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; LABEELUND JH, 1991, CAN J FISH AQUAT SCI, V48, P1015, DOI 10.1139/f91-119; Laugen AT, 2014, FISH FISH, V15, P65, DOI 10.1111/faf.12007; Lehtonen PK, 2009, CONSERV GENET, V10, P281, DOI 10.1007/s10592-008-9577-2; McCarthy ID, 2000, RAPID COMMUN MASS SP, V14, P1325; Moore JW, 2014, J ANIM ECOL, V83, P1035, DOI 10.1111/1365-2656.12212; Niemela E., 2015, NAATAMOJOEN VESISTOA; Orell P., 2017, SEA TROUT SCI MANAGE, P396; Orell P, 2012, WORKING PAPERS FINNI, V8/2012; Orell P, 2018, ICES J MAR SCI, V75, P1063, DOI 10.1093/icesjms/fsx213; Perga ME, 2003, J FISH BIOL, V63, P1197, DOI 10.1046/j.1095-8649.2003.00239.x; Perga ME, 2005, OECOLOGIA, V144, P598, DOI 10.1007/s00442-005-0069-5; PETERSON BJ, 1987, ANNU REV ECOL SYST, V18, P293, DOI 10.1146/annurev.es.18.110187.001453; Post DM, 2002, ECOLOGY, V83, P703, DOI 10.2307/3071875; Ramsay AL, 2011, CAN J FISH AQUAT SCI, V68, P823, DOI 10.1139/F2011-027; Roussel JM, 2014, GLOBAL CHANGE BIOL, V20, P523, DOI 10.1111/gcb.12293; Ryan D, 2016, J FISH BIOL, V89, P1704, DOI 10.1111/jfb.13081; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Soto DX, 2013, FUNCT ECOL, V27, P535, DOI 10.1111/1365-2435.12054; Soto DX, 2011, CAN J FISH AQUAT SCI, V68, P2011, DOI [10.1139/F2011-112, 10.1139/f2011-112]; Swatdipong A, 2010, J FISH BIOL, V77, P2048, DOI 10.1111/j.1095-8649.2010.02784.x; Syrjanen J, 2010, FISHERIES MANAG ECOL, V17, P199, DOI 10.1111/j.1365-2400.2010.00738.x; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; Tillotson MD, 2018, FISH FISH, V19, P170, DOI 10.1111/faf.12248; Torniainen J, 2017, ECOL EVOL, V7, P2255, DOI 10.1002/ece3.2841; Torniainen J, 2014, ICES J MAR SCI, V71, P336, DOI 10.1093/icesjms/fst153; Vaha JP, 2011, EVOL APPL, V4, P39, DOI 10.1111/j.1752-4571.2010.00131.x; Vander Zanden Hannah B., 2016, Frontiers in Ecology and Evolution, V4, P20; Wassenaar L. I., 2010, 7 INT C APPL STABL I; Wassenaar LI, 2003, ISOT ENVIRON HEALT S, V39, P211, DOI 10.1080/1025601031000096781; Whitledge GW, 2006, CAN J FISH AQUAT SCI, V63, P1746, DOI 10.1139/F06-076; Wysujack K, 2009, ECOL FRESHW FISH, V18, P52, DOI 10.1111/j.1600-0633.2008.00322.x; Xu X, 2012, GEOSCI MODEL DEV, V5, P809, DOI 10.5194/gmd-5-809-2012 55 0 0 6 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish JAN 2019 28 1 53 61 10.1111/eff.12426 9 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology HE7JG WOS:000453609900006 2019-02-21 J Caldwell, AE; Sayer, RD Caldwell, Ann E.; Sayer, R. Drew Evolutionary considerations on social status, eating behavior, and obesity APPETITE English Article Evolution; Social status; Eating; Obesity; Life history theory; Socioeconomic status NEIGHBORHOOD FOOD ENVIRONMENT; LOW-INCOME WOMEN; LIFE-HISTORY; SOCIOECONOMIC-STATUS; ADAPTIVE INTERVENTIONS; DEVELOPMENTAL ORIGINS; CALORIE RESTRICTION; UNITED-STATES; SMART DESIGNS; MEAL PATTERNS Lower socioeconomic status (SES) is consistently related to higher obesity risk, especially in women living in developed countries such as the United States and Western Europe. Prevailing theories to describe this relationship have focused primarily on proximate level factors such as the generally poorer food environment (e.g. relative lack of healthy food options and higher concentrations of fast food restaurants) found in lower vs. higher SES neighborhoods and the higher financial costs associated with purchasing healthy, nutrient-dense foods compared to unhealthy, energy-dense foods. These factors are hypothesized to preclude the purchase of these foods by lower SES individuals. Unfortunately, public health interventions aimed at improving the food environment of lower SES communities and to provide financial resources for purchasing healthy foods have had limited success in reducing overall energy intake and body weight. Some evidence suggests these interventions may even exacerbate obesity. More recent hypotheses have shifted the focus to ultimate (or adaptive) factors that view increased energy intake and accrual of body fat among individuals of lower social status as adaptive strategies to protect against potential prolonged food scarcity. The purpose of this review is integrate past research at the proximate and ultimate levels with a consideration of how social status and SES during development (in utero through adolescence) may moderate the relationships between social status, eating behavior, and obesity. Utilizing an evolutionary framework that incorporates life history theory can lead to more integrative and thorough interpretations of past research and allow researchers to better elucidate the complex set of environmental, physiological, psychological, and behavioral factors that influence obesity risk among individuals of lower social status. [Caldwell, Ann E.; Sayer, R. Drew] Univ Colorado, Anschutz Hlth & Wellness Ctr, Anschutz Med Campus, Boulder, CO 80309 USA; [Caldwell, Ann E.; Sayer, R. Drew] Univ Colorado, Div Endocrinol Metab & Diabet, Anschutz Med Campus, Boulder, CO 80309 USA Caldwell, AE (reprint author), Univ Colorado, Div Endocrinol Metab & Diabet, Anschutz Med Campus, Boulder, CO 80309 USA. ann.caldwell@ucdenver.edu Sayer, Richard/0000-0002-9488-7030 National Heart, Lung, and Blood Institute [T32 HL HL116276]; University of Colorado Nutrition Obesity Research Center [P30 DK048520] This work was supported by the National Heart, Lung, and Blood Institute [T32 HL HL116276] and the University of Colorado Nutrition Obesity Research Center [P30 DK048520]. Adam A, 2016, BMC PUBLIC HEALTH, V16, DOI 10.1186/s12889-016-3985-x; Ahlstrom B, 2017, HEALTH PSYCHOL REV, V11, P72, DOI 10.1080/17437199.2016.1260489; Al-Shawaf L, 2016, APPETITE, V105, P591, DOI 10.1016/j.appet.2016.06.021; Almirall D, 2014, TRANSL BEHAV MED, V4, P260, DOI 10.1007/s13142-014-0265-0; An RP, 2013, PUBLIC HEALTH NUTR, V16, P1215, DOI 10.1017/S1368980012004715; Anton SC, 2002, J HUM EVOL, V43, P773, DOI 10.1006/jhev.2002.0602; Arce M, 2010, PHYSIOL BEHAV, V101, P446, DOI 10.1016/j.physbeh.2010.07.010; BARKER DJP, 1989, BRIT MED J, V298, P564, DOI 10.1136/bmj.298.6673.564; Barker DJP, 2004, J AM COLL NUTR, V23, p588S, DOI 10.1080/07315724.2004.10719428; Barker DJP, 1994, MOTHERS BABIES DIS L; Barte JCM, 2010, OBES REV, V11, P899, DOI 10.1111/j.1467-789X.2010.00740.x; Bartness TJ, 1996, PHYSIOL BEHAV, V60, P517, DOI 10.1016/S0031-9384(96)80027-8; Bartolomucci A, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004331; Bleker O. P., 2004, NESTLE NUTR WORKSHOP, V55, DOI [10.1159/, DOI 10.1159/]; Bogin B, 2007, AM J HUM BIOL, V19, P631, DOI 10.1002/ajhb.20666; BORER KT, 1988, AM J PHYSIOL, V255, pR128; Bratanova B, 2016, APPETITE, V100, P162, DOI 10.1016/j.appet.2016.01.028; Cannuscio CC, 2014, SOC SCI MED, V122, P13, DOI 10.1016/j.socscimed.2014.10.005; Cannuscio CC, 2013, AM J PREV MED, V45, P606, DOI 10.1016/j.amepre.2013.06.021; Cardel MI, 2016, PHYSIOL BEHAV, V162, P93, DOI 10.1016/j.physbeh.2016.04.024; Caspi CE, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14080915; Chamov E., 1993, LIFE HIST INVARIANTS; Cheon BK, 2017, P NATL ACAD SCI USA, V114, P72, DOI 10.1073/pnas.1607330114; Cohen AK, 2013, OBES REV, V14, P989, DOI 10.1111/obr.12062; Collins LM, 2007, AM J PREV MED, V32, pS112, DOI 10.1016/j.amepre.2007.01.022; Cummins S, 2014, HEALTH AFFAIR, V33, P283, DOI 10.1377/hlthaff.2013.0512; Curhan GC, 1996, CIRCULATION, V94, P1310, DOI 10.1161/01.CIR.94.6.1310; Dachner Naomi, 2010, Can J Diet Pract Res, V71, pe50; Dammann KW, 2009, J NUTR EDUC BEHAV, V41, P242, DOI [10.1016/j.jneb.2008.07.003, 10.1016/j.neb.2008.07.003]; Darmon N, 2015, NUTR REV, V73, P643, DOI 10.1093/nutrit/nuv027; Dhurandhar EJ, 2016, PHYSIOL BEHAV, V162, P88, DOI 10.1016/j.physbeh.2016.04.025; Djalalinia Shirin, 2015, Med J Islam Repub Iran, V29, P241; Drewnowski A, 2004, AM J PUBLIC HEALTH, V94, P1555, DOI 10.2105/AJPH.94.9.1555; Duffey KJ, 2011, PLOS MED, V8, DOI 10.1371/journal.pmed.1001050; Dulloo AG, 2006, INT J OBESITY, V30, pS23, DOI 10.1038/sj.ijo.0803516; Dulloo AG, 1996, INT J OBESITY, V20, P393; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison PT, 2007, AM J HUM BIOL, V19, P622, DOI 10.1002/ajhb.20662; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; Elliston KG, 2017, HEALTH PSYCHOL, V36, P337, DOI 10.1037/hea0000439; Epel E, 2001, PSYCHONEUROENDOCRINO, V26, P37, DOI 10.1016/S0306-4530(00)00035-4; Finkelstein EA, 2009, HEALTH AFFAIR, V28, pW822, DOI 10.1377/hlthaff.28.5.w822; Flegal KM, 2016, JAMA-J AM MED ASSOC, V315, P2284, DOI 10.1001/jama.2016.6458; Flint E, 2013, HEALTH PLACE, V24, P11, DOI 10.1016/j.healthplace.2013.07.005; Foster MT, 2006, AM J PHYSIOL-REG I, V290, pR1284, DOI 10.1152/ajpregu.00437.2005; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; Franz MJ, 2007, J AM DIET ASSOC, V107, P1755, DOI 10.1016/j.jada.2007.07.017; Gattermann R, 2002, LAB ANIM-UK, V36, P445, DOI 10.1258/002367702320389125; Gibson DM, 2011, AM J PUBLIC HEALTH, V101, P71, DOI 10.2105/AJPH.2009.187567; Glanz K, 1998, J AM DIET ASSOC, V98, P1118, DOI 10.1016/S0002-8223(98)00260-0; Glanz K, 2012, AM J PREV MED, V42, P503, DOI 10.1016/j.amepre.2012.01.013; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; Gosler AG, 1996, J ANIM ECOL, V65, P1, DOI 10.2307/5695; HALES CN, 1992, DIABETOLOGIA, V35, P595, DOI 10.1007/BF00400248; Hall K.D., 2009, PLOS ONE, V4, P11, DOI DOI 10.1371/J0UMAL.P0NE.0007940; Hall KD, 2018, OBESITY, V26, P11, DOI 10.1002/oby.22073; Hampson SE, 2009, PUBLIC HEALTH NUTR, V12, P1563, DOI 10.1017/S1368980009004868; Hawkesworth S, 2017, INT J BEHAV NUTR PHY, V14, DOI 10.1186/s12966-017-0581-0; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill SE, 2016, PSYCHOL SCI, V27, P354, DOI 10.1177/0956797615621901; Inglis V, 2009, APPETITE, V52, P273, DOI 10.1016/j.appet.2008.10.005; Jones SJ, 2006, J NUTR, V136, P1091; Kaiser KA, 2012, ANN NY ACAD SCI, V1264, P1, DOI 10.1111/j.1749-6632.2012.06672.x; Kaplan H. S., 2000, EVOLUTIONARY ANTHR, V9; Kidwell KM, 2016, AM J EVAL, V37, P344, DOI 10.1177/1098214015617013; Krukowski RA, 2010, J COMMUN HEALTH, V35, P315, DOI 10.1007/s10900-010-9224-y; Kuzawa C. W., 2007, EVOLUTION HLTH DIS; Kuzawa CW, 2007, AM J HUM BIOL, V19, P654, DOI 10.1002/ajhb.20659; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Laran J, 2013, PSYCHOL SCI, V24, P167, DOI 10.1177/0956797612450033; Laxy M, 2015, BMC PUBLIC HEALTH, V15, DOI 10.1186/s12889-015-1576-x; Leonard W. R., 2015, BASICS HUMAN EVOLUTI, P251; Leone AF, 2011, PREV CHRONIC DIS, V8; Leroy JL, 2013, J NUTR, V143, P378, DOI 10.3945/jn.112.167627; Li XS, 2010, OBESITY, V18, P456, DOI 10.1038/oby.2009.312; Liberato SC, 2014, BMC PUBLIC HEALTH, V14, DOI 10.1186/1471-2458-14-919; Lipson S. F., 2001, REPROD ECOLOGY HUMAN; Lopez CN, 2009, PUBLIC HEALTH NUTR, V12, P2092, DOI 10.1017/S1368980009005278; Lowe MR, 2008, BRIT J NUTR, V99, P925, DOI 10.1017/S0007114507862416; Ludwig J, 2011, NEW ENGL J MED, V365, P1509, DOI 10.1056/NEJMsa1103216; MacLean PS, 2018, OBESITY, V26, pS6, DOI 10.1002/oby.22154; MacLean PS, 2015, OBESITY, V23, P7, DOI 10.1002/oby.20967; Malnick SDH, 2006, QJM-INT J MED, V99, P565, DOI 10.1093/qjmed/hcl085; Maner JK, 2017, P NATL ACAD SCI USA, V114, P8517, DOI 10.1073/pnas.1620482114; MCALLISTER M, 1994, J NUTR EDUC, V26, P131; MEISEL RL, 1990, PHYSIOL BEHAV, V47, P815, DOI 10.1016/0031-9384(90)90002-L; Melhorn SJ, 2010, AM J PHYSIOL-REG I, V299, pR813, DOI 10.1152/ajpregu.00820.2009; Michopoulos V, 2016, PHYSIOL BEHAV, V162, P102, DOI 10.1016/j.physbeh.2016.04.023; Michopoulos V, 2011, PHYSIOL BEHAV, V102, P382, DOI 10.1016/j.physbeh.2010.11.031; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Moles A, 2006, PSYCHONEUROENDOCRINO, V31, P623, DOI 10.1016/j.psyneuen.2006.01.004; Monsivais P, 2011, HEALTH AFFAIR, V30, P1471, DOI 10.1377/hlthaff.2010.1273; Moore CJ, 2013, APPETITE, V62, P60, DOI 10.1016/j.appet.2012.11.011; Neel J. V., 1962, AM J HUM GENET, V14, P363, DOI [10.1007/SpringerReference_98337, DOI 10.1007/SPRINGERREFERENCE_98337]; Nettle D, 2017, BEHAV BRAIN SCI, V40, DOI 10.1017/S0140525X16000947; Neuberg S., 2018, DISCRIMINATING ECOLO; Pavela G, 2017, CLIN OBES, V7, P316, DOI 10.1111/cob.12198; Pepper G. V., 2014, APPL EVOLUTIONARY AN, P225; RAVELLI GP, 1976, NEW ENGL J MED, V295, P349, DOI 10.1056/NEJM197608122950701; Shively CA, 2009, AM J PRIMATOL, V71, P742, DOI 10.1002/ajp.20706; Sim AY, 2018, APPETITE, V121, P268, DOI 10.1016/j.appet.2017.11.100; Smith T. G., 2007, SSRN ELECT J, DOI [10.2139/ssrn.979189, DOI 10.2139/SSRN.979189]; Stearns S, 1992, EVOLUTION LIFE HIST; Swaffield J., 2015, EVOLUTIONARY PSYCHOL, V1, P69; Swinburn BA, 2011, LANCET, V378, P804, DOI 10.1016/S0140-6736(11)60813-1; Tamashiro KLK, 2007, AM J PHYSIOL-REG I, V293, pR1864, DOI 10.1152/ajpregu.00371.2007; Tamashiro KLK, 2006, PHYSIOL BEHAV, V89, P536, DOI 10.1016/j.physbeh.2006.05.026; Thayer ZM, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-23169-w; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Torres SJ, 2007, NUTRITION, V23, P887, DOI 10.1016/j.nut.2007.08.008; Trumbo P, 2002, J AM DIET ASSOC, V102, P1621, DOI 10.1016/S0002-8223(02)90346-9; Vandevijvere S, 2015, B WORLD HEALTH ORGAN, V93, P446, DOI 10.2471/BLT.14.150565; Wang Y, 2007, EPIDEMIOL REV, V29, P6, DOI 10.1093/epirev/mxm007; Waterlander WE, 2010, INT J BEHAV NUTR PHY, V7, DOI 10.1186/1479-5868-7-44; Wells J. C. K., 2010, CAMBRIDGE STUDIES BI, V58; Wells JCK, 2006, BIOL REV, V81, P183, DOI 10.1017/S1464793105006974; Wells JCK, 2010, AM J HUM BIOL, V22, P1, DOI 10.1002/ajhb.20994; West-Eberhard M. J., 2003, NATURE, DOI [10.2002/ajpa.20219, DOI 10.2002/AJPA.20219]; Wiig K, 2009, PUBLIC HEALTH NUTR, V12, P1726, DOI 10.1017/S1368980008004102; Wilson ME, 2008, PHYSIOL BEHAV, V94, P586, DOI 10.1016/j.physbeh.2008.03.019; Yu Y, 2012, OBESITY, V20, P904, DOI 10.1038/oby.2011.307; Zagorsky JL, 2017, ECON HUM BIOL, V27, P12, DOI 10.1016/j.ehb.2017.04.004 122 0 0 8 8 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0195-6663 1095-8304 APPETITE Appetite JAN 1 2019 132 238 248 10.1016/j.appet.2018.07.028 11 Behavioral Sciences; Nutrition & Dietetics Behavioral Sciences; Nutrition & Dietetics HE0CG WOS:000452933800029 30078673 2019-02-21 J Barbaro, N; Shackelford, TK Barbaro, Nicole; Shackelford, Todd K. Environmental Unpredictability in Childhood Is Associated With Anxious Romantic Attachment and Intimate Partner Violence Perpetration JOURNAL OF INTERPERSONAL VIOLENCE English Article life history theory; adult attachment; intimate partner violence; development; evolutionary psychology ADULT ATTACHMENT; SEX-DIFFERENCES; RISK; PATTERNS; STRESS; ABUSE; AGGRESSION; DIMENSIONS; EXPERIENCE; DAUGHTERS Human life history theory describes how resources are allocated among conflicting life tasks, including trade-offs concerning reproduction. The current research investigates the unique importance of environmental unpredictability in childhood in association with romantic attachment, and explores whether objective or subjective measures of environmental risk are more informative for testing life history hypotheses. We hypothesize that (1) unpredictability in childhood will be associated with greater anxious attachment, (2) anxious attachment will be associated with intimate partner violence (IPV) perpetration, and (3) anxious attachment will mediate the relationship between unpredictability in childhood and IPV perpetration. In two studies (total n = 391), participants in a heterosexual, romantic relationship completed self-report measures of childhood experiences, romantic attachment, and IPV perpetration. Study 1 provides support for Hypothesis 1. Hypothesis 1 is replicated only for men, but not women, in Study 2. Results of Study 2 provide support for Hypothesis 2 for men and women, and Hypothesis 3 was supported for men but not women. The findings contribute to the literature addressing the association of environmental risk in childhood on adult romantic relationship outcomes. [Barbaro, Nicole] Oakland Univ, Evolutionary Psychol, Rochester, MI 48063 USA; [Shackelford, Todd K.] Oakland Univ, Dept Psychol, 108 Pryale Hall, Rochester, MI 48309 USA Barbaro, N (reprint author), Oakland Univ, Dept Psychol, 108 Pryale Hall, Rochester, MI 48309 USA. nmbarbar@oakland.edu ADLER NE, 1993, JAMA-J AM MED ASSOC, V269, P3140, DOI 10.1001/jama.269.24.3140; Albrecht C, 2003, J FAM ISSUES, V24, P867, DOI 10.1177/0192513X03252731; ALEXANDER PC, 1994, PSYCHOTHER, V31, P665, DOI 10.1037/0033-3204.31.4.665; ANDREWS MW, 1994, CHILD DEV, V65, P1398, DOI 10.2307/1131506; Archer J, 2000, PSYCHOL BULL, V126, P651, DOI [10.1037/0033-2909.126.5.651, 10.1037//0033-2909.126.5.651]; Babcock JC, 2000, J FAM VIOLENCE, V15, P391, DOI 10.1023/A:1007558330501; Barnes JC, 2014, J CRIM JUST, V42, P471, DOI 10.1016/j.jcrimjus.2014.08.003; BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173; Barry RA, 2007, PERS SOC PSYCHOL B, V33, P340, DOI 10.1177/014616720629102; BARTHOLOMEW K, 1990, J SOC PERS RELAT, V7, P147, DOI 10.1177/0265407590072001; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BELSKY J, 1999, HDB ATTACHMENT THEOR, P141; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bookwala J, 1998, J SOC PERS RELAT, V15, P175, DOI 10.1177/0265407598152003; Bowlby J, 1982, ATTACHMENT LOSS, V1; Brennan KA, 1998, ATTACHMENT THEORY CL, P46; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buhrmester M, 2011, PERSPECT PSYCHOL SCI, V6, P3, DOI 10.1177/1745691610393980; Capaldi DM, 1996, CHILD DEV, V67, P344, DOI 10.2307/1131818; Casler K, 2013, COMPUT HUM BEHAV, V29, P2156, DOI 10.1016/j.chb.2013.05.009; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; Cook WL, 2000, J PERS SOC PSYCHOL, V78, P285, DOI 10.1037//0022-3514.78.2.285; Davis D, 2004, PERS SOC PSYCHOL B, V30, P1076, DOI 10.1177/0146167204264794; Del Giudice M, 2011, PERS SOC PSYCHOL B, V37, P193, DOI 10.1177/0146167210392789; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Diamond L. M., 2000, REV GEN PSYCHOL, V4, P186, DOI DOI 10.1037/1089-2680.4.2.186; Dutton D. G., 2007, ABUSIVE PERSONALITY; DUTTON DG, 1994, J APPL SOC PSYCHOL, V24, P1367, DOI 10.1111/j.1559-1816.1994.tb01554.x; EGAN V, 2005, J INDIVID DIFFER, V26, P11, DOI DOI 10.1027/1614-0001.26.1.11; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2012, DEV PSYCHOPATHOL, V24, P317, DOI 10.1017/S095457941100085X; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo A. J., 2012, OXFORD HDB SEXUAL CO, P72; Figueredo AJ, 2004, SOC BIOL, V51, P121; Fournier B, 2011, J INTERPERS VIOLENCE, V26, P1982, DOI 10.1177/0886260510372930; Fraley R., 2000, REV GEN PSYCHOL, V4, P132, DOI DOI 10.1037/1089-2680.4.2.132; Fraley RC, 2000, J PERS SOC PSYCHOL, V78, P350, DOI 10.1037//0022-3514.78.2.350; Godbout N, 2009, J INTERPERS VIOLENCE, V24, P693, DOI 10.1177/0886260508317179; Good PI, 2006, RESAMPLING METHODS P; Gormley B, 2005, SEX ROLES, V52, P785, DOI 10.1007/s11199-005-4199-3; Gormley B, 2010, J INTERPERS VIOLENCE, V25, P204, DOI 10.1177/0886260509334404; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hazan C., 1994, ADV PERSONAL RELATIO, V5, P151; Hazan C., 1999, HDB ATTACHMENT THEOR, P336; HoltzworthMunroe A, 1997, J FAM PSYCHOL, V11, P314, DOI 10.1037/0893-3200.11.3.314; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kraus MW, 2009, J PERS SOC PSYCHOL, V97, P992, DOI 10.1037/a0016357; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; MacKinnon DP, 2004, MULTIVAR BEHAV RES, V39, P99, DOI 10.1207/s15327906mbr3901_4; MacKinnon DP, 2002, PSYCHOL METHODS, V7, P83, DOI 10.1037//1082-989X.7.1.83; Mauricio A. M., 2002, DISS ABSTR INT, V62, p12B; Mauricio Anne Marie, 2007, Violence Vict, V22, P139, DOI 10.1891/088667007780477339; MAYSELESS O, 1991, FAM RELAT, V40, P21, DOI 10.2307/585654; Mikulincer M, 1998, J PERS SOC PSYCHOL, V74, P513, DOI 10.1037//0022-3514.74.2.513; Mikulincer M, 2002, J PERS SOC PSYCHOL, V83, P881, DOI 10.1037//0022-3514.83.4.881; Mikulincer M., 2007, ATTACHMENT ADULTHOOD; Noller P, 1998, ATTACHMENT THEORY CL, P317; OHearn RE, 1997, J INTERPERS VIOLENCE, V12, P375, DOI 10.1177/088626097012003004; Orcutt Holly K, 2005, Violence Vict, V20, P287, DOI 10.1891/088667005780997938; Peer E., 2013, BEHAV RES METHODS, V46, P1; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Rholes S. W., 2004, ADULT ATTACHMENT THE; Shaver PR, 2008, SOC PERSONAL PSYCHOL, V2, P1844, DOI 10.1111/j.1751-9004.2008.00146.x; Simpson J. A., 2011, HDB INTERPERSONAL PS, P75; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; STERNS SC, 1992, EVOLUTION LIFE HIST; Straus MA, 1996, J FAM ISSUES, V17, P283, DOI 10.1177/019251396017003001; Szepsenwol O, 2015, J PERS SOC PSYCHOL, V109, P1045, DOI 10.1037/pspi0000032; Thornhill R., 2000, NATURAL HIST RAPE; Tofighi D, 2011, BEHAV RES METHODS, V43, P692, DOI 10.3758/s13428-011-0076-x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Woodward L, 2001, J MARRIAGE FAM, V63, P1170, DOI 10.1111/j.1741-3737.2001.01170.x; Wu LL, 1996, AM SOCIOL REV, V61, P386, DOI 10.2307/2096355; WU LL, 1993, AM SOCIOL REV, V58, P210, DOI 10.2307/2095967 81 3 3 4 4 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0886-2605 1552-6518 J INTERPERS VIOLENCE J. Interpers. Violence JAN 2019 34 2 240 269 10.1177/0886260516640548 30 Criminology & Penology; Family Studies; Psychology, Applied Criminology & Penology; Family Studies; Psychology HE2YI WOS:000453216700002 27021737 2019-02-21 J Merlo, J; Cutrera, AP; Zenuto, RR Merlo, Julieta; Paula Cutrera, Ana; Rita Zenuto, Roxana Assessment of Trade-Offs between Simultaneous Immune Challenges in a Slow-Living Subterranean Rodent PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article inflammation; humoral response; life history; Talas tuco-tucos CTENOMYS-TALARUM RODENTIA; TUCO-TUCO; HUMORAL IMMUNITY; LIFE-HISTORY; WILD; INFECTIONS; DEFENSE; RESPONSES; CAPACITY; PACE The coexistence of two or more infectious agents in the same host is common in nature. Given this, the study of trade-offs within the immune system itself is key to understanding how immune defenses act in wild species in their natural environment. Here we assessed the possible trade-off between an inflammatory response (induced by phytohemagglutinin [PHA]; involving innate and adaptive responses in the study species) and an antibody response (induced by sheep red blood cells [SRBC]; adaptive response) in a slow-living subterranean rodent, the Talas tuco-tuco (Ctenomys talarum Thomas, 1898). According to life-history theory, slow-living species should rely more heavily on adaptive immunity, which develops more slowly than an innate response but is beneficial against repeated infections. Individual physiological condition (estimated by measuring levels of infection and immune, nutritional, and stress parameters) was analyzed during immune challenges. Contrary to what was expected, we found that the magnitude and energetic costs of both immune responses were similar when stimulated alone or simultaneously. Variation in natural antibodies, neutrophils, basophils, total leukocytes, and the ratio of neutrophils to lymphocytes in relation to the different treatments was also detected. In particular, natural antibodies were negatively affected by the induction of both immune challenges simultaneously and an increase of neutrophil counts was detected in all animals with the exception of those challenged with SRBC, while the pattern of variation of basophils, total leukocytes, and ratio of neutrophils to lymphocytes was not clearly associated with any triggered immune response. In general, our results suggest the absence of an energetic or resource-based trade-off between the immune responses triggered by PHA and SRBC in C. talarum. [Merlo, Julieta; Paula Cutrera, Ana; Rita Zenuto, Roxana] Univ Nacl Mar Del Plata, CONICET, Consejo Nacl Invest Cient & Tecn, Inst Invest Marinas & Costeras,Lab Ecol Fisiol &, RA-7600 Mar Del Plata, Buenos Aires, Argentina; [Merlo, Julieta] Univ Nacl Mar Del Plata, CONICET, Inst Invest Ciencia & Tecnol Mat, RA-7600 Mar Del Plata, Buenos Aires, Argentina Merlo, J (reprint author), Univ Nacl Mar Del Plata, CONICET, Inst Invest Ciencia & Tecnol Mat, RA-7600 Mar Del Plata, Buenos Aires, Argentina. jmerlo@mdp.edu.ar Consejo Nacional de Investigaciones Cientificas y Tecnicas [PIP 0272]; Agencia de Promocion Cientifica y Tecnologica [PICT 0998] We thank two anonymous reviewers whose suggestions helped improve the manuscript. This work was supported by the Consejo Nacional de Investigaciones Cientificas y Tecnicas (PIP 0272) and the Agencia de Promocion Cientifica y Tecnologica (PICT 0998). Abolins SR, 2011, MOL ECOL, V20, P881, DOI 10.1111/j.1365-294X.2010.04910.x; Allen PC, 2010, AVIAN DIS, V54, P834, DOI 10.1637/9111-101609-Reg.1; Antinuchi C. Daniel, 2007, University of California Publications in Zoology, V134, P111; Ardia DR, 2007, ECOGRAPHY, V30, P23, DOI 10.1111/j.2006.0906-7590.04939.x; Auer S., 2018, NAT COMMUN, V9, P1; Bacon L. D., 1992, Poultry Science Reviews, V4, P187; Behnke JM, 2008, PARASITOLOGY, V135, P751, DOI 10.1017/S0031182008000334; BLAXHALL PC, 1973, J FISH BIOL, V5, P771, DOI 10.1111/j.1095-8649.1973.tb04510.x; Brace A. J., 2017, J EXP ZOOL PART A, V29, P924; Brachetta V, 2014, ETHOLOGY, V120, P563, DOI 10.1111/eth.12230; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Buchanan KL, 2003, BEHAV ECOL SOCIOBIOL, V55, P50, DOI 10.1007/s00265-003-0682-4; BUSCH C, 1989, COMP BIOCHEM PHYS A, V93, P345, DOI 10.1016/0300-9629(89)90048-0; BUSCH C, 1989, J MAMMAL, V70, P204, DOI 10.2307/1381691; Calisi RM, 2009, HORM BEHAV, V56, P1, DOI 10.1016/j.yhbeh.2009.02.010; Coon CAC, 2011, AM J PHYSIOL-REG I, V300, pR1418, DOI 10.1152/ajpregu.00187.2010; Cox FEG, 2001, PARASITOLOGY, V122, pS23, DOI 10.1017/S003118200001698X; Cutrera AP, 2010, J EXP BIOL, V213, P715, DOI 10.1242/jeb.037887; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Deerenberg C., 2007, P R SOC B, V264, P1021; Gannon WL, 2007, J MAMMAL, V88, P809, DOI 10.1644/06-MAMM-F-185R1.1; Gitlin J. D., 1987, LYMPHOKINES, P123; Gonzalez Naranjo LA, 2010, REV COLOMB REUMATOL, V17, P35; Hasselquist D, 2012, ANIM BEHAV, V83, P1303, DOI 10.1016/j.anbehav.2012.03.025; Hoi-Leitner M, 2001, BEHAV ECOL SOCIOBIOL, V49, P333, DOI 10.1007/s002650000310; Horrocks NPC, 2011, INTEGR COMP BIOL, V51, P563, DOI 10.1093/icb/icr011; Kamal SM, 2006, PARASITE IMMUNOL, V28, P483, DOI 10.1111/j.1365-3024.2006.00909.x; KLASING KC, 1987, J NUTR, V117, P1629; Klasing Kirk C., 2004, Acta Zoologica Sinica, V50, P961; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Liebl AL, 2009, FUNCT ECOL, V23, P1091, DOI 10.1111/j.1365-2435.2009.01592.x; Luna F, 2002, CAN J ZOOL, V80, P2144, DOI 10.1139/Z02-201; Luna F, 2007, COMP BIOCHEM PHYS A, V147, P948, DOI 10.1016/j.cbpa.2007.02.032; Luna F, 2012, J COMP PHYSIOL B, V182, P971, DOI 10.1007/s00360-012-0675-6; Luna F, 2009, PHYSIOL BIOCHEM ZOOL, V82, P226, DOI 10.1086/597526; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin LB, 2006, FUNCT ECOL, V20, P630, DOI 10.1111/j.1365-2435.2006.01138.x; Martin LB, 2007, ECOLOGY, V88, P2516, DOI 10.1890/07-0060.1; Martino NS, 2015, ACTA PARASITOL, V60, P154, DOI 10.1515/ap-2015-0021; Matson KD, 2005, DEV COMP IMMUNOL, V29, P275, DOI 10.1016/j.dci.2004.07.006; Merlo JL, 2014, CAN J ZOOL, V92, P689, DOI 10.1139/cjz-2013-0306; Merlo JL, 2014, COMP BIOCHEM PHYS A, V175, P90, DOI 10.1016/j.cbpa.2014.05.021; Merlo JL, 2016, J EXP ZOOL PART A, V325, P675, DOI 10.1002/jez.2060; Mirkov I, 2018, INTEGR ZOOL, V13, P180, DOI 10.1111/1749-4877.12296; Moller AP, 2001, AM NAT, V158, P136, DOI 10.1086/321308; NARANJO LAG, 2016, J EXP ZOOL PART A, V325, P132; NEVO E, 1979, ANNU REV ECOL SYST, V10, P269, DOI 10.1146/annurev.es.10.110179.001413; Newman C, 2001, PARASITOLOGY, V123, P133, DOI 10.1017/S0031182001008265; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Cutrera AP, 2011, INFECT GENET EVOL, V11, P1023, DOI 10.1016/j.meegid.2011.03.016; Previtali MA, 2012, OIKOS, V121, P1483, DOI 10.1111/j.1600-0706.2012.020215.x; Rengarajan J, 2000, IMMUNOL TODAY, V21, P479, DOI 10.1016/S0167-5699(00)01712-6; Rivera D., 2006, ACTA PARASITOL, V51, P286; Rivera DL, 1998, FASEB J, V12, P189; Rossin A, 2002, J PARASITOL, V88, P1268; Rossin MA, 2010, PARASITOLOGY, V137, P1569, DOI 10.1017/S0031182010000351; Rossin MA, 2006, PARASITOL INT, V55, P83, DOI 10.1016/j.parint.2005.10.004; Saino N, 1996, BEHAV ECOL, V7, P227, DOI 10.1093/beheco/7.2.227; Sandmeier FC, 2014, INTEGR COMP BIOL, V54, P387, DOI 10.1093/icb/icu021; Sandmeier FC, 2012, BIOL OPEN, V1, P1078, DOI 10.1242/bio.20122527; Schleich CE, 2015, PHYSIOL BEHAV, V139, P150, DOI 10.1016/j.physbeh.2014.11.023; Smits JE, 1999, FUNCT ECOL, V13, P567, DOI 10.1046/j.1365-2435.1999.00338.x; Telfer S, 2010, SCIENCE, V330, P243, DOI 10.1126/science.1190333; Ujvari B, 2011, FUNCT ECOL, V25, P813, DOI 10.1111/j.1365-2435.2011.01860.x; Vera F., 2018, GEN COMP ENDOCRINOL; Vera F., 2011, THESIS; Vera F, 2008, COMP BIOCHEM PHYS A, V151, P232, DOI 10.1016/j.cbpa.2008.06.030; Vera F, 2011, GEN COMP ENDOCR, V170, P550, DOI 10.1016/j.ygcen.2010.11.012; Voigt G. L., 2000, HEMATOLOGY TECHNIQUE; WITHERS PC, 1977, J APPL PHYSIOL, V42, P120; Xu DL, 2010, COMP BIOCHEM PHYS A, V155, P25, DOI 10.1016/j.cbpa.2009.09.003; Xu DL, 2011, INTEGR ZOOL, V6, P352, DOI 10.1111/j.1749-4877.2011.00259.x; Yun CH, 2000, DEV COMP IMMUNOL, V24, P303, DOI 10.1016/S0145-305X(99)00080-4; Zenuto RR, 2002, PHYSIOL BIOCHEM ZOOL, V75, P469, DOI 10.1086/344739; Zenuto RR, 2001, ACTA THERIOL, V46, P161, DOI 10.1007/BF03192425; Zhang ZQ, 2015, INTEGR ZOOL, V10, P302, DOI 10.1111/1749-4877.12133 76 0 0 1 1 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. JAN 1 2019 92 1 92 105 10.1086/701320 14 Physiology; Zoology Physiology; Zoology HD0HG WOS:000452187900002 30601103 2019-02-21 J Costantini, D; Czirjak, GA; Melzheimer, J; Menges, V; Wachter, B Costantini, David; Czirjak, Gabor A.; Melzheimer, Joerg; Menges, Vera; Wachter, Bettina Sex and species differences of stress markers in sympatric cheetahs and leopards in Namibia COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY English Article Antioxidants; Carnivores; Cheetah; Felines; Leopard; Mammals; Oxidative stress; Reproduction OXIDATIVE STRESS; GLUTATHIONE-PEROXIDASE; SUPEROXIDE-DISMUTASE; INNATE IMMUNITY; INTEGRATION; REPRODUCTION; LESSONS; ECOLOGY Physiological stress markers may provide valuable insight for our understanding of costs of given life-history strategies or of wildlife health condition, most importantly in case of threatened species. In the last decade, there has been growing interest in the ecological relevance of cellular oxidative stress, which would provide complimentary information to that obtained by the classic analyses of glucocorticoid hormones. In this study, we analysed the sex and species variation of five blood-based markers of oxidative status, both molecular oxidative damage and antioxidant protection, in sympatric cheetahs (Acinonyx jubatus) and leopards (Panthera pardus) living on Namibian farmlands. Both these terrestrial carnivores are classified as vulnerable by the International Union for Conservation of Nature. We found that female cheetahs had significantly higher serum reactive oxygen metabolites of non-protein origin and lower glutathione peroxidase activity in whole blood than both male and female leopards and male cheetahs. We also found that cheetahs and leopards differed in the association between the two antioxidant enzymes glutathione peroxidase and superoxide dismutase. Correlations among oxidative status markers were stronger in female cheetahs than leopards or male cheetahs. Our results suggest that female cheetahs are more sensitive to local sources of stress. Our work did not corroborate the assumption that two species with different life histories consistently differ in key physiological traits. [Costantini, David] Sorbonne Univ, MNHN, CNRS, UMR 7221, 7 Rue Cuvier, F-75005 Paris, France; [Costantini, David] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland; [Costantini, David] Univ Antwerp, Dept Biol, Univ Pl 1, B-2610 Antwerp, Belgium; [Costantini, David; Melzheimer, Joerg; Menges, Vera; Wachter, Bettina] Leibniz Inst Zoo & Wildlife Res, Dept Evolutionary Ecol, Alfred Kowalke Str 17, D-10315 Berlin, Germany; [Czirjak, Gabor A.] Leibniz Inst Zoo & Wildlife Res, Dept Wildlife Dis, Alfred Kowalke Str 17, D-10315 Berlin, Germany Costantini, D (reprint author), Sorbonne Univ, MNHN, CNRS, UMR 7221, 7 Rue Cuvier, F-75005 Paris, France. david.costantini@mnhn.fr Wachter, Bettina/0000-0002-0414-2298; Costantini, David/0000-0002-8140-8790 Leibniz Institute for Zoo and Wildlife Research (IZW) in Germany; Messerli Foundation in Switzerland; German Research Foundation (DFG) [GRK2046]; Alexander von Humboldt Foundation We thank the Leibniz Institute for Zoo and Wildlife Research (IZW) in Germany and the Messerli Foundation in Switzerland for the main funding, and the GRK2046 from the German Research Foundation (DFG) for additional funding and stimulating discussion. DC was supported by the Alexander von Humboldt Foundation. Alonso-Alvarez C, 2017, BIOSCIENCE, V67, P258, DOI 10.1093/biosci/biw176; Angelier F, 2013, GEN COMP ENDOCR, V190, P118, DOI 10.1016/j.ygcen.2013.05.022; Beaulieu M, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou014; Busch DS, 2009, BIOL CONSERV, V142, P2844, DOI 10.1016/j.biocon.2009.08.013; Caro T. M., 1994, CHEETAHS SERENGETI P; Cohen AA, 2008, AM NAT, V172, P178, DOI 10.1086/589456; Cohen AA, 2009, FUNCT ECOL, V23, P310, DOI 10.1111/j.1365-2435.2009.01540.x; Costantini D, 2014, OXIDATIVE STRESS HOR, DOI [10. 1007/978-3-642-54663-1, DOI 10.1007/978-3-642-54663-1, 10.1007/978-3-642-54663-1]; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2018, CURR ZOOL, V64, P1, DOI 10.1093/cz/zox002; Costantini D, 2017, CONSERV PHYSIOL, V5, DOI 10.1093/conphys/cox069; Costantini D, 2013, J EXP BIOL, V216, P2213, DOI 10.1242/jeb.083154; Costantini D, 2011, J COMP PHYSIOL B, V181, P447, DOI 10.1007/s00360-011-0566-2; Dantzer B, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou023; DEHAAN JB, 1995, BIOCHEM MOL BIOL INT, V35, P1281; Dotan Y, 2004, PROG LIPID RES, V43, P200, DOI 10.1016/j.plipres.2003.10.001; French SS, 2017, BIOL CONSERV, V210, P37, DOI 10.1016/j.biocon.2017.04.006; GARLAND T, 1994, PHYSIOL ZOOL, V67, P797, DOI 10.1086/physzool.67.4.30163866; Georgiev AV, 2015, J EXP BIOL, V218, P1981, DOI 10.1242/jeb.121947; Haber A, 2011, EVOL BIOL, V38, P476, DOI 10.1007/s11692-011-9137-4; Halliwell B., 2015, FREE RADICALS BIOL M; HAMMER O., 2001, PALAEONTOL ELECTRON, V4, P1, DOI DOI 10.1016/J.BCP.2008.05.025; Heinrich SK, 2017, SCI REP-UK, V7, DOI 10.1038/srep44837; Heinrich SK, 2016, BIOL OPEN, V5, P550, DOI 10.1242/bio.014902; Helfenstein F, 2010, ECOL LETT, V13, P213, DOI 10.1111/j.1461-0248.2009.01419.x; Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5; IUCN, 2018, IUCN RED LIST THREAT; Jayawardena UA, 2017, ENVIRON TOXICOL CHEM, V36, P2855, DOI 10.1002/etc.3848; Kingdon J, 2013, MAMMALS OF AFRICA, VV; Lin H, 2004, COMP BIOCHEM PHYS B, V139, P745, DOI 10.1016/j.cbpc.2004.09.014; Park EM, 2007, FREE RADICAL BIO MED, V42, P280, DOI 10.1016/j.freeradbiomed.2006.10.044; Pavlicev M, 2009, EVOL BIOL, V36, P157, DOI 10.1007/s11692-008-9042-7; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Semeniuk CAD, 2009, BIOL CONSERV, V142, P1818, DOI 10.1016/j.biocon.2009.03.022; Sorci G, 2009, PHILOS T R SOC B, V364, P71, DOI 10.1098/rstb.2008.0151; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Vitikainen EIK, 2016, FRONT ECOL EVOL, V4, DOI 10.3389/fevo.2016.00058; Wingfield JC, 1998, AM ZOOL, V38, P191 39 0 0 8 8 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1095-6433 1531-4332 COMP BIOCHEM PHYS A Comp. Biochem. Physiol. A-Mol. Integr. Physiol. JAN 2019 227 8 13 10.1016/j.cbpa.2018.09.002 6 Biochemistry & Molecular Biology; Physiology; Zoology Biochemistry & Molecular Biology; Physiology; Zoology HC0LN WOS:000451490000002 30201541 2019-02-21 J Nenko, I; Hayward, AD; Simons, MJP; Lummaa, V Nenko, Ilona; Hayward, Adam D.; Simons, Mirre J. P.; Lummaa, Virpi Early-life environment and differences in costs of reproduction in a preindustrial human population PLOS ONE English Article BIRTH-WEIGHT; FOOD AVAILABILITY; FITNESS COSTS; TRADE-OFF; LONGEVITY; MORTALITY; SURVIVAL; SUCCESS; WOMEN; SENESCENCE Reproduction is predicted to trade-off with long-term maternal survival, but the survival costs often vary between individuals, cohorts and populations, limiting our understanding of this trade-off, which is central to life-history theory. One potential factor generating variation in reproductive costs is variation in developmental conditions, but the role of early-life environment in modifying the reproduction-survival trade-off has rarely been investigated. We quantified the effect of early-life environment on the trade-off between female reproduction and survival in pre-industrial humans by analysing individual-based life-history data for >80 birth cohorts collected from Finnish church records, and between-year variation in local crop yields, annual spring temperature, and infant mortality as proxies of early-life environment. We predicted that women born during poor environmental conditions would show higher costs of reproduction in terms of survival compared to women born in better conditions. We found profound variation between the studied cohorts in the correlation between reproduction and longevity and in the early-life environment these cohorts were exposed to, but no evidence that differences in early-life environment or access to wealth affected the trade-off between reproduction and survival. Our results therefore do not support the hypothesis that differences in developmental conditions underlie the observed heterogeneity in reproduction -survival trade-off between individuals. [Nenko, Ilona] Jagiellonian Univ, Dept Environm Hlth, Fac Hlth Sci, Med Coll, Krakow, Poland; [Hayward, Adam D.] Moredun Res Inst, Pentlands Sci Pk, Penicuik, Midlothian, Scotland; [Simons, Mirre J. P.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield, S Yorkshire, England; [Simons, Mirre J. P.] Univ Sheffield, Bateson Ctr, Sheffield, S Yorkshire, England; [Lummaa, Virpi] Univ Turku, Dept Biol, Turku, Finland Nenko, I (reprint author), Jagiellonian Univ, Dept Environm Hlth, Fac Hlth Sci, Med Coll, Krakow, Poland. ilona.nenko@uj.edu.pi Natural Environment Research Council [M005941, N013832]; Sir Henry Wellcome [WT107400MA]; Sheffield Vice-Chancellor's Fellowships; National Science Centre, Poland [2016/21/D/NZ8/01306]; Moredun Foundation Fellowship Authors are grateful to the Academy of Finland (VL), Natural Environment Research Council (M005941 and N013832; MJPS), and by Sir Henry Wellcome (WT107400MA; MJPS) and Sheffield Vice-Chancellor's Fellowships (MJPS), Foundation for Polish Science (IN), Ministry of Science and Higher Education (IN), National Science Centre, Poland (2016/21/D/NZ8/01306; IN), and Moredun Foundation Fellowship (ADH). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Barker DJ, 1998, MOTHERS BABIES HLTH; Blount JD, 2006, IBIS, V148, P509, DOI 10.1111/j.1474-919X.2006.00554.x; Bolund E, 2015, EVOLUTION, V69, P747, DOI 10.1111/evo.12598; Boonekamp JJ, 2014, ECOL LETT, V17, P599, DOI 10.1111/ele.12263; Cartwright SJ, 2014, CURR BIOL, V24, P536, DOI 10.1016/j.cub.2014.01.040; Catchpole EA, 2004, J AGR BIOL ENVIR ST, V9, P1, DOI 10.1198/1085711043172; Ceesay SM, 1997, BMJ-BRIT MED J, V315, P786; Cichon M, 1998, IBIS, V140, P128, DOI 10.1111/j.1474-919X.1998.tb04549.x; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; Crimmins EM, 2006, P NATL ACAD SCI USA, V103, P498, DOI 10.1073/pnas.0501470103; Desai M, 1997, BIOL REV, V72, P329, DOI 10.1017/S0006323196005026; Dior UR, 2013, ANN EPIDEMIOL, V23, P13, DOI 10.1016/j.annepidem.2012.10.005; Doblhammer G., 1999, DEMOGR RES, V1, P1, DOI DOI 10.4054/DEMRES.1999.1.3; Douhard M, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0276; Dribe M, 2004, POP STUD-J DEMOG, V58, P297, DOI 10.1080/0032472042000272357; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Faurie C, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005680; Forstmeier W, 2011, BEHAV ECOL SOCIOBIOL, V65, P47, DOI 10.1007/s00265-010-1038-5; Gagnon A, 2015, FERTIL STERIL, V103, P1109, DOI 10.1016/j.fertnstert.2015.03.030; Gagnon A, 2009, AM J HUM BIOL, V21, P533, DOI 10.1002/ajhb.20893; Godfrey K M, 2001, Public Health Nutr, V4, P611; Griffin RM, 2018, ECOL LETT, V21, P235, DOI 10.1111/ele.12888; Hadley GL, 2007, J ANIM ECOL, V76, P448, DOI 10.1111/j.1365-2656.2007.01219.x; Hales CN, 2001, BRIT MED BULL, V60, P5, DOI 10.1093/bmb/60.1.5; Hall ME, 2004, P ROY SOC B-BIOL SCI, V271, P1571, DOI 10.1098/rspb.2004.2768; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Hanson HA, 2013, J DEV ORIG HLTH DIS, V4, P170, DOI 10.1017/S2040174412000682; Hayward AD, 2013, P NATL ACAD SCI USA, P1; Hayward Adam D., 2013, Evolution Medicine and Public Health, P106, DOI 10.1093/emph/eot007; Hayward AD, 2012, P ROY SOC B-BIOL SCI, V279, P4165, DOI 10.1098/rspb.2012.1190; Hayward AD, 2009, P R SOC B, V276, P3477, DOI 10.1098/rspb.2009.0906; Helle S, 2002, SCIENCE, V296, P1085, DOI 10.1126/science.1070106; Helle S, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.2104; Holopainen J, 2009, HUM ECOL, V37, P213, DOI 10.1007/s10745-009-9225-6; Holopainen J, 2009, CLIMATIC CHANGE, V92, P213, DOI 10.1007/s10584-008-9477-y; Hurt LS, 2006, P ROY SOC B-BIOL SCI, V273, P149, DOI 10.1098/rspb.2005.3270; Jasienska G, 2006, AM J HUM BIOL, V18, P422, DOI 10.1002/ajhb.20497; Jasienska G, 2009, AM J HUM BIOL, V21, P524, DOI 10.1002/ajhb.20931; Jutikkala E., 2003, SUOMEN MAATALOUDEN 1, P504; Kruuk LEB, 1999, P ROY SOC B-BIOL SCI, V266, P1655, DOI 10.1098/rspb.1999.0828; Le Bourg E, 2007, AGEING RES REV, V6, P141, DOI 10.1016/j.arr.2007.04.002; Lee Phyllis C, 2013, Biol Lett, V9, P20130011, DOI 10.1098/rsbl.2013.0011; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Liu JS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0029259; Lummaa V, 2003, AM J HUM BIOL, V15, P370, DOI 10.1002/ajhb.10155; Lummaa V, 2002, TRENDS ECOL EVOL, V17, P141, DOI 10.1016/S0169-5347(01)02414-4; Lummaa V, 2001, J ANIM ECOL, V70, P739, DOI 10.1046/j.0021-8790.2001.00537.x; LUND E, 1990, J EPIDEMIOL COMMUN H, V44, P237, DOI 10.1136/jech.44.3.237; Lycett JE, 2000, P ROY SOC B-BIOL SCI, V267, P31, DOI 10.1098/rspb.2000.0962; McArdle PF, 2006, J GERONTOL A-BIOL, V61, P190, DOI 10.1093/gerona/61.2.190; Messina FJ, 2003, J EVOLUTION BIOL, V16, P501, DOI 10.1046/j.1420-9101.2003.00535.x; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moore SE, 1997, NATURE, V388, P434, DOI 10.1038/41245; Moore SE, 1999, INT J EPIDEMIOL, V28, P1088, DOI 10.1093/ije/28.6.1088; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; MUKULA J, 1989, ANN AGR FENN, V28, P2; Muller HG, 2002, J GERONTOL A-BIOL, V57, pB202, DOI 10.1093/gerona/57.5.B202; Mumby HS, 2015, SCI REP-UK, V5, DOI 10.1038/srep13946; Nenko I, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2319; NEUMANN J, 1979, B AM METEOROL SOC, V60, P775, DOI 10.1175/1520-0477(1979)060<0775:GHETWS>2.0.CO;2; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Oksanen TA, 2001, P ROY SOC B-BIOL SCI, V268, P661, DOI 10.1098/rspb.2000.1409; Oksanen TA, 2007, EVOLUTION, V61, P2822, DOI 10.1111/j.1558-5646.2007.00245.x; Orell M, 2002, J ANIM ECOL, V71, P55, DOI 10.1046/j.0021-8790.2001.00575.x; Painter RC, 2008, HUM REPROD, V23, P2591, DOI 10.1093/humrep/den274; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; Pettay JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000606; R Core Team, 2017, R LANG ENV STAT COMP; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; RichEdwards JW, 1997, BRIT MED J, V315, P396, DOI 10.1136/bmj.315.7105.396; Rickard IJ, 2010, ECOLOGY, V91, P3515, DOI 10.1890/10-0019.1; Scranton K, 2016, ECOL LETT, V19, P854, DOI 10.1111/ele.12619; Stearns S, 1992, EVOLUTION LIFE HIST; SUNDIN J, 1992, SOC SCI HIST, V16, P99, DOI 10.2307/1171323; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; Therneau T., 2014, PACKAGE SURVIVAL ANA; Therneau T, 2012, MIXED EFFECTS COX MO; TINBERGEN JM, 1985, ARDEA, V73, P38; Turpeinen O., 1973, ECON HIST REV, V21, P145, DOI DOI 10.1080/03585522.1973.10407768; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vihola T., 1994, PANE LEIPAAN PUOLET, P83; Wang Xiaofei, 2013, Evolution Medicine and Public Health, P241, DOI 10.1093/emph/eot013; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; Wilson AJ, 2006, PLOS BIOL, V4, P1270, DOI 10.1371/journal.pbio.0040216 86 0 0 1 1 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One DEC 12 2018 13 12 e0207236 10.1371/journal.pone.0207236 16 Multidisciplinary Sciences Science & Technology - Other Topics HD9QX WOS:000452898600011 30540747 DOAJ Gold 2019-02-21 J Xia, CW; Moller, AP Xia, Canwei; Moller, Anders Pape Long-lived birds suffer less from oxidative stress AVIAN RESEARCH English Article Ageing; Antioxidant; Birds; Longevity; Oxidative stress; Sampling effort LIFE-HISTORY STRATEGIES; CALORIC RESTRICTION; DAMAGE; EVOLUTION; DNA; SENESCENCE; ECOLOGY; AGE; LONGEVITY; BIOLOGY BackgroundOxidative stress, caused by an imbalance between reactive oxygen species and antioxidants, is thought to be an important intrinsic mechanism for aging. Ecologists have tested this hypothesis in birds, although the evidence supporting the link between oxidative stress and lifespan has so far been ambiguous. Two previous studies based on a wide range of different free-living bird species provided contradictory findings: antioxidants were negatively associated with survival rate in one study, but positively associated with longevity in another.MethodsIn this study, we identified possible shortcomings in previous research, and then used the comparative methods to test whether long-lived birds experience less oxidative stress reflected by four blood redox state markers (total antioxidant status, uric acid, total glutathione, malondialdehyde) based on data for 78 free-living species.ResultsRelatively long-lived bird species had high levels of antioxidants (total antioxidant status, total glutathione) and low levels of reactive oxygen species (malondialdehyde). These associations were independent of statistical control for any effects of body mass, sampling effort and similarity among taxa due to common phylogenetic descent.ConclusionsThe direction of these associations is consistent with the oxidative stress theory of aging. [Xia, Canwei] Beijing Normal Univ, Coll Life Sci, Minist Educ, Key Lab Biodivers & Ecol Engn, Beijing, Peoples R China; [Moller, Anders Pape] Univ Paris Saclay, Univ Paris Sud, Ecol Systemat Evolut, CNRS,AgroParisTech, F-91405 Orsay, France Moller, AP (reprint author), Univ Paris Saclay, Univ Paris Sud, Ecol Systemat Evolut, CNRS,AgroParisTech, F-91405 Orsay, France. anders.moller@u-psud.fr National Natural Science Foundation of China [31601868] This work was supported by the National Natural Science Foundation of China (No. 31601868). AGARWAL S, 1994, P NATL ACAD SCI USA, V91, P12332, DOI 10.1073/pnas.91.25.12332; Barja G, 2004, BIOL REV, V79, P235, DOI 10.1017/S1464793103006213; Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; Boonekamp JJ, 2017, BIOL LETTERS, V13, DOI 10.1098/rsbl.2017.0164; Buffenstein R, 2008, AGE, V30, P99, DOI 10.1007/s11357-008-9058-z; Cohen AA, 2008, AM NAT, V172, P178, DOI 10.1086/589456; Cohen AA, 2009, OECOLOGIA, V161, P673, DOI 10.1007/s00442-009-1423-9; Cohen AA, 2009, FUNCT ECOL, V23, P310, DOI 10.1111/j.1365-2435.2009.01540.x; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2016, BEHAV ECOL SOCIOBIOL, V70, P809, DOI 10.1007/s00265-016-2091-5; Costantini D, 2011, METHODS ECOL EVOL, V2, P321, DOI 10.1111/j.2041-210X.2010.00080.x; David O, 2013, CAPER COMP ANAL PHYL; Delhaye J, 2016, AGE, V38, P433, DOI 10.1007/s11357-016-9940-z; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Dunning J., 2008, CRC HDB AVIAN BODY M; Falnes PO, 2007, NEUROSCIENCE, V145, P1222, DOI 10.1016/j.neuroscience.2006.11.018; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Galvan I, 2015, EVOLUTION, V69, P2776, DOI 10.1111/evo.12754; Galvan I, 2012, J COMP PHYSIOL B, V182, P947, DOI 10.1007/s00360-012-0671-x; GILBERT D L, 1963, Radiat Res, VSuppl 3, P44, DOI 10.2307/3583674; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Moller AP, 2007, J EVOLUTION BIOL, V20, P750, DOI 10.1111/j.1420-9101.2006.01236.x; Moller AP, 2006, J EVOLUTION BIOL, V19, P682, DOI 10.1111/j.1420-9101.2005.01065.x; Montgomery MK, 2012, EXP GERONTOL, V47, P211, DOI 10.1016/j.exger.2011.11.014; Pagel M, 1999, SYST BIOL, V48, P612, DOI 10.1080/106351599260184; Pap PL, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-017-2434-x; R Core team, R LANG ENV STAT COMP; Ricklefs RE, 2008, FUNCT ECOL, V22, P379, DOI 10.1111/j.1365-2435.2008.01420.x; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Salmon AB, 2010, FREE RADICAL BIO MED, V48, P642, DOI 10.1016/j.freeradbiomed.2009.12.015; Sanz A, 2006, ANTIOXID REDOX SIGN, V8, P582, DOI 10.1089/ars.2006.8.582; Scharf FS, 1998, ECOLOGY, V79, P448, DOI 10.2307/176945; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59; SOHAL RS, 1994, MECH AGEING DEV, V76, P215, DOI 10.1016/0047-6374(94)91595-4; Stauffer J, 2017, SCI TOTAL ENVIRON, V575, P841, DOI 10.1016/j.scitotenv.2016.09.131; Sudyka J, 2016, J ORNITHOL, V157, P373, DOI 10.1007/s10336-015-1304-4; Symonds MRE, 2011, BEHAV ECOL SOCIOBIOL, V65, P13, DOI 10.1007/s00265-010-1037-6; Tacutu R, 2013, NUCLEIC ACIDS RES, V41, pD1027, DOI 10.1093/nar/gks1155; Vagasi CI, 2016, J EVOLUTION BIOL, V29, P1968, DOI 10.1111/jeb.12920; van de Crommenacker J, 2017, FUNCT ECOL, V31, P1210, DOI 10.1111/1365-2435.12861; Wasser DE, 2010, J ZOOL, V280, P103, DOI 10.1111/j.1469-7998.2009.00671.x 49 0 0 0 0 BMC LONDON CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2053-7166 AVIAN RES Avian Res. DEC 6 2018 9 41 10.1186/s40657-018-0133-6 7 Ornithology Zoology HD7FP WOS:000452716900001 DOAJ Gold 2019-02-21 J Chen, LJ; Jiang, XL; Fan, HY; Yang, Y; Ren, ZH Chen, Lijun; Jiang, Xiaoliu; Fan, Huiyong; Yang, Ying; Ren, Zhihong The Relationship Between Observers' Self-Attractiveness and Preference for Physical Dimorphism: A Meta-Analysis FRONTIERS IN PSYCHOLOGY English Review femininity; masculinity; meta-analysis; self-attractiveness; sexual dimorphism PREDICTS INDIVIDUAL-DIFFERENCES; HUMAN FEMALE PREFERENCES; MALE FACIAL MASCULINITY; WOMENS PREFERENCES; SEXUAL-DIMORPHISM; RATED ATTRACTIVENESS; SENSATION SEEKING; MALE FACES; MENS; CONTEXT Background: Many studies have reported an association between observers' self-attractiveness and their preference for sexual dimorphism across different physical domains, including the face, voice, and body. However, the results of these studies are inconsistent. Here, a meta-analysis was conducted to estimate the association between observers' own attractiveness and their dimorphic preference. Methods: Major electronic databases including PsycINFO, Web of Science, PubMed, ProQuest, and Google Scholar were searched during April 2017 (the first time) and April 2018 (the second time). The effect size computation and moderating effect analyses were conducted separately for masculine and feminine preferences. Results: We identified 5,359 references, of which we included 25 studies (x = 55, x = number of the effect size) with 6,853 participants in the meta-analysis. Across these studies, the correlation between observers' own attractiveness and their sexual dimorphic preference was 0.095 (x = 55) and that for preference for masculinity (x = 39) and femininity (x = 16) were 0.102 and 0.076, respectively. The results of the funnel plot, Egger's regression method, and fail-safe number suggested that there was no obvious publication bias. The relationship depended on the relationship context (short or long-term), opposite or same sex (the gender of the observer and host), measures of observers' self-attractiveness (subject or objective), and preference task (e.g., attractiveness rating, forced-choice, and face sequence test). Furthermore, for female participants, using a hormonal contraceptive also influenced their masculinity preference. The effect size for the preference for a masculine body and voice was larger than that for facial masculinity. Conclusion: We found a small but significant correlation between self-attractiveness and physical dimorphic preference, the relationship was moderated by the relationship context, same/opposite-sex, and contraceptive using. These three moderating effects represented the observer's trade-off on good genes, good provider and good father (3Gs) consistent with the life history strategies. Besides, measurement of observers' attractiveness, type of preference task and stimuli may also involve the relationship. [Chen, Lijun; Jiang, Xiaoliu; Yang, Ying] Fuzhou Univ, Sch Humanities & Social Sci, Fuzhou, Fujian, Peoples R China; [Chen, Lijun] Fuzhou Univ, Inst Psychol & Cognit Sci, Fuzhou, Fujian, Peoples R China; [Fan, Huiyong] Bohai Univ, Coll Teacher, Jinzhou, Peoples R China; [Ren, Zhihong] Educ Minist, Key Lab Adolescent Cyberpsychol & Behav, Wuhan, Hubei, Peoples R China; [Ren, Zhihong] Cent China Normal Univ, Inst Psychol, Lab Human Dev & Mental Hlth, Wuhan, Hubei, Peoples R China Ren, ZH (reprint author), Educ Minist, Key Lab Adolescent Cyberpsychol & Behav, Wuhan, Hubei, Peoples R China.; Ren, ZH (reprint author), Cent China Normal Univ, Inst Psychol, Lab Human Dev & Mental Hlth, Wuhan, Hubei, Peoples R China. psyren@qq.com National Social Science Foundation of China [CEA150173] This work was supported by the National Social Science Foundation of China (Grant No. CEA150173). Bakker TCM, 1999, NATURE, V401, P234, DOI 10.1038/45727; Boothroyd LG, 2008, EVOL HUM BEHAV, V29, P211, DOI 10.1016/j.evolhumbehav.2007.12.009; Boothroyd LG, 2007, PERS INDIV DIFFER, V43, P1161, DOI 10.1016/j.paid.03.008; Borenstein M, 2009, INTRO METAANALYSIS, DOI [10.1002/9780470743386, DOI 10.1002/9780470743386]; Burke D, 2010, EVOL PSYCHOL-US, V8, P573, DOI 10.1177/147470491000800404; Burriss RP, 2011, PERS INDIV DIFFER, V50, P542, DOI 10.1016/j.paid.2010.11.022; Buss DM, 2008, EVOL PSYCHOL, V6, P134, DOI 10.1177/147470490800600116; Buss DM, 2005, TRENDS COGN SCI, V9, P506, DOI 10.1016/j.tics.2005.09.006; Card N. A., 2012, APPL METAANALYSIS SO; Carrito MD, 2016, EVOL HUM BEHAV, V37, P125, DOI 10.1016/j.evolhumbehav.2015.09.006; Chang L., 2017, EVOLUTIONARY BEHAV S, V11, P199; [陈丽君 Chen Lijun], 2017, [心理科学进展, Advances in Psychological Science], V25, P553; Cornwell RE, 2006, PHILOS T R SOC B, V361, P2143, DOI 10.1098/rstb.2006.1936; del Giudice Marco, 2011, EVOLUTION PERSONALIT, P154; Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629; Feinberg DR, 2012, BEHAV ECOL SOCIOBIOL, V66, P413, DOI 10.1007/s00265-011-1287-y; Feinberg DR, 2008, EVOL HUM BEHAV, V29, P233, DOI 10.1016/j.evolhumbehav.2007.12.008; Fisher ML, 2004, P ROY SOC B-BIOL SCI, V271, pS283, DOI 10.1098/rsbl.2004.0160; Fraccaro PJ, 2010, EVOL PSYCHOL-US, V8, P447, DOI 10.1177/147470491000800311; GANGESTAD SW, 1993, ETHOL SOCIOBIOL, V14, P89, DOI 10.1016/0162-3095(93)90009-7; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Haselton MG, 2006, HORM BEHAV, V49, P509, DOI 10.1016/j.yhbeh.2005.10.006; Higgins JPT, 2003, BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557; Hittner JB, 2006, ADDICT BEHAV, V31, P1383, DOI 10.1016/j.addbeh.2005.11.004; Holzleitner IJ, 2017, ADAPT HUM BEHAV PHYS, V3, P304, DOI 10.1007/s40750-017-0070-3; Jones BC, 2007, EVOL HUM BEHAV, V28, P439, DOI 10.1016/j.evolhumbehav.2007.07.006; Jones BC, 2011, BIOL PSYCHOL, V87, P453, DOI 10.1016/j.biopsycho.2011.04.004; Jones BC, 2010, PERS INDIV DIFFER, V48, P860, DOI 10.1016/j.paid.2010.02.007; Kandrik M., 2017, THESIS; Kandrik M., 2012, J EVOLUTIONARY PSYCH, V10, P177, DOI [10.1556/JEP.10.2012.4.2, DOI 10.1556/JEP.10.2012.4.2]; Lefevre CE, 2017, EVOL HUM BEHAV, V38, P546, DOI 10.1016/j.evolhumbehav.2017.01.006; Lipsey M. W., 2001, PRACTICAL METAANALYS; Little AC, 2002, P ROY SOC B-BIOL SCI, V269, P1095, DOI 10.1098/rspb.2002.1984; Little AC, 2001, P ROY SOC B-BIOL SCI, V268, P39, DOI 10.1098/rspb.2000.1327; Little AC, 2007, HORM BEHAV, V51, P633, DOI 10.1016/j.yhbeh.2007.03.006; Little AC, 2006, ANIM BEHAV, V72, P981, DOI 10.1016/j.anbehav.2006.01.026; Little AC, 2014, BRIT J PSYCHOL, V105, P364, DOI 10.1111/bjop.12043; Little AC, 2013, PSYCHONEUROENDOCRINO, V38, P1777, DOI 10.1016/j.psyneuen.2013.02.014; Little AC, 2011, BEHAV ECOL, V22, P862, DOI 10.1093/beheco/arr061; Little AC, 2011, PHILOS T R SOC B, V366, P1638, DOI 10.1098/rstb.2010.0404; Little AC, 2010, PSYCHONEUROENDOCRINO, V35, P912, DOI 10.1016/j.psyneuen.2009.12.006; Lu H.J., 2015, EVOL BEHAV SCI, V9, P215, DOI [10.1037/ebs0000048, DOI 10.1037/EBS0000048]; Lu HJ, 2017, PERS INDIV DIFFER, V116, P157, DOI 10.1016/j.paid.2017.04.047; Moher D, 2010, INT J SURG, V8, P336, DOI 10.1016/j.ijsu.2010.02.007; Moore FR, 2011, PERS INDIV DIFFER, V50, P1068, DOI 10.1016/j.paid.2011.01.026; O'Connor JJM, 2012, ETHOLOGY, V118, P321, DOI 10.1111/j.1439-0310.2011.02013.x; Penton-Voak IS, 2003, J COMP PSYCHOL, V117, P264, DOI 10.1037/0735-7036.117.3.264; Perrett DI, 1998, NATURE, V394, P884, DOI 10.1038/29772; Puts DA, 2005, EVOL HUM BEHAV, V26, P388, DOI 10.1016/j.evolhumbehav.2005.03.001; Puts DA, 2013, ARCH SEX BEHAV, V42, P1379, DOI 10.1007/s10508-013-0165-2; Rhodes G, 2006, ANNU REV PSYCHOL, V57, P199, DOI 10.1146/annurev.psych.57.102904.190208; Rhodes G, 2005, EVOL HUM BEHAV, V26, P186, DOI 10.1016/j.evolhumbehav.2004.08.014; Rhodes G, 2003, P ROY SOC B-BIOL SCI, V270, pS93, DOI 10.1098/rsbl.2003.0023; Roberts SC, 2014, PSYCHOL SCI, V25, P1497, DOI 10.1177/0956797614532295; ROSENTHAL R, 1979, PSYCHOL BULL, V86, P638, DOI 10.1037/0033-2909.86.3.638; Singh D., 2001, 13 HUM BEH EV SOC M; Smith F. G., 2009, J EVOLUTIONARY PSYCH, V7, P195, DOI DOI 10.1556/JEP.7.2009.3.1; Smith FG, 2009, PERS INDIV DIFFER, V47, P476, DOI 10.1016/j.paid.2009.04.022; Swami V, 2007, J SOC PSYCHOL, V147, P15, DOI 10.3200/SOCP.147.1.15-26; Thornhill R, 2006, EVOL HUM BEHAV, V27, P131, DOI 10.1016/j.evolhumbehav.2005.06.001; Thornhill R, 1996, TRENDS ECOL EVOL, V11, pA98; THORNHILL R, 1993, HUM NATURE-INT BIOS, V4, P237, DOI 10.1007/BF02692201; Vukovic J, 2008, PERS INDIV DIFFER, V45, P451, DOI 10.1016/j.paid.2008.05.013; Vukovic J, 2010, BEHAV ECOL, V21, P767, DOI 10.1093/beheco/arq051; Welling LLM, 2008, PERS INDIV DIFFER, V44, P161, DOI 10.1016/j.paid.2007.07.026; Welling LLM, 2013, EVOL PSYCHOL-US, V11, P718; Welling LLM, 2009, PERS INDIV DIFFER, V47, P996, DOI 10.1016/j.paid.2009.06.030; Widemo F, 1999, TRENDS ECOL EVOL, V14, P26, DOI 10.1016/S0169-5347(98)01531-6; Wood W, 2014, EMOT REV, V6, P229, DOI 10.1177/1754073914523073; Zheng LJ, 2016, ARCH SEX BEHAV, V45, P725, DOI 10.1007/s10508-015-0543-z; Zietsch BP, 2015, PSYCHOL SCI, V26, P1440, DOI 10.1177/0956797615591770 71 0 0 2 2 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. DEC 5 2018 9 2431 10.3389/fpsyg.2018.02431 14 Psychology, Multidisciplinary Psychology HD0GJ WOS:000452185600001 30568615 DOAJ Gold 2019-02-21 J Islam, M; Rahman, M; Brauning, A Islam, Mahmuda; Rahman, Mizanur; Braeuning, Achim Long-Term Hydraulic Adjustment of Three Tropical Moist Forest Tree Species to Changing Climate FRONTIERS IN PLANT SCIENCE English Article Bangladesh; hydraulic conductivity; tropical forests; climate change; hydraulic safety; xylem anatomy; safety-efficiency trade-off XYLEM ANATOMICAL TRAITS; BEECH FAGUS-ORIENTALIS; VESSEL DIAMETER; WOOD DENSITY; EARLYWOOD VESSELS; RADIAL-GROWTH; LIFE-HISTORY; FUNCTIONAL TRAITS; WATER TRANSPORT; SEVERE DROUGHT Xylem hydraulic adjustment to global climatic changes was reported from temperate, boreal, and Mediterranean tree species. Yet, the long-term hydraulic adjustment in tropical tree species has not been studied so far. Here we developed the first standard chronologies of three hydraulic trait variables for three South Asian moist forest tree species to analyze their long-term hydraulic responses to changing climate. Based on wood anatomical measurements, we calculated Hagen-Poiseuille hydraulically weighted vessel diameter (DH), potential specific hydraulic conductivity (KS), and vulnerability index (VX) and developed standard chronologies of these variables for Chukrasia tabularis, Toona ciliata, and Lagerstroemia speciosa which are different in their xylem structure, wood density, shade tolerance, growth rates, and habitat preferences. Bootstrap correlation analysis revealed that vapor pressure deficit (VPD) strongly positively influenced the xylem water transport capacity in C. tabularis, whereas T. ciliata was affected by both temperature and precipitation. The hydraulic conductivity of L. speciosa was mainly affected by temperature. Different adjustment strategies were observed among the species, probably due to the differences in life history strategies and xylem properties. No positive relationship of conductivity and radial growth was found, but a trade-off between hydraulic safety and efficiency was observed in all studied species. [Islam, Mahmuda; Rahman, Mizanur; Braeuning, Achim] Friedrich Alexander Univ Erlangen Nuremberg, Inst Geog, Dept Geog & Geosci, Erlangen, Germany; [Islam, Mahmuda; Rahman, Mizanur] Shahjalal Univ Sci & Technol, Dept Forestry & Environm Sci, Sylhet, Bangladesh Islam, M (reprint author), Friedrich Alexander Univ Erlangen Nuremberg, Inst Geog, Dept Geog & Geosci, Erlangen, Germany.; Islam, M (reprint author), Shahjalal Univ Sci & Technol, Dept Forestry & Environm Sci, Sylhet, Bangladesh. mahmuda.islam@fau.de Rahman, Mizanur/B-4111-2019 Rahman, Mizanur/0000-0001-9011-2011 German Academic Exchange Service (DAAD); University Grant Commission, Bangladesh The research was supported by the German Academic Exchange Service (DAAD) and the University Grant Commission, Bangladesh. Aref IM, 2013, TREES-STRUCT FUNCT, V27, P959, DOI 10.1007/s00468-013-0848-2; Bauerle TL, 2011, PLANTA, V234, P1045, DOI 10.1007/s00425-011-1460-6; Bhattacharyya A, 1989, P INDIAN NAT SCI ACA, V55, P696; Bhattacharyya A, 2007, CURR SCI INDIA, V93, P1159; Borghetti M, 2017, TREE PHYSIOL, V37, P4, DOI 10.1093/treephys/tpw087; Briffa KR, 1990, METHODS DENDROCHRONO, P137; Brodribb T, 1999, NEW PHYTOL, V143, P365, DOI 10.1046/j.1469-8137.1999.00446.x; Bryukhanova M, 2013, TREES-STRUCT FUNCT, V27, P485, DOI 10.1007/s00468-012-0802-8; Bunn AG, 2008, DENDROCHRONOLOGIA, V26, P115, DOI 10.1016/j.dendro.2008.01.002; Bunn AG, 2010, DENDROCHRONOLOGIA, V28, P251, DOI 10.1016/j.dendro.2009.12.001; Buras A, 2017, DENDROCHRONOLOGIA, V44, P130, DOI 10.1016/j.dendro.2017.03.005; Campelo F, 2010, TREES-STRUCT FUNCT, V24, P463, DOI 10.1007/s00468-010-0414-0; CARLQUIST S, 1977, AM J BOT, V64, P887, DOI 10.2307/2442382; Carlquist S., 2001, COMP WOOD ANATOMY SY, P1, DOI [10.1007/978-3-662-04578-7_1, DOI 10.1007/978-3-662-04578-7_1]; Castagneri D, 2017, ENVIRON EXP BOT, V133, P128, DOI 10.1016/j.envexpbot.2016.10.009; Ceulemans R., 1997, Impacts of global change on tree physiology and forest ecosystems. Proceedings of the international conference on impacts of global change on tree physiology and forest ecosystems, held 26-29 November 1996, Wageningen, the Netherlands., P3; Choat B, 2012, NATURE, V491, P752, DOI 10.1038/nature11688; Chowdhury MQ, 2008, IAWA J, V29, P265; Clark DA, 2003, P NATL ACAD SCI USA, V100, P5852, DOI 10.1073/pnas.0935903100; Corcuera L, 2006, TREES-STRUCT FUNCT, V20, P91, DOI 10.1007/s00468-005-0016-4; Corcuera L, 2004, IAWA J, V25, P185, DOI 10.1163/22941932-90000360; Corcuera L, 2004, TREES-STRUCT FUNCT, V18, P83, DOI 10.1007/s00468-003-0284-9; Crous KY, 2011, GLOBAL CHANGE BIOL, V17, P1560, DOI 10.1111/j.1365-2486.2010.02325.x; Doughty C.E., 2008, J GEOPHYS RES-BIOGEO, V113, DOI [10.1029/2007JG000632, DOI 10.1029/2007JG000632]; ECKSTEIN D, 1969, FORSTWISSENSCHAFTLIC, V88, P230, DOI [10.1007/BF02741777, DOI 10.1007/BF02741777]; Fan ZX, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.01619; Fan ZX, 2012, J ECOL, V100, P732, DOI 10.1111/j.1365-2745.2011.01939.x; Fichot R, 2009, TREE PHYSIOL, V29, P1537, DOI 10.1093/treephys/tpp087; Field CT, 2014, GENDER AMER CULT, P1; Fonti P, 2007, NEW PHYTOL, V173, P562, DOI 10.1111/j.1469-8137.2006.01945.x; Fonti P, 2010, NEW PHYTOL, V185, P42, DOI 10.1111/j.1469-8137.2009.03030.x; Fritts H. C., 1976, TREE RINGS CLIMATE; Garcia-Gonzalez I, 2003, TREE PHYSIOL, V23, P497, DOI 10.1093/treephys/23.7.497; Garcia-Gonzalez I, 2016, IAWA J, V37, P295, DOI 10.1163/22941932-20160135; Gea-Izquierdo G, 2012, TREE PHYSIOL, V32, P401, DOI 10.1093/treephys/tps026; Gleason SM, 2016, NEW PHYTOL, V209, P123, DOI 10.1111/nph.13646; Gleason SM, 2012, FUNCT ECOL, V26, P343, DOI 10.1111/j.1365-2435.2012.01962.x; Gonzalez-Gonzalez BD, 2013, TREES-STRUCT FUNCT, V27, P1571, DOI 10.1007/s00468-013-0905-x; Granda E, 2018, TREE PHYSIOL, V38, P159, DOI 10.1093/treephys/tpx157; Grissino-Mayer H.D., 2001, TREE-RING RES, V57, P205, DOI DOI 10.1016/J.DENDRO.2010.12.002; Guiot J., 1991, Tree-Ring Bulletin, V51, P39; Hacke UG, 2006, TREE PHYSIOL, V26, P689, DOI 10.1093/treephys/26.6.689; Hacke UG, 2017, PLANT CELL ENVIRON, V40, P831, DOI 10.1111/pce.12777; Hassan MM, 1994, BANGLADESH J FOREST, V23, P1; Haworth M, 2017, GCB BIOENERGY, V9, P119, DOI 10.1111/gcbb.12322; He MH, 2018, INT J BIOMETEOROL, V62, P631, DOI 10.1007/s00484-017-1472-4; Heinrich I, 2009, CLIM DYNAM, V33, P63, DOI 10.1007/s00382-009-0544-5; Hietz P, 2017, NEW PHYTOL, V213, P170, DOI 10.1111/nph.14123; Hoeber S, 2014, FOREST ECOL MANAG, V330, P126, DOI 10.1016/j.foreco.2014.06.039; Holdridge L. R, 1967, LIFE ZONE ECOLOGY; Islam M, 2018, FOREST ECOL MANAG, V412, P9, DOI 10.1016/j.foreco.2018.01.035; Islam M, 2018, TREE-RING RES, V74, P76, DOI 10.3959/1536-1098-74.1.76; Kotowska MM, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00191; Lacointe A, 2000, ANN FOREST SCI, V57, P521; Larcher W, 2003, PHYSL PLANT ECOLOGY; LEWIS AM, 1995, AM J BOT, V82, P1112, DOI 10.2307/2446063; Lo Gullo MA, 1988, NEW PHYTOL, V108, P267, DOI DOI 10.1111/J.1469-8137.1988.TB04162.X; Maherali H, 2004, ECOLOGY, V85, P2184, DOI 10.1890/02-0538; Markesteijn L, 2011, NEW PHYTOL, V191, P480, DOI 10.1111/j.1469-8137.2011.03708.x; Markesteijn L, 2011, PLANT CELL ENVIRON, V34, P137, DOI 10.1111/j.1365-3040.2010.02231.x; Martinez-Sancho E, 2017, TREE PHYSIOL, V37, P903, DOI 10.1093/treephys/tpx036; Martinez-Vilalta J, 2014, NEW PHYTOL, V204, P105, DOI 10.1111/nph.12912; McCulloh K, 2010, NEW PHYTOL, V186, P439, DOI 10.1111/j.1469-8137.2010.03181.x; Meinzer FC, 2008, TREE PHYSIOL, V28, P1609, DOI 10.1093/treephys/28.11.1609; Murray F. W., 1967, J APPL METEOROL, V6, P203, DOI [10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2, DOI 10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2]; Nitschke CR, 2017, LANDSCAPE URBAN PLAN, V167, P275, DOI 10.1016/j.landurbplan.2017.06.012; Noyer E, 2017, ANN FOREST SCI, V74, DOI 10.1007/s13595-017-0634-1; Ogasa M, 2014, TREES-STRUCT FUNCT, V28, P461, DOI 10.1007/s00468-013-0963-0; Ohashi S, 2010, TROPICS, V19, P107; Ohashi S, 2014, TREES-STRUCT FUNCT, V28, P137, DOI 10.1007/s00468-013-0936-3; Oladi R, 2014, TREES-STRUCT FUNCT, V28, P493, DOI 10.1007/s00468-013-0966-x; Olson ME, 2014, ECOL LETT, V17, P988, DOI 10.1111/ele.12302; Olson ME, 2013, NEW PHYTOL, V197, P1204, DOI 10.1111/nph.12097; Orwa C, 2009, AGROFORESTREE DATABA; Perez-de-Lis G, 2018, AGR FOREST METEOROL, V248, P205, DOI 10.1016/j.agrformet.2017.09.022; Pockman WT, 2000, AM J BOT, V87, P1287, DOI 10.2307/2656722; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; Pourtahmasi K, 2011, IAWA J, V32, P461, DOI 10.1163/22941932-90000071; Pritzkow C, 2016, PALAEOGEOGR PALAEOCL, V449, P520, DOI 10.1016/j.palaeo.2016.02.046; Pumijumnong N, 1999, IAWA J, V20, P285, DOI 10.1163/22941932-90000691; R Development Core Team, 2016, R LANG ENV STAT COMP, DOI [10.1038/sj.hdy.6800737, DOI 10.1038/SJ.HDY.6800737]; Rahman M, 2018, GLOBAL PLANET CHANGE, V170, P106, DOI 10.1016/j.gloplacha.2018.08.008; Richburg J. A, 2005, THESIS; Rita A, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01126; Rita A, 2015, TREE PHYSIOL, V35, P817, DOI 10.1093/treephys/tpv055; Rungwattana K, 2018, FUNCT ECOL, V32, P260, DOI 10.1111/1365-2435.12970; Schuldt B, 2016, NEW PHYTOL, V210, P443, DOI 10.1111/nph.13798; Sinha SK, 2017, TROP ECOL, V58, P167; Slik JWF, 2015, P NATL ACAD SCI USA, V112, P7472, DOI 10.1073/pnas.1423147112; Sperry JS, 2008, PLANT CELL ENVIRON, V31, P632, DOI 10.1111/j.1365-3040.2007.01765.x; Sperry JS, 2006, AM J BOT, V93, P1490, DOI 10.3732/ajb.93.10.1490; SPERRY JS, 1994, ECOLOGY, V75, P1736, DOI 10.2307/1939633; Sperry JS, 2002, PLANT CELL ENVIRON, V25, P251, DOI 10.1046/j.0016-8025.2001.00799.x; Sperry JS, 2003, AGRON J, V95, P1362, DOI 10.2134/agronj2003.1362; Steppe K, 2007, TREE PHYSIOL, V27, P43, DOI 10.1093/treephys/27.1.43; Stokes M. A, 1968, INTRO TREE RING DATI; Taneda H, 2008, TREE PHYSIOL, V28, P1641, DOI 10.1093/treephys/28.11.1641; Tognetti R, 1999, TREE PHYSIOL, V19, P261; TYREE MT, 1989, ANNU REV PLANT PHYS, V40, P19, DOI 10.1146/annurev.pp.40.060189.000315; Tyree MT, 2002, XYLEM STRUCTURE ASCE; Venegas-Gonzalez A, 2015, TREES-STRUCT FUNCT, V29, P423, DOI 10.1007/s00468-014-1121-z; Venturas MD, 2017, J INTEGR PLANT BIOL, V59, P356, DOI 10.1111/jipb.12534; Verheyden A, 2005, NEW PHYTOL, V167, P425, DOI 10.1111/j.1469-8137.2005.01415.x; Vlam M, 2014, OECOLOGIA, V174, P1449, DOI 10.1007/s00442-013-2846-x; Westoby M, 2006, TRENDS ECOL EVOL, V21, P261, DOI 10.1016/j.tree.2006.02.004; Wheeler EA, 2011, IAWA J, V32, P199, DOI 10.1163/22941932-90000051; WIGLEY TML, 1984, J CLIM APPL METEOROL, V23, P201, DOI 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2; Williams LJ, 2008, OECOLOGIA, V155, P571, DOI 10.1007/s00442-007-0938-1; Zanne AE, 2010, AM J BOT, V97, P207, DOI 10.3732/ajb.0900178; Zimmermann M. H, 1983, XYTEM STRUCTURE ASCE 110 0 0 1 1 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-462X FRONT PLANT SCI Front. Plant Sci. DEC 4 2018 9 1761 10.3389/fpls.2018.01761 16 Plant Sciences Plant Sciences HC7EV WOS:000451964300001 30564255 DOAJ Gold 2019-02-21 J Ozga, AV; de Castro, VD; Castiglioni, DD Ozga, Aline Vasum; de Castro, Vanessa da Silva; Castiglioni, Daniela da Silva Population structure of two freshwater amphipods (Crustacea: Peracarida: Hyalellidae) from southern Brazil NAUPLIUS English Article body size; Hyalella; recruitment; reproductive period; sex ratio LAGOON EVROS DELTA; RIA-DE-AVEIRO; LIFE-HISTORY; REPRODUCTIVE-BIOLOGY; AZTECA CRUSTACEA; NORTH-AMERICA; DOGIELINOTIDAE; SMITH; SIZE; TRAITS Two recently described amphipods species from southern Brazil, Hyalella georginae Streck and Castiglioni, 2017 and Hyalella gauchensis Streck and Castiglioni, 2017, had their population structures characterized by sex, females' ovigerous condition, cephalothorax length (mm), size-class frequency distribution, sex-ratio, reproductive period, and recruitment. The specimens were collected with a dip net from a stream source (H. georginae) and from a water reservoir (H. gauchensis) in the Palmeira das Missoes municipality, state of Rio Grande do Sul, Brazil, from August 2012 to July 2013 (12 months). Both species showed a bimodal frequency distribution for total and seasonal size classes, with males larger than females. Overall, the sex ratio favored females when analyzed monthly and seasonally. Ovigerous females were recorded throughout the year, with higher frequency in spring (H. georginae) and summer (H. gauchensis), characterizing a seasonal reproduction. Both species showed continuous recruitment, with greater intensity in the spring. The population structure of these two Hyalella species had similar features, showing continuous recruitment and seasonal reproduction related to their life-history strategies, which promote adaptations to their habitat. [Ozga, Aline Vasum] Univ Fed Santa Maria, Ctr Ciencias Nat & Exatas, Programa Posgrad Biodiversidade Anim, Santa Maria, RS, Brazil; [de Castro, Vanessa da Silva; Castiglioni, Daniela da Silva] Univ Fed Santa Maria, Lab Zool & Ecol, Campus Palmeira das Missoes, Palmeira Das Missoes, RS, Brazil Castiglioni, DD (reprint author), Univ Fed Santa Maria, Lab Zool & Ecol, Campus Palmeira das Missoes, Palmeira Das Missoes, RS, Brazil. alinevasum@yahoo.com.br; assenan_vany@hotmail.com; danielacastiglioni@yahoo.com.br Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [405061/2015-3] We thank to Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) for a fellowship to AVO and financial support to DSC (Proc. no 405061/2015-3). We are gratefull to colleagues of the Laboratorio de Zoologia e Ecologia, Campus de Palmeira das Missoes, Universidade Federal de Santa Maria for their assistance during field and laboratory activities. This study was carried out according to state and federal laws concerning wildanimal sampling. ADAMS J, 1983, BEHAV ECOL SOCIOBIOL, V13, P239, DOI 10.1007/BF00299670; Adams W.J., 1985, ASTM (American Society for Testing and Materials) Special Technical Publication, P429, DOI 10.1520/STP36282S; Alcocer J, 2002, MODERN APPROACHES TO THE STUDY OF CRUSTACEA, P111; Appadoo C, 2004, ACTA OECOL, V26, P227, DOI 10.1016/j.actao.2004.06.002; Baldinger AJ, 2004, J NAT HIST, V38, P1087, DOI 10.1080/0022293031000075367; Bastos-Pereira R, 2018, ZOOTAXA, V4407, P254, DOI 10.11646/zootaxa.4407.2.6; Bastos-Pereira Rafaela, 2013, Nauplius, V21, P79, DOI 10.1590/S0104-64972013000100009; BOROWSKY B, 1991, CRUSTACEAN SEXUAL BIOLOGY, P33; Boschi RS, 2011, ENG AGR-JABOTICABAL, V31, P1189, DOI 10.1590/S0100-69162011000600016; Bousfield E.L., 1996, B MUS CIV ST NAT VER, V20, P175; Bueno A.A.P., 2014, TOPICAS ATUALIZACAO, V1, P57; Bueno AAP, 2013, CRUSTACEANA, V86, P802, DOI 10.1163/15685403-00003205; Cardoso Giovanna M., 2011, Nauplius, V19, P17, DOI 10.1590/S0104-64972011000100003; Cardoso GM, 2014, ZOOTAXA, V3814, P353, DOI 10.11646/zootaxa.3814.3.3; Cardoso RS, 1996, MAR ECOL PROG SER, V142, P111, DOI 10.3354/meps142111; Casset M. A., 2011, ECOLOGIA AUSTRAL, V11, P79; Castiglioni DD, 2008, ACTA OECOL, V33, P36, DOI 10.1016/j.actao.2007.09.007; Castiglioni DD, 2008, ACTA OECOL, V33, P49, DOI 10.1016/j.actao.2007.09.008; Castiglioni DDS, 2007, J NAT HIST, V41, P1571, DOI 10.1080/00222930701464604; Castiglioni DD, 2016, NAUPLIUS, V24, DOI 10.1590/2358-2936e2016028; Castiglioni DD, 2009, J NAT HIST, V43, P1273, DOI 10.1080/00222930902903756; COOPER WILLIAM E., 1965, ECOL MONOGR, V35, P377, DOI 10.2307/1942147; Cunha MR, 2000, MAR BIOL, V137, P637, DOI 10.1007/s002270000384; Curi PR, 1981, CIEN CULT, V33, P712; Duan YH, 1997, ENVIRON TOXICOL CHEM, V16, P691, DOI 10.1897/1551-5028(1997)016<0691:GDALPO>2.3.CO;2; Dutra BK, 2011, ECOTOXICOLOGY, V20, P255, DOI 10.1007/s10646-010-0577-x; Colla MF, 2015, ZOOKEYS, P25, DOI 10.3897/zookeys.481.9037; Geisler FS, 1944, BIOL BULL-US, V86, P6, DOI 10.2307/1537947; Gonzalez ER, 2003, J NAT HIST, V37, P2045, DOI 10.1080/00222930210133237; Gonzalez ER, 2003, J NAT HIST, V37, P2077, DOI 10.1080/00222930210133246; Gonzalez ER, 2002, REV BIOL TROP, V50, P649; Gonzalez ER, 2002, J CRUSTACEAN BIOL, V22, P173, DOI 10.1651/0278-0372(2002)022[0173:ROHAFI]2.0.CO;2; Gonzalez ER, 2006, J CRUSTACEAN BIOL, V26, P355, DOI 10.1651/C-2599.1; Grosso Luis E., 1999, Acta Zoologica Lilloana, V45, P79; Guerao G., 2003, ANIM BIODIV CONSERV, V26, P31; Hartnoll R.G., 1982, P111; Hutchinson G. E., 1981, INTR ECOLOGIA POBLIA; Jenio F., 1980, CRUSTACEANA S, V6, P204; Kevrekidis T, 2005, HYDROBIOLOGIA, V537, P53, DOI 10.1007/s10750-004-1713-5; Kevrekidis T, 2004, HYDROBIOLOGIA, V522, P117, DOI 10.1023/B:HYDR.0000029971.11713.41; KRUSCHWITZ L G, 1978, Proceedings of the Oklahoma Academy of Science, V58, P16; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; Markus R., 1971, ELEMENTOS ESTATISTIC; MOORE PG, 1981, J EXP MAR BIOL ECOL, V49, P1, DOI 10.1016/0022-0981(81)90145-3; MUSKO IB, 1992, HYDROBIOLOGIA, V243, P197, DOI 10.1007/BF00007035; Ozga AV, 2017, J NAT HIST, V51, P2509, DOI 10.1080/00222933.2017.1377777; Panov VE, 1998, CAN J ZOOL, V76, P1107, DOI 10.1139/cjz-76-6-1107; Peel MC, 2007, HYDROL EARTH SYST SC, V11, P1633, DOI 10.5194/hess-11-1633-2007; Pereira Vania F. Goulart C., 2004, Rev. Bras. Zool., V21, P179, DOI 10.1590/S0101-81752004000200003; Rodrigues SG, 2014, ZOOTAXA, V3815, P200, DOI 10.11646/zootaxa.3815.2.2; Santos S., 1995, REV INVEST MAR, V16, P37; Sastry A.N., 1983, P179; Streck MT, 2017, ZOOTAXA, V4337, P263, DOI 10.11646/zootaxa.4337.2.5; STRONG DR, 1972, ECOLOGY, V53, P1103, DOI 10.2307/1935422; Subida MD, 2005, J N AM BENTHOL SOC, V24, P82, DOI 10.1899/0887-3593(2005)024<0082:LHRAPO>2.0.CO;2; Thiel M, 2003, REV CHIL HIST NAT, V76, P205, DOI 10.4067/S0716-078X2003000200007; Townsend C. R., 2010, FUNDAMENTOS ECOLOGIA; Vainola R, 2008, HYDROBIOLOGIA, V595, P241, DOI 10.1007/s10750-007-9020-6; WARD PI, 1983, BEHAV ECOL SOCIOBIOL, V14, P69, DOI 10.1007/BF00366658; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; Wellborn GA, 2005, BIOL J LINN SOC, V84, P161, DOI 10.1111/j.1095-8312.2005.00422.x; Wellborn GA, 2002, ECOLOGY, V83, P129, DOI 10.2307/2680126; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WELLBORN GA, 1995, ANIM BEHAV, V50, P353, DOI 10.1006/anbe.1995.0251; WEN YH, 1992, CAN J ZOOL, V70, P1417; WENNER AM, 1972, AM NAT, V106, P321, DOI 10.1086/282774; Witt JDS, 2000, CAN J FISH AQUAT SCI, V57, P687, DOI 10.1139/cjfas-57-4-687; Zar J. H., 1996, BIOSTATISTICAL ANAL; Zheng XQ, 2013, ACTA OCEANOL SIN, V32, P56, DOI 10.1007/s13131-013-0322-4 69 0 0 0 0 SOC BRASILEIRA CARCINOLOGIA RIO GRANDE RS LAB CRUSTACEA DOC FURG, AV ITALIA KM 8, CAIXA POSTAL 474, RIO GRANDE RS, CARREIROS 96201-900, BRAZIL 0104-6497 2358-2936 NAUPLIUS Nauplius DEC 3 2018 26 e2018025 10.1590/2358-2936e2018025 12 Marine & Freshwater Biology; Zoology Marine & Freshwater Biology; Zoology HE8ED WOS:000453675600002 DOAJ Gold 2019-02-21 J Antol, A; Czarnoleski, M Antol, Andrzej; Czarnoleski, Marcin Size dependence of offspring production in isopods: a synthesis ZOOKEYS English Article clutch size; female size; indeterminate growth; life history evolution; offspring brooding; offspring size; parental care; trade-off OPTIMAL RESOURCE-ALLOCATION; PHILOSCIA-MUSCORUM CRUSTACEA; IDOTEA-GRANULOSA RATHKE; FIELD-GROWTH RATES; TERRESTRIAL ISOPOD; POPULATION-DYNAMICS; REPRODUCTIVE-BIOLOGY; LIFE-CYCLE; INTRASPECIFIC VARIATION; ARMADILLIDIUM-VULGARE In isopods, parental care takes the form of offspring brooding in marsupial pouches. Marsupial brooding was an important step towards the origin of terrestrial lifestyles among isopods, but its potential role in shaping isopod life histories remains unknown. It is here considered that marsupial brooding imposes costs and creates a temporary association between the survival of mothers and that of their offspring. Integrating findings from different life history models, we predicted that the effects of marsupial brooding set selective conditions for the continuation of growth after maturation, which leads to indeterminate growth, and the production of larger offspring by larger females. Based on this perspective, a study on the size dependence of offspring production in the woodlouse Porcellio scaber was performed and the generality of the results was tested by reviewing the literature on offspring production in other isopods. In P. scaber and almost all the other studied isopods, clutch size is positively related to female size. Such dependence is a necessary pre-condition for the evolution of indeterminate growth. The body mass of P. scaber differed six-fold between the largest and smallest brooding females, indicating a high potential for post-maturation growth. Our review showed that offspring size is a rarely studied trait in isopods and that it correlates negatively with offspring number but positively with female size in nearly half of the studied species. Our study of P. scaber revealed similar patterns, but the positive effect of female size on offspring size occurred only in smaller broods, and the negative relation between clutch size and offspring size occurred only in larger females. We conclude that the intraspecific patterns of offspring production in isopods agree with theoretical predictions regarding the role of offspring brooding in shaping the adaptive patterns of female investment in growth, reproduction, and the parental care provided to individual offspring. [Antol, Andrzej; Czarnoleski, Marcin] Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-387 Krakow, Poland Antol, A (reprint author), Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-387 Krakow, Poland. andrzej.antol@doctoral.uj.edu.pl Jagiellonian University [DS/WBiNoZ/INoS/757/2018, DS/MND/WBiNoZ/INoS/1/2017]; National Science Centre in Poland [2011/02/A/NZ8/00064] This project was funded by the Jagiellonian University (grants DS/WBiNoZ/INoS/757/2018 and DS/MND/WBiNoZ/INoS/1/2017) and the National Science Centre in Poland (grant 2011/02/A/NZ8/00064). Achouri MS, 2008, PEDOBIOLOGIA, V52, P127, DOI 10.1016/j.pedobi.2008.05.002; Achouri MS, 2002, CRUSTACEANA, V75, P1241, DOI 10.1163/156854002321518171; Adler D, 2017, RGL 3D VISUALIZATION; ALJETLAWI AA, 1994, J ARID ENVIRON, V27, P241, DOI 10.1006/jare.1994.1061; Appel Carina, 2011, Nauplius, V19, P123, DOI 10.1590/S0104-64972011000200003; Araujo PB, 2005, ACTA OECOL, V28, P289, DOI 10.1016/j.actao.2005.05.005; Ben Souissi E, 2015, B I NATL SCI MER, V19, P32; Braga Goncalves I, 2011, J FISH BIOL, V78, P1847, DOI 10.1111/j.1095-8649.2011.02984.x; BRODY MS, 1984, OECOLOGIA, V61, P55, DOI 10.1007/BF00379089; CAREFOOT TH, 1973, MAR BIOL, V18, P302; CLARKE A, 1992, POLAR BIOL, V12, P129; Czarnoleski M, 2005, EVOL ECOL RES, V7, P821; Czarnoleski M, 1998, ECOL LETT, V1, P5, DOI 10.1046/j.1461-0248.1998.0007b.x; Czarnoleski M, 2003, EVOL ECOL RES, V5, P571; DANGERFIELD JM, 1995, J TROP ECOL, V11, P641, DOI 10.1017/S0266467400009196; DANGERFIELD JM, 1990, OECOLOGIA, V82, P251, DOI 10.1007/BF00323542; Ejsmond MJ, 2015, AM NAT, V186, pE111, DOI 10.1086/683119; Ejsmond MJ, 2010, AM NAT, V175, P551, DOI 10.1086/651589; Filin I, 2015, J THEOR BIOL, V364, P168, DOI 10.1016/j.jtbi.2014.09.007; Fogelman RM, 2008, CORAL REEFS, V27, P685, DOI 10.1007/s00338-008-0379-2; Fonseca DB, 2000, CRUSTACEANA, V73, P535, DOI 10.1163/156854000504642; Ford NB, 2011, REPROD BIOL PHYLOGEN, P573, DOI [10.1643/OT-11-163, DOI 10.1643/0T-11-163]; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Furota T, 1999, J CRUSTACEAN BIOL, V19, P752, DOI 10.2307/1549299; Glazier DS, 2003, BIOL TERRESTRIAL ISO, V5, P151; Goncalves S, 2005, MAR BIOL, V147, P631, DOI 10.1007/s00227-005-1609-6; Hamaied S, 2004, CR BIOL, V327, P343, DOI 10.1016/j.crvi.2004.02.005; Heino M, 1996, FUNCT ECOL, V10, P245, DOI 10.2307/2389849; Hendry AP, 2003, EVOL ECOL RES, V5, P421; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; HOLDICH DM, 1968, J ZOOL, V156, P137; HORNUNG E, 1988, Acta Universitatis Szegediensis Acta Biologica, V34, P169; Hornung E, 2015, ZOOKEYS, P127, DOI 10.3897/zookeys.515.9403; Hornung Elisabeth, 2011, Terrestrial Arthropod Reviews, V4, P95, DOI 10.1163/187498311X576262; Horvathova T, 2017, J EXP BIOL, V220, P1563, DOI 10.1242/jeb.156661; Horvathova T, 2015, ZOOKEYS, P67, DOI 10.3897/zookeys.515.9353; Ivanov Finica Mariana, 2011, Travaux du Museum National d'Histoire Naturelle Grigore Antipa, V54, P365, DOI 10.2478/v10191-011-0023-1; JOHNSON WS, 1976, MAR BIOL, V36, P343, DOI 10.1007/BF00389196; JONES DA, 1970, J MAR BIOL ASSOC UK, V50, P635, DOI 10.1017/S0025315400004926; JONES MB, 1971, J ZOOL, V165, P183; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; Jormalainen V, 2001, J EVOLUTION BIOL, V14, P763, DOI 10.1046/j.1420-9101.2001.00325.x; Kashani GM, 2011, J NAT HIST, V45, P2081, DOI [10.1080/00222933.2011.582965, DOI 10.1080/00222933.2011.582965]; Khemaissia H, 2016, VIE MILIEU, V66, P159; Kight SL, 2001, J KANSAS ENTOMOL SOC, V74, P166; Kindsvater HK, 2014, AM NAT, V184, P543, DOI 10.1086/678248; KLAPOW LA, 1970, J ZOOL, V162, P359; Knaub J, 2009, INTERSTAT, V2009, P1; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Kozlowski J, 1999, EVOL ECOL RES, V1, P423; Kozlowski J, 2006, POL J ECOL, V54, P585; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; KROER N, 1989, OPHELIA, V30, P63, DOI 10.1080/00785326.1989.10430837; Labecka AM, 2018, HYDROBIOLOGIA, V810, P57, DOI 10.1007/s10750-016-2835-2; Lardies MA, 2004, J INSECT PHYSIOL, V50, P1127, DOI 10.1016/j.jinsphys.2004.10.005; Lardies MA, 2004, EVOL ECOL RES, V6, P567; LAWLOR LR, 1976, EVOLUTION, V30, P775, DOI 10.1111/j.1558-5646.1976.tb00958.x; Leifsson BR, 1998, SARSIA, V83, P1; Leonardos L, 2004, DIS AQUAT ORGAN, V62, P249, DOI 10.3354/dao062249; LEONARDSSON K, 1986, HOLARCTIC ECOL, V9, P240; Lins LSF, 2017, ORG DIVERS EVOL, V17, P813, DOI 10.1007/s13127-017-0346-2; LUXMOORE RA, 1982, POLAR BIOL, V1, P3, DOI 10.1007/BF00568750; MA HHT, 1991, J ZOOL, V224, P677, DOI 10.1111/j.1469-7998.1991.tb03795.x; Manyak-Davis A, 2013, AM NAT, V182, P347, DOI 10.1086/671170; MARQUES JC, 1994, J CRUSTACEAN BIOL, V14, P258, DOI 10.2307/1548906; MCGINLEY MA, 1989, EVOL ECOL, V3, P150, DOI 10.1007/BF02270917; Medini-Bouaziz L, 2017, INVERTEBR REPROD DEV, V61, P218, DOI 10.1080/07924259.2017.1331936; Medini-Bouaziz L, 2017, INVERTEBR REPROD DEV, V61, P18, DOI 10.1080/07924259.2016.1263242; Medini-Bouaziz L, 2015, OPEN LIFE SCI, V10, P505, DOI 10.1515/biol-2015-0052; MILLER RH, 1983, OECOLOGIA, V57, P216, DOI 10.1007/BF00379583; Montesanto G, 2012, ZOOKEYS, P87, DOI 10.3897/zookeys.176.2369; MOREIRA P S, 1977, Boletim do Instituto Oceanografico, V26, P181; Nair GA, 1998, ISR J ZOOL, V44, P399; OLAFSSON EB, 1986, ESTUAR COAST SHELF S, V23, P673; PARIS OH, 1962, ECOLOGY, V43, P229, DOI 10.2307/1931979; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; PHILLIPSON J, 1965, OIKOS, V16, P78, DOI 10.2307/3564867; Quadros AF, 2008, P INT S TERR IS BIOL, P81; Quinn GP, 2002, EXPT DESIGN DATA ANA, P111, DOI 10.1017/CBO9780511806384.007; R-Project, 2018, LANG ENV STAT COMP; Rigaud T, 1999, HEREDITY, V83, P469, DOI 10.1038/sj.hdy.6885990; Rollinson N, 2016, BIOL REV, V91, P1134, DOI 10.1111/brv.12214; Saito S, 1969, RES POPUL ECOL, V11, P229, DOI 10.1007/BF02936269; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; SALEMAA H, 1986, ESTUAR COAST SHELF S, V22, P335, DOI 10.1016/0272-7714(86)90047-8; SHAFIR A, 1980, CRUSTACEANA, V39, P185, DOI 10.1163/156854080X00076; SHEADER M, 1977, J MAR BIOL ASSOC UK, V57, P659, DOI 10.1017/S0025315400025108; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sokolowicz CC, 2013, J CRUSTACEAN BIOL, V33, P210, DOI 10.1163/1937240X-00002126; Stearns S, 1992, EVOLUTION LIFE HIST; Steel EA, 1961, J ZOOL LONDON, V137, P71, DOI [10.1111/j.1469-7998.1961.tb06162.x, DOI 10.1111/J.1469-7998.1961.TB06162.X]; STRONG KW, 1979, J EXP MAR BIOL ECOL, V41, P101, DOI 10.1016/0022-0981(79)90046-7; SUNDERLAND KD, 1976, J ANIM ECOL, V45, P487, DOI 10.2307/3887; Sutton S.L., 1984, Symposia of the Zoological Society of London, P269; SUTTON SL, 1968, J ANIM ECOL, V37, P425, DOI 10.2307/2958; Tanaka R, 2018, ENTOMOL SCI, V21, P198, DOI 10.1111/ens.12298; TELFORD SR, 1995, AFR J ECOL, V33, P236, DOI 10.1111/j.1365-2028.1995.tb00801.x; Thiel M, 2000, CRUSTACEAN ISS, V12, P211; Vogt G, 2016, J MORPHOL, V277, P1399, DOI 10.1002/jmor.20582; WAGELE JW, 1987, POLAR BIOL, V7, P11, DOI 10.1007/BF00286819; WAGELE JW, 1990, POLAR BIOL, V10, P521; Waller Analisa, 2016, International Journal of Biology, V8, P12; Warburg MR, 2013, INVERTEBR REPROD DEV, V57, P10, DOI 10.1080/07924259.2011.633620; WARBURG MR, 1995, J ARID ENVIRON, V29, P383, DOI 10.1016/S0140-1963(05)80116-8; WARBURG MR, 1995, J ARID ENVIRON, V31, P199, DOI 10.1006/jare.1995.0060; WILLOWS RI, 1987, J ANIM ECOL, V56, P331, DOI 10.2307/4818; Zaabar Wahiba, 2016, Open Journal of Ecology, V6, P206; Zaabar W, 2014, MAR ECOL-EVOL PERSP, V35, P367, DOI 10.1111/maec.12095 110 0 0 2 2 PENSOFT PUBL SOFIA 12 PROF GEORGI ZLATARSKI ST, SOFIA, 1700, BULGARIA 1313-2989 1313-2970 ZOOKEYS ZooKeys DEC 3 2018 801 337 357 10.3897/zookeys.801.23677 21 Zoology Zoology HC6LT WOS:000451914000015 30564042 DOAJ Gold, Green Published 2019-02-21 J Cabezas-Cartes, F; Boretto, JM; Ibarguengoytia, NR Cabezas-Cartes, Facundo; Boretto, Jorgelina M.; Ibarguengoytia, Nora R. Effects of Climate and Latitude on Age at Maturity and Longevity of Lizards Studied by Skeletochronology INTEGRATIVE AND COMPARATIVE BIOLOGY English Article LIFE-HISTORY EVOLUTION; GECKO HOMONOTA-DARWINI; FROG RANA-TEMPORARIA; REPRODUCTIVE-BIOLOGY; LACERTA-VIVIPARA; VULNERABLE LIZARD; TEMPERATE CLIMATE; GENUS PHYMATURUS; FOOD-CONSUMPTION; GROWTH Longevity and age at maturity are key life-history traits, directly linked to fitness attributes such as survival and reproductive output. It has been proposed that these traits are strongly influenced by environmental factors, such as temperature, seasonality, and precipitations, which determine the existence of a continuum of life-histories that goes from the "slow" life histories characterized by late maturity and high longevity of cold and highly seasonal climates to the "fast" life histories characterized by early maturity and low longevity, typical of the tropical climates. However, largescale studies that address these topics in lizards are scarce and most of them are based on heterogeneous data, which may overlook the real patterns. Using skeletochronology, we studied age at maturity and longevity of two species of Phymaturus lizards, Phymaturus aguanegra from the Andes and Phymaturus zapalensis from the Patagonian steppe (Argentina). Then, we confronted longevity and age at maturity in these species with published skeletochronologybased data on 46 other lizard species to examine possible association of these life-history traits with latitude and mean annual temperature, thermal amplitude, and precipitations. Both Phymaturus species showed late sexual maturity (7 and 8-9 years, respectively) and high longevity (16 and 14-15 years, respectively) in coincidence with the other species of the genus studied up to date. The phylogenetic comparative analysis revealed that the most important variable in the determination of longevity patterns in the species studied was latitude: at higher latitudes lizards tend to live longer. In contrast, age at sexual maturity was dependent on mean annual temperature most, especially in males, as lizards from hotter climates mature earlier than lizards from cold sites. [Cabezas-Cartes, Facundo; Boretto, Jorgelina M.; Ibarguengoytia, Nora R.] Univ Nacl Comahue, CONICET, INIBIOMA, Lab Ecofisiol & Hist Vida Reptiles, Quintral 1250, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina Cabezas-Cartes, F (reprint author), Univ Nacl Comahue, CONICET, INIBIOMA, Lab Ecofisiol & Hist Vida Reptiles, Quintral 1250, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. facundo.cabezas.cartes@gmail.com Cabezas-Cartes, Facundo/0000-0002-1493-4694 Fondo para la Investigacion Cientifica y Tecnologica [PICT 2010-1125, PICT 2014-3100]; Consejo Nacional de Investigaciones Cientificas y Tecnicas [PIP-11420110100033, PIP 11220120100676]; Universidad Nacional del Comahue [04/B196] This work was supported by Fondo para la Investigacion Cientifica y Tecnologica [grant numbers PICT 2010-1125, PICT 2014-3100], Consejo Nacional de Investigaciones Cientificas y Tecnicas [grant numbers PIP-11420110100033, PIP 11220120100676], and Universidad Nacional del Comahue [grant number 04/B196]. Acosta Juan Carlos, 2008, Herpetological Review, V39, P91; Adolph SC, 1996, OIKOS, V77, P267, DOI 10.2307/3546065; ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; Aguado C., 1983, IANIGLA, V4, P3; Castro SA, 2013, REV MEX BIODIVERS, V84, P1258, DOI 10.7550/rmb.36050; Cordoba MA, 2015, REV MEX BIODIVERS, V86, P1004, DOI 10.1016/j.rmb.2015.06.013; Andreone F, 2003, AMPHIBIA-REPTILIA, V24, P459, DOI 10.1163/156853803322763927; Andrews R.M., 1982, Biology of Reptilia, V13, P273; Angilletta MJ, 2006, J THERM BIOL, V31, P541, DOI 10.1016/j.jtherbio.2006.06.002; Angilletta MJ, 2009, BIO HABIT, P1; Angilletta MJ, 2004, AM NAT, V164, pE168, DOI 10.1086/425222; Arendt JD, 2011, EVOLUTION, V65, P43, DOI 10.1111/j.1558-5646.2010.01112.x; AVERY RA, 1971, J ANIM ECOL, V40, P351, DOI 10.2307/3250; Bauer AM, 2013, ZOOTAXA, V3599, P301, DOI 10.11646/zootaxa.3599.4.1; BAUWENS D, 1987, HOLARCTIC ECOL, V10, P120; Bestion E, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002281; Boretto JM, 2015, J ZOOL, V297, P77, DOI 10.1111/jzo.12245; Boretto JM, 2006, AMPHIBIA-REPTILIA, V27, P25, DOI 10.1163/156853806776052119; Boretto JM, 2007, AMPHIBIA-REPTILIA, V28, P1; Boretto JM, HERPETOL REV; Boretto JM, 2018, J COMP PHYSIOL B, V188, P491, DOI 10.1007/s00360-017-1136-z; Boretto JM, 2014, HERPETOL CONSERV BIO, V9, P170; Boretto JM, 2009, J HERPETOL, V43, P96, DOI 10.1670/07-241R2.1; Burnham K. P, 2002, MODEL SELECTION MULT; Cartes FC, 2010, HERPETOL CONSERV BIO, V5, P430; Cabezas-Cartes F, 2015, HERPETOL J, V25, P215; Cabrera A., 1976, ENCICLOPEDIA ARGENTI; Cabrera AL, 1978, GEOLOGICAL RELATIONS, P329; Cabrera AL., 1994, ENCICLOPEDIA ARGENTI; CASTANET J, 1994, GERONTOLOGY, V40, P174, DOI 10.1159/000213586; Castanet J, 1992, BONE, V7, P245; Castro SA, 2018, HERPETOL CONSERV BIO, V13, P283; Cei JM, 1986, REPTILES CTR CTR OES; Conti B, 2008, CELL MOL LIFE SCI, V65, P1626, DOI 10.1007/s00018-008-7536-1; Corbalan V, 2014, HERPETOL J, V24, P201; Cruz FB, 2009, ZOOLOGY, V112, P425, DOI 10.1016/j.zool.2009.03.004; de Buffrenil V, 2008, J MORPHOL, V269, P533, DOI 10.1002/jmor.10604; Debandi G, 2012, AUSTRAL ECOL, V37, P392, DOI 10.1111/j.1442-9993.2011.02295.x; Dillon ME, 2010, NATURE, V467, P704, DOI 10.1038/nature09407; Dunham A.E., 1988, Biology of Reptilia, V16, P441; Espinoza RE, 2004, P NATL ACAD SCI USA, V101, P16819, DOI 10.1073/pnas.0401226101; FAIRBAIRN DJ, 2007, SEX SIZE GENDER ROLE; Fisher DO, 2001, ECOLOGY, V82, P3531, DOI 10.2307/2680170; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Garland T, 2000, AM NAT, V155, P346, DOI 10.1086/303327; Gilbert B, 2010, J APPL ECOL, V47, P1071, DOI 10.1111/j.1365-2664.2010.01861.x; Guisan A, 2000, ECOL MODEL, V135, P147, DOI 10.1016/S0304-3800(00)00354-9; Guo XG, 2011, MOL PHYLOGENET EVOL, V61, P400, DOI 10.1016/j.ympev.2011.06.022; Halloy Monique, 2013, Cuad. herpetol., V27, P15; Healy K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0298; HENLE K, 1989, OECOLOGIA, V78, P521, DOI 10.1007/BF00378744; Heulin B, 1997, HERPETOLOGICA, V53, P432; Horvathova T, 2013, ECOL EVOL, V3, P2424, DOI 10.1002/ece3.613; HUEY RB, 1979, AM ZOOL, V19, P357; Hughes KA, 2005, ANNU REV ENTOMOL, V50, P421, DOI 10.1146/annurev.ento.50.071803.130409; HURVICH CM, 1989, BIOMETRIKA, V76, P297, DOI 10.1093/biomet/76.2.297; Ibarguengoytia NR, 2007, J HERPETOL, V41, P72, DOI 10.1670/0022-1511(2007)41[72:RBOTSG]2.0.CO;2; Jongman R, 1995, DATA ANAL COMMUNITY; Jonsson KI, 2009, ECOGRAPHY, V32, P831, DOI 10.1111/j.1600-0587.2009.05352.x; Karl I, 2009, FUNCT ECOL, V23, P1132, DOI 10.1111/j.1365-2435.2009.01607.x; Kozlowski J, 2004, INTEGR COMP BIOL, V44, P480, DOI 10.1093/icb/44.6.480; Kubisch EL, 2016, CAN J ZOOL, V94, P49, DOI 10.1139/cjz-2015-0024; Kubisch E, 2012, J HERPETOL, V46, P587, DOI 10.1670/10-277; Lagarde FR, 2003, ECOGRAPHY, V26, P236, DOI 10.1034/j.1600-0587.2003.03365.x; LECLAIR R, 1987, COPEIA, P361; Kubisch EL, 2016, J COMP PHYSIOL B, V186, P243, DOI 10.1007/s00360-015-0952-2; Ljubuncic P, 2009, GERONTOLOGY, V55, P205, DOI 10.1159/000200772; LOVICH JE, 1992, GROWTH DEVELOP AGING, V56, P269; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; Martoja R., 1970, TECNICAS HISTOLOGIA; Mesquita DO, 2016, AM NAT, V187, P689, DOI 10.1086/686055; Mesquita DO, 2016, AUSTRAL ECOL, V41, P1, DOI 10.1111/aec.12276; Miaud C, 1999, J ZOOL, V249, P61, DOI 10.1111/j.1469-7998.1999.tb01060.x; Montgomery D, 1992, INTRO LINEAR REGRESS; Morando M, 2013, MOL PHYLOGENET EVOL, V66, P694, DOI 10.1016/j.ympev.2012.10.019; Movia C, 1982, ESTUDIO VEGETACION N; Niewiarowski PH, 2001, AM NAT, V157, P421, DOI 10.1086/319321; Olsson M, 1999, COPEIA, P794; Orme D., 2013, CAPER COMP ANAL PHYL; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Piantoni C, 2006, AMPHIBIA-REPTILIA, V27, P385, DOI 10.1163/156853806778189981; Pinch FC, 2003, J HERPETOL, V37, P671, DOI 10.1670/183-02; Pyron RA, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-93; R Development Core Team, 2017, R LANG ENV STAT COMP; Ragland GJ, 2008, EVOL ECOL RES, V10, P29; Ramilo EJ, 1993, PLAN GEN MANEJO PARQ; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Roff DA, 2006, J EVOLUTION BIOL, V19, P1920, DOI 10.1111/j.1420-9101.2006.01155.x; Roff Derek A., 1992; Scharf I, 2015, GLOBAL ECOL BIOGEOGR, V24, P396, DOI 10.1111/geb.12244; Schemske DW, 2009, ANNU REV ECOL EVOL S, V40, P245, DOI 10.1146/annurev.ecolsys.39.110707.173430; Sears MW, 2004, INTEGR COMP BIOL, V44, P433, DOI 10.1093/icb/44.6.433; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; Sinervo B, 2010, SCIENCE, V328, P894, DOI 10.1126/science.1184695; SMIRINA EM, 1994, GERONTOLOGY, V40, P133, DOI 10.1159/000213583; SMITH GR, 1994, COPEIA, P1007; Sohal R.S., 1986, P23; Sorci G, 1996, J ANIM ECOL, V65, P781, DOI 10.2307/5676; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; TAYLOR F, 1981, AM NAT, V117, P1, DOI 10.1086/283683; TINKLE DW, 1993, ECOLOGY, V74, P2413, DOI 10.2307/1939592; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; UETZ P, 2017, REPTILE DATABASE; Valcu M, 2014, ECOGRAPHY, V37, P930, DOI 10.1111/ecog.00929; Valenzano DR, 2006, AGING CELL, V5, P275, DOI 10.1111/j.1474-9726.2006.00212.x; VANDAMME R, 1991, FUNCT ECOL, V5, P507; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003; Vicenzi N, 2017, BIOL CONSERV, V206, P151, DOI 10.1016/j.biocon.2016.12.030; Videla F., 1983, DESERTA, V7, P192; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x; Winkler DW, 2002, P NATL ACAD SCI USA, V99, P13595, DOI 10.1073/pnas.212251999; Zar JH., 2009, BIOSTATISTICAL ANAL; Zug G. R., 2001, HERPETOLOGY INTRO BI 113 0 0 5 5 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. DEC 2018 58 6 1086 1097 10.1093/icb/icy119 12 Zoology Zoology HI6RY WOS:000456584300006 30307522 2019-02-21 J Wang, XN; Ding, HY; He, XG; Dai, Y; Zhang, Y; Ding, S Wang, Xiao-Ning; Ding, Hai-Yu; He, Xu-Gang; Dai, Yang; Zhang, Yuan; Ding, Sen Assessing Fish Species Tolerance in the Huntai River Basin, China: Biological Traits versus Weighted Averaging Approaches WATER English Article fish species tolerance; Huntai river basin; biological traits approach; weighted averaging method; water quality parameters; physical habitat factors LIFE-HISTORY TRAITS; STREAM FISH; FRESH-WATER; INDICATOR VALUES; CLIMATE-CHANGE; MACROINVERTEBRATE; INDEXES; VULNERABILITY; METRICS; THREATS Fish species tolerance used as a component of fish-index of biological integrity (F-IBI) can be problematic as it is usually classified using the historical data, data from literature or expert judgments. In this study, fish assemblages, water quality parameters and physical habitat factors from 206 sampling sites in the Huntai River Basin were analyzed to develop tolerance indicator values (TIVs) of fish based on a (F-b-TIVs) and the weighted averaging (WA) method (F-W-TIVs). The two quantitative methods for fish tolerance were then compared. The F-W-TIVs and F-b-TIVs of fish species were calculated separately using a WA inference model based on ten water quality parameters (WT, pH, DO, SC, TDS, NH3, NO2-, NO3-, TP, Cl-, and SO42-), and six biological traits (lithophilic spawning, benthic invertivores, cold water species, equilibrium or periodic life history strategies, families of Cottidae, and species distribution range). Fish species were then classified into biological traits approach three categories (tolerant species, moderately tolerant species, and sensitive species). The results indicated that only 30.3% fish species have the same classification based on F-W-TIVs and F-b-TIVs. However, the proportion of tolerant species based on two methods had a similar response to environmental stress, and these tolerant species were correlated with PCA axes 1 site scores obtained by (F-W-TIVs, p < 0.05, R-2 = 0.434; F-b-TIVs, p < 0.05, R-2 = 0.334) and not correlated with PCA axis 2 site scores (F-W-TIVs, p > 0.05, R-2 = 0.001; F-b-TIVs, p > 0.05, R-2 = 0.012) and PCA axis 3 site scores (F-W-TIVs, p > 0.05, R-2 = 0.000; F-b-TIVs, p > 0.05, R-2 = 0.013). The results of linear regression analyses indicated that F-b-TIVs can be used for the study of fish tolerance. Fish tolerance assessments based on F-W-TIVs requires long-term monitoring of fish assemblages and water quality parameters to provide sufficient data for quantitative studies. The F-b-TIV method relies on the accurate identification of fish traits by an ichthyologist. The two methods used in this study can provide methodological references for quantitative studies of fish tolerance in other regions, and are of great significance for the development of biological assessment tools. [Wang, Xiao-Ning; He, Xu-Gang] Huazhong Agr Univ, Coll Fisheries, Wuhan 430079, Hubei, Peoples R China; [Ding, Hai-Yu] Tech Univ Muenchen, Dept Ecol & Ecosyst Management, D-85354 Freising Weihenstephan, Germany; [Dai, Yang; Zhang, Yuan; Ding, Sen] Chinese Res Inst Environm Sci, State key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China Ding, S (reprint author), Chinese Res Inst Environm Sci, State key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China. xiaoninghzau@163.com; daiyang815@126.com; xgh@mail.hzau.edu.cn; haiyu.ding@gmail.com; zhangyuan@craes.org.cn; dingsen@mail.hzau.edu.cn National Natural Science Foundation of China [41571050]; Fundamental Research Funds for the Central Universities [2662015QD004] This study was supported by grants from the National Natural Science Foundation of China (41401066), the National Natural Science Foundation of China (41571050), and the Fundamental Research Funds for the Central Universities (2662015QD004). Barbour MT, 1999, RAPID BIOASSESSMENT; Beck MW, 2013, AQUAT BOT, V108, P16, DOI 10.1016/j.aquabot.2013.02.003; Benejam L, 2008, HYDROBIOLOGIA, V603, P197, DOI 10.1007/s10750-007-9272-1; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Bonada N, 2007, GLOBAL CHANGE BIOL, V13, P1658, DOI 10.1111/j.1365-2486.2007.01375.x; Brenner M, 2001, POLAR BIOL, V24, P502; Bressler DW, 2006, HYDROBIOLOGIA, V573, P155, DOI 10.1007/s10750-006-0266-1; Carlisle DM, 2008, J N AM BENTHOL SOC, V27, P16, DOI 10.1899/06-081.1; Carlisle DM, 2007, ECOL INDIC, V7, P22, DOI 10.1016/j.ecolind.2005.09.005; Casatti L., 2006, Braz. J. Biol., V66, P681, DOI 10.1590/S1519-69842006000400012; Casatti L, 2012, NEOTROP ICHTHYOL, V10, P205, DOI 10.1590/S1679-62252012000100020; Chessman BC, 2013, BIOL CONSERV, V160, P40, DOI 10.1016/j.biocon.2012.12.032; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; CSEPB (Chinese State Environment Protection Bureau), 2002, WAT WAST MON AN METH; Fedorenkova A, 2013, AQUAT INVASIONS, V8, P231, DOI 10.3391/ai.2013.8.2.10; Garcia RA, 2014, J BIOGEOGR, V41, P724, DOI 10.1111/jbi.12257; Goldstein RM, 2005, N AM J FISH MANAGE, V25, P180, DOI 10.1577/M04-042.1; Gonzalez-Suarez M, 2013, ECOSPHERE, V4, DOI 10.1890/ES12-00380.1; Hare JA, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146756; Hermoso V, 2009, ECOL FRESHW FISH, V18, P269, DOI 10.1111/j.1600-0633.2008.00344.x; Huang Q, 2015, ECOL INDIC, V48, P649, DOI 10.1016/j.ecolind.2014.09.014; KARR JR, 1981, FISHERIES, V6, P21, DOI 10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2; Kennard MJ, 2005, FRESHWATER BIOL, V50, P174, DOI 10.1111/j.1365-2427.2004.01293.x; Kim J., 2011, ECOL ENV, V167, P309; Kramer DL, 1999, ENVIRON BIOL FISH, V55, P65, DOI 10.1023/A:1007481206399; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.1890/0012-9658(2002)083[1792:ICOSFC]2.0.CO;2; Lee HJ, 2015, ECOL EVOL, V5, P4277, DOI 10.1002/ece3.1691; Legendre P, 1998, NUMERICAL ECOLOGY; Lima AC, 2017, REV FISH BIOL FISHER, V27, P31, DOI 10.1007/s11160-016-9446-x; Lourenco LS, 2015, FISHERIES MANAG ECOL, V22, P143, DOI 10.1111/fme.12114; Maceda-Veiga A, 2011, ECOL INDIC, V11, P311, DOI 10.1016/j.ecolind.2010.05.009; Mandaville S.M., 2002, BENTHIC MACROINVERTE; Meador MR, 2007, ECOL INDIC, V7, P329, DOI 10.1016/j.ecolind.2006.02.004; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Minnesota Pollution Control Agency (MPCA), 2014, DEV FISH BAS IND BIO; Mohamed A.R.M., 2014, GLOB J BIOL AGR HLTH, V3, P32; Morgan IJ, 2001, GLOBAL CHANGE BIOL, V7, P345, DOI 10.1046/j.1365-2486.2001.00424.x; Murray KA, 2011, P ROY SOC B-BIOL SCI, V278, P1515, DOI 10.1098/rspb.2010.1872; O'Brien A, 2016, ECOL INDIC, V69, P722, DOI 10.1016/j.ecolind.2016.05.004; Ogren S.A., 2014, THESIS; Peres-Neto PR, 2012, ECOLOGY, V93, pS14, DOI 10.1890/11-0494.1; Poff L.R., 2012, CLIMATE CHANGE FRESH; Raburu PO, 2012, RIVER RES APPL, V28, P23, DOI 10.1002/rra.1428; Schreck CB, 2010, GEN COMP ENDOCR, V165, P549, DOI 10.1016/j.ygcen.2009.07.004; Segurado P, 2011, ECOL INDIC, V11, P1623, DOI 10.1016/j.ecolind.2011.04.006; Sievert NA, 2016, ECOL INDIC, V67, P403, DOI 10.1016/j.ecolind.2016.03.013; Stevens CE, 2010, WATER QUAL RES J CAN, V45, P35; Toft G, 2004, AQUAT TOXICOL, V70, P213, DOI 10.1016/j.aquatox.2004.09.002; Vinyoles D, 2010, J FISH BIOL, V77, P20, DOI 10.1111/j.1095-8649.2010.02653.x; Whittier TR, 2007, T AM FISH SOC, V136, P254, DOI 10.1577/T06-094.1; Wu W, 2015, ENVIRON MONIT ASSESS, V187, DOI 10.1007/s10661-015-4596-1; Xie Y.H., 2007, FRESHWATER FISHES NE; Zalack JT, 2010, ECOL INDIC, V10, P287, DOI 10.1016/j.ecolind.2009.06.003; Zhang Hao, 2015, Hupo Kexue, V27, P829, DOI 10.18307/2015.0509; [郑丙辉 ZHENG Binghui], 2007, [环境科学学报, Acta Scientiae Circumstantiae], V27, P928 56 0 0 0 0 MDPI BASEL ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND 2073-4441 WATER-SUI Water DEC 2018 10 12 1843 10.3390/w10121843 13 Water Resources Water Resources HG9GB WOS:000455314300138 DOAJ Gold 2019-02-21 J Tavalire, HF; Beechler, BR; Buss, PE; Gorsich, EE; Hoal, EG; le Roex, N; Spaan, JM; Spaan, RS; van Helden, PD; Ezenwa, VO; Jolles, AE Tavalire, Hannah F.; Beechler, Brianna R.; Buss, Peter E.; Gorsich, Erin E.; Hoal, Eileen G.; le Roex, Nikki; Spaan, Johannie M.; Spaan, Robert S.; van Helden, Paul D.; Ezenwa, Vanessa O.; Jolles, Anna E. Context-dependent costs and benefits of tuberculosis resistance traits in a wild mammalian host ECOLOGY AND EVOLUTION English Article African buffalo; coevolution; heritability; host-pathogen; pace-of-life BUFFALO SYNCERUS-CAFFER; AFRICAN BUFFALO; BOVINE TUBERCULOSIS; DISEASE RESISTANCE; IMMUNE DEFENSE; FITNESS COSTS; TRADE-OFFS; PARASITE SUSCEPTIBILITY; GENE-EXPRESSION; TOLERANCE Disease acts as a powerful driver of evolution in natural host populations, yet individuals in a population often vary in their susceptibility to infection. Energetic trade-offs between immune and reproductive investment lead to the evolution of distinct life history strategies, driven by the relative fitness costs and benefits of resisting infection. However, examples quantifying the cost of resistance outside of the laboratory are rare. Here, we observe two distinct forms of resistance to bovine tuberculosis (bTB), an important zoonotic pathogen, in a free-ranging African buffalo (Syncerus caffer) population. We characterize these phenotypes as "infection resistance," in which hosts delay or prevent infection, and "proliferation resistance," in which the host limits the spread of lesions caused by the pathogen after infection has occurred. We found weak evidence that infection resistance to bTB may be heritable in this buffalo population (h(2) = 0.10) and comes at the cost of reduced body condition and marginally reduced survival once infected, but also associates with an overall higher reproductive rate. Infection-resistant animals thus appear to follow a "fast" pace-of-life syndrome, in that they reproduce more quickly but die upon infection. In contrast, proliferation resistance had no apparent costs and was associated with measures of positive host health-such as having a higher body condition and reproductive rate. This study quantifies striking phenotypic variation in pathogen resistance and provides evidence for a link between life history variation and a disease resistance trait in a wild mammalian host population. [Tavalire, Hannah F.; Spaan, Johannie M.; Jolles, Anna E.] Oregon State Univ, Dept Integrat Biol, Corvallis, OR 97331 USA; [Tavalire, Hannah F.] Univ Oregon, Inst Ecol & Evolut, Eugene, OR 97403 USA; [Beechler, Brianna R.; Gorsich, Erin E.; Jolles, Anna E.] Oregon State Univ, Coll Vet Med, Corvallis, OR 97331 USA; [Buss, Peter E.] SANPARKS, Skukuza, South Africa; [Hoal, Eileen G.; le Roex, Nikki; van Helden, Paul D.] Stellenbosch Univ, South African Med Res Council, DST NRF Ctr Excellence Biomed TB Res, Div Mol Biol & Human Genet,Fac Hlth Sci, Tygerberg, South Africa; [Spaan, Robert S.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA; [Ezenwa, Vanessa O.] Univ Georgia, Coll Vet Med, Odum Sch Ecol, Athens, GA USA; [Ezenwa, Vanessa O.] Univ Georgia, Coll Vet Med, Dept Infect Dis, Athens, GA USA; [Tavalire, Hannah F.] Univ Oregon, Prevent Sci Inst, Eugene, OR 97403 USA; [Gorsich, Erin E.] Univ Warwick, Zeeman Inst Syst Biol & Infect Dis Epidemiol Res, Coventry, W Midlands, England; [Gorsich, Erin E.] Univ Warwick, Sch Life Sci, Coventry, W Midlands, England Tavalire, HF (reprint author), Univ Oregon, Prevent Sci Inst, Eugene, OR 97403 USA. tavalire@uoregon.edu Directorate for Biological Sciences [DEB-1102493/EF-0723928, EF-0723918]; Morris Animal Foundation [D15ZO-824] Directorate for Biological Sciences, Grant/Award Number: DEB-1102493/EF-0723928 and EF-0723918; Morris Animal Foundation, Grant Number: D15ZO-824 Adelman JS, 2013, AM NAT, V181, P674, DOI 10.1086/670024; Allander K, 1997, FUNCT ECOL, V11, P358, DOI 10.1046/j.1365-2435.1997.00095.x; Anderson CA, 2007, BEHAV GENET, V37, P668, DOI 10.1007/s10519-007-9163-2; ANTONOVICS J, 1994, P ROY SOC B-BIOL SCI, V257, P105, DOI 10.1098/rspb.1994.0101; Ardia DR, 2011, FUNCT ECOL, V25, P61, DOI 10.1111/j.1365-2435.2010.01759.x; Auld SKJR, 2013, J EVOLUTION BIOL, V26, P2479, DOI 10.1111/jeb.12243; Ayele WY, 2004, INT J TUBERC LUNG D, V8, P924; Beechler BR, 2015, TRANSBOUND EMERG DIS, V62, P24, DOI 10.1111/tbed.12197; Beechler BR, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0006122; Bengis Roy G., 1999, P101; Beraldi D, 2007, INT J PARASITOL, V37, P121, DOI 10.1016/j.ijpara.2006.09.007; Best A, 2008, P NATL ACAD SCI USA, V105, P20786, DOI 10.1073/pnas.0809558105; Best A, 2010, EVOLUTION, V64, P348, DOI 10.1111/j.1558-5646.2009.00819.x; Blanchet S, 2010, EVOL ECOL, V24, P1129, DOI 10.1007/s10682-010-9353-x; Bonneaud C, 2012, MOL ECOL, V21, P4787, DOI 10.1111/j.1365-294X.2012.05736.x; Bonneaud C, 2011, P NATL ACAD SCI USA, V108, P7866, DOI 10.1073/pnas.1018580108; Boots M, 1999, AM NAT, V153, P359, DOI 10.1086/303181; Boots M, 2013, PARASITE IMMUNOL, V35, P331, DOI 10.1111/pim.12055; Boots M, 1999, J THEOR BIOL, V201, P13, DOI 10.1006/jtbi.1999.1009; Boots M, 2011, AM NAT, V178, P214, DOI 10.1086/660833; Brown JKM, 2013, PLANT PATHOL, V62, P83, DOI 10.1111/ppa.12163; Bruns E, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-135; Budischak SA, 2018, FUNCT ECOL, V32, P324, DOI 10.1111/1365-2435.12951; Burdon JJ, 2003, GENOME BIOL, V4, DOI 10.1186/gb-2003-4-9-227; CARMICHAEL IH, 1977, S AFR J WILDL RES, V7, P45; Caron A, 2016, EMERG INFECT DIS, V22, P277, DOI 10.3201/eid2202.140864; Cobat A, 2009, J EXP MED, V206, P2583, DOI 10.1084/jem.20090892; Coop RL, 1999, VET PARASITOL, V84, P187, DOI 10.1016/S0304-4017(99)00070-9; Cross PC, 2009, J APPL ECOL, V46, P467, DOI 10.1111/j.1365-2664.2008.01589.x; Cross PC, 2004, ANN ZOOL FENN, V41, P879; de la Rua-Domenech R, 2006, TUBERCULOSIS, V86, P77, DOI 10.1016/j.tube.2005.05.002; Downs CJ, 2014, INTEGR COMP BIOL, V54, P340, DOI 10.1093/icb/icu082; Druilhe P, 2005, TRENDS PARASITOL, V21, P359, DOI 10.1016/j.pt.2005.06.011; Elias D, 2006, TROP MED INT HEALTH, V11, P551, DOI 10.1111/j.1365-3156.2006.01578.x; Ezenwa VO, 2015, SCIENCE, V347, P175, DOI 10.1126/science.1261714; Ezenwa VO, 2011, INTEGR COMP BIOL, V51, P540, DOI 10.1093/icb/icr058; Ezenwa VO, 2009, AFR J ECOL, V47, P476, DOI 10.1111/j.1365-2028.2008.00960.x; Ferrandon D, 2009, CELL HOST MICROBE, V6, P203, DOI 10.1016/j.chom.2009.08.010; French SS, 2007, FUNCT ECOL, V21, P1115, DOI 10.1111/j.1365-2435.2007.01311.x; Gallizzi K, 2008, BEHAV ECOL, V19, P1225, DOI 10.1093/beheco/arn083; Gandon S, 2014, J EVOLUTION BIOL, V27, P303, DOI 10.1111/jeb.12291; Glanzmann B, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-3364-0; Goldszmid RS, 2012, NAT IMMUNOL, V13, P932, DOI 10.1038/ni.2422; Gorsich EE, 2015, J ANIM ECOL, V84, P999, DOI 10.1111/1365-2656.12356; Goudet J, 2005, MOL ECOL NOTES, V5, P184, DOI 10.1111/j.1471-8278.2004.00828.x; Graham AL, 2010, SCIENCE, V330, P662, DOI 10.1126/science.1194878; Grant AJ, 2009, INFECT IMMUN, V77, P5608, DOI 10.1128/IAI.00827-09; Gurka MJ, 2006, AM STAT, V60, P19, DOI 10.1198/000313006X90396; Halley DJ, 2002, AFR J ECOL, V40, P97, DOI 10.1046/j.0141-6707.2001.00336.x; Hasselquist D, 2007, J ORNITHOL, V148, pS571, DOI 10.1007/s10336-007-0201-x; Hasu T, 2009, J EVOLUTION BIOL, V22, P699, DOI 10.1111/j.1420-9101.2009.01704.x; Hawley DM, 2011, INTEGR COMP BIOL, V51, P528, DOI 10.1093/icb/icr062; Hayward AD, 2011, J EVOLUTION BIOL, V24, P1664, DOI 10.1111/j.1420-9101.2011.02300.x; Hayward AD, 2014, AM NAT, V184, pS58, DOI 10.1086/676929; Jacques-Hamilton R, 2017, HORM BEHAV, V88, P31, DOI 10.1016/j.yhbeh.2016.09.005; Johnson PTJ, 2012, ECOL LETT, V15, P235, DOI 10.1111/j.1461-0248.2011.01730.x; Jolles AE, 2005, ECOLOGY, V86, P2358, DOI 10.1890/05-0038; Jolles AE, 2008, ECOLOGY, V89, P2239, DOI 10.1890/07-0995.1; Jolles AE, 2007, AFR J ECOL, V45, P398, DOI 10.1111/j.1365-2028.2006.00726.x; Jones BA, 2017, PARASITOLOGY, V144, P26, DOI 10.1017/S0031182016001414; Karen AM, 2011, TROP ANIM HEALTH PRO, V43, P5, DOI 10.1007/s11250-010-9675-2; KAUFMANN SHE, 1991, PATHOBIOLOGY, V59, P153, DOI 10.1159/000163634; Keane J, 1997, INFECT IMMUN, V65, P298; Kielian T, 2007, J IMMUNOL, V178, P4528, DOI 10.4049/jimmunol.178.7.4528; Knutie SA, 2017, OECOLOGIA, V183, P1031, DOI 10.1007/s00442-017-3822-7; Kornfeld H, 1999, CELL DEATH DIFFER, V6, P71, DOI 10.1038/sj.cdd.4400454; Lane-deGraaf KE, 2015, CONSERV GENET, V16, P289, DOI 10.1007/s10592-014-0658-0; Lange M, 2017, STOCH ENV RES RISK A, V31, P379, DOI 10.1007/s00477-016-1358-8; Lin PL, 2014, NAT MED, V20, P75, DOI 10.1038/nm.3412; Lippens C, 2016, INT J PARASITOL, V46, P133, DOI 10.1016/j.ijpara.2015.10.003; Little TJ, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1001006; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; Marzal A, 2013, J AVIAN BIOL, V44, P437, DOI 10.1111/j.1600-048X.2013.00178.x; Medzhitov R, 2012, SCIENCE, V335, P936, DOI 10.1126/science.1214935; Meyers BC, 2005, CURR OPIN PLANT BIOL, V8, P129, DOI 10.1016/j.pbi.2005.01.002; Michel AL, 2011, PREV VET MED, V98, P142, DOI 10.1016/j.prevetmed.2010.10.016; Mideo N, 2008, TRENDS ECOL EVOL, V23, P511, DOI 10.1016/j.tree.2008.05.009; Miller MR, 2007, EVOLUTION, V61, P2, DOI 10.1111/j.1558-5646.2007.00001.x; Miller MR, 2005, J THEOR BIOL, V236, P198, DOI 10.1016/j.jtbi.2005.03.005; Milligan BG, 2003, GENETICS, V163, P1153; Moreno-Rueda G, 2010, J EVOLUTION BIOL, V23, P2229, DOI 10.1111/j.1420-9101.2010.02090.x; Mukhopadhyay S, 2012, J CLIN PATHOL, V65, P51, DOI 10.1136/jclinpath-2011-200336; Naidoo R, 2014, AFR J ECOL, V52, P581, DOI 10.1111/aje.12163; Oppliger A, 1997, BEHAV ECOL, V8, P148, DOI 10.1093/beheco/8.2.148; Pew J, 2015, MOL ECOL RESOUR, V15, P557, DOI 10.1111/1755-0998.12323; Previtali MA, 2012, OIKOS, V121, P1483, DOI 10.1111/j.1600-0706.2012.020215.x; Qiu HY, 2008, J IMMUNOL, V181, P2092, DOI 10.4049/jimmunol.181.3.2092; R Core Team, 2016, R LANG ENV STAT COMP; Raberg L, 2007, SCIENCE, V318, P812, DOI 10.1126/science.1148526; Raja A, 2004, INDIAN J MED RES, V120, P213; Restif O, 2004, AM NAT, V164, pE90, DOI 10.1086/423713; Rodwell TC, 2001, J WILDLIFE DIS, V37, P258, DOI 10.7589/0090-3558-37.2.258; Rumble SM, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000386; Rushmore J, 2013, J ANIM ECOL, V82, P976, DOI 10.1111/1365-2656.12088; Russell DG, 2007, NAT REV MICROBIOL, V5, P39, DOI 10.1038/nrmicro1538; Rynkiewicz EC, 2013, PARASITOL RES, V112, P1763, DOI 10.1007/s00436-013-3335-1; Salvaudon L, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-189; Sandler NG, 2003, J IMMUNOL, V171, P3655, DOI 10.4049/jimmunol.171.7.3655; Sandmeier FC, 2014, INTEGR COMP BIOL, V54, P387, DOI 10.1093/icb/icu021; Saunders BM, 2000, IMMUNOL CELL BIOL, V78, P334, DOI 10.1046/j.1440-1711.2000.00933.x; Schneider MD, 2005, J DAIRY SCI, V88, P2253, DOI 10.3168/jds.S0022-0302(05)72901-5; Sears BF, 2011, TRENDS PARASITOL, V27, P382, DOI 10.1016/j.pt.2011.05.004; Silva MVB, 2012, ANIM GENET, V43, P63, DOI 10.1111/j.1365-2052.2011.02202.x; SIMMS EL, 1994, EVOLUTION, V48, P1973, DOI 10.1111/j.1558-5646.1994.tb02227.x; Soler JJ, 2003, P ROY SOC B-BIOL SCI, V270, P241, DOI 10.1098/rspb.2002.2217; Soler JJ, 2007, BEHAV ECOL, V18, P781, DOI 10.1093/beheco/arm045; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tavalire HF, 2016, INT J PARASITOL, V46, P123, DOI 10.1016/j.ijpara.2015.10.001; Tellier A, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-319; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Vale PF, 2012, J EVOLUTION BIOL, V25, P1888, DOI 10.1111/j.1420-9101.2012.02579.x; van Boven M, 2004, AM NAT, V163, P277, DOI 10.1086/381407; van Valen L., 1973, EVOL THEORY, V1, P1, DOI DOI 10.1017/CBO9781139173179; Wang S, 2012, NAT METHODS, V9, P808, DOI [10.1038/NMETH.2023, 10.1038/nmeth.2023]; Welburn SC, 2015, CLIN MICROBIOL INFEC, V21, P433, DOI 10.1016/j.cmi.2015.04.011; Yazdi MH, 2002, J DAIRY SCI, V85, P1563, DOI 10.3168/jds.S0022-0302(02)74226-4; Zeileis A., 2002, DIAGNOSTIC CHECKING, P7; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhao JH, 2007, J STAT SOFTW, V23, P1; Zhong DB, 2005, GENETICS, V169, P2127, DOI 10.1534/genetics.104.038794; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 122 0 0 2 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. DEC 2018 8 24 12712 12726 10.1002/ece3.4699 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology HF8WS WOS:000454523500032 30619576 DOAJ Gold, Green Published 2019-02-21 J Bobori, DC; Tsakoumis, E; Mouchlianitis, FA; Antonopoulou, E; Ganias, K Bobori, Dimitra C.; Tsakoumis, Emmanouil; Mouchlianitis, Foivos-Alexandros; Antonopoulou, Efthimia; Ganias, Konstantinos Growth and Reproductive Ecology of the Endemic Freshwater Fish Alburnus vistonicus Freyhof & Kottelat, 2007 (Actinopterygii: Cyprinidae) in Lake Vistonis System, Northern Greece ACTA ZOOLOGICA BULGARICA English Article life history strategies; environmental factors; Vistonis shemaja; salinisation; Greece LENGTH; AGE; MORTALITY; MATURITY; HISTORY We studied the age structure, growth rate and reproductive biology of the local Greek endemic fish Alburnus vistonicus Freyhof & Kottelat, 2007, collected in October 2014 - September 2015 from Lake Vistonis, Northern Greece. Sex was identified in 477 (53.4%) females and 416 (46.6%) males. A positive allometry in growth was detected for both sexes: b=3.4827 +/- 0.020, t-test P<0.0005 in females and b=3.4944 +/- 0.030, t-test P<0.0005 in males. Eight year classes were identified, with 1 and 3 being the dominant (23.9%). The highest value of the asymptotic length L-infinity (37.56 cm) was estimated for females, while growth parameter K was equal in both sexes (0.15 y(-1)). Gonadosomatic index (GSI) in females peaked in April and May, while in males the period of testicular growth was restricted between late March and early May. No difference in the size at maturity between males and females was detected, resulting in a length at maturity L50=11.3 +/- 0.38 cm for both sexes. The results of the study will provide insight into the population of Alburnus vistonicus and could assist the implementation of future management plans in the area for species' protection. [Bobori, Dimitra C.; Tsakoumis, Emmanouil; Mouchlianitis, Foivos-Alexandros; Antonopoulou, Efthimia; Ganias, Konstantinos] Aristotle Univ Thessaloniki, Sch Biol, Dept Zool, Thessaloniki 54124, Greece Bobori, DC (reprint author), Aristotle Univ Thessaloniki, Sch Biol, Dept Zool, Thessaloniki 54124, Greece. bobori@bio.auth.gr Management Body of the Delta Nestos and Lakes Vistonida - Ismarida The authors would like to thank the Management Body of the Delta Nestos and Lakes Vistonida - Ismarida for providing all the necessary permissions for fish sampling and for the technical and financial support. Moreover, the authors confirm that no conflict of interest exists that precludes publication. Appelberg M, 2000, SWEDISH STANDARD MET; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; BOBORI D. C., 2015, STUDY MANAGEMENT PRO; Brunel T, 2013, ICES J MAR SCI, V70, P270, DOI 10.1093/icesjms/fss184; CEN European Committee for Standardization, 2005, WAT QUAL SAMPL FISH, P3; DAOUTOPOULOS GA, 1990, J ENVIRON MANAGE, V31, P83, DOI 10.1016/S0301-4797(05)80016-7; FRANCIS RICC, 1990, J FISH BIOL, V36, P883, DOI 10.1111/j.1095-8649.1990.tb05636.x; FRASER C. M., 1916, T PACIFIC FISHERIES, V1915, P29; Freyhof J, 2007, ICHTHYOL EXPLOR FRES, V18, P205; Froese R, 2006, J APPL ICHTHYOL, V22, P241, DOI 10.1111/j.1439-0426.2006.00805.x; Froese R, 2000, J FISH BIOL, V56, P758, DOI 10.1006/jfbi.1999.1194; Froese R, 2011, ACTA ICHTHYOL PISCAT, V41, P261, DOI 10.3750/AIP2011.41.4.01; GRAYNOTH E, 1987, NEW ZEAL J MAR FRESH, V21, P15, DOI 10.1080/00288330.1987.9516195; Hunter A, 2015, FISH RES, V170, P14, DOI 10.1016/j.fishres.2015.05.004; Hunter John Roe, 2003, Fisken og Havet, V12, P57; Kleanthidis P.K., 1999, Naga, V22, P37; KOKKINAKIS A., 1992, THESIS; Koutrakis ET, 2004, J APPL ICHTHYOL, V20, P382, DOI 10.1111/j.1439-0426.2004.00583.x; LECREN ED, 1951, J ANIM ECOL, V20, P201; LEE R. M., 1920, MIN AGR FISH FISH 2, V4, P1; LEGAKIS A., 2009, RED DATA BOOK THREAT; Lorenzoni M, 2002, FISH RES, V59, P239, DOI 10.1016/S0165-7836(02)00013-9; Lowerre-Barbieri SK, 2011, MAR COAST FISH, V3, P71, DOI 10.1080/19425120.2011.556932; McPherson LR, 2011, J MAR BIOL ASSOC UK, V91, P1477, DOI 10.1017/S002531541100018X; Munro J. L, 1983, FISHBYTE, V1, P5; PAULY D, 1980, J CONSEIL, V39, P175; Sodhi N.S., 2009, PRINCETON GUIDE ECOL, P514; Uckun AA, 2015, TURK J ZOOL, V39, P1, DOI 10.3906/zoo-1211-13; Von Bertalanffy L., 1938, HUM BIOL, V10, P181, DOI DOI 10.2307/41447359; WINFIELD I. J., 1991, CYPRINIDS FISHES SYS, P457; Wootton R. J., 1992, FISH ECOLOGY; Zar J. H., 1999, BIOSTATISTICAL ANAL 32 0 0 0 0 INST ZOOLOGY, BAS SOFIA 1000 SOFIA, 1, TSAR OSVOBODITEL BLVD, SOFIA, 00000, BULGARIA 0324-0770 ACTA ZOOL BULGAR Acta Zool. Bulg. DEC 2018 70 4 569 574 6 Zoology Zoology HF8DY WOS:000454472300018 2019-02-21 J Kroeger, SB; Blumstein, DT; Armitage, KB; Reid, JM; Martin, JGA Kroeger, Svenja B.; Blumstein, Daniel T.; Armitage, Kenneth B.; Reid, Jane M.; Martin, Julien G. A. Cumulative reproductive costs on current reproduction in a wild polytocous mammal ECOLOGY AND EVOLUTION English Article disposable soma theory; individual quality; life-history strategies; long-lived rodent; reproductive trade-offs; resource allocation YELLOW-BELLIED MARMOTS; LIFE-HISTORY; SPATIOTEMPORAL VARIATION; INDIVIDUAL VARIATION; MATERNAL ALLOCATION; ENERGY ALLOCATION; BREEDING SUCCESS; MATING SUCCESS; FITNESS COSTS; SENESCENCE The cumulative cost of reproduction hypothesis predicts that reproductive costs accumulate over an individual's reproductive life span. While short-term costs have been extensively explored, the prevalence of cumulative long-term costs and the circumstances under which such costs occur alongside or instead of short-term costs, are far from clear. Indeed, few studies have simultaneously tested for both short-term and cumulative long-term reproductive costs in natural populations. Even in mammals, comparatively little is known about cumulative effects of previous reproduction, especially in species with high variation in offspring numbers, where costs could vary among successful reproductive events. Here, we quantify effects of previous short-term and cumulative long-term reproduction on current reproduction probability and litter size in wild female yellow-bellied marmots (Marmota flaviventer) and test how these effects vary with age and between two contrasting environments. We provide evidence for cumulative long-term effects: females that had both reproduced frequently and weaned large litters on average in previous years had decreased current reproduction probability. We found no evidence for short-term reproductive costs between reproductive bouts. However, females weaned larger litters when they had weaned larger litters on average in previous years and had lower current reproduction probability when their previous reproductive success was low. Together these results suggest that, alongside persistent among-individual variation, long-term reproductive history affects current reproductive success. [Kroeger, Svenja B.; Reid, Jane M.; Martin, Julien G. A.] Univ Aberdeen, Sch Biol Sci, Inst Biol & Environm Sci, Aberdeen, Scotland; [Blumstein, Daniel T.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA USA; [Blumstein, Daniel T.] Rocky Mt Biol Labs, Crested Butte, CO USA; [Armitage, Kenneth B.] Univ Kansas, Ecol & Evolutionary Biol Dept, Lawrence, KS 66045 USA Kroeger, SB (reprint author), Univ Stirling, Sch Nat Sci, Biol & Environm Sci, Stirling, Scotland. svenja.kroeger@stir.ac.uk Marie-Curie Fellowship; UCLA; Rocky Mountain Biological Laboratory Research Fellowship; NSF [IDBR-0754247, DEB-1119660, DBI 0242960, DBI 0731346]; Natural Environment Research Council [NE/L50175X/1]; National Geographic Society Marie-Curie Fellowship; UCLA; Rocky Mountain Biological Laboratory Research Fellowship; NSF, Grant/Award Number: IDBR-0754247, DEB-1119660, DBI 0242960 and DBI 0731346; Natural Environment Research Council, Grant/Award Number: NE/L50175X/1; National Geographic Society Armitage KB, 2000, P NATL ACAD SCI USA, V97, P12149, DOI 10.1073/pnas.200196097; Armitage KB, 2014, MARMOT BIOLOGY: SOCIALITY, INDIVIDUAL FITNESS, AND POPULATION DYNAMICS, P1, DOI 10.1017/CBO9781107284272; Arnould JPY, 1997, J ZOOL, V241, P649, DOI 10.1111/j.1469-7998.1997.tb05739.x; Aubry LM, 2009, ECOLOGY, V90, P2491, DOI 10.1890/08-1475.1; Barash D.P., 1973, Animal Behav Monogr, V6, P171, DOI 10.1016/0003-3472(73)90002-X; Bates D, 2015, J STAT SOFTW, V67, P1; Baudisch A, 2012, SCIENCE, V338, P618, DOI 10.1126/science.1226467; Bears H, 2009, J ANIM ECOL, V78, P365, DOI 10.1111/j.1365-2656.2008.01491.x; Berger V, 2015, ECOLOGY, V96, P46, DOI 10.1890/14-0774.1; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; Bleu J, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2600; Blumstein DT, 2010, J EVOLUTION BIOL, V23, P879, DOI 10.1111/j.1420-9101.2010.01967.x; Blumstein DT, 2009, J MAMMAL, V90, P1184, DOI 10.1644/08-MAMM-A-344.1; Blumstein DT, 2004, J MAMMAL, V85, P25, DOI 10.1644/1545-1542(2004)085<0025:YMMFHS>2.0.CO;2; Bouwhuis S, 2010, J ANIM ECOL, V79, P1251, DOI 10.1111/j.1365-2656.2010.01730.x; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Crawley M. J., 2007, R BOOK; Descamps S, 2009, P ROY SOC B-BIOL SCI, V276, P1129, DOI 10.1098/rspb.2008.1401; Engqvist L, 2005, ANIM BEHAV, V70, P967, DOI 10.1016/j.anbehav.2005.01.016; Fite JE, 2005, J HUM EVOL, V49, P122, DOI 10.1016/j.jhevol.2005.04.003; FRASE B A, 1980, Mammalian Species, P1, DOI 10.2307/3503965; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gelman A, 2008, STAT MED, V27, P2865, DOI 10.1002/sim.3107; GITTLEMAN JL, 1988, AM ZOOL, V28, P863; GREEN WCH, 1991, OECOLOGIA, V86, P521, DOI 10.1007/BF00318318; Hacklander K, 1999, BEHAV ECOL, V10, P592, DOI 10.1093/beheco/10.5.592; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Hamel S, 2012, ECOL APPL, V22, P1628; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Hodges CJ, 2015, J EVOLUTION BIOL, V28, P1383, DOI 10.1111/jeb.12662; Kennamer RA, 2016, AUK, V133, P439, DOI 10.1642/AUK-15-183.1; KILGORE DL, 1978, ECOLOGY, V59, P78, DOI 10.2307/1936633; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; KONIG B, 1988, J ZOOL, V216, P195; Kroeger SB, 2018, ECOL EVOL, V8, P2050, DOI 10.1002/ece3.3787; KRONMAL RA, 1993, J ROY STAT SOC A STA, V156, P379, DOI 10.2307/2983064; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Lemaitre JF, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0792; Martin JGA, 2011, ECOL LETT, V14, P576, DOI 10.1111/j.1461-0248.2011.01621.x; Martin JGA, 2010, AM NAT, V176, P414, DOI 10.1086/656267; Mcadam AG, 2007, ECOSCIENCE, V14, P362, DOI 10.2980/1195-6860(2007)14[362:LHOFRS]2.0.CO;2; McElligott AG, 2000, BEHAV ECOL SOCIOBIOL, V48, P203, DOI 10.1007/s002650000234; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; McNamara JM, 2009, P ROY SOC B-BIOL SCI, V276, P4061, DOI 10.1098/rspb.2009.0959; Monclus R, 2014, EVOL ECOL, V28, P721, DOI 10.1007/s10682-014-9705-z; MORRIS DW, 1992, EVOLUTION, V46, P1848, DOI 10.1111/j.1558-5646.1992.tb01173.x; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; NEE JA, 1969, J MAMMAL, V50, P756, DOI 10.2307/1378253; Neuhaus P, 2000, BEHAV ECOL SOCIOBIOL, V48, P75, DOI 10.1007/s002650000209; Nuckolls K. R., 2010, THESIS; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; O'Brien RM, 2007, QUAL QUANT, V41, P673, DOI 10.1007/s11135-006-9018-6; Oftedal O. T., 1985, PREGNANCY LACTATION; Orell M, 2002, J ANIM ECOL, V71, P55, DOI 10.1046/j.0021-8790.2001.00575.x; Ozgul A, 2006, ECOLOGY, V87, P1027, DOI 10.1890/0012-9658(2006)87[1027:SVISRI]2.0.CO;2; Ozgul A, 2007, OECOLOGIA, V154, P95, DOI 10.1007/s00442-007-0817-9; PACKARD GC, 1988, PHYSIOL ZOOL, V61, P1; Panagakis A, 2017, AM NAT, V189, P667, DOI 10.1086/691388; Patil VP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0119081; Pyle P, 1997, BEHAV ECOL, V8, P140, DOI 10.1093/beheco/8.2.140; R Core Team, 2018, R LANG ENV STAT COMP; Rabe-Hesketh S., 2012, MULTILEVEL LONGITUDI, VI; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Reid JM, 2003, J ANIM ECOL, V72, P765, DOI 10.1046/j.1365-2656.2003.00750.x; Ricklefs RE, 2008, FUNCT ECOL, V22, P379, DOI 10.1111/j.1365-2435.2008.01420.x; Ricklefs RE, 2007, ECOL LETT, V10, P867, DOI 10.1111/j.1461-0248.2007.01085.x; Robbins AM, 2006, AM J PHYS ANTHROPOL, V131, P511, DOI 10.1002/ajpa.20474; Skibiel AL, 2013, FUNCT ECOL, V27, P1382, DOI 10.1111/1365-2435.12130; Stearns S, 1992, EVOLUTION LIFE HIST; SYDEMAN WJ, 1991, ECOLOGY, V72, P2204, DOI 10.2307/1941571; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; Tettamanti F, 2015, OECOLOGIA, V178, P187, DOI 10.1007/s00442-014-3197-y; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANVUREN D, 1991, CAN J ZOOL, V69, P1755, DOI 10.1139/z91-244; Ward EJ, 2009, FRONT ZOOL, V6, DOI 10.1186/1742-9994-6-4; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; Whittingham MJ, 2006, J ANIM ECOL, V75, P1182, DOI 10.1111/j.1365-2656.2006.01141.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002 84 0 0 1 1 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. DEC 2018 8 23 11543 11553 10.1002/ece3.4597 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology HF3AF WOS:000454107200014 30598755 DOAJ Gold, Green Published 2019-02-21 J Brown, HN; Gale, BH; Johnson, JB; Belk, MC Brown, Haley N.; Gale, Brittany Herrod; Johnson, Jerald B.; Belk, Mark C. Testes mass in the livebearing fish Brachyrhaphis rhabdophora (Poeciliidae) varies hypoallometrically with body size but not between predation environments ECOLOGY AND EVOLUTION English Article body size; Brachyrhaphis rhabdophora; gonadosomatic index; life history; Poeciliidae; predation environment effects LIFE-HISTORY EVOLUTION; ALTERNATIVE MATING TACTICS; FEMALE MATE CHOICE; SPERM COMPETITION; REPRODUCTIVE TACTICS; OFFSPRING SIZE; GENETIC-BASIS; GUPPY; BEHAVIOR; PISCES In this study, we considered potential causes of variation in testis size in the livebearing fish Brachyrhaphis rhabdophora. We evaluated variation in testes mass among individual males and among populations that occupy different selective environments. First, we predicted that small males should allocate more to testes mass than large males (i.e., hypoallometric pattern) based on a sperm competition argument. Second, based on life history theory and associated differences in mortality rates between populations that coexist with many fish predators and those with few predators, we predicted that males in high-predation environments should allocate more to testes mass than males in habitats with few predators. Our results showed that small males allocated proportionally more to testes mass than larger males (slope of testes mass to body mass was hypoallometric). However, there was no effect of predator environment on testes mass independent of body size differences. In this system, size-specific patterns of reproductive allocation in males (hypoallometry) differ from that seen in females (hyperallometry). Allocation to testes mass may respond to differences in mortality rate through selection on body size. [Brown, Haley N.; Gale, Brittany Herrod; Johnson, Jerald B.; Belk, Mark C.] Brigham Young Univ, Dept Biol, Evolutionary Ecol Labs, Provo, UT 84602 USA; [Johnson, Jerald B.] Monte L Bean Life Sci Museum, Provo, UT USA Brown, HN (reprint author), Brigham Young Univ, Dept Biol, Evolutionary Ecol Labs, Provo, UT 84602 USA. brownnhaley@gmail.com Brown, Haley/0000-0002-8239-1804; Belk, Mark/0000-0002-0576-0717 Department of Biology; Graduate Studies Office at Brigham Young University; Department of Biology at the University of Vermont Department of Biology; Graduate Studies Office at Brigham Young University; Department of Biology at the University of Vermont Amrhein V, 2008, BEHAV ECOL SOCIOBIOL, V62, P1633, DOI 10.1007/s00265-008-0592-6; Andersson M., 1994, SEXUAL SELECTION, P624; Bashey F, 2006, EVOLUTION, V60, P348, DOI 10.1554/05-087.1; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Belk MC, 2010, OIKOS, V119, P163, DOI 10.1111/j.1600-0706.2009.17742.x; Bisazza A, 2001, BEHAV ECOL, V12, P59, DOI 10.1093/oxfordjournals.beheco.a000379; Bonenfant C, 2009, J ANIM ECOL, V78, P161, DOI 10.1111/j.1365-2656.2008.01477.x; Breed WG, 2000, J MAMMAL, V81, P758, DOI 10.1644/1545-1542(2000)081<0758:BMTMAS>2.3.CO;2; Bronikowski AM, 2002, ECOLOGY, V83, P2194, DOI 10.2307/3072051; Bussing W. A., 1998, FRESHWATER FISHES CO, P468; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cummings ME, 2009, J COMP PHYSIOL A, V195, P935, DOI 10.1007/s00359-009-0469-9; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; Evans JP, 2003, BEHAV ECOL, V14, P268, DOI 10.1093/beheco/14.2.268; Evans JP, 2001, P ROY SOC B-BIOL SCI, V268, P719, DOI 10.1098/rspb.2000.1577; Farr J.A., 1989, P91; FARR JA, 1980, BEHAVIOUR, V74, P38, DOI 10.1163/156853980X00311; Fitzpatrick JL, 2006, BEHAV ECOL, V17, P25, DOI 10.1093/beheco/ari090; Gale BH, 2013, ECOL EVOL, V3, P326, DOI 10.1002/ece3.459; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; GODIN JGJ, 1995, OECOLOGIA, V103, P224, DOI 10.1007/BF00329084; Godin JGJ, 1996, ANIM BEHAV, V51, P117, DOI 10.1006/anbe.1996.0010; GROSS MR, 1982, Z TIERPSYCHOL, V60, P1; Hankison SJ, 2007, ETHOLOGY, V113, P802, DOI 10.1111/j.1439-0310.2007.01388.x; HARCOURT AH, 1981, NATURE, V293, P55, DOI 10.1038/293055a0; Harvey P. H., 1984, SPERM COMPETITION EV, P589; Heinsbroek LTN, 2007, AQUACULTURE, V267, P175, DOI 10.1016/j.aquaculture.2007.03.028; Hettyey A., 2012, BEHAV ECOL SOCIOBIOL, V66, P71; Johnson JB, 2003, BEHAV ECOL, V14, P619, DOI 10.1093/beheco/arg046; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson Jerald B., 2011, P38; Johnson JB, 2009, ECOLOGY, V90, P2243, DOI 10.1890/07-1672.1; Jones A., 2014, THESIS, P5710; Kawase S, 2017, BIOL J LINN SOC, V122, P394, DOI 10.1093/biolinnean/blx075; Kilmer JT, 2017, J EVOLUTION BIOL, V30, P4, DOI 10.1111/jeb.12986; Langerhans RB, 2005, P NATL ACAD SCI USA, V102, P7618, DOI 10.1073/pnas.0500935102; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Littell RC, 1996, SAS SYSTEM MIXED MOD; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; Michl G, 2002, P NATL ACAD SCI USA, V99, P5466, DOI 10.1073/pnas.082036699; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Money DA, 2017, REV BIOL TROP, V65, P267, DOI 10.15517/rbt.v65i1.23861; Neff BD, 2004, EVOLUTION, V58, P1846; Neff BD, 2003, BEHAV ECOL, V14, P634, DOI 10.1093/beheco/arg032; Olsson M, 1997, P ROY SOC B-BIOL SCI, V264, P455, DOI 10.1098/rspb.1997.0065; PARKER GA, 1970, BIOL REV, V45, P525, DOI 10.1111/j.1469-185X.1970.tb01176.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK D, 1993, COPEIA, P103, DOI 10.2307/1446300; Riesch R, 2011, J EVOLUTION BIOL, V24, P596, DOI 10.1111/j.1420-9101.2010.02194.x; Riesch R, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0705-1; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Scantlebury M, 2008, PHYSIOL BEHAV, V94, P359, DOI 10.1016/j.physbeh.2008.02.003; Schradin C, 2010, ANIM BEHAV, V79, P195, DOI 10.1016/j.anbehav.2009.10.027; Smith AN, 2018, BIOL J LINN SOC, V124, P47, DOI 10.1093/biolinnean/bly025; Smith AN, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0143762; Smith CC, 2010, J EVOLUTION BIOL, V23, P1759, DOI 10.1111/j.1420-9101.2010.02041.x; Stockley P, 1997, AM NAT, V149, P933, DOI 10.1086/286031; Toivanen T, 2009, CAN J ZOOL, V87, P684, DOI 10.1139/Z09-055; Tomkins JL, 2002, ANIM BEHAV, V63, P1009, DOI 10.1006/anbe.2001.1994; Vrech DE, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094135; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Ziege M, 2009, FRONT ZOOL, V6, DOI 10.1186/1742-9994-6-17; ZIMMERER EJ, 1989, EVOLUTION, V43, P1298, DOI 10.1111/j.1558-5646.1989.tb02576.x 65 0 0 2 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. DEC 2018 8 23 11656 11662 10.1002/ece3.4618 7 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology HF3AF WOS:000454107200023 30598764 DOAJ Gold 2019-02-21 J Pigeault, R; Cozzarolo, CS; Choquet, R; Strehler, M; Jenkins, T; Delhaye, J; Bovet, L; Wassef, J; Glaizot, O; Christe, P Pigeault, R.; Cozzarolo, C. -S.; Choquet, R.; Strehler, M.; Jenkins, T.; Delhaye, J.; Bovet, L.; Wassef, J.; Glaizot, O.; Christe, P. Haemosporidian infection and co-infection affect host survival and reproduction in wild populations of great tits INTERNATIONAL JOURNAL FOR PARASITOLOGY English Article Co-infection; Haemoproteus; Leucocytozoon; Life-history traits; Parus major; Plasmodium; Trade-offs MALARIA PLASMODIUM-RELICTUM; GENOTYPE INFECTIONS; FOOD AVAILABILITY; CLUTCH SIZE; PARASITES; FITNESS; PREVALENCE; DIVERSITY; VIRULENCE; DISEASE Theoretical studies predict that parasitic infection may impact host longevity and ultimately modify the trade-off between reproduction and survival. Indeed, a host may adjust its energy allocation in current reproduction to balance the negative effects of parasitism on its survival prospects. However, very few empirical studies tested this prediction. Avian haemosporidian parasites provide an excellent opportunity to assess the influence of parasitic infection on both host survival and reproduction. They are represented by three main genera (Plasmodium. Haemoproteus and Leucocytozoon) and are highly prevalent in many bird populations. Here we provide the first known long-term field study (12 years) to explore the effects of haemosporidian parasite infection and co-infection on fitness in two populations of great tits (Parus major), using a multistate modeling framework. We found that while co-infection decreased survival probability, both infection and co-infection increased reproductive success. This study provides evidence that co-infections can be more virulent than single infections. It also provides support for the life-history theory which predicts that reproductive effort can be adjusted to balance one's fitness when survival prospects are challenged. (C) 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved. [Pigeault, R.; Cozzarolo, C. -S.; Strehler, M.; Jenkins, T.; Delhaye, J.; Bovet, L.; Wassef, J.; Christe, P.] Dept Ecol & Evolut, Lausanne, Switzerland; [Choquet, R.] Ctr Ecol Fonct & Evolut, UMR 5175, Montpellier, France; [Jenkins, T.; Glaizot, O.] Musee Cantonal zool, Lausanne, Switzerland; [Delhaye, J.] Univ Toulouse 3, Evolut & Diversite Biol, Toulouse, France Pigeault, R (reprint author), Dept Ecol & Evolut, Lausanne, Switzerland. romain.pigeault@unil.ch Choquet, Remi/F-6462-2011 Glaizot, Olivier/0000-0001-9116-3355 Swiss National Science Foundation [31003A-138187, 31003A-159600] Several people participated in the fieldwork, in particular the late Katia Iritano, Elise Blatti, Nicole Strepparava, Sophie Cotting, (saline Jalade, Francois Biollaz, Sebastien Biollay, Pauline de Coulon, Albertine Roulet, Lucile Auger, Fabrice Lalubin and Juan van Rooyen. The project was funded by the Swiss National Science Foundation (grant 31003A-138187, 31003A-159600). Abolins-Abols M, 2016, ECOL EVOL, V6, P6546, DOI 10.1002/ece3.2347; Agnew P, 2000, MICROBES INFECT, V2, P891, DOI 10.1016/S1286-4579(00)00389-0; Alizon S, 2013, ECOL LETT, V16, P556, DOI 10.1111/ele.12076; Arlettaz R, 2017, ECOL EVOL, V7, P4163, DOI 10.1002/ece3.2909; Asghar M, 2015, SCIENCE, V347, P436, DOI 10.1126/science.1261121; Asghar M, 2011, J AVIAN BIOL, V42, P530, DOI 10.1111/j.1600-048X.2011.05281.x; Atkinson CT, 2010, J AVIAN BIOL, V41, P357, DOI 10.1111/j.1600-048X.2009.04915.x; Atkinson CT, 1995, PARASITOLOGY, V111, pS59, DOI 10.1017/S003118200007582X; Bailly J, 2016, J ORNITHOL, V157, P377, DOI 10.1007/s10336-015-1293-3; Bates D, 2015, J STAT SOFTW, V67, P1; Bensch S, 2007, J ANIM ECOL, V76, P112, DOI 10.1111/j.1365-2656.2006.01176.x; Bensch S, 2009, MOL ECOL RESOUR, V9, P1353, DOI 10.1111/j.1755-0998.2009.02692.x; Bolker B. M, 2008, ECOLOGICAL MODELS DA; Bose J, 2016, ZOOLOGY, V119, P339, DOI 10.1016/j.zool.2016.06.003; Brannelly LA, 2016, OPEN BIOL, V6, DOI 10.1098/rsob.150251; Brown CR, 1999, CONDOR, V101, P230, DOI 10.2307/1369986; Burnham K. P, 2002, MODEL SELECTION MULT; Choquet R., 2009, ENV ECOLOGICAL STAT, V3, P207; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Christensen R. H. B., 2015, ORDINAL REGRESSION M; Clark NJ, 2016, J ANIM ECOL, V85, P1461, DOI 10.1111/1365-2656.12578; Conn PB, 2009, J APPL ECOL, V46, P486, DOI 10.1111/j.1365-2664.2008.01597.x; Crawley M. J, 2012, R BOOK; de Jong ME, 2014, J AVIAN BIOL, V45, P179, DOI 10.1111/j.1600-048X.2013.00199.x; Fargallo JA, 2004, ECOSCIENCE, V11, P168, DOI 10.1080/11956860.2004.11682821; Faustino CR, 2004, J ANIM ECOL, V73, P651, DOI 10.1111/j.0021-8790.2004.00840.x; Gandon S, 2002, AM NAT, V160, P374, DOI 10.1086/341525; Garbutt J, 2011, ECOL LETT, V14, P765, DOI 10.1111/j.1461-0248.2011.01638.x; Graham AL, 2008, P NATL ACAD SCI USA, V105, P566, DOI 10.1073/pnas.0707221105; Harrigan RJ, 2014, EVOL APPL, V7, P799, DOI 10.1111/eva.12176; Hellard E, 2015, TRENDS PARASITOL, V31, P640, DOI 10.1016/j.pt.2015.07.005; Hellgren O, 2004, J PARASITOL, V90, P797, DOI 10.1645/GE-184R1; Hodgson DJ, 2004, J EVOLUTION BIOL, V17, P1018, DOI 10.1111/j.1420-9101.2004.00750.x; Jennelle CS, 2007, ECOL APPL, V17, P154, DOI 10.1890/1051-0761(2007)017[0154:SDPADP]2.0.CO;2; Johnson PTJ, 2012, P NATL ACAD SCI USA, V109, P9006, DOI 10.1073/pnas.1201790109; Kitaysky AS, 2010, FUNCT ECOL, V24, P625, DOI 10.1111/j.1365-2435.2009.01679.x; Knowles SCL, 2010, J EVOLUTION BIOL, V23, P557, DOI 10.1111/j.1420-9101.2009.01920.x; Knowles SCL, 2011, INT J PARASITOL, V41, P1041, DOI 10.1016/j.ijpara.2011.05.009; Krama T, 2015, J ORNITHOL, V156, P1075, DOI 10.1007/s10336-015-1206-5; Lachish S, 2011, J ANIM ECOL, V80, P1196, DOI 10.1111/j.1365-2656.2011.01836.x; Martinez-de la Puente J, 2010, BIOL LETTERS, V6, P663, DOI 10.1098/rsbl.2010.0046; MARTINS TLF, 1993, BEHAV ECOL, V4, P213, DOI 10.1093/beheco/4.3.213; Marzal A, 2008, J EVOLUTION BIOL, V21, P979, DOI 10.1111/j.1420-9101.2008.01545.x; Merino S, 2000, P ROY SOC B-BIOL SCI, V267, P2507, DOI 10.1098/rspb.2000.1312; MICHALAKIS Y, 1994, PARASITE, V1, P291, DOI 10.1051/parasite/1994014291; Moller A. P, 1990, POPULATION BIOL PASS, DOI [10.1007/978-3-642-75110-3_23, DOI 10.1007/978-3-642-75110-3_23]; Muturi EJ, 2008, PARASITOL RES, V102, P175, DOI 10.1007/s00436-007-0779-1; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Norte AC, 2009, IBIS, V151, P677, DOI 10.1111/j.1474-919X.2009.00960.x; Oppliger A, 1997, BEHAV ECOL, V8, P148, DOI 10.1093/beheco/8.2.148; Pacheco MA, 2018, INT J PARASITOL, V48, P657, DOI 10.1016/j.ijpara.2018.02.003; Palinauskas V, 2008, EXP PARASITOL, V120, P372, DOI 10.1016/j.exppara.2008.09.001; Palinauskas V, 2011, EXP PARASITOL, V127, P527, DOI 10.1016/j.exppara.2010.10.007; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Perrin N, 1996, OIKOS, V75, P317, DOI 10.2307/3546256; Petney TN, 1998, INT J PARASITOL, V28, P377, DOI 10.1016/S0020-7519(97)00189-6; Pigeault R, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2014.0300; Podmokla E, 2017, J AVIAN BIOL, V48, P796, DOI 10.1111/jav.01108; Podmokla E, 2014, J ORNITHOL, V155, P721, DOI 10.1007/s10336-014-1058-4; Pradel R, 2003, BIOMETRICS, V59, P43, DOI 10.1111/1541-0420.00006; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; Senar J. C., 2004, Animal Biodiversity and Conservation, V27, P133; Siikamaki P, 1997, FUNCT ECOL, V11, P176, DOI 10.1046/j.1365-2435.1997.00075.x; Sorensen MC, 2016, J AVIAN BIOL, V47, P575, DOI 10.1111/jav.00870; Stearns S, 1992, EVOLUTION LIFE HIST; Stjernman M, 2004, P ROY SOC B-BIOL SCI, V271, P2387, DOI 10.1098/rspb.2004.2883; Stjernman M, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002463; Taylor LH, 1997, PARASITOLOGY, V115, P121, DOI 10.1017/S0031182097001145; Taylor LH, 1998, EVOLUTION, V52, P583, DOI 10.1111/j.1558-5646.1998.tb01656.x; Thumbi SM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0076324; Valkiunas G, 2006, J PARASITOL, V92, P418, DOI 10.1645/GE-3547RN.1; Valkiunas G, 2005, AVIAN MALARIA PARASI; van Rooyen J, 2013, PARASITE VECTOR, V6, DOI 10.1186/1756-3305-6-139; van Rooyen J, 2013, MALARIA J, V12, DOI 10.1186/1475-2875-12-40; Videvall E, 2015, MOL BIOL EVOL, V32, P1255, DOI 10.1093/molbev/msv016; Zylberberg M, 2015, PARASITOLOGY, V142, P1033, DOI 10.1017/S0031182015000256 79 0 0 7 7 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0020-7519 1879-0135 INT J PARASITOL Int. J. Parasit. DEC 2018 48 14 1079 1087 10.1016/j.ijpara.2018.06.007 9 Parasitology Parasitology HE6CX WOS:000453492000002 30391229 2019-02-21 J Gislason, A Gislason, Astthor Life cycles and seasonal vertical distributions of copepods in the Iceland Sea POLAR BIOLOGY English Article Sub-Arctic; Calanus; Metridia; Ontogenetic migration OITHONA-SIMILIS CYCLOPOIDA; ARCTIC WATERS NORTH; CALANUS-FINMARCHICUS; METRIDIA-LONGA; ECOLOGICAL INVESTIGATIONS; PSEUDOCALANUS-MINUTUS; ZOOPLANKTON COMMUNITY; GONAD MATURATION; BARENTS SEA; FATTY-ACID The sub-Arctic Iceland Sea is an important feeding area for the Icelandic capelin stock with copepods as a major food item. Information on the life history of copepods in the area is limited, and therefore the major aim of the present paper is to describe the population development and ontogenetic vertical migrations of dominant copepods in the area. Depth stratified samples were collected on six cruises covering all seasons of the year from 2006 to 2008. Calanus hyperboreus dominated the biomass (45% of copepods), with C. finmarchicus ranking second (28%) and Metridia longa third (17%). The copepods differed in their life history strategies. C. hyperboreus is unique in that it has the deepest winter distribution (800-1000m), reproduces at depth in February-March in the absence of phytoplankton food, and spends relatively short time in the surface layers during summer. C. finmarchicus also hibernates at depth, however much shallower (200-600m), and the reproduction at the surface in May-June is timed to the productive period of phytoplankton. A 2- to 3-year life cycle is proposed for C. hyperboreus and a 1year for C. finmarchicus. Pseudocalanus spp. appear to have a similar life history as C. finmarchicus, while occupying intermediate depths (400-1000m) during the overwintering period. The life history of the omnivorous species M. longa appears relatively decoupled from the phytoplankton spring bloom. The same applies to the omnivorous species Oithona spp. and Oncaea spp. The information presented adds to the comparative description and understanding of copepods in sub-Arctic areas in general. [Gislason, Astthor] Marine & Freshwater Res Inst, POB 1390, IS-121 Reykjavik, Iceland Gislason, A (reprint author), Marine & Freshwater Res Inst, POB 1390, IS-121 Reykjavik, Iceland. astthor.gislason@hafogvatn.is Arnkvaern G, 2005, POLAR BIOL, V28, P528, DOI 10.1007/s00300-005-0715-8; Ashjian CJ, 2003, DEEP-SEA RES PT I, V50, P1235, DOI 10.1016/S0967-0637(03)00129-8; Astthorsson OS, 2003, J PLANKTON RES, V25, P843, DOI 10.1093/plankt/25.7.843; Astthorsson OS, 1997, SARSIA, V82, P81, DOI 10.1080/00364827.1997.10413641; Auel Holger, 1999, Berichte zur Polarforschung, V319, P1; Blindheim J, 2005, GEOPH MONOG SERIES, V158, P11; BOLLENS SM, 1989, J PLANKTON RES, V11, P1047, DOI 10.1093/plankt/11.5.1047; Campbell RG, 2001, MAR ECOL PROG SER, V221, P161, DOI 10.3354/meps221161; COLTON JB, 1980, CAN J FISH AQUAT SCI, V37, P606, DOI 10.1139/f80-077; CONOVER RJ, 1993, ARCTIC, V46, P303; CONOVER RJ, 1988, HYDROBIOLOGIA, V167, P127, DOI 10.1007/BF00026299; Corkett C. J., 1986, SYLLOGEUS, P539; Daase M, 2008, MAR BIOL RES, V4, P193, DOI 10.1080/17451000801907948; Dale T, 1999, MAR ECOL PROG SER, V179, P113, DOI 10.3354/meps179113; DAVIS CS, 1984, MAR BIOL, V82, P31, DOI 10.1007/BF00392761; Diel S., 1991, REP POLAR RES, V88, P1; DIGBY PSB, 1954, J ANIM ECOL, V23, P298, DOI 10.2307/1984; Falk-Petersen S, 2009, MAR BIOL RES, V5, P18, DOI 10.1080/17451000802512267; Falkenhaug T, 1997, MAR ECOL PROG SER, V149, P105, DOI 10.3354/meps149105; FROST BW, 1989, CAN J ZOOL, V67, P525, DOI 10.1139/z89-077; Gislason A, 2000, ICES J MAR SCI, V57, P1727, DOI 10.1006/jmsc.2000.0951; Gislason A, 1998, POLAR BIOL, V20, P85, DOI 10.1007/s003000050280; Gislason A, 2007, MAR BIOL, V150, P1253, DOI 10.1007/s00227-006-0400-7; Gislason A, 2012, ICES J MAR SCI, V69, P1263, DOI 10.1093/icesjms/fss070; Gislason A, 2008, MAR BIOL RES, V4, P401, DOI 10.1080/17451000802232882; Grondahl F, 1986, SYLLOGEUS, P311; GRONVIK S, 1984, J EXP MAR BIOL ECOL, V80, P93, DOI 10.1016/0022-0981(84)90096-0; Hagen W, 2001, ZOOL-ANAL COMPLEX SY, V104, P313, DOI 10.1078/0944-2006-00037; HAQ SM, 1967, LIMNOL OCEANOGR, V12, P40, DOI 10.4319/lo.1967.12.1.0040; HASSEL A, 1986, J PLANKTON RES, V8, P329, DOI 10.1093/plankt/8.2.329; Head E.J.H., 2008, NW ATLANTIC FISHERY, V39, P49, DOI DOI 10.2960/J.V39.M600; Head EJH, 2003, PROG OCEANOGR, V59, P1, DOI 10.1016/S0079-6611(03)00111-3; Heath MR, 2004, ICES J MAR SCI, V61, P698, DOI 10.1016/j.icesjms.2004.03.013; Hirche HJ, 1996, POLAR BIOL, V16, P209, DOI 10.1007/s003000050046; Hirche HJ, 1997, MAR BIOL, V128, P607, DOI 10.1007/s002270050127; Hirche HJ, 2003, MAR BIOL, V143, P769, DOI 10.1007/s00227-003-1122-8; Hopcroft RR, 2005, POLAR BIOL, V28, P198, DOI 10.1007/s00300-004-0680-7; Kaartvedt S, 1996, OPHELIA, V44, P145, DOI 10.1080/00785326.1995.10429844; Kattner G, 2003, POLAR BIOL, V26, P666, DOI 10.1007/s00300-003-0540-x; Kosobokova K, 2000, DEEP-SEA RES PT I, V47, P2029, DOI 10.1016/S0967-0637(00)00015-7; KWASNIEWSKI S, 1990, OCEANOGRAFIA, V12, P7; Lischka S, 2005, POLAR BIOL, V28, P910, DOI 10.1007/s00300-005-0017-1; Lischka S, 2007, MAR BIOL, V150, P443, DOI 10.1007/s00227-006-0359-4; LONGHURST A, 1992, J PLANKTON RES, V14, P1495, DOI 10.1093/plankt/14.11.1495; Madsen SD, 2001, MAR BIOL, V139, P75; MATTHEWS JBL, 1978, OCEANOL ACTA, V1, P277; MCLAREN IA, 1989, CAN J ZOOL, V67, P559, DOI 10.1139/z89-079; Melle W, 1998, MAR ECOL PROG SER, V169, P211, DOI 10.3354/meps169211; Melle W, 2014, PROG OCEANOGR, V129, P244, DOI 10.1016/j.pocean.2014.04.026; MOTODA SIGERU, 1959, MEM FAC FISH HOKKAIDO UNIV, V7, P73; MUMM N, 1993, POLAR BIOL, V13, P451; NICHOLS JH, 1991, J PLANKTON RES, V13, P661, DOI 10.1093/plankt/13.3.661; NORRBIN MF, 1991, POLAR RES, V10, P421, DOI 10.1111/j.1751-8369.1991.tb00663.x; NORRBIN MF, 1990, MAR BIOL, V105, P205, DOI 10.1007/BF01344288; Palsson OK, 2012, ICES J MAR SCI, V69, P1242, DOI 10.1093/icesjms/fss071; Pearre S, 2003, BIOL REV, V78, P1, DOI 10.1017/S146479310200595X; Petursdottir H, 2012, THESIS; Renz J, 2007, MAR BIOL, V151, P515, DOI 10.1007/s00227-006-0510-2; Richter C., 1994, BER POLARFORSCH, V154, P1; Sigurdsson T, 1991, ICES COUNC M; Smith S.L., 1990, P527; STEFANSSON U, 1962, RIT FISKIDEILDAR, V3, P1; TANDE KS, 1983, J EXP MAR BIOL ECOL, V71, P43, DOI 10.1016/0022-0981(83)90103-X; Valdimarsson H., 1999, RIT FISKIDEILDAR, V16, P23; Visser Andre W., 1999, Fisheries Oceanography, V8, P100, DOI 10.1046/j.1365-2419.1999.00001.x 65 0 0 3 3 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. DEC 2018 41 12 2575 2589 10.1007/s00300-018-2392-4 15 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology HD2XW WOS:000452376500015 2019-02-21 J Gobin, J; Lester, NP; Fox, MG; Dunlop, ES Gobin, Jenilee; Lester, Nigel P.; Fox, Michael G.; Dunlop, Erin S. Ecological change alters the evolutionary response to harvest in a freshwater fish ECOLOGICAL APPLICATIONS English Article density-dependent growth; eco-evolutionary dynamics; fisheries-induced evolution; individual-based model; Lake Huron; probabilistic maturation reaction norm; regime change; sea lamprey; stock-recruitment relationship DENSITY-DEPENDENT GROWTH; LIFE-HISTORY EVOLUTION; LAKE WHITEFISH; CONTEMPORARY EVOLUTION; SIZE; POPULATION; MANAGEMENT; INVASION; RECRUITMENT; SELECTIVITY Harvesting can induce rapid evolution in animal populations, yet the role of ecological change in buffering or enhancing that response is poorly understood. Here, we developed an eco-genetic model to examine how ecological changes brought about by two notorious invasive species, zebra and quagga mussels, influence harvest-induced evolution and resilience in a freshwater fish. Our study focused on lake whitefish (Coregonus clupeaformis) in the Laurentian Great Lakes, where the species supports valuable commercial and subsistence fisheries, and where the invasion of dreissenid (zebra and quagga) mussels caused drastic shifts in ecosystem productivity. Using our model system, we predicted faster rates of evolution of maturation reaction norms in lake whitefish under pre-invasion ecosystem conditions when growth and recruitment of young to the population were high. Slower growth rates that occurred under post-invasion conditions delayed when fish became vulnerable to the fishery, thus decreasing selection pressure and lessening the evolutionary response to harvest. Fishing with gill nets and traps nets generally selected for early maturation at small sizes, except when fishing at low levels with small mesh gill nets under pre-invasion conditions; in this latter case, evolution of delayed maturation was predicted. Overall, the invasion of dreissenid mussels lessened the evolutionary response to harvest, while also reducing the productivity and commercial yield potential of the stock. These results demonstrate how ecological conditions shape evolutionary outcomes and how invasive species can have a direct effect on evolutionary responses to harvest and sustainability. [Gobin, Jenilee; Dunlop, Erin S.] Trent Univ, Environm & Life Sci Grad Program, 1600 West Bank Dr, Peterborough, ON K9J 7B8, Canada; [Lester, Nigel P.; Dunlop, Erin S.] Trent Univ, Ontario Minist Nat Resources & Forestry, Aquat Res & Monitoring Sect, 2140 East Bank Dr,DNA Bldg, Peterborough, ON K9J 8N8, Canada; [Fox, Michael G.] Trent Univ, Trent Sch Environm, 1600 West Bank Dr, Peterborough, ON K9J 7B8, Canada; [Fox, Michael G.] Trent Univ, Dept Biol, 1600 West Bank Dr, Peterborough, ON K9J 7B8, Canada Gobin, J (reprint author), Trent Univ, Environm & Life Sci Grad Program, 1600 West Bank Dr, Peterborough, ON K9J 7B8, Canada. jenileegobin@trentu.ca Gobin, Jenilee/0000-0003-4411-2533 Great Lakes Fishery Commission We thank the Upper Great Lakes Management Unit of the Ontario Ministry of Natural Resources and Forestry for providing data used in this study, and the Great Lakes Fishery Commission for funding. We also thank several anonymous reviewers whose feedback improved our manuscript. Arlinghaus R, 2017, FISH FISH, V18, P360, DOI 10.1111/faf.12176; Audzijonyte A, 2016, CONSERV BIOL, V30, P734, DOI 10.1111/cobi.12651; Brenden T. O., 2013, GREAT LAKES FISHERIE, P339; Britten GL, 2016, P NATL ACAD SCI USA, V113, P134, DOI 10.1073/pnas.1504709112; Cadeddu G, 2012, J ZOOL, V286, P285, DOI 10.1111/j.1469-7998.2011.00878.x; Colautti RI, 2015, MOL ECOL, V24, P1999, DOI 10.1111/mec.13162; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Devine JA, 2012, CAN J FISH AQUAT SCI, V69, P1105, DOI 10.1139/F2012-047; Dunlop ES, 2018, J GREAT LAKES RES, V44, P735, DOI 10.1016/j.jglr.2018.05.009; Dunlop ES, 2015, ECOL APPL, V25, P1860, DOI 10.1890/14-1862.1; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Ebener Mark P., 2013, Great Lakes Fishery Commission Special Publication, V13, P29; Eikeset AM, 2016, P NATL ACAD SCI USA, V113, P15030, DOI 10.1073/pnas.1525749113; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Fera SA, 2017, ECOLOGY, V98, P1681, DOI 10.1002/ecy.1836; Fera SA, 2015, J GREAT LAKES RES, V41, P1138, DOI 10.1016/j.jglr.2015.08.010; Francis RC, 2007, FISHERIES, V32, P217, DOI 10.1577/1548-8446(2007)32[217:TCFBFS]2.0.CO;2; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Gillis M. K., 2017, P ROYAL SOC B, V284, P1; Gislason D, 2018, CAN J FISH AQUAT SCI, V75, P211, DOI 10.1139/cjfas-2016-0211; Gobin J, 2016, J GREAT LAKES RES, V42, P871, DOI 10.1016/j.jglr.2016.05.003; Gobin J, 2015, J GREAT LAKES RES, V41, P405, DOI 10.1016/j.jglr.2015.03.003; HANDFORD P, 1977, J FISH RES BOARD CAN, V34, P954, DOI 10.1139/f77-148; Hayes DB, 1996, CAN J FISH AQUAT SCI, V53, P383, DOI 10.1139/f95-273; HEALEY MC, 1975, J FISH RES BOARD CAN, V32, P427, DOI 10.1139/f75-053; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2015, ANNU REV ECOL EVOL S, V46, P461, DOI 10.1146/annurev-ecolsys-120213-054339; Hendry A. P., 2017, PHILOS T R SOC B, V372, P1; Higgins SN, 2010, ECOL MONOGR, V80, P179, DOI 10.1890/09-1249.1; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; Ivan LN, 2015, CAN J FISH AQUAT SCI, V72, P1243, DOI 10.1139/cjfas-2014-0197; Johnston FD, 2013, FISH FISH, V14, P554, DOI 10.1111/j.1467-2979.2012.00487.x; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Karatayev AY, 2015, ECOL APPL, V25, P430, DOI 10.1890/13-1339.1; Kindsvater HK, 2017, COPEIA, V105, P475, DOI 10.1643/OT-16-533; Lantry B. F., 2017, GREAT LAKES FISHERY, V2017-02, P97; Laugen AT, 2014, FISH FISH, V15, P65, DOI 10.1111/faf.12007; Lester NP, 2014, ECOL APPL, V24, P38, DOI 10.1890/12-2020.1; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Mollet FM, 2016, CAN J FISH AQUAT SCI, V73, P1126, DOI 10.1139/cjfas-2014-0568; Morbey Y. E., 2018, EVOLUTIONARY APPL, V11, P1; Nussle S, 2009, EVOL APPL, V2, P200, DOI 10.1111/j.1752-4571.2008.00054.x; Palkovacs EP, 2011, TRENDS ECOL EVOL, V26, P616, DOI 10.1016/j.tree.2011.08.004; Pejchar L, 2009, TRENDS ECOL EVOL, V24, P497, DOI 10.1016/j.tree.2009.03.016; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; Rennie MD, 2015, J GREAT LAKES RES, V41, P1150, DOI 10.1016/j.jglr.2015.09.014; Rennie MD, 2009, OECOLOGIA, V159, P789, DOI 10.1007/s00442-008-1271-z; Rudman SM, 2017, TRENDS ECOL EVOL, V32, P403, DOI 10.1016/j.tree.2017.02.019; Sharpe DMT, 2012, EVOL APPL, V5, P677, DOI 10.1111/j.1752-4571.2012.00245.x; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Thomas G, 2009, J EVOLUTION BIOL, V22, P88, DOI 10.1111/j.1420-9101.2008.01622.x; Townsend CR, 2003, CONSERV BIOL, V17, P38, DOI 10.1046/j.1523-1739.2003.02017.x; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Vert-pre KA, 2013, P NATL ACAD SCI USA, V110, P1779, DOI 10.1073/pnas.1214879110; Vincenzi S, 2014, J FISH BIOL, V85, P8, DOI 10.1111/jfb.12382; WALTERS CJ, 1993, T AM FISH SOC, V122, P34, DOI 10.1577/1548-8659(1993)122<0034:DDGACA>2.3.CO;2; Wang HY, 2008, CAN J FISH AQUAT SCI, V65, P2157, DOI 10.1139/F08-124; Zhao YM, 2017, N AM J FISH MANAGE, V37, P1341, DOI 10.1080/02755947.2017.1381206; Zimmermann F, 2017, MAR ECOL PROG SER, V563, P185, DOI 10.3354/meps11996 60 0 0 6 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. DEC 2018 28 8 2175 2186 10.1002/eap.1805 12 Ecology; Environmental Sciences Environmental Sciences & Ecology HC6LL WOS:000451913200020 30285303 Other Gold 2019-02-21 J Johnsson, JI; Naslund, J Johnsson, Jorgen I.; Naslund, Joacim Studying behavioural variation in salmonids from an ecological perspective: observations questions methodological considerations REVIEWS IN FISH BIOLOGY AND FISHERIES English Review Animal personality; Behavioural ecology; Experimental methodology; Multi-faceted approach; Salmonidae JUVENILE ATLANTIC SALMON; TROUT ONCORHYNCHUS-MYKISS; MIRROR-IMAGE STIMULATION; LIFE-HISTORY STRATEGIES; BROWN TROUT; RAINBOW-TROUT; AGONISTIC BEHAVIOR; GROWTH-RATE; BODY-SIZE; INDIVIDUAL VARIATION Salmonid fish are an ecologically important and extensively studied group of fish which concern many interest groups in our society. The aim of this paper is to discuss and suggest solutions to the multifaceted problems associated with studying behavioural variation in salmonids, with focus on designing behavioural studies that are ecologically relevant. Many of the general problems and solutions discussed can be applied to other animals as well. First, the importance of asking clear questions when conceiving behavioural studies is addressed, using Tinbergen's four questions and associated theories as stepping stones towards generating testable hypotheses about behavioural variation. We then address a range of methodological challenges encountered when attempting to study behavioural variation in salmonids and suggest solutions to overcome these problems. A range of approaches is discussed, from highly controllable laboratory experiments to monitoring studies of behaviour in the wild. The importance of combining lab- and field approaches to evaluate the ecological relevance of behavioural variation is highlighted. Finally, we suggest a general framework using a multi-faceted research approach to address questions about the behavioural ecology of salmonids (and other animals) so that knowledge can progress, and the ecological relevance of behavioural studies can be validated. [Johnsson, Jorgen I.] Univ Gothenburg, Dept Biol & Environm Sci, Gothenburg, Sweden; [Naslund, Joacim] Univ South Bohemia Ceske Budejovice, Dept Ecosyst Biol, Fac Sci, Ceske Budejovice, Czech Republic; [Naslund, Joacim] Univ South Bohemia Ceske Budejovice, SoWa, Fac Sci, Ceske Budejovice, Czech Republic; [Naslund, Joacim] Stockholm Univ, Dept Zool, Stockholm, Sweden Naslund, J (reprint author), Univ South Bohemia Ceske Budejovice, Dept Ecosyst Biol, Fac Sci, Ceske Budejovice, Czech Republic.; Naslund, J (reprint author), Univ South Bohemia Ceske Budejovice, SoWa, Fac Sci, Ceske Budejovice, Czech Republic. jorgen.johnsson@bioenv.gu.se; joacim.naslund@gmail.com Faculty of Science at University of Gothenburg; French Laboratory of Excellence project "TULIP" [ANR-10-LABX-41, ANR-11-IDEX-0002-02]; Interreg-project MarGen; SoWa Ecosystem Research infrastructure (MEYS CZ Grants) [LM2015075, EF16013/0001782]; Carl Trygger's Foundation for Scientific Research We thank Gretta Pecl and Gary Carvalho, and three anonymous reviewers for valuable, constructive, and encouraging input on the manuscript. This synthesis was conceived and initiated during a sabbatical visit of JIJ in the autumn of 2016 kindly hosted by Julien Cucherousset and the AQUAECO-group at University Paul Sabatier, Toulouse. The visit was supported by the Faculty of Science at University of Gothenburg, and by the French Laboratory of Excellence project "TULIP" (ANR-10-LABX-41; ANR-11-IDEX-0002-02). The work of JIJ was also supported by the Interreg-project MarGen. JN was supported by the SoWa Ecosystem Research infrastructure (MEYS CZ Grants LM2015075 and EF16013/0001782) and Carl Trygger's Foundation for Scientific Research. Aarestrup K, 2014, MAR ECOL PROG SER, V496, P197, DOI 10.3354/meps10614; ABBOTT JC, 1989, BEHAVIOUR, V108, P104, DOI 10.1163/156853989X00079; Abrahams MV, 1999, ANIM BEHAV, V58, P933, DOI 10.1006/anbe.1999.1229; Adriaenssens B, 2010, THESIS; Adriaenssens B, 2013, ECOL LETT, V16, P47, DOI 10.1111/ele.12011; Adriaenssens B, 2011, APPL ANIM BEHAV SCI, V132, P90, DOI 10.1016/j.applanim.2011.03.005; Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; Adriaenssens B, 2009, TRENDS ECOL EVOL, V24, P179, DOI 10.1016/j.tree.2008.12.003; Alanara A, 2001, J ANIM ECOL, V70, P980, DOI 10.1046/j.0021-8790.2001.00550.x; Alexandrou MA, 2013, MOL PHYLOGENET EVOL, V69, P514, DOI 10.1016/j.ympev.2013.07.026; Allegue H, 2017, METHODS ECOL EVOL, V8, P257, DOI 10.1111/2041-210X.12659; Arlinghaus R, 2005, SCIENCE, V307, P1561, DOI 10.1126/science.307.5715.1561; Arlinghaus R, 2017, FISH FISH, V18, P360, DOI 10.1111/faf.12176; Arnott G, 2009, ANIM BEHAV, V77, P991, DOI 10.1016/j.anbehav.2009.02.010; Aubin-Horth N, 2009, MOL ECOL, V18, P3763, DOI 10.1111/j.1365-294X.2009.04313.x; BACHMAN RA, 1984, T AM FISH SOC, V113, P1, DOI 10.1577/1548-8659(1984)113<1:FBOFWA>2.0.CO;2; BAKKER TCM, 1986, BEHAVIOUR, V98, P1, DOI 10.1163/156853986X00937; BARTON BA, 1988, PROG FISH CULT, V50, P16, DOI 10.1577/1548-8640(1988)050<0016:FADCAS>2.3.CO;2; BARTON BA, 1980, CAN J FISH AQUAT SCI, V37, P805, DOI 10.1139/f80-108; Bateson P, 2013, TRENDS ECOL EVOL, V28, P712, DOI 10.1016/j.tree.2013.09.013; Baxter CV, 2007, OECOLOGIA, V153, P461, DOI 10.1007/s00442-007-0743-x; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bengston SE, 2018, NAT ECOL EVOL, V2, P944, DOI 10.1038/s41559-017-0411-4; Berejikian BA, 1996, CAN J FISH AQUAT SCI, V53, P2004, DOI 10.1139/cjfas-53-9-2004; Berman GJ, 2016, P NATL ACAD SCI USA, V113, P11943, DOI 10.1073/pnas.1607601113; Biro PA, 2004, P ROY SOC B-BIOL SCI, V271, P2233, DOI 10.1098/rspb.2004.2861; Biro PA, 2015, ANIM BEHAV, V105, P223, DOI 10.1016/j.anbehav.2015.04.008; Biro PA, 2009, TRENDS ECOL EVOL, V24, P66, DOI 10.1016/j.tree.2008.11.001; Bjornsson BT, 2007, AQUACULTURE, V273, P384, DOI 10.1016/j.aquaculture.2007.10.020; BOHLIN T, 1994, AM NAT, V143, P478, DOI 10.1086/285614; Bohlin T, 2002, J FISH BIOL, V60, P1335, DOI 10.1006/jfbi.2002.1933; Bohlin T, 2002, J ANIM ECOL, V71, P683, DOI 10.1046/j.1365-2656.2002.00631.x; Boukal DS, 2014, J LIMNOL, V73, P171, DOI 10.4081/jlimnol.2014.826; Brockmark S, 2010, P ROY SOC B-BIOL SCI, V277, P3035, DOI 10.1098/rspb.2010.0561; Brockmark S, 2010, CAN J FISH AQUAT SCI, V67, P288, DOI 10.1139/F09-185; Brown C, 2003, FISH FISH, V4, P280, DOI 10.1046/j.1467-2979.2003.00122.x; Brown GE, 2003, FISH FISH, V4, P227, DOI 10.1046/j.1467-2979.2003.00132.x; BROWN GE, 1992, J FISH BIOL, V41, P955, DOI 10.1111/j.1095-8649.1992.tb02722.x; Burns JG, 2008, J COMP PSYCHOL, V122, P344, DOI 10.1037/0735-7036.122.4.344; Burton T, 2016, BEHAV ECOL, V27, P1280, DOI 10.1093/beheco/arw073; Burton T, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2441; Jones HAC, 2011, APPL ANIM BEHAV SCI, V133, P117, DOI 10.1016/j.applanim.2011.05.005; Carter AJ, 2013, BIOL REV, V88, P465, DOI 10.1111/brv.12007; Chittenden CM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012261; Chivers DP, 1998, ECOSCIENCE, V5, P338, DOI 10.1080/11956860.1998.11682471; Chouinard-Thuly L, 2017, CURR ZOOL, V63, P5, DOI 10.1093/cz/zow104; Christie MR, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10676; Christie MR, 2012, P NATL ACAD SCI USA, V109, P238, DOI 10.1073/pnas.1111073109; Conrad JL, 2011, J FISH BIOL, V78, P395, DOI 10.1111/j.1095-8649.2010.02874.x; COOPER WS, 1982, J THEOR BIOL, V94, P135, DOI 10.1016/0022-5193(82)90336-8; Cote D, 2015, CAN SCI ADVIS SEC RE, V073, P1; Cote J, 2017, J ANIM ECOL, V86, P1298, DOI 10.1111/1365-2656.12734; Crawford SS, 2008, REV FISH BIOL FISHER, V18, P313, DOI 10.1007/s11160-007-9079-1; Dammhahn M, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2473-y; Des Roches S, 2018, NAT ECOL EVOL, V2, P57, DOI 10.1038/s41559-017-0402-5; Desjardins JK, 2010, BIOL LETTERS, V6, P744, DOI 10.1098/rsbl.2010.0247; Deverill JI, 1999, J FISH BIOL, V55, P868, DOI 10.1111/j.1095-8649.1999.tb00723.x; Devlin RH, 1999, AQUAC RES, V30, P479, DOI 10.1046/j.1365-2109.1999.00359.x; Devlin RH, 2001, NATURE, V409, P781, DOI 10.1038/35057314; DILL LM, 1981, CAN J ZOOL, V59, P1801, DOI 10.1139/z81-247; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; DOBZHANSKY T, 1973, AM BIOL TEACH, V35, P125, DOI 10.2307/4444260; Dukas R, 2001, BEHAV ECOL, V12, P192, DOI 10.1093/beheco/12.2.192; Edenbrow M, 2011, ANIM BEHAV, V82, P731, DOI 10.1016/j.anbehav.2011.07.003; Einarsdottir IE, 1996, FISH PHYSIOL BIOCHEM, V15, P395, DOI 10.1007/BF01875582; Einum S, 1997, J FISH BIOL, V50, P634, DOI 10.1006/jfbi.1996.0330; Einum Sigurd, 2001, Nordic Journal of Freshwater Research, V75, P56; EJIKE C, 1980, T AM FISH SOC, V109, P423, DOI 10.1577/1548-8659(1980)109<423:SASHRI>2.0.CO;2; Elliott J. M., 1994, QUANTITATIVE ECOLOGY; ELLIOTT JM, 1990, J ANIM ECOL, V59, P171, DOI 10.2307/5166; ELLIOTT JM, 1995, FUNCT ECOL, V9, P625, DOI 10.2307/2390153; Ellis TR, 2013, T AM FISH SOC, V142, P660, DOI 10.1080/00028487.2012.754789; Enefalk A, 2017, FRESHWATER BIOL, V62, P111, DOI 10.1111/fwb.12854; ENQUIST M, 1990, ANIM BEHAV, V39, P1, DOI 10.1016/S0003-3472(05)80721-3; Epley N, 2007, PSYCHOL REV, V114, P864, DOI 10.1037/0033-295X.114.4.864; Fausch KD, 1997, BEHAV ECOL, V8, P414, DOI 10.1093/beheco/8.4.414; FAUSCH KD, 1984, CAN J ZOOL, V62, P441, DOI 10.1139/z84-067; Fausch KD, 2015, LOVE RIVERS SCI JOUR; Ferno Anders, 1998, Nordic Journal of Freshwater Research, V74, P95; Filipsson K, 2018, ECOL FRESHW FISH, V27, P70, DOI 10.1111/eff.12324; Finger JS, 2016, ANIM BEHAV, V116, P75, DOI 10.1016/j.anbehav.2016.03.032; Fingerle A, 2016, ECOL EVOL, V6, P3965, DOI 10.1002/ece3.2177; FLEMING IA, 1993, ECOL APPL, V3, P230, DOI 10.2307/1941826; Fleming IA, 1996, J APPL ECOL, V33, P893, DOI 10.2307/2404960; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Folt CL, 1998, CAN J FISH AQUAT SCI, V55, P9, DOI 10.1139/cjfas-55-S1-9; Fontaine PM, 1999, MOL ECOL, V8, P189, DOI 10.1046/j.1365-294X.1999.00550.x; Forsatkar MN, 2016, PHYSIOL BEHAV, V165, P267, DOI 10.1016/j.physbeh.2016.08.007; Fraser H, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0200303; GALL GAE, 1992, AQUACULTURE, V100, P1, DOI 10.1016/0044-8486(92)90333-G; GALLUP GG, 1968, PSYCHOL BULL, V70, P782, DOI 10.1037/h0026777; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Gibson RJ, 2015, ECOL FRESHW FISH, V24, P397, DOI 10.1111/eff.12154; GILES N, 1984, ANIM BEHAV, V32, P264, DOI 10.1016/S0003-3472(84)80346-2; Giller P, 2015, FRESHWATER BIOL, V60, P256, DOI 10.1111/fwb.12472; Godin Jean-Guy J., 1997, P191; Grant James W.A., 1997, P81; GRESSWELL RE, 1995, CONSERV BIOL, V9, P159, DOI 10.1046/j.1523-1739.1995.09010159.x; Gries G, 1997, CAN J FISH AQUAT SCI, V54, P1408, DOI 10.1139/cjfas-54-6-1408; Griffiths SW, 2004, P ROY SOC B-BIOL SCI, V271, P695, DOI 10.1098/rspb.2003.2648; Griffiths SW, 2002, J ANIM ECOL, V71, P480, DOI 10.1046/j.1365-2656.2002.00614.x; Groothuis TGG, 2011, DEV PSYCHOBIOL, V53, P641, DOI 10.1002/dev.20574; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; Harkonen L, 2014, CAN J FISH AQUAT SCI, V71, P1900, DOI 10.1139/cjfas-2014-0221; Heard S, 2017, REPRODUCIBILITY ROBU; Helfield JM, 2006, ECOSYSTEMS, V9, P167, DOI 10.1007/s10021-004-0063-5; Hellstrom G, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13460; Hojesjo J, 1999, J FISH BIOL, V55, P1009, DOI 10.1006/jfbi.1999.1113; Hojesjo J, 2004, BEHAV ECOL SOCIOBIOL, V56, P286, DOI 10.1007/s00265-004-0784-7; Hojesjo J, 2002, BEHAV ECOL SOCIOBIOL, V52, P102, DOI 10.1007/s00265-002-0493-z; Hojesjo J, 2016, CAN J FISH AQUAT SCI, V73, P1182, DOI 10.1139/cjfas-2015-0446; HOLTBY LB, 1993, CAN J FISH AQUAT SCI, V50, P676, DOI 10.1139/f93-078; Horreo JL, 2018, ECOL EVOL, V8, P521, DOI 10.1002/ece3.3555; Horreo JL, 2017, PEERJ, V5, DOI 10.7717/peerj.3828; Hubert WA, 2012, FISHERIES TECHNIQUES, THIRD EDITION, P223; Huntingford F, 2005, BEHAVIOUR, V142, P1207, DOI 10.1163/156853905774539382; Huntingford FA, 2006, J FISH BIOL, V68, P332, DOI 10.1111/j.0022-1112.2006.001046.x; HUNTINGFORD FA, 1990, J FISH BIOL, V36, P877, DOI 10.1111/j.1095-8649.1990.tb05635.x; HUNTINGFORD FA, 1993, ETHOLOGY, V94, P201; Hutchings JA, 2014, J FISH BIOL, V85, P1907, DOI 10.1111/jfb.12545; HVIDSTEN NA, 1988, J FISH BIOL, V33, P121, DOI 10.1111/j.1095-8649.1988.tb05453.x; Ingley Spencer J., 2015, SoftwareX, V3-4, P13, DOI 10.1016/j.softx.2015.10.001; Jansen PA, 2002, CAN J FISH AQUAT SCI, V59, P6, DOI 10.1139/F01-184; Jarvi T, 1989, NORDIC J FRESHWATER, V65, P71; Jarvi Torbjorn, 1997, Nordic Journal of Freshwater Research, V72, P52; Jenkins T. M. Jr., 1969, Animal Behaviour Monographs, V2, P57; Johnsson JI, 2014, J FISH BIOL, V85, P1946, DOI 10.1111/jfb.12547; Johnsson JI, 2000, BEHAV ECOL SOCIOBIOL, V48, P373, DOI 10.1007/s002650000244; JOHNSSON JI, 1991, CAN J FISH AQUAT SCI, V48, P243, DOI 10.1139/f91-033; Johnsson JI, 1999, J FISH BIOL, V54, P469, DOI 10.1006/jfbi.1998.0881; Johnsson JI, 1999, FUNCT ECOL, V13, P514, DOI 10.1046/j.1365-2435.1999.00341.x; JOHNSSON JI, 1994, ANIM BEHAV, V48, P177, DOI 10.1006/anbe.1994.1224; Johnsson JI, 2004, BEHAV ECOL SOCIOBIOL, V56, P388, DOI 10.1007/s00265-004-0791-8; Johnsson JI, 1996, HORM BEHAV, V30, P13, DOI 10.1006/hbeh.1996.0003; Johnsson JI, 2003, J FISH BIOL, V62, P959, DOI 10.1046/j.1095-8649.2003.00076.x; JOHNSSON JI, 1993, ANIM BEHAV, V45, P1219, DOI 10.1006/anbe.1993.1143; Johnsson JI, 2002, BEHAV ECOL SOCIOBIOL, V51, P282, DOI 10.1007/S00265-001-0430-6; Johnsson JI, 2001, FUNCT ECOL, V15, P654, DOI 10.1046/j.0269-8463.2001.00566.x; Jonsson B, 2014, J FISH BIOL, V85, P151, DOI 10.1111/jfb.12432; Jonsson B, 2011, FISH FISH SER, V33, P1, DOI 10.1007/978-94-007-1189-1; Jonsson E, 1998, HORM BEHAV, V33, P9, DOI 10.1006/hbeh.1997.1426; Jonsson E, 2013, GEN COMP ENDOCR, V187, P79, DOI 10.1016/j.ygcen.2013.03.013; Juette T, 2014, CURR ZOOL, V60, P417, DOI 10.1093/czoolo/60.3.417; KALLEBERG HARRY, 1958, REPT INST FRESHWATER RES DROTTNINGHOLM, V39, P55; Kaspersson R, 2010, ANIM BEHAV, V79, P709, DOI 10.1016/j.anbehav.2009.12.025; Katz Y, 2011, P NATL ACAD SCI USA, V108, P18720, DOI 10.1073/pnas.1107583108; KEENLEYSIDE MILES H. A., 1962, BEHAVIOUR, V19, P139, DOI 10.1163/156853961X00231; Kelly CD, 2006, Q REV BIOL, V81, P221, DOI 10.1086/506236; Kendal RL, 2004, BEHAV ECOL, V15, P269, DOI 10.1093/beheco/arh008; Kerr N L, 1998, Pers Soc Psychol Rev, V2, P196, DOI 10.1207/s15327957pspr0203_4; Killen SS, 2016, CONSERV PHYSIOL, V4, DOI 10.1093/conphys/cow007; Killen SS, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0603; Killen SS, 2013, TRENDS ECOL EVOL, V28, P651, DOI 10.1016/j.tree.2013.05.005; Klemetsen A., 2013, J ICHTHYOL, V53, P781; KOHANE MJ, 1988, EVOL BIOL, V23, P31; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Kortet R, 2014, BEHAV ECOL SOCIOBIOL, V68, P927, DOI 10.1007/s00265-014-1705-z; Krause J., 2002, LIVING GROUPS; Laland KN, 2011, SCIENCE, V334, P1512, DOI 10.1126/science.1210879; Laskowski KL, 2016, J FISH BIOL, V88, P1544, DOI 10.1111/jfb.12933; Leblanc CAL, 2011, ETHOLOGY, V117, P664, DOI 10.1111/j.1439-0310.2011.01920.x; Ledon-Rettig CC, 2013, BEHAV ECOL, V24, P311, DOI 10.1093/beheco/ars145; Lee D, 2015, INT J RADIAT BIOL, V91, P843, DOI 10.3109/09553002.2015.1062575; LEIMAR O, 1984, J THEOR BIOL, V111, P475, DOI 10.1016/S0022-5193(84)80235-0; Lemoine NP, 2016, ECOLOGY, V97, P2554, DOI 10.1002/ecy.1506; Lennox RJ, 2017, FISH FISH, V18, P986, DOI 10.1111/faf.12219; Lima SL, 1998, BIOSCIENCE, V48, P25, DOI 10.2307/1313225; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Loken E, 2017, SCIENCE, V355, P584, DOI 10.1126/science.aal3618; MacDougall-Shackleton SA, 2011, PHILOS T R SOC B, V366, P2076, DOI 10.1098/rstb.2010.0363; MARTEL G, 1995, ETHOLOGY, V99, P139; Mayhew PJ, 2018, CURR OPIN INSECT SCI, V27, P52, DOI 10.1016/j.cois.2018.02.018; MAYR E, 1961, SCIENCE, V134, P1501, DOI 10.1126/science.134.3489.1501; McDowall RM, 2001, FISH FISH, V2, P78, DOI 10.1046/j.1467-2979.2001.00036.x; McDowall RM, 2001, REV FISH BIOL FISHER, V11, P171, DOI 10.1023/A:1020370328194; MCLAUGHLIN RL, 1992, BEHAVIOUR, V120, P286, DOI 10.1163/156853992X00642; McLaughlin RL, 2013, FISH FISH, V14, P580, DOI 10.1111/faf.12003; METCALFE NB, 1988, J ANIM ECOL, V57, P463, DOI 10.2307/4918; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; Mittelbach GG, 2014, CAN J FISH AQUAT SCI, V71, P927, DOI 10.1139/cjfas-2013-0558; Montiglio PO, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2526-2; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; NAKANO S, 1995, J ANIM ECOL, V64, P75, DOI 10.2307/5828; Naslund J, 2017, BEHAV ECOL SOCIOBIOL, V71, DOI 10.1007/s00265-017-2395-0; Naslund J, 2016, FACETS, V1, P55, DOI 10.1139/facets-2015-0015; Naslund J, 2017, ECOL FRESHW FISH, V26, P462, DOI 10.1111/eff.12291; Naslund J, 2016, BEHAV ECOL SOCIOBIOL, V70, P2111, DOI 10.1007/s00265-016-2215-y; Naslund J, 2015, ETHOLOGY, V121, P556, DOI 10.1111/eth.12368; Naslund J, 2016, FISH FISH, V17, P1, DOI 10.1111/faf.12088; Naslund J, 2013, CAN J FISH AQUAT SCI, V70, P585, DOI 10.1139/cjfas-2012-0302; Newton C, 2013, TROUTS TALE FISH CON; Noleto EM, 2017, BEHAV PROCESS, V145, P18, DOI 10.1016/j.beproc.2017.09.017; Oksanen L, 2001, OIKOS, V94, P27, DOI 10.1034/j.1600-0706.2001.11311.x; Olafsdottir GA, 2016, BEHAV ECOL SOCIOBIOL, V70, P1879, DOI 10.1007/s00265-016-2193-0; OSTFELD RS, 1994, OIKOS, V70, P340, DOI 10.2307/3545771; Overli O, 2007, NEUROSCI BIOBEHAV R, V31, P396, DOI 10.1016/j.neubiorev.2006.10.006; Pagad S, 2015, MANAG BIOL INVASION, V6, P127, DOI 10.3391/mbi.2015.6.2.03; PECKARSKY BL, 1990, J N AM BENTHOL SOC, V9, P249, DOI 10.2307/1467588; Petersson E, 1999, ANIM BEHAV, V57, P777, DOI 10.1006/anbe.1998.1043; Petersson E, 2000, ENVIRON BIOL FISH, V59, P211, DOI 10.1023/A:1007645411586; Petrazzini MEM, 2014, DEV PSYCHOBIOL, V56, P529, DOI 10.1002/dev.21122; Pettersson J, 1996, J FISH BIOL, V49, P370, DOI 10.1111/j.1095-8649.1996.tb00033.x; Polverino G, 2016, ANIM BEHAV, V115, P127, DOI 10.1016/j.anbehav.2016.03.013; Pruitt JN, 2015, J ANIM ECOL, V84, P1461, DOI 10.1111/1365-2656.12406; Puffer M, 2015, RIVER RES APPL, V31, P1101, DOI 10.1002/rra.2801; Puffer M, 2017, ECOL FRESHW FISH, V26, P99, DOI 10.1111/eff.12258; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; RICHARDSON NE, 1974, BIOL BULL-US, V147, P422, DOI 10.2307/1540459; Rosengren M, 2017, CAN J FISH AQUAT SCI, V74, P396, DOI 10.1139/cjfas-2015-0515; Roy ML, 2013, CAN J FISH AQUAT SCI, V70, P339, DOI 10.1139/cjfas-2012-0234; Ruxton GD, 2017, BEHAV ECOL SOCIOBIOL, V71, DOI 10.1007/s00265-016-2261-5; RUZZANTE DF, 1992, CAN J FISH AQUAT SCI, V49, P1966; Saikkonen A, 2011, BIOL CONSERV, V144, P2320, DOI 10.1016/j.biocon.2011.06.010; Schjolden J, 2005, PHYSIOL BIOCHEM ZOOL, V78, P715, DOI 10.1086/432153; Shrier I, 2005, PLOS MED, V2, P1192, DOI 10.1371/journal.pmed.0020386; Shumway CA, 1999, ENVIRON BIOL FISH, V55, P183, DOI 10.1023/A:1007562023150; Sih A, 2012, ECOL LETT, V15, P278, DOI 10.1111/j.1461-0248.2011.01731.x; Skaala O, 2012, CAN J FISH AQUAT SCI, V69, P1994, DOI 10.1139/f2012-118; Sloman KA, 2002, J FISH BIOL, V61, P1, DOI 10.1006/jfbi.2002.2038; Sloman KA, 2000, FISH PHYSIOL BIOCHEM, V22, P11, DOI 10.1023/A:1007837400713; SMITH JM, 1974, J THEOR BIOL, V47, P209, DOI 10.1016/0022-5193(74)90110-6; Sol D, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2463-0; SPECKER JL, 1980, CAN J FISH AQUAT SCI, V37, P765, DOI 10.1139/f80-102; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Sundstrom LF, 2004, BEHAV ECOL, V15, P192, DOI 10.1093/beheco/arg089; Sundstrom LF, 2003, BEHAV ECOL SOCIOBIOL, V54, P249, DOI 10.1007/s00265-003-0622-3; SYMONS PEK, 1968, J FISH RES BOARD CAN, V25, P2387, DOI 10.1139/f68-207; Thorstad EB, 2013, TURK J FISH AQUAT SC, V13, P881, DOI 10.4194/1303-2712-v13_5_13; Thurow RF, 1994, UNDERWATER METHODS S; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Tinoco AB, 2014, PHYSIOL BEHAV, V124, P15, DOI 10.1016/j.physbeh.2013.10.034; Toms C.N., 2010, INT J COMP PSYCHOL, V23, P1; Tymchuk W, 2009, GEN COMP ENDOCR, V164, P175, DOI 10.1016/j.ygcen.2009.05.015; Valdimarsson SK, 1997, ANIM BEHAV, V54, P1405, DOI 10.1006/anbe.1997.0550; Van Leeuwen TE, 2016, BEHAV ECOL, V27, P385, DOI 10.1093/beheco/arv163; VARANELLI CC, 1974, ANIM BEHAV, V22, P178, DOI 10.1016/S0003-3472(74)80067-9; Vasemagi A, 2016, FUNCT ECOL, V30, P1687, DOI 10.1111/1365-2435.12635; Vehanen T, 2003, J FISH BIOL, V63, P1034, DOI 10.1046/j.1095-8649.2003.00228.x; Wackermannova MA, 2017, ACTA ETHOL, V20, P85, DOI 10.1007/s10211-017-0252-9; Ware DM, 1966, THESIS; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; Westneat DF, 2015, BIOL REV, V90, P729, DOI 10.1111/brv.12131; Wilson AJ, 2018, EVOL LETT, V2, P4, DOI 10.1002/evl3.40; Wilson ADM, 2007, ANIM BEHAV, V74, P689, DOI 10.1016/j.anbehav.2007.01.009; WILSON DS, 1993, J COMP PSYCHOL, V107, P250, DOI 10.1037/0735-7036.107.3.250; Zavorka L, 2016, ECOLOGY, V97, P2223, DOI 10.1002/ecy.1475; Zavorka L, 2015, ETHOLOGY, V121, P1202, DOI 10.1111/eth.12436; Garamszegi LZ, 2012, EVOL ECOL, V26, P1213, DOI 10.1007/s10682-012-9589-8 251 0 0 6 6 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0960-3166 1573-5184 REV FISH BIOL FISHER Rev. Fish. Biol. Fish. DEC 2018 28 4 795 823 10.1007/s11160-018-9532-3 29 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology HC3SX WOS:000451724000006 Other Gold 2019-02-21 J Sigwart, JD; Chen, C Sigwart, Julia D.; Chen, Chong Life history, patchy distribution, and patchy taxonomy in a shallow-water invertebrate (Mollusca: Polyplacophora: Lepidopleurida) MARINE BIODIVERSITY English Article Chiton; Cryptic species; Haplotype network; Life history; Northeast Pacific CHITONS POLYPLACOPHORA; GENE-FLOW; FAMILY; MODEL; SEA Things without names are difficult to rationalise, and so species that go without names are difficult to conserve or protect. This is a case study in resolving conflicts in historical taxonomy and real' species (identifiable and evolutionarily relevant groupings) using an approach including population genetics, natural history, and pragmatism. We report the observation that populations of a shallow-water chiton species from Washington and British Columbia demonstrate extremely high site fidelity and patchy distribution. Their limited dispersal potential and isolation could be explained by a brooding life history. This stands in direct contrast with the supposedly wide distribution of this species, Leptochiton rugatus (Carpenter in Pilsbry, 1892) sensu lato, from the Sea of Japan to Baja California. But this lineage has previously been suggested to comprise several cryptic species. Indeed, a haplotype network analysis using 61 individual sequences of the cytochrome oxidase c subunit I gene for L. rugatus s.l. revealed four discrete clusters which correspond to different parts of the geographic range. We infer these to represent four distinct species, at least two of which are likely novel. Leptochiton rugatus sensu stricto is herein reinterpreted as restricted to California and Baja California, and the new name L. cascadiensis sp. nov. is established for the lineage with a distribution in the Cascadia coastal bioregion from the panhandle of Alaska to Oregon. There are minor morphological differences among these species in the L. rugatus species complex, but genetic data or morphological observations alone would not have been sufficient to definitively recognise these groups as species-level lineages. The observation that different species within the complex may have different life history strategies provides important support for interpreting different populations as genuinely separate species. [Sigwart, Julia D.] Queens Univ Belfast, Marine Lab, 12-13 Strand, Portaferry, North Ireland; [Sigwart, Julia D.] Univ Calif Berkeley, Museum Paleontol, VLSB 1101, Berkeley, CA 94720 USA; [Chen, Chong] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Dept Subsurface Geobiol Anal & Res D SUGAR, 2-15 Natsushima Cho, Yokosuka, Kanagawa 2370061, Japan Sigwart, JD (reprint author), Queens Univ Belfast, Marine Lab, 12-13 Strand, Portaferry, North Ireland.; Sigwart, JD (reprint author), Univ Calif Berkeley, Museum Paleontol, VLSB 1101, Berkeley, CA 94720 USA. j.sigwart@qub.ac.uk European Commission [H2020-MSCA-IF-2014-655661] This research was supported by the European Commission award H2020-MSCA-IF-2014-655661 to JDS, and additional data obtained via the SYNTHESYS access to infrastructure programme for JDS' travel to RMNH Naturalis and to RBINS. AVDEEV GV, 1991, PARAZITOLOGIYA+, V25, P370; BERRY S. S., 1951, PROC MALACOL SOC LONDON, V28, P213; Berry SS, 1927, P MAL SOC LONDON, V17, P1; Bryan SE, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040583; Carey N, 2014, THESIS; Carey N, 2013, J MAR BIOL ASSOC UK, V93, P197, DOI 10.1017/S0025315412000653; Clark Roger N., 2004, Festivus, V36, P49; Clement M, 2000, MOL ECOL, V9, P1657, DOI 10.1046/j.1365-294x.2000.01020.x; Costello MJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0051629; Costello MJ, 2013, SCIENCE, V339, P413, DOI 10.1126/science.1230318; Dall W. H., 1921, US Nation Mus Bull Washington DC, V112, P1; Dell'Angelo B, 2011, J PALEONTOL, V85, P936, DOI 10.1666/10-114.1; Doonan J, 2012, BIOL J LINN SOC, V106, P589, DOI 10.1111/j.1095-8312.2012.01892.x; FERREIRA AJ, 1979, VELIGER, V22, P145; Ituarte C, 2016, ACTA ZOOL-STOCKHOLM, V97, P494, DOI 10.1111/azo.12142; KAAS P, 1985, MONOGRAPH LIVING CHI, V1; Kaas P, 1994, MONOGRAPH LIVING CHI, V5; Kelly RP, 2007, EVOLUTION, V61, P700, DOI 10.1111/j.1558-5646.2007.00055.x; Kelly RP, 2010, J HERED, V101, P423, DOI 10.1093/jhered/esq022; Kelly RP, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008594; Kilias Rudolf, 1995, Mitteilungen aus dem Zoologischen Museum in Berlin, V71, P155; KNOWLTON N, 1993, ANNU REV ECOL SYST, V24, P189, DOI 10.1146/annurev.es.24.110193.001201; Lamb A., 2005, MARINE LIFE PACIFIC; Layton KKS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095003; Liuzzi MG, 2013, J MOLLUS STUD, V79, P372, DOI 10.1093/mollus/eyt029; Marko PB, 2010, MOL ECOL, V19, P146, DOI 10.1111/j.1365-294X.2009.04417.x; Newcombe CF, 1893, B NAT HIST SOC BR CO, V1893, P31; Oldroyd IA, 1927, MARINE SHELLS W COAS; Riedel A, 2013, FRONT ZOOL, V10, DOI 10.1186/1742-9994-10-15; Sigwart JD, 2017, DEEP-SEA RES PT II, V137, P282, DOI 10.1016/j.dsr2.2016.06.021; Sigwart JD, 2014, FRONT ZOOL, V11, DOI 10.1186/1742-9994-11-7; Sigwart JD, 2010, INVERTEBR SYST, V24, P560, DOI 10.1071/IS10028; Sigwart JD, 2009, AM MALACOL BULL, V27, P95, DOI 10.4003/006.027.0208; Sirenko BI, 2015, RUSS J MAR BIOL+, V41, P24, DOI 10.1134/S1063074015010095; Sumner-Rooney LH, 2014, J NAT HIST, V48, P3033, DOI 10.1080/00222933.2014.959574; Vendrasco Michael J., 2012, Contributions in Science (Los Angeles), P15; Whiteaves JF, 1887, T R SOC CAN, V1886, P111 37 1 1 2 2 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 1867-1616 1867-1624 MAR BIODIVERS Mar. Biodivers. DEC 2018 48 4 1867 1877 10.1007/s12526-017-0688-1 11 Biodiversity Conservation; Marine & Freshwater Biology Biodiversity & Conservation; Marine & Freshwater Biology HB8MP WOS:000451344500015 Green Published, Other Gold 2019-02-21 J Tougeron, K; Hraoui, G; Le Lann, C; van Baaren, J; Brodeur, J Tougeron, Kevin; Hraoui, George; Le Lann, Cecile; van Baaren, Joan; Brodeur, Jacques Intraspecific maternal competition induces summer diapause in insect parasitoids INSECT SCIENCE English Article aestivation; bet-hedging; host density; intraspecific competition; superparasitism APHIDIUS-NIGRIPES HYMENOPTERA; PREDATOR-INDUCED DIAPAUSE; SEASONAL ECOLOGY; LARVAL DIAPAUSE; CEREAL APHIDS; INDUCTION; DENSITY; HYPERPARASITOIDS; BRACONIDAE; STRATEGIES Organisms often live in unpredictable environments and have to adopt life history strategies that optimize their fitness under these conditions. According to bet-hedging theory, individuals can reduce variation in fitness outcomes by investing in different strategies at the same time. For arthropods, facultative summer diapause enables survival during dry and hot periods of the year, and can be triggered by a decrease in resource abundance. However, the effect of resource depletion on diapause induction has never been disentangled from the effect of the perception of the presence of competitors. Using two solitary parasitoid species of cereal aphids as a model system, Aphidius avenae (Haliday) and Aphidius rhopalosiphi (De Stefani-Perez) (Hymenoptera: Braconidae), we tested whether (i) low absolute host density and/or (ii) high levels of parasitoid females' competition lead to maternal-induced summer diapause in parasitoid offspring. Under summer-like climatic conditions, emerging parasitoid females were (i) reared alone and exposed to different host densities (from 5 to 130 aphids), or (ii) reared together with competing females (from 2 to 20 females) and then exposed individually to 50 aphids. For both parasitoid species, low aphid densities did not induce summer diapause. However, the incidence of summer diapause increased up to a maximum of 11% with increasing levels of competition experienced by female parasitoids. More than 60% of the females produced both diapausing and nondiapausing offspring after being kept at the two highest competition densities. Such a "spreading-the-risk" strategy has likely evolved to optimize parasitoid fitness by preventing the following generation from exposure to low populations of suitable hosts and high mortality from superparasitism. These results provide the first experimental evidence of direct maternal competition-induced diapause in insects, and may change the way we apprehend the evolution of arthropod seasonal ecology, by considering intraspecific competition. [Tougeron, Kevin; Le Lann, Cecile; van Baaren, Joan] Univ Rennes 1, UMR CNRS Ecobio 6553, 263 Ave Gen Leclerc, F-35042 Rennes, France; [Tougeron, Kevin; Le Lann, Cecile; van Baaren, Joan] Univ Bretagne Loire, Cit Int, Rennes, France; [Tougeron, Kevin; Hraoui, George; Brodeur, Jacques] Univ Montreal, Inst Rech Biol Vegetale, Dept Sci Biol, Montreal, PQ, Canada Tougeron, K (reprint author), Univ Rennes 1, UMR CNRS Ecobio 6553, 263 Ave Gen Leclerc, F-35042 Rennes, France. tougeron.kevin@gmail.com Tougeron, Kevin/0000-0003-4897-3787 French Region Bretagne; Canada Research Chair in Biological Control; LTER France Zone Atelier Armorique KT was supported by the French Region Bretagne and the Canada Research Chair in Biological Control awarded to JB. The study was supported by the LTER France Zone Atelier Armorique. We thank P. Abram for insightful comments on an earlier version of the manuscript and for revising the use of English, 3 anonymous reviewers for helpful comments and J. Doyon and M. Gaudreau for technical support. Alekseev VR, 1996, HYDROBIOLOGIA, V320, P15, DOI 10.1007/BF00016801; Alford L, 2012, AGR FOREST ENTOMOL, V14, P69, DOI 10.1111/j.1461-9563.2011.00553.x; Andrade TO, 2016, OECOLOGIA, V180, P877, DOI 10.1007/s00442-015-3502-4; Auld JR, 2010, P ROY SOC B-BIOL SCI, V277, P503, DOI 10.1098/rspb.2009.1355; Barrette M, 2009, OECOLOGIA, V158, P757, DOI 10.1007/s00442-008-1175-y; Boivin G, 2006, PROG BIOL CONTROL, V3, P123; Boivin G, 2012, CAN J PLANT SCI, V92, P1, DOI [10.4141/CJPS2011-045, 10.4141/cjps2011-045]; BRODEUR J, 1989, J INSECT PHYSIOL, V35, P969, DOI 10.1016/0022-1910(89)90020-6; BRODEUR J, 1994, ENVIRON ENTOMOL, V23, P292, DOI 10.1093/ee/23.2.292; Brodeur J, 2000, ENTOMOL EXP APPL, V97, P93, DOI 10.1023/A:1004013232410; BROWN GC, 1979, CAN ENTOMOL, V111, P431, DOI 10.4039/Ent111431-4; Burgess SC, 2014, OIKOS, V123, P769, DOI 10.1111/oik.01235; Cusumano A, 2016, CURR OPIN INSECT SCI, V14, P12, DOI 10.1016/j.cois.2015.11.006; Danks H.V., 1987, BIOL SURVEY CANADA T; de Jong IG, 2011, BIOESSAYS, V33, P215, DOI 10.1002/bies.201000127; Denlinger DL, 2014, ANNU REV ENTOMOL, V59, P73, DOI 10.1146/annurev-ento-011613-162023; Denlinger DL, 2002, ANNU REV ENTOMOL, V47, P93, DOI 10.1146/annurev.ento.47.091201.145137; Fox J., 2011, R COMPANION APPL REG; Gilbert John J., 2004, Journal of Limnology, V63, P32; HAGSTRUM DW, 1980, ENTOMOL EXP APPL, V28, P29, DOI 10.1111/j.1570-7458.1980.tb02984.x; Harada T, 2000, CAN ENTOMOL, V132, P353, DOI 10.4039/Ent132353-3; Harvey JA, 2013, ANNU REV ENTOMOL, V58, P333, DOI 10.1146/annurev-ento-120811-153622; He XZ, 2010, BIOL CONTROL, V54, P276, DOI 10.1016/j.biocontrol.2010.05.014; HOLLER C, 1993, J ANIM ECOL, V62, P12, DOI 10.2307/5478; Hopper KR, 1999, ANNU REV ENTOMOL, V44, P535, DOI 10.1146/annurev.ento.44.1.535; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; Kostal V, 2006, J INSECT PHYSIOL, V52, P113, DOI 10.1016/j.jinsphys.2005.09.008; Krespi L, 1997, ENVIRON ENTOMOL, V26, P545, DOI 10.1093/ee/26.3.545; Krespi L, 1990, THESIS, P1; Kroon A, 2008, NATURWISSENSCHAFTEN, V95, P1195, DOI 10.1007/s00114-008-0442-4; Lalonde RG, 2004, OIKOS, V107, P338, DOI 10.1111/j.0030-1299.2004.13217.x; Langer A, 2000, J INSECT PHYSIOL, V46, P671, DOI 10.1016/S0022-1910(99)00155-9; Le Lann C, 2011, BEHAV ECOL, V22, P101, DOI 10.1093/beheco/arq180; Le Lann C, 2012, EVOL ECOL, V26, P79, DOI 10.1007/s10682-011-9498-2; Le Lann C, 2011, PHYSIOL ENTOMOL, V36, P21, DOI 10.1111/j.1365-3032.2010.00758.x; Mackauer M., 1990, CRITICAL ISSUES BIOL; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; MASAKI S, 1980, ANNU REV ENTOMOL, V25, P1, DOI 10.1146/annurev.en.25.010180.000245; Menu F, 2000, AM NAT, V155, P724, DOI 10.1086/303355; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; Navas C.A., 2010, AESTIVATION MOL PHYS; R Development Core Team, 2015, R LANG ENV STAT COMP; RABASSE JM, 1983, AGRONOMIE, V3, P779, DOI 10.1051/agro:19830809; RAUSHER MD, 1986, FLA ENTOMOL, V69, P63, DOI 10.2307/3494745; Roschewitz I, 2005, AGR ECOSYST ENVIRON, V108, P218, DOI 10.1016/j.agee.2005.02.005; SAUNDERS D S, 1970, Journal of Insect Physiology, V16, P405, DOI 10.1016/0022-1910(70)90181-2; SAUNDERS DS, 1965, J EXP BIOL, V42, P495; SLUSARCZYK M, 1995, ECOLOGY, V76, P1008, DOI 10.2307/1939364; STARY P, 1966, Bollettino dell'Istituto di Entomologia della Universita degli Studi di Bologna, V28, P65; Tauber M.J., 1986, SEASONAL ADAPTATIONS; Tauber MJ, 1998, ENVIRON ENTOMOL, V27, P523, DOI 10.1093/ee/27.3.523; Togashi K, 2017, CAN ENTOMOL, V149, P159, DOI 10.4039/tce.2016.51; Tougeron K, 2017, OECOLOGIA, V183, P619, DOI 10.1007/s00442-016-3770-7; Tougeron K, 2016, INSECT CONSERV DIVER, V9, P171, DOI 10.1111/icad.12153; van Baaren J, 2009, B ENTOMOL RES, V99, P299, DOI 10.1017/S0007485308006342; VANALPHEN JJM, 1990, ANNU REV ENTOMOL, V35, P59, DOI 10.1146/annurev.en.35.010190.000423; Vercken E, 2015, ECOL EVOL, V5, P2684, DOI 10.1002/ece3.1505; Vollhardt IMG, 2008, AGR ECOSYST ENVIRON, V126, P289, DOI 10.1016/j.agee.2008.01.024; Wajnberg E., 2008, BEHAV ECOLOGY INSECT; Yamashita O, 2001, INSECT TIMING CIRCAD, P145; Zamani AA, 2007, ENVIRON ENTOMOL, V36, P263, DOI 10.1603/0046-225X-36.2.263 61 1 2 5 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1672-9609 1744-7917 INSECT SCI Insect Sci. DEC 2018 25 6 1080 1088 10.1111/1744-7917.12491 9 Entomology Entomology HB6EZ WOS:000451160100014 28618174 2019-02-21 J Bullinaria, JA Bullinaria, John A. Evolution of learning strategies in changing environments COGNITIVE SYSTEMS RESEARCH English Article Social learning; Individual learning; Memes; Evolution; Life history; Changing environments SELECTION FAVORS; EMERGENCE; SIMULATION; CLIMATE Learning is an important aspect of cognition that is crucial for the success of many species, and has been a factor involved in the evolution of distinct patterns of life history that depend on the environments in question. The extent to which different degrees of social and individual learning emerge follows from various species-dependent factors, such as the fidelity of information transmission between individuals, and that has previously been modelled in agent-based simulations with meme-based representations of learned knowledge and behaviours. A limitation of that previous work is that it was based on fixed environments, and it is known that different learning strategies will emerge depending on the variability of the environment. This paper will address that limitation by extending the existing modelling framework to allow the simulation of life history evolution and the emergence of appropriate learning strategies in changing environments. (C) 2018 Elsevier B.V. All rights reserved. [Bullinaria, John A.] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England Bullinaria, JA (reprint author), Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England. j.a.bullinaria@cs.bham.ac.uk Acerbi A., 2006, JASSS-J ARTIF SOC S, V9, P1; Aoki K, 2005, CURR ANTHROPOL, V46, P334, DOI 10.1086/428791; Aunger R., 2002, ELECT MEME NEW THEOR; Best ML, 1999, ADAPT BEHAV, V7, P289, DOI 10.1177/105971239900700305; BLACKMORE S, 1999, MEME MACHINE; Borenstein E, 2008, EVOLUTION, V62, P586, DOI 10.1111/j.1558-5646.2007.00313.x; Boyd R., 1996, P BRIT ACAD, V88, P73; Bullinaria JA, 2003, PHILOS T ROY SOC A, V361, P2145, DOI 10.1098/rsta.2003.1249; Bullinaria JA, 2017, ARTIF LIFE, V23, P374, DOI 10.1162/ARTL_a_00237; Bullinaria JA, 2009, ARTIF LIFE, V15, P389, DOI [10.1162/artl.2009.15.3.Bullinaria.010, 10.1162/artl.2009.Bullinaria.010]; Channon A. D, 2012, ARTIF LIFE, P317; Crispo E, 2007, EVOLUTION, V61, P2469, DOI 10.1111/j.1558-5646.2007.00203.x; Diamond Jared, 2011, COLLAPSE SOC CHOOSE; Ehn M, 2012, J THEOR BIOL, V301, P103, DOI 10.1016/j.jtbi.2012.02.004; Eiben A. E., 2015, INTRO EVOLUTIONARY C; Feldman MW, 1996, ANTHROPOL SCI, V104, P209, DOI 10.1537/ase.104.209; Grove M, 2011, J HUM EVOL, V61, P306, DOI 10.1016/j.jhevol.2011.04.005; Halley JM, 1996, TRENDS ECOL EVOL, V11, P33, DOI 10.1016/0169-5347(96)81067-6; Henrich J, 1998, EVOL HUM BEHAV, V19, P215, DOI 10.1016/S1090-5138(98)00018-X; Henrich J, 2001, EVOL HUM BEHAV, V22, P165, DOI 10.1016/S1090-5138(00)00071-4; Henrich J., 2002, J COGNITION CULTURE, V2, P87, DOI DOI 10.1163/156853702320281836; Higgs PG, 2000, P ROY SOC B-BIOL SCI, V267, P1355, DOI 10.1098/rspb.2000.1150; Hinton G. E., 1987, Complex Systems, V1, P495; Jones D., 2011, P 11 EUR C SYNTH SIM, P380; Kameda T, 2002, EVOL HUM BEHAV, V23, P373, DOI 10.1016/S1090-5138(02)00101-0; Kendal RL, 2005, ADV STUD BEHAV, V35, P333, DOI 10.1016/S0065-3454(05)35008-X; Kline M.A., 2015, BEHAV BRAIN SCI, V38, P1, DOI DOI 10.1017/S0140525X14000090; Laland KN, 2004, LEARN BEHAV, V32, P4; Marriott C, 2010, ARTIF LIFE, V16, P21, DOI 10.1162/artl.2009.Marriott.014; McElreath R, 2008, CURR ANTHROPOL, V49, P307, DOI 10.1086/524364; Miller N. E, 1941, SOCIAL LEARNING IMIT; Muthukrishna M, 2016, EVOL HUM BEHAV, V37, P10, DOI 10.1016/j.evolhumbehav.2015.05.004; Potts R, 1998, EVOL ANTHROPOL, V7, P81, DOI 10.1002/(SICI)1520-6505(1998)7:3<81::AID-EVAN3>3.3.CO;2-1; Potts R, 1996, SCIENCE, V273, P922, DOI 10.1126/science.273.5277.922; Potts R, 2013, QUATERNARY SCI REV, V73, P1, DOI 10.1016/j.quascirev.2013.04.003; Reader SM, 2010, LEARN BEHAV, V38, P265, DOI 10.3758/LB.38.3.265; Rendell L, 2010, SCIENCE, V328, P208, DOI 10.1126/science.1184719; Richerson P. J, 1985, CULTURE EVOLUTIONARY; ROGERS AR, 1988, AM ANTHROPOL, V90, P819, DOI 10.1525/aa.1988.90.4.02a00030; Shultz TR, 1996, PSYCHOL REV, V103, P219, DOI 10.1037/0033-295X.103.2.219; STEELE JH, 1985, NATURE, V313, P355, DOI 10.1038/313355a0; Thornton A, 2008, ANIM BEHAV, V75, P1823, DOI 10.1016/j.anbehav.2007.12.014; Tomasello M, 1999, ANNU REV ANTHROPOL, V28, P509, DOI 10.1146/annurev.anthro.28.1.509; Wakano JY, 2006, THEOR POPUL BIOL, V70, P486, DOI 10.1016/j.tpb.2006.04.003; Wakano JY, 2004, THEOR POPUL BIOL, V66, P249, DOI 10.1016/j.tpb.2004.06.005; Walker R, 2006, J HUM EVOL, V51, P480, DOI 10.1016/j.jhevol.2006.06.002; Whitebead H, 2007, J THEOR BIOL, V245, P341, DOI 10.1016/j.jtbi.2006.10.001; Whitehead H, 2009, EVOL HUM BEHAV, V30, P261, DOI 10.1016/j.evolhumbehav.2009.02.003 48 0 0 5 5 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1389-0417 COGN SYST RES Cogn. Syst. Res. DEC 2018 52 429 449 10.1016/j.cogsys.2018.07.024 21 Computer Science, Artificial Intelligence; Neurosciences; Psychology, Experimental Computer Science; Neurosciences & Neurology; Psychology HB2GA WOS:000450854400043 2019-02-21 J Fuller, MR; Doyle, MW Fuller, Matthew R.; Doyle, Martin W. Gene flow simulations demonstrate resistance of long-lived species to genetic erosion from habitat fragmentation CONSERVATION GENETICS English Article Allelic diversity; CDPOP; Freshwater mussel; Genetic drift; Life history; Neuse River; Population genetic structure; Unionidae FRESH-WATER MUSSELS; POPULATION-GENETICS; R-PACKAGE; TOOLS; PHYLOGENETICS; CONSEQUENCES; EVOLUTIONARY; DIVERSITY; DYNAMICS; PATTERNS Habitat fragmentation restricts the movement of individuals across a landscape. In terrestrial and aquatic systems, barriers to movement can modify population and community dynamics at local or regional scales. This study contrasted life history traits related to lifespan with habitat fragmentation to determine impacts on species population genetic structure in the Neuse River Basin, USA. For this, we simulated gene flow among evenly-spaced populations in a river network and tracked individual and population genetics for 200years. The modeled scenarios represent a full cross between five life history strategies and four riverscapes representing varying degrees of fragmentation. The five life history strategies include species (based on freshwater mussels) with average lifespans ranging from 10 to 50years and age at maturity from 2 to 6years. The movement landscapes included a (1) panmictic, (2) stepping-stone landscape allowing movement to only neighboring populations during each dispersal event, (3) partially-fragmented landscape divided by dams currently in the network, and (4) fully-fragmented landscape. Results suggest species with shorter lifespans have higher population genetic structure in fragmented landscapes than species with longer lifespans. Furthermore, species with shorter lifespans in highly fragmented landscapes may be harboring genetic degradation or decline as allele fixation and loss. Although anthropogenic fragmentation of many river systems is only 100-200years old, the simulation indicates that species can respond genetically in that period of time. Additionally, the time frame of the simulation suggests that genetic impacts of habitat fragmentation in some species present in the Neuse River Basin may not yet be manifesting and restoration activities could be successful. [Fuller, Matthew R.; Doyle, Martin W.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA Fuller, MR (reprint author), Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. matthew.robert.fuller@gmail.com United States Fish and Wildlife Service [F11AP00566]; Hydro Research Foundation; Garden Club of America; Society for Freshwater Science We thank Tom Schultz, David Strayer, Dean Urban, and Justin Wright for comments on early drafts of this manuscript. Funding was provided by the United States Fish and Wildlife Service (#F11AP00566), Hydro Research Foundation, Society for Freshwater Science, and Garden Club of America. Abernethy E., 2013, WALKERANA, V16, P21; [Anonymous], 2016, R LANG ENV STAT COMP; Bijlsma R, 2012, EVOL APPL, V5, P117, DOI 10.1111/j.1752-4571.2011.00214.x; Bogan AE, 2002, WORKBOOK KEY FRESHWA; Breen MJ, 2009, CAN J FISH AQUAT SCI, V66, P31, DOI 10.1139/F08-189; Cooney PB, 2013, BIOSCIENCE, V63, P176, DOI 10.1525/bio.2013.63.3.6; Dunham JB, 1999, ECOL APPL, V9, P642, DOI 10.2307/2641151; ElMousadik A, 1996, THEOR APPL GENET, V92, P832, DOI 10.1007/BF00221895; Epps CW, 2005, ECOL LETT, V8, P1029, DOI 10.1111/j.1461-0248.2005.00804.x; Fagan WF, 2002, ECOLOGY, V83, P3243, DOI 10.2307/3072074; Fahrig L, 2003, ANNU REV ECOL EVOL S, V34, P487, DOI 10.1146/annurev.ecolsys.34.011802.132419; Fuller MR, 2015, ANN NY ACAD SCI, V1355, P31, DOI 10.1111/nyas.12853; Goodwin RA, 2014, P NATL ACAD SCI USA, V111, P5277, DOI 10.1073/pnas.1311874111; Goudet J, 2005, MOL ECOL NOTES, V5, P184, DOI 10.1111/j.1471-8278.2004.00828.x; Grant EHC, 2007, ECOL LETT, V10, P165, DOI 10.1111/j.1461-0248.2006.01007.x; Greenbaum G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115203; Haag WR, 2011, BIOL REV, V86, P225, DOI 10.1111/j.1469-185X.2010.00146.x; Haag WR, 2012, NORTH AMERICAN FRESHWATER MUSSELS: NATURAL HISTORY, ECOLOGY, AND CONSERVATION, P1, DOI 10.1017/CBO9781139048217; Haag WR, 2003, FRESHWATER BIOL, V48, P2118, DOI 10.1046/j.1365-2427.2003.01155.x; Haro A, 2003, EEL BIOLOGY, P215; Henle K, 2004, BIODIVERS CONSERV, V13, P207, DOI 10.1023/B:BIOC.0000004319.91643.9e; Hoenke KM, 2014, ECOL ENG, V64, P27, DOI 10.1016/j.ecoleng.2013.12.009; Honnay O, 2007, CONSERV BIOL, V21, P823, DOI 10.1111/j.1523-1739.2006.00646.x; Hutchison DW, 1999, EVOLUTION, V53, P1898, DOI 10.1111/j.1558-5646.1999.tb04571.x; Jombart T, 2008, BIOINFORMATICS, V24, P1403, DOI 10.1093/bioinformatics/btn129; Jombart T, 2011, BIOINFORMATICS, V27, P3070, DOI 10.1093/bioinformatics/btr521; Jombart T, 2010, BMC GENET, V11, DOI 10.1186/1471-2156-11-94; Kamvar ZN, 2015, FRONT GENET, V6, DOI 10.3389/fgene.2015.00208; Kamvar ZN, 2014, PEERJ, V2, DOI 10.7717/peerj.281; Kappes H, 2012, AQUAT SCI, V74, P1, DOI 10.1007/s00027-011-0187-6; Landguth EL, 2010, MOL ECOL, V19, P4179, DOI 10.1111/j.1365-294X.2010.04808.x; Landguth EL, 2010, MOL ECOL RESOUR, V10, P156, DOI 10.1111/j.1755-0998.2009.02719.x; Lellis WA, 2013, J FISH WILDL MANAG, V4, P75, DOI 10.3996/102012-JFWM-094; Lloyd MW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063981; Mock KE, 2013, MOL ECOL, V22, P6060, DOI 10.1111/mec.12557; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Paradis E, 2010, BIOINFORMATICS, V26, P419, DOI 10.1093/bioinformatics/btp696; Popescu AA, 2012, BIOINFORMATICS, V28, P1536, DOI 10.1093/bioinformatics/bts184; Rieman BE, 2000, ECOL FRESHW FISH, V9, P51, DOI 10.1034/j.1600-0633.2000.90106.x; Samia Y, 2015, J R SOC INTERFACE, V12, DOI 10.1098/rsif.2015.0435; SLATKIN M, 1987, SCIENCE, V236, P787, DOI 10.1126/science.3576198; Small ST, 2012, CONSERV GENET, V13, P965, DOI 10.1007/s10592-012-0345-y; Storfer A, 1999, BIOL CONSERV, V87, P173, DOI 10.1016/S0006-3207(98)00066-4; Storfer A, 2010, MOL ECOL, V19, P3496, DOI 10.1111/j.1365-294X.2010.04691.x; Strayer DL, 2012, ECOL APPL, V22, P1780, DOI 10.1890/11-1536.1; Strayer DL, 2003, BIOSCIENCE, V53, P723, DOI 10.1641/0006-3568(2003)053[0723:ACOEB]2.0.CO;2; Thiel-Egenter C, 2009, GLOBAL ECOL BIOGEOGR, V18, P78, DOI 10.1111/j.1466-8238.2008.00421.x; TILMAN D, 1994, NATURE, V371, P65, DOI 10.1038/371065a0; Villegas-Amtmann S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070748; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Winkler DW, 2014, MOV ECOL, V2, DOI 10.1186/2051-3933-2-10 51 0 0 10 10 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1566-0621 1572-9737 CONSERV GENET Conserv. Genet. DEC 2018 19 6 1439 1448 10.1007/s10592-018-1112-5 10 Biodiversity Conservation; Genetics & Heredity Biodiversity & Conservation; Genetics & Heredity HA7OY WOS:000450473600014 2019-02-21 J Wang, CC; Rogers, DC Wang, Chun-Chieh; Rogers, D. Christopher Bet hedging in stochastic habitats: an approach through large branchiopods in a temporary wetland OECOLOGIA English Article Life history; Fitness; Predictive plasticity; Dormant propagule; Egg bank BRANCHINELLA BRANCHINELLITES KUGENUMAENSIS; SYMPATRIC LARGE BRANCHIOPODS; LIFE-HISTORY; FAIRY SHRIMP; HATCHING PHENOLOGY; DESERT ANNUALS; OPTIMIZING REPRODUCTION; GERMINATION STRATEGIES; CRUSTACEA-ANOSTRACA; SIANGTIAN POND Organisms evolve to maintain fitness across generations, while short-term fitness in stochastic habitats such as temporary wetlands may be highly varied. As typical temporary wetland inhabitants, large branchiopods rely on bet hedging hatching that helps them survive throughout generations. An optimal hatching rate is predicted to be approximate to the successful reproduction probability (SRP). We tested the difference between hatching rate and SRP of large branchiopods Branchinella kugenumaensis and Eulimnadia braueriana in a temporary wetland in Taiwan, through field surveys and climatic records to evaluate their SRP. Comparisons were performed under two proposed scenarios, where a population's hatching was bet hedged for a hydroperiod or for a wet season (with several hydroperiods), respectively. Population size fluctuations were simulated for these two scenarios under assumed egg mortalities and reproductive replenishments. Results showed that the hatching rates only fitted to SRP for E. braueriana under the scenario of bet hedging on a wet season, not for B. kugenumaensis, nor for both species under the scenario of bet hedging on a hydroperiod. Bet hedging on a wet season would have a smaller range of population size fluctuation and a lower rate of population size decrease. This implies that large branchiopods adopt a conservative hatching strategy, lowering the hatching fraction in each hydroperiod to reduce long-term egg bank size fluctuation. Bet hedging strategies could occur during other life cycle stages, coexist with other life history strategies, and lead to the diversified hatching fraction distribution rather than a single, optimal fraction throughout hydroperiods. [Wang, Chun-Chieh] Shantou Univ, Inst Marine Biol, 243 Daxue Rd, Shantou 515063, Guangdong, Peoples R China; [Rogers, D. Christopher] Kansas Univ, Biodivers Inst, Kansas Biol Survey, Higuchi Hall,2101 Constant Ave, Lawrence, KS 66047 USA Wang, CC (reprint author), Shantou Univ, Inst Marine Biol, 243 Daxue Rd, Shantou 515063, Guangdong, Peoples R China. webberpy@gmail.com Wang, Chun-Chieh/0000-0001-7398-5638 Beladjal L, 2017, HYDROBIOLOGIA, V801, P153, DOI 10.1007/s10750-017-3156-9; Brendonck L., 2000, African Journal of Aquatic Science, V25, P98, DOI 10.2989/160859100780177668; Brendonck L, 2003, HYDROBIOLOGIA, V491, P65, DOI 10.1023/A:1024454905119; Brendonck L., 2001, VERH INT VER LIMNOL, V27, P3931; Brendonck L, 2008, HYDROBIOLOGIA, V595, P167, DOI 10.1007/s10750-007-9119-9; BROWN JS, 1986, AM NAT, V127, P31, DOI 10.1086/284465; BULMER MG, 1984, THEOR POPUL BIOL, V26, P367, DOI 10.1016/0040-5809(84)90040-6; Childs DZ, 2010, P ROY SOC B-BIOL SCI, V277, P3055, DOI 10.1098/rspb.2010.0707; Clauss MJ, 2000, AM NAT, V155, P168, DOI 10.1086/303314; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN D, 1968, J ECOL, V56, P219, DOI 10.2307/2258075; COHEN D, 1967, J THEOR BIOL, V16, P1, DOI 10.1016/0022-5193(67)90050-1; COOPER WS, 1982, J THEOR BIOL, V94, P135, DOI 10.1016/0022-5193(82)90336-8; Dumont HJ, 2002, HYDROBIOLOGIA, V486, P161, DOI 10.1023/A:1021346601235; Einum S, 2004, EVOL ECOL RES, V6, P443; ELLNER S, 1985, THEOR POPUL BIOL, V28, P80, DOI 10.1016/0040-5809(85)90023-1; Evans MEK, 2007, AM NAT, V169, P184, DOI 10.1086/510599; Gremer JR, 2014, ECOL LETT, V17, P380, DOI 10.1111/ele.12241; Hairston NG, 1996, LIMNOL OCEANOGR, V41, P1087, DOI 10.4319/lo.1996.41.5.1087; HANN BJ, 1991, HYDROBIOLOGIA, V212, P61, DOI 10.1007/BF00025987; HILDREW AG, 1985, J ANIM ECOL, V54, P99, DOI 10.2307/4623; Huang SL, 2011, J CRUSTACEAN BIOL, V31, P254, DOI 10.1651/10-3318.1; Huang SL, 2010, J CRUSTACEAN BIOL, V30, P366, DOI 10.1651/09-3235.1; Ishikawa C., 1895, ZOOL MAG, V7, P1; Lin Y-S, 1991, BRANCHINELLA KUGENUM; Maffei C, 2005, ECOL MODEL, V185, P469, DOI 10.1016/j.ecolmodel.2004.04.039; Menu F, 2000, AM NAT, V155, P724, DOI 10.1086/303355; Molles MC, 2005, ECOLOGY CONCEPTS APP, P298; O'Neill BJ, 2016, ECOLOGY, V97, P3285, DOI 10.1002/ecy.1604; Pake CE, 1996, ECOLOGY, V77, P1427, DOI 10.2307/2265540; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; PHILIPPI T, 1993, AM NAT, V142, P474, DOI 10.1086/285550; Philippi TE, 2001, ISRAEL J ZOOL, V47, P387, DOI 10.1560/LU8G-9HVP-YR80-XCL0; Pinceel T, 2017, OECOLOGIA, V184, P161, DOI 10.1007/s00442-017-3858-8; Ricklefs RE, 2000, ECOLOGY, P658; Ripa J, 2010, P ROY SOC B-BIOL SCI, V277, P1153, DOI 10.1098/rspb.2009.2023; Rogers DC, 2015, J CRUSTACEAN BIOL, V35, P686, DOI 10.1163/1937240X-00002369; Rogers DC, 2015, J LIMNOL, V74, P85, DOI 10.4081/jlimnol.2014.1036; Rogers DC, 2014, J CRUSTACEAN BIOL, V34, P135, DOI 10.1163/1937240X-00002220; Sabnis NJ, 2017, J NAT HIST, V51, P1835, DOI 10.1080/00222933.2017.1355996; Saengphan N, 2005, CRUSTACEANA, V78, P513, DOI 10.1163/156854005774318123; SAIAH H, 1990, FUNCT ECOL, V4, P769, DOI 10.2307/2389443; Schwartz Steven S., 2000, Aquatic Ecology, V34, P3, DOI 10.1023/A:1009944918152; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Simons AM, 2014, J EVOLUTION BIOL, V27, P1047, DOI 10.1111/jeb.12378; Simovich MA, 1997, J CRUSTACEAN BIOL, V17, P38, DOI 10.2307/1549460; Slusarczyk M, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0175927; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Su TY, 2002, BIOL CONTROL, V23, P18, DOI 10.1006/bcon.2001.0982; TULJAPURKAR S, 1993, THEOR POPUL BIOL, V43, P251, DOI 10.1006/tpbi.1993.1011; Vanschoenwinkel B, 2010, AQUAT ECOL, V44, P771, DOI 10.1007/s10452-010-9315-y; Venable DL, 2007, ECOLOGY, V88, P1086, DOI 10.1890/06-1495; Wang CC, 2018, J CRUSTACEAN BIOL, V38, P140, DOI 10.1093/jcbiol/rux108; Wang CC, 2015, J CRUSTACEAN BIOL, V35, P301, DOI 10.1163/1937240X-00002322; Wang CC, 2014, J CRUSTACEAN BIOL, V34, P412, DOI 10.1163/1937240X-00002244; Wang CC, 2012, J CRUSTACEAN BIOL, V32, P39, DOI 10.1163/193724011X615316; Waterkeyn A, 2011, J PLANKTON RES, V33, P1617, DOI 10.1093/plankt/fbr048; Weeks SC, 1997, HYDROBIOLOGIA, V359, P191, DOI 10.1023/A:1003106702451; WIGGINS G B, 1980, Archiv fuer Hydrobiologie Supplement, V58, P97; WILLIAMS WD, 1985, HYDROBIOLOGIA, V125, P85, DOI 10.1007/BF00045928 61 0 0 1 1 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia DEC 2018 188 4 1081 1093 10.1007/s00442-018-4272-6 13 Ecology Environmental Sciences & Ecology HA7OC WOS:000450471000013 30353225 2019-02-21 J Varpe, O; Ejsmond, MJ Varpe, Oystein; Ejsmond, Maciej J. Trade-offs between storage and survival affect diapause timing in capital breeders EVOLUTIONARY ECOLOGY English Article Energy reserves; Life-history theory; Predation risk; Resource allocation; State-dependence; Income breeding DIEL VERTICAL MIGRATION; COPEPOD CALANUS-GLACIALIS; MITE TETRANYCHUS-URTICAE; LIFE-HISTORY EVOLUTION; MARINE COPEPOD; REPRODUCTIVE STRATEGIES; SEASONAL ENVIRONMENTS; PLANKTONIC COPEPOD; THEORETICAL-MODEL; CYCLE STRATEGIES Many organisms spend the unfavourable part of the year, such as the winter season, in diapause or dormancy and reproduce in spring shortly after emergence. Reserves are acquired prior to diapause to cover metabolic costs and in some species also reproduction (capital breeding) directly after diapause. Storage is then a component of future reproduction, and capital breeders consequently pay a pre-breeding cost of reproduction as they risk dying while obtaining and carrying the reserves. How large should the reserves be, and to what extent should optimal storage, and thereby timing of diapause, depend on predation risk and reproductive strategy? We present a general and simplistic life history model of an arthropod (e.g. crustaceans or insects) that is exposed to background mortality risk when it accumulates reserves before diapause. The model optimizes diapause timing and resultant reserves for income, mixed and capital breeders, and predicts how mortality risk affects the degree of capital breeding. For income breeders, timing of diapause is insensitive to the risk while obtaining reserves as they, regardless of risk, acquire the minimum amount needed to survive the winter. For capital breeders, the higher the risk the earlier the diapause and less is consequently stored. Mixed breeders diapause late and store as much as pure capital breeders when exposed to low risk, but behave as income breeders and diapause early when mortality is high. Our model shows that the degree of capital breeding impacts phenology of diapause in a risk-dependent manner. This prediction should impact how diapause timing is thought of across a wide range of taxa, including the much studied marine copepods. Timing of diapause, including triggers and cues, can only be understood when the diversity of reproductive strategies and the adaptive value of storage is taken into account. [Varpe, Oystein; Ejsmond, Maciej J.] Univ Ctr Svalbard, Dept Arctic Biol, N-9171 Longyearbyen, Norway; [Varpe, Oystein] Akvaplan Niva, Fram Ctr, N-9296 Tromso, Norway; [Ejsmond, Maciej J.] Jagiellonian Univ, Inst Environm Sci, PL-30387 Krakow, Poland Varpe, O (reprint author), Univ Ctr Svalbard, Dept Arctic Biol, N-9171 Longyearbyen, Norway.; Varpe, O (reprint author), Akvaplan Niva, Fram Ctr, N-9296 Tromso, Norway. oystein.varpe@unis.no Varpe, Oystein/0000-0002-5895-6983; Ejsmond, Maciej/0000-0002-3598-4578 National Science Centre in Poland [2014/15/B/NZ8/00236]; Jagiellonian University [DS/WB/INoS 757/18]; Fulbright Arctic Initiative This work was supported by a Grant from the National Science Centre in Poland for Project No. 2014/15/B/NZ8/00236 and Jagiellonian University funds (DS/WB/INoS 757/18). OV also thanks the Fulbright Arctic Initiative for funding. We thank Toomas Tammaru and an anonymous reviewer for very helpful comments on an earlier version of the article. Aksnes DL, 1996, LIMNOL OCEANOGR, V41, P1461, DOI 10.4319/lo.1996.41.7.1461; ANHOLT BR, 1995, ECOLOGY, V76, P2230, DOI 10.2307/1941696; Atkinson A, 1998, J MARINE SYST, V15, P289, DOI 10.1016/S0924-7963(97)00081-X; ATKINSON SN, 1995, FUNCT ECOL, V9, P559, DOI 10.2307/2390145; Bandara K, 2018, ECOL MODEL, V368, P357, DOI 10.1016/j.ecolmodel.2017.12.010; Bjaerke O, 2014, MAR ECOL PROG SER, V510, P15, DOI 10.3354/meps10918; BOLLENS SM, 1994, J PLANKTON RES, V16, P555, DOI 10.1093/plankt/16.5.555; BOLLENS SM, 1989, J PLANKTON RES, V11, P1047, DOI 10.1093/plankt/11.5.1047; Bonnet D, 2005, PROG OCEANOGR, V65, P1, DOI 10.1016/j.pocean.2005.02.002; Bonnet X, 2002, ECOLOGY, V83, P2124, DOI 10.1890/0012-9658(2002)083[2124:RIATCB]2.0.CO;2; Brittain JE, 1990, MAYFLIES STONEFLIES, V44, P1; Brown JS, 2004, ECOL LETT, V7, P999, DOI 10.1111/j.1461-0248.2004.00661.x; Cieri MD, 1999, MAR ECOL PROG SER, V177, P157, DOI 10.3354/meps177157; COHEN D, 1970, AM NAT, V104, P389, DOI 10.1086/282672; CONOVER RJ, 1988, HYDROBIOLOGIA, V167, P127, DOI 10.1007/BF00026299; Daase M, 2013, CAN J FISH AQUAT SCI, V70, P871, DOI 10.1139/cjfas-2012-0401; Dahl J, 2003, OECOLOGIA, V137, P188, DOI 10.1007/s00442-003-1326-0; Davis RB, 2016, ECOLOGY, V97, P2112, DOI 10.1002/ecy.1435; DRENT RH, 1980, ARDEA, V68, P225; Ejsmond MJ, 2018, FUNCT ECOL, V32, P2395, DOI 10.1111/1365-2435.13191; Ejsmond MJ, 2015, AM NAT, V186, pE111, DOI 10.1086/683119; Ejsmond MJ, 2010, AM NAT, V175, P551, DOI 10.1086/651589; Fiksen O, 2000, ICES J MAR SCI, V57, P1825, DOI 10.1006/jmsc.2000.0976; Fischer B, 2011, EVOLUTION, V65, P1221, DOI 10.1111/j.1558-5646.2010.01198.x; Forrest J, 2010, PHILOS T R SOC B, V365, P3101, DOI 10.1098/rstb.2010.0145; Gentleman WC, 2012, J MARINE SYST, V105, P1, DOI 10.1016/j.jmarsys.2012.05.006; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Giacomini HC, 2013, J THEOR BIOL, V339, P100, DOI 10.1016/j.jtbi.2013.08.020; Hagen W, 1996, DEEP-SEA RES PT I, V43, P139, DOI 10.1016/0967-0637(96)00001-5; Hahn DA, 2011, ANNU REV ENTOMOL, V56, P103, DOI 10.1146/annurev-ento-112408-085436; Haugen IMA, 2015, J ANIM ECOL, V84, P464, DOI 10.1111/1365-2656.12291; Hays GC, 2001, LIMNOL OCEANOGR, V46, P2050, DOI 10.4319/lo.2001.46.8.2050; Hind A, 2000, MAR ECOL PROG SER, V193, P95, DOI 10.3354/meps193095; Hirche HJ, 2013, MAR BIOL, V160, P2469, DOI 10.1007/s00227-013-2242-4; HIRCHE HJ, 1993, MAR BIOL, V117, P615, DOI 10.1007/BF00349773; Hirche HJ, 1996, OPHELIA, V44, P129, DOI 10.1080/00785326.1995.10429843; Houston A.l, 1999, MODELS ADAPTIVE BEHA; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Javois J, 2011, ENTOMOL EXP APPL, V139, P187, DOI 10.1111/j.1570-7458.2011.01120.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Ji RB, 2011, MAR ECOL PROG SER, V440, P105, DOI 10.3354/meps09342; Johnson CL, 2008, ICES J MAR SCI, V65, P339, DOI 10.1093/icesjms/fsm171; Jonasdottir SH, 2015, P NATL ACAD SCI USA, V112, P12122, DOI 10.1073/pnas.1512110112; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Kaartvedt S, 2000, ICES J MAR SCI, V57, P1819, DOI 10.1006/jmsc.2000.0964; Kivela SM, 2012, NATURWISSENSCHAFTEN, V99, P607, DOI 10.1007/s00114-012-0940-2; Kozlowski J, 2006, POL J ECOL, V54, P585; Kroon A, 2004, EXP APPL ACAROL, V34, P307; Kroon A, 1998, ECOL ENTOMOL, V23, P298, DOI 10.1046/j.1365-2311.1998.00142.x; Kroon A, 2008, NATURWISSENSCHAFTEN, V95, P1195, DOI 10.1007/s00114-008-0442-4; Lass S, 2003, HYDROBIOLOGIA, V491, P221, DOI 10.1023/A:1024487804497; LILLEHAMMER A, 1989, HOLARCTIC ECOL, V12, P173; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Liu ZD, 2007, J INSECT PHYSIOL, V53, P1016, DOI 10.1016/j.jinsphys.2007.05.005; Maps F, 2010, MAR ECOL PROG SER, V403, P165, DOI 10.3354/meps08525; McBride RS, 2015, FISH FISH, V16, P23, DOI 10.1111/faf.12043; McNamara JM, 2008, PHILOS T R SOC B, V363, P301, DOI 10.1098/rstb.2007.2141; MILLER CB, 1984, PROG OCEANOGR, V13, P201, DOI 10.1016/0079-6611(84)90009-0; Morata N, 2015, POLAR BIOL, V38, P67, DOI 10.1007/s00300-013-1417-2; Morewood WD, 1998, CAN J ZOOL, V76, P1371, DOI 10.1139/cjz-76-7-1371; Niehoff B, 2005, MAR ECOL PROG SER, V285, P107, DOI 10.3354/meps285107; OHMAN MD, 1983, SCIENCE, V220, P1404, DOI 10.1126/science.220.4604.1404; Ohman MD, 1998, DEEP-SEA RES PT II, V45, P1709, DOI 10.1016/S0967-0645(98)80014-3; Pasternak Anna F., 1994, Russian Journal of Aquatic Ecology, V3, P49; Peckarsky BL, 2001, ECOLOGY, V82, P740, DOI 10.1890/0012-9658(2001)082[0740:VIMSAM]2.0.CO;2; Peijnenburg KTCA, 2013, ECOL EVOL, V3, P2765, DOI 10.1002/ece3.644; Remmel T, 2011, BIOL J LINN SOC, V104, P1, DOI 10.1111/j.1095-8312.2011.01721.x; Rey-Rassat C, 2002, MAR ECOL PROG SER, V238, P301, DOI 10.3354/meps238301; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, OECOLOGIA, V73, P401, DOI 10.1007/BF00385257; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; ROFF DA, 2002, LIFE HIST EVOLUTION; Sainmont J, 2014, AM NAT, V184, P466, DOI 10.1086/677926; Schmid MS, 2018, J PLANKTON RES, V40, P311, DOI 10.1093/plankt/fby012; Slusarczyk M, 2013, HYDROBIOLOGIA, V715, P225, DOI 10.1007/s10750-013-1552-3; Stearns S, 1992, EVOLUTION LIFE HIST; Stephens PA, 2014, ECOLOGY, V95, P882, DOI 10.1890/13-1434.1; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Tammaru T, 1996, OIKOS, V77, P561, DOI 10.2307/3545946; Tauber M.J., 1986, SEASONAL ADAPTATIONS; Teder T, 2010, OECOLOGIA, V162, P117, DOI 10.1007/s00442-009-1439-1; Varpe O, 2018, NATURAL HIST CRUSTAC, P97; Varpe O, 2007, OIKOS, V116, P1331, DOI 10.1111/j.2007.0030-1299.15893.x; Varpe O, 2017, INTEGR COMP BIOL, V57, P943, DOI 10.1093/icb/icx123; Varpe O, 2015, ICES J MAR SCI, V72, P2532, DOI 10.1093/icesjms/fsv129; Varpe O, 2012, J PLANKTON RES, V34, P267, DOI 10.1093/plankt/fbr108; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; Vogedes D, 2010, J PLANKTON RES, V32, P1471, DOI 10.1093/plankt/fbq068; Vogt G, 2012, ZOOL ANZ, V251, P1, DOI 10.1016/j.jcz.2011.05.003; Walczynska A, 2010, B ENTOMOL RES, V100, P461, DOI 10.1017/S0007485309990514; Walczynska A, 2010, ECOL ENTOMOL, V35, P16, DOI 10.1111/j.1365-2311.2009.01142.x; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; Williams CT, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0250; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; YDENBERG RC, 1989, ECOLOGY, V70, P1494, DOI 10.2307/1938208 96 0 0 15 15 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. DEC 2018 32 6 623 641 10.1007/s10682-018-9961-4 19 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HA8AZ WOS:000450510900004 2019-02-21 J Johnston, TA Johnston, Thomas A. Egg size and lipid content of lake trout (Salvelinus namaycush) in the wild and in captivity CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article WHITEFISH COREGONUS-CLUPEAFORMIS; LIFE-HISTORY STRATEGIES; FRESH-WATER; LATITUDINAL VARIATION; ATLANTIC SALMON; CHINOOK SALMON; OFFSPRING PERFORMANCE; MATERNAL CONDITION; RAPID EVOLUTION; PROPAGULE SIZE Egg quality influences early life survival in fishes, but drivers of egg quality variation remain poorly understood. I examined egg quality of a long-lived, iteroparous salmonid (lake trout (Salvelinus namaycush)) with respect to maternal traits and environmental conditions in wild and captively reared populations. Variation was stronger and more consistent for egg size than for lipid content. Among females, egg size was most strongly related to maternal age, in both wild and captive populations, and faster growing females tended to produce larger eggs. Among wild populations, maternal growth was more strongly associated with indices of ecosystem size or productivity than climate, whereas the opposite was observed for egg size. Egg size and, to a lesser extent, maternal growth in captive populations were positively correlated with egg size and growth, respectively, in their wild source populations. However, captive females grew faster and produced larger eggs at age, but smaller eggs at length, than their wild counterparts. Lake trout egg quality variation has both maternal and environmental components, and captive rearing appears to alter the ontogenetic progression of egg size. [Johnston, Thomas A.] Laurentian Univ, Ontario Minist Nat Resources & Forestry, Cooperat Freshwater Ecol Unit, Sudbury, ON P3E 2C6, Canada Johnston, TA (reprint author), Laurentian Univ, Ontario Minist Nat Resources & Forestry, Cooperat Freshwater Ecol Unit, Sudbury, ON P3E 2C6, Canada. tjohnston@laurentian.ca Science and Research Branch of the Ontario Ministry of Natural Resources and Forestry; Fisheries and Oceans Canada's Aquaculture Collaborative Research and Development Program; Natural Sciences and Engineering Research Council of Canada Field assistance was provided by personnel of the Aquatic Research and Development Section and Fish Culture Section of the Ontario Ministry of Natural Resources, New York Department of Environmental Conservation, and Fisheries and Oceans Canada. Angele Dubuc, Sarah Hunt, Susan Mann, Micale Prevost, Patricia Rohn, and Angela Somerville assisted with laboratory analyses. Earlier drafts of this manuscript were reviewed by Erin Dunlop, Kevin Loftus, Tom Quinn, and three anonymous referees. This research was supported by the Science and Research Branch of the Ontario Ministry of Natural Resources and Forestry, the Fisheries and Oceans Canada's Aquaculture Collaborative Research and Development Program, and the Natural Sciences and Engineering Research Council of Canada. Anderson DR., 2008, MODEL BASED INFERENC; BAGENAL TB, 1971, J FISH BIOL, V3, P207, DOI 10.1111/j.1095-8649.1971.tb03665.x; BEACHAM TD, 1993, J FISH BIOL, V42, P485; Beacham TD, 2010, T AM FISH SOC, V139, P579, DOI 10.1577/T09-093.1; Beauchamp KC, 2004, J GREAT LAKES RES, V30, P451, DOI 10.1016/S0380-1330(04)70361-5; Berg OK, 2001, FUNCT ECOL, V15, P13, DOI 10.1046/j.1365-2435.2001.00473.x; Bernardo J, 1996, AM ZOOL, V36, P216; Bernardo J, 1996, AM ZOOL, V36, P83; Blair JM, 2013, CAN J FISH AQUAT SCI, V70, P815, DOI 10.1139/cjfas-2012-0409; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Brodeur P, 2001, CAN J FISH AQUAT SCI, V58, P1998, DOI 10.1139/cjfas-58-10-1998; BROMAGE N, 1990, Aquaculture and Fisheries Management, V21, P269, DOI 10.1111/j.1365-2109.1990.tb00465.x; Brooks S, 1997, REV FISH BIOL FISHER, V7, P387, DOI 10.1023/A:1018400130692; Burton T, 2013, ECOLOGY, V94, P618, DOI 10.1890/12-0462.1; Chambers RC, 1996, AM ZOOL, V36, P180; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cott PA, 2013, T AM FISH SOC, V142, P1746, DOI 10.1080/00028487.2013.811101; CRAIG JF, 1985, CAN J ZOOL, V63, P1, DOI 10.1139/z85-001; De Ciechomski J.D., 1973, Journal Fish Biol, V5, P393; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Einum S, 2002, P ROY SOC B-BIOL SCI, V269, P2325, DOI 10.1098/rspb.2002.2150; Einum S, 2007, EVOLUTION, V61, P232, DOI 10.1111/j.1558-5646.2007.00020.x; Einum Sigurd, 2004, P126; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Green BS, 2008, ADV MAR BIOL, V54, P1, DOI 10.1016/S0065-2881(08)00001-1; Gunn JM, 2004, IN ST WA MA, P3; Haring MW, 2016, CAN J FISH AQUAT SCI, V73, P737, DOI 10.1139/cjfas-2015-0083; HEALEY MC, 1980, CAN J FISH AQUAT SCI, V37, P255, DOI 10.1139/f80-033; HEALEY MC, 1978, J FISH RES BOARD CAN, V35, P945, DOI 10.1139/f78-155; Heath DD, 2003, SCIENCE, V299, P1738, DOI 10.1126/science.1079707; Heath DD, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P178; Hendry AP, 2000, SCIENCE, V290, P516, DOI 10.1126/science.290.5491.516; Hendry AP, 2004, EVOLUTION ILLUMINATE; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Hyatt K. D., 2004, Environmental Reviews, V12, P133, DOI 10.1139/a04-008; Jastrebski CJ, 2009, T AM FISH SOC, V138, P1342, DOI 10.1577/T08-175.1; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Johnston TA, 2016, J GREAT LAKES RES, V42, P861, DOI 10.1016/j.jglr.2016.04.010; Johnston TA, 2002, ECOLOGY, V83, P1777, DOI 10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2; Jones PE, 2017, FRESHWATER BIOL, V62, P570, DOI 10.1111/fwb.12886; Jonsson N, 1996, FUNCT ECOL, V10, P89, DOI 10.2307/2390266; Kamler E, 2005, REV FISH BIOL FISHER, V15, P399, DOI 10.1007/s11160-006-0002-y; Kapuscinski KL, 2005, N AM J FISH MANAGE, V25, P696, DOI 10.1577/M03-205.1; Kaufman SD, 2007, T AM FISH SOC, V136, P1566, DOI 10.1577/T06-262.1; Kindsvater HK, 2011, J EVOLUTION BIOL, V24, P2230, DOI 10.1111/j.1420-9101.2011.02351.x; Kindsvater HK, 2016, ECOL LETT, V19, P687, DOI 10.1111/ele.12607; Kinnison MT, 1998, CAN J FISH AQUAT SCI, V55, P1946, DOI 10.1139/cjfas-55-8-1946; Kinnison MT, 2001, EVOLUTION, V55, P1656; KJORSVIK E, 1990, ADV MAR BIOL, V26, P71, DOI 10.1016/S0065-2881(08)60199-6; Kokita T, 2003, MAR BIOL, V143, P593, DOI 10.1007/s00227-003-1104-x; Koops MA, 2004, FISH FISH, V5, P120, DOI 10.1111/j.1467-2979.2004.00149.x; Koops MA, 2003, EVOL ECOL RES, V5, P29; Lambert Y., 2000, REPROD PHYSL FISH, P77; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Marshall DJ, 2010, ECOLOGY, V91, P2862, DOI 10.1890/09-0156.1; Martin N.V., 1980, Perspectives in Vertebrate Science, V1, P205; McDermid JL, 2010, CAN J FISH AQUAT SCI, V67, P314, DOI 10.1139/F09-183; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; McKenney DW, 2006, AGR FOREST METEOROL, V138, P69, DOI 10.1016/j.agrformet.2006.03.012; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Moles MD, 2008, CAN J FISH AQUAT SCI, V65, P600, DOI 10.1139/F07-186; Moore SA, 2001, T AM FISH SOC, V130, P1233, DOI 10.1577/1548-8659(2001)130<1233:DOSMOL>2.0.CO;2; Morita K, 1999, CAN J FISH AQUAT SCI, V56, P1585, DOI 10.1139/cjfas-56-9-1585; Morita K, 2009, J FISH BIOL, V74, P699, DOI 10.1111/j.1095-8649.2008.02150.x; Morrongiello JR, 2012, J ANIM ECOL, V81, P806, DOI 10.1111/j.1365-2656.2012.01961.x; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Muir AM, 2014, CAN J FISH AQUAT SCI, V71, P1256, DOI 10.1139/cjfas-2013-0254; Muir AM, 2016, FISH FISH, V17, P1194, DOI 10.1111/faf.12114; Munch SB, 2009, P NATL ACAD SCI USA, V106, P13860, DOI 10.1073/pnas.0900300106; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Power M, 2005, J FISH BIOL, V67, P255, DOI 10.1111/j.1095-8649.2005.00734.x; Quinn TP, 2011, T AM FISH SOC, V140, P45, DOI 10.1080/00028487.2010.550244; Quinn TP, 2004, T AM FISH SOC, V133, P55, DOI 10.1577/T03-032; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Ricker W. E., 1975, BULL FISH RES BOARD, V191; ROFF DA, 2002, LIFE HIST EVOLUTION; Rollinson N, 2016, BIOL REV, V91, P1134, DOI 10.1111/brv.12214; Rollinson N, 2013, AM NAT, V182, P76, DOI 10.1086/670648; Rollinson N, 2010, EVOL ECOL RES, V12, P949; Rollinson N, 2011, OECOLOGIA, V166, P889, DOI 10.1007/s00442-011-1945-9; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; Taborsky B, 2006, BIOL LETT-UK, V2, P225, DOI 10.1098/rsbl.2005.0422; Tamate T, 2000, OIKOS, V90, P209, DOI 10.1034/j.1600-0706.2000.900201.x; THORPE JE, 1984, AQUACULTURE, V43, P289, DOI 10.1016/0044-8486(84)90030-9; Tierney KB, 2009, J FISH BIOL, V75, P1244, DOI 10.1111/j.1095-8649.2009.02360.x; Trippel Edward A., 1993, North American Journal of Fisheries Management, V13, P64, DOI 10.1577/1548-8675(1993)013<0064:ROFMAB>2.3.CO;2; Wiegand MD, 2007, CAN J FISH AQUAT SCI, V64, P700, DOI 10.1139/F07-033; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 96 0 0 3 3 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. DEC 2018 75 12 2123 2135 10.1139/cjfas-2017-0408 13 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology GZ9BI WOS:000449791000003 2019-02-21 J Vitzthum, VJ; Thornburg, J; Spielvogel, H Vitzthum, Virginia J.; Thornburg, Jonathan; Spielvogel, Hilde Impacts of nocturnal breastfeeding, photoperiod, and access to electricity on maternal sleep behaviors in a non-industrial rural Bolivian population SLEEP HEALTH English Article Co-sleeping; Life history theory; Parent-offspring conflict; Behavioral research methods; High altitude; Aymara DURATION; HUMANS; LIGHT Objectives: We tested 4 main predictions, derived from life history theory and self-evident human diumality, regarding maternal sleep behaviors in a non-industrialized population in which mother-nursling co-sleeping is universal and prolonged: (1) Night breastfeeding incurs a sleep cost to co-sleeping mothers; (2) Night breastfeeding increases with infant age, causing mothers to sleep less: (3) Sleep duration co-varies with darkness duration; (4) Access to electricity reduces sleep duration. Design: Mothers self-recorded and reported nursing and sleep behaviors for a 48-hour period once per month (median = 5 months). Setting: Rural Bolivian altiplano homesteads, primarily reliant on agropastoralism, scattered throughout the countryside surrounding a main town (altitude 3800 m; 17 degrees 14'S, 65 degrees 55'W; darkness duration 10-12 hours over the year). Participants: One hundred eighty-four co-sleeping mother-infant pairs (infant age 22-730 days). Measurements: Breastfeeding frequency, and retiring and rising times for 885 48-hour observation periods. Results: Maternal sleep duration covaried with darkness duration. Sleep duration was shorter in those with access to electricity (ie, living nearer to town) than those without access (more distant homesteads). Night breastfeeding rate was fairly steady until it began to decline after the first year postpartum. At a given infant age, higher night breastfeeding rates were associated with less maternal sleep. As their infants aged, mothers without electricity slept more, whereas mothers with access slept less. Conclusions: During the first year postpartum, more frequent night nursing shortens maternal sleep more than any other predictor variable. For older infants, the effect of night nursing diminishes, and even modest "modernization" (eg, access to electricity) is associated with shorter maternal sleep. (C) 2018 National Sleep Foundation. Published by Elsevier Inc. All rights reserved. [Vitzthum, Virginia J.] Indiana Univ, Evolutionary Anthropol Lab, Bloomington, IN 47405 USA; [Vitzthum, Virginia J.] Indiana Univ, Kinsey Inst, Bloomington, IN 47405 USA; [Vitzthum, Virginia J.] Indiana Univ, Dept Anthropol, Bloomington, IN 47405 USA; [Thornburg, Jonathan] Indiana Univ, Dept Astron, Bloomington, IN 47405 USA; [Thornburg, Jonathan] Indiana Univ, Ctr Spacetime Symmetries, Bloomington, IN 47405 USA; [Spielvogel, Hilde] Inst Boliviano Biol Altura, La Paz, Bolivia Vitzthum, VJ (reprint author), Indiana Univ, Evolutionary Anthropol Lab, Bloomington, IN 47405 USA. vitzthum@indiana.edu National Science Foundation [SBR9506107]; University of California; Indiana University National Science Foundation (Award SBR9506107), University of California, and Indiana University. We thank the team of promotoras, and especially Esperanza Caceres (Senior Technician in Bioenergetics), for invaluable assistance in the field and laboratory. The Instituto Boliviano de Biologia de Altura, in La Paz, generously provided facilities and logistical support for Project REPA. Mil gracias to the Bolivian women and their families who made this work possible. Bedwell RM, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0170475; Britt K, 2013, AM J HUM BIOL, V25, P253; Chisholm J, 1987, ROLE CULTURE DEV DIS; de la Iglesia HO, 2015, J BIOL RHYTHM, V30, P342, DOI 10.1177/0748730415590702; Drewett R, 1991, Paediatr Perinat Epidemiol, V5, P347, DOI 10.1111/j.1365-3016.1991.tb00720.x; Girschik J, 2012, J EPIDEMIOL, V22, P462, DOI 10.2188/jea.JE20120012; Haig David, 2014, Evolution Medicine and Public Health, P32, DOI 10.1093/emph/eou005; Jones C, 2012, SLEEP MULTIPROFESSIO, P86; JONES NGB, 1987, ETHOL SOCIOBIOL, V8, P135; Lauderdale DS, 2008, EPIDEMIOLOGY, V19, P838, DOI 10.1097/EDE.0b013e318187a7b0; McKenna James J., 2014, Evolution Medicine and Public Health, P40, DOI 10.1093/emph/eou006; Miller CB, 2015, SLEEP HEALTH, V1, P133, DOI 10.1016/j.sleh.2015.02.007; Mindell JA, 2010, SLEEP MED, V11, P274, DOI 10.1016/j.sleep.2009.04.012; Nunn CL, 2016, EVOL MED PUBLIC HLTH, P227, DOI 10.1093/emph/eow018; Stearns S, 1992, EVOLUTION LIFE HIST; Vitzthum VJ, 2008, ANNU REV ANTHROPOL, V37, P53, DOI 10.1146/annurev.anthro.37.081407.085112; Vitzthum VJ, 2009, AM J HUM BIOL, V21, P548, DOI 10.1002/ajhb.20936; Vitzthum Virginia J., 1994, Yearbook of Physical Anthropology, V37, P307; VITZTHUM VJ, 1994, AM J HUM BIOL, V6, P551, DOI 10.1002/ajhb.1310060503; Vitzthum VJ, 2004, P NATL ACAD SCI USA, V101, P1443, DOI 10.1073/pnas.0302640101; Wehr TA, 1999, LUNG BIOL HEALTH DIS, V133, P263; Worthman CM, 2008, EVOLUTIONARY MED HLT, P291; Yetish G, 2015, CURR BIOL, V25, P2862, DOI 10.1016/j.cub.2015.09.046 23 1 1 0 0 ELSEVIER INC SAN DIEGO 525 B STREET, STE 1900, SAN DIEGO, CA 92101-4495 USA 2352-7218 2352-7226 SLEEP HEALTH Sleep Health DEC 2018 4 6 SI 535 542 10.1016/j.sleh.2018.09.011 8 Clinical Neurology Neurosciences & Neurology HA3KW WOS:000450150700010 30442322 2019-02-21 J Mitchell, ZA; McGuire, J; Abel, J; Hernandez, BA; Schwalb, AN Mitchell, Zachary A.; McGuire, Jaclyn; Abel, Joshua; Hernandez, Bianca A.; Schwalb, Astrid N. Move on or take the heat: Can life history strategies of freshwater mussels predict their physiological and behavioural responses to drought and dewatering? FRESHWATER BIOLOGY English Article burrowing; colonisation; desiccation tolerance; movement; unionid UNIONID MUSSELS; DESICCATION TOLERANCE; CLIMATE-CHANGE; DISTURBANCE; COMMUNITIES; ASSEMBLAGES; ECOSYSTEMS; MANAGEMENT; PATTERNS; BIVALVIA Freshwater organisms have developed different physiological, behavioural and life history strategies to cope with drying events. Although freshwater mussels (Unionidae) are endangered and drought and dewatering events pose a major threat, especially in the southern United States, little is known about their responses to such events and how physiology, behaviour and life history strategies may be linked. Our goal was to examine whether and how behavioural responses to dewatering and physiological tolerances to desiccation are linked in five species of freshwater mussels (Unionidae) within Texas, including two state-threatened species (Cyclonaias petrina and Lampsilis bracteata) and one federally endangered species (Popenaias popeii), and to explore how differences in responses relate to life history strategies. We measured horizontal and vertical movements under three dewatering rates and assessed desiccation tolerance by examining survival after emersion at 30 and 40 degrees C with laboratory experiments. Amblema plicata and C. petrina had the lowest horizontal movement rates and the highest desiccation tolerances, whereas L. bracteata and L. teres were less tolerant to desiccation, but more mobile. P. popeii were intermediate in its responses. Our results show that differences between species in their behavioural response to dewatering and physiological tolerance to desiccation tend to be associated with differences in life history strategies or may be explained by differences in adaptation to certain habitat conditions. We propose a life history strategy-based framework for responses of mussels to drying events, which may be applicable to other taxa. [Mitchell, Zachary A.; McGuire, Jaclyn; Hernandez, Bianca A.; Schwalb, Astrid N.] Texas State Univ, Biol Dept, San Marcos, TX 78666 USA; [Abel, Joshua] US Fish & Wildlife Serv, San Marcos Aquat Resources Ctr, San Marcos, TX USA Schwalb, AN (reprint author), Texas State Univ, Biol Dept, San Marcos, TX 78666 USA. schwalb@txstate.edu Texas Parks and Wildlife Department [TX T-127-1] Texas Parks and Wildlife Department, Grant/Award Number: TX T-127-1 Alcamo J, 2007, HYDROLOG SCI J, V52, P247, DOI 10.1623/hysj.52.2.247; Allen DC, 2009, J N AM BENTHOL SOC, V28, P93, DOI 10.1899/07-170.1; Bartsch MR, 2000, J SHELLFISH RES, V19, P233; BYRNE RA, 1994, AM ZOOL, V34, P194; Chen LY, 2001, HYDROBIOLOGIA, V450, P209, DOI 10.1023/A:1017501128572; DABORN GR, 1971, CAN J ZOOLOG, V49, P569, DOI 10.1139/z71-087; DETENBECK NE, 1992, ENVIRON MANAGE, V16, P33, DOI 10.1007/BF02393907; Facon B, 2004, BIOL INVASIONS, V6, P283, DOI 10.1023/B:BINV.0000034588.63264.4e; Fernando C.H., 1973, Verhandlungen Int Verein Theor Angew Limnol, V18, P1564; Galbraith HS, 2015, FRESHW SCI, V34, P42, DOI 10.1086/679446; Galbraith HS, 2010, BIOL CONSERV, V143, P1175, DOI 10.1016/j.biocon.2010.02.025; Golladay SW, 2004, J N AM BENTHOL SOC, V23, P494, DOI 10.1899/0887-3593(2004)023<0494:ROFMAB>2.0.CO;2; Gough HM, 2012, FRESHWATER BIOL, V57, P2356, DOI 10.1111/fwb.12015; Grimes J. P., 2001, PLANT STRATEGIES VEG; Haag W. R., 2012, N AM FRESHWATER MUSS, DOI [10. 1017/CBO9781139048217, DOI 10.1017/CB09781139048217]; Haag WR, 2008, T AM FISH SOC, V137, P1165, DOI 10.1577/T07-100.1; Hernandez B., 2016, THESIS; HOFFMANN AA, 1989, BIOL J LINN SOC, V37, P117, DOI 10.1111/j.1095-8312.1989.tb02098.x; Holland D. F., 1991, THESIS; Howells R. G., 2014, FIELD GUIDE TEXAS FR; Humphries P, 2003, FRESHWATER BIOL, V48, P1141, DOI 10.1046/j.1365-2427.2003.01092.x; Johnson P. M., 2001, EFFECTS DROUGHT FRES; KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868; Labbe TR, 2000, ECOL APPL, V10, P1774, DOI 10.2307/2641238; Lake PS, 2000, J N AM BENTHOL SOC, V19, P573, DOI 10.2307/1468118; Lehmkuhl D. M., 1973, P 1 INT C EPH, P33; Magoulick DD, 2003, FRESHWATER BIOL, V48, P1186, DOI 10.1046/j.1365-2427.2003.01089.x; Minnesota Department of Natural Resources (MNDNR), 2011, MISS RIV POOL 6 DRAW, P17; Morton J., 2016, SURVEY RESULTS HABIT; Morton J. N., 2017, TEXAS HORNSHELL DESI; Newton TJ, 2015, FRESHWATER BIOL, V60, P1, DOI 10.1111/fwb.12461; R Core Team, 2016, R LANG ENV STAT COMP; RESH VH, 1988, J N AM BENTHOL SOC, V7, P433, DOI 10.2307/1467300; Schwalb AN, 2007, J N AM BENTHOL SOC, V26, P261, DOI 10.1899/0887-3593(2007)26[261:HAVMOU]2.0.CO;2; Schwalb AN, 2015, FRESHWATER BIOL, V60, P911, DOI 10.1111/fwb.12544; Seager R, 2007, SCIENCE, V316, P1181, DOI 10.1126/science.1139601; Seagroves A., 2017, THESIS; Sethi SA, 2004, HYDROBIOLOGIA, V525, P157, DOI 10.1023/B:HYDR.0000038862.63229.56; Spooner DE, 2008, OECOLOGIA, V158, P307, DOI 10.1007/s00442-008-1132-9; Spooner DE, 2011, GLOBAL CHANGE BIOL, V17, P1720, DOI 10.1111/j.1365-2486.2010.02372.x; Vaughn CC, 2015, ECOL EVOL, V5, P1291, DOI 10.1002/ece3.1442; Waller DL, 1999, J N AM BENTHOL SOC, V18, P381, DOI 10.2307/1468451; Walters AD, 2013, SOUTHWEST NAT, V58, P479, DOI 10.1894/0038-4909-58.4.479; Warton DI, 2011, ECOLOGY, V92, P3, DOI 10.1890/10-0340.1; Watters GT, 2001, J FRESHWATER ECOL, V16, P541, DOI 10.1080/02705060.2001.9663845; Wetzel R. G., 2001, LIMNOLOGY LAKE RIVER; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; Williams D. D, 2006, BIOL TEMPORARY WATER; Williams J. D., 2017, FRESHWATER MOLLUSK B, V20, P33 49 0 0 6 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. DEC 2018 63 12 1579 1591 10.1111/fwb.13187 13 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology HA2KY WOS:000450068500009 2019-02-21 J Roets, PD; Bosua, H; Archer, CR; Weldon, CW Roets, Petrus D.; Bosua, Henrika; Archer, C. Ruth; Weldon, Christopher W. Life-history and demographic traits of the marula fruit fly Ceratitis cosyra: potential consequences of host specialization PHYSIOLOGICAL ENTOMOLOGY English Article Ageing; courtship; demography; fecundity; longevity; sperm storage asymmetry FLIES BACTROCERA-TRYONI; DIPTERA TEPHRITIDAE; MALE AGE; MEDFLY COHORTS; FEMALE FITNESS; EGG-PRODUCTION; SPERM STORAGE; LONGEVITY; REPRODUCTION; CAPITATA Life-history strategies are diverse both across and within species, although the factors shaping this diversity are not fully understood. In the present study, we investigate the life-history strategies of the marula fruit fly Ceratitis cosyra (Walker) (Diptera: Tephritidae) and how they differ between the sexes. We measure lifespan and age-dependent reproductive effort in both sexes. In females, reproductive effort is measured as fecundity (egg counts) and for males, courtship behaviour, mating propensity and sperm transfer at ages 5, 15 and 25 days are assayed. Mean +/- SE lifespan of flies is 104.6 +/- 2.8 days, with females living on average 9 days longer than males. Total female fecundity and time until peak egg production both positively correlate with lifespan. The proportion of males courting and mating is similar at 5 and 15 days, although courtship activity increases and mating success decreases significantly by 25 days. The number of sperm transferred and sperm storage asymmetry are highest at 15 days, with 12 173 +/- 826 sperm being stored per female after mating. We also compare life-history traits in C. cosyra with other tephritids, aiming to determine how niche breadth might contribute to life-history evolution. In comparison with other tephritids, C. cosyra has a long lifespan and a relatively low lifetime fecundity, although males transfer particularly large numbers of sperm during copulation. These life-history traits may be associated with the seasonal availability of marulas, which are its preferred native host. [Roets, Petrus D.; Bosua, Henrika; Weldon, Christopher W.] Univ Pretoria, Dept Zool & Entomol, Private Bag X20, ZA-0028 Hatfield, Herts, South Africa; [Archer, C. Ruth] Univ Exeter, Ctr Ecol & Conservat, Penryn, England Weldon, CW (reprint author), Univ Pretoria, Dept Zool & Entomol, Private Bag X20, ZA-0028 Hatfield, Herts, South Africa. cwwel-don@zoology.up.ac.za Weldon, Christopher/0000-0002-9897-2689 University of Pretoria; South African National Research Foundation through a Competitive Programme for Rated Researchers grant [93686] Research assistance was provided by Matshidiso Hlalele. Start-up funds were provided to CWW by the University of Pretoria in the form of a Research Development Programme grant. Further research funding, as well as a Grant Holder-Linked Masters Scholarship to PDR, was also provided by the South African National Research Foundation through a Competitive Programme for Rated Researchers grant (Grant No: 93686) to CWW and CRA. Abraham S, 2016, J INSECT PHYSIOL, V88, P40, DOI 10.1016/j.jinsphys.2016.03.001; Aluja M, 2008, ANNU REV ENTOMOL, V53, P473, DOI 10.1146/annurev.ento.53.103106.093350; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; Benelli G, 2014, J PEST SCI, V87, P385, DOI 10.1007/s10340-014-0577-3; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Braendle C, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P3; Carey JR, 2008, AGING CELL, V7, P470, DOI 10.1111/j.1474-9726.2008.00389.x; Carey JR, 2011, EXP GERONTOL, V46, P404, DOI 10.1016/j.exger.2010.09.009; CAREY JR, 1995, J ANIM ECOL, V64, P107, DOI 10.2307/5831; Carey JR, 1998, SCIENCE, V281, P996, DOI 10.1126/science.281.5379.996; Carey JR, 1998, J GERONTOL A-BIOL, V53, pB245, DOI 10.1093/gerona/53A.4.B245; CAREY JR, 1995, EXP GERONTOL, V30, P315, DOI 10.1016/0531-5565(94)00041-Z; Carvalho CBV., 2007, Braz. J. Biol., V67, P275, DOI 10.1590/S1519-69842007000200012; Centre for Agriculture and Biosciences International, 2017, INV SPEC COMP; Chapman T, 1998, P ROY SOC B-BIOL SCI, V265, P1879, DOI 10.1098/rspb.1998.0516; Daane KM, 2010, ANNU REV ENTOMOL, V55, P151, DOI 10.1146/annurev.ento.54.110807.090553; Dambroski HR, 2007, J EVOLUTION BIOL, V20, P2101, DOI 10.1111/j.1420-9101.2007.01435.x; Department of Agriculture Forestry and Fisheries, 2010, NAT AGR DIR 2011; Dominiak B. C., 2008, Plant Protection Quarterly, V23, P131; Donohue K, 2005, NEW PHYTOL, V166, P83, DOI 10.1111/j.1469-8137.2005.01357.x; Duyck PF, 2010, BIOL J LINN SOC, V101, P345, DOI 10.1111/j.1095-8312.2010.01497.x; Eberhard W. G, 1985, SEXUAL SELECTION ANI; Ekesi S, 2006, B ENTOMOL RES, V96, P379, DOI 10.1079/BER2006442; Fanson BG, 2012, P ROY SOC B-BIOL SCI, V279, P4893, DOI 10.1098/rspb.2012.2033; Fanson BG, 2009, AGING CELL, V8, P514, DOI 10.1111/j.1474-9726.2009.00497.x; Fricke C, 2007, ANIM BEHAV, V74, P541, DOI 10.1016/j.anbehav.2006.12.016; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Gaskin T, 2002, ANIM BEHAV, V63, P121, DOI 10.1006/anbe.2001.1896; Hellriegel B, 1998, J THEOR BIOL, V190, P179, DOI 10.1006/jtbi.1997.0546; Huang YB, 2013, J APPL ENTOMOL, V137, P327, DOI 10.1111/jen.12002; Jin T, 2011, PEST MANAG SCI, V67, P370, DOI 10.1002/ps.2076; Joachim-Bravo Iara S., 2003, Neotrop. entomol., V32, P543, DOI 10.1590/S1519-566X2003000400003; Jones TM, 2004, P ROY SOC B-BIOL SCI, V271, P1311, DOI 10.1098/rspb.2004.2723; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; KUBA H, 1993, J ETHOL, V11, P23, DOI 10.1007/BF02350002; LEVINS R, 1969, Ecology (Washington D C), V50, P910, DOI 10.2307/1933709; Manrakhan A, 2009, AFR ENTOMOL, V17, P8, DOI 10.4001/003.017.0102; Meats A, 2004, B ENTOMOL RES, V94, P517, DOI 10.1079/BER2004332; Moraiti CA, 2012, BIOL J LINN SOC, V107, P137, DOI 10.1111/j.1095-8312.2012.01930.x; Mossinson S, 2003, J INSECT PHYSIOL, V49, P561, DOI 10.1016/S0022-1910(03)00027-1; Papadopoulos NT, 2010, J INSECT PHYSIOL, V56, P283, DOI 10.1016/j.jinsphys.2009.10.014; Perez-Staples D, 2007, PHYSIOL ENTOMOL, V32, P127, DOI 10.1111/j.1365-3032.2006.00554.x; Perez-Staples D, 2004, ANN ENTOMOL SOC AM, V97, P1336, DOI 10.1603/0013-8746(2004)097[1336:ASDTFT]2.0.CO;2; Perez-Staples D, 2007, PHYSIOL ENTOMOL, V32, P225, DOI 10.1111/j.1365-3032.2007.00568.x; Perez-Staples D, 2006, J INSECT PHYSIOL, V52, P839, DOI 10.1016/j.jinsphys.2006.05.007; Perez-Staples D, 2010, ETHOLOGY, V116, P778, DOI 10.1111/j.1439-0310.2010.01790.x; Rivero A, 2001, P ROY SOC B-BIOL SCI, V268, P1231, DOI 10.1098/rspb.2001.1645; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rwomushana I., 2016, FRUIT FLY RES DEV AF, P71, DOI DOI 10.1007/978-3-319-43226; SHOUKRY A, 1979, ENTOMOL EXP APPL, V26, P33, DOI 10.1111/j.1570-7458.1979.tb02894.x; Smith PT, 2002, ANN ENTOMOL SOC AM, V95, P658, DOI 10.1603/0013-8746(2002)095[0658:PAOMDS]2.0.CO;2; Stearns S, 1992, EVOLUTION LIFE HIST; Taylor PW, 2001, ENTOMOL EXP APPL, V98, P27, DOI 10.1023/A:1018752424952; Taylor PW, 2000, PHYSIOL ENTOMOL, V25, P94, DOI 10.1046/j.1365-3032.2000.00169.x; TSIROPOULOS GJ, 1977, Z ANGEW ENTOMOL, V84, P192; VARGAS RI, 1984, ANN ENTOMOL SOC AM, V77, P651, DOI 10.1093/aesa/77.6.651; Yuval B, 1996, ANN ENTOMOL SOC AM, V89, P486, DOI 10.1093/aesa/89.3.486 57 0 0 2 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6962 1365-3032 PHYSIOL ENTOMOL Physiol. Entomol. DEC 2018 43 4 259 267 10.1111/phen.12255 9 Entomology Entomology GZ8LT WOS:000449743700002 2019-02-21 J Danko, MJ; Burger, O; Argasinski, K; Kozlowski, J Danko, Maciej J.; Burger, Oskar; Argasinski, Krzysztof; Kozlowski, Jan Extrinsic Mortality Can Shape Life-History Traits, Including Senescence EVOLUTIONARY BIOLOGY English Article Selection gradients; Density-dependence; Resource allocation; Williams hypothesis; r; K selection; Fitness measures; Malthusian parameter; Net reproductive rate; Reproductive value OPTIMAL RESOURCE-ALLOCATION; NEST-SITE LOTTERY; NATURAL-SELECTION; DENSITY-DEPENDENCE; EVOLUTION; AGE; GROWTH; RATES; PLEIOTROPY; MUTATION The Williams' hypothesis is one of the most widely known ideas in life history evolution. It states that higher adult mortality should lead to faster and/or earlier senescence. Theoretically derived gradients, however, do not support this prediction. Increased awareness of this fact has caused a crisis of misinformation among theorists and empirical ecologists. We resolve this crisis by outlining key issues in the measurement of fitness, assumptions of density dependence, and their effect on extrinsic mortality. The classic gradients apply only to a narrow range of ecological contexts where density-dependence is either absent or present but with unrealistic stipulations. Re-deriving the classic gradients, using a more appropriate measure of fitness and incorporating density, shows that broad ecological contexts exist where Williams' hypothesis is supported. [Danko, Maciej J.; Burger, Oskar] Max Planck Inst Demog Res, Rostock, Germany; [Argasinski, Krzysztof] Polish Acad Sci, Inst Math, Warsaw, Poland; [Kozlowski, Jan] Jagiellonian Univ, Inst Environm Sci, Krakow, Poland Danko, MJ (reprint author), Max Planck Inst Demog Res, Rostock, Germany. danko@demogr.mpg.de Kozlowski, Jan/K-5549-2012 Kozlowski, Jan/0000-0002-7084-2030 ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Argasinski K, 2018, ECOL COMPLEX, V34, P198, DOI 10.1016/j.ecocom.2017.04.002; Argasinski K, 2018, THEOR BIOSCI, V137, P33, DOI 10.1007/s12064-017-0257-y; Argasinski K, 2013, THEOR POPUL BIOL, V90, P82, DOI 10.1016/j.tpb.2013.09.011; Argasinski K, 2008, THEOR POPUL BIOL, V73, P250, DOI 10.1016/j.tpb.2007.11.006; Argasinski K, 2017, J THEOR BIOL, V420, P279, DOI 10.1016/j.jtbi.2017.03.003; Caswell H, 2017, EVOLUTION SENESCENCE, P56; Caswell H, 2007, TRENDS ECOL EVOL, V22, P173, DOI 10.1016/j.tree.2007.01.006; Caswell H, 2010, DEMOGR RES, V23, P531, DOI 10.4054/DemRes.2010.23.19; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B, 2001, J THEOR BIOL, V210, P47, DOI 10.1006/jtbi.2001.2296; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; Charnov Eric L., 1993, P1; Chen HY, 2012, CURR BIOL, V22, P2140, DOI 10.1016/j.cub.2012.09.021; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; da Silva J, 2018, EVOL BIOL, V45, P140, DOI 10.1007/s11692-018-9446-y; Danko A, 2018, MAR BIOL, V165, DOI 10.1007/s00227-018-3309-z; Danko MJ, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0186661; Danko MJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048302; Danko MJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034146; Dowling DK, 2012, CURR BIOL, V22, pR947, DOI 10.1016/j.cub.2012.09.029; Drenos F, 2005, MECH AGEING DEV, V126, P99, DOI 10.1016/j.mad.2004.09.026; Furness AI, 2017, EVOLUTION SENESCENCE, P175; Ginzburg LR, 2010, BIOL LETTERS, V6, P850, DOI 10.1098/rsbl.2010.0452; HALDANE JBS, 1941, NEW PATHS GENETICS; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kozlowski J, 1999, OIKOS, V86, P185, DOI 10.2307/3546437; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 2004, INTEGR COMP BIOL, V44, P480, DOI 10.1093/icb/44.6.480; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; Kozlowski J, 2006, POL J ECOL, V54, P585; Kozowski J, 1980, EVOLUTIONARY THEORY, V5, P89; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; MAC ARTHUR ROBERT H., 1967; Maklakov AA, 2015, BIOESSAYS, V37, P802, DOI 10.1002/bies.201500025; Medawar P, 1952, UNSOLVED PROBLEM BIO; Medawar P.B., 1946, MODERN Q, V1, P30; Metz JAJ, 2008, EVOL ECOL RES, V10, P629; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Moorad JA, 2008, GENETICS, V179, P2061, DOI 10.1534/genetics.108.088526; Moorad JA, 2014, ECOLOGY, V95, P1087, DOI 10.1890/13-0778.1; Moorad JA, 2010, CURR BIOL, V20, pR406, DOI 10.1016/j.cub.2010.03.016; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pietrzak B, 2015, EXP GERONTOL, V69, P1, DOI 10.1016/j.exger.2015.05.008; Ricklefs RE, 2008, FUNCT ECOL, V22, P379, DOI 10.1111/j.1365-2435.2008.01420.x; Ricklefs RE, 2001, EXP GERONTOL, V36, P845, DOI 10.1016/S0531-5565(00)00245-X; Roff DA, 2008, J GENET, V87, P339, DOI 10.1007/s12041-008-0056-9; Ronce O, 2010, P ROY SOC B-BIOL SCI, V277, P3659, DOI 10.1098/rspb.2010.1095; Rose MR, 2007, EVOLUTION, V61, P1265, DOI 10.1111/j.1558-5646.2007.00120.x; Rudnicki R, 2017, J DIFFER EQU APPL, V23, P1529, DOI 10.1080/10236198.2017.1339699; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; Wensink MJ, 2017, EVOL BIOL, V44, P5, DOI 10.1007/s11692-016-9385-4; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Williams PD, 2003, EVOLUTION, V57, P1478 62 1 1 3 3 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0071-3260 1934-2845 EVOL BIOL Evol. Biol. DEC 2018 45 4 395 404 10.1007/s11692-018-9458-7 10 Evolutionary Biology Evolutionary Biology GZ5YG WOS:000449506400003 30459480 Other Gold 2019-02-21 J Zappala, MAP; Ortiz, VE; Fanara, JJ Petino Zappala, M. A.; Ortiz, V. E.; Fanara, J. J. Study of Natural Genetic Variation in Early Fitness Traits Reveals Decoupling Between Larval and Pupal Developmental Time in Drosophila melanogaster EVOLUTIONARY BIOLOGY English Article Developmental time; Pupation height; Genetic variation; Phenotypic plasticity; Ontogenetic decoupling LIFE-HISTORY EVOLUTION; PUPATION HEIGHT; CORRELATED RESPONSES; QUANTITATIVE TRAITS; REFERENCE PANEL; GROWTH-RATE; ADULT SIZE; BODY-SIZE; SELECTION; POPULATIONS Characterizing the relationships between genotype and phenotype for developmental adaptive traits is essential to understand the evolutionary dynamics underlying biodiversity. In holometabolous insects, the time to reach the reproductive stage and pupation site preference are two such traits. Here we characterize aspects of the genetic architecture for Developmental Time (decomposed in Larval and Pupal components) and Pupation Height using lines derived from three natural populations of Drosophila melanogaster raised at two temperatures. For all traits, phenotypic differences and variation in plasticity between populations suggest adaptation to the original thermal regimes. However, high variability within populations shows that selection does not exhaust genetic variance for these traits. This could be partly explained by local adaptation, environmental heterogeneity and modifications in the genetic architecture of traits according to environment and ontogenetic stage. Indeed, our results show that the genetic factors affecting Developmental Time and Pupation Height are temperature-specific. Varying relationships between Larval and Pupal Developmental Time between and within populations also suggest stage-specific modifications of genetic architecture for this trait. This flexibility would allow for a somewhat independent evolution of adaptive traits at different environments and life stages, favoring the maintenance of genetic variability and thus sustaining the traits' evolvabilities. [Petino Zappala, M. A.; Ortiz, V. E.; Fanara, J. J.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc IEGEBA CONICET UBA, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina Fanara, JJ (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc IEGEBA CONICET UBA, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina. jjfanara@ege.fcen.uba.ar Agencia Nacional de Promocion Cientifica y Tecnologica (FONCyT); Consejo Nacional de Ciencia y Tecnica (CONICET); CONICET (Argentina); Carrera del Investigador Cientifico of CONICET (Argentina) This work was supported by grants from Agencia Nacional de Promocion Cientifica y Tecnologica (FONCyT, PICT) and Consejo Nacional de Ciencia y Tecnica (CONICET). MAPZ and VEO are recipients of doctoral scholarships from CONICET (Argentina) and JJF is a member of Carrera del Investigador Cientifico of CONICET (Argentina). Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Arbeitman MN, 2002, SCIENCE, V297, P2270, DOI 10.1126/science.1072152; Artieri CG, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-26; ATCHLEY WR, 1976, SYST ZOOL, V25, P137, DOI 10.2307/2412740; BAUER SJ, 1985, CAN J GENET CYTOL, V27, P334, DOI 10.1139/g85-050; Beltrami M, 2010, EVOL ECOL, V24, P347, DOI 10.1007/s10682-009-9310-8; Bharathi NS, 2004, J ZOOL, V264, P87, DOI 10.1017/S0952836904005576; BRYANT EH, 1969, ANN ENTOMOL SOC AM, V62, P1087, DOI 10.1093/aesa/62.5.1087; Burger R, 2002, GENET RES, V80, P31, DOI 10.1017/S0016672302005682; CASARES P, 1987, BEHAV GENET, V17, P523, DOI 10.1007/BF01073119; Chippindale AK, 2003, J GENET, V82, P133, DOI 10.1007/BF02715814; Chippindale AK, 1997, EVOLUTION, V51, P1536, DOI 10.1111/j.1558-5646.1997.tb01477.x; Chippindale AK, 2004, METHUSELAH FLIES CAS, P413; Conner JK, 2004, PRIMER ECOLOGICAL GE; Davidowitz G, 2004, INTEGR COMP BIOL, V44, P443, DOI 10.1093/icb/44.6.443; Del Pino F, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102159; Del Pino F, 2012, BEHAV GENET, V42, P162, DOI 10.1007/s10519-011-9490-1; DeWitt J, 2004, PHENOTYPIC PLASTICIT; Dillon ME, 2009, J THERM BIOL, V34, P109, DOI 10.1016/j.jtherbio.2008.11.007; EBENMAN B, 1987, J THEOR BIOL, V124, P25, DOI 10.1016/S0022-5193(87)80249-7; Edgar BA, 2006, NAT REV GENET, V7, P907, DOI 10.1038/nrg1989; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fallis LC, 2014, J EVOLUTION BIOL, V27, P557, DOI 10.1111/jeb.12321; Fanara JJ, 2006, J EVOLUTION BIOL, V19, P900, DOI 10.1111/j.1420-9101.2006.01084.x; Fanara JJ, 2001, EVOLUTION, V55, P2615; Flatt T, 2005, Q REV BIOL, V80, P287, DOI 10.1086/432265; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Folguera G, 2010, J INSECT PHYSIOL, V56, P1679, DOI 10.1016/j.jinsphys.2010.06.015; Gerstein MB, 2014, NATURE, V512, P445, DOI 10.1038/nature13424; Gilchrist GW, 2008, EVOL APPL, V1, P513, DOI 10.1111/j.1752-4571.2008.00040.x; Goldstein DB, 1997, J HERED, V88, P335, DOI 10.1093/oxfordjournals.jhered.a023114; Hansen TF, 2006, ANNU REV ECOL EVOL S, V37, P123, DOI 10.1146/annurev.ecolsys.37.091305.110224; HOULE D, 1992, GENETICS, V130, P195; Huang W, 2014, GENOME RES, V24, P1193, DOI 10.1101/gr.171546.113; Jumbo-Lucioni P, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-297; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; Lavagnino NJ, 2008, J EVOLUTION BIOL, V21, P988, DOI 10.1111/j.1420-9101.2008.01546.x; Lavagnino NJ, 2016, EVOL BIOL, V43, P96, DOI 10.1007/s11692-015-9352-5; Long TAF, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000254; Lynch M, 1998, GENETICS ANAL QUANTI, P663; Mackay TFC, 2001, ANNU REV GENET, V35, P303, DOI 10.1146/annurev.genet.35.102401.090633; Mackay TFC, 2012, NATURE, V482, P173, DOI 10.1038/nature10811; MARKOW TA, 1979, BEHAV GENET, V9, P209, DOI 10.1007/BF01071301; Matzkin LM, 2007, FLY, V1, P268, DOI 10.4161/fly.5293; McMahon DP, 2016, ECOL ENTOMOL, V41, P505, DOI 10.1111/een.12313; Melo D, 2016, ANNU REV ECOL EVOL S, V47, P463, DOI 10.1146/annurev-ecolsys-121415-032409; Mensch J, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011229; Mensch J, 2008, BMC DEV BIOL, V8, DOI 10.1186/1471-213X-8-78; Minelli A, 2006, DEV GENES EVOL, V216, P373, DOI 10.1007/s00427-006-0075-6; Minelli A, 2010, PHILOS T R SOC B, V365, P631, DOI 10.1098/rstb.2009.0268; Mirth CK, 2007, BIOESSAYS, V29, P344, DOI 10.1002/bies.20552; MORAN NA, 1994, ANNU REV ECOL SYST, V25, P573, DOI 10.1146/annurev.es.25.110194.003041; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; MUELLER LD, 1986, EVOLUTION, V40, P1354, DOI 10.1111/j.1558-5646.1986.tb05761.x; Narasimha S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117280; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Nunney L, 2007, J EVOLUTION BIOL, V20, P141, DOI 10.1111/j.1420-9101.2006.01214.x; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Paranjpe DA, 2005, BMC DEV BIOL, V5, DOI 10.1186/1471-213X-5-5; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1994, J EVOLUTION BIOL, V7, P645, DOI 10.1046/j.1420-9101.1994.7060645.x; Carreira VP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070851; Prasad NG, 2001, EVOLUTION, V55, P1363; Rewitz KF, 2013, CURR TOP DEV BIOL, V103, P1, DOI 10.1016/B978-0-12-385979-2.00001-0; Riedl CAL, 2007, FLY, V1, P23, DOI 10.4161/fly.3830; Rodrigues MA, 2015, J INSECT PHYSIOL, V81, P69, DOI 10.1016/j.jinsphys.2015.07.002; Roff Derek A., 1992; Sasaki A, 1997, EVOLUTION, V51, P682, DOI 10.1111/j.1558-5646.1997.tb03652.x; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Shingleton AW, 2005, PLOS BIOL, V3, P1607, DOI 10.1371/journal.pbio.0030289; SINGH BN, 1993, HEREDITAS, V119, P111, DOI 10.1111/j.1601-5223.1993.00111.x; SOKOLOWSKI MB, 1983, BEHAV GENET, V13, P267, DOI 10.1007/BF01071872; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Trotta V, 2006, BMC EVOL BIOL, V6, DOI 10.1186/1471-2148-6-67; Truman JW, 1999, NATURE, V401, P447, DOI 10.1038/46737; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wagner GP, 1997, EVOLUTION, V51, P329, DOI 10.1111/j.1558-5646.1997.tb02420.x; WELBERGEN P, 1994, J INSECT BEHAV, V7, P263, DOI 10.1007/BF01989734; Werenkraut V, 2008, AUSTRAL ECOL, V33, P663, DOI 10.1111/j.1442-9993.2008.01833.x; Yang AS, 2001, EVOL DEV, V3, P59, DOI 10.1046/j.1525-142x.2001.003002059.x 81 0 0 10 10 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0071-3260 1934-2845 EVOL BIOL Evol. Biol. DEC 2018 45 4 437 448 10.1007/s11692-018-9461-z 12 Evolutionary Biology Evolutionary Biology GZ5YG WOS:000449506400006 2019-02-21 J Pang, YM; Tian, YJ; Fu, CH; Wang, B; Li, JC; Ren, YP; Wan, R Pang, Yumeng; Tian, Yongjun; Fu, Caihong; Wang, Bin; Li, Jianchao; Ren, Yiping; Wan, Rong Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management FISHERIES RESEARCH English Article Cephalopod; Chinese coastal area; Population fluctuation; Life history strategy; Climate change SQUID PHOTOLOLIGO-EDULIS; EL-NINO EVENTS; SWORDTIP-SQUID; REGIME SHIFTS; TODARODES-PACIFICUS; STOCK FLUCTUATIONS; LOLIGO-BLEEKERI; NORTH PACIFIC; JAPAN SEA; FOOD-WEB Cephalopods (squids, cuttlefish and octopus) have increased globally over the past decades, which may be attributed to their strong phenotypic plasticity, allowing them to adapt quickly to a changing ocean environment. The global proliferation of cephalopods may yield important ecosystem effects worldwide. However, information on cephalopods variability in Chinese waters is still scant. Coastal cephalopods, in spite of chronic overexploitation, form a vital component of the catch composition in China Seas. In this paper, we review the status and trends of coastal cephalopods in China Seas and explore their responses to environmental variability. We focus on four commercially-important coastal cephalopod species, including golden cuttlefish (Sepia esculenta Hoyle), Japanese loligo squid (Loligo japonica Steenstrup), common Chinese cuttlefish (Sepiella maindroni de Rochebrune) and swordtip squid (Uroteuthis edulis Hoyle). Even though spatial distributions of these four species partially overlap, their differing life history strategies with respect to factors such as growth, distribution, migration, and spawning patterns, have led to differing population responses to environmental variability. As a result, an overall increasing trend in cephalopod production has been apparent since the 1990s, accompanied by major changes in species composition. Catch trends of the four species show either decadal patterns of significant decline or increase in the late 1980s to mid-1990s. Statistical analysis indicates different responses to environmental warming, with Japanese loligo squid and swordtip squid seeming to benefit from warmer environment while golden cuttlefish and common Chinese cuttlefish seeming to respond negatively. Our study has allowed us to explore the impacts of environmental changes on Chinese coastal cephalopods in the overexploited ecosystems of the China Seas and to conclude that fluctuations of coastal cephalopods are mainly driven by large scale environmental variations associated with climate change and/or marine ecosystem regime shifts. [Pang, Yumeng; Tian, Yongjun; Wang, Bin; Li, Jianchao; Ren, Yiping; Wan, Rong] Ocean Univ China, Fisheries Coll, Yushan Rd 5, Qingdao 266003, Peoples R China; [Tian, Yongjun] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266071, Peoples R China; [Fu, Caihong] Fisheries & Oceans Canada, Pacific Biol Stn, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada; [Pang, Yumeng] Univ Tokyo, Atmosphere & Ocean Res Inst, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778564, Japan Tian, YJ (reprint author), Ocean Univ China, Fisheries Coll, Yushan Rd 5, Qingdao 266003, Peoples R China. yjtian@ouc.edu.cn Fundamental Research Funds for the Central Universities [201562030, 201762015, 20182201] This research is partially supported by the "Fundamental Research Funds for the Central Universities" to Ocean University of China [Grant No. 201562030, No. 201762015 and No. 20182201]. We thank Professor Yoshiro Watanabe (University of Tokyo) and two anonymous reviewers for their insightful comments, and thank Professor Andrew Bakun (University of Miami) and Lisa Christensen (Pacific Biological Station, Fisheries and Oceans Canada) for the proofreading and their valuable comments. Anderson SC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014735; [Anonymous], 1998, KOREAN ANN FISHERIES; [Anonymous], 2015, CHINA FISHERIES YB 1; Arkhipkin AI, 2015, REV FISH SCI AQUAC, V23, P92, DOI 10.1080/23308249.2015.1026226; Belkin IM, 2009, PROG OCEANOGR, V81, P207, DOI 10.1016/j.pocean.2009.04.011; Caddy JF, 1998, REV FISH BIOL FISHER, V8, P431, DOI 10.1023/A:1008807129366; Cai WJ, 2015, NAT CLIM CHANGE, V5, P132, DOI [10.1038/NCLIMATE2492, 10.1038/nclimate2492]; Cai WJ, 2014, NAT CLIM CHANGE, V4, P111, DOI [10.1038/nclimate2100, 10.1038/NCLIMATE2100]; Chavez FP, 2003, SCIENCE, V299, P217, DOI 10.1126/science.1075880; Chen B. L., 2001, CHIN FISH EC, P37; Chen XJ, 2008, FISH RES, V89, P211, DOI 10.1016/j.fishres.2007.10.012; Ciannelli L, 2004, ECOLOGY, V85, P3418, DOI 10.1890/03-0755; Crozier LG, 2014, EVOL APPL, V7, P68, DOI 10.1111/eva.12135; Doubleday ZA, 2016, CURR BIOL, V26, pR406, DOI 10.1016/j.cub.2016.04.002; FAO Fisheries and Aquaculture Department, 2016, STAT WORLD FISH AQ; Friedland KD, 2007, CONT SHELF RES, V27, P2313, DOI 10.1016/j.csr.2007.06.001; Ge Y. C., 1991, MAR FISH, P56; Gordoa A, 2000, FISH RES, V48, P185, DOI 10.1016/S0165-7836(00)00160-0; Guan B. X., 1994, PATTERNS STRUCTURES, P17; Hao Zhen-lin, 2007, Shengtaixue Zazhi, V26, P601; Hare SR, 2000, PROG OCEANOGR, V47, P103, DOI 10.1016/S0079-6611(00)00033-1; Hays GC, 2005, TRENDS ECOL EVOL, V20, P337, DOI 10.1016/j.tree.2005.03.004; Huang Z., 2008, S CHINA FISHERIES SC, V4, P1; Hunsicker ME, 2010, FISH FISH, V11, P421, DOI 10.1111/j.1467-2979.2010.00369.x; Jin XS, 1996, FISH RES, V26, P337, DOI 10.1016/0165-7836(95)00422-X; Jin XS, 2004, ESTUAR COAST SHELF S, V59, P163, DOI 10.1016/j.ecss.2003.08.005; Lehodey P, 2006, J CLIMATE, V19, P5009, DOI 10.1175/JCLI3898.1; Li J. J., 2011, J ZHEJIANG OCEAN U N, V30, P381; Li J. Y., 1963, PERIOD OCEAN U CHINA, V2, P69; [李涛 Li Tao], 2011, [中国海洋大学学报. 自然科学版, Journal of Ocean University of China], V41, P41; Lin L.S., 2009, J DALIAN FISH U, V1; Liu R. Y., 2004, SCI TECHNOL REV, P28; Liu Zun-lei, 2015, Yingyong Shengtai Xuebao, V26, P901; Mantua NJ, 2002, J OCEANOGR, V58, P35, DOI 10.1023/A:1015820616384; Maynou F, 2008, J MARINE SYST, V71, P294, DOI 10.1016/j.jmarsys.2006.09.008; McGowan JA, 1998, SCIENCE, V281, P210, DOI 10.1126/science.281.5374.210; Ni Z.Y., 1982, MAR SCI, V9, P41; O'Dor R.K., 1998, FAO (Food and Agriculture Organization of the United Nations) Fisheries Technical Paper, V376, P233; Ottersen G, 2010, J MARINE SYST, V79, P343, DOI 10.1016/j.jmarsys.2008.12.013; Otto S. A., 2018, INDPERFORM EVALUATIO; Otto SA, 2018, ECOL INDIC, V84, P619, DOI 10.1016/j.ecolind.2017.05.045; Park YC, 2002, FISHERIES SCI, V68, P89, DOI 10.2331/fishsci.68.sup1_89; Pauly D, 2005, B MAR SCI, V76, P197; Pecl GT, 2008, REV FISH BIOL FISHER, V18, P373, DOI 10.1007/s11160-007-9077-3; Peel G. T., 2004, OECOLOGIA, V139, P515; Pierce G. J., 2008, REV CEPHALOPOD ENV I, P49; PIERCE GJ, 1994, FISH RES, V21, P255, DOI 10.1016/0165-7836(94)90108-2; Pinheiro J. C., 2000, LINEAR MIXED EFFECTS, P3; Qiu X. Y., 1986, AQUAC RES, V7; Quetglas A, 2015, FISHERIES MANAG ECOL, V22, P349, DOI 10.1111/fme.12131; R Development Core Team, 2017, R LANG ENV STAT COMP; Rayner NA, 2003, J GEOPHYS RES-ATMOS, V108, DOI 10.1029/2002JD002670; Ren Y. P., 2005, PERIOD OCEAN U CHINA, V5; Robin JP, 1999, J APPL ECOL, V36, P101, DOI 10.1046/j.1365-2664.1999.00384.x; Robinson CJ, 2013, FISH RES, V137, P97, DOI 10.1016/j.fishres.2012.09.006; Rodionov SN, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2004GL019448; Sakurai Y, 2000, ICES J MAR SCI, V57, P24, DOI 10.1006/jmsc.2000.0667; Sakurai Y, 2002, FISHERIES SCI, V68, P226, DOI 10.2331/fishsci.68.sup1_226; Sato N, 2009, ICES J MAR SCI, V66, P811, DOI 10.1093/icesjms/fsp145; Sugimoto T, 2001, PROG OCEANOGR, V49, P113, DOI 10.1016/S0079-6611(01)00018-0; Tang Y. M., 1986, J ZHEJIANG COLL FISH, V5, P147; Tian Y, 2004, J MARINE SYST, V52, P235, DOI 10.1016/j.jmarsys.2004.04.004; Tian YJ, 2008, PROG OCEANOGR, V77, P127, DOI 10.1016/j.pocean.2008.03.007; Tian YJ, 2013, ICES J MAR SCI, V70, P968, DOI 10.1093/icesjms/fst015; Tian Y, 2009, FISH RES, V100, P78, DOI 10.1016/j.fishres.2009.06.005; Tibshirani R. J, 1990, GEN ADDITIVE MODELS; Wang KY, 2008, FISH RES, V90, P178, DOI 10.1016/j.fishres.2007.10.015; Wang KY, 2013, B MAR SCI, V89, P677, DOI 10.5343/bms.2012.1044; Wang KY, 2010, J MAR SCI TECH-TAIW, V18, P99; Watson R, 2001, NATURE, V414, P534, DOI 10.1038/35107050; Wei Liu-Zhi, 2005, Zhongguo Haiyang Daxue Xuebao, V35, P923; [吴常文 Wu Changwen], 2010, [海洋与湖沼, Oceanologia et Limnologia Sinica], V41, P39; [吴强 Wu Qiang], 2015, [海洋科学, Marine Sciences], V39, P16; Xavier JC, 2015, J MAR BIOL ASSOC UK, V95, P999, DOI 10.1017/S0025315414000782; Yamaguchi T, 2015, AQUAT BIOL, V24, P53, DOI 10.3354/ab00635; Yan J. J., 1981, T OCEANOL LIMNOL, P53; Yan L. P., 2007, MAR SCI, V4; Ye Y., 2011, REV STATE WORLD MAR, V3; Yu W, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122997; [朱文斌 Zhu Wenbin], 2014, [海洋与湖沼, Oceanologia et Limnologia Sinica], V45, P436; Zuur A., 2009, ZERO TRUNCATED ZERO, P261 81 0 0 16 16 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. DEC 2018 208 22 33 10.1016/j.fishres.2018.07.004 12 Fisheries Fisheries GW6XL WOS:000447108300004 2019-02-21 J Marchegiani, V; Zampieri, F; Della Barbera, M; Troisi, A Marchegiani, Vanessa; Zampieri, Fabio; Della Barbera, Mila; Troisi, Alfonso Gender differences in the interrelations between digit ratio, psychopathic traits and life history strategies PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Digit ratio; 2D:4D; Prenatal sex hormones; Psychopathy; Life history theory; Gender differences SECONDARY PSYCHOPATHY; JUVENILE PSYCHOPATHY; PERSONALITY; CONSTRUCTS; VARIANTS; 2D4D The primary purpose of this study was to assess the relationship between prenatal exposure to sex hormones, as measured by digit ratio (2D:4D), and psychopathic personality traits while controlling for the confounding effect of life history strategy. The secondary purpose was to confirm the hypothesis that primary and secondary psychopathy reflect a faster life history strategy. In a nonclinical sample of 137 volunteers, we measured the right and left hand digit ratios, personality traits reflecting primary and secondary psychopathy, and life history strategies. In a hierarchical regression analysis, males with lower levels of prenatal testosterone exposure, as measured by the left hand 2D:4D, scored higher on the subscale measuring primary psychopathy. Neither the right hand 2D:4D nor the left hand 2D:4D were significant predictors of secondary psychopathy. In the female subsample, digit ratios did not correlate with either primary or secondary psychopathy. Males with faster life history strategies scored higher on both primary and secondary psychopathy. By contrast, among the female participants, there was no significant correlation between the life history score and primary psychopathy, and the correlation with secondary psychopathy was significant but relatively weak. These findings suggest that the neurodevelopmental pathways to psychopathy may differ according to sex. [Marchegiani, Vanessa; Zampieri, Fabio; Della Barbera, Mila] Univ Padua, Med Sch, Dept Cardiac Thorac & Vasc Sci, Padua, Italy; [Troisi, Alfonso] Univ Roma Tor Vergata, Int Med Sch, Rome, Italy Troisi, A (reprint author), Univ Roma Tor Vergata, Dept Syst Med, Via Montpellier 1, I-00133 Rome, Italy. alfonso.troisi@uniroma2.it Allaway HC, 2009, AM J HUM BIOL, V21, P365, DOI 10.1002/ajhb.20892; Anderson NE, 2014, RESTOR NEUROL NEUROS, V32, P103, DOI 10.3233/RNN-139001; Blanchard A., 2010, BRIT J FORENSIC PRAC, V12, P23, DOI [10.5042/bjfp.2010.0183, DOI 10.5042/BJFP.2010.0183]; Blanchard A, 2016, PERS INDIV DIFFER, V99, P67, DOI 10.1016/j.paid.2016.04.077; Brinkley CA, 2001, PERS INDIV DIFFER, V31, P1021, DOI 10.1016/S0191-8869(00)00178-1; Cale EM, 2002, CLIN PSYCHOL REV, V22, P1179, DOI 10.1016/S0272-7358(01)00125-8; Carre JM, 2015, PSYCHONEUROENDOCRINO, V62, P319, DOI 10.1016/j.psyneuen.2015.08.023; Chua K. J., 2017, EVOLUTIONARY PSYCHOL, V15; Edens JF, 2006, J ABNORM PSYCHOL, V115, P131, DOI 10.1037/0021-843X.115.1.131; Faul F, 2009, BEHAV RES METHODS, V41, P1149, DOI 10.3758/BRM.41.4.1149; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Fink B, 2004, PERS INDIV DIFFER, V37, P495, DOI 10.1016/j.paid.2003.09.018; Gervais MM, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2773; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Glenn AL, 2011, AGGRESS VIOLENT BEH, V16, P371, DOI 10.1016/j.avb.2011.03.009; Hare R., 1993, CONSCIENCE DISTURBIN; Hicks BM, 2012, PERSONAL DISORD, V3, P209, DOI 10.1037/a0025084; Jonason PK, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.01476; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Karpman B., 1941, J CRIMINOLOGY PSYCHO, V3, P112; Kempe V, 2011, PERS INDIV DIFFER, V50, P430, DOI 10.1016/j.paid.2010.10.024; Kimonis ER, 2017, DEV PSYCHOPATHOL, V29, P1149, DOI 10.1017/S0954579416001206; Kimonis ER, 2017, DEV PSYCHOBIOL, V59, P161, DOI 10.1002/dev.21473; Koenigs M, 2010, NEUROPSYCHOLOGIA, V48, P2198, DOI 10.1016/j.neuropsychologia.2010.04.012; LEVENSON MR, 1995, J PERS SOC PSYCHOL, V68, P151, DOI 10.1037//0022-3514.68.1.151; Lyons MT, 2015, J PSYCHOL, V149, P570, DOI 10.1080/00223980.2014.925845; Manning J, 2014, FRONT ENDOCRINOL, V5, DOI 10.3389/fendo.2014.00009; Manning JT, 2002, DIGIT RATIO POINTER; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Newman JP, 2005, J ABNORM PSYCHOL, V114, P319, DOI 10.1037/0021-843X.114.2.319; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Richardson G.B., 2017, EVOLUTIONARY PSYCHOL, V15; Sefcek J. A, 2007, THESIS; Strouts PH, 2017, PERS INDIV DIFFER, V115, P128, DOI 10.1016/j.paid.2016.03.047; Vidal S, 2010, LAW HUMAN BEHAV, V34, P150, DOI 10.1007/s10979-009-9175-y; Waldman I. D., 2006, HDB PSYCHOPATHY, P205; Yildirim BO, 2012, PSYCHIAT RES, V200, P984, DOI 10.1016/j.psychres.2012.07.044 38 0 0 22 22 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. DEC 1 2018 135 108 112 10.1016/j.paid.2018.07.004 5 Psychology, Social Psychology GV5LY WOS:000446144900016 2019-02-21 J van der Linden, D; Dunkel, CS; Tops, M; Hengartner, MP; Petrou, P van der Linden, Dimitri; Dunkel, Curtis S.; Tops, Mattie; Hengartner, Michael P.; Petrou, Paraskevas Life history strategy and stress: An effect of stressful life events, coping strategies, or both? PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history theory; Stress; Life events; Coping; Mediation BIG-5 INVENTORY; GENERAL FACTOR; PERSONALITY; PROGRESS; ENGLISH Life history (LH) theory provides an evolutionary account of individual differences in various traits, including wellbeing. The theory distinguishes between a fast LH strategy, indicated by a short-term perspective (e.g., impulsivity), versus a slow LH strategy, indicated by a long-term perspective (e.g., more constraint behavior). Previous studies have reported an association between a fast LH strategy and more stress, but much of the mediating mechanisms are still unknown. Accordingly, we present three studies testing 1) whether LH strategy is directly associated with the number of disruptive life events and coping strategies, and 2) whether life events and coping mediate the LH-strategy-stress relationship. The results of the three studies converged: Faster LH strategists reported more disrupted life events, showed a less effective coping pattern, and life events and coping both partially mediated the LH strategy-stress association. These results point to several factors that can explain why LH strategy relates to stress. [van der Linden, Dimitri; Petrou, Paraskevas] Erasmus Univ, Dept Psychol Educ & Child Studies, POB 9104, Rotterdam, Netherlands; [Dunkel, Curtis S.] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA; [Tops, Mattie] Free Univ Amsterdam, Dept Clin Psychol, Amsterdam, Netherlands; [Hengartner, Michael P.] Zurich Univ Appl Sci ZHAW, Dept Appl Psychol, Zurich, Switzerland van der Linden, D (reprint author), Erasmus Univ, Dept Psychol Educ & Child Studies, POB 9104, Rotterdam, Netherlands. vanderlinden@essb.eur.nl Van der Linden, Dimitri/0000-0001-7098-8948; Tops, Mattie/0000-0001-7861-9661; Hengartner, Michael/0000-0002-2956-2969 Almeida DM, 2005, CURR DIR PSYCHOL SCI, V14, P64, DOI 10.1111/j.0963-7214.2005.00336.x; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Carver CS, 2010, ANNU REV PSYCHOL, V61, P679, DOI 10.1146/annurev.psych.093008.100352; CATTELL RB, 1980, PERS INDIV DIFFER, V1, P229, DOI 10.1016/0191-8869(80)90055-0; COCHRANE R, 1973, J PSYCHOSOM RES, V17, P135, DOI 10.1016/0022-3999(73)90014-7; Compas BE, 2001, PSYCHOL BULL, V127, P87, DOI 10.1037//0033-2909.127.1.87; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Denissen JJA, 2008, J PERS ASSESS, V90, P152, DOI 10.1080/00223890701845229; Dunkel C.S., 2013, J SOC EVOL CULTUR PS, V7, P12, DOI DOI 10.1037/H0099177; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Ellis BJ, 2017, DEV PSYCHOPATHOL, V29, P1001, DOI 10.1017/S0954579416000985; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Figueredo A. J., 2017, EVOLUTIONARY PSYCHOL, V15; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; FOLKMAN S, 1984, J PERS SOC PSYCHOL, V46, P839, DOI 10.1037/0022-3514.46.4.839; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4; Hayes A, 2017, INTRO MEDIATION MODE; Hengartner MP, 2017, REV GEN PSYCHOL, V21, P330, DOI 10.1037/gpr0000127; HOLMES TH, 1967, J PSYCHOSOM RES, V11, P213, DOI 10.1016/0022-3999(67)90010-4; Hurst JE, 2017, EVOL HUM BEHAV, V38, P1, DOI 10.1016/j.evolhumbehav.2016.06.001; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; LEVENSTEIN S, 1993, J PSYCHOSOM RES, V37, P19, DOI 10.1016/0022-3999(93)90120-5; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Rammstedt B, 2007, J RES PERS, V41, P203, DOI 10.1016/j.jrp.2006.02.001; ROTH S, 1986, AM PSYCHOL, V41, P813, DOI 10.1037//0003-066X.41.7.813; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schreurs PJG, 1988, UTRECHTSE COPING LIJ; Tops M, 2014, PSYCHOL INQ, V25, P376, DOI 10.1080/1047840X.2014.916194; van der Linden D, 2017, PSYCHOL BULL, V143, P36, DOI 10.1037/bul0000078; van der Linden D, 2016, PERS INDIV DIFFER, V101, P98, DOI 10.1016/j.paid.2016.05.020; WARE JE, 1992, MED CARE, V30, P473, DOI 10.1097/00005650-199206000-00002; Wilson E.O., 1975, P1 36 0 0 8 8 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. DEC 1 2018 135 277 285 10.1016/j.paid.2018.07.024 9 Psychology, Social Psychology GV5LY WOS:000446144900042 2019-02-21 J Marriott, C; Borg, JM; Andras, P; Smaldino, PE Marriott, Chris; Borg, James M.; Andras, Peter; Smaldino, Paul E. Social Learning and Cultural Evolution in Artificial Life ARTIFICIAL LIFE English Article Social learning; cultural evolution; collective behavior; life history evolution; mimicry HISTORY EVOLUTION; IMITATION We describe the questions and discussions raised at the First Workshop on Social Learning and Cultural Evolution held at theArtificial Life Conference 2016 in Cancun, Mexico in July 2016. The purpose of the workshop was to assemble artificial life researchers interested in social learning and cultural evolution into one group so that we could focus on recent work and interesting open questions. Our discussion related to both the mechanisms of social learning and cultural evolution and the consequences and influence of social learning and cultural evolution on living systems. We present the contributions of our workshop presenters and conclude with a discussion of the more important open questions in this area. [Marriott, Chris] Univ Washington, Tacoma, WA 98402 USA; [Borg, James M.; Andras, Peter] Keele Univ, Sch Comp & Math, Keele, Staffs, England; [Smaldino, Paul E.] Univ Calif Merced, Cognit & Informat Sci, Merced, CA 95340 USA Marriott, C (reprint author), Univ Washington, Tacoma, WA 98402 USA. dr.chris.marriott@gmail.com; j.borg@keele.ac.uk; p.andras@keele.ac.uk; paul.smaldino@gmail.com Borg, James Martin/0000-0002-6662-0849 Axelrod R., 1984, EVOLUTION COOPERATIO; Borg J. M., 2011, ECAL 2011 P 11 EUR C, P101; Bullinaria JA, 2017, ARTIF LIFE, V23, P374, DOI 10.1162/ARTL_a_00237; Bullinaria JA, 2009, ARTIF LIFE, V15, P389, DOI [10.1162/artl.2009.15.3.Bullinaria.010, 10.1162/artl.2009.Bullinaria.010]; Islam M., 2016, P ART LIF C 16, P442; Jolley BP, 2016, LECT NOTES COMPUT SC, V9825, P293, DOI 10.1007/978-3-319-43488-9_26; Laland KN, 2004, LEARN BEHAV, V32, P4; Marriott C., 2016, P ART LIF C 16, P508; Marriott C., 2014, ARTIF LIFE, P736; Marriott C., 2016, P ART LIF C 16, P500; Marriott C, 2015, GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P185, DOI 10.1145/2739480.2754804; NOBLE J, 2002, COM ADAP SY, P423; Santos F. C., 2006, PHYS REV LETT, V95, P98; Santos FC, 2012, J THEOR BIOL, V299, P88, DOI 10.1016/j.jtbi.2011.09.003; Smith JM, 1997, MAJOR TRANSITIONS EV; WHITEN A, 1992, ADV STUD BEHAV, V21, P239, DOI 10.1016/S0065-3454(08)60146-1; Whiten A, 2009, PHILOS T R SOC B, V364, P2417, DOI 10.1098/rstb.2009.0069 17 1 1 31 83 MIT PRESS CAMBRIDGE ONE ROGERS ST, CAMBRIDGE, MA 02142-1209 USA 1064-5462 1530-9185 ARTIF LIFE Artif. Life WIN 2018 24 1 SI 5 9 10.1162/ARTL_a_00250 5 Computer Science, Artificial Intelligence; Computer Science, Theory & Methods Computer Science FV8ZW WOS:000424877500002 29369716 Green Published 2019-02-21 J Guo, R; Zhang, WY; Yang, Y; Ding, J; Yang, WZ; Zhang, YM Guo, Rui; Zhang, Wenya; Yang, Ying; Ding, Jian; Yang, Wenzhi; Zhang, Yingmei Variation of fitness and reproductive strategy in male Bufo raddei under environmental heavy metal pollution ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY English Article Environmental pollution; Amphibian; Reproduction; Trade-off; Survival LIFE-HISTORY EVOLUTION; AFRICAN CLAWED FROGS; MALE XENOPUS-LAEVIS; PELOPHYLAX-NIGROMACULATA; DROSOPHILA-MELANOGASTER; SEXUAL ATTRACTIVENESS; LARYNGEAL MORPHOLOGY; TERMINAL INVESTMENT; MATING SIGNALS; CADMIUM Environmental pollution is known to adversely affect amphibian reproduction and survival, however, the knowledge of environmental heavy metal pollution on fitness of male amphibian is largely unknown. The present study aimed to explore the variation in fitness of male Bufo raddei, a widespread anuran in northwest China, subjected to long-term heavy metal stress in Baiyin (BY) city. BY is heavily polluted by heavy metals mainly copper, zinc, lead and cadmium; meanwhile, Liujiaxia (LJX), a relatively unpolluted area, was chosen as control. Differences in advertisement call, larynx size, breeding glands size, as well as forearm force during courtship and amplexus in male B. raddei between the two populations were analyzed. The results revealed a competitive advantage in advertisement call in BY population, together with larger breeding glands size and forearm force, which demonstrated a relatively higher fitness. Using skeletochronological analysis, we found that more than 40% of males from BY began to breed at 2 years old, which was only 6.93% for males from LJX. Correspondingly, the average age for all males participate in breeding was younger from BY than from LJX. Not surprisingly, males from BY showed a relatively lower body condition. All these results illustrated males from BY invested more in reproduction to increase fitness at the cost of health and survival. This reproductive trade-off might ultimately influence stability of B. raddei population because of the environmental heavy metal pollution. [Guo, Rui; Zhang, Wenya; Yang, Ying; Ding, Jian; Yang, Wenzhi; Zhang, Yingmei] Lanzhou Univ, Sch Life Sci, Gansu Key Lab Biomonitoring & Bioremediat Environ, Lanzhou, Gansu, Peoples R China Zhang, WY; Zhang, YM (reprint author), Lanzhou Univ, Sch Life Sci, Gansu Key Lab Biomonitoring & Bioremediat Environ, Lanzhou, Gansu, Peoples R China. zhangwenya@lzu.edu.cn; ymzhang@lzu.edu.cn Zhang, Yingmei/0000-0003-1614-4685 National Natural Science Foundation of China [31300437]; Fundamental Research Funds for the Central Universities [lzujbky-2018-kb18] The work was supported by the National Natural Science Foundation of China (No: 31300437) and the Fundamental Research Funds for the Central Universities (No: lzujbky-2018-kb18). Akre KL, 2011, SCIENCE, V333, P751, DOI 10.1126/science.1205623; Akre KL, 2010, ETHOLOGY, V116, P1138, DOI 10.1111/j.1439-0310.2010.01825.x; Blaustein AR, 2003, DIVERS DISTRIB, V9, P123, DOI 10.1046/j.1472-4642.2003.00015.x; Boul KE, 2004, COPEIA, P624, DOI 10.1643/CH-03-153R2; Brannelly LA, 2016, OPEN BIOL, V6, DOI 10.1098/rsob.150251; Brooks R, 2000, NATURE, V406, P67, DOI 10.1038/35017552; Carr JA, 2003, ENVIRON TOXICOL CHEM, V22, P396, DOI 10.1897/1551-5028(2003)022<0396:ROLXLT>2.0.CO;2; Ciarrocca M, 2013, CHEMOSPHERE, V90, P2077, DOI 10.1016/j.chemosphere.2012.10.060; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; Duan RY, 2016, ENVIRON SCI POLLUT R, V23, P17322, DOI 10.1007/s11356-016-6942-4; Emerson SB, 1999, GEN COMP ENDOCR, V114, P173, DOI 10.1006/gcen.1999.7251; Fedorka KM, 2004, EVOLUTION, V58, P2478; FUJIKURA K, 1988, ZOOL SCI, V5, P415; Guerra MA, 2014, COPEIA, P123, DOI 10.1643/CG-13-051; Guo R, 2017, ENVIRON MONIT ASSESS, V189, DOI 10.1007/s10661-017-5991-6; Hayes TB, 2002, P NATL ACAD SCI USA, V99, P5476, DOI 10.1073/pnas.082121499; Hayes TB, 2010, P NATL ACAD SCI USA, V107, P4612, DOI 10.1073/pnas.0909519107; HEMELAAR A, 1985, Amphibia-Reptilia, V6, P323, DOI 10.1163/156853885X00326; Hoffmann F, 2012, CHEMOSPHERE, V87, P1246, DOI 10.1016/j.chemosphere.2012.01.030; Hoffmann F, 2010, HORM BEHAV, V58, P653, DOI 10.1016/j.yhbeh.2010.06.008; Huang MY, 2015, CHEMOSPHERE, V119, P763, DOI 10.1016/j.chemosphere.2014.08.014; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Karraker NE, 2006, BIOL CONSERV, V131, P132, DOI 10.1016/j.biocon.2006.02.013; Kivleniece I, 2010, ANIM BEHAV, V80, P1015, DOI 10.1016/j.anbehav.2010.09.004; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kotiaho JS, 2003, J INSECT PHYSIOL, V49, P817, DOI 10.1016/S0022-1910(03)00117-3; KURABUCHI S, 1993, TISSUE CELL, V25, P589, DOI 10.1016/0040-8166(93)90011-9; LeBas NR, 2000, P ROY SOC B-BIOL SCI, V267, P445, DOI 10.1098/rspb.2000.1020; Lee KW, 2010, B ENVIRON CONTAM TOX, V85, P452, DOI 10.1007/s00128-010-0119-5; McKean KA, 2001, P NATL ACAD SCI USA, V98, P7904, DOI 10.1073/pnas.131216398; Messina FJ, 2003, J EVOLUTION BIOL, V16, P501, DOI 10.1046/j.1420-9101.2003.00535.x; RASTOGI R K, 1971, Steroidologia, V2, P276; Reniers J, 2015, OECOLOGIA, V178, P931, DOI 10.1007/s00442-015-3258-x; Schultner J, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2090; Sepp T, 2018, GLOBAL CHANGE BIOL, V24, P1452, DOI 10.1111/gcb.13969; Sinha M, 2008, J APPL TOXICOL, V28, P974, DOI 10.1002/jat.1363; Sun NL, 2018, ENVIRON TOXICOL CHEM, V37, P213, DOI 10.1002/etc.3947; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; van Wyk JH, 2003, ARCH ENVIRON CON TOX, V44, P247, DOI 10.1007/s00244-002-1161-z; Bernal EV, 2017, B MATH BIOL, V79, P2847, DOI 10.1007/s11538-017-0353-7; Wang C, 2016, AQUAT TOXICOL, V170, P24, DOI 10.1016/j.aquatox.2015.10.023; Welch AM, 1998, SCIENCE, V280, P1928, DOI 10.1126/science.280.5371.1928; WETZEL DM, 1985, J COMP PHYSIOL A, V157, P749, DOI 10.1007/BF01350072; Wilczynski W., 1998, BIOL J LINN SOC, V63, P51; Zhang H., 2012, AQUAT TOXICOL, P122; Zhang WY, 2018, ECOTOX ENVIRON SAFE, V159, P136, DOI 10.1016/j.ecoenv.2018.05.001; Zornik E, 2011, FRONT NEUROENDOCRIN, V32, P353, DOI 10.1016/j.yfrne.2010.12.006 48 0 0 13 13 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0147-6513 1090-2414 ECOTOX ENVIRON SAFE Ecotox. Environ. Safe. NOV 30 2018 164 253 260 10.1016/j.ecoenv.2018.08.035 8 Environmental Sciences; Toxicology Environmental Sciences & Ecology; Toxicology GZ2VX WOS:000449247600030 30121500 2019-02-21 J Casagrande, S; Hau, M Casagrande, Stefania; Hau, Michaela Enzymatic antioxidants but not baseline glucocorticoids mediate the reproduction - survival trade-off in a wild bird PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article reaction norm; trade-off; survival; glutathione peroxidase; corticosterone; workload LIFE-HISTORY; OXIDATIVE STRESS; ADRENOCORTICAL-RESPONSE; INDIVIDUAL-DIFFERENCES; FORAGING BEHAVIOR; GREAT TIT; CORTICOSTERONE; SUCCESS; COST; PHENOTYPES The trade-off between reproductive investment and survival is central to life-history theory, but the relative importance and the complex interactions among the physiological mechanisms mediating it are still debated. Here we experimentally tested whether baseline glucocorticoid hormones, the redox system or their interaction mediate reproductive investment-survival trade-offs in wild great tits (Parus major). We increased the workload of parental males by clipping three feathers on each wing, and 5 days later determined effects on baseline corticosterone concentrations (Cort), redox state (reactive oxygen metabolites, protein carbonyls, glutathione peroxidase [GPx], total non-enzymatic antioxidants), body mass, body condition, reproductive success and survival. Feather-clipping did not affect fledgling numbers, chick body condition, nest provisioning rates or survival compared with controls. However, feather-clipped males lost mass and increased both Cort and GPx concentrations. Within feather-clipped individuals, GPx increases were positively associated with reproductive investment (i.e. male nest provisioning). Furthermore, within all individuals, males that increased GPx suffered reduced survival rates. Baseline Cort increases were related to mass loss but not to redox state, nest provisioning or male survival. Our findings provide experimental evidence that changes in the redox system are associated with the trade-off between reproductive investment and survival, while baseline Cork may support this trade-off indirectly through a link with body condition. These results also emphasize that plastic changes in individuals, rather than static levels of physiological signals, may mediate life-history trade-offs. [Casagrande, Stefania; Hau, Michaela] Max Planck Inst Ornithol, Dept Evolutionary Physiol, Seewiesen, Starnberg, Germany Casagrande, S (reprint author), Max Planck Inst Ornithol, Dept Evolutionary Physiol, Seewiesen, Starnberg, Germany. scasagrande@orn.mpg.de Casagrande, Stefania/0000-0002-4264-8062 Max Planck Society We appreciate financial and logistical support of the Max Planck Society for this study. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2017, BIOSCIENCE, V67, P258, DOI 10.1093/biosci/biw176; Altmann J, 2004, AM J PRIMATOL, V64, P95, DOI 10.1002/ajp.20064; Angelier F, 2008, GEN COMP ENDOCR, V156, P134, DOI 10.1016/j.ygcen.2007.12.001; Angelier F, 2006, GEN COMP ENDOCR, V149, P1, DOI 10.1016/j.ygcen.2006.04.006; Angelier F, 2013, GEN COMP ENDOCR, V190, P118, DOI 10.1016/j.ygcen.2013.05.022; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Bauchau V, 1995, J APPL STAT, V22, P1031, DOI 10.1080/02664769524775; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179; Bonier F, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.1887; Bonier F, 2011, BIOL LETTERS, V7, P944, DOI 10.1098/rsbl.2011.0391; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; Brigelius-Flohe R, 2003, BIOFACTORS, V17, P93, DOI 10.1002/biof.5520170110; Burnham K.P., 2002, MODEL SELECTION MULT, P66; Casagrande S, 2018, INTEGR COMP BIOL, V58, pE31, DOI 10.1093/icb/icy022; Costantini D, 2006, J COMP PHYSIOL B, V176, P329, DOI 10.1007/s00360-005-0055-6; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2014, J EXP BIOL, V217, P4237, DOI 10.1242/jeb.114116; Costantini D, 2011, J COMP PHYSIOL B, V181, P447, DOI 10.1007/s00360-011-0566-2; Costantini D, 2009, FUNCT ECOL, V23, P506, DOI 10.1111/j.1365-2435.2009.01546.x; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; Crossin GT, 2016, FUNCT ECOL, V30, P116, DOI 10.1111/1365-2435.12482; Crossin GT, 2012, AM NAT, V180, pE31, DOI 10.1086/666001; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P261, DOI 10.1016/j.tree.2010.01.008; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Forman HJ, 2010, BIOCHEMISTRY-US, V49, P835, DOI 10.1021/bi9020378; Fowler MA, 2017, AM NAT, V190, P762, DOI 10.1086/694123; Goymann W, 2017, FRONT ECOL EVOL, V5, DOI 10.3389/fevo.2017.00015; Halliwell B, 2004, BRIT J PHARMACOL, V142, P231, DOI 10.1038/sj.bjp.0705776; Halliwell B, 2007, FREE RADICALS IN BIO; Hau M, 2016, ADV STUD BEHAV, V48, P41, DOI 10.1016/bs.asb.2016.01.002; HAU M, 2015, FRONT ZOOL S1, V12; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Haussmann MF, 2012, P ROY SOC B-BIOL SCI, V279, P1447, DOI 10.1098/rspb.2011.1913; Henderson LJ, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.170875; Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5; Jaatinen K, 2013, GEN COMP ENDOCR, V191, P231, DOI 10.1016/j.ygcen.2013.06.022; Jenni-Eiermann S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097650; Jimeno B, 2017, J EXP BIOL, V220, P4426, DOI 10.1242/jeb.166124; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; Lema SC, 2013, CURR ZOOL, V59, P506, DOI 10.1093/czoolo/59.4.506; Love OP, 2008, HORM BEHAV, V54, P496, DOI 10.1016/j.yhbeh.2008.01.006; Love OP, 2014, GEN COMP ENDOCR, V199, P65, DOI 10.1016/j.ygcen.2014.01.001; Love OP, 2004, HORM BEHAV, V46, P59, DOI 10.1016/j.yhbeh.2004.02.001; Madliger CL, 2015, BIOL CONSERV, V192, P409, DOI 10.1016/j.biocon.2015.10.021; Mathot KJ, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2459-9; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Norte AC, 2010, CONDOR, V112, P79, DOI 10.1525/cond.2010.080071; Ouyang JQ, 2013, J EVOLUTION BIOL, V26, P1988, DOI 10.1111/jeb.12202; Ouyang JQ, 2011, P ROY SOC B-BIOL SCI, V278, P2537, DOI 10.1098/rspb.2010.2490; Patterson SH, 2014, J EVOLUTION BIOL, V27, P259, DOI 10.1111/jeb.12286; Patterson SH, 2011, ANIM BEHAV, V81, P1239, DOI 10.1016/j.anbehav.2011.03.012; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Powers SK, 2008, PHYSIOL REV, V88, P1243, DOI 10.1152/physrev.00031.2007; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rivers JW, 2017, FUNCT ECOL, V31, P235, DOI 10.1111/1365-2435.12719; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Romero LM, 2016, TEMPESTS POXES PREDA; Sahin E, 2012, NAT REV MOL CELL BIO, V13, P397, DOI 10.1038/nrm3352; Salin K, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0538; Sanz JJ, 2000, J ANIM ECOL, V69, P74, DOI 10.1046/j.1365-2656.2000.00373.x; Schieber M, 2014, CURR BIOL, V24, pR453, DOI 10.1016/j.cub.2014.03.034; Schielzeth H, 2013, METHODS ECOL EVOL, V4, P14, DOI 10.1111/j.2041-210x.2012.00251.x; Schoenle LA, 2017, HORM BEHAV, V90, P1, DOI 10.1016/j.yhbeh.2017.02.002; Selman C, 2000, FREE RADICAL BIO MED, V28, P1279, DOI 10.1016/S0891-5849(00)00263-X; Sorenson GH, 2017, OECOLOGIA, V183, P353, DOI 10.1007/s00442-016-3774-3; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Stearns S, 1992, EVOLUTION LIFE HIST; Taff CC, 2016, TRENDS ECOL EVOL, V31, P476, DOI 10.1016/j.tree.2016.03.005; Tomotani BM, 2018, FUNCT ECOL, V32, P389, DOI 10.1111/1365-2435.12974; van de Crommenacker J, 2017, FUNCT ECOL, V31, P1210, DOI 10.1111/1365-2435.12861; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vitousek MN, 2018, FRONT ECOL EVOL, V6, DOI 10.3389/fevo.2018.00042; Vitousek MN, 2014, HORM BEHAV, V66, P812, DOI 10.1016/j.yhbeh.2014.11.004; Wegmann M, 2015, BEHAV ECOL, V26, P747, DOI 10.1093/beheco/arv006; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Williams TD, 2015, J ORNITHOL, V156, pS441, DOI 10.1007/s10336-015-1213-6; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield JC, 1998, AM ZOOL, V38, P191; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615 91 0 0 8 8 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 28 2018 285 1892 20182141 10.1098/rspb.2018.2141 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology HD2QQ WOS:000452355700009 30487312 2019-02-21 J Gassen, J; Bradshaw, HK; Hill, SE Gassen, Jeffrey; Bradshaw, Hannah K.; Hill, Sarah E. Mating Effort Predicts Human Menstrual Cycle Frequency EVOLUTIONARY PSYCHOLOGY English Article life history theory; menstrual cycle; fecundity; mating effort; mating success SEX-DIFFERENCES; CONSPICUOUS CONSUMPTION; OVULATORY SHIFTS; LENGTH; WOMEN; ATTRACTIVENESS; SOCIOSEXUALITY; VARIABILITY; STRESS; DESIRE The human menstrual cycle is characterized by substantial variability both within and between women. Here, we sought to account for such variability by examining whether human menstrual cycle frequency varies as a function of the projected fitness payoffs associated with investment in mating effort. We used structural equation modeling to test the prediction that women whose environmental conditions or life histories favor heavier investment in mating effort would have shorter, more regular cycles. Results supported our hypothesis, revealing that women who project more mating success and have faster life history strategies exhibit greater mating effort and shorter, more regular menstrual cycles. An alternative model that specified cycle frequency as a predictor of mating effort was a poor fit for the data, lending support for the hypothesized directionality of the path between these variables. Together, these results provide some of the first empirical evidence that the length and regularity of the human menstrual cycle may be calibrated to investment in mating effort. [Gassen, Jeffrey; Bradshaw, Hannah K.; Hill, Sarah E.] Texas Christian Univ, Dept Psychol, 2955 S Univ Dr, Ft Worth, TX 76129 USA Gassen, J (reprint author), Texas Christian Univ, Dept Psychol, 2955 S Univ Dr, Ft Worth, TX 76129 USA. j.gassen@tcu.edu National Science Foundation [NSF 1551201] The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by National Science Foundation (NSF 1551201). Arslan R. C., 2018, J PERSONALITY SOCIAL; Barron ML, 2008, ARCH PSYCHIAT NURS, V22, P254, DOI 10.1016/j.apnu.2007.11.001; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; BURLESON MH, 1991, PHYSIOL BEHAV, V50, P863, DOI 10.1016/0031-9384(91)90032-J; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Cappelletti M, 2016, HORM BEHAV, V78, P178, DOI 10.1016/j.yhbeh.2015.11.003; CHIAZZE L, 1968, J AMER MED ASSOC, V203, P377, DOI 10.1001/jama.203.6.377; Chua KJ, 2017, EVOL PSYCHOL-US, V15, DOI 10.1177/1474704916677342; Clark AP, 2004, EVOL HUM BEHAV, V25, P113, DOI 10.1016/S1090-5138(03)00085-0; Courtiol A, 2012, P NATL ACAD SCI USA, V109, P8044, DOI 10.1073/pnas.1118174109; CRAMER DW, 1986, JAMA-J AM MED ASSOC, V255, P1904; Creinin MD, 2004, CONTRACEPTION, V70, P289, DOI 10.1016/j.contraception.2004.04.012; CUTLER WB, 1980, HORM BEHAV, V14, P163, DOI 10.1016/0018-506X(80)90008-2; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; denTonkelaar I, 1996, BREAST CANCER RES TR, V38, P253, DOI 10.1007/BF01806143; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Durante KM, 2008, PERS SOC PSYCHOL B, V34, P1451, DOI 10.1177/0146167208323103; Durante KM, 2009, BIOL LETTERS, V5, P179, DOI 10.1098/rsbl.2008.0709; Edelstein RS, 2011, HORM BEHAV, V60, P248, DOI [10.1016/j.yhbeh.2011.05.007, 10.1016/j.jyhbeh.2011.05.007]; ELLIS BJ, 1990, J SEX RES, V27, P527, DOI 10.1080/00224499009551579; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fehring RJ, 2006, JOGNN-J OBST GYN NEO, V35, P376, DOI 10.1111/j.1552-6909.2006.00051.x; Fenster L, 1999, AM J EPIDEMIOL, V149, P127; Fernandes HBF, 2016, PERS INDIV DIFFER, V98, P275, DOI 10.1016/j.paid.2016.04.019; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Gleeson PC, 2016, AUST NZ J PSYCHIAT, V50, P481, DOI 10.1177/0004867415590459; Griskevicius V, 2007, J PERS SOC PSYCHOL, V93, P85, DOI 10.1037/0022-3514.93.1.85; Gudmundsdottir S. L., 2011, Norsk Epidemiologi, V20, P163; Hahn Kristen A, 2013, Clin Epidemiol, V5, P311, DOI 10.2147/CLEP.S46712; HARLOW SD, 1991, AM J EPIDEMIOL, V133, P38, DOI 10.1093/oxfordjournals.aje.a115800; Haselton MG, 2007, HORM BEHAV, V51, P40, DOI 10.1016/j.yhbeh.2006.07.007; HOWARDTRIPP ME, 1978, J S AFR VET ASSOC, V49, P191; Jensen TK, 1999, EPIDEMIOLOGY, V10, P422, DOI 10.1097/00001648-199907000-00014; Jones BC, 2018, PSYCHONEUROENDOCRINO, V88, P153, DOI 10.1016/j.psyneuen.2017.12.015; Jukic A, 2007, AM J EPIDEMIOL, V165, pS22; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kato I, 1999, EUR J EPIDEMIOL, V15, P809, DOI 10.1023/A:1007669430686; Kim Aekyoung, 2018, Evol Psychol, V16, p1474704918800062, DOI 10.1177/1474704918800062; Kline RB, 2016, PRINCIPLES PRACTICE; Kolstad HA, 1999, FERTIL STERIL, V71, P490, DOI 10.1016/S0015-0282(98)00474-9; Komers PE, 1999, AM NAT, V153, P431, DOI 10.1086/303185; Kruger DJ, 2017, EVOL PSYCHOL-US, V15, DOI 10.1177/1474704916673840; LANDOLT MA, 1995, ETHOL SOCIOBIOL, V16, P3, DOI 10.1016/0162-3095(94)00012-V; Lawson CC, 2011, EPIDEMIOLOGY, V22, P305, DOI 10.1097/EDE.0b013e3182130016; Liu Y, 2004, AM J EPIDEMIOL, V160, P131, DOI 10.1093/aje/kwh188; MATTEO S, 1987, PSYCHONEUROENDOCRINO, V12, P467, DOI 10.1016/0306-4530(87)90081-3; MCCOMB K, 1987, NATURE, V330, P648, DOI 10.1038/330648a0; Mesko N., 2014, INTERPERSONA, V8, P85, DOI DOI 10.5964/IJPR.V8I1.130; Moss JH, 2016, PERS SOC PSYCHOL B, V42, P72, DOI 10.1177/0146167215612744; Mumford SL, 2012, J CLIN ENDOCR METAB, V97, pE1871, DOI 10.1210/jc.2012-1350; Muthen L. K. & Muthen B. O., 1998, MPLUS USERS GUIDE; Ostovich JM, 2004, PERS SOC PSYCHOL B, V30, P1255, DOI 10.1177/0146167204264754; Penke L, 2008, J PERS SOC PSYCHOL, V95, P1113, DOI 10.1037/0022-3514.95.5.1113; Perilloux C, 2013, PERS INDIV DIFFER, V54, P490, DOI 10.1016/j.paid.2012.10.028; Pillsworth EG, 2004, J SEX RES, V41, P55, DOI 10.1080/00224490409552213; Richardson GB, 2017, EVOL PSYCHOL-US, V15, DOI 10.1177/1474704916666840; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Roff Derek A., 1992; Rowland AS, 2002, EPIDEMIOLOGY, V13, P668, DOI 10.1097/01.EDE.0000024628.42288.8F; Saha S, 2014, INFLAMM BOWEL DIS, V20, P534, DOI 10.1097/01.MIB.0000441347.94451.cf; Schmitt DP, 2003, J PERS SOC PSYCHOL, V85, P85, DOI 10.1037/0022-3514.85.1.85; Setchell JM, 2004, AM J PHYS ANTHROPOL, V125, P73, DOI 10.1002/ajpa.10375; Small CM, 2007, ANN EPIDEMIOL, V17, P163, DOI 10.1016/j.annepidem.2006.05.005; Solomon CG, 2001, JAMA-J AM MED ASSOC, V286, P2421, DOI 10.1001/jama.286.19.2421; Stearns S, 1992, EVOLUTION LIFE HIST; Sundie JM, 2011, J PERS SOC PSYCHOL, V100, P664, DOI 10.1037/a0021669; Symons D., 1979, EVOLUTION HUMAN SEXU; Szepsenwol O., 2017, EVOLUTIONARY BEHAV S, V11, P131, DOI DOI 10.1037/EBS0000082; Terry KL, 2005, CANCER EPIDEM BIOMAR, V14, P1509, DOI 10.1158/1055-9965.EPI-05-0051; VEITH JL, 1983, PHYSIOL BEHAV, V31, P313, DOI 10.1016/0031-9384(83)90194-4; Weeden J, 2007, ARCH SEX BEHAV, V36, P79, DOI 10.1007/s10508-006-9075-x; Wei M, 2016, MEDICINE, V95, DOI 10.1097/MD.0000000000002922; Wesselink AK, 2016, ANN EPIDEMIOL, V26, P482, DOI 10.1016/j.annepidem.2016.05.006; Wilcox AJ, 2000, BRIT MED J, V321, P1259, DOI 10.1136/bmj.321.7271.1259; WOOD JW, 1988, POP STUD-J DEMOG, V42, P85, DOI 10.1080/0032472031000143136; Zhang Q, 2017, BJOG-INT J OBSTET GY, V124, P1654, DOI 10.1111/1471-0528.14469 78 0 0 2 2 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. NOV 21 2018 16 4 1474704918812124 10.1177/1474704918812124 10 Psychology, Experimental Psychology HB8HD WOS:000451327600001 30463438 DOAJ Gold 2019-02-21 J Veitschegger, K; Kolb, C; Amson, E; Scheyer, TM; Sanchez-Villagra, MR Veitschegger, Kristof; Kolb, Christian; Amson, Eli; Scheyer, Torsten M.; Sanchez-Villagra, Marcelo R. Palaeohistology and life history evolution in cave bears, Ursus spelaeus sensu lato PLOS ONE English Article COMPLETE MITOCHONDRIAL GENOME; GROWTH-RATE; BONE-HISTOLOGY; HIGH-ALTITUDE; BROWN BEARS; FOSSIL; WEIGHT; SIZE; MASS The abundance of skeletal remains of cave bears in Pleistocene deposits can offer crucial information on the biology and life history of this megafaunal element. The histological study of 62 femora from 23 different European localities and comparisons with specimens of five extant ursid species revealed novel data on tissue types and growth patterns. Cave bear's femoral bone microstructure is characterized by a fibrolamellar complex with increasing amounts of parallel-fibered and lamellar bone towards the outer cortex. Remodelling of the primary bone tissue initially occurs close to the perimedullary margin of the bone cortex around the linea aspera. Although similar histological traits can be observed in many extant bear species, the composition of the fibrolamellar complex can vary greatly. Cave bears reached skeletal maturity between the ages of 10 and 14, which is late compared to other bear species. There is a significant correlation between altitude and growth, which reflects the different body sizes of cave bears from different altitudes. [Veitschegger, Kristof; Kolb, Christian; Scheyer, Torsten M.; Sanchez-Villagra, Marcelo R.] Univ Zurich, Paleontol Inst & Museum, Zurich, Switzerland; [Veitschegger, Kristof] Naturalis Biodivers Ctr, Leiden, Netherlands; [Amson, Eli] Humboldt Univ, AG Morphol & Formengeschichte, Bild Wissen Gestaltung Interdisziplinares Lab, Berlin, Germany; [Amson, Eli] Humboldt Univ, Inst Biol, Berlin, Germany; [Amson, Eli] Humboldt Univ, Interdisziplinares Lab, Bild Wissen Gestaltung, Berlin, Germany; [Amson, Eli] Leibniz Inst Evolut & Biodiversitatsforsch, Museum Nat Kunde, Berlin, Germany Veitschegger, K (reprint author), Univ Zurich, Paleontol Inst & Museum, Zurich, Switzerland.; Veitschegger, K (reprint author), Naturalis Biodivers Ctr, Leiden, Netherlands. kristof.veitschegger@pim.uzh.ch Swiss National Science Foundation [149506, 31003A_149605, 31003A_169395]; Alexander von Humboldt Foundation; Deutsche Forschungsgemeinschaft [DFG AM 517/1-1]; SNF [149506]; German Research Council [DFG AM 517/1-1] This research was mostly funded by the Swiss National Science Foundation (http://www.snf.ch) grant 31003A_149605 and 31003A_169395 to MRS-V. Additional funding for materials was provided by the Swiss National Science Foundation (http://www.snf.ch) grant 149506 to TMS. The Alexander von Humboldt Foundation (https://www.humboldt-foundation.de) and Deutsche Forschungsgemeinschaft (DFG AM 517/1-1) provided funding for the research of EA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; We thank the following colleagues for kindly providing us with samples for this study: Christine Argot (MNHN), Bjorn Berning (BZL), Toni Burgin (NMSG), Loic Costeur (NMB), Stephanie Fassl (PIUW), Christine Frischauf (PIUW), Ursula B. Gohlich (NHM), Oliver Hampe (MfN), Voitto Haukisalmi (MZH), Brigitte Hilpert (IPUE), Daniela Kalthoff (SMNH), Kamal Khidas (CMN), Evelyn Kustatscher (PZO), Gernot Rabeder (PIUW), Thomas Schossleitner (MfN), Laura Smyk (CMN), Martin Studeny (BZL), Evangelia Tsoukala (AUTH), Geraldine Veron (MNHN), and Ingmar Werneburg (GPIT). Additionally, we want to thank Alexandra Houssaye, Gernot Rabeder, and other anonymous reviewers for their helpful suggestions. John Finarelli (Dublin) and Lukas Keller (Zurich) provided comments to earlier versions of this manuscript and the taxonomy for the multi-species concept of cave bear evolution was provided by Gernot Rabeder. This research was funded by the Swiss National Science Foundation (SNSF) grant 31003A_169395 to Marcelo R. Sanchez-Villagra and partly supported by funds from the SNF grant 149506 to Torsten M. Scheyer. Eli Amson was funded by the Alexander von Humboldt Foundation and the German Research Council (DFG AM 517/1-1). Amprino R, 1947, ARCH BIOL, P58315; Amson E, 2015, CR PALEVOL, V14, P637, DOI 10.1016/j.crpv.2015.07.001; Baca M, 2014, QUATERN INT, DOI [10.1016/j.quaint.2011.10.031, DOI 10.1016/J.QUAINT.2011.10.031]; Barnosky AD, 2004, SCIENCE, V306, P70, DOI 10.1126/science.1101476; Bon C, 2008, P NATL ACAD SCI USA, V105, P17447, DOI 10.1073/pnas.0806143105; Bozzini C, 2013, HIGH ALT MED BIOL, V14, P367, DOI 10.1089/ham.2013.1038; Breuer R., 1931, SPELAOLOGISCHE MONOG, V7, P581; Castanet J, 1992, BONE, V7, P245; Castanet J, 2004, J ZOOL, P263; Chinsamy A, 1998, J VERTEBR PALEONTOL, V18, P385, DOI 10.1080/02724634.1998.10011066; Chinsamy A, 1992, PALAEONTOL AFR, P2939; Christiansen P, 1999, ANN ZOOL FENN, V36, P93; Clauss M, 2013, OIKOS, V122, P1465, DOI 10.1111/j.1600-0706.2013.00463.x; Cubo J, 2012, PALEOBIOLOGY, V38, P335, DOI 10.1666/08093.1; Dabney J, 2013, P NATL ACAD SCI USA, V110, P15758, DOI 10.1073/pnas.1314445110; De Buffrenil V, 2000, J HERPETOL, V34, P414, DOI 10.2307/1565365; de Margerie E, 2004, J EXP BIOL, V207, P869, DOI 10.1242/jeb.00841; Debeljak I., 2011, AJDOVSKA JAMA PALAEO, V20, P51; Debeljak I, 2007, ACTA CARSOLOGICA, V36, P475; DELAQUER.L, 1965, J APPL PHYSIOL, V20, P1022; Drake RL, 2015, GRAYS ANATOMY STUDEN; Ehrenberg K, 1973, ANN NATHIST MUS WIEN, P7769; Ehrenberg K., 1931, SPELAOLOGISCHE MONOG, V7, P537; ELIA R, 1985, ACTA PHYSIOL PHARM L, V35, P311; Enlow D. E., 1958, Texas Journal of Science, V10, P187; Fortes GG, 2016, MOL ECOL, V25, P4907, DOI 10.1111/mec.13800; Fosse P, 2014, QUATERN INT; Giangregorio L, 2002, SPORTS MED, V32, P459, DOI 10.2165/00007256-200232070-00005; Grandal-d'Anglade A, 1997, GEOBIOS-LYON, V30, P723, DOI 10.1016/S0016-6995(97)80160-X; Hinrichs J, 2016, ARE LINES ARRESTED G; Hunter L., 2011, CARNIVORES WORLD; Huttenlocker AK, 2013, BONE HISTOLOGY OF FOSSIL TETRAPODS: ADVANCING METHODS, ANALYSIS, AND INTERPRETATION, P13; Jordana X, 2016, CR PALEVOL, V15, P255, DOI 10.1016/j.crpv.2015.03.008; Knapp M, 2014, HIST BIOL ONLINE 1, DOI [10.1080/08912963.2018.1434168, DOI 10.1080/08912963.2018.1434168]; Knapp M, 2009, MOL ECOL, V18, P1225, DOI 10.1111/j.1365-294X.2009.04088.x; Kohler M, 2012, NATURE; Kohler M, 2009, P NATL ACAD SCI USA, V106, P20354, DOI 10.1073/pnas.0813385106; Kolb C, 2015, PEERJ; Kolb C, 2015, BMC EVOL BIOL, V15, DOI 10.1186/s12862-015-0295-3; Krause J, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-220; Lorenzen ED, 2011, NATURE, V479, P359, DOI 10.1038/nature10574; Losos JB, 2011, AM NAT, V177, P709, DOI 10.1086/660020; Marangoni F, 2009, J HERPETOL, V43, P546, DOI 10.1670/08-230R1.1; Marin-Moratalla N, 2013, MAMM BIOL, V78, P422, DOI 10.1016/j.mambio.2013.07.079; Matyas J, 1955, MIKROSKOPISCHE UNTER; McGee-Lawrence M, 2015, J EXP BIOL, V218, P2067, DOI 10.1242/jeb.120725; McGee-Lawrence ME, 2008, AM J PHYSIOL-REG I, V295, pR1999, DOI 10.1152/ajpregu.90648.2008; McLeod A.l., 2011, KENDALL KENDALL RANK; Morel OE, 2005, PHYSIOL BEHAV, V86, P145, DOI 10.1016/j.physbeh.2005.07.003; Nacarino-Meneses C, 2016, CR PALEVOL, V15, P267, DOI 10.1016/j.crpv.2015.02.005; Nowakowski D, 2015, INT J OSTEOARCHAEOL, V25, P119, DOI 10.1002/oa.2271; Nyakatura K, 2012, BMC BIOL, V10, DOI 10.1186/1741-7007-10-12; Orme D., 2013, CAPER COMP ANAL PHYL; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; R Development Core Team, 2015, R LANG ENV STAT COMP; Rabeder G, 2004, CAH SCI HORS SERIE, P249; Rabeder G, 2000, DER HOHLENBAR; Rabeder G, 2004, HOHLE, P5558; Rabeder G, 2008, HOHLE, P5959; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Revell LJ, 2010, METHODS ECOL EVOL, V1, P319, DOI 10.1111/j.2041-210X.2010.00044.x; Rogoz A, 2009, MINERALOGIA, V40, P65; Sander PM, 2006, PALAEONTOGR ABT A; Stein K, 2014, BIOL REV, V89, P24, DOI 10.1111/brv.12041; Stiller M, 2014, QUATERN INT, DOI [10.1016/j.quaint.2011.10.031, DOI 10.1016/J.QUAINT.2011.10.031]; Veitschegger K, 2018, HIST BIOL ONLINE 1, DOI [10.1080/08912963.2018.1441293, DOI 10.1080/08912963.2018.1441293]; Veitschegger K, 2017, BMC EVOL BIOL, V17, DOI 10.1186/s12862-017-0976-1; Weinstock J, 2009, INT J OSTEOARCHAEOL, V19, P416, DOI 10.1002/oa.980; Westerterp-Plantenga MS, 1999, J APPL PHYSIOL, V87, P391; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1 71 0 0 1 1 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One NOV 21 2018 13 11 e0206791 10.1371/journal.pone.0206791 17 Multidisciplinary Sciences Science & Technology - Other Topics HB4VL WOS:000451054800025 30462690 DOAJ Gold, Green Published 2019-02-21 J Ruiz-Aravena, M; Jones, ME; Carver, S; Estay, S; Espejo, C; Storfer, A; Hamede, RK Ruiz-Aravena, Manuel; Jones, Menna E.; Carver, Scott; Estay, Sergio; Espejo, Camila; Storfer, Andrew; Hamede, Rodrigo K. Sex bias in ability to cope with cancer: Tasmanian devils and facial tumour disease PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article host-pathogen; cope with infection; tolerance to infection; DFTD SARCOPHILUS-HARRISII; TRANSMISSIBLE CANCER; REPRODUCTIVE SUCCESS; RESISTANCE; TOLERANCE; EVOLUTION; INFECTION; DYNAMICS; PLASMA; COSTS Knowledge of the ecological dynamics between hosts and pathogens during t he initial stages of disease emergence is crucial to understanding the potential for evolution of new interspecific interactions. Tasmanian devil (Sareophilus harrish) populations have declined precipitously owing to infection by a transmissible cancer (devil facial tumour disease, DFTD) that emerged approximately 20 years ago. Since the emergence of DFTD, and as the disease spreads across Tasmania, the number of devils has dropped up to 90% across 80% of the species's distributional range. As a result, the disease is expected to act as a strong selective force on hosts to develop mechanisms of tolerance and /or resistance to the infection. We assessed the ability of infected devils to cope with infection, which translates into host tolerance to the cancer, by using the reaction norm of the individual body condition by tumour burden. We found that body condition of infected hosts is negatively affected by cancer progression. Males and females presented significant differences in their tolerance levels to infection, with males suffering declines of up to 25% of their body condition, in contrast to less than 5% in females. Sex-related differences in tolerance to cancer progression may select for changes in life-history strategies of the host and could also alter the selective environment for the tumours. [Ruiz-Aravena, Manuel; Jones, Menna E.; Carver, Scott; Hamede, Rodrigo K.] Univ Tasmania, Sch Nat Sci, Hobart, Tas, Australia; [Espejo, Camila] Univ Tasmania, Sch Med, Hobart, Tas, Australia; [Estay, Sergio] Univ Austral Chile, Inst Ciencias Ambient & Evolut, Valdivia, Chile; [Estay, Sergio] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Ctr Appl Ecol & Sustainabil, Santiago, Chile; [Storfer, Andrew] Washington State Univ, Sch Biol Sci, Pullman, WA 99164 USA Ruiz-Aravena, M (reprint author), Univ Tasmania, Sch Nat Sci, Hobart, Tas, Australia. m.ruiz.aravena@gmail.com Jones, Menna/0000-0001-7558-9022 BecasChile Scholarship scheme; Holsworth Wildlife Research Endowment; Tasmanian Devil Elite Research Scholarship; National Science Foundation [NSF DEB-1316549]; ARC Future Fellowship [FT100100250]; ARC DECRA fellowship [DE170101116]; CAPES-Conicyt [FB-002]; Fondecyt [1160370] M.R.-A.: BecasChile Scholarship scheme, Holsworth Wildlife Research Endowment and the Tasmanian Devil Elite Research Scholarship. A.S. and M.E.J.: National Science Foundation grant (NSF DEB-1316549). M.E.J.: ARC Future Fellowship (FT100100250). R.K.H.: ARC DECRA fellowship (DE170101116). S.E.: CAPES-Conicyt FB-002 (line 4) and Fondecyt 1160370. Bayer O, 2016, EUR ARCH OTO-RHINO-L, V273, P9, DOI 10.1007/s00405-014-3321-y; Best A, 2014, EVOLUTION, V68, P1426, DOI 10.1111/evo.12368; Budischak SA, 2018, FUNCT ECOL, V32, P324, DOI 10.1111/1365-2435.12951; Burnham K. P, 2002, MODEL SELECTION MULT; Epstein B, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12684; Finnerty PB, 2018, FUNCT ECOL, V32, P402, DOI 10.1111/1365-2435.12992; Frampton D, 2018, CANCER CELL, V33, P620, DOI 10.1016/j.ccell.2018.03.003; Hadkhale K, 2016, J OCCUP ENVIRON MED, V58, pE301, DOI 10.1097/JOM.0000000000000803; Hamede RK, 2008, AUSTRAL ECOL, V33, P614, DOI 10.1111/j.1442-9993.2007.01827.x; Hamede RK, 2015, P ROY SOC B-BIOL SCI, V282, P122, DOI 10.1098/rspb.2015.1468; Hamede RK, 2013, J ANIM ECOL, V82, P182, DOI 10.1111/j.1365-2656.2012.02025.x; Hanahan D, 2000, CELL, V100, P57, DOI 10.1016/S0092-8674(00)81683-9; Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013; Hesterman H, 2008, J ZOOL, V275, P130, DOI 10.1111/j.1469-7998.2008.00419.x; Hesterman H, 2008, GEN COMP ENDOCR, V155, P234, DOI 10.1016/j.ygeen.2007.05.013; Hesterman H, 2009, ANIM REPROD SCI, V112, P334, DOI 10.1016/j.anireprosci.2008.05.071; Hubert JN, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0201838; Jones ME, 2008, P NATL ACAD SCI USA, V105, P10023, DOI 10.1073/pnas.0711236105; Keeley T, 2017, THERIOGENOLOGY, V95, P33, DOI 10.1016/j.theriogenology.2017.02.013; Keeley T, 2012, REPROD FERT DEVELOP, V24, P999, DOI 10.1071/RD11134; Keeley T, 2012, GEN COMP ENDOCR, V176, P182, DOI 10.1016/j.ygcen.2012.01.011; Knutie SA, 2017, OECOLOGIA, V183, P1031, DOI 10.1007/s00442-017-3822-7; Lachish S, 2009, J ANIM ECOL, V78, P427, DOI 10.1111/j.1365-2656.2008.01494.x; Lazenby BT, 2018, J APPL ECOL, V55, P1368, DOI 10.1111/1365-2664.13088; Loh R, 2006, VET PATHOL, V43, P896, DOI 10.1354/vp.43-6-896; Loh R, 2006, VET PATHOL, V43, P890, DOI 10.1354/vp.43-6-890; Louie A, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002435; Margres MJ, 2018, MOL ECOL, V27, P4189, DOI 10.1111/mec.14853; McCallum H, 2007, ECOHEALTH, V4, P318, DOI 10.1007/s10393-007-0118-0; McCallum H, 2009, ECOLOGY, V90, P3379, DOI 10.1890/08-1763.1; Murchison EP, 2012, CELL, V148, P780, DOI 10.1016/j.cell.2011.11.065; Murgia C, 2006, CELL, V126, P477, DOI 10.1016/j.cell.2006.05.051; Naugler WE, 2007, SCIENCE, V317, P121, DOI 10.1126/science.1140485; Pearse AM, 2006, NATURE, V439, P549, DOI 10.1038/439549a; Pearse AM, 2012, CANCER GENET-NY, V205, P101, DOI 10.1016/j.cancergen.2011.12.001; Peck S, 2016, VET CLIN PATH, V45, P417, DOI 10.1111/vcp.12391; Pye R, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0553; Raberg L, 2009, PHILOS T R SOC B, V364, P37, DOI 10.1098/rstb.2008.0184; Raberg L, 2007, SCIENCE, V318, P812, DOI 10.1126/science.1148526; Rausher MD, 2001, NATURE, V411, P857, DOI 10.1038/35081193; Read AF, 2008, PLOS BIOL, V6, P2638, DOI 10.1371/journal.pbio.1000004; Restif O, 2004, AM NAT, V164, pE90, DOI 10.1086/423713; Roy BA, 2000, EVOLUTION, V54, P51, DOI 10.1111/j.0014-3820.2000.tb00007.x; Ruiz-Aravena M, 2018, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.8gf34g5, DOI 10.5061/DRYAD.8GF34G5]; Schneider DS, 2008, NAT REV IMMUNOL, V8, P889, DOI 10.1038/nri2432; Siddle HV, 2013, ONCOIMMUNOLOGY, V2, DOI 10.4161/onci.25235; Simard A, 2014, WILDLIFE MONOGR, V187, P1, DOI 10.1002/wmon.1010; SIMMS EL, 1994, EVOLUTION, V48, P1973, DOI 10.1111/j.1558-5646.1994.tb02227.x; Simms EL, 2000, EVOL ECOL, V14, P563, DOI 10.1023/A:1010956716539; Simpson K, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0149749; Stevenson RD, 2006, INTEGR COMP BIOL, V46, P1169, DOI 10.1093/icb/icl052; Svensson EI, 2010, TRENDS ECOL EVOL, V25, P267, DOI 10.1016/j.tree.2009.12.005; Thomas F, 2017, NAT ECOL EVOL, V1, P1592, DOI 10.1038/s41559-017-0343-z; Tovar C, 2017, SCI REP-UK, V7, DOI 10.1038/srep43827; Ujvari B, 2016, INFECT GENET EVOL, V39, P293, DOI 10.1016/j.meegid.2016.02.005; Vittecoq M, 2013, TRENDS ECOL EVOL, V28, P628, DOI 10.1016/j.tree.2013.07.005; WAUTERS LA, 1995, OIKOS, V72, P402, DOI 10.2307/3546126; Wells K, 2017, ECOL LETT, V20, P770, DOI 10.1111/ele.12776; WOODARD HQ, 1986, BRIT J RADIOL, V59, P1209, DOI 10.1259/0007-1285-59-708-1209; Woods GM, 2007, ECOHEALTH, V4, P338, DOI 10.1007/s10393-007-0117-1 60 0 0 4 4 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 21 2018 285 1891 20182239 10.1098/rspb.2018.2239 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology HB1UA WOS:000450810600023 30464069 2019-02-21 J Vaumourin, E; Laine, AL Vaumourin, Elise; Laine, Anna-Liisa Role of Temperature and Coinfection in Mediating Pathogen Life-History Traits FRONTIERS IN PLANT SCIENCE English Article abiotic interactions; biotic interactions; life-history evolution; overwintering success; pathogen evolution; Plantago lanceolate; Podosphaera plantaginis WILD PLANT-PATHOGEN; POWDERY MILDEW; ENVIRONMENT INTERACTIONS; DISEASE MANAGEMENT; EVOLUTIONARY; DYNAMICS; GENOTYPE; PARASITE; ECOLOGY; RESISTANCE Understanding processes maintaining variation in pathogen life-history traits is a key challenge in disease biology, and of importance for predicting when and where risks of disease emergence are highest. Pathogens are expected to encounter tremendous levels of variation in their environment - both abiotic and biotic - and this variation may promote maintenance of variation in pathogen populations through space and time. Here, we measure life-history traits of an obligate fungal pathogen at both asexual and sexual stages under both single infection and coinfection along a temperature gradient. We find that temperature had a significant effect on all measured life-history traits while coinfection only had a significant effect on the number of sexual resting structures produced. The effect of temperature on life-history traits was both direct as well as mediated through a genotype-by-temperature interaction. We conclude that pathogen life-history traits vary in their sensitivity to abiotic and biotic variation in the environment. [Vaumourin, Elise; Laine, Anna-Liisa] Univ Helsinki, Res Ctr Ecol Change, Helsinki, Finland Vaumourin, E (reprint author), Univ Helsinki, Res Ctr Ecol Change, Helsinki, Finland. elise.vaumourin@helsinki.fi Academy of Finland [296686]; European Research Council [RESISTANCE 724508] This work was funded by grants from the Academy of Finland (296686), and the European Research Council (Consolidator Grant RESISTANCE 724508) to A-LL. Alizon S, 2013, INTERFACE FOCUS, V3, DOI 10.1098/rsfs.2013.0031; Becks L, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001317; Blanford S, 2003, ECOL LETT, V6, P2, DOI 10.1046/j.1461-0248.2003.00387.x; Burdon J.J, 1987, DIS PLANT POPULATION; Carter Lucy M., 2013, Evolution Medicine and Public Health, P135, DOI 10.1093/emph/eot011; Clement JAJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037838; COX DR, 1972, J R STAT SOC B, V34, P187; Fels D, 2006, P ROY SOC B-BIOL SCI, V273, P1031, DOI 10.1098/rspb.2005.3404; Ferguson HM, 2002, P ROY SOC B-BIOL SCI, V269, P1217, DOI 10.1098/rspb.2002.2023; Ficke A, 2002, PHYTOPATHOLOGY, V92, P671, DOI 10.1094/PHYTO.2002.92.6.671; FIRSTENCEL H, 1990, J INVERTEBR PATHOL, V55, P258, DOI 10.1016/0022-2011(90)90061-A; Fisher JC, 2014, FRONT MICROBIOL, V5, DOI 10.3389/fmicb.2014.00525; Friesen TL, 2006, NAT GENET, V38, P953, DOI 10.1038/ng1839; Galvani AP, 2003, TRENDS ECOL EVOL, V18, P132, DOI 10.1016/S0169-5347(02)00050-2; Grenfell BT, 2004, SCIENCE, V303, P327, DOI 10.1126/science.1090727; Harvell CD, 2002, SCIENCE, V296, P2158, DOI 10.1126/science.1063699; Jones KE, 2008, NATURE, V451, P990, DOI 10.1038/nature06536; Jousimo J, 2014, SCIENCE, V344, P1289, DOI 10.1126/science.1253621; Laine AL, 2007, J EVOLUTION BIOL, V20, P2371, DOI 10.1111/j.1420-9101.2007.01406.x; Laine AL, 2006, J ECOL, V94, P217, DOI 10.1111/j.1365-2745.2005.01075.x; Laine AL, 2004, OIKOS, V107, P329, DOI 10.1111/j.0030-1299.2004.12990.x; Laine AL, 2008, ECOL LETT, V11, P327, DOI 10.1111/j.1461-0248.2007.01146.x; Laine AL, 2018, EVOL LETT, V2, P126, DOI 10.1002/evl3.48; Marcais B, 2017, PHYTOPATHOLOGY, V107, P570, DOI 10.1094/PHYTO-07-16-0268-R; Mitchell SE, 2005, EVOLUTION, V59, P70, DOI 10.1554/04-526; Mundt CC, 2002, ANNU REV PHYTOPATHOL, V40, P381, DOI 10.1146/annurev.phyto.40.011402.113723; Ojanen SP, 2013, ECOL EVOL, V3, P3713, DOI 10.1002/ece3.733; Otto SP, 2009, AM NAT, V174, pS1, DOI 10.1086/599084; Price JS, 2004, NEW PHYTOL, V162, P729, DOI 10.1111/j.1469-8137.2004.01082.x; Strange RN, 2005, ANNU REV PHYTOPATHOL, V43, P83, DOI 10.1146/annurev.phyto.43.113004.133839; Suffert F, 2019, MICROB ECOL, V77, P110, DOI 10.1007/s00248-018-1211-3; Susi H, 2015, AM NAT, V186, P252, DOI 10.1086/682069; Susi H, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms6975; Tack AJM, 2014, NEW PHYTOL, V202, P297, DOI 10.1111/nph.12646; Thomas MB, 2003, TRENDS ECOL EVOL, V18, P344, DOI 10.1016/S0169-5347(03)00069-7; Tollenaere C, 2013, J EVOLUTION BIOL, V26, P1716, DOI 10.1111/jeb.12169; Tollenaere C, 2016, TRENDS PLANT SCI, V21, P80, DOI 10.1016/j.tplants.2015.10.014; Tollenaere C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052492; Truscott JE, 2003, P NATL ACAD SCI USA, V100, P9067, DOI 10.1073/pnas.1436273100; Vagi P, 2016, EUR J PLANT PATHOL, V144, P799, DOI 10.1007/s10658-015-0797-2; Wolinska J, 2009, TRENDS PARASITOL, V25, P236, DOI 10.1016/j.pt.2009.02.004 41 0 0 0 0 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-462X FRONT PLANT SCI Front. Plant Sci. NOV 20 2018 9 1670 10.3389/fpls.2018.01670 8 Plant Sciences Plant Sciences HA9VL WOS:000450655900001 30524457 DOAJ Gold 2019-02-21 J Gladstone, NS; Carter, ET; Niemiller, KDK; Hayter, LE; Niemiller, ML Gladstone, Nicholas S.; Carter, Evin T.; Niemiller, K. Denise Kendall; Hayter, Lindsey E.; Niemiller, Matthew L. A new maximum body size record for the Berry Cave Salamander (Gyrinophilus gulolineatus) and genus Gyrinophilus (Caudata, Plethodontidae) with a comment on body size in plethodontid salamanders SUBTERRANEAN BIOLOGY English Article amphibian; habitat; life history; paedomorphosis; subterranean Lungless salamanders in the family Plethodontidae exhibit an impressive array of life history strategies and occur in a diversity of habitats, including caves. However, relationships between life history, habitat, and body size remain largely unresolved. During an ongoing study on the demography and life history of the paedomorphic, cave-obligate Berry Cave Salamander (Gyrinophilus gulolineatus, Brandon 1965), we discovered an exceptionally large individual from the type locality, Berry Cave, Roane County, Tennessee, USA. Th is salamander measured 145 mm in body length and represents not only the largest G. gulolineatus and Gyrinophilus ever reported, but also the largest plethodontid salamander in the United States. We discuss large body size in G. gulolineatus and compare body size in other large plethodontid salamanders in relation to life history and habitat. [Gladstone, Nicholas S.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37916 USA; [Carter, Evin T.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37916 USA; [Niemiller, K. Denise Kendall; Niemiller, Matthew L.] Univ Alabama, Dept Biol Sci, Huntsville, AL 35899 USA; [Hayter, Lindsey E.] Admiral Vet Hosp, 204 North Watt Rd, Knoxville, TN 37934 USA Niemiller, ML (reprint author), Univ Alabama, Dept Biol Sci, Huntsville, AL 35899 USA. matthew.niemiller@uah.edu Carter, Evin/0000-0003-0153-578X; Niemiller, Matthew/0000-0001-6353-8797 U.S. Fish & Wildlife Service [F17AC00939] Funding for this project was provided by the U.S. Fish & Wildlife Service (grant no. F17AC00939). All research was conducted under a TWRA scientific collection permit (nos. 1385 and 1605) and following an approved protocol by the University of Alabama in Huntsville Institutional Animal Care and Use Committee (protocol no. 2017.R005). We especially thank the Healy family for allowing access to Berry Cave. Adams DC, 2008, EVOLUTION, V62, P413, DOI 10.1111/j.1558-5646.2007.00297.x; ALBERCH P, 1981, J MORPHOL, V167, P249, DOI 10.1002/jmor.1051670208; Bakkegard KA, 2004, J HERPETOL, V38, P8, DOI 10.1670/145-02A; Bakkegard KA, 2012, J HERPETOL, V46, P304, DOI 10.1670/10-307; Beachy CK, 2017, HERPETOLOGICA, V73, P252, DOI 10.1655/Herpetologica-D-16-00083.1; Beachy Christopher King, 1995, Herpetological Review, V26, P179; Bernardo J, 2002, OIKOS, V97, P398, DOI 10.1034/j.1600-0706.2002.970310.x; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Bonett RM, 2014, EVOLUTION, V68, P466, DOI 10.1111/evo.12274; BRUCE RC, 1988, HERPETOLOGICA, V44, P218; BRUCE RC, 1980, HERPETOLOGICA, V36, P78; BRUCE RC, 1979, EVOLUTION, V33, P998, DOI 10.1111/j.1558-5646.1979.tb04753.x; Culver D.C., 2009, BIOL CAVES OTHER SUB; Duellman W. E., 1986, BIOL AMPHIBIANS; FEDER ME, 1982, COPEIA, P186, DOI 10.2307/1444288; Gibert J, 2002, BIOSCIENCE, V52, P473, DOI 10.1641/0006-3568(2002)052[0473:SEATFB]2.0.CO;2; Goldberg J, 2018, AUSTRAL ECOL, V43, P35, DOI 10.1111/aec.12532; Goricki S, 2012, ENCY CAVES, P665, DOI [10.1016/B978-0-12-383832-2.00098-0, DOI 10.1016/B978-0-12-383832-2.00098-0]; Graham Sean P., 2009, Herpetological Review, V40, P196; Hairston N. G, 1987, COMMUNITY ECOLOGY SA; Hervant F, 2000, CAN J ZOOL, V78, P1427, DOI 10.1139/cjz-78-8-1427; Huppop K, 2012, ENCY CAVES, P1, DOI [10.1016/B978-0-12-383832-2.00001-3, DOI 10.1016/B978-0-12-383832-2.00001-3]; JAEGER RG, 1981, AM NAT, V117, P962, DOI 10.1086/283780; JAEGER RG, 1980, OECOLOGIA, V44, P335, DOI 10.1007/BF00545237; LUNDBERG A, 1986, ORNIS SCAND, V17, P133, DOI 10.2307/3676862; MCNAMARA KJ, 1997, SHAPES TIME EVOLUTIO; Niemiller ML, 2016, J CAVE KARST STUD, V78, P1, DOI 10.4311/2015LSC0109; Niemiller ML, 2010, HERPETOL CONSERV BIO, V5, P32; Niemiller ML, 2010, BIOLOGY OF SUBTERRANEAN FISHES, P169, DOI 10.1201/EBK1578086702-c7; Niemiller ML, 2018, TECHNICAL REPORT; Parra-Olea G, 2005, HERPETOLOGICA, V61, P145, DOI 10.1655/03-02; Pipan T, 2017, J CAVE KARST STUD, V79, P1, DOI 10.4311/2016LSC0119; POULSON THOMAS L., 1963, AMER MIDLAND NAT, V70, P257, DOI 10.2307/2423056; Romero A, 2009, CAVE BIOL LIFE DARKN, DOI [10.1017/CBO9780511596841, DOI 10.1017/CBO9780511596841]; Ryan TJ, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P303; Scott DE, 2007, OECOLOGIA, V153, P521, DOI 10.1007/s00442-007-0755-6; Sket B, 2008, J NAT HIST, V42, P1549, DOI 10.1080/00222930801995762; Slavenko A, 2015, J BIOGEOGR, V42, P1246, DOI 10.1111/jbi.12516; SMITH HM, 1949, COPEIA, P71; Smith Hobart M., 1948, BULL U S NATION MUS, V194, P1; Stearns S, 1992, EVOLUTION LIFE HIST; TILLEY SG, 1993, HERPETOLOGICA, V49, P154; Valenzuela-Sanchez A, 2015, FRONT ZOOL, V12, DOI 10.1186/s12983-015-0132-y; Voituron Y, 2011, BIOL LETTERS, V7, P105, DOI 10.1098/rsbl.2010.0539; Wake DB, 1996, INT J DEV BIOL, V40, P859; Weary DJ, 2014, 20141156 USGS; WHITFORD WG, 1967, PHYSIOL ZOOL, V40, P127, DOI 10.1086/physzool.40.2.30152447; Wiens JJ, 2008, EVOL DEV, V10, P449, DOI 10.1111/j.1525-142X.2008.00256.x; Yeh J, 2002, EVOLUTION, V56, P628 49 0 0 0 0 INT SOC SUBTERRANEAN BIOL ROMA UNIV ROMA, DEPT BIOL ANIMALE & DELL UOMO, VIALE DELL UNIVERSITA, 32, ROMA, 00185, ITALY 1768-1448 1314-2615 SUBTERR BIOL Subterr. Biol. NOV 16 2018 28 29 38 10.3897/subtbiol.28.30506 10 Biology; Zoology Life Sciences & Biomedicine - Other Topics; Zoology HA8DZ WOS:000450520100002 DOAJ Gold, Green Published 2019-02-21 J Collett, RA; Baker, AM; Fisher, DO Collett, Rachael A.; Baker, Andrew M.; Fisher, Diana O. Prey productivity and predictability drive different axes of life-history variation in carnivorous marsupials PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article Dasyuridae; life history; seasonality; fast - slow continuum; iteroparity; semelparity FAST-SLOW CONTINUUM; REPRODUCTIVE STRATEGIES; DASYURID MARSUPIALS; NATURAL-SELECTION; EVOLUTION; SIZE; MAMMALS; BIRDS; MORTALITY; PATTERNS Variation in life-history strategies has usually been characterized as a single fast-slow continuum of life-history variation, in which mean lifespan increases with age at maturity as reproductive output at each breeding event declines. Analyses of plants and animals suggest that strategies of reproductive timing can vary on an independent axis, with iteroparous species at one extreme and semelparous species at the other. Insectivorous marsupials in the Family Dasyuridae have an unusually wide range of life-history strategies on both purported axes. We test and confirm that reproductive output and degree of iteroparity are independent in females across species. Variation in reproductive output per episode is associated with mean annual rainfall, which predicts food availability. Position on the iteroparity-semelparity axis is not associated with annual rainfall, but species in regions of unpredictable rainfall have longer maximum lifespans, more potential reproductive events per year, and longer breeding seasons. We suggest that these two axes of life-history variation arise because reproductive output is limited by overall food availability, and selection for high offspring survival favours concentrated breeding in seasonal environments. Longer lifespans are favoured when reproductive opportunities are dispersed over longer periods in environments with less predictable food schedules. [Collett, Rachael A.; Fisher, Diana O.] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia; [Baker, Andrew M.] Queensland Univ Technol, Sch Earth Environm & Biol Sci, Brisbane, Qld 4000, Australia Collett, RA (reprint author), Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia. rachael.collett@uqconnect.edu.au Fisher, Diana/C-1324-2010 Fisher, Diana/0000-0002-4017-3710 Australian Government's National Environmental Science Program through the Threatened Species Recovery Hub; Australian Research Council fellowship [FTll0100191] This research is supported by the Australian Government's National Environmental Science Program through the Threatened Species Recovery Hub and an Australian Research Council fellowship, Grant/Award no. FTll0100191. [Anonymous], 2016, CLIM DAT ONL; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Becker FS, 2018, AM NAT, V191, P250, DOI 10.1086/695315; Beckman J, 2007, MOL ECOL, V16, P1069, DOI 10.1111/j.1365-294X.2006.03209.x; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Bunnell F.L., 1981, P75; Bywater KA, 2010, MAMMAL REV, V40, P212, DOI 10.1111/j.1365-2907.2010.00160.x; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Clutton-Brock T, 1982, RED DEER BEHAV ECOLO; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Collett RA, 2017, ECOL EVOL, V7, P7527, DOI 10.1002/ece3.3275; COLWELL RK, 1974, ECOLOGY, V55, P1148, DOI 10.2307/1940366; Congdon J.D., 1982, Biology of Reptilia, V13, P233; Danforth BN, 1999, P ROY SOC B-BIOL SCI, V266, P1985, DOI 10.1098/rspb.1999.0876; Descamps S, 2009, P ROY SOC B-BIOL SCI, V276, P1129, DOI 10.1098/rspb.2008.1401; Dewar RE, 2007, P NATL ACAD SCI USA, V104, P13723, DOI 10.1073/pnas.0704346104; DICKMAN CR, 1992, J MAMMAL, V73, P143, DOI 10.2307/1381875; DUNLOP J N, 1982, Records of the Western Australian Museum, V10, P47; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fisher DO, 2013, P NATL ACAD SCI USA, V110, P17910, DOI 10.1073/pnas.1310691110; Fisher DO, 2011, BEHAV ECOL SOCIOBIOL, V65, P593, DOI 10.1007/s00265-010-1060-7; Fisher DO, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015226; Fisher DO, 2001, ECOLOGY, V82, P3531, DOI 10.2307/2680170; Gaillard J.-M, 2016, ENCY EVOLUTIONARY BI, V2, P312; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; Healy K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0298; Johnson CN, 1998, J ANIM ECOL, V67, P689, DOI 10.1046/j.1365-2656.1998.00232.x; Jones JH, 2011, CURR BIOL, V21, pR708, DOI 10.1016/j.cub.2011.08.025; Jones M, 2003, PREDATORS POUCHES BI; Karsten KB, 2008, P NATL ACAD SCI USA, V105, P8980, DOI 10.1073/pnas.0802468105; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Krajewski C, 2000, BIOL J LINN SOC, V71, P417; Krol E, 2003, J EXP BIOL, V206, P4283, DOI 10.1242/jeb.00676; LORD REXFORD D., 1960, AMER MIDLAND NAT, V64, P488, DOI 10.2307/2422677; Lovich JE, 2015, BIOL J LINN SOC, V115, P399, DOI 10.1111/bij.12505; May-Collado LJ, 2015, PEERJ, V3, DOI 10.7717/peerj.805; NAGELKERKE NJD, 1991, BIOMETRIKA, V78, P691, DOI 10.1093/biomet/78.3.691; Nilsen EB, 2009, J ANIM ECOL, V78, P585, DOI 10.1111/j.1365-2656.2009.01523.x; Oakwood M, 2001, P ROY SOC B-BIOL SCI, V268, P407, DOI 10.1098/rspb.2000.1369; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Orzack SH, 2001, ECOLOGY, V82, P2659, DOI 10.2307/2679944; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Pinheiro J, 2018, LINEAR NONLINEAR MIX; Read D, 1995, AUSTR MUSEUM COMPLET, P107; Reside AE, 2012, ECOL EVOL, V2, P705, DOI 10.1002/ece3.197; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Ricklefs RE, 2010, P NATL ACAD SCI USA, V107, P10314, DOI 10.1073/pnas.1005862107; Rollinson N, 2013, AM NAT, V182, P76, DOI 10.1086/670648; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; Sibly RM, 2009, AM NAT, V173, pE185, DOI 10.1086/598680; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Speakman JR, 2010, INTEGR COMP BIOL, V50, P793, DOI 10.1093/icb/icq049; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Symonds M.R.E., 2014, MODERN PHYLOGENETIC, P105; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; Van Dyck S., 2013, FIELD COMPANION MAMM; Venable DL, 2007, ECOLOGY, V88, P1086, DOI 10.1890/06-1495; Virgos E, 2006, BIOL J LINN SOC, V88, P603, DOI 10.1111/j.1095-8312.2006.00646.x; Ward SJ, 1998, J MAMMAL, V79, P999, DOI 10.2307/1383108; Whorley JR, 2007, J MAMMAL, V88, P1404, DOI 10.1644/06-MAMM-A-382R.1; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 74 0 0 8 8 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 7 2018 285 1890 20181291 10.1098/rspb.2018.1291 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GZ5ZK WOS:000449510600002 30381377 2019-02-21 J Bouchard, L; Winkler, G Bouchard, Lotus; Winkler, Gesche Life cycle, growth and reproduction of Neomysis americana in the St. Lawrence estuarine transition zone JOURNAL OF PLANKTON RESEARCH English Article St. Lawrence estuary; cohorts; growth rate; clutch size; life history strategy MAXIMUM TURBIDITY ZONE; INTEGER CRUSTACEA; OPOSSUM SHRIMP; MYSIS-RELICTA; INTERMEDIA CZERNIAWSKY; MARSUPIAL DEVELOPMENT; POPULATION-DYNAMICS; SMITH CRUSTACEA; HISTORY; MYSIDACEA Neomysis americana dominates the macrozooplankton of the St. Lawrence estuarine transition zone. Our aim was to determine how the growth and reproduction of N. americana may be controlled by environmental factors. The population was sampled fortnightly at Saint-Jean-Port-Joli from May to October 2013. A Bhattacharya cohort analysis was applied to the length-frequency data and the growth of each cohort was described by a von Bertalanffy function. Three cohorts were revealed. Slow growing females of the overwintering cohort produced the spring cohort in May. The summer cohort was released at the end of July producing juveniles of the new overwintering cohort in September and October. Two differential life history strategies were found: an overwintering cohort had an estimated longer life span (8-10 months), grew slowly, showed larger size at maturity and had a larger clutch size compared to those of the spring and summer cohorts. The clutch size was mainly influenced by female size and food quantity, unlike in many other studies, in which clutch size was found to be temperature dependant. These results concerning the life cycle, reproduction and growth of N. americana improve our understanding of the temporal dynamics of this important forage species of the St Lawrence estuarine transition zone. [Bouchard, Lotus; Winkler, Gesche] Univ Quebec Rimouski, Inst Sci Mer, 310 Allee Ursulines, Rimouski, PQ G5L8Y7, Canada Winkler, G (reprint author), Univ Quebec Rimouski, Inst Sci Mer, 310 Allee Ursulines, Rimouski, PQ G5L8Y7, Canada. gesche_winkler@uqar.ca Natural Sciences and Engineering Research Council of Canada (NSERC) [355967] This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grant # 355967 to G.W. We thank Quebec-Ocean for travel grants extended to L.B. ASTTHORSSON OS, 1984, MAR BIOL, V79, P55, DOI 10.1007/BF00404985; Buchheister A, 2015, J FISH BIOL, V86, P967, DOI 10.1111/jfb.12621; Cabrol J, 2015, J PLANKTON RES, V37, P372, DOI 10.1093/plankt/fbu111; COOPER KL, 1992, HYDROBIOLOGIA, V230, P9, DOI 10.1007/BF00015111; COWLES R. P., 1930, BULL U S BUR FISH, V46, P277; Dean AF, 2005, ESTUAR COAST SHELF S, V63, P1, DOI 10.1016/j.ecss.2004.08.019; Delgado L, 2013, J SEA RES, V83, P137, DOI 10.1016/j.seares.2013.03.012; DODSON JJ, 1989, ESTUARIES, V12, P66, DOI 10.2307/1351498; El-Sabh M. I., 1990, COASTAL ESTUARINE ST, V39, P434; Favier JB, 2014, J PLANKTON RES, V36, P1247, DOI 10.1093/plankt/fbu063; Fockedey N, 2006, MAR BIOL, V148, P1339, DOI 10.1007/s00227-005-0160-9; Fockedey N, 2005, J EXP MAR BIOL ECOL, V326, P27, DOI 10.1016/j.jembe.2005.05.005; Fockedey N, 1999, J MARINE SYST, V22, P207, DOI 10.1016/S0924-7963(99)00042-1; FRENETTE JJ, 1995, MAR ECOL PROG SER, V120, P99, DOI 10.3354/meps120099; FULTON RS, 1982, MAR BIOL, V72, P183, DOI 10.1007/BF00396919; Galbraith P. S., 2016, 2016056 DFO CAN SCI; HAKALA I, 1978, ANN ZOOL FENN, V15, P243; Hanselmann AJ, 2011, HYDROBIOLOGIA, V673, P193, DOI 10.1007/s10750-011-0773-6; HERMAN SS, 1963, LIMNOL OCEANOGR, V8, P228, DOI 10.4319/lo.1963.8.2.0228; HOPKINS THOMAS L., 1965, CHESAPEAKE SCI, V6, P86, DOI 10.2307/1351324; JOHNSTON NT, 1989, CAN J ZOOL, V67, P363, DOI 10.1139/z89-054; Kotta Ilmar, 2007, Proceedings of the Estonian Academy of Sciences Biology Ecology, V56, P312; Lapierre JF, 2008, MAR ECOL PROG SER, V372, P19, DOI 10.3354/meps07685; LAPRISE R, 1994, MAR ECOL PROG SER, V107, P67; LASENBY DC, 1972, J FISH RES BOARD CAN, V29, P1701, DOI 10.1139/f72-270; Lecomte F, 2004, EVOL ECOL RES, V6, P631; MAUCHLINE J, 1971, J MAR BIOL ASSOC UK, V51, P347, DOI 10.1017/S0025315400031829; MAUCHLINE J, 1988, MAR ECOL PROG SER, V43, P251, DOI 10.3354/meps043251; MAUCHLINE J, 1980, ADV MAR BIOL, V18, P681; Mayor E. D., 2018, MAR BIOL RES, P1; Mayor E, 2017, ESTUAR COAST, V40, P224, DOI 10.1007/s12237-016-0131-z; MCLAREN IA, 1963, J FISH RES BOARD CAN, V20, P685, DOI 10.1139/f63-046; MEES J, 1994, MAR ECOL PROG SER, V109, P43, DOI 10.3354/meps109043; MORGAN MD, 1981, CAN J FISH AQUAT SCI, V38, P989, DOI 10.1139/f81-134; Mundy CJ, 2011, POLAR BIOL, V34, P1869, DOI 10.1007/s00300-011-0998-x; Paul S, 2017, J EXP MAR BIOL ECOL, V486, P373, DOI 10.1016/j.jembe.2016.10.027; Pauly D., 1985, FAO FISHERIES CIRCUL, V781, P16; PEZZACK DS, 1982, CAN J ZOOL, V60, P2725, DOI 10.1139/z82-348; PEZZACK DS, 1979, CAN J ZOOL, V57, P785, DOI 10.1139/z79-097; Rappe K, 2011, ESTUAR COAST SHELF S, V91, P187, DOI 10.1016/j.ecss.2010.10.017; RICHARDS SW, 1967, B BINGHAM OCEANOGR C, V19, P89; Roast SD, 1999, MAR BIOL, V133, P643, DOI 10.1007/s002270050504; Saucier FJ, 2000, ATMOS OCEAN, V38, P505, DOI 10.1080/07055900.2000.9649658; Schiariti A, 2006, MAR BIOL, V149, P483, DOI 10.1007/s00227-006-0248-x; Simons RD, 2006, LIMNOL OCEANOGR, V51, P2621, DOI 10.4319/lo.2006.51.6.2621; Sudo H, 2003, MAR BIOL, V143, P1095, DOI 10.1007/s00227-003-1160-2; Sutcliffe D. W., 1993, FRESHWATER FORUM, V3, P26; TODA H, 1982, HYDROBIOLOGIA, V93, P31, DOI 10.1007/BF00008096; TODA H, 1984, J PLANKTON RES, V6, P647, DOI 10.1093/plankt/6.4.647; Vinas MD, 2005, SCI MAR, V69, P493; Vincent Warwick F., 1999, Japanese Journal of Limnology, V60, P29; Vincent WF, 1996, MAR ECOL PROG SER, V139, P227, DOI 10.3354/meps139227; WIGLEY RL, 1971, FISH BULL NATL OC AT, V69, P717; WILLIAMS AB, 1974, FISH B-NOAA, V72, P835; Winkler G, 2003, MAR ECOL PROG SER, V251, P59, DOI 10.3354/meps251059; Winkler G, 2002, MAR ECOL PROG SER, V235, P177, DOI 10.3354/meps235177; Winkler G, 2007, MAR ECOL PROG SER, V332, P171, DOI 10.3354/meps332171; WITTMANN KJ, 1984, OCEANOGR MAR BIOL, V22, P393; Yamada K, 2007, MAR BIOL, V150, P905, DOI 10.1007/s00227-006-0403-4 59 0 0 0 0 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0142-7873 1464-3774 J PLANKTON RES J. Plankton Res. NOV-DEC 2018 40 6 693 707 10.1093/plankt/fby042 15 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography HF3VB WOS:000454161500006 2019-02-21 J Bengston, SE Bengston, Sarah E. Life-history and behavioral trait covariation across 3 years in Temnothorax ants BEHAVIORAL ECOLOGY English Article animal personality; life-history evolution; risk-tolerance; pace-of-life syndrome; social insects ANIMAL PERSONALITY; COLONY SIZE; TRADE-OFFS; EVOLUTION; SELECTION; DISPERSAL; PACE; CONSEQUENCES; COMPONENTS; ECOLOGY Consistent among-individual differences in behavior have been described in numerous taxa. More recently, the hypothesis that such behavioral variation may also correlate to life-history traits, such as investment in current or future reproduction, has been proposed as a potential explanation for why variation is maintained among and within populations. A continual challenge in measuring the integration of these traits, or the pace-of-life syndrome (POLS), is to find a reliable and quantifiable proxy for energy allocation between reproduction and self-maintenance. Here, I address this challenge using the eusocial insects, Temnothorax ants, in a common garden experiment to directly quantify energy allocation by tracking the number of sterile workers (somatic effort) and winged reproductive ants (reproductive effort) produced across years. I use colonies collected from populations previously demonstrated to show significant differences in a risk-tolerance behavioral syndrome. I provide an empirical test of the POLS hypothesis between 2 populations of Temnothorax ants over three years. I find strong evidence for a POLS between populations and weaker, but present support for a within population POLS. More risk-tolerant populations also allocate more energy towards reproduction and grow faster across years. This study then emphasizes the value of a more holistic study of among-individual variation. Additionally, it suggests more research is needed on understanding how and why traits may correlate in some populations, but remain independent in others. [Bengston, Sarah E.] Rice Univ, Houston, TX 77005 USA Bengston, SE (reprint author), Rice Univ, Houston, TX 77005 USA. sbengsto@gmail.com National Science Foundation [DBI-1523923] The National Science Foundation (grant no. DBI-1523923). Bengston SE, 2015, BEHAV ECOL SOCIOBIOL, V69, P1265, DOI 10.1007/s00265-015-1939-4; Bengston SE, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0518; Bengston SE, 2013, INSECT SOC, V60, P93, DOI 10.1007/s00040-012-0272-4; Bengston SE, 2017, OIKOS, V126, P556, DOI 10.1111/oik.03527; BHATKAR A, 1970, Florida Entomologist, V53, P229, DOI 10.2307/3493193; Biro PA, 2004, P ROY SOC B-BIOL SCI, V271, P2233, DOI 10.1098/rspb.2004.2861; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Briffa M, 2016, BEHAVIOUR, V153, P1509, DOI 10.1163/1568539X-00003402; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Careau V, 2010, AM NAT, V175, P753, DOI 10.1086/652435; Carter AJ, 2013, BIOL REV, V88, P465, DOI 10.1111/brv.12007; Cote J, 2010, PHILOS T R SOC B, V365, P4065, DOI 10.1098/rstb.2010.0176; Dall S. R. X., 2014, FRONT ECOL EVOL, V2, P3, DOI DOI 10.3389/FEV0.2014.00003; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; Dochtermann NA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2201; Dornhaus A, 2008, BEHAV ECOL SOCIOBIOL, V63, P43, DOI 10.1007/s00265-008-0634-0; Duckworth RA, 2007, P NATL ACAD SCI USA, V104, P15017, DOI 10.1073/pnas.0706174104; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; Hall M. L., 2015, FRONT ECOL EVOL, V3, P1, DOI [10. 3389/fevo. 2015. 00028, DOI 10.3389/FEVO.2015.00028]; Hanski I, 2006, J ANIM ECOL, V75, P91, DOI 10.1111/j.1365-2656.2005.01024.x; Jandt JM, 2014, BIOL REV, V89, P48, DOI 10.1111/brv.12042; KONIG S, 1995, J AVIAN BIOL, V26, P247, DOI 10.2307/3677326; Korb J, 2004, NATURWISSENSCHAFTEN, V91, P291, DOI 10.1007/s00114-004-0529-5; Linksvayer TA, 2005, Q REV BIOL, V80, P317, DOI 10.1086/432266; Linksvayer TA, 2006, EVOLUTION, V60, P2552, DOI 10.1554/06-011.1; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Modlmeier AP, 2014, ANIM BEHAV, V89, P53, DOI 10.1016/j.anbehav.2013.12.020; Nordstokke DW, 2010, PSICOLOGICA, V31, P401; PAGE RE, 1995, BEHAV ECOL SOCIOBIOL, V36, P135, DOI 10.1007/s002650050133; PEETERS CP, 1991, INSECT SOC, V38, P1, DOI 10.1007/BF01242708; Queller DC, 1998, BIOSCIENCE, V48, P165, DOI 10.2307/1313262; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Segev U, 2017, BEHAV ECOL, V28, P1149, DOI 10.1093/beheco/arx079; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Sih A, 2013, ANIM BEHAV, V85, P1077, DOI 10.1016/j.anbehav.2013.02.017; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stroeymeyt N, 2007, BEHAV ECOL SOCIOBIOL, V61, P1449, DOI 10.1007/s00265-007-0377-3; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001; Yan H, 2015, ANNU REV ENTOMOL, V60, P435, DOI 10.1146/annurev-ento-010814-020803; ZAR JH, 1972, J AM STAT ASSOC, V67, P578, DOI 10.2307/2284441; Garamszegi LZ, 2017, ECOL LETT, V20, P599, DOI 10.1111/ele.12758 51 0 0 5 5 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. NOV-DEC 2018 29 6 1494 1501 10.1093/beheco/ary101 8 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology HE2VV WOS:000453209600040 2019-02-21 J Claireaux, M; Jorgensen, C; Enberg, K Claireaux, Marion; Jorgensen, Christian; Enberg, Katja Evolutionary effects of fishing gear on foraging behavior and life-history traits ECOLOGY AND EVOLUTION English Article behavior; boldness; fishing-induced evolution; foraging rate; life-history traits; mortality; timidity FISHERIES-INDUCED EVOLUTION; NATURAL MORTALITY; PERSONALITY-TRAITS; SELECTION; VULNERABILITY; CONSEQUENCES; INDIVIDUALS; POPULATIONS; LARGEMOUTH; BOLDNESS Fishing gears are designed to exploit the natural behaviors of fish, and the concern that fishing may cause evolution of behavioral traits has been receiving increasing attention. The first intuitive expectation is that fishing causes evolution toward reduced boldness because it selectively removes actively foraging individuals due to their higher encounter rate and vulnerability to typical gear. However, life-history theory predicts that fishing, through shortened life span, favors accelerated life histories, potentially leading to increased foraging and its frequent correlate, boldness. Additionally, individuals with accelerated life histories mature younger and at a smaller size and therefore spend more of their life at a smaller size where mortality is higher. This life-history evolution may prohibit increases in risk-taking behavior and boldness, thus selecting for reduced risk-taking and boldness. Here, we aim to clarify which of these three selective patterns ends up being dominant. We study how behavior-selective fishing affects the optimal behavioral and life-history traits using a state-dependent dynamic programming model. Different gear types were modeled as being selective for foraging or hiding/resting individuals along a continuous axis, including unselective fishing. Compared with unselective harvesting, gears targeting hiding/resting individuals led toward evolution of increased foraging rates and elevated natural mortality rate, while targeting foraging individuals led to evolution of decreased foraging rates and lower natural mortality rate. Interestingly, changes were predicted for traits difficult to observe in the wild (natural mortality and behavior) whereas the more regularly observed traits (length-at-age, age at maturity, and reproductive investment) showed only little sensitivity to the behavioral selectivity. [Claireaux, Marion; Enberg, Katja] Inst Marine Res, Bergen, Norway; [Jorgensen, Christian] Univ Bergen, Dept Biol Sci, Bergen, Norway Claireaux, M (reprint author), Inst Marine Res, Bergen, Norway. marion.claireaux@imr.no Jorgensen, Christian/B-4453-2009 Jorgensen, Christian/0000-0001-7087-4625; Claireaux, Marion/0000-0002-0395-7954 Research Council of Norway [243735]; H2020 Marie Sklodowska-Curie Actions [675997] Research Council of Norway, Grant/Award Number: 243735; H2020 Marie Sklodowska-Curie Actions, Grant/Award Number: 675997 Andersen KH, 2018, CAN J FISH AQUAT SCI, V75, P271, DOI 10.1139/cjfas-2016-0350; Arlinghaus R, 2017, FISH FISH, V18, P360, DOI 10.1111/faf.12176; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Biro PA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2283; Budaev SV, 1997, ENVIRON BIOL FISH, V49, P71, DOI 10.1023/A:1007380212475; Cadigan NG, 2016, CAN J FISH AQUAT SCI, V73, P296, DOI 10.1139/cjfas-2015-0047; Clark C, 2000, DYNAMIC STATE VARIAB; Cooke SJ, 2007, PHYSIOL BIOCHEM ZOOL, V80, P480, DOI 10.1086/520618; Cutts CJ, 2002, J FISH BIOL, V61, P1540, DOI 10.1006/jfbi.2002.2173; Diaz Pauli B, 2015, J FISH BIOL, V86, P1030, DOI 10.1111/jfb.12620; Diaz Pauli B, 2017, EVOL APPL, V10, P231, DOI 10.1111/eva.12456; Dochtermann NA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2201; Dunlop ES, 2009, EVOL APPL, V2, P246, DOI 10.1111/j.1752-4571.2009.00087.x; EGGERS DM, 1976, J FISH RES BOARD CAN, V33, P1964, DOI 10.1139/f76-250; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Enberg K, 2010, CAN J FISH AQUAT SCI, V67, P1708, DOI 10.1139/F10-090; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Engelhard GH, 2004, MAR ECOL PROG SER, V272, P245, DOI 10.3354/meps272245; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; Garcia SM, 2009, FISHERY MANAGERS GUIDEBOOK, 2ND EDITION, P447; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; HAMILTON WD, 1971, J THEOR BIOL, V31, P295, DOI 10.1016/0022-5193(71)90189-5; Heino M, 2002, B MAR SCI, V70, P639; Heino M, 2015, ANNU REV ECOL EVOL S, V46, P461, DOI 10.1146/annurev-ecolsys-120213-054339; Heino M, 2013, ICES J MAR SCI, V70, P707, DOI 10.1093/icesjms/fst077; Holt RE, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou050; Houston A.l, 1999, MODELS ADAPTIVE BEHA; Huse I, 2000, ICES J MAR SCI, V57, P1271, DOI 10.1006/jmsc.2000.0813; Jorgensen C, 2013, J SEA RES, V75, P8, DOI 10.1016/j.seares.2012.04.003; Jorgensen C, 2010, CAN J FISH AQUAT SCI, V67, P1086, DOI 10.1139/F10-049; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; Killen SS, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0603; KRAUSE J, 1992, BEHAV ECOL SOCIOBIOL, V30, P177, DOI 10.1007/BF00166700; Laugen AT, 2014, FISH FISH, V15, P65, DOI 10.1111/faf.12007; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Leclerc M, 2017, J APPL ECOL, V54, P1941, DOI 10.1111/1365-2664.12893; MANGEL M, 1994, DEEP-SEA RES PT II, V41, P75, DOI 10.1016/0967-0645(94)90063-9; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Nannini MA, 2011, J FISH BIOL, V79, P1017, DOI 10.1111/j.1095-8649.2011.03079.x; Philipp DP, 2009, T AM FISH SOC, V138, P189, DOI 10.1577/T06-243.1; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Satterthwaite WH, 2009, T AM FISH SOC, V138, P532, DOI 10.1577/T08-164.1; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Stoner AW, 2003, J FISH BIOL, V62, P1176, DOI 10.1046/j.1095-8649.2003.00117.x; Suski CD, 2004, T AM FISH SOC, V133, P1100, DOI 10.1577/T03-079.1; Sutter DAH, 2012, P NATL ACAD SCI USA, V109, P20960, DOI 10.1073/pnas.1212536109; Swain DP, 2015, MAR ECOL PROG SER, V519, P165, DOI 10.3354/meps11012; Swain DP, 2013, CAN J FISH AQUAT SCI, V70, P74, DOI 10.1139/cjfas-2012-0179; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; Thorley JL, 2017, PEERJ, V5, DOI 10.7717/peerj.2874; Uusi-Heikkila S, 2008, TRENDS ECOL EVOL, V23, P419, DOI 10.1016/j.tree.2008.04.006; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; Wilson DS, 1998, PHILOS T ROY SOC B, V353, P199, DOI 10.1098/rstb.1998.0202; WILSON DS, 1994, TRENDS ECOL EVOL, V9, P442, DOI 10.1016/0169-5347(94)90134-1; Zimmermann F, 2017, MAR ECOL PROG SER, V563, P185, DOI 10.3354/meps11996 58 0 0 2 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. NOV 2018 8 22 10711 10721 10.1002/ece3.4482 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology HC2CY WOS:000451611000007 30519400 DOAJ Gold, Green Published 2019-02-21 J de Bacaa, TC; Menie, MAW de Bacaa, Tomas Cabeza; Menie, Michael Anthony Woodley Lynn's r/k selection theory of criminality revisited: Consideration of individual differences and developmental life history contributions to the patterning of population differences in antagonistic social strategies JOURNAL OF CRIMINAL JUSTICE English Article Life history theory; Evolutionary psychology; Psychopathology; Criminality; Population differences ETHNIC-DIFFERENCES; K-FACTOR; BEHAVIOR; PSYCHOPATHY; RESILIENCE; EXPERIENCE; COVITALITY We revisit an old theory proposed by Lynn, connecting race differences in criminality and psychopathy with r/k selection. The origin of this group-difference is attributed to cold-selection in the Pleistocene. We contend that newer models of Life History Theory provide a better rubric within which to evaluate Lynn's arguments as a) they better account for the adaptive logic of the coherence pattern among the traits characteristic of so-called `psychopathic personality', b) provide a normatively free language with which group differences in behavior can. be described, and c) make predictions at the level of both the individual and intra-individual (developmental) levels, which permit the role of environmental contributions to these dispositions to be better comprehended. Thus newer approaches to understanding life history are necessarily more empirically nuanced. We also consider the merits of future, more systematic studies along the lines of Lynn's contribution. [de Bacaa, Tomas Cabeza] Univ Calif San Francisco, Dept Med, Div Cardiol, San Francisco, CA 94143 USA; [Menie, Michael Anthony Woodley] Unz Fdn Jr Fellow, Palo Alto, CA USA; [Menie, Michael Anthony Woodley] Vrije Univ Brussel, Ctr Leo Apostle Interdisciplinary Studies, Brussels, Belgium de Bacaa, TC (reprint author), Univ Calif San Francisco, Dept Med, Div Cardiol, San Francisco, CA 94143 USA. tomas.cabezadebaca@ucsf.edu National Institute of Mental Health [T32-MH019391] Dr. Cabeza de Baca was partially supported by a National Institute of Mental Health training grant T32-MH019391. BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Boutwell BB, 2015, AGGRESS VIOLENT BEH, V25, P343, DOI 10.1016/j.avb.2015.09.003; Brown DL, 2011, J BLACK PSYCHOL, V37, P259, DOI 10.1177/0095798410390689; Card N. A., 2011, APPL METAANALYSIS SO; Card NA, 2015, FAM RELAT, V64, P120, DOI 10.1111/fare.12102; Cavalli-Sforza LL, 1994, HIST GEOGRAPHY HUMAN; Census Bureau U. S, 2012, STAT ABSTR US 2012; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cofnas N, 2015, FOUND SCI, V21, P1; Copping L. T., 2017, EVOLUTIONARY PSYCHOL, V15, P1; Copping L. T., 2014, EVOLUTIONARY PSYCHOL, V12; de Baca TC, 2014, INTELLIGENCE, V47, P63, DOI 10.1016/j.intell.2014.08.007; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLIS L, 1988, PERS INDIV DIFFER, V9, P697, DOI 10.1016/0191-8869(88)90059-1; ELLIS L, 2005, EUROPEAN J CRIMINOLO, V2, P287, DOI DOI 10.1177/1477370805054098); Figueredo A. J, 2007, ARIZONA LIFE HIST BA; Figueredo A. J., 2013, J SOCIAL EVOLUTIONAR, V7, P361, DOI DOI 10.1037/H0099182; Figueredo A. J., 2016, MANKIND Q, V56, P395; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2015, EVOL PSYCHOL-US, V13, P299, DOI 10.1177/147470491501300202; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Henrich J, 2010, NATURE, V466, P29, DOI 10.1038/466029a; Leon FR, 2015, INTELLIGENCE, V50, P221, DOI 10.1016/j.intell.2015.04.011; Leon FR, 2014, INTELLIGENCE, V46, P291, DOI 10.1016/j.intell.2014.07.011; Liu JJW, 2017, PERS INDIV DIFFER, V111, P111, DOI 10.1016/j.paid.2017.02,007; Lubinski D, 1996, PSYCHOL PUBLIC POL L, V2, P363; Lynn R, 2002, PERS INDIV DIFFER, V32, P273, DOI 10.1016/S0191-8869(01)00029-0; Lynn R., 2011, DYSGENICS GENETIC DE; MacArthur R. H., 1967, THEORY ISLAND BIOGEO, V1; McCoy WK, 2006, J CONSULT CLIN PSYCH, V74, P386, DOI 10.1037/0022-006X.74.2.386; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; MOFFITT TE, 1993, PSYCHOL REV, V100, P674, DOI 10.1037//0033-295X.100.4.674; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Pew Research Center, 2013, PORTR JEW AM OV; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pierson E., 2017, ARXIV170605678; Puterman E, 2012, SOC PERSONAL PSYCHOL, V6, P807, DOI 10.1111/j.1751-9004.2012.00465.x; Reich David, 2018, WHO WE ARE WE GOT HE; Romero AJ, 2014, J APPL SOC PSYCHOL, V44, P1, DOI 10.1111/jasp.12192; Rushton J. P., 2000, RACE EVOLUTION BEHAV; Rushton JP, 2012, PERS INDIV DIFFER, V53, P4, DOI 10.1016/j.paid.2012.02.015; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Sampson R. J., 1995, CRIME INEQUALITY, P37; Schmidt F. L., 2014, METHODS METAANALYSIS; Skeem JL, 2004, LAW HUMAN BEHAV, V28, P505, DOI 10.1023/B:LAHU.0000046431.93095.d8; Sotomayor-Peterson M, 2013, J CROSS CULT PSYCHOL, V44, P620, DOI 10.1177/0022022112455456; Stearns S. C., 1992, EVOLUTION LIFE HIST, V249; Van Lange PAM, 2017, BEHAV BRAIN SCI, V40, DOI 10.1017/S0140525X16000406; Voisin DR, 2004, SEX TRANSM INFECT, V80, P440, DOI 10.1136/sti.2004.010926; Volk AA, 2015, EVOL PSYCHOL-US, V13, DOI 10.1177/1474704915613909; Wei WQ, 2017, NAT HUM BEHAV, V1, P890, DOI 10.1038/s41562-017-0240-0; Woodley MA, 2014, PERS INDIV DIFFER, V57, P3, DOI 10.1016/j.paid.2013.09.010 57 0 0 1 1 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0047-2352 1873-6203 J CRIM JUST J. Crim. Justice NOV-DEC 2018 59 SI 87 91 10.1016/j.jcrimjus.2018.05.009 5 Criminology & Penology Criminology & Penology HB7EI WOS:000451239300014 2019-02-21 J Wethington, AR; Jackson, CR; Albritton, C Wethington, Amy R.; Jackson, Chtaura R.; Albritton, Capricia Assessing predator risk: how leeches affect life history and behaviour of the freshwater snail Physa acuta JOURNAL OF MOLLUSCAN STUDIES English Article SIMULTANEOUS HERMAPHRODITE; ANTIPREDATOR BEHAVIOR; PHYSIDAE GASTROPODA; LYMNAEA-STAGNALIS; AVOIDANCE; SIZE; MORPHOLOGY; RESPONSES; HETEROSTROPHA; POPULATIONS Physa acuta, an important consumer in freshwater ecosystems, is known to have morphological, life history and behavioural responses to fish and crayfish as shell-breaking predators. However, less is known about physid responses to their leech predators, which consume snails without damaging the shell and are commonly found in close proximity to P. acuta and their egg masses. Because juvenile physids are more vulnerable to leech predators than adults, we studied the effects that leech predation may have on a physid's life history and reproductive behaviour. Snails that were reared with predatory-leech cue (fed conspecific snails) experienced a delay in reproduction. Snails also delayed their reproduction in the presence of crushed-snail cue alone. Snails did not exhibit any size or shell-shape differences over time when exposed to leech cue, although snail growth was depressed over time in the crushed-snail treatment. Both the cue from crushed snails and that from leeches caused a depression in the number of noticeable behaviours that snails displayed during mating-behaviour trials. In mating trials, control snails mated more frequently than snails reared in the crushed-snail treatment. This is the first study to show that chemical cues from predatory leeches affect life history strategies in physids via delayed production of viable egg masses. [Wethington, Amy R.; Jackson, Chtaura R.; Albritton, Capricia] Chowan Univ, 1 Univ Pl, Murfreesboro, NC 27855 USA Wethington, AR (reprint author), Chowan Univ, 1 Univ Pl, Murfreesboro, NC 27855 USA. physa42@gmail.com ALEXANDER JE, 1991, BIOL BULL, V180, P387, DOI 10.2307/1542339; ALEXANDER JE, 1991, OECOLOGIA, V87, P435, DOI 10.1007/BF00634603; Bernot RJ, 2001, OECOLOGIA, V129, P139, DOI 10.1007/s004420100705; BRONMARK C, 1986, OECOLOGIA, V69, P268, DOI 10.1007/BF00377633; BRONMARK C, 1992, OECOLOGIA, V91, P526, DOI 10.1007/BF00650326; BROWN KM, 1988, FRESHWATER BIOL, V19, P157, DOI 10.1111/j.1365-2427.1988.tb00338.x; CHERNIN E, 1956, AM J TROP MED HYG, V5, P308, DOI 10.4269/ajtmh.1956.5.308; Covich AP, 2010, HYDROBIOLOGIA, V653, P191, DOI 10.1007/s10750-010-0354-0; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; CROWL TA, 1994, J N AM BENTHOL SOC, V13, P291, DOI 10.2307/1467247; DeWitt TJ, 1999, ANIM BEHAV, V58, P397, DOI 10.1006/anbe.1999.1158; DeWitt TJ, 1996, ANIM BEHAV, V51, P345, DOI 10.1006/anbe.1996.0033; DEWITT TJ, 1991, AM MALACOL BULL, V9, P81; DeWitt TJ, 1998, J EVOLUTION BIOL, V11, P465, DOI 10.1046/j.1420-9101.1998.11040465.x; DeWitt TJ, 2000, EVOL ECOL RES, V2, P129; Dillon RT, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-144; Dillon Robert T. Jr., 2006, Heldia, V6, P41; Dillon RT, 2002, INVERTEBR BIOL, V121, P226; DILLON RT, 2000, ECOLOGY FRESHWATER M; FRIESWUK J. J., 1957, BASTERIA, V21, P38; JOOSSE S. A, 2011, FISHERS EXACT TEST; Krupski A, 2018, J MOLLUS STUD, V84, P96, DOI 10.1093/mollus/eyx049; MANGUIN S, 1986, CAN J ZOOL, V64, P2832, DOI 10.1139/z86-407; McCarthy TA, 2004, AM MALACOL BULL, V19, P47; McCarthy TM, 2000, FRESHWATER BIOL, V44, P387, DOI 10.1046/j.1365-2427.2000.00576.x; SNYDER N. F. R, 1967, MEMOIR, V403; Taylor DW, 2003, REV BIOL TROP, V51, P1; TOWNSEND CR, 1980, OECOLOGIA, V46, P75, DOI 10.1007/BF00346969; TRIPET F, 1994, FUNCT ECOL, V8, P458, DOI 10.2307/2390069; TURGEON DD, 1998, SPECIAL PUBLICATION, V26; Turner AM, 1996, ANIM BEHAV, V51, P747, DOI 10.1006/anbe.1996.0079; Turner AM, 2000, OIKOS, V88, P148, DOI 10.1034/j.1600-0706.2000.880117.x; Turner AM, 2008, ANIM BEHAV, V76, P1211, DOI 10.1016/j.anbehav.2008.06.005; Turner AM, 2007, OIKOS, V116, P1895, DOI 10.1111/j.2007.0030-1299.15883.x; VANDUIVENBODEN YA, 1988, MALACOLOGIA, V28, P53; VANDUIVENBODEN YA, 1985, ANIM BEHAV, V33, P885, DOI 10.1016/S0003-3472(85)80022-1; Wethington AR, 2007, J MOLLUS STUD, V73, P241, DOI 10.1093/mollus/eym021; Wethington AR, 2012, AM MALACOL BULL, V30, P281, DOI 10.4003/006.030.0207; Wethington AR, 1996, ANIM BEHAV, V51, P1107, DOI 10.1006/anbe.1996.0112; WILKEN GB, 1991, S AFR J ZOOL, V26, P6 40 0 0 3 3 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0260-1230 1464-3766 J MOLLUS STUD J. Molluscan Stud. NOV 2018 84 4 379 385 10.1093/mollus/eyy030 7 Marine & Freshwater Biology; Zoology Marine & Freshwater Biology; Zoology HA6SH WOS:000450409600004 Bronze 2019-02-21 J Brzeziecki, B; Andrzejczyk, T; Zybura, H Brzeziecki, Bogdan; Andrzejczyk, Tadeusz; Zybura, Henryk Natural regeneration of trees in the Bialowieza Forest SYLWAN Polish Article active approach; deer browsing; long-term study; multifunctional forest management; natural recruitment; nature conservation; silvicultural treatment; strict protection; tree competition; tree diversity NATIONAL-PARK; SPECIES COMPOSITION; POLAND; STANDS Since several years already, a massive infestation of bark beetle has taken place in the BialowieZa Forest, decimating a local Norway spruce population. In consequence, many open areas appeared, practically deprived of trees and other forest vegetation. The existence of such areas has a very negative impact on multiple values of the BialowieZa Forest: natural, social, economical and landscape -aesthetic values. The local forest administration prepared a strategy aimed at active restoration of diverse woodland communities typical for the BialowieZa Forest in all places, where bark beetle infestation wiped up the spruce stands. Those plans were criticized by representatives of the environmental organizations who blamed the foresters for transforming the BialowieZa Forest into 'plantation' and claiming that such measures are inconsistent with the existing forest management and protection plan. The postulate of environmentalists is that the recovery of woodland communities should proceed completely naturally. Taking into account the above mentioned controversies, in this paper we examine the issue of natural regeneration in the BialowieZa Forest in detail. In particular, we try to determine to which extent this method of forest reproduction enables re-establishment of compositionally diverse woodland communities, distinguished by a high level of biological diversity and able to provide a wide range of commodities and benefits important for today's society. Based on an extensive literature review we show that a combination of different (abiotic and biotic) factors, influencing establishment and subsequent growth of seedlings and saplings in the BialowieZa Forest has long been strongly unfavorable for many tree species. In this regard, one should particularly emphasize the negative role of large herbivores, especially red deer, which is present in the BialowieZa Forest since the end of 19th century, when it became a private hunting ground for Russian tzars. The devastating effect of deer browsing on natural regeneration is a well-documented phenomenon and widely recognized problem in the forestry practice. The fencing of young forest generation against game pressure is an indispensable measure, needed to secure the continuous existence of several tree species (first of all those palatable and vulnerable to browsing). Very strong arguments for an active approach to the described problem delivers also a long-term study on natural forest dynamics conducted since 1936. It shows that under conditions of strict protection the regeneration capacity of the BialowieZa tree species is very variable. These differences lead to the compositional simplification and impoverishment of many tree stands, with numerous negative consequences for local biodiversity. We underline that an active management strategy is a basic prerequisite for maintaining a diverse character of the BialowieZa stands and their ability to provide all important ecosystem services on a sustainable basis. Such a strategy should include, beside of the phase of establishment, also the subsequent developmental stages of new forest generations. 'The general goal of such a strategy should be to secure a possibly high diversity of tree composition and to enable the development of tree species representing a full range of life-history strategies and playing different successional roles: from typical pioneer species, through intermediate, to climax species. [Brzeziecki, Bogdan; Andrzejczyk, Tadeusz; Zybura, Henryk] SGGW Warszawie, Katedra Hodowli Lasu, Ul Nowoursynowska 159, PL-02776 Warsaw, Poland Brzeziecki, B (reprint author), SGGW Warszawie, Katedra Hodowli Lasu, Ul Nowoursynowska 159, PL-02776 Warsaw, Poland. bogdan.brzeziecki@wl.sggw.pl; tadeusz.andrzejczyk@wl.sggw.pl; henryk.zybura@wl.sggw.pl Bernadzki E, 1998, J VEG SCI, V9, P229, DOI 10.2307/3237122; Bobiec A, 2011, EUR J FOREST RES, V130, P785, DOI 10.1007/s10342-010-0471-3; Brzeziecki B, 2005, ANN WAU SGGW FOR WOO, V56, P69; Brzeziecki B, 2015, WIELOLETNIA DYNAMIKA; Brzeziecki B, 2018, SYLWAN, V162, P373; Brzeziecki B, 2017, SYLWAN, V161, P971; Brzeziecki B, 2017, J VEG SCI, V28, P223, DOI 10.1111/jvs.12504; Brzeziecki B, 2016, J VEG SCI, V27, P460, DOI 10.1111/jvs.12369; Brzeziecki B, 2013, SYLWAN, V157, P597; Brzeziecki B, 2012, SYLWAN, V156, P252; Gaudio N, 2011, FOREST ECOL MANAG, V261, P489, DOI 10.1016/j.foreco.2010.10.034; Grzywinski R., 1998, POLSKI, V2, P9; Grzywinski R, 1999, POLSKI, V23, P22; Grzywinski R, 2006, POLSKI, V6, P20; Karpinski J. J, 1952, CHROMY PRZYROD OJCZY, V1, P11; Kawecka A., 1982, Sylwan, V126, P19; Kowalski M, 1972, FOLIA FORESTALIA P A, V20, P93; Kowalski M, 1993, FOLIA FORESTALIA P A, V35, P15; Kowalski M, 1975, ZESZ NAUK AR LESNICT, V21, P43; Kuijper DPJ, 2010, J ECOL, V98, P888, DOI 10.1111/j.1365-2745.2010.01656.x; Matuszkiewicz W, 1952, ANN UMCS LUBLIN C S6; Paczoski J., 1924, POLSKI, V11, P431; Paczoski J, 1930, LASY BIALOWIEZY; Paczoski J, 1924, POLSKI, V12, P483; Paluch R., 2004, Sylwan, V148, P9; Paluch R., 2005, Sylwan, V149, P30; Paluch R., 2014, Lesne Prace Badawcze, V75, P385; Paluch R, 2015, SYLWAN, V159, P278; Ronikier-Dolanska A., 2015, OG K NAUK MS GDLP 28, P25; Sokolowski A. W., 1991, OCHR PRZYR, V49, P1; Wloczewski T, 1964, SYLWAN, V108, P49; Wloczewski T, 1954, PRACE IBL, V123, P161; Zajaczkowski J., 1999, Sylwan, V143, P5; Zmihorski M, 2018, SCIENCE, V361, P238, DOI 10.1126/science.aau2708 34 0 0 3 3 POLSKIE TOWARZYSTWO LESNE WARSZAWA KOMITET REDAKCYJNY SYLWANA, UL BITWY WARSZAWSKIEJ 1920 R NR 3, WARSZAWA, PL-02 362, POLAND 0039-7660 SYLWAN Sylwan NOV 2018 162 11 883 896 14 Forestry Forestry HB0JM WOS:000450699500001 2019-02-21 J Kawai, Y; Kudo, G Kawai, Yuka; Kudo, Gaku Variations in ramet performance and the dynamics of an alpine evergreen herb, Gentiana nipponica, in different snowmelt conditions AMERICAN JOURNAL OF BOTANY English Article demography; genet growth; Gentianaceae; growing season; leaf function; life-history variation; local adaptation; simulation; size dependency; snowmelt gradient GROWING-SEASON LENGTH; FLOWERING PHENOLOGY; POPULATION-DYNAMICS; TUNDRA PLANTS; RHODODENDRON-LAPPONICUM; REPRODUCTIVE PHENOLOGY; MINERAL-NUTRITION; CLIMATE-CHANGE; GROWTH; GRADIENT Premise of the Study Methods Variation in demographic parameters reflects the life-history strategies of plants in response to specific environments. We aimed to investigate the intraspecific variation in life-history traits of a clonal alpine herb, Gentiana nipponica, in various snowmelt conditions. Individual ramets within genets accumulate leaves for 7-9 yr without shedding, and die after reproduction. We tested the physiological function of accumulated leaves for reproduction and monitored the ramet demography in early, intermediate, and late snowmelt populations over 3 yr. Then, we simulated ramet dynamics using the demographic parameters. Key Results Conclusions Old leaves had a carbon storage function, and the initiation of reproduction depended on the amount of ramet leaves. Growth and reproductive performance were highest in the population with an intermediate snowmelt period. The early snowmelt population showed short persistence periods due to restricted growth and high mortality of the ramets. The late snowmelt populations showed slow growth, but high survival rate of the ramets, in which the ramet size at reproduction was smallest and fruit formation was often suppressed by the short growing period. Limiting factors dictating the distribution of G. nipponica differed between the early and late snowmelt habitats. High mortality and restricted growth, because of the harsh environment, determine the distribution limit toward earlier snowmelt locations. By contrast, late snowmelt strongly limited fecundity because of the short period for fruit maturation. The difference in snowmelt time provides a clear gradient of selective forces that may promote local adaptation among neighboring populations. [Kawai, Yuka; Kudo, Gaku] Hokkaido Univ, Fac Environm Earth Sci, Sapporo, Hokkaido 0600810, Japan Kawai, Y (reprint author), Hokkaido Univ, Fac Environm Earth Sci, Sapporo, Hokkaido 0600810, Japan. kawawawa@ees.hokudai.ac.jp Kudo, Gaku/A-2733-2015 Kudo, Gaku/0000-0002-6488-818X Japan Society for the Promotion of Science (KAKENHI) [08J56031, 15H02641, 17K07551] The authors thank T. Kubo, T. Kohyama, and T. Takada for providing valuable comments on the manuscript. We also thank M. L. Carlson and anonymous reviewers for their constructive comments and suggestions on the manuscript. This work was supported by a Grant-in-Aid for JSPS Fellows from Japan Society for the Promotion of Science (KAKENHI 08J56031, 15H02641, 17K07551). Bausenwein U, 2001, FUNCT ECOL, V15, P370, DOI 10.1046/j.1365-2435.2001.00524.x; Berdanier AB, 2011, ECOSYSTEMS, V14, P963, DOI 10.1007/s10021-011-9459-1; Bienau MJ, 2016, AM J BOT, V103, P2105, DOI 10.3732/ajb.1600229; Brys R, 2011, OECOLOGIA, V166, P293, DOI 10.1007/s00442-010-1842-7; Burd M, 2006, ECOLOGY, V87, P2755, DOI 10.1890/0012-9658(2006)87[2755:APFRIM]2.0.CO;2; Burnham KP, 2003, MODEL SELECTION MULT; CALLAGHAN TV, 1976, OIKOS, V27, P383, DOI 10.2307/3543457; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; Cooper EJ, 2011, PLANT SCI, V180, P157, DOI 10.1016/j.plantsci.2010.09.005; COX DR, 1972, J R STAT SOC B, V34, P187; EVANS JR, 1989, OECOLOGIA, V78, P9, DOI 10.1007/BF00377192; Fischer M, 2001, EVOL ECOL, V15, P565, DOI 10.1023/A:1016013721469; Franks SJ, 2007, P NATL ACAD SCI USA, V104, P1278, DOI 10.1073/pnas.0608379104; GALEN C, 1995, ECOLOGY, V76, P1546, DOI 10.2307/1938156; Germino MJ, 2000, PHYSIOL PLANTARUM, V110, P89, DOI 10.1034/j.1399-3054.2000.110112.x; Haggerty BP, 2011, J ECOL, V99, P242, DOI 10.1111/j.1365-2745.2010.01744.x; HARTNETT DC, 1983, ECOLOGY, V64, P779, DOI 10.2307/1937201; Hesse E, 2008, AM NAT, V172, pE196, DOI 10.1086/591683; Hirao AS, 2004, HEREDITY, V93, P290, DOI 10.1038/sj.hdy.6800503; Inouye DW, 2008, ECOLOGY, V89, P353, DOI 10.1890/06-2128.1; Jacquemyn H, 2010, J ECOL, V98, P1204, DOI 10.1111/j.1365-2745.2010.01697.x; JONASSON S, 1989, OIKOS, V56, P121, DOI 10.2307/3566095; JONASSON S, 1995, ECOLOGY, V76, P475, DOI 10.2307/1941206; KARLSSON PF, 1994, OIKOS, V70, P191, DOI 10.2307/3545630; Kawai Y., 2018, DRYAD DIGITAL REPOSI, DOI [10. 5061/dryad. tg20p4k, DOI 10.5061/DRYAD.TG20P4K]; Kawai Y, 2011, BOTANY, V89, P361, DOI [10.1139/B11-024, 10.1139/b11-024]; Kudo G, 2001, ARCT ANTARCT ALP RES, V33, P181, DOI 10.2307/1552219; KUDO G, 1991, ARCTIC ALPINE RES, V23, P436, DOI 10.2307/1551685; Kudo G, 1999, ECOSCIENCE, V6, P439, DOI 10.1080/11956860.1999.11682543; Kudo G., 2006, ECOLOGY EVOLUTION FL, P139; Kudo G, 2016, ECOL RES MONOGR, P41, DOI 10.1007/978-4-431-55954-2_3; Legay N, 2013, BIOGEOSCIENCES, V10, P7631, DOI 10.5194/bg-10-7631-2013; Mallik AU, 2011, ARCT ANTARCT ALP RES, V43, P404, DOI 10.1657/1938-4246-43.3.404; Mizunaga Y, 2017, OECOLOGIA, V185, P453, DOI 10.1007/s00442-017-3946-9; MOLAU U, 1993, ARCTIC ALPINE RES, V25, P391, DOI 10.2307/1551922; Pluess AR, 2005, FUNCT ECOL, V19, P228, DOI 10.1111/j.1365-2435.2005.00951.x; R Core Team, 2018, R LANG ENV STAT COMP; Reekie Edward G., 1997, P191, DOI 10.1016/B978-012083490-7/50009-8; Sakai A, 2003, EVOL ECOL RES, V5, P671; Sletvold N, 2015, ECOL LETT, V18, P357, DOI 10.1111/ele.12417; Stearns S, 1992, EVOLUTION LIFE HIST; Stinson KA, 2004, AM J BOT, V91, P531, DOI 10.3732/ajb.91.4.531; Villellas J, 2018, PLANT BIOLOGY, V20, P483, DOI 10.1111/plb.12682; Welker JM, 2005, OIKOS, V109, P167, DOI 10.1111/j.0030-1299.2005.13264.x; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; WIJK S, 1986, J ECOL, V74, P675, DOI 10.2307/2260390; Williams JL, 2015, J ECOL, V103, P798, DOI 10.1111/1365-2745.12369; Winkler DE, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.01140; Wipf S, 2010, POLAR RES, V29, P95, DOI 10.1111/j.1751-8369.2010.00153.x 49 0 0 4 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9122 1537-2197 AM J BOT Am. J. Bot. NOV 2018 105 11 1813 1823 10.1002/ajb2.1186 11 Plant Sciences Plant Sciences HA5QB WOS:000450329600005 30388310 2019-02-21 J Li, FL; McCulloh, KA; Sun, SJ; Bao, W Li, Fanglan; McCulloh, Katherine A.; Sun, Sujing; Bao, Weikai Linking leaf hydraulic properties, photosynthetic rates, and leaf lifespan in xerophytic species: a test of global hypotheses AMERICAN JOURNAL OF BOTANY English Article anatomical traits; functional strategies; leaf economic spectrum; stomatal conductance; vein length per area; xylem ECONOMIC SPECTRUM; VENATION NETWORKS; WATER-STRESS; USE EFFICIENCY; VEIN TRAITS; EVOLUTION; LEAVES; TREES; ARCHITECTURE; DIFFERENTIATION Premise of the Study Methods Leaf venation and its hierarchal traits are crucial to the hydraulic and mechanical properties of leaves, reflecting plant life-history strategies. However, there is an extremely limited understanding of how variation in leaf hydraulics affects the leaf economic spectrum (LES) or whether venation correlates more strongly with hydraulic conductance or biomechanical support among hierarchal orders. We examined correlations of leaf hydraulics, indicated by vein density, conduit diameter, and stomatal density with light-saturated photosynthetic rates, leaf lifespan (LLS), and leaf morpho-anatomical traits of 39 xerophytic species grown in a common garden. Key Results Conclusions We found positive relationships between light-saturated, area-based photosynthetic rates, and vein densities, regardless of vein orders. Densities of leaf veins had positive correlations with stomatal density. We also found positive relationships between LLS and vein densities. Leaf area was negatively correlated with the density of major veins but not with minor veins. Most anatomical traits were not related to vein densities. We developed a network diagram of the correlations among leaf hydraulics and leaf economics, which suggests functional trade-offs between hydraulic costs and lifetime carbon gain. Leaf hydraulics efficiency and carbon assimilation were coupled across species. Vein construction costs directly coordinated with the LLS. Our findings indicate that hierarchal orders of leaf veins did not differ in the strength of their correlations between hydraulic conductance and biomechanical support. These findings clarify how leaf hydraulics contributes to the LES and provide new insight into life-history strategies of these xerophytic species. [Li, Fanglan; Sun, Sujing; Bao, Weikai] Chinese Acad Sci, Chengdu Inst Biol, Key Lab Mt Ecol Restorat & Bioresource Utilizat, Chengdu 610041, Sichuan, Peoples R China; [McCulloh, Katherine A.] Univ Wisconsin, Dept Bot, Madison, WI 53706 USA Bao, W (reprint author), Chinese Acad Sci, Chengdu Inst Biol, Key Lab Mt Ecol Restorat & Bioresource Utilizat, Chengdu 610041, Sichuan, Peoples R China. baowk@cib.ac.cn National Natural Science Foundation of China [31470478]; National Science and Technology Major Project of China [2017YFC0505105]; U.S. National Science Foundation [IOS 1557906] We are grateful to Dr. Weile Cheng and Prof. David. M. Eissenstat for valuable discussions. This study was funded by the National Natural Science Foundation of China (No. 31470478), the National Science and Technology Major Project of China (No. 2017YFC0505105). K. A. McCulloh was supported by the U.S. National Science Foundation (IOS 1557906). The authors thank Brandon Pratt, Benjamin Blonder, Lawren Sack, and one anonymous reviewer for comments that improved the manuscript. Blackman CJ, 2016, FUNCT ECOL, V30, P1491, DOI 10.1111/1365-2435.12661; Blonder B, 2017, ECOLOGY, V98, P1239, DOI [10.1002/ecy.1747/suppinfo, 10.1002/ecy.1747]; Blonder B, 2016, J ECOL, V104, P219, DOI 10.1111/1365-2745.12497; Blonder B, 2015, AOB PLANTS, V7, DOI 10.1093/aobpla/plv049; Blonder B, 2014, J EXP BOT, V65, P5109, DOI 10.1093/jxb/eru143; Blonder B, 2011, ECOL LETT, V14, P91, DOI 10.1111/j.1461-0248.2010.01554.x; Brodribb TJ, 2007, PLANT PHYSIOL, V144, P1890, DOI 10.1104/pp.107.101352; Brodribb TJ, 2011, NEW PHYTOL, V192, P437, DOI 10.1111/j.1469-8137.2011.03795.x; Carins Murphy MR, 2016, ANN BOT-LONDON, V118, P1127, DOI 10.1093/aob/mcw167; Carins Murphy MR, 2014, PLANT CELL ENVIRON, V37, P124, DOI 10.1111/pce.12136; CHABOT BF, 1982, ANNU REV ECOL SYST, V13, P229, DOI 10.1146/annurev.es.13.110182.001305; Christman MA, 2009, NEW PHYTOL, V182, P664, DOI 10.1111/j.1469-8137.2009.02776.x; Edwards EJ, 2014, J ECOL, V102, P328, DOI 10.1111/1365-2745.12209; Farquhar G. D., 1982, ENCY PLANT PHYSL N A, V12A, P137; Feild TS, 2013, NEW PHYTOL, V199, P720, DOI 10.1111/nph.12311; Fiorin L, 2016, NEW PHYTOL, V209, P216, DOI 10.1111/nph.13577; Funk JL, 2013, ECOLOGY, V94, P1893, DOI 10.1890/12-1602.1; Gamalei Y, 1989, TREES-STRUCT FUNCT, V3, P96, DOI 10.1007/BF01021073; Givnish T., 1979, Topics in plant population biology., P375; Givnish T. J., 1978, ACTA BIOTHEOR, V27, P83; Givnish TJ, 2005, P ROY SOC B-BIOL SCI, V272, P1481, DOI 10.1098/rspb.2005.3067; GUPTA B, 1961, ANN BOT-LONDON, V25, P65, DOI 10.1093/oxfordjournals.aob.a083733; John GP, 2017, ECOL LETT, V20, P412, DOI 10.1111/ele.12739; Kawai K, 2016, FUNCT ECOL, V30, P527, DOI 10.1111/1365-2435.12526; KIKUZAWA K, 1991, AM NAT, V138, P1250, DOI 10.1086/285281; Kikuzawa K, 2011, ECOL RES MONOGR, P1; Kitajima K, 2010, NEW PHYTOL, V186, P708, DOI 10.1111/j.1469-8137.2010.03212.x; Li FL, 2014, J ARID ENVIRON, V108, P1, DOI 10.1016/j.jaridenv.2014.04.011; Li FL, 2009, AGROFOREST SYST, V77, P193, DOI 10.1007/s10457-008-9199-1; Li FL, 2016, ECOL EVOL, V6, P3822, DOI 10.1002/ece3.2147; Li FL, 2011, SCI HORTIC-AMSTERDAM, V127, P436, DOI 10.1016/j.scienta.2010.10.017; Li FL, 2008, NEW FOREST, V36, P53, DOI 10.1007/s11056-008-9081-z; Li L, 2015, ECOL LETT, V18, P899, DOI 10.1111/ele.12466; McKown AD, 2010, AM NAT, V175, P447, DOI 10.1086/650721; McKown AD, 2009, ANN BOT-LONDON, V104, P1085, DOI 10.1093/aob/mcp210; Mendez-Alonzo R, 2013, FUNCT ECOL, V27, P544, DOI 10.1111/1365-2435.12059; Nardini A, 2012, NEW PHYTOL, V196, P788, DOI 10.1111/j.1469-8137.2012.04294.x; Navas ML, 2003, NEW PHYTOL, V159, P213, DOI 10.1046/j.1469-8137.2003.00790.x; Niinemets U, 2007, FUNCT ECOL, V21, P28, DOI 10.1111/j.1365-2435.2006.01221.x; Poorter H, 2014, NEW PHYTOL, V201, P378, DOI 10.1111/nph.12547; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; Rolland-Lagan AG, 2009, PLANT J, V57, P195, DOI 10.1111/j.1365-313X.2008.03678.x; Sack L, 2003, PLANT CELL ENVIRON, V26, P1343, DOI 10.1046/j.0016-8025.2003.01058.x; Sack L, 2006, ECOLOGY, V87, P483, DOI 10.1890/05-0710; Sack L, 2006, ANNU REV PLANT BIOL, V57, P361, DOI 10.1146/annurev.arplant.56.032604.144141; Sack L, 2014, J EXP BOT, V65, P5115, DOI 10.1093/jxb/eru305; Sack L, 2013, J EXP BOT, V64, P4053, DOI 10.1093/jxb/ert316; Sack L, 2013, NEW PHYTOL, V198, P983, DOI 10.1111/nph.12253; Sack L, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms1835; Scoffoni C, 2017, NEW PHYTOL, V213, P1076, DOI 10.1111/nph.14256; Scoffoni C, 2011, PLANT PHYSIOL, V156, P832, DOI 10.1104/pp.111.173856; Simonin KA, 2012, NEW PHYTOL, V193, P939, DOI 10.1111/j.1469-8137.2011.04014.x; Tezara W, 1999, NATURE, V401, P914, DOI 10.1038/44842; Walls RL, 2011, AM J BOT, V98, P244, DOI 10.3732/ajb.1000154; Wright IJ, 2017, SCIENCE, V357, P917, DOI 10.1126/science.aal4760; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wu FZ, 2009, J ARID ENVIRON, V73, P1067, DOI 10.1016/j.jaridenv.2009.06.007 57 1 1 14 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9122 1537-2197 AM J BOT Am. J. Bot. NOV 2018 105 11 1858 1868 10.1002/ajb2.1185 11 Plant Sciences Plant Sciences HA5QB WOS:000450329600009 30449045 2019-02-21 J Panzou, GJL; Ligot, G; Gourlet-Fleury, S; Doucet, JL; Forni, E; Loumeto, JJ; Fayolle, A Loubota Panzou, Grace Jopaul; Ligot, Gauthier; Gourlet-Fleury, Sylvie; Doucet, Jean-Louis; Forni, Eric; Loumeto, Jean-Joel; Fayolle, Adeline Architectural differences associated with functional traits among 45 coexisting tree species in Central Africa FUNCTIONAL ECOLOGY English Article architectural traits; Central Africa; coexisting tree species; functional traits; life-history strategy; moist tropical forest; tree allometry WOOD DENSITY; RAIN-FOREST; TROPICAL TREES; LIFE-HISTORY; ALLOMETRIC EQUATIONS; ECONOMICS SPECTRUM; HEIGHT; GROWTH; DIFFERENTIATION; BIOMASS Architectural traits that determine the light captured in a given environment are an important aspect of the life-history strategies of tropical tree species. In this study, we examined how interspecific variation in architectural traits is related to the functional traits of 45 coexisting tree species in Central Africa. At the tree level, we measured tree diameter, total height and crown dimensions for an average of 30 trees per species (range: 14-72, total 968 trees) distributed over a large range of diameters (up to 162 cm). Using log-log models, we fitted species-specific allometric relationships between tree diameter, height and crown dimensions. At the species level, we derived architectural traits (height and crown dimensions) at 15 cm and maximum diameters from species-specific allometries. The architectural traits were then related to functional traits, including light requirements, wood density, leaf habit and dispersal mode. Among the 45 coexisting tree species, we identified strong variations in height and crown allometries, along with architectural traits derived from these species-specific allometries. There was a positive correlation among architectural traits, suggesting that large-statured canopy species were taller and had larger and deeper crowns than small-statured understorey species at all ontogenic stages. The relationships between architectural and functional traits highlighted a continuum of species between the large-statured canopy species and the small-statured understorey species. In this moist and seasonal forest, large-statured canopy species tended to be light-demanding, wind-dispersed, deciduous and large contributors to forest biomass (high basal area), while small-statured understorey species tended to be shade-tolerant, animal-dispersed, evergreen and most abundant in terms of stem density. Our results highlighted strong architectural differences among coexisting tropical tree species in Central Africa. The relationships between architectural and functional traits provided insights into the life-history strategy of tropical tree species. A is available for this article. [Loubota Panzou, Grace Jopaul; Ligot, Gauthier; Doucet, Jean-Louis; Fayolle, Adeline] Univ Liege, TERRA Teaching & Res Ctr, Forest Is life, Gembloux Agro Bio Tech, Liege, Belgium; [Loubota Panzou, Grace Jopaul; Loumeto, Jean-Joel] Univ Marien Ngouabi, Fac Sci & Tech, Lab Bot & Ecol, Brazzaville, Rep Congo; [Gourlet-Fleury, Sylvie; Forni, Eric] Univ Montpellier, CIRAD, UR Forets & Soc, Montpellier, France Panzou, GJL (reprint author), Univ Liege, TERRA Teaching & Res Ctr, Forest Is life, Gembloux Agro Bio Tech, Liege, Belgium.; Panzou, GJL (reprint author), Univ Marien Ngouabi, Fac Sci & Tech, Lab Bot & Ecol, Brazzaville, Rep Congo. loubotagrace@gmail.com FAYOLLE, Adeline/0000-0002-6770-0031 OGES-Congo; Fonds Leopold III; Nature+ asbl; HERBAXYLAREDD project [D/5822-1] HERBAXYLAREDD project, Grant/Award Number: D/5822-1; OGES-Congo; Fonds Leopold III; Nature+ asbl; HERBAXYLAREDD project AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Antin C, 2013, TREES-STRUCT FUNCT, V27, P1485, DOI 10.1007/s00468-013-0896-7; Augspurger CK, 2017, FUNCT ECOL, V31, P808, DOI 10.1111/1365-2435.12791; Banin L, 2012, GLOBAL ECOL BIOGEOGR, V21, P1179, DOI 10.1111/j.1466-8238.2012.00778.x; Bohlman S, 2006, J TROP ECOL, V22, P123, DOI 10.1017/S0266467405003019; Chave J, 2006, ECOL APPL, V16, P2356, DOI 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Condit R, 1996, J VEG SCI, V7, P405, DOI 10.2307/3236284; Dawkins H. C., 1966, PRODUCTIVITY TROPICA; Dray S, 2007, J STAT SOFTW, V22, P1; Fayolle A, 2016, FOREST ECOL MANAG, V374, P42, DOI 10.1016/j.foreco.2016.04.033; Fayolle A, 2014, J BIOGEOGR, V41, P2320, DOI 10.1111/jbi.12382; Fayolle A, 2014, FOREST ECOL MANAG, V329, P195, DOI 10.1016/j.foreco.2014.06.014; Fayolle A, 2013, FOREST ECOL MANAG, V305, P29, DOI 10.1016/j.foreco.2013.05.036; Fayolle A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042381; Francis EJ, 2017, GLOBAL ECOL BIOGEOGR, V26, P1078, DOI 10.1111/geb.12604; Gillet JF, 2012, PLANT ECOL EVOL, V145, P258, DOI 10.5091/plecevo.2012.648; HALL JB, 1976, J ECOL, V64, P913, DOI 10.2307/2258816; Hawthorne WD, 1995, ECOLOGICAL PROFILES; Hietz P, 2017, NEW PHYTOL, V213, P170, DOI 10.1111/nph.14123; HILL MO, 1976, TAXON, V25, P249, DOI 10.2307/1219449; HO CC, 1987, J TROP ECOL, V3, P25, DOI 10.1017/S0266467400001103; Hollander M, 1973, NONPARAMETRIC STAT M; HORN H S, 1971, P144; Hulshof CM, 2015, ECOL EVOL, V5, P1193, DOI 10.1002/ece3.1328; Iida Y, 2012, FUNCT ECOL, V26, P274, DOI 10.1111/j.1365-2435.2011.01921.x; Iida Y, 2011, FUNCT ECOL, V25, P1260, DOI 10.1111/j.1365-2435.2011.01884.x; King DA, 2006, J ECOL, V94, P670, DOI 10.1111/j.1365-2745.2006.01112.x; King DA, 1996, J TROP ECOL, V12, P25, DOI 10.1017/S0266467400009299; Kohyama T, 2003, J ECOL, V91, P797, DOI 10.1046/j.1365-2745.2003.00810.x; Lines ER, 2012, GLOBAL ECOL BIOGEOGR, V21, P1017, DOI 10.1111/j.1466-8238.2011.00746.x; Longman K. A., 1974, TROPICAL FOREST ITS; Meunier Q., 2015, ARBRES UTILES GABON; Moravie MA, 1999, FOREST ECOL MANAG, V117, P221, DOI 10.1016/S0378-1127(98)00480-0; Niklas KJ, 1994, PLANT ALLOMETRY SCAL; OLIVER HR, 1971, Q J ROY METEOR SOC, V97, P548, DOI 10.1002/qj.49709741414; Poorter L, 2005, J ECOL, V93, P256, DOI 10.1111/j.1365-2745.2004.00956.x; Poorter L, 2003, ECOLOGY, V84, P602, DOI 10.1890/0012-9658(2003)084[0602:AORFTS]2.0.CO;2; Poorter L, 2006, ECOLOGY, V87, P1289, DOI 10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2; R Core Team, 2017, R LANG ENV STAT COMP; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; Rejou-Mechain M, 2015, J ECOL, V103, P725, DOI 10.1111/1365-2745.12393; Sheil D, 2006, J ECOL, V94, P494, DOI 10.1111/j.1365-2745.2006.01111.x; Siegel S, 1988, NONPARAMETRIC STAT B; SINHA A, 1992, BIOTROPICA, V24, P519, DOI 10.2307/2389014; Slik JWF, 2006, J TROP ECOL, V22, P481, DOI 10.1017/S0266467406003324; Slik JWF, 2010, GLOBAL ECOL BIOGEOGR, V19, P50, DOI 10.1111/j.1466-8238.2009.00489.x; Slik JWF, 2013, GLOBAL ECOL BIOGEOGR, V22, P1261, DOI 10.1111/geb.12092; SOBRADO MA, 1991, FUNCT ECOL, V5, P608, DOI 10.2307/2389479; SPRUGEL DG, 1983, ECOLOGY, V64, P209, DOI 10.2307/1937343; Sterck F. J., 2001, CEUR WORKSHOP P, V1621, P36, DOI [10. 1023/A ., DOI 10.1023/A]; Sterck FJ, 2006, J ECOL, V94, P1192, DOI 10.1111/j.1365-2745.2006.01162.x; SWAINE MD, 1988, VEGETATIO, V75, P81, DOI 10.1007/BF00044629; Thomas SC, 1996, AM J BOT, V83, P556, DOI 10.2307/2445913; Thomas SC, 2015, J ECOL, V103, P594, DOI 10.1111/1365-2745.12378; Thomson FJ, 2011, J ECOL, V99, P1299, DOI 10.1111/j.1365-2745.2011.01867.x; Turner I.M., 2001, ECOLOGY TREE TROPICA; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Zimmerman JK, 2007, J TROP ECOL, V23, P231, DOI 10.1017/S0266467406003890 61 0 0 8 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. NOV 2018 32 11 2583 2593 10.1111/1365-2435.13198 11 Ecology Environmental Sciences & Ecology GZ9YS WOS:000449861000011 2019-02-21 J Pires, MN; Reznick, DN Pires, Marcelo N.; Reznick, David N. Life-history evolution in the fish genus Poecilia (Poeciliidae: Cyprinodontiformes: subgenus Pamphorichthys): an evolutionary origin of extensive matrotrophy decoupled from superfetation BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article complex organs; convergent evolution; homology; parallel evolution; placentotrophy; Poecilia PARENT-OFFSPRING CONFLICT; MOLECULAR PHYLOGENETIC-RELATIONSHIPS; HETERANDRIA-FORMOSA; FOLLICULAR PLACENTA; TRINIDADIAN GUPPIES; FAMILY POECILIIDAE; VIVIPAROUS FISH; LEAST KILLIFISH; CLUTCH OVERLAP; ULTRASTRUCTURE We describe the occurence of extensive post-fertilization maternal provisioning (matrotrophy) in fish species in the subgenus Pamphorichthys (genus Poecilia: family Poeciliidae) that represents one of two independent origins of this adaptation in this genus. Matrotrophy is accompanied by a reduction in yolk in eggs at fertilization, a thickened follicle throughout development, and externalization and anterior extension of the embryonic pericardial membrane. These features resemble the anatomical adaptations for placentotrophy described in other members of this family and accompany a substantial increase in dry mass of the embryo during development. Species mean values for the increase in embryo mass range from a low of less than two-fold (Pamphorichthys minor) to greater than 50-fold (Pamphorichthys hasemani). Different populations of Pamphorichthys araguaiensis show a range from less than a two-fold to greater than 16-fold increase in dry mass during development. Such substantial differences in matrotrophy among closely related species and within species make Pamphorichthys a promising group with which to study the adaptive value and the genetic basis of matrotrophy. [Pires, Marcelo N.; Reznick, David N.] Univ Calif Riverside, Dept Biol, 900 Univ Ave, Riverside, CA 92521 USA Reznick, DN (reprint author), Univ Calif Riverside, Dept Biol, 900 Univ Ave, Riverside, CA 92521 USA. david.reznick@ucr.edu reznick, david/0000-0002-1144-0568 University of California, Riverside Academic Senate; NSF [DEB0416085] We are grateful to the following museums for providing us with specimens used in this study: ANSP, UF, UMMZ, UFRJ, MCP, MNRJ and MZUSP (in particular M. de Pinna). C. R. Moreira and C. A. Figueiredo were invaluable in the process of obtaining specimens of Pamphorichthys. This work was funded by the University of California, Riverside Academic Senate and by NSF grant DEB0416085 to D.N.R. We are also grateful to four anonymous reviewers for their many excellent suggestions for revision which greatly improved the presentation. Ala-Honkola O, 2011, J EVOLUTION BIOL, V24, P2600, DOI 10.1111/j.1420-9101.2011.02383.x; Arias AL, 2000, COPEIA, P792, DOI 10.1643/0045-8511(2000)000[0792:LHOPCA]2.0.CO;2; BURLEY N, 1980, AM NAT, V115, P223, DOI 10.1086/283556; Casatti L, 2006, ICHTHYOL EXPLOR FRES, V17, P59; CHEONG RT, 1984, COPEIA, P720; Constantz G.D., 1989, P33; Costa W.J.E.M., 1991, Revue Francaise d'Aquariologie Herpetologie, V18, P39; Crespi B, 2004, AM NAT, V163, P635, DOI 10.1086/382734; Dulvy NK, 1997, P ROY SOC B-BIOL SCI, V264, P1309, DOI 10.1098/rspb.1997.0181; Figueiredo CA, 2008, ZOOTAXA, P59; Garman S., 1985, MEMOIRS MUSEUM COMP, V19, P1; GROVE BD, 1991, J MORPHOL, V209, P265, DOI 10.1002/jmor.1052090304; GROVE BD, 1994, J MORPHOL, V220, P167, DOI 10.1002/jmor.1052200206; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; HAYNES JL, 1995, COPEIA, P147; Henn AW, 1916, ANN CARNEGIE MUS, V10, P93; Hrbek T, 2007, MOL PHYLOGENET EVOL, V43, P986, DOI 10.1016/j.ympev.2006.06.009; Kwan L, 2015, J MORPHOL, V276, P707, DOI 10.1002/jmor.20381; Leips J, 2000, ECOL MONOGR, V70, P289, DOI 10.1890/0012-9615(2000)070[0289:GIOEPD]2.0.CO;2; Lucinda Paulo Henrique Franco, 2005, Neotrop. ichthyol., V3, P1, DOI 10.1590/S1679-62252005000100001; Meredith RW, 2011, MOL PHYLOGENET EVOL, V59, P148, DOI 10.1016/j.ympev.2011.01.014; Meredith RW, 2010, MOL PHYLOGENET EVOL, V55, P631, DOI 10.1016/j.ympev.2009.11.006; Meyer Manfred K., 1993, Zoologische Abhandlungen (Dresden), V47, P121; Mossmann H. W., 1937, Contributions to Embryology [Carnegie Institution Publ no 479], V26, P129; Oliveira CLP, 2018, APPL PHYSIOL NUTR ME, V43, P1215, DOI 10.1139/apnm-2018-0141; Pires M. C. S, 2007, THESIS; Pires MN, 2007, J EXP ZOOL PART A, V307A, P113, DOI 10.1002/jez.a.356; Pires Marcelo N., 2011, P28; Pires MN, 2011, FUNCT ECOL, V25, P757, DOI 10.1111/j.1365-2435.2011.01842.x; Pires MN, 2010, BIOL J LINN SOC, V99, P784, DOI 10.1111/j.1095-8312.2010.01391.x; Poeser Fred N., 2002, Beaufortia, V52, P53; Pollux BJA, 2009, ANNU REV ECOL EVOL S, V40, P271, DOI 10.1146/annurev.ecolsys.110308.120209; Pollux BJA, 2011, FUNCT ECOL, V25, P747, DOI 10.1111/j.1365-2435.2011.01831.x; Regan CT., 1913, P ZOOL SOC LOND, V11, P977; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D.N., 1989, P125; Reznick D, 2007, BIOL J LINN SOC, V92, P77, DOI 10.1111/j.1095-8312.2007.00869.x; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; REZNICK DN, 1992, COPEIA, P782, DOI 10.2307/1446155; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Rosen D. E., 1963, Bulletin of the American Museum of Natural History, V126, P1; Schrader M, 2005, COPEIA, P649; Scrimshaw Nevin S., 1944, COPEIA, V1944, P180, DOI 10.2307/1437814; Scrimshaw NS, 1944, BIOL BULL-US, V87, P37, DOI 10.2307/1538127; Skov PV, 2010, J EXP MAR BIOL ECOL, V395, P120, DOI 10.1016/j.jembe.2010.08.024; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; TRAVIS J, 1987, ECOLOGY, V68, P611, DOI 10.2307/1938466; Trexler JC, 1997, ECOLOGY, V78, P1370; Trexler JC, 2003, AM NAT, V162, P574, DOI 10.1086/378822; TREXLER JC, 1985, COPEIA, P999, DOI 10.2307/1445254; TRIVERS RL, 1974, AM ZOOL, V14, P249; Turner CL, 1937, BIOL BULL-US, V72, P145, DOI 10.2307/1537249; Turner CL, 1940, J MORPHOL, V67, P59, DOI 10.1002/jmor.1050670103; Wourms J.P., 1988, P1; WOURMS JP, 1981, AM ZOOL, V21, P473 56 0 0 2 2 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. NOV 2018 125 3 547 560 10.1093/biolinnean/bly128 14 Evolutionary Biology Evolutionary Biology HA2DN WOS:000450043000007 Bronze 2019-02-21 J Zimmermann, BL; Palaoro, AV; Bouchon, D; Almerao, MP; Araujo, PB Zimmermann, Bianca Lais; Palaoro, Alexandre Varaschin; Bouchon, Didier; Almerao, Mauricio Pereira; Araujo, Paula Beatriz How coexistence may influence life history: the reproductive strategies of sympatric congeneric terrestrial isopods (Crustacea, Oniscidea) CANADIAN JOURNAL OF ZOOLOGY English Article Atlantoscia; Brazil; life history; reproductive investment; Wolbachia; isopods ARMADILLIDIUM-VULGARE ISOPODA; FLORIDANA VAN-NAME; CYTOPLASMIC INCOMPATIBILITY; PHENOTYPIC PLASTICITY; WOLBACHIA INFECTION; MOLECULAR PHYLOGENY; SOUTHERN BRAZIL; TRADE-OFFS; TRAITS; PHILOSCIIDAE Patterns of allocation between reproduction, survival, and maintenance are what we call life history. By investigating the life-history strategy of sympatric species, we may understand how they are able to coexist, as different strategies are expected to evolve in species that occupy similar niche space. Terrestrial isopods are a group in which multiple species frequently inhabit the same area. Notably, they are usually infected by Wolbachia Hertig, 1936, a notorious manipulator of the hosts' reproductive processes. Thus, the aim of this study was to analyze the investment in reproduction in three sympatric and closely related species of terrestrial isopods: Atlantoscia floridana (Van Name, 1940), Atlantoscia inflata Campos-Filho and Araujo, 2015, and Atlantoscia petronioi Campos-Filho, Contreira and Lopes-Leitzke, 2012, only the latter being infected with Wolbachia. We showed that the presence of the bacteria seems not to affect the fitness of A. petronioi, because there was no clear difference in the reproductive output of infected and noninfected individuals. On the other hand, we observed that the three species possess alternative life-history strategies; that is, they differ in how much they invest in maintenance (body size) and reproductive effort. Such differences probably facilitate the species coexistence, reducing the competition among them. [Zimmermann, Bianca Lais] Univ Fed Santa Maria, Programa Posgrad Biodiversidade Anim, Ctr Ciencias Nat & Exatas, Ave Roraima 1000, BR-97105900 Santa Maria, RS, Brazil; [Zimmermann, Bianca Lais; Araujo, Paula Beatriz] Univ Fed Rio Grande do Sul, Programa Posgrad Biol Anim, Dept Zool, Inst Biociencias, Av Bento Goncalves 9500, BR-91501970 Porto Alegre, RS, Brazil; [Palaoro, Alexandre Varaschin] Univ Sao Paulo, LAGE, Dept Ecol, Inst Biociencias, Rua Matao 321 Trav 14,Cid Univ, BR-05508090 Sao Paulo, Brazil; [Bouchon, Didier] Univ Poitiers, CNRS, UMR 7267, Lab Ecol & Biol Interact,Equipe Ecol Evolut Symbi, Batimcnt B8-B35,5 Rue Albert Turpain,TSA 51106, F-86073 Poitiers 9, France; [Almerao, Mauricio Pereira] Univ La Salle, Ave Victor Barreto 2288, BR-92010000 Canoas, Brazil Zimmermann, BL (reprint author), Univ Fed Santa Maria, Programa Posgrad Biodiversidade Anim, Ctr Ciencias Nat & Exatas, Ave Roraima 1000, BR-97105900 Santa Maria, RS, Brazil.; Zimmermann, BL (reprint author), Univ Fed Rio Grande do Sul, Programa Posgrad Biol Anim, Dept Zool, Inst Biociencias, Av Bento Goncalves 9500, BR-91501970 Porto Alegre, RS, Brazil. bia.lais@gmail.com Bouchon, Didier/B-2419-2012; Palaoro, Alexandre/G-9857-2012 Bouchon, Didier/0000-0002-4938-408X; Palaoro, Alexandre/0000-0002-8629-0728 Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2016/22679-3]; CNPq [Universal 470286/2011-3] We are grateful to Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) for productivity fellowship granted to P.B.A.; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) for regular and abroad scholarship (Programa de Doutorado Sanduiche no Exterior (PDSE)) to B.L.Z.; and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) for the postdoctoral grant for A.V.P. (process no: 2016/22679-3). This work was supported by CNPq (grant number Universal 470286/2011-3). Achouri MS, 2008, PEDOBIOLOGIA, V52, P127, DOI 10.1016/j.pedobi.2008.05.002; Almerão Maurício P., 2006, Iheringia, Sér. Zool., V96, P473, DOI 10.1590/S0073-47212006000400012; Ando Yoshinori, 1996, Edaphologia, V56, P31; Araujo P.B., 1996, IHERINGIA, V81, P111; Araujo PB, 2005, ACTA OECOL, V28, P289, DOI 10.1016/j.actao.2005.05.005; Araujo PB, 2004, J NAT HIST, V38, P951, DOI 10.1080/0022293031000068428; Bandelt HJ, 1999, MOL BIOL EVOL, V16, P37, DOI 10.1093/oxfordjournals.molbev.a026036; Bonsall MB, 2004, P ROY SOC B-BIOL SCI, V271, P1143, DOI 10.1098/rspb.2004.2722; Bonsall MB, 2002, ECOLOGY, V83, P925, DOI 10.1890/0012-9658(2002)083[0925:ETORPA]2.0.CO;2; Bouchon D, 1998, P ROY SOC B-BIOL SCI, V265, P1081, DOI 10.1098/rspb.1998.0402; Bouchon D., 2008, INSECT SYMBIOSIS, P273, DOI DOI 10.1201/9781420064117.CH12; Bouchon D, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.01472; Braquart-Varnier C, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003286; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Dittmer J, 2016, FEMS MICROBIOL ECOL, V92, DOI 10.1093/femsec/fiw063; DONKER MH, 1993, OECOLOGIA, V96, P316, DOI 10.1007/BF00317500; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; Glazier DS, 2003, CRUSTACEANA MONOGR, V2, P151; Hassall M, 2003, OECOLOGIA, V137, P85, DOI 10.1007/s00442-003-1325-1; Hassall M, 2002, EUR J SOIL BIOL, V38, P53, DOI 10.1016/S1164-5563(01)01124-4; Hassall M, 2005, OECOLOGIA, V143, P51, DOI 10.1007/s00442-004-1772-3; Horvathova T, 2015, EUR J SOIL BIOL, V69, P52, DOI 10.1016/j.ejsobi.2015.05.003; Karasawa S, 2016, ZOOKEYS, P1, DOI 10.3897/zookeys.607.8253; Kenne DC, 2015, IHERINGIA SER ZOOL, V105, P430, DOI 10.1590/1678-476620151054430438; Kight Scott L., 2009, Terrestrial Arthropod Reviews, V1, P95; Klossa-Kilia E, 2006, ZOOL SCR, V35, P459, DOI 10.1111/j.1463-6409.2006.00243.x; Lancaster LT, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0046; Lardies MA, 2004, OECOLOGIA, V138, P387, DOI 10.1007/s00442-003-1447-5; Lardies MA, 2008, EVOL ECOL RES, V10, P747; Lemos de Castro A., 1985, Revista Brasileira de Biologia, V45, P417; Lopes ERD, 2005, EUR J SOIL BIOL, V41, P99, DOI 10.1016/j.ejsobi.2005.11.002; MA HHT, 1991, J ZOOL, V224, P677, DOI 10.1111/j.1469-7998.1991.tb03795.x; Medini-Bouaziz L, 2017, INVERTEBR REPROD DEV, V61, P18, DOI 10.1080/07924259.2016.1263242; Medini-Bouaziz L, 2015, OPEN LIFE SCI, V10, P505, DOI 10.1515/biol-2015-0052; Moll JD, 2008, AM NAT, V171, P839, DOI 10.1086/587517; Moret Y, 2001, HEREDITY, V86, P325, DOI 10.1046/j.1365-2540.2001.00831.x; ONEILL SL, 1992, P NATL ACAD SCI USA, V89, P2699, DOI 10.1073/pnas.89.7.2699; Peel MC, 2007, HYDROL EARTH SYST SC, V11, P1633, DOI 10.5194/hess-11-1633-2007; Quadros AF, 2008, P INT S TERR IS BIOL, P81; Quadros AF, 2008, REV BRAS ZOOL, V25, P58, DOI 10.1590/S0101-81752008000100009; Quadros Aline Ferreira, 2007, Acta Zoologica Sinica, V53, P241; Quadros Aline Ferreira, 2014, Nauplius, V22, P103, DOI 10.1590/S0104-64972014000200004; Quadros AF, 2009, ACTA OECOL, V35, P243, DOI 10.1016/j.actao.2008.10.007; Richardson A., 2015, NATURAL HIST CRUSTAC, P299; Rigaud T, 2004, P ROY SOC B-BIOL SCI, V271, P1941, DOI 10.1098/rspb.2004.2804; Rigaud T, 2001, J INVERTEBR PATHOL, V77, P251, DOI 10.1006/jipa.2001.5026; Rigaud T, 1999, HEREDITY, V83, P469, DOI 10.1038/sj.hdy.6885990; Rivera MAJ, 2002, MOL PHYLOGENET EVOL, V25, P1, DOI 10.1016/S1055-7903(02)00353-6; Rozas J, 2003, BIOINFORMATICS, V19, P2496, DOI 10.1093/bioinformatics/btg359; Schielzeth H, 2010, METHODS ECOL EVOL, V1, P103, DOI 10.1111/j.2041-210X.2010.00012.x; Sfenthourakis S, 2015, ZOOKEYS, P13, DOI 10.3897/zookeys.515.9332; Sicard M, 2014, J INVERTEBR PATHOL, V121, P28, DOI 10.1016/j.jip.2014.06.007; Sicard M, 2010, NATURWISSENSCHAFTEN, V97, P819, DOI 10.1007/s00114-010-0699-2; Siozios S, 2018, CURR BIOL, V28, pR269, DOI 10.1016/j.cub.2018.02.008; Sokolowicz CC, 2013, J CRUSTACEAN BIOL, V33, P210, DOI 10.1163/1937240X-00002126; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Tanaka R, 2018, ENTOMOL SCI, V21, P198, DOI 10.1111/ens.12298; Warburg MR, 2013, INVERTEBR REPROD DEV, V57, P10, DOI 10.1080/07924259.2011.633620; Warburg MR, 2012, INVERTEBR REPROD DEV, V56, P87, DOI 10.1080/07924259.2011.573812; Warburg MR, 2011, CRUSTACEANA, V84, P1561, DOI 10.1163/156854011X607006; Werren JH, 2008, NAT REV MICROBIOL, V6, P741, DOI 10.1038/nrmicro1969; Zimmermann BL, 2015, ZOOL J LINN SOC-LOND, V174, P702, DOI 10.1111/zoj.12256; Zimmermann BL, 2015, FEMS MICROBIOL ECOL, V91, DOI 10.1093/femsec/fiv025; Zimmermann BL, 2018, ZOOTAXA, V4482, P551, DOI 10.11646/zootaxa.4482.3.7; Zimmermann BL, 2012, BRAZ J MICROBIOL, V43, P711, DOI 10.1590/S1517-83822012000200036; Zug R, 2015, BIOL REV, V90, P89, DOI 10.1111/brv.12098 68 1 1 4 4 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool. NOV 2018 96 11 1214 1220 10.1139/cjz-2018-0086 7 Zoology Zoology GZ8NS WOS:000449749800004 2019-02-21 J Neuheimer, AB; Hartvig, M; Heuschele, J; Hylander, S; Kiorboe, T; Olsson, KH; Sainmont, J; Andersen, KH Neuheimer, A. B.; Hartvig, M.; Heuschele, J.; Hylander, S.; Kiorboe, T.; Olsson, K. H.; Sainmont, J.; Andersen, K. H. Adult and offspring size in the ocean over 17 orders of magnitude follows two life history strategies (vol 96, pg 3303, 2015) ECOLOGY English Correction Neuheimer AB, 2015, ECOLOGY, V96, P3303, DOI 10.1890/14-2491.1 1 0 0 1 1 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology NOV 2018 99 11 2634 2641 10.1002/ecy.1983 8 Ecology Environmental Sciences & Ecology HA0YJ WOS:000449937900025 2019-02-21 J Kemp, DJ; Batistic, FK; Reznick, DN Kemp, Darrell J.; Batistic, Frana-Katica; Reznick, David N. Predictable adaptive trajectories of sexual coloration in the wild: Evidence from replicate experimental guppy populations* EVOLUTION English Article Color ornament; experimental evolution; iridescence; sexual selection; visual ecology LIFE-HISTORY EVOLUTION; POECILIA-RETICULATA; CHOICE BEHAVIOR; FEMALE GUPPIES; MATE-CHOICE; MALE TRAITS; SELECTION; PATTERNS; LIGHT; PREDATION The question of whether populations evolve predictably and consistently under similar selective regimes is fundamental to understanding how adaptation proceeds in the wild. We address this question with a replicated evolution experiment focused upon male sexual coloration in guppies (Poecilia reticulata). Fish were transplanted from a single high predation population in the Guanapo River to four replicate, guppy-free low predation headwater streams. Two streams had their canopies thinned to adjust the setting under which male coloration is displayed and perceived. We assessed evolutionary divergence using second-generation lab-bred offspring of fish sampled four to six years following translocation. A prior experiment of the same design, performed in an adjacent drainage, resulted in the evolution of more extensive orange, black, and iridescent markings. We however found evidence for expansion only in structural coloration (iridescent blue/green), no change in orange, and a reduction in black. This response amplifies earlier findings for Guanapo fish, revealing that trajectories of color elaboration differ among drainages. We also found that color phenotypes evolved more greatly at the thinned-canopy sites. Our findings support the predictability of sexual trait evolution in the wild, and underscore the importance of signaling conditions and ornamental starting points in shaping adaptive trajectories. [Kemp, Darrell J.; Batistic, Frana-Katica] Macquarie Univ, Dept Biol Sci, N Ryde, NSW, Australia; [Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Kemp, DJ (reprint author), Macquarie Univ, Dept Biol Sci, N Ryde, NSW, Australia. darrell.kemp@mq.edu.au reznick, david/0000-0002-1144-0568 Australian Research Council [DP160103668]; National Science Foundation (USA) [EF 0623632, DEB 1258231, DEB 1556884]; NERC [ATR00350] We are thankful to Cameron Ghalambor for providing specimens, and to Joseph Macedonia, Florida Southern College, and James Cook University for granting access to resources and infrastructure for housing fish. John Endler and Joseph Travis provided valuable inputs during manuscript preparation. 2008 source-site (Guanapo) fish were received in Australia under Import Permit IP07017497 (Australian Quarantine & Inspection Service) and housed during measurement in Quarantine Approved Premises (Q#1868) established at James Cook University, Australia. All work was governed National and Institutional policy for the ethical care of animals in research; specifically Animal Ethics protocols A1268 (James Cook University) and A20080008, A20110007, and A20140003 (University of California Riverside). Financial support was provided by the Australian Research Council via Discovery-Projects grant DP160103668 and National Science Foundation (USA) awards EF 0623632, DEB 1258231, and DEB 1556884, and NERC award ATR00350. Archard GA, 2009, BEHAV ECOL SOCIOBIOL, V64, P169, DOI 10.1007/s00265-009-0834-2; Arendt JD, 2014, EVOLUTION, V68, P2343, DOI 10.1111/evo.12445; Bassar RD, 2017, OIKOS, V126, P594, DOI 10.1111/oik.03965; Boschetto C, 2011, BEHAV ECOL SOCIOBIOL, V65, P813, DOI 10.1007/s00265-010-1085-y; Brooks R, 2000, NATURE, V406, P67, DOI 10.1038/35017552; Brooks R, 2001, EVOLUTION, V55, P1002, DOI 10.1554/0014-3820(2001)055[1002:DAISSA]2.0.CO;2; Brooks R, 2001, EVOLUTION, V55, P1644; Candolin U, 2003, BIOL REV, V78, P575, DOI 10.1017/S1464793103006158; Carvalho GR, 1996, BIOL J LINN SOC, V57, P219, DOI 10.1111/j.1095-8312.1996.tb00310.x; Cole GL, 2015, AM NAT, V185, P452, DOI 10.1086/680022; Dakin R, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0152759; Darwin C., 1874, DESCENT MAN SELECTIO; Devigili A, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9291; Ehlman SM, 2015, J COMP PHYSIOL A, V201, P1125, DOI 10.1007/s00359-015-1041-4; El-Sabaawi RW, 2015, OIKOS, V124, P1181, DOI 10.1111/oik.01769; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1993, ECOL MONOGR, V63, P1, DOI 10.2307/2937121; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1991, VISION RES, V31, P587, DOI 10.1016/0042-6989(91)90109-I; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; ENDLER JA, 1992, AM NAT, V139, pS125, DOI 10.1086/285308; ENDLER JA, 1993, PHILOS T ROY SOC B, V340, P215, DOI 10.1098/rstb.1993.0060; Evans JP, 2010, P ROY SOC B-BIOL SCI, V277, P3195, DOI 10.1098/rspb.2010.0826; Evans JP, 2003, NATURE, V421, P360, DOI 10.1038/nature01367; Everitt B. S., 1991, APPL MULTIVARIATE DA; Falconer D.S., 1981, INTRO QUANTITATIVE G; FARR JA, 1977, EVOLUTION, V31, P162, DOI 10.1111/j.1558-5646.1977.tb00993.x; Fisher RA, 1930, GENETICAL THEORY NAT; Fuller RC, 2002, P ROY SOC B-BIOL SCI, V269, P1457, DOI 10.1098/rspb.2002.2042; Fuller RC, 2010, ANIM BEHAV, V80, P23, DOI 10.1016/j.anbehav.2010.03.017; Gamble S, 2003, ECOL LETT, V6, P463, DOI 10.1046/j.1461-0248.2003.00449.x; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Gordon S. P., 2015, P ROY SOC LOND B BIO, V282, P9; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Gray SM, 2008, P ROY SOC B-BIOL SCI, V275, P1785, DOI 10.1098/rspb.2008.0283; Grether GF, 2005, EVOLUTION, V59, P175; Grether GF, 2004, BIOL REV, V79, P583, DOI 10.1017/S1464793103006390; HASKINS CP, 1970, HEREDITY, V25, P575, DOI 10.1038/hdy.1970.64; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; HOUDE AE, 1994, P ROY SOC B-BIOL SCI, V256, P125, DOI 10.1098/rspb.1994.0059; Hughes KA, 1999, ANIM BEHAV, V58, P907, DOI 10.1006/anbe.1999.1225; Hughes KA, 2013, NATURE, V503, P108, DOI 10.1038/nature12717; Kemp DJ, 2015, AM NAT, V185, P705, DOI 10.1086/681021; Kemp DJ, 2009, P R SOC B, V276, P4335, DOI 10.1098/rspb.2009.1226; Kemp DJ, 2008, BIOL J LINN SOC, V95, P734, DOI 10.1111/j.1095-8312.2008.01112.x; Kohler TJ, 2012, FRESHW SCI, V31, P1019, DOI 10.1899/11-141.1; Locatello L, 2006, J EVOLUTION BIOL, V19, P1595, DOI 10.1111/j.1420-9101.2006.01117.x; Lopez-Sepulcre A, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1116; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; Maxwell J. C., 1860, PHILOS T R SOC LONDO, V150, P57; Millar NP, 2006, OIKOS, V113, P1; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1554/0014-3820(2002)056[0776:REOEAI]2.0.CO;2; Pitcher TE, 2007, J FISH BIOL, V70, P165, DOI 10.1111/j.1095-8649.2006.01292.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; RICH SS, 1979, EVOLUTION, V33, P579, DOI 10.1111/j.1558-5646.1979.tb04711.x; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Smith JM, 1982, EVOLUTION THEORY GAM; Stearns S, 1992, EVOLUTION LIFE HIST; White TE, 2015, EVOLUTION, V69, P14, DOI 10.1111/evo.12551; WINEMILLER KO, 1990, ENVIRON BIOL FISH, V29, P179, DOI 10.1007/BF00002218; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 68 1 1 18 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution NOV 2018 72 11 2462 2477 10.1111/evo.13564 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GZ7OK WOS:000449670700013 30055021 2019-02-21 J Hindle, BJ; Rees, M; Sheppard, AW; Quintana-Ascencio, PF; Menges, ES; Childs, DZ Hindle, Bethan J.; Rees, Mark; Sheppard, Andy W.; Quintana-Ascencio, Pedro F.; Menges, Eric S.; Childs, Dylan Z. Exploring population responses to environmental change when there is never enough data: a factor analytic approach METHODS IN ECOLOGY AND EVOLUTION English Article Carduus nutans; covariation; environmental variation; Eryngium cuneifolium; factor analysis; integral projection model; life history; population dynamics STRUCTURAL EQUATION MODELS; INTEGRAL PROJECTION MODELS; FLORIDA SCRUB; CLIMATE-CHANGE; MATRIX MODELS; VITAL-RATES; ERYNGIUM-CUNEIFOLIUM; VARIABLE ENVIRONMENT; ECOLOGICAL-SYSTEMS; PLANT-POPULATIONS Temporal variability in the environment drives variation in vital rates, with consequences for population dynamics and life-history evolution. Integral projection models (IPMs) are data-driven structured population models widely used to study population dynamics and life-history evolution in temporally variable environments. However, many datasets have insufficient temporal replication for the environmental drivers of vital rates to be identified with confidence, limiting their use for evaluating population level responses to environmental change. Parameter selection, where the kernel is constructed at each time step by randomly selecting the time-varying parameters from their joint probability distribution, is one approach to including stochasticity in IPMs. We consider a factor analytic (FA) approach for modelling the covariance matrix of time-varying parameters, whereby latent variable(s) describe the covariance among vital rate parameters. This decreases the number of parameters to estimate and, where the covariance is positive, the latent variable can be interpreted as a measure of environmental quality. We demonstrate this using simulation studies and two case studies. The simulation studies suggest the FA approach provides similarly accurate estimates of stochastic population growth rate to estimating an unstructured covariance matrix. We demonstrate how the latent parameter can be perturbed to show how selection on reproductive delays in the monocarp Carduus nutans changes under different environmental conditions. We develop a demographic model of the fire dependent herb Eryngium cuneifolium to show how a putative driver of the variation in environmental quality can be incorporated with the addition of a single parameter. Using perturbation analyses we determine optimal management strategies for this species. This approach estimates fewer parameters than previous approaches and allows novel eco-evolutionary insights. Predictions on population dynamics and life-history evolution under different environmental conditions can be made without necessarily identifying causal factors. Putative environmental drivers can be incorporated with relatively few parameters, allowing for predictions on how populations will respond to changes in the environment. [Hindle, Bethan J.; Rees, Mark; Childs, Dylan Z.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield, S Yorkshire, England; [Sheppard, Andy W.] CSIRO, Canberra, ACT, Australia; [Quintana-Ascencio, Pedro F.] Univ Cent Florida, Dept Biol, Orlando, FL 32816 USA; [Menges, Eric S.] Archbold Biol Stn, Venus, FL USA Hindle, BJ (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Sheffield, S Yorkshire, England. bhindle89@gmail.com Childs, Dylan/0000-0002-0675-4933; Rees, Mark/0000-0001-8513-9906; Quintana-Ascencio, Pedro/0000-0001-7587-8166 Natural Environment Research Council [NE/I022027/1, NE/L501682/1]; University of Sheffield Natural Environment Research Council, Grant/Award Number: NE/I022027/1 and NE/L501682/1; University of Sheffield Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Caswell H., 2001, MATRIX POPULATION MO, Vi-xxii, P1; Childs DZ, 2010, P ROY SOC B-BIOL SCI, V277, P3055, DOI 10.1098/rspb.2010.0707; Childs DZ, 2004, P ROY SOC B-BIOL SCI, V271, P425, DOI 10.1098/rspb.2003.2597; Childs DZ, 2003, P ROY SOC B-BIOL SCI, V270, P1829, DOI 10.1098/rspb.2003.2399; CLUTTON-BROCK T. H, 2004, SOAY SHEEP DYNAMICS; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; Compagnoni A, 2016, ECOL MONOGR, V86, P480, DOI 10.1002/ecm.1228; Coulson T, 2005, J ANIM ECOL, V74, P789, DOI 10.1111/j.1365-2656.2005.00975.x; Coulson T, 2012, OIKOS, V121, P1337, DOI 10.1111/j.1600-0706.2012.00035.x; Crone EE, 2013, CONSERV BIOL, V27, P968, DOI 10.1111/cobi.12049; Dahlgren JP, 2014, OECOLOGIA, V176, P1023, DOI 10.1007/s00442-014-3073-9; Darling ES, 2008, ECOL LETT, V11, P1278, DOI 10.1111/j.1461-0248.2008.01243.x; Denwood MJ, 2016, J STAT SOFTW, V71, P1, DOI 10.18637/jss.v071.i09; Diez JM, 2014, J ECOL, V102, P544, DOI 10.1111/1365-2745.12215; Doak DF, 2005, AM NAT, V166, pE14, DOI 10.1086/430642; Ehrlen J, 2016, J ECOL, V104, P292, DOI 10.1111/1365-2745.12523; Elderd BD, 2016, ECOL MONOGR, V86, P125, DOI 10.1890/15-1526.1; Ellner S. P., 2016, DATA DRIVEN MODELLIN, DOI [10. 1007/978-3-319-28893-2, DOI 10.1007/978-3-319-28893-2]; Evans MEK, 2012, THEOR POPUL BIOL, V82, P299, DOI 10.1016/j.tpb.2012.02.003; Evans MEK, 2010, ECOL MONOGR, V80, P627, DOI 10.1890/09-1758.1; Evans MR, 2012, PHILOS T R SOC B, V367, P181, DOI 10.1098/rstb.2011.0172; Fieberg J, 2001, ECOL LETT, V4, P244, DOI 10.1046/j.1461-0248.2001.00202.x; Gotelli NJ, 2006, ECOL APPL, V16, P51, DOI 10.1890/04-0479; Grace JB, 2008, ENVIRON ECOL STAT, V15, P191, DOI 10.1007/s10651-007-0047-7; Grace JB, 2010, ECOL MONOGR, V80, P67, DOI 10.1890/09-0464.1; Inchausti P, 2001, BIOL CONSERV, V100, P377, DOI 10.1016/S0006-3207(01)00044-1; Isaza C, 2016, POPUL ECOL, V58, P463, DOI 10.1007/s10144-016-0543-4; JENKINS D, 1963, J ANIM ECOL, V32, P317, DOI 10.2307/2598; Jongejans E, 2005, J ECOL, V93, P681, DOI 10.1111/j.1365-2745.2005.01003.x; Jongejans E, 2010, ECOL LETT, V13, P736, DOI 10.1111/j.1461-0248.2010.01470.x; Knops JMH, 2007, P NATL ACAD SCI USA, V104, P16982, DOI 10.1073/pnas.0704251104; Koenig WD, 1998, NATURE, V396, P225, DOI 10.1038/24293; Ludwig D, 1996, ECOL APPL, V6, P1067, DOI 10.2307/2269591; Marcoulides G. A., 2013, QUANTITATIVE METHODO; Menges ES, 2007, AUST J BOT, V55, P261, DOI 10.1071/BT06020; Menges ES, 2004, ECOL MONOGR, V74, P79, DOI 10.1890/03-4029; Menges ES, 1995, B TORREY BOT CLUB, V122, P282, DOI 10.2307/2996320; Menges ES, 1996, AM J BOT, V83, P185, DOI 10.2307/2445937; Metcalf CJE, 2015, METHODS ECOL EVOL, V6, P1007, DOI 10.1111/2041-210X.12405; Morris W. F., 2002, QUANTITATIVE CONSERV, Vi-xvi, P1; Nur N, 1999, BIRD STUDY, V46, P92; Ohlberger J, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1333; Ottersen G, 2001, OECOLOGIA, V128, P1, DOI 10.1007/s004420100655; Parmesan C, 2013, ECOL LETT, V16, P58, DOI 10.1111/ele.12098; Plummer M., 2003, P 3 INT WORKSH DISTR; POPAY A I, 1990, Plant Protection Quarterly, V5, P3; Post E, 1999, ECOLOGY, V80, P1322, DOI 10.2307/177078; Quintana-Ascencio PF, 2000, AM J BOT, V87, P690, DOI 10.2307/2656855; R Core Team, 2016, R LANG ENV STAT COMP; Rees M, 2006, AM NAT, V168, pE53, DOI 10.1086/505762; Rees M, 2009, ECOL MONOGR, V79, P575, DOI 10.1890/08-1474.1; Rotella JJ, 2012, J ANIM ECOL, V81, P162, DOI 10.1111/j.1365-2656.2011.01902.x; Salguero-Gomez R, 2016, J ANIM ECOL, V85, P371, DOI 10.1111/1365-2656.12482; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Stenseth NC, 2005, J ANIM ECOL, V74, P1195, DOI 10.1111/j.1365-2656.2005.01005.x; Stenseth NC, 2002, SCIENCE, V297, P1292, DOI 10.1126/science.1071281; Teller BJ, 2016, METHODS ECOL EVOL, V7, P171, DOI 10.1111/2041-210X.12486; Thorson JT, 2015, METHODS ECOL EVOL, V6, P627, DOI 10.1111/2041-210X.12359; Tomimatsu H, 2010, OECOLOGIA, V162, P903, DOI 10.1007/s00442-009-1505-8; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; van de Pol M, 2016, METHODS ECOL EVOL, V7, P1246, DOI 10.1111/2041-210X.12590; Vindenes Y, 2014, AM NAT, V183, P243, DOI 10.1086/674610; WARDLE DA, 1992, WEED RES, V32, P119, DOI 10.1111/j.1365-3180.1992.tb01869.x; Williams JL, 2015, J ECOL, V103, P798, DOI 10.1111/1365-2745.12369; Zuur AF, 2003, ENVIRONMETRICS, V14, P665, DOI 10.1002/env.611 67 0 0 8 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2041-210X 2041-2096 METHODS ECOL EVOL Methods Ecol. Evol. NOV 2018 9 11 2283 2293 10.1111/2041-210X.13085 11 Ecology Environmental Sciences & Ecology GZ9ZS WOS:000449864800011 Green Published 2019-02-21 J Hasselman, DJ; Bentzen, P; Narum, SR; Quinn, TP Hasselman, Daniel J.; Bentzen, Paul; Narum, Shawn R.; Quinn, Thomas P. Formation of population genetic structure following the introduction and establishment of non-native American shad (Alosa sapidissima) along the Pacific Coast of North America BIOLOGICAL INVASIONS English Article American shad; Biological invasions; Population structure; Evolutionary divergence; Anadromous fish MULTILOCUS GENOTYPE DATA; LOCAL SELECTIVE SWEEPS; COLUMBIA RIVER; LIFE-HISTORY; INVASION GENETICS; CHINOOK SALMON; REPRODUCTIVE CHARACTERISTICS; DIFFERENTIATION MEASURE; MULTIPLE INTRODUCTIONS; CONTEMPORARY EVOLUTION Biological invasions provide opportunities to examine contemporary evolutionary processes in novel environments. American shad, an anadromous fish native to the Atlantic Coast of North America, was introduced to California in 1871 and established spawning populations along the Pacific Coast that may provide insights into the dynamics of dispersal, colonization, and the establishment of philopatry. Using 13 neutral microsatellite loci we genotyped anadromous, freshwater resident and landlocked American shad from 14 locations along the US Pacific Coast to resolve population genetic structure. We observed significant differences in multilocus allele frequency distributions in nearly all (61/66; 92%) pairwise comparisons of non-native anadromous, freshwater resident and landlocked populations, and detected significant genetic differentiation for most (55/66; 83%) of these comparisons. Genetic divergence between landlocked and anadromous populations is due to genetic drift in isolation because of a physical migration barrier. However, some reproductive isolating mechanism maintains genetic differentiation between sympatric populations in the Columbia River exhibiting alternative life history strategies (i.e. anadromous vs. freshwater-type'). Non-native populations possessed genetic variants that were not observed in the species' native range and were strongly differentiated from Atlantic Coast populations (Our results indicate that philopatry became established shortly after dispersal and colonization along the Pacific Coast. This study contributes to our understanding of dynamic evolutionary processes during invasions. [Hasselman, Daniel J.; Quinn, Thomas P.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA; [Bentzen, Paul] Dalhousie Univ, Biol Dept, Marine Gene Probe Lab, Halifax, NS B3H 4R2, Canada; [Hasselman, Daniel J.; Narum, Shawn R.] Columbia River Intertribal Fish Commiss, Hagerman Fish Culture Expt Stn, 3059-F Natl Fish Hatchery Rd, Hagerman, ID 83332 USA Hasselman, DJ (reprint author), Columbia River Intertribal Fish Commiss, Hagerman Fish Culture Expt Stn, 3059-F Natl Fish Hatchery Rd, Hagerman, ID 83332 USA. hasselmandaniel@gmail.com Cooperative Institute for Limnology and Ecosystems Research at the University of Michigan; NOAA (Great Lakes Environmental Research Laboratory) Aquatic Invasive Species Program (AISP) Grant [NA07OAR4320006] This research would not have been possible without assistance from many federal (National Marine Fisheries Service, US Geological Survey, US Army Corps of Engineers) and state-level resource management agencies (Washington Department of Fish and Wildlife, Oregon Department of Fish and Wildlife, California Department of Fish and Wildlife), tribal governments (Columbia River Inter-Tribal Fish Commission, Yurok tribe, Karuk tribe), non-governmental organizations (Skagit River System Cooperative, Bonneville Power Administration), academic partners (University of Idaho, University of California Davis), and countless recreational fishers who collected specimens on our behalf. We thank members of the Marine Gene Probe Laboratory (M.C. McBride, I.P. Paterson) for laboratory assistance. We thank M. A Beaumont for assistance with the program 2MOD, and B. Wasserman for assistance creating associated figures. We thank T. Apgar for assistance with ArcGIS 10.2 in measuring distances among rivers, and K. Dlugosch for analytical advice. We also thank Phil Roni and Blake Feist for their contributions, three anonymous reviewers and an associate editor whose constructive comments greatly improved the quality of this manuscript. This work was conducted under IACUC protocol #2442-30 at the University of Washington and was supported by the Cooperative Institute for Limnology and Ecosystems Research at the University of Michigan and a NOAA (Great Lakes Environmental Research Laboratory) Aquatic Invasive Species Program (AISP) Grant (No. NA07OAR4320006) to DJH at the School of Aquatic and Fishery Sciences, University of Washington. Ahern SG, 1992, 96 FERC; Allendorf Fred W., 1996, P238; [Anonymous], 1982, FISH STUD MILL LAK 1; Arismendi I, 2014, REV FISH BIOL FISHER, V24, P919, DOI 10.1007/s11160-014-9351-0; Atlantic States Marine Fisheries Commission, 2007, STOCK ASSESSMENT REP, VIII; Atlantic States Marine Fisheries Commission, 2007, STOCK ASSESSMENT REP, VI; Baker CM, 2017, CONSERV LETT, V10, P41, DOI 10.1111/conl.12236; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Barrett SCH, 2015, MOL ECOL, V24, P1927, DOI 10.1111/mec.13014; Belkhir K, 2004, GENETIX 4 05 LOGICIE; Benjamini Y, 2001, ANN STAT, V29, P1165; BENTZEN P, 1989, CAN J FISH AQUAT SCI, V46, P1446, DOI 10.1139/f89-184; Bentzen P, 2005, GENETIC ANAL FRESHWA; Berdahl A, 2016, FISH FISH, V17, P525, DOI 10.1111/faf.12084; Bianco PG, 2002, MAR ECOL-P S Z N I, V23, P51, DOI 10.1111/j.1439-0485.2002.tb00007.x; Blackburn TM, 2015, MOL ECOL, V24, P1942, DOI 10.1111/mec.13075; Bock DG, 2015, MOL ECOL, V24, P2277, DOI 10.1111/mec.13032; Brown BL, 2000, CONSERV BIOL, V14, P294, DOI 10.1046/j.1523-1739.2000.98165.x; Chereshnev IA, 1989, VOP IKHTIOL, V3, P501; Ciancio JE, 2015, BIOL INVASIONS, V17, P2989, DOI 10.1007/s10530-015-0928-x; Ciofi C, 1999, P ROY SOC B-BIOL SCI, V266, P2269, DOI 10.1098/rspb.1999.0918; Colautti RI, 2015, MOL ECOL, V24, P1999, DOI 10.1111/mec.13162; Colautti RI, 2013, SCIENCE, V342, P364, DOI 10.1126/science.1242121; Collares-Pereira MJ, 1999, J FISH BIOL, V55, P658, DOI 10.1006/jfbi.1999.1014; Crawford SS, 2008, REV FISH BIOL FISHER, V18, P313, DOI 10.1007/s11160-007-9079-1; Crispo E, 2007, EVOLUTION, V61, P2469, DOI 10.1111/j.1558-5646.2007.00203.x; Cristescu ME, 2015, MOL ECOL, V24, P2212, DOI 10.1111/mec.13117; Czesny S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031803; Dadswell M. J., 1987, AM FISHERIES SOC S, V1, P313; DEMPSON J B, 1983, Naturaliste Canadien (Quebec), V110, P217; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Dlugosch KM, 2015, MOL ECOL, V24, P2095, DOI 10.1111/mec.13183; Elphinstone MS, 2003, MOL ECOL NOTES, V3, P317, DOI 10.1046/j.1471-8286.2003.00397.x; ESRI, 2013, ARCGIS DESKT; Estoup A, 2010, MOL ECOL, V19, P4113, DOI 10.1111/j.1365-294X.2010.04773.x; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Facon B, 2006, TRENDS ECOL EVOL, V21, P130, DOI 10.1016/j.tree.2005.10.012; Falush D, 2003, GENETICS, V164, P1567; Faria R, 2004, MOL ECOL NOTES, V4, P586, DOI 10.1111/j.1471-8286.2004.00745.x; Faubet P, 2007, MOL ECOL, V16, P1149, DOI 10.1111/j.1365-294X.2006.03218.x; Ferrero V, 2015, MOL ECOL, V24, P2143, DOI 10.1111/mec.13056; Fonseca DM, 2000, MOL ECOL, V9, P1803, DOI 10.1046/j.1365-294x.2000.01070.x; GLEBE BD, 1981, CAN J FISH AQUAT SCI, V38, P806, DOI 10.1139/f81-109; Goudet J, 2001, FSTAT PROGRAM ESTIMA; Hanfling B, 2007, J FISH BIOL, V71, P115, DOI 10.1111/j.1095-8649.2007.01685.x; Haskell CA, 2017, T AM FISH SOC, V146, P291; Haskell CA, 2006, NORTHWEST SCI, V80, P47; Haskell CA, 2018, ECOL FRESHW FISH, V27, P310, DOI 10.1111/eff.12348; Haskell CA, 2013, T AM FISH SOC, V142, P606, DOI 10.1080/00028487.2012.728164; Hasselman DJ, 2013, MOL ECOL, V22, P1558, DOI 10.1111/mec.12197; Hasselman DJ, 2012, FISHERIES, V37, P103, DOI 10.1080/03632415.2012.659938; Hasselman DJ, 2010, CAN J FISH AQUAT SCI, V67, P1021, DOI 10.1139/F10-031; Hedrick PW, 2005, EVOLUTION, V59, P1633, DOI 10.1111/j.0014-3820.2005.tb01814.x; HEDRICK PW, 1986, ZOO BIOL, V5, P91, DOI 10.1002/zoo.1430050204; Hendricks ML, 2002, N AM J FISH MANAGE, V22, P243, DOI 10.1577/1548-8675(2002)022<0243:HOHRAS>2.0.CO;2; Hershberger PK, 2010, BIOL INVASIONS, V12, P3665, DOI 10.1007/s10530-010-9760-5; Hinrichsen RA, 2013, T AM FISH SOC, V142, P887, DOI 10.1080/00028487.2013.788553; HOLM S, 1979, SCAND J STAT, V6, P65; Huey RB, 2005, SPECIES INVASIONS: INSIGHTS INTO ECOLOGY, EVOLUTION, AND BIOGEORGRAPHY, P139; Hyndman RJ, 2013, HDRCDE HIGHEST DENSI; IHSSEN PE, 1992, CAN J FISH AQUAT SCI, V49, P1770, DOI 10.1139/f92-196; Jensen JL, 2005, BMC GENET, V6, DOI 10.1186/1471-2156-6-13; Jolly MT, 2012, MAR BIOL, V159, P675, DOI 10.1007/s00227-011-1845-x; Julian SE, 2007, MOL ECOL NOTES, V7, P805, DOI 10.1111/j.1471-8286.2007.01710.x; Keller SR, 2014, J EVOLUTION BIOL, V27, P616, DOI 10.1111/jeb.12330; Kinnison MT, 2003, J EVOLUTION BIOL, V16, P1257, DOI 10.1046/j.1420-9101.2003.00631.x; Kinnison MT, 2002, MOL ECOL, V11, P739, DOI 10.1046/j.1365-294X.2002.01477.x; Kinnison MT, 2001, EVOLUTION, V55, P1656; Lande R, 2015, MOL ECOL, V24, P2038, DOI 10.1111/mec.13037; Latch EK, 2006, CONSERV GENET, V7, P295, DOI 10.1007/s10592-005-9098-1; Leberg PL, 2002, MOL ECOL, V11, P2445, DOI 10.1046/j.1365-294X.2002.01612.x; LEGGETT WC, 1972, FISH BULL NATL OC AT, V70, P659; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; Limburg KE, 1998, CAN J FISH AQUAT SCI, V55, P431, DOI 10.1139/cjfas-55-2-431; Limburg KE, 2003, AM FISH S S, V35, P125; Limburg KE, 1996, CAN J FISH AQUAT SCI, V53, P220, DOI 10.1139/cjfas-53-1-220; Loader CR, 1996, ANN STAT, V24, P1602; LOWE S, 2001, 100 WORLDS WORST INV; Luikart G, 1998, J HERED, V89, P238, DOI 10.1093/jhered/89.3.238; LYNCH M, 1991, EVOLUTION, V45, P622, DOI 10.1111/j.1558-5646.1991.tb04333.x; McBride MC, 2015, CONSERV GENET, V16, P1209, DOI 10.1007/s10592-015-0733-1; Meirmans PG, 2006, EVOLUTION, V60, P2399, DOI 10.1111/j.0014-3820.2006.tb01874.x; MELVIN GD, 1986, CAN J FISH AQUAT SCI, V43, P640, DOI 10.1139/f86-077; Monk B., 1989, North American Journal of Fisheries Management, V9, P60, DOI 10.1577/1548-8675(1989)009<0060:EOFAWD>2.3.CO;2; Naciri-Graven Y, 2003, EVOLUTION, V57, P706; Naik PK, 2005, HYDROL PROCESS, V19, P1807, DOI [10.1002/hyp.5636, 10.1002/hyp.53636]; Narum SR, 2006, CONSERV GENET, V7, P783, DOI 10.1007/s10592-005-9056-y; Narum SR, 2017, EVOL APPL, V10, P402, DOI 10.1111/eva.12464; NEI M, 1983, J MOL EVOL, V19, P153, DOI 10.1007/BF02300753; NEI M, 1978, GENETICS, V89, P583; OLEARY JA, 1986, T AM FISH SOC, V115, P529, DOI 10.1577/1548-8659(1986)115<529:BLASRO>2.0.CO;2; Owens RW, 1998, J GREAT LAKES RES, V24, P723, DOI 10.1016/S0380-1330(98)70856-1; Palkovacs EP, 2008, MOL ECOL, V17, P582, DOI 10.1111/j.1365-294X.2007.03593.x; Palkovacs EP, 2014, FRESHWATER BIOL, V59, P1897, DOI 10.1111/fwb.12392; Parsley MJ, 2011, IMPACT AM SHAD COLUM; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; Petersen JH, 2003, AM FISH S S, V35, P141; Peterson DP, 2003, BIOL INVASIONS, V5, P239, DOI 10.1023/A:1026155628599; Phillips BL, 2010, J EVOLUTION BIOL, V23, P2595, DOI 10.1111/j.1420-9101.2010.02118.x; Piry S, 1999, J HERED, V90, P502, DOI 10.1093/jhered/90.4.502; Pritchard JK, 2000, GENETICS, V155, P945; Puechmaille SJ, 2016, MOL ECOL RESOUR, V16, P608, DOI 10.1111/1755-0998.12512; Quinn TP, 2001, GENETICA, V112, P493, DOI 10.1023/A:1013348024063; R Development Core Team, 2013, R LANG ENV STAT COMP; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Rollins LA, 2015, MOL ECOL, V24, P2264, DOI 10.1111/mec.13184; Rosales-Casian JA, 2015, CAL COOP OCEAN FISH, V56, P92; Rosenberg NA, 2004, MOL ECOL NOTES, V4, P137, DOI 10.1046/j.1471-8286.2003.00566.x; Rousset F, 1997, GENETICS, V145, P1219; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Ryman N, 2006, MOL ECOL, V15, P2031, DOI 10.1111/j.1365-294X.2006.02839.x; Schlotterer C, 2005, MOL B INT U, P55, DOI 10.1007/0-387-27651-3_5; Schlotterer C, 2002, GENETICS, V160, P753; Shields BA, 2002, J PARASITOL, V88, P1033, DOI 10.1645/0022-3395(2002)088[1033:TNASIA]2.0.CO;2; Smith BJ, 2007, J STAT SOFTW, V21, P1; Smith HM, 1895, US FISH COMMISSION B, V15, P379; Susquehanna River Anadromous Fish Restoration Committee, 1990, REST AM SHAD SUSQ RI; Takezaki N, 2010, MOL BIOL EVOL, V27, P747, DOI 10.1093/molbev/msp312; Talbot GB, 1958, ATLANTIC COAST MIGRA; TOOLE CL, 1980, AM ZOOL, V20, P812; Twining CW, 2017, CAN J FISH AQUAT SCI, V74, P609, DOI 10.1139/cjfas-2016-0136; Utter F, 2000, REV FISH BIOL FISHER, V10, P265, DOI 10.1023/A:1016686415022; Vaha JP, 2007, MOL ECOL, V16, P2638, DOI 10.1111/j.1365-294X.2007.03329.x; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Walburg CH, 1967, BIOL MANAGEMENT AM S; Waples RS, 2008, MOL ECOL, V17, P84, DOI 10.1111/j.1365-294X.2007.03510.x; Waples RS, 2017, EVOL APPL, V10, P667, DOI 10.1111/eva.12468; Waters JM, 2000, J FISH BIOL, V56, P622, DOI 10.1006/jfbi.1999.1179; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Weitkamp LA, 2015, FISH B-NOAA, V113, P213, DOI 10.7755/FB.113.2.9; Westley PAH, 2011, DIVERS DISTRIB, V17, P566, DOI 10.1111/j.1472-4642.2011.00751.x; Westley PAH, 2011, AM NAT, V177, P496, DOI 10.1086/658902; Williams JG, 2008, EVOL APPL, V1, P271, DOI 10.1111/j.1752-4571.2008.00027.x; Wilson GA, 2003, GENETICS, V163, P1177; Wydoski RS, 1979, INLAND FISHES WASHIN; Zydlewski J, 2003, J FISH BIOL, V63, P1521, DOI 10.1111/j.1095-8649.2003.00264.x 138 0 0 4 4 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1387-3547 1573-1464 BIOL INVASIONS Biol. Invasions NOV 2018 20 11 3123 3143 10.1007/s10530-018-1763-7 21 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology GY6HN WOS:000448688100008 2019-02-21 J Seixas, VC; Paiva, PC; Russo, CAD Seixas, Victor Correa; Paiva, Paulo Cesar; de Moraes Russo, Claudia Augusta Comparative population genetics and demographic history of two polychaete species suggest that coastal lagoon populations evolve under alternate regimes of gene flow MARINE BIOLOGY English Article HEDISTE-DIVERSICOLOR POLYCHAETA; CAPITELLA-CAPITATA POLYCHAETA; COMPARATIVE PHYLOGEOGRAPHY; HABITAT DISCONTINUITY; MOLECULAR EVOLUTION; DNA POLYMORPHISM; GENERATION TIME; LIFE-HISTORY; BODY-SIZE; DISPERSAL Here, we compare the population genetic structure and the demographic history of two polychaete species along one bay and eight coastal lagoons distributed over similar to 200km of the Southwest Atlantic to understand the evolution of discontinuous and confined inland ocean-connected waters populations. A total of 515 sequences of COI and 16S were obtained for Laeonereis culveri and Capitella nonatoi. Levels of genetic diversity and population genetic structure were higher for C. nonatoi than L. culveri, possibly reflecting the differences in life-history strategies. Furthermore, the genetic diversity of both species was, in general, smaller in more confined populations. Populations of both species showed signs of recent demographic expansion, although it was more pronounced in C. nonatoi. As the population size of both species may reach high densities in highly eutrophic environments, these expansions are probably associated to the coastal lagoon formation, which favors the process of organic matter accumulation and the water oxygenation reduction. The general pattern of haplotype distribution revealed high levels of haplotype sharing among populations, mainly in L. culveri. On the other hand, the observed number of exclusive haplotypes indicates that the genetic exchange among populations is not as high as it may seem. This result suggests that coastal lagoons populations evolve under alternate regimes of soft (physiological barriers) and strong (physiological and physical barriers) gene flow restriction. [Seixas, Victor Correa; de Moraes Russo, Claudia Augusta] Univ Fed Rio de Janeiro, Inst Biol, Dept Genet, CCS, Av Carlos Chagas Filho 373,Sala A2-97,Bloco A, BR-21941570 Rio De Janeiro, RJ, Brazil; [Seixas, Victor Correa] Univ Fed Rio de Janeiro, Inst Biol, Programa Posgrad Ecol, CCS, Av Carlos Chagas Filho 373, BR-21941971 Rio De Janeiro, RJ, Brazil; [Paiva, Paulo Cesar] Univ Fed Rio de Janeiro, Inst Biol, Dept Zool, CCS, Av Carlos Chagas Filho 373,Sala A0-108,Bloco A, BR-21941902 Rio De Janeiro, RJ, Brazil Russo, CAD (reprint author), Univ Fed Rio de Janeiro, Inst Biol, Dept Genet, CCS, Av Carlos Chagas Filho 373,Sala A2-97,Bloco A, BR-21941570 Rio De Janeiro, RJ, Brazil. claudiaamrusso@gmail.com Paiva, Paulo Cesar de/0000-0003-1061-6549 Coordination for the Improvement of Higher Education Personnel (Education Ministry Brazil) [CAPES-PROEX/0487]; National Science and Technology Council (CNPq, Science and Technology Brazil); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (BR) [308387/2015-5]; Nacional de Desenvolvimento Cientifico e Tecnologico [443900/2014-0] The authors would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES-PROEX/0487, Education Ministry Brazil) for the Ph.D. and postdoctoral fellowship for VCS and the National Science and Technology Council (CNPq, Science and Technology Brazil) for the fellowships to PCP and to CAMR. The authors also thank Dr. Christine Ruta for providing samples of the Visgueiro Lagoon, and Dr. Antonio M. Sole-Cava for providing the facilities of Laboratorio de Biodiversidade Molecular (UFRJ) for sequencing samples. We thank the reviewers for the valuable comments. This paper is part of the Ph.D. requirements for VCS at the Genetics Graduate Program of the Federal University of Rio de Janeiro. This work was supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (BR) (Grant No. 308387/2015-5), Nacional de Desenvolvimento Cientifico e Tecnologico (Grant No. 443900/2014-0). Adkins M, 2011, MAR BIOL RES, V7, P202, DOI 10.1080/17451000.2010.489612; AMADOR ES, 1997, BAIA GUANABARA ECOSS; Barbosa SS, 2013, BIOL J LINN SOC, V108, P821, DOI 10.1111/bij.12006; Barnes PB, 2013, DIVERS DISTRIB, V19, P1394, DOI 10.1111/ddi.12108; Barroso R, 2010, MAR BIOL, V157, P69, DOI 10.1007/s00227-009-1296-9; Beerli P, 1998, NATO ADV SCI I A-LIF, V306, P39; Bilton DT, 2002, ESTUAR COAST SHELF S, V55, P937, DOI 10.1006/ecss.2002.1037; Bromham L, 2009, BIOL LETTERS, V5, P401, DOI 10.1098/rsbl.2009.0136; Chandler EA, 2008, MOL ECOL, V17, P4079, DOI 10.1111/j.1365-294X.2008.03897.x; Collado GA, 2012, ZOOL J LINN SOC-LOND, V165, P795, DOI 10.1111/j.1096-3642.2012.00829.x; Cowen RK, 2009, ANNU REV MAR SCI, V1, P443, DOI 10.1146/annurev.marine.010908.163757; Cox LN, 2014, J BIOGEOGR, V41, P615, DOI 10.1111/jbi.12217; da Silva E, 2005, J COASTAL RES, P265; Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109; DiBattista JD, 2013, J BIOGEOGR, V40, P1170, DOI 10.1111/jbi.12068; Dray S, 2007, J STAT SOFTW, V22, P1; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Dupont L, 2009, MOL ECOL, V18, P442, DOI 10.1111/j.1365-294X.2008.04045.x; Ellegren H, 2016, NAT REV GENET, V17, P422, DOI 10.1038/nrg.2016.58; ELLSTRAND NC, 1993, ANNU REV ECOL SYST, V24, P217, DOI 10.1146/annurev.es.24.110193.001245; Enrich-Prast A, 2004, PESQUISAS LONGA DURA, P1; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Fitzpatrick BM, 2009, MOL ECOL, V18, P3961, DOI 10.1111/j.1365-294X.2009.04314.x; Floyd R, 2002, MOL ECOL, V11, P839, DOI 10.1046/j.1365-294X.2002.01485.x; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; Fu YX, 1997, GENETICS, V147, P915; Gillooly JF, 2005, P NATL ACAD SCI USA, V102, P140, DOI 10.1073/pnas.0407735101; Gonzalez-Wanguemert M, 2014, HELGOLAND MAR RES, V68, P357, DOI 10.1007/s10152-014-0396-1; Grant WS, 2012, MOL PHYLOGENET EVOL, V65, P203, DOI 10.1016/j.ympev.2012.06.006; Guelorget O, 1983, TRAV LAB GEOL ECOLE, V16, P1; HAMMER O., 2001, PALAEONTOL ELECTRON, V4, P1, DOI DOI 10.1016/J.BCP.2008.05.025; Hauser L, 2002, P NATL ACAD SCI USA, V99, P11742, DOI 10.1073/pnas.172242899; HEIP C, 1995, OPHELIA, V41, P113, DOI 10.1080/00785236.1995.10422040; Heled J, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-289; Ho SYW, 2011, MOL ECOL RESOUR, V11, P423, DOI 10.1111/j.1755-0998.2011.02988.x; Hudson R.R., 1990, Oxford Surveys in Evolutionary Biology, V7, P1; Jolly MT, 2006, MOL ECOL, V15, P1841, DOI 10.1111/j.1365-294X.2006.02910.x; Kennish MJ, 2002, ENVIRON CONSERV, V29, P78, DOI 10.1017/S0376892902000061; Kjerfve B, 1996, ESTUAR COAST SHELF S, V42, P701, DOI 10.1006/ecss.1996.0045; Kjerfve B, 2001, ECOL STU AN, V144, P107; Kjerfve B., 1986, ESTUARINE VARIABILIT, P63, DOI DOI 10.1016/B978-0-12-761890-6.50009-5; Kjerfve B., 1994, ELSEVIER OCEANOG SER, V60, P1, DOI DOI 10.1016/S0422-9894(08)70006-0; LeitAo AS, 2014, THESIS; Librado P, 2009, BIOINFORMATICS, V25, P1451, DOI 10.1093/bioinformatics/btp187; Linke-Gamenick I, 2000, MAR ECOL PROG SER, V203, P191, DOI 10.3354/meps203191; Liu HJ, 2012, BIOCHEM SYST ECOL, V44, P70, DOI 10.1016/j.bse.2012.04.019; Marino IAM, 2010, ESTUAR COAST SHELF S, V87, P135, DOI 10.1016/j.ecss.2010.01.003; MARTIN AP, 1993, P NATL ACAD SCI USA, V90, P4087, DOI 10.1073/pnas.90.9.4087; Martin L, 1994, COASTAL LAGOON PROCE, P41, DOI DOI 10.1016/S0422-9894(08)70008-4; Mashiko K, 2000, J CRUSTACEAN BIOL, V20, P118, DOI 10.1651/0278-0372(2000)020[0118:DOPWDS]2.0.CO;2; MAZURKIEWICZ M, 1975, BIOL BULL, V149, P186, DOI 10.2307/1540489; Mendez N, 1997, J EXP MAR BIOL ECOL, V218, P263, DOI 10.1016/S0022-0981(97)00078-6; Milana V, 2012, MAR BIOL, V159, P399, DOI 10.1007/s00227-011-1817-1; Miller M. A, 2010, P GAT COMP ENV WORKS; Muniz-Salazar R, 2006, MAR ECOL PROG SER, V309, P107, DOI 10.3354/meps309107; Muniz-Salazar R, 2005, MOL ECOL, V14, P711, DOI 10.1111/j.1365-294X.2005.02454.x; Olson MA, 2009, BIOL BULL-US, V217, P86, DOI 10.1086/BBLv217n1p86; Palumbi S, 1991, SIMPLE FOOLS GUIDE P; Paradis E, 2010, BIOINFORMATICS, V26, P419, DOI 10.1093/bioinformatics/btp696; Perez-Ruzafa A, 2005, HYDROBIOLOGIA, V550, P11, DOI 10.1007/s10750-005-4356-2; Perez-Ruzafa A, 1993, PUBL ESPEC I ESP OCE, V11, P347; Perez-Ruzafa A, 2019, ESTUAR COAST SHELF S, V216, P171, DOI 10.1016/j.ecss.2018.02.031; Pettibone MH, 1971, SMITHSONIAN CONTRIBU, V104; Plouviez S, 2009, MOL ECOL, V18, P3903, DOI 10.1111/j.1365-294X.2009.04325.x; R Core Team, 2018, R LANG ENV STAT COMP; Ramskov T, 2008, MAR ECOL PROG SER, V369, P181, DOI 10.3354/meps07584; Romiguier J, 2014, NATURE, V515, P261, DOI 10.1038/nature13685; Rosenberg NA, 2002, NAT REV GENET, V3, P380, DOI 10.1038/nrg795; Silva CF, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177760; Smith LM, 2015, MAR BIOL, V162, P1319, DOI 10.1007/s00227-015-2671-3; TAJIMA F, 1989, GENETICS, V123, P585; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Thomas JA, 2010, MOL BIOL EVOL, V27, P1173, DOI 10.1093/molbev/msq009; Mendes CLT, 2011, ZOOLOGIA-CURITIBA, V28, P365, DOI 10.1590/S1984-46702011000300011; TSUTSUMI H, 1987, MAR ECOL PROG SER, V36, P139, DOI 10.3354/meps036139; TSUTSUMI H, 1984, MAR BIOL, V80, P315, DOI 10.1007/BF00392827; Vergara-Chen C, 2013, J MOLLUS STUD, V79, P230, DOI 10.1093/mollus/eyt015; Virgilio M, 2006, MAR ECOL PROG SER, V326, P157, DOI 10.3354/meps326157; Virgilio M, 2009, MOL ECOL, V18, P1980, DOI 10.1111/j.1365-294X.2009.04170.x; Wangensteen OS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045067; Webster HE, 1880, ANN REPORT NEW YORK, V32, P101; WU CI, 1985, P NATL ACAD SCI USA, V82, P1741, DOI 10.1073/pnas.82.6.1741; Zanol J, 2010, MOL PHYLOGENET EVOL, V55, P660, DOI 10.1016/j.ympev.2009.12.024 83 0 0 3 3 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0025-3162 1432-1793 MAR BIOL Mar. Biol. NOV 2018 165 11 179 10.1007/s00227-018-3437-5 16 Marine & Freshwater Biology Marine & Freshwater Biology GY8BI WOS:000448843000003 2019-02-21 J Li, Z; Liu, SW; Hartman, S; Belsky, J Li, Zhi; Liu, Siwei; Hartman, Sarah; Belsky, Jay Interactive Effects of Early-Life Income Harshness and Unpredictability on Children's Socioemotional and Academic Functioning in Kindergarten and Adolescence DEVELOPMENTAL PSYCHOLOGY English Article environmental unpredictability; environmental harshness; life history; income INDIVIDUAL-DIFFERENCES; FAMILY INCOME; REPRODUCTIVE STRATEGY; SENSITIVE PERIODS; BEHAVIOR PROBLEMS; SOCIAL SUPPORT; CHILDHOOD; STRESS; ADJUSTMENT; DYNAMICS This research investigates whether and how two fundamental environmental factors-harshness and unpredictability-interact in regulating child and adolescent development, informed by life-history theory and drawing on data from the National Institute of Child Health & Human Development Study of Early Child Care and Youth Development (N = 1,364). Early life harshness was operationalized as the typical level of family income-to-needs based on six repeated measurements across the first 4.5 years of life and early life unpredictability as random variation using the same family income measurements. Results revealed that children functioned most competently in the social and academic domain as kindergarteners when exposed to low environmental harshness and low unpredictability and least competently when they experienced high harshness and low unpredictability. The same interaction pattern emerged in adolescence in forecasting cognitive-academic competence and sexual behavior. Findings are discussed in terms of how reliable and unreliable environmental cues shape developmental trajectories. [Li, Zhi] Univ Rochester Rochester, Dept Clin & Social Sci Psychol, Rochester, NY 14627 USA; [Liu, Siwei; Hartman, Sarah; Belsky, Jay] Univ Calif Davis, Dept Human Ecol, Davis, CA 95616 USA Li, Z (reprint author), Univ Rochester Rochester, Dept Clin & Social Sci Psychol, Rochester, NY 14627 USA. zhili@rochester.edu Achenbach T, 1991, MANUAL TEACHERS REPO; Achenbach T. M, 2001, MANUAL ASEBA SCH AGE; Achenbach TM, 2007, MULTICULTURAL UNDERS; ADLER NE, 1993, JAMA-J AM MED ASSOC, V269, P3140, DOI 10.1001/jama.269.24.3140; Almeida DM, 2009, PSYCHOL AGING, V24, P819, DOI 10.1037/a0017910; BECKER GS, 1986, J LABOR ECON, V4, pS1, DOI 10.1086/298118; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BELSKY J, 1984, CHILD DEV, V55, P83, DOI 10.1111/j.1467-8624.1984.tb00275.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Birch SH, 1997, J SCHOOL PSYCHOL, V35, P61, DOI 10.1016/S0022-4405(96)00029-5; Bronfenbrenner U., 1979, ECOLOGY HUMAN DEV EX; BrooksGunn J, 1997, FUTURE CHILD, V7, P55, DOI 10.2307/1602387; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Cauffman E., 1999, FUTURE OUTLOOK INVEN; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; COHEN S, 1985, PSYCHOL BULL, V98, P310, DOI 10.1037//0033-2909.98.2.310; Conger RD, 2010, J MARRIAGE FAM, V72, P685, DOI 10.1111/j.1741-3737.2010.00725.x; CONGER RD, 1994, CHILD DEV, V65, P541, DOI 10.2307/1131401; Dahl GB, 2012, AM ECON REV, V102, P1927, DOI 10.1257/aer.102.5.1927; Dearing E, 2006, DEV PSYCHOL, V42, P237, DOI 10.1037/0012-1649.42.2.237; Deater-Deckard K, 2012, J CHILD PSYCHOL PSYC, V53, P1084, DOI 10.1111/j.1469-7610.2012.02582.x; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Ditzen B, 2008, J PSYCHOSOM RES, V64, P479, DOI 10.1016/j.jpsychores.2007.11.011; Doom JR, 2016, DEV PSYCHOPATHOL, V28, P1505, DOI 10.1017/S0954579415001169; Dumont H, 2014, J EDUC PSYCHOL, V106, P144, DOI 10.1037/a0034100; Duncan GJ, 1998, AM SOCIOL REV, V63, P406, DOI 10.2307/2657556; DUNCAN GJ, 1993, J POPUL ECON, V6, P215, DOI 10.1007/BF00163068; Elder GH, 1998, CHILD DEV, V69, P1, DOI 10.2307/1132065; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Enders CK, 2001, STRUCT EQU MODELING, V8, P128, DOI 10.1207/S15328007SEM0801_7; Evans GW, 2013, PSYCHOL BULL, V139, P1342, DOI 10.1037/a0031808; Fawcett TW, 2015, FRONT ZOOL, V12, DOI 10.1186/1742-9994-12-S1-S3; Frankenhuis WE, 2017, EUR PSYCHOL, V22, P141, DOI 10.1027/1016-9040/a000265; Frankenhuis WE, 2011, P ROY SOC B-BIOL SCI, V278, P3558, DOI 10.1098/rspb.2011.0055; Frankenhuis WE, 2011, PERSPECT PSYCHOL SCI, V6, P336, DOI 10.1177/1745691611412602; Ge XJ, 2001, DEV PSYCHOL, V37, P404, DOI 10.1037//0012-1649.37.3.404; Gennetian LA, 2010, CHILD YOUTH SERV REV, V32, P1138, DOI 10.1016/j.childyouth.2010.03.004; Graber J. A., 1996, TRANSITIONS ADOLESCE; Gresham F., 1990, SOCIAL SKILLS RATING; Halpern-Felsher BL, 2004, PREV MED, V39, P559, DOI 10.1016/j.ypmed.2004.02.017; Haveman R, 1994, SUCCEEDING GENERATIO; Hill H., 2016, 2016 APPAM INT C LON; Hill HD, 2013, CHILD DEV PERSPECT, V7, P85, DOI 10.1111/cdep.12018; Hoffman L, 2007, MULTIVAR BEHAV RES, V42, P609, DOI 10.1080/00273170701710072; Jahng S, 2008, PSYCHOL METHODS, V13, P354, DOI 10.1037/a0014173; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kovacs M. S., 1992, CHILDRENS DEPRESSION; Liu NH, 2011, AM J PSYCHIATR REHAB, V14, P55, DOI 10.1080/15487768.2011.546293; Mistry RS, 2002, CHILD DEV, V73, P935, DOI 10.1111/1467-8624.00448; Moffitt RA, 2002, ECON J, V112, pC68, DOI 10.1111/1468-0297.00025; National Institute of Child Health & Human Development Early Child Care Research Network, 2005, CHILD CAR CHILD DEV; Newman C., 2006, INCOME VOLATILITY SE, V7237; Panchanathan K, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2439; Pianta RC, 2001, STUDENT TEACHER RELA; Qi CH, 2003, TOP EARLY CHILD SPEC, V23, P188; Sarsour K, 2011, J INT NEUROPSYCH SOC, V17, P120, DOI 10.1017/S1355617710001335; Schneider S, 2012, PAIN, V153, P813, DOI 10.1016/j.pain.2012.01.001; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Snijders T, 1999, MULTILEVEL ANAL; Szepsenwol O, 2015, J PERS SOC PSYCHOL, V109, P1045, DOI 10.1037/pspi0000032; Taborsky B, 2012, TRENDS ECOL EVOL, V27, P679, DOI 10.1016/j.tree.2012.09.003; Wagmiller RL, 2006, AM SOCIOL REV, V71, P847, DOI 10.1177/000312240607100507; WEINBERGER DA, 1990, J PERS, V58, P381, DOI 10.1111/j.1467-6494.1990.tb00235.x; Woodcock RW, 1989, WOODCOCK JOHNSON TES; Yao SY, 2014, EVOL HUM BEHAV, V35, P481, DOI 10.1016/j.evolhumbehav.2014.06.007; Yeung WJ, 2002, CHILD DEV, V73, P1861, DOI 10.1111/1467-8624.t01-1-00511; Zachrisson HD, 2015, CHILD DEV, V86, P425, DOI 10.1111/cdev.12306; Zimmerman S., 2008, MEASURING TRENDS INC 69 0 0 5 5 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 1939-0599 DEV PSYCHOL Dev. Psychol. NOV 2018 54 11 2101 2112 10.1037/dev0000601 12 Psychology, Developmental Psychology GY0EV WOS:000448187100009 30265037 Green Published 2019-02-21 J Law, R; Plank, MJ Law, Richard; Plank, Michael J. Balanced harvesting could reduce fisheries-induced evolution FISH AND FISHERIES English Article adaptive dynamics; ecosystem dynamics; fishing-induced selection; life history evolution; production rate; size spectrum LIFE-HISTORY EVOLUTION; BODY-SIZE; FISH COMMUNITIES; POPULATIONS; CONSEQUENCES; YIELDS; MODEL; MATURATION; ABUNDANCE; SPECTRUM Current fisheries management pays little attention to fisheries-induced evolution. Methods of exploitation that have benefits in the short term while ameliorating selection in the longer term would therefore be advantageous. Balanced harvesting is a potential candidate. This tries to bring fishing more in line with natural production, and some short-term benefits for conservation of aquatic ecosystems and for biomass yield have already been documented. It is also predicted to be relatively benign as a selective force on fish stocks, because it keeps the overall distribution of mortality relatively close to natural mortality. We test this prediction, coupling an ecological model of marine, size-spectrum dynamics to an adaptive dynamics model of life history evolution. The evolutionary variable is the reproductive schedule, set by the maximum body mass and the mass at maturation. The prediction is supported by our numerical analysis: Directional selection under balanced harvesting is approximately an order of magnitude weaker than in a standard fishery in which fish experience a fixed rate of fishing mortality after recruitment. The benefit of balanced harvesting follows from relatively little fishing on large fish, due to the low somatic production rates the big fish have. These results therefore support the general argument for protecting big, old fish, both for ecological and for evolutionary reasons. Slot fisheries that protect large fish share some qualitative features with balanced harvesting and show similar evolutionary benefits. [Law, Richard] Univ York, York Cross Disciplinary Ctr Syst Anal, Ron Cooke Hub, York YO10 5GE, N Yorkshire, England; [Plank, Michael J.] Univ Canterbury, Sch Math & Stat, Christchurch, New Zealand; [Plank, Michael J.] Univ Canterbury, Punaha Matatini, Christchurch, New Zealand Law, R (reprint author), Univ York, York Cross Disciplinary Ctr Syst Anal, Ron Cooke Hub, York YO10 5GE, N Yorkshire, England. richard.law@york.ac.uk Plank, Michael/0000-0002-7539-3465 European Commission's Horizon 2020 Research and Innovation Programme [634495] Te Punaha Matatini; European Commission's Horizon 2020 Research and Innovation Programme, Grant/Award Number: 634495 Andersen KH, 2006, AM NAT, V168, P54, DOI 10.1086/504849; Andersen KH, 2018, CAN J FISH AQUAT SCI, V75, P271, DOI 10.1139/cjfas-2016-0350; Andersen KH, 2016, ICES J MAR SCI, V73, P1651, DOI 10.1093/icesjms/fsv211; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Audzijonyte A, 2013, EVOL APPL, V6, P585, DOI 10.1111/eva.12044; Audzijonyte A, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1103; Beamish RJ, 2006, PROG OCEANOGR, V68, P289, DOI 10.1016/j.pocean.2006.02.005; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; Blanchard JL, 2014, J APPL ECOL, V51, P612, DOI 10.1111/1365-2664.12238; Brannstrom A., 2013, GAMES, V4, P304, DOI [10.3390/g4030304, DOI 10.3390/G4030304]; Chebib J, 2016, CONSERV GENET, V17, P473, DOI 10.1007/s10592-015-0797-y; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Datta S, 2011, J MATH BIOL, V63, P779, DOI 10.1007/s00285-010-0387-z; Datta S, 2010, B MATH BIOL, V72, P1361, DOI 10.1007/s11538-009-9496-5; Dieckmann U, 1996, J MATH BIOL, V34, P579, DOI 10.1007/BF02409751; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; EDLEY MT, 1988, BIOL J LINN SOC, V34, P309, DOI 10.1111/j.1095-8312.1988.tb01966.x; Eikeset AM, 2016, P NATL ACAD SCI USA, V113, P15030, DOI 10.1073/pnas.1525749113; Enberg K, 2017, P NATL ACAD SCI USA, V114, pE4321, DOI 10.1073/pnas.1700708114; Froese R, 2000, J FISH BIOL, V56, P758, DOI 10.1006/jfbi.1999.1194; Froese R, 2016, ICES J MAR SCI, V73, P1640, DOI 10.1093/icesjms/fsv122; Garcia SM, 2012, SCIENCE, V335, P1045, DOI 10.1126/science.1214594; Geritz SAH, 2002, J MATH BIOL, V44, P548, DOI 10.1007/s002850100136; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Hartvig M, 2011, J THEOR BIOL, V272, P113, DOI 10.1016/j.jtbi.2010.12.006; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Heath M., 2017, TECHNICAL REPORT; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2008, B MAR SCI, V83, P69; Heino M, 2015, ANNU REV ECOL EVOL S, V46, P461, DOI 10.1146/annurev-ecolsys-120213-054339; Hixon MA, 2014, ICES J MAR SCI, V71, P2171, DOI 10.1093/icesjms/fst200; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Hsieh CH, 2010, AQUAT SCI, V72, P165, DOI 10.1007/s00027-009-0122-2; Jacobsen NS, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2701; Jennings S, 2001, J ANIM ECOL, V70, P934, DOI 10.1046/j.0021-8790.2001.00552.x; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Kisdi E, 2010, J MATH BIOL, V61, P165, DOI 10.1007/s00285-009-0300-9; Kolding J, 2016, ICES J MAR SCI, V73, P1697, DOI 10.1093/icesjms/fsv225; Kolding J, 2016, CAN J FISH AQUAT SCI, V73, P644, DOI 10.1139/cjfas-2015-0098; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Law R, 2016, FISH FISH, V17, P281, DOI 10.1111/faf.12098; Law R, 2015, FISH FISH, V16, P160, DOI 10.1111/faf.12056; Law R, 2012, ICES J MAR SCI, V69, P602, DOI 10.1093/icesjms/fss031; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Metz JAJ, 1996, STOCHAST SPATIAL STR, P183; SILVERT W, 1978, LIMNOL OCEANOGR, V23, P813, DOI 10.4319/lo.1978.23.4.0813; SINKO JW, 1971, ECOLOGY, V52, P330, DOI 10.2307/1934592; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; Tillotson MD, 2018, FISH FISH, V19, P170, DOI 10.1111/faf.12248; van Wijk SJ, 2013, FRONT ECOL ENVIRON, V11, P181, DOI 10.1890/120229; Williams Geroge C, 1966, ADAPTATION NATURAL S; Zimmermann F, 2017, MAR ECOL PROG SER, V563, P185, DOI 10.3354/meps11996 52 1 1 9 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. NOV 2018 19 6 1078 1091 10.1111/faf.12313 14 Fisheries Fisheries GY1GG WOS:000448273100011 2019-02-21 J Kvile, KO; Ashjian, C; Feng, ZX; Zhang, JL; Ji, RB Kvile, Kristina Oie; Ashjian, Carin; Feng, Zhixuan; Zhang, Jinlun; Ji, Rubao Pushing the limit: Resilience of an Arctic copepod to environmental fluctuations GLOBAL CHANGE BIOLOGY English Article Arctic Ocean; Calanus hyperboreus; climate change; expatriation; extreme environment; life cycle; peripheral population; resilience CALANUS-HYPERBOREUS; SEA-ICE; VERTICAL-DISTRIBUTION; GREENLAND SEA; NANSEN BASIN; LIFE-CYCLE; OCEAN; ZOOPLANKTON; SUMMER; FOOD Life history strategies such as multiyear life cycles, resting stages, and capital breeding allow species to inhabit regions with extreme and fluctuating environmental conditions. One example is the zooplankton species Calanus hyperboreus, whose life history is considered an adaptation to the short and unpredictable growth season in the central Arctic Ocean. This copepod is commonly described as a true Arctic endemic; however, by statistically analyzing compiled observational data, we show that abundances are relatively low and later stages and adults dominate in the central Arctic Ocean basins, indicating expatriation. Combining data analyses with individual-based modeling and energy requirement estimation, we further demonstrate that while C. hyperboreus can reach higher abundances in areas with greater food availability outside the central Arctic basins, the species' resilience to environmental fluctuations enables the life cycle to be completed in the central Arctic basins. Specifically, the energy level required to reach the first overwintering stage-a prerequisite for successful local production-is likely met in some-but not all-years. This fine balance between success and failure indicates that C. hyperboreus functions as a peripheral population in the central Arctic basins and its abundance will likely increase in areas with improved growth conditions in response to climate change. By illustrating a key Arctic species' resilience to extreme and fluctuating environmental conditions, the results of this study have implications for projections of future biogeography and food web dynamics in the Arctic Ocean, a region experiencing rapid warming and sea ice loss. [Kvile, Kristina Oie; Ashjian, Carin; Feng, Zhixuan; Ji, Rubao] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA; [Zhang, Jinlun] Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA Kvile, KO (reprint author), Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA. kkvile@whoi.edu Feng, Zhixuan/0000-0002-4774-7027; Kvile, Kristina Oie/0000-0003-2771-9077 National Science Foundation [ARC-1203425, PLR-1416920, PLR-1417677]; NASA Cryosphere Program [NNX15AG68G]; Woods Hole Oceanographic Institution, John H. Steele Postdoctoral Scholar award National Science Foundation, Grant/Award Number: ARC-1203425, PLR-1416920, PLR-1417677; NASA Cryosphere Program, Grant/Award Number: NNX15AG68G; Woods Hole Oceanographic Institution, John H. Steele Postdoctoral Scholar award Arrigo KR, 2015, PROG OCEANOGR, V136, P60, DOI 10.1016/j.pocean.2015.05.002; ARRIGO KR, 2011, J GEOPHYS RES-OCEANS, V116, DOI [10.1029/2011JC007151, DOI 10.1029/2011JC007151]; Ashjian CJ, 2003, DEEP-SEA RES PT I, V50, P1235, DOI 10.1016/S0967-0637(03)00129-8; Brody SR, 2013, J GEOPHYS RES-OCEANS, V118, P2345, DOI 10.1002/jgrc.20167; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; Campbell RG, 2001, MAR ECOL PROG SER, V221, P161, DOI 10.3354/meps221161; Campbell RG, 2009, DEEP-SEA RES PT II, V56, P1274, DOI 10.1016/j.dsr2.2008.10.027; Choquet M, 2017, BIOL LETTERS, V13, DOI 10.1098/rsbl.2017.0588; CONOVER RJ, 1993, ARCTIC, V46, P303; CONOVER RJ, 1988, HYDROBIOLOGIA, V167, P127, DOI 10.1007/BF00026299; Corkett C. J., 1986, SYLLOGEUS, P539; Daase M, 2013, CAN J FISH AQUAT SCI, V70, P871, DOI 10.1139/cjfas-2012-0401; Darnis G, 2014, J PLANKTON RES, V36, P1092, DOI 10.1093/plankt/fbu035; DAWSON JK, 1978, LIMNOL OCEANOGR, V23, P950, DOI 10.4319/lo.1978.23.5.0950; Falk-Petersen S, 2009, MAR BIOL RES, V5, P18, DOI 10.1080/17451000802512267; Feng ZX, 2018, GLOBAL CHANGE BIOL, V24, pE159, DOI 10.1111/gcb.13890; Feng ZX, 2016, J GEOPHYS RES-OCEANS, V121, P6137, DOI 10.1002/2016JC011784; Fetterer F., 2017, SEA ICE INDEX VERSIO; Hardie DC, 2010, ENVIRON REV, V18, P1, DOI 10.1139/A09-014; Hirche HJ, 2013, MAR BIOL, V160, P2469, DOI 10.1007/s00227-013-2242-4; Hirche HJ, 1997, MAR BIOL, V128, P607, DOI 10.1007/s002270050127; HIRCHE HJ, 1992, DEEP-SEA RES, V39, pS485, DOI 10.1016/S0198-0149(06)80017-8; HIRCHE HJ, 1991, POLAR BIOL, V11, P351; Ji RB, 2013, GLOBAL CHANGE BIOL, V19, P734, DOI 10.1111/gcb.12074; Ji RB, 2012, PROG OCEANOGR, V96, P40, DOI 10.1016/j.pocean.2011.10.001; JOHNSON MW, 1963, LIMNOL OCEANOGR, V8, P89, DOI 10.4319/lo.1963.8.1.0089; Jung-Madsen S, 2013, LIMNOL OCEANOGR, V58, P2109, DOI 10.4319/lo.2013.58.6.2109; Kaartvedt S., 2018, ICES J MAR SCI, DOI [10. 1093/icesjms/fsy001, DOI 10.1093/ICESJMS/FSY001]; Kaartvedt S, 2008, J PLANKTON RES, V30, P1203, DOI 10.1093/plankt/fbn075; Kiorboe T, 2006, OECOLOGIA, V148, P40, DOI 10.1007/s00442-005-0346-3; Kohlbach D, 2016, LIMNOL OCEANOGR, V61, P2027, DOI 10.1002/lno.10351; Kosobokova KN, 1998, POLAR BIOL, V19, P63; Kosobokova K, 2009, PROG OCEANOGR, V82, P265, DOI 10.1016/j.pocean.2009.07.006; Kosobokova KN, 2010, DEEP-SEA RES PT II, V57, P96, DOI 10.1016/j.dsr2.2009.08.009; Krumhansl KA, 2018, PROG OCEANOGR, V162, P202, DOI 10.1016/j.pocean.2018.02.018; Lane PVZ, 2008, J MARINE SYST, V70, P97, DOI 10.1016/j.jmarsys.2007.04.001; Langbehn TJ, 2017, GLOBAL CHANGE BIOL, V23, P5318, DOI 10.1111/gcb.13797; Larsen JN, 2014, CLIMATE CHANGE 2014: IMPACTS, ADAPTATION, AND VULNERABILITY, PT B: REGIONAL ASPECTS, P1567; Lee RF, 2006, MAR ECOL PROG SER, V307, P273, DOI 10.3354/meps307273; Lim E, 2011, NGDC43 NOAA NESDIS M, P22; Maps F, 2014, J PLANKTON RES, V36, P18, DOI 10.1093/plankt/fbt100; Nelson RJ, 2009, MAR ECOL PROG SER, V381, P129, DOI 10.3354/meps07940; NICHOLS JH, 1991, J PLANKTON RES, V13, P661, DOI 10.1093/plankt/13.3.661; Olli K, 2007, PROG OCEANOGR, V72, P84, DOI 10.1016/j.pocean.2006.08.002; Plourde S, 2003, MAR ECOL PROG SER, V255, P219, DOI 10.3354/meps255219; R Core Team, 2016, R LANG ENV STAT COMP; Ringuette M, 2002, DEEP-SEA RES PT II, V49, P5081, DOI 10.1016/S0967-0645(02)00179-0; Rutzen I., 2017, THESIS; Sainmont J, 2014, AM NAT, V184, P466, DOI 10.1086/677926; Slagstad D, 2015, FRONT MAR SCI, V2, P85, DOI DOI 10.3389/FMARS.2015.00085; Soreide JE, 2008, DEEP-SEA RES PT II, V55, P2225, DOI 10.1016/j.dsr2.2008.05.024; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Swalethorp R, 2011, MAR ECOL PROG SER, V429, P125, DOI 10.3354/meps09065; Varpe O, 2015, ICES J MAR SCI, V72, P2532, DOI 10.1093/icesjms/fsv129; Varpe O, 2012, J PLANKTON RES, V34, P267, DOI 10.1093/plankt/fbr108; Visser AW, 2017, LIMNOL OCEANOGR, V62, P1155, DOI 10.1002/lno.10492; Wassmann P, 2015, PROG OCEANOGR, V139, P42, DOI 10.1016/j.pocean.2015.06.011; Wood SN., 2006, GEN ADDITIVE MODELS; Xu ZQ, 2018, ACTA OCEANOL SIN, V37, P87, DOI 10.1007/s13131-018-1166-8; Zhang JL, 2015, DEEP-SEA RES PT II, V118, P122, DOI 10.1016/j.dsr2.2015.02.008; Zhang JL, 2014, J GEOPHYS RES-OCEANS, V119, P297, DOI 10.1002/2013JC009301; Zhang JL, 2010, J GEOPHYS RES-OCEANS, V115, DOI 10.1029/2009JC005387; Zhang JL, 2003, MON WEATHER REV, V131, P845, DOI 10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2 63 0 0 18 18 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1354-1013 1365-2486 GLOBAL CHANGE BIOL Glob. Change Biol. NOV 2018 24 11 5426 5439 10.1111/gcb.14419 14 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology GX5CX WOS:000447760300033 30099832 2019-02-21 J Le Coeur, C; Pisanu, B; Chapuis, JL; Robert, A Le Coeur, Christie; Pisanu, Benoit; Chapuis, Jean-Louis; Robert, Alexandre Within- and between-year variations of reproductive strategy and cost in a population of Siberian chipmunks OECOLOGIA English Article Capital and income breeders; Carry-over effects; Delayed survival cost of reproduction; Hibernation; Tamias sibiricus CAPTURE-RECAPTURE MODELS; LIFE-HISTORY VARIATION; INDIVIDUAL QUALITY; CAPITAL BREEDER; EMPIRICAL-EVIDENCE; SURVIVAL; AGE; MAMMALS; SUCCESS; SELECTION Reproduction costs depend on the general life-history strategies employed by organisms for resource acquisition, the decision rules on resource allocation, and the resource availability. Although the predictability of resource availability is expected to influence the breeding strategy, the relationship between predictability and strategy has rarely been investigated at the population level. One reason is that, while the resource availability is commonly variable in space and time, their predictability is generally assumed constant. Here, we addressed the temporal variation of the breeding strategy and its associated survival cost in a hibernating population of Tamias sibiricus, in which food resources vary in their availability between years and in their predictability within years. Based on 11years of mark-recapture data, we used multi-event modelling to investigate seasonal variations in reproduction costs of female chipmunks that breed twice a year (spring and summer). In summer, during which a large variety and quantity of resources is available (income breeding strategy), the proportion of breeding females was consistent across years and reproduction yielded no mortality cost. In contrast, in spring, the proportion of breeding females was positively correlated with the amount of resources available for hibernation (partial capital breeding strategy). Spring reproduction yielded no immediate cost, but induced a delayed mortality cost over the next winter if future unknown conditions were unfavorable. Our findings highlight complex temporal reproductive patterns in a short-lived species: not only does the modality of resource acquisition vary among seasons, but also the decision rule to breed and its associated cost. [Le Coeur, Christie; Pisanu, Benoit; Chapuis, Jean-Louis; Robert, Alexandre] Sorbonne Univ, CNRS, Museum Natl Hist Nat, Ctr Ecol & Sci Conservat CESCO, 61 Rue Buffon, F-75005 Paris, France Le Coeur, C (reprint author), Sorbonne Univ, CNRS, Museum Natl Hist Nat, Ctr Ecol & Sci Conservat CESCO, 61 Rue Buffon, F-75005 Paris, France. christielecoeur@gmail.com National Forest Office (Office National des Forets, France); Conseil Regional d'Ile-de-France; Conseil Departemental des Hauts-de-Seine; Ministere de l'Ecologie, du Developpement durable et de l'Energie We are thankful to the National Forest Office (Office National des Forets, France) for financial support and for allowing fieldwork in the site 'La Faisanderie'. This work was also funded by the Conseil Regional d'Ile-de-France, the Conseil Departemental des Hauts-de-Seine and the Ministere de l'Ecologie, du Developpement durable et de l'Energie. We are thankful to F. Bart, A. Bouiges, A. Bourgeois, N. Boyer, C. Huchery, C. Jerusalem, J. Marmet, M. Marsot and M. Roussel for their contribution in mark-recapture monitoring. Acker P, 2014, FUNCT ECOL, V28, P458, DOI 10.1111/1365-2435.12187; Bergeron P, 2011, ECOLOGY, V92, P2027, DOI 10.1890/11-0766.1; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bonnet X, 1999, EVOL ECOL, V13, P485, DOI 10.1023/A:1006712713698; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Burnham K. P, 2002, MODEL SELECTION MULT; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Cam E, 2013, OIKOS, V122, P739, DOI 10.1111/j.1600-0706.2012.20532.x; Chapuis J-L, 2009, DATASHEET TAMIAS SIB; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Cubaynes S, 2011, BIOL LETTERS, V7, P303, DOI 10.1098/rsbl.2010.0778; Dall SRX, 2005, TRENDS ECOL EVOL, V20, P187, DOI 10.1016/j.tree.2005.01.010; Davis SE, 2005, ECOLOGY, V86, P1047, DOI 10.1890/04-0989; Debeffe L, 2017, ECOL EVOL, V7, P5580, DOI 10.1002/ece3.3082; Descamps S, 2009, P ROY SOC B-BIOL SCI, V276, P1129, DOI 10.1098/rspb.2008.1401; Dudash MR, 1997, ECOLOGY, V78, P484; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Frick WF, 2010, J ANIM ECOL, V79, P128, DOI 10.1111/j.1365-2656.2009.01615.x; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gimenez O, 2018, OIKOS, V127, P664, DOI 10.1111/oik.04532; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Harrison XA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077783; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hodges CJ, 2015, J EVOLUTION BIOL, V28, P1383, DOI 10.1111/jeb.12662; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Humphries MM, 2003, PHYSIOL BIOCHEM ZOOL, V76, P165, DOI 10.1086/367950; Inger R, 2010, J ANIM ECOL, V79, P974, DOI 10.1111/j.1365-2656.2010.01712.x; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; KAWAMICHI M, 1980, Japanese Journal of Ecology, V30, P211; Kawamichi M, 1984, HONYURUI KAGAKU MAMM, V48, P3; Kawamichi T., 1987, P173; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Koops MA, 2003, EVOL ECOL RES, V5, P29; Le Coeur C, 2016, OECOLOGIA, V181, P795, DOI 10.1007/s00442-016-3597-2; Le Coeur C, 2015, BEHAV ECOL, V26, P1285, DOI 10.1093/beheco/arv074; Le Coeur C, 2015, PARASITOL RES, V114, P2069, DOI 10.1007/s00436-015-4391-5; Lescroel A, 2009, J ANIM ECOL, V78, P798, DOI 10.1111/j.1365-2656.2009.01542.x; Lindstrom K, 2001, AM NAT, V158, P64, DOI 10.1086/320867; Marmet J, 2012, BEHAV ECOL SOCIOBIOL, V66, P1449, DOI 10.1007/s00265-012-1399-z; Marmet J, 2009, EUR J WILDLIFE RES, V55, P497, DOI 10.1007/s10344-009-0266-3; McCleery RH, 1996, J ANIM ECOL, V65, P96, DOI 10.2307/5703; Nevoux M, 2007, J ANIM ECOL, V76, P159, DOI 10.1111/j.1365-2656.2006.01191.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Ognev SI, 1966, MAMMALS USSR ADJACEN, V4; Orzack SH, 2011, OIKOS, V120, P369, DOI 10.1111/j.1600-0706.2010.17996.x; Pilastro A, 2003, ECOLOGY, V84, P1784, DOI 10.1890/0012-9658(2003)084[1784:LLARSI]2.0.CO;2; Pinot A, 2014, BMC ECOL, V14, DOI 10.1186/1472-6785-14-17; Pisanu B, 2013, BIOL INVASIONS, V15, P1201, DOI 10.1007/s10530-012-0375-x; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Rauset GR, 2015, ECOLOGY, V96, P3153, DOI 10.1890/15-0262.1; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Robert A, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1529; Robert A, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1692; Robert A, 2012, ECOLOGY, V93, P1944, DOI 10.1890/11-1840.1; Roff Derek A., 1992; Ruf T, 2006, ECOLOGY, V87, P372, DOI 10.1890/05-0672; Ruf Thomas, 2012, P123; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Stearns S, 1992, EVOLUTION LIFE HIST; Stephens PA, 2014, ECOLOGY, V95, P882, DOI 10.1890/13-1434.1; SWITZER PV, 1993, EVOL ECOL, V7, P533, DOI 10.1007/BF01237820; Tannerfeldt M, 1998, OIKOS, V83, P545, DOI 10.2307/3546681; Tarwater CE, 2017, BEHAV ECOL SOCIOBIOL, V71, DOI 10.1007/s00265-017-2309-1; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.2307/2680094; Toigo C, 2002, ECOSCIENCE, V9, P427; Torok J, 2004, OECOLOGIA, V141, P432, DOI 10.1007/s00442-004-1667-3; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 76 0 0 14 14 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia NOV 2018 188 3 765 776 10.1007/s00442-018-4259-3 12 Ecology Environmental Sciences & Ecology GX6KO WOS:000447870100011 30219947 2019-02-21 J Keesing, JK Keesing, John K. Rate of natural mortality in the sea star Archaster angulatus (Echinodermata: Asteroidea) JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM English Article Echinoderm; asteroid; growth; natural mortality; longevity ACANTHASTER-PLANCI L; OF-THORNS STARFISH; TYPICUS ECHINODERMATA; POPULATION-DYNAMICS; GROWTH-PARAMETERS; SIZE; ECHINOIDEA; MATURATION; ABUNDANCE; HISTORY The population size structure from a total of 876 individuals, together with published values of growth rate, maximum size and size at age were used to estimate an instantaneous rate of natural mortality (M) of 0.46-0.59 year(-1) in a population of the sea star Archaster angulatus from south-western Australia. Peak abundance (17%) of all animals sampled was 105-109 mm arm radius (means of 4.2-4.8 years of age) and only one per cent of sea stars are predicted to live beyond 8 years in the population studied. There are few comparable studies on sea stars but when compared with rates of natural mortality in other echinoderms (sea urchins), A. angulatus is intermediate among species which exhibit the extremes of life history strategies, that is, those which grow very rapidly and may live just two years or less and those with very slow growth rates and which may live for decades. [Keesing, John K.] CSIRO Oceans & Atmosphere, M097,35 Stirling Highway, Crawley 6009, Australia; [Keesing, John K.] Univ Western Australia, Oceans Inst, Indian Ocean Marine Res Ctr, M097,35 Stirling Highway, Crawley 6009, Australia Keesing, JK (reprint author), CSIRO Oceans & Atmosphere, M097,35 Stirling Highway, Crawley 6009, Australia.; Keesing, JK (reprint author), Univ Western Australia, Oceans Inst, Indian Ocean Marine Res Ctr, M097,35 Stirling Highway, Crawley 6009, Australia. john.keesing@csiro.au Western Australian Marine Sciences Institution (WAMSI) This study was funded in part by the Western Australian Marine Sciences Institution (WAMSI). Dwiponggo A., 1986, ICLARM Technical Reports, P1; BIRKELAND C, 1989, AM SCI, V77, P154; Bos AR, 2008, MAR BIOL, V156, P55, DOI 10.1007/s00227-008-1064-2; Bos AR, 2013, INVERTEBR REPROD DEV, V57, P113, DOI 10.1080/07924259.2012.689264; Bos AR, 2011, MAR BIOL, V158, P639, DOI 10.1007/s00227-010-1588-0; Boschma H., 1924, ZOOL ANZ, V58, P283; BREY T, 1991, ANTARCT SCI, V3, P251; Byrne Maria, 2013, P174; Clark A.M., 1971, MONOGRAPH SHALLOW WA; Clemente L. S., 1949, Natural and Applied Science Bulletin, V9, P297; Cockburn Sound Management Council, 2009, STAT COCKB SOUND 200; Cockburn Sound Management Council, 2010, STAT COCKB SOUND 201; Cockburn Sound Management Council, 2012, STAT COCKB SOUND 201; Cockburn Sound Management Council, 2011, STAT COCKB SOUND 201; Cockburn Sound Management Council, 2008, STAT COCKB SOUND 200; Doherty P.J., 1988, P131; EBERT TA, 1993, MAR BIOL, V117, P79, DOI 10.1007/BF00346428; EBERT TA, 1982, ECOL MONOGR, V52, P353, DOI 10.2307/2937351; EBERT TA, 1973, OECOLOGIA, V11, P281, DOI 10.1007/BF01882785; EBERT TA, 1975, AM ZOOL, V15, P755; Ebert TA, 2013, DEV AQUAC FISH SCI, V38, P83, DOI 10.1016/B978-0-12-396491-5.00007-1; Endean R., 1973, P389; FREIRE CA, 1992, MAR BIOL, V112, P625, DOI 10.1007/BF00346180; Galstoff P.S., 1939, B US BUR FISH, V49, P73; Jorgensen C, 2013, J SEA RES, V75, P8, DOI 10.1016/j.seares.2012.04.003; Keesing JK, 1996, OCEANOL ACTA, V19, P441; KEESING JK, 1992, MAR ECOL PROG SER, V85, P107, DOI 10.3354/meps085107; Keesing JK, 2017, INVERTEBR REPROD DEV, V61, P119, DOI 10.1080/07924259.2017.1287782; Keesing JK, 2011, MAR BIOL, V158, P1163, DOI 10.1007/s00227-011-1638-2; King M, 1995, FISHERIES BIOL ASSES; KOMATSU M, 1983, ANNOT ZOOL JAPON, V56, P187; Lawrence JM, 2011, J MAR BIOL ASSOC UK, V91, P1577, DOI 10.1017/S0025315410000871; Lawrence J. M, 2013, STARFISH BIOL ECOLOG; Lawrence J.M., 1991, ECHINODERM RES, P39; LUCAS JS, 1984, J EXP MAR BIOL ECOL, V79, P129, DOI 10.1016/0022-0981(84)90214-4; Meretta PE, 2016, MAR ECOL-EVOL PERSP, V37, P1423, DOI 10.1111/maec.12359; MUKAI H, 1986, B MAR SCI, V38, P366; NOJIMA S, 1979, Publications from the Amakusa Marine Biological Laboratory Kyushu University, V5, P45; OHSHIMA HIROSHI, 1934, PROC IMP ACAD [TOKYO], V10, P180; OHSHIMA HIROSHI, 1934, PROC IMP ACAD [TOKYO], V10, P125; PAULY D, 1980, J CONSEIL, V39, P175; Regalado JM, 2010, SCI DILIMAN, V22, P41; Rose TH, 2012, OCEAN SCI, V8, P545, DOI 10.5194/os-8-545-2012; RUN JQ, 1988, MAR BIOL, V99, P247, DOI 10.1007/BF00391987; Russell MP, 1998, OPHELIA, V48, P137, DOI 10.1080/00785236.1998.10428681; SLOAN NA, 1981, J NAT HIST, V15, P407, DOI 10.1080/00222938100770311; YAMAGUCHI M, 1977, PAC SCI, V31, P13; YAMAGUCHI M, 1975, OECOLOGIA, V20, P321, DOI 10.1007/BF00345522; YAMAGUCHI M, 1974, PAC SCI, V28, P123; Yamaguchi M., 1976, MAR BIOL, V39, P57; Yeo S, 2015, INVERTEBR REPROD DEV, V59, P141, DOI 10.1080/07924259.2015.1047040; ZANN L, 1990, CORAL REEFS, V9, P135, DOI 10.1007/BF00258225 52 0 0 3 3 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0025-3154 1469-7769 J MAR BIOL ASSOC UK J. Mar. Biol. Assoc. U.K. NOV 2018 98 7 1689 1693 10.1017/S0025315417001126 5 Marine & Freshwater Biology Marine & Freshwater Biology GW9NA WOS:000447314500016 2019-02-21 J Ye, F; Ma, MH; Op den Camp, HJM; Chatzinotas, A; Li, L; Lv, MQ; Wu, SJ; Wang, Y Ye, Fei; Ma, Mao-Hua; Op den Camp, Huub J. M.; Chatzinotas, Antonis; Li, Lei; Lv, Ming-Quan; Wu, Sheng-Jun; Wang, Yu Different Recovery Processes of Soil Ammonia Oxidizers from Flooding Disturbance MICROBIAL ECOLOGY English Article Archaea; Ammonia-oxidizing communities; Response; Resistance; Resilience; Riparian zone MICROBIAL COMMUNITY; AGRICULTURAL SOIL; BACTERIA RATHER; REGIME SHIFTS; ARCHAEA; RESILIENCE; DIVERSITY; RESISTANCE; MICROORGANISMS; AMOA Understanding how microorganisms respond to environmental disturbance is one of the key focuses in microbial ecology. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are responsible for ammonia oxidation which is a crucial step in the nitrogen cycle. Although the physiology, distribution, and activity of AOA and AOB in soil have been extensively investigated, their recovery from a natural disturbance remains largely unknown. To assess the recovery capacities, including resistance and resilience, of AOA and AOB, soil samples were taken from a reservoir riparian zone which experienced periodically water flooding. The samples were classified into three groups (flooding, recovery, and control) for a high-throughput sequencing and quantitative PCR analysis. We used a relative quantitative index of both the resistance (RS) and resilience (RL) to assess the variation of gene abundance, alpha-diversity, and community composition. The AOA generally demonstrated a better recovery capability after the flooding disturbance compared to AOB. In particular, AOA were more resilient after the flooding disturbance. Taxa within the AOA and AOB showed different RS and RL values, with the most abundant taxa showing in general the highest RS indices. Soil NH4+ and Fe2+/Fe3+ were the main variables controlling the key taxa of AOA and AOB and probably influenced the resistance and resilience properties of AOA and AOB communities. The distinct mechanisms of AOA and AOB in maintaining community stability against the flooding disturbance might be linked to the different life-history strategies: the AOA community was more likely to represent r-strategists in contrast to the AOB community following a K-life strategy. Our results indicated that the AOA may play a vital role in ammonia oxidation in a fluctuating habitat and contribute to the stability of riparian ecosystem. [Ye, Fei; Ma, Mao-Hua; Lv, Ming-Quan; Wu, Sheng-Jun; Wang, Yu] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China; [Ye, Fei; Lv, Ming-Quan] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Op den Camp, Huub J. M.] Radboud Univ Nijmegen, IWWR, Dept Microbiol, NL-6525 AJ Nijmegen, Netherlands; [Chatzinotas, Antonis] UFZ Helmholtz Ctr Environm Res, Dept Environm Microbiol, D-04318 Leipzig, Germany; [Chatzinotas, Antonis] Ctr Integrat Biodivers Res iDiv, D-04103 Leipzig, Germany; [Li, Lei] Beijing Acad Sci & Technol, Beijing 100048, Peoples R China Wu, SJ; Wang, Y (reprint author), Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China. wsj@cigit.ac.cn; wangyu@cigit.ac.cn Op den Camp, Huub/F-5114-2011 Op den Camp, Huub/0000-0003-1990-9030; Wang, Yu/0000-0001-6390-8444 National Natural Science Foundation of China [41303053, 41571497, 41301540] This work was supported by the National Natural Science Foundation of China [41303053, 41571497, 41301540]. We are grateful to the Kaizhou Science & Technology Commission for the assistance in sampling and background data collection. Allison SD, 2008, P NATL ACAD SCI USA, V105, P11512, DOI 10.1073/pnas.0801925105; Bao SD, 2000, CHEM ANAL AGR SOIL; Bao YH, 2015, EARTH-SCI REV, V150, P14, DOI 10.1016/j.earscirev.2015.07.005; Bapiri A, 2010, MICROB ECOL, V60, P419, DOI 10.1007/s00248-010-9723-5; BENDER EA, 1984, ECOLOGY, V65, P1, DOI 10.2307/1939452; Chen J, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.01384; Chen YL, 2013, APPL SOIL ECOL, V68, P36, DOI 10.1016/j.apsoil.2013.03.006; China Three Gorges Corporation, 2017, BRIEF INTR 3 GORG CO; Collie JS, 2004, PROG OCEANOGR, V60, P281, DOI 10.1016/j.pocean.2004.02.013; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; de la Torre JR, 2008, ENVIRON MICROBIOL, V10, P810, DOI 10.1111/j.1462-2920.2007.01506.x; de Vries FT, 2013, FRONT MICROBIOL, V4, DOI 10.3389/fmicb.2013.00265; de Vries FT, 2012, NAT CLIM CHANGE, V2, P276, DOI [10.1038/nclimate1368, 10.1038/NCLIMATE1368]; DEAN WE, 1974, J SEDIMENT PETROL, V44, P242; DELEIJ FAAM, 1994, MICROB ECOL, V27, P81, DOI 10.1007/BF00170116; Di HJ, 2009, NAT GEOSCI, V2, P621, DOI 10.1038/NGEO613; Di HJ, 2010, FEMS MICROBIOL ECOL, V72, P386, DOI 10.1111/j.1574-6941.2010.00861.x; Fenchel T, 2004, BIOSCIENCE, V54, P777, DOI 10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2; Fetzer I, 2015, P NATL ACAD SCI USA, V112, P14888, DOI 10.1073/pnas.1505587112; Folke C, 2004, ANNU REV ECOL EVOL S, V35, P557, DOI 10.1146/annurev.ecolsys.35.021103.105711; Francis CA, 2005, P NATL ACAD SCI USA, V102, P14683, DOI 10.1073/pnas.0506625102; Griffiths BS, 2013, FEMS MICROBIOL REV, V37, P112, DOI 10.1111/j.1574-6976.2012.00343.x; Griffiths BS, 2000, OIKOS, V90, P279, DOI 10.1034/j.1600-0706.2000.900208.x; Hatzenpichler R, 2008, P NATL ACAD SCI USA, V105, P2134, DOI 10.1073/pnas.0708857105; He J, 2007, ENVIRON MICROBIOL, V9, P2364, DOI 10.1111/j.1462-2920.2007.01358.x; Jia ZJ, 2009, ENVIRON MICROBIOL, V11, P1658, DOI 10.1111/j.1462-2920.2009.01891.x; Karakoc C, 2017, BMC ECOL, V17, DOI 10.1186/s12898-017-0123-2; Ke XB, 2012, FEMS MICROBIOL ECOL, V80, P87, DOI 10.1111/j.1574-6941.2011.01271.x; Konneke M, 2005, NATURE, V437, P543, DOI 10.1038/nature03911; Langer U, 2004, J PLANT NUTR SOIL SC, V167, P267, DOI 10.1002/jpln.200421362; Lee SH, 2017, ISME J, V11, P1447, DOI 10.1038/ismej.2017.1; Leininger S, 2006, NATURE, V442, P806, DOI 10.1038/nature04983; Lennon JT, 2012, ECOLOGY, V93, P1867, DOI 10.1890/11-1745.1; Liu SP, 2015, APPL MICROBIOL BIOT, V99, P2715, DOI 10.1007/s00253-014-6307-1; Martens-Habbena W, 2009, NATURE, V461, P976, DOI 10.1038/nature08465; Meyer AF, 2004, APPL ENVIRON MICROB, V70, P483, DOI 10.1128/AEM.70.1.483-489.2004; Ng EL, 2015, SOIL BIOL BIOCHEM, V81, P58, DOI 10.1016/j.soilbio.2014.10.028; Nicol GW, 2006, TRENDS MICROBIOL, V14, P207, DOI 10.1016/j.tim.2006.03.004; Norton JM, 2002, ARCH MICROBIOL, V177, P139, DOI 10.1007/s00203-001-0369-z; Offre P, 2009, FEMS MICROBIOL ECOL, V70, P99, DOI 10.1111/j.1574-6941.2009.00725.x; Orwin KH, 2004, SOIL BIOL BIOCHEM, V36, P1907, DOI 10.1016/j.soilbio.2004.04.036; Ouyang Y, 2016, SOIL BIOL BIOCHEM, V96, P4, DOI 10.1016/j.soilbio.2016.01.012; Pachauri RK, 2007, CLIMATE CHANGE 2007, P104; Paine RT, 1998, ECOSYSTEMS, V1, P535, DOI 10.1007/s100219900049; Pester M, 2012, ENVIRON MICROBIOL, V14, P525, DOI 10.1111/j.1462-2920.2011.02666.x; PIMM SL, 1984, NATURE, V307, P321, DOI 10.1038/307321a0; Purkhold U, 2000, APPL ENVIRON MICROB, V66, P5368, DOI 10.1128/AEM.66.12.5368-5382.2000; Rotthauwe JH, 1997, APPL ENVIRON MICROB, V63, P4704; RYKIEL EJ, 1985, AUST J ECOL, V10, P361, DOI 10.1111/j.1442-9993.1985.tb00897.x; Santoro AE, 2008, ENVIRON MICROBIOL, V10, P1068, DOI 10.1111/j.1462-2920.2007.01547.x; Shade A, 2012, FRONT MICROBIOL, V3, DOI 10.3389/fmicb.2012.00417; STUMM W, 1992, GEOCHIM COSMOCHIM AC, V56, P3233, DOI 10.1016/0016-7037(92)90301-X; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Thion C, 2014, FEMS MICROBIOL ECOL, V90, P380, DOI 10.1111/1574-6941.12395; Verhamme DT, 2011, ISME J, V5, P1067, DOI 10.1038/ismej.2010.191; Wang SY, 2011, APPL MICROBIOL BIOT, V90, P779, DOI 10.1007/s00253-011-3090-0; Wang YP, 2013, APPL MICROBIOL BIOT, V97, P6883, DOI 10.1007/s00253-013-4859-0; Wen ZF, 2017, ECOL INDIC, V83, P441, DOI 10.1016/j.2017.07.048; Xiang XJ, 2017, SOIL BIOL BIOCHEM, V107, P218, DOI 10.1016/j.soilbio.2017.01.012; Xie Z, 2014, SOIL BIOL BIOCHEM, V77, P89, DOI 10.1016/j.soilbio.2014.06.024; Yang F., 2012, ACTA ECOL SIN, V32, P89; Ye C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121210; You J, 2009, WATER RES, V43, P1801, DOI 10.1016/j.watres.2009.01.016; Zheng GD, 2001, APPL GEOCHEM, V16, P1201 64 0 0 15 16 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0095-3628 1432-184X MICROB ECOL Microb. Ecol. NOV 2018 76 4 1041 1052 10.1007/s00248-018-1183-3 12 Ecology; Marine & Freshwater Biology; Microbiology Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GX0II WOS:000447393200017 29644407 2019-02-21 J Hall, JM; Buckelew, A; Lovern, M; Secor, SM; Warner, DA Hall, Joshua M.; Buckelew, Andrew; Lovern, Matthew; Secor, Stephen M.; Warner, Daniel A. Seasonal Shifts in Reproduction Depend on Prey Availability for an Income Breeder PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article life-history evolution; seasonality; parental investment; trade-offs; Anolis; reproductive effort; nutrition OFFSPRING BODY-SIZE; LIFE-HISTORY; CLUTCH SIZE; INTRASPECIFIC VARIATION; GEOGRAPHIC-VARIATION; EGG SIZE; FOOD SUPPLEMENTATION; NATURAL-SELECTION; ANOLIS-SAGREI; GROWTH-RATES The evolution of reproductive strategies depends on local environmental conditions. When environments are seasonal, selection favors individuals that align changes in key reproductive traits with seasonal shifts in habitat quality. Offspring habitat quality can decline through the season, and increased maternal provisioning to late-produced offspring may compensate. This shift, however, may depend on environmental factors that influence reproduction and are, themselves, subject to temporal changes (e.g., food abundance). We studied the brown anole lizard (Anolis sagrei) to demonstrate how prey abundance modifies seasonal changes in key reproductive traits. We bred lizards in controlled laboratory conditions across the reproductive season and manipulated the availability of food by providing some breeding pairs high prey availability and some low. Halfway through the season, we switched half of the breeding pairs to the opposite treatment. We measured growth of male and female lizards as well as latency to oviposit, fecundity, egg size, egg content (yolk, water, shell mass), and egg quality (steroid hormones, yolk caloric content) over this period. Higher prey availability enhanced lizard growth and some key reproductive traits (egg size, fecundity) but not others (egg content and quality). Moreover, we found that seasonal patterns of reproduction were modified by prey treatment in ways that have consequences for offspring survival. Our results demonstrate that seasonal changes in reproduction are dependent on fluctuations in local environmental conditions. Moreover, researchers must account for seasonal shifts in environmental factors and reproductive traits (and their interactions) when designing experiments and drawing conclusions about how the environment influences reproduction. [Hall, Joshua M.; Warner, Daniel A.] Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA; [Buckelew, Andrew; Warner, Daniel A.] Univ Alabama Birmingham, Dept Biol, Birmingham, AL 35894 USA; [Lovern, Matthew] Oklahoma State Univ, Dept Zool, Stillwater, OK 74078 USA; [Secor, Stephen M.] Univ Alabama, Dept Biol Sci, Tuscaloosa, AL 35487 USA Hall, JM (reprint author), Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA. jmh0131@auburn.edu University of Alabama at Birmingham (UAB) Institutional Animal Care and Use Committee [120909764]; UAB We thank D. Delaney, A. Durso, T. Mitchell, and A. Reedy for help collecting lizards for the breeding colony and M. Bach for performing the bomb calorimetry. Research was approved by the University of Alabama at Birmingham (UAB) Institutional Animal Care and Use Committee (project 120909764) and supported by new faculty start-up funds from UAB to D.A.W. ANDREWS R, 1974, ECOLOGY, V55, P1317, DOI 10.2307/1935459; BALLINGER RE, 1979, ECOLOGY, V60, P901, DOI 10.2307/1936858; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bonnet X, 2001, OIKOS, V92, P297, DOI 10.1034/j.1600-0706.2001.920212.x; Boyce AJ, 2015, AUK, V132, P424, DOI 10.1642/AUK-14-150.1; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; CONOVER DO, 1992, J FISH BIOL, V41, P161, DOI 10.1111/j.1095-8649.1992.tb03876.x; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; Cox RM, 2010, EVOLUTION, V64, P798, DOI 10.1111/j.1558-5646.2009.00851.x; CREWS D, 1977, AM SCI, V65, P428; Delaney DM, 2016, J HERPETOL, V50, P227, DOI 10.1670/14-147; DEMARCO VG, 1989, OECOLOGIA, V80, P525, DOI 10.1007/BF00380077; DENNO RF, 1981, INSECT LIFE HIST PAT; DOBSON FS, 1989, J MAMMAL, V70, P142, DOI 10.2307/1381677; Du B, 2014, J AVIAN BIOL, V45, P466, DOI 10.1111/jav.00449; Espirito-Santo HMV, 2013, FRESHWATER BIOL, V58, P2494, DOI 10.1111/fwb.12225; FERGUSON GW, 1982, HERPETOLOGICA, V38, P178; Games P.A., 1976, J EDUCATIONAL STATIS, V2, P113, DOI DOI 10.2307/1164979; GIESEL JT, 1976, ANNU REV ECOL SYST, V7, P57, DOI 10.1146/annurev.es.07.110176.000421; GORMAN GC, 1974, ECOLOGY, V55, P360, DOI 10.2307/1935223; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P329, DOI 10.1016/j.neubiorev.2004.12.002; GUYER C, 1988, ECOLOGY, V69, P362, DOI 10.2307/1940434; Hall JM, 2017, BIOL J LINN SOC, V122, P860; Harriman VB, 2017, ECOL EVOL, V7, P2122, DOI 10.1002/ece3.2815; Hayward L.S., 2004, GEN COMP ENDOCR, V146, P144; Heins DC, 2004, ECOL FRESHW FISH, V13, P258, DOI 10.1111/j.1600-0633.2004.00064.x; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Hogstad O, 2005, IBIS, V147, P77, DOI 10.1111/j.1474-919x.2004.00338; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Husak JF, 2016, FUNCT ECOL, V30, P1665, DOI 10.1111/1365-2435.12653; Iida H, 2016, APPL ENTOMOL ZOOL, V51, P125, DOI 10.1007/s13355-015-0381-4; Ji X, 2005, BIOL J LINN SOC, V85, P27, DOI 10.1111/j.1095-8312.2005.00470.x; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Kenny HV, 2017, ECOL EVOL, V7, P10701, DOI 10.1002/ece3.3560; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LEE JC, 1989, COPEIA, P930, DOI 10.2307/1445979; Lovern MB, 2008, INTEGR COMP BIOL, V48, P428, DOI 10.1093/icb/icn058; Luo LG, 2010, J EXP BIOL, V213, P2073, DOI 10.1242/jeb.041137; Madsen T, 2000, J ANIM ECOL, V69, P952, DOI 10.1046/j.1365-2656.2000.00477.x; Martin TE, 2006, EVOLUTION, V60, P390; Mitchell TS, 2018, EVOL ECOL, V32, P231, DOI 10.1007/s10682-018-9936-5; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; Oberg M, 2014, OECOLOGIA, V174, P139, DOI 10.1007/s00442-013-2763-z; Olsson M, 1997, J EVOLUTION BIOL, V10, P369, DOI 10.1007/s000360050030; Pearson PR, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.0256; Price ER, 2017, BIOL REV, V92, P1406, DOI 10.1111/brv.12288; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Pyron RA, 2014, ECOL LETT, V17, P13, DOI 10.1111/ele.12168; R Development Core Team, 2015, R LANG ENV STAT COMP; Reedy AM, 2013, BEHAV ECOL, V24, P39, DOI 10.1093/beheco/ars133; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; Ruffino L, 2014, FRONT ZOOL, V11, DOI 10.1186/s12983-014-0080-y; SCHWABL H, 1993, P NATL ACAD SCI USA, V90, P11446, DOI 10.1073/pnas.90.24.11446; Shine R, 2003, P ROY SOC B-BIOL SCI, V270, P995, DOI 10.1098/rspb.2002.2307; Simon JC, 2010, CR BIOL, V333, P488, DOI 10.1016/j.crvi.2010.03.003; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; Singleton G, 2001, P ROY SOC B-BIOL SCI, V268, P1741, DOI 10.1098/rspb.2001.1638; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STAMPS J, 1981, ECOLOGY, V62, P33, DOI 10.2307/1936665; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Thomann M, 2015, J EVOLUTION BIOL, V28, P766, DOI 10.1111/jeb.12603; TOKARZ RR, 1985, ANIM BEHAV, V33, P746, DOI 10.1016/S0003-3472(85)80006-3; TRIVERS RL, 1976, EVOLUTION, V30, P253, DOI 10.1111/j.1558-5646.1976.tb00908.x; TUOMI J, 1980, OECOLOGIA, V45, P39, DOI 10.1007/BF00346705; Uller T, 2010, OECOLOGIA, V162, P663, DOI 10.1007/s00442-009-1503-x; Varpe O, 2007, OIKOS, V116, P1331, DOI 10.1111/j.2007.0030-1299.15893.x; Warner DA, 2008, J ANIM ECOL, V77, P1242, DOI 10.1111/j.1365-2656.2008.01442.x; Warner DA, 2007, OECOLOGIA, V154, P65, DOI 10.1007/s00442-007-0809-9; Warner DA, 2016, J EXP ZOOL PART A, V325, P588, DOI 10.1002/jez.2053; Warner DA, 2015, BIOL J LINN SOC, V115, P437, DOI 10.1111/bij.12519; Warner DA, 2014, PHYSIOL BIOCHEM ZOOL, V87, P276, DOI 10.1086/674454; Warner DA, 2013, BEHAV ECOL SOCIOBIOL, V67, P973, DOI 10.1007/s00265-013-1523-8; WILLIAMSON I, 1995, COPEIA, P105; Wright AN, 2013, OIKOS, V122, P1496, DOI 10.1111/j.1600-0706.2013.00379.x 79 0 0 7 7 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. NOV-DEC 2018 91 6 1129 1147 10.1086/700341 19 Physiology; Zoology Physiology; Zoology GW9UY WOS:000447353600001 30320532 2019-02-21 J Olsen, Z; McDonald, D; Bumguardner, B Olsen, Zachary; McDonald, Dusty; Bumguardner, Britt Intraspecific variation in life history strategies and implications for management: A case study of black drum (Pogonias cromis) in the Upper Laguna Madre, Texas USA FISHERIES RESEARCH English Article Life history; Age and growth; Reproduction; Black drum (Pogonias cromis); Hypersalinity GULF-OF-MEXICO; POPULATION REGULATION; REPRODUCTIVE-BIOLOGY; SELECTION; SALINITY; PATTERNS; IMPACTS; GROWTH; AGE Multivariate evaluation of life history strategies (LHSs) for fish species have a number of implications for population dynamics and viable management strategies. Here we examined intraspecific variation in LHSs among black drum (Pogonias cromis) populations, with focus on a population inhabiting the Upper Laguna Madre, Texas (a hypersaline estuary). Age, growth, and reproduction for this population were analyzed in the context of previously published life history data for this and other black drum populations along the western Atlantic and Gulf of Mexico coasts. Black drum from the Upper Laguna Madre were found to mature earlier than other populations. When analyzed in the context of other life history variables (fecundity, maximum age, maximum size, and growth rate) and compared to other populations of black drum throughout their range, LHS in the Upper Laguna Madre population was found to diverge away from the typical periodic LHS of sciaenids and towards the opportunistic side of the multivariate LHS spectrum. This variation in LHS is often indicative of populations existing in habitats that are productive yet subject to frequent and intense disturbance. Here, this disturbance is attributed to hypersalinity that has historically characterized the Upper Laguna Madre. This variation in LHS is further supported by observed population dynamics for this region presented in past work and has a number of potential management implications for this population. [Olsen, Zachary] Texas Parks & Wildlife Dept, Coastal Fisheries Div, Upper Laguna Madre Field Off, 6300 Ocean Dr, Corpus Christi, TX 78412 USA; [McDonald, Dusty] Texas Parks & Wildlife Dept, Inland Fisheries Div, Corpus Christi Fisheries Management Dist, Box 116, Mathis, TX 78368 USA; [Bumguardner, Britt] Texas Parks & Wildlife Dept, Perry R Bass Marine Fisheries Res Stn, 3864 FM 3280, Palacios, TX 77465 USA Olsen, Z (reprint author), Texas Parks & Wildlife Dept, Coastal Fisheries Div, Upper Laguna Madre Field Off, 6300 Ocean Dr, Corpus Christi, TX 78412 USA. zachary.olsen@tpwd.texas.gov; dusty.mcdonald@tpwd.texas.gov Ajemian MJ, 2018, ESTUAR COAST, V41, P1410, DOI 10.1007/s12237-017-0363-6; BECKMAN DW, 1990, T AM FISH SOC, V119, P537, DOI 10.1577/1548-8659(1990)119<0537:AAGOBD>2.3.CO;2; Breuer J.P., 1957, ECOLOGICAL SURVEY BA, P134; BROWNPETERSON N, 1988, FISH B-NOAA, V86, P373; Bumguardner B.W., 1996, F36R US DEP INT FISH; Clarke K. R., 2015, PRIMER V7 USER MANUA; Collier A., 1950, INTRO HYDROGRAPHY TI, V1, P121; Fox J., 2011, R COMPANION APPL REG; Froese R., 2018, FISHBASE; Haddon M, 2001, MODELLING QUANTITATI; Hoese HD, 1998, FISHEGULF MEXICO; Jones CM, 1998, FISH B-NOAA, V96, P451; Karel W.J., 1996, F36R US DEP INT FISH; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; MAC ARTHUR ROBERT H., 1967; Macchi GJ, 2002, FISH RES, V59, P83, DOI 10.1016/S0165-7836(01)00410-6; Martinez-Andrade F., 2015, MARINE RESOURCE MONI; Martinez-Andrade F., 2005, MANAGEMENT DATA SERI, V232; Montagna PA, 2002, ESTUARIES, V25, P1436, DOI 10.1007/BF02692237; MURPHY M D, 1989, Northeast Gulf Science, V10, P127; Murphy MD, 1998, FISH B-NOAA, V96, P382; Music J.L., 1984, GEORGIA DEP NATURAL, V38; NIELAND DL, 1993, T AM FISH SOC, V122, P318, DOI 10.1577/1548-8659(1993)122<0318:RBAAVO>2.3.CO;2; Ogle D. H., 2015, FSA FISHERIES STOCK; Olsen Zachary T., 2016, Texas Journal of Science, V68, P79; Olsen Zachary T., 2014, Gulf of Mexico Science, V32, P60; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; R Core Team, 2014, R LANG ENV STAT COMP; SIMMONS ERNEST G., 1962, PUBL INST MAR SCI, V8, P184; Tolan JM, 2007, ESTUAR COAST SHELF S, V72, P247, DOI 10.1016/j.ecss.2006.10.018; Tunnell J.W., 2002, LAGUNA MADRE TEXAS T; Van Diggelen AD, 2016, ESTUAR COAST, V39, P967, DOI 10.1007/s12237-015-0058-9; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 35 0 0 4 4 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. NOV 2018 207 55 62 10.1016/j.fishres.2018.06.009 8 Fisheries Fisheries GQ9BC WOS:000442059900007 2019-02-21 J Nettersheim, J; Gerlach, G; Herpertz, S; Abed, R; Figueredo, AJ; Brune, M Nettersheim, Johanna; Gerlach, Gabriele; Herpertz, Stephan; Abed, Riadh; Figueredo, Aurelio J.; Bruene, Martin Evolutionary Psychology of Eating Disorders: An Explorative Study in Patients With Anorexia Nervosa and Bulimia Nervosa FRONTIERS IN PSYCHOLOGY English Article eating disorders; anorexia nervosa; bulimia; life history strategy; executive functioning; mate value; intrasexual competition BEHAVIOR RATING INVENTORY; LIFE-HISTORY THEORY; SEXUAL SELECTION; EXAMINATION-QUESTIONNAIRE; EXECUTIVE FUNCTION; MATE PREFERENCES; PERSONALITY; COMPETITION; VALIDITY; SELF Prior research on non-clinical samples has lent support to the sexual competition hypothesis for eating disorders (SCH) where the drive for thinness can be seen as an originally adaptive strategy for women to preserve a nubile female shape, which, when driven to an extreme, may cause eating disorders. Restrictive versus impulsive eating behavior may also be relevant for individual differences in allocation of resources to either mating effort or somatic growth, reflected in an evolutionary concept called "Life History Theory" (LHT). In this study, we aimed to test the SCH and predictions from LHT in female patients with clinically manifest eating disorders. Accordingly, 20 women diagnosed with anorexia nervosa (AN), 20 with bulimia nervosa (BN), and 29 age-matched controls completed a package of questionnaires comprising measures for behavioral features and attitudes related to eating behavior, intrasexual competition, life history strategy, executive functioning and mating effort. In line with predictions, we found that relatively faster life history strategies were associated with poorer executive functioning, lower perceived own mate value, greater intrasexual competition for mates but not for status, and, in part, with greater disordered eating behavior. Comparisons between AN and BN revealed that individuals with BN tended to pursue a "fast" life history strategy, whereas people with AN were more similar to controls in pursuing a "slow" life history strategy. Moreover, intrasexual competition for mates was significantly predicted by the severity of disordered eating behavior. Together, our findings lend partial support to the SCH for eating disorders. We discuss the implications and limitations of our study findings. [Nettersheim, Johanna; Bruene, Martin] Ruhr Univ Bochum, LWL Univ Hosp Bochum, Dept Psychiat Psychotherapy & Prevent Med, Div Cognit Neuropsychiat, Bochum, Germany; [Gerlach, Gabriele; Herpertz, Stephan] Ruhr Univ Bochum, LWL Univ Hosp Bochum, Dept Psychosomat Med, Bochum, Germany; [Abed, Riadh] Minist Justice, Mental Hlth Tribunals, Sheffield, S Yorkshire, England; [Figueredo, Aurelio J.] Univ Arizona, Dept Psychol, Coll Sci, Sch Mind Brain & Behav, Tucson, AZ 85721 USA Brune, M (reprint author), Ruhr Univ Bochum, LWL Univ Hosp Bochum, Dept Psychiat Psychotherapy & Prevent Med, Div Cognit Neuropsychiat, Bochum, Germany. martin.bruene@rub.de Aardoom JJ, 2012, EAT BEHAV, V13, P305, DOI 10.1016/j.eatbeh.2012.09.002; Abed R, 2012, SCI WORLD J, DOI 10.1100/2012/290813; Abed RT, 1998, BRIT J MED PSYCHOL, V71, P525, DOI 10.1111/j.2044-8341.1998.tb01007.x; American Psychiatric Association, 2013, DIAGNOSTIC AND STATI, DOI [10.1176/appi.books.9780890425596, DOI 10.1176/APPI.BOOKS.9780890425596]; Apostolou M, 2007, EVOL HUM BEHAV, V28, P403, DOI 10.1016/j.evolhumbehav.2007.05.007; Arnocky S, 2016, ENCY EVOLUTIONARY PS, P1; Berg KC, 2012, INT J EAT DISORDER, V45, P428, DOI 10.1002/eat.20931; Bovet J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0123284; Brooks SJ, 2011, BMC PSYCHIATRY, V11, DOI 10.1186/1471-244X-11-179; Brune M, 2016, EVOL MED PUBLIC HLTH, P52, DOI 10.1093/emph/eow002; Bulik CM, 2016, CURR OPIN PSYCHIATR, V29, P383, DOI 10.1097/YCO.0000000000000275; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Buss DM, 1987, SOCIOBIOLOGY PSYCHOL, P335; Cassin SE, 2005, CLIN PSYCHOL REV, V25, P895, DOI 10.1016/j.cpr.2005.04.012; Ciszewski S, 2014, EAT BEHAV, V15, P175, DOI 10.1016/j.eatbeh.2014.01.004; Condit V K, 1990, Hum Nat, V1, P391, DOI 10.1007/BF02734052; COOPER Z, 1989, BRIT J PSYCHIAT, V154, P807, DOI 10.1192/bjp.154.6.807; CRAWFORD CB, 1989, J COMP PSYCHOL, V103, P4, DOI 10.1037/0735-7036.103.1.4; Del Giudice M., 2018, EVOLUTIONARY PSYCHOP, DOI [10.1093/med-psych/9780190246846.001.0001, DOI 10.1093/MED-PSYCH/9780190246846.001.0001]; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Dickemann M., 1981, NATURAL SELECTION SO, P439; Eddy KT, 2008, AM J PSYCHIAT, V165, P245, DOI 10.1176/appi.ajp.2007.07060951; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Erskine HE, 2016, CURR OPIN PSYCHIATR, V29, P346, DOI 10.1097/YCO.0000000000000276; Faer LM, 2005, PSYCHOL PSYCHOTHER-T, V78, P397, DOI 10.1348/147608305X42929; Fairburn CG, 2008, COGNITIVE BEHAV THER; Ferguson CJ, 2011, REV GEN PSYCHOL, V15, P11, DOI 10.1037/a0022607; Fichter MM, 2016, INT J EAT DISORDER, V49, P391, DOI 10.1002/eat.22501; Figueredo A. J, 2016, EVOL PSYCHOL SCI, V3, P40, DOI [10.1007/s40806-016-0073-5, DOI 10.1007/S40806-016-0073-5]; Figueredo A. J., 2012, TEMAS PSICOLOGIA, V20, P87; Figueredo A. J, 2007, ARIZONA LIFE HIST BA; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Flatt T., 2011, MECH LIFE HIST EVOLU, DOI [10. 1093/acprof:oso/9780199568765. 001. 0001, DOI 10.1093/ACPROF:OSO/9780199568765.001.0001]; Fujisawa TX, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0128548; Gatward N, 2007, EUR EAT DISORD REV, V15, P1, DOI 10.1002/erv.718; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gioia GA, 2002, CHILD NEUROPSYCHOL, V8, P249, DOI 10.1076/chin.8.4.249.13513; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Gordon R. A., 1990, ANOREXIA BULIMIA ANA; Gorsuch R. L, 1991, ANN C AM EV ASS C CH; Gual P, 2002, INT J EAT DISORDER, V31, P261, DOI 10.1002/eat.10040; Guisinger S, 2003, PSYCHOL REV, V110, P745, DOI 10.1037/0033-295X.110.4.745; Harris EC, 1998, BRIT J PSYCHIAT, V173, P11, DOI 10.1192/bjp.173.1.11; Hilbert A, 2006, EATING DISORDER EXAM; Hoek HW, 2003, INT J EAT DISORDER, V34, P383, DOI 10.1002/eat.10222; Hudson JI, 2007, BIOL PSYCHIAT, V61, P348, DOI 10.1016/j.biopsych.2006.03.040; Jacobi C., 2005, ARITH 2005, P59; Jauregui-Lobera I, 2011, NEUROPSYCH DIS TREAT, V7, P577, DOI 10.2147/NDT.S25186; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; Juda MN, 2004, EVOL HUM BEHAV, V25, P200, DOI 10.1016/j.evolhumbehav.2004.02.001; Kaltiala-Heino R, 2001, J ADOLESCENT HEALTH, V28, P346, DOI 10.1016/S1054-139X(01)00195-1; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Katzman MA, 2004, CULT MED PSYCHIAT, V28, P463, DOI 10.1007/s11013-004-1065-7; Kaye W, 2008, PHYSIOL BEHAV, V94, P121, DOI 10.1016/j.physbeh.2007.11.037; Keel PK, 2010, INT J EAT DISORDER, V43, P195, DOI 10.1002/eat.20810; Keller B, 2013, ARCH PSYCHOL RELIG, V35, P71, DOI 10.1163/15736121-12341254; Kirsner BR, 2003, J AFFECT DISORDERS, V75, P131, DOI 10.1016/S0165-0327(02)00048-4; Li NP, 2010, EVOL HUM BEHAV, V31, P365, DOI 10.1016/j.evolhumbehav.2010.05.004; Li NP, 2011, PERS INDIV DIFFER, V50, P291, DOI 10.1016/j.paid.2010.10.005; Margraf J, 1994, DIPS HDB, DOI [10.1007/978-3-662-06753-6, DOI 10.1007/978-3-662-06753-6]; Mealey L, 2000, HUM NATURE-INT BIOS, V11, P105, DOI 10.1007/s12110-000-1005-3; Monzon BM, 2017, EUR J NEUROSCI, V46, P2297, DOI 10.1111/ejn.13659; Nesse RM, 2017, BEHAV BRAIN SCI, V40, DOI 10.1017/S0140525X16001503; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Pike KM, 2014, CURR OPIN PSYCHIATR, V27, P436, DOI 10.1097/YCO.0000000000000100; Puts DA, 2010, EVOL HUM BEHAV, V31, P157, DOI 10.1016/j.evolhumbehav.2010.02.005; Salmon C, 2008, HUM NATURE-INT BIOS, V19, P103, DOI 10.1007/s12110-008-9030-8; Salmon C, 2009, EVOL PSYCHOL-US, V7, P585; Seitz J, 2016, J NEURAL TRANSM, V123, P949, DOI 10.1007/s00702-016-1567-9; Shackelford TK, 2002, COGNITION EMOTION, V16, P299, DOI 10.1080/02699930143000202; SINGH D, 1993, J PERS SOC PSYCHOL, V65, P293, DOI 10.1037/0022-3514.65.2.293; SINGH D, 1994, INT J EAT DISORDER, V16, P283, DOI 10.1002/1098-108X(199411)16:3<283::AID-EAT2260160309>3.0.CO;2-Q; SINGH D, 1994, INT J OBESITY, V18, P731; Smith AR, 2011, J SOC CLIN PSYCHOL, V30, P531, DOI 10.1521/jscp.2011.30.5.531; Stearns S, 1992, EVOLUTION LIFE HIST; SURBEY MK, 1987, ETHOL SOCIOBIOL, V8, pS47; SYMON D, 1995, CHIC SEX HIST SOC, P80; Symons D., 1979, EVOLUTION HUMAN SEXU; Tchanturia K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0028331; Vaillancourt T, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2013.0080; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; VOLAND E, 1989, ETHOL SOCIOBIOL, V10, P223, DOI 10.1016/0162-3095(89)90001-0; Volpe U, 2016, PSYCHIAT RES, V238, P225, DOI 10.1016/j.psychres.2016.02.048; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Waxman SE, 2009, EUR EAT DISORD REV, V17, P408, DOI 10.1002/erv.952; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004; World Health Organization, 1993, ICD 10 CLASS MENT BE; Yilmaz Zeynep, 2015, Adv Genomics Genet, V5, P131 90 0 0 7 7 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. OCT 31 2018 9 2122 10.3389/fpsyg.2018.02122 12 Psychology, Multidisciplinary Psychology GY8RM WOS:000448900300001 30429818 DOAJ Gold 2019-02-21 J Schacht, R; Davis, HE; Kramer, KL Schacht, Ryan; Davis, Helen E.; Kramer, Karen L. Patterning of Paternal Investment in Response to Socioecological Change FRONTIERS IN ECOLOGY AND EVOLUTION English Article paternal investment; mating effort; division of labor; Maya; life history theory PARENTAL INVESTMENT; SEXUAL SELECTION; MEN HUNT; EVOLUTION; CARE; MONOGAMY; DIVISION; FERTILITY; CONFLICT; CHILDREN Human paternal investment, and that of many other species, is facultatively expressed and dependent on a diverse array of individual, social, and ecological conditions. Well-documented are the various ways in which men invest in offspring and the household. Specifically, local ecology structures pay-offs to male investment and has been shown to be an important predictor of the sexual division of labor. However, while variability in paternal investment has been well-characterized cross-culturally, plasticity within a group in response to changing socioecological conditions remains largely unstudied. To address this, we use recent economic development and market access to explore how changes in socioecology alter behavioral options for men and their resultant investment decisions. Among the monogamous Maya, we find that, associated with the introduction of novel subsistence opportunities and incentives for intensified paternal investment, fathers spend more time in the household, more time in domestic activities and more time interacting with their children. The changes in paternal investment documented here are largely contingent on four conditions: increased efficiency in subsistence brought about by mechanized farming, limited opportunities to engage in wage labor, increased opportunities to invest in offspring quality, and a monogamous mating system. Thus, Maya fathers appear to repurpose found time by furthering investment in their families. [Schacht, Ryan] East Carolina Univ, Dept Anthropol, Greenville, NC 27858 USA; [Schacht, Ryan] Univ Utah, Huntsman Canc Inst, Populat Sci, Salt Lake City, UT 84112 USA; [Davis, Helen E.] Harvard Univ, Dept Human Evolutionary Biol, Cambridge, MA 02138 USA; [Davis, Helen E.; Kramer, Karen L.] Univ Utah, Dept Anthropol, Salt Lake City, UT 84112 USA Schacht, R (reprint author), East Carolina Univ, Dept Anthropol, Greenville, NC 27858 USA.; Schacht, R (reprint author), Univ Utah, Huntsman Canc Inst, Populat Sci, Salt Lake City, UT 84112 USA. schachtr18@ecu.edu National Science Foundation [1632338]; Wenner-Gren Foundation We are grateful for financial support from the National Science Foundation (1632338) and the Wenner-Gren Foundation. ALBERTS SC, 1995, BEHAV ECOL SOCIOBIOL, V36, P397, DOI 10.1007/BF00177335; ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; Anderson KG, 2006, CURR ANTHROPOL, V47, P513, DOI 10.1086/504167; Barta Z, 2014, AM NAT, V183, P747, DOI 10.1086/676014; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Beckerman S, 2002, CULTURES MULTIPLE FA; CASHDAN E, 1993, ETHOL SOCIOBIOL, V14, P1, DOI 10.1016/0162-3095(93)90014-9; Cashdan E, 2016, HUM NATURE-INT BIOS, V27, P35, DOI 10.1007/s12110-015-9250-7; Charnov Eric L., 1993, P1; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Cockburn A, 2006, P R SOC B, V273, P1375, DOI 10.1098/rspb.2005.3458; DUNBAR RIM, 1976, BEHAVIOUR, V58, P78, DOI 10.1163/156853976X00244; Fouts HN, 2008, CROSS-CULT RES, V42, P290, DOI 10.1177/1069397108317484; Fromhage L, 2005, EVOLUTION, V59, P1400; Geary D., 2005, ORIGIN MIND EVOLUTIO; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; GRAFEN A, 1978, ANIM BEHAV, V26, P645, DOI 10.1016/0003-3472(78)90131-8; Gray P. B, 2010, FATHERHOOD EVOLUTION; Gray PB, 2015, FATHERING, V13, P18; Griffin P. B, 1992, FATHER CHILD RELATIO, P297; Gurven M, 2009, CURR ANTHROPOL, V50, P51, DOI 10.1086/595620; Hames R. B., 1992, EVOLUTIONARY ECOLOGY, P203; Hawkes K, 2010, CURR ANTHROPOL, V51, P259, DOI 10.1086/651074; Hedges S, 2016, EVOL HUM BEHAV, V37, P142, DOI 10.1016/j.evolhumbehav.2015.10.001; Hewlett B, 1988, HUMAN REPROD BEHAV D, P263; Hewlett B. S, 1993, INTIMATE FATHERS NAT; Hewlett B. S, 2010, ROLE FATHER CHILD DE, P413; Hill K, 1988, HUMAN REPROD BEHAV D, P277; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hunt J, 2000, EVOLUTION, V54, P936; Hurtado A. M, 1992, FATHER CHILD RELATIO, P31; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H. S, 2003, NATIONAL RESEARCH CO; Kaplan HS, 1998, MEN IN FAMILIES, P55; KEILMAN N, 1988, EUR J POPUL, V3, P297, DOI 10.1007/BF01796903; Kleiman D. G, 1981, PARENTAL CARE MAMMAL; KLEIMAN DG, 1977, Q REV BIOL, V52, P39, DOI 10.1086/409721; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kramer K, 2005, MAYA CHILDREN HELPER; Kramer K. L, 2009, SUBSTITUTE PARENTS B, P77; Kramer KL, 2018, PHYSIOL BEHAV, V193, P117, DOI 10.1016/j.physbeh.2018.02.054; Kramer KL, 2015, EVOL ANTHROPOL, V24, P73, DOI 10.1002/evan.21445; Kramer KL, 2010, ANNU REV ANTHROPOL, V39, P417, DOI 10.1146/annurev.anthro.012809.105054; Kramer KL, 2002, CURR ANTHROPOL, V43, P511, DOI 10.1086/340239; Leonetti DL, 2011, HUM NATURE-INT BIOS, V22, P16, DOI 10.1007/s12110-011-9111-y; Lessells CM, 1999, MG BEH ECOL, P75; Lukas D, 2013, SCIENCE, V341, P526, DOI 10.1126/science.1238677; Marlowe FW, 2007, CROSS-CULT RES, V41, P170, DOI 10.1177/1069397106297529; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Mattison SM, 2014, AM ANTHROPOL, V116, P591, DOI 10.1111/aman.12125; McNamara JM, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2752; MULDER MB, 1985, CURR ANTHROPOL, V26, P323, DOI 10.1086/203277; Mulder MB, 2009, EVOL ANTHROPOL, V18, P201, DOI 10.1002/evan.20226; MURDOCK GP, 1973, ETHNOLOGY, V12, P203, DOI 10.2307/3773347; NEEL JV, 1972, ANN HUM GENET, V35, P255, DOI 10.1111/j.1469-1809.1957.tb01399.x; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; PERRONE M, 1979, AM NAT, V113, P351, DOI 10.1086/283394; Pleck J. H, 1997, PATERNAL INVOLVEMENT; Rasmussen K, 1931, NETSILIK ESKIMOS SOC; Reynolds P, 1991, DANCE CIVET CAT CHIL; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Russell AF, 2009, PHILOS T R SOC B, V364, P1143, DOI 10.1098/rstb.2008.0298; Savalli UM, 1998, ANIM BEHAV, V56, P953, DOI 10.1006/anbe.1998.0853; Scelza BA, 2013, EVOL ANTHROPOL, V22, P259, DOI 10.1002/evan.21373; Schacht R, 2016, SCI REP-UK, V6, DOI 10.1038/srep32472; Shenk MK, 2012, J BIOSOC SCI, V44, P549, DOI 10.1017/S0021932012000053; SIMPSON MJA, 1977, ANIM BEHAV, V25, P726, DOI 10.1016/0003-3472(77)90122-1; Stack Carol, 1974, ALL OUR KIN; Stearns S, 1992, EVOLUTION LIFE HIST; Szekely T, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a017665; THORNHILL R, 1976, AM NAT, V110, P153, DOI 10.1086/283055; Urlacher SS, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-017-18738-4; Valeggia C. R., 2009, SUBSTITUTE PARENTS B, P100; van Schaik C. P, 2010, MIND THE GAP; Veile A, 2018, BREASTFEEDING NEW AN, P170; Veile A, 2017, AM J HUM BIOL, V29, DOI 10.1002/ajhb.22920; Washburn S, 1968, MAN HUNTER, P293; WESTNEAT DF, 1993, BEHAV ECOL, V4, P66, DOI 10.1093/beheco/4.1.66; WRIGHT PC, 1990, INT J PRIMATOL, V11, P89, DOI 10.1007/BF02192783; YAMAMURA N, 1993, J EVOLUTION BIOL, V6, P103, DOI 10.1046/j.1420-9101.1993.6010103.x 83 0 0 1 1 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 2296-701X FRONT ECOL EVOL Front. Ecol. Evol. OCT 17 2018 6 142 10.3389/fevo.2018.00142 12 Ecology Environmental Sciences & Ecology HC6WD WOS:000451941500001 DOAJ Gold 2019-02-21 J Altschul, DM; Hopkins, WD; Herrelko, ES; Inoue-Murayama, M; Matsuzawa, T; King, JE; Ross, SR; Weiss, A Altschul, Drew M.; Hopkins, William D.; Herrelko, Elizabeth S.; Inoue-Murayama, Miho; Matsuzawa, Tetsuro; King, James E.; Ross, Stephen R.; Weiss, Alexander Personality links with lifespan in chimpanzees ELIFE English Article PAN-TROGLODYTES PERSONALITY; REPRODUCTIVE SUCCESS; CAPTIVE CHIMPANZEES; ANIMAL PERSONALITY; ZOOLOGICAL PARKS; WILD CHIMPANZEES; 5-FACTOR MODEL; RECEPTOR GENE; EVOLUTION; DOMINANCE Life history strategies for optimizing individual fitness fall on a spectrum between maximizing reproductive efforts and maintaining physical health over time. Strategies across this spectrum are viable and different suites of personality traits evolved to support these strategies. Using data from 538 captive chimpanzees (Pan troglodytes) we tested whether any of the dimensions of chimpanzee personality - agreeableness, conscientiousness, dominance, extraversion, neuroticism, and openness - were associated with longevity, an attribute of slow life history strategies that is especially important in primates given their relatively long lives. We found that higher agreeableness was related to longevity in males, with weaker evidence suggesting that higher openness is related to longer life in females. Our results link the literature on human and nonhuman primate survival and suggest that, for males, evolution has favored the protective effects of low aggression and high quality social bonds. [Altschul, Drew M.; Weiss, Alexander] Univ Edinburgh, Sch Philosophy Psychol & Language Sci, Dept Psychol, Edinburgh, Midlothian, Scotland; [Altschul, Drew M.; Weiss, Alexander] Scottish Primate Res Grp, Edinburgh, Midlothian, Scotland; [Altschul, Drew M.] Ctr Cognit Ageing & Cognit Epidemiol, Edinburgh, Midlothian, Scotland; [Hopkins, William D.] Georgia State Univ, Neurosci Inst, Atlanta, GA 30303 USA; [Hopkins, William D.] Yerkes Natl Primate Res Ctr, Div Dev & Cognit Neurosci, Atlanta, GA USA; [Herrelko, Elizabeth S.] Smithsonian Inst, Natl Zool Pk, Washington, DC 20560 USA; [Herrelko, Elizabeth S.] Univ Stirling, Psychol Div, Stirling, Scotland; [Inoue-Murayama, Miho] Kyoto Univ, Wildlife Res Ctr, Kyoto, Japan; [Inoue-Murayama, Miho] Natl Inst Environm Studies, Wildlife Genome Collaborat Res Grp, Tsukuba, Ibaraki, Japan; [Matsuzawa, Tetsuro] Kyoto Univ, Inst Adv Study, Kyoto, Japan; [Matsuzawa, Tetsuro] Kyoto Univ, Primate Res Inst, Inuyama, Aichi, Japan; [Matsuzawa, Tetsuro] Japan Monkey Ctr, Inuyama, Aichi, Japan; [King, James E.] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA; [Ross, Stephen R.] Lincoln Pk Zoo, Lester E Fisher Ctr Study & Conservat Apes, Chicago, IL USA Altschul, DM (reprint author), Univ Edinburgh, Sch Philosophy Psychol & Language Sci, Dept Psychol, Edinburgh, Midlothian, Scotland.; Altschul, DM (reprint author), Scottish Primate Res Grp, Edinburgh, Midlothian, Scotland.; Altschul, DM (reprint author), Ctr Cognit Ageing & Cognit Epidemiol, Edinburgh, Midlothian, Scotland. dmaltschul@gmail.com Japan Society for the Promotion of Science [25118005, 25290082, D-1007]; Kyoto University Supporting program for interaction-based initiative team studies (SPIRITS); Ministry of Education, Culture, Sports, Science, and Technology [16H06283, 18310152, 21310150]; Medical Research Council [MR/K026992/1]; Daiwa Anglo-Japanese Foundation Small Grant [6515/6818]; University Of Edinburgh Development Trust Small Project Grant; National Institutes of Health Grants to the Yerkes Primate Research Center [NS-36605, NS-42867, RR 00165]; Leo S. Guthman Fund; Ministry of Education, Culture, Sports, Science, and Technology; Japan Society for the Promotion of Science Core-to-core CCSN Japan Society for the Promotion of Science Grant for Scientific Research (25118005,25290082) and Development Fund (D-1007) Miho Inoue-Murayama; Kyoto University Supporting program for interaction-based initiative team studies (SPIRITS) Miho Inoue-Murayama; Ministry of Education, Culture, Sports, Science, and Technology 16H06283 Tetsuro Matsuzawa; Medical Research Council Grant to the Centre for Cognitive Ageing and Cognitive Epidemiology (MR/K026992/1) Drew Altschul; Daiwa Anglo-Japanese Foundation Small Grant (6515/6818) Alexander Weiss; University Of Edinburgh Development Trust Small Project Grant Alexander Weiss; National Institutes of Health Grants to the Yerkes Primate Research Center (NS-36605,NS-42867,RR 00165) William Donald Hopkins; Ministry of Education, Culture, Sports, Science, and Technology Grant to Scientific Research (B) (18310152) (21310150) Miho Inoue-Murayama; Leo S. Guthman Fund Stephen Ross; Ministry of Education, Culture, Sports, Science, and Technology Leading Graduate Program PWS(U04) Tetsuro Matsuzawa; Japan Society for the Promotion of Science Core-to-core CCSN Tetsuro Matsuzawa; The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. Altschul DM, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.170169; Alvergne A, 2010, P NATL ACAD SCI USA, V107, P11745, DOI 10.1073/pnas.1001752107; Archie EA, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1261; Benedetti A, 2004, STAT MED, V23, P3781, DOI 10.1002/sim.2073; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Blatchley BJ, 2010, COGN AFFECT BEHAV NE, V10, P414, DOI 10.3758/CABN.10.3.414; Bou-Hamad I, 2011, STAT SURV, V5, P44, DOI 10.1214/09-SS047; Brent LJN, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.0515; Bronikowski AM, 2011, SCIENCE, V331, P1325, DOI 10.1126/science.1201571; BUIRSKI P, 1978, ANIM BEHAV, V26, P123, DOI 10.1016/0003-3472(78)90011-8; Burnham KP, 2011, BEHAV ECOL SOCIOBIOL, V65, P23, DOI 10.1007/s00265-010-1029-6; Chapman Benjamin P, 2011, J Aging Res, V2011, P759170, DOI 10.4061/2011/759170; Cornwell W, 2017, CURR BIOL, V27, pR333, DOI 10.1016/j.cub.2017.03.049; COSTA PT, 1995, J PERS ASSESS, V64, P21, DOI 10.1207/s15327752jpa6401_2; Delgado MM, 2017, PSYCHOL BULL, V143, P823, DOI 10.1037/bul0000107; DIGMAN JM, 1990, ANNU REV PSYCHOL, V41, P417, DOI 10.1146/annurev.ps.41.020190.002221; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dutton DM, 1997, INT J PRIMATOL, V18, P539, DOI 10.1023/A:1026311222491; ELLIS L, 1995, ETHOL SOCIOBIOL, V16, P257, DOI 10.1016/0162-3095(95)00050-U; Faraway JJ, 2016, EXTENDING LINEAR MOD, DOI [10.1201/b21296, DOI 10.1201/B21296]; Foster MW, 2009, AM J PRIMATOL, V71, P136, DOI 10.1002/ajp.20632; Freeman HD, 2013, AM J PRIMATOL, V75, P1042, DOI 10.1002/ajp.22168; Freeman HD, 2010, AM J PRIMATOL, V72, P653, DOI 10.1002/ajp.20833; Fu W, 2017, BIOSTATISTICS, V18, P352, DOI 10.1093/biostatistics/kxw047; Gale CR, 2017, PSYCHOL SCI, V28, P1345, DOI 10.1177/0956797617709813; Gilby IC, 2013, BEHAV ECOL SOCIOBIOL, V67, P373, DOI 10.1007/s00265-012-1457-6; GOLD KC, 1994, ZOO BIOL, V13, P509, DOI 10.1002/zoo.1430130513; Goodman MS, 2011, J APPL STAT, V38, P2523, DOI 10.1080/02664763.2011.559209; Goymann W, 2004, ANIM BEHAV, V67, P591, DOI 10.1016/j.anbehav.2003.08.007; Graham EK, 2017, J RES PERS, V70, P174, DOI 10.1016/j.jrp.2017.07.005; Gurven M, 2014, EVOL HUM BEHAV, V35, P17, DOI 10.1016/j.evolhumbehav.2013.09.002; Harcourt A.H., 1981, P265; Hastie T. J., 2017, STAT MODELS S, P249; Herrelko ES, 2012, AM J PRIMATOL, V74, P828, DOI 10.1002/ajp.22036; Herrelko ES, 2011, ASSESSMENT DEV COGNI; Hong KW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022144; Hopkins WD, 2012, GENES BRAIN BEHAV, V11, P552, DOI 10.1111/j.1601-183X.2012.00799.x; Huffman Michael A., 1994, P129; Jones JH, 2011, CURR BIOL, V21, pR708, DOI 10.1016/j.cub.2011.08.025; King JE, 2008, J COMP PSYCHOL, V122, P418, DOI 10.1037/a0013125; King JE, 2005, J PERS, V73, P389, DOI 10.1111/j.1467-6494.2005.00313.x; King JE, 1997, J RES PERS, V31, P257, DOI 10.1006/jrpe.1997.2179; Klein JP, 2005, SURVIVAL ANAL TECHNI; Koski SE, 2011, BEHAV ECOL SOCIOBIOL, V65, P2161, DOI 10.1007/s00265-011-1224-0; Kuhar CW, 2006, APPL ANIM BEHAV SCI, V96, P315, DOI 10.1016/j.applanim.2005.06.004; Latzman RD, 2015, NEUROIMAGE, V123, P63, DOI 10.1016/j.neuroimage.2015.08.041; Latzman RD, 2015, J PERS SOC PSYCHOL, V109, P889, DOI 10.1037/pspp0000040; MacLean EL, 2014, P NATL ACAD SCI USA, V111, pE2140, DOI 10.1073/pnas.1323533111; MacLean EL, 2012, ANIM COGN, V15, P223, DOI 10.1007/s10071-011-0448-8; Martin JE, 2005, APPL ANIM BEHAV SCI, V90, P167, DOI 10.1016/j.applanim.2004.08.019; Massen JJM, 2013, AM J PRIMATOL, V75, P947, DOI 10.1002/ajp.22159; Muller MN, 2005, ADV STUD BEHAV, V35, P275, DOI 10.1016/S0065-3454(05)35007-8; Murray L. E., 1998, International Zoo Yearbook, V36, P97, DOI 10.1111/j.1748-1090.1998.tb02890.x; Napier J. R., 1967, HDB LIVING PRIMATES; Pederson AK, 2005, J RES PERS, V39, P534, DOI 10.1016/j.jrp.2004.07.002; Pusey A, 1997, SCIENCE, V277, P828, DOI 10.1126/science.277.5327.828; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Roberts BW, 2007, PERSPECT PSYCHOL SCI, V2, P313, DOI 10.1111/j.1745-6916.2007.00047.x; Sapolsky RM, 2005, SCIENCE, V308, P648, DOI 10.1126/science.1106477; Sayers K, 2012, ANNU REV ANTHROPOL, V41, P119, DOI 10.1146/annurev-anthro-092611-145815; Seltmann M, 2018, ROY SOC OPEN SCI, V5, DOI 10.1098/rsos.172026; Seyfarth RM, 2012, P NATL ACAD SCI USA, V109, P16980, DOI 10.1073/pnas.1210780109; Silk JB, 2010, CURR BIOL, V20, P1359, DOI 10.1016/j.cub.2010.05.067; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Staes N, 2016, SCI REP-UK, V6, DOI 10.1038/srep38193; Stanford CB, 2012, ANNU REV ANTHROPOL, V41, P139, DOI 10.1146/annurev-anthro-092611-145724; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEVENSON-HINDE J, 1978, Primates, V19, P473, DOI 10.1007/BF02373309; Strickhouser JE, 2017, HEALTH PSYCHOL, V36, P797, DOI 10.1037/hea0000475; Thompson NA, 2018, ECOL EVOL, V8, P1604, DOI 10.1002/ece3.3781; Turiano NA, 2015, HEALTH PSYCHOL, V34, P51, DOI 10.1037/hea0000038; TUTIN CEG, 1979, BEHAV ECOL SOCIOBIOL, V6, P29, DOI 10.1007/BF00293242; Uher J, 2008, J RES PERS, V42, P821, DOI 10.1016/j.jrp.2007.10.004; Uher J, 2013, INTEGR PSYCHOL BEHAV, V47, P1, DOI 10.1007/s12124-013-9230-6; VANHOOFF JA, 1970, EXPERIENTIA, V26, P549; Vazire S., 2007, HDB RES METHODS PERS, P190; Weiss A, 2006, J PERS SOC PSYCHOL, V90, P501, DOI 10.1037/0022-3514.90.3.501; Weiss A, 2000, BEHAV GENET, V30, P213, DOI 10.1023/A:1001966224914; Weiss A, 2009, AM J PRIMATOL, V71, P283, DOI 10.1002/ajp.20649; Weiss A, 2007, AM J PRIMATOL, V69, P1264, DOI 10.1002/ajp.20428; Weiss A, 2017, SCI DATA, V4, DOI 10.1038/sdata.2017.146; Weiss A, 2015, PSYCHOL SCI, V26, P1430, DOI 10.1177/0956797615589933; Weiss A, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2231; Weiss A, 2012, ANIM BEHAV, V83, P1355, DOI 10.1016/j.anbehav.2012.02.024; Weston SJ, 2018, J RES PERS, V73, P27, DOI 10.1016/j.jrp.2017.10.005; Wilson VAD, 2017, BEHAV GENET, V47, P215, DOI 10.1007/s10519-016-9822-2; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wood S, 2006, GEN ADDITIVE MODELS, DOI [10.1201/9781420010404, DOI 10.1201/9781420010404] 89 0 0 7 7 ELIFE SCIENCES PUBLICATIONS LTD CAMBRIDGE SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND 2050-084X ELIFE eLife OCT 9 2018 7 e33781 10.7554/eLife.33781 17 Biology Life Sciences & Biomedicine - Other Topics GW1TJ WOS:000446663600001 30296994 DOAJ Gold 2019-02-21 J Schubert, N; Freitas, C; Silva, A; Costa, MM; Barrote, I; Horta, PA; Rodrigues, AC; Santos, R; Silva, J Schubert, Nadine; Freitas, Catia; Silva, Andre; Costa, Monya M.; Barrote, Isabel; Horta, Paulo A.; Rodrigues, Ana Claudia; Santos, Rui; Silva, Joao Photoacclimation strategies in northeastern Atlantic seagrasses: Integrating responses across plant organizational levels SCIENTIFIC REPORTS English Article ZOSTERA-MARINA L; LEAF LIFE-SPAN; THALASSIA-TESTUDINUM; POSIDONIA-OCEANICA; CYMODOCEA-NODOSA; PHOTOSYNTHETIC CHARACTERISTICS; LIGHT-ABSORPTION; IN-SITU; SPECTRAL QUALITY; GENE-EXPRESSION Seagrasses live in highly variable light environments and adjust to these variations by expressing acclimatory responses at different plant organizational levels (meadow, shoot, leaf and chloroplast level). Yet, comparative studies, to identify species' strategies, and integration of the relative importance of photoacclimatory adjustments at different levels are still missing. The variation in photoacclimatory responses at the chloroplast and leaf level were studied along individual leaves of Cymodocea nodosa, Zostera marina and Z. noltei, including measurements of variable chlorophyll fluorescence, photosynthesis, photoprotective capacities, non-photochemical quenching and D1-protein repair, and assessments of variation in leaf anatomy and chloroplast distribution. Our results show that the slower-growing C. nodosa expressed rather limited physiological and biochemical adjustments in response to light availability, while both species of faster-growing Zostera showed high variability along the leaves. In contrast, the inverse pattern was found for leaf anatomical adjustments in response to light availability, which were more pronounced in C. nodosa. This integrative plant organizational level approach shows that seagrasses differ in their photoacclimatory strategies and that these are linked to the species' life history strategies, information that will be critical for predicting the responses of seagrasses to disturbances and to accordingly develop adequate management strategies. [Schubert, Nadine] Univ Fed Santa Catarina, Ctr Ciencias Fis & Matemat, Programa Posgrad Oceanog, Campus Trindade, Florianopolis, SC, Brazil; [Freitas, Catia; Silva, Andre; Costa, Monya M.; Barrote, Isabel; Santos, Rui; Silva, Joao] Univ Algarve, CCMAR Ctr Marine Sci, Campus Gambelas, P-8005139 Faro, Portugal; [Horta, Paulo A.; Rodrigues, Ana Claudia] Univ Fed Santa Catarina, Ctr Ciencias Biol, Dept Bot, Campus Trindade, Florianopolis, SC, Brazil Schubert, N (reprint author), Univ Fed Santa Catarina, Ctr Ciencias Fis & Matemat, Programa Posgrad Oceanog, Campus Trindade, Florianopolis, SC, Brazil. nadine_schubert@hotmail.com Schubert, Nadine/0000-0001-7161-7882; Santos, Rui/0000-0002-7861-4366 Fundacao para a Ciencia e Tecnologia (FCT), Portugal [PTDC/MAR-EST/4257/2014] The authors thank the staff of the Electron Microscopy Central Laboratory (LCME) at the Universidade Federal de Santa Catarina, Brazil. This paper is a contribution to the FCT project PTDC/MAR-EST/4257/2014 (GrassMet) funded by Fundacao para a Ciencia e Tecnologia (FCT), Portugal. Abadia Javier, 1993, P327; ABAL EG, 1994, J EXP MAR BIOL ECOL, V178, P113, DOI 10.1016/0022-0981(94)90228-3; Alexandre A, 2012, ECOL EVOL, V2, P2620, DOI 10.1002/ece3.333; BACKMAN TWH, 1991, CAN J BOT, V69, P1361, DOI 10.1139/b91-176; Biber PD, 2005, MAR SCI SER, P193; Borum J, 2004, EUROPEAN SEAGRASSES, P1; Brun FG, 2006, HELGOLAND MAR RES, V60, P59, DOI 10.1007/s10152-005-0017-0; Brun FG, 2002, MAR ECOL PROG SER, V225, P177, DOI 10.3354/meps225177; Buia M.C., 2000, Biologia Marina Mediterranea, V7, P167; Cabaco S, 2009, ESTUAR COAST SHELF S, V82, P301, DOI 10.1016/j.ecss.2009.01.020; Campbell SJ, 2007, ESTUAR COAST SHELF S, V73, P551, DOI 10.1016/j.ecss.2007.02.014; Casper-Lindley C, 1998, PHOTOSYNTH RES, V56, P277, DOI 10.1023/A:1006037516479; Cayabyab NM, 2007, NEW PHYTOL, V176, P108, DOI 10.1111/j.1469-8137.2007.02147.x; Cummings ME, 2003, AQUAT BOT, V75, P261, DOI 10.1016/S0304-3770(02)00180-8; Cunha AH, 2005, MAR BIOL, V146, P841, DOI 10.1007/s00227-004-1496-2; Curiel D., 1996, PLANT BIOSYST, V130, P353; Dalla Via J, 1998, MAR ECOL PROG SER, V163, P267, DOI 10.3354/meps163267; Dattolo E, 2014, MAR ENVIRON RES, V101, P225, DOI 10.1016/j.marenvres.2014.07.010; Dawson SP, 1996, MAR BIOL, V125, P629, DOI 10.1007/BF00349244; de los Santos CB, 2010, MAR ECOL PROG SER, V398, P127, DOI 10.3354/meps08343; DELASRIVAS J, 1989, PLANT PHYSIOL, V91, P190, DOI 10.1104/pp.91.1.190; Dennison W., 1979, LIGHT ADAPTATIONS PL; DENNISON WC, 1982, OECOLOGIA, V55, P137, DOI 10.1007/BF00384478; DENNISON WC, 1986, J EXP MAR BIOL ECOL, V98, P265, DOI 10.1016/0022-0981(86)90217-0; DUARTE CM, 1991, MAR ECOL PROG SER, V77, P289, DOI 10.3354/meps077289; Durako MJ, 2002, AQUAT BOT, V73, P173, DOI 10.1016/S0304-3770(02)00020-7; Enriquez S, 2005, MAR ECOL PROG SER, V289, P141, DOI 10.3354/meps289141; ENRIQUEZ S, 1994, OECOLOGIA, V98, P121, DOI 10.1007/BF00341462; Enriquez S, 2005, OECOLOGIA, V145, P235, DOI 10.1007/s00442-005-0111-7; Enriquez S, 2003, INT J PLANT SCI, V164, P125, DOI 10.1086/344759; Enriquez S, 2002, MAR BIOL, V140, P891, DOI 10.1007/s00227-001-0760-y; Haznedaroglu M.Z., 2009, HACET U J FACULTY PH, V29, P37; KUO J, 1990, AQUAT BOT, V36, P217, DOI 10.1016/0304-3770(90)90036-K; Larbi A, 2004, PHOTOSYNTH RES, V79, P59, DOI 10.1023/B:PRES.0000011919.35309.5e; Larkum AWD, 2006, SEAGRASSES: BIOLOGY, ECOLOGY AND CONSERVATION, P323; Li WT, 2013, ESTUAR COAST SHELF S, V118, P72, DOI 10.1016/j.ecss.2012.12.022; Lichtenberg M, 2015, NEW PHYTOL, V207, P559, DOI 10.1111/nph.13396; Longstaff BJ, 1999, AQUAT BOT, V65, P105, DOI 10.1016/S0304-3770(99)00035-2; Macic Vesna, 2014, Journal of the Black Sea Mediterranean Environment, V20, P253; Vasquez-Elizondo RM, 2017, PHOTOSYNTH RES, V132, P311, DOI 10.1007/s11120-017-0395-6; Marba N, 1996, MAR ECOL PROG SER, V133, P203, DOI 10.3354/meps133203; Matsuki S, 2006, ANN BOT-LONDON, V97, P813, DOI [10.1093/aob/mcl041, 10.1093/aob/mc1041]; MAZZELLA L, 1981, BOT MAR, V24, P285, DOI 10.1515/botm.1981.24.5.285; MAZZELLA L, 1986, J EXP MAR BIOL ECOL, V100, P165, DOI 10.1016/0022-0981(86)90161-9; Mulo P, 2003, FUNCT PLANT BIOL, V30, P1097, DOI 10.1071/FP03147; Murchie EH, 1997, PLANT CELL ENVIRON, V20, P438, DOI 10.1046/j.1365-3040.1997.d01-95.x; Murchie EH, 1998, PLANT CELL ENVIRON, V21, P139, DOI 10.1046/j.1365-3040.1998.00262.x; OBRIEN TP, 1964, PROTOPLASMA, V59, P368, DOI 10.1007/BF01248568; Ochieng CA, 2010, J EXP MAR BIOL ECOL, V382, P117, DOI 10.1016/j.jembe.2009.11.007; Olesen B, 2002, MAR ECOL PROG SER, V236, P89, DOI 10.3354/meps236089; Olive I, 2013, MAR BIOL, V160, P285, DOI 10.1007/s00227-012-2087-2; Olive I, 2007, J EXP MAR BIOL ECOL, V345, P90, DOI 10.1016/j.jembe.2007.02.008; Park SR, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156214; Peralta G, 2005, ESTUAR COAST SHELF S, V64, P347, DOI 10.1016/j.ecss.2005.02.027; Peralta G, 2003, AQUAT BOT, V75, P95, DOI 10.1016/S0304-3770(02)00168-7; Peralta G, 2000, HELGOLAND MAR RES, V54, P80, DOI 10.1007/s101520050005; Procaccini G, 2017, SCI REP-UK, V7, DOI 10.1038/srep42890; Ralph PJ, 2007, J EXP MAR BIOL ECOL, V350, P176, DOI 10.1016/j.jembe.2007.06.017; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; Ruiz JM, 2001, MAR ECOL PROG SER, V215, P107, DOI 10.3354/meps215107; Sandoval-Gil JM, 2014, MAR ENVIRON RES, V95, P39, DOI 10.1016/j.marenvres.2013.12.011; Schubert N, 2015, LIMNOL OCEANOGR, V60, P286, DOI 10.1002/lno.10024; Shafer DJ, 2014, AQUAT BOT, V112, P91, DOI 10.1016/j.aquabot.2013.09.002; Short F, 2007, J EXP MAR BIOL ECOL, V350, P3, DOI 10.1016/j.jembe.2007.06.012; SILVA A. L. de B, 2015, THESIS; Silva J, 2005, J EXP MAR BIOL ECOL, V317, P87, DOI 10.1016/j.jembe.2004.11.010; Silva J, 2003, MAR ECOL PROG SER, V257, P37, DOI 10.3354/meps257037; Silva J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081058; Tuya F, 2016, SCI MAR, V80, P247, DOI 10.3989/scimar.04391.07A; VANKOOTEN O, 1990, PHOTOSYNTH RES, V25, P147, DOI 10.1007/BF00033156; Villazan B, 2016, MAR ECOL PROG SER, V545, P109, DOI 10.3354/meps11631; WATSON DJ, 1947, ANN BOT-LONDON, V11, P41, DOI 10.1093/oxfordjournals.aob.a083148; YAMAMOTO HY, 1972, BIOCHIM BIOPHYS ACTA, V267, P538, DOI 10.1016/0005-2728(72)90182-X 73 0 0 2 2 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep OCT 4 2018 8 14825 10.1038/s41598-018-33259-4 14 Multidisciplinary Sciences Science & Technology - Other Topics GV7QS WOS:000446325500037 30287907 DOAJ Gold 2019-02-21 J Gomes, WIA; Jovem-Azevedo, DD; Paiva, FF; Milesi, SV; Molozzi, J Ananias Gomes, Wilma Izabelly; Jovem-Azevedo, Daniele da Silva; Paiva, Franciely Ferreira; Milesi, Silvia Vendruscolo; Molozzi, Joseline Functional attributes of Chironomidae for detecting anthropogenic impacts on reservoirs: A biomonitoring approach ECOLOGICAL INDICATORS English Article Anthropic disturbance; Diptera; Environmental quality; Trophic conditions LIFE-HISTORY STRATEGIES; SPECIES TRAITS; BIOLOGICAL TRAITS; MACROINVERTEBRATE COMMUNITIES; INVERTEBRATE TRAITS; TROPICAL RESERVOIRS; STREAM; INTEGRITY; INDEX; ASSEMBLAGES Organisms display sets of functional attributes that reflect local environmental conditions and can be used in environmental quality assessments. We analyzed the functional attributes of Chironomidae in reservoirs in the Brazilian semiarid region with different levels of anthropic disturbances. We examined the relationships of functional feeding groups, feeding strategies, body size, and the morphological adaptations of chironomid larvae with the environmental quality of 94 sites. The sites were classified according to their levels of anthropic disturbance based on environmental characteristics. To observe the relationship between the functional attributes of Chironomidae and the different levels of anthropic disturbance, we performed an RLQ. To test differences between the functional categories of Chironomidae, we use an analysis of variance (ANOVA). The functional categories of Chironomidae that indicated anthropic disturbances were: collector group, reduced pseudopods, abdominal tubule, and gatherers. The least disturbed sites showed higher relative abundances of engulfers, predators, organisms with elongated heads, and small body size. The observed relationships between Chironomid functional attributes and the levels of anthropic impacts on reservoirs in the semiarid region of Brazil allow their use as a tool for assessing the environmental qualities of lentic aquatic ecosystems. [Ananias Gomes, Wilma Izabelly] Univ Estadual Paraiba, Programa Posgrad Ciencia & Tecnol Ambiental, Campina Grande, Paraiba, Brazil; [Jovem-Azevedo, Daniele da Silva] Univ Fed Minas Gerais, Programa Posgrad Ecol Conservacao & Manutencao Vi, Belo Horizonte, MG, Brazil; [Paiva, Franciely Ferreira] Univ Estadual Paraiba, Programa Posgrad Ecol & Conservacao, Campina Grande, Paraiba, Brazil; [Milesi, Silvia Vendruscolo] Univ Reg Integrada Alto Uruguai & Missoes, Campus Erechim, Erechim, RS, Brazil; [Molozzi, Joseline] Univ Estadual Paraiba, Dept Biol, Programa Posgrad Ciencia & Tecnol Ambiental, Programa Posgrad Ecol & Conservacao, Campina Grande, Paraiba, Brazil Gomes, WIA (reprint author), Univ Estadual Paraiba, Programa Posgrad Ciencia & Tecnol Ambiental, Campina Grande, Paraiba, Brazil. wilmaizabelly@hotmail.com Paiva, Franciely Ferreira/0000-0002-5847-4802 Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -CAPES; Fundacao de Apoio a Pesquisa do Estado da Paraiba-FAPESQ; Universal Project CNPq/MCTI [446721/2014]; [302393/2017-0] The first author thanks to Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -CAPES by scholarship during the master degree, and to Fundacao de Apoio a Pesquisa do Estado da Paraiba-FAPESQ. The data this work they're part of the Universal Project CNPq/MCTI (process 446721/2014) and make part for research productivity scholarships (process 302393/2017-0) of JM. The authors thank also to Laboratory of Benthos (UEPB) by support in processing of the material. AESA, 2015, AG EX GEST AG EST PA; Alvares CA, 2013, METEOROL Z, V22, P711, DOI 10.1127/0941-2948/2013/0507; APHA, 2005, STANDARD METHODS EXA; Armitage P. D., 1995, THE CHIRONOMIDAE; Azevedo DJS, 2015, ECOL INDIC, V50, P135, DOI 10.1016/j.ecolind.2014.10.010; Azevedo ED, 2017, ENVIRON MONIT ASSESS, V189, DOI 10.1007/s10661-016-5723-3; Barbosa José Etham de Lucena, 2012, Acta Limnol. Bras., V24, P103, DOI 10.1590/S2179-975X2012000100010; Alexandre DMB, 2010, REV CIENC AGRON, V41, P554, DOI 10.1590/S1806-66902010000400007; Basset A, 2007, OIKOS, V116, P1363, DOI 10.1111/j.2007.0030-1299.15702.x; Beauchard O, 2017, ECOL INDIC, V76, P81, DOI 10.1016/j.ecolind.2017.01.011; Blocksom KA, 2002, ENVIRON MONIT ASSESS, V77, P311, DOI 10.1023/A:1016096925401; Boets P, 2013, ECOL INFORM, V18, P49, DOI 10.1016/j.ecoinf.2013.06.008; Bonada N, 2006, ANNU REV ENTOMOL, V51, P495, DOI 10.1146/annurev.ento.51.110104.151124; Butakka CMM, 2014, BRAZ J BIOL, V74, P395, DOI 10.1590/1519-6984.26612; Callisto M., 1996, ACTA LIMNOL BRAS, V8, P115; CARLSON RE, 1977, LIMNOL OCEANOGR, V22, P361, DOI 10.4319/lo.1977.22.2.0361; Clavel J, 2011, FRONT ECOL ENVIRON, V9, P222, DOI 10.1890/080216; Core Development Team, 2014, R LANG ENV STAT COMP; Culp Joseph M., 2011, Integrated Environmental Assessment and Management, V7, P187, DOI 10.1002/ieam.128; Dedieu N, 2015, ECOL INDIC, V52, P332, DOI 10.1016/j.ecolind.2014.12.012; Doledec S, 1996, ENVIRON ECOL STAT, V3, P143, DOI 10.1007/BF02427859; Duffy JE, 2007, ECOL LETT, V10, P522, DOI 10.1111/j.1461-0248.2007.01037.x; Everall NC, 2017, ECOL INDIC, V78, P437, DOI 10.1016/j.ecolind.2017.03.040; Feio MJ, 2015, ENVIRON POLLUT, V196, P300, DOI 10.1016/j.envpol.2014.09.026; Feio MJ, 2012, ECOL INDIC, V15, P236, DOI 10.1016/j.ecolind.2011.09.039; Gebrehiwot M, 2017, LIMNOLOGICA, V62, P68, DOI 10.1016/j.limno.2016.11.003; Kuzmanovic M, 2017, ENVIRON RES, V156, P485, DOI 10.1016/j.envres.2017.03.054; Lamouroux N, 2004, J N AM BENTHOL SOC, V23, P449, DOI 10.1899/0887-3593(2004)023<0449:BTOSMC>2.0.CO;2; Li B, 2015, QUATERN INT, V380, P247, DOI 10.1016/j.quaint.2014.06.017; LORENZEN CARL J., 1966, DEEP SEA RES, V13, P223, DOI 10.1016/0011-7471(66)91102-8; Lunde KB, 2012, ENVIRON MONIT ASSESS, V184, P3653, DOI 10.1007/s10661-011-2214-4; Magbanua FS, 2015, LIMNOLOGICA, V55, P13, DOI 10.1016/j.limno.2015.10.002; Diaz AM, 2008, FRESHWATER BIOL, V53, P1, DOI 10.1111/j.1365-2427.2007.01854.x; Menezes S, 2010, J APPL ECOL, V47, P711, DOI 10.1111/j.1365-2664.2010.01819.x; Molozzi J, 2013, ENVIRON MONIT ASSESS, V185, P6591, DOI 10.1007/s10661-012-3049-3; Molozzi J, 2012, ECOL INDIC, V23, P155, DOI 10.1016/j.ecolind.2012.03.023; Mondy CP, 2014, FRESHWATER BIOL, V59, P584, DOI 10.1111/fwb.12289; Morais SS, 2010, BRAZ J BIOL, V70, P995, DOI 10.1590/S1519-69842010000500011; de Castro DMP, 2018, ECOL INDIC, V84, P573, DOI 10.1016/j.ecolind.2017.09.030; Pilo D, 2016, ECOL INDIC, V71, P645, DOI 10.1016/j.ecolind.2016.07.019; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Saito VS, 2015, HYDROBIOLOGIA, V745, P167, DOI 10.1007/s10750-014-2102-3; Saulino HH, 2017, HYDROBIOLOGIA, V793, P109, DOI 10.1007/s10750-016-3013-2; SEMARH, 2015, SECR MEIO AMB REC HI; Serra S. R. Q., 2015, ECOLOGICAL INDICATOR, V61, P282; Serra SRQ, 2017, ANN LIMNOL-INT J LIM, V53, P161, DOI 10.1051/limn/2017004; Shieh SH, 2012, ZOOL STUD, V51, P1051; Solimini AG, 2008, HYDROBIOLOGIA, V597, P109, DOI 10.1007/s10750-007-9226-7; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Statzner B, 2001, ANNU REV ENTOMOL, V46, P291, DOI 10.1146/annurev.ento.46.1.291; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Suguio K., 1973, INTRO SEDIMENTOLOGIA, P2007; TOLEDO AP, 1983, AN C BRAS ENG SAN AM, P1; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Trigal C, 2009, HYDROBIOLOGIA, V618, P109, DOI 10.1007/s10750-008-9569-8; Trivinho-Strixino S., 1995, LARVAS CHIRONOMIDAE; Trivinho-Strixino Susana, 2011, Biota Neotropica, V11, P1; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Vinagre PA, 2017, ECOL INDIC, V75, P57, DOI 10.1016/j.ecolind.2016.12.023; Zhang M, 2010, QUATERN INT, V226, P129, DOI 10.1016/j.quaint.2009.12.019 63 0 0 1 1 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1470-160X 1872-7034 ECOL INDIC Ecol. Indic. OCT 2018 93 404 410 10.1016/j.ecolind.2018.05.006 7 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology HD6XC WOS:000452692600042 2019-02-21 J Harper, JM Harper, James M. Body Size and the Righting Response: A Cost of Reproductive Success in Nauphoeta cinerea (Blattodea: Blaberidae)? JOURNAL OF ENTOMOLOGICAL SCIENCE English Article righting response; body size; life history; cinereous cockroaches; Nauphoeta cinerea LIFE-HISTORY STRATEGIES; TRADE-OFFS; PHYSIOLOGICAL UNDERPINNINGS; INTRASPECIFIC VARIATION; GENETIC-VARIATION; METABOLIC-RATE; EVOLUTION; FECUNDITY; BEHAVIOR; COCKROACHES Life history evolution involves a series of trade-offs to maximize reproductive success at the expense of other physiological systems. Within insects, increased body size is associated with increased fecundity in males and females alike; hence, increased body size should be favored even if it is detrimental in the short term. The righting response is a reflexive mechanism used by individuals to regain proper dorsoventral orientation and is conserved among terrestrial animals of multiple taxa to avoid the consequences of being helpless on one's back. In this study, we examined the righting response as it related to body size in the cinereous cockroach, Nauphoeta cinerea (Olivier), of both sexes and found that larger individuals were slower to right themselves relative to smaller individuals. Moreover, the reproductive history of the individual at testing differentially affected this relationship in a sex-specific manner. Individual females that were presumed mated at the time of testing were slower to right themselves than were same-sized males, while virgin females righted themselves more quickly. Taken together, these findings suggest that the reproductive gains associated with an increased body size within this species come at the expense of righting ability and that this outcome is compounded by reproductive history. [Harper, James M.] Sam Houston State Univ, Dept Biol Sci, Huntsville, TX 77340 USA Harper, JM (reprint author), Sam Houston State Univ, Dept Biol Sci, Huntsville, TX 77340 USA. jmharper@shsu.edu Department of Biological Sciences; Sam Houston State University Thanks to Katherine Veltmann, Jennifer Hollingsworth, and Kallie Davis for their assistance with the care and feeding of the cockroaches. Funding for this project was provided by the Department of Biological Sciences and a Faculty Research Grant to J.M.H. from Sam Houston State University. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Bai H, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134415; Barrett ELB, 2009, J EVOLUTION BIOL, V22, P571, DOI 10.1111/j.1420-9101.2008.01671.x; Boman S, 2008, BIOL INVASIONS, V10, P1135, DOI 10.1007/s10530-007-9191-0; BOX GEP, 1964, J ROY STAT SOC B, V26, P211; CAMHI JM, 1977, J COMP PHYSIOL, V113, P283, DOI 10.1007/BF00620403; Corley LS, 2001, J EVOLUTION BIOL, V14, P68, DOI 10.1046/j.1420-9101.2001.00254.x; Davidowitz Goggy, 2008, Journal of Orthoptera Research, V17, P265, DOI 10.1665/1082-6467-17.2.265; Davy CM, 2014, ANIM BEHAV, V93, P15, DOI 10.1016/j.anbehav.2014.04.013; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Faisal AA, 2001, J EXP BIOL, V204, P637; Farkas J, 2009, BRAIN RES BULL, V79, P208, DOI 10.1016/j.brainresbull.2008.12.011; Frantsevich L, 2004, ARTHROPOD STRUCT DEV, V33, P221, DOI 10.1016/j.asd.2004.05.007; FULL RJ, 1995, J EXP BIOL, V198, P2441; Golubovic A, 2013, J ZOOL, V291, P69, DOI 10.1111/jzo.12047; Haag WR, 2013, BIOL REV, V88, P745, DOI 10.1111/brv.12028; Harshman LG, 1999, NEUROBIOL AGING, V20, P521, DOI 10.1016/S0197-4580(99)00091-3; Hatle JD, 2013, EXP GERONTOL, V48, P966, DOI 10.1016/j.exger.2013.06.006; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Hunt J, 2009, J EVOLUTION BIOL, V22, P13, DOI 10.1111/j.1420-9101.2008.01633.x; Hurst V, 2014, J COMP PHYSIOL A, V200, P881, DOI 10.1007/s00359-014-0932-0; Jensen K, 2016, SCI REP-UK, V6, DOI 10.1038/srep28731; Jimenez AG, 2016, J COMP PHYSIOL B, V186, P813, DOI 10.1007/s00360-016-1002-4; Jimenez AG, 2014, J COMP PHYSIOL B, V184, P545, DOI 10.1007/s00360-014-0825-0; Jimenez-Perez A, 2004, J INSECT BEHAV, V17, P511, DOI 10.1023/B:JOIR.0000042538.19559.09; Llodra ER, 2002, ADV MAR BIOL, V43, P87; Maxwell MR, 2014, ENVIRON ENTOMOL, V43, P91, DOI 10.1603/EN12310; Moore PJ, 2005, EVOL DEV, V7, P216, DOI 10.1111/j.1525-142X.2005.05024.x; Moore PJ, 2003, EVOL DEV, V5, P163, DOI 10.1046/j.1525-142X.2003.03024.x; PENN D, 1995, ANIM BEHAV, V49, P1531, DOI 10.1016/0003-3472(95)90074-8; Ridgel AL, 2003, J EXP BIOL, V206, P4453, DOI 10.1242/jeb.00714; Rose MR, 1998, OIKOS, V83, P443, DOI 10.2307/3546672; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; Schimpf NG, 2012, BIOL OPEN, V1, P1185, DOI 10.1242/bio.20122683; Shingleton AW, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P43; Sim EL, 2015, BIOL OPEN, V4, P685, DOI 10.1242/bio.20148995; Speakman JR, 2005, AGING CELL, V4, P167, DOI 10.1111/j.1474-9726.2005.00162.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Trumbo ST, 2004, J INSECT PHYSIOL, V50, P383, DOI 10.1016/j.jinsphys.2004.01.008; Zera AJ, 2003, EVOLUTION, V57, P586; Zera AJ, 2001, J INSECT PHYSIOL, V47, P1147, DOI 10.1016/S0022-1910(01)00096-8; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; ZILL SN, 1986, J NEUROBIOL, V17, P317, DOI 10.1002/neu.480170406 43 0 0 0 0 GEORGIA ENTOMOLOGICAL SOC INC TIFTON PO BOX 748 DEPT ENTOMOLOGY COASTAL PLAIN EXPT STATION, TIFTON, GA 31793-0748 USA 0749-8004 J ENTOMOL SCI J. Entomol. Sci. OCT 2018 53 4 523 532 10.18474/JES17-128.1 10 Entomology Entomology HE1ZU WOS:000453073700011 2019-02-21 J Veiga, JC; Leao, KL; Coelho, BWT; de Queiroz, ACM; Menezes, C; Contrera, FAL Veiga, J. C.; Leao, K. L.; Coelho, B. W. T.; de Queiroz, A. C. M.; Menezes, C.; Contrera, F. A. L. The Life Histories of the "Urucu Amarela" Males (Melipona flavolineata, Apidae, Meliponini) SOCIOBIOLOGY English Article Congregation sites; stingless bees; sterile males; dimorphism BEES; BEHAVIOR Here we describe the life histories of adult males of the the Amazonian stingless bee Melipona flavolineata Friese, commonly known as "urugu amarela". Males reach sexual maturity inside nests, presenting seminal vesicles full of sperm cells and becoming able to fly at a mean age of 10 and 15 days, respectively. They aggregate twice in their lives, once before leaving the nest, and another at external congregation sites, by using their capacity to reach congregation sites dependent on morphological attributes, such as large eyes and elongated thorax. Furthermore, we describe three atypical phenomena for Meliponini males: M. flavolineata males have dimorphic color pattern; they lose their genital capsules, even when they fail to copulate; and penisless (sterile) males can stay alive for up to two days. The life history strategies of Meliponini males have only just started to be told and provide many interesting questions for future studies. [Veiga, J. C.; Leao, K. L.; Contrera, F. A. L.] Univ Fed Para, Lab Biol & Ecol Abelhas, Belem, Para, Brazil; [Coelho, B. W. T.] Colecao Inst Museu Paraense Emilio Goeldi, Belem, Para, Brazil; [de Queiroz, A. C. M.; Menezes, C.] Lab Bot Embrapa Amazonia Oriental, Belem, Para, Brazil Veiga, JC (reprint author), Univ Fed Para, Inst Ciencias Biol, Lab Biol Abelhas, Rua Augusto Correa 01,Campus Basico Guama, BR-66075110 Belem, Para, Brazil. jal.cveiga@gmail.com CAPES/EMBRAPA [15/2014]; CNPq through the PVE 2014 Project [400435/20144] We would like to thank Denyse Cardoso da Silva and Rodriga de Andrade e Silva for their support in field work. We also thank Dr. Alistair Campbell for language review, and the anonymous referees for insightful suggestions. We thank CAPES/EMBRAPA (15/2014) for providing grants to JCV and KLL. This research was funded by CNPq (400435/20144) through the PVE 2014 Project. We dedicate this work to the memory of Prof. Warwick E. Kerr (1922 -2018), a pioneer on studies of stingless bees. Engels W., 1990, P167; Jaffe R, 2010, NATURWISSENSCHAFTEN, V97, P337, DOI 10.1007/s00114-009-0638-2; KERR WARWICK E., 1962, JOUR NEW YORK ENTOMOL SOC, V70, P265; Koffler S, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0765-2; NOGUEIRANETO P, 1954, ARQ MUS NAC, V42, P419; Paxton RJ, 2005, APIDOLOGIE, V36, P145, DOI 10.1051/apido:2005007; Pereboom JJM, 2003, OECOLOGIA, V137, P42, DOI 10.1007/s00442-003-1324-2; Santos CF, 2014, SOCIOBIOLOGY, V61, P115; Schorkopf DLP, 2016, J COMP PHYSIOL A, V202, P667, DOI 10.1007/s00359-016-1109-9; SOMMEIJER MJ, 1995, INSECT SOC, V42, P123, DOI 10.1007/BF01242448; van Veen JW, 1997, INSECT SOC, V44, P435, DOI 10.1007/s000400050063; Veiga JC, 2017, SCI NAT-HEIDELBERG, V104, DOI 10.1007/s00114-017-1450-z 12 0 0 0 0 UNIV ESTADUAL FEIRA SANTANA FEIRA DE SANTANA AV TRANSORDESTINA S N NOVO HORIZONTE, FEIRA DE SANTANA, BAHAI CEP44036-900, BRAZIL 0361-6525 SOCIOBIOLOGY Sociobiology OCT 2018 65 4 SI 780 783 10.13102/sociobiology.v65i4.3451 4 Entomology Entomology HA8OT WOS:000450550200032 2019-02-21 J Huber, J; Dettman, DL; Williams, DG; Hultine, KR Huber, John; Dettman, David L.; Williams, David G.; Hultine, Kevin R. Gas exchange characteristics of giant cacti species varying in stem morphology and life history strategy AMERICAN JOURNAL OF BOTANY English Article Cactaceae; carbon isotope ratios; net assimilation rate; Sonoran Desert; stem economic trait spectrum; stem succulents; stem surface area to volume ratio CRASSULACEAN ACID METABOLISM; OPUNTIA-FICUS-INDICA; RELATIVE GROWTH-RATE; CARBON-ISOTOPE DISCRIMINATION; LEAF ECONOMICS SPECTRUM; NET ASSIMILATION RATE; SAGUARO CACTUS; CARNEGIEA-GIGANTEA; SONORAN DESERT; COLUMNAR CACTI Premise of the Study Methods Giant cacti species possess long cylindrical stems that store massive amounts of water and other resources to draw on for photosynthesis, growth, and reproduction during hot and dry conditions. Across all giant cacti taxa, stem photosynthetic surface area to volume ratio (S:V) varies by several fold. This broad morphological diversity leads to the hypothesis that giant cacti function along a predictable resource use continuum from a "safe" strategy reflected in low S:V, low relative growth rates (RGR), and low net assimilation rates (A(net)) to a high-risk strategy that is reflected in high S:V, RGR, and A(net). To test this hypothesis, whole-plant gas exchange, chlorophyll fluorescence, and whole-spine-tissue carbon isotope ratios (delta C-13) were measured in four giant cacti species varying in stem morphology and RGR. Measurements were conducted on five well-watered, potted plants per species. Key Results Conclusions Under conditions of mild diel temperatures and low atmospheric vapor pressure deficit, A(net), transpiration (E), and stomatal conductance (G(s)) were significantly higher, and water-use efficiency (A(net) : G(s)) was lower in fast-growing, multi-stemmed species compared to the slower growing, single-stemmed species. However, under warmer, less optimal conditions, gas exchange converged between stem types, and neither delta C-13 nor chlorophyll fluorescence varied among species. The results add to a growing body of evidence that succulent-stemmed plants function along a similar economic spectrum as leaf-bearing plants such that functional traits including stem RGR, longevity, morphology, and gas exchange are correlated across species with varying life-history strategies. [Huber, John; Hultine, Kevin R.] Desert Bot Garden, Dept Res Conservat & Collect, Phoenix, AZ 85008 USA; [Huber, John; Dettman, David L.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA; [Williams, David G.] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA Hultine, KR (reprint author), Desert Bot Garden, Dept Res Conservat & Collect, Phoenix, AZ 85008 USA. khultine@dbg.org Binational Consortium for Regional Scientific Development and Innovation - National Council for Science and Technology, Mexico (CONACYT); University of Arizona's Agnese Nelms Haury Program in Environment and Social Justice The authors thank two anonymous reviewers for the very helpful comments on an earlier version of this manuscript. The authors thank Dan Koepke for field assistance and Ben McElhaney with technical assistance for building the gas exchange chambers. This work was supported by the Binational Consortium for Regional Scientific Development and Innovation, funded by the National Council for Science and Technology, Mexico (CONACYT), and the University of Arizona's Agnese Nelms Haury Program in Environment and Social Justice. Albert KR, 2005, PHYSIOL PLANTARUM, V124, P208, DOI 10.1111/j.1399-3054.2005.00502.x; ALCORN SM, 1961, SCIENCE, V133, P1594, DOI 10.1126/science.133.3464.1594; Borland A. M., 1996, CRASSULACEAN ACID ME; Borland AM, 2011, NEW PHYTOL, V191, P619, DOI 10.1111/j.1469-8137.2011.03781.x; Bronson DR, 2011, OECOLOGIA, V167, P861, DOI 10.1007/s00442-011-2021-1; Bustamante E, 2010, AM J BOT, V97, P2020, DOI 10.3732/ajb.1000071; Copetti D, 2017, P NATL ACAD SCI USA, V114, P12003, DOI 10.1073/pnas.1706367114; Cornelissen JHC, 1996, J ECOL, V84, P755, DOI 10.2307/2261337; Delgado-Fernandez M, 2016, RADIOCARBON, V58, P479, DOI 10.1017/RDC.2016.25; Dijkstra P., 1986, BIOL CONTROL PHOTOSY, P251; Drezner TD, 2014, J ARID ENVIRON, V104, P34, DOI 10.1016/j.jaridenv.2014.01.013; English NB, 2007, OECOLOGIA, V154, P247, DOI 10.1007/s00442-007-0832-x; English NB, 2010, PALAEOGEOGR PALAEOCL, V293, P108, DOI 10.1016/j.palaeo.2010.05.005; English NB, 2010, J GEOPHYS RES-BIOGEO, V115, DOI 10.1029/2009JG001008; EPRON D, 1992, PLANT CELL ENVIRON, V15, P809, DOI 10.1111/j.1365-3040.1992.tb02148.x; FARQUHAR GD, 1989, ANNU REV PLANT PHYS, V40, P503, DOI 10.1146/annurev.pp.40.060189.002443; Fleming TH, 1996, SOUTHWEST NAT, V41, P257; GAMON JA, 1989, OECOLOGIA, V79, P475, DOI 10.1007/BF00378664; GRIFFITHS H, 1992, PLANT CELL ENVIRON, V15, P1051, DOI 10.1111/j.1365-3040.1992.tb01655.x; Grime J. P, 1979, PLANT STRATEGIES VEG; GRIME JP, 1975, J ECOL, V63, P393, DOI 10.2307/2258728; Hultine KR, 2016, OECOLOGIA, V182, P679, DOI 10.1007/s00442-016-3690-6; HUNT R, 1987, OIKOS, V50, P53, DOI 10.2307/3565401; INGLESE P, 1994, PHYSIOL PLANTARUM, V91, P708, DOI 10.1111/j.1399-3054.1994.tb03009.x; IUCN (International Union for Conservation of Nature and Natural Resources), 2017, RED LIST THREAT SPEC; Kluge M, 1978, CRASSULACEAN ACID ME; Lajtha K, 1997, J ARID ENVIRON, V36, P579, DOI 10.1006/jare.1996.0240; Luttge U, 2006, NEW PHYTOL, V171, P7, DOI 10.1111/j.1469-8137.2006.01755.x; Luttge U, 2004, ANN BOT-LONDON, V93, P629, DOI 10.1093/aob/mch087; Mauseth JD, 2000, AM J BOT, V87, P1107, DOI 10.2307/2656647; Maxwell K, 2000, J EXP BOT, V51, P659, DOI 10.1093/jexbot/51.345.659; Medel-Narvaez A, 2006, PLANT ECOL, V187, P1, DOI 10.1007/s11258-006-9128-1; Nason JD, 2002, EVOLUTION, V56, P2214; Nobel P. S., 2003, ENV BIOL AGAVES CACT; Nobel P. S., 1988, ENV BIOL AGAVES CACT; Nogues S, 2008, RAPID COMMUN MASS SP, V22, P1017, DOI 10.1002/rcm.3460; OLEARY MH, 1988, BIOSCIENCE, V38, P328, DOI 10.2307/1310735; OSMOND CB, 1978, ANNU REV PLANT PHYS, V29, P379, DOI 10.1146/annurev.pp.29.060178.002115; Osnas JLD, 2013, SCIENCE, V340, P741, DOI 10.1126/science.1231574; PARKER KC, 1988, BOT GAZ, V149, P335, DOI 10.1086/337724; Pataki DE, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2005GL024822; Pierson EA, 2013, J ARID ENVIRON, V88, P57, DOI 10.1016/j.jaridenv.2012.08.008; Pimienta-Barrios E, 2005, INT J PLANT SCI, V166, P961, DOI 10.1086/449317; Pimienta-Barrios E, 2000, J ARID ENVIRON, V44, P73, DOI 10.1006/jare.1999.0570; Pons T. L., 1977, PLANT ECOL, V26, P29; POORTER H, 1990, OECOLOGIA, V83, P553, DOI 10.1007/BF00317209; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; Shipley B, 2006, FUNCT ECOL, V20, P565, DOI 10.1111/j.1365-2435.2006.01135.x; Steenbergh W. F., 1983, NATL PARK SERVICE SC, V17; Williams DG, 2014, J EXP BOT, V65, P3405, DOI 10.1093/jxb/eru174; Winter K, 2002, PLANT PHYSIOL, V129, P1843, DOI 10.1104/pp.002915; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 53 1 1 5 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9122 1537-2197 AM J BOT Am. J. Bot. OCT 2018 105 10 1688 1702 10.1002/ajb2.1166 15 Plant Sciences Plant Sciences GZ5TC WOS:000449490000008 30304560 2019-02-21 J Kolstad, AL; Austrheim, G; Solberg, EJ; De Vriendt, L; Speed, JDM Kolstad, Anders Lorentzen; Austrheim, Gunnar; Solberg, Erling J.; De Vriendt, Laurent; Speed, James D. M. Pervasive moose browsing in boreal forests alters successional trajectories by severely suppressing keystone species ECOSPHERE English Article Alces alces; bryophytes; Cervidae; diversity; Fennoscandia; forestry; Norway; silviculture; Sorbus aucuparia; succession LIFE-HISTORY STRATEGIES; WHITE-TAILED DEER; ALCES-ALCES; LAYER VEGETATION; FIELD LAYER; HERBIVORY; DENSITY; GROWTH; LANDSCAPE; DYNAMICS Large herbivores can shape young forest stands and determine the successional trajectory of forested ecosystems by selectively browsing palatable species at the sapling stage. Moose (Alces alces) is the dominant vertebrate herbivore in Fennoscandian boreal forests, and high population densities have raised concerns about potential negative effects on ecosystem functioning and properties including biological diversity and timber production. We used 31 herbivore exclosures in Norway to investigate how forests developed after clear-cutting with or without moose present. We tested how tree demography, abundances of understory plant functional groups, community composition, and plant diversity (including bryophytes) across multiple scales varied with moose exclusion. After seven years, the exclosures were dominated by deciduous trees, including many large rowan (Sorbus aucuparia) individuals, a functionally important keystone species. In contrast, the open plots subject to moose impacts (browsing, trampling, defecation) were dominated by economically important coniferous trees and there was next to no rowan recruitment to taller height classes. The biomass of large herbs and ferns was much greater inside exclosures. This study emphasizes the large immediate effect of moose on early successional boreal forest stands. Landscape-level alterations caused by reduced deciduous dominance, and a reduction in large flowering herbs is likely to lead to cascading effects on ecosystem functioning. The management of boreal production forests needs to account for the combined effects of silvicultural practices and ungulate herbivory to ensure ecosystem functioning, but this management goal may be jeopardized in our study regions due to drastically reduced abundance of keystone species. [Kolstad, Anders Lorentzen; Austrheim, Gunnar; Speed, James D. M.] Norwegian Univ Sci & Technol, NTNU Univ Museum, Dept Nat Hist, NO-7491 Trondheim, Norway; [Solberg, Erling J.] Norwegian Inst Nat Res NINA, NO-7485 Trondheim, Norway; [De Vriendt, Laurent] Laval Univ, Dept Biol, Quebec City, PQ G1V 0A6, Canada; [De Vriendt, Laurent] Univ Quebec Montreal, Ctr Forest Res CEF, Montreal, PQ H3C 3P8, Canada; [De Vriendt, Laurent] Laval Univ, Ctr Northern Studies CEN, Quebec City, PQ G1V 0A6, Canada Kolstad, AL (reprint author), Norwegian Univ Sci & Technol, NTNU Univ Museum, Dept Nat Hist, NO-7491 Trondheim, Norway. anders.kolstad@ntnu.no Albert A, 2015, OIKOS, V124, P1109, DOI 10.1111/oik.02512; Apollonio M, 2010, EUROPEAN UNGULATES T; Austrheim G, 2011, WILDLIFE BIOL, V17, P286, DOI 10.2981/10-038; Barwell LJ, 2015, J ANIM ECOL, V84, P1112, DOI 10.1111/1365-2656.12362; Beguin J, 2011, ECOL APPL, V21, P439, DOI 10.1890/09-2100.1; Bendiksen E., 2008, NINA RAPPORT, V367, P1; Bernes C., 2018, ENV EVIDENCE, V7, P1; Bjorneraas K, 2011, WILDLIFE BIOL, V17, P44, DOI 10.2981/10-073; Boulanger V, 2018, GLOBAL CHANGE BIOL, V24, pE485, DOI 10.1111/gcb.13899; Bright RM, 2014, GLOBAL CHANGE BIOL, V20, P607, DOI 10.1111/gcb.12451; Chollet S, 2013, ECOSCIENCE, V20, P352, DOI 10.2980/20-4-3627; Cote SD, 2014, ADV ECOL, V2014, P1; DAVIDSON DW, 1993, OIKOS, V68, P23, DOI 10.2307/3545305; Dufresne M, 2009, ECOSCIENCE, V16, P361, DOI 10.2980/16-3-3267; EDENIUS L, 1995, CAN J FOREST RES, V25, P529, DOI 10.1139/x95-060; Edenius L, 2002, SILVA FENN, V36, P57, DOI 10.14214/sf.550; Eichhorn MP, 2017, J APPL ECOL, V54, P1615, DOI 10.1111/1365-2664.12902; Felton A, 2016, AMBIO, V45, pS124, DOI 10.1007/s13280-015-0749-2; Flojgaard C, 2018, GLOBAL CHANGE BIOL, V24, P869, DOI 10.1111/gcb.14029; Fuller RJ, 2001, FORESTRY, V74, P193, DOI 10.1093/forestry/74.3.193; Glode D., 2004, 570 SKOGF; Hegland SJ, 2016, J VEG SCI, V27, P111, DOI 10.1111/jvs.12339; Hegland SJ, 2013, FOREST ECOL MANAG, V310, P267, DOI 10.1016/j.foreco.2013.08.031; Heikkila Risto, 2003, Alces, V39, P203; Herfindal I, 2015, FOREST ECOL MANAG, V348, P97, DOI 10.1016/j.foreco.2015.03.045; Hidding B, 2013, ECOLOGY, V94, P2852, DOI 10.1890/12-2015.1; Hobbs NT, 1996, J WILDLIFE MANAGE, V60, P695, DOI 10.2307/3802368; JONASSON S, 1988, OIKOS, V52, P101, DOI 10.2307/3565988; Kardol P, 2014, J ECOL, V102, P622, DOI 10.1111/1365-2745.12234; Kielland K, 1998, OIKOS, V82, P377, DOI 10.2307/3546979; Kolstad AL, 2018, ECOSYSTEMS, V21, P1027, DOI 10.1007/s10021-017-0202-4; Kuijper DPJ, 2010, J VEG SCI, V21, P1082, DOI 10.1111/j.1654-1103.2010.01217.x; Kuznetsova A, 2017, J STAT SOFTW, V82, P1; Lavsund Sten, 2003, Alces, V39, P109; Legendre P, 2001, OECOLOGIA, V129, P271, DOI 10.1007/s004420100716; Lilleeng MS, 2016, ECOL RES, V31, P777, DOI 10.1007/s11284-016-1391-6; Mansson J, 2007, SCAND J FOREST RES, V22, P407, DOI 10.1080/02827580701515023; Mathisen KM, 2010, J VEG SCI, V21, P705, DOI 10.1111/j.1654-1103.2010.01180.x; MCINNES PF, 1992, ECOLOGY, V73, P2059, DOI 10.2307/1941455; Meisingset E. L., 2015, NIBIO RAPPORT, V1, P1; Morris EK, 2014, ECOL EVOL, V4, P3514, DOI 10.1002/ece3.1155; Myking T, 2013, EUR J FOREST RES, V132, P399, DOI 10.1007/s10342-013-0684-3; Myking T, 2011, FORESTRY, V84, P61, DOI 10.1093/forestry/cpq044; Nuttle T, 2014, J ECOL, V102, P221, DOI 10.1111/1365-2745.12175; Oksanen J., 2018, R PACKAGE VERSION, V2, P4; PASTOR J, 1992, AM NAT, V139, P690, DOI 10.1086/285353; Persson IL, 2000, ANN ZOOL FENN, V37, P251; Persson IL, 2009, ECOLOGY, V90, P2724, DOI 10.1890/08-1662.1; Prins Herbert H. T., 2008, V195, P1; R Core Team, 2017, R LANG ENV STAT COMP; Rooney TP, 2009, PLANT ECOL, V202, P103, DOI 10.1007/s11258-008-9489-8; Rooney TP, 2003, FOREST ECOL MANAG, V181, P165, DOI 10.1016/S0378-1127(03)00130-0; Schmitz OJ, 2014, ECOSYSTEMS, V17, P344, DOI 10.1007/s10021-013-9715-7; Schulze ED, 2014, ANN FOR RES, V57, P267; Speed JDM, 2014, OIKOS, V123, P1270, DOI 10.1111/oik.01373; Speed JDM, 2013, ECOSCIENCE, V20, P311, DOI 10.2980/20-3-3619; Speed JDM, 2013, FOREST ECOL MANAG, V289, P289, DOI 10.1016/j.foreco.2012.10.051; Statistics Norway, 2017, NAT FOR INV; Su Y.-S., 2015, R2JAGS USING R RUN J; Tremblay JP, 2007, J APPL ECOL, V44, P552, DOI 10.1111/j.1365-2664.2007.01290.x; Tremblay JP, 2006, OECOLOGIA, V150, P78, DOI 10.1007/s00442-006-0504-2; Uotila A, 2005, FOREST ECOL MANAG, V215, P113, DOI 10.1016/j.foreco.2005.05.008; van den Brink PJ, 2009, ENVIRON MONIT ASSESS, V152, P271, DOI 10.1007/s10661-008-0314-6; Van Dyke Fred, 2002, Alces, V38, P55; Wam HK, 2016, ECOSYST SERV, V22, P280, DOI 10.1016/j.ecoser.2016.10.003; Wam HK, 2016, BASIC APPL ECOL, V17, P252, DOI 10.1016/j.baae.2015.11.006; Wam HK, 2010, CAN J ZOOL, V88, P1179, DOI 10.1139/Z10-084; Wardle DA, 2001, ECOL MONOGR, V71, P587, DOI 10.1890/0012-9615(2001)071[0587:IBMINZ]2.0.CO;2; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1 69 0 0 1 1 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2150-8925 ECOSPHERE Ecosphere OCT 2018 9 10 e02458 10.1002/ecs2.2458 19 Ecology Environmental Sciences & Ecology GZ6QM WOS:000449566200043 DOAJ Gold, Green Published 2019-02-21 J Winward, JD; Ragan, CM; Jimenez, AG Winward, Joshua D.; Ragan, Christina M.; Jimenez, Ana G. Cellular metabolic rates and oxidative stress profiles in primary fibroblast cells isolated from virgin females, reproductively experienced females, and male Sprague-Dawley rats PHYSIOLOGICAL REPORTS English Article Cellular metabolism; life- history; oxidative stress; reproduction LIFE-HISTORY EVOLUTION; IN-HOUSE MICE; LIPID-PEROXIDATION; SIGMODON-HISPIDUS; LACTATING RAT; TRADE-OFFS; MUS-MUSCULUS; LIVING FAST; COTTON RAT; BODY-SIZE Life-history theory posits that differences in reproductive strategies may dictate lifespans of organisms. Animals that have higher investments in reproduction in terms of litter size and frequency of litters tend to have shorter lifespans. The accumulation of oxidative stress damage has been proposed to be a cost of reproduction and a mediator of life-histories among animals, however, the implications of reproduction on oxidative stress still remain unclear. We tested physiological consequences of reproduction on metabolism and oxidative stress of Sprague-Dawley Rats (Rattus norvegicus) with various reproductive experiences at the cell level. We grew primary dermal fibroblasts from Sprague-Dawley rats which have the potential of having large litters frequently. Cells were isolated from virgin females, primiparous females, multiparous females, and reproductively-experienced males. We measured basal oxygen consumption (OCR), proton leak, ATP production, spare respiratory capacity, coupling efficiency and glycolysis using a Seahorse XF96 oxygen flux analyzer. Additionally, we measured rates of RS (reactive species) production, reduced glutathione (GSH), mitochondrial content, and lipid peroxidation (LPO) damage to quantify oxidative stress. There were no significant differences in any OCR or glycolytic parameters across any of our groups. However, reproductively-experienced females had significantly lower rates of LPO damage as compared with virgin females and males, as well as nonsignificant decreases in GSH concentration. Decreases in LPO damage and GSH indicate that reproductively-experienced females potentially use their endogenous antioxidant system to combat delirious effects of increased metabolism during reproduction. Our results suggest that reproduction may, in fact, have a protective effect in females. [Winward, Joshua D.; Jimenez, Ana G.] Colgate Univ, Dept Biol, 13 Oak Dr, Hamilton, NY 13346 USA; [Ragan, Christina M.] Colgate Univ, Neurosci Program, Dept Psychol, Hamilton, NY 13346 USA Jimenez, AG (reprint author), Colgate Univ, Dept Biol, 13 Oak Dr, Hamilton, NY 13346 USA. ajimenez@colgate.edu Ragan, Christina/0000-0002-0759-6519 Colgate University Funding for this project was provided by Colgate University as start-up funds for the Jimenez lab. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Arnal JF, 1996, P NATL ACAD SCI USA, V93, P4108, DOI 10.1073/pnas.93.9.4108; Ayala A, 2014, OXID MED CELL LONGEV, DOI 10.1155/2014/360438; Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Borras C, 2003, FREE RADICAL BIO MED, V34, P546, DOI 10.1016/S0891-5849(02)01356-4; BOYD NF, 1991, FREE RADICAL BIO MED, V10, P185, DOI 10.1016/0891-5849(91)90074-D; BOYNE R, 1966, J PHYSIOL-LONDON, V183, P570, DOI 10.1113/jphysiol.1966.sp007884; Brand MD, 2011, BIOCHEM J, V435, P297, DOI 10.1042/BJ20110162; Catala A, 2009, CHEM PHYS LIPIDS, V157, P1, DOI 10.1016/j.chemphyslip.2008.09.004; Choi H, 2015, P NATL ACAD SCI USA, V112, pE303, DOI 10.1073/pnas.1417703112; CUSHING BS, 1995, PHYSIOL BEHAV, V58, P953, DOI 10.1016/0031-9384(95)00158-F; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Dezest M, 2017, SCI REP-UK, V7, DOI 10.1038/srep41163; Divakaruni AS, 2014, METHOD ENZYMOL, V547, P309, DOI 10.1016/B978-0-12-801415-8.00016-3; DRYDEN G L, 1974, Acta Theriologica, V19, P453; FELL BF, 1963, J PATHOL BACTERIOL, V85, P179, DOI 10.1002/path.1700850117; Garratt M, 2012, FUNCT ECOL, V26, P423, DOI 10.1111/j.1365-2435.2011.01952.x; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Gebhard AW, 2013, MOL CANCER THER, V12, P2446, DOI 10.1158/1535-7163.MCT-13-0310; Gerencser AA, 2009, ANAL CHEM, V81, P6868, DOI 10.1021/ac900881z; HALLIWELL B, 1993, AM J CLIN NUTR, V57, P715; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Harper ME, 2004, ACTA PHYSIOL SCAND, V182, P321, DOI 10.1111/j.1365-201X.2004.01370.x; Hill BG, 2012, BIOL CHEM, V393, P1485, DOI 10.1515/hsz-2012-0198; Hood WR, 2018, INTEGR COMP BIOL, V58, P567, DOI 10.1093/icb/icy073; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Hyatt HW, 2019, REPROD SCI, V26, P114, DOI 10.1177/1933719118766264; Hyatt HW, 2018, REPROD BIOL ENDOCRIN, V16, DOI 10.1186/s12958-017-0317-7; Hyatt HW, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-17418-7; Isaksson C, 2011, INTEGR ZOOL, V6, P140, DOI 10.1111/j.1749-4877.2011.00237.x; Jimenez AG, 2014, COMP BIOCHEM PHYS A, V171, P23, DOI 10.1016/j.cbpa.2014.02.006; JOLICOEUR L, 1980, BIOMED RES-TOKYO, V1, P482; KENNEDY GC, 1958, J ENDOCRINOL, V17, P158, DOI 10.1677/joe.0.0170158; Kireev RA, 2007, BIOGERONTOLOGY, V8, P469, DOI 10.1007/s10522-007-9089-3; Kozlowski J, 1997, AM NAT, V149, P352; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Leiros M, 2015, ACS CHEM NEUROSCI, V6, P331, DOI 10.1021/cn500258c; Mandavilli Bhaskar S, 2010, Curr Protoc Cytom, VChapter 9, DOI 10.1002/0471142956.cy0935s53; Marko G, 2011, J COMP PHYSIOL B, V181, P73, DOI 10.1007/s00360-010-0502-x; MATTINGLY DK, 1982, ECOLOGY, V63, P183, DOI 10.2307/1937043; MCCLURE PA, 1980, ECOL MONOGR, V50, P199, DOI 10.2307/1942479; MCCORMACK JT, 1974, J ENDOCRINOL, V62, P101, DOI 10.1677/joe.0.0620101; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Miyake T, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028628; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Mowry AV, 2017, ECOL EVOL, V7, P2994, DOI 10.1002/ece3.2817; Mowry AV, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0160883; Naya DE, 2008, PHYSIOL BIOCHEM ZOOL, V81, P186, DOI 10.1086/527453; Nicoll M.E., 1987, Symposia of the Zoological Society of London, P7; Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452; Olsson M, 2009, NATURWISSENSCHAFTEN, V96, P25, DOI 10.1007/s00114-008-0444-2; Pearl R., 1928, RATE LIVING, P185; Pontzer H, 2014, P NATL ACAD SCI USA, V111, P1433, DOI 10.1073/pnas.1316940111; Prentice A.M., 1987, S ZOOL SOC LOND, V75, P275; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; RANDOLPH PA, 1977, ECOLOGY, V58, P31, DOI 10.2307/1935106; Roberts JS, 2017, FRONT CELL INFECT MI, V7, DOI 10.3389/fcimb.2017.00291; Rogers GW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021746; Rose R.W., 1987, Symposia of the Zoological Society of London, P149; SACK MN, 1994, LANCET, V343, P269, DOI 10.1016/S0140-6736(94)91117-7; Schmidt CM, 2016, J EXP ZOOL PART A, V325, P581, DOI 10.1002/jez.2051; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Skrip MM, 2016, J FIELD ORNITHOL, V87, P1, DOI 10.1111/jofo.12135; Slonaker JR, 1924, AM J PHYSIOL, V68, P294; Sorrell JM, 2004, J CELL SCI, V117, P667, DOI 10.1242/jcs.01005; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Speakman JR, 2009, COMP BIOCHEM PHYS A, V153A, pS147, DOI 10.1016/j.cbpa.2009.04.281; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Speakman JR, 2002, J NUTR, V132, p1583S, DOI 10.1093/jn/132.6.1583S; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STUDIER EH, 1979, COMP BIOCHEM PHYS A, V64, P473, DOI 10.1016/0300-9629(79)90574-7; Sudoh N, 2001, CIRCULATION, V103, P724; SUTTON R, 1980, BIOCHEM J, V186, P361, DOI 10.1042/bj1860361; Thannickal VJ, 2000, AM J PHYSIOL-LUNG C, V279, pL1005; Trojan P., 1967, EKOL POL A, V44, P811; TUOMI J, 1983, AM ZOOL, V23, P25; Weiner J., 1987, Symposia of the Zoological Society of London, P167; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wilson SM, 2012, COMP BIOCHEM PHYS A, V162, P212, DOI 10.1016/j.cbpa.2012.02.023; Winward J, 2018, INTEGR COMP BIOL, V58, pE451; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhang YF, 2016, J EXP BIOL, V219, P3177, DOI 10.1242/jeb.132183 86 0 0 0 0 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2051-817X PHYSIOL REP PHYSIOL. REP. OCT 2018 6 20 e13909 10.14814/phy2.13909 12 Physiology Physiology GZ6ED WOS:000449524800005 30350353 DOAJ Gold 2019-02-21 J Pirotte, JALM; Lorenzi, A; Foray, V; Hance, T Pirotte, Jennifer A-L M.; Lorenzi, Ange; Foray, Vincent; Hance, Thierry Impact of differences in nutritional quality of wingless and winged aphids on parasitoid fitness JOURNAL OF EXPERIMENTAL BIOLOGY English Article Aphid-parasitoid; Aphid polyphenism; Energetic reserves; Fitness; Host quality; Wing development ACYRTHOSIPHON-PISUM HARRIS; MORPH-SPECIFIC DIFFERENCES; LIFE-HISTORY STRATEGIES; PEA APHID; COLEMANI HYMENOPTERA; BIOLOGICAL-CONTROL; SITOBION-AVENAE; MYZUS-PERSICAE; BODY-SIZE; ENERGY-METABOLISM Winged aphids are described as hosts of lesser quality for parasitoids because a part of their resources is used to produce wings and associated muscles during their development. Host lipid content is particularly important for parasitoid larvae as they lack lipogenesis and therefore rely entirely on the host for this resource. The goal of this study was to determine to what extent winged and wingless aphids differ from a nutritional point of view and whether these differences impact parasitoid fitness, notably the lipid content. We analysed the energetic budget (proteins, lipids and carbohydrates) of aphids of different ages (third instars, fourth instars and adults) according to the morph (winged or wingless). We also compared fitness indicators for parasitoids emerging from winged and wingless aphids (third and fourth instars). We found that in third instars, parasitoids are able to inhibit wing development whereas this is not the case in fourth instars. Both winged instars allow the production of heavier and fattier parasitoids. The presence of wings in aphids seems to have little effect on the fitness of emerging parasitoids and did not modify female choice for oviposition. Finally, we demonstrate that Aphidius colemani, used as a biological control agent, is able to parasitize wingless as well as winged Myzus persicae, at least in the juvenile stages. If the parasitism occurs in third instars, the parasitoid will prevent the aphid from flying, which could in turn reduce virus transmission. [Pirotte, Jennifer A-L M.; Hance, Thierry] Catholic Univ Louvain, Ecol Interact & Biol Control, Biodivers Res Ctr, Earth & Life Inst, 4-5 Pl Croix Sud, B-1348 Louvain La Neuve, Belgium; [Lorenzi, Ange] Univ Montpellier, Microorganism & Insect Divers, Genomes & Interact DGIMI Lab, INRA,UMR 1333, Pl Eugene Bataillon,CC101, F-34095 Montpellier, France; [Foray, Vincent] CNRS, UMR 5237, Ctr Rech Biol Cellulaire Montpellier, 1919 Route Mende, F-34293 Montpellier 05, France Pirotte, JALM (reprint author), Catholic Univ Louvain, Ecol Interact & Biol Control, Biodivers Res Ctr, Earth & Life Inst, 4-5 Pl Croix Sud, B-1348 Louvain La Neuve, Belgium. jennifer.pirotte@uclouvain.be Universite catholique de Louvain; Fonds de la Recherche Fondamentale Collective [FRFC 6886819] This work was funded by the Universite catholique de Louvain (J.A.-L.M.P. for her work as a teaching assistant, A.L. for his work as a Master's student and T.H. for his work as Professor) and by the Fonds de la Recherche Fondamentale Collective (FRFC 6886819 to V.F.). Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Amat I, 2012, ECOL ENTOMOL, V37, P480, DOI 10.1111/j.1365-2311.2012.01388.x; BAI B, 1992, FUNCT ECOL, V6, P302, DOI 10.2307/2389521; BAKER HG, 1973, NATURE, V241, P543, DOI 10.1038/241543b0; Barrette M, 2009, OECOLOGIA, V158, P757, DOI 10.1007/s00442-008-1175-y; BEENAKKERS AMT, 1985, PROG LIPID RES, V24, P19; BLUA MJ, 1992, OECOLOGIA, V92, P65, DOI 10.1007/BF00317263; Braendle C, 2006, HEREDITY, V97, P192, DOI 10.1038/sj.hdy.6800863; Brisson JA, 2010, PHILOS T R SOC B, V365, P605, DOI 10.1098/rstb.2009.0255; BUSH GL, 1976, SCIENCE, V193, P491, DOI 10.1126/science.941019; Cambier V, 2001, J CHEM ECOL, V27, P359, DOI 10.1023/A:1005636607138; Castaneda LE, 2010, J INSECT PHYSIOL, V56, P1920, DOI 10.1016/j.jinsphys.2010.08.015; CHOW A, 1991, ECOL ENTOMOL, V16, P403, DOI 10.1111/j.1365-2311.1991.tb00233.x; Christiansen-Weniger P, 1998, PHYSIOL ENTOMOL, V23, P208, DOI 10.1046/j.1365-3032.1998.233082.x; Clark RM, 2013, FUNCT ECOL, V27, P1126, DOI 10.1111/1365-2435.12103; CLEGG JM, 1982, CAN J ZOOL, V60, P2245, DOI 10.1139/z82-289; Clements A, 1992, BIOL MOSQUITOES DEV; CLOUTIER C, 1980, CAN J ZOOL, V58, P241, DOI 10.1139/z80-028; COCKBAIN AJ, 1961, J EXP BIOL, V38, P163; Colinet H, 2006, ENVIRON ENTOMOL, V35, P228, DOI 10.1603/0046-225X-35.2.228; Colinet H, 2005, ECOL ENTOMOL, V30, P473, DOI 10.1111/j.0307-6946.2005.00716.x; DABROWSKI ZT, 1988, J APPL ENTOMOL, V105, P450, DOI 10.1111/j.1439-0418.1988.tb00208.x; Demmon AS, 2004, ENVIRON ENTOMOL, V33, P1523, DOI 10.1603/0046-225X-33.6.1523; Derocles SAP, 2014, ENVIRON ENTOMOL, V43, P1327, DOI 10.1603/EN14114; Dixon AFG, 1999, ECOLOGY, V80, P1678, DOI 10.1890/0012-9658(1999)080[1678:COFAAO]2.0.CO;2; Dutton A, 1995, ENTOMOPHAGA, V40, P223, DOI 10.1007/BF02373070; ESSIG E. O., 1948, HILGARDIA, V18, P407; Feng MG, 2007, ECOL ENTOMOL, V32, P97, DOI 10.1111/j.1365-2311.2006.00849.x; Fernandez C, 1997, J APPL ENTOMOL, V121, P447, DOI 10.1111/j.1439-0418.1997.tb01433.x; Foray V, 2014, FUNCT ECOL, V28, P411, DOI 10.1111/1365-2435.12171; Foray V, 2012, PHYSIOL ENTOMOL, V37, P295, DOI 10.1111/j.1365-3032.2012.00831.x; GARDNER SM, 1984, ECOL ENTOMOL, V9, P149, DOI 10.1111/j.1365-2311.1984.tb00709.x; GERLING D, 1990, J INSECT BEHAV, V3, P501, DOI 10.1007/BF01052014; GILDOW FE, 1980, ANN ENTOMOL SOC AM, V73, P343, DOI 10.1093/aesa/73.3.343; Giron D, 2003, J INSECT PHYSIOL, V49, P141, DOI 10.1016/S0022-1910(02)00258-5; GROETERS FR, 1989, EVOL ECOL, V3, P313, DOI 10.1007/BF02285262; Hackermann J, 2007, J ANIM ECOL, V76, P376, DOI 10.1111/j.1365-2656.2006.01206.x; Harvey JA, 1997, ENTOMOL EXP APPL, V84, P93, DOI 10.1046/j.1570-7458.1997.00202.x; Hazell SP, 2005, ECOL ENTOMOL, V30, P293, DOI 10.1111/j.0307-6946.2005.00703.x; HOFSVANG T, 1986, ENTOMOPHAGA, V31, P261, DOI 10.1007/BF02373335; Ishikawa A, 2008, ZOOMORPHOLOGY, V127, P121, DOI 10.1007/s00435-008-0057-5; Ishikawa A, 2007, SOCIOBIOLOGY, V50, P881; Ishikawa A, 2009, EVOL DEV, V11, P680, DOI 10.1111/j.1525-142X.2009.00375.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Jones DB, 2003, ENVIRON ENTOMOL, V32, P425, DOI 10.1603/0046-225X-32.3.425; Kati A, 2010, J INSECT PHYSIOL, V56, P14, DOI 10.1016/j.jinsphys.2009.08.010; Keinan Y, 2012, BEHAV ECOL, V23, P1263, DOI 10.1093/beheco/ars111; Khatri D., 2017, THESIS; Khatri D, 2017, J ECON ENTOMOL, V110, P400, DOI 10.1093/jee/tow324; Khatri D, 2016, J ECON ENTOMOL, V109, P1539, DOI 10.1093/jee/tow105; Le Lann C, 2012, EVOL ECOL, V26, P79, DOI 10.1007/s10682-011-9498-2; Lee JC, 2004, ENTOMOL EXP APPL, V111, P189, DOI 10.1111/j.0013-8703.2004.00165.x; Li BP, 2004, ENTOMOL EXP APPL, V110, P249, DOI 10.1111/j.0013-8703.2004.00144.x; MACKAUER M, 1986, J INSECT PHYSIOL, V32, P275, DOI 10.1016/0022-1910(86)90039-9; Mackauer M, 2001, FUNCT ECOL, V15, P335, DOI 10.1046/j.1365-2435.2001.00532.x; MacKauer M., 1976, International biol Progm, V9, P51; MCBRIEN H, 1990, ENTOMOL EXP APPL, V56, P145, DOI 10.1111/j.1570-7458.1990.tb01392.x; Micheu S, 2000, AMINO ACIDS, V18, P157, DOI 10.1007/s007260050014; Muller CB, 2001, ECOL ENTOMOL, V26, P330, DOI 10.1046/j.1365-2311.2001.00321.x; Murata M, 2002, EUR J ENTOMOL, V99, P221, DOI 10.14411/eje.2002.031; NEWTON C, 1990, ENTOMOL EXP APPL, V55, P223, DOI 10.1111/j.1570-7458.1990.tb01366.x; Parker BJ, 2017, J ANIM ECOL, V86, P473, DOI 10.1111/1365-2656.12657; Peumans WJ, 1997, PLANTA, V201, P298, DOI 10.1007/s004250050070; Pirotte J., 2011, THESIS; Rauwald KS, 2001, ECOL APPL, V11, P1224, DOI 10.1890/1051-0761(2001)011[1224:BCIDAS]2.0.CO;2; Rivero A, 1999, RES POPUL ECOL, V41, P39, DOI 10.1007/PL00011981; ROFF DA, 1991, AM ZOOL, V31, P243; Romeis J, 2003, OECOLOGIA, V134, P528, DOI 10.1007/s00442-002-1144-9; Ryabov EV, 2009, P NATL ACAD SCI USA, V106, P8465, DOI 10.1073/pnas.0901389106; Sabri A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074656; Sampaio MV, 2008, EUR J ENTOMOL, V105, P489, DOI 10.14411/eje.2008.063; Scaraffia PY, 2003, J INSECT PHYSIOL, V49, P591, DOI 10.1016/S0022-1910(03)00031-3; Shi SL, 2010, INSECT SCI, V17, P527, DOI 10.1111/j.1744-7917.2010.01332.x; Shull AF, 1940, GENETICS, V25, P287; Sorin M., 1958, SHIN KONCHU, V11, P2; Stary P, 2002, J APPL ENTOMOL, V126, P405, DOI 10.1046/j.1439-0418.2002.00663.x; Strand M. R., 2008, BEHAV ECOLOGY INSECT; Strohm E, 2000, OECOLOGIA, V123, P184, DOI 10.1007/s004420051004; STRONG FE, 1965, NATURE, V205, P1242, DOI 10.1038/2051242a0; Suarez RK, 2005, J EXP BIOL, V208, P3573, DOI 10.1242/jeb.01775; SYLVESTER EDWARD S., 1954, ANN ENT SOC AMER, V47, P397; Takada H, 1998, APPL ENTOMOL ZOOL, V33, P59, DOI 10.1303/aez.33.59; Thieme T, 2015, J APPL ENTOMOL, V139, P741, DOI 10.1111/jen.12262; TSUMUKI H, 1990, APPL ENTOMOL ZOOL, V25, P215, DOI 10.1303/aez.25.215; Van Emden HF, 2002, BIOCONTROL, V47, P607, DOI 10.1023/A:1020546621967; VANEMDEN HF, 1969, ANNU REV ENTOMOL, V14, P197, DOI 10.1146/annurev.en.14.010169.001213; VANHANDEL E, 1984, MOSQ NEWS, V44, P573; Visser B, 2008, J INSECT PHYSIOL, V54, P1315, DOI 10.1016/j.jinsphys.2008.07.014; Wackers FL, 2008, BIOL CONTROL, V45, P176, DOI 10.1016/j.biocontrol.2008.01.007; Walker AM, 2003, J ECON ENTOMOL, V96, P1685, DOI 10.1603/0022-0493-96.6.1685; WALL ROBERT E., 1933, ANN ENT SOC AMER, V26, P425; Walton MP, 2011, B ENTOMOL RES, V101, P443, DOI 10.1017/S000748531000074X; WEISSER WW, 1994, ENTOMOL EXP APPL, V70, P1, DOI 10.1111/j.1570-7458.1994.tb01753.x; Williams IS, 2000, J APPL ECOL, V37, P40, DOI 10.1046/j.1365-2664.2000.00465.x; Wu GM, 2011, ENVIRON ENTOMOL, V40, P737, DOI 10.1603/EN11018; Xu XL, 2011, ENTOMOL EXP APPL, V138, P128, DOI 10.1111/j.1570-7458.2010.01084.x; ZEBE E, 1993, J COMP PHYSIOL B, V163, P107; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2001, J INSECT PHYSIOL, V47, P1147, DOI 10.1016/S0022-1910(01)00096-8; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhang Y, 2012, BIOL CONTROL, V62, P10, DOI 10.1016/j.biocontrol.2012.03.001; Zhang Y, 2009, BIOL CONTROL, V51, P475, DOI 10.1016/j.biocontrol.2009.08.008 103 0 0 8 8 COMPANY BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING, STATION RD, HISTON, CAMBRIDGE CB24 9LF, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. OCT 2018 221 20 UNSP jeb185645 10.1242/jeb.185645 11 Biology Life Sciences & Biomedicine - Other Topics GY5OO WOS:000448628500012 30206107 2019-02-21 J Simmons, LW; Lovegrove, M; Lymbery, SJ Simmons, Leigh W.; Lovegrove, Maxine; Lymbery, Samuel J. Dietary antioxidants, but not courtship effort, affect oxidative balance in the testes and muscles of crickets JOURNAL OF EXPERIMENTAL BIOLOGY English Article Oxidative stress; Fertility; Life-history trade-off; Cost of reproduction; Ejaculate quality HISTORY TRADE-OFFS; LIFE-SPAN; VITAMIN-E; DROSOPHILA-MELANOGASTER; TELEOGRYLLUS-COMMODUS; STRESS SUSCEPTIBILITY; REPRODUCTIVE EFFORT; LIPID-PEROXIDATION; ALPHA-TOCOPHEROL; SOUND PRODUCTION Recent interest has focused on the role of reactive oxygen species (ROS) as universal constraints in life-history evolution. Empirical studies have examined the oxidative costs of reproduction for females, with little work conducted on males. The male germline is thought to be particularly susceptible to oxidative damage because the testes, and the sperm themselves, can be prolific producers of ROS. We tested the hypothesis that protection of the male germline from oxidative damage represents a cost of reproduction for males. We fed male crickets, Teleoglyilus oceanicus, with one of two experimental diets in which we manipulated the availability of dietary antioxidants, and we induced variation in their expenditure on courtship effort by manipulating access to females. We measured the total antioxidant capacity, levels of ROS production and the amount of oxidative damage to proteins in both testis and thoracic muscle tissues. Dietary antioxidants contributed to positive oxidative balance in both tissue types. Although the testes had greater antioxidant defences than muscle tissue, they also produced considerably higher levels of ROS and sustained higher levels of oxidative damage. Courtship effort had no impact on any measure of oxidative balance. Our data confirm that the male germline is especially susceptible to oxidative stress and that dietary antioxidants can alleviate this oxidative cost of reproduction. [Simmons, Leigh W.; Lovegrove, Maxine; Lymbery, Samuel J.] Univ Western Australia, Ctr Evolutionary Biol, Sch Biol Sci M092, Crawley, WA 6009, Australia Simmons, LW (reprint author), Univ Western Australia, Ctr Evolutionary Biol, Sch Biol Sci M092, Crawley, WA 6009, Australia. leigh.simmons@uwa.edu.au Simmons, Leigh/B-1815-2011 Simmons, Leigh/0000-0003-0562-1474; Lymbery, Samuel James/0000-0002-8801-7880 Australian Research Council [DP130100618] This work was supported by the Australian Research Council (DP130100618). Ahmadi S, 2016, INT J REPROD BIOMED, V14, P729; Aitken RJ, 2008, OXID MED CELL LONGEV, V1, P15, DOI 10.4161/oxim.1.1.6843; Aitken RJ, 2004, REPROD FERT DEVELOP, V16, P581, DOI 10.1071/RD03089; Aitken RJ, 1995, REPROD FERT DEVELOP, V7, P659, DOI 10.1071/RD9950659; Almbro M, 2011, ECOL LETT, V14, P891, DOI 10.1111/j.1461-0248.2011.01653.x; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Archer CR, 2015, ANTIOXIDANTS, V4, P768, DOI 10.3390/antiox4040768; Archer CR, 2013, EVOLUTION, V67, P620, DOI 10.1111/j.1558-5646.2012.01805.x; Beaulieu M, 2015, EVOLUTION, V69, P1786, DOI 10.1111/evo.12697; Beckman KB, 1998, PHYSIOL REV, V78, P547; BENNETCLARK HC, 1970, J EXP BIOL, V52, P619; Blount JD, 2001, ECOL LETT, V4, P393, DOI 10.1046/j.1461-0248.2001.00255.x; Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179; Bohm F, 1997, J AM CHEM SOC, V119, P621, DOI 10.1021/ja962512c; Boussouar F, 2004, TRENDS ENDOCRIN MET, V15, P345, DOI 10.1016/j.tem.2004.07.003; Buss H, 1997, FREE RADICAL BIO MED, V23, P361, DOI 10.1016/S0891-5849(97)00104-4; Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Costantini D, 2008, FUNCT ECOL, V22, P367, DOI 10.1111/j.1365-2435.2007.01366.x; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; de Lamirande E, 1997, Rev Reprod, V2, P48, DOI 10.1530/ror.0.0020048; Dowling DK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030172; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Garratt M, 2012, FUNCT ECOL, V26, P423, DOI 10.1111/j.1365-2435.2011.01952.x; Hack MA, 1998, J INSECT BEHAV, V11, P853, DOI 10.1023/A:1020864111073; Halliwell B, 2007, FREE RADICALS BIOL M; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hoback WW, 1997, PHYSIOL ENTOMOL, V22, P286, DOI 10.1111/j.1365-3032.1997.tb01170.x; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Janssens L, 2018, FUNCT ECOL, V32, P1036, DOI 10.1111/1365-2435.13068; KAVANAGH MW, 1987, J EXP BIOL, V130, P107; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Koch RE, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-02974-x; Liu L, 1997, J AQUAT ANIM HEALTH, V9, P249, DOI 10.1577/1548-8667(1997)009<0249:DAMDLP>2.3.CO;2; Maklakov AA, 2016, CURR BIOL, V26, pR577, DOI 10.1016/j.cub.2016.04.012; Maklakov AA, 2008, CURR BIOL, V18, P1062, DOI 10.1016/j.cub.2008.06.059; MEIKLE JES, 1965, CAN J ZOOLOG, V43, P87, DOI 10.1139/z65-007; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Mora AR, 2017, J EXP BIOL, V220, P2577, DOI 10.1242/jeb.154799; Mora AR, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0176385; Nappi AJ, 2000, BIOESSAYS, V22, P469, DOI 10.1002/(SICI)1521-1878(200005)22:5<469::AID-BIES9>3.3.CO;2-W; Noguera JC, 2015, J EXP BIOL, V218, P2211, DOI 10.1242/jeb.120956; O WS, 1988, J REPROD FERTIL, V84, P341; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; Pike TW, 2010, BIOL LETTERS, V6, P191, DOI 10.1098/rsbl.2009.0815; Preston BT, 2011, ECOL LETT, V14, P1017, DOI 10.1111/j.1461-0248.2011.01668.x; Re R, 1999, FREE RADICAL BIO MED, V26, P1231, DOI 10.1016/S0891-5849(98)00315-3; Rengaraj D, 2015, INT J MOL SCI, V16, P9910, DOI 10.3390/ijms16059910; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Romero-Haro AA, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0842; Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x; Showell M. G., 2011, COCHRANE DATABASE SY; Simmons L. W., 2018, DATA SIMMONS DIETARY, DOI [10.4225/23/5b3b31a23d2be, DOI 10.4225/23/5B3B31A23D2BE]; Simmons LW, 2010, BEHAV ECOL, V21, P1330, DOI 10.1093/beheco/arq154; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Stearns S, 1992, EVOLUTION LIFE HIST; Surai PF, 1997, J REPROD FERTIL, V110, P47; Tourmente M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0138185; Tregenza T, 2006, ANIM BEHAV, V72, P809, DOI 10.1016/j.anbehav.2006.01.019; Wang Y, 2001, EXP GERONTOL, V36, P1349, DOI 10.1016/S0531-5565(01)00095-X; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams JB, 2008, EXP GERONTOL, V43, P538, DOI 10.1016/j.exger.2008.02.001; Yan LJ, 2000, FREE RADICAL BIO MED, V29, P1143, DOI 10.1016/S0891-5849(00)00423-8; Yang XX, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.167478; Zhang YF, 2016, J EXP BIOL, V219, P3177, DOI 10.1242/jeb.132183; 2006, MOL CELL ENDOCRINOL, V250, P80, DOI DOI 10.1016/J.MCE.2005.12.029 68 0 0 1 1 COMPANY BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING, STATION RD, HISTON, CAMBRIDGE CB24 9LF, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. OCT 2018 221 20 UNSP jeb184770 10.1242/jeb.184770 7 Biology Life Sciences & Biomedicine - Other Topics GY5OO WOS:000448628500010 30190320 2019-02-21 J Parsons, TL; Lambert, A; Day, T; Gandon, S Parsons, Todd L.; Lambert, Amaury; Day, Troy; Gandon, Sylvain Pathogen evolution in finite populations: slow and steady spreads the best JOURNAL OF THE ROYAL SOCIETY INTERFACE English Article epidemiology; virulence; life-history evolution; genetic drift; demographic stochasticity; Adaptive Dynamics DEPENDENT BRANCHING-PROCESS; INFECTIOUS-DISEASES; PARASITE VIRULENCE; ADAPTIVE DYNAMICS; DRUG-RESISTANCE; TRADE-OFF; EPIDEMIOLOGY; PROBABILITY; FIXATION; ENVIRONMENT The theory of life-history evolution provides a powerful framework to understand the evolutionary dynamics of pathogens. It assumes, however, that host populations are large and that one can neglect the effects of demographic stochasticity. Here, we expand the theory to account for the effects of finite population size on the evolution of pathogen virulence. We show that demographic stochasticity introduces additional evolutionary forces that can qualitatively affect the dynamics and the evolutionary outcome. We discuss the importance of the shape of the pathogen fitness landscape on the balance between mutation, selection and genetic drift. This analysis reconciles Adaptive Dynamics with population genetics in finite populations and provides a new theoretical toolbox to study life-history evolution in realistic ecological scenarios. [Parsons, Todd L.; Lambert, Amaury] Sorbonne Univ, CNRS, LPSM, UMR 8001, Paris, France; [Lambert, Amaury] PSL Res Univ, CNRS, INSERM, CIRB,Coll France,UMR 7241,U1050, Paris, France; [Day, Troy] Queens Univ, Dept Math & Stat, Kingston, ON, Canada; [Day, Troy] Queens Univ, Dept Biol, Kingston, ON, Canada; [Gandon, Sylvain] Univ Montpellier, Univ Paul Valery Montpellier, CNRS, CEFE,EPHE,UMR 5175, Montpellier, France Gandon, S (reprint author), Univ Montpellier, Univ Paul Valery Montpellier, CNRS, CEFE,EPHE,UMR 5175, Montpellier, France. sylvain.gandon@cefe.cnrs.fr Fondation Sciences Mathematiques de Paris postdoctoral fellowship; Center for Interdisciplinary Research in Biology (College de France); CNRS (PICS); CNRS (PEPS MPI) Some of this research was performed while T.L.P. was supported by a Fondation Sciences Mathematiques de Paris postdoctoral fellowship. A.L. thanks the Center for Interdisciplinary Research in Biology (College de France) for funding. S.G. thanks the CNRS (PICS and PEPS MPI) for funding. Alizon S, 2009, J EVOLUTION BIOL, V22, P245, DOI 10.1111/j.1420-9101.2008.01658.x; Althaus CL, 2005, J VIROL, V79, P13572, DOI 10.1128/JVI.79.21.13572-13578.2005; Anderson R. M., 1992, INFECT DIS HUMANS DY; ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; ANDREASEN V, 1995, J THEOR BIOL, V177, P159; BARBOUR AD, 1976, ADV APPL PROBAB, V8, P296, DOI 10.2307/1425906; Berngruber TW, 2013, ECOL LETT, V16, P446, DOI 10.1111/ele.12064; Bull JJ, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1004387; Champagnat N, 2007, ANN APPL PROBAB, V17, P102, DOI 10.1214/105051606000000628; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; Cortez MH, 2013, J MATH BIOL, V67, P1533, DOI 10.1007/s00285-012-0601-2; Cressler CE, 2016, PARASITOLOGY, V143, P915, DOI 10.1017/S003118201500092X; CRUMP K, 1969, J MATH ANAL APPL, V25, P8, DOI 10.1016/0022-247X(69)90210-8; CRUMP KS, 1968, J MATH ANAL APPL, V24, P494, DOI 10.1016/0022-247X(68)90005-X; Day T, 2004, AM NAT, V163, pE40, DOI 10.1086/382548; Day T, 2006, DIS EVOLUTION MODELS; Day T, 2007, ECOL LETT, V10, P876, DOI 10.1111/j.1461-0248.2007.01091.x; Day T, 2012, EVOLUTION, V66, P1582, DOI 10.1111/j.1558-5646.2011.01533.x; Debarre F, 2016, THEOR POPUL BIOL, V108, P75, DOI 10.1016/j.tpb.2015.12.002; Dieckmann U, 2005, ADAPTIVE DYNAMICS IN; Doebeli M, 2017, ELIFE, V6, DOI 10.7554/eLife.23804.001; EWENS WJ, 1967, HEREDITY, V22, P438, DOI 10.1038/hdy.1967.53; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; FRANK SA, 1990, AM NAT, V136, P244, DOI 10.1086/285094; Fraser C, 2005, J ROY SOC INTERFACE, V2, P489, DOI 10.1098/rsif.2005.0064; Gandon S, 2007, J R SOC INTERFACE, V4, P803, DOI 10.1098/rsif.2006.0207; Gandon S, 2016, TRENDS ECOL EVOL, V31, P776, DOI 10.1016/j.tree.2016.07.010; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Geritz SAH, 2005, J MATH BIOL, V50, P67, DOI 10.1007/s00285-004-0280-8; Gifford DR, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.0310; GILLESPIE JH, 1974, GENETICS, V76, P601; HARRIS T.E, 1963, THEORY BRANCHING PRO; Humplik J, 2014, J THEOR BIOL, V360, P149, DOI 10.1016/j.jtbi.2014.06.039; JAGERS P., 1975, BRANCHING PROCESSES; KIFER Y, 1981, ISRAEL J MATH, V40, P74, DOI 10.1007/BF02761819; KIMURA M, 1974, P NATL ACAD SCI USA, V71, P3377, DOI 10.1073/pnas.71.9.3377; Kogan O, 2014, PHYS REV E, V90, DOI 10.1103/PhysRevE.90.042149; Lambert A, 2006, THEOR POPUL BIOL, V69, P419, DOI 10.1016/j.tpb.2006.01.002; Lande R., 2003, STOCHASTIC POPULATIO; Lehmann L, 2012, J EVOLUTION BIOL, V25, P770, DOI 10.1111/j.1420-9101.2012.02472.x; LENSKI RE, 1994, J THEOR BIOL, V169, P253, DOI 10.1006/jtbi.1994.1146; Lion S, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.1170; Lion S, 2018, TRENDS ECOL EVOL, V33, P458, DOI 10.1016/j.tree.2018.02.004; Lloyd-Smith JO, 2005, NATURE, V438, P355, DOI 10.1038/nature04153; MAY RM, 1983, PROC R SOC SER B-BIO, V219, P281, DOI 10.1098/rspb.1983.0075; McCallum H, 2001, TRENDS ECOL EVOL, V16, P295, DOI 10.1016/S0169-5347(01)02144-9; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Morozov A, 2012, J THEOR BIOL, V307, P29, DOI 10.1016/j.jtbi.2012.04.023; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; Nasell I, 2001, J THEOR BIOL, V211, P11, DOI 10.1006/jtbi.2001.2328; Nguyen A., 2015, BIORXIV, DOI [10.1101/034041, DOI 10.1101/034041]; NOWAK MA, 1994, P ROY SOC B-BIOL SCI, V255, P81, DOI 10.1098/rspb.1994.0012; Osnas EE, 2015, AM NAT, V185, P332, DOI 10.1086/679734; Otto S., 2007, BIOL GUIDE MATH MODE; Otto SP, 1997, GENETICS, V146, P723; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; Parsons, UNPUB; Parsons TL., 2012, THESIS; Parsons TL, 2007, THEOR POPUL BIOL, V72, P468, DOI 10.1016/j.tpb.2007.04.002; Parsons TL, 2017, J PHYS A-MATH THEOR, V50, DOI 10.1088/1751-8121/aa86c7; Penczykowski RM, 2016, EVOL APPL, V9, P37, DOI 10.1111/eva.12294; Proulx S.R., 2002, SELECTION, V2, P2, DOI DOI 10.1556/SELECT.2.2001.1-2.2); Read JM, 2007, ECOL LETT, V10, P818, DOI 10.1111/j.1461-0248.2007.01078.x; Roff D., 1993, EVOLUTION LIFE HIST; ROFF DA, 2002, LIFE HIST EVOLUTION; Rousset F, 2004, GENETIC STRUCTURE SE; Schreiber SJ, 2015, AM NAT, V186, P792, DOI 10.1086/683657; Starrfelt J, 2012, BIOL REV, V87, P742, DOI 10.1111/j.1469-185X.2012.00225.x; Stearns S, 1992, EVOLUTION LIFE HIST; Urban MC, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3085; vanBaalen M, 1995, AM NAT, V146, P881, DOI 10.1086/285830; Waxman D, 2005, J EVOLUTION BIOL, V18, P1139, DOI 10.1111/j.1420-9101.2005.00948.x; Woolhouse MEJ, 1997, P NATL ACAD SCI USA, V94, P338, DOI 10.1073/pnas.94.1.338 73 0 0 3 3 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1742-5689 1742-5662 J R SOC INTERFACE J. R. Soc. Interface OCT 2018 15 147 20180135 10.1098/rsif.2018.0135 11 Multidisciplinary Sciences Science & Technology - Other Topics GY7SG WOS:000448813900002 30282758 2019-02-21 J Ayllon, D; Railsback, SF; Almodovar, A; Nicola, GG; Vincenzi, S; Elvira, B; Grimm, V Ayllon, Daniel; Railsback, Steven F.; Almodovar, Ana; Nicola, Graciela G.; Vincenzi, Simone; Elvira, Benigno; Grimm, Volker Eco-evolutionary responses to recreational fishing under different harvest regulations ECOLOGY AND EVOLUTION English Article brown trout; eco-evolutionary dynamics; eco-genetic modeling; fishery-induced evolution; harvest regulations; individual-based model; recreational fisheries management FISHERIES-INDUCED EVOLUTION; INDIVIDUAL-BASED MODELS; LIFE-HISTORY EVOLUTION; PIKE ESOX-LUCIUS; ATLANTIC SALMON; ENVIRONMENTAL-CHANGE; GENETIC MODEL; SELECTION; POPULATIONS; MORTALITY Harvesting alters demography and life histories of exploited populations, and there is mounting evidence that rapid phenotypic changes at the individual level can occur when harvest is intensive. Therefore, recreational fishing is expected to induce both ecological and rapid evolutionary changes in fish populations and consequently requires rigorous management. However, little is known about the coupled demographic and evolutionary consequences of alternative harvest regulations in managed freshwater fisheries. We used a structurally realistic individual-based model and implemented an eco-genetic approach that accounts for microevolution, phenotypic plasticity, adaptive behavior, density-dependent processes, and cryptic mortality sources (illegal harvest and hooking mortality after catch and release). We explored the consequences of a range of harvest regulations, involving different combinations of exploitation intensity and minimum and maximum-length limits, on the eco-evolutionary trajectories of a freshwater fish stock. Our 100-year simulations of size-selective harvest through recreational fishing produced negative demographic and structural changes in the simulated population, but also plastic and evolutionary responses that compensated for such changes and prevented population collapse even under intense fishing pressure and liberal harvest regulations. Fishing-induced demographic and evolutionary changes were driven by the harvest regime, and the strength of responses increased with increasing exploitation intensity and decreasing restriction in length limits. Cryptic mortality strongly amplified the impacts of harvest and might be exerting a selective pressure that opposes that of size-selective harvest. Slot limits on harvestable length had overall positive effects but lower than expected ability to buffer harvest impacts. Harvest regulations strongly shape the eco-evolutionary dynamics of exploited fish stocks and thus should be considered in setting management policies. Our findings suggest that plastic and evolutionary responses buffer the demographic impacts of fishing, but intense fishing pressure and liberal harvest regulations may lead to an unstructured, juvenescent population that would put the sustainability of the stock at risk. Our study also indicates that high rates of cryptic mortality may make harvest regulations based on harvest slot limits ineffective. [Ayllon, Daniel; Almodovar, Ana; Elvira, Benigno] Univ Complutense Madrid, Dept Biodivers Ecol & Evolut, Fac Biol, Jose Antonio Novais 2, Madrid 28040, Spain; [Ayllon, Daniel; Grimm, Volker] UFZ Helmholtz Ctr Environm Res, Dept Ecol Modelling, Leipzig, Germany; [Railsback, Steven F.] Humboldt State Univ, Dept Math, Arcata, CA 95521 USA; [Railsback, Steven F.] Lang Railsback & Associates, Arcata, CA USA; [Nicola, Graciela G.] Univ Castilla La Mancha, Dept Environm Sci, Toledo, Spain; [Vincenzi, Simone] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA Ayllon, D (reprint author), Univ Complutense Madrid, Dept Biodivers Ecol & Evolut, Fac Biol, Jose Antonio Novais 2, Madrid 28040, Spain. daniel.ayllon@bio.ucm.es Ayllon Fernandez, Daniel/0000-0001-7539-5287 FP7 People: Marie-Curie Actions [PIEF-GA-2012-329264] FP7 People: Marie-Curie Actions, Grant/Award Number: PIEF-GA-2012-329264 Allendorf FW, 2008, TRENDS ECOL EVOL, V23, P327, DOI 10.1016/j.tree.2008.02.008; Almodovar A., 2002, P337; Almodovar A, 2004, FISHERIES MANAG ECOL, V11, P173, DOI 10.1111/j.1365-2400.2004.00402.x; Alos J, 2015, CAN J FISH AQUAT SCI, V72, P217, DOI 10.1139/cjfas-2014-0183; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; Arlinghaus R, 2017, REV FISH SCI AQUAC, V25, P1, DOI 10.1080/23308249.2016.1209160; Arlinghaus R, 2010, BIOL CONSERV, V143, P1444, DOI 10.1016/j.biocon.2010.03.020; Arlinghaus R, 2009, EVOL APPL, V2, P335, DOI 10.1111/j.1752-4571.2009.00081.x; Ayllon D, 2016, ECOL MODEL, V326, P36, DOI 10.1016/j.ecolmodel.2015.07.026; Cameron TC, 2013, ECOL LETT, V16, P754, DOI 10.1111/ele.12107; Coggins LG, 2007, FISH FISH, V8, P196, DOI 10.1111/j.1467-2679.2007.00247.x; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Grimm V, 2006, ECOL MODEL, V198, P115, DOI 10.1016/j.ecolmodel.2006.04.023; Grimm V, 2010, ECOL MODEL, V221, P2760, DOI 10.1016/j.ecolmodel.2010.08.019; Groemping U., 2015, RELAIMPO RELATIVE IM; Gwinn DC, 2015, FISH FISH, V16, P259, DOI 10.1111/faf.12053; Harvey BC, 2014, N AM J FISH MANAGE, V34, P247, DOI 10.1080/02755947.2013.860062; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Hixon MA, 2014, ICES J MAR SCI, V71, P2171, DOI 10.1093/icesjms/fst200; Huhn D, 2011, AM FISH S S, V75, P141; Hunt LM, 2011, ECOL APPL, V21, P2555, DOI 10.1890/10-1237.1; Johnston FD, 2015, CAN J FISH AQUAT SCI, V72, P37, DOI 10.1139/cjfas-2013-0650; Jonsson B, 2011, FISH FISH SER, V33, P633, DOI 10.1007/978-94-007-1189-1_12; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Laugen AT, 2014, FISH FISH, V15, P65, DOI 10.1111/faf.12007; Lynch M, 1998, GENETICS ANAL QUANTI; Matsumura S, 2011, EVOL ECOL, V25, P711, DOI 10.1007/s10682-010-9444-8; Piou C, 2015, J APPL ECOL, V52, P1629, DOI 10.1111/1365-2664.12512; Post JR, 2002, FISHERIES, V27, P6, DOI 10.1577/1548-8446(2002)027<0006:CRF>2.0.CO;2; R Core Team, 2017, R LANG ENV STAT COMP; Railsback S. F., 2009, INSTREAM INDIVIDUAL, DOI [10. 2737/PSW-GTR-218, DOI 10.2737/PSW-GTR-218]; Railsback S. F., 2013, INSTREAM SD INDIVIDU; Railsback SF, 1999, ECOL MODEL, V123, P73, DOI 10.1016/S0304-3800(99)00124-6; Railsback SF, 2002, ECOLOGY, V83, P1817, DOI 10.1890/0012-9658(2002)083[1817:AOHSRU]2.0.CO;2; Saura M, 2010, FRESHWATER BIOL, V55, P923, DOI 10.1111/j.1365-2427.2009.02346.x; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Sullivan AP, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-016-0065; Sutter DAH, 2012, P NATL ACAD SCI USA, V109, P20960, DOI 10.1073/pnas.1212536109; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; Uusi-Heikkila S, 2015, EVOL APPL, V8, P597, DOI 10.1111/eva.12268; Wang HY, 2009, EVOL APPL, V2, P438, DOI 10.1111/j.1752-4571.2009.00088.x; Wilensky U., 1999, NETLOGO CTR CONNECTE; Zimmermann F, 2017, MAR ECOL PROG SER, V563, P185, DOI 10.3354/meps11996 52 1 1 2 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2018 8 19 9600 9613 10.1002/ece3.4270 14 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GY7PA WOS:000448803000004 30386560 DOAJ Gold 2019-02-21 J Pietrzak, B; Grzesiuk, M; Dorosz, J; Mikulski, A Pietrzak, Barbara; Grzesiuk, Malgorzata; Dorosz, Julia; Mikulski, Andrzej When males outlive females: Sex-specific effects of temperature on lifespan in a cyclic parthenogen ECOLOGY AND EVOLUTION English Article cyclic parthenogen; Daphnia; longevity; phenotypic plasticity; sex; temperature DAPHNIA-MAGNA; VERTICAL MIGRATION; PHENOTYPIC PLASTICITY; HISTORY PARAMETERS; METABOLIC-ACTIVITY; FOOD CONCENTRATION; LONGEVITY; REPRODUCTION; PREDATION; PULEX Lifespans of males and females frequently differ as a consequence of different life history strategies adopted to maximize fitness. It is well visible in cyclic parthenogens, such as water fleas of the genus Daphnia, where males appear in the population usually only for periods when receptive females are available. Moreover, even within one sex, different life history strategies and mechanisms regulating lifespan may exist. Previous studies suggested that Daphnia males may regulate their lifespan by staying in colder waters than females. We hypothesize that such behavioral mechanism should be associated with stronger reaction to low temperature-that is greater lifespan extension in males than in females. In this study, we monitored survivorship of Daphnia magna females and males of three clonal lines cultured at 16 or 20 degrees C. The results did not provide a species-level corroboration of our hypothesis; instead, they revealed very strong intraspecific differences in the responses of male and female lifespan to temperature change. They further suggest the existence of parallel life history strategies, hypothesis whose tests would bring new insights into the ecology of males in cyclic parthenogens. [Pietrzak, Barbara; Grzesiuk, Malgorzata; Dorosz, Julia; Mikulski, Andrzej] Univ Warsaw, Fac Biol, Biol & Chem Res Ctr, Dept Hydrobiol, Warsaw, Poland Mikulski, A (reprint author), Univ Warsaw, Fac Biol, Biol & Chem Res Ctr, Dept Hydrobiol, Warsaw, Poland. a.mikulski@uw.edu.pl Pietrzak, Barbara/C-3421-2013 Pietrzak, Barbara/0000-0001-5446-6277 Narodowe Centrum Nauki [NN304 138940] Narodowe Centrum Nauki, Grant/Award Number: NN304 138940 Bartosiewicz M, 2015, J PLANKTON RES, V37, P417, DOI 10.1093/plankt/fbu108; Beck CW, 2000, EVOL ECOL RES, V2, P107; Bernatowicz P, 2011, ECOTOX ENVIRON SAFE, V74, P711, DOI 10.1016/j.ecoenv.2010.10.029; Bohrer RN, 1988, FUNCT ECOL, V2, P463, DOI 10.2307/2389389; Bosque T, 2001, J EXP MAR BIOL ECOL, V258, P55, DOI 10.1016/S0022-0981(00)00345-2; Bradley E., 1974, J AM STAT ASSOC, V72, P557; Brewer MC, 1998, PHILOS T ROY SOC B, V353, P805, DOI 10.1098/rstb.1998.0244; Brugnano C, 2009, MAR BIOL, V156, P331, DOI 10.1007/s00227-008-1086-9; Chen HY, 2014, CURR BIOL, V24, P2423, DOI 10.1016/j.cub.2014.08.055; Colbourne JK, 2011, SCIENCE, V331, P555, DOI 10.1126/science.1197761; Congdon JD, 2003, EXP GERONTOL, V38, P765, DOI 10.1016/S0531-5565(03)00106-2; DAVEY RB, 1983, J MED ENTOMOL, V20, P614, DOI 10.1093/jmedent/20.6.614; deMeester L, 1996, EVOLUTION, V50, P1293, DOI 10.1111/j.1558-5646.1996.tb02369.x; DesMeester L., 1993, ECOLOGY, V74, P1467; Dudycha JL, 2013, J PLANKTON RES, V35, P253, DOI 10.1093/plankt/fbt008; Dudycha JL, 1999, EVOLUTION, V53, P1744, DOI 10.1111/j.1558-5646.1999.tb04559.x; Duneau D, 2012, BMC BIOL, V10, DOI 10.1186/1741-7007-10-104; EBERT D, 1993, HEREDITY, V70, P344, DOI 10.1038/hdy.1993.49; Engert A, 2013, CHEMOSPHERE, V90, P2136, DOI 10.1016/j.chemosphere.2012.10.099; Euent S., 2008, ANN ENV SCI, V2, P7; Fedorka KM, 2004, EVOLUTION, V58, P2478; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Glaholt SP, 2016, J THERM BIOL, V60, P70, DOI 10.1016/j.jtherbio.2016.06.008; Gracey AY, 2004, P NATL ACAD SCI USA, V101, P16970, DOI 10.1073/pnas.0403627101; Gribble KE, 2014, EXP GERONTOL, V51, P28, DOI 10.1016/j.exger.2013.12.005; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Han CS, 2015, ANIM BEHAV, V109, P177, DOI 10.1016/j.anbehav.2015.08.017; Hazzard W, 1990, PRINCIPLES GERIATRIC, P37; HEBERT PDN, 1972, GENETICS, V71, P639; Henning-Lucass N, 2016, ECOL EVOL, V6, P881, DOI 10.1002/ece3.1924; HOBAEK A, 1990, ECOLOGY, V71, P2255, DOI 10.2307/1938637; HOLM S, 1979, SCAND J STAT, V6, P65; Horikawa M, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005023; Ikuno E, 2008, ENVIRON TOXICOL, V23, P570, DOI 10.1002/tox.20403; Johnston RK, 2016, EXP GERONTOL, V78, P12, DOI 10.1016/j.exger.2016.02.014; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Keil G, 2015, BIOGERONTOLOGY, V16, P383, DOI 10.1007/s10522-015-9571-2; Kiorboe T, 2015, ECOLOGY, V96, P2225, DOI 10.1890/14-2205.1; KLEIVEN OT, 1992, OIKOS, V65, P197, DOI 10.2307/3545010; KORPELAINEN H, 1986, FRESHWATER BIOL, V16, P615, DOI 10.1111/j.1365-2427.1986.tb01004.x; LAMPERT W, 1989, FUNCT ECOL, V3, P21, DOI 10.2307/2389671; Lampert W, 2011, DAPHNIA DEV MODEL OR; Lampert W, 2012, COMP BIOCHEM PHYS C, V156, P130, DOI 10.1016/j.cbpc.2012.05.004; LeBlanc GA, 2015, FEBS J, V282, P4080, DOI 10.1111/febs.13393; Lurling M, 2006, ACTA HYDROCH HYDROB, V34, P375, DOI 10.1002/aheh.200500634; MacArthur JW, 1929, J EXP ZOOL, V53, P221, DOI 10.1002/jez.1400530205; MacArthur JW, 1929, J EXP ZOOL, V53, P243, DOI 10.1002/jez.1400530206; Machacek J, 2013, HYDROBIOLOGIA, V715, P113, DOI 10.1007/s10750-012-1419-z; Maklakov AA, 2013, BIOESSAYS, V35, P717, DOI 10.1002/bies.201300021; McDougall SJ, 1997, ENTOMOL EXP APPL, V83, P195, DOI 10.1046/j.1570-7458.1997.00172.x; Mikulski A, 2011, J CHEM ECOL, V37, P670, DOI 10.1007/s10886-011-9969-5; Mikulski A, 2009, FUND APPL LIMNOL, V174, P301, DOI 10.1127/1863-9135/2009/0174-0301; Mitchell SE, 2001, HYDROBIOLOGIA, V442, P145, DOI 10.1023/A:1017564105942; Munch SB, 2009, P NATL ACAD SCI USA, V106, P13860, DOI 10.1073/pnas.0900300106; ORCUTT JD, 1984, OECOLOGIA, V63, P300, DOI 10.1007/BF00390657; Pietrzak B, 2013, HYDROBIOLOGIA, V715, P125, DOI 10.1007/s10750-012-1420-6; Pietrzak B, 2010, HYDROBIOLOGIA, V643, P71, DOI 10.1007/s10750-010-0138-6; Pietrzak B, 2010, HYDROBIOLOGIA, V643, P51, DOI 10.1007/s10750-010-0135-9; Podrabsky JE, 2004, J EXP BIOL, V207, P2237, DOI 10.1242/jeb.01016; Promislow D.E.L., 2006, HDB BIOL AGING, P217; REEDE T, 1995, HYDROBIOLOGIA, V307, P207, DOI 10.1007/BF00032014; Schumpert CA, 2016, AGING-US, V8, P402, DOI 10.18632/aging.100909; Schwartz TS, 2016, EXP GERONTOL, V86, P62, DOI 10.1016/j.exger.2016.06.010; Schwarzenberger Anke, 2014, BMC Physiology, V14, P8, DOI 10.1186/s12899-014-0008-y; Sommer S, 2000, ANIM BEHAV, V59, P1087, DOI 10.1006/anbe.2000.1381; Spaak P, 2001, HYDROBIOLOGIA, V442, P185, DOI 10.1023/A:1017578221814; SPITZE K, 1992, AM NAT, V139, P229, DOI 10.1086/285325; Thompson O, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00835-z; TOLLRIAN R, 1995, ECOLOGY, V76, P1691, DOI 10.2307/1940703; Valenzano DR, 2006, AGING CELL, V5, P275, DOI 10.1111/j.1474-9726.2006.00212.x; Van Voorhies WA, 1999, P NATL ACAD SCI USA, V96, P11399, DOI 10.1073/pnas.96.20.11399; Walsh MR, 2014, INTEGR COMP BIOL, V54, P822, DOI 10.1093/icb/icu078; WEIDER LJ, 1984, LIMNOL OCEANOGR, V29, P225, DOI 10.4319/lo.1984.29.2.0225; Xiao R, 2013, CELL, V152, P806, DOI 10.1016/j.cell.2013.01.020; Zhang B, 2015, CELL REP, V11, P1414, DOI 10.1016/j.celrep.2015.04.066 75 0 0 3 3 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2018 8 19 9880 9888 10.1002/ece3.4473 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GY7PA WOS:000448803000027 30386583 DOAJ Gold 2019-02-21 J Wolak, ME; Arcese, P; Keller, LF; Nietlisbach, P; Reid, JM Wolak, Matthew E.; Arcese, Peter; Keller, Lukas F.; Nietlisbach, Pirmin; Reid, Jane M. Sex-specific additive genetic variances and correlations for fitness in a song sparrow (Melospiza melodia) population subject to natural immigration and inbreeding EVOLUTION English Article Cross-sex genetic correlation; genetic groups; inbreeding depression; migration load; quantitative genetic generalized linear-mixed model; sexual conflict EXTRA-PAIR REPRODUCTION; LIFE-HISTORY EVOLUTION; WILD BIRD POPULATION; QUANTITATIVE GENETICS; DROSOPHILA-MELANOGASTER; INDIRECT SELECTION; ANIMAL-MODELS; MIXED MODELS; R PACKAGE; RED DEER Quantifying sex-specific additive genetic variance (V-A) in fitness, and the cross-sex genetic correlation (r(A)), is prerequisite to predicting evolutionary dynamics and the magnitude of sexual conflict. Further, quantifying V-A and r(A) in underlying fitness components, and genetic consequences of immigration and resulting gene flow, is required to identify mechanisms that maintain V-A in fitness. However, these key parameters have rarely been estimated in wild populations experiencing natural environmental variation and immigration. We used comprehensive pedigree and life-history data from song sparrows (Melospiza melodia) to estimate V-A and r(A) in sex-specific fitness and underlying fitness components, and to estimate additive genetic effects of immigrants alongside inbreeding depression. We found evidence of substantial V-A in female and male fitness, with a moderate positive cross-sex r(A). There was also substantial V-A in male but not female adult reproductive success, and moderate V-A in juvenile survival but not adult annual survival. Immigrants introduced alleles with negative additive genetic effects on local fitness, potentially reducing population mean fitness through migration load, but alleviating expression of inbreeding depression. Our results show that V-A for fitness can be maintained in the wild, and be broadly concordant between the sexes despite marked sex-specific V-A in reproductive success. [Wolak, Matthew E.; Reid, Jane M.] Univ Aberdeen, Sch Biol Sci, Aberdeen, Scotland; [Wolak, Matthew E.] Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA; [Arcese, Peter] Univ British Columbia, Dept Forest & Conservat Sci, Vancouver, BC, Canada; [Keller, Lukas F.; Nietlisbach, Pirmin] Univ Zurich, Dept Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland; [Keller, Lukas F.] Univ Zurich, Zool Museum, Karl Schmid Str 4, CH-8006 Zurich, Switzerland; [Nietlisbach, Pirmin] Univ British Columbia, Dept Zool, Vancouver, BC, Canada Wolak, ME (reprint author), Univ Aberdeen, Sch Biol Sci, Aberdeen, Scotland.; Wolak, ME (reprint author), Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA. matthew.wolak@auburn.edu Wolak, Matthew/0000-0002-7962-0071 European Research Council We thank the Tsawout and Tseycum First Nation bands for access to Mandarte and everyone who contributed to the long-term data collection. We thank the European Research Council for funding and the University of Aberdeen for generous access to the Maxwell High Performance Computing cluster. Pierre de Villemereuil, Michael B. Morrissey, and Jarrod D. Hadfield provided enlightening discussions during manuscript preparation. Joel McGlothlin and two anonymous reviewers provided further helpful comments. ARNOLD SJ, 1984, EVOLUTION, V38, P720, DOI 10.1111/j.1558-5646.1984.tb00345.x; Barton NH, 2002, NAT REV GENET, V3, P11, DOI 10.1038/nrg700; Bell G, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0080; Bijlsma R, 2010, CONSERV GENET, V11, P449, DOI 10.1007/s10592-010-0058-z; Blomquist GE, 2010, EVOL ECOL, V24, P657, DOI 10.1007/s10682-009-9323-3; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Brommer JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000744; BURT A, 1995, EVOLUTION, V49, P1, DOI 10.1111/j.1558-5646.1995.tb05954.x; Carlson SM, 2014, TRENDS ECOL EVOL, V29, P521, DOI 10.1016/j.tree.2014.06.005; Charlesworth B., 1987, Life Sciences Research Report, V39, P21; Charmantier A, 2014, QUANTITATIVE GENETICS IN THE WILD, P1; Chippindale AK, 2001, P NATL ACAD SCI USA, V98, P1671, DOI 10.1073/pnas.041378098; Collet JM, 2016, EVOLUTION, V70, P781, DOI 10.1111/evo.12892; Coltman DW, 2005, EVOLUTION, V59, P1372; CROW J F, 1970, P591; de Villemereuil P, 2016, GENETICS, V204, P1281, DOI 10.1534/genetics.115.186536; Delcourt M, 2009, P ROY SOC B-BIOL SCI, V276, P2009, DOI 10.1098/rspb.2008.1459; Doligez B, 2008, J ANIM ECOL, V77, P1199, DOI 10.1111/j.1365-2656.2008.01446.x; Duffy E, 2014, ECOL EVOL, V4, P3330, DOI 10.1002/ece3.1153; Edelaar P, 2012, TRENDS ECOL EVOL, V27, P659, DOI 10.1016/j.tree.2012.07.009; Ellegren H, 2008, NATURE, V452, P169, DOI 10.1038/nature06737; Falconer DS, 1989, INTRO QUANTITATIVE G; Firth JA, 2015, EVOLUTION, V69, P1336, DOI 10.1111/evo.12649; Fisher RA, 1930, GENETICAL THEORY NAT; Flint J, 2009, GENOME RES, V19, P723, DOI 10.1101/gr.086660.108; Foerster K, 2007, NATURE, V447, P1107, DOI 10.1038/nature05912; Frankham R, 2016, BIOL CONSERV, V195, P33, DOI 10.1016/j.biocon.2015.12.038; Freeman-Gallant CR, 2005, EVOLUTION, V59, P422, DOI 10.1111/j.0014-3820.2005.tb01000.x; Garant D, 2007, FUNCT ECOL, V21, P434, DOI 10.1111/j.1365-2435.2006.01228.x; Garcia-Gonzalez F, 2012, EVOLUTION, V66, P2341, DOI 10.1111/j.1558-5646.2011.01565.x; Gardner MP, 2005, GENETICS, V169, P1553, DOI 10.1534/genetics.104.032367; Gavrus-Ion A, 2017, AM J PHYS ANTHROPOL, V164, P321, DOI 10.1002/ajpa.23271; Gelman A, 2006, BAYESIAN ANAL, V1, P515, DOI 10.1214/06-BA117A; Gomulkiewicz R, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0093; Hadfield JD, 2008, P ROY SOC B-BIOL SCI, V275, P723, DOI 10.1098/rspb.2007.1013; Hadfield JD, 2013, EVOLUTION, V67, P2701, DOI 10.1111/evo.12144; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hedrick PW, 2014, CONSERV GENET, V15, P1111, DOI 10.1007/s10592-014-0604-1; Henderson C. R, 1973, J ANIM SCI, V1973, P10, DOI DOI 10.2527/1973.1973SYMPOSIUM10X; Hendry AP, 2018, ANNU REV ECOL EVOL S, V49, P457, DOI 10.1146/annurev-ecolsys-110617-062358; Hill WG, 2012, CURR GENOMICS, V13, P196, DOI 10.2174/138920212800543110; HOULE D, 1992, GENETICS, V130, P195; Ingvarsson PK, 2000, P ROY SOC B-BIOL SCI, V267, P1321, DOI 10.1098/rspb.2000.1145; Innocenti P, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000335; Johnston SE, 2013, NATURE, V502, P93, DOI 10.1038/nature12489; Keller LF, 2008, P R SOC B, V275, P597, DOI 10.1098/rspb.2007.0961; Keller LF, 1998, EVOLUTION, V52, P240, DOI 10.1111/j.1558-5646.1998.tb05157.x; King R., 2009, BAYESIAN ANAL POPULA; Kirkpatrick M, 2009, GENETICA, V136, P271, DOI 10.1007/s10709-008-9302-6; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Kruuk LEB, 2000, P NATL ACAD SCI USA, V97, P698, DOI 10.1073/pnas.97.2.698; Kruuk LEB, 2014, QUANTITATIVE GENETICS IN THE WILD, P1; Kruuk LEB, 2008, ANNU REV ECOL EVOL S, V39, P525, DOI 10.1146/annurev.ecolsys.39.110707.173542; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lebigre C, 2012, EVOLUTION, V66, P3111, DOI 10.1111/j.1558-5646.2012.01677.x; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; Lewontin RC, 1974, GENETIC BASIS EVOLUT; Long TAF, 2012, CURR BIOL, V22, P204, DOI 10.1016/j.cub.2011.12.020; Lopez S, 2009, CONSERV BIOL, V23, P1618, DOI 10.1111/j.1523-1739.2009.01326.x; Losdat S, 2015, J ANIM ECOL, V84, P1384, DOI 10.1111/1365-2656.12389; Lynch M, 1998, GENETICS ANAL QUANTI; Marr AB, 2002, EVOLUTION, V56, P131; McCleery RH, 2004, AM NAT, V164, pE62, DOI 10.1086/422660; McFarlane SE, 2014, ECOL EVOL, V4, P1729, DOI 10.1002/ece3.982; Merila J, 2000, AM NAT, V155, P301, DOI 10.1086/303330; Merila J, 1999, HEREDITY, V83, P103, DOI 10.1046/j.1365-2540.1999.00585.x; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Milot E, 2011, P NATL ACAD SCI USA, V108, P17040, DOI 10.1073/pnas.1104210108; Nietlisbach P, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2016.2763; Nietlisbach P, 2015, MOL ECOL RESOUR, V15, P1486, DOI 10.1111/1755-0998.12414; Nosil P, 2005, EVOLUTION, V59, P705; Orr HA, 2009, NAT REV GENET, V10, P531, DOI 10.1038/nrg2603; Parn H, 2009, J ANIM ECOL, V78, P1216, DOI 10.1111/j.1365-2656.2009.01597.x; Pasinelli G, 2004, AM NAT, V164, P660, DOI 10.1086/424765; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Poissant J, 2010, EVOLUTION, V64, P97, DOI 10.1111/j.1558-5646.2009.00793.x; Postma E, 2011, P ROY SOC B-BIOL SCI, V278, P2996, DOI 10.1098/rspb.2010.2763; PRICE GR, 1970, NATURE, V227, P520, DOI 10.1038/227520a0; Punzalan D, 2014, HEREDITY, V112, P143, DOI 10.1038/hdy.2013.85; R Core Team, 2015, R LANG ENV STAT COMP; Reid JM, 2014, J EVOLUTION BIOL, V27, P2046, DOI 10.1111/jeb.12445; Reid JM, 2006, AM NAT, V168, P1, DOI 10.1086/504852; Reid JM, 2018, EVOL LETT, V2, P159, DOI 10.1002/evl3.56; Reid JM, 2014, EVOLUTION, V68, P2357, DOI 10.1111/evo.12424; Reid JM, 2014, EVOLUTION, V68, P802, DOI 10.1111/evo.12305; Reid JM, 2012, P ROY SOC B-BIOL SCI, V279, P1700, DOI 10.1098/rspb.2011.2230; Reid JM, 2011, P ROY SOC B-BIOL SCI, V278, P1114, DOI 10.1098/rspb.2010.1704; Reid JM, 2011, AM NAT, V177, P177, DOI 10.1086/657977; Reid JM, 2010, EVOLUTION, V64, P973, DOI 10.1111/j.1558-5646.2009.00865.x; ROBERTSON A, 1966, ANIM PROD, V8, P95, DOI 10.1017/S0003356100037752; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; Saether BE, 2015, TRENDS ECOL EVOL, V30, P273, DOI 10.1016/j.tree.2015.03.007; Sardell RJ, 2010, MOL ECOL, V19, P4352, DOI 10.1111/j.1365-294X.2010.04805.x; Shaw RG, 2014, HEREDITY, V112, P13, DOI 10.1038/hdy.2013.42; SHAW RG, 1987, EVOLUTION, V41, P812, DOI 10.1111/j.1558-5646.1987.tb05855.x; Shaw RG, 2012, NEW PHYTOL, V195, P752, DOI 10.1111/j.1469-8137.2012.04230.x; Smith J., 2006, CONSERVATION BIOL SM; Stinchcombe JR, 2014, QUANTITATIVE GENETICS IN THE WILD, P128; Tallmon DA, 2004, TRENDS ECOL EVOL, V19, P489, DOI 10.1016/j.tree.2004.07.003; Teplitsky C, 2009, EVOLUTION, V63, P716, DOI 10.1111/j.1558-5646.2008.00581.x; Trask AE, 2016, J ANIM ECOL, V85, P879, DOI 10.1111/1365-2656.12503; Travisano M, 2013, EVOLUTION, V67, P305, DOI 10.1111/j.1558-5646.2012.01802.x; Wagenius S, 2010, EVOLUTION, V64, P761, DOI 10.1111/j.1558-5646.2009.00860.x; Walling CA, 2014, GENETICS, V198, P1735, DOI 10.1534/genetics.114.164319; Walsh B, 2009, ANNU REV ECOL EVOL S, V40, P41, DOI 10.1146/annurev.ecolsys.110308.120232; Wheelwright NT, 2014, EVOLUTION, V68, P3325, DOI 10.1111/evo.12499; Wilson S, 2007, P R SOC B, V274, P2539, DOI 10.1098/rspb.2007.0643; Wolak ME, 2017, J ANIM ECOL, V86, P7, DOI 10.1111/1365-2656.12597; Wolak ME, 2016, AM NAT, V187, P736, DOI 10.1086/686198; Wolak ME, 2014, QUANTITATIVE GENETICS IN THE WILD, P104; Wolak ME, 2015, ECOL EVOL, V5, P590, DOI 10.1002/ece3.1361; Wolak ME, 2012, METHODS ECOL EVOL, V3, P792, DOI 10.1111/j.2041-210X.2012.00213.x; Wolf JB, 2001, J EVOLUTION BIOL, V14, P347, DOI 10.1046/j.1420-9101.2001.00277.x; Zhang XS, 2012, EVOLUTION, V66, P2350, DOI 10.1111/j.1558-5646.2012.01610.x; Zietsch BP, 2014, P NATL ACAD SCI USA, V111, P1032, DOI 10.1073/pnas.1310058111 118 1 1 8 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution OCT 2018 72 10 2057 2075 10.1111/evo.13575 19 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GY7YS WOS:000448834600007 30101430 2019-02-21 J Sane, M; Miranda, JJ; Agashe, D Sane, Mrudula; Miranda, Joshua John; Agashe, Deepa Antagonistic pleiotropy for carbon use is rare in new mutations EVOLUTION English Article Antagonism; distribution of fitness effects; DFE; mutation accumulation; synergism; tradeoffs ESCHERICHIA-COLI POPULATIONS; LIFE-HISTORY EVOLUTION; TRADE-OFFS; BENEFICIAL MUTATIONS; ECOLOGICAL SPECIALIZATION; PSEUDOMONAS-FLUORESCENS; ANTIBIOTIC-RESISTANCE; GENETIC-VARIATION; LOCAL ADAPTATION; DRUG-RESISTANCE Pleiotropic effects of mutations underlie diverse biological phenomena such as ageing and specialization. In particular, antagonistic pleiotropy (AP: when a mutation has opposite fitness effects in different environments) generates tradeoffs, which may constrain adaptation. Models of adaptation typically assume that AP is common - especially among large-effect mutations - and that pleiotropic effect sizes are positively correlated. Empirical tests of these assumptions have focused on de novo beneficial mutations arising under strong selection. However, most mutations are actually deleterious or neutral, and may contribute to standing genetic variation that can subsequently drive adaptation. We quantified the incidence, nature, and effect size of pleiotropy for carbon utilization across 80 single mutations in Escherichia coli that arose under mutation accumulation (i.e., weak selection). Although approximate to 46% of the mutations were pleiotropic, only 11% showed AP; among beneficial mutations, only approximate to 4% showed AP. In some environments, AP was more common in large-effect mutations; and AP effect sizes across environments were often negatively correlated. Thus, AP for carbon use is generally rare (especially among beneficial mutations); is not consistently enriched in large-effect mutations; and often involves weakly deleterious antagonistic effects. Our unbiased quantification of mutational effects therefore suggests that antagonistic pleiotropy may be unlikely to cause maladaptive tradeoffs. [Sane, Mrudula; Miranda, Joshua John; Agashe, Deepa] Tata Inst Fundamental Res, Natl Ctr Biol Sci, Bangalore, Karnataka, India Agashe, D (reprint author), Tata Inst Fundamental Res, Natl Ctr Biol Sci, Bangalore, Karnataka, India. dagashe@ncbs.res.in Agashe, Deepa/0000-0002-0374-8159 National Centre for Biological Sciences (NCBS-TIFR); Wellcome Trust/DBT India Alliance Fellowship [IA/I/17/1/503091]; Council for Scientific and Industrial Research (CSIR) of India We thank Olivier Tenaillon for pointing out the necessity to determine the null expectation for the incidence of pleiotropy; Santiago Elena for discussion; and members of the Agashe lab and Arjan de Visser for constructive comments on the manuscript. We thank Awadhesh Pandit from the Next Generation Genomics Facility at the National Centre for Biological Sciences (NCBS) for his help with genome sequencing, Gaurav Diwan and Aalap Mogre for their help while writing scripts for sequence analysis, and Parth Rawal for laboratory assistance. We acknowledge funding and support from the National Centre for Biological Sciences (NCBS-TIFR), the Wellcome Trust/DBT India Alliance Fellowship (grant number IA/I/17/1/503091 to D.A.), and the Council for Scientific and Industrial Research (CSIR) of India (Senior Research Fellowship to M.S. and Junior Research Fellowship to J.J.M.). Agrawal A. A., 2010, EVOLUTION SINCE DARW, V150, P243; Anderson JB, 2003, GENETICS, V163, P1287; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Bataillon T, 2014, ANN NY ACAD SCI, V1320, P76, DOI 10.1111/nyas.12460; Bataillon T, 2011, GENETICS, V189, P939, DOI 10.1534/genetics.111.130468; Bjorkman J, 1998, P NATL ACAD SCI USA, V95, P3949, DOI 10.1073/pnas.95.7.3949; Bohannan BJM, 2002, ANTON LEEUW INT J G, V81, P107, DOI 10.1023/A:1020585711378; Bono LM, 2017, MOL ECOL, V26, P1720, DOI 10.1111/mec.13979; Buckling A, 2007, J EVOLUTION BIOL, V20, P296, DOI 10.1111/j.1420-9101.2006.01195.x; Cooper VS, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001790; Cooper VS, 2000, NATURE, V407, P736, DOI 10.1038/35037572; Darwin C., 1859, ORIGIN SPECIES MEANS; Dillon MM, 2016, EVOLUTION, V70, P586, DOI 10.1111/evo.12868; Dittmar EL, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.3065; Elena SF, 2017, MOL ECOL, V26, P1711, DOI 10.1111/mec.13836; Elena SF, 2003, NAT REV GENET, V4, P457, DOI 10.1038/nrg1088; Eyre-Walker A, 2007, NAT REV GENET, V8, P610, DOI 10.1038/nrg2146; Ferenci T, 2016, TRENDS MICROBIOL, V24, P209, DOI 10.1016/j.tim.2015.11.009; Fisher R. A., 1930, GENETICS, V154, P272, DOI DOI 10.1111/J.1467-2979.2008.00315.X; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; Gagneux S, 2006, SCIENCE, V312, P1944, DOI 10.1126/science.1124410; Gompert Z, 2016, EVOLUTION, V70, P1249, DOI 10.1111/evo.12933; Gralka M, 2016, ECOL LETT, V19, P889, DOI 10.1111/ele.12625; Hershberg R, 2017, TRENDS GENET, V33, P521, DOI 10.1016/j.tig.2017.05.003; Hughes BS, 2007, EVOLUTION, V61, P1725, DOI 10.1111/j.1558-5646.2007.00139.x; Jasmin JN, 2013, J EVOLUTION BIOL, V26, P1363, DOI 10.1111/jeb.12144; Kassen R, 2006, NAT GENET, V38, P484, DOI 10.1038/ng1751; Kirkwood TBL, 2005, CELL, V120, P437, DOI 10.1016/j.cell.2005.01.027; Kneitel JM, 2004, ECOL LETT, V7, P69, DOI 10.1046/j.1461-0248.2003.00551.x; LANDE R, 1983, HEREDITY, V50, P47, DOI 10.1038/hdy.1983.6; Leiby N, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001789; LENOIR T, 1984, J SOC BIOL STRUCT, V7, P317, DOI 10.1016/0140-1750(84)90005-8; Litchman E, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.00254; Lythgoe KA, 2003, ECOL LETT, V6, P326, DOI 10.1046/j.1461-0248.2003.00433.x; MacLean RC, 2004, P NATL ACAD SCI USA, V101, P8072, DOI 10.1073/pnas.0307195101; ORR HA, 1992, AM NAT, V140, P725, DOI 10.1086/285437; Ostrowski EA, 2005, EVOLUTION, V59, P2343; Otto SP, 2004, P ROY SOC B-BIOL SCI, V271, P705, DOI 10.1098/rspb.2003.2635; Paaby AB, 2014, NAT REV GENET, V15, P247, DOI 10.1038/nrg3688; Paaby AB, 2013, TRENDS GENET, V29, P66, DOI 10.1016/j.tig.2012.10.010; REES M, 1993, NATURE, V366, P150, DOI 10.1038/366150a0; Reynolds MG, 2000, GENETICS, V156, P1471; Satterwhite RS, 2015, EVOLUTION, V69, P2067, DOI 10.1111/evo.12710; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Tenaillon O, 2014, ANNU REV ECOL EVOL S, V45, P179, DOI 10.1146/annurev-ecolsys-120213-091846; Tilman D, 2000, NATURE, V405, P208, DOI 10.1038/35012217; Velicer GJ, 1999, ECOLOGY, V80, P1168, DOI 10.1890/0012-9658(1999)080[1168:ETOUCO]2.0.CO;2; Vogwill T, 2012, J EVOLUTION BIOL, V25, P1955, DOI 10.1111/j.1420-9101.2012.02558.x; Wagner GP, 2008, NATURE, V452, P470, DOI 10.1038/nature06756; Wang Z, 2010, P NATL ACAD SCI USA, V107, P18034, DOI 10.1073/pnas.1004666107; Ward H, 2009, J EVOLUTION BIOL, V22, P997, DOI 10.1111/j.1420-9101.2009.01712.x; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 55 0 0 0 0 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution OCT 2018 72 10 2202 2213 10.1111/evo.13569 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GY7YS WOS:000448834600017 30095155 2019-02-21 J Snijders, L; Kurvers, RHJM; Krause, S; Ramnarine, IW; Krause, J Snijders, Lysanne; Kurvers, Ralf H. J. M.; Krause, Stefan; Ramnarine, Indar W.; Krause, Jens Individual- and population-level drivers of consistent foraging success across environments NATURE ECOLOGY & EVOLUTION English Article GUPPY POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; SOCIAL NETWORKS; PUBLIC INFORMATION; TRINIDADIAN GUPPY; DECISION-MAKING; SEX-DIFFERENCES; FEMALE GUPPIES; SHOAL SIZE; TRADE-OFF Individual foraging is under strong natural selection. Yet, whether individuals differ consistently in their foraging success across environments, and which individual- and population-level traits might drive such differences, is largely unknown. We addressed this question in a field experiment, conducting over 1,100 foraging trials with subpopulations of guppies, Poecilia reticulata, translocated across environments in the wild. We show that individuals consistently differed in reaching and acquiring food resources, but not control 'resources', across environments. Social individuals reached and acquired more food resources than less-social ones and males reached more food resources than females. Yet, overall, individuals were more likely to join females at resources than males, which might explain why individuals in subpopulations with relatively more females reached and acquired, on average, more food resources. Our results provide rare evidence for individual differences in foraging success across environments, driven by individual- and population-level (sex ratio) traits. [Snijders, Lysanne; Kurvers, Ralf H. J. M.; Krause, Jens] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Biol & Ecol Fishes, Berlin, Germany; [Kurvers, Ralf H. J. M.] Max Planck Inst Human Dev, Ctr Adapt Rat, Berlin, Germany; [Krause, Stefan] Lubeck Univ Appl Sci, Dept Elect Engn & Comp Sci, Lubeck, Germany; [Ramnarine, Indar W.] Univ West Indies, Dept Life Sci, St Augustine, Trinid & Tobago; [Krause, Jens] Humboldt Univ, Fac Life Sci, Berlin, Germany Snijders, L (reprint author), Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Biol & Ecol Fishes, Berlin, Germany. snijders@igb-berlin.de Snijders, Lysanne/0000-0003-0911-3418 IGB Postdoc Fellowship 2017 We are grateful to S. Bouet and S. Garcia Martin for assistance with the video analysis and to F. Dhellemmes, H. te Brake and R. Seifert for assistance with the data collection. L.S. was funded by an IGB Postdoc Fellowship 2017. ABRAHAMS MV, 1993, ANIM BEHAV, V45, P673, DOI 10.1006/anbe.1993.1082; Aplin LM, 2012, P ROY SOC B-BIOL SCI, V279, P4199, DOI 10.1098/rspb.2012.1591; Aureli F, 2008, CURR ANTHROPOL, V49, P627, DOI 10.1086/586708; Bartumeus F, 2016, ECOL LETT, V19, P1299, DOI 10.1111/ele.12660; Bates D, 2015, J STAT SOFTW, V67, P1; Beauchamp G, 1997, J ANIM ECOL, V66, P671, DOI 10.2307/5920; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Boccaletti S, 2006, PHYS REP, V424, P175, DOI 10.1016/j.physrep.2005.10.009; Borner KK, 2015, BEHAV ECOL SOCIOBIOL, V69, P645, DOI 10.1007/s00265-015-1875-3; Burns JG, 2008, ANIM BEHAV, V76, P911, DOI 10.1016/j.anbehav.2008.02.017; Cameron EZ, 2009, P NATL ACAD SCI USA, V106, P13850, DOI 10.1073/pnas.0900639106; CLARK CW, 1986, THEOR POPUL BIOL, V30, P45, DOI 10.1016/0040-5809(86)90024-9; Clement RJG, 2017, BEHAV ECOL, V28, P919, DOI 10.1093/beheco/arx056; Clement RJG, 2015, ANIM BEHAV, V105, P85, DOI 10.1016/j.anbehav.2015.04.004; Cote J, 2012, ANIM BEHAV, V83, P1469, DOI 10.1016/j.anbehav.2012.03.019; Couzin ID, 2009, CURR BIOL, V19, pR633, DOI 10.1016/j.cub.2009.05.034; Croft DP, 2006, AM NAT, V167, P867, DOI 10.1086/504853; Croft DP, 2003, OECOLOGIA, V137, P62, DOI 10.1007/s00442-003-1268-6; Croft DP, 2003, OIKOS, V100, P429, DOI 10.1034/j.1600-0706.2003.12023.x; Croft DP, 2004, P ROY SOC B-BIOL SCI, V271, pS516, DOI 10.1098/rsbl.2004.0206; Dall SRX, 2005, TRENDS ECOL EVOL, V20, P187, DOI 10.1016/j.tree.2005.01.010; Danchin E, 2004, SCIENCE, V305, P487, DOI 10.1126/science.1098254; Darden SK, 2008, BIOL LETTERS, V4, P449, DOI 10.1098/rsbl.2008.0308; Darden SK, 2009, P ROY SOC B-BIOL SCI, V276, P2651, DOI 10.1098/rspb.2009.0087; Day LB, 1999, ANIM BEHAV, V57, P393, DOI 10.1006/anbe.1998.1007; Day RL, 2001, ANIM BEHAV, V62, P917, DOI 10.1006/anbe.2001.1820; Farine DR, 2015, J ANIM ECOL, V84, P1144, DOI 10.1111/1365-2656.12418; Friard O, 2016, METHODS ECOL EVOL, V7, P1325, DOI 10.1111/2041-210X.12584; Galef BG, 2001, ANIM BEHAV, V61, P3, DOI 10.1006/anbe.2000.1557; Giraldeau L.-A., 2000, SOCIAL FORAGING THEO; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Griffiths SW, 1998, ANIM BEHAV, V56, P689, DOI 10.1006/anbe.1998.0767; Griffiths SW, 1996, J FISH BIOL, V48, P891; Hasenjager MJ, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.2020; Hasenjager MJ, 2017, BEHAV ECOL, V28, P233, DOI 10.1093/beheco/arw152; Heathcote RJP, 2017, SCI REP-UK, V7, DOI 10.1038/srep41679; Humphries NE, 2012, P NATL ACAD SCI USA, V109, P7169, DOI 10.1073/pnas.1121201109; Jolles JW, 2017, CURR BIOL, V27, P2862, DOI 10.1016/j.cub.2017.08.004; Kendal RL, 2004, BEHAV ECOL, V15, P269, DOI 10.1093/beheco/arh008; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; Krause J., 2002, LIVING GROUPS; Krause S, 2017, BEHAV ECOL, V28, P429, DOI 10.1093/beheco/arw177; Kurvers RHJM, 2010, ECOL LETT, V13, P829, DOI 10.1111/j.1461-0248.2010.01473.x; Laland KN, 1998, BEHAV ECOL, V9, P493, DOI 10.1093/beheco/9.5.493; Laland KN, 2004, LEARN BEHAV, V32, P4; Laland KN, 1997, ANIM BEHAV, V53, P1161, DOI 10.1006/anbe.1996.0318; Laland KN, 1999, ANIM BEHAV, V57, P331, DOI 10.1006/anbe.1998.0967; LINDSTROM K, 1993, ANIM BEHAV, V46, P1029, DOI 10.1006/anbe.1993.1289; Lucon-Xiccato T, 2017, ANIM BEHAV, V123, P53, DOI 10.1016/j.anbehav.2016.10.026; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; Mattern T, 2007, MAR ECOL PROG SER, V343, P295, DOI 10.3354/meps06954; Merkle JA, 2015, ECOL LETT, V18, P799, DOI 10.1111/ele.12457; Monk CT, 2018, ECOL LETT, V21, P779, DOI 10.1111/ele.12949; Morand-Ferron J, 2011, ANIM BEHAV, V82, P811, DOI 10.1016/j.anbehav.2011.07.014; Niemela PT, 2017, J ANIM ECOL, V86, P1033, DOI 10.1111/1365-2656.12688; Patrick SC, 2014, OIKOS, V123, P33, DOI 10.1111/j.1600-0706.2013.00406.x; Pele M, 2013, ANIM COGN, V16, P543, DOI 10.1007/s10071-013-0631-1; Pettersson LB, 2004, BEHAV ECOL SOCIOBIOL, V55, P461, DOI 10.1007/s00265-003-0727-8; R Core Team, 2017, R LANG ENV STAT COMP; Reader SM, 2000, ANIM BEHAV, V60, P175, DOI 10.1006/anbe.2000.1450; Reader SM, 2003, ANIM BEHAV, V66, P729, DOI 10.1006/anbe.2003.2252; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Rieucau G, 2009, BEHAV ECOL, V20, P1217, DOI 10.1093/beheco/arp121; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rodd FH, 1997, ECOLOGY, V78, P405; Sheenaja KK, 2011, MAR FRESHW BEHAV PHY, V44, P349, DOI 10.1080/10236244.2011.642503; Silk JB, 2003, SCIENCE, V302, P1231, DOI 10.1126/science.1088580; Snijders L, 2014, ANIM BEHAV, V98, P95, DOI 10.1016/j.anbehav.2014.09.029; Stoffel MA, 2017, METHODS ECOL EVOL, V8, P1639, DOI 10.1111/2041-210X.12797; Swaney W, 2001, ANIM BEHAV, V62, P591, DOI 10.1006/anbe.2001.1788; Tanner CJ, 2012, J ANIM ECOL, V81, P260, DOI 10.1111/j.1365-2656.2011.01879.x; Valone TJ, 2002, PHILOS T ROY SOC B, V357, P1549, DOI 10.1098/rstb.2002.1064; van de Waal E, 2010, P ROY SOC B-BIOL SCI, V277, P2105, DOI 10.1098/rspb.2009.2260; Webster MM, 2013, ANIM BEHAV, V86, P75, DOI 10.1016/j.anbehav.2013.04.014; Webster MM, 2011, P ROY SOC B-BIOL SCI, V278, P619, DOI 10.1098/rspb.2010.1562; Webster MM, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0135; White DJ, 2017, BEHAV PROCESS, V141, P251, DOI 10.1016/j.beproc.2017.02.017; Wilson ADM, 2015, BEHAV ECOL SOCIOBIOL, V69, P1617, DOI 10.1007/s00265-015-1973-2; Wilson ADM, 2014, BEHAV ECOL SOCIOBIOL, V68, P915, DOI 10.1007/s00265-014-1704-0; ZAJONC RB, 1965, SCIENCE, V149, P269, DOI 10.1126/science.149.3681.269 82 1 1 3 3 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2397-334X NAT ECOL EVOL Nat. Ecol. Evol. OCT 2018 2 10 1610 1618 10.1038/s41559-018-0658-4 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GX7KE WOS:000447947600018 30177801 2019-02-21 J Richard, R; Foster, S; Giron, D; Casas, J Richard, Romain; Foster, Stephen; Giron, David; Casas, Jerome A host-feeding wasp shares several features of nitrogen management with blood-feeding mosquitoes JOURNAL OF INSECT PHYSIOLOGY English Article Excretion; Uric acid; Parasitoid; Blood-feeding; Life-history strategies; Nutrient budget AEDES-AEGYPTI MOSQUITOS; NUTRIENT DYNAMICS; INSECT HEMOLYMPH; PARASITIC WASP; EGG-PRODUCTION; ALLOCATION; PROTEIN; INSIGHTS Adult feeding on hosts is common among parasitic wasps. The ingested host fluid is rich in nutrients, especially proteins. A study on Eupelmus vuilleti (Hymenoptera: Eupelmidae), a host-feeding parasitoid of larvae of Callosobruchus maculates (F.) (Coleoptera: Bruchidae), showed that the carbohydrates (maybe lipids) but not proteins, gained from host feeding accounted for the increased egg production. Thus, host protein is probably utilized for general adult metabolism, allowing conservation of carbohydrate and/or lipid resources for direct allocation to oocytes. In that case, there should be increased N excretion by female parasitoids. To test this, we studied the dynamics of excretion in E. vuilleti with and without host exposure. The aim of this work was threefold: (i) to identify the major N-containing compounds in adult excreta, (ii) to assess whether protein consumption during host feeding increased the amount of N excreted, and (iii), if so, to compare the increase in N excreted with the amount taken in during a single host feeding. We found that uric acid is the predominant N containing metabolite in excreta, although small quantities of urea and traces of allantoin were also found. A calculation of the N budget showed that the extra quantity of N excreted following a host meal corresponds to the quantity ingested, confirming that host-feeding in this species offers little or no net quantitative benefit in N allocation to oocytes, although the allocation of specific amino acids from host feeding cannot be discounted. Interestingly, host-feeding in parasitoids appears analogous to vertebrate blood-feeding in mosquitoes, both in terms of the N-containing compounds excreted and the offset of acquired N to metabolism, rather than to oocytes. Further comparative and detailed investigations of N excretion in insects living on other N-rich fluids might establish further metabolic commonalities. [Richard, Romain; Giron, David; Casas, Jerome] Univ Tours, CNRS, UMR 7261, IRBI, F-37200 Tours, France; [Foster, Stephen] North Dakota State Univ, SNRS, Dept Entomol, POB 6050, Fargo, ND 58108 USA; [Casas, Jerome] IUF, Paris, France; [Richard, Romain] Natl Sun Yat Sen Univ, 70 Lienhai Rd, Kaohsiung 80424, Taiwan Casas, J (reprint author), Univ Tours, CNRS, UMR 7261, IRBI, F-37200 Tours, France.; Casas, J (reprint author), IUF, Paris, France. casas@univ-tours.fr Giron, David/B-9108-2013; Casas, Jerome/D-9620-2011 Giron, David/0000-0001-8356-0983; Casas, Jerome/0000-0003-1666-295X projects AGROECO of the Region Centre, France; Fondation de France, France; United States Department of Agriculture [ND02388] The funding of the projects AGROECO of the Region Centre, France (to JC), of the Fondation de France, France (to RR and JC), and of the United States Department of Agriculture Hatch Project ND02388 (to SPF) is acknowledged. BURSELL E, 1967, ADV INSECT PHYSIOL, V4, P33, DOI DOI 10.1016/S0065-2806(08)60207-6; Casas J, 2005, ECOLOGY, V86, P545, DOI 10.1890/04-0812; Casas J, 2015, J INSECT PHYSIOL, V79, P27, DOI 10.1016/j.jinsphys.2015.05.005; Development Core Team R, 2011, R LANG ENV STAT COMP; FIRLING CE, 1977, J INSECT PHYSIOL, V23, P17, DOI 10.1016/0022-1910(77)90103-2; Fischbein D, 2016, ENTOMOL EXP APPL, V159, P172, DOI 10.1111/eea.12422; Gauthier N, 1999, J INSECT PHYSIOL, V45, P393, DOI 10.1016/S0022-1910(98)00138-3; Giron D, 2004, PHYSIOL ENTOMOL, V29, P436, DOI 10.1111/j.0307-6962.2004.00414.x; Giron D, 2002, FUNCT ECOL, V16, P750, DOI 10.1046/j.1365-2435.2002.00679.x; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Heimpel GE, 2017, BIOL CONTROL ECOLOGY; Horvath TD, 2018, FASEB J, V32, P466, DOI 10.1096/fj.201700657R; Isoe J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065393; Jervis M. A., 2012, INSECT NATURAL ENEMI; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Klowden MJ, 2013, PHYSIOLOGICAL SYSTEMS IN INSECTS, 3RD EDITION, P1; Mariotti F, 2008, CRIT REV FOOD SCI, V48, P177, DOI 10.1080/10408390701279749; Muller D, 2017, J INSECT PHYSIOL, V101, P123, DOI 10.1016/j.jinsphys.2017.07.011; O'Donnell M. J., 2017, ACID BASE BALANCE NI, P109; Petchampai N, 2016, ADV INSECT PHYSIOL, V51, P363, DOI 10.1016/bs.aiip.2016.04.002; Quicke D.L., 1997, PARASITIC WASPS; Richard R, 2009, ECOL MONOGR, V79, P465, DOI 10.1890/08-1566.1; Rivero A, 1999, P ROY SOC B-BIOL SCI, V266, P1169, DOI 10.1098/rspb.1999.0759; Rivero A, 2001, P ROY SOC B-BIOL SCI, V268, P1231, DOI 10.1098/rspb.2001.1645; Scaraffia PY, 2008, P NATL ACAD SCI USA, V105, P518, DOI 10.1073/pnas.0708098105; Strand Michael R., 2008, P113, DOI 10.1002/9780470696200.ch6; Wajnberg E., 2008, BEHAV ECOLOGY INSECT; Werren JH, 2010, SCIENCE, V327, P343, DOI 10.1126/science.1178028; WYATT GR, 1961, ANNU REV ENTOMOL, V6, P75, DOI 10.1146/annurev.en.06.010161.000451; WYATT GR, 1956, J GEN PHYSIOL, V39, P853, DOI 10.1085/jgp.39.6.853; Zhou GL, 2004, J INSECT PHYSIOL, V50, P337, DOI 10.1016/j.jinsphys.2004.02.003 31 0 0 9 9 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. OCT 2018 110 1 5 10.1016/j.jinsphys.2018.08.005 5 Entomology; Physiology; Zoology Entomology; Physiology; Zoology GX2VB WOS:000447577100001 30118747 2019-02-21 J Chuard, PJC; Brown, GE; Grant, JWA Chuard, Pierre J. C.; Brown, Grant E.; Grant, James W. A. Competition for food in 2 populations of a wild-caught fish CURRENT ZOOLOGY English Article aggression; competitor-to-resource ratio; foraging; Poecilia reticulata; population differences; predation risk; sex JUVENILE CONVICT CICHLIDS; LIFE-HISTORY EVOLUTION; OPERATIONAL SEX-RATIO; GUPPIES POECILIA-RETICULATA; TO-RESOURCE RATIO; TRINIDADIAN GUPPIES; ANTIPREDATOR BEHAVIOR; MATING COMPETITION; LOCAL ADAPTATION; PREDATION RISK Aggressive behavior when competing for resources is expected to increase as the ratio of competitors-to-resource ratio (CRR) units increases. Females are expected to be more aggressive than males when competing for food when body size is more strongly related to reproductive success in females than in males, whereas aggression is predicted to decrease under high ambient predation risk by natural selection. Under the risk allocation model, however, individuals under high ambient predation risk are expected to be more aggressive, and forage more in the absence of imminent risk than their low risk counterparts. An interaction between adult sex ratio (i.e., adult males/females), ambient predation risk (high vs. low), and sex on intrasexual competition for mates in Trinidadian guppies Poecilia reticulata has been shown. The interaction suggested an increase in aggression rates as CRR increased, except for males from the high predation population. To compare the patterns of competition for food versus mates, we replicated this study by using food patches. We allowed 4 male or 4 female guppies from high and low predation populations to compete for 5, 3, or 1 food patches. The foraging rate was higher in a high rather than low ambient predation risk population. Surprisingly, CRR, sex, and population of origin had no effect on aggression rates. Despite other environmental differences between the 2 populations, the effect of ambient predation risk may be a likely explanation for differences in foraging rates. These results highlight the importance for individuals to secure food despite the cost of competition and predation. [Chuard, Pierre J. C.] Australian Natl Univ, Res Sch Biol, Canberra, ACT 0200, Australia; [Brown, Grant E.; Grant, James W. A.] Concordia Univ, Dept Biol, 7141 Sherbrooke St West, Montreal, PQ H4B 1R6, Canada Chuard, PJC (reprint author), Australian Natl Univ, Res Sch Biol, Canberra, ACT 0200, Australia. pierre.chuard2@gmail.com Concordia University (Faculty of Arts and Science Graduate Fellowship); Natural Sciences and Engineering Research Council of Canada This work was financially supported by Concordia University (Faculty of Arts and Science Graduate Fellowship [to P.J.C.C.]) and the Natural Sciences and Engineering Research Council of Canada (to G.E.B. and J.W.A.G.). ABRAHAMS MV, 1993, ANIM BEHAV, V45, P673, DOI 10.1006/anbe.1993.1082; Archer J, 1988, BEHAV BIOL AGGRESSIO; Baird TA, 2006, ETHOLOGY, V112, P52, DOI 10.1111/j.1439-0310.2006.01131.x; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Botham MS, 2008, ECOLOGY, V89, P3174, DOI 10.1890/07-0490.1; Brown GE, 2006, CAN J ZOOL, V84, P1, DOI 10.1139/Z05-166; Brown J. L., 1964, Wilson Bulletin, V76, P160; Charnov Eric L., 1993, P1; Chuard PJC, 2016, BEHAV PROCESS, V129, P1, DOI 10.1016/j.beproc.2016.05.001; Chuard PJC, 2017, THESIS; Clark L, 2010, ANIM BEHAV, V80, P707, DOI 10.1016/j.anbehav.2010.07.007; CLUTTONBROCK TH, 1992, Q REV BIOL, V67, P437, DOI 10.1086/417793; Croft DP, 2006, AM NAT, V167, P867, DOI 10.1086/504853; de Jong K, 2012, BEHAV ECOL, V23, P1170, DOI 10.1093/beheco/ars094; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Ferrari MCO, 2009, ANIM BEHAV, V78, P579, DOI 10.1016/j.anbehav.2009.05.034; GORLICK DL, 1976, ANIM BEHAV, V24, P336, DOI 10.1016/S0003-3472(76)80041-3; GRAND TC, 1994, ANIM BEHAV, V47, P91, DOI 10.1006/anbe.1994.1010; Grant JWA, 2002, ANIM BEHAV, V63, P323, DOI 10.1006/anbe.2001.1891; Grant JWA, 2000, BEHAV ECOL, V11, P670, DOI 10.1093/beheco/11.6.670; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Griffiths SW, 1996, J FISH BIOL, V48, P891; Heinen JL, 2013, EVOL ECOL, V27, P971, DOI 10.1007/s10682-012-9627-6; Herczeg G, 2011, J EVOLUTION BIOL, V24, P2434, DOI 10.1111/j.1420-9101.2011.02371.x; Hodge SJ, 2009, BEHAV ECOL, V20, P930, DOI 10.1093/beheco/arp071; HUNTINGFORD FA, 1982, ANIM BEHAV, V30, P909, DOI 10.1016/S0003-3472(82)80165-6; Keddy P. A., 2001, COMPETITION; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kolluru GR, 2007, BEHAV ECOL SOCIOBIOL, V61, P689, DOI 10.1007/s00265-006-0299-5; Kvarnemo C, 1995, ANIM BEHAV, V50, P1455, DOI 10.1016/0003-3472(95)80002-6; Liley N. R., 1966, Behaviour Suppl, V13, P1; Lima SL, 1999, AM NAT, V153, P649, DOI 10.1086/303202; Linden A, 2011, ECOLOGY, V92, P1414, DOI 10.1890/10-1831.1; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; Magurran AE, 2000, J FISH BIOL, V57, P839, DOI 10.1006/jfbi.2000.1391; Magurran AE, 2005, OXFORD SERIES ECOLOG; Main MB, 1996, J MAMMAL, V77, P449, DOI 10.2307/1382821; Morandini V, 2015, ETHOL ECOL EVOL, V27, P2, DOI 10.1080/03949370.2014.880161; Noel MV, 2005, ANIM BEHAV, V69, P1157, DOI 10.1016/j.anbehav.2004.07.019; Nordell SE, 1998, ENVIRON BIOL FISH, V51, P331, DOI 10.1023/A:1007464731444; NUMMELIN M, 1988, ANN ENTOMOL FENN, V54, P121; Parker G. A, 1984, BEHAVIOURAL ECOLOGY, P30; PARKER GA, 1974, J THEOR BIOL, V47, P223, DOI 10.1016/0022-5193(74)90111-8; Preisser EL, 2005, ECOLOGY, V86, P501, DOI 10.1890/04-0719; Qvarnstrom A, 2012, CURR ZOOL, V58, P493, DOI 10.1093/czoolo/58.3.493; R Development Core Team, 2015, LANG ENV STAT COMP; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Romero GQ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020689; Schmidt KT, 1998, ECOGRAPHY, V21, P415, DOI 10.1111/j.1600-0587.1998.tb00406.x; Tanner CJ, 2011, BEHAV ECOL SOCIOBIOL, V65, P249, DOI 10.1007/s00265-010-1033-x; Toobaie A, 2013, ANIM BEHAV, V85, P241, DOI 10.1016/j.anbehav.2012.10.032; Torres-Dowdall J, 2012, FUNCT ECOL, V26, P616, DOI 10.1111/j.1365-2435.2012.01980.x; Trivers R, 1972, SEXUAL SELECTION DES, P139; Uccheddu S, 2015, OECOLOGIA, V179, P711, DOI 10.1007/s00442-015-3392-5; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Weir LK, 2011, AM NAT, V177, P167, DOI 10.1086/657918; Weir LK, 2004, ETHOLOGY, V110, P63, DOI 10.1046/j.1439-0310.2003.00948.x; Zandona E, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-06163-6; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x; Zuk M, 1998, Q REV BIOL, V73, P415, DOI 10.1086/420412 61 0 0 3 3 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1674-5507 2396-9814 CURR ZOOL Curr. Zool. OCT 2018 64 5 615 622 10.1093/cz/zox078 8 Zoology Zoology GX0TN WOS:000447424600007 30323840 DOAJ Gold 2019-02-21 J Waples, RS; Lindley, ST Waples, Robin S.; Lindley, Steven T. Genomics and conservation units: The genetic basis of adult migration timing in Pacific salmonids EVOLUTIONARY APPLICATIONS English Article adaptation; conservation genetics; fisheries management; genomics; life history evolution; natural selection; pop`ulation genetics CHINOOK SALMON; EVOLUTIONARY PROCESSES; POPULATION GENOMICS; PARALLEL EVOLUTION; DIVERSITY; ADAPTATION; STEELHEAD; HISTORY; DIVERGENCE; STRATEGIES It is now routinely possible to generate genomics-scale datasets for nonmodel species; however, many questions remain about how best to use these data for conservation and management. Some recent genomics studies of anadromous Pacific salmonids have reported a strong association between alleles at one or a very few genes and a key life history trait (adult migration timing) that has played an important role in defining conservation units. Publication of these results has already spurred a legal challenge to the existing framework for managing these species, which was developed under the paradigm that most phenotypic traits are controlled by many genes of small effect, and that parallel evolution of life history traits is common. But what if a key life history trait can only be expressed if a specific allele is present? Does the current framework need to be modified to account for the new genomics results, as some now propose? Although this real-world example focuses on Pacific salmonids, the issues regarding how genomics can inform us about the genetic basis of phenotypic traits, and what that means for applied conservation, are much more general. In this perspective, we consider these issues and outline a general process that can be used to help generate the types of additional information that would be needed to make informed decisions about the adequacy of existing conservation and management frameworks. [Waples, Robin S.] NOAA Fisheries, Northwest Fisheries Sci Ctr, Seattle, WA USA; [Lindley, Steven T.] NOAA Fisheries, Southwest Fisheries Sci Ctr, Santa Cruz, CA USA Waples, RS (reprint author), NOAA Fisheries, Northwest Fisheries Sci Ctr, Seattle, WA USA. robin.waples@noaa.gov Arciniega M, 2016, CONSERV GENET, V17, P165, DOI 10.1007/s10592-015-0769-2; Barson NJ, 2015, NATURE, V528, P405, DOI 10.1038/nature16062; Bay RA, 2018, SCIENCE, V359, P83, DOI 10.1126/science.aan4380; Benestan L, 2015, MOL ECOL, V24, P3299, DOI 10.1111/mec.13245; Bernatchez L, 2016, J FISH BIOL, V89, P2519, DOI 10.1111/jfb.13145; Brieuc MSO, 2015, MOL ECOL, V24, P2729, DOI 10.1111/mec.13211; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; CHILCOTE MW, 1980, T AM FISH SOC, V109, P203, DOI 10.1577/1548-8659(1980)109<203:AGCOSP>2.0.CO;2; Ciruna K. A., 2007, 2007070 CAN SCI ADV; COSEWIC, 2018, APP F5 GUID REC DES; COSEWIC, 2010, COSEWIC ASS STAT REP; Crandall KA, 2000, TRENDS ECOL EVOL, V15, P290, DOI 10.1016/S0169-5347(00)01876-0; DFO and MRNF (Quebec Ministere des Ressources naturelles et de la Faune), 2008, CAN MAN REP FISH AQ, V2861; DFO (Department of Fisheries and Oceans), 2013, REV UPD SO BC CHIN C; DIZON AE, 1992, CONSERV BIOL, V6, P24, DOI 10.1046/j.1523-1739.1992.610024.x; Fraser DJ, 2011, HEREDITY, V106, P404, DOI 10.1038/hdy.2010.167; Fraser DJ, 2001, MOL ECOL, V10, P2741, DOI 10.1046/j.1365-294X.2001.t01-1-01411.x; Funk WC, 2012, TRENDS ECOL EVOL, V27, P489, DOI 10.1016/j.tree.2012.05.012; Garner BA, 2016, TRENDS ECOL EVOL, V31, P81, DOI 10.1016/j.tree.2015.10.009; Green DM, 2005, CONSERV BIOL, V19, P1813, DOI 10.1111/j.1523-1739.2005.00284.x; Gustafson RG, 2001, SCIENCE, V291, P251; Gustafson RG, 2007, CONSERV BIOL, V21, P1009, DOI 10.1111/j.1523-1739.2007.00693.x; Hard J. J., 2015, NMFSNWFSC129 NOAA US; Hendricks S, 2018, EVOL APPL, V11, P1197, DOI 10.1111/eva.12659; Hendry AP, 2000, SCIENCE, V290, P516, DOI 10.1126/science.290.5491.516; Hess J. E., 2016, P ROYAL SOC B, V283, P10; McElhany P, 2000, NOAA TECH MEMO NMFS, V42, P156; McElhany P., 2006, REVISED VIABILITY CR; McMahon BJ, 2014, EVOL APPL, V7, P999, DOI 10.1111/eva.12193; Micheletti SJ, 2018, MOL ECOL, V27, P128, DOI 10.1111/mec.14407; Moore JS, 2014, MOL ECOL, V23, P5680, DOI 10.1111/mec.12972; Moore JW, 2014, J ANIM ECOL, V83, P1035, DOI 10.1111/1365-2656.12212; MORITZ C, 1994, TRENDS ECOL EVOL, V9, P373, DOI 10.1016/0169-5347(94)90057-4; Moritz C, 2002, SYST BIOL, V51, P238, DOI 10.1080/10635150252899752; Nadeau NJ, 2010, TRENDS GENET, V26, P484, DOI 10.1016/j.tig.2010.08.004; Narum SR, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.0935; NMFS, 2018, FED REG 0227, V83, P8410; NMFS (National Marine Fisheries Service), 1991, FED REGISTER, V56, P58612; Pearse DE, 2016, J FISH BIOL, V89, P2697, DOI 10.1111/jfb.13168; Pearse DE, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0012; Prado-Martinez J, 2013, NATURE, V499, P471, DOI 10.1038/nature12228; Primmer CR, 2009, ANN NY ACAD SCI, V1162, P357, DOI 10.1111/j.1749-6632.2009.04444.x; Prince DJ, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603198; Pritchard V. L., 2018, BIORXIV, DOI [10. 1101/271528, DOI 10.1101/271528]; Quinn TP, 2016, CAN J FISH AQUAT SCI, V73, P1015, DOI 10.1139/cjfas-2015-0345; Quinn TP, 2000, EVOLUTION, V54, P1372; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Shafer ABA, 2015, TRENDS ECOL EVOL, V30, P78, DOI 10.1016/j.tree.2014.11.009; Thompson T. Q., 2018, BIORXIV, DOI [10. 1101/310714, DOI 10.1101/310714]; US Fish and Wildlife Service and National Marine Fisheries Service (USFWS NMFS), 1996, FED REGISTER, V61, P4722; USFWS and NMFS, 2000, FED REGISTER, V65, P69459; Veale AJ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-01890-2; Waples R.S., 1991, MAR FISH REV, V53, P11; Waples RS, 2010, MOLECULAR APPROACHES IN NATURAL RESOURCE CONSERVATION AND MANAGEMENT, P239; Waples Robin S., 2006, P127; Waples RS, 2004, EVOLUTION, V58, P386, DOI 10.1111/j.0014-3820.2004.tb01654.x; Waters CD, 2018, EVOL APPL, V11, P853, DOI 10.1111/eva.12599; Wood AR, 2014, NAT GENET, V46, P1173, DOI 10.1038/ng.3097; Yeaman S, 2011, EVOLUTION, V65, P1897, DOI 10.1111/j.1558-5646.2011.01269.x 59 3 3 6 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. OCT 2018 11 9 1518 1526 10.1111/eva.12687 9 Evolutionary Biology Evolutionary Biology GW7FB WOS:000447131200004 30344624 DOAJ Gold 2019-02-21 J Terrill, RS Terrill, Ryan S. Feather growth rate increases with latitude in four species of widespread resident Neotropical birds AUK English Article latitudinal gradients; life history; molt; Neotropical birds; ptilochronology BASAL METABOLIC-RATE; LIFE-HISTORY EVOLUTION; TRADE-OFF; ENERGETIC COST; SLOW PACE; MOLT; PTILOCHRONOLOGY; TEMPERATURE; ALLOMETRY; MIGRATION The pace of life history events varies with latitude in many taxa. In birds, especially, life history events tend to be protracted in the tropics. This pattern is likely the result of reduced seasonality in resources and changes in trade-offs associated with risk of mortality. In general, animals invest more in reproduction per attempt and less in adult survival at higher latitudes. Feather growth is a major investment that birds make in their own survival, but geographic patterns of feather growth have received very little study. Evidence from separate studies of molt timing in individual species suggests that high-latitude species complete molt faster than tropical birds. Within species, feathers that are grown more quickly tend to show lower structural integrity than feathers grown more slowly, but seasonality of resources may place temporal constraints on the pace of feather growth. I hypothesized that increased seasonality of resources or decreased investment in adult survival in relation to reproduction would result in an increase in feather growth rate with latitude within species of birds. I tested this hypothesis and alternatives using ptilochronology methods to measure the growth rates of rectrices from museum specimens of 4 species of broadly distributed, resident Neotropical birds across their ranges. I compared these feather growth rates to latitude, climatic suitability, bioclimatic variables, sex, and body mass between and among species. I found that feather growth rate consistently increased with latitude in all 4 species. My results confirmed previous findings that feather growth rate increases with mass in a nonlinear fashion among species; but I found no consistent relationship between body mass and feather growth rate within species. I discuss these results in the context of life history theory and propose 3 potential mechanistic explanations for the relationship between feather growth rate and latitude within species, as (1) a programmed response to increasingly seasonal resources, (2) a decreased investment in adult survival, or (3) fixed to some other factor that may vary with latitude, such as basal metabolic rate. [Terrill, Ryan S.] Louisiana State Univ, Dept Biol Sci, Museum Nat Sci, Baton Rouge, LA 70803 USA; [Terrill, Ryan S.] Occident Coll, Moore Lab Zool, Los Angeles, CA 90041 USA Terrill, RS (reprint author), Louisiana State Univ, Dept Biol Sci, Museum Nat Sci, Baton Rouge, LA 70803 USA.; Terrill, RS (reprint author), Occident Coll, Moore Lab Zool, Los Angeles, CA 90041 USA. ornithoterrill@gmail.com Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Alerstam T, 2003, OIKOS, V103, P247, DOI 10.1034/j.1600-0706.2003.12559.x; BENNETT PM, 1987, J ZOOL, V213, P327, DOI 10.1111/j.1469-7998.1987.tb03708.x; Breuner CW, 2003, AM J PHYSIOL-REG I, V285, pR594, DOI 10.1152/ajpregu.00748.2002; DAAN S, 1989, J BIOL RHYTHM, V4, P267; de la Hera I, 2009, BIOL J LINN SOC, V97, P98, DOI 10.1111/j.1095-8312.2008.01189.x; de Winter JCF, 2013, PRACTICAL ASSESSMENT, V18, P1; Godsoe W, 2009, NEW PHYTOL, V183, P589, DOI 10.1111/j.1469-8137.2009.02942.x; GREEN GH, 1975, BIRD STUDY, V22, P9, DOI 10.1080/00063657509476435; GRUBB TC, 1989, AUK, V106, P314; Guillemette M, 2007, ECOLOGY, V88, P2936, DOI 10.1890/06-1751.1; Guralnick R, 2010, BIOSCIENCE, V60, P258, DOI 10.1525/bio.2010.60.4.2; Hemborg C, 2001, OECOLOGIA, V129, P206, DOI 10.1007/s004420100710; Hijmans R. J, 2004, WORLDCLIM INTERPOLAT; Hijmans R. J., 2016, DISMO SPECIES DISTRI; HOLMES RT, 1971, CONDOR, V73, P93, DOI 10.2307/1366128; HUMPHREY PHILIP S., 1959, AUK, V76, P1; Johnson E. I, 2018, STUDIES AVIAN BIOL, V51; Johnson EI, 2012, J AVIAN BIOL, V43, P141, DOI 10.1111/j.1600-048X.2011.05574.x; Ketterson E.D., 1983, Current Ornithology, V1, P357; LINDSTROM A, 1993, PHYSIOL ZOOL, V66, P490, DOI 10.1086/physzool.66.4.30163805; Lovegrove BG, 2003, J COMP PHYSIOL B, V173, P87, DOI 10.1007/s00360-002-0309-5; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; McKinnon L, 2010, SCIENCE, V327, P326, DOI 10.1126/science.1183010; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Merila J, 1997, ANN ZOOL FENN, V34, P229; MEWALDT LR, 1978, AUK, V95, P168, DOI 10.2307/4085508; MURPHY ME, 1991, AUK, V108, P695, DOI 10.2307/4088109; Norris DR, 2004, SCIENCE, V306, P2249, DOI 10.1126/science.1103542; Pyle P, 2015, SPECIAL PUBLICATION; R Core Team, 2016, R LANG ENV STAT COMP; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rios N, 2010, GEOLOCATE 3 22; Rohwer S, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000132; Rohwer VG, 2013, AUK, V130, P699, DOI 10.1525/auk.2013.13042; SCHOLANDER PF, 1950, BIOL BULL, V99, P259, DOI 10.2307/1538742; Silverin B, 1997, FUNCT ECOL, V11, P376, DOI 10.1046/j.1365-2435.1997.00097.x; Stratford JA, 2001, CONSERV BIOL, V15, P721, DOI 10.1046/j.1523-1739.2001.015003721.x; Stresemann E, 1966, J ORNITHOL, V107, P401; Sullivan BL, 2009, BIOL CONSERV, V142, P2282, DOI 10.1016/j.biocon.2009.05.006; Swaddle JP, 1997, CAN J ZOOL, V75, P1135, DOI 10.1139/z97-136; White CR, 2007, P ROY SOC B-BIOL SCI, V274, P287, DOI 10.1098/rspb.2006.3727; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Williams JB, 2000, J EXP BIOL, V203, P3153; WILLIAMSON FS, 1971, BIOSCIENCE, V21, P701, DOI 10.2307/1295752 50 0 0 6 6 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK OCT 2018 135 4 1055 1063 10.1642/AUK-17-176.1 9 Ornithology Zoology GW3RK WOS:000446824400019 2019-02-21 J Nietmann, L; Ha, RR Nietmann, Lindsey; Ha, Renee R. Variation in age-dependent nest predation between island and continental Rufous Fantail (Rhipidura rufifrons) subspecies AUK English Article life history; Mariana Crow; Mariana Islands; monitor lizard; oceanic island; offspring development rate; predator-specific predation risk LIFE-HISTORY EVOLUTION; FOREST FRAGMENTS; MODEL SELECTION; BIRD NESTS; SONGBIRDS; ECOLOGY; STRATEGIES; ABUNDANCE; SUCCESS; RODENTS Comparative studies of nest predation and identification of nest predators promote understanding of the selective environment that shapes avian life histories. Due to the low diversity of native mammalian and reptilian predators on oceanic islands, insular forest birds are assumed to incur lower nest predation rates than related continental species. We studied correlates of nest predation in insular and continental subspecies of Rufous Fantail (Rhipidura rufifrons) found on the island of Rota and in eastern Australia. Overall, daily survival rate (DSR) was similar between study sites, but egg stage DSR (laying and incubation) was higher in Australia than on Rota while nestling stage DSR was higher on Rota than in Australia. DSR was negatively related to nest age in Australia and the magnitude of this relationship varied by year. On Rota, DSR was higher in the nestling stage than during the egg stage and also higher on our study plot where Mariana Crows (Corvus kubaryi)-the principal nest predator-were less common. Although climate variables did not predict DSR at either site, in Australia, lace monitors (Varanus varius) were more likely to prey upon nests on days without rain. Lace monitors also tended to prey upon nests late in the nestling stage, which likely contributed to the decline of DSR with age. Our results suggest that life history variation between continental and insular birds may be explained, in part, by differences in age-dependent DSR due to the reduced diversity of certain predator guilds on oceanic islands. Therefore, consideration of the nest predator community and age-dependent nest predation risk could help explain additional life history variation in comparative studies. [Nietmann, Lindsey; Ha, Renee R.] Univ Washington, Dept Psychol, Seattle, WA 98195 USA Nietmann, L (reprint author), Univ Washington, Dept Psychol, Seattle, WA 98195 USA. nietmannl@gmail.com National Science Foundation; Animal Behavior Society; American Ornithologists' Union; University of Washington Bolles Fellowship This project was funded by a National Science Foundation Graduate Research Fellowship, Animal Behavior Society Student Research Grant, American Ornithologists' Union Student Research Award, and University of Washington Bolles Fellowship to L.N. Funders neither provided input nor required approval of this manuscript. Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; Baker R. H, 1951, AVIFAUNA MICRONESIA; Benson TJ, 2010, J ANIM ECOL, V79, P225, DOI 10.1111/j.1365-2656.2009.01604.x; Blondel J, 2000, VIE MILIEU, V50, P205; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; Bureau of Meteorology, 2017, CLIM DAT ONL; Burnham KP, 2011, BEHAV ECOL SOCIOBIOL, V65, P23, DOI 10.1007/s00265-010-1029-6; Camp RJ, 2015, J FISH WILDL MANAG, V6, P511, DOI 10.3996/112014-JFWM-085; COOPER WE, 1995, ANIM BEHAV, V50, P973, DOI 10.1016/0003-3472(95)80098-0; Cota Michael, 2008, Biawak, V2, P18; Covas R, 2012, P ROY SOC B-BIOL SCI, V279, P1531, DOI 10.1098/rspb.2011.1785; Cox WA, 2012, AUK, V129, P147, DOI 10.1525/auk.2012.11169; CROWELL KL, 1981, IBIS, V123, P42, DOI 10.1111/j.1474-919X.1981.tb00171.x; DeGregorio BA, 2016, BIOSCIENCE, V66, P655, DOI 10.1093/biosci/biw071; Ellis-Felege SN, 2012, J APPL ECOL, V49, P661, DOI 10.1111/j.1365-2664.2012.02126.x; Faegre S. K, 2017, THESIS; GRANT PR, 1980, ECOL MONOGR, V50, P381, DOI 10.2307/2937257; Grantley J, 2010, REMNANTS GONDWANA NA; Grose M. R, 2015, AUSTR METEOROLOGICAL, V65, P67; Guarino F, 2002, J ZOOL, V258, P449, DOI 10.1017/S0952836902001607; Guppy M, 2017, EMU, V117, P92, DOI 10.1080/01584197.2016.1258997; Higgins PJ, 2006, HDB AUSTR NZ ANTARCT, V7; Innes J, 2010, NEW ZEAL J ECOL, V34, P86; Jenkins J, 1983, ORNITHOLOGICAL MONOG, V31; King D, 1999, MONITORS BIOL VARANI; Kroner A, 2018, BIRD CONSERV INT, V28, P416, DOI 10.1017/S0959270917000053; Luginbuhl JM, 2001, J FIELD ORNITHOL, V72, P556, DOI 10.1648/0273-8570-72.4.556; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1972, ECOLOGY, V53, P330, DOI 10.2307/1934090; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Menezes JCT, 2017, J FIELD ORNITHOL, V88, P99, DOI 10.1111/jofo.12203; Pierce AJ, 2013, IBIS, V155, P419, DOI 10.1111/ibi.12033; Pregill GK, 2009, DIVERS DISTRIB, V15, P983, DOI 10.1111/j.1472-4642.2009.00603.x; Pyle P, 2008, MANUAL AGEING SEXING; R Core Team, 2017, R LANG ENV STAT COMP; Reidy JL, 2012, STUD AVIAN BIOL, P135; Remes V, 2005, IBIS, V147, P213, DOI 10.1111/j.1474-919x.2004.00339; Remes V, 2012, BIOL CONSERV, V148, P54, DOI 10.1016/j.biocon.2012.01.063; Rodewald AD, 2011, CONDOR, V113, P899, DOI 10.1525/cond.2011.100132; Rogers H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043446; Roos S, 2002, OECOLOGIA, V133, P608, DOI 10.1007/s00442-002-1056-8; Sachtleben T, 2005, THESIS; Santisteban L, 2002, J AVIAN BIOL, V33, P245, DOI 10.1034/j.1600-048X.2002.330306.x; Saracco JF, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148570; Scott J. M., 1986, STUDIES AVIAN BIOL, V9; Shaffer TL, 2004, AUK, V121, P526, DOI 10.1642/0004-8038(2004)121[0526:AUATAN]2.0.CO;2; SONERUD GA, 1987, ORNIS SCAND, V18, P323, DOI 10.2307/3676904; Stake MM, 2004, J FIELD ORNITHOL, V75, P337, DOI 10.1648/0273-8570-75.4.337; Steadman David W., 1999, Micronesica, V31, P319; Stevens DK, 2008, BIRD STUDY, V55, P179, DOI 10.1080/00063650809461520; Thompson FR, 2003, J WILDLIFE MANAGE, V67, P408; Vanderwerf EA, 2009, J WILDLIFE MANAGE, V73, P737, DOI 10.2193/2008-284; Venables WN, 2002, MODERN APPL STAT S; Vigallon SM, 2005, AUK, V122, P36, DOI 10.1642/0004-8038(2005)122[0036:INPBSJ]2.0.CO;2; Visco DM, 2015, BIOL CONSERV, V188, P22, DOI 10.1016/j.biocon.2015.01.015; Weidinger K, 2009, IBIS, V151, P352, DOI 10.1111/j.1474-919X.2009.00907.x; WHELAN CJ, 1994, AUK, V111, P945, DOI 10.2307/4088826; Zanette L, 2000, AUK, V117, P445, DOI 10.1642/0004-8038(2000)117[0445:NSANPI]2.0.CO;2 61 0 0 2 2 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK OCT 2018 135 4 1064 1075 10.1642/AUK-18-40.1 12 Ornithology Zoology GW3RK WOS:000446824400020 2019-02-21 J Ng, SH; Simpson, SJ; Simmons, LW Ng, Soon Hwee; Simpson, Stephen J.; Simmons, Leigh W. Macronutrients and micronutrients drive trade-offs between male pre- and postmating sexual traits FUNCTIONAL ECOLOGY English Article attractiveness; courtship song; cuticular hydrocarbons; ejaculate quality; Geometric Framework for nutrition; life span CRICKET TELEOGRYLLUS-OCEANICUS; AUSTRALIAN FIELD CRICKET; LIFE-HISTORY EVOLUTION; CUTICULAR HYDROCARBONS; DROSOPHILA-MELANOGASTER; SPERM COMPETITION; COURTSHIP SONG; CALLING SONG; POSTCOPULATORY TRAITS; REPRODUCTIVE EFFORT 1. Nutrition fundamentally affects life span and reproduction, and identifying how nutrient intakes are linked to the expression of these life-history traits can advance understanding of the mechanisms underlying life-history trade-offs. Males are thought to face trade-offs between the allocation of resources to premating secondary sexual traits for gaining access to females and allocation to postmating traits such as ejaculate quality that affects their fertility. 2. We used the Geometric Framework for nutrition to examine the effects of macronutrient and micronutrient consumption on life span and the expression of pre- and postmating sexual traits in male field crickets Teleogryllus oceanicus. 3. We found that life span was maximized on diets with a low protein-to-carbohydrate (P:C) ratio, whereas premating sexual traits (courtship song and cuticular hydrocarbons) were maximized on high P:C ratios. In contrast, sperm viability, a postmating trait, was lowest on high-P:C-ratio diets. 4. Higher consumption of micronutrients (minerals and vitamins) was associated with decreased life span and lower relative abundances of longer chained CHCs, but improved the performance of sperm viability and courtship song. 5. We show that different macronutrients are not simply calories to be allocated to different traits, but directly determine the expression of different life-history traits and mediate their trade-offs. In this study, we also provide evidence that micronutrients influenced the expression of life-history traits, emphasizing the value of including micronutrients in experiments using nutritional geometry. [Ng, Soon Hwee; Simmons, Leigh W.] Univ Western Australia, Sch Biol Sci, Ctr Evolutionary Biol, Crawley, WA, Australia; [Simpson, Stephen J.] Univ Sydney, Charles Perkins Ctr, Sydney, NSW, Australia; [Simpson, Stephen J.] Univ Sydney, Sch Life & Environm Sci, Sydney, NSW, Australia Ng, SH (reprint author), Univ Western Australia, Sch Biol Sci, Ctr Evolutionary Biol, Crawley, WA, Australia. soonhwee.ng@research.uwa.edu.au Simmons, Leigh/B-1815-2011 Simmons, Leigh/0000-0003-0562-1474 Australian Research Council [DP130100618] Australian Research Council, Grant/Award Number: DP130100618 Aitken JB, 2015, BIOL REPROD, V92, DOI 10.1095/biolreprod.114.126052; Almbro M, 2011, ECOL LETT, V14, P891, DOI 10.1111/j.1461-0248.2011.01653.x; Archer CR, 2015, ANTIOXIDANTS, V4, P768, DOI 10.3390/antiox4040768; Bailey NW, 2008, BEHAV ECOL, V19, P202, DOI 10.1093/beheco/arm123; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Bertrand S, 2006, J EXP BIOL, V209, P4414, DOI 10.1242/jeb.02540; Blount JD, 2004, ARCH BIOCHEM BIOPHYS, V430, P10, DOI 10.1016/j.abb.2004.03.039; Bunning H, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2144; Cheah YunSang, 2011, Advances in Bioscience and Biotechnology, V2, P182, DOI 10.4236/abb.2011.24029; Colman RJ, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4557; Devigili A, 2013, BEHAV ECOL, V24, P740, DOI 10.1093/beheco/ars204; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Galgani J, 2008, INT J OBESITY, V32, pS109, DOI 10.1038/ijo.2008.246; Garcia-Gonzalez F, 2005, CURR BIOL, V15, P271, DOI 10.1016/j.cub.2005.01.032; Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619; Gray B, 2013, BEHAV ECOL, V24, P982, DOI 10.1093/beheco/art009; Gray DA, 1997, ANIM BEHAV, V54, P1553, DOI 10.1006/anbe.1997.0584; Hack MA, 1998, J INSECT BEHAV, V11, P853, DOI 10.1023/A:1020864111073; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Harrison SJ, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0539; Hennig RM, 1997, J COMP PHYSIOL A, V180, P621, DOI 10.1007/s003590050078; Hernandez LMA, 2012, INSECT SOC, V59, P425, DOI 10.1007/s00040-012-0237-7; Howard RW, 2005, ANNU REV ENTOMOL, V50, P371, DOI 10.1146/annurev.ento.50.071803.130359; Jensen K, 2015, AGING CELL, V14, P605, DOI 10.1111/acel.12333; Kuo TH, 2012, J EXP BIOL, V215, P814, DOI 10.1242/jeb.064980; Lapointe S, 1998, J ANDROL, V19, P31; Le Couteur DG, 2016, CELL MOL LIFE SCI, V73, P1237, DOI 10.1007/s00018-015-2120-y; Lee KP, 2008, P NATL ACAD SCI USA, V105, P2498, DOI 10.1073/pnas.0710787105; LOHER W, 1978, Z TIERPSYCHOL, V46, P225; MACMILLAN KL, 1972, AUST J BIOL SCI, V25, P1039, DOI 10.1071/BI9721039; Maklakov AA, 2008, CURR BIOL, V18, P1062, DOI 10.1016/j.cub.2008.06.059; Malod K, 2017, ECOL EVOL, V7, P9808, DOI 10.1002/ece3.3543; Melov S, 2000, SCIENCE, V289, P1567, DOI 10.1126/science.289.5484.1567; MERTZ W, 1981, SCIENCE, V213, P1332, DOI 10.1126/science.7022654; Morimoto J, 2016, SCI REP-UK, V6, DOI 10.1038/srep27673; Ng S. H., 2018, DRYAD DIGITAL REPOSI, DOI [10. 5061/dryad. p3v0kt3, DOI 10.5061/DRYAD.P3V0KT3]; Noguera JC, 2017, SCI NAT-HEIDELBERG, V104, DOI 10.1007/s00114-017-1524-y; Norman G. R., 1994, BIOSTATISTICS BARE E; Parker GA, 2013, EVOLUTION, V67, P95, DOI 10.1111/j.1558-5646.2012.01741.x; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; PRESTWICH KN, 1981, J COMP PHYSIOL, V143, P199; PYKE GH, 1977, Q REV BIOL, V52, P137, DOI 10.1086/409852; Rapkin J, 2017, J EVOLUTION BIOL, V30, P711, DOI 10.1111/jeb.13036; Rapkin J, 2018, AM NAT, V191, P452, DOI 10.1086/696147; Rapkin J, 2017, EVOLUTION, V71, P2159, DOI 10.1111/evo.13299; Raubenheimer D, 2009, FUNCT ECOL, V23, P4, DOI 10.1111/j.1365-2435.2009.01522.x; Rebar D, 2009, BEHAV ECOL, V20, P1307, DOI 10.1093/beheco/arp143; Reinhardt K, 2005, AM NAT, V165, P718, DOI 10.1086/430010; Sadowska-Bartosz I., 2014, OXID MED CELL LONGEV, V2014, P10, DOI DOI 10.1155/2014/38962924803981; Simmons LW, 2014, J EVOLUTION BIOL, V27, P2249, DOI 10.1111/jeb.12478; Simmons LW, 2017, TRENDS ECOL EVOL, V32, P964, DOI 10.1016/j.tree.2017.09.011; Simmons LW, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.1486; Simmons LW, 2013, BEHAV ECOL, V24, P1099, DOI 10.1093/beheco/art036; Simmons LW, 2012, BEHAV ECOL, V23, P168, DOI 10.1093/beheco/arr170; Simmons LW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017975; Simmons LW, 2011, J EVOLUTION BIOL, V24, P132, DOI 10.1111/j.1420-9101.2010.02158.x; Simmons LW, 2010, BEHAV ECOL, V21, P1330, DOI 10.1093/beheco/arq154; Simmons LW, 2010, BEHAV ECOL, V21, P1179, DOI 10.1093/beheco/arq132; Simmons LW, 2001, EVOLUTION, V55, P1386; Simmons LW, 2004, ANIM BEHAV, V68, P313, DOI 10.1016/j.anbehav.2003.12.004; Simmons LW, 2003, BEHAV ECOL, V14, P539, DOI 10.1093/beheco/arg038; Simpson S. J., 2012, NATURE NUTR UNIFYING; SIMPSON SJ, 1985, PHYSIOL ENTOMOL, V10, P443, DOI 10.1111/j.1365-3032.1985.tb00066.x; Sloan NS, 2018, BIOL LETTERS, V14, DOI 10.1098/rsbl.2017.0659; Solon-Biet SM, 2015, P NATL ACAD SCI USA, V112, P3481, DOI 10.1073/pnas.1422041112; Solon-Biet SM, 2014, CELL METAB, V19, P418, DOI 10.1016/j.cmet.2014.02.009; Soultoukis GA, 2016, ANNU REV BIOCHEM, V85, P5, DOI 10.1146/annurev-biochem-060815-014422; Szafranski K, 2014, NUCLEUS-PHILA, V5, P56, DOI 10.4161/nucl.27929; TATAR M, 1995, ECOLOGY, V76, P2066, DOI 10.2307/1941681; Taylor CT, 2001, ENVIRON TOXICOL PHAR, V10, P189, DOI 10.1016/S1382-6689(01)00099-0; Thomas ML, 2008, J EVOLUTION BIOL, V21, P801, DOI 10.1111/j.1420-9101.2008.01514.x; Thomas ML, 2008, J INSECT PHYSIOL, V54, P1081, DOI 10.1016/j.jinsphys.2008.04.012; Thomas ML, 2011, P ROY SOC B-BIOL SCI, V278, P3123, DOI 10.1098/rspb.2011.0159; Thomas ML, 2011, ANIM BEHAV, V82, P49, DOI 10.1016/j.anbehav.2011.03.023; Thomas ML, 2009, BEHAV ECOL, V20, P1118, DOI 10.1093/beheco/arp105; Thomas ML, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-162; Thomas ML, 2009, P R SOC B, V276, P383, DOI 10.1098/rspb.2008.1206; Tregenza T, 2006, ANIM BEHAV, V72, P809, DOI 10.1016/j.anbehav.2006.01.019; Tu MP, 2003, AGING CELL, V2, P327, DOI 10.1046/j.1474-9728.2003.00064.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Virk B, 2012, BMC BIOL, V10, DOI 10.1186/1741-7007-10-67; Wagner WE, 1996, BEHAV ECOL, V7, P279, DOI 10.1093/beheco/7.3.279; Yousef MI, 2003, ANIM REPROD SCI, V76, P99, DOI 10.1016/S0378-4320(02)00226-9; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zuk M, 2008, ANIM BEHAV, V76, P1065, DOI 10.1016/j.anbehav.2008.02.018; Zuk M, 2006, BIOL LETT-UK, V2, P521, DOI 10.1098/rsbl.2006.0539 86 1 1 9 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. OCT 2018 32 10 2380 2394 10.1111/1365-2435.13190 15 Ecology Environmental Sciences & Ecology GV7PX WOS:000446322200011 2019-02-21 J Ejsmond, MJ; McNamara, JM; Soreide, J; Varpe, O Ejsmond, Maciej J.; McNamara, John M.; Soreide, Janne; Varpe, Oystein Gradients of season length and mortality risk cause shifts in body size, reserves and reproductive strategies of determinate growers FUNCTIONAL ECOLOGY English Article body composition; body size; Calanus copepods; capital breeding; determinate growth; life-history evolution; optimal allocation; season length COPEPOD CALANUS-HYPERBOREUS; LIFE-HISTORY; RESOURCE-ALLOCATION; GEOMETRID MOTHS; ANNUAL ROUTINES; EGG-PRODUCTION; ENVIRONMENT; GROWTH; CYCLE; LEPIDOPTERA 1. The theory of life-history evolution investigates how growth-reproduction trade-offs drive evolution of body size in uni- and multivoltine (one or more generations per year) arthropods. Existing theory does not predict how the length of the feeding season (season length hereafter) affects body size in semivoltine (i.e., juvenile period longer than 1year) determinate growers and usually ignores that uni- and semivoltine arthropods accumulate large reserves to cover costs of diapause and future reproduction. 2. Here, we present how the trade-offs between growth, storage and reproduction drive evolution of body mass and reproductive strategy in arthropods with determinate growth. Our life-history model concerns high-latitude marine copepods living in a strongly seasonal environment. 3. We find that small changes in season length and mortality rate translate into abrupt shifts in lean body mass (a proxy for body size). Body size shifts are caused by a change from multi- to uni- and semivoltine life cycles with semivoltine life histories selected for in short seasons and only if background mortality is low. Shifts in the number of generations per year do not translate into shifts in the mass of lipid reserves. The model predicts less reserves the shorter the winter. Season length alone is not a sufficient predictor of the degree of capital breeding. Storing for reproduction is strongly selected for under short season but low mortality rate. Hence, capital breeding contributes to fitness in uni- and semivoltine organisms whereas multivoltines are income breeders. We also show that storing reserves for diapause and capital breeding trades off with adult size of determinately growing arthropods. 4. Our results, in particular regarding optimal body size, reproductive strategy (income-to-capital breeding) and degree of storage are relevant to a number of determinate growers, including insects and crustaceans. [Ejsmond, Maciej J.] Jagiellonian Univ, Inst Environm Sci, Ul Gronostajowa 7, PL-31387 Krakow, Poland; [Ejsmond, Maciej J.; Soreide, Janne; Varpe, Oystein] Univ Ctr Svalbard, Dept Arctic Biol, Longyearbyen, Norway; [McNamara, John M.] Univ Bristol, Sch Math, Bristol, Avon, England; [Varpe, Oystein] Fram Ctr, Akvaplan Niva, Tromso, Norway Ejsmond, MJ (reprint author), Jagiellonian Univ, Inst Environm Sci, Ul Gronostajowa 7, PL-31387 Krakow, Poland. maciek.ejsmond@gmail.com Ejsmond, Maciej/0000-0002-3598-4578 National Science Centre in Poland [2014/15/B/NZ8/00236]; Research Council of Norway [216537, 227046, 227139]; Jagiellonian University [DS/WB/INoS/757/2018] National Science Centre in Poland, Grant/Award Number: 2014/15/B/NZ8/00236; Research Council of Norway, Grant/Award Number: 216537, 227046 and 227139; Jagiellonian University, Grant/Award Number: DS/WB/INoS/757/2018 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Aksnes DL, 2004, LIMNOL OCEANOGR, V49, P233, DOI 10.4319/lo.2004.49.1.0233; Blachowiak-Samolyk K, 2008, DEEP-SEA RES PT II, V55, P2210, DOI 10.1016/j.dsr2.2008.05.018; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Charnov Eric L., 1993, P1; Choquet M, 2018, LIMNOL OCEANOGR-METH, V16, P237, DOI 10.1002/lom3.10240; CONOVER RJ, 1988, HYDROBIOLOGIA, V167, P127, DOI 10.1007/BF00026299; Corbet Philip S., 2006, International Journal of Odonatology, V9, P1; Daase M, 2013, CAN J FISH AQUAT SCI, V70, P871, DOI 10.1139/cjfas-2012-0401; Eiane K, 2002, LIMNOL OCEANOGR, V47, P636, DOI 10.4319/lo.2002.47.3.0636; Ejsmond M.J., 2018, ZENODO, DOI [10. 5281/zenodo. 166313, DOI 10.5281/ZENODO.166313]; Ejsmond MJ, 2015, AM NAT, V186, pE111, DOI 10.1086/683119; Falk-Petersen S, 2009, MAR BIOL RES, V5, P18, DOI 10.1080/17451000802512267; Fischer K, 2002, BIOL J LINN SOC, V75, P173, DOI 10.1046/j.1095-8312.2002.00014.x; Hartnoll RG, 1984, AUST MUS MEMOIR, V18, P121, DOI DOI 10.3853/j.0067-1967.18.1984.378; Hirche HJ, 2013, MAR BIOL, V160, P2469, DOI 10.1007/s00227-013-2242-4; Hirche HJ, 1997, MAR BIOL, V128, P607, DOI 10.1007/s002270050127; HIRCHE HJ, 1993, MAR BIOL, V117, P615, DOI 10.1007/BF00349773; Horne CR, 2015, ECOL LETT, V18, P327, DOI 10.1111/ele.12413; Houston A.l, 1999, MODELS ADAPTIVE BEHA; Javois J, 2011, ENTOMOL EXP APPL, V139, P187, DOI 10.1111/j.1570-7458.2011.01120.x; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Kivela SM, 2013, EVOLUTION, V67, P3145, DOI 10.1111/evo.12181; Kivela SM, 2012, NATURWISSENSCHAFTEN, V99, P607, DOI 10.1007/s00114-012-0940-2; Kivela SM, 2011, J ANIM ECOL, V80, P1184, DOI 10.1111/j.1365-2656.2011.01864.x; Kosobokova KN, 1999, POLAR BIOL, V22, P254, DOI 10.1007/s003000050418; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 2004, INTEGR COMP BIOL, V44, P480, DOI 10.1093/icb/44.6.480; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Langbehn TJ, 2017, GLOBAL CHANGE BIOL, V23, P5318, DOI 10.1111/gcb.13797; Leu E, 2015, PROG OCEANOGR, V139, P151, DOI 10.1016/j.pocean.2015.07.012; LILLEHAMMER A, 1989, HOLARCTIC ECOL, V12, P173; McNamara JM, 2004, THEOR POPUL BIOL, V65, P361, DOI 10.1016/j.tpb.2003.10.006; McNamara JM, 2008, PHILOS T R SOC B, V363, P301, DOI 10.1098/rstb.2007.2141; MILLER CB, 1984, PROG OCEANOGR, V13, P201, DOI 10.1016/0079-6611(84)90009-0; Morewood WD, 1998, CAN J ZOOL, V76, P1371, DOI 10.1139/cjz-76-7-1371; MOUSSEAU TA, 1989, EVOLUTION, V43, P1483, DOI 10.1111/j.1558-5646.1989.tb02598.x; O'Brien DM, 2000, ECOLOGY, V81, P2822, DOI 10.2307/177344; Ohman MD, 2012, J MARINE SYST, V93, P4, DOI 10.1016/j.jmarsys.2011.05.008; Rivero A, 2001, P ROY SOC B-BIOL SCI, V268, P1231, DOI 10.1098/rspb.2001.1645; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Sainmont J, 2014, AM NAT, V184, P466, DOI 10.1086/677926; Shelomi M, 2012, AM NAT, V180, P511, DOI 10.1086/667595; Snall N, 2007, BIOL J LINN SOC, V92, P241, DOI 10.1111/j.1095-8312.2007.00834.x; Sniegula S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046024; Sniegula S, 2012, OIKOS, V121, P1073, DOI 10.1111/j.1600-0706.2011.20015.x; Stearns S, 1992, EVOLUTION LIFE HIST; Tammaru T, 1996, OIKOS, V77, P561, DOI 10.2307/3545946; Tarling GA, 2004, MAR ECOL PROG SER, V272, P165, DOI 10.3354/meps272165; Varpe O, 2018, NATURAL HIST CRUSTAC, P97; Varpe O, 2007, OIKOS, V116, P1331, DOI 10.1111/j.2007.0030-1299.15893.x; Varpe O, 2017, INTEGR COMP BIOL, V57, P943, DOI 10.1093/icb/icx123; Varpe O, 2012, J PLANKTON RES, V34, P267, DOI 10.1093/plankt/fbr108; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; Walczynska A, 2010, B ENTOMOL RES, V100, P461, DOI 10.1017/S0007485309990514; Walczynska A, 2010, ECOL ENTOMOL, V35, P16, DOI 10.1111/j.1365-2311.2009.01142.x; Wessels FJ, 2010, J INSECT PHYSIOL, V56, P1269, DOI 10.1016/j.jinsphys.2010.03.033 58 1 1 12 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. OCT 2018 32 10 2395 2406 10.1111/1365-2435.13191 12 Ecology Environmental Sciences & Ecology GV7PX WOS:000446322200012 Green Published 2019-02-21 J Bruijning, M; ten Berge, ACM; Jongejans, E Bruijning, Marjolein; ten Berge, Anne C. M.; Jongejans, Eelke Population-level responses to temperature, density and clonal differences in Daphnia magna as revealed by integral projection modelling FUNCTIONAL ECOLOGY English Article density dependence; integral projection models; integration across the life cycle; life-history strategies; population model; thermal tolerance; trade-offs; vital rates ECO-EVOLUTIONARY DYNAMICS; LIFE-HISTORY; RAPID EVOLUTION; CLIMATE-CHANGE; PHENOTYPIC PLASTICITY; STRUCTURED POPULATION; ENVIRONMENTAL-CHANGE; ECOLOGICAL DYNAMICS; PARTICLE TRACKING; TRAIT EVOLUTION 1. Raising global temperatures are predicted to have strong consequences for ectotherms, as metabolic rates depend directly on external temperatures. To understand consequences for population fitness, a full life cycle approach is important because (a) temperature can have opposite effects on different vital rates (growth, survival, reproduction) and (b) sensitivities of population growth rate to changes in vital rates can vary in magnitude. As vital rates are concurrently influenced by other factors, adequately predicting temperature effects requires factors such as body size, population density and genetics to be taken into account. 2. The aim of this study was to quantify the role of temperature on all vital rates of Daphnia magna individuals and their integrated effects on population dynamics. In addition, we evaluated how clonal lineages differed in their temperature response, both on the vital rate and population level. 3. We performed a laboratory experiment, in which we followed 40 populations (five clonal lineages x eight temperatures) during 80 days. Due to our novel set-up, we were able to quantify vital rates of individuals within those populations. We identified relations between vital rates and body size, lineage, temperature and population density and used a size-structured integral projection model to integrate the experimental effects over all vital rates. 4. We found negative density dependence in growth and reproduction, resulting in lineage-specific carrying capacities. Population fitness showed a thermal optimum that differed among genotypes. It is interesting that we found that clones had different life-history strategies, optimizing population fitness via different routes. As no lineage outperformed the others in all vital rates, we identified trade-offs between vital rates, which had strong effects on the dynamics of the population. Moreover, simulations suggest that the genetic composition of mixed populations is temperature-dependent. 5. Our results underscore the importance of studying individuals within their population when predicting responses to environmental change. The observed density effects, which were as strong as temperature effects but explained considerably more variation in population growth, would have been overlooked in life table experiments. Furthermore, differential temperature responses emphasize the importance of genetic variation in the ability of ectotherm species such as Daphnia magna to respond to climate change. [Bruijning, Marjolein; ten Berge, Anne C. M.; Jongejans, Eelke] Radboud Univ Nijmegen, Dept Anim Ecol & Physiol, Nijmegen, Netherlands Bruijning, M (reprint author), Radboud Univ Nijmegen, Dept Anim Ecol & Physiol, Nijmegen, Netherlands. M.Bruijning@science.ru.nl Jongejans, Eelke/B-4832-2008 Jongejans, Eelke/0000-0003-1148-7419 [Anonymous], 1980, METH BEOORD VER WAT; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; ATKINSON D, 1995, J THERM BIOL, V20, P61, DOI 10.1016/0306-4565(94)00028-H; Barton K, 2016, R PACKAGE VERSION, V1, P6, DOI DOI 10.18637/JSS.V067.I01; Becks L, 2012, ECOL LETT, V15, P492, DOI 10.1111/j.1461-0248.2012.01763.x; Brooks ME, 2016, J ANIM ECOL, V85, P318, DOI 10.1111/1365-2656.12465; Bruijning M., 2018, DATA POPULATION LEVE, DOI [10. 17026/dans-2b8-gx7j, DOI 10.17026/DANS-2B8-GX7J)]; Bruijning M, 2018, METHODS ECOL EVOL, V9, P965, DOI 10.1111/2041-210X.12975; Burnham K. P, 2002, MODEL SELECTION MULT; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Cameron TC, 2013, ECOL LETT, V16, P754, DOI 10.1111/ele.12107; CARVALHO GR, 1987, J ANIM ECOL, V56, P469, DOI 10.2307/5061; Chevin LM, 2015, METHODS ECOL EVOL, V6, P981, DOI 10.1111/2041-210X.12389; Chevin LM, 2013, FUNCT ECOL, V27, P966, DOI 10.1111/j.1365-2435.2012.02043.x; Colbourne JK, 2011, SCIENCE, V331, P555, DOI 10.1126/science.1197761; Coulson T, 2011, SCIENCE, V334, P1275, DOI 10.1126/science.1209441; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; De Meester L, 2011, INTEGR COMP BIOL, V51, P703, DOI 10.1093/icb/icr027; DEMEESTER L, 1995, NATURE, V378, P483; Duchet C, 2010, ECOTOXICOLOGY, V19, P1224, DOI 10.1007/s10646-010-0507-y; Dudycha JL, 1999, EVOLUTION, V53, P1744, DOI 10.1111/j.1558-5646.1999.tb04559.x; Ellner S. P., 2016, DATA DRIVEN MODELLIN, DOI [10. 1007/978-3-319-28893-2, DOI 10.1007/978-3-319-28893-2]; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Ellner SP, 2011, ECOL LETT, V14, P603, DOI 10.1111/j.1461-0248.2011.01616.x; FRANK PETER W., 1957, PHYSIOL ZOOL, V30, P287; Gabsi F, 2014, ANN LIMNOL-INT J LIM, V50, P9, DOI 10.1051/limn/2013067; Geerts AN, 2015, NAT CLIM CHANGE, V5, P665, DOI 10.1038/NCLIMATE2628; Giebelhausen B, 2001, FRESHWATER BIOL, V46, P281, DOI 10.1046/j.1365-2427.2001.00630.x; Gienapp P, 2008, MOL ECOL, V17, P167, DOI 10.1111/j.1365-294X.2007.03413.x; GLIWICZ ZM, 1990, NATURE, V343, P638, DOI 10.1038/343638a0; GOSER B, 1994, OECOLOGIA, V98, P354, DOI 10.1007/BF00324224; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; GUISANDE C, 1993, FRESHWATER BIOL, V29, P463, DOI 10.1111/j.1365-2427.1993.tb00780.x; Gust KA, 2016, ECOTOXICOLOGY, V25, P1126, DOI 10.1007/s10646-016-1667-1; Hairston NG, 1999, NATURE, V401, P446, DOI 10.1038/46731; Henning-Lucass N, 2016, ECOL EVOL, V6, P881, DOI 10.1002/ece3.1924; Hoefnagel KN, 2018, ECOL EVOL, V8, P3828, DOI 10.1002/ece3.3933; Hoeting JA, 1999, STAT SCI, V14, P382; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Huey RB, 2001, AM NAT, V158, P204, DOI 10.1086/321314; Jansen M, 2011, ECOTOXICOLOGY, V20, P543, DOI 10.1007/s10646-011-0627-z; Jaqaman K, 2008, NAT METHODS, V5, P695, DOI 10.1038/nmeth.1237; Jimenez-Melero R, 2013, FRESHWATER BIOL, V58, P1221, DOI 10.1111/fwb.12122; Jongejans E, 2011, ECOLOGY, V92, P86, DOI 10.1890/09-2226.1; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; KLEIVEN OT, 1992, OIKOS, V65, P197, DOI 10.2307/3545010; Lavergne S, 2010, ANNU REV ECOL EVOL S, V41, P321, DOI 10.1146/annurev-ecolsys-102209-144628; Lukacs PM, 2010, ANN I STAT MATH, V62, P117, DOI 10.1007/s10463-009-0234-4; Lurling M, 2010, WATER RES, V44, P309, DOI 10.1016/j.watres.2009.09.034; MacArthur JW, 1929, J EXP ZOOL, V53, P221, DOI 10.1002/jez.1400530205; MADIGAN D, 1994, J AM STAT ASSOC, V89, P1535, DOI 10.2307/2291017; McLean N, 2016, ECOL LETT, V19, P595, DOI 10.1111/ele.12599; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Mitchell SE, 2000, J EVOLUTION BIOL, V13, P371; Ozgul A, 2012, AM NAT, V179, P582, DOI 10.1086/664999; Ozgul A, 2010, NATURE, V466, P482, DOI 10.1038/nature09210; Pantel JH, 2015, ECOL LETT, V18, P992, DOI 10.1111/ele.12480; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Pelletier F, 2012, P ROY SOC B-BIOL SCI, V279, P394, DOI 10.1098/rspb.2011.0827; Pietrzak B, 2011, J LIMNOL, V70, P345, DOI 10.3274/JL11-70-2-18; R Core Team, 2016, R LANG ENV STAT COMP; Raftery AE, 1997, J AM STAT ASSOC, V92, P179, DOI 10.2307/2291462; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Ronget V, 2017, TRENDS ECOL EVOL, V32, P909, DOI 10.1016/j.tree.2017.09.003; Salguero-Gomez R, 2010, AM NAT, V176, P710, DOI 10.1086/657044; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Smallegange IM, 2013, TRENDS ECOL EVOL, V28, P143, DOI 10.1016/j.tree.2012.07.021; Sommer S, 2016, J LIMNOL, V75, P30, DOI 10.4081/jlimnol.2016.1292; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stoks R, 2016, ECOL LETT, V19, P180, DOI 10.1111/ele.12551; Traill LW, 2014, P NATL ACAD SCI USA, V111, P13223, DOI 10.1073/pnas.1407508111; Turcotte MM, 2013, AM NAT, V181, pS46, DOI 10.1086/668078; Turcotte MM, 2011, ECOL LETT, V14, P1084, DOI 10.1111/j.1461-0248.2011.01676.x; van Benthem KJ, 2017, METHODS ECOL EVOL, V8, P75, DOI 10.1111/2041-210X.12627; Van Doorslaer W, 2010, CLIM RES, V43, P81, DOI 10.3354/cr00894; Van Doorslaer W, 2009, EVOLUTION, V63, P1867, DOI 10.1111/j.1558-5646.2009.00679.x; Villellas J, 2015, ECOL LETT, V18, P1139, DOI 10.1111/ele.12505; WOOD SN, 1994, ECOL MONOGR, V64, P23, DOI 10.2307/2937054; Yampolsky LY, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2744; Yang YH, 2007, ECONOMET THEOR, V23, P1, DOI 10.1017/S0266466607070016 81 0 0 29 29 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. OCT 2018 32 10 2407 2422 10.1111/1365-2435.13192 16 Ecology Environmental Sciences & Ecology GV7PX WOS:000446322200013 2019-02-21 J Cereghino, R; Pillar, VD; Srivastava, DS; de Omena, PM; MacDonald, AAM; Barberis, IM; Corbara, B; Guzman, LM; Leroy, C; Bautista, FO; Romero, GQ; Trzcinski, MK; Kratina, P; Debastiani, VJ; Goncalves, AZ; Marino, NAC; Farjalla, VF; Richardson, BA; Richardson, MJ; Dezerald, O; Gilbert, B; Petermann, J; Talaga, S; Piccoli, GCO; Jocque, M; Montero, G Cereghino, Regis; Pillar, Valerio D.; Srivastava, Diane S.; de Omena, Paula M.; MacDonald, A. Andrew M.; Barberis, Ignacio M.; Corbara, Bruno; Guzman, Laura M.; Leroy, Celine; Ospina Bautista, Fabiola; Romero, Gustavo Q.; Trzcinski, M. Kurtis; Kratina, Pavel; Debastiani, Vanderlei J.; Goncalves, Ana Z.; Marino, Nicholas A. C.; Farjalla, Vinicius F.; Richardson, Barbara A.; Richardson, Michael J.; Dezerald, Olivier; Gilbert, Benjamin; Petermann, Jana; Talaga, Stanislas; Piccoli, Gustavo C. O.; Jocque, Merlijn; Montero, Guillermo Constraints on the functional trait space of aquatic invertebrates in bromeliads FUNCTIONAL ECOLOGY English Article aquatic invertebrates; ecological strategies; functional diversity; functional trait space; niche hypervolume HABITAT; ECOLOGY; COMMUNITIES; DIVERSITY; NICHES; MACROINVERTEBRATES; ANIMALS; DRIVERS; TEMPLET; SYSTEMS 1. Functional traits are commonly used in predictive models that link environmental drivers and community structure to ecosystem functioning. A prerequisite is to identify robust sets of continuous axes of trait variation, and to understand the ecological and evolutionary constraints that result in the functional trait space occupied by interacting species. Despite their diversity and role in ecosystem functioning, little is known of the constraints on the functional trait space of invertebrate biotas of entire biogeographic regions. 2. We examined the ecological strategies and constraints underlying the realized trait space of aquatic invertebrates, using data on 12 functional traits of 852 taxa collected in tank bromeliads from Mexico to Argentina. Principal Component Analysis was used to reduce trait dimensionality to significant axes of trait variation, and the proportion of potential trait space that is actually occupied by all taxa was compared to null model expectations. Permutational Analyses of Variance were used to test whether trait combinations were clade-dependent. 3. The major axes of trait variation represented life-history strategies optimizing resource use and antipredator adaptations. There was evidence for trophic, habitat, defence and life-history niche axes. Bromeliad invertebrates only occupied 16%-23% of the potential space within these dimensions, due to greater concentrations than predicted under uniform or normal distributions. Thus, despite high taxonomic diversity, invertebrates only utilized a small number of successful ecological strategies. 4. Empty areas in trait space represented gaps between major phyla that arose from biological innovations, and trait combinations that are unviable in the bromeliad ecosystem. Only a few phylogenetically distant genera were neighbouring in trait space. Trait combinations aggregated taxa by family and then by order, suggesting that niche conservatism was a widespread mechanism in the diversification of ecological strategies. [Cereghino, Regis; MacDonald, A. Andrew M.] Univ Toulouse, CNRS, ECOLAB, Toulouse, France; [Pillar, Valerio D.; Debastiani, Vanderlei J.] Univ Fed Rio Grande do Sul, Dept Ecol, Porto Alegre, RS, Brazil; [Pillar, Valerio D.; Debastiani, Vanderlei J.] Univ Fed Rio Grande do Sul, Grad Program Ecol, Porto Alegre, RS, Brazil; [Srivastava, Diane S.; Guzman, Laura M.] Univ British Columbia, Dept Zool, Vancouver, BC, Canada; [Srivastava, Diane S.; Guzman, Laura M.] Univ British Columbia, Biodivers Res Ctr, Vancouver, BC, Canada; [de Omena, Paula M.; Romero, Gustavo Q.] Univ Estadual Campinas, Inst Biol, Dept Anim Biol, Lab Multitroph Interact & Biodivers, Campinas, SP, Brazil; [MacDonald, A. Andrew M.] Ctr Synth & Anal Biodivers CESAB FRB, Aix En Provence, France; [Barberis, Ignacio M.] Univ Nacl Rosario, Inst Invest Ciencias Agr, Fac Ciencias Agr, Zavalla, Argentina; [Corbara, Bruno] Univ Clermont Auvergne, Lab Microorganismes Genome & Environm, Aubiere, France; [Leroy, Celine] Univ Montpellier, CNRS, INRA, AMAP,IRD,CIRAD, Montpellier, France; [Leroy, Celine] ECOFOG, Campus Agron, Kourou, France; [Ospina Bautista, Fabiola] Andes Univ, Dept Biol Sci, Bogota, Colombia; [Trzcinski, M. Kurtis] Univ British Columbia, Dept Forest & Conservat Sci, Vancouver, BC, Canada; [Kratina, Pavel] Queen Mary Univ London, Sch Biol & Chem Sci, London, England; [Goncalves, Ana Z.] Univ Sao Paulo, Biosci Inst, Dept Bot, Sao Paulo, Brazil; [Marino, Nicholas A. C.; Farjalla, Vinicius F.] Univ Fed Rio De Janeiro, Inst Biol, Dept Ecol, Rio De Janeiro, RJ, Brazil; [Marino, Nicholas A. C.] Univ Fed Rio De Janeiro, Programa Posgrad Ecol, Rio De Janeiro, RJ, Brazil; [Richardson, Barbara A.; Richardson, Michael J.] Univ Puerto Rico, Inst Trop Ecosyst Studies, Luquillo LTER, San Juan, PR 00936 USA; [Dezerald, Olivier] Univ Lorraine, CNRS, Lab Interdisciplinaire Environm Continentau, Metz, France; [Gilbert, Benjamin] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON, Canada; [Petermann, Jana] Berlin Brandenburg Inst Adv Biodivers Res, Berlin, Germany; [Petermann, Jana] Univ Salzburg, Dept Biosci, Salzburg, Austria; [Talaga, Stanislas] Inst Pasteur Guyane, Unite Entomol Med, Cayenne, France; [Piccoli, Gustavo C. O.] Univ Sao Paulo State, Dept Zool & Bot, Sao Jose Do Rio Preto, SP, Brazil; [Jocque, Merlijn] Royal Belgian Inst Nat Sci, Aquat & Terr Ecol, Brussels, Belgium; [Montero, Guillermo] Univ Nacl Rosario, Fac Ciencias Agr, Zavalla, Argentina Cereghino, R (reprint author), Univ Toulouse, CNRS, ECOLAB, Toulouse, France. regis.cereghino@univ-tlse3.fr Pillar, Valerio/B-9872-2008; Goncalves, Ana/E-6735-2016; Farjalla, Vinicius/G-4945-2010 Pillar, Valerio/0000-0001-6408-2891; Goncalves, Ana/0000-0002-9036-8831; Farjalla, Vinicius/0000-0003-4084-5983; CORBARA, Bruno/0000-0003-4232-8234; Barberis, Ignacio Martin/0000-0002-6605-9270; Cereghino, Regis/0000-0003-3981-3159; Gilbert, Benjamin/0000-0002-4947-6822; ospina, fabiola/0000-0003-2498-1459; Leroy, Celine/0000-0003-4859-8040 CESAB-FRB; Labex CEBA [ANR-10-LABX-25-01]; BPE-FAPESP [2016/01209-9]; CNPq-Brazil [307689/2014-0, 401345/2014-9]; Royal Society of Edinburgh; Carnegie Trust for the Universities of Scotland; US NSF [DEB-0218039, DEB-0620910]; USDA IITF [01-1G11120101-001]; Saba Conservation Foundation; PNPD-CAPES [2014/04603-4, 20130877] CESAB-FRB; Labex CEBA, Grant/Award Number: ANR-10-LABX-25-01; BPE-FAPESP, Grant/Award Number: 2016/01209-9; CNPq-Brazil, Grant/Award Number: 307689/2014-0 and 401345/2014-9; Royal Society of Edinburgh; Carnegie Trust for the Universities of Scotland; US NSF, Grant/Award Number: DEB-0218039 and DEB-0620910; USDA IITF, Grant/Award Number: 01-1G11120101-001; Saba Conservation Foundation; PNPD-CAPES, Grant/Award Number: 2014/04603-4 and 20130877 Amundrud SL, 2015, ECOLOGY, V96, P1957, DOI 10.1890/14-1828.1; Armitage P. D, 1995, CHIRONOMIDAE BIOL EC, VXII, DOI [10.1007/978-94-011-0715-0, DOI 10.1007/978-94-011-0715-0]; Barnes R. S. K., 2009, INVERTEBRATES SYNTHE; BENTLEY MD, 1989, ANNU REV ENTOMOL, V34, P401, DOI 10.1146/annurev.en.34.010189.002153; Benzing D. H., 2000, BROMELIACEAE PROFILE, DOI [10.1017/CBO9780511565175, DOI 10.1017/CBO9780511565175]; Blonder B., 2017, ECOGRAPHY, V40, P1; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Borges RM, 2008, PLANT SIGNAL BEHAV, V3, P367, DOI 10.4161/psb.3.6.5823; Brandl SJ, 2014, J ANIM ECOL, V83, P661, DOI 10.1111/1365-2656.12171; Brouard O, 2012, FRESHWATER BIOL, V57, P815, DOI 10.1111/j.1365-2427.2012.02749.x; Brown B, 2009, AIP CONF PROC, V1140, P1, DOI 10.1063/1.3183523; Cereghino R, 2011, FUNCT ECOL, V25, P954, DOI 10.1111/j.1365-2435.2011.01863.x; CHEVENET F, 1994, FRESHWATER BIOL, V31, P295, DOI 10.1111/j.1365-2427.1994.tb01742.x; Cornwell WK, 2006, ECOLOGY, V87, P1465, DOI 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2; Dezerald O, 2017, FRESHWATER BIOL, V62, P229, DOI 10.1111/fwb.12862; Dezerald O, 2015, FRESHWATER BIOL, V60, P1917, DOI 10.1111/fwb.12621; Dezerald O, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071735; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Doledec S., 1998, B N AM BENTHOLOGICAL, V15, P154; Dray S, 2015, PLANT ECOL, V216, P657, DOI 10.1007/s11258-014-0406-z; Dwyer JM, 2017, ECOL LETT, V20, P872, DOI 10.1111/ele.12781; Flenner I, 2009, ECOL ENTOMOL, V34, P735, DOI 10.1111/j.1365-2311.2009.01129.x; Frank J.H., 2009, Terrestrial Arthropod Reviews, V1, P125; Gonzalez AL, 2017, FRONT ECOL EVOL, V5, DOI 10.3389/fevo.2017.00110; Gullan P. J., 2014, INSECTS OUTLINE ENTO; HUTCHINSON GE, 1959, AM NAT, V93, P145, DOI 10.1086/282070; Kitching R. L., 2000, FOOD WEBS CONTAINER, DOI [10. 1017/CBO9780511542107, DOI 10.1017/CB09780511542107]; LAESSLE AM, 1961, ECOLOGY, V42, P499, DOI 10.2307/1932236; LEIMAR O, 2001, SELECTION, V2, P65, DOI DOI 10.1556/SELECT.2.2001.1-2.5; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Merritt R. M., 1996, INTRO AQUATIC INSECT; Moretti M, 2017, FUNCT ECOL, V31, P558, DOI 10.1111/1365-2435.12776; OLIVER DR, 1971, ANNU REV ENTOMOL, V16, P211, DOI 10.1146/annurev.en.16.010171.001235; PECKARSKY BL, 1982, BIOSCIENCE, V32, P261, DOI 10.2307/1308532; Petermann JS, 2015, ECOLOGY, V96, P428, DOI 10.1890/14-0304.1; Pianka ER, 2017, AM NAT, V190, P601, DOI 10.1086/693781; Pillar VD, 1999, J VEG SCI, V10, P895, DOI 10.2307/3237314; Podani J, 2005, J VEG SCI, V16, P497, DOI 10.1658/1100-9233(2005)16[497:MEAOOD]2.0.CO;2; Podani J, 2009, COMMUNITY ECOL, V10, P244, DOI 10.1556/ComEc.10.2009.2.15; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; RAUP DAVID M., 1966, J PALEONTOL, V40, P1178; Richardson BA, 2000, J TROP ECOL, V16, P167, DOI 10.1017/S0266467400001346; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Srivastava DS, 2004, TRENDS ECOL EVOL, V19, P379, DOI 10.1016/j.tree.2004.04.010; Stearns S, 1992, EVOLUTION LIFE HIST; Thorp J. H., 2014, THORP COVICHS FRESHW; Tomanova S, 2007, FUND APPL LIMNOL, V170, P243, DOI 10.1127/1863-9135/2007/0170-0243; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Ulloa CU, 2017, SCIENCE, V358, P1614, DOI 10.1126/science.aao0398; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; Usseglio-Polatera P, 2010, INVERTEBRES EAU DOUC; Vellend M, 2014, OIKOS, V123, P1420, DOI 10.1111/oik.01493; Vinogradova E. B., 2007, DIAPAUSE AQUATIC INV, V84, P83; Violle C, 2014, P NATL ACAD SCI USA, V111, P13690, DOI 10.1073/pnas.1415442111; Wainwright PC, 2016, INTEGR COMP BIOL, V56, P479, DOI 10.1093/icb/icw081; Wilman H, 2014, ECOLOGY, V95, P2027, DOI DOI 10.1890/13-1917.1; Winemiller KO, 2015, ECOL LETT, V18, P737, DOI 10.1111/ele.12462 57 1 1 11 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. OCT 2018 32 10 2435 2447 10.1111/1365-2435.13141 13 Ecology Environmental Sciences & Ecology GV7PX WOS:000446322200015 2019-02-21 J Simler, AB; Metz, MR; Frangioso, KM; Meentemeyer, RK; Rizzo, DM Simler, Allison B.; Metz, Margaret R.; Frangioso, Kerri M.; Meentemeyer, Ross K.; Rizzo, David M. Novel disturbance interactions between fire and an emerging disease impact survival and growth of resprouting trees ECOLOGY English Article biological legacies; coast redwood; compounded disturbance; emerging infectious disease; Phytophthora ramorum; sudden oak death; tanoak; vegetative reproduction; wildfire SUDDEN OAK DEATH; PHYTOPHTHORA-RAMORUM; ARBUTUS-UNEDO; WOODY-PLANTS; CROWN FIRE; FOREST; PERSISTENCE; CALIFORNIA; REGENERATION; COMMUNITIES Human-altered ecological disturbances may challenge system resilience and disrupt biological legacies maintaining ecosystem recovery. Yet, the extent to which novel regimes challenge these legacies varies. This may be partially explained by differences in the vulnerability of life history strategies to disturbance characteristics. In the fire-prone, resprouter-dominated coast redwood forests of California, the introduced disease sudden oak death (SOD) alters fuel profiles, fire behavior, and aboveground tree mortality; however, this system is dominated by resprouting trees that are well-adapted to aboveground damage, and belowground survival of individuals may represent the principal biological legacy connecting pre- and post-fire communities. Much of the research exploring altered disturbances and forest recovery has focused on legacies determined by seed dispersal and aboveground survival of adults. In this work, we use pre- and post-fire data from a long-term monitoring network to assess the impacts of novel disturbance interactions between wildfire and SOD on the belowground survival and vegetative reproduction of resprouters. We found that increasing accumulation of coarse woody surface fuels from SOD-killed hosts decreased the likelihood of belowground survival for resprouting tanoak trees, but not for redwoods. Tanoaks' belowground survival was negatively related to substrate burn severity, which increased with the volume of surface fuels from hosts, suggesting heat damage as a possible mechanism influencing altered patterns of resprouter mortality. These impacts increased with decreasing tree size. By contrast, redwood and tanoak trees that survived both disturbances resprouted more vigorously, regardless of post-fire infection by P.ramorum, and generated similar recruitment at the stand level. Our results demonstrate that disease-fire interactions can narrow recruitment filters for resprouters, which could impact long-term population and demographic structure; yet, compounded disturbance may also reduce stand density and disease pressure, allowing competitive release of survivors. Resprouters displayed vulnerabilities to altered disturbance, but our research suggests that legacies maintained by resprouting may be more resilient to certain compounded disturbances, compared to seed-obligate species, because of high rates of individual survival under increasingly severe events. These trends have important implications for conservation of declining tree species in SOD-impacted forests, as well as predictions of human impacts in other disturbance-prone systems where resprouters are present. [Simler, Allison B.; Frangioso, Kerri M.; Rizzo, David M.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA; [Metz, Margaret R.] Lewis & Clark Coll, Dept Biol, Portland, OR 97219 USA; [Meentemeyer, Ross K.] North Carolina State Univ, Dept Forestry & Environm Resources, Raleigh, NC 27695 USA; [Meentemeyer, Ross K.] North Carolina State Univ, Ctr Geospatial Analyt, Raleigh, NC 27695 USA Simler, AB (reprint author), Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. absimler@ucdavis.edu Simler, Allison/0000-0003-1358-1919 NSF-NIH Ecology and Evolution of Infectious Diseases program [DEB-1115664]; USDA Forest Service Pacific Southwest Research Station; USDA Forest Service Forest Health Protection, State and Private Forestry; Gordon and Betty Moore Foundation; NSF Graduate Research Fellowship We thank Heather Mehl, Richard Cobb, Tyler Bourret, Clay DeLong, Becky Hendricks, Joe DiRenzo, Izzy Miller, and many other members of the Rizzo Lab for field and laboratory support for this research. This manuscript benefited greatly from thoughtful advice provided by Malcolm North and feedback from two anonymous reviewers. We thank California State Parks, Los Padres National Forest, University of California Natural Reserve System, and numerous private landowners in Big Sur for facilitating research access. Further, this work would not have been possible without support provided by Feynner Arias, Sean McStay, Mark Readdie, and Landels-Hill Big Creek Reserve. This research was funded by the NSF-NIH Ecology and Evolution of Infectious Diseases program (DEB-1115664), USDA Forest Service Pacific Southwest Research Station, USDA Forest Service Forest Health Protection, State and Private Forestry, the Gordon and Betty Moore Foundation, and an NSF Graduate Research Fellowship awarded to A. Simler. Beh MM, 2012, NEW PHYTOL, V196, P1145, DOI 10.1111/j.1469-8137.2012.04352.x; Bellingham PJ, 2000, OIKOS, V89, P409, DOI 10.1034/j.1600-0706.2000.890224.x; Bond WJ, 2001, TRENDS ECOL EVOL, V16, P45, DOI 10.1016/S0169-5347(00)02033-4; Buma B, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00058.1; Buma B, 2011, ECOSPHERE, V2, DOI 10.1890/ES11-00038.1; Canadell J, 1998, FUNCT ECOL, V12, P31, DOI 10.1046/j.1365-2435.1998.00154.x; CANADELL J, 1991, VEGETATIO, V95, P119; Clarke PJ, 2013, NEW PHYTOL, V197, P19, DOI 10.1111/nph.12001; Clarke PJ, 2009, J ECOL, V97, P1374, DOI 10.1111/j.1365-2745.2009.01556.x; Clarke PJ, 2005, J ECOL, V93, P544, DOI 10.1111/j.1365-2745.2005.00971.x; Davidson JM, 2005, PHYTOPATHOLOGY, V95, P587, DOI 10.1094/PHYTO-95-0587; DAVIDSON JM, 2003, PLANT HLTH PROGR, DOI DOI 10.1094/PHP-2003-0707-01-DG; Davis FW, 2006, FIRE IN CALIFORNIA'S ECOSYSTEMS, P321; Davis FW, 2010, FOREST ECOL MANAG, V259, P2342, DOI 10.1016/j.foreco.2010.03.007; Dietze MC, 2008, ECOL MONOGR, V78, P331, DOI 10.1890/07-0271.1; Dileo MV, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0098195; Enright NJ, 2011, PLANT ECOL, V212, P2071, DOI 10.1007/s11258-011-9970-7; Fairman TA, 2017, J VEG SCI, V28, P1151, DOI 10.1111/jvs.12575; FRANKLIN J F, 1990, Transactions of the North American Wildlife and Natural Resources Conference, P216; Frelich LE., 2002, FOREST DYNAMICS DIST; Fusco EJ, 2016, ECOL APPL, V26, P2388, DOI 10.1002/eap.1395; Garboletto M., 2002, PSWGTR184, P811; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Grunwald NJ, 2012, TRENDS MICROBIOL, V20, P131, DOI 10.1016/j.tim.2011.12.006; Harvey BJ, 2014, ECOL APPL, V24, P1608, DOI 10.1890/13-1851.1; Harvey BJ, 2013, ECOLOGY, V94, P2475, DOI 10.1890/13-0188.1; Henson P., 1996, NATURAL HIST BIG SUR; Higgins SI, 2008, J ECOL, V96, P679, DOI 10.1111/j.1365-2745.2008.01391.x; Johnstone JF, 2016, FRONT ECOL ENVIRON, V14, P369, DOI 10.1002/fee.1311; Johnstone JF, 2010, GLOBAL CHANGE BIOL, V16, P1281, DOI 10.1111/j.1365-2486.2009.02051.x; Keeley JE, 2002, ENVIRON MANAGE, V29, P395, DOI 10.1004/s0267-001-0034-Y; Keeley Jon E., 2006, Madrono, V53, P373, DOI 10.3120/0024-9637(2006)53[373:FSAPAI]2.0.CO;2; Konstantinidis P, 2006, FOREST ECOL MANAG, V225, P359, DOI 10.1016/j.foreco.2006.01.011; Kulakowski D, 2013, J VEG SCI, V24, P168, DOI 10.1111/j.1654-1103.2012.01437.x; Kuljian H, 2010, FOREST ECOL MANAG, V259, P2103, DOI 10.1016/j.foreco.2010.02.022; Maloney PE, 2005, J ECOL, V93, P899, DOI 10.1111/j.1365-2745.2005.01031.x; McPherson BA, 2010, FOREST ECOL MANAG, V259, P2248, DOI 10.1016/j.foreco.2010.02.020; Metz M., 2017, FOREST PHYTOPHTHORAS, V7, P30; Metz MR, 2013, ECOLOGY, V94, P2152, DOI 10.1890/13-0915.1; Metz MR, 2011, ECOL APPL, V21, P313, DOI 10.1890/10-0419.1; O'Hara KL, 2017, FORESTS, V8, DOI 10.3390/f8050144; Odion DC, 2000, ECOL MONOGR, V70, P149, DOI 10.1890/0012-9615(2000)070[0149:FSHATF]2.0.CO;2; Orville RE, 2008, B AM METEOROL SOC, V89, P180, DOI 10.1175/BAMS-89-2-180; Paniw M, 2018, J PLANT ECOL, V11, P475, DOI 10.1093/jpe/rtx019; Parke JL, 2007, PHYTOPATHOLOGY, V97, P1558, DOI 10.1094/PHYTO-97-12-1558; Pausas JG, 1997, J VEG SCI, V8, P703, DOI 10.2307/3237375; Pausas JG, 2016, NEW PHYTOL, V209, P945, DOI 10.1111/nph.13644; Premoli AC, 2005, MOL ECOL, V14, P2319, DOI 10.1111/j.1365-294X.2005.02629.x; R Core Team, 2017, R LANG ENV STAT COMP; Raffaele E, 1998, J VEG SCI, V9, P693, DOI 10.2307/3237287; Ramage BS, 2010, ECOSPHERE, V1, DOI 10.1890/ES10-00134.1; Rizzo DM, 2003, FRONT ECOL ENVIRON, V1, P197, DOI 10.1890/1540-9295(2003)001[0197:SODECA]2.0.CO;2; Rizzo DM, 2002, PLANT DIS, V86, P205, DOI 10.1094/PDIS.2002.86.3.205; SOUSA WP, 1984, ANNU REV ECOL SYST, V15, P353, DOI 10.1146/annurev.es.15.110184.002033; Stan Dev. Team, 2018, RSTAN R INT STAN R P; Stan Development Team, 2018, SHIN INT VIS NUM DIA; Steinbuck E., 2002, THESIS; Swiecki T, 2005, P SUDD OAK DEATH SCI, P383; Turner MG, 2010, ECOLOGY, V91, P2833, DOI 10.1890/10-0097.1; Valachovic YS, 2011, FOREST ECOL MANAG, V261, P1973, DOI 10.1016/j.foreco.2011.02.024; Vesk PA, 2006, J ECOL, V94, P1027, DOI 10.1111/j.1365-2745.2006.01154.x; VILA M, 1994, J VEG SCI, V5, P145, DOI 10.2307/3236146; VILA M, 1995, J VEG SCI, V6, P411, DOI 10.2307/3236240; Welch KR, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1609; White P. S., 1985, ECOLOGY NATURAL DIST, P3; Wright BR, 2007, INT J WILDLAND FIRE, V16, P317, DOI 10.1071/WF06094; Zeppel MJB, 2015, NEW PHYTOL, V206, P583, DOI 10.1111/nph.13205 67 0 0 19 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 2018 99 10 2217 2229 10.1002/ecy.2493 13 Ecology Environmental Sciences & Ecology GV6ZO WOS:000446270400010 30129261 2019-02-21 J Paterson, JT; Rotella, JJ; Link, WA; Garrott, R Paterson, J. Terrill; Rotella, Jay. J.; Link, William A.; Garrott, Robert Variation in the vital rates of an Antarctic marine predator: the role of individual heterogeneity ECOLOGY English Article Antarctica; individual variation; life-history theory; senescence; vital rates; Weddell seal SEAL LEPTONYCHOTES-WEDDELLII; AGE-SPECIFIC SURVIVAL; LONG-LIVED SEABIRD; REPRODUCTIVE SUCCESS; LIFE-HISTORY; POPULATION-DYNAMICS; DEMOGRAPHIC STOCHASTICITY; FITNESS COMPONENTS; EMPIRICAL-EVIDENCE; 1ST REPRODUCTION Variation in life-history traits such as lifespan and lifetime reproductive output is thought to arise, in part, due to among-individual differences in the underlying probabilities of survival and reproduction. However, the stochastic nature of demographic processes can also generate considerable variation in fitness-related traits among otherwise-identical individuals. An improved understanding of life-history evolution and population dynamics therefore depends on evaluating the relative role of each of these processes. Here, we used a 33-yr data set with reproductive histories for 1,274 female Weddell seals from Erebus Bay, Antarctica, to assess the strength of evidence for among-individual heterogeneity in the probabilities of survival and reproduction, while accounting for multiple other sources of variation in vital rates. Our analysis used recent advances in Bayesian model selection techniques and diagnostics to directly compare model fit and predictive power between models that included individual effects on survival and reproduction to those that did not. We found strong evidence for costs of reproduction to both survival and future reproduction, with breeders having rates of survival and subsequent reproduction that were 3% and 6% lower than rates for non-breeders. We detected age-related changes in the rates of survival and reproduction, but the patterns differed for the two rates. Survival rates steadily declined from 0.92 at age 7 to 0.56 at the maximal age of 31yr. In contrast, reproductive rates increased from 0.68 at age 7 to 0.79 at age 16 and then steadily declined to 0.37 for the oldest females. Models that included individual effects explained more variation in observed life histories and had better estimated predictive power than those that did not, indicating their importance in understanding sources of variation among individuals in life-history traits. We found that among-individual heterogeneity in survival was small relative to that for reproduction. Our study, which found patterns of variation in vital rates that are consistent with a series of predictionsfrom life-history theory, is the first to provide a thorough assessment of variation in important vital rates for a long-lived, high-latitude marine mammal while taking full advantage of recent developments in model evaluation. [Paterson, J. Terrill; Rotella, Jay. J.; Garrott, Robert] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA; [Link, William A.] US Geol Survey, Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA Paterson, JT (reprint author), Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. terrillpaterson@gmail.com National Science Foundation [ANT-1141326, 1640481]; NSF We thank the many graduate students and field technicians who have collected data on this project. We also thank Jim Nichols and two anonymous reviewers for comments on earlier drafts. This project was supported by the National Science Foundation, Division of Polar Programs (Grant Nos. ANT-1141326 and 1640481 to J. J. Rotella, R. A. Garrott, and Donald B. Siniff) and prior NSF Grants to R. A. Garrott, J. J. Rotella, D. B. Siniff, and J. Ward Testa. Logistical support for fieldwork in Antarctica was provided by Lockheed Martin, Raytheon Polar Services Company, Antarctic Support Associates, the United States Navy and Air Force and Petroleum Helicopters Incorporated. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Aubry LM, 2011, J ANIM ECOL, V80, P375, DOI 10.1111/j.1365-2656.2010.01784.x; Authier M, 2017, ECOL EVOL, V7, P3348, DOI 10.1002/ece3.2874; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Bowen WD, 2006, J ANIM ECOL, V75, P1340, DOI 10.1111/j.1365-2656.2006.01157.x; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Cam E, 2016, TRENDS ECOL EVOL, V31, P872, DOI 10.1016/j.tree.2016.08.002; Cam E, 2013, OIKOS, V122, P739, DOI 10.1111/j.1600-0706.2012.20532.x; Cameron MF, 2004, CAN J ZOOL, V82, P601, DOI 10.1139/Z04-025; Cameron MF, 2007, ANTARCT SCI, V19, P149, DOI 10.1017/S0954102007000223; Chambert T, 2015, ECOLOGY, V96, P479, DOI 10.1890/14-0911.1; Chambert T, 2013, ECOL EVOL, V3, P2047, DOI 10.1002/ece3.615; Chen MH, 2012, MONTE CARLO METHODS; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; Denwood MJ, 2016, J STAT SOFTW, V71, P1, DOI 10.18637/jss.v071.i09; Descamps S, 2006, P R SOC B, V273, P2369, DOI 10.1098/rspb.2006.3588; Dugdale HL, 2011, MOL ECOL, V20, P3261, DOI 10.1111/j.1365-294X.2011.05167.x; Erikstad KE, 1997, BEHAV ECOL SOCIOBIOL, V40, P95, DOI 10.1007/s002650050320; Fay R, 2016, ECOLOGY, V97, P1842, DOI 10.1890/15-1485.1; Fisher RA, 1930, GENETICAL THEORY NAT; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Froy H, 2013, ECOL LETT, V16, P642, DOI 10.1111/ele.12092; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Geisser S., 1993, PREDICTIVE INFERENCE; Gelman A., 2004, BAYESIAN DATA ANAL; Gelman A, 2014, STAT COMPUT, V24, P997, DOI 10.1007/s11222-013-9416-2; GITTLEMAN JL, 1988, AM ZOOL, V28, P863; Goetz K. T., 2015, MOVEMENT HABITAT FOR; Hadley GL, 2007, J ANIM ECOL, V76, P448, DOI 10.1111/j.1365-2656.2007.01219.x; Hadley GL, 2006, J ANIM ECOL, V75, P1058, DOI 10.1111/j.1365-2656.2006.01118.x; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Hindle AG, 2009, J EXP BIOL, V212, P790, DOI 10.1242/jeb.025387; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Kendall BE, 2002, CONSERV BIOL, V16, P109, DOI 10.1046/j.1523-1739.2002.00036.x; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Lebreton JD, 2002, J APPL STAT, V29, P353, DOI 10.1080/02664760120108638; Lemaitre JF, 2017, BIOL REV, V92, P2182, DOI 10.1111/brv.12328; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Lescroel A, 2009, J ANIM ECOL, V78, P798, DOI 10.1111/j.1365-2656.2009.01542.x; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Merila J, 2000, AM NAT, V155, P301, DOI 10.1086/303330; Metcalf CJE, 2007, P ROY SOC B-BIOL SCI, V274, P2153, DOI 10.1098/rspb.2007.0561; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; Orzack SH, 2001, ECOLOGY, V82, P2659, DOI 10.2307/2679944; Part T, 2001, P ROY SOC B-BIOL SCI, V268, P2267, DOI 10.1098/rspb.2001.1803; PART T, 1995, P ROY SOC B-BIOL SCI, V260, P113, DOI 10.1098/rspb.1995.0067; Paterson JT, 2016, J ANIM ECOL, V85, P1540, DOI 10.1111/1365-2656.12577; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Plummer M., 2015, JAGS VERSION 4 0 0 U; R Core Team, 2015, R LANG ENV STAT COMP; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Rotella JJ, 2012, J ANIM ECOL, V81, P162, DOI 10.1111/j.1365-2656.2011.01902.x; Royle JA, 2008, BIOMETRICS, V64, P364, DOI 10.1111/j.1541-0420.2007.00891.x; Rughetti M, 2015, OECOLOGIA, V178, P197, DOI 10.1007/s00442-014-3192-3; Saether BE, 2013, AM NAT, V182, P743, DOI 10.1086/673497; Salas L, 2017, ECOL APPL, V27, P10, DOI 10.1002/eap.1435; Stauffer G. E., 2012, VARIATION TEMPORARY; Stauffer GE, 2013, OECOLOGIA, V172, P129, DOI 10.1007/s00442-012-2472-z; Stearns S, 1992, EVOLUTION LIFE HIST; Steiner UK, 2012, P NATL ACAD SCI USA, V109, P4684, DOI 10.1073/pnas.1018096109; Stover JP, 2012, THEOR ECOL-NETH, V5, P297, DOI 10.1007/s12080-011-0129-x; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; Viallefont A, 1995, AUK, V112, P67, DOI 10.2307/4088767; Vindenes Y, 2008, AM NAT, V171, P455, DOI 10.1086/528965; Vindenes Y, 2015, ECOL LETT, V18, P417, DOI 10.1111/ele.12421; Watanabe S, 2013, J MACH LEARN RES, V14, P867; Wheatley KE, 2008, PHYSIOL BIOCHEM ZOOL, V81, P651, DOI 10.1086/590397; Wheatley KE, 2008, OECOLOGIA, V155, P11, DOI 10.1007/s00442-007-0888-7; Wheatley KE, 2006, J ANIM ECOL, V75, P724, DOI 10.1111/j.1365-2656.01093.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002 82 0 0 2 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 2018 99 10 2385 2396 10.1002/ecy.2481 12 Ecology Environmental Sciences & Ecology GV6ZO WOS:000446270400025 30277558 Other Gold 2019-02-21 J Khursigara, AJ; Johansen, JL; Esbaugh, AJ Khursigara, Alexis J.; Johansen, Jacob L.; Esbaugh, Andrew J. Social competition in red drum (Sciaenops ocellatus) is influenced by crude oil exposure AQUATIC TOXICOLOGY English Article Oil spills; Polycyclic aromatic hydrocarbons; Social interactions TROUT ONCORHYNCHUS-MYKISS; MAHI CORYPHAENA-HIPPURUS; PITUITARY-INTERRENAL AXIS; LIFE-HISTORY STRATEGIES; RAINBOW-TROUT; ATLANTIC SALMON; CARDIAC-FUNCTION; METABOLIC-RATE; BROWN TROUT; FISH The present study examined impacts of crude oil exposure on dyad competition in juvenile red drum. Following the 2010 Deepwater Horizon oil spill, it has become well established that oil exposure can constrain maximum metabolic rate, reduce aerobic scope and exercise performance in marine fish. Aerobic scope is one of the physiological characteristics that is a known determinant of dominance in fish social hierarchy formation. As such, oil exposure may predispose individuals to subordinate social status, complete with the concomitant ecological costs. We tested this hypothesis on the gregarious Gulf of Mexico species, the red drum (Sciaenops ocellatus). Using a standard dyad, one-on-one, test design, we first assessed the parameters - including size and aerobic scope- that predict social dominance. Of the tested parameters, only aerobic scope was predictive of social dominance, with dominant individuals consistently having higher aerobic scopes than subordinates. Hierarchy formation between individuals exposed to one of two oil concentrations (5.7 +/- 0.5 and 9.0 +/- 0.2 mu gl(-1) Sigma PAH(50)) and unexposed conspecifics were then investigated. As hypothesized, fish exposed to both oil concentrations were more likely to be subordinate than what would occur by random chance. These results demonstrate that the physiological constraints imposed by oil exposure can affect social status and behavior in fishes, which can have downstream consequences for ecological fitness. [Khursigara, Alexis J.; Esbaugh, Andrew J.] Univ Texas Austin, Marine Sci Inst, 750 Channel View Dr, Port Aransas, TX 78373 USA; [Johansen, Jacob L.] New York Univ Abu Dhabi, Marine Biol, Abu Dhabi, U Arab Emirates Khursigara, AJ (reprint author), Univ Texas Austin, Marine Sci Inst, 750 Channel View Dr, Port Aransas, TX 78373 USA. akhursigara@utexas.edu Gulf of Mexico Research Initiative [SA-1520] This research was made possible by a grant from The Gulf of Mexico Research Initiative awarded to AJE, Grant No: SA-1520; Name: Relationship of Effects of Cardiac Outcomes in fish for Validation of Ecological Risk (RECOVER). Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (DOI: 10.7266/N74B2ZQV). Abbott J.C., 1985, PATTERNS AGGRESSIVE, P42; ABBOTT JC, 1985, BEHAVIOUR, V92, P241; Adams CE, 1996, CAN J FISH AQUAT SCI, V53, P2446, DOI 10.1139/cjfas-53-11-2446; Ankley GT, 2010, ENVIRON TOXICOL CHEM, V29, P730, DOI 10.1002/etc.34; Brette F., 2014, EXCITATION CONTRACTI, P1681; Carls MG, 1999, ENVIRON TOXICOL CHEM, V18, P481, DOI 10.1897/1551-5028(1999)018<0481:SOFETW>2.3.CO;2; Chabot D, 2016, J FISH BIOL, V88, P81, DOI 10.1111/jfb.12845; Claireaux G, 2004, AQUAT LIVING RESOUR, V17, P335, DOI 10.1051/alr:2004043; Cutts CJ, 1999, OIKOS, V86, P479, DOI 10.2307/3546652; Cutts CJ, 2002, FUNCT ECOL, V16, P73, DOI 10.1046/j.0269-8463.2001.00603.x; Davoodi F, 2007, MAR POLLUT BULL, V54, P928, DOI 10.1016/j.marpolbul.2007.03.004; DiBattista JD, 2005, J EXP BIOL, V208, P2707, DOI 10.1242/jeb.01690; DiBattista JD, 2006, PHYSIOL BIOCHEM ZOOL, V79, P675, DOI 10.1086/504612; Earley RL, 2004, P ROY SOC B-BIOL SCI, V271, P7, DOI 10.1098/rspb.2003.2558; Elofsson UOE, 2000, GEN COMP ENDOCR, V118, P450, DOI 10.1006/gcen.2000.7487; Ern R, 2016, J COMP PHYSIOL B, V186, P447, DOI 10.1007/s00360-016-0971-7; Esbaugh AJ, 2016, J COMP PHYSIOL B, V186, P97, DOI 10.1007/s00360-015-0940-6; Esbaugh AJ, 2016, SCI TOTAL ENVIRON, V543, P644, DOI 10.1016/j.scitotenv.2015.11.068; Gilmour KM, 2005, INTEGR COMP BIOL, V45, P263, DOI 10.1093/icb/45.2.263; Hicken CE, 2011, P NATL ACAD SCI USA, V108, P7086, DOI 10.1073/pnas.1019031108; Hoglund E, 2000, J EXP BIOL, V203, P1711; HUNTINGFORD FA, 1990, J FISH BIOL, V36, P877, DOI 10.1111/j.1095-8649.1990.tb05635.x; Incardona JP, 2014, P NATL ACAD SCI USA, V111, pE1510, DOI 10.1073/pnas.1320950111; Jeffrey JD, 2014, GEN COMP ENDOCR, V196, P8, DOI 10.1016/j.ygcen.2013.11.010; Jeffrey JD, 2016, J EXP BIOL, V219, P1734, DOI 10.1242/jeb.138826; Jeffrey JD, 2012, GEN COMP ENDOCR, V176, P201, DOI 10.1016/j.ygcen.2012.01.016; Johansen JL, 2017, AQUAT TOXICOL, V187, P82, DOI 10.1016/j.aquatox.2017.04.002; Johansen J.L., 2017, NAT ECOL EVOL, V1, DOI [10.1038/x41559-017-0232-5, DOI 10.1038/X41559-017-0232-5]; Johnsson JI, 1999, J FISH BIOL, V54, P469, DOI 10.1006/jfbi.1998.0881; JOHNSSON JI, 1994, ANIM BEHAV, V48, P177, DOI 10.1006/anbe.1994.1224; Johnsson JI, 1996, HORM BEHAV, V30, P13, DOI 10.1006/hbeh.1996.0003; Johnsson Joergen I., 2006, Fish Physiology, V24, P151; Jung JH, 2013, CHEMOSPHERE, V91, P1146, DOI 10.1016/j.chemosphere.2013.01.019; Khursigara AJ, 2017, SCI TOTAL ENVIRON, V579, P797, DOI 10.1016/j.scitotenv.2016.11.026; Killen SS, 2014, FUNCT ECOL, V28, P1367, DOI 10.1111/1365-2435.12296; Mager EM, 2014, ENVIRON SCI TECHNOL, V48, P7053, DOI 10.1021/es501628k; Mauduit F, 2016, AQUAT TOXICOL, V178, P197, DOI 10.1016/j.aquatox.2016.07.019; McCarthy ID, 2001, J FISH BIOL, V59, P1002, DOI 10.1111/j.1095-8649.2001.tb00167.x; Metcalfe NB, 2016, J FISH BIOL, V88, P298, DOI 10.1111/jfb.12699; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; Nelson D, 2017, COMP BIOCHEM PHYS C, V201, P58, DOI 10.1016/j.cbpc.2017.08.006; Nelson D, 2016, AQUAT TOXICOL, V180, P274, DOI 10.1016/j.aquatox.2016.10.012; Pan Y.K., 2016, J FISH BIOL, V1488-1493, DOI [10.1111/jfb, DOI 10.1111/JFB]; Pan YK, 2018, CHEMOSPHERE, V200, P143, DOI 10.1016/j.chemosphere.2018.02.028; Parikh VN, 2006, BEHAV BRAIN RES, V166, P291, DOI 10.1016/j.bbr.2005.07.011; Pavlidis M, 2011, BEHAV BRAIN RES, V225, P529, DOI 10.1016/j.bbr.2011.08.022; Rooker JR, 2010, MAR ECOL PROG SER, V407, P187, DOI 10.3354/meps08605; Scott GR, 2004, AQUAT TOXICOL, V68, P369, DOI 10.1016/j.aquatox.2004.03.016; Sloman KA, 2002, J FISH BIOL, V61, P1, DOI 10.1006/jfbi.2002.2038; Sloman KA, 2000, FISH PHYSIOL BIOCHEM, V23, P49, DOI 10.1023/A:1007855100185; Sloman KA, 2003, COMP BIOCHEM PHYS C, V135, P393, DOI 10.1016/S1532-0456(03)00139-X; Sloman KA, 2004, CAN J FISH AQUAT SCI, V61, P618, DOI 10.1139/F04-032; Sloman KA, 2001, PHYSIOL BIOCHEM ZOOL, V74, P383, DOI 10.1086/320426; Soto M. Andres, 1998, Gulf Research Reports, V10, P41; Stieglitz JD, 2016, ENVIRON TOXICOL CHEM, V35, P2613, DOI 10.1002/etc.3436; WINBERG S, 1992, J COMP PHYSIOL A, V170, P93; Winberg S, 1998, AM J PHYSIOL-REG I, V274, pR645; Yamamoto T., 1998, J FISH BIOL, V281-290 59 1 1 6 6 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0166-445X 1879-1514 AQUAT TOXICOL Aquat. Toxicol. OCT 2018 203 194 201 10.1016/j.aquatox.2018.08.011 8 Marine & Freshwater Biology; Toxicology Marine & Freshwater Biology; Toxicology GV5MY WOS:000446147500021 30165313 2019-02-21 J Zhang, H; Urrutia-Cordero, P; He, L; Geng, H; Chaguaceda, F; Xu, J; Hansson, LA Zhang, Huan; Urrutia-Cordero, Pablo; He, Liang; Geng, Hong; Chaguaceda, Fernando; Xu, Jun; Hansson, Lars-Anders Life-history traits buffer against heat wave effects on predator-prey dynamics in zooplankton GLOBAL CHANGE BIOLOGY English Article climate change; copepods; heat waves; mesocosms; predator-prey; resting stage; rotifer; zooplankton CLIMATE-CHANGE; WARMING ALTERS; TEMPERATURE; SIZE; LAKES; COMMUNITIES; PHENOLOGY; ECOSYSTEM; RECRUITMENT; TERMINATION In addition to an increase in mean temperature, extreme climatic events, such as heat waves, are predicted to increase in frequency and intensity with climate change, which are likely to affect organism interactions, seasonal succession, and resting stage recruitment patterns in terrestrial as well as in aquatic ecosystems. For example, freshwater zooplankton with different life-history strategies, such as sexual or parthenogenetic reproduction, may respond differently to increased mean temperatures and rapid temperature fluctuations. Therefore, we conducted a long-term (18months) mesocosm experiment where we evaluated the effects of increased mean temperature (4 degrees C) and an identical energy input but delivered through temperature fluctuations, i.e., as heat waves. We show that different rotifer prey species have specific temperature requirements and use limited and species-specific temperature windows for recruiting from the sediment. On the contrary, co-occurring predatory cyclopoid copepods recruit from adult or subadult resting stages and are therefore able to respond to short-term temperature fluctuations. Hence, these different life-history strategies affect the interactions between cyclopoid copepods and rotifers by reducing the risk of a temporal mismatch in predator-prey dynamics in a climate change scenario. Thus, we conclude that predatory cyclopoid copepods with long generation time are likely to benefit from heat waves since they rapidly wake up even at short temperature elevations and thereby suppress fast reproducing prey populations, such as rotifers. In a broader perspective, our findings suggest that differences in life-history traits will affect predator-prey interactions, and thereby alter community dynamics, in a future climate change scenario. [Zhang, Huan; Urrutia-Cordero, Pablo; Chaguaceda, Fernando; Hansson, Lars-Anders] Lund Univ, Dept Biol, Aquat Ecol, SE-22362 Lund, Sweden; [Zhang, Huan; Xu, Jun] Chinese Acad Sci, Inst Hydrobiol, Wuhan, Hubei, Peoples R China; [Urrutia-Cordero, Pablo] Uppsala Univ, Dept Ecol & Genet, Limnol & Erken Lab, Uppsala, Sweden; [He, Liang] Nanchang Univ, Minist Educ, Key Lab Poyang Lake Environm & Resource Utilizat, Nanchang, Jiangxi, Peoples R China; [Geng, Hong] South Cent Univ Nationalities, Coll Life Sci, Wuhan, Hubei, Peoples R China; [Chaguaceda, Fernando] Uppsala Univ, Dept Ecol & Genet, Limnol Unit, Uppsala, Sweden Zhang, H (reprint author), Lund Univ, Dept Biol, Aquat Ecol, SE-22362 Lund, Sweden. Huan.Zhang@biol.lu.se Chaguaceda, Fernando/0000-0002-0827-2110 China Scholarship Council; EU ERA-net BiodivERsA project LIMNOTIP through the Swedish Environmental Research Council for Spatial Planning and the Environment (FORMAS) China Scholarship Council; EU ERA-net BiodivERsA project LIMNOTIP through the Swedish Environmental Research Council for Spatial Planning and the Environment (FORMAS) Adrian R, 2006, GLOBAL CHANGE BIOL, V12, P652, DOI 10.1111/j.1365-2486.2006.01125.x; Alekseev VR, 1996, HYDROBIOLOGIA, V320, P15, DOI 10.1007/BF00016801; Bertani I, 2016, ECOSYSTEMS, V19, P16, DOI 10.1007/s10021-015-9914-5; Brandl Z, 2005, HYDROBIOLOGIA, V546, P475, DOI 10.1007/s10750-005-4290-3; Burian A, 2016, LIMNOL OCEANOGR, V61, P795, DOI 10.1002/lno.10241; Dossena M, 2012, P ROY SOC B-BIOL SCI, V279, P3011, DOI 10.1098/rspb.2012.0394; Downing JA, 2006, LIMNOL OCEANOGR, V51, P2388, DOI 10.4319/lo.2006.51.5.2388; Easterling DR, 2000, SCIENCE, V289, P2068, DOI 10.1126/science.289.5487.2068; Edwards M, 2004, NATURE, V430, P881, DOI 10.1038/nature02808; Ekvall MK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044614; ELGMORK K, 1981, HOLARCTIC ECOL, V4, P278; Fischer EM, 2013, NAT CLIM CHANGE, V3, P1033, DOI [10.1038/nclimate2051, 10.1038/NCLIMATE2051]; Frenken T, 2016, GLOBAL CHANGE BIOL, V22, P299, DOI 10.1111/gcb.13095; Frisch D, 2004, EVOL ECOL RES, V6, P541; Gerten D, 2000, LIMNOL OCEANOGR, V45, P1058, DOI 10.4319/lo.2000.45.5.1058; Gilbert JJ, 2017, HYDROBIOLOGIA, V796, P235, DOI 10.1007/s10750-016-2867-7; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Gillooly JF, 2002, NATURE, V417, P70, DOI 10.1038/417070a; Gyllstrom M, 2004, AQUAT SCI, V66, P274, DOI 10.1007/s00027-004-0712-y; Hairston NG, 2000, FRESHWATER BIOL, V45, P133; Hansson LA, 2013, NAT CLIM CHANGE, V3, P228, DOI 10.1038/NCLIMATE1689; Huber V, 2012, OECOLOGIA, V169, P245, DOI 10.1007/s00442-011-2186-7; Huber V, 2010, FRESHWATER BIOL, V55, P1769, DOI 10.1111/j.1365-2427.2010.02411.x; Jeppesen E, 2010, HYDROBIOLOGIA, V646, P73, DOI 10.1007/s10750-010-0171-5; Karl TR, 2003, SCIENCE, V302, P1719, DOI 10.1126/science.1090228; Kratina P, 2012, ECOLOGY, V93, P1421, DOI 10.1890/11-1595.1; Li ZQ, 2017, GLOBAL CHANGE BIOL, V23, P108, DOI 10.1111/gcb.13405; MAY L, 1987, HYDROBIOLOGIA, V147, P335, DOI 10.1007/BF00025763; McKee D, 2003, LIMNOL OCEANOGR, V48, P707, DOI 10.4319/lo.2003.48.2.0707; Moore MV, 1996, ARCH HYDROBIOL, V135, P289; Nicolle A, 2012, FRESHWATER BIOL, V57, P684, DOI 10.1111/j.1365-2427.2012.02733.x; R Development Core Team, 2017, R LANG ENV STAT COMP; Santer B, 1998, J MARINE SYST, V15, P327, DOI 10.1016/S0924-7963(97)00084-5; Sentis A, 2013, GLOBAL CHANGE BIOL, V19, P833, DOI 10.1111/gcb.12094; Shurin JB, 2012, PHILOS T R SOC B, V367, P3008, DOI 10.1098/rstb.2012.0243; Stahl-Delbanco A, 2003, J PLANKTON RES, V25, P1099, DOI 10.1093/plankt/25.9.1099; STEMBERGER RS, 1984, J GREAT LAKES RES, V10, P417, DOI 10.1016/S0380-1330(84)71858-2; Stenseth NC, 2002, P NATL ACAD SCI USA, V99, P13379, DOI 10.1073/pnas.212519399; Stocker TF, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P1; Thompson RM, 2013, ECOL LETT, V16, P799, DOI 10.1111/ele.12095; Urrutia-Cordero P, 2016, SCI REP-UK, V6, DOI 10.1038/srep29542; Vadeboncoeur Y, 2002, BIOSCIENCE, V52, P44, DOI 10.1641/0006-3568(2002)052[0044:PTLBTR]2.0.CO;2; Vasseur DA, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2612; Wetzel R. G., 2000, LIMNOLOGICAL ANAL; WILLIAMSON CE, 1983, HYDROBIOLOGIA, V104, P385, DOI 10.1007/BF00045996; Winder M, 2004, GLOBAL CHANGE BIOL, V10, P1844, DOI 10.1111/j.1365-2486.2004.00849.x; Winder M, 2004, ECOLOGY, V85, P2100, DOI 10.1890/04-0151; Wood SN., 2006, GEN ADDITIVE MODELS; Wyngaard G.A., 1982, P485; Yvon-Durocher G, 2011, GLOBAL CHANGE BIOL, V17, P1681, DOI 10.1111/j.1365-2486.2010.02321.x; Zhang H, 2015, LIMNOL OCEANOGR, V60, P1577, DOI 10.1002/lno.10122 51 0 0 14 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1354-1013 1365-2486 GLOBAL CHANGE BIOL Glob. Change Biol. OCT 2018 24 10 4747 4757 10.1111/gcb.14371 11 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology GV0DZ WOS:000445728800023 29963731 2019-02-21 J Zhang, F; Gislason, D; Reid, KB; Debertin, AJ; Turgeon, K; Nudds, TD Zhang, Fan; Gislason, David; Reid, Kevin B.; Debertin, Allan J.; Turgeon, Katrine; Nudds, Thomas D. Failure to detect ecological and evolutionary effects of harvest on exploited fish populations in a managed fisheries ecosystem CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article LIFE-HISTORY EVOLUTION; STOCK-RECRUITMENT RELATIONSHIP; REACTION NORMS; MARINE POPULATIONS; REFERENCE POINTS; LAKE-ERIE; AGE; MATURATION; TRENDS; DYNAMICS Overexploitation and collapse of major fisheries raises important concerns about effects of harvest on fish populations. We tested for ecological and evolutionary mechanisms by which harvest could affect exploited fish populations in Lake Erie over the last four decades, over most of which intensive fisheries management was implemented. We did not detect evidence of long-term negative effects of harvest on yellow perch (Perca flavescens), walleye (Sander vitreus), white perch (Marone americana), or white bass (Moron chrysops) populations, either through recruitment success or through alteration of maturation schedules. Current fisheries management in Lake Erie has been relatively successful with respect to minimizing negative harvest effects, such that the dynamics of exploited fish populations in Lake Erie were more strongly affected by environment than harvest. Our study adds to the evidence that effective fisheries management is capable of rebuilding depleted fisheries and (or) maintaining healthy fisheries. Nevertheless, fisheries management needs to move beyond the ecological dimension to incorporate economic, social, and institutional aspects for society to be better assured of the sustainability of fisheries in rapidly changing ecosystems. [Zhang, Fan; Gislason, David; Reid, Kevin B.; Debertin, Allan J.; Turgeon, Katrine; Nudds, Thomas D.] Univ Guelph, Dept Integrat Biol, 50 Stone Rd East, Guelph, ON N1G 2W1, Canada; [Zhang, Fan] Mem Univ Newfoundland, Fisheries & Marine Inst, Ctr Fisheries Ecosyst Res, POB 4920, St John, NF A1C 5R3, Canada; [Reid, Kevin B.] Ontario Commercial Fisheries Assoc, 45 James St, Blenheim, ON N0P 1A0, Canada; [Debertin, Allan J.] Fisheries & Oceans Canada, St Andrews Biol Stn, 531 Brandy Cove Rd, St Andrews, NB E5B 2L9, Canada; [Turgeon, Katrine] McGill Univ, Dept Biol, 1205 Docteur Penfield Ave, Montreal, PQ H3A 1B1, Canada Zhang, F (reprint author), Univ Guelph, Dept Integrat Biol, 50 Stone Rd East, Guelph, ON N1G 2W1, Canada.; Zhang, F (reprint author), Mem Univ Newfoundland, Fisheries & Marine Inst, Ctr Fisheries Ecosyst Res, POB 4920, St John, NF A1C 5R3, Canada. fan.zhang@mi.mun.ca Turgeon, Katrine/0000-0002-2528-130X Natural Sciences and Engineering Research Council of Canada; Ontario Commercial Fisheries' Association This research was funded by a Natural Sciences and Engineering Research Council of Canada Strategic Networks grant to the Canadian Fisheries Research Network and a Grant-in-Aid of Research from the Ontario Commercial Fisheries' Association. We thank R.L. McLaughlin, B.W. Robinson, S. Crawford, K.S. McCann, J.M. Fryxell, D. Gillis (University of Guelph); Y. Jiao (Virginia Tech); R. Graham, J. Graham, P. Meisenheimer, D. Cartier (Ontario Commercial Fisheries' Association); B. Locke, R. Drouin, M. Belore, A. Cook, T. MacDougall, E. Dunlop (OMNRF); D. Duplisea, M. Koops (DFO); M. Jones (Michigan State University); and R. Stephenson and S. Thompson (Canadian Fisheries Research Network) for their support for our project. We thank two anonymous reviewers for their insightful comments that greatly improved our manuscript. Adlerstein S., 2015, LAKE ERIE YELLOW PER; Applegate V. C., 1970, BRIEF HIST COMMERCIA; Barot S, 2004, EVOL ECOL RES, V6, P659; BEETON ALFRED M., 1961, TRANS AMER FISH SOC, V90, P153, DOI 10.1577/1548-8659(1961)90[153:ECILE]2.0.CO;2; Belore M., 2013, REPORT LAKE ERIE YEL; Belore M., 2016, REPORT LAKE ERIE YEL; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; Bieg C, 2017, THEOR ECOL-NETH, V10, P341, DOI 10.1007/s12080-017-0334-3; Branch TA, 2011, CONSERV BIOL, V25, P777, DOI 10.1111/j.1523-1739.2011.01687.x; Bunnell DB, 2014, BIOSCIENCE, V64, P26, DOI 10.1093/biosci/bit001; Butterworth DS, 2007, ICES J MAR SCI, V64, P613, DOI 10.1093/icesjms/fsm003; Caley MJ, 1996, ANNU REV ECOL SYST, V27, P477, DOI 10.1146/annurev.ecolsys.27.1.477; Costello C, 2016, P NATL ACAD SCI USA, V113, P5125, DOI 10.1073/pnas.1520420113; Costello C, 2012, SCIENCE, V338, P517, DOI 10.1126/science.1223389; Cowan E. R., 1997, CANADIAN TECHNICAL R, P2133; Devine JA, 2012, CAN J FISH AQUAT SCI, V69, P1105, DOI 10.1139/F2012-047; Dunlop ES, 2015, ECOL APPL, V25, P1860, DOI 10.1890/14-1862.1; FOGARTY MJ, 1991, TRENDS ECOL EVOL, V6, P241, DOI 10.1016/0169-5347(91)90069-A; Gislason D., 2017, THESIS; Gislason D, 2018, CAN J FISH AQUAT SCI, V75, P211, DOI 10.1139/cjfas-2016-0211; Gregory R, 2012, STRUCTURED DECISION; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; HATCH RW, 1987, CAN J FISH AQUAT SCI, V44, P15; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2008, B MAR SCI, V83, P69; Heino M, 2013, ICES J MAR SCI, V70, P707, DOI 10.1093/icesjms/fst077; Hidalgo M, 2014, ECOL APPL, V24, P1101, DOI 10.1890/12-1777.1; Hilborn R, 2001, CAN J FISH AQUAT SCI, V58, P99, DOI 10.1139/cjfas-58-1-99; Hilborn R., 1992, REV FISH BIOL FISHER, V2, P177, DOI DOI 10.1007/BF00042883; Hilborn R, 2014, ICES J MAR SCI, V71, P1040, DOI 10.1093/icesjms/fsu034; Jones M. L, 2016, MANAGEMENT SCI FISHE, P163, DOI [10.4324/9781315751443, DOI 10.4324/9781315751443]; Kenyon R., 1991, REPORT LAKE ERIE YEL; Kloppenberg JT, 1996, J AM HIST, V83, P100, DOI 10.2307/2945476; KOSLOW JA, 1992, CAN J FISH AQUAT SCI, V49, P210, DOI 10.1139/f92-025; Kuparinen A, 2014, EVOL APPL, V7, P1218, DOI 10.1111/eva.12217; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Levin S, 2013, ENVIRON DEV ECON, V18, P111, DOI 10.1017/S1355770X12000460; Lluch-Belda D., 1992, Fisheries Oceanography, V1, P339, DOI 10.1111/j.1365-2419.1992.tb00006.x; Ludsin SA, 2001, ECOL APPL, V11, P731, DOI 10.1890/1051-0761(2001)011[0731:LADILE]2.0.CO;2; MacLennan D., 2001, REPORT LAKE ERIE WAL; Marteinsdottir G, 1998, CAN J FISH AQUAT SCI, V55, P1372, DOI 10.1139/cjfas-55-6-1372; McCann K, 1997, CAN J FISH AQUAT SCI, V54, P1289, DOI 10.1139/cjfas-54-6-1289; Melnychuk MC, 2017, P NATL ACAD SCI USA, V114, P178, DOI 10.1073/pnas.1609915114; Myers RA, 2003, NATURE, V423, P280, DOI 10.1038/nature01610; Myers RA, 1996, FISH B-NOAA, V94, P707; ODNR, 2016, OH LAK ER FISH 2015; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; Pikitch EK, 2004, SCIENCE, V305, P346, DOI 10.1126/science.1098222; Punt AE, 2014, ICES J MAR SCI, V71, P2208, DOI 10.1093/icesjms/fst057; Regier H. A., 2002, ENCY GLOBAL ENV CHAN, P422; Reid K. B., 2016, THESIS; Rochet MJ, 1998, ICES J MAR SCI, V55, P371, DOI 10.1006/jmsc.1997.0324; Rose KA, 2005, CAN J FISH AQUAT SCI, V62, P886, DOI 10.1139/F05-049; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; SISSENWINE MP, 1987, CAN J FISH AQUAT SCI, V44, P913, DOI 10.1139/f87-110; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stephenson RL, 2017, ICES J MAR SCI, V74, P1981, DOI 10.1093/icesjms/fsx057; Szuwalski CS, 2016, ICES J MAR SCI, V73, P1297, DOI 10.1093/icesjms/fsv229; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Wills T., 2014, REPORT 2013 LAKE ERI; Wills T., 2016, REPORT 2015 LAKE ERI; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Worm B, 2016, TRENDS ECOL EVOL, V31, P600, DOI 10.1016/j.tree.2016.05.008; Worm B, 2016, P NATL ACAD SCI USA, V113, P4895, DOI 10.1073/pnas.1604008113; Worm B, 2009, SCIENCE, V325, P578, DOI 10.1126/science.1173146; Zhang F, 2018, ICES J MAR SCI, V75, P531, DOI 10.1093/icesjms/fsx188; Zhang F, 2017, CAN J FISH AQUAT SCI, V74, P1125, DOI 10.1139/cjfas-2016-0155; Zhang F, 2015, CAN J FISH AQUAT SCI, V72, P1494, DOI 10.1139/cjfas-2014-0489 73 0 0 4 4 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. OCT 2018 75 10 1764 1771 10.1139/cjfas-2017-0217 8 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology GU5UL WOS:000445358100019 2019-02-21 J Zhang, H; John, R; Zhu, SD; Liu, H; Xu, QY; Qi, W; Liu, K; Chen, HYH; Ye, Q Zhang, Hui; John, Robert; Zhu, Shidan; Liu, Hui; Xu, Qiuyuan; Qi, Wei; Liu, Kun; Chen, Han Y. H.; Ye, Qing Shifts in functional trait-species abundance relationships over secondary subalpine meadow succession in the Qinghai-Tibetan Plateau OECOLOGIA English Article Functional traits; Linear mixed effects model; Species abundance; Succession; Trait-abundance relationship LIFE-HISTORY STRATEGIES; ECONOMICS SPECTRUM; PLANT-COMMUNITIES; SEED DORMANCY; GERMINATION; DIVERSITY; STRESS; FOREST; PHOTOSYNTHESIS; CHRONOSEQUENCE Although trait-based processes of community assembly during secondary succession invokes multiple factors that ultimately determine the presence or absence of a species, little is known regarding the impacts of functional traits on species abundance in successional plant communities. Here in species-rich subalpine secondary successional meadows of the Qinghai-Tibetan Plateau, we measured photosynthesis rate and leaf proline content that are related to plant growth and abiotic stress resistance, respectively, and seed germination rate that is closely correlated with plant germination strategy to test their influence on species abundance during succession. We used a linear mixed effects model framework to examine the shifts in trait-abundance relationships and the correlations among these three traits in successional communities. We observed significant shifts in trait-abundance relationships during succession, e.g., abundant species in early-successional meadows exhibited relatively high photosynthesis rates and leaf proline content, but showed low seed germination rates, whereas the converse were true in late successional communities. However, the correlations among the three traits were insignificant in most meadow communities. Our results show that functional traits associated with plant growth, stress resistance, and reproduction impose strong influence on species abundance during secondary subalpine meadow succession in the Qinghai-Tibetan Plateau. [Zhang, Hui; Zhu, Shidan; Liu, Hui; Xu, Qiuyuan; Ye, Qing] Chinese Acad Sci, Key Lab Vegetat Restorat & Management Degraded Ec, South China Bot Garden, 723 Xingke Rd, Guangzhou 510650, Guangdong, Peoples R China; [Zhang, Hui; Zhu, Shidan; Liu, Hui; Ye, Qing] Chinese Acad Sci, Guangdong Prov Key Lab Appl Bot, South China Bot Garden, 723 Xingke Rd, Guangzhou 510650, Guangdong, Peoples R China; [John, Robert] Indian Inst Sci Educ & Res, Dept Biol Sci, Mohanpur 741246, W Bengal, India; [Xu, Qiuyuan] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China; [Qi, Wei; Liu, Kun] Lanzhou Univ, State Key Lab Grassland Agroecosyst, Sch Life Sci, Lanzhou 730000, Peoples R China; [Chen, Han Y. H.] Lake Head Univ, Fac Nat Resources Management, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada Ye, Q (reprint author), Chinese Acad Sci, Key Lab Vegetat Restorat & Management Degraded Ec, South China Bot Garden, 723 Xingke Rd, Guangzhou 510650, Guangdong, Peoples R China.; Ye, Q (reprint author), Chinese Acad Sci, Guangdong Prov Key Lab Appl Bot, South China Bot Garden, 723 Xingke Rd, Guangzhou 510650, Guangdong, Peoples R China. qye@scbg.ac.cn Chen, Han/A-1359-2008 Chen, Han/0000-0001-9477-5541; Liu, Hui/0000-0003-4027-499X National Natural Science Foundation of China [31770469, 31300334, 31770448]; Chinese Academy of Sciences (CAS) through its CAS/SAFEA International Partnership Program for Creative Research Teams and Visiting Fellowship for Researchers from Developing countries [2014FFSA0001] This work was funded by the National Natural Science Foundation of China (31770469, 31300334 and 31770448), the Chinese Academy of Sciences (CAS) through its CAS/SAFEA International Partnership Program for Creative Research Teams and Visiting Fellowship for Researchers from Developing countries (2014FFSA0001). Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Baskin C. C, 1998, SEEDS ECOLOGY BIOGEO; BAZZAZ FA, 1980, ANNU REV ECOL SYST, V11, P287, DOI 10.1146/annurev.es.11.110180.001443; BAZZAZ FA, 1975, ECOLOGY, V56, P485, DOI 10.2307/1934981; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Cornwell WK, 2010, J ECOL, V98, P814, DOI 10.1111/j.1365-2745.2010.01662.x; Crain CM, 2008, ECOLOGY, V89, P2889, DOI 10.1890/07-1527.1; Douma JC, 2012, J ECOL, V100, P366, DOI 10.1111/j.1365-2745.2011.01932.x; Finch-Savage WE, 2006, NEW PHYTOL, V171, P501, DOI 10.1111/j.1469-8137.2006.01787.x; Fu JJ, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-3222-0; Granath G, 2010, ECOLOGY, V91, P3047, DOI 10.1890/09-2267.1; Hayes P, 2014, J ECOL, V102, P396, DOI 10.1111/1365-2745.12196; Hu XW, 2013, SEED SCI RES, V23, P133, DOI 10.1017/S0960258513000019; Hubbell Stephen P., 2001, V32, pi; Kirschbaum MUF, 2011, PLANT PHYSIOL, V155, P117, DOI 10.1104/pp.110.166819; Klein JA, 2004, ECOL LETT, V7, P1170, DOI 10.1111/j.1461-0248.2004.00677.x; Krasensky J, 2012, J EXP BOT, V63, P1593, DOI 10.1093/jxb/err460; Larios E, 2014, ECOLOGY, V95, P3213; Lebrija-Trejos E, 2010, ECOLOGY, V91, P386, DOI 10.1890/08-1449.1; Levine JM, 2003, ANNU REV ECOL EVOL S, V34, P549, DOI 10.1146/annurev.ecolsys.34.011802.132400; Li XL, 2013, LAND DEGRAD DEV, V24, P72, DOI 10.1002/ldr.1108; Liu K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069364; Lohbeck M, 2013, ECOLOGY, V94, P1211, DOI 10.1890/12-1850.1; Maestre FT, 2009, J ECOL, V97, P199, DOI 10.1111/j.1365-2745.2008.01476.x; Marin JA, 2009, ITEA-INF TEC ECON AG, V105, P282; Mason NWH, 2012, J ECOL, V100, P678, DOI [10.1111/j.1365-2745.2012.01965.X, 10.1111/j.1365-2745.2012.01965.x]; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Millennium Ecosystem Assessment, 2005, MIL EC ASS EC HUM WE; Moles AT, 2006, OIKOS, V113, P91, DOI 10.1111/j.0030-1299.2006.14194.x; Orrock JL, 2010, AM J BOT, V97, P694, DOI 10.3732/ajb.0900051; Pineda-Garcia F, 2013, PLANT CELL ENVIRON, V36, P405, DOI 10.1111/j.1365-3040.2012.02582.x; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; Prach K, 2011, TRENDS ECOL EVOL, V26, P119, DOI 10.1016/j.tree.2010.12.007; Ruf M, 2003, TREE PHYSIOL, V23, P257, DOI 10.1093/treephys/23.4.257; Sanchez E, 2002, PLANT GROWTH REGUL, V36, P261, DOI 10.1023/A:1016583430792; Shipley B, 2006, SCIENCE, V314, P812, DOI 10.1126/science.1131344; Spasojevic MJ, 2012, J ECOL, V100, P652, DOI 10.1111/j.1365-2745.2011.01945.x; Tielborger K, 2010, J ECOL, V98, P1216, DOI 10.1111/j.1365-2745.2010.01682.x; Umana MN, 2015, ECOL LETT, V18, P1329, DOI 10.1111/ele.12527; Walker LR, 2010, J ECOL, V98, P725, DOI 10.1111/j.1365-2745.2010.01664.x; WEIHER E, 1995, OIKOS, V74, P159, DOI 10.2307/3545686; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Zhang CH, 2014, NEW PHYTOL, V204, P496, DOI 10.1111/nph.12955; Zhang H, 2015, ECOGRAPHY, V38, P1176, DOI 10.1111/ecog.01123; Zhang H, 2013, OIKOS, V122, P952, DOI 10.1111/j.1600-0706.2012.20828.x; Zhang H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049024; Zhu SD, 2013, PLANT CELL ENVIRON, V36, P879, DOI 10.1111/pce.12024 47 0 0 11 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia OCT 2018 188 2 547 557 10.1007/s00442-018-4230-3 11 Ecology Environmental Sciences & Ecology GU6LW WOS:000445426400019 30043232 2019-02-21 J Sinn, JS; Hayes, MW Sinn, Jeffrey S.; Hayes, Matthew W. Is Political Conservatism Adaptive? Reinterpreting Right-Wing Authoritarianism and Social Dominance Orientation as Evolved, Sociofunctional Strategies POLITICAL PSYCHOLOGY English Article coalitions; life history strategy; Right-Wing Authoritarianism; Social Dominance Orientation PROCESS MOTIVATIONAL MODEL; HEXACO PERSONALITY MODEL; INDIVIDUAL-DIFFERENCES; MORAL FOUNDATIONS; REPRODUCTIVE STRATEGIES; DARK TRIAD; IDEOLOGY; HIERARCHY; EVOLUTION; PREJUDICE The Dual Process Model (DPM) explains prejudice and political conservatism as functions of Right-Wing Authoritarianism (RWA) and a Social Dominance Orientation (SDO; Duckitt, 2001). From an evolutionary perspective, such orientations may represent specific adaptations to coalitional competition in the ancestral environment (Sinn & Hayes, 2016). Supporting this view, recent research suggests the two orientations represent divergent strategies, with RWA pursuing an honest-cooperator strategy and SDO a deceptive, cooperation-mimicking strategy (Heylen & Pauwels, 2015). In two studies, we examine additional evidence for an adaptationist interpretation of DPM. Utilizing life history theory, Study 1 finds that RWA reflects the predicted "slow" strategy by endorsing planning and control, investment in family relationships, altruism, and religiosity. In contrast, SDO reflects a "fast" strategy by devaluing planning and control, secure relationships, and altruism. Utilizing rank management theory, Study 2 finds that RWA reflects a prosocial orientation, endorsing coalition building and social networking while rejecting deception and manipulation. In contrast, SDO reflects an exploitive orientation, rejecting coalition building and networking but endorsing ruthless self-advancement and deceptive tactics. These findings support an adaptationist revision of RWA to recognize its prosocial, honest-cooperator dimension and of SDO to recognize proself, "dark" tactics seeking power within groups. [Sinn, Jeffrey S.; Hayes, Matthew W.] Winthrop Univ, Rock Hill, SC 29733 USA Sinn, JS (reprint author), Winthrop Univ, Dept Psychol, Rock Hill, SC 29733 USA. sinnj@winthrop.edu Sinn, Jeffrey/0000-0002-1890-3529 Winthrop University [FR15004] The authors thank Winthrop University for financial support (Research Council Grant FR15004). Correspondence concerning this article should be addressed to Jeff Sinn, Department of Psychology, Winthrop University, Rock Hill, SC, 29733. E-mail: sinnj@winthrop.edu Adomo TW, 1950, AUTHORITARIAN PERSON, Vxxxiii; Andrews PW, 2002, BEHAV BRAIN SCI, V25, P489; Bauer M, 2014, PSYCHOL SCI, V25, P47, DOI 10.1177/0956797613493444; Boehm C., 1999, HIERARCHY FOREST EVO; Boehm C, 2010, SOCIAL PSYCHOL POWER, P46; Buss DM, 2008, GROUP DYN-THEOR RES, V12, P53, DOI 10.1037/1089-2699.12.1.53; BUSS DM, 1995, PSYCHOL INQ, V6, P1, DOI 10.1207/s15327965pli0601_1; Cottrell CA, 2005, J PERS SOC PSYCHOL, V88, P770, DOI 10.1037/0022-3514.88.5.770; Cross JR, 2011, J YOUTH ADOLESCENCE, V40, P694, DOI 10.1007/s10964-010-9585-7; Cummins D., 2005, HDB EVOLUTIONARY PSY, P676; Cummins DD, 2000, SYNTHESE, V122, P3, DOI 10.1023/A:1005263825428; Dahl J, 2015, SOC PSYCHOL-GERMANY, V46, P242, DOI 10.1027/1864-9335/a000248; Duckitt J, 2001, ADV EXP SOC PSYCHOL, V33, P41, DOI 10.1016/S0065-2601(01)80004-6; Duckitt J, 2013, POLIT PSYCHOL, V34, P841, DOI 10.1111/pops.12022; Duckitt J, 2010, J PERS, V78, P1861, DOI 10.1111/j.1467-6494.2010.00672.x; Duckitt J, 2010, POLIT PSYCHOL, V31, P685, DOI 10.1111/j.1467-9221.2010.00781.x; Duriez B, 2007, EUR J PERSONALITY, V21, P507, DOI 10.1002/per.623; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Feldman S, 2013, OXFORD HDB POLITICAL, P591; Figueredo A. J, 2007, ARIZONA LIFE HIST BA; Figueredo A. J., 2014, EVOLUTIONARY BEHAV S, V8, P148, DOI DOI 10.1037/H0099837; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fritsche I, 2013, J EXP SOC PSYCHOL, V49, P19, DOI 10.1016/j.jesp.2012.07.014; Garandeau CF, 2014, J YOUTH ADOLESCENCE, V43, P1123, DOI 10.1007/s10964-013-0040-4; Gavrilets S, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4526; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Goodboy AK, 2016, COMMUN RES REP, V33, P159, DOI 10.1080/08824096.2016.1154838; Graham J, 2009, J PERS SOC PSYCHOL, V96, P1029, DOI 10.1037/a0015141; Grina J, 2016, PERS INDIV DIFFER, V94, P113, DOI 10.1016/j.paid.2016.01.015; Halevy Nir, 2014, ADV MOTIV SCI, V1, P1, DOI [DOI 10.1016/BS.ADMS.2014.08.001, 10.1016/bs.adms.2014.08.001]; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Heylen B., 2015, INT J CRIMINOLOGY SO, V4, P28; Hibbing JR, 2014, BEHAV BRAIN SCI, V37, P297, DOI 10.1017/S0140525X13001192; Ho AK, 2015, J PERS SOC PSYCHOL, V109, P1003, DOI 10.1037/pspi0000033; Hogg MA, 2014, CURR DIR PSYCHOL SCI, V23, P338, DOI 10.1177/0963721414540168; Jones DN, 2014, PERSPECT PSYCHOL SCI, V9, P445, DOI 10.1177/1745691614535936; Jones DN, 2014, J INTERPERS VIOLENCE, V29, P1050, DOI 10.1177/0886260513506053; Jones DN, 2013, EUR J PERSONALITY, V27, P521, DOI 10.1002/per.1893; Jost J. T., 2015, HDB VALUE PERSPECTIV, P351; Jost JT, 2008, ADV GROUP PROCESS, V25, P181, DOI 10.1016/S0882-6145(08)25012-5; Jost JT, 2003, PSYCHOL BULL, V129, P339, DOI 10.1037/0033-2909.129.3.339; Judis J. B., 2016, POPULIST EXPLOSION G; Kenrick D. T., 2013, OXFORD HDB CLOSE REL, P13; Krosch AR, 2014, P NATL ACAD SCI USA, V111, P9079, DOI 10.1073/pnas.1404448111; Kteily N, 2014, PERS SOC PSYCHOL B, V40, P1231, DOI 10.1177/0146167214539708; Kugler M, 2014, SOC JUSTICE RES, V27, P413, DOI 10.1007/s11211-014-0223-5; Kurzban R, 2010, P ROY SOC B-BIOL SCI, V277, P3501, DOI 10.1098/rspb.2010.0608; Laustsen L, 2015, EVOL HUM BEHAV, V36, P286, DOI 10.1016/j.evolhumbehav.2015.01.001; Lee K, 2013, EUR J PERSONALITY, V27, P169, DOI 10.1002/per.1860; Lee K, 2010, J RES PERS, V44, P115, DOI 10.1016/j.jrp.2009.08.007; Leone L, 2012, PERS INDIV DIFFER, V52, P416, DOI 10.1016/j.paid.2011.10.049; Lund OCH, 2007, J RES PERS, V41, P25, DOI 10.1016/j.jrp.2006.01.002; MAC ARTHUR ROBERT H., 1967; Makowsky MD, 2016, J ECON BEHAV ORGAN, V126, P75, DOI 10.1016/j.jebo.2015.09.002; McCullough ME, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2104; Mirisola A, 2014, POLIT PSYCHOL, V35, P795, DOI 10.1111/pops.12048; Onraet E, 2017, SOC PSYCHOL PERS SCI, V8, P11, DOI 10.1177/1948550616662125; Oppenheimer DM, 2009, J EXP SOC PSYCHOL, V45, P867, DOI 10.1016/j.jesp.2009.03.009; Parkins IS, 2006, J APPL SOC PSYCHOL, V36, P2554, DOI 10.1111/j.0021-9029.2006.00117.x; Perry R, 2013, ANAL SOC ISS PUB POL, V13, P262, DOI 10.1111/asap.12019; Petersen MB, 2013, PSYCHOL SCI, V24, P1098, DOI 10.1177/0956797612466415; Peterson BE, 2010, J PERS, V78, P1801, DOI 10.1111/j.1467-6494.2010.00670.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PRATTO F, 1994, J PERS SOC PSYCHOL, V67, P741, DOI 10.1037/0022-3514.67.4.741; Pratto F, 2000, PSYCHOL SCI, V11, P57, DOI 10.1111/1467-9280.00215; Prediger S, 2014, J PUBLIC ECON, V119, P1, DOI 10.1016/j.jpubeco.2014.07.007; Price M. E., 2015, BIOL FDN ORG BEHAV, P169; Price ME, 2017, EVOL HUM BEHAV, V38, P626, DOI 10.1016/j.evolhumbehav.2017.04.001; Roccato M, 2014, EUR J PERSONALITY, V28, P14, DOI 10.1002/per.1922; Roccato M, 2013, EUR J SOC PSYCHOL, V43, P585, DOI 10.1002/ejsp.1968; Rodeheffer C. D., 2012, PSYCHOL SCI, DOI 10/18/0956797612450892; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Safra L, 2017, EVOL HUM BEHAV, V38, P645, DOI 10.1016/j.evolhumbehav.2017.05.001; Shaw R. P., 1989, GENETIC SEEDS WARFAR; Shook NJ, 2015, EVOL HUM BEHAV, V36, P498, DOI 10.1016/j.evolhumbehav.2015.06.003; Sibley CG, 2007, PERS SOC PSYCHOL B, V33, P160, DOI 10.1177/0146167206294745; Sibley CG, 2013, POLIT PSYCHOL, V34, P553, DOI 10.1111/pops.12009; Sibley CG, 2010, EUR J PERSONALITY, V24, P515, DOI 10.1002/per.750; Sinn JS, 2017, POLIT PSYCHOL, V38, P1043, DOI 10.1111/pops.12361; Stollberg J, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.00649; Thomsen L, 2008, J EXP SOC PSYCHOL, V44, P1455, DOI 10.1016/j.jesp.2008.06.011; Tooby J, 2010, HUMAN MORALITY SOCIA, P91; Trapnell PD, 2012, J PERS ASSESS, V94, P39, DOI 10.1080/00223891.2011.627968; van der Toorn J, 2015, POLIT PSYCHOL, V36, P93, DOI 10.1111/pops.12183; Van Lange PAM, 2012, EUR J PERSONALITY, V26, P461, DOI 10.1002/per.845; Van Vugt M, 2008, AM PSYCHOL, V63, P182, DOI 10.1037/0003-066X.63.3.182; Volk AA, 2012, AGGRESSIVE BEHAV, V38, P222, DOI 10.1002/ab.21418; Zuroff DC, 2010, CAN PSYCHOL, V51, P58, DOI 10.1037/a0018472 90 0 0 8 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0162-895X 1467-9221 POLIT PSYCHOL Polit. Psychol. OCT 2018 39 5 1123 1139 10.1111/pops.12475 17 Political Science; Psychology, Social Government & Law; Psychology GU3RY WOS:000445198500008 2019-02-21 J Lind, CM; Moore, IT; Vernasco, B; Farrell, TM Lind, Craig M.; Moore, Ignacio T.; Vernasco, Ben J.; Farrell, Terence M. Seasonal testosterone and corticosterone patterns in relation to body condition and reproduction in a subtropical pitviper, Sistrurus miliarius GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Steroid hormone; Glucocorticoid; Snake; Reptile; Breeding season; Mating behavior THAMNOPHIS-SIRTALIS-PARIETALIS; SIDED GARTER SNAKES; DIAMOND-BACKED RATTLESNAKE; CROTALUS-ATROX SERPENTES; STEROID-HORMONE PROFILES; PLASMA SEX STEROIDS; MATING SEASON; EXOGENOUS CORTICOSTERONE; TIMBER RATTLESNAKES; STRESS RESPONSES Seasonal constraints on the timing and intensity of reproductive events shape observed variation in life history strategies across latitudes. Selection acts on the endocrine mechanisms that underlie reproductive investment. It is therefore important to examine the seasonal relationship between hormones and reproduction in geographically and phylogenetically diverse taxa. Snakes have proven to be a valuable model in investigations of seasonal hormone production and behavior in field-active vertebrates, but most research has focused on temperate populations from highly seasonal environments. To reduce this bias, we provide a description of the seasonal relationships among testosterone, corticosterone, body condition, and reproductive behavior in a subtropical population of Pygmy Rattlesnakes, Sistrurus miliarius. In central Florida, Sistrurus miliarius exhibits a prolonged breeding season (September-January) compared to most temperate zone snakes. Despite the extended breeding season, the pattern of testosterone in the population was highly seasonal and very similar to temperate pitvipers with a shorter mating season. Testosterone declined steadily through the mating season, but males sampled while engaging in mating behaviors had higher testosterone compared to solitary males throughout the mating season. Testosterone was negatively related to corticosterone throughout the breeding season and during times of year when the gonads were presumed to be quiescent and no mating behavior was observed. Testosterone was positively related to individual body condition both within and outside of the breeding season. A review of the literature reveals no consistent pattern regarding the relationship between corticosterone and testosterone in snakes, but suggests that the condition-dependence of steroid production may be consistent across snake taxa. [Lind, Craig M.; Farrell, Terence M.] Stetson Univ, Dept Biol, Deland, FL 32723 USA; [Lind, Craig M.] Stockton Univ, Dept Nat Sci & Math, Galloway, NJ 08201 USA; [Moore, Ignacio T.; Vernasco, Ben J.] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA Lind, CM (reprint author), Stockton Univ, 101 Vera King Farris Dr, Galloway, NJ 08205 USA. Craig.Lind@stockton.edu National Science Foundation [IOS-1145625]; Hyatt and Cici Brown Fund at Stetson University We thank the many undergraduates, especially Ethan Royal and Ciera McCoy, at Stetson University who assisted with field sampling. We thank Candice Stevenson for access to the Lake Woodruff National Wildlife Refuge. This work was supported by National Science Foundation grant IOS-1145625 to ITM and by the Hyatt and Cici Brown Fund at Stetson University. All animal care practices and experimental procedures were approved and overseen by the IACUC committee at Stetson University (Protocol # SU-1001-2016). Aldridge RD, 2002, HERPETOL MONOGR, V16, P1, DOI 10.1655/0733-1347(2002)016[0001:EOTMSI]2.0.CO;2; Aldridge Robert D., 2009, Contemporary Herpetology, V2009, P1; ARNOLD SJ, 1994, AM NAT, V143, P317, DOI 10.1086/285606; Aubret F, 2002, HORM BEHAV, V42, P135, DOI 10.1006/hbeh.2002.1793; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Cease AJ, 2007, GEN COMP ENDOCR, V150, P124, DOI 10.1016/j.ygcen.2006.07.022; Claunch NM, 2017, GEN COMP ENDOCR, V248, P87, DOI 10.1016/j.ygcen.2017.02.008; CONANT R, 1998, FIELD GUIDE REPTILES; CREWS D, 1991, P NATL ACAD SCI USA, V88, P3545, DOI 10.1073/pnas.88.9.3545; Dayger CA, 2013, HORM BEHAV, V64, P748, DOI 10.1016/j.yhbeh.2013.09.003; DENARDO DF, 1993, HORM BEHAV, V27, P184, DOI 10.1006/hbeh.1993.1014; Eikenaar C, 2012, AM NAT, V180, P642, DOI 10.1086/667891; Emerson Sharon B., 2001, P36; Garamszegi LZ, 2008, AM NAT, V172, P533, DOI 10.1086/590955; Goymann W, 2004, AM NAT, V164, P327, DOI 10.1086/422856; Graham SP, 2008, GEN COMP ENDOCR, V159, P226, DOI 10.1016/j.ygcen.2008.09.002; Hau M, 2008, GEN COMP ENDOCR, V157, P241, DOI 10.1016/j.ygcen.2008.05.008; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Heiken KH, 2016, GEN COMP ENDOCR, V237, P27, DOI 10.1016/j.ygcen.2016.07.023; Holding ML, 2014, PHYSIOL BIOCHEM ZOOL, V87, P363, DOI 10.1086/675938; Hoss SK, 2011, SOUTHEAST NAT, V10, P95, DOI 10.1656/058.010.0108; Husak JF, 2008, TRENDS ECOL EVOL, V23, P532, DOI 10.1016/j.tree.2008.06.007; JEMISON SC, 1995, J HERPETOL, V29, P129, DOI 10.2307/1565098; Kindermann C, 2013, COMP BIOCHEM PHYS A, V165, P223, DOI 10.1016/j.cbpa.2013.03.011; King RB, 2013, J HERPETOL, V47, P179, DOI 10.1670/12-001; Knapp R, 1997, GEN COMP ENDOCR, V107, P273, DOI 10.1006/gcen.1997.6923; Lancaster LT, 2008, J EVOLUTION BIOL, V21, P556, DOI 10.1111/j.1420-9101.2007.01478.x; Lind C, 2018, PHYSIOL BIOCHEM ZOOL, V91, P765, DOI 10.1086/695747; Lind CM, 2015, PHYSIOL BIOCHEM ZOOL, V88, P624, DOI 10.1086/683058; Lind CM, 2014, GEN COMP ENDOCR, V206, P72, DOI 10.1016/j.ygcen.2014.06.026; Lind CM, 2010, GEN COMP ENDOCR, V166, P590, DOI 10.1016/j.ygcen.2010.01.026; Lorch JM, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0457; Lutterschmidt DI, 2004, HORM BEHAV, V46, P692, DOI 10.1016/j.yhbeh.2004.06.013; Lutterschmidt WI, 2009, J COMP PHYSIOL B, V179, P747, DOI 10.1007/s00360-009-0356-2; Maag D.W., 2017, THESIS; May PG, 1996, COPEIA, P389, DOI 10.2307/1446855; Mccoy CM, 2017, CONSERV PHYSIOL, V5, DOI 10.1093/conphys/cow077; MOORE FL, 1985, GEN COMP ENDOCR, V60, P252, DOI 10.1016/0016-6480(85)90321-1; Moore IT, 2000, PHYSIOL BIOCHEM ZOOL, V73, P307, DOI 10.1086/316748; Moore IT, 2000, ANIM BEHAV, V59, P529, DOI 10.1006/anbe.1999.1344; Moore IT, 2003, HORM BEHAV, V43, P39, DOI 10.1016/S0018-506X(02)00038-7; Moore IT, 2001, PHYSIOL BEHAV, V72, P669, DOI 10.1016/S0031-9384(01)00413-9; MOORE MC, 1992, BIOL REPTILIA, V18, P70; Narayan EJ, 2013, J EXP ZOOL PART A, V319, P471, DOI 10.1002/jez.1810; Narayan EJ, 2013, COMP BIOCHEM PHYS A, V164, P21, DOI 10.1016/j.cbpa.2012.10.001; Palacios MG, 2012, GEN COMP ENDOCR, V175, P443, DOI 10.1016/j.ygcen.2011.11.042; Perez-Rodriguez L, 2006, ANIM BEHAV, V72, P97, DOI 10.1016/j.anbehav.2005.09.021; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Rowe M.P., 2002, BIOL VIPERS; Ruiz M, 2010, HORM BEHAV, V57, P134, DOI 10.1016/j.yhbeh.2009.09.019; SAINTGIRONS H, 1993, GEN COMP ENDOCR, V91, P287; SAINTGIRONS H, 1982, HERPETOLOGICA, V38, P5; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schuett GW, 2006, GEN COMP ENDOCR, V149, P72, DOI 10.1016/j.ygcen.2006.05.005; Schuett Gordon W., 2004, Herpetological Review, V35, P229; Schuett GW, 2005, ANIM BEHAV, V70, P257, DOI 10.1016/j.anbehav.2004.09.028; Schuett GW, 1997, GEN COMP ENDOCR, V105, P417, DOI 10.1006/gcen.1996.6851; Shine R, 2003, P ROY SOC B-BIOL SCI, V270, P995, DOI 10.1098/rspb.2002.2307; Sivan J, 2012, GEN COMP ENDOCR, V179, P241, DOI 10.1016/j.ygcen.2012.08.021; Smith CF, 2010, J ZOOL, V280, P362, DOI 10.1111/j.1469-7998.2009.00669.x; Smith CF, 2015, BIOL J LINN SOC, V115, P185, DOI 10.1111/bij.12490; Sperry JH, 2009, J ZOOL, V278, P100, DOI 10.1111/j.1469-7998.2009.00549.x; Taylor E.N., 2016, RATTLESNAKES ARIZONA, P123; Taylor EN, 2011, HORMONES AND REPRODUCTION OF VERTEBRATES, VOL 3: REPTILES, P355; Taylor EN, 2004, GEN COMP ENDOCR, V136, P328, DOI 10.1016/j.ygcen.2004.01.008; Waye HL, 2008, GEN COMP ENDOCR, V155, P607, DOI 10.1016/j.ygcen.2007.08.005; WEIL MR, 1981, GEN COMP ENDOCR, V44, P44, DOI 10.1016/0016-6480(81)90354-3; Wikelski Martin, 2001, Trends in Ecology and Evolution, V16, P479, DOI 10.1016/S0169-5347(01)02279-0; WILSON EK, 1979, POULTRY SCI, V58, P178, DOI 10.3382/ps.0580178; Wingfield J.C., 1987, PROCESSING ENV INFOR, P121; Wingfield JC, 2001, BRAIN BEHAV EVOLUT, V57, P239, DOI 10.1159/000047243; WYNDHAM E, 1986, AM NAT, V128, P155, DOI 10.1086/284551; Yoccoz NG, 2002, P ROY SOC B-BIOL SCI, V269, P1523, DOI 10.1098/rspb.2002.2047; Zaidan F, 2003, COPEIA, P231, DOI 10.1643/0045-8511(2003)003[0231:TCAREI]2.0.CO;2 75 1 1 7 7 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 1095-6840 GEN COMP ENDOCR Gen. Comp. Endocrinol. OCT 1 2018 267 51 58 10.1016/j.ygcen.2018.05.027 8 Endocrinology & Metabolism Endocrinology & Metabolism GT2YO WOS:000444366400007 29807034 2019-02-21 J Audzijonyte, A; Richards, SA Audzijonyte, Asta; Richards, Shane A. The Energetic Cost of Reproduction and Its Effect on Optimal Life-History Strategies AMERICAN NATURALIST English Article condition-dependent mortality; fisheries-induced evolution; indeterminate growth; maturation size; physiologically structured models; threshold reproduction cost COD GADUS-MORHUA; EXPLOITED FISH STOCKS; ATLANTIC COD; INDETERMINATE GROWTH; BALTIC COD; TROPHIC INTERACTIONS; RESOURCE-ALLOCATION; SIZE; EVOLUTIONARY; MODEL Trade-offs in energy allocation between growth, reproduction, and survival are at the core of life-history theory. While age-specific mortality is considered to be the main determinant of the optimal allocation, some life-history strategies, such as delayed or skipped reproduction, may be better understood when also accounting for reproduction costs. Here, we present a two-pool indeterminate grower model that includes survival and energetic costs of reproduction. The energetic cost sets a minimum reserve required for reproduction, while the survival cost reflects increased mortality from low postreproductive body condition. Three life-history parameters determining age-dependent energy allocation to soma, reserve, and reproduction are optimized, and we show that the optimal strategies can reproduce realistic emergent growth trajectories, maturation ages, and reproductive outputs for fish. The model predicts maturation phase shifts along the gradient of condition-related mortality and shows that increased harvesting will select for earlier maturation and higher energy allocation to reproduction. However, since the energetic reproduction cost sets limits on how early an individual can mature, an increase in fitness at high harvesting can only be achieved by diverting most reserves into reproduction. The model presented here can improve predictions of life-history responses to environmental change and human impacts because key life-history traits such as maturation age and size, maximum body size, and size-specific fecundity emerge dynamically. [Audzijonyte, Asta] Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas 7001, Australia; [Richards, Shane A.] Univ Tasmania, Sch Nat Sci, Hobart, Tas 7001, Australia; [Richards, Shane A.] CSIRO, Oceans & Atmosphere, Hobart, Tas 7001, Australia Audzijonyte, A (reprint author), Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas 7001, Australia. asta.audzijonyte@utas.edu.au Richards, Shane/0000-0002-9638-5827 Kone Foundation; Australian Research Council [DP170104240] The authors would like to thank Andre de Roos, Ken Haste Andersen, Anssi Vainikka, editors Daniel I. Bolnick and Jurgen Groeneveld, and two anonymous reviewers for constructive comments on early versions of the manuscript. This study was supported by the Kone Foundation and Australian Research Council Discovery Grant DP170104240. Alexander R M, 2003, PRINCIPLES ANIMAL LO; Andersen KH, 2007, ECOL MODEL, V204, P246, DOI 10.1016/j.ecolmodel.2007.01.002; Audzijonyte A, 2016, CONSERV BIOL, V30, P734, DOI 10.1111/cobi.12651; Audzijonyte A, 2013, EVOL APPL, V6, P585, DOI 10.1111/eva.12044; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bertschy KA, 1999, ECOLOGY, V80, P2299, DOI 10.2307/176911; Boukal DS, 2014, J THEOR BIOL, V359, P199, DOI 10.1016/j.jtbi.2014.05.022; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Charnov EL, 2007, AM NAT, V170, pE129, DOI 10.1086/522840; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; De Roos AM, 2001, OIKOS, V94, P51, DOI 10.1034/j.1600-0706.2001.11313.x; de Roos AM, 2006, P ROY SOC B-BIOL SCI, V273, P1873, DOI 10.1098/rspb.2006.3518; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Dutil JD, 2000, CAN J FISH AQUAT SCI, V57, P826, DOI 10.1139/cjfas-57-4-826; Ejsmond MJ, 2015, AM NAT, V186, pE111, DOI 10.1086/683119; Fey DP, 2006, ICES J MAR SCI, V63, P1045, DOI 10.1016/j.icesjms.2006.03.019; Folkvord A, 2014, CAN J FISH AQUAT SCI, V71, P1106, DOI 10.1139/cjfas-2013-0600; Giacomini HC, 2013, ECOL MODEL, V251, P32, DOI 10.1016/j.ecolmodel.2012.12.003; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Hixon MA, 2014, ICES J MAR SCI, V71, P2171, DOI 10.1093/icesjms/fst200; HUTCHINGS JA, 1994, OIKOS, V70, P12, DOI 10.2307/3545693; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; ICES, 2013, NON TRADITIONAL REF; Isomaa M, 2014, BOREAL ENVIRON RES, V19, P39; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Kjesbu OS, 1996, CAN J FISH AQUAT SCI, V53, P610, DOI 10.1139/f95-215; Kooijman S. A. L. M, 2000, DYNAMIC ENERGY MASS; Kooijman SALM, 2014, J SEA RES, V94, P19, DOI 10.1016/j.seares.2014.01.015; KOSTER FW, 2003, ICES MAR SCI S, V219, P294; Kozlowski J, 2004, INTEGR COMP BIOL, V44, P480, DOI 10.1093/icb/44.6.480; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Kuparinen A, 2012, EVOL APPL, V5, P245, DOI 10.1111/j.1752-4571.2011.00215.x; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Morbey YE, 2013, ECOSPHERE, V4, DOI 10.1890/ES13-00259.1; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Nisbet RM, 2012, J EXP BIOL, V215, P892, DOI 10.1242/jeb.059675; Persson L, 1998, THEOR POPUL BIOL, V54, P270, DOI 10.1006/tpbi.1998.1380; PIHL L, 1982, NETH J SEA RES, V15, P419, DOI 10.1016/0077-7579(82)90068-0; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Reznick D, 2002, LIFE HIST EVOLUTION; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Rowe S, 2008, MAR ECOL PROG SER, V354, P257, DOI 10.3354/meps07175; Secor DH, 2007, J SEA RES, V57, P91, DOI 10.1016/j.seares.2006.09.004; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Skjaeraasen JE, 2010, CAN J ZOOL, V88, P595, DOI 10.1139/Z10-033; Skjaeraasen JE, 2012, P NATL ACAD SCI USA, V109, P8995, DOI 10.1073/pnas.1200223109; Skjaeraasen JE, 2009, CAN J FISH AQUAT SCI, V66, P1582, DOI 10.1139/F09-102; Svedang H, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5152; Trudel M, 2000, CAN J FISH AQUAT SCI, V57, P414, DOI 10.1139/cjfas-57-2-414; Uusi-Heikkila S, 2015, EVOL APPL, V8, P597, DOI 10.1111/eva.12268; Vainikka A, 2009, ICES J MAR SCI, V66, P248, DOI 10.1093/icesjms/fsn199; Vallin L, 2000, FISH RES, V49, P21, DOI 10.1016/S0165-7836(00)00194-6; van der Veer HW, 2009, J SEA RES, V62, P83, DOI 10.1016/j.seares.2009.02.001; Venturelli PA, 2010, ECOLOGY, V91, P2003, DOI 10.1890/09-1218.1 59 0 0 22 22 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. OCT 2018 192 4 E150 E162 10.1086/698655 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GT1UW WOS:000444262900002 30205032 2019-02-21 J Abu Awad, D; Coron, C Abu Awad, Diala; Coron, Camille Effects of demographic stochasticity and life-history strategies on times and probabilities to fixation HEREDITY English Article POPULATION-SIZE; INBREEDING DEPRESSION; GENETIC DIVERSITY; MUTANT-GENES; SELECTION; DYNAMICS; ENVIRONMENT; DIFFUSION; EVOLUTION; MUTATION How life-history strategies influence the evolution of populations is not well understood. Most existing models stem from the Wright-Fisher model which considers discrete generations and a fixed population size, thus not taking into account any potential consequences of overlapping generations and demographic stochasticity on allelic frequencies. We introduce an individual-based model in which both population size and genotypic frequencies at a single bi-allelic locus are emergent properties of the model. Demographic parameters can be defined so as to represent a large range of r and K life-history strategies in a stable environment, and appropriate fixed effective population sizes are calculated so as to compare our model to the Wright-Fisher diffusion. Our results indicate that models with fixed population size that stem from the Wright-Fisher diffusion cannot fully capture the consequences of demographic stochasticity on allele fixation in long-lived species with low reproductive rates. This discrepancy is accentuated in the presence of demo-genetic feedback. Furthermore, we predict that populations with K life-histories should maintain lower genetic diversity than those with r life-histories. [Abu Awad, Diala] INRA, UMR AGAP 1334, 2 Pl Pierre Viala, F-34060 Montpellier 1, France; [Abu Awad, Diala] Tech Univ Munich, Sect Populat Genet, Liesel Beckmann Str 2, D-85354 Freising Weihenstephan, Germany; [Coron, Camille] Univ Paris Saclay, Univ Paris Sud, Lab Math Orsay, CNRS, F-91405 Orsay, France Abu Awad, D (reprint author), INRA, UMR AGAP 1334, 2 Pl Pierre Viala, F-34060 Montpellier 1, France.; Abu Awad, D (reprint author), Tech Univ Munich, Sect Populat Genet, Liesel Beckmann Str 2, D-85354 Freising Weihenstephan, Germany. diala.abu-awad@tum.de Abu Awad, Diala/0000-0002-2680-1223 Chair "Modelisation Mathematique et Biodiversite" of VEOLIA-Ecole Polytechnique-MNHN-F.X.; Mission for Inter-disciplinarity at CNRS; Investissement d'avenir project, LabEx LMH [ANR-11-LABX-0056-LMH]; Agence National de la Recherche [ANR SEAD - ANR-13-ADAP-0011] We thank Sylvain Billiard, Emmanuelle Porcher, Sally Otto, and Michael Whitlock for the helpful discussions. Numerical results presented in this paper were carried out using France Grille, CNRS and on the Biomed virtual organization of the European Grid Infrastructure (http://www.egi.eu) via DIRAC (http://diracgrid.org). This work was partially funded by the Chair "Modelisation Mathematique et Biodiversite" of VEOLIA-Ecole Polytechnique-MNHN-F.X., and was also supported by the Mission for Inter-disciplinarity at CNRS and by a public grant as part of the Investissement d'avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH. Diala Abu Awad was funded by the Agence National de la Recherche (ANR SEAD - ANR-13-ADAP-0011). Bataillon T, 2000, GENET RES, V75, P75, DOI 10.1017/S0016672399004048; CABALLERO A, 1992, GENETICS, V131, P493; CAMPILLO F, 1989, STOCH PROC APPL, V33, P245, DOI 10.1016/0304-4149(89)90041-0; Campillo F, 2017, COMMUN STAT-SIMUL C, P1; Champagnat N, 2006, THEOR POPUL BIOL, V69, P297, DOI 10.1016/j.tpb.2005.10.004; Champagnat N, 2007, ANN APPL PROBAB, V17, P102, DOI 10.1214/105051606000000628; Chen J, 2017, MOL BIOL EVOL, V34, P1417, DOI 10.1093/molbev/msx088; Coron C, 2015, ESAIM P SURV, V51, P122; Coron C, 2017, ARXIV170408199V1MATH; Coron C, 2016, J MATH BIOL, V72, P171, DOI 10.1007/s00285-015-0878-z; Day T, 2001, ELS, DOI [10.1038/npg.els.0001745, DOI 10.1038/NPG.ELS.0001745]; De Angelis D, 2014, F1000PRIME REPORTS, P6; EWENS WJ, 1967, HEREDITY, V22, P438, DOI 10.1038/hdy.1967.53; Fisher RA, 1930, GENETICAL THEORY NAT; Glemin S, 2013, EVOLUTION, V67, P225, DOI 10.1111/j.1558-5646.2012.01778.x; Greenbaum G, 2015, J THEOR BIOL, V380, P98, DOI 10.1016/j.jtbi.2015.05.019; Hedgecock D, 2011, B MAR SCI, V87, P971, DOI 10.5343/bms.2010.1051; Iizuka M, 2002, GENETICS, V161, P381; Iizuka M, 2010, J MATH BIOL, V61, P359, DOI 10.1007/s00285-009-0304-5; KIMURA M, 1969, GENETICS, V61, P763; KIMURA M, 1962, GENETICS, V47, P713; Kimura M., 1970, MATH TOPICS POPULATI, P178; Lande R., 2003, OXFORD SERIES ECOLOG; Lin YT, 2012, J STAT PHYS, V148, P646, DOI 10.1007/s10955-012-0479-9; MORAN PAP, 1953, J ROY STAT SOC B, V15, P241; Mueller LD, 2009, FITNESS DEMOGRAPHY P; Orr HA, 2008, AM NAT, V172, P160, DOI 10.1086/589460; Orr HA, 2009, NAT REV GENET, V10, P531, DOI 10.1038/nrg2603; Otto SP, 1997, GENETICS, V146, P723; Parsons TL, 2010, GENETICS, V185, P1345, DOI 10.1534/genetics.110.115030; Romiguier J, 2014, NATURE, V515, P261, DOI 10.1038/nature13685; Roze D, 2004, GENETICS, V167, P1001, DOI 10.1534/genetics.103.025148; Schweinsberg J, 2003, STOCH PROC APPL, V106, P107, DOI 10.1016/S0304-4149(03)00028-0; Sjodin P, 2005, GENETICS, V169, P1061, DOI 10.1534/genetics.104.026799; Uecker H, 2011, GENETICS, V188, P915, DOI 10.1534/genetics.110.124297; Wahl LM, 2011, GENETICS, V188, P783, DOI 10.1534/genetics.111.131748; Wang JL, 2005, PHILOS T R SOC B, V360, P1395, DOI 10.1098/rstb.2005.1682; Waxman D, 2011, GENETICS, V188, P907, DOI 10.1534/genetics.111.129288; Wright S, 1931, GENETICS, V16, P0097; Wright S., 1938, SCIENCE, V87, P430, DOI DOI 10.1126/SCIENCE.87.2263; Wu B, 2013, ECOL EVOL, V3, P1276, DOI 10.1002/ece3.500 41 0 0 10 10 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0018-067X 1365-2540 HEREDITY Heredity OCT 2018 121 4 374 386 10.1038/s41437-018-0118-6 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GT1QP WOS:000444248200007 30050060 2019-02-21 J Hartman, S; Sung, S; Simpson, JA; Schlomer, GL; Belsky, J Hartman, Sarah; Sung, Sooyeon; Simpson, Jeffry A.; Schlomer, Gabriel L.; Belsky, Jay Decomposing environmental unpredictability in forecasting adolescent and young adult development: A two-sample study DEVELOPMENT AND PSYCHOPATHOLOGY English Article LIFE-HISTORY THEORY; SEXUAL RISK-TAKING; REPRODUCTIVE STRATEGY; FATHER ABSENCE; CHILDHOOD EXPERIENCE; MENARCHE; BEHAVIOR; AGE; HEALTH; EVOLUTION To illuminate which features of an unpredictable environment early in life best forecast adolescent and adult functioning, data from two longitudinal studies were examined. After decomposing a composite unpredictability construct found to predict later development, results of both studies revealed that paternal transitions predicted outcomes more consistently and strongly than did residential or occupational changes across the first 5 years of a child's life. These results derive from analyses of the NICHD Study of Early Child Care and Youth Development, which included diverse families from 10 different sites in the United States, and from the Minnesota Longitudinal Study of Risk and Adaptation, whose participants came from one site, were disproportionately economically disadvantaged, and were enrolled 15 years earlier than the NICHD Study sample. The finding that results from both studies are consistent with evolutionary, life history thinking regarding the importance of males in children's lives makes this general, cross-study replication noteworthy. [Hartman, Sarah; Belsky, Jay] Univ Calif Davis, Davis, CA 95616 USA; [Sung, Sooyeon; Simpson, Jeffry A.] Univ Minnesota, Minneapolis, MN 55455 USA; [Schlomer, Gabriel L.] SUNY Albany, Albany, NY 12222 USA Hartman, S (reprint author), Univ Calif Davis, Dept Human Ecol, One Shields Ave,Hart 3321, Davis, CA 95616 USA. slhartman@ucdavis.edu Simpson, Jeff/0000-0003-1899-2493 Achenbach T.M., 2001, ASEBA SCH AGE FORMS; Achenbach T. M, 1997, MANUAL YOUNG ADULT S; ADLER NE, 1993, JAMA-J AM MED ASSOC, V269, P3140, DOI 10.1001/jama.269.24.3140; Allhusen V, 2001, J APPL DEV PSYCHOL, V22, P457; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Bianchi SM, 2010, J MARRIAGE FAM, V72, P705, DOI 10.1111/j.1741-3737.2010.00726.x; Bronfenbrenner U., 1979, ECOLOGY HUMAN DEV; Cauffman E., 1999, FUTURE OUTLOOK UNPUB; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Comings DE, 2002, CHILD DEV, V73, P1046, DOI 10.1111/1467-8624.00456; Crowder K, 2004, J MARRIAGE FAM, V66, P721, DOI 10.1111/j.0022-2445.2004.00049.x; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, DOI [10.1002/9781119125563, DOI 10.1002/9781119125563]; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Duncan Otis D, 1961, OCCUPATIONS SOCIAL S, P109; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Engelbregt MJT, 2000, PEDIATR RES, V48, P803, DOI 10.1203/00006450-200012000-00017; Halpern-Felsher BL, 2004, PREV MED, V39, P559, DOI 10.1016/j.ypmed.2004.02.017; Harden KP, 2014, PSYCHOL BULL, V140, P434, DOI 10.1037/a0033564; Hartman S, 2015, DEV PSYCHOPATHOL, V27, P747, DOI 10.1017/S0954579414000856; Hetherington EM, 1999, MONOGR SOC RES CHILD, V64, pV; Hofferth SL, 2006, DEMOGRAPHY, V43, P53, DOI 10.1353/dem.2006.0006; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; KULIN HE, 1982, AM J CLIN NUTR, V36, P527, DOI 10.1093/ajcn/36.3.527; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; Mendle J, 2006, DEV PSYCHOL, V42, P533, DOI 10.1037/0012-1649.42.3.233; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.1111/j.1467-8624.1992.tb03594.x; MOOREHOUSE MJ, 1991, DEV PSYCHOL, V27, P295; Muthen L. K. & Muthen B. O., 1998, MPLUS USERS GUIDE; [National Institute of Child Health and Human Development (NICHD) Early Child Care Research Network (ECCRN)], 2005, CHILD CAR CHILD DEV; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Roff D. A., 2002, LIFE HIST EVOLUTION, V7; Rushton J. P., 1996, RACE EVOLUTION BEHAV; SCHEIER MF, 1985, HEALTH PSYCHOL, V4, P219, DOI 10.1037//0278-6133.4.3.219; Schlomer GL, 2010, J COUNS PSYCHOL, V57, P1, DOI 10.1037/a0018082; Simmons LA, 2009, ANN EPIDEMIOL, V19, P187, DOI 10.1016/j.annepidem.2008.12.007; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Sroufe LA, 2005, ATTACH HUM DEV, V7, P349, DOI 10.1080/14616730500365928; Stearns S. C., 1992, EVOLUTION LIFE HIST, V249; STEVENS G, 1981, SOC SCI RES, V10, P364, DOI 10.1016/0049-089X(81)90011-9; STRATHMAN A, 1994, J PERS SOC PSYCHOL, V66, P742, DOI 10.1037//0022-3514.66.4.742; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Tucker CJ, 1998, SOCIOL EDUC, V71, P111, DOI 10.2307/2673244; WARREN MP, 1991, J CLIN ENDOCR METAB, V72, P847, DOI 10.1210/jcem-72-4-847; WITTENBERGER JF, 1980, ANNU REV ECOL SYST, V11, P197, DOI 10.1146/annurev.es.11.110180.001213; Zimbardo P. G., 1980, ESSENTIALS PSYCHOL L 52 1 1 2 2 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0954-5794 1469-2198 DEV PSYCHOPATHOL Dev. Psychopathol. OCT 2018 30 4 1321 1332 10.1017/S0954579417001729 12 Psychology, Developmental Psychology GS5PC WOS:000443717600008 29212568 2019-02-21 J Zhao, JM; Fang, Y; Lou, YQ; Swenson, JE; Sun, YH Zhao, Jin-Ming; Fang, Yun; Lou, Ying-Qiang; Swenson, Jon E.; Sun, Yue-Hua Brood rearing has an immediate survival cost for female Chinese Grouse Tetrastes sewerzowi JOURNAL OF ORNITHOLOGY English Article Reproductive cost; Movement distance; Brood-rearing period; Parental investment; Precocial species GREATER SAGE-GROUSE; CURRENT REPRODUCTIVE EFFORT; LAGOPUS-LAGOPUS-SCOTICUS; RUFFED GROUSE; HABITAT USE; BONASA-SEWERZOWI; BLACK GROUSE; FRAGMENTED LANDSCAPE; PARENTAL BEHAVIOR; CANADA GEESE Reproductive activities can incur various costs to breeding individuals in birds. One cost is that reproduction decreases survival probabilities of attendant individuals, which may have a major effect on population demography. During brood rearing, adults of precocial species usually make extensive movements to lead their young to sites with adequate food resources and dense cover. However, few studies have evaluated the effects of brood movement on attendant precocial adults. In this study, we tracked female Chinese Grouse during brood-rearing periods using radiotelemetry at Lianhuashan Nature Reserve, Gansu, China, during 2010-2012, to evaluate the effects of brood rearing and movement distances on females' survival probabilities using known fate models in program MARK. All 41 females attempted to breed, and 30 females successfully hatched at least one chick; 11 failed during the incubation period. Although females with broods moved more extensively than females without broods, movement distances did not influence survival probabilities of attendant females. Seven females with broods were killed by predators, resulting in a lower survival probability (0.958 +/- 0.016 weekly survival and 0.679 +/- 0.099 through the 9-weeks brood-rearing periods) than for females without broods, which all survived the brood-rearing periods. Our results agree with the prediction of life history theory, which assumes that cost must correlate with reproduction. The extensive movement patterns found in this study might reflect a lack of suitable brood-rearing habitat near nest sites, which might be detrimental to chick survival and influence the persistence of this population. [Zhao, Jin-Ming; Fang, Yun; Lou, Ying-Qiang; Sun, Yue-Hua] Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing, Peoples R China; [Zhao, Jin-Ming] Anhui Univ, Sch Resources & Environm Engn, Hefei, Anhui, Peoples R China; [Lou, Ying-Qiang] Univ Chinese Acad Sci, Beijing, Peoples R China; [Swenson, Jon E.] Norwegian Univ Life Sci, Fac Environm Sci & Nat Resource Management, POB 5003, N-1432 As, Norway; [Swenson, Jon E.] Norwegian Inst Nat Res, N-7485 Trondheim, Norway Sun, YH (reprint author), Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing, Peoples R China. sunyh@ioz.ac.cn National Natural Foundation of China [31372210, 31520103903] This research was funded by the National Natural Foundation of China (projects 31372210, 31520103903). We thank the staff at Lianhuashan Nature Reserve for their important help, and Y. H. Li, W. D. Cheng, Y. X. Jiang, J. L. Li, Shi Mei and Hong Yang for their help in fieldwork, Dr. Lyu Nan for comments on an earlier draft of the manuscript, and Dr. Danial Gibson for valuable help with the statistics. Akaike H., 1973, P 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_15; ANGELSTAM P, 1984, ORNIS SCAND, V15, P123, DOI 10.2307/3675951; Arnold TW, 2012, AVIAN CONSERV ECOL, V7, DOI 10.5751/ACE-00504-070101; Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; Bellrose F. C., 1994, ECOLOGY MANAGEMENT W; BERGMANN PJ, 1994, J FIELD ORNITHOL, V65, P151; Blomberg EJ, 2013, J AVIAN BIOL, V44, P149, DOI 10.1111/j.1600-048X.2012.00013.x; Bryant DM, 1988, FUNCT ECOL, V2, P23, DOI 10.2307/2389456; Burnham K. P, 2002, MODEL SELECTION MULT; CALOW P, 1973, AM NAT, V107, P559, DOI 10.1086/282858; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; Dinkins JB, 2012, AUK, V129, P600, DOI 10.1525/auk.2012.12009; Donald PF, 2007, IBIS, V149, P671, DOI 10.1111/j.1474-919X.2007.00724.x; Dreitz VJ, 2009, J APPL ECOL, V46, P870, DOI 10.1111/j.1365-2664.2009.01658.x; Dufour KW, 2002, CONDOR, V104, P297, DOI 10.1650/0010-5422(2002)104[0297:DSOYAA]2.0.CO;2; EBERHARDT LE, 1989, AUK, V106, P218; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; Eriksson M.O.G., 1978, Wildfowl, V29, P81; ERIKSTAD KE, 1985, ORNIS SCAND, V16, P181, DOI 10.2307/3676629; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gibson D, 2017, ECOL APPL, V27, P168, DOI 10.1002/eap.1427; Giroux W, 2007, J WILDLIFE MANAGE, V71, P87, DOI 10.2193/2005-614; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; Hagen CA, 2011, J WILDLIFE MANAGE, V71, P518; Hannon SJ, 2003, WILDLIFE BIOL, V9, P317; Hartke KM, 2006, CONDOR, V108, P201, DOI 10.1650/0010-5422(2006)108[0201:SOVISO]2.0.CO;2; Hosmer D. W., 2000, APPL LOGISTIC REGRES; Ibanez-Alamo JD, 2012, IBIS, V154, P5, DOI 10.1111/j.1474-919X.2011.01186.x; Ji Ting, 2005, Chinese Journal of Zoology, V40, P49; Jin-Ming Z, 2015, WILSON J ORNITHOL, V127, P310, DOI 10.1676/wils-127-02-310-318.1; JOHNSON GD, 1990, J WILDLIFE MANAGE, V54, P89, DOI 10.2307/3808906; Klaus Siegfried, 2013, Chinese Birds, V4, P232; Klaus Siegfried, 2001, Naturschutz und Landschaftsplanung, V33, P281; Klaus Siegfried, 1996, Ornithologische Beobachter, V93, P343; Kosztolanyi A, 2015, ACTA ETHOL, V10, P73; Krapu GL, 2006, J WILDLIFE MANAGE, V70, P1436, DOI 10.2193/0022-541X(2006)70[1436:MBMWUA]2.0.CO;2; Loonen MJJE, 1999, J ANIM ECOL, V68, P753, DOI 10.1046/j.1365-2656.1999.00325.x; Lou Yingqiang, 2017, Wildlife Biology, P00257; Low M, 2010, J ANIM ECOL, V79, P214, DOI 10.1111/j.1365-2656.2009.01595.x; Lu N, 2011, BIRD CONSERV INT, V21, P49, DOI 10.1017/S0959270910000183; Mainguy J, 2006, CAN J ZOOL, V84, P1096, DOI 10.1139/Z06-096; Mainguy J, 2006, AUK, V123, P1077, DOI 10.1642/0004-8038(2006)123[1077:GGASIR]2.0.CO;2; MAXSON SJ, 1978, J WILDLIFE MANAGE, V42, P61, DOI 10.2307/3800690; Milonoff M, 2004, J AVIAN BIOL, V35, P344, DOI 10.1111/j.0908-8857.2004.03215.x; Morosinotto C, 2010, J ANIM ECOL, V79, P327, DOI 10.1111/j.1365-2656.2009.01638.x; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; NUR N, 1988, ARDEA, V76, P155; Park KJ, 2001, J ZOOL, V254, P137, DOI 10.1017/S0952836901000644; Powell LA, 2007, CONDOR, V109, P949, DOI 10.1650/0010-5422(2007)109[949:AVODPU]2.0.CO;2; Prop J, 2004, SURVIVAL COSTS RELAT, P213; Raven Garnet H., 2007, Prairie Naturalist, V39, P1; Robert A, 2012, ECOLOGY, V93, P1944, DOI 10.1890/11-1840.1; Scott JG, 1998, J FIELD ORNITHOL, V69, P474; SEDDON LM, 1994, CAN J ZOOL, V72, P533, DOI 10.1139/z94-071; Signorell N, 2010, WILDLIFE BIOL, V16, P249, DOI 10.2981/09-028; Slagsvold T, 1996, ECOLOGY, V77, P461, DOI 10.2307/2265622; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Storaas T, 1999, WILDLIFE BIOL, V5, P187; Sun YH, 2003, BIOL CONSERV, V110, P177, DOI 10.1016/S0006-3207(02)00187-8; Sun YH, 2000, WILDLIFE BIOL, V6, P271; Sun YH, 2008, NATURE LIANHUASHAN N; Sun YH, 2004, THESIS; Sun YH, 2007, WILDLIFE BIOL, V13, P68, DOI 10.2981/0909-6396(2007)13[68:NSSOCG]2.0.CO;2; Sun YueHua, 2006, Acta Zoologica Sinica, V52, P202; Thirgood SJ, 1998, WILDLIFE BIOL, V4, P65; Wang J, 2010, WILSON J ORNITHOL, V122, P177; WEGGE P, 1990, OECOLOGIA, V82, P527, DOI 10.1007/BF00319796; White GC, 1999, BIRD STUDY, V46, P120; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLIAMS TD, 1994, AUK, V111, P563; Winkler D.W., 1983, Current Ornithology, V1, P33; Yoder JM, 2004, BEHAV ECOL, V15, P469, DOI 10.1093/beheco/arh037; Zhao JM, 2017, AVIAN RES, V8, DOI 10.1186/s40657-017-0090-5; Zheng G, 1998, CHINA RED DATA BOOK, V51 76 0 0 9 9 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 1439-0361 J ORNITHOL J. Ornithol. OCT 2018 159 4 1019 1029 10.1007/s10336-018-1578-4 11 Ornithology Zoology GQ7RP WOS:000441943700015 2019-02-21 J Plouvier, WN; Wajnberg, E Plouvier, Wouter N.; Wajnberg, Eric Improving the efficiency of augmentative biological control with arthropod natural enemies: A modeling approach BIOLOGICAL CONTROL English Article Natural enemies; Behavioral ecology; Life-history traits; Individual-based model; Genetic algorithm; Cost efficiency HOST-PARASITOID DYNAMICS; GENETIC ALGORITHMS; INSECT PARASITOIDS; TIME ALLOCATION; DISPERSAL; ECOLOGY; REPRODUCTION; MECHANISMS; STRATEGIES; MORTALITY A better understanding of the life-history traits of biocontrol agents and their effect on population dynamics is key to obtaining more efficient pest control and generating higher economic returns for biocontrol practitioners. To this end, we constructed an optimality simulation model based on principles of the behavioral ecology of natural enemies. This model allows for the identification of the most important life-history traits of natural enemies (e.g., fecundity, longevity, attack rate, competition and dispersal), taking into account the costs and benefits for biocontrol practitioners. The model was kept general and was designed in such a way that it can be adapted to different target species and their specific ecology (natural enemy-pest-plant combination). Results indicate strong interactions between the optimized life-history traits of the biocontrol agents. Two different optimized life-history strategies for the agents were found with higher potential economic returns. These strategies differ most significantly in the plant-leaving decision and host handling time of the biocontrol agent, but also in their respective fecundity, longevity and dispersal ability. The preferred strategy depends on the number of agents released and the growth rate of the plant. Information from these optimality models can help to determine which agents should be released and how they should be released in a specific agro-ecological situation. [Plouvier, Wouter N.; Wajnberg, Eric] INRA, CNRS, UMR 1355 7254, 400 Route Chappes,BP 167, F-06903 Sophia Antipolis, France; [Wajnberg, Eric] INRIA, Projet Hephaistos, 2004 Route Lucioles,BP 93, F-06902 Sophia Antipolis, France; [Plouvier, Wouter N.] Wageningen Univ, POB 16, NL-6700 AA Wageningen, Netherlands Plouvier, WN (reprint author), INRA, CNRS, UMR 1355 7254, 400 Route Chappes,BP 167, F-06903 Sophia Antipolis, France. wouter.plouvier@inra.fr European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant [641456] The code of the simulation model was run on the cluster of the INRA MIGALE bioinformatics platform (http://migale.jouy.inra.fr). This work has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement [grant number 641456]. Bart Pannebakker and Bas Zwaan are thanked for continuous discussion and support in the development of this work. Patrick Coquillard is thanked for his help in building the simulation framework. Finally, we would like to thank the two anonymous referees for their valuable input. Bianchi FJJA, 2013, ECOL APPL, V23, P1531, DOI 10.1890/12-1819.1; Coll M, 2017, ENV PEST MANAGEMENT; Driessen G, 1999, J ANIM ECOL, V68, P445, DOI 10.1046/j.1365-2656.1999.00296.x; Ellers J, 2000, NETH J ZOOL, V50, P29, DOI 10.1163/156854200505784; Fauvergue X, 2009, POPUL ECOL, V51, P385, DOI 10.1007/s10144-009-0147-3; Hamblin S, 2013, METHODS ECOL EVOL, V4, P184, DOI 10.1111/2041-210X.12000; HASSELL MP, 1969, NATURE, V223, P1133, DOI 10.1038/2231133a0; Hassell MP, 1978, DYNAMICS ARTHROPOD P; Heimpel GE, 2017, BIOL CONTROL ECOLOGY; Heimpel GE, 2011, BIOCONTROL, V56, P441, DOI 10.1007/s10526-011-9381-7; Hoffmeister Thomas S., 2008, P384, DOI 10.1002/9780470696200.ch17; Holling C. S., 1959, Canadian Entomologist, V91, P385; Hougardy E, 2006, BIOL CONTROL, V37, P206, DOI 10.1016/j.biocontrol.2005.09.001; Johnson CA, 2009, P R SOC B, V276, P3361, DOI 10.1098/rspb.2008.1958; JUDSON OP, 1994, TRENDS ECOL EVOL, V9, P9, DOI 10.1016/0169-5347(94)90225-9; Kenis M, 2008, 3 INT S BIOL CONTR A, P385; Lima EABF, 2009, NEOTROP ENTOMOL, V38, P699, DOI 10.1590/S1519-566X2009000600001; Lommen STE, 2017, ENTOMOL EXP APPL, V162, P108, DOI 10.1111/eea.12510; Mayhew PJ, 2016, ENTOMOL EXP APPL, V159, P147, DOI 10.1111/eea.12411; Mills NJ, 2010, BIOL CONTROL, V52, P255, DOI 10.1016/j.biocontrol.2009.03.018; Mills NJ, 1996, ECOL MODEL, V92, P121, DOI 10.1016/0304-3800(95)00177-8; Mitchell WA, 2009, OIKOS, V118, P1073, DOI 10.1111/j.1600-0706.2009.17204.x; Montovan KJ, 2015, AM NAT, V185, P538, DOI 10.1086/680036; Okuyama T, 2015, THEOR ECOL-NETH, V8, P327, DOI 10.1007/s12080-015-0253-0; Outreman Y, 1999, ANN SOC ENTOMOL FR, V35, P404; Pearce IG, 2006, J THEOR BIOL, V241, P876, DOI 10.1016/j.jtbi.2006.01.026; Roitberg BD, 2014, BIOL CONTROL, V75, P39, DOI 10.1016/j.biocontrol.2014.02.002; Ruxton GD, 2008, J THEOR BIOL, V250, P435, DOI 10.1016/j.jtbi.2007.10.022; Schofield P, 2005, J THEOR BIOL, V237, P1, DOI 10.1016/j.jtbi.2005.03.025; Spataro T, 2000, THEOR POPUL BIOL, V58, P197, DOI 10.1006/tpbi.2000.1483; Stratonovitch P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115631; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; van Alpen JJM, 2003, TRENDS ECOL EVOL, V18, P81, DOI 10.1016/S0169-5347(02)00035-6; vanRoermund HJW, 1997, BIOL CONTROL, V9, P25, DOI 10.1006/bcon.1997.0512; Vinatier F, 2009, ECOL MODEL, V220, P2244, DOI 10.1016/j.ecolmodel.2009.06.023; Von Bertalanffy L., 1938, HUM BIOL, V10, P181, DOI DOI 10.2307/41447359; Wajnberg E, 2004, GENETICS, EVOLUTION AND BIOLOGICAL CONTROL, P19, DOI 10.1079/9780851997353.0019; Wajnberg E, 2013, CHEM ECOLOGY INSECT; Wajnberg E, 2006, BEHAV ECOL SOCIOBIOL, V60, P589, DOI 10.1007/s00265-006-0198-9; Wajnberg E, 2016, ENTOMOL EXP APPL, V158, P2, DOI 10.1111/eea.12378; Wajnberg E, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038227 41 0 0 22 22 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1049-9644 1090-2112 BIOL CONTROL Biol. Control OCT 2018 125 121 130 10.1016/j.biocontrol.2018.05.010 10 Biotechnology & Applied Microbiology; Entomology Biotechnology & Applied Microbiology; Entomology GO4PX WOS:000439995100016 2019-02-21 J Jonason, PK Jonason, Peter K. Bright lights, big city: The Dark Triad traits and geographical preferences PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Dark Triad; Psychopathy; Narcissism; Machiavellianism; Geography LIFE-HISTORY THEORY; DIRTY DOZEN; PERSONALITY-TRAITS; 5-FACTOR MODEL; PSYCHOPATHY; PSYCHOLOGY; STRATEGY; MACHIAVELLIANISM; FOUNDATIONS; EVOLUTION There are many niches people can occupy and some people may fit better in certain niches than others as a function of their personality. Two simple questions were considered presently. Are people characterized by the Dark Triad traits also characterized by a bias towards living in the city and if so as they are, what features of the city-living draw them towards such geographical preferences? Study 1 (N = 753, students) assessed the correlations between population density and size and the Dark Triad traits. Study 2 (N = 270, MTurk) asked participant's where they lived and compared rates of the Dark Triad traits. Study 3 (N = 273, MTurk) assessed where people wish they lived based on location (e.g., city, suburbia) and features of that environment and related that to the Dark Triad traits. Across three studies, there was a tentative-yet-methodologically robust bias of those who are high in the Dark Triad traits-especially psychopathy-towards city life. In Study 3, sex differences in the features people want in where they live and how the Dark Triad traits correlated with the featural preferences were examined and suggested effects consistent with life history theory. Results are discussed using life history and selection-evocation-manipulation paradigms. [Jonason, Peter K.] Western Sydney Univ, Sydney, NSW, Australia Jonason, PK (reprint author), Univ Western Sydney, Sch Social Sci & Psychol, Milperra, NSW 2214, Australia. p.jonason@westernsydney.edu.au Baumeister R. F., 2017, IS THERE ANYTHING GO; Bertl B, 2017, PERS INDIV DIFFER, V114, P140, DOI 10.1016/j.paid.2017.04.002; Buckels EE, 2013, PSYCHOL SCI, V24, P2201, DOI 10.1177/0956797613490749; BUSS DM, 1987, J PERS SOC PSYCHOL, V53, P1214, DOI 10.1037/0022-3514.53.6.1214; Chase J. M., 2003, ECOLOGICAL NICHES LI; Cooper ML, 2016, J PERS SOC PSYCHOL, V110, P431, DOI 10.1037/pspp0000033; Diamond J, 1999, GUNS GERMS STEEL; Figueredo A. J., 2007, MATING INTELLIGENCE, P336; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fumham A., 2013, SOCIAL PERSONALITY P, V7, P199; Geary D. C., 2010, MALE FEMALE EVOLUTIO; Henrich J, 2010, BEHAV BRAIN SCI, V33, P111, DOI 10.1017/S0140525X10000725; Jonason PK, 2018, PERS INDIV DIFFER, V120, P102, DOI 10.1016/j.paid.2017.08.030; Jonason PK, 2017, BEHAV BRAIN SCI, V40, DOI 10.1017/S0140525X16001199; Jonason PK, 2017, PERS INDIV DIFFER, V113, P120, DOI 10.1016/j.paid.2017.02.053; Jonason PK, 2017, PERS INDIV DIFFER, V110, P38, DOI 10.1016/j.paid.2017.01.024; Jonason PK, 2017, PERS INDIV DIFFER, V104, P180, DOI 10.1016/j.paid.2016.08.002; Jonason PK, 2016, PERS INDIV DIFFER, V94, P324, DOI 10.1016/j.paid.2016.01.039; Jonason PK, 2015, PERS INDIV DIFFER, V81, P102, DOI 10.1016/j.paid.2014.10.045; Jonason PK, 2015, PERS INDIV DIFFER, V80, P76, DOI 10.1016/j.paid.2015.02.018; Jonason PK, 2014, PERS INDIV DIFFER, V71, P181, DOI 10.1016/j.paid.2014.08.002; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2014, ASSESSMENT, V21, P28, DOI 10.1177/1073191113514105; Jones DN, 2013, J APPL SOC PSYCHOL, V43, pE367, DOI 10.1111/jasp.12035; Kajonius PJ, 2015, PERS INDIV DIFFER, V77, P173, DOI 10.1016/j.paid.2014.12.055; Kowalski RM, 2001, BEHAV BADLY AVERSIVE; MacDonald K, 1998, J CROSS CULT PSYCHOL, V29, P119, DOI 10.1177/0022022198291007; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; Maples JL, 2014, PSYCHOL ASSESSMENT, V26, P326, DOI 10.1037/a0035084; Marcus DK, 2014, PSYCHOL ASSESSMENT, V26, P563, DOI 10.1037/a0036039; McCann SJH, 2015, J SOC PSYCHOL, V155, P274, DOI 10.1080/00224545.2015.1007027; McCrae RR, 2002, INT CUL PSY, P105; Miller JD, 2012, PSYCHOL ASSESSMENT, V24, P1048, DOI 10.1037/a0028583; Oishi S, 2015, J RES PERS, V58, P55, DOI 10.1016/j.jrp.2015.07.001; Oishi S, 2014, ANNU REV PSYCHOL, V65, P581, DOI 10.1146/annurev-psych-030413-152156; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Richard FD, 2003, REV GEN PSYCHOL, V7, P331, DOI 10.1037/1089-2680.7.4.331; Schonbrodt FD, 2013, J RES PERS, V47, P609, DOI 10.1016/j.jrp.2013.05.009; Serrano-Davies E, 2017, BEHAV ECOL SOCIOBIOL, V71, DOI 10.1007/s00265-017-2389-y; Sng O, 2017, J PERS SOC PSYCHOL, V112, P736, DOI 10.1037/pspi0000086; Vernon PA, 2008, PERS INDIV DIFFER, V44, P445, DOI 10.1016/j.paid.2007.09.007; Wilson E.O., 1975, P1 45 0 0 17 23 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 1 2018 132 66 73 10.1016/j.paid.2018.05.024 8 Psychology, Social Psychology GL7LL WOS:000437383100009 2019-02-21 J Jonason, PK; Zeigler-Hill, V Jonason, Peter K.; Zeigler-Hill, Virgil The fundamental social motives that characterize dark personality traits PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Psychopathy; Narcissism; Machiavellianism; Sadism; Spitefulness; Motivations LIFE-HISTORY STRATEGIES; TRIAD TRAITS; FOUNDATIONS; PERSPECTIVE; PSYCHOLOGY; MOTIVATION; NEEDS A useful way of understanding personality traits is to examine the motivational nature of a trait because motives drive behaviors and influence attitudes. In two cross-sectional, self-report studies (N = 942), we examined the relationships between fundamental social motives and dark personality traits (Le., narcissism, psychopathy, sadism, spitefulness, and Machiavellianism) and examined the role of childhood socio-ecological conditions (Study 2 only). For example, we found that Machiavellianism and psychopathy were negatively associated with motivations that involved developing and maintaining good relationships with others. Sex differences in the darker aspects of personality were a function of, at least in part, fundamental social motives such as the desire for status. Fundamental social motives mediated the associations that childhood socio-ecological conditions had with the darker aspects of personality. Our results showed how motivational tendencies in men and women may provide insights into alternative life history strategies reflected in dark personality traits. [Jonason, Peter K.] Western Sydney Univ, Penrith, NSW, Australia; [Zeigler-Hill, Virgil] Oakland Univ, Rochester, MI 48063 USA Jonason, PK (reprint author), Western Sydney Univ, Sch Social Sci & Psychol, Milperra, NSW 2214, Australia. p.jonason@westernsydney.edu.au BAUMEISTER RF, 1995, PSYCHOL BULL, V117, P497, DOI 10.1037/0033-2909.117.3.497; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Christie R, 1970, STUDIES MACHIAVELLIA; Cooper ML, 2000, J PERS, V68, P1059, DOI 10.1111/1467-6494.00126; Deci EL, 2000, PSYCHOL INQ, V11, P227, DOI 10.1207/S15327965PLI1104_01; Elliot AJ, 2001, PSYCHOL INQ, V12, P216; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Hayes AF, 2013, INTRO MEDIATION MODE; Henrich J, 2010, BEHAV BRAIN SCI, V33, P111, DOI 10.1017/S0140525X10000725; Jonason PK, 2018, PERS INDIV DIFFER, V130, P76, DOI 10.1016/j.paid.2018.03.044; Jonason PK, 2018, PERS INDIV DIFFER, V120, P107, DOI 10.1016/j.paid.2017.08.036; Jonason PK, 2017, PERS INDIV DIFFER, V104, P180, DOI 10.1016/j.paid.2016.08.002; Jonason PK, 2016, EVOL PSYCHOL-US, V14, DOI 10.1177/1474704915623699; Jonason PK, 2016, PERS INDIV DIFFER, V94, P324, DOI 10.1016/j.paid.2016.01.039; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2014, ASSESSMENT, V21, P28, DOI 10.1177/1073191113514105; Jones DN, 2014, J INTERPERS VIOLENCE, V29, P1050, DOI 10.1177/0886260513506053; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Marcus DK, 2014, PSYCHOL ASSESSMENT, V26, P563, DOI 10.1037/a0036039; Neel R, 2016, J PERS SOC PSYCHOL, V110, P887, DOI 10.1037/pspp0000068; Paulhus D. L., 2013, COMPREHENSIVE UNPUB; Paulhus D. L., 2009, MANUAL SELF REPORT P; RASKIN RN, 1979, PSYCHOL REP, V45, P590, DOI 10.2466/pr0.1979.45.2.590; Richard FD, 2003, REV GEN PSYCHOL, V7, P331, DOI 10.1037/1089-2680.7.4.331; Schaller M, 2003, PERS SOC PSYCHOL B, V29, P637, DOI 10.1177/0146167203251526; Schonbrodt FD, 2013, J RES PERS, V47, P609, DOI 10.1016/j.jrp.2013.05.009; Semenyna SW, 2015, PERS INDIV DIFFER, V83, P37, DOI 10.1016/j.paid.2015.03.046; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Spain SM, 2014, J ORGAN BEHAV, V35, pS41, DOI 10.1002/job.1894; Wilson E.O., 1975, P1 35 1 1 19 21 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 1 2018 132 98 107 10.1016/j.paid.2018.05.031 10 Psychology, Social Psychology GL7LL WOS:000437383100014 2019-02-21 J Chen, BB; Qu, WX Chen, Bin-Bin; Qu, Wenxiang Life history strategies and procrastination: The role of environmental unpredictability (vol 117, pg 23, 2017) PERSONALITY AND INDIVIDUAL DIFFERENCES English Correction [Chen, Bin-Bin; Qu, Wenxiang] Fudan Univ, Dept Psychol, 220 Handan Rd, Shanghai 200433, Peoples R China Chen, BB (reprint author), Fudan Univ, Dept Psychol, 220 Handan Rd, Shanghai 200433, Peoples R China. chenbinbin@fudan.edu.cn Chen BB, 2017, PERS INDIV DIFFER, V117, P23, DOI 10.1016/j.paid.2017.05.036 1 0 0 15 15 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 1 2018 132 134 134 10.1016/j.paid.2018.05.021 1 Psychology, Social Psychology GL7LL WOS:000437383100019 2019-02-21 J Gomez, CMA; Woodcock, RM; Smith, JJ; Voss, RS; Delgado, JP Arenas Gomez, Claudia M.; Woodcock, Ryan M.; Smith, Jeramiah J.; Voss, Randal S.; Paul Delgado, Jean Using transcriptomics to enable a plethodontid salamander (Bolitoglossa ramosi) for limb regeneration research BMC GENOMICS English Article Axolotl; Bolitoglossa; Limb; Plethodontid; Regeneration; Transcriptomics; Urodele GENE-EXPRESSION PATTERNS; LIFE-HISTORY EVOLUTION; NEWT LENS REGENERATION; EXTRACELLULAR-MATRIX; AMBYSTOMA-MEXICANUM; SAL-SITE; AXOLOTL; PROTEIN; DEDIFFERENTIATION; SIGNATURES Background: Tissue regeneration is widely distributed across the tree of life. Among vertebrates, salamanders possess an exceptional ability to regenerate amputated limbs and other complex structures. Thus far, molecular insights about limb regeneration have come from a relatively limited number of species from two closely related salamander families. To gain a broader perspective on the molecular basis of limb regeneration and enhance the molecular toolkit of an emerging plethodontid salamander (Bolitoglossa ramosi), we used RNA-Seq to generate a de novo reference transcriptome and identify differentially expressed genes during limb regeneration. Results: Using paired-end Illumina sequencing technology and Trinity assembly, a total of 433,809 transcripts were recovered and we obtained functional annotation for 142,926 non-redundant transcripts of the B. ramosi de novo reference transcriptome. Among the annotated transcripts, 602 genes were identified as differentially expressed during limb regeneration. This list was further processed to identify a core set of genes that exhibit conserved expression changes between B. ramosi and the Mexican axolotl (Ambystoma mexicanum), and presumably their common ancestor from approximately 180 million years ago. Conclusions: We identified genes from B. ramosi that are differentially expressed during limb regeneration, including multiple conserved protein-coding genes and possible putative species-specific genes. Comparative analyses reveal a subset of genes that show similar patterns of expression with ambystomatid species, which highlights the importance of developing comparative gene expression data for studies of limb regeneration among salamanders. [Arenas Gomez, Claudia M.; Paul Delgado, Jean] Sede Invest Univ, Univ Antioquia, Grp Genet Regenerac & Canc, Torre 2,Lab 432,Calle 62 52-59, Medellin, Colombia; [Woodcock, Ryan M.; Smith, Jeramiah J.] Univ Kentucky, Dept Biol, Lexington, KY 40506 USA; [Voss, Randal S.] Univ Kentucky, Spinal Cord & Brain Injury Res Ctr, Dept Neurosci, Lexington, KY 40536 USA; [Woodcock, Ryan M.] Keene State Coll, Keene, NH USA Delgado, JP (reprint author), Sede Invest Univ, Univ Antioquia, Grp Genet Regenerac & Canc, Torre 2,Lab 432,Calle 62 52-59, Medellin, Colombia. jean.delgado@udea.edu.co arenas gomez, claudia marcela/0000-0001-7905-5052 University of Antioquia (CODI); COLCIENCIAS [569,027-2013, 567]; National Institutes of Health [R24OD010435]; Army Research Office [W911NF1410165] This work was funded by grants from the University of Antioquia (CODI) and COLCIENCIAS (569,027-2013) to JPD and CMAG (COLCIENCIAS 567), the grants allowed the design of the study and collection, analysis, interpretation of data and writing of the manuscript. Grants from the National Institutes of Health (R24OD010435) and Army Research Office (W911NF1410165) supported computational resources, bioinformatics training, data analysis, data interpretation, and manuscript writing efforts of MRW, SRV, and JJS at the University of Kentucky. Abdullayev I, 2013, EXP CELL RES, V319, P1187, DOI 10.1016/j.yexcr.2013.02.013; Andrews S, 2010, FASTQC QUALITY CONTR; Gomez CMA, 2017, REGENERATION, V4, P227, DOI 10.1002/reg2.93; Baddar NWA, 2015, METHODS MOL BIOL, V1290, P321, DOI 10.1007/978-1-4939-2495-0_25; Bandyopadhyay A, 2006, PLOS GENET, V2, P2116, DOI 10.1371/journal.pgen.0020216; Bryant DM, 2017, CELL REP, V18, P762, DOI 10.1016/j.celrep.2016.12.063; Burge SW, 2013, NUCLEIC ACIDS RES, V41, pD226, DOI 10.1093/nar/gks1005; Caballero-Perez J, 2018, DEV BIOL, V433, P227, DOI 10.1016/j.ydbio.2017.08.022; Campbell LJ, 2011, DEV DYNAM, V240, P1826, DOI 10.1002/dvdy.22669; Che RB, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087940; Chippindale PT, 2004, EVOLUTION, V58, P2809; da Silva SM, 2002, DEV CELL, V3, P547, DOI 10.1016/S1534-5807(02)00288-5; Eguchi G, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1389; Elewa A, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-01964-9; Flechas SV, 2013, ECOHEALTH, V10, P72, DOI 10.1007/s10393-013-0823-9; Frobisch NB, 2014, P R SOC B, V281; Frobisch NB, 2011, DEV DYNAM, V240, P1087, DOI 10.1002/dvdy.22629; Godwin J, 2014, INT J BIOCHEM CELL B, V56, P47, DOI 10.1016/j.biocel.2014.10.011; Grover MC, 2006, HERPETOL CONSERV BIO, V1, P93; Haas BJ, 2013, NAT PROTOC, V8, P1494, DOI 10.1038/nprot.2013.084; Holman EC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041804; Jiang XM, 2016, DATA BRIEF, V6, P12, DOI 10.1016/j.dib.2015.11.042; Kerney R, 2010, EVOL DEV, V12, P373, DOI 10.1111/j.1525-142X.2010.00424.x; Kozomara A, 2014, NUCLEIC ACIDS RES, V42, pD68, DOI 10.1093/nar/gkt1181; Kumar A, 2007, SCIENCE, V318, P772, DOI 10.1126/science.1147710; Kumar S, 2017, MOL BIOL EVOL, V34, P1812, DOI 10.1093/molbev/msx116; Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/nmeth.1923, 10.1038/NMETH.1923]; Li B, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-323; Li H, 2006, NUCLEIC ACIDS RES, V34, pD572, DOI 10.1093/nar/gkj118; Looso M, 2015, METHODS MOL BIOL, V1290, P337, DOI 10.1007/978-1-4939-2495-0_26; Looso M, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-2-r16; Makarev E, 2007, FEBS LETT, V581, P1865, DOI 10.1016/j.febslet.2007.03.082; Maki N, 2010, MOL VIS, V16, P72; Arenas CM, 2015, METHODS MOL BIOL, V1290, P71, DOI 10.1007/978-1-4939-2495-0_5; Mercer SE, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052375; MEREDITH JE, 1993, MOL BIOL CELL, V4, P953; Mi HY, 2017, NUCLEIC ACIDS RES, V45, pD183, DOI 10.1093/nar/gkw1138; Monaghan JR, 2007, J NEUROCHEM, V101, P27, DOI 10.1111/j.1471-4159.2006.04344.x; Monaghan JR, 2012, BIOL OPEN, V1, P937, DOI 10.1242/bio.20121594; Monaghan JR, 2009, BMC BIOL, V7, DOI 10.1186/1741-7007-7-1; Moreno-Hagelsieb G, 2008, BIOINFORMATICS, V24, P319, DOI 10.1093/bioinformatics/btm585; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; Nakamura K, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109831; Nowoshilow S, 2018, NATURE, V554, P50, DOI 10.1038/nature25458; Olson DH, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056802; Prathapan KD, 2018, SCIENCE, V360, P1405, DOI 10.1126/science.aat9844; Punta M, 2012, NUCLEIC ACIDS RES, V40, pD290, DOI 10.1093/nar/gkr1065; Rao N, 2009, BMC BIOL, V7, DOI 10.1186/1741-7007-7-83; Roy A, 2010, NAT PROTOC, V5, P725, DOI 10.1038/nprot.2010.5; Sandoval-Guzman T, 2014, CELL STEM CELL, V14, P174, DOI 10.1016/j.stem.2013.11.007; Santosh N, 2011, DEV DYNAM, V240, P1127, DOI 10.1002/dvdy.22503; SCADDING SR, 1981, CAN J ZOOL, V59, P34, DOI 10.1139/z81-007; Simao FA, 2015, BIOINFORMATICS, V31, P3210, DOI 10.1093/bioinformatics/btv351; Smith JJ, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-19; Smith JJ, 2005, BMC GENOMICS, V6, DOI 10.1186/1471-2164-6-181; Sousounis K, 2014, REGENERATION, V1, P47, DOI 10.1002/reg2.25; Sousounis K, 2014, HUM GENOMICS, V8, DOI 10.1186/s40246-014-0022-y; Sousounis K, 2013, MOL VIS, V19, P135; Stewart R, 2013, PLOS COMPUT BIOL, V9, DOI 10.1371/journal.pcbi.1002936; Stocum DL, 2011, DEV DYNAM, V240, P943, DOI 10.1002/dvdy.22553; Sugiura T, 2016, NATURE, V531, P237, DOI 10.1038/nature16974; Suzek BE, 2015, BIOINFORMATICS, V31, P926, DOI 10.1093/bioinformatics/btu739; Voss SR, 2015, REGENERATION, V2, P120, DOI 10.1002/reg2.37; Wake DB, 2009, ANNU REV ECOL EVOL S, V40, P333, DOI 10.1146/annurev.ecolsys.39.110707.173552; Wake DB, 1996, INT J DEV BIOL, V40, P859; Wu CH, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-434; Zhao AD, 2016, BIOSCIENCE, V66, P735, DOI 10.1093/biosci/biw079 67 0 0 4 4 BMC LONDON CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1471-2164 BMC GENOMICS BMC Genomics SEP 25 2018 19 704 10.1186/s12864-018-5076-0 12 Biotechnology & Applied Microbiology; Genetics & Heredity Biotechnology & Applied Microbiology; Genetics & Heredity GU7JG WOS:000445497000003 30253734 DOAJ Gold 2019-02-21 J de Oliveira, VM; Amado, A; Campos, PRA de Oliveira, Viviane M.; Amado, Andre; Campos, Paulo R. A. The interplay of tradeoffs within the framework of a resource-based modelling ECOLOGICAL MODELLING English Article Evolutionary theory; Tradeoff; Trait; Adaptation DIVISION-OF-LABOR; LIFE-HISTORY EVOLUTION; COMMUNITY ECOLOGY; SOCIAL INSECTS; MULTICELLULARITY; PHYTOPLANKTON; CONSEQUENCES; REPRODUCTION; POPULATIONS; COMPETITION Tradeoffs are supposed to play a key role in driving the maintenance and the generation of biodiversity. Although an extensive literature exists on the effect of single tradeoffs, the interplay of simultaneous tradeoffs is not well studied, especially from an ecological point of view. We propose an adaptive resource-based model with tradeoffs at the level of resource acquisition and processing, which allows us to assess the level of specialization of populations and how it depends on tradeoff characteristics and environmental conditions. Furthermore, we analyze the effect of structuring on such measurements. For such purpose, the results of the spatial model are compared to those from the well-mixed counterpart as well as to the case in which the influence kin selection is mitigated. Among our findings, we observe that the existence of multiple tradeoffs drives the individuals to higher, efficiencies in the process of conversion of resource into energy. Additionally, the results demonstrate that structuring leads to more specialization in almost every scenario surveyed. [de Oliveira, Viviane M.] Univ Fed Rural Pernambuco, Dept Fis, BR-52171900 Recife, PE, Brazil; [Amado, Andre; Campos, Paulo R. A.] Univ Fed Pernambuco, Dept Fis, BR-50740560 Recife, PE, Brazil Campos, PRA (reprint author), Univ Fed Pernambuco, Dept Fis, BR-50740560 Recife, PE, Brazil. paulo.acampos@ufpe.br Amado, Andre/0000-0002-9027-5037 Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE) [APQ-0464-1.05/15]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [424948/2016-8]; program PNPD - Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) VMO and PRAC are partially supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq). PRAC acknowledges financial support from Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco (FACEPE) under Project No. APQ-0464-1.05/15. VMO acknowledges financial support from Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) under Project No. 424948/2016-8. AA has a fellowship from the program PNPD sponsored by Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES). We also acknowledge the suggestions of two anonymous Reviewers that helped us to improve this contribution. Amado A, 2018, PHYSICA A, V492, P1543, DOI 10.1016/j.physa.2017.11.080; Amado A, 2018, EVOLUTION, V72, P18, DOI 10.1111/evo.13392; Amado A, 2017, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/aa71d8; Amado A, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160544; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Beshers SN, 2001, ANNU REV ENTOMOL, V46, P413, DOI 10.1146/annurev.ento.46.1.413; Blomquist GE, 2009, BIOL LETTERS, V5, P339, DOI 10.1098/rsbl.2009.0009; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Dekel E, 2005, NATURE, V436, P588, DOI 10.1038/nature03842; Duarte A, 2012, BEHAV ECOL SOCIOBIOL, V66, P947, DOI 10.1007/s00265-012-1343-2; Edwards KF, 2011, ECOLOGY, V92, P2085, DOI 10.1890/11-0395.1; Frank SA, 2010, J EVOLUTION BIOL, V23, P609, DOI 10.1111/j.1420-9101.2010.01930.x; Gavrilets S, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1000805; Gordon DM, 2016, BEHAV ECOL SOCIOBIOL, V70, P1101, DOI 10.1007/s00265-015-2045-3; HARDIN G, 1968, SCIENCE, V162, P1243; Heinrich R, 1997, EUR J BIOCHEM, V243, P191; Hoyle A, 2008, J THEOR BIOL, V250, P498, DOI 10.1016/j.jtbi.2007.10.009; Jessup CM, 2008, ECOL LETT, V11, P947, DOI 10.1111/j.1461-0248.2008.01205.x; Kneitel JM, 2004, ECOL LETT, V7, P69, DOI 10.1046/j.1461-0248.2003.00551.x; Krause S, 2014, FRONT MICROBIOL, V5, DOI 10.3389/fmicb.2014.00251; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Leslie MP, 2017, J THEOR BIOL, V430, P92, DOI 10.1016/j.jtbi.2017.07.007; Litchman E, 2015, FRONT MICROBIOL, V6, DOI 10.3389/fmicb.2015.00254; Litchman E, 2008, ANNU REV ECOL EVOL S, V39, P615, DOI 10.1146/annurev.ecolsys.39.110707.173549; MacLean R, 2008, HEREDITY, V100, P471, DOI 10.1038/sj.hdy.6801073; MacLean RC, 2006, NATURE, V441, P498, DOI 10.1038/nature04624; Michod RE, 2006, J THEOR BIOL, V239, P257, DOI 10.1016/j.jtbi.2005.08.043; Pfeiffer T, 2001, SCIENCE, V292, P504, DOI 10.1126/science.1058079; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Rockwood L.L., 2015, INTRO POPULATION ECO; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Rueffler C, 2012, P NATL ACAD SCI USA, V109, pE326, DOI 10.1073/pnas.1110521109; Saeki Y, 2014, OIKOS, V123, P786, DOI 10.1111/oik.00956; Simpson C, 2012, P ROY SOC B-BIOL SCI, V279, P116, DOI 10.1098/rspb.2011.0766; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tilman D, 2000, NATURE, V405, P208, DOI 10.1038/35012217; TILMAN D, 1990, OIKOS, V58, P3, DOI 10.2307/3565355; Tilman D., 1982, RESOURCE COMPETITION; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wallenstein MD, 2012, BIOGEOCHEMISTRY, V109, P35, DOI 10.1007/s10533-011-9641-8; Wong WW, 2009, BIOTECHNOL BIOENG, V102, P73, DOI 10.1002/bit.22046 41 0 0 2 2 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3800 1872-7026 ECOL MODEL Ecol. Model. SEP 24 2018 384 249 260 10.1016/j.ecolmodel.2018.06.026 12 Ecology Environmental Sciences & Ecology GX2WU WOS:000447581600025 2019-02-21 J Mikula, P; Diaz, M; Albrecht, T; Jokimaki, J; Kaisanlahti-Jokimaki, ML; Kroitero, G; Moller, AP; Tryjanowski, P; Yosef, R; Hromada, M Mikula, Peter; Diaz, Mario; Albrecht, Tomas; Jokimaki, Jukka; Kaisanlahti-Jokimaki, Marja-Liisa; Kroitero, Gal; Moller, Anders Pape; Tryjanowski, Piotr; Yosef, Reuven; Hromada, Martin Adjusting risk-taking to the annual cycle of long-distance migratory birds SCIENTIFIC REPORTS English Article FLIGHT INITIATION DISTANCE; GROUP-SIZE; ANTIPREDATOR BEHAVIOR; EVOLUTIONARY ECOLOGY; WESTERN SANDPIPERS; TEMPORAL VARIATION; SPRING STOPOVER; PREDATION RISK; SITE FIDELITY; BANC DARGUIN Life-history theory predicts that current behaviour affects future reproduction, implying that animals should optimise their escape strategies to reflect fitness costs and benefits of premature escape. Both costs and benefits of escape may change temporally with important consequences for the evolution of escape strategies. Moreover, escape strategies of species may differ according to their positions on slow-fast pace of life gradients. We studied risk-taking in long-distance migratory animals, waders (Charadriiformes), during the annual cycle, i.e., breeding in Europe, stopover in the Middle East and wintering in tropical Africa. Phylogenetically informed comparative analyses revealed that risk-taking (measured as flight initiation distance, FID) changed significantly over the year, being lowest during breeding and peaking at stopover sites. Similarly, relationships between risk-taking and life-history traits changed among stages of the annual cycle. While risk-taking significantly decreased with increasing body mass during breeding, risk-taking-body mass relationship became marginally significant in winter and disappeared during migration. The positive trend of risk-taking along slow-fast pace of life gradient measured as adult survival was only found during breeding. The season-dependent relationships between risk-taking and life history traits suggest that migrating animals respond to fluctuating environments by adopting behavioural plasticity. [Mikula, Peter; Albrecht, Tomas] Charles Univ Prague, Fac Sci, Dept Zool, Vinicna 7, Prague 12843 2, Czech Republic; [Diaz, Mario] CSIC, Museo Nacl Ciencias Nat, Dept Biogeog & Global Change, C Serrano 115bis, E-28006 Madrid, Spain; [Albrecht, Tomas] Czech Acad Sci, Inst Vertebrate Biol, Kvetna 8, Brno 60365, Czech Republic; [Jokimaki, Jukka; Kaisanlahti-Jokimaki, Marja-Liisa] Univ Lapland, Arctic Ctr, POB 122, Rovaniemi 96101, Finland; [Kroitero, Gal; Yosef, Reuven] Rabin High Sch, Yotam St 51, IL-8820301 Elat, Israel; [Moller, Anders Pape] Univ Paris Saclay, Univ Paris Sud, CNRS, Ecol Systemat Evolut,AgroParisTech, F-91405 Orsay, France; [Tryjanowski, Piotr] Poznan Univ Life Sci, Inst Zool, Wojska Polskiego 71C, PL-60625 Poznan, Poland; [Yosef, Reuven] Ben Gurion Univ Negev, Eilat Campus,POB 272, IL-88000 Elat, Israel; [Hromada, Martin] Univ Presov, Fac Humanities & Nat Sci, Dept Ecol, Lab & Museum Evolutionary Ecol, 17 Novembra 1, Presov 08001, Slovakia; [Hromada, Martin] Univ Zielona Gora, Fac Biol Sci, Prof Z Szafrana 1, PL-65516 Zielona Gora, Poland Hromada, M (reprint author), Univ Presov, Fac Humanities & Nat Sci, Dept Ecol, Lab & Museum Evolutionary Ecol, 17 Novembra 1, Presov 08001, Slovakia.; Hromada, M (reprint author), Univ Zielona Gora, Fac Biol Sci, Prof Z Szafrana 1, PL-65516 Zielona Gora, Poland. hromada.martin@gmail.com Albrecht, Tomas/A-1130-2011; Jokimaki, Jukka/L-4434-2013 Yosef, Reuven/0000-0003-4331-9866; Tryjanowski, Piotr/0000-0002-8358-0797; Albrecht, Tomas/0000-0002-9213-0034; Mikula, Peter/0000-0002-2731-9105; Hromada, Martin/0000-0002-5626-1205; Jokimaki, Jukka/0000-0002-7903-4128 Czech Science Foundation [14-36098 G]; thematic network REMEDINAL3-CM [S2013/MAE-2719]; [OPV ITMS26110230119]; [VEGA 1/0977/16] PM and MH are very thankful to Gabriel Saffa for assistance during fieldwork in Kenya, and to Radoslav Smolak, Miroslava Klimovicova and Jozef Obona for support during a field trip. The study was financially supported by project OPV ITMS26110230119 and VEGA 1/0977/16. TA and PM were supported by Czech Science Foundation project (14-36098 G). This paper is a contribution by MD to the thematic network REMEDINAL3-CM (S2013/MAE-2719). Alerstam T, 2003, OIKOS, V103, P247, DOI 10.1034/j.1600-0706.2003.12559.x; BAIRLEIN F, 1985, OECOLOGIA, V66, P141, DOI 10.1007/BF00378566; Blumstein DT, 2010, BEHAV ECOL, V21, P440, DOI 10.1093/beheco/arq030; Blumstein DT, 2006, ANIM BEHAV, V71, P389, DOI 10.1016/j.anbehav.2005.05.010; Boyd H., 1962, Ibis, V104, P368, DOI 10.1111/j.1474-919X.1962.tb08664.x; Brochet AL, 2016, BIRD CONSERV INT, V26, P1, DOI 10.1017/S0959270915000416; Bulla M, 2015, IBIS, V157, P575, DOI 10.1111/ibi.12276; Butler Robert W., 2003, Wader Study Group Bulletin, V100, P130; BYRKJEDAL I, 1989, WILSON BULL, V101, P579; Calder III WA, 1984, SIZE FUNCTION LIFE H; CARACO T, 1979, ECOLOGY, V60, P618, DOI 10.2307/1936082; CASTRO G, 1993, AUK, V110, P927, DOI 10.2307/4088650; Cohen J, 1988, STAT POWER ANAL BEHA; Cooper WE, 2014, BEHAV ECOL, V25, P44, DOI 10.1093/beheco/art083; Cramp S, 1983, HDB BIRDS EUROPE MID, V3; CRESSWELL W, 1994, ANIM BEHAV, V47, P433, DOI 10.1006/anbe.1994.1057; Dammhahn M, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2473-y; DAWSON A, 1983, GEN COMP ENDOCR, V49, P286, DOI 10.1016/0016-6480(83)90146-6; Del Hoyo J., 1996, HDB BIRDS WORLD, V3; del Hoyo J, 2017, HDB BIRDS WORLD ALIV; Diaz M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064634; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; Evans P.R., 1981, Marine Science (Plenum), V15, P275; Fernandez-Juricic E, 2002, CAN J ZOOL, V80, P1212, DOI 10.1139/Z02-104; Freckleton RP, 2002, J ANIM ECOL, V71, P542, DOI 10.1046/j.1365-2656.2002.00618.x; Garamszegi LZ, 2010, BIOL REV, V85, P797, DOI 10.1111/j.1469-185X.2010.00126.x; Garamszegi LZ, 2007, P R SOC B, V274, P2003, DOI 10.1098/rspb.2007.0124; Geffroy B, 2015, TRENDS ECOL EVOL, V30, P755, DOI 10.1016/j.tree.2015.09.010; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Glaser R.L., 1998, Sandgrouse, V20, P30; Green R. E., 1997, Ringing and Migration, V18, P102; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; KERSTEN M, 1987, ARDEA, V75, P175; Kissling W. D, GLOB ECOL BIOGEOGR, V21, P328; Kotler BP, 2004, ECOLOGY, V85, P917, DOI 10.1890/03-3002; Laursen K, 2005, WILDLIFE BIOL, V11, P13, DOI 10.2981/0909-6396(2005)11[13:FAEDOS]2.0.CO;2; Laursen K, 2016, WILDLIFE BIOL, V22, P174, DOI 10.2981/wlb.00197; LAVEE D, 1991, ORNIS SCAND, V22, P33, DOI 10.2307/3676619; Leyrer J, 2006, J ORNITHOL, V147, P376, DOI 10.1007/s10336-005-0030-8; Liker A, 2001, OIKOS, V95, P3, DOI 10.1034/j.1600-0706.2001.950101.x; Lima SL, 1999, AM NAT, V153, P649, DOI 10.1086/303202; LIMA SL, 1995, ANIM BEHAV, V49, P11, DOI 10.1016/0003-3472(95)80149-9; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lima SL, 2013, BIOL REV, V88, P626, DOI 10.1111/brv.12021; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; Lipsey M. W., 2001, PRACTICAL METAANALYS; Maddison WP, 2011, MESQUITE MODULAR SYS, V2, P75; McKinnon L, 2010, SCIENCE, V327, P326, DOI 10.1126/science.1183010; Moller AP, 2013, BEHAV ECOL, V24, P1211, DOI 10.1093/beheco/art054; Moller AP, 2013, BEHAV ECOL, V24, P267, DOI 10.1093/beheco/ars163; Newton I, 2008, MIGRATION ECOLOGY OF BIRDS, P1; Piersma T, 1998, J AVIAN BIOL, V29, P511, DOI 10.2307/3677170; Portugal SJ, 2014, J EXP BIOL, V217, P3326, DOI 10.1242/jeb.103291; PULLIAM HR, 1973, J THEOR BIOL, V38, P419, DOI 10.1016/0022-5193(73)90184-7; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roberts G, 1996, ANIM BEHAV, V51, P1077, DOI 10.1006/anbe.1996.0109; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Runyan A. M., 2009, J WILDLIFE MANAGE, V68, P1124; SAFRIEL U, 1968, IBIS, V110, P283, DOI 10.1111/j.1474-919X.1968.tb00039.x; Samia DSM, 2015, SCI REP-UK, V5, DOI 10.1038/srep11913; SHIRIHAI H, 1992, British Birds, V85, P141; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; Sol D, 2005, P NATL ACAD SCI USA, V102, P5460, DOI 10.1073/pnas.0408145102; Sol D, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2463-0; Stankowich T, 2005, P ROY SOC B-BIOL SCI, V272, P2627, DOI 10.1098/rspb.2005.3251; Thomas GH, 2007, ADV STUD BEHAV, V37, P279, DOI 10.1016/S0065-3454(07)37006-X; Uchida K, 2016, J ZOOL, V298, P225, DOI 10.1111/jzo.12306; Valcu M, 2014, ECOGRAPHY, V37, P930, DOI 10.1111/ecog.00929; Van Den Hout PJ, 2008, IBIS, V150, P219, DOI 10.1111/j.1474-919X.2008.00785.x; Warnock N, 1998, CONDOR, V100, P456, DOI 10.2307/1369711; Warnock SE, 1996, IBIS, V138, P160, DOI 10.1111/j.1474-919X.1996.tb04323.x; Watts Bryan D., 2015, Wader Study, V122, P37; Weston MA, 2012, EMU, V112, P269, DOI 10.1071/MU12026; WINGFIELD JC, 1987, AM SCI, V75, P602; Winnie J, 2007, ANIM BEHAV, V73, P215, DOI 10.1016/j.anbehav.2006.07.007; YDENBERG RC, 1986, ADV STUD BEHAV, V16, P229, DOI 10.1016/S0065-3454(08)60192-8; Ydenberg RC, 2007, J AVIAN BIOL, V38, P523, DOI 10.1111/j.2007.0908-8857.04202.x; Yosef R, 2006, OSTRICH, V77, P67, DOI 10.2989/00306520609485510; Yosef R, 2006, J ARID ENVIRON, V64, P401, DOI 10.1016/j.jridenv.2005.06.012; Yosef R, 2004, RING, V24, P61; Yosef R, 2015, ZOOL MIDDLE EAST, V61, P220, DOI 10.1080/09397140.2015.1058466; Yosef R, 2011, J ETHOL, V29, P257, DOI 10.1007/s10164-010-0251-z; Yosef Reuven, 2002, Arctic Birds International Breeding Conditions Newsletter, V4, P38; Yosef Reuven, 1997, Vogelwarte, V39, P131; Zar J. H., 1999, BIOSTATISTICAL ANAL 87 0 0 11 11 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep SEP 18 2018 8 13989 10.1038/s41598-018-32252-1 9 Multidisciplinary Sciences Science & Technology - Other Topics GT8PL WOS:000444801300032 30228370 DOAJ Gold 2019-02-21 J Bieber, C; Turbill, C; Ruf, T Bieber, Claudia; Turbill, Christopher; Ruf, Thomas Effects of aging on timing of hibernation and reproduction SCIENTIFIC REPORTS English Article DORMICE GLIS-GLIS; COLUMBIAN GROUND-SQUIRRELS; EDIBLE DORMOUSE GLIS; SLOW LIFE-HISTORIES; BODY-MASS; MAMMALIAN HIBERNATION; ENERGY AVAILABILITY; CLIMATE-CHANGE; ACTIVE SEASON; HIGH SURVIVAL Small hibernators are long-lived for their size because seasonal dormancy greatly reduces predation risk. Thus, within a year, hibernators switch between states of contrasting mortality risk (active season versus hibernation), making them interesting species for testing the predictions of life-history theory. Accordingly, we hypothesized that, with advancing age and hence diminishing reproductive potential, hibernators should increasingly accept the higher predation risk associated with activity to increase the likelihood of current reproductive success. For edible dormice (Glis glis) we show that age strongly affects hibernation/activity patterns, and that this occurs via two pathways: (i) with increasing age, dormice are more likely to reproduce, which delays the onset of hibernation, and (ii) age directly advances emergence from hibernation in spring. We conclude that hibernation has to be viewed not merely as an energy saving strategy under harsh climatic conditions, but as an age-affected life-history trait that is flexibly used to maximize fitness. [Bieber, Claudia; Ruf, Thomas] Univ Vet Med, Res Inst Wildlife Ecol, Dept Integrat Biol & Evolut, Savoyenstr 1, A-1160 Vienna, Austria; [Bieber, Claudia; Turbill, Christopher] Western Sydney Univ, Hawkesbury Inst Environm, Locked Bag 1797, Penrith, NSW 2751, Australia Bieber, C (reprint author), Univ Vet Med, Res Inst Wildlife Ecol, Dept Integrat Biol & Evolut, Savoyenstr 1, A-1160 Vienna, Austria.; Bieber, C (reprint author), Western Sydney Univ, Hawkesbury Inst Environm, Locked Bag 1797, Penrith, NSW 2751, Australia. claudia.bieber@vetmeduni.ac.at Ruf, Thomas/0000-0002-9235-7079; Bieber, Claudia/0000-0001-8919-3117 city of Vienna; Austrian Science Fund (FWF) [P20534-B17] We thank P. Steiger for his help with data collection, as well as him and M. Salaba for taking care of the dormice. This project was supported by the city of Vienna, and the Austrian Science Fund (FWF, Project P20534-B17). We thank R. Hengsberger for her help with formatting the manuscript. Adamik P, 2008, J ZOOL, V275, P209, DOI 10.1111/j.1469-7998.2008.00415.x; Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; ARNOLD W, 1993, BEHAV ECOL, V4, P36, DOI 10.1093/beheco/4.1.36; BARNES BM, 1986, BIOL REPROD, V35, P1289, DOI 10.1095/biolreprod35.5.1289; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Bieber C, 1998, J ZOOL, V244, P223, DOI 10.1111/j.1469-7998.1998.tb00027.x; Bieber C, 2009, NATURWISSENSCHAFTEN, V96, P165, DOI 10.1007/s00114-008-0471-z; Bieber C, 2017, J COMP PHYSIOL B, V187, P803, DOI 10.1007/s00360-017-1080-y; Bieber C, 2014, FUNCT ECOL, V28, P167, DOI 10.1111/1365-2435.12173; Bieber Claudia, 2012, P133; Bieber C, 2012, OECOLOGIA, V169, P155, DOI 10.1007/s00442-011-2194-7; Bieber Claudia, 2004, Biological Papers of the University of Alaska, V27, P113; Blanco MB, 2013, SCI REP-UK, V3, DOI 10.1038/srep01768; Broussard DR, 2003, J ANIM ECOL, V72, P212, DOI 10.1046/j.1365-2656.2003.00691.x; Burton RS, 1999, FUNCT ECOL, V13, P232, DOI 10.1046/j.1365-2435.1999.00302.x; Carey HV, 2000, J COMP PHYSIOL B, V170, P551, DOI 10.1007/s003600000135; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Conover M. R., 2007, PREDATOR PREY DYNAMI; Cornils JS, 2017, FRONT ZOOL, V14, DOI 10.1186/s12983-017-0206-0; Dausmann KH, 2004, NATURE, V429, P825, DOI 10.1038/429825a; DAVIS LS, 1985, J MAMMAL, V66, P268, DOI 10.2307/1381239; Dobson FS, 2007, ECOSCIENCE, V14, P292, DOI 10.2980/1195-6860(2007)14[292:FASLHO]2.0.CO;2; Dugdale HL, 2011, MOL ECOL, V20, P3261, DOI 10.1111/j.1365-294X.2011.05167.x; ERLINGE S, 1983, OIKOS, V40, P36, DOI 10.2307/3544197; Fietz J, 2004, OECOLOGIA, V138, P202, DOI 10.1007/s00442-003-1423-0; FORSMAN ED, 1984, J WILDLIFE MANAGE, P5; Franceschini-Zink C, 2008, ZOOLOGY, V111, P76, DOI 10.1016/j.zool.2007.05.001; FRENCH AR, 1982, J COMP PHYSIOL, V148, P83, DOI 10.1007/BF00688891; Geiser F, 2013, CURR BIOL, V23, pR188, DOI 10.1016/j.cub.2013.01.062; Grabek K. R., 2017, GENETIC ARCHITECTURE, DOI [10.1101/222307, DOI 10.1101/222307]; Hayward AD, 2013, FUNCT ECOL, V27, P184, DOI 10.1111/1365-2435.12029; Hoelzl F, 2016, SCI REP-UK, V6, DOI 10.1038/srep36856; Hoelzl F, 2016, J EXP BIOL, V219, P2469, DOI 10.1242/jeb.140871; Hoelzl F, 2015, J COMP PHYSIOL B, V185, P931, DOI 10.1007/s00360-015-0929-1; Humphries MM, 2003, PHYSIOL BIOCHEM ZOOL, V76, P165, DOI 10.1086/367950; Humphries MM, 2003, PHYSIOL BIOCHEM ZOOL, V76, P180, DOI 10.1086/367949; Inouye DW, 2000, P NATL ACAD SCI USA, V97, P1630, DOI 10.1073/pnas.97.4.1630; JALLAGEAS M, 1989, J COMP PHYSIOL B, V159, P333, DOI 10.1007/BF00691513; Johnson HE, 2018, J APPL ECOL, V55, P663, DOI 10.1111/1365-2664.13021; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; JOY JE, 1980, COMP BIOCHEM PHYS A, V67, P219, DOI 10.1016/0300-9629(80)90436-3; Lane JE, 2011, J EVOLUTION BIOL, V24, P1949, DOI 10.1111/j.1420-9101.2011.02334.x; Lane JE, 2012, NATURE, V489, P554, DOI 10.1038/nature11335; Lebl K, 2011, J MAMMAL, V92, P926, DOI 10.1644/10-MAMM-A-225.1; Lebl K, 2011, ECOGRAPHY, V34, P683, DOI 10.1111/j.1600-0587.2010.06691.x; Lebl K, 2010, J COMP PHYSIOL B, V180, P447, DOI 10.1007/s00360-009-0425-6; Lefcheck JS, 2016, METHODS ECOL EVOL, V7, P573, DOI 10.1111/2041-210X.12512; Lehmer EM, 2006, PHYSIOL BIOCHEM ZOOL, V79, P454, DOI 10.1086/502816; LYMAN CP, 1981, SCIENCE, V212, P668, DOI 10.1126/science.7221552; Martin JGA, 2012, OIKOS, V121, P752, DOI 10.1111/j.1600-0706.2011.19962.x; MICHENER GR, 1979, J MAMMAL, V60, P760, DOI 10.2307/1380191; Millesi E, 1999, ETHOLOGY, V105, P163, DOI 10.1046/j.1439-0310.1999.00379.x; Millesi E, 2001, J BIOL RHYTHM, V16, P264, DOI 10.1177/074873001129001971; Millesi E., 2000, LIFE COLD, VIV, P285; Morbey YE, 2001, ECOL LETT, V4, P663, DOI 10.1046/j.1461-0248.2001.00265.x; Mrosovsky N., 1978, STRATEGIES COLD NATU, P21; MURIE JO, 1982, J MAMMAL, V63, P431, DOI 10.2307/1380440; Orzack SH, 2001, ECOLOGY, V82, P2659, DOI 10.2307/2679944; Ozgul A, 2010, NATURE, V466, P482, DOI 10.1038/nature09210; PENGELLEY ET, 1963, CAN J ZOOLOG, V41, P1103, DOI 10.1139/z63-087; PILASTRO A, 1994, J ZOOL, V234, P13, DOI 10.1111/j.1469-7998.1994.tb06053.x; Pilastro A, 2003, ECOLOGY, V84, P1784, DOI 10.1890/0012-9658(2003)084[1784:LLARSI]2.0.CO;2; Pinheiro J., 2013, R PACKAGE VERSION, P1, DOI DOI 10.1016/S0006-3207(01)00201-4; R Core Team, 2016, R LANG ENV STAT COMP; Ricklefs RE, 2007, ECOL LETT, V10, P867, DOI 10.1111/j.1461-0248.2007.01085.x; Roff Derek A., 1992; Ruf T, 2006, ECOLOGY, V87, P372, DOI 10.1890/05-0672; Ruf T, 2015, BIOL REV, V90, P891, DOI 10.1111/brv.12137; Schaub M, 2001, J ZOOL, V255, P89, DOI 10.1017/S0952836901001133; Shattuck MR, 2010, P NATL ACAD SCI USA, V107, P4635, DOI 10.1073/pnas.0911439107; Sheriff MJ, 2011, P ROY SOC B-BIOL SCI, V278, P2369, DOI 10.1098/rspb.2010.2482; Sherman PW, 2002, J ZOOL, V258, P307, DOI 10.1017/S0952836902001437; Shipley B, 2013, ECOLOGY, V94, P560, DOI 10.1890/12-0976.1; Shipley B, 2009, ECOLOGY, V90, P363, DOI 10.1890/08-1034.1; Siutz Carina, 2012, P155; SLADE NA, 1995, ECOLOGY, V76, P863, DOI 10.2307/1939351; Stawski C, 2010, NATURWISSENSCHAFTEN, V97, P29, DOI 10.1007/s00114-009-0606-x; Stearns S, 1992, EVOLUTION LIFE HIST; Stumpfel S, 2017, J COMP PHYSIOL B, V187, P253, DOI 10.1007/s00360-016-1017-x; Trout RC, 2015, FOLIA ZOOL, V64, P320; Turbill C, 2008, J ZOOL, V276, P285, DOI 10.1111/j.1469-7998.2008.00487.x; Turbill C, 2016, FUNCT ECOL, V30, P1366, DOI 10.1111/1365-2435.12620; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; VANVUREN D, 1991, CAN J ZOOL, V69, P1755, DOI 10.1139/z91-244; Weladji RB, 2010, OECOLOGIA, V162, P261, DOI 10.1007/s00442-009-1443-5; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x; Williams CT, 2014, J ZOOL, V292, P112, DOI 10.1111/jzo.12103; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zervanos SM, 2010, PHYSIOL BIOCHEM ZOOL, V83, P135, DOI 10.1086/648736 89 0 0 12 12 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep SEP 17 2018 8 13881 10.1038/s41598-018-32311-7 11 Multidisciplinary Sciences Science & Technology - Other Topics GT8CY WOS:000444762700011 30224823 DOAJ Gold 2019-02-21 J Pu, XC; Jin, GZ Pu, Xucai; Jin, Guangze Conspecific and phylogenetic density-dependent survival differs across life stages in two temperate old-growth forests in Northeast China FOREST ECOLOGY AND MANAGEMENT English Article Density dependence; Phylogenetic relatedness; Habitat variables; Species coexistence; Individual survival dynamics; Temperate forest SPECIES SHADE TOLERANCE; LOCAL BIOTIC NEIGHBORS; SEEDLING SURVIVAL; SPATIAL-PATTERNS; RAIN-FOREST; HABITAT HETEROGENEITY; PLANT DIVERSITY; TREE GROWTH; MORTALITY; PATHOGENS Factors that control individual survival dynamics are pivotal determinants of forest diversity. Numerous studies have examined the relative importance of habitat variables and neighborhood effects on individual survival, while few studies have examined this importance in different forest types that largely vary topography. We examined the role of conspecific negative density dependence (CNDD), phylogenetic negative density dependence (PNDD) and habitat variables across life stages in two temperate old-growth forests in Northeast China. Using generalized linear mixed models (GLMMs), we tested whether individual survival is related to neighborhood effects and habitat variables. Our results showed that the relative importance of neighborhood effects and habitat variables to focal individual survival varied among life stages and sites. However, the best-fit models for three life stages (with the exception of seedling stage in the BKPF) at both sites all included habitat variables, indicating that these variables contribute to the patterns of focal individual survival. We found evidence of a CNDD effect, and the strength of this effect decreased as the life stages progressed and varied from a negative effect at the seedling stage to a positive one at the adult stage. This result confirms that the importance of CNDD-based survival at the seedling stage plays a particularly significant role in promoting the coexistence of tree species and maintaining forest diversity. We found evidence of PNDD in our forest, and the impact of heterospecific phylogenetic relatedness on focal individual survival was significantly negative; the strength of PNDD increased as the life stages progressed. The CNDD and PNDD widely varied among species, indicating the importance of including the relative abundance, life history strategies and functional traits of species when determining the factors that affect species sensitivity to neighborhood effects. The results of our study demonstrated that CNDD, PNDD and habitat variables all influence the individual survival of these temperate old growth forests, but the relative importance of these factors vary among life stages and species. Our results highlight the importance of combining multiple species, life stages, functional traits and large-scale studies for investigating elements that affect species coexistence in tree communities. [Pu, Xucai; Jin, Guangze] Northeast Forestry Univ, Ctr Ecol Res, Harbin 150040, Heilongjiang, Peoples R China Jin, GZ (reprint author), Northeast Forestry Univ, Ctr Ecol Res, Harbin 150040, Heilongjiang, Peoples R China. taxus@126.com Jin, Guangze/F-5271-2017 Jin, Guangze/0000-0002-9852-0965 National Natural Science Foundation of China [31730015]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDPB0203]; Fundamental Research Funds for the Central Universities [2572017EA02] This study was financially supported by the National Natural Science Foundation of China (No. 31730015), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB0203) and the Fundamental Research Funds for the Central Universities (2572017EA02). Alvarez-Loayza P, 2011, J ECOL, V99, P1045, DOI 10.1111/j.1365-2745.2011.01835.x; Bagchi R, 2014, NATURE, V506, P85, DOI 10.1038/nature12911; Bai XJ, 2012, OECOLOGIA, V170, P755, DOI 10.1007/s00442-012-2348-2; Boege K, 2005, TRENDS ECOL EVOL, V20, P441, DOI 10.1016/j.tree.2005.05.001; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Burnham KP, 2002, J WILDLIFE MANAGE, V67, P175; Burns JH, 2011, P NATL ACAD SCI USA, V108, P5302, DOI 10.1073/pnas.1013003108; Chen L, 2010, ECOL LETT, V13, P695, DOI 10.1111/j.1461-0248.2010.01468.x; Chen LX, 2017, J NUTR BIOCHEM, V40, P1, DOI 10.1016/j.jnutbio.2016.05.005; Chen YX, 2016, ECOLOGY, V97, P776, DOI 10.1890/15-0625.1; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Clark CJ, 2005, ECOLOGY, V86, P2684, DOI 10.1890/04-1325; CLARK DA, 1984, AM NAT, V124, P769, DOI 10.1086/284316; Coley PD, 1996, ANNU REV ECOL SYST, V27, P305, DOI 10.1146/annurev.ecolsys.27.1.305; Comita LS, 2007, J ECOL, V95, P482, DOI 10.1111/j.1365-2745.2007.01229.x; Comita LS, 2017, SCIENCE, V356, P1328, DOI 10.1126/science.aan6356; Comita LS, 2014, J ECOL, V102, P845, DOI 10.1111/1365-2745.12232; Comita LS, 2010, SCIENCE, V329, P330, DOI 10.1126/science.1190772; Comita LS, 2009, J ECOL, V97, P1346, DOI 10.1111/j.1365-2745.2009.01551.x; Comita LS, 2009, ECOLOGY, V90, P328, DOI 10.1890/08-0451.1; CONNELL J H, 1971, P298; Coomes DA, 2006, TRENDS ECOL EVOL, V21, P593, DOI 10.1016/j.tree.2006.09.002; Dixon P, 2003, J VEG SCI, V14, P927, DOI 10.1658/1100-9233(2003)014[0927:VAPORF]2.0.CO;2; Gilbert GS, 2007, P NATL ACAD SCI USA, V104, P4979, DOI 10.1073/pnas.0607968104; Gilbert GS, 2012, EVOL APPL, V5, P869, DOI 10.1111/j.1752-4571.2012.00265.x; GILBERT GS, 1994, OECOLOGIA, V98, P100, DOI 10.1007/BF00326095; Harms KE, 2000, NATURE, V404, P493, DOI 10.1038/35006630; HilleRisLambers J, 2002, NATURE, V417, P732, DOI 10.1038/nature00809; Hubbell S.P., 2001, ANN ENTOMOL SOC AM, V98, P241; JANZEN DH, 1970, AM NAT, V104, P501, DOI 10.1086/282687; John R, 2007, P NATL ACAD SCI USA, V104, P864, DOI 10.1073/pnas.0604666104; Johnson DJ, 2014, ECOLOGY, V95, P2493, DOI 10.1890/13-2098.1; Johnson DJ, 2012, SCIENCE, V336, P904, DOI 10.1126/science.1220269; Kobe RK, 2011, ECOL LETT, V14, P503, DOI 10.1111/j.1461-0248.2011.01612.x; Kunstler G, 2016, NATURE, V529, P204, DOI 10.1038/nature16476; LaManna JA, 2017, SCIENCE, V356, P1389, DOI 10.1126/science.aam5678; LaManna JA, 2016, ECOL LETT, V19, P657, DOI 10.1111/ele.12603; Lebrija-Trejos E, 2016, ECOL LETT, V19, P1071, DOI 10.1111/ele.12643; Lebrija-Trejos E, 2014, ECOLOGY, V95, P940, DOI 10.1890/13-0623.1; Lin F, 2014, PLANT ECOL, V215, P795, DOI 10.1007/s11258-014-0332-0; Lin LX, 2012, J ECOL, V100, P905, DOI 10.1111/j.1365-2745.2012.01964.x; Liu XB, 2012, ECOL LETT, V15, P111, DOI 10.1111/j.1461-0248.2011.01715.x; Liu YY, 2014, J PLANT INTERACT, V9, P745, DOI 10.1080/17429145.2014.925146; Liu Y, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms10017; Lu JM, 2015, J PLANT ECOL, V8, P568, DOI 10.1093/jpe/rtv006; Mangan SA, 2010, NATURE, V466, P752, DOI 10.1038/nature09273; Marden JH, 2017, MOL ECOL, V26, P2498, DOI 10.1111/mec.13999; Messaoud Y, 2006, PLANT ECOL, V185, P319, DOI 10.1007/s11258-006-9106-7; Metz MR, 2012, J ECOL, V100, P969, DOI 10.1111/j.1365-2745.2012.01972.x; Metz MR, 2010, ECOLOGY, V91, P3675, DOI 10.1890/08-2323.1; Nathan R, 2000, TRENDS ECOL EVOL, V15, P278, DOI 10.1016/S0169-5347(00)01874-7; Newbery DM, 2013, ECOLOGY, V94, P2838, DOI 10.1890/13-0366.1; Paine CET, 2012, ECOL LETT, V15, P34, DOI 10.1111/j.1461-0248.2011.01705.x; Piao T, 2013, OECOLOGIA, V172, P207, DOI 10.1007/s00442-012-2481-y; Pu XC, 2017, ECOL EVOL, V7, P4582, DOI 10.1002/ece3.3030; Queenborough SA, 2007, ECOLOGY, V88, P2248, DOI 10.1890/06-0737.1; Russo SE, 2008, J ECOL, V96, P192, DOI 10.1111/j.1365-2745.2007.01330.x; SCHOENER TW, 1974, SCIENCE, V185, P27, DOI 10.1126/science.185.4145.27; Shibata M, 2010, ECOSCIENCE, V17, P137, DOI 10.2980/17-2-3163; Swenson NG, 2009, ECOLOGY, V90, P2161, DOI 10.1890/08-1025.1; Underwood N, 2014, Q REV BIOL, V89, P1, DOI 10.1086/674991; Uriarte M, 2004, J ECOL, V92, P348, DOI 10.1111/j.0022-0477.2004.00867.x; Uriarte M, 2010, ECOL LETT, V13, P1503, DOI 10.1111/j.1461-0248.2010.01541.x; Wang XH, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0047703, 10.1371/journal.pone.0032405]; Webb CO, 2006, ECOLOGY, V87, pS123, DOI 10.1890/0012-9658(2006)87[123:PSMSSA]2.0.CO;2; Wu H, 2017, FOREST ECOL MANAG, V384, P169, DOI 10.1016/j.foreco.2016.10.049; Wu JJ, 2016, ECOLOGY, V97, P1182, DOI 10.1890/14-2465.1; Zhang LW, 2011, PLANT SOIL, V347, P211, DOI 10.1007/s11104-011-0839-2; Zhu Y, 2018, ECOL LETT, V21, P506, DOI 10.1111/ele.12915; Zhu Y, 2015, J ECOL, V103, P957, DOI 10.1111/1365-2745.12414; Zhu Y, 2017, J VEG SCI, V28, P1166, DOI 10.1111/jvs.12580; Zhu Y, 2017, FOREST ECOL MANAG, V404, P354, DOI 10.1016/j.foreco.2017.09.004 73 0 0 14 19 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0378-1127 1872-7042 FOREST ECOL MANAG For. Ecol. Manage. SEP 15 2018 424 95 104 10.1016/j.foreco.2018.04.055 10 Forestry Forestry GM3AJ WOS:000437967900011 2019-02-21 J Chung, DJ; Healy, TM; McKenzie, JL; Chicco, AJ; Sparagna, GC; Schulte, PM Chung, Dillon J.; Healy, Timothy M.; McKenzie, Jessica L.; Chicco, Adam J.; Sparagna, Genevieve C.; Schulte, Patricia M. Mitochondria, Temperature, and the Pace of Life INTEGRATIVE AND COMPARATIVE BIOLOGY English Article; Proceedings Paper Symposium on Inside the Black Box - The Mitochondrial Basis of Life-History Variation and Animal Performance at the Annual Meeting of the Society-for-Integrative-and-Comparative-Biology JAN 03-07, 2018 San Francisco, CA Soc Integrat & Comparat Biol FUNDULUS-HETEROCLITUS PISCES; HISTORY TRADE-OFFS; INTRASPECIFIC VARIATION; GEOGRAPHIC-VARIATION; OXIDATIVE STRESS; METABOLIC-RATE; COUNTERGRADIENT VARIATION; EVOLUTIONARY SIGNIFICANCE; POPULATION-SIZE; SITE FIDELITY Life history strategies, physiological traits, and behavior are thought to covary along a "pace of life" axis, with organisms at the fast end of this continuum having higher fecundity, shorter lifespan, and more rapid development, growth, and metabolic rates. Countergradient variation represents a special case of pace of life variation, in which high-latitude organisms occupy the fast end of the continuum relative to low-latitude conspecifics when compared at a common temperature. Here, we use Atlantic killifish (Fundulus heteroclitus) to explore the role of mitochondrial properties as a mechanism underlying countergradient variation, and thus variation in the pace of life. This species is found along the Atlantic coast of North America, through a steep latitudinal thermal gradient. The northern subspecies has faster development, more rapid growth, higher routine metabolic rate, and higher activity than the southern subspecies when compared at a common temperature. The northern subspecies also has greater mitochondrial respiratory capacity in the liver, although these differences are not evident in other tissues. The increased respiratory capacity of liver mitochondria in northern fish is associated with increases in the activity of multiple electron transport complexes, which largely reflects an increase in the amount of inner mitochondrial membrane per mitochondrion in the northern fish. There are also differences in the lipid composition of liver mitochondrial membranes, including differences in cardiolipin species, which could also influence respiratory capacity. These data suggest that variation in mitochondrial properties could, at least in part, underlie variation in the pace of life in Atlantic killifish. [Chung, Dillon J.; Healy, Timothy M.; McKenzie, Jessica L.; Schulte, Patricia M.] Univ British Columbia, Dept Zool, Vancouver, BC V6T 1Z4, Canada; [Chung, Dillon J.; Healy, Timothy M.; McKenzie, Jessica L.; Schulte, Patricia M.] Univ British Columbia, Biodivers Res Ctr, Vancouver, BC V6T 1Z4, Canada; [Healy, Timothy M.] Univ Calif San Diego, Scripps Inst Oceanog, Div Marine Biol Res, La Jolla, CA 92037 USA; [Chicco, Adam J.] Colorado State Univ, Dept Biomed Sci, Ft Collins, CO 80523 USA; [Sparagna, Genevieve C.] Univ Colorado Denver, Div Cardiol, Anschutz Med Campus, Aurora, CO 80045 USA Schulte, PM (reprint author), Univ British Columbia, Dept Zool, Vancouver, BC V6T 1Z4, Canada.; Schulte, PM (reprint author), Univ British Columbia, Biodivers Res Ctr, Vancouver, BC V6T 1Z4, Canada. pschulte@zoology.ubc.ca Natural Sciences and Engineering Research Council of Canada (NSERC); U.S. Department of Agriculture National Institute of Food and Agriculture; American Heart Association This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery Grant [to P.M.S.] and a U.S. Department of Agriculture National Institute of Food and Agriculture and an American Heart Association grant [to A.J.C.] and via Michael Smith Travelling Fellowship [to D.J.C.]. Able KW, 2012, ESTUAR COAST, V35, P743, DOI 10.1007/s12237-011-9471-x; ABLE KW, 1986, AM ZOOL, V26, P145; Auer S. K., 2018, NATURE COMMUNICATION, V9, P8; Bacanskas LR, 2004, MAR ENVIRON RES, V58, P597, DOI 10.1016/j.marenvres.2004.03.048; Baris TZ, 2016, AM J PHYSIOL-REG I, V310, pR185, DOI 10.1152/ajpregu.00421.2015; BERNARDI G, 1993, P NATL ACAD SCI USA, V90, P9271, DOI 10.1073/pnas.90.20.9271; Birben E, 2012, WORLD ALLERGY ORGAN, V5, P9, DOI 10.1097/WOX.0b013e3182439613; Bosker T, 2013, COPEIA, P527, DOI 10.1643/CI-11-175; Brand MD, 2011, BIOCHEM J, V435, P297, DOI 10.1042/BJ20110162; Calhoon EA, 2014, PHYSIOL BIOCHEM ZOOL, V87, P265, DOI 10.1086/674696; Chung DJ, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.174458; Chung DJ, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-16598-6; Chung DJ, 2017, J EXP BIOL, V220, P1459, DOI 10.1242/jeb.151217; Conover DO, 2009, ANN NY ACAD SCI, V1168, P100, DOI 10.1111/j.1749-6632.2009.04575.x; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Cossins A. R., 1987, TEMPERATURE BIOL ANI; CULLIS PR, 1996, BIOCH LIPIDS LIPOPRO, P1; Dammhahn M, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2473-y; Dhillon RS, 2011, J EXP BIOL, V214, P3639, DOI 10.1242/jeb.057737; DICKINSON AB, 1975, P HELM SOC WASH, V42, P111; DIMICHELE L, 1991, SCIENCE, V253, P898, DOI 10.1126/science.1876847; DiMichele L, 1997, MAR BIOL, V128, P1, DOI 10.1007/s002270050062; DIMICHELE L, 1991, PHYSIOL ZOOL, V64, P1426, DOI 10.1086/physzool.64.6.30158223; Fangue NA, 2008, PHYSIOL BIOCHEM ZOOL, V81, P389, DOI 10.1086/589109; Fangue NA, 2009, J EXP BIOL, V212, P514, DOI 10.1242/jeb.024034; Glazier DS, 2015, BIOL REV, V90, P377, DOI 10.1111/brv.12115; Gonzalez I, 2009, SOUTHEAST NAT, V8, P227, DOI 10.1656/058.008.0203; GONZALEZVILLASENOR LI, 1990, EVOLUTION, V44, P27, DOI 10.1111/j.1558-5646.1990.tb04277.x; Goulet CT, 2017, J ANIM ECOL, V86, P1269, DOI 10.1111/1365-2656.12718; Haiens TH, 2002, FEBS LETT, V528, P35, DOI 10.1016/S0014-5793(02)03292-1; HAZEL JR, 1974, PHYSIOL REV, V54, P620; HAZEL JR, 1995, ANNU REV PHYSIOL, V57, P19, DOI 10.1146/annurev.ph.57.030195.000315; Healy TM, 2017, MOL ECOL, V26, P814, DOI 10.1111/mec.13945; Healy TM, 2012, PHYSIOL BIOCHEM ZOOL, V85, P107, DOI 10.1086/664584; HOCH FL, 1992, BIOCHIM BIOPHYS ACTA, V1113, P71, DOI 10.1016/0304-4157(92)90035-9; Hochachka PW, 2001, BIOCH ADAPTATION MEC; Hulbert AJ, 2010, INTEGR COMP BIOL, V50, P808, DOI 10.1093/icb/icq007; Janssens L, 2018, FUNCT ECOL, V32, P1036, DOI 10.1111/1365-2435.13068; Jastroch M, 2007, J COMP PHYSIOL B, V177, P743, DOI 10.1007/s00360-007-0171-6; Jimenez AG, 2014, J COMP PHYSIOL B, V184, P545, DOI 10.1007/s00360-014-0825-0; Jordan D. S, 1896, B US NAT MUS, V47, P1; KNEIB RT, 1986, COPEIA, P342; Konarzewski M, 2013, J COMP PHYSIOL B, V183, P27, DOI 10.1007/s00360-012-0698-z; Lanfear R, 2014, TRENDS ECOL EVOL, V29, P33, DOI 10.1016/j.tree.2013.09.009; Larsen S, 2012, J PHYSIOL-LONDON, V590, P3349, DOI 10.1113/jphysiol.2012.230185; LOTRICH VA, 1975, ECOLOGY, V56, P191, DOI 10.2307/1935311; MAC ARTHUR ROBERT H., 1967; MARTEINSDOTTIR G, 1988, COPEIA, P471; MARTEINSDOTTIR G, 1992, J FISH BIOL, V41, P883, DOI 10.1111/j.1095-8649.1992.tb02717.x; Mathers KE, 2015, BIOL OPEN, V4, P858, DOI 10.1242/bio.011544; McKenzie JL, 2017, J EVOLUTION BIOL, V30, P848, DOI 10.1111/jeb.13055; McKenzie JL, 2016, ECOL EVOL, V6, P5771, DOI 10.1002/ece3.2324; McMahon KW, 2005, ESTUARIES, V28, P966, DOI 10.1007/BF02696024; McMullin VA, 2009, J FISH BIOL, V75, P885, DOI 10.1111/j.1095-8649.2009.02338.x; Mejia EM, 2016, J BIOENERG BIOMEMBR, V48, P99, DOI 10.1007/s10863-015-9601-4; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; MORIN RP, 1983, COPEIA, P726; Murphy MP, 2009, BIOCHEM J, V417, P1, DOI 10.1042/BJ20081386; Norin T, 2012, PHYSIOL BIOCHEM ZOOL, V85, P645, DOI 10.1086/665982; Paradies G, 2014, BBA-BIOENERGETICS, V1837, P408, DOI 10.1016/j.bbabio.2013.10.006; PAYNTER KT, 1991, J EXP ZOOL, V257, P24, DOI 10.1002/jez.1402570104; Pesta D, 2012, METHODS MOL BIOL, V810, P25, DOI 10.1007/978-1-61779-382-0_3; Pettersen AK, 2018, J EXP BIOL, V221, DOI 10.1242/jeb.166876; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roff Derek A., 1992; Royaute R, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2472-z; Schulte PM, 2007, J THERM BIOL, V32, P152, DOI 10.1016/j.jtherbio.2007.01.012; Schultz ET, 1996, FUNCT ECOL, V10, P366, DOI 10.2307/2390285; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Skinner MA, 2005, WATER QUAL RES J CAN, V40, P288; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Strand AE, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045138; Sweeney J, 1998, BIOL BULL, V195, P238, DOI 10.2307/1542858; Teo SLH, 2003, ESTUARIES, V26, P720, DOI 10.1007/BF02711983; Valencak Teresa G, 2014, Longev Healthspan, V3, P3, DOI 10.1186/2046-2395-3-3; Versteegh MA, 2012, J EVOLUTION BIOL, V25, P1864, DOI 10.1111/j.1420-9101.2012.02574.x; Wagner DN, 2017, HEREDITY, V118, P594, DOI 10.1038/hdy.2017.6; Whitehead A, 2012, J EXP BIOL, V215, P1293, DOI 10.1242/jeb.062075; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Williams JB, 2010, INTEGR COMP BIOL, V50, P855, DOI 10.1093/icb/icq024; Williamson EG, 1997, MAR BIOL, V128, P9, DOI 10.1007/s002270050063; Wone BWM, 2013, COMP BIOCHEM PHYS A, V165, P70, DOI 10.1016/j.cbpa.2013.02.010; Ye CQ, 2016, J BIOENERG BIOMEMBR, V48, P113, DOI 10.1007/s10863-014-9591-7; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 89 1 1 1 2 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. SEP 2018 58 3 578 590 10.1093/icb/icy013 13 Zoology Zoology HC7QJ WOS:000451996200020 29718252 Bronze 2019-02-21 J Robbins, MM; Robbins, AM Robbins, Martha M.; Robbins, Andrew M. Variation in the social organization of gorillas: Life history and socioecological perspectives EVOLUTIONARY ANTHROPOLOGY English Review dispersal; infanticide; male; male philopatry; multimale groups; relatedness WESTERN LOWLAND GORILLAS; FEMALE MOUNTAIN GORILLAS; IMPENETRABLE-NATIONAL-PARK; CROSS RIVER GORILLA; SEX-BIASED DISPERSAL; BERINGEI-BERINGEI; REPRODUCTIVE SUCCESS; INTERGROUP ENCOUNTERS; MULTIMALE GROUPS; HABITAT USE A focus of socioecological research is to understand how ecological, social, and life history factors influence the variability of social organization within and between species. The genus Gorilla exhibits variability in social organization with western gorilla groups being almost exclusively one-male, yet approximately 40% of mountain gorilla groups are multimale. We review five ultimate causes for the variability in social organization within and among gorilla populations: human disturbance, ecological constraints on group size, risk of infanticide, life history patterns, and population density. We find the most evidence for the ecological constraints and life history hypotheses, but an over-riding explanation remains elusive. The variability may hinge on variation in female dispersal patterns, as females seek a group of optimal size and with a good protector male. Our review illustrates the challenges of understanding why the social organization of closely related species may deviate from predictions based on socioecological and life history theory. [Robbins, Martha M.; Robbins, Andrew M.] Max Planck Inst Evolutionary Anthropol, Deutsch Pl 6, D-04103 Leipzig, Germany Robbins, MM (reprint author), Max Planck Inst Evolutionary Anthropol, Deutsch Pl 6, D-04103 Leipzig, Germany. robbins@eva.mpg.de Max Planck Society Max Planck Society Arandjelovic M, 2010, BIOL CONSERV, V143, P1780, DOI 10.1016/j.biocon.2010.04.030; Arandjelovic M., 2014, PRIMATE BIOL, V1, P29; Arcus foundation, 2015, STAT AP IND AGR AP C; Bergl RA, 2012, ORYX, V46, P278, DOI 10.1017/S0030605310001857; Bermejo M, 2004, AM J PRIMATOL, V64, P223, DOI 10.1002/ajp.20073; Bradley BJ, 2004, CURR BIOL, V14, P510, DOI 10.1016/j.cub.2004.02.062; Bradley BJ, 2005, P NATL ACAD SCI USA, V102, P9418, DOI 10.1073/pnas.0502019102; Breuer T, 2016, PRIMATES, V57, P29, DOI 10.1007/s10329-015-0496-9; Breuer T, 2012, J HUM EVOL, V62, P466, DOI 10.1016/j.jhevol.2012.01.006; Breuer T, 2010, BEHAV ECOL SOCIOBIOL, V64, P515, DOI 10.1007/s00265-009-0867-6; Breuer T, 2009, AM J PRIMATOL, V71, P106, DOI 10.1002/ajp.20628; Caillaud D, 2008, AM J PHYS ANTHROPOL, V135, P379, DOI 10.1002/ajpa.20754; Caillaud D, 2006, CURR BIOL, V16, pR489, DOI 10.1016/j.cub.2006.06.017; Caillaud D, 2014, AM J PRIMATOL, V76, P730, DOI 10.1002/ajp.22265; Carnes LM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019853; Casimir MJ, 1973, Z FUER TIERPSYCHOL, V33, P290; Chapais B, 2013, EVOL ANTHROPOL, V22, P52, DOI 10.1002/evan.21345; Chapman CA, 2009, PRIMATES, V50, P12, DOI 10.1007/s10329-008-0123-0; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Chowdhury S, 2015, AM J PHYS ANTHROPOL, V158, P501, DOI 10.1002/ajpa.22804; Cipolletta C, 2004, AM J PRIMATOL, V64, P193, DOI 10.1002/ajp.20072; Clutton-Brock T, 2012, EVOL ANTHROPOL, V21, P136, DOI 10.1002/evan.21316; CLUTTONBROCK TH, 1989, NATURE, V337, P70, DOI 10.1038/337070a0; CROOK JH, 1966, NATURE, V210, P1200, DOI 10.1038/2101200a0; Doran DM, 1998, EVOL ANTHROPOL, V6, P120; Doran-Sheehy D, 2009, AM J PHYS ANTHROPOL, V140, P727, DOI 10.1002/ajpa.21118; Doran-Sheehy DM, 2004, AM J PRIMATOL, V64, P207, DOI 10.1002/ajp.20075; Doran-Sheeny DM, 2009, AM J PRIMATOL, V71, P1011, DOI 10.1002/ajp.20743; Douadi MI, 2007, MOL ECOL, V16, P2247, DOI 10.1111/j.1365-294X.2007.03286.x; Duda P, 2013, J HUM EVOL, V65, P424, DOI 10.1016/j.jhevol.2013.07.009; Dunbar RIM, 2000, PRIMATE MALES, P259; Eckardt W, 2016, CONSERV PHYSIOL, V4, DOI 10.1093/conphys/cow029; Eckardt W, 2016, BEHAV ECOL SOCIOBIOL, V70, P493, DOI 10.1007/s00265-016-2066-6; Eckardt W, 2015, J COMP PSYCHOL, V129, P26, DOI 10.1037/a0038370; EISENBER.JF, 1972, SCIENCE, V176, P863, DOI 10.1126/science.176.4037.863; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; FAY JM, 1995, J HUM EVOL, V29, P93, DOI 10.1006/jhev.1995.1048; Fletcher Alison, 2001, Cambridge Studies in Biological and Evolutionary Anthropology, V27, P153; Fossey D., 1984, P217; FOSSEY D, 1974, ANIM BEHAV, V22, P568, DOI 10.1016/S0003-3472(74)80002-3; FOSSEY D, 1972, ANIM BEHAV, V20, P36, DOI 10.1016/S0003-3472(72)80171-4; FOSSEY D, 1983, GORILLAS MIST; Galbany J, 2017, AM J PHYS ANTHROPOL, V163, P570, DOI 10.1002/ajpa.23232; Ganas J, 2005, BEHAV ECOL SOCIOBIOL, V58, P277, DOI 10.1007/s00265-005-0920-z; Ganas J, 2004, INT J PRIMATOL, V25, P1043, DOI 10.1023/B:IJOP.0000043351.20129.44; Gatti S, 2004, AM J PRIMATOL, V63, P111, DOI 10.1002/ajp.20045; Geary DC, 2011, OXFORD HDB EVOLUTION, P365; Genton C, 2015, J ANIM ECOL, V84, P166, DOI 10.1111/1365-2656.12268; Goldsmith ML, 1999, INT J PRIMATOL, V20, P1, DOI 10.1023/A:1020528115829; Goldsmith ML, 2003, CAM S BIO EVOL ANTHR, V35, P358; Gray M, 2013, BIOL CONSERV, V158, P230, DOI 10.1016/j.biocon.2012.09.018; Groves CP, 2003, CAM S BIO EVOL ANTHR, V35, P15; Gruber T, 2016, EVOL ANTHROPOL, V25, P239, DOI 10.1002/evan.21501; Grueter CC, 2016, BEHAV ECOL, V27, P766, DOI 10.1093/beheco/arv212; Grueter CC, 2014, PHYSIOL BEHAV, V127, P13, DOI 10.1016/j.physbeh.2014.01.009; Grueter CC, 2013, AM J PRIMATOL, V75, P267, DOI 10.1002/ajp.22102; Guschanski K, 2008, CURR BIOL, V18, P1809, DOI 10.1016/j.cub.2008.10.031; Guschanski K, 2009, BIOL CONSERV, V142, P290, DOI 10.1016/j.biocon.2008.10.024; Habumuremyi S, 2016, PHYSIOL BEHAV, V157, P185, DOI 10.1016/j.physbeh.2016.02.017; Hagemann L, 2018, AM J PRIMATOL, V80, DOI 10.1002/ajp.22898; HARCOURT A. H, 2007, GORILLA SOC CONFLICT; HARCOURT AH, 1978, Z TIERPSYCHOL, V48, P401; HARCOURT AH, 1981, ANIM BEHAV, V29, P206, DOI 10.1016/S0003-3472(81)80167-4; Head JS, 2011, INT J PRIMATOL, V32, P755, DOI 10.1007/s10764-011-9499-6; Hedwig D, 2015, AM J PRIMATOL, V77, P1239, DOI 10.1002/ajp.22462; Henzi SP, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0351; Hill KR, 2011, SCIENCE, V331, P1286, DOI 10.1126/science.1199071; HRDY SB, 1979, ETHOL SOCIOBIOL, V1, P13, DOI 10.1016/0162-3095(79)90004-9; Imong I, 2014, ANIM CONSERV, V17, P323, DOI 10.1111/acv.12100; Imong I, 2016, ENVIRON CONSERV, V43, P161, DOI 10.1017/S0376892915000417; Inoue E, 2013, AM J PHYS ANTHROPOL, V151, P583, DOI 10.1002/ajpa.22312; IUCN, 2016, IUCN RED LIST THREAT; IUCN SSC Primate Specialist Group, 2014, REG ACT PLAN CONS W; JANSON CH, 1988, BEHAVIOUR, V105, P165, DOI 10.1163/156853988X00502; JANSON CH, 1995, BEHAV ECOL, V6, P326, DOI 10.1093/beheco/6.3.326; Janson CH, 2000, EVOL ANTHROPOL, V9, P73, DOI 10.1002/(SICI)1520-6505(2000)9:2<73::AID-EVAN2>3.0.CO;2-X; Janson Charles H., 1993, P57; Johnstone RA, 2000, ETHOLOGY, V106, P5, DOI 10.1046/j.1439-0310.2000.00529.x; Kalpers J, 2003, ORYX, V37, P326, DOI 10.1017/S0030605303000589; Kamilar JM, 2014, BEHAV ECOL SOCIOBIOL, V68, P1677, DOI 10.1007/s00265-014-1776-x; Kappeler PM, 2002, INT J PRIMATOL, V23, P707, DOI 10.1023/A:1015520830318; Klailova M, 2012, FOLIA PRIMATOL, V83, P312, DOI 10.1159/000342143; Klailova M, 2010, AM J PRIMATOL, V72, P897, DOI 10.1002/ajp.20829; Koenig A, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0348; Koenig A, 2012, EVOL ANTHROPOL, V21, P108, DOI 10.1002/evan.21300; Koenig Andreas, 2012, P215; Kuehl H, 2008, BEST PRACTICE GUIDEL; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Laurance WF, 2006, CONSERV BIOL, V20, P1251, DOI 10.1111/j.1523-1739.2006.00420.x; Lindenfors P, 2004, P ROY SOC B-BIOL SCI, V271, pS101, DOI 10.1098/rsbl.2003.0114; Lodwick J, 2014, THESIS; Lukas D, 2011, J EVOLUTION BIOL, V24, P2624, DOI 10.1111/j.1420-9101.2011.02385.x; Magliocca F, 1999, AM J PRIMATOL, V48, P1, DOI 10.1002/(SICI)1098-2345(1999)48:1<1::AID-AJP1>3.0.CO;2-2; Masi S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129254; McNeilage Alastair, 2001, Cambridge Studies in Biological and Evolutionary Anthropology, V27, P265; Moore J, 1999, PRIMATES, V40, P1, DOI 10.1007/BF02557698; Nkurunungi JB, 2004, AFR J ECOL, V42, P289, DOI 10.1111/j.1365-2028.2004.00523.x; Nowell AA, 2008, BEHAVIOUR, V145, P171, DOI 10.1163/156853907783244747; Nowell AA, 2007, INT J PRIMATOL, V28, P441, DOI 10.1007/s10764-007-9128-6; Nsubuga AM, 2008, AM J PHYS ANTHROPOL, V135, P263, DOI 10.1002/ajpa.20740; Oates JF, 2003, CAM S BIO EVOL ANTHR, V35, P472; Ostner J, 2014, BEHAVIOUR, V151, P871, DOI 10.1163/1568539X-00003191; Ostro LET, 2001, INT J PRIMATOL, V22, P733, DOI 10.1023/A:1012013315920; Parnell RJ, 2002, AM J PRIMATOL, V56, P193, DOI 10.1002/ajp.1074; Perrin N, 2000, AM NAT, V155, P116, DOI 10.1086/303296; Plumptre AJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0162697; Plumptre Andrew J., 2001, Cambridge Studies in Biological and Evolutionary Anthropology, V27, P361; Poethke HJ, 2002, P ROY SOC B-BIOL SCI, V269, P637, DOI 10.1098/rspb.2001.1936; Port M, 2012, BEHAV ECOL, V23, P889, DOI 10.1093/beheco/ars053; Potts R, 1998, EVOL ANTHROPOL, V7, P81, DOI 10.1002/(SICI)1520-6505(1998)7:3<81::AID-EVAN3>3.3.CO;2-1; Pradhan GR, 2008, BEHAVIOUR, V145, P251, DOI 10.1163/156853907783244710; Reel M, 2013, MAN BEAST UNLIKELY E; Remis MJ, 1997, AM J PRIMATOL, V43, P87; Robbins AM, 2005, BEHAV ECOL SOCIOBIOL, V58, P295, DOI 10.1007/s00265-005-0917-7; Robbins AM, 2006, AM J PHYS ANTHROPOL, V131, P511, DOI 10.1002/ajpa.20474; Robbins AM, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160533; Robbins AM, 2015, PRIMATOL MONOGR, P75, DOI 10.1007/978-4-431-55480-6_4; Robbins AM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0078256; Robbins AM, 2011, AM J PHYS ANTHROPOL, V146, P582, DOI 10.1002/ajpa.21605; Robbins AM, 2009, ANIM BEHAV, V77, P831, DOI 10.1016/j.anbehav.2008.12.005; Robbins MM, 2008, INT J PRIMATOL, V29, P999, DOI 10.1007/s10764-008-9275-4; Robbins MM, 2007, BEHAVIOUR, V144, P1497, DOI 10.1163/156853907782512146; Robbins MM, 2007, BEHAV ECOL SOCIOBIOL, V61, P919, DOI 10.1007/s00265-006-0321-y; Robbins MM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019788; Robbins Martha M., 2001, Cambridge Studies in Biological and Evolutionary Anthropology, V27, P29; Robbins MM, 2009, BIOL CONSERV, V142, P2886, DOI 10.1016/j.biocon.2009.07.010; Robbins MM, 2004, AM J PRIMATOL, V64, P145, DOI 10.1002/ajp.20069; Robbins MM, 2004, AM J PRIMATOL, V63, P201, DOI 10.1002/ajp.20052; ROBBINS MM, 1995, BEHAVIOUR, V132, P21, DOI 10.1163/156853995X00261; Robbins MM, 1996, ETHOLOGY, V102, P942; Rogers ME, 2004, AM J PRIMATOL, V64, P173, DOI 10.1002/ajp.20071; Rosenbaum S, 2015, ANIM BEHAV, V104, P13, DOI 10.1016/j.anbehav.2015.02.025; Rosenbaum S, 2011, AM J PRIMATOL, V73, P356, DOI 10.1002/ajp.20905; Rosenbaum S, 2016, SCI REP-UK, V6, DOI 10.1038/srep37018; Rothman JM, 2008, OECOLOGIA, V155, P111, DOI 10.1007/s00442-007-0901-1; Rothman JM, 2011, BIOL LETTERS, V7, P847, DOI 10.1098/rsbl.2011.0321; Roy J, 2014, BIOL CONSERV, V180, P249, DOI 10.1016/j.biocon.2014.10.011; Roy J, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2014.0811; Roy J, 2014, BMC ECOL, V14, DOI 10.1186/1472-6785-14-21; Salmi R, 2014, AM J PHYS ANTHROPOL, V155, P379, DOI 10.1002/ajpa.22575; Salmi R, 2013, ETHOLOGY, V119, P831, DOI 10.1111/eth.12122; Sarmiento EE, 1996, AM J PRIMATOL, V40, P1, DOI 10.1002/(SICI)1098-2345(1996)40:1<1::AID-AJP1>3.0.CO;2-1; Sawyer SC, 2013, DIVERS DISTRIB, V19, P943, DOI 10.1111/ddi.12046; Schaik CP, 2013, PHILOS T R SOC B, V368; Schaller GB, 1963, MOUNTAIN GORILLA ECO; Schuelke Oliver, 2012, P195; Seiler N, 2018, AM J PRIMATOL, V80, DOI 10.1002/ajp.22754; Seiler N, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.170720; SICOTTE P, 1994, ETHOLOGY, V97, P47; SICOTTE P, 1993, AM J PRIMATOL, V30, P21, DOI 10.1002/ajp.1350300103; Sicotte Pascale, 2001, Cambridge Studies in Biological and Evolutionary Anthropology, V27, P59; Snyder-Mackler N, 2012, P ROY SOC B-BIOL SCI, V279, P3788, DOI 10.1098/rspb.2012.0842; Spelman LH, 2013, J ZOO WILDLIFE MED, V44, P1027, DOI 10.1638/2013-0014R.1; STEARNS SC, 1993, EVOLUTION LIFE HIST; Sterck EHM, 1997, BEHAV ECOL SOCIOBIOL, V41, P291, DOI 10.1007/s002650050390; Sterck EHM, 1999, PRIMATES, V40, P199, DOI 10.1007/BF02557711; Stewart K.J., 1987, P155; Stoinski TS, 2009, BEHAVIOUR, V146, P1193, DOI 10.1163/156853909X419992; Stoinski TS, 2013, AM J PHYS ANTHROPOL, V152, P165, DOI 10.1002/ajpa.22301; Stoinski TS, 2009, ANIM BEHAV, V77, P1155, DOI 10.1016/j.anbehav.2008.12.030; Stokes EJ, 2004, AM J PRIMATOL, V64, P233, DOI 10.1002/ajp.20074; Stokes EJ, 2003, BEHAV ECOL SOCIOBIOL, V54, P329, DOI 10.1007/s00265-003-0630-3; Stokes EJ, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010294; Strier KB, 2017, AM J PHYS ANTHROPOL, V162, P4, DOI 10.1002/ajpa.23143; Strindberg S, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aar2964; Teichroeb JA, 2012, BEHAV ECOL, V23, P1348, DOI 10.1093/beheco/ars128; Thalmann O, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-85; Tutin Caroline E. G., 1996, P58, DOI 10.1017/CBO9780511752414.007; van Schaik C.P., 1989, Special Publication of the British Ecological Society, P195; VanSchaik CP, 1997, P ROY SOC B-BIOL SCI, V264, P1687, DOI 10.1098/rspb.1997.0234; Vigilant L, 2015, BEHAV ECOL SOCIOBIOL, V69, P1163, DOI 10.1007/s00265-015-1930-0; Walsh PD, 2005, PLOS BIOL, V3, P1946, DOI 10.1371/journal.pbio.0030371; Waser PM, 2013, ECOLOGY, V94, P1287, DOI 10.1890/12-1037.1; Watson Lyna, 2000, African Primates, V4, P74; Watts David P., 1996, P16, DOI 10.1017/CBO9780511752414.004; WATTS DP, 1984, AM J PRIMATOL, V7, P323, DOI 10.1002/ajp.1350070403; WATTS DP, 1989, ETHOLOGY, V81, P1; WATTS DP, 1991, FOLIA PRIMATOL, V56, P1, DOI 10.1159/000156521; WATTS DP, 1992, AM J PRIMATOL, V28, P159, DOI 10.1002/ajp.1350280302; Watts DP, 2000, PRIMATE MALES, P169; Watts DP, 1998, INT J PRIMATOL, V19, P651, DOI 10.1023/A:1020324909101; Weber B, 2011, KINGDOM GORILLAS; WILLIAMSON EA, 1990, AM J PRIMATOL, V21, P265, DOI 10.1002/ajp.1350210403; WRANGHAM RW, 1980, BEHAVIOUR, V75, P262, DOI 10.1163/156853980X00447; Wright E, 2015, AM J PHYS ANTHROPOL, V158, P487, DOI 10.1002/ajpa.22808; Wright E, 2014, BEHAV ECOL SOCIOBIOL, V68, P957, DOI 10.1007/s00265-014-1708-9; Xue YL, 2015, SCIENCE, V348, P242, DOI 10.1126/science.aaa3952; Yamagiwa J, 2006, PRIMATES, V47, P74, DOI 10.1007/s10329-005-0147-7; Yamagiwa J, 2003, PRIMATES, V44, P359, DOI 10.1007/s10329-003-0049-5; Yamagiwa J., 2003, Journal of Sustainable Forestry, V16, P115, DOI 10.1300/J091v16n03_06; Yamagiwa J., 1987, P31; Yamagiwa J, 2014, PRIMATES CETACEANS, P43; Yamagiwa J, 2015, PRIMATES, V56, P3, DOI 10.1007/s10329-014-0433-3; Yamagiwa J, 2009, PRIMATES, V50, P293, DOI 10.1007/s10329-009-0163-0 194 0 0 6 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1060-1538 1520-6505 EVOL ANTHROPOL Evol. Anthropol. SEP-OCT 2018 27 5 218 233 10.1002/evan.21721 16 Anthropology Anthropology GY3UJ WOS:000448480900005 30325554 2019-02-21 J Liu, M; Rubenstein, DR; Cheong, SA; Shen, SF Liu, Ming; Rubenstein, Dustin R.; Cheong, Siew-Ann; Shen, Sheng-Feng Multitasking and the evolution of optimal clutch size in fluctuating environments ECOLOGY AND EVOLUTION English Article bet-hedging strategy; breeding season length; clutch size; environmental fluctuation; life-history NEST PREDATION; TROPICAL BIRDS; LIFE-HISTORIES; BROOD SIZE; TRADE-OFF; RISK; REPRODUCTION; INCREASES; GRADIENTS; FECUNDITY Adaptive studies of avian clutch size variation across environmental gradients have resulted in what has become known as the fecundity gradient paradox, the observation that clutch size typically decreases with increasing breeding season length along latitudinal gradients, but increases with increasing breeding season length along elevational gradients. These puzzling findings challenge the common belief that organisms should reduce their clutch size in favor of additional nesting attempts as the length of the breeding season increases, an approach typically described as a bet-hedging strategy. Here, we propose an alternative hypothesisthe multitasking hypothesisand show that laying smaller clutches represents a multitasking strategy of switching between breeding and recovery from breeding. Both our individual-based and analytical models demonstrate that a small clutch size strategy is favored during shorter breeding seasons because less time and energy are wasted under the severe time constraints associated with breeding multiply within a season. Our model also shows that a within-generation bet-hedging strategy is not favored by natural selection, even under a high risk of predation and in long breeding seasons. Thus, saving timewasting less time as a result of an inability to complete a breeding cycle at the end of breeding seasonis likely to be the primary benefit favoring the evolution of small avian clutch sizes during short breeding seasons. We also synthesize the seasonality hypothesis (pronounced seasonality leads to larger clutch size) and clutch size-dependent predation hypothesis (larger clutch size causes higher predation risks) within our multitasking hypothesis to develop an integrative model to help resolve the paradox of contrasting patterns of clutch size along elevational and latitudinal gradients. Ultimately, our models provide a new perspective for understanding life-history evolution under fluctuating environments. [Liu, Ming; Shen, Sheng-Feng] Acad Sinica, Biodivers Res Ctr, Taipei, Taiwan; [Liu, Ming] Natl Taiwan Univ, Dept Entomol, Taipei, Taiwan; [Rubenstein, Dustin R.] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY USA; [Rubenstein, Dustin R.] Columbia Univ, Ctr Integrat Anim Behav, New York, NY USA; [Cheong, Siew-Ann] Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, Singapore, Singapore; [Cheong, Siew-Ann] Nanyang Technol Univ, Complex Inst, Singapore, Singapore Shen, SF (reprint author), Acad Sinica, Biodivers Res Ctr, Taipei, Taiwan. shensf@sinica.edu.tw Rubenstein, Dustin/0000-0002-4999-3723; Liu, Ming/0000-0002-5170-8688; Shen, Sheng-Feng/0000-0002-0631-6343 Ministry of Science and Technology, Taiwan [100-2621-B-001-004-MY3, 104-2311-B-001-028-MY3]; Division of Integrative Organismal Systems [IOS-1257530, IOS-1656098]; Academia Sinica [2316-1060400] Ministry of Science and Technology, Taiwan, Grant/Award Number: 100-2621-B-001-004-MY3 and 104-2311-B-001-028-MY3; Division of Integrative Organismal Systems, Grant/Award Number: IOS-1257530 and IOS-1656098; Academia Sinica, Grant/Award Number: 2316-1060400 ALLPORT A, 1994, ATTENTION PERFORM, V15, P421; Arrington CM, 2004, PSYCHOL SCI, V15, P610, DOI 10.1111/j.0956-7976.2004.00728.x; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Bennett P., 2002, EVOLUTIONARY ECOLOGY; Blount JD, 2000, TRENDS ECOL EVOL, V15, P47, DOI 10.1016/S0169-5347(99)01774-7; Blount JD, 2004, P ROY SOC B-BIOL SCI, V271, pS79, DOI 10.1098/rsbl.2003.0104; Boyce AJ, 2015, AUK, V132, P424, DOI 10.1642/AUK-14-150.1; Boyle WA, 2008, OECOLOGIA, V155, P397, DOI 10.1007/s00442-007-0897-6; BURLEY N, 1980, AM NAT, V115, P223, DOI 10.1086/283556; Deerenberg C, 1996, J AVIAN BIOL, V27, P321, DOI 10.2307/3677263; Doligez B, 2003, ECOLOGY, V84, P2582, DOI 10.1890/02-3116; DRENT RH, 1980, ARDEA, V68, P225; EDEN SF, 1989, IBIS, V131, P429, DOI 10.1111/j.1474-919X.1989.tb02792.x; Farnsworth GL, 2001, AUK, V118, P973, DOI 10.1642/0004-8038(2001)118[0973:HMBCST]2.0.CO;2; Griebeler EM, 2010, J EVOLUTION BIOL, V23, P888, DOI 10.1111/j.1420-9101.2010.01958.x; Hau M, 2004, OIKOS, V106, P489, DOI 10.1111/j.0030-1299.2004.13206.x; Hopper KR, 2003, OIKOS, V101, P219, DOI 10.1034/j.1600-0706.2003.12051.x; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Kiesel A, 2010, PSYCHOL BULL, V136, P849, DOI 10.1037/a0019842; Koch I, 2011, ACTA PSYCHOL, V136, P399, DOI 10.1016/j.actpsy.2011.01.006; Lack D., 1954, NATURAL REGULATION A; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McKinnon L, 2010, SCIENCE, V327, P326, DOI 10.1126/science.1183010; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Meiran N, 2000, PSYCHOL RES-PSYCH FO, V63, P234, DOI 10.1007/s004269900004; Moller AP, 2007, BEHAV ECOL, V18, P62, DOI 10.1093/beheco/ar1051; Moller Anders Pape, 1997, P105; MOLLER AP, 1990, OIKOS, V57, P237, DOI 10.2307/3565945; MOLLER AP, 1993, J ANIM ECOL, V62, P309, DOI 10.2307/5362; Monsell S, 2003, TRENDS COGN SCI, V7, P134, DOI 10.1016/S1364-6613(03)00028-7; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Nwaogu CJ, 2017, J AVIAN BIOL, V48, P563, DOI 10.1111/jav.01132; Pincheira-Donoso D, 2017, BIOL REV, V92, P341, DOI 10.1111/brv.12232; Poysa H, 2007, AM NAT, V169, P94, DOI 10.1086/509943; Ricklefs R.E., 1977, P193; RICKLEFS RE, 1980, AUK, V97, P38; Ridley AR, 2008, BEHAV ECOL, V19, P1136, DOI 10.1093/beheco/arn097; ROGERS RD, 1995, J EXP PSYCHOL GEN, V124, P207, DOI 10.1037//0096-3445.124.2.207; Rubenstein DR, 2007, AM NAT, V170, P155, DOI 10.1086/518671; Rubinstein JS, 2001, J EXP PSYCHOL HUMAN, V27, P763, DOI 10.1037//0096-1523.27.4.763; Sarhan A, 2007, EVOLUTION, V61, P606, DOI 10.1111/j.1558-5646.2007.00053.x; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SMITH HG, 1987, AUK, V104, P700; Starrfelt J, 2012, BIOL REV, V87, P742, DOI 10.1111/j.1469-185X.2012.00225.x; Steinhauser M, 2009, J EXP PSYCHOL HUMAN, V35, P1398, DOI 10.1037/a0016467; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1 51 0 0 6 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. SEP 2018 8 17 8803 8817 10.1002/ece3.4364 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GU8QR WOS:000445606000015 30271547 DOAJ Gold 2019-02-21 J Luhring, TM; Vavra, JM; Cressler, CE; DeLong, JP Luhring, Thomas M.; Vavra, Janna M.; Cressler, Clayton E.; DeLong, John P. Predators modify the temperature dependence of life-history trade-offs ECOLOGY AND EVOLUTION English Article allocation; fecundity; fitness; phenotypic plasticity; predation; reproduction; thermal reaction norm INDUCED PHENOTYPIC PLASTICITY; THERMAL PERFORMANCE CURVES; BODY-SIZE; OFFSPRING SIZE; POPULATION-GROWTH; RAPID EVOLUTION; DAPHNIA-MAGNA; RESPONSES; REPRODUCTION; ECTOTHERMS Although life histories are shaped by temperature and predation, their joint influence on the interdependence of life-history traits is poorly understood. Shifts in one life-history trait often necessitate shifts in anotherstructured in some cases by trade-offsleading to differing life-history strategies among environments. The offspring size-number trade-off connects three traits whereby a constant reproductive allocation (R) constrains how the number (O) and size (S) of offspring change. Increasing temperature and size-independent predation decrease size at and time to reproduction which can lower R through reduced time for resource accrual or size-constrained fecundity. We investigated how O, S, and R in a clonal population of Daphnia magna change across their first three clutches with temperature and size-independent predation risk. Early in ontogeny, increased temperature moved O and S along a trade-off curve (constant R) toward fewer larger offspring. Later in ontogeny, increased temperature reduced R in the no-predator treatment through disproportionate decreases in O relative to S. In the predation treatment, R likewise decreased at warmer temperatures but to a lesser degree and more readily traded off S for O whereby the third clutch showed a constant allocation strategy of O versus S with decreasing R. Ontogenetic shifts in S and O rotated in a counterclockwise fashion as temperature increased and more drastically under risk of predation. These results show that predation risk can alter the temperature dependence of traits and their interactions through trade-offs. [Luhring, Thomas M.; Vavra, Janna M.; Cressler, Clayton E.; DeLong, John P.] Univ Nebraska Lincoln, Sch Biol Sci, Lincoln, NE 68588 USA Luhring, TM (reprint author), Univ Nebraska Lincoln, Sch Biol Sci, Lincoln, NE 68588 USA. tomluhring@gmail.com Luhring, Thomas/0000-0001-7982-5862 Amarasekare P, 2012, AM NAT, V179, P178, DOI 10.1086/663677; Angilletta MJ, 2009, BIO HABIT, P1; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Atkinson D, 2001, EXPTL BIOL REV, P269; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; Beckerman AP, 2010, J ANIM ECOL, V79, P1069, DOI 10.1111/j.1365-2656.2010.01703.x; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; Berger D, 2008, FUNCT ECOL, V22, P523, DOI 10.1111/j.1365-2435.2008.01392.x; BLACK AR, 1990, OECOLOGIA, V83, P117, DOI 10.1007/BF00324642; Bourdeau PE, 2009, ECOLOGY, V90, P1659, DOI 10.1890/08-1653.1; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Burks RL, 2001, J N AM BENTHOL SOC, V20, P615, DOI 10.2307/1468092; Burnside WR, 2014, OIKOS, V123, P1449, DOI 10.1111/oik.01199; Chua CM, 2013, MAR ECOL PROG SER, V475, P85, DOI 10.3354/meps10077; Ciota AT, 2014, J MED ENTOMOL, V51, P55, DOI 10.1603/ME13003; Crawford BA, 2012, ETHOLOGY, V118, P41, DOI 10.1111/j.1439-0310.2011.01983.x; Cressler CE, 2017, AM NAT, V190, pE13, DOI 10.1086/691779; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Culler LE, 2014, OECOLOGIA, V176, P653, DOI 10.1007/s00442-014-3058-8; Davison R, 2014, J THEOR BIOL, V360, P251, DOI 10.1016/j.jtbi.2014.07.015; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DeLong JP, 2017, ECOL EVOL, V7, P3940, DOI 10.1002/ece3.2955; EBERT D, 1993, ARCH HYDROBIOL, P453; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Englund G, 2011, ECOL LETT, V14, P914, DOI 10.1111/j.1461-0248.2011.01661.x; Ernest SKM, 2003, ECOL LETT, V6, P990, DOI 10.1046/j.1461-0248.2003.00526.x; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Ghalambor CK, 2003, INTEGR COMP BIOL, V43, P431, DOI 10.1093/icb/43.3.431; Giebelhausen B, 2001, FRESHWATER BIOL, V46, P281, DOI 10.1046/j.1365-2427.2001.00630.x; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; Glazier DS, 2000, ECOL LETT, V3, P142, DOI 10.1046/j.1461-0248.2000.00132.x; Grigaltchik VS, 2012, P ROY SOC B-BIOL SCI, V279, P4058, DOI 10.1098/rspb.2012.1277; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Hammond KA, 1997, NATURE, V386, P457, DOI 10.1038/386457a0; Hickman CR, 2004, HERPETOLOGICA, V60, P203, DOI 10.1655/03-26; Kerkhoff AJ, 2005, GLOBAL ECOL BIOGEOGR, V14, P585, DOI 10.1111/j.1466-822x.2005.00187.x; Kilham SS, 1998, HYDROBIOLOGIA, V377, P147, DOI 10.1023/A:1003231628456; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; Kingsolver JG, 2009, AM NAT, V174, P755, DOI 10.1086/648310; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Kremer CT, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2017.1942; Lim JN, 2014, EVOLUTION, V68, P2306, DOI 10.1111/evo.12446; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lind J, 2005, BEHAV ECOL, V16, P945, DOI 10.1093/beheco/ari075; Luhring TM, 2016, CURR ZOOL, V62, P501, DOI 10.1093/cz/zow045; Luhring TM, 2015, OECOLOGIA, V178, P723, DOI 10.1007/s00442-015-3270-1; Novich RA, 2014, ECOSPHERE, V5, DOI 10.1890/ES14-00216.1; ORCUTT JD, 1983, LIMNOL OCEANOGR, V28, P720, DOI 10.4319/lo.1983.28.4.0720; Padfield D, 2016, ECOL LETT, V19, P133, DOI 10.1111/ele.12545; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P503, DOI 10.1139/f91-065; Perrin N, 1988, FUNCT ECOL, V2, P283, DOI 10.2307/2389399; Protas M, 2008, EVOL DEV, V10, P196, DOI 10.1111/j.1525-142X.2008.00227.x; R Core Team, 2017, R LANG ENV STAT COMP; Relyea RA, 2001, ECOLOGY, V82, P523, DOI 10.1890/0012-9658(2001)082[0523:MABPOL]2.0.CO;2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Riessen HP, 1999, CAN J FISH AQUAT SCI, V56, P2487, DOI 10.1139/cjfas-56-12-2487; ROITBERG BD, 1993, NATURE, V364, P108, DOI 10.1038/364108a0; Rollinson N, 2015, EVOLUTION, V69, P2441, DOI 10.1111/evo.12753; Savage VM, 2004, AM NAT, V163, P429, DOI 10.1086/381872; Seebacher F, 2015, NAT CLIM CHANGE, V5, P61, DOI 10.1038/NCLIMATE2457; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; Sinclair BJ, 2016, ECOL LETT, V19, P1372, DOI 10.1111/ele.12686; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; Thompson JN, 1998, TRENDS ECOL EVOL, V13, P329, DOI 10.1016/S0169-5347(98)01378-0; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VansBuskirk J., 2000, ECOLOGY, V81, P3009; Walls M, 1998, CAN J FISH AQUAT SCI, V55, P1961, DOI 10.1139/cjfas-55-8-1961; Walsh MR, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2205; Willott SJ, 1998, FUNCT ECOL, V12, P232, DOI 10.1046/j.1365-2435.1998.00180.x; Wood S., 2015, PACKAGE MGCV, DOI [10. 1186/1471-2105-11-11. bioconductor, DOI 10.1186/1471-2105-11-11.BIOCONDUCTOR]; Wood SN, 2006, GEN ADDITIVE MODELS, DOI [10.1111/j.1541-0420.2007.00905_3.x, DOI 10.1111/J.1541-0420.2007.00905_3.X] 73 0 0 14 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. SEP 2018 8 17 8818 8830 10.1002/ece3.4381 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GU8QR WOS:000445606000016 30271548 DOAJ Gold, Green Published 2019-02-21 J Fokkema, RW; Ubels, R; Both, C; de Felici, L; Tinbergen, JM Fokkema, Rienk W.; Ubels, Richard; Both, Christiaan; de Felici, Livia; Tinbergen, Joost M. Reproductive effort and future parental competitive ability: A nest box removal experiment ECOLOGY AND EVOLUTION English Article brood size manipulation; carry-over effects; intraspecific competition; life history theory; social environment TIT PARUS-MAJOR; GATHERING PUBLIC INFORMATION; BREEDING HABITAT SELECTION; BROOD SIZE MANIPULATION; MALE EASTERN BLUEBIRDS; OPTIMAL CLUTCH SIZE; HISTORY TRADE-OFFS; GREAT TIT; TERMINAL INVESTMENT; DENSITY-DEPENDENCE The life history trade-off between current and future reproduction is a theoretically well-established concept. However, empirical evidence for the occurrence of a fitness cost of reproduction is mixed. Evidence indicates that parents only pay a cost of reproduction when local competition is high. In line with this, recent experimental work on a small passerine bird, the Great tit (Parus major) showed that reproductive effort negatively affected the competitive ability of parents, estimated through competition for high quality breeding sites in spring. In the current study, we further investigate the negative causal relationship between reproductive effort and future parental competitive ability, with the aim to quantify the consequences for parental fitness, when breeding sites are scarce. To this end, we (a) manipulated the family size of Great tit parents and (b) induced severe competition for nest boxes among the parents just before the following breeding season by means of a large-scale nest box removal experiment. Parents increased their feeding effort in response to our family size manipulation and we successfully induced competition among the parents the following spring. Against our expectation, we found no effect of last season's family size on the ability of parents to secure a scarce nest box for breeding. In previous years, if detected, the survival cost of reproduction was always paid after midwinter. In this year, parents did pay a survival cost of reproduction before midwinter and thus before the onset of the experiment in early spring. Winter food availability during our study year was exceptionally low, and thus, competition in early winter may have been extraordinarily high. We hypothesize that differences in parental competitive ability due to their previous reproductive effort might have played a role, but before the onset of our experiment and resulted in the payment of the survival cost of reproduction. [Fokkema, Rienk W.; Ubels, Richard; Both, Christiaan; de Felici, Livia; Tinbergen, Joost M.] Univ Groningen, Conservat Ecol Grp, Groningen Inst Evolutionary Life Sci GELIFES, Groningen, Netherlands; [Fokkema, Rienk W.] Bielefeld Univ, Evolutionary Biol, Bielefeld, Germany; [Fokkema, Rienk W.] Bielefeld Univ, Dept Anim Behav, Bielefeld, Germany Fokkema, RW (reprint author), Bielefeld Univ, Evolutionary Biol, Bielefeld, Germany. rienkfokkema@gmail.com Fokkema, Rienk/0000-0002-8238-5308 Nederlandse Organisatie voor Wetenschappelijk Onderzoek [82201011] Nederlandse Organisatie voor Wetenschappelijk Onderzoek, Grant/Award Number: 82201011 ALATALO RV, 1984, J ANIM ECOL, V53, P969, DOI 10.2307/4671; Alonso-Alvarez C, 2012, EVOLUTION OF PARENTAL CARE, P40; Andreu J, 2006, ARDEA, V94, P45; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Bates D, 2015, J STAT SOFTW, V67, P1; Billing AM, 2007, BEHAV ECOL, V18, P535, DOI 10.1093/beheco/arm007; Bonenfant C, 2009, ADV ECOL RES, V41, P313, DOI 10.1016/S0065-2504(09)00405-X; Bonneaud C, 2004, EVOLUTION, V58, P2823, DOI 10.1111/j.0014-3820.2004.tb01633.x; Both C, 1999, P ROY SOC B-BIOL SCI, V266, P465, DOI 10.1098/rspb.1999.0660; Both C, 2000, ECOLOGY, V81, P3391, DOI 10.2307/177502; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Cockle KL, 2010, BIOL CONSERV, V143, P2851, DOI 10.1016/j.biocon.2010.08.002; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; de Jong ME, 2014, J AVIAN BIOL, V45, P179, DOI 10.1111/j.1600-048X.2013.00199.x; DHONDT AA, 1992, J ANIM ECOL, V61, P643, DOI 10.2307/5619; Dhondt AA, 1999, OSTRICH, V70, P39, DOI 10.1080/00306525.1999.9639748; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Doligez B, 2003, ANIM BEHAV, V66, P973, DOI 10.1006/anbe.2002.2270; Doligez B, 2004, ANIM BEHAV, V67, P457, DOI 10.1016/j.anbehav.2003.03.010; DRENT PJ, 1987, ARDEA, V75, P59; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Fokkema RW, 2018, AUK, V135, P919, DOI 10.1642/AUK-17-182.1; Fokkema RW, 2017, ECOL EVOL, V7, P1410, DOI 10.1002/ece3.2752; Fokkema RW, 2016, BEHAV ECOL, V27, P1656, DOI 10.1093/beheco/arw097; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; HARVEY PH, 1979, J ANIM ECOL, V48, P305, DOI 10.2307/4115; Kluijver H.N., 1951, ARDEA, V39, P1; Koskela E, 1999, J ANIM ECOL, V68, P513, DOI 10.1046/j.1365-2656.1999.00308.x; Lessells C.M., 1991, P32; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lohmus A, 2005, ACTA OECOL, V27, P125, DOI 10.1016/j.actao.2004.11.001; Lohrl H., 1977, DIE VOGELWARTE, P92; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Maziarz M, 2015, J ORNITHOL, V156, P613, DOI 10.1007/s10336-015-1169-6; Mesterton-Gibbons M, 2004, P ROY SOC B-BIOL SCI, V271, P971, DOI 10.1098/rspb.2003.2670; MORRIS DW, 1989, EVOL ECOL, V3, P80, DOI 10.1007/BF02147934; NEWTON I, 1994, BIOL CONSERV, V70, P265, DOI 10.1016/0006-3207(94)90172-4; NEWTON I, 1998, POPULATION LIMITATIO, P597; Nicolaus M, 2013, J EVOLUTION BIOL, V26, P2031, DOI 10.1111/jeb.12210; Nicolaus M, 2012, J ANIM ECOL, V81, P564, DOI 10.1111/j.1365-2656.2011.01933.x; Nicolaus M, 2009, J ANIM ECOL, V78, P414, DOI 10.1111/j.1365-2656.2008.01505.x; Oksanen TA, 2007, EVOLUTION, V61, P2822, DOI 10.1111/j.1558-5646.2007.00245.x; PACKER C, 1995, AM NAT, V145, P833, DOI 10.1086/285771; Parejo D, 2006, BEHAV ECOL SOCIOBIOL, V60, P184, DOI 10.1007/s00265-005-0155-z; Part T, 2003, P ROY SOC B-BIOL SCI, V270, P1809, DOI 10.1098/rspb.2003.2419; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; R Core Team, 2016, R LANG ENV STAT COMP; Robles H, 2011, FOREST ECOL MANAG, V261, P1428, DOI 10.1016/j.foreco.2011.01.029; Roff D. A., 1992, EVOLUTION LIFE HIST, P535; Sanchez-Tojar A, 2017, J AVIAN BIOL, V48, P407, DOI 10.1111/jav.01055; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Sanz JJ, 1999, BEHAV ECOL, V10, P598, DOI 10.1093/beheco/10.5.598; Sedinger JS, 1998, AUK, V115, P613, DOI 10.2307/4089410; Siefferman L, 2005, BIOL LETTERS, V1, P208, DOI 10.1098/rsbl.2004.0274; Siefferman L, 2005, ANIM BEHAV, V69, P67, DOI 10.1016/j.anbehav.2003.12.026; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Stearns S. C., 1992, EVOLUTION LIFE HIST, P249; Svensson E, 1998, OIKOS, V83, P466, DOI 10.2307/3546674; Tinbergen JM, 2000, J ANIM ECOL, V69, P323, DOI 10.1046/j.1365-2656.2000.00395.x; TINBERGEN JM, 1990, BEHAVIOUR, V114, P161, DOI 10.1163/156853990X00103; TINBERGEN JM, 1985, ARDEA, V73, P38; Tinbergen JM, 2005, J ANIM ECOL, V74, P1112, DOI 10.1111/j.1365-2656.2005.01010.x; TINBERGEN JM, 1994, FUNCT ECOL, V8, P563, DOI 10.2307/2389916; VANBALEN JH, 1973, ARDEA, V61, P1; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Verboven N, 2002, ANIM BEHAV, V63, P951, DOI 10.1006/anbe.2001.1971; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2014, HEREDITY, V112, P70, DOI 10.1038/hdy.2013.7; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 74 0 0 8 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. SEP 2018 8 17 8865 8879 10.1002/ece3.4342 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GU8QR WOS:000445606000019 30271551 DOAJ Gold, Green Published 2019-02-21 J Dick, C; Hinh, J; Hayashi, CY; Reznick, DN Dick, Cynthia; Hinh, Jasmine; Hayashi, Cheryl Y.; Reznick, David N. Convergent evolution of coloration in experimental introductions of the guppy (Poecilia reticulata) ECOLOGY AND EVOLUTION English Article coloration; convergent evolution; experimental introduction; guppy; RNA-seq LIFE-HISTORY EVOLUTION; SEXUAL SELECTION; STREAM STICKLEBACK; WHITE SANDS; POPULATION; PATTERNS; DIVERGENCE; PARALLELISM; SPECIATION; ECOLOGY Despite the multitude of examples of evolution in action, relatively fewer studies have taken a replicated approach to understand the repeatability of evolution. Here, we examine the convergent evolution of adaptive coloration in experimental introductions of guppies from a high-predation (HP) environment into four low-predation (LP) environments. LP introductions were replicated across 2years and in two different forest canopy cover types. We take a complementary approach by examining both phenotypes and genetics. For phenotypes, we categorize the whole color pattern on the tail fin of male guppies and analyze evolution using a correspondence analysis. We find that coloration in the introduction sites diverged from the founding Guanapo HP site. Sites group together based on canopy cover, indicating convergence in response to light environment. However, the axis that explains the most variation indicates a lack of convergence. Therefore, evolution may proceed along similar phenotypic trajectories, but still maintain unique variation within sites. For the genetics underlying the divergent phenotypes, we examine expression levels of color genes. We find no evidence for differential expression, indicating that the genetic basis for the color changes remains undetermined. [Dick, Cynthia; Hinh, Jasmine; Reznick, David N.] Univ Calif Riverside, Dept Evolut Ecol & Organismal Biol, Riverside, CA 92521 USA; [Hayashi, Cheryl Y.] Amer Museum Nat Hist, Div Invertebrate Zool & Sackler, Inst Comparat Gen, New York, NY 10024 USA Dick, C (reprint author), Univ Calif Riverside, Dept Evolut Ecol & Organismal Biol, Riverside, CA 92521 USA. cindy0302@aol.com reznick, david/0000-0002-1144-0568 National Science Foundation [DEB-1258231] National Science Foundation, Grant/Award Number: DEB-1258231 Achaz G., 2014, ECOLOGICAL GENOMICS; Anders S, 2015, BIOINFORMATICS, V31, P166, DOI 10.1093/bioinformatics/btu638; Anders S, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-10-r106; Blount ZD, 2008, P NATL ACAD SCI USA, V105, P7899, DOI 10.1073/pnas.0803151105; Bock DG, 2015, MOL ECOL, V24, P2277, DOI 10.1111/mec.13032; Bolger AM, 2014, BIOINFORMATICS, V30, P2114, DOI 10.1093/bioinformatics/btu170; Boughman JW, 2002, TRENDS ECOL EVOL, V17, P571, DOI 10.1016/S0169-5347(02)02595-8; Darwin C, 1859, ORIGIN SPECIES; Dick C., EVOLUTION DEV; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1993, ECOL MONOGR, V63, P1, DOI 10.2307/2937121; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Endler JA, 1998, TRENDS ECOL EVOL, V13, P415, DOI 10.1016/S0169-5347(98)01471-2; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; FARR JA, 1980, BEHAVIOUR, V74, P38, DOI 10.1163/156853980X00311; Gilchrist GW, 2004, EVOLUTION, V58, P768; Gordon SP, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1244; Gould S.J, 2002, STRUCTURE EVOLUTIONA; Grether GF, 1999, P ROY SOC B-BIOL SCI, V266, P1317, DOI 10.1098/rspb.1999.0781; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; Huey RB, 2000, SCIENCE, V287, P308, DOI 10.1126/science.287.5451.308; Kaeuffer R, 2012, EVOLUTION, V66, P402, DOI 10.1111/j.1558-5646.2011.01440.x; Kemp D. J., MANIPULATING ADAPTIV; Kemp DJ, 2009, P R SOC B, V276, P4335, DOI 10.1098/rspb.2009.1226; Le S, 2008, J STAT SOFTW, V25, P1; Oke KB, 2016, J EVOLUTION BIOL, V29, P126, DOI 10.1111/jeb.12767; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Rosenblum EB, 2011, EVOLUTION, V65, P946, DOI 10.1111/j.1558-5646.2010.01190.x; Rosenblum EB, 2010, P NATL ACAD SCI USA, V107, P2113, DOI 10.1073/pnas.0911042107; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; Siwertsson A, 2013, ECOL EVOL, V3, P1590, DOI 10.1002/ece3.562; Willing EM, 2010, MOL ECOL, V19, P968, DOI 10.1111/j.1365-294X.2010.04528.x; Winge O, 1927, J GENET, V18, P1, DOI 10.1007/BF03052599 40 0 0 6 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. SEP 2018 8 17 8999 9006 10.1002/ece3.4418 8 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GU8QR WOS:000445606000029 30271561 DOAJ Gold 2019-02-21 J Ibanez, CM; Rezende, EL; Sepulveda, RD; Avaria-Llautureo, J; Hernandez, CE; Sellanes, J; Poulin, E; Pardo-Gandarillas, MC Ibanez, Christian M.; Rezende, Enrico L.; Sepulveda, Roger D.; Avaria-Llautureo, Jorge; Hernandez, Cristian E.; Sellanes, Javier; Poulin, Elie; Cecilia Pardo-Gandarillas, M. Thorson's rule, life-history evolution, and diversification of benthic octopuses (Cephalopoda: Octopodoidea) EVOLUTION English Article Egg size; holobenthic; life histories; macroevolution; merobenthic; phylogeny DEEP-SEA; LARVAL DEVELOPMENT; PHYLOGENETIC ANALYSES; MARINE-INVERTEBRATES; COLEOID CEPHALOPODS; SPECIES RICHNESS; EGG SIZE; PATTERNS; ECOLOGY; OCEAN Here, we evaluate the so-called Thorson's rule, which posits that direct-development and larger eggs are favored toward the poles in marine organisms and whose validity been the subject of considerable debate in the literature, combining an expanded phenotypic dataset encompassing 60 species of benthic octopuses with a new molecular phylogeny. Phylogenetic reconstruction shows two clades: clade 1 including species of the families Eledonidae, Megaleledonidae, Bathypolypodidae, and Enteroctopodidae, and clade 2 including species of Octopodidae. Egg size, development mode, and all environmental variables exhibited phylogenetic signal, partly due to differences between the two clades: whereas most species in clade 1 inhabit cold and deep waters, exhibit large eggs and hatchling with holobenthic development, species from clade 2 inhabit tropical-temperate and shallow waters, evolved small eggs, and generally exhibit merobenthic development. Phylogenetic regressions show that egg size exhibits a conspicuous latitudinal cline, and that both egg size and development mode vary with water temperature. Additionally, analyses suggest that egg size is constrained by body size in lineages with holobenthic development. Taken together, results suggest that the variation in egg size and development mode across benthic octopuses is adaptive and associated with water temperature, supporting Thorson's rule in these organisms. [Ibanez, Christian M.] Univ Andres Bello, Fac Ciencias Vida, Dept Ecol & Biodiversidad, Republ 440, Santiago, Chile; [Rezende, Enrico L.] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Ctr Appl Ecol & Sustainabil, Dept Ecol, Santiago, Chile; [Sepulveda, Roger D.] Univ Austral Chile, Fac Ciencias, Inst Ciencias Ambientales & Evolut, Valdivia, Chile; [Avaria-Llautureo, Jorge] Univ Concepcion, Fac Ciencias Nat & Oceanog, Dept Zool, Barrio Univ S-N, Concepcion, Chile; [Avaria-Llautureo, Jorge; Hernandez, Cristian E.] Univ Catolica Santisima Concepcion, Concepcion, Chile; [Sellanes, Javier] Univ Catolica Norte, Fac Ciencias Mar, Dept Biol Marina & Nucleo Milenio Ecol & Manejo S, Larrondo 1281, Coquimbo, Chile; [Poulin, Elie] Univ Chile, Fac Ciencias, Inst Ecol & Biodiversidad, Las Palmeras 3425, Santiago, Chile; [Cecilia Pardo-Gandarillas, M.] Univ Chile, Fac Ciencias, Dept Ciencias Ecol, Las Palmeras 3425, Santiago, Chile Ibanez, CM (reprint author), Univ Andres Bello, Fac Ciencias Vida, Dept Ecol & Biodiversidad, Republ 440, Santiago, Chile. ibanez.christian@gmail.com Poulin, Elie/C-2654-2012 Poulin, Elie/0000-0001-7736-0969; Rezende, Enrico/0000-0002-6245-9605; Ibanez, Christian/0000-0002-7390-2617 FONDECYT [3110152]; CAPES [FB 0002-2014] We thank Claudio Gonzalez, Unai Markaida, Cesar Salinas, and Arminda Rebollo for their help with octopus tissue samples. We also thank Samantha Price, Janet R. Voight, and five anonymous reviewers for their comments on an early version of the manuscript. This work was partially funded by FONDECYT #3110152 grant to C.M. Ibanez, and by CAPES FB 0002-2014 to E.L. Rezende. Aljanabi SM, 1997, NUCLEIC ACIDS RES, V25, P4692, DOI 10.1093/nar/25.22.4692; Allcock AL, 2008, BIOL J LINN SOC, V95, P205, DOI 10.1111/j.1095-8312.2008.01031.x; Amor MD, 2017, ZOOL SCR, V46, P275, DOI 10.1111/zsc.12207; Bownds C, 2010, J EXP BIOL, V213, P3796, DOI 10.1242/jeb.043356; Calow P, 1987, CEPHALOPOD LIFE CYCL, VII, P351; Carlini DB, 2001, MOL PHYLOGENET EVOL, V21, P388, DOI 10.1006/mpev.2001.1022; CLARKE A, 1992, INVERTEBR REPROD DEV, V22, P175, DOI 10.1080/07924259.1992.9672270; Collin R, 2003, MAR ECOL PROG SER, V247, P103, DOI 10.3354/meps247103; Fernandez M, 2009, ECOL LETT, V12, P601, DOI 10.1111/j.1461-0248.2009.01315.x; Forster A, 2007, GEOLOGY, V35, P919, DOI 10.1130/G23874A.1; Fuchs D, 2009, PALAEONTOLOGY, V52, P65, DOI 10.1111/j.1475-4983.2008.00828.x; Gallardo CS, 2001, MAR BIOL, V138, P547, DOI 10.1007/s002270000477; Gleadall Ian G., 2004, Interdisciplinary Information Sciences, V10, P99, DOI 10.4036/iis.2004.99; Hijmans R, 2001, PLANT GENETIC RESOUR, V127, P15; Ho LST, 2014, SYST BIOL, V63, P397, DOI 10.1093/sysbio/syu005; Huber BT, 2002, GEOLOGY, V30, P123, DOI 10.1130/0091-7613(2002)030<0123:DSPROE>2.0.CO;2; Ibanez CM, 2014, HYDROBIOLOGIA, V725, P205, DOI 10.1007/s10750-013-1518-5; Ibanez CM, 2016, ZOOL SCR, V45, P494, DOI 10.1111/zsc.12171; Ives AR, 2010, SYST BIOL, V59, P9, DOI 10.1093/sysbio/syp074; JABLONSKI D, 1983, BIOL REV, V58, P21, DOI 10.1111/j.1469-185X.1983.tb00380.x; Jereb P, 2014, FAO SPECIES CATALOGU, V4, P370; Kaneko N, 2011, MALACOLOGIA, V54, P97, DOI 10.4002/040.054.0102; KASS RE, 1995, J AM STAT ASSOC, V90, P773, DOI 10.1080/01621459.1995.10476572; Kumar S, 2016, MOL BIOL EVOL, V33, P1870, DOI 10.1093/molbev/msw054; Lanfear R, 2012, MOL BIOL EVOL, V29, P1695, DOI 10.1093/molbev/mss020; Laptikhovsky V, 2006, MAR ECOL-EVOL PERSP, V27, P7, DOI 10.1111/j.1439-0485.2006.00077.x; Laptikhovsky V.V., 1999, Ruthenica, V9, P141; Laptikhovsky V.V., 1998, Ruthenica, V8, P77; Lindgren AR, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-129; Littler K, 2011, NAT GEOSCI, V4, P169, DOI 10.1038/NGEO1081; Locarnini R. A., 2013, NOAA ATLAS NESDIS, V1, P40, DOI DOI 10.1182/BL00D-2011-06-357442; Marshall DJ, 2012, ANNU REV ECOL EVOL S, V43, P97, DOI 10.1146/annurev-ecolsys-102710-145004; McClain CR, 2010, P ROY SOC B-BIOL SCI, V277, P3533, DOI 10.1098/rspb.2010.1057; Meade A., 2017, BAYESTRAITS V3 0; Meade A., 2011, BAYESTREES V1 3; MILEIKOVSKY SA, 1971, MAR BIOL, V10, P193, DOI 10.1007/BF00352809; Moran AL, 2009, BIOL BULL-US, V216, P226; NORMAN M, 2000, CEPHALOPODS WORLD GU; Norman M.D., 2005, Phuket Marine Biological Center Research Bulletin, V66, P127; Ockelmann K. W., 1965, Proceedings Europ Malac Congr 1st London 1962 Conch Soc GB & Malac Soc Lond, P25; Pagel M, 1997, ZOOL SCR, V26, P331, DOI 10.1111/j.1463-6409.1997.tb00423.x; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Pagel Mark, 2002, Systematics Association Special Volume Series, V64, P269; Pappalardo P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094104; Pappalardo P, 2014, GLOBAL ECOL BIOGEOGR, V23, P12, DOI 10.1111/geb.12115; Pearse J. S, 1994, REPROD LARVAL BIOL R, P26; PICKEN GB, 1980, BIOL J LINN SOC, V14, P67, DOI 10.1111/j.1095-8312.1980.tb00098.x; R Developmental Core Team, 2018, R LANG ENV STAT COMP; Rambaut A, 2009, TRACER V1 5; Rezende EL, 2012, COMPR PHYSIOL, V2, P639, DOI 10.1002/cphy.c100079; Robison B, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103437; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; Stanwell-Smith D, 1999, PHILOS T ROY SOC B, V354, P471, DOI 10.1098/rstb.1999.0398; Strugnell J, 2006, CLADISTICS, V22, P89, DOI 10.1111/j.1096-0031.2006.00086.x; Strugnell J, 2005, MOL PHYLOGENET EVOL, V37, P426, DOI 10.1016/j.ympev.2005.03.020; Strugnell JM, 2011, DEEP-SEA RES PT II, V58, P196, DOI 10.1016/j.dsr2.2010.05.015; Strugnell JM, 2014, HYDROBIOLOGIA, V725, P215, DOI 10.1007/s10750-013-1517-6; Strugnell JM, 2008, CLADISTICS, V24, P853, DOI 10.1111/j.1096-0031.2008.00234.x; Sweeney M. J, 1992, SMITHSON CONTR ZOOL, DOI [DOI 10.5479/SI.00810282.513, 10.5479/si.00810282.513]; Tanner AR, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2016.2818; Thatje S, 2005, TRENDS ECOL EVOL, V20, P534, DOI 10.1016/j.tree.2005.07.010; Thorson G., 1936, Meddelelser om Gronland, V100, P1; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Tyberghein L, 2012, GLOBAL ECOL BIOGEOGR, V21, P272, DOI 10.1111/j.1466-8238.2011.00656.x; Villanueva R, 2008, OCEANOGR MAR BIOL, V46, P105; Villanueva R, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0165334; Voight Janet R., 1998, Smithsonian Contributions to Zoology, V586, P549; Voight JR, 2004, J MOLLUS STUD, V70, P400, DOI 10.1093/mollus/70.4.400; VONBOLETZKY S, 1992, REV SUISSE ZOOL, V99, P755; YOUNG CM, 1990, OPHELIA, V32, P1; Young RE, 1998, S AFR J MARINE SCI, V20, P393; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x 72 1 1 11 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution SEP 2018 72 9 1829 1839 10.1111/evo.13559 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GU0ND WOS:000444946400007 30039545 2019-02-21 J Stuby, L Stuby, Lisa Contributions to the Life History of Kuskokwim River Inconnu TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article MACKENZIE RIVER; FRESH-WATER; STENODUS-LEUCICHTHYS; ANADROMOUS INCONNU; DIADROMOUS FISH; MIGRATION; SALMON; CHEMISTRY; PATTERNS; SYSTEM A radiotelemetry study conducted during 2007-2016 in the Kuskokwim River drainage in Alaska expands our understanding of the life history strategies of Inconnu Stenodus leucichthys. The Inconnu like other whitefish species has specific spawning habitat requirements and consequently spawn in very few areas. Documenting specific spawning, feeding, and overwintering areas is the necessary first step to ensure their habitats are protected. Four spawning areas in the upper Kuskokwim River were identified from radio-tracking and verified with on-site sampling. Inconnu arrived at their spawning areas during late July through mid-September and spawned during late September through early October. Postspawning outmigration occurred during 1-1.5weeks in mid-October. Most radio-tagged Inconnu made extensive postspawning downriver migrations and overwintered in the lower Kuskokwim River and in the brackish waters of the upper Kuskokwim Bay; however, some Inconnu made only short postspawning migrations and spent the winter in the middle and upper Kuskokwim River. After spring ice out, many fish that overwintered in the lower river swam upriver and spent summers feeding at the mouths of major tributaries. A high degree of site fidelity among years was observed for spawning, feeding, and overwintering areas. Habitat characteristics of spawning areas were similar with respect to spawning substrate, temperature, pH, conductivity, dissolved oxygen, and turbidity. Information gathered from this study can be used by to identify a reliable index stock for the spawning population that can be enumerated periodically to ensure the long-term sustainability of the population. [Stuby, Lisa] Alaska Dept Fish & Game, Div Sport Fish, 1300 Coll Rd, Fairbanks, AK 99701 USA Stuby, L (reprint author), Alaska Dept Fish & Game, Div Sport Fish, 1300 Coll Rd, Fairbanks, AK 99701 USA. lisa.stuby@alaska.gov USFWS, Office of Subsistence Management (OSM) [06-305, 10-305, 12-312] I thank M. Evenson, J. Savereide, J. Chythlook, D. Reed, L. St. Amand, C. Bear, M. Robinson, A. Matter, B. Wainwright, B. Collyard, D. Lorring, V. Davis, H. Scannell, and A. Garry, from ADFG Region III for project assistance and support. M. Thalhauser, L. Robbins, M. Smith, A. Nicori, G. Lindsey, and D Orabutt of Kuskokwim Native Association assisted with tagging and/or helped set up, download, and maintain the stationary tracking stations and incorporated the Inconnu frequencies into their aerial tracking flights. K. Whitworth, A. Runkle, and A. Nikolai of MTNT, Ltd. assisted with tagging and/or provided general support in communities at and upriver of McGrath. Thanks also to R. Brown of the USFWS for helpful advice. Funding was provided by the USFWS, Office of Subsistence Management (OSM Projects 06-305, 10-305, and 12-312). There is no conflict of interest declared in this article. ALT K T, 1988, Finnish Fisheries Research, V9, P127; Alt K. T., 1981, ANN PERFORMANCE REPO; Alt K. T., 1987, REV SHEEFISH STENODU; ALT KT, 1977, J FISH RES BOARD CAN, V34, P129, DOI 10.1139/f77-016; Baxter JS, 1999, CAN J ZOOL, V77, P1233, DOI 10.1139/cjz-77-8-1233; BEHNKE RJ, 1972, J FISH RES BOARD CAN, V29, P639, DOI 10.1139/f72-112; Benke A. C, 2005, RIVERS N AM; Brown R. J., 2008, ADV LIMNOLOGY, V63, P101; Brown R. J., 2012, FISHERY DATA SERIES, V12-54; Brown R. J., 2002, ALASKA FISHERIES DAT, V2002-1; Brown R. J., 2000, THESIS; Brown RJ, 2007, T AM FISH SOC, V136, P678, DOI 10.1577/T06-040.1; Brown RJ, 2009, CAN J FISH AQUAT SCI, V66, P1790, DOI 10.1139/F09-112; Chythlook J., 2014, 1427 AL DEP FISH GAM; Cochran WG, 1977, SAMPLING TECHNIQUES; Compton R. R., 1962, MANUAL FIELD GEOLOGY; Dean JM, 1991, MANUAL OTOLITH REMOV; Gerken J. D., 2009, THESIS; GROSS MR, 1988, SCIENCE, V239, P1291, DOI 10.1126/science.239.4845.1291; Hander R. F., 2016, ANN REPORT PROJECT; Harris LN, 2010, CAN J FISH AQUAT SCI, V67, P905, DOI 10.1139/F10-027; Howland K. L., 2005, THESIS; Howland KL, 2004, ANN ZOOL FENN, V41, P205; Howland KL, 2001, T AM FISH SOC, V130, P725, DOI 10.1577/1548-8659(2001)130<0725:IOFAAI>2.0.CO;2; Howland KL, 2000, T AM FISH SOC, V129, P41, DOI 10.1577/1548-8659(2000)129<0041:MPOFAA>2.0.CO;2; Ireland R.R.W., 1985, HYDROLOGIC RECONNAIS; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; LABELLE M, 1994, CAN J FISH AQUAT SCI, V51, P552, DOI 10.1139/f94-058; Malard F, 2001, CAN J FISH AQUAT SCI, V58, P1319, DOI 10.1139/cjfas-58-7-1319; Malcolm IA, 2009, HYDROGEOL J, V17, P161, DOI 10.1007/s10040-008-0339-5; Morrow J. E., 1980, FRESHWATER FISHES AL; Neher TDH, 2013, T AM FISH SOC, V142, P1481, DOI 10.1080/00028487.2013.815660; Olsen J. B, 2017, 12700 US FISH WILDL; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; Savereide J. W., 2016, FISHERY DATA SERIES, V16-31; Scott W. B, 1973, FISHERIES RES BOARD, V184; Smith NJ, 2015, N AM J FISH MANAGE, V35, P698, DOI 10.1080/02755947.2015.1052164; Snyder D.E., 1983, P165; Stuby L, 2018, ANN REPORT PROJECT; Stuby L., 2007, FISHERY DATA SERIES, V07-93; Tanner T. L, 2008, THESIS; Underwood Tevis J., 2000, North American Journal of Fisheries Management, V20, P386, DOI 10.1577/1548-8675(2000)020<0386:ALCAMO>2.3.CO;2 42 0 0 0 0 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. SEP 2018 147 5 879 890 10.1002/tafs.10069 12 Fisheries Fisheries GT7EA WOS:000444682900008 2019-02-21 J Kennedy, PJ; Bartley, TJ; Gillis, DM; McCann, KS; Rennie, MD Kennedy, P. J.; Bartley, T. J.; Gillis, D. M.; McCann, K. S.; Rennie, M. D. Offshore Prey Densities Facilitate Similar Life History and Behavioral Patterns in Two Distinct Aquatic Apex Predators, Northern Pike and Lake Trout TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article MIXED-EFFECTS MODELS; WALLEYE SANDER-VITREUS; SALVELINUS-NAMAYCUSH; ESOX-LUCIUS; CLIMATE-CHANGE; SIZE STRUCTURE; FOOD-QUALITY; FISH STOCKS; GROWTH; POPULATIONS Northern Pike Esox lucius are important aquatic apex predators in freshwater ecosystems across the Canadian Boreal Shield. Although Northern Pike have historically been described as nearshore ambush predators, larger individuals have been anecdotally observed foraging in offshore habitats. We used two province-wide data sets from Ontario, Canada, to investigate the degree to which Northern Pike are generalist predators by examining the influence of offshore prey fish densities on their life histories. To better understand whether the life history patterns observed were unique to Northern Pike or representative of aquatic apex predators generally, we compared Northern Pike life history and catch results to those of the Lake Trout Salvelinus namaycush, a well-known pelagic apex predator. We found that the asymptotic lengths of both Northern Pike and Lake Trout were positively related to Cisco Coregonus artedi CPUE. Furthermore, both Northern Pike and Lake Trout occupied offshore habitat more frequently in lakes with greater Cisco CPUEs. Northern Pike early growth and mortality rates were negatively related to Cisco CPUE but positively related to Yellow Perch Perca flavescens CPUE, suggesting that Northern Pike undergo ontogenetic shifts to foraging on Ciscoes later in life. Although the growth and mortality of these predators were related to prey availability, variation in the CPUEs of Northern Pike and Lake Trout was best explained by physical lake characteristics. Our study suggests that Northern Pike and Lake Trout respond similarly to Cisco CPUE across the Canadian Boreal Shield, consistent with research reported for other aquatic apex predators. Results of this work collectively suggest that generalist behavior and large-bodied life history strategies of Northern Pike are facilitated by the availability of Ciscoes. [Kennedy, P. J.; Gillis, D. M.; Rennie, M. D.] Univ Manitoba, Dept Biol Sci, 50 Sifton Rd, Winnipeg, MB R3T 2N2, Canada; [Bartley, T. J.] Univ Toronto Mississauga, Dept Biol, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada; [Bartley, T. J.; McCann, K. S.] Univ Guelph, Dept Integrat Biol, 50 Stone Rd East, Guelph, ON N1G 2W1, Canada; [Rennie, M. D.] Int Inst Sustainable Dev, Expt Lakes Area, 111 Lombard Ave,Suite 325, Winnipeg, MB R3B 0T4, Canada; [Rennie, M. D.] Lakehead Univ, Dept Biol, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada Kennedy, PJ (reprint author), Univ Manitoba, Dept Biol Sci, 50 Sifton Rd, Winnipeg, MB R3T 2N2, Canada. kennedypjames@gmail.com Rainy Lakes Fisheries Charity Trust; Natural Sciences and Engineering Research Council of Canada; Canada Research Chairs Program; International Institute for Sustainable Development-Experimental Lakes Area We thank George Morgan and Kim Armstrong (OMNRF) for providing data, John Gunn for the inspiration and discussions that initiated the project, and Cindy Chu for feedback on an earlier draft of the manuscript. Margaret Treble and the Fisheries and Oceans Canada staff supported laboratory and workspace access. This work was supported by grants from the Rainy Lakes Fisheries Charity Trust, Natural Sciences and Engineering Research Council of Canada (Discovery Grant), and Canada Research Chairs Program to M.D.R. and from the International Institute for Sustainable Development-Experimental Lakes Area to M.D.R. and P.K. There is no conflict of interest declared in this article. Bartley T.J., 2015, DNA BARCODES, V3, P30, DOI [10.1515/dna-2015-0005, DOI 10.1515/DNA-2015-0005]; Bates D, 2015, J STAT SOFTW, V67, P1; Beaudoin CP, 1999, OECOLOGIA, V120, P386, DOI 10.1007/s004420050871; Beverton R.J.H., 1987, Basic Life Sciences, V42, P161; Brody S., 1945, BIOENERGETICS GROWTH; Bryan SD, 1996, J FRESHWATER ECOL, V11, P153, DOI 10.1080/02705060.1996.9663474; Carl LM, 2008, ENVIRON BIOL FISH, V83, P127, DOI 10.1007/s10641-007-9305-7; Casselman JM, 1996, CAN J FISH AQUAT SCI, V53, P161, DOI 10.1139/f96-019; Charnov EL, 2007, AM NAT, V170, pE129, DOI 10.1086/522840; Charnov EL, 2010, ENVIRON BIOL FISH, V88, P293, DOI 10.1007/s10641-010-9642-9; Charnov Eric L., 1993, P1; Chezik K. A., 2014, CANADIAN J FISHERIES, V70, P1; Chezik K. A., 2014, CANADIAN J FISHERIES, V71, P1; Chu C, 2005, DIVERS DISTRIB, V11, P299, DOI 10.1111/j.1366-9516.2005.00153.x; COLBY PJ, 1987, CAN J FISH AQUAT SCI, V44, P104; Craig JF, 2008, HYDROBIOLOGIA, V601, P5, DOI 10.1007/s10750-007-9262-3; Craig J. F., 1996, PIKE BIOL EXPLOITATI, P202; DIANA JS, 1979, CAN J ZOOL, V57, P2121, DOI 10.1139/z79-279; Dodge D. P., 1985, MANUAL INSTRUCTIONS; Dolson R, 2009, OIKOS, V118, P1230, DOI 10.1111/j.1600-0706.2009.17351.x; GALLUCCI VF, 1979, T AM FISH SOC, V108, P14, DOI 10.1577/1548-8659(1979)108<14:RFATAS>2.0.CO;2; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Greer AT, 2016, ICES J MAR SCI, V73, P1051, DOI 10.1093/icesjms/fsw001; Gunn J. M., 2004, BOREAL SHIELD WATERS; Guzzo MM, 2017, P NATL ACAD SCI USA, V114, P9912, DOI 10.1073/pnas.1702584114; Hart J. L., 1931, CONTRIB CAN BIOL FIS, V21, P445; Heath DD, 1996, ENVIRON BIOL FISH, V45, P53, DOI 10.1007/BF00000627; Holt LE, 2015, BIOL LETTERS, V11, P1, DOI [10.1098/rsbl.2014.1032, DOI 10.1098/RSBL.2014.1032]; Jacobson P. C., 1992, ANAL FACTORS AFFECTI; Johnson PCD, 2014, METHODS ECOL EVOL, V5, P944, DOI 10.1111/2041-210X.12225; Kahle D, 2013, R J, V5, P144; Kaufman SD, 2009, N AM J FISH MANAGE, V29, P468, DOI 10.1577/M07-117.1; Kaufman SD, 2006, CAN J FISH AQUAT SCI, V63, P970, DOI 10.1139/F06-004; Kelly N. I., 2014, CONSERV PHYSIOL, V2, P1, DOI DOI 10.1093/C0NPHYS/C0U025; KERR SR, 1977, J FISH RES BOARD CAN, V34, P1952, DOI 10.1139/f77-261; KERR SR, 1971, J FISH RES BOARD CAN, V28, P809, DOI 10.1139/f71-121; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Kuznetsova A, 2017, J STAT SOFTW, V82, P1; Mackenzie-Grieve JL, 2006, CAN J FISH AQUAT SCI, V63, P788, DOI 10.1139/F05-257; Makowecki R, 1973, THESIS; Malette M. D., 2005, PROVINCIAL SUMMARY N; Margenau Terry L., 1998, North American Journal of Fisheries Management, V18, P625, DOI 10.1577/1548-8675(1998)018<0625:FAGONP>2.0.CO;2; McDermid JL, 2010, CAN J FISH AQUAT SCI, V67, P314, DOI 10.1139/F09-183; McKinney ML, 1997, ANNU REV ECOL SYST, V28, P495, DOI 10.1146/annurev.ecolsys.28.1.495; McMeans BC, 2016, ECOL MONOGR, V86, P4, DOI 10.1890/15-0288.1; Morgan G. E., 2002, MANUAL INSTRUCTIONSF; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nilsson PA, 2000, OIKOS, V88, P539, DOI 10.1034/j.1600-0706.2000.880310.x; Oedekoven MA, 2000, ECOLOGY, V81, P66, DOI 10.1890/0012-9658(2000)081[0066:PQASPA]2.0.CO;2; PAULY D, 1980, J CONSEIL, V39, P175; Pazzia I, 2002, CAN J FISH AQUAT SCI, V59, P1593, DOI 10.1139/F02-128; Pierce RB, 2003, N AM J FISH MANAGE, V23, P331, DOI 10.1577/1548-8675(2003)023<0331:DDIGAS>2.0.CO;2; Pierce RB, 2005, T AM FISH SOC, V134, P231, DOI 10.1577/T03-211.1; Post DM, 2000, NATURE, V405, P1047, DOI 10.1038/35016565; Post JR, 2012, CAN J FISH AQUAT SCI, V69, P321, DOI 10.1139/F2011-163; PYKE GH, 1977, Q REV BIOL, V52, P137, DOI 10.1086/409852; Quinn G. P., 2002, EXPT DESIGN DATA ANA; R Core Team, 2014, R LANG ENV STAT COMP; Raat A., 1988, SYNOPSIS BIOL DATA N; Rennie MD, 2010, ECOGRAPHY, V33, P471, DOI 10.1111/j.1600-0587.2009.06160.x; Rennie MD, 2009, CAN J FISH AQUAT SCI, V66, P2096, DOI 10.1139/F09-139; Ricker W. E., 1975, B FISHERIES RES BOAR, V191, P191; ROBSON D. S., 1961, TRANS AMER FISH SOC, V90, P181, DOI 10.1577/1548-8659(1961)90[181:CCAMR]2.0.CO;2; Roff Derek A., 1992; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; Sandstrom S, 2013, MANUAL INSTRUCTIONS; Scott W. B, 1973, FISHERIES RES BOARD, V184; Shuter BJ, 1998, CAN J FISH AQUAT SCI, V55, P2161, DOI 10.1139/cjfas-55-9-2161; Shuter BJ, 2016, CAN J FISH AQUAT SCI, V73, P693, DOI 10.1139/cjfas-2015-0190; Smith MW, 2012, N AM J FISH MANAGE, V32, P956, DOI 10.1080/02755947.2012.711270; Stearns S, 1992, EVOLUTION LIFE HIST; Stephens D. W, 1986, FORAGING THEORY; STERNER RW, 1993, LIMNOL OCEANOGR, V38, P857, DOI 10.4319/lo.1993.38.4.0857; TRIPPEL EA, 1993, CAN J FISH AQUAT SCI, V50, P1442, DOI 10.1139/f93-165; TRIPPEL EA, 1989, CAN J FISH AQUAT SCI, V46, P1531, DOI 10.1139/f89-195; Tunney TD, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms2098; Vander Zanden MJ, 1997, CAN J FISH AQUAT SCI, V54, P1142, DOI 10.1139/cjfas-54-5-1142; Vander Zanden MJ, 2002, ECOLOGY, V83, P2152, DOI 10.1890/0012-9658(2002)083[2152:FAIOBA]2.0.CO;2; Venturelli PA, 2006, T AM FISH SOC, V135, P1512, DOI 10.1577/T05-228.1; Venturelli PA, 2010, CAN J FISH AQUAT SCI, V67, P1057, DOI 10.1139/F10-041; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x 82 0 0 5 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. SEP 2018 147 5 972 995 10.1002/tafs.10090 24 Fisheries Fisheries GT7EA WOS:000444682900015 2019-02-21 J Williams, TD Williams, Tony D. Physiology, activity and costs of parental care in birds JOURNAL OF EXPERIMENTAL BIOLOGY English Article Parental care; Costs of reproduction; Activity; Foraging; Physiological costs; Flight STARLINGS STURNUS-VULGARIS; TITS PARUS-MAJOR; DAILY ENERGY-EXPENDITURE; GREAT TIT; BROOD SIZE; REPRODUCTIVE EFFORT; FORAGING DECISIONS; OXIDATIVE STRESS; SHORT FLIGHTS; CLUTCH SIZE Parental care is assumed to be costly in that it requires sustained, high-intensity activity sufficient to cause costs of reproduction (decreased survival and future fecundity of parents). Costs of reproduction are, in turn, thought to have a physiological basis where intense activity causes a decrease in parental condition. However, attempts to identify the physiological basis of costs of reproduction have produced mixed results. Here, I argue that in birds, the central idea that parental care represents sustained, high-intensity work might be incorrect. Specifically: (a) the duration of intense activity associated with chick-rearing might be quite limited; (b) flight, the most obvious sustained, high-intensity activity, might only represent a small component of an individual's overall activity budget; (c) some (high-quality) individuals might be able to tolerate costs of intense activity, either owing to their physiological state or because they have access to more resources, without perturbation of physiological homeostasis; and (d) individuals might utilise other mechanisms to modulate costs of activity, for example, mass loss, again avoiding more substantial physiological costs. Furthermore, I highlight the important fact that life-history theory predicts that reproductive trade-offs should only be expected under food stress. Most birds breed in spring and early summer precisely because of seasonal increases in food abundance, and so it is unclear how often parents are food stressed. Consequently, I argue that there are many reasons why costs of reproduction, and any physiological signature of these costs, might be quite rare, both temporally (in different years) and among individuals. [Williams, Tony D.] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada Williams, TD (reprint author), Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada. tdwillia@sfu.ca Natural Sciences and Engineering Research Council of Canada [155395-2012, 429387-2012] This research work was funded by Natural Sciences and Engineering Research Council of Canada Discovery (155395-2012) and Accelerator (429387-2012) grants to T.D.W. Adams AAY, 2001, CONDOR, V103, P643, DOI 10.1650/0010-5422(2001)103[0643:MASOLB]2.0.CO;2; Bishop CM, 2015, STURKIE'S AVIAN PHYSIOLOGY, 6TH EDITION, P919; BRYANT DM, 1991, IBIS, V133, P236, DOI 10.1111/j.1474-919X.1991.tb04565.x; Butler PJ, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0384; BYLE PAF, 1990, BEHAVIOUR, V113, P1, DOI 10.1163/156853990X00419; CARLSON A, 1985, ANIM BEHAV, V33, P664, DOI 10.1016/S0003-3472(85)80090-7; Caro SM, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10985; Chin DD, 2017, SCI ADV, V3, DOI 10.1126/sciadv.1603041; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Cornell A, 2017, FUNCT ECOL, V31, P662, DOI 10.1111/1365-2435.12777; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DRENT RH, 1980, ARDEA, V68, P225; Fowler MA, 2017, AM NAT, V190, P762, DOI 10.1086/694123; FREED LA, 1981, ECOLOGY, V62, P1179, DOI 10.2307/1937282; Garant D, 2008, MOL ECOL, V17, P179, DOI 10.1111/j.1365-294X.2007.03436.x; Green JA, 2009, J AVIAN BIOL, V40, P529, DOI 10.1111/j.1600-048X.2009.04639.x; Gremillet D, 2018, FUNCT ECOL, V32, P1203, DOI 10.1111/1365-2435.13074; Guillemette M, 2012, J EXP BIOL, V215, P3161, DOI 10.1242/jeb.061119; Guindre-Parker S, 2013, J EVOLUTION BIOL, V26, P2558, DOI 10.1111/jeb.12256; Halsey LG, 2016, J EXP BIOL, V219, P1424, DOI 10.1242/jeb.133256; Halsey LG, 2016, J ANIM ECOL, V85, P614, DOI 10.1111/1365-2656.12488; HARPER DGC, 1985, ANIM BEHAV, V33, P466, DOI 10.1016/S0003-3472(85)80070-1; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hegemann A, 2013, FRONT ZOOL, V10, DOI 10.1186/1742-9994-10-77; Heldbjerg H, 2016, AGR ECOSYST ENVIRON, V230, P24, DOI 10.1016/j.agee.2016.05.025; Hieronymus TL, 2016, J ANAT, V229, P631, DOI 10.1111/joa.12511; Irschick DJ, 1998, EVOLUTION, V52, P219, DOI 10.1111/j.1558-5646.1998.tb05155.x; Irschick DJ, 2016, ANIMAL ATHLETES ECOL; KACELNIK A, 1984, J ANIM ECOL, V53, P283, DOI 10.2307/4357; Kasumovic MM, 2018, J EVOLUTION BIOL, V31, P438, DOI 10.1111/jeb.13239; Killen SS, 2017, INTEGR COMP BIOL, V57, P185, DOI 10.1093/icb/icx083; Markman S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0113890; Mathot KJ, 2017, BEHAV ECOL, V28, P1402, DOI 10.1093/beheco/arx083; Maurer Brian A., 1996, P250; MCLAUGHLIN RL, 1989, BEHAV ECOL SOCIOBIOL, V25, P207, DOI 10.1007/BF00302920; Merkling T, 2017, FUNCT ECOL, V31, P1201, DOI 10.1111/1365-2435.12829; Montoya B, 2016, J EXP BIOL, V219, P3915, DOI 10.1242/jeb.141325; Naef-Daenzer B, 1999, J ANIM ECOL, V68, P708, DOI 10.1046/j.1365-2656.1999.00318.x; NORBERG RA, 1981, AM NAT, V118, P838, DOI 10.1086/283874; Norte AC, 2010, CONDOR, V112, P79, DOI 10.1525/cond.2010.080071; Nudds RL, 2000, J EXP BIOL, V203, P1561; Nudds RL, 2002, AM J PHYSIOL-REG I, V283, pR249, DOI 10.1152/ajpregu.00409.2001; Pelletier D, 2008, P ROY SOC B-BIOL SCI, V275, P2117, DOI 10.1098/rspb.2008.0422; Piersma T, 2011, FLEXIBLE PHENOTYPE B; Remes V, 2016, J AVIAN BIOL, V47, P610, DOI 10.1111/jav.00841; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Riechert J, 2017, AUK, V134, P644, DOI 10.1642/AUK-17-13.1; ROYAMA T, 1966, IBIS, V108, P313, DOI 10.1111/j.1474-919X.1966.tb07348.x; Royle NJ, 2012, EVOLUTION OF PARENTAL CARE, P1; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Sanz JJ, 1999, BEHAV ECOL, V10, P598, DOI 10.1093/beheco/10.5.598; Schifferli L, 2014, IBIS, V156, P777, DOI 10.1111/ibi.12186; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Schultner J, 2013, FUNCT ECOL, V27, P45, DOI 10.1111/j.1365-2435.2012.02058.x; Schwagmeyer PL, 2008, ANIM BEHAV, V75, P291, DOI 10.1016/j.anbehav.2007.05.023; Smiseth PT, 2012, EVOLUTION OF PARENTAL CARE, P1; STARCK JM, 1998, AVIAN GROWTH DEV; Stearns S, 1992, EVOLUTION LIFE HIST; Stephens D. E., 2007, FORAGING; Swaddle JP, 1997, CAN J ZOOL, V75, P1135, DOI 10.1139/z97-136; SWIHART RK, 1986, BEHAV ECOL SOCIOBIOL, V19, P275, DOI 10.1007/BF00300642; Tieleman BI, 2008, BEHAV ECOL, V19, P949, DOI 10.1093/beheco/arn051; TINBERGEN JM, 1994, FUNCT ECOL, V8, P563, DOI 10.2307/2389916; TINBERGEN JM, 1981, ARDEA, V69, P1; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Verhulst S, 1997, ARDEA, V85, P111; Vitousek MN, 2018, SCI DATA, V5, DOI 10.1038/sdata.2018.97; Wegmann M, 2015, BEHAV ECOL, V26, P747, DOI 10.1093/beheco/arv006; Welcker J, 2009, FUNCT ECOL, V23, P1081, DOI 10.1111/j.1365-2435.2009.01585.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams T. D., 2012, PHYSL ADAPTATIONS BR; Williams TD, 2001, CURR ORNITHOL, V16, P355; Williams TD, 2015, J ORNITHOL, V156, pS441, DOI 10.1007/s10336-015-1213-6; Wilson AM, 2013, NATURE, V498, P185, DOI 10.1038/nature12295; Yap KN, 2017, J EXP BIOL, V220, P4282, DOI 10.1242/jeb.160812 75 2 2 23 23 COMPANY BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING, STATION RD, HISTON, CAMBRIDGE CB24 9LF, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. SEP 2018 221 17 UNSP jeb169433 10.1242/jeb.169433 8 Biology Life Sciences & Biomedicine - Other Topics GT7LF WOS:000444708600002 30201656 2019-02-21 J Spurgeon, JJ; Pegg, MA; Hamel, MJ; Steffensen, KD Spurgeon, J. J.; Pegg, M. A.; Hamel, M. J.; Steffensen, K. D. Spatial structure of large-river fish populations across main-stem and tributary habitats RIVER RESEARCH AND APPLICATIONS English Article connectivity; movement; multistate; population; rivers; survival SHOVELNOSE STURGEON; MISSOURI RIVER; FLATHEAD CATFISH; CHANNEL CATFISH; CONSERVATION; MANAGEMENT; MOVEMENTS; MIGRATIONS; PATTERNS; SURVIVAL The spatial variability in demographic parameters represents fundamental information for conservation and management of large-river fish populations. We assessed demographic processes including survival and movement across macroscale habitats in a large-river network using 2 candidate large-river species with contrasting life history strategies. We used mark-recapture data and a multistate model framework to estimate survival and transition probabilities between main-stem and tributary habitats for both channel catfish and shovelnose sturgeon. Annual survival for channel catfish was similar in main-stem and tributary habitats (range in S=0.47-0.58). Annual survival for shovelnose sturgeon was less in the tributary (S=0.68) compared with the main stem (S=0.83). The probability of movement among macroscale habitats differed between species. However, the greatest probability of movement occurred from the tributary to the main-stem for both channel catfish (=0.42) and shovelnose sturgeon (=0.27). Movement between main-stem and tributary rivers may be a prominent characteristic for both channel catfish and shovelnose sturgeon and could influence population demographic rates and abundance across systems. Riverine fish populations are likely structured across multiple salient scalesincluding tributary and main-stem habitats. Consideration of connectivity across tributary and main-stem habitats with respect to species' life history strategy and life stage may better integrate a systems' perspective for conservation and management of large-river fish populations. [Spurgeon, J. J.; Pegg, M. A.; Hamel, M. J.] Univ Nebraska Lincoln, Sch Nat Resources, Lincoln, NE 68588 USA; [Steffensen, K. D.] Nebraska Game & Parks Commiss, Lincoln, NE USA Spurgeon, JJ (reprint author), Univ Nebraska Lincoln, Sch Nat Resources, Lincoln, NE 68588 USA. spurgeonj@uapb.edu Nebraska Game and Parks Commission [F-75R, F-75-R]; University of Nebraska-Lincoln Nebraska Game and Parks Commission, Grant/Award Numbers: F-75R and F-75-R; University of Nebraska-Lincoln Blank A., 2012, THESIS; Bottcher JL, 2013, N AM J FISH MANAGE, V33, P585, DOI 10.1080/02755947.2013.785993; Braaten PJ, 2008, N AM J FISH MANAGE, V28, P808, DOI 10.1577/M06-285.1; Bramblett RG, 2001, T AM FISH SOC, V130, P1006, DOI 10.1577/1548-8659(2001)130<1006:HUAMOP>2.0.CO;2; Burnham KP, 2002, MODEL SELECTION INFE; Butler SE, 2011, RIVER RES APPL, V27, P1182, DOI 10.1002/rra.1416; Cooke S. J., 2016, ENVIRON MONIT ASSESS, V188, P1; da Silva PS, 2015, RIVER RES APPL, V31, P313, DOI 10.1002/rra.2755; DAMES HR, 1989, T AM FISH SOC, V118, P670, DOI 10.1577/1548-8659(1989)118<0670:MOCAFC>2.3.CO;2; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; Galat DL, 2001, J N AM BENTHOL SOC, V20, P266, DOI 10.2307/1468321; Hamel MJ, 2015, CAN J FISH AQUAT SCI, V72, P71, DOI 10.1139/cjfas-2014-0238; Hamel MJ, 2012, N AM J FISH MANAGE, V32, P533, DOI 10.1080/02755947.2012.675961; HESSE LW, 1993, FISHERIES, V18, P5, DOI 10.1577/1548-8446(1993)018<0005:TMRH>2.0.CO;2; Hubert WA, 1999, AM FISH S S, V24, P3; Kappenman KM, 2009, T AM FISH SOC, V138, P927, DOI 10.1577/T07-265.1; Keenlyne KD, 1997, ENVIRON BIOL FISH, V48, P291, DOI 10.1023/A:1007349221987; Koster WM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096044; Moore JW, 2015, CAN J FISH AQUAT SCI, V72, P785, DOI 10.1139/cjfas-2014-0478; Neely BC, 2009, ECOL FRESHW FISH, V18, P437, DOI 10.1111/j.1600-0633.2009.00360.x; Newcomb B.A., 1989, North American Journal of Fisheries Management, V9, P195, DOI 10.1577/1548-8675(1989)009<0195:WAOCCI>2.3.CO;2; Nunn AD, 2010, ECOL FRESHW FISH, V19, P153, DOI 10.1111/j.1600-0633.2009.00399.x; Pegg MA, 2003, AQUAT SCI, V65, P63, DOI 10.1007/s000270300005; Pellett T. D., 1998, N AM J FISH MANAGE, V18, P85, DOI DOI 10.1577/1548-8675(1998)018<0085:SMAH; Phelps Q., 2016, J APPL ICHTHYOL, V32, P249; Phelps QE, 2012, CAN J FISH AQUAT SCI, V69, P930, DOI 10.1139/F2012-038; Porreca AP, 2016, CAN J FISH AQUAT SCI, V73, P877, DOI 10.1139/cjfas-2015-0352; Pracheil BM, 2009, ECOL FRESHW FISH, V18, P603, DOI 10.1111/j.1600-0633.2009.00376.x; Pracheil BM, 2013, FRONT ECOL ENVIRON, V11, P124, DOI 10.1890/120179; Pracheil BM, 2012, FISHERIES, V37, P449, DOI 10.1080/03632415.2012.722877; Quist MC, 1999, T AM FISH SOC, V128, P522, DOI 10.1577/1548-8659(1999)128<0522:OHUOSS>2.0.CO;2; Quist Michael C., 1999, Prairie Naturalist, V31, P65; Radinger J, 2014, FISH FISH, V15, P456, DOI 10.1111/faf.12028; REYNOLDS LF, 1983, AUST J MAR FRESH RES, V34, P857, DOI 10.1071/MF9830857; Richards RR, 2014, J APPL ICHTHYOL, V30, P1, DOI 10.1111/jai.12336; Robichaud D, 2017, T AM FISH SOC, V146, P611, DOI 10.1080/00028487.2017.1294542; Schlosser IJ, 1995, AM FISH S S, V17, P392; Siddons SF, 2017, RIVER RES APPL, V33, P578, DOI 10.1002/rra.3118; Spurgeon JJ, 2018, FISH RES, V198, P195, DOI 10.1016/j.fishres.2017.09.001; Thorp JH, 2006, RIVER RES APPL, V22, P123, DOI 10.1002/rra.901; Travnichek VH, 2004, FISHERIES MANAG ECOL, V11, P89, DOI 10.1046/j.1365-2400.2003.00377.x; Welker T. L., 2011, MISSOURI RIVER STAND, V1. 6; Welker T. L., 2011, PALLID STURGEON POPU, V16; White GC, 1999, BIRD STUDY, V46, P120; Williams B. K., 2002, ANAL MANAGEMENT ANIM 45 0 0 1 1 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1535-1459 1535-1467 RIVER RES APPL River Res. Appl. SEP 2018 34 7 807 815 10.1002/rra.3289 9 Environmental Sciences; Water Resources Environmental Sciences & Ecology; Water Resources GS9XB WOS:000444080300018 2019-02-21 J Geiger, R; Beaulieu, M; Franke, K; Fischer, K Geiger, Rina; Beaulieu, Michael; Franke, Kristin; Fischer, Klaus High male density favors maintenance over reproduction in a butterfly BEHAVIORAL ECOLOGY English Article courtship behavior; density-dependence; intraspecific competition; resource-allocation trade-off; social plasticity; strategic investment MALE MATING SUCCESS; BICYCLUS-ANYNANA BUTTERFLIES; MALE-MALE COMPETITION; PHENOTYPIC PLASTICITY; SPERM COMPETITION; LIFE-HISTORY; FEMALE LONGEVITY; IMMUNE FUNCTION; SIZE; PREFERENCES Environmental factors exert strong effects on phenotypic expression. A particularly intriguing factor capable of inducing such plastic responses is the social environment experienced by a specific individual. Such social effects may alter the fitness of focal individuals if they affect the expression of reproductive traits and thus life-history strategies. To examine this question, we investigated the effects of individual density on morphology, reproduction, and behavior of male Bicyclus anynana butterflies. Increasing density significantly increased male body mass and the probability to succeed in aggressive interactions and tended to increase abdomen fat content. At the same time, increasing density significantly decreased courtship activity and tended to decrease sperm number. These results suggest that individual density seemed to induce differential strategic investment into survival and somatic maintenance versus reproduction in male butterflies. Males kept at high densities apparently favored high body mass and storage, which may enable longer survival during times of intense intraspecific competition. Moreover, their competitiveness was enhanced as suggested by a higher success in aggressive interactions. Males kept at low density, in contrast, favored reproduction through increased courtship activity and sperm production. Our study illustrates that the effects of density on the expression of morphological and behavioral traits are complex and difficult to predict, owing to resource-allocation trade-offs resulting in prudent strategic investment. [Geiger, Rina; Beaulieu, Michael; Franke, Kristin; Fischer, Klaus] Greifswald Univ, Zool Inst & Museum, Loitzer Str 26, D-17489 Greifswald, Germany; [Fischer, Klaus] Univ Koblenz Landau, Inst Integrated Nat Sci, Univ Str 1, D-56070 Koblenz, Germany Fischer, K (reprint author), Univ Koblenz Landau, Inst Integrated Nat Sci, Univ Str 1, D-56070 Koblenz, Germany. klausfischer@uni-koblenz.de Fischer, Klaus/0000-0002-2871-246X University of Greifswald We thank Ann-Christin Richter for help during experiments and 2 anonymous reviewers for constructive criticism. This work was supported by the University of Greifswald. Agnew P, 2002, ECOL ENTOMOL, V27, P396, DOI 10.1046/j.1365-2311.2002.00430.x; Bailey NW, 2011, BIOL LETTERS, V7, P217, DOI 10.1098/rsbl.2010.0659; Bauerfeind SS, 2005, OIKOS, V111, P514, DOI 10.1111/j.0030-1299.2005.13888.x; Beaulieu M, 2018, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.466k2sq, DOI 10.5061/DRYAD.466K2SQ]; Beaulieu M, 2017, HORM BEHAV, V93, P39, DOI 10.1016/j.yhbeh.2017.03.007; Beaulieu M, 2015, ANIM BEHAV, V109, P89, DOI 10.1016/j.anbehav.2015.08.010; Beaulieu M, 2015, EVOLUTION, V69, P1786, DOI 10.1111/evo.12697; Beck J, 1999, OECOLOGIA, V119, P140, DOI 10.1007/s004420050770; Begon M, 2014, ESSENTIALS ECOLOGY; BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999; Brakefield Paul M., 1997, V83, P65; Brakefield PM, 2001, J EVOLUTION BIOL, V14, P148, DOI 10.1046/j.1420-9101.2001.00248.x; BRAKEFIELD PM, 1991, ECOL ENTOMOL, V16, P291, DOI 10.1111/j.1365-2311.1991.tb00220.x; Buzatto BA, 2015, EVOLUTION, V69, P2613, DOI 10.1111/evo.12766; CADE WH, 1992, ANIM BEHAV, V43, P49, DOI 10.1016/S0003-3472(05)80070-3; CHRISTENSON TE, 1979, BEHAV ECOL SOCIOBIOL, V5, P87, DOI 10.1007/BF00302697; Courchamp F, 1999, TRENDS ECOL EVOL, V14, P405, DOI 10.1016/S0169-5347(99)01683-3; Dierks A, 2008, J INSECT PHYSIOL, V54, P1363, DOI 10.1016/j.jinsphys.2008.07.008; Ferkau C, 2006, ETHOLOGY, V112, P1117, DOI 10.1111/j.1439-0310.2006.01266.x; Fischer K, 2001, ANIM BEHAV, V61, P723, DOI 10.1006/anbe.2000.1662; Fischer K, 1999, J INSECT CONSERV, V3, P43, DOI 10.1023/A:1009630506216; Franke K, 2013, J EVOLUTION BIOL, V26, P517, DOI 10.1111/jeb.12064; Gage AR, 1996, BEHAV ECOL SOCIOBIOL, V38, P349, DOI 10.1007/s002650050251; GAGE MJG, 1991, ANIM BEHAV, V42, P1036, DOI 10.1016/S0003-3472(05)80162-9; Gonzalez-Santoyo I, 2012, ENTOMOL EXP APPL, V142, P1, DOI 10.1111/j.1570-7458.2011.01187.x; Goodsman DW, 2017, THEOR ECOL-NETH, V10, P255, DOI 10.1007/s12080-017-0327-2; Holveck MJ, 2015, ANIM BEHAV, V104, P229, DOI 10.1016/j.anbehav.2015.03.025; Janowitz SA, 2012, ETHOLOGY, V118, P1140, DOI 10.1111/eth.12017; Janowitz SA, 2010, BEHAV ECOL SOCIOBIOL, V64, P1999, DOI 10.1007/s00265-010-1011-3; Karl I, 2011, GLOBAL CHANGE BIOL, V17, P676, DOI 10.1111/j.1365-2486.2010.02277.x; Kehl T, 2015, FRONT ZOOL, V12, DOI 10.1186/s12983-015-0124-y; Kehl T, 2015, BEHAV ECOL SOCIOBIOL, V69, P1543, DOI 10.1007/s00265-015-1966-1; Kehl T, 2015, ENTOMOL EXP APPL, V155, P257, DOI 10.1111/eea.12305; Kehl T, 2012, J INSECT PHYSIOL, V58, P1028, DOI 10.1016/j.jinsphys.2012.05.008; Kemp DJ, 2001, BEHAV ECOL SOCIOBIOL, V49, P429, DOI 10.1007/s002650100318; Kemp DJ, 2000, BEHAV ECOL, V11, P591, DOI 10.1093/beheco/11.6.591; Kokko H, 2006, PHILOS T R SOC B, V361, P319, DOI 10.1098/rstb.2005.1784; Lewis Z, 2010, EUR J ENTOMOL, V107, P55, DOI 10.14411/eje.2010.006; Lupold S, 2017, EVOLUTION, V71, P1686, DOI 10.1111/evo.13246; Lyytinen A, 2004, P ROY SOC B-BIOL SCI, V271, P279, DOI 10.1098/rspb.2003.2571; Martin OY, 2004, J EVOLUTION BIOL, V17, P357, DOI 10.1046/j.1420-9101.2003.00668.x; Miner BG, 2005, TRENDS ECOL EVOL, V20, P685, DOI 10.1016/j.tree.2005.08.002; Molleman F, 2007, EXP GERONTOL, V42, P472, DOI 10.1016/j.exger.2007.01.008; Paukku S, 2005, J INSECT PHYSIOL, V51, P1220, DOI 10.1016/j.jinsphys.2005.06.012; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Rodriguez RL, 2013, ANIM BEHAV, V85, P1041, DOI 10.1016/j.anbehav.2013.01.006; Rolff J, 2004, AM NAT, V164, P559, DOI 10.1086/423715; Schippers P, 2011, ECOL MODEL, V222, P3061, DOI 10.1016/j.ecolmodel.2011.05.022; Scott J.A., 1973, Journal Res Lepid, V12, P225; Stearns S, 1992, EVOLUTION LIFE HIST; TROWBRIDGE CD, 1991, ECOLOGY, V72, P2193, DOI 10.2307/1941570; van't Hof AE, 2005, MOL ECOL NOTES, V5, P169, DOI 10.1111/j.1471-8268.2005.00870.x; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; VIRKKI N, 1969, Z ZELLFORSCH MIK ANA, V101, P13, DOI 10.1007/BF00335583; Wedell N, 1999, P ROY SOC B-BIOL SCI, V266, P1033, DOI 10.1098/rspb.1999.0740; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; Westerman EL, 2014, J INSECT BEHAV, V27, P478, DOI 10.1007/s10905-014-9441-9; Xue DX, 2016, SCI REP-UK, V6, DOI 10.1038/srep23461; ZWAAN BJ, 1991, HEREDITY, V66, P29, DOI 10.1038/hdy.1991.4 60 0 0 9 9 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. SEP-OCT 2018 29 5 1031 1037 10.1093/beheco/ary073 7 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology GT2FV WOS:000444301900010 Bronze 2019-02-21 J Villalobos, S; Vamosi, JC Villalobos, Soraya; Vamosi, Jana C. Climate and habitat influences on bee community structure in Western Canada CANADIAN JOURNAL OF ZOOLOGY English Article pollination services; habitat specialization; environmental filtering; phylogenetic diversity; Osmia; Andrena; Ceratina; Bombus; Psithyrus; mason bees; mining bees; carpenter bees; bumble bees; cuckoo bumble bees ECOLOGICAL COMMUNITIES; PHYLOGENETIC SIGNAL; SPECIES RICHNESS; FLOWERING PLANTS; FORAGING RANGES; BODY-SIZE; DIVERSITY; DRIVERS; TRAITS; POLLINATORS The persistence of pollinators in a given habitat is determined in part by traits that affect their response to environmental variables. Here, we show that climate and habitat features are the main drivers of trait distribution in bees across spatially separated habitats. We determined that trait and clade filtering results in bee assemblages in Western Canada exhibiting clustering that is correlated with differences in temperature, humidity, and rainfall. Phylogenetic signals were detected in all traits associated with pollinator life-history strategies, including phenology. The Bombus Latreille, 1802 clade (including the social parasite subgenus Psithyrus Lepeletier, 1833) comprised a higher proportion of prairie bees, whereas assemblages in Garry oak sites exhibited higher representation from solitary bees (e.g., genera Osmia Panzer, 1806, Andrena Fabricius, 1775, Ceratina Latreille, 1802). Because these same traits influence which plant species are pollinated, this selective environmental occupancy within the two different habitats could promote local adaptation of flowering plant species pollinated by more social clades in prairies and more solitary bees in Garry oak. [Villalobos, Soraya; Vamosi, Jana C.] Univ Calgary, Dept Biol Sci, 2500 Univ Dr Northwest, Calgary, AB T2N 1N4, Canada Villalobos, S (reprint author), Univ Calgary, Dept Biol Sci, 2500 Univ Dr Northwest, Calgary, AB T2N 1N4, Canada. svillalo@ucalgary.ca Adderley LJ, 2015, INT J PLANT SCI, V176, P186, DOI 10.1086/679617; Amat-Valero M, 2013, PARASITOLOGY, V140, P1357, DOI 10.1017/S0031182013000929; Baldeck CA, 2016, OECOLOGIA, V182, P547, DOI 10.1007/s00442-016-3686-2; Beisner BE, 2006, ECOLOGY, V87, P2985, DOI 10.1890/0012-9658(2006)87[2985:TROEAS]2.0.CO;2; Bingham RA, 1998, NATURE, V391, P238, DOI 10.1038/34564; Brady SG, 2006, P ROY SOC B-BIOL SCI, V273, P1643, DOI 10.1098/rspb.2006.3496; BRAY JR, 1957, ECOL MONOGR, V27, P326; Cadotte MW, 2010, ECOL LETT, V13, P96, DOI 10.1111/j.1461-0248.2009.01405.x; CANPOLIN, 2012, CAN POLL IN; Chamberlain SA, 2014, OECOLOGIA, V176, P545, DOI 10.1007/s00442-014-3035-2; Chown SL, 2007, ADV INSECT PHYSIOL, V33, P50; Cliff A. D., 1973, SPATIAL AUTOCORRELAT; Cowan P. D, 2016, PACKAGE PICANTE; Davies KF, 2010, BIOL CONSERV, V143, P78, DOI 10.1016/j.biocon.2009.09.006; Dray S, 2013, 5558 UMR U LYON LAB; Duarte LDS, 2012, ECOGRAPHY, V35, P952, DOI 10.1111/j.1600-0587.2011.07193.x; ESCOFIER B, 1994, COMPUT STAT DATA AN, V18, P121, DOI 10.1016/0167-9473(94)90135-X; Fine PVA, 2011, ECOGRAPHY, V34, P552, DOI 10.1111/j.1600-0587.2010.06548.x; Frier SD, 2016, AGR ECOSYST ENVIRON, V219, P42, DOI 10.1016/j.agee.2015.12.011; Fritz SA, 2010, CONSERV BIOL, V24, P1042, DOI 10.1111/j.1523-1739.2010.01455.x; Fuchs M. A, 2001, GBEIEC00030 ENV CLIM; Gathmann A, 2002, J ANIM ECOL, V71, P757, DOI 10.1046/j.1365-2656.2002.00641.x; Greenleaf SS, 2007, OECOLOGIA, V153, P589, DOI 10.1007/s00442-007-0752-9; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Kembel S, 2010, INTRO PICANTE PACKAG; Kennedy CM, 2013, ECOL LETT, V16, P584, DOI 10.1111/ele.12082; Keppner EM, 2016, J COMP PHYSIOL A, V202, P691, DOI 10.1007/s00359-016-1112-1; Kerr JT, 2015, SCIENCE, V349, P177, DOI 10.1126/science.aaa7031; Kremen C, 2007, INSECT CONSERVATION, P203; Kuhsel S, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8989; MacIvor JS, 2014, URBAN ECOSYST, V17, P139, DOI 10.1007/s11252-013-0321-4; Mayfield MM, 2010, GLOBAL ECOL BIOGEOGR, V19, P423, DOI 10.1111/j.1466-8238.2010.00532.x; Munkemuller T, 2012, METHODS ECOL EVOL, V3, P743, DOI 10.1111/j.2041-210X.2012.00196.x; Ollerton J, 2011, OIKOS, V120, P321, DOI 10.1111/j.1600-0706.2010.18644.x; Orme D., 2013, CAPER COMP ANAL PHYL; Parra JL, 2010, AM NAT, V176, P573, DOI 10.1086/656619; Pavoine S, 2011, J ECOL, V99, P165, DOI 10.1111/j.1365-2745.2010.01743.x; Peres-Neto PR, 2015, PLANT ECOL, V216, P709, DOI 10.1007/s11258-014-0405-0; Potts SG, 2010, TRENDS ECOL EVOL, V25, P345, DOI 10.1016/j.tree.2010.01.007; Ravigne V, 2009, AM NAT, V174, pE141, DOI 10.1086/605369; Rozen Jerome G. Jr, 2003, American Museum Novitates, V3413, P1, DOI 10.1206/0003-0082(2003)413<0001:EONAMO>2.0.CO;2; Sheffield CS, 2013, APIDOLOGIE, V44, P501, DOI 10.1007/s13592-013-0200-2; Sheffield CS, 2014, ARTHROPODS CANADIA 2, V4, P427, DOI DOI 10.3752/9780968932179.01111; STONE GN, 1989, J EXP BIOL, V147, P303; Straka JR, 2015, OECOLOGIA, V178, P249, DOI 10.1007/s00442-014-3169-2; Villalobos C, 2014, INTERSPECIFIC INTERA; VILLALOBOS S, 2016, PEERJ, V4, DOI DOI 10.7717/PEERJ.1740; Waser NM, 1996, ECOLOGY, V77, P1043, DOI 10.2307/2265575; Webb C., 2011, PHYLOCOM SOFTWARE AN; Webb CO, 2005, MOL ECOL NOTES, V5, P181, DOI 10.1111/j.1471-8286.2004.00829.x; Webb CO, 2002, ANNU REV ECOL SYST, V33, P475, DOI 10.1146/annurev.ecolysis.33.010802.150448; Weigelt P, 2015, SCI REP-UK, V5, DOI 10.1038/srep12213; Wray JC, 2015, LANDSCAPE ECOL, V30, P261, DOI 10.1007/s10980-014-0121-0; Zurbuchen A, 2010, BIOL CONSERV, V143, P669, DOI 10.1016/j.biocon.2009.12.003 54 0 0 15 15 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool. SEP 2018 96 9 1002 1009 10.1139/cjz-2017-0226 8 Zoology Zoology GT4SB WOS:000444493400010 2019-02-21 J Lait, LA; Carr, SM Lait, Linda A.; Carr, Steven M. Intraspecific mitogenomics of three marine species-at-risk: Atlantic, spotted, and northern wolffish (Anarhichas spp.) GENOME English Article phylogeography; conservation genetics; Pleistocene glaciations; population genetics; Anarhichas; species-at-risk MITOCHONDRIAL GENOME SEQUENCES; COD GADUS-MORHUA; POPULATION-STRUCTURE; GLACIAL REFUGIA; DNA; LUPUS; SOFTWARE; GENETICS; FISHES; SEA High-resolution mitogenomics of within-species relationships can answer such phylogeographic questions as how species survived the most recent glaciation, as well as identify contemporary factors such as physical barriers, isolation, and gene flow. We examined the mitogenomic population structure of three at-risk species of wolffish: Atlantic (Anarhichas lupus), spotted (A. minor), and northern (A. denticulatus). These species are extensively sympatric across the North Atlantic but exhibit very different life history strategies, a combination that results in concordant and discordant patterns of genetic variation and structure. Wolffish haplogroups were not structured geographically: Atlantic and spotted wolffish each comprised three shallow clades, whereas northern wolffish comprised two deeper but unstructured lineages. We suggest that wolffish species survived in isolation in multiple glacial refugia, either refugia within refugia (Atlantic and spotted wolffish) or more distant refugia (northern wolffish), followed by secondary admixture upon post-glacial recolonisation of the North Atlantic. [Lait, Linda A.; Carr, Steven M.] Mem Univ Newfoundland, Dept Biol, Genet Evolut & Mol Systemat Lab, St John, NF A1B 3X9, Canada; [Lait, Linda A.] Univ Guelph, Ctr Biodivers Genom, Guelph, ON N1G 2W1, Canada Lait, LA (reprint author), Mem Univ Newfoundland, Dept Biol, Genet Evolut & Mol Systemat Lab, St John, NF A1B 3X9, Canada.; Lait, LA (reprint author), Univ Guelph, Ctr Biodivers Genom, Guelph, ON N1G 2W1, Canada. lindaalait@gmail.com Natural Sciences and Engineering Research Council (NSERC) [367672010]; Department of Fisheries and Oceans University Partnership program; Natural Sciences and Engineering Research Council Alexander Graham Bell Canada Graduate Scholarship; Alberta Scholarships Program James Lougheed Award We would like to thank Fisheries and Oceans Canada for providing tissue samples, and everyone involved in the extraction and amplification of the samples: Dr. H.D. Marshall, Dr. K.A. Johnstone, Dr. A.T. Duggan, Dr. S.M.C. Flynn, L. MacDonald, E. Wells, O. Trela, and A. Genge. We thank Dr. P. Bentzen and Dr. M.R. McCusker for providing Atlantic and northern wolffish samples from their study. We also thank the editor and reviewers for constructive comments. This work was supported by the Natural Sciences and Engineering Research Council (NSERC Discovery Grant 367672010) and a grant from the Department of Fisheries and Oceans University Partnership program to S.M.C. L.A.L. acknowledges receipt of a Natural Sciences and Engineering Research Council Alexander Graham Bell Canada Graduate Scholarship and an Alberta Scholarships Program James Lougheed Award. Albikovskaya L.K., 1983, Northwest Atlantic Fisheries Organization Scientific Council Studies, P35; ALBIKOVSKAYA LK, 1982, NAFO SCI COUNCIL STU, V3, P29; Amos W, 1998, PHILOS T ROY SOC B, V353, P177, DOI 10.1098/rstb.1998.0200; Arnason U, 2008, GENE, V421, P37, DOI 10.1016/j.gene.2008.05.024; Baker KD, 2009, ENVIRON BIOL FISH, V85, P79, DOI 10.1007/s10641-009-9465-8; BARSUKOV VV, 1959, WOLFFISH ANARHICHADI; Benjamini Y, 2001, ANN STAT, V29, P1165; Bouckaert R, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003537; CARR SM, 2009, LAB FOCUS, V13, P8; Carr SM, 2008, GENETICS, V180, P381, DOI 10.1534/genetics.108.089730; Carr SM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134207; Clement M, 2000, MOL ECOL, V9, P1657, DOI 10.1046/j.1365-294x.2000.01020.x; COMMITTEE ON THE STATUS OF ENDANGERED WILDLIFE IN CANADA (COSEWIC), 2012, COSEWIC ASS STAT REP; Cooper A, 2001, NATURE, V409, P704, DOI 10.1038/35055536; Corander J, 2007, MATH BIOSCI, V205, P19, DOI 10.1016/j.mbs.2006.09.015; Corander J, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-539; COSEWIC, 2001, COSEWIC ASS STAT REP; COSEWIC, 2000, COSEWIC ASS STAT REP; Coulson MW, 2006, GENOME, V49, P1115, DOI 10.1139/G06-083; Duggan A., 2007, THESIS; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Feutry P, 2014, BMC EVOL BIOL, V14, DOI 10.1186/s12862-014-0232-x; FishBase, 2013, REV DISTR MAPS AN DE; Frankham R, 1995, ANNU REV GENET, V29, P305, DOI 10.1146/annurev.ge.29.120195.001513; Gomez A., 2007, PHYLOGEOGRAPHY SO EU; Hewitt G, 2000, NATURE, V405, P907, DOI 10.1038/35016000; Hewitt GM, 2004, PHILOS T ROY SOC B, V359, P183, DOI 10.1098/rstb.2003.1388; Hiddink JG, 2008, FISH RES, V90, P6, DOI 10.1016/j.fishres.2007.11.025; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; Hoarau G, 2007, MOL ECOL, V16, P3606, DOI 10.1111/j.1365-294X.2007.03408.x; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Inoue JG, 2001, MOL PHYLOGENET EVOL, V20, P275, DOI 10.1006/mpev.2001.0970; JOHANNESSEN T, 1993, AQUACULTURE, V115, P41, DOI 10.1016/0044-8486(93)90357-5; Johnstone KA, 2007, CAN J ZOOL, V85, P151, DOI 10.1139/Z06-191; Knaus Brian J., 2011, BMC Ecology, V11, P10, DOI 10.1186/1472-6785-11-10; Lait LA, 2018, ECOL EVOL, V8, P6420, DOI 10.1002/ece3.3873; Librado P, 2009, BIOINFORMATICS, V25, P1451, DOI 10.1093/bioinformatics/btp187; Maggs CA, 2008, ECOLOGY, V89, pS108, DOI 10.1890/08-0257.1; McCusker MR, 2011, MAR BIOL, V158, P1869, DOI 10.1007/s00227-011-1698-3; McCusker MR, 2010, MOL ECOL, V19, P4228, DOI 10.1111/j.1365-294X.2010.04806.x; McCusker MR, 2010, J HERED, V101, P591, DOI 10.1093/jhered/esq062; O'Dea NR, 2002, CAN FIELD NAT, V116, P423; PALUMBI SR, 1992, TRENDS ECOL EVOL, V7, P114, DOI 10.1016/0169-5347(92)90144-Z; PAVLOV DA, 1993, ICES J MAR SCI, V50, P271, DOI 10.1006/jmsc.1993.1029; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; Peakall R, 2012, BIOINFORMATICS, V28, P2537, DOI 10.1093/bioinformatics/bts460; Pflaumann U, 2003, PALEOCEANOGRAPHY, V18, DOI 10.1029/2002PA000774; Pielou E. C., 1991, ICE AGE RETURN LIFE; Provan J, 2005, MOL ECOL, V14, P793, DOI 10.1111/j.1365-294X.2005.02447.x; Provan J, 2008, TRENDS ECOL EVOL, V23, P564, DOI 10.1016/j.tree.2008.06.010; ROFF DA, 1989, MOL BIOL EVOL, V6, P539; Rohling EJ, 1998, NATURE, V394, P162, DOI 10.1038/28134; Roman J, 2004, MOL ECOL, V13, P2891, DOI 10.1111/j.1365-294X.2004.02255.x; Rozas J, 2003, BIOINFORMATICS, V19, P2496, DOI 10.1093/bioinformatics/btg359; Shaw John, 2005, Journal of Northwest Atlantic Fishery Science, V37, P119, DOI 10.2960/J.v37.m565; Swofford D. L., 2003, PAUP PHYLOGENETIC AN; Tanaka M, 2004, GENOME RES, V14, P1832, DOI 10.1101/gr.2286304; Teacher AGF, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-248; TEMPLEMAN W, 1984, Journal of Northwest Atlantic Fishery Science, V5, P93; Vis ML, 1997, CAN J FISH AQUAT SCI, V54, P1813, DOI 10.1139/cjfas-54-8-1813; Wang ZF, 2010, J BIOGEOGR, V37, P2332, DOI 10.1111/j.1365-2699.2010.02379.x; Ward RD, 1995, J FISH BIOL, V47, P259, DOI 10.1111/j.1095-8649.1995.tb06060.x; Watling L, 1998, CONSERV BIOL, V12, P1180, DOI 10.1046/j.1523-1739.1998.0120061180.x 63 0 0 2 2 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0831-2796 1480-3321 GENOME Genome SEP 2018 61 9 625 634 10.1139/gen-2018-0043 10 Biotechnology & Applied Microbiology; Genetics & Heredity Biotechnology & Applied Microbiology; Genetics & Heredity GT0FA WOS:000444103900001 30001499 2019-02-21 J Salin, K; Villasevil, EM; Anderson, GJ; Auer, SK; Selman, C; Hartley, RC; Mullen, W; Chinopoulos, C; Metcalfe, NB Salin, Karine; Villasevil, Eugenia M.; Anderson, Graeme J.; Auer, Sonya K.; Selman, Colin; Hartley, Richard C.; Mullen, William; Chinopoulos, Christos; Metcalfe, Neil B. Decreased mitochondrial metabolic requirements in fasting animals carry an oxidative cost FUNCTIONAL ECOLOGY English Article high-resolution respirometry; in vivo; liver atrophy; MitoB probe; mitochondrial respiratory state OXYGEN SPECIES PRODUCTION; HIGH-RESOLUTION RESPIROMETRY; LIFE-HISTORY EVOLUTION; RAT-LIVER MITOCHONDRIA; HYDROGEN-PEROXIDE; FOOD-DEPRIVATION; LIVING DROSOPHILA; ENERGY-METABOLISM; SKELETAL-MUSCLE; KING PENGUINS 1. Many animals experience periods of food shortage in their natural environment. It has been hypothesised that the metabolic responses of animals to naturally-occurring periods of food deprivation may have long-term negative impacts on their subsequent life-history. 2. In particular, reductions in energy requirements in response to fasting may help preserve limited resources but potentially come at a cost of increased oxidative stress. However, little is known about this trade-off since studies of energy metabolism are generally conducted separately from those of oxidative stress. 3. Using a novel approach that combines measurements of mitochondrial function with in vivo levels of hydrogen peroxide (H2O2) in brown trout (Salmo trutta), we show here that fasting induces energy savings in a highly metabolically active organ (the liver) but at the cost of a significant increase in H2O2, an important form of reactive oxygen species (ROS). 4. After a 2-week period of fasting, brown trout reduced their whole-liver mitochondrial respiratory capacities (state 3, state 4 and cytochrome c oxidase activity), mainly due to reductions in liver size (and hence the total mitochondrial content). This was compensated for at the level of the mitochondrion, with an increase in state 3 respiration combined with a decrease in state 4 respiration, suggesting a selective increase in the capacity to produce ATP without a concomitant increase in energy dissipated through proton leakage. However, the reduction in total hepatic metabolic capacity in fasted fish was associated with an almost two-fold increase in in vivo mitochondrial H2O2 levels (as measured by the MitoB probe). 5. The resulting increase in mitochondrial ROS, and hence potential risk of oxidative damage, provides mechanistic insight into the trade-off between the short-term energetic benefits of reducing metabolism in response to fasting and the potential long-term costs to subsequent life-history traits. [Salin, Karine; Villasevil, Eugenia M.; Anderson, Graeme J.; Auer, Sonya K.; Selman, Colin; Metcalfe, Neil B.] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow, Lanark, Scotland; [Hartley, Richard C.] Univ Glasgow, Sch Chem, Glasgow, Lanark, Scotland; [Mullen, William] Univ Glasgow, Inst Cardiovasc & Med Sci, Glasgow, Lanark, Scotland; [Chinopoulos, Christos] Semmelweis Univ, Dept Med Biochem, Budapest, Hungary; [Chinopoulos, Christos] MTA SE Lendulet Neurobiochem Res Grp, Budapest, Hungary Salin, K (reprint author), IFREMER, LEMAR UMR 6530, Unite Physiol Fonct Organismes Marins, BP70, F-29280 Plouzane, France. salin.karine@gmail.com Hartley, Richard/E-3489-2010 Hartley, Richard/0000-0003-1033-5405; Salin, Karine/0000-0002-3368-9639; Metcalfe, Neil/0000-0002-1970-9349 European Research Council Advanced Grant [322784] This research was supported by a European Research Council Advanced Grant (Number 322784) to NBM. AKERMAN KEO, 1976, FEBS LETT, V68, P191, DOI 10.1016/0014-5793(76)80434-6; Auer SK, 2016, OECOLOGIA, V182, P703, DOI 10.1007/s00442-016-3697-z; Barja G, 2007, REJUV RES, V10, P215, DOI 10.1089/rej.2006.0516; Bayir A, 2011, COMP BIOCHEM PHYS B, V159, P191, DOI 10.1016/j.cbpb.2011.04.008; Bermejo-Nogales A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122889; Bernardi P, 2015, PHYSIOL REV, V95, P1111, DOI 10.1152/physrev.00001.2015; BOBYLEVAGUARRIERO V, 1984, COMP BIOCHEM PHYS B, V78, P627, DOI 10.1016/0305-0491(84)90109-3; Brand MD, 2016, FREE RADICAL BIO MED, V100, P14, DOI 10.1016/j.freeradbiomed.2016.04.001; Brand MD, 2011, BIOCHEM J, V435, P297, DOI 10.1042/BJ20110162; Brown JCL, 2011, PHYSIOL BIOCHEM ZOOL, V84, P467, DOI 10.1086/661639; Brown JCL, 2010, BBA-BIOENERGETICS, V1797, P476, DOI 10.1016/j.bbabio.2010.01.009; CHANCE B, 1955, J BIOL CHEM, V217, P409; Chausse B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120413; Cocheme HM, 2012, NAT PROTOC, V7, P946, DOI 10.1038/nprot.2012.035; Cocheme HM, 2011, CELL METAB, V13, P340, DOI 10.1016/j.cmet.2011.02.003; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Dumas JF, 2004, BBA-GEN SUBJECTS, V1670, P126, DOI 10.1016/j.bbagen.2003.11.002; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Finstad AG, 2004, CAN J FISH AQUAT SCI, V61, P2358, DOI 10.1139/F04-213; FOSTER GD, 1991, PHYSIOL ZOOL, V64, P259, DOI 10.1086/physzool.64.1.30158523; French WE, 2016, J FISH BIOL, V89, P2449, DOI 10.1111/jfb.13128; Frick NT, 2008, COMP BIOCHEM PHYS A, V151, P93, DOI 10.1016/j.cbpa.2008.06.004; Goncalves RLS, 2015, J BIOL CHEM, V290, P209, DOI 10.1074/jbc.M114.619072; Guderley H, 2003, COMP BIOCHEM PHYS A, V135, P347, DOI 10.1016/S1095-6433(03)00089-8; Harper J A, 2001, Obes Rev, V2, P255, DOI 10.1046/j.1467-789X.2001.00043.x; Huusko A, 2007, RIVER RES APPL, V23, P469, DOI 10.1002/rra.999; Kadenbach B, 2003, BBA-BIOENERGETICS, V1604, P77, DOI 10.1016/S0005-2728(03)00027-6; Korshunov SS, 1997, FEBS LETT, V416, P15, DOI 10.1016/S0014-5793(97)01159-9; Krumschnabel G, 2014, METHOD ENZYMOL, V542, P163, DOI 10.1016/B978-0-12-416618-9.00009-1; Lamarre SG, 2016, AM J PHYSIOL-REG I, V310, pR1160, DOI 10.1152/ajpregu.00459.2015; Larsen S, 2012, J PHYSIOL-LONDON, V590, P3349, DOI 10.1113/jphysiol.2012.230185; Midwood JD, 2016, J EXP BIOL, V219, P3712, DOI 10.1242/jeb.140665; Miwa S, 2003, BIOCHEM SOC T, V31, P1300; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Monternier PA, 2014, J EXP BIOL, V217, P2691, DOI 10.1242/jeb.104505; Pascual P, 2003, CHEM-BIOL INTERACT, V145, P191, DOI 10.1016/S0009-2797(03)00002-4; Pesta D, 2012, METHODS MOL BIOL, V810, P25, DOI 10.1007/978-1-61779-382-0_3; Rey B, 2008, AM J PHYSIOL-REG I, V295, pR92, DOI 10.1152/ajpregu.00271.2007; Rolfe DFS, 1997, BIOSCIENCE REP, V17, P9, DOI 10.1023/A:1027327015957; Rui LY, 2014, COMPR PHYSIOL, V4, P177, DOI 10.1002/cphy.c130024; Salin K., 2018, DRYAD DIGITAL REPOSI, DOI [10. 5061/dryad. v0vg627, DOI 10.5061/DRYAD.V0VG627]; Salin K, 2017, SCI REP-UK, V7, DOI 10.1038/srep41228; Salin K, 2016, PHYSIOL REP, V4, DOI 10.14814/phy2.13007; Salin K, 2016, PHYSIOL BIOCHEM ZOOL, V89, P511, DOI 10.1086/688769; Salin K, 2016, J EXP BIOL, V219, P1356, DOI 10.1242/jeb.133025; Salin K, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0538; Sanz A, 2016, BBA-BIOENERGETICS, V1857, P1116, DOI 10.1016/j.bbabio.2016.03.018; Schull Q, 2016, J EXP BIOL, V219, P3284, DOI 10.1242/jeb.145250; Secor SM, 2016, COMPR PHYSIOL, V6, P773, DOI 10.1002/cphy.c150013; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sharma PK, 2011, AGE, V33, P143, DOI 10.1007/s11357-010-9169-1; Sies H, 2017, REDOX BIOL, V11, P613, DOI 10.1016/j.redox.2016.12.035; Sorensen M, 2006, FREE RADICAL RES, V40, P339, DOI 10.1080/10715760500250182; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; Sylvie G, 2012, PHYSIOL BIOCHEM ZOOL, V85, P415, DOI 10.1086/666364; Trzcionka M, 2008, J EXP BIOL, V211, P1911, DOI 10.1242/jeb.016519; Wang T, 2006, ANNU REV PHYSIOL, V68, P223, DOI 10.1146/annurev.physiol.68.040104.105739; Zhang YN, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069715 59 2 2 11 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. SEP 2018 32 9 2149 2157 10.1111/1365-2435.13125 9 Ecology Environmental Sciences & Ecology GS3XJ WOS:000443560300005 30333678 Green Published 2019-02-21 J Larios, E; Venable, DL Larios, Eugenio; Venable, David Lawrence Selection for seed size: The unexpected effects of water availability and density FUNCTIONAL ECOLOGY English Article density; intraspecific competition; natural selection in the wild; selection on seed size; water availability COMPETITIVE ABILITY; NATURAL-SELECTION; EVOLUTIONARY GAME; WILD RADISH; TRADE-OFF; EGG SIZE; CONSEQUENCES; SURVIVAL; FITNESS; TRAITS 1. Seed size is a functional trait with important fitness consequences that potentially extend throughout the life cycle of plants. Dithyrea californica experiences selection for larger seeds in postgermination stages but it is still uncertain how environmental factors mediate the strength and the direction of natural selection on seed size. 2. Dithyrea californica represents a unique opportunity to investigate selection on seed size in natural conditions due to a persistent seed ring that stays attached to the root throughout the plant's life. This makes it possible to unearth plants at any stage and measure the size of the seed from which they originated. 3. We conducted a factorial experiment manipulating water availability and intraspecific competition using plants that naturally germinated in the wild. 4. Selection on seed size via survivorship was nil because all individuals survived to reproduce. The strength and the direction of selection on seed size via fecundity depended on water availability and conspecific density. 5. Contrary to our predictions, increasing conspecific density relaxed directional selection favouring larger seeds, but only in the wettest conditions and an increase in water availability strengthened it, but only at low density. A possible explanation of these counter-intuitive results relies on the observed absence of survival selection and increased plant growth rates under high water and low density. 6. Larger seeds require more resources to construct, and when this cost is taken into account, there is no overall fitness increase with seed size. This nicely follows the life-history theory predictions for optimal seed size. At the evolutionary equilibrium, if seeds could be larger, per seed fitness would still increase, which is what we observed, but cost-corrected fitness should be flat. Maternal fitness equals per seed fitness times seed number, so any increase to per seed fitness of making a bigger seed is balanced by the resulting cost to seed number. Our results indicate flat cost-corrected fitness of seed size as theory predicts. [Larios, Eugenio; Venable, David Lawrence] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA Larios, E (reprint author), Univ Nacl Autonoma Mexico, Inst Ecol, Hermosillo 83000, Sonora, Mexico. elariosc@iecologia.unam.mx Larios, Eugenio/0000-0003-4501-4652 Directorate for Biological Sciences; Garden Club of America; Community Foundation; University of Arizona; NSF [DEB 0817121, 1256792] Directorate for Biological Sciences; The Garden Club of America; The Community Foundation; The University of Arizona; NSF, Grant/Award Number: DEB 0817121 and 1256792 ANTONOVICS J, 1986, OECOLOGIA, V69, P277, DOI 10.1007/BF00377634; BAKER HG, 1972, ECOLOGY, V53, P997, DOI 10.2307/1935413; BIERE A, 1991, J EVOLUTION BIOL, V4, P447, DOI 10.1046/j.1420-9101.1991.4030447.x; BLACK J. N., 1958, AUSTRALIAN JOUR AGRIC RES, V9, P299, DOI 10.1071/AR9580299; Bonfil C, 1998, AM J BOT, V85, P79, DOI 10.2307/2446557; Bowers JE, 1996, J ARID ENVIRON, V33, P63, DOI 10.1006/jare.1996.0046; CIDECIYAN MA, 1982, J ECOL, V70, P227, DOI 10.2307/2259875; Dalling JW, 2002, J ECOL, V90, P557, DOI 10.1046/j.1365-2745.2002.00695.x; Felger R. S., 2000, FLORA GRAN DESIERTO; Grace J. B., 1990, Perspectives on plant competition., P51; Hallett LM, 2011, PLANT ECOL, V212, P1479, DOI 10.1007/s11258-011-9922-2; Halpern SL, 2005, AM J BOT, V92, P205, DOI 10.3732/ajb.92.2.205; LANCASTER N, 1987, EARTH SURF PROCESSES, V12, P277, DOI 10.1002/esp.3290120306; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Larios E, 2015, ECOLOGY, V96, P2771, DOI 10.1890/14-1565.1.sm; Larios E, 2014, ECOLOGY, V95, P3213; LEISHMAN MR, 1994, FUNCT ECOL, V8, P205, DOI 10.2307/2389903; LEISHMAN MR, 1994, J ECOL, V82, P249, DOI 10.2307/2261293; Linnen C R, 2009, Cold Spring Harb Symp Quant Biol, V74, P155, DOI 10.1101/sqb.2009.74.045; Lloret F, 1999, FUNCT ECOL, V13, P210, DOI 10.1046/j.1365-2435.1999.00309.x; Lonnberg K, 2013, PLANT BIOLOGY, V15, P601, DOI 10.1111/j.1438-8677.2012.00676.x; Martin E. C., 2011, CONVERTING GALLONS I; MAZER SJ, 1992, AM J BOT, V79, P1185, DOI 10.2307/2445218; MILLER TE, 1989, ECOLOGY, V70, P1188, DOI 10.2307/1941388; Mojonnier L, 1998, AM NAT, V152, P188, DOI 10.1086/286161; Moles AT, 2004, J ECOL, V92, P372, DOI 10.1111/j.0022-0477.2004.00884.x; Moles AT, 2004, OIKOS, V106, P193, DOI 10.1111/j.0030-1299.2004.13101.x; MONTALVO AM, 1994, EVOLUTION, V48, P828, DOI 10.1111/j.1558-5646.1994.tb01365.x; Noy-Meir I., 1973, Annual Review of Ecology and Systematics, V4, P25, DOI 10.1146/annurev.es.04.110173.000325; Olofsson H, 2009, P ROY SOC B-BIOL SCI, V276, P2963, DOI 10.1098/rspb.2009.0500; PITELKA LF, 1983, CAN J BOT, V61, P1415, DOI 10.1139/b83-152; PLATENKAMP GAJ, 1993, EVOLUTION, V47, P540, DOI 10.1111/j.1558-5646.1993.tb02112.x; PRIMACK RB, 1989, ANNU REV ECOL SYST, V20, P367, DOI 10.1146/annurev.es.20.110189.002055; Rees M, 2010, P ROY SOC B-BIOL SCI, V277, P1149, DOI 10.1098/rspb.2009.1541; SCHAAL BA, 1980, AM J BOT, V67, P703, DOI 10.2307/2442663; SHAANKER RU, 1988, ANNU REV ECOL SYST, V19, P177, DOI 10.1146/annurev.es.19.110188.001141; Simons AM, 2000, AM J BOT, V87, P124, DOI 10.2307/2656690; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith S. D., 1997, PHYSIOL ECOLOGY N AM, DOI [10. 1007/978-3-642-59212-6, DOI 10.1007/978-3-642-59212-6]; STANTON ML, 1984, ECOLOGY, V65, P1105, DOI 10.2307/1938318; Susko DJ, 2008, BOTANY, V86, P259, DOI 10.1139/B07-137; WULFF RD, 1986, J ECOL, V74, P115, DOI 10.2307/2260352; Zas R, 2015, HEREDITY, V114, P116, DOI 10.1038/hdy.2014.76 43 0 0 13 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. SEP 2018 32 9 2216 2224 10.1111/1365-2435.13138 9 Ecology Environmental Sciences & Ecology GS3XJ WOS:000443560300011 2019-02-21 J Tammaru, T; Johansson, NR; Ounap, E; Davis, RB Tammaru, Toomas; Johansson, Niko R.; Ounap, Erki; Davis, Robert B. Day-flying moths are smaller: evidence for ecological costs of being large JOURNAL OF EVOLUTIONARY BIOLOGY English Article body size; comparative studies; diurnal activity; Geometridae; insects; Lepidoptera; life-history evolution; moths; phylogeny; predation BODY-SIZE; LIFE-HISTORIES; INSECTS; EVOLUTION; PREDATION; PERSPECTIVE; LEPIDOPTERA Research on evolutionary forces determining optimal body sizes has primarily relied on experimental evaluation of respective selective pressures. Accounting for among-species variation through application of phylogenetic comparative methods is a complementary although little used approach. It enables the direct association of body size values with particular environments. Using phylogenetically explicit comparative analyses, we show that small body size is associated with diurnal (rather than nocturnal) activity of adults among temperate species of the moth family Geometridae. The association of an exclusively adult trait with species-specific body size suggests that optimal body sizes are at least partly determined by the costs being a large adult, as opposed to the more frequently considered costs of attaining large size. It appears likely that size-selective predation by insectivorous birds is the primary factor responsible for selection against large body size in day-flying moths. [Tammaru, Toomas; Ounap, Erki; Davis, Robert B.] Univ Tartu, Inst Ecol & Earth Sci, Vanemuise 46, EE-51014 Tartu, Estonia; [Johansson, Niko R.] Univ Aberdeen, Sch Biol Sci, Aberdeen, Scotland; [Ounap, Erki] Estonian Univ Life Sci, Inst Agr & Environm Sci, Tartu, Estonia Tammaru, T (reprint author), Univ Tartu, Inst Ecol & Earth Sci, Vanemuise 46, EE-51014 Tartu, Estonia. toomas.tammaru@ut.ee IUT of the Estonian Ministry of Education and Research [IUT20-33] We thank our colleagues in Tartu for constructive criticism. The study was supported by institutional research funding IUT (IUT20-33) of the Estonian Ministry of Education and Research. Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Clapham ME, 2012, P NATL ACAD SCI USA, V109, P10927, DOI 10.1073/pnas.1204026109; Davis RB, 2016, ECOLOGY, V97, P2112, DOI 10.1002/ecy.1435; Davis RB, 2013, EVOLUTION, V67, P583, DOI 10.1111/j.1558-5646.2012.01776.x; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Graca MB, 2016, ENVIRON ENTOMOL, V45, P301, DOI 10.1093/ee/nvv183; Harnos A, 2017, EVOLUTION, V71, P421, DOI 10.1111/evo.13147; HERRERA CM, 1992, ECOL ENTOMOL, V17, P52, DOI 10.1111/j.1365-2311.1992.tb01038.x; Holm S, 2016, J EVOLUTION BIOL, V29, P2422, DOI 10.1111/jeb.12966; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Kalda O, 2015, AGR ECOSYST ENVIRON, V199, P105, DOI 10.1016/j.agee.2014.08.028; Mand T, 2007, EVOL ECOL, V21, P485, DOI 10.1007/s10682-006-9130-z; MARDEN JH, 1991, AM NAT, V138, P15, DOI 10.1086/285202; Meister H, 2017, OIKOS, V126, P1726, DOI 10.1111/oik.04233; Mikkola K., 1989, SUOMEN PERHOSET MITT; Mikkola K., 1985, SUOMEN PERHOSET MITT; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; R Core Team, 2017, R LANG ENV STAT COMP; Remmel T, 2011, BIOL J LINN SOC, V104, P1, DOI 10.1111/j.1095-8312.2011.01721.x; Roff Derek A., 1992; Rollinson N, 2015, EVOLUTION, V69, P2441, DOI 10.1111/evo.12753; RYDELL J, 1986, HOLARCTIC ECOL, V9, P272; Shelomi M, 2012, AM NAT, V180, P511, DOI 10.1086/667595; Snall N, 2007, BIOL J LINN SOC, V92, P241, DOI 10.1111/j.1095-8312.2007.00834.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stevens M, 2005, BIOL REV, V80, P573, DOI 10.1017/S1464793105006810; Surlykke A, 1999, NATURWISSENSCHAFTEN, V86, P238, DOI 10.1007/s001140050607; Teder T, 2010, OECOLOGIA, V162, P117, DOI 10.1007/s00442-009-1439-1 29 0 0 14 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. SEP 2018 31 9 1400 1404 10.1111/jeb.13306 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GS5HI WOS:000443688100012 29904956 2019-02-21 J Ramos, R; Llabres, V; Monclus, L; Lopez-Bejar, M; Gonzalez-Solis, J Ramos, Rauel; Llabres, Victoria; Monclus, Laura; Lopez-Bejar, Manel; Gonzalez-Solis, Jacob Costs of breeding are rapidly buffered and do not affect migratory behavior in a long-lived bird species ECOLOGY English Article breeding failure; carryover effects; Cory's shearwater; feather corticosterone; long-distance migrants; molting strategy; oceanic migrations; seasonal interactions; stable isotope analysis CURRENT REPRODUCTIVE EFFORT; TRANS-EQUATORIAL MIGRATION; BLACK-LEGGED KITTIWAKE; FEATHER CORTICOSTERONE; PELAGIC SEABIRD; MOLT STRATEGIES; ANNUAL CYCLE; SEASONAL INTERACTIONS; POPULATION-DYNAMICS; WINTER DISTRIBUTION Life history theory states that individual fitness in one stage of life is conditioned by what occurred in previous stages. In migratory species, reproductive effort during breeding has often been found to influence body condition, molt schedule, self-provisioning and migration of individuals in subsequent seasons (i.e., carryover effects of breeding). However, there is a current uncertainty in understanding how long-distance migrants trade off among such energy-demanding activities (i.e., breeding, molting and migrating). To provide evidence to the field, we experimentally reduced the parental effort of a long-lived Procellariform, the Cory's shearwater (Calonectris borealis), by inducing failure at the incubation stage. Treatment and control birds were tracked during their subsequent migration by means of light-level and immersion loggers and sampled for six specific feathers (molted at different periods along the migratory cycle) upon the recovery of the loggers 1 yr later. Feathers were used to perform stable isotope analysis (SIA) and determine corticosterone levels (CORT). By these means, we evaluated the effect of breeding effort on migratory strategy, at-sea activity patterns, molt patterns, and levels of stress experienced by birds along the non-breeding period. We did not detect any difference between birds in the induced failure group and successful breeders in terms of spatio-temporal distribution: all birds shared common foraging areas throughout the study period and the timing of major phenological events did not differ. Failed birds significantly advanced their molt, as revealed by SIA and flying activity patterns. The stress levels of failed birds, inferred through CORT concentrations in feathers, were found to be consistently lower than in successful breeders, through the end of the breeding to the non-breeding period. Thus, we provide robust evidence that the costs of reproduction can be physiologically mediated from the breeding to the non-breeding period through molting schedules and CORT levels. However, we failed to detect clear effects on migratory behavior or subsequent breeding success, suggesting that costs of breeding in long-lived species may be rapidly buffered during the post-breeding period, as would be expected from life history theory. [Ramos, Rauel; Llabres, Victoria; Gonzalez-Solis, Jacob] Univ Barcelona, Fac Biol, Biodivers Res Inst IRBio, Dept Evolutionary Biol Ecol & Environm Sci BEECA, Av Diagonal 643, Barcelona 08028, Spain; [Monclus, Laura; Lopez-Bejar, Manel] Univ Autonoma Barcelona, Fac Vet, Dept Anim Hlth & Anat, Bellaterra 08193, Spain Ramos, R (reprint author), Univ Barcelona, Fac Biol, Biodivers Res Inst IRBio, Dept Evolutionary Biol Ecol & Environm Sci BEECA, Av Diagonal 643, Barcelona 08028, Spain. ramos@ub.edu Gonzalez-Solis, Jacob/C-3942-2008 Gonzalez-Solis, Jacob/0000-0002-8691-9397; Ramos, Raul/0000-0002-0551-8605 Ministerio de Ciencia e Innovacion (MINECO); Ministerio de Economia y Competitividad; Fondos FEDER [CGL2009-11278/BOS, CGL2013-42585-P]; European Union (FP7-PEOPLE-2013-CIG) [618841]; Beatriu de Pinos We thank Consejeria de Medio Ambiente del Cabildo de Gran Canaria for permission to conduct the experiments. We also thank the Ministerio de Ciencia e Innovacion (MINECO) and Ministerio de Economia y Competitividad and Fondos FEDER (CGL2009-11278/BOS and CGL2013-42585-P) and the European Union (FP7-PEOPLE-2013-CIG, 618841) for funding this research, and Jose Manuel de los Reyes, Zuzana Zajkova, Pascual Calabuig and Teresa Militao for help at various stages of the work. RR was supported by postdoctoral contracts of the Beatriu de Pinos and Juan de la Cierva programs, from the Catalan AGAUR agency (2010-BPA-00173) and the Spanish MINECO (JCI-2012-11848), respectively. Aharon-Rotman Y, 2017, GEN COMP ENDOCR, V244, P93, DOI 10.1016/j.ygcen.2015.12.010; Alonso H, 2009, J ORNITHOL, V150, P329, DOI 10.1007/s10336-008-0354-2; Angelier F, 2007, HORM BEHAV, V52, P482, DOI 10.1016/j.yhbeh.2007.07.003; Barta Z, 2008, PHILOS T R SOC B, V363, P211, DOI 10.1098/rstb.2007.2136; Bates D, 2017, LME4 LINEAR MIXED EF, V1, P1; Bogdanova MI, 2017, MAR ECOL PROG SER, V578, P167, DOI 10.3354/meps12096; Bogdanova MI, 2011, P ROY SOC B-BIOL SCI, V278, P2412, DOI 10.1098/rspb.2010.2601; Bortolotti GR, 2008, FUNCT ECOL, V22, P494, DOI 10.1111/j.1365-2435.2008.01387.x; Boulinier T, 2008, BIOL LETTERS, V4, P538, DOI 10.1098/rsbl.2008.0291; Bourgeon S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0100439; Bridge Eli S., 2006, Marine Ornithology, V34, P7; Calenge C, 2006, ECOL MODEL, V197, P516, DOI 10.1016/j.ecolmodel.2006.03.017; Carbajal A, 2014, POULTRY SCI, V93, P2884, DOI 10.3382/ps.2014-04092; Catry P, 2013, ECOLOGY, V94, P1230, DOI 10.1890/12-2177.1; Catry P, 2013, POLAR BIOL, V36, P837, DOI 10.1007/s00300-013-1309-5; Cherel Yves, 2016, Frontiers in Ecology and Evolution, V4, P3; Clay TA, 2016, SCI REP-UK, V6, DOI 10.1038/srep29932; Crossin GT, 2017, ANTARCT SCI, V29, P155, DOI 10.1017/S0954102016000560; Crossin GT, 2014, MAR ECOL PROG SER, V496, P1, DOI 10.3354/meps10691; Daunt F, 2006, BEHAV ECOL SOCIOBIOL, V59, P381, DOI 10.1007/s00265-005-0061-4; Daunt F, 2014, ECOLOGY, V95, P2077, DOI 10.1890/13-1797.1; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; Dias MP, 2012, MAR ECOL PROG SER, V467, P245, DOI 10.3354/meps09966; Dias MP, 2011, P ROY SOC B-BIOL SCI, V278, P1786, DOI 10.1098/rspb.2010.2114; Edwards AE, 2008, J AVIAN BIOL, V39, P144, DOI 10.1111/j.2007.0908-8857.04139.x; Fairhurst GD, 2017, COMP BIOCHEM PHYS A, V208, P1, DOI 10.1016/j.cbpa.2017.02.024; Fayet AL, 2016, J ANIM ECOL, V85, P1516, DOI 10.1111/1365-2656.12580; Fox J., 2015, INTIPROC GEOLOCATION; Garthe S, 2012, MAR BIOL, V159, P1907, DOI 10.1007/s00227-012-1978-6; Golet GH, 2004, ECOL MONOGR, V74, P353, DOI 10.1890/02-4029; Gonzalez-Solis J, 2007, FRONT ECOL ENVIRON, V5, P297, DOI 10.1890/1540-9295(2007)5[297:TMAMIT]2.0.CO;2; Harms NJ, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2085; Harris CM, 2017, OECOLOGIA, V183, P987, DOI 10.1007/s00442-017-3836-1; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hedd A, 2012, MAR ECOL PROG SER, V449, P277, DOI 10.3354/meps09538; Inger R, 2010, J ANIM ECOL, V79, P974, DOI 10.1111/j.1365-2656.2010.01712.x; Jackson AL, 2011, J ANIM ECOL, V80, P595, DOI 10.1111/j.1365-2656.2011.01806.x; Jenni-Eiermann S, 2015, METHODS ECOL EVOL, V6, P237, DOI 10.1111/2041-210X.12314; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Kitaysky AS, 2010, FUNCT ECOL, V24, P625, DOI 10.1111/j.1365-2435.2009.01679.x; Kitaysky AS, 2001, J COMP PHYSIOL B, V171, P701, DOI 10.1007/s003600100230; Lascelles BG, 2016, DIVERS DISTRIB, V22, P422, DOI 10.1111/ddi.12411; Lecomte VJ, 2010, P NATL ACAD SCI USA, V107, P6370, DOI 10.1073/pnas.0911181107; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; MCCONNELL BJ, 1992, ANTARCT SCI, V4, P393; Meier RE, 2017, DIVERS DISTRIB, V23, P130, DOI 10.1111/ddi.12509; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Mitchell GW, 2012, J ANIM ECOL, V81, P1024, DOI 10.1111/j.1365-2656.2012.01978.x; Monteiro LR, 1996, CONDOR, V98, P216, DOI 10.2307/1369139; Navarro J, 2008, J EXP MAR BIOL ECOL, V358, P14, DOI 10.1016/j.jembe.2008.01.005; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Norris DR, 2007, CONDOR, V109, P535; Norris DR, 2004, SCIENCE, V306, P2249, DOI 10.1126/science.1103542; Perez C, 2016, OECOLOGIA, V181, P1025, DOI 10.1007/s00442-016-3625-2; Phillips RA, 2007, MAR ECOL PROG SER, V345, P281, DOI 10.3354/meps06991; Phillips RA, 2005, ECOLOGY, V86, P2386, DOI 10.1890/04-1885; Phillips RA, 2004, MAR ECOL PROG SER, V266, P265, DOI 10.3354/meps266265; Phillips RA, 2003, AUK, V120, P1082, DOI 10.1642/0004-8038(2003)120[1082:EOSTOA]2.0.CO;2; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Pusch EA, 2018, GEN COMP ENDOCR, V255, P71, DOI 10.1016/j.ygcen.2017.10.008; R Development Core Team, 2017, R LANG ENV STAT COMP; Ramos R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040822; Ramos R, 2009, OECOLOGIA, V160, P97, DOI 10.1007/s00442-008-1273-x; Ramos R, 2009, IBIS, V151, P151, DOI 10.1111/j.1474-919X.2008.00877.x; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Runge Michael C., 2005, P375; Rushing CS, 2017, ECOLOGY, V98, P2837, DOI 10.1002/ecy.1967; Schultner J, 2014, MAR ECOL PROG SER, V496, P125, DOI 10.3354/meps10603; Shaffer SA, 2001, J ANIM ECOL, V70, P864, DOI 10.1046/j.0021-8790.2001.00548.x; Sink TD, 2008, FISH PHYSIOL BIOCHEM, V34, P95, DOI 10.1007/s10695-007-9150-9; Sorenson GH, 2017, OECOLOGIA, V183, P353, DOI 10.1007/s00442-016-3774-3; Stearns S, 1992, EVOLUTION LIFE HIST; Stutchbury BJM, 2011, P ROY SOC B-BIOL SCI, V278, P131, DOI 10.1098/rspb.2010.1220; Thibault JC, 1997, BIRDS W PALEARCTIC U, V1, P75; Tibshirani R. J, 1990, GEN ADDITIVE MODELS; Wingfield JC, 2013, FUNCT ECOL, V27, P37, DOI 10.1111/1365-2435.12039; Wood SN, 2002, ECOL MODEL, V157, P157, DOI 10.1016/S0304-3800(02)00193-X; Young RC, 2017, MAR ECOL PROG SER, V578, P253, DOI 10.3354/meps12022 79 0 1 27 28 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology SEP 2018 99 9 2010 2024 10.1002/ecy.2435 15 Ecology Environmental Sciences & Ecology GS3WV WOS:000443558200010 30063803 Green Published 2019-02-21 J McHale, TS; Chee, WC; Chan, KC; Zava, DT; Gray, PB McHale, Timothy S.; Chee, Wai-chi; Chan, Ka-chun; Zava, David T.; Gray, Peter B. Coalitional Physical Competition Acute Salivary Steroid Hormone Responses among Juvenile Male Soccer Players in Hong Kong HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Life history theory; Middle childhood; Competition; DHEA; Androstenedione; Testosterone HUMAN LIFE-HISTORY; AGGRESSIVE-BEHAVIOR; CHINESE CHILDREN; REFERENCE VALUES; TESTOSTERONE; CORTISOL; ADRENARCHE; DEHYDROEPIANDROSTERONE; DHEA; MECHANISMS A large body of research links testosterone and cortisol to male-male competition. Yet, little work has explored acute steroid hormone responses to coalitional, physical competition during middle childhood. Here, we investigate testosterone, dehydroepiandrosterone (DHEA), androstenedione, and cortisol release among ethnically Chinese boys in Hong Kong (N = 102), aged 8-11 years, during a soccer match (n = 84) and an intrasquad soccer scrimmage (n = 81), with 63 participants competing in both treatments. The soccer match and intrasquad soccer scrimmage represented out-group and in-group treatments, respectively. Results revealed that testosterone showed no measurable change. DHEA increased during both treatments in the majority of participants and the degree of change had no relation to independent variables (e.g., performance, age, treatment, outcome) or covariate measures (Body Mass Index, Pubertal Development Scale). Most boys experienced androstenedione increases during match play, but no significant differences during the intrasquad soccer scrimmage competitions. The magnitude of change differed significantly between treatments and was positively associated with age. These latter findings suggest boys' androstenedione responses may be sensitive to competitor type (i.e., unknown competitors vs. peers). For most subjects, cortisol significantly increased during match play, decreased during the intrasquad soccer scrimmage, and differed significantly between treatments, suggesting each treatment promoted a different psychological state among competitors. Cortisol/DHEA molar ratio decreased during the intrasquad scrimmage, suggestive of a more relaxed mental state. These data shed new light on potential proximate mechanisms associated with coalitional competition among prepubescent boys, with relevance to adrenarche and life history theory. [McHale, Timothy S.; Gray, Peter B.] Univ Nevada, Dept Anthropol, 4505 S Maryland Pkwy,Box 455003, Las Vegas, NV 89154 USA; [Chee, Wai-chi] Hong Kong Baptist Univ, Dept Educ Studies, Kowloon Tong, Hong Kong, Peoples R China; [Chan, Ka-chun] Univ Hong Kong, Dept Psychol, Pok Fu Lam, Hong Kong, Peoples R China; [Zava, David T.] ZRT Lab, Beaverton, OR USA McHale, TS (reprint author), Univ Nevada, Dept Anthropol, 4505 S Maryland Pkwy,Box 455003, Las Vegas, NV 89154 USA. mchalet2@unlv.nevada.edu Wenner-Gren Foundation [9239] Azurmendi A, 2016, AM J HUM BIOL, V28, P90, DOI 10.1002/ajhb.22750; Behringer V, 2012, J ENDOCRINOL, V214, P55, DOI 10.1530/JOE-12-0103; Benenson J. F., 2014, WARRIORS WORRIERS SU; Bernstein RM, 2012, AM J PHYS ANTHROPOL, V147, P389, DOI 10.1002/ajpa.22001; Bernstein RM, 2017, HORM RES PAEDIAT, V88, P15, DOI 10.1159/000476065; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Buttler RM, 2016, CLIN CHIM ACTA, V456, P15, DOI 10.1016/j.cca.2016.02.015; Byrne ML, 2017, DEV COGN NEUROS-NETH, V25, P12, DOI 10.1016/j.dcn.2016.12.004; Campbell B, 2011, AM J HUM BIOL, V23, P44, DOI 10.1002/ajhb.21111; Casto KV, 2016, HORM BEHAV, V82, P21, DOI 10.1016/j.yhbeh.2016.04.004; Collomp K, 2015, J STEROID BIOCHEM, V145, P206, DOI 10.1016/j.jsbmb.2014.03.005; Community Sports Committee of the Sports Commission Hong Kong, 2009, CONS STUD SPORT ALL; Conley AJ, 2011, MOL CELL ENDOCRINOL, V336, P110, DOI 10.1016/j.mce.2010.12.022; Crittenden AN, 2013, EVOL HUM BEHAV, V34, P299, DOI 10.1016/j.evolhumbehav.2013.04.004; CUMMING DC, 1994, ANN NY ACAD SCI, V709, P55, DOI 10.1111/j.1749-6632.1994.tb30388.x; Del Giudice M, 2014, CHILD DEV PERSPECT, V8, P193, DOI 10.1111/cdep.12084; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; Demas GE, 1999, PHYSIOL BEHAV, V66, P59, DOI 10.1016/S0031-9384(98)00268-6; Edwards DA, 2009, HORM BEHAV, V56, P195, DOI 10.1016/j.yhbeh.2009.01.008; Euling SY, 2008, PEDIATRICS, V121, pS172, DOI 10.1542/peds.2007-1813D; Flinn M. V., 2005, ORIGINS SOCIAL MIND, P19; Flinn MV, 2012, HUM NATURE-INT BIOS, V23, P68, DOI 10.1007/s12110-012-9135-y; Flinn MV, 2011, NEUROSCI BIOBEHAV R, V35, P1611, DOI 10.1016/j.neubiorev.2011.01.005; Fothergill M, 2017, PHYSIOL BEHAV, V177, P215, DOI 10.1016/j.physbeh.2017.04.021; Gatti R, 2011, SCAND J MED SCI SPOR, V21, P157, DOI 10.1111/j.1600-0838.2010.01252.x; Geary D. C., 2010, MALE FEMALE EVOLUTIO; Geniole SN, 2017, HORM BEHAV, V92, P37, DOI 10.1016/j.yhbeh.2016.10.002; Gray PB, 2017, HORM BEHAV, V91, P52, DOI 10.1016/j.yhbeh.2016.07.004; Groschl M, 2003, CLIN CHEM, V49, P1688, DOI 10.1373/49.10.1688; Ha AS, 2010, SPORT EDUC SOC, V15, P331, DOI 10.1080/13573322.2010.493313; Handelsman D. J., 2013, J CLIN ENDOCRINOLOGY, V19, P3971; Hayes LD, 2015, SPORTS MED, V45, P713, DOI 10.1007/s40279-015-0306-y; Hornsby PJ, 2012, J ENDOCRINOL, V214, P113, DOI 10.1530/JOE-12-0022; Izawa S, 2008, BIOL PSYCHOL, V79, P294, DOI 10.1016/j.biopsycho.2008.07.003; Kamin HS, 2017, HORM BEHAV, V89, P69, DOI 10.1016/j.yhbeh.2016.11.018; Konner Melvin J., 2010, EVOLUTION CHILDHOOD; Kushnir MM, 2010, CLIN CHEM, V56, P1138, DOI 10.1373/clinchem.2010.143222; Lau PWC, 2015, INT J ENV RES PUB HE, V12, P4018, DOI 10.3390/ijerph120404018; MALINA RM, 1994, MED SCI SPORT EXER, V26, P759, DOI 10.1249/00005768-199406000-00016; Maninger N, 2009, FRONT NEUROENDOCRIN, V30, P65, DOI 10.1016/j.yfrne.2008.11.002; Marceau K, 2014, PSYCHONEUROENDOCRINO, V41, P33, DOI 10.1016/j.psyneuen.2013.12.002; de Almeida RMM, 2015, PHYSIOL BEHAV, V143, P121, DOI 10.1016/j.physbeh.2015.02.053; McHale T. S., 2018, AM J HUMAN BIO UNPUB; McHale TS, 2018, ADAPT HUM BEHAV PHYS, V4, P223, DOI 10.1007/s40750-018-0089-0; McHale TS, 2016, ADAPT HUM BEHAV PHYS, V2, P44, DOI 10.1007/s40750-015-0030-8; Meehan C. L., 2016, CHILDHOOD ORIGINS EV; Mehta PH, 2015, CURR OPIN BEHAV SCI, V3, P163, DOI 10.1016/j.cobeha.2015.04.008; Mehta PH, 2010, HORM BEHAV, V58, P898, DOI 10.1016/j.yhbeh.2010.08.020; Mouritsen A, 2013, EUR J ENDOCRINOL, V168, P129, DOI 10.1530/EJE-12-0191; Muehlenbein Michael P, 2006, Soc Biol, V53, P13; Nguyen TV, 2018, J NEUROENDOCRINOL, V30, DOI 10.1111/jne.12486; Oxford J, 2010, EVOL HUM BEHAV, V31, P201, DOI 10.1016/j.evolhumbehav.2009.07.002; Perkins JM, 2016, NUTR REV, V74, P149, DOI 10.1093/nutrit/nuv105; PETERSEN AC, 1988, J YOUTH ADOLESCENCE, V17, P117, DOI 10.1007/BF01537962; Phan JM, 2017, HORM BEHAV, V96, P104, DOI 10.1016/j.yhbeh.2017.09.007; Pradhan DS, 2010, HORM BEHAV, V57, P381, DOI 10.1016/j.yhbeh.2010.01.008; Prall SP, 2015, AM J PRIMATOL, V77, P642, DOI 10.1002/ajp.22387; Remer T, 2005, J CLIN ENDOCR METAB, V90, P2015, DOI 10.1210/jc.2004-1571; Rogol AD, 2000, AM J CLIN NUTR, V72, p521S, DOI 10.1093/ajcn/72.2.521S; Salvador A, 2009, NEUROSCI BIOBEHAV R, V33, P160, DOI 10.1016/j.neubiorev.2008.09.005; Scotti MAL, 2008, PHYSIOL BEHAV, V95, P633, DOI 10.1016/j.physbeh.2008.09.009; Sherman GD, 2016, J PERS SOC PSYCHOL, V110, P921, DOI 10.1037/pspp0000063; Soma KK, 2008, FRONT NEUROENDOCRIN, V29, P476, DOI 10.1016/j.yfrne.2007.12.003; Sorensen K, 2010, J CLIN ENDOCR METAB, V95, P263, DOI 10.1210/jc.2009-1478; Tsai EHL, 2005, LEISURE SCI, V27, P385, DOI 10.1080/01490400500227290; Nguyen TV, 2016, PSYCHONEUROENDOCRINO, V70, P122, DOI 10.1016/j.psyneuen.2016.05.003; Nguyen TV, 2013, J NEUROSCI, V33, P10840, DOI 10.1523/JNEUROSCI.5747-12.2013; Urlacher S., 2017, 86 ANN M AM ASS PHYS; Van Bavel JJ, 2008, PSYCHOL SCI, V19, P1131, DOI 10.1111/j.1467-9280.2008.02214.x; van Breukelen G. J, 2015, Z PSYCHOL, V22, P145; Wingfield JC, 2001, BRAIN BEHAV EVOLUT, V57, P239, DOI 10.1159/000047243; Wohlfahrt-Veje C, 2016, J CLIN ENDOCR METAB, V101, P2667, DOI 10.1210/jc.2016-1073; Worthman CM, 2018, NATURE, V554, P451, DOI 10.1038/nature25750; Yamagishi T, 2009, EVOL HUM BEHAV, V30, P229, DOI 10.1016/j.evolhumbehav.2009.02.004 74 2 2 1 1 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. SEP 2018 29 3 SI 245 267 10.1007/s12110-018-9321-7 23 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences GS2VE WOS:000443418000003 29909545 2019-02-21 J Wells, CP; Van Vuren, DH Wells, C. P.; Van Vuren, D. H. Developmental and social constraints on early reproduction in an asocial ground squirrel JOURNAL OF ZOOLOGY English Article age at first reproduction; Callospermophilus lateralis; golden-mantled ground squirrel; life-history theory; primiparity; reproductive inhibition; asocial; reproductive competition LIFE-HISTORY VARIATION; YELLOW-BELLIED MARMOTS; SPERMOPHILUS-LATERALIS; FEMALE REPRODUCTION; SEXUAL-MATURATION; POSTNATAL-GROWTH; HOUSE MICE; POPULATION; MAMMALS; CONSEQUENCES For short-lived species, selection for early reproduction should be strong, yet females often delay their first reproductive bout. Delay in age of first reproduction due to developmental constraints, such as food availability, or social constraints, such as the inhibitory presence of breeding adults, has been documented for social mammals, but effects on asocial species are less well known. We evaluated the influence of developmental and social factors on early reproduction in a short-lived, asocial species, the golden-mantled ground squirrel (Callospermophilus lateralis). We found that females who reproduced as yearlings had been weaned earlier in their natal summer and experienced early snow melt during their yearling spring, suggesting the importance of access to high-quality food at critical stages. Females were more likely to reproduce as yearlings when there were more adult males present during the breeding season, possibly because exposure to males accelerates reproductive maturity. Maternal presence had no effect on yearling reproduction, but yearlings with a littermate sister present were only 22% as likely to reproduce as females without a sister present, suggesting the effect of sibling competition well past weaning. Furthermore, the negative effect of a sister's presence, but not the presence of other females, suggests that relatedness affects reproductive competition in this asocial species. [Wells, C. P.; Van Vuren, D. H.] Univ Calif Davis, Dept Wildlife Fish & Conservat Biol, One Shields Ave, Davis, CA 95616 USA; [Wells, C. P.; Van Vuren, D. H.] Rocky Mt Biol Labs, Crested Butte, CO USA Wells, CP (reprint author), Univ Calif Davis, Dept Wildlife Fish & Conservat Biol, One Shields Ave, Davis, CA 95616 USA. cpwells@ucdavis.edu California Agricultural Experiment Station; Jastro-Shields Fellowship (UC Davis); Graduate Group in Ecology Fellowship (UC Davis) This study was supported by the California Agricultural Experiment Station, the Jastro-Shields Fellowship (UC Davis), and the Graduate Group in Ecology Fellowship (UC Davis). We thank J. Reithel and the Rocky Mountain Biology Laboratory for logistical support; G. Aldridge, K. Sahyouni, C. Floyd, K. Jenderseck and C. Mueller for their contributions to data collection; and J. Ashander, L. Green, L. Drickamer, J. Hare, and two anonymous reviewers for their helpful comments on earlier versions of this manuscript. Adkins-Regan E., 2005, HORMONES ANIMAL SOCI; ARMITAGE KB, 1981, OECOLOGIA, V48, P36, DOI 10.1007/BF00346986; Bartels Molly A., 1993, Mammalian Species, V440, P1; BATZLI GO, 1977, J MAMMAL, V58, P583, DOI 10.2307/1380006; Bautista A, 2015, ANIM BEHAV, V108, P145, DOI 10.1016/j.anbehav.2015.07.028; BEKOFF M, 1981, OECOLOGIA, V50, P386, DOI 10.1007/BF00344981; BRONSON FH, 1986, BIOL REV, V61, P157, DOI 10.1111/j.1469-185X.1986.tb00465.x; Bronson Franklin H., 2000, P15; BRONSON MT, 1979, ECOLOGY, V60, P272, DOI 10.2307/1937655; CARTER CS, 1980, BIOL REPROD, V23, P1038, DOI 10.1095/biolreprod23.5.1038; Clark MM, 2001, ANIM BEHAV, V62, P897, DOI 10.1006/anbe.2001.1827; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Dobson FS, 2001, AM NAT, V158, P236, DOI 10.1086/321322; DOBSON FS, 1985, CAN J ZOOL, V63, P2105, DOI 10.1139/z85-309; DRICKAMER LC, 1990, J CHEM ECOL, V16, P2955, DOI 10.1007/BF00979487; DRICKAMER LC, 1977, J REPROD FERTIL, V51, P77; Drickamer Lee C., 2007, P106; Drummond H, 2006, Q REV BIOL, V81, P3, DOI 10.1086/503922; DUQUETTE LS, 1995, J ANIM ECOL, V64, P348, DOI 10.2307/5896; Fisher DO, 2001, ECOLOGY, V82, P3531, DOI 10.2307/2680170; Hostetler JA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034379; Kalinowski ST, 2006, MOL ECOL NOTES, V6, P576, DOI 10.1111/j.1471-8286.2006.01256.x; KENAGY GJ, 1989, PHYSIOL ZOOL, V62, P470, DOI 10.1086/physzool.62.2.30156180; Kneip E, 2011, J MAMMAL, V92, P367, DOI 10.1644/10-MAMM-A-156.1; LEWONTIN RC, 1965, GENETICS COLONIZING, P79; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; McEachern MB, 2011, CONSERV GENET, V12, P285, DOI 10.1007/s10592-010-0139-z; MCKEEVER S, 1964, ECOL MONOGR, V34, P383, DOI 10.2307/2937069; Michener G. R., 1983, ADV STUDY MAMMALIAN, V7, P528; Monclus R, 2014, FUNCT ECOL, V28, P954, DOI 10.1111/1365-2435.12231; Monclus R, 2012, J ANIM ECOL, V81, P80, DOI 10.1111/j.1365-2656.2011.01888.x; Moore JF, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1236; Neuhaus P, 2004, J ANIM ECOL, V73, P36, DOI 10.1111/j.1365-2656.2004.00793.x; Oli MK, 2002, EVOL ECOL RES, V4, P563; Ozgul A, 2010, NATURE, V466, P482, DOI 10.1038/nature09210; Pettitt BA, 2011, J MAMMAL, V92, P378, DOI 10.1644/10-MAMM-A-168.1; PHILLIPS JA, 1981, CAN J ZOOL, V59, P865, DOI 10.1139/z81-124; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; R Core Team, 2013, R LANG ENV STAT COMP; RITCHIE ME, 1990, OECOLOGIA, V83, P495, DOI 10.1007/BF00317200; Ryan BC, 2002, NEUROSCI BIOBEHAV R, V26, P665, DOI 10.1016/S0149-7634(02)00038-6; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Scharf I, 2015, GLOBAL ECOL BIOGEOGR, V24, P396, DOI 10.1111/geb.12244; Schradin C, 2014, ANIM BEHAV, V90, P141, DOI 10.1016/j.anbehav.2014.01.029; Shier DM, 2006, CONSERV BIOL, V20, P1780, DOI 10.1111/j.1523-1739.2006.00512.x; Sikes RS, 2016, J MAMMAL, V97, P663, DOI 10.1093/jmammal/gyw078; Stearns S, 1992, EVOLUTION LIFE HIST; Stockley P, 2011, BIOL REV, V86, P341, DOI 10.1111/j.1469-185X.2010.00149.x; TKADLEC E, 1995, OIKOS, V73, P231, DOI 10.2307/3545913; VANDENBERGH JG, 1967, ENDOCRINOLOGY, V81, P345, DOI 10.1210/endo-81-2-345; VANVUREN D, 1991, CAN J ZOOL, V69, P1755, DOI 10.1139/z91-244; Vasilieva N, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1500401; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Wells CP, 2017, ANIM BEHAV, V134, P71, DOI 10.1016/j.anbehav.2017.10.004; Wells CP, 2017, BEHAV ECOL SOCIOBIOL, V71, DOI 10.1007/s00265-017-2270-z; Wells C.P., 2016, THESIS; WHITTEN WK, 1959, J ENDOCRINOL, V18, P102, DOI 10.1677/joe.0.0180102; Wolff JO, 2001, BEHAV PROCESS, V55, P157, DOI 10.1016/S0376-6357(01)00176-0 58 0 0 5 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. SEP 2018 306 1 28 35 10.1111/jzo.12569 8 Zoology Zoology GS4AK WOS:000443572500005 2019-02-21 J Veile, A Veile, Amanda Hunter-gatherer diets and human behavioral evolution PHYSIOLOGY & BEHAVIOR English Article Hunter-gatherers; Foragers; Human evolution; Human diet; Life history theory SEXUAL DIVISION; ENERGY-EXPENDITURE; WEANLINGS DILEMMA; FEEDING PATTERNS; TIME ALLOCATION; GUT MICROBIOME; MARGINAL VALUE; PUME FORAGERS; ECOLOGY; INFANT Human behavior and physiology evolved under conditions vastly different from those which most humans inhabit today. This paper summarizes long-term dietary studies conducted on contemporary hunter-gatherer populations (sometimes referred to as foragers). Selected studies for the most part that use evolutionary theoretical perspectives and data collection methods derived from the academic field of human behavioral ecology, which derives relatively recently from the fields of evolutionary biology, ethology, population biology and ecological anthropology. I demonstrate how this body of research illuminates ancestral patterns of food production, consumption and sharing, infant feeding, and juvenile subsistence contributions in hunter-gatherer economies. Insights from hunter-gatherer studies are then briefly discussed within the context of better-studied human populations that are Westernized, Educated, Industrialized, Rich, and Democratic (WEIRD). [Veile, Amanda] Purdue Univ, Dept Anthropol, W Lafayette, IN 47907 USA; [Veile, Amanda] Purdue Univ, Ctr Aging & Life Course, W Lafayette, IN 47907 USA Veile, A (reprint author), Purdue Univ, Dept Anthropol, W Lafayette, IN 47907 USA. aveile@purdue.edu Veile, Amanda/0000-0002-7969-9568 ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; Alvard MS, 2003, HUM NATURE-INT BIOS, V14, P129, DOI 10.1007/s12110-003-1001-5; Backhed F, 2015, CELL HOST MICROBE, V17, P690, DOI 10.1016/j.chom.2015.04.004; Bar-Yosef O, 1998, CAMB ARCHAEOL J, V8, P141, DOI 10.1017/S0959774300001815; BARNICOT NA, 1972, HUM BIOL, V44, P87; Bernstein RM, 2013, HUM BIOL, V85, P231; BETZIG LL, 1985, CURR ANTHROPOL, V26, P647, DOI 10.1086/203354; Bird D. W., 2005, MARTU CHILDRENS HUNT, P129; Bird R, 1999, EVOL ANTHROPOL, V8, P65, DOI 10.1002/(SICI)1520-6505(1999)8:2<65::AID-EVAN5>3.3.CO;2-V; Bird RB, 2015, EVOL HUM BEHAV, V36, P389, DOI 10.1016/j.evolhumbehav.2015.02.003; Blurton Jones N., 2016, DEMOGRAPHY EVOLUTION, V71; Blurton Jones N. B., 1996, KUNG CULTURAL DIVERS, P159; Bock J, 2002, HUM NATURE-INT BIOS, V13, P153, DOI 10.1007/s12110-002-1006-5; Bock J., 2005, HUNTER GATHERER CHIL, P109; Bodley J. H., 1999, CAMBRIDGE ENCY HUNTE, P465; Boesch C., 1999, CHIMPANZEES TAI FORE; Bogin B., 2011, ANTHROPOL ANZ, P349; Bogin B., 1998, EVOLUTIONARY BIOL AS, P10; Bogin B., 1999, PATTERNS HUMAN GROWT, V23; Bribiescas RG, 1996, HUM NATURE-INT BIOS, V7, P163, DOI 10.1007/BF02692109; Campbell B, 2006, AM J HUM BIOL, V18, P569, DOI 10.1002/ajhb.20528; Carmody RN, 2011, P NATL ACAD SCI USA, V108, P19199, DOI 10.1073/pnas.1112128108; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Cho I, 2012, NAT REV GENET, V13, P260, DOI 10.1038/nrg3182; Codding BF, 2016, WHY FORAGE HUNTERS G; Cordain L, 2000, AM J CLIN NUTR, V71, P682; Cordain L., 2002, PALEO DIET LOSE WEIG; Crittenden AN, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0131996; Crittenden AN, 2013, EVOL HUM BEHAV, V34, P299, DOI 10.1016/j.evolhumbehav.2013.04.004; CRONK L, 1991, ANNU REV ANTHROPOL, V20, P25, DOI 10.1146/annurev.an.20.100191.000325; Diamond J., 1987, DISCOVER MAGAZIN MAY, P64; Dominguez-Bello MG, 2016, CELL, V167, P588, DOI 10.1016/j.cell.2016.09.047; EATON SB, 1985, NEW ENGL J MED, V312, P283, DOI 10.1056/NEJM198501313120505; Ellis EC, 2013, P NATL ACAD SCI USA, V110, P7978, DOI 10.1073/pnas.1217241110; Finch C. E., 2010, BIOL HUMAN LONGEVITY; Fouts HN, 2001, HUM NATURE-INT BIOS, V12, P27, DOI 10.1007/s12110-001-1012-z; Fuller DQ, 2014, P NATL ACAD SCI USA, V111, P6147, DOI 10.1073/pnas.1308937110; Goldewijk KK, 2010, HOLOCENE, V20, P565, DOI 10.1177/0959683609356587; Griffin P. B., 1984, PRESENT HUNTER GATHE, P95; GROSS DR, 1984, ANNU REV ANTHROPOL, V13, P519, DOI 10.1146/annurev.an.13.100184.002511; Gurven M, 2009, CURR ANTHROPOL, V50, P51, DOI 10.1086/595620; Hagino I., 2014, DYNAMICS LEARNING NE, V2, P91; Hames R., 2014, HDB METHODS CULTURAL, P293; Harcourt-Smith WEH, 2004, J ANAT, V204, P403, DOI 10.1111/j.0021-8782.2004.00296.x; Harvey P., 1987, PRIMATE SOC; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; Hawkes K, 1997, TRENDS ECOL EVOL, V12, P29, DOI 10.1016/S0169-5347(96)10060-4; Hawkes K, 2010, P NATL ACAD SCI USA, V107, P8977, DOI 10.1073/pnas.0914627107; Henrich J, 2010, NATURE, V466, P29, DOI 10.1038/466029a; Hill K, 2002, HUM NATURE-INT BIOS, V13, P105, DOI 10.1007/s12110-002-1016-3; Hill K., 1996, ACHE LIFE HIST ECOLO; Hill KR, 2011, SCIENCE, V331, P1286, DOI 10.1126/science.1199071; Hinde K, 2011, EVOL ANTHROPOL, V20, P9, DOI 10.1002/evan.20289; Hochberg Z. E., 2011, EVO DEVO CHILD GROWT; Howell N., 2010, LIFE HIST DOBE KUNG; Humphrey LT, 2010, SEMIN CELL DEV BIOL, V21, P453, DOI 10.1016/j.semcdb.2009.11.003; Humphrey SP, 2001, J PROSTHET DENT, V85, P162, DOI 10.1067/mpr.2001.113778; Hurtado A M, 1992, Hum Nat, V3, P185, DOI 10.1007/BF02692239; Hurtado AM, 2003, AM J PHYS ANTHROPOL, V121, P134, DOI 10.1002/ajpa.10228; HURTADO AM, 1990, J ANTHROPOL RES, V46, P293, DOI 10.1086/jar.46.3.3630428; Ivey PK, 2000, CURR ANTHROPOL, V41, P856, DOI 10.1086/317414; Jenike MR, 2001, BIOSOCIAL S, V13, P205; Johnson Allen, 1989, J QUANTITATIVE ANTHR, V1, P313; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H., 1992, EVOLUTIONARY ECOLOGY, P167; Kelly RL, 2013, LIFEWAYS OF HUNTER-GATHERERS: THE FORAGING SPECTRUM, P1, DOI 10.1017/CBO9781139176132; Kennedy GE, 2005, J HUM EVOL, V48, P123, DOI 10.1016/j.jhevol.2004.09.005; KONNER M, 1980, SCIENCE, V207, P788, DOI 10.1126/science.7352291; Konner M., 2005, PERSPECTIVES, P19; Kramer KL, 2007, AM ANTHROPOL, V109, P713, DOI [10.1525/aa.2007.109.4.713, 10.1525/AA.2007.109.4.713]; Kramer KL, 2008, AM J PHYS ANTHROPOL, V136, P338, DOI 10.1002/ajpa.20817; Kramer KL, 2018, PHYSIOL BEHAV, V193, P117, DOI 10.1016/j.physbeh.2018.02.054; Kramer KL, 2011, HUM NATURE-INT BIOS, V22, P303, DOI 10.1007/s12110-011-9122-8; Kramer KL, 2010, ANNU REV ANTHROPOL, V39, P417, DOI 10.1146/annurev.anthro.012809.105054; Kramer KL, 2010, AM J PHYS ANTHROPOL, V141, P235, DOI 10.1002/ajpa.21139; Kramer KL, 2002, HUM NATURE-INT BIOS, V13, P299, DOI 10.1007/s12110-002-1011-8; Lancaster J. B., 2010, 35 ANN M HUM BIOL AS; Lancaster JB, 2000, PERSP ETHOL, V13, P47; Lee P. C., 1996, Evolutionary Anthropology, V5, P87, DOI 10.1002/(SICI)1520-6505(1996)5:3<87::AID-EVAN4>3.0.CO;2-T; Lee R. B., 1999, INTRO FORAGERS OTHER; Lieberman LS, 2006, APPETITE, V47, P3, DOI 10.1016/j.appet.2006.02.011; Lieberman LS, 2003, ANNU REV NUTR, V23, P345, DOI 10.1146/annurev.nutr.23.011702.073212; Marlowe FW, 2007, CROSS-CULT RES, V41, P170, DOI 10.1177/1069397106297529; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Marlowe FW, 2005, EVOL ANTHROPOL, V14, P54, DOI 10.1002/evan.20046; Martin Paul R., 1993, MEASURING BEHAV INTR; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; McDade TW, 1998, J DEV BEHAV PEDIATR, V19, P286, DOI 10.1097/00004703-199808000-00008; Meehan CL, 2013, AM J HUM BIOL, V25, P42, DOI 10.1002/ajhb.22336; Migliano AB, 2013, HUM BIOL, V85, P251, DOI 10.3378/027.085.0313; Mikkelsen TS, 2005, NATURE, V437, P69, DOI 10.1038/nature04072; Moreno J., 2010, ENCY ANIMAL BEHAV, P64; Muehlenbein MP, 2010, HUMAN EVOLUTIONARY B; MULDER MB, 1985, CURR ANTHROPOL, V26, P323, DOI 10.1086/203277; Murdock G. P., 1971, P ROYAL ANTHR I, P17; Nettle D, 2013, BEHAV ECOL, V24, P1031, DOI 10.1093/beheco/ars222; Nolin DA, 2010, HUM NATURE-INT BIOS, V21, P243, DOI 10.1007/s12110-010-9091-3; Noss AJ, 2001, AM ANTHROPOL, V103, P1024, DOI 10.1525/aa.2001.103.4.1024; O'Keefe JH, 2004, MAYO CLIN PROC, V79, P101, DOI 10.4065/79.1.101; Orians G.H., 1979, P155; Pelto GH, 2010, MATERN CHILD NUTR, V6, P4, DOI 10.1111/j.1740-8709.2009.00200.x; Pontzer H., 2012, RECONSTRUCTING HUMAN; Pontzer H, 2015, AM J HUM BIOL, V27, P628, DOI 10.1002/ajhb.22711; Pontzer H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040503; PULLIAM HR, 1974, AM NAT, V108, P59, DOI 10.1086/282885; Raichlen DA, 2017, AM J HUM BIOL, V29, DOI 10.1002/ajhb.22919; Reidhead V. A., 1977, OPTIMIZATION FOOD PR; Robson SL, 2006, SCH AM RES, P17; ROFF DA, 2002, LIFE HIST EVOLUTION; Rogoff B., 2008, ANTHR CHILD DEV CROS; Schnorr SL, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4654; Schoener T. W., 1971, A Rev Ecol Syst, V2, P369, DOI 10.1146/annurev.es.02.110171.002101; Schoener T. W., 1987, BRIEF HIST OPTIMAL F, P5; Sellen DW, 2007, ANNU REV NUTR, V27, P123, DOI 10.1146/annurev.nutr.25.050304.092557; Sellen DW, 2001, HUM NATURE-INT BIOS, V12, P47, DOI 10.1007/s12110-001-1013-y; Sellen DW, 2001, J NUTR, V131, P2707; Smith D, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160131; Smith EA, 2004, HUM NATURE-INT BIOS, V15, P343, DOI 10.1007/s12110-004-1013-9; Smits SA, 2017, SCIENCE, V357, P802, DOI 10.1126/science.aan4834; Thompson ME, 2013, ANNU REV ANTHROPOL, V42, P287, DOI 10.1146/annurev-anthro-092412-155530; Trigger D. S., 1999, CAMBRIDGE ENCY HUNTE, P473; Tucker B., 2005, GROWING MIKEA CHILDR, P147; Turner BL, 2013, NUTR REV, V71, P501, DOI 10.1111/nure.12039; Veile A, 2014, SOC SCI MED, V100, P148, DOI 10.1016/j.socscimed.2013.10.034; Veile A, 2012, AM J HUM BIOL, V24, P768, DOI 10.1002/ajhb.22314; Venkataraman VV, 2017, P NATL ACAD SCI USA, V114, P3097, DOI 10.1073/pnas.1617542114; WHO, 2011, EXCLUSIVE BREASTFEED; WILMSEN EN, 1973, J ANTHROPOL RES, V29, P1; Wilson E.O., 1975, P1; Winterhalder B, 2000, EVOL ANTHROPOL, V9, P51; Winterhalder B. P., 1977, FORAGING STRATEGY AD; Wood BM, 2013, HUM NATURE-INT BIOS, V24, P280, DOI 10.1007/s12110-013-9173-0; Wrangham R, 2003, COMP BIOCHEM PHYS A, V136, P35, DOI 10.1016/S1095-6433(03)00020-5; Wrangham R, 2009, CATCHING FIRE COOKIN; Zink KD, 2016, NATURE, V531, P500, DOI 10.1038/nature16990; Zuk M., 2013, PALEOFANTASY WHAT EV 138 0 0 18 18 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0031-9384 PHYSIOL BEHAV Physiol. Behav. SEP 1 2018 193 B SI 190 195 10.1016/j.physbeh.2018.05.023 6 Psychology, Biological; Behavioral Sciences Psychology; Behavioral Sciences GR5TA WOS:000442703600002 29800635 2019-02-21 J Sarma, MS; Kuo, PX; Bechayda, SA; Kuzawa, CW; Gettler, LT Sarma, Mallika S.; Kuo, Patty X.; Bechayda, Sonny Agustin; Kuzawa, Christopher W.; Gettler, Lee T. Exploring the links between early life and young adulthood social experiences and men's later life psychobiology as fathers PHYSIOLOGY & BEHAVIOR English Article Testosterone; Acute reactivity; Life history theory; Fatherhood; Developmental plasticity SALIVARY TESTOSTERONE; HISTORY STRATEGY; PREDICTS AGE; SEXUAL DEBUT; BEHAVIOR; STRESS; RISK; RESPONSES; MALES; MODEL Early life cues of environmental harshness and unpredictability have been hypothesized to influence within species variation in the timing of life history transitions and the dynamics of reproductive strategies, such as investments in mating and parenting. It is also believed that adolesence is an influential developmental period for male reproductive strategies, with those who achieve greater social and sexual success during that period maintaining faster life history strategies into adulthood. If correct, such early life and post-pubertal experiences could also help shape the psychobiological pathways that mediate reproductive strategies, including the well documented physiological shifts that occur when some men become parents. Drawing on a large sample of Filipino men (n = 417), we evaluate whether men who experienced cues of harshness or unpredictability in childhood or have earlier ages at sexual debut have elevated testosterone (T) as fathers. We also test whether males who experienced a combination of early life experiences of harshness or unpredictability and had earlier ages of sexual debut during adolescence had the most elevated T as fathers. We found that fathers who experienced early life harshness and who engaged in sex at an earlier age had elevated waking T. Among men transitioning to fatherhood across the 4.5-year follow-up period of this study, those who experienced unpredictability and who engaged in sex at an earlier age showed attenuated declines in waking T between baseline and follow-up. Complementing these findings, we found that fathers who first engaged in sex at later ages had greater acute declines in T when they played with their toddlers. We suggest that these patterns could reflect programming effects of sociosexual experiences during the years following the marked biological transitions that accompany puberty, which occur along with the better-studied effects of earlier life exposures to stressors. Overall, our results support the hypothesis that early life circumstances and social and sexual experiences, from early life to young adulthood, help calibrate physiological axes as key mechanisms coordinating dynamic life history strategies. [Sarma, Mallika S.; Kuo, Patty X.; Gettler, Lee T.] Univ Notre Dame, Dept Anthropol, 244 Corbett Hall, Notre Dame, IN 46556 USA; [Bechayda, Sonny Agustin] Univ San Carlos, USC Off Populat Studies Fdn, Metro Cebu, Philippines; [Bechayda, Sonny Agustin] Univ San Carlos, Dept Anthropol Sociol & Hist, Metro Cebu, Philippines; [Kuzawa, Christopher W.] Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA; [Kuzawa, Christopher W.] Northwestern Univ, Inst Policy Res, Evanston, IL USA; [Gettler, Lee T.] Univ Notre Dame, Eck Inst Global Hlth, Notre Dame, IN 46556 USA Gettler, LT (reprint author), Univ Notre Dame, Dept Anthropol, 244 Corbett Hall, Notre Dame, IN 46556 USA. lgettler@nd.edu Wenner Gren Foundation [7356, 8186]; National Science Foundation [BCS-0542182, BCS-0962212]; Interdisciplinary Obesity Center [RR20649]; Center for Environmental Health and Susceptibility [ES10126, 7-2004-E]; Wenner-Gren Foundation; National Science Foundation Work supported by: Wenner Gren Foundation (Gr. 7356; Gr. 8186), National Science Foundation (BCS-0542182; BCS-0962212), The Interdisciplinary Obesity Center (RR20649), and The Center for Environmental Health and Susceptibility (ES10126; project 7-2004-E). LTG was supported by the Wenner-Gren Foundation's Hunt Postdoctoral Writing Fellowship, and MSS was supported by a National Science Foundation Graduate Research Fellowship. The funding sources played no role in the conduct of the research or the preparation of this article. Abraham E., PHYSL BEHAV EPUB, P1; Adair LS, 2011, INT J EPIDEMIOL, V40, P619, DOI 10.1093/ije/dyq085; Belsky J, 2013, DEV PSYCHOPATHOL, V25, P1243, DOI 10.1017/S095457941300059X; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Braun K, 2014, J NEUROENDOCRINOL, V26, P697, DOI 10.1111/jne.12174; Carre JM, 2015, NEUROSCIENCE, V286, P171, DOI 10.1016/j.neuroscience.2014.11.029; Casto KV, 2016, HORM BEHAV, V82, P21, DOI 10.1016/j.yhbeh.2016.04.004; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dickerson SS, 2004, PSYCHOL BULL, V130, P355, DOI 10.1037/0033-2909.130.3.355; Edelstein RS, 2015, AM J HUM BIOL, V27, P317, DOI 10.1002/ajhb.22670; Ellis BJ, 2008, CURR DIR PSYCHOL SCI, V17, P183, DOI 10.1111/j.1467-8721.2008.00571.x; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Feldman R, 2012, BIOL PSYCHIAT, V72, P175, DOI 10.1016/j.biopsych.2011.12.025; Feldman R, 2010, PSYCHONEUROENDOCRINO, V35, P1133, DOI 10.1016/j.psyneuen.2010.01.013; Fleming AS, 2002, HORM BEHAV, V42, P399, DOI 10.1006/hbeh.2002.1840; Flinn MV, 1996, HUM NATURE-INT BIOS, V7, P125, DOI 10.1007/BF02692108; Frisancho AR, 2009, AM J HUM BIOL, V21, P694, DOI 10.1002/ajhb.20891; Gettler L.T., 2016, CURR ANTHROPOL, V57, DOI [10.1017/CB09781107415324.004., DOI 10.1017/CBO9781107415324.004]; Gettler LT, 2017, HORM BEHAV, V87, P164, DOI 10.1016/j.yhbeh.2016.10.012; Gettler LT, 2015, ADAPT HUM BEHAV PHYS, V1, P124, DOI 10.1007/s40750-014-0018-9; Gettler LT, 2015, AM J PHYS ANTHROPOL, V158, P175, DOI 10.1002/ajpa.22783; Gettler LT, 2014, EVOL ANTHROPOL, V23, P146, DOI 10.1002/evan.21412; Gettler LT, 2013, HORM BEHAV, V64, P755, DOI 10.1016/j.yhbeh.2013.08.019; Gettler LT, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041559; Gettler LT, 2011, HORM BEHAV, V60, P599, DOI 10.1016/j.yhbeh.2011.08.009; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; Gray P, 2017, HUM NATURE, P1, DOI DOI 10.1007/S12110-016-9283-6; Gray P. B, 2010, FATHERHOOD EVOLUTION; Gray PB, 2006, P ROY SOC B-BIOL SCI, V273, P333, DOI 10.1098/rspb.2005.3311; Gray PB, 2002, EVOL HUM BEHAV, V23, P193, DOI 10.1016/S1090-5138(01)00101-5; Gray PB, 2017, HORM BEHAV, V91, P52, DOI 10.1016/j.yhbeh.2016.07.004; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Kuo PX, 2016, DEV PSYCHOBIOL, V58, P303, DOI 10.1002/dev.21370; Kuzawa CW, 2016, ADAPT HUM BEHAV PHYS, V2, P166, DOI 10.1007/s40750-015-0038-0; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Kuzawa CW, 2010, P NATL ACAD SCI USA, V107, P16800, DOI 10.1073/pnas.1006008107; Kyweluk M.A., 2017, EVOL HUM BEHAV, P1; Lawson D.W., 2017, ADAPT HUM BEHAY PHYS, P1; Li T., PHYSL BEHAV EPUB, P1; Mascaro JS, 2013, P NATL ACAD SCI USA, V110, P15746, DOI 10.1073/pnas.1305579110; Muller MN, 2009, P ROY SOC B-BIOL SCI, V276, P347, DOI 10.1098/rspb.2008.1028; Pechtel P, 2011, PSYCHOPHARMACOLOGY, V214, P55, DOI 10.1007/s00213-010-2009-2; Peper JS, 2011, PSYCHONEUROENDOCRINO, V36, P1101, DOI 10.1016/j.psyneuen.2011.05.004; Perini T, 2012, HORM BEHAV, V61, P191, DOI 10.1016/j.yhbeh.2011.12.004; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Raznahan A, 2010, P NATL ACAD SCI USA, V107, P16988, DOI 10.1073/pnas.1006025107; Rilling JK, 2013, NEUROPSYCHOLOGIA, V51, P731, DOI 10.1016/j.neuropsychologia.2012.12.017; Roney JR, 2015, CURR OPIN PSYCHOL, V1, P81, DOI 10.1016/j.copsyc.2014.11.003; Rosenbaum S., PHYSL BEHAV EPUB, P1; Sandfort TGM, 2008, AM J PUBLIC HEALTH, V98, P155, DOI 10.2105/AJPH.2006.097444; Santelli JS, 1998, FAM PLANN PERSPECT, V30, P271, DOI 10.2307/2991502; Schulz KM, 2009, ENDOCRINOLOGY, V150, P3690, DOI 10.1210/en.2008-1708; Sheppard P, 2012, BIOL LETTERS, V8, P237, DOI 10.1098/rsbl.2011.0747; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Trumble B.C., PARENTAL HORMONES AR, P1; Trumble BC, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2015.0014; van Anders SM, 2013, FRONT NEUROENDOCRIN, V34, P198, DOI 10.1016/j.yfrne.2013.07.001; van Anders SM, 2012, HORM BEHAV, V61, P31, DOI 10.1016/j.yhbeh.2011.09.012; van Anders SM, 2011, PSYCHONEUROENDOCRINO, V36, P1265, DOI 10.1016/j.psyneuen.2011.06.001; Vanbillemont G, 2010, J CLIN ENDOCR METAB, V95, P1587, DOI 10.1210/jc.2009-2149; Weisman O, 2014, PROG NEURO-PSYCHOPH, V49, P47, DOI 10.1016/j.pnpbp.2013.11.006; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU 65 0 0 3 4 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0031-9384 PHYSIOL BEHAV Physiol. Behav. SEP 1 2018 193 A SI 82 89 10.1016/j.physbeh.2017.11.029 8 Psychology, Biological; Behavioral Sciences Psychology; Behavioral Sciences GR5TT WOS:000442705500008 29197496 2019-02-21 J Ruiz-Raya, F; Soler, M; Abaurrea, T; Chastel, O; Roncalli, G; Ibanez-Alamo, JD Ruiz-Raya, Francisco; Soler, Manuel; Abaurrea, Teresa; Chastel, Olivier; Roncalli, Gianluca; Ibanez-Alamo, Juan Diego Hormonal responses to non-mimetic eggs: is brood parasitism a physiological stressor during incubation? BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Body condition; Corticosterone; Egg rejection; Hormonal stress response; Prolactin; Standardized stress protocol LONG-LIVED BIRD; LIFE-HISTORY STRATEGIES; SEX-SPECIFIC PATTERNS; REPRODUCTIVE SUCCESS; PROLACTIN SECRETION; BODY CONDITION; BASE-LINE; CORTICOSTERONE RESPONSES; ENVIRONMENTAL-CONDITIONS; ADRENOCORTICAL-RESPONSE Many host species have evolved sophisticated defences to mitigate the high fitness costs imposed by brood parasitism. Even though the physiological mechanisms behind such defences can offer important insights into the evolutionary relationship between brood parasites and hosts, they have received little attention so fat Hormones play a critical role in the regulation of bird reproduction, which make them a key element when investigating the physiological effects of brood parasitism on hosts. Here, we experimentally parasitized Eurasian blackbird (Turdus merula) nests with non-mimetic eggs to study its impact on the hormonal levels (corticosterone and prolactin) of females during incubation, as well as the magnitude of the response to the standardized stress protocol in parasitized and non-parasitized individuals. Parasitized females had higher baseline corticosterone levels and showed a poorer body condition than non-parasitized birds, while we found no differences for prolactin levels. Both parasitized and non-parasitized females responded to the standardized-stress protocol with a significant increase in corticosterone levels. However, the decrease in prolactin after the standardized stress protocol was significantly more pronounced in parasitized individuals. Our results suggest that the presence of a non-mimetic parasitic egg involves a stressful situation for hosts, negatively affecting the physical state of parasitized females. Unaffected prolactin levels of parasitized individuals could explain the absence of nest desertion found in this species in response to parasitism. Finally, both hormones were not correlated in blackbirds, confirming that their combined study provides valuable pieces of information on the endocrine mechanisms underlying behavioural responses in animals, including hosts of brood parasites. Significance statement Physiological mechanisms behind avian brood parasitism remain unclear. In this study, we assessed the effect of experimental parasitism on the hormonal profiles of hosts. We found that the presence of a non-mimetic egg in the nest modified baseline corticosterone levels, but not prolactin levels, of parasitized females and negatively impacted their body condition. Moreover, experimental parasitism affected the prolactin response to stress. These results expand previous information on the endocrine consequences of brood parasitism at other stages of the breeding cycle (nestling and fledgling stage) and might shed light on the hormonal mechanisms that underlie the host response against parasitic eggs. [Ruiz-Raya, Francisco; Soler, Manuel; Roncalli, Gianluca] Univ Granada, Fac Ciencias, Dept Zool, E-18071 Granada, Spain; [Abaurrea, Teresa] Univ St Andrews, Sch Psychol & Neurosci, St Marys Quad,South St, St Andrews KY16 9JP, Scotland; [Chastel, Olivier] Univ La Rochelle, CNRS, CEBC, UMR 7372, F-79360 La Rochelle, France; [Ibanez-Alamo, Juan Diego] Univ Groningen, Groningen Inst Evolutionary Life Sci, NL-9700 CC Groningen, Netherlands Ruiz-Raya, F (reprint author), Univ Granada, Fac Ciencias, Dept Zool, E-18071 Granada, Spain. fraruiz@correo.ugr.es Consejeria de Economia, Innovacion, Ciencia y Empleo; Junta de Andalucia [CVI-6653]; University of Granada/CEI BioTic Granada; Consejeria de Economia, Innovacion, Ciencia y Empleo from Junta de Andalucia; Fondo Europeo de Desarrollo Regional FEDER; CEI BioTic Granada Financial support has been provided by the Consejeria de Economia, Innovacion, Ciencia y Empleo; Junta de Andalucia (research project CVI-6653 to MS). FRR stay at the CEBC (France) was financed by a mobility grant from the University of Granada/CEI BioTic Granada 2014/2015 (cofounded by Consejeria de Economia, Innovacion, Ciencia y Empleo from Junta de Andalucia; Fondo Europeo de Desarrollo Regional FEDER; and CEI BioTic Granada). Adams NJ, 2011, APPL ANIM BEHAV SCI, V134, P246, DOI 10.1016/j.applanim.2011.07.001; Addis EA, 2011, OECOLOGIA, V167, P369, DOI 10.1007/s00442-011-2001-5; Angelier F, 2007, J ANIM ECOL, V76, P1181, DOI 10.1111/j.1365-2656.2007.01295.x; Angelier F, 2016, COMP BIOCHEM PHYS A, V196, P38, DOI 10.1016/j.cbpa.2016.02.010; Angelier F, 2016, HORM BEHAV, V77, P18, DOI 10.1016/j.yhbeh.2015.07.014; Angelier F, 2015, HORM BEHAV, V67, P28, DOI 10.1016/j.yhbeh.2014.11.009; Angelier F, 2013, GEN COMP ENDOCR, V190, P118, DOI 10.1016/j.ygcen.2013.05.022; Angelier F, 2013, GEN COMP ENDOCR, V182, P7, DOI 10.1016/j.ygcen.2012.10.008; Angelier F, 2009, PHYSIOL BIOCHEM ZOOL, V82, P590, DOI 10.1086/603634; Angelier F, 2009, GEN COMP ENDOCR, V163, P142, DOI 10.1016/j.ygcen.2009.03.028; Angelier F, 2009, FUNCT ECOL, V23, P784, DOI 10.1111/j.1365-2435.2009.01545.x; Aviles JM, 2004, ANIM BEHAV, V67, P951, DOI 10.1016/j.anbehav.2003.08.022; Bolker B, 2016, GEN LINEAR MIXED MOD; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; Buntin John D., 1996, Advances in the Study of Behavior, V25, P161; Chastel O, 2005, HORM BEHAV, V47, P459, DOI 10.1016/j.yhbeh.2004.10.009; Chastel O, 2002, CONDOR, V104, P873, DOI 10.1650/0010-5422(2002)104[0873:POPSIR]2.0.CO;2; CHEREL Y, 1994, PHYSIOL ZOOL, V67, P1154, DOI 10.1086/physzool.67.5.30163887; Criscuolo F, 2002, GEN COMP ENDOCR, V125, P399, DOI 10.1006/gcen.2001.7767; Davies N. B., 2000, CUCKOOS COWBIRDS OTH; Ibanez-Alamo JD, 2012, HORM BEHAV, V61, P590, DOI 10.1016/j.yhbeh.2012.02.008; Ibanez-Alamo JD, 2010, BIOL J LINN SOC, V101, P759, DOI 10.1111/j.1095-8312.2010.01543.x; Goutte A, 2011, HORM BEHAV, V59, P167, DOI 10.1016/j.yhbeh.2010.11.004; Grim T, 2011, J ANIM ECOL, V80, P508, DOI 10.1111/j.1365-2656.2010.01798.x; Groscolas R, 2008, HORM BEHAV, V53, P51, DOI 10.1016/j.yhbeh.2007.08.010; Hahn DC, 2017, GEN COMP ENDOCR, V240, P143, DOI 10.1016/j.ygcen.2016.10.004; HALL TR, 1986, GEN COMP ENDOCR, V62, P171, DOI 10.1016/0016-6480(86)90107-3; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Heidinger BJ, 2010, FUNCT ECOL, V24, P1037, DOI 10.1111/j.1365-2435.2010.01733.x; Ibanez-Alamo JD, 2011, GEN COMP ENDOCR, V171, P232, DOI 10.1016/j.ygcen.2011.01.016; Jessop TS, 2001, J ZOOL, V254, P57, DOI 10.1017/S0952836901000553; Krause JS, 2015, PHYSIOL BIOCHEM ZOOL, V88, P589, DOI 10.1086/683321; Krause JS, 2014, COMP BIOCHEM PHYS A, V177, P35, DOI 10.1016/j.cbpa.2014.07.019; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Lendvai AZ, 2010, HORM BEHAV, V58, P936, DOI 10.1016/j.yhbeh.2010.09.004; Lendvai AZ, 2008, HORM BEHAV, V53, P395, DOI 10.1016/j.yhbeh.2007.11.011; Lendvai AZ, 2007, P R SOC B, V274, P391, DOI 10.1098/rspb.2006.3735; Lenth RV, 2016, J STAT SOFTW, V69, P1, DOI 10.18637/jss.v069.i01; Lormee H, 2003, IBIS, V145, P212, DOI 10.1046/j.1474-919X.2003.00106.x; Lormee H, 2000, GEN COMP ENDOCR, V117, P413, DOI 10.1006/gcen.1999.7434; Macleod R, 2005, J ANIM ECOL, V74, P292, DOI 10.1111/j.1365-2656.2005.00923.x; Mark MM, 2013, J AVIAN BIOL, V44, P445, DOI 10.1111/j.1600-048X.2013.00100.x; Mark MM, 2013, HORM BEHAV, V63, P717, DOI 10.1016/j.yhbeh.2013.03.008; Martin-Vivaldi M, 2013, IBIS, V155, P140, DOI 10.1111/ibi.12000; Miller DA, 2009, HORM BEHAV, V56, P457, DOI 10.1016/j.yhbeh.2009.08.001; Mundry R, 2009, AM NAT, V173, P119, DOI 10.1086/593303; Nakagawa S, 2017, J R SOC INTERFACE, V14, DOI 10.1098/rsif.2017.0213; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nord A, 2015, NESTS, EGGS, AND INCUBATION: NEW IDEAS ABOUT AVIAN REPRODUCTION, P152; O'Dwyer TW, 2006, FUNCT ECOL, V20, P806, DOI 10.1111/j.1365-2435.2006.01168.x; O'Reilly KM, 2001, GEN COMP ENDOCR, V124, P1, DOI 10.1006/gcen.2001.7676; Ouyang JQ, 2011, P ROY SOC B-BIOL SCI, V278, P2537, DOI 10.1098/rspb.2010.2490; Partecke J, 2006, ECOLOGY, V87, P1945, DOI 10.1890/0012-9658(2006)87[1945:SATCUA]2.0.CO;2; Peig J, 2010, FUNCT ECOL, V24, P1323, DOI 10.1111/j.1365-2435.2010.01751.x; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Pinheiro J., 2014, R PACKAGE VERSION, V3, P1; Polacikova L, 2010, J AVIAN BIOL, V41, P111, DOI 10.1111/j.1600-048X.2010.04983.x; Preault M, 2005, BEHAV ECOL SOCIOBIOL, V58, P497, DOI 10.1007/s00265-005-0937-3; R Core Team, 2014, R LANG ENV STAT COMP; Riechert J, 2014, PHYSIOL BIOCHEM ZOOL, V87, P420, DOI 10.1086/675682; Roldan M, 2011, BEHAV ECOL, V22, P679, DOI 10.1093/beheco/arr041; Ruiz-Raya F, 2016, FRONT ZOOL, V13, DOI 10.1186/s12983-016-0148-y; Ruiz-Raya F, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135624; Samas P, 2014, FRONT ZOOL, V11, DOI 10.1186/1742-9994-11-34; Samas P, 2011, ETHOLOGY, V117, P606, DOI 10.1111/j.1439-0310.2011.01917.x; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; SHARP PJ, 1988, J ENDOCRINOL, V118, P279, DOI 10.1677/joe.0.1180279; SILVER R, 1984, J EXP ZOOL, V232, P617, DOI 10.1002/jez.1402320330; Sockman KW, 2006, BIOL REV, V81, P629, DOI 10.1017/S1464793106007147; SOLER M, 1990, NATURE, V343, P748, DOI 10.1038/343748a0; Soler M, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0166283; Soler M, 2015, J AVIAN BIOL, V46, P369, DOI 10.1111/jav.00571; Soler M, 2014, BIOL REV, V89, P688, DOI 10.1111/brv.12075; Spee M, 2010, HORM BEHAV, V58, P762, DOI 10.1016/j.yhbeh.2010.07.011; Tartu S, 2015, SCI TOTAL ENVIRON, V505, P180, DOI 10.1016/j.scitotenv.2014.10.008; Whittingham MJ, 2006, J ANIM ECOL, V75, P1182, DOI 10.1111/j.1365-2656.2006.01141.x; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield JC, 2002, COMP BIOCHEM PHYS B, V132, P275, DOI 10.1016/S1096-4959(01)00540-1; Wingfield JC, 1998, AM ZOOL, V38, P191; WINGFIELD JC, 1994, PERSPECTIVES IN COMPARATIVE ENDOCRINOLOGY, P520; Wingfield JC, 2011, CURR ZOOL, V57, P363, DOI 10.1093/czoolo/57.3.363 81 2 2 15 15 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. SEP 2018 72 9 UNSP 153 10.1007/s00265-018-2565-8 11 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology GR6WB WOS:000442814200001 2019-02-21 J Andrews, RM Andrews, Robin M. Changing Perspectives on Reptile Eggs: One Biologist's Journey from Demography to Development JOURNAL OF HERPETOLOGY English Article LIZARD ANOLIS-LIMIFRONS; NEST-SITE CHOICE; SCELOPORUS-AENEUS; TROPICAL LIZARD; SQUAMATE REPTILES; SPATIAL VARIATION; HIGH-ELEVATION; GEKKOTAN EGGS; LIFE-HISTORY; EVOLUTION This research perspective focuses on three of the disciplinary areas that have engaged my interest as a professional biologist. My research first focused on life history evolution, but it expanded to include the evolution of viviparity, and developmental biology. My subjects are squamate reptiles, although I do hands-on research largely with lizards. A common theme of the research that I discuss here is the role of eggs and embryos in ecological and evolutionary studies and why that role may be critical to the resolution of important biological problems. In this perspective, I summarize highlights of my major research projects since 1971: 1) life history evolution of West Indian island and mainland Anolis lizards; 2) long-term studies on the demography and egg survival of a small, r-selected Panamanian anole; 3) ecological and physiological studies on the transition between oviparity and viviparity in Sceloporus; 4) costs and benefits of the novel rigid-shelled egg of gekkotan lizards; and 5) embryonic adaptations to low oxygen availability in rigid-shelled eggs of gekkotan lizards. I put these projects in the context of my own developmental trajectory as a biologist; my research has shifted from population biology to embryonic development without breaking the connection between these seemingly disparate disciplines. [Andrews, Robin M.] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA Andrews, RM (reprint author), Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA. randrews@vt.edu STRI Environmental Science Program I would particularly like to acknowledge individuals that helped me when I was a graduate student, a postdoc, and a neophyte assistant professor. At a time when women were just beginning to enter graduate programs in appreciable numbers, the guidance, encouragement, and support of George Byers, Daniel Janzen, Charles Michener, A. Stanley Rand, Owen Sexton, Margaret Stewart, and Ernest Williams did make a difference. They get my heartfelt thanks. My friendships with fellow women graduate students and postdocs provided a critical support network in an environment that could be quite mean spirited toward women. Thank you Barbara (Allen) Savitzky, Barbara Bentley, Marty Crump, Sharon Emerson, Nancy Garwood, Helen Kennedy, Katie Milton, Catherine Toft, and Kathy Troyer. I also thank the STRI Environmental Science Program for its support of the long-term monitoring project on Anolis that I conducted with A. S. Rand. I do not have the space to thank the individuals and institutions that have been supportive of my post-tenure career, but it would be a very long list. Finally, I thank Erin Muths for inviting me to write a perspective and for the coaxing and coaching that helped me turn a chronology of research projects into a perspective on research. Andrews R.M., 2004, P75; ANDREWS R. M., 1982, ECOLOGY TROPICAL FOR, P405; ANDREWS R. M., 1990, ECOLOGIA BOSQUE TROP, P469; ANDREWS R. M., 1979, BREVIORA, V454, P1; ANDREWS RM, 1991, ECOLOGY, V72, P1204, DOI 10.2307/1941094; ANDREWS RM, 1990, OIKOS, V57, P215, DOI 10.2307/3565942; ANDREWS RM, 1988, OECOLOGIA, V76, P376, DOI 10.1007/BF00377032; Andrews RM, 1999, J HERPETOL, V33, P93, DOI 10.2307/1565547; ANDREWS RM, 1982, HERPETOLOGICA, V38, P165; Andrews RM, 2000, J ZOOL, V250, P243, DOI 10.1017/S0952836900002107; Andrews RM, 2000, BIOSCIENCE, V50, P227, DOI 10.1641/0006-3568(2000)050[0227:NHORDC]2.3.CO;2; ANDREWS RM, 1994, LIZARD ECOLOGY, P267; ANDREWS RM, 1994, PHYSIOL ZOOL, V67, P1006, DOI 10.1086/physzool.67.4.30163876; ANDREWS RM, 1981, ECOLOGY, V62, P556, DOI 10.2307/1937721; Andrews RM, 2017, EVOL DEV, V19, P136, DOI 10.1111/ede.12221; Andrews RM, 2015, J EXP ZOOL PART A, V323, P607, DOI 10.1002/jez.1951; Andrews RM, 2013, EVOL DEV, V15, P326, DOI 10.1111/ede.12042; Andrews RM, 2013, J EXP ZOOL PART A, V319A, P259, DOI 10.1002/jez.1790; Andrews RM, 2012, BIOL J LINN SOC, V106, P851, DOI 10.1111/j.1095-8312.2012.01901.x; Andrews RM, 2012, J EXP ZOOL PART A, V317A, P395, DOI 10.1002/jez.1732; Arthur W, 2004, BIASED EMBRYOS EVOLU; Chalcraft DR, 1999, OECOLOGIA, V119, P285, DOI 10.1007/s004420050788; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; Deeming D. C, 2004, REPTILIAN INCUBATION; Doody JS, 2009, AUSTRAL ECOL, V34, P773, DOI 10.1111/j.1442-9993.2009.01983.x; DUFAURE JP, 1961, ARCH ANAT MICROSC MO, V50, P309; Dunham A.E., 1988, Biology of Reptilia, V16, P441; Feldman A, 2015, GLOBAL ECOL BIOGEOGR, V24, P1433, DOI 10.1111/geb.12374; Garcia-Collazo R, 2012, REV MEX BIODIVERS, V83, P802, DOI 10.7550/rmb.33595; Griffith OW, 2016, GENOME BIOL EVOL, V8, P3226, DOI 10.1093/gbe/evw229; GUILLETTE LJ, 1986, COPEIA, P232; GUILLETTE LJ, 1982, HERPETOLOGICA, V38, P94; GUILLETTE LJ, 1993, BIOSCIENCE, V43, P742, DOI 10.2307/1312318; Hopwood N, 2007, INT J DEV BIOL, V51, P1, DOI 10.1387/ijdb.062189nh; Huang WS, 2011, FUNCT ECOL, V25, P1125, DOI 10.1111/j.1365-2435.2011.01855.x; Leache AD, 2013, BIOL J LINN SOC, V110, P852, DOI 10.1111/bij.12172; MAC ARTHUR ROBERT H., 1967; Mallarino R, 2012, P NATL ACAD SCI USA, V109, P16222, DOI 10.1073/pnas.1206205109; Mallarino R, 2011, P NATL ACAD SCI USA, V108, P4057, DOI 10.1073/pnas.1011480108; Mathies T, 1999, PHYSIOL BIOCHEM ZOOL, V72, P645, DOI 10.1086/316707; Mayr Ernst, 1942, SYSTEMATICS ORIGIN S; Meiri S, 2012, GLOBAL ECOL BIOGEOGR, V21, P592, DOI 10.1111/j.1466-8238.2011.00700.x; Mendez-de la Cruz FR, 1998, HERPETOLOGICA, V54, P521; Muller GB, 2007, NAT REV GENET, V8, P943, DOI 10.1038/nrg2219; Parker SL, 2006, PHYSIOL BIOCHEM ZOOL, V79, P581, DOI 10.1086/502812; Pezaro N, 2013, EVOL DEV, V15, P87, DOI 10.1111/ede.12019; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pike DA, 2012, EVOL ECOL, V26, P847, DOI 10.1007/s10682-011-9527-1; Pough FH, 2016, HERPETOLOGY; Pyron RA, 2015, J EXP ZOOL PART B, V324, P562, DOI 10.1002/jez.b.22644; Schwartz TS, 2013, MOL ECOL, V22, P739, DOI 10.1111/j.1365-294X.2012.05750.x; Shine R., 1985, Biology of Reptilia, V15, P605; Shine R, 2014, J HERPETOL, V48, P147, DOI 10.1670/13-075; Stapley J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0115450; Telemeco RS, 2017, GLOBAL CHANGE BIOL, V23, P1075, DOI 10.1111/gcb.13476; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; Warner DA, 2008, ANIM BEHAV, V75, P861, DOI 10.1016/j.anbehav.2007.07.007 58 0 0 13 13 SOC STUDY AMPHIBIANS REPTILES ST LOUIS C/O ROBERT D ALDRIDGE, ST LOUIS UNIV, DEPT BIOLOGY, 3507 LACLEDE, ST LOUIS, MO 63103 USA 0022-1511 1937-2418 J HERPETOL J. Herpetol. SEP 2018 52 3 243 251 10.1670/17-050 9 Zoology Zoology GR4XM WOS:000442624400001 2019-02-21 J Morbey, YE; Mema, M Morbey, Yolanda E.; Mema, Marin Size-selective fishing and the potential for fisheries-induced evolution in lake whitefish EVOLUTIONARY APPLICATIONS English Article fisheries-induced evolution; freshwater fisheries; growth rate; Lake Huron; life history evolution; maturation reaction norm DENSITY-DEPENDENT GROWTH; LIFE-HISTORY EVOLUTION; LAURENTIAN GREAT-LAKES; COREGONUS-CLUPEAFORMIS; BIOENERGETICS MODEL; MATURATION SCHEDULES; REFERENCE POINTS; ENERGY DENSITY; REACTION NORMS; TRAIT CHANGES The long-term evolutionary effects of fishing on maturation schedules can depend on gear type, the shape of the gear type's size-selectivity function, and the size and age structure of a population. Our goal was to better understand how environmentally induced differences in somatic growth influence the evolutionary effects of size-selective fisheries, using lake whitefish (Coregonus clupeaformis) in Lake Huron as a case study. Using a state-dependent optimization model of energy allocation parameterized for lake whitefish, we show that fishing with gill nets (bell-shaped selectivity) and trap nets (sigmoid-shaped selectivity) can be potent agents of selection on size thresholds for maturity. Compared to trap nets and large mesh (114mm) gill nets, small mesh (89mm) gill nets are better able to buffer populations from fishing-induced evolution by safeguarding large, fecund fish, but only when overall fishing mortality is low and growth rates sufficiently fast such that fish can outgrow vulnerable size classes. Regardless of gear type, and all else being equal, high fishing mortality in combination with low growth rates is expected to intensify the long-term evolutionary effects of fishing. [Morbey, Yolanda E.; Mema, Marin] Western Univ, Dept Biol, London, ON, Canada Morbey, YE (reprint author), Western Univ, Dept Biol, London, ON, Canada. ymorbey@uwo.ca Great Lakes Fisheries Commission Fisheries Research Program; Ontario Ministry of Research and Innovation Great Lakes Fisheries Commission Fisheries Research Program; Ontario Ministry of Research and Innovation Barot S, 2004, EVOL ECOL RES, V6, P659; Beauchamp KC, 2004, J GREAT LAKES RES, V30, P451, DOI 10.1016/S0380-1330(04)70361-5; Bence JR, 2003, J GREAT LAKES RES, V29, P253, DOI 10.1016/S0380-1330(03)70493-6; BINKOWSKI FP, 1994, T AM FISH SOC, V123, P335, DOI 10.1577/1548-8659(1994)123<0335:MDROGL>2.3.CO;2; Brenden T. O., 2013, GREAT LAKES FISHERIE; Caroffino D. C., 2017, TECHNICAL FISHERIES; Charnov Eric L., 1993, P1; COLLINS JJ, 1979, J FISH RES BOARD CAN, V36, P1180, DOI 10.1139/f79-170; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Dunlop ES, 2015, ECOL APPL, V25, P1860, DOI 10.1890/14-1862.1; Dunlop ES, 2009, EVOL APPL, V2, P246, DOI 10.1111/j.1752-4571.2009.00087.x; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Ebener M. P., 2008, INT GOVERNANCE FISHE, P62; Ebener M. P., 2013, STATE LAKE HURON 201, V13-01; Ebener MP, 2010, J GREAT LAKES RES, V36, P110, DOI 10.1016/j.jglr.2009.06.003; Eberts RL, 2017, N AM J FISH MANAGE, V37, P133, DOI 10.1080/02755947.2016.1245225; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; Eikeset AM, 2016, P NATL ACAD SCI USA, V113, P15030, DOI 10.1073/pnas.1525749113; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fera SA, 2015, J GREAT LAKES RES, V41, P1138, DOI 10.1016/j.jglr.2015.08.010; Ficker H, 2014, J FISH BIOL, V84, P1164, DOI 10.1111/jfb.12301; Gile S. R., 2006, PSLHACF04001 ONT MIN; Gobin J, 2016, J GREAT LAKES RES, V42, P871, DOI 10.1016/j.jglr.2016.05.003; Gobin J, 2015, J GREAT LAKES RES, V41, P405, DOI 10.1016/j.jglr.2015.03.003; HEALEY MC, 1980, CAN J FISH AQUAT SCI, V37, P255, DOI 10.1139/f80-033; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M., 2015, ANN REV ECOLOGY EVOL, V46; Heino M, 2013, ICES J MAR SCI, V70, P707, DOI 10.1093/icesjms/fst077; Hixon MA, 2014, ICES J MAR SCI, V71, P2171, DOI 10.1093/icesjms/fst200; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; Johnston TA, 2012, FISH RES, V125, P225, DOI 10.1016/j.fishres.2012.01.027; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; KITCHELL JF, 1977, J FISH RES BOARD CAN, V34, P1922, DOI 10.1139/f77-258; Kokko H, 2007, MODELLING FOR FIELD BIOLOGISTS AND OTHER INTERESTING PEOPLE, P1, DOI 10.1017/CBO9780511811388; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Lumb CE, 2007, J GREAT LAKES RES, V33, P314, DOI 10.3394/0380-1330(2007)33[314:COLWCC]2.0.CO;2; Madenjian CP, 2013, J GREAT LAKES RES, V39, P358, DOI 10.1016/j.jglr.2013.03.011; Madenjian CP, 2006, T AM FISH SOC, V135, P61, DOI 10.1577/T04-215.1; McNamara JM, 2001, SIAM REV, V43, P413, DOI 10.1137/S0036144500385263; Morgan MJ, 1999, ICES J MAR SCI, V56, P673, DOI 10.1006/jmsc.1999.0487; Muir AM, 2014, CAN J FISH AQUAT SCI, V71, P1256, DOI 10.1139/cjfas-2013-0254; Muir AM, 2010, J GREAT LAKES RES, V36, P92, DOI 10.1016/j.jglr.2009.07.006; Nussle S, 2009, EVOL APPL, V2, P200, DOI 10.1111/j.1752-4571.2008.00054.x; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Pothoven SA, 2001, N AM J FISH MANAGE, V21, P876, DOI 10.1577/1548-8675(2001)021<0876:CIDABC>2.0.CO;2; Pothoven SA, 2008, N AM J FISH MANAGE, V28, P308, DOI 10.1577/M07-022.1; Pothoven SA, 2006, ENVIRON BIOL FISH, V76, P151, DOI 10.1007/s10641-006-9017-4; R Core Team, 2016, R LANG ENV STAT COMP; Rennie MD, 2008, N AM J FISH MANAGE, V28, P1270, DOI 10.1577/M06-258.1; Rennie MD, 2009, CAN J FISH AQUAT SCI, V66, P2096, DOI 10.1139/F09-139; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; RUDSTAM LG, 1994, T AM FISH SOC, V123, P344, DOI 10.1577/1548-8659(1994)123<0344:ABMFAO>2.3.CO;2; SAS Institute Inc, 2011, BAS SAS 9 3 PROC GUI; Smith RJ, 2009, AM J PHYS ANTHROPOL, V140, P476, DOI 10.1002/ajpa.21090; Speers J. D., 2008, OFFSHORE INDEX ASSES; Stearns S, 1992, EVOLUTION LIFE HIST; Wang HY, 2008, CAN J FISH AQUAT SCI, V65, P2157, DOI 10.1139/F08-124; Wang HY, 2009, EVOL APPL, V2, P438, DOI 10.1111/j.1752-4571.2009.00088.x; Zhao YM, 2017, N AM J FISH MANAGE, V37, P1341, DOI 10.1080/02755947.2017.1381206; Zimmermann F, 2017, MAR ECOL PROG SER, V563, P185, DOI 10.3354/meps11996 65 0 0 8 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. SEP 2018 11 8 1412 1424 10.1111/eva.12635 13 Evolutionary Biology Evolutionary Biology GR0MD WOS:000442210300017 30151049 DOAJ Gold 2019-02-21 J Pintar, MR; Resetarits, WJ Pintar, Matthew R.; Resetarits, William J., Jr. Filling ephemeral ponds affects development and phenotypic expression in Ambystoma talpoideum FRESHWATER BIOLOGY English Article life history trade-off; paedomorphosis; phenotype; polyphenism; temporary ponds WATER HABITAT GRADIENT; COMPLEX LIFE-CYCLES; AMPHIBIAN METAMORPHOSIS; ADAPTIVE PLASTICITY; COMMUNITY STRUCTURE; LARVAL SALAMANDERS; CLIMATE-CHANGE; DESERT PONDS; TADPOLES; DENSITY Populations and communities are often greatly affected by disturbances and variation in abiotic habitat conditions. Many of these effects are contingent on relatively predictable, yet still variable, environmental conditions that drive the life history strategies and development pathways of organisms in those habitats. However, much focus has been placed on aspects of such changes that cause mortality or movement from patches, whereas a multitude of outcomes can occur in natural systems. In lentic freshwater habitats, hydroperiod is a defining environmental characteristic, with temporary ponds supporting distinct communities of organisms with complex life cycles and plastic developmental trajectories. Little consideration has been given to the effects of refilling of ponds with variable hydroperiods, as lengthening the hydroperiod can extend the time organisms spend in their aquatic stages, allowing for the acquisition of more resources. We hypothesised that increasing the volume of small ponds and adding competitors (Ambystoma maculatum) at the time of filling would interactively affect the development and phenotypic expression of Ambystoma talpoideum. We introduced larval A.talpoideum to experimental mesocosms and manipulated water level (small, low volume mesocosms; filled, full mesocosms) and the addition of competitors (A.maculatum) at the time of filling in a 2x2 factorial design. We found that low volume mesocosms were dominated by metamorphs, while filling resulted in a more even mix of metamorphs, larvae and paedomorphs in full mesocosms. Filling resulted in larger metamorphs and paedomorphs, but did not affect larvae, whereas addition of A.maculatum shortened the larval period of metamorphs. We provide evidence that changes in abiotic habitat conditions, such as variation in the volume of ponds, can shift the development and phenotype of organisms. This plasticity may allow species to ensure the success of populations under both improvement and deterioration of environmental conditions. Hence, phenotypes like paedomorphic A.talpoideum can breed sooner than metamorphs, theoretically maximising the fitness of both individuals and populations. [Pintar, Matthew R.] Univ Mississippi, Dept Biol, University, MS 38677 USA; [Pintar, Matthew R.] Univ Mississippi, Ctr Water & Wetland Resources, University, MS 38677 USA Pintar, MR (reprint author), Univ Mississippi, Dept Biol, University, MS 38677 USA.; Pintar, MR (reprint author), Univ Mississippi, Ctr Water & Wetland Resources, University, MS 38677 USA. matthew.pintar@gmail.com Pintar, Matthew/0000-0003-0165-3882 Henry L. and Grace Doherty Foundation; University of Mississippi Henry L. and Grace Doherty Foundation; University of Mississippi Anderson TL, 2013, COPEIA, P284, DOI 10.1643/CE-12-034; Bates D, 2015, J STAT SOFTW, V67, P1; Batzer DP, 1996, ANNU REV ENTOMOL, V41, P75, DOI 10.1146/annurev.en.41.010196.000451; Berner D, 2011, OECOLOGIA, V166, P961, DOI 10.1007/s00442-011-1934-z; BERVEN KA, 1981, EVOLUTION, V35, P707, DOI 10.1111/j.1558-5646.1981.tb04931.x; BERVEN KA, 1983, AM ZOOL, V23, P85; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Brady L. D, 2012, J ZOOL, V252, P61; Burraco P, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-07201-z; Chalcraft DR, 1999, OECOLOGIA, V119, P285, DOI 10.1007/s004420050788; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; COOPS H, 1995, FRESHWATER BIOL, V34, P13, DOI 10.1111/j.1365-2427.1995.tb00418.x; Denver RJ, 1998, ECOLOGY, V79, P1859, DOI 10.1890/0012-9658(1998)079[1859:APIAMR]2.0.CO;2; Denver RJ, 1997, AM ZOOL, V37, P172; Doyle JM, 2008, OECOLOGIA, V156, P87, DOI 10.1007/s00442-008-0977-2; Fox J., 2011, R COMPANION APPL REG; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; Hartel T, 2007, HYDROBIOLOGIA, V583, P173, DOI 10.1007/s10750-006-0490-8; Hecnar SJ, 1997, BIOL CONSERV, V79, P123, DOI 10.1016/S0006-3207(96)00113-9; HOBBS RJ, 1992, CONSERV BIOL, V6, P324, DOI 10.1046/j.1523-1739.1992.06030324.x; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Houghton JT, 1995, CLIMATE CHANGE 1995; JACKSON ME, 1993, ECOLOGY, V74, P342, DOI 10.2307/1939297; JULIANO SA, 1994, OECOLOGIA, V97, P369, DOI 10.1007/BF00317327; Katz RW, 2010, CLIMATIC CHANGE, V100, P71, DOI 10.1007/s10584-010-9834-5; Kohmatsu Y, 2001, ECOL RES, V16, P73, DOI 10.1046/j.1440-1703.2001.00373.x; Kuznetsova A, 2017, J STAT SOFTW, V82, P1; Lind MI, 2007, J EVOLUTION BIOL, V20, P1288, DOI 10.1111/j.1420-9101.2007.01353.x; McClain ME, 2003, ECOSYSTEMS, V6, P301, DOI 10.1007/s10021-003-0161-9; McKnight DM, 1999, BIOSCIENCE, V49, P985, DOI 10.2307/1313732; Miner BG, 2005, TRENDS ECOL EVOL, V20, P685, DOI 10.1016/j.tree.2005.08.002; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; NEWMAN RA, 1987, OECOLOGIA, V71, P301, DOI 10.1007/BF00377299; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; Pechmann J.H.K., 1989, Wetlands Ecology and Management, V1, P3; Petranka J. W, 1998, SALAMANDERS US CANAD; PFENNIG D, 1990, OECOLOGIA, V85, P101, DOI 10.1007/BF00317349; Pintar MR, 2017, J HERPETOL, V51, P186, DOI 10.1670/16-019; POIANI KA, 1989, CAN J BOT, V67, P856, DOI 10.1139/b89-115; R Core Team, 2017, R LANG ENV STAT COMP; Relyea RA, 2001, ECOLOGY, V82, P523, DOI 10.1890/0012-9658(2001)082[0523:MABPOL]2.0.CO;2; Rogers TN, 2008, CAN J FISH AQUAT SCI, V65, P2761, DOI 10.1139/F08-177; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Ryan TJ, 2003, BIOL J LINN SOC, V80, P639, DOI 10.1111/j.1095-8312.2003.00260.x; Schafer ML, 2006, J VECTOR ECOL, V31, P123, DOI 10.3376/1081-1710(2006)31[123:DROTFM]2.0.CO;2; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Schneider DW, 1996, J N AM BENTHOL SOC, V15, P64, DOI 10.2307/1467433; Schneider DW, 1997, OECOLOGIA, V110, P567, DOI 10.1007/s004420050197; SCOTT DE, 1993, AM MIDL NAT, V129, P397, DOI 10.2307/2426520; SEMLITSCH RD, 1987, ECOLOGY, V68, P994, DOI 10.2307/1938370; SEMLITSCH RD, 1985, OECOLOGIA, V65, P305, DOI 10.1007/BF00378903; SEMLITSCH RD, 1988, COPEIA, P978; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; SEMLITSCH RD, 1987, ECOLOGY, V68, P1003, DOI 10.2307/1938371; SIBLY RM, 1995, EVOL ECOL, V9, P242, DOI 10.1007/BF01237771; Skelly DK, 1996, COPEIA, P599; SKULASON S, 1995, TRENDS ECOL EVOL, V10, P366, DOI 10.1016/S0169-5347(00)89135-1; SMITH DC, 1987, ECOLOGY, V68, P344, DOI 10.2307/1939265; SOUSA WP, 1984, ANNU REV ECOL SYST, V15, P353, DOI 10.1146/annurev.es.15.110184.002033; Stanley EH, 2004, AQUAT SCI, V66, P130, DOI 10.1007/s00027-003-0646-9; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Stoks R, 2003, ECOLOGY, V84, P1576, DOI 10.1890/0012-9658(2003)084[1576:PALHSL]2.0.CO;2; TEJEDO M, 1994, OIKOS, V71, P295, DOI 10.2307/3546278; Teplitsky C, 2003, OECOLOGIA, V134, P270, DOI 10.1007/s00442-002-1106-2; Thomaz SM, 2007, HYDROBIOLOGIA, V579, P1, DOI 10.1007/s10750-006-0285-y; THOMPSON JD, 1991, TRENDS ECOL EVOL, V6, P246, DOI 10.1016/0169-5347(91)90070-E; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WALLS SC, 1987, CAN J ZOOL, V65, P2938, DOI 10.1139/z87-446; Walls SC, 1996, ANIM BEHAV, V52, P1157, DOI 10.1006/anbe.1996.0262; Warton DI, 2011, ECOLOGY, V92, P3, DOI 10.1890/10-0340.1; Waterkeyn A, 2008, FRESHWATER BIOL, V53, P1808, DOI 10.1111/j.1365-2427.2008.02005.x; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WHITEMAN HH, 1994, Q REV BIOL, V69, P205, DOI 10.1086/418540; WHITFORD WG, 1966, COPEIA, P515; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WILBUR HM, 1987, ECOLOGY, V68, P1437, DOI 10.2307/1939227; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; Wissinger SA, 1999, ECOLOGY, V80, P2102; WOOTTON JT, 1994, ECOLOGY, V75, P151, DOI 10.2307/1939391 80 1 1 6 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. SEP 2018 63 9 1173 1183 10.1111/fwb.13125 11 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology GQ5BR WOS:000441693300011 2019-02-21 J Tapia-Monsalve, R; Newsome, SD; Sanchez-Hernandez, JC; Bozinovic, F; Nespolo, R; Sabat, P Tapia-Monsalve, Romina; Newsome, Seth D.; Sanchez-Hernandez, Juan C.; Bozinovic, Francisco; Nespolo, Roberto; Sabat, Pablo Terrestrial birds in coastal environments: metabolic rate and oxidative status varies with the use of marine resources OECOLOGIA English Article Basal metabolic rate; Birds; Cinclodes; Oxidative stress; Osmoregulation; Passerines; Stable isotopes RUFOUS-COLLARED SPARROW; GENUS CINCLODES PASSERIFORMES; LIFE-HISTORY EVOLUTION; OSMOREGULATORY PHYSIOLOGY; SEASONAL ACCLIMATIZATION; SALINE ENVIRONMENTS; THERMAL-ACCLIMATION; ECOLOGICAL FACTORS; CARBON ISOTOPES; FOOD RESOURCES Life in saline environments represents a major physiological challenge for birds, particularly for passerines that lack nasal salt glands and hence are forced to live in environments that do not contain salty resources. Increased energy costs associated with increased salt intake, which in turn increases the production of reactive oxygen species, is likely a major selection pressure for why passerines are largely absent from brackish and marine environments. Here we measured basal metabolic rates (BMR) and oxidative status of free-ranging individuals of three species of Cinclodes, a group of passerine birds that inhabit marine and freshwater habitats in Chile. We used a combination of carbon, nitrogen, and hydrogen isotope data from metabolically active (blood) and inert (feathers) tissues to estimate seasonal changes in marine resource use and infer altitudinal migration. Contrary to our expectations, the consumption of marine resources did not result in higher BMR values and higher oxidative stress. Specifically, the marine specialist C. nigrofumosus had lower BMR than the other two species (C. fuscus and C. oustaleti), which seasonally switch between terrestrial and marine resources. C. fuscus had significantly higher total antioxidant capacity than the other two species (C. nigrofumosus and C. oustaleti) that consumed a relatively high proportion of marine resources. Nearly all studies examining the effects of salt consumption have focused on intraspecific acclimation via controlled experiments in the laboratory. The mixed results obtained from field- and lab-based studies reflect our poor understanding of the mechanistic link among hydric-salt balance, BMR, and oxidative stress in birds. [Tapia-Monsalve, Romina; Sabat, Pablo] Univ Chile, Fac Ciencias, Dept Ciencias Ecol, Santiago, Chile; [Newsome, Seth D.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; [Sanchez-Hernandez, Juan C.] Univ Castilla La Mancha, Fac Environm Sci & Biochem, Lab Ecotoxicol, Toledo 45071, Spain; [Bozinovic, Francisco] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Ecol, Santiago 6513677, Chile; [Bozinovic, Francisco; Nespolo, Roberto; Sabat, Pablo] Pontificia Univ Catolica Chile, Ctr Appl Ecol & Sustainabil CAPES UC, Santiago, Chile; [Nespolo, Roberto] Univ Austral Chile, Inst Ciencias Ambient & Evolut, Fac Ciencias, Campus Isla Teja, Valdivia, Chile Sabat, P (reprint author), Univ Chile, Fac Ciencias, Dept Ciencias Ecol, Santiago, Chile.; Sabat, P (reprint author), Pontificia Univ Catolica Chile, Ctr Appl Ecol & Sustainabil CAPES UC, Santiago, Chile. psabat@uchile.cl Sanchez-Hernandez, Juan Carlos/E-8928-2011 Sanchez-Hernandez, Juan Carlos/0000-0002-8295-0979; Sabat, Pablo/0000-0002-6609-9969 Fondo Nacional de Desarrollo Cienti'fico y Tecnologico [1160115]; Fondo Basal [FB 0002-2014] This study was funded by Fondo Nacional de Desarrollo Cienti ' fico y Tecnologico (1160115) and Fondo Basal (FB 0002-2014). We thank Andres Sazo for field support, and Carolina Contreras, Cristobal Narvaez, Natalia Ramirez, and Karin Maldonado for technical support. Barker FK, 2004, P NATL ACAD SCI USA, V101, P11040, DOI 10.1073/pnas.0401892101; Beaulieu M, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou014; Bertolero Albert, 2003, Ornitologia Neotropical, V14, P469; Bhosale P, 2007, ARCH BIOCHEM BIOPHYS, V458, P121, DOI 10.1016/j.abb.2006.10.005; Bowen GJ, 2005, RAPID COMMUN MASS SP, V19, P2371, DOI 10.1002/rcm.2069; Bowen GJ, 2018, WATERISOTOPES DATABA; Bozinovic F, 2006, COMP BIOCHEM PHYS C, V142, P163, DOI 10.1016/j.cbpc.2005.08.004; Bozinovic F, 2011, ANNU REV ECOL EVOL S, V42, P155, DOI 10.1146/annurev-ecolsys-102710-145055; Brzek P, 2014, J EXP BIOL, V217, P1504, DOI 10.1242/jeb.100073; Bushuev A, 2018, CURR ZOOL, V64, P33, DOI 10.1093/cz/zox018; Casotti G, 2000, J MORPHOL, V243, P283; Catoni C, 2008, FUNCT ECOL, V22, P649, DOI 10.1111/j.1365-2435.2008.01400.x; Cavieres G, 2008, FUNCT ECOL, V22, P509, DOI 10.1111/j.1365-2435.2008.01382.x; Cohen AA, 2008, AM NAT, V172, P178, DOI 10.1086/589456; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2012, J EXP BIOL, V215, P374, DOI 10.1242/jeb.062034; Costantini D, 2009, FUNCT ECOL, V23, P506, DOI 10.1111/j.1365-2435.2009.01546.x; Cruz-Neto AP, 2004, PHYSIOL BIOCHEM ZOOL, V77, P877, DOI 10.1086/425187; DAAN S, 1990, AM J PHYSIOL, V259, pR333; DAWSON WR, 1984, J ARID ENVIRON, V7, P133; del Rio CM, 2009, OECOLOGIA, V161, P149, DOI 10.1007/s00442-009-1357-2; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Evans DH, 2009, OSMOTIC IONIC REGULA; Goldstein David L., 2000, P265, DOI 10.1016/B978-012747605-6/50012-2; Gutierrez JS, 2014, ARDEOLA, V61, P233, DOI 10.13157/arla.61.2.2014.233; Gutierrez JS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042206; Gutierrez JS, 2011, J EXP BIOL, V214, P829, DOI 10.1242/jeb.048223; HOBSON KA, 1987, CAN J ZOOL, V65, P1210, DOI 10.1139/z87-187; Hobson KA, 2008, TERR ECOL SER, V2, P45, DOI 10.1016/S1936-7961(07)00003-6; Jetz W, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003261; JOHNSTON JW, 1990, PHYSIOL ZOOL, V63, P190, DOI 10.1086/physzool.63.1.30158161; KREBS HA, 1950, BIOCHIM BIOPHYS ACTA, V4, P249, DOI 10.1016/0006-3002(50)90032-1; Larsen EH, 2014, COMPR PHYSIOL, V4, P405, DOI 10.1002/cphy.c130004; Lighton J.R.B., 2008, MEASURING METABOLIC; Lin H, 2004, COMP BIOCHEM PHYS B, V139, P737, DOI 10.1016/j.cbpc.2004.09.013; Londono GA, 2015, FUNCT ECOL, V29, P338, DOI 10.1111/1365-2435.12348; Maldonado K, 2012, ZOOLOGY, V115, P128, DOI 10.1016/j.zool.2011.09.005; Maldonado KE, 2009, J COMP PHYSIOL B, V179, P335, DOI 10.1007/s00360-008-0317-1; Maloney SK, 2008, AUST J EXP AGR, V48, P1293, DOI 10.1071/EA08142; Margaritelis NV, 2015, BIOMARKERS, V20, P97, DOI 10.3109/1354750X.2014.1002807; McNab Brian K., 2013, Bulletin of the Florida Museum of Natural History, V52, P95; Mcnab BK, 2009, COMP BIOCHEM PHYS A, V152, P22, DOI 10.1016/j.cbpa.2008.08.021; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Naya DE, 2013, EVOLUTION, V67, P1463, DOI 10.1111/evo.12042; Nehls G, 1996, ARDEA, V84, P23; Newsome SD, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00086.1; Pena-Villalobos I, 2014, CURR ZOOL, V60, P338, DOI 10.1093/czoolo/60.3.338; Pena-Villalobos I, 2013, COMP BIOCHEM PHYS A, V164, P314, DOI 10.1016/j.cbpa.2012.10.027; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Rader JA, 2017, J ANIM ECOL, V86, P405, DOI 10.1111/1365-2656.12629; Sabat P, 2006, FUNCT ECOL, V20, P799, DOI 10.1111/j.1365-2435.2006.01176.x; Sabat P, 2005, REV CHIL HIST NAT, V78, P253, DOI 10.4067/S0716-078X2005000200009; Sabat P, 2004, REV CHIL HIST NAT, V77, P219, DOI 10.4067/S0716-078X2004000200001; Sabat P, 2004, J COMP PHYSIOL B, V174, P415, DOI 10.1007/s00360-004-0428-2; Sabat P, 2002, ZOOLOGY, V105, P247, DOI 10.1078/0944-2006-00078; Sabat P, 2000, REV CHIL HIST NAT, V73, P401; Sabat P, 2006, OECOLOGIA, V148, P250, DOI 10.1007/s00442-006-0377-4; Sabat P, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.00654; SCHOENINGER MJ, 1984, GEOCHIM COSMOCHIM AC, V48, P625, DOI 10.1016/0016-7037(84)90091-7; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Shoemaker V, 1972, AVIAN BIOL, P527; Swanson DL, 2007, COMP BIOCHEM PHYS A, V146, P87, DOI 10.1016/j.cbpa.2006.09.004; Swanson DL, 2010, CURR ORNITHOL, V17, P75, DOI 10.1007/978-1-4419-6421-2_3; Tieleman BI, 2000, PHYSIOL BIOCHEM ZOOL, V73, P461, DOI 10.1086/317740; Tieleman BI, 2003, ECOLOGY, V84, P1800, DOI 10.1890/0012-9658(2003)084[1800:PVOLAA]2.0.CO;2; Tseng YC, 2008, COMP BIOCHEM PHYS C, V148, P419, DOI 10.1016/j.cbpc.2008.04.009; van de Crommenacker J, 2010, J EXP BIOL, V213, P3527, DOI 10.1242/jeb.045591; Vezina F, 2005, FUNCT ECOL, V19, P119, DOI 10.1111/j.0269-8463.2005.00942.x; Wassenaar LI, 2000, ECOL APPL, V10, P911, DOI 10.2307/2641055; Wheelwright NT, 1993, BIRDS N AM, P1; Williams JB, 2000, J EXP BIOL, V203, P3153; Williams JB, 2012, J EXP BIOL, V215, P1053, DOI 10.1242/jeb.054395; Williams JB, 2010, INTEGR COMP BIOL, V50, P855, DOI 10.1093/icb/icq024; Zheng WH, 2008, COMP BIOCHEM PHYS A, V151, P519, DOI 10.1016/j.cbpa.2008.07.009 74 0 0 11 11 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia SEP 2018 188 1 65 73 10.1007/s00442-018-4181-8 9 Ecology Environmental Sciences & Ecology GQ7UT WOS:000441953300006 29948312 2019-02-21 J Macartney, EL; Crean, AJ; Bonduriansky, R Macartney, Erin L.; Crean, Angela J.; Bonduriansky, Russell Epigenetic paternal effects as costly, condition-dependent traits HEREDITY English Review DIET-INDUCED OBESITY; DE-NOVO METHYLATION; HIGH-FAT DIET; SEXUAL SELECTION; DNA METHYLATION; TRANSGENERATIONAL INHERITANCE; CAENORHABDITIS-ELEGANS; PARENTAL INVESTMENT; HANDICAP PRINCIPLE; TRADE-OFFS It is now recognized that post-copulatory traits, such as sperm and ejaculate production can impose metabolic costs, and such traits are therefore expected to exhibit condition-dependent expression, whereby, low condition individuals experience a greater marginal cost of investment compared to high condition individuals. Ejaculates are especially costly in species where males invest in offspring quality through nutrient-rich spermatophores or other seminal nuptial gifts. However, recent evidence shows that, in species where males do not provision females or offspring, males can still influence offspring development through paternal effects mediated by epigenetic factors, such as non-coding RNAs, DNA methylation and chromatin structure. Because such epigenetic paternal effects do not involve the transfer of substantial quantities of resources, such as nutrients, the costs of conferring such effects have not been considered. Here we argue that if selection favours paternal investment in offspring quality through epigenetic factors, then the epigenetic machinery required to bring about such effects may also be expected to evolve strongly condition-dependent expression. We outline indirect evidence suggesting that epigenetic paternal effects could impose substantial metabolic costs, consider the conditions under which selection may act on such effects, and suggest ways to test for differential costs and condition-dependence of these effects. Incorporating epigenetic paternal effects into condition-dependent life history theory will further our understanding of the heritability of fitness and the evolution of paternal investment strategies. [Macartney, Erin L.; Crean, Angela J.; Bonduriansky, Russell] UNSW Australia, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia; [Macartney, Erin L.; Crean, Angela J.; Bonduriansky, Russell] UNSW Australia, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia; [Crean, Angela J.] Univ Sydney, Sydney Sch Vet Sci, Sydney, NSW 2006, Australia Macartney, EL (reprint author), UNSW Australia, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia.; Macartney, EL (reprint author), UNSW Australia, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia. e.macartney@unsw.edu.au Crean, Angela/U-8568-2018 Crean, Angela/0000-0003-2605-6435; Bonduriansky, Russell/0000-0002-5786-6951 Australian Research Council (ARC) [FT120100274] Abudayyeh OO, 2016, SCIENCE, V353, DOI 10.1126/science.aaf5573; Adler MI, 2013, EVOL BIOL, V40, P288, DOI 10.1007/s11692-012-9211-6; Agrawal AF, 2008, PLOS BIOL, V6, P389, DOI 10.1371/journal.pbio.0060030; Aiken CE, 2016, MAMM GENOME, V27, P430, DOI 10.1007/s00335-016-9631-1; Amiott EA, 2006, MOL CELL, V22, P329, DOI 10.1016/j.molcel.2006.03.031; ANDERSSON M, 1982, BIOL J LINN SOC, V17, P375, DOI 10.1111/j.1095-8312.1982.tb02028.x; Ashapkin VV, 2017, CURR GENOMICS, V18, P385, DOI 10.2174/1389202918666170412112130; Badyaev AV, 2002, BEHAV ECOL, V13, P591, DOI 10.1093/beheco/13.5.591; Barbosa TD, 2016, MOL METAB, V5, P184, DOI 10.1016/j.molmet.2015.12.002; Beach SRH, 2015, J AM GERIATR SOC, V63, P2519, DOI 10.1111/jgs.13830; Bellizzi D, 2012, AGE, V34, P169, DOI 10.1007/s11357-011-9216-6; Bhutani N, 2011, CELL, V146, P866, DOI 10.1016/j.cell.2011.08.042; Binder NK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052304; Binder NK, 2012, REPROD FERT DEVELOP, V24, P804, DOI 10.1071/RD11256; Boks MP, 2015, PSYCHONEUROENDOCRINO, V51, P506, DOI 10.1016/j.psyneuen.2014.07.011; Bonduriansky R, 2007, J EVOLUTION BIOL, V20, P2379, DOI 10.1111/j.1420-9101.2007.01409.x; Bonduriansky R, 2013, J EVOLUTION BIOL, V26, P76, DOI 10.1111/jeb.12028; Bonduriansky R, 2017, METHODS ECOL EVOL, V9, P1; Bonduriansky R, 2016, FUNCT ECOL, V30, P1675, DOI 10.1111/1365-2435.12643; Bonilla MM, 2016, BIOESSAYS, V38, P355, DOI 10.1002/bies.201500176; Braun K, 2014, J NEUROENDOCRINOL, V26, P697, DOI 10.1111/jne.12174; Breitling LP, 2016, CLIN EPIGENETICS, V8, DOI 10.1186/s13148-016-0186-5; Bretman A, 2016, BEHAV ECOL, V27, P452, DOI 10.1093/beheco/arv170; Burdge GC, 2007, BRIT J NUTR, V97, P435, DOI 10.1017/S0007114507352392; Burdge GC, 2010, ANNU REV NUTR, V30, P315, DOI 10.1146/annurev.nutr.012809.104751; Burgess SC, 2014, OIKOS, V123, P769, DOI 10.1111/oik.01235; Champagne FA, 2008, FRONT NEUROENDOCRIN, V29, P386, DOI 10.1016/j.yfrne.2008.03.003; Cotton S, 2004, P ROY SOC B-BIOL SCI, V271, P771, DOI 10.1098/rspb.2004.2688; Crean AJ, 2016, TRENDS ECOL EVOL, V31, P253, DOI 10.1016/j.tree.2016.02.004; Crean AJ, 2014, ECOL LETT, V17, P1545, DOI 10.1111/ele.12373; Crean AJ, 2014, TRENDS ECOL EVOL, V29, P554, DOI 10.1016/j.tree.2014.07.009; Crean AJ, 2013, ECOLOGY, V94, P2575, DOI 10.1890/13-0184.1; Danchin E, 2011, NAT REV GENET, V12, P475, DOI 10.1038/nrg3028; DelCurto H, 2013, CURR OPIN CLIN NUTR, V16, P385, DOI 10.1097/MCO.0b013e328361f96d; Dick KJ, 2014, LANCET, V383, P1990, DOI 10.1016/S0140-6736(13)62674-4; Duale N, 2014, ANDROLOGY-US, V2, P234, DOI 10.1111/j.2047-2927.2013.00178.x; Ducatez S, 2012, EVOLUTION, V66, P3558, DOI 10.1111/j.1558-5646.2012.01704.x; EBERHARD WG, 1995, TRENDS ECOL EVOL, V10, P493, DOI 10.1016/S0169-5347(00)89205-8; Eberhard William G., 1997, P32, DOI 10.1017/CBO9780511721946.003; Evans JP, 2017, BIOL LETTERS, V13, DOI 10.1098/rsbl.2017.0087; Fitzpatrick JL, 2014, MOL HUM REPROD, V20, P1180, DOI 10.1093/molehr/gau067; Fricke C, 2015, BEHAV ECOL, V26, P617, DOI 10.1093/beheco/aru240; Friesen CR, 2015, J EXP BIOL, V218, P1410, DOI 10.1242/jeb.120402; Frye M, 2016, NAT REV GENET, V17, P365, DOI 10.1038/nrg.2016.47; Fullston T, 2013, FASEB J, V27, P4226, DOI 10.1096/fj.12-224048; Gaal T, 1997, SCIENCE, V278, P2092, DOI 10.1126/science.278.5346.2092; Gao X, 2016, ONCOTARGET, V7, P46878, DOI 10.18632/oncotarget.9795; Gapp K, 2014, NAT NEUROSCI, V17, P667, DOI 10.1038/nn.3695; Godwin JL, 2017, EVOL LETT, V1, P102, DOI 10.1002/evl3.13; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619; Grandjean V, 2015, SCI REP-UK, V5, DOI 10.1038/srep18193; Guerrero-Bosagna C, 2014, CURR OPIN GENET DEV, V26, P79, DOI 10.1016/j.gde.2014.06.005; Guerrero-Bosagna C, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013100; GWYNNE DT, 1988, BEHAV ECOL SOCIOBIOL, V23, P373, DOI 10.1007/BF00303711; GWYNNE DT, 1990, NATURE, V346, P172, DOI 10.1038/346172a0; Head ML, 2016, CURR OPIN BEHAV SCI, V12, P129, DOI 10.1016/j.cobeha.2016.10.005; Horvath S, 2014, P NATL ACAD SCI USA, V111, P15538, DOI 10.1073/pnas.1412759111; Horvath S, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-10-r115; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; Jenkins TG, 2012, REPRODUCTION, V143, P727, DOI 10.1530/REP-11-0450; Jensen N, 2014, FUNCT ECOL, V28, P724, DOI 10.1111/1365-2435.12195; Jirtle RL, 2007, NAT REV GENET, V8, P253, DOI 10.1038/nrg2045; Judge KA, 2008, EVOLUTION, V62, P868, DOI 10.1111/j.1558-5646.2008.00318.x; Kaati G, 2007, EUR J HUM GENET, V15, P784, DOI 10.1038/sj.ejhg.5201832; Kato Y, 2007, HUM MOL GENET, V16, P2272, DOI 10.1093/hmg/ddm179; Kelly NB, 2009, P R SOC B, V276, P3175, DOI 10.1098/rspb.2009.0599; Kelly WG, 2014, EPIGENET CHROMATIN, V7, DOI 10.1186/1756-8935-7-6; Kitamura A, 2015, CONGENIT ANOM, V55, P133, DOI 10.1111/cga.12113; Klosin A, 2017, SCIENCE, V356, P316, DOI 10.1126/science.aah6412; Kokko H, 1999, ECOL LETT, V2, P247, DOI 10.1046/j.1461-0248.1999.00075.x; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kotiaho JS, 2000, BEHAV ECOL SOCIOBIOL, V48, P188, DOI 10.1007/s002650000221; Kotiaho JS, 2001, BIOL REV, V76, P365, DOI 10.1017/S1464793101005711; Lambrot R, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3889; Lupold S, 2016, NATURE, V533, P535, DOI 10.1038/nature18005; Macartney EL, 2017, J EVOLUTION BIOL, V38, P42; Manikkam M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031901; Mappes J, 1996, P ROY SOC B-BIOL SCI, V263, P785, DOI 10.1098/rspb.1996.0117; Marcotte M, 2007, J INSECT PHYSIOL, V53, P139, DOI 10.1016/j.jinsphys.2006.11.005; Marre J, 2016, P NATL ACAD SCI USA, V113, P12496, DOI 10.1073/pnas.1608959113; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; Marttila S, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1381-z; McDonald JI, 2016, BIOL OPEN, V5, P866, DOI 10.1242/bio.019067; Michaud JP, 2013, B ENTOMOL RES, V103, P570, DOI 10.1017/S0007485313000199; Milekic MH, 2015, MOL PSYCHIATR, V20, P995, DOI 10.1038/mp.2014.84; Miller D, 2010, REPRODUCTION, V139, P287, DOI 10.1530/REP-09-0281; Mirhosseini MA, 2014, B ENTOMOL RES, V104, P480, DOI 10.1017/S0007485314000194; Mishra G, 2006, EUR J ENTOMOL, V103, P33, DOI 10.14411/eje.2006.005; Mitchell M, 2017, MOL REPROD DEV, V84, P316, DOI 10.1002/mrd.22784; MOLLER AP, 1994, EVOLUTION, V48, P1676, DOI 10.1111/j.1558-5646.1994.tb02204.x; Ng SF, 2010, NATURE, V467, P963, DOI 10.1038/nature09491; NUR N, 1984, J THEOR BIOL, V110, P275, DOI 10.1016/S0022-5193(84)80059-4; Okano M, 1999, CELL, V99, P247, DOI 10.1016/S0092-8674(00)81656-6; Perry JC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081934; Perry JC, 2010, P ROY SOC B-BIOL SCI, V277, P3639, DOI 10.1098/rspb.2010.0810; Pulecio J, 2017, CELL STEM CELL, V21, P431, DOI 10.1016/j.stem.2017.09.006; Rando OJ, 2016, COLD SPRING HARB PER, V6, P1; Rando OJ, 2012, CELL, V151, P702, DOI 10.1016/j.cell.2012.10.020; Rassoulzadegan M, 2006, NATURE, V441, P469, DOI 10.1038/nature04674; Requena GS, 2017, P R SOC B, V284, P1; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rodgers AB, 2015, P NATL ACAD SCI USA, V112, P13699, DOI 10.1073/pnas.1508347112; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Royle NJ, 2012, EVOLUTION OF PARENTAL CARE, P1; RUTOWSKI RL, 1979, ANIM BEHAV, V27, P1269, DOI 10.1016/0003-3472(79)90072-1; Saze H, 2003, NAT GENET, V34, P65, DOI 10.1038/ng1138; Seong KH, 2011, CELL, V145, P1049, DOI 10.1016/j.cell.2011.05.029; Sheldon BC, 2002, PHILOS T R SOC B, V357, P341, DOI 10.1098/rstb.2001.0931; Skinner MK, 2016, NAT REV ENDOCRINOL, V12, P68, DOI 10.1038/nrendo.2015.206; Skinner MK, 2015, EPIGENETICS-US, V10, P762, DOI 10.1080/15592294.2015.1062207; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; Soubry A, 2015, PROG BIOPHYS MOL BIO, V118, P79, DOI 10.1016/j.pbiomolbio.2015.02.008; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stoeckius M, 2014, EMBO J, V33, P1740, DOI 10.15252/embj.201488117; THORNHILL R, 1976, AM NAT, V110, P153, DOI 10.1086/283055; Vassoler FM, 2013, NAT NEUROSCI, V16, P42, DOI 10.1038/nn.3280; Vasudevan S, 2007, SCIENCE, V318, P1931, DOI 10.1126/science.1149460; Wang Y, 2017, BIOL REV, V92, P2084, DOI 10.1111/brv.12322; Wellen KE, 2009, SCIENCE, V324, P1076, DOI 10.1126/science.1164097; Weyrich A, 2016, MOL ECOL, V25, P1729, DOI 10.1111/mec.13494; WICKLER W, 1985, Z TIERPSYCHOL, V69, P72; Wigby S, 2016, FUNCT ECOL, V30, P410, DOI 10.1111/1365-2435.12515; Zajitschek F, 2017, BIOL LETT, V13, P1; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 126 1 1 7 7 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0018-067X 1365-2540 HEREDITY Heredity SEP 2018 121 3 248 256 10.1038/s41437-018-0096-8 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GP7JH WOS:000441073100005 29904169 2019-02-21 J Morrison, DM; Miller, KB Morrison, Donald M.; Miller, Kenneth B. Teaching and Learning in the Pleistocene: A Biocultural Account of Human Pedagogy and Its Implications for AIED INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION English Article INTELLIGENT TUTORING SYSTEMS; LIFE-HISTORY EVOLUTION; NATURAL-LANGUAGE; EPISTEMIC GAMES; SERIOUS GAMES; STONE-AGE; PERSPECTIVE; TECHNOLOGY; ORIGINS; BRAIN [Morrison, Donald M.] Univ Memphis, Inst Intelligent Syst, Memphis, TN 38152 USA; [Miller, Kenneth B.] AANeX LLC, 55 Liberty St, New York, NY 10005 USA Morrison, DM (reprint author), Univ Memphis, Inst Intelligent Syst, Memphis, TN 38152 USA. chipmorrison@gmail.com; kenneth.miller@aanexllc.com U.S. Advanced Distributed Learning (ADL) Initiative [W911QY-14-C-0019, W911QY-15-C-0070] The authors wish to thank Stan Franklin, Allan Collins, and four anonymous reviewers for helpful comments on earlier drafts. This work was supported in part by the U.S. Advanced Distributed Learning (ADL) Initiative (Contracts W911QY-14-C-0019 and W911QY-15-C-0070). The views and conclusions are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the ADL Initiative or the U.S. Government. AIELLO LC, 1995, CURR ANTHROPOL, V36, P199, DOI 10.1086/204350; Ambrose SH, 2001, SCIENCE, V291, P1748, DOI 10.1126/science.1059487; Anderson D. J., 2014, LANG COMMUN, V84, P18, DOI DOI 10.1016/0271-5309(81)90010-0; Anderson JR, 1995, J LEARN SCI, V4, P167, DOI 10.1207/s15327809jls0402_2; Anderson JR, 1983, ARCHITECTURE COGNITI; Atran S., 2008, NATIVE MIND CULTURAL; Atran S., 1991, ANN WORKSH CULT SCH; AUSTIN J. L., 1965, DO THINGS WORDS; Baker R., 2013, DESIGN RECOMMENDATIO, V1, P153; Baker RS, 2016, INT J ARTIF INTELL E, V26, P600, DOI 10.1007/s40593-016-0105-0; Bandura A., 1977, SOCIAL LEARNING THEO; Barkow J., 1995, ADAPTED MIND EVOLUTI; Barron B, 2006, HUM DEV, V49, P193, DOI 10.1159/000094368; BARTHOLOMEW GA, 1970, EVOLUTION, V24, P546, DOI 10.1111/j.1558-5646.1970.tb01790.x; Behme C, 2014, J LINGUIST, V50, P671, DOI 10.1017/S0022226714000061; Bickerton D, 1992, LANGUAGE SPECIES; Bickerton D, 2007, LINGUA, V117, P510, DOI 10.1016/j.lingua.2005.02.006; Bielaczyc K, 2014, INT J COMP-SUPP COLL, V9, P33, DOI 10.1007/s11412-013-9186-z; Biswas G, 2016, INT J ARTIF INTELL E, V26, P350, DOI 10.1007/s40593-015-0057-9; Bobe R, 2004, PALAEOGEOGR PALAEOCL, V207, P399, DOI 10.1016/j.palaeo.2003.09.033; BOESCH C, 1991, ANIM BEHAV, V41, P530, DOI 10.1016/S0003-3472(05)80857-7; BOGIN B, 1990, BIOSCIENCE, V40, P16, DOI 10.2307/1311235; Bookheimer S, 2002, ANNU REV NEUROSCI, V25, P151, DOI 10.1146/annurev.neuro.25.112701.142946; Bowman-Perrott L, 2013, SCHOOL PSYCHOL REV, V42, P39; Boyer K.E., 2011, INT J ARTIFICIAL INT, V21, P65; Boyer KE, 2008, LECT NOTES COMPUT SC, V5091, P239; Boyle EA, 2016, COMPUT EDUC, V94, P178, DOI 10.1016/j.compedu.2015.11.003; Broadhurst CL, 1998, BRIT J NUTR, V79, P3, DOI 10.1079/BJN19980004; Busso Carlos, 2004, ICMI, P205, DOI DOI 10.1145/1027933.1027968; Call J, 2008, TRENDS COGN SCI, V12, P187, DOI 10.1016/j.tics.2008.02.010; CARBONEL.JR, 1970, IEEE T MAN MACHINE, VMM11, P190, DOI 10.1109/TMMS.1970.299942; Cazden CB, 2003, HANDBOOK OF DISCOURSE PROCESSES, P165; Chi MTH, 2001, COGNITIVE SCI, V25, P471, DOI 10.1016/S0364-0213(01)00044-1; Chomsky Noam, 2010, EVOLUTION HUMAN LANG, P45, DOI [DOI 10.1017/CBO9780511817755.003, DOI 10.1017/CB09780511817755.003]; Chou CY, 2016, INT J ARTIF INTELL E, V26, P512, DOI 10.1007/s40593-015-0083-7; Chounta I-A., 2017, P EUR C TECHN ENH LE; Chudek M, 2011, TRENDS COGN SCI, V15, P218, DOI 10.1016/j.tics.2011.03.003; Chung KF, 2002, ENG STRUCT, V24, P429, DOI 10.1016/S0141-0296(01)00110-9; COHEN PA, 1982, AM EDUC RES J, V19, P237, DOI 10.2307/1162567; Collins A., 1975, PSYCHOL LEARN MOTIV, V9, P49; COLLINS A., 1991, AM EDUC, V15, P6; Csibra G, 2011, PHILOS T R SOC B, V366, P1149, DOI 10.1098/rstb.2010.0319; D'Mello S, 2014, LEARN INSTR, V29, P153, DOI 10.1016/j.learninstruc.2012.05.003; de la Torre I, 2011, PHILOS T R SOC B, V366, P1028, DOI 10.1098/rstb.2010.0350; De Waal F., 2016, ARE WE SMART ENOUGH; Deacon Terence, 1997, SYMBOLIC SPECIES CO; Dean C, 2007, P NATL ACAD SCI USA, V104, P6093, DOI 10.1073/pnas.0701317104; Dediu D, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00397; Delpit L., 2006, OTHER PEOPLES CHILDR; Desmarais MC, 2012, USER MODEL USER-ADAP, V22, P9, DOI 10.1007/s11257-011-9106-8; Dewey J., 1902, CHILD CURRICULUM; Dryfoos Joy, 2005, New Dir Youth Dev, P7; Elliott C., 1999, Artificial intelligence today. Recent trends and developments, P195; Fader A, 2014, P 20 ACM SIGKDD INT, P1156; Farver JA, 1999, CHILDRENS ENGAGEMENT, P99; Fehr E, 2004, CURR OPIN NEUROBIOL, V14, P784, DOI 10.1016/j.conb.2004.10.007; Fogarty L, 2011, EVOLUTION, V65, P2760, DOI 10.1111/j.1558-5646.2011.01370.x; Franks NR, 2006, NATURE, V439, P153, DOI 10.1038/439153a; Frohlich M, 2016, SCI REP-UK, V6, DOI 10.1038/srep25887; Garrod S, 2004, TRENDS COGN SCI, V8, P8, DOI 10.1016/j.tics.2003.10.016; Girard C, 2013, J COMPUT ASSIST LEAR, V29, P207, DOI 10.1111/j.1365-2729.2012.00489.x; GRAESSER AC, 1995, APPL COGNITIVE PSYCH, V9, P495, DOI 10.1002/acp.2350090604; Graesser AC, 2016, INT J ARTIF INTELL E, V26, P124, DOI 10.1007/s40593-015-0086-4; Graesser AC, 2011, EDUC PSYCHOL HANDB, P408; Harari Y. N., 2014, SAPIENS BRIEF HIST H; Harmand S, 2015, NATURE, V521, P310, DOI 10.1038/nature14464; Hauser MT, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00320; Hauser MD, 2002, SCIENCE, V298, P1569, DOI 10.1126/science.298.5598.1569; Herrernan N. T., 2000, Building Dialogue Systems for Tutorial Applications. Papers from the 2000 AAAI Fall Symposium (Technical Report FS-00-01), P14; Hewlett B. S., 2016, CURRENT ANTHR, V57; Hewlett BS, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.150403; Hogberg A., 2015, CHILDHOOD, V8, P113; Hoppitt WJE, 2008, TRENDS ECOL EVOL, V23, P486, DOI 10.1016/j.tree.2008.05.008; Immordino-Yang M. H., 2010, MIND BRAIN ED NEUROS, P69; Isler K, 2014, EVOL ANTHROPOL, V23, P65, DOI 10.1002/evan.21403; Jackendoff R, 2005, COGNITION, V97, P211, DOI 10.1016/j.cognition.2005.04.006; JACOB F, 1977, SCIENCE, V196, P1161, DOI 10.1126/science.860134; Johnson WL, 2016, INT J ARTIF INTELL E, V26, P25, DOI 10.1007/s40593-015-0065-9; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kim Y, 2016, INT J ARTIF INTELL E, V26, P160, DOI 10.1007/s40593-015-0055-y; Koedinger KR, 2010, J EDUC COMPUT RES, V43, P489, DOI 10.2190/EC.43.4.d; Kohn A., 2000, CASE STANDARDIZED TE; Kuhn TS., 1962, STRUCTURE SCI REVOLU; Kumar S, 2005, P NATL ACAD SCI USA, V102, P18842, DOI 10.1073/pnas.0509585102; Lahr MM, 2016, VERTEBR PALEOBIOL PA, P215, DOI 10.1007/978-94-017-7520-5_12; Laland K. N., 2016, PSYCHONOMIC B REV, P1; Lancy D. F., 2010, CHILDHOOD, V3, P79, DOI DOI 10.1179/CIP.2010.3.1.79; Lave J., 1991, SITUATED LEARNING LE; Levinson SC, 2016, TRENDS COGN SCI, V20, P6, DOI 10.1016/j.tics.2015.10.010; Litman D., 2013, INT HDB METACOGNITIO, P385; Locke JL, 2006, BEHAV BRAIN SCI, V29, P259, DOI 10.1017/S0140525X0600906X; Lovejoy CO, 2009, SCIENCE, V326, DOI 10.1126/science.1175834; Lynch C., 2012, ADAPTIVE TECHNOLOGIE; Ma WT, 2014, J EDUC PSYCHOL, V106, P901, DOI 10.1037/a0037123; MacDonald K, 2007, HUM NATURE-INT BIOS, V18, P386, DOI 10.1007/s12110-007-9019-8; MacLean EL, 2016, P NATL ACAD SCI USA, V113, P6348, DOI 10.1073/pnas.1521270113; MacWhinney B., 2005, LANGUAGE EVOLUTION H; Matsuzawa T, 2008, PRIMATE ORIGINS HUMA, P557, DOI DOI 10.1023/A:1010747426841; Maynard AE, 2002, CHILD DEV, V73, P969, DOI 10.1111/1467-8624.00450; McAuley A., 2010, MOOC MODEL DIGITAL P; McBrearty S, 2000, J HUM EVOL, V39, P453, DOI 10.1006/jhev.2000.0435; Mehan H, 1979, LEARNING LESSONS; Mellars P, 2006, P NATL ACAD SCI USA, V103, P9381, DOI 10.1073/pnas.0510792103; MERRILL DC, 1995, COGNITION INSTRUCT, V13, P315, DOI 10.1207/s1532690xci1303_1; Mora R., 2011, PENN GSE PERSPECT UR, V9, P1; Morgan TJH, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7029; Morrison D. M., 2014, P 7 INT C ED DAT MIN, P335; Morrison D. M., 2014, DESIGN RECOMMENDATIO, V2, P217; Morrison DM, 2015, LECT NOTES ARTIF INT, V9112, P722, DOI 10.1007/978-3-319-19773-9_101; Nye BD, 2016, INT J ARTIF INTELL E, V26, P756, DOI 10.1007/s40593-016-0098-8; Nye B, 2014, INT J ARTIF INTELL E, V24, P427, DOI 10.1007/s40593-014-0029-5; Palincsar AS, 1998, ANNU REV PSYCHOL, V49, P345, DOI 10.1146/annurev.psych.49.1.345; Pearce E, 2014, J ANTHROPOL ARCHAEOL, V36, P12, DOI 10.1016/j.jaa.2014.07.002; Penn DC, 2008, BEHAV BRAIN SCI, V31, P109, DOI 10.1017/S0140525X08003543; Picard R. W, 1997, AFFECTIVE COMPUTING, V252; PINKER S, 1990, BEHAV BRAIN SCI, V13, P707, DOI 10.1017/S0140525X00081061; Pinker S, 2003, LANGUAGE EVOLUTION, P16, DOI DOI 10.1093/ACPR0F:0S0/9780199244843.003.0002; Pinker S., 1997, INHERITANCE INNATENE, P181; Pintrich PR, 2003, J EDUC PSYCHOL, V95, P667, DOI 10.1037/0022-0663.95.4.667; PREMACK D, 1978, BEHAV BRAIN SCI, V1, P515, DOI 10.1017/S0140525X00076512; Pynadath DV, 2005, 19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), P1181; Richter D, 2017, NATURE, V546, P293, DOI 10.1038/nature22335; Rightmire GP, 2004, AM J PHYS ANTHROPOL, V124, P109, DOI 10.1002/ajpa.10346; Ritter S, 2007, PSYCHON B REV, V14, P249, DOI 10.3758/BF03194060; Rose C. P., 2001, P AI ED 2001 C, P151; Rose CP, 2016, INT J ARTIF INTELL E, V26, P660, DOI 10.1007/s40593-016-0107-y; Rummel N, 2016, INT J ARTIF INTELL E, V26, P784, DOI 10.1007/s40593-016-0102-3; Rus V, 2013, AI MAG, V34, P42, DOI 10.1609/aimag.v34i3.2485; Saniotis A, 2014, FRONT SYST NEUROSCI, V8, DOI 10.3389/fnsys.2014.00152; Schaafsma SM, 2015, TRENDS COGN SCI, V19, P65, DOI 10.1016/j.tics.2014.11.007; Schwartz GT, 2012, CURR ANTHROPOL, V53, pS395, DOI 10.1086/667591; Searle John R., 1969, SPEECH ACTS ESSAY PH; Seyfarth R. M., 2013, HDB PSYCHOL, V3, P574; Shaffer D. W., 2005, 20057 WCER; Shaffer DW, 2006, COMPUT EDUC, V46, P223, DOI [10.1016/j.compedu.2005.11.003, 10.1016/j.compendu.2005.11.003]; Shute VJ, 2013, J EDUC RES, V106, P423, DOI 10.1080/00220671.2013.832970; Sinclair J. M, 1975, ANAL DISCOURSE ENGLI; Sinha C, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01601; Skinner MM, 2015, SCIENCE, V347, P395, DOI 10.1126/science.1261735; Snow Catherine E., 1977, TALKING CHILDREN LAN, P31; Soller A., 2005, INT J ARTIFICIAL INT, V15, P261; Stahl G, 2006, CAMB HANDB PSYCHOL, P409; Sterelny K, 2007, PHILOS T R SOC B, V362, P719, DOI 10.1098/rstb.2006.2006; Stout D, 2008, PHILOS T R SOC B, V363, P1939, DOI 10.1098/rstb.2008.0001; Strauss S, 2002, COGNITIVE DEV, V17, P1473, DOI 10.1016/S0885-2014(02)00128-4; Strauss S, 2012, MIND BRAIN EDUC, V6, P186, DOI 10.1111/j.1751-228X.2012.01156.x; Stromberg CAE, 2011, ANNU REV EARTH PL SC, V39, P517, DOI 10.1146/annurev-earth-040809-152402; Tehrani J, 2002, J ANTHROPOL ARCHAEOL, V21, P443, DOI 10.1016/S0278-4165(02)00002-8; Tehrani JJ, 2008, WORLD ARCHAEOL, V40, P316, DOI 10.1080/00438240802261267; Thornton A, 2008, ANIM BEHAV, V75, P1823, DOI 10.1016/j.anbehav.2007.12.014; TOMASELLO M, 1993, BEHAV BRAIN SCI, V16, P495, DOI 10.1017/S0140525X0003123X; TOMASELLO M, 1983, FIRST LANG, V4, P197, DOI DOI 10.1177/014272378300401202; Tomasello M., 2014, NATURAL HIST HUMAN T; Tomasello M., 1999, CULTURAL ORIGINS HUM; Tomasello M, 2007, DEVELOPMENTAL SCI, V10, P121, DOI 10.1111/j.1467-7687.2007.00573.x; Tooby J., 1987, P183; VAIL AK, 2014, INTELLIGENT TUTORING, V8474, P199; van Geert P, 2008, MIND BRAIN EDUC, V2, P62, DOI 10.1111/j.1751-228X.2008.00033.x; VanLehn K., 2005, INT J ARTIFICIAL INT, V15, P147, DOI DOI 10.1016/J.COMPEDU.2009.06.007; VanLehn K, 2011, EDUC PSYCHOL-US, V46, P197, DOI 10.1080/00461520.2011.611369; Vygotsky L., 1978, MIND SOC; Waimon M. D., 1965, AM ED RES ASS ILL ST; Weston Jason E, 2016, ADV NEURAL INFORM PR, P829; Whiten A, 2012, PHILOS T R SOC B, V367, P2119, DOI 10.1098/rstb.2012.0114; Wixon Michael, 2012, User Modeling, Adaptation, and Personalization. Proceedings 20th International Conference, UMAP 2012, P286, DOI 10.1007/978-3-642-31454-4_24; Wubbels T., 2016, HDB SOCIAL INFLUENCE, P127; Wynn T, 2011, EVOL ANTHROPOL, V20, P181, DOI 10.1002/evan.20323; Zhou WX, 2005, P ROY SOC B-BIOL SCI, V272, P439, DOI 10.1098/rspb.2004.2970 168 0 0 1 1 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1560-4306 INT J ARTIF INTELL E Int. J. Artif. Intell. Educ. SEP 2018 28 3 439 469 10.1007/s40593-017-0153-0 31 Computer Science, Interdisciplinary Applications Computer Science GO9XG WOS:000440460800005 2019-02-21 J de Baca, TC; Wojcicki, JM; Epel, ES; Adler, NE de Baca, Tomas Cabeza; Wojcicki, Janet M.; Epel, Elissa S.; Adler, Nancy E. Lack of partner impacts newborn health through maternal depression: A pilot study of low-income immigrant Latina women MIDWIFERY English Article Depression; Infant health; Latinos; Life history theory; Planned pregnancy; Relationship status LIFE-HISTORY; BIRTH-WEIGHT; INDIVIDUAL-DIFFERENCES; ADAPTIVE CALIBRATION; PUBERTAL MATURATION; WORKING-CONDITIONS; STRESS; CHILDHOOD; PREGNANCY; RISK Introduction: Latina women have a high burden of depression and other mental health issues, particularly in the perinatal period. Suboptimal maternal mental health can have adverse developmental and physiological impacts on child growth. The present study examines the impact of unplanned pregnancy and pregnancy relationship status on prenatal maternal depression in a sample of low-income Latina women. We hypothesized that the association between these prenatal stressors and newborn health would be mediated through prenatal depression. Method: The present study included a sample 201 Latina mothers and their children recruited from prenatal clinics during their second or third trimesters. Depression symptomology, relationship status were collected prenatally. At birth, several indices of newborn health were examined, including head circumference percentile and birthweight. Finally, planned pregnancy status was retrospectively collected when the child was between 1 and 2 years old. Results: Structural equation modelling revealed that single women, compared to partnered women, had higher levels of depression. Higher levels of depression, in turn, predicted poorer newborn health. Unplanned pregnancy was not significantly associated with newborn health. Discussion: These results suggest that relationship status may be an important screening question for medical examiners to ask to pregnant Latina women during prenatal visits. These results are consistent with past research investigating the effects of maternal mental health on adverse birth outcomes that propose that stressful early environments shape developmental trajectories. [de Baca, Tomas Cabeza] Univ Calif San Francisco, Dept Med, Div Cardiol, 400 Parnassus Ave,Room AC-16,Box 0369, San Francisco, CA 94143 USA; [Wojcicki, Janet M.] Univ Calif San Francisco, Div Gastroenterol Hepatol & Nutr, Dept Pediat, 550 16th St, San Francisco, CA 94158 USA; [Epel, Elissa S.] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94143 USA; [Adler, Nancy E.] Univ Calif San Francisco, Dept Psychiat, Ctr Hlth & Community, San Francisco, CA USA de Baca, TC (reprint author), Univ Calif San Francisco, Dept Med, Div Cardiol, 400 Parnassus Ave,Room AC-16,Box 0369, San Francisco, CA 94143 USA.; Wojcicki, JM (reprint author), Univ Calif San Francisco, Div Gastroenterol Hepatol & Nutr, Dept Pediat, 550 16th St, San Francisco, CA 94158 USA. tomas.cabezadebaca@ucsf.edu; Janet.Wojcicki@ucsf.edu Cabeza de Baca, Tomas/0000-0003-3322-2163 National Institute of Health [T32MH019391]; Hellman Family Foundation; Children's Digestive Health and Nutrition Foundation (CDHF); NIH [DK060617, DK080825]; NIH/NCRR UCSF-CTSI Grant [UL1 RR024131] This work was supported by the National Institute of Health grant T32MH019391 to the first author. This work was also supported in part by grants from the Hellman Family Foundation, the Children's Digestive Health and Nutrition Foundation (CDHF), NIH grant DK060617, DK080825 and by NIH/NCRR UCSF-CTSI Grant Number UL1 RR024131 ANGEL R, 1988, J HEALTH SOC BEHAV, V29, P38, DOI 10.2307/2137179; Lara MA, 2009, MATERN CHILD HLTH J, V13, P567, DOI 10.1007/s10995-008-0379-4; BARKER DJP, 1993, BRIT MED J, V306, P422, DOI 10.1136/bmj.306.6875.422; Barnett MA, 2015, CHILD YOUTH CARE FOR, V44, P17, DOI 10.1007/s10566-014-9267-9; Barrett G, 2004, J EPIDEMIOL COMMUN H, V58, P426, DOI 10.1136/jech.2003.014787; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Berkman LF, 2015, J EPIDEMIOL COMMUN H, V69, P865, DOI 10.1136/jech-2014-205149; Bogossian Fiona E, 2007, Women Birth, V20, P169, DOI 10.1016/j.wombi.2007.08.003; Campos B, 2008, CULT DIVERS ETHN MIN, V14, P155, DOI 10.1037/1099-9809.14.2.155; CASPER LM, 1990, SOC BIOL, V37, P84; Coll CG, 1996, CHILD DEV, V67, P1891, DOI 10.2307/1131600; COLL CTG, 1990, CHILD DEV, V61, P270, DOI 10.2307/1131094; COX JL, 1987, BRIT J PSYCHIAT, V150, P782, DOI 10.1192/bjp.150.6.782; de Baca TC, 2016, ADAPT HUM BEHAV PHYS, V2, P93, DOI 10.1007/s40750-016-0042-z; Del Giudice M, 2012, PSYCHONEUROENDOCRINO, V37, P1614, DOI 10.1016/j.psyneuen.2012.05.014; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Diego MA, 2006, PSYCHOSOM MED, V68, P747, DOI 10.1097/01.psy.0000238212.21598.7b; Dole N, 2003, AM J EPIDEMIOL, V157, P14, DOI 10.1093/aje/kwf176; Dudgeon MR, 2004, SOC SCI MED, V59, P1379, DOI 10.1016/j.socscimed.2003.11.035; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison PT, 2003, FERTILE GROUND; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Flinn MV, 2011, NEUROSCI BIOBEHAV R, V35, P1611, DOI 10.1016/j.neubiorev.2011.01.005; Gaudino JA, 1999, SOC SCI MED, V48, P253, DOI 10.1016/S0277-9536(98)00342-6; Grote NK, 2010, ARCH GEN PSYCHIAT, V67, P1012, DOI 10.1001/archgenpsychiatry.2010.111; Grummer-Strawn Laurence M., 2010, Morbidity and Mortality Weekly Report, V59, P1; Hrdy Sarah Blaffer, 2000, MOTHER NATURE MATERN; Kuzawa CW, 2007, AM J HUM BIOL, V19, P654, DOI 10.1002/ajhb.20659; Lloyd-Jones DM, 2010, CIRCULATION, V121, P586, DOI 10.1161/CIRCULATIONAHA.109.192703; Mozurkewich EL, 2000, OBSTET GYNECOL, V95, P623, DOI 10.1016/S0029-7844(99)00598-0; Norris SA, 2012, DIABETES CARE, V35, P72, DOI 10.2337/dc11-0456; Puterman E, 2012, SOC PERSONAL PSYCHOL, V6, P807, DOI 10.1111/j.1751-9004.2012.00465.x; RADLOFF L S, 1977, Applied Psychological Measurement, V1, P385, DOI 10.1177/014662167700100306; Rini CK, 1999, HEALTH PSYCHOL, V18, P333, DOI 10.1037//0278-6133.18.4.333; Risnes KR, 2011, INT J EPIDEMIOL, V40, P647, DOI 10.1093/ije/dyq267; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Schetter CD, 2012, CURR OPIN PSYCHIATR, V25, P141, DOI 10.1097/YCO.0b013e3283503680; Schetter CD, 2011, ANNU REV PSYCHOL, V62, P531, DOI 10.1146/annurev.psych.031809.130727; Seeman T, 2010, AM J HUM BIOL, V22, P463, DOI 10.1002/ajhb.21018; Shonkoff JP, 2012, PEDIATRICS, V129, pE232, DOI 10.1542/peds.2011-2663; Shonkoff JP, 2009, JAMA-J AM MED ASSOC, V301, P2252, DOI 10.1001/jama.2009.754; Vrijkotte TGM, 2009, AM J PUBLIC HEALTH, V99, P1409, DOI 10.2105/AJPH.2008.138412; Wojcicki JM, 2011, J HUM LACT, V27, P122, DOI 10.1177/0890334410396510; Wojcicki JM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016737; Zambrana RE, 1999, J URBAN HEALTH, V76, P102, DOI 10.1007/BF02344465 49 0 0 5 5 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0266-6138 1532-3099 MIDWIFERY Midwifery SEP 2018 64 63 68 10.1016/j.midw.2018.05.014 6 Nursing Nursing GO0QX WOS:000439641700010 29990627 2019-02-21 J Murray, KM; Stoker, D; Pringle, CM; Simon, TN Murray, Kelly M.; Stoker, David; Pringle, Catherine M.; Simon, Troy N. Is spatial variation in population size structures of a stream-dwelling caddisfly due to the altered effects of a predator by a third-party species? HYDROBIOLOGIA English Article Size distributions; Phylloicus; Neotropics; Species interactions; Aquatic insects LIFE-HISTORY EVOLUTION; TRINIDADIAN GUPPIES; ECOLOGICAL COMMUNITIES; BENTHIC COMMUNITY; PREY INTERACTIONS; TIME CONSTRAINTS; ADULT SIZE; BODY-SIZE; FOOD WEBS; INSECTS Predators alter abundances and life history characteristics of prey, and effects of predator-prey interactions can be altered by third-party species. Here, we examine size structures of the caddisfly, Phylloicus hansoni, in Trinidadian streams with two distinct fish assemblages: upstream reaches where the predatory killifish, Anablepsoides hartii, is the only fish species (Killifish-Only reaches), and downstream reaches where killifish and the omnivorous guppy, Poecilia reticulata, coexist (Killifish-Guppy reaches). We asked: Do P. hansoni larvae exhibit differences in size structure between reaches with differing fish assemblages? We found that size distributions of larvae differed between reaches in the majority of replicate streams, with smaller median body lengths in Killifish-Only reaches. Killifish-Guppy reaches had higher proportions of the largest instar, but we did not find differences in body length within an instar. No evidence of size-selective predation was found through analysis of killifish stomach contents, and environmental variables were largely similar between upstream and downstream reaches of the five study streams, aside from higher killifish abundances in upstream reaches. Our results, coupled with previous evidence of guppies altering killifish populations, suggest that the mediating effects of a third-party species (guppies) on predator-prey (killifish-caddisfly) interactions can affect the population size structure of prey populations. [Murray, Kelly M.; Stoker, David; Pringle, Catherine M.; Simon, Troy N.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA; [Murray, Kelly M.] Univ Georgia, Dept Entomol, Athens, GA 30602 USA; [Simon, Troy N.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA Murray, KM (reprint author), Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. kmmurray@uga.edu Murray-Stoker, David/0000-0002-4774-6948 National Science Foundation [EF0623632]; National Science Foundation Graduate Research Fellowship; Odum School of Ecology; Honors International Scholars Program award; College of Agricultural and Environmental Sciences Undergraduate Research Initiative grant; Center for Undergraduate Research Opportunities Summer Fellowship We thank James Murray for his assistance with figure creation; John Kronenberger, Anika Bratt, Travis McDevitt-Galles, Emily Nash, Michael Rautenberg, William Roberts, Tierney Schipper, and Josh Soden for assisting with data collection; the Ramdeen and Ramlal families for logistical assistance; Darold Batzer, Maura Dudley, William Hudson, and Joseph Travis for their comments on early versions of this manuscript. This manuscript was also improved by the comments of three anonymous referees. This research was facilitated by the National Science Foundation-funded Frontiers in Biological Research grant (EF0623632) awarded to David Reznick, a National Science Foundation Graduate Research Fellowship awarded to TNS, and the Thelma Richardson and Frank Golley Undergraduate Support Award from the Odum School of Ecology given to DS. This research was funded by the following programs at the University of Georgia: an Honors International Scholars Program award, a College of Agricultural and Environmental Sciences Undergraduate Research Initiative grant, and The Center for Undergraduate Research Opportunities Summer Fellowship, awarded to KMM. Fish used in this study were collected in 2011 under the Institutional Animal Care and Use Committee protocol number A20110007 (David Reznick, University of California, Riverside). Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Agrawal AA, 2007, FRONT ECOL ENVIRON, V5, P145, DOI 10.1890/1540-9295(2007)5[145:FKGIPA]2.0.CO;2; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Baxter CV, 2004, ECOLOGY, V85, P2656, DOI 10.1890/04-138; Becker B, 2009, AQUAT INSECT, V31, P227, DOI 10.1080/01650420902787549; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; Botosaneanu Lazare, 1992, Revue d'Hydrobiologie Tropicale, V25, P197; Boyero L, 2008, ECOL RES, V23, P649, DOI 10.1007/s11284-007-0424-6; Breeuwer A, 2008, OECOLOGIA, V156, P155, DOI 10.1007/s00442-008-0963-8; Butler M.G., 1984, P24; Chamberlain SA, 2014, ECOL LETT, V17, P881, DOI 10.1111/ele.12279; Chown SL, 2010, BIOL REV, V85, P139, DOI 10.1111/j.1469-185X.2009.00097.x; Dambacher JM, 2007, Q REV BIOL, V82, P227, DOI 10.1086/519966; Dyar H. G., 1890, Psyche, Vv, P420; Encalada AC, 2006, OECOLOGIA, V148, P526, DOI 10.1007/s00442-006-0376-5; Encalada AC, 2011, ECOSPHERE, V2, DOI 10.1890/ES11-00103.1; Fausch KD, 1997, BEHAV ECOL, V8, P414, DOI 10.1093/beheco/8.4.414; FELTMATE BW, 1991, ECOLOGY, V72, P1800, DOI 10.2307/1940979; Finke DL, 2004, NATURE, V429, P407, DOI 10.1038/nature02554; Fraser DF, 2013, ECOLOGY, V94, P640, DOI 10.1890/12-0803.1; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Greig HS, 2008, FRESHWATER BIOL, V53, P1579, DOI 10.1111/j.1365-2427.2008.01995.x; Griffiths JI, 2015, OIKOS, V124, P458, DOI 10.1111/oik.01704; Hauer FR, 2007, METHODS STREAM ECOLO; Hoekman D, 2012, OECOLOGIA, V170, P735, DOI 10.1007/s00442-012-2329-5; Huamantinco A. A., 2000, Revista Brasileira de Biologia, V60, P73, DOI 10.1590/S0034-71082000000100010; JACKSON JK, 1995, J N AM BENTHOL SOC, V14, P115, DOI 10.2307/1467728; Leary DJ, 2012, OIKOS, V121, P327, DOI 10.1111/j.1600-0706.2011.19523.x; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; Lima SL, 1998, BIOSCIENCE, V48, P25, DOI 10.2307/1313225; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; MCELRAVY EP, 1982, ARCH HYDROBIOL, V94, P302; McPeek MA, 2004, AM NAT, V163, pE88, DOI 10.1086/382755; MENGE BA, 1976, ECOL MONOGR, V46, P355, DOI 10.2307/1942563; Mirth CK, 2007, BIOESSAYS, V29, P344, DOI 10.1002/bies.20552; Nakano S, 2001, P NATL ACAD SCI USA, V98, P166, DOI 10.1073/pnas.98.1.166; Nijhout H, 2003, DEV BIOL, V261, P1, DOI 10.1016/S0012-1606(03)00276-8; NOLEN JA, 1992, AQUAT INSECT, V14, P213, DOI 10.1080/01650429209361487; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Peckarsky BL, 2008, ECOLOGY, V89, P2416, DOI 10.1890/07-1131.1; Peckarsky BL, 2008, OECOLOGIA, V156, P431, DOI 10.1007/s00442-008-1004-3; Peckarsky BL, 2001, ECOLOGY, V82, P740, DOI 10.1890/0012-9658(2001)082[0740:VIMSAM]2.0.CO;2; R Core Team, 2017, R LANG ENV STAT COMP; Relyea RA, 2007, OECOLOGIA, V152, P389, DOI 10.1007/s00442-007-0675-5; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Rodriguez-Perez H, 2007, FUND APPL LIMNOL, V170, P167, DOI 10.1127/1863-9135/2007/0170-0167; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Sanchez MI, 2006, J N AM BENTHOL SOC, V25, P9, DOI 10.1899/0887-3593(2006)25[9:SPADBA]2.0.CO;2; Simon T., 2015, THESIS; Stelzer RS, 1999, J N AM BENTHOL SOC, V18, P524, DOI 10.2307/1468384; Stoks R, 2005, ECOL LETT, V8, P1307, DOI 10.1111/j.1461-0248.2005.00840.x; Sweeney B.W., 1984, P56; THOMPSON JN, 1988, ANNU REV ECOL SYST, V19, P65, DOI 10.1146/annurev.es.19.110188.000433; Turner D, 2008, CARIBB J SCI, V44, P380; Wallace JB, 1996, ANNU REV ENTOMOL, V41, P115, DOI 10.1146/annurev.en.41.010196.000555; Walsh MR, 2011, FUNCT ECOL, V25, P227, DOI 10.1111/j.1365-2435.2010.01786.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; Wantzen KM, 2006, J N AM BENTHOL SOC, V25, P216, DOI 10.1899/0887-3593(2006)25[216:DPBISA]2.0.CO;2; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Werner EE, 2003, ECOLOGY, V84, P1083, DOI 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2; WILBUR HM, 1972, ECOLOGY, V53, P3, DOI 10.2307/1935707; WOOTTON JT, 1994, ANNU REV ECOL SYST, V25, P443, DOI 10.1146/annurev.es.25.110194.002303; Zamora R, 1999, ECOLOGY, V80, P786, DOI 10.2307/177017; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x 64 0 0 3 6 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia SEP 2018 820 1 65 77 10.1007/s10750-018-3674-0 13 Marine & Freshwater Biology Marine & Freshwater Biology GL8CD WOS:000437439300004 2019-02-21 J Lourenco, WR Lourenco, Wilson R. Scorpions and life-history strategies: from evolutionary dynamics toward the scorpionism problem JOURNAL OF VENOMOUS ANIMALS AND TOXINS INCLUDING TROPICAL DISEASES English Review Scorpion; Reproductive strategies; Embryonic; Postembryonic development POSTEMBRYONIC DEVELOPMENT; DESERT SCORPION; TITYUS; PARTHENOGENESIS; BUTHIDAE; POPULATION; KRAEPELIN; CHACTIDAE; LOURENCO; BIOLOGY This work aims to contribute to the general information on scorpion reproductive patterns in general including species that can be noxious to humans. Scorpions are unusual among terrestrial arthropods in several of their life-history traits since in many aspects their reproductive strategies are more similar to those of superior vertebrates than to those of arthropods in general. This communication focuses mainly on the aspects concerning embryonic and post-embryonic developments since these are quite peculiar in scorpions and can be directly connected to the scorpionism problem. As in previous similar contributions, the content of this communication is addressed mainly to non-specialists whose research embraces scorpions in several fields such as venom toxins and public health. A precise knowledge of reproductive strategies presented by several scorpion groups and, in particular, those of dangerous species may prove to be a useful tool in the interpretation of results dealing with scorpionism, and also lead to a better treatment of the problems caused by infamous scorpions. [Lourenco, Wilson R.] Sorbonne Univ, Museum Natl Hist Nat, Biodivers ISYEB, Inst Systemat,Evolut,CNRS,MNHN,UPMC,EPHE,UMR7205, CP 53,57 Rue Cuvier, F-75005 Paris, France Lourenco, WR (reprint author), Sorbonne Univ, Museum Natl Hist Nat, Biodivers ISYEB, Inst Systemat,Evolut,CNRS,MNHN,UPMC,EPHE,UMR7205, CP 53,57 Rue Cuvier, F-75005 Paris, France. wilson.lourenco@mnhn.fr Alexander A. J., 1959, Proceedings of the Zoological Society of London, V133, P145; ALEXANDER AJ, 1956, NATURE, V178, P867, DOI 10.1038/178867b0; ALEXANDER ANNE J., 1957, PROC ZOOL SOC LONDON, V128, P529; Anderson D T, 1973, EMBRYOLOGY PHYLOGENY; ANGERMANN H, 1955, NATURWISSENSCHAFTEN, V42, P303, DOI 10.1007/BF00608947; Auber M., 1963, Ann Sei nat Paris (12), V5, P273; Auber M., 1959, Vie et Milieu, V10, P160; Fabre JH, 1907, SOUVENIRS ENTOMOLOGI; FRANCKE O F, 1981, Southwestern Naturalist, V25, P517, DOI 10.2307/3670851; Francke O.F., 1982, Revue Arachnologique, V4, P27; Huber Dietmar, 2002, Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg, V14, P53; KOVOOR J, 1987, CR ACAD SCI III-VIE, V304, P259; Laurie M., 1891, Quarterly Journal of Microscopical Science, Vxxxii, P587; LAURIE M, 1896, ANN MAG NAT HIST 6, V17, P185; LAURIE M, 1896, ANN MAG NAT HIST 6, V18, P121, DOI DOI 10.1080/00222939608680422; Laurie M, 1890, Q J MICROSC SCI, V31, P105; Lourenco WR, 2008, J VENOM ANIM TOXINS, V14, P19, DOI 10.1590/S1678-91992008000100003; LOURENCO W R, 1979, Bulletin du Museum National d'Histoire Naturelle Section A Zoologie Biologie et Ecologie Animales, V1, P95; LOURENCO W R, 1991, Compte Rendu des Seances de la Societe de Biogeographie, V67, P171; Lourenco W.R., 1986, P62; Lourenco Wilson R., 2003, Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg, V14, P129; Lourenco WR, 2006, ZOOL ANZ, V244, P181, DOI 10.1016/j.jcz.2005.09.001; Lourenco WR, 2018, J VENOM ANIM TOXINS, V24, DOI 10.1186/s40409-017-0138-3; Lourenco Wilson R., 2017, Onychium, V13, P17, DOI 10.5281/zenodo.546371; Lourenco WR, 2016, J VENOM ANIM TOXINS, V22, DOI 10.1186/s40409-016-0075-6; Lourenco WR, 2015, J VENOM ANIM TOXINS, V21, DOI 10.1186/s40409-015-0016-9; Lourenco WR, 2014, J VENOM ANIM TOXINS, V20, DOI 10.1186/1678-9199-20-8; Lourenco Wilson R., 2011, Boletin de la SEA, V49, P291; Lourenco Wilson R., 2010, Boletin de la SEA, V47, P293; Lourenco Wilson R., 2008, Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg, V15, P7; Lourenco WR, 2008, CR BIOL, V331, P896, DOI 10.1016/j.crvi.2008.07.028; Lourenco Wilson R., 1994, Biogeographica (Paris), V70, P19; Lourenco Wilson R., 2000, Biogeographica (Paris), V76, P21; Lourenco Wilson R., 2007, Boletin de la S.E.A., P473; Lourenco Wilson R., 1991, Iheringia Serie Zoologia, V71, P5; Lourenco WR, 2002, EUROPEAN ARACHNOLOGY 2000, P71; Lourenco WR, 2003, ZOOL ANZ, V242, P63, DOI 10.1078/0044-5231-00087; Lourenco WR, 1996, J BIOGEOGR, V23, P681, DOI 10.1111/j.1365-2699.1996.tb00028.x; Lourenco WR, 2000, ZOOL ANZ, V239, P267; Lourenco WR, 1999, J ARACHNOL, V27, P149; Lourenco WR, 1995, J VENOM ANIM TOXINS, V1; Lourenco WR, 1996, J VENOM ANIM TOXINS, V2, P2; Lourenco WR, 2011, ENTOMOL MITT ZOOL MU, V15, P213; Lourenco WR, 1986, B ZOOL, P105; Lourenco WR, 1979, REV NORDEST BIOL, V2, P49; Maccary MA, 1810, MEMOIRE SCORPION QUI; MATHEW A. P., 1960, JOUR ZOOL SOC INDIA, V12, P220; Mathew AP, 1956, B RES I TRAVANCORE, V1, P1; Matthiesen F. A., 1961, Rev Agric Piracicaba, V36, P139; MATTHIESEN FA, 1962, EVOLUTION, V16, P255, DOI 10.1111/j.1558-5646.1962.tb03217.x; MATTHIESEN FA, 1970, AN ACAD BRAS CIENC, V42, P627; MATTHISEN F A, 1969, Bulletin du Museum National d'Histoire Naturelle, V41, P1367; Maury E. A., 1969, Physis Buenos Aires, V29, P131; Maury EA, 1968, PHYSIS, V27, P131; Millot J, 1949, TRAITE ZOOL, P387; PAVLOVSKIJ E., 1925, [ANN MUS ZOOL ACAD SCI URSS], V26, P137; Pavlovsky EN, 1924, TRAVAUX SOC NATURALI, V53, P76; Pflugfelder O, 1930, Z WISS ZOOL ABT A, V137, P1; Polis G.A., 1986, P111; Polis G.A., 1990, P161; Polis G.A., 1990, P247; POLIS GA, 1979, J ZOOL, V187, P517; POLIS GA, 1980, ECOLOGY, V61, P620, DOI 10.2307/1937428; SCHULTZE W., 1927, PHILIPPINE JOUR SCI, V32, P375; SHULOV A., 1960, BULL RES COUNC ISRAEL SECT B, V9B, P65; SHULOV A, 1958, Arch Inst Pasteur Alger, V36, P351; VANDEL A., 1928, BULL BIOL FRANCE ET BELGIQUE, V62, P164; Varela JC, 1961, GESTACION NACIMIENTO; WILLIAMS S C, 1969, Proceedings of the California Academy of Sciences, V37, P1; Yoshikura M.;., 1975, Kumamoto J Sci (Biol), V12, P71 70 0 0 2 2 BMC LONDON CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1678-9199 J VENOM ANIM TOXINS J. Venom. Anim. Toxins Trop. Dis. AUG 22 2018 24 19 10.1186/s40409-018-0160-0 12 Toxicology; Tropical Medicine; Zoology Toxicology; Tropical Medicine; Zoology GR6XG WOS:000442822200001 30158956 DOAJ Gold 2019-02-21 J Fernando, GKAW; Jayakody, S; Wijenayake, WMHK; Galappaththy, GNL; Yatawara, M; Harishchandra, J Fernando, G. K. Achini W.; Jayakody, Sevvandi; Wijenayake, W. M. Hiranya K.; Galappaththy, Gawrie N. L.; Yatawara, Mangala; Harishchandra, Jeevanie A comparison of the larvivorous habits of exotic Poecilia reticulata and native Aplocheilus parvus BMC ECOLOGY English Article Aquatic ecosystem; Biological control; Diet composition; Fish MOSQUITOFISH GAMBUSIA-AFFINIS; LIFE-HISTORY EVOLUTION; BIOLOGICAL-CONTROL; TRINIDADIAN GUPPIES; MALARIA CONTROL; FISH; PREDATION; HOLBROOKI; IMPACTS; WATER Background: The exotic fish Poecilia reticulata is promoted in the tropics as a biological control agent for aquatic pathogenic carriers, such as mosquitoes. Such control measures are often adopted blindly, ignoring the potential of native species and the adverse effects of introduced species. The present study was conducted to assess the diet composition of two species of fish, the native Aplocheilus parvus and exotic P. reticulata, and to assess the availability of food items in their natural environment in four types of aquatic systems. Diet composition was estimated using 24 h gut contents analysis, in a clay quarry pit and a perennial reservoir for A. parvus, and in a man-made canal and a second-order natural stream for P. reticulata. Food items in these environments were quantified by analyzing water samples collected every 2 h. Results: The diet of A. parvus in the clay quarry pit and reservoir consisted of adult or larval stages of Insecta, Maxillopoda and Malacostraca. In both habitats, A. parvus selectively fed on insect parts and insect larvae. The diet of P. reticulata consisted of filamentous algae, diatoms and detritus. The diet of A. parvus showed active selection of insectivore food items against their low availability. In contrast, the diet of P. reticulata showed consumption of food items in accordance with their availability in the environment. The highest mean number of food items in the gut for A. parvus was recorded around mid-day in the clay quarry pit, but no peak feeding time was identified in the perennial reservoir. For P reticulata, peak feeding was recorded around mid-day in both the habitats. Conclusion: Irrespective of the type of environment and rate of occurrence, A. parvus preferred insect and insect larvae, whereas P. reticulata consumed the most readily available food items. The active selection of insects by A. parvus suggests they may have value as a biological control agent. [Fernando, G. K. Achini W.; Jayakody, Sevvandi; Wijenayake, W. M. Hiranya K.] Wayamba Univ Sri Lanka, Dept Aquaculture & Fisheries, Makandura, Gonawila, Sri Lanka; [Galappaththy, Gawrie N. L.] WHO, Global Malaria Programme, Geneva, Switzerland; [Yatawara, Mangala] Univ Kelaniya, Dept Zool & Environm Management, Kelaniya, Sri Lanka; [Harishchandra, Jeevanie] Anti Malaria Campaign, Colombo 05, Sri Lanka Jayakody, S (reprint author), Wayamba Univ Sri Lanka, Dept Aquaculture & Fisheries, Makandura, Gonawila, Sri Lanka. sevvandi_jayakody@yahoo.com Global Fund to Fight AIDs, Tuberculosis and Malaria (GFATM) Financial support was received as a part of a research project funded by the Global Fund to Fight AIDs, Tuberculosis and Malaria (GFATM). The funding agency approved the research, all field expenses as well as dissemination of outcomes as publications. Bambaradeniya C., 2008, N W PROVINCE BIODIVE; CASTLEBERRY DT, 1990, J AM MOSQUITO CONTR, V6, P223; Chandra G, 2008, INDIAN J MED RES, V127, P13; Crowl T.A., 1992, Reviews in Fish Biology and Fisheries, V2, P217, DOI 10.1007/BF00045038; De Silva T, 2015, SRI LANKAN FRESHWATE; DUSSAULT GV, 1981, CAN J ZOOL, V59, P684, DOI 10.1139/z81-098; Elton C. S., 2000, ECOLOGY INVASIONS AN; Englund RA, 1999, J INSECT CONSERV, V3, P225, DOI 10.1023/A:1009651922486; Fernando CH, 1990, FRESHWATER FAUNA FIS; Fernando GKAW, 2015, SRI LANKA J AQUAT SC, V20, P19; FLETCHER M, 1993, J TROP MED HYG, V96, P12; Frenkel V, 2000, AQUACULTURE, V184, P255, DOI 10.1016/S0044-8486(99)00326-9; Ghosh A, 2011, J VECTOR DIS, V48, P72; Ghosh SK, 2005, T ROY SOC TROP MED H, V99, P101, DOI 10.1016/j.trstmh.2004.03.009; Gill HS, 1999, 5 IND FISH C 3 8 NOV, P79; Goswami S., 2004, ZOOPLANKTON METHODOL; Gunawardena A., 2008, N W PROVINCE BIODIVE; Hamer AJ, 2002, OECOLOGIA, V132, P445, DOI 10.1007/s00442-002-0968-7; HOWARTH FG, 1991, ANNU REV ENTOMOL, V36, P485, DOI 10.1146/annurev.en.36.010191.002413; HYSLOP EJ, 1980, J FISH BIOL, V17, P411, DOI 10.1111/j.1095-8649.1980.tb02775.x; Karlekar S.R., 2016, Biological Forum, V8, P326; Knapp RA, 2000, CONSERV BIOL, V14, P428, DOI 10.1046/j.1523-1739.2000.99099.x; Komak S, 2000, WILDLIFE RES, V27, P185, DOI 10.1071/WR99028; Kumar A, 1998, J AM MOSQUITO CONTR, V14, P457; Kumar R, 2006, ZOOL STUD, V45, P447; Kusumawathie PHD, 2006, J MED ENTOMOL, V43, P79, DOI 10.1603/0022-2585(2006)043[0079:LPOFSF]2.0.CO;2; Latini AO, 2004, FISHERIES MANAG ECOL, V11, P71, DOI 10.1046/j.1365-2400.2003.00372.x; Leyse KE, 2004, BIOL CONSERV, V118, P57, DOI 10.1016/j.biocon.2003.07.008; Lowe S, 2000, 100 WORLDS WORST INV; Marti GA, 2006, J VECTOR ECOL, V31, P102, DOI 10.3376/1081-1710(2006)31[102:PEOILF]2.0.CO;2; Morgan DL, 2004, NEW ZEAL J MAR FRESH, V38, P511, DOI 10.1080/00288330.2004.9517257; Morgan L. A., 1996, Australian Zoologist, V30, P143; NELSON SM, 1992, J AM MOSQUITO CONTR, V8, P301; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Rozendaal J.A., 1997, VECTOR CONTROL METHO; Russell BM, 2001, J AM MOSQUITO CONTR, V17, P124; Simberloff D, 1996, BIOL CONSERV, V78, P185, DOI 10.1016/0006-3207(96)00027-4; Suthers IM, 2009, PLANKTON: A GUIDE TO THEIR ECOLOGY AND MONITORING FOR WATER QUALITY, P1; Tranchida MC, 2010, BIOL CONTROL, V53, P183, DOI 10.1016/j.biocontrol.2009.11.006; Weerasinghe SM, 2008, N W PROVINCE BIODIVE; WICKRAMASINGHE M B, 1986, Parasitology Today, V2, P228, DOI 10.1016/0169-4758(86)90089-X; Willems KJ, 2005, J VECTOR ECOL, V30, P87; Zandona E., 2010, TROPHIC ECOLOGY GUPP; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x 45 1 1 6 6 BMC LONDON CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1472-6785 BMC ECOL BMC Ecol. AUG 14 2018 18 25 10.1186/s12898-018-0180-1 12 Ecology Environmental Sciences & Ecology GQ9XW WOS:000442156400001 30107827 DOAJ Gold 2019-02-21 J Pardo-Gandarillas, MC; Ibanez, CM; Torres, FI; Sanhueza, V; Fabres, A; Escobar-Dodero, J; Mardones, FO; Mendez, MA Cecilia Pardo-Gandarillas, Maria; Ibanez, Christian; Torres, Felipe; Sanhueza, Victor; Fabres, Alejandra; Escobar-Dodero, Joaquin; Mardones, Fernando; Mendez, Marco Phylogeography and species distribution modelling reveal the effects of the Pleistocene ice ages on an intertidal limpet from the south-eastern Pacific JOURNAL OF BIOGEOGRAPHY English Article biogeographical barrier; connectivity; dispersal; environmental niche modelling; glacial cycles; larval planktotrophic; Last Glacial Maximum; Siphonariidae; south-eastern Pacific; Southern Hemisphere LAST GLACIAL MAXIMUM; ECOLOGICAL NICHE MODELS; POPULATION-GENETICS; ROCKY SHORE; MARINE; DNA; DIVERSITY; BIOGEOGRAPHY; DIVERGENCE; INFERENCE AimThe distribution and genetic composition of marine populations is the result of climatic and oceanographic factors as well as life history strategies. Studying species with wide distributions and high dispersal potential in sites that were differentially affected during the Pleistocene glaciations provides an opportunity to evaluate the genetic and distributional effect of glaciations on marine populations, such as the limpet Siphonaria lesonii. The aim of the present study is to evaluate the differential effects of glaciations on areas covered and not covered by ice sheets during the Pleistocene glaciations. LocationIntertidal zone of the south-eastern Pacific covering approximately 5,000km of coastline of Peru and Chile. MethodsWe performed molecular analyses of mitochondrial and nuclear data jointly, as well as environmental niche modelling (ENM) of populations of the limpet Siphonaria lessonii. Using ENM, we modelled the potential distributional range of the species in the present and its distribution during the Last Glacial Maximum (LGM). ResultsTwo lineages were found that were separated by a break at 41 degrees S, corresponding to the biogeographical discontinuity previously reported for this region. Both of these lineages experienced genetic and demographical fluctuations that match the Pleistocene glaciations; however, the variability was more intense in the southern lineage. Phylogeography and ENM yielded complementary results for thesouthern lineage, which experienced loss of genetic diversity and habitat during the LGM, whereas the northern lineage evidenced loss of genetic diversity without distributional changes. Main conclusionsThe phylogeographical and ENM approaches suggest a historical scenario involving demographic and distributional contractions of S. lessonii surviving in glacial refugia in the southern portion of the south-eastern Pacific. This study is the first to include both phylogeographical and ENM analyses of marine species from the Southern Hemisphere. [Cecilia Pardo-Gandarillas, Maria; Torres, Felipe; Sanhueza, Victor; Fabres, Alejandra; Mendez, Marco] Univ Chile, Fac Ciencias, Dept Ciencias Ecol, Lab Genet & Evoluc, Santiago, Chile; [Ibanez, Christian] Univ Andres Bello, Fac Ciencias Vida, Dept Ecol & Biodiversidad, Santiago, Chile; [Escobar-Dodero, Joaquin; Mardones, Fernando] Univ Andres Bello, Fac Ciencias Vida, Escuela Med Vet, Santiago, Chile Pardo-Gandarillas, MC (reprint author), Las Palmeras 3425, Santiago, Chile. pardogandarillas@gmail.com Ibanez, Christian/0000-0002-7390-2617 Fondo Nacional de Desarrollo Cientifico y Tecnologico [3140610, 1130266, 1140540] Fondo Nacional de Desarrollo Cientifico y Tecnologico, Grant/Award Number: 3140610, 1130266, 1140540 Aljanabi SM, 1997, NUCLEIC ACIDS RES, V25, P4692, DOI 10.1093/nar/25.22.4692; Alvarado-Serrano DF, 2014, MOL ECOL RESOUR, V14, P233, DOI 10.1111/1755-0998.12184; Assis J, 2016, J BIOGEOGR, V43, P833, DOI 10.1111/jbi.12677; AUSTIN MP, 1987, VEGETATIO, V69, P35, DOI 10.1007/BF00038685; Barve N, 2011, ECOL MODEL, V222, P1810, DOI 10.1016/j.ecolmodel.2011.02.011; Beerli P, 2001, P NATL ACAD SCI USA, V98, P4563, DOI 10.1073/pnas.081068098; Beerli P, 1998, NATO ADV SCI I A-LIF, V306, P39; Beerli P., 2013, MIGRATE DOCUMENTATIO; Beerli P, 2010, GENETICS, V185, P313, DOI 10.1534/genetics.109.112532; Beerli Peter, 2009, V17, P42; Bigg GR, 2014, EVOL ECOL, V28, P177, DOI 10.1007/s10682-013-9662-y; Burnham KP, 2011, BEHAV ECOL SOCIOBIOL, V65, P23, DOI 10.1007/s00265-010-1029-6; Camus PA, 2001, REV CHIL HIST NAT, V74, P587, DOI 10.4067/S0716-078X2001000300008; Cardenas L, 2009, J BIOGEOGR, V36, P969, DOI 10.1111/j.1365-2699.2008.02056.x; Carstens BC, 2007, EVOLUTION, V61, P1439, DOI 10.1111/j.1558-5646.2007.00117.x; Ceballos SG, 2012, MAR BIOL, V159, P499, DOI 10.1007/s00227-011-1830-4; Pardo-Gandarillas MC, 2018, HYDROBIOLOGIA, V808, P125, DOI 10.1007/s10750-017-3339-4; Chust G, 2016, SCI REP-UK, V6, DOI 10.1038/srep28730; Clapperton C, 2000, J QUATERNARY SCI, V15, P435, DOI 10.1002/1099-1417(200005)15:4<435::AID-JQS552>3.0.CO;2-R; CLAPPERTON CM, 1993, PALAEOGEOGR PALAEOCL, V101, P189, DOI 10.1016/0031-0182(93)90012-8; Colgan DJ, 2013, MAR BIODIVERS, V43, P73, DOI 10.1007/s12526-012-0127-2; Drummond AJ, 2005, MOL BIOL EVOL, V22, P1185, DOI 10.1093/molbev/msi103; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; ESRI, 2015, ARCGIS DESKT REL 10; Ewers-Saucedo C, 2016, ECOL EVOL, V6, P4403, DOI 10.1002/ece3.2205; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Ferreira MAR, 2008, CAN J STAT, V36, P355, DOI 10.1002/cjs.5550360302; Filatov DA, 2002, MOL ECOL NOTES, V2, P621, DOI 10.1046/j.1471-8286.2002.00313.x; Fraser CI, 2012, TRENDS ECOL EVOL, V27, P462, DOI 10.1016/j.tree.2012.04.011; Fraser CI, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-203; Fraser CI, 2009, J PHYCOL, V45, P436, DOI 10.1111/j.1529-8817.2009.00658.x; Freeland J. R., 2005, MOL ECOL, P64; Fu YX, 1997, GENETICS, V147, P915; Gonzalez-Wevar CA, 2013, MOL ECOL, V22, P5221, DOI 10.1111/mec.12465; Gonzalez-Wevar CA, 2011, MOL ECOL, V20, P1936, DOI 10.1111/j.1365-294X.2011.05065.x; Gonzalez-Wevar CA, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-139; Grant WS, 2006, BIOL J LINN SOC, V88, P673, DOI 10.1111/j.1095-8312.2006.00651.x; Grosberg R, 2001, MARINE COMMUNITY ECOLOGY, P61; Guillot G, 2008, BIOINFORMATICS, V24, P1406, DOI 10.1093/bioinformatics/btn136; Guillot G, 2009, MOL ECOL, V18, P4734, DOI 10.1111/j.1365-294X.2009.04410.x; Haye PA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088613; Haye PA, 2010, EVOL DEV, V12, P628, DOI 10.1111/j.1525-142X.2010.00447.x; Hebbeln D, 2002, MAR GEOL, V186, P487, DOI 10.1016/S0025-3227(02)00331-6; Hewitt G. M., 2001, INTEGRATING ECOLOGY, P271; Hodgson AN, 1999, OCEANOGR MAR BIOL, V37, P245; Hugall A, 2002, P NATL ACAD SCI USA, V99, P6112, DOI 10.1073/pnas.092538699; Hulton NRJ, 2002, QUATERNARY SCI REV, V21, P233, DOI 10.1016/S0277-3791(01)00103-2; Ibanez CM, 2012, J MAR BIOL ASSOC UK, V92, P197, DOI 10.1017/S0025315411000440; Ibanez CM, 2011, MAR ECOL PROG SER, V431, P163, DOI 10.3354/meps09133; Ibanez CM, 2009, MAR BIOL RES, V5, P374, DOI 10.1080/17451000802534873; Janko K, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-220; Kaplan MR, 2008, QUATERNARY SCI REV, V27, P284, DOI 10.1016/j.quascirev.2007.09.013; KASS RE, 1995, J AM STAT ASSOC, V90, P773, DOI 10.1080/01621459.1995.10476572; Kelly RP, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008594; Kim SJ, 2002, CLIM DYNAM, V19, P515, DOI 10.1007/s00382-002-0243-y; Kingman J, 1982, STOCHASTIC PROCESS A, V13, P235, DOI DOI 10.1016/0304-4149(82)90011-4; Kinlan BP, 2003, ECOLOGY, V84, P2007, DOI 10.1890/01-0622; Kyle CJ, 2000, MAR BIOL, V137, P835, DOI 10.1007/s002270000412; Lambeck K, 2014, P NATL ACAD SCI USA, V111, P15296, DOI 10.1073/pnas.1411762111; Lamy F, 2004, SCIENCE, V304, P1959, DOI 10.1126/science.1097863; Larmuseau MHD, 2009, J BIOGEOGR, V36, P1138, DOI 10.1111/j.1365-2699.2008.02072.x; Laugenie C., 1984, B ASS FRANCAISE ETUD, V1, P139, DOI 10. 3406/quate. 1984. 1502; Layton KKS, 2016, J MOLLUS STUD, V82, P282, DOI 10.1093/mollus/eyv056; Lee HJE, 2009, MOL ECOL, V18, P2165, DOI 10.1111/j.1365-294X.2009.04169.x; LIU JH, 1994, J MOLLUS STUD, V60, P431, DOI 10.1093/mollus/60.4.431; Lomolino M. V, 2010, BIOGEOGRAPHY; Macaya EC, 2010, J PHYCOL, V46, P736, DOI 10.1111/j.1529-8817.2010.00845.x; MANTEL N, 1967, CANCER RES, V27, P209; Marko PB, 2010, MOL ECOL, V19, P146, DOI 10.1111/j.1365-294X.2009.04417.x; Meyer CP, 2005, EVOLUTION, V59, P113, DOI 10.1554/04-194; Montecinos A, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-97; Neiva J, 2014, J BIOGEOGR, V41, P1137, DOI 10.1111/jbi.12278; NEWTON MA, 1994, J R STAT SOC B, V56, P3; Nunez JD, 2015, MAR BIOL, V162, P595, DOI 10.1007/s00227-014-2607-3; Nunez JJ, 2010, REV BIOL MAR OCEANOG, V45, P565, DOI 10.4067/S0718-19572010000400005; OLIVIER SR, 1968, CAH BIOL MAR, V9, P469; Owens HL, 2013, ECOL MODEL, V263, P10, DOI 10.1016/j.ecolmodel.2013.04.011; PALUMBI SR, 1994, ANNU REV ECOL SYST, V25, P547, DOI 10.1146/annurev.ecolsys.25.1.547; Palumbi SR, 2003, ECOL APPL, V13, pS146; Pelc RA, 2009, J BIOGEOGR, V36, P1881, DOI 10.1111/j.1365-2699.2009.02138.x; Peterson AT, 2001, CONDOR, V103, P599, DOI 10.1650/0010-5422(2001)103[0599:PSGDBO]2.0.CO;2; Peterson AT, 2011, ECOLOGICAL NICHES GE; Phillips SJ, 2006, ECOL MODEL, V190, P231, DOI 10.1016/j.ecolmodel.2005.03.026; Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083; Provan J, 2008, TRENDS ECOL EVOL, V23, P564, DOI 10.1016/j.tree.2008.06.010; R Core Team, 2016, R LANG ENV STAT COMP; Rabassa J, 2005, J S AM EARTH SCI, V20, P81, DOI 10.1016/j.jsames.2005.07.004; Rabassa J, 2011, BIOL J LINN SOC, V103, P316, DOI 10.1111/j.1095-8312.2011.01681.x; Rousset F, 1997, GENETICS, V145, P1219; Salzburger W, 2011, MOL ECOL, V20, P1952, DOI 10.1111/j.1365-294X.2011.05066.x; Sanchez R, 2011, MAR ECOL PROG SER, V434, P121, DOI 10.3354/meps09184; Sbrocco E.J., 2013, ECOLOGY, V94, P979, DOI DOI 10.1890/12-1358.1; Sbrocco EJ., 2014, ECOLOGY, V95, P1710; Selkoe KA, 2016, MAR ECOL PROG SER, V554, P1, DOI 10.3354/meps11792; Soberon Jorge, 2005, Biodiversity Informatics, V2, P1; Sokal R.R., 1995, BIOMETRY PRINCIPLES; TAJIMA F, 1989, GENETICS, V123, P585; Teske PR, 2007, AFR J MAR SCI, V29, P253, DOI 10.2989/AJMS.2007.29.2.9.192; Teske PR, 2011, MOL ECOL, V20, P5025, DOI 10.1111/j.1365-294X.2011.05307.x; Thorrold SR, 2002, B MAR SCI, V70, P291; Trovant B, 2015, MOL PHYLOGENET EVOL, V82, P60, DOI 10.1016/j.ympev.2014.10.002; Wang J, 2015, BMC EVOL BIOL, V15, DOI 10.1186/s12862-015-0387-0; Wares JP, 2001, EVOLUTION, V55, P2455; Warren DL, 2011, ECOL APPL, V21, P335, DOI 10.1890/10-1171.1; Warren DL, 2010, ECOGRAPHY, V33, P607, DOI 10.1111/j.1600-0587.2009.06142.x; Zakas C, 2009, MAR ECOL PROG SER, V394, P165, DOI 10.3354/meps08265 106 0 0 4 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0305-0270 1365-2699 J BIOGEOGR J. Biogeogr. AUG 2018 45 8 1751 1767 10.1111/jbi.13362 17 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography GO7YJ WOS:000440297300005 2019-02-21 J Harer, A; Meyer, A; Torres-Dowdall, J Haerer, Andreas; Meyer, Axel; Torres-Dowdall, Julian Convergent phenotypic evolution of the visual system via different molecular routes: How Neotropical cichlid fishes adapt to novel light environments EVOLUTION LETTERS English Article Color vision; crater lake; cyp27c1; molecular adaptation; Nicaragua; opsins; predictability of evolution; regulatory change OPSIN GENE-EXPRESSION; GUPPIES POECILIA-RETICULATA; CIS-REGULATORY SEQUENCES; LAKE VICTORIA CICHLIDS; LIFE-HISTORY EVOLUTION; PARALLEL EVOLUTION; COLOR-VISION; SPECTRAL SENSITIVITY; DIVERGENT SELECTION; TRINIDADIAN GUPPIES How predictable is evolution? This remains a fundamental but contested issue in evolutionary biology. When independent lineages colonize the same environment, we are presented with a natural experiment that allows us to ask if genetic and ecological differences promote species-specific evolutionary outcomes or whether species phenotypically evolve in a convergent manner in response to shared selection pressures. If so, are the molecular mechanisms underlying phenotypic convergence the same? In Nicaragua, seven species of cichlid fishes concurrently colonized two novel photic environments. Hence, their visual system represents a compelling model to address these questions, particularly since the adaptive value of phenotypic changes is well-understood. By analyzing retinal transcriptomes, we found that differential expression of genes responsible for color vision (cone opsins and cyp27c1) produced rapid and mostly convergent changes of predicted visual sensitivities. Notably, these changes occurred in the same direction in all species although there were differences in underlying gene expression patterns illustrating nonconvergence at the molecular level. Adaptive phenotypes evolved deterministically, even when species differ substantially in ecology and genetic variation. This provides strong evidence that phenotypic evolution of the visual system occurred in response to similar selective forces of the photic environment. [Haerer, Andreas; Meyer, Axel; Torres-Dowdall, Julian] Univ Konstanz, Dept Biol, Zool & Evolutionary Biol, Constance, Germany; [Meyer, Axel] Harvard Univ, Radcliffe Inst Adv Study, Cambridge, MA 02138 USA; [Torres-Dowdall, Julian] Univ Konstanz, Zukunftskolleg, Constance, Germany Torres-Dowdall, J (reprint author), Univ Konstanz, Dept Biol, Zool & Evolutionary Biol, Constance, Germany.; Torres-Dowdall, J (reprint author), Univ Konstanz, Zukunftskolleg, Constance, Germany. julian.torres-dowdall@uni-konstanz.de Meyer, Axel/C-9826-2009 Meyer, Axel/0000-0002-0888-8193; Torres-Dowdall, Julian/0000-0003-2729-6246 Anders S, 2015, BIOINFORMATICS, V31, P166, DOI 10.1093/bioinformatics/btu638; Arendt J, 2008, TRENDS ECOL EVOL, V23, P26, DOI 10.1016/j.tree.2007.09.011; ASENJO AB, 1994, NEURON, V12, P1131, DOI 10.1016/0896-6273(94)90320-4; Barluenga M, 2004, MOL ECOL, V13, P2061, DOI 10.1111/j.1365-294X.2004.02211.x; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Barrett RDH, 2011, NAT REV GENET, V12, P767, DOI 10.1038/nrg3015; Bolger AM, 2014, BIOINFORMATICS, V30, P2114, DOI 10.1093/bioinformatics/btu170; Bowmaker JK, 2008, VISION RES, V48, P2022, DOI 10.1016/j.visres.2008.03.025; Bussing W.A., 1976, P157; Carleton KL, 2010, J EVOLUTION BIOL, V23, P840, DOI 10.1111/j.1420-9101.2010.01954.x; Carleton KL, 2008, BMC BIOL, V6, DOI 10.1186/1741-7007-6-22; Carleton KL, 2016, GENESIS, V54, P299, DOI 10.1002/dvg.22940; Carleton KL, 2005, MOL ECOL, V14, P4341, DOI 10.1111/j.1365-294X.2005.02735.x; Carleton KL, 2001, MOL BIOL EVOL, V18, P1540, DOI 10.1093/oxfordjournals.molbev.a003940; Carroll SB, 2005, PLOS BIOL, V3, P1159, DOI 10.1371/journal.pbio.0030245; Castiglione GM, 2018, EVOLUTION, V72, P170, DOI 10.1111/evo.13396; Cole G.A, 1976, INVESTIGATIONS ICHTH, V3, P9; Colosimo PF, 2005, SCIENCE, V307, P1928, DOI 10.1126/science.1107239; Cronin T. W., 2014, VISUAL ECOLOGY; Dalton BE, 2015, MOL ECOL, V24, P4193, DOI 10.1111/mec.13312; Ebrey T, 2001, PROG RETIN EYE RES, V20, P49, DOI 10.1016/S1350-9462(00)00014-8; Elmer KR, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6168; Elmer KR, 2013, EVOLUTION, V67, P281, DOI 10.1111/j.1558-5646.2012.01755.x; Elmer KR, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-60; Elmer KR, 2010, PHILOS T R SOC B, V365, P1763, DOI 10.1098/rstb.2009.0271; Enright JM, 2015, CURR BIOL, V25, P3048, DOI 10.1016/j.cub.2015.10.018; Escobar-Camacho D, 2017, MOL ECOL, V26, P1343, DOI 10.1111/mec.13957; FERNALD RD, 1981, VISION RES, V21, P1749, DOI 10.1016/0042-6989(81)90207-8; Fitzpatrick SW, 2014, AM NAT, V183, P290, DOI 10.1086/674611; Franchini P, 2017, MOL ECOL, V26, P2783, DOI 10.1111/mec.14077; FUTUYMA DJ, 1995, EVOLUTION, V49, P797, DOI 10.1111/j.1558-5646.1995.tb02316.x; Ghalambor CK, 2015, NATURE, V525, P372, DOI 10.1038/nature15256; Gould S. J., 1989, WONDERFUL LIFE BURGE; Gouy M, 2010, MOL BIOL EVOL, V27, P221, DOI 10.1093/molbev/msp259; Harer A, 2017, MOL ECOL, V26, P5582, DOI 10.1111/mec.14289; Haldane JBS, 1932, CAUSES EVOLUTION; Hauser FE, 2017, MOL BIOL EVOL, V34, P2650, DOI 10.1093/molbev/msx192; Hendry A. P., 2017, ECOEVOLUTIONARY DYNA; Hoekstra HE, 2007, EVOLUTION, V61, P995, DOI 10.1111/j.1558-5646.2007.00105.x; Hofmann CM, 2010, MOL ECOL, V19, P2064, DOI 10.1111/j.1365-294X.2010.04621.x; Hofmann CM, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000266; Hofmann CM, 2009, INTEGR COMP BIOL, V49, P630, DOI 10.1093/icb/icp079; Hulsey CD, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-279; Hunt DM, 2001, J EXP BIOL, V204, P3333; Innan H, 2004, P NATL ACAD SCI USA, V101, P10667, DOI 10.1073/pnas.0401720101; Irisarri I, NAT COMMUN; Johnsen S, 2011, OPTICS LIFE BIOL GUI; Kautt AF, 2018, EVOL LETT, V2, P323, DOI 10.1002/evl3.64; Kautt AF, 2016, PLOS GENET, V12, DOI 10.1371/journal.pgen.1006157; Kim D, 2013, GENOME BIOL, V14, DOI 10.1186/gb-2013-14-4-r36; Kutterolf S, 2007, J VOLCANOL GEOTH RES, V163, P55, DOI 10.1016/j.jvolgeores.2007.02.006; Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/nmeth.1923, 10.1038/NMETH.1923]; Leder EH, 2015, MOL BIOL EVOL, V32, P674, DOI 10.1093/molbev/msu328; Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324; Lopez-Fernandez H, 2013, EVOLUTION, V67, P1321, DOI 10.1111/evo.12038; Lopez-Fernandez H, 2010, MOL PHYLOGENET EVOL, V55, P1070, DOI 10.1016/j.ympev.2010.02.020; Losos J. B., 2017, IMPROBABLE DESTINIES; Mahler DL, 2013, SCIENCE, V341, P292, DOI 10.1126/science.1232392; Marshall J, 2015, CURR OPIN NEUROBIOL, V34, P86, DOI 10.1016/j.conb.2015.02.002; MEYER A, 1990, BIOL J LINN SOC, V39, P279, DOI 10.1111/j.1095-8312.1990.tb00517.x; Morris S. C., 2003, LIFES SOLUTION INEVI; Nandamuri P, 2017, MOL ECOL, V26, P6036, DOI 10.1111/mec.14357; Natarajan C, 2016, SCIENCE, V354, P336, DOI 10.1126/science.aaf9070; Nosil P, 2018, SCIENCE, V359, P765, DOI 10.1126/science.aap9125; O'Quin KE, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-120; O'Quin KE, 2010, MOL BIOL EVOL, V27, P2839, DOI 10.1093/molbev/msq171; Orgogozo V, 2015, INTERFACE FOCUS, V5, DOI 10.1098/rsfs.2015.0057; Pardo N, 2008, J VOLCANOL GEOTH RES, V176, P493, DOI 10.1016/j.jvolgeores.2008.04.020; Projecto-Garcia J, 2013, P NATL ACAD SCI USA, V110, P20669, DOI 10.1073/pnas.1315456110; R Core Team, 2015, R LANG ENV STAT COMP; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Rosenblum EB, 2006, AM NAT, V167, P1, DOI 10.1086/498397; Rosenblum EB, 2017, AM NAT, V190, pS44, DOI 10.1086/692138; Rundle HD, 2000, SCIENCE, V287, P306, DOI 10.1126/science.287.5451.306; Ryan MJ, 2013, ANNU REV ECOL EVOL S, V44, P437, DOI 10.1146/annurev-ecolsys-110512-135901; Sabbah S, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-133; SCHEIRER CJ, 1976, BIOMETRICS, V32, P429, DOI 10.2307/2529511; SCHLUTER D, 1992, AM NAT, V140, P85, DOI 10.1086/285404; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; Schulte JE, 2014, MOL BIOL EVOL, V31, P2297, DOI 10.1093/molbev/msu172; Seehausen O, 2008, NATURE, V455, P620, DOI 10.1038/nature07285; Spady TC, 2006, MOL BIOL EVOL, V23, P1538, DOI 10.1093/molbev/msl014; Stern DL, 2008, EVOLUTION, V62, P2155, DOI 10.1111/j.1558-5646.2008.00450.x; Stone JR, 2001, MOL BIOL EVOL, V18, P1764, DOI 10.1093/oxfordjournals.molbev.a003964; Stuart YE, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0158; Terai Y, 2006, PLOS BIOL, V4, P2244, DOI 10.1371/journal.pbio.0040433; Torres-Dowdall J, 2017, MOL BIOL EVOL, V34, P2469, DOI 10.1093/molbev/msx143; Torres-Dowdall J, 2015, MOL BIOL EVOL, V32, P2876, DOI 10.1093/molbev/msv159; Villa J, 1976, INVEST ICHTHYOFAUNA, V8, P101; WALD G, 1968, NATURE, V219, P800, DOI 10.1038/219800a0; Wray GA, 2007, NAT REV GENET, V8, P206, DOI 10.1038/nrg2063; Yang ZH, 2007, MOL BIOL EVOL, V24, P1586, DOI 10.1093/molbev/msm088; Yokoyama S, 2000, PROG RETIN EYE RES, V19, P385, DOI 10.1016/S1350-9462(00)00002-1; Zhen Y, 2012, SCIENCE, V337, P1634, DOI 10.1126/science.1226630 95 0 0 3 3 JOHN WILEY & SONS LTD CHICHESTER THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND 2056-3744 EVOL LETT Evol. Lett. AUG 2018 2 4 341 354 10.1002/evl3.71 14 Evolutionary Biology Evolutionary Biology GW3EI WOS:000446774400007 30283686 DOAJ Gold, Green Published 2019-02-21 J Chang, ES; Orive, ME; Cartwright, P Chang, E. Sally; Orive, Maria E.; Cartwright, Paulyn Nonclonal coloniality: Genetically chimeric colonies through fusion of sexually produced polyps in the hydrozoan Ectopleura larynx EVOLUTION LETTERS English Article Coloniality; chimerism; evolutionary genomics; genetic variation; hydrozoa; genetic conflict; life-history evolution; RAD-seq VARIANT CALL FORMAT; CELL PARASITISM; TOOL SET; POPULATION; CNIDARIA; EVOLUTION; SELECTION; HYDROIDS; GERM; DIFFERENTIATION Hydrozoans typically develop colonies through asexual budding of polyps. Although colonies of Ectopleura are similar to other hydrozoans in that they consist of multiple polyps physically connected through continuous epithelia and shared gastrovascular cavity, Ectopleura larynx does not asexually bud polyps indeterminately. Instead, after an initial phase of limited budding in a young colony, E. larynx achieves its large colony size through the aggregation and fusion of sexually (nonclonally) produced polyps. The apparent chimerism within a physiologically integrated colony presents a potential source of conflict between distinct genetic lineages, which may vary in their ability to access the germline. To determine the extent to which the potential for genetic conflict exists, we characterized the types of genetic relationships between polyps within colonies, using a RAD-Seq approach. Our results indicate that E. larynx colonies are indeed comprised of polyps that are clones and sexually reproduced siblings and offspring, consistent with their life history. In addition, we found that colonies also contain polyps that are genetically unrelated, and that estimates of genome-wide relatedness suggests a potential for conflict within a colony. Taken together, our data suggest that there are distinct categories of relationships in colonies of E. larynx, likely achieved through a range of processes including budding, regeneration, and fusion of progeny and unrelated polyps, with the possibility for a genetic conflict resolution mechanism. Together these processes contribute to the reevolution of the ecologically important trait of coloniality in E. larynx. [Chang, E. Sally; Orive, Maria E.; Cartwright, Paulyn] Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS 66045 USA Chang, ES (reprint author), Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS 66045 USA. eschang1@gmail.com Mount Desert Island Biological Laboratories through the Bodil Schmidt-Nielson Visiting Scientist Fellowship; Salisbury Cove Fund; Maine INBRE Visiting Scientist Fellowship; NSF [DEB-0953571, DEB-1354754] We would like to thank Meg Daly, Steve Sanders, Bastian Bentlage, Mariya Scheglovitova for help collecting specimens, Olivia Lynch and Camille Nivison for assistance with DNA collection and extraction, Jenny Hackett at the KU Genome Sequencing Core for her technical assistance with library preparation and sequencing, and Solenne Stoeckel for advice regarding data analysis. We are grateful to Steve Sanders for discussions and members of the KU-EEB Genetics group for comments on a previous version of the manuscript, particularly C. Wessinger and J. K. Kelly for advice on certain analyses. Research was funded by the Mount Desert Island Biological Laboratories through the Bodil Schmidt-Nielson Visiting Scientist Fellowship, Salisbury Cove Fund, and the Maine INBRE Visiting Scientist Fellowship (to P.C.) as well as NSF Grant DEB-0953571 to P.C. and NSF Grant DEB-1354754 to M.E.O. Andolfatto P, 2011, GENOME RES, V21, P610, DOI 10.1101/gr.115402.110; Bailleul D, 2016, METHODS ECOL EVOL, V7, P966, DOI 10.1111/2041-210X.12550; Baird NA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003376; Barfield S, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2128; Bellis ES, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-2488-6; Burian A, 2016, CURR BIOL, V26, P1385, DOI 10.1016/j.cub.2016.03.067; Buss L, 1987, EVOLUTION INDIVIDUAL; BUSS LW, 1982, P NATL ACAD SCI-BIOL, V79, P5337, DOI 10.1073/pnas.79.17.5337; Cadavid LF, 2004, GENETICS, V167, P357, DOI 10.1534/genetics.167.1.357; CALDER DR, 1990, CAN J ZOOL, V68, P442, DOI 10.1139/z90-065; Carpenter MA, 2011, BIOL BULL-US, V220, P57, DOI 10.1086/BBLv220n1p57; Cartwright P, 2010, INTEGR COMP BIOL, V50, P456, DOI 10.1093/icb/icq089; Catchen J, 2013, MOL ECOL, V22, P3124, DOI 10.1111/mec.12354; Charlesworth B, 2010, ELEMENTS EVOLUTIONAR, DOI [10.1017/S001667231000042X, DOI 10.1017/S001667231000042X]; Charrad M, 2014, J STAT SOFTW, V61, P1; Coates A.G., 1985, P67; Collins AG, 2005, ZOOL SCR, V34, P91, DOI 10.1111/j.1463-6409.2005.00172.x; Danecek P, 2011, BIOINFORMATICS, V27, P2156, DOI 10.1093/bioinformatics/btr330; Davey JW, 2013, MOL ECOL, V22, P3151, DOI 10.1111/mec.12084; Drolet D, 2013, J EXP MAR BIOL ECOL, V441, P126, DOI 10.1016/j.jembe.2013.01.023; Drury C, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-2583-8; Drury C, 2017, ECOL EVOL, V7, P6188, DOI 10.1002/ece3.3184; Ennis HL, 2000, P NATL ACAD SCI USA, V97, P3292, DOI 10.1073/pnas.050005097; Gautier M, 2013, MOL ECOL, V22, P3165, DOI 10.1111/mec.12089; Gleason LU, 2016, MOL ECOL, V25, P3557, DOI 10.1111/mec.13703; Gonzalez AV, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0169182; Guenther J, 2009, AQUACULTURE, V292, P252, DOI 10.1016/j.aquaculture.2009.04.018; JACKSON JBC, 1977, AM NAT, V111, P743, DOI 10.1086/283203; Kassambara AMM, 2017, FACTOEXTRA EXTRACT V; Knaus BJ, 2017, MOL ECOL RESOUR, V17, P44, DOI 10.1111/1755-0998.12549; Krueger-Hadfield SA, 2015, HEREDITY, V114, P185, DOI 10.1038/hdy.2014.82; Lakkis Fadi G, 2008, Organogenesis, V4, P236; Maggs CA, 2008, ECOLOGY, V89, pS108, DOI 10.1890/08-0257.1; Manichaikul A, 2010, BIOINFORMATICS, V26, P2867, DOI 10.1093/bioinformatics/btq559; MICHOD RE, 1982, ANNU REV ECOL SYST, V13, P23, DOI 10.1146/annurev.es.13.110182.000323; Miller MR, 2007, GENOME RES, V17, P240, DOI 10.1101/gr.5681207; Minoche AE, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-11-r112; Monnahan PJ, 2015, EVOLUTION, V69, P1713, DOI 10.1111/evo.12698; Muller WA, 2004, DEV BIOL, V275, P215, DOI 10.1016/j.ydbio.2004.08.006; Nawrocki AM, 2013, MOL PHYLOGENET EVOL, V67, P60, DOI 10.1016/j.ympev.2012.12.016; Nawrocki AM, 2012, CURR BIOL, V22, P825, DOI 10.1016/j.cub.2012.03.026; NOCE T, 1985, DEV BIOL, V109, P157, DOI 10.1016/0012-1606(85)90356-2; Orive ME, 2001, THEOR POPUL BIOL, V59, P235, DOI 10.1006/tpbi.2001.1515; OTTO SP, 1995, GENETICS, V141, P1173; Otto SP, 1998, GENETICA, V102-3, P507, DOI 10.1023/A:1017074823337; PANCER Z, 1995, BIOL BULL, V189, P106, DOI 10.2307/1542460; PETERSEN KW, 1990, ZOOL J LINN SOC-LOND, V100, P101, DOI 10.1111/j.1096-3642.1990.tb01862.x; Postaire B, 2017, ECOL EVOL, V7, P8170, DOI 10.1002/ece3.3236; Puill-Stephan E, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007751; Purcell S, 2007, AM J HUM GENET, V81, P559, DOI 10.1086/519795; PYEFINCH KA, 1949, J MAR BIOL ASSOC UK, V28, P21, DOI 10.1017/S0025315400055223; Reitzel AM, 2013, MOL ECOL, V22, P2953, DOI 10.1111/mec.12228; Rosengarten RD, 2011, CURR BIOL, V21, pR82, DOI 10.1016/j.cub.2010.11.061; Santelices B, 2004, J EVOLUTION BIOL, V17, P1187, DOI 10.1111/j.1420.9101.2004.00813.x; Santelices B, 2017, J PHYCOL, V53, P59, DOI 10.1111/jpy.12476; Schirmer M, 2016, BMC BIOINFORMATICS, V17, DOI 10.1186/s12859-016-0976-y; Schuchert P, 2006, REV SUISSE ZOOL, V113, P325, DOI 10.5962/bhl.part.80356; Schweinsberg M, 2014, CORAL REEFS, V33, P77, DOI 10.1007/s00338-013-1102-5; Schweinsberg M, 2017, MAR ECOL-EVOL PERSP, V38, DOI 10.1111/maec.12388; Schweinsberg M, 2015, MOL ECOL, V24, P2673, DOI 10.1111/mec.13200; Siebert S, 2017, MOL REPROD DEV, V84, P105, DOI 10.1002/mrd.22690; Speed D, 2015, NAT REV GENET, V16, P33, DOI 10.1038/nrg3821; Stoner DS, 1999, P NATL ACAD SCI USA, V96, P9148, DOI 10.1073/pnas.96.16.9148; Stoner DS, 1996, P NATL ACAD SCI USA, V93, P15254, DOI 10.1073/pnas.93.26.15254; Taketa DA, 2015, DEV COMP IMMUNOL, V48, P254, DOI 10.1016/j.dci.2014.03.014; TARDENT P, 1963, BIOL REV, V38, P293, DOI 10.1111/j.1469-185X.1963.tb00785.x; Tay YC, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160253; Team R. C., 2017, R LANG ENV STAT COMP; Wall JD, 2014, GENOME RES, V24, P1734, DOI 10.1101/gr.168393.113; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1; Xu T, 2017, DEEP-SEA RES PT II, V137, P318, DOI 10.1016/j.dsr2.2016.03.011 71 0 0 2 2 JOHN WILEY & SONS LTD CHICHESTER THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND 2056-3744 EVOL LETT Evol. Lett. AUG 2018 2 4 442 455 10.1002/evl3.68 14 Evolutionary Biology Evolutionary Biology GW3EI WOS:000446774400015 30283694 DOAJ Gold, Green Published 2019-02-21 J Guyonnet, JP; Cantarel, AAM; Simon, L; Haichar, FE Guyonnet, Julien P.; Cantarel, Amelie A. M.; Simon, Laurent; Haichar, Feth el Zahar Root exudation rate as functional trait involved in plant nutrient-use strategy classification ECOLOGY AND EVOLUTION English Article conservative strategy; exploitative strategy; plant functional trait; plant resource-use strategies; rhizosphere; root exudation level LEAF ECONOMICS SPECTRUM; NITROGEN ACQUISITION; COMMUNITY STRUCTURE; RHIZOSPHERE; CARBON; GRASSLAND; WORLDWIDE; ECOLOGY; AREA Plants adopt a variety of life history strategies to succeed in the Earth's diverse environments. Using functional traits which are defined as morphological, biochemical, physiological, or phonological characteristics measurable at the individual level, plants are classified according to their species' adaptative strategies, more than their taxonomy, from fast growing plant species to slower-growing conservative species. These different strategies probably influence the input and output of carbon (C)-resources, from the assimilation of carbon by photosynthesis to its release in the rhizosphere soil via root exudation. However, while root exudation was known to mediate plant-microbe interactions in the rhizosphere, it was not used as functional trait until recently. Here, we assess whether root exudate levels are useful plant functional traits in the classification of plant nutrient-use strategies and classical trait syndromes? For this purpose, we conducted an experiment with six grass species representing along a gradient of plant resource-use strategies, from conservative species, characterized by low biomass nitrogen (N) concentrations and a long lifespans, to exploitative species, characterized by high rates of photosynthesis and rapid rates of N acquisition. Leaf and root traits were measured for each grass and root exudate rate for each planted soil sample. Classical trait syndromes in plant ecology were found for leaf and root traits, with negative relationships observed between specific leaf area and leaf dry matter content or between specific root length and root dry matter content. However, a new root trait syndrome was also found with root exudation levels correlating with plant resource-use strategy patterns, specifically, between root exudation rate and root dry matter content. We therefore propose root exudation rate can be used as a key functional trait in plant ecology studies and plant strategy classification. [Guyonnet, Julien P.; Cantarel, Amelie A. M.; Haichar, Feth el Zahar] Univ Claude Bernard Lyon 1, Univ Lyon, Lab Ecol Microbienne, CNRS,UMR 5557,INRA,UMR 1418, Villeurbanne, France; [Simon, Laurent] Univ Claude Bernard Lyon 1, Univ Lyon, Univ Lyon 1, CNRS,UMR5023,LEHNA,ENTPE, Villeurbanne, France Haichar, FE (reprint author), Univ Lyon 1, Ecol Microbienne UMR5557, 16 Rue Dubois, Villeurbanne, France. zahar.haichar@univ-lyon1.fr Simon, Laurent/B-4641-2009 Simon, Laurent/0000-0003-1389-9871 CNRS, France (CNRS EC2CO research project "RhizoDen") Financial support was provided by the CNRS, France (CNRS EC2CO research project "RhizoDen"). Aerts RJ, 1999, AGR ECOSYST ENVIRON, V75, P1, DOI 10.1016/S0167-8809(99)00062-6; Alami Y, 2000, APPL ENVIRON MICROB, V66, P3393, DOI 10.1128/AEM.66.8.3393-3398.2000; Bais HP, 2006, ANNU REV PLANT BIOL, V57, P233, DOI 10.1146/annurev.arplant.57.032905.105159; Birouste M, 2012, ANN BOT-LONDON, V109, P463, DOI 10.1093/aob/mcr297; Bouchenak-Khelladi Y, 2008, MOL PHYLOGENET EVOL, V47, P488, DOI 10.1016/j.ympev.2008.01.035; Cantarel AAM, 2015, ECOLOGY, V96, P788, DOI 10.1890/13-2107.1; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; De Deyn GB, 2008, ECOL LETT, V11, P516, DOI 10.1111/j.1461-0248.2008.01164.x; Diaz S, 2013, ECOL EVOL, V3, P2958, DOI 10.1002/ece3.601; Fort F, 2013, J PLANT ECOL, V6, P211, DOI 10.1093/jpe/rts034; Garnier E, 2001, FUNCT ECOL, V15, P688, DOI 10.1046/j.0269-8463.2001.00563.x; Grassein F, 2015, ANN BOT-LONDON, V115, P107, DOI 10.1093/aob/mcu233; Grigulis K, 2013, J ECOL, V101, P47, DOI 10.1111/1365-2745.12014; Grime JP, 2006, J VEG SCI, V17, P255, DOI 10.1658/1100-9233(2006)17[255:TCATDI]2.0.CO;2; Groleau-Renaud V, 1998, PLANT SOIL, V201, P231, DOI 10.1023/A:1004316416034; Gross N, 2009, FUNCT ECOL, V23, P1167, DOI 10.1111/j.1365-2435.2009.01591.x; Guyonnet JP, 2017, FEMS MICROBIOL ECOL, V93, DOI 10.1093/femsec/fix022; Haichar FE, 2013, AGRONOMY-BASEL, V3, P621, DOI 10.3390/agronomy3040621; Haichar FE, 2014, SOIL BIOL BIOCHEM, V77, P69, DOI 10.1016/j.soilbio.2014.06.017; Haichar FE, 2008, ISME J, V2, P1221, DOI 10.1038/ismej.2008.80; Hummel I, 2007, NEW PHYTOL, V173, P313, DOI 10.1111/j.1469-8137.2006.01912.x; Jones DL, 2009, PLANT SOIL, V321, P5, DOI 10.1007/s11104-009-9925-0; Jones DL, 2004, NEW PHYTOL, V163, P459, DOI 10.1111/j.1469-8137.2004.01130.x; Katovska E., 2014, BIOGEOCHEMISTRY, V122, P47; Maire V, 2009, FUNCT ECOL, V23, P668, DOI 10.1111/j.1365-2435.2009.01557.x; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Mommer L, 2012, NEW PHYTOL, V195, P725, DOI 10.1111/j.1469-8137.2012.04247.x; Moreau D, 2015, ECOLOGY, V96, P2300, DOI 10.1890/14-1761.1; Orwin KH, 2010, J ECOL, V98, P1074, DOI 10.1111/j.1365-2745.2010.01679.x; Osnas JLD, 2013, SCIENCE, V340, P741, DOI 10.1126/science.1231574; Personeni E, 2004, PLANT SOIL, V267, P129, DOI 10.1007/s11104-005-4656-3; Personeni E, 2007, J EXP BOT, V58, P2091, DOI 10.1093/jxb/erm065; Philippot L, 2013, NAT REV MICROBIOL, V11, P789, DOI 10.1038/nrmicro3109; Pratt RB, 2007, NEW PHYTOL, V174, P787, DOI 10.1111/j.1469-8137.2007.02061.x; Reich PB, 2003, INT J PLANT SCI, V164, pS143, DOI 10.1086/374368; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Roumet C, 2006, NEW PHYTOL, V170, P357, DOI 10.1111/j.1469-8137.2006.01667.x; Roumet C, 2008, PLANT SOIL, V312, P69, DOI 10.1007/s11104-008-9635-z; Roumet C, 2016, NEW PHYTOL, V210, P815, DOI 10.1111/nph.13828; Sultan SE, 2000, TRENDS PLANT SCI, V5, P537, DOI 10.1016/S1360-1385(00)01797-0; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Wahl S, 2000, NEW PHYTOL, V148, P459, DOI 10.1046/j.1469-8137.2000.00775.x; Watson L., 1992, GRASS GENERA WORLD; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 44 2 2 10 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. AUG 2018 8 16 8573 8581 10.1002/ece3.4383 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GU0NC WOS:000444946300066 30250724 DOAJ Gold 2019-02-21 J McKnight, A; Blomberg, EJ; Golet, GH; Irons, DB; Loftin, CS; McKinney, ST McKnight, Aly; Blomberg, Erik J.; Golet, Gregory H.; Irons, David B.; Loftin, Cynthia S.; McKinney, Shawn T. Experimental evidence of long-term reproductive costs in a colonial nesting seabird JOURNAL OF AVIAN BIOLOGY English Article cost of reproduction; multi-state capture-mark-recapture modeling; experimental brood size manipulation KITTIWAKE RISSA-TRIDACTYLA; BLACK-LEGGED KITTIWAKES; LIFE-HISTORY EVOLUTION; LIVED SEABIRD; PARENTAL EFFORT; BODY CONDITION; BROOD SIZE; POPULATION-GROWTH; NATURAL-SELECTION; BREEDING SUCCESS Trade-offs between current and future reproduction are central to the evolution of life histories. Experiments that manipulate brood size provide an effective approach to investigating future costs of current reproduction. Most manipulative studies to date, however, have addressed only the short-term effects of brood size manipulation. Our goal was to determine whether survival or breeding costs of reproduction in a long-lived species manifest beyond the subsequent breeding season. To this end, we investigated long-term survival and breeding effects of a multi-year reproductive cost experiment conducted on black-legged kittiwakes Rissa tridactyla, a long-lived colonial nesting seabird. We used multi-state capture-recapture modeling to assess hypotheses regarding the role of experimentally reduced breeding effort and other factors, including climate phase and colony size and productivity, on future survival and breeding probabilities during the 16-yr period following the experiment. We found that forced nest failures had a positive effect on breeding probability over time, but had no effect on long-term survival. This apparent canalization of survival suggests that adult survival is the most important parameter influencing fitness in this long-lived species, and that adults should pay reproductive costs in ways that do not compromise this critical life history parameter. When declines in adult survival rate are observed, they may indicate populations of conservation concern. [McKnight, Aly] Unity Coll, Sch Biodivers Conservat, Unity, ME 04988 USA; [Blomberg, Erik J.] Univ Maine, Dept Wildlife Fisheries & Conservat Biol, Orono, ME USA; [Golet, Gregory H.] Nature Conservancy, Northern Cent Valley, Chico, CA USA; [Irons, David B.] US Fish & Wildlife Serv, Migratory Bird Management Off, Anchorage, AK USA; [Loftin, Cynthia S.; McKinney, Shawn T.] US Geol Survey, Maine Cooperat Fish & Wildlife Res Unit, Orono, ME USA McKnight, A (reprint author), Unity Coll, Sch Biodivers Conservat, Unity, ME 04988 USA. aly.mcknight@gmail.com Loftin, Cynthia/0000-0001-9104-3724 U.S. Fish and Wildlife Service; Biology Dept at the University of California, Santa Cruz; EVOS Trustee Council; U.S. Fish and Wildlife Service (USFWS); Earthwatch Inst.; U.S. Fish and Wildlife Service Region 7 IACUC [2008007]; Univ. of Maine; Maine Dept of Inland Fisheries and Wildlife; U.S. Geological Survey, Maine Cooperative Fish and Wildlife Research Unit Funding for the original experiment was provided by the U.S. Fish and Wildlife Service, a grant awarded to GG by the Biology Dept at the University of California, Santa Cruz, and the EVOS Trustee Council. Funding for post-experimental re-sighting was provided by the U.S. Fish and Wildlife Service (USFWS) and the Earthwatch Inst. Field studies were conducted under U.S. Fish and Wildlife Service Region 7 IACUC #2008007. Administrative, financial, and computer support during data analysis and manuscript development was provided by the Univ. of Maine and Maine Dept of Inland Fisheries and Wildlife through the Cooperative Agreement with the U.S. Geological Survey, Maine Cooperative Fish and Wildlife Research Unit. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; Aubry LM, 2011, J ANIM ECOL, V80, P375, DOI 10.1111/j.1365-2656.2010.01784.x; Aubry LM, 2009, ECOLOGY, V90, P2491, DOI 10.1890/08-1475.1; Barbraud C, 2001, NATURE, V411, P183, DOI 10.1038/35075554; Bardsen BJ, 2011, OIKOS, V120, P245, DOI 10.1111/j.1600-0706.2010.18597.x; Barraquand F, 2014, J ANIM ECOL, V83, P375, DOI 10.1111/1365-2656.12140; Boonekamp JJ, 2014, ECOL LETT, V17, P599, DOI 10.1111/ele.12263; BOYD IL, 1995, J ANIM ECOL, V64, P505, DOI 10.2307/5653; Bried Joel, 2002, P263; Burnham K. P., 1998, MODEL SELECTION INFE; Cadiou B, 1999, IBIS, V141, P321, DOI 10.1111/j.1474-919X.1999.tb07554.x; Cam E, 2000, OIKOS, V90, P560, DOI 10.1034/j.1600-0706.2000.900314.x; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Catry P, 2006, P R SOC B, V273, P1625, DOI 10.1098/rspb.2006.3482; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; COULSON JC, 1966, J ANIM ECOL, V35, P269, DOI 10.2307/2394; COULSON JC, 1984, ANIM BEHAV, V32, P1204, DOI 10.1016/S0003-3472(84)80238-9; COULSON JC, 1985, J ANIM ECOL, V54, P9, DOI 10.2307/4617; Danchin E, 1998, ECOLOGY, V79, P2415, DOI 10.2307/176832; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; DeForest LN, 1996, ECOLOGY, V77, P1501, DOI 10.2307/2265547; DELANY S, 2006, WATERBIRD POPULATION; Erikstad KE, 1997, BEHAV ECOL SOCIOBIOL, V40, P95, DOI 10.1007/s002650050320; FAIRWEATHER JA, 1995, ANIM BEHAV, V50, P455, DOI 10.1006/anbe.1995.0259; Fernandez M, 2000, ECOL LETT, V3, P487, DOI 10.1046/j.1461-0248.2000.00172.x; FOWLER CW, 1981, ECOLOGY, V62, P602, DOI 10.2307/1937727; Frederiksen M, 2000, J ANIM ECOL, V69, P737, DOI 10.1046/j.1365-2656.2000.00435.x; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Golet GH, 1999, OECOLOGIA, V120, P530, DOI 10.1007/s004420050887; Golet GH, 2004, ECOL MONOGR, V74, P353, DOI 10.1890/02-4029; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; GOODMAN D, 1984, THEOR POPUL BIOL, V25, P1, DOI 10.1016/0040-5809(84)90002-9; Goss-Custard JD, 2006, ECOL APPL, V16, P2215, DOI 10.1890/1051-0761(2006)016[2215:TOABIM]2.0.CO;2; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Green DJ, 2001, J AVIAN BIOL, V32, P6, DOI 10.1034/j.1600-048X.2001.320102.x; Gremillet D, 2012, MAR ECOL PROG SER, V454, P197, DOI 10.3354/meps09590; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Harding A, 2013, DEEP-SEA RES PT II, V94, P178, DOI 10.1016/j.dsr2.2013.03.013; HATCH SA, 1993, IBIS, V135, P247, DOI 10.1111/j.1474-919X.1993.tb02841.x; Hatch SA, 2013, MAR ECOL PROG SER, V477, P271, DOI 10.3354/meps10161; Heidinger BJ, 2006, P ROY SOC B-BIOL SCI, V273, P2227, DOI 10.1098/rspb.2006.3557; JISAO, 2015, PAC DEC OSC IND VAL; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Kullberg C, 2002, J AVIAN BIOL, V33, P179, DOI 10.1034/j.1600-048X.2002.330209.x; Lake J. L., 2013, 201301 AFSC NOAA NAT; Lescroel A, 2009, J ANIM ECOL, V78, P798, DOI 10.1111/j.1365-2656.2009.01542.x; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; Limmer B, 2010, OIKOS, V119, P500, DOI 10.1111/j.1600-0706.2009.16673.x; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Miles DB, 2000, EVOLUTION, V54, P1386; Mulard H, 2008, BEHAV PROCESS, V79, P1, DOI 10.1016/j.beproc.2008.03.005; Negroes N, 2010, J WILDLIFE MANAGE, V74, P1195, DOI 10.2193/2009-256; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; NPSDP, 2015, N PAC SEABR DAT PORT; OLLASON JC, 1978, J ANIM ECOL, V47, P961, DOI 10.2307/3681; Orell M, 2002, J ANIM ECOL, V71, P55, DOI 10.1046/j.0021-8790.2001.00575.x; Parejo D, 2006, BEHAV ECOL SOCIOBIOL, V60, P184, DOI 10.1007/s00265-005-0155-z; PETTIFOR RA, 1993, J ANIM ECOL, V62, P145, DOI 10.2307/5489; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Plumel MI, 2014, FRONT ZOOL, V11, DOI 10.1186/1742-9994-11-41; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; Renner HM, 2014, DEEP-SEA RES PT II, V109, P251, DOI 10.1016/j.dsr2.2014.03.006; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RYSER J, 1989, OECOLOGIA, V78, P264, DOI 10.1007/BF00377165; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; SEIGEL RA, 1987, OECOLOGIA, V73, P481, DOI 10.1007/BF00379404; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Sullivan K. M., 2004, THESIS; SYDEMAN WJ, 1991, J ANIM ECOL, V60, P135, DOI 10.2307/5450; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANDENBERGHE EP, 1992, BEHAV ECOL SOCIOBIOL, V30, P373, DOI 10.1007/BF00176171; Veasey JS, 2001, J ANIM ECOL, V70, P20, DOI 10.1046/j.1365-2656.2001.00476.x; Velando A, 2003, J ANIM ECOL, V72, P846, DOI 10.1046/j.1365-2656.2003.00756.x; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Wernham CV, 1998, J ANIM ECOL, V67, P25, DOI 10.1046/j.1365-2656.1998.00166.x; White GC, 1999, BIRD STUDY, V46, P120; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOLLER RD, 1977, IBIS, V119, P339, DOI 10.1111/j.1474-919X.1977.tb08252.x; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913 87 0 0 10 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. AUG 2018 49 8 UNSP e01779 10.1111/jav.01779 14 Ornithology Zoology GS8FL WOS:000443943500009 2019-02-21 J Mwangi, J; Ndithia, HK; Kentie, R; Muchai, M; Tieleman, BI Mwangi, Joseph; Ndithia, Henry K.; Kentie, Rosemarie; Muchai, Muchane; Tieleman, B. Irene Nest survival in year-round breeding tropical red-capped larks Calandrella cinerea increases with higher nest abundance but decreases with higher invertebrate availability and rainfall JOURNAL OF AVIAN BIOLOGY English Article nest predation; tropical; nest success PREDATION RATES; FOOD LIMITATION; SITE SELECTION; MALLARD NESTS; PARENTAL CARE; SOUTH-AFRICA; GREAT TITS; SUCCESS; BIRDS; DENSITY Nest survival is critical to breeding in birds and plays an important role in life-history evolution and population dynamics. Studies evaluating the proximate factors involved in explaining nest survival and the resulting temporal patterns are biased in favor of temperate regions. Yet, such studies are especially pertinent to the tropics, where nest predation rates are typically high and environmental conditions often allow for year-round breeding. To tease apart the effects of calendar month and year, population-level breeding activity and environmental conditions, we studied nest survival over a 64-month period in equatorial, year-round breeding red-capped larks Calandrella cinerea in Kenya. We show that daily nest survival rates varied with time, but not in a predictable seasonal fashion among months or consistently among years. We found negative influences of flying invertebrate biomass and rain on nest survival and higher survival of nests when nests were more abundant, which suggests that nest predation resulted from incidental predation. Although an increase in nest predation is often attributed to an increase in nest predators, we suggest that in our study, it may be caused by altered predator activity resulting from increased activity of the primary prey, invertebrates, rather than activity of the red-capped larks. Our results emphasize the need to conduct more studies in Afro-tropical regions because proximate mechanisms explaining nest predation can be different in the unpredictable and highly variable environments of the tropics compared with the relatively predictable seasonal changes found in temperate regions. Such studies will aid in better understanding of the environmental influences on life-history variation and population dynamics in birds. [Mwangi, Joseph; Ndithia, Henry K.; Kentie, Rosemarie; Tieleman, B. Irene] Univ Groningen, Groningen Inst Evolutionary Life Sci, Groningen, Netherlands; [Kentie, Rosemarie] Univ Oxford, Zool Dept, Oxford OX1 3PS, England; [Mwangi, Joseph; Ndithia, Henry K.; Muchai, Muchane] Natl Museums Kenya, Dept Zool, Ornithol Sect, Nairobi, Kenya; [Muchai, Muchane] Univ Nairobi, Coll Agr & Vet Sci, Wildlife & Conservat Sect, Dept Clin Studies, Nairobi, Kenya Mwangi, J (reprint author), Univ Groningen, Groningen Inst Evolutionary Life Sci, Groningen, Netherlands.; Mwangi, J (reprint author), Natl Museums Kenya, Dept Zool, Ornithol Sect, Nairobi, Kenya. mwamujos@yahoo.com Netherlands Fellowship Programme of Nuffic [CF9159/2013, CF6833/2010]; Netherlands Organization for Scientific Research [NWO-VIDI 864.10.012]; Lucie Burgers foundation; Royal Netherlands Academy of Arts and Sciences Funding for the study was provided by The Netherlands Fellowship Programme of Nuffic (grants no. CF9159/2013 to BIT and JMM, CF6833/2010 to BIT and HKN), the Netherlands Organization for Scientific Research (NWO-VIDI 864.10.012 to BIT), Lucie Burgers foundation (to JMM) and two grants from the Ecology fund of the Royal Netherlands Academy of Arts and Sciences (to JMM). Anderson PC, 1999, OSTRICH, V70, P112, DOI 10.1080/00306525.1999.9634523; Arlettaz R, 2010, J ORNITHOL, V151, P889, DOI 10.1007/s10336-010-0527-7; Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; ARNOLD TW, 1993, J WILDLIFE MANAGE, V57, P578, DOI 10.2307/3809285; Ausden M, 2006, ECOLOGICAL CENSUS TECHNIQUES: A HANDBOOK, 2ND EDITION, P214, DOI 10.1017/CBO9780511790508.006; Barton K., 2018, MUMIN MULTIMODEL INF; Berkunsky I, 2016, ARDEA, V104, P143, DOI 10.5253/arde.v104i2.a6; Borgmann KL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065909; Burnham K. P, 2002, MODEL SELECTION MULT; COWARDIN LM, 1979, J WILDLIFE MANAGE, V43, P18, DOI 10.2307/3800632; Davis SK, 2005, CONDOR, V107, P605, DOI 10.1650/0010-5422(2005)107[0605:NSPATI]2.0.CO;2; Dawson A, 2001, J BIOL RHYTHM, V16, P365, DOI 10.1177/074873001129002079; Dinsmore SJ, 2002, ECOLOGY, V83, P3476, DOI 10.1890/0012-9658(2002)083[3476:ATFMAN]2.0.CO;2; Elmberg J, 2009, J AVIAN BIOL, V40, P317, DOI 10.1111/j.1600-048X.2008.04543.x; Emmering QC, 2011, J ANIM ECOL, V80, P1305, DOI 10.1111/j.1365-2656.2011.01869.x; Franca LF, 2016, REV BRAS ORNITOL, V24, P228; Gotmark F, 2002, OECOLOGIA, V130, P25, DOI 10.1007/s004420100769; GRANT PR, 1980, AUK, V97, P227; Grant TA, 2005, AUK, V122, P661, DOI 10.1642/0004-8038(2005)122[0661:TVIPNS]2.0.CO;2; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; Gunnarsson G, 2008, IBIS, V150, P259, DOI 10.1111/j.1474-919X.2007.00772.x; Haff TM, 2011, BIOL LETTERS, V7, P493, DOI 10.1098/rsbl.2010.1125; Haley KL, 2013, J RAPTOR RES, V47, P365, DOI 10.3356/JRR-12-00022.1; Holmes RT, 2011, FOREST ECOL MANAG, V262, P20, DOI 10.1016/j.foreco.2010.06.021; Ibanez-Alamo JD, 2015, J ORNITHOL, V156, pS247, DOI 10.1007/s10336-015-1207-4; Illera JC, 2006, J AVIAN BIOL, V37, P447, DOI 10.1111/j.2006.0908-8857.03676.x; Kentie R, 2015, IBIS, V157, P614, DOI 10.1111/ibi.12273; Klare U, 2011, MAMM BIOL, V76, P646, DOI 10.1016/j.mambio.2011.06.005; Koczur LM, 2014, WATERBIRDS, V37, P371, DOI 10.1675/063.037.0404; Laake J. L., 2013, 201301 AFSC NOAA NAT; LACK D, 1950, IBIS, V92, P288, DOI 10.1111/j.1474-919X.1950.tb01753.x; Maphisa DH, 2009, OSTRICH, V80, P19, DOI 10.2989/OSTRICH.2009.80.1.3.761; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martinez-Padilla J, 2008, NATURWISSENSCHAFTEN, V95, P391, DOI 10.1007/s00114-007-0337-9; MAYFIELD HF, 1975, WILSON BULL, V87, P456; MOREAU RE, 1950, IBIS, V92, P419, DOI 10.1111/j.1474-919X.1950.tb03006.x; MORTON ES, 1971, SCIENCE, V171, P920, DOI 10.1126/science.171.3974.920; Mwangi J., 2018, DRYAD DIGITAL REPOSI, DOI [10. 5061/dryad. gd6555j, DOI 10.5061/DRYAD.GD6555J]; Naimi B, 2015, USDM UNCERTAINTY ANA, V1, P1; Ndithia HK, 2017, FRONT ZOOL, V14, DOI 10.1186/s12983-017-0213-1; Ndithia HK, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0175275; NEL JAJ, 1978, B CARNEGIE MUS NAT H, V6, P132; Newmark WD, 2011, P NATL ACAD SCI USA, V108, P11488, DOI 10.1073/pnas.1104955108; Oberg M, 2015, ECOL EVOL, V5, P345, DOI 10.1002/ece3.1345; ONIKI Y, 1979, BIOTROPICA, V11, P60, DOI 10.2307/2388174; Picker M., 2003, FIELD GUIDE INSECTS; Polak M, 2016, PEERJ, V4, DOI 10.7717/peerj.2047; Praus L, 2014, ARDEA, V102, P87, DOI 10.5253/078.102.0112; Preston KL, 2006, ECOLOGY, V87, P160, DOI 10.1890/05-0344; Radford AN, 2001, BIRD STUDY, V48, P214, DOI 10.1080/00063650109461220; Ricklefs R. E., 1969, ANAL NESTING MORTALI; Rishworth GM, 2015, MAR ECOL PROG SER, V530, P153, DOI 10.3354/meps11317; Robinson WD, 2000, J AVIAN BIOL, V31, P151, DOI 10.1034/j.1600-048X.2000.310207.x; Schmidt KA, 2001, ECOLOGY, V82, P2937, DOI 10.1890/0012-9658(2001)082[2937:INPISB]2.0.CO;2; Schmidt KA, 1999, OIKOS, V87, P65, DOI 10.2307/3546997; Shaffer TL, 2004, AUK, V121, P526, DOI 10.1642/0004-8038(2004)121[0526:AUATAN]2.0.CO;2; Shiao MT, 2015, AUK, V132, P671, DOI 10.1642/AUK-15-10.1; Shustack DP, 2011, J AVIAN BIOL, V42, P204, DOI 10.1111/j.1600-048X.2011.05231.x; SIIKAMAKI P, 1995, J AVIAN BIOL, V26, P76, DOI 10.2307/3677215; Siikamaki P, 1996, IBIS, V138, P471, DOI 10.1111/j.1474-919X.1996.tb08067.x; SIMONS LS, 1990, ECOLOGY, V71, P869, DOI 10.2307/1937358; SKUTCH AF, 1966, IBIS, V108, P1, DOI 10.1111/j.1474-919X.1966.tb07248.x; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Soderstrom B, 1999, ECOGRAPHY, V22, P455, DOI 10.1111/j.1600-0587.1999.tb00582.x; Sofaer HR, 2014, ECOL EVOL, V4, P2738, DOI 10.1002/ece3.1127; Spaans B, 1998, ARDEA, V86, P11; Spanhove T, 2009, ANIM CONSERV, V12, P267, DOI 10.1111/j.1469-1795.2009.00249.x; Spanhove T, 2014, J ORNITHOL, V155, P411, DOI 10.1007/s10336-013-1021-9; Stuart C. T., 2003, CANID NEWS, V6, P2; Stutchbury BJM, 2008, WILSON J ORNITHOL, V120, P26, DOI 10.1676/07-018.1; THOMSON AL, 1950, IBIS, V92, P173, DOI 10.1111/j.1474-919X.1950.tb01748.x; Tieleman BI, 2008, CONDOR, V110, P116, DOI 10.1525/cond.2008.110.1.116; VICKERY PD, 1992, OIKOS, V63, P281, DOI 10.2307/3545389; WESTNEAT DF, 1992, ECOLOGY, V73, P2284, DOI 10.2307/1941475; White GC, 1999, BIRD STUDY, V46, P120; Wilson S, 2007, CONDOR, V109, P377, DOI 10.1650/0010-5422(2007)109[377:NSPIWP]2.0.CO;2; Xiao HT, 2017, J AVIAN BIOL, V48, P513, DOI 10.1111/jav.00934; Yanes M, 1996, CONSERV BIOL, V10, P881, DOI 10.1046/j.1523-1739.1996.10030881.x; YOMTOV Y, 1974, J ANIM ECOL, V43, P479, DOI 10.2307/3378; ZIMMERMAN DA, 1996, BIRDS KENYA NO TANZA; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x 82 0 0 5 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. AUG 2018 49 8 UNSP e01645 10.1111/jav.01645 11 Ornithology Zoology GS8FL WOS:000443943500011 2019-02-21 J Sayago, R; Quesada, M; Aguilar, R; Ashworth, L; Lopezaraiza-Mikel, M; Marten-Rodriguez, S Sayago, Roberto; Quesada, Mauricio; Aguilar, Ramiro; Ashworth, Lorena; Lopezaraiza-Mikel, Martha; Marten-Rodriguez, Silvana Consequences of habitat fragmentation on the reproductive success of two Tillandsia species with contrasting life history strategies AOB PLANTS English Article Bromeliaceae; fragmentation; hummingbird pollination; monocarpy; polycarpy; reproductive success EPIPHYTIC BROMELIAD COMMUNITIES; DRY TROPICAL FOREST; GENETIC-STRUCTURE; PLANT; POLLINATION; DIVERSITY; SECONDARY; DEFORESTATION; AVAILABILITY; HUMMINGBIRDS Fragmentation of natural habitats generally has negative effects on the reproductive success of many plant species; however, little is known about epiphytic plants. We assessed the impact of forest fragmentation on plant-pollinator interactions and female reproductive success in two epiphytic Tillandsia species with contrasting life history strategies (polycarpic and monocarpic) in Chamela, Jalisco, Mexico, over three consecutive years. Hummingbirds were the major pollinators of both species and pollinator visitation rates were similar between habitat conditions. In contrast, the composition and frequency of floral visitors significantly varied between habitat conditions in polycarpic and self-incompatible T. intermedia but not in monocarpic self-compatible T. makoyana. There were no differences between continuous and fragmented habitats in fruit set in either species, but T. makoyana had a lower seed set in fragmented than in continuous forests. In contrast, T. intermedia had similar seed set in both forest conditions. These results indicate that pollinators were effective under both fragmented and continuous habitats, possibly because the major pollinators are hummingbird species capable of moving across open spaces and human-modified habitats. However, the lower seed set of T. makoyana under fragmented conditions suggests that the amount and quality of pollen deposited onto stigmas may differ between habitat conditions. Alternatively, changes in resource availability may also cause reductions in seed production in fragmented habitats. This study adds to the limited information on the effects of habitat fragmentation on the reproductive success of epiphytic plants, showing that even related congeneric species may exhibit different responses to human disturbance. Plant reproductive systems, along with changes in pollinator communities associated with habitat fragmentation, may have yet undocumented consequences on gene flow, levels of inbreeding and progeny quality of dry forest tillandsias. [Sayago, Roberto; Lopezaraiza-Mikel, Martha] Univ Autonoma Guerrero, Fac Desarrollo Sustentable, Campus Costa Grande, Tecpan De Galeana 40900, Guerrero, Mexico; [Sayago, Roberto; Quesada, Mauricio; Aguilar, Ramiro; Ashworth, Lorena; Lopezaraiza-Mikel, Martha; Marten-Rodriguez, Silvana] Univ Nacl Autonoma Mexico, ENES, Lab Nacl Anal & Sintesis Ecol LANASE, Antigua Carretera Patzcuaro 8701, Morelia 58190, Michoacan, Mexico; [Sayago, Roberto; Quesada, Mauricio] Univ Nacl Autonoma Mexico, Inst Invest Ecosistemas & Sustentabilidad, Antigua Carretera Patzcuaro 8701, Morelia 58190, Michoacan, Mexico; [Aguilar, Ramiro; Ashworth, Lorena] Univ Nacl Cordoba, CONICET, Inst Multidisciplinario Biol Vegetal, CP X5000JJC, Cordoba, Argentina Marten-Rodriguez, S (reprint author), Univ Nacl Autonoma Mexico, ENES, Lab Nacl Anal & Sintesis Ecol LANASE, Antigua Carretera Patzcuaro 8701, Morelia 58190, Michoacan, Mexico. smartenr@enesmorelia.unam.mx Consejo Nacional de Ciencia y Tecnologia, Mexico (CONACYT Laboratorios Nacionales) [293701]; SAGARPA-CONACyT [291333]; PAPIIT [IA208416, IA207618, IV200418]; Consejo Nacional de Ciencia y Tecnologia, Mexico (Repositorio Institucional) [271432] This work was supported by grants from Consejo Nacional de Ciencia y Tecnologia, Mexico (CONACYT Laboratorios Nacionales 293701 and Repositorio Institucional 271432), SAGARPA-CONACyT (291333), PAPIIT (IA208416, IA207618 to S.M.-R. and IV200418 to M.Q.). Aguilar R, 2008, MOL ECOL, V17, P5177, DOI 10.1111/j.1365-294X.2008.03971.x; Aguilar R, 2006, ECOL LETT, V9, P968, DOI 10.1111/j.1461-0248.2006.00927.x; Aguirre A, 2010, J VEG SCI, V21, P6, DOI 10.1111/j.1654-1103.2009.01131.x; AIZEN MA, 1994, ECOLOGY, V75, P330, DOI 10.2307/1939538; Amasino R, 2009, GENOME BIOL, V10, DOI 10.1186/gb-2009-10-7-228; Tapia-Palacios MA, 2018, FOREST ECOL MANAG, V426, P18, DOI 10.1016/j.foreco.2017.10.015; Arizmendi MC, 2014, COLIBRIES MEXICO NOR; ARIZMENDI MD, 1990, BIOTROPICA, V22, P172; Bawa KS, 2003, AM J BOT, V90, P877, DOI 10.3732/ajb.90.6.877; Benzing D. H., 2000, BROMELIACEAE PROFILE; Benzing DH, 1990, VASCULAR EPIPHYTES; Boelter CR, 2014, J VEG SCI, V25, P1090, DOI 10.1111/jvs.12154; Brys R, 2011, AM J BOT, V98, P1834, DOI 10.3732/ajb.1100154; Bush Stephen P., 1995, Selbyana, V16, P155; Buzato S, 2000, BIOTROPICA, V32, P824, DOI 10.1111/j.1744-7429.2000.tb00621.x; Cascante A, 2002, CONSERV BIOL, V16, P137, DOI 10.1046/j.1523-1739.2002.00317.x; Cascante-Marin A, 2006, BASIC APPL ECOL, V7, P520, DOI 10.1016/j.baae.2005.10.005; Cascante-Marin A, 2014, BIOTROPICA, V46, P425, DOI 10.1111/btp.12119; Cascante-Marin A, 2009, J TROP ECOL, V25, P63, DOI 10.1017/S0266467408005622; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Cunningham SA, 2000, P ROY SOC B-BIOL SCI, V267, P1149, DOI 10.1098/rspb.2000.1121; Einzmann HJR, 2017, BIODIVERS CONSERV, V26, P1393, DOI 10.1007/s10531-017-1306-z; Fahrig L, 2003, ANNU REV ECOL EVOL S, V34, P487, DOI 10.1146/annurev.ecolsys.34.011802.132419; FEINSINGER P, 1978, ECOL MONOGR, V48, P269, DOI 10.2307/2937231; Flores-Palacios A, 2004, PLANT ECOL, V173, P259, DOI 10.1023/B:VEGE.0000029337.92724.18; Fuchs EJ, 2003, CONSERV BIOL, V17, P149, DOI 10.1046/j.1523-1739.2003.01140.x; Garcia-Oliva F, 2002, HIST NATURAL CHAMELA, P3; Gentry Alwyn H., 1995, P146, DOI 10.1017/CBO9780511753398.007; Ghazoul J, 2004, BIOTROPICA, V36, P128, DOI 10.1646/Q1573; Gonzalez-Astorga JG, 2004, ANN BOT-LONDON, V94, P545, DOI 10.1093/aob/mch171; Goverde M, 2002, BIOL CONSERV, V104, P293, DOI 10.1016/S0006-3207(01)00194-X; Hadley AS, 2018, BIOTROPICA, V50, P74, DOI 10.1111/btp.12487; Hadley AS, 2009, BIOL LETTERS, V5, P207, DOI 10.1098/rsbl.2008.0691; Herlihy CR, 2004, EVOLUTION, V58, P2693; Hofstede R.G.M., 1993, SELBYANA, V14, P37, DOI DOI 10.1007/SL1258-008-9519-6; Honnay O, 2005, NEW PHYTOL, V166, P723, DOI 10.1111/j.1469-8137.2005.01352.x; Kaehler Miriam, 2005, Braz. J. Bot., V28, P219, DOI 10.1590/S0100-84042005000200003; Keller LF, 2002, TRENDS ECOL EVOL, V17, P230, DOI 10.1016/S0169-5347(02)02489-8; Laurance WF, 2004, PHILOS T ROY SOC B, V359, P345, DOI 10.1098/rstb.2003.1430; LLOYD DG, 1992, INT J PLANT SCI, V153, P358, DOI 10.1086/297040; Lott EJ, 2006, NEOTROPICAL SAVANNAS, P307; Magrach A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048743; Marten-Rodriguez S, 2015, J ECOL, V103, P1190, DOI 10.1111/1365-2745.12457; Martin PH, 2004, BIOTROPICA, V36, P297; Matallana G, 2010, PLANT SYST EVOL, V289, P57, DOI 10.1007/s00606-010-0332-z; Matos G, 2015, FLORA, V211, P1, DOI 10.1016/j.flora.2015.01.001; Mix C, 2006, BASIC APPL ECOL, V7, P59, DOI 10.1016/j.baae.2005.04.007; Munguia-Rosas MA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111742; Murren CJ, 2002, J ECOL, V90, P100, DOI 10.1046/j.0022-0477.2001.00638.x; Ornelas JF, 1995, CONSERVATION NEOTROP, P98; Parra-Tabla V, 2000, BIOL CONSERV, V94, P335, DOI 10.1016/S0006-3207(99)00187-1; Parra-Tabla V, 2011, BIOTROPICA, V43, P640, DOI 10.1111/j.1744-7429.2011.00752.x; Poorter L, 2005, J ECOL, V93, P268, DOI 10.1111/j.1365-2745.2005.00958.x; Quesada M., 2011, Seasonally dry tropical forests: ecology and conservation, P173; Quesada M, 2001, AM J BOT, V88, P2113, DOI 10.2307/3558436; QUESADA M, 2004, BIOD CONS COST RIC, P266; Quesada M, 2014, TROPICAL DRY FORESTS IN THE AMERICAS: ECOLOGY, CONSERVATION, AND MANAGEMENT, P17; Quesada M, 2009, FOREST ECOL MANAG, V258, P1014, DOI 10.1016/j.foreco.2009.06.023; Rossetti MR, 2017, ECOL LETT, V20, P264, DOI 10.1111/ele.12723; Sanchez-Azofeifa GA, 2009, FOREST ECOL MANAG, V258, P907, DOI 10.1016/j.foreco.2008.10.030; SAS Institute Inc, 2008, SAS STAT 9 2 US GUID; Sayago R, 2016, THESIS; Sayago R, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2821; SOLTIS DE, 1987, AM J BOT, V74, P531, DOI 10.2307/2443832; STILES FG, 1977, SCIENCE, V198, P1177, DOI 10.1126/science.198.4322.1177; Storck-Tonon D, 2017, BIOL CONSERV, V214, P270, DOI 10.1016/j.biocon.2017.07.018; STOUFFER PC, 1995, CONSERV BIOL, V9, P1085, DOI 10.1046/j.1523-1739.1995.9051085.x; Trejo I, 2000, BIOL CONSERV, V94, P133, DOI 10.1016/S0006-3207(99)00188-3; TURNER IM, 1994, CONSERV BIOL, V8, P705, DOI 10.1046/j.1523-1739.1994.08030705.x; Volpe NL, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0167513; Werner FA, 2008, BIODIVERS CONSERV, V17, P3195, DOI 10.1007/s10531-008-9421-5; Werner FA, 2009, J VEG SCI, V20, P59, DOI 10.1111/j.1654-1103.2009.05286.x; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J; Zotz G., 2009, V70, P147, DOI 10.1007/978-3-540-68421-3_7; Zotz G, 2016, PLANTS PLANTS THE BI 75 0 0 6 6 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2041-2851 AOB PLANTS Aob Plants AUG 2018 10 4 ply038 10.1093/aobpla/ply038 12 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology GS2KS WOS:000443378200003 30018757 DOAJ Gold 2019-02-21 J Barneche, DR; Burgess, SC; Marshall, DJ Barneche, Diego R.; Burgess, Scott C.; Marshall, Dustin J. Global environmental drivers of marine fish egg size GLOBAL ECOLOGY AND BIOGEOGRAPHY English Article geometric biology; life history; maternal effects; ocean warming; predictability; trait biogeography SPATIAL VARIATION; LIFE-HISTORIES; OFFSPRING SIZE; BODY-SIZE; PREDICTABILITY; DISPERSAL; EVOLUTION; BIOGEOGRAPHY; PATTERNS; NUMBER Aim: To test long-standing theory on the role of environmental conditions (both mean and predictability) in shaping global patterns in the egg sizes of marine fishes. Location: Global (50 degrees S to 50 degrees N). Time period: 1880 to 2015. Major taxa studied: Marine fish. Methods: We compiled the largest geo-located dataset of marine fish egg size (diameter) to date (n=1,078 observations; 192 studies; 288 species; 242 localities). We decomposed sea surface temperature (SST) and chlorophyll-a time series into mean and predictability (seasonality and colour of environmental noise - i.e. how predictable the environment is between consecutive time steps), and used these as predictors of egg size in a Bayesian phylogenetic hierarchical model. We test four specific hypotheses based on the classic discussion by Rass (1941), as well as contemporary life-history theory, and the conceptual model of Winemiller and Rose (1992). Results: Both environmental mean and predictability correlated with egg size. Our parsimonious model indicated that egg size decreases by c. 2.0-fold moving from 1 to 30 degrees C. Environments that were more seasonal with respect to temperature were associated with larger eggs. Increasing mean chlorophyll-a, from 0.1 to 1 mg/m(3), was associated with a c. 1.3-fold decrease in egg size. Lower chlorophyll-a seasonality and reddened noise were also associated with larger egg sizes - aseasonal but more temporally autocorrelated resource regimes favoured larger eggs. Main conclusions: Our findings support results from Rass (1941) and some predictions from Winemiller and Rose (1992). The effects of environmental means and predictability on marine fish egg size are largely consistent with those observed in marine invertebrates with feeding larvae, suggesting that there are important commonalities in how ectotherm egg size responds to environmental change. Our results further suggest that anthropogenically mediated changes in the environment will have profound effects on the distribution of marine life histories. [Barneche, Diego R.; Marshall, Dustin J.] Monash Univ, Ctr Geometr Biol, Sch Biol Sci, Clayton, Vic, Australia; [Burgess, Scott C.] Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA Barneche, DR (reprint author), Univ Sydney, Sch Life & Environm Sci, Sydney, NSW 2006, Australia. barnechedr@gmail.com Burgess, Scott/0000-0002-0348-3453; R. Barneche, Diego/0000-0002-4568-2362 Barneche DR, 2018, SCIENCE, V360, P642, DOI 10.1126/science.aao6868; Braga Goncalves I, 2011, J FISH BIOL, V78, P1847, DOI 10.1111/j.1095-8649.2011.02984.x; Broughton R. E., 2013, PLOS CURRENTS TREE L, V1; BROWN JH, 1973, ECOLOGY, V54, P775, DOI 10.2307/1935672; Burgess SC, 2014, OIKOS, V123, P769, DOI 10.1111/oik.01235; Burkner P., 2017, J STAT SOFTWARE ARTI, V80, P28; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COLWELL RK, 1974, ECOLOGY, V55, P1148, DOI 10.2307/1940366; CRUMP ML, 1981, AM NAT, V117, P724, DOI 10.1086/283755; Dormann CF, 2013, ECOGRAPHY, V36, P27, DOI 10.1111/j.1600-0587.2012.07348.x; DUARTE CM, 1989, OECOLOGIA, V80, P401, DOI 10.1007/BF00379043; Einum S, 2004, EVOL ECOL RES, V6, P443; Einum S, 2002, AM NAT, V160, P756, DOI 10.1086/343876; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; Feary DA, 2014, FISH FISH, V15, P593, DOI 10.1111/faf.12036; Frederich B, 2013, AM NAT, V181, P94, DOI 10.1086/668599; Fritzsche R. A., 1978, DEV FISHES MID ATLAN; Fronhofer EA, 2014, EVOLUTION, V68, P1838, DOI 10.1111/evo.12339; Glynn EF, 2006, BIOINFORMATICS, V22, P310, DOI 10.1093/bioinformatics/bti789; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Halley JM, 1999, THEOR POPUL BIOL, V56, P215, DOI 10.1006/tpbi.1999.1424; HASTINGS A, 1983, THEOR POPUL BIOL, V24, P244, DOI 10.1016/0040-5809(83)90027-8; Hixon MA, 2014, ICES J MAR SCI, V71, P2171, DOI 10.1093/icesjms/fst200; Housworth EA, 2004, AM NAT, V163, P84, DOI 10.1086/380570; Kasimatis K, 2016, CORAL REEFS, V35, P387, DOI 10.1007/s00338-015-1380-1; Kokita T, 2003, MAR BIOL, V143, P593, DOI 10.1007/s00227-003-1104-x; Laptikhovsky V, 2006, MAR ECOL-EVOL PERSP, V27, P7, DOI 10.1111/j.1439-0485.2006.00077.x; Marshall DJ, 2015, ECOL LETT, V18, P174, DOI 10.1111/ele.12402; Marshall DJ, 2012, ANNU REV ECOL EVOL S, V43, P97, DOI 10.1146/annurev-ecolsys-102710-145004; MARSHALL NB, 1953, EVOLUTION, V7, P328, DOI 10.2307/2405343; Meiri S, 2011, GLOBAL ECOL BIOGEOGR, V20, P203, DOI 10.1111/j.1466-8238.2010.00577.x; Michonneau F, 2016, METHODS ECOL EVOL, V7, P1476, DOI 10.1111/2041-210X.12593; Morrongiello JR, 2012, J ANIM ECOL, V81, P806, DOI 10.1111/j.1365-2656.2012.01961.x; Moser H. G., 1996, EARLY STAGES FISHES; O'Connor MI, 2007, P NATL ACAD SCI USA, V104, P1266, DOI 10.1073/pnas.0603422104; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; R Core Team, 2017, R LANG ENV STAT COMP; Rass T. S., 1941, GEOGRAFICHESKIE PARA; Rollinson N, 2013, AM NAT, V182, P76, DOI 10.1086/670648; de Casas RR, 2017, NEW PHYTOL, V214, P1527, DOI 10.1111/nph.14498; Shama LNS, 2015, GLOBAL CHANGE BIOL, V21, P4387, DOI 10.1111/gcb.13041; SLOBODKIN LB, 1969, BROOKHAVEN SYM BIOL, P82; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Travis JMJ, 2001, ECOL RES, V16, P157, DOI 10.1046/j.1440-1703.2001.00381.x; Vasseur DA, 2004, ECOLOGY, V85, P1146, DOI 10.1890/02-3122; Vasseur DA, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2612; Vehtari A, 2016, LOO EFFICIENT LEAVE; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Zuo WY, 2012, P ROY SOC B-BIOL SCI, V279, P1840, DOI 10.1098/rspb.2011.2000 53 0 0 25 25 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1466-822X 1466-8238 GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. AUG 2018 27 8 890 898 10.1111/geb.12748 9 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography GR4LV WOS:000442582200001 2019-02-21 J Moiroux, J; Boivin, G; Brodeur, J Moiroux, Joffrey; Boivin, Guy; Brodeur, Jacques Ovigeny index increases with temperature in an aphid parasitoid: Is early reproduction better when it is hot? JOURNAL OF INSECT PHYSIOLOGY English Article Aphidius ervi; Fecundity; Life history; Oviposition behaviour; Synovigeny; Trade-off LIFE-HISTORY TRAITS; EGG MATURATION STRATEGY; BODY-SIZE; TRADE-OFFS; METABOLIC THEORY; EVOLUTION; HOST; WASP; ECTOTHERMS; RESOURCES Studying relative investment of resources towards early and delayed reproduction is central to understand life history evolution since these traits are generally negatively correlated and traded-off against several other fitness components. For this purpose, ovigeny index (OI), which is calculated as the fraction of the maximum potential lifetime egg complement that is mature upon female emergence, has been developed in insects. Despite the central role of temperature on life history evolution in ectotherms, its influence on ovigeny index has never been tested. Adaptive models imply that OI should increase with temperature because of changes in body size, but the same influence may be expected considering physiological effects of temperature on egg maturation rate or amount of energy available. We investigated in the aphid parasitoid Aphidius ervi the influence of temperature experienced by the immature and/or the adult (from 12 degrees C to 28 degrees C) on ovigeny index and oviposition behaviour. As predicted, OI increased between 16 and 28 degrees C, i.e. females were able to reproduce earlier as temperature increased but this was traded off against a lower delayed reproduction. The highest OI was however observed at 12 degrees, probably because this temperature was too low for females to mature eggs. Females that developed at 20 degrees C and were transferred as adult at 24 degrees C and 28 degrees C had the highest ovigeny index and laid more eggs during the early oviposition period while those transferred at 16 degrees C laid more eggs at the end of their life. Our results suggest that ovigeny index is not only influenced by body size - i.e. the adaptive explanation - but also by adult egg maturation rate, lifespan or amount of energy available - i.e. a physiological and adaptive explanation. [Moiroux, Joffrey; Brodeur, Jacques] Univ Montreal, Dept Sci Biol, Inst Rech Biol Vegetale, 4101 Rue Sherbrooke Est, Montreal, PQ H1X 2B2, Canada; [Moiroux, Joffrey; Boivin, Guy] Hort Agr & Agroalimentaire Canada, Ctr Rech & Dev, 430 Boul Gouin, St Jean, PQ J3B 3E6, Canada; [Moiroux, Joffrey] Univ Avignon, Univ Avignon & Pays Vaucluse, Aix Marseille Univ, CNRS,IRD,UMR IMBE 7263, 301 Rue Baruch Spinoza, F-84916 Avignon 09, France Moiroux, J (reprint author), Univ Montreal, Dept Sci Biol, Inst Rech Biol Vegetale, 4101 Rue Sherbrooke Est, Montreal, PQ H1X 2B2, Canada. joffrey.moiroux@univ-avignon.fr Moiroux, Joffrey/0000-0002-0132-3763 Consortium on Regional Climatology and Adaptation to Climate Change, OURANOS (Quebec, Canada); Fonds vert of the Quebec Ministry of Agriculture, Fisheries and Food We are grateful to Cecile Gerardin for help during this study. This research was part of the project "Impact of climate change on synchronism between pests and their natural enemies" supported by the Consortium on Regional Climatology and Adaptation to Climate Change, OURANOS (Quebec, Canada), and the Fonds vert of the Quebec Ministry of Agriculture, Fisheries and Food. Abram PK, 2017, BIOL REV, V92, P1859, DOI 10.1111/brv.12312; Abram PK, 2016, BIOL J LINN SOC, V117, P620, DOI 10.1111/bij.12658; Amat I, 2006, OECOLOGIA, V148, P153, DOI 10.1007/s00442-005-0332-9; Angilletta MJ, 2002, J THERM BIOL, V27, P249, DOI 10.1016/S0306-4565(01)00094-8; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Berger D, 2008, FUNCT ECOL, V22, P523, DOI 10.1111/j.1365-2435.2008.01392.x; Boivin G, 2012, CAN J PLANT SCI, V92, P1, DOI [10.4141/CJPS2011-045, 10.4141/cjps2011-045]; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Chown SL, 2007, ADV INSECT PHYSIOL, V33, P50; Clarke A, 2006, FUNCT ECOL, V20, P405, DOI 10.1111/j.1365-2435.2006.01109.x; Colinet H, 2007, OECOLOGIA, V152, P425, DOI 10.1007/s00442-007-0674-6; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; Desouhant E, 2005, ANIM BEHAV, V70, P145, DOI 10.1016/j.anbehav.2004.10.015; Development Core Team, 2011, R LANG ENV STAT COMP; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 2004, EVOL ECOL RES, V6, P993; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Fischbein D, 2013, EVOL ECOL, V27, P619, DOI 10.1007/s10682-012-9608-9; Gilchrist GW, 1996, EVOLUTION, V50, P1560, DOI 10.1111/j.1558-5646.1996.tb03928.x; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Ismail M, 2012, OIKOS, V121, P2072, DOI 10.1111/j.1600-0706.2012.20582.x; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Jervis MA, 2003, FUNCT ECOL, V17, P375, DOI 10.1046/j.1365-2435.2003.00742.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2007, BIOL J LINN SOC, V90, P293, DOI 10.1111/j.1095-8312.2007.00721.x; Moiroux J, 2015, BIOL J LINN SOC, V115, P792, DOI 10.1111/bij.12545; Moiroux J, 2012, J INSECT PHYSIOL, V58, P979, DOI 10.1016/j.jinsphys.2012.04.018; Moiroux J, 2010, ECOL ENTOMOL, V35, P727, DOI 10.1111/j.1365-2311.2010.01233.x; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Pachauri R. K., 2014, SYNTHESIS REPORT, P151; Papaj DR, 2000, ANNU REV ENTOMOL, V45, P423, DOI 10.1146/annurev.ento.45.1.423; Roff D. A., 1992, LIFE HIST EVOLUTION; Roff Derek A., 1992; SEQUEIRA R, 1994, ENTOMOL EXP APPL, V71, P15, DOI 10.1111/j.1570-7458.1994.tb01765.x; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Thorne AD, 2006, P ROY SOC B-BIOL SCI, V273, P1099, DOI 10.1098/rspb.2005.3416; Vayssade C, 2012, BIOL J LINN SOC, V107, P153, DOI 10.1111/j.1095-8312.2012.01918.x; Visser B, 2010, P NATL ACAD SCI USA, V107, P8677, DOI 10.1073/pnas.1001744107; VOLKL W, 1991, J APPL ENTOMOL, V111, P63, DOI 10.1111/j.1439-0418.1991.tb00295.x 42 0 0 6 7 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. AUG-SEP 2018 109 157 162 10.1016/j.jinsphys.2018.06.001 6 Entomology; Physiology; Zoology Entomology; Physiology; Zoology GR5TK WOS:000442704600018 29870689 2019-02-21 J King, RB; Stanford, KM; Jones, PC King, Richard B.; Stanford, Kristin M.; Jones, Peter C. Sunning themselves in heaps, knots, and snarls: The extraordinary abundance and demography of island watersnakes ECOLOGY AND EVOLUTION English Article body size; capture-mark-recapture; life history; population estimation; process variance; realized population growth; survival; vital rates SEXUAL SIZE DIMORPHISM; LIFE-HISTORY VARIATION; CAPTURE-RECAPTURE DATA; AUSTRALIAN ELAPID SNAKES; LAKE-ERIE WATERSNAKE; EUROPEAN WHIP SNAKES; POPULATION-DYNAMICS; NERODIA-SIPEDON; REPRODUCTIVE ECOLOGY; NATRIX-NATRIX Snakes represent a sizable fraction of vertebrate biodiversity, but until recently, data on their demography have been sparse. Consequently, generalizations regarding patterns of variation are weak and the potential for population projections is limited. We address this information gap through an analysis of spatial and temporal variation in demography (population size, annual survival, and realized population growth) of the Lake Erie Watersnake, Nerodia sipedon insularum, and a review of snake survival more generally. Our study spans a period during which the Lake Erie Watersnake was listed as threatened under the U.S. Endangered Species Act, recovered, and was delisted. We collected capture-mark-recapture data at 14 study sites over 20years, accruing 20,000 captures of 13,800 individually marked adults. Lake Erie Watersnakes achieve extraordinary abundance, averaging 520adults per km of shoreline (ca. 260adult per ha) at our study sites (range=160-1,600adults per km; ca. 80-800adults per ha) and surpassing population recovery and postdelisting monitoring criteria. Annual survival averages 0.68 among adult females and 0.76 among adult males, varies among sites, and is positively correlated with body size among study sites. Temporal process variance in annual survival is low, averaging 0.0011 or less than 4% of total variance; thus, stochasticity in annual survival may be of minor significance to snake extinction risk. Estimates of realized population growth indicate that population size has been stable or increasing over the course of our study. More generally, snake annual survival overlaps broadly across continents, climate zones, families, subfamilies, reproductive modes, body size categories, maturation categories, and parity categories. Differences in survival in relation to size, parity, and maturation are in the directions predicted by life history theory but are of small magnitude with much variation around median values. Overall, annual survival appears to be quite plastic, varying with food availability, habitat quality, and other ecological variables. [King, Richard B.; Jones, Peter C.] Northern Illinois Univ, Dept Biol Sci, De Kalb, IL 60115 USA; [King, Richard B.] Northern Illinois Univ, Inst Study Environm Sustainabil & Energy, De Kalb, IL 60115 USA; [Stanford, Kristin M.] Ohio State Univ, FT Stone Lab, Put In Bay, OH USA King, RB (reprint author), Northern Illinois Univ, Dept Biol Sci, De Kalb, IL 60115 USA. rbking@niu.edu U. S. Fish and Wildlife Service; Ohio Department of Natural Resources; Toledo Zoo; Columbus Zoo and Aquarium; Northern Illinois University; Ohio State University F. T. Stone Laboratory U. S. Fish and Wildlife Service; Ohio Department of Natural Resources; Toledo Zoo; Columbus Zoo and Aquarium; Northern Illinois University; Ohio State University F. T. Stone Laboratory Ajtic R, 2013, ZOOL ANZ, V252, P350, DOI 10.1016/j.jcz.2012.10.001; Akcakaya H. Resit, 2004, P3; Akcakaya HR, 2002, RAMAS METAPOP VIABIL; Altwegg R, 2005, OIKOS, V110, P55, DOI 10.1111/j.0030-1299.2005.13723.x; Anderson DR., 2008, MODEL BASED INFERENC; Anthony RG, 2006, WILDLIFE MONOGR, P1; Baker S. J., 2016, THESIS; Ballou W. H., 1878, FIELD FOREST, V3, P135; Baron JP, 2013, FUNCT ECOL, V27, P173, DOI 10.1111/1365-2435.12023; Baron JP, 2010, J ANIM ECOL, V79, P640, DOI 10.1111/j.1365-2656.2010.01661.x; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Bonnet X, 2011, BIOL J LINN SOC, V103, P668, DOI 10.1111/j.1095-8312.2011.01633.x; Breininger DR, 2012, ANIM CONSERV, V15, P361, DOI 10.1111/j.1469-1795.2012.00524.x; Briggs-Gonzalez V, 2017, J ANIM ECOL, V86, P1102, DOI 10.1111/1365-2656.12723; Bronikowski AM, 1999, ECOLOGY, V80, P2314, DOI 10.2307/176912; Bronikowski A, 2010, INTEGR COMP BIOL, V50, P880, DOI 10.1093/icb/icq132; Brown GP, 2002, J TROP ECOL, V18, P549, DOI 10.1017/S0266467402002365; Brown GP, 2002, J ZOOL, V258, P63, DOI 10.1017/S0952836902001218; Brown GP, 1999, CAN J ZOOL, V77, P1358, DOI 10.1139/cjz-77-9-1358; Brown GP, 2013, FUNCT ECOL, V27, P351, DOI 10.1111/1365-2435.12044; Brown W. S., 2008, BIOL RATTLESNAKES, P235; Brown WS, 2007, COPEIA, P656; BROWN WS, 1991, HERPETOLOGICA, V47, P101; BROWN WS, 1993, HERPETOLOGICAL CIRCU, V22, P1; Burnham K. P, 2002, MODEL SELECTION MULT; Cam E, 2012, ANIM CONSERV, V15, P129, DOI 10.1111/j.1469-1795.2012.00533.x; Capula Massimo, 1997, Herpetozoa, V10, P65; Caswell H., 2001, MATRIX POPULATION MO; Cecala K, 2010, AMPHIBIA-REPTILIA, V31, P169, DOI 10.1163/156853810791069029; Chaitae A., 2011, THESIS; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Conant R., 1997, FIELD GUIDE LIFE TIM; CONANT R, 1975, FIELD GUIDE REPTILES; Cooch E. G, 2017, PROGRAM MARK GENTLE; Devan-Song E. A., 2014, THESIS; Diller LV, 2002, HERPETOL MONOGR, V16, P26, DOI 10.1655/0733-1347(2002)016[0026:GRASIA]2.0.CO;2; Diller LV, 1996, HERPETOLOGICA, V52, P343; Dubey S, 2009, ANIM BEHAV, V77, P177, DOI 10.1016/j.anbehav.2008.09.037; Dunham A.E., 1988, Biology of Reptilia, V16, P441; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; Ernst E. M., 2003, SNAKES US CANADA; Feaver P. E., 1977, THESIS; Fitch H.S., 1999, KANSAS SNAKE COMMUNI; Flatt T, 1997, J HERPETOL, V31, P558, DOI 10.2307/1565609; Ford Neil B., 2002, P167; Fornasiero S, 2016, ACTA HERPETOL, V11, P135, DOI 10.13128/Acta_Herpetol-18695; Forsman A, 1997, CAN J ZOOL, V75, P1099, DOI 10.1139/z97-132; FORSMAN A, 1995, J EVOLUTION BIOL, V8, P53, DOI 10.1046/j.1420-9101.1995.8010053.x; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Gangloff EJ, 2017, BEHAV PROCESS, V142, P156, DOI [10.10164/j.beproc.2007.06.006, 10.1016/j.beproc.2017.06.006]; Gibbons J. W., 2004, N AM WATERSNAKES NAT; Gould WR, 1998, ECOLOGY, V79, P2531, DOI 10.1890/0012-9658(1998)079[2531:EOTVOS]2.0.CO;2; Govindarajulu P, 2011, J HERPETOL, V45, P300, DOI 10.1670/10-086.1; Greene BD, 1999, COPEIA, P701; Gregory PT, 2004, J HERPETOL, V38, P231, DOI 10.1670/122-03A; Guimaraes M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095203; Halstead BJ, 2012, ANIM CONSERV, V15, P117, DOI 10.1111/j.1469-1795.2011.00495.x; Halstead BJ, 2011, J FISH WILDL MANAG, V2, P41, DOI 10.3996/012011-JFWM-009; Hansen EC, 2015, COPEIA, V103, P1026, DOI 10.1643/CE-15-233; Hartmann MT, 2004, AMPHIBIA-REPTILIA, V25, P77, DOI 10.1163/156853804322992850; Hileman E. T., 2016, THESIS; Hileman ET, 2018, J WILDLIFE MANAGE, V82, P977, DOI 10.1002/jwmg.21457; Hileman ET, 2017, J HERPETOL, V51, P454, DOI 10.1670/16-147; Hileman ET, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0172011; Hileman ET, 2015, J HERPETOL, V49, P428, DOI 10.1670/13-217; Hille SM, 2015, BIOL REV, V90, P204, DOI 10.1111/brv.12106; Hyslop NL, 2012, POPUL ECOL, V54, P145, DOI 10.1007/s10144-011-0292-3; Johnson B., 2013, THESIS; Johnson BD, 2016, J HERPETOL, V50, P534, DOI 10.1670/121; Johnson TB, 2005, J GREAT LAKES RES, V31, P78, DOI 10.1016/S0380-1330(05)70239-2; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.1093/biomet/52.1-2.225; Jones PC, 2017, J HERPETOL, V51, P383, DOI 10.1670/15-058; Jones PC, 2012, J WILDLIFE MANAGE, V76, P1576, DOI 10.1002/jwmg.418; Jones PC, 2009, COPEIA, P437, DOI 10.1643/CH-08-119; King RB, 2006, CAN J ZOOL, V84, P108, DOI 10.1139/Z05-182; King RB, 1997, BIOSCIENCE, V47, P279, DOI 10.2307/1313189; KING RB, 1986, COPEIA, P757; KING RB, 1993, EVOLUTION, V47, P1819, DOI 10.1111/j.1558-5646.1993.tb01272.x; King RB, 2006, HERPETOL MONOGR, V20, P83, DOI 10.1655/0733-1347(2007)20[83:PSARCO]2.0.CO;2; King RB, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146299; King Richard B., 2008, South American Journal of Herpetology, V3, P155, DOI 10.2994/1808-9798(2008)3[155:RCOACP]2.0.CO;2; Kissner KJ, 2005, J ANIM ECOL, V74, P259, DOI 10.1111/j.1365-2656.2005.00919.x; Koons DN, 2009, HERPETOL CONSERV BIO, V4, P221; Korfanta NM, 2012, ECOLOGY, V93, P2548, DOI 10.1890/11-1345.1; Krebs C. J., 1998, ECOLOGICAL METHODOLO; Laake J. L., 2013, AFSC PROCESSED REPOR, V201301, P1; Lacy R. C, 2014, VORTEX STOCHASTIC SI; LACY RC, 1993, WILDLIFE RES, V20, P45, DOI 10.1071/WR9930045; Lacy Robert C., 2000, Ecological Bulletins, V48, P191; LARSEN KW, 1989, HOLARCTIC ECOL, V12, P81; Lelievre H, 2013, POPUL ECOL, V55, P585, DOI 10.1007/s10144-013-0388-z; Lind AJ, 2005, ECOL APPL, V15, P294, DOI 10.1890/03-5322; Luiselli L, 1997, J ZOOL, V241, P371, DOI 10.1111/j.1469-7998.1997.tb01965.x; Luiselli L, 2011, ECOL RES, V26, P745, DOI 10.1007/s11284-011-0828-1; Lyet A, 2009, ANIM CONSERV, V12, P238, DOI 10.1111/j.1469-1795.2009.00245.x; Madsen T, 2006, AUSTRAL ECOL, V31, P30, DOI 10.1111/j.1442-9993.2006.01540.x; MADSEN T, 1983, OIKOS, V40, P277, DOI 10.2307/3544592; Madsen T, 2000, J ANIM ECOL, V69, P952, DOI 10.1046/j.1365-2656.2000.00477.x; MANLY BFJ, 1984, BIOMETRICS, V40, P749, DOI 10.2307/2530918; Maritz B., 2011, THESIS; Maritz B, 2012, HERPETOLOGICA, V68, P195; Marques OAV, 2013, J HERPETOL, V47, P393, DOI 10.1670/11-267; Masunaga G, 2003, ZOOL SCI, V20, P461, DOI 10.2108/zsj.20.461; Mesquita DO, 2016, AM NAT, V187, P689, DOI 10.1086/686055; Mesquita Daniel O., 2015, Ecology (Washington D C), V96, P594; Mesquita DO, 2016, AUSTRAL ECOL, V41, P1, DOI 10.1111/aec.12276; Miller DA, 2011, ECOLOGY, V92, P1658; Mills M. S., 2002, THESIS; Mullin SM, 2010, J WILDLIFE MANAGE, V74, P1792, DOI 10.2193/2009-503; Naulleau Guy, 1995, Amphibia-Reptilia, V16, P37, DOI 10.1163/156853895X00172; NISHIMURA M, 1994, RES POPUL ECOL, V36, P115, DOI 10.1007/BF02515092; Olson ZH, 2015, HERPETOLOGICA, V71, P274, DOI 10.1655/HERPETOLOGICA-D-14-00042; PARKER W S, 1987, P253; Parker W. S., 1980, MILWAUKEE PUBLIC MUS, V7, P1; Phillips BL, 2010, ANIM CONSERV, V13, P53, DOI 10.1111/j.1469-1795.2009.00295.x; Pianka ER, 2017, AM NAT, V190, P601, DOI 10.1086/693781; Pradel R, 1996, BIOMETRICS, V52, P703, DOI 10.2307/2532908; Prival DB, 2012, HERPETOL MONOGR, V26, P1; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; R Core Team, 2015, R LANG ENV STAT COMP; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Riedle JD, 2014, HERPETOL CONSERV BIO, V9, P278; Roe JH, 2013, HERPETOL CONSERV BIO, V8, P591; Roff Derek A., 1992; Roll U, 2017, NAT ECOL EVOL, V1, P1677, DOI 10.1038/s41559-017-0332-2; Rose FL, 2010, SOUTHWEST NAT, V55, P160, DOI 10.1894/GC-202.1; Rose FL, 2010, SOUTHWEST NAT, V55, P11, DOI 10.1894/WL-28.1; Rose JP, 2013, J HERPETOL, V47, P421, DOI 10.1670/12-119; ROSSMAN DA, 1996, GARTER SNAKES EVOLUT; Salguero-Gomez R, 2016, J ANIM ECOL, V85, P371, DOI 10.1111/1365-2656.12482; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Seamans ME, 2007, CONDOR, V109, P566, DOI 10.1650/8352.1; SEBER GAF, 1965, BIOMETRIKA, V52, P249; SEIGEL RA, 1986, BIOL CONSERV, V35, P333, DOI 10.1016/0006-3207(86)90093-5; Sewell D, 2015, HERPETOL J, V25, P155; SHINE R, 1977, AUST J ZOOL, V25, P655, DOI 10.1071/ZO9770655; Shine R, 2003, BIOL J LINN SOC, V80, P1, DOI 10.1046/j.1095-8312.2003.00213.x; Shine R, 2010, P ROY SOC B-BIOL SCI, V277, P2459, DOI 10.1098/rspb.2010.0255; Shine R, 2002, J THERM BIOL, V27, P405, DOI 10.1016/S0306-4565(02)00009-8; SHINE R, 1984, J HERPETOL, V18, P33, DOI 10.2307/1563669; Sperry JH, 2008, ECOLOGY, V89, P2770, DOI 10.1890/07-2017.1; Sperry JH, 2009, OIKOS, V118, P627, DOI 10.1111/j.1600-0706.2009.17404.x; Stanford K. M., 2012, THESIS; Stanford KM, 2004, COPEIA, P465; Stanford KM, 2010, J FISH WILDL MANAG, V1, P122, DOI 10.3996/052010-JFWM-013; Stearns S, 1992, EVOLUTION LIFE HIST; Ujvari B, 2016, FUNCT ECOL, V30, P453, DOI 10.1111/1365-2435.12505; US Fish and Wildlife Service, 1999, FED REGISTER, V64, P47126; US Fish and Wildlife Service, 2003, LAK ER WAT NER SIP I; US Fish and Wildlife Service, 2011, FED REGISTER, V76, P50680; Waldron JL, 2013, BIOL CONSERV, V159, P530, DOI 10.1016/j.biocon.2012.11.021; WEATHERHEAD PJ, 1995, BEHAV ECOL SOCIOBIOL, V36, P301, DOI 10.1007/s002650050152; Webb JK, 2002, J HERPETOL, V36, P505; Webb JK, 2002, ECOL RES, V17, P59, DOI 10.1046/j.1440-1703.2002.00463.x; Webb JK, 2008, J WILDLIFE MANAGE, V72, P1394, DOI 10.2193/2007-515; White GC, 1999, BIRD STUDY, V46, P120; Whiting MJ, 2008, COPEIA, P438, DOI 10.1643/CE-06-271; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Williams KE, 2014, HERPETOL CONSERV BIO, V9, P246; Willson JD, 2016, J ZOOL, V298, P266, DOI 10.1111/jzo.12311; Willson JD, 2011, J WILDLIFE MANAGE, V75, P36, DOI 10.1002/jwmg.15; Winemiller KO, 2015, ECOL LETT, V18, P737, DOI 10.1111/ele.12462; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Winne CT, 2006, J ANIM ECOL, V75, P1352, DOI 10.1111/j.1365-2656.2006.01159.x; Wylie GD, 2010, J HERPETOL, V44, P94, DOI 10.1670/08-337.1; Zuffi MAL, 2007, HERPETOL J, V17, P219 169 0 0 5 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. AUG 2018 8 15 7500 7521 10.1002/ece3.4191 22 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GR3LQ WOS:000442492100021 30151166 DOAJ Gold, Green Published 2019-02-21 J Oldakowski, L; Taylor, JRE Oldakowski, Lukasz; Taylor, Jan R. E. Oxidative damage and antioxidant defense are assay and tissue-dependent both in captive and wild-caught bank voles (Myodes glareolus) before and after reproduction ECOLOGY AND EVOLUTION English Article antioxidative defense; bank vole; costs of reproduction; Myodes glareolus; oxidative damage; oxidative stress HISTORY TRADE-OFFS; STRESS; MICE; COSTS; POPULATION; MECHANISMS; PHYSIOLOGY; EVOLUTION; ANIMALS; TRAITS Reproduction is costly and life-history theory predicts that current parental investment will result in lower survival or decreased future reproduction. The physiological mechanisms mediating the link between reproduction and survival are still under debate and elevated oxidative damage during reproduction has been proposed as a plausible candidate. Previous studies of oxidative stress during reproduction in animals under natural conditions have been restricted to analyses of blood. Herein, we measured the level of oxidative damage to lipids (tiobarbituric-acid-reactive substances) and proteins (carbonyls) in the liver, kidneys, heart and skeletal muscles in free-living bank vole females from spring and autumn generations, before and after reproduction. Antioxidant defense in the liver and kidneys was also determined. We expected oxidative damage to tissues and hypothesized that the damage would be more uniform between tissues in wild animals compared to those breeding under laboratory conditions. Considering all combinations of markers/tissues/generations, oxidative damage in females did not differ before and after reproduction in 12 comparisons, was lower after reproduction in three comparisons, and was higher after breeding in one comparison. The total glutathione was significantly increased after reproduction only in the liver of the autumn generation and there was no change in catalase activity. Our results confirmfor the first time in the fieldprevious observations from laboratory studies that there is no simple link between oxidative stress and reproduction and that patterns depend on the tissue and marker being studied. Overall, however, our study does not support the hypothesis that the cost of reproduction in bank voles is mediated by oxidative stress in these tissues. [Oldakowski, Lukasz; Taylor, Jan R. E.] Univ Bialystok, Inst Biol, Ciolkowskiego 1J, PL-15245 Bialystok, Poland Oldakowski, L (reprint author), Univ Bialystok, Inst Biol, Ciolkowskiego 1J, PL-15245 Bialystok, Poland. lukasold@uwb.edu.pl Narodowe Centrum Nauki [NN304280840] Narodowe Centrum Nauki, Grant/Award Number: NN304280840 Aebi H., 1983, METHODS ENZYME ANAL, P273; Al Jothery AH, 2016, SCI REP-UK, V6, DOI 10.1038/srep36353; ALIBHAI SK, 1982, J ZOOL, V197, P300; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Anderson ME, 1996, FREE RADICALS PRACTI, P213; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179; Christensen LL, 2015, ECOL EVOL, V5, P5096, DOI 10.1002/ece3.1771; Costantini D, 2014, J EXP BIOL, V217, P4237, DOI 10.1242/jeb.114116; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; Garratt M, 2013, J EXP BIOL, V216, P2879, DOI 10.1242/jeb.082669; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Gliwicz J., 1983, Acta Theriologica, V28, P111; Hammond KA, 1997, NATURE, V386, P457, DOI 10.1038/386457a0; Isaksson C, 2011, INTEGR ZOOL, V6, P140, DOI 10.1111/j.1749-4877.2011.00237.x; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Levine R.L., 1994, METHOD ENZYMOL, V233, P347; LOWRY OH, 1951, J BIOL CHEM, V193, P265; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Moran MD, 2003, OIKOS, V100, P403, DOI 10.1034/j.1600-0706.2003.12010.x; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; NYHOLM N E I, 1979, Holarctic Ecology, V2, P12; OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3; Oldakowski L, 2015, J EXP BIOL, V218, P3901, DOI 10.1242/jeb.126557; Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452; PANKAKOSKI E, 1989, ANN ZOOL FENN, V26, P433; PETERSON CC, 1990, P NATL ACAD SCI USA, V87, P2324, DOI 10.1073/pnas.87.6.2324; PETERSON GL, 1977, ANAL BIOCHEM, V83, P346, DOI 10.1016/0003-2697(77)90043-4; Plumel MI, 2014, FRONT ZOOL, V11, DOI 10.1186/1742-9994-11-41; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Sadowska ET, 2008, PHYSIOL BIOCHEM ZOOL, V81, P627, DOI 10.1086/590164; SEARLE AG, 1954, J GENET, V52, P68, DOI 10.1007/BF02981491; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sharick JT, 2015, FUNCT ECOL, V29, P367, DOI 10.1111/1365-2435.12330; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Speakman JR, 2010, J ANIM ECOL, V79, P726, DOI 10.1111/j.1365-2656.2010.01689.x; STADTMAN ER, 1991, J BIOL CHEM, V266, P2005; Stearns S, 1992, EVOLUTION LIFE HIST; TUPIKOVA N V, 1968, Acta Theriologica, V13, P99; Vaanholt LM, 2016, PHYSIOL BEHAV, V154, P1, DOI 10.1016/j.physbeh.2015.11.009; Vasilaki A, 2006, AGING CELL, V5, P109, DOI 10.1111/j.1474-9726.2006.00198.x; Vitikainen EIK, 2016, FRONT ECOL EVOL, V4, DOI 10.3389/fevo.2016.00058; Wasilewski W., 1952, ANN U MARIAE CURIE S, V7, P121; Wilson SM, 2012, COMP BIOCHEM PHYS A, V162, P212, DOI 10.1016/j.cbpa.2012.02.023; Xu YC, 2014, FUNCT ECOL, V28, P402, DOI 10.1111/1365-2435.12168; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 50 0 0 1 1 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. AUG 2018 8 15 7543 7552 10.1002/ece3.4187 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GR3LQ WOS:000442492100024 30151169 DOAJ Gold 2019-02-21 J Galloway, LF; Watson, RHB; Prendeville, HR Galloway, Laura F.; Watson, Ray H. B.; Prendeville, Holly R. Response to joint selection on germination and flowering phenology depends on the direction of selection ECOLOGY AND EVOLUTION English Article artificial selection; bivariate selection; Campanula americana; Campanulastrum americanum; correlated response; flowering time; germination time; life history evolution; maternal effects; realized heritability; reproductive phenology LIFE-HISTORY EVOLUTION; ARABIDOPSIS-THALIANA; CAMPANULA-AMERICANA; GENETIC CONSTRAINTS; ARTIFICIAL SELECTION; OFFSPRING CHARACTERS; ADAPTIVE EVOLUTION; NICHE CONSTRUCTION; SEED-GERMINATION; HERBACEOUS PLANT Flowering and germination time are components of phenology, a complex phenotype that incorporates a number of traits. In natural populations, selection is likely to occur on multiple components of phenology at once. However, we have little knowledge of how joint selection on several phenological traits influences evolutionary response. We conducted one generation of artificial selection for all combinations of early and late germination and flowering on replicated lines within two independent base populations in the herb Campanula americana. We then measured response to selection and realized heritability for each trait. Response to selection and heritability were greater for flowering time than germination time, indicating greater evolutionary potential of this trait. Selection for earlier phenology, both flowering and germination, did not depend on the direction of selection on the other trait, whereas response to selection to delay germination and flowering was greater when selection on the other trait was in the opposite direction (e.g., early germination and late flowering), indicating a negative genetic correlation between the traits. Therefore, the extent to which correlations shaped response to selection depended on the direction of selection. Furthermore, the genetic correlation between timing of germination and flowering varies across the trait distributions. The negative correlation between germination and flowering time found when selecting for delayed phenology follows theoretical predictions of constraint for traits that jointly determine life history schedule. In contrast, the lack of constraint found when selecting for an accelerated phenology suggests a reduction of the covariance due to strong selection favoring earlier flowering and a shorter life cycle. This genetic architecture, in turn, will facilitate further evolution of the early phenology often favored in warm climates. [Galloway, Laura F.; Watson, Ray H. B.; Prendeville, Holly R.] Univ Virginia, Dept Biol, Charlottesville, VA 22904 USA; [Prendeville, Holly R.] USDA, FS Pacific Northwest Res Stn, Corvallis, OR USA Galloway, LF (reprint author), Univ Virginia, Dept Biol, Charlottesville, VA 22904 USA. lgalloway@virginia.edu Galloway, Laura/0000-0002-8219-3904 NSF [DEB 1020717, 1457686] We thank W. Crannage for plant care; M. Garino, D. Attia, J. Cahoon, B. Cottrell, A. Greenlee, K. Kubow, J. O'Brien, R. Slotter, Z. Spires, and B. Sutherland for assistance; and E.D. Brodie III for comments on an earlier version. This work was supported by NSF DEB 1020717 and 1457686. Agrawal AF, 2009, P ROY SOC B-BIOL SCI, V276, P1183, DOI 10.1098/rspb.2008.1671; Anderson JT, 2012, P ROY SOC B-BIOL SCI, V279, P3843, DOI 10.1098/rspb.2012.1051; Armbruster WS, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0245; Austen EJ, 2017, NEW PHYTOL, V215, P929, DOI 10.1111/nph.14580; Barnard-Kubow KB, 2015, AM J BOT, V102, P1842, DOI 10.3732/ajb.1500267; BASKIN JM, 1984, B TORREY BOT CLUB, V111, P329, DOI 10.2307/2995914; Beldade P, 2002, P NATL ACAD SCI USA, V99, P14262, DOI 10.1073/pnas.222236199; Berner D, 2012, ECOL EVOL, V2, P1834, DOI 10.1002/ece3.306; Burgess KS, 2007, HEREDITY, V99, P641, DOI 10.1038/sj.hdy.6801043; Chiang GCK, 2009, P NATL ACAD SCI USA, V106, P11661, DOI 10.1073/pnas.0901367106; Conner JK, 2012, EVOLUTION, V66, P3313, DOI 10.1111/j.1558-5646.2012.01794.x; Conner JK, 2011, AM NAT, V178, P429, DOI 10.1086/661907; Conner JK, 2003, ECOLOGY, V84, P1650, DOI 10.1890/0012-9658(2003)084[1650:ASAPTF]2.0.CO;2; Conner JK, 2004, PRIMER ECOLOGICAL GE; Delph LF, 2011, EVOLUTION, V65, P2872, DOI 10.1111/j.1558-5646.2011.01350.x; Donohue K, 2014, EVOLUTION, V68, P32, DOI 10.1111/evo.12284; Donohue K, 2009, PHILOS T R SOC B, V364, P1059, DOI 10.1098/rstb.2008.0291; Etterson JR, 2001, SCIENCE, V294, P151, DOI 10.1126/science.1063656; Galloway LF, 2012, J ECOL, V100, P852, DOI 10.1111/j.1365-2745.2012.01967.x; Galloway LF, 2009, NEW PHYTOL, V183, P826, DOI 10.1111/j.1469-8137.2009.02939.x; Galloway LF, 2009, ECOLOGY, V90, P2139, DOI 10.1890/08-0948.1; Galloway LF, 2002, J ECOL, V90, P851, DOI 10.1046/j.1365-2745.2002.00714.x; Galloway LF, 2003, HEREDITY, V90, P308, DOI 10.1038/sj.hdy.6800242; Geber MA, 2003, INT J PLANT SCI, V164, pS21, DOI 10.1086/368233; Haggerty BP, 2011, J ECOL, V99, P242, DOI 10.1111/j.1365-2745.2010.01744.x; Hoyle RB, 2012, J R SOC INTERFACE, V9, P2403, DOI 10.1098/rsif.2012.0183; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; LACEY EP, 1983, OECOLOGIA, V60, P274, DOI 10.1007/BF00379533; Lacey EP, 2003, ECOLOGY, V84, P2462, DOI 10.1890/02-0101; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; Munguia-Rosas MA, 2011, ECOL LETT, V14, P511, DOI 10.1111/j.1461-0248.2011.01601.x; Murren CJ, 2012, INTEGR COMP BIOL, V52, P64, DOI 10.1093/icb/ics043; Peiman KS, 2017, AM NAT, V190, P451, DOI 10.1086/693482; Prendeville HR, 2013, OECOLOGIA, V173, P421, DOI 10.1007/s00442-013-2630-y; Rasanen K, 2007, FUNCT ECOL, V21, P408, DOI 10.1111/j.1365-2435.2007.01246.x; Roff D. A., 1997, EVOLUTIONARY QUANTIT, DOI [10. 1007/978-1-4615-4080-9, DOI 10.1007/978-1-4615-4080-9]; Saltz JB, 2014, TRENDS ECOL EVOL, V29, P8, DOI 10.1016/j.tree.2013.09.011; Simons AM, 2006, EVOLUTION, V60, P2280, DOI 10.1554/05-396.1; Simonsen AK, 2010, INT J PLANT SCI, V171, P972, DOI 10.1086/656512; Teplitsky C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090444; Vidigal DS, 2016, PLANT CELL ENVIRON, V39, P1737, DOI 10.1111/pce.12734; Walling CA, 2014, GENETICS, V198, P1735, DOI 10.1534/genetics.114.164319; Wilson AJ, 2006, AM NAT, V167, pE23, DOI 10.1086/498138; Wolf JB, 1998, EVOLUTION, V52, P299, DOI 10.1111/j.1558-5646.1998.tb01632.x; Wood CW, 2015, EVOLUTION, V69, P2927, DOI 10.1111/evo.12795 45 0 0 9 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. AUG 2018 8 15 7688 7696 10.1002/ece3.4334 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GR3LQ WOS:000442492100037 30151182 DOAJ Gold 2019-02-21 J Hein, N; Brendel, MR; Feilhauer, H; Finch, OD; Loffler, J Hein, Nils; Brendel, Marco R.; Feilhauer, Hannes; Finch, Oliver-D.; Loeffler, Joerg Egg size versus egg number trade-off in the alpine-tundra wolf spider, Pardosa palustris (Araneae: Lycosidae) POLAR BIOLOGY English Article Offspring; Elevation; Trade-off; Temperature rise; Norway YELLOW DUNG FLY; BODY-SIZE; CLUTCH SIZE; OFFSPRING SIZE; BERGMANNS RULE; FOOD-ABUNDANCE; CLIMATE-CHANGE; TEMPERATURE; GROWTH; INSECTS The effect of environmental conditions on reproductive traits in spiders is not completely understood. We studied the trade-off between the egg number and egg size of a common spider species along an elevational gradient in Norway. Life history theory predicts that egg size should decrease and clutch size increase as temperatures rise. In 2006, 2010, and 2014, female lycosid spiders (Pardosa palustris) carrying first egg sacs were hand sampled from 690 to 1460 m above sea level (a.s.l.). The eggs were counted, and the body and egg sizes for each female were individually estimated using digital photography. An analysis of covariance was performed using linear mixed-effects models to test for trade-off differences between sampling years, and along the elevational gradient. Unexpectedly, the egg size versus number trade-off was consistent along the elevational gradient, and thus appeared to be independent of elevation-induced temperature changes. However, this trade-off varied considerably between years. Egg-size variations in relation to body size appeared to be independent of year and did not vary along the elevational gradient. Our results revealed that the trade-off between egg number and egg size does not always hold and might be more plastic than assumed. This suggests that P. palustris, which has a broad habitat niche and a wide geographic distribution, will easily cope with temperature-regime shifts in cold environments. Consequently, this might lead to advantages regarding the offspring survival rate relative to coexisting species, and thus to changes in the terrestrial arthropod community of alpine-tundra ecosystems. [Hein, Nils; Loeffler, Joerg] Univ Bonn, Dept Geog, Meckenheimer Allee 166, D-53115 Bonn, Germany; [Brendel, Marco R.] Univ Hohenheim, Inst Landscape & Plant Ecol, August von Hartmann Str 3, D-70599 Stuttgart, Germany; [Feilhauer, Hannes] FAU Erlangen Nurnberg, Inst Geog, Wetterkreuz 15, D-91058 Erlangen, Germany Hein, N (reprint author), Univ Bonn, Dept Geog, Meckenheimer Allee 166, D-53115 Bonn, Germany. nhein@uni-bonn.de DAAD; Color Line AS, Oslo We would like to thank three anonymous reviewers and the guest editor for their many helpful comments, which significantly improved our manuscript. Nils Hein received funding by the DAAD during fieldwork in 2010. The study also received financial support from Color Line AS, Oslo. Almquist S., 2005, INSECT SYST EVOL, V62, P284; Ameline C, 2017, BIOL J LINN SOC, V121, P592, DOI 10.1093/biolinnean/blx014; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Barry R. G., 2008, MOUNTAIN WEATHER CLI; Bayram A, 2000, ISRAEL J ZOOL, V46, P297; Berger D, 2008, FUNCT ECOL, V22, P523, DOI 10.1111/j.1365-2435.2008.01392.x; Bernardo J, 1996, AM ZOOL, V36, P216; Blackburn Tim M., 1999, Diversity and Distributions, V5, P165, DOI 10.1046/j.1472-4642.1999.00046.x; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Blanckenhorn WU, 1997, OECOLOGIA, V111, P318, DOI 10.1007/s004420050241; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Bowden JJ, 2010, ARCTIC, V63, P261; Bowden JJ, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0574; Bowden JJ, 2013, POLAR BIOL, V36, P831, DOI 10.1007/s00300-013-1308-6; Breene RG, 2005, ARACHNID DEV STAGES, P1; Brown CA, 2003, J ARACHNOL, V31, P285, DOI 10.1636/m01-62; Chezik KA, 2014, CAN J FISH AQUAT SCI, V71, P47, DOI 10.1139/cjfas-2013-0295; Chown SL, 2010, BIOL REV, V85, P139, DOI 10.1111/j.1469-185X.2009.00097.x; Danks HV, 1999, EUR J ENTOMOL, V96, P83; Danks HV, 2004, INTEGR COMP BIOL, V44, P85, DOI 10.1093/icb/44.2.85; Dixon AFG, 2009, FUNCT ECOL, V23, P257, DOI 10.1111/j.1365-2435.2008.01489.x; Finch OD, 2010, BIODIVERS CONSERV, V19, P1341, DOI 10.1007/s10531-009-9765-5; Fischer K, 2006, J EVOLUTION BIOL, V19, P380, DOI 10.1111/j.1420-9101.2005.01046.x; FORD MJ, 1978, ANIM BEHAV, V26, P31, DOI 10.1016/0003-3472(78)90005-2; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Franz H, 1979, OKOLOGIE HOCHGEBIRGE; Frick H, 2007, ANN ZOOL FENN, V44, P43; Gardner JL, 2011, TRENDS ECOL EVOL, V26, P285, DOI 10.1016/j.tree.2011.03.005; Grinsted L, 2014, EVOLUTION, V68, P1961, DOI 10.1111/evo.12411; HAGSTRUM DW, 1971, ANN ENTOMOL SOC AM, V64, P757, DOI 10.1093/aesa/64.4.757; Hanggi A., 1995, MISCELLANEA FAUNISTI, V4; Hauge E., 1979, Fauna Norvegica Series B, V26, P84; Hein N, 2015, ARCT ANTARCT ALP RES, V47, P473, DOI 10.1657/AAAR0013-111; Hein N, 2014, ERDKUNDE, V68, P157, DOI 10.3112/erdkunde.2014.03.01; Hein N, 2014, J MT SCI-ENGL, V11, P644, DOI 10.1007/s11629-013-2913-0; Hendrickx F, 2003, OECOLOGIA, V134, P189, DOI 10.1007/s00442-002-1031-4; Hoye Toke T., 2008, BMC Ecology, V8, P8, DOI 10.1186/1472-6785-8-8; Hoye TT, 2009, BIOL LETTERS, V5, P542, DOI 10.1098/rsbl.2009.0169; Iida H, 2016, APPL ENTOMOL ZOOL, V51, P125, DOI 10.1007/s13355-015-0381-4; Jakob EM, 1996, OIKOS, V77, P61, DOI 10.2307/3545585; KESSLER A, 1971, OECOLOGIA, V8, P93, DOI 10.1007/BF00345629; KESSLER A, 1973, Tijdschrift voor Entomologie, V116, P23; Kirchner W., 1987, P66; Legault G, 2013, POLAR BIOL, V36, P885, DOI 10.1007/s00300-013-1313-9; Loffler UCM, 2008, EUR J SOIL SCI, V59, P842, DOI 10.1111/j.1365-2389.2008.01054.x; LOFFLER J., 2002, ERDE, V133, P227; McMaster GS, 1997, AGR FOREST METEOROL, V87, P291, DOI 10.1016/S0168-1923(97)00027-0; MOEN A, 1998, NASJONALATLAS NORGE; Mousseau TA, 1997, EVOLUTION, V51, P630, DOI 10.1111/j.1558-5646.1997.tb02453.x; Moya-Larano J, 2008, J ANIM ECOL, V77, P1099, DOI 10.1111/j.1365-2656.2008.01433.x; Muff P, 2009, INSECT CONSERV DIVER, V2, P36, DOI 10.1111/j.1752-4598.2008.00037.x; Oksanen L, 2001, OIKOS, V94, P27, DOI 10.1034/j.1600-0706.2001.11311.x; PALANICHAMY S, 1985, J THERM BIOL, V10, P63, DOI 10.1016/0306-4565(85)90027-0; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Petillon J, 2009, NATURWISSENSCHAFTEN, V96, P1241, DOI 10.1007/s00114-009-0589-7; Pike DA, 2014, GLOBAL CHANGE BIOL, V20, P7, DOI 10.1111/gcb.12397; Post E, 2013, ECOLOGY CLIMATE CHAN; Puzin C, 2014, BIOL J LINN SOC, V113, P85, DOI 10.1111/bij.12303; R Core Team, 2017, R LANG ENV STAT COMP; Rickers S, 2005, BASIC APPL ECOL, V6, P471, DOI 10.1016/j.baae.2005.02.007; RIECHERT SE, 1975, ECOLOGY, V56, P265, DOI 10.2307/1934960; ROFF DA, 2002, LIFE HIST EVOLUTION; SAMU F, 1993, EUR J ENTOMOL, V90, P471; Scharf I, 2010, CLIM RES, V43, P115, DOI 10.3354/cr00907; Schmalhofer VR, 2011, J ARACHNOL, V39, P41, DOI 10.1636/Hi09-103.1; Segers FHID, 2011, FUNCT ECOL, V25, P166, DOI 10.1111/j.1365-2435.2010.01790.x; Shelomi M, 2012, AM NAT, V180, P511, DOI 10.1086/667595; SIMPSON MR, 1995, ECOLOGY, V76, P795, DOI 10.2307/1939345; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stahlschmidt ZR, 2015, FUNCT ECOL, V29, P88, DOI 10.1111/1365-2435.12287; Stearns S, 1992, EVOLUTION LIFE HIST; Steigen AL, 1975, ECOL STUD, V17, P129; Steiger S, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1225; Verdeny-Vilalta O, 2015, J EVOLUTION BIOL, V28, P1225, DOI 10.1111/jeb.12647; Vertainen L, 2000, EVOL ECOL, V14, P595, DOI 10.1023/A:1011080706931; Visakorpi K, 2015, BASIC APPL ECOL, V16, P652, DOI 10.1016/j.baae.2015.06.003; Vollrath F., 1987, P357; Walker SE, 2003, EVOL ECOL RES, V5, P19; Willmer P., 2005, ENV PHYSL ANIMALS; Wise D. H, 1993, SPIDERS ECOLOGICAL W; Wundram D, 2010, ARCT ANTARCT ALP RES, V42, P117, DOI 10.1657/1938-4246-42.1.117; Zarnetske PL, 2012, SCIENCE, V336, P1516, DOI 10.1126/science.1222732 82 2 2 10 10 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. AUG 2018 41 8 SI 1607 1617 10.1007/s00300-018-2301-x 11 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology GQ2UP WOS:000441514400008 2019-02-21 J Zadworny, M; Comas, LH; Eissenstat, DM Zadworny, Marcin; Comas, Louise H.; Eissenstat, David M. Linking fine root morphology, hydraulic functioning and shade tolerance of trees ANNALS OF BOTANY English Article Hydraulic conductance; root morphology; shade tolerance; t/d; trait plasticity; xylem diameter NUTRIENT FORAGING STRATEGIES; POTENTIAL GROWTH-RATE; CAVITATION RESISTANCE; WATER TRANSPORT; LIFE-SPAN; INTERSPECIFIC VARIATION; MYCORRHIZAL FUNGI; STRUCTURAL TRAITS; TEMPERATE TREES; LEAF STRUCTURE Background and Aims Understanding root traits and their trade-off with other plant processes is important for understanding plant functioning in natural ecosystems as well as agricultural systems. The aim of the present study was to determine the relationship between root morphology and the hydraulic characteristics of several orders of fine roots (<2 mm) for species differing in shade tolerance (low, moderate and high). Methods The morphological, anatomical and hydraulic traits across five distal root orders were measured in species with different levels of shade tolerance and life history strategies. The species studied were Acer negundo, Acer rubrum, Acer saccharum, Betula alleghaniensis, Betula lenta, Quercus alba, Quercus rubra, Pinus strobus and Pinus virginiana. Key Results Compared with shade-tolerant species. shade-intolerant species produced thinner absorptive roots with smaller xylem lumen diameters and underwent secondary development less frequently, suggesting that they had shorter life spans. Shade-tolerant species had greater root specific hydraulic conductance among these roots due to having larger diameter xylems, although these roots had a lower calculated critical tension for conduit collapse. In addition, shade-intolerant species exhibited greater variation in hydraulic conductance across different root growth rings in woody transport roots of the same root order as compared with shade-tolerant species. Conclusions Plant growth strategies were extended to include root hydraulic properties. It was found that shade intolerance in trees was associated with conservative root hydraulics but greater plasticity in number of xylem conduits and hydraulic conductance. Root traits of shade-intolerant species were consistent with the ability to proliferate roots quickly for rapid water uptake needed to support rapid shoot growth, while minimizing risk in uncertain environments. [Zadworny, Marcin] Polish Acad Sci, Inst Dendrol, Parkowa 5, PL-62035 Kornik, Poland; [Comas, Louise H.] USDA ARS, Water Management Res Unit, 2150 Ctr Ave,Bldg D,Suite 320, Ft Collins, CO 80526 USA; [Eissenstat, David M.] Penn State Univ, Intercoll Grad Degree Program Plant Biol, University Pk, PA 16802 USA; [Eissenstat, David M.] Penn State Univ, Dept Ecosyst Sci & Management, 201 Forest Resources Bldg, University Pk, PA 16802 USA Zadworny, M (reprint author), Polish Acad Sci, Inst Dendrol, Parkowa 5, PL-62035 Kornik, Poland. zadworny@man.poznan.pl Zadworny, Marcin/0000-0002-7352-5786 Polish Ministry of Science and Higher Education [11/MOB/2007/0]; Institute of Dendrology of the Polish Academy of Sciences; US National Science Foundation [IOS 07-19259, OEI 0613832] This work was supported by grants from the Polish Ministry of Science and Higher Education (project no. 11/MOB/2007/0), the Institute of Dendrology of the Polish Academy of Sciences and the US National Science Foundation (projects no. IOS 07-19259, OEI 0613832). We thank Sean Gleason, anonymous reviewers and the editor for helpful comments that greatly improved this paper. ABRAMS MD, 1995, TREE PHYSIOL, V15, P361, DOI 10.1093/treephys/15.6.361; Bagniewska-Zadworna A, 2012, AM J BOT, V99, P1417, DOI 10.3732/ajb.1100552; Baylis GTS, 1975, ENDOMYCORRHIZAS, P373; Blackman CJ, 2010, NEW PHYTOL, V188, P1113, DOI 10.1111/j.1469-8137.2010.03439.x; Brassard BW, 2009, CRIT REV PLANT SCI, V28, P179, DOI 10.1080/07352680902776572; Brundrett MC, 2002, NEW PHYTOL, V154, P275, DOI 10.1046/j.1469-8137.2002.00397.x; Burns R. M, 1990, SILVICS N AM; Casper BB, 1997, ANNU REV ECOL SYST, V28, P545, DOI 10.1146/annurev.ecolsys.28.1.545; CHAPIN FS, 1974, ECOLOGY, V55, P1180, DOI 10.2307/1935449; Chen HYH, 2013, CRIT REV PLANT SCI, V32, P151, DOI 10.1080/07352689.2012.734742; Chen WL, 2016, P NATL ACAD SCI USA, V113, P8741, DOI 10.1073/pnas.1601006113; Chen WL, 2013, GLOBAL ECOL BIOGEOGR, V22, P846, DOI 10.1111/geb.12048; Cheng L, 2016, ECOLOGY, V97, P2815, DOI 10.1002/ecy.1514; Cochard H, 1997, J EXP BOT, V48, P655, DOI 10.1093/jxb/48.3.655; Comas LH, 2012, INT J PLANT SCI, V173, P584, DOI 10.1086/665823; Comas LH, 2004, FUNCT ECOL, V18, P388, DOI 10.1111/j.0269-8463.2004.00835.x; Comas LH, 2002, OECOLOGIA, V132, P34, DOI 10.1007/s00442-002-0922-8; Comas LH, 2014, ECOL EVOL, V4, P2979, DOI 10.1002/ece3.1147; Eissenstat DM, 2015, NEW PHYTOL, V208, P114, DOI 10.1111/nph.13451; Eissenstat DM, 1997, ADV ECOL RES, V27, P1, DOI 10.1016/S0065-2504(08)60005-7; Eissenstat DM, 1999, NEW PHYTOL, V141, P309, DOI 10.1046/j.1469-8137.1999.00342.x; Fayle DCF, 1968, 9 U TOR FAC FOR; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Finer L, 1997, CAN J FOREST RES, V27, P304, DOI 10.1139/cjfr-27-3-304; Freschet GT, 2015, NEW PHYTOL, V206, P1247, DOI 10.1111/nph.13352; Gambetta GA, 2013, PLANT PHYSIOL, V163, P1254, DOI 10.1104/pp.113.221283; Gernandt DS, 2008, INT J PLANT SCI, V169, P1086, DOI 10.1086/590472; Giuliani R, 2013, PLANT PHYSIOL, V162, P1632, DOI 10.1104/pp.113.217497; Gleason SM, 2016, NEW PHYTOL, V209, P123, DOI 10.1111/nph.13646; Gravel D, 2010, OIKOS, V119, P475, DOI 10.1111/j.1600-0706.2009.17441.x; Grime JP, 2002, EVOL ECOL, V16, P299, DOI 10.1023/A:1019640813676; Guo DL, 2008, NEW PHYTOL, V180, P673, DOI 10.1111/j.1469-8137.2008.02573.x; Hacke UG, 2007, INT J PLANT SCI, V168, P1113, DOI 10.1086/520724; Hacke UG, 2001, OECOLOGIA, V126, P457, DOI 10.1007/s004420100628; Hacke UG, 2000, BASIC APPL ECOL, V1, P31, DOI 10.1078/1439-1791-00006; Hastwell GT, 2003, J ECOL, V91, P941, DOI 10.1046/j.1365-2745.2003.00832.x; Henry HAL, 1997, OIKOS, V80, P575, DOI 10.2307/3546632; Hernandez EI, 2010, PLANT ECOL, V207, P233, DOI 10.1007/s11258-009-9668-2; Huang BR, 2000, J AM SOC HORTIC SCI, V125, P260; Hubbard RM, 2001, PLANT CELL ENVIRON, V24, P113, DOI 10.1046/j.1365-3040.2001.00660.x; Jacobsen AL, 2007, ECOL MONOGR, V77, P99, DOI 10.1890/05-1879; Kong DL, 2017, NEW PHYTOL, V213, P1569, DOI 10.1111/nph.14344; Kong DL, 2014, NEW PHYTOL, V203, P863, DOI 10.1111/nph.12842; Kotowska MM, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00191; Lehto T, 2011, MYCORRHIZA, V21, P71, DOI 10.1007/s00572-010-0348-9; Lens F, 2011, NEW PHYTOL, V190, P709, DOI 10.1111/j.1469-8137.2010.03518.x; Liu BT, 2015, NEW PHYTOL, V208, P125, DOI 10.1111/nph.13434; Long YQ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057153; Lopez OR, 2005, TREE PHYSIOL, V25, P1553, DOI 10.1093/treephys/25.12.1553; Lusk CH, 2000, OECOLOGIA, V123, P318, DOI 10.1007/s004420051018; Maddison W. P., 2010, MESQUITE MODULAR SYS, V2, P74; Maherali H, 1997, OECOLOGIA, V112, P472, DOI 10.1007/s004420050334; McCormack ML, 2015, NEW PHYTOL, V207, P505, DOI 10.1111/nph.13363; McCormack ML, 2012, NEW PHYTOL, V195, P823, DOI 10.1111/j.1469-8137.2012.04198.x; Midford P. E., 2010, PDAP PDTREE PACKAGE; Muhsin TM, 2002, NEW PHYTOL, V153, P153, DOI 10.1046/j.0028-646X.2001.00297.x; Niinemets U, 2006, ECOL MONOGR, V76, P521, DOI 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2; Norby RJ, 2001, CLIMATIC CHANGE, V51, P415, DOI 10.1023/A:1012510619424; Oakley TH, 2000, EVOLUTION, V54, P397; PERSSON H, 1995, PLANT SOIL, V168, P161, DOI 10.1007/BF00029324; Peterson RL, 2004, MYCORRHIZAS ANATOMY; Poorter H, 2012, NEW PHYTOL, V193, P30, DOI 10.1111/j.1469-8137.2011.03952.x; Pregitzer KS, 2002, ECOL MONOGR, V72, P293, DOI 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2; Rewald B, 2011, PLANT CELL ENVIRON, V34, P33, DOI 10.1111/j.1365-3040.2010.02223.x; Sanchez-Gomez D, 2006, NEW PHYTOL, V170, P795, DOI 10.1111/j.1469-8137.2006.01711.x; Sanchez-Gomez D, 2006, TREE PHYSIOL, V26, P1425, DOI 10.1093/treephys/26.11.1425; Schenk HJ, 2006, J ECOL, V94, P725, DOI 10.1111/j.1365-2745.2006.01124.x; SPERRY JS, 1994, ECOLOGY, V75, P1736, DOI 10.2307/1939633; Sperry JS, 2002, FUNCT ECOL, V16, P367, DOI 10.1046/j.1365-2435.2002.00628.x; Trubat R, 2006, TREES-STRUCT FUNCT, V20, P334, DOI 10.1007/s00468-005-0045-z; Valenzuela-Estrada LR, 2009, J EXP BOT, V60, P1241, DOI 10.1093/jxb/ern367; Valladares F, 2003, PROG BOT, V64, P439; Wagner KR, 1998, OECOLOGIA, V117, P53, DOI 10.1007/s004420050631; Wahl S, 2001, ANN BOT-LONDON, V88, P1071, DOI 10.1006/anbo.2001.1551; Walker L. R, 2003, PRIMARY SUCCESSION E; Walters MB, 1999, NEW PHYTOL, V143, P143, DOI 10.1046/j.1469-8137.1999.00425.x; Wikstrom N, 2001, P ROY SOC B-BIOL SCI, V268, P2211, DOI 10.1098/rspb.2001.1782; Wyka TP, 2012, OECOLOGIA, V170, P11, DOI 10.1007/s00442-012-2279-y; Xia MX, 2010, NEW PHYTOL, V188, P1065, DOI 10.1111/j.1469-8137.2010.03423.x; Zadworny M, 2016, NEW PHYTOL, V212, P389, DOI 10.1111/nph.14048; Zavala MA, 2007, J THEOR BIOL, V244, P440, DOI 10.1016/j.jtbi.2006.08.024 81 0 0 28 31 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0305-7364 1095-8290 ANN BOT-LONDON Ann. Bot. AUG 1 2018 122 2 239 250 10.1093/aob/mcy054 12 Plant Sciences Plant Sciences GP6GW WOS:000440977500008 29897405 2019-02-21 J Dunlop, ES; Feiner, ZS; Hook, TO Dunlop, Erin S.; Feiner, Zachary S.; Hook, Tomas O. Potential for fisheries-induced evolution in the Laurentian Great Lakes JOURNAL OF GREAT LAKES RESEARCH English Review Eco-evolutionary dynamics; Probabilistic maturation reaction norms; Eco-genetic model; Gear selectivity; Phenotypic plasticity, evolutionary impact assessment LIFE-HISTORY EVOLUTION; DENSITY-DEPENDENT GROWTH; TROUT SALVELINUS-NAMAYCUSH; CATCH-AND-RELEASE; NORTH-SEA PLAICE; STIZOSTEDION-VITREUM-VITREUM; HARVESTED FISH POPULATIONS; WALLEYE SANDER-VITREUS; GILL-NET SELECTIVITY; ECO-GENETIC MODEL Fisheries are selective, capturing fish based on their body size, behaviour, life stage, or location. Over time, if harvest pressure is strong enough and variation in traits heritable, evolution can occur that affects key aspects of the ecology of fish stocks. Most compelling examples of rapid evolution in response to harvest have come from marine systems. Here, we review the state of knowledge on fisheries-induced evolution (HE) in the Laurentian Great Lakes where subsistence, commercial, and recreational fisheries have operated for centuries. We conclude that stocks experienced harvest rates high enough and for long enough to undergo evolution. While historical fisheries exploited more juveniles, some contemporary Great Lakes fisheries target primarily adult size-classes thus reducing current selection for earlier maturation; however, other traits and behaviours could evolve (e.g., growth, timing of spawning, boldness). While commercial harvest previously dominated, recreational fishing is now expected to be a strong contributor to harvest selection in the Great Lakes. Environmental variation, density dependence, invasive species, and the genetic legacy of population bottlenecks and stocking interact with, and make it more challenging to detect, FIE in the Great Lakes than in marine systems. Case studies are presented for Great Lakes stocks of yellow perch Perca flavescens and lake whitefish Coregonus clupeaformis for which FIE has been investigated. The evidence for FIE in the Great Lakes is currently sparse, potentially because of the low research focus on this topic or because of the interacting influence of environmental variation and anthropogenic stressors. (C) 2018 The Authors. Published by Elsevier B.V. on behalf of International Association for Great Lakes Research. [Dunlop, Erin S.] Ontario Minist Nat Resources & Forestry, Aquat Res & Monitoring Sect, 2140 East Bank Dr, Peterborough, ON K0L 2G0, Canada; [Feiner, Zachary S.; Hook, Tomas O.] Purdue Univ, Dept Forestry & Nat Resources, 195 Marsteller St, W Lafayette, IN 47907 USA; [Hook, Tomas O.] Illinois Indiana Sea Grant, 195 Marsteller St, W Lafayette, IN 47907 USA; [Feiner, Zachary S.] Sci Operat Ctr, Wisconsin Dept Nat Resources, 2801 Progress Rd, Madison, WI 53716 USA Dunlop, ES (reprint author), Ontario Minist Nat Resources & Forestry, Aquat Res & Monitoring Sect, 2140 East Bank Dr, Peterborough, ON K0L 2G0, Canada. erin.dunlop@ontario.ca Allan JD, 2013, P NATL ACAD SCI USA, V110, P372, DOI 10.1073/pnas.1213841110; Allan JD, 2005, BIOSCIENCE, V55, P1041, DOI 10.1641/0006-3568(2005)055[1041:OOIW]2.0.CO;2; Allendorf FW, 2009, P NATL ACAD SCI USA, V106, P9987, DOI 10.1073/pnas.0901069106; Andersen KH, 2018, CAN J FISH AQUAT SCI, V75, P271, DOI 10.1139/cjfas-2016-0350; Arlinghaus R, 2007, REV FISH SCI, V15, P75, DOI 10.1080/10641260601149432; Arlinghaus R, 2017, FISH FISH, V18, P360, DOI 10.1111/faf.12176; Arlinghaus R, 2009, EVOL APPL, V2, P335, DOI 10.1111/j.1752-4571.2009.00081.x; Baillie SM, 2016, J GREAT LAKES RES, V42, P204, DOI 10.1016/j.jglr.2016.02.001; Barot S, 2004, EVOL ECOL RES, V6, P659; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Bodin M, 2012, B MATH BIOL, V74, P2842, DOI 10.1007/s11538-012-9783-4; Bradshaw WE, 2006, SCIENCE, V312, P1477, DOI 10.1126/science.1127000; Brenden T. O., 2013, GREAT LAKES FISHERIE, P339; Bunnell DB, 2014, BIOSCIENCE, V64, P26, DOI 10.1093/biosci/bit001; Cameron TC, 2013, ECOL LETT, V16, P754, DOI 10.1111/ele.12107; Chiyo PI, 2015, ECOL EVOL, V5, P5216, DOI 10.1002/ece3.1769; Christie MR, 2012, P NATL ACAD SCI USA, V109, P238, DOI 10.1073/pnas.1111073109; CLELAND CE, 1982, AM ANTIQUITY, V47, P761, DOI 10.2307/280281; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Cooke ELL, 2017, CAN J FISH AQUAT SCI, V74, P1151, DOI 10.1139/cjfas-2016-0192; Cooke SJ, 2003, N AM J FISH MANAGE, V23, P883, DOI 10.1577/M02-096; Cooke SJ, 2002, AM FISH S S, V31, P489; Cooke SJ, 2004, BIOSCIENCE, V54, P857, DOI 10.1641/0006-3568(2004)054[0857:TRORFI]2.0.CO;2; Cooke SJ, 2007, PHYSIOL BIOCHEM ZOOL, V80, P480, DOI 10.1086/520618; Devine JA, 2012, CAN J FISH AQUAT SCI, V69, P1105, DOI 10.1139/F2012-047; Diaz Pauli B, 2015, J FISH BIOL, V86, P1030, DOI 10.1111/jfb.12620; Doll JC, 2014, J FRESHWATER ECOL, V29, P279, DOI 10.1080/02705060.2014.891084; Douhard M, 2017, OIKOS, V126, P1031, DOI 10.1111/oik.03799; Du X, 2016, AQUAT TOXICOL, V177, P44, DOI 10.1016/j.aquatox.2016.05.007; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2018, CAN J FISH AQUAT SCI, V75, P152, DOI 10.1139/cjfas-2017-0015; Dunlop ES, 2015, ECOL APPL, V25, P1860, DOI 10.1890/14-1862.1; Dunlop ES, 2009, EVOL APPL, V2, P371, DOI 10.1111/j.1752-4571.2009.00089.x; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; Eikeset AM, 2016, P NATL ACAD SCI USA, V113, P15030, DOI 10.1073/pnas.1525749113; Eikeset AM, 2013, P NATL ACAD SCI USA, V110, P12259, DOI 10.1073/pnas.1212593110; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Eshenroder R.L., 2016, CISCOES COREGONUS SU; Eshenroder RL, 1995, J GREAT LAKES RES, V21, P518, DOI 10.1016/S0380-1330(95)71123-6; Feiner ZS, 2017, CAN J FISH AQUAT SCI, V74, P2059, DOI 10.1139/cjfas-2016-0173; Feiner ZS, 2015, EVOL APPL, V8, P724, DOI 10.1111/eva.12285; Fera SA, 2015, J GREAT LAKES RES, V41, P1138, DOI 10.1016/j.jglr.2015.08.010; Fielder DG, 2007, J GREAT LAKES RES, V33, P118, DOI 10.3394/0380-1330(2007)33[118:EAECST]2.0.CO;2; Francis RC, 2007, FISHERIES, V32, P217, DOI 10.1577/1548-8446(2007)32[217:TCFBFS]2.0.CO;2; Fraser DJ, 2013, CAN J FISH AQUAT SCI, V70, P1417, DOI 10.1139/cjfas-2013-0171; Frick H. C., 1965, EC ASPECTS GREAT LAK; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Gillis M. K., 2017, P R SOC B, V284, P9; Gislason D, 2018, CAN J FISH AQUAT SCI, V75, P211, DOI 10.1139/cjfas-2016-0211; Gobin J, 2016, J GREAT LAKES RES, V42, P871, DOI 10.1016/j.jglr.2016.05.003; Gobin J, 2015, J GREAT LAKES RES, V41, P405, DOI 10.1016/j.jglr.2015.03.003; Graham N, 2007, ICES J MAR SCI, V64, P744, DOI 10.1093/icesjms/fsm059; GRANEY JR, 1995, GEOCHIM COSMOCHIM AC, V59, P1715, DOI 10.1016/0016-7037(95)00077-D; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Gum B, 2014, J FISH BIOL, V84, P1721, DOI 10.1111/jfb.12393; Gutowsky LFG, 2017, FISH RES, V186, P612, DOI 10.1016/j.fishres.2016.05.026; HAMLEY JM, 1975, J FISH RES BOARD CAN, V32, P1943, DOI 10.1139/f75-233; HANDFORD P, 1977, J FISH RES BOARD CAN, V34, P954, DOI 10.1139/f77-148; Hansen MJ, 1997, CAN J FISH AQUAT SCI, V54, P2483, DOI 10.1139/cjfas-54-11-2483; Haponski AE, 2014, J GREAT LAKES RES, V40, P89, DOI 10.1016/j.jglr.2012.12.006; Harvey AC, 2017, ECOL EVOL, V7, P7490, DOI 10.1002/ece3.3304; Headley HC, 2008, N AM J FISH MANAGE, V28, P57, DOI 10.1577/M06-097.1; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2008, B MAR SCI, V83, P69; Heino M, 2015, ANNU REV ECOL EVOL S, V46, P461, DOI 10.1146/annurev-ecolsys-120213-054339; Heino M, 2013, ICES J MAR SCI, V70, P707, DOI 10.1093/icesjms/fst077; HENDERSON BA, 1991, CAN J FISH AQUAT SCI, V48, P2420, DOI 10.1139/f91-283; Holeck KT, 2004, BIOSCIENCE, V54, P919, DOI 10.1641/0006-3568(2004)054[0919:BTWBIT]2.0.CO;2; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Huse I, 2000, ICES J MAR SCI, V57, P1271, DOI 10.1006/jmsc.2000.0813; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; Irwin BJ, 2008, FISH RES, V94, P267, DOI 10.1016/j.fishres.2008.05.009; Isermann DA, 2005, N AM J FISH MANAGE, V25, P827, DOI 10.1577/M04-026.1; Ivan LN, 2011, T AM FISH SOC, V140, P1078, DOI 10.1080/00028487.2011.603976; Johnson JE, 2015, N AM J AQUACULT, V77, P396, DOI 10.1080/15222055.2014.993488; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2010, CAN J FISH AQUAT SCI, V67, P1086, DOI 10.1139/F10-049; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; Kao YC, 2015, J GREAT LAKES RES, V41, P423, DOI 10.1016/j.jglr.2015.03.012; Killen SS, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0603; Kindsvater HK, 2017, COPEIA, V105, P475, DOI 10.1643/OT-16-533; Kitchell JF, 2000, ECOSYSTEMS, V3, P545, DOI 10.1007/s100210000048; Klefoth T, 2017, EVOL APPL, V10, P994, DOI 10.1111/eva.12504; Koelz W., 1926, FISHING IND GREAT LA; Krueger CC, 1995, J GREAT LAKES RES, V21, P348, DOI 10.1016/S0380-1330(95)71109-1; Krueger CC., 2013, GREAT LAKES FISHERIE, P589; Kuparinen A, 2016, SCI REP-UK, V6, DOI 10.1038/srep22245; Kvalnes T, 2016, EVOLUTION, V70, P1486, DOI 10.1111/evo.12952; Lauer TE, 2008, FISHERIES MANAG ECOL, V15, P39, DOI 10.1111/j.1365-2400.2007.00567.x; Laugen AT, 2014, FISH FISH, V15, P65, DOI 10.1111/faf.12007; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Leclerc M, 2017, J APPL ECOL, V54, P1941, DOI 10.1111/1365-2664.12893; Lennox RJ, 2017, FISH FISH, V18, P986, DOI 10.1111/faf.12219; Lester NP, 2014, ECOL APPL, V24, P38, DOI 10.1890/12-2020.1; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lewin WC, 2006, REV FISH SCI, V14, P305, DOI 10.1080/10641260600886455; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Louison MJ, 2017, FISHERIES MANAG ECOL, V24, P10, DOI 10.1111/fme.12196; Marsden JE, 2004, N AM J FISH MANAGE, V24, P952, DOI 10.1577/M02-195.1; Matsumura S, 2011, EVOL ECOL, V25, P711, DOI 10.1007/s10682-010-9444-8; McLeod DV, 2011, J GREAT LAKES RES, V37, P601, DOI 10.1016/j.jglr.2011.08.003; Millar RB, 1999, REV FISH BIOL FISHER, V9, P89, DOI 10.1023/A:1008838220001; Miller LM, 2016, J GREAT LAKES RES, V42, P883, DOI 10.1016/j.jglr.2016.05.006; Mollet FM, 2016, CAN J FISH AQUAT SCI, V73, P1126, DOI 10.1139/cjfas-2014-0568; Morbey Y. E., 2018, EVOL APPL, V2018, P1; Mulvaney KK, 2014, J GREAT LAKES RES, V40, P590, DOI 10.1016/j.jglr.2014.06.002; Nacci D, 2016, MOL ECOL, V25, P5467, DOI 10.1111/mec.13848; Nussle S, 2016, TRENDS ECOL EVOL, V31, P500, DOI 10.1016/j.tree.2016.04.001; Nussle S, 2009, EVOL APPL, V2, P200, DOI 10.1111/j.1752-4571.2008.00054.x; Nystrom P, 2001, ECOLOGY, V82, P1023, DOI 10.1890/0012-9658(2001)082[1023:TIOMIP]2.0.CO;2; Oldenburg K, 2007, J GREAT LAKES RES, V33, P46, DOI 10.3394/0380-1330(2007)33[46:PSFROL]2.0.CO;2; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; PARSONS JW, 1972, T AM FISH SOC, V101, P655, DOI 10.1577/1548-8659(1972)101<655:LHAPOW>2.0.CO;2; Peterson DL, 2007, REV FISH BIOL FISHER, V17, P59, DOI 10.1007/s11160-006-9018-6; Philipp DP, 2009, T AM FISH SOC, V138, P189, DOI 10.1577/T06-243.1; Pinsky ML, 2014, MOL ECOL, V23, P29, DOI 10.1111/mec.12509; Post JR, 2002, FISHERIES, V27, P6, DOI 10.1577/1548-8446(2002)027<0006:CRF>2.0.CO;2; Prichard CG, 2013, J GREAT LAKES RES, V39, P110, DOI 10.1016/j.jglr.2012.12.005; REGIER HA, 1966, J FISH RES BOARD CAN, V23, P423, DOI 10.1139/f66-034; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; RIDGWAY MS, 1991, J ANIM ECOL, V60, P665, DOI 10.2307/5304; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Rijnsdorp AD, 2005, CAN J FISH AQUAT SCI, V62, P833, DOI 10.1139/F05-039; Roseman E. F., 2013, GREAT LAKES FISHERIE, P475; Sattar SA, 2008, B MAR SCI, V83, P235; SCHELSKE CL, 1995, LIMNOL OCEANOGR, V40, P918, DOI 10.4319/lo.1995.40.5.0918; SCHNEIDER JC, 1977, J FISH RES BOARD CAN, V34, P1878, DOI 10.1139/f77-254; Sepulveda-Villet OJ, 2009, J GREAT LAKES RES, V35, P107, DOI 10.1016/j.jglr.2008.11.009; Siefkes MJ, 2013, GREAT LAKES FISHERIE, P651; Siepker MJ, 2009, T AM FISH SOC, V138, P818, DOI 10.1577/T07-269.1; Sitar SP, 2017, N AM J FISH MANAGE, V37, P789, DOI 10.1080/02755947.2017.1327903; Smith SE, 2016, CAN J FISH AQUAT SCI, V73, P1815, DOI 10.1139/cjfas-2015-0448; Steinhart GB, 2004, T AM FISH SOC, V133, P121, DOI 10.1577/T03-020; Strauss SY, 2006, ECOL LETT, V9, P354, DOI 10.1111/j.1461-0248.2005.00874.x; Sutter DAH, 2012, P NATL ACAD SCI USA, V109, P20960, DOI 10.1073/pnas.1212536109; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Swank DR., 2005, THESIS; Thayer S., 2013, GREAT LAKES FISHERIE, P399; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; Therkildsen NO, 2013, MOL ECOL, V22, P2424, DOI 10.1111/mec.12260; Tillotson M. D., 2017, FISH FISH, P1; Townsend CR, 2003, CONSERV BIOL, V17, P38, DOI 10.1046/j.1523-1739.2003.02017.x; Twardek WM, 2017, AQUAT CONSERV, V27, P789, DOI 10.1002/aqc.2718; Tyson JT, 2001, T AM FISH SOC, V130, P766, DOI 10.1577/1548-8659(2001)130<0766:ROYPTC>2.0.CO;2; Uusi-Heikkila S, 2017, MOL ECOL, V26, P3954, DOI 10.1111/mec.14179; Uusi-Heikkila S, 2015, EVOL APPL, V8, P597, DOI 10.1111/eva.12268; van Wijk SJ, 2013, FRONT ECOL ENVIRON, V11, P181, DOI 10.1890/120229; Vandergoot CS, 2011, N AM J FISH MANAGE, V31, P832, DOI 10.1080/02755947.2011.623758; Wang HY, 2008, CAN J FISH AQUAT SCI, V65, P2157, DOI 10.1139/F08-124; Wang HY, 2017, ECOL APPL, V27, P274, DOI 10.1002/eap.1441; Wang HY, 2009, N AM J FISH MANAGE, V29, P1540, DOI 10.1577/M08-156.1; Wang HY, 2009, EVOL APPL, V2, P438, DOI 10.1111/j.1752-4571.2009.00088.x; Welsh A, 2008, N AM J FISH MANAGE, V28, P572, DOI 10.1577/M06-184.1; Wilberg MJ, 2005, N AM J FISH MANAGE, V25, P1130, DOI 10.1577/M04-193.1; Wirgin I, 2011, SCIENCE, V331, P1322, DOI 10.1126/science.1197296; Wood JLA, 2016, EVOL APPL, V9, P640, DOI 10.1111/eva.12375; Worm B, 2012, TRENDS ECOL EVOL, V27, P594, DOI 10.1016/j.tree.2012.07.005; Zhao YM, 2017, N AM J FISH MANAGE, V37, P1341, DOI 10.1080/02755947.2017.1381206; Zimmermann F, 2017, MAR ECOL PROG SER, V563, P185, DOI 10.3354/meps11996 169 1 1 18 18 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0380-1330 J GREAT LAKES RES J. Gt. Lakes Res. AUG 2018 44 4 735 747 10.1016/j.jglr.2018.05.009 13 Environmental Sciences; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology GP6AM WOS:000440959300019 Other Gold 2019-02-21 J Cordero, GA Cordero, Gerardo A. Is the Pelvis Sexually Dimorphic in Turtles? ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY English Article sexual dimorphism; pelvic shape; life history evolution; turtle evolution EGG SIZE; MORPHOLOGICAL CONSTRAINT; GEOGRAPHIC-VARIATION; KINOSTERNID TURTLES; SHAPE; EVOLUTION; MATURITY; SEX; REPRODUCTION; COVARIATION Variation in the pelvis is intrinsically linked to life history evolution. This is perhaps best exemplified by sexually dimorphic pelvic variation in bipedal primates. Yet, whether this trend is applicable to other taxa is unclear. Using turtle anatomy as a model, I tested the hypothesis that the pelvis is also sexually dimorphic in egg-laying tetrapods. I sampled a natural turtle population with female-biased sexual size dimorphism (i.e., larger females). I show that the area of the egg canal (pelvic aperture) is greater in females. Morphological differences between sexes were predicted by body size, such that skeletal shape deformation of the female ilium increased proportionally with pelvic aperture area. These results suggest that sexual pelvic dimorphism might be indirectly maintained by selection for large female size, consistent with the pelvic constraint hypothesis in reptiles. However, subsampling of similarly sized individuals revealed that pelvic aperture area and shape may vary in disproportion to body size. Comparisons of pelvic ontogenetic trajectories across multiple lineages are needed to clarify the occurrence of sexual pelvic dimorphism in turtles and other egg-laying tetrapods. My findings provide impetus to further explore how sex-specific functional demands influence the architecture of the pelvic girdle. (C) 2018 Wiley Periodicals, Inc. [Cordero, Gerardo A.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, 251 Bessey Hall, Ames, IA 50011 USA; [Cordero, Gerardo A.] Geowissensch Univ Tubingen, D-72074 Tubingen, Germany Cordero, GA (reprint author), Iowa State Univ, Dept Ecol Evolut & Organismal Biol, 251 Bessey Hall, Ames, IA 50011 USA. gacordero@alumni.iastate.edu Cordero, Gerardo/0000-0002-9137-1741 Chicago Herpetological Society; US National Science Foundation [NSF DEB 0640932]; Division of Environmental Biology Grant sponsor: Chicago Herpetological Society; Grant sponsor: US National Science Foundation; Grant number: NSF DEB 0640932; Grant sponsor: Division of Environmental Biology. Adams DC, 1996, ANIM BEHAV, V51, P733, DOI 10.1006/anbe.1996.0077; Adams DC, 2013, METHODS ECOL EVOL, V4, P393, DOI 10.1111/2041-210X.12035; Ashley LM., 1962, LAB ANATOMY TURTLE; Berns CM, 2013, SEXUAL DIMORPHISM, P1, DOI DOI 10.5772/55154; BERRY JF, 1980, OECOLOGIA, V44, P185, DOI 10.1007/BF00572678; Ceballos CP, 2014, BIOL J LINN SOC, V111, P806, DOI 10.1111/bij.12273; Clark PJ, 2001, FUNCT ECOL, V15, P70, DOI 10.1046/j.1365-2435.2001.00494.x; Collyer ML, 2015, HEREDITY, V115, P357, DOI 10.1038/hdy.2014.75; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; Cordero GA, 2016, J EVOLUTION BIOL, V29, P2102, DOI 10.1111/jeb.12938; Cordero GA, 2017, CURR BIOL, V27, pR168, DOI 10.1016/j.cub.2016.12.040; Cordero GA, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0022; CORDERO Gerardo Antonio, 2010, Acta Zool. Mex, V26, P233; Ernst C. H., 2009, TURTLES US CANADA; Escalona T, 2017, EVOLUTIONARY ECOLOGY, V32, P29; Fischer B, 2017, ANAT REC, V300, P698, DOI 10.1002/ar.23549; Fischer B, 2015, P NATL ACAD SCI USA, V112, P5655, DOI 10.1073/pnas.1420325112; Hofmeyr MD, 2005, CAN J ZOOL, V83, P1343, DOI 10.1139/Z05-132; HUNT KD, 1994, J HUM EVOL, V26, P183, DOI 10.1006/jhev.1994.1011; Huseynov A, 2016, P NATL ACAD SCI USA, V113, P5227, DOI 10.1073/pnas.1517085113; Iverson J.B., 1991, P87, DOI 10.1017/CBO9780511585739.008; Janzen FJ, 2009, J EVOLUTION BIOL, V22, P2222, DOI 10.1111/j.1420-9101.2009.01838.x; Kuchling G., 1999, REPROD BIOL CHELONIA; LONG DR, 1989, J HERPETOL, V23, P315, DOI 10.2307/1564462; Lu JC, 2011, SCIENCE, V331, P321, DOI 10.1126/science.1197323; Macip-Rios R, 2013, CHELONIAN CONSERV BI, V12, P218, DOI 10.2744/CCB-1038.1; Macip-Rios R, 2012, ZOOL SCI, V29, P60, DOI 10.2108/zsj.29.60; MAHMOUD IY, 1967, COPEIA, P314, DOI 10.2307/1442119; Mccoy MW, 2006, OECOLOGIA, V148, P547, DOI 10.1007/s00442-006-0403-6; MICHAUD EJ, 1995, J HERPETOL, V29, P86, DOI 10.2307/1565090; Moffett EA, 2017, ANAT REC, V300, P870, DOI 10.1002/ar.23572; MOSIMANN J. E., 1958, REV CANADIENNE BIOL, V17, P137; Oufiero CE, 2007, BIOL J LINN SOC, V91, P513, DOI 10.1111/j.1095-8312.2007.00816.x; Prieto-Marquez A, 2007, J VERTEBR PALEONTOL, V27, P603, DOI 10.1671/0272-4634(2007)27[603:NEOPSA]2.0.CO;2; R Development Core Team, 2017, R LANG ENV STAT COMP; Rohlf F.J., 2010, TPSRELW THIN PLATE S; Rohlf FJ, 2000, SYST BIOL, V49, P740, DOI 10.1080/106351500750049806; Rohlf FJ, 2010, TPSDIG VERSION 2 16; Rohlf FJ., 2004, THIN PLATE SPLINE VE; Rollinson N, 2008, OIKOS, V117, P144, DOI 10.1111/j.2007.0030-1299.16088.x; Rollinson N, 2016, BIOL REV, V91, P1134, DOI 10.1111/brv.12214; Rosenberg KR, 2017, ANAT REC, V300, P789, DOI 10.1002/ar.23580; Schwanz LE, 2016, EVOLUTION, V70, P329, DOI 10.1111/evo.12856; Sheets HD., 2014, YIMP REGRESS8; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; Tague RG, 2000, AM J PHYS ANTHROPOL, V112, P377, DOI 10.1002/1096-8644(200007)112:3<377::AID-AJPA8>3.0.CO;2-O; TINKLE DW, 1961, ECOLOGY, V42, P68, DOI 10.2307/1933268; WAAGEN G N, 1984, Herpetological Review, V15, P33; Walker WF., 1974, BIOL REPTILIA, V4, P1; Zelditch ML, 2012, GEOMETRIC MORPHOMETRICS FOR BIOLOGISTS: A PRIMER, 2ND EDITION, P1; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 51 0 0 1 1 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1932-8486 1932-8494 ANAT REC Anat. Rec. AUG 2018 301 8 1382 1389 10.1002/ar.23831 8 Anatomy & Morphology Anatomy & Morphology GP2LH WOS:000440663600009 29677702 2019-02-21 J Chen, W; Olden, JD Chen, William; Olden, Julian D. Evaluating transferability of flow-ecology relationships across space, time and taxonomy FRESHWATER BIOLOGY English Article environmental flows; species traits; flow regulation; flow-ecology; freshwater fish LIFE-HISTORY STRATEGIES; RIPARIAN PLANT GUILDS; ENVIRONMENTAL FLOWS; WATER MANAGEMENT; CLIMATE-CHANGE; REGIMES; RIVER; RESPONSES; ECOSYSTEMS; BIODIVERSITY Environmental flow assessments are becoming increasingly central to ecologically-sustainable river management. Rigorous evaluations of flow-ecology relationships serve a vital role in guiding these assessments to meet targeted ecosystem objectives. However, limited resources and widespread environmental change are outpacing the ability to gain knowledge of species' flow responses and assess environmental needs for rivers individually. Successfully transferring flow-ecology relationships across space and time would facilitate regional-scale environmental flow assessments, yet the necessary contexts for such success remains a knowledge gap. Here, we leverage long-term, multi-species datasets across multiple river basins in southwestern United States as a case study to explore whether relationships between species abundances and hydrological conditions are transferable across space and time. Additionally, we evaluate the potential for ecological guilds based on fluvial dependence and life-history strategies to facilitate the transfer of flow-ecology knowledge across taxonomic boundaries. Species varied in the spatial transferability of their flow-ecology relationships. Spatial transferability was similar when comparing a species' flow-ecology relationships within a river basin versus across different river basins, although transferability was considerably greater across free-flowing rivers compared to regulated rivers. Species' flow-ecology relationships transferred through time just as well as across space. Ecological guilds defined according to fluvial dependence and life-history strategies offered just as much potential for transferring flow-ecology knowledge among species as transferring within species across space or time. Our study provides insights into transferring flow-ecology knowledge to support effective, regional-scale environmental flows. Further research into developing transferable flow-ecology relationships for a wide range of environmental predictors and biological responses across different spatial scales and flow regimes will enable us to keep pace with the increasing demand for science to inform sustainable river management. [Chen, William] Univ Washington, Quantitat Ecol & Resource Management Program, Seattle, WA 98195 USA; [Chen, William; Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA Olden, JD (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. olden@uw.edu National Science Foundation Graduate Research Fellowship; H. Mason Keeler Endowed Professorship National Science Foundation Graduate Research Fellowship; H. Mason Keeler Endowed Professorship Acreman MC, 2014, HYDROLOG SCI J, V59, P433, DOI 10.1080/02626667.2014.886019; Acreman M, 2014, FRONT ECOL ENVIRON, V12, P466, DOI 10.1890/130134; Allan JD, 2004, ANNU REV ECOL EVOL S, V35, P257, DOI 10.1146/annurev.ecolsys.35.120202.110122; Arthington A. H., 2012, ENV FLOWS SAVING RIV; Arthington AH, 2006, ECOL APPL, V16, P1311, DOI 10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2; Arthington AH, 2010, FRESHWATER BIOL, V55, P1, DOI 10.1111/j.1365-2427.2009.02340.x; Balcombe SR, 2009, MAR FRESHWATER RES, V60, P146, DOI 10.1071/MF08118; Brisbane Declaration, 2007, 10 INT RIV S INT ENV; Brooks AJ, 2016, HYDROBIOLOGIA, V773, P23, DOI 10.1007/s10750-016-2676-z; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Davies PM, 2014, MAR FRESHWATER RES, V65, P133, DOI 10.1071/MF13110; Dunbar MJ, 2010, FRESHWATER BIOL, V55, P226, DOI 10.1111/j.1365-2427.2009.02306.x; Duran B. R., 2016, ENDANGERED FISH MONI; Evans MR, 2013, TRENDS ECOL EVOL, V28, P578, DOI 10.1016/j.tree.2013.05.022; Freeman MC, 2006, ENVIRON MANAGE, V38, P435, DOI 10.1007/s00267-005-0169-3; Gido KB, 2013, CAN J FISH AQUAT SCI, V70, P554, DOI 10.1139/cjfas-2012-0441; Giorgino T, 2009, J STAT SOFTW, V31, P1; Gippel CJ, 1998, REGUL RIVER, V14, P53, DOI 10.1002/(SICI)1099-1646(199801/02)14:1<53::AID-RRR476>3.0.CO;2-Z; Golden M. E., 2004, SUMMARY LOWER VIRGIN; Jaeger KL, 2014, P NATL ACAD SCI USA, V111, P13894, DOI 10.1073/pnas.1320890111; James GM, 2009, ANN STAT, V37, P2083, DOI 10.1214/08-AOS641; Keck BP, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093237; Kennard MJ, 2007, CAN J FISH AQUAT SCI, V64, P1346, DOI 10.1139/F07-108; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Lytle DA, 2017, ECOL APPL, V27, P1338, DOI 10.1002/eap.1528; Macnaughton CJ, 2016, FRESHWATER BIOL, V61, P1759, DOI 10.1111/fwb.12815; McManamay RA, 2015, ECOHYDROLOGY, V8, P460, DOI 10.1002/eco.1517; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; Merritt DM, 2010, FRESHWATER BIOL, V55, P206, DOI 10.1111/j.1365-2427.2009.02206.x; Milly PCD, 2008, SCIENCE, V319, P573, DOI 10.1126/science.1151915; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Murphy DD, 2011, CONSERV BIOL, V25, P873, DOI 10.1111/j.1523-1739.2011.01711.x; Naiman RJ, 2008, CR GEOSCI, V340, P629, DOI 10.1016/j.crte.2008.01.002; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2016, CONSERV BIOL SER, P107; Olden JD, 2010, AM FISH S S, V73, P83; Olden JD, 2010, FRESHWATER BIOL, V55, P86, DOI 10.1111/j.1365-2427.2009.02179.x; Pahl-Wostl C, 2013, CURR OPIN ENV SUST, V5, P341, DOI 10.1016/j.cosust.2013.06.009; Patrick CJ, 2017, ECOL APPL, V27, P1605, DOI [10.1002/eap.1554/full, 10.1002/eap.1554]; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 2016, NAT CLIM CHANGE, V6, P25, DOI 10.1038/NCLIMATE2765; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Ramsay J. O., 2005, FUNCTIONAL DATA ANAL; Razavi S, 2015, WATER RESOUR RES, V51, P1813, DOI 10.1002/2014WR015696; Richards C, 1997, FRESHWATER BIOL, V37, P219, DOI 10.1046/j.1365-2427.1997.d01-540.x; Richter BD, 2010, RIVER RES APPL, V26, P1052, DOI 10.1002/rra.1320; Rosenfeld JS, 2017, FRESHWATER BIOL, V62, P1305, DOI 10.1111/fwb.12948; Rulli MC, 2013, P NATL ACAD SCI USA, V110, P892, DOI 10.1073/pnas.1213163110; Seager R, 2007, SCIENCE, V316, P1181, DOI 10.1126/science.1139601; Shenton W, 2012, ENVIRON MANAGE, V50, P1, DOI 10.1007/s00267-012-9864-z; SIMBERLOFF D, 1991, ANNU REV ECOL SYST, V22, P115, DOI 10.1146/annurev.es.22.110191.000555; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Stein ED, 2017, ECOHYDROLOGY, V10, DOI 10.1002/eco.1869; Stewart-Koster B, 2014, HYDROLOG SCI J, V59, P629, DOI 10.1080/02626667.2013.860231; Stromberg JC, 2016, FRESHWATER BIOL, V61, P1259, DOI 10.1111/fwb.12686; Tennant D. L, 1976, FISHERIES, V1, P6, DOI DOI 10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2; Tharme RE, 2003, RIVER RES APPL, V19, P397, DOI 10.1002/rra.736; Wagener T, 2010, WATER RESOUR RES, V46, DOI 10.1029/2009WR008906; Webb JA, 2018, ENVIRON MANAGE, V61, P398, DOI 10.1007/s00267-017-0822-7; Welcomme RL, 2006, RIVER RES APPL, V22, P377, DOI 10.1002/rra.914; Wenger SJ, 2012, METHODS ECOL EVOL, V3, P260, DOI 10.1111/j.2041-210X.2011.00170.x; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Yarnell SM, 2015, BIOSCIENCE, V65, P963, DOI 10.1093/biosci/biv102; Yen JDL, 2015, METHODS ECOL EVOL, V6, P17, DOI 10.1111/2041-210X.12290 66 3 3 8 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. AUG 2018 63 8 SI 817 830 10.1111/fwb.13041 14 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology GO2EL WOS:000439780800007 2019-02-21 J Arthington, AH; Kennen, JG; Stein, ED; Webb, JA Arthington, Angela H.; Kennen, Jonathan G.; Stein, Eric D.; Webb, J. Angus Recent advances in environmental flows science and water management-Innovation in the Anthropocene FRESHWATER BIOLOGY English Article ecohydrology; ecosystem services; environmental flows; river restoration; social-ecological resilience LIFE-HISTORY STRATEGIES; BASIN PLAN CHALLENGES; ECOLOGICAL LIMITS; RIPARIAN VEGETATION; RIVER ECOSYSTEMS; ALTERATION ELOHA; SPECIES TRAITS; CLIMATE-CHANGE; BIODIVERSITY; REGIMES The implementation of environmental flow regimes offers a promising means to protect and restore riverine, wetland and estuarine ecosystems, their critical environmental services and cultural/societal values. This Special Issue expands the scope of environmental flows and water science in theory and practice, offering 20 papers from academics, agency researchers and non-governmental organisations, each with fresh perspectives on the science and management of environmental water allocations. Contributions confront the grand challenge for environmental flows and water management in the Anthropocenethe urgent need for innovations that will help to sustain the innate resilience of social-ecological systems under dynamic and uncertain environmental and societal futures. Basin-scale and regional assessments of flow requirements mark a necessary advance in environmental water science in the face of rapid changes in water-resource management activities worldwide (e.g. increases in dams, diversions, retention and reuse). Techniques for regional-scale hydrological and ecohydrological modelling support ecological risk assessment and identification of priority flow management and river restoration actions. Changing flood-drought cycles, long-term climatic shifts and associated effects on hydrological, thermal and water quality regimes add enormous uncertainty to the prediction of future ecological outcomes, regardless of environmental water allocations. An improved capacity to predict the trajectories of ecological change in rivers degraded by legacies of past impact interacting with current conditions and future climate change is essential. Otherwise, we risk unrealistic expectations from restoration of river and estuarine flow regimes. A more robust, dynamic and predictive approach to environmental water science is emerging. It encourages the measurement of process rates (e.g. birth rate, colonisation rate) and species traits (e.g. physiological requirements, morphological adaptations) as well as ecosystem states (e.g. species richness, assemblage structure), as the variables representing ecological responses to flow variability and environmental water allocations. Another necessary development is the incorporation of other environmental variables such as water temperature and sedimentary processes in flow-ecological response models. Based on contributions to this Special Issue, several recent compilations and the wider literature, we identify six major scientific challenges for further exploration, and seven themes for advancing the management of environmental water. We see the emerging frontier of environmental flows and water science as urgent and challenging, with numerous opportunities for reinvigorated science and methodological innovation in the expanding enterprise of environmental water linked to ecological sustainability and social well-being. [Arthington, Angela H.] Griffith Univ, Australian Rivers Inst, Nathan, Qld, Australia; [Kennen, Jonathan G.] US Geol Survey, Lawrenceville, NJ USA; [Stein, Eric D.] Southern Calif Coastal Water Res Project, Costa Mesa, CA USA; [Webb, J. Angus] Univ Melbourne, Dept Infrastruct Engn, Parkville, Vic, Australia Arthington, AH (reprint author), Griffith Univ, Australian Rivers Inst, Brisbane, Qld, Australia. a.arthington@griffith.edu.au Webb, James/0000-0003-0857-7878; Kennen, Jonathan/0000-0002-5426-4445 Australian Rivers Institute; USGS National Water Census; Southern California Coastal Water Research Project; University of Melbourne Australian Rivers Institute; USGS National Water Census; Southern California Coastal Water Research Project; University of Melbourne Acreman MC, 2014, HYDROLOG SCI J, V59, P433, DOI 10.1080/02626667.2014.886019; Acreman MC, 2010, FRESHWATER BIOL, V55, P32, DOI 10.1111/j.1365-2427.2009.02181.x; Acreman M, 2014, FRONT ECOL ENVIRON, V12, P466, DOI 10.1890/130134; Arthington A. H., 2012, ENV FLOWS SAVING RIV, DOI [10. 1525/california/9780520273696. 001. 0001, DOI 10.1525/CALIF0RNIA/9780520273696.001.0001]; Arthington A. H., 2012, WATERLINES, V75; Arthington AH, 2006, ECOL APPL, V16, P1311, DOI 10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2; Arthington AH, 2010, FRESHWATER BIOL, V55, P1, DOI 10.1111/j.1365-2427.2009.02340.x; Belmar O, 2011, ENVIRON MANAGE, V47, P992, DOI 10.1007/s00267-011-9661-0; BISHT DCS, 2011, INT J ADV SCI TECHNO, V31, P99; Bond NR, 2008, HYDROBIOLOGIA, V600, P3, DOI 10.1007/s10750-008-9326-z; Bond NR, 2018, FRESHWATER BIOL, V63, P804, DOI 10.1111/fwb.13060; Brisbane Declaration, 2007, 10 INT RIV S INT ENV; Buchanan C, 2013, FRESHWATER BIOL, V58, P2632, DOI 10.1111/fwb.12240; Bunn S. E., 2016, FRONT ENV SCI, V4, P1; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Capon SJ, 2017, WATER ECON POLICY, V3, DOI 10.1142/S2382624X16500375; Carlisle DM, 2010, RIVER RES APPL, V26, P118, DOI 10.1002/rra.1247; Cartwright J, 2017, WATER-SUI, V9, DOI 10.3390/w9030196; Chan TU, 2012, RIVER RES APPL, V28, P283, DOI 10.1002/rra.1456; Chen W, 2018, FRESHWATER BIOL, V63, P817, DOI 10.1111/fwb.13041; Conallin JC, 2017, WATER FOR THE ENVIRONMENT: FROM POLICY AND SCIENCE TO IMPLEMENTATION AND MANAGEMENT, P129, DOI 10.1016/B978-0-12-803907-6.00007-3; Craig LS, 2017, ELEMENTA-SCI ANTHROP, V5, DOI 10.1525/elementa.256; Cuffney TF, 2018, FRESHWATER BIOL, V63, P738, DOI 10.1111/fwb.13031; Davies PM, 2014, MAR FRESHWATER RES, V65, P133, DOI 10.1071/MF13110; Downes BJ, 2010, FRESHWATER BIOL, V55, P60, DOI 10.1111/j.1365-2427.2009.02377.x; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Dunbar MJ, 2010, FRESHWATER BIOL, V55, P226, DOI 10.1111/j.1365-2427.2009.02306.x; Eamus D, 2006, AUST J BOT, V54, P91, DOI 10.1071/BT06029; Finn M, 2011, ECOSYSTEMS, V14, P1232, DOI 10.1007/s10021-011-9476-0; Frimpong E. A., 2010, AM FISHERIES SOC S, V79, P109; Gendaszek AS, 2018, FRESHWATER BIOL, V63, P917, DOI 10.1111/fwb.12987; Gillespie BR, 2015, FRESHWATER BIOL, V60, P410, DOI 10.1111/fwb.12506; Gleeson T, 2017, RIVER RES APPL, V34, P1; Hain EF, 2018, FRESHWATER BIOL, V63, P928, DOI 10.1111/fwb.13048; Hart B, 2009, WATERLINES REPORT SE, V14; Hart BT, 2016, INT J WATER RESOUR D, V32, P819, DOI 10.1080/07900627.2015.1083847; Hart BT, 2016, INT J WATER RESOUR D, V32, P835, DOI 10.1080/07900627.2015.1084494; Hermoso V, 2012, FRESHWATER BIOL, V57, P1, DOI 10.1111/j.1365-2427.2011.02693.x; Horne A.C., 2017, WATER ENV POLICY SCI; Horne AC, 2017, FRONT ENV SCI-SWITZ, V5, DOI 10.3389/fenvs.2017.00089; Humphries P, 2009, BIOSCIENCE, V59, P673, DOI 10.1525/bio.2009.59.8.9; Jackson S, 2017, WATER FOR THE ENVIRONMENT: FROM POLICY AND SCIENCE TO IMPLEMENTATION AND MANAGEMENT, P173, DOI 10.1016/B978-0-12-803907-6.00009-7; James CS, 2016, ECOL EVOL, V6, P5950, DOI 10.1002/ece3.2249; Kendy E, 2012, PRACTICAL GUIDE ENV; Kennard MJ, 2007, CAN J FISH AQUAT SCI, V64, P1346, DOI 10.1139/F07-108; Kennen J. G., 2007, 20075206 US GEOL SUR; Kennen J. G., 2018, FRESHWATER BIOL; King J, 2003, RIVER RES APPL, V19, P619, DOI 10.1002/rra.709; King J, 2010, FRESHWATER BIOL, V55, P127, DOI 10.1111/j.1365-2427.2009.02316.x; Laize CLR, 2014, RIVER RES APPL, V30, P299, DOI 10.1002/rra.2645; Leigh C, 2010, MAR FRESHWATER RES, V61, P896, DOI 10.1071/MF10106; Liermann CAR, 2012, RIVER RES APPL, V28, P1340, DOI 10.1002/rra.1541; Lindenmayer DB, 2011, ECOSYSTEMS, V14, P47, DOI 10.1007/s10021-010-9394-6; Lynch D. T., 2018, FRESHWATER BIOL; Maas-Hebner K. G., 2015, ENVIRON MONIT ASSESS, V187, P1; Mackay SJ, 2014, ECOHYDROLOGY, V7, P1485, DOI 10.1002/eco.1473; Martin DM, 2015, FRESHWATER BIOL, V60, P1890, DOI 10.1111/fwb.12619; Mazor RD, 2018, FRESHWATER BIOL, V63, P786, DOI 10.1111/fwb.13062; McCluney KE, 2014, FRONT ECOL ENVIRON, V12, P48, DOI 10.1890/120367; McKenna J. E., 2018, FRESHWATER BIOL; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; McManamay RA, 2013, ENVIRON MANAGE, V51, P1210, DOI 10.1007/s00267-013-0055-3; Merritt DM, 2010, FRESHWATER BIOL, V55, P206, DOI 10.1111/j.1365-2427.2009.02206.x; Mierau DW, 2018, FRESHWATER BIOL, V63, P752, DOI 10.1111/fwb.12985; Milly PCD, 2008, SCIENCE, V319, P573, DOI 10.1126/science.1151915; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Monk WA, 2018, FRESHWATER BIOL, V63, P891, DOI 10.1111/fwb.13030; Nestler J. M., 2016, J ECOHYDRAUL, V1, P5; Novak R., 2016, 20165164 US GEOL SUR; O'Brien GC, 2018, HYDROL EARTH SYST SC, V22, P957, DOI 10.5194/hess-22-957-2018; Olden JD, 2003, RIVER RES APPL, V19, P101, DOI 10.1002/rra.700; Olden JD, 2014, FRONT ECOL ENVIRON, V12, P176, DOI 10.1890/130076; Olden JD, 2010, FRESHWATER BIOL, V55, P86, DOI 10.1111/j.1365-2427.2009.02179.x; Pahl-Wostl C, 2013, CURR OPIN ENV SUST, V5, P341, DOI 10.1016/j.cosust.2013.06.009; Palmer M, 2004, SCIENCE, V304, P1251, DOI 10.1126/science.1095780; Palmer MA, 2010, FRESHWATER BIOL, V55, P205, DOI 10.1111/j.1365-2427.2009.02372.x; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 2018, FRESHWATER BIOL, V63, P1011, DOI 10.1111/fwb.13038; Poff NL, 2017, WATER FOR THE ENVIRONMENT: FROM POLICY AND SCIENCE TO IMPLEMENTATION AND MANAGEMENT, P203, DOI 10.1016/B978-0-12-803907-6.00011-5; Poff NL, 2016, NAT CLIM CHANGE, V6, P25, DOI 10.1038/NCLIMATE2765; Poff NL, 2013, CURR OPIN ENV SUST, V5, P667, DOI 10.1016/j.cosust.2013.11.006; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 2003, FRONT ECOL ENVIRON, V1, P298, DOI 10.1890/1540-9295(2003)001[0298:RFAWWE]2.0.CO;2; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Rahel FJ, 2008, CONSERV BIOL, V22, P521, DOI 10.1111/j.1523-1739.2008.00950.x; Richardson S, 2011, WATERLINES REPORT SE, V69; Rockstrom J, 2014, ECOHYDROLOGY, V7, P1249, DOI 10.1002/eco.1562; Rolls RJ, 2015, ENVIRON MANAGE, V55, P1315, DOI 10.1007/s00267-015-0462-8; Rolls RJ, 2014, ECOL INDIC, V39, P179, DOI 10.1016/j.ecolind.2013.12.017; Sanderson JS, 2012, RIVER RES APPL, V28, P1369, DOI 10.1002/rra.1542; Sengupta A, 2018, FRESHWATER BIOL, V63, P769, DOI 10.1111/fwb.13074; Shenton W, 2014, STOCH ENV RES RISK A, V28, P57, DOI 10.1007/s00477-013-0698-x; Shenton W, 2012, ENVIRON MANAGE, V50, P1, DOI 10.1007/s00267-012-9864-z; Steel AE, 2018, FRESHWATER BIOL, V63, P844, DOI 10.1111/fwb.12994; Stein ED, 2017, ECOHYDROLOGY, V10, DOI 10.1002/eco.1869; Stewardson M., 2018, FRESHWATER BIOL; Stewart-Koster B, 2010, FRESHWATER BIOL, V55, P243, DOI 10.1111/j.1365-2427.2009.02219.x; Stoffels RJ, 2018, FRESHWATER BIOL, V63, P996, DOI 10.1111/fwb.13061; Tharme RE, 2003, RIVER RES APPL, V19, P397, DOI 10.1002/rra.736; Thompson RM, 2018, FRESHWATER BIOL, V63, P986, DOI 10.1111/fwb.13029; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Walsh CJ, 2014, LANDSCAPE ECOL, V29, P1171, DOI 10.1007/s10980-014-0050-y; Webb CT, 2010, ECOL LETT, V13, P267, DOI 10.1111/j.1461-0248.2010.01444.x; Webb JA, 2018, FRESHWATER BIOL, V63, P831, DOI 10.1111/fwb.13069; Webb JA, 2018, ENVIRON MANAGE, V61, P398, DOI 10.1007/s00267-017-0822-7; Webb JA, 2018, ENVIRON MANAGE, V61, P339, DOI 10.1007/s00267-017-0981-6; Webb JA, 2017, WATER FOR THE ENVIRONMENT: FROM POLICY AND SCIENCE TO IMPLEMENTATION AND MANAGEMENT, P287, DOI 10.1016/B978-0-12-803907-6.00014-0; Webb JA, 2010, FRESHWATER BIOL, V55, P108, DOI 10.1111/j.1365-2427.2009.02205.x; Wheeler K, 2018, FRESHWATER BIOL, V63, P906, DOI 10.1111/fwb.13001; Williamson T. N., 2015, 20155143 US GEOL SUR, DOI 10. 3133/sir20155143; Winemiller KO, 2016, SCIENCE, V351, P128, DOI 10.1126/science.aac7082; Zhang Y, 2012, RIVER RES APPL, V28, P989, DOI 10.1002/rra.1483; Zimmerman JKH, 2018, FRESHWATER BIOL, V63, P859, DOI 10.1111/fwb.13058 114 4 4 28 31 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. AUG 2018 63 8 SI 1022 1034 10.1111/fwb.13108 13 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology GO2EL WOS:000439780800021 2019-02-21 J Hu, JT; Perez-Jvostov, F; Blondel, L; Barrett, RDH Hu, Juntao; Perez-Jvostov, Felipe; Blondel, Lea; Barrett, Rowan D. H. Genome-wide DNA methylation signatures of infection status in Trinidadian guppies (Poecilia reticulata) MOLECULAR ECOLOGY English Article DNA methylation; epigenetics; Gyrodactylus turnbulli; host-parasite interactions; phenotypic plasticity; Poecilia reticulata; reduced representation bisulphite sequencing TRANSGENERATIONAL EPIGENETIC INHERITANCE; HOST-PARASITE INTERACTIONS; LIFE-HISTORY EVOLUTION; IMMUNE RELEVANT GENES; RAINBOW-TROUT SKIN; 2 WILD POPULATIONS; ONCORHYNCHUS-MYKISS; GYRODACTYLUS-BULLATARUDIS; PATHOGEN-INTERACTIONS; CHALLENGE INFECTIONS Epigenetic modification, especially DNA methylation, can play an important role in mediating gene regulatory response to environmental stressors and may be a key process affecting phenotypic plasticity and adaptation. Parasites are potent stressors with profound physiological and ecological effects on their hosts, yet it remains unclear how parasites influence host methylation patterns. Here, we used a well-studied host-parasite system, the guppy Poecilia reticulata and its ectoparasitic monogenean Gyrodactylus turnbulli to gain mechanistic insight into the dynamics of DNA methylation in host-parasite interactions. To explore this, we quantitatively measured genome-wide DNA methylation in guppy skin tissue using reduced representation bisulphite sequencing and characterized differential methylation patterns in guppies during distinct phases of infection. We identified 365, 313, and 741 differentially methylated regions (DMRs) between infected and control fish in early infection, peak infection and recovery phases, respectively. The magnitude of the methylation difference was moderate in DMRs, with an average of 29% (early infection), 27% (peak infection) and 30% (recovery) differential methylation per DMR. Approximately 50% of DMRs overlapped with CpG islands, and over half of the DMRs overlapped with gene bodies, several of which encode proteins relevant to immune response. These findings provide the first evidence of an epigenetic signature of infection by ectoparasites and demonstrate the changing relationship between epigenetic variation and immune response in distinct phases of infection. [Hu, Juntao; Perez-Jvostov, Felipe; Blondel, Lea; Barrett, Rowan D. H.] McGill Univ, Redpath Museum, 859 Sherbrooke St West, Montreal, PQ H3A 0C4, Canada; [Hu, Juntao; Perez-Jvostov, Felipe; Blondel, Lea; Barrett, Rowan D. H.] McGill Univ, Dept Biol, Montreal, PQ, Canada Hu, JT (reprint author), McGill Univ, Redpath Museum, 859 Sherbrooke St West, Montreal, PQ H3A 0C4, Canada. juntao.hu@mail.mcgill.ca China Scholarship Council Fellowship [201406350023]; NSERC CREATE [2015466283]; NSERC Discovery Grant; Canada Research Chair China Scholarship Council Fellowship, Grant/Award Number: 201406350023; NSERC CREATE, Grant/Award Number: 2015466283; NSERC Discovery Grant and Canada Research Chair Akalin A, 2015, BIOINFORMATICS, V31, P1127, DOI 10.1093/bioinformatics/btu775; Akalin A, 2012, GENOME BIOL, V13, DOI [10.1186/gb-2012-13-10-r87, 10.1186/gb-2012-13-10-R87]; Baerwald MR, 2016, MOL ECOL, V25, P1785, DOI 10.1111/mec.13231; Bakke TA, 2007, ADV PARASIT, V64, P161, DOI 10.1016/S0065-308X(06)64003-7; Boyko A, 2011, MOL PLANT, V4, P1014, DOI 10.1093/mp/ssr022; Boyle P, 2012, GENOME BIOL, V13, DOI [10.1186/gb-2012-13-10-R92, 10.1186/gb-2012-13-10-r92]; Buchmann K, 1998, PARASITOL RES, V84, P17; Buchmann K, 2002, INT J PARASITOL, V32, P309, DOI 10.1016/S0020-7519(01)00332-0; Cable J, 2007, INT J PARASITOL, V37, P1449, DOI 10.1016/j.ijpara.2007.04.013; Cheeseman K, 2015, CELL MICROBIOL, V17, P1121, DOI 10.1111/cmi.12471; Choi YJ, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0002905; Conesa A, 2005, BIOINFORMATICS, V21, P3674, DOI 10.1093/bioinformatics/bti610; Conrath U, 2011, TRENDS PLANT SCI, V16, P524, DOI 10.1016/j.tplants.2011.06.004; CUSACK R, 1986, J FISH DIS, V9, P169, DOI 10.1111/j.1365-2761.1986.tb01000.x; Dalgaard MB, 2003, DIS AQUAT ORGAN, V53, P173, DOI 10.3354/dao053173; Dargent F, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2371; Dass SAH, 2014, MOL ECOL, V23, P6114, DOI 10.1111/mec.12888; Dawood M. A. O., 2017, REV AQUACULT, P1; Daxinger L, 2012, NAT REV GENET, V13, P153, DOI 10.1038/nrg3188; de Monerri NCS, 2014, AM J PATHOL, V184, P897, DOI 10.1016/j.ajpath.2013.12.022; Dougall WC, 1999, GENE DEV, V13, P2412, DOI 10.1101/gad.13.18.2412; Dowen RH, 2012, P NATL ACAD SCI USA, V109, pE2183, DOI 10.1073/pnas.1209329109; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Esteban M. A., 2012, ISRN IMMUNOL, V2012, DOI [10.5402/2012/853470, DOI 10.5402/2012/853470]; Fernandes JMO, 2004, FISH SHELLFISH IMMUN, V16, P1, DOI 10.1016/S1050-4648(03)00027-5; Fraser BA, 2009, J FISH BIOL, V75, P2299, DOI 10.1111/j.1095-8649.2009.02449.x; Fraser BA, 2010, HEREDITY, V104, P155, DOI 10.1038/hdy.2009.99; Gbadegesin RA, 2013, J AM SOC NEPHROL, V24, P1313, DOI 10.1681/ASN.2012121148; Gevers D, 2014, CELL HOST MICROBE, V15, P382, DOI 10.1016/j.chom.2014.02.005; Gheorghiu C, 2012, DIS AQUAT ORGAN, V98, P143, DOI 10.3354/dao02434; Gil A, 2002, EUR J CLIN NUTR, V56, pS1, DOI 10.1038/sj.ejcn.1601475; Gomez-Diaz E, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1003007; Gonzalez-Suarez E, 2016, FEBS J, V283, P2018, DOI 10.1111/febs.13645; Gotanda KM, 2013, OECOLOGIA, V172, P155, DOI 10.1007/s00442-012-2485-7; Gotz S, 2008, NUCLEIC ACIDS RES, V36, P3420, DOI 10.1093/nar/gkn176; Gu HC, 2011, NAT PROTOC, V6, P468, DOI 10.1038/nprot.2010.190; HAMILTON WD, 1980, OIKOS, V35, P282, DOI 10.2307/3544435; Hatcher MJ, 2006, ECOL LETT, V9, P1253, DOI 10.1111/j.1461-0248.2006.00964.x; Heard E, 2014, CELL, V157, P95, DOI 10.1016/j.cell.2014.02.045; Herb BR, 2012, NAT NEUROSCI, V15, P1371, DOI 10.1038/nn.3218; Hill GE, 2011, ECOL LETT, V14, P625, DOI 10.1111/j.1461-0248.2011.01622.x; Holeski LM, 2012, TRENDS ECOL EVOL, V27, P618, DOI 10.1016/j.tree.2012.07.011; Houde A., 1997, SEX COLOR MATE CHOIC; Hu J, 2017, J EVOLUTION BIOL, V30, P1612, DOI 10.1111/jeb.13130; Jones PA, 2012, NAT REV GENET, V13, P484, DOI 10.1038/nrg3230; Jones SRM, 2001, DEV COMP IMMUNOL, V25, P841, DOI 10.1016/S0145-305X(01)00039-8; Kania P, 2007, DIS AQUAT ORGAN, V76, P81, DOI 10.3354/dao076081; KENNEDY CEJ, 1987, BEHAV ECOL SOCIOBIOL, V21, P291, DOI 10.1007/BF00299966; Kjaerner-Semb E, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-2867-z; Klironomos FD, 2013, BIOESSAYS, V35, P571, DOI 10.1002/bies.201200169; Kolluru GR, 2006, BIOL J LINN SOC, V89, P301, DOI 10.1111/j.1095-8312.2006.00675.x; Kotob MH, 2016, VET RES, V47, DOI 10.1186/s13567-016-0383-4; Krueger F, 2011, BIOINFORMATICS, V27, P1571, DOI 10.1093/bioinformatics/btr167; Kunstner A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0169087; Kumar S, 2017, FISH SHELLFISH IMMUN, V63, P334, DOI 10.1016/j.fsi.2017.02.033; Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/nmeth.1923, 10.1038/NMETH.1923]; Lazzaro BP, 2008, PLOS PATHOG, V4, DOI 10.1371/journal.ppat.1000025; Le Luyer J, 2017, P NATL ACAD SCI USA, V114, P12964, DOI 10.1073/pnas.1711229114; Li P, 2006, AQUACULTURE, V251, P141, DOI 10.1016/j.aquaculture.2005.01.009; Li S., 2013, BMC BIOINFORMATICS, V14, P1; Lim JP, 2013, TRENDS GENET, V29, P176, DOI 10.1016/j.tig.2012.12.008; Lindenstrom T, 2004, VET IMMUNOL IMMUNOP, V97, P137, DOI 10.1016/j.vetimm.2003.08.016; Lindenstrom T, 2003, FISH SHELLFISH IMMUN, V15, P107, DOI 10.1016/S1050-4648(02)00142-0; Lopez S, 1999, ANIM BEHAV, V57, P1129, DOI 10.1006/anbe.1998.1064; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY, DOI [10. 1093/acprof:oso/9780198527855. 001. 0001, DOI 10.1093/ACPR0F:0S0/9780198527855.001.0001]; Manzetti S, 2014, BIOCHEMISTRY-US, V53, P821, DOI 10.1021/bi401618y; Marr AK, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1004419; Matejusova I, 2006, INT J PARASITOL, V36, P1175, DOI 10.1016/j.ijpara.2006.04.009; McCarthy NS, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-981; McMaster WR, 2016, TRENDS PARASITOL, V32, P515, DOI 10.1016/j.pt.2016.04.002; Meissner A, 2008, NATURE, V454, P766, DOI 10.1038/nature07107; Paschos K, 2010, TRENDS MICROBIOL, V18, P439, DOI 10.1016/j.tim.2010.07.003; Paterson S, 2011, MOL ECOL, V20, P869, DOI 10.1111/j.1365-294X.2010.04991.x; Penczykowski RM, 2016, EVOL APPL, V9, P37, DOI 10.1111/eva.12294; Perez-Jvostov F, 2017, COPEIA, V105, P494, DOI 10.1643/CE-16-525; Perez-Jvostov F, 2012, OECOLOGIA, V170, P77, DOI 10.1007/s00442-012-2289-9; Poulin R, 2008, OIKOS, V117, P331, DOI 10.1111/j.2007.0030-1299.16435.x; Racanelli V, 2006, HEPATOLOGY, V43, pS54, DOI 10.1002/hep.21060; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Richards EJ, 2006, NAT REV GENET, V7, P395, DOI 10.1038/nrg1834; Richards GR, 1996, PARASITOL RES, V82, P242, DOI 10.1007/s004360050103; Robertsen B, 2006, FISH SHELLFISH IMMUN, V20, P172, DOI 10.1016/j.fsi.2005.01.010; Rohland N, 2012, GENOME RES, V22, P939, DOI 10.1101/gr.128124.111; Ruvolo PP, 2016, BBA CLIN, V6, P87, DOI 10.1016/j.bbacli.2016.08.002; Salinas I, 2011, DEV COMP IMMUNOL, V35, P1346, DOI 10.1016/j.dci.2011.11.009; Saxonov S, 2006, P NATL ACAD SCI USA, V103, P1412, DOI 10.1073/pnas.0510310103; Schmid-Hempel P, 2011, EVOLUTIONARY PARASIT; Schraml B, 2006, MOL IMMUNOL, V43, P1595, DOI 10.1016/j.molimm.2005.09.014; Schrey AW, 2013, INTEGR COMP BIOL, V53, P340, DOI 10.1093/icb/ict012; SCOTT ME, 1982, PARASITOLOGY, V85, P217, DOI 10.1017/S0031182000055207; SCOTT ME, 1985, J FISH DIS, V8, P495, DOI 10.1111/j.1365-2761.1985.tb00964.x; Sessions OM, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002107; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Suzuki MM, 2008, NAT REV GENET, V9, P465, DOI 10.1038/nrg2341; Tadiri CP, 2016, PARASITOLOGY, V143, P523, DOI 10.1017/S0031182016000172; Tadiri CP, 2013, PARASITOLOGY, V140, P343, DOI 10.1017/S0031182012001667; Tadiso TM, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-141; Takai D, 2002, P NATL ACAD SCI USA, V99, P3740, DOI 10.1073/pnas.052410099; Taudt A, 2016, NAT REV GENET, V17, P319, DOI 10.1038/nrg.2016.45; Theill LE, 2002, ANNU REV IMMUNOL, V20, P795, DOI 10.1146/annurev.immunol.20.100301.064753; Tonteri A, 2010, MOL ECOL, V19, P1273, DOI 10.1111/j.1365-294X.2010.04573.x; van Oosterhout C, 2007, INT J PARASITOL, V37, P805, DOI 10.1016/j.ijpara.2006.12.016; Van Oosterhout C, 2003, BIOL J LINN SOC, V79, P645, DOI 10.1046/j.1095-8312.2003.00203.x; van Oosterhout C, 2006, EVOLUTION, V60, P2562, DOI 10.1554/06-286.1; Walker DL, 2015, EPIGENOMICS-UK, V7, P1287, DOI [10.2217/epi.15.64, 10.2217/EPI.15.64]; Wan ZY, 2016, SCI REP-UK, V6, DOI 10.1038/srep35903; WELLS PR, 1990, J FISH BIOL, V37, P599, DOI 10.1111/j.1095-8649.1990.tb05892.x; Wenzel MA, 2014, MOL ECOL, V23, P4256, DOI 10.1111/mec.12833; Westermann AJ, 2017, PLOS PATHOG, V13, DOI 10.1371/journal.ppat.1006033; Westermann AJ, 2012, NAT REV MICROBIOL, V10, P618, DOI 10.1038/nrmicro2852; Youngblood B, 2010, INT IMMUNOL, V22, P797, DOI 10.1093/intimm/dxq437; Zhu LJ, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-237; Zhu LJ, 2013, METHODS MOL BIOL, V1067, P105, DOI 10.1007/978-1-62703-607-8_8 114 0 0 16 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. AUG 2018 27 15 3087 3102 10.1111/mec.14771 16 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GO6KA WOS:000440148900006 29920823 2019-02-21 J Barfield, SJ; Aglyamova, GV; Bay, LK; Matz, MV Barfield, Sarah J.; Aglyamova, Galina V.; Bay, Line K.; Matz, Mikhail V. Contrasting effects of Symbiodinium identity on coral host transcriptional profiles across latitudes MOLECULAR ECOLOGY English Article CLIMATE-CHANGE; GENE-EXPRESSION; REEF CORALS; HEAT-STRESS; THERMOTOLERANCE; HSP70; PATTERNS; STOICHIOMETRY; ZOOXANTHELLAE; RESILIENCE Reef-building corals can increase their resistance to heat-induced bleaching through adaptation and acclimatization and/or by associating with a more thermo-tolerant strain of algal symbiont (Symbiodinium sp.). Here, we show that these two adaptive pathways interact. We collected Acropora millepora corals from two contrasting thermal environments on the Great Barrier Reef: cooler, mid-latitude Orpheus Island, where all corals hosted a heat-sensitive clade C Symbiodinium, and warmer, low-latitude Wilkie Island, where corals hosted either a clade C or a more thermo-tolerant clade D. Corals were kept in a benign common garden to reveal differences in baseline gene expression, reflecting prior adaptation/long-term acclimatization. Model-based analysis identified gene expression differences between Wilkie and Orpheus corals that were negatively correlated with previously described transcriptome-wide signatures of heat stress, signifying generally elevated thermotolerance of Wilkie corals. Yet, model-free analyses of gene expression revealed that Wilkie corals hosting clade C were distinct from Wilkie corals hosting clade D, whereas Orpheus corals were more variable. Wilkie corals hosting clade C symbionts exhibited unique functional signatures, including downregulation of histone proteins and ion channels and upregulation of chaperones and RNA processing genes, putatively representing constitutive frontloading of stress response genes. Furthermore, clade C Symbiodinium exhibited constitutive expression differences between Wilkie and Orpheus, indicative of contrasting life history strategies. Our results demonstrate that hosting alternative Symbiodinium types is associated with different pathways of local adaptation for the coral host. These interactions could play a significant role in setting the direction of genetic adaptation to global warming in the two symbiotic partners. [Barfield, Sarah J.; Aglyamova, Galina V.; Matz, Mikhail V.] Univ Texas Austin, Dept Integrat Biol, 1 Univ Stn C0990, Austin, TX 78712 USA; [Bay, Line K.] Australian Inst Marine Sci, Townsville, Qld, Australia Barfield, SJ (reprint author), Univ Texas Austin, Dept Integrat Biol, 1 Univ Stn C0990, Austin, TX 78712 USA. sbarfield@utexas.edu Matz, Mikhail/0000-0001-5453-9819 Division of Environmental Biology [1054766] Division of Environmental Biology, Grant/Award Number: 1054766 Ainsworth TD, 2016, SCIENCE, V352, P338, DOI 10.1126/science.aac7125; Al-Zhgoul MB, 2013, RES VET SCI, V95, P502, DOI 10.1016/j.rvsc.2013.05.012; Alexander D. H., 2015, ADMIXTURE 1 3 SOFTWA; Ayre DJ, 2004, ECOL LETT, V7, P273, DOI 10.1111/j.1461-0248.2004.00585.x; Baker AC, 2004, NATURE, V430, P741, DOI 10.1038/430741a; Barshis DJ, 2014, MOL BIOL EVOL, V31, P1343, DOI 10.1093/molbev/msu107; Barshis DJ, 2013, P NATL ACAD SCI USA, V110, P1387, DOI 10.1073/pnas.1210224110; Baumgarten S, 2018, MOL ECOL, V27, P403, DOI 10.1111/mec.14452; Baums IB, 2014, MOL ECOL, V23, P4203, DOI 10.1111/mec.12788; Bay RA, 2014, CURR BIOL, V24, DOI 10.1016/j.cub.2014.10.044; Bayer T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035269; Bedulina DS, 2013, MOL ECOL, V22, P1416, DOI 10.1111/mec.12136; Berkelmans R, 2006, P R SOC B, V273, P2305, DOI 10.1098/rspb.2006.3567; Brown BE, 2005, MAR ECOL PROG SER, V296, P291, DOI 10.3354/meps296291; Brown BE, 1997, CORAL REEFS, V16, pS129, DOI 10.1007/s003380050249; Cedar H, 2009, NAT REV GENET, V10, P295, DOI 10.1038/nrg2540; Cooper TF, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025536; DeSalvo MK, 2010, MOL ECOL, V19, P1174, DOI 10.1111/j.1365-294X.2010.04534.x; Dixon GB, 2015, SCIENCE, V348, P1460, DOI 10.1126/science.1261224; Dixon P, 2003, J VEG SCI, V14, P927, DOI 10.1658/1100-9233(2003)014[0927:VAPORF]2.0.CO;2; Dong YW, 2010, BIOL BULL-US, V218, P87, DOI 10.1086/BBLv218n1p87; Donner SD, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005712; Elser JJ, 2003, ECOL LETT, V6, P936, DOI 10.1046/j.1461-0248.2003.00518.x; GEHRING WJ, 1995, P NATL ACAD SCI USA, V92, P2994, DOI 10.1073/pnas.92.7.2994; Great Barrier Reef Marine Park Authority, 2016, INT REP 2016 COR BLE; Gunesdogan U, 2014, ELIFE, V3, DOI 10.7554/eLife.02443; Guo M, 2016, PLANT SCI, V252, P246, DOI 10.1016/j.plantsci.2016.07.001; Jatkar AA, 2010, BIOMACROMOLECULES, V11, P883, DOI 10.1021/bm9012106; Kenkel CD, 2013, MOL ECOL, V22, P4335, DOI 10.1111/mec.12391; Kenkel CD, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-016-0014; Korneliussen TS, 2014, BMC BIOINFORMATICS, V15, DOI 10.1186/s12859-014-0356-4; Krebs RA, 1999, CELL STRESS CHAPERON, V4, P243, DOI 10.1379/1466-1268(1999)004<0243:ACOHEA>2.3.CO;2; Ladner JT, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-217; Langfelder P, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-559; Levin RA, 2016, MOL BIOL EVOL, V33, P2201, DOI 10.1093/molbev/msw119; Mata J, 2005, TRENDS BIOCHEM SCI, V30, P506, DOI 10.1016/j.tibs.2005.07.005; Mayfield AB, 2007, COMP BIOCHEM PHYS A, V147, P1, DOI 10.1016/j.cbpa.2006.12.042; Meyer E, 2011, MOL ECOL, V20, P3599, DOI 10.1111/j.1365-294X.2011.05205.x; Moya A, 2012, MOL ECOL, V21, P2440, DOI 10.1111/j.1365-294X.2012.05554.x; Oliver TA, 2011, CORAL REEFS, V30, P241, DOI 10.1007/s00338-010-0696-0; Oliver TA, 2009, MAR ECOL PROG SER, V378, P93, DOI 10.3354/meps07871; Palumbi S. R., 2012, SCIENCE, V14612, P895; Parkinson JE, 2015, SCI REP-UK, V5, DOI 10.1038/srep15667; Quigley KM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094297; Rowan R, 2004, NATURE, V430, P742, DOI 10.1038/430742a; Seibt C, 2001, NATURWISSENSCHAFTEN, V88, P382, DOI 10.1007/s001140100240; Seneca FO, 2015, MOL ECOL, V24, P1467, DOI 10.1111/mec.13125; Stat Michael, 2011, Journal of Marine Biology, V2011, P1; Vrede T, 2004, ECOLOGY, V85, P1217, DOI 10.1890/02-0249; Wright RM, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-02685-1; Wright RM, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1540-2 51 1 1 15 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. AUG 2018 27 15 3103 3115 10.1111/mec.14774 13 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GO6KA WOS:000440148900007 29924441 2019-02-21 J Whiting, JR; Magalhaes, IS; Singkam, AR; Robertson, S; D'Agostino, D; Bradley, JE; MacColl, ADC Whiting, James R.; Magalhaes, Isabel S.; Singkam, Abdul R.; Robertson, Shaun; D'Agostino, Daniele; Bradley, Janette E.; MacColl, Andrew D. C. A genetics-based approach confirms immune associations with life history across multiple populations of an aquatic vertebrate (Gasterosteus aculeatus) MOLECULAR ECOLOGY English Article adaptation; ecoimmunology; immune variation; life history evolution; population genetics; senescence MALE 3-SPINED STICKLEBACK; SCHISTOCEPHALUS-SOLIDUS; ECOLOGICAL IMMUNOLOGY; TRADE-OFFS; THREESPINE STICKLEBACKS; LOCAL ADAPTATION; EVOLUTIONARY PERSPECTIVE; THAMNOPHIS-ELEGANS; MAMMAL POPULATION; NATURAL VARIATION Understanding how wild immune variation covaries with other traits can reveal how costs and trade-offs shape immune evolution in the wild. Divergent life history strategies may increase or alleviate immune costs, helping shape immune variation in a consistent, testable way. Contrasting hypotheses suggest that shorter life histories may alleviate costs by offsetting them against increased mortality, or increase the effect of costs if immune responses are traded off against development or reproduction. We investigated the evolutionary relationship between life history and immune responses within an island radiation of three-spined stickleback, with discrete populations of varying life histories and parasitism. We sampled two short-lived, two long-lived and an anadromous population using qPCR to quantify current immune profile and RAD-seq data to study the distribution of immune variants within our assay genes and across the genome. Short-lived populations exhibited significantly increased expression of all assay genes, which was accompanied by a strong association with population-level variation in local alleles and divergence in a gene that may be involved in complement pathways. In addition, divergence around the eda gene in anadromous fish is likely associated with increased inflammation. A wider analysis of 15 populations across the island revealed that immune genes across the genome show evidence of having diverged alongside life history strategies. Parasitism and reproductive investment were also important sources of variation for expression, highlighting the caution required when assaying immune responses in the wild. These results provide strong, gene-based support for current hypotheses linking life history and immune variation across multiple populations of a vertebrate model. [Whiting, James R.; Magalhaes, Isabel S.; Singkam, Abdul R.; Robertson, Shaun; D'Agostino, Daniele; Bradley, Janette E.; MacColl, Andrew D. C.] Univ Nottingham, Sch Life Sci, Univ Pk, Nottingham, England; [Whiting, James R.] Univ Sussex, Sch Life Sci, JMS Bldg, Brighton BN1 9QG, E Sussex, England; [Magalhaes, Isabel S.] Univ Roehampton, Dept Life Sci, Whitelands Coll, London, England; [Singkam, Abdul R.] Univ Bengkulu, Pendidikan Biol JPMIPA FKIP, Bengkulu, Indonesia; [Robertson, Shaun] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow, Lanark, Scotland Whiting, JR (reprint author), Univ Sussex, Sch Life Sci, JMS Bldg, Brighton BN1 9QG, E Sussex, England. j.whiting@sussex.ac.uk Bradley, Janette/0000-0003-3973-7977; Robertson, Shaun/0000-0001-9754-5397; D'Agostino, Daniele/0000-0003-2291-5749; Whiting, James/0000-0001-8936-4991; MacColl, Andrew/0000-0003-2102-6130; Santos Magalhaes, Isabel/0000-0003-2391-3577 Biotechnology and Biological Sciences Research Council (BBSRC) DTP studentship; Natural Environmental Research Council (NERC) [NE/J02239X/1] Funding for this work was provided through the Biotechnology and Biological Sciences Research Council (BBSRC) DTP studentship awarded to JRW and a Natural Environmental Research Council (NERC) grant (NE/J02239X/1) awarded to ADCM. Agarwala R, 2018, NUCLEIC ACIDS RES, V46, pD8, DOI 10.1093/nar/gkx1095; Ashley NT, 2012, ANNU REV ECOL EVOL S, V43, P385, DOI 10.1146/annurev-ecolsys-040212-092530; Barber I, 2010, PARASITOLOGY, V137, P411, DOI 10.1017/S0031182009991466; Barber I, 2008, BEHAVIOUR, V145, P647, DOI 10.1163/156853908792451403; Bech C, 2016, J COMP PHYSIOL B, V186, P503, DOI 10.1007/s00360-016-0964-6; Blount JD, 2003, SCIENCE, V300, P125, DOI 10.1126/science.1082142; Brown M, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-2701-7; Bustin SA, 2009, CLIN CHEM, V55, P611, DOI 10.1373/clinchem.2008.112797; Carbo-Ramirez P, 2015, AVIAN BIOL RES, V8, P167, DOI 10.3184/175815515X14371521830098; Catchen J, 2013, MOL ECOL, V22, P3124, DOI 10.1111/mec.12354; Christensen LL, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.1407; Clotfelter ED, 2007, BEHAV ECOL, V18, P1139, DOI 10.1093/beheco/arm090; Colosimo PF, 2005, SCIENCE, V307, P1928, DOI 10.1126/science.1107239; de Roij J, 2012, PARASITOLOGY, V139, P1478, DOI 10.1017/S0031182012000789; de Roij J, 2011, FUNCT ECOL, V25, P217, DOI 10.1111/j.1365-2435.2010.01775.x; DeFaveri J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080866; Dejaco C, 2006, EXP GERONTOL, V41, P339, DOI 10.1016/j.exger.2006.01.008; Dhinaut J, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-12769-7; Dopico XC, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8000; Downs CJ, 2014, INTEGR COMP BIOL, V54, P340, DOI 10.1093/icb/icu082; Dufresne F, 1990, BEHAV ECOL, V1, P140, DOI 10.1093/beheco/1.2.140; Eikenaar C, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0078; El Nagar A, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0691; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Fassbinder-Orth CA, 2014, INTEGR COMP BIOL, V54, P396, DOI 10.1093/icb/icu023; Franceschi C, 2000, ANN NY ACAD SCI, V908, P244; Franceschi C, 2017, TRENDS ENDOCRIN MET, V28, P199, DOI 10.1016/j.tem.2016.09.005; Galli SJ, 2011, NAT IMMUNOL, V12, P1035, DOI 10.1038/ni.2109; Gambling SJ, 2012, CAN J ZOOL, V90, P284, DOI 10.1139/Z11-133; Ghai R, 2007, IMMUNOBIOLOGY, V212, P253, DOI 10.1016/j.imbio.2006.11.001; Graham AL, 2005, ANNU REV ECOL EVOL S, V36, P373, DOI 10.1146/annurev.ecolsys.36.102003.152622; Graham AL, 2002, Q REV BIOL, V77, P409, DOI 10.1086/344414; Grether GF, 2004, P ROY SOC B-BIOL SCI, V271, P45, DOI 10.1098/rspb.2003.2526; Gunther T, 2013, GENETICS, V195, P205, DOI 10.1534/genetics.113.152462; Hammer M, 2010, IMMUNOLOGY, V131, P395, DOI 10.1111/j.1365-2567.2010.03313.x; Hayward AD, 2014, AM NAT, V184, pS58, DOI 10.1086/676929; Hayward AD, 2009, P R SOC B, V276, P3477, DOI 10.1098/rspb.2009.0906; Hegemann A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036358; Horrocks NPC, 2015, OECOLOGIA, V177, P281, DOI 10.1007/s00442-014-3136-y; Jackson JA, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001901; Jombart T, 2008, BIOINFORMATICS, V24, P1403, DOI 10.1093/bioinformatics/btn129; Jones FC, 2012, NATURE, V484, P55, DOI 10.1038/nature10944; Jones FC, 2012, CURR BIOL, V22, P83, DOI 10.1016/j.cub.2011.11.045; Jones J. W., 1950, J ANIM ECOL, V5, P9; Jovanovic M, 2015, SCIENCE, V347, DOI 10.1126/science.1259038; Kamath PL, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0077; Kim SY, 2016, J ANIM ECOL, V85, P705, DOI 10.1111/1365-2656.12468; Kopp EB, 2009, EVOL APPL, V2, P132, DOI 10.1111/j.1752-4571.2008.00062.x; La Cava A, 2004, NAT REV IMMUNOL, V4, P371, DOI 10.1038/nri1350; Lee KA, 2008, J ANIM ECOL, V77, P356, DOI 10.1111/j.1365-2656.2007.01347.x; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Li JJ, 2014, PEERJ, V2, DOI 10.7717/peerj.270; Lindenstrom T, 2004, VET IMMUNOL IMMUNOP, V97, P137, DOI 10.1016/j.vetimm.2003.08.016; Lischer HEL, 2012, BIOINFORMATICS, V28, P298, DOI 10.1093/bioinformatics/btr642; Loiseau C, 2008, ECOL LETT, V11, P258, DOI 10.1111/j.1461-0248.2007.01141.x; Long KZ, 2004, AM J HUM BIOL, V16, P499, DOI 10.1002/ajhb.20064; Luoma RL, 2016, J EXP BIOL, V219, P1965, DOI 10.1242/jeb.138123; MacColl ADC, 2009, ECOGRAPHY, V32, P153, DOI 10.1111/j.1600-0587.2008.05486.x; Mackay F, 2002, NAT REV IMMUNOL, V2, P465, DOI 10.1038/nri844; Macnab V, 2011, HORM BEHAV, V60, P371, DOI 10.1016/j.yhbeh.2011.07.005; Magalhaes IS, 2016, MOL ECOL, V25, P4319, DOI 10.1111/mec.13746; Martin LB, 2011, FUNCT ECOL, V25, P1, DOI 10.1111/j.1365-2435.2010.01820.x; Martin LB, 2007, ECOLOGY, V88, P2516, DOI 10.1890/07-0060.1; Matson KD, 2006, P ROY SOC B-BIOL SCI, V273, P815, DOI 10.1098/rspb.2005.3376; Mayer M, 2015, AUSTRAL ECOL, V40, P683, DOI 10.1111/aec.12235; Milligan-Myhre K, 2016, DIS MODEL MECH, V9, P187, DOI 10.1242/dmm.021881; Mitra S, 2010, FEBS J, V277, P128, DOI 10.1111/j.1742-4658.2009.07460.x; Naylor C, 2016, TRENDS MOL MED, V22, P88, DOI 10.1016/j.molmed.2015.12.001; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Nussey DH, 2012, AGING CELL, V11, P178, DOI 10.1111/j.1474-9726.2011.00771.x; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Palacios MG, 2013, PHYSIOL BIOCHEM ZOOL, V86, P547, DOI 10.1086/672371; Palacios MG, 2011, J ANIM ECOL, V80, P431, DOI 10.1111/j.1365-2656.2010.01785.x; Pap PL, 2015, OECOLOGIA, V177, P147, DOI 10.1007/s00442-014-3108-2; Pauwels K, 2014, FRESHWATER BIOL, V59, P1247, DOI 10.1111/fwb.12344; Pedersen AB, 2011, MOL ECOL, V20, P872, DOI 10.1111/j.1365-294X.2010.04938.x; Pfaffl MW, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.9.e45; Pike TW, 2010, BEHAV ECOL, V21, P1048, DOI 10.1093/beheco/arq102; Pinzon CJH, 2014, PEERJ, V2, DOI 10.7717/peerj.628; Poulin R, 2000, Q REV BIOL, V75, P277, DOI 10.1086/393500; Poulin R, 2011, ECOGRAPHY, V34, P540, DOI 10.1111/j.1600-0587.2010.06826.x; Previtali MA, 2012, OIKOS, V121, P1483, DOI 10.1111/j.1600-0706.2012.020215.x; Probst-Kepper M, 2010, BIOL DIRECT, V5, DOI 10.1186/1745-6150-5-8; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quintana FJ, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009478; Rahman A., 2017, LIFE HIST EVOLUTION; Rahn AK, 2016, ZOOLOGY, V119, P395, DOI 10.1016/j.zool.2016.05.009; Rahn AK, 2016, INFECT GENET EVOL, V44, P261, DOI 10.1016/j.meegid.2016.07.011; Raj A, 2014, GENETICS, V197, P573, DOI 10.1534/genetics.114.164350; Rantala MJ, 2005, FUNCT ECOL, V19, P323, DOI 10.1111/j.1365-2435.2005.00979.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robertson S, 2017, SCI REP-UK, V7, DOI 10.1038/srep42677; Robertson S, 2017, FISH SHELLFISH IMMUN, V60, P275, DOI 10.1016/j.fsi.2016.11.058; Robertson S, 2016, EVOL ECOL RES, V17, P263; Robertson S, 2016, MOL ECOL RESOUR, V16, P701, DOI 10.1111/1755-0998.12497; Rushbrook BJ, 2006, J FISH BIOL, V69, P870, DOI 10.1111/j.1095-8649.2006.01164.x; Sadier A, 2014, TRENDS GENET, V30, P24, DOI 10.1016/j.tig.2013.08.006; Scharsack JP, 2007, P ROY SOC B-BIOL SCI, V274, P1523, DOI 10.1098/rspb.2007.0210; Scharsack JP, 2007, P R SOC B, V274, P3151, DOI 10.1098/rspb.2007.1148; Scharsack JP, 2013, FISH SHELLFISH IMMUN, V35, P1779, DOI 10.1016/j.fsi.2013.08.029; Scharsack JP, 2004, DIS AQUAT ORGAN, V59, P141, DOI 10.3354/dao059141; SchmidHempel P, 2011, EVOLUTIONARY PARASITOLOGY: THE INTEGRATED STUDY OF INFECTIONS, IMMUNOLOGY, ECOLOGY, AND GENETICS, P1; Schneeberger K, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108268; Secombes CJ, 2012, WOODHEAD PUBL FOOD S, P3; Sharick JT, 2015, FUNCT ECOL, V29, P367, DOI 10.1111/1365-2435.12330; Smedley D, 2015, NUCLEIC ACIDS RES, V43, pW589, DOI 10.1093/nar/gkv350; SNYDER RJ, 1990, OECOLOGIA, V84, P386, DOI 10.1007/BF00329764; Sparkman AM, 2009, J ANIM ECOL, V78, P1242, DOI 10.1111/j.1365-2656.2009.01587.x; Stevenson TJ, 2015, FRONT NEUROENDOCRIN, V37, P76, DOI 10.1016/j.yfrne.2014.10.002; Storey J. D., 2015, QVALUE Q VALUE ESTIM; Sugimoto K, 2017, DEV COMP IMMUNOL, V73, P156, DOI 10.1016/j.dci.2017.03.023; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Uribe C, 2011, VET MED-CZECH, V56, P486; Wang L, 2017, DEV COMP IMMUNOL, V67, P322, DOI 10.1016/j.dci.2016.09.001; Wedekind C, 1998, J CHEM ECOL, V24, P787, DOI 10.1023/A:1022365315836; Whitlock MC, 2015, AM NAT, V186, pS24, DOI 10.1086/682949; Whoriskey F. G., 1994, EVOLUTIONARY BIOL TH, P399; Wickham H., 2016, GGPLOT2 ELEGANT GRAP, DOI [10. 1007/978-3-319-24277-4, DOI 10.1007/978-3-319-24277-4, 10.1007/978-3-319-24277-4]; Windsor DA, 1998, INT J PARASITOL, V28, P1939, DOI 10.1016/S0020-7519(98)00153-2; Young RE, 2017, PARASITOLOGY, V144, P436, DOI 10.1017/S0031182016001815; Zapata A, 2006, FISH SHELLFISH IMMUN, V20, P126, DOI 10.1016/j.fsi.2004.09.005 123 0 0 7 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. AUG 2018 27 15 3174 3191 10.1111/mec.14772 18 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GO6KA WOS:000440148900012 29924437 Green Published, Other Gold 2019-02-21 J Freshwater, C; Burke, BJ; Scheuerell, MD; Grant, SCH; Trudel, M; Juanes, F Freshwater, Cameron; Burke, Brian J.; Scheuerell, Mark D.; Grant, Sue C. H.; Trudel, Marc; Juanes, Francis Coherent population dynamics associated with sockeye salmon juvenile life history strategies CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article WESTERN NORTH-AMERICA; BRITISH-COLUMBIA WATERS; ONCORHYNCHUS-NERKA; PACIFIC SALMON; FRASER-RIVER; SURVIVAL RATES; CHINOOK SALMON; TIME-SERIES; EGG SIZE; INDIVIDUAL IDENTIFICATION Although the importance of diversity to maintaining metapopulation stability is widely recognized, the ecological characteristics that lead to synchronous dynamics within population aggregates are often unclear. We used a constrained dynamic factor analysis to explore patterns of covariance in productivity among 16 Fraser River sockeye salmon (Oncorhynchus nerka) conservation units (CUs). Specifically, we tested whether coherent trends in productivity covaried with five distinct ecological attributes: physical characteristics of nursery lakes, large-scale management interventions, genetic similarity, adult migration phenology, or juvenile migratory traits. The top-ranked model had two trends based on nursery lake characteristics and juvenile migratory traits. One trend represented the dynamics of CUs that rear in nursery lakes prior to ocean entry and undergo relatively rapid marine migrations. The second included a sea-type CU, Harrison River, which enters the marine environment without rearing in a nursery lake and migrates more slowly. The uniform response of lake-type CUs, as well as Harrison River CU's unique life history, suggests that coherent trends are structured by traits that covary with broad life history type, rather than fine-scale characteristics. Furthermore, we document substantial temporal variability in the strength of synchronous dynamics among Fraser River CUs. Greater synchrony in recent years suggests that the importance of shared regional drivers, relative to local processes, may have increased. [Freshwater, Cameron; Trudel, Marc; Juanes, Francis] Univ Victoria, Dept Biol, Victoria, BC V8W 3N5, Canada; [Burke, Brian J.; Scheuerell, Mark D.] Northwest Fisheries Sci Ctr, NOAA Fisheries, Seattle, WA 98112 USA; [Grant, Sue C. H.] Fisheries & Oceans Canada, Delta, BC V3M 6A2, Canada; [Trudel, Marc] Fisheries & Oceans Canada, Pacif Biol Stn, Nanaimo, BC V9T 6N7, Canada; [Trudel, Marc] Fisheries & Oceans Canada, St Andrews Biol Stn, St Andrews, NB E5B 2L9, Canada Freshwater, C (reprint author), Univ Victoria, Dept Biol, Victoria, BC V8W 3N5, Canada. camfresh@uvic.ca Trudel, Marc/H-1955-2012 Trudel, Marc/0000-0002-3397-1642; Scheuerell, Mark/0000-0002-8284-1254 NSERC PGS-D3 Scholarship; Montalbano Scholar's Fellowship; Liber Ero Foundation; NSERC Discovery Grant We greatly appreciate the efforts of the many Pacific Salmon Commission and Fisheries and Oceans Canada (DFO) biologists who generated and contributed the time series data used in this analysis. We also thank the crew of the CCGS W.E. Ricker, who assisted with the collection of fish samples at sea. Eric R. Buhle provided valuable feedback on modeling approaches, and comments from two anonymous reviewers greatly improved this manuscript. Funding was provided by an NSERC PGS-D3 Scholarship, a Montalbano Scholar's Fellowship, the Liber Ero Foundation, and an NSERC Discovery Grant. All applicable national guidelines for the care and use of animals were followed. Akenhead Scott A., 2016, North Pacific Anadromous Fish Commission Bulletin, P391, DOI 10.23849/npafcb6/391.414; Anderson SC, 2015, ECOL APPL, V25, P559, DOI 10.1890/14-0266.1; BEACHAM TD, 1987, CAN J FISH AQUAT SCI, V44, P244, DOI 10.1139/f87-034; Beacham TD, 2006, T AM FISH SOC, V135, P174, DOI 10.1577/T05-149.1; Beacham TD, 2005, T AM FISH SOC, V134, P1124, DOI 10.1577/T05-005.1; BEACHAM TD, 1993, J FISH BIOL, V42, P485; BEACHAM TD, 1985, CAN J FISH AQUAT SCI, V42, P1755, DOI 10.1139/f85-220; Beacham TD, 2014, T AM FISH SOC, V143, P1386, DOI 10.1080/00028487.2014.935476; Beacham TD, 2014, T AM FISH SOC, V143, P876, DOI 10.1080/00028487.2014.889751; Beacham TD, 2010, CAN J FISH AQUAT SCI, V67, P1274, DOI 10.1139/F10-061; Beamish R. J., 2000, North American Journal of Fisheries Management, V20, P369, DOI 10.1577/1548-8675(2000)020<0369:ETAOJC>2.3.CO;2; Beamish RJ, 2016, T AM FISH SOC, V145, P348, DOI 10.1080/00028487.2015.1123182; Becker R., 2016, MAPS DRAW GEOGRAPHIC; Birtwell I.K., 1987, Canadian Special Publication of Fisheries and Aquatic Sciences, V96, P25; Blackbourn D. J, 1987, CAN SPEC PUBL FISH A, P296; Borcard D, 2012, ECOLOGY, V93, P1473; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Bradford Michael J., 2000, North American Journal of Fisheries Management, V20, P661, DOI 10.1577/1548-8675(2000)020<0661:BROSST>2.3.CO;2; Braun DC, 2016, ECOGRAPHY, V39, P317, DOI 10.1111/ecog.01102; Braun DC, 2014, CAN J FISH AQUAT SCI, V71, P1198, DOI 10.1139/cjfas-2013-0326; BURGNER R. L., 1991, PACIFIC SALMON LIFE; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Carlson SM, 2011, CAN J FISH AQUAT SCI, V68, P1579, DOI 10.1139/F2011-084; CLARKE WC, 1981, AQUACULTURE, V22, P105, DOI 10.1016/0044-8486(81)90137-X; Connor EJ, 2004, N AM J FISH MANAGE, V24, P835, DOI 10.1577/M03-066.1; Cooke SJ, 2004, FISHERIES, V29, P22, DOI 10.1577/1548-8446(2004)29[22:AMTAHE]2.0.CO;2; Crossin GT, 2008, CAN J ZOOL, V86, P127, DOI 10.1139/Z07-122; Crozier L, 2006, J ANIM ECOL, V75, P1100, DOI 10.1111/j.1365-2656.2006.01130.x; DFO, 2014, 2014041 DFO CSAS, V2014, P041; DFO, 2016, RUN TIM DIV RAT MOD; DFO, 2016, 2016047 DFO CSAS, V2016, P047; Eliason EJ, 2011, SCIENCE, V332, P109, DOI 10.1126/science.1199158; Farley EV, 2011, ICES J MAR SCI, V68, P1138, DOI 10.1093/icesjms/fsr021; Ferriss BE, 2014, MAR ECOL PROG SER, V503, P247, DOI 10.3354/meps10726; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Freshwater C, 2016, CAN J FISH AQUAT SCI, V73, P1723, DOI 10.1139/cjfas-2015-0425; Freshwater C, 2016, CAN J FISH AQUAT SCI, V73, P1190, DOI 10.1139/cjfas-2015-0344; Furey NB, 2016, J ANIM ECOL, V85, P1307, DOI 10.1111/1365-2656.12565; Gouhier TC, 2014, METHODS ECOL EVOL, V5, P524, DOI 10.1111/2041-210X.12188; Grant S. C. H, 2011, 2011087 CAND SCI ADV; Griffiths JR, 2014, J APPL ECOL, V51, P1554, DOI 10.1111/1365-2664.12341; Griffiths JR, 2014, OIKOS, V123, P687, DOI 10.1111/j.1600-0706.2013.00801.x; Groot C., 1991, PACIFIC SALMON LIFE; Gustafson RG, 1999, ECOL FRESHW FISH, V8, P181, DOI 10.1111/j.1600-0633.1999.tb00069.x; Healey M. C, 1980, P N PAC AQ S FAIRB A, V82, P61; Healey M. C, 1978, 788 FISH MAR SERV; HEALEY MC, 1982, CAN J FISH AQUAT SCI, V39, P952, DOI 10.1139/f82-130; Holmes E. E., 2014, ANAL MULTIVARIATE TI; Holt CA, 2004, CAN J FISH AQUAT SCI, V61, P2455, DOI 10.1139/f04-193; Holtby L. B, 2007, 2007070 CSAS, V2007, P070; Jorgensen JC, 2016, ECOL EVOL, V6, P2472, DOI 10.1002/ece3.2031; Journey ML, 2018, FISH OCEANOGR, V27, P174, DOI 10.1111/fog.12243; Kilduff DP, 2015, P NATL ACAD SCI USA, V112, P10962, DOI 10.1073/pnas.1503190112; Liebhold A, 2004, ANNU REV ECOL EVOL S, V35, P467, DOI 10.1146/annurev.ecolsys.34.011802.132516; Loreau M, 2008, AM NAT, V172, pE48, DOI 10.1086/589746; Macdonald J. S, 2000, CAN TECH REP FISH AQ, V2315; Mackas D, 2013, PROG OCEANOGR, V115, P129, DOI 10.1016/j.pocean.2013.05.019; Malick MJ, 2017, FISH OCEANOGR, V26, P268, DOI 10.1111/fog.12190; Malick MJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146009; Maxwell MR, 2006, N AM J FISH MANAGE, V26, P418, DOI 10.1577/M05-097.1; McCann KS, 2000, NATURE, V405, P228, DOI 10.1038/35012234; McKinnell S, 2014, FISH OCEANOGR, V23, P322, DOI 10.1111/fog.12063; McNeil W. J., 1966, Fishery Bulletin United States, V65, P495; Moore JW, 2014, J ANIM ECOL, V83, P1035, DOI 10.1111/1365-2656.12212; Moore JW, 2010, CONSERV LETT, V3, P340, DOI 10.1111/j.1755-263X.2010.00119.x; MORAN PAP, 1953, AUST J ZOOL, V1, P291, DOI 10.1071/ZO9530291; Mori AS, 2013, BIOL REV, V88, P349, DOI 10.1111/brv.12004; Mueter FJ, 2002, CAN J FISH AQUAT SCI, V59, P456, DOI 10.1139/f02-020; Mueter FJ, 2002, FISH OCEANOGR, V11, P205, DOI 10.1046/j.1365-2419.2002.00192.x; Nelitz M, 2011, 3 COH COMM; Neville C.-E. M., 2013, 9 NPAFC, V9, P65; Neville Chrys-Ellen M., 2016, North Pacific Anadromous Fish Commission Bulletin, P45, DOI 10.23849/npafcb6/45.60; Ohlberger J, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1333; PARKER RR, 1968, J FISH RES BOARD CAN, V25, P757, DOI 10.1139/f68-068; Pearcy W. G, 1992, OCEAN ECOLOGY N PACI; Peterman RM, 2012, CAN J FISH AQUAT SCI, V69, P1255, DOI 10.1139/F2012-063; Peterman RM, 2003, CAN J FISH AQUAT SCI, V60, P809, DOI 10.1139/F03-069; Preikshot D, 2012, MAR COAST FISH, V4, P438, DOI 10.1080/19425120.2012.683235; R Core Team, 2017, R LANG ENV STAT COMP; Rogers LA, 2008, OIKOS, V117, P1578, DOI 10.1111/j.2008.0030-1299.16758.x; Rogers LA, 2011, GLOBAL CHANGE BIOL, V17, P2546, DOI 10.1111/j.1365-2486.2011.02415.x; Ruggerone GT, 2015, CAN J FISH AQUAT SCI, V72, P818, DOI 10.1139/cjfas-2014-0134; Satterthwaite WH, 2015, CAN J FISH AQUAT SCI, V72, P1860, DOI 10.1139/cjfas-2015-0169; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Shortreed K. S, 2001, FACTORS LIMITING JUV; Sweeting RM, 2003, N AM J FISH MANAGE, V23, P492, DOI 10.1577/1548-8675(2003)023<0492:ROWCSB>2.0.CO;2; TAYLOR EB, 1991, AQUACULTURE, V98, P185, DOI 10.1016/0044-8486(91)90383-I; Tucker S, 2009, T AM FISH SOC, V138, P1458, DOI 10.1577/T08-211.1; Waples RS, 1995, AM FISH S S, V17, P8; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Ye H, 2015, P NATL ACAD SCI USA, V112, pE1569, DOI 10.1073/pnas.1417063112; Zuur AF, 2003, CAN J FISH AQUAT SCI, V60, P542, DOI 10.1139/F03-030 92 2 2 17 17 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. AUG 2018 75 8 1346 1356 10.1139/cjfas-2017-0251 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology GO3CE WOS:000439863600015 2019-02-21 J Pacios-Palma, I; Moreno, S; Selman, C; Rouco, C Pacios-Palma, Isabel; Moreno, Sacramento; Selman, Colin; Rouco, Carlos Oxidative stress in wild European rabbits naturally infected with myxoma virus and rabbit haemorrhagic disease virus EUROPEAN JOURNAL OF WILDLIFE RESEARCH English Article Myxomatosis; Oryctolagus cuniculus; Oxidative damage; Rabbit haemorrhagic disease; ROS; Serostatus LIFE-HISTORY EVOLUTION; ACTIVATION IN-VIVO; ANTIOXIDANT CAPACITY; SIGNAL-TRANSDUCTION; IMMUNE-RESPONSE; DOWN-REGULATION; BODY CONDITION; VIRAL DISEASE; ANIMAL-MODEL; TRADE-OFFS The European rabbit (Oryctolagus cuniculus) is one of the most important vertebrate species in the Mediterranean Basin ecosystem. Over the last 60 years, the arrival of two viral diseases, myxomatosis and rabbit haemorrhagic disease, have led to dramatic declines in wild rabbit populations across the Iberian Peninsula. These diseases are currently endemic. Periodic outbreaks occur and have significant impacts on wild populations. Both infection types have diverse physiological effects on their hosts that are rooted in aerobic metabolic processes. To fight off these viruses, rabbits activate their immune systems. However, the production of immune defences generates reactive oxygen species that may consequently damage host tissues. Hypothesising that immune responses increase oxidative stress, we examined whether wild rabbits naturally infected with myxoma virus (MV) and rabbit haemorrhagic disease virus (RHDV) had high oxidative stress. Using blood samples, we measured anti-MV and anti-RHDV antibody concentrations and different oxidative stress markers (i.e., glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and malondialdehyde). Our results show that rabbits that were seropositive for both MV and RHDV had high concentrations of malondialdehyde. Age and body condition were also positively related to dual seropositivity. No significant relationships were observed between serostatus and the concentrations of the other oxidative stress markers. Although we expected infection with MV and RHDV to be correlated with oxidative stress, the influence of external sources of oxidative stress (e.g., climatic conditions) likely made it more difficult to detect such relationships in wild rabbits. [Pacios-Palma, Isabel; Moreno, Sacramento] CSIC, Donana Biol Stn, Ethol & Biodivers Conservat Dept, Avda Amer Vespucio 26, Seville 41092, Spain; [Selman, Colin] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland; [Rouco, Carlos] Univ Cordoba, Zool Dept, Campus Rabanales, E-14071 Cordoba, Spain Pacios-Palma, I (reprint author), CSIC, Donana Biol Stn, Ethol & Biodivers Conservat Dept, Avda Amer Vespucio 26, Seville 41092, Spain. isa_pacios@ebd.csic.es; smoreno@ebd.csic.es; Colin.Selman@glasgow.ac.uk; roucoc@landcareresearch.co.nz Pacios, Isabel/F-5835-2013 Pacios, Isabel/0000-0002-5594-7088 Spanish Ministry of Economy and Competitiveness through the Severo Ochoa Program for Centers of Excellence in R+D+I [SEV-2012-0262]; XXII Propio de Investigacion of the University of Cordoba; Programa Operativo de fondos FEDER Andalucia Isabel Pacios Palma was supported by a predoctoral Severo Ochoa grant from the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Program for Centers of Excellence in R+D+I (SEV-2012-0262). Carlos Rouco was funded by XXII Propio de Investigacion of the University of Cordoba and "Programa Operativo de fondos FEDER Andalucia". Special thanks to J. Pearce (www.englishservicesforscientists.com) for her language editing services and to Dr. Alberto Maceda-Veiga and Laura Rios Pena for their helpful comments, which improved the manuscript. Finally, thanks to V. Morlanes, C. Marfil, G. Macias, and A. Berto for their assistance in the field. Alves P., 1996, PORTUGAL REV FLOREST, V9, P149; Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701; Beckman KB, 1998, PHYSIOL REV, V78, P547; Berto-Moran A, 2013, J WILDLIFE DIS, V49, P10, DOI 10.7589/2011-12-343; Buege J A, 1978, Methods Enzymol, V52, P302; Calvete C, 2002, VET REC, V150, P776, DOI 10.1136/vr.150.25.776; Cameron CM, 2005, VIROLOGY, V337, P55, DOI 10.1016/j.virol.2005.03.037; Cameron CM, 2005, J VIROL, V79, P6052, DOI 10.1128/JVI.79.10.6052-6067.2005; CARMAGNOL F, 1983, BIOCHIM BIOPHYS ACTA, V759, P49, DOI 10.1016/0304-4165(83)90188-5; Christensen LL, 2015, ECOL EVOL, V5, P5096, DOI 10.1002/ece3.1771; Clarkson PM, 2000, AM J CLIN NUTR, V72, p637S, DOI 10.1093/ajcn/72.2.637S; Cohen AA, 2009, FUNCT ECOL, V23, P310, DOI 10.1111/j.1365-2435.2009.01540.x; COHEN G, 1969, J BACTERIOL, V98, P547; Costantini D, 2014, OXIDATIVE STRESS HOR; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2009, PHYSIOL BIOCHEM ZOOL, V82, P430, DOI 10.1086/604668; Costantini D, 2009, COMP BIOCHEM PHYS A, V153, P339, DOI 10.1016/j.cbpa.2009.03.010; Costantini D, 2009, FUNCT ECOL, V23, P506, DOI 10.1111/j.1365-2435.2009.01546.x; CRIBB AE, 1989, ANAL BIOCHEM, V183, P195, DOI 10.1016/0003-2697(89)90188-7; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Evans GO, 2008, ANIMAL HEMATOTOXICOL; Foyer CH, 2005, PLANT CELL ENVIRON, V28, P1056, DOI 10.1111/j.1365-3040.2005.01327.x; Garcia-Bocanegra I, 2010, PREV VET MED, V93, P42, DOI 10.1016/j.prevetmed.2009.09.013; Gasso D, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163971; Gechev TS, 2006, BIOESSAYS, V28, P1091, DOI 10.1002/bies.20493; Gibbs HL, 2012, CONSERV GENET, V13, P1133, DOI 10.1007/s10592-012-0360-z; Halliwell B, 1999, FREE RADICAL BIO MED, V3, P1; Halliwell B, 2007, FREE RADICALS BIOL M; Harman E, 1956, GERONTOLOGY, V11, P298; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Johnston JB, 2003, J VIROL, V77, P5877, DOI 10.1128/JVI.77.10.5877-5888.2003; Kerr P, 2002, VIRAL IMMUNOL, V15, P229, DOI 10.1089/08828240260066198; Kerr PJ, 2012, ANTIVIR RES, V93, P387, DOI 10.1016/j.antiviral.2012.01.009; Lastra RG, 2009, THESIS; Legendre P, 2008, R PACKAGE VERS 1 6 3; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Maceda-Veiga A, 2015, SCI TOTAL ENVIRON, V514, P322, DOI 10.1016/j.scitotenv.2015.02.004; Marri V, 2015, COMP BIOCHEM PHYS A, V179, P192, DOI 10.1016/j.cbpa.2014.10.013; Masters J, 2001, J BIOL CHEM, V276, P48371, DOI 10.1074/jbc.M108019200; MCCORD JM, 1969, J BIOL CHEM, V244, P6049; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Norte AC, 2009, J ORNITHOL, V150, P651, DOI 10.1007/s10336-009-0387-1; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Pacios-Palma I, 2016, RES VET SCI, V109, P129, DOI 10.1016/j.rvsc.2016.09.019; Pap PL, 2014, PHYSIOL BIOCHEM ZOOL, V87, P729, DOI 10.1086/676934; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Prior RL, 1999, FREE RADICAL BIO MED, V27, P1173, DOI 10.1016/S0891-5849(99)00203-8; R Core Team, 2016, R LANG ENV STAT COMP; Raja-aho S, 2012, PHYSIOL BIOCHEM ZOOL, V85, P148, DOI 10.1086/664826; Rouco C, 2008, WILDLIFE RES, V35, P625, DOI 10.1071/WR07151; Rouco C, 2011, ANIM CONSERV, V14, P117, DOI 10.1111/j.1469-1795.2010.00401.x; Rubolini D, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048955; Sanchez-Campos S, 2004, J LAB CLIN MED, V144, P215, DOI 10.1016/j.lab.2004.07.006; Schneeberger K, 2013, J EXP BIOL, V216, P4514, DOI 10.1242/jeb.090837; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; SIES H, 1991, AM J MED, V91, pS31, DOI 10.1016/0002-9343(91)90281-2; Sorci G, 2009, PHILOS T R SOC B, V364, P71, DOI 10.1098/rstb.2008.0151; Tanchev S., 2003, Archives of Physiology and Biochemistry, V111, P437, DOI 10.3109/13813450312331342292; Tunon MJ, 2003, J LAB CLIN MED, V141, P272, DOI 10.1067/mlc.2003.30; Vallejo D, 2014, VET RES, V45, DOI 10.1186/1297-9716-45-15; van de Crommenacker J, 2010, J EXP BIOL, V213, P3527, DOI 10.1242/jeb.045591; Villafuerte R, 1994, THESIS; Villafuerte R, 2017, RES VET SCI, V114, P281, DOI 10.1016/j.rvsc.2017.05.014; von Schantz T, 2016, P ROY SOC LOND B BIO, V266, P1 64 0 0 12 12 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1612-4642 1439-0574 EUR J WILDLIFE RES Eur. J. Wildl. Res. AUG 2018 64 4 47 10.1007/s10344-018-1203-0 7 Ecology; Zoology Environmental Sciences & Ecology; Zoology GO1GF WOS:000439697000001 2019-02-21 J Leuschner, C; Meier, IC Leuschner, Christoph; Meier, Ina C. The ecology of Central European tree species: Trait spectra, functional trade-offs, and ecological classification of adult trees PERSPECTIVES IN PLANT ECOLOGY EVOLUTION AND SYSTEMATICS English Article Adult trees; Forest succession; Phylogenetic signal; Leaf traits; Root traits; Stress tolerance LEAF ECONOMICS SPECTRUM; LIFE-HISTORY STRATEGIES; SHADE-TOLERANCE; SUCCESSIONAL STATUS; PLANT-COMMUNITIES; FROST-RESISTANCE; FOREST TREES; DROUGHT; PHYSIOLOGY; TEMPERATE Plant functional traits offer insights into the plant-environment relationship and may help to understand how plants influence ecosystem functions. Applying trait-based models on climate and land-use change to forests is often hindered by poor data quality, as many data are estimates and traits are often parameterized for juvenile and not adult trees. For advancing theory building and improving the quality of trait data with relevance for adult trees, we compiled a unique trait database for the complete tree flora of Central Europe (42 species from 11 families), covering 38 morphological and physiological traits mostly parameterized with sun and shade crown and root data from adult trees. Despite only small variation in climate, several traits vary largely in this tree species sample, likely reflecting regional edaphic variation, while the influence of phylogenetic diversity is low and restricted to the angiosperm-gymnosperm divergence. The well-established shade tolerance-drought tolerance and wood density-drought sensitivity trade-offs are not supported by our data set, possibly due to the explicit consideration of adult trees and the absence of extended climatic gradients. For the 11 major tree species with high information density, a principal components analysis (PCA) identified three key functional traits, (i) minimum light demand of the adult trees' shade leaves, (ii) stand leaf area index (LAI), and (iii) maximum tree height, which allows distinguishing five tree functional groups, among them a mid-successional tree group. Only a small minority of traits changes significantly along the early-to-late successional axis, contradicting a main paradigm in forest succession research. The functional contrast between early-and late-successional trees is smaller in the sun canopy of adults than in seedlings or saplings, suggesting that trait data from juveniles cannot simply be extrapolated to adults. Focusing on adult trees and on traits with a more direct link to the underlying processes may significantly improve tree functional classification and trait-based models in forest ecology and biogeochemistry. [Leuschner, Christoph; Meier, Ina C.] Univ Goettingen, Albrecht von Haller Inst Plant Sci, Plant Ecol, Untere Karspule 2, D-37073 Gottingen, Germany Leuschner, C (reprint author), Univ Goettingen, Albrecht von Haller Inst Plant Sci, Plant Ecol, Untere Karspule 2, D-37073 Gottingen, Germany. cleusch@uni-goettingen.de; imeier1@uni-goettingen.de German Research Foundation (Deutsche Forschungsgemeinschaft DFG) [GRK 1086, ME 4156/2-1] This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft DFG) [grant numbers GRK 1086, ME 4156/2-1]. BATTAGLIA M, 1993, AUST J BOT, V41, P137, DOI 10.1071/BT9930137; Bazzaz F. A., 1994, EXPLOITATION ENV HET, P349; BAZZAZ FA, 1979, ANNU REV ECOL SYST, V10, P351, DOI 10.1146/annurev.es.10.110179.002031; Bonan GB, 2002, GLOBAL BIOGEOCHEM CY, V16, DOI 10.1029/2000GB001360; Brodribb TJ, 2017, NEW PHYTOL, V215, P9, DOI 10.1111/nph.14620; Browne M. W, 1993, TESTING STRUCTURAL E, P136, DOI DOI 10.1177/0049124192021002005; BRZEZIECKI B, 1994, FOREST ECOL MANAG, V69, P167, DOI 10.1016/0378-1127(94)90227-5; Cavender-Bares J, 2000, OECOLOGIA, V124, P8, DOI 10.1007/PL00008865; Charra-Vaskou K, 2012, ANN FOREST SCI, V69, P325, DOI 10.1007/s13595-011-0160-5; Charrier G, 2018, SCI ADV, V4, DOI 10.1126/sciadv.aao6969; Charrier G, 2014, PLANT PHYSIOL, V164, P992, DOI 10.1104/pp.113.228403; Charrier G, 2013, TREE PHYSIOL, V33, P1229, DOI 10.1093/treephys/tpt090; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Ciccarelli FD, 2006, SCIENCE, V311, P1283, DOI 10.1126/science.1123061; Coomes DA, 2009, J ECOL, V97, P705, DOI 10.1111/j.1365-2745.2009.01507.x; de Bello F, 2010, BIODIVERS CONSERV, V19, P2873, DOI 10.1007/s10531-010-9850-9; Diaz S, 2007, P NATL ACAD SCI USA, V104, P20684, DOI 10.1073/pnas.0704716104; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Duquesnay A, 2000, TREE PHYSIOL, V20, P13; Ellenberg H, 1996, VEGETATION MITTELEUR; ELLENBERG H, 1939, MITT FLORIST SOZIOL, V5, P3; Enquist B. J., 1999, SCALING BIOL, P167; Fenner M, 2005, ECOLOGY SEEDS; Field C, 1986, EC PLANT FORM FUNCTI, P25; Franklin J, 2016, P NATL ACAD SCI USA, V113, P3725, DOI 10.1073/pnas.1519911113; Grime J. P, 1979, PLANT STRATEGIES VEG; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; He JS, 2005, TREES-STRUCT FUNCT, V19, P442, DOI 10.1007/s00468-004-0403-2; HUSTON M, 1987, AM NAT, V130, P168, DOI 10.1086/284704; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; KIENAST F, 1987, ORNLTM10575; Kunstler G, 2016, NATURE, V529, P204, DOI 10.1038/nature16476; Kutsch WL, 2009, ECOL STUD-ANAL SYNTH, V207, P57, DOI 10.1007/978-3-540-92706-8_4; Laanisto L, 2015, GLOBAL ECOL BIOGEOGR, V24, P571, DOI 10.1111/geb.12288; LEEMANS R, 1987, VEGETATIO, V69, P147, DOI 10.1007/BF00038696; Leishman M. R., 2000, SEEDS ECOLOGY REGENE, V2, P31, DOI DOI 10.1079/9780851994321.0031; Leuschner C., 2017, ECOLOGY CENTRAL EURO, VI; Lohbeck M, 2013, ECOLOGY, V94, P1211, DOI 10.1890/12-1850.1; Lopes MS, 2010, FUNCT PLANT BIOL, V37, P147, DOI 10.1071/FP09121; Lusk CH, 2013, J ECOL, V101, P1531, DOI 10.1111/1365-2745.12152; Maherali H, 2006, PLANT CELL ENVIRON, V29, P571, DOI 10.1111/j.1365-3040.2005.01433.x; MANTEL N, 1970, BIOMETRICS, V26, P547, DOI 10.2307/2529108; MANTEL N, 1967, CANCER RES, V27, P209; Martin-StPaul N, 2017, ECOL LETT, V20, P1437, DOI 10.1111/ele.12851; Martinez-Vilalta J, 2010, J ECOL, V98, P1462, DOI 10.1111/j.1365-2745.2010.01718.x; Medeiros JS, 2011, PLANT CELL ENVIRON, V34, P43, DOI 10.1111/j.1365-3040.2010.02224.x; Midgley JJ, 2003, TRENDS ECOL EVOL, V18, P5, DOI 10.1016/S0169-5347(02)00016-2; Moorcroft PR, 2001, ECOL MONOGR, V71, P557, DOI 10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2; Niinemets U, 1998, TREE PHYSIOL, V18, P681; Niinemets U, 2001, ECOLOGY, V82, P453, DOI 10.2307/2679872; Niinemets U, 2006, ECOL MONOGR, V76, P521, DOI 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2; Nogueira A, 2004, PHOTOSYNTHETICA, V42, P351, DOI 10.1023/B:PHOT.0000046152.05364.77; Onoda Y, 2017, NEW PHYTOL, V214, P1447, DOI 10.1111/nph.14496; Ordonez JC, 2009, GLOBAL ECOL BIOGEOGR, V18, P137, DOI 10.1111/j.1466-8238.2008.00441.x; Peterson AG, 1999, OECOLOGIA, V118, P144, DOI 10.1007/s004420050712; Poorter L, 2004, PLANT BIOLOGY, V6, P746, DOI 10.1055/s-2004-821269; Poorter L, 1999, FUNCT ECOL, V13, P396, DOI 10.1046/j.1365-2435.1999.00332.x; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2006, ECOLOGY, V87, P1289, DOI 10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; PRENTICE IC, 1992, J BIOGEOGR, V19, P117, DOI 10.2307/2845499; PRENTICE IC, 1991, FOREST ECOL MANAG, V42, P79; Prinzing A, 2008, ECOL LETT, V11, P809, DOI 10.1111/j.1461-0248.2008.01189.x; RAAIMAKERS D, 1995, OECOLOGIA, V102, P120, DOI 10.1007/BF00333319; Raunkiaer C., 1934, LIFE FORMS PLANTS ST; Reich PB, 2003, INT J PLANT SCI, V164, pS143, DOI 10.1086/374368; Reich PB, 2012, P ROY SOC B-BIOL SCI, V279, P2128, DOI 10.1098/rspb.2011.2270; Schellberg J, 2012, GRASS FORAGE SCI, V67, P305, DOI 10.1111/j.1365-2494.2012.00867.x; SCHULZE ED, 1977, OECOLOGIA, V30, P239, DOI 10.1007/BF01833630; Schwilk DW, 2005, AM J BOT, V92, P404, DOI 10.3732/ajb.92.3.404; Sitch S, 2003, GLOBAL CHANGE BIOL, V9, P161, DOI 10.1046/j.1365-2486.2003.00569.x; SMITH T, 1989, VEGETATIO, V83, P49, DOI 10.1007/BF00031680; SOKAL ROBERT R., 1958, UNIV KANSAS SCI BULL, V38, P1409; SPURR SH, 1980, FOREST ECOLOGY; Theophrastus, 1916, ENQUIRY PLANTS; TUCKER LR, 1973, PSYCHOMETRIKA, V38, P1, DOI 10.1007/BF02291170; Turner I. M., 2001, ECOLOGY TREES TROPIC; Van den Burg J., 1985, FOLIAR ANAL DETERM 1; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; WALTERS MB, 1993, OECOLOGIA, V94, P7, DOI 10.1007/BF00317294; Warren C. R., 2012, TERRESTRIAL PHOTOSYN, P465; Webb CO, 2008, BIOINFORMATICS, V24, P2098, DOI 10.1093/bioinformatics/btn358; Wheeler JK, 2005, PLANT CELL ENVIRON, V28, P800, DOI 10.1111/j.1365-3040.2005.01330.x; Woodward FI, 1996, J VEG SCI, V7, P306, DOI 10.1111/j.1654-1103.1996.tb00489.x; Wright IJ, 2007, ANN BOT-LONDON, V99, P1003, DOI 10.1093/aob/mcl066; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright IJ, 2002, NEW PHYTOL, V155, P403, DOI 10.1046/j.1469-8137.2002.00479.x; Yang Y. M., 2016, SCI REP UK, V6; Zanne AE, 2014, NATURE, V506, P89, DOI 10.1038/nature12872; Zanne AE, 2010, AM J BOT, V97, P207, DOI 10.3732/ajb.0900178 90 1 1 26 29 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 1433-8319 PERSPECT PLANT ECOL Perspect. Plant Ecol. Evol. Syst. AUG 2018 33 89 103 10.1016/j.ppees.2018.05.003 15 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology GO0XV WOS:000439670800009 2019-02-21 J Gaydosh, L; Belsky, DW; Domingue, BW; Boardman, JD; Harris, KM Gaydosh, Lauren; Belsky, Daniel W.; Domingue, Benjamin W.; Boardman, Jason D.; Harris, Kathleen Mullan Father Absence and Accelerated Reproductive Development in Non-Hispanic White Women in the United States DEMOGRAPHY English Article Father absence; Reproductive timing; Genetics; Add Health GENOME-WIDE ASSOCIATION; ADOLESCENT SEXUAL-BEHAVIOR; EARLY FAMILY RELATIONSHIPS; LIFE-HISTORY THEORY; GENETIC RISK SCORE; POPULATION STRATIFICATION; CHILDHOOD EXPERIENCE; MATERNAL DEPRESSION; PUBERTAL MATURATION; ADULT HEALTH Girls who experience father absence in childhood also experience accelerated reproductive development in comparison with peers with present fathers. One hypothesis advanced to explain this empirical pattern is genetic confounding, wherein gene-environment correlation (rGE) causes a spurious relationship between father absence and reproductive timing. We test this hypothesis by constructing polygenic scores for age at menarche and first birth using recently available genome-wide association study results and molecular genetic data on a sample of non-Hispanic white females from the National Longitudinal Study of Adolescent to Adult Health. We find that young women's accelerated menarche polygenic scores are unrelated to their exposure to father absence. In contrast, polygenic scores for earlier age at first birth tend to be higher in young women raised in homes with absent fathers. Nevertheless, father absence and the polygenic scores independently and additively predict reproductive timing. We find no evidence in support of the rGE hypothesis for accelerated menarche and only limited evidence in support of the rGE hypothesis for earlier age at first birth. [Gaydosh, Lauren] Vanderbilt Univ, Ctr Med Hlth & Soc, 300 Calhoun Hall,PMB 351665,2301 Vanderbilt Pl, Nashville, TN 37235 USA; [Belsky, Daniel W.] Duke Univ, Dept Populat Hlth Sci, Durham, NC USA; [Belsky, Daniel W.] Duke Univ, Populat Res Inst, Durham, NC USA; [Domingue, Benjamin W.] Stanford Univ, Grad Sch Educ, Stanford, CA 94305 USA; [Boardman, Jason D.] Univ Colorado, Dept Sociol, Boulder, CO 80309 USA; [Boardman, Jason D.] Univ Colorado, Inst Behav Sci, Boulder, CO 80309 USA; [Harris, Kathleen Mullan] Univ N Carolina, Dept Sociol, Carolina Populat Ctr, Chapel Hill, NC 27515 USA Gaydosh, L (reprint author), Vanderbilt Univ, Ctr Med Hlth & Soc, 300 Calhoun Hall,PMB 351665,2301 Vanderbilt Pl, Nashville, TN 37235 USA. lauren.m.gaydosh@vanderbilt.edu Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) [R01 HD073342, R01 HD060726]; NICHD [P01-HD31921, P2C-HD050924, F32 HD084117]; NIA [R01 AG032282, P30 AG028716] This research benefitted from GWAS results made publicly available by the ReproGen Consoritum, Sociogenome, and the Social Science Genetic Association Consortium. This research uses Add Health GWAS data funded by Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Grants R01 HD073342 to Kathleen Mullan Harris and R01 HD060726 to Kathleen Mullan Harris, Jason D. Boardman, and Matthew B. McQueen. This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at University of North Carolina at Chapel Hill, and funded by Grant P01-HD31921 from the NICHD, with cooperative funding from 23 other federal agencies and foundations. This research was supported in part by NICHD P2C-HD050924. Lauren Gaydosh was supported by NICHD F32 HD084117. Daniel W. Belsky is an Early Career Fellow of the Jacobs Foundation and is supported by NIA Grants R01 AG032282 and P30 AG028716. Alvergne A, 2008, PHYSIOL BEHAV, V95, P625, DOI 10.1016/j.physbeh.2008.09.005; Anderson KG, 2015, HUM NATURE-INT BIOS, V26, P401, DOI 10.1007/s12110-015-9243-6; Anderson SE, 2005, J PEDIATR-US, V147, P753, DOI 10.1016/j.jpeds.2005.07.016; Barban N, 2016, NAT GENET, V48, P1462, DOI 10.1038/ng.3698; Barbaro N, 2017, EVOL HUM BEHAV, V38, P357, DOI 10.1016/j.evolhumbehav.2016.11.007; Belsky DW, 2014, BIODEMOGR SOC BIOL, V60, P137, DOI 10.1080/19485565.2014.946591; Belsky DW, 2013, BIODEMOGR SOC BIOL, V59, P85, DOI 10.1080/19485565.2013.774628; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Benjamin DJ, 2012, ANNU REV ECON, V4, P627, DOI 10.1146/annurev-economics-080511-110939; Boardman J. D., 2018, ANN M POP ASS AM DEN; Boardman JD, 2012, SOC SCI MED, V74, P1584, DOI 10.1016/j.socscimed.2012.02.012; Bogaert AF, 2008, J BIOSOC SCI, V40, P623, DOI 10.1017/S0021932007002386; BOOTH A, 1985, J MARRIAGE FAM, V47, P67, DOI 10.2307/352069; Box-Steffensmeier Janet M., 2004, EVENT HIST MODELING; Browning CR, 2004, DEMOGRAPHY, V41, P697, DOI 10.1353/dem.2004.0029; Bumpass LL, 1972, AM SOCIOL REV, V37, P754, DOI DOI 10.2307/2093585; Burt SA, 2006, ARCH GEN PSYCHIAT, V63, P890, DOI 10.1001/archpsyc.63.8.890; Bush WS, 2012, PLOS COMPUT BIOL, V8, DOI 10.1371/journal.pcbi.1002822; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; Campbell CD, 2005, NAT GENET, V37, P868, DOI 10.1038/ng1607; Cardon LR, 2003, LANCET, V361, P598, DOI 10.1016/S0140-6736(03)12520-2; Carlson CS, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001661; Chandra A., 2005, VITAL HLTH STAT REPO, V23; Charalampopoulos D, 2014, AM J EPIDEMIOL, V180, P29, DOI 10.1093/aje/kwu113; Chen P, 2014, GUIDELINES ANAL ADD; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Conley D, 2016, SCI REP-UK, V6, DOI 10.1038/srep30348; Conley D, 2016, P NATL ACAD SCI USA, V113, P6647, DOI 10.1073/pnas.1523592113; Conley D, 2015, SOCIOL SCI, V2, P82, DOI 10.15195/v2.a6; Culpin I, 2014, J ADOLESCENCE, V37, P291, DOI 10.1016/j.adolescence.2014.02.003; Day FR, 2017, NAT GENET, V49, P834, DOI 10.1038/ng.3841; Day FR, 2015, NEUROENDOCRINOLOGY, V102, P247, DOI 10.1159/000431023; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Demerath EW, 2013, HUM HERED, V75, P175, DOI 10.1159/000351742; Domingue BW, 2018, P NATL ACAD SCI USA, V115, P702, DOI 10.1073/pnas.1711803115; Domingue Benjamin W, 2015, AERA Open, V1, P1, DOI 10.1177/2332858415599972; Domingue BW, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101596; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Dudbridge F, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003348; Elks CE, 2010, NAT GENET, V42, P1077, DOI 10.1038/ng.714; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P85, DOI 10.1017/S0954579410000660; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Feng Y, 2008, ATHEROSCLEROSIS, V196, P590, DOI 10.1016/j.atherosclerosis.2007.06.016; Foster H, 2008, J HEALTH SOC BEHAV, V49, P162, DOI 10.1177/002214650804900204; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.1111/j.1467-8624.1995.tb00875.x; Hamer D, 2000, MOL PSYCHIATR, V5, P11, DOI 10.1038/sj.mp.4000662; Hardy JB, 1998, DEV PSYCHOL, V34, P1220, DOI 10.1037//0012-1649.34.6.1220; Harris K. M., J HLTH SOCIAL BEHAV; Harris KM, 2013, AM J PUBLIC HEALTH, V103, pS25, DOI 10.2105/AJPH.2012.301181; He CY, 2010, AM J EPIDEMIOL, V171, P334, DOI 10.1093/aje/kwp372; He CY, 2009, NAT GENET, V41, P724, DOI 10.1038/ng.385; Highland H., 2018, QUALITY CONTROL ANAL; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; Jacobsen K. E., 2007, ISSUES CLIN CHILD PS, V11, P1, DOI 10.5330/PSC.n.2010-11.1; Kalbfleisch J. D., 2002, STAT ANAL FAILURE TI; Karapanou O, 2010, REPROD BIOL ENDOCRIN, V8, DOI 10.1186/1477-7827-8-115; Kiernan KE, 1997, POP STUD-J DEMOG, V51, P41, DOI 10.1080/0032472031000149716; KIERNAN KE, 1977, ANN HUM BIOL, V4, P301, DOI 10.1080/03014467700002241; Kyweluk MA, 2018, EVOL HUM BEHAV, V39, P76, DOI 10.1016/j.evolhumbehav.2017.10.002; Lakshman R, 2009, J CLIN ENDOCR METAB, V94, P4953, DOI 10.1210/jc.2009-1789; Liu H, 2015, AM SOCIOL REV, V80, P705, DOI 10.1177/0003122415590627; Manski CF, 2011, J ECON PERSPECT, V25, P83, DOI 10.1257/jep.25.4.83; Martin AR, 2017, AM J HUM GENET, V100, P635, DOI 10.1016/j.ajhg.2017.03.004; Mathews TJ, 2016, NCHS DATA BRIEF; McEwen BS, 2012, P NATL ACAD SCI USA, V109, P17180, DOI 10.1073/pnas.1121254109; McQueen MB, 2015, BEHAV GENET, V45, P12, DOI 10.1007/s10519-014-9692-4; Mendle J, 2006, DEV PSYCHOL, V42, P533, DOI 10.1037/0012-1649.42.3.233; Mendle J, 2016, J RES ADOLESCENCE, V26, P595, DOI 10.1111/jora.12201; Mendle J, 2009, CHILD DEV, V80, P1463, DOI 10.1111/j.1467-8624.2009.01345.x; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.1111/j.1467-8624.1992.tb03594.x; Moore SR, 2014, DEV PSYCHOL, V50, P1734, DOI 10.1037/a0036027; Okbay A, 2016, NATURE, V533, P539, DOI 10.1038/nature17671; Patton GC, 2004, PEDIATRICS, V114, pE300, DOI 10.1542/peds.2003-0626-F; Perry JRB, 2014, NATURE, V514, P92, DOI 10.1038/nature13545; Plomin R., 2013, BEHAV GENETICS; Polderman TJC, 2015, NAT GENET, V47, P702, DOI 10.1038/ng.3285; Price AL, 2006, NAT GENET, V38, P904, DOI 10.1038/ng1847; Price AL, 2010, NAT REV GENET, V11, P459, DOI 10.1038/nrg2813; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Remsberg KE, 2005, J CLIN ENDOCR METAB, V90, P2718, DOI 10.1210/jc.2004-1991; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rowe DC, 2002, EVOL HUM BEHAV, V23, P365, DOI 10.1016/S1090-5138(02)00102-2; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; Ryan RM, 2015, DEV PSYCHOL, V51, P211, DOI 10.1037/a0038562; SANDLER DP, 1984, AM J EPIDEMIOL, V119, P765, DOI 10.1093/oxfordjournals.aje.a113797; Shifman S, 2003, HUM MOL GENET, V12, P771, DOI 10.1093/hmg/ddg088; StataCorp, 2015, STAT STAT SOFTW REL; Stearns S, 1992, EVOLUTION LIFE HIST; STOLL BA, 1994, ACTA ONCOL, V33, P171, DOI 10.3109/02841869409098400; Tamakoshi K, 2011, EUR J EPIDEMIOL, V26, P771, DOI 10.1007/s10654-011-9623-0; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Towne B, 2005, AM J PHYS ANTHROPOL, V128, P210, DOI 10.1002/ajpa.20106; Tropf FC, 2017, NAT HUM BEHAV, V1, P757, DOI 10.1038/s41562-017-0195-1; Udry J. R, 2008, J BIOSOC SCI, V11, P433; UDRY JR, 1982, DEMOGRAPHY, V19, P53, DOI 10.2307/2061128; Walter S, 2016, JAMA-J AM MED ASSOC, V316, P63, DOI 10.1001/jama.2016.8729; Webster GD, 2014, EVOL PSYCHOL-US, V12, P273, DOI 10.1177/147470491401200202; Wojcik G., 2017, GENETIC DIVERS UNPUB, DOI [10.1101/188094, DOI 10.1101/188094]; WU LL, 1993, AM SOCIOL REV, V58, P210, DOI 10.2307/2095967 104 1 1 4 6 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0070-3370 1533-7790 DEMOGRAPHY Demography AUG 2018 55 4 1245 1267 10.1007/s13524-018-0696-1 23 Demography Demography GM7TQ WOS:000438398100003 29978338 2019-02-21 J Arcamone, JR; Jaureguiberry, P Arcamone, Julieta R.; Jaureguiberry, Pedro Germination response of common annual and perennial forbs to heat shock and smoke treatments in the Chaco Serrano, central Argentina AUSTRAL ECOLOGY English Article broad-leaved herbs; germination cues; life history strategies; post-fire regeneration; seed mass INDUCED SEED-GERMINATION; PLANT FUNCTIONAL TRAITS; FIRE-PRONE ECOSYSTEMS; SOIL TEMPERATURES; POSTFIRE SUCCESSION; CHARRED WOOD; STORED SEEDS; FOREST; DORMANCY; CORDOBA Fire is a key ecological factor affecting plant dynamics. In the last few decades, fire occurrence in the Chaco region has increased noticeably, challenging the adaptive capacity of plants to regenerate after a fire. Broad-leaved forb species have been much less studied than woody and graminoids, although they are an important component of fire dynamics. Here we analysed the germination response to heat shock of 70 and 110 degrees C, smoke and their combination in 10 broad-leaved herbaceous species frequently occurring in the Chaco Serrano of Cordoba province, central Argentina, including five annual (Bidens subalternans, Conyza bonariensis, Schkuhria pinnata, Tagetes minuta and Zinnia peruviana) and five perennial species (Borreria eryngioides, Sida rhombifolia, Solidago chilensis, Taraxacum officinale and Verbena litoralis). We also compared the response of annual versus perennial species. Six species had highest germination when treated with heat and smoke combined, whereas two had lowest germination under this treatment, indicating synergistic and antagonistic interaction of these factors respectively. Most of the species tolerated heat shock (i.e. germination was similar to that in control treatment), whereas others had higher germination in response to heat shock, especially under the moderate 70 degrees C treatment. Germination was higher than control (i.e. no heat and no smoke) after smoke treatment in four species. Perennial species showed higher average germination than annuals in both heat treatments and in the control. Annual species had higher average germination for all treatments involving smoke. The high variability observed at the species level, and the limited number of species studied calls for precaution in interpreting and extrapolating results. Nevertheless, our study shows a general positive response of both perennial and annual species to fire cues, suggesting an advantage of these species for colonizing post-fire environments, and being favoured under scenarios of increasingly frequent low-to-medium intensity fires. [Arcamone, Julieta R.] Univ Nacl Cordoba, CONICET, Inst Multidisciplinario Biol Vegetal, POB 495, RA-5000 Cordoba, Argentina; FCEFyN, POB 495, RA-5000 Cordoba, Argentina Arcamone, JR (reprint author), Univ Nacl Cordoba, CONICET, Inst Multidisciplinario Biol Vegetal, POB 495, RA-5000 Cordoba, Argentina. julietaarcamone@hotmail.com Jaureguiberry, Pedro/0000-0002-7392-5157 Akaike H., 1972, Proceedings of the 5th Hawaii international conference on system science, P249; Arganaraz JP, 2015, SCI TOTAL ENVIRON, V520, P1, DOI 10.1016/j.scitotenv.2015.02.081; Arganaraz JP, 2015, FIRE ECOL, V11, P55, DOI 10.4996/fireecology.1101055; AULD TD, 1991, AUST J ECOL, V16, P53, DOI 10.1111/j.1442-9993.1991.tb01481.x; Auld TD, 1996, AUST J ECOL, V21, P106, DOI 10.1111/j.1442-9993.1996.tb00589.x; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; BAXTER BJM, 1994, ENVIRON EXP BOT, V34, P217, DOI 10.1016/0098-8472(94)90042-6; Beadle NCW, 1940, J ECOL, V28, P180, DOI 10.2307/2256168; BELLINGHAM PJ, 1994, J ECOL, V82, P747, DOI 10.2307/2261440; Boletta PE, 2006, FOREST ECOL MANAG, V228, P108, DOI 10.1016/j.foreco.2006.02.045; Bond WJ, 2005, TRENDS ECOL EVOL, V20, P387, DOI 10.1016/j.tree.2005.04.025; Bond WJ, 1999, OECOLOGIA, V120, P132, DOI 10.1007/s004420050841; Boo RM, 1996, J ARID ENVIRON, V32, P259, DOI 10.1006/jare.1996.0022; BRADSTOCK RA, 1992, AUST J ECOL, V17, P433, DOI 10.1111/j.1442-9993.1992.tb00826.x; BRADSTOCK RA, 1995, J APPL ECOL, V32, P76, DOI 10.2307/2404417; Bravo S, 2010, J ARID ENVIRON, V74, P1319, DOI 10.1016/j.jaridenv.2010.04.010; Bravo S, 2001, INT J WILDLAND FIRE, V10, P65, DOI 10.1071/WF01014; Bravo S, 2014, FOREST ECOL MANAG, V326, P36, DOI 10.1016/j.foreco.2014.04.009; Brown NAC, 1997, PLANT GROWTH REGUL, V22, P115, DOI 10.1023/A:1005852018644; Cabido M, 2010, B SOC ARGENT BOT, V45, P209; Cabrera A.L., 1976, REGIONES FITOGEOGRAF; Capitanelli RG, 1979, GEOGRAFIA FISICA PRO; Casillo J, 2012, AUSTRAL ECOL, V37, P452, DOI 10.1111/j.1442-9993.2011.02306.x; Chauhan B. S., 2008, INDIAN J WEED SCI, V40, P6; Cony MA, 1996, J ARID ENVIRON, V33, P225, DOI 10.1006/jare.1996.0058; Corbin JD, 2004, ECOLOGY, V85, P1273, DOI 10.1890/02-0744; Correia E, 1999, ACTA HORTIC, P89, DOI 10.17660/ActaHortic.1999.502.11; D'Agostino AB, 2012, REV BIOL TROP, V60, P1513; DI RIENZO J. A., 2017, MODELOS LINEALES GEN; Di Rienzo J. A., 2017, INFOSTAT VERSION 201; Di Rienzo JA, 2002, J AGRIC BIOL ENVIR S, V7, P129, DOI 10.1198/10857110260141193; DIXON KW, 1995, OECOLOGIA, V101, P185, DOI 10.1007/BF00317282; Doherty LC, 2000, SEED SCI RES, V10, P415; Enright NJ, 2001, AUSTRAL ECOL, V26, P132, DOI 10.1046/j.1442-9993.2001.01096.x; FENNER M, 1980, WEED RES, V20, P135, DOI 10.1111/j.1365-3180.1980.tb00058.x; Fenner M, 1999, FUNCT ECOL, V13, P546, DOI 10.1046/j.1365-2435.1999.00346.x; Ferreira A. G., 2001, Acta Botanica Brasilica, V15, P231, DOI 10.1590/S0102-33062001000200009; Floyd ML, 2006, INT J WILDLAND FIRE, V15, P247, DOI 10.1071/WF05066; Funes G, 2006, SEED SCI RES, V16, P77, DOI 10.1079/SSR2005229; Funes Guillermo, 2009, Ecol. austral, V19, P129; GARNIER E, 1994, NEW PHYTOL, V128, P725, DOI 10.1111/j.1469-8137.1994.tb04036.x; GARNIER E, 1992, J ECOL, V80, P665, DOI 10.2307/2260858; Ghebrehiwot HM, 2011, S AFR J BOT, V77, P718, DOI 10.1016/j.sajb.2011.03.006; Gilmour CA, 2000, AUST J BOT, V48, P603, DOI 10.1071/BT99029; Giorgis MA, 2013, B SOC ARGENT BOT, V48, P493; Giorgis Melisa A, 2011, Kurtziana, V36, P9; Grau HR, 2005, ENVIRON CONSERV, V32, P140, DOI 10.1017/S0376892905002092; Gurvich DE, 2005, AUSTRAL ECOL, V30, P789, DOI 10.1111/j.1442-9993.2005.01522.x; Hanley ME, 2003, OECOLOGIA, V134, P18, DOI 10.1007/s00442-002-1094-2; Hanley ME, 2001, ACTA OECOL, V22, P315, DOI 10.1016/S1146-609X(01)01124-9; Hanley ME, 2000, ACTA OECOL, V21, P315, DOI 10.1016/S1146-609X(00)01087-0; Harper J. L., 1977, POPULATION BIOL PLAN; Instituto Nacional de Tecnologia Agropecuaria Ministerio de Agricultura Ganaderia y Pesca Presidencia de la Nacion, ATL MAL INTA VERS BE; Jager AK, 1996, S AFR J BOT, V62, P282; Jaureguiberry P, 2015, OECOLOGIA, V177, P689, DOI 10.1007/s00442-014-3161-x; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Keeley J. E., 2000, Seeds: the ecology of regeneration in plant communities, P311, DOI 10.1079/9780851994321.0311; Keeley JE, 1998, J ECOL, V86, P27, DOI 10.1046/j.1365-2745.1998.00230.x; KEELEY JE, 1985, J ECOL, V73, P445, DOI 10.2307/2260486; Keeley JE, 1997, SCIENCE, V276, P1248, DOI 10.1126/science.276.5316.1248; KEELEY JE, 1991, BOT REV, V57, P81, DOI 10.1007/BF02858766; KEELEY JE, 1987, ECOLOGY, V68, P434, DOI 10.2307/1939275; Keeley JE, 1997, PLANT ECOL, V133, P153, DOI 10.1023/A:1009748603202; Keeley JE, 2012, OECOLOGIA, V169, P1043, DOI 10.1007/s00442-012-2253-8; KEELEY SC, 1981, ECOLOGY, V62, P1608, DOI 10.2307/1941516; Keith DA, 1997, OECOLOGIA, V112, P340, DOI 10.1007/s004420050318; Kenny BJ, 2000, AUSTRAL ECOL, V25, P664, DOI 10.1046/j.1442-9993.2000.01066.x; Kunst C., 2003, FUEGO ECOSISTEMAS AR, P39; Kunst C., 2011, B INFORM CIDEU, V10, P81; Ledesma R., 2011, DIVERSE RANGELANDS S, P456; LEISHMAN MR, 1995, J ECOL, V83, P517, DOI 10.2307/2261604; Lloret F, 1999, FUNCT ECOL, V13, P210, DOI 10.1046/j.1365-2435.1999.00309.x; Lloyd MV, 2000, AUSTRAL ECOL, V25, P610, DOI 10.1046/j.1442-9993.2000.01060.x; Luna B, 2007, ENVIRON EXP BOT, V60, P324, DOI 10.1016/j.envexpbot.2006.12.014; Maestre FT, 2001, ECOL APPL, V11, P1641, DOI 10.1890/1051-0761(2001)011[1641:PFUFBG]2.0.CO;2; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; Montazeri N, 2013, FOOD SCI NUTR, V1, P102, DOI 10.1002/fsn3.9; Morello J., 1983, EXPANSION AGR FRONTI, P341; MORELLO JORGE H., 1959, REV AGRON NOROESTE ARGENT, V3, P5; Morris EC, 2000, AUST J BOT, V48, P179, DOI 10.1071/BT98051; Morrison DA, 2000, AUSTRAL ECOL, V25, P292, DOI 10.1111/j.1442-9993.2000.tb00031.x; Ne'eman G, 2009, OECOLOGIA, V159, P483, DOI 10.1007/s00442-008-1237-1; Ooi MKJ, 2014, ECOL EVOL, V4, P656, DOI 10.1002/ece3.973; Paula S, 2008, J ECOL, V96, P543, DOI 10.1111/j.1365-2745.2008.01359.x; Pausas JG, 2005, OIKOS, V109, P196, DOI 10.1111/j.0030-1299.2005.13596.x; Pausas JG, 2014, NEW PHYTOL, V204, P55, DOI 10.1111/nph.12921; Pausas JG, 2009, BIOSCIENCE, V59, P593, DOI 10.1525/bio.2009.59.7.10; Perez-Harguindeguy N, 2013, AUST J BOT, V61, P167, DOI 10.1071/BT12225; PITELKA LF, 1977, ECOLOGY, V58, P1055, DOI 10.2307/1936925; Plan Provincial de Manejo del Fuego (PPMF), 2007, GUIA PREV INC FOR CO; Plummer JA, 2001, SEED SCI TECHNOL, V29, P321; R Development Core Team, 2008, R LANG ENV STAT COMP; Reigosa M. J., 2004, ECOFISIOLOGIA GERMIN, P901; Rodriguez-Arevalo I, 2017, GENET RESOUR CROP EV, V64, P1141, DOI 10.1007/s10722-016-0427-7; Roumet C, 2006, NEW PHYTOL, V170, P357, DOI 10.1111/j.1469-8137.2006.01667.x; Seabloom EW, 2003, P NATL ACAD SCI USA, V100, P13384, DOI 10.1073/pnas.1835728100; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; SPITTLER TE, 1995, BRUSHFIRES CALIFORNI, P113; Thomas PB, 2003, AUSTRAL ECOL, V28, P674, DOI 10.1046/j.1442-9993.2003.1330.doc.x; Tierney DA, 2006, AUST J BOT, V54, P297, DOI 10.1071/BT05111; Tieu A, 2001, ANN BOT-LONDON, V88, P259, DOI 10.1006/anbo.2001.1451; Torres RC, 2014, AUSTRAL ECOL, V39, P346, DOI 10.1111/aec.12084; VALETTE JC, 1994, INT J WILDLAND FIRE, V4, P225, DOI 10.1071/WF9940225; Venier P, 2012, S AFR J BOT, V79, P19, DOI 10.1016/j.sajb.2011.11.005; Verzino G, 2005, ECOL APL, V4, P25, DOI 10.21704/rea.v4i1-2.294; WASHITANI I, 1984, PLANT CELL ENVIRON, V7, P655; WELLS PV, 1969, EVOLUTION, V23, P264, DOI 10.1111/j.1558-5646.1969.tb03510.x; ZULOAGA F. O., 1994, MONOG SYST BOT, V47, P1; Zuloaga F. O., 1999, MONOGR SYST BOT MISS, V64, P1; Zuloaga F. O., 1996, MONOGRAPHS SYSTEMATI, V60, P1; Zuloaga-Aguilar S, 2011, ACTA OECOL, V37, P256, DOI 10.1016/j.actao.2011.02.009 111 0 0 6 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1442-9985 1442-9993 AUSTRAL ECOL Austral Ecol. AUG 2018 43 5 567 577 10.1111/aec.12593 11 Ecology Environmental Sciences & Ecology GM5QU WOS:000438195800009 2019-02-21 J Minter, M; Pearson, A; Lim, KS; Wilson, K; Chapman, JW; Jones, CM Minter, Melissa; Pearson, Aislinn; Lim, Ka S.; Wilson, Kenneth; Chapman, Jason W.; Jones, Christopher M. The tethered flight technique as a tool for studying life-history strategies associated with migration in insects ECOLOGICAL ENTOMOLOGY English Review Animal orientation; dispersal; insect movement; migration; tethered flight GRASSHOPPER MELANOPLUS-SANGUINIPES; AGROTIS-IPSILON LEPIDOPTERA; EXEMPTA WALKER LEPIDOPTERA; LONG-DURATION FLIGHT; HELICOVERPA-ARMIGERA LEPIDOPTERA; MONARCH BUTTERFLY MIGRATION; MILKWEED BUGS ONCOPELTUS; PRE-REPRODUCTIVE PERIOD; AFRICAN ARMYWORM MOTHS; COTTON-BOLLWORM MOTH 1. Every year billions of insects engage in long-distance, seasonal mass migrations which have major consequences for agriculture, ecosystem services and insect-vectored diseases. Tracking this movement in the field is difficult, with mass migrations often occurring at high altitudes and over large spatial scales. 2. As such, tethered flight provides a valuable tool for studying the flight behaviour of insects, giving insights into flight propensity (e.g. distance, duration and velocity) and orientation under controlled laboratory settings. By experimentally manipulating a variety of environmental and physiological traits, numerous studies have used this technology to study the flight behaviour of migratory insects ranging in size from aphids to butterflies. Advances in functional genomics promise to extend this to the identification of genetic factors associated with flight. Tethered flight techniques have been used to study migratory flight characteristics in insects for more than 50years, but have never been reviewed. 3. This study summarises the key findings of this technology, which has been employed in studies of species from six Orders. By providing detailed descriptions of the tethered flight systems, the present study also aims to further the understanding of how tethered flight studies support field observations, the situations under which the technology is useful and how it might be used in future studies. 4. The aim is to contextualise the available tethered flight studies within the broader knowledge of insect migration and to describe the significant contribution these systems have made to the literature. [Minter, Melissa] Univ York, Dept Biol, Heslington Way, York, N Yorkshire, England; [Minter, Melissa; Jones, Christopher M.] Rothamsted Res, Biointeract & Crop Protect, Harpenden, Herts, England; [Pearson, Aislinn; Lim, Ka S.] Rothamsted Res, Computat & Analyt Sci, Harpenden, Herts, England; [Wilson, Kenneth] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England; [Chapman, Jason W.] Univ Exeter, Ctr Ecol & Conservat, Penryn, Cornwall, England; [Jones, Christopher M.] Univ Liverpool Liverpool Sch Trop Med, Vector Biol, Liverpool, Merseyside, England Jones, CM (reprint author), Univ Liverpool Liverpool Sch Trop Med, Vector Biol, Liverpool, Merseyside, England. chris.jones@lstmed.ac.uk Wilson, Kenneth/0000-0001-5264-6522 UK Biotechnology and Biological Sciences Research Council (BBSRC) [BB/N012011/1]; UK-China Centre for Sustainable Intensification of Agriculture (CSIA); Chinese Academy of Agricultural Sciences (CASS); Agri-Tech in China: Newton Network+ (ATCNN) The authors would like to thank the reviewers for their constructive comments on the manuscript. We also thank Dr Don R. Reynolds for useful discussions concerning aspects of the review and Dr. Hayley B. C. Jones for the original copy of Fig. 3b. This work was supported by the UK Biotechnology and Biological Sciences Research Council (BBSRC) as part of a Future Leader Fellowship (grant number: BB/N012011/1) for Christopher M. Jones. Ka S. Lim is supported by the joint UK-China Centre for Sustainable Intensification of Agriculture (CSIA) led by Rothamsted Research and the Chinese Academy of Agricultural Sciences (CASS) and the Agri-Tech in China: Newton Network+ (ATCNN). Altizer SM, 2000, ECOL ENTOMOL, V25, P125, DOI 10.1046/j.1365-2311.2000.00246.x; Altizer S, 2011, SCIENCE, V331, P296, DOI 10.1126/science.1194694; ARMES NJ, 1991, PHYSIOL ENTOMOL, V16, P131, DOI 10.1111/j.1365-3032.1991.tb00549.x; Arrese EL, 2010, ANNU REV ENTOMOL, V55, P207, DOI 10.1146/annurev-ento-112408-085356; Attisano A., 2015, JOVE-J VIS EXP, V106, P1; Attisano A, 2013, ANIM BEHAV, V86, P651, DOI 10.1016/j.anbehav.2013.07.013; Avalos JA, 2014, B ENTOMOL RES, V104, P462, DOI 10.1017/S0007485314000121; BAKER PS, 1981, J COMP PHYSIOL, V141, P233, DOI 10.1007/BF01342669; Beenakkers A.M.T., 1981, P53; BERTHOLD P, 1994, P ROY SOC B-BIOL SCI, V257, P311, DOI 10.1098/rspb.1994.0131; Blackmer JL, 2004, ENVIRON ENTOMOL, V33, P1389, DOI 10.1603/0046-225X-33.5.1389; Bradley CA, 2005, ECOL LETT, V8, P290, DOI 10.1111/j.1461-0248.2005.00722.x; Brisson JA, 2016, CURR OPIN INSECT SCI, V13, P1, DOI 10.1016/j.cois.2015.09.011; Brisson JA, 2010, PHILOS T R SOC B, V365, P605, DOI 10.1098/rstb.2009.0255; Bruzzone OA, 2009, J EXP BIOL, V212, P731, DOI 10.1242/jeb.022517; Byrne DN, 1999, AGR FOREST METEOROL, V97, P309, DOI 10.1016/S0168-1923(99)00074-X; Chapman JW, 2008, CURR BIOL, V18, P514, DOI 10.1016/j.cub.2008.02.080; Chapman JW, 2015, ECOL LETT, V18, P287, DOI 10.1111/ele.12407; Chapman JW, 2011, ANNU REV ENTOMOL, V56, P337, DOI 10.1146/annurev-ento-120709-144820; Chen YY, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0141159; Cheng YZ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030437; Clobert J., 2001, DISPERSAL; COLVIN J, 1993, HEREDITY, V70, P407, DOI 10.1038/hdy.1993.57; COLVIN J, 1993, PHYSIOL ENTOMOL, V18, P16, DOI 10.1111/j.1365-3032.1993.tb00444.x; COOTER RJ, 1993, ENVIRON ENTOMOL, V22, P339, DOI 10.1093/ee/22.2.339; Dao A, 2014, NATURE, V516, P387, DOI 10.1038/nature13987; Davis Andrew K., 2009, Psyche (Cambridge), V2009, P1; DINGLE H, 1966, J EXP BIOL, V44, P335; Dingle H, 2014, MIGRATION: THE BIOLOGY OF LIFE ON THE MOVE, 2ND EDITION, P1, DOI 10.1093/acprof:oso/9780199640386.001.0001; DINGLE H, 1965, J EXP BIOL, V42, P269; Dingle H, 2007, BIOSCIENCE, V57, P113, DOI 10.1641/B570206; Dorhout DL, 2011, J APPL ENTOMOL, V135, P25, DOI 10.1111/j.1439-0418.2010.01523.x; Dorhout DL, 2008, ENVIRON ENTOMOL, V37, P1280, DOI 10.1603/0046-225X(2008)37[1280:EFOMFB]2.0.CO;2; DUDLEY R, 1990, J EXP BIOL, V148, P19; Edwards JS, 2006, J EXP BIOL, V209, P4411, DOI 10.1242/jeb.02592; Froy O, 2003, SCIENCE, V300, P1303, DOI 10.1126/science.1084874; Fry SN, 2009, J EXP BIOL, V212, P1120, DOI 10.1242/jeb.020768; GATEHOUSE AG, 1980, PHYSIOL ENTOMOL, V5, P215, DOI 10.1111/j.1365-3032.1980.tb00229.x; GEWECKE M, 1975, J COMP PHYSIOL, V103, P79, DOI 10.1007/BF01380046; GOLDSWORTHY GJ, 1979, J INSECT PHYSIOL, V25, P183, DOI 10.1016/0022-1910(79)90097-0; Goldsworthy Graham, 2001, Symposia of the Royal Entomological Society of London, V20, P65; GU HN, 1992, HEREDITY, V68, P53, DOI 10.1038/hdy.1992.7; Guerra PA, 2013, CURR BIOL, V23, P419, DOI 10.1016/j.cub.2013.01.052; GUNN A, 1993, PHYSIOL ENTOMOL, V18, P149, DOI 10.1111/j.1365-3032.1993.tb00462.x; HAN EN, 1993, PHYSIOL ENTOMOL, V18, P183, DOI 10.1111/j.1365-3032.1993.tb00466.x; Hao YN, 2013, J ECON ENTOMOL, V106, P2043, DOI 10.1603/EC13218; Harrison JF, 2002, COMP BIOCHEM PHYS A, V133, P323, DOI 10.1016/S1095-6433(02)00163-0; Hedenstrom A, 2017, J AVIAN BIOL, V48, P37, DOI 10.1111/jav.01363; HEINRICH B, 1971, J EXP BIOL, V54, P141; Hoddle MS, 2015, J ECON ENTOMOL, V108, P2599, DOI 10.1093/jee/tov240; Hu G, 2016, SCIENCE, V354, P1584, DOI 10.1126/science.aah4379; JIANG XF, 2000, ACTA ECOLOGICA SINIC, V20, P288; Jiang XF, 2010, J INSECT PHYSIOL, V56, P1631, DOI 10.1016/j.jinsphys.2010.06.006; Jiang Xing-Fu, 2003, Acta Ecologica Sinica, V23, P738; Jiang XF, 2011, ENVIRON ENTOMOL, V40, P516, DOI 10.1603/EN10199; Johnson C. G., 1969, MIGRATION DISPERSAL; Jones CM, 2015, MOL ECOL, V24, P4901, DOI 10.1111/mec.13362; Jones HBC, 2016, ECOL EVOL, V6, P181, DOI 10.1002/ece3.1861; Kent JW, 1997, PHYSIOL ENTOMOL, V22, P231; Kent JW, 2001, PHYSIOL ENTOMOL, V26, P371, DOI 10.1046/j.0307-6962.2001.00257.x; King BL, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046524; Kong HL, 2010, ENVIRON ENTOMOL, V39, P1579, DOI 10.1603/EN09314; KROGH A, 1952, J EXP BIOL, V29, P211; KUTSCH W, 1979, J INSECT PHYSIOL, V25, P299, DOI 10.1016/0022-1910(79)90016-7; KUTSCH W, 1981, J INSECT PHYSIOL, V27, P455, DOI 10.1016/0022-1910(81)90096-2; Liedvogel M, 2011, TRENDS ECOL EVOL, V26, P561, DOI 10.1016/j.tree.2011.07.009; Lim K.S., 2013, LIM KS, Patent No. PCT/GB2014/052466; Liu ZF, 2011, J ECON ENTOMOL, V104, P94, DOI 10.1603/EC10331; Lombaert E, 2014, J EVOLUTION BIOL, V27, P508, DOI 10.1111/jeb.12316; Lopez VM, 2014, J ECON ENTOMOL, V107, P1127, DOI 10.1603/EC13525; Lu YH, 2009, B ENTOMOL RES, V99, P543, DOI 10.1017/S000748530800655X; Luo LZ, 2002, ENVIRON ENTOMOL, V31, P1, DOI 10.1603/0046-225X-31.1.1; Markert MJ, 2016, G3-GENES GENOM GENET, V6, P905, DOI 10.1534/g3.116.027029; Marti-Campoy A., 2016, SENSORS, V16, P1; MCANELLY ML, 1986, BIOL BULL, V170, P368, DOI 10.2307/1541848; MCANELLY ML, 1986, BIOL BULL, V170, P378, DOI 10.2307/1541849; MCNEIL JN, 1995, INSECT MIGRATION: TRACKING RESOURCES THROUGH SPACE AND TIME, P279; Merlin C, 2013, GENOME RES, V23, P159, DOI 10.1101/gr.145599.112; Merlin C, 2012, CURR OPIN NEUROBIOL, V22, P353, DOI 10.1016/j.conb.2011.11.009; Merlin C, 2009, SCIENCE, V325, P1700, DOI 10.1126/science.1176221; Miller NG, 2011, BIOL LETTERS, V7, P43, DOI 10.1098/rsbl.2010.0525; Min KJ, 2004, J INSECT PHYSIOL, V50, P531, DOI 10.1016/j.jinsphys.2004.03.009; Min KJ, 2004, ARCH INSECT BIOCHEM, V55, P33, DOI 10.1002/arch.10109; Mouritsen H, 2002, P NATL ACAD SCI USA, V99, P10162, DOI 10.1073/pnas.152137299; Murata M, 2004, ZOOL SCI, V21, P181, DOI 10.2108/zsj.21.181; Nesbit RL, 2009, ANIM BEHAV, V78, P1119, DOI 10.1016/j.anbehav.2009.07.039; Nesbit R.L., 2009, THESIS U YORK UK; PADGHAM DE, 1983, B ENTOMOL RES, V73, P117, DOI 10.1017/S0007485300013857; PARKER WE, 1985, B ENTOMOL RES, V75, P35, DOI 10.1017/S0007485300014152; PARKER WE, 1985, B ENTOMOL RES, V75, P49, DOI 10.1017/S0007485300014164; Perez-Mendoza J, 2011, J ECON ENTOMOL, V104, P443, DOI 10.1603/EC10430; Rankin M.A., 1986, P27; RANKIN MA, 1980, BIOL BULL, V158, P356, DOI 10.2307/1540862; RANKIN MA, 1980, J INSECT PHYSIOL, V26, P67, DOI 10.1016/0022-1910(80)90111-0; Reppert SM, 2010, TRENDS NEUROSCI, V33, P399, DOI 10.1016/j.tins.2010.04.004; Riley JR, 1997, ENTOMOL EXP APPL, V83, P317, DOI 10.1046/j.1570-7458.1997.00186.x; ROFF DA, 1991, AM ZOOL, V31, P205; Roff DA, 2007, BIOSCIENCE, V57, P155, DOI 10.1641/B570210; SAPPINGTON TW, 1995, ARCH INSECT BIOCHEM, V29, P397, DOI 10.1002/arch.940290407; SAPPINGTON TW, 1991, ANN ENTOMOL SOC AM, V84, P560, DOI 10.1093/aesa/84.5.560; SAPPINGTON TW, 1992, ANN ENTOMOL SOC AM, V85, P188, DOI 10.1093/aesa/85.2.188; SAPPINGTON TW, 1992, ENVIRON ENTOMOL, V21, P677; Satterfield DA, 2013, CURR ZOOL, V59, P393, DOI 10.1093/czoolo/59.3.393; Schumacher P, 1997, PHYSIOL ENTOMOL, V22, P149, DOI 10.1111/j.1365-3032.1997.tb01152.x; Schumacher P, 1997, ENTOMOL EXP APPL, V85, P169, DOI 10.1046/j.1570-7458.1997.00247.x; SEYOUM E, 1994, J APPL ENTOMOL, V118, P310, DOI 10.1111/j.1439-0418.1994.tb00805.x; Shirai Y, 1998, B ENTOMOL RES, V88, P327, DOI 10.1017/S0007485300025943; SHIRAI Y, 1994, JARQ-JPN AGR RES Q, V28, P161; Simpson SJ, 2008, CURR BIOL, V18, pR364, DOI 10.1016/j.cub.2008.02.029; SLANSKY F, 1980, ENTOMOL EXP APPL, V28, P277, DOI 10.1111/j.1570-7458.1980.tb03027.x; Snelling EP, 2017, J EXP BIOL, V220, P4432, DOI 10.1242/jeb.168187; Snelling EP, 2012, J EXP BIOL, V215, P3317, DOI 10.1242/jeb.069799; Stefanescu C, 2013, ECOGRAPHY, V36, P474, DOI 10.1111/j.1600-0587.2012.07738.x; Stepanian P.M., 2016, ECOSPHERE, V7, P1; Taylor RAJ, 2010, J INSECT BEHAV, V23, P128, DOI 10.1007/s10905-010-9202-3; TEO LH, 1987, INSECT BIOCHEM, V17, P777, DOI 10.1016/0020-1790(87)90011-4; Troast D, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148949; VANHANDEL E, 1974, J INSECT PHYSIOL, V20, P2329, DOI 10.1016/0022-1910(74)90020-1; VOGEL S, 1966, J EXP BIOL, V44, P567; Vogt JT, 2000, J INSECT PHYSIOL, V46, P697, DOI 10.1016/S0022-1910(99)00158-4; Wang FY, 2017, SCI REP-UK, V7, DOI 10.1038/srep39853; Wang XH, 2014, NAT COMMUN, V5, P1, DOI 10.1038/ncomms3957; Wanner H, 2006, PHYSIOL ENTOMOL, V31, P127, DOI 10.1111/j.1365-3032.2006.00494.x; Warrant E., 2016, FRONT BEHAV NEUROSCI, V10, P1; WEISFOGH T, 1952, PHILOS T ROY SOC B, V237, P1, DOI 10.1098/rstb.1952.0011; Wells T, 2016, ENV MICROBIOL REP, V8, P728, DOI 10.1111/1758-2229.12434; WILSON K, 1993, INSECT SCI APPL, V14, P325, DOI 10.1017/S1742758400014818; WOODROW KP, 1987, B ENTOMOL RES, V77, P113, DOI 10.1017/S0007485300011597; Yuan Q, 2007, MOL BIOL EVOL, V24, P948, DOI 10.1093/molbev/msm011; Zhan S, 2014, NATURE, V514, P317, DOI 10.1038/nature13812; Zhan S, 2011, CELL, V147, P1171, DOI 10.1016/j.cell.2011.09.052; Zhang Y, 2008, ENVIRON ENTOMOL, V37, P301, DOI 10.1603/0046-225X(2008)37[301:FPOTSA]2.0.CO;2; Zhao KF, 2011, CROP PROT, V30, P476, DOI 10.1016/j.cropro.2010.11.026; Zhu HS, 2009, BMC BIOL, V7, DOI 10.1186/1741-7007-7-14 134 1 1 16 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6946 1365-2311 ECOL ENTOMOL Ecol. Entomol. AUG 2018 43 4 397 411 10.1111/een.12521 15 Entomology Entomology GL4HW WOS:000437112200001 30046219 Other Gold, Green Published 2019-02-21 J van Dijk, KJ; Digiantonio, G; Waycott, M van Dijk, Kor-jent; Digiantonio, Gina; Waycott, Michelle New microsatellite markers for the seagrass Amphibolis antarctica reveal unprecedented genetic diversity AQUATIC BOTANY English Article Polymorphism; Connectivity; Clonality; Australia; Temperate GENOTYPIC DIVERSITY; CLONAL ORGANISMS; COMPUTER-PROGRAM; ZOSTERA-MARINA; POPULATIONS; PCR The limited data available on the genetic diversity of the temperate seagrass Amphibolis antarctica indicate diversity may be extremely low. The available previous study was based on allozymes and restriction fragment length polymorphisms (RFLPs) as molecular markers. Numerous studies into other seagrass taxa have shown that these markers may not have the appropriate sensitivity to reveal genetic diversity. In order to determine if A. antractica is genuinely genetically depauperate, or if the genetic markers used were not suitable to capture the diversity, we developed novel microsatellites for this species. Forty-eight primer candidates were screened with a limited number of geographically diverse samples. Fourteen loci displayed adequate polymorphism and were arranged into three multiplex PCR panels for further testing. DNA samples of four populations were tested and statistics on locus population and genotypic diversity calculated. This is the first study that has found genetic diversity within A. antarctica, with allele numbers ranging between 2-10 per locus. Expected heterozygosity (H-E) for the four populations ranged between 0.355-0.507. This small-scale study has given the first insight into the genetic diversity of this species and has provided a tool to evaluate life-history strategies such as clonality, reproduction and dispersal of one of the most important southern Australian seagrass species. [van Dijk, Kor-jent; Waycott, Michelle] Univ Adelaide, Environm Inst, North Terrace, Adelaide, SA 5005, Australia; [van Dijk, Kor-jent; Waycott, Michelle] Univ Adelaide, Sch Biol Sci, North Terrace, Adelaide, SA 5005, Australia; [Digiantonio, Gina] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA; [Waycott, Michelle] State Herbarium South Australia, Dept Environm Water & Nat Resources, POB 1047, Adelaide, SA 5001, Australia van Dijk, KJ (reprint author), Univ Adelaide, Environm Inst, North Terrace, Adelaide, SA 5005, Australia.; van Dijk, KJ (reprint author), Univ Adelaide, Sch Biol Sci, North Terrace, Adelaide, SA 5005, Australia. korjent.vandijk@adelaide.edu.au Jones Conservation Fund This work was supported by the Jones Conservation Fund. The funding source was not involved in the design, collection, analysis, interpretation, or writing of this study. Alcala N, 2014, THEOR POPUL BIOL, V93, P75, DOI 10.1016/j.tpb.2014.02.003; Arnaud-Haond S, 2005, J HERED, V96, P434, DOI 10.1093/jhered/esi043; Arnaud-Haond S, 2007, MOL ECOL NOTES, V7, P15, DOI 10.1111/j.1471-8286.2006.01522.x; Bijak AL, 2014, APPL PLANT SCI, V2, DOI 10.3732/apps.1400082; Brownstein MJ, 1996, BIOTECHNIQUES, V20, P1004; den Hartog C, 1970, SEA GRASSES WORLD; Dorken ME, 2001, J ECOL, V89, P339, DOI 10.1046/j.1365-2745.2001.00558.x; Green E. P, 2003, WORLD ATLAS SEAGRASS; Hart D., 1997, NEAR SHORE SEAGRASS; Holleley CE, 2009, BIOTECHNIQUES, V46, P511, DOI 10.2144/000113156; Hughes AR, 2009, ECOLOGY, V90, P1412, DOI 10.1890/07-2030.1; Keenan K, 2013, METHODS ECOL EVOL, V4, P782, DOI 10.1111/2041-210X.12067; Kendrick GA, 2012, BIOSCIENCE, V62, P56, DOI 10.1525/bio.2012.62.1.10; Kuo J., 1990, BOT MAR, V117; Malausa T, 2011, MOL ECOL RESOUR, V11, P638, DOI 10.1111/j.1755-0998.2011.02992.x; Meglecz E, 2010, BIOINFORMATICS, V26, P403, DOI 10.1093/bioinformatics/btp670; Meirmans PG, 2004, MOL ECOL NOTES, V4, P792, DOI 10.1111/j.1471-8286.2004.00770.x; Nayar S, 2009, J EXP MAR BIOL ECOL, V373, P87, DOI 10.1016/j.jembe.2009.03.010; Nordlund LM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163091; Procaccini G, 2007, J EXP MAR BIOL ECOL, V350, P234, DOI 10.1016/j.jembe.2007.05.035; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; Reusch TBH, 2006, MOL ECOL, V15, P277, DOI 10.1111/j.1365-294X.2005.02779.x; Reusch TBH, 1999, MAR BIOL, V133, P519, DOI 10.1007/s002270050492; Reynolds LK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038397; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Schuelke M, 2000, NAT BIOTECHNOL, V18, P233, DOI 10.1038/72708; Tanner JE, 2015, ESTUAR COAST, V38, P668, DOI 10.1007/s12237-014-9823-4; Thomson JA, 2015, GLOBAL CHANGE BIOL, V21, P1463, DOI 10.1111/gcb.12694; Waycott M, 1996, HEREDITY, V76, P578, DOI 10.1038/hdy.1996.83; Waycott M., 2014, GUIDE SO TEMPERATE S; Waycott M, 2009, P NATL ACAD SCI USA, V106, P12377, DOI 10.1073/pnas.0905620106 31 0 0 9 9 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3770 1879-1522 AQUAT BOT Aquat. Bot. AUG 2018 148 25 28 10.1016/j.aquabot.2018.04.002 4 Plant Sciences; Marine & Freshwater Biology Plant Sciences; Marine & Freshwater Biology GH7SB WOS:000433652600004 2019-02-21 J Brans, KI; Stoks, R; De Meester, L Brans, Kristien I.; Stoks, Robby; De Meester, Luc Urbanization drives genetic differentiation in physiology and structures the evolution of pace-of-life syndromes in the water flea Daphnia magna PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article urbanization; protein content; fat content; oxidative stress responses; pace-of-life syndrome; urban evolution OXIDATIVE STRESS; RAPID EVOLUTION; COMPENSATORY GROWTH; MULTIPLE STRESSORS; PESTICIDE EXPOSURE; LOCAL ADAPTATION; URBAN BIRDS; PERSONALITY; TOLERANCE; RESPONSES Natural and human-induced stressors elicit changes in energy metabolism and stress physiology in populations of a wide array of species. Cities are stressful environments that may lead to differential selection on stress-coping mechanisms. Given that city ponds are exposed to the urban heat island effect and receive polluted run-off, organisms inhabiting these ecosystems might show genetic differentiation for physiological traits enabling them to better cope with higher overall stress levels. A common garden study with 62 Daphnia magna genotypes from replicated urban and rural populations revealed that urban Daphnia have significantly higher concentrations of total body fat, proteins and sugars. Baseline activity levels of the antioxidant defence enzymes superoxide dismutase (SOD) and glutathione-S-transferase (GST) were higher in rural compared with city populations, yet urban animals were equally well protected against lipid peroxidation. Our results add to the recent evidence of urbanization-driven changes in stress physiology and energy metabolism in terrestrial organisms. Combining our results with data on urban life history evolution in Daphnia revealed that urban genotypes show a structured pace-of-life syndrome involving both life-history and physiological traits, whereas this is absent in rural populations. [Brans, Kristien I.; De Meester, Luc] Katholieke Univ Leuven, Lab Aquat Ecol Evolut & Conservat, Ch Deberiotstr 32, B-3000 Leuven, Belgium; [Stoks, Robby] Katholieke Univ Leuven, Lab Evolutionary Stress Ecol & Ecotoxicol, Ch Deberiotstr 32, B-3000 Leuven, Belgium Brans, KI (reprint author), Katholieke Univ Leuven, Lab Aquat Ecol Evolut & Conservat, Ch Deberiotstr 32, B-3000 Leuven, Belgium. kristien.brans@kuleuven.be Belspo (IAP SPEEDY); KU Leuven [PF/2010/07, C16/17/002]; FWO PhD (Aspirant) fellowship This work was supported by Belspo (IAP SPEEDY). This work was also financially supported by KU Leuven Research Council funding PF/2010/07 and C16/17/002. K.I.B. acknowledges a FWO PhD (Aspirant) fellowship. Angilletta MJ, 2009, BIO HABIT, P1; Barata C, 2002, AQUAT TOXICOL, V60, P85, DOI 10.1016/S0166-445X(01)00275-2; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911; Bonier F, 2007, BIOL LETTERS, V3, P670, DOI 10.1098/rsbl.2007.0349; BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999; Brans KI, 2018, FUNCT ECOL, V32, P2225, DOI 10.1111/1365-2435.13184; Brans KI, 2018, LANDSCAPE URBAN PLAN, V176, P22, DOI 10.1016/j.landurbplan.2018.03.013; Brans KI, 2017, GLOBAL CHANGE BIOL, V23, P5218, DOI 10.1111/gcb.13784; Brans KI, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0030; Burraco P, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-07201-z; Chainy GBN, 2016, SCIENTIFICA, DOI 10.1155/2016/6126570; Charmantier A, 2017, FRONT ECOL EVOL, V5, DOI 10.3389/fevo.2017.00053; Cheptou PO, 2008, P NATL ACAD SCI USA, V105, P3796, DOI 10.1073/pnas.0708446105; Coldsnow KD, 2017, ENVIRON POLLUT, V222, P367, DOI 10.1016/j.envpol.2016.12.024; Conover David O., 1997, Fish and Fisheries Series, V21, P305; Costantini D, 2014, OXIDATIVE STRESS HOR; Costantini D, 2014, J EXP BIOL, V217, P2994, DOI 10.1242/jeb.106450; Crago J, 2011, CHEMOSPHERE, V82, P1669, DOI 10.1016/j.chemosphere.2010.11.011; De Block M, 2008, P R SOC B, V275, P781, DOI 10.1098/rspb.2007.1515; De Coen WM, 2003, ENVIRON TOXICOL CHEM, V22, P1632, DOI 10.1897/1551-5028(2003)22<1632:TMBLRB>2.0.CO;2; Debecker S., 2017, THESIS; Debecker S, 2016, J ANIM ECOL, V85, P726, DOI 10.1111/1365-2656.12499; Demirel R, 2009, ELECTRON J GEN MED, V6, P20, DOI 10.29333/ejgm/82631; Diamond SE, 2017, BIOL J LINN SOC, V121, P248, DOI 10.1093/biolinnean/blw047; DIGIULIO RT, 1989, ENVIRON TOXICOL CHEM, V8, P1103, DOI 10.1897/1552-8618(1989)8[1103:BRIAAA]2.0.CO;2; Dingemanse NJ, 2010, ANIM BEHAV, V79, P439, DOI 10.1016/j.anbehav.2009.11.024; Donihue CM, 2015, AMBIO, V44, P194, DOI 10.1007/s13280-014-0547-2; DUMONT HJ, 1975, OECOLOGIA, V19, P75, DOI 10.1007/BF00377592; Engelen J., 2017, THESIS; Falfushinska HI, 2008, COMP BIOCHEM PHYS C, V148, P223, DOI 10.1016/j.cbpc.2008.05.018; Gianuca AT, 2018, ECOGRAPHY, V41, P183, DOI 10.1111/ecog.02926; Giraudeau M, 2014, INTEGR COMP BIOL, V54, P622, DOI 10.1093/icb/icu024; Grace J. B, 2006, STRUCTURAL EQUATION; Grotto D, 2009, QUIM NOVA, V32, P169, DOI 10.1590/S0100-40422009000100032; Hahs AK, 2009, ECOL LETT, V12, P1165, DOI 10.1111/j.1461-0248.2009.01372.x; Harris SE, 2017, MOL ECOL, V26, P6336, DOI 10.1111/mec.14369; Hassall C, 2014, WIRES WATER, V1, P187, DOI 10.1002/wat2.1014; Herrera-Duenas A, 2017, FRONT ECOL EVOL, V5, DOI 10.3389/fevo.2017.00106; Herrera-Duenas A, 2014, ECOL INDIC, V42, P6, DOI 10.1016/j.ecolind.2013.08.014; Hoffman DJ, 2002, AQUAT TOXICOL, V57, P11, DOI 10.1016/S0166-445X(01)00263-6; Hutton P, 2016, FRONT ECOL EVOL, V4, DOI 10.3389/fevo.2016.00054; Isaksson C, 2015, FUNCT ECOL, V29, P913, DOI 10.1111/1365-2435.12477; Isaksson C, 2010, ECOHEALTH, V7, P342, DOI 10.1007/s10393-010-0345-7; Janssens L, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0350; Jemec A, 2012, ECOTOX ENVIRON SAFE, V86, P213, DOI 10.1016/j.ecoenv.2012.09.016; Johnson MTJ, 2017, SCIENCE, V358, DOI 10.1126/science.aam8327; Jones DK, 2017, ENVIRON POLLUT, V221, P159, DOI 10.1016/j.envpol.2016.11.060; Killen SS, 2013, TRENDS ECOL EVOL, V28, P651, DOI 10.1016/j.tree.2013.05.005; Korsloot A, 2004, ENV STRESS CELLULAR; McKinney M. L., 2008, Urban Ecosystems, V11, P161, DOI 10.1007/s11252-007-0045-4; McLoughlin N, 2000, ENVIRON TOXICOL CHEM, V19, P2085, DOI 10.1897/1551-5028(2000)019<2085:EOSASO>2.3.CO;2; Meillere A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135685; Moller AP, 2010, OECOLOGIA, V163, P35, DOI 10.1007/s00442-009-1525-4; Mueller JC, 2013, MOL ECOL, V22, P3629, DOI 10.1111/mec.12288; Munshi-South J, 2016, EVOL APPL, V9, P546, DOI 10.1111/eva.12357; Niemela PT, 2013, BEHAV ECOL, V24, P935, DOI 10.1093/beheco/art014; Oksala NKJ, 2014, REDOX BIOL, V3, P25, DOI 10.1016/j.redox.2014.10.003; Parris K. M., 2016, ECOLOGY URBAN ENV; Partecke J, 2006, ECOLOGY, V87, P1945, DOI 10.1890/0012-9658(2006)87[1945:SATCUA]2.0.CO;2; Pauwels K, 2010, FUNCT ECOL, V24, P322, DOI 10.1111/j.1365-2435.2009.01641.x; Peiman KS, 2017, AM NAT, V190, P451, DOI 10.1086/693482; R Development Core Team, 2016, R LANG ENV STAT COMP; Rauw Wendy M., 2012, Frontiers in Genetics, V3, P267, DOI 10.3389/fgene.2012.00267; Ravaschiere A, 2017, ECOTOX ENVIRON SAFE, V142, P222, DOI 10.1016/j.ecoenv.2017.04.003; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rosseel Y, 2012, J STAT SOFTW, V48, P1; Santangelo JS, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.0230; Sarnelle O, 2005, LIMNOL OCEANOGR, V50, P1565, DOI 10.4319/lo.2005.50.5.1565; Shipley B, 2009, ECOLOGY, V90, P363, DOI 10.1890/08-1034.1; Sniegula S, 2017, AQUAT TOXICOL, V186, P113, DOI 10.1016/j.aquatox.2017.02.029; Sokolova IM, 2013, INTEGR COMP BIOL, V53, P597, DOI 10.1093/icb/ict028; Stoks R, 2006, ECOLOGY, V87, P1566, DOI 10.1890/0012-9658(2006)87[1566:PCOCGI]2.0.CO;2; Thompson KA, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.2180; Tuzun N, 2017, ANIM BEHAV, V134, P45, DOI 10.1016/j.anbehav.2017.10.007; Zar J. H., 1999, BIOSTATISTICAL ANAL 77 2 2 26 26 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUL 25 2018 285 1883 20180169 10.1098/rspb.2018.0169 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GO3QH WOS:000439907900003 30051844 2019-02-21 J Ouyang, X; Gao, JC; Xie, MF; Liu, BH; Zhou, LJ; Chen, BJ; Jourdan, J; Riesch, R; Plath, M Ouyang, Xu; Gao, Jiancao; Xie, Meifeng; Liu, Binghua; Zhou, Linjun; Chen, Bojian; Jourdan, Jonas; Riesch, Ruediger; Plath, Martin Natural and sexual selection drive multivariate phenotypic divergence along climatic gradients in an invasive fish SCIENTIFIC REPORTS English Article LIFE-HISTORY EVOLUTION; FEMALE MATE CHOICE; MOSQUITOFISH GAMBUSIA-HOLBROOKI; GUPPIES POECILIA-RETICULATA; MALE BODY-SIZE; SPERM COMPETITION RISK; ALLELE FREQUENCY DATA; FRESH-WATER FISHES; LIVE-BEARING FISH; BERGMANNS RULE Invasive species that rapidly spread throughout novel distribution ranges are prime models to investigate climate-driven phenotypic diversification on a contemporary scale. Previous studies on adaptive diversification along latitudinal gradients in fish have mainly considered body size and reported either increased or decreased body size towards higher latitudes (i.e. Bergmann's rule). Our study is the first to investigate phenotypic divergence in multiple traits, including sexually selected traits (size and shape of the male copulatory organ, the gonopodium) of invasive Gambusia affinis in China. We studied body size, life history traits and morphological variation across populations spanning 17 degrees of latitude and 16 degrees of longitude. Even though we found phenotypic variation along climatic gradients to be strongest in naturally selected traits, some sexually selected traits also showed systematic gradual divergence. For example, males from southern populations possessed wider gonopodia with increased armament. Generally, males and females diverged in response to different components of climatic gradients (latitudinal or longitudinal variation) and in different trait suites. We discuss that not only temperature regimes, but also indirect effects of increased resource and mate competition (as a function of different extrinsic overwinter mortality rates) alter the selective landscape along climatic gradients. [Ouyang, Xu; Gao, Jiancao; Xie, Meifeng; Liu, Binghua; Zhou, Linjun; Chen, Bojian; Plath, Martin] Northwest A&F Univ, Coll Anim Sci & Technol, Yangling 712100, Shaanxi, Peoples R China; [Jourdan, Jonas] Senckenberg Res Inst, Dept River Ecol & Conservat, Gelnhausen, Germany; [Jourdan, Jonas] Nat Hist Museum Frankfurt, Gelnhausen, Germany; [Riesch, Ruediger] Royal Holloway Univ London, Sch Biol Sci, Egham TW20 0EX, Surrey, England Plath, M (reprint author), Northwest A&F Univ, Coll Anim Sci & Technol, Yangling 712100, Shaanxi, Peoples R China. mplath-zoology@foxmail.com Jourdan, Jonas/Y-7389-2018 Jourdan, Jonas/0000-0002-2745-2520 Northwest AF University [Z111021403]; Province of Shaanxi [A289021611] We are indebted to Y. Zhong and H. Cao for collecting specimens in Beihai and Hangzhou. E. M. Worner kindly shared dissection protocols. Financial support came from Northwest A&F University (Z111021403) and from the Province of Shaanxi (A289021611, both to M. Plath). Adams DC, 2008, EVOLUTION, V62, P413, DOI 10.1111/j.1558-5646.2007.00297.x; Alho JS, 2011, J EVOLUTION BIOL, V24, P59, DOI 10.1111/j.1420-9101.2010.02141.x; Allen J. A., 1877, Radical Review, Vi, P108; Ancel LW, 2000, THEOR POPUL BIOL, V58, P307, DOI 10.1006/tpbi.2000.1484; Anderson VR, 2001, CONDOR, V103, P195, DOI 10.1650/0010-5422(2001)103[0195:ESBSLA]2.0.CO;2; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Arnett H. A., 2016, THESIS; Arnqvist G, 1998, NATURE, V393, P784, DOI 10.1038/31689; ARNQVIST G, 1992, EVOLUTION, V46, P914, DOI 10.1111/j.1558-5646.1992.tb00609.x; Ashton KG, 2000, AM NAT, V156, P390, DOI 10.1086/303400; Azevedo-Santos VM, 2017, BIOSCIENCE, V67, P83, DOI 10.1093/biosci/biw156; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Bassar RD, 2010, ANN NY ACAD SCI, V1206, P17, DOI 10.1111/j.1749-6632.2010.05706.x; Belk MC, 2002, AM NAT, V160, P803, DOI 10.1086/343880; BERGMANN K., 1847, GOTTINGER STUD, V3, P595; BISAZZA A, 1991, COPEIA, P730, DOI 10.2307/1446400; BISAZZA A, 1995, ETHOL ECOL EVOL, V7, P169, DOI 10.1080/08927014.1995.9522963; Bisazza A, 2001, BEHAV ECOL, V12, P59, DOI 10.1093/oxfordjournals.beheco.a000379; Blumenshine SC, 2000, ECOLOGY, V81, P374, DOI 10.1890/0012-9658(2000)081[0374:GOFPAB]2.0.CO;2; Brinsmead J, 2002, J FISH BIOL, V61, P1619, DOI 10.1006/jfbi.2002.2179; BRITTON RH, 1982, OECOLOGIA, V53, P146, DOI 10.1007/BF00545657; CASTRO G, 1992, ECOLOGY, V73, P833, DOI 10.2307/1940161; Chapuis MP, 2007, MOL BIOL EVOL, V24, P621, DOI 10.1093/molbev/msl191; Chui CKS, 2009, J BIOGEOGR, V36, P1945, DOI 10.1111/j.1365-2699.2009.02132.x; CLARK E, 1954, B AM MUS NAT HIST, V103, P141; Clavero M, 2009, BIOL CONSERV, V142, P2043, DOI 10.1016/j.biocon.2009.03.034; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; Constantz G.D., 1984, P465; CROWLEY PH, 1991, AM NAT, V137, P567, DOI 10.1086/285184; Culumber ZW, 2012, J EVOLUTION BIOL, V25, P1800, DOI 10.1111/j.1420-9101.2012.02562.x; Culumber ZW, 2017, NAT ECOL EVOL, V1, P1185, DOI 10.1038/s41559-017-0233-4; Cureton JC, 2010, BEHAVIOUR, V147, P1431, DOI 10.1163/000579510X519495; DANIELS GL, 1992, SOUTHWEST NAT, V37, P157, DOI 10.2307/3671664; DIAL TR, 2017, SCI REP, V7; Ebert TA, 1999, MAR ECOL PROG SER, V190, P189, DOI 10.3354/meps190189; Ehrenfeld JG, 2010, ANNU REV ECOL EVOL S, V41, P59, DOI 10.1146/annurev-ecolsys-102209-144650; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Evans JP, 2011, P ROY SOC B-BIOL SCI, V278, P2611, DOI 10.1098/rspb.2010.2453; Evans JP, 2003, BEHAV ECOL, V14, P268, DOI 10.1093/beheco/14.2.268; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; Fromhage L, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms12517; Fu CZ, 2003, BIODIVERS CONSERV, V12, P1649, DOI 10.1023/A:1023697714517; Gabor Cailtlin R., 2003, Acta Ethologica, V6, P7; GAGE MJG, 1991, ANIM BEHAV, V42, P1036, DOI 10.1016/S0003-3472(05)80162-9; Gao JC, 2017, BIOINVASIONS REC, V6, P281, DOI 10.3391/bir.2017.6.3.14; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Ghalambor CK, 2015, NATURE, V525, P372, DOI 10.1038/nature15256; Goldberg DE, 1999, ECOLOGY, V80, P1118, DOI 10.2307/177059; Gomes JL, 2007, J FISH BIOL, V71, P1799, DOI 10.1111/j.1095-8649.2007.01653.x; Gong DY, 2007, CLIMATE DISASTERS CH, P138; Goudet J., 2002, FSTAT VERSION 2 9 3; GRIFFING JP, 1974, J MAMMAL, V55, P674, DOI 10.2307/1379562; Harris R, 2012, J BIOGEOGR, V39, P1450, DOI 10.1111/j.1365-2699.2012.02710.x; HAYNES JL, 1995, J FISH BIOL, V46, P1026, DOI 10.1111/j.1095-8649.1995.tb01407.x; Head ML, 2017, J ANIM ECOL, V86, P1458, DOI 10.1111/1365-2656.12742; Head ML, 2015, ECOL EVOL, V5, P4999, DOI 10.1002/ece3.1775; Heinen-Kay JL, 2013, J EVOLUTION BIOL, V26, DOI 10.1111/jeb.12229; Heinen-Kay JL, 2014, EVOL APPL, V7, P1252, DOI 10.1111/eva.12223; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Hermoso V, 2011, ECOL APPL, V21, P175, DOI 10.1890/09-2011.1; Hosken DJ, 2004, TRENDS ECOL EVOL, V19, P87, DOI 10.1016/j.tree.2003.11.012; Hu BQ, 2011, QUATERN INT, V230, P34, DOI 10.1016/j.quaint.2009.08.018; Invernizzi E, 2015, CURR ZOOL, V61, P1043, DOI 10.1093/czoolo/61.6.1043; Jann P, 2000, J EVOLUTION BIOL, V13, P927, DOI 10.1046/j.1420-9101.2000.00230.x; JEANNE RL, 1979, ECOLOGY, V60, P1211, DOI 10.2307/1936968; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Jourdan J, 2016, SCI REP-UK, V6, DOI 10.1038/srep38971; Juliano Rogelio O., 1989, Asian Fisheries Society Special Publication, V3, P83; Kahn AT, 2010, BIOL LETTERS, V6, P55, DOI 10.1098/rsbl.2009.0637; Karlsson J, 2005, GLOBAL CHANGE BIOL, V11, P710, DOI 10.1111/j.1365-2486.2005.00945.x; Kimbro DL, 2009, OECOLOGIA, V160, P563, DOI 10.1007/s00442-009-1322-0; Klingenberg CP, 2011, MOL ECOL RESOUR, V11, P353, DOI 10.1111/j.1755-0998.2010.02924.x; Kokko H, 2012, ECOL LETT, V15, P1340, DOI 10.1111/j.1461-0248.2012.01859.x; KRUMHOLZ LA, 1948, ECOL MONOGR, V18, P1, DOI 10.2307/1948627; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P2231, DOI 10.1111/j.1420-9101.2009.01839.x; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; Langerhans R. Brian, 2011, P228; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Langerhans RB, 2005, P NATL ACAD SCI USA, V102, P7618, DOI 10.1073/pnas.0500935102; Leips J, 2009, EVOLUTION, V63, P1341, DOI 10.1111/j.1558-5646.2009.00631.x; Levine JM, 2000, SCIENCE, V288, P852, DOI 10.1126/science.288.5467.852; Li Z. Y., 2002, ALIEN INVASIVE SPECI, P88; Li Z.Y., 2002, INVASIVE SPECIES CHI; Liao I-Chiu, 1989, Asian Fisheries Society Special Publication, V3, P101; [林婧婧 Lin Jingjing], 2015, [气候变化研究进展, Progressus Inquisitiones de Mutatione Climatis], V11, P281; LODGE DM, 1993, TRENDS ECOL EVOL, V8, P133, DOI 10.1016/0169-5347(93)90025-K; Loeschcke V, 2000, HEREDITY, V85, P423, DOI 10.1046/j.1365-2540.2000.00766.x; Lomolino MV, 2001, GLOBAL ECOL BIOGEOGR, V10, P3, DOI 10.1046/j.1466-822x.2001.00229.x; Luikart G, 1998, CONSERV BIOL, V12, P228, DOI 10.1046/j.1523-1739.1998.96388.x; MacLaren RD, 2008, BEHAVIOUR, V145, P897, DOI 10.1163/156853908784089289; Magellan K, 2006, ANIM BEHAV, V72, P75, DOI 10.1016/j.anbehav.2005.09.022; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Magurran AE, 1996, NATURE, V383, P307, DOI 10.1038/383307a0; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Mazzoni R., 2017, ECOL FRESHW FISH, V2017, P1; MCLACHLAN AJ, 1987, OIKOS, V48, P11, DOI 10.2307/3565681; Meiri S, 2003, J BIOGEOGR, V30, P331, DOI 10.1046/j.1365-2699.2003.00837.x; MENGE BA, 1976, AM NAT, V110, P351, DOI 10.1086/283073; MENGE BA, 1987, AM NAT, V130, P730, DOI 10.1086/284741; Michaletz P. H., 2011, N AM J FISH MANAGE, V18, P114; Mittelbach GG, 2007, ECOL LETT, V10, P315, DOI 10.1111/j.1461-0248.2007.01020.x; Moore MP, 2016, ECOL LETT, V19, P435, DOI 10.1111/ele.12576; Mousseau TA, 1997, EVOLUTION, V51, P630, DOI 10.1111/j.1558-5646.1997.tb02453.x; Myint O, 2011, J ETHOL, V29, P153, DOI 10.1007/s10164-010-0238-9; Nauen JC, 1999, J EXP BIOL, V202, P3181; NEI M, 1983, ANN HUM GENET, V47, P253, DOI 10.1111/j.1469-1809.1983.tb00993.x; Nobel S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0053865; Olson VA, 2009, ECOL LETT, V12, P249, DOI 10.1111/j.1461-0248.2009.01281.x; Oppliger A, 1998, P ROY SOC B-BIOL SCI, V265, P1527, DOI 10.1098/rspb.1998.0468; Osorio-Canadas S, 2016, ECOL LETT, V19, P1395, DOI 10.1111/ele.12687; Ouyang Xu, 2017, International Aquatic Research, V9, P141; Page RDM, 1996, COMPUT APPL BIOSCI, V12, P357; Pangle KL, 2004, T AM FISH SOC, V133, P1235, DOI 10.1577/T03-127.1; Parker G.A., 1998, SPERM COMPETITION SE; Parker GA, 1996, P ROY SOC B-BIOL SCI, V263, P1291, DOI 10.1098/rspb.1996.0189; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; Peakall R, 2012, BIOINFORMATICS, V28, P2537, DOI 10.1093/bioinformatics/bts460; Pearson RG, 2003, GLOBAL ECOL BIOGEOGR, V12, P361, DOI 10.1046/j.1466-822X.2003.00042.x; Peden A. E., 2011, CAN J ZOOL, V50, P955; Perez KO, 2010, EVOLUTION, V64, P2450, DOI 10.1111/j.1558-5646.2010.00994.x; Phillimore AB, 2007, EVOLUTION, V61, P942, DOI 10.1111/j.1558-5646.2007.00068.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pilastro A, 1997, P ROY SOC B-BIOL SCI, V264, P1125, DOI 10.1098/rspb.1997.0155; Pilastro A, 2007, ANIM BEHAV, V74, P321, DOI 10.1016/j.anbehav.2006.09.016; Pincheira-Donoso D, 2009, ECOL RES, V24, P1223, DOI 10.1007/s11284-009-0607-4; Piry S, 1999, J HERED, V90, P502, DOI 10.1093/jhered/90.4.502; Plath M, 2007, BEHAVIOUR, V144, P1147, DOI 10.1163/156853907781890931; Pritchard J.K., 2009, DOCUMENTATION STRUCT; Purcell KM, 2011, CONSERV GENET RESOUR, V3, P361, DOI 10.1007/s12686-010-9362-7; Pyke GH, 2005, REV FISH BIOL FISHER, V15, P339, DOI 10.1007/s11160-006-6394-x; Pyke GH, 2008, ANNU REV ECOL EVOL S, V39, P171, DOI 10.1146/annurev.ecolsys.39.110707.173451; Rahbek C, 2005, ECOL LETT, V8, P224, DOI 10.1111/j.1461-0248.2004.00701.x; Rees B. E, 1958, P CALIF MOSQ CONTROL, V26, P71; REICHLE D, 1968, ECOLOGY, V49, P538, DOI 10.2307/1934119; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick D, 2006, OIKOS, V114, P135, DOI 10.1111/j.2006.0030-1299.14446.x; Reznick DN, 2012, EVOLUTION, V66, P2903, DOI 10.1111/j.1558-5646.2012.01650.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Rieger JF, 2004, ECOLOGY, V85, P2094, DOI 10.1890/04-0156; Riesch R., BIOL J LINN SOC; Riesch R, 2016, SCI REP-UK, V6, DOI 10.1038/srep22968; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Riesch R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027377; Robin JP, 1999, J APPL ECOL, V36, P101, DOI 10.1046/j.1365-2664.1999.00384.x; Rohlf F. J., 2016, TPSUTIL VERSION 1 70; Rohlf F. J, 2016, TPSDIG VERSION 2 26; ROSEN DE, 1961, COPEIA, P201, DOI 10.2307/1439999; ROSEN DONN ERIC, 1953, ZOOLOGICA [NEW YORK], V38, P1; Royer DL, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007653; Ruehl CB, 2005, EVOL ECOL RES, V7, P801; Rypel AL, 2014, AM NAT, V183, P147, DOI 10.1086/674094; Salewski V, 2017, OIKOS, V126, P161, DOI 10.1111/oik.03698; SAND H, 1995, OECOLOGIA, V102, P433, DOI 10.1007/BF00341355; SCHLUTER D, 1986, EVOLUTION, V40, P221, DOI 10.1111/j.1558-5646.1986.tb00465.x; SEARCY WA, 1979, EVOLUTION, V33, P649, DOI 10.1111/j.1558-5646.1979.tb04718.x; Shelomi M, 2017, FRONT ECOL EVOL, V5, DOI 10.3389/fevo.2017.00025; Snell-Rood EC, 2008, OECOLOGIA, V157, P545, DOI 10.1007/s00442-008-1092-0; Spencer CC, 1999, MOL ECOL, V8, P157; Spoljaric MA, 2007, J FISH BIOL, V70, P1484, DOI 10.1111/j.1095-8649.2007.01425.x; Statzner B., 2010, FRESHWATER BIOL, V24, P181; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; Stockwell CA, 2000, WEST N AM NATURALIST, V60, P273; Svensson EI, 2006, EVOLUTION, V60, P1242; Symonds MRE, 2010, AM NAT, V176, P188, DOI 10.1086/653666; Tan Yo-Jun, 1989, Asian Fisheries Society Special Publication, V3, P35; Tobler M, 2008, BIOL LETTERS, V4, P452, DOI 10.1098/rsbl.2008.0259; TREXLER JC, 1992, ECOLOGY, V73, P2224, DOI 10.2307/1941470; Turner CL, 1941, J MORPHOL, V69, P161, DOI 10.1002/jmor.1050690107; Uvarov AV, 2011, SOIL BIOL BIOCHEM, V43, P559, DOI 10.1016/j.soilbio.2010.11.023; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Vandewoestijne S, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013810; Vogel S., 1988, LIFES DEVICES PHYS W, P38; Walker JA, 1997, BIOL J LINN SOC, V61, P3, DOI 10.1006/bijl.1996.9999; Weir JT, 2007, SCIENCE, V315, P1574, DOI 10.1126/science.1135590; Weissman David B., 2008, Journal of Orthoptera Research, V17, P321, DOI 10.1665/1082-6467-17.2.321; Wesner JS, 2011, BIOL J LINN SOC, V104, P386, DOI 10.1111/j.1095-8312.2011.01715.x; WILBUR HM, 1978, EVOLUTION, V32, P264, DOI 10.1111/j.1558-5646.1978.tb00642.x; Willig MR, 2003, ANNU REV ECOL EVOL S, V34, P273, DOI 10.1146/annurev.ecolsys.34.012103.144032; Willis PM, 2011, BEHAV ECOL, V22, P1234, DOI 10.1093/beheco/arr119; Xie Y, 2001, BIODIVERS CONSERV, V10, P1317, DOI 10.1023/A:1016695609745; Zamora-Camacho FJ, 2014, J EVOLUTION BIOL, V27, P2820, DOI 10.1111/jeb.12546; Zane L, 1999, J EVOLUTION BIOL, V12, P61, DOI 10.1046/j.1420-9101.1999.00006.x; ZULIAN E, 1995, ETHOL ECOL EVOL, V7, P1, DOI 10.1080/08927014.1995.9522966 188 0 0 9 14 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep JUL 24 2018 8 11164 10.1038/s41598-018-29254-4 22 Multidisciplinary Sciences Science & Technology - Other Topics GN9UD WOS:000439553400011 30042477 DOAJ Gold 2019-02-21 J Aranguiz-Acuna, A; Perez-Portilla, P; De la Fuente, A; Fontaneto, D Aranguiz-Acuna, Adriana; Perez-Portilla, Pablo; De la Fuente, Ana; Fontaneto, Diego Life-history strategies in zooplankton promote coexistence of competitors in extreme environments with high metal content SCIENTIFIC REPORTS English Article BRACHIONUS-PLICATILIS ROTIFERA; SPECIES-DIVERSITY; FOOD-WEB; RESOURCE COMPETITION; MULTIPLE STRESSORS; GENETIC-STRUCTURE; NORTHERN CHILE; RESTING EGGS; REPRODUCTION; DIAPAUSE The toxicity of pollutants on aquatic communities is determined by the specific sensitivities and by the ecological relationships between species, although the role of ecological interactions on the specific sensitivity to pollutants is complex. We tested the effect of exposure to copper on the life-history strategies of two coexisting rotifer species of the genus Brachionus from Inca-Coya lagoon, an isolated water body located in Atacama Desert. The experiments looked at differences in the response to the stress by chemical pollution mimicking field conditions of copper exposure, levels of food, and salinity, between single-species cultures and coexisting species. Under single species cultures, B. 'Nevada' had lower densities, growth rates, and resting eggs production than B. quadridentatus; when in competition, B. 'Nevada' performed better than B. quadridentatus in most life-history traits. B. 'Nevada' was a copper-tolerant species, which outcompeted B. quadridentatus, more copper-sensitive, with higher levels of copper. Species-specific responses to environmental conditions and pollution, plus differential relationships between population density and production of resting eggs, resulted in reduced niche overlap between species, allowing stabilized coexistence. The extreme environmental conditions and the isolation of the Inca-Coya lagoon, make it an excellent model to understand the adaption of aquatic organisms to stressed environments. [Aranguiz-Acuna, Adriana; Perez-Portilla, Pablo; De la Fuente, Ana] Univ Catolica Norte, Dept Chem, Fac Sci, Angamos 0610, Antofagasta, Chile; [Fontaneto, Diego] Natl Res Council Italy, Inst Ecosyst Study CNR ISE, Largo Tonolli 50, I-28922 Pallanza, VB, Italy; [Aranguiz-Acuna, Adriana] Univ Catolica Norte, Ctr Invest Tecnol Agua Desierto CEITSAZA, Casilla 1280, Antofagasta, Chile Aranguiz-Acuna, A (reprint author), Univ Catolica Norte, Dept Chem, Fac Sci, Angamos 0610, Antofagasta, Chile.; Aranguiz-Acuna, A (reprint author), Univ Catolica Norte, Ctr Invest Tecnol Agua Desierto CEITSAZA, Casilla 1280, Antofagasta, Chile. aranguiz@ucn.cl Fontaneto, Diego/B-9710-2008 Fontaneto, Diego/0000-0002-5770-0353 FONDECYT [11130653] This study was funded by FONDECYT grant no. 11130653 to A. A.-A. The authors thank Dr. Jorge Valdes and Dr. Mauricio Cerda for their support in the field, and Dr. Martha Hengst and her laboratory staff for their support in molecular analysis. Aranguiz-Acuna A, 2017, ECOTOXICOLOGY, V26, P329, DOI 10.1007/s10646-017-1766-7; Aranguiz-Acuna A, 2016, ECOTOXICOLOGY, V25, P708, DOI 10.1007/s10646-016-1629-7; Aranguiz-Acuna A, 2015, OECOLOGIA, V177, P273, DOI 10.1007/s00442-014-3172-7; ASTM, 2012, E144091 ASTM; Barton Kamil, 2016, MUMIN MULTIMODEL INF; Burnham K. P, 2002, MODEL SELECTION MULT; Cadotte MW, 2007, P ROY SOC B-BIOL SCI, V274, P2739, DOI 10.1098/rspb.2007.0925; Ceulemans T, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0175160; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Ciros-Perez J, 2004, LIMNOL OCEANOGR, V49, P40, DOI 10.4319/lo.2004.49.1.0040; Ciros-Perez J, 2001, J PLANKTON RES, V23, P1311, DOI 10.1093/plankt/23.12.1311; Ciros-Perez J, 2002, OECOLOGIA, V131, P35, DOI 10.1007/s00442-001-0856-6; Crawley M. J, 2012, R BOOK; D'Alelio D, 2016, SCI REP-UK, V6, DOI 10.1038/srep21806; Dahms HU, 2011, AQUAT TOXICOL, V101, P1, DOI 10.1016/j.aquatox.2010.09.006; De Laender F, 2009, ECOTOX ENVIRON SAFE, V72, P310, DOI 10.1016/j.ecoenv.2008.07.014; Fleeger JW, 2003, SCI TOTAL ENVIRON, V317, P207, DOI 10.1016/S0048-9697(03)00141-4; Foit K, 2012, AQUAT TOXICOL, V106, P25, DOI 10.1016/j.aquatox.2011.09.012; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; Forbes AE, 2002, OIKOS, V96, P433, DOI 10.1034/j.1600-0706.2002.960305.x; Fussmann GF, 2007, HYDROBIOLOGIA, V593, P111, DOI 10.1007/s10750-007-9041-1; Gabaldon C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124406; Gabaldon C, 2015, J EXP MAR BIOL ECOL, V465, P142, DOI 10.1016/j.jembe.2015.01.016; Gabaldon C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057087; Garcia-Morales AE, 2013, MOL ECOL RESOUR, V13, P1097, DOI 10.1111/1755-0998.12080; Gergs A, 2013, SCI REP-UK, V3, DOI 10.1038/srep02036; Gilbert JJ, 2004, LIMNOL OCEANOGR, V49, P1341, DOI 10.4319/lo.2004.49.4_part_2.1341; Gilbert JJ, 2002, FRESHWATER BIOL, V47, P1633, DOI 10.1046/j.1365-2427.2002.00900.x; Gilbert JJ, 2007, HYDROBIOLOGIA, V593, P121, DOI 10.1007/s10750-007-9040-2; Gomez A, 2000, MOL ECOL, V9, P203, DOI 10.1046/j.1365-294x.2000.00849.x; Gomez A, 2002, EVOLUTION, V56, P1431; Gomez A, 1997, OECOLOGIA, V111, P350, DOI 10.1007/s004420050245; GUILLARD RR, 1962, CAN J MICROBIOL, V8, P229, DOI 10.1139/m62-029; Hampton SE, 2005, LIMNOL OCEANOGR, V50, P421, DOI 10.4319/lo.2005.50.2.0421; Heine-Fuster I, 2017, HYDROBIOLOGIA, V799, P249, DOI 10.1007/s10750-017-3221-4; Herbst DB, 2001, HYDROBIOLOGIA, V466, P209, DOI 10.1023/A:1014508026349; Hernandez KL, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.01857; Inostroza PA, 2016, ENVIRON SCI TECHNOL, V50, P11346, DOI 10.1021/acs.est.6b04629; Del Arco AI, 2015, ECOTOXICOLOGY, V24, P1362, DOI 10.1007/s10646-015-1512-y; Ivanova MB, 2006, RUSS J ECOL+, V37, P264, DOI 10.1134/S1067413606040084; Jackson MC, 2016, GLOBAL CHANGE BIOL, V22, P180, DOI 10.1111/gcb.13028; Kaneko G, 2005, HYDROBIOLOGIA, V546, P117, DOI 10.1007/s10750-005-4107-4; Kaya M, 2010, J LIMNOL, V69, P297, DOI 10.3274/JL10-69-2-11; Lapesa S, 2004, FRESHWATER BIOL, V49, P1053, DOI 10.1111/j.1365-2427.2004.01249.x; Latorre C, 2006, QUATERNARY RES, V65, P450, DOI 10.1016/j.yqres.2006.02.002; Leach TH, 2015, J PLANKTON RES, V37, P886, DOI 10.1093/plankt/fbv061; Maceda-Veiga A, 2017, SCI TOTAL ENVIRON, V574, P455, DOI 10.1016/j.scitotenv.2016.09.097; Marcial HS, 2005, HYDROBIOLOGIA, V546, P569, DOI 10.1007/s10750-005-4302-3; MARCUS NH, 1994, LIMNOL OCEANOGR, V39, P154, DOI 10.4319/lo.1994.39.1.0154; Marsh G. P, 1864, MAN NATURE; Mills S, 2017, HYDROBIOLOGIA, V796, P39, DOI 10.1007/s10750-016-2725-7; Montero-Pau J, 2014, ECOL MODEL, V272, P76, DOI 10.1016/j.ecolmodel.2013.09.020; Montero-Pau J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021530; Palumbi S. R., 1996, NUCL ACIDS, P205; Pell A, 2013, CHEMOSPHERE, V90, P556, DOI 10.1016/j.chemosphere.2012.08.028; Peters RH, 1984, IBP HDB, P336; POURRIOT R, 1983, HYDROBIOLOGIA, V104, P213, DOI 10.1007/BF00045970; R Core Team, 2017, R LANG ENV STAT COMP; Ritz C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0146021; Rogalski MA, 2017, AM NAT, V189, P443, DOI 10.1086/691077; Romero L, 2003, APPL GEOCHEM, V18, P1399, DOI 10.1016/S0883-2927(03)00059-3; Sabina D'Ambrosio D., 2016, International Aquatic Research, V8, P65, DOI 10.1007/s40071-016-0125-2; Serra M, 1999, J EVOLUTION BIOL, V12, P263; SERRA M, 1993, HYDROBIOLOGIA, V255, P117, DOI 10.1007/BF00025829; Shurin JB, 2000, ECOLOGY, V81, P3074, DOI 10.1890/0012-9658(2000)081[3074:DLIRAT]2.0.CO;2; Stelzer CP, 2006, LIMNOL OCEANOGR, V51, P125, DOI 10.4319/lo.2006.51.1.0125; Strayer DL, 2010, J N AM BENTHOL SOC, V29, P344, DOI 10.1899/08-171.1; Usinowicz J, 2017, NATURE, V550, P105, DOI 10.1038/nature24038; Viaene KPJ, 2015, ENVIRON TOXICOL CHEM, V34, P1751, DOI 10.1002/etc.2973; Vinebrooke RD, 2004, OIKOS, V104, P451, DOI 10.1111/j.0030-1299.2004.13255.x; Vogt RJ, 2013, LIMNOL OCEANOGR, V58, P1790, DOI 10.4319/lo.2013.58.5.1790; Wang CY, 2016, SCI TOTAL ENVIRON, V569, P352, DOI 10.1016/j.scitotenv.2016.06.164; Zhang Y, 2018, HYDROBIOLOGIA, V807, P313, DOI 10.1007/s10750-017-3407-9 73 0 0 11 11 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep JUL 23 2018 8 11060 10.1038/s41598-018-29487-3 10 Multidisciplinary Sciences Science & Technology - Other Topics GN8NP WOS:000439421600028 30038433 DOAJ Gold 2019-02-21 J Griebel, J; Utz, M; Hermisson, J; Wolinska, J Griebel, Johanna; Utz, Margarete; Hermisson, Joachim; Wolinska, Justyna The establishment of hybrids of the Daphnia longispina complex explained by a mathematical model incorporating different overwintering life history strategies PLOS ONE English Article SPECIES COMPLEX; TRANSGRESSIVE SEGREGATION; REPRODUCTIVE ISOLATION; SEXUAL REPRODUCTION; GENE FLOW; HYBRIDIZATION; DYNAMICS; COMMUNITIES; POPULATIONS; ADAPTATION Interspecific hybridization (i.e. mating between species) occurs frequently in animals. Among cyclical parthenogens, hybrids can proliferate and establish through parthenogenetic reproduction, even if their sexual reproduction is impaired. In water fleas of the Daphnia longispina species complex, interspecific hybrids hatch from sexually produced dormant eggs. However, fewer hybrid genotypes contribute to the dormant egg bank and their hatching rate from dormant eggs is reduced, compared to eggs resulting from intraspecific crosses. Therefore, Daphnia hybrids would benefit from adaptations that increase their survival over winter as parthenogenetic lineages, avoiding the need to re-establish populations after winter from sexually produced dormant eggs. Here, we constructed a mathematical model to examine the conditions that could explain the frequently observed establishment of hybrids in the D. longispina species complex. Specifically, we compared the outcome of hybrid and parental taxa competition given a reduced contribution of hybrids to hatchlings from the sexually produced dormant egg bank, but their increased ability to survive winter as parthenogenetic lineages. In addition, different growth rates of parental species and differences in average annual temperatures were evaluated for their influence on hybrid production and establishment. Our model shows that increased overwinter performance as parthenogenetic females can compensate for reduced success in sexual reproduction, across all tested scenarios for varying relative growth rates of parental species. This pattern holds true for lower annual temperatures, but at higher temperatures hybrids were less successful. Consequently, hybrids might become less abundant as temperatures rise due to climate change, resulting in reduced diversity and faster differentiation of the parental species. [Griebel, Johanna; Wolinska, Justyna] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecosyst Res, Berlin, Germany; [Griebel, Johanna] Ludwig Maximilian Univ Munich, Dept Biol 2, Planegg Martinsried, Germany; [Utz, Margarete] Univ Groningen, Groningen Inst Evolutionary Life Sci, Groningen, Netherlands; [Hermisson, Joachim] Univ Vienna, Dept Math, Vienna, Austria; [Wolinska, Justyna] Free Univ Berlin, Dept Biol Chem Pharm, Inst Biol, Berlin, Germany Griebel, J (reprint author), Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecosyst Res, Berlin, Germany.; Griebel, J (reprint author), Ludwig Maximilian Univ Munich, Dept Biol 2, Planegg Martinsried, Germany. j_griebel@gmx.de German Science Foundation [WO 1587/4-1, 1587/6-1]; Leibniz Association This research was funded by the German Science Foundation grant to JW (WO 1587/4-1 and 1587/6-1). We thank the Leibniz Association's Open Access Publishing Funds for co-financing this publication. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Abbott R, 2013, J EVOLUTION BIOL, V26, P229, DOI 10.1111/j.1420-9101.2012.02599.x; Adrian R, 2009, LIMNOL OCEANOGR, V54, P2283, DOI 10.4319/lo.2009.54.6_part_2.2283; [Anonymous], MATHEMATICA; Brede N, 2009, P NATL ACAD SCI USA, V106, P4758, DOI 10.1073/pnas.0807187106; Burke JM, 2001, ANNU REV GENET, V35, P31, DOI 10.1146/annurev.genet.35.102401.085719; CASWELL H, 1986, AM NAT, V128, P707, DOI 10.1086/284598; De Meester L, 2002, ACTA OECOL, V23, P121, DOI 10.1016/S1146-609X(02)01145-1; Declerck S, 2003, J PLANKTON RES, V25, P93, DOI 10.1093/plankt/25.1.93; Domis LND, 2007, OECOLOGIA, V150, P682, DOI 10.1007/s00442-006-0549-2; Ebert D., 2005, ECOLOGY EPIDEMIOLOGY; Gorski PR, 1996, LIMNOL OCEANOGR, V41, P1815, DOI 10.4319/lo.1996.41.8.1815; Griebel J, 2016, J EVOLUTION BIOL, V29, P810, DOI 10.1111/jeb.12828; Griebel J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0140275; Janko K, 2018, MOL ECOL, V27, P248, DOI 10.1111/mec.14377; Johannesson K, 1995, EVOLUTION, V49, P1180, DOI 10.1111/j.1558-5646.1995.tb04445.x; Kagawa K, 2018, ECOL LETT, V21, P264, DOI 10.1111/ele.12891; Keller B, 2004, LIMNOL OCEANOGR, V49, P1393, DOI 10.4319/lo.2004.49.4_part_2.1393; Keller B, 2008, PHILOS T R SOC B, V363, P2943, DOI 10.1098/rstb.2008.0044; Keller B, 2007, LIMNOL OCEANOGR, V52, P984, DOI 10.4319/lo.2007.52.3.0984; Lampert W, 2010, LIMNOL OCEANOGR, V55, P1893, DOI 10.4319/lo.2010.55.5.1893; Louette G, 2007, OIKOS, V116, P419, DOI 10.1111/j.2006.0030-1299.15381.x; O'Reilly CM, 2015, GEOPHYS RES LETT, V42, P10773, DOI 10.1002/2015GL066235; Petrusek A, 2008, PHILOS T R SOC B, V363, P2931, DOI 10.1098/rstb.2008.0026; Pfennig KS, 2007, SCIENCE, V318, P965, DOI 10.1126/science.1146035; Pfennig KS, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.1329; Rieseberg LH, 1999, HEREDITY, V83, P363, DOI 10.1038/sj.hdy.6886170; Rieseberg LH, 2007, GENETICA, V129, P149, DOI 10.1007/s10709-006-9011-y; Schalau K, 2008, OECOLOGIA, V157, P531, DOI 10.1007/s00442-008-1081-3; Scheffer M, 2001, LIMNOL OCEANOGR, V46, P1780, DOI 10.4319/lo.2001.46.7.1780; Scheffer M, 1997, OIKOS, V80, P519, DOI 10.2307/3546625; Seda J, 2007, J PLANKTON RES, V29, P619, DOI 10.1093/plankt/fbm044; Seidendorf B, 2007, LIMNOL OCEANOGR, V52, P385, DOI 10.4319/lo.2007.52.1.0385; SOMMER U, 1986, ARCH HYDROBIOL, V106, P433; SPAAK P, 1995, OECOLOGIA, V104, P501, DOI 10.1007/BF00341348; STROSS RG, 1968, BIOL BULL, V134, P176, DOI 10.2307/1539976; WEIDER LJ, 1991, OECOLOGIA, V87, P506, DOI 10.1007/BF00320413; WOLF HG, 1987, HYDROBIOLOGIA, V145, P213, DOI 10.1007/BF02530282; Wolinska J, 2006, P ROY SOC B-BIOL SCI, V273, P1977, DOI 10.1098/rspb.2006.3523; Wolinska J, 2007, FRESHWATER BIOL, V52, P1198, DOI 10.1111/j.1365-2427.2007.01757.x; Yin MB, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-80; Yin MB, 2010, MOL ECOL, V19, P4168, DOI 10.1111/j.1365-294X.2010.04807.x 41 1 1 2 2 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUL 19 2018 13 7 e0200802 10.1371/journal.pone.0200802 14 Multidisciplinary Sciences Science & Technology - Other Topics GN5RC WOS:000439120000054 30024954 DOAJ Gold 2019-02-21 J Bush, SE; Clayton, DH Bush, Sarah E.; Clayton, Dale H. Anti-parasite behaviour of birds PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review body maintenance; nest maintenance; grooming; preening; migration; tolerance GREEN PLANT-MATERIAL; SPARROW AMMODRAMUS-CAUDACUTUS; LIFE-HISTORY EVOLUTION; ADAPTIVE SIGNIFICANCE; BEAK CONDITION; NEST MATERIAL; BLUE TITS; GREAT TIT; MENACANTHUS-STRAMINEUS; REPRODUCTIVE SUCCESS Birds have many kinds of internal and external parasites, including viruses, bacteria and fungi, as well as protozoa, helminths and arthropods. Because parasites have negative effects on host fitness, selection favours the evolution of anti-parasite defences, many of which involve behaviour. We provide a brief review of anti-parasite behaviours in birds, divided into five major categories: (i) body maintenance, (ii) nest maintenance, (iii) avoidance of parasitized prey, (iv) migration and (v) tolerance. We evaluate the adaptive significance of the different behaviours and note cases in which additional research is particularly needed. We briefly consider the interaction of different behaviours, such as sunning and preening, and how behavioural defences may interact with other forms of defence, such as immune responses. We conclude by suggesting some general questions that need to be addressed concerning the nature of anti-parasite behaviour in birds. This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'. [Bush, Sarah E.; Clayton, Dale H.] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA Bush, SE (reprint author), Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA. bush@biology.utah.edu Bush, Sarah/0000-0002-2913-4876 NSF [DEB-1342600]; Theo Murphy meeting of the Royal Society This work was supported by NSF grant DEB-1342600 to D.H.C. and S.E.B. and by the Theo Murphy meeting of the Royal Society. Altizer S, 2011, SCIENCE, V331, P296, DOI 10.1126/science.1194694; Andersson M., 1994, SEXUAL SELECTION; Arlettaz R, 2002, ANIM BEHAV, V64, pF1, DOI 10.1006/anbe.2002.3097; Atkinson C. T., 2008, PARASITIC DIS WILD B; BARTLETT CM, 1993, J PARASITOL, V79, P85, DOI 10.2307/3283282; Bayard TS, 2011, AUK, V128, P393, DOI 10.1525/auk.2011.10178; BEARD RL, 1972, J ECON ENTOMOL, V65, P650, DOI 10.1093/jee/65.3.650; BLEM CR, 1993, CONDOR, V95, P728, DOI 10.2307/1369619; Blondel J, 1990, FITNESS EFFECTS PARA, P269; BORCHELT PL, 1974, CONDOR, V76, P471, DOI 10.2307/1365824; Breistol Arild, 2015, Ornis Norvegica, V38, P9, DOI 10.15845/on.v38i0.871; BROOKE MD, 1985, AUK, V102, P893; BROWN CR, 1986, ECOLOGY, V67, P1206, DOI 10.2307/1938676; Brown JH, 1982, BIRDS AFRICA; BROWN NS, 1972, POULTRY SCI, V51, P162, DOI 10.3382/ps.0510162; Burtt EH, 1999, AUK, V116, P364, DOI 10.2307/4089371; Bush AO, 1997, J PARASITOL, V83, P575, DOI 10.2307/3284227; Bush SE, 2012, J PARASITOL, V98, P256, DOI 10.1645/GE-2888.1; Bush SE, 2010, AM NAT, V176, P529, DOI 10.1086/656269; Bustnes JO, 2004, CAN J ZOOL, V82, P1566, DOI 10.1139/Z04-139; CADE TJ, 1973, CONDOR, V75, P106, DOI 10.2307/1366539; Cantarero A, 2013, J AVIAN BIOL, V44, P591, DOI 10.1111/j.1600-048X.2013.00134.x; Chen BL, 2011, PARASITOLOGY, V138, P748, DOI 10.1017/S0031182011000229; CHRISTE P, 1994, ANIM BEHAV, V47, P895, DOI 10.1006/anbe.1994.1121; Christe P, 1996, BEHAV ECOL, V7, P127, DOI 10.1093/beheco/7.2.127; Christe P, 1996, ANIM BEHAV, V52, P1087, DOI 10.1006/anbe.1996.0256; Cimadom A, 2016, SCI REP-UK, V6, DOI 10.1038/srep34559; CLARK L, 1988, OECOLOGIA, V77, P174, DOI 10.1007/BF00379183; CLARK L, 1985, OECOLOGIA, V67, P169, DOI 10.1007/BF00384280; Clark NJ, 2016, OIKOS, V125, P1358, DOI 10.1111/oik.03220; Clayton D. H., 2008, PARASITIC DIS WILD B, P515; CLAYTON D. H., 2015, COEVOLUTION LIFE HOS; Clayton Dale H., 2010, Open Ornithology Journal, V3, P41; Clayton DH, 1999, AM NAT, V154, P261, DOI 10.1086/303237; CLAYTON DH, 1993, TRENDS ECOL EVOL, V8, P60, DOI 10.1016/0169-5347(93)90160-Q; Clayton DH, 2005, P ROY SOC B-BIOL SCI, V272, P811, DOI 10.1098/rspb.2004.3036; CLAYTON DH, 1995, PARASITOLOGY, V110, P195, DOI 10.1017/S0031182000063964; CLAYTON DH, 1993, AUK, V110, P951, DOI 10.2307/4088657; CLAYTON DH, 1994, P ROY SOC B-BIOL SCI, V256, P211, DOI 10.1098/rspb.1994.0072; Clayton DH, 2001, OIKOS, V94, P455, DOI 10.1034/j.1600-0706.2001.940308.x; CLAYTON DH, 1994, ANIM BEHAV, V47, P195, DOI 10.1006/anbe.1994.1022; Clayton DH, 1997, HOST PARASITE EVOLUT; COTGREAVE P, 1994, BEHAVIOUR, V131, P171, DOI 10.1163/156853994X00424; Debboun M, 2006, INSECT REPELLENTS PR; Delhey K, 2007, AM NAT, V169, pS145, DOI 10.1086/510095; Delogu M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011315; Dingle H., 1980, P1; Dubiec A, 2013, AVIAN BIOL RES, V6, P133, DOI 10.3184/175815513X13615363233558; DUFFY DC, 1983, ECOLOGY, V64, P110, DOI 10.2307/1937334; Dumbacher John P., 1996, Current Ornithology, V13, P137; Dykstra CR, 2009, WILSON J ORNITHOL, V121, P207, DOI 10.1676/08-035.1; EHRLICH PR, 1986, AUK, V103, P835; Feeney WE, 2014, ANNU REV ECOL EVOL S, V45, P227, DOI 10.1146/annurev-ecolsys-120213-091603; Fessl B, 2006, BIOL CONSERV, V127, P55, DOI 10.1016/j.biocon.2005.07.013; Figuerola J, 2000, EVOL ECOL, V14, P143, DOI 10.1023/A:1011009419264; FRAGA RM, 1984, BIOTROPICA, V16, P223, DOI 10.2307/2388055; Frey Hans, 1994, Egretta, V37, P1; Fry CH, 2000, BIRDS AFRICA, V6; GEHLBACH FR, 1987, OECOLOGIA, V71, P560, DOI 10.1007/BF00379297; Ghosh S, 2014, J THEOR BIOL, V358, P93, DOI 10.1016/j.jtbi.2014.05.020; GREGORY RD, 1990, FUNCT ECOL, V4, P645, DOI 10.2307/2389732; Gutierrez JS, 2017, J BIOGEOGR, V44, P1137, DOI 10.1111/jbi.12956; Gwinner H, 2000, ANIM BEHAV, V59, P301, DOI 10.1006/anbe.1999.1306; Gwinner H, 2013, CHEM SIGNAL, V12, P353, DOI 10.1007/978-1-4614-5927-9_28; Harriman VB, 2010, J AVIAN BIOL, V41, P573, DOI 10.1111/j.1600-048X.2010.05013.x; Hart Benjamin L., 1997, P59; HART BL, 1990, NEUROSCI BIOBEHAV R, V14, P273, DOI 10.1016/S0149-7634(05)80038-7; Hayward AD, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001917; HINK WF, 1986, J MED ENTOMOL, V23, P400, DOI 10.1093/jmedent/23.4.400; Hori M, 2014, SCI REP, V4, P230, DOI [10.1016/j.det.2008.11.008, DOI 10.1016/J.DET.2008.11.008]; Hughes DP, 2008, CURR BIOL, V18, pR294, DOI 10.1016/j.cub.2008.02.001; HUMPHRIES DA, 1968, PARASITOLOGY, V58, P403, DOI 10.1017/S0031182000069432; Hurtrez-Bousses S, 2000, J AVIAN BIOL, V31, P266, DOI 10.1034/j.1600-048X.2000.310219.x; Jackson JA, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001901; Johns S, 2016, POPUL ECOL, V58, P213, DOI 10.1007/s10144-015-0518-x; Jonsson KA, 2008, BIOL LETTERS, V4, P71, DOI 10.1098/rsbl.2007.0464; Kenny E, 2017, BEHAV ECOL, V28, P1142, DOI 10.1093/beheco/arx078; King RS, 2015, J FISH WILDL MANAG, V6, P220, DOI 10.3996/042014-JFWM-032; Knutie SA, 2016, ECOLOGY, V97, P940, DOI 10.1890/15-0119.1; Koop JAH, 2016, J APPL ECOL, V53, P511, DOI 10.1111/1365-2664.12575; Koop JAH, 2012, J PARASITOL, V98, P46, DOI 10.1645/GE-2889.1; Koprivnikar J, 2015, OIKOS, V124, P399, DOI 10.1111/oik.01799; LAFFERTY KD, 1992, AM NAT, V140, P854, DOI 10.1086/285444; Landsdown RV, 1988, COLON WATERBIRD, V11, P308, DOI 10.2307/1521014; Leclaire S, 2014, BEHAV ECOL, V25, P1192, DOI 10.1093/beheco/aru109; LEHMANN T, 1993, PARASITOL TODAY, V9, P8, DOI 10.1016/0169-4758(93)90153-7; Loye JE, 1998, ANN ENTOMOL SOC AM, V91, P159, DOI 10.1093/aesa/91.2.159; Loye JE, 1991, BIRD PARASITE INTERA, P259; LOYE JE, 1991, BIRD PARASITE INTERA; Marshall AG, 1981, ECOLOGY ECTOPARASITI; Martin CD, 2012, MED VET ENTOMOL, V26, P323, DOI 10.1111/j.1365-2915.2011.00997.x; McCurdy DG, 1999, BEHAV ECOL, V10, P351, DOI 10.1093/beheco/10.4.351; McNew SM, 2018, ANNU REV ENTOMOL, V63, P369, DOI 10.1146/annurev-ento-020117-043103; Mennerat A, 2009, ANIM BEHAV, V77, P569, DOI 10.1016/j.anbehav.2008.11.008; MERINO S, 1995, CONDOR, V97, P828, DOI 10.2307/1369195; Merrill L, 2018, ECOLOGY, V99, P494, DOI 10.1002/ecy.2040; MOLLER AP, 1993, J ANIM ECOL, V62, P309, DOI 10.2307/5362; Moller AP, 1999, Q REV BIOL, V74, P3, DOI 10.1086/392949; Moore J, 2002, PARASITES BEHAV ANIM; Moreno J, 1999, BEHAV ECOL SOCIOBIOL, V46, P244, DOI 10.1007/s002650050616; Moreno-Rueda G, 2017, BIOL REV, V92, P2131, DOI 10.1111/brv.12324; Morozov NS, 2015, BIOL B REV, V5, P353, DOI DOI 10.1134/S2079086415040076; Morrison BL, 2002, CONDOR, V104, P183, DOI 10.1650/0010-5422(2002)104[0183:FOHWNA]2.0.CO;2; MOSS WW, 1970, SCIENCE, V168, P1000, DOI 10.1126/science.168.3934.1000; Moyer BR, 1995, AUK, V112, P1073, DOI 10.2307/4089047; Moyer BR, 2002, OIKOS, V97, P223, DOI 10.1034/j.1600-0706.2002.970208.x; Mumcuoglu KY, 2004, ISR MED ASSOC J, V6, P756; Negro JJ, 1999, ANIM BEHAV, V58, pF14, DOI 10.1006/anbe.1999.1251; Nightingale J, 2017, WILSON J ORNITHOL, V129, P122, DOI 10.1676/1559-4491-129.1.122; Norris K, 1999, P ROY SOC B-BIOL SCI, V266, P1703, DOI 10.1098/rspb.1999.0835; Ohtsuka K, 2009, ENVIRON ENTOMOL, V38, P920, DOI 10.1603/022.038.0346; Ontiveros D, 2008, J ZOOL, V274, P99, DOI 10.1111/j.1469-7998.2007.00364.x; OPPLIGER A, 1994, BEHAV ECOL, V5, P130, DOI 10.1093/beheco/5.2.130; Owen JP, 2010, TRENDS PARASITOL, V26, P530, DOI 10.1016/j.pt.2010.06.005; Pacejka AJ, 1996, J AVIAN BIOL, V27, P273, DOI 10.2307/3677258; PANAGIOTAKOPULU E, 1995, J ARCHAEOL SCI, V22, P705, DOI 10.1016/S0305-4403(95)80156-1; PETERSON AT, 1993, AM NAT, V142, P508, DOI 10.1086/285552; Petit C, 2002, ECOL LETT, V5, P585, DOI 10.1046/j.1461-0248.2002.00361.x; Piersma T, 1997, OIKOS, V80, P623, DOI 10.2307/3546640; Pistone D, 2018, J HELMINTHOL, V92, P49, DOI 10.1017/S0022149X17000141; Poulin R, 1996, BIOSCIENCE, V46, P512, DOI 10.2307/1312929; Poulin R, 2011, EVOLUTIONARY ECOLOGY; Poulin R, 2012, OECOLOGIA, V169, P955, DOI 10.1007/s00442-012-2251-x; Quiroga MA, 2012, REV MEX BIODIVERS, V83, P110; Radford AN, 2006, BEHAV ECOL SOCIOBIOL, V61, P221, DOI 10.1007/s00265-006-0253-6; Rajchard J, 2010, VET MED-CZECH, V55, P413; REDPATH S, 1988, IBIS, V130, P555, DOI 10.1111/j.1474-919X.1988.tb02723.x; Revis HC, 2004, AUK, V121, P1262, DOI 10.1642/0004-8038(2004)121[1262:BAFAOA]2.0.CO;2; RICHNER H, 1993, J ANIM ECOL, V62, P703, DOI 10.2307/5390; Richner H, 1998, ZOOL-ANAL COMPLEX SY, V101, P333; Rifkin JL, 2012, AM NAT, V180, P70, DOI 10.1086/666081; Rodgman A, 2013, CHEM COMPONENTS TOBA; Rothschild M., 1952, FLEAS FLUKES CUCKOOS; Sanchez MI, 2009, ETHOLOGY, V115, P196, DOI 10.1111/j.1439-0310.2008.01601.x; SAXENA AK, 1985, Z ANGEW ENTOMOL, V99, P294; Sazima I, 2007, REV BRAS ORNITOL, V15, P417; Scott-Baumann JF, 2015, PARASITOLOGY, V142, P1016, DOI 10.1017/S0031182015000189; Shaw AK, 2016, AM NAT, V187, P491, DOI 10.1086/685386; Shutler D, 2007, J AVIAN BIOL, V38, P7, DOI 10.1111/j.2007.0908-8857.04015.x; SIMMONS KEL, 1966, J ZOOL, V149, P145; SIMMONS KEL, 1986, SUNNING BEHAV BIRDS; SMITH NG, 1968, NATURE, V219, P690, DOI 10.1038/219690a0; Smith RB, 2004, AUK, V121, P837, DOI 10.1642/0004-8038(2004)121[0837:MMOSHA]2.0.CO;2; Soler M, 2014, BIOL REV, V89, P688, DOI 10.1111/brv.12075; Spottiswoode CN, 2012, EVOLUTION OF PARENTAL CARE, P226; Suarez-Rodriguez M, 2014, J EVOLUTION BIOL, V27, P2719, DOI 10.1111/jeb.12531; Suarez-Rodriguez M, 2017, J AVIAN BIOL, V48, P1316, DOI 10.1111/jav.01324; Suarez-Rodriguez M, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.0931; Tributsch H, 2016, ANIMALS, V6, DOI 10.3390/ani6010007; Tripet F, 2002, IBIS, V144, P461, DOI 10.1046/j.1474-919X.2002.00018.x; van Liere DW, 1992, ANIM WELFARE, V1, P187; Vezzoli G, 2015, POULTRY SCI, V94, P1997, DOI 10.3382/ps/pev171; Vezzoli G, 2015, APPL ANIM BEHAV SCI, V169, P93, DOI 10.1016/j.applanim.2015.06.001; Villa SM, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0362; Villa SM, 2016, BEHAV ECOL, V27, P1167, DOI 10.1093/beheco/arw032; Visser ME, 2009, GLOBAL CHANGE BIOL, V15, P1859, DOI 10.1111/j.1365-2486.2009.01865.x; Waite JL, 2014, PARASITE VECTOR, V7, DOI 10.1186/1756-3305-7-104; Waite JL, 2012, INT J PARASITOL, V42, P463, DOI 10.1016/j.ijpara.2012.03.005; WEBBER LA, 1972, ANIM BEHAV, V20, P228, DOI 10.1016/S0003-3472(72)80040-X; WEBSTER MS, 1994, CONDOR, V96, P794, DOI 10.2307/1369483; Weldon PJ, 2011, J CHEM ECOL, V37, P348, DOI 10.1007/s10886-011-9922-7; Wingfield JC, 2000, IBIS, V142, P1, DOI 10.1111/j.1474-919X.2000.tb07677.x 162 3 3 23 38 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. JUL 19 2018 373 1751 20170196 10.1098/rstb.2017.0196 13 Biology Life Sciences & Biomedicine - Other Topics GI0HT WOS:000434050700002 29866911 Bronze 2019-02-21 J Choi, S; Suh, EM Choi, Soyeon; Suh, Eunkook M. Retrospective time travel in life satisfaction judgment: A life history approach PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life satisfaction; Retrospection; Life history theory UNPREDICTABILITY; ADAPTATION; STRATEGIES; MEMORY We are products of past events and experiences, but only a few of them linger in our memory to affect our present lives. The current research examined whether there are individual differences in how far people look back to judge their present life satisfaction using the evolutionary framework of life history theory. The results showed that perceived ecological uncertainty interacts with a key aspect of life history strategy (childhood socioeconomic status; SES) to influence the span of retrospective mental time travel. When asked to list past events that had crossed their minds during life satisfaction judgments, individuals who grew up in low-SES environments mentioned more recent events, whereas individuals who grew up in high-SES environments wrote more distant past events. This difference was found only when the perception of ecological uncertainty was high, but not when it was low. It appears that life history strategy shapes peoples retrospective lens during life satisfaction judgments. [Choi, Soyeon; Suh, Eunkook M.] Yonsei Univ, Dept Psychol, 50 Yonsei Ro, Seoul 03722, South Korea Suh, EM (reprint author), Yonsei Univ, Dept Psychol, 50 Yonsei Ro, Seoul 03722, South Korea. esuh@yonsei.ac.kr Baumeister R. F., 2001, REV GEN PSYCHOL, V5, P323, DOI DOI 10.1037/1089-2680.5.4.323; Baumeister RF, 2013, J POSIT PSYCHOL, V8, P505, DOI 10.1080/17439760.2013.830764; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037//0033-2909.112.1.155; Diener E, 2006, AM PSYCHOL, V61, P305, DOI 10.1037/0003-066X.61.4.305; DIENER E, 1985, J PERS ASSESS, V49, P71, DOI 10.1207/s15327752jpa4901_13; Evans GW, 2005, PSYCHOL SCI, V16, P560, DOI 10.1111/j.0956-7976.2005.01575.x; Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; Fredrickson BL, 2001, AM PSYCHOL, V56, P218, DOI 10.1037/0003-066X.56.3.218; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; James W, 1890, PRINCIPLES PSYCHOL, V2; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kenrick D. T., 2018, HDB WELLBEINGSALT LA; Klein SB, 2013, J APPL RES MEM COGN, V2, P222, DOI 10.1016/j.jarmac.2013.08.001; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Lucas RE, 2007, CURR DIR PSYCHOL SCI, V16, P75, DOI 10.1111/j.1467-8721.2007.00479.x; Luhmann M, 2009, J PERS SOC PSYCHOL, V97, P363, DOI 10.1037/a0015809; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Mittal C, 2014, J PERS SOC PSYCHOL, V107, P621, DOI 10.1037/a0037398; Nesse RM, 2004, PHILOS T ROY SOC B, V359, P1333, DOI 10.1098/rstb.2004.1511; Ross LT, 2002, SOC BEHAV PERSONAL, V30, P453, DOI 10.2224/sbp.2002.30.5.453; Rubin DC, 1986, AUTOBIOGRAPHICAL MEM, P202, DOI DOI 10.1017/CB09780511558313.018; Schwarz N, 1991, SUBJECTIVE WELL BEIN, P27; Suh E, 1996, J PERS SOC PSYCHOL, V70, P1091, DOI 10.1037/0022-3514.70.5.1091; TULVING E, 1985, CAN PSYCHOL, V26, P1, DOI 10.1037/h0080017; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919 29 0 0 5 12 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUL 15 2018 129 138 142 10.1016/j.paid.2018.03.017 5 Psychology, Social Psychology GE0KB WOS:000430901600025 2019-02-21 J Anderson, KG Anderson, Kermyt G. HIGH PREVALENCE OF VOLUNTARY STERILIZATION AMONG AMERICAN WOMEN EXPLAINED BY TRADE-OFFS RESULTING FROM MALE PARENTAL COMMITMENT JOURNAL OF BIOSOCIAL SCIENCE English Article TUBAL-STERILIZATION; UNITED-STATES; CONTRACEPTIVE STERILIZATION; MATERNAL AGE; VASECTOMY; INVESTMENT; FERTILITY; CHILDREN; RATES; MEN Tubal ligation is the modal form of family planning among American women aged 30 and older. As the preference for tubal ligation over cheaper, lower risk and more reliable methods, such as vasectomy, has puzzled experts, a theoretical approach that explains this preference would be useful. The present study investigates the high prevalence of voluntary sterilization among American women from the perspective of life history theory, arguing that the trade-offs between investing in current and future offspring will favour tubal ligation when women cannot obtain reliable male commitment to future parental investment. Data came from the National Survey of Fertility Barriers (NSFB), a nationally representative survey of 4712 American women aged 25-45 conducted between 2004 and 2007. Four novel predictions of the prevalence of tubal ligation, drawn from life history theory, were developed and tested: 1) it is most common among unpartnered women with children, and least common among married women with children; 2) it is negatively correlated with age at first birth; 3) it is least common among highly educated women without children, and most common among less educated women with children; and 4) among women with two or more children, it is positively correlated with lifetime number of long-term partners. These predictions were tested using multivariate regression analysis. The first prediction was not supported: women with children were more likely to be sterilized, regardless of their marital status. The other three predictions were all supported by the data. The results suggest that trade-offs influence women's decisions to undergo voluntary sterilization. Women are most likely to opt for tubal ligation when the costs of an additional child will impinge on their ability to invest in existing offspring, especially in the context of reduced male commitment. [Anderson, Kermyt G.] Univ Oklahoma, Dept Anthropol, Norman, OK 73019 USA Anderson, KG (reprint author), Univ Oklahoma, Dept Anthropol, Norman, OK 73019 USA. kganders@ou.edu Alexander R.D., 1974, ANNU REV ECOL SYST, V5, P325, DOI DOI 10.1146/ANNUREV.ES.05.110174.001545; Amin V, 2014, J POPUL ECON, V27, P1, DOI 10.1007/s00148-013-0470-z; Anderson JE, 2012, CONTRACEPTION, V85, P552, DOI 10.1016/j.contraception.2011.10.009; Anderson JE, 2010, CONTRACEPTION, V82, P230, DOI 10.1016/j.contraception.2010.03.018; Anderson KG, 2007, EVOL HUM BEHAV, V28, P1, DOI 10.1016/j.evolhumbehav.2006.06.004; Anderson KG, 2006, CURR ANTHROPOL, V47, P513, DOI 10.1086/504167; Anderson KG, 2017, HUM NATURE-INT BIOS, V28, P133, DOI 10.1007/s12110-017-9287-x; Anderson KG, 2017, HUM NATURE-INT BIOS, V28, P168, DOI 10.1007/s12110-017-9284-0; Anderson KG, 2011, EVOL HUM BEHAV, V32, P90, DOI 10.1016/j.evolhumbehav.2010.08.008; Anderson KG, 2003, BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY, P57; Anderson KG, 1999, EVOL HUM BEHAV, V20, P405, DOI 10.1016/S1090-5138(99)00023-9; Arendell T., 1995, FATHERS AND DIVORCE; Barone MA, 2004, PERSPECT SEX REPRO H, V36, P27, DOI 10.1111/j.1931-2393.2004.tb00005.x; Bass LE, 2009, POPUL RES POLICY REV, V28, P237, DOI 10.1007/s11113-008-9082-9; Becker G S, 1991, TREATISE FAMILY ENLA; Borgerhoff Mulder M., 1992, EVOLUTIONARY ECOLOGY, P339; Borrero S, 2011, FERTIL STERIL, V95, P17, DOI 10.1016/j.fertnstert.2010.05.031; Borrero S, 2010, AM J MENS HEALTH, V4, P243, DOI 10.1177/1557988309337619; Borrero S, 2010, J GEN INTERN MED, V25, P122, DOI 10.1007/s11606-009-1197-0; Borrero S, 2009, FERTIL STERIL, V91, P1642, DOI 10.1016/j.fertnstert.2008.01.103; Brechin S, 2006, CURRENT OBSTET GYNAE, V16, P39; Bumpass LL, 2000, FERTIL STERIL, V73, P937, DOI 10.1016/S0015-0282(00)00484-2; Cancian M, 2011, DEMOGRAPHY, V48, P957, DOI 10.1007/s13524-011-0041-4; Chan LM, 2010, FERTIL STERIL, V94, P1, DOI 10.1016/j.fertnstert.2010.03.029; Chandra Anjani, 2005, Vital Health Stat 23, P1; CHASE ID, 1980, AM NAT, V115, P827, DOI 10.1086/283603; Cherlin AJ, 2004, J MARRIAGE FAM, V66, P848, DOI 10.1111/j.0022-2445.2004.00058.x; Cherlin AJ, 2010, J MARRIAGE FAM, V72, P403, DOI 10.1111/j.1741-3737.2010.00710.x; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Coall DA, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0146; Cohen PN, 2016, SOCIOL SCI, V3, P32, DOI 10.15195/v3.a2; Dassow P, 2006, AM FAM PHYSICIAN, V74, P2069; Dehlendorf C, 2010, AM J OBSTET GYNECOL, V202, P214, DOI 10.1016/j.ajog.2009.08.022; Dudgeon MR, 2004, SOC SCI MED, V59, P1379, DOI 10.1016/j.socscimed.2003.11.035; Eeckhaut MCW, 2015, FERTIL STERIL, V103, P1509, DOI 10.1016/j.fertnstert.2015.02.036; Eisenberg ML, 2009, UROLOGY, V74, P1020, DOI 10.1016/j.urology.2009.06.042; Finer LB, 2012, FERTIL STERIL, V98, P893, DOI 10.1016/j.fertnstert.2012.06.027; FORSTE R, 1995, FAM PLANN PERSPECT, V27, P100, DOI 10.2307/2136106; Geronimus AT, 1996, SOC SCI MED, V42, P589, DOI 10.1016/0277-9536(95)00159-X; Gibson-Davis C, 2014, DEMOGRAPHY, V51, P1345, DOI 10.1007/s13524-014-0308-7; Godecker AL, 2001, FAM PLANN PERSPECT, V33, P35, DOI 10.2307/2673740; Gray P. B, 2010, FATHERHOOD EVOLUTION; Guzzo KB, 2014, ANN AM ACAD POLIT SS, V654, DOI 10.1177/0002716214525571; Guzzo KB, 2014, J MARRIAGE FAM, V76, P826, DOI 10.1111/jomf.12123; Guzzo KB, 2011, DEMOGRAPHY, V48, P1493, DOI 10.1007/s13524-011-0059-7; Guzzo KB, 2010, J FAM ISSUES, V31, P906, DOI 10.1177/0192513X09351508; Harknett K, 2007, J MARRIAGE FAM, V69, P237, DOI 10.1111/j.1741-3737.2006.00356.x; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hendrix N W, 1999, Obstet Gynecol Surv, V54, P766, DOI 10.1097/00006254-199912000-00005; HILL EM, 1992, ETHOL SOCIOBIOL, V13, P35, DOI 10.1016/0162-3095(92)90005-O; Huber S, 2010, AM J HUM BIOL, V22, P578, DOI 10.1002/ajhb.21048; Johnson D. R., 2009, WORKING PAPERS SERIE, V1; Jones J, 2012, NATL HLTH STAT REPOR, V60; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H, 2002, AM J HUM BIOL, V14, P233, DOI 10.1002/ajhb.10041; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Kramer KL, 2010, ANNU REV ANTHROPOL, V39, P417, DOI 10.1146/annurev.anthro.012809.105054; Lam D, 2011, DEMOGRAPHY, V48, P1231, DOI 10.1007/s13524-011-0070-z; Lawson DW, 2011, PHILOS T R SOC B, V366, P333, DOI 10.1098/rstb.2010.0297; Leidy LE, 1999, AM J HUM BIOL, V11, P687, DOI 10.1002/(SICI)1520-6300(199909/10)11:5<687::AID-AJHB11>3.0.CO;2-2; Lichter DT, 2006, DEMOGRAPHY, V43, P223, DOI 10.1353/dem.2006.0016; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; Lycett JE, 1999, P ROY SOC B-BIOL SCI, V266, P2355, DOI 10.1098/rspb.1999.0931; Manlove J, 2008, J MARRIAGE FAM, V70, P536, DOI 10.1111/j.1741-3737.2008.00499.x; Martin SP, 2006, J MARRIAGE FAM, V68, P29, DOI 10.1111/j.1741-3737.2006.00231.x; Martinez G. M., 2012, NATL HLTH STAT REPOR, V51; Melville C, 2008, OBSTET GYNAECOL REPR, V18, P330; Meyer DR, 2012, J MARRIAGE FAM, V74, P132, DOI 10.1111/j.1741-3737.2011.00880.x; Monte L. M, 2017, CURRENT POPULATION R, VP70BR-147; Mosher W. D., 2004, ADV DATA VITAL HLTH; Mosher William D, 2010, Vital Health Stat 23, P1; Peccei JS, 2001, AM J HUM BIOL, V13, P434, DOI 10.1002/ajhb.1076; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Roff Derek A., 1992; Schwingl PJ, 2000, FERTIL STERIL, V73, P923, DOI 10.1016/S0015-0282(00)00482-9; Scott-Phillips TC, 2011, PERSPECT PSYCHOL SCI, V6, P38, DOI 10.1177/1745691610393528; Sear R, 2015, POP STUD-J DEMOG, V69, pS39, DOI 10.1080/00324728.2014.982905; Sear R, 2011, POPUL DEV REV, V37, P81, DOI 10.1111/j.1728-4457.2011.00379.x; SHAPIRO TM, 1983, SOC SCI MED, V17, P1847, DOI 10.1016/0277-9536(83)90161-2; Sharma V, 2013, FERTIL STERIL, V99, P1880, DOI 10.1016/j.fertnstert.2013.02.032; Shih G, 2013, CONTRACEPTION, V88, P376, DOI 10.1016/j.contraception.2012.10.022; Shih G, 2011, CONTRACEPTION, V83, P310, DOI 10.1016/j.contraception.2010.08.019; Shreffler KM, 2015, SOC SCI RES, V50, P31, DOI 10.1016/j.ssresearch.2014.10.010; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; StataCorp, 2015, STAT STAT SOFTW REL; Stearns S, 1992, EVOLUTION LIFE HIST; Tullberg BS, 2001, EVOL HUM BEHAV, V22, P1, DOI 10.1016/S1090-5138(00)00057-X; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; WEISS Y, 1985, J LABOR ECON, V3, P268, DOI 10.1086/298056; WEISS Y, 1993, J LABOR ECON, V11, P629, DOI 10.1086/298310; Westhoff C, 2000, FERTIL STERIL, V73, P913, DOI 10.1016/S0015-0282(00)00481-7; White K, 2014, CONTRACEPTION, V89, P550, DOI 10.1016/j.contraception.2013.11.019 95 0 0 0 0 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0021-9320 1469-7599 J BIOSOC SCI J. Biosoc. Sci. JUL 2018 50 4 505 526 10.1017/S0021932017000414 22 Demography; Public, Environmental & Occupational Health; Social Sciences, Biomedical Demography; Public, Environmental & Occupational Health; Biomedical Social Sciences HE8JH WOS:000453692400006 28879818 2019-02-21 J Farache, FHA; Cruaud, A; Rasplus, JY; Cerezini, MT; Rattis, L; Kjellberg, F; Pereira, RAS Farache, F. H. A.; Cruaud, A.; Rasplus, J-Y; Cerezini, M. T.; Rattis, L.; Kjellberg, F.; Pereira, R. A. S. Insights into the structure of plant-insect communities: Specialism and generalism in a regional set of non-pollinating fig wasp communities ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY English Article Agaonidae; Community ecology; Food web; Interaction network; Modularity; Moraceae ANIMAL MUTUALISTIC NETWORKS; HYMENOPTERA SYCOPHAGINAE; HOST-SPECIFICITY; ECOLOGICAL SPECIALIZATION; OVIPOSITION BEHAVIOR; MOLECULAR PHYLOGENY; TROPICAL FORESTS; L. MORACEAE; 1ST RECORD; FOOD-WEB Insects show a multitude of symbiotic interactions that may vary in degree of specialization and structure. Gallinducing insects and their parasitoids are thought to be relatively specialized organisms, but despite their ecological importance, the organization and structure of the interactions they establish with their hosts has seldom been investigated in tropical communities. Non-pollinating fig wasps (NPFW) are particularly interesting organisms for the study of ecological networks because most species strictly develop their offspring within fig inflorescences, and show a multitude of life history strategies. They can be gall-makers, cleptoparasites or parasitoids of pollinating or of other non-pollinating fig wasps. Here we analysed a set of non-pollinating fig wasp communities associated with six species of Ficus section Americanae over a wide area. This allowed us to investigate patterns of specialization in a diverse community composed of monophagous and polyphagous species. We observed that most NPFW species were cleptoparasites and parasitoids, colonizing figs several days after oviposition by pollinators. Most species that occurred in more than one host were much more abundant in a single preferential host, suggesting specialization. The food web established between wasps and figs shows structural properties that are typical of specific antagonistic relationships, especially of endophagous insect networks. Two species that occurred in all available hosts were highly abundant in the network, suggesting that in some cases generalized species can be more competitive than strict specialists. The Neotropical and, to a lesser extent, Afrotropical NPFW communities seem to be more generalized than other NPFW communities. However, evidence of host sharing in the Old World is quite limited, since most studies have focused on particular taxonomic groups (genera) of wasps instead of sampling the whole NPFW community. Moreover, the lack of quantitative information in previous studies prevents us from detecting patterns of host preferences in polyphagous species. [Farache, F. H. A.; Pereira, R. A. S.] Univ Sao Paulo, FFCLRP, Dept Biol, Av Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP, Brazil; [Cruaud, A.; Rasplus, J-Y] Univ Montpellier, Montpellier SupAgro, IRD, INRA,CBGP,CIRAD, Montpellier, France; [Cerezini, M. T.] Univ Fed Sao Carlos, Ctr Ciencias Biol & Saude, PPG Ciencias Ambientais, Rodovia Washington Luis,Km 235,SP 310, BR-13565905 Sao Carlos, SP, Brazil; [Rattis, L.] Woods Hole Res Ctr, 149 Woods Hole Rd, Falmouth, MA 02540 USA; [Kjellberg, F.] Univ Paul Valery Montpellier 3, Univ Montpellier, CNRS, EPHE,IRD,CEFE,UMR 5175, 1919 Route Mende, F-34293 Montpellier 5, France Farache, FHA (reprint author), Univ Sao Paulo, FFCLRP, Dept Biol, Av Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP, Brazil. fhafarache@gmail.com Kjellberg, Finn/0000-0001-6708-9538; Farache, Fernando/0000-0001-7655-8826 Sao Paulo Research Foundation (FAPESP) [2004/10299-4, 2007/06054-4, 2008/03272-3, 2008/52378-9, 2011/21485-7, 2015/06430-2, 2015/25417-7]; CNPq [306078/2014-7] This work was supported by Sao Paulo Research Foundation (FAPESP) grants: 2004/10299-4, 2007/06054-4, 2008/03272-3, 2008/52378-9, 2011/21485-7, 2015/06430-2 and 2015/25417-7. R.A.S.P. was funded by CNPq (grant 306078/2014-7). Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1046/j.1442-9993.2001.01070.x; Ballantyne G, 2015, P ROY SOC B-BIOL SCI, V282, P14, DOI 10.1098/rspb.2015.1130; Barrat A, 2004, P NATL ACAD SCI USA, V101, P3747, DOI 10.1073/pnas.0400087101; Bascompte J, 2006, SCIENCE, V312, P431, DOI 10.1126/science.1123412; Bascompte J, 2003, P NATL ACAD SCI USA, V100, P9383, DOI 10.1073/pnas.1633576100; Bascompte J, 2006, SFI S SCI C, P143; Basso-Alves JP, 2014, ACTA OECOL, V57, P5, DOI 10.1016/j.actao.2013.02.012; Beardsley JW, 2001, J NAT HIST, V35, P33, DOI 10.1080/002229301447871; Berg C. C., 2004, ILICIFOLIA, V5, P1; Bluthgen N, 2007, CURR BIOL, V17, P341, DOI 10.1016/j.cub.2006.12.039; BOUCEK Z, 1993, J NAT HIST, V27, P173, DOI 10.1080/00222939300770071; Bourg A, 2014, NEOTROPICAL INSECT G, P427; Brandes U, 2003, IEEE T VIS COMPUT GR, V9, P241, DOI 10.1109/TVCG.2003.1196010; Bronstein JL, 1999, FLA ENTOMOL, V82, P454, DOI 10.2307/3496871; BURT RS, 1976, SOC FORCES, V55, P93, DOI 10.2307/2577097; Butts CT, 2014, SNA TOOLS SOCIAL NET, P3; Carneiro MAA, 2009, REV BRAS ENTOMOL, V53, P365, DOI 10.1590/S0085-56262009000300010; Cohen K.M., 2013, INT CHRONOSTRATIGRAP; COMPTON SG, 1992, OECOLOGIA, V91, P68, DOI 10.1007/BF00317243; COMPTON SG, 1992, P K NED AKAD WETENSC, V95, P423; Conchou L, 2014, ACTA OECOL, V57, P28, DOI 10.1016/j.actao.2013.07.004; Cook JM, 2010, ECOL ENTOMOL, V35, P54, DOI 10.1111/j.1365-2311.2009.01148.x; Cook JM, 2003, TRENDS ECOL EVOL, V18, P241, DOI 10.1016/S0169-5347(03)00062-4; Cook JM, 1997, P ROY SOC B-BIOL SCI, V264, P747, DOI 10.1098/rspb.1997.0106; Cornille A, 2012, P ROY SOC B-BIOL SCI, V279, P1731, DOI 10.1098/rspb.2011.1972; Cruaud A, 2012, SYST BIOL, V61, P1029, DOI 10.1093/sysbio/sys068; Cruaud A, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-178; Cruaud A, 2011, J BIOGEOGR, V38, P209, DOI 10.1111/j.1365-2699.2010.02429.x; Cruaud P, 2017, SCI REP-UK, V7, DOI 10.1038/srep41948; Darwell CT, 2017, MOL ECOL, V26, P5358, DOI 10.1111/mec.14206; de Vries A, 2016, GDENDRO CREATE DENDR, P1; Diniz IR, 1997, BIODIVERS CONSERV, V6, P817, DOI 10.1023/B:BIOC.0000010404.17467.6c; DORMANN C. F., 2008, R NEWS, V8, P8, DOI DOI 10.1159/; Dormann C.F., 2009, OPEN ECOLOGY J, V2, P7, DOI DOI 10.2174/1874213000902010007; Dormann CF, 2014, METHODS ECOL EVOL, V5, P90, DOI 10.1111/2041-210X.12139; Dormann Carsten F., 2011, Network Biology, V1, P1; Dorogovtsev S. N, 2003, EVOLUTION NETWORKS B; Dunne JA, 2002, P NATL ACAD SCI USA, V99, P12917, DOI 10.1073/pnas.192407699; Elias LG, 2008, SYMBIOSIS, V45, P107; Elias L. G, 2017, ACTA OECOL, V1-8; Elias LG, 2007, IHERINGIA SER ZOOL, V97, P253, DOI 10.1590/S0073-47212007000300006; Elias LG, 2012, BIOL J LINN SOC, V106, P114, DOI 10.1111/j.1095-8312.2012.01851.x; Farache FHA, 2017, PEERJ, V5, DOI 10.7717/peerj.2842; Farache FHA, 2016, J NAT HIST, V50, P2237, DOI 10.1080/00222933.2016.1193646; Farache FHA, 2013, SYST ENTOMOL, V38, P14, DOI 10.1111/j.1365-3113.2012.00644.x; Forister ML, 2012, ECOLOGY, V93, P981, DOI 10.1890/11-0650.1; Forister M. L, 2011, BIOTROPICA, P1; Francoso E, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0803-0; Friedkin NE, 1997, SOC NETWORKS, V19, P209, DOI 10.1016/S0378-8733(96)00298-5; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; Galeano J, 2009, ENVIRON MODELL SOFTW, V24, P1342, DOI 10.1016/j.envsoft.2009.05.014; GALIL J, 1969, Tijdschrift voor Entomologie, V112, P1; Ghara M, 2014, ARTHROPOD-PLANT INTE, V8, P191, DOI 10.1007/s11829-014-9300-9; Ghara M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023642; Hossaert-McKey M, 2016, SCI REP-UK, V6, DOI 10.1038/srep21236; Jansen-Gonzalez S, 2014, ACTA OECOL, V57, P44, DOI 10.1016/j.actao.2013.07.003; Jiang ZF, 2006, J EVOLUTION BIOL, V19, P1157, DOI 10.1111/j.1420-9101.2006.01087.x; JORDANO P, 1987, AM NAT, V129, P657, DOI 10.1086/284665; JOSEPH KJ, 1958, ANN SCI NAT, V20, P197; Jousselin E, 2006, J EVOLUTION BIOL, V19, P253, DOI 10.1111/j.1420-9101.2005.00968.x; Kerdelhue C, 2000, ECOLOGY, V81, P2832, DOI 10.1890/0012-9658(2000)081[2832:CCESOO]2.0.CO;2; Kjellberg Finn, 2005, P539; Legendre P, 1998, NUMERICAL ECOLOGY; Ma'ayan A, 2011, SCI SIGNAL, V4, DOI 10.1126/scisignal.2001965; Machado CA, 2005, P NATL ACAD SCI USA, V102, P6558, DOI 10.1073/pnas.0501840102; Gonzalez AMM, 2010, ECOL COMPLEX, V7, P36, DOI 10.1016/j.ecocom.2009.03.008; Marussich WA, 2007, MOL ECOL, V16, P1925, DOI 10.1111/j.1365-294X.2007.03278.x; McArdle BH, 2001, ECOLOGY, V82, P290, DOI 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2; McLeish MJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044804; McLeish MJ, 2010, MOL PHYLOGENET EVOL, V57, P122, DOI 10.1016/j.ympev.2010.05.025; Coelho LFM, 2014, ACTA OECOL, V57, P109, DOI 10.1016/j.actao.2013.02.002; Memmott J, 1999, ECOL LETT, V2, P276, DOI 10.1046/j.1461-0248.1999.00087.x; Memmott J, 2004, P ROY SOC B-BIOL SCI, V271, P2605, DOI 10.1098/rspb.2004.2909; Miller F, 1915, F MULLER WERKE BRIEF; Muller F, 1886, ENTOMOL NACHRICH, V13, P193; Novotny V, 2005, P ROY SOC B-BIOL SCI, V272, P1083, DOI 10.1098/rspb.2004.3023; Odegaard F, 2000, J BIOGEOGR, V27, P283, DOI 10.1046/j.1365-2699.2000.00404.x; Oksanen J., 2016, R PACKAGE VERSION, V2, P3, DOI DOI 10.4135/9781412971874.N145; Olesen JM, 2007, P NATL ACAD SCI USA, V104, P19891, DOI 10.1073/pnas.0706375104; Patefield W.M., 1981, APPL STATIST, V30, P91, DOI DOI 10.2307/2346669; Peng YQ, 2005, J TROP ECOL, V21, P581, DOI 10.1017/S0266467405002634; Machado AFP, 2018, MOL PHYLOGENET EVOL, V122, P46, DOI 10.1016/j.ympev.2018.01.015; Poisot T, 2012, METHODS ECOL EVOL, V3, P537, DOI 10.1111/j.2041-210X.2011.00174.x; Prado PI, 2004, J ANIM ECOL, V73, P1168, DOI 10.1111/j.0021-8790.2004.00891.x; Proffit M, 2007, J ANIM ECOL, V76, P296, DOI 10.1111/j.1365-2656.2007.01213.x; R Core Team, 2017, R LANG ENV STAT COMP; Rasplus JY, 1998, CR ACAD SCI III-VIE, V321, P517, DOI 10.1016/S0764-4469(98)80784-1; Pereira RA, 2007, BIOL J LINN SOC, V92, P9, DOI 10.1111/j.1095-8312.2007.00826.x; Segar ST, 2014, ACTA OECOL, V57, P17, DOI 10.1016/j.actao.2013.03.0I4; Segar ST, 2013, ECOL LETT, V16, P1436, DOI 10.1111/ele.12183; Taudiere A, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00881; THOMAS CD, 1990, ECOLOGY, V71, P610, DOI 10.2307/1940314; THOMPSON JN, 1991, ANNU REV ENTOMOL, V36, P65, DOI 10.1146/annurev.en.36.010191.000433; Tzeng HY, 2008, SYMBIOSIS, V45, P129; Vazquez DP, 2007, OIKOS, V116, P1120, DOI 10.1111/j.2007.0030-1299.15825.x; Wang R, 2014, ECOL ENTOMOL, V39, P492, DOI 10.1111/een.12122; Weiblen GD, 2002, MOL ECOL, V11, P1573, DOI 10.1046/j.1365-294X.2002.01529.x; Zhen WQ, 2005, PHYTOPARASITICA, V33, P113, DOI 10.1007/BF03029967; Zhou MJ, 2012, MOL ECOL RESOUR, V12, P598, DOI 10.1111/j.1755-0998.2012.03127.x 99 4 4 1 1 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1146-609X 1873-6238 ACTA OECOL Acta Oecol.-Int. J. Ecol. JUL 2018 90 SI 49 59 10.1016/j.actao.2018.02.006 11 Ecology Environmental Sciences & Ecology HA0MM WOS:000449902100008 2019-02-21 J Elias, LG; Kjellberg, F; Farache, FHA; Almeida, EAB; Rasplus, JY; Cruaud, A; Peng, YQ; Yang, DR; Pereira, RAS Elias, Larissa Galante; Kjellberg, Finn; Antoniolli Farache, Fernando Henrique; Almeida, Eduardo A. B.; Rasplus, Jean-Yves; Cruaud, Astrid; Peng, Yan-Qiong; Yang, Da-Rong; Santinelo Pereira, Rodrigo Augusto Ovipositor morphology correlates with life history evolution in agaonid fig wasps ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY English Article Ficus; Functional morphology; Parasitic Hymenoptera; Parasitoid; Plant-insect interaction HYMENOPTERA SYCOPHAGINAE; FUNCTIONAL-MORPHOLOGY; FICUS-SYCOMORUS; TRAIT EVOLUTION; REGRESSION; PHYLOGENY; CLASSIFICATION; ICHNEUMONOIDEA; XISHUANGBANNA; THICKNESS The high adaptive success of parasitic Hymenoptera might be related to the use of different oviposition sites, allowing niche partitioning among co-occurring species resulting in life history specialization and diversification. In this scenario, evolutionary changes in life history and resources for oviposition can be associated with changes in ovipositor structure, allowing exploitation of different substrates for oviposition. We used a formal phylogenetic framework to investigate the evolution of ovipositor morphology and life history in agaonid wasps. We sampled 24 species with different life histories belonging to all main clades of Agaonidae including representatives of all described genera of non-pollinating fig wasps (NPFW). Our results show an overall correlation between ovipositor morphology and life history in agaonid fig wasps. Ovipositor morphologies seem to be related to constraints imposed by features of the oviposition sites since ovipositor morphology has experienced convergent evolution at least four times in Sycophaginae (Agaonidae) according to the resource used. Nongalling species have more distantly spaced teeth with uneven spacing, as opposed to the observed morphology of galling species. Our results suggest that the ancestral condition for ovipositor morphology was most likely the presence of one or two apical teeth. Regarding life history, ovary galling species that oviposit in receptive figs possibly represent the ancestral condition. Different ovipositor characteristics allow exploitation of new niches and may be related to resource partitioning and species co-existence in the fig-fig wasp system. [Elias, Larissa Galante; Antoniolli Farache, Fernando Henrique; Almeida, Eduardo A. B.; Santinelo Pereira, Rodrigo Augusto] Univ Sao Paulo, Dept Biol, FFCLRP, Av Bandeirantes 3900, BR-14040903 Ribeirao Preto, SP, Brazil; [Kjellberg, Finn] Univ Montpellier, Univ Paul Valery Montpellier, CEFE, UMR 5175,CNRS,EPHE,IRD, 1919 Route Mende, F-34293 Montpellier 5, France; [Rasplus, Jean-Yves; Cruaud, Astrid] INRA, CBGP, UMR 1062, IRD,CIRAD,Supagro, F-34988 Montferrier Sur Lez, France; [Peng, Yan-Qiong; Yang, Da-Rong] Chinese Acad Sci, Key Lab Trop Forest Ecol, Xishuangbanna Trop Bot Garden, Mengla 666303, Yunnan, Peoples R China Elias, LG (reprint author), Univ Sao Paulo, Dept Biol, FFCLRP, Av Bandeirantes 3900, BR-14040903 Ribeirao Preto, SP, Brazil. larissagelias@yahoo.com Kjellberg, Finn/0000-0001-6708-9538; Almeida, Eduardo/0000-0001-6017-6364; Farache, Fernando/0000-0001-7655-8826 Sao Paulo Research Foundation (FAPESP) [2007/59059-3, 2013/01918-1, 2015/06430-2, 2011/09477-9, 2015/25417-7]; National Council for Scientific and Technological Development (CNPq) [306078/2014-7] This work was supported by the Sao Paulo Research Foundation (FAPESP), grant numbers 2007/59059-3 and 2013/01918-1 (L.G. Elias); 2015/06430-2 (F.H.A. Farache); 2011/09477-9 (E.A.B. Almeida); 2015/25417-7 (R.A.S. Pereira), and by the National Council for Scientific and Technological Development (CNPq) grant number 306078/2014-7). Belshaw R, 2003, ZOOL J LINN SOC-LOND, V139, P213, DOI 10.1046/j.1096-3642.2003.00078.x; Boring CA, 2009, J HYMENOPT RES, V18, P1; Brajkovic M., 2001, Acta Entomologica Serbica, V4, P107; Bronstein JL, 1999, FLA ENTOMOL, V82, P454, DOI 10.2307/3496871; Burnham K. P, 2002, MODEL SELECTION MULT; COMPTON SG, 1991, BIOTROPICA, V23, P188, DOI 10.2307/2388305; Cook JM, 2003, TRENDS ECOL EVOL, V18, P241, DOI 10.1016/S0169-5347(03)00062-4; Cruaud A, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-178; Cruaud A, 2011, J BIOGEOGR, V38, P209, DOI 10.1111/j.1365-2699.2010.02429.x; Devictor V, 2010, J APPL ECOL, V47, P15, DOI 10.1111/j.1365-2664.2009.01744.x; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Elias LG, 2008, SYMBIOSIS, V45, P107; Elias LG, 2012, BIOL J LINN SOC, V106, P114, DOI 10.1111/j.1095-8312.2012.01851.x; Farache FHA, 2013, SYST ENTOMOL, V38, P14, DOI 10.1111/j.1365-3113.2012.00644.x; GALIL J, 1969, Tijdschrift voor Entomologie, V112, P1; GALIL J, 1968, ECOLOGY, V49, P259, DOI 10.2307/1934454; GALIL J, 1970, NEW PHYTOL, V69, P103, DOI 10.1111/j.1469-8137.1970.tb04054.x; Gauld I., 1988, HYMENOPTERA; Ghara M, 2014, ARTHROPOD-PLANT INTE, V8, P191, DOI 10.1007/s11829-014-9300-9; Ghara M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023642; Grandi G, 1966, ISTITUZIONI ENTOMOLO; Grandi G, 1929, STUDIO MORFOLOGICO B; Heraty J, 2011, MOL PHYLOGENET EVOL, V60, P73, DOI 10.1016/j.ympev.2011.04.003; Heraty JM, 2013, CLADISTICS, V29, P466, DOI 10.1111/cla.12006; Ho LST, 2014, SYST BIOL, V63, P397, DOI 10.1093/sysbio/syu005; Ives AR, 2010, SYST BIOL, V59, P9, DOI 10.1093/sysbio/syp074; Jansen-Gonzalez S, 2014, ACTA OECOL, V57, P44, DOI 10.1016/j.actao.2013.07.003; Jansen-Gonzalez S, 2012, ARTHROPOD-PLANT INTE, V6, P601, DOI 10.1007/s11829-012-9203-6; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; JOSEPH KJ, 1958, ANN SCI NAT, V20, P197; Kawakita A, 2016, ZOOKEYS, P87, DOI 10.3897/zookeys.568.6721; Kundanati L, 2014, J EXP BIOL, V217, P1946, DOI 10.1242/jeb.098228; Le Ralec A., 1991, MORPHOLOGIE ULTRASTR; LeRalec A, 1996, CAN ENTOMOL, V128, P413; Nacro Souleymane, 2009, Psyche (Cambridge), V2009, P1; Pellmyr O, 1996, NATURE, V380, P155, DOI 10.1038/380155a0; Peng YQ, 2008, SYMBIOSIS, V45, P9; Peng YQ, 2005, J TROP ECOL, V21, P581, DOI 10.1017/S0266467405002634; Peters RS, 2017, CURR BIOL, V27, P1013, DOI 10.1016/j.cub.2017.01.027; Quicke D. L. J, 1999, ATTI ACCADEMIA NAZL, P197; QUICKE DLJ, 1994, J NAT HIST, V28, P635, DOI 10.1080/00222939400770301; Quicke Donald L.J., 1995, Journal of Hymenoptera Research, V4, P110; R Development Core Team, 2015, R LANG ENV STAT COMP; Revell LJ, 2013, METHODS ECOL EVOL, V4, P754, DOI 10.1111/2041-210X.12066; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Revell LJ, 2010, METHODS ECOL EVOL, V1, P319, DOI 10.1111/j.2041-210X.2010.00044.x; Ronquist F, 1999, ZOOL SCR, V28, P139, DOI 10.1046/j.1463-6409.1999.00022.x; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Sharkey MJ, 2007, ZOOTAXA, P521; Tzeng HY, 2008, SYMBIOSIS, V45, P129; Tzeng HY, 2014, ACTA OECOL, V57, P38, DOI 10.1016/j.actao.2013.06.007; VERKERKE W, 1989, EXPERIENTIA, V45, P612, DOI 10.1007/BF01975678; VERKERKE W, 1986, P K NED AKAD C BIOL, V89, P443; VERKERKE W, 1987, P K NED AKAD C BIOL, V90, P461; Vilhelmsen L, 2000, ZOOL SCR, V29, P319, DOI 10.1046/j.1463-6409.2000.00046.x; Vilhelmsen L, 2011, ARTHROPOD STRUCT DEV, V40, P2, DOI 10.1016/j.asd.2010.10.001; Vincent Julian F. V., 1995, Biomimetics, V3, P187; Wang RW, 2008, SYMBIOSIS, V45, P113; Weiblen GD, 2002, ANNU REV ENTOMOL, V47, P299, DOI 10.1146/annurev.ento.47.091201.145213; Weltz CE, 2014, J NAT HIST, V48, P133, DOI 10.1080/00222933.2013.791941; Zhen WQ, 2005, PHYTOPARASITICA, V33, P113, DOI 10.1007/BF03029967 61 3 3 3 3 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1146-609X 1873-6238 ACTA OECOL Acta Oecol.-Int. J. Ecol. JUL 2018 90 SI 109 116 10.1016/j.actao.2017.10.007 8 Ecology Environmental Sciences & Ecology HA0MM WOS:000449902100015 2019-02-21 J Perez-Ruzafa, A; Perez-Marcos, M; Marcos, C Perez-Ruzafa, Angel; Perez-Marcos, Maria; Marcos, Concepcion From fish physiology to ecosystems management: Keys for moving through biological levels of organization in detecting environmental changes and anticipate their consequences ECOLOGICAL INDICATORS English Article Conservation; Biological organization levels; Physiology; Epigenetic; Dynamic energy budget; Energy allocation rules; Life story strategies; Bioindicators; Scaling indicators ECOLOGICAL-QUALITY STATUS; LIFE-HISTORY STRATEGIES; FOOD-WEB INDICATORS; MEDITERRANEAN COASTAL LAGOON; BENTHIC BIOTIC INDEXES; MARINE RESERVES; GENE-EXPRESSION; ANTHROPOGENIC DRIVERS; ECONOMIC UNCERTAINTY; THERMAL TOLERANCE Tackling environmental problems not only requires the detection of harmful agents or the drivers that induce changes in ecosystems and their effects, but also knowledge of their action mechanisms and the processes involved in order to design solutions, recover the damaged systems and, above all, prevent any deterioration before it occurs. In recent years conservation physiology has been proposed as a discipline that could play an important role in this context. However, the main problem in generalizing physiological indicators in order to assess ecological status is the leap in scale from the internal physiology of an individual to its relevance for ecosystem functioning. In this paper, we propose that the study of the physiological bases and epigenetic mechanisms that determine the allocation of energy resources, in the context of Dynamic Energy Budget theory, can be the hinge that allows us to pass from the physiology of the individual to the scale of population dynamics, the structure of populations and ecosystems. This proposal is based on the strong relationship shown by the parameters of the life story of individuals, such as body growth rate, maximum size, life expectancy or generation time, with the parameters that determine population growth and the ecological strategies of the species. There is growing evidence that the relationship between these parameters is not completely fixed and does not only respond to evolutionary scales, but may be flexible within certain limits throughout ontogeny and the life of individuals, producing consequences in populations in response to environmental conditions, environmental stress and, in the case of fish, the effects of fishing. Lay summary: Biological index to detect environmental impacts can be applied from cell to ecosystem scale. However, at lower levels, although they give important information on the mechanisms involved it is difficult to infer the real consequences of the detected changes on the ecosystems. The review of the regularities existing in ecological guilds relationships of fishes suggests that the study of the physiological and epigenetic bases that determine the allocation of energy resources in the context of Dynamic Energy Budget theory can be the hinge that allows us to pass from the effects on the physiology of the individual to the scale of population dynamics and ecosystems when modelling the consequences of changes in environmental stress. [Perez-Ruzafa, Angel; Marcos, Concepcion] Univ Murcia, Fac Biol, Dept Ecol & Hidral, Campus Excelencia Int Mare Nostrum, Campus Espinardo, E-30100 Murcia, Spain; [Perez-Marcos, Maria] Inst Murciano Invest & Desarrallo Agr & Alimentar, C Mayor S-N, E-30150 Murcia, Spain Perez-Ruzafa, A (reprint author), Univ Murcia, Fac Biol, Dept Ecol & Hidral, Campus Excelencia Int Mare Nostrum, Campus Espinardo, E-30100 Murcia, Spain. angelpr@um.es Perez-Ruzafa, Angel/A-3406-2009 Perez-Ruzafa, Angel/0000-0003-4769-8912; Perez-Marcos, Maria/0000-0003-0979-9931 European Union [FA1004] This work arose from discussions held during the European Union Cooperation in Science and Technology (COST) Action (FA1004) on the "Conservation Physiology of Marine Fishes". We wish to express our appreciation to all participants in the various meetings. Abel P. D, 1989, WATER POLLUTION BIOL; Andersen KH, 2008, THEOR POPUL BIOL, V73, P490, DOI 10.1016/j.tpb.2008.02.001; Axiak V, 1991, ECOTOXICOLOGY MARINE, P132; BARNES RSK, 1989, T RSE EARTH, V80, P235; Bergstrom L, 2016, ESTUAR COAST SHELF S, V183, P62, DOI 10.1016/j.ecss.2016.10.027; Berthelsen A, 2018, ECOL INDIC, V85, P634, DOI 10.1016/j.ecolind.2017.10.060; Beyer J, 2014, MAR ENVIRON RES, V96, P81, DOI 10.1016/j.marenvres.2013.10.008; Birk S, 2012, ECOL INDIC, V18, P31, DOI 10.1016/j.ecolind.2011.10.009; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Borja A, 2015, MAR POLLUT BULL, V97, P85, DOI 10.1016/j.marpolbul.2015.06.030; Brauko KM, 2016, ECOL INDIC, V64, P258, DOI 10.1016/j.ecolind.2016.01.008; Broeg K, 1999, HELGOLAND MAR RES, V53, P171, DOI 10.1007/s101520050023; Caselle JE, 2011, CAN J FISH AQUAT SCI, V68, P288, DOI 10.1139/F10-140; Cazan AM, 2015, ECOTOXICOLOGY, V24, P626, DOI 10.1007/s10646-014-1410-8; Chaoui L, 2012, MOL ECOL, V21, P5497, DOI 10.1111/mec.12062; Claudet J, 2010, ECOL APPL, V20, P830, DOI 10.1890/08-2131.1; Claudet J, 2008, ECOL LETT, V11, P481, DOI 10.1111/j.1461-0248.2008.01166.x; Cloern JE, 2001, MAR ECOL PROG SER, V210, P223, DOI 10.3354/meps210223; Cognetti G, 2000, MAR POLLUT BULL, V40, P7, DOI 10.1016/S0025-326X(99)00173-3; Cooke SJ, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou024; Cooke SJ, 2013, CONSERV PHYSIOL, V1, DOI 10.1093/conphys/cot001; Corsi I, 2003, OCEANOL ACTA, V26, P129, DOI 10.1016/S0399-1784(02)01237-9; Damuth J, 2001, P NATL ACAD SCI USA, V98, P2113, DOI 10.1073/pnas.051011198; Das SK, 2015, INT J OBESITY, V39, P869, DOI 10.1038/ijo.2014.210; DeFaveri J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080866; Delorme NJ, 2016, COMP BIOCHEM PHYS A, V198, P33, DOI 10.1016/j.cbpa.2016.03.020; DeMartini EE, 2016, J FISH BIOL, V88, P523, DOI 10.1111/jfb.12831; Dondero F., 2015, COASTAL ECOSYSTEMS E, P143; Dorval E, 2015, J FISH BIOL, V87, P286, DOI 10.1111/jfb.12718; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2015, ECOL APPL, V25, P1860, DOI 10.1890/14-1862.1; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; Fay G, 2013, ECOL MODEL, V265, P45, DOI 10.1016/j.ecolmodel.2013.05.016; Feral J.-P., 2003, EUROPEAN MARINE BIOD, P127; Forbes VE, 2006, ENVIRON TOXICOL CHEM, V25, P272, DOI 10.1897/05-257R.1; FROESE R, 2008, FISHBASE; Fulton EA, 2005, ICES J MAR SCI, V62, P540, DOI 10.1016/j.icesjms.2004.12.012; Galloway TS, 2001, ECOTOXICOLOGY, V10, P5, DOI 10.1023/A:1008939520263; Gamito S, 2008, NATO SCI PEACE SECUR, P323, DOI 10.1007/978-1-4020-8558-1_19; Garcia-Charton JA, 2008, J NAT CONSERV, V16, P193, DOI 10.1016/j.jnc.2008.09.007; Garcia-Charton JA, 1999, FISH RES, V42, P1; GRAY JS, 1982, NETH J SEA RES, V16, P424, DOI 10.1016/0077-7579(82)90048-5; Greytak SR, 2005, AQUAT TOXICOL, V71, P371, DOI 10.1016/j.aquatox.2004.12.007; Gubbay S., 2004, REV MARINE ENV INDIC, P74; Halpern BS, 2003, ECOL APPL, V13, pS117; Halpern BS, 2003, P ROY SOC B-BIOL SCI, V270, P1871, DOI 10.1098/rspb.2003.2405; HARDING LE, 1992, MAR POLLUT BULL, V25, P23, DOI 10.1016/0025-326X(92)90178-9; Hart MK, 2011, CORAL REEFS, V30, P543, DOI 10.1007/s00338-011-0737-3; Heck KL, 2007, ESTUAR COAST, V30, P371, DOI 10.1007/BF02819384; HEIP C, 1995, OPHELIA, V41, P113, DOI 10.1080/00785236.1995.10422040; Henriques S, 2013, ECOL INDIC, V25, P65, DOI 10.1016/j.ecolind.2012.09.003; Hofmann B, 2013, J MARRIAGE FAM, V75, P503, DOI 10.1111/jomf.12011; Horodysky AZ, 2015, REV FISH BIOL FISHER, V25, P425, DOI 10.1007/s11160-015-9393-y; Huete-Ortega M, 2012, P ROY SOC B-BIOL SCI, V279, P1815, DOI 10.1098/rspb.2011.2257; ICES, 2008, 2008MHC01 ICES CM; Jorgensen EH, 2014, MAR GENOM, V14, P71, DOI 10.1016/j.margen.2013.10.005; Kamstra JH, 2015, ENVIRON SCI POLLUT R, V22, P16262, DOI 10.1007/s11356-014-3466-7; Kamukuru AT, 2005, FISHERIES MANAG ECOL, V12, P45, DOI 10.1111/j.1365-2400.2004.00418.x; Kearney M, 2012, FUNCT ECOL, V26, P167, DOI 10.1111/j.1365-2435.2011.01917.x; Khedhri I, 2017, MAR POLLUT BULL, V114, P515, DOI 10.1016/j.marpolbul.2016.10.023; Kooijman S. A. L. M, 2010, DYNAMIC ENERGY BUDGE; Kooijman S. A. L. M, 2000, DYNAMIC ENERGY MASS; KOOIJMAN SALM, 1986, J THEOR BIOL, V121, P269, DOI 10.1016/S0022-5193(86)80107-2; Kooijman SALM, 1993, DYNAMIC ENERGY BUDGE; Kooijman SALM, 2014, J SEA RES, V94, P19, DOI 10.1016/j.seares.2014.01.015; Kooijman SALM, 2014, BIOL REV, V89, P849, DOI 10.1111/brv.12082; Krebs C. J., 1999, ECOLOGICAL METHODOLO; Kreyenfeld M, 2015, KOLNER Z SOZIOL SOZ, V67, P59, DOI 10.1007/s11577-015-0325-6; KUO CM, 1974, AQUACULTURE, V3, P25, DOI 10.1016/0044-8486(74)90096-9; Kuparinen A, 2012, P ROY SOC B-BIOL SCI, V279, P2571, DOI 10.1098/rspb.2012.0120; Lennox R, 2014, CONSERV PHYSIOL, V2, DOI 10.1093/conphys/cou003; LEONTIEF W, 1979, POPUL DEV REV, V5, P1, DOI 10.2307/1972316; LLOYD R, 1972, PROC R SOC SER B-BIO, V180, P439, DOI 10.1098/rspb.1972.0030; Lloyd R, 1991, ECOTOXICOLOGY MARINE, P219; Lonsdale DJ, 2009, AQUAT BIOL, V6, P263, DOI 10.3354/ab00130; Luo XX, 2016, ACTA OCEANOL SIN, V35, P50, DOI 10.1007/s13131-016-0842-9; Lyons BP, 2017, MAR ENVIRON RES, V124, P118, DOI 10.1016/j.marenvres.2015.12.010; MAC ARTHUR ROBERT H., 1967; Maino JL, 2014, J ANIM ECOL, V83, P20, DOI 10.1111/1365-2656.12085; Makhija DT, 2014, J PHARMACOL PHARMACO, V5, P39, DOI 10.4103/0976-500X.124422; Maltby L, 1999, ECOL APPL, V9, P431, DOI 10.2307/2641131; Margalef R, 1974, ECOLOGIC; Modica L, 2016, ECOL INDIC, V67, P21, DOI 10.1016/j.ecolind.2016.02.010; Moore MN, 2004, MUTAT RES-FUND MOL M, V552, P247, DOI 10.1016/j.mrfmmm.2004.06.028; Mulik J, 2017, MAR POLLUT BULL, V120, P192, DOI 10.1016/j.marpolbul.2017.05.014; Newell RIE, 2007, MAR ECOL PROG SER, V341, P293, DOI 10.3354/meps341293; Nisbet RM, 2000, J ANIM ECOL, V69, P913, DOI 10.1046/j.1365-2656.2000.00448.x; Odom E. P., 2006, FUNDAMENTALS ECOLOGY; Odum EP, 2000, CONCEPTS AND CONTROVERSIES IN TIDAL MARSH ECOLOGY, P3; OFFICIAL JOURNAL OF THE EUROPEAN UNION, 2008, OFFICIAL J EUROPEA L; Oleksiak MF, 2008, AQUAT TOXICOL, V90, P161, DOI 10.1016/j.aquatox.2008.08.010; Ostman O, 2017, J APPL ECOL, V54, P557, DOI 10.1111/1365-2664.12719; Ota K, 2012, NATURWISSENSCHAFTEN, V99, P23, DOI 10.1007/s00114-011-0864-2; Otto SA, 2018, ECOL INDIC, V84, P619, DOI 10.1016/j.ecolind.2017.05.045; Pecquerie L, 2009, J SEA RES, V62, P93, DOI 10.1016/j.seares.2009.06.002; Pennycuick C. J., 1992, NEWTON RULES BIOL; Perez-Dominguez R, 2012, ECOL INDIC, V23, P34, DOI 10.1016/j.ecolind.2012.03.006; Perez-Ruzafa A, 2005, HYDROBIOLOGIA, V550, P11, DOI 10.1007/s10750-005-4356-2; Perez-Ruzafa A, 2004, J FISH BIOL, V64, P202, DOI 10.1111/j.1095-8649.2004.00301.x; Perez-Ruzafa A, 2002, HYDROBIOLOGIA, V475, P359, DOI 10.1023/A:1020343510060; Perez-Ruzafa A, 2008, J NAT CONSERV, V16, P187, DOI 10.1016/j.jnc.2008.09.008; Perez-Ruzafa A., 2015, COASTAL ECOSYSTEMS E, P89; Perez-Ruzafa A., 2011, TRANSIT WATERS B, V5, P50, DOI DOI 10.1285/I1825229XV5N1P50; Perez-Ruzafa A, 2013, ESTUAR COAST SHELF S, V132, P17, DOI 10.1016/j.ecss.2012.04.011; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pitacco V, 2018, MAR POLLUT BULL, V129, P813, DOI 10.1016/j.marpolbul.2017.10.085; Plank MJ, 2016, B MATH BIOL, V78, P280, DOI 10.1007/s11538-016-0143-7; Portner HO, 2010, J EXP BIOL, V213, P881, DOI 10.1242/jeb.037523; Portner HO, 2012, MAR ECOL PROG SER, V470, P273, DOI 10.3354/meps10123; Polacik M, 2014, J EVOLUTION BIOL, V27, P854, DOI 10.1111/jeb.12359; Pontzer H, 2016, NATURE, V533, P390, DOI 10.1038/nature17654; Porte C, 2006, COMP BIOCHEM PHYS C, V143, P303, DOI 10.1016/j.cbpc.2006.03.004; Portner HO, 2002, COMP BIOCHEM PHYS A, V132, P739, DOI 10.1016/S1095-6433(02)00045-4; Pujolar JM, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-507; Raerinne JP, 2013, BIOSCIENCE, V63, P191, DOI 10.1525/bio.2013.63.3.7; Riesch R, 2015, J ANIM ECOL, V84, P1732, DOI 10.1111/1365-2656.12425; Rombouts I, 2013, ECOL INDIC, V24, P353, DOI 10.1016/j.ecolind.2012.07.001; Salas F, 2006, OCEAN COAST MANAGE, V49, P308, DOI 10.1016/j.ocecoaman.2006.03.001; Sanchez W, 2009, TRAC-TREND ANAL CHEM, V28, P150, DOI 10.1016/j.trac.2008.10.012; Sanchez-Moyano JE, 2017, MAR ENVIRON RES, V132, P41, DOI 10.1016/j.marenvres.2017.10.014; Sarkar A, 2006, ECOTOXICOLOGY, V15, P333, DOI 10.1007/s10646-006-0069-1; Scheffer M., 1998, ECOLOGY SHALLOW LAKE; SEWELL MA, 1990, INVERTEBR REPROD DEV, V17, P1, DOI 10.1080/07924259.1990.9672081; Sigovini M, 2013, HYDROBIOLOGIA, V717, P41, DOI 10.1007/s10750-013-1565-y; Simboura N, 2008, MAR POLLUT BULL, V56, P116, DOI 10.1016/j.marpolbul.2007.09.042; Simboura N., 2002, MEDITERRANEAN MARINE, V3, P77, DOI DOI 10.12681/MMS.249; Sivadas SK, 2016, MAR POLLUT BULL, V106, P62, DOI 10.1016/j.marpolbul.2016.03.026; Sogard SM, 2011, B MAR SCI, V87, P857, DOI 10.5343/bms.2010.1045; Sousa T, 2008, PHILOS T R SOC B, V363, P2453, DOI 10.1098/rstb.2007.2230; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Tam JC, 2017, ICES J MAR SCI, V74, P2040, DOI 10.1093/icesjms/fsw230; Taylor BM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2423; Taylor BT, 2014, ECOGRAPHY, V37, P1; Teixeira H, 2010, MAR POLLUT BULL, V60, P589, DOI 10.1016/j.marpolbul.2009.11.005; Than L., 2015, CHINA J CHIN MAT MED, V40, P822; Thorn R., 1989, STRUCTURAL STABILITY; Torres MA, 2017, ECOL INDIC, V77, P67, DOI 10.1016/j.ecolind.2017.01.030; Torres MA, 2008, ECOTOX ENVIRON SAFE, V71, P1, DOI 10.1016/j.ecoenv.2008.05.009; Trip EDL, 2014, J ANIM ECOL, V83, P866, DOI 10.1111/1365-2656.12183; Valles H, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086291; van der Oost R, 2003, ENVIRON TOXICOL PHAR, V13, P57, DOI 10.1016/S1382-6689(02)00126-6; Venier P, 2006, MUTAT RES-FUND MOL M, V602, P121, DOI 10.1016/j.mrfmmm.2006.08.007; Vila R, 2014, DRUG FUTURE, V39, P557, DOI 10.1358/dof.2014-39.8.2214012; Zhang J, 2014, PHYSICA A, V405, P278, DOI 10.1016/j.physa.2014.03.040; 2000, OFFICIAL J L, V327 145 0 0 13 13 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1470-160X 1872-7034 ECOL INDIC Ecol. Indic. JUL 2018 90 334 345 10.1016/j.ecolind.2018.03.019 12 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology GO7QL WOS:000440266100035 2019-02-21 J Morbey, YE Morbey, Yolanda E. Female-biased dimorphism in size and age at maturity is reduced at higher latitudes in lake whitefish Coregonus clupeaformis JOURNAL OF FISH BIOLOGY English Article freshwater fish; latitudinal gradients; life-history theory; maturation; sexual selection LAURENTIAN GREAT-LAKES; LIFE-HISTORY; MATURATION; FISH; GROWTH; ALLOMETRY; SELECTION; SALMON; STOCKS; HURON Female-biased sexual dimorphism in size at maturity is a common pattern observed in freshwater fishes with indeterminate growth, yet can vary in magnitude among populations for reasons that are not well understood. According to sex-specific optimization models, female-biased sexual size dimorphism can evolve due to sexual selection favouring earlier maturation by males, even when sexes are otherwise similar in their growth and mortality regimes. The magnitude of sexual size dimorphism is expected to depend on mortality rate. When mortality rates are low, both males and females are expected to mature at older ages and larger sizes, with size determined by the von Bertalanffy growth equation. The difference between size at maturity in males and females becomes reduced when maturing at older ages, closer to asymptotic size. This phenomenon is called von Bertalanffy buffering. The predicted relationship between the magnitude of female-biased sexual dimorphism in age and size at maturity and mortality rate was tested in a comparative analysis of lake whitefish Coregonus clupeaformis from 26 populations across a broad latitudinal range in North America. Most C. clupeaformis populations displayed female-biased sexual dimorphism in size and age at 50% maturity. As predicted, female-biased sexual size dimorphism was less extreme among lower mortality, high-latitude populations. [Morbey, Yolanda E.] Univ Western Ontario, Dept Biol, London, ON N6A 5B7, Canada Morbey, YE (reprint author), Univ Western Ontario, Dept Biol, London, ON N6A 5B7, Canada. ymorbey@uwo.ca Anras MLB, 1999, T AM FISH SOC, V128, P939, DOI 10.1577/1548-8659(1999)128<0939:MAHUBL>2.0.CO;2; Barot S, 2004, EVOL ECOL RES, V6, P659; Beauchamp KC, 2004, J GREAT LAKES RES, V30, P451, DOI 10.1016/S0380-1330(04)70361-5; Blanckenhorn WU, 2006, EVOLUTION, V60, P2004, DOI 10.1111/j.0014-3820.2006.tb01838.x; Blanckenhorn WU, 2005, ETHOLOGY, V111, P977, DOI 10.1111/j.1439-0310.2005.01147.x; Burness G, 2008, CAN J FISH AQUAT SCI, V65, P615, DOI 10.1139/F07-188; Casselman SJ, 2004, ECOL FRESHW FISH, V13, P217, DOI 10.1111/j.1600-0633.2004.00053.x; Cox RM, 2010, EVOLUTION, V64, P798, DOI 10.1111/j.1558-5646.2009.00851.x; Eberts RL, 2017, N AM J FISH MANAGE, V37, P133, DOI 10.1080/02755947.2016.1245225; Estlander S, 2017, ECOL EVOL, V7, P665, DOI 10.1002/ece3.2658; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; FAIRBAIRN DJ, 2007, SEX SIZE GENDER ROLE; Ficker H, 2014, J FISH BIOL, V84, P1164, DOI 10.1111/jfb.12301; Henderson BA, 2003, CAN J FISH AQUAT SCI, V60, P1345, DOI 10.1139/F03-115; HOLTBY LB, 1990, ECOLOGY, V71, P678, DOI 10.2307/1940322; IHSSEN PE, 1981, CAN J FISH AQUAT SCI, V38, P1790, DOI 10.1139/f81-226; Jonsson B, 2015, J FISH BIOL, V87, P187, DOI 10.1111/jfb.12704; Kratzer JF, 2007, J GREAT LAKES RES, V33, P922, DOI 10.3394/0380-1330(2007)33[922:CIFAEL]2.0.CO;2; Lumb CE, 2007, J GREAT LAKES RES, V33, P314, DOI 10.3394/0380-1330(2007)33[314:COLWCC]2.0.CO;2; McLeod DV, 2011, J GREAT LAKES RES, V37, P601, DOI 10.1016/j.jglr.2011.08.003; Muir AM, 2014, CAN J FISH AQUAT SCI, V71, P1256, DOI 10.1139/cjfas-2013-0254; Myers R, 1990, CLASSICAL MODERN REG; Ogle D. H., 2016, INTRODUCTORY FISHERI; PARKER GA, 1992, J FISH BIOL, V41, P1, DOI 10.1111/j.1095-8649.1992.tb03864.x; PAULY D, 1980, J CONSEIL, V39, P175; Rennie MD, 2008, J ANIM ECOL, V77, P916, DOI 10.1111/j.1365-2656.2008.01412.x; Rensch B, 1959, EVOLUTION SPECIES LE; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; STAMPS JA, 1993, BIOL J LINN SOC, V50, P123, DOI 10.1006/bijl.1993.1050; Vedder O, 2005, BEHAV ECOL SOCIOBIOL, V58, P429, DOI 10.1007/s00265-005-0926-6; Von Bertalanffy L., 1938, HUM BIOL, V10, P181, DOI DOI 10.2307/41447359; Wang HY, 2008, CAN J FISH AQUAT SCI, V65, P2157, DOI 10.1139/F08-124; Webb TJ, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000897; Wedekind C, 2001, J EVOLUTION BIOL, V14, P980, DOI 10.1046/j.1420-9101.2001.00349.x; Young KA, 2005, P ROY SOC B-BIOL SCI, V272, P167, DOI 10.1098/rspb.2004.2931; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x 36 0 0 5 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 1095-8649 J FISH BIOL J. Fish Biol. JUL 2018 93 1 40 46 10.1111/jfb.13675 7 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology GS0WY WOS:000443231700007 29882273 2019-02-21 J Neuheimer, AB; MacKenzie, BR; Payne, MR Neuheimer, Anna B.; MacKenzie, Brian R.; Payne, Mark R. Temperature-dependent adaptation allows fish to meet their food across their species' range SCIENCE ADVANCES English Article COD GADUS-MORHUA; HADDOCK MELANOGRAMMUS-AEGLEFINUS; SIZE-AT-AGE; GROWING DEGREE-DAY; ATLANTIC COD; CLIMATE-CHANGE; DEVELOPMENT RATES; BORNHOLM BASIN; WARMING WATERS; EGG-PRODUCTION In seasonal environments, timing is everything: Ecosystem dynamics are controlled by how well predators can match their prey in space and time. This match of predator and prey is thought to be particularly critical for the vulnerable larval life stages of many fish, where limited parental investment means that population survival can depend on how well larvae match the timing of their food. We develop and apply novel metrics of thermal time to estimate the timing of unobserved stages of fish larvae and their prey across the north Atlantic. The result shows that previously identified life-history strategies are adaptive in that they allow parents to "predict" a beneficial environment for their offspring and meet larval fish food timing that varies by 99 days across a species' range. [Neuheimer, Anna B.] Univ Hawaii Manoa, Dept Oceanog, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA; [Neuheimer, Anna B.] Aarhus Univ, Aarhus Inst Adv Studies, DK-8000 Aarhus C, Denmark; [MacKenzie, Brian R.; Payne, Mark R.] Tech Univ Denmark DTU Aqua, Natl Inst Aquat Resources, DK-2800 Lyngby, Denmark Neuheimer, AB (reprint author), Univ Hawaii Manoa, Dept Oceanog, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA.; Neuheimer, AB (reprint author), Aarhus Univ, Aarhus Inst Adv Studies, DK-8000 Aarhus C, Denmark. abneuheimer@gmail.com Payne, Mark/C-6844-2008 Payne, Mark/0000-0001-5795-2481; Neuheimer, Anna/0000-0002-9470-7140 European Union 7th Framework Programme (FP7 2007-2013) [308299]; Horizon 2020 research and innovation programme [727852]; AIAS-COFUND Fellowship at the Aarhus Institute of Advanced Studies; Aarhus University Research Foundation (Aarhus Universitets Forskningsfond); European Union's Seventh Framework Programme, Marie Curie Actions [609033]; Danmarks Grundforskningsfond We thank S. Tsoukali for the discussions regarding egg development rates for marine fish. We thank R. Hedeholm for providing the Greenland temperature data. The study has been supported by the European Union 7th Framework Programme (FP7 2007-2013) under grant agreement number 308299 (NACLIM) and the Horizon 2020 research and innovation programme under grant agreement number 727852 (Blue-Action). This work was completed during an AIAS-COFUND Fellowship to A.B.N. at the Aarhus Institute of Advanced Studies, which receives funding from the Aarhus University Research Foundation (Aarhus Universitets Forskningsfond) and the European Union's Seventh Framework Programme, Marie Curie Actions (grant agreement 609033). We thank the Center for Macroecology, Evolution and Climate, where some initial concepts and planning of this work was conducted by A.B.N. and B.R.M., and which has received funding from the Danmarks Grundforskningsfond. Albouy-Boyer S, 2016, J PLANKTON RES, V38, P589, DOI 10.1093/plankt/fbw020; Allen JM, 2014, GLOBAL CHANGE BIOL, V20, P1251, DOI 10.1111/gcb.12364; ANDERSON JT, 1990, MAR ECOL PROG SER, V67, P127, DOI 10.3354/meps067127; Asch RG, 2015, P NATL ACAD SCI USA, V112, pE4065, DOI 10.1073/pnas.1421946112; Bradbury IR, 2000, CAN J FISH AQUAT SCI, V57, P1761, DOI 10.1139/cjfas-57-9-1761; Brander K., 1993, Northwest Atlantic Fisheries Organization Scientific Council Studies, V18, P13; BRANDER K, 1992, CAN J FISH AQUAT SCI, V49, P238, DOI 10.1139/f92-028; Burrow JF, 2011, J PLANKTON RES, V33, P1153, DOI 10.1093/plankt/fbr015; Busch KET, 2009, MAR BIOL RES, V5, P286, DOI 10.1080/17451000802441319; Campbell RG, 2001, MAR ECOL PROG SER, V221, P161, DOI 10.3354/meps221161; DAVENPORT J, 1980, J FISH BIOL, V16, P249, DOI 10.1111/j.1095-8649.1980.tb03702.x; Debes H, 2008, HYDROBIOLOGIA, V600, P247, DOI 10.1007/s10750-007-9238-3; Drinkwater KF, 2005, ICES J MAR SCI, V62, P1327, DOI 10.1016/j.icejms.2005.05.015; Durant JM, 2007, CLIM RES, V33, P271, DOI 10.3354/cr033271; Dzierzbicka-Glowacka L, 2004, J PLANKTON RES, V26, P49, DOI 10.1093/plankt/fbh002; ELLERTSEN B, 1989, RAP PROCES, V191, P209; Fahey M. P., 1999, NMFSNE124 NOAA; Folkvord A, 2005, CAN J FISH AQUAT SCI, V62, P1037, DOI 10.1139/F05-008; Forrest J, 2010, PHILOS T R SOC B, V365, P3101, DOI 10.1098/rstb.2010.0145; FORTIER L, 1995, MAR ECOL PROG SER, V120, P11, DOI 10.3354/meps120011; Geffen AJ, 2006, J FISH BIOL, V69, P1060, DOI 10.1111/j.1095-8649.2006.01181.x; Gentleman WC, 2008, ICES J MAR SCI, V65, P399, DOI 10.1093/icesjms/fsn047; Gronkjaer P, 1997, MAR ECOL PROG SER, V154, P91, DOI 10.3354/meps154091; Heath MR, 2007, FISH OCEANOGR, V16, P169, DOI 10.1111/j.1365-2419.2006.00423.x; Hjort J., 1914, RAPP P V REUN CONS I, V20, P1; International Council for the Exploration of the Sea (ICES), 2005, 274 ICES; Jordaan A, 2003, BIG FISH BANG, P45; Jordaan A., 2002, THESIS; Koeller P, 2009, SCIENCE, V324, P791, DOI 10.1126/science.1170987; LAURENCE GC, 1978, MAR BIOL, V50, P1, DOI 10.1007/BF00390536; LAURENCE GC, 1976, J CONSEIL, V36, P220; LeClus F, 1995, S AFR J MARINE SCI, V16, P1; Lee HW, 2003, J PLANKTON RES, V25, P261, DOI 10.1093/plankt/25.3.261; Lester RE, 2014, GLOBAL CHANGE BIOL, V20, P3471, DOI 10.1111/gcb.12634; Mackas DL, 2007, PROG OCEANOGR, V75, P223, DOI 10.1016/j.pocean.2007.08.010; Melle W, 2014, PROG OCEANOGR, V129, P244, DOI 10.1016/j.pocean.2014.04.026; MILLER CB, 1993, MAR ECOL PROG SER, V102, P15, DOI 10.3354/meps102015; Minkowski H., 1908, COMMUNICATION 0921; Myers R.A., 1993, Fisheries Oceanography, V2, P154, DOI 10.1111/j.1365-2419.1993.tb00131.x; Neuheimer AB, 2011, NAT CLIM CHANGE, V1, P110, DOI [10.1038/NCLIMATE1084, 10.1038/nclimate1084]; Neuheimer AB, 2010, J MARINE SYST, V81, P122, DOI 10.1016/j.jmarsys.2009.12.009; Neuheimer AB, 2007, CAN J FISH AQUAT SCI, V64, P375, DOI 10.1139/F07-003; Neuheimer AB, 2014, ECOLOGY, V95, P3364, DOI 10.1890/13-2370.1; Neuheimer AB, 2012, GLOBAL CHANGE BIOL, V18, P1812, DOI 10.1111/j.1365-2486.2012.02673.x; Opdal AF, 2011, MAR ECOL PROG SER, V439, P255, DOI 10.3354/meps09335; PAULY D, 1988, ENVIRON BIOL FISH, V22, P261, DOI 10.1007/BF00004892; Peck MA, 2012, ADV ECOL RES, V47, P177, DOI 10.1016/B978-0-12-398315-2.00003-X; Pepin P, 1997, CAN J FISH AQUAT SCI, V54, P2, DOI 10.1139/f96-154; R Core Team, 2016, R LANG ENV STAT COMP; Reglero P, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2017.1405; Riche O, 2014, J MARINE SYST, V131, P36, DOI 10.1016/j.jmarsys.2013.11.003; Rowlands WL, 2008, CAN J FISH AQUAT SCI, V65, P1297, DOI 10.1139/F08-041; SINCLAIR M, 1984, CAN J FISH AQUAT SCI, V41, P1055, DOI 10.1139/f84-123; Swalethorp R, 2016, MAR ECOL PROG SER, V555, P185, DOI 10.3354/meps11816; Tarifeno E, 2008, ENVIRON BIOL FISH, V81, P387, DOI 10.1007/s10641-007-9208-7; Thome C, 2016, CAN J FISH AQUAT SCI, V73, P1213, DOI 10.1139/cjfas-2015-0286; THOMPSON AB, 1991, MAR ECOL PROG SER, V68, P213; Tsoukali S, 2016, MAR ECOL PROG SER, V555, P151, DOI 10.3354/meps11758; Venturelli PA, 2010, CAN J FISH AQUAT SCI, V67, P1057, DOI 10.1139/F10-041; vonHerbing IH, 1996, MAR BIOL, V124, P593, DOI 10.1007/BF00351041; Voss R, 2003, FISH RES, V63, P97, DOI [10.1016/S0165-7836(02)00249-7, 10.1016/S0165-7836(02)00282-5]; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Warton DI, 2012, METHODS ECOL EVOL, V3, P257, DOI 10.1111/j.2041-210X.2011.00153.x; Wieland Kai, 1994, Dana, V10, P163 64 0 0 3 3 AMER ASSOC ADVANCEMENT SCIENCE WASHINGTON 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA 2375-2548 SCI ADV Sci. Adv. JUL 2018 4 7 eaar4349 10.1126/sciadv.aar4349 8 Multidisciplinary Sciences Science & Technology - Other Topics GS0IN WOS:000443176100017 30050985 DOAJ Gold, Green Published 2019-02-21 J Rolo, V; Olivier, PI; van Aarde, RJ Rolo, Victor; Olivier, Pieter I.; van Aarde, Rudi J. Determinants of canopy gap characteristics in rehabilitating coastal dune forests APPLIED VEGETATION SCIENCE English Article canopy openness; hierarchical Bayesian models; multi-stemming; random forest classification; size frequency distribution; SPOT6 TROPICAL FOREST; SOUTH-AFRICA; REGENERATION; TREES; DISTURBANCE; RESTORATION; DYNAMICS; GROWTH; COMMUNITIES; MORTALITY QuestionsWhat drives canopy gap formation in regenerating coastal dune forest? Does canopy gap size frequency distribution differ between new and old-growth forests? Can canopy gaps divert regenerating trajectories? LocationRehabilitating coastal dune forest, KwaZulu-Natal, South Africa. MethodsWe mapped canopy gaps in regenerating dune forest patches of varying age, which develop after seeding of the pioneer Vachellia kosiensis, and a reference forest by means of unsupervised classification of multi-spectral satellite images. We tested if gap formation can be explained by abiotic (exposure to winds) and/or biotic (tree density at early stages) variables. We calculated the scaling exponent of a power-law model to quantify if gap size frequency differed between new and old-growth forests. Finally, we measured canopy openness, tree height and number of stems to validate canopy gap classification and assess the consequences of canopy gaps on regenerating trajectories. ResultsExposure to winds and tree density at early stages were both significant predictors of gap presence. Gaps were more likely to be present along dune ridges and areas with low tree density than valleys and areas with high tree density at early stages. Large gaps were common in both new and old-growth forests. The scaling exponent was positively related to regeneration age, indicating a reduction in gap size as the forest aged. Areas with open canopies had shorter individual trees that were more likely to be multi-stemmed than areas with closed canopies. ConclusionCanopy gaps are an important component of new and old-growth coastal dune forests dynamics. Although gaps are filled during forest development, changes in individual life-history strategies and morphology may alter regeneration trajectories. However, because their effect is partly controlled by the exposure to wind and tree density at early stages, it can also be manipulated by management to ensure nucleation, which could accelerate forest recovery. [Rolo, Victor; Olivier, Pieter I.; van Aarde, Rudi J.] Univ Pretoria, Conservat Ecol Res Unit, Pretoria, South Africa; [Rolo, Victor] Univ Extremadura, Forest Res Grp, Indehesa, Plasencia, Spain Rolo, V (reprint author), Univ Pretoria, Conservat Ecol Res Unit, Pretoria, South Africa. victorroloromero@gmail.com Rolo, Victor/0000-0001-5854-9512 National Research Foundation of South Africa (NRF); Technology and Human Resources for Industry Programme (THRIP); Richards Bay Minerals National Research Foundation of South Africa (NRF); Technology and Human Resources for Industry Programme (THRIP); Richards Bay Minerals Asner GP, 2003, REMOTE SENS ENVIRON, V87, P521, DOI 10.1016/j.rse.2003.08.006; Asner GP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060875; Baraloto C, 2012, J APPL ECOL, V49, P861, DOI 10.1111/j.1365-2664.2012.02164.x; Barnes R. D., 1996, ACACIA KARROO MONOGR; Bastin JF, 2015, SCI REP-UK, V5, DOI 10.1038/srep13156; Bastin JF, 2014, ECOL APPL, V24, P1984, DOI 10.1890/13-1574.1; Bond WJ, 2003, INT J PLANT SCI, V164, pS103, DOI 10.1086/374191; BROKAW NVL, 1982, BIOTROPICA, V14, P158, DOI 10.2307/2387750; BROKAW NVL, 1985, ECOLOGY, V66, P682, DOI 10.2307/1940529; Burgess N. D., 2000, COASTAL FORESTS E AF; Chambers JQ, 2007, TRENDS ECOL EVOL, V22, P414, DOI 10.1016/j.tree.2007.05.001; Chapman L, 2000, METEOROL APPL, V7, P335, DOI 10.1017/S1350482700001729; DENSLOW JS, 1980, BIOTROPICA, V12, P47, DOI 10.2307/2388156; Dietze MC, 2008, ECOL MONOGR, V78, P331, DOI 10.1890/07-0271.1; Fahey RT, 2007, J ECOL, V95, P1098, DOI 10.1111/j.1365-2745.2007.01283.x; Forbes A, 2017, ECOL MANAG RESTOR, V18, P78, DOI 10.1111/emr.12239; Forbes AS, 2016, RESTOR ECOL, V24, P336, DOI 10.1111/rec.12313; Frazer G. W., 1999, GAP LIGHT ANAL GLA V; Galetti M, 2013, SCIENCE, V340, P1086, DOI 10.1126/science.1233774; Garbarino M, 2012, ANN FOREST SCI, V69, P617, DOI 10.1007/s13595-011-0177-9; Goulamoussene Y, 2017, BIOGEOSCIENCES, V14, P353, DOI 10.5194/bg-14-353-2017; Gourlay ID, 1996, FOREST ECOL MANAG, V88, P289, DOI 10.1016/S0378-1127(96)03782-6; Grainger MJ, 2013, AFR J ECOL, V51, P11, DOI 10.1111/j.1365-2028.2012.01348.x; Griffiths ME, 2007, PLANT ECOL, V189, P227, DOI 10.1007/s11258-006-9179-3; Hobbs N. T., 2015, BAYESIAN MODELS STAT, DOI [10. 1515/9781400866557, DOI 10.1515/9781400866557]; Jennings SB, 1999, FORESTRY, V72, P59, DOI 10.1093/forestry/72.1.59; King DA, 2006, J ECOL, V94, P670, DOI 10.1111/j.1365-2745.2006.01112.x; Lamb D, 2005, SCIENCE, V310, P1628, DOI 10.1126/science.1111773; Larson AJ, 2015, ECOLOGY, V96, P2855, DOI 10.1890/15-0628.1; Liao JB, 2015, SCI REP-UK, V5, DOI 10.1038/srep11721; Lindenmayer DB, 2012, SCIENCE, V338, P1305, DOI 10.1126/science.1231070; Malahlela O, 2014, INT J REMOTE SENS, V35, P6397, DOI 10.1080/01431161.2014.954061; Mikita T., 2015, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, V63, P793, DOI 10.11118/actaun201563030793; MUCINA L., 2006, STRELITZIA, V19, P584; Nzunda EF, 2008, FUNCT ECOL, V22, P577, DOI 10.1111/j.1365-2435.2008.01405.x; Nzunda EF, 2007, J VEG SCI, V18, P693, DOI 10.1658/1100-9233(2007)18[693:MTISCD]2.0.CO;2; Obiri JAF, 2004, J VEG SCI, V15, P539, DOI 10.1658/1100-9233(2004)015[0539:CVDICG]2.0.CO;2; Pasanen H, 2016, EUR J FOREST RES, V135, P697, DOI 10.1007/s10342-016-0965-8; Pfeifer M, 2012, REMOTE SENS ENVIRON, V118, P103, DOI 10.1016/j.rse.2011.11.009; Pinage ER, 2016, IFOREST, V9, P461, DOI 10.3832/ifor1534-008; Pretzsch H, 2009, FOREST DYNAMICS, GROWTH AND YIELD: FROM MEASUREMENT TO MODEL, P1, DOI 10.1007/978-3-540-88307-4_1; Rolo V, 2017, RESTOR ECOL, V25, P788, DOI 10.1111/rec.12501; Rolo V, 2016, FOREST ECOL MANAG, V377, P26, DOI 10.1016/j.foreco.2016.06.039; Schnitzer SA, 2001, ECOLOGY, V82, P913, DOI 10.2307/2679891; Sturtz S, 2005, J STAT SOFTW, V12, P1; vanAarde RJ, 1996, LANDSCAPE URBAN PLAN, V34, P277, DOI 10.1016/0169-2046(95)00237-5; vansAarde R., 2014, COASTAL CONSERVATION; Vleut I, 2013, J TROP ECOL, V29, P173, DOI 10.1017/S0266467413000126; Zahawi RA, 2013, J APPL ECOL, V50, P88, DOI 10.1111/1365-2664.12014 49 0 0 6 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1402-2001 1654-109X APPL VEG SCI Appl. Veg. Sci. JUL 2018 21 3 451 460 10.1111/avsc.12380 10 Plant Sciences; Ecology; Forestry Plant Sciences; Environmental Sciences & Ecology; Forestry GR5IB WOS:000442660900010 2019-02-21 J Kvalnes, T; Roberg, AA; Jensen, H; Holand, H; Parn, H; Saether, BE; Ringsby, TH Kvalnes, Thomas; Roberg, Anja As; Jensen, Henrik; Holand, Hakon; Paern, Henrik; Saether, Bernt-Erik; Ringsby, Thor Harald Offspring fitness and the optimal propagule size in a fluctuating environment JOURNAL OF AVIAN BIOLOGY English Article Egg volume; individual fitness; Passer domesticus; plasticity; survival EGG SIZE; HOUSE SPARROW; INDIVIDUAL OPTIMIZATION; REPRODUCTIVE OUTPUT; PASSER-DOMESTICUS; PARENTAL QUALITY; PARUS-MAJOR; CLUTCH SIZE; GREAT TITS; SURVIVAL Propagule size is an important maternal effect on offspring fitness and phenotype in birds and other oviparous animals. The performance of propagules often increases with size, but a fluctuating environment may introduce temporal variation in the optimal phenotype. Understanding these mechanisms will provide novel insights into the eco-evolutionary dynamics of life history strategies in parental reproductive investment. We investigated the interaction between propagule size (measured as egg volume) and environmental conditions on offspring mortality and phenotype in a Norwegian house sparrow population. Increased propagule size reduced offspring mortality in early life, with more pronounced effects under heavy precipitation. However, the optimal propagule size for low offspring mortality until recruitment shifted from large to small as temperature increased. Propagule size had no significant effect on fledgling body mass and tarsus length. These results reveal a potential for eco-evolutionary dynamics in propagule size, as populations adapt to fluctuating environmental conditions. The ultimate outcome of this dynamic process will also depend on variation in parental fitness and tradeoffs with other life-history traits, particularly clutch size. [Kvalnes, Thomas; Roberg, Anja As; Jensen, Henrik; Holand, Hakon; Paern, Henrik; Saether, Bernt-Erik; Ringsby, Thor Harald] Norwegian Univ Sci & Technol NTNU, Dept Biol, Ctr Biodivers Dynam, NO-7491 Trondheim, Norway Kvalnes, T (reprint author), Norwegian Univ Sci & Technol NTNU, Dept Biol, Ctr Biodivers Dynam, NO-7491 Trondheim, Norway. thomas.kvalnes@ntnu.no Jensen, Henrik/0000-0001-7804-1564 Research Council of Norway [204304, 221956]; Research Council of Norway through Centres of Excellence funding scheme [223257]; Norwegian University of Science and Technology Funding was provided by the Research Council of Norway through grant no. 204304 and 221956, and its Centres of Excellence funding scheme (grant no. 223257), and the Norwegian University of Science and Technology. Allen RM, 2008, AM NAT, V171, P225, DOI 10.1086/524952; Amundsen T, 1996, J ANIM ECOL, V65, P545, DOI 10.2307/5735; Anderson T. R., 2006, BIOL UBIQUITOUS HOUS; Andreasson F, 2016, J EXP BIOL, V219, P2212, DOI 10.1242/jeb.135350; Bates D, 2015, J STAT SOFTW, V67, P1; Billing AM, 2012, MOL ECOL, V21, P1487, DOI 10.1111/j.1365-294X.2012.05490.x; BOLTON M, 1991, J ANIM ECOL, V60, P949, DOI 10.2307/5424; Both C, 1998, P ROY SOC B-BIOL SCI, V265, P2303, DOI 10.1098/rspb.1998.0575; Brooks ME, 2017, R J, V9, P378; Burnham K. P, 2002, MODEL SELECTION MULT; Chevin LM, 2017, AM NAT, V190, P786, DOI 10.1086/694121; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Dias GM, 2010, OIKOS, V119, P154, DOI 10.1111/j.1600-0706.2009.17725.x; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Garant D, 2007, EVOLUTION, V61, P1546, DOI 10.1111/j.1558-5646.2007.00128.x; Heath DD, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P178; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; IVANOV BE, 1987, EKOL POL-POL J ECOL, V35, P699; Janzen FJ, 2009, J EVOLUTION BIOL, V22, P2222, DOI 10.1111/j.1420-9101.2009.01838.x; KAPLAN RH, 1992, ECOLOGY, V73, P280, DOI 10.2307/1938739; Koch LK, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-125; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Kvalnes T., 2018, DRYAD DIGITAL REPOSI, DOI DOI 10.5061/DRYAD.M74C7M9; Kvalnes T, 2013, OECOLOGIA, V171, P391, DOI 10.1007/s00442-012-2437-2; Marshall DJ, 2008, ECOLOGY, V89, P2506, DOI 10.1890/07-0267.1; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Nord A, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0087; Oberg M, 2015, ECOL EVOL, V5, P345, DOI 10.1002/ece3.1345; OJANEN M, 1983, ANN ZOOL FENN, V20, P57; Olofsson H, 2009, P ROY SOC B-BIOL SCI, V276, P2963, DOI 10.1098/rspb.2009.0500; Pettifor RA, 2001, J ANIM ECOL, V70, P62, DOI 10.1046/j.1365-2656.2001.00465.x; Ricklefs RE, 2006, P ROY SOC B-BIOL SCI, V273, P2077, DOI 10.1098/rspb.2006.3544; Ringsby TH, 2002, ECOLOGY, V83, P561, DOI 10.1890/0012-9658(2002)083[0561:ASDOAH]2.0.CO;2; Ringsby TH, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.2331; ROFF DA, 2002, LIFE HIST EVOLUTION; Rollinson N, 2016, BIOL REV, V91, P1134, DOI 10.1111/brv.12214; Rollinson N, 2013, AM NAT, V182, P76, DOI 10.1086/670648; Rollinson N, 2013, ECOLOGY, V94, P315, DOI 10.1890/2-0552.1; Saether BE, 2015, TRENDS ECOL EVOL, V30, P273, DOI 10.1016/j.tree.2015.03.007; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x 44 0 0 15 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. JUL 2018 49 7 UNSP e01786 10.1111/jav.01786 6 Ornithology Zoology GO5CP WOS:000440036000014 2019-02-21 J Boyd, RJ; Kelly, TR; MacDougall-Shackleton, SA; MacDougall-Shackleton, EA Boyd, R. J.; Kelly, T. R.; MacDougall-Shackleton, S. A.; MacDougall-Shackleton, E. A. Alternative reproductive strategies in white-throated sparrows are associated with differences in parasite load following experimental infection BIOLOGY LETTERS English Article alternative reproductive strategies; avian malaria; host-parasite interactions; immunocompetence handicap hypothesis; plasmodium; Zonotrichia albicollis ZONOTRICHIA-ALBICOLLIS; IMMUNOCOMPETENCE HANDICAP; PHILOMACHUS-PUGNAX; POLYMORPHISM; SEX; PLASMODIUM; PATTERNS; IMMUNE; MORPH; ASSAY Immune defences often trade off with other life-history components. Within species, optimal allocation to immunity may differ between the sexes or between alternative life-history strategies. White-throated sparrows (Zonotrichia albicollis) are unusual in having two discrete plumage morphs, white-striped and tan-striped. Within each sex, white-striped individuals are more aggressive and provide less parental care than tan-striped individuals. We extended immunocompetence handicap models, which predict sex differences in immunity and parasitism, to hypothesize that infection susceptibility should be greater in white-striped than tan-striped birds. We inoculated birds of both morphs with malarial parasites. Contrary to our prediction, among birds that became infected, parasite loads were higher in tan-striped than white-striped individuals and did not differ between the sexes. Circulating androgen levels did not differ between morphs but were higher in males than females. Our findings are not consistent with androgen-mediated immunosuppression. Instead, morph differences in immunity could reflect social interactions or life-history-related differences in risk of injury, and/or genetic factors. Although plumage and behavioural morphs of white-throated sparrow may differ in disease resistance, these differences do not parallel sex differences that have been reported in animals, and do not appear to be mediated by differences in androgen levels. [Boyd, R. J.; Kelly, T. R.; MacDougall-Shackleton, S. A.; MacDougall-Shackleton, E. A.] Univ Western Ontario, Biol Dept, Adv Facil Avian Res, London, ON N6A 5B7, Canada; [MacDougall-Shackleton, S. A.] Univ Western Ontario, Psychol Dept, Adv Facil Avian Res, London, ON N6A 5C2, Canada MacDougall-Shackleton, EA (reprint author), Univ Western Ontario, Biol Dept, Adv Facil Avian Res, London, ON N6A 5B7, Canada. emacdoug@uwo.ca NSERC [293123-RGPIN, 217381-RGPIN] This work was supported by NSERC Canada Discovery Grants to E.A.M.-S. (293123-RGPIN) and S.A.M.-S. (217381-RGPIN). Boyd RJ, 2018, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.hp26sv7, DOI 10.5061/DRYAD.HP26SV7]; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; GROSS MR, 1980, P NATL ACAD SCI-BIOL, V77, P6937, DOI 10.1073/pnas.77.11.6937; Hellgren O, 2004, J PARASITOL, V90, P797, DOI 10.1645/GE-184R1; Horton BM, 2014, ANIM BEHAV, V93, P207, DOI 10.1016/j.anbehav.2014.04.015; Jukema J, 2006, BIOL LETT-UK, V2, P161, DOI 10.1098/rsbl.2005.0416; LANK DB, 1995, NATURE, V378, P59, DOI 10.1038/378059a0; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lozano GA, 2013, CAN J ZOOL, V91, P212, DOI 10.1139/cjz-2012-0324; Michopoulos V, 2007, AUK, V124, P1330, DOI 10.1642/0004-8038(2007)124[1330:AGATDP]2.0.CO;2; Poulin R, 1996, AM NAT, V147, P287, DOI 10.1086/285851; R Core Team, 2017, R LANG ENV STAT COMP; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; Sacchi R, 2007, AMPHIBIA-REPTILIA, V28, P408, DOI 10.1163/156853807781374700; Sarquis-Adamson Y, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160216; Schneider DS, 2008, NAT REV IMMUNOL, V8, P889, DOI 10.1038/nri2432; Sinervo B, 1996, NATURE, V380, P240, DOI 10.1038/380240a0; Spinney LH, 2006, HORM BEHAV, V50, P762, DOI 10.1016/j.yhbeh.2006.06.034; Tuttle EM, 2016, CURR BIOL, V26, P344, DOI 10.1016/j.cub.2015.11.069; Tuttle EM, 2003, BEHAV ECOL, V14, P425, DOI 10.1093/beheco/14.3.425; Venables WN, 2002, MODERN APPL STAT S; Walther EL, 2014, PARASITOL RES, V113, P3319, DOI 10.1007/s00436-014-3995-5; WATT DJ, 1984, AUK, V101, P110; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4 25 0 0 14 14 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. JUL 2018 14 7 20180194 10.1098/rsbl.2018.0194 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GO6GV WOS:000440138500007 29973391 2019-02-21 J Gregoir, AF; Thore, ESJ; Philippe, C; Pinceel, T; Brendonck, L; Vanschoenwinkel, B Gregoir, Arnout Francis; Thore, Eli Samuel Joachim; Philippe, Charlotte; Pinceel, Tom; Brendonck, Luc; Vanschoenwinkel, Bram Squeezing out the last eggannual fish increase reproductive efforts in response to a predation threat ECOLOGY AND EVOLUTION English Article life history; Nothobranchius; phenotypic plasticity; predation risk LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; INDUCED PLASTICITY; ANNUAL KILLIFISH; TRADE-OFF; NOTHOBRANCHIUS-FURZERI; ANTIPREDATOR BEHAVIOR; PHENOTYPIC PLASTICITY; TRINIDADIAN GUPPIES; GENETIC-BASIS Both constitutive and inducible antipredator strategies are ubiquitous in nature and serve to maximize fitness under a predation threat. Inducible strategies may be favored over constitutive defenses depending on their relative cost and benefit and temporal variability in predator presence. In African temporary ponds, annual killifish of the genus Nothobranchius are variably exposed to predators, depending on whether larger fish invade their habitat from nearby rivers during floods. Nonetheless, potential plastic responses to predation risk are poorly known. Here, we studied whether Nothobranchius furzeri individuals adjust their life history in response to a predation threat. For this, we monitored key life history traits in response to cues that signal the presence of predatory pumpkinseed sunfish (Lepomis gibbosus). While growth rate, adult body size, age at maturation, and initial fecundity were not affected, peak and total fecundity were higher in the predation risk treatment. This contrasts with known life history strategies of killifish from permanent waters, which tend to reduce reproduction in the presence of predators. Although our results show that N.furzeri individuals are able to detect predators and respond to their presence by modulating their reproductive output, these responses only become evident after a few clutches have been deposited. Overall our findings suggest that, in the presence of a predation risk, it can be beneficial to increase the production of life stages that can persist until the predation risk has faded. [Gregoir, Arnout Francis; Thore, Eli Samuel Joachim; Philippe, Charlotte; Pinceel, Tom; Brendonck, Luc; Vanschoenwinkel, Bram] Univ Leuven, Anim Ecol Global Change & Sustainable Dev, Leuven, Belgium; [Philippe, Charlotte] Univ Antwerp, Syst Physiol & Ecotoxicol Res, Antwerp, Belgium; [Pinceel, Tom] Univ Free State, Ctr Environm Management, Bloemfontein, South Africa; [Brendonck, Luc] Northwest Univ, Res Unit Environm Sci & Management, Potchefstroom, South Africa; [Vanschoenwinkel, Bram] Vrije Univ Brussel, Dept Biol, Community Ecol Lab, Brussels, Belgium Gregoir, AF (reprint author), Univ Leuven, Anim Ecol Global Change & Sustainable Dev, Leuven, Belgium. arnout.gregoir@kuleuven.be Thore, Eli/0000-0002-0029-8404 FWO (Fonds Wetenschappelijk Onderzoek) [12F0716N]; KU Leuven Research Fund [PF/10/007] FWO (Fonds Wetenschappelijk Onderzoek), Grant/Award Number: 12F0716N; KU Leuven Research Fund, Grant/Award Number: PF/10/007 Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Belk MC, 1998, OECOLOGIA, V113, P203, DOI 10.1007/s004420050369; Blazek R, 2013, EVODEVO, V4, DOI 10.1186/2041-9139-4-24; Cellerino A, 2016, BIOL REV, V91, P511, DOI 10.1111/brv.12183; Creel S, 2007, SCIENCE, V315, P960, DOI 10.1126/science.1135918; DALY M, 1992, ANIM BEHAV, V44, P1, DOI 10.1016/S0003-3472(05)80748-1; David M, 2014, BEHAV ECOL, V25, P1148, DOI 10.1093/beheco/aru101; Day T, 2002, EVOLUTION, V56, P877; Dill LM, 1999, BEHAV ECOL, V10, P452, DOI 10.1093/beheco/10.4.452; Dixson DL, 2010, ECOL LETT, V13, P68, DOI 10.1111/j.1461-0248.2009.01400.x; Dzikowski R, 2004, J EXP ZOOL PART A, V301A, P776, DOI 10.1002/jez.a.61; Edgell TC, 2009, AM NAT, V174, P434, DOI 10.1086/603639; Edmunds M., 1974, DEFENCE ANIMALS SURV; Figueira WF, 2007, ANIM BEHAV, V74, P329, DOI 10.1016/i.anbehav.2006.12.010; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; Furness AI, 2015, EVOLUTION, V69, P1461, DOI 10.1111/evo.12669; Gosline AK, 2008, AQUAT ECOL, V42, P693, DOI 10.1007/s10452-007-9138-7; Graf M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011958; Gregoir AF, 2017, J FISH BIOL, V91, P880, DOI 10.1111/jfb.13385; HAAS R, 1976, EVOLUTION, V30, P614, DOI 10.1111/j.1558-5646.1976.tb00938.x; HOOGLAND R., 1956, BEHAVIOUR, V10, P205, DOI 10.1163/156853956X00156; Johnson JB, 2001, EVOLUTION, V55, P1486; Kats LB, 1998, ECOSCIENCE, V5, P361, DOI 10.1080/11956860.1998.11682468; Lass S, 2003, HYDROBIOLOGIA, V491, P221, DOI 10.1023/A:1024487804497; Laurila A, 1999, J ANIM ECOL, V68, P1123, DOI 10.1046/j.1365-2656.1999.00354.x; Laurila A, 1998, ECOGRAPHY, V21, P484, DOI 10.1111/j.1600-0587.1998.tb00440.x; Manassa RP, 2013, ANIM BEHAV, V86, P717, DOI 10.1016/j.anbehav.2013.07.003; Mateo JM, 2007, BEHAV ECOL SOCIOBIOL, V62, P37, DOI 10.1007/s00265-007-0436-9; Messina FJ, 1999, PHYSIOL ENTOMOL, V24, P358, DOI 10.1046/j.1365-3032.1999.00151.x; Messina FJ, 2003, J EVOLUTION BIOL, V16, P501, DOI 10.1046/j.1420-9101.2003.00535.x; Peacor SD, 2002, ECOL LETT, V5, P77, DOI 10.1046/j.1461-0248.2002.00287.x; Peckarsky BL, 2001, ECOLOGY, V82, P740, DOI 10.1890/0012-9658(2001)082[0740:VIMSAM]2.0.CO;2; Pinceel T, 2016, SCI REP-UK, V6, DOI 10.1038/srep29451; Pinceel T, 2015, BIOL J LINN SOC, V114, P941, DOI 10.1111/bij.12474; PITA D, 2015, PEER J, V3; Polacik M, 2016, NAT PROTOC, V11, P1396, DOI 10.1038/nprot.2016.080; Polaik M., 2013, HYDROBIOLOGIA, V721, P99; Reichard M, 2014, EVOL ECOL, V28, P1105, DOI 10.1007/s10682-014-9732-9; Reichard M, 2010, BIOL J LINN SOC, V100, P62, DOI 10.1111/j.1095-8312.2010.01406.x; Relyea RA, 2005, ECOLOGY, V86, P1723, DOI 10.1890/04-1920; Relyea RA, 2007, OECOLOGIA, V152, P389, DOI 10.1007/s00442-007-0675-5; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; SIH A, 1987, THEOR POPUL BIOL, V31, P1, DOI 10.1016/0040-5809(87)90019-0; Silberbush A, 2015, ACTA TROP, V150, P196, DOI 10.1016/j.actatropica.2015.08.001; Skelhorn J, 2010, BIOL J LINN SOC, V99, P1; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith KL, 2009, BEHAVIOUR, V146, P283, DOI 10.1163/156853909X410784; Stankowich T, 2005, P ROY SOC B-BIOL SCI, V272, P2627, DOI 10.1098/rspb.2005.3251; Stearns S, 1992, EVOLUTION LIFE HIST; Stevens M, 2005, BIOL REV, V80, P573, DOI 10.1017/S1464793105006810; Stevens M, 2009, PHILOS T R SOC B, V364, P423, DOI 10.1098/rstb.2008.0217; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; Stoks R, 2016, ECOL LETT, V19, P180, DOI 10.1111/ele.12551; Terzibasi E, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003866; Tozzini ET, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-77; Urban MC, 2007, ECOLOGY, V88, P2587, DOI 10.1890/06-1946.1; Valenzano DR, 2006, AGING CELL, V5, P275, DOI 10.1111/j.1474-9726.2006.00212.x; Valenzano DR, 2006, CURR BIOL, V16, P296, DOI 10.1016/j.cub.2005.12.038; Vrtilek M, 2015, ECOL FRESHW FISH, V24, P616, DOI 10.1111/eff.12175; Wafters B. R., 2009, J AM KILLIFISH ASS, V42, P37; Wildekamp RH, 2004, WORLD KILLIES ATLAS; Williams D. D, 2006, BIOL TEMPORARY WATER; Zanette LY, 2011, SCIENCE, V334, P1398, DOI 10.1126/science.1210908 69 3 3 6 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JUL 2018 8 13 6390 6398 10.1002/ece3.3422 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GO2BC WOS:000439769400002 30038743 DOAJ Gold 2019-02-21 J Poorter, L; Castilho, CV; Schietti, J; Oliveira, RS; Costa, FRC Poorter, Lourens; Castilho, Carolina, V; Schietti, Juliana; Oliveira, Rafael S.; Costa, Flavia R. C. Can traits predict individual growth performance? A test in a hyperdiverse tropical forest NEW PHYTOLOGIST English Article acclimation; Amazon; defense; functional traits; growth; plant strategies; plasticity; tropical rainforest PLANT FUNCTIONAL TRAITS; LIFE-HISTORY STRATEGIES; RAIN-FOREST; WOOD DENSITY; LEAF SIZE; DEMOGRAPHIC RATES; INTRASPECIFIC VARIABILITY; PHOTOSYNTHETIC TRAITS; ECONOMICS SPECTRUM; LIGHT INTERCEPTION The functional trait approach has, as a central tenet, that plant traits are functional and shape individual performance, but this has rarely been tested in the field. Here, we tested the individual-based trait approach in a hyperdiverse Amazonian tropical rainforest and evaluated intraspecific variation in trait values, plant strategies at the individual level, and whether traits are functional and predict individual performance. We evaluated > 1300 tree saplings belonging to > 383 species, measured 25 traits related to growth and defense, and evaluated the effects of environmental conditions, plant size, and traits on stem growth. A total of 44% of the trait variation was observed within species, indicating a strong potential for acclimation. Individuals showed two strategy spectra, related to tissue toughness and organ size vs leaf display. In this nutrient- and light-limited forest, traits measured at the individual level were surprisingly poor predictors of individual growth performance because of convergence of traits and growth rates. Functional trait approaches based on individuals or species are conceptually fundamentally different: the species-based approach focuses on the potential and the individual-based approach on the realized traits and growth rates. Counterintuitively, the individual approach leads to a poor prediction of individual performance, although it provides a more realistic view on community dynamics. [Poorter, Lourens] Wageningen Univ & Res, Forest Ecol & Forest Management Grp, POB 47, NL-6700 AA Wageningen, Netherlands; [Poorter, Lourens; Schietti, Juliana; Costa, Flavia R. C.] INPA, Coordenacao Pesquisa Biodiversidade, Caixa Postal 2223, BR-69008971 Manaus, Amazonas, Brazil; [Castilho, Carolina, V] Embrapa Roraima, Rodovia BR 174,Km 8,Caixa Postal 133, BR-69301970 Boa Vista, PR, Brazil; [Oliveira, Rafael S.] Univ Estadual Campinas, Inst Biol, Dept Biol Vegetal, Caixa Postal 6109, BR-13083970 Campinas, SP, Brazil Poorter, L (reprint author), Wageningen Univ & Res, Forest Ecol & Forest Management Grp, POB 47, NL-6700 AA Wageningen, Netherlands.; Poorter, L (reprint author), INPA, Coordenacao Pesquisa Biodiversidade, Caixa Postal 2223, BR-69008971 Manaus, Amazonas, Brazil. lourens.poorter@wur.nl Oliveira, Rafael/B-3422-2013 Oliveira, Rafael/0000-0002-6392-2526; Poorter, Lourens/0000-0003-1391-4875 CAPES Science Without Borders grant [078/21013]; INPA's Division of Reserves This study was funded by a CAPES Science Without Borders grant #078/21013 to F.R.C.C. and L.P. The study also benefited from 15 yr of research conducted under the Brazilian Biodiversity Program (PPBio) and the Brazilian LTER (PELD), which established and monitored the vegetation plots used here. We acknowledge the support of INPA's Division of Reserves and the invaluable help of Maria Aguida Lopes, Celio Braga, Lorena Rincon, Jefferson Rodrigues de Souza, Carlos Villacorta, Elisangela Xavier Rocha, Luiza Cosme, and Natalia Castro in the field and laboratory, and Giselle F. Campos on administration. We are grateful to two anonymous reviewers for their helpful comments. Albert CH, 2011, PERSPECT PLANT ECOL, V13, P217, DOI 10.1016/j.ppees.2011.04.003; Anten NPR, 2010, AM NAT, V175, P250, DOI 10.1086/649581; Baker TR, 2004, GLOBAL CHANGE BIOL, V10, P545, DOI 10.1111/j.1529-8817.2003.00751.x; Baraloto C, 2010, ECOL LETT, V13, P1338, DOI 10.1111/j.1461-0248.2010.01517.x; Barto K., 2013, MUMIN MULTIMODEL INF; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; CHAUVEL A, 1987, EXPERIENTIA, V43, P234, DOI 10.1007/BF01945546; Chave J, 2006, ECOL APPL, V16, P2356, DOI 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2; Cornelissen JHC, 1999, OECOLOGIA, V118, P248, DOI 10.1007/s004420050725; CORNER EJH, 1949, ANN BOT-LONDON, V13, P367, DOI 10.1093/oxfordjournals.aob.a083225; Coste S, 2010, ANN FOREST SCI, V67, DOI 10.1051/forest/2010020; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Evans G. C., 1972, QUANTITATIVE ANAL PL; Falster DS, 2003, NEW PHYTOL, V158, P509, DOI 10.1046/j.1469-8137.2003.00765.x; Fine PVA, 2004, SCIENCE, V305, P663, DOI 10.1126/science.1098982; Fortunel C, 2016, ECOL LETT, V19, P1062, DOI 10.1111/ele.12642; Fortunel C, 2012, FUNCT ECOL, V26, P1153, DOI 10.1111/j.1365-2435.2012.02020.x; Friesen ML, 2011, ANNU REV ECOL EVOL S, V42, P23, DOI 10.1146/annurev-ecolsys-102710-145039; Grime JP, 1997, OIKOS, V79, P259, DOI 10.2307/3546011; Hodgson JG, 2011, ANN BOT-LONDON, V108, P1337, DOI 10.1093/aob/mcr225; Iida Y, 2014, J ECOL, V102, P641, DOI 10.1111/1365-2745.12221; Iida Y, 2014, ECOLOGY, V95, P353, DOI 10.1890/11-2173.1; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; Keeling HC, 2007, FOREST ECOL MANAG, V242, P431, DOI 10.1016/j.foreco.2007.01.060; King DA, 2006, J ECOL, V94, P670, DOI 10.1111/j.1365-2745.2006.01112.x; Kitajima K, 2002, AM J BOT, V89, P1925, DOI 10.3732/ajb.89.12.1925; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kitajima K, 2008, TROPICAL FOREST COMM, P160; Kitajima K, 2010, NEW PHYTOL, V186, P708, DOI 10.1111/j.1469-8137.2010.03212.x; Kunstler G, 2016, NATURE, V529, P204, DOI 10.1038/nature16476; LAMBERS H, 1992, ADV ECOL RES, V23, P187, DOI 10.1016/S0065-2504(08)60148-8; Laughlin DC, 2013, TRENDS PLANT SCI, V18, P584, DOI 10.1016/j.tplants.2013.04.012; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Lusk CH, 2002, OECOLOGIA, V132, P188, DOI 10.1007/s00442-002-0974-9; Mangan SA, 2010, NATURE, V466, P752, DOI 10.1038/nature09273; MARQUES AO, 1981, ACTA AMAZONICA, V11, P759; Martinez-Vilalta J, 2010, J ECOL, V98, P1462, DOI 10.1111/j.1365-2745.2010.01718.x; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Messier J, 2017, ECOGRAPHY, V40, P685, DOI 10.1111/ecog.02006; Milla R, 2007, P ROY SOC B-BIOL SCI, V274, P2109, DOI 10.1098/rspb.2007.0417; Muller-Landau HC, 2004, BIOTROPICA, V36, P20, DOI 10.1111/j.1744-7429.2004.tb00292.x; Niinemets U, 2001, ECOLOGY, V82, P453, DOI 10.2307/2679872; Niklas KJ, 1999, AM J BOT, V86, P465, DOI 10.2307/2656806; Onoda Y, 2011, ECOL LETT, V14, P301, DOI 10.1111/j.1461-0248.2010.01582.x; Perez-Harguindeguy N, 2013, AUST J BOT, V61, P167, DOI 10.1071/BT12225; POORTER H, 1999, HDB FUNCTIONAL PLANT, P81; Poorter H, 2010, J EXP BOT, V61, P2043, DOI 10.1093/jxb/erp358; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2006, ECOLOGY, V87, P1289, DOI 10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2; Poorter L, 2014, FUNCT ECOL, V28, P232, DOI 10.1111/1365-2435.12158; Prado JA, 2016, J ECOL, V104, P817, DOI 10.1111/1365-2745.12543; Quesada CA, 2012, BIOGEOSCIENCES, V9, P2203, DOI 10.5194/bg-9-2203-2012; R Core Team, 2014, R LANG ENV STAT COMP; Reich PB, 1999, ECOLOGY, V80, P1955, DOI 10.2307/176671; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Renno CD, 2008, REMOTE SENS ENVIRON, V112, P3469, DOI 10.1016/j.rse.2008.03.018; Rozendaal DMA, 2006, FUNCT ECOL, V20, P207, DOI 10.1111/j.1365-2435.01105.x; Ruger N, 2012, ECOLOGY, V93, P2626, DOI 10.1890/12-0622.1; Santiago LS, 2004, OECOLOGIA, V140, P543, DOI 10.1007/s00442-004-1624-1; Siefert A, 2015, ECOL LETT, V18, P1406, DOI 10.1111/ele.12508; Sterck FJ, 2006, AM NAT, V167, P758, DOI 10.1086/503056; Sterck FJ, 2006, J ECOL, V94, P1192, DOI 10.1111/j.1365-2745.2006.01162.x; ter Steege H, 2006, NATURE, V443, P444, DOI 10.1038/nature05134; van der Sande MT, 2018, FUNCT ECOL, V32, P461, DOI 10.1111/1365-2435.12968; Villar R, 2013, AM J BOT, V100, P1969, DOI 10.3732/ajb.1200562; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Violle C, 2012, TRENDS ECOL EVOL, V27, P244, DOI 10.1016/j.tree.2011.11.014; WELDEN CW, 1991, ECOLOGY, V72, P35, DOI 10.2307/1938900; Westoby M, 2003, OECOLOGIA, V135, P621, DOI [10.1007/s00442-003-1378-1, 10.1007/s00442-003-1231-6]; Westoby M, 1998, PLANT SOIL, V199, P213, DOI 10.1023/A:1004327224729; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Zieminska K, 2013, AOB PLANTS, V5, DOI 10.1093/aobpla/plt046 73 5 5 17 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0028-646X 1469-8137 NEW PHYTOL New Phytol. JUL 2018 219 1 109 121 10.1111/nph.15206 13 Plant Sciences Plant Sciences GI1TJ WOS:000434153200017 29774944 Other Gold 2019-02-21 J Nakov, T; Beaulieu, JM; Alverson, AJ Nakov, Teofil; Beaulieu, Jeremy M.; Alverson, Andrew J. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta) NEW PHYTOLOGIST English Article anisogamy; diatoms; diversification; life history; motility; oogamy PHYLOGENETIC ANALYSES; PENALIZED LIKELIHOOD; SEXUAL REPRODUCTION; VERTICAL-MIGRATION; HANTZSCHIA-VIRGATA; MARINE SPECIATION; PENNATE DIATOMS; BENTHIC DIATOMS; EVOLUTION; DIVERGENCE Patterns of species richness are commonly linked to life history strategies. In diatoms, an exceptionally diverse lineage of photosynthetic heterokonts important for global photosynthesis and burial of atmospheric carbon, lineages with different locomotory and reproductive traits differ dramatically in species richness, but any potential association between life history strategy and diversification has not been tested in a phylogenetic framework. We constructed a time-calibrated, 11-gene, 1151-taxon phylogeny of diatoms - the most inclusive diatom species tree to date. We used this phylogeny, together with a comprehensive inventory of first-last occurrences of Cenozoic fossil diatoms, to estimate ranges of expected species richness, diversification and its variation through time and across lineages. Diversification rates varied with life history traits. Although anisogamous lineages diversified faster than oogamous ones, this increase was restricted to a nested clade with active motility in the vegetative cells. We propose that the evolution of motility in vegetative cells, following an earlier transition from oogamy to anisogamy, facilitated outcrossing and improved utilization of habitat complexity, ultimately leading to enhanced opportunity for adaptive divergence across a variety of novel habitats. Together, these contributed to a species radiation that gave rise to the majority of present-day diatom diversity. [Nakov, Teofil; Beaulieu, Jeremy M.; Alverson, Andrew J.] Univ Arkansas, Univ Arkansas 1, SCEN 601, Fayetteville, AR 72701 USA Nakov, T (reprint author), Univ Arkansas, Univ Arkansas 1, SCEN 601, Fayetteville, AR 72701 USA. tnakov@uark.edu National Science Foundation (NSF); Arkansas Economic Development Commission; NSF [DEB-1353131]; Simons Foundation [403249] We thank Jakub Witkowski (Uniwersytet Szczecinski, Poland) and Matt Ashworth (The University of Texas at Austin, TX, USA) for discussions on the diatom fossil record. Pat Kociolek (University of Colorado, Boulder, CO, USA) provided helpful information about diatom species numbers in AlgaeBase and DiatomBase. We thank Adam Siepielski (University of Arkansas, Fayetteville, AR, USA) and Edward Theriot (The University of Texas at Austin, TX, USA) for comments on an earlier version of the manuscript. This research used computational resources available through the Arkansas High Performance Computing Center, which was funded through multiple National Science Foundation (NSF) grants and the Arkansas Economic Development Commission. This work was supported by the NSF (grant no. DEB-1353131 to AJA) and by a grant from the Simons Foundation (403249, A.J.A.). Alfaro ME, 2009, P NATL ACAD SCI USA, V106, P13410, DOI 10.1073/pnas.0811087106; Alverson AJ, 2007, MOL PHYLOGENET EVOL, V45, P193, DOI 10.1016/j.ympev.2007.03.024; Alverson AJ, 2014, PALEOBIOLOGY, V40, P91, DOI 10.1666/12055; Andersen RA, 2004, AM J BOT, V91, P1508, DOI 10.3732/ajb.91.10.1508; Bapst DW, 2012, METHODS ECOL EVOL, V3, P803, DOI 10.1111/j.2041-210X.2012.00223.x; Barraclough TG, 2003, EVOLUTION, V57, P2166; Basu S, 2017, NEW PHYTOL, V215, P140, DOI 10.1111/nph.14557; Beaulieu JM, 2016, SYST BIOL, V65, P583, DOI 10.1093/sysbio/syw022; Bondoc KGV, 2016, MICROB ECOL, V72, P287, DOI 10.1007/s00248-016-0796-7; Bondoc KGV, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10540; Brown JW, 2016, TURBOMEDUSA MODELLIN; Minh BQ, 2013, MOL BIOL EVOL, V30, P1188, DOI 10.1093/molbev/mst024; Bulmer MG, 2002, P ROY SOC B-BIOL SCI, V269, P2381, DOI 10.1098/rspb.2002.2161; CANNONE JJ, 2002, BMC BIOINFORMATICS, V3; Cermeno P, 2015, P NATL ACAD SCI USA, V112, P4239, DOI 10.1073/pnas.1412883112; Chepurnov VA, 1999, EUR J PHYCOL, V34, P1; Chepurnov VA, 2004, PHYCOL RES, V52, P1; Chepurnov VA, 2004, INT REV CYTOL, V237, P91; Cieslak A, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2978; Cohn SA, 2015, DIATOM RES, V30, P213, DOI 10.1080/0269249X.2015.1058295; Condamine FL, 2016, SCI REP-UK, V6, DOI 10.1038/srep19208; Consalvey M, 2004, DIATOM RES, V19, P181; Davidovich NA, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-15301-z; Davidovich NA, 2010, FOTTEA, V10, P251; Donoghue MJ, 2015, NEW PHYTOL, V207, P260, DOI 10.1111/nph.13367; Drebes G., 1977, BOTANICAL MONOGRAPHS, P250; Drummond CS, 2012, SYST BIOL, V61, P443, DOI 10.1093/sysbio/syr126; Duda TF, 2005, MOL ECOL, V14, P267, DOI 10.1111/j.1365-294X.2004.02397.x; Edgar RC, 2010, BIOINFORMATICS, V26, P2460, DOI 10.1093/bioinformatics/btq461; Edwards AR, 1991, NZ GEOLOGICAL SURVEY, V64; Foote M, 2000, PALEOBIOLOGY, V26, P74, DOI 10.1666/0094-8373(2000)26[74:OAECOT]2.0.CO;2; Frankenbach S, 2014, EUR J PHYCOL, V49, P429, DOI 10.1080/09670262.2014.974218; Gersonde R., 1990, P OCEAN DRILLING PRO, P365, DOI DOI 10.2973/0DP.PR0C.SR.113.127.1990; Gillard J, 2013, ANGEW CHEM INT EDIT, V52, P854, DOI 10.1002/anie.201208175; Goldberg EE, 2010, SCIENCE, V330, P493, DOI 10.1126/science.1194513; Guiry MD, 2017, ALGAEBASE; Guiry MD, 2012, J PHYCOL, V48, P1057, DOI 10.1111/j.1529-8817.2012.01222.x; Harper M.A., 1977, BIOL DIATOMS, V13, P224; Harwood D.M., 1990, Proceedings of the Ocean Drilling Program Scientific Results, V113, P403; HARWOOD D. M., 2007, PALEONTOLOGICAL SOC, V13, P33; Harwood D.M., 1995, PALEONTOLOGICAL SOC, V8, P81; Hoek C, 1995, ALGAE INTRO PHYCOLOG; Hughes CE, 2014, P ROYAL SOC B, V281; IKEDA H, 2012, NAT COMMUN, V3; Kaczmarska I, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181413; Kaczmarska I, 2013, DIATOM RES, V28, P263, DOI 10.1080/0269249X.2013.791344; Katoh K, 2013, MOL BIOL EVOL, V30, P772, DOI 10.1093/molbev/mst010; Kingston MB, 1999, ESTUARIES, V22, P81, DOI 10.2307/1352929; Kooistra WHCF, 2003, J PHYCOL, V39, P185, DOI 10.1046/j.1529-8817.2003.02083.x; Nguyen LT, 2015, MOL BIOL EVOL, V32, P268, DOI 10.1093/molbev/msu300; LAZARUS D, 1994, MATH GEOL, V26, P817, DOI 10.1007/BF02083119; Lazarus D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084857; Leclere L, 2009, SYST BIOL, V58, P509, DOI 10.1093/sysbio/syp044; Leslie AB, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1812; Maddison WP, 2015, SYST BIOL, V64, P127, DOI 10.1093/sysbio/syu070; Magallon S, 2001, EVOLUTION, V55, P1762, DOI 10.1111/j.0014-3820.2001.tb00826.x; Mann DG, 2013, J EUKARYOT MICROBIOL, V60, P414, DOI 10.1111/jeu.12047; Matsuda H, 1999, EVOL ECOL RES, V1, P769; Maynard Smith J, 1978, EVOLUTION SEX; Medlin LK, 2015, VIE MILIEU, V65, P219; Moeys S, 2016, SCI REP-UK, V6, DOI 10.1038/srep19252; Nakov T, 2014, PHYCOLOGIA, V53, P359, DOI 10.2216/14-002.1; Nawrocki EP, 2009, BIOINFORMATICS, V25, P1335, DOI 10.1093/bioinformatics/btp157; Norris RW, 2015, BIORXIV; PALMER JD, 1967, BIOL BULL, V132, P44, DOI 10.2307/1539877; PALUMBI SR, 1994, ANNU REV ECOL SYST, V25, P547, DOI 10.1146/annurev.ecolsys.25.1.547; PALUMBI SR, 1992, TRENDS ECOL EVOL, V7, P114, DOI 10.1016/0169-5347(92)90144-Z; PARKER GA, 1972, J THEOR BIOL, V36, P529, DOI 10.1016/0022-5193(72)90007-0; Parks MB, 2018, MOL BIOL EVOL, V35, P80, DOI 10.1093/molbev/msx268; PICKETTHEAPS J, 1991, J PHYCOL, V27, P718, DOI 10.1111/j.0022-3646.1991.00718.x; PICKETTHEAPS JD, 1986, J PHYCOL, V22, P334, DOI 10.1111/j.1529-8817.1986.tb00032.x; Poulsen NC, 1999, CELL MOTIL CYTOSKEL, V44, P23, DOI 10.1002/(SICI)1097-0169(199909)44:1<23::AID-CM2>3.3.CO;2-4; Rabosky DL, 2009, NATURE, V457, P183, DOI 10.1038/nature07435; Rainford JL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109085; Round F. E, 1990, DIATOMS BIOL MORPHOL; Ruck EC, 2016, MOL PHYLOGENET EVOL, V103, P155, DOI 10.1016/j.ympev.2016.07.023; Ruck EC, 2011, PROTIST, V162, P723, DOI 10.1016/j.protis.2011.02.003; Sanderson MJ, 2002, MOL BIOL EVOL, V19, P101, DOI 10.1093/oxfordjournals.molbev.a003974; Sato S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026923; Sims PA, 2006, PHYCOLOGIA, V45, P361, DOI 10.2216/05-22.1; SMALL J, 1950, ANN BOT-LONDON, V14, P91, DOI 10.1093/oxfordjournals.aob.a083238; Small J, 1945, P ROYAL IRISH ACAD B, V51, P53; Small James, 1945, PROC ROY IRISH ACAD SECT B, V50, P295; Smith SA, 2012, BIOINFORMATICS, V28, P2689, DOI 10.1093/bioinformatics/bts492; Sorhannus U, 2012, PROTIST, V163, P252, DOI 10.1016/j.protis.2011.04.005; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Tank DC, 2015, NEW PHYTOL, V207, P454, DOI 10.1111/nph.13491; Theriot EC, 2015, MOL PHYLOGENET EVOL, V89, P28, DOI 10.1016/j.ympev.2015.03.012; Togashi T, 2012, P NATL ACAD SCI USA, V109, P13692, DOI 10.1073/pnas.1203495109; van Valen L., 1973, EVOL THEORY, V1, P1, DOI DOI 10.1017/CBO9781139173179 90 3 3 9 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0028-646X 1469-8137 NEW PHYTOL New Phytol. JUL 2018 219 1 462 473 10.1111/nph.15137 12 Plant Sciences Plant Sciences GI1TJ WOS:000434153200043 29624698 Other Gold 2019-02-21 J Whelan, J; Hingston, ST Whelan, Jodie; Hingston, Sean T. Can Everyday Brands Be Threatening? Responses to Brand Primes Depend on Childhood Socioeconomic Status JOURNAL OF CONSUMER PSYCHOLOGY English Article Childhood environments; Brand cues; Socioeconomic status; Self-esteem; Threat LIFE-HISTORY STRATEGIES; SELF-ESTEEM; SOCIAL-CLASS; CONSUMPTION; CHOICE; AFFIRMATION; PSYCHOLOGY; BEHAVIOR; LUXURY; SENSE The current work investigates whether childhood socioeconomic status influences how people respond to brands. Results from two experiments show that, perhaps counterintuitively, everyday brands-and not luxury brands-can threaten the self-esteem of people who had poor childhoods. Supported by the results of our pilot study, we argue this is because everyday brands represent a material norm that can be difficult for low-income consumers to achieve. Furthermore, our findings suggest that consumers from poor backgrounds may cope with this threat by becoming more self-interested, as indicated by decreased volunteer intentions. [Whelan, Jodie] York Univ, Toronto, ON, Canada; [Hingston, Sean T.] Western Univ, London, ON, Canada Whelan, J (reprint author), York Univ, Sch Adm Studies, 4700 Keele St, Toronto, ON M9N2H9, Canada. whelanj@yorku.ca Whelan, Jodie/0000-0001-5194-8609 York University This work was supported by York University. Ahuvia Aaron, 1998, J MACROMARKETING, V18, P153, DOI DOI 10.1177/027614679801800207; Ahuvia AC, 2002, J CONSUM PSYCHOL, V12, P389, DOI 10.1207/15327660260382414; Aronson J, 1999, SCI CON SER, P127, DOI 10.1037/10318-006; BELK R, 1984, J CONSUM RES, V10, P386, DOI 10.1086/208977; Bergkvist L, 2007, J MARKETING RES, V44, P175, DOI 10.1509/jmkr.44.2.175; Carnelley KB, 2010, J SOC PERS RELAT, V27, P253, DOI 10.1177/0265407509360901; Chartrand TL, 2008, J CONSUM RES, V35, P189, DOI 10.1086/588685; Cheng SYY, 2012, J CONSUM PSYCHOL, V22, P280, DOI 10.1016/j.jcps.2011.05.005; Cohen GL, 2014, ANNU REV PSYCHOL, V65, P333, DOI 10.1146/annurev-psych-010213-115137; Connell PM, 2014, J CONSUM RES, V41, P119, DOI 10.1086/675218; Coupland JC, 2005, J CONSUM RES, V32, P106, DOI 10.1086/429604; Festinger L, 1954, HUM RELAT, V7, P117, DOI 10.1177/001872675400700202; Gordon D., 2000, POVERTY SOCIAL EXCLU; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hamilton K, 2012, SOCIOLOGY, V46, P74, DOI 10.1177/0038038511416146; Hansen J, 2011, J ECON PSYCHOL, V32, P789, DOI 10.1016/j.joep.2011.05.005; Hayes AF, 2013, INTRO MEDIATION MODE; Hayes AF, 2009, BEHAV RES METHODS, V41, P924, DOI 10.3758/BRM.41.3.924; Heatherton TF, 1998, PERS SOC PSYCHOL B, V24, P301, DOI 10.1177/0146167298243007; HEATHERTON TF, 1991, J PERS SOC PSYCHOL, V60, P895, DOI 10.1037/0022-3514.60.6.895; Henry P, 2004, PSYCHOL MARKET, V21, P375, DOI 10.1002/mar.20010; HILL RP, 1990, J CONSUM RES, V17, P303, DOI 10.1086/208559; Isaksen KJ, 2012, PSYCHOL MARKET, V29, P117, DOI 10.1002/mar.20509; John DR, 1999, J CONSUM RES, V26, P183, DOI 10.1086/209559; Johnson P, 1936, STAT RES MEMOIRS, V1, P57, DOI [DOI 10.1007/BF02310468, 10.2307/2278685?uid=2&uid=4&sid=21104143453707]; KASSER T, 1995, DEV PSYCHOL, V31, P907, DOI 10.1037/0012-1649.31.6.907; Kraus MW, 2012, SOC PERSONAL PSYCHOL, V6, P642, DOI 10.1111/j.1751-9004.2012.00453.x; Chaplin LN, 2014, J PUBLIC POLICY MARK, V33, P78, DOI 10.1509/jppm.13.050; Laran J, 2013, PSYCHOL SCI, V24, P167, DOI 10.1177/0956797612450033; Markus HR, 2010, J CONSUM RES, V37, P344, DOI 10.1086/651242; Martin KD, 2012, J CONSUM RES, V38, P1155, DOI 10.1086/661528; McFerran B, 2014, J CONSUM PSYCHOL, V24, P455, DOI 10.1016/j.jcps.2014.03.004; Mikulincer M, 2001, J PERS SOC PSYCHOL, V81, P1205, DOI 10.1037/0022-3514.81.6.1205; Miller KW, 2012, J BUS RES, V65, P1471, DOI 10.1016/j.jbusres.2011.10.013; Mittal C, 2016, J CONSUM RES, V43, P636, DOI 10.1093/jcr/ucw046; Mittal C, 2014, J PERS SOC PSYCHOL, V107, P621, DOI 10.1037/a0037398; Park LE, 2009, J PERS SOC PSYCHOL, V96, P203, DOI 10.1037/a0013933; Piff PK, 2010, J PERS SOC PSYCHOL, V99, P771, DOI 10.1037/a0020092; Pyszczynski T, 2004, PSYCHOL BULL, V130, P435, DOI 10.1037/0033-2909.130.3.435; Richins ML, 2015, J CONSUM RES, V41, P1333, DOI 10.1086/680087; Rosenberg M., 1965, SOC ADOLESCENT SELF, DOI [10.1515/9781400876136, DOI 10.1515/9781400876136]; Roux C, 2015, J CONSUM RES, V42, P615, DOI 10.1093/jcr/ucv048; Rucker DD, 2008, J CONSUM RES, V35, P257, DOI 10.1086/588569; SCHWARZ N, 1985, PUBLIC OPIN QUART, V49, P388, DOI 10.1086/268936; Sharma E, 2012, J CONSUM RES, V39, P545, DOI 10.1086/664038; Sherman DAK, 2000, PERS SOC PSYCHOL B, V26, P1046, DOI 10.1177/01461672002611003; Steele C. M., 1988, ADV EXPT SOCIAL PSYC, V21, P261, DOI DOI 10.1016/S0065-2601(08)60229-4; Stephens NM, 2011, SOC PSYCHOL PERS SCI, V2, P33, DOI 10.1177/1948550610378757; Tesser A., 1988, ADV EXPT SOCIAL PSYC, P181, DOI DOI 10.1016/S0065-2601(08)60227-0; Tynan C, 2010, J BUS RES, V63, P1156, DOI 10.1016/j.jbusres.2009.10.012; Van Lange P. A. M, 2007, SOCIAL PSYCHOL HDB B, P540; VANVUGT M, 1995, J APPL SOC PSYCHOL, V25, P258; Walasek L, 2018, J CONSUM PSYCHOL, V28, P138, DOI 10.1002/jcpy.1012; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919; White K, 2009, J MARKETING, V73, P109, DOI 10.1509/jmkg.73.4.109 57 1 1 10 10 JOHN WILEY & SONS LTD CHICHESTER THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND 1057-7408 1532-7663 J CONSUM PSYCHOL J. Consum. Psychol. JUL 2018 28 3 477 486 10.1002/jcpy.1029 10 Business; Psychology, Applied Business & Economics; Psychology GN1CX WOS:000438723300007 2019-02-21 J Akatov, VV; Akatova, TV; Chefranov, CG Akatov, V. V.; Akatova, T. V.; Chefranov, C. G. The Relationship of Dominance and Evenness with Productivity and Species Richness in Plant Communities with Different Organization Models RUSSIAN JOURNAL OF ECOLOGY English Article productivity; species richness; dominance; evenness; plant communities; life history strategies; competition; organization models DIVERSITY; COMPETITION; BIODIVERSITY; GRASSLAND; BIOMASS; INVASIONS; ABUNDANCE; TREE; INVASIBILITY; SUCCESSION The relationship between dominance and evenness in plant communities organized according to different models-competitive (alpine, subalpine, and low-mountain grasslands), stress-tolerant (alpine heaths and scrubs, subalpine fens, steppes, the forest herbaceous layer), and ruderal-has been analyzed in the Western Caucasus and Ciscaucasia. No correlation between evenness (dominance) and productivity has been revealed in communities of any type. The correlation between dominance and species richness is negative and, in most cases, linear, being stronger in competitive and ruderal than in stress-tolerant cenoses. The correlation between evenness and species richness in grassland communities (the competitive model) is strong, positive, and linear, while this correlation in ruderal and stress-tolerant communities is weak or absent. [Akatov, V. V.] Maikop State Technol Univ, Maykop 385000, Russia; [Akatova, T. V.; Chefranov, C. G.] Caucasian State Nat Biosphere Reserve, Maykop 385000, Russia Akatov, VV (reprint author), Maikop State Technol Univ, Maykop 385000, Russia. akatovmgti@mail.ru Russian Foundation for Basic Research [16-04-00228] This study was supported by the Russian Foundation for Basic Research, project no. 16-04-00228. Adler PB, 2011, SCIENCE, V333, P1750, DOI 10.1126/science.1204498; Akatov VV, 2012, RUSS J ECOL+, V43, P294, DOI 10.1134/S1067413612040030; Bartha S, 2014, APPL VEG SCI, V17, P201, DOI 10.1111/avsc.12066; Bell G, 2000, AM NAT, V155, P606, DOI 10.1086/303345; BENGTSSON J, 1994, TRENDS ECOL EVOL, V9, P246, DOI 10.1016/0169-5347(94)90289-5; BERGER WH, 1970, SCIENCE, V168, P1345, DOI 10.1126/science.168.3937.1345; BOBBINK R, 1987, BIOL CONSERV, V40, P301, DOI 10.1016/0006-3207(87)90122-4; Caruso T, 2007, BIODIVERS CONSERV, V16, P3277, DOI 10.1007/s10531-006-9137-3; CASWELL H, 1976, ECOL MONOGR, V46, P327, DOI 10.2307/1942257; Chalcraft DR, 2009, BIODIVERS CONSERV, V18, P91, DOI 10.1007/s10531-008-9457-6; Chase JM, 2005, FUNCT ECOL, V19, P182, DOI 10.1111/j.0269-8463.2005.00937.x; CORNELL HV, 1992, J ANIM ECOL, V61, P1, DOI 10.2307/5503; Csergo AM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073533; Drobner U, 1998, OIKOS, V82, P295, DOI 10.2307/3546969; GRACE JB, 1991, FUNCT ECOL, V5, P583, DOI 10.2307/2389475; Grime J. P., 2001, PLANT STRATEGIES VEG; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Hajkowicz S.A., 2007, I OCEANOGRAPHIQUE, V14, P22; Hautier Y, 2009, SCIENCE, V324, P636, DOI 10.1126/science.1169640; Hejda M, 2009, J ECOL, V97, P393, DOI 10.1111/j.1365-2745.2009.01480.x; Hierro JL, 2005, J ECOL, V93, P5, DOI [10.1111/j.0022-0477.2004.00953.x, 10.1111/j.1365-2745.2004.00953.x]; Hillebrand H, 2008, ECOLOGY, V89, P1510, DOI 10.1890/07-1053.1; HUBBELL SP, 1979, SCIENCE, V203, P1299, DOI 10.1126/science.203.4387.1299; HUSTON M, 1979, AM NAT, V113, P81, DOI 10.1086/283366; Johnston EL, 2009, ENVIRON POLLUT, V157, P1745, DOI 10.1016/j.envpol.2009.02.017; Keddy P. A., 2001, COMPETITION; Kunte K, 2008, OIKOS, V117, P69, DOI 10.1111/j.2007.0030-1299.16125.x; Kuznetsova N. A., 2009, VIDY POSVYASHCHEN 75, P412; Lamb EG, 2008, AM NAT, V171, P777, DOI 10.1086/587528; [Лебедева В.X. Lebedeva V. Ch.], 2011, [Ботанический журнал, Botanical Journal, Botanicheskii zhurnal], V96, P3; Lonsdale WM, 1999, ECOLOGY, V80, P1522, DOI 10.1890/0012-9658(1999)080[1522:GPOPIA]2.0.CO;2; Lososova Z, 2008, PRESLIA, V80, P291; Ma M, 2005, OIKOS, V111, P192, DOI 10.1111/j.0030-1299.2005.13049.x; Magguran A, 1988, ECOLOGICAL DIVERSITY; McKane RB, 2002, NATURE, V415, P68, DOI 10.1038/415068a; Mirkin BM, 2007, ZH OBSHCH BIOL, V68, P435; Mirkin B. M., 2012, SOVREMENNOE SOSTOYAN; MIRKIN BM, 1994, J VEG SCI, V5, P283, DOI 10.2307/3236163; Mulder CPH, 2004, OIKOS, V107, P50, DOI 10.1111/j.0030-1299.2004.13110.x; Olff H, 1998, APPL VEG SCI, V1, P15, DOI 10.2307/1479081; Onipchenko V. G, 2013, FUNKTSIONALNAYA FITO; Onipchenko VG, 1998, J VEG SCI, V9, P27, DOI 10.2307/3237220; PALMER MW, 1995, OIKOS, V73, P203, DOI 10.2307/3545909; Parker I.M., 1999, Biological Invasions, V1, P3, DOI 10.1023/A:1010034312781; Peet R. K., 1988, DIVERSITY PATTERN PL; PIELOU EC, 1966, J THEOR BIOL, V13, P131, DOI 10.1016/0022-5193(66)90013-0; PIPER JK, 1995, CAN J BOT, V73, P1635, DOI 10.1139/b95-177; Poggio SL, 2011, WEED RES, V51, P241, DOI 10.1111/j.1365-3180.2011.00845.x; Prach K, 1999, J VEG SCI, V10, P383, DOI 10.2307/3237067; Rabotnov T.A., 1983, FITOTSENOLOGIYA; Reinhart KO, 2005, ECOGRAPHY, V28, P573, DOI 10.1111/j.2005.0906-7590.04166.x; REJMANEK M, 1989, BIOL INVASIONS GLOBA, P369; Richardson DM, 2006, PROG PHYS GEOG, V30, P409, DOI 10.1191/0309133306pp490pr; ROUTLEDGE RD, 1983, OIKOS, V40, P149, DOI 10.2307/3544211; Sasaki T, 2011, OECOLOGIA, V166, P761, DOI 10.1007/s00442-011-1916-1; Schwinning S, 1998, OECOLOGIA, V113, P447, DOI 10.1007/s004420050397; Silva IA, 2010, ACTA BOT BRAS, V24, P407, DOI 10.1590/S0102-33062010000200011; Smith B, 1996, OIKOS, V76, P70, DOI 10.2307/3545749; Somodi I, 2008, APPL VEG SCI, V11, P187, DOI 10.3170/2008-7-18354; Stirling G, 2001, AM NAT, V158, P286, DOI 10.1086/321317; Tilman David, 1993, P13; Tkacheva E. V., 2011, Russian Journal of Biological Invasions, V2, P268, DOI 10.1134/S2075111711040126; Tokhtar V. K., 2011, Russian Journal of Biological Invasions, V2, P273, DOI 10.1134/S2075111711040138; Vance-Chalcraft HD, 2010, BIOTROPICA, V42, P290, DOI 10.1111/j.1744-7429.2009.00600.x; VANDERMAAREL E, 1995, J VEG SCI, V6, P741, DOI 10.2307/3236445; Vasilevich V. I., 2015, Botanicheskii Zhurnal, V100, P372; Vasilevich V. I., 2014, Botanicheskii Zhurnal, V99, P226; Vasilevich V. I., 1991, Botanicheskii Zhurnal (St. Petersburg), V76, P1674; VERMEER JG, 1987, ACTA OECOL-OEC PLANT, V8, P321; Wilsey B, 2007, PLANT ECOL, V190, P259, DOI 10.1007/s11258-006-9206-4; Yodzis P., 1978, LECT NOTES BIOMATH, V25, P1; Zernov A. S., 2006, FLORA SEVERO ZAPADNO; Zhang J., 2015, TKDD, V9, P1, DOI DOI 10.2147/DDDT.S91823 73 0 0 8 8 PLEIADES PUBLISHING INC MOSCOW PLEIADES PUBLISHING INC, MOSCOW, 00000, RUSSIA 1067-4136 1608-3334 RUSS J ECOL+ Russ. J. Ecol. JUL 2018 49 4 296 305 10.1134/S1067413618040021 10 Ecology Environmental Sciences & Ecology GN0TE WOS:000438688700003 2019-02-21 J Tuero, DT; Jahn, AE; Husak, MS; Roeder, DV; Masson, DA; Pucheta, FM; Michels, TJ; Quickle, A; Vidoz, JQ; Dominguez, M; Reboreda, JC Tuero, Diego T.; Jahn, Alex E.; Husak, Michael S.; Roeder, Diane, V; Masson, Diego A.; Pucheta, Florencia M.; Michels, Tyler J.; Quickle, Aaron; Vidoz, Julian Q.; Dominguez, Marisol; Reboreda, Juan C. Ecological determinants of Tyrannus flycatcher nestling growth at north- and south-temperate latitudes AUK English Article Argentina; life history; growth rate; Oklahoma; predation; rain; Tyrannidae LIFE-HISTORY EVOLUTION; FORAGING BEHAVIOR; BREEDING BIOLOGY; PARENTAL CARE; WEATHER CONDITIONS; BRAZILIAN CERRADO; FOOD AVAILABILITY; INSECT ABUNDANCE; PREDATION RISK; BIRD MIGRATION An organism's life history strategy is made up of a suite of physiological, behavioral, and ecological traits, which vary at both the interspecific and intraspecific levels in accordance with selective pressures operating on individuals. For birds, 2 primary ecological factors have been proposed to explain intraspecific and interspecific variation in nestling growth: nest predation and food availability. Individual nestling growth rates have important consequences for overall fitness because growth speed could influence subsequent reproductive performance and survival. We studied the relationship between ecological factors (i.e. precipitation level and predation rate) and nestling growth patterns of 2 New World flycatcher species (Tyrannidae) of the genus Tyrannus (Fork-tailed Flycatcher [T. savana] and Scissor-tailed Flycatcher [T. forficatus]) breeding at south- and north-temperate latitudes. We tested the hypothesis that nestling growth rates are driven by nest predation rates and predicted that nestling growth rates would be higher in species experiencing higher nest predation rates. We also tested the hypothesis that nestling growth rates are related to precipitation levels (a proxy for food abundance) and predicted that nestling growth rates would be higher at sites with higher precipitation levels. Growth rate was not associated with predation rate, but it varied with precipitation level, with faster nestling growth rates during wet years for the Scissor-tailed Flycatcher living at north-temperate latitudes. Among species, similar growth rates were found during wet years. These results indicate that, at least as proximate causes, precipitation explains intraspecific and interspecific growth rate variation in Tyrannus species to a larger degree than predation. Additionally, the variation in growth rate we observed between wet and dry years indicates a high level of plasticity in growth rate in this group of insectivorous birds. [Tuero, Diego T.; Pucheta, Florencia M.; Dominguez, Marisol; Reboreda, Juan C.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Ciudad Univ, Buenos Aires, DF, Argentina; [Tuero, Diego T.; Pucheta, Florencia M.; Dominguez, Marisol; Reboreda, Juan C.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, IEGEBA CONICET, Ciudad Univ, Buenos Aires, DF, Argentina; [Tuero, Diego T.; Pucheta, Florencia M.; Dominguez, Marisol; Reboreda, Juan C.] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina; [Jahn, Alex E.] Natl Zool Pk, Smithsonian Conservat Biol Inst, Washington, DC USA; [Husak, Michael S.; Roeder, Diane, V; Quickle, Aaron] Cameron Univ, Dept Agr & Biol Sci, Lawton, OK 73505 USA; [Masson, Diego A.] Univ Nacl La Plata, Fac Ciencias Nat & Museo, La Plata, Buenos Aires, Argentina; [Michels, Tyler J.] Univ Colorado, Dept Integrat Biol, Denver, CO 80202 USA; [Vidoz, Julian Q.] Museo Hist Nat Noel Kempff Mercado, Santa Cruz, Bolivia Tuero, DT (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Ciudad Univ, Buenos Aires, DF, Argentina.; Tuero, DT (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, IEGEBA CONICET, Ciudad Univ, Buenos Aires, DF, Argentina.; Tuero, DT (reprint author), Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina. dttuero@ege.fcen.uba.ar George Miksch Sutton Scholarship in Avian Biology through the University of Oklahoma; National Geographic Society [8444-08, 8953-11]; Optics for the Tropics, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET-Argentina); National Science Foundation International Research Fellowship [IRFP-0965213]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [2012/17225-2] This study was funded by the George Miksch Sutton Scholarship in Avian Biology through the University of Oklahoma to D.V.R., the National Geographic Society (Nos. 8444-08 and 8953-11), Optics for the Tropics, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET-Argentina), a National Science Foundation International Research Fellowship to A. E. J. (IRFP-0965213), and the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (#2012/17225-2). Amorim FW, 2009, J BIOGEOGR, V36, P662, DOI 10.1111/j.1365-2699.2008.02033.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Auer SK, 2007, CONDOR, V109, P321, DOI 10.1650/0010-5422(2007)109[321:BBOPIA]2.0.CO;2; Austin SH, 2011, METHODS ECOL EVOL, V2, P43, DOI 10.1111/j.2041-210X.2010.00055.x; Austin-Bythell S. H., 2006, THESIS; BLANCHER PJ, 1987, ECOLOGY, V68, P723, DOI 10.2307/1938478; Blount JD, 2006, IBIS, V148, P509, DOI 10.1111/j.1474-919X.2006.00554.x; Bouwhuis S, 2015, J ANIM ECOL, V84, P208, DOI 10.1111/1365-2656.12264; Burnham K. P, 2002, MODEL SELECTION MULT; Cheng YR, 2012, AM NAT, V180, P285, DOI 10.1086/667214; Criscuolo F, 2008, P ROY SOC B-BIOL SCI, V275, P1565, DOI 10.1098/rspb.2008.0148; DeKogel CH, 1997, J ANIM ECOL, V66, P167; DENLINGER DL, 1980, BIOTROPICA, V12, P100, DOI 10.2307/2387725; Dingle H, 2008, EMU, V108, P341, DOI 10.1071/MU08010; Dinsmore SJ, 2002, ECOLOGY, V83, P3476, DOI 10.1890/0012-9658(2002)083[3476:ATFMAN]2.0.CO;2; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Fisher MO, 2006, PLOS BIOL, V4, P1462, DOI 10.1371/journal.pbio.0040251; Fitzpatrick J. W, 2004, HDB BIRDS WORLD, P289; FITZPATRICK JW, 1980, CONDOR, V82, P43, DOI 10.2307/1366784; Foreman L. D, 1978, THESIS; Gebhardt-Henrich Sabine, 1998, Oxford Ornithology Series, V8, P324; Goetz SJ, 2000, J GEOPHYS RES-ATMOS, V105, P20077, DOI 10.1029/2000JD900274; Jahn AE, 2014, EMU, V114, P337, DOI 10.1071/MU13084; Jahn AE, 2013, AUK, V130, P223, DOI 10.1525/auk.2013.12077; Jahn AE, 2013, AUK, V130, P247, DOI 10.1525/auk.2013.13010; Jahn AE, 2010, J FIELD ORNITHOL, V81, P340, DOI 10.1111/j.1557-9263.2010.00290.x; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Jones TM, 2017, J AVIAN BIOL, V48, P439, DOI 10.1111/jav.01143; KELLER LF, 1994, ARDEA, V82, P349; KONARZEWSKI M, 1989, ORNIS SCAND, V20, P112, DOI 10.2307/3676877; Krause ET, 2011, ANIM BEHAV, V81, P1295, DOI 10.1016/j.anbehav.2011.03.021; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Mainwaring MC, 2016, J THERM BIOL, V60, P12, DOI 10.1016/j.jtherbio.2016.05.005; Mainwaring MC, 2012, ADV STUD BEHAV, V44, P225, DOI 10.1016/B978-0-12-394288-3.00006-X; Marini Miguel Ângelo, 2009, Biota Neotrop., V9, P0, DOI 10.1590/S1676-06032009000100007; Martin TE, 2006, EVOLUTION, V60, P390; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MURPHY MT, 1983, AUK, V100, P326; MURPHY MT, 1985, ECOLOGY, V66, P162, DOI 10.2307/1941316; MURPHY MT, 1987, CONDOR, V89, P721, DOI 10.2307/1368518; Naef-Daenzer B, 1999, J ANIM ECOL, V68, P708, DOI 10.1046/j.1365-2656.1999.00318.x; Nowicki S, 2002, J COMP PHYSIOL A, V188, P1003, DOI 10.1007/s00359-002-0361-3; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Pinheiro F, 2002, AUSTRAL ECOL, V27, P132, DOI 10.1046/j.1442-9993.2002.01165.x; Pinheiro J., 2016, COMPUTER SOFTWARE, V3, P1, DOI DOI 10.1016/J.CR0PR0.2007.08.015; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; R Core Team, 2013, R LANG ENV STAT COMP; REGOSIN JV, 1995, CONDOR, V97, P154, DOI 10.2307/1368993; Remes V, 2002, EVOLUTION, V56, P2505; Remes V, 2016, J AVIAN BIOL, V47, P610, DOI 10.1111/jav.00841; RICHNER H, 1989, J ANIM ECOL, V58, P427, DOI 10.2307/4840; RICKLEFS RE, 1967, ECOLOGY, V48, P978, DOI 10.2307/1934545; RICKLEFS RE, 1976, IBIS, V118, P179, DOI 10.1111/j.1474-919X.1976.tb03065.x; Ricklefs Robert E., 1998, Oxford Ornithology Series, V8, P266; Robinson WD, 2010, AUK, V127, P253, DOI 10.1525/auk.2010.127.2.253; Roff Derek A., 1992; ROSA SM, 1994, WILSON BULL, V106, P668; Royle NJ, 1999, P ROY SOC B-BIOL SCI, V266, P923, DOI 10.1098/rspb.1999.0725; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Sanz JJ, 1995, ARDEA, V83, P421; SIMONS LS, 1990, ECOLOGY, V71, P869, DOI 10.2307/1937358; Sofaer HR, 2013, J AVIAN BIOL, V44, P469, DOI 10.1111/j.1600-048X.2013.05719.x; Sofaer HR, 2013, BEHAV ECOL, V24, P698, DOI 10.1093/beheco/ars212; Stearns S, 1992, EVOLUTION LIFE HIST; Tjorve E, 2010, J THEOR BIOL, V267, P417, DOI 10.1016/j.jtbi.2010.09.008; Turner AM, 1998, OECOLOGIA, V113, P140, DOI 10.1007/s004420050362; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; White GC, 1999, BIRD STUDY, V46, P120; YOMTOV Y, 1994, CONDOR, V96, P170, DOI 10.2307/1369074 76 1 1 12 13 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK JUL 2018 135 3 439 448 10.1642/AUK-17-62.1 10 Ornithology Zoology GK8TK WOS:000436501100005 2019-02-21 J Drake, KL; Alisauskas, RT; Calvert, AM Drake, Kiel L.; Alisauskas, Ray T.; Calvert, Anna M. Experimental test for a trade-off between successful nesting and survival in capital breeders with precocial offspring AUK English Article band recovery; capture-recapture; Chen rossii; cost of breeding; experimental manipulation; life history trade-off; Ross's Goose; survival LESSER SNOW GEESE; LIFE-HISTORY TRAITS; CAPTURE-RECAPTURE; CANADA GEESE; BROOD SIZE; BODY CONDITION; ROSSS GEESE; CLUTCH SIZE; EVOLUTIONARY ECOLOGY; PARENTAL INVESTMENT Life history theory assumes a trade-off between reproduction and survival. Investigations of this trade-off in birds have focused primarily on costs of rearing altricial young, because such costs are assumed to be low in species with precocial young. We experimentally manipulated nest success to test for a trade-off between (1) raising offspring for up to 1 yr after successfully nesting and (2) survival in female Ross's Geese (Chen rossii), a species with self-feeding, precocial young. We used multistate capture-resighting analysis that also incorporated recoveries of dead birds for inference about survival. We detected a general negative effect of successful nesting on survival, whereby point estimates of annual survival for successfully nesting females were consistently lower than those for failed nesters. Failed nesters had a greater proportion of mortality attributable to hunting, judging from their higher rates of reported mortality by hunters compared to successful nesters; thus, a cost of breeding associated with successful nesting likely resulted from natural mortality factors during incubation and brood rearing, and not from exploitation by humans. [Drake, Kiel L.; Alisauskas, Ray T.] Univ Saskatchewan, Dept Biol, Saskatoon, SK, Canada; [Alisauskas, Ray T.] Environm Canada, Sci & Technol Branch, Saskatoon, SK, Canada; [Drake, Kiel L.] Bird Studies Canada, Saskatoon, SK, Canada; [Calvert, Anna M.] Environm & Climate Change Canada, Sci & Technol Branch, Ottawa, ON, Canada Drake, KL (reprint author), Univ Saskatchewan, Dept Biol, Saskatoon, SK, Canada.; Drake, KL (reprint author), Bird Studies Canada, Saskatoon, SK, Canada. kdrake@birdscanada.org Arctic Goose Joint Venture (Canadian Wildlife Service [CWS]); California Department of Fish and Game; Central Flyway Council; Mississippi Flyway Council; Institute for Wetlands and Waterfowl Research (IWWR, Ducks Unlimited Canada); Polar Continental Shelf Project; Delta Waterfowl Foundation; University of Saskatchewan Graduate Scholarship; IKON Fellowship (IWWR); Delta Waterfowl The following agencies and organizations provided financial and logistical support for this work: Arctic Goose Joint Venture (Canadian Wildlife Service [CWS]), California Department of Fish and Game, Central and Mississippi Flyway Councils, Institute for Wetlands and Waterfowl Research (IWWR, Ducks Unlimited Canada), Polar Continental Shelf Project, and Delta Waterfowl Foundation. K.L.D. received personal support from a University of Saskatchewan Graduate Scholarship, the IKON Fellowship (IWWR), and a field stipend from Delta Waterfowl. Afton A.D, 1992, ECOLOGY MANAGEMENT B, P267; Akaike H, 1973, 2 INT S INF THEOR, P62; Alisauskas R. T., 2012, EVALUATION SPECIAL M, P132; Alisauskas RT, 2012, J ORNITHOL, V152, pS573, DOI 10.1007/s10336-010-0635-4; Alisauskas Ray T., 1992, P30; Alisauskas RT, 2006, J WILDLIFE MANAGE, V70, P89, DOI 10.2193/0022-541X(2006)70[89:NHASOR]2.0.CO;2; Alisauskas RT, 2002, J WILDLIFE MANAGE, V66, P181, DOI 10.2307/3802884; Alisauskas RT, 2002, J APPL STAT, V29, P521, DOI 10.1080/02664760120108575; ANKNEY C D, 1982, Wildlife Society Bulletin, V10, P60; ANKNEY CD, 1984, AUK, V101, P361; ANKNEY CD, 1978, AUK, V95, P459; ARNASON A N, 1973, Researches on Population Ecology (Tokyo), V15, P1; Arnold TW, 2012, WILDLIFE SOC B, V36, P286, DOI 10.1002/wsb.134; Arnold TW, 2012, AVIAN CONSERV ECOL, V7, DOI 10.5751/ACE-00504-070101; Bety J, 2004, BEHAV ECOL SOCIOBIOL, V57, P1, DOI 10.1007/s00265-004-0840-3; Bety J, 2003, AM NAT, V162, P110, DOI 10.1086/375680; BLACK JM, 1992, ANIM BEHAV, V44, P41, DOI 10.1016/S0003-3472(05)80752-3; Blums P, 2005, OECOLOGIA, V143, P365, DOI 10.1007/s00442-004-1794-x; BOYD H, 1953, BEHAVIOUR, V5, P85, DOI 10.1163/156853953X00069; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; BROWNIE C, 1985, US FISH WILDLIFE SER, V156; Burnham K. P, 2002, MODEL SELECTION MULT; Calvert A.M, 2018, J AVIAN BIOL, V49; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Clobert J, 1995, J APPL STAT, V22, P989, DOI 10.1080/02664769524757; Drake K. A, 2006, THESIS; Drake K. L., 2004, Animal Biodiversity and Conservation, V27, P331; DuRant SE, 2013, HORM BEHAV, V63, P385, DOI 10.1016/j.yhbeh.2012.12.001; FRANCIS CM, 1992, AUK, V109, P731, DOI 10.2307/4088149; Gauthier G, 2003, ECOLOGY, V84, P3250, DOI 10.1890/02-0613; Gauthier G, 2001, ECOLOGY, V82, P3105, DOI 10.1890/0012-9658(2001)082[3105:SSOGSG]2.0.CO;2; Gloutney ML, 1999, AUK, V116, P97, DOI 10.2307/4089457; Golet GH, 2004, ECOL MONOGR, V74, P353, DOI 10.1890/02-4029; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; GREGOIRE PE, 1990, AUK, V107, P550; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hartke KM, 2006, CONDOR, V108, P201, DOI 10.1650/0010-5422(2006)108[0201:SOVISO]2.0.CO;2; HESTBECK JB, 1991, ECOLOGY, V72, P523, DOI 10.2307/2937193; Hochbaum H.A, 1942, T N AM WILDL NAT RES, V7, P299; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; Jonsson JE, 2008, WILSON J ORNITHOL, V120, P725, DOI 10.1676/07-124.1; Kendall WL, 2006, ECOLOGY, V87, P169, DOI 10.1890/05-0637; Kerbes R.H, 2014, SURVEYS NESTING LESS; Lepage D, 1998, J ANIM ECOL, V67, P210, DOI 10.1046/j.1365-2656.1998.00182.x; LESSELLS CM, 1987, ARDEA, V75, P189; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Madsen J, 2010, EUR J WILDLIFE RES, V56, P577, DOI 10.1007/s10344-009-0349-1; Martin TE, 1995, J APPL STAT, V22, P863, DOI 10.1080/02664769524676; Meijer T, 1999, IBIS, V141, P399, DOI 10.1111/j.1474-919X.1999.tb04409.x; Menu S, 2000, J WILDLIFE MANAGE, V64, P544, DOI 10.2307/3803252; Milonoff M, 2004, J AVIAN BIOL, V35, P344, DOI 10.1111/j.0908-8857.2004.03215.x; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; MULDER RS, 1995, CONDOR, V97, P99, DOI 10.2307/1368987; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1988, ARDEA, V76, P155; RAVELING DG, 1979, AUK, V96, P234; Reed ET, 2005, J WILDLIFE MANAGE, V69, P91, DOI 10.2193/0022-541X(2005)069<0091:EONBOR>2.0.CO;2; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; Roff Derek A., 1992; Rohwer Frank C., 1992, P486; Ross MV, 2017, ECOLOGY, V98, P1869, DOI 10.1002/ecy.1856; Ross R.K., 2006, CANADIAN WILDLIFE SE, V447; Ruusila V, 1998, ANIM BEHAV, V55, P307, DOI 10.1006/anbe.1997.0630; Ryder J.P, 1995, BIRDS N AM; RYDER JP, 1970, WILSON BULL, V82, P5; Schmutz JA, 1999, J WILDLIFE MANAGE, V63, P1239, DOI 10.2307/3802841; SCHWARZ CJ, 1993, BIOMETRICS, V49, P177, DOI 10.2307/2532612; Seddon L.M, 1992, CAN J ZOOL, V72, P533; Souchay G, 2014, ECOLOGY, V95, P2745, DOI 10.1890/13-1277.1; Stearns S, 1992, EVOLUTION LIFE HIST; TIMM D E, 1976, Wildlife Society Bulletin, V4, P180; Tinbergen JM, 2002, OX ORN SER, V13, P299; Townsend HM, 2007, EVOLUTION, V61, P1956, DOI 10.1111/j.1558-5646.2007.00169.x; Traylor J. J., 2010, THESIS; Traylor JJ, 2012, J WILDLIFE MANAGE, V76, P1135, DOI 10.1002/jwmg.375; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLIAMS TD, 1994, AUK, V111, P563; Wilson S, 2016, J WILDLIFE MANAGE, V80, P117, DOI 10.1002/jwmg.960; Winkler D.W., 1983, Current Ornithology, V1, P33 82 0 0 6 6 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK JUL 2018 135 3 637 646 10.1642/AUK-17-205.1 10 Ornithology Zoology GK8TK WOS:000436501100020 2019-02-21 J de Moura, PTS; de Paiva, LV; Silva, CCD; Cavalcante, LMP; Pichorim, M; Franca, LF Silva de Moura, Pedro Tefilo; de Paiva, Luciana Vieira; de Oliveira Silva, Clarisse Carolina; Paiva Cavalcante, Liana Monique; Pichorim, Mauro; Franca, Leonardo Fernandes Rainfall and population dynamics of Grey Pileated Finch Coryphospingus pileatus (Aves: Passeriformes) in a Neotropical dry forest POPULATION ECOLOGY English Article Abundance; Apparent survival; Caatinga; Capture-mark-recapture; POPAN; Recruitment CLIMATICALLY VARIABLE ENVIRONMENT; LIFE-HISTORY EVOLUTION; ARID-ZONE BIRDS; CLIMATE-CHANGE; CLUTCH-SIZE; DARWIN FINCHES; SURVIVAL RATES; REPRODUCTIVE SUCCESS; SUIRIRI-ISLERORUM; NEST PREDATION In tropical dry environments rainfall periodicity may affect demographic parameters, resulting in fluctuations in bird abundance. We used capture-recapture data for the Grey Pileated Finch from a Neotropical dry forest to evaluate the hypothesis that intra- and inter-annual survival, individuals entrance and population abundance, are related to local rainfall. Sampling occurred across 3 years, with individuals captured, tagged and evaluated for age and presence of brood patch every 14 days. Using the POPAN formulation, we generated demographic models to evaluate study population temporal dynamics. Best-fit models indicated a low apparent annual survival in the first year (16%) compared to other years (between 47 and 62%), with this low value associated with an extreme drought. The abundance of juveniles at each capture occasion was significantly dependent on the accumulated precipitation in the previous 14 days, and the juvenile covariate was a strong predictor of the intra-annual entrance probability (natality). Individuals entrance during the reproductive period corresponded to 53, 52 and 75% of total ingress for each year, respectively. The trend in sampled population size indicated positive exponential growth (N (initial) = 50, N (last) = 600), with intra-annual fluctuations becoming progressively more intense. Low survival was relevant during population decline at study onset, while at study end intense Individuals entrance promoted rapid population growth. Thus, the indirect effects of rainfall and the combined effect of two demographic rates operated synergistically on the immediate population abundance of Grey Pileated Finch, an abundant bird in a Neotropical dry forest. [Silva de Moura, Pedro Tefilo; de Oliveira Silva, Clarisse Carolina; Paiva Cavalcante, Liana Monique] Univ Fed Rural Semi Arido, Programa Posgrad Ecol & Conservacao, UFERSA, Mossoro, Brazil; [de Paiva, Luciana Vieira; Franca, Leonardo Fernandes] Univ Fed Rural Semi Arido, Ctr Ciencias Biol & Saude, UFERSA, Mossoro, Brazil; [Pichorim, Mauro] Univ Fed Rio Grande do Norte, UFRN, Dept Bot Ecol & Zool, Natal, RN, Brazil Franca, LF (reprint author), Univ Fed Rural Semi Arido, Ctr Ciencias Biol & Saude, UFERSA, Mossoro, Brazil. franca_lf@ufersa.edu.br Universidade Federal Rural do Semi-Arido; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq; CNPq [442524/2014-5]; Fundacao de Apoio a Pesquisa do Rio Grande do Norte-FAPERN [005/2011/PPPIV/57]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior We thank the graduate and post-graduate students of the Laboratory of Population Ecology at the Universidade Federal Rural do Semiarido for their help with field work. This work was supported by Universidade Federal Rural do Semi-Arido, Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq (undergraduate and postgraduate grants) and, CNPq (442524/2014-5) and Fundacao de Apoio a Pesquisa do Rio Grande do Norte-FAPERN (005/2011/PPPIV/57) (research grants). Adrian Barnett helped with the English. Altwegg R, 2009, FUNCT ECOL, V23, P1014, DOI 10.1111/j.1365-2435.2009.01563.x; Araujo HFP, 2009, THESIS; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Barbraud C, 2001, NATURE, V411, P183, DOI 10.1038/35075554; Barta Z, 2006, OIKOS, V112, P580, DOI 10.1111/j.0030-1299.2006.14240.x; BOAG PT, 1984, ECOL MONOGR, V54, P463, DOI 10.2307/1942596; Bolger DT, 2005, OECOLOGIA, V142, P398, DOI 10.1007/s00442-004-1734-9; BOYCE MS, 1979, AM NAT, V114, P569, DOI 10.1086/283503; Brockwell P. J, 2006, TIME SERIES THEORY M; Brouwer L, 2006, J ANIM ECOL, V75, P1321, DOI 10.1111/j.1365-2656.2006.01155.x; Burnham K. P, 2002, MODEL SELECTION MULT; Burns KJ, 2009, AUK, V126, P635, DOI 10.1525/auk.2009.08195; Carro ME, 2017, IBIS, V159, P168, DOI 10.1111/ibi.12438; Cestari Cesar, 2010, Check List, V6, P501; Coe SJ, 2003, ECOLOGY, V84, P3240, DOI 10.1890/02-0789; Covas R, 2004, AUK, V121, P1199, DOI 10.1642/0004-8038(2004)121[1199:JAASIT]2.0.CO;2; Cox DTC, 2013, J ORNITHOL, V154, P671, DOI 10.1007/s10336-013-0930-y; Crick HQP, 2004, IBIS, V146, P48, DOI 10.1111/j.1474-919X.2004.00327.x; CURRY RL, 1989, J ANIM ECOL, V58, P441, DOI 10.2307/4841; de Albuquerque UP, 2012, SCI WORLD J, DOI [10.1100/2012/205182, 10.1100/2012/847471]; de Araujo HFP, 2017, EMU, V117, P78, DOI 10.1080/01584197.2016.1265430; Silva CCDE, 2017, J TROP ECOL, V33, P365, DOI 10.1017/S0266467417000347; Dean WRJ, 2009, S AFR J SCI, V105, P24, DOI 10.1590/s0038-23532009000100016; Dean WRJ, 2001, J ARID ENVIRON, V47, P101, DOI 10.1006/jare.2000.0693; Faaborg J, 1995, AUK, V112, P503, DOI 10.2307/4088741; Farias G.D., 2007, REV BRAS ORNITOL, V15, P53; Ferretti V, 2005, P ROY SOC B-BIOL SCI, V272, P769, DOI 10.1098/rspb.2004.3039; Franca LF, 2010, J FIELD ORNITHOL, V81, P227, DOI 10.1111/j.1557-9263.2010.00279.x; Franca LF, 2009, EMU, V109, P265, DOI 10.1071/MU09052; GIBBS HL, 1987, J ANIM ECOL, V56, P797, DOI 10.2307/4949; Grant B. R., 1989, EVOLUTIONARY DYNAMIC; GRANT BR, 1993, P ROY SOC B-BIOL SCI, V251, P111, DOI 10.1098/rspb.1993.0016; GRANT PR, 1992, ECOLOGY, V73, P766, DOI 10.2307/1940156; Grant PR, 2000, ECOLOGY, V81, P2442, DOI 10.2307/177466; Griz LMS, 2001, J TROP ECOL, V17, P303, DOI 10.1017/S0266467401001201; Halupka K, 2009, J AVIAN BIOL, V40, P658, DOI 10.1111/j.1600-048X.2009.04772.x; Herremans M, 2004, OSTRICH, V75, P217, DOI 10.2989/00306520409485448; Illera JC, 2006, J AVIAN BIOL, V37, P447, DOI 10.1111/j.2006.0908-8857.03676.x; Immelmann K., 1973, P121; Inchausti P, 2003, J ANIM ECOL, V72, P899, DOI 10.1046/j.1365-2656.2003.00767.x; Jahn AE, 2010, J FIELD ORNITHOL, V81, P340, DOI 10.1111/j.1557-9263.2010.00290.x; Jansen DYM, 2014, ECOL EVOL, V4, P889, DOI 10.1002/ece3.958; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.1093/biomet/52.1-2.225; KLOMP H, 1970, ARDEA, V58, P1; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Linares-Palomino R, 2011, SEASONALLY DRY TROPI, P3, DOI DOI 10.5822/978-1-61091-021-7_1; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Lloyd P, 1999, IBIS, V141, P637, DOI 10.1111/j.1474-919X.1999.tb07371.x; MACLEAN G L, 1973, Ostrich, V44, P219, DOI 10.1080/00306525.1973.9639160; MARCHANT S., 1960, IBIS, V102, P349, DOI 10.1111/j.1474-919X.1960.tb08415.x; MARONE L, 1992, J FIELD ORNITHOL, V63, P294; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Miles L, 2006, J BIOGEOGR, V33, P491, DOI 10.1111/j.1365-2699.2005.01424.x; Moreno J, 2011, CURR ZOOL, V57, P375, DOI 10.1093/czoolo/57.3.375; Morrison SA, 2002, OECOLOGIA, V133, P315, DOI 10.1007/s00442-002-1040-3; MURPHY PG, 1986, ANNU REV ECOL SYST, V17, P67, DOI 10.1146/annurev.es.17.110186.000435; Nevoux M, 2008, CONDOR, V110, P55, DOI 10.1525/cond.2008.110.1.55; Newton I, 1998, POPULATION LIMITATIO; Olmos Fábio, 2005, Pap. Avulsos Zool. (São Paulo), V45, P179, DOI 10.1590/S0031-10492005001400001; Cavalcanti LMP, 2016, ZOOLOGIA-CURITIBA, V33, DOI [10.1590/S1984-4689zool-20160018, 10.1590/s1984-4689zool-20160018]; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Pennington RT, 2009, ANNU REV ECOL EVOL S, V40, P437, DOI 10.1146/annurev.ecolsys.110308.120327; Pennington RT, 2004, PHILOS T R SOC B, V359, P515, DOI 10.1098/rstb.2003.1435; Pinheiro F, 2002, AUSTRAL ECOL, V27, P132, DOI 10.1046/j.1442-9993.2002.01165.x; POULIN B, 1992, ECOLOGY, V73, P2295, DOI 10.2307/1941476; POULIN B, 1994, BIOTROPICA, V26, P187, DOI 10.2307/2388808; POULIN B, 1994, CONDOR, V96, P354, DOI 10.2307/1369320; POULIN B, 1993, IBIS, V135, P432, DOI 10.1111/j.1474-919X.1993.tb02116.x; Prado D. E, 2003, ECOLOGIA CONSERVACAO, P3; Reid JM, 2003, J ANIM ECOL, V72, P36, DOI 10.1046/j.1365-2656.2003.00673.x; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Rodrigues RR, 2014, GEOPHYS RES LETT, V41, P1012, DOI 10.1002/2013GL058703; Rose AP, 2013, ECOLOGY, V94, P1327, DOI 10.1890/12-0953.1; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Saether BE, 2004, ADV ECOL RES, V35, P185, DOI 10.1016/S0065-2504(04)35009-9; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Saether BE, 2000, SCIENCE, V287, P854, DOI 10.1126/science.287.5454.854; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.2307/177213; Santisteban L, 2012, J ANIM ECOL, V81, P352, DOI 10.1111/j.1365-2656.2011.01918.x; SANTOS MPD, 2004, ARARAJUBA, V12, P113; Schaefer HC, 2006, IBIS, V148, P411, DOI 10.1111/j.1474-919X.2006.00544.x; Schloss AL, 1999, GLOB CHANGE BIOL, V5, P25, DOI 10.1046/j.1365-2486.1999.00004.x; Schwarz CJ, 1996, BIOMETRICS, V52, P860, DOI 10.2307/2533048; SEBER GAF, 1965, BIOMETRIKA, V52, P249; SILVA JMC, 2003, ECOLOGIA CONSERVACAO, P237; Silva M., 2012, REV BRAS ORNITOL, V20, P312; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Stutchbury BJM, 2001, BEHAV ECOLOGY TROPIC; Terraube J, 2015, OIKOS, V124, P762, DOI 10.1111/oik.01974; Vasconcellos A, 2010, REV BRAS ENTOMOL, V54, P471, DOI 10.1590/S0085-56262010000300019; Velloso A. L., 2002, ECORREGIOES PROPOSTA; White GC, 1999, BIRD STUDY, V46, P120; Williams SE, 2008, DIVERS DISTRIB, V14, P69, DOI 10.1111/j.1472-4642.2007.00418.x; WOLDA H, 1988, ANNU REV ECOL SYST, V19, P1, DOI 10.1146/annurev.es.19.110188.000245; Zima PVQ, 2016, ZOOLOGIA-CURITIBA, V33, DOI 10.1590/S1984-4689zool-20160071 98 0 0 7 10 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. JUL 2018 60 3 223 235 10.1007/s10144-018-0624-7 13 Ecology Environmental Sciences & Ecology GK9PR WOS:000436584300003 2019-02-21 J Richardson, GB; La Guardia, AC; Klay, PM Richardson, George B.; La Guardia, Amanda C.; Klay, Patricia M. Determining the roles of father absence and age at menarche in female psychosocial acceleration EVOLUTION AND HUMAN BEHAVIOR English Article CHILDHOOD SEXUAL-ABUSE; REPRODUCTIVE STRATEGY; ENVIRONMENT CORRELATIONS; EARLIER MENARCHE; FAMILY-STRUCTURE; RISK-TAKING; ANTECEDENTS; HARSHNESS; CHILDREN; OUTCOMES Paternal investment theory and psychosocial acceleration theory hold that father absence and stressful experiences, respectively, accelerate reproductive development. Accumulating evidence is consistent with these theories yet important questions remain. In this study, we use a two-part structural equation model and data from 342 female undergraduates to address two of these questions: First, what is the role of father absence in female psychosocial acceleration, controlling potentially confounding aspects of environment and family structure? Second, to what extent does age at menarche mediate environmental and family structure effects on sexual debut? Findings indicated that many aspects of environment and family structure could be summarized with two factors-socio-economic status (SES) and fragmented family structure. We found that among those who had experienced sexual debut, exposure to temporary father departure (one year or more) in the context of an intact family hastened menarche, which in turn accelerated sexual debut. However, this type of father absence did not predict experience of sexual debut (or not). Fragmented family structure (which also implies some degree of father absence) appeared to increase the likelihood that participants had experienced sexual debut, but did not predict age at menarche or age at sexual debut among who had debuted. SES was not associated with any aspects of reproductive development, controlling for fragmented family structure and age. We discuss our findings in relation to paternal investment theory, psychosocial acceleration theory, and life history theory. We then lay out future directions for researchers aiming to clarify the role of environment in reproductive trajectories. [Richardson, George B.; La Guardia, Amanda C.; Klay, Patricia M.] Univ Cincinnati, Sch Human Serv, Coll Educ Criminal Justice & Human Serv, Cincinnati, OH USA Richardson, GB (reprint author), Coll Educ Criminal Justice & Human Serv, Sch Human Serv, 460R Teachers Dyer Complex, Cincinnati, OH USA. george.richardson@uc.edu Barbaro N, 2017, PSYCHOL BULL, V143, P107, DOI 10.1037/bul0000066; Barnes JC, 2014, J CRIM JUST, V42, P471, DOI 10.1016/j.jcrimjus.2014.08.003; Beam CR, 2013, DEV PSYCHOPATHOL, V25, P7, DOI 10.1017/S0954579412000867; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Bollen K.A., 1989, STRUCTURAL EQUATIONS; Boynton-Jarrett R, 2013, J ADOLESCENT HEALTH, V52, P241, DOI 10.1016/j.jadohealth.2012.06.006; Browne M. W, 1993, TESTING STRUCTURAL E, P136, DOI DOI 10.1177/0049124192021002005; Byrne B. M., 2001, STRUCTURAL EQUATION; Chasiotis A., 2003, N AM J PSYCHOL, V5, P153; D'Imperio RL, 2000, J CLIN CHILD PSYCHOL, V29, P129, DOI 10.1207/S15374424jccp2901_13; Davis EC, 2001, J MARRIAGE FAM, V63, P669, DOI 10.1111/j.1741-3737.2001.00669.x; De Genna NM, 2011, J YOUTH ADOLESCENCE, V40, P1315, DOI 10.1007/s10964-010-9609-3; DelPriore DJ, 2017, DEV PSYCHOL, V53, P1330, DOI 10.1037/dev0000327; Dorn L. D., 2009, HDB ADOLESCENT PSYCH; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Duan N, 1983, J EC BUSINESS STATIS, V1, P115, DOI DOI 10.2307/1391852; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Eshbaugh EM, 2008, J FAM SOC WORK, V11, P373, DOI 10.1080/10522150802425208; Gaughran SJ, 2016, ELIFE, V5, DOI 10.7554/eLife.21864; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.1111/j.1467-8624.1995.tb00875.x; Groot C., 1991, PACIFIC SALMON LIFE; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Jaffee SR, 2007, MOL PSYCHIATR, V12, P432, DOI 10.1038/sj.mp.4001950; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Jonas KG, 2016, PSYCHOL REV, V123, P90, DOI 10.1037/a0039542; Kline R. B, 2015, PRINCIPLES PRACTICE; Kyweluk MA, 2018, EVOL HUM BEHAV, V39, P76, DOI 10.1016/j.evolhumbehav.2017.10.002; La Guardia AC, 2014, FAM J, V22, P339, DOI 10.1177/1066480714529887; Lieberman D., 2015, HDB EVOLUTIONARY PSY; Matchock RL, 2006, AM J HUM BIOL, V18, P481, DOI 10.1002/ajhb.20508; Mendle J, 2006, DEV PSYCHOL, V42, P533, DOI 10.1037/0012-1649.42.3.233; Morris DH, 2010, BRIT J CANCER, V103, P1760, DOI 10.1038/sj.bjc.6605978; Olsen MK, 2001, J AM STAT ASSOC, V96, P730, DOI 10.1198/016214501753168389; Pearl J, 2014, AM STAT, V68, P8, DOI 10.1080/00031305.2014.876829; Richardson G. B., 2016, EVOLUTIONARY PSYCHOL, V2, P58, DOI DOI 10.1007/s40806-015-0034-4; Richardson GB, 2017, EVOL PSYCHOL-US, V15, DOI 10.1177/1474704916670165; Richardson GB, 2017, EVOL PSYCHOL-US, V15, DOI 10.1177/1474704916666840; Romans SE, 2003, PSYCHOL MED, V33, P933, DOI 10.1017/S0033291703007530; Shenk MK, 2013, HUM NATURE-INT BIOS, V24, P76, DOI 10.1007/s12110-013-9160-5; Sheppard P, 2014, HUM NATURE-INT BIOS, V25, P213, DOI 10.1007/s12110-014-9195-2; Sohn K, 2017, HUM NATURE-INT BIOS, V28, P407, DOI 10.1007/s12110-017-9299-6; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Vigil JM, 2005, DEV PSYCHOL, V41, P553, DOI 10.1037/0012-1649.41.3.553; Webster G.D., 2014, EVOLUTIONARY PSYCHOL, V12; Wight D, 2006, J ADOLESCENCE, V29, P473, DOI 10.1016/j.adolescence.2005.08.007; Wise LA, 2009, AM J PUBLIC HEALTH, V99, pS460, DOI 10.2105/AJPH.2008.149005; Zabin LS, 2005, J ADOLESCENT HEALTH, V36, P393, DOI 10.1016/j.jadohealth.2004.07.013 55 0 0 7 7 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JUL 2018 39 4 437 446 10.1016/j.evolhumbehav.2018.03.009 10 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences GL9KN WOS:000437553500007 2019-02-21 J Le Roy, A; Seebacher, F Le Roy, Amelie; Seebacher, Frank Transgenerational effects and acclimation affect dispersal in guppies FUNCTIONAL ECOLOGY English Article behaviour; citrate synthase; developmental plasticity; lactate dehydrogenase; metabolism; parental effects; swimming capacity; thermal plasticity LIFE-HISTORY EVOLUTION; ZEBRAFISH DANIO-RERIO; POECILIA-RETICULATA; THERMAL-ACCLIMATION; PHENOTYPIC PLASTICITY; CLIMATE-CHANGE; DEVELOPMENTAL PLASTICITY; SWIMMING PERFORMANCE; METABOLIC-RESPONSES; ONCORHYNCHUS-MYKISS 1. Evolutionary theory predicts that intergenerational environmental fluctuations lead to transgenerational effects where offspring phenotypes are matched to conditions experienced by previous generations. However, in fluctuating environments, transgenerational effects can be detrimental by causing mismatches between ancestral and offspring environments. Acclimation in offspring could alleviate these negative effects. 2. We determined whether the interaction between transgenerational effects and acclimation affects locomotor performance and dispersal in guppies (Poecilia reticulata). In a fully factorial experiment, we tested the interaction between ancestral (22 or 30 degrees C for six to eight generations), acclimation (22 or 30 degrees C for 4weeks) and acute test temperatures (two to five temperatures across 18-34 degrees C). We predicted that matching ancestral and acclimation temperatures to acute environmental temperature maximises physiological capacities (swimming performance [U-crit] and metabolic enzyme activities), and dispersal in an artificial stream. Alternatively, when ancestral and acute temperatures were mismatched, we predicted that thermal acclimation compensates for this mismatch by shifting performance curves. Finally, we hypothesised that physiological capacities are positively related to dispersal. We measured dispersal as a combination of traits characterising the departure and transient phases of dispersal (time taken to leave the introductory pool, voluntary speed against the current, number of dispersal decisions taken) in an 8-m artificial stream. 3. As hypothesised, U-crit was greatest when ancestral, acclimation and acute temperatures matched. Cold acclimation reduced the decrement in U-crit resulting from a mismatch between ancestral and acute test temperatures. In both sexes, the interaction between ancestral and acclimation temperatures determined U-crit, but not metabolic enzyme activities, and it affected the number of dispersal decisions in males only. Contrary to our hypothesis, physiological capacities did not constrain dispersal. Males were more likely to initiate dispersal when the acute temperatures mismatched their ancestral temperature. After initiating dispersal, males moved at a greater voluntary speed and made more dispersal decisions in environments matching their ancestral environment. 4. Our findings imply that although the interaction between transgenerational effects and acclimation modulates locomotor capacities, these relationships do not necessarily translate to all ecologically relevant locomotor tasks. Instead, sex-specific life-history traits such as life span are more likely to influence dispersal, and males in particular may initiate dispersal to escape suboptimal conditions. [Le Roy, Amelie; Seebacher, Frank] Univ Sydney, Sch Life & Environm Sci, Sydney, NSW, Australia Le Roy, A (reprint author), Univ Sydney, Sch Life & Environm Sci, Sydney, NSW, Australia. amelie.leroy@sydney.edu.au Australian Research Council Discovery Projects scheme Australian Research Council Discovery Projects scheme Allis CD, 2016, NAT REV GENET, V17, P487, DOI 10.1038/nrg.2016.59; Angilletta MJ, 2010, PHYSIOL BIOCHEM ZOOL, V83, P197, DOI 10.1086/648567; Baerends G. B., 1995, BEHAVIOUR, V8, P249; Bateson P, 2014, J PHYSIOL-LONDON, V592, P2357, DOI 10.1113/jphysiol.2014.271460; Beaman JE, 2016, TRENDS ECOL EVOL, V31, P237, DOI 10.1016/j.tree.2016.01.004; Benard MF, 2008, AM NAT, V171, P553, DOI 10.1086/587072; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Bouchard P, 2003, J EXP BIOL, V206, P3455, DOI 10.1242/jeb.00578; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; BRETT JR, 1964, J FISH RES BOARD CAN, V21, P1183, DOI 10.1139/f64-103; Brown C, 2014, BEHAV ECOL, V25, P95, DOI 10.1093/beheco/art090; Bullock JM, 2002, DISP EC 42 S BRIT EC; Burggren WW, 2015, J EXP BIOL, V218, P80, DOI 10.1242/jeb.107318; Burnham K. P, 2002, MODEL SELECTION MULT; Burton T, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0311; Cote J, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2349; Cote J, 2010, P ROY SOC B-BIOL SCI, V277, P1571, DOI 10.1098/rspb.2009.2128; Crossin GT, 2004, J FISH BIOL, V65, P788, DOI 10.1111/j.1095-8649.2004.00486.x; Curtin NA, 1996, J EXP BIOL, V199, P593; Dalziel AC, 2005, AM J PHYSIOL-REG I, V288, pR163, DOI 10.1152/ajpregu.00152.2004; Davis JM, 2004, TRENDS ECOL EVOL, V19, P411, DOI 10.1016/j.tree.2004.04.006; Deacon AE, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024416; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Dingemanse NJ, 2003, P ROY SOC B-BIOL SCI, V270, P741, DOI 10.1098/rspb.2002.2300; Drummond GB, 2012, J PHYSIOL-LONDON, V590, P235, DOI 10.1113/jphysiol.2011.225235; DUGATKIN LA, 1992, ENVIRON BIOL FISH, V34, P265, DOI 10.1007/BF00004773; El-Sabaawi RW, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0590; Fraser DF, 2001, AM NAT, V158, P124, DOI 10.1086/321307; Gabriel W, 2006, ARCH HYDROBIOL, V167, P1, DOI 10.1127/0003-9136/2006/0167-001; Grigaltchik VS, 2012, P ROY SOC B-BIOL SCI, V279, P4058, DOI 10.1098/rspb.2012.1277; Guderley H, 2004, BIOL REV, V79, P409, DOI 10.1017/S1464793103006328; GUDERLEY H, 1990, AM J PHYSIOL, V259, pR245; Haughland DL, 2004, J ANIM ECOL, V73, P1024, DOI 10.1111/j.0021-8790.2004.00884.x; Husak JF, 2006, EVOLUTION, V60, P1888; Irschick DJ, 2001, ANNU REV ECOL SYST, V32, P367, DOI 10.1146/annurev.ecolsys.32.081501.114048; JABLONKA E, 1992, J THEOR BIOL, V158, P245, DOI 10.1016/S0022-5193(05)80722-2; Jirotkul M, 1999, ANIM BEHAV, V58, P287, DOI 10.1006/anbe.1999.1149; Jonsson B, 2006, J FISH BIOL, V69, P860, DOI 10.1111/j.1095-8649.2006.01160.x; KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868; Killen SS, 2016, FUNCT ECOL, V30, P576, DOI 10.1111/1365-2435.12527; Kinnison MT, 2001, EVOLUTION, V55, P1656; Klose RJ, 2006, TRENDS BIOCHEM SCI, V31, P89, DOI 10.1016/j.tibs.2005.12.008; Krackow S, 2003, ETHOLOGY, V109, P671, DOI 10.1046/j.1439-0310.2003.00913.x; Lande R, 2015, MOL ECOL, V24, P2038, DOI 10.1111/mec.13037; Le Roy A., 2018, DRYAD DIGITAL REPOSI, DOI [10. 5061/dryad. p64s1hh, DOI 10.5061/DRYAD.P64S1HH]; Le Roy A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-03300-z; LeMoine CMR, 2008, J EXP BIOL, V211, P1448, DOI 10.1242/jeb.014951; Levins R., 1968, EVOLUTION CHANGING E; Lichtwark GA, 2005, J EXP BIOL, V208, P2831, DOI 10.1242/jeb.01709; Ludbrook J, 1998, AM STAT, V52, P127, DOI 10.2307/2685470; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; O'Connor MI, 2007, P NATL ACAD SCI USA, V104, P1266, DOI 10.1073/pnas.0603422104; Parn H, 2012, P ROY SOC B-BIOL SCI, V279, P144, DOI 10.1098/rspb.2011.0673; Pettersson LB, 2000, P ROY SOC B-BIOL SCI, V267, P759, DOI 10.1098/rspb.2000.1068; Pinheiro J., 2016, COMPUTER SOFTWARE, V3, P1, DOI DOI 10.1016/J.CR0PR0.2007.08.015; Plaut I, 2000, J EXP BIOL, V203, P813; Plaut I, 2000, PHYSIOL BIOCHEM ZOOL, V73, P590, DOI 10.1086/317746; RALL JA, 1990, AM J PHYSIOL, V259, pR197; Rehage JS, 2004, BIOL INVASIONS, V6, P379, DOI 10.1023/B:BINV.0000034618.93140.a5; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; Saether BE, 2000, SCIENCE, V287, P854, DOI 10.1126/science.287.5454.854; Schaefer J, 2006, J FISH BIOL, V69, P722, DOI 10.1111/j.1095-8649.2006.01145.x; Scott GR, 2012, P NATL ACAD SCI USA, V109, P14247, DOI 10.1073/pnas.1205012109; Seebacher F, 2016, J EXP BIOL, V219, P1625, DOI 10.1242/jeb.136689; Seebacher F, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.140251; Seebacher F, 2015, J EXP BIOL, V218, P3878, DOI 10.1242/jeb.129049; Shama LNS, 2014, FUNCT ECOL, V28, P1482, DOI 10.1111/1365-2435.12280; Sinclair ELE, 2014, FUNCT ECOL, V28, P652, DOI 10.1111/1365-2435.12198; Swanson C, 1998, J EXP BIOL, V201, P3355; Therneau T. M., 2015, PACKAGE SURVIVAL ANA; Thibault M, 1997, FISH PHYSIOL BIOCHEM, V16, P139, DOI 10.1007/BF00004671; Uller T, 2013, J EVOLUTION BIOL, V26, P2161, DOI 10.1111/jeb.12212; van Vliet MTH, 2013, CLIMATIC CHANGE, V121, P739, DOI 10.1007/s10584-013-0976-0; Venables WN, 2002, MODERN APPL STAT S; WEIHS D, 1973, NATURE, V245, P48, DOI 10.1038/245048a0; Wenger SJ, 2011, P NATL ACAD SCI USA, V108, P14175, DOI 10.1073/pnas.1103097108; Wickler SJ, 2000, J EXP BIOL, V203, P2195; Wilson RS, 2015, INTEGR COMP BIOL, V55, P1125, DOI 10.1093/icb/icv106 80 0 0 11 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JUL 2018 32 7 1819 1831 10.1111/1365-2435.13105 13 Ecology Environmental Sciences & Ecology GL6GI WOS:000437281100015 2019-02-21 J Clay, TA; Pearmain, EJ; McGill, RAR; Manica, A; Phillips, RA Clay, Thomas A.; Pearmain, Elizabeth J.; McGill, Rona A. R.; Manica, Andrea; Phillips, Richard A. Age-related variation in non-breeding foraging behaviour and carry-over effects on fitness in an extremely long-lived bird FUNCTIONAL ECOLOGY English Article activity patterns; ageing; life-history theory; migration; senescence; sexual segregation; stable isotopes; wandering albatross WANDERING ALBATROSSES; MIGRATION STRATEGIES; REPRODUCTIVE EFFORT; NONBREEDING PERIOD; DIOMEDEA-EXULANS; EUROPEAN SHAGS; LIFE-HISTORY; HABITAT USE; SENESCENCE; SEABIRD 1. Senescence has been widely documented in wild vertebrate populations, yet the proximate drivers of age-related declines in breeding success, including allocation trade-offs and links with foraging performance, are poorly understood. For long-lived, migratory species, the non-breeding period represents a critical time for investment in self-maintenance and restoration of body condition, which in many species is linked to fitness. However, the relationships between age, non-breeding foraging behaviour and fitness remain largely unexplored. 2. We performed a cross-sectional study, investigating age-related variation in the foraging activity, distribution and diet of an extremely long-lived seabird, the wandering albatross Diomedea exulans, during the non-breeding period. Eighty-two adults aged 8-33years were tracked with geolocator-immersion loggers, and body feathers were sampled for stable isotope analysis. We tested for variation in metrics of foraging behaviour and linked age-related trends to subsequent reproductive performance. 3. There was an age-related decline in the number of landings (a proxy of foraging effort) during daylight hours, and a decrease in body feather C-13 values in older males but not females, yet this did not accompany an age-related shift in distributions. Males conducted fewer landings than females, and the sexes showed some spatial segregation, with males foraging further south, likely due to their differential utilization of winds. 4. Although younger (<20years) birds had higher foraging effort, they all went on to breed successfully the following season. In contrast, among older (20+ years) birds, individuals that landed more often were more likely to defer breeding or fail during incubation, suggesting they have lower foraging success. 5. As far as we are aware, this is the first demonstration of an age-specific carry-over effect of foraging behaviour in the non-breeding period on subsequent reproductive performance. This link between foraging behaviour and fitness in late but not early adulthood indicates that the ability of individuals to forage efficiently outside the breeding period may be an important driver of fitness differences in old age. [Clay, Thomas A.; Phillips, Richard A.] British Antarctic Survey, Nat Environm Res Council, Cambridge, England; [Clay, Thomas A.; Pearmain, Elizabeth J.; Manica, Andrea] Univ Cambridge, Dept Zool, Cambridge, England; [McGill, Rona A. R.] Scottish Univ Environm Res Ctr, NERC Life Sci Mass Spectrometry, E Kilbride, Lanark, Scotland Clay, TA (reprint author), British Antarctic Survey, Nat Environm Res Council, Cambridge, England.; Clay, TA (reprint author), Univ Cambridge, Dept Zool, Cambridge, England. tommy.clay@outlook.com McGill, Rona/F-1793-2010; Manica, Andrea/B-5497-2008 McGill, Rona/0000-0003-0400-7288; Manica, Andrea/0000-0003-1895-450X British Antarctic Survey [NE/J021083/1] British Antarctic Survey, Grant/Award Number: NE/J021083/1 Angelier F, 2006, GEN COMP ENDOCR, V149, P1, DOI 10.1016/j.ygcen.2006.04.006; Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; Authier M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032026; Bates D, 2015, J STAT SOFTW, V67, P1; Battam H, 2010, J COMP PHYSIOL B, V180, P1247, DOI 10.1007/s00360-010-0497-3; Burnham K. P, 2002, MODEL SELECTION MULT, P488; Calenge C, 2006, ECOL MODEL, V197, P516, DOI 10.1016/j.ecolmodel.2006.03.017; Catry P, 2006, P R SOC B, V273, P1625, DOI 10.1098/rspb.2006.3482; Catry P, 2011, J ORNITHOL, V152, P549, DOI 10.1007/s10336-010-0616-7; Ceia FR, 2015, RAPID COMMUN MASS SP, V29, P2328, DOI 10.1002/rcm.7401; Cherel Yves, 2016, Frontiers in Ecology and Evolution, V4, P3; Clay T. A., 2018, DRYAD DIGITAL REPOSI, DOI [10. 5061/dryad. cr266nb, DOI 10.5061/DRYAD.CR266NB]; Clay TA, 2016, SCI REP-UK, V6, DOI 10.1038/srep29932; Clutton-Brock T, 1988, REPROD SUCCESS STUDI; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Cunningham JT, 2017, ANIM BEHAV, V126, P271, DOI 10.1016/j.anbehav.2017.02.010; Daunt F, 2007, BIOL LETTERS, V3, P371, DOI 10.1098/rsbl.2007.0157; Daunt F, 2007, FUNCT ECOL, V21, P561, DOI 10.1111/j.1365-2435.2007.01260.x; Daunt F, 2006, BEHAV ECOL SOCIOBIOL, V59, P381, DOI 10.1007/s00265-005-0061-4; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; de Grissac S, 2016, SCI REP-UK, V6, DOI 10.1038/srep26103; Dukas R, 2008, ETHOLOGY, V114, P1195, DOI 10.1111/j.1439-0310.2008.01565.x; Elliott KH, 2015, FUNCT ECOL, V29, P219, DOI 10.1111/1365-2435.12316; Fay R, 2016, ECOLOGY, V97, P1842, DOI 10.1890/15-1485.1; Fayet AL, 2016, J ANIM ECOL, V85, P1516, DOI 10.1111/1365-2656.12580; Fieberg J, 2005, J WILDLIFE MANAGE, V69, P1346, DOI 10.2193/0022-541X(2005)69[1346:QHOTIO]2.0.CO;2; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Froy H, 2017, J ANIM ECOL, V86, P1022, DOI 10.1111/1365-2656.12712; Froy H, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0116415; Froy H, 2013, ECOL LETT, V16, P642, DOI 10.1111/ele.12092; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hassrick JL, 2013, FUNCT ECOL, V27, P1055, DOI 10.1111/1365-2435.12108; Hayward AD, 2015, EXP GERONTOL, V71, P56, DOI 10.1016/j.exger.2015.08.003; Inger R, 2010, J ANIM ECOL, V79, P974, DOI 10.1111/j.1365-2656.2010.01712.x; Jaeger A, 2014, ECOLOGY, V95, P2324, DOI 10.1890/13-1376.1; Jaeger A, 2010, RAPID COMMUN MASS SP, V24, P3456, DOI 10.1002/rcm.4792; Jaeger A, 2009, MAR BIOL, V156, P1233, DOI 10.1007/s00227-009-1165-6; Jimenez S, 2016, ANIM CONSERV, V19, P281, DOI 10.1111/acv.12245; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Le Vaillant M, 2013, MAR BIOL, V160, P1147, DOI 10.1007/s00227-013-2167-y; Le Vaillant M, 2012, J EXP BIOL, V215, P3685, DOI 10.1242/jeb.071175; Lecomte VJ, 2010, P NATL ACAD SCI USA, V107, P6370, DOI 10.1073/pnas.0911181107; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Mackley EK, 2010, MAR ECOL PROG SER, V406, P291, DOI 10.3354/meps08532; MacNulty DR, 2009, ECOL LETT, V12, P1347, DOI 10.1111/j.1461-0248.2009.01385.x; Marra PP, 1998, SCIENCE, V282, P1884, DOI 10.1126/science.282.5395.1884; McNamara JM, 2009, P ROY SOC B-BIOL SCI, V276, P4061, DOI 10.1098/rspb.2009.0959; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Montgomery RA, 2013, J ANIM ECOL, V82, P301, DOI 10.1111/1365-2656.12000; Navarro J, 2010, MAR BIOL, V157, P2453, DOI 10.1007/s00227-010-1509-2; Newton I., 2010, BIRD MIGRATION; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; Nussey DH, 2011, ECOLOGY, V92, P1936, DOI 10.1890/11-0308.1; Pardo D, 2013, OECOLOGIA, V173, P1283, DOI 10.1007/s00442-013-2704-x; Patrick SC, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.1649; Patterson EM, 2016, BEHAV ECOL, V27, P401, DOI 10.1093/beheco/arv164; Payne R.B., 1972, P103; Pelletier L, 2014, OECOLOGIA, V176, P399, DOI 10.1007/s00442-014-3018-3; Phalan B, 2007, MAR ECOL PROG SER, V340, P271, DOI 10.3354/meps340271; Phillips RA, 2004, MAR ECOL PROG SER, V266, P265, DOI 10.3354/meps266265; Phillips RA, 2017, MAR ECOL PROG SER, V578, P117, DOI 10.3354/meps12217; Phillips RA, 2011, MAR BIOL, V158, P2199, DOI 10.1007/s00227-011-1725-4; Phillips RA, 2009, MAR ECOL PROG SER, V391, P279, DOI 10.3354/meps08028; Phillips RA, 2009, OECOLOGIA, V160, P795, DOI 10.1007/s00442-009-1342-9; Prince PA, 1997, CONDOR, V99, P58, DOI 10.2307/1370224; R Core Team, 2014, R LANG ENV STAT COMP; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Senner NR, 2015, P ROY SOC B-BIOL SCI, V282, P5, DOI 10.1098/rspb.2015.1050; Shaffer SA, 2001, FUNCT ECOL, V15, P203, DOI 10.1046/j.1365-2435.2001.00514.x; Shaffer SA, 2001, J ANIM ECOL, V70, P864, DOI 10.1046/j.0021-8790.2001.00548.x; Shoji A, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0671; Sorensen MC, 2009, J ANIM ECOL, V78, P460, DOI 10.1111/j.1365-2656.2008.01492.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stephens D. W, 1986, FORAGING THEORY; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; Weimerskirch H, 2005, ECOLOGY, V86, P2611, DOI 10.1890/04-1866; Weimerskirch H, 2000, P ROY SOC B-BIOL SCI, V267, P1869, DOI 10.1098/rspb.2000.1223; Weimerskirch H, 1997, MAR ECOL PROG SER, V151, P245, DOI 10.3354/meps151245; Weimerskirch H, 2000, NATURE, V406, P955, DOI 10.1038/35023068; WEIMERSKIRCH H, 1993, AUK, V110, P325; Weimerskirch H, 2015, SCI REP-UK, V5, DOI 10.1038/srep08853; Xavier JC, 2004, FISH OCEANOGR, V13, P324, DOI 10.1111/j.1365-2419.2004.00298.x; Yoda K, 2004, P ROY SOC B-BIOL SCI, V271, pS240, DOI 10.1098/rsbl.2003.0157; Zimmer I, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016098; Zuur Alain F., 2009, P1 88 0 0 19 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JUL 2018 32 7 1832 1846 10.1111/1365-2435.13120 15 Ecology Environmental Sciences & Ecology GL6GI WOS:000437281100016 Green Published 2019-02-21 J Fossen, EIF; Pelabon, C; Einum, S Fossen, Erlend I. F.; Pelabon, Christophe; Einum, Sigurd An empirical test for a zone of canalization in thermal reaction norms JOURNAL OF EVOLUTIONARY BIOLOGY English Article Daphnia; genotype-environment interaction; life-history evolution; phenotypic plasticity; thermal adaptation; thermal performance curves; thermal reaction norm; zone of canalization LIFE-HISTORY EVOLUTION; PHENOTYPIC PLASTICITY; DROSOPHILA-MELANOGASTER; QUANTITATIVE GENETICS; GROWTH-RATE; TEMPERATURE; POPULATION; ADAPTATION; FITNESS; TRAITS Theoretical models on the evolution of phenotypic plasticity predict a zone of canalization where reaction norms cross, and genetic variation is minimized in the environment a population most frequently encounter. Empirical tests of this prediction are largely missing, in particular for life-history traits. We addressed this prediction by quantifying thermal reaction norms of three life-history traits (somatic growth rate, age and size at maturation)of a Norwegian population of Daphnia magna and testing for the occurrence of an intermediate temperature (T-m) at which genetic variance in the traits is minimized. Size at maturation changed relatively little with temperature compared to the other traits, and there was no genetic variance in the shape of the reaction norm. Consequently, age at maturation and somatic growth rate were strongly negatively correlated. Both traits showed a strong genotype-environment interaction, and the estimated T-m was 14 degrees C for both age at maturation and growth rate. This value of T-m corresponds well with mean summer temperatures experienced by the population and suggests that the population has evolved under stabilizing selection in temperatures that fluctuate around this mean temperature. These results suggest local adaptation to temperature in the studied population and allow predicting evolutionary trajectories of thermal reaction norms under changing thermal regimes. [Fossen, Erlend I. F.; Pelabon, Christophe; Einum, Sigurd] Norwegian Univ Sci & Technol, NTNU, Dept Biol, Ctr Biodivers Dynam, NO-7491 Trondheim, Norway Fossen, EIF (reprint author), Norwegian Univ Sci & Technol, NTNU, Dept Biol, Ctr Biodivers Dynam, NO-7491 Trondheim, Norway. erlend.f.fossen@ntnu.no Einum, Sigurd/0000-0002-3788-7800; Fossen, Erlend/0000-0002-5687-2743 Research Council of Norway; FRIPRO programme [230482]; Research Council of Norway [223257/F50]; Norwegian University of Science and Technology (NTNU) Financial support was provided by the Research Council of Norway, FRIPRO programme, project "Eco-evolutionary dynamics of thermal reaction norms' (Project 230482), and partly by the Research Council of Norway through its Centres of Excellence funding scheme, project number 223257/F50 and the Norwegian University of Science and Technology (NTNU). We thank V. Yashchenko for technical assistance, J. Tufto and O. N. Kielland for valuable discussion and comments on the manuscript, and two anonymous reviewers for valuable comments on earlier versions of the manuscript. Amarasekare P, 2017, AM NAT, V189, pE31, DOI 10.1086/690293; Angilletta MJ, 2009, BIO HABIT, P1; Bates D, 2015, J STAT SOFTW, V67, P1; CAMPBELL A, 1974, J APPL ECOL, V11, P431, DOI 10.2307/2402197; Cavieres G, 2016, J EVOLUTION BIOL, V29, P1462, DOI 10.1111/jeb.12886; De Jong G, 1999, J EVOLUTION BIOL, V12, P839, DOI 10.1046/j.1420-9101.1999.00118.x; De Jong G, 2000, GENET RES, V76, P295, DOI 10.1017/S0016672300004729; DEJONG G, 1990, J EVOLUTION BIOL, V3, P447, DOI 10.1046/j.1420-9101.1990.3050447.x; Dell AI, 2011, P NATL ACAD SCI USA, V108, P10591, DOI 10.1073/pnas.1015178108; DeMoed GH, 1997, HEREDITY, V79, P260, DOI 10.1038/sj.hdy.6882240; Deutsch CA, 2008, P NATL ACAD SCI USA, V105, P6668, DOI 10.1073/pnas.0709472105; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; EBERT D, 1994, OIKOS, V69, P309, DOI 10.2307/3546152; Ebert D., 1997, EXS, V82, P151; Ergon T, 2017, J EVOLUTION BIOL, V30, P486, DOI 10.1111/jeb.13003; Flatt T, 2005, Q REV BIOL, V80, P287, DOI 10.1086/432265; GAVRILETS S, 1993, J EVOLUTION BIOL, V6, P31, DOI 10.1046/j.1420-9101.1993.6010031.x; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Hansen TF, 2003, J EVOLUTION BIOL, V16, P754, DOI 10.1046/j.1420-9101.2003.00556.x; Hansen TF, 2011, EVOL BIOL, V38, P258, DOI 10.1007/s11692-011-9127-6; Hanssen-Bauer I., 2015, 2 NCCS, P1; Imasheva AG, 2000, GENET RES, V76, P237, DOI 10.1017/S0016672300004717; Izem R, 2005, AM NAT, V166, P277, DOI 10.1086/431314; Karan D, 1999, GENET SEL EVOL, V31, P491, DOI 10.1051/gse:19990505; Kingsolver JG, 2004, EVOLUTION, V58, P1521; Kingsolver JG, 2009, AM NAT, V174, P755, DOI 10.1086/648310; KLUTTGEN B, 1994, WATER RES, V28, P743, DOI 10.1016/0043-1354(94)90157-0; LAMB RJ, 1985, OECOLOGIA, V67, P8, DOI 10.1007/BF00378444; Lampert W, 1996, FUNCT ECOL, V10, P631, DOI 10.2307/2390173; Lampert W, 2011, DAPHNIA DEV MODEL OR; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Lynch M, 1998, GENETICS ANAL QUANTI; Martin TL, 2008, AM NAT, V171, pE102, DOI 10.1086/527502; Mitchell A, 2016, FUNCT ECOL, V30, P733, DOI 10.1111/1365-2435.12535; Morrissey MB, 2016, EVOLUTION, V70, P1944, DOI 10.1111/evo.13003; Nilsson-Ortman V, 2012, ECOLOGY, V93, P1340; Noach EJK, 1996, J EVOLUTION BIOL, V9, P831, DOI 10.1046/j.1420-9101.1996.9060831.x; R Core Team, 2014, R LANG ENV STAT COMP; Richter-Boix A, 2015, EVOLUTION, V69, P2210, DOI 10.1111/evo.12711; STEARNS SC, 1994, EVOLUTION, V48, P1438, DOI 10.1111/j.1558-5646.1994.tb02186.x; STEARNS SC, 1995, J EVOLUTION BIOL, V8, P539, DOI 10.1046/j.1420-9101.1995.8050539.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Thomas MK, 2012, SCIENCE, V338, P1085, DOI 10.1126/science.1224836; Wagner GP, 1997, EVOLUTION, V51, P329, DOI 10.1111/j.1558-5646.1997.tb02420.x; Yashchenko V, 2016, J ANIM ECOL, V85, P1070, DOI 10.1111/1365-2656.12515 46 0 0 4 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JUL 2018 31 7 936 943 10.1111/jeb.13287 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GL4KW WOS:000437121200001 29701882 2019-02-21 J Louppe, V; Courant, J; Videlier, M; Herrel, A Louppe, V.; Courant, J.; Videlier, M.; Herrel, A. Differences in standard metabolic rate at the range edge versus the center of an expanding invasive population of Xenopus laevis in the West of France JOURNAL OF ZOOLOGY English Article metabolic rate; invasive species; amphibians; spatial sorting; trade-off; Xenopus laevis; SMR; dispersal AEROBIC PERFORMANCE VARIATION; GLOBAL AMPHIBIAN DECLINES; LIFE-HISTORY EVOLUTION; AFRICAN CLAWED FROG; TRADE-OFFS; CANE TOADS; ENERGY-EXPENDITURE; LOCOMOTOR PERFORMANCE; INDIVIDUAL VARIATION; MICROTUS-AGRESTIS Empirical and theoretical studies have investigated the trade-offs between reproduction, dispersal and/or survival that may arise between individuals at the range edge of an expanding population. The differential allocation of resources to these life-history traits may then be constrained by the metabolism of an individual. Previous studies of an invasive expanding population of the frog Xenopus laevis in the West of France showed an increase in allocation of resources to dispersal and a decrease in allocation to reproduction in individuals from the range front. The present study focuses on physiological variation through an analysis of the standard metabolic rate (SMR). SMR was analyzed through measurements of oxygen consumption and carbon dioxide production under resting conditions. Our results show a positive correlation between SMR and individual size and weight, but no difference in body condition is observed between individuals from the center and those from the periphery of the range. Moreover, a decrease in SMR at the periphery was observed in both sexes. Yet, a significant interaction effect between sex and site was observed. Males had a higher SMR than females at the center while females from the periphery showed a higher SMR than males. A lower SMR may allow animals from the periphery to allocate more resources to other functions, such as locomotion, and therefore dispersal. In contrast, the relatively higher SMR in females from the periphery (compared to males) is likely to be driven by the important energetic cost of reproduction in addition to the environmental and demographic constraints at the edge of an expanding population. From the perspective of conservation biology, these results attest to the importance of understanding the biological and evolutionary mechanisms underpinning the selection of traits to estimate the invasive potential of exotic species. [Louppe, V.; Courant, J.; Videlier, M.; Herrel, A.] UMR 7179 CNRS MNHN, Dept Adaptat Vivant, 55 Rue Buffon, F-75005 Paris, France; [Louppe, V.] UMR 7205 CNRS MNHN UPMC EPHE, Inst Systemat, Evolut, Biodiversit, Paris, France; [Videlier, M.] Univ Ottawa, Dept Biol, Ottawa, ON, Canada Herrel, A (reprint author), UMR 7179 CNRS MNHN, Dept Adaptat Vivant, 55 Rue Buffon, F-75005 Paris, France. anthony.herrel@mnhn.fr Herrel, Anthony/0000-0003-0991-4434; Louppe, Vivien/0000-0002-4648-0914 ERA-Net BiodivERsA; ANR; DFG; BELSPO; FCT; INVAXEN 'Invasive biology of X. laevis in Europe: ecology, impact and predictive models' project [ANR-13-EBID-0008-01] We thank the communaute de communes Thouarsais for their help in the identification of field sites. This research was funded by the ERA-Net BiodivERsA, with the national funders ANR, DFG, BELSPO and FCT, as part of the 2013 BiodivERsA call for research proposals. INVAXEN 'Invasive biology of X. laevis in Europe: ecology, impact and predictive models' project ANR-13-EBID-0008-01. Research permit was provided by the Prefet of the Deux-Sevres department. Alford RA, 1999, ANNU REV ECOL SYST, V30, P133, DOI 10.1146/annurev.ecolsys.30.1.133; Alford RA, 2009, WILDLIFE RES, V36, P23, DOI 10.1071/WR08021; Angilletta MJ, 2000, FUNCT ECOL, V14, P39, DOI 10.1046/j.1365-2435.2000.00387.x; Banci Karina R.S., 2013, Herpetology Notes, V6, P339; Barun A, 2010, ANIM CONSERV, V13, P549, DOI 10.1111/j.1469-1795.2010.00374.x; BENNETT AF, 1988, AM ZOOL, V28, P699; BEUCHAT CA, 1990, PHYSIOL ZOOL, V63, P555, DOI 10.1086/physzool.63.3.30156228; Blackmer AL, 2005, BEHAV ECOL, V16, P906, DOI 10.1093/beheco/ari069; Bonnet X, 2002, ECOLOGY, V83, P2124, DOI 10.1890/0012-9658(2002)083[2124:RIATCB]2.0.CO;2; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Boratynski Z, 2013, EVOL ECOL, V27, P301, DOI 10.1007/s10682-012-9590-2; Boratynski Z, 2010, FUNCT ECOL, V24, P1252, DOI 10.1111/j.1365-2435.2010.01764.x; Brown GP, 2007, P NATL ACAD SCI USA, V104, P17698, DOI 10.1073/pnas.0705057104; Brown GP, 2015, BIOL J LINN SOC, V116, P748, DOI 10.1111/bij.12623; Brown GP, 2013, J ANIM ECOL, V82, P854, DOI 10.1111/1365-2656.12048; Burton OJ, 2010, ECOL LETT, V13, P1210, DOI 10.1111/j.1461-0248.2010.01505.x; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; CASTERLIN ME, 1980, HYDROBIOLOGIA, V75, P189, DOI 10.1007/BF00007433; Chappell MA, 1999, J EXP BIOL, V202, P2269; Chuang A, 2016, GLOBAL CHANGE BIOL, V22, P494, DOI 10.1111/gcb.13107; Clavero M, 2005, TRENDS ECOL EVOL, V20, P110, DOI 10.1016/j.tree.2005.01.003; Collins JP, 2003, DIVERS DISTRIB, V9, P89, DOI 10.1046/j.1472-4642.2003.00012.x; Courant J, 2017, BIOL J LINN SOC, V122, P157, DOI 10.1093/biolinnean/blx048; DAAN S, 1989, J BIOL RHYTHM, V4, P267; DAAN S, 1990, AM J PHYSIOL, V259, pR333; Ellis JC, 2007, WATERBIRDS, V30, P375, DOI 10.1675/1524-4695(2007)030[0375:IOROBS]2.0.CO;2; Foucart T, 2014, J EXP BIOL, V217, P4049, DOI 10.1242/jeb.104315; Fouquet A, 2006, ANIM BIOL, V56, P95, DOI 10.1163/157075606775904722; Fritts TH, 1998, ANNU REV ECOL SYST, V29, P113, DOI 10.1146/annurev.ecolsys.29.1.113; GARLAND T, 1987, AM J PHYSIOL, V252, pR439; GARLAND T, 1984, AM J PHYSIOL, V247, pR806; Gregory PT, 1999, J ZOOL, V248, P231, DOI 10.1111/j.1469-7998.1999.tb01199.x; GUILLETTE LJ, 1982, J EXP ZOOL, V223, P33, DOI 10.1002/jez.1402230106; Hammond KA, 1997, NATURE, V386, P457, DOI 10.1038/386457a0; Hammond KA, 2000, J EXP BIOL, V203, P2053; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hermaniuk A, 2017, PHYSIOL BIOCHEM ZOOL, V90, P230, DOI 10.1086/689408; Herrel A, 2012, J ZOOL, V287, P311, DOI 10.1111/j.1469-7998.2012.00919.x; Hudson CM, 2015, BIOL J LINN SOC, V116, P743, DOI 10.1111/bij.12618; Hughes CL, 2003, P ROY SOC B-BIOL SCI, V270, pS147, DOI 10.1098/rsbl.2003.0049; Hulbert AJ, 2000, BIOL REV, V75, P519, DOI 10.1017/S146479310000556X; HULBERT AJ, 1981, AM J PHYSIOL, V241, pR350; Jackson DM, 2001, J ANIM ECOL, V70, P633, DOI 10.1046/j.1365-2656.2001.00518.x; Karlsson B, 2008, P ROY SOC B-BIOL SCI, V275, P2131, DOI 10.1098/rspb.2008.0404; Ketola T, 2009, J EVOLUTION BIOL, V22, P770, DOI 10.1111/j.1420-9101.2009.01689.x; Konarzewski M, 1995, EVOLUTION, V49, P1239, DOI 10.1111/j.1558-5646.1995.tb04450.x; Kubisch A, 2013, AM NAT, V181, P700, DOI 10.1086/670008; Kunz T. H., 2004, ENCY ENERGY, V5, P423, DOI DOI 10.1016/B0-12-176480-X/00061-9; Llewelyn J, 2011, EVOL ECOL, V25, P13, DOI 10.1007/s10682-010-9369-2; Louppe V, 2017, J EXP BIOL, V220, P278, DOI 10.1242/jeb.146589; MARLER CA, 1995, BEHAV ECOL SOCIOBIOL, V37, P225, DOI 10.1007/BF00177401; McNeely J., 2001, LAND USE WATER RESOU, V1, P10; Measey GJ, 2012, BIOL INVASIONS, V14, P2255, DOI 10.1007/s10530-012-0227-8; Meerlo P, 1997, PHYSIOL ZOOL, V70, P362, DOI 10.1086/639616; Michener GR, 1998, J MAMMAL, V79, P1, DOI 10.2307/1382838; MILLER K, 1982, COPEIA, P695, DOI 10.2307/1444671; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; O'Donnell RP, 2005, COPEIA, P930, DOI 10.1643/0045-8511(2005)005[0930:EFSOTE]2.0.CO;2; O'Steen S, 1999, PHYSIOL BIOCHEM ZOOL, V72, P520, DOI 10.1086/316690; Ophir AG, 2010, J EVOLUTION BIOL, V23, P1564, DOI 10.1111/j.1420-9101.2010.02005.x; Orrell TM, 2004, MOL PHYLOGENET EVOL, V32, P425, DOI 10.1016/j.ympev.2004.01.012; Phillips BL, 2008, AM NAT, V172, pS34, DOI 10.1086/588255; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; PIERSMA T, 1995, J COMP PHYSIOL B, V165, P37, DOI 10.1007/BF00264684; Rolfe DFS, 1997, PHYSIOL REV, V77, P731; Seebacher F, 2011, J EXP BIOL, V214, P1437, DOI 10.1242/jeb.053124; SEIGEL RA, 1987, OECOLOGIA, V73, P481, DOI 10.1007/BF00379404; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; Shine R, 2003, OECOLOGIA, V136, P450, DOI 10.1007/s00442-003-1281-9; Speakman JR, 2003, P NATL ACAD SCI USA, V100, P14057, DOI 10.1073/pnas.2235671100; Speakman JR, 1996, PHYSIOL ZOOL, V69, P746, DOI 10.1086/physzool.69.4.30164228; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Steyermark AC, 2000, PHYSIOL BIOCHEM ZOOL, V73, P298, DOI 10.1086/316743; Steyermark AC, 2005, J EXP BIOL, V208, P1201, DOI 10.1242/jeb.01492; Tinbergen JM, 2000, J ANIM ECOL, V69, P323, DOI 10.1046/j.1365-2656.2000.00395.x; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500 76 0 0 9 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. JUL 2018 305 3 163 172 10.1111/jzo.12548 10 Zoology Zoology GL2HN WOS:000436940300003 2019-02-21 J Tuzun, N; Stoks, R Tuzun, Nedim; Stoks, Robby Pathways to fitness: carry-over effects of late hatching and urbanisation on lifetime mating success OIKOS English Article reproductive phenology; metamorphosis; urbanization; phenotypic plasticity; urban heat island; hatching period; fitness; life history theory URBAN HEAT-ISLAND; DAMSELFLY COENAGRION-PUELLA; TIME CONSTRAINTS; SEXUAL SELECTION; SEMINATURAL CONDITIONS; EMBRYONIC-DEVELOPMENT; EVOLUTIONARY ECOLOGY; REPRODUCTIVE SUCCESS; GROWTH TRAJECTORIES; FLIGHT ENDURANCE Life history theory and most empirical studies assume carry-over effects of larval conditions to shape adult fitness through their impact on metamorphic traits (age and mass at metamorphosis). Yet, very few formal tests of this connection across metamorphosis exist, because this entails longitudinal studies from the egg stage and requires measuring fitness in (semi)natural conditions. In a longitudinal one-year common-garden rearing experiment consisting of an outdoor microcosm part for the larval stage and a large outdoor insectary part for the adult stage, we studied the effects of two factors related to time constraints in the larval stage (egg hatching period and urbanisation) on life history traits and lifetime mating success in the males of the damselfly Coenagrion puella. We reared early- and late-hatched larvae from each of three rural and three urban populations from the egg stage throughout their adult life. Key findings were that both the hatching period and urbanisation shaped adult fitness, yet through different pathways. As expected, the more time-constrained late-hatched individuals accelerated their larval life history and this was associated with a lower lifetime mating success. A path analysis revealed this carry-over effect was mediated by the changes in the two metamorphic traits (reduced age and lower mass at emergence). Notably, urban males had a 50% lower lifetime mating success, which was not mediated by age and mass at emergence, and possibly driven by their shorter lifespan. Our results point to long-term carry-over effects of the usually ignored natural variation in egg hatching dates, and further contribute to the limited evidence showing fitness costs of adjusting to an urban lifestyle. [Tuzun, Nedim; Stoks, Robby] Univ Leuven, Evolutionary Stress Ecol & Ecotoxicol, Deberiotstr 32, BE-3000 Leuven, Belgium Tuzun, N (reprint author), Univ Leuven, Evolutionary Stress Ecol & Ecotoxicol, Deberiotstr 32, BE-3000 Leuven, Belgium. nedim.tuzun@kuleuven.be Tuzun, Nedim/0000-0002-4743-1743 Belspo project SPEEDY [P7/04]; KU Leuven [PF/2010/07, C16/17/002]; FWO research network EVENET [WO.003.16N] Financial support came from the Belspo project SPEEDY (IAP- project P7/04) and research grants from the KU Leuven (PF/2010/07 and C16/17/002) and the FWO research network EVENET (WO.003.16N). Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Alberti M, 2017, P NATL ACAD SCI USA, V114, P8951, DOI 10.1073/pnas.1606034114; Altwegg R, 2003, EVOLUTION, V57, P872; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.2307/3071813; BANKS M J, 1985, Odonatologica, V14, P279; BANKS MJ, 1987, J ANIM ECOL, V56, P815, DOI 10.2307/4950; BANKS MJ, 1985, ANIM BEHAV, V33, P1175, DOI 10.1016/S0003-3472(85)80178-0; Barton K, 2016, R PACKAGE VERSION, V1, P6, DOI DOI 10.18637/JSS.V067.I01; Bates D, 2015, J STAT SOFTW, V67, P1; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Berwaerts K, 2002, FUNCT ECOL, V16, P484, DOI 10.1046/j.1365-2435.2002.00650.x; Brans KI, 2017, GLOBAL CHANGE BIOL, V23, P5218, DOI 10.1111/gcb.13784; Brans KI, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0030; Burnham K. P, 2002, MODEL SELECTION MULT; Chamberlain DE, 2009, IBIS, V151, P1, DOI 10.1111/j.1474-919X.2008.00899.x; CORBET P. S., 1999, DRAGONFLIES BEHAV EC; Cordero-Rivera Adolfo, 2008, P7; Dahl E, 2012, J ANIM ECOL, V81, P1233, DOI 10.1111/j.1365-2656.2012.02009.x; De Block M, 2004, OECOLOGIA, V140, P68, DOI 10.1007/s00442-004-1575-6; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; Debecker S, 2017, ENVIRON SCI TECHNOL, V51, P2409, DOI 10.1021/acs.est.6b04989; Debecker S, 2015, FUNCT ECOL, V29, P1292, DOI 10.1111/1365-2435.12435; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Earl JE, 2015, COPEIA, V103, P297, DOI 10.1643/CH-14-128; FINCKE OM, 1982, BEHAV ECOL SOCIOBIOL, V10, P293, DOI 10.1007/BF00302820; Fox J., 2011, R COMPANION APPL REG; Gaston K. J., 2010, URBAN ECOL, P35; Goertzen D, 2013, J INSECT CONSERV, V17, P399, DOI 10.1007/s10841-012-9522-z; Gotthard K, 2001, EXPTL BIOL REV, P287; Grace J. B, 2006, STRUCTURAL EQUATION; Grace JB, 2005, B ECOL SOC AM, V86, P283, DOI DOI 10.1890/0012-9623(2005)86[283:ITRFMR]2.0.CO;2; Gyulavari HA, 2014, EVOL ECOL, V28, P639, DOI 10.1007/s10682-014-9703-1; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Jemielity S, 2007, AGING CELL, V6, P225, DOI 10.1111/j.1474-9726.2007.00279.x; Kaiser A, 2016, ECOL EVOL, V6, P4129, DOI 10.1002/ece3.2166; Laugen AT, 2003, OECOLOGIA, V135, P548, DOI 10.1007/s00442-003-1229-0; Lee WS, 2016, FUNCT ECOL, V30, P625, DOI 10.1111/1365-2435.12538; Lee WS, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2899; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Lee WS, 2012, ECOLOGY, V93, P902, DOI 10.1890/11-0890.1; Lefcheck JS, 2016, METHODS ECOL EVOL, V7, P573, DOI 10.1111/2041-210X.12512; Lind MI, 2017, FUNCT ECOL, V31, P1252, DOI 10.1111/1365-2435.12840; Lowe CD, 2009, ECOLOGY, V90, P2202, DOI 10.1890/08-1780.1; Lowe EC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105480; MARDEN JH, 1989, PHYSIOL ZOOL, V62, P505, DOI 10.1086/physzool.62.2.30156182; Marshall DJ, 2011, CURR BIOL, V21, pR718, DOI 10.1016/j.cub.2011.08.022; McLean MA, 2005, J THERM BIOL, V30, P384, DOI 10.1016/j.jtherbio.2005.03.002; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Mikolajewski DJ, 2015, ECOLOGY, V96, P1128, DOI 10.1890/14-0262.1; Miller CW, 2014, ANNU REV ENTOMOL, V59, P427, DOI 10.1146/annurev-ento-011613-162044; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Monaghan P, 2006, TRENDS ECOL EVOL, V21, P47, DOI 10.1016/j.tree.2005.11.007; O'Connor CM, 2014, ECOSPHERE, V5, DOI 10.1890/ES13-00388.1; Orizaola G, 2016, ECOLOGY, V97, P2470, DOI 10.1002/ecy.1464; Orizaola G, 2013, OECOLOGIA, V171, P873, DOI 10.1007/s00442-012-2456-z; Pechenik JA, 2006, INTEGR COMP BIOL, V46, P323, DOI 10.1093/icb/icj028; Piano E, 2017, GLOBAL CHANGE BIOL, V23, P2554, DOI 10.1111/gcb.13606; Pinheiro J., 2017, NLME LINEAR NONLINEA, DOI DOI 10.5194/TC-10-2291-2016; Rosa E, 2017, OECOLOGIA, V184, P633, DOI 10.1007/s00442-017-3903-7; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Salmon P, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0155; Gomez GSY, 2012, OECOLOGIA, V169, P125, DOI 10.1007/s00442-011-2189-4; Shipley B, 2013, ECOLOGY, V94, P560, DOI 10.1890/12-0976.1; Shipley B, 2009, ECOLOGY, V90, P363, DOI 10.1890/08-1034.1; Sniegula S, 2017, AQUAT TOXICOL, V186, P113, DOI 10.1016/j.aquatox.2017.02.029; Sniegula S, 2016, J ANIM ECOL, V85, P187, DOI 10.1111/1365-2656.12442; Sokolovska N, 2000, ECOL ENTOMOL, V25, P239, DOI 10.1046/j.1365-2311.2000.00251.x; Somers KA, 2013, FRESHW SCI, V32, P309, DOI 10.1899/12-046.1; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; Sprau P, 2017, BEHAV ECOL, V28, P59, DOI 10.1093/beheco/arw130; Stoks R, 2000, ANIM BEHAV, V59, P339, DOI 10.1006/anbe.1999.1309; Stoks R, 2012, J ANIM ECOL, V81, P1034, DOI 10.1111/j.1365-2656.2012.01987.x; Munoz PT, 2015, BIODIVERS CONSERV, V24, P659, DOI 10.1007/s10531-014-0831-2; Thompson DJ, 2011, ECOL LETT, V14, P905, DOI 10.1111/j.1461-0248.2011.01655.x; THOMPSON DJ, 1990, ECOL ENTOMOL, V15, P455, DOI 10.1111/j.1365-2311.1990.tb00828.x; Tigreros N, 2013, FUNCT ECOL, V27, P145, DOI 10.1111/1365-2435.12006; Touchon JC, 2013, ECOLOGY, V94, P850, DOI 10.1890/12-0194.1; Tuzun N., 2017, DRYAD DIGITAL REPOSI, DOI [10. 5061/dryad. 20650, DOI 10.5061/DRYAD.20650]; Tuzun N, 2017, ENVIRON SCI TECHNOL, V51, P13949, DOI 10.1021/acs.est.7b04399; Tuzun N, 2017, EVOL APPL, V10, P1067, DOI 10.1111/eva.12512; Tuzun N, 2017, EVOL APPL, V10, P694, DOI 10.1111/eva.12485; Tuzun N, 2015, AQUAT TOXICOL, V163, P81, DOI 10.1016/j.aquatox.2015.04.002; Walter MF, 2007, CHROMOSOMA, V116, P41, DOI 10.1007/s00412-006-0081-5; Ward K, 2016, SCI TOTAL ENVIRON, V569, P527, DOI 10.1016/j.scitotenv.2016.06.119; WARINGER JA, 1984, FRESHWATER BIOL, V14, P385, DOI 10.1111/j.1365-2427.1984.tb00162.x; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; Wouters H, 2017, GEOPHYS RES LETT, V44, P8997, DOI 10.1002/2017GL074889; Yamahira K, 2002, ECOLOGY, V83, P1252, DOI 10.1890/0012-9658(2002)083[1252:IVILVI]2.0.CO;2; Yang XC, 2013, INT J CLIMATOL, V33, P2402, DOI 10.1002/joc.3590; Zipper SC, 2016, ENVIRON RES LETT, V11, DOI 10.1088/1748-9326/11/5/054023 90 1 1 13 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos JUL 2018 127 7 949 959 10.1111/oik.05033 11 Ecology Environmental Sciences & Ecology GL1JE WOS:000436856200005 2019-02-21 J Montiglio, PO; Dammhahn, M; Messier, GD; Reale, D Montiglio, Pierre-Olivier; Dammhahn, Melanie; Messier, Gabrielle Dubuc; Reale, Denis The pace-of-life syndrome revisited: the role of ecological conditions and natural history on the slow-fast continuum BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Behavior; Immunity; Life history strategies; Metabolism; Personality; Trait interaction STANDARD METABOLIC-RATE; WILD PASSERINE BIRD; TIT PARUS-MAJOR; PHENOTYPIC PLASTICITY; ANIMAL PERSONALITY; EXPLORATORY-BEHAVIOR; TRADE-OFFS; INDIVIDUAL-DIFFERENCES; ENERGY-EXPENDITURE; EASTERN CHIPMUNKS The pace-of-life syndrome (i.e., POLS) hypothesis posits that behavioral and physiological traits mediate the trade-off between current and future reproduction. This hypothesis predicts that life history, behavioral, and physiological traits will covary under clearly defined conditions. Empirical tests are equivocal and suggest that the conditions necessary for the POLS to emerge are not always met. We nuance and expand the POLS hypothesis to consider alternative relationships among behavior, physiology, and life history. These relationships will vary with the nature of predation risk, the challenges posed by resource acquisition, and the energy management strategies of organisms. We also discuss how the plastic response of behavior, physiology, and life history to changes in ecological conditions and variation in resource acquisition among individuals determine our ability to detect a fast-slow pace of life in the first place or associations among these traits. Future empirical studies will provide most insights on the coevolution among behavior, physiology, and life history by investigating these traits both at the genetic and phenotypic levels in varying types of predation regimes and levels of resource abundance. We revisit the pace-of-life syndrome hypothesis, suggesting that behaviors involving a risk of death or injury should coevolve with higher metabolic rates, higher fecundity, faster growth, and heightened mortality rates. Empirical support for this hypothesis is mixed. We show how relaxing some of the assumptions underlying the pace-of-life syndrome hypothesis allows us to consider alternative relationships among behavior, physiology, and life history, and why we fail to meet the predictions posed by the pace-of-life syndrome hypothesis in some populations. Our discussion emphasizes the need to re-integrate the role of the species' natural history, ecological conditions, and phenotypic plasticity in shaping relationships among behavior, physiology, and life history. [Montiglio, Pierre-Olivier; Dammhahn, Melanie; Messier, Gabrielle Dubuc; Reale, Denis] Univ Quebec Montreal, Dept Sci Biol, Case Postale 8888,Succursale Ctr Ville, Montreal, PQ H3C 3P8, Canada; [Montiglio, Pierre-Olivier] McGill Univ, Dept Biol & Redpath Museum, 1205 Dr Penfield Ave, Montreal, PQ H3A 1B1, Canada; [Dammhahn, Melanie] Univ Potsdam, Inst Biochem & Biol, Anim Ecol, Maulbeerallee 1, D-14469 Potsdam, Germany; [Messier, Gabrielle Dubuc] CEFE, CNRS, UMR 5175, 1919 Route Mende, F-34293 Montpellier 5, France Montiglio, PO (reprint author), Univ Quebec Montreal, Dept Sci Biol, Case Postale 8888,Succursale Ctr Ville, Montreal, PQ H3C 3P8, Canada.; Montiglio, PO (reprint author), McGill Univ, Dept Biol & Redpath Museum, 1205 Dr Penfield Ave, Montreal, PQ H3A 1B1, Canada. montiglio.pierre-olivier@uqam.ca Fonds de Recherche Quebec: Nature et Technologies (FRQNT); Natural Sciences and Engineering Research Council of Canada (NSERC); DFG [DA 1377/2-1, DA 1377/2-2]; NSERC Discovery grant POM was supported by post-doctoral fellowships from the Fonds de Recherche Quebec: Nature et Technologies (FRQNT) and the Natural Sciences and Engineering Research Council of Canada (NSERC). GDM was supported by a FRQNT and a NSERC doctoral fellowship. MD was supported by a DFG research fellowship (DA 1377/2-1) and DFG return fellowship (DA 1377/2-2). This research was supported by an NSERC Discovery grant to DR. Adriaenssens B, 2009, TRENDS ECOL EVOL, V24, P179, DOI 10.1016/j.tree.2008.12.003; Bergeron P, 2013, J EVOLUTION BIOL, V26, P766, DOI 10.1111/jeb.12081; Bergmuller R, 2010, TRENDS ECOL EVOL, V25, P504, DOI 10.1016/j.tree.2010.06.012; Bijleveld AI, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3135; Binder TR, 2016, ANIM BEHAV, V121, P175, DOI 10.1016/j.anbehav.2016.09.006; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2014, J ANIM ECOL, V83, P1186, DOI 10.1111/1365-2656.12210; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Bridger D, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2492; Brommer JE, 2014, BEHAV ECOL, V25, P802, DOI 10.1093/beheco/aru057; Brommer JE, 2013, BEHAV ECOL SOCIOBIOL, V67, P1027, DOI 10.1007/s00265-013-1527-4; Brommer JE, 2012, ECOL EVOL, V2, P3032, DOI 10.1002/ece3.412; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Careau V, 2011, J EVOLUTION BIOL, V24, P2153, DOI 10.1111/j.1420-9101.2011.02344.x; Careau V, 2009, FUNCT ECOL, V23, P150, DOI 10.1111/j.1365-2435.2008.01468.x; Careau V, 2013, J EXP BIOL, V216, P418, DOI 10.1242/jeb.076794; Careau V, 2012, PHYSIOL BIOCHEM ZOOL, V85, P543, DOI 10.1086/666970; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Cutts CJ, 1998, J FISH BIOL, V52, P1026; Dammhahn M, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2473-y; Dammhahn M, 2017, FUNCT ECOL, V31, P866, DOI 10.1111/1365-2435.12797; Dingemanse NJ, 2013, ANIM BEHAV, V85, P1031, DOI 10.1016/j.anbehav.2012.12.032; Dingemanse NJ, 2012, BEHAV ECOL SOCIOBIOL, V66, P1543, DOI 10.1007/s00265-012-1416-2; Dingemanse NJ, 2012, J ANIM ECOL, V81, P116, DOI 10.1111/j.1365-2656.2011.01877.x; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; DIXON SM, 1987, CAN J ZOOL, V65, P2276, DOI 10.1139/z87-344; Dosmann A, 2015, ANIM BEHAV, V101, P179, DOI 10.1016/j.anbehav.2014.12.026; Dubuc Messier G, 2016, BEHAV ECOL, V28; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Fitzpatrick BM, 2012, INT J ECOL, V2012, P32; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; Gifford ME, 2014, PHYSIOL BIOCHEM ZOOL, V87, P384, DOI 10.1086/675974; Glazier DS, 2015, BIOL REV, V90, P377, DOI 10.1111/brv.12115; Gluckman PD, 2005, P ROY SOC B-BIOL SCI, V272, P671, DOI 10.1098/rspb.2004.3001; Guenther A, 2013, BEHAV ECOL, V24, P402, DOI 10.1093/beheco/ars177; HEADS PA, 1986, ECOL ENTOMOL, V11, P369, DOI 10.1111/j.1365-2311.1986.tb00315.x; Hoogenboom MO, 2013, BEHAV ECOL, V24, P253, DOI 10.1093/beheco/ars161; Husby A, 2010, EVOLUTION, V64, P2221, DOI 10.1111/j.1558-5646.2010.00991.x; Jablonszky M, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2461-2; Kontiainen P, 2009, BEHAV ECOL, V20, P789, DOI 10.1093/beheco/arp062; Lahti K, 2002, FUNCT ECOL, V16, P167, DOI 10.1046/j.1365-2435.2002.00618.x; LIMA SL, 1988, CAN J ZOOL, V66, P593, DOI 10.1139/z88-087; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; MACARTHUR RH, 1966, AM NAT, V100, P603, DOI 10.1086/282454; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin JGA, 2011, ECOL LETT, V14, P576, DOI 10.1111/j.1461-0248.2011.01621.x; Mathot KJ, 2015, TRENDS ECOL EVOL, V30, P199, DOI 10.1016/j.tree.2015.01.010; Mathot KJ, 2012, OIKOS, V121, P1009, DOI 10.1111/j.1600-0706.2012.20339.x; Mathot KJ, 2011, ECOL LETT, V14, P1254, DOI 10.1111/j.1461-0248.2011.01698.x; Miller JRB, 2014, J ANIM ECOL, V83, P214, DOI 10.1111/1365-2656.12111; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Montiglio PO, 2014, J ANIM ECOL, V83, P720, DOI 10.1111/1365-2656.12174; Montiglio PO, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0343; Muller T, 2015, FRONT ZOOL, V12, DOI 10.1186/1742-9994-12-S1-S8; Nicolaus M, 2012, P ROY SOC B-BIOL SCI, V279, P4885, DOI 10.1098/rspb.2012.1936; Niemela PT, 2013, BEHAV ECOL, V24, P935, DOI 10.1093/beheco/art014; Niemela PT, 2017, J ANIM ECOL, V86, P1033, DOI 10.1111/1365-2656.12688; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Pfennig DW, 2010, TRENDS ECOL EVOL, V25, P459, DOI 10.1016/j.tree.2010.05.006; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Pruitt JN, 2011, ECOLOGY, V92, P1902, DOI 10.1890/11-0701.1; Quinn JL, 2011, J ANIM ECOL, V80, P918, DOI 10.1111/j.1365-2656.2011.01835.x; Reale D, 2000, ANIM BEHAV, V60, P589, DOI 10.1006/anbe.2000.1530; Reale D, 2003, ANIM BEHAV, V65, P463, DOI 10.1006/anbe.2003.2100; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robinson MR, 2009, GENETICS, V181, P1639, DOI 10.1534/genetics.108.086801; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Royaute R, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2472-z; Royaute R, 2015, ANIM BEHAV, V110, P163, DOI 10.1016/j.anbehav.2015.09.027; Santostefano F, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.1567; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; Schmitz OJ, 2004, ECOL LETT, V7, P153, DOI 10.1111/j.1461-0248.2003.00560.x; Speakman J, 1997, P NUTR SOC, V56, P1119, DOI 10.1079/PNS19970115; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Sultan SE, 2002, AM NAT, V160, P271, DOI 10.1086/341015; THOMAS DW, 1990, J MAMMAL, V71, P475, DOI 10.2307/1381967; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Timonin ME, 2011, J ZOOL, V284, P198, DOI 10.1111/j.1469-7998.2011.00792.x; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; Urszan TJ, 2015, OECOLOGIA, V178, P129, DOI 10.1007/s00442-014-3207-0; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vuarin P, 2013, FUNCT ECOL, V27, P793, DOI 10.1111/1365-2435.12069; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Wang IJ, 2014, MOL ECOL, V23, P5649, DOI 10.1111/mec.12938; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; White SJ, 2016, BEHAVIOUR, V153, P1517, DOI 10.1163/1568539X-00003375; Wiersma P, 2005, J EXP BIOL, V208, P4091, DOI 10.1242/jeb.01854; Wikelski Martin, 2001, Trends in Ecology and Evolution, V16, P479, DOI 10.1016/S0169-5347(01)02279-0; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; YDENBERG RC, 1986, ADV STUD BEHAV, V16, P229, DOI 10.1016/S0065-3454(08)60192-8; Zylberberg M, 2014, ANIM BEHAV, V89, P115, DOI 10.1016/j.anbehav.2013.12.021 98 3 3 32 36 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JUL 2018 72 7 UNSP 116 10.1007/s00265-018-2526-2 9 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology GK5FN WOS:000436200000001 2019-02-21 J Bellier, E; Kery, M; Schaub, M Bellier, Edwige; Kery, Marc; Schaub, Michael Relationships between vital rates and ecological traits in an avian community JOURNAL OF ANIMAL ECOLOGY English Article demographic parameters; growth rate; interspecific differences in vital rates; probability of detection; recruitment; strength of density dependence; survival LIFE-HISTORY EVOLUTION; POPULATION REGULATION; LIMITING SIMILARITY; HABITAT SELECTION; GROWTH-RATE; MODELS; BIRDS; ABUNDANCE; COMPETITION; STRATEGIES 1. Comparative studies about the relationships between vital rates and ecological traits at the community level are conspicuously lacking for most taxa because estimating vital rates requires detailed demographic data. Identifying relationships between vital rates and ecological traits could help to better understand ecological and evolutionary demographic mechanisms that lead to interspecific differences in vital rates. 2. We use novel dynamic N-mixture models for counts to achieve this for a whole avian community comprising 53 passerine species, while simultaneously accounting for density dependence and environmental stochasticity in recruitment and survival and, importantly, correcting our inferences for imperfect detection. Demographic stochasticity is taken into account in the form of the binomial and Poisson distributions describing survival events and number of recruits. We then explore relationships between estimated demographic parameters (i.e., vital rates) and ecological traits related to migration patterns, diet, habitat and nesting location of each species. 3. The relative importance of recruitment and adult survival as contributors to population growth varied greatly among species, and interspecific differences in vital rates partly reflected differences in ecological traits. Migratory mode was associated with interspecific differences in population growth and density dependence. Resident species had higher population growth rates than long-and short-distance migrants. We found no relationships between diet and population growth rate. Habitat differences were associated with different growth rates: alpine, wet-land and farmland species had lower population growth rates than forest species. Differences in population growth rates among nesting locations showed that breeding habitat is essential for population dynamics. 4. Our study reveals relationships between ecological traits and contributions of vital rates to population growth and suggests ways in which patterns of population growth fluctuations in a community might be determined by life history. [Bellier, Edwige; Kery, Marc; Schaub, Michael] Swiss Ornithol Inst, Sempach, Switzerland; [Bellier, Edwige] UiT, Dept Arctic & Marine Biol, Tromso, Norway Bellier, E (reprint author), Swiss Ornithol Inst, Sempach, Switzerland.; Bellier, E (reprint author), UiT, Dept Arctic & Marine Biol, Tromso, Norway. edwige.bellier@uit.no Bellier, Edwige/0000-0002-1184-0668 Swiss National Science Foundation [31003A_1464125] Swiss National Science Foundation, Grant/Award Number: No31003A_1464125 Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Bellier E., 2018, DRYAD DIGITAL REPOSI, DOI [10. 5061/dryad. 474jc10, DOI 10.5061/DRYAD.474JC10]; Bellier E, 2016, METHODS ECOL EVOL, V7, P1029, DOI 10.1111/2041-210X.12572; Bennett P., 2002, EVOLUTIONARY ECOLOGY; Caswell H., 2001, MATRIX POPULATION MO; Chandler RB, 2011, J APPL ECOL, V48, P1038, DOI 10.1111/j.1365-2664.2011.02001.x; COX GW, 1968, EVOLUTION, V22, P180, DOI 10.1111/j.1558-5646.1968.tb03461.x; Dail D, 2011, BIOMETRICS, V67, P577, DOI 10.1111/j.1541-0420.2010.01465.x; Donald P. F., 2002, P ROYAL SOC B, V268, P25; Gill JA, 2001, NATURE, V412, P436, DOI 10.1038/35086568; Graveland J, 1998, ARDEA, V86, P187; Hastie T., 2009, ELEMENTS STAT LEARNI, DOI [10.1007/978-0-387-84858-7, DOI 10.1007/978-0-387-84858-7]; Hooten MB, 2015, ECOL MONOGR, V85, P3, DOI 10.1890/14-0661.1; Hostetler JA, 2015, ECOLOGY, V96, P1713, DOI 10.1890/14-1487.1; Kellner K., 2015, JAGSUI WRAPPER RJAGS; Kery M., 2016, APPL HIERARCHICAL MO, V1; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lack D., 1954, NATURAL REGULATIONS; LUNDBERG P, 1987, J THEOR BIOL, V125, P351, DOI 10.1016/S0022-5193(87)80067-X; Lundberg P., 1998, TRENDS ECOL EVOL, V3, P172; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; Marra PP, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0624; MARTIN TE, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P455; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; McCarthy MA, 2005, J APPL ECOL, V42, P1012, DOI 10.1111/j.1365-2664.2005.01101.x; Newton I, 1998, POPULATION LIMITATIO; Nichols JD, 2000, ECOLOGY, V81, P3362, DOI 10.2307/177500; PACALA SW, 1994, AM NAT, V143, P222, DOI 10.1086/285602; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Plummer M., 2003, P 3 INT WORKSH DISTR; POLLOCK KH, 1991, J AM STAT ASSOC, V86, P225, DOI 10.2307/2289733; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Pulido F, 2010, P NATL ACAD SCI USA, V107, P7341, DOI 10.1073/pnas.0910361107; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; RICKLEFS RE, 1984, ECOLOGY, V65, P1602, DOI 10.2307/1939139; RICKLEFS RE, 1969, NATURE, V223, P922, DOI 10.1038/223922a0; ROFF DA, 2002, LIFE HIST EVOLUTION; Royle JA, 2004, BIOMETRICS, V60, P108, DOI 10.1111/j.0006-341X.2004.00142.x; Royle JA, 2005, OIKOS, V110, P353, DOI 10.1111/j.0030-1299.2005.13534.x; Runge Michael C., 2005, P375; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sanderson FJ, 2006, BIOL CONSERV, V131, P93, DOI 10.1016/j.biocon.2006.02.008; SAUNDERS DA, 1991, CONSERV BIOL, V5, P18, DOI 10.1111/j.1523-1739.1991.tb00384.x; Schmid H., 2004, UBERWACHUNG BESTANDS; Seber G. A. F, 1982, ESTIMATION ANIMAL AB; STAMPS JA, 1991, BEHAV ECOL SOCIOBIOL, V28, P29; STAMPS JA, 1988, AM NAT, V131, P329, DOI 10.1086/284793; Stearns S, 1992, EVOLUTION LIFE HIST; Wittenberger J.F., 1985, Avian Biology, V8, P1 49 0 0 10 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JUL 2018 87 4 SI 1172 1181 10.1111/1365-2656.12826 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology GK2EY WOS:000435940700024 29600561 2019-02-21 J Oikonomou, A; Leprieur, F; Leonardos, ID Oikonomou, Anthi; Leprieur, Fabien; Leonardos, Ioannis D. Ecomorphological diversity of freshwater fishes as a tool for conservation priority setting: a case study from a Balkan hotspot ENVIRONMENTAL BIOLOGY OF FISHES English Article Balkan peninsula; Conservation; Ecomorphology; Freshwater fishes; Originality LIFE-HISTORY STRATEGIES; FUNCTIONAL DIVERSITY; ENVIRONMENTAL-FACTORS; FUTURE CHALLENGES; HABITAT GRADIENTS; SPECIES RICHNESS; STREAM; ASSEMBLAGES; COMMUNITIES; TRAITS Biodiversity studies commonly focus on taxonomic diversity measures such as species richness and abundance. However, alternative measures based on ecomorphological traits are also critical for unveiling the processes shaping biodiversity and community assembly along environmental gradients. Our study presents the first analysis of habitat-trait-community structure in a Balkan biodiversity hotspot (Louros river, NW Greece), through the investigation of the relationships among freshwater fish assemblages' composition, morphological traits and habitat features. In order to provide a hierarchical classification of species' priority to protection measures, we highlight the most ecomorphologically distinct species using originality analysis. Our results suggest that the longitudinal changes of habitat variables (water temperature, depth, substrate, altitude) drive the local fish assemblages' structure highlighting the upstream-downstream gradient. We also present evidence for environmental filtering, establishing fish assemblages according to their ecomorphological traits. The calculation of the seven available indices of ecomorphological originality indicates that Valencia letourneuxi and Cobitis hellenica, which are endemic to Louros and threatened with extinction, exhibited the highest distinctiveness; thus their protection is of great importance. The methodological approach followed and the patterns described herein can contribute further to the application of community ecology theory to conservation, highlighting the need to use ecomorphological traits as a useful 'tool'. [Oikonomou, Anthi; Leonardos, Ioannis D.] Univ Ioannina, Zool Lab, Dept Biol Applicat & Technol, GR-45110 Ioannina, Greece; [Leprieur, Fabien] Univ Montpellier, UMR MARBEC Biodiversite Marine Exploitat & Conser, CNRS IFREMER IRD UM, Pl Eugene Bataillon, F-34095 Montpellier, France; [Oikonomou, Anthi] Hellen Ctr Marine Res Inst Marine Biol Resources, POB 712, Anavyssos 19013, Greece Oikonomou, A (reprint author), Univ Ioannina, Zool Lab, Dept Biol Applicat & Technol, GR-45110 Ioannina, Greece. anthi.oikon@gmail.com Greek State Scholarships Foundation (IKY) We express our gratitude to the drivers of the University of Ioannina for their help during the field samplings. We are also grateful to the personnel of the Amvrakikos Wetlands National Park for providing us with the necessary permissions. We also thank two anonymous reviewers for their constructive feedback. The research for this paper was partially financially supported by the Greek State Scholarships Foundation (IKY) mobility grants programme for short term training in recognized scientific/research centers abroad for candidate doctoral researchers. Angermeier PL, 1999, ECOL APPL, V9, P335, DOI 10.2307/2641189; Bady P, 2005, FRESHWATER BIOL, V50, P159, DOI 10.1111/j.1365-2427.2004.01287.x; Baillie J. E. M, 2012, PRICELESS WORTHLESS; Banarescu PM, 2004, BALKAN BIODIVERSITY: PATTERN AND PROCESS IN THE EUROPEAN HOTSPOT, P203; Barbieri R, 2015, MONOGRAPHMARINE SC; Benjamini Y., 1995, J ROYAL STAT SOC B, V28, P9; Bobori D.C., 2001, Aquatic Ecosystem Health & Management, V4, P381, DOI 10.1080/146349801317276053; Brind'Amour A, 2011, ECOL APPL, V21, P363, DOI 10.1890/09-2178.1; Cadotte MW, 2011, J APPL ECOL, V48, P1079, DOI 10.1111/j.1365-2664.2011.02048.x; CEN, 2003, 140112003E CEN; Chan MD., 2001, THESIS; CLARKE KR, 1994, MAR BIOL, V118, P167, DOI 10.1007/BF00699231; Crivelli AJ, 2006, VALENCIA LETOURNEUXI, DOI [10.2305/IUCN.UK.2006.RLTS.T22830A9393054.en, DOI 10.2305/IUCN.UK.2006.RLTS.T22830A9393054.EN]; Dehling DM, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2444; Delling B, 2011, ICHTHYOL EXPLOR FRES, V21, P331; Economidis PS, 2009, RED DATA BOOK THREAT, P86; Economou AN, 2007, MEDITERR MAR SCI, V8, P91, DOI 10.12681/mms.164; Economou AN, 1999, ENDANGERED FRESH WAT; Frimpong EA, 2010, AM FISH S S, V73, P109; GATZ A J JR, 1979, Tulane Studies in Zoology and Botany, V21, P91; Gkenas C, 2012, J APPL ICHTHYOL, V28, P75, DOI 10.1111/j.1439-0426.2011.01912.x; GORMAN OT, 1978, ECOLOGY, V59, P507, DOI 10.2307/1936581; Gothe E, 2017, FRESHWATER BIOL, V62, P397, DOI 10.1111/fwb.12875; Heino J, 2013, FRESHWATER BIOL, V58, P1539, DOI 10.1111/fwb.12164; Huang JX, 2011, J THEOR BIOL, V276, P99, DOI 10.1016/j.jtbi.2011.01.037; Hugueny B, 2010, AM FISH S S, V73, P29; HUMPHRIES CJ, 1995, ANNU REV ECOL SYST, V26, P93, DOI 10.1146/annurev.ecolsys.26.1.93; Ibanez C, 2009, ECOGRAPHY, V32, P658, DOI 10.1111/j.1600-0587.2008.05591.x; Isaac NJB, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000296; Kalogianni E, 2010, BIOLOGIA, V65, P128, DOI 10.2478/s11756-009-0231-3; Krystufek B, 2004, BALKAN BIODIVERSITY: PATTERN AND PROCESS IN THE EUROPEAN HOTSPOT, P1; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.1890/0012-9658(2002)083[1792:ICOSFC]2.0.CO;2; Larsen S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051115; Lasne E, 2007, RIVER RES APPL, V23, P877, DOI 10.1002/rra.1030; Legendre P, 1997, ECOLOGY, V78, P547; Logez M, 2010, J N AM BENTHOL SOC, V29, P1310, DOI 10.1899/09-125.1; Lyons KG, 2005, CONSERV BIOL, V19, P1019, DOI 10.1111/j.1523-1739.2005.00106.x; Magalhaes MF, 2002, FRESHWATER BIOL, V47, P1015, DOI 10.1046/j.1365-2427.2002.00830.x; Mason NWH, 2005, OIKOS, V111, P112, DOI 10.1111/j.0030-1299.2005.13886.x; Matthews W. J., 1998, PATTERNS FRESHWATER; MAY RM, 1990, NATURE, V347, P129, DOI 10.1038/347129a0; McKinney ML, 1997, ANNU REV ECOL SYST, V28, P495, DOI 10.1146/annurev.ecolsys.28.1.495; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; MOTTA PJ, 1995, ENVIRON BIOL FISH, V44, P11, DOI 10.1007/BF00005904; Mouillot D, 2008, BIOL CONSERV, V141, P1569, DOI 10.1016/j.biocon.2008.04.002; Nixon Kevin C., 1992, P216; Ntakis A, 2015, J APPL ICHTHYOL, V31, P180, DOI 10.1111/jai.12493; OBERDORFF T, 1993, HYDROBIOLOGIA, V259, P157, DOI 10.1007/BF00006595; Ohlberger J, 2006, J COMP PHYSIOL B, V176, P17, DOI 10.1007/s00360-005-0024-0; Oikonomou A, 2016, THESIS; Oikonomou A, 2014, HYDROBIOLOGIA, V738, P205, DOI 10.1007/s10750-014-1930-5; Olden JD, 2008, ECOLOGY, V89, P847, DOI 10.1890/06-1864.1; Olden JD, 2010, AM FISH S S, V73, P83; Olden JD, 2010, DIVERS DISTRIB, V16, P496, DOI 10.1111/j.1472-4642.2010.00655.x; Parenti LR, 1981, B AM MUS NAT HIST, V168, P335; Pavoine S, 2005, ECOL LETT, V8, P579, DOI 10.1111/j.1461-0248.2005.00752.x; Pease AA, 2015, HYDROBIOLOGIA, V753, P265, DOI 10.1007/s10750-015-2235-z; Pease AA, 2012, FRESHWATER BIOL, V57, P1060, DOI 10.1111/j.1365-2427.2012.02768.x; Petchey OL, 2002, ECOL LETT, V5, P402, DOI 10.1046/j.1461-0248.2002.00339.x; Poulos S, 2005, Z GEOMORPHOL, V135, P125; Pyron M, 2011, FRESHWATER BIOL, V56, P1579, DOI 10.1111/j.1365-2427.2011.02596.x; R Development Core Team, 2013, R LANG ENV STAT COMP; RAHEL FJ, 1991, T AM FISH SOC, V120, P319, DOI 10.1577/1548-8659(1991)120<0319:FAAHGI>2.3.CO;2; Redding DW, 2006, CONSERV BIOL, V20, P1670, DOI 10.1111/j.1523-1739.2006.00555.x; SCARNECCHIA D L, 1988, Regulated Rivers Research and Management, V2, P155, DOI 10.1002/rrr.3450020209; SCHLOSSER IJ, 1982, ECOL MONOGR, V52, P395, DOI 10.2307/2937352; SCHLUTER D, 1986, ECOLOGY, V67, P1073, DOI 10.2307/1939830; Spitz J, 2014, J ANIM ECOL, V83, P1137, DOI 10.1111/1365-2656.12218; Sternberg D, 2013, FRESHWATER BIOL, V58, P1767, DOI 10.1111/fwb.12166; Strecker AL, 2011, ECOL APPL, V21, P3002, DOI 10.1890/11-0599.1; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Tejerina-Garro FL, 2005, BRAZ ARCH BIOL TECHN, V48, P91, DOI 10.1590/S1516-89132005000100013; Tilman D, 1997, SCIENCE, V277, P1300, DOI 10.1126/science.277.5330.1300; TONN WM, 1990, AM NAT, V136, P345, DOI 10.1086/285102; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Tuset VM, 2014, ICHTHYOL RES, V61, P152, DOI 10.1007/s10228-014-0390-2; VANEWRIGHT RI, 1991, BIOL CONSERV, V55, P235, DOI 10.1016/0006-3207(91)90030-D; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Villeger S, 2017, AQUAT SCI, V79, P783, DOI 10.1007/s00027-017-0546-z; Villeger S, 2010, ECOL APPL, V20, P1512, DOI 10.1890/09-1310.1; Vogiatzi E, 2014, BIOL J LINN SOC, V111, P334, DOI 10.1111/bij.12206; Wainwright PC, 2002, ENVIRON BIOL FISH, V65, P47, DOI 10.1023/A:1019671131001; Wainwright Peter C., 1994, P42; WEBB PW, 1984, SCI AM, V251, P72, DOI 10.1038/scientificamerican0784-72; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1991, ECOL MONOGR, V61, P343, DOI 10.2307/2937046; WITTING L, 1995, BIOL CONSERV, V71, P205, DOI 10.1016/0006-3207(94)00041-N; Zalewski M., 1985, P3 88 0 0 6 10 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes JUL 2018 101 7 1121 1136 10.1007/s10641-018-0759-6 16 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology GJ5BL WOS:000435396100003 2019-02-21 J Beckman, NG; Bullock, JM; Salguero-Gomez, R Beckman, Noelle G.; Bullock, James M.; Salguero-Gomez, Roberto High dispersal ability is related to fast life-history strategies JOURNAL OF ECOLOGY English Article comparative demography; dispersal syndromes; fast-slow continuum; functional trait; life-history strategy; life-history trait; matrix population model; phylogenetic comparative analysis LONG-DISTANCE DISPERSAL; LEAF ECONOMICS SPECTRUM; SUB-ARCTIC FLORA; SEED DISPERSAL; PLANT TRAITS; STRUCTURED POPULATIONS; FUNCTIONAL TRAITS; PHOSPHORUS STOICHIOMETRY; INTRASPECIFIC VARIATION; ENVIRONMENTAL GRADIENT 1. Seed dispersal is an essential, yet often overlooked process in plant ecology and evolution, affecting adaptation capacity, population persistence and invasiveness. A species' ability to disperse is expected to covary with other life-history traits to form dispersal syndromes. Dispersal might be linked to the rate of life history, fecundity or generation time, depending on the relative selection pressures of bethedging, kin competition or maintaining gene flow. However, the linkage between dispersal and plant life-history strategies remains unknown because it is difficult to observe, quantify and manipulate the influence of dispersal over large spatio-temporal scales. 2. We integrate datasets describing plant vital rates, dispersal and functional traits to incorporate dispersal explicitly into the rich spectra of plant life-history strategies. For 141 plant species, we estimated dispersal ability by predicting maximum dispersal distances using allometric relationships based on growth form, dispersal mode, terminal velocity and seed mass. We derived life-history traits from matrix population models parameterized with field data from the COMPADRE Plant Matrix Database. We analysed the covariation in dispersal ability and life-history traits using multivariate techniques. 3. We found that three main axes of variation described plant dispersal syndromes: the fast-slow life-history continuum, the dispersal strategy axis and the reproductive strategy axis. On the dispersal strategy axis, species' dispersal abilities were positively correlated with aspects of fast life histories. Species with a high net reproductive rate, a long window of reproduction, low likelihood of escaping senescence and low shrinkage tendencies disperse their seeds further. The overall phylogenetic signal in our multidimensional analyses was low (Pagel's lambda < 0.24), implying a high degree of taxonomic generality in our findings. 4. Synthesis. Dispersal has been largely neglected in comparative demographic studies, despite its pivotal importance for populations. Our explicit incorporation of dispersal in a comparative life-history framework provides key insights to bridge the gap between dispersal ecology and life-history traits. Species with fast life-history strategies disperse their seeds further than slow-living plants, suggesting that longer dispersal distances may allow these species to take advantage of habitats varying unpredictably in space and time as a bet-hedging strategy. [Beckman, Noelle G.] Utah State Univ, Dept Biol, Logan, UT 84322 USA; [Beckman, Noelle G.] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA; [Beckman, Noelle G.] Natl Socioenvironm Synth Ctr SESYNC, Annapolis, MD 21401 USA; [Bullock, James M.] NERC Ctr Ecol & Hydrol, Wallingford, Oxon, England; [Salguero-Gomez, Roberto] Univ Oxford, Dept Zool, Oxford, England; [Salguero-Gomez, Roberto] Max Planck Inst Demog Res, Evolutionary Demog Lab, Rostock, Germany; [Salguero-Gomez, Roberto] Univ Queensland, Ctr Excellence Environm Decis, St Lucia, Qld, Australia Beckman, NG (reprint author), Utah State Univ, Dept Biol, Logan, UT 84322 USA.; Beckman, NG (reprint author), Utah State Univ, Ctr Ecol, Logan, UT 84322 USA.; Beckman, NG (reprint author), Natl Socioenvironm Synth Ctr SESYNC, Annapolis, MD 21401 USA. noelle.beckman@usu.edu Bullock, James/F-9997-2011 Salguero-Gomez, Roberto/0000-0002-6085-4433; Beckman, Noelle/0000-0001-5822-0610 Division of Biological Infrastructure [1052875]; Australian Research Council [DE140100505]; Natural Environment Research Council [NE/M018458/1, NEC06429] Division of Biological Infrastructure, Grant/Award Number: 1052875; Australian Research Council, Grant/Award Number: DE140100505; Natural Environment Research Council, Grant/Award Number: NE/M018458/1 and NEC06429 Ackerly DD, 2007, ECOL LETT, V10, P135, DOI 10.1111/j.1461-0248.2006.01006.x; Ally D, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000454; Almeida-Neto M, 2008, GLOBAL ECOL BIOGEOGR, V17, P503, DOI 10.1111/j.1466-8238.2008.00386.x; Augspurger CK, 2016, ECOL EVOL, V6, P1128, DOI 10.1002/ece3.1905; Baker H. G., 1965, GENETICS COLONIZING; Baraloto C, 2010, ECOL LETT, V13, P1338, DOI 10.1111/j.1461-0248.2010.01517.x; Baraloto C, 2010, FUNCT ECOL, V24, P208, DOI 10.1111/j.1365-2435.2009.01600.x; Barrett SCH, 2015, P NATL ACAD SCI USA, V112, P8859, DOI 10.1073/pnas.1501712112; Beckman NG, 2013, BIOTROPICA, V45, P666, DOI 10.1111/btp.12071; Bocanegra-González Kelly Tatiana, 2015, Bol. Cient. Mus. Hist. Nat. Univ. Caldas, V19, P17, DOI 10.17151/bccm.2015.19.1.2; Bonte D, 2017, OIKOS, V126, P472, DOI 10.1111/oik.03801; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Boyle B, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-16; Buckley YM, 2005, J APPL ECOL, V42, P1020, DOI 10.1111/j.1365-2664.2005.01100.x; Bullock JM, 2017, J ECOL, V105, P6, DOI 10.1111/1365-2745.12666; Bullock JM, 2012, J ECOL, V100, P104, DOI 10.1111/j.1365-2745.2011.01910.x; Butterfield BJ, 2011, OECOLOGIA, V165, P477, DOI 10.1007/s00442-010-1741-y; Castro-Diez P, 1998, OECOLOGIA, V116, P57, DOI 10.1007/s004420050563; Castro-Diez P, 2000, OECOLOGIA, V124, P476, DOI 10.1007/s004420000473; Caswell H., 2001, MATRIX POPULATION MO; Cerabolini BEL, 2010, PLANT ECOL, V210, P253, DOI 10.1007/s11258-010-9753-6; Chen SC, 2017, ECOGRAPHY, V40, P531, DOI 10.1111/ecog.02010; Choat B, 2012, NATURE, V491, P752, DOI 10.1038/nature11688; Clobert J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P1, DOI 10.1093/acprof:oso/9780199608898.001.0001; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; Connell J. H., 1971, ROLE NATURAL ENEMIES, P298; Cornelissen JHC, 2003, J VEG SCI, V14, P311, DOI 10.1111/j.1654-1103.2003.tb02157.x; Cornelissen JHC, 1999, OECOLOGIA, V118, P248, DOI 10.1007/s004420050725; Cornwell WK, 2009, ECOL MONOGR, V79, P109, DOI 10.1890/07-1134.1; Cornwell WK, 2006, ECOLOGY, V87, P1465, DOI 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2; Craven D, 2007, FOREST ECOL MANAG, V238, P335, DOI 10.1016/j.foreco.2006.10.030; Craven D, 2011, FOREST ECOL MANAG, V261, P1643, DOI 10.1016/j.foreco.2010.09.017; DEMETRIUS L, 1978, NATURE, V275, P213, DOI 10.1038/275213a0; Diaz S, 2004, J VEG SCI, V15, P295, DOI 10.1111/j.1654-1103.2004.tb02266.x; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; DRESSLER R. L., 2003, MANUAL PLANTAS COSTA, VIII, P1; Duputie A, 2013, INTERFACE FOCUS, V3, DOI 10.1098/rsfs.2013.0028; Durka W., 2002, BIOLFLOR DATENBANK B, P133; Dytham C, 2006, OIKOS, V113, P530, DOI 10.1111/j.2006.0030-1299.14395.x; ENRIGHT NJ, 1995, OECOLOGIA, V104, P79, DOI 10.1007/BF00365565; FITTER AH, 1994, J ECOL, V82, P415, DOI 10.2307/2261309; Flann C, 2009, GLOBAL COMPOSITAE CH; Flowers Tim, HAL DAT VERS 3 09; Flowers TJ, 2010, FUNCT PLANT BIOL, V37, P604, DOI 10.1071/FP09269; Fonseca CR, 2000, J ECOL, V88, P964, DOI 10.1046/j.1365-2745.2000.00506.x; FRANKLIN SB, 1995, J VEG SCI, V6, P99, DOI 10.2307/3236261; Freckleton RP, 2012, METHODS ECOL EVOL, V3, P940, DOI 10.1111/j.2041-210X.2012.00220.x; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Freschet GT, 2010, NEW PHYTOL, V186, P879, DOI 10.1111/j.1469-8137.2010.03228.x; Freschet GT, 2010, J ECOL, V98, P362, DOI 10.1111/j.1365-2745.2009.01615.x; Gachet S, 2005, BIODIVERS CONSERV, V14, P1023, DOI 10.1007/s10531-004-8411-5; GADGIL M, 1971, ECOLOGY, V52, P253, DOI 10.2307/1934583; Gallagher RV, 2012, J BIOGEOGR, V39, P1757, DOI 10.1111/j.1365-2699.2012.02773.x; Gallagher RV, 2011, J BIOGEOGR, V38, P828, DOI 10.1111/j.1365-2699.2010.02455.x; Green W., 2009, USDA PLANTS COMPILAT; GREENE DF, 1992, AM NAT, V139, P825, DOI 10.1086/285359; Guy AL, 2013, BOTANY, V91, P176, DOI 10.1139/cjb-2012-0162; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; HAMRICK JL, 1993, VEGETATIO, V108, P281; Han WX, 2012, GLOBAL ECOL BIOGEOGR, V21, P376, DOI 10.1111/j.1466-8238.2011.00677.x; Han WX, 2005, NEW PHYTOL, V168, P377, DOI 10.1111/j.1469-8137.2005.01530.x; Hastings A, 2005, ECOL LETT, V8, P91, DOI 10.1111/j.1461-0248.2004.00687.x; He JS, 2008, OECOLOGIA, V155, P301, DOI 10.1007/s00442-007-0912-y; He JS, 2006, NEW PHYTOL, V170, P835, DOI 10.1111/j.1469-8137.2006.01704.x; Hector A, 2010, J ANIM ECOL, V79, P308, DOI 10.1111/j.1365-2656.2009.01634.x; HORN JL, 1965, PSYCHOMETRIKA, V30, P179, DOI 10.1007/BF02289447; Hovestadt T, 2001, P ROY SOC B-BIOL SCI, V268, P385, DOI 10.1098/rspb.2000.1379; HOWE HF, 1982, ANNU REV ECOL SYST, V13, P201, DOI 10.1146/annurev.es.13.110182.001221; Howe HF, 2004, BIOSCIENCE, V54, P651, DOI 10.1641/0006-3568(2004)054[0651:WSDM]2.0.CO;2; JANZEN DH, 1970, AM NAT, V104, P501, DOI 10.1086/282687; Jordano P, 2017, J ECOL, V105, P75, DOI 10.1111/1365-2745.12690; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; Josse J, 2016, J STAT SOFTW, V70; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Kattge J, 2009, GLOBAL CHANGE BIOL, V15, P976, DOI 10.1111/j.1365-2486.2008.01744.x; Kichenin E, 2013, FUNCT ECOL, V27, P1254, DOI 10.1111/1365-2435.12116; Kirkup D, 2005, TAXON, V54, P457, DOI 10.2307/25065373; Kisel Y, 2012, EVOLUTION, V66, P3035, DOI 10.1111/j.1558-5646.2012.01663.x; Kleyer M, 2008, J ECOL, V96, P1266, DOI 10.1111/j.1365-2745.2008.01430.x; Kot M, 1996, ECOLOGY, V77, P2027, DOI 10.2307/2265698; Kremer A, 2012, ECOL LETT, V15, P378, DOI 10.1111/j.1461-0248.2012.01746.x; Kroon H. D., 1997, ECOLOGY EVOLUTION CL; Kuhn I, 2004, DIVERS DISTRIB, V10, P363, DOI 10.1111/j.1366-9516.2004.00106.x; Levin SA, 2003, ANNU REV ECOL EVOL S, V34, P575, DOI 10.1146/annurev.ecolsys.34.011802.132428; Loarie SR, 2009, NATURE, V462, P1052, DOI 10.1038/nature08649; LOISELLE BA, 1990, OECOLOGIA, V82, P494, DOI 10.1007/BF00319792; Louault F, 2005, J VEG SCI, V16, P151, DOI 10.1658/1100-9233(2005)016[0151:PTAFTI]2.0.CO;2; McDonald PG, 2003, FUNCT ECOL, V17, P50, DOI 10.1046/j.1365-2435.2003.00698.x; MCPEEK MA, 1992, AM NAT, V140, P1010, DOI 10.1086/285453; Mencuccini M, 2003, PLANT CELL ENVIRON, V26, P163, DOI 10.1046/j.1365-3040.2003.00991.x; Milla R, 2011, ANN BOT-LONDON, V107, P455, DOI 10.1093/aob/mcq261; Mischkolz J. M., 2013, THESIS; Moles AT, 2009, J ECOL, V97, P923, DOI 10.1111/j.1365-2745.2009.01526.x; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; Moretti M, 2009, ECOGRAPHY, V32, P299, DOI 10.1111/j.1600-0587.2008.05524.x; Muller-Landau HC, 2003, ECOLOGY, V84, P1957, DOI 10.1890/01-0617; Neubert MG, 2000, ECOLOGY, V81, P1613, DOI 10.1890/0012-9658(2000)081[1613:DADCAS]2.0.CO;2; Oksanen J, 2017, R PACKAGE VERSION, V2, P4; Ordonez JC, 2010, ECOLOGY, V91, P3218, DOI 10.1890/09-1509.1; Ordonez JC, 2010, AM NAT, V175, P225, DOI 10.1086/649582; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Paton AJ, 2008, TAXON, V57, P602, DOI 10.2307/25066027; Paula S, 2008, J ECOL, V96, P543, DOI 10.1111/j.1365-2745.2008.01359.x; Paula S, 2009, ECOLOGY, V90, P1420, DOI DOI 10.1890/08-1309.1; Peco B, 2005, BASIC APPL ECOL, V6, P175, DOI 10.1016/j.baae.2005.01.002; Pellissier L, 2016, NEW PHYTOL, V209, P1230, DOI 10.1111/nph.13649; Penuelas J, 2010, J CHEM ECOL, V36, P1255, DOI 10.1007/s10886-010-9862-7; Penuelas J, 2010, NEW PHYTOL, V187, P564, DOI 10.1111/j.1469-8137.2010.03360.x; Penuelas J, 2010, GLOBAL CHANGE BIOL, V16, P2171, DOI 10.1111/j.1365-2486.2009.02054.x; Petter G, 2016, FUNCT ECOL, V30, P188, DOI 10.1111/1365-2435.12490; Pierce S, 2007, PLANT BIOSYST, V141, P337, DOI 10.1080/11263500701627695; Pierce S, 2007, J ECOL, V95, P698, DOI 10.1111/j.1365-2745.2007.01242.x; Pierce S, 2013, FUNCT ECOL, V27, P1002, DOI 10.1111/1365-2435.12095; Piovesan G, 2005, ECOL RES, V20, P739, DOI 10.1007/s11284-005-0096-z; Prentice IC, 2011, NEW PHYTOL, V190, P169, DOI 10.1111/j.1469-8137.2010.03579.x; R Core Team, 2017, R LANG ENV STAT COMP; Reich PB, 2008, ECOL LETT, V11, P793, DOI 10.1111/j.1461-0248.2008.01185.x; Reich PB, 2009, OECOLOGIA, V160, P207, DOI 10.1007/s00442-009-1291-3; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Revelle W., 2017, PSYCH PROCEDURES PSY; ROFF DA, 1975, OECOLOGIA, V19, P217, DOI 10.1007/BF00345307; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; Rousset F, 2002, J EVOLUTION BIOL, V15, P515, DOI 10.1046/j.1420-9101.2002.00430.x; Royal Botanical Gardens Kew, 2016, SEED INF DAT SID VER; Saastamoinen M, 2018, BIOL REV, V93, P574, DOI 10.1111/brv.12356; Salguero-Gomez R., 2017, EVOLUTIONARY ECOLOGY, V32, P9; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Salguero-Gomez R, 2010, AM NAT, V176, P710, DOI 10.1086/657044; Schupp EW, 2010, NEW PHYTOL, V188, P333, DOI 10.1111/j.1469-8137.2010.03402.x; Schweingruber F., 2005, THE XYLEM DATABASE; Schweingruber F. H., 2005, Forest Snow and Landscape Research, V79, P195; Sheremetev S., 2005, HERBS SOIL MOISTURE; SHIPLEY B, 1991, FUNCT ECOL, V5, P111, DOI 10.2307/2389561; SILVERTOWN J, 1997, PLANT LIFE HIST ECOL; Skarpaas O, 2007, AM NAT, V170, P421, DOI 10.1086/519854; Snyder RE, 2011, P ROY SOC B-BIOL SCI, V278, P739, DOI 10.1098/rspb.2010.1549; Soons MB, 2004, ECOLOGY, V85, P3056, DOI 10.1890/03-0522; Spiegel O, 2012, J ECOL, V100, P392, DOI 10.1111/j.1365-2745.2011.01886.x; Starrfelt J, 2010, AM NAT, V175, P38, DOI 10.1086/648605; STEARNS SC, 1999, EVOLUTION LIFE HIST; Stevens VM, 2014, ECOL LETT, V17, P1039, DOI 10.1111/ele.12303; Stevens VM, 2012, ECOL LETT, V15, P74, DOI 10.1111/j.1461-0248.2011.01709.x; Stott I, 2010, J ECOL, V98, P302, DOI 10.1111/j.1365-2745.2009.01632.x; Tamme R, 2014, ECOLOGY, V95, P505, DOI 10.1890/13-1000.1; Tewksbury JJ, 2001, NATURE, V412, P403, DOI 10.1038/35086653; The Plant List, 2013, VERSION 1 1; The Taxonomic Name Resolution Service, IPLANT COLL; Thomson FJ, 2018, NEW PHYTOL, V217, P407, DOI 10.1111/nph.14735; Thomson FJ, 2011, J ECOL, V99, P1299, DOI 10.1111/j.1365-2745.2011.01867.x; Tiansawat P, 2017, BIOTROPICA, V49, P871, DOI 10.1111/btp.12473; Travis JMJ, 2013, OIKOS, V122, P1532, DOI 10.1111/j.1600-0706.2013.00399.x; Travis JMJ, 2012, METHODS ECOL EVOL, V3, P628, DOI 10.1111/j.2041-210X.2012.00193.x; Uemura M, 2013, PHYSIOL PLANTARUM, V147, P1, DOI 10.1111/ppl.12004; USDA NRCS, PLANTS DAT; Vergutz L., 2012, GLOBAL DATABASE CARB; Vergutz L, 2012, ECOL MONOGR, V82, P205, DOI 10.1890/11-0416.1; White MA, 2000, EARTH INTERACT, V4, P1, DOI DOI 10.1175/1087-3562(2000)004<0003:PASA0T>2.0.C0;2; Williams JL, 2016, SCIENCE, V353, P482, DOI 10.1126/science.aaf6268; Wirth C, 2009, ECOL STUD-ANAL SYNTH, V207, P465, DOI 10.1007/978-3-540-92706-8_21; Wright IJ, 2007, ANN BOT-LONDON, V99, P1003, DOI 10.1093/aob/mcl066; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright IJ, 2006, NEW PHYTOL, V169, P309, DOI 10.1111/j.1469-8137.2005.01590.x; Wrycza TF, 2014, DEMOGR RES, V30, P1571, DOI 10.4054/DemRes.2014.30.57; Zanne AE, 2014, NATURE, V506, P89, DOI 10.1038/nature12872 166 2 2 30 42 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. JUL 2018 106 4 1349 1362 10.1111/1365-2745.12989 14 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology GJ5TE WOS:000435444700003 Green Published, Other Gold 2019-02-21 J Garnier, E; Fayolle, A; Navas, ML; Damgaard, C; Cruz, P; Hubert, D; Richarte, J; Autran, P; Leurent, C; Violle, C Garnier, Eric; Fayolle, Adeline; Navas, Marie-Laure; Damgaard, Christian; Cruz, Pablo; Hubert, Daniel; Richarte, Jean; Autran, Paul; Leurent, Corentin; Violle, Cyrille Plant demographic and functional responses to management intensification: A long-term study in a Mediterranean rangeland JOURNAL OF ECOLOGY English Article axes of functional variation; colonization and survival; fertilization; grazing; life-history strategy; plant population and community dynamics; plant traits; variations in species abundance LEAF ECONOMICS SPECTRUM; FAST-SLOW CONTINUUM; DRY-MATTER CONTENT; POPULATION-DYNAMICS; COMMUNITY ECOLOGY; EXPLAIN VARIATION; TRAIT RESPONSES; TROPICAL TREES; VITAL-RATES; LIFE-CYCLE 1. Understanding how functional traits, which are key for plant functioning, relate to demographic parameters of populations is central to tackle pending issues in plant ecology such as the forecast of the fate of populations and communities in a changing world, the quantification of community assembly processes or the improvement of species distribution models. We addressed this question in the case of species from a Mediterranean rangeland of southern France. 2. Changes in species abundance in response to management intensification (fertilization and increased grazing pressure) were followed over a 28-year period. Probabilities of presence, and elasticities of the changes in the probability of space occupancy to colonization and survival, which are analogues of demographic parameters, were calculated for 53 species from the time series of abundance data using a space occupancy model. Nine quantitative traits pertaining to resource use, plant morphology, regeneration and phenology were measured on these species and related to demographic parameters. 3. The long-term dynamics of species in response to management intensification was associated with major changes in functional traits and strategies. Changes in the probability of occurrence-analogous to population growth rate-were correlated with traits describing the fast-slow continuum of leaf functioning. The elasticity of population growth rate to colonization was significantly related to reproductive plant height and seed mass, and to a lower extent, to leaf carbon isotopic ratio. 4. Synthesis. The functional response of species to management intensification corresponds to a shift along the second axis of a recently identified global spectrum of plant form and function, which maps, to some extent, onto the fast-slow continuum of life-history strategies. By contrast, the elasticity of colonization relates to the global spectrum axis capturing the size of organs. Seed mass contributes to this axis and is assumed to relate to one of the important traits structuring the reproductive strategy axis of life histories as well, namely net reproductive rate. While this mapping between functional and life-history traits is appealing, further tests in contrasting types of communities are required to assess its degree of generality. [Garnier, Eric; Fayolle, Adeline; Leurent, Corentin; Violle, Cyrille] Univ Paul Valery Montpellier, Univ Montpellier, CNRS, Ctr Ecol Fonct & Evolut,EPHE, 1919 Route Mende, F-34293 Montpellier 5, France; [Navas, Marie-Laure; Richarte, Jean] Univ Paul Valery Montpellier, Univ Montpellier, CNRS, Ctr Ecol Fonct & Evolut,EPHE,Montpellier SupAgro, Montpellier 5, France; [Damgaard, Christian] Aarhus Univ, Biosci, Silkeborg, Denmark; [Cruz, Pablo] INRA AGIR, UMR 1248, Castanet Tolosan, France; [Hubert, Daniel] INRA ERCC, UMR 868, Montpellier 1, France; [Autran, Paul] INRA, Unite Expt Fage, Roquefort Sur Soulzon, France Garnier, E (reprint author), Univ Paul Valery Montpellier, Univ Montpellier, CNRS, Ctr Ecol Fonct & Evolut,EPHE, 1919 Route Mende, F-34293 Montpellier 5, France. eric.garnier@cefe.cnrs.fr Damgaard, Christian/G-2441-2010; Garnier, Eric/D-1650-2012 Damgaard, Christian/0000-0003-3932-4312; Garnier, Eric/0000-0002-9392-5154 H2020 European Research Council [ERC-StG-2014-639706-CONSTRAINTS]; DivHerbe project (EcoGER National Programme) H2020 European Research Council, Grant/Award Number: ERC-StG-2014-639706-CONSTRAINTS; DivHerbe project (EcoGER National Programme) Ackerly DD, 2003, INT J PLANT SCI, V164, pS1, DOI 10.1086/374729; Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Bernard C., 2008, B SOC BOTANIQUE CTR, V31, P1; Bonhomme R, 2000, EUR J AGRON, V13, P1, DOI 10.1016/S1161-0301(00)00058-7; Caswell H., 2001, MATRIX POPULATION MO; CHAPIN FS, 1993, AM NAT, V142, pS78, DOI 10.1086/285524; Chollet S, 2014, ECOLOGY, V95, P737, DOI 10.1890/13-0751.1; Colwell RK, 2013, ESTIMATES STAT ESTIM; Craine J., 2009, RESOURCE STRATEGIES, DOI [10. 1515/9781400830640, DOI 10.1515/9781400830640]; Damgaard C, 2017, OECOLOGIA, V183, P201, DOI 10.1007/s00442-016-3760-9; Damgaard C, 2011, METHODS ECOL EVOL, V2, P110, DOI 10.1111/j.2041-210X.2010.00053.x; Diaz S, 2007, GLOBAL CHANGE BIOL, V13, P313, DOI 10.1111/j.1365-2486.2006.01288.x; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Enquist BJ, 2015, ADV ECOL RES, V52, P249, DOI 10.1016/bs.aecr.2015.02.001; Fayolle A., 2008, THESIS; Flores O, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105022; Franco M, 2004, ECOLOGY, V85, P531, DOI 10.1890/02-0651; Garnier E., 2018, DRYAD DIGITAL REPOSI, DOI DOI 10.5061/DRYAD.8463Q13; Garnier E, 2007, ANN BOT-LONDON, V99, P967, DOI [10.1093/aob/mcl215, 10.1093/aob/mcm215]; Garnier E, 2017, J ECOL, V105, P298, DOI 10.1111/1365-2745.12698; Grime J. P, 1979, PLANT STRATEGIES VEG; Henery ML, 2001, OIKOS, V92, P479, DOI 10.1034/j.1600-0706.2001.920309.x; Hodgson JG, 2011, ANN BOT-LONDON, V108, P1337, DOI 10.1093/aob/mcr225; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; Jost Lou, 2011, P66; KEDDY PA, 1992, J VEG SCI, V3, P157, DOI 10.2307/3235676; Kleyer M, 2015, BASIC APPL ECOL, V16, P1, DOI 10.1016/j.baae.2014.11.002; Lajoie G, 2015, ECOLOGY, V96, P2912, DOI 10.1890/15-0156.1; Laughlin DC, 2015, TRENDS ECOL EVOL, V30, P487, DOI 10.1016/j.tree.2015.06.003; Laughlin DC, 2014, J ECOL, V102, P186, DOI 10.1111/1365-2745.12187; Lavorel S, 1997, TRENDS ECOL EVOL, V12, P474, DOI 10.1016/S0169-5347(97)01219-6; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Leishman M. R., 2000, SEEDS ECOLOGY REGENE, V2, P31, DOI DOI 10.1079/9780851994321.0031; Mason CM, 2016, ECOL LETT, V19, P54, DOI 10.1111/ele.12542; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; McIntyre S, 2001, J ECOL, V89, P209, DOI 10.1046/j.1365-2745.2001.00535.x; Molenat G, 2005, PROD ANIM, V18, P323; Moles AT, 2014, J VEG SCI, V25, P1167, DOI 10.1111/jvs.12190; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; Navas M.-L., 2016, PLANT FUNCTIONAL DIV; NOYMEIR I, 1989, J ECOL, V77, P290, DOI 10.2307/2260930; Pakeman RJ, 2004, J ECOL, V92, P893, DOI 10.1111/j.0022-0477.2004.00928.x; Perez-Harguindeguy N, 2013, AUST J BOT, V61, P167, DOI 10.1071/BT12225; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; R Development Core Team, 2016, R LANG ENV STAT COMP; Raunkiaer C., 1934, LIFE FORMS PLANTS ST; Read QD, 2014, FUNCT ECOL, V28, P37, DOI 10.1111/1365-2435.12162; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Salguero-Gomez R., 2018, FUNCTIONAL ECOLOGY, V32; Salguero-Gomez R, 2017, NEW PHYTOL, V213, P1618, DOI 10.1111/nph.14289; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Schippers P, 2001, OIKOS, V95, P198, DOI 10.1034/j.1600-0706.2001.950202.x; Shipley B, 2006, ECOLOGY, V87, P535, DOI 10.1890/05-1051; SHIPLEY B, 1992, AM NAT, V139, P467, DOI 10.1086/285339; Shipley B, 2016, OECOLOGIA, V180, P923, DOI 10.1007/s00442-016-3549-x; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; SILVERTOWN J, 1992, FUNCT ECOL, V6, P130, DOI 10.2307/2389746; Simpson AH, 2016, GLOBAL ECOL BIOGEOGR, V25, P964, DOI 10.1111/geb.12457; Smart SM, 2017, FUNCT ECOL, V31, P1336, DOI 10.1111/1365-2435.12832; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stott I, 2010, J ECOL, V98, P302, DOI 10.1111/j.1365-2745.2009.01632.x; Thuiller W, 2014, ECOGRAPHY, V37, P1155, DOI 10.1111/ecog.00836; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Visser MD, 2016, FUNCT ECOL, V30, P168, DOI 10.1111/1365-2435.12621; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; WOODWARD FI, 1991, FUNCT ECOL, V5, P202, DOI 10.2307/2389258; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright IJ, 2005, GLOBAL ECOL BIOGEOGR, V14, P411, DOI 10.1111/j.1466-822x.2005.00172.x 70 1 1 16 23 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. JUL 2018 106 4 1363 1376 10.1111/1365-2745.12996 14 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology GJ5TE WOS:000435444700004 Bronze 2019-02-21 J Thomas, PA; Stone, D; La Porta, N Thomas, Peter A.; Stone, Duncan; La Porta, Nicola Biological Flora of the British Isles: Ulmus glabra JOURNAL OF ECOLOGY English Article communities; conservation; Dutch elm disease; geographical and altitudinal distribution; germination; herbivory; mycorrhiza; reproductive biology DUTCH ELM DISEASE; POSTDISPERSAL SEED PREDATION; TREE SPECIES DISTRIBUTION; LIFE-HISTORY STRATEGIES; ROTATED-LAMINA SYNDROME; ROSALIA-ALPINA L.; DECIDUOUS WOODLAND; FOREST TREES; CLIMATE-CHANGE; EUROPEAN ELMS 1. This account presents information on all aspects of the biology of Ulmus glabra Hudson (wych elm) that are relevant to understanding its ecological characteristics and behaviour. The main topics are presented within the standard framework of the Biological Flora of the British Isles: distribution, habitat, communities, responses to biotic factors, responses to environment, structure and physiology, phenology, floral and seed characters, herbivores and disease, history and conservation. 2. Ulmus glabra is a large forest tree, and often an important canopy tree in ancient and semi-natural woodlands. It is primarily native to the north and west of Britain and much of mainland Europe. It is the only elm native to Ireland. It is the most distinct of the British elms in that it rarely suckers and sets abundant viable seed. Although found on limestone screes and cliffs, and hedgerows, it is primarily a woodland tree, especially on moist, basic soils. In many secondary woodlands, it often co-occurs with Acer pseudoplatanus and has ecological needs that are similar to Fraxinus excelsior. 3. Ulmus glabra has clusters of c. 25 hermaphrodite flowers appearing before the leaves on previous year's growth. Seeds are wind-dispersed, falling in April to July, but remain viable for only a few days. Nevertheless, seedling establishment can be abundant. Hybridisation with other northern European elms is common but hybrids are notoriously difficult to identify and therefore probably under-recorded. 4. The health and survival of wych elm in Europe has been seriously compromised since the 1970s due to Dutch elm disease caused by the fungus Ophiostoma novo-ulmi, transmitted by elm bark beetles (Scolytus spp.). To the south of its Scottish stronghold, many elms are reduced to small trees regrowing from basal sprouts or seeds. These trees tend to be reinfected once trunk diameter exceeds 10 cm. Fortunately for its long-term survival, seed production usually begins a number of years before they are reinfected. [Thomas, Peter A.] Keele Univ, Sch Life Sci, Keele, Staffs, England; [Stone, Duncan] Scottish Nat Heritage, Inverness, Scotland; [La Porta, Nicola] San Michele Adige, Fdn Edmund Mach, IASMA Res & Innovat Ctr, Trentino, Italy; [La Porta, Nicola] San Michele Adige, EFI Project Ctr Mt Forests MOUNTFOR, Trentino, Italy Thomas, PA (reprint author), Keele Univ, Sch Life Sci, Keele, Staffs, England. p.a.thomas@keele.ac.uk La Porta, Nicola/0000-0002-7080-3349 Aarrestad PA, 2000, NORD J BOT, V20, P449, DOI 10.1111/j.1756-1051.2000.tb01588.x; Abolafia J, 2016, ZOOTAXA, V4162, P245, DOI 10.11646/zootaxa.4162.2.3; Abraham F, 2000, BRIT WILDLIFE, V12, P86; Akatov PV, 2009, RUSS J ECOL+, V40, P33, DOI 10.1134/S1067413609010056; Alberti G, 2005, ANN FOREST SCI, V62, P831, DOI 10.1051/forest:2005089; American Chestnut Foundation, 2017, 2017 2027 STRAT PLAN; Anderbrant O, 2017, J APPL ENTOMOL, V141, P417, DOI 10.1111/jen.12354; ANDRZEJCZYK T, 1995, VEGETATIO, V117, P81, DOI 10.1007/BF00033261; Angulo A. O., 1991, Bosque, V12, P67; [Anonymous], 2011, WYCH ELM MYTHS USES; Martin JA, 2015, IFOREST, V8, P172, DOI 10.3832/ifor1224-008; APPLEBY RF, 1983, OECOLOGIA, V56, P30, DOI 10.1007/BF00378214; Armstrong JV, 1996, BOT J LINN SOC, V120, P39, DOI 10.1006/bojl.1996.0003; Ataolu C., 2010, HAYVANSAL URETIM, V51, P1; Atkins P.M., 1981, Entomologist's Gazette, V32, P280; AUSTAD I, 1990, VEGETATIO, V88, P1, DOI 10.1007/BF00032599; Aversano R, 2017, PLOS ONE, V12, DOI [10.1371/journal.pone.018, 10.1371/journal.pone.0186298]; Aytin A, 2016, J FORESTRY RES, V27, P225, DOI 10.1007/s11676-015-0136-7; Azevedo JL, 2016, GENET MOL BIOL, V39, P476, DOI [10.1590/1678-4685-GMB-2016-0056, 10.1590/1678-4685-gmb-2016-0056]; Balcar V., 2009, Zpravy Lesnickeho Vyzkumu, V54, P3; Baldi P, 2017, FRONT PLANT SCI, V8, DOI 10.3389/fpls.2017.00944; BARSETT H, 1992, CARBOHYD POLYM, V17, P137, DOI 10.1016/0144-8617(92)90107-2; BARSETT H, 1992, CARBOHYD POLYM, V18, P125, DOI 10.1016/0144-8617(92)90134-C; BARSETT H, 1985, J CHROMATOGR, V329, P315, DOI 10.1016/S0021-9673(01)81938-5; BARSETT H, 1991, ACTA PHARM NORDICA, V3, P87; Bartnik C, 2015, POL J ECOL, V63, P440, DOI 10.3161/15052249PJE2015.63.3.013; Bayram S, 2008, TARIM BILIM DERG, V14, P386; Becker T, 2017, APPL VEG SCI, V20, P304, DOI 10.1111/avsc.12282; Ben Jouira H, 1998, PLANT CELL TISS ORG, V53, P153, DOI 10.1023/A:1006038923565; BENNETT KD, 1991, J BIOGEOGR, V18, P103, DOI 10.2307/2845248; BENNETT KD, 1983, NATURE, V303, P164, DOI 10.1038/303164a0; BENNETT KD, 1983, NEW PHYTOL, V95, P457, DOI 10.1111/j.1469-8137.1983.tb03512.x; Bergman C. A., 1993, ARCHAEOLOGICAL PAPER, P95; BIRKS HJB, 1989, J BIOGEOGR, V16, P503, DOI 10.2307/2845208; BIRKS HJB, 1982, NEW PHYTOL, V90, P339, DOI 10.1111/j.1469-8137.1982.tb03266.x; Biroscikova M, 2004, PLANT CELL REP, V22, P640, DOI 10.1007/s00299-003-0749-8; Blank SM, 2014, J HYMENOPT RES, V41, P57, DOI 10.3897/JHR.41.8681; Blank SM, 2010, EUR J ENTOMOL, V107, P357, DOI 10.14411/eje.2010.045; BOLLARD E. G., 1957, AUSTRALIAN JOUR BIOL SCI, V10, P292; Boncina A, 2000, GLOBAL ECOL BIOGEOGR, V9, P201, DOI 10.1046/j.1365-2699.2000.00155.x; Borlea G. F., 2004, Investigacion Agraria, Sistemas y Recursos Forestales, V13, P29; Bosu PP, 2007, J ECON ENTOMOL, V100, P1808, DOI 10.1603/0022-0493(2007)100[1808:SOESAH]2.0.CO;2; Boudon-Padieu E., 2004, Investigacion Agraria, Sistemas y Recursos Forestales, V13, P71; Bowditch E., 2016, HIGHLANDS CURRENT ST; Bozilova ED, 2000, NEW PHYTOL, V148, P315, DOI 10.1046/j.1469-8137.2000.00754.x; Braschler B, 2007, J ANIM ECOL, V76, P415, DOI 10.1111/j.1365-2656.2007.01217.x; Brasier CM, 2008, PLANT PATHOL, V57, P792, DOI 10.1111/j.1365-3059.2008.01886.x; BRASIER CM, 1973, NATURE, V242, P607, DOI 10.1038/242607a0; BRASIER CM, 1991, MYCOPATHOLOGIA, V115, P151, DOI 10.1007/BF00462219; Brewis A., 1996, FLORA HAMPSHIRE; British Mycological Society, 2018, FUNG PROC DAT; Brockmann-Jerosh H., 1918, MITTEILUNGEN GEOGRAP, V18, P131; Brookes A., 2016, DIS RESISTANCE ELMS; Brostrom A, 2008, VEG HIST ARCHAEOBOT, V17, P461, DOI 10.1007/s00334-008-0148-8; BRUMMITT RK, 1992, VASCULAR PLANT FAMIL; BRUNET J, 1991, Svensk Botanisk Tidskrift, V85, P377; Brunet J, 2016, NORD J BOT, V34, P120, DOI 10.1111/njb.01010; Brunet J, 2014, BASIC APPL ECOL, V15, P114, DOI [10.1016/j.baae.201.02.002, 10.1016/j.baae.2014.02.002]; Bryant David, 2011, Scottish Birds, V31, P311; BRZEZIECKI B, 1994, FOREST ECOL MANAG, V69, P167, DOI 10.1016/0378-1127(94)90227-5; Bugaa W., 2015, WIZY ULMUS GLABRA HU; Buiteveld J, 2015, IFOREST, V8, P158, DOI 10.3832/ifor1209-008; BURDEN RS, 1984, PHYTOCHEMISTRY, V23, P383, DOI 10.1016/S0031-9422(00)80336-2; Burton RF, 2004, ANN BOT-LONDON, V93, P149, DOI 10.1093/aob/mch024; Bussler Heinz, 2016, Naturschutz und Landschaftsplanung, V48, P273; Butterfly Conservation, 2018, BUTT BREEDS 1 TIM 13; Campos JA, 2011, PLANT BIOSYST, V145, P172, DOI 10.1080/11263504.2011.602738; Carrion JS, 2008, QUATERNARY SCI REV, V27, P2118, DOI 10.1016/j.quascirev.2008.08.016; Carter A., 2016, EATING ELM SEEDS; Caudullo G., 2016, EUROPEAN ATLAS FORES, P186; CHARLTON WA, 1993, CAN J BOT, V71, P222, DOI 10.1139/b93-024; CHARLTON WA, 1993, CAN J BOT, V71, P211, DOI 10.1139/b93-023; Chmielarz P, 2010, ACTA BIOL HUNG, V61, P224, DOI 10.1556/ABiol.61.2010.2.10; Christy M., 1922, J BOT LONDON, V60, P36; Chuine I, 1999, PLANT CELL ENVIRON, V22, P1, DOI 10.1046/j.1365-3040.1999.00395.x; Chytry M, 2010, J BIOGEOGR, V37, P767, DOI 10.1111/j.1365-2699.2009.02256.x; Cicek E., 2006, Pakistan Journal of Biological Sciences, V9, P697; Cicek E, 2007, J ENVIRON BIOL, V28, P423; CLARIDGE DW, 1986, ECOL ENTOMOL, V11, P31, DOI 10.1111/j.1365-2311.1986.tb00277.x; Cogolludo-Agustin MA, 2000, HEREDITY, V85, P157, DOI 10.1046/j.1365-2540.2000.00740.x; Coleman M, 2000, BOT J LINN SOC, V133, P241, DOI 10.1006/bojl.1999.0331; Coleman M., 2009, WYCH ELM; Collin E., 2000, THE ELMS, P281, DOI [10. 1007/978-1-4615-4507-1, DOI 10.1007/978-1-4615-4507-1]; Collin E., 2004, SISTEMAS RECURSOS FO, V13, P261; Collins Graham A., 1999, British Journal of Entomology and Natural History, V12, P137; Commarmot B., 1981, Schweizerische Zeitschrift fur Forstwesen, V132, P99; Commarmot Brigitte, 2005, Forest Snow and Landscape Research, V79, P45; Conservation Foundation, 2017, GREAT BRIT ELM EXP; Corredoira E, 2002, ANN BOT-LONDON, V89, P637, DOI 10.1093/aob/mcf080; Costello L. R., 1990, Journal of Arboriculture, V16, P225; COULTHERD P, 1978, Q J FOREST, V72, P67; Cox K, 2014, TREE GENET GENOMES, V10, P813, DOI 10.1007/s11295-014-0722-4; Cozzi A., 2000, MONTI BOSCHI, V51, P42; Curn V., 2014, Journal of Forest Science (Prague), V60, P511; DAMBROSIO N, 1992, RADIAT ENVIRON BIOPH, V31, P51, DOI 10.1007/BF01211512; DAUMANN E, 1975, Preslia (Prague), V47, P14; DBIF, 2018, DAT INS THEIR FOOD P; de Vernal A., 1989, ACTA PHYTOGEOGR SUEC, V105, P387; Delfan B., 2014, J HERBMED PHARM, V3, P71; Diekmann M, 1996, FOREST ECOL MANAG, V86, P1, DOI 10.1016/S0378-1127(96)03795-4; Dobson M. C., 2009, TOLERANCE TREES SHRU; Dodson J, 2013, J ARCHAEOL SCI, V40, P1700, DOI 10.1016/j.jas.2012.11.022; Dorion N., 2004, Investigacion Agraria, Sistemas y Recursos Forestales, V13, P237; Dostal J., 2011, Zpravy Lesnickeho Vyzkumu, V56, P9; Douglass J., 2010, BACK TREES SCOTLANDS; Drobyshev IV, 2001, FOREST ECOL MANAG, V140, P151, DOI 10.1016/S0378-1127(00)00324-8; Dunn C. P., 2000, ELMS BREEDING CONSER, DOI [10. 1007/978-1-4615-4507-1, DOI 10.1007/978-1-4615-4507-1]; Durkovic J, 2015, J AM SOC HORTIC SCI, V140, P3; Durkovic J, 2014, ANN BOT-LONDON, V114, P47, DOI 10.1093/aob/mcu076; Durkovic J, 2010, PLANT CELL TISS ORG, V101, P221, DOI 10.1007/s11240-010-9680-1; DURSUN S, 1993, SOIL BIOL BIOCHEM, V25, P1513, DOI 10.1016/0038-0717(93)90006-W; Edlin H. L., 1956, TREES WOODS AND MAN; Edwards B., 2005, BACK BRINK MANAGEMEN; EHRENBERG CE, 1949, HEREDITAS, V35, P1; Elakovich S. D., 1987, ACS SYM SER, P93, DOI [10. 1021/symposium, DOI 10.1021/SYMPOSIUM]; Ellenberg H, 1991, SCRIPTA GEOBOT, V18, P1; Elvisto T, 2016, P EST ACAD SCI, V65, P431, DOI 10.3176/proc.2016.4.09; Elwes H. J., 1913, TREES GREAT BRITAIN, VII; Emmet A. M., 1979, FIELD GUIDE SMALLER; Emmet A. M., 1991, MOTHS BUTTERFLIES 2, V7; EPPO, 2005, EPPO B, V35, P416; Eriksson G, 2001, CAN J FOREST RES, V31, P577, DOI 10.1139/cjfr-31-4-577; Erritzoe Johannes, 2010, International Studies on Sparrows, V34, P23; Evelyn J., 1664, SYLVA; Evstigneev O. I., 2017, Lesovedenie, P45; Evstigneev O. I., 1997, Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody Otdel Biologicheskii, V102, P34; Faccoli M, 2016, B ENTOMOL RES, V106, P359, DOI 10.1017/S0007485315001157; Faccoli M, 1997, USDA NE EXP, V236, P172; Falkengren-Grerup U, 1998, ENVIRON POLLUT, V102, P415, DOI 10.1016/S0269-7491(98)80062-6; Fenwick G. A., 1998, Mycologist, V12, P30; Fiorin L, 2016, NEW PHYTOL, V209, P216, DOI 10.1111/nph.13577; Flo D, 2014, SCAND J FOREST RES, V29, P77, DOI 10.1080/02827581.2013.863380; Fontaine F. J., 1968, DENDROFLORA, V5, P37; Forster E. S., 1954, COLUMELLA AGR, VII; Fregoni M., 1991, ORIGINI VITE VITICOL; FREMSTAD E, 1983, Nordic Journal of Botany, V3, P393, DOI 10.1111/j.1756-1051.1983.tb01954.x; Friedrich P., 1970, PROTO INDO EUROPEAN; FRYE J, 1992, Z NATURFORSCH C, V47, P683; Fuentes-Utrilla P., 2004, Investigacion Agraria, Sistemas y Recursos Forestales, V13, P7; Gabrych M, 2016, ECOL ENG, V86, P95, DOI 10.1016/j.ecoleng.2015.10.022; Gailite A, 2005, J PLANT INTERACT, V1, P61, DOI 10.1080/17429140500254728; Gambi G., 1980, MONTI BOSCHI, V7, P549; Ganley RJ, 2016, PLANT PATHOL, V65, P1047, DOI 10.1111/ppa.12527; GARBETT GG, 1981, NEW PHYTOL, V88, P573, DOI 10.1111/j.1469-8137.1981.tb04101.x; Gartland K. M. A., 2000, ELMS BREEDING CONSER, P259, DOI [10. 1007/978-1-4615-4507-1, DOI 10.1007/978-1-4615-4507-1]; Geerinck Daniel, 1999, Naturalistes Belges, V80, P443; Gellini R., 1973, BOT FORESTALE, V2; Gerra-Inohosa L., 2015, MEZINTNE, V29, P35; Ghelardini L, 2009, IFOREST, V2, P143, DOI 10.3832/ifor0508-002; Ghelardini L, 2006, CAN J FOREST RES, V36, P1982, DOI 10.1139/X06-092; Ghelardini L, 2010, TREE PHYSIOL, V30, P264, DOI 10.1093/treephys/tpp110; Gibbs J. N., 1994, 252 FOR AUTH; GIBBS JN, 1978, ANN APPL BIOL, V88, P219, DOI 10.1111/j.1744-7348.1978.tb00699.x; Giesecke T, 2008, QUATERNARY SCI REV, V27, P1296, DOI 10.1016/j.quascirev.2008.03.008; Giesecke T, 2005, VEG HIST ARCHAEOBOT, V14, P133, DOI 10.1007/s00334-005-0070-2; Giesecke T, 2010, J BIOGEOGR, V37, P1394, DOI 10.1111/j.1365-2699.2010.02296.x; Gil L, 2004, NATURE, V431, P1053, DOI 10.1038/4311053a; GIRLING MA, 1985, J ARCHAEOL SCI, V12, P347, DOI 10.1016/0305-4403(85)90063-9; Glavendekic Milka, 2013, Sumarstvo, V1-2, P47; Glenz C, 2006, FOREST ECOL MANAG, V235, P1, DOI 10.1016/j.foreco.2006.05.065; GODWIN H., 1940, NEW PHYTOL, V39, P370, DOI 10.1111/j.1469-8137.1940.tb07149.x; Godwin H., 1975, HIST BRIT VEGETATION; Goodall-Copestake WP, 2005, BIOL CONSERV, V122, P537, DOI 10.1016/j.biocon.2004.09.011; Gotmark F, 2005, FOREST ECOL MANAG, V214, P142, DOI 10.1016/j.foreco.2005.04.001; Gotmark Frank, 2006, Svensk Botanisk Tidskrift, V100, P80; Gravendeel Barbara, 2009, Entomologische Berichten (Amsterdam), V69, P30; Grbi M., 2015, P INT C REF CHALL, P60; Grime J.P., 2007, COMP PLANT ECOLOGY F; GRIME JP, 1981, J ECOL, V69, P1017, DOI 10.2307/2259651; Habjoerg A., 1975, Meldinger fra Norges Landbrukshoegskole, V54, P2; Habjoerg A., 1978, Meldinger fra Norges Landbrukshoegskole, V57, P1; Hahn K., 2007, ECOLOGICAL B, V52; HALLINGBACK T, 1992, BIOL CONSERV, V59, P163, DOI 10.1016/0006-3207(92)90577-A; Hannon GE, 2000, GLOBAL ECOL BIOGEOGR, V9, P101, DOI 10.1046/j.1365-2699.2000.00145.x; HANS AS, 1981, SILVAE GENET, V30, P149; HARBINSON J, 1984, ANN BOT-LONDON, V53, P841, DOI 10.1093/oxfordjournals.aob.a086754; HARLEY J L, 1987, New Phytologist, V105, P1, DOI 10.1111/j.1469-8137.1987.tb00674.x; Harvengt L, 2004, CAN J FOREST RES, V34, P43, DOI [10.1139/x03-193, 10.1139/X03-193]; Harwood TD, 2011, PLANT PATHOL, V60, P545, DOI 10.1111/j.1365-3059.2010.02391.x; Heinrichs Steffi, 2012, Biodiversity Ecol, V4, P49, DOI 10.7809/b-e.00059; Hejcman M, 2014, HOLOCENE, V24, P659, DOI 10.1177/0959683614526904; Hejcmanova P, 2014, VEG HIST ARCHAEOBOT, V23, P607, DOI 10.1007/s00334-013-0414-2; Heller NE, 2014, CONSERV BIOL, V28, P696, DOI 10.1111/cobi.12269; HELLIWELL DR, 1979, Q J FOREST, V73, P160; Henwood B. P., 1999, Entomologist's Gazette, V50, P238; Herlin ILS, 2000, LANDSCAPE ECOL, V15, P229, DOI 10.1023/A:1008170220639; Heshmati GA, 2007, INT J PLANT PROD, V1, P215; HEYBROEK H. M., 1963, ACTA BOT NEERLAND, V12, P1; Heybroek H. M., 1982, P DUTCH ELM DIS S WO, P78; Heybroek H. M., 1976, GROEN, V32, P237; Heybroek H. M., 1962, HDB PFLANZENZUCHTUNG, V6, P819; Heybroek HM, 2015, IFOREST, V8, P181, DOI 10.3832/ifor1244-008; HEYBROEK HM, 1993, DUTCH ELM DISEASE RESEARCH, P16; HEYBROEK HM, 1993, DUTCH ELM DISEASE RESEARCH, P1; Hill M. O., 2004, PLANTATT ATTRIBUTES; Holeksa J, 2009, FOREST ECOL MANAG, V257, P1577, DOI 10.1016/j.foreco.2009.01.008; Hollingsworth P. M., 2000, ELMS BREEDING CONSER, P3, DOI 10. 1007/978-1-4615-4507-1; Hopkins G. W., 1997, ENTOMOLOGISTS MONTHL, Vc, P255; Horntvedt R, 1997, EUR J FOREST PATHOL, V27, P73; Huberty J, 1904, B SOC CENTRALE FORES, V11, P484; Huberty J., 1904, B SOC CENTRALE FORES, V11, P853; Huberty J, 1904, B SOC CENTRALE FORES, V11, P408; Hulme PE, 1999, J ANIM ECOL, V68, P417, DOI 10.1046/j.1365-2656.1999.00294.x; Hulme PE, 1999, PLANT ECOL, V145, P149, DOI 10.1023/A:1009821919855; HUNTLEY B, 1983, ATLAS PRESENT POLLEN; Huppe B., 1996, Forstarchiv, V67, P207; HUTTUNEN S, 1986, J ULTRA MOL STRUCT R, V94, P280; Imbrea I. M., 2016, Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture, V73, P247, DOI 10.15835/buasvmcn-agr:12412; Ingwell LL, 2011, CONSERV BIOL, V25, P182, DOI 10.1111/j.1523-1739.2010.01567.x; JACKSON G, 1949, J ECOL, V37, P38, DOI 10.2307/2256729; Janjic N., 1976, Sumarski List, V100, P142; Jansen S, 2004, NEW PHYTOL, V163, P51, DOI 10.1111/j.1469-8137.2004.01097.x; JEFFERS J N R, 1970, Silvae Genetica, V19, P31; Jeffers JNR, 1999, FORESTRY, V72, P183, DOI 10.1093/forestry/72.3.183; Jeffers JNR, 1996, J APPL STAT, V23, P571, DOI 10.1080/02664769623946; JENSEN TS, 1985, OIKOS, V44, P149, DOI 10.2307/3544056; JNCC, 2017, SPEC AR CONS HAB ACC; JOHNSON LPV, 1946, CAN J RES C, V24, P1, DOI 10.1139/cjr46c-001; JONES AT, 1973, ANN APPL BIOL, V75, P347, DOI 10.1111/j.1744-7348.1973.tb07983.x; Juriado I, 2009, LICHENOLOGIST, V41, P81, DOI 10.1017/S0024282909007889; KALAs JA, 2006, NORSK RODLISTE 2006; Kalis AJ, 2003, QUATERNARY SCI REV, V22, P33, DOI 10.1016/S0277-3791(02)00181-6; Karczmarczuk R., 2002, WSZECHWIAT, V103, P151; Karlsson M., 2001, THESIS; Katanic Z, 2016, PLANT PATHOL, V65, P1430, DOI 10.1111/ppa.12524; KENNEDY CEJ, 1984, J ANIM ECOL, V53, P455, DOI 10.2307/4528; Kiaei M., 2011, American-Eurasian Journal of Agricultural & Environmental Sciences, V11, P257; Kletecka Z, 1996, BIOLOGIA, V51, P143; Klincsek P., 1978, Kertgazdasag, V10, P39; Kmiec K., 2010, Annales Universitatis Mariae Curie-Sklodowska. Sectio EEE, Horticultura, V20, P7; Knight G. T., 2004, B IRISH BIOGEOGRAPHI, V28, P61; Kopinga Jitze, 1995, Journal of Arboriculture, V21, P17; KOTIRANTA H, 1993, ANN BOT FENN, V30, P211; Kowalski T., 2004, PHYTOPATHOL POL, V32, P61; Kremenetski CV, 1997, GEOGR PHYS QUATERN, V51, P391, DOI 10.7202/033138ar; Kuijper DPJ, 2010, J VEG SCI, V21, P1082, DOI 10.1111/j.1654-1103.2010.01217.x; Kullman L, 1998, BOREAS, V27, P153, DOI 10.1111/j.1502-3885.1998.tb00875.x; Kullman L, 2008, ARCT ANTARCT ALP RES, V40, P104, DOI 10.1657/1523-0430(06-120)[KULLMAN]2.0.CO;2; Kullman Leif, 2003, Svensk Botanisk Tidskrift, V97, P210; LA PORTA N, 1991, J HORTIC SCI BIOTECH, V66, P171, DOI 10.1080/00221589.1991.11516141; Lakomy P, 2016, DENDROBIOLOGY, V76, P137, DOI 10.12657/denbio.076.013; LANG A, 1970, ANN REV PLANT PHYSIO, V21, P537, DOI 10.1146/annurev.pp.21.060170.002541; LARCHER W, 1981, PLANT SYST EVOL, V137, P145, DOI 10.1007/BF00989871; Laschimke R, 2006, J PLANT PHYSIOL, V163, P996, DOI 10.1016/j.jplph.2006.05.004; LEEMANS R, 1992, FOREST ECOL MANAG, V48, P305, DOI 10.1016/0378-1127(92)90152-Y; Lefoe G., 2014, Plant Protection Quarterly, V29, P61; Lehto T, 2004, NEW PHYTOL, V163, P333, DOI 10.1111/j.1469-8137.2004.01105.x; Lindeman G. V., 2008, Lesovedenie, P3; LINDGREN BO, 1968, PHYTOCHEMISTRY, V7, P1407; Lindguist B., 1931, REP BOT SOC BRIT IS, V9, P785; LITTLE P, 1972, Environmental Pollution, V3, P241, DOI 10.1016/0013-9327(72)90007-9; Little P., 1993, ENVIRON POLLUT, V5, P159; Lobel S, 2009, OECOLOGIA, V161, P569, DOI 10.1007/s00442-009-1402-1; Logofet D.O., 2016, BIOL B REV, V6, P39; Loudon J. C., 1844, ARBORETUM FRUTICETUM; Loureiro J, 2007, PLANT BIOLOGY, V9, P541, DOI 10.1055/s-2007-965165; MACHARDY WE, 1973, PHYTOPATHOLOGY, V63, P98, DOI 10.1094/Phyto-63-98; Machon N, 1997, HEREDITY, V78, P12; Madhoushi M, 2016, BIORESOURCES, V11, P5169; Magnes M., 2001, Linzer Biologische Beitraege, V33, P607; Mahani MK, 2003, FOREST ECOL MANAG, V186, P207, DOI 10.1016/S0378-1127(03)00261-5; MAI D. H., 1995, TERTIARE VEGETATIONS; Mala J, 2013, BIOL PLANTARUM, V57, P174, DOI 10.1007/s10535-012-0252-6; Malis F, 2016, GLOBAL CHANGE BIOL, V22, P1904, DOI 10.1111/gcb.13210; MALMER N, 1978, VEGETATIO, V36, P17, DOI 10.1007/BF01324768; Maniscalco M., 2009, 104 NAT C IT BOT SOC; Manning WJ, 2002, ENVIRON POLLUT, V119, P283, DOI 10.1016/S0269-7491(02)00102-1; Manojlovic Bozidar, 1995, Zastita Bilja, V46, P35; Martin-Benito D, 2005, CAN J FOREST RES, V35, P199, DOI 10.1139/X04-158; Matthioli P. A., 1544, DISCORSI MPA MATTHIO; MAURER R, 1993, PHYTOPATHOLOGY, V83, P971, DOI 10.1094/Phyto-83-971; Mayer H., 1977, WALDBAU SOZIOLOGISCH; MCGRANAHAN G, 1981, PHYTOPATHOLOGY, V71, P241; Medarevic M., 2011, GLASNIK SUMARSKOG FA, V104, P125, DOI [10. 2298/GSF1104125B, DOI 10.2298/GSF1104125B]; Mellert KH, 2011, J VEG SCI, V22, P635, DOI 10.1111/j.1654-1103.2011.01274.x; MELVILLE R, 1978, TAXON, V27, P345, DOI 10.2307/1220370; MELVILLE R., 1940, JOUR BOT, V78, P181; Melville R., 1939, Journal of Botany, British and Foreign, V77, P138; Melville R, 1944, NATURE, V153, P198, DOI 10.1038/153198c0; Melville R., 1975, HYBRIDIZATION FLORA, P292; Melville R., 1955, SPECIES STUDIES BRIT, P55; Menkis A, 2016, SCAND J FOREST RES, V31, P237, DOI 10.1080/02827581.2015.1076888; MERTON LFH, 1970, J ECOL, V58, P723, DOI 10.2307/2258532; Mezaka A., 2008, FOLIA CRYPTOGAMICA E, V44, P89; Mezaka A, 2012, BIODIVERS CONSERV, V21, P3221, DOI 10.1007/s10531-012-0361-8; Michalcewicz Jakub, 2011, Polish Journal of Entomology, V80, P23, DOI 10.2478/v10200-011-0003-6; Miller F., 2000, ELMS BREEDING CONSER, P137, DOI [10. 1007/978-1-4615-4507-1, DOI 10.1007/978-1-4615-4507-1]; Miller LE, 2014, URBAN FOR URBAN GREE, V13, P892, DOI 10.1016/j.ufug.2014.10.001; Milner E., 2011, TREES BRITAIN IRELAN; Mioduszewski S., 2013, Lesne Prace Badawcze, V74, P149; MITTEMPERGHER L, 1991, SILVAE GENET, V40, P237; MITTEMPERGHER L, 2004, INVEST AGRAR-SIST R, V13, P161; MITTEMPERGHER L, 1993, MIGLIORAMENTO GENETI, P412; Mittempergher L., 2014, ENZYKLOPADIE HOLZGEW, P1; Mittempergher L., 2000, ELMS BREEDING CONSER, P103, DOI 10. 1007/978-1-4615-4507-1; Moe D., 1998, Norsk Geografisk Tidsskrift, V52, P57, DOI 10.1080/00291959808552385; Mohammadi MF, 2015, NUSANT BIOSCI, V7, P48; Moller AP, 2008, OECOLOGIA, V155, P845, DOI 10.1007/s00442-007-0944-3; Moller AP, 2003, INT J PLANT SCI, V164, P519, DOI 10.1086/374197; Moller AP, 1999, OIKOS, V85, P109, DOI 10.2307/3546796; MOLLER AP, 1995, J ANIM ECOL, V64, P697; Mountfort G., 1956, Ibis, V98, P490, DOI 10.1111/j.1474-919X.1956.tb01434.x; Muk H., 1986, POLSKI, V1, P9; Musa N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066149; Myking T, 2002, BIODIVERS CONSERV, V11, P1681, DOI 10.1023/A:1016814817208; Myking T., 2001, AKTUELT SKOGFORSKNIN, V2, P1; Myking T, 2007, SCAND J FOREST RES, V22, P369, DOI 10.1080/02827580701672121; Myking T, 2006, SCAND J FOREST RES, V21, P99, DOI 10.1080/02827580500539265; Nagel TA, 2016, EUR J FOREST RES, V135, P519, DOI 10.1007/s10342-016-0950-2; Nagel TA, 2010, PLANT ECOL, V208, P307, DOI 10.1007/s11258-009-9707-z; Napierala-Filipiak A, 2016, DENDROBIOLOGY, V76, P145, DOI 10.12657/denbio.076.014; Natural History Museum, 2018, BRIT ISL LIST LICH L; Navroodi I. Hassanzad, 2015, Journal of Forest Science (Prague), V61, P1, DOI 10.17221/30/2014-JFS; Newsome N, 2017, GRANA, V56, P377, DOI 10.1080/00173134.2016.1276618; NEWTON I, 1967, IBIS, V109, P33, DOI 10.1111/j.1474-919X.1967.tb00005.x; NICOLAI V, 1986, OECOLOGIA, V69, P148, DOI 10.1007/BF00399052; Nielsen LR, 2010, CONSERV GENET, V11, P257, DOI 10.1007/s10592-009-0028-5; NIENHAUS F, 1989, ANNU REV PHYTOPATHOL, V27, P165; Niinemets U, 2006, ECOL MONOGR, V76, P521, DOI 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2; NILSSON A, 1980, Svensk Botanisk Tidskrift, V74, P311; Nisbet J., 1893, BRIT FOREST TREES TH, DOI [10. 5962/bhl. title. 26745, DOI 10.5962/BHL.TITLE.26745]; Nordbakken Jorn-Frode, 2010, Blyttia, V68, P245; Nordhagen R., 1954, DAN GEOL UNDERS, V80, P262; Nylin S, 1996, ECOSCIENCE, V3, P285, DOI 10.1080/11956860.1996.11682344; O'Donnell L, 2016, J ARCHAEOL SCI, V65, P161, DOI 10.1016/j.jas.2015.11.009; OBERDORFER E, 1992, SUDDEUTSCHE PFLANZ 4; OCONNELL M, 1980, NEW PHYTOL, V85, P301, DOI 10.1111/j.1469-8137.1980.tb04471.x; Odland A, 1999, ECOGRAPHY, V22, P548, DOI 10.1111/j.1600-0587.1999.tb00544.x; Okoow C., 1978, SYLWAN, V122, P63; Olsen C. C., 1978, Tidsskrift for Planteavl, V82, P280; Olsson MO, 2003, FOREST ECOL MANAG, V179, P311, DOI 10.1016/S0378-1127(02)00544-3; Omarova P. K., 2016, Lesovedenie, P209; Onaindia M, 2004, FOREST ECOL MANAG, V195, P341, DOI 10.1016/j.foreco.2004.02.059; Oostra S, 2006, SCAND J FOREST RES, V21, P364, DOI 10.1080/02827580600950172; Out W. A., 2015, QUATERN INT, V436, P41; Out WA, 2010, HOLOCENE, V20, P191, DOI 10.1177/0959683609350386; Paal J, 2009, ANN BOT FENN, V46, P525, DOI 10.5735/085.046.0605; Packham JR, 2012, J ECOL, V100, P1557, DOI 10.1111/j.1365-2745.2012.02017.x; Pacyniak C., 2003, Prace z Zakresu Nauk Lesnych, V94, P83; Pahlsson L., 1994, VEGETATIONSTYPER NOR; Palmisano Anna Marinari, 2000, Nematologia Mediterranea, V28, P279; Parker AG, 2002, PROG PHYS GEOG, V26, P1, DOI 10.1191/0309133302pp323ra; Pavlova D, 2015, BIOTECHNOL BIOTEC EQ, V29, pS8, DOI 10.1080/13102818.2015.1047167; Peace T. R., 1960, BULLETIN, V33; Peglar SM, 1993, VEG HIST ARCHAEOBOT, V2, P61, DOI DOI 10.1007/BF00202; Pennington W, 1973, HOLOCENE, P79; Perea R, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065573; PERRY I, 1987, NATURE, V326, P72, DOI 10.1038/326072a0; Peterken G.F., 1993, WOODLAND CONSERVATIO; PETERKEN GF, 1989, J ECOL, V77, P401, DOI 10.2307/2260758; Peterken GF, 1998, J ECOL, V86, P205, DOI 10.1046/j.1365-2745.1998.00255.x; Petrokas R., 2009, MISKININKYSTE, V1, P71; Petrokas R, 2008, BALT FOR, V14, P204; Petrokas R, 2014, BALT FOR, V20, P238; Petrokas R, 2012, BALT FOR, V18, P237; Petrokas R, 2011, BALT FOR, V17, P83; Piedallu C, 2016, J VEG SCI, V27, P387, DOI 10.1111/jvs.12370; PIGOTT CD, 1969, J ECOL, V57, P491, DOI 10.2307/2258394; PIGOTT CD, 1975, PHILOS T ROY SOC B, V270, P151, DOI 10.1098/rstb.1975.0006; PIGOTT CD, 1985, OECOLOGIA, V67, P367, DOI 10.1007/BF00384942; Pihlgren A., 2010, Svensk Botanisk Tidskrift, V104, P210; Pilcher J. R., 1968, ULSTER J ARCHAEOL, V31, P87; Pinon J, 2005, ANN FOREST SCI, V62, P689, DOI 10.1051/forest.2005066; Portela-Pereira Estevão, 2008, Silva Lus., V16, P263; Potter C, 2011, PHILOS T R SOC B, V366, P1966, DOI 10.1098/rstb.2010.0395; PRENTICE IC, 1991, FOREST ECOL MANAG, V42, P79; Preston C. D., 2002, NEW ATLAS BRIT IRISH; Puspure Ilze, 2016, Proceedings of the Latvian Academy of Sciences Section B Natural Exact and Applied Sciences, V70, P131, DOI 10.1515/prolas-2016-0021; Rackham O, 2003, ANCIENT WOODLAND ITS; Rackham Oliver, 1986, HIST COUNTRYSIDE; Rahmani A., 2009, Iranian Journal of Forest and Poplar Research, V17, P99; RAIMONDO F M, 1977, Webbia, V31, P261; Randin CF, 2013, GLOBAL ECOL BIOGEOGR, V22, P913, DOI 10.1111/geb.12040; REDFERN D B, 1977, Scottish Forestry, V31, P105; REDFERN DB, 1981, T BRIT MYCOL SOC, V77, P381, DOI 10.1016/S0007-1536(81)80041-1; Rewald B, 2015, URBAN FOR URBAN GREE, V14, P432, DOI 10.1016/j.ufug.2015.04.011; Rhizopoulou S, 2016, BOT LETT, V163, P191, DOI 10.1080/23818107.2016.1166070; RHOADS A, 1980, Plant Disease, V64, P1106; Richens R. H., 1984, Watsonia, V15, P105; RICHENS R. H., 1961, FORESTRY, V34, P181; RICHENS R. H., 1961, FORESTRY, V34, P47; Richens R. H., 1976, Anali za Sumarstvo, V7, P107; RICHENS RH, 1984, FORESTRY, V57, P75, DOI 10.1093/forestry/57.1.75; RICHENS RH, 1985, FORESTRY, V58, P9, DOI 10.1093/forestry/58.1.9; RICHENS RH, 1967, FORESTRY, V40, P185, DOI 10.1093/forestry/40.2.185; RICHENS RH, 1980, TAXON, V29, P305, DOI 10.2307/1220293; RICHENS RH, 1983, ELM; ROBERTS BR, 1966, FOREST SCI, V12, P44; Rodwell J. S., 1991, BRIT PLANT COMMUNITI, V1; Rodwell J. S., 2000, BRIT PLANT COMMUNITI, V5; Rohula G, 2014, ENVIRON EXP BOT, V99, P180, DOI 10.1016/j.envexpbot.2013.11.017; Rose D., 2011, 11 FOR COMM; Rose F., 2006, THE WILDFLOWER KEY, P558; Rossignoli A., 2003, ECOLOGIA, V17, P99; Rotheray G. E., 1988, ENTOMOL GAZ, V49, P271; ROWE JW, 1972, PHYTOCHEMISTRY, V11, P2513, DOI 10.1016/S0031-9422(00)88527-1; Royal Botanic Gardens Kew, 2018, SEED INF DAT; Royal Botanic Gardens Kew, 2017, UK NAT TREE SEED PRO; Ryss A, 2015, NEMATOLOGY, V17, P685, DOI 10.1163/15685411-00002902; Saumel I, 2013, PLANT ECOL, V214, P1257, DOI 10.1007/s11258-013-0249-z; Safdari V., 2011, IRANIAN J WOOD PAPER, V26, P564; Samonil P, 2008, PLANT ECOL, V196, P197, DOI 10.1007/s11258-007-9345-2; Samsone Ineta, 2012, Environmental and Experimental Biology, V10, P15; Santini A, 2005, FOREST PATHOL, V35, P183, DOI 10.1111/j.1439-0329.2005.00401.x; Santini A, 2004, P 2 INT ELM C NEW AP, V13, P37; Santini A, 2004, FOREST SYSTEMS, V13, P179; Santini A, 2008, EUPHYTICA, V163, P45, DOI 10.1007/s10681-007-9573-5; Santini A, 2010, FOREST ECOL MANAG, V260, P1017, DOI 10.1016/j.foreco.2010.06.025; Sanz M. J., 2009, OZONE INJURIES EUROP; SATCHELL J. E., 1967, P102; Savill P., 2013, The silviculture of trees used in British forestry, DOI 10.1079/9781780640266.0000; Scherl M, 2016, CHEM-EUR J, V22, P9498, DOI 10.1002/chem.201601739; SCHMELZER K., 1966, Arch. Forstw., V15, P107; Schweingruber F. H, 1990, ANATOMY EUROPEAN WOO; Sebkova B, 2012, FOREST ECOL MANAG, V280, P9, DOI 10.1016/j.foreco.2012.05.030; Sell P., 2018, FLORA GREAT BRITAIN, V1; SENGONCA C, 1984, Z ANGEW ENTOMOL, V98, P413; Shahraji T. R., 2007, Indian Journal of Forestry, V30, P229; SHERALD J L, 1992, Journal of Arboriculture, V18, P57; Shilenkova OL, 2013, PEDOBIOLOGIA, V56, P147, DOI 10.1016/j.pedobi.2013.03.004; Shiranpour B., 2012, Iranian Journal of Forest and Poplar Research, V20, P691; Sinclair WA, 2000, PLANT DIS, V84, P1266, DOI 10.1094/PDIS.2000.84.12.1266; Skelly JM, 1999, WATER AIR SOIL POLL, V116, P227, DOI 10.1023/A:1005275431399; Skre O., 1993, MEDDELELSER SKOGFORS, V45, P1; Skrzypczynska M., 2006, Sylwan, V150, P35; SMALLEY E B, 1973, Hortscience, V8, P514; SMALLEY EB, 2000, ELMS BREEDING CONSER, P215; Soldini M., 1974, REV GEN ROUTES AEROD, V10, P75; Solheim H, 2011, FOREST PATHOL, V41, P182, DOI 10.1111/j.1439-0329.2010.00650.x; Solla A, 2005, FOREST SCI, V51, P134; Sorensen R., 2015, Blyttia, V73, P175; Sorensson Mikael, 1996, Entomologisk Tidskrift, V117, P11; SOUTHWOOD TRE, 1961, J ANIM ECOL, V30, P1, DOI 10.2307/2109; SPARKS TH, 1995, J ECOL, V83, P321, DOI 10.2307/2261570; Stace C, 2010, NEW FLORA BRIT ISLES; Stace C.A., 2015, HYBRID FLORA BRIT IS; Stace C. A, 1975, HYBRIDIZATION FLORA; STAFFORD PJ, 1995, REV PALAEOBOT PALYNO, V88, P25, DOI 10.1016/0034-6667(95)98770-8; STAHL U, 1995, PLANT PHYSIOL, V107, P953, DOI 10.1104/pp.107.3.953; Stahl U, 1998, PLANT PHYSIOL, V117, P197, DOI 10.1104/pp.117.1.197; Stewart JR, 2001, TRENDS ECOL EVOL, V16, P608, DOI 10.1016/S0169-5347(01)02338-2; STIPES RJ, 1981, COMPENDIUM ELM DIS; STOCKMARR J, 1974, Grana, V14, P103; Stockmarr J., 1970, SPECIES IDENTIFICATI; Stoyanov N., 2004, Investigacion Agraria, Sistemas y Recursos Forestales, V13, P255; STURLUDOTTIR SA, 1985, NEW PHYTOL, V99, P323, DOI 10.1111/j.1469-8137.1985.tb03660.x; Suchara I., 1982, ZAHRADNICTVI, V9, P289; Sulekova A., 2011, Folia Oecologica, V38, P118; Sulusoglu M., 2014, SCI WORLD J, V2014; Sundberg Sebastian, 2015, Svensk Botanisk Tidskrift, V109, P188; Sutherland ML, 1997, PHYTOPATHOLOGY, V87, P576, DOI 10.1094/PHYTO.1997.87.6.576; Svenning JC, 2008, J ECOL, V96, P1117, DOI 10.1111/j.1365-2745.2008.01422.x; SYKES MT, 1995, WATER AIR SOIL POLL, V82, P415, DOI 10.1007/BF01182851; Sykes MT, 1996, J BIOGEOGR, V23, P203; Tavanaei G. H., 2009, IRANIAN J FOREST RAN, V6, P98; Tavankar F., 2015, Biodiversitas: Journal of Biological Diversity, V16, P1, DOI 10.13057/biodiv/d160101; Tcherepanov I. V., 2004, Botanicheskii Zhurnal (St. Petersburg), V89, P1787; Thill A., 1983, Bulletin des Recherches Agronomiques de Gembloux, V18, P241; Thomas PA, 2016, J ECOL, V104, P1158, DOI 10.1111/1365-2745.12566; Thompson K., 1997, SOIL SEED BANKS N W; Tinner W, 2000, HOLOCENE, V10, P565, DOI 10.1191/095968300674242447; TOLONEN M, 1980, ANN BOT FENN, V17, P7; Tomlinson I, 2010, J HIST GEOGR, V36, P121, DOI 10.1016/j.jhg.2009.07.003; Tosun F, 2004, J ETHNOPHARMACOL, V95, P273, DOI 10.1016/j.jep.2004.07.011; TOWNSEND A M, 1975, Silvae Genetica, V24, P18; TOWNSEND AM, 1979, PHYTOPATHOLOGY, V69, P643, DOI 10.1094/Phyto-69-643; TROCKENBRODT M, 1995, ANN BOT-LONDON, V75, P281, DOI 10.1006/anbo.1995.1022; TROCKENBRODT M, 1994, IAWA J, V15, P387, DOI 10.1163/22941932-90001373; TROCKENBRODT M, 1991, IAWA BULL, V12, P5, DOI 10.1163/22941932-90001199; Trockenbrodt M., 2001, STADT GRUN, V6, P430; Troels-Smith J., 1960, IVY MISTLETOE ELM CL; Trueman I., 2013, FLORA BIRMINGHAM BLA; TUOVINEN T, 1991, EXP APPL ACAROL, V12, P35, DOI 10.1007/BF01204398; Tylkowski T., 1999, Sylwan, V143, P39; Tyystjarvi P., 1984, TIEDOTE METSANJALOST, V1, P1; Uotila P., 1997, SORBIFOLIA, V28, P5; Urban J., 2003, Journal of Forest Science (Prague), V49, P359; Urban J., 2003, Journal of Forest Science (Prague), V49, P159; Urban J, 2013, ACTA HORTIC, V991, P301; Urban J, 2014, TREES-STRUCT FUNCT, V28, P1599, DOI 10.1007/s00468-014-1068-0; Venturas M, 2015, IFOREST, V8, P135, DOI 10.3832/ifor1201-008; Venturas M, 2014, FOREST ECOL MANAG, V312, P170, DOI 10.1016/j.foreco.2013.10.007; Venturas M, 2013, TREES-STRUCT FUNCT, V27, P1691, DOI 10.1007/s00468-013-0916-7; von Oheimb G, 2007, ACTA OECOL, V31, P229, DOI 10.1016/j.actao.2006.12.001; Vretiak P., 1993, LESNICTVI, V39, P123; Wadley FM, 1944, J AGRIC RES, V69, P0299; Wang B, 2006, MYCORRHIZA, V16, P299, DOI 10.1007/s00572-005-0033-6; WAREING PF, 1956, ANNU REV PLANT PHYS, V7, P191, DOI 10.1146/annurev.pp.07.060156.001203; Waring Paul, 2005, Entomologist's Record and Journal of Variation, V117, P80; Waring Paul, 2008, Entomologist's Record and Journal of Variation, V120, P29; WATSON MF, 1988, LICHENOLOGIST, V20, P327, DOI 10.1017/S0024282988000441; WEBBER J, 1981, NATURE, V292, P449, DOI 10.1038/292449a0; WEBBER JF, 2000, ELMS BREEDING CONSER, P47, DOI DOI 10.1007/978-1-4615-4507-1_3; Weibull H, 2005, BIOL CONSERV, V122, P71, DOI 10.1016/j.biocon.2004.07.001; Weibull H, 2001, J BRYOL, V23, P55, DOI 10.1179/jbr.2001.23.1.55; Went J. C., 1954, TIJDSCHR PLANTENZIEK, V60, P140; White SM, 2017, BIOL INVASIONS, V19, P1825, DOI 10.1007/s10530-017-1393-5; Wilkinson G., 1978, EPITAPH FOR THE ELM; Willner Wolfgang, 2016, Hacquetia, V15, P15, DOI 10.1515/hacq-2016-0005; Woodland Trust, 2018, ANC TREE INV; WILLMOT A, 1980, J ECOL, V68, P269, DOI 10.2307/2259255; Winding A, 1997, BIOL FERT SOILS, V24, P133, DOI 10.1007/s003740050221; Zabihi H., 2008, Journal of Agricultural Sciences and Natural Resources, V15, P15; Zajc M., 2009, ELEMENTY GEOGRAFICZN; Zandigiacomo P, 2011, B INSECTOL, V64, P145; Zarinkamar Fatemeh, 2007, Pak J Biol Sci, V10, P199; Zaski A., 2009, LENE PRACE BADAWCZE, V70, P151; Zebec M., 2015, SUMAR LIST, V9-10, P429; Zuo LH, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0171264 509 0 0 6 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. JUL 2018 106 4 1724 1766 10.1111/1365-2745.12994 43 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology GJ5TE WOS:000435444700032 Bronze 2019-02-21 J Stewart, JD; Nuttall, M; Hickerson, EL; Johnston, MA Stewart, Joshua D.; Nuttall, Marissa; Hickerson, Emma L.; Johnston, Michelle A. Important juvenile manta ray habitat at Flower Garden Banks National Marine Sanctuary in the northwestern Gulf of Mexico MARINE BIOLOGY English Article LIFE-HISTORY THEORY; DIVING BEHAVIOR; CONSERVATION; ECOLOGY; ALFREDI; BIROSTRIS; BIOLOGY; SHARKS; AREA Oceanic manta rays (Mobula birostris) are large pelagic planktivores that are threatened globally by targeted fisheries and bycatch. While studies of oceanic mantas have increased substantially in the past decade, major knowledge gaps remain in their basic biology, ecology and life history. The juvenile stage in particular is virtually unstudied, as juvenile oceanic mantas are rarely observed in the wild and are known primarily from fisheries and captive individuals. Here, we present evidence suggesting that Flower Garden Banks National Marine Sanctuary (FGBNMS) is an important habitat for juvenile manta rays. Recent genetic evidence indicates that both oceanic mantas and a proposed third manta species (Mobula cf. birostris) are present at FGBNMS. Size estimates of mantas sighted at FGBNMS over 25 years of monitoring efforts indicate that 95% of individuals are smaller than the size at maturity for male M. birostris, and 80% are smaller than the size at maturity for M. alfredi. Photographic records of juvenile males with undeveloped claspers further corroborate these findings. Temporal patterns of use and the prevalence of juveniles suggest that this region may serve as nursery habitat for M. birostris and M. cf. birostris. Further research is necessary to determine the importance of the region to juveniles of each species, as well as long-term patterns of habitat use and residency. [Stewart, Joshua D.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA; [Stewart, Joshua D.] Manta Trust, Dorchester, Dorset, England; [Nuttall, Marissa; Hickerson, Emma L.; Johnston, Michelle A.] NOAA, Flower Garden Banks Natl Marine Sanctuary, Galveston, TX USA; [Nuttall, Marissa] CPC, San Diego, CA USA Stewart, JD (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.; Stewart, JD (reprint author), Manta Trust, Dorchester, Dorset, England. j8stewart@ucsd.edu NOAA ONMS Nancy Foster Scholarship [NA15NOS4290068] JDS was supported by NOAA ONMS Nancy Foster Scholarship NA15NOS4290068. Bohnsack J.A., 1986, NOAA Technical Report NMFS, V41, P1; Braun CD, 2015, MARINE BIOL; Canese Simonepietro, 2011, Endangered Species Research, V14, P171, DOI 10.3354/esr00349; Couturier LIE, 2014, CORAL REEFS, V33, P329, DOI 10.1007/s00338-014-1126-5; Couturier LIE, 2012, J FISH BIOL, V80, P1075, DOI 10.1111/j.1095-8649.2012.03264.x; Croll DA, 2016, AQUAT CONSERV, V26, P562, DOI 10.1002/aqc.2591; Deakos MH, 2011, MAR ECOL PROG SER, V429, P245, DOI 10.3354/meps09085; Deakos MH, 2010, AQUAT BIOL, V10, P1, DOI 10.3354/ab00258; Dulvy NK, 2014, PEERJ, V2, DOI 10.7717/peerj.400; Frisk Michael G., 2005, Journal of Northwest Atlantic Fishery Science, V35, P27; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; Heupel MR, 2007, MAR ECOL PROG SER, V337, P287, DOI 10.3354/meps337287; Hinojosa-Alvarez S, 2016, PEERJ, V4, DOI 10.7717/peerj.2586; HOPKINS TL, 1982, DEEP-SEA RES, V29, P1069, DOI 10.1016/0198-0149(82)90028-0; Johnston MA, 2013, LONG TERM MONITORING, V215, P362; Johnston MA, 2017, LONG TERM MONITORING, V1, P186; Johnston MA, 2015, LONG TERM MONITORING, V027, P194; Johnston MA, 2017, MARINE SANCTUARIES C, P132; Kaltenberg A. M., 2007, Gulf of Mexico Science, V25, P97; Lewis SA, 2015, PEERJ PREPINTS, P1; Marshall AD, 2012, J FISH BIOL, V80, P1361, DOI 10.1111/j.1095-8649.2012.03244.x; Marshall AD, 2010, J FISH BIOL, V77, P169, DOI 10.1111/j.1095-8649.2010.02669.x; Marshall AD, 2011, MANTA BIROSTRIS; Marshall AD, 2009, ZOOTAXA, P1; McClain CR, 2015, PEERJ, V3, P715; NOTARBARTOLODISCIARA G, 1988, FISH B-NOAA, V86, P45; O'Malley M. P, 2016, AQUAT CONSERV, P1, DOI 10.1002/aqc.2670; Rohner CA, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.161060; Stevens G. M. W, 2016, CONSERVATION POPULAT; Stewart JD, 2017, MAR ECOL PROG SER, V580, P131, DOI 10.3354/meps12304; Stewart JD, 2016, ZOOLOGY, V119, P406, DOI 10.1016/j.zool.2016.05.010; Stewart JD, 2016, BIOL CONSERV, V200, P178, DOI 10.1016/j.biocon.2016.05.016; Thorrold SR, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5274; Ward-Paige CA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074835; White ER, 2015, CONSERV BIOL, V29, P1186, DOI 10.1111/cobi.12478; White WT, 2006, FISH RES, V82, P65, DOI 10.1016/j.fishres.2006.08.008; Yokota L, 2006, ENVIRON BIOL FISH, V75, P349, DOI 10.1007/s10641-006-0038-9; Zimmer BL, 2010, LONG TERM MONITORING, V1, P310 39 2 2 9 14 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0025-3162 1432-1793 MAR BIOL Mar. Biol. JUL 2018 165 7 111 10.1007/s00227-018-3364-5 8 Marine & Freshwater Biology Marine & Freshwater Biology GJ5YG WOS:000435459100001 2019-02-21 J Ruger, N; Comita, LS; Condit, R; Purves, D; Rosenbaum, B; Visser, MD; Wright, SJ; Wirth, C Rueger, Nadja; Comita, Liza S.; Condit, Richard; Purves, Drew; Rosenbaum, Benjamin; Visser, Marco D.; Wright, S. J.; Wirth, Christian Beyond the fast-slow continuum: demographic dimensions structuring a tropical tree community ECOLOGY LETTERS English Article Barro Colorado Island; demography; functional traits; growth-survival trade-off; life-history strategies; long-lived pioneer; mortality; seed production; tropical forest; weighted Principal Component Analysis FUNCTIONAL TRAITS; TRADE-OFF; NEOTROPICAL FOREST; INTERSPECIFIC VARIATION; SEEDLING RECRUITMENT; SHADE TOLERANCE; GOOD PREDICTORS; GROWTH-RATES; LEAF TRAITS; CHANGE RANK Life-history theory posits that trade-offs between demographic rates constrain the range of viable life-history strategies. For coexisting tropical tree species, the best established demographic trade-off is the growth-survival trade-off. However, we know surprisingly little about co-variation of growth and survival with measures of reproduction. We analysed demographic rates from seed to adult of 282 co-occurring tropical tree and shrub species, including measures of reproduction and accounting for ontogeny. Besides the well-established fast-slow continuum, we identified a second major dimension of demographic variation: a trade-off between recruitment and seedling performance vs. growth and survival of larger individuals (>= 1 cm dbh) corresponding to a 'stature-recruitment' axis. The two demographic dimensions were almost perfectly aligned with two independent trait dimensions (shade tolerance and size). Our results complement recent analyses of plant life-history variation at the global scale and reveal that demographic trade-offs along multiple axes act to structure local communities. [Rueger, Nadja; Rosenbaum, Benjamin; Wirth, Christian] German Ctr Integrat Biodivers Res iDiv, Deutsch Pl 5e, D-04103 Leipzig, Germany; [Rueger, Nadja; Comita, Liza S.; Wright, S. J.] Smithsonian Trop Res Inst, Apartado 0843-03092, Ancona, Panama; [Comita, Liza S.] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA; [Condit, Richard] Field Museum Nat Hist, 1400 S Lake Shore Dr, Chicago, IL 60605 USA; [Condit, Richard] Morton Arboretum, 4100 Illinois Rte 53, Lisle, IL 60532 USA; [Purves, Drew] DeepMind, London, England; [Rosenbaum, Benjamin] Friedrich Schiller Univ Jena, Inst Biodivers, Dornburger Str 159, D-07743 Jena, Germany; [Visser, Marco D.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Wirth, Christian] Univ Leipzig, AG Spezielle Bot & Funkt Biodiversitat, Johannisallee 21, D-04103 Leipzig, Germany; [Wirth, Christian] Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07743 Jena, Germany Ruger, N (reprint author), German Ctr Integrat Biodivers Res iDiv, Deutsch Pl 5e, D-04103 Leipzig, Germany.; Ruger, N (reprint author), Smithsonian Trop Res Inst, Apartado 0843-03092, Ancona, Panama. nadja.rueger@idiv.de Ruger, Nadja/J-6393-2015; Wright, Stuart/M-3311-2013 Ruger, Nadja/0000-0003-2371-4172; Wright, Stuart/0000-0003-4260-5676 Deutsche Forschungsgemeinschaft DFG [RU 1536/3-1]; German Centre for integrative Biodiversity Research (iDiv) - Deutsche Forschungsgemeinschaft DFG [FZT 118]; NSF Long Term Research in Environmental Biology programme for seedling data collection [LTREB 1464389]; Netherlands Organization for Scientific Research [NWO-ALW 801-440 01-009]; Carbon Mitigation Initiative at Princeton University; F. H. Levinson Fund NR was funded by a research grant from Deutsche Forschungsgemeinschaft DFG (RU 1536/3-1). BR, NR and CW acknowledge the support of the German Centre for integrative Biodiversity Research (iDiv) funded by Deutsche Forschungsgemeinschaft DFG (FZT 118). The BCI plot has been made possible through the support of the U.S. National Science Foundation, the John D. and Catherine D. McArthur Foundation, and the Smithsonian Tropical Research Institute. LSC acknowledges support from the NSF Long Term Research in Environmental Biology programme for seedling data collection (LTREB 1464389). MDV acknowledges support from the Netherlands Organization for Scientific Research (NWO-ALW 801-440 01-009) and the Carbon Mitigation Initiative at Princeton University for the tree reproductive status census. Functional trait data were funded by the F. H. Levinson Fund. We thank the dozens of field assistants and botanists who have collected data in the BCI plot over the past 35 years. We thank Stephanie Bohlman for sharing crown observations from aerial photographs of trees at BCI, Adam Clark for helpful discussions and Roberto Salguero-Gomez and three anonymous reviewers for insightful comments that improved the MS considerably. Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Anderson-Teixeira KJ, 2015, GLOBAL CHANGE BIOL, V21, P528, DOI 10.1111/gcb.12712; Baraloto C, 2005, ECOLOGY, V86, P2461, DOI 10.1890/04-1956; Beeckman H., 2013, FOREST ECOL MANAG, V304, P417; Bohlman S, 2012, J ECOL, V100, P508, DOI 10.1111/j.1365-2745.2011.01935.x; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Comita LS, 2007, J VEG SCI, V18, P163, DOI 10.1658/1100-9233(2007)18[163:POWPSA]2.0.CO;2; Condit R., 1998, TROPICAL FOREST CENS; Dalling JW, 1997, J TROP ECOL, V13, P659, DOI 10.1017/S0266467400010853; Delchambre L, 2015, MON NOT R ASTRON SOC, V446, P3545, DOI 10.1093/mnras/stu2219; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; FAVRICHON V, 1994, REV ECOL-TERRE VIE, V49, P379; Ford ED, 2001, OIKOS, V93, P153, DOI 10.1034/j.1600-0706.2001.930117.x; Gilbert B, 2006, ECOLOGY, V87, P1281, DOI 10.1890/0012-9658(2006)87[1281:LHTITT]2.0.CO;2; Grau HR, 1997, FOREST ECOL MANAG, V95, P161, DOI 10.1016/S0378-1127(97)00010-8; Grime J.P., 2012, EVOLUTIONARY STRATEG, P240; Hubbell S.P., 1983, TROPICAL RAIN FOREST, P25; Iida Y, 2014, J ECOL, V102, P641, DOI 10.1111/1365-2745.12221; Ishii H, 2002, FOLIA GEOBOT, V37, P63, DOI 10.1007/BF02803191; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; King DA, 2006, J TROP ECOL, V22, P11, DOI 10.1017/S0266467405002774; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kitajima K, 2008, TROPICAL FOREST COMM, P160; Kohyama T, 2003, J ECOL, V91, P797, DOI 10.1046/j.1365-2745.2003.00810.x; KOHYAMA T, 1993, J ECOL, V81, P131, DOI 10.2307/2261230; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Kooyman RM, 2009, ANN BOT-LONDON, V104, P987, DOI 10.1093/aob/mcp185; Lasky JR, 2015, ECOLOGY, V96, P2157, DOI 10.1890/14-1809.1; LATHAM RE, 1992, ECOLOGY, V73, P2129, DOI 10.2307/1941461; LIEBERMAN D, 1990, FOREST DYNAMICS LA S, P509; Loehle C, 2000, AM NAT, V156, P14, DOI 10.1086/303369; Lusk CH, 2004, FUNCT ECOL, V18, P820, DOI 10.1111/j.0269-8463.2004.00897.x; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Muller-Landau HC, 2008, J ECOL, V96, P653, DOI 10.1111/j.1365-2745.2008.01399.x; Muller-Landau HC, 2010, P NATL ACAD SCI USA, V107, P4242, DOI 10.1073/pnas.0911637107; Peres-Neto PR, 2001, OECOLOGIA, V129, P169, DOI 10.1007/s004420100720; Philipson CD, 2014, ECOL EVOL, V4, P3675, DOI 10.1002/ece3.1186; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Purves D, 2008, SCIENCE, V320, P1452, DOI 10.1126/science.1155359; R Development Core Team, 2016, R ALNG ENV STAT COMP; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Ruger N, 2012, ECOLOGY, V93, P2626, DOI 10.1890/12-0622.1; Ruger N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025330; Salguero-Gomez R, 2017, NEW PHYTOL, V213, P1618, DOI 10.1111/nph.14289; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Stan Development Team, 2016, RSTAN R INT STAN VER; STEARNS SC, 1999, EVOLUTION LIFE HIST; Sterck FJ, 2006, AM NAT, V167, P758, DOI 10.1086/503056; Sterck FJ, 2013, J ECOL, V101, P971, DOI 10.1111/1365-2745.12076; Turner I. M., 2001, ECOLOGY TREES TROPIC; Uriarte M, 2012, ECOLOGY, V93, P191, DOI 10.1890/10-2422.1; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Visser MD, 2016, FUNCT ECOL, V30, P168, DOI 10.1111/1365-2435.12621; WELDEN CW, 1991, ECOLOGY, V72, P35, DOI 10.2307/1938900; Westoby M, 1998, PLANT SOIL, V199, P213, DOI 10.1023/A:1004327224729; Wilson JB, 2012, J VEG SCI, V23, P796, DOI 10.1111/j.1654-1103.2012.01400.x; Wright SJ, 2016, ECOLOGY, V97, P2780, DOI 10.1002/ecy.1519; Wright SJ, 2005, ECOLOGY, V86, P848, DOI 10.1890/03-0750; York RA, 2011, RESTOR ECOL, V19, P14, DOI 10.1111/j.1526-100X.2009.00537.x; Zhu Y, 2018, ECOL LETT, V21, P506, DOI 10.1111/ele.12915 62 3 3 13 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. JUL 2018 21 7 1075 1084 10.1111/ele.12974 10 Ecology Environmental Sciences & Ecology GJ3YN WOS:000435270600013 29744992 Green Published, Other Gold 2019-02-21 J Jensen, LF; Rognon, P; Aarestrup, K; Bottcher, JW; Pertoldi, C; Thomsen, SN; Hertz, M; Winde, J; Svendsen, JC Jensen, Lasse Fast; Rognon, Paul; Aarestrup, Kim; Bottcher, Jesper Wohlk; Pertoldi, Cino; Thomsen, Soren Nohr; Hertz, Morten; Winde, Jacob; Svendsen, Jon C. Evidence of cormorant-induced mortality, disparate migration strategies and repeatable circadian rhythm in the endangered North Sea houting (Coregonus oxyrinchus): A telemetry study mapping the postspawning migration ECOLOGY OF FRESHWATER FISH English Article artificial lakes; circadian rhythm; cormorant predation; repeatability; telemetry; whitefish SALMON SALMO-SALAR; TAGGED ATLANTIC SALMON; ANADROMOUS BROWN TROUT; SWIMMING PERFORMANCE; SPAWNING MIGRATION; FRESH-WATER; INDIVIDUAL-DIFFERENCES; ACOUSTIC TRANSMITTERS; DOWNSTREAM MIGRATION; PHALACROCORAX-CARBO Life history theory predicts a trade-off between migration and residency where migration is favoured when it infers elevated fitness. Although migration to more favourable environments may offer higher growth rates, migrants often experience increased mortality due to predation. Here, we investigated mortality and migration behaviour of the North Sea houting (Coregonus oxyrinchus), an anadromous salmonid endemic to the Wadden Sea. We used acoustic telemetry to map the migration of the only remaining indigenous population by applying stationary hydrophones combined with manual tracking. Data suggested a total mortality of 26%, with 30% of the total mortality attributed to predation by great cormorants (Phalacrocorax carbo sinensis), highlighting that North Sea houting conservation could be jeopardised by increased cormorant predation. Risk of cormorant predation was size-dependent, with smaller fish suffering higher risk of predation. The study found North Sea houting to exhibit disparate migration strategies and identified a lentic area in the estuary as an important habitat. Two newly established artificial lakes within the river system significantly reduced the migration speeds, possibly indicating constrained navigation through the lakes. The migration into the Wadden Sea correlated with temperature perhaps indicating osmoregulatory constraints of sea entry. Unlike many salmonid species, migration occurred both day and night. Moreover, fish exhibited repeatable individual differences in diel activity patterns, suggesting that individuals differ consistently in their migratory activity throughout the 24-hr period. Our study provides novel information on salmonid migration, which is crucial for the development of science-based conservation strategies. [Jensen, Lasse Fast; Bottcher, Jesper Wohlk; Pertoldi, Cino; Thomsen, Soren Nohr; Hertz, Morten; Winde, Jacob] Aalborg Univ, Dept Chem & Biosci, Sect Environm Technol, Aalborg, Denmark; [Rognon, Paul] Inst Natl Ds Sci Appl, INSA, Lyon, France; [Aarestrup, Kim] Tech Univ Denmark, Sect Freshwater Fisheries Ecol, DTU Aqua, Silkeborg, Denmark; [Svendsen, Jon C.] Tech Univ Denmark, Natl Inst Aquat Resources, Sect Ecosyst Based Marine Management, DTU Aqua, Charlottenlund, Denmark; [Svendsen, Jon C.] Univ Porto, Ctr Interdisciplinar Invest Marinha & Ambiental C, Porto, Portugal Jensen, LF (reprint author), Aalborg Univ, Dept Chem & Biosci, Sect Environm Technol, Aalborg, Denmark. lasse.fast@gmail.com Pertoldi, Cino/0000-0002-4644-8981 15. Juni Foundation [2014-A-22]; Foundation for Science and Technology (FCT) in Portugal [SFRH/BPD/89473/2012] 15. Juni Foundation, Grant/Award Number: 2014-A-22; Foundation for Science and Technology (FCT) in Portugal, Grant/Award Number: SFRH/BPD/89473/2012 Aarestrup K, 1999, FISHERIES MANAG ECOL, V6, P97, DOI 10.1046/j.1365-2400.1999.00132.x; Aarestrup K, 2005, J FISH BIOL, V66, P721, DOI 10.1111/j.0022-1112.2005.00634.x; Aarestrup K, 2003, ECOL FRESHW FISH, V12, P169, DOI 10.1034/j.1600-0633.2003.00027.x; Aarestrup K, 2015, MAR ECOL PROG SER, V535, P185, DOI 10.3354/meps11407; Adamek Z, 2007, AQUACULT INT, V15, P211, DOI 10.1007/s10499-007-9087-0; Agostinelli C, 2013, R PACKAGE CIRCULAR C; Aldven D, 2015, MAR ECOL PROG SER, V541, P151, DOI 10.3354/meps11535; Alos J, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.160791; Amin B, 2016, BEHAVIOUR, V153, P1745, DOI 10.1163/1568539X-00003376; ASCHOFF J, 1966, ECOLOGY, V47, P657, DOI 10.2307/1933949; Avgar T, 2014, CAN J ZOOL, V92, P481, DOI 10.1139/cjz-2013-0076; Baktoft H, 2016, CONSERV PHYSIOL, V4, DOI 10.1093/conphys/cov055; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bendall B, 2005, J FISH BIOL, V67, P809, DOI 10.1111/j.1095-8649.2005.00786.x; Berthold P., 2013, AVIAN MIGRATION; Bohlin T, 2001, J ANIM ECOL, V70, P112, DOI 10.1046/j.1365-2656.2001.00466.x; Bono-Otalora B., 2017, BIOL TIMEKEEPING CLO, P257; Borcherding J, 2010, FISHERIES MANAG ECOL, V17, P291, DOI 10.1111/j.1365-2400.2009.00710.x; Borcherding J, 2008, AQUAT SCI, V70, P47, DOI 10.1007/s00027-007-0952-8; Borcherding J, 2014, ECOL FRESHW FISH, V23, P161, DOI 10.1111/eff.12058; Bregnballe T., 2014, BREEDING NUMBERS GRE; BRETT JR, 1964, J FISH RES BOARD CAN, V21, P1183, DOI 10.1139/f64-103; Brodersen J, 2012, BIOL LETTERS, V8, P21, DOI 10.1098/rsbl.2011.0634; Bronmark C, 2014, CAN J ZOOL, V92, P467, DOI 10.1139/cjz-2012-0277; Brown RS, 2010, N AM J FISH MANAGE, V30, P499, DOI 10.1577/M09-038.1; Buck CL, 2016, NATURE, V540, P49, DOI 10.1038/nature20481; Bulla M, 2016, NATURE, V540, P109, DOI 10.1038/nature20563; Connors KB, 2002, HYDROBIOLOGIA, V483, P231, DOI 10.1023/A:1021304301403; Delmastro GB, 2015, EUR J WILDLIFE RES, V61, P743, DOI 10.1007/s10344-015-0951-3; Dingle H, 2007, BIOSCIENCE, V57, P113, DOI 10.1641/B570206; Feng NY, 2016, CURR BIOL, V26, P2681, DOI 10.1016/j.cub.2016.07.079; FINSTAD B, 1988, AQUACULTURE, V72, P319, DOI 10.1016/0044-8486(88)90220-7; Forsythe PS, 2012, CAN J FISH AQUAT SCI, V69, P60, DOI 10.1139/F2011-132; Fuiman LA, 2003, ECOLOGY, V84, P53, DOI 10.1890/0012-9658(2003)084[0053:BARSIF]2.0.CO;2; Gowans ARD, 2003, ECOL FRESHW FISH, V12, P177, DOI 10.1034/j.1600-0633.2003.00018.x; Handeland SO, 2014, J FISH BIOL, V85, P1163, DOI 10.1111/jfb.12481; Hayes JP, 1997, J MAMMAL, V78, P274, DOI 10.2307/1382882; Ibbotson AT, 2006, ECOL FRESHW FISH, V15, P544, DOI 10.1111/j.1600-0633.2006.00194.x; Jensen LF, 2015, ENDANGER SPECIES RES, V28, P175, DOI 10.3354/esr00692; Jepsen N, 1998, HYDROBIOLOGIA, V372, P347, DOI 10.1023/A:1017047527478; Jepsen N., 2014, 2832014 DTU AQ; Jepsen Niels, 2012, Endangered Species Research, V16, P77, DOI 10.3354/esr00386; Jepsen N, 2010, MAR FRESHWATER RES, V61, P320, DOI 10.1071/MF09038; Jonsson N., 1991, NORDIC J FRESHWATER, V66, P20, DOI DOI 10.4236/jwarp.2013.55049; KENNEDY G J A, 1988, Aquaculture and Fisheries Management, V19, P159, DOI 10.1111/j.1365-2109.1988.tb00419.x; Killen SS, 2016, CONSERV PHYSIOL, V4, DOI 10.1093/conphys/cow007; Koed A, 2006, RIVER RES APPL, V22, P69, DOI 10.1002/rra.894; Koed A, 2002, HYDROBIOLOGIA, V483, P31, DOI 10.1023/A:1021390403703; Kortan J, 2008, KNOWL MANAG AQUAT EC, DOI 10.1051/kmae:2008006; Lank DB, 2003, OIKOS, V103, P303, DOI 10.1034/j.1600-0706.2003.12314.x; Lehtonen TK, 2008, ANIM BEHAV, V75, P55, DOI 10.1016/j.anbehav.2007.04.011; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lucas M., 2002, MIGRATION FRESHWATER; Madsen SS, 1996, J COMP PHYSIOL B, V166, P101, DOI 10.1007/BF00301173; Martins CIM, 2005, AQUAC RES, V36, P1509, DOI 10.1111/j.1365-2109.2005.01372.x; McDowall RM, 2001, FISH FISH, V2, P78, DOI 10.1046/j.1467-2979.2001.00036.x; MELLAS EJ, 1985, CAN J FISH AQUAT SCI, V42, P488, DOI 10.1139/f85-066; Merrick MJ, 2017, BIOL CONSERV, V209, P34, DOI 10.1016/j.biocon.2017.01.021; MOORE A, 1990, J FISH BIOL, V37, P713, DOI 10.1111/j.1095-8649.1990.tb02535.x; MOORE A, 1995, CAN J FISH AQUAT SCI, V52, P1923, DOI 10.1139/f95-784; Moore D, 2016, J ARACHNOL, V44, P388, DOI 10.1636/JoA-S-16-014.1; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Olsson IC, 2001, N AM J FISH MANAGE, V21, P498, DOI 10.1577/1548-8675(2001)021<0498:EOAAPO>2.0.CO;2; Ostergren J, 2008, RIVER RES APPL, V24, P551, DOI 10.1002/rra.1141; Ovesen N.B., 2000, 340 DMU; Peake S, 1997, T AM FISH SOC, V126, P707, DOI 10.1577/1548-8659(1997)126<0707:IOTAPO>2.3.CO;2; Petelle MB, 2015, J EVOLUTION BIOL, V28, P1840, DOI 10.1111/jeb.12700; Pihl S., 2000, 322 NAT ENV RES I DE; Piper AT, 2017, ECOL FRESHW FISH, V26, P87, DOI 10.1111/eff.12257; Poulsen SB, 2010, J FISH BIOL, V77, P1702, DOI 10.1111/j.1095-8649.2010.02772.x; Poulsen SB, 2012, AQUAT LIVING RESOUR, V25, P241, DOI 10.1051/alr/2002019; R Development Core Team R, 2011, R LANG ENV STAT COMP, DOI [10.1007/978-3-540-74686-7, DOI 10.1007/978-3-540-74686-7]; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reebs SG, 2002, REV FISH BIOL FISHER, V12, P349, DOI 10.1023/A:1025371804611; RIDDELL BE, 1991, AQUACULTURE, V98, P161, DOI 10.1016/0044-8486(91)90381-G; Scruton DA, 2007, HYDROBIOLOGIA, V582, P155, DOI 10.1007/s10750-006-0557-6; Secor DH, 2015, MIGRATION ECOLOGY OF MARINE FISHES, P1; Sims DW, 2004, J ANIM ECOL, V73, P333, DOI 10.1111/j.0021-8790.2004.00810.x; Sinsch U, 2014, CAN J ZOOL, V92, P491, DOI 10.1139/cjz-2013-0028; Skov C, 2014, J LIMNOL, V73, P177, DOI 10.4081/jlimnol.2014.715; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Sonnesen P. M., 2007, THESIS; Sprenger D, 2012, ECOL LETT, V15, P986, DOI 10.1111/j.1461-0248.2012.01819.x; Steffens W, 2011, AM FISH S S, V75, P189; Steiger SS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1016; Steinmetz J, 2003, ECOLOGY, V84, P1324, DOI 10.1890/0012-9658(2003)084[1324:BAOTPI]2.0.CO;2; Stich DS, 2015, CAN J FISH AQUAT SCI, V72, P1339, DOI 10.1139/cjfas-2014-0570; Stuber EF, 2016, G3-GENES GENOM GENET, V6, P599, DOI 10.1534/g3.115.024216; Svendsen JC, 2004, J FISH BIOL, V64, P528, DOI 10.1111/j.0022-1112.2004.00319.x; Svendsen JC, 2007, FRESHWATER BIOL, V52, P1147, DOI 10.1111/j.1365-2427.2007.01743.x; Svendsen JC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094693; Svendsen JC, 2011, AQUAT LIVING RESOUR, V24, P201, DOI 10.1051/alr/2011121; Taylor MK, 2014, J FISH BIOL, V84, P1240, DOI 10.1111/jfb.12334; Thorpe J.E., 1994, P83; Thorpe J. E., 1996, PHYSL ECOLOGY FISH M, P39; Thorstad Eva B., 2011, P1; Tirsgaard B, 2015, FISH PHYSIOL BIOCHEM, V41, P41, DOI 10.1007/s10695-014-0004-y; van Oers K, 2005, BEHAVIOUR, V142, P1185, DOI 10.1163/156853905774539364; Vanin S, 2012, NATURE, V484, P371, DOI 10.1038/nature10991; Wang G, 2012, J BIOL RHYTHM, V27, P145, DOI 10.1177/0748730411435965; Winfield I.J., 2003, P335; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001; WOOD CC, 1987, CAN J FISH AQUAT SCI, V44, P941, DOI 10.1139/f87-112; Wright BE, 2007, ECOL APPL, V17, P338, DOI 10.1890/05-1941; Zavorka L, 2016, ECOLOGY, V97, P2223, DOI 10.1002/ecy.1475 105 0 0 12 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish JUL 2018 27 3 672 685 10.1111/eff.12383 14 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology GI6UO WOS:000434638800004 2019-02-21 J Bullinaria, J Bullinaria, John Agent-Based Models of Gender Inequalities in Career Progression JASSS-THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION English Article Agent-Based Models; Gender Inequalities; Career Preferences; Social Learning; Evolution LIFE-HISTORY EVOLUTION; SEX-DIFFERENCES; COMPUTER-SCIENCE; LEAKY PIPELINE; SELF-EFFICACY; WOMEN; DISCRIMINATION; STEREOTYPES; MATHEMATICS; PERFORMANCE An agent-based simulation framework is presented that provides a principled approach for investigating gender inequalities in professional hierarchies such as universities or businesses. Populations of artificial agents compete for promotion in their chosen professions, leading to emergent distributions that can be matched to real-life scenarios, and allowing the influence of socially or genetically acquired career preferences to be explored. The aim is that such models will enable better understanding of how imbalances emerge and evolve, facilitate the identification of specific signals that can indicate the presence or absence of discrimination, and provide a tool for determining how and when particular intervention strategies may be appropriate for rectifying any inequalities. Results generated from a representative series of abstract case studies involving innate or culturally-acquired gender-based ability differences, gender-based discrimination, and various forms of gender-specific career preferences, demonstrate the power of the approach. These simulations will hopefully inspire and facilitate better approaches for dealing with these issues in real life. [Bullinaria, John] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England Bullinaria, J (reprint author), Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England. j.a.bullinaria@cs.bham.ac.uk Allen-Hermanson S, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00953; Altonji J, 1999, HDB LABOR EC C, V3C, P3143, DOI DOI 10.1016/S1573-4463(99)30039-0; Baron-Cohen S, 2004, ESSENTIAL DIFFERENCE; Beasley MA, 2012, SOC PSYCHOL EDUC, V15, P427, DOI 10.1007/s11218-012-9185-3; BENBOW CP, 1988, BEHAV BRAIN SCI, V11, P169, DOI 10.1017/S0140525X00049244; BENNETT C, 2011, BRUSSELS EC REV, V54, P149; BETZ NE, 1981, J COUNS PSYCHOL, V28, P399, DOI 10.1037/0022-0167.28.5.399; Beyer S, 2014, COMPUT SCI EDUC, V24, P153, DOI 10.1080/08993408.2014.963363; Blickenstaff JC, 2005, GENDER EDUC, V17, P369, DOI 10.1080/09540250500145072; Browne K. R., 2002, BIOL WORK RETHINKING; Bullinaria JA, 2017, ARTIF LIFE, V23, P374, DOI 10.1162/ARTL_a_00237; Bullinaria JA, 2009, ARTIF LIFE, V15, P389, DOI [10.1162/artl.2009.15.3.Bullinaria.010, 10.1162/artl.2009.Bullinaria.010]; Cahill L, 2006, NAT REV NEUROSCI, V7, P477, DOI 10.1038/nrn1909; Camp T., 1997, NEWSLETTER ACM SIGCS, V34, P129; Ceci SJ, 2011, P NATL ACAD SCI USA, V108, P3157, DOI 10.1073/pnas.1014871108; CHASE ID, 1974, BEHAV SCI, V19, P374, DOI 10.1002/bs.3830190604; Cheryan S, 2017, PSYCHOL BULL, V143, P1, DOI 10.1037/bul0000052; Davison HK, 2000, J VOCAT BEHAV, V56, P225, DOI 10.1006/jvbe.1999.1711; Edmonds B., 1984, MULTIAGENT BASED SIM, P130; Else-Quest NM, 2010, PSYCHOL BULL, V136, P103, DOI 10.1037/a0018053; Engelbrecht A., 2007, COMPUTATIONAL INTELL; GALAN JM, 2009, J ARTIFICIAL SOC SOC, V12; Geary D. C, 1998, MALE FEMALE EVOLUTIO; Ginther DK, 2003, J HUM RESOUR, V38, P34, DOI 10.2307/1558755; Gurer D., 2001, 9812016 NSF; Halpern D.F., 2012, SEX DIFFERENCES COGN; Halpern Diane F, 2007, Psychol Sci Public Interest, V8, P1, DOI 10.1111/j.1529-1006.2007.00032.x; Handelsman J, 2005, SCIENCE, V309, P1190, DOI 10.1126/science.1113252; Heilman ME, 1995, J SOC BEHAV PERS, V10, P3; Helbing D, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1000758; Herring C, 2009, AM SOCIOL REV, V74, P208, DOI 10.1177/000312240907400203; Hobson EA, 2015, PLOS COMPUT BIOL, V11, DOI 10.1371/journal.pcbi.1004411; HUMPHREYS LG, 1988, BEHAV BRAIN SCI, V11, P195, DOI 10.1017/S0140525X00049402; Hyde JS, 2009, P NATL ACAD SCI USA, V106, P8801, DOI 10.1073/pnas.0901265106; Kenrick DT, 2000, DEVELOPMENTAL SOCIAL PSYCHOLOGY OF GENDER, P35; Kimura D, 2000, SEX COGNITION; Lane KA, 2012, SEX ROLES, V66, P220, DOI 10.1007/s11199-011-0036-z; LENT RW, 1994, J VOCAT BEHAV, V45, P79, DOI 10.1006/jvbe.1994.1027; Leombruni R., 2006, JASSS-J ARTIF SOC S, V9, P15, DOI DOI 10.1023/A:1010589300829; LOVENDUSKI J, 1989, EUR J POLIT RES, V17, P533, DOI 10.1111/j.1475-6765.1989.tb00206.x; Lyness KS, 2006, J APPL PSYCHOL, V91, P777, DOI 10.1037/0021-9010.91.4.777; Lyness KS, 1999, J VOCAT BEHAV, V54, P158, DOI 10.1006/jvbe.1998.1646; Martell RF, 1996, AM PSYCHOL, V51, P157, DOI 10.1037/0003-066X.51.2.157; Master A, 2016, J EDUC PSYCHOL, V108, P424, DOI 10.1037/edu0000061; Mech LD, 1999, CAN J ZOOL, V77, P1196, DOI 10.1139/cjz-77-8-1196; Miller DI, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.00037; Mixon FG, 2005, APPL ECON, V37, P849, DOI 10.1080/00036840500048902; Moss-Racusin CA, 2012, P NATL ACAD SCI USA, V109, P16474, DOI 10.1073/pnas.1211286109; Perez-Felkneri L, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00386; Riegle-Crumb C, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00329; ROBISONCOX JF, 2007, J ARTIFICIAL SOC SOC, V10; ROSENBAUM JE, 1979, ADMIN SCI QUART, V24, P220, DOI 10.2307/2392495; Sabatier M, 2010, APPL ECON, V42, P2053, DOI 10.1080/00036840701765338; Sapienza P, 2009, P NATL ACAD SCI USA, V106, P15268, DOI 10.1073/pnas.0907352106; Scherer RF, 1990, J SMALL BUS MANAGE, VXXVIII, P37; Schneider A., 1998, CHRON HIGHER EDUC, V45, P14; Schreuders PD, 2009, EUR J ENG EDUC, V34, P97, DOI 10.1080/03043790902721488; Schubert R, 2006, MANAG FINANC, V32, P706, DOI 10.1108/03074350610681925; Sczesny S, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.00025; Shen J, 2009, INT J HUM RESOUR MAN, V20, P235, DOI 10.1080/09585190802670516; Spelke ES, 2005, AM PSYCHOL, V60, P950, DOI 10.1037/0003-066X.60.9.950; Su R, 2009, PSYCHOL BULL, V135, P859, DOI 10.1037/a0017364; TAKACS K, 2015, J ARTIFICIAL SOC SOC, V18; Vander Heyden KM, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.01114; Wai J, 2010, INTELLIGENCE, V38, P412, DOI 10.1016/j.intell.2010.04.006; Walker E., 1996, P NAT ED COMP C ERIC; Wang MT, 2013, DEV REV, V33, P304, DOI 10.1016/j.dr.2013.08.001; Wang MT, 2013, PSYCHOL SCI, V24, P770, DOI 10.1177/0956797612458937; Williams WM, 2015, P NATL ACAD SCI USA, V112, P5360, DOI 10.1073/pnas.1418878112; Wood W, 2002, PSYCHOL BULL, V128, P699, DOI 10.1037//0033-2909.128.5.699 70 0 0 9 9 J A S S S GUILDFORD UNIV SURREY, DEPT SOCIOLOGY, GUILDFORD GU2 7XH, SURREY, ENGLAND 1460-7425 JASSS-J ARTIF SOC S JASSS JUN 30 2018 21 3 7 10.18564/jasss.3738 28 Social Sciences, Interdisciplinary Social Sciences - Other Topics GO3AC WOS:000439852500007 DOAJ Gold 2019-02-21 J Mammadov, J; Buyyarapu, R; Guttikonda, SK; Parliament, K; Abdurakhmonov, IY; Kumpatla, SP Mammadov, Jafar; Buyyarapu, Ramesh; Guttikonda, Satish K.; Parliament, Kelly; Abdurakhmonov, Ibrokhim Y.; Kumpatla, Siva P. Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and Abiotic Stresses FRONTIERS IN PLANT SCIENCE English Review crop wild relatives (CWRs); maize; rice; cotton; soybean; tolerance to biotic stress; tolerance to abiotic stres TEOSINTE ZEA-NICARAGUENSIS; CYST-NEMATODE RESISTANCE; ORYZA-SATIVA L.; MAYS SSP MAYS; FALL ARMYWORM LEPIDOPTERA; ROOT AERENCHYMA FORMATION; GENOME-WIDE ASSOCIATION; LIFE-HISTORY EVOLUTION; HOST-PLANT RESISTANCE; UPLAND COTTON Global food demand is expected to nearly double by 2050 due to an increase in the world's population. The Green Revolution has played a key role in the past century by increasing agricultural productivity worldwide, however, limited availability and continued depletion of natural resources such as arable land and water will continue to pose a serious challenge for global food security in the coming decades. High yielding varieties with proven tolerance to biotic and abiotic stresses, superior nutritional profiles, and the ability to adapt to the changing environment are needed for continued agricultural sustainability. The narrow genetic base of modern cultivars is becoming a major bottleneck for crop improvement efforts and, therefore, the use of crop wild relatives (CWRs) is a promising approach to enhance genetic diversity of cultivated crops. This article provides a review of the efforts to date on the exploration of CWRs as a source of tolerance to multiple biotic and abiotic stresses in four global crops of importance; maize, rice, cotton, and soybean. In addition to the overview of the repertoire and geographical spread of CWRs in each of the respective crops, we have provided a comprehensive discussion on the morphological and/or genetic basis of the traits along with some examples, when available, of the research in the transfer of traits from CWRs to cultivated varieties. The emergence of modern molecular and genomic technologies has not only accelerated the pace of dissecting the genetics underlying the traits found in CWRs, but also enabled rapid and efficient trait transfer and genome manipulation. The potential and promise of these technologies has also been highlighted in this review. [Mammadov, Jafar; Buyyarapu, Ramesh; Guttikonda, Satish K.; Parliament, Kelly; Kumpatla, Siva P.] Corteva Agrisci, Agr Div DowDuPont, Johnston, IA 50131 USA; [Abdurakhmonov, Ibrokhim Y.] Acad Sci Uzbek, Ctr Genom & Bioinformat, Tashkent, Uzbekistan Mammadov, J (reprint author), Corteva Agrisci, Agr Div DowDuPont, Johnston, IA 50131 USA. jamammadov@dow.com Abdurakhmonov I. Y., 2014, WORLD COTTON GERMPLA; Abdurakhmonov IY, 2016, COTTON RESEARCH, P3, DOI 10.5772/65456; Abiko T, 2012, PLANT CELL ENVIRON, V35, P1618, DOI 10.1111/j.1365-3040.2012.02513.x; Aggarwal A, 2015, STRESS RESPONSES PLA, P35; Ali I, 2009, PAK J BOT, V41, P1627; Ali ML, 2010, RICE, V3, P218, DOI 10.1007/s12284-010-9058-3; Amusan IO, 2008, NEW PHYTOL, V178, P157, DOI 10.1111/j.1469-8137.2007.02355.x; Andaya VC, 2007, MOL BREEDING, V20, P349, DOI 10.1007/s11032-007-9096-8; Ashkani S, 2015, FRONT PLANT SCI, V6, DOI [10.3389/fols.2015.00886, 10.3389/fpls.2015.00886]; Awad AA, 2006, PLANT GROWTH REGUL, V48, P221, DOI 10.1007/s10725-006-0009-3; Bell AA, 2015, J PLANT REGIST, V9, P89, DOI 10.3198/jpr2014.04.0021crg; Bell AA, 2014, J PLANT REGIST, V8, P187, DOI 10.3198/jpr2013.11.0069crg; Bellota E, 2013, ENTOMOL EXP APPL, V149, P185, DOI 10.1111/eea.12122; BERGQUIST RR, 1981, PHYTOPATHOLOGY, V71, P518, DOI 10.1094/Phyto-71-518; Bernal JS, 2015, ENTOMOL EXP APPL, V155, P206, DOI 10.1111/eea.12299; Bi IV, 1998, PLANT BREEDING, V117, P235, DOI 10.1111/j.1439-0523.1998.tb01932.x; BLANK LM, 1963, PHYTOPATHOLOGY, V53, P921; Blasingame D., 2005, P BELTW COTT C NAT C, P155; Boerma H. R., 2004, SOYBEANS IMPROVEMENT; Brar DS, 1997, PLANT MOL BIOL, V35, P35, DOI 10.1023/A:1005825519998; Brown AHD, 1989, USE PLANT GENETIC RE; Campbell BT, 2010, CROP SCI, V50, P1161, DOI 10.2135/cropsci2009.09.0551; Cao YP, 2011, MOL BIOL REP, V38, P4839, DOI 10.1007/s11033-010-0618-9; Carroll MJ, 2006, J CHEM ECOL, V32, P1911, DOI 10.1007/s10886-006-9117-9; Chang S., 2015, THESIS; Chavan S, 2014, JOVE-J VIS EXP, DOI 10.3791/50712; Chen YY, 2006, CROP SCI, V46, P2041, DOI 10.2135/cropsci2005.12.0466; Clark R, 1998, DEV PLANT SOIL SCI, V82, P191; Comis D., 1997, AGR RES, V45, P4; Concibido VC, 2004, CROP SCI, V44, P1121, DOI 10.2135/cropsci2004.1121; COYNE PI, 1985, CROP SCI, V25, P65, DOI 10.2135/cropsci1985.0011183X002500010018x; da Cruz RP, 2013, FOOD ENERGY SECUR, V2, P96, DOI 10.1002/fes3.25; Davila-Flores AM, 2013, OECOLOGIA, V173, P1425, DOI 10.1007/s00442-013-2728-2; de Lange ES, 2014, NEW PHYTOL, V204, P329, DOI 10.1111/nph.13005; Dempewolf H, 2017, CROP SCI, V57, P1070, DOI 10.2135/cropsci2016.10.0885; DEWET JMJ, 1981, AM J BOT, V68, P269; Doebley J. F., 1983, INT MAIZ VIR DIS C W; Ellur RK, 2016, SCI REP-UK, V6, DOI 10.1038/srep29188; Eubanks MW, 2006, MAYDICA, V51, P315; Fan XQ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0126148; Farias-Rivera LA, 2003, FLA ENTOMOL, V86, P239, DOI 10.1653/0015-4040(2003)086[0239:EOLEOT]2.0.CO;2; FRYXELL PA, 1992, RHEEDEA, V2, P108; Fujita D, 2013, CRIT REV PLANT SCI, V32, P162, DOI 10.1080/07352689.2012.735986; Fukunaga K, 2005, GENETICS, V169, P2241, DOI 10.1534/genetics.104.031393; Galinat W., 1961, MAIZE GEN COOP NEWS, V35, P38; Ganal MW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028334; Garg Rohini, 2014, DNA Res, V21, P69, DOI 10.1093/dnares/dst042; Gethi JG, 2004, CROP SCI, V44, P2068, DOI 10.2135/cropsci2004.2068; Gilker RE, 2002, SOIL SCI SOC AM J, V66, P931, DOI 10.2136/sssaj2002.0931; Gitz DC, 2013, AGRON J, V105, P907, DOI 10.2134/agronj2012.0358; Gurney AL, 2003, NEW PHYTOL, V160, P557, DOI 10.1046/j.1469-8137.2003.00904.x; Hajjar R, 2007, EUPHYTICA, V156, P1, DOI 10.1007/s10681-007-9363-0; HARDIN B, 1993, AGR RES, V41, P19; Hartman G, 2015, COMPENDIUM SOYBEAN D; HARTMAN GL, 1992, PLANT DIS, V76, P396, DOI 10.1094/PD-76-0396; Hartman GL, 2000, CROP SCI, V40, P545, DOI 10.2135/cropsci2000.402545x; Hartman GL, 2011, FOOD SECUR, V3, P5, DOI 10.1007/s12571-010-0108-x; HASSAN STS, 1990, ENVIRON ENTOMOL, V19, P710, DOI 10.1093/ee/19.3.710; Haun WJ, 2011, PLANT PHYSIOL, V155, P645, DOI 10.1104/pp.110.166736; Hirsch CN, 2014, PLANT CELL, V26, P121, DOI 10.1105/tpc.113.119982; Hoballah ME, 2004, AGR FOREST ENTOMOL, V6, P83, DOI 10.1111/j.1461-9555.2004.00207.x; HOOKER AL, 1981, MAIZE GENET COOP NEW, V55, P87; Howe GA, 2008, ANNU REV PLANT BIOL, V59, P41, DOI 10.1146/annurev.arplant.59.032607.092825; Hu J, 2016, RICE, V9, DOI 10.1186/s12284-016-0099-0; Huang SW, 2016, NAT GENET, V48, P109, DOI 10.1038/ng.3484; Hufford MB, 2012, NAT GENET, V44, P808, DOI 10.1038/ng.2309; Hulse-Kemp AM, 2015, G3-GENES GENOM GENET, V5, P1187, DOI 10.1534/g3.115.018416; Iltis HH, 2000, NOVON, V10, P382, DOI 10.2307/3392992; Innes RW, 2008, PLANT PHYSIOL, V148, P1740, DOI 10.1104/pp.108.127902; James RA, 2008, FUNCT PLANT BIOL, V35, P111, DOI 10.1071/FP07234; Jena KK, 2010, BREEDING SCI, V60, P518, DOI 10.1270/jsbbs.60.518; Kaplan I, 2009, ECOL APPL, V19, P864, DOI 10.1890/07-1566.1; Kawahara Y, 2013, RICE, V6, DOI 10.1186/1939-8433-6-4; Khush G. S., 2004, SABRAO Journal of Breeding and Genetics, V36, P101; Khush GS, 1977, INT SEM SOC ADV BREE, V1, P3; Kim M, 2011, CROP SCI, V51, P934, DOI 10.2135/cropsci2010.08.0459; Kling J., 2000, BREEDING STRIGA RESI, P376; Kollner TG, 2004, PHYTOCHEMISTRY, V65, P1895, DOI 10.1016/j.phytochem.2004.05.021; Konan ON, 2007, PLANT BREEDING, V126, P176, DOI 10.1111/j.1439-0523.2007.01325.x; Koseki M, 2010, MOL GENET GENOMICS, V284, P45, DOI 10.1007/s00438-010-0548-1; Lai JS, 2010, NAT GENET, V42, P1027, DOI 10.1038/ng.684; Lane JA, 1997, MAYDICA, V42, P45; Langenbach C, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.00797; Lee JD, 2009, J HERED, V100, P798, DOI 10.1093/jhered/esp027; Lennon JR, 2016, CROP SCI, V56, P209, DOI 10.2135/cropsci2014.07.0468; Li FG, 2015, NAT BIOTECHNOL, V33, P524, DOI 10.1038/nbt.3208; Li FG, 2014, NAT GENET, V46, P567, DOI 10.1038/ng.2987; Li T, 2012, NAT BIOTECHNOL, V30, P390, DOI 10.1038/nbt.2199; Li YH, 2014, NAT BIOTECHNOL, V32, P1045, DOI 10.1038/nbt.2979; Liu F., 2015, GENET MOL RES, V15, P1, DOI [10.1101/031104, DOI 10.1101/031104]; Liu Q, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0123209; Lou QJ, 2007, EUPHYTICA, V158, P87, DOI 10.1007/s10681-007-9431-5; Lu W, 2008, J CHROMATOGR B, V871, P236, DOI 10.1016/j.jchromb.2008.04.031; Luo QY, 2005, J PLANT PHYSIOL, V162, P1003, DOI 10.1016/j.jplph.2004.11.008; Maag D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135722; Maazou A. R. S., 2017, African Journal of Plant Science, V11, P105; Mano Y, 2007, PLANT SOIL, V295, P103, DOI 10.1007/s11104-007-9266-9; Mano Y, 2013, ANN BOT-LONDON, V112, P1125, DOI 10.1093/aob/mct160; Mano Y, 2008, BREEDING SCI, V58, P217, DOI 10.1270/jsbbs.58.217; Mano Y, 2009, PLANT ROOT, V3, P3, DOI 10.3117/plantroot.3.3; Matsumoto T, 2005, NATURE, V436, P793, DOI 10.1038/nature03895; Matsuoka Y, 2002, P NATL ACAD SCI USA, V99, P6080, DOI 10.1073/pnas.052125199; McCouch SR, 2007, EUPHYTICA, V154, P317, DOI 10.1007/s10681-006-9210-8; McFadden H, 2004, EUPHYTICA, V138, P61, DOI 10.1023/B:EUPH.0000047076.38747.81; McLoud LA, 2016, J ECON ENTOMOL, V109, P392, DOI 10.1093/jee/tov275; McMullen Michael D., 2009, P271, DOI 10.1007/978-0-387-79418-1_14; Menguer PK, 2017, GENET MOL BIOL, V40, P238, DOI [10.1590/1678-4685-GMB-2016-0093, 10.1590/1678-4685-gmb-2016-0093]; MEYER JAMES R., 1961, CROP SCI, V1, P167; MIGNUCCI JS, 1978, PHYTOPATHOLOGY, V68, P169, DOI 10.1094/Phyto-68-169; Moya-Raygoza G, 2016, ANN ENTOMOL SOC AM, V109, P737, DOI 10.1093/aesa/saw049; Mujeeb- Kazi A., 1985, BIOTECHNOLOGY INT AG, P219; Mutyambai DM, 2015, J CHEM ECOL, V41, P323, DOI 10.1007/s10886-015-0570-1; Nault L., 1982, DESERT PLANTS, V3, P203; Nazeer W, 2014, GENET MOL RES, V13, P1133, DOI 10.4238/2014.February.21.2; Ndjiondjop MN, 2010, PLANT SCI, V179, P364, DOI 10.1016/j.plantsci.2010.06.006; Nguyen BD, 2003, THEOR APPL GENET, V106, P583, DOI [10.1007/s00122-003-1314-0, 10.1007/s00122-002-1072-4]; Niazi IAK, 2014, CROP PROT, V57, P27, DOI 10.1016/j.cropro.2013.10.026; Niemeyer HM, 2009, J AGR FOOD CHEM, V57, P1677, DOI 10.1021/jf8034034; Normile D, 2008, SCIENCE, V321, P330, DOI 10.1126/science.321.5887.330; Oluoch G, 2016, EUPHYTICA, V209, P223, DOI 10.1007/s10681-016-1674-6; Omori F, 2007, PLANT ROOT, V1, P57, DOI 10.3117/plantroot.1.57; Paterson AH, 2012, NATURE, V492, P423, DOI 10.1038/nature11798; Peng T, 2014, MOL BREEDING, V33, P89, DOI 10.1007/s11032-013-9936-7; Pesqueira J., 2003, Spanish Journal of Agricultural Research, V1, P59; Pesqueira J, 2006, ELECTRON J BIOTECHN, V9, P286, DOI 10.2225/vol9-issue3-fulltext-29; Prescott- Allen R., 2013, GENES WILD USING WIL; Prischmann DA, 2009, J APPL ENTOMOL, V133, P10, DOI 10.1111/j.1439-0418.2008.01311.x; Qiu LJ, 2013, PLANT MOL BIOL, V83, P41, DOI 10.1007/s11103-013-0076-6; Ram T, 2010, RICE GENETICS NEWSLE, V25, P67; Rasmann S, 2005, NATURE, V434, P732, DOI 10.1038/nature03451; Ray JD, 1999, MAYDICA, V44, P113; Ray JD, 1998, MAYDICA, V43, P49; Rich PJ, 2008, PLANT SIGNAL BEHAV, V3, P618, DOI 10.4161/psb.3.9.5750; Robinson A., 2004, NAT COTT COUNC BELTW; Robinson A. F., 2004, Journal of Cotton Science, V8, P191; Robinson AF, 1997, J NEMATOL, V29, P746; Rosenthal JP, 1997, EVOL ECOL, V11, P337, DOI 10.1023/A:1018420504439; Sanchez P. L., 2013, GENETICS GENOMICS RI, P9, DOI DOI 10.1007/978-1-4614-7903-1_; Sarao PS, 2016, RICE SCI, V23, P219, DOI 10.1016/j.rsci.2016.06.005; SAUNDERS JH, 1965, EUPHYTICA, V14, P276, DOI 10.1007/BF00149511; Schnable PS, 2009, SCIENCE, V326, P1112, DOI 10.1126/science.1178534; Shakiba E, 2014, RICE - GERMPLASM, GENETICS AND IMPROVEMENT, P1, DOI 10.5772/58393; Sharma TR, 2012, AGR RES, V1, P37, DOI 10.1007/s40003-011-0003-5; Shavrukov Y., 2015, INT J LATEST RES SCI, V4, P128; Sherman-Broyles S, 2014, AM J BOT, V101, P1651, DOI 10.3732/ajb.1400121; Shinde B A, 2014, BIOINFOLET, V11, P758, DOI DOI 10.20546/IJCMAS.2017.604.312; Shrivastava P, 2015, SAUDI J BIOL SCI, V22, P123, DOI 10.1016/j.sjbs.2014.12.001; Sinclair J. B., 1993, COMPENDIUM SOYBEAN D; Singh N, 2015, SCI REP-UK, V5, DOI 10.1038/srep11600; Song QJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054985; SONG WY, 1995, SCIENCE, V270, P1804, DOI 10.1126/science.270.5243.1804; Sripathi VR, 2016, BIOINFORMATICS - UPDATED FEATURES AND APPLICATIONS, P231, DOI 10.5772/64325; Standley P. C., 2015, REV CEIBA, V1, P58; Strauss SY, 2002, TRENDS ECOL EVOL, V17, P278, DOI 10.1016/S0169-5347(02)02483-7; Szczepaniec A, 2013, ENTOMOL EXP APPL, V146, P242, DOI 10.1111/eea.12014; Takahashi CG, 2012, ENTOMOL EXP APPL, V145, P191, DOI 10.1111/eea.12004; Tamiru A, 2015, CURR OPIN INSECT SCI, V9, P51, DOI 10.1016/j.cois.2015.02.011; Tanaka K, 2000, APPL ENTOMOL ZOOL, V35, P177, DOI 10.1303/aez.2000.177; Tang LL, 2014, PLANT CELL TISS ORG, V118, P77, DOI 10.1007/s11240-014-0463-y; Throne JE, 2015, J STORED PROD RES, V64, P62, DOI 10.1016/j.jspr.2015.08.006; van de Wiel CCM, 2017, PLANT BIOTECHNOL REP, V11, P1, DOI 10.1007/s11816-017-0425-z; Vasudevan K, 2015, SCI REP-UK, V5, DOI 10.1038/srep15678; Vishwakarma MK, 2014, CURR PLANT BIOL, V1, P60, DOI 10.1016/j.cpb.2014.09.003; VONUEXKULL HR, 1995, PLANT SOIL, V171, P1, DOI 10.1007/BF00009558; Vuong TD, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1811-y; Wang B, 2004, MYCOL RES, V108, P35, DOI 10.1017/S0953756203008803; Wang KB, 2012, NAT GENET, V44, P1098, DOI 10.1038/ng.2371; Wang XY, 2014, RICE - GERMPLASM, GENETICS AND IMPROVEMENT, P195, DOI 10.5772/56824; Wei WH, 2001, BOT BULL ACAD SINICA, V42, P109; Wei YY, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0178313; Wen L, 2017, PLANT DIS, V101, P1201, DOI 10.1094/PDIS-10-16-1472-RE; Wendel JF, 2003, ADV AGRON, V78, P139, DOI 10.1016/S0065-2113(02)78004-8; WENDEL JF, 1989, P NATL ACAD SCI USA, V86, P4132, DOI 10.1073/pnas.86.11.4132; WILKES HG, 1977, ECON BOT, V31, P254; Wilson Richard F., 2008, V2, P3; Winter SMJ, 2007, THEOR APPL GENET, V114, P461, DOI 10.1007/s00122-006-0446-4; Wise MJ, 2007, NEW PHYTOL, V175, P773, DOI 10.1111/j.1469-8137.2007.02143.x; Wright RJ, 1999, J HERED, V90, P215, DOI 10.1093/jhered/90.1.215; Yallou CG, 2009, PLANT BREEDING, V128, P143, DOI 10.1111/j.1439-0523.2008.01583.x; Yang L, 2016, PLANT CELL REP, V35, P1559, DOI 10.1007/s00299-016-1962-6; YIK CP, 1984, J NEMATOL, V16, P146; Yu N, 2017, EUPHYTICA, V213, DOI 10.1007/s10681-016-1791-2; Yuan DJ, 2015, SCI REP-UK, V5, DOI 10.1038/srep17662; Yumurtaci A, 2015, EMIR J FOOD AGR, V27, P1, DOI 10.9755/ejfa.v27il.17852; Zeng YW, 2009, GENES GENOM, V31, P143, DOI 10.1007/BF03191147; Zhang FT, 2014, RICE - GERMPLASM, GENETICS AND IMPROVEMENT, P59, DOI 10.5772/56825; Zhang F, 2016, SCI REP-UK, V6, DOI 10.1038/srep20582; Zhang HY, 2016, FRONT PLANT SCI, V7, DOI 10.3389/fpls.2016.01214; Zhang J. F., 2013, Journal of Cotton Science, V17, P163; Zhang Q., 2001, RICE GENET NEWSL, V18, P71; Zhang TZ, 2015, NAT BIOTECHNOL, V33, P531, DOI 10.1038/nbt.3207; Zhao FA, 2012, PLANT SCI, V185, P176, DOI 10.1016/j.plantsci.2011.10.007; Zheng JH, 2016, J CHIN ECON BUS STUD, V14, P1, DOI 10.1080/14765284.2015.1133988; Zhou HB, 2014, NUCLEIC ACIDS RES, V42, P10903, DOI 10.1093/nar/gku806; Zhou ZK, 2015, NAT BIOTECHNOL, V33, P408, DOI 10.1038/nbt.3096; Zhu D, 2012, BIOCHEM BIOPH RES CO, V426, P273, DOI 10.1016/j.bbrc.2012.08.086; Zhu SJ, 2005, PLANT BREEDING, V124, P590, DOI 10.1111/j.1439-0523.2005.01151.x 197 2 2 17 18 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-462X FRONT PLANT SCI Front. Plant Sci. JUN 28 2018 9 886 10.3389/fpls.2018.00886 21 Plant Sciences Plant Sciences GK9KU WOS:000436568600001 30002665 DOAJ Gold 2019-02-21 J Merot, C; Berdan, EL; Babin, C; Normandeau, E; Wellenreuther, M; Bernatchez, L Merot, Claire; Berdan, Emma L.; Babin, Charles; Normandeau, Eric; Wellenreuther, Maren; Bernatchez, Louis Intercontinental karyotype - environment parallelism supports a role for a chromosomal inversion in local adaptation in a seaweed fly PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article chromosomal inversions; environmental gradient; local adaptation; balancing selection; parrallelism; Diptera ALCOHOL-DEHYDROGENASE LOCUS; NATURAL-POPULATIONS; SEXUAL SELECTION; GENETIC-MARKERS; ADULT SIZE; TRADE-OFFS; POLYMORPHISM; EVOLUTION; MAINTAIN; RECOMBINATION Large chromosomal rearrangements are thought to facilitate adaptation to heterogeneous environments by limiting genomic recombination. Indeed, inversions have been implicated in adaptation along environmental clines and in ecotype specialization. Here, we combine classical ecological studies and population genetics to investigate an inversion polymorphism previously documented in Europe among natural populations of the seaweed fly Coelopa frigida along a latitudinal cline in North America. We test if the inversion is present in North America and polymorphic, assess which environmental conditions modulate the inversion karyotype frequencies, and document the relationship between inversion karyotype and adult size. We sampled nearly 2000 flies from 20 populations along several environmental gradients to quantify associations of inversion frequencies to heterogeneous environmental variables. Genotyping and phenotyping showed a widespread and conserved inversion polymorphism between Europe and America. Variation in inversion frequency was significantly associated with environmental factors, with parallel patterns between continents, indicating that the inversion may play a role in local adaptation. The three karyotypes of the inversion are differently favoured across micro-habitats and represent life-history strategies likely to be maintained by the collective action of several mechanisms of balancing selection. Our study adds to the mounting evidence that inversions are facilitators of adaptation and enhance within-species diversity. [Merot, Claire; Babin, Charles; Normandeau, Eric; Bernatchez, Louis] Univ Laval, Dept Biol, Quebec City, PQ, Canada; [Berdan, Emma L.] Univ Gothenburg, Dept Marine Sci, Gothenburg, Sweden; [Wellenreuther, Maren] Univ Auckland, Sch Biol Sci, Auckland, New Zealand; [Wellenreuther, Maren] Seafood Res Unit, Port Nelson, Nelson, New Zealand Merot, C; Bernatchez, L (reprint author), Univ Laval, Dept Biol, Quebec City, PQ, Canada. claire.merot@gmail.com; louis.bernatchez@bio.ulaval.ca Natural Sciences and Engineering Research Council of Canada (NSERC); Canadian Research Chair; Swedish Research Council [2012-3996]; FRQNT; FRQS; Marie-Curie Fellowship (H2020-MSCA-IF-2015) [704920] This research was supported by a discovery research grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to L.B., by the Canadian Research Chair in genomics and conservation of aquatic resources held by L.B. and by the Swedish Research Council grant 2012-3996 to M.W. C.M. was supported by a post-doctoral fellowship from the FRQNT and FRQS. E.L.B. was supported by a Marie-Curie Fellowship (H2020-MSCA-IF-2015, 704920). Ayala D, 2017, EVOLUTION, V71, P686, DOI 10.1111/evo.13176; Ayala D, 2013, EVOLUTION, V67, P946, DOI 10.1111/j.1558-5646.2012.01836.x; Aziz JB, 1975, THESIS; Bates D, 2014, LME4 LINEAR MIXED EF; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Borcard D, 2002, ECOL MODEL, V153, P51, DOI 10.1016/S0304-3800(01)00501-4; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Burnham KP, 2003, MODEL SELECTION MULT; BUTLIN RK, 1985, HEREDITY, V54, P267, DOI 10.1038/hdy.1985.36; BUTLIN RK, 1985, HEREDITY, V54, P107, DOI 10.1038/hdy.1985.14; BUTLIN RK, 1989, HEREDITY, V62, P223, DOI 10.1038/hdy.1989.32; BUTLIN RK, 1984, HEREDITY, V52, P415, DOI 10.1038/hdy.1984.49; BUTLIN RK, 1982, HEREDITY, V48, P45, DOI 10.1038/hdy.1982.5; BUTLIN RK, 1982, HEREDITY, V49, P51, DOI 10.1038/hdy.1982.64; CHARLESWORTH B, 1976, GENETICS, V83, P181; Charlesworth B, 2018, GENETICS, V208, P377, DOI 10.1534/genetics.117.300426; Chouteau M, 2016, P NATL ACAD SCI USA, V113, P2164, DOI 10.1073/pnas.1519216113; Chown SL, 2010, BIOL REV, V85, P139, DOI 10.1111/j.1469-185X.2009.00097.x; DAY TH, 1983, HEREDITAS, V99, P135, DOI 10.1111/j.1601-5223.1983.tb00738.x; DAY TH, 1980, HEREDITY, V44, P321, DOI 10.1038/hdy.1980.29; DAY TH, 1987, HEREDITY, V58, P213, DOI 10.1038/hdy.1987.35; Dewey M, 2017, METAP METAANALYSIS S; DOBSON T, 1974, J NAT HIST, V8, P653, DOI 10.1080/00222937400770561; DOBZHANSKY T, 1947, GENETICS, V32, P142; Dobzhansky T., 1970, GENETICS EVOLUTIONAR; Edward DA, 2013, EVOLUTION, V67, P295, DOI 10.1111/j.1558-5646.2012.01754.x; Egglishaw H. J., 1961, Entomologist London, V94, P11; Endler J. A., 1977, GEOGRAPHIC VARIATION; Fick SE, 2017, INT J CLIMATOL, V37, P4302, DOI 10.1002/joc.5086; Fisher RA, 1923, P R SOC EDINB, V42, P321, DOI [10.1017/S0370164600023993, DOI 10.1017/S0370164600023993]; GILBURN AS, 1994, P ROY SOC B-BIOL SCI, V257, P303, DOI 10.1098/rspb.1994.0130; Graffelman J, 2015, J STAT SOFTW, V64, P1; Hedrick PW, 2006, ANNU REV ECOL EVOL S, V37, P67, DOI 10.1146/annurev.ecolsys.37.091305.110132; Hereford J, 2009, AM NAT, V173, P579, DOI 10.1086/597611; Hijmans R. J., 2014, RASTER GEOGRAPHIC DA; Hoffmann AA, 2004, TRENDS ECOL EVOL, V19, P482, DOI 10.1016/j.tree.2004.06.013; Hoffmann AA, 2008, ANNU REV ECOL EVOL S, V39, P21, DOI 10.1146/annurev.ecolsys.39.110707.173532; Iriarte PF, 2000, EVOLUTION, V54, P1295, DOI 10.1111/j.0014-3820.2000.tb00562.x; JAMES AC, 1995, GENETICS, V140, P659; Johnston SE, 2013, NATURE, V502, P93, DOI 10.1038/nature12489; Joron M, 2011, NATURE, V477, P203, DOI 10.1038/nature10341; Kapun M, 2016, MOL BIOL EVOL, V33, P1317, DOI 10.1093/molbev/msw016; Kirkpatrick M, 2006, GENETICS, V173, P419, DOI 10.1534/genetics.105.047985; Kirkpatrick M, 2017, J HERED, V108, P3, DOI 10.1093/jhered/esw041; Kirkpatrick M, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000501; Kirubakaran TG, 2016, MOL ECOL, V25, P2130, DOI 10.1111/mec.13592; Krimbas CB, 1992, DROSOPHILA INVERSION; Kupper C, 2016, NAT GENET, V48, P79, DOI 10.1038/ng.3443; Kuznetsova A, 2015, PACKAGE IMERTEST R P; Lenormand T, 2000, GENETICS, V156, P423; Lenth RV, 2016, J STAT SOFTW, V69, P1, DOI 10.18637/jss.v069.i01; Letourneau J, 2018, EVOL APPL, V11, P577, DOI 10.1111/eva.12566; Lindtke D, 2017, MOL ECOL, V26, P6189, DOI 10.1111/mec.14280; Lowry DB, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000500; MacDonald C, 2002, MOL ECOL, V11, P1637, DOI 10.1046/j.1365-294X.2002.01559.x; Maier MJ, 2014, DIRICHLETREG DIRICHL; Mazerolle MJ, 2017, PACKAGE AICCMODAVG R; Merot C, 2018, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.pn2mq57, DOI 10.5061/DRYAD.PN2MQ57]; NEI M, 1967, GENETICS, V57, P625; Nei M, 2003, HEREDITY, V90, P411, DOI 10.1038/sj.hdy.6800287; Oksanen J, 2013, PACKAGE VEGAN R PACK; R Core Team, 2017, R LANG ENV STAT COMP; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; Rozas J, 2017, MOL BIOL EVOL, V34, P3299, DOI 10.1093/molbev/msx248; Savolainen O, 2013, NAT REV GENET, V14, P807, DOI 10.1038/nrg3522; Sbrocco E.J., 2013, ECOLOGY, V94, P979, DOI DOI 10.1890/12-1358.1; Shin J-H, 2016, PACKAGE LDHEATMAP R; Stein A, 2014, ECOL LETT, V17, P866, DOI 10.1111/ele.12277; Sturtevant AH, 1921, P NATL ACAD SCI USA, V7, P235, DOI 10.1073/pnas.7.8.235; Tuttle EM, 2016, CURR BIOL, V26, P344, DOI 10.1016/j.cub.2015.11.069; Wallberg A, 2017, PLOS GENET, V13, DOI 10.1371/journal.pgen.1006792; Wang J, 2013, NATURE, V493, P664, DOI 10.1038/nature11832; Wei T, 2017, STATISTICIAN, V56, P316; Wellenreuther M, 2017, J EVOLUTION BIOL, V30, P1068, DOI 10.1111/jeb.13064; Wellenreuther M, 2014, MOL ECOL, V23, P5398, DOI 10.1111/mec.12935; Zeileis A, 2016, PACKAGE BETAREG R PA 76 1 1 6 7 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUN 27 2018 285 1881 20180519 10.1098/rspb.2018.0519 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GK9KA WOS:000436565200008 29925615 Other Gold 2019-02-21 J Manabe, A; Yamakawa, T; Ohnishi, S; Akamine, T; Narimatsu, Y; Tanaka, H; Funamoto, T; Ueda, Y; Yamamote, T Manabe, Akihiro; Yamakawa, Takashi; Ohnishi, Shuhei; Akamine, Tatsuro; Narimatsu, Yoji; Tanaka, Hiroshige; Funamoto, Tetsuichiro; Ueda, Yuji; Yamamote, Takeo A novel growth function incorporating the effects of reproductive energy allocation PLOS ONE English Article OPTIMAL RESOURCE-ALLOCATION; LIFE-HISTORY INVARIANTS; INDETERMINATE GROWTH; MODEL; MATURATION; PATTERNS; ANIMALS; ECOLOGY; FISHES; COST Ontogenetic growth functions provide basic information in biological and ecological studies. Various growth functions classified into the Putter model have been used historically, regardless of controversies over their appropriateness. Here, we present a novel growth function for fish and aquatic organisms (generalised q-VBGF) by considering an allocation schedule of allometrically produced surplus energy between somatic growth and reproduction. The generalised q-VBGF can track growth trajectories in different life history strategies from determinate to indeterminate growth by adjusting the value of the 'growth indeterminacy exponent' q. The timing of maturation and attainable body size can be adjusted by the 'maturation timing parameter' tau while maintaining a common growth trajectory before maturation. The generalised q-VBGF is a comprehensive growth function in which exponentials in the traditional monomolecular, von Bertalanffy, Gompertz, logistic, and Richards functions are replaced with q-exponentials defined in the non-extensive Tsallis statistics, and it fits to actual data more adequately than these conventional functions. The relationship between the estimated parameter values tau and rq forms a unique hyperbola, which provides a new insight into the continuum of life history strategies of organisms. [Manabe, Akihiro; Yamakawa, Takashi] Univ Tokyo, Grad Sch Agr & Life Sci, Tokyo, Japan; [Ohnishi, Shuhei] Tokai Univ, Sch Marine Sci & Technol, Shizuoka, Shizuoka, Japan; [Akamine, Tatsuro] Japan Fisheries Res & Educ Agcy, Natl Res Inst Fisheries Sci, Yokohama, Kanagawa, Japan; [Narimatsu, Yoji] Japan Fisheries Res & Educ Agcy, Hachinohe Lab, Tohoku Natl Fisheries Res Inst, Hachinohe, Aomori, Japan; [Tanaka, Hiroshige] Japan Fisheries Res & Educ Agcy, Natl Res Inst Far Seas Fisheries, Shimizu, Shizuoka, Japan; [Tanaka, Hiroshige; Funamoto, Tetsuichiro] Japan Fisheries Res & Educ Agcy, Hokkaido Natl Fisheries Res Inst, Kushiro, Hokkaido, Japan; [Ueda, Yuji] Japan Fisheries Res & Educ Agcy, Japan Sea Natl Fisheries Res Inst, Niigata, Niigata, Japan; [Yamamote, Takeo] Japan Fisheries Res & Educ Agcy, Obama Lab, Japan Sea Natl Fisheries Res Inst, Obama, Fukui, Japan Manabe, A; Yamakawa, T (reprint author), Univ Tokyo, Grad Sch Agr & Life Sci, Tokyo, Japan. manabe@aqua.fs.a.u-tokyo.ac.jp; ayamakw@mail.ecc.u-tokyo.ac.jp Yamamoto, Takeo/0000-0002-0872-4260 Fisheries Agency; Japan Fisheries Research and Education Agency Part of this study was conducted as the project 'Assessment of Fisheries Stocks in the Waters around Japan' and was financially supported by the Fisheries Agency and Japan Fisheries Research and Education Agency. The Fisheries Agency is not responsible for the contents of this manuscript. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Akaike H., 1973, P 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_15; AKAMINE T, 1993, NIPPON SUISAN GAKK, V59, P1857; Alonso-Fernandez A, 2009, FISH RES, V99, P47, DOI 10.1016/j.fishres.2009.04.011; Amari S, 2011, ENTROPY, V13, P1070; Boukal DS, 2014, J THEOR BIOL, V359, P199, DOI 10.1016/j.jtbi.2014.05.022; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Chapman EW, 2011, CAN J FISH AQUAT SCI, V68, P1934, DOI 10.1139/F2011-109; Czarnoleski M, 1998, ECOL LETT, V1, P5, DOI 10.1046/j.1461-0248.1998.0007b.x; Economo EP, 2005, ECOL LETT, V8, P353, DOI 10.1111/j.1461-0248.2005.00737.x; Froese R, 2006, J APPL ICHTHYOL, V22, P241, DOI 10.1111/j.1439-0426.2006.00805.x; Fujita S., 1965, Bulletin of the Japanese Society of Scientific Fisheries, V31, P258; Gompertz B., 1825, PHILOS T ROY SOC LON, V115, P513, DOI [10.1098/rstl.1825.0026, DOI 10.1098/RSTL.1825.0026]; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; Jusup M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021903; Karkach AS, 2006, DEMOGR RES, V15, P348; Katsukawa Y, 2002, POPUL ECOL, V44, P265, DOI 10.1007/s101440200030; KLEIBER MAX, 1932, HILGARDIA, V6, P315; Kooijman SALM, 2008, BIOL REV, V83, P533, DOI 10.1111/j.1469-185X.2008.00053.x; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Kozlowski J, 1999, EVOL ECOL RES, V1, P423; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; MAC ARTHUR ROBERT H., 1967; Ohnishi S, 2014, J THEOR BIOL, V343, P174, DOI 10.1016/j.jtbi.2013.10.017; Ohnishi S, 2012, FISH B-NOAA, V110, P223; Picoli S, 2009, BRAZ J PHYS, V39, P468, DOI 10.1590/S0103-97332009000400023; Prince J, 2015, ICES J MAR SCI, V72, P194, DOI 10.1093/icesjms/fsu011; Putter A, 1920, PFLUG ARCH GES PHYS, V180, P298, DOI 10.1007/BF01755094; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; RICHARDS FJ, 1959, J EXP BOT, V10, P290, DOI 10.1093/jxb/10.2.290; SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136; SEBENS KP, 1987, ANNU REV ECOL SYST, V18, P371, DOI 10.1146/annurev.es.18.110187.002103; Sheehan RJ, 1999, T AM FISH SOC, V128, P491, DOI 10.1577/1548-8659(1999)128<0491:BGIAFD>2.0.CO;2; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; Spillman William Jasper, 1924, LAW DIMINISHING RETU; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; Tsallis C, 1994, QUIM NOVA, V17, P468; Tsallis C., 2009, INTRO NONEXTENSIVE S; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; Wang ZP, 2002, AQUACULTURE, V204, P337, DOI 10.1016/S0044-8486(01)00845-6; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; WOOTTON RJ, 1976, J FISH BIOL, V8, P385, DOI 10.1111/j.1095-8649.1976.tb03967.x; YOKLAVICH MM, 1990, MAR ECOL PROG SER, V64, P13, DOI 10.3354/meps064013 44 1 1 6 6 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUN 26 2018 13 6 e0199346 10.1371/journal.pone.0199346 18 Multidisciplinary Sciences Science & Technology - Other Topics GK7JR WOS:000436377800031 29944689 DOAJ Gold 2019-02-21 J Gonzalez, P; Jiang, JZ; Lowe, CJ Gonzalez, Paul; Jiang, Jeffrey Z.; Lowe, Christopher J. The development and metamorphosis of the indirect developing acorn worm Schizocardium californicum (Enteropneusta: Spengelidae) FRONTIERS IN ZOOLOGY English Article Enteropneusta; Hemichordata; Indirect development; Metamorphosis; Planktotrophy; Schizocardium californicum; Tornaria DEVELOPING SEA-URCHIN; HELIOCIDARIS-ERYTHROGRAMMA; PTYCHODERA-FLAVA; NERVOUS-SYSTEM; TORNARIA LARVA; DEUTEROSTOME PHYLOGENY; HEMICHORDATA-ENTEROPNEUSTA; SACCOGLOSSUS-KOWALEVSKII; DORSOVENTRAL AXIS; GILL SLITS Background: Enteropneusts are benthic marine invertebrates that belong to the deuterostome phylum Hemichordata. The two main clades of enteropneusts are defined by differences in early life history strategies. In the Spengelidae and Ptychoderidae, development is indirect via a planktotrophic tornaria larva. In contrast, development in the Harrimanidae is direct without an intervening larval life history stage. Most molecular studies in the development and evolution of the enteropneust adult body plan have been carried out in the harrimanid Saccoglossus kowalevskii. In order to compare these two developmental strategies, we have selected the spengelid enteropneust Schizocardium californicum as a suitable indirect developing species for molecular developmental studies. Here we describe the methods for adult collecting, spawning and larval rearing in Schizocardium californicum, and describe embryogenesis, larval development, and metamorphosis, using light microscopy, immunocytochemistry and confocal microscopy. Results: Adult reproductive individuals can be collected intertidally and almost year-round. Spawning can be triggered by heat shock and large numbers of larvae can be reared through metamorphosis under laboratory conditions. Gastrulation begins at 17 h post-fertilization (hpf) and embryos hatch at 26 hpf as ciliated gastrulae. At 3 days post-fertilization (dpf), the tornaria has a circumoral ciliary band, mouth, tripartite digestive tract, protocoel, larval muscles and a simple serotonergic nervous system. The telotroch develops at 5 dpf. In the course of 60 days, the serotonergic nervous system becomes more elaborate, the posterior coeloms develop, and the length of the circumoral ciliary band increases. At the end of the larval stage, larval muscles disappear, gill slits form, and adult muscles develop. Metamorphosis occurs spontaneously when the larva reaches its maximal size (ca. 3 mm), and involves loss and reorganization of larval structures (muscles, nervous system, digestive tract), as well as development of adult structures (adult muscles, tripartite body organization). Conclusions: This study will enable future research in S. californicum to address long standing questions related to the evolution of axial patterning mechanisms, germ layer induction, neurogenesis and neural patterning, the mechanisms of metamorphosis, the relationships between larval and adult body plans, and the evolution of metazoan larval forms. [Gonzalez, Paul; Lowe, Christopher J.] Stanford Univ, Dept Biol, Hopkins Marine Stn, 120 Ocean View Blvd, Pacific Grove, CA 93950 USA; [Jiang, Jeffrey Z.] Univ Penn, Dept Chem, 231 South 34th St, Philadelphia, PA 19104 USA Lowe, CJ (reprint author), Stanford Univ, Dept Biol, Hopkins Marine Stn, 120 Ocean View Blvd, Pacific Grove, CA 93950 USA. clowe@stanford.edu Lowe, Christopher/0000-0002-7789-8643 NSERC; Myers Oceanographic and Marine Biology Trust; NASA Exobiology [NNX13AI68G]; NSF [1258169, 1656628] PG received a post-graduate fellowship from NSERC and a grant from Myers Oceanographic and Marine Biology Trust. CJL received support from NASA Exobiology NNX13AI68G and NSF grants 1258169 and 1656628. BALSER EJ, 1990, ACTA ZOOL-STOCKHOLM, V71, P235, DOI 10.1111/j.1463-6395.1990.tb01082.x; Bourlat SJ, 2006, NATURE, V444, P85, DOI 10.1038/nature05241; BRANDENBURGER JL, 1973, Z ZELLFORSCH MIK ANA, V142, P89, DOI 10.1007/BF00306706; Braun K, 2015, ORG DIVERS EVOL, V15, P423, DOI 10.1007/s13127-015-0206-x; BRIDGES TS, 1994, ACTA ZOOL-STOCKHOLM, V75, P371, DOI 10.1111/j.1463-6395.1994.tb00973.x; BURDONJONES C, 1952, PHILOS T ROY SOC B, V236, P553, DOI 10.1098/rstb.1952.0010; Cameron CB, 2012, ZOOTAXA, P79; Cameron CB, 2005, CAN J ZOOL, V83, P196, DOI 10.1139/Z04-190; Cannon JT, 2014, CURR BIOL, V24, P2827, DOI 10.1016/j.cub.2014.10.016; COLWIN AL, 1953, J MORPHOL, V92, P401, DOI 10.1002/jmor.1050920302; DAUTOV SS, 1992, BIOL BULL, V183, P463, DOI 10.2307/1542023; Ferkowicz MJ, 2001, EVOL DEV, V3, P24, DOI 10.1046/j.1525-142x.2001.00084.x; Franzen A, 2001, INVERTEBR REPROD DEV, V39, P37, DOI 10.1080/07924259.2001.9652465; GILMOUR THJ, 1982, CAN J ZOOL, V60, P3010, DOI 10.1139/z82-384; Gonzalez P, 2017, CURR BIOL, V27, P87, DOI 10.1016/j.cub.2016.10.047; Gonzalez P, 2009, BIOL J LINN SOC, V98, P898, DOI 10.1111/j.1095-8312.2009.01332.x; Haag ES, 1998, DEV GENES EVOL, V208, P188, DOI 10.1007/s004270050173; Hadfield M.G., 1975, P185; Halanych KM, 1995, MOL PHYLOGENET EVOL, V4, P72, DOI 10.1006/mpev.1995.1007; Hejnol A, 2009, P ROY SOC B-BIOL SCI, V276, P4261, DOI 10.1098/rspb.2009.0896; HENRY JJ, 1990, DEVELOPMENT, V110, P875; HENRY JJ, 1990, DEV BIOL, V141, P55, DOI 10.1016/0012-1606(90)90101-N; Henry JQ, 2001, EVOL DEV, V3, P375, DOI 10.1046/j.1525-142X.2001.01051.x; Hiebert LS, 2015, EVODEVO, V6, DOI 10.1186/s13227-015-0021-7; Hiebert LS, 2015, BMC BIOL, V13, DOI 10.1186/s12915-015-0133-5; Hyman L. H., 1959, SMALLER COELOMATE GR; Israel JW, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.1002391; Kauffman JS, 2003, DEV GENES EVOL, V213, P612, DOI 10.1007/s00427-003-0365-1; Kaul S, 2010, J MORPHOL, V271, P1240, DOI 10.1002/jmor.10868; Kaul-Strehlow S., 2015, EVOLUTIONARY DEV BIO, V6, P59; Kaul-Strehlow S, 2015, ORG DIVERS EVOL, V15, P405, DOI 10.1007/s13127-015-0201-2; Lacalli TC, 2001, ACTA ZOOL-STOCKHOLM, V82, P117, DOI 10.1046/j.1463-6395.2001.00075.x; Lin CY, 2016, J EXP ZOOL PART B, V326, P47, DOI 10.1002/jez.b.22665; Lowe CJ, 2015, NATURE, V520, P456, DOI 10.1038/nature14434; Lowe CJ, 2004, METHOD CELL BIOL, V74, P171; Lowe CJ, 2000, TOTOWA DEV BIOL PROT, P9; Metschnikoff V., 1881, ZOOL ANZ, V4, P139; Miyamoto N, 2007, ZOOL SCI, V24, P1278, DOI 10.2108/zsj.24.1278; Miyamoto N, 2010, EVOL DEV, V12, P416, DOI 10.1111/j.1525-142X.2010.00428.x; Morgan T. H., 1891, Journal of Morphology, Vv, P407; Morgan T. H., 1894, Journal of Morphology, Vix, P1; Nakajima Y, 2004, ZOOL SCI, V21, P69, DOI 10.2108/0289-0003(2004)21[69:DANOOT]2.0.CO;2; Nezlin LP, 2004, ZOOMORPHOLOGY, V123, P1, DOI 10.1007/s00435-003-0086-z; Nielsen C, 2007, J MORPHOL, V268, P551, DOI 10.1002/jmor.10533; RAFF RA, 1992, BIOESSAYS, V14, P211, DOI 10.1002/bies.950140403; Raff RA, 2008, PHILOS T R SOC B, V363, P1473, DOI 10.1098/rstb.2007.2237; RAO KP, 1953, J MORPHOL, V93, P1, DOI 10.1002/jmor.1050930102; Rottinger E, 2012, DEVELOPMENT, V139, P2463, DOI 10.1242/dev.066712; RUPPERT EE, 1986, BIOL BULL, V171, P188, DOI 10.2307/1541916; Sly BJ, 2003, INT J DEV BIOL, V47, P623; Smith MS, 2008, J EXP ZOOL PART B, V310B, P609, DOI 10.1002/jez.b.21233; STIASNY-WIJNHOFF GERADA, 1926, ZOOL ANZEIGER, V68, P159; Strathmann MF, 1987, REPROD DEV MARINE IN; STRATHMANN R, 1976, MAR BIOL, V34, P317, DOI 10.1007/BF00398125; STRATHMANN RR, 1989, BIOL BULL, V176, P25, DOI 10.2307/1541885; Swalla BJ, 2008, PHILOS T R SOC B, V363, P1557, DOI 10.1098/rstb.2007.2246; Tagawa K, 1998, ZOOL SCI, V15, P85, DOI 10.2108/zsj.15.85; Tagawa K, 2016, CURR OPIN GENET DEV, V39, P71, DOI 10.1016/j.gde.2016.05.023; Tassia MG, 2016, PLOS ONE, V11, DOI [10.1371/journal.pone.016256, 10.1371/journal.pone.0162564]; TURBEVILLE JM, 1994, MOL BIOL EVOL, V11, P648; Urata M, 2004, ZOOL SCI, V21, P533, DOI 10.2108/zsj.21.533; Urata M, 2014, EVOL DEV, V16, P149, DOI 10.1111/ede.12075; Van der Horst C.J., 1939, HEMICHORDATA, V4, P1; WADA H, 1994, P NATL ACAD SCI USA, V91, P1801, DOI 10.1073/pnas.91.5.1801; Wijnhoff GS, 1927, TORNARIEN KRITIK BES; Wilson KA, 2005, EVOL DEV, V7, P416, DOI 10.1111/j.1525-142X.2005.05046.x; Wilson KA, 2005, EVOL DEV, V7, P401, DOI 10.1111/j.1525-142X.2005.05045.x; WRAY GA, 1989, DEV BIOL, V132, P458, DOI 10.1016/0012-1606(89)90242-X 68 0 0 3 6 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1742-9994 FRONT ZOOL Front. Zool. JUN 20 2018 15 26 10.1186/s12983-018-0270-0 24 Zoology Zoology GK1NI WOS:000435884800001 29977319 DOAJ Gold 2019-02-21 J Lee, AJ; DeBruine, LM; Jones, BC Lee, Anthony J.; DeBruine, Lisa M.; Jones, Benedict C. Individual-specific mortality is associated with how individuals evaluate future discounting decisions PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article intertemporal choice; delay discounting; life-history theory; life expectancy; cross-cultural research; ageing LIFE-HISTORY PERSPECTIVE; INTERTEMPORAL CHOICE; EXPECTANCY; DELAY; METAANALYSIS; BEHAVIOR; REWARDS; RISK; NEIGHBORHOODS; GRATIFICATION How organisms discount the value of future rewards is associated with many important outcomes, and may be a central component of theories of life-history. According to life-history theories, prioritizing immediacy is indicative of an accelerated strategy (i.e. reaching reproductive maturity quickly and producing many offspring at the cost of long-term investment). Previous work extrapolating life-history theories to facultative calibration of life-history traits within individuals has theorized that cues to mortality can trigger an accelerated strategy; however, compelling evidence for this hypothesis in modern humans is lacking. We assessed whether country-level life expectancy predicts individual future discounting behaviour across multiple intertemporal choice items in a sample of 13 429 participants from 54 countries. Individuals in countries with lower life expectancy were more likely to prefer an immediate reward to one that is delayed. Individuals from countries with greater life expectancy were especially more willing to wait for a future reward when the relative gain in choosing the future reward was large and/or the delay period was short. These results suggest that cues to mortality can influence the way individuals evaluate intertemporal decisions, which in turn can inform life-history trade-offs. We also found that older (but not very old) participants were more willing to wait for a future reward when there is a greater relative gain and/or shorter delay period, consistent with theoretical models that suggest individuals are more future-orientated at middle age. [Lee, Anthony J.; DeBruine, Lisa M.; Jones, Benedict C.] Univ Glasgow, Inst Neurosci & Psychol, Glasgow, Lanark, Scotland Lee, AJ (reprint author), Univ Glasgow, Inst Neurosci & Psychol, Glasgow, Lanark, Scotland. anthony.lee@glasgow.ac.uk Lee, Anthony J./I-8220-2012 Lee, Anthony J./0000-0001-8288-3393; Jones, Benedict/0000-0001-7777-0220 European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant [705478] A.J.L. has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 705478. Amlung M, 2016, PSYCHOL MED, V46, P2423, DOI 10.1017/S0033291716000866; Amlung M, 2017, ADDICTION, V112, P51, DOI 10.1111/add.13535; Anderson KG, 2010, HUM NATURE-INT BIOS, V21, P103, DOI 10.1007/s12110-010-9087-z; [Anonymous], 2017, GDP CURRENT US; [Anonymous], 2017, WORLD BANK COUNTRY L; [Anonymous], 2017, GLOBAL HLTH OBSERVAT; Baldini R., BIORXIV; Barr DJ, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00328; Barr DJ, 2013, J MEM LANG, V68, P255, DOI 10.1016/j.jml.2012.11.001; Bates D, 2015, J STAT SOFTW, V67, P1; Berns GS, 2007, TRENDS COGN SCI, V11, P482, DOI 10.1016/j.tics.2007.08.011; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Bulled NL, 2010, HUM NATURE-INT BIOS, V21, P269, DOI 10.1007/s12110-010-9092-2; Bulley A, 2017, EVOL HUM BEHAV, V38, P652, DOI 10.1016/j.evolhumbehav.2017.05.002; Camerer C, 2017, TRENDS COGN SCI, V21, P46, DOI 10.1016/j.tics.2016.11.001; Cross CP, 2011, PSYCHOL BULL, V137, P97, DOI 10.1037/a0021591; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; DeBruine LM, 2010, P ROY SOC B-BIOL SCI, V277, P2405, DOI 10.1098/rspb.2009.2184; Engqvist L, 2002, BEHAV ECOL, V13, P632, DOI 10.1093/beheco/13.5.632; Giordano LA, 2002, PSYCHOPHARMACOLOGY, V163, P174, DOI 10.1007/s00213-002-1159-2; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hill E., 2008, J SOCIO-ECON, V37, P1381, DOI DOI 10.1016/J.S0CEC.2006.12.081; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Kandrik M, 2015, EVOL HUM BEHAV, V36, P206, DOI 10.1016/j.evolhumbehav.2014.11.004; Kirby KN, 2003, J EXP PSYCHOL LEARN, V29, P66, DOI 10.1037/0278-7393.29.1.66; Kirby KN, 1996, PSYCHON B REV, V3, P100, DOI 10.3758/BF03210748; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Kuppens T, 2014, FRONT PSYCHOL, V5, DOI 10.3389/fpsyg.2014.01110; Kuznetsova A., 2015, LMERTEST TESTS RANDO, P0; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Low BS, 2013, CROSS-CULT RES, V47, P198, DOI 10.1177/1069397112471807; Madden GJ, 2003, EXP CLIN PSYCHOPHARM, V11, P139, DOI 10.1037/1064-1297.11.2.139; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Pepper GV, 2017, BEHAV BRAIN SCI, V40, DOI 10.1017/S0140525X1600234X; Pepper GV, 2013, EVOL HUM BEHAV, V34, P433, DOI 10.1016/j.evolhumbehav.2013.08.004; R Core Team, 2013, R LANG ENV STAT COMP; Reimers S, 2009, PERS INDIV DIFFER, V47, P973, DOI 10.1016/j.paid.2009.07.026; Robinson WS, 1950, AM SOCIOL REV, V15, P351, DOI 10.2307/2087176; SHODA Y, 1990, DEV PSYCHOL, V26, P978, DOI 10.1037/0012-1649.26.6.978; Silverman IW, 2003, SEX ROLES, V49, P451, DOI 10.1023/A:1025872421115; Sozou PD, 2003, P ROY SOC B-BIOL SCI, V270, P1047, DOI 10.1098/rspb.2003.2344; Stearns S, 1992, EVOLUTION LIFE HIST; Story GW, 2014, FRONT BEHAV NEUROSCI, V8, DOI 10.3389/fnbeh.2014.00076; Wang M, 2016, J ECON PSYCHOL, V52, P115, DOI 10.1016/j.joep.2015.12.001; Wilson M, 2004, P ROY SOC B-BIOL SCI, V271, pS177, DOI 10.1098/rsbl.2003.0134; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Woyciechowski M, 1998, APIDOLOGIE, V29, P191, DOI 10.1051/apido:19980111 48 1 1 6 7 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUN 13 2018 285 1880 20180304 10.1098/rspb.2018.0304 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GJ3MB WOS:000435198500007 29899065 2019-02-21 J Fay, MF Fay, Michael F. Orchid conservation: how can we meet the challenges in the twenty-first century? BOTANICAL STUDIES English Review Conservation priorities; Systematics; Phylogenetics; Population genetics; In situ conservation; Ex situ conservation; Integrated conservation; Mycorrhizas; Pollination; Illegal trade; CITES; Red List CYPRIPEDIUM-CALCEOLUS ORCHIDACEAE; INTERNATIONAL-TRADE; BIRD POLLINATION; DIVERSITY; HABITAT; EXTINCTION; COLLECTION; FLOWERS; FUNGUS; PLANTS With c. 28,000 species, orchids are one of the largest families of flowering plants, and they are also one of the most threatened, in part due to their complex life history strategies. Threats include habitat destruction and climate change, but many orchids are also threatened by unsustainable (often illegal and/or undocumented) harvest for horticulture, food or medicine. The level of these threats now outstrips our abilities to combat them at a species-by-species basis for all species in such a large group as Orchidaceae; if we are to be successful in conserving orchids for the future, we will need to develop approaches that allow us to address the threats on a broader scale to complement focused approaches for the species that are identified as being at the highest risk. [Fay, Michael F.] Royal Bot Gardens, Richmond TW9 3AB, Surrey, England; [Fay, Michael F.] Univ Western Australia, Sch Biol Sci, Crawley, WA 6009, Australia Fay, MF (reprint author), Royal Bot Gardens, Richmond TW9 3AB, Surrey, England. m.fay@kew.org Bogarin D, 2018, BOT J LINN SOC, V186, P510, DOI 10.1093/botlinnean/box087; Borba EL, 2014, BOT J LINN SOC, V175, P29, DOI 10.1111/boj.12136; Brooks TM, 2002, CONSERV BIOL, V16, P909, DOI 10.1046/j.1523-1739.2002.00530.x; Chase MW, 2015, BOT J LINN SOC, V177, P151, DOI 10.1111/boj.12234; CHASE MW, 2003, ORCHID CONSERVATION, P69; Cozzolino S, 2005, TRENDS ECOL EVOL, V20, P487, DOI 10.1016/j.tree.2005.06.004; Cribb PJ, 2003, ORCHID CONSERVATION, P1; Darwin C., 1862, VARIOUS CONTRIVANCES; Davies KL, 2013, BOT J LINN SOC, V173, P744, DOI 10.1111/boj.12094; de Boer HJ, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.1182; Delforge P, 2006, ORCHIDS EUROPE N AFR; Dixon K. W., 2003, ORCHID CONSERVATION; Dixon KW, 2007, LANKESTERIANA, V7, P11; Ennos RA, 2012, BOT J LINN SOC, V168, P194, DOI 10.1111/j.1095-8339.2011.01206.x; Fay M, 2016, 2015 ANN REPORT ENV, P106; Fay MF, 2015, UNDOCUMENTED TRADE S; Fay MF, 2018, BOT J LINN SOC, V186, P587, DOI 10.1093/botlinnean/box104; Fay MF, 2016, ANN BOT-LONDON, V118, P89, DOI 10.1093/aob/mcw147; Fay MF, 2015, ANN BOT-LONDON, V116, P377, DOI 10.1093/aob/mcv142; Fay Michael F., 2015, Curtis's Botanical Magazine, V32, P3, DOI 10.1111/curt.12097; Fay MF, 2009, ANN BOT-LONDON, V104, P359, DOI [10.1093/aob/mcp195, 10.1093/aob/mcp190]; Gale SW, 2018, BOT J LINN SOC, V186, P425, DOI 10.1093/botlinnean/boy003; Gargiulo R, 2018, BOT J LINN SOC, V186, P560, DOI 10.1093/botlinnean/box105; Gebauer G, 2016, NEW PHYTOL, V211, P11, DOI 10.1111/nph.13865; GHORBANI A, 2014, TRAFFIC BULL, V26, P52; Higaki K, 2017, BOT STUD, V58, DOI 10.1186/s40529-017-0214-6; Hinsley A, 2018, BOT J LINN SOC, V186, P435, DOI 10.1093/botlinnean/box083; Hinsley A, 2017, CONSERV LETT, V10, P602, DOI 10.1111/conl.12316; Hutchings MJ, 2018, BOT J LINN SOC, V186, P498, DOI 10.1093/botlinnean/box086; IUCN, 2017, IUCN RED LIST THREAT; IUCN-SSC Species Conservation Planning Sub-Committee, 2017, GUID SPEC CONS PLANN, DOI [10.2305/IUCN.CH.2017.18.en, DOI 10.2305/IUCN.CH.2017.18.EN]; Jersakova J, 2006, BIOL REV, V81, P219, DOI 10.1017/S1464793105006986; Karremans AP, 2015, ANN BOT-LONDON, V116, P437, DOI 10.1093/aob/mcv086; Kendon JP, 2017, BOT STUD, V58, DOI 10.1186/s40529-017-0187-5; Koopowitz H., 2003, ORCHID CONSERVATION, P25; Koopowitz H, 2001, ORCHIDS THEIR CONSER; Kreziou A, 2016, ORYX, V50, P393, DOI 10.1017/S0030605315000265; Li JH, 2018, BOT J LINN SOC, V186, P473, DOI 10.1093/botlinnean/box084; Micheneau C, 2006, ANN BOT-LONDON, V97, P965, DOI 10.1093/aob/m1056; Micheneau C, 2010, ANN BOT-LONDON, V105, P355, DOI 10.1093/aob/mcp299; Micheneau C, 2009, BOT J LINN SOC, V161, P1, DOI 10.1111/j.1095-8339.2009.00995.x; OCA, 2017, ORCH CONS ALL; Pearman D, 2004, BRIT WILDLIFE, V15, P174; Pedersen Henrik Æ., 2018, Lankesteriana, V18, P1, DOI 10.15517/lank.v18i1.32587; Pedersen HAE, 2007, BEE ORCHIDS EUROPE; Phillips RD, 2014, ANN BOT-LONDON, V113, P629, DOI 10.1093/aob/mct295; Pillon Y, 2006, BIOL CONSERV, V129, P4, DOI 10.1016/j.biocon.2005.06.036; Ramsey MM, 2003, ORCHID CONSERVATION, P259; Rasmussen HN, 2018, BOT J LINN SOC, V186, P456, DOI 10.1093/botlinnean/box085; Reiter N, 2017, BOT J LINN SOC, V184, P122; Ricciardi A, 2009, TRENDS ECOL EVOL, V24, P248, DOI 10.1016/j.tree.2008.12.006; Roberts D. L., 2003, ORCHID CONSERVATION, P113; Roberts DL, 2008, P R SOC B, V275, P987, DOI 10.1098/rspb.2007.1683; Swarts ND, 2017, CONSERVATION METHODS; Swarts ND, 2009, TRENDS PLANT SCI, V14, P590, DOI 10.1016/j.tplants.2009.07.008; Swarts ND, 2009, ANN BOT-LONDON, V104, P543, DOI 10.1093/aob/mcp025; van der Niet T, 2011, ANN BOT-LONDON, V107, P981, DOI 10.1093/aob/mcr048; Van der Niet T, 2015, BOT J LINN SOC, V177, P141, DOI 10.1111/boj.12229; Veldman S, 2014, TRAFFIC B, V26, P47; Vogt-Schilb H, 2016, ANN BOT-LONDON, V118, P115, DOI 10.1093/aob/mcw070; Willis K. J., 2017, STATE WORLDS PLANTS; Yeung EC, 2017, BOT STUD, V58, DOI 10.1186/s40529-017-0188-4; Zettler LW, 2017, BOT STUD, V58, DOI 10.1186/s40529-017-0209-3 63 1 1 12 27 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1999-3110 BOT STUD Bot. Stud. JUN 5 2018 59 16 10.1186/s40529-018-0232-z 6 Plant Sciences Plant Sciences GI7YL WOS:000434718400001 29872972 DOAJ Gold 2019-02-21 J Jahn, AE; Guaraldo, AC Jahn, Alex E.; Guaraldo, Andre C. Do Fork-tailed Flycatchers (Tyrannus s. savana) stop to molt during fall migration? REVISTA BRASILEIRA DE ORNITOLOGIA English Article intra-tropical migration; Mato Grosso do Sul; post-reproductive; remiges FEATHER MOLT; MIGRANTS; AREAS Fork-tailed Flycatchers (Tyrannus s. savana) breed from central to southern South America, then migrate to northern South America, where they undergo a winter molt. However, exactly when this winter molt begins is not known. Previous research showed that some Fork-tailed Flycatchers stopover for an extended period in Mato Grosso do Sul in late January/early February, during fall migration. We hypothesized that these flycatchers are suspending fall migration to initiate flight feather molt, as do congeners in North America. In February 2016, we located a roost of > 100 migratory flycatchers in Mato Grosso do Sul state and captured two adults and two juveniles, one of which was an adult female that was symmetrically molting the first primary feather. This is the furthest south that this species has been found molting flight feathers and suggests that some Fork-tailed Flycatchers undertake fall molt-migration to Mato Grosso do Sul. Further research on the relationship between timing of molt and migration of this and other birds that migrate within South America will be essential to evaluate the evolution of their life history strategies, seasonal interactions, and limitations they face throughout the year. [Jahn, Alex E.] Univ Estadual Paulista, Dept Zool, Rio Claro, SP, Brazil; [Guaraldo, Andre C.] Univ Fed Parana, Dept Zool, Curitiba, Parana, Brazil; [Jahn, Alex E.] Natl Zool Pk, Smithsonian Conservat Biol Inst, Migratory Bird Ctr, Washington, DC 20008 USA Jahn, AE (reprint author), Univ Estadual Paulista, Dept Zool, Rio Claro, SP, Brazil.; Jahn, AE (reprint author), Natl Zool Pk, Smithsonian Conservat Biol Inst, Migratory Bird Ctr, Washington, DC 20008 USA. jahna@si.edu Fundacao de Amparo a Pesquisa do Estado de Sao Paulo [2012/17225-2]; CAPES Postdoctoral Fellowship (PNPD/CAPES) [1459754]; Optics for the Tropics; Ministerio do Meio Ambiente, Brazil [40221-1]; CEMAVE, Brazil [3819/1] We are grateful to an anonymous reviewer and the editors for helpful comments. We thank the owners and manager of Fazenda Ribalta for access to the property. This study was funded by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (#2012/17225-2) to A.E.J., a CAPES Postdoctoral Fellowship (PNPD/CAPES #1459754) to A.C.G., and by Optics for the Tropics, and was conducted under authorization of the Ministerio do Meio Ambiente, Brazil (40221-1), and CEMAVE, Brazil (3819/1). All procedures were in accordance with standards of the Animal Use Ethics Commission at UNESP-Rio Claro, Brazil under permit 3/2014. Carlisle JD, 2005, AUK, V122, P1070, DOI 10.1642/0004-8038(2005)122[1070:MSAADI]2.0.CO;2; Echeverry-Galvis MA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061106; Fitzpatrick J., 2004, HDB BIRDS WORLD, P170; Jahn AE, 2016, REV BRAS ORNITOL, V24, P116; Jahn AE, 2016, J FIELD ORNITHOL, V87, P143, DOI 10.1111/jofo.12147; Jenni L, 1994, MOULT AGEING EUROPEA; Leu M, 2002, BIOL CONSERV, V106, P45, DOI 10.1016/S0006-3207(01)00228-2; Pyle P, 1997, IDENTIFICATION GUI 1; Ralph CJ, 1993, HDB FIELD METHODS MO 9 0 0 0 0 SOC BRASILEIRA ORNITOLOGIA VICOSA C/O ROMULO RIBON, MUSEU ZOOLOGIA JOAO MOOJEN, LADEIRA DOS OPERARIOS 54-204, VICOSA, MG 36570-000, BRAZIL 0103-5657 REV BRAS ORNITOL Rev. Bras. Ornitol. JUN 2018 26 2 149 150 2 Ornithology Zoology GZ6ZG WOS:000449622100008 2019-02-21 J Jiang, ZQ; Li, FS; Ran, JH; Zhao, CH; Zhang, M; Li, H Jiang, Zheng Quan; Li, Feng Shan; Ran, Jiang Hong; Zhao, Chen Hao; Zhang, Man; Li, Hua Nest size and its Contributing Factors for Black-Necked Cranes Grus nigricollis PAKISTAN JOURNAL OF ZOOLOGY English Article Nest size; Nest type; Breeding biology; Habitat; Date of nest-building; Black-necked Cranes; Grus nigricollis CLUTCH SIZE; REPRODUCTIVE INVESTMENT; PARENTAL INVESTMENT; CYANISTES-CAERULEUS; THERMAL-PROPERTIES; BREEDING SUCCESS; PASSERINE BIRDS; SITE SELECTION; GREAT TITS; PREDATION The black-necked crane Grus nigricollis is the only alpine crane species, whose distribution is restricted to the Tibetan-Qinghai Plateau and the adjacent high altitude areas of China, Bhutan, Pakistan, and India. Study on nest type and size is useful for understanding the life history, evolution and adaptation of birds. A survey was conducted on nest size and the underlying regulatory factors of Black-necked Cranes from 25 March to 31 July in 2013 and 2014 at Ruoergai Internationally Important Wetland and its surrounding area, covering 83 nests. Four types of nests were found in the area, i.e., natural island nest, grass mound nest, dirt mound nest and floating grass nest. The nest length, nest width, nest height and nest volume among the four types of nests all were significantly different in the order: floating grass nests > dirt mound nests > grass mound nests > natural island nests, indicating that nest size was related to nest type. Among the three kinds of nest-site habitats, there were no significant differences in nest length and nest width, but differences were found in nest height and nest volume in the order: lake nests > river nests > swamp nests, indicating that nest size of Black-necked Cranes was also related to nest-site habitat. Nest length, nest width, nest height and nest volume were all found to be the greatest in April while the smallest in June with medium size in May, implying that nest size tended to decrease with time over a year. [Jiang, Zheng Quan; Ran, Jiang Hong; Zhao, Chen Hao; Zhang, Man] Sichuan Univ, Coll Life Sci, Key Lab Bioresources & Ecoenvironm, Minist Educ, Chengdu 610064, Sichuan, Peoples R China; [Jiang, Zheng Quan] Guangxi Normal Univ, Coll Hist Culture & Tourism, Guilin 541001, Peoples R China; [Li, Feng Shan] Int Crane Fdn, Baraboo, WI 53913 USA; [Li, Hua] Ruoergai Natl Nat Reserve, Ruoergai 624500, Sichuan, Peoples R China Ran, JH (reprint author), Sichuan Univ, Coll Life Sci, Key Lab Bioresources & Ecoenvironm, Minist Educ, Chengdu 610064, Sichuan, Peoples R China. rjhong-01@163.com International Crane Foundation Financial support for the study was provided by the International Crane Foundation. We are grateful to Ruoergai National Nature Reserve and Dr. Li Kui and other staff of flower lake scenic spot for assistance during field surveys. We thank the laboratory students for assistance in fieldwork. BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; Britt J, 2011, BIRD STUDY, V58, P78, DOI 10.1080/00063657.2010.524916; Broggi J, 2009, IBIS, V151, P588, DOI 10.1111/j.1474-919X.2009.00946.x; COLEMAN RM, 1985, BEHAV ECOL SOCIOBIOL, V18, P59; Collias E. C., 1984, NEST BUILDING BIRD B; Collias NE, 1997, CONDOR, V99, P253, DOI 10.2307/1369932; De Neve L, 2004, BEHAV ECOL, V15, P1031, DOI 10.1093/beheco/arh074; De Neve L, 2002, ANIM BEHAV, V63, P975, DOI 10.1006/anbe.2001.1989; Dou L, 2013, SICHUAN J ZOOLOGY, V32, P773; Dwyer NC, 1992, N AM CRAN WORKSH, V6, P75; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; GEUPEL GR, 1990, CONDOR, V92, P67, DOI 10.2307/1368384; Greenwood JL, 2011, J RAPTOR RES, V45, P15, DOI 10.3356/JRR-10-26.1; Gurney KEB, 2011, ECOGRAPHY, V34, P628, DOI 10.1111/j.1600-0587.2010.06622.x; Hansell M., 2000, BIRD NESTS CONSTRUCT, DOI [10.1017/CBO9781139106788, DOI 10.1017/CBO9781139106788]; Hoi H, 1996, ANIM BEHAV, V51, P464, DOI 10.1006/anbe.1996.0046; Jiang Zheng-Quan, 2014, Zoological Research, V35, P128, DOI 10.13918/j.issn.2095-8137.2014.s1.0128; Jiao S., 2010, J CHANGCHUN NOR U N, V29, P76; Julliard R, 1997, ECOLOGY, V78, P394; KERN MD, 1984, CONDOR, V86, P443, DOI 10.2307/1366825; LACK D, 1950, IBIS, V92, P288, DOI 10.1111/j.1474-919X.1950.tb01753.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; Leito A, 2005, ORNIS FENNICA, V82, P44; Li Z. M., 2005, RES BLACKNECKED CRAN; Lu ZB, 1980, CHINESE J ZOOLOGY, V1, P19; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; MARTIN TE, 1988, AM NAT, V132, P900, DOI 10.1086/284896; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; NAGER RG, 1992, P ROY SOC B-BIOL SCI, V249, P259, DOI 10.1098/rspb.1992.0112; Palomino JJ, 1998, ARDEA, V86, P177; Pfister O., 1998, BREEDING ECOLOGY CON, P1; Pinowski J, 2006, J THERM BIOL, V31, P573, DOI 10.1016/j.jtherbio.2006.05.007; Ran Jianghong, 1999, Chinese Journal of Applied and Environmental Biology, V5, P40; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1982, ECOLOGY, V63, P1389, DOI 10.2307/1938866; SLAGSVOLD T, 1989, OECOLOGIA, V79, P300, DOI 10.1007/BF00384308; Soler JJ, 1998, EVOL ECOL, V12, P427, DOI 10.1023/A:1006520821219; SOLER JJ, 1995, BEHAV ECOL SOCIOBIOL, V36, P201, DOI 10.1007/BF00177797; Soler JJ, 2001, BEHAV ECOL, V12, P301, DOI 10.1093/beheco/12.3.301; Soler JJ, 2007, BEHAV ECOL, V18, P781, DOI 10.1093/beheco/arm045; Tian Y.B., 2005, J YANGTZE U, V2, P1; Tomas G, 2006, AUK, V123, P1013, DOI 10.1642/0004-8038(2006)123[1013:NWAFHI]2.0.CO;2; Vergara P, 2010, ANN ZOOL FENN, V47, P184, DOI 10.5735/086.047.0303; Walkinshaw L. H., 1973, JACK PINE WARBLER, V51, P54; Wang YH, 1989, GUIZHOU SCI, V7, P50; Wang Yong, 2012, Biodiversity Science, V20, P119; Windsor RL, 2013, J AVIAN BIOL, V44, P305, DOI 10.1111/j.1600-048X.2013.05768.x; Wu HQ, 2009, BIRD CONSERV INT, V19, P277, DOI 10.1017/S0959270909008168; Zheng GM, 2012, ORNITHOLOGY 49 1 1 2 2 ZOOLOGICAL SOC PAKISTAN LAHORE UNIV PUNJAB, NEW CAMPUS, C/O DEPT ZOOLOGY, LAHORE, PAKISTAN 0030-9923 PAK J ZOOL Pak. J. Zool. JUN 2018 50 3 877 884 10.17582/journal.pjz/2018.50.3.877.884 8 Zoology Zoology GX2ZJ WOS:000447589600012 Other Gold 2019-02-21 J Garcia, DAZ; Costa, ADA; de Almeida, FS; Bialetzki, A; Orsi, ML Zoccal Garcia, Diego Azevedo; Augusto Costa, Alexandro Derly; de Almeida, Fernanda Simoes; Bialetzki, Andrea; Orsi, Mario Luis Spatial distribution and habitat use by early fish stages in a dammed river basin, Southern Brazil REVISTA DE BIOLOGIA TROPICAL English Article conservation; ichthyoplankton; non-native species; migratory species; regulated rivers; South America; spawning sites UPPER PARANA RIVER; MATO-GROSSO; NEOTROPICAL RESERVOIRS; LARVAE ASSEMBLAGES; FUTURE CHALLENGES; BAIA RIVER; SUL STATE; DIVERSITY; PATTERNS; BIODIVERSITY Fish diversity loss is threatened by the construction of dams as they prevent the regular natural dispersal among populations. Thus, conservation of key riverine habitats for fish reproduction may be essential for the recruitment of new native species of fish. The present study aimed to identify key habitats for fish spawning and early development in the Paranapanema River basin, as well as to determine the taxonomic composition, reproductive and life-history strategy, and to report spatial distribution of eggs, larvae and juveniles. The importance of lagoons, tributaries, and sub-tributaries was evaluated in the Paranapanema River basin between October 2012 and March 2013. Eggs and larvae samples were collected at dawn and dusk with conical plankton nets (0.5 mm mesh size), whereas juveniles were captured during the day with seine and sieve (0.5 cm mesh size). A total of 547 eggs, 904 larvae and 1 228 juveniles were captured. We observed that 2 larvae and 288 juveniles of non-migratory species, parental care, and equilibrium life-history strategy; predominated in lagoons and tributaries. On the other hand, 13 larvae and 60 juveniles of short migratory distance. no parental care, and periodic life-history strategy predominated in sub-tributaries. The highest densities of eggs were recorded in tributaries and sub-tributaries (Tukey's test, P= 0.001 and P= 0.03, respectively), and the highest densities of larvae were recorded for lagoons and tributaries (P- 0.005 and P = 0.0001, respectively). Captures of eggs and larvae were higher at night; while the highest catches per unit effort of juveniles were recorded for tributaries and sub-tributaries. Fish species that adopt different life-history strategies can use diverse types of habitats during the early stages. Lagoons, tributaries and sub-tributaries of the Paranapanema River play different roles in the reproductive success of fish fauna in a heavily modified basin. The preservation of spawning and nursery areas trapped between reservoirs is necessary for Neotropical fish species recruitment and survival. [Zoccal Garcia, Diego Azevedo; Augusto Costa, Alexandro Derly] Univ Estadual Londrina, Programa Posgrad Ciacias Biol, Londrina, Parana, Brazil; [de Almeida, Fernanda Simoes] Univ Estadual Londrina, Lab Genet & Ecol Anim, Londrina, Parana, Brazil; [Bialetzki, Andrea] Univ Estadual Maringa, Lab Ecol Ictioplancton NUPELIA, Maringa, Parana, Brazil; [Zoccal Garcia, Diego Azevedo; Augusto Costa, Alexandro Derly; Orsi, Mario Luis] Univ Estadual Londrina, Lab Ecol Peixes & Invasoes Biol, Rodovia Celso Garcia Cid,PR 445,Km 380, BR-86057970 Londrina, Parana, Brazil Garcia, DAZ (reprint author), Univ Estadual Londrina, Programa Posgrad Ciacias Biol, Londrina, Parana, Brazil.; Garcia, DAZ (reprint author), Univ Estadual Londrina, Lab Ecol Peixes & Invasoes Biol, Rodovia Celso Garcia Cid,PR 445,Km 380, BR-86057970 Londrina, Parana, Brazil. diegoazgarcia@hotmail.com; alexandrouenp@gmail.com; fernandasa@uel.br; bialetzki@nupelia.uem.br; orsi@uel.br Duke Energy International Geracao Paranapanema [3224/2012] We thank Angela Silva-Souza, Alexander Claro-Garcia, Angelo Agostinho, Fernando Pelicice, and Oscar Shibatta for reading our manuscript and giving suggestions for its improvement, and to the latter by the identification of juvenile fish. Aparecido de Souza, Edson Santana, and the LEPIB co-workers provided help during fieldwork. The project "Avaliacao genetica molecular e biologica das principais areas de recrutamento nas porcoes media e baixa do rio Paranapanema com mecanismo de otimizacao dos programas de conservacao e recuperacao do estoque pesqueiro", funded by the Duke Energy International Geracao Paranapanema (Process No3224/2012). We thank the anonymous reviewers for their help to improve the manuscript. Abilhoa V., 2004, LIVRO VERMELHO ANIMA, P581; Agostinho AA, 2007, AQUAT ECOSYST HEALTH, V10, P174, DOI 10.1080/14634980701341719; Agostinho AA, 2008, BRAZ J BIOL, V68, P1119, DOI 10.1590/S1519-69842008000500019; Agostinho AA, 2004, REV FISH BIOL FISHER, V14, P11, DOI 10.1007/s11160-004-3551-y; Agostinho AA, 2000, BIODIVERSITY IN WETLANDS: ASSESSMENT, FUNCTION AND CONSERVATION, VOL 1, P89; AGOSTINHO AA, 1995, LIMNOLOGY BRAZIL, P59; Agostinho AA, 2007, ECOLOGIA MANEJO RECU; Agostinho AA, 2016, FISH RES, V173, P26, DOI 10.1016/j.fishres.2015.04.006; Agostinho Angelo Antonio, 2003, P19; Araujo-Lima C. A. R. M., 2001, Brazilian Journal of Biology, V61, P357; Barzotto E, 2015, ZOOLOGIA-CURITIBA, V32, P270, DOI 10.1590/S1984-46702015000400002; Baumgartner G, 2004, ENVIRON BIOL FISH, V71, P115, DOI 10.1007/s10641-004-0098-z; Baumgartner Gilmar, 1997, Revista Brasileira de Zoologia, V14, P551; Bialetzki A, 2005, ENVIRON BIOL FISH, V73, P37, DOI 10.1007/s10641-004-3795-3; Bialetzki A, 2004, J PLANKTON RES, V26, P1327, DOI 10.1093/plankt/fbh123; Casatti L., 2003, Braz. J. Biol., V63, P213, DOI 10.1590/S1519-69842003000200006; Casatti L, 2009, HYDROBIOLOGIA, V632, P273, DOI 10.1007/s10750-009-9849-y; da Silva PS, 2015, RIVER RES APPL, V31, P313, DOI 10.1002/rra.2755; da Silva PA, 2012, NEOTROP ICHTHYOL, V10, P425, DOI 10.1590/S1679-62252012005000012; de Avila-Simas S, 2014, NEOTROP ICHTHYOL, V12, P611, DOI 10.1590/1982-0224-20130116; de Graaf GJ, 1999, FISHERIES MANAG ECOL, V6, P109, DOI 10.1046/j.1365-2400.1999.00124.x; dos Santos FB, 2015, ENVIRON BIOL FISH, V98, P1895, DOI 10.1007/s10641-015-0406-4; Ferrareze M, 2011, BRAZ J BIOL, V71, P807, DOI 10.1590/S1519-69842011000500002; Godoy M. P., 1975, PEIXES BRASIL SUBORD, V4; Gogola TM, 2013, ECOL FRESHW FISH, V22, P95, DOI 10.1111/eff.12007; Hoeinghaus DJ, 2009, CONSERV BIOL, V23, P1222, DOI 10.1111/j.1523-1739.2009.01248.x; Hoffmann Ana Cecília, 2005, Iheringia, Sér. Zool., V95, P319, DOI 10.1590/S0073-47212005000300012; Latini AO, 2004, FISHERIES MANAG ECOL, V11, P71, DOI 10.1046/j.1365-2400.2003.00372.x; Lima AC, 2016, HYDROBIOLOGIA, V763, P207, DOI 10.1007/s10750-015-2377-z; Makrakis MC, 2012, J FISH BIOL, V81, P866, DOI 10.1111/j.1095-8649.2012.03346.x; Makrakis MC, 2005, ENVIRON BIOL FISH, V72, P99, DOI 10.1007/s10641-004-6596-9; Melo A. J. S., 2010, RESERVATORIOS NORDES, P503; Melo J. R. B., 2009, RESERVATORIO PEIXE A, P121; NAKATANI K., 2001, OVOS LARVAS PEIXES A; Neves MP, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0141651; Nilsson C, 2005, SCIENCE, V308, P405, DOI 10.1126/science.1107887; Nunn AD, 2012, REV FISH BIOL FISHER, V22, P377, DOI 10.1007/s11160-011-9240-8; Orsi M. L., 2010, ESTRATEGIAS REPRODUT; Ortega JCG, 2015, HYDROBIOLOGIA, V746, P147, DOI 10.1007/s10750-014-2025-z; Pelicice FM, 2015, FISH FISH, V16, P697, DOI 10.1111/faf.12089; Pelicice FM, 2009, BIOL INVASIONS, V11, P1789, DOI 10.1007/s10530-008-9358-3; PETERS RH, 1986, LIMNOL OCEANOGR, V31, P1143, DOI 10.4319/lo.1986.31.5.1143; Petesse ML, 2012, ECOL ENG, V48, P109, DOI 10.1016/j.ecoleng.2011.06.033; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 2002, BIOSCIENCE, V52, P659, DOI 10.1641/0006-3568(2002)052[0659:HDVAWI]2.0.CO;2; Pompeu PS, 2012, RIVER RES APPL, V28, P504, DOI 10.1002/rra.1557; Reynalte-Tataje DA, 2008, RESERVATORIO ITA EST, P159; Reynalte-Tataje DA, 2012, NEOTROP ICHTHYOL, V10, P837, DOI 10.1590/S1679-62252012000400017; Reynalte-Tataje DA, 2012, ENVIRON BIOL FISH, V94, P403, DOI 10.1007/s10641-011-9955-3; Reynalte-Tataje DA, 2011, NEOTROP ICHTHYOL, V9, P427, DOI 10.1590/S1679-62252011005000017; Rosa R., 2008, LIVRO VERMELHO FAUNA, P8; Vitule JRS, 2009, FISH FISH, V10, P98, DOI 10.1111/j.1467-2979.2008.00312.x; Strayer DL, 2010, J N AM BENTHOL SOC, V29, P344, DOI 10.1899/08-171.1; Suzuki FM, 2013, APPL ECOL ENV RES, V11, P645, DOI 10.15666/aeer/1104_645659.; Tanaka S., 1973, FAO FISH TECH PAP, V122, P33; Teresa FB, 2015, NEOTROP ICHTHYOL, V13, P361, DOI 10.1590/1982-0224-20130229; Vazzoler A. E. A. M., 1996, BIOL REPROD PEIXES T; Vianna N.C., 2008, Acta Limnologica Brasiliensia, V20, P139; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Winemiller KO, 1995, B FR PECHE PISCIC, P23, DOI 10.1051/kmae:1995007; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; Ziober S. R., 2007, ACTA LIMNOL BRAS, V19, P369 62 0 0 6 6 REVISTA DE BIOLOGIA TROPICAL SAN JOSE UNIVERSIDAD DE COSTA RICA CIUDAD UNIVERSITARIA, SAN JOSE, 00000, COSTA RICA 0034-7744 2215-2075 REV BIOL TROP Rev. Biol. Trop. JUN 2018 66 2 605 621 17 Biology Life Sciences & Biomedicine - Other Topics GM9WD WOS:000438605300009 DOAJ Gold 2019-02-21 J Horn, RL; Marques, AJD; Manseau, M; Golding, B; Klutsch, CFC; Abraham, K; Wilson, PJ Horn, Rebekah L.; Marques, Adam J. D.; Manseau, Micheline; Golding, Brian; Klutsch, Cornelya F. C.; Abraham, Ken; Wilson, Paul J. Parallel evolution of site-specific changes in divergent caribou lineages ECOLOGY AND EVOLUTION English Article cytochrome-b; functional diversity; nonsynonymous substitutions; Rangifer; TreeSAAP MITOCHONDRIAL-DNA VARIATION; REINDEER RANGIFER-TARANDUS; LIFE-HISTORY EVOLUTION; MOLECULAR ADAPTATION; NORTH-AMERICA; CONVERGENT EVOLUTION; ECOLOGICAL GENOMICS; MICROSATELLITE DNA; ADAPTIVE EVOLUTION; NATURAL-SELECTION The parallel evolution of phenotypes or traits within or between species provides important insight into the basic mechanisms of evolution. Genetic and genomic advances have allowed investigations into the genetic underpinnings of parallel evolution and the independent evolution of similar traits in sympatric species. Parallel evolution may best be exemplified among species where multiple genetic lineages, descended from a common ancestor, colonized analogous environmental niches, and converged on a genotypic or phenotypic trait. Modern North American caribou (Rangifer tarandus) originated from three ancestral sources separated during the Last Glacial Maximum (LGM): the Beringian-Eurasian lineage (BEL), the North American lineage (NAL), and the High Arctic lineage (HAL). Historical introgression between the NAL and the BEL has been found throughout Ontario and eastern Manitoba. In this study, we first characterized the functional differentiation in the cytochrome-b (cytB) gene by identifying nonsynonymous changes. Second, the caribou lineages were used as a direct means to assess site-specific parallel changes among lineages. There was greater functional diversity within the NAL despite the BEL having greater neutral diversity. The patterns of amino acid substitutions occurring within different lineages supported the parallel evolution of cytB amino acid substitutions suggesting different selective pressures among lineages. This study highlights the independent evolution of identical amino acid substitutions within a wide-ranging mammal species that have diversified from different ancestral haplogroups and where ecological niches can invoke parallel evolution. [Horn, Rebekah L.; Klutsch, Cornelya F. C.; Abraham, Ken; Wilson, Paul J.] Trent Univ, Peterborough, ON, Canada; [Marques, Adam J. D.] Inst Gulbenkian Ciencias, Oeiras, Portugal; [Manseau, Micheline] Environm & Climate Change Canada, Sci & Technol, Ottawa, ON, Canada; [Manseau, Micheline] Univ Manitoba, Nat Resources Inst, Winnipeg, MB, Canada; [Golding, Brian] McMaster Univ, Dept Biol, Hamilton, ON, Canada Horn, RL (reprint author), Trent Univ, Peterborough, ON, Canada. horn.rebekah@gmail.com Horn, Rebekah/0000-0001-7076-2105 NSERC NSERC Abbott R, 2013, J EVOLUTION BIOL, V26, P229, DOI 10.1111/j.1420-9101.2012.02599.x; Arendt J, 2008, TRENDS ECOL EVOL, V23, P26, DOI 10.1016/j.tree.2007.09.011; Balanovsky O, 2011, MOL BIOL EVOL, V28, P2905, DOI 10.1093/molbev/msr126; Ball MC, 2007, CONSERV GENET, V8, P577, DOI 10.1007/s10592-006-9193-y; Ballard JWO, 2014, FUNCT ECOL, V28, P218, DOI 10.1111/1365-2435.12177; Bandelt HJ, 1999, MOL BIOL EVOL, V16, P37, DOI 10.1093/oxfordjournals.molbev.a026036; Bernatchez L, 2010, PHILOS T R SOC B, V365, P1783, DOI 10.1098/rstb.2009.0274; Branden C. I, 1999, INTRO PROTEIN STRUCT; Castoe TA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002201; Colosimo PF, 2005, SCIENCE, V307, P1928, DOI 10.1126/science.1107239; COSEWIC, 2011, DES UNITS CAR RANG T; Cronin M, 1999, J HERED, V90, P622, DOI 10.1093/jhered/90.6.622; Cronin MA, 2006, J HERED, V97, P525, DOI [10.1093/jhered/es1012, 10.1093/jhered/esl012]; Cronin MRA, 2005, J MAMMAL, V86, P495, DOI 10.1644/1545-1542(2005)86[495:VIMDAM]2.0.CO;2; Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109; dasFonseca R. R., 2008, BMC GENOMICS, V9, P1; Delport W, 2010, BIOINFORMATICS, V26, P2455, DOI 10.1093/bioinformatics/btq429; Dowling TE, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0149884; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Elmer KR, 2011, TRENDS ECOL EVOL, V26, P298, DOI 10.1016/j.tree.2011.02.008; Elmer KR, 2010, PHILOS T R SOC B, V365, P1763, DOI 10.1098/rstb.2009.0271; Eyre-Walker A, 2007, NAT REV GENET, V8, P610, DOI 10.1038/nrg2146; Flagstad O, 2003, EVOLUTION, V57, P658; Foote AD, 2011, BIOL LETTERS, V7, P116, DOI 10.1098/rsbl.2010.0638; Foster SA, 2007, NEW PHYTOL, V175, P370, DOI 10.1111/j.1469-8137.2007.02077.x; Gering EJ, 2009, HEREDITY, V102, P226, DOI 10.1038/hdy.2008.124; Guindon S, 2003, SYST BIOL, V52, P696, DOI 10.1080/10635150390235520; Hedrick PW, 2013, MOL ECOL, V22, P4606, DOI 10.1111/mec.12415; Hill JH, 2014, NAT GENET, V46, P389, DOI 10.1038/ng.2920; Johnson JB, 2001, EVOLUTION, V55, P1486; Jost MC, 2008, MOL BIOL EVOL, V25, P1016, DOI 10.1093/molbev/msn025; Kearse M, 2012, BIOINFORMATICS, V28, P1647, DOI 10.1093/bioinformatics/bts199; KIMURA M, 1983, MOL BIOL EVOL, V1, P84; Klutsch CFC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052661; Klutsch CFC, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.150469; KORNEGAY JR, 1994, MOL BIOL EVOL, V11, P921; Kuhn TS, 2010, MOL ECOL, V19, P1312, DOI 10.1111/j.1365-294X.2010.04565.x; Kvie KS, 2016, ECOL EVOL, V6, P4347, DOI 10.1002/ece3.2199; Leigh JW, 2015, METHODS ECOL EVOL, V6, P1110, DOI 10.1111/2041-210X.12410; Librado P, 2009, BIOINFORMATICS, V25, P1451, DOI 10.1093/bioinformatics/btp187; MacPherson A, 2017, J EVOLUTION BIOL, V30, P326, DOI 10.1111/jeb.13006; Malyarchuk B, 2010, MOL PHYLOGENET EVOL, V56, P562, DOI 10.1016/j.ympev.2010.04.005; McClellan DA, 2005, MOL BIOL EVOL, V22, P437, DOI 10.1093/molbev/msi028; McClellan David A, 2010, Int J Bioinform Res Appl, V6, P120, DOI 10.1504/IJBRA.2010.032116; McDevitt AD, 2009, MOL ECOL, V18, P665, DOI 10.1111/j.1365-294X.2008.04050.x; Meier JI, 2017, MOL ECOL, V26, P123, DOI 10.1111/mec.13838; Murrell B, 2015, MOL BIOL EVOL, V32, P1365, DOI 10.1093/molbev/msv035; Murrell B, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002764; Nagy J. A., 2005, SEASONAL RANGES CAPE; Nielsen R, 2005, ANNU REV GENET, V39, P197, DOI 10.1146/annurev.genet.39.073003.112420; Nosil P, 2002, NATURE, V417, P440, DOI 10.1038/417440a; Orr HA, 2005, EVOLUTION, V59, P216; Ostbye K, 2006, MOL ECOL, V15, P3983, DOI 10.1111/j.1365-294X.2006.03062.x; Palkovacs EP, 2008, MOL ECOL, V17, P582, DOI 10.1111/j.1365-294X.2007.03593.x; Peischl S, 2013, MOL ECOL, V22, P5972, DOI 10.1111/mec.12524; Perreault-Payette A, 2017, MOL ECOL, V26, P1477, DOI 10.1111/mec.14018; Polfus JL, 2017, J BIOGEOGR, V44, P386, DOI 10.1111/jbi.12918; Pond SLK, 2005, BIOINFORMATICS, V21, P2531, DOI 10.1093/bioinformatics/bti320; Pond SLK, 2005, BIOINFORMATICS, V21, P676, DOI 10.1093/bioinformatics/bti079; Rambaut A, 2014, TRACER V1 6; Reid SD, 2000, NATURE, V406, P64; Rettie WJ, 2001, CAN J ZOOL, V79, P1933, DOI 10.1139/cjz-79-11-1933; ROED K H, 1991, Rangifer, V11, P65; Rokas A, 2008, MOL BIOL EVOL, V25, P1943, DOI 10.1093/molbev/msn143; Seehausen O, 2004, TRENDS ECOL EVOL, V19, P198, DOI 10.1016/j.tree.2004.01.003; Shafer ABA, 2010, MOL ECOL, V19, P4589, DOI 10.1111/j.1365-294X.2010.04828.x; Sim Z, 2016, MOL ECOL, V25, P3696, DOI 10.1111/mec.13701; STEWART CB, 1987, NATURE, V330, P401, DOI 10.1038/330401a0; Storz JF, 2016, NAT REV GENET, V17, P239, DOI 10.1038/nrg.2016.11; TAJIMA F, 1989, GENETICS, V123, P585; TAMURA K, 1993, MOL BIOL EVOL, V10, P512; Tamura K, 2013, MOL BIOL EVOL, V30, P2725, DOI 10.1093/molbev/mst197; Taylor EB, 1996, EVOLUTION, V50, P401, DOI 10.1111/j.1558-5646.1996.tb04502.x; Thompson CE, 1997, EVOLUTION, V51, P1955, DOI 10.1111/j.1558-5646.1997.tb05117.x; Wada K., 2010, COMPLETE NUCLEOTIDE; Wang GD, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2814; Waples RS, 2004, EVOLUTION, V58, P386, DOI 10.1111/j.0014-3820.2004.tb01654.x; Weckworth BV, 2012, MOL ECOL, V21, P3610, DOI 10.1111/j.1365-294X.2012.05621.x; Wicker T, 2009, PLANT J, V59, P712, DOI 10.1111/j.1365-313X.2009.03911.x; Wittmer HU, 2007, J ANIM ECOL, V76, P568, DOI 10.1111/j.1365-2656.2007.01220.x; Woolley S, 2003, BIOINFORMATICS, V19, P671, DOI 10.1093/bioinformatics/btg043; Yannic G, 2014, NAT CLIM CHANGE, V4, P132, DOI 10.1038/NCLIMATE2074; Yeager M, 1999, IMMUNOL REV, V167, P45, DOI 10.1111/j.1600-065X.1999.tb01381.x; YOKOYAMA R, 1990, P NATL ACAD SCI USA, V87, P9315, DOI 10.1073/pnas.87.23.9315 84 0 0 10 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JUN 2018 8 12 6053 6064 10.1002/ece3.4154 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GL0RX WOS:000436799100007 29988428 DOAJ Gold 2019-02-21 J Mahecha, L; Villabona, N; Sierra, L; Ocampo, D; Laverde, O Mahecha, Laura; Villabona, Nickole; Sierra, Laura; Ocampo, David; Laverde-R, Oscar The Andean Cock-of-the-rock (Rupicola peruvianus) is a frugivorous bird predator WILSON JOURNAL OF ORNITHOLOGY English Article Andes; cotinga; life history; Neotropics; predators; Rupicola LIFE-HISTORY EVOLUTION Cotingas are considered essentially frugivorous, but a few records suggest they might include small vertebrates in their diet, mainly during the breeding season. In March 2015, we recorded a young male of an Andean Cock-of-the-rock (Rupicola peruvianus) chasing and eating an adult Canada Warbler (Cardellina canadensis) in Santa Maria, Boyaca (Colombia). The next day, we observed another adult male chasing a Swainson's Thrush (Catharus ustulatus), but we were unable to observe the end of the chase. Observations of hunting small vertebrates suggest this species may be omnivorous, not only during the breeding season but throughout its annual cycle. These may be rare cases, but notably both events involved migratory species that may not recognize these colorful birds as possible predators because they are not exposed to cotingas in the temperate zone. Predation on adult birds is difficult to observe in the wild, but this information is essential to better understand the life histories of birds and the different selection pressures acting on them. Received 11 January 2017. Accepted 28 September 2017. [Mahecha, Laura; Villabona, Nickole; Sierra, Laura] Univ Los Andes, Programa Pregrad Dept Ciencias Biol, Bogota, Colombia; [Ocampo, David] Univ Los Andes, Dept Ciencias Biol, Lab Biol Evolut Vertebrados, Bogota, Colombia; [Laverde-R, Oscar] Pontificia Univ Javeriana, Dept Biol, Unidad Ecol & Sistemat UNESIS, Bogota, DC, Colombia Mahecha, L (reprint author), Univ Los Andes, Programa Pregrad Dept Ciencias Biol, Bogota, Colombia. ml.mahecha10@uniandes.edu.co ANDREAU M., 2010, NUESTRAS AVES, V54, P43; Benalcazar CE, 1984, CESPEDESIA, V13, P59; Delgado-V. Carlos A., 2003, Ornitologia Colombiana, V1, P63; Erard C, 1989, REV ECOLOGIE; Fitch H. S., 1946, CONDOR, V48, P205, DOI 10.2307/1363939; Gonzalez MF, 2007, SERIE GUIAS CAMPO I, V12; HECTOR DP, 1985, CONDOR, V87, P336; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Kirwan G. M, 2011, COTINGAS MANAKINS; Lourenco Rui F., 2006, Airo, V16, P63; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Martin TE, 2015, AM NAT, V186, P223, DOI 10.1086/681986; McCleery RH, 1991, BIRD POPULATION STUD; Ohlson JI, 2007, MOL PHYLOGENET EVOL, V42, P25, DOI 10.1016/j.ympev.2006.05.041; Ormerod SJ, 2002, J APPL ECOL, V39, P181, DOI 10.1046/j.1365-2664.2002.00722.x; POULIN B, 1994, CONDOR, V96, P354, DOI 10.2307/1369320; Reudink MW, 2007, ORNITOL NEOTROP, V18, P543; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Sandor AD, 2008, J RAPTOR RES, V42, P292, DOI 10.3356/JRR-08-02.1; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Snow D, 1982, BRIT MUSEUM NATURAL; Snow D. W, 2004, HDB BIRDS WORLD, P32; Trail PW, 1984, THESIS; Whittaker A, 1995, B BRIT ORNITHOLOGIST, V116, P58; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104 29 0 0 1 1 WILSON ORNITHOLOGICAL SOC WACO 5400 BOSQUE BLVD, STE 680, WACO, TX 76710 USA 1559-4491 1938-5447 WILSON J ORNITHOL Wilson J. Ornithol. JUN 2018 130 2 558 560 10.1676/17-005.1 4 Ornithology Zoology GK4CR WOS:000436102700026 2019-02-21 J Salguero-Gomez, R; Violle, C; Gimenez, O; Childs, D Salguero-Gomez, Roberto; Violle, Cyrille; Gimenez, Olivier; Childs, Dylan Delivering the promises of trait-based approaches to the needs of demographic approaches, and vice versa FUNCTIONAL ECOLOGY English Editorial Material fast-slow continuum; fitness; functional trait; leaf economics spectrum; life-history trait; macroecology; selection gradient; vital rate FAST-SLOW CONTINUUM; INTEGRAL PROJECTION MODELS; PLANT FUNCTIONAL TRAITS; LIFE-HISTORY VARIATION; ECONOMICS SPECTRUM; INTRASPECIFIC VARIABILITY; GOOD PREDICTORS; COMMUNITY ECOLOGY; EUROPEAN FLORA; R PACKAGE 1. Few facets of biology vary more than functional traits and life-history traits. To explore this vast variation, functional ecologists and population ecologists have developed independent approaches that identify the mechanisms behind and consequences of trait variation. 2. Collaborative research between researchers using trait-based and demographic approaches remains scarce. We argue that this is a missed opportunity, as the strengths of both approaches could help boost the research agendas of functional ecology and population ecology. 3. This special feature, which spans three journals of the British Ecological Society due to its interdisciplinary nature, showcases state-of-the-art research applying trait-based and demographic approaches to examine relationships between organismal function, life history strategies and population performance across multiple kingdoms. Examples include the exploration of how functional trait x environment interactions affect vital rates and thus explain population trends and species occurrence; the coordination of seed traits and dispersal ability with the pace of life in plants; the incorporation of functional traits in dynamic energy budget models; or the discovery of linkages between microbial functional traits and the fast-slow continuum. 4. Despite their historical isolation, collaborative work between functional ecologists and population ecologists could unlock novel research pathways. We call for an integrative research agenda to evaluate which and when traits are functional, as well as their ability to describe and predict life history strategies and population dynamics. We highlight promising, complementary research avenues to overcome current limitations. These include a more explicit linkage of selection gradients in the context of functional trait-vital rate relationships, and the implementation of standardised protocols to track changes in traits and vital rates over time at the same location and individuals, thus allowing for the explicit incorporation of trade-offs in analyses of covariation of functional traits and life-history traits. [Salguero-Gomez, Roberto] Univ Oxford, Dept Zool, Oxford, England; [Salguero-Gomez, Roberto] Max Planck Inst Demog Res, Evolutionary Biodemog Lab, Rostock, Germany; [Salguero-Gomez, Roberto] Univ Queensland, Ctr Biodivers & Conservat Sci, St Lucia, Qld, Australia; [Violle, Cyrille; Gimenez, Olivier] Univ Paul Valery Montpellier 3, Univ Montpellier, CEFE, CNRS,EPHE,IRD, Montpellier, France; [Childs, Dylan] Univ Sheffield, Dept Anim & Plant Sci, Sheffield, S Yorkshire, England Salguero-Gomez, R (reprint author), Univ Oxford, Dept Zool, Radcliffe Observ Quarter, New Radcliffe House, Oxford OX2 6GG, England. rob.salguero@zoo.ox.ac.uk Childs, Dylan/0000-0002-0675-4933; Salguero-Gomez, Roberto/0000-0002-6085-4433 Natural Environment Research Council [NERC IRF R/142195-11-1]; European Research Council [ERC-StG-2014-639706-CONSTRAINTS]; Agence Nationale de la Recherche [ANR-17-CE02-0018-01, ANR-16-CE02-0007]; Groupement de Recherche International "Dynamique de la biodiversite et traits d'histoire de vie" [GDRI BFC 44745] Natural Environment Research Council, Grant/Award Number: NERC IRF R/142195-11-1; European Research Council, Grant/Award Number: ERC-StG-2014-639706-CONSTRAINTS; Agence Nationale de la Recherche, Grant/Award Number: ANR-17-CE02-0018-01 and ANR-16-CE02-0007; Groupement de Recherche International "Dynamique de la biodiversite et traits d'histoire de vie", Grant/Award Number: GDRI BFC 44745 Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Adler PB, 2013, ECOL LETT, V16, P1294, DOI 10.1111/ele.12157; Adler PB, 2010, ECOL LETT, V13, P1019, DOI 10.1111/j.1461-0248.2010.01496.x; Albert CH, 2011, PERSPECT PLANT ECOL, V13, P217, DOI 10.1016/j.ppees.2011.04.003; Barks PM, 2018, J ECOL, V106, P2132, DOI 10.1111/1365-2745.12937; Beckman NG, 2018, J ECOL, V106, P1349, DOI 10.1111/1365-2745.12989; Beissinger SR, 2015, BIOSCIENCE, V65, P121, DOI 10.1093/biosci/biu212; Bertelsmeier C, 2017, FUNCT ECOL, V31, P556, DOI 10.1111/1365-2435.12812; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Blonder B, 2018, J ECOL, V106, P1323, DOI 10.1111/1365-2745.12973; Blonder B, 2018, METHODS ECOL EVOL, V9, P305, DOI 10.1111/2041-210X.12865; Bogdziewicz M, 2018, NEW PHYTOL, V219, P98, DOI 10.1111/nph.15108; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Brousseau PM, 2018, J ANIM ECOL, V87, P1209, DOI 10.1111/1365-2656.12834; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Brown JH, 1995, MACROECOLOGY; Calow P, 1987, FUNCT ECOL, V1, P57, DOI 10.2307/2389358; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2013, J ECOL, V101, P585, DOI 10.1111/1365-2745.12088; Chagnon PL, 2013, TRENDS PLANT SCI, V18, P484, DOI 10.1016/j.tplants.2013.05.001; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Cohen AA, 2012, TRENDS ECOL EVOL, V27, P428, DOI 10.1016/j.tree.2012.04.008; Conde DA, 2011, SCIENCE, V331, P1390, DOI 10.1126/science.1200674; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; Coutts SR, 2016, ECOL LETT, V19, P1429, DOI 10.1111/ele.12691; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; Deroski S., 2008, ENCY ECOLOGY, P821, DOI [10. 1016/B978-008045405-4. 00153-1, DOI 10.1016/B978-008045405-4.00153-1]; Diaz S, 1997, J VEG SCI, V8, P463, DOI 10.2307/3237198; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Donovan LA, 2011, TRENDS ECOL EVOL, V26, P88, DOI 10.1016/j.tree.2010.11.011; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; EBERT TA, 1999, PLANT ANIMAL POPULAT; Ellers J, 2018, J ANIM ECOL, V87, P933, DOI 10.1111/1365-2656.12838; Ellner S. P., 2016, DATA DRIVEN MODELLIN, DOI [10. 1007/978-3-319-28893-2, DOI 10.1007/978-3-319-28893-2]; ELLSWORTH DS, 1992, FUNCT ECOL, V6, P423, DOI 10.2307/2389280; Enquist BJ, 2015, ADV ECOL RES, V52, P249, DOI 10.1016/bs.aecr.2015.02.001; Evans MEK, 2016, TRENDS ECOL EVOL, V31, P860, DOI 10.1016/j.tree.2016.08.005; Flores O, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0105022; Froese R., 2014, ECOSYSTEM APPROACHES, P47; Funk JL, 2017, BIOL REV, V92, P1156, DOI 10.1111/brv.12275; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Garnier E, 2004, ECOLOGY, V85, P2630, DOI 10.1890/03-0799; Garnier E., 2015, PLANT FUNCTIONAL DIV, DOI [10. 1093/acprof:oso/9780198757368. 001. 0001, DOI 10.1093/ACPROF:OSO/9780198757368.001.0001]; Garnier E, 2018, J ECOL, V106, P1363, DOI 10.1111/1365-2745.12996; Ghedini G, 2018, FUNCT ECOL, V32, P1447, DOI 10.1111/1365-2435.13103; Gibson D. J., 2014, METHODS COMP PLANT P, DOI [10. 1093/acprof:oso/9780199671465. 001. 0001, DOI 10.1093/ACPROF:OSO/9780199671465.001.0001]; Gimenez O, 2018, OIKOS, V127, P664, DOI 10.1111/oik.04532; Gonzalez EJ, 2016, METHODS ECOL EVOL, V7, P147, DOI 10.1111/2041-210X.12519; Griffith AB, 2016, J ECOL, V104, P271, DOI 10.1111/1365-2745.12547; Grime J. P, 2012, EVOLUTIONARY STRATEG, DOI [10.1002/9781118223246, DOI 10.1002/9781118223246, 10. 1002/9781118223246]; Gross N, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0132; Harper J. L., 1977, POPULATION BIOL PLAN; HARPER JOHN L., 1964, J ECOL, V52, P149; Hart SP, 2009, ECOLOGY, V90, P1670, DOI 10.1890/08-1745.1; Heppell S, 2000, ECOLOGY, V81, P605, DOI 10.1890/0012-9658(2000)081[0605:EAIPBM]2.0.CO;2; Hughes PW, 2017, ECOL EVOL, V7, P8232, DOI 10.1002/ece3.3341; Irwin A. J, 2017, BIORXIV, DOI [10.1101/148312, DOI 10.1101/148312, 10. 1101/148312]; Iversen CM, 2017, NEW PHYTOL, V215, P15, DOI 10.1111/nph.14486; Jenouvrier S, 2018, J ANIM ECOL, V87, P906, DOI 10.1111/1365-2656.12827; Jones Kate E., 2009, Ecology (Washington D C), V90, P2648, DOI 10.1890/08-1494.1; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Jung V, 2010, J ECOL, V98, P1134, DOI 10.1111/j.1365-2745.2010.01687.x; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; KEDDY PA, 1992, FUNCT ECOL, V6, P621, DOI 10.2307/2389954; Klimesova J, 2017, ECOLOGY, V98, P1179, DOI 10.1002/ecy.1745; Knevel IC, 2003, J VEG SCI, V14, P611, DOI 10.1658/1100-9233(2003)014[0611:LTOTNE]2.0.CO;2; Kooijman SALM, 2007, BIOL REV, V82, P113, DOI 10.1111/j.1469-185X.2006.00006.x; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kraft NJB, 2008, SCIENCE, V322, P580, DOI 10.1126/science.1160662; Kraft NJB, 2015, P NATL ACAD SCI USA, V112, P797, DOI 10.1073/pnas.1413650112; Kuebbing SE, 2018, ECOL MONOGR, V88, P245, DOI 10.1002/ecm.1289; Kuhn I, 2004, DIVERS DISTRIB, V10, P363, DOI 10.1111/j.1366-9516.2004.00106.x; KURTA A, 1991, OECOLOGIA, V87, P102, DOI 10.1007/BF00323786; Laliberte E, 2017, NEW PHYTOL, V213, P1597, DOI 10.1111/nph.14247; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Laughlin DC, 2018, ECOL LETT, V21, P411, DOI 10.1111/ele.12914; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Lavorel S, 2013, J ECOL, V101, P4, DOI 10.1111/1365-2745.12031; Leibman L, 2018, FUNCT ECOL, V32, P1457, DOI 10.1111/1365-2435.13093; Lemaitre JF, 2018, J ANIM ECOL, V87, P921, DOI 10.1111/1365-2656.12833; Madin JS, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.17; Madin JS, 2016, TRENDS ECOL EVOL, V31, P419, DOI 10.1016/j.tree.2016.02.012; Maitner BS, 2018, METHODS ECOL EVOL, V9, P373, DOI 10.1111/2041-210X.12861; Marshall DJ, 2018, FUNCT ECOL, V32, P1436, DOI 10.1111/1365-2435.13099; Martinez-Garza C, 2013, FOREST ECOL MANAG, V303, P35, DOI 10.1016/j.foreco.2013.03.046; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Silva MAM, 2017, BRAZ J BOT, V40, P761, DOI 10.1007/s40415-017-0389-9; Messier J, 2010, ECOL LETT, V13, P838, DOI 10.1111/j.1461-0248.2010.01476.x; Metcalf CJE, 2013, METHODS ECOL EVOL, V4, P195, DOI 10.1111/2041-210x.12001; Moles AT, 2018, J ECOL, V106, P1, DOI 10.1111/1365-2745.12887; Moretti M, 2017, FUNCT ECOL, V31, P558, DOI 10.1111/1365-2435.12776; Morris WF, 2002, QUANTITATIVE CONSERV; Myhrvold N. P., 2015, ECOLOGY, V96, P3109, DOI DOI 10.1890/15-0846R.1; Negret B. E. S., 2016, ECOLOGIA FUNCIONAL C; NERC Centre for Population Biology, 2003, GLOB POP DYN DAT; Perez-Harguindeguy N., 2013, AUSTR J BOT, V64, P715; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; PREGITZER KS, 1993, NEW PHYTOL, V125, P575, DOI 10.1111/j.1469-8137.1993.tb03905.x; Ramula S, 2009, J APPL ECOL, V46, P1048, DOI 10.1111/j.1365-2664.2009.01706.x; Razafindratsima OH, 2018, ECOLOGY, V99, P990, DOI 10.1002/ecy.2167; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Renner SC, 2017, DATA, V2, DOI 10.3390/data2020012; Ricotta C, 2011, OECOLOGIA, V167, P181, DOI 10.1007/s00442-011-1965-5; ROFF DA, 2002, LIFE HIST EVOLUTION; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; Roumet C, 2016, NEW PHYTOL, V210, P815, DOI 10.1111/nph.13828; Rubner M., 1908, PROBLEM LEBENSDAUR S; Ruger N, 2018, ECOL LETT, V21, P1075, DOI 10.1111/ele.12974; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Salguero-Gomez R., 2018, THE STRATEGO NETWORK; Salguero-Gomez R, 2017, NEW PHYTOL, V213, P1618, DOI 10.1111/nph.14289; Salguero-Gomez R, 2016, J ANIM ECOL, V85, P371, DOI 10.1111/1365-2656.12482; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Santini L, 2018, GLOBAL ECOL BIOGEOGR, V27, P787, DOI 10.1111/geb.12756; SARUKHAN J, 1973, J ECOL, V61, P675, DOI 10.2307/2258643; Shefferson R. P., 2017, EVOLUTION SENESCENCE, DOI [10.1017/9781139939867, DOI 10.1017/9781139939867]; Shipley B, 2006, SCIENCE, V314, P812, DOI 10.1126/science.1131344; Shipley B, 2016, OECOLOGIA, V180, P923, DOI 10.1007/s00442-016-3549-x; Silberbush M, 2013, PLANT ROOTS: THE HIDDEN HALF, 4TH EDITION; SILVERTOWN J, 1992, FUNCT ECOL, V6, P130, DOI 10.2307/2389746; Silvertown J, 1996, CONSERV BIOL, V10, P591, DOI 10.1046/j.1523-1739.1996.10020591.x; Smallegange IM, 2018, J ANIM ECOL, V87, P893, DOI 10.1111/1365-2656.12802; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEARNS SC, 1982, EVOL DEV, P237, DOI DOI 10.1007/978-3-642-45532-2; Strier KB, 2010, METHODS ECOL EVOL, V1, P199, DOI 10.1111/j.2041-210X.2010.00023.x; Sutherland WJ, 2013, J ECOL, V101, P58, DOI 10.1111/1365-2745.12025; Tamme R, 2014, ECOLOGY, V95, P505, DOI 10.1890/13-1000.1; Taudiere A, 2016, ECOGRAPHY, V39, P699, DOI 10.1111/ecog.01433; Teller BJ, 2016, METHODS ECOL EVOL, V7, P171, DOI 10.1111/2041-210X.12486; Tuljapurkar S., 1997, STRUCTURED POPULATIO, DOI [10. 1007/978-1-4615-5973-3, DOI 10.1007/978-1-4615-5973-3]; van der Meer J, 2006, TRENDS ECOL EVOL, V21, P136, DOI 10.1016/j.tree.2005.11.004; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; Vasseur F, 2018, P NATL ACAD SCI USA, V115, P3416, DOI 10.1073/pnas.1709141115; Vindenes Y, 2008, AM NAT, V171, P455, DOI 10.1086/528965; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Violle C, 2017, TRENDS ECOL EVOL, V32, P356, DOI 10.1016/j.tree.2017.02.002; Violle C, 2014, P NATL ACAD SCI USA, V111, P13690, DOI 10.1073/pnas.1415442111; Violle C, 2012, TRENDS ECOL EVOL, V27, P244, DOI 10.1016/j.tree.2011.11.014; Violle C, 2009, J PLANT ECOL-UK, V2, P87, DOI 10.1093/jpe/rtp007; Visser MD, 2016, FUNCT ECOL, V30, P168, DOI 10.1111/1365-2435.12621; Wang H, 2018, ECOLOGY, V99, P500, DOI 10.1002/ecy.2091; Wenk EH, 2018, J ECOL, V106, P1338, DOI 10.1111/1365-2745.12974; Wenk EH, 2015, ECOL EVOL, V5, P5521, DOI 10.1002/ece3.1802; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wuest RO, 2018, OIKOS, V127, P472, DOI 10.1111/oik.04420; Yang J, 2018, TRENDS ECOL EVOL, V33, P326, DOI 10.1016/j.tree.2018.03.003 150 0 0 26 42 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JUN 2018 32 6 1424 1435 10.1111/1365-2435.13148 12 Ecology Environmental Sciences & Ecology GJ5SL WOS:000435442500001 30034074 Other Gold, Green Published 2019-02-21 J Bubac, CM; Coltman, DW; Bowen, WD; Lidgard, DC; Lang, SLC; den Heyer, CE Bubac, Christine M.; Coltman, David W.; Bowen, W. Don; Lidgard, Damian C.; Lang, Shelley L. C.; den Heyer, Cornelia E. Repeatability and reproductive consequences of boldness in female gray seals BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Boldness; Animal personality; Life history; Gray seal; Pinniped; Halichoerus grypus NORTHERN ELEPHANT SEAL; MIXED-EFFECTS MODELS; HALICHOERUS-GRYPUS; GREY SEALS; ANIMAL PERSONALITY; LIFE-HISTORY; INDIVIDUAL-DIFFERENCES; POSTWEANING FAST; SABLE ISLAND; BODY-SIZE Wild animals show consistent individual variation in behavior across time and/or contexts, now referred to as animal personality. While this variability may have important ecological and evolutionary implications, how and why variation in animal personality is maintained in a natural population remains unclear. In this study, we assessed the influence of environmental and biological sources of variation on behavioral responses measured along the shy-bold continuum in a long-lived, iteroparous marine mammal, the gray seal (Halichoerus grypus). Between 2008 and 2016, 469 females from the Sable Island, Nova Scotia breeding colony of gray seals were given a boldness score in response to a human approach, designed to stimulate maternal defense of offspring. Using generalized linear mixed-effects models (GLMM) in a Bayesian framework, we show that boldness is highly repeatable between and within years. There were age differences in boldness, with younger females being less bold than older, more experienced females providing some support for the life history trade-off hypothesis. We further used GLMMs to assess sources of variation on offspring weaning mass. We found that young females that were bolder produced heavier pups than shyer counterparts, and that pups produced by bolder females were on average 2 kg heavier than pups of shy females. These results provide further evidence that personality influences life history strategies, and illustrates the evolutionary potential of animal personality in response to selection. Consistent individual differences in behavior influence various aspects of ecology including species interactions, species distributions, and life history strategies. However, how and why this individual variation is maintained in a natural population remains uncertain. In this study, we assessed the influence of boldness, specifically maternal defense of offspring, on a component of reproductive success in a long-lived marine mammal. We showed highly repeatable behavioral differences, and found that boldness varied with age, with younger individuals being less bold than older individuals. Younger individuals that were bolder produced heavier offspring than shyer counterparts. Our study contributes to an under-represented group of animals, wild marine mammals, in the personality literature, and further prompts the investigation into the proximate and ultimate factors influencing personality in an ecologically important marine predator. [Bubac, Christine M.; Coltman, David W.] Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada; [Bowen, W. Don; Lang, Shelley L. C.; den Heyer, Cornelia E.] Bedford Inst Oceanog, Populat Ecol Div, Dartmouth, NS, Canada; [Bowen, W. Don; Lidgard, Damian C.] Dalhousie Univ, Biol Dept, Halifax, NS, Canada Bubac, CM (reprint author), Univ Alberta, Dept Biol Sci, Edmonton, AB, Canada. bubac@ualberta.ca Department of Fisheries and Oceans, Canada from the Natural Sciences and Engineering Research Council of Canada [NETGP 375118-08, 36762-2012, 146522]; Alberta Innovates Technology Futures This work was supported by the Department of Fisheries and Oceans, Canada, a Research Network Grant (NETGP 375118-08), Discovery Grants to WDB (grant number 36762-2012), and to DWC (grant number 146522) from the Natural Sciences and Engineering Research Council of Canada. CMB has been funded by scholarship from Alberta Innovates Technology Futures. Ambs SM, 1999, ANIM BEHAV, V58, P527, DOI 10.1006/anbe.1999.1201; BAKER JR, 1984, J ZOOL, V203, P23; Bates D, 2015, J STAT SOFTW, V67, P1; Beekman M, 2017, BEHAV ECOL, V28, P617, DOI 10.1093/beheco/arx022; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bergmuller R, 2010, TRENDS ECOL EVOL, V25, P504, DOI 10.1016/j.tree.2010.06.012; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Bishop AM, 2016, AQUAT MAMM, V42, P137, DOI 10.1578/AM.42.2.2016.137; BOAKE CRB, 1989, EVOL ECOL, V3, P173, DOI 10.1007/BF02270919; BONESS DJ, 1979, J ZOOL, V188, P477, DOI 10.1111/j.1469-7998.1979.tb03430.x; BONESS DJ, 1995, BEHAV ECOL SOCIOBIOL, V36, P1; BONESS DJ, 1982, CAN J ZOOL, V60, P2270, DOI 10.1139/z82-293; Bowen WD, 2007, MAR MAMMAL SCI, V23, P48, DOI 10.1111/j.1748-7692.2006.00085.x; Bowen WD, 2003, ICES J MAR SCI, V60, P1265, DOI 10.1016/S1054-3139(03)00147-4; Bowen WD, 2015, ECOL EVOL, V5, P1412, DOI 10.1002/ece3.1450; Breed GA, 2009, ECOLOGY, V90, P3209, DOI 10.1890/07-1483.1; Bridger D, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2492; Brown C, 2007, J FISH BIOL, V71, P1590, DOI 10.1111/j.1095-8649.2007.01627.x; Campioni L, 2016, J ZOOL, V298, P191, DOI 10.1111/jzo.12301; Carere C, 2011, CURR ZOOL, V57, P491, DOI 10.1093/czoolo/57.4.491; Carter AJ, 2013, BIOL REV, V88, P465, DOI 10.1111/brv.12007; Carter AJ, 2012, ANIM BEHAV, V83, P1051, DOI 10.1016/j.anbehav.2012.01.033; Catling P. M., 1984, Proceedings of the Nova Scotian Institute of Science, V34, P181; Christensen R. H. B., 2015, ORDINAL REGRESSION M; CHRISTENSON TE, 1978, BEHAVIOUR, V64, P158, DOI 10.1163/156853978X00495; COULSON JC, 1964, J ANIM ECOL, V33, P485, DOI 10.2307/2568; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; de Villemereuil P., 2013, METHODS ECOLOGY EVOL, V4, P260, DOI DOI 10.1111/2041-210X.12011; Delgado MD, 2008, AM NAT, V172, P475, DOI 10.1086/590964; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dingemanse NJ, 2004, BEHAV ECOL, V15, P1023, DOI 10.1093/beheco/arh115; Dohm MR, 2002, FUNCT ECOL, V16, P273; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hall AJ, 2001, J ANIM ECOL, V70, P138; Hammill MO, 2014, 2014037 DEP FISH OC; HARCOURT R, 1992, CAN J ZOOL, V70, P320, DOI 10.1139/z92-048; IVERSON SJ, 1993, PHYSIOL ZOOL, V66, P61, DOI 10.1086/physzool.66.1.30158287; Jungwirth A, 2017, BEHAV ECOL, V28, P629, DOI 10.1093/beheco/arx048; KOVACS KM, 1987, J ZOOL, V213, P697, DOI 10.1111/j.1469-7998.1987.tb03735.x; Lang SLC, 2009, ECOLOGY, V90, P2513, DOI 10.1890/08-1386.1; Lidgard DC, 2012, CAN J ZOOL, V90, P849, DOI 10.1139/Z2012-053; Lidgard DC, 2005, BEHAV ECOL, V16, P541, DOI 10.1093/beheco/ari023; Maillet Z, 2015, J ETHOL, V33, P47, DOI 10.1007/s10164-014-0416-2; Mansfield AW, 1977, TECH REPT FISH MAR S, V706, P1; Mayer M, 2016, BEHAVIOUR, V153, P313, DOI 10.1163/1568539X-00003343; Mellish JAE, 1999, PHYSIOL BIOCHEM ZOOL, V72, P677, DOI 10.1086/316708; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Noren DP, 2003, J COMP PHYSIOL B, V173, P443, DOI 10.1007/s00360-003-0353-9; Noren SR, 2008, PHYSIOL BIOCHEM ZOOL, V81, P269, DOI 10.1086/528777; Patrick S.C., 2014, P ROY SOC LOND B BIO, V282; Patrick SC, 2013, ECOL EVOL, V3, P4291, DOI 10.1002/ece3.748; Pomeroy PP, 1999, J ANIM ECOL, V68, P235, DOI 10.1046/j.1365-2656.1999.00281.x; POMEROY PP, 1994, J ZOOL, V233, P429, DOI 10.1111/j.1469-7998.1994.tb05275.x; R Core Team, 2016, R LANG ENV STAT COMP; Reale D, 2000, ANIM BEHAV, V60, P589, DOI 10.1006/anbe.2000.1530; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2017, BEHAV ECOL, V28, P627, DOI 10.1093/beheco/arx032; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stamps JA, 2012, ANIM BEHAV, V83, P1325, DOI 10.1016/j.anbehav.2012.02.017; Stamps JA, 2010, PHILOS T R SOC B, V365, P4029, DOI 10.1098/rstb.2010.0218; Turbill C, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012019; Twiss SD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049598; Twiss SD, 2010, AQUAT MAMM, V36, P234, DOI 10.1578/AM.36.3.2010.234; Weitzman J, 2017, OECOLOGIA, V183, P367, DOI 10.1007/s00442-016-3764-5; Wilson ADM, 2012, BEHAV ECOL, V23, P1316, DOI 10.1093/beheco/ars123; Wilson DS, 1998, PHILOS T ROY SOC B, V353, P199, DOI 10.1098/rstb.1998.0202; WILSON DS, 1994, TRENDS ECOL EVOL, V9, P442, DOI 10.1016/0169-5347(94)90134-1; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001; WORTHY GAJ, 1987, PHYSIOL ZOOL, V60, P352, DOI 10.1086/physzool.60.3.30162289 74 0 0 18 23 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JUN 2018 72 6 UNSP 100 10.1007/s00265-018-2515-5 12 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology GI0SF WOS:000434079000001 2019-02-21 J Moon, JW; Krems, JA; Cohen, AB Moon, Jordan W.; Krems, Jaimie Arona; Cohen, Adam B. Religious People Are Trusted Because They Are Viewed as Slow Life-History Strategists PSYCHOLOGICAL SCIENCE English Article evolutionary psychology; religious beliefs; religion; life-history theory; trust; open data; open materials PREJUDICE; PERSPECTIVE; COGNITION; DISCOUNT; GODS Religious people are more trusted than nonreligious people. Although most theorists attribute these perceptions to the beliefs of religious targets, religious individuals also differ in behavioral ways that might cue trust. We examined whether perceivers might trust religious targets more because they heuristically associate religion with slow life-history strategies. In three experiments, we found that religious targets are viewed as slow life-history strategists and that these findings are not the result of a universally positive halo effect; that the effect of target religion on trust is significantly mediated by the target's life-history traits (i.e., perceived reproductive strategy); and that when perceivers have direct information about a target's reproductive strategy, their ratings of trust are driven primarily by his or her reproductive strategy, rather than religion. These effects operate over and above targets' belief in moralizing gods and offer a novel theoretical perspective on religion and trust. [Moon, Jordan W.; Krems, Jaimie Arona; Cohen, Adam B.] Arizona State Univ, Dept Psychol, 950 S McAllister Ave, Tempe, AZ 85287 USA Moon, JW (reprint author), Arizona State Univ, Dept Psychol, 950 S McAllister Ave, Tempe, AZ 85287 USA. jordan.w.moon@asu.edu Moon, Jordan/0000-0001-5102-3585; Krems, Jaimie Arona/0000-0002-2590-2241 Air Force Office of Scientific Research [FA9550-15-1-0008]; Psi Chi graduate research grant This research was supported by the Air Force Office of Scientific Research (Grant No. FA9550-15-1-0008) and a Psi Chi graduate research grant awarded to J.W. Moon. Baumard N, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1593; Carter EC, 2012, EVOL HUM BEHAV, V33, P224, DOI 10.1016/j.evolhumbehav.2011.09.006; Cohen AB, 2006, J PERS, V74, P85, DOI 10.1111/j.1467-6494.2005.000370.x; Cohen AB, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-017-0157; Cottrell CA, 2005, J PERS SOC PSYCHOL, V88, P770, DOI 10.1037/0022-3514.88.5.770; Cottrell CA, 2007, J PERS SOC PSYCHOL, V92, P208, DOI 10.1037/0022-3514.92.2.208; Curry OS, 2008, PERS INDIV DIFFER, V44, P780, DOI 10.1016/j.paid.2007.09.023; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; Gervais WM, 2017, NAT HUM BEHAV, V1, DOI 10.1038/s41562-017-0151; Gervais WM, 2011, J PERS SOC PSYCHOL, V101, P1189, DOI 10.1037/a0025882; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Hall DL, 2015, PSYCHOL SCI, V26, P1368, DOI 10.1177/0956797615576473; Hayes AF, 2013, INTRO MEDIATION MODE; Hayes AF, 2014, BRIT J MATH STAT PSY, V67, P451, DOI 10.1111/bmsp.12028; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; LANDOLT MA, 1995, ETHOL SOCIOBIOL, V16, P3, DOI 10.1016/0162-3095(94)00012-V; Litman L, 2017, BEHAV RES METHODS, V49, P433, DOI 10.3758/s13428-016-0727-z; McCullough ME, 2016, PSYCHOL RELIG SPIRIT, V8, P149, DOI 10.1037/rel0000045; McCullough ME, 2009, PSYCHOL BULL, V135, P69, DOI 10.1037/a0014213; Neel R, 2013, PSYCHOL SCI, V24, P678, DOI 10.1177/0956797612458807; Norenzayan A, 2016, BEHAV BRAIN SCI, V39, DOI 10.1017/S0140525X14001356; Penke L, 2008, J PERS SOC PSYCHOL, V95, P1113, DOI 10.1037/0022-3514.95.5.1113; Petersen MB, 2015, PSYCHOL SCI, V26, P1681, DOI 10.1177/0956797615595622; Pirlott AG, 2016, J EXP SOC PSYCHOL, V66, P29, DOI 10.1016/j.jesp.2015.09.012; Purzycki BG, 2016, NATURE, V530, P327, DOI 10.1038/nature16980; Richerson Peter J., 2005, NOT GENES ALONE CULT; Roes FL, 2003, EVOL HUM BEHAV, V24, P126, DOI 10.1016/S1090-5138(02)00134-4; Rowthorn R, 2011, P ROY SOC B-BIOL SCI, V278, P2519, DOI 10.1098/rspb.2010.2504; Schmitt DP, 2015, PSYCHOL RELIG SPIRIT, V7, P314, DOI 10.1037/rel0000036; Shariff AF, 2016, PERS SOC PSYCHOL REV, V20, P27, DOI 10.1177/1088868314568811; Simpson JA, 2007, CURR DIR PSYCHOL SCI, V16, P264, DOI 10.1111/j.1467-8721.2007.00517.x; Stearns S, 1992, EVOLUTION LIFE HIST; Tan JHW, 2008, J ECON PSYCHOL, V29, P832, DOI 10.1016/j.joep.2008.03.002; Weeden J, 2008, EVOL HUM BEHAV, V29, P327, DOI 10.1016/j.evolhumbehav.2008.03.004; Weeden J, 2013, EVOL HUM BEHAV, V34, P440, DOI 10.1016/j.evolhumbehav.2013.08.006; Williams KEG, 2016, P NATL ACAD SCI USA, V113, P310, DOI 10.1073/pnas.1519401113; Wilson DS, 2009, EVOL HUM BEHAV, V30, P190, DOI 10.1016/j.evolhumbehav.2008.12.002 40 0 0 2 6 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0956-7976 1467-9280 PSYCHOL SCI Psychol. Sci. JUN 2018 29 6 947 960 10.1177/0956797617753606 14 Psychology, Multidisciplinary Psychology GI7TU WOS:000434705900009 29590005 2019-02-21 J Maronde, L; Losdat, S; Richner, H Maronde, Lea; Losdat, Sylvain; Richner, Heinz Do parasites and antioxidant availability affect begging behaviour, growth rate and resistance to oxidative stress? JOURNAL OF EVOLUTIONARY BIOLOGY English Article antioxidant availability; begging; early-life environment; great tit; growth rate; oxidative stress; parasites; parent-offspring conflict TITS CYANISTES-CAERULEUS; BLUE TITS; DIETARY ANTIOXIDANTS; PLUMAGE COLORATION; IMMUNE-RESPONSE; NESTLING BIRDS; HOUSE SPARROW; FEEDING RATES; GREAT TITS; TRADE-OFFS Early-life trade-offs faced by developing offspring can have long-term consequences for their future fitness. Young offspring use begging displays to solicit resources from their parents and have been selected to grow fast to maximize survival. However, growth and begging behaviour are generally traded off against self-maintenance. Oxidative stress, a physiological mediator of life-history trade-offs, may play a major role in this trade-off by constraining, or being costly to, growth and begging behaviour. Yet, despite implications for the evolution of life-history strategies and parent-offspring conflicts, the interplay between growth, begging behaviour and resistance to oxidative stress remains to be investigated. We experimentally challenged wild great tit (Parus major) offspring by infesting nests with a common ectoparasite, the hen flea (Ceratophyllus gallinae), and simultaneously tested for compensating effects of increased vitamin E availability, a common dietary antioxidant. We further quantified the experimental treatment effects on offspring growth, begging intensity and oxidative stress. Flea-infested nestlings of both sexes showed reduced body mass during the first half of the nestling phase, but this effect vanished short before fledging. Begging intensity and oxidative stress of both sexes were unaffected by both experimental treatments. Feeding rates were not affected by the experimental treatments, but parents of flea-infested nests fed nestlings with a higher proportion of caterpillars, the main source of antioxidants. Additionally, female nestlings begged significantly less than males in control nests, whereas both sexes begged at similar rates in vitamin E-supplemented nests. Our study shows that a parasite exposure does not necessarily affect oxidative stress levels or begging intensity, but suggests that parents can compensate for negative effects of parasitism by modifying food composition. Furthermore, our results indicate that the begging capacity of the less competitive sex is constrained by antioxidant availability. [Maronde, Lea; Losdat, Sylvain; Richner, Heinz] Univ Bern, Inst Ecol & Evolut, Bern, Switzerland; [Losdat, Sylvain] Univ Neuchatel, Inst Biol, 11 Rue Emile Argand, CH-2000 Neuchatel, Switzerland Losdat, S (reprint author), Univ Neuchatel, Inst Biol, 11 Rue Emile Argand, CH-2000 Neuchatel, Switzerland. s.losdat@gmail.com Swiss Federal Office for the Environment; Swiss National Science Foundation We thank Hanna Brindl and Sophie Labaude for assistance in field data collection. This study was approved by the Ethical Committee of the Agricultural Office of the Canton Bern (Switzerland) and by the Swiss Federal Office for the Environment. The study was supported by the Swiss National Science Foundation. Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Arnold KE, 2010, BIOL J LINN SOC, V99, P708, DOI 10.1111/j.1095-8312.2010.01377.x; Arnott SA, 2006, EVOLUTION, V60, P1269; Banbura J, 2004, ACTA ORNITHOL, V39, P93; Bates D., 2014, J STAT SOFTW, V1406, P5823, DOI DOI 10.1111/J.1365-246X.2011.05142.X; Beaulieu M, 2013, ANIM BEHAV, V86, P17, DOI 10.1016/j.anbehav.2013.05.022; Boncoraglio G, 2012, BEHAV ECOL SOCIOBIOL, V66, P539, DOI 10.1007/s00265-011-1302-3; BRISKIE JV, 1994, P ROY SOC B-BIOL SCI, V258, P73, DOI 10.1098/rspb.1994.0144; Brown CR, 1995, P ROY SOC B-BIOL SCI, V262, P313, DOI 10.1098/rspb.1995.0211; Cantarero A, 2013, J AVIAN BIOL, V44, P591, DOI 10.1111/j.1600-048X.2013.00134.x; Noguera JC, 2012, BIOL LETTERS, V8, P61, DOI 10.1098/rsbl.2011.0756; Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Christe P, 1996, BEHAV ECOL, V7, P127, DOI 10.1093/beheco/7.2.127; Christensen R. H. B., 2015, REGRESSION MODELS OR, P6; Costantini D, 2014, OXIDATIVE STRESS HOR; Costantini D, 2006, J COMP PHYSIOL B, V176, P575, DOI 10.1007/s00360-006-0080-0; Costantini D, 2009, COMP BIOCHEM PHYS A, V153, P339, DOI 10.1016/j.cbpa.2009.03.010; Crocker D., 2002, PN0909 BRIT DEP ENV; de Ayala RM, 2006, BEHAV ECOL SOCIOBIOL, V60, P619, DOI 10.1007/s00265-006-0206-0; De Coster G, 2012, J AVIAN BIOL, V43, P177, DOI 10.1111/j.1600-048X.2012.05551.x; Devevey G, 2009, PARASITOLOGY, V136, P1351, DOI 10.1017/S0031182009990746; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Forstmeier W, 2011, BEHAV ECOL SOCIOBIOL, V65, P47, DOI 10.1007/s00265-010-1038-5; Gosler A. G., 1993, GREAT TIT; Hall ME, 2010, FUNCT ECOL, V24, P365, DOI 10.1111/j.1365-2435.2009.01635.x; Hasselquist D, 2012, ANIM BEHAV, V83, P1303, DOI 10.1016/j.anbehav.2012.03.025; Horak P, 2007, AM NAT, V170, P625, DOI 10.1086/521232; Hurtrez-Bousses S, 1998, ECOL LETT, V1, P17, DOI 10.1046/j.1461-0248.1998.00017.x; Kilner R, 1997, TRENDS ECOL EVOL, V12, P11, DOI 10.1016/S0169-5347(96)10061-6; Kilner RM, 2001, P NATL ACAD SCI USA, V98, P11394, DOI 10.1073/pnas.191221798; Kolliker M, 1998, ANIM BEHAV, V55, P215, DOI 10.1006/anbe.1997.0571; Larcombe SD, 2010, NATURWISSENSCHAFTEN, V97, P903, DOI 10.1007/s00114-010-0708-5; Leech SM, 1997, BEHAV ECOL, V8, P644, DOI 10.1093/beheco/8.6.644; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lin YF, 2005, J NUTR, V135, P2457; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Lopez-Arrabe J, 2015, OECOLOGIA, V179, P29, DOI 10.1007/s00442-015-3321-7; Losdat S, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.0888; Maronde L, 2015, BEHAV ECOL, V26, P465, DOI 10.1093/beheco/aru215; Marri V, 2014, J EXP BIOL, V217, P1478, DOI 10.1242/jeb.096826; Matrkova J, 2014, J AVIAN BIOL, V45, P475, DOI 10.1111/jav.00368; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Moller A.P., 1990, NATO ASI Series Series G Ecological Sciences, V24, P269; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Moreno-Rueda G, 2016, IBIS, V158, P881, DOI 10.1111/ibi.12394; Moreno-Rueda G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040367; Moreno-Rueda G, 2010, P ROY SOC B-BIOL SCI, V277, P2083, DOI 10.1098/rspb.2010.0109; Mougeot F, 2010, J EXP BIOL, V213, P400, DOI 10.1242/jeb.037101; Noguera JC, 2010, BEHAV ECOL, V21, P479, DOI 10.1093/beheco/arq005; Oddie KR, 2000, J ANIM ECOL, V69, P903, DOI 10.1046/j.1365-2656.2000.00438.x; Orledge JM, 2012, FUNCT ECOL, V26, P688, DOI 10.1111/j.1365-2435.2012.01977.x; Ortuno J, 2000, FISH SHELLFISH IMMUN, V10, P293, DOI 10.1006/fsim.1999.0238; Owen JP, 2010, TRENDS PARASITOL, V26, P530, DOI 10.1016/j.pt.2010.06.005; Perez-Rodriguez L, 2009, BIOESSAYS, V31, P1116, DOI 10.1002/bies.200900070; Price K, 1996, ANIM BEHAV, V51, P421, DOI 10.1006/anbe.1996.0039; R Development Core Team, 2014, R LANG ENV STAT COMP; RICHNER H, 1993, J ANIM ECOL, V62, P703, DOI 10.2307/5390; Ruuskanen S, 2010, HORM BEHAV, V57, P119, DOI 10.1016/j.yhbeh.2009.09.017; Sies H., 1991, OXIDATIVE STRESS OXI; Smith SM, 2016, ECOL EVOL, V6, P2833, DOI 10.1002/ece3.2080; Soler M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111929; Sorci G, 2009, PHILOS T R SOC B, V364, P71, DOI 10.1098/rstb.2008.0151; Stearns S, 1992, EVOLUTION LIFE HIST; Surai PF, 1998, COMP BIOCHEM PHYS B, V120, P527, DOI 10.1016/S0305-0491(98)10039-1; Surai PF, 2002, NATURAL ANTIOXIDANTS; TEATHER KL, 1992, BEHAV ECOL SOCIOBIOL, V31, P81, DOI 10.1007/BF00166340; Thomas K, 2001, CAN J ZOOL, V79, P346, DOI 10.1139/cjz-79-2-346; Tripet F, 1997, OIKOS, V78, P557, DOI 10.2307/3545617; Trivers R, 1972, SEXUAL SELECTION DES, P139; Tschirren B, 2004, J ANIM ECOL, V73, P814; Tschirren B, 2007, FUNCT ECOL, V21, P372, DOI 10.1111/j.1365-2435.2007.01235.x; von Engelhardt N, 2006, P ROY SOC B-BIOL SCI, V273, P65, DOI 10.1098/rspb.2005.3274; Weddle CB, 2000, CONDOR, V102, P684, DOI 10.1650/0010-5422(2000)102[0684:EOEONB]2.0.CO;2 74 0 0 6 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JUN 2018 31 6 904 913 10.1111/jeb.13274 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GI4RL WOS:000434358800011 29577502 2019-02-21 J Postma, FM; Agren, J Postma, Froukje M.; Agren, Jon Among-year variation in selection during early life stages and the genetic basis of fitness in Arabidopsis thaliana MOLECULAR ECOLOGY English Article adaptation; conflicting selection; germination timing; life-history evolution; QTL mapping; trade-off LOCAL ADAPTATION; SEED DORMANCY; TRADE-OFFS; PHENOTYPIC SELECTION; NATURAL-POPULATIONS; CONFLICTING SELECTION; DIRECTIONAL SELECTION; TEMPORAL DYNAMICS; AVENA-BARBATA; NATIVE RANGE Incomplete information regarding both selection regimes and the genetic basis of fitness limits our understanding of adaptive evolution. Among-year variation in the genetic basis of fitness is rarely quantified, and estimates of selection are typically based on single components of fitness, thus potentially missing conflicting selection acting during other life-history stages. Here, we examined among-year variation in selection on a key life-history trait and the genetic basis of fitness covering the whole life cycle in the annual plant Arabidopsis thaliana. We planted freshly matured seeds of >200 recombinant inbred lines (RILs) derived from a cross between two locally adapted populations (Italy and Sweden), and both parental genotypes at the native site of the Swedish population in three consecutive years. We quantified selection against the nonlocal Italian genotype, mapped quantitative trait loci (QTL) for fitness and its components, and quantified selection on timing of germination during different life stages. In all 3years, the local Swedish genotype outperformed the nonlocal Italian genotype. However, both the contribution of early life stages to relative fitness, and the effects of fitness QTL varied among years. Timing of germination was under conflicting selection through seedling establishment vs. adult survival and fecundity, and both the direction and magnitude of net selection varied among years. Our results demonstrate that selection during early life stages and the genetic basis of fitness can vary markedly among years, emphasizing the need for multiyear studies considering the whole life cycle for a full understanding of natural selection and mechanisms maintaining local adaptation. [Postma, Froukje M.; Agren, Jon] Uppsala Univ, Dept Plant Ecol & Evolut, Evolutionary Biol Ctr, Uppsala, Sweden Agren, J (reprint author), Uppsala Univ, Dept Plant Ecol & Evolut, Evolutionary Biol Ctr, Uppsala, Sweden. jon.agren@ebc.uu.se Agren, Jon/0000-0001-9573-2463 Vetenskapsradet [2016-05435] Vetenskapsradet, Grant/Award Number: 2016-05435 Agren J, 2017, EVOLUTION, V71, P550, DOI 10.1111/evo.13126; Agren J, 2013, P NATL ACAD SCI USA, V110, P21077, DOI 10.1073/pnas.1316773110; Agren J, 2012, NEW PHYTOL, V194, P1112, DOI 10.1111/j.1469-8137.2012.04112.x; Akiyama R, 2014, J EVOLUTION BIOL, V27, P193, DOI 10.1111/jeb.12293; Anderson JT, 2013, MOL ECOL, V22, P699, DOI 10.1111/j.1365-294X.2012.05522.x; ARNOLD SJ, 1984, EVOLUTION, V38, P720, DOI 10.1111/j.1558-5646.1984.tb00345.x; Baskin CC, 2014, SEEDS: ECOLOGY, BIOGEOGRAPHY, AND EVOLUTION OF DORMANCY AND GERMINATION, 2ND EDITION, P1; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Bentsink L, 2006, P NATL ACAD SCI USA, V103, P17042, DOI 10.1073/pnas.0607877103; Broman KW, 2009, STAT BIOL HEALTH, P1, DOI 10.1007/978-0-387-92125-9_1; Broman KW, 2003, BIOINFORMATICS, V19, P889, DOI 10.1093/bioinformatics/btg112; Burghardt LT, 2015, AM NAT, V185, P212, DOI 10.1086/679439; Canty A., 2016, BOOT BOOTSTRAP R S P; Chen M, 2014, P NATL ACAD SCI USA, V111, P18787, DOI 10.1073/pnas.1412274111; Chiang GCK, 2013, EVOLUTION, V67, P883, DOI 10.1111/j.1558-5646.2012.01828.x; Chiang GCK, 2011, MOL ECOL, V20, P3336, DOI 10.1111/j.1365-294X.2011.05181.x; Dittmar EL, 2014, MOL ECOL, V23, P4291, DOI 10.1111/mec.12857; Donohue K, 2014, EVOLUTION, V68, P32, DOI 10.1111/evo.12284; Donohue K, 2010, ANNU REV ECOL EVOL S, V41, P293, DOI 10.1146/annurev-ecolsys-102209-144715; Donohue K, 2009, PHILOS T R SOC B, V364, P1059, DOI 10.1098/rstb.2008.0291; Finch-Savage WE, 2006, NEW PHYTOL, V171, P501, DOI 10.1111/j.1469-8137.2006.01787.x; Finch-Savage WE, 2017, J EXP BOT, V68, P843, DOI 10.1093/jxb/erw477; Fournier-Level A, 2011, SCIENCE, V334, P86, DOI 10.1126/science.1209271; Fournier-Level A, 2013, MOL ECOL, V22, P3552, DOI 10.1111/mec.12285; Fraser DJ, 2011, HEREDITY, V106, P404, DOI 10.1038/hdy.2010.167; Gardner KM, 2006, MOL ECOL, V15, P1321, DOI 10.1111/j.1365-294X.2005.02835.x; Hall MC, 2010, MOL ECOL, V19, P2739, DOI 10.1111/j.1365-294X.2010.04680.x; Hancock AM, 2011, SCIENCE, V334, P83, DOI 10.1126/science.1209244; Hereford J, 2009, AM NAT, V173, P579, DOI 10.1086/597611; Hoekstra HE, 2001, P NATL ACAD SCI USA, V98, P9157, DOI 10.1073/pnas.161281098; Huang XQ, 2010, MOL ECOL, V19, P1335, DOI 10.1111/j.1365-294X.2010.04557.x; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Kerdaffrec E, 2016, ELIFE, V5, DOI [10.7554/eLife.22502, 10.7554/elife.22502]; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kingsolver JG, 2012, EVOL ECOL, V26, P1101, DOI 10.1007/s10682-012-9563-5; Kitajima K., 2000, Seeds: the ecology of regeneration in plant communities, P331, DOI 10.1079/9780851994321.0331; Krebs C, 2001, ECOLOGY; Kronholm I, 2012, EVOLUTION, V66, P2287, DOI 10.1111/j.1558-5646.2012.01590.x; Kuhn M, 2013, CONTRAST COLLECTION; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Latta RG, 2009, MOL ECOL, V18, P3781, DOI 10.1111/j.1365-294X.2009.04302.x; Leimu R, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0004010; Leinonen PH, 2013, MOL ECOL, V22, P709, DOI 10.1111/j.1365-294X.2012.05678.x; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Morrissey MB, 2012, EVOLUTION, V66, P435, DOI 10.1111/j.1558-5646.2011.01444.x; Oakley CG, 2014, MOL ECOL, V23, P4304, DOI 10.1111/mec.12862; Poorter L, 2007, AM NAT, V169, P433, DOI 10.1086/512045; Postma F. M., 2016, THESIS; Postma FM, 2016, P NATL ACAD SCI USA, V113, P7590, DOI 10.1073/pnas.1606303113; Postma FM, 2016, ANN BOT-LONDON, V117, P249, DOI 10.1093/aob/mcv171; Postma FM, 2015, MOL ECOL, V24, P785, DOI 10.1111/mec.13061; PRICE GR, 1970, NATURE, V227, P520, DOI 10.1038/227520a0; PRICE TD, 1984, EVOLUTION, V38, P483, DOI 10.1111/j.1558-5646.1984.tb00314.x; R Core Team, 2016, R LANG ENV STAT COMP; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; RAUSHER MD, 1992, EVOLUTION, V46, P616, DOI 10.1111/j.1558-5646.1992.tb02070.x; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Sanford E, 2011, ANNU REV MAR SCI, V3, P509, DOI 10.1146/annurev-marine-120709-142756; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; SCHLUTER D, 1986, EVOLUTION, V40, P221, DOI 10.1111/j.1558-5646.1986.tb00465.x; Siepielski AM, 2011, P ROY SOC B-BIOL SCI, V278, P1572, DOI 10.1098/rspb.2010.1973; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stinchcombe JR, 2008, EVOLUTION, V62, P2435, DOI 10.1111/j.1558-5646.2008.00449.x; Stinchcombe JR, 2002, AM NAT, V160, P511, DOI 10.1086/342069; Verdu M, 2005, ECOLOGY, V86, P1385, DOI 10.1890/04-1647 67 0 0 4 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. JUN 2018 27 11 2498 2511 10.1111/mec.14697 14 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GI1SY WOS:000434152100002 29676059 2019-02-21 J Griffiths, PE; Matthewson, J Griffiths, Paul E.; Matthewson, John Evolution, Dysfunction, and Disease: A Reappraisal BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE English Article FUNCTIONAL EFFICIENCY; BIOSTATISTICAL THEORY; NATURAL-SELECTION; PROPER FUNCTIONS; MENTAL-DISORDER; HEALTH; DEFENSE Some 'naturalist' accounts of disease employ a biostatistical account of dysfunction, whilst others use a 'selected effect' account. Several recent authors have argued that the biostatistical account offers the best hope for a naturalist account of disease. We show that the selected effect account survives the criticisms levelled by these authors relatively unscathed, and has significant advantages over the BST. Moreover, unlike the BST, it has a strong theoretical rationale and can provide substantive reasons to decide difficult cases. This is illustrated by showing how life-history theory clarifies the status of so-called diseases of old age. The selected effect account of function deserves a more prominent place in the philosophy of medicine than it currently occupies. [Griffiths, Paul E.] Univ Sydney, Dept Philosophy, Sydney, NSW, Australia; [Griffiths, Paul E.] Univ Sydney, Charles Perkins Ctr, Sydney, NSW, Australia; [Matthewson, John] Massey Univ, Sch Humanities, Albany, New Zealand Griffiths, PE (reprint author), Univ Sydney, Dept Philosophy, Sydney, NSW, Australia.; Griffiths, PE (reprint author), Univ Sydney, Charles Perkins Ctr, Sydney, NSW, Australia. paul.griffiths@sydney.edu.au; J.Matthewson@massey.ac.nz Australian Research Council's Discovery Projects [DP130101774] This research was supported under the Australian Research Council's Discovery Projects funding scheme (grant no. DP130101774). BOORSE C, 1976, PHILOS REV, V85, P70, DOI 10.2307/2184255; BOORSE C, 1997, BIOMED ETHICS REV, P1; Boorse C., 2002, FUNCTIONS NEW ESSAYS, P63; Boorse C, 2014, J MED PHILOS, V39, P683, DOI 10.1093/jmp/jhu035; Brandon R. N., 1990, ADAPTATION ENV; Carnap R, 1950, LOGICAL FDN PROBABIL; Cooper R., 2002, STUD HIST PHILOS M P, V33, P263, DOI [10.1016/S0039-3681(02)00018-3, DOI 10.1016/S0039-3681(02)00018-3]; CUMMINS R, 1975, J PHILOS, V72, P741, DOI 10.2307/2024640; Diamond Jared, 1997, GUNS GERMS STEEL FAT; Garson J, 2014, BRIT J PHILOS SCI, V65, P1, DOI 10.1093/bjps/axs041; Garson J, 2013, PHILOS SCI, V80, P317, DOI 10.1086/671173; Glass D, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006477; Gluckman P.D., 2009, PRINCIPLES EVOLUTION; GODFREYSMITH P, 1994, NOUS, V28, P344, DOI 10.2307/2216063; GODFREYSMITH P, 1993, PAC PHILOS QUART, V74, P196; GOODE R, 1995, BIOL PHILOS, V10, P99, DOI 10.1007/BF00851989; Griffiths PE, 2009, ACTA BIOTHEOR, V57, P11, DOI 10.1007/s10441-008-9054-9; GRIFFITHS PE, 1993, BRIT J PHILOS SCI, V44, P409, DOI 10.1093/bjps/44.3.409; Hausman DM, 2014, J MED PHILOS, V39, P634, DOI 10.1093/jmp/jhu036; Hausman DM, 2012, PHILOS SCI, V79, P519, DOI 10.1086/668005; Hausman DM, 2011, PREV MED, V53, P229, DOI 10.1016/j.ypmed.2011.08.008; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Jablonski NG, 2000, J HUM EVOL, V39, P57, DOI 10.1006/jhev.2000.0403; Kingma E., 2013, OXFORD HDB PHILOS PS, P363; Kingma E, 2007, ANALYSIS-UK, V67, P128, DOI 10.1111/j.1467-8284.2007.00662.x; Kingma E, 2016, BRIT J PHILOS SCI, V67, P391, DOI 10.1093/bjps/axu041; Kingma E, 2014, J MED PHILOS, V39, P590, DOI 10.1093/jmp/jhu037; Kingma E, 2010, BRIT J PHILOS SCI, V61, P241, DOI 10.1093/bjps/axp034; Kraemer DM, 2013, BIOL PHILOS, V28, P423, DOI 10.1007/s10539-013-9365-3; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Le Couteur DG, 2011, J GERONTOL A-BIOL, V66, P179, DOI 10.1093/gerona/glq171; Lemoine M, 2013, THEOR MED BIOETH, V34, P309, DOI 10.1007/s11017-013-9261-5; Lewens T, 2015, BIOL FDN BIOETHICS; Millikan R. G., 1984, LANGUAGE THOUGHT OTH; MILLIKAN RG, 1989, PHILOS SCI, V56, P288, DOI 10.1086/289488; Murphy D, 2009, STANFORD ENCY PHILOS; Murphy D., 2000, PHILOS PSYCHIAT PSYC, V7, P241; Murphy D, 2000, PHILOS PSYCHIAT PSYC, V7, P271; NEANDER K, 1991, PHILOS SCI, V58, P168, DOI 10.1086/289610; Neander K., 1998, ROUTLEDGE ENCY PHILO; Nesse R M, 2001, Med Health Care Philos, V4, P37, DOI 10.1023/A:1009938513897; Nesse RM, 2007, WORLD PSYCHIATRY, V6, P160; Papineau D., 1987, REALITY REPRESENTATI; Phillips BL, 2010, ECOLOGY, V91, P872, DOI 10.1890/09-0530.1; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Schaffner K. F, 1993, DISCOVERY EXPLANATIO; Schwartz PH, 2007, PHILOS SCI, V74, P364, DOI 10.1086/521970; Schwartz PH, 2014, J MED PHILOS, V39, P572, DOI 10.1093/jmp/jhu039; Sober E, 1984, NATURE SELECTION EVO; Stearns S, 1992, EVOLUTION LIFE HIST; WAKEFIELD JC, 1992, AM PSYCHOL, V47, P373, DOI 10.1037//0003-066X.47.3.373; Wakefield JC, 2000, PHILOS PSYCHIAT PSYC, V7, P253; Wakefield JC, 2007, WORLD PSYCHIATRY, V6, P149; WILKINS J. S, 2013, NEW SCI RELIG, P133; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WRIGHT L, 1973, PHILOS REV, V82, P139, DOI 10.2307/2183766 57 2 3 0 0 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0007-0882 1464-3537 BRIT J PHILOS SCI Br. J. Philos. Sci. JUN 2018 69 2 301 327 10.1093/bjps/axw021 27 History & Philosophy Of Science History & Philosophy of Science GI0UN WOS:000434085400001 2019-02-21 J Kosterman, MK; Squires, JR; Holbrook, JD; Pletscher, DH; Hebblewhite, M Kosterman, Megan K.; Squires, John R.; Holbrook, Joseph D.; Pletscher, Daniel H.; Hebblewhite, Mark Forest structure provides the income for reproductive success in a southern population of Canada lynx ECOLOGICAL APPLICATIONS English Article capital breeding; felids; habitat quality; habitat-fitness relationship; income breeding; Lepus americanus; Lynx canadensis; maternal effects; reproductive strategy; reproductive success NORTHERN ROCKY-MOUNTAINS; RESOURCE SELECTION; SNOWSHOE HARES; EURASIAN LYNX; HOME-RANGE; MATERNAL CHARACTERISTICS; HABITAT SELECTION; FITNESS COSTS; NATIONAL-PARK; BODY-MASS Understanding intrinsic and extrinsic drivers of reproductive success is central to advancing animal ecology and characterizing critical habitat. Unfortunately, much of the work examining drivers of reproductive success is biased toward particular groups of organisms (e.g., colonial birds, large herbivores, capital breeders). Long-lived mammalian carnivores that are of conservation concern, solitary, and territorial present an excellent situation to examine intrinsic and extrinsic drivers of reproductive success, yet they have received little attention. Here, we used a Canada lynx (Lynx canadensis) data set, from the southern periphery of their range, to determine if reproductive success in a solitary carnivore was consistent with capital or income breeding. We radio-marked and monitored 36 female Canada lynx for 98 lynx years. We evaluated how maternal characteristics and indices of food supply (via forest structure) in core areas influenced variation in body condition and reproductive success. We characterized body condition as mass/length and reproductive success as whether a female produced a litter of kittens for a given breeding season. Consistent with life-history theory, we documented a positive effect of maternal age on body condition and reproductive success. In contrast to predictions of capital breeding, we observed no effect of pre-pregnancy body condition on reproductive success in Canada lynx. However, we demonstrated statistical effects of forest structure on reproductive success in Canada lynx, consistent with predictions of income breeding. The forest characteristics that defined high success included (1) abundant and connected mature forest and (2) intermediate amounts of small-diameter regenerating forest. These attributes are consistent with providing abundant, temporally stable, and accessible prey resources (i.e., snowshoe hares; Lepus americanus) for lynx and reinforce the bottom-up mechanisms influencing Canada lynx populations. Collectively, our results suggest that lynx on the southern range periphery exhibit an income breeding strategy and that forest structure supplies the income important for successful reproduction. More broadly, our insights advance the understanding of carnivore ecology and serve as an important example on integrating long-term field studies with ecological theory to improve landscape management. [Kosterman, Megan K.; Pletscher, Daniel H.; Hebblewhite, Mark] Univ Montana, WA Franke Coll Forestry & Conservat, Dept Ecosyst & Conservat Sci, Wildlife Biol Program, 32 Campus Dr, Missoula, MT 59812 USA; [Squires, John R.; Holbrook, Joseph D.] US Forest Serv, USDA, Rocky Mt Res Stn, 800 E Beckwith, Missoula, MT 59801 USA; [Holbrook, Joseph D.] Montana State Univ, Dept Land Resources & Environm Sci, Coll Agr, POB 173120, Bozeman, MT 59717 USA; [Kosterman, Megan K.] US Fish & Wildlife Serv, US Dept Interior, 11103 E Montgomery Dr, Spokane Valley, WA 99206 USA Squires, JR (reprint author), US Forest Serv, USDA, Rocky Mt Res Stn, 800 E Beckwith, Missoula, MT 59801 USA. jsquires@fs.fed.us USDA Forest Service Rocky Mountain Research Station; Bureau of Land Management This research was primarily funded by the USDA Forest Service Rocky Mountain Research Station and in part by the Bureau of Land Management (J. Sparks). We thank P. Lukacs and L. Baggett for statistical advice and J. Berger for input and guidance. In addition, S. Cushman and K. McGarigal were helpful concerning Fragstats analysis. We thank K. Fulmer and S. Brown for helping with GIS and VMap inquires. B. Conard, N. DeCesare, B. Holt, B. Morlin, L. Olson, B. Sweeney, S. Sweeney, and Z. Wallace provided invaluable support, and we thank the many technicians who helped collect the data over the many years. R. Bush and B. Reyes assisted with Forest Inventory data requests. Finally, we acknowledge G. Mowat and two anonymous reviewers for providing thoughtful comments that improved our manuscript. The findings and conclusions in this article are those of the authors and do not necessarily represent the view of the U.S. Fish and Wildlife Service. ATKINSON SN, 1995, FUNCT ECOL, V9, P559, DOI 10.2307/2390145; Aubry Keith B., 2000, P373; Balme G, 2007, ANIM BEHAV, V74, P589, DOI 10.1016/j.anbehav.2006.12.014; Balme GA, 2017, J ANIM ECOL, V86, P1224, DOI 10.1111/1365-2656.12713; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; BEKOFF M, 1984, ANNU REV ECOL SYST, V15, P191, DOI 10.1146/annurev.es.15.110184.001203; Bischof R, 2016, ECOL EVOL, V6, P1527, DOI 10.1002/ece3.1983; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; BRAND CJ, 1979, J WILDLIFE MANAGE, V43, P827, DOI 10.2307/3808267; BRAND CJ, 1976, J WILDLIFE MANAGE, V40, P416, DOI 10.2307/3799943; Brewer C. K., 2004, NO REGION VEGETATION; Burnham K. P, 2002, MODEL SELECTION MULT; Cheng E, 2015, FIRE ECOL, V11, P119, DOI 10.4996/fireecology.1102119; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; Cote SD, 2001, OECOLOGIA, V127, P230, DOI 10.1007/s004420000584; Crocker DE, 2001, ECOLOGY, V82, P3541, DOI 10.2307/2680171; Ene E, 2012, FRAGSTATS V4 SPATIAL; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Fox J., 2003, J STAT SOFTW, V8, P27, DOI DOI 10.18637/JSS.V008.I15; Franklin AB, 2000, ECOL MONOGR, V70, P539, DOI 10.1890/0012-9615(2000)070[0539:CHQAFI]2.0.CO;2; Frederiksen M, 2014, J APPL ECOL, V51, P71, DOI 10.1111/1365-2664.12172; Fuller AK, 2007, J WILDLIFE MANAGE, V71, P1980, DOI 10.2193/2006-288; Gaillard JM, 2014, J ANIM ECOL, V83, P107, DOI 10.1111/1365-2656.12110; Gaillard JM, 2010, PHILOS T R SOC B, V365, P2255, DOI 10.1098/rstb.2010.0085; Griffin PC, 2009, OIKOS, V118, P1487, DOI 10.1111/j.1600-0706.2009.17621.x; Hadley GL, 2007, OIKOS, V116, P601, DOI 10.1111/j.2007.0030-1299.15528.x; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Holbrook JD, 2017, ECOSPHERE, V8, DOI 10.1002/ecs2.1939; Holbrook JD, 2017, ECOL EVOL, V7, P125, DOI 10.1002/ece3.2651; Hopcraft JGC, 2005, J ANIM ECOL, V74, P559, DOI 10.1111/j.1365-2656.2005.00955.x; Hosmer D. W., 2000, APPL LOGISTIC REGRES; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Howard K., 2016, SCOTUSBLOG 0720; Ivan JS, 2016, J WILDLIFE MANAGE, V80, P1049, DOI 10.1002/jwmg.21101; Ivan JS, 2014, J WILDLIFE MANAGE, V78, P580, DOI 10.1002/jwmg.695; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Kerby J, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0484; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Kosterman M., 2014, THESIS U MONTANA MIS; Lewis CW, 2011, J MAMMAL, V92, P561, DOI 10.1644/10-MAMM-A-095.1; MAINGUY SK, 1985, CAN J ZOOL, V63, P1765, DOI 10.1139/z85-265; McLoughlin PD, 2006, P ROY SOC B-BIOL SCI, V273, P1449, DOI 10.1098/rspb.2006.3486; Merkle JA, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0456; Monteith KL, 2014, WILDLIFE MONOGR, V186, P1, DOI 10.1002/wmon.1011; Monteith KL, 2013, J ANIM ECOL, V82, P377, DOI 10.1111/1365-2656.12016; Mosser A, 2009, ECOL LETT, V12, P1050, DOI 10.1111/j.1461-0248.2009.01359.x; Mowat G, 1996, J WILDLIFE MANAGE, V60, P441, DOI 10.2307/3802247; Murray DL, 2008, J WILDLIFE MANAGE, V72, P1463, DOI 10.2193/2007-389; Nilsen EB, 2012, ACTA THERIOL, V57, P217, DOI 10.1007/s13364-011-0066-5; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; ODonoghue M, 1997, OIKOS, V80, P150, DOI 10.2307/3546526; Olson LE, 2011, NORTHWEST SCI, V85, P455, DOI 10.3955/046.085.0304; Ozgul A, 2010, NATURE, V466, P482, DOI 10.1038/nature09210; Palomares F, 2005, BIOL CONSERV, V122, P53, DOI 10.1016/j.biocon.2004.06.020; PARKER GR, 1983, CAN J ZOOL, V61, P770, DOI 10.1139/z83-102; Proaktor G, 2007, BIOLOGY LETT, V3, P674, DOI 10.1098/rsbl.2007.0376; R Core Team, 2013, R LANG ENV STAT COMP; Rauset GR, 2015, ECOLOGY, V96, P3153, DOI 10.1890/15-0262.1; Reynolds JJ, 2017, CAN J ZOOL, V95, P779, DOI 10.1139/cjz-2016-0269; Ripple W., 2015, SCIENCE, V343; Rode KD, 2010, ECOL APPL, V20, P768, DOI 10.1890/08-1036.1; RODGERS AR, 2007, HRT HOME RANGE TOOLS; Saether BE, 2013, AM NAT, V182, P743, DOI 10.1086/673497; SAMSON C, 1995, J MAMMAL, V76, P68, DOI 10.2307/1382315; Seaman DE, 1999, J WILDLIFE MANAGE, V63, P739, DOI 10.2307/3802664; Sing T, 2005, BIOINFORMATICS, V21, P7881, DOI DOI 10.1093/BI0INF0RMATICS/BTI623; Slough BG, 1996, J WILDLIFE MANAGE, V60, P946, DOI 10.2307/3802397; Squires JR, 2008, J WILDLIFE MANAGE, V72, P1497, DOI 10.2193/2007-396; Squires JR, 2007, J WILDLIFE MANAGE, V71, P310, DOI 10.2193/2005-445; Squires JR, 2013, BIOL CONSERV, V157, P187, DOI 10.1016/j.biocon.2012.07.018; Squires JR, 2010, J WILDLIFE MANAGE, V74, P1648, DOI 10.2193/2009-184; Stearns S, 1992, EVOLUTION LIFE HIST; Stephens PA, 2014, ECOLOGY, V95, P882, DOI 10.1890/13-1434.1; Uboni A, 2017, ECOSPHERE, V8, DOI 10.1002/ecs2.1705; United States Fish and Wildlife Service (USFWS), 2000, FED REG, P16051; VANHORNE B, 1983, J WILDLIFE MANAGE, V47, P893; Vashon J. H., 2012, CANADA LYNX ASSESSME; Walton Z, 2017, OIKOS, V126, P642, DOI 10.1111/oik.03374; WORTON BJ, 1989, ECOLOGY, V70, P164, DOI 10.2307/1938423; WORTON BJ, 1995, J WILDLIFE MANAGE, V59, P794, DOI 10.2307/3801959; Zedrosser A, 2009, OECOLOGIA, V160, P847, DOI 10.1007/s00442-009-1343-8 83 0 0 15 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. JUN 2018 28 4 1032 1043 10.1002/eap.1707 12 Ecology; Environmental Sciences Environmental Sciences & Ecology GI0WX WOS:000434092200014 29457298 2019-02-21 J Crofton, AE; Cartwright, EL; Feitzinger, AA; Lott, SE Crofton, Amanda E.; Cartwright, Emily L.; Feitzinger, Anna A.; Lott, Susan E. Effect of Larval Nutrition on Maternal mRNA Contribution to the Drosophila Egg G3-GENES GENOMES GENETICS English Article maternal mRNA deposition; effects of nutrition; gene expression; life history; RNA-Seq TO-ZYGOTIC TRANSITION; LIFE-HISTORY EVOLUTION; MITOCHONDRIAL INHERITANCE; ANNOTATION DATA; GENE ONTOLOGY; MELANOGASTER; OOGENESIS; MECHANISMS; STRESS; EMBRYO Embryonic development begins under the control of maternal gene products, mRNAs and proteins that the mother deposits into the egg; the zygotic genome is activated some time later. Maternal control of early development is conserved across metazoans. Gene products contributed by mothers are critical to many early developmental processes, and set up trajectories for the rest of development. Maternal deposition of these factors is an often-overlooked aspect of parental investment. If the mother experiences challenging environmental conditions, such as poor nutrition, previous studies in Drosophila melanogaster have demonstrated a plastic response wherein these mothers may produce larger eggs to buffer the offspring against the same difficult environment. This additional investment can produce offspring that are more fit in the challenging environment. With this study, we ask whether D. melanogaster mothers who experience poor nutrition during their own development change their gene product contribution to the egg. We perform mRNA-Seq on eggs at a stage where all mRNAs are maternally derived, from mothers with different degrees of nutritional limitation. We find that nutritional limitation produces similar transcript changes at all degrees of limitation tested. Genes that have lower transcript abundance in nutritionally limited mothers are those involved in translation, which is likely one of the most energetically costly processes occurring in the early embryo. We find an increase in transcripts for transport and localization of macromolecules, and for the electron transport chain. The eggs produced by nutrition-limited mothers show a plastic response in mRNA deposition, which may better prepare the future embryo for development in a nutrition-limited environment. [Crofton, Amanda E.; Cartwright, Emily L.; Feitzinger, Anna A.; Lott, Susan E.] Univ Calif Davis, Dept Evolut & Ecol, 2320 Storer Hall, Davis, CA 95616 USA Lott, SE (reprint author), Univ Calif Davis, Dept Evolut & Ecol, 2320 Storer Hall, Davis, CA 95616 USA. selott@ucdavis.edu National Institute of General Medical Sciences of the National Institutes of Health [R01GM111362]; UC Davis Research Scholars Program in Insect Biology We thank James Yacoub for his work on food dilution protocols, Jakob McBroome for assistance with egg counting, and Sherri Wykoff-Clary for stock maintenance and care. We thank the Lott lab, the UC Davis fly community for comments, and Mariana Wolfner for advice. We acknowledge the support provided by the UC Davis Research Scholars Program in Insect Biology. This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health grant R01GM111362. Akan I, 2016, J BIOL CHEM, V291, P9906, DOI 10.1074/jbc.M115.704783; Alfa RW, 2016, DIS MODEL MECH, V9, P365, DOI 10.1242/dmm.023887; Ali-Murthy Z, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003428; Ashburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556; Azevedo RBR, 1997, AM NAT, V150, P250, DOI 10.1086/286065; Barckmann B, 2013, BBA-GENE REGUL MECH, V1829, P714, DOI 10.1016/j.bbagrm.2012.12.011; Baroux C, 2015, CURR TOP DEV BIOL, V113, P351, DOI 10.1016/bs.ctdb.2015.06.005; Benoit P, 2008, DEVELOPMENT, V135, P1969, DOI 10.1242/dev.021444; BOWNES M, 1975, J EMBRYOL EXP MORPH, V33, P789; Bray NL, 2016, NAT BIOTECHNOL, V34, P888, DOI 10.1038/nbt0816-888d; Bray NL, 2016, NAT BIOTECHNOL, V34, P525, DOI 10.1038/nbt.3519; Buszczak M, 2002, GENETICS, V160, P1511; Campos-Ortega JA, 1985, EMBRYONIC DEV DROSOP, DOI [10.1007/978-3-662-02454-6, DOI 10.1007/978-3-662-02454-6]; Carbon S, 2009, BIOINFORMATICS, V25, P288, DOI 10.1093/bioinformatics/btn615; Cox RT, 2003, DEVELOPMENT, V130, P1579, DOI 10.1242/dev.00365; Cui J, 2008, GENETICS, V178, P2017, DOI 10.1534/genetics.107.084558; Dumollard R, 2007, CURR TOP DEV BIOL, V77, P21, DOI 10.1016/S0070-2153(06)77002-8; Eichhorn SW, 2016, ELIFE, V5, DOI 10.7554/eLife.16955; Erdi B, 2012, AUTOPHAGY, V8, P1124, DOI 10.4161/auto.20069; Gelbart WM, 2013, FLYBASE HIGH THROUGH; Graveley BR, 2011, NATURE, V471, P473, DOI 10.1038/nature09715; Harbison ST, 2005, GENOME BIOL, V6, DOI 10.1186/gb-2005-6-4-r36; Harvey SA, 2013, DEVELOPMENT, V140, P2703, DOI 10.1242/dev.095091; Hurd TR, 2016, DEV CELL, V39, P560, DOI 10.1016/j.devcel.2016.11.004; Kafri M, 2016, CELL REP, V14, P22, DOI 10.1016/j.celrep.2015.12.015; Kanehisa M, 2017, NUCLEIC ACIDS RES, V45, pD353, DOI 10.1093/nar/gkw1092; Lack JB, 2016, ECOL EVOL, V6, P5893, DOI 10.1002/ece3.2327; Langley AR, 2014, DEVELOPMENT, V141, P3834, DOI 10.1242/dev.102368; Laver JD, 2015, CURR TOP DEV BIOL, V113, P43, DOI 10.1016/bs.ctdb.2015.06.007; Li L, 2013, MOL ASPECTS MED, V34, P919, DOI 10.1016/j.mam.2013.01.003; Li L, 2010, DEVELOPMENT, V137, P859, DOI 10.1242/dev.039487; Lim J, 2016, GENE DEV, V30, P1671, DOI 10.1101/gad.284802.116; Lott SE, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004159; Lott SE, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1000590; Lynch M, 2015, P NATL ACAD SCI USA, V112, P15690, DOI 10.1073/pnas.1514974112; MacManes MD, 2014, FRONT GENET, V5, DOI 10.3389/fgene.2014.00013; Martin M., 2011, EMBNET J, V17, P10, DOI DOI 10.14806/EJ.17.1.200; Mi HY, 2017, NUCLEIC ACIDS RES, V45, pD183, DOI 10.1093/nar/gkw1138; Moskalev A, 2015, BMC GENOMICS, V16, DOI 10.1186/1471-2164-16-S13-S8; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Padmanabha D, 2014, TRENDS ENDOCRIN MET, V25, P518, DOI 10.1016/j.tem.2014.03.011; Paris M, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005592; Pimentel H, 2017, NAT METHODS, V14, P687, DOI 10.1038/nmeth.4324; Porcelli D, 2017, J EVOLUTION BIOL, V30, P422, DOI 10.1111/jeb.13018; Prasad NG, 2003, J GENET, V82, P45, DOI 10.1007/BF02715881; Prasad NG, 2003, EVOL ECOL RES, V5, P903; R Development Core Team, 2017, R LANG ENV STAT COMP; Ramalho-Santos J, 2013, MOL CELL ENDOCRINOL, V379, P74, DOI 10.1016/j.mce.2013.06.005; Robertson S, 2015, CURR TOP DEV BIOL, V113, P1, DOI 10.1016/bs.ctdb.2015.06.001; Roff Derek A., 1992; SALLES FJ, 1994, SCIENCE, V266, P1996, DOI 10.1126/science.7801127; Schier AF, 2007, SCIENCE, V316, P406, DOI 10.1126/science.1140693; Shimada Y, 2011, DEV BIOL, V355, P250, DOI 10.1016/j.ydbio.2011.04.022; Sieber MH, 2016, CELL, V164, P420, DOI 10.1016/j.cell.2015.12.020; Stanley PD, 2017, GENETICS, V206, P587, DOI 10.1534/genetics.116.197780; Szklarczyk D, 2017, NUCLEIC ACIDS RES, V45, pD362, DOI 10.1093/nar/gkw937; Tadros W, 2009, DEVELOPMENT, V136, P3033, DOI 10.1242/dev.033183; Temme C, 2014, FRONT GENET, V5, DOI 10.3389/fgene.2014.00143; Tennessen JM, 2014, G3-GENES GENOM GENET, V4, P839, DOI 10.1534/g3.114.010652; Valtonen TM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031611; Van Blerkom J, 2011, MITOCHONDRION, V11, P797, DOI 10.1016/j.mito.2010.09.012; Vardy L, 2007, TRENDS CELL BIOL, V17, P547, DOI 10.1016/i.tcb.2007.09.002; Vijendravarma RK, 2010, BIOL LETTERS, V6, P238, DOI 10.1098/rsbl.2009.0754; Walter W, 2015, BIOINFORMATICS, V31, P2912, DOI 10.1093/bioinformatics/btv300; Yadav P, 2014, J EXP BIOL, V217, P580, DOI 10.1242/jeb.093864; Yartseva V, 2015, CURR TOP DEV BIOL, V113, P191, DOI 10.1016/bs.ctdb.2015.07.020 66 2 2 0 1 GENETICS SOCIETY AMERICA BETHESDA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA 2160-1836 G3-GENES GENOM GENET G3-Genes Genomes Genet. JUN 2018 8 6 1933 1941 10.1534/g3.118.200283 9 Genetics & Heredity Genetics & Heredity GH8EP WOS:000433900500008 29666195 DOAJ Gold 2019-02-21 J Mitchell, TS; Hall, JM; Warner, DA Mitchell, Timothy S.; Hall, Joshua M.; Warner, Daniel A. Female investment in offspring size and number shifts seasonally in a lizard with single-egg clutches EVOLUTIONARY ECOLOGY English Article Life-history evolution; Seasonality; Parental investment; Tradeoffs; Reproducibility TROPICAL MAINLAND ANOLE; LIFE-HISTORY; REPRODUCTIVE OUTPUT; FOOD-INTAKE; SEX-RATIOS; BODY-SIZE; SELECTION; SURVIVAL; BEHAVIOR; FITNESS The timing of reproduction strongly influences reproductive success in many organisms. For species with extended reproductive seasons, the quality of the environment may change throughout the season in ways that impact offspring survival, and, accordingly, aspects of reproductive strategies may shift to maximize fitness. Life-history theory predicts that if offspring environments deteriorate through the season, females should shift from producing more, smaller offspring early in the season to fewer, higher quality offspring later in the season. We leverage multiple iterations of anole breeding colonies, which control for temperature, moisture, and food availability, to identify seasonal changes in reproduction. These breeding colonies varied only by the capture date of the adult animals from the field. We show that seasonal cohorts exhibit variation in key reproductive traits such as inter-clutch interval, egg size and hatchling size consistent with seasonal shifts in reproductive effort. Overall, reproductive effort was highest early in the season due to a relatively high rate of egg production. Later season cohorts produced fewer, but larger offspring. We infer that these results indicate a strategy for differential allocation of resources through the season. Females maximize offspring quantity when environments are favorable, and maximize offspring quality when environments are poor for those offspring. Our study also highlights that subtle differences in methodology (such as capture date of study animals) may influence the interpretation of results. Researchers interested in reproduction must be conscious of how their organism's reproductive patterns may shift through the season when designing experiments or comparing results across studies. [Mitchell, Timothy S.; Hall, Joshua M.; Warner, Daniel A.] Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA; [Mitchell, Timothy S.; Warner, Daniel A.] Univ Alabama Birmingham, Dept Biol, Birmingham, AL 35294 USA; [Mitchell, Timothy S.] Univ Minnesota, Dept Ecol Evolut & Behav, 140 Gortner Hall,1479 Gortner Ave, St Paul, MN 55108 USA Mitchell, TS (reprint author), Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA.; Mitchell, TS (reprint author), Univ Alabama Birmingham, Dept Biol, Birmingham, AL 35294 USA.; Mitchell, TS (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, 140 Gortner Hall,1479 Gortner Ave, St Paul, MN 55108 USA. tsmitchell09@gmail.com Mitchell, Timothy/0000-0002-7136-769X National Science Foundation [DBI 1402202]; University of Alabama at Birmingham We thank P.R. Pearson, S. Tiatragul, and D. Williams for help with animal care. Research was approved by University of Alabama at Birmingham Institutional Animal Care and Use Committee (Protocol #140710215). Funding was provided by the National Science Foundation (DBI 1402202 to TSM) and the University of Alabama at Birmingham. The authors declare no conflicts of interest. Anderson JH, 2010, MOL ECOL, V19, P2562, DOI 10.1111/j.1365-294X.2010.04652.x; ANDREWS R, 1974, ECOLOGY, V55, P1317, DOI 10.2307/1935459; Bertolucci C, 1999, BEHAV ECOL SOCIOBIOL, V46, P200, DOI 10.1007/s002650050610; Bonnet X, 2001, OIKOS, V92, P297, DOI 10.1034/j.1600-0706.2001.920212.x; BROWN KM, 1973, PHYSIOL ZOOL, V46, P168, DOI 10.1086/physzool.46.2.30155597; Calsbeek R, 2007, EVOL ECOL RES, V9, P495; Calsbeek R, 2010, NATURE, V465, P613, DOI 10.1038/nature09020; CONOVER DO, 1992, J FISH BIOL, V41, P161, DOI 10.1111/j.1095-8649.1992.tb03876.x; Cox RM, 2010, EVOLUTION, V64, P798, DOI 10.1111/j.1558-5646.2009.00851.x; CREWS D, 1977, AM SCI, V65, P428; Delaney DM, 2016, J HERPETOL, V50, P227, DOI 10.1670/14-147; DEMARCO VG, 1989, OECOLOGIA, V80, P525, DOI 10.1007/BF00380077; DOBSON FS, 1989, J MAMMAL, V70, P142, DOI 10.2307/1381677; Du WG, 2014, INTEGR ZOOL, V9, P360, DOI 10.1111/1749-4877.12072; GORMAN GC, 1974, ECOLOGY, V55, P360, DOI 10.2307/1935223; GUYER C, 1988, ECOLOGY, V69, P362, DOI 10.2307/1940434; Harriman VB, 2017, ECOL EVOL, V7, P2122, DOI 10.1002/ece3.2815; Heins DC, 2004, ECOL FRESHW FISH, V13, P258, DOI 10.1111/j.1600-0633.2004.00064.x; Hulbert AC, 2017, J EXP ZOOL PART A, V327, P466, DOI 10.1002/jez.2135; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Le Henanff M, 2013, BIOL J LINN SOC, V108, P384, DOI 10.1111/j.1095-8312.2012.02005.x; LEE JC, 1989, COPEIA, P930, DOI 10.2307/1445979; Licht P., 1970, U CALIF PUBL ZOOL, V95, P1; LISTER BC, 1992, J ANIM ECOL, V61, P717, DOI 10.2307/5626; McNamara JM, 2008, PHILOS T R SOC B, V363, P301, DOI 10.1098/rstb.2007.2141; Mitchell TS, 2017, EVOL ECOL RES, V18, P271; Munguia-Rosas MA, 2011, ECOL LETT, V14, P511, DOI 10.1111/j.1461-0248.2011.01601.x; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; Otero LM, 2015, AM NAT, V186, pE72, DOI 10.1086/682359; Pearson PR, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2018.0256; Post E., 2003, PHENOLOGY INTEGRATIV, P437; Price ER, 2017, BIOL REV, V92, P1406, DOI 10.1111/brv.12288; Qualls FJ, 2000, BIOL J LINN SOC, V71, P315; ROSE B, 1982, COPEIA, P322, DOI 10.2307/1444610; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; SCHOENER TW, 1980, J ANIM ECOL, V49, P19, DOI 10.2307/4276; SCHOENER TW, 1982, OIKOS, V39, P1, DOI 10.2307/3544525; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; Singleton G, 2001, P ROY SOC B-BIOL SCI, V268, P1741, DOI 10.1098/rspb.2001.1638; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH H M, 1972, Transactions of the Kansas Academy of Science, V75, P107, DOI 10.2307/3627160; Tucker JK, 2008, CHELONIAN CONSERV BI, V7, P60, DOI 10.2744/CCB-0670.1; Uller T, 2010, OECOLOGIA, V162, P663, DOI 10.1007/s00442-009-1503-x; Varpe O, 2007, OIKOS, V116, P1331, DOI 10.1111/j.2007.0030-1299.15893.x; Varpe O, 2017, INTEGR COMP BIOL, V57, P943, DOI 10.1093/icb/icx123; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; Warner DA, 2007, OECOLOGIA, V154, P65, DOI 10.1007/s00442-007-0809-9; Warner DA, 2016, J EXP ZOOL PART A, V325, P588, DOI 10.1002/jez.2053; Warner DA, 2015, BIOL J LINN SOC, V115, P437, DOI 10.1111/bij.12519; Warner DA, 2014, INTEGR COMP BIOL, V54, P757, DOI 10.1093/icb/icu099; Warner DA, 2014, PHYSIOL BIOCHEM ZOOL, V87, P276, DOI 10.1086/674454; Warner DA, 2010, FUNCT ECOL, V24, P857, DOI 10.1111/j.1365-2435.2010.01714.x; WILLIAMSON I, 1995, COPEIA, P105; Wright AN, 2013, OIKOS, V122, P1496, DOI 10.1111/j.1600-0706.2013.00379.x 55 1 1 8 10 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JUN 2018 32 2-3 231 245 10.1007/s10682-018-9936-5 15 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GG2KA WOS:000432520100008 2019-02-21 J Young, ES; Griskevicius, V; Simpson, JA; Waters, TEA; Mittal, C Young, Ethan S.; Griskevicius, Vladas; Simpson, Jeffry A.; Waters, Theodore E. A.; Mittal, Chiraag Can an Unpredictable Childhood Environment Enhance Working Memory? Testing the Sensitized-Specialization Hypothesis JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY English Article evolutionary psychology; life history theory; social development; unpredictable environments; working memory EARLY-LIFE STRESS; LATENT-VARIABLE APPROACH; GENERAL FLUID INTELLIGENCE; ADULT AGE-DIFFERENCES; INDIVIDUAL-DIFFERENCES; EXECUTIVE FUNCTIONS; SOCIOECONOMIC-STATUS; SECONDARY MEMORY; PREFRONTAL CORTEX; ATTENTION CONTROL Although growing up in an adverse childhood environment tends to impair cognitive functions, evolutionary-developmental theory suggests that this might be only one part of the story. A person's mind may instead become developmentally specialized and potentially enhanced for solving problems in the types of environments in which the person grew up. In the current research, we tested whether these specialized advantages in cognitive function might be sensitized to emerge in currently uncertain contexts. We refer to this as the sensitized-specialization hypothesis. We conducted experimental tests of this hypothesis in the domain of working memory, examining how growing up in unpredictable versus predictable environments affects different facets of working memory. Although growing up in an unpredictable environment is typically associated with impairments in working memory, we show that this type of environment is positively associated with those aspects of working memory that are useful in rapidly changing environments. Importantly, these effects emerged only when the current context was uncertain. These theoretically derived findings suggest that childhood environments shape, rather than uniformly impair, cognitive functions. [Young, Ethan S.; Simpson, Jeffry A.] Univ Minnesota, Dept Psychol, Minneapolis, MN USA; [Griskevicius, Vladas] Univ Minnesota, Carlson Sch Management, Minneapolis, MN 55455 USA; [Waters, Theodore E. A.] New York Univ Abu Dhabi, Dept Psychol, Abu Dhabi, U Arab Emirates; [Mittal, Chiraag] Texas A&M Univ, Mays Business Sch, College Stn, TX USA Young, ES (reprint author), Univ Minnesota Twin Cities, Elliott Hall,75 East River Rd, Minneapolis, MN 55455 USA. youn0737@umn.edu Simpson, Jeff/0000-0003-1899-2493 BADDELEY A, 1992, SCIENCE, V255, P556, DOI 10.1016/j.cub.2009.12.014; Baddeley A, 2003, NAT REV NEUROSCI, V4, P829, DOI 10.1038/nrn1201; Baddeley A, 2000, TRENDS COGN SCI, V4, P417, DOI 10.1016/S1364-6613(00)01538-2; Baddeley A, 2012, ANNU REV PSYCHOL, V63, P1, DOI 10.1146/annurev-psych-120710-100422; Bagot RC, 2009, NEUROBIOL LEARN MEM, V92, P292, DOI 10.1016/j.nlm.2009.03.004; Banich MT, 2009, CURR DIR PSYCHOL SCI, V18, P89, DOI 10.1111/j.1467-8721.2009.01615.x; Becker DV, 2011, J EXP PSYCHOL GEN, V140, P637, DOI 10.1037/a0024060; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Blair C, 2012, AM PSYCHOL, V67, P309, DOI 10.1037/a0027493; Blair C, 2011, DEV PSYCHOPATHOL, V23, P845, DOI 10.1017/S0954579411000344; Bos KJ, 2009, FRONT BEHAV NEUROSCI, V3, DOI 10.3389/neuro.08.016.2009; Bradley RH, 2002, ANNU REV PSYCHOL, V53, P371, DOI 10.1146/annurev.psych.53.100901.135233; Callaghan BL, 2016, NEUROPSYCHOPHARMACOL, V41, P163, DOI 10.1038/npp.2015.204; Chaby LE, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0141908; Champagne DL, 2008, J NEUROSCI, V28, P6037, DOI 10.1523/JNEUROSCI.0526-08.2008; Chipman A, 2015, PSYCHONEUROENDOCRINO, V62, P89, DOI 10.1016/j.psyneuen.2015.07.611; Del Giudice M, 2012, DEV PSYCHOL, V48, P775, DOI 10.1037/a0026519; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Ecker UKH, 2014, J MEM LANG, V74, P1, DOI 10.1016/j.jml.2014.03.006; Ecker UKH, 2014, J MEM LANG, V74, P77, DOI 10.1016/j.jml.2013.09.003; Ecker UKH, 2010, J EXP PSYCHOL LEARN, V36, P170, DOI 10.1037/a0017891; Ellis BJ, 2017, PERSPECT PSYCHOL SCI, V12, P561, DOI 10.1177/1745691617693054; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Engle RW, 1999, J EXP PSYCHOL GEN, V128, P309, DOI 10.1037/0096-3445.128.3.309; Farah MJ, 2006, BRAIN RES, V1110, P166, DOI 10.1016/j.brainres.2006.06.072; Fareri DS, 2016, DEV COGN NEUROS-NETH, V19, P233, DOI 10.1016/j.dcn.2016.04.005; Farine DR, 2015, CURR BIOL, V25, P2184, DOI 10.1016/j.cub.2015.06.071; Frankenhuis WE, 2013, CURR DIR PSYCHOL SCI, V22, P407, DOI 10.1177/0963721413484324; Friedman NP, 2008, J EXP PSYCHOL GEN, V137, P201, DOI 10.1037/0096-3445.137.2.201; Friedman NP, 2017, CORTEX, V86, P186, DOI 10.1016/j.cortex.2016.04.023; Friedman NP, 2016, DEV PSYCHOL, V52, P326, DOI 10.1037/dev0000075; Goodman GS, 2010, ANNU REV PSYCHOL, V61, P325, DOI 10.1146/annurev.psych.093008.100403; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hackman DA, 2014, CHILD DEV, V85, P1433, DOI 10.1111/cdev.12242; Hackman DA, 2010, NAT REV NEUROSCI, V11, P651, DOI 10.1038/nrn2897; Hill SE, 2012, J PERS SOC PSYCHOL, V103, P275, DOI 10.1037/a0028657; Hostinar CE, 2012, P NATL ACAD SCI USA, V109, P17208, DOI 10.1073/pnas.1121246109; Hughes C, 2010, DEV NEUROPSYCHOL, V35, P20, DOI 10.1080/87565640903325691; Kane MJ, 2004, J EXP PSYCHOL GEN, V133, P189, DOI 10.1037/0096-3445.133.2.189; Kane MJ, 2002, PSYCHON B REV, V9, P637, DOI 10.3758/BF03196323; Karatsoreos IN, 2013, J CHILD PSYCHOL PSYC, V54, P337, DOI 10.1111/jcpp.12054; Kessler Y, 2008, J EXP PSYCHOL LEARN, V34, P1339, DOI 10.1037/a0013078; Krasnow MM, 2011, EVOL HUM BEHAV, V32, P1, DOI 10.1016/j.evolhumbehav.2010.07.003; McEwen BS, 2007, PHYSIOL REV, V87, P873, DOI 10.1152/physrev.00041.2006; McEwen BS, 2012, P NATL ACAD SCI USA, V109, P17180, DOI 10.1073/pnas.1121254109; MCEWEN BS, 1993, ARCH INTERN MED, V153, P2093, DOI 10.1001/archinte.153.18.2093; McEwen BS, 1998, NEW ENGL J MED, V338, P171, DOI 10.1056/NEJM199801153380307; Miller EK, 2001, ANNU REV NEUROSCI, V24, P167, DOI 10.1146/annurev.neuro.24.1.167; Mittal C, 2016, J CONSUM RES, V43, P636, DOI 10.1093/jcr/ucw046; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Mittal C, 2014, J PERS SOC PSYCHOL, V107, P621, DOI 10.1037/a0037398; Miyake A, 2000, COGNITIVE PSYCHOL, V41, P49, DOI 10.1006/cogp.1999.0734; Miyake A, 2012, CURR DIR PSYCHOL SCI, V21, P8, DOI 10.1177/0963721411429458; Nederhof E, 2012, PHYSIOL BEHAV, V106, P691, DOI 10.1016/j.physbeh.2011.12.008; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; New J, 2007, P ROY SOC B-BIOL SCI, V274, P2679, DOI 10.1098/rspb.2007.0826; Noble KG, 2005, DEVELOPMENTAL SCI, V8, P74, DOI 10.1111/j.1467-7687.2005.00394.x; Noble KG, 2007, DEVELOPMENTAL SCI, V10, P464, DOI 10.1111/j.1467-7687.2007.00600.x; Oomen CA, 2010, J NEUROSCI, V30, P6635, DOI 10.1523/JNEUROSCI.0247-10.2010; Pollak SD, 2008, CURR DIR PSYCHOL SCI, V17, P370, DOI 10.1111/j.1467-8721.2008.00608.x; Pollak SD, 2009, COGNITION, V110, P242, DOI 10.1016/j.cognition.2008.10.010; Redick TS, 2012, EUR J PSYCHOL ASSESS, V28, P164, DOI 10.1027/1015-5759/a000123; SALTHOUSE TA, 1991, DEV PSYCHOL, V27, P763, DOI 10.1037//0012-1649.27.5.763; Salthouse TA, 1996, PSYCHOL REV, V103, P403, DOI 10.1037/0033-295X.103.3.403; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Taylor SE, 2004, J PERS, V72, P1365, DOI 10.1111/j.1467-6494.2004.00300.x; Taylor SE, 2010, P NATL ACAD SCI USA, V107, P8507, DOI 10.1073/pnas.1003890107; Teicher MH, 2016, J CHILD PSYCHOL PSYC, V57, P241, DOI 10.1111/jcpp.12507; Unsworth N, 2005, BEHAV RES METHODS, V37, P498, DOI 10.3758/BF03192720; Unsworth N, 2008, J EXP PSYCHOL LEARN, V34, P616, DOI 10.1037/0278-7393.34.3.616; Unsworth N, 2007, PSYCHOL BULL, V133, P1038, DOI 10.1037/0033-2909.133.6.1038; Unsworth N, 2007, J EXP PSYCHOL LEARN, V33, P1020, DOI 10.1037/0278-7393.33.6.1020; Unsworth N, 2015, PSYCHOL SCI, V26, P759, DOI 10.1177/0956797615570367; Unsworth N, 2014, COGNITIVE PSYCHOL, V71, P1, DOI 10.1016/j.cogpsych.2014.01.003; Unsworth N, 2010, J MEM LANG, V62, P392, DOI 10.1016/j.jml.2010.02.001; Unsworth N, 2010, J EXP PSYCHOL LEARN, V36, P240, DOI 10.1037/a0017739; WATSON D, 1988, J PERS SOC PSYCHOL, V54, P1063, DOI 10.1037//0022-3514.54.6.1063; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919; Wilhelm O, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00433; YNTEMA DB, 1963, HUM FACTORS, V5, P7, DOI 10.1177/001872086300500102 84 1 1 6 20 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0022-3514 1939-1315 J PERS SOC PSYCHOL J. Pers. Soc. Psychol. JUN 2018 114 6 891 908 10.1037/pspi0000124 18 Psychology, Social Psychology GG0OY WOS:000432379700003 29389153 2019-02-21 J Zhu, N; Hawk, ST; Chang, L Zhu, Nan; Hawk, Skyler T.; Chang, Lei Living Slow and Being Moral HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Altruism; Dualprocessmodel ofmorality; Empathy; Life historytheory; Life history strategy; Morality; Prosociality; Social competition; Unpredictability LIFE-HISTORY THEORY; INDIVIDUAL-DIFFERENCES; COMPETITIVE ALTRUISM; ATTACHMENT STYLE; JUDGMENT; EMPATHY; RISK; STRATEGY; VALIDITY; VIOLENCE Drawing from the dual process model of morality and life history theory, the present research examined the role of cognitive and emotional processes as bridges between basic environmental challenges (i.e., unpredictability and competition) and other-centered moral orientation (i.e., prioritizing the welfare of others). In two survey studies, cognitive and emotional processes represented by future-oriented planning and emotional attachment, respectively (Study 1, N = 405), or by perspective taking and empathic concern, respectively (Study 2, N = 424), positively predicted other-centeredness in prosocial moral reasoning (Study 1) and moral judgment dilemmas based on rationality or intuition (Study 2). Cognitive processes were more closely related to rational aspects of other-centeredness, whereas the emotional processes were more closely related to the intuitive aspects of other-centeredness (Study 2). Finally, the cognitive and emotional processes also mediated negative effects of unpredictability (i.e., negative life events and childhood financial insecurity), as well as positive effects of individual-level, contest competition (i.e., educational and occupational competition) on other-centeredness. Overall, these findings support the view that cognitive and emotional processes do not necessarily contradict each other. Rather, they might work in concert to promote other-centeredness in various circumstances and might be attributed to humans' developmental flexibility in the face of environmental challenges. [Zhu, Nan; Hawk, Skyler T.] Chinese Univ Hong Kong, Dept Educ Psychol, Shatin, Hong Kong, Peoples R China; [Chang, Lei] Univ Macau, Dept Psychol, Humanities & Social Sci Bldg,E21-3045, Taipa, Macao, Peoples R China Chang, L (reprint author), Univ Macau, Dept Psychol, Humanities & Social Sci Bldg,E21-3045, Taipa, Macao, Peoples R China. chang@umac.mo Chang, Lei/0000-0001-6457-0254 Agresti A, 2013, CATEGORICAL DATA ANA; ALEXANDER RD, 1989, HUMAN REVOLUTION, P455; Arnulf JK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106361; Barclay P, 2007, P ROY SOC B-BIOL SCI, V274, P749, DOI 10.1098/rspb.2006.0209; Bartels DM, 2008, COGNITION, V108, P381, DOI 10.1016/j.cognition.2008.03.001; Becker TE, 1997, EDUC PSYCHOL MEAS, V57, P477, DOI 10.1177/0013164497057003009; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; BIRCH LC, 1957, AM NAT, V91, P5, DOI 10.1086/281957; Bradley RH, 2002, ANNU REV PSYCHOL, V53, P371, DOI 10.1146/annurev.psych.53.100901.135233; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Carlo G., 1992, J RES ADOLESCENCE, V2, P331, DOI [10.1207/s15327795jra0204_3, DOI 10.1207/S15327795JRA0204_3]; Carlo G, 2012, PERS INDIV DIFFER, V53, P675, DOI 10.1016/j.paid.2012.05.022; Chang L, 2018, EVOL HUM BEHAV, V39, P59, DOI 10.1016/j.evolhumbehav.2017.10.003; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; DAVIS MH, 1983, J PERS SOC PSYCHOL, V44, P113, DOI 10.1037/0022-3514.44.1.113; De Corte K, 2007, PSYCHOL BELG, V47, P235, DOI 10.5334/pb-47-4-235; del Giudice Marco, 2011, EVOLUTION PERSONALIT, P154; EISENBERG N, 1986, ALTRUISTIC EMOTION C; Eisenberg N, 2014, DEV PSYCHOL, V50, P58, DOI 10.1037/a0032990; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Epstein S, 1996, J PERS SOC PSYCHOL, V71, P390, DOI 10.1037/0022-3514.71.2.390; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Gibbs J. C., 2003, MORAL DEV REALITY TH; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Greene JD, 2001, SCIENCE, V293, P2105, DOI 10.1126/science.1062872; Greene JD, 2008, COGNITION, V107, P1144, DOI 10.1016/j.cognition.2007.11.004; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Haidt J, 2001, PSYCHOL REV, V108, P814, DOI 10.1037//0033-295X.108.4.814; Hardy CL, 2006, PERS SOC PSYCHOL B, V32, P1402, DOI 10.1177/0146167206291006; Haskuka M, 2008, J CROSS CULT PSYCHOL, V39, P381, DOI 10.1177/0022022108318113; Hoffman M, 2000, EMPATHY MORAL DEV IM; HOLMES TH, 1967, J PSYCHOSOM RES, V11, P213, DOI 10.1016/0022-3999(67)90010-4; Inglehart R., 2004, HUMAN BELIEFS VALUES; Jolliffe D, 2006, J ADOLESCENCE, V29, P589, DOI 10.1016/j.adolescence.2005.08.010; Kline R. B., 2011, PRINCIPLES PRACTICE; Kohlberg L., 1984, PSYCHOL MORAL DEV ES, V2; Kraus MW, 2010, PSYCHOL SCI, V21, P1716, DOI 10.1177/0956797610387613; Krebs DL, 2008, PERSPECT PSYCHOL SCI, V3, P149, DOI 10.1111/j.1745-6924.2008.00072.x; Kurzban R, 2015, ANNU REV PSYCHOL, V66, P575, DOI 10.1146/annurev-psych-010814-015355; Liu X., 1997, CHINESE J LAB DIAGNO, V01, P39; MAC ARTHUR ROBERT H., 1967; Mishra S., 2008, EVOLUTIONARY FORENSI, P176; Mittal C, 2014, J PERS SOC PSYCHOL, V107, P621, DOI 10.1037/a0037398; Muthen L. K., 2007, MPLUS USERS GUIDE; Nichols S, 2006, COGNITION, V100, P530, DOI 10.1016/j.cognition.2005.07.005; Norris Pippa, 2004, SACRED SECULAR RELIG; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Paxton JM, 2012, COGNITIVE SCI, V36, P163, DOI 10.1111/j.1551-6709.2011.01210.x; Paxton JM, 2010, TOP COGN SCI, V2, P511, DOI 10.1111/j.1756-8765.2010.01096.x; Piaget J., 1965, MORAL JUDGMENT CHILD; Piazza J, 2014, SOC PSYCHOL PERS SCI, V5, P334, DOI 10.1177/1948550613492826; Piff PK, 2012, J PERS SOC PSYCHOL, V103, P949, DOI 10.1037/a0029673; Preacher KJ, 2004, BEHAV RES METH INS C, V36, P717, DOI 10.3758/BF03206553; Prinz J, 2011, SOUTHERN J PHILOS, V49, P214, DOI 10.1111/j.2041-6962.2011.00069.x; Shaver P. R., 2012, SOCIAL PSYCHOL MORAL, P257; Shweder R. A., 1987, EMERGENCE MORALITY Y, P1, DOI DOI 10.1017/CBO9781139173728.005; Warneken F, 2007, PLOS BIOL, V5, P1414, DOI 10.1371/journal.pbio.0050184; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004; White AE, 2012, J PERS SOC PSYCHOL, V103, P622, DOI 10.1037/a0029140; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Wolf JB, 1999, AM NAT, V153, P254, DOI 10.1086/303168 61 1 1 1 5 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. JUN 2018 29 2 186 209 10.1007/s12110-018-9313-7 24 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences GF4IB WOS:000431925300005 29516303 2019-02-21 J Mullowney, D; Morris, C; Dawe, E; Zagorsky, I; Goryanina, S Mullowney, Darrell; Morris, Corey; Dawe, Earl; Zagorsky, Ivan; Goryanina, Svetlana Dynamics of snow crab (Chionoecetes opilio) movement and migration along the Newfoundland and Labrador and Eastern Barents Sea continental shelves REVIEWS IN FISH BIOLOGY AND FISHERIES English Article Barents Sea; Newfoundland and Labrador; Ontogenetic movement; Seasonal migration; Snow crab BERING-SEA; NORTHWESTERN GULF; SPATIAL DYNAMICS; TERMINAL MOLT; BONNE BAY; MAJIDAE; GROWTH; TEMPERATURE; BRACHYURA This study uses survey and tagging data and cluster analysis to interpret dynamics of ontogenetic movements and seasonal migrations in snow crab (Chionoecetes opilio) along the Newfoundland and Labrador (NL) continental shelves. Most historic literature from Atlantic Canada suggests snow crab undertake small-scale ontogenetic movements while observations of seasonal migrations had been near-exclusive to the inshore. Information on both types of movement in the most spatially expansive offshore region of Atlantic Canada, in NL, was lacking. We find that that both ontogenetic movements and seasonal migrations occur in most areas of the NL offshore, with ontogenetic movements generally down-slope and seasonal migrations generally upslope. Conservative estimates of average ontogenetic movements range from 54 to 72 km for both males and females in the largest offshore regions while seasonal migrations are slightly smaller, with two independent studies on the Grand Bank producing average estimates of 43-46 km and an adjacent tagging study in a smaller inshore bay producing an average estimate of 25 km. Ontogenetic movements appear associated with a search for warm water while seasonal migrations appear associated with both mating and molting in shallow water. On average, morphometrically mature crab of both sexes move less vertical distance than morphometrically immature crab during seasonal migrations. We investigate plausible explanations for ontogenetic movements and spring migrations and detail how bottom temperature affects crab distribution and life history dynamics. We further document movement patterns from tagging studies on the burgeoning snow crab stock in the Eastern Barents Sea toward establishing consistencies in species behaviour on the global scale. Finally, we discuss explanations for historical disparities in the literature between scales of movement for snow crab in the Eastern Bering Sea of Alaska versus Atlantic Canada and advance perspectives on life history theory for the species. [Mullowney, Darrell; Morris, Corey; Dawe, Earl] Fisheries & Oceans Canada, Sci Branch, POB 5667,80 East White Hills Rd, St John, NF A1C 5X1, Canada; [Zagorsky, Ivan; Goryanina, Svetlana] Russian Fed Res Inst Fisheries & Oceanog, Verkhnaya Krasnoselskaya Str 17, Moscow 107140, Russia Mullowney, D (reprint author), Fisheries & Oceans Canada, Sci Branch, POB 5667,80 East White Hills Rd, St John, NF A1C 5X1, Canada. darrell.mullowney@dfo-mpo.gc.ca Agnalt AL, 2011, INVAD NAT SPRING SER, V6, P283, DOI 10.1007/978-94-007-0591-3_9; Alunno-Bruscia M, 1998, CAN J FISH AQUAT SCI, V55, P459, DOI 10.1139/cjfas-55-2-459; Alvsvag J, 2009, BIOL INVASIONS, V11, P587, DOI 10.1007/s10530-008-9273-7; [Anonymous], 1999, SAS STAT US GUID VER; Biron M, 2008, FISH RES, V91, P260, DOI 10.1016/j.fishres.2007.11.029; Boudreau SA, 2011, MAR ECOL PROG SER, V429, P169, DOI 10.3354/meps09081; BRETHES JCF, 1989, LOW WAKE FI, V8, P193; Burmeister A, 2010, POLAR BIOL, V33, P775, DOI 10.1007/s00300-009-0755-6; Colbourne E, 1995, 9533 NAFO SCR; Colbourne E, 2016, 1607 NAFO SCR; Comeau M, 1998, CRUSTACEANA, V71, P925, DOI 10.1163/156854098X00932; Comeau M, 1998, CAN J FISH AQUAT SCI, V55, P262, DOI 10.1139/cjfas-55-1-262; Comeau M, 1989, CAN ATL FISH SCI ADV, V1989; CONAN GY, 1986, CAN J FISH AQUAT SCI, V43, P1710, DOI 10.1139/f86-214; Cook AM, 2015, 2015068 DFO CAN SCI, V2015; COULOMBE F, 1985, CAN J FISH AQUAT SCI, V42, P169, DOI 10.1139/f85-021; Dahle S, 1998, SARSIA, V83, P183, DOI 10.1080/00364827.1998.10413681; Dawe EG, 2012, MAR ECOL PROG SER, V469, P279, DOI 10.3354/meps09793; Dawe EG, 2010, FISH RES, V101, P70, DOI 10.1016/j.fishres.2009.09.008; Dawe EG, 2002, LOW WAKE FI, V19, P577; Dawe EG, 2002, 2002051 CAN SCI ADV, V2002; Doubleday WG, 1981, NW ATL FISH ORG SCI; Dufour R, 1994, POTENTIEL EXPLOITATI, V1996; Dufour R, 1988, 199839 DFO CAN SCI A, V1998; Emond K, 2015, ICES J MAR SCI, V72, P1336, DOI 10.1093/icesjms/fsu240; Ennis GP, 1990, 199005 CAN ATL FISH, V1990; Ennis GP, 1988, 199802 CAN ATL FISH, V1988; Ernst B, 2005, CAN J FISH AQUAT SCI, V62, P250, DOI 10.1139/F04-201; Fonseca DB, 2008, T AM FISH SOC, V137, P1029, DOI 10.1577/T07-079.1; FOYLE TP, 1989, J EXP BIOL, V145, P371; HOENIG JM, 1994, J CRUSTACEAN BIOL, V14, P273, DOI 10.2307/1548907; HOOPER RG, 1986, CRUSTACEANA, V50, P257, DOI 10.1163/156854086X00287; ICES, 2017, 2016SSGEPD10 ICES UK; Kolts JM, 2015, MAR ECOL PROG SER, V518, P193, DOI 10.3354/meps11042; LOVRICH GA, 1995, CAN J ZOOL, V73, P1712, DOI 10.1139/z95-203; Marcello LA, 2012, MAR ECOL PROG SER, V469, P249, DOI 10.3354/meps09766; McBride J., 1982, Alaska Sea Grant Report, P383; Miller RJ, 1981, CAN TECH REP FISH AQ, V1003; Mullowney D, 2016, 2016026 DFO CAN SCI, V2016; Mullowney DR, 2011, ICES J MAR SCI, V68, P463, DOI 10.1093/icesjms/fsq189; Mullowney DRJ, 2014, REV FISH BIOL FISHER, V24, P639, DOI 10.1007/s11160-014-9349-7; Mullowney DRJ, 2012, CRABS ANATOMY HABITA, P49; Nichol DG, 2015, FISH B-NOAA, V113, P313, DOI 10.7755/FB.113.3.7; Orensanz J, 2004, CAL COOP OCEAN FISH, V45, P65; Parada C, 2010, B MAR SCI, V86, P413; PIPER DJW, 1991, CONT SHELF RES, V11, P1013, DOI 10.1016/0278-4343(91)90089-O; Powles HW, 1968, 997 FISH RES BD CAN, V997; Puebla O, 2008, CAN J FISH AQUAT SCI, V65, P425, DOI 10.1139/F07-163; SAINTE-MARIE B, 1988, Naturaliste Canadien (Quebec), V115, P105; SAINTE-MARIE B, 1992, CAN J FISH AQUAT SCI, V49, P1282, DOI 10.1139/f92-144; SAINTE-MARIE B., 1996, LOWELL WAKEFIELD FIS, V96-02, P451; Sainte-Marie B, 2008, B MAR SCI, V83, P131; Somerton D.A., 1982, Alaska Sea Grant Report, P283; Taylor David M., 1992, North American Journal of Fisheries Management, V12, P777, DOI 10.1577/1548-8675(1992)012<0777:LTOOMO>2.3.CO;2; Taylor DM, 1984, 198458 CAN ATL FISH, V1984; Turner CT, 2013, BARENTS OBSERVER; Wassmann P, 2006, PROG OCEANOGR, V71, P232, DOI 10.1016/j.pocean.2006.10.003; Watson J, 1970, 204 FISH RES BD CAN, V204; Watson J, 1972, 349 FISH RES BD CAN, V349; Windle MJS, 2012, MAR ECOL PROG SER, V469, P263, DOI 10.3354/meps10026; WONG MA, 1982, J AM STAT ASSOC, V77, P841, DOI 10.2307/2287316; Zheng J, 2001, LOW WAKE FI, V17, P233; Zimmina OL, 2012, RUSS J MAR BIOL, V40, P490 63 1 1 2 8 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0960-3166 1573-5184 REV FISH BIOL FISHER Rev. Fish. Biol. Fish. JUN 2018 28 2 435 459 10.1007/s11160-017-9513-y 25 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology GF4ZM WOS:000431973700009 2019-02-21 J Shukla, A; Pagan, I; Garcia-Arenal, F Shukla, Aayushi; Pagan, Israel; Garcia-Arenal, Fernando Effective tolerance based on resource reallocation is a virus-specific defence in Arabidopsis thaliana MOLECULAR PLANT PATHOLOGY English Article Arabidopsis thaliana; life history traits; resistance; resource reallocation; tolerance LIFE-HISTORY EVOLUTION; TURNIP CRINKLE VIRUS; MOSAIC-VIRUS; REPRODUCTIVE EFFORT; VIRULENCE; PARASITISM; PLANTS; COEVOLUTION; RESISTANCE; PATHOGENICITY Plant viruses often harm their hosts, which have developed mechanisms to prevent or minimize the effects of virus infection. Resistance and tolerance are the two main plant defences to pathogens. Although resistance to plant viruses has been studied extensively, tolerance has received much less attention. Theory predicts that tolerance to low-virulent parasites would be achieved through resource reallocation from growth to reproduction, whereas tolerance to high-virulent parasites would be attained through shortening of the pre-reproductive period. We have shown previously that the tolerance of Arabidopsis thaliana to Cucumber mosaic virus (CMV), a relatively low-virulent virus in this host, accords to these predictions. However, whether other viruses trigger the same response, and how A. thaliana copes with highly virulent virus infections remains unexplored. To address these questions, we challenged six A. thaliana wild genotypes with five viruses with different genomic structures, life histories and transmission modes. In these plants, we quantified virus multiplication, virulence, and the effects of infection on plant growth and reproduction, and on the developmental schedule. Our results indicate that virus multiplication varies according to the virus x host genotype interaction. Conversely, effective tolerance is observed only on CMV infection, and is associated with resource reallocation from growth to reproduction. Tolerance to the other viruses is observed only in specific host-virus combinations and, at odds with theoretical predictions, is linked to longer pre-reproductive periods. These findings only partially agree with theoretical predictions, and contribute to a better understanding of pathogenic processes in plant-virus interactions. [Shukla, Aayushi; Pagan, Israel; Garcia-Arenal, Fernando] UPM, ETSI Agron Agroalimentaria & Biosistemas, INIA, Ctr Biotecnol & Genom Plantas, Campus Montegancedo, Pozuelo De Alarcon 28223, Madrid, Spain Garcia-Arenal, F (reprint author), UPM, ETSI Agron Agroalimentaria & Biosistemas, INIA, Ctr Biotecnol & Genom Plantas, Campus Montegancedo, Pozuelo De Alarcon 28223, Madrid, Spain. fernando.garciaarenal@upm.es Plan Estatal de I+D+i, Secretaria de Estado de Investigacion, MINECO, Spain [BFU2015-64018-R]; Ramon y Cajal grant from MINECO, Spain [RYC-2011-08574]; Erasmus Mundus EU programme (BRAVE) [2013-2536/001-001] This research was funded by Plan Estatal de I+D+i, Secretaria de Estado de Investigacion, MINECO, Spain (BFU2015-64018-R). TuMV-UK1 was provided by Professor Fernando Ponz (CBGP, UPM-INIA, Madrid, Spain). The TCV-M infectious clone was provided by Professor Anne Simon (University of Maryland, College Park, MD, USA). The CaMV-BJI infectious clone was provided by Dr Stephane Blanc (INRA, Montpellier, France). Antolin Lopez Quiros provided excellent technical support. I.P. was supported by a Ramon y Cajal grant from MINECO, Spain (RYC-2011-08574). A.S. was supported by a scholarship of an Erasmus Mundus EU programme (BRAVE, agreement number 2013-2536/001-001). Agnew P, 2000, MICROBES INFECT, V2, P891, DOI 10.1016/S1286-4579(00)00389-0; Agrawal AA, 2000, TRENDS PLANT SCI, V5, P309, DOI 10.1016/S1360-1385(00)01679-4; Aguilar I, 1996, PLANT MOL BIOL, V30, P191, DOI 10.1007/BF00017814; Alizon S, 2009, J EVOLUTION BIOL, V22, P245, DOI 10.1111/j.1420-9101.2008.01658.x; Anderson PK, 2004, TRENDS ECOL EVOL, V19, P535, DOI 10.1016/j.tree.2004.07.021; Best A, 2014, EVOLUTION, V68, P1426, DOI 10.1111/evo.12368; Boyes DC, 2001, PLANT CELL, V13, P1499, DOI 10.1105/tpc.13.7.1499; Bull JJ, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1004387; Cai L, 2009, BIOCHEM GENET, V47, P451, DOI 10.1007/s10528-009-9244-4; CARRINGTON JC, 1989, VIROLOGY, V170, P219, DOI 10.1016/0042-6822(89)90369-3; CARRINGTON JC, 1987, J MOL BIOL, V194, P265, DOI 10.1016/0022-2836(87)90374-3; Chadwick W, 2005, P ROY SOC B-BIOL SCI, V272, P505, DOI 10.1098/rspb.2004.2959; Chaouachi M, 2008, EUR FOOD RES TECHNOL, V227, P789, DOI 10.1007/s00217-007-0787-5; Csorba T, 2009, ADV VIRUS RES, V75, P35, DOI 10.1016/S0065-3527(09)07502-2; Davies CM, 2001, P ROY SOC B-BIOL SCI, V268, P251, DOI 10.1098/rspb.2000.1367; de Ronde D, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00307; Fellous S, 2009, TRENDS PARASITOL, V25, P62, DOI 10.1016/j.pt.2008.11.010; FORBES MRL, 1993, OIKOS, V67, P444, DOI 10.2307/3545356; Fraile A, 2016, CURR OPIN VIROL, V17, P50, DOI 10.1016/j.coviro.2016.01.008; Fraile A, 2010, ADV VIRUS RES, V76, P1, DOI 10.1016/S0065-3527(10)76001-2; Fredensborg BL, 2006, J ANIM ECOL, V75, P44, DOI 10.1111/j.1365-2656.2005.01021.x; Gandon S, 2002, AM NAT, V160, P374, DOI 10.1086/341525; Haas M, 2002, MOL PLANT PATHOL, V3, P419, DOI 10.1046/j.1364-3703.2002.00136.x; Hily JM, 2016, NEW PHYTOL, V209, P812, DOI 10.1111/nph.13631; HOCHBERG ME, 1992, J EVOLUTION BIOL, V5, P491, DOI 10.1046/j.1420-9101.1992.5030491.x; Hollings M., 1972, 109 COMM MYC I ASS A; Irish VF, 2010, PLANT J, V61, P1014, DOI 10.1111/j.1365-313X.2009.04065.x; Jacquemond M, 2012, ADV VIRUS RES, V84, P439, DOI 10.1016/B978-0-12-394314-9.00013-0; Jeger MJ, 2006, ADV VIRUS RES, V67, P163, DOI 10.1016/S0065-3527(06)67005-X; Leventhal GE, 2014, AM NAT, V183, P480, DOI 10.1086/675242; Levin Bruce R., 1994, Trends in Microbiology, V2, P76, DOI 10.1016/0966-842X(94)90538-X; Lipsitch M, 1997, TRENDS MICROBIOL, V5, P31, DOI 10.1016/S0966-842X(97)81772-6; Little TJ, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1001006; Lunello P, 2007, MOL PLANT MICROBE IN, V20, P1589, DOI 10.1094/MPMI-20-12-1589; MICHALAKIS Y, 1994, PARASITE, V1, P291, DOI 10.1051/parasite/1994014291; Hily JM, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1004492; Miller MR, 2006, EVOLUTION, V60, P945, DOI 10.1554/05-654.1; MINCHELLA DJ, 1985, PARASITOLOGY, V90, P205, DOI 10.1017/S0031182000049143; Pagan I, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000786; Pagan I, 2016, VIRUS EVOLUTION: CURRENT RESEARCH AND FUTURE DIRECTIONS, P127; Pagan I, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1004293; Pagan I, 2010, PHILOS T R SOC B, V365, P1983, DOI 10.1098/rstb.2010.0062; Pagan I, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000531; Pagan I, 2008, PLOS PATHOG, V4, DOI 10.1371/journal.ppat.1000124; Park CY, 2016, PLANT DIS, V100, P1250, DOI 10.1094/PDIS-07-15-0758-PDN; Perrin N, 1996, OIKOS, V75, P317, DOI 10.2307/3546256; Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559; Raberg L, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001989; Read Andrew F., 1994, Trends in Microbiology, V2, P73, DOI 10.1016/0966-842X(94)90537-1; Sacristan S, 2008, MOL PLANT PATHOL, V9, P369, DOI 10.1111/J.1364-3703.2007.00460.X; SMYTH DR, 1990, PLANT CELL, V2, P755; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Strauss SY, 1999, TRENDS ECOL EVOL, V14, P179, DOI 10.1016/S0169-5347(98)01576-6; THOMPSON K, 1981, AM NAT, V117, P205, DOI 10.1086/283700; Truniger V, 2009, ADV VIRUS RES, V75, P119, DOI 10.1016/S0065-3527(09)07504-6; Walsh JA, 2002, MOL PLANT PATHOL, V3, P289, DOI 10.1046/j.1364-3703.2002.00132.x; Williams Geroge C, 1966, ADAPTATION NATURAL S; ZHANG L, 1994, J GEN VIROL, V75, P3185, DOI 10.1099/0022-1317-75-11-3185 58 2 2 4 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-6722 1364-3703 MOL PLANT PATHOL Mol. Plant Pathol. JUN 2018 19 6 1454 1465 10.1111/mpp.12629 12 Plant Sciences Plant Sciences GE8TT WOS:000431504800014 29027740 2019-02-21 J Chen, BB Chen, Bin-Bin An evolutionary life history approach to understanding greed PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history theory; Greed; Insecure attachment; Childhood environmental unpredictability ENVIRONMENTAL UNPREDICTABILITY; REPRODUCTIVE STRATEGIES; RETROSPECTIVE REPORTS; INSECURE ATTACHMENT; RESOURCE CONTROL; DECISION-MAKING; CHILDHOOD; SEX; PSYCHOPATHOLOGY; ADOLESCENCE Evolutionary life history theory offers a unifying theoretical framework, emphasizing that human behaviors have been selected because they are adaptive responses to environmental challenges. There is little extant empirical research on the evolutionary origin of greed. The purpose of this study, which was based on the evolutionary life history approach, was to examine the relationships between childhood environmental unpredictability, attachment, and greed. A sample of 364 university students completed measures of greed, attachment, and childhood environment. Structural equation modeling revealed that, as predicted, childhood environmental unpredictability was positively associated with greed. Furthermore, attachment was confirmed as a mediator of the association between childhood environmental unpredictability and greed. These results define the evolutionary origin of greed. [Chen, Bin-Bin] Fudan Univ, Dept Psychol, 220 Handan Rd, Shanghai 200433, Peoples R China Chen, BB (reprint author), Fudan Univ, Dept Psychol, 220 Handan Rd, Shanghai 200433, Peoples R China. chenbinbin@fudan.edu.cn School of Social Development and Public Policy at Fudan University This study was supported by the research fund of the School of Social Development and Public Policy at Fudan University. ARMSDEN GC, 1987, J YOUTH ADOLESCENCE, V16, P427, DOI 10.1007/BF02202939; Barbaro N., 2016, J INTERPERSONAL VIOL; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; BREWIN CR, 1993, PSYCHOL BULL, V113, P82, DOI 10.1037//0033-2909.113.1.82; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Chen BB, 2017, BEHAV BRAIN SCI, V40, DOI 10.1017/S0140525X16001369; Chen BB, 2017, PERS INDIV DIFFER, V117, P23, DOI 10.1016/j.paid.2017.05.036; Chen BB, 2017, J CHILD FAM STUD, V26, P2070, DOI 10.1007/s10826-017-0728-2; Chen BB, 2017, PERS INDIV DIFFER, V111, P215, DOI 10.1016/j.paid.2017.02.032; Chen BB, 2017, PERS INDIV DIFFER, V105, P213, DOI 10.1016/j.paid.2016.09.062; Chen BB, 2012, INT J BEHAV DEV, V36, P389, DOI 10.1177/0165025412445440; Chen BB, 2012, ASIAN J SOC PSYCHOL, V15, P122, DOI 10.1111/j.1467-839X.2012.01373.x; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Hardt J, 2004, J CHILD PSYCHOL PSYC, V45, P260, DOI 10.1111/j.1469-7610.2004.00218.x; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037/0022-3514.52.3.511; Kidd C, 2013, COGNITION, V126, P109, DOI 10.1016/j.cognition.2012.08.004; Krekels G, 2015, PERS INDIV DIFFER, V74, P225, DOI 10.1016/j.paid.2014.10.036; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Muris P, 2001, PERS INDIV DIFFER, V30, P809, DOI 10.1016/S0191-8869(00)00074-X; Mussel P, 2015, SOC NEUROSCI-UK, V10, P126, DOI 10.1080/17470919.2014.965340; Muthen LK, 2012, MPLUS USERS GUIDE; Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9101.88.5.879; Rindfleisch A, 1997, J CONSUM RES, V23, P312, DOI 10.1086/209486; Robertson AF, 2001, GREED GUT FEELINGS G; Seuntjens TG, 2016, J ECON PSYCHOL, V57, P1, DOI 10.1016/j.joep.2016.09.002; Seuntjens TG, 2015, J PERS SOC PSYCHOL, V108, P917, DOI 10.1037/pspp0000031; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Szepsenwol O, 2015, J PERS SOC PSYCHOL, V109, P1045, DOI 10.1037/pspi0000032; Veselka L, 2014, PERS INDIV DIFFER, V67, P75, DOI 10.1016/j.paid.2014.01.055 38 2 2 6 11 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUN 1 2018 127 74 78 10.1016/j.paid.2018.02.006 5 Psychology, Social Psychology GB6NA WOS:000429184700013 2019-02-21 J Antfolk, J; Sjolund, A Antfolk, Jan; Sjolund, Agneta High parental investment in childhood is associated with increased mate value in adulthood PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Parental investment; Mate value; Life-history theory; Paternal investment; Maternal investment; Sexual strategies SEXUAL RISK-TAKING; FATHER ABSENCE; REPRODUCTIVE STRATEGY; EVOLUTIONARY PERSPECTIVE; FLUCTUATING ASYMMETRY; PUBERTAL MATURATION; SELF-ESTEEM; AGE; PREFERENCES; PERSONALITY Stressors in the childhood environment, such as decreased parental investment (PI) regulate an individual's reproductive behaviors. The effect of these behaviors on fitness is partly determined by individual mate value (MV). We tested whether PI during childhood is associated to MV in adulthood. Adult men and women (N = 1244) reported received maternal and paternal investment, and also current MV. We found that high PI in childhood was associated with increased MV in adulthood. Additionally, there was a positive correlation between maternal and paternal investment and the association between paternal investment and MV was mediated through maternal investment. We conclude that PI, especially maternal investment, might influence MV in offspring. [Antfolk, Jan; Sjolund, Agneta] Abo Akad Univ, Dept Psychol, Turku, Finland; [Antfolk, Jan] Turku Brain & Mind Ctr, Turku, Finland Antfolk, J (reprint author), Abo Akad Univ, Psychol, Fabriksgatan 2, SF-20500 Turku, Finland. jantfolk@abo.fi Antfolk, Jan/0000-0003-0334-4987 Academy of Finland [298513] The current study was funded by an Academy of Finland grant (no. 298513) to the first author. The authors thank the members of HumeLAB for their helpful comments. Albrecht A., 2014, J SOCIAL SCI RES, V6, P915; Antfolk J., 2017, EVOLUTIONARY PSYCHOL, V15; Antfolk J, 2015, EVOL HUM BEHAV, V36, P73, DOI 10.1016/j.evolhumbehav.2014.09.003; Barbaro N, 2017, EVOL HUM BEHAV, V38, P357, DOI 10.1016/j.evolhumbehav.2016.11.007; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Brase GL, 2004, PERS INDIV DIFFER, V36, P471, DOI 10.1016/S0191-8869(03)00117-X; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Dunkel CS, 2018, EVOL HUM BEHAV, V39, P52, DOI 10.1016/j.evolhumbehav.2017.09.004; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Finley G. E., 2008, FATHERING, V6, P62, DOI [10.3149/fth.0601.62, DOI 10.3149/FTH.0601.62]; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gangestad SW, 1997, EVOL HUM BEHAV, V18, P69, DOI 10.1016/S1090-5138(97)00003-2; HETHERINGTON EM, 1972, DEV PSYCHOL, V7, P313, DOI 10.1037/h0033339; Hill NE, 2009, DEV PSYCHOL, V45, P740, DOI 10.1037/a0015362; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Jackson Debra, 2007, J Child Health Care, V11, P29, DOI 10.1177/1367493507073059; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Kaptijn R, 2010, EVOL HUM BEHAV, V31, P59, DOI 10.1016/j.evolhumbehav.2009.07.007; Kim K, 1998, J ADOLESCENCE, V21, P231, DOI 10.1006/jado.1998.0149; Kramer KL, 2011, TRENDS ECOL EVOL, V26, P533, DOI 10.1016/j.tree.2011.06.002; Kuhle B. X., 2015, EVOLUTIONARY BEHAV S, V9, P107, DOI DOI 10.1037/EBS0000012; Kyweluk MA, 2018, EVOL HUM BEHAV, V39, P76, DOI 10.1016/j.evolhumbehav.2017.10.002; Laible DJ, 2004, J ADOLESCENCE, V27, P703, DOI 10.1016/j.adolescence.2004.05.005; Magnus M. C., 2017, J EPIDEMIOLOGY COMMU; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; PERUSSE D, 1993, BEHAV BRAIN SCI, V16, P267, DOI 10.1017/S0140525X00029939; Pinker Steven, 2002, BLANK SLATE; R Core Team, 2008, R LANG ENV STAT COMP; Rosseel Y, 2012, J STAT SOFTW, V48, P1; SemTools Contributors, 2016, STRUCTURAL EQUATION; Sheppard P, 2012, BIOL LETTERS, V8, P237, DOI 10.1098/rsbl.2011.0747; SIMPSON JA, 1992, J PERS, V60, P31, DOI 10.1111/j.1467-6494.1992.tb00264.x; Smith D., 2017, BIOL LETT, V13; STERNS SC, 1992, EVOLUTION LIFE HIST; THORNHILL R, 1994, PSYCHOL SCI, V5, P297, DOI 10.1111/j.1467-9280.1994.tb00629.x; Trivers R., 1972, SEXUAL SELECTION DES, P1871; Webster G.D., 2014, EVOLUTIONARY PSYCHOL, V12 42 0 0 5 10 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUN 1 2018 127 144 150 10.1016/j.paid.2018.02.004 7 Psychology, Social Psychology GB6NA WOS:000429184700024 2019-02-21 J Manson, JH Manson, Joseph H. Associations between psychometrically assessed life history strategy and daily behavior: data from the Electronically Activated Recorder (EAR) PEERJ English Article Life history strategy; Electronically activated recorder; Arizona life history battery K-FACTOR; INDIVIDUAL-DIFFERENCES; PERSONALITY; PSYCHOLOGY; SELECTION; CONVERSATIONS; HERITABILITY; ENVIRONMENTS; INTELLIGENCE; COVITALITY Life history theory has generated cogent, well-supported hypotheses about individual differences in human biodemographic traits (e.g., age at sexual maturity) and psychometric traits (e.g., conscientiousness), but little is known about how variation in life history strategy (LHS) is manifest in quotidian human behavior. Here I test predicted associations between the self-report Arizona Life History Battery and frequencies of 12 behaviors observed over 72 h in 91 US college students using the Electronically Activated Recorder (EAR), a method of gathering periodic brief audio recordings as participants go about their daily lives. Bayesian multi-level aggregated binomial regression analysis found no strong associations between ALHB scores and behavior frequencies. One behavior, presence at amusement venues (bars, concerts, sports events) was weakly positively associated with ALHB-assessed slow LHS, contrary to prediction. These results may represent a challenge to the ALHB's validity. However, it remains possible that situational influences on behavior, which were not measured in the present study, moderate the relationships between psychometrically-assessed LHS and quotidian behavior. [Manson, Joseph H.] Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90024 USA Manson, JH (reprint author), Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90024 USA. jmanson@anthro.ucla.edu Faculty Research Grant from UCLA Academic Senate This research was supported by a Faculty Research Grant from the UCLA Academic Senate. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Adan A, 2012, CHRONOBIOL INT, V29, P1153, DOI 10.3109/07420528.2012.719971; Alisic E, 2016, J PEDIATR PSYCHOL, V41, P117, DOI 10.1093/jpepsy/jsv016; Baddeley JL, 2013, SOC PSYCHOL PERS SCI, V4, P445, DOI 10.1177/1948550612461654; BARRERA M, 1981, AM J COMMUN PSYCHOL, V9, P435, DOI 10.1007/BF00918174; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BLOCK J, 1978, Q SORT METHOD PERSON; Brennan KA, 1998, ATTACHMENT THEORY CL, P46; Brim O. G., 2000, NATL SURVEY MIDLIFE; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; BUSS DM, 1987, J PERS SOC PSYCHOL, V53, P1214, DOI 10.1037/0022-3514.53.6.1214; Charnov Eric L., 1993, P1; Chua KJ, 2017, EVOL PSYCHOL-US, V15, DOI 10.1177/1474704916677342; de Vries RE, 2016, EVOL HUM BEHAV, V37, P407, DOI 10.1016/j.evolhumbehav.2016.04.001; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Dunkel CS, 2015, ARCH SEX BEHAV, V44, P1705, DOI 10.1007/s10508-014-0445-5; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Figueredo A. J, 2007, ARIZONA LIFE HIST BA; Figueredo A. J., 2014, EVOLUTIONARY BEHAV S, V8, P148, DOI DOI 10.1037/H0099837; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2015, EVOL PSYCHOL-US, V13, P299, DOI 10.1177/147470491501300202; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Funder DC, 2012, CURR DIR PSYCHOL SCI, V21, P177, DOI 10.1177/0963721412445309; Funder DC, 2001, ANNU REV PSYCHOL, V52, P197, DOI 10.1146/annurev.psych.52.1.197; Furr R. M., 2010, THEN MIRACLE OCCURS, P186; Furr RM, 2009, EUR J PERSONALITY, V23, P369, DOI 10.1002/per.724; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kubinski JS, 2017, EVOL HUM BEHAV, V38, P434, DOI 10.1016/j.evolhumbehav.2017.04.005; LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310; MAC ARTHUR ROBERT H., 1967; MANSON JH, 2018, EVOLUTIONARY PSYCHOL, V0004; Manson JH, 2017, EVOL HUM BEHAV, V38, P552, DOI 10.1016/j.evolhumbehav.2017.01.005; Manson JH, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00658; Manson JH, 2015, EVOL PSYCHOL-US, V13, P48, DOI 10.1177/147470491501300104; McElreath R., 2015, STAT RETHINKING BAYE; McElreath R, 2016, RETHINKING R PACKAGE; McShane B., 2017, ARXIV170907588; Mehl M. R., 2012, HDB RES METHODS STUD, P176; Mehl MR, 2006, J PERS SOC PSYCHOL, V90, P862, DOI 10.1037/0022-3514.90.5.862; Mehl MR, 2012, PSYCHOSOM MED, V74, P410, DOI 10.1097/PSY.0b013e3182545470; Mehl MR, 2003, J PERS SOC PSYCHOL, V84, P857, DOI 10.1037/0022-3514.84.4.857; Mehl MR, 2001, BEHAV RES METH INS C, V33, P517, DOI 10.3758/BF03195410; Nettle D, 2010, PHILOS T R SOC B, V365, P4043, DOI 10.1098/rstb.2010.0061; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Patch EA, 2017, PERS INDIV DIFFER, V115, P108, DOI 10.1016/j.paid.2016.04.023; Pepper GV, 2017, PEERJ, V5, DOI 10.7717/peerj.3580; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Ponzi D, 2015, EVOL HUM BEHAV, V36, P117, DOI 10.1016/j.evolhumbehav.2014.09.008; R Core Team, 2016, R LANG ENV STAT COMP; Rauthmann JF, 2015, EUR J PERSONALITY, V29, P363, DOI 10.1002/per.1994; Reis HT, 2008, PERS SOC PSYCHOL REV, V12, P311, DOI 10.1177/1088868308321721; Richardson GB, 2017, EVOLUTIONARY PSYCHOL, DOI [10.1177/147470491666840, DOI 10.1177/147470491666840]; Robbins ML, 2011, HEALTH PSYCHOL, V30, P129, DOI 10.1037/a0021558; Roth WT, 2005, INT J PSYCHOPHYSIOL, V58, P190, DOI 10.1016/j.ijpsycho.2005.01.015; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; Sherman RA, 2010, J PERS SOC PSYCHOL, V99, P330, DOI 10.1037/a0019796; Slatcher RB, 2012, EMOTION, V12, P932, DOI 10.1037/a0027148; Stan Development Team, 2017, RSTAN R INT STAN VER; Stearns S, 1992, EVOLUTION LIFE HIST; Strouts PH, 2017, PERS INDIV DIFFER, V115, P128, DOI 10.1016/j.paid.2016.03.047; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; Verweij KJH, 2012, EVOLUTION, V66, P3238, DOI 10.1111/j.1558-5646.2012.01679.x; Wagerman SA, 2009, CAMBRIDGE HANDBOOK OF PERSONALITY PSYCHOLOGY, P27; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004 70 0 0 4 4 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ MAY 29 2018 6 e4866 10.7717/peerj.4866 18 Multidisciplinary Sciences Science & Technology - Other Topics GI2WW WOS:000434233600009 29868275 DOAJ Gold 2019-02-21 J Wilfahrt, PA Wilfahrt, Peter A. Functional trait shifts after disturbance reveal broad-scale variability in temperate forest regional recruitment processes JOURNAL OF VEGETATION SCIENCE English Article disturbance; ecological trade-off axes; plant functional traits; recruitment processes; resource acquisition; seedling layer; shade tolerance; succession; temperate forest ECONOMICS SPECTRUM; TREES; COMMUNITIES; DIVERSITY; HEIGHT; NORTH; CONSEQUENCES; BIOGEOGRAPHY; MECHANISMS; STRATEGIES QuestionDecreased above-ground biomass and subsequent changes in resource availability exert a strong influence on seedling recruitment in post-disturbance forests. Ecological trade-offs underlie recruitment processes, as species vary in resource allocation, dispersal and stress tolerance strategies. Functional traits that indicate resource acquisition-conservation trade-offs include leaf N content, wood density, maximum height, shade tolerance and drought tolerance, while seed mass can indicate species' dispersal strategies. This study looks for generality in post-disturbance trait responses, and asks whether these responses are additionally constrained or amplified by disturbance characteristics, climate and ecological provinces. LocationEastern US temperate forests. MethodsI leveraged a longitudinal, continental-scale database of post-disturbance forests to examine recruitment dynamics. Using multivariate, hierarchical Bayesian models, I examined how disturbance affects the traits of seedling layer communities where recruitment dynamics should be most evident, and compared this to undisturbed communities. I also examined how the traits underlying trade-off axes varied across disturbance properties, ecological provinces and climatic gradients. ResultsAll traits except leaf N showed significant, study-wide shifts in disturbed communities consistent with expectations of post-disturbance stands. In undisturbed plots, all traits had significant shifts in the opposite direction to those observed in disturbed plots, except leaf N and drought tolerance, where no change was observed. Disturbance severity increased the magnitude of response of several, but not all, trait responses in disturbed plots. The traits that had significant shifts were idiosyncratic across ecological provinces, indicating unique processes influencing disturbance responses across the system. Moreover, while climate strongly correlated with all traits prior to disturbance in the initial sampling periods, it was not correlated with disturbance responses. ConclusionsThis study demonstrates general, biome-wide trait shifts towards resource acquisition and bet-hedging dispersal strategies in post-disturbance forest seedling communities. At finer spatial scales, the traits underlying these trade-offs varied, indicating that disturbance-dependent species differ in life-history strategies across the system. This variation across ecological provinces appears independent of temperature and precipitation, suggesting that unmeasured abiotic or biotic variables influence recruitment. Seedling recruitment is critical in shaping future adult tree communities, and this study reveals large-scale contingencies in trait patterns associated with this process. [Wilfahrt, Peter A.] Univ N Carolina, Curriculum Environm & Ecol, Chapel Hill, NC 27515 USA Wilfahrt, PA (reprint author), Univ Bayreuth, Dept Disturbance Ecol, Bayreuth, Germany. peter.wilfahrt@uni-bayreuth.de Wilfahrt, Peter/0000-0003-1594-6512 UNC; Alma Holland Beers Scholarship I thank Peter White for numerous discussions and editorial comments while conceiving this study. Members of the UNC Plant Ecology Lab, Charles Mitchell and three anonymous reviewers all provided helpful insight on improving the manuscript. Jim Clark and Aaron Berdanier provided valuable feedback in developing the Bayesian models used for analysis. PAW was supported by UNC's Dr. W.C. Coker Fellowship and the Alma Holland Beers Scholarship. Ameztegui A, 2017, FUNCT ECOL, V31, P821, DOI 10.1111/1365-2435.12804; Auger S, 2013, J VEG SCI, V24, P419, DOI 10.1111/j.1654-1103.2012.01473.x; Berdanier AB, 2016, ECOL APPL, V26, P17, DOI 10.1890/15-0274; Bond WJ, 2001, TRENDS ECOL EVOL, V16, P45, DOI 10.1016/S0169-5347(00)02033-4; CANHAM CD, 1994, CAN J FOREST RES, V24, P337, DOI 10.1139/x94-046; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Coomes DA, 2007, J ECOL, V95, P27, DOI 10.1111/j.1365-2745.2006.01179.x; Cote SD, 2004, ANNU REV ECOL EVOL S, V35, P113, DOI 10.1146/annurev.ecolsys.35.021103.105725; Coyle JR, 2014, ECOGRAPHY, V37, P814, DOI 10.1111/ecog.00473; Diaz S, 1999, J VEG SCI, V10, P651, DOI 10.2307/3237080; Falster DS, 2005, J ECOL, V93, P521, DOI 10.1111/j.1365-2745.2005.00992.x; Giehl ELH, 2015, J VEG SCI, V26, P889, DOI 10.1111/jvs.12288; Gilliam FS, 2006, J ECOL, V94, P1176, DOI 10.1111/j.1365-2745.2006.01155.x; Kunstler G, 2016, NATURE, V529, P204, DOI 10.1038/nature16476; Lasky JR, 2015, ECOLOGY, V96, P2157, DOI 10.1890/14-1809.1; Leishman M. R., 2000, SEEDS ECOLOGY REGENE, V2, P31, DOI DOI 10.1079/9780851994321.0031; Loehle C, 1998, J BIOGEOGR, V25, P735, DOI 10.1046/j.1365-2699.1998.2540735.x; Lohbeck M, 2013, ECOLOGY, V94, P1211, DOI 10.1890/12-1850.1; Mason NWH, 2010, J ECOL, V98, P1422, DOI 10.1111/j.1365-2745.2010.01714.x; McNab W. H., 2005, WO76B US DEP AGR; Moles AT, 2007, GLOBAL ECOL BIOGEOGR, V16, P109, DOI 10.1111/j.1466-822x.2006.00259.x; Mouillot D, 2013, TRENDS ECOL EVOL, V28, P167, DOI 10.1016/j.tree.2012.10.004; Muscarella R, 2017, ECOLOGY, V98, P2743, DOI 10.1002/ecy.1990; Myers JA, 2013, ECOL LETT, V16, P151, DOI 10.1111/ele.12021; Niinemets U, 2006, ECOL MONOGR, V76, P521, DOI 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2; Nowacki GJ, 2008, BIOSCIENCE, V58, P123, DOI 10.1641/B580207; Pacala SW, 1996, ECOL MONOGR, V66, P1, DOI 10.2307/2963479; Peet R., 1981, FOREST SUCCESSION CO, P324, DOI 10. 1007/978-1-4612-5950-3; Pickett S. T. A, 1985, ECOLOGY NATURAL DIST; REICH PB, 1995, FUNCT ECOL, V9, P65, DOI 10.2307/2390092; Runkle J. R., 1985, The ecology of natural disturbance and patch dynamics, P17; Russell MB, 2014, FOREST ECOL MANAG, V328, P1, DOI 10.1016/j.foreco.2014.05.014; Schamp BS, 2009, OIKOS, V118, P564, DOI 10.1111/j.1600-0706.2009.16589.x; Siefert A, 2015, ECOL LETT, V18, P1406, DOI 10.1111/ele.12508; Swenson NG, 2012, GLOBAL ECOL BIOGEOGR, V21, P798, DOI 10.1111/j.1466-8238.2011.00727.x; Swenson NG, 2010, ECOLOGY, V91, P2234, DOI 10.1890/09-1743.1; Umana MN, 2015, ECOL LETT, V18, P1329, DOI 10.1111/ele.12527; Valladares F, 2008, ANNU REV ECOL EVOL S, V39, P237, DOI 10.1146/annurev.ecolsys.39.110707.173506; White PS, 2011, MANAG FOR ECOSYST, V21, P27, DOI 10.1007/978-94-007-1620-9_3; Wiens JJ, 2004, TRENDS ECOL EVOL, V19, P639, DOI 10.1016/j.tree.2004.09.011; Wilfahrt P. A., 2016, NATURAL DISTURBANCES, P295, DOI [10. 1007/978-3-319-21527-3, DOI 10.1007/978-3-319-21527-3]; Wilfahrt PA, 2014, FOREST ECOL MANAG, V324, P179, DOI 10.1016/j.foreco.2014.01.018; Wonkka CL, 2013, OIKOS, V122, P209, DOI 10.1111/j.1600-0706.2012.20346.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 44 0 0 6 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1100-9233 1654-1103 J VEG SCI J. Veg. Sci. MAY 2018 29 3 491 500 10.1111/jvs.12628 10 Plant Sciences; Ecology; Forestry Plant Sciences; Environmental Sciences & Ecology; Forestry GN0JZ WOS:000438651900014 2019-02-21 J Nogueira, M; Nascimento, LS Nogueira Junior, Miodeli; Nascimento, Lorena Silva The ecology and developmental changes of meristic characters of the medusa Malagazzia carolinae (Hydrozoa: Leptothecata) from subtropical Southwestern Atlantic estuaries ZOOLOGISCHER ANZEIGER English Article Medusa; Morphology; Ontogeny; Abundance; Population dynamics; South atlantic ZOOPLANKTON COMMUNITY; VERTICAL MIGRATION; BRAZILIAN BIGHT; SOUTH BRAZIL; HYDROMEDUSAE; CNIDARIA; BAY; WATERS; JELLYFISH; PLANKTON In the present study we show that the meristic marginal characters of the hydromedusa Malagazzia carolinae changes through its ontogeny. We additionally present background-data on abundance and size composition spatial temporal dynamics of this poorly-known medusa from five subtropical Brazilian estuaries (similar to 24-26.5 degrees S). Data presented are important to improve taxonomy of the group and to track life-history strategies. The number of marginal structures varies considerably: tentacular bulbs ranged between 0 and 7, rudimentary bulbs between 0 and 12 and statocysts between 1 and 22 on each quadrant and their numbers tended to increase with bell diameter. Malagazzia carolinae was nearly absent from the open shallow shelf, and among the five estuaries sampled it was more common and abundant inside Babitonga and Guaratuba Bays, where a well-defined distribution was found, with peaks in January mostly in the inner sectors (mean 8-10 ind. 10 m(-3)). Although sampled in wide hydrographic conditions, M. carolinae was mostly found in intermediate salinities (21-26) and temperatures (22-29 degrees C), suggesting it is well adapted to thrive in estuarine subtropical and tropical systems. (C) 2018 Elsevier GmbH. All rights reserved. [Nogueira Junior, Miodeli] Univ Fed Paraiba, Dept Sistemat & Ecol, Cidade Univ, BR-58051900 Joao Pessoa, Paraiba, Brazil; [Nascimento, Lorena Silva] Univ Fed Parana, Ctr Estudos Mar, Lab Zooplancton, BR-83255976 Pontal Do Parana, Parana, Brazil Nogueira, M (reprint author), Univ Fed Paraiba, Dept Sistemat & Ecol, Cidade Univ, BR-58051900 Joao Pessoa, Paraiba, Brazil. miodeli@gmail.com; nascimento.s.lorena@gmail.com Nogueira Junior, Miodeli/0000-0001-5409-8312 "Fundacao Grupo Boticario de Protecao a Natureza" (Project BIOMAR) [BL0002_20111]; "Conselho Nacional de Desenvolvimento Cientifico e Tecnologico" (CNPq) [140945/2007-5]; "Fundacao de Amparo a Pesquisa do Estado de Sao Paulo" (FAPESP) [2011/09880-8, 11/21290-1]; "Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior" (CAPES) We appreciate the many colleagues that helped in the field campaigns, particularly Dr. Jose Maria Souza Conceicao and Dr. Henry Spach which helped with logistics and sampling structure in the Babitonga and/or Guaratuba campaigns. Samples and envi- ronmental data from Santos bay were provided by Dr. Marcio Hidekazu Ohkawara and Dr. Tulia Aguilar Martinez. Part of the samples and environmental data from Cananeia was kindly provided by Dr. Leonardo Kenji Miyashita. Dr. Martin Vinther Sorensen and two anonymous reviewers provided useful suggestions that helped to improve the original manuscript. The Paranagua sampling campaigns were supported by the "Fundacao Grupo Boticario de Protecao a Natureza" (Project BIOMAR, grant no. BL0002_20111). MNJ received support from "Conselho Nacional de Desenvolvimento Cientifico e Tecnologico" (CNPq, grant no. 140945/2007-5), and by the "Fundacao de Amparo a Pesquisa do Estado de Sao Paulo" (FAPESP, grant no. 2011/09880-8; Project no. 11/21290-1). LSN received scholarship from the "Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior" (CAPES). Akiyama Hisashi, 2013, Biogeography, V15, P95; Alvarino A., 1968, ANALES I BIOL SERIE, V1, P41; Apablaza Pedro, 2006, Investigaciones Marinas Universidad Catolica de Valparaiso, V34, P81; Boero F, 2008, MAR ECOL PROG SER, V356, P299, DOI 10.3354/meps07368; Bouillon J., 1984, Indo-Malayan Zoology, V1, P25; BOUILLON J, 1978, Revue de Zoologie Africaine, V92, P117; Bouillon J., 1984, Indo-Malayan Zoology, V1, P1; Bouillon J., 1986, Indo-Malayan Zoology, V3, P105; Bouillon J, 2004, SCI MAR, V68, P5, DOI 10.3989/scimar.2004.68s25; Bouillon J., 1988, Indo-Malayan Zoology, V5, P225; BOUILLON J, 1995, NEW ZEAL J ZOOL, V22, P223, DOI 10.1080/03014223.1995.9518038; BOUILLON J, 1991, CAH BIOL MAR, V32, P387; Bouillon J., 1999, S ATLANTIC ZOOPLANKT, P424; Brandini F.P., 2006, DIAGNOSTICO AMBIENTA, P112; Browne J.G., 2014, THESIS; Buecher Emmanuelle, 2005, African Invertebrates, V46, P27; Burkenroad MD, 1931, BIOL BULL-US, V61, P115, DOI 10.2307/1537049; Calder D.R., 1978, P87; Calder D. R, 1971, VIRGINIA I MARINE SC, V1, P1; Chazarreta J, 2015, BRAZ J OCEANOGR, V63, P83, DOI 10.1590/S1679-87592015076806302; Chen Hong-ju, 2010, Marine Sciences (Beijing), V34, P17; Chen-tsu H., 1962, J XIAMEN U NATUR SCI, V3, P206; CHOW T. H., 1958, ACTA ZOOL SINICA, V10, P173; Dai Yanyu, 1991, Asian Marine Biology, V8, P45; Dehmordi L.M., 2007, P PHYS SOC LIF SCI P; Du Fei-Yan, 2012, Acta Zootaxonomica Sinica, V37, P506; Du Ping, 2011, Chinese Journal of Applied and Environmental Biology, V17, P486, DOI 10.3724/SP.J.1145.2011.00486; Gershwin Lisa-ann, 2010, Memoirs of the Queensland Museum, V54, P47; Gravili C, 2013, MAR ECOL-EVOL PERSP, V34, P41, DOI 10.1111/maec.12023; [郭东晖 Guo Donghui], 2012, [海洋与湖沼, Oceanologia et Limnologia Sinica], V43, P584; Hopkins T. L., 1966, Publications of the Institute of Marine Science University of Texas, V11, P12; Jiang Huichao, 2015, Acta Ecologica Sinica, V35, P7308; Kimmerer WJ, 1998, LIMNOL OCEANOGR, V43, P1697, DOI 10.4319/lo.1998.43.7.1697; Kramp P. L., 1953, Scientific Reports Great Barrier Reef Expedition, V6, P259; KRAMP P. L., 1965, DANA REP CARLSBERG FOUND, V63, P1; Kramp P. L., 1959, Dana Reports, V46, P1; Kramp P. L., 1958, Records of the Indian Museum, V53, P339; Kramp P.L., 1962, MEDD NATURHIST FOREN, V124, P305; KRAMP PL, 1961, J MAR BIOL ASSOC UK, V40, P7, DOI 10.1017/S0025315400007347; KRAMP PL, 1968, DANA REP, V72, P1; Larson RJ, 1982, SMITHSONIAN CONTRIBU, V12, P253, DOI DOI 10.5479/SI.01960768.12.539; Leon Maria Eugenia, 2005, Vieraea, V33, P11; Li KZ, 2014, OCEANOLOGIA, V56, P583, DOI 10.5697/oc.56-3.583; Lin PY, 2010, THESIS; Mayer A.G., 1910, B MADRAS GOVT MUS NA, V3, P1; MAYER AG, 1900, B MUS COMP ZOOL HARV, V37, P1; Mediseh SD, 2017, IRAN J FISH SCI, V16, P422; Miyashita LK, 2012, J NAT HIST, V46, P1557, DOI 10.1080/00222933.2012.691997; Miyashita LK, 2016, MAR BIOL RES, V12, P133, DOI 10.1080/17451000.2015.1099678; Mosavi Dehmordi I., 2010, IRAN J BIOL, V23, P249; Nagale P., 2012, P NAT INAR BIOD CONS, P80; Nagata RM, 2014, J MAR BIOL ASSOC UK, V94, P1387, DOI 10.1017/S0025315414000617; Nair K. K., 1954, Bulletin of the Central Research Institute University of Travancore, V2C, P47; Nascimento L.S., 2016, THESIS; Navas-Pereira D., 1984, Dusenia, V14, P51; NAVAS-PEREIRA D, 1980, Revista Brasileira de Biologia, V40, P817; NAVAS-PEREIRA D, 1991, Boletim do Instituto Oceanografico, V39, P25; Navas-Pereira D., 1981, SEMINARIOS BIOL MARI, P221; Nicholas Y.W.L., 2012, CONTRIB MAR SCI, V2012, P57; Nogueira Junior M., 2018, PLANKTON ECOLOGY ATL; Nogueira M, 2017, J MAR BIOL ASSOC UK, V97, P1651, DOI 10.1017/S0025315416001120; Nogueira M, 2016, MAR BIODIVERS, V46, P737, DOI 10.1007/s12526-015-0421-x; Nogueira M, 2014, CONT SHELF RES, V89, P93, DOI 10.1016/j.csr.2014.02.022; Pages Frances, 1992, Scientia Marina, V56, P1; Palma S., 1995, INVEST MAR, V23, P49; RAMIREZ F C, 1980, Physis Seccion A los Oceanos y sus Organismos, V39, P33; Ramirez F.C., 1981, P443; RUSSELL FS, 1953, MEDUSAE BRIT ISLES A; Salvador B, 2017, ESTUAR COAST SHELF S, V199, P1, DOI 10.1016/j.ecss.2017.09.019; Santhakumari V., 1997, Publications of the Seto Marine Biological Laboratory, V38, P53; Santhakumari V, 1999, INDIAN J MAR SCI, V28, P158; Santhakumari V, 1999, INDIAN J MAR SCI, V28, P150; Santhakumari V., 1993, J ZOOL SOC KERALA, V3, P37; Santhakumari V., 1971, J MAR BIOL ASSOC IND, V13, P211; Schlitzer R., 2017, OCEAN DATA VIEW; Schuchert P., 2016, MALAGAZZIA BOUILLON; Segura-Puertas Lourdes, 2003, Zootaxa, V194, P1; Silas E.G., 1975, Bulletin of the Department of Marine Sciences University of Cochin, V7, P329; Soltani T., 2014, J MAR SCI TECH, V12, P50; SOUZA Danilo, 2013, THESIS; Sun S, 2012, CHIN J OCEANOL LIMN, V30, P507, DOI 10.1007/s00343-012-1179-7; Tundisi J.G., 1970, CONTR AVULSAS I OCEA, V19, P1; Uchida T., 1947, Journal of the Faculty of Science Hokkaido University Zoology, V9, P297; Vannucci M., 1973, P273; VANNUCCI M., 1957, BOL INST OCEANOGR, V8, P23; Vannucci M., 1963, S Bol Inst oceanogr S Paulo, V13, P143; Vineetha G, 2015, WETLANDS, V35, P597, DOI 10.1007/s13157-015-0650-6; Xu Z., 1983, CHINA J XIAMEN U NAT, V22, P364; Xu Z., 1974, OCEANOL TECHNOL SINI, V2, P17; Xu Z., 2008, FRONT BIOL CHINA, V3, P300, DOI DOI 10.1007/S11515-008-0057-3; Xu Z. Z., 1981, J XIAMEN U NATURAL S, V20, P373; Xu Zhao-li, 2009, Ying Yong Sheng Tai Xue Bao, V20, P177; ZAMPONI M O, 1983, Neotropica (La Plata), V29, P65; ZAMPONI M O, 1985, Neotropica (La Plata), V31, P155; Zamponi M.O., 1991, PLANKTON NEWSL, V15, P9; Zamponi Mauricio O., 1994, Plankton Newsletter, V19, P51; Zar JH, 2010, BIOSTATISTICAL ANAL; Zhang Fang, 2005, Oceanologia et Limnologia Sinica, V36, P507; Zhang HG, 2012, ECOL ENG, V44, P303, DOI 10.1016/j.ecoleng.2012.04.022; Zhang J., 1977, OCEANOL TECHNO SINIC, V7, P95; Zhang Jinbiao, 1979, Acta Oceanologica Sinica, V1, P127; Zhaoli Xu, 2006, Shengwu Duoyangxing, V14, P508; Zuo Tao, 2016, Acta Ecologica Sinica, V36, P5646 103 0 0 1 1 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 0044-5231 ZOOL ANZ Zool. Anz. MAY 2018 274 34 45 10.1016/j.jcz.2018.03.002 12 Zoology Zoology GL5MK WOS:000437211200004 2019-02-21 J Sofaer, HR; Sillett, TS; Yoon, J; Power, ML; Morrison, SA; Ghalambor, CK Sofaer, Helen R.; Sillett, T. Scott; Yoon, Jongmin; Power, Michael L.; Morrison, Scott A.; Ghalambor, Cameron K. Offspring growth and mobility in response to variation in parental care: a comparison between populations JOURNAL OF AVIAN BIOLOGY English Article avian growth; clutch size; Lack's hypothesis; life history trade-off; offspring quality STONECHATS SAXICOLA-TORQUATA; NEST PREDATION RISK; TITS PARUS-MAJOR; CLUTCH-SIZE; LIFE-HISTORY; DIET QUALITY; PHENOTYPIC PLASTICITY; GENETIC SELECTION; NATURAL-SELECTION; PASSERINE BIRD Life history theory emphasizes the importance of trade-offs in how time and energy are allocated to the competing demands of growth, fecundity, and survival. However, avian studies have historically emphasized the importance of resource acquisition over resource allocation to explain geographic variation in fecundity, parental care, and offspring development. We compared the brood sizes and nestling mass and feather growth trajectories between orange-crowned warblers Oreothlypis celata breeding in Alaska versus California, and used 24-h video recordings to study the relationship between parental care and growth rates. Per-offspring provisioning rates were highest in the smallest broods, and food delivery was positively correlated with nestling growth over the 24-h period only in Alaska. Females in Alaska spent more time brooding, and juveniles there showed faster feather growth and earlier mobility compared with those in California. We also found differences in the energetic and nutritional content of insect larvae that could facilitate the observed differences in nestling growth relative to food provisioning. Our results point to the potential importance of food quality and parental provisioning of warmth, in addition to food, for explaining avian growth patterns. We highlight the need to quantify multiple dimensions of parental care and of offspring growth and development, and to better understand the relationships between feather growth, nestling period length, and fledgling mobility. [Sofaer, Helen R.; Yoon, Jongmin; Ghalambor, Cameron K.] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA; [Sofaer, Helen R.; Yoon, Jongmin; Ghalambor, Cameron K.] Colorado State Univ, Biol Dept, Ft Collins, CO 80523 USA; [Sofaer, Helen R.] US Geol Survey, Ft Collins Sci Ctr, Ft Collins, CO 80526 USA; [Yoon, Jongmin] Korea Natl Univ Educ, Ecol Inst Oriental Stork, Cheongju, South Korea; [Sillett, T. Scott] Natl Zool Pk, Migratory Bird Ctr, Smithsonian Conservat Biol Inst, Washington, DC USA; [Power, Michael L.] Natl Zool Pk, Smithsonian Conservat Biol Inst, Conservat Ecol Ctr, Washington, DC USA; [Morrison, Scott A.] Nature Conservancy, San Francisco, CA USA Sofaer, HR (reprint author), Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA.; Sofaer, HR (reprint author), Colorado State Univ, Biol Dept, Ft Collins, CO 80523 USA.; Sofaer, HR (reprint author), US Geol Survey, Ft Collins Sci Ctr, Ft Collins, CO 80526 USA. hsofaer@usgs.gov Sillett, Scott/0000-0002-7486-0076 Nature Conservancy; Smithsonian Inst.; American Ornithologists' Union Graduate Research Award; Frank M. Chapman Memorial Grant from the American Museum of Natural History; NSF-IGERT [0221595]; NSF [DEB-0846175]; Smithsonian Inst. Predoctoral Fellowship This work was supported by The Nature Conservancy, the Smithsonian Inst., an American Ornithologists' Union Graduate Research Award, and a Frank M. Chapman Memorial Grant from the American Museum of Natural History. HRS was supported by NSF-IGERT Grant DGE-#0221595 (administered by the PRIMES program at Colorado State Univ.), NSF DEB-0846175 to CKG, and a Smithsonian Inst. Predoctoral Fellowship. The Catalina Island Conservancy provided logistical support. Adams AAY, 2001, CONDOR, V103, P643, DOI 10.1650/0010-5422(2001)103[0643:MASOLB]2.0.CO;2; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arnold KE, 2010, BIOL J LINN SOC, V99, P708, DOI 10.1111/j.1095-8312.2010.01377.x; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Austin SH, 2011, METHODS ECOL EVOL, V2, P43, DOI 10.1111/j.2041-210X.2010.00055.x; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Bayyari GR, 1997, POULTRY SCI, V76, P289, DOI 10.1093/ps/76.2.289; BOAG PT, 1987, AUK, V104, P155; Bowers EK, 2014, BEHAV ECOL, V25, P1485, DOI 10.1093/beheco/aru153; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Cheng YR, 2012, AM NAT, V180, P285, DOI 10.1086/667214; Chin EH, 2009, P ROY SOC B-BIOL SCI, V276, P499, DOI 10.1098/rspb.2008.1294; Coslovsky M, 2011, FUNCT ECOL, V25, P878, DOI 10.1111/j.1365-2435.2011.01834.x; Covas R, 2012, P ROY SOC B-BIOL SCI, V279, P1531, DOI 10.1098/rspb.2011.1785; Cox WA, 2014, J WILDLIFE MANAGE, V78, P183, DOI 10.1002/jwmg.670; Dial KP, 2003, SCIENCE, V299, P402, DOI 10.1126/science.1078237; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; ELDRIDGE JL, 1988, AUK, V105, P102; Emmerson DA, 1997, POULTRY SCI, V76, P1121, DOI 10.1093/ps/76.8.1121; Ferretti V, 2005, P ROY SOC B-BIOL SCI, V272, P769, DOI 10.1098/rspb.2004.3039; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gilbert W. M., 2010, BIRDS N AM ONLINE; Gwinner E, 1995, AUK, V112, P748; Hoef JMV, 2007, ECOLOGY, V88, P2766, DOI 10.1890/07-0043.1; Horton BM, 2010, GEN COMP ENDOCR, V168, P333, DOI 10.1016/j.ygcen.2010.04.019; HUSSELL DJT, 1972, ECOL MONOGR, V42, P317, DOI 10.2307/1942213; Irschick DJ, 2001, ANNU REV ECOL SYST, V32, P367, DOI 10.1146/annurev.ecolsys.32.081501.114048; JOHNSTON RD, 1993, FUNCT ECOL, V7, P255, DOI 10.2307/2390203; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; Killpack TL, 2012, J EXP BIOL, V215, P1806, DOI 10.1242/jeb.066316; Kindsvater HK, 2011, J EVOLUTION BIOL, V24, P2230, DOI 10.1111/j.1420-9101.2011.02351.x; Kindsvater HK, 2014, AM NAT, V184, P543, DOI 10.1086/678248; Kindsvater HK, 2010, EVOL ECOL RES, V12, P327; Kirkwood TBL, 2005, CELL, V120, P437, DOI 10.1016/j.cell.2005.01.027; Konarzewski M, 1996, FUNCT ECOL, V10, P97, DOI 10.2307/2390267; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Leips J, 2013, ECOL EVOL, V3, P948, DOI 10.1002/ece3.509; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Martin TE, 2015, AM NAT, V186, P223, DOI 10.1086/681986; Martin TE, 2014, AM NAT, V183, P313, DOI 10.1086/674966; Martin TE, 2013, ECOL LETT, V16, P738, DOI 10.1111/ele.12103; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Miller DA, 2010, P ROY SOC B-BIOL SCI, V277, P1659, DOI 10.1098/rspb.2010.0022; Monaghan Pat, 2004, Acta Zoologica Sinica, V50, P942; Nord A, 2015, NESTS, EGGS, AND INCUBATION: NEW IDEAS ABOUT AVIAN REPRODUCTION, P152; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Patten MA, 2007, J AVIAN BIOL, V38, P637, DOI 10.1111/j.2007.0908-8857.04203.x; Peluc SI, 2008, BEHAV ECOL, V19, P830, DOI 10.1093/beheco/arn033; PERRINS CM, 1976, IBIS, V118, P580; Pinheiro J., 2016, COMPUTER SOFTWARE, V3, P1, DOI DOI 10.1016/J.CR0PR0.2007.08.015; Remes V, 2002, EVOLUTION, V56, P2505; Remes V, 2016, J AVIAN BIOL, V47, P610, DOI 10.1111/jav.00841; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Ricklefs R. E., 1969, ANAL NESTING MORTALI; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; RICKLEFS RE, 1976, IBIS, V118, P179, DOI 10.1111/j.1474-919X.1976.tb03065.x; Ricklefs Robert E., 1998, Oxford Ornithology Series, V8, P266; Roff DA, 2005, J EVOLUTION BIOL, V18, P1425, DOI 10.1111/j.1420-9101.2005.00958.x; Roff Derek A., 1992; Rollinson N, 2013, ECOLOGY, V94, P315, DOI 10.1890/2-0552.1; Rose AP, 2013, ECOLOGY, V94, P1327, DOI 10.1890/12-0953.1; Royle NJ, 2012, EVOLUTION OF PARENTAL CARE, P1; Russell EM, 2000, EMU, V100, P377, DOI 10.1071/MU0005S; SAETHER BE, 1994, EVOLUTION, V48, P1397, DOI 10.1111/j.1558-5646.1994.tb05324.x; Sanz JJ, 1999, IBIS, V141, P100; Schew William A., 1998, Oxford Ornithology Series, V8, P288; Searcy WA, 2004, J AVIAN BIOL, V35, P269, DOI 10.1111/j.0908-8857.2004.03247.x; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGSVOLD T, 1988, ECOLOGY, V69, P1918, DOI 10.2307/1941168; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sofaer H. R., 2018, DRYAD DIGITAL REPOSI, DOI [10. 5061/dryad. sk14mf2 ?., DOI 10.5061/DRYAD.SK14MF2?]; Sofaer HR, 2014, ECOL EVOL, V4, P2738, DOI 10.1002/ece3.1127; Sofaer HR, 2013, J AVIAN BIOL, V44, P469, DOI 10.1111/j.1600-048X.2013.05719.x; Sofaer HR, 2013, BEHAV ECOL, V24, P698, DOI 10.1093/beheco/ars212; STARCK JM, 1995, IBIS, V137, P519, DOI 10.1111/j.1474-919X.1995.tb03262.x; Stearns S, 1992, EVOLUTION LIFE HIST; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Tarwater CE, 2010, J AVIAN BIOL, V41, P479, DOI 10.1111/j.1600-048X.2010.05006.x; Tilgar V, 2004, J ZOOL, V263, P269, DOI 10.1017/S0952836904005254; Tjorve KMC, 2017, J AVIAN BIOL, V48, P770, DOI 10.1111/jav.00992; Urdaneta-Rincon M, 2004, POULTRY SCI, V83, P1713, DOI 10.1093/ps/83.10.1713; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vedder O, 2014, J ANIM ECOL, V83, P99, DOI 10.1111/1365-2656.12114; Wang Z, 2014, EVOLUTION, V68, P81, DOI 10.1111/evo.12263; Wilkin TA, 2009, J AVIAN BIOL, V40, P135, DOI 10.1111/j.1600-048X.2009.04362.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wright J, 1998, J ANIM ECOL, V67, P620; Yoon J, 2017, J AVIAN BIOL, V48, P220, DOI 10.1111/jav.00890; Yoon J, 2012, ANIM BEHAV, V84, P515, DOI 10.1016/j.anbehav.2012.05.024; Young BE, 1996, ECOLOGY, V77, P472, DOI 10.2307/2265623 96 0 0 15 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. MAY 2018 49 5 UNSP e01646 10.1111/jav.01646 14 Ornithology Zoology GL2GZ WOS:000436938400005 2019-02-21 J Twenge, JM; Campbell, WK Twenge, Jean M.; Campbell, W. Keith Cultural Individualism Is Linked to Later Onset of Adult-Role Responsibilities Across Time and Regions JOURNAL OF CROSS-CULTURAL PSYCHOLOGY English Article cultural psychology; developmental; economic conditions; individualism; life history theory LIFE-HISTORY THEORY; SELF-ENHANCEMENT; GREAT RECESSION; UNITED-STATES; BEHAVIOR; CHILDHOOD; AMERICA This article explores links between cultural individualism and the age at which adult-role responsibilities are assumed (the speed of maturation to adulthood). Across 43 years (19732015) within the United States, yearly indicators of individualism were positively correlated with later onset of work and family responsibilities (a slow life strategy). The same pattern appeared cross-culturally: Across 53 nations, cultural individualism was significantly correlated with slower maturation to adulthood. These links remained over time and cross-culturally when unemployment rate, an indicator of economic strength, was included in the model. Analyses including GDP showed mixed results, suggesting a complex relationship between economic indicators, individualism, and maturation to adulthood. Across nations and time, more individualistic cultures are also those with slower maturation to adulthood (a slow life strategy). [Twenge, Jean M.] San Diego State Univ, San Diego, CA 92182 USA; [Campbell, W. Keith] Univ Georgia, Athens, GA 30602 USA Twenge, JM (reprint author), San Diego State Univ, Dept Psychol, 5500 Campanile Dr, San Diego, CA 92182 USA. jtwenge@mail.sdsu.edu Arnett J., 2014, EMERGING ADULTHOOD W; Beck U., 1992, RISK SOC NEW MODERNI; Bianchi EC, 2016, J PERS SOC PSYCHOL, V111, P567, DOI 10.1037/pspp0000114; Bianchi EC, 2014, PSYCHOL SCI, V25, P1429, DOI 10.1177/0956797614532818; Bleidorn W, 2013, PSYCHOL SCI, V24, P2530, DOI 10.1177/0956797613498396; Bureau of Labor Statistics, 2016, BLS DAT FIND; Bureau of Labor Statistics, 2016, LAB FORC STAT CURR P; Centers for Disease Control and Prevention, 2016, NAT VIT STAT SYST BI; Donnelly K, 2016, PSYCHOL WOMEN QUART, V40, P41, DOI 10.1177/0361684315590774; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fukuyama F., 1999, GREAT DISRUPTION HUM; Greenfield PM, 2013, PSYCHOL SCI, V24, P1722, DOI 10.1177/0956797613479387; Greenfield PM, 2009, DEV PSYCHOL, V45, P401, DOI 10.1037/a0014726; Grossmann I, 2015, PSYCHOL SCI, V26, P311, DOI 10.1177/0956797614563765; Heine SJ, 2007, PERS SOC PSYCHOL REV, V11, P4, DOI 10.1177/1088868306294587; Hofstede G., 1984, CULTURES CONSEQUENCE; Hofstede Geert, 2010, CULTURES ORG SOFTWAR; Inglehart R., 1997, MODERNIZATION POSTMO; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kesebir P, 2012, J POSIT PSYCHOL, V7, P471, DOI 10.1080/17439760.2012.715182; Lo VH, 2010, CHIN J COMMUN, V3, P10, DOI 10.1080/17544750903528724; Markham CM, 2010, J ADOLESCENT HEALTH, V46, pS23, DOI 10.1016/j.jadohealth.2009.11.214; MARKUS HR, 1991, PSYCHOL REV, V98, P224, DOI 10.1037/0033-295X.98.2.224; Mittal C, 2014, J PERS SOC PSYCHOL, V107, P621, DOI 10.1037/a0037398; National Center for Education Statistics, 2016, ED ATT DIG ED STAT; Park H, 2014, SOC PSYCHOL PERS SCI, V5, P310, DOI 10.1177/1948550613495419; Realo A, 2002, EUR J PERSONALITY, V16, P163, DOI 10.1002/per.437; Schimmack U, 2005, PERS SOC PSYCHOL REV, V9, P17, DOI 10.1207/s15327957pspr0901_2; Schwartz SJ, 2010, CULT DIVERS ETHN MIN, V16, P548, DOI 10.1037/a0021370; Sedikides C, 2003, J PERS SOC PSYCHOL, V84, P60, DOI 10.1037/0022-3514.84.1.60; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Sum A, 2011, ANN AM ACAD POLIT SS, V635, P24, DOI 10.1177/0002716210393694; Triandis H. C, 1994, CULTURE SOCIAL BEHAV; Twenge J, 2014, GENERATION ME WHY TO; Twenge J. M, 2017, IGEN WHY TODAYS SUPE; Twenge J. M., 2018, CHILD DEV, DOI [10.1111/cdev.12930, DOI 10.1111/CDEV.12930]; Twenge JM, 2017, SAGE OPEN, V7, DOI 10.1177/2158244017723689; Twenge JM, 2016, J APPL SOC PSYCHOL, V46, P663, DOI 10.1111/jasp.12409; Twenge JM, 2015, ARCH SEX BEHAV, V44, P2273, DOI 10.1007/s10508-015-0540-2; Twenge JM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040181; Twenge JM, 2012, SELF IDENTITY, V11, P409, DOI 10.1080/15298868.2011.576820; U. S. Census, 2016, HIST MAR STAT TABL E 43 1 1 2 4 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0022-0221 1552-5422 J CROSS CULT PSYCHOL J. Cross-Cult. Psychol. MAY 2018 49 4 673 683 10.1177/0022022118764838 11 Psychology, Social Psychology GJ6WO WOS:000435525300010 2019-02-21 J van Gelder, JL; Averdijk, M; Ribeaud, D; Eisner, M van Gelder, Jean-Louis; Averdijk, Margit; Ribeaud, Denis; Eisner, Manuel PUNITIVE PARENTING AND DELINQUENCY: THE MEDIATING ROLE OF SHORT-TERM MINDSETS BRITISH JOURNAL OF CRIMINOLOGY English Article punitive parenting; future orientation; impulsivity; life history theory; delinquency; short-term mindsets GENERAL STRAIN THEORY; RANDOMIZED CONTROLLED-TRIAL; SELF-CONTROL; PHYSICAL PUNISHMENT; UNPREDICTABLE ENVIRONMENTS; MAXIMUM-LIKELIHOOD; QUESTIONNAIRE APQ; CRIMINAL BEHAVIOR; COMMUNITY SAMPLE; AGE-DIFFERENCES Drawing from life history theory and developmental perspectives, we test the hypothesis that the relation between parental discipline practices and delinquency is explained in part by short-term mindsets. We argue that such practices induce an orientation towards the here-and-now rather than the future, which, in turn, promotes delinquency. We used longitudinal data (N = 1,197) from the Zurich Project on the Social Development from Childhood into Adulthood (z-proso). We distinguished between two types of disciplining practices, corporal and inconsistent punishment, which map onto two main environmental parameters, harshness and unpredictability. Results show that short-term mindsets, operationalized by impulsivity and low future orientation, mediate the relation between corporal and erratic punishment and delinquency, with impulsivity being the most important mediator. [van Gelder, Jean-Louis] Netherlands Inst Study Crime & Law Enforcement NS, De Boelelaan 1077a, NL-1081 HV Amsterdam, Netherlands; [Averdijk, Margit; Ribeaud, Denis] Univ Zurich, Zurich, Switzerland; [Eisner, Manuel] Univ Cambridge, Cambridge, England van Gelder, JL (reprint author), Netherlands Inst Study Crime & Law Enforcement NS, De Boelelaan 1077a, NL-1081 HV Amsterdam, Netherlands. jlvangelder@nscr.nl Agnew R, 2001, J RES CRIME DELINQ, V38, P319, DOI 10.1177/0022427801038004001; AGNEW R, 1992, CRIMINOLOGY, V30, P47, DOI 10.1111/j.1745-9125.1992.tb01093.x; AGNEW R, 1983, YOUTH SOC, V15, P225, DOI 10.1177/0044118X83015002006; Averdijk M, 2016, CRIMINOLOGY, V54, P282, DOI 10.1111/1745-9125.12102; Averdijk M, 2016, J EXP CRIMINOL, V12, P21, DOI 10.1007/s11292-015-9249-4; Bendixen M, 2003, LEGAL CRIMINOL PSYCH, V8, P135, DOI 10.1348/135532503322362924; Brezina T, 1998, J RES CRIME DELINQ, V35, P71, DOI 10.1177/0022427898035001003; Brezina T, 2009, CRIMINOLOGY, V47, P1091, DOI 10.1111/j.1745-9125.2009.00170.x; BRIGGS SR, 1986, J PERS, V54, P106, DOI 10.1111/j.1467-6494.1986.tb00391.x; Broidy LM, 2001, CRIMINOLOGY, V39, P9, DOI 10.1111/j.1745-9125.2001.tb00915.x; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Burt C. H., 2014, NURTURE VERSUS BIOSO, P143; Burt CH, 2014, CRIMINOLOGY, V52, P450, DOI 10.1111/1745-9125.12045; Burt CH, 2006, CRIMINOLOGY, V44, P353, DOI 10.1111/j.1745-9125.2006.00052.x; Caldwell RM, 2006, J YOUTH ADOLESCENCE, V35, P591, DOI 10.1007/s10964-006-9031-z; Clark LA, 1995, PSYCHOL ASSESSMENT, V7, P309, DOI 10.1037/1040-3590.7.3.309; Craig W, 2009, INT J PUBLIC HEALTH, V54, P216, DOI 10.1007/s00038-009-5413-9; Currie C., 2012, HEALTH BEHAVIOR IN S; Del Giudice M., 2015, HDB BIOBEHAVIORAL AP; Diamond B, 2017, CRIME DELINQUENCY, V63, P235, DOI 10.1177/0011128715603721; Durrant JE, 2008, J DEV BEHAV PEDIATR, V29, P55, DOI 10.1097/DBP.0b013e318135448a; Eisinga R, 2013, INT J PUBLIC HEALTH, V58, P637, DOI 10.1007/s00038-012-0416-3; Eisner M. P., 2011, SAGE HDB CRIMINOLOGI, P410; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Enders CK, 2001, STRUCT EQU MODELING, V8, P128, DOI 10.1207/S15328007SEM0801_7; Escribano S, 2013, PSICOTHEMA, V25, P324, DOI 10.7334/psicothema2012.315; Esposito A, 2016, J CHILD FAM STUD, V25, P1208, DOI 10.1007/s10826-015-0291-7; Essau C. A., 2006, J CHILD FAM STUD, V15, P597, DOI [DOI 10.1007/S10826-006-9036-Y, 10.1007/s10826-006-9036-y]; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; GANZEBOOM HBG, 1992, SOC SCI RES, V21, P1, DOI 10.1016/0049-089X(92)90017-B; Gershoff ET, 2002, PSYCHOL BULL, V128, P539, DOI 10.1037//0033-2909.128.4.539; Glueck S., 1957, UNRAVELING JUVENILE; Gottfredson M. R., 1990, GEN THEORY CRIME; GRASMICK HG, 1993, J RES CRIME DELINQ, V30, P5, DOI 10.1177/0022427893030001002; Haapasalo J, 1999, AGGRESS VIOLENT BEH, V4, P107, DOI 10.1016/S1359-1789(97)00027-X; Hay C, 2001, CRIMINOLOGY, V39, P707, DOI 10.1111/j.1745-9125.2001.tb00938.x; Hay C, 2006, CRIMINOLOGY, V44, P739, DOI 10.1111/j.1745-9125.2006.00062.x; Hilbe J, 2011, NEGATIVE BINOMIAL RE; Hoeve M, 2009, J ABNORM CHILD PSYCH, V37, P749, DOI 10.1007/s10802-009-9310-8; Horn IB, 2004, J NATL MED ASSOC, V96, P1162; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Jackson DB, 2015, J CRIM JUST, V43, P154, DOI 10.1016/j.jcrimjus.2015.02.004; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Larsen R, 2011, STRUCT EQU MODELING, V18, P649, DOI 10.1080/10705511.2011.607721; Loewenstein G, 1996, ORGAN BEHAV HUM DEC, V65, P272, DOI 10.1006/obhd.1996.0028; Malti T, 2011, J CLIN CHILD ADOLESC, V40, P677, DOI 10.1080/15374416.2011.597084; Mamayek C., 2016, OXFORD HDB OFFENDER; MCCORD J, 1979, J PERS SOC PSYCHOL, V37, P1477, DOI 10.1037//0022-3514.37.9.1477; MENARD S, 1994, JUSTICE Q, V0011; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Modecki KL, 2008, LAW HUMAN BEHAV, V32, P78, DOI 10.1007/s10979-007-9087-7; Molinuevo B, 2011, SPAN J PSYCHOL, V14, P944, DOI 10.5209/rev_SJOP.2011.v14.n2.40; Murray J, 2009, J EXP CRIMINOL, V5, P1, DOI 10.1007/s11292-008-9066-0; Muthen L. K, 1998, MPLUS USERS GUIDE ST; Nagin DS, 2004, J QUANT CRIMINOL, V20, P295, DOI 10.1007/s10940-004-5866-1; Oyserman D, 2006, J PERS SOC PSYCHOL, V91, P188, DOI 10.1037/0022-3541.91.1.188; Patterson GR, 1982, COERCIVE FAMILY PROC; Pfeiffer C., 2001, JUGEND GEWALT REPRAS; Ribeaud Denis, 2006, EUROPEAN J CRIMINOLO, V3, P33; Ross LT, 2002, SOC BEHAV PERSONAL, V30, P453, DOI 10.2224/sbp.2002.30.5.453; Sangawi H., 2015, ASIAN SOCIAL SCI, V11, P171, DOI [10.5539/ass.v11n22p171, DOI 10.5539/ASS.V11N22P171]; Sharma L, 2014, PSYCHOL BULL, V140, P374, DOI 10.1037/a0034418; Shelton KK, 1996, J CLIN CHILD PSYCHOL, V25, P317, DOI 10.1207/s15374424jccp2503_8; Simons RL, 2007, CRIMINOLOGY, V45, P481, DOI 10.1111/j.1745-9125.2007.00086.x; Simons-Morton BG, 2009, INT J PUBLIC HEALTH, V54, P199, DOI 10.1007/s00038-009-5411-y; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Steinberg L, 2009, CHILD DEV, V80, P28, DOI 10.1111/j.1467-8624.2008.01244.x; Sweeten G, 2012, J QUANT CRIMINOL, V28, P533, DOI 10.1007/s10940-011-9160-8; Topcuoglu T., 2014, ANN FACULTE DROIT IS, V46, P185; Van Gelder JL, 2015, CRIMINOLOGY, V53, P158, DOI 10.1111/1745-9125.12064; van Gelder JL, 2013, PSYCHOL SCI, V24, P974, DOI 10.1177/0956797612465197; Van Gelder JL, 2013, PSYCHOL CRIME LAW, V19, P745, DOI 10.1080/1068316X.2012.660153; Vazsonyi AT, 2017, J CRIM JUST, V48, P48, DOI 10.1016/j.jcrimjus.2016.10.001; West D. J., 1973, WHO BECOMES DELINQUE; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 76 0 0 2 2 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0007-0955 1464-3529 BRIT J CRIMINOL Br. J. Criminol. MAY 2018 58 3 644 666 10.1093/bjc/azx042 23 Criminology & Penology Criminology & Penology GJ6AA WOS:000435463700008 2019-02-21 J Kottler, VA; Schartl, M Kottler, Verena A.; Schartl, Manfred The Colorful Sex Chromosomes of Teleost Fish GENES English Review teleost fish; sex chromosomes; coloration; pigment pattern; sexual conflict; sexually antagonistic genes MOSQUITOFISH GAMBUSIA-HOLBROOKI; PIGMENT PATTERN-FORMATION; MALAWI CICHLID FISHES; GUPPIES POECILIA-RETICULATA; RECEPTOR TYROSINE KINASES; LIFE-HISTORY EVOLUTION; LEBISTES-RETICULATUS; LINKED INHERITANCE; ORYZIAS-LATIPES; PYGMY SWORDTAIL Teleost fish provide some of the most intriguing examples of sexually dimorphic coloration, which is often advantageous for only one of the sexes. Mapping studies demonstrated that the genetic loci underlying such color patterns are frequently in tight linkage to the sex-determining locus of a species, ensuring sex-specific expression of the corresponding trait. Several genes affecting color synthesis and pigment cell development have been previously described, but the color loci on the sex chromosomes have mostly remained elusive as yet. Here, we summarize the current knowledge about the genetics of such color loci in teleosts, mainly from studies on poeciliids and cichlids. Further studies on these color loci will certainly provide important insights into the evolution of sex chromosomes. [Kottler, Verena A.; Schartl, Manfred] Univ Wurzburg, Dept Physiol Chem, Bioctr, D-97074 Wurzburg, Germany; [Schartl, Manfred] Univ Clin Wuerzburg, Comprehens Canc Ctr Mainfranken, D-97080 Wurzburg, Germany; [Schartl, Manfred] Texas A&M Univ, Hagler Inst Adv Study, College Stn, TX 77843 USA; [Schartl, Manfred] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA Schartl, M (reprint author), Univ Wurzburg, Dept Physiol Chem, Bioctr, D-97074 Wurzburg, Germany.; Schartl, M (reprint author), Univ Clin Wuerzburg, Comprehens Canc Ctr Mainfranken, D-97080 Wurzburg, Germany.; Schartl, M (reprint author), Texas A&M Univ, Hagler Inst Adv Study, College Stn, TX 77843 USA.; Schartl, M (reprint author), Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA. verena.kottler@uni-wuerzburg.de; phch1@biozentrum.uni-wuerzburg.de Schartl, Manfred/0000-0001-9882-5948 University of Wuerzburg; SCIENTIA fellowship of the Free State of Bavaria; Deutsche Forschungsgemeinschaft [SCHA 408/10-1, 12-1] The authors thank Georg Schneider and Christine Dreyer for the fish pictures. This publication was supported by the Open Access Publication Fund of the University of Wuerzburg, by a SCIENTIA fellowship of the Free State of Bavaria to V.A.K., and grants supplied by the Deutsche Forschungsgemeinschaft (SCHA 408/10-1; 12-1) to M.S. Aida T, 1921, GENETICS, V6, P554; Allender CJ, 2003, P NATL ACAD SCI USA, V100, P14074, DOI 10.1073/pnas.2332665100; ANGUS RA, 1989, J HERED, V80, P387, DOI 10.1093/oxfordjournals.jhered.a110880; Bachtrog D, 2011, TRENDS GENET, V27, P350, DOI 10.1016/j.tig.2011.05.005; BAER CF, 1995, ENVIRON BIOL FISH, V43, P207, DOI 10.1007/BF00002493; Baroiller JF, 2009, SEX DEV, V3, P118, DOI 10.1159/000223077; Basolo AL, 2006, ZEBRAFISH, V3, P65, DOI 10.1089/zeb.2006.3.65; Ben J, 2003, MAR BIOTECHNOL, V5, P568, DOI 10.1007/s10126-002-0121-y; Bergero R, 2009, TRENDS ECOL EVOL, V24, P94, DOI 10.1016/j.tree.2008.09.010; Bisazza A, 2000, BEHAV GENET, V30, P207, DOI 10.1023/A:1001914208075; BLACK DA, 1979, COPEIA, P509; Bourne GR, 2003, NATURWISSENSCHAFTEN, V90, P402, DOI 10.1007/s00114-003-0444-1; Braasch I, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-74; Braasch I, 2009, GENOME BIOL EVOL, V1, P479, DOI 10.1093/gbe/evp050; Breden F, 1999, MOL PHYLOGENET EVOL, V12, P95, DOI 10.1006/mpev.1998.0600; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; CHARLESWORTH B, 1991, SCIENCE, V251, P1030, DOI 10.1126/science.1998119; Charlesworth D, 2016, EVOL APPL, V9, P74, DOI 10.1111/eva.12291; Charlesworth D, 2010, GENETICS, V186, P9, DOI 10.1534/genetics.110.117697; Cott H. B., 1940, ADAPTIVE COLORATION; delMarmol V, 1996, FEBS LETT, V381, P165, DOI 10.1016/0014-5793(96)00109-3; Devlin RH, 2002, AQUACULTURE, V208, P191, DOI 10.1016/S0044-8486(02)00057-1; Doncaster L, 1907, NATURE, V76, P248, DOI 10.1038/076248b0; Dooley CM, 2013, PIGM CELL MELANOMA R, V26, DOI 10.1111/pcmr.12053; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Fernandez AA, 2008, P NATL ACAD SCI USA, V105, P13503, DOI 10.1073/pnas.0803851105; Fisher RA, 1931, BIOL REV BIOL P CAMB, V6, P345, DOI 10.1111/j.1469-185X.1931.tb01030.x; Frohnhofer HG, 2013, DEVELOPMENT, V140, P2997, DOI 10.1242/dev.096719; FUJII R, 1993, INT REV CYTOL, V143, P191; Goda M, 2013, BIOL BULL-US, V224, P14, DOI 10.1086/BBLv224n1p14; Goda M, 2011, PIGM CELL MELANOMA R, V24, P614, DOI 10.1111/j.1755-148X.2011.00861.x; Godwin J, 2003, EVOL DEV, V5, P40, DOI 10.1046/j.1525-142X.2003.03007.x; Goodrich HB, 1944, GENETICS, V29, P584; Gordon M, 1931, P NATL ACAD SCI USA, V17, P276, DOI 10.1073/pnas.17.5.276; GORDON M, 1958, ANN NY ACAD SCI, V71, P1213, DOI 10.1111/j.1749-6632.1958.tb54683.x; Gordon SP, 2017, AM NAT, V189, P196, DOI 10.1086/689864; Gordon SP, 2012, EVOLUTION, V66, P912, DOI 10.1111/j.1558-5646.2011.01495.x; Gunter HM, 2011, J MOL EVOL, V72, P127, DOI 10.1007/s00239-011-9431-x; Gutbrod H, 1999, GENETICS, V151, P773; Haffter P, 1996, DEV GENES EVOL, V206, P260, DOI 10.1007/s004270050051; Handley LL, 2004, GENETICS, V167, P367, DOI 10.1534/genetics.167.1.367; Harano T, 2010, CURR BIOL, V20, P2036, DOI 10.1016/j.cub.2010.10.023; HASKINS CP, 1970, HEREDITY, V25, P575, DOI 10.1038/hdy.1970.64; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; Hoekstra HE, 2006, HEREDITY, V97, P222, DOI 10.1038/sj.hdy.6800861; Horth L, 2003, P ROY SOC B-BIOL SCI, V270, P1033, DOI 10.1098/rspb.2003.2348; Horth L, 2004, J EVOLUTION BIOL, V17, P672, DOI 10.1111/j.1420-9101.2004.00710.x; Horth L, 2002, P ROY SOC B-BIOL SCI, V269, P2239, DOI 10.1098/rspb.2002.2143; Horth L, 2006, J EXP BIOL, V209, P4938, DOI 10.1242/jeb.02599; Horth L, 2010, COPEIA, P196, DOI 10.1643/CG-09-044; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; Hurtado-Gonzales JL, 2009, ANIM BEHAV, V77, P1187, DOI 10.1016/j.anbehav.2008.12.032; Inaba M, 2012, SCIENCE, V335, P677, DOI 10.1126/science.1212821; Joron M, 2011, NATURE, V477, P203, DOI 10.1038/nature10341; Kallman K.D., 1984, P95; Kallman K.D., 1989, P163; Kallman K.D., 1975, P81; Kelsh RN, 1996, DEVELOPMENT, V123, P369; Kelsh RN, 2009, SEMIN CELL DEV BIOL, V20, P90, DOI 10.1016/j.semcdb.2008.10.001; Kingston JJ, 2003, ANIM BEHAV, V65, P735, DOI 10.1006/anbe.2003.2110; Kocher TD, 2004, NAT REV GENET, V5, P288, DOI 10.1038/nrg1316; Kondo M, 2004, CURR BIOL, V14, P1664, DOI 10.1016/j.cub.2004.09.026; Kondo M, 2006, GENOME RES, V16, P815, DOI 10.1101/gr.5016106; Kosswig C., 1928, Zeitschrift fuer Induktive Abstammungs- und Vererbungslehre, V47, P150; Kottler VA, 2015, PIGM CELL MELANOMA R, V28, P545, DOI 10.1111/pcmr.12386; Kottler VA, 2013, GENETICS, V194, P631, DOI 10.1534/genetics.113.151738; Kunstner A, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0169087; Kupper C, 2016, NAT GENET, V48, P79, DOI 10.1038/ng.3443; Kunte K, 2014, NATURE, V507, P229, DOI 10.1038/nature13112; Lahn BT, 1999, SCIENCE, V286, P964, DOI 10.1126/science.286.5441.964; Lamichhaney S, 2016, NAT GENET, V48, P84, DOI 10.1038/ng.3430; Lampert KP, 2010, CURR BIOL, V20, P1729, DOI 10.1016/j.cub.2010.08.029; Lande R, 2001, GENETICA, V112, P435, DOI 10.1023/A:1013379521338; Le Poul Y, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6644; Leclercq E, 2010, FISH FISH, V11, P159, DOI 10.1111/j.1467-2979.2009.00346.x; Lindholm A, 2002, AM NAT, V160, pS214, DOI 10.1086/342898; Lindholm AK, 2004, HEREDITY, V92, P156, DOI 10.1038/sj.hdy.6800386; Lindholm AK, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0142089; Lisachov AP, 2015, ZEBRAFISH, V12, P174, DOI 10.1089/zeb.2014.1000; Maan ME, 2013, SEMIN CELL DEV BIOL, V24, P516, DOI 10.1016/j.semcdb.2013.05.003; Maan ME, 2004, P ROY SOC B-BIOL SCI, V271, P2445, DOI 10.1098/rspb.2004.2911; Maderspacher F, 2003, DEVELOPMENT, V130, P3447, DOI 10.1242/dev.00519; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Mank JE, 2006, BIOL J LINN SOC, V87, P83, DOI 10.1111/j.1095-8312.2006.00558.x; MARTIN R G, 1977, Florida Scientist, V40, P393; Matsuda M, 1998, CYTOGENET CELL GENET, V82, P257, DOI 10.1159/000015113; Matsuda M, 2002, NATURE, V417, P559, DOI 10.1038/nature751; MORRIS MR, 1995, BEHAV ECOL, V6, P274, DOI 10.1093/beheco/6.3.274; Morris MR, 2003, ANIM BEHAV, V65, P45, DOI 10.1006/anbe.2002.2042; NANDA I, 1990, J MOL EVOL, V30, P456, DOI 10.1007/BF02101117; Nanda I, 2002, P NATL ACAD SCI USA, V99, P11778, DOI 10.1073/pnas.182314699; Nanda I, 2000, CHROMOSOMA, V109, P173, DOI 10.1007/s004120050425; Nanda I, 2014, CHROMOSOMA, V123, P373, DOI 10.1007/s00412-014-0455-z; Odenthal J, 1996, DEVELOPMENT, V123, P391; Olendorf R, 2006, NATURE, V441, P633, DOI 10.1038/nature04646; Owen SE, 1936, ENDOCRINOLOGY, V20, P214, DOI 10.1210/endo-20-2-214; Owens IPF, 1998, P ROY SOC B-BIOL SCI, V265, P397, DOI 10.1098/rspb.1998.0308; Parichy DM, 1999, DEVELOPMENT, V126, P3425; Parichy DM, 2003, DEVELOPMENT, V130, P817, DOI 10.1242/dev.00307; Parichy DM, 2000, DEVELOPMENT, V127, P3031; Parnell NF, 2013, HEREDITY, V110, P239, DOI 10.1038/hdy.2012.73; Peterson MP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061784; Rawls JF, 2003, DEV BIOL, V262, P152, DOI 10.1016/S0012-1606(03)00386-5; REGAN JAMES D., 1961, AMER MIDLAND NAT, V65, P139, DOI 10.2307/2423009; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; RICE WR, 1984, EVOLUTION, V38, P735, DOI 10.1111/j.1558-5646.1984.tb00346.x; RICE WR, 1987, EVOLUTION, V41, P911, DOI 10.1111/j.1558-5646.1987.tb05864.x; Rice WR, 1996, BIOSCIENCE, V46, P331, DOI 10.2307/1312947; Ritchie MG, 2007, ANNU REV ECOL EVOL S, V38, P79, DOI 10.1146/annurev.ecolsys.38.091206.095733; Roberts RB, 2009, SCIENCE, V326, P998, DOI 10.1126/science.1174705; Rodd FH, 2002, P ROY SOC B-BIOL SCI, V269, P475, DOI 10.1098/rspb.2001.1891; ROWLAND WJ, 1984, CAN J ZOOL, V62, P999, DOI 10.1139/z84-141; Salzburger W, 2007, BMC BIOL, V5, DOI 10.1186/1741-7007-5-51; Salzburger W, 2009, MOL ECOL, V18, P169, DOI 10.1111/j.1365-294X.2008.03981.x; SANCHEZFERRER A, 1995, BBA-PROTEIN STRUCT M, V1247, P1; Santos ME, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6149; Sauka-Spengler T, 2008, NAT REV MOL CELL BIO, V9, P557, DOI 10.1038/nrm2428; Schartl M, 1999, GENETICS, V153, P1385; Schartl M, 2016, CHROMOSOMA, V125, P553, DOI 10.1007/s00412-015-0569-y; Schartl M, 2016, PIGM CELL MELANOMA R, V29, P8, DOI 10.1111/pcmr.12409; Schmidt J., 1920, Copenhagen CR Lab Carlsberg, V14; Sedlacek O, 2014, ZOOL ANZ, V253, P207, DOI 10.1016/j.jcz.2013.12.004; Seehausen O, 1999, ECOL LETT, V2, P367; Ser JR, 2010, EVOLUTION, V64, P486, DOI 10.1111/j.1558-5646.2009.00871.x; Sharma E, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-400; Singh AP, 2015, CURR BIOL, V25, pR81, DOI 10.1016/j.cub.2014.11.013; SNELSON FF, 1986, AM MIDL NAT, V115, P413, DOI 10.2307/2425877; Streelman JT, 2003, MOL ECOL, V12, P2465, DOI 10.1046/j.1365-294X.2003.01920.x; Takahashi T, 2013, MOL ECOL, V22, P3049, DOI 10.1111/mec.12120; Traut W, 2001, CHROMOSOME RES, V9, P659, DOI 10.1023/A:1012956324417; Tripathi N, 2009, GENETICS, V182, P365, DOI 10.1534/genetics.108.098541; Tripathi N, 2009, P ROY SOC B-BIOL SCI, V276, P2195, DOI 10.1098/rspb.2008.1930; Tripathi N, 2008, ZEBRAFISH, V5, P265, DOI 10.1089/zeb.2008.0548; van Doorn GS, 2007, NATURE, V449, P909, DOI 10.1038/nature06178; van Doorn GS, 2009, ANN NY ACAD SCI, V1168, P52, DOI 10.1111/j.1749-6632.2009.04573.x; Volff JN, 2001, GENETICA, V111, P101, DOI 10.1023/A:1013795415808; Volff JN, 2003, GENOMICS, V82, P470, DOI 10.1016/S0888-7543(03)00168-X; Wada H, 1998, ZOOL SCI, V15, P123, DOI 10.2108/zsj.15.123; Watanabe M, 2006, EMBO REP, V7, P893, DOI 10.1038/sj.embor.7400757; Weis S, 1998, GENETICS, V149, P1909; WINGE O., 1934, Compte rendu des Travaux du Laboratoire de Carlsberg, Ser. Physiol., V21, P1; WINGE O, 1947, HEREDITY, V1, P65, DOI 10.1038/hdy.1947.4; Winge O, 1927, J GENET, V18, P1, DOI 10.1007/BF03052599; Winge O, 1922, J GENET, V12, P145, DOI 10.1007/BF02983078; Winge xD., 1938, Compte Rendu des Travaux du Laboratoire de Carlsberg Copenh Ser Physiol, V22, P203; WITTBRODT J, 1989, NATURE, V341, P415, DOI 10.1038/341415a0; Wright AE, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14251; Yoshida K, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002203; ZIMMERER EJ, 1988, COPEIA, P299; ZIMMERER EJ, 1989, EVOLUTION, V43, P1298, DOI 10.1111/j.1558-5646.1989.tb02576.x 153 1 1 4 8 MDPI BASEL ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND 2073-4425 GENES-BASEL Genes MAY 2018 9 5 233 10.3390/genes9050233 16 Genetics & Heredity Genetics & Heredity GJ3KS WOS:000435194100008 29751562 DOAJ Gold 2019-02-21 J Zimmer, C; Riesch, R; Jourdan, J; Bierbach, D; Arias-Rodriguez, L; Plath, M Zimmer, Claudia; Riesch, Rudiger; Jourdan, Jonas; Bierbach, David; Arias-Rodriguez, Lenin; Plath, Martin Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies (Poecilia mexicana) GENES English Article reproductive isolation; ecological speciation; sexual ornament; species discrimination; barrier loci TOXIC HYDROGEN-SULFIDE; IMMIGRANTS MAINTAINS DIFFERENTIATION; ENHANCES REPRODUCTIVE ISOLATION; LIFE-HISTORY EVOLUTION; GIANT WATER BUG; ECOLOGICAL SPECIATION; MATE-CHOICE; MATING PREFERENCES; MALE COLORATION; PREDATION RISK Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system. [Zimmer, Claudia; Plath, Martin] Northwest A&F Univ, Coll Anim Sci & Technol, Yangling 712100, Shaanxi, Peoples R China; [Zimmer, Claudia] Goethe Univ Frankfurt, Dept Ecol & Evolut, Max von Laue Str 13, D-60438 Frankfurt, Germany; [Riesch, Rudiger] Royal Holloway Univ London, Sch Biol Sci, Ctr Ecol Evolut & Behav, Egham TW20 0EX, Surrey, England; [Jourdan, Jonas] Senckenberg Res Inst, Dept River Ecol & Conservat, D-63571 Gelnhausen, Germany; [Jourdan, Jonas] Nat Hist Museum Frankfurt, D-63571 Gelnhausen, Germany; [Bierbach, David] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Biol & Ecol Fishes, Muggelseedamm 310, D-12587 Berlin, Germany; [Arias-Rodriguez, Lenin] UJAT, Div Acad Ciencias Biol, Villahermosa 86150, Tabasco, Mexico; [Plath, Martin] Northwest A&F Univ, Shaanxi Key Lab Mol Biol Agr, Yangling 712100, Shaanxi, Peoples R China Zimmer, C (reprint author), Northwest A&F Univ, Coll Anim Sci & Technol, Yangling 712100, Shaanxi, Peoples R China.; Zimmer, C (reprint author), Goethe Univ Frankfurt, Dept Ecol & Evolut, Max von Laue Str 13, D-60438 Frankfurt, Germany. cla.zim.uni@gmail.com; Rudiger.Riesch@rhul.ac.uk; jonasjourdan@googlemail.com; david.bierbach@gmx.de; leninariasrodriguez@hotmail.com; mplath-zoology@gmx.de Jourdan, Jonas/Y-7389-2018 Jourdan, Jonas/0000-0002-2745-2520 association "Freunde und Forderer" of Goethe University Frankfurt; DFG [BI 1828/2-1, PL 470/3-1]; Talent Support of Shaanxi Province [Z111021403, Z111021501]; Northwest AF University [Z111021403, Z111021501] We thank Patrick Slattery, Denise Herbert, Raoul Wolf, Jessica Appel, Elisabeth Berger, Konstantin Wolf, Janis Droge, Sarah Charaf, Philipp Meyer, and Johannes Volker for help with data collection in Mexico, as well as Sybille Hampfler and Eva M. Worner for help with data collection in the laboratory in Frankfurt. Some of the data presented here were analyzed as part of a Master's thesis by Marina Penshorn. Financial support came from the association "Freunde und Forderer" of Goethe University Frankfurt (to C.Z.), the DFG (to D.B.: BI 1828/2-1, to M.P.: PL 470/3-1), and the Talent Support of Shaanxi Province and Northwest A&F University (to M.P.: Z111021403 and Z111021501). Permission to conduct field work was provided by the Mexican Federal Agency CONAPESCA (PRMN/DGOPA-012/2017). Aspbury AS, 2004, P NATL ACAD SCI USA, V101, P15970, DOI 10.1073/pnas.0405653101; BAGARINAO T, 1992, AQUAT TOXICOL, V24, P21, DOI 10.1016/0166-445X(92)90015-F; Bagemihl Bruce, 1999, BIOL EXUBERANCE ANIM; Bailey NW, 2009, TRENDS ECOL EVOL, V24, P439, DOI 10.1016/j.tree.2009.03.014; BARTKO JJ, 1966, PSYCHOL REP, V19, P3, DOI 10.2466/pr0.1966.19.1.3; Barts N, 2018, GENOME, V61, P273, DOI 10.1139/gen-2017-0051; BASOLO A, 1990, ANIM BEHAV, V40, P339; BASOLO AL, 1990, SCIENCE, V250, P808, DOI 10.1126/science.250.4982.808; BASOLO AL, 1995, P ROY SOC B-BIOL SCI, V259, P307, DOI 10.1098/rspb.1995.0045; Bay RA, 2017, CURR BIOL, V27, P3344, DOI 10.1016/j.cub.2017.09.037; Berner D, 2009, EVOLUTION, V63, P1740, DOI 10.1111/j.1558-5646.2009.00665.x; Bierbach D, 2018, CURR ZOOL, V64, P125, DOI 10.1093/cz/zox071; Bierbach D, 2014, BEHAV ECOL SOCIOBIOL, V68, P935, DOI 10.1007/s00265-014-1706-y; Bierbach D, 2013, BIOMED RES INT, DOI 10.1155/2013/148348; Bierbach David, 2012, Int J Evol Biol, V2012, P148745, DOI 10.1155/2012/148745; Bierbach D, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1038; Bierbach D, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-190; Bierbach D, 2011, BIOL LETTERS, V7, P349, DOI 10.1098/rsbl.2010.0982; Bisazza A, 1996, J FISH BIOL, V48, P726, DOI 10.1111/j.1095-8649.1996.tb01468.x; Boughman JW, 2001, NATURE, V411, P944, DOI 10.1038/35082064; Brown AP, 2017, MOL ECOL, V26, P4920, DOI 10.1111/mec.14249; Chouinard-Thuly L, 2017, CURR ZOOL, V63, P5, DOI 10.1093/cz/zow104; Comeault AA, 2015, CURR BIOL, V25, P1975, DOI 10.1016/j.cub.2015.05.058; Constantz G.D., 1984, P465; Coyne J. A., 2004, SPECIATION; Culumber ZW, 2014, ETHOLOGY, V120, P1090, DOI 10.1111/eth.12282; Deacon AE, 2018, CURR ZOOL, V64, P213, DOI 10.1093/cz/zoy004; DECAPRONA MDC, 1990, ANIM BEHAV, V39, P290; Diamond SE, 2018, CURR ZOOL, V64, P223, DOI 10.1093/cz/zox072; Egger B, 2010, J EVOLUTION BIOL, V23, P433, DOI 10.1111/j.1420-9101.2009.01906.x; Eifert C, 2015, J ZOOL, V295, P143, DOI 10.1111/jzo.12190; Elmer KR, 2011, TRENDS ECOL EVOL, V26, P298, DOI 10.1016/j.tree.2011.02.008; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; Endler J. A., 1986, NATURAL SELECTION WI; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; Endler JA, 1998, TRENDS ECOL EVOL, V13, P415, DOI 10.1016/S0169-5347(98)01471-2; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; ENDLER JA, 1992, AM NAT, V139, pS125, DOI 10.1086/285308; Espinedo CM, 2010, EVOL ECOL, V24, P865, DOI 10.1007/s10682-009-9343-z; Farr J.A., 1989, P91; Gierszewski S, 2017, CURR ZOOL, V63, P65, DOI 10.1093/cz/zow108; Godin JGJ, 1996, P NATL ACAD SCI USA, V93, P10262, DOI 10.1073/pnas.93.19.10262; Greenway R, 2016, EVOLUTION, V70, P2809, DOI 10.1111/evo.13087; Grether GF, 2000, EVOLUTION, V54, P1712; Grether GF, 1999, P ROY SOC B-BIOL SCI, V266, P1317, DOI 10.1098/rspb.1999.0781; Grieshaber MK, 1998, ANNU REV PHYSIOL, V60, P33, DOI 10.1146/annurev.physiol.60.1.33; Hankison SJ, 2002, BEHAV ECOL SOCIOBIOL, V51, P140; Hatfield T, 1999, EVOLUTION, V53, P866, DOI 10.1111/j.1558-5646.1999.tb05380.x; Hendry AP, 2009, J FISH BIOL, V75, P2000, DOI 10.1111/j.1095-8649.2009.02419.x; Hendry AP, 2004, EVOL ECOL RES, V6, P1219; Houde A., 1997, SEX COLOR MATE CHOIC; Hurtado-Gonzales JL, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101497; Jacquemyn H, 2018, OIKOS, V127, P73, DOI 10.1111/oik.04329; Jourdan J, 2016, ENVIRON BIOL FISH, V99, P697, DOI 10.1007/s10641-016-0510-0; Kaeuffer R, 2012, EVOLUTION, V66, P402, DOI 10.1111/j.1558-5646.2011.01440.x; Kang JH, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-25; Kawamura S, 2016, VISION RES, V127, P67, DOI 10.1016/j.visres.2016.06.013; Kodric-Brown A, 1998, AM ZOOL, V38, P70; Kodric-Brown A, 2001, BEHAV ECOL SOCIOBIOL, V50, P346, DOI 10.1007/s002650100374; KODRICBROWN A, 1993, BEHAV ECOL SOCIOBIOL, V32, P415, DOI 10.1007/BF00168825; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; Kohler A, 2011, BEHAV ECOL SOCIOBIOL, V65, P1513, DOI 10.1007/s00265-011-1161-y; Korner KE, 2006, J FISH BIOL, V69, P54, DOI 10.1111/j.1095-8649.01056.x; Koo TK, 2016, J CHIROPR MED, V15, P155, DOI 10.1016/j.jcm.2016.02.012; KRAMER DL, 1982, ENVIRON BIOL FISH, V7, P47, DOI 10.1007/BF00011822; Lackey ACR, 2017, EVOLUTION, V71, P357, DOI 10.1111/evo.13114; Lagarde L., 2012, THESIS; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; LONG KD, 1989, ETHOLOGY, V82, P316; Lowry DB, 2008, EVOLUTION, V62, P2196, DOI 10.1111/j.1558-5646.2008.00457.x; Maan ME, 2011, ECOL LETT, V14, P591, DOI 10.1111/j.1461-0248.2011.01606.x; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Magurran A.E., 2007, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V258, P89, DOI 10.1098/rspb.1994.0147; Martin RA, 2014, EVOLUTION, V68, P397, DOI 10.1111/evo.12277; McKinnon JS, 1995, ANIM BEHAV, V50, P1645, DOI 10.1016/0003-3472(95)80018-2; Meyer A, 2006, MOL ECOL, V15, P721, DOI 10.1111/j.1365-294X.2006.02810.x; MILINSKI M, 1990, NATURE, V344, P330, DOI 10.1038/344330a0; MOLLER AP, 1990, ANIM BEHAV, V40, P1185, DOI 10.1016/S0003-3472(05)80187-3; MORRIS MR, 1995, BEHAV ECOL, V6, P274, DOI 10.1093/beheco/6.3.274; Morris MR, 1996, ANIM BEHAV, V52, P1193, DOI 10.1006/anbe.1996.0267; Nicoletto PF, 1999, ENVIRON BIOL FISH, V55, P227, DOI 10.1023/A:1007587809618; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; Nosil P, 2004, P ROY SOC B-BIOL SCI, V271, P1521, DOI 10.1098/rspb.2004.2751; Nosil P, 2005, EVOLUTION, V59, P705; Oke KB, 2017, AM NAT, V190, P1, DOI 10.1086/691989; OLIVEIRA RF, 2000, ACTA ETHOL, V3, P61, DOI DOI 10.1007/S102110000019; Olson VA, 1998, TRENDS ECOL EVOL, V13, P510, DOI 10.1016/S0169-5347(98)01484-0; Palacios M, 2016, MOL PHYLOGENET EVOL, V103, P230, DOI 10.1016/j.ympev.2016.07.025; Palacios M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071069; Panhuis TM, 2001, TRENDS ECOL EVOL, V16, P364, DOI 10.1016/S0169-5347(01)02160-7; PARZEFAL.J, 1969, BEHAVIOUR, V33, P1, DOI 10.1163/156853969X00297; Passow CN, 2017, MOL ECOL, V26, P6384, DOI 10.1111/mec.14360; Passow CN, 2017, MOL ECOL, V26, P4211, DOI 10.1111/mec.14198; PETRIE M, 1994, NATURE, V371, P598, DOI 10.1038/371598a0; Pfenninger M, 2015, MOL ECOL, V24, P5446, DOI 10.1111/mec.13397; Pfenninger M, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4873; Phelps SM, 2006, AM NAT, V167, P28, DOI 10.1086/498538; Plath M, 2006, NATURWISSENSCHAFTEN, V93, P103, DOI 10.1007/s00114-005-0072-z; Plath M, 2005, BEHAV ECOL SOCIOBIOL, V58, P144, DOI 10.1007/s00265-005-0918-6; Plath M, 2004, BEHAV ECOL SOCIOBIOL, V55, P596, DOI 10.1007/s00265-003-0750-9; Plath M, 2003, BEHAV ECOL SOCIOBIOL, V54, P303, DOI 10.1007/s00265-003-0625-0; Plath M., 2015, EXTREMOPHILE FISHES, P1; Plath M, 2008, BEHAVIOUR, V145, P73, DOI 10.1163/156853908782687241; Plath M, 2007, NATURWISSENSCHAFTEN, V94, P991, DOI 10.1007/s00114-007-0279-2; Plath M, 2007, BEHAVIOUR, V144, P1147, DOI 10.1163/156853907781890931; Plath M, 2013, EVOLUTION, V67, P2647, DOI 10.1111/evo.12133; Plath M, 2011, EVOL ECOL RES, V13, P133; Plath M, 2010, BIOLOGY OF SUBTERRANEAN FISHES, P281; Plath M, 2010, NATURWISSENSCHAFTEN, V97, P769, DOI 10.1007/s00114-010-0691-x; Polverino G, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054315; Powell DL, 2017, CURR ZOOL, V63, P21, DOI 10.1093/cz/zow091; Price AC, 2008, ZEBRAFISH, V5, P297, DOI 10.1089/zeb.2008.0551; Rasanen K, 2014, ECOL EVOL, V4, P1166, DOI 10.1002/ece3.1012; Ravinet M, 2017, J EVOLUTION BIOL, V30, P1450, DOI 10.1111/jeb.13047; Riesch R, 2011, J EVOLUTION BIOL, V24, P596, DOI 10.1111/j.1420-9101.2010.02194.x; Riesch R, 2015, EXTREMOPHILE FISHES, P137; Riesch R, 2018, CURR ZOOL, V64, P193, DOI 10.1093/cz/zoy015; Riesch R, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0705-1; Riesch R, 2014, ECOL LETT, V17, P65, DOI 10.1111/ele.12209; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Riesch R, 2010, BIOL J LINN SOC, V101, P417, DOI 10.1111/j.1095-8312.2010.01522.x; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; Riesch R, 2010, NATURWISSENSCHAFTEN, V97, P133, DOI 10.1007/s00114-009-0613-y; Rios-Cardenas Oscar, 2011, P187; Rodd FH, 2002, P ROY SOC B-BIOL SCI, V269, P475, DOI 10.1098/rspb.2001.1891; Rosales Lagarde L, 2006, ASS MEXICAN CAVE STU, V19, P177; Rosenthal GG, 2001, AM NAT, V158, P146, DOI 10.1086/321309; Rosenthal GG, 2005, ANIM BEHAV, V70, P1063, DOI 10.1016/j.anbehav.2005.02.005; Rosenthal GG, 1998, P NATL ACAD SCI USA, V95, P4431, DOI 10.1073/pnas.95.8.4431; Rosenthal Gil G., 2000, Acta Ethologica, V3, P49, DOI 10.1007/s102110000024; Rundle HD, 2000, SCIENCE, V287, P306, DOI 10.1126/science.287.5451.306; Rundle HD, 2005, ECOL LETT, V8, P336, DOI 10.1111/j.1461-0248.2004.00715.x; Rundle HD, 2002, EVOLUTION, V56, P322; Rundle HD, 2001, EVOLUTION, V55, P198; Ryan M.J., 1993, TRENDS ICHTHYOLOGY I, P269; RYAN MJ, 1993, EVOLUTION, V47, P647, DOI 10.1111/j.1558-5646.1993.tb02118.x; RYAN MJ, 1987, SCIENCE, V236, P595, DOI 10.1126/science.236.4801.595; RYAN MJ, 1990, BEHAV ECOL SOCIOBIOL, V26, P231; Sandkam BA, 2013, EVOLUTION, V67, P120, DOI 10.1111/j.1558-5646.2012.01779.x; Schluter D, 2001, TRENDS ECOL EVOL, V16, P372, DOI 10.1016/S0169-5347(01)02198-X; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schumer M, 2017, P NATL ACAD SCI USA, V114, P10936, DOI 10.1073/pnas.1711238114; Seehausen O, 1997, SCIENCE, V277, P1808, DOI 10.1126/science.277.5333.1808; Seehausen O, 1998, BEHAV ECOL SOCIOBIOL, V42, P1, DOI 10.1007/s002650050405; Servedio MR, 2017, ANNU REV ECOL EVOL S, V48, P85, DOI 10.1146/annurev-ecolsys-110316-022905; Servedio MR, 2016, EVOL APPL, V9, P91, DOI 10.1111/eva.12296; Shafer ABA, 2013, ECOL LETT, V16, P940, DOI 10.1111/ele.12120; Sherman Paul W., 1997, P69; SIH A, 1994, J FISH BIOL, V45, P111, DOI 10.1006/jfbi.1994.1217; Smith JW, 2007, AM NAT, V169, P455, DOI 10.1086/511961; Sommer-Trembo C, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0712-2; Tobler M, 2009, J EVOLUTION BIOL, V22, P2298, DOI 10.1111/j.1420-9101.2009.01844.x; Tobler M, 2008, BIOL J LINN SOC, V95, P517, DOI 10.1111/j.1095-8312.2008.01063.x; Tobler M, 2008, EVOLUTION, V62, P2643, DOI 10.1111/j.1558-5646.2008.00466.x; Tobler M, 2008, NATURWISSENSCHAFTEN, V95, P775, DOI 10.1007/s00114-008-0382-z; Tobler M, 2006, EXTREMOPHILES, V10, P577, DOI 10.1007/s00792-006-0531-2; Tobler M, 2018, MOL ECOL, V27, P843, DOI 10.1111/mec.14497; Tobler M, 2015, FRESHWATER BIOL, V60, P768, DOI 10.1111/fwb.12530; Tobler M, 2014, COMP BIOCHEM PHYS A, V175, P7, DOI 10.1016/j.cbpa.2014.04.012; Tobler M, 2011, EVOL BIOL, V38, P412, DOI 10.1007/s11692-011-9129-4; Tobler M, 2011, EVOLUTION, V65, P2213, DOI 10.1111/j.1558-5646.2011.01298.x; Tobler M, 2009, EVOL ECOL RES, V11, P935; Tobler M, 2009, BIOL LETTERS, V5, P506, DOI 10.1098/rsbl.2009.0272; van Doorn GS, 2004, AM NAT, V164, P173, DOI 10.1086/422203; Watson CT, 2011, J MOL EVOL, V72, P240, DOI 10.1007/s00239-010-9426-z; Watson CT, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-87; Williams TH, 2011, ANIM BEHAV, V82, P683, DOI 10.1016/j.anbehav.2011.06.023; Wymann Monica N., 2003, Acta Ethologica, V6, P19, DOI 10.1007/s10211-003-0082-9; Ziege M, 2012, CURR ZOOL, V58, P84, DOI 10.1093/czoolo/58.1.84 172 0 0 7 8 MDPI BASEL ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND 2073-4425 GENES-BASEL Genes MAY 2018 9 5 232 10.3390/genes9050232 30 Genetics & Heredity Genetics & Heredity GJ3KS WOS:000435194100007 29724050 DOAJ Gold 2019-02-21 J Zera, AJ; Vellichirammal, NN; Brisson, JA Zera, Anthony J.; Vellichirammal, Neetha Nanoth; Brisson, Jennifer A. Diurnal and developmental differences in gene expression between adult dispersing and flightless morphs of the wing polymorphic cricket, Gryllus firmus: Implications for life-history evolution JOURNAL OF INSECT PHYSIOLOGY English Article Wing polymorphism; Morph-specific gene expression; Circadian rhythm; Life history; Insulin-like peptide; Juvenile hormone JUVENILE-HORMONE; TRADE-OFFS; INTERMEDIARY METABOLISM; DROSOPHILA-MELANOGASTER; DIMORPHIC CRICKET; SIGNALING PATHWAY; INSECTS; REPRODUCTION; CAPABILITY; TITER The functional basis of life history adaptation is a key topic of research in life history evolution. Studies of wing polymorphism in the cricket Gryllus firmus have played a prominent role in this field. However, prior in-depth investigations of morph specialization have primarily focused on a single hormone, juvenile hormone, and a single aspect of intermediary metabolism, the fatty-acid biosynthetic component of lipid metabolism. Moreover, the role of diurnal variation in life history adaptation in G. firmus has been understudied, as is the case for organisms in general. Here, we identify genes whose expression differs consistently between the morphs independent of time-of-day during early adulthood, as well as genes that exhibit a strong pattern of morph-specific diurnal expression. We find strong, consistent, morph-specific differences in the expression of genes involved in endocrine regulation, carbohydrate and lipid metabolism, and immunity in particular, in the expression of an insulin-like-peptide precursor gene and genes involved in triglyceride production. We also find that the flight capable morph exhibited a substantially greater number of genes exhibiting diurnal change in gene expression compared with the flightless morph, correlated with the greater circadian change in the hemolymph juvenile titer in the dispersing morph. In fact, diurnal differences in expression within the dispersing morph at different times of the day were significantly greater in magnitude than differences between dispersing and flightless morphs at the same time-of-day. These results provide important baseline information regarding the potential role of variable gene expression on life history specialization in morphs of G. firmus, and the first information on genetically-variable, diurnal change in gene expression, associated with a key life history polymorphism. These results also suggest the existence of prominent morph-specific circadian differences in gene expression in G. firmus, possibly caused by the morph-specific circadian rhythm in the juvenile hormone titer. [Zera, Anthony J.] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA; [Vellichirammal, Neetha Nanoth] Univ Nebraska, Dept Entomol, Lincoln, NE 68583 USA; [Brisson, Jennifer A.] Univ Rochester, Dept Biol, Rochester, NY 14627 USA Zera, AJ (reprint author), Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA. azera1@unl.edu NSF [IOS-1122075]; School of Biological Sciences, University of Nebraska-Lincoln; Department of Biology, University of Rochester Research was supported by NSF grant IOS-1122075 and funds from the School of Biological Sciences, University of Nebraska-Lincoln to AJZ, and startup funds from the Department of Biology, University of Rochester to JAB. We thank K. Williams for excellent technical assistance. Badisco L., 2013, FRONT PHYSIOL, V4, P1; Badisco L, 2008, J MOL ENDOCRINOL, V40, P137, DOI 10.1677/JME-07-0161; Badisco L, 2011, PEPTIDES, V32, P573, DOI 10.1016/j.peptides.2010.11.008; Beaver LM, 2002, P NATL ACAD SCI USA, V99, P2134, DOI 10.1073/pnas.032426699; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Brisson JA, 2007, EVOL DEV, V9, P338, DOI 10.1111/j.1525-142X.2007.00170.x; Broughton SJ, 2005, P NATL ACAD SCI USA, V102, P3105, DOI 10.1073/pnas.0405775102; Connor KM, 2011, P NATL ACAD SCI USA, V108, P16110, DOI 10.1073/pnas.1111076108; de Paula RM, 2008, CELL CYCLE, V7, P2630, DOI 10.4161/cc.7.17.6516; DUNLAP JC, 2004, CHRONOBIOLOGY; Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Goodman W. G., 2012, INSECT ENDOCRINOLOGY, P310, DOI DOI 10.1016/B978-0-12-384749-2-10008-1; Goodspeed D, 2012, P NATL ACAD SCI USA, V109, P4674, DOI 10.1073/pnas.1116368109; Guerra PA, 2011, BIOL REV, V86, P813, DOI 10.1111/j.1469-185X.2010.00172.x; Hardie J., 1985, COMPREHENSIVE INSECT, V8, P441; HARRISON RG, 1980, ANNU REV ECOL SYST, V11, P95, DOI 10.1146/annurev.es.11.110180.000523; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hemond EM, 2015, MOL ECOL, V24, P4460, DOI 10.1111/mec.13320; Ibn-Salem J, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0423-1; Isaac RE, 2007, PEPTIDES, V28, P153, DOI 10.1016/j.peptides.2006.08.029; Issac R. E., 1999, NEW YORK ACAD SCI, V897, P342; Jindra M, 2013, ANNU REV ENTOMOL, V58, P181, DOI 10.1146/annurev-ento-120811-153700; Jones CM, 2015, MOL ECOL, V24, P4901, DOI 10.1111/mec.13362; Kvist J, 2015, MOL ECOL, V24, P4886, DOI 10.1111/mec.13359; Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262; Nijhout H. F, 2013, FRONT PHYSIOL, V4, P45; Nijhout H.F., 1994, INSECT HORMONES; Pener M. P., 1985, COMPREHENSIVE INSECT, P441; PILKIS SJ, 1995, ANNU REV BIOCHEM, V64, P799, DOI 10.1146/annurev.bi.64.070195.004055; Rankin M. A., 1978, EVOLUTION INSECT MIG, P139; RANKIN MA, 1992, ANNU REV ENTOMOL, V37, P533; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; Savolainen O, 2013, NAT REV GENET, V14, P807, DOI 10.1038/nrg3522; Shang F, 2016, SCI REP-UK, V6, DOI 10.1038/srep32099; Sim C, 2013, FRONT PHYSIOL, V4, DOI 10.3389/fphys.2013.00189; St-Cyr J, 2008, MOL ECOL, V17, P1850, DOI 10.1111/j.1365-294X.2008.03696.x; Steams S. C., 1992, EVOLUTION LIFE HIST; Taniguchi CM, 2006, NAT REV MOL CELL BIO, V7, P85, DOI 10.1038/nrm1837; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; Tu MP, 2005, GEN COMP ENDOCR, V142, P347, DOI 10.1016/j.ygcen.2005.02.009; Untergasser A, 2007, NUCLEIC ACIDS RES, V35, P402; Vellichirammal NN, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0082129; WALKER TJ, 1986, FLA ENTOMOL, V69, P678, DOI 10.2307/3495213; Wheat CW, 2011, MOL ECOL, V20, P1813, DOI 10.1111/j.1365-294X.2011.05062.x; Wilson R, 1999, J IMMUNOL, V162, P1590; Wu Q, 2006, ANNU REV ENTOMOL, V51, P1, DOI 10.1146/annurev.ento.51.110104.151011; Xu HJ, 2015, NATURE, V519, P464, DOI 10.1038/nature14286; Yang XW, 2014, INT J BIOL SCI, V10, P257, DOI 10.7150/ijbs.7629; Zera AJ, 2005, INTEGR COMP BIOL, V45, P511, DOI 10.1093/icb/45.3.511; Zera AJ, 1997, PHYSIOL ZOOL, V70, P519, DOI 10.1086/515865; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2003, EVOLUTION, V57, P586; Zera AJ, 2001, J INSECT PHYSIOL, V47, P1147, DOI 10.1016/S0022-1910(01)00096-8; Zera AJ, 2001, EVOLUTION, V55, P538, DOI 10.1554/0014-3820(2001)055[0538:TEGBOL]2.0.CO;2; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zera AJ, 2017, CRICKETS MODEL ORGAN, P91; Zera AJ, 2007, PHYSIOL BIOCHEM ZOOL, V80, P592, DOI 10.1086/521803; Zera AJ, 2006, AM NAT, V167, P889, DOI 10.1086/503578; Zera AJ, 2016, INTEGR COMP BIOL, V56, P159, DOI 10.1093/icb/icw027; Zera AJ, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P63; Zera AJ, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P311; Zera AJ, 2009, EXPERIMENTAL EVOLUTION: CONCEPTS, METHODS, AND APPLICATIONS OF SELECTION EXPERIMENTS, P217; Zera AJ, 2009, J INSECT PHYSIOL, V55, P450, DOI 10.1016/j.jinsphys.2008.11.012; Zhao ZW, 2004, J INSECT PHYSIOL, V50, P93, DOI 10.1016/j.jinsphys.2003.10.003; Zhao ZW, 2002, P NATL ACAD SCI USA, V99, P16829, DOI 10.1073/pnas.262533999 66 0 0 7 7 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. MAY-JUN 2018 107 233 243 10.1016/j.jinsphys.2018.04.003 11 Entomology; Physiology; Zoology Entomology; Physiology; Zoology GI8DD WOS:000434751100028 29656101 2019-02-21 J Woronik, A; Stefanescu, C; Kakela, R; Wheat, CW; Lehmann, P Woronik, Alyssa; Stefanescu, Constanti; Kakela, Reijo; Wheat, Christopher W.; Lehmann, Philipp Physiological differences between female limited, alternative life history strategies: The Alba phenotype in the butterfly Colias croceus JOURNAL OF INSECT PHYSIOLOGY English Article Life history traits; Color morphs; Respirometry; Lipidomics; Growth rate; Colias; Alba INSECT FAT-BODY; GENETIC-POLYMORPHISM; RESOURCE-ALLOCATION; MITOCHONDRIAL-DNA; LEPIDOPTERA; PIERIDAE; PHYLOGENY; METABOLISM; ODONATA; ENERGY Across a wide range of taxa, individuals within populations exhibit alternative life history strategies (ALHS) where their phenotypes dramatically differ due to divergent investments in growth, reproduction and survivorship, with the resulting trade-offs directly impacting Darwinian fitness. Though the maintenance of ALHS within populations is fairly well understood, little is known regarding the physiological mechanisms that underlie ALHS and how environmental conditions can affect the evolution and expression of these phenotypes. One such ALHS, known as Alba, exists within females of many species in the butterfly genus Colias. Previous works in New World species not only found that female morphs differ in their wing color due to a reallocation of resources away from the synthesis of wing pigments to other areas of development, but also that temperature played an important role in these trade-offs. Here we build on previous work conducted in New World species by measuring life history traits and conducting lipidomics on individuals reared at hot and cold temperatures in the Old World species Colias croceus. Results suggest that the fitness of Alba and orange morphs likely varies with rearing temperature, where Alba females have higher fitness in cold conditions and orange in warm. Additionally shared traits between Old and New World species suggest the Alba mechanism is likely conserved across the genus. Finally, in the cold treatment we observe an intermediate yellow morph that may have decreased fitness due to slower larval development. This cost may manifest as disruptive selection in the field, thereby favoring the maintenance of the two discrete morphs. Taken together these results add insights into the evolution of, and the selection on, the Alba ALHS. [Woronik, Alyssa; Wheat, Christopher W.; Lehmann, Philipp] Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden; [Stefanescu, Constanti] Museum Nat Sci Granollers, Granollers 08402, Catalonia, Spain; [Stefanescu, Constanti] CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain; [Kakela, Reijo] Univ Helsinki, Mol & Integrat Biosci, Fac Biol & Environm Sci, FI-00014 Helsinki, Finland Woronik, A (reprint author), Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden. alyssa.woronik@zoologi.su.se Woronik, Alyssa/0000-0003-3017-6069; Lehmann, Philipp/0000-0001-8344-6830 Academy of Finland [131155]; Swedish Research Council [2012-3715]; Knut and Alice Wallenberg Foundation [2012.0058] We would like to thank two anonymous reviews for comments that greatly improved this manuscript. We thank Jason Hill and Lovisa Wennerstrom for help with fieldwork, Hasina Nasser for help with rearing, Sandra Stalhandske for modeling advice, Ramprasad Neethiraj for help with the mean red analysis, and Bertil Borg for use of his camera. We also thank the Academy of Finland 131155, the Swedish Research Council 2012-3715, and the Knut and Alice Wallenberg Foundation 2012.0058 for funding. The authors declare no conflict of interest. Andres JA, 1999, HEREDITY, V82, P328, DOI 10.1038/sj.hdy.6884930; Arrese EL, 2001, J LIPID RES, V42, P225; Arrese EL, 2010, ANNU REV ENTOMOL, V55, P207, DOI 10.1146/annurev-ento-112408-085356; Bates D, 2015, J STAT SOFT, V67; BOGGS CL, 1981, AM NAT, V117, P692, DOI 10.1086/283753; Brunton CFA, 1998, HEREDITY, V80, P611; Crockett EL., 1998, CHOLESTEROL FUNCTION; Fisher RA, 1930, GENETICAL THEORY NAT; FOLCH J, 1957, J BIOL CHEM, V226, P497; Fujimoto T, 2011, CSH PERSPECT BIOL, V3, DOI 10.1101/cshperspect.a004838; Futuyma D., 2013, EVOLUTION; GRAHAM SM, 1980, P NATL ACAD SCI-BIOL, V77, P3615, DOI 10.1073/pnas.77.6.3615; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hofbauer J, 2003, B AM MATH SOC, V40, P479, DOI 10.1090/S0273-0979-03-00988-1; HOFFMANN RJ, 1974, J INSECT PHYSIOL, V20, P1913, DOI 10.1016/0022-1910(74)90098-5; Kupper C, 2016, NAT GENET, V48, P79, DOI 10.1038/ng.3443; Lamichhaney S, 2015, NAT GENET, V48, P84, DOI DOI 10.1038/NG.3430); LANK DB, 1995, NATURE, V378, P59, DOI 10.1038/378059a0; Lehmann P, 2016, J EXP BIOL, V219, P3049, DOI 10.1242/jeb.142687; Limeri LB, 2016, BIOL J LINN SOC, V117, P716, DOI 10.1111/bij.12697; Nielsen MG, 2000, FUNCT ECOL, V14, P718, DOI 10.1046/j.1365-2435.2000.00472.x; Nielsen MG, 1998, FUNCT ECOL, V12, P149, DOI 10.1046/j.1365-2435.1998.00167.x; Pollock DD, 1998, ANN ENTOMOL SOC AM, V91, P524, DOI 10.1093/aesa/91.5.524; R Core Team, 2015, R LANG ENV STAT COMP; REMINGTON CL, 1954, ADV GENET, V6, P403, DOI 10.1016/S0065-2660(08)60133-9; Schmidt-Nielsen K, 1990, ANIMAL PHYSL ADAPTAT; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Stearns S, 1992, EVOLUTION LIFE HIST; Tsubaki Y, 2003, POPUL ECOL, V45, P263, DOI 10.1007/s10144-003-0162-8; WATT WB, 1973, EVOLUTION, V27, P537, DOI 10.1111/j.1558-5646.1973.tb00703.x; Wheat CW, 2008, MOL PHYLOGENET EVOL, V47, P893, DOI 10.1016/j.ympev.2008.03.013 31 0 0 2 2 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. MAY-JUN 2018 107 257 264 10.1016/j.jinsphys.2018.03.008 8 Entomology; Physiology; Zoology Entomology; Physiology; Zoology GI8DD WOS:000434751100031 29580782 2019-02-21 J Kawamata, K; Sato, M; Abe, K Kawamata, Kunihiko; Sato, Makoto; Abe, Kazuto Complete life cycle of the ostracod Euphilomedes nipponica (Myodocopida, Philomedidae) PLANKTON & BENTHOS RESEARCH English Article life history; Myodocopida; Ostracoda; Philomedidae; rearing We describe the complete life cycle of the ostracod Euphilomedes nipponica Hiruta, 1976. This was completed by collecting individuals from the sea once a month over the course of a year and through the parallel rearing of individuals under laboratory conditions. Females developed their first brood in mid-April, with 20-40 first instar offspring being released in early May. Because adult males did not live long, adult females produced subsequent broods without re-exposure to males, producing up to four broods in total by releasing juveniles at 1-month intervals. First instar individuals reached the fourth instar stage in less than 2 months during which time they molted three times. Molting paused at the fourth instar stage; thus, all offspring from the first to fourth broods reached the fourth instar stage by October. All individuals that have reached the fourth instar stage resume molting to the fifth instar stage in mid-January in response to unknown environmental cues, such as photoperiod and water temperature. Adult males appeared in March slightly earlier than females, with females initiating brooding again in April. This detailed information is expected to contribute toward improving our understanding of the life history strategies and reproductive modes of ostracod crustaceans. [Kawamata, Kunihiko; Sato, Makoto; Abe, Kazuto] Akita Univ, Fac Educ & Human Studies, Dept Biol, 1-1 Tegatagakuenmati, Akita, Akita 0108502, Japan Kawamata, K (reprint author), Akita Univ, Fac Educ & Human Studies, Dept Biol, 1-1 Tegatagakuenmati, Akita, Akita 0108502, Japan. kawamata@ed.akita-u.ac.jp Baker JH, 1977, ASPECTS ECOLOGY ZOOG, P245; COHEN AC, 1983, J CRUSTACEAN BIOL, V3, P235, DOI 10.2307/1548260; COHEN AC, 1990, J CRUSTACEAN BIOL, V10, P184, DOI 10.2307/1548480; Cohen Anne C., 2007, P417; Elofson Olof, 1941, ZOOL BIDRAG UPPSALA, V19, P215; FAGE LOUIS, 1933, ARCH ZOOL EXP ET GEN, V76, P105; Gerrish GA, 2008, J CRUSTACEAN BIOL, V28, P669, DOI 10.1651/07-2934.1; Henmi Yasuhisa, 2002, Benthos Research, V57, P103; HIRUTA S, 1980, Journal of the Hokkaido University of Education Section II B, V31, P41; HIRUTA S, 1976, Journal of the Faculty of Science Hokkaido University Series VI Zoology, V20, P579; Hiruta S., 1980, Journal of the Hokkaido University of Education Section II B, V30, P145; Hiruta S, 1983, J HOKKAIDO U ED 2 B, V33, P7; Home DJ, 1983, APPL OSTRACODA, P581; Kajiyama E, 1912, MYODOCOPA ZOOL MAG T, V24, P609; Lum KE, 2008, ZOOTAXA, P35; Mitome Ayumi, 2007, Japanese Journal of Benthology, V62, P3; Nakamura N, 1954, GENERAL VIEW FISHERI, P108; Okada Y., 1949, Bulletin of the Biogeographical Society of Japan, V14, P21; SKOGSBERG T, 1920, ZOOLOGISKA BIDRAG S, V1, P1; Wakayama N, 2007, J ZOOL, V273, P406, DOI 10.1111/j.1469-7998.2007.00344.x; Wakayama Norio, 2014, Science Journal of Kanagawa University, V25, P117; Wakayama Norio, 2010, Rishiri Studies, V29, P75 22 0 0 0 0 PLANKTON SOC JAPAN HOKKAIDO C/O MAR. BIODIVERSITY LAB, 3-1-1 MINATOMACHI, HAKODATE, HOKKAIDO, 041-8611, JAPAN 1880-8247 PLANKTON BENTHOS RES Plankton Benthos Res. MAY 2018 13 2 83 89 10.3800/pbr.13.83 7 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography GJ3VZ WOS:000435228200006 Bronze 2019-02-21 J Galen, SC; Borner, J; Martinsen, ES; Schaer, J; Austin, CC; West, CJ; Perkins, SL Galen, Spencer C.; Borner, Janus; Martinsen, Ellen S.; Schaer, Juliane; Austin, Christopher C.; West, Christopher J.; Perkins, Susan L. The polyphyly of Plasmodium: comprehensive phylogenetic analyses of the malaria parasites (order Haemosporida) reveal widespread taxonomic conflict ROYAL SOCIETY OPEN SCIENCE English Article Plasmodium; malaria; phylogeny; base composition bias; polyphyly RNA GENE-SEQUENCES; CODON-USAGE BIAS; COMPOSITIONAL HETEROGENEITY; APICOMPLEXAN PARASITES; MITOCHONDRIAL GENOME; NYCTERIA PARASITES; BASE COMPOSITION; HOST SWITCHES; CYTOCHROME-B; EVOLUTION The evolutionary relationships among the apicomplexan blood pathogens known as the malaria parasites (order Haemosporida), some of which infect nearly 200 million humans each year, has remained a vexing phylogenetic problem due to limitations in taxon sampling, character sampling and the extreme nucleotide base composition biases that are characteristic of this clade. Previous phylogenetic work on the malaria parasites has often lacked sufficient representation of the broad taxonomic diversity within the Haemosporida or the multi-locus sequence data needed to resolve deep evolutionary relationships, rendering our understanding of haemosporidian life-history evolution and the origin of the human malaria parasites incomplete. Here we present the most comprehensive phylogenetic analysis of the malaria parasites conducted to date, using samples from a broad diversity of vertebrate hosts that includes numerous enigmatic and poorly known haemosporidian lineages in addition to genome-wide multi-locus sequence data. We find that if base composition differences were corrected for during phylogenetic analysis, we recovered a well-supported topology indicating that the evolutionary history of the malaria parasites was characterized by a complex series of transitions in life-history strategies and host usage. Notably we find that Plasmodium, the malaria parasite genus that includes the species of human medical concern, is polyphyletic with the life-history traits characteristic of this genus having evolved in a dynamic manner across the phylogeny. We find support for multiple instances of gain and loss of asexual proliferation in host blood cells and production of haemozoin pigment, two traits that have been used for taxonomic classification as well as considered to be important factors for parasite virulence and used as drug targets. Lastly, our analysis illustrates the need for a widespread reassessment of malaria parasite taxonomy. [Galen, Spencer C.; Perkins, Susan L.] Amer Museum Nat Hist, Sackler Inst Comparat Genom, Cent Pk West & 79th St, New York, NY 10024 USA; [Galen, Spencer C.] Amer Museum Nat Hist, Richard Gilder Grad Sch, Cent Pk West & 79th St, New York, NY 10024 USA; [Borner, Janus] Univ Hamburg, Bioctr Grindel, Inst Zool, Martin Luther King Pl 3, D-20146 Hamburg, Germany; [Martinsen, Ellen S.] Smithsonian Conservat Biol Inst, Natl Zool Pk, Ctr Conservat Genom, POB 37012,MRC5503, Washington, DC 20013 USA; [Schaer, Juliane] Humboldt Univ, Dept Biol, D-10115 Berlin, Germany; [Austin, Christopher C.] Louisiana State Univ, Dept Biol Sci, Museum Nat Sci, Baton Rouge, LA 70803 USA; [West, Christopher J.] Wildlife Program, Klamath, CA 95548 USA Galen, SC; Perkins, SL (reprint author), Amer Museum Nat Hist, Sackler Inst Comparat Genom, Cent Pk West & 79th St, New York, NY 10024 USA.; Galen, SC (reprint author), Amer Museum Nat Hist, Richard Gilder Grad Sch, Cent Pk West & 79th St, New York, NY 10024 USA. spgalen@gmail.com; perkins@amnh.org Borner, Janus/0000-0001-9612-6668 National Science Foundation [NSF-DEB-1145984, NSF-DEB-1146033] This work was supported by the National Science Foundation grant NSF-DEB-1145984 to S.L.P. and NSF-DEB-1146033 to C.C.A. Abascal F, 2010, NUCLEIC ACIDS RES, V38, pW7, DOI 10.1093/nar/gkq291; Aurrecoechea C, 2009, NUCLEIC ACIDS RES, V37, pD539, DOI 10.1093/nar/gkn814; BENNETT GF, 1965, CAN J ZOOLOG, V43, P927, DOI 10.1139/z65-096; Bensch S, 2016, GENOME BIOL EVOL, V8, P1361, DOI 10.1093/gbe/evw081; Bertram MR, 2017, MOL PHYLOGENET EVOL, V109, P73, DOI 10.1016/j.ympev.2016.12.025; Bohme U, 2018, GENOME RES, V28, P547, DOI 10.1101/gr.218123.116; Borner J, 2016, MOL PHYLOGENET EVOL, V94, P221, DOI 10.1016/j.ympev.2015.09.003; Boundenga L, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0148958; BRAY RS, 1958, AM J TROP MED HYG, V7, P20, DOI 10.4269/ajtmh.1958.7.20; Chang BSW, 2000, MOL BIOL EVOL, V17, P1220, DOI 10.1093/oxfordjournals.molbev.a026405; Charif D, 2007, STRUCTURAL APPROACHE, P207, DOI DOI 10.1007/978-3-540-35306-5_10; Davalos LA, 2008, GENOMICS, V91, P433, DOI 10.1016/j.ygeno.2008.01.006; de Queiroz A, 2007, TRENDS ECOL EVOL, V22, P34, DOI 10.1016/j.tree.2006.10.002; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Duval L, 2007, MALARIA J, V6, DOI 10.1186/1475-2875-6-157; ESCALANTE AA, 1995, MOL BIOL EVOL, V12, P616; Escalante AA, 1998, P NATL ACAD SCI USA, V95, P8124, DOI 10.1073/pnas.95.14.8124; ESCALANTE AA, 1994, P NATL ACAD SCI USA, V91, P11373, DOI 10.1073/pnas.91.24.11373; FALLIS AM, 1961, CAN J ZOOLOG, V39, P215, DOI 10.1139/z61-026; FEAGIN JE, 1994, ANNU REV MICROBIOL, V48, P81; Foster PG, 1999, J MOL EVOL, V48, P284, DOI 10.1007/PL00006471; Galen SC, 2018, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.kk628dt, DOI 10.5061/DRYAD.KK628DT]; Gao F, 1999, NATURE, V397, P436, DOI 10.1038/17130; Gardner MJ, 2002, NATURE, V419, P498, DOI 10.1038/nature01097; GARNHAM P. C. C, 1961, TRANS ROY SOC TROP MED AND HYG, V55, P497; Garnham P. C. C, 1966, MALARIA PARASITES OT; GARNHAM PCC, 1951, EXP PARASITOL, V1, P94, DOI 10.1016/0014-4894(51)90010-0; GARNHAM PCC, 1953, T ROY SOC TROP MED H, V47, P357, DOI 10.1016/S0035-9203(53)80016-7; GARNHAM PCC, 1948, T ROY SOC TROP MED H, V41, P601, DOI 10.1016/S0035-9203(48)90418-0; Greiner EC, 2011, J PARASITOL, V97, P1137, DOI 10.1645/GE-2332.1; Gruber KF, 2007, SYST BIOL, V56, P83, DOI 10.1080/10635150601182939; Hagner SC, 2007, PARASITOL RES, V101, P493, DOI 10.1007/s00436-007-0499-6; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Heath TA, 2008, J SYST EVOL, V46, P239, DOI 10.3724/SP.J.1002.2008.08016; Hedtke SM, 2006, SYSTEMATIC BIOL, V55, P522, DOI 10.1080/10635150600697358; Ho LST, 2014, SYST BIOL, V63, P397, DOI 10.1093/sysbio/syu005; Huang HT, 2010, SYST BIOL, V59, P573, DOI 10.1093/sysbio/syq047; Inagaki Y, 2004, SYST BIOL, V53, P582, DOI 10.1080/10635150490468756; Jermiin LS, 2004, SYST BIOL, V53, P638, DOI 10.1080/10635150490468648; Karadjian G, 2016, P NATL ACAD SCI USA, V113, P9834, DOI 10.1073/pnas.1610643113; Katoh K, 2013, MOL BIOL EVOL, V30, P772, DOI 10.1093/molbev/mst010; Krief S, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000765; Kuo CH, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-108; Lanfear R, 2017, MOL BIOL EVOL, V34, P772, DOI 10.1093/molbev/msw260; Li CH, 2012, MOL PHYLOGENET EVOL, V63, P365, DOI 10.1016/j.ympev.2012.01.013; Liu WM, 2010, NATURE, V467, P420, DOI 10.1038/nature09442; Liu Y, 2014, SYST BIOL, V63, P862, DOI 10.1093/sysbio/syu049; LOCKHART PJ, 1992, J MOL EVOL, V34, P153; Lutz HL, 2016, MOL PHYLOGENET EVOL, V99, P7, DOI 10.1016/j.ympev.2016.03.004; Maia JP, 2016, PARASITOL INT, V65, P5, DOI 10.1016/j.parint.2015.09.003; Martinsen ES, 2008, MOL PHYLOGENET EVOL, V47, P261, DOI 10.1016/j.ympev.2007.11.012; Martinsen ES, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1501486; Martinsen ES, 2013, MALARIA PARASITES: COMPARATIVE GENOMICS , EVOLUTION AND MOLECULAR BIOLOGY, P1; McCutchan TF, 1996, P NATL ACAD SCI USA, V93, P11889, DOI 10.1073/pnas.93.21.11889; McIntosh MT, 1998, MOL BIOCHEM PARASIT, V95, P69, DOI 10.1016/S0166-6851(98)00093-0; Miller MA, 2010, GAT COMP ENV WORKSH, P1, DOI DOI 10.1109/GCE.2010.5676129; Mirarab S, 2014, BIOINFORMATICS, V30, pI541, DOI 10.1093/bioinformatics/btu462; Mirarab S, 2015, BIOINFORMATICS, V31, P44, DOI 10.1093/bioinformatics/btv234; Mooers AO, 2000, TRENDS ECOL EVOL, V15, P365, DOI 10.1016/S0169-5347(00)01934-0; Nikbakht H, 2014, GENOME, V57, P507, DOI 10.1139/gen-2014-0158; Nygaard S, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1001099; O'Grady P, 2008, BIOL LETTERS, V4, P195, DOI 10.1098/rsbl.2007.0575; O'Grady PM, 2009, FLY, V3, P10, DOI 10.4161/fly.3.1.7748; Outlaw DC, 2011, P NATL ACAD SCI USA, V108, P13183, DOI 10.1073/pnas.1109153108; Pacheco MA, 2018, MOL BIOL EVOL, V35, P383, DOI 10.1093/molbev/msx285; Palinauskas V, 2013, EXP PARASITOL, V133, P275, DOI 10.1016/j.exppara.2012.12.003; Peden J, 1997, CODONW; Perkins SL, 2002, J PARASITOL, V88, P972, DOI 10.1645/0022-3395(2002)088[0972:AMPOMP]2.0.CO;2; Perkins SL, 2016, TRENDS PARASITOL, V32, P772, DOI 10.1016/j.pt.2016.06.001; Perkins SL, 2014, J PARASITOL, V100, P11, DOI 10.1645/13-362.1; Philippe H, 2017, EUR J TAXON, V283, P1, DOI 10.5852/ejt.2017.283; Pick C, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-167; Pineda-Catalan O, 2013, J PARASITOL, V99, P1089, DOI 10.1645/13-296.1; Plotkin JB, 2011, NAT REV GENET, V12, P32, DOI 10.1038/nrg2899; Prugnolle F, 2013, P NATL ACAD SCI USA, V110, P8123, DOI 10.1073/pnas.1306004110; Qari SH, 1996, MOL PHYLOGENET EVOL, V6, P157, DOI 10.1006/mpev.1996.0068; R Core Team, 2014, R LANG ENV STAT COMP; Rambaut A, 2001, NATURE, V410, P1047, DOI 10.1038/35074179; Rambaut A, 2014, TRACER V1 5; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Rota-Stabelli O, 2013, SYST BIOL, V62, P121, DOI 10.1093/sysbio/sys077; Rutledge GG, 2017, NATURE, V542, P101, DOI 10.1038/nature21038; Salichos L, 2013, NATURE, V497, P327, DOI 10.1038/nature12130; Schaer J, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-07093-z; Schaer J, 2015, INT J PARASITOL, V45, P375, DOI 10.1016/j.ijpara.2015.01.008; Schaer J, 2013, P NATL ACAD SCI USA, V110, P17415, DOI 10.1073/pnas.1311016110; Schoch CL, 2009, SYST BIOL, V58, P224, DOI 10.1093/sysbio/syp020; Sharp PM, 2010, PHILOS T R SOC B, V365, P1203, DOI 10.1098/rstb.2009.0305; SHARP PM, 1986, NUCLEIC ACIDS RES, V14, P5125, DOI 10.1093/nar/14.13.5125; Silva JC, 2015, MOL BIOL EVOL, V32, P1354, DOI 10.1093/molbev/msv005; Singer GAC, 2000, MOL BIOL EVOL, V17, P1581, DOI 10.1093/oxfordjournals.molbev.a026257; Souto RP, 1996, MOL BIOCHEM PARASIT, V83, P141, DOI 10.1016/S0166-6851(96)02755-7; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Suzuki Y, 1997, MOL BIOL EVOL, V14, P800, DOI 10.1093/oxfordjournals.molbev.a025820; Talavera-Lopez C, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005463; Tarrio R, 2000, MOL PHYLOGENET EVOL, V16, P344, DOI 10.1006/mpev.2000.0813; TELFORD SR, 1979, J PARASITOL, V65, P409, DOI 10.2307/3280285; Templeton TJ, 2016, PARASITOLOGY, V143, P1501, DOI 10.1017/S0031182016001141; Valkiunas G, 2004, AVIAN MALARIA PARASI; Videvall E, 2017, MOL ECOL, V26, P2939, DOI 10.1111/mec.14085; Witsenburg F, 2012, MALARIA J, V11, DOI 10.1186/1475-2875-11-53; WRIGHT F, 1990, GENE, V87, P23, DOI 10.1016/0378-1119(90)90491-9; Yabsley MJ, 2018, MALARIA J, V17, DOI 10.1186/s12936-017-2165-5; Zhong M, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-369; Zwickl DJ, 2002, SYST BIOL, V51, P588, DOI 10.1080/10635150290102339 105 4 4 1 2 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 2054-5703 ROY SOC OPEN SCI R. Soc. Open Sci. MAY 2018 5 5 171780 10.1098/rsos.171780 16 Multidisciplinary Sciences Science & Technology - Other Topics GH5TA WOS:000433498000032 29892372 DOAJ Gold 2019-02-21 J Nee, S Nee, Sean Survival and weak chaos ROYAL SOCIETY OPEN SCIENCE English Article survival analysis; infant mortality; chaos; Pomeau-Manneville map; life-history theory; reliability theory SUDDEN CARDIAC DEATH; NONLINEAR DYNAMICS; RUNAWAY PACEMAKER; SYSTEMS; MODELS; PREGNANCY; CYCLES; LIFE Survival analysis in biology and reliability theory in engineering concern the dynamical functioning of bio/electro/mechanical units. Here we incorporate effects of chaotic dynamics into the classical theory. Dynamical systems theory now distinguishes strong and weak chaos. Strong chaos generates Type II survivorship curves entirely as a result of the internal operation of the system, without any age-independent, external, random forces of mortality. Weak chaos exhibits (a) intermittency and (b) Type III survivorship, defined as a decreasing per capita mortality rate: engineering explicitly defines this pattern of decreasing hazard as 'infant mortality'. Weak chaos generates two phenomena from the normal functioning of the same system. First, infant mortality-sensu engineering-without any external explanatory factors, such as manufacturing defects, which is followed by increased average longevity of survivors. Second, sudden failure of units during their normal period of operation, before the onset of age-dependent mortality arising from senescence. The relevance of these phenomena encompasses, for example: no-fault-found failure of electronic devices; high rates of human early spontaneous miscarriage/abortion; runaway pacemakers; sudden cardiac death in young adults; bipolar disorder; and epilepsy. [Nee, Sean] Penn State Univ, Dept Ecosyst Sci & Management, Braithwaite Grp, 410 Forest Resources Bldg, University Pk, PA 16802 USA Nee, S (reprint author), Penn State Univ, Dept Ecosyst Sci & Management, Braithwaite Grp, 410 Forest Resources Bldg, University Pk, PA 16802 USA. seannee@seannee.net [Anonymous], 2012, ECONOMIST; [Anonymous], 1998, MILHDBK338B DLSCLM; Barkai E, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.104101; Begon M., 2009, POPULATION ECOLOGY U; Bewick V, 2004, CRIT CARE, V8, P389, DOI 10.1186/cc2955; Blischke W., 2011, RELIABILITY MODELING; Boeing G, 2016, SYSTEMS, V4, DOI 10.3390/systems4040037; Bonsall MB, 2015, J R SOC INTERFACE, V12, DOI 10.1098/rsif.2015.0670; Cox D.R., 1984, ANAL SURVIVAL DATA; COX DR, 1972, J R STAT SOC B, V34, P187; COX DR, 1962, RENEWAL THEORY; Cox DR, 1961, QUEUES; Crowder M. J., 1991, STAT ANAL RELIABILIT; Dakos V, 2017, J R SOC INTERFACE, V14, DOI 10.1098/rsif.2016.0845; Dawkins R, 1986, BLIND WATCHMAKER WHY; Ditto WL, 2008, PHILOS T R SOC A, V366, P653, DOI 10.1098/rsta.2007.2116; Dupuy Jean-Francois, 2014, International Journal of Performability Engineering, V10, P23; Elsayed EA, 2012, RELIABILITY ENG; Finkelstein M, 2008, SPRINGER SER RELIAB, P1; Finkelstein Maxim, 2013, STOCHASTIC MODELING; Frank Steven A, 2016, F1000Res, V5, P2076; Frei H, ROTTS CHAOS PENDULUM; GARFINKEL A, 1992, SCIENCE, V257, P1230, DOI 10.1126/science.1519060; GASPARD P, 1988, P NATL ACAD SCI USA, V85, P4591, DOI 10.1073/pnas.85.13.4591; GEISEL T, 1984, PHYS REV LETT, V52, P1936, DOI 10.1103/PhysRevLett.52.1936; GOLDBERGER AL, 1988, EXPERIENTIA, V44, P983, DOI 10.1007/BF01939894; GOLDBERGER AL, 1990, SCI AM, V262, P43; GREBOGI C, 1987, SCIENCE, V238, P632, DOI 10.1126/science.238.4827.632; GRENFELL BT, 1992, NATURE, V355, P823, DOI 10.1038/355823a0; Gupta RC, 2003, MATH COMPUT MODEL, V37, P1271, DOI 10.1016/S0895-7177(03)90038-0; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HASTINGS A, 1993, ANNU REV ECOL SYST, V24, P1, DOI 10.1146/annurev.es.24.110193.000245; Hilborn R., 2000, CHAOS NONLINEAR DYNA; Hoglin PJ., 2004, SURVIVAL ANAL ACCESS; Huang L, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.160741; Information Technology Laboratory, 2012, E HDB STAT METH; Jardine AKS, 1987, QUALITY RELIABILITY, V3, P77, DOI DOI 10.1002/(ISSN)1099-1638; Kalra N, 2016, TRANSPORT RES A-POL, V94, P182, DOI 10.1016/j.tra.2016.09.010; Kececioglu D., 2002, RELIABILITY ENG HDB; Kececioglu D., 1997, BURN IN TESTING ITS; Klages R., 2013, HAMILTONIAN CHAOS CO, P3; Klages R, 2008, LECT NOTES, p[26, 24]; Korabel N, 2007, PHYS REV E, V75, DOI 10.1103/PhysRevE.75.036213; Kotz S, 2000, EXTREME VALUE DISTRI; LUDWIG D, 1978, J ANIM ECOL, V47, P315, DOI 10.2307/3939; Lybeck N, 2011, TECHNICAL REPORT, DOI [10.2172/1027927, DOI 10.2172/1027927]; Makaryus AN, 2005, PACE, V28, P993, DOI 10.1111/j.1540-8159.2005.00202.x; Makikallio Timo H, 2002, Card Electrophysiol Rev, V6, P250, DOI 10.1023/A:1016381025759; MAY RM, 1974, SCIENCE, V186, P645, DOI 10.1126/science.186.4164.645; MAY RM, 1976, NATURE, V261, P459, DOI 10.1038/261459a0; Mukherjee S, 2013, APPL MATH COMPUT, V219, P11056, DOI 10.1016/j.amc.2013.04.043; Nakagawa T, 2007, SPRINGER SER RELIAB, P1, DOI 10.1007/978-1-84628-442-7; Nee S, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160235; Nikulin M, 2016, COX MODEL ITS APPL; O'Dowd R, 2010, TECHNICAL REPORT; Ortega DF, 2005, EUROPACE, V7, P592, DOI 10.1016/j.eupc.2005.06.004; Page JM, 2016, CLIN OBSTET GYNECOL, V59, P498, DOI 10.1097/GRF.0000000000000217; PENG CK, 1995, CHAOS, V5, P82, DOI 10.1063/1.166141; Peroni M, 2016, 2016 IEEE METROLOGY FOR AEROSPACE (METROAEROSPACE), P141, DOI 10.1109/MetroAeroSpace.2016.7573201; Qi HY, 2008, MICROELECTRON RELIAB, V48, P663, DOI 10.1016/j.microrel.2008.02.003; Saleh J.H., 2011, SPACECRAFT RELIABILI; SCHIFF SJ, 1994, NATURE, V370, P615, DOI 10.1038/370615a0; Schroeder M., 2009, FRACTALS CHAOS POWER; SIMPSON SJ, 1986, ANIM BEHAV, V34, P480, DOI 10.1016/S0003-3472(86)80117-8; Smith T, 2003, P 28 ANN SAS US GROU; Swindell WR, 2009, EXP GERONTOL, V44, P190, DOI 10.1016/j.exger.2008.10.005; Tester DJ, 2006, CURR OPIN CARDIOL, V21, P166, DOI 10.1097/01.hco.0000221576.33501.83; Therneau T. M, 2013, MODELING SURVIVAL DA; Tutz G, 2016, MODELING TIME TO EVE; Ulam S., 1950, P INT C MATH, P264; WILCOX AJ, 1988, NEW ENGL J MED, V319, P189, DOI 10.1056/NEJM198807283190401; Wilkins DJ, 2002, RELIABILITY HOTWIRE, V21; Yin HL, 2015, MATH PROBL ENG, DOI 10.1155/2015/908742 73 0 0 3 4 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 2054-5703 ROY SOC OPEN SCI R. Soc. Open Sci. MAY 2018 5 5 172181 10.1098/rsos.172181 15 Multidisciplinary Sciences Science & Technology - Other Topics GH5TA WOS:000433498000067 29892407 DOAJ Gold 2019-02-21 J Reichard, M; Lanes, LEK; Polacik, M; Blazek, R; Vrtilek, M; Godoy, RS; Maltchik, L Reichard, Martin; Lanes, Luis E. K.; Polacik, Matej; Blazek, Radim; Vrtilek, Milan; Godoy, Robson S.; Maltchik, Leonardo Avian predation mediates size-specific survival in a Neotropical annual fish: a field experiment BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article density-dependent growth; evo-demo; fish-eating birds; killifish; life history evolution; mortality LIFE-HISTORY EVOLUTION; DENSITY-DEPENDENT MORTALITY; ANNUAL NOTHOBRANCHIUS FISHES; AFRICAN ANNUAL FISHES; ADULT SEX-RATIO; BODY-SIZE; TRINIDADIAN GUPPY; POECILIA-RETICULATA; SELECTIVE MORTALITY; BROWN TROUT Predation and population density have fundamental size-and sex-specific effects on individual survival and demographic parameters. Given the overlap and interactions between different age cohorts in natural populations, separating the factors related to differential survival and growth based on longitudinal field-collected data is problematic. Using a Neotropical annual fish (Austrolebias minuano) with a single age cohort per generation, we used replicated field enclosures to experimentally test the roles of avian predation and fish population density on survival and growth over adult lifespan. We found that mortality risk was higher in larger males and smaller females when predation was experimentally excluded. Exposure to avian predation eliminated this sex-specific effect of body size on survival. No overall sex difference in survival was found in the experiment, despite a female-biased sex ratio in natural populations. Individually based growth rates were highest in enclosures at low population density with no predation risk. Overall, we demonstrate that annual fish suffer high sex-dependent size-specific mortality that is more strongly related to predation than to density-dependent processes. This has important implications for our understanding of the evolution of senescence and other life history traits in annual fishes. [Reichard, Martin; Polacik, Matej; Blazek, Radim; Vrtilek, Milan] Acad Sci Czech Republ, Czech Acad Sci, Inst Vertebrate Biol, Kvetna 8, CS-60365 Brno, Czech Republic; [Lanes, Luis E. K.; Godoy, Robson S.; Maltchik, Leonardo] Univ Vale Rio Dos Sinos, Lab Ecol & Conservacao Ecossistemas Aquat, Sao Leopoldo, RS, Brazil; [Lanes, Luis E. K.] Inst Pro Pampa IPPAMPA, Bairro Ctr, Pelotas, RS, Brazil Reichard, M (reprint author), Acad Sci Czech Republ, Czech Acad Sci, Inst Vertebrate Biol, Kvetna 8, CS-60365 Brno, Czech Republic. reichard@ivb.cz Blazek, Radim/L-9163-2013; Reichard, Martin/C-6563-2009; Polacik, Matej/A-8260-2010; Vrtilek, Milan/C-8725-2016 Blazek, Radim/0000-0003-1150-0273; CNPq [52370695.2]; UNISINOS; CSF project [P505/12/G112]; PROSUP/CAPES scholarship [2011/2]; Doctorate Sandwich Abroad (SWE) through the Science without Borders program from CNPq [200165/2015-1] We thank the anonymous reviewers for their helpful comments. The sampling protocol and experimental procedures were approved by the ethical committee of the Universidad de los Sinos (protocol PPECEUA 12.2015). All procedures were performed in accordance with institutional and national guidelines for the care and use of laboratory animals. Animal collections complied with current Brazilian law (SISBIO 43251-1). The study was funded by CNPq (52370695.2), UNISINOS and the CSF project (P505/12/G112). LEKL was funded by a PROSUP/CAPES scholarship (2011/2) and a scholarship from Doctorate Sandwich Abroad (SWE) through the Science without Borders program from CNPq (200165/2015-1). LM holds a Research Productivity grant and MR a Special Visiting Research (PVE) grant from CNPq. We thank to Mateus Fogaca and Roberta Meneghel for help in the field, private landowners for granting access to their properties, Lagoa do Peixe National Park administration for granting research permits and Rowena Spence for comments on the manuscript and English corrections. We declare no conflicts of interest. MR conceived and designed the experiments. MR, LEKL, MP, RB, MV, RSG and LM performed the experiments. MR analysed the data. MR wrote the manuscript; other authors commented on the text and provided editorial advice. Ab Ghani NI, 2016, BIOL J LINN SOC, V118, P520, DOI 10.1111/bij.12783; Andersson M., 1994, SEXUAL SELECTION; Arendt JD, 2014, EVOLUTION, V68, P2343, DOI 10.1111/evo.12445; Bassar RD, 2013, AM NAT, V181, P25, DOI 10.1086/668590; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Blazek R, 2017, EVOLUTION, V71, P386, DOI 10.1111/evo.13127; Bystrom P, 1999, OIKOS, V86, P217, DOI 10.2307/3546440; Cellerino A, 2016, BIOL REV, V91, P511, DOI 10.1111/brv.12183; Chen HY, 2012, CURR BIOL, V22, P2140, DOI 10.1016/j.cub.2012.09.021; Creel S, 2008, TRENDS ECOL EVOL, V23, P194, DOI 10.1016/j.tree.2007.12.004; Einum S, 2006, OIKOS, V113, P489, DOI 10.1111/j.2006.0030-1299.14806.x; Forrester GE, 2000, ECOLOGY, V81, P2416; FORRESTER GE, 1995, OECOLOGIA, V103, P275, DOI 10.1007/BF00328615; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Garcia D, 2008, NEOTROP ICHTHYOL, V6, P243, DOI 10.1590/S1679-62252008000200012; Garcia D, 2018, HYDROBIOLOGIA, V809, P323, DOI 10.1007/s10750-017-3484-9; Garcia G, 2015, ANN FISHES LIFE HIST, P133; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Guimaraes M, 2017, BIOL J LINN SOC, V122, P614; Hixon MA, 2005, ECOLOGY, V86, P2847, DOI 10.1890/04-1455; Hooper AK, 2017, EVOLUTION, V71, P671, DOI 10.1111/evo.13172; Jenkins TM, 1999, ECOLOGY, V80, P941, DOI 10.2307/177029; Keppeler FW, 2016, HYDROBIOLOGIA, V773, P225, DOI 10.1007/s10750-016-2705-y; Lanes LEK, 2016, J FISH BIOL, V89, P2345, DOI 10.1111/jfb.13122; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Lobon-Cervia J, 2012, FRESHWATER BIOL, V57, P2181, DOI 10.1111/j.1365-2427.2012.02863.x; Lok T, 2013, ECOLOGY, V94, P2358, DOI 10.1890/12-1914.1; Loureiro M, 2016, ANNUAL FISHES: LIFE HISTORY STRATEGY, DIVERSITY, AND EVOLUTION, P111; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; Murphy HM, 2014, OECOLOGIA, V175, P1201, DOI 10.1007/s00442-014-2968-9; Nico LG, 1989, ACTA BIOL VENEZ, V12, P106; Nussey DH, 2011, ECOLOGY, V92, P1936, DOI 10.1890/11-0308.1; Passos C, 2015, ANN FISHES LIFE HIST, P201; Passos C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101649; Passos C, 2013, BEHAV PROCESS, V96, P20, DOI 10.1016/j.beproc.2013.01.008; Polacik M, 2014, J EVOLUTION BIOL, V27, P854, DOI 10.1111/jeb.12359; Polacik M, 2011, J FISH BIOL, V78, P796, DOI 10.1111/j.1095-8649.2010.02893.x; Post JR, 1999, ECOL MONOGR, V69, P155, DOI 10.1890/0012-9615(1999)069[0155:DDPISF]2.0.CO;2; Quinn TP, 2001, EVOL ECOL RES, V3, P917; R Development Core Team, 2016, R FDN STAT COMP; Reichard M, 2008, MOL ECOL, V17, P642, DOI 10.1111/j.1365-294X.2007.03602.x; Reichard M, 2014, EVOL ECOL, V28, P1105, DOI 10.1007/s10682-014-9732-9; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Ronget V, 2017, TRENDS ECOL EVOL, V32, P909, DOI 10.1016/j.tree.2017.09.003; Ruehl CB, 2015, OECOLOGIA, V179, P117, DOI 10.1007/s00442-015-3324-4; SCHLOSSER IJ, 1987, ECOLOGY, V68, P651, DOI 10.2307/1938470; Sogard SM, 1997, B MAR SCI, V60, P1129; Tagliani P. R., 1995, THESIS; Taylor RC, 2001, OECOLOGIA, V127, P143, DOI 10.1007/s004420000575; Therneau T, 2012, R PACKAGE VERSION, V2, P2; TONN WM, 1994, ECOLOGY, V75, P824, DOI 10.2307/1941738; Tozzini ET, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-77; TREXLER JC, 1994, OIKOS, V69, P250, DOI 10.2307/3546145; Williams PD, 2003, EVOLUTION, V57, P1478; Wootton RJ, 2015, REPRODUCTIVE BIOLOGY OF TELEOST FISHES, P1; Zuur A. F, 2013, BEGINNERS GUIDE GLM 60 1 1 3 6 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. MAY 2018 124 1 56 66 10.1093/biolinnean/bly022 11 Evolutionary Biology Evolutionary Biology GI1DE WOS:000434109900007 2019-02-21 J Plummer, KE; Bearhop, S; Leech, DI; Chamberlain, DE; Blount, JD Plummer, Kate E.; Bearhop, Stuart; Leech, David I.; Chamberlain, Dan E.; Blount, Jonathan D. Effects of winter food provisioning on the phenotypes of breeding blue tits ECOLOGY AND EVOLUTION English Article antioxidant; carotenoid-based plumage; carry-over effect; life history trade-off; oxidative stress; urban LIFE-HISTORY EVOLUTION; PLUMAGE COLORATION; OXIDATIVE STRESS; ADULT SURVIVAL; GREAT TIT; VITAMIN-E; BIRDS; REPRODUCTION; CAROTENOIDS; SUPPLEMENTATION Throughout the Western World, huge numbers of people regularly supply food for wild birds. However, evidence of negative impacts of winter feeding on future reproduction has highlighted a need to improve understanding of the underlying mechanisms shaping avian responses to supplementary food. Here, we test the possibility that carry-over effects are mediated via their impact on the phenotypes of breeding birds, either by influencing the phenotypic structure of populations through changes in winter survival and/or by more direct effects on the condition of breeding birds. Using a landscape-scale 3-year study of blue tits (Cyanistes caeruleus), we demonstrate the importance of nutritional composition of supplementary food in determining carry-over effect outcomes. We show that breeding populations which had access to vitamin E-rich foods during the previous winter were comprised of individuals with reduced feather carotenoid concentrations, indicative of lower pre-feeding phenotypic condition, compared to fat-fed and unfed populations. This suggests that supplementary feeding in winter can result in altered population phenotypic structure at the time of breeding, perhaps by enhancing survival and recruitment of lower quality individuals. However, supplementation of a fat-rich diet during winter was detrimental to the oxidative state of breeding birds, with these phenotypic differences ultimately found to impact upon reproductive success. Our findings demonstrate the complex nature by which supplementary feeding can influence wild bird populations. [Plummer, Kate E.; Bearhop, Stuart; Blount, Jonathan D.] Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Penryn, Cornwall, England; [Plummer, Kate E.; Leech, David I.] British Trust Ornithol, Norfolk, VA USA; [Chamberlain, Dan E.] Univ Torino, Dipartimento Sci Vita & Biol Sistemi, Turin, Italy Plummer, KE (reprint author), Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Penryn, Cornwall, England. kate.plummer@bto.org Chamberlain, Dan/0000-0002-5381-2024; Bearhop, Stuart/0000-0002-5864-0129; Plummer, Kate E/0000-0003-0076-4505 Natural Environment Research Council (NERC) CASE studentship; Royal Society Research Fellowship; British Trust for Ornithology; Gardman Ltd. This work was funded by a Natural Environment Research Council (NERC) CASE studentship (to KEP, JDB, SB, and DEC), a Royal Society Research Fellowship (to JDB), the British Trust for Ornithology and Gardman Ltd. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179; BRITTINGHAM MC, 1988, ECOLOGY, V69, P581, DOI 10.2307/1941007; BRYANT DM, 1991, IBIS, V133, P236, DOI 10.1111/j.1474-919X.1991.tb04565.x; Carrascal L. M., 1998, AUK, V72, P7; Chun J, 2005, J FOOD SCI, V70, pC292; Costantini D, 2008, FUNCT ECOL, V22, P367, DOI 10.1111/j.1365-2435.2007.01366.x; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Crates RA, 2016, J AVIAN BIOL, V47, P678, DOI 10.1111/jav.00936; Davis SE, 2005, ECOLOGY, V86, P1047, DOI 10.1890/04-0989; Doutrelant C, 2008, J EVOLUTION BIOL, V21, P226, DOI 10.1111/j.1420-9101.2007.01451.x; Ewen JG, 2015, CONSERV BIOL, V29, P341, DOI 10.1111/cobi.12410; Gelman A, 2008, STAT MED, V27, P2865, DOI 10.1002/sim.3107; Gosler AG, 1996, J ANIM ECOL, V65, P1, DOI 10.2307/5695; Harper DGC, 1999, ANIM BEHAV, V58, P553, DOI 10.1006/anbe.1999.1154; Harrison TJE, 2010, OECOLOGIA, V164, P311, DOI 10.1007/s00442-010-1645-x; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; HEGNER RE, 1985, ANIM BEHAV, V33, P762, DOI 10.1016/S0003-3472(85)80008-7; Hidalgo-Garcia S, 2006, IBIS, V148, P727, DOI 10.1111/j.1474-919X.2006.00575.x; HORAK P, 1995, OECOLOGIA, V102, P515, DOI 10.1007/BF00341365; Horak P, 2001, OECOLOGIA, V126, P166, DOI 10.1007/s004420000513; Jones DN, 2008, J AVIAN BIOL, V39, P265, DOI 10.1111/j.2008.0908-8857.04271.x; MAYFIELD HF, 1975, WILSON BULL, V87, P456; McGraw KJ, 2006, ETHOLOGY, V112, P1209, DOI 10.1111/j.1439-0310.2006.01280.x; McGraw KJ, 2010, PHYSIOL BIOCHEM ZOOL, V83, P97, DOI 10.1086/648396; McGraw KJ, 2003, AM NAT, V162, P704, DOI 10.1086/378904; Moller AP, 2000, AVIAN POULT BIOL REV, V11, P137; Morosinotto C, 2017, OIKOS, V126, P863, DOI 10.1111/oik.03476; Morrison CA, 2015, IBIS, V157, P340, DOI 10.1111/ibi.12234; Mougeot F, 2010, J EXP BIOL, V213, P400, DOI 10.1242/jeb.037101; Negro JJ, 2001, FUNCT ECOL, V15, P297, DOI 10.1046/j.1365-2435.2001.00526.x; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; Nilsson JA, 2000, OIKOS, V88, P351, DOI 10.1034/j.1600-0706.2000.880214.x; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; Olson VA, 1998, TRENDS ECOL EVOL, V13, P510, DOI 10.1016/S0169-5347(98)01484-0; Perrins CM, 1979, BRIT TITS; Pet Food Manufacturers' Association, 2015, ANN REP 2015; Peters A, 2011, J EVOLUTION BIOL, V24, P976, DOI 10.1111/j.1420-9101.2011.02229.x; Plummer KE, 2013, SCI REP-UK, V3, DOI 10.1038/srep02002; Plummer K. E., 2011, THESIS; Plummer KE, 2015, GLOBAL CHANGE BIOL, V21, P4353, DOI 10.1111/gcb.13070; Plummer KE, 2013, J ANIM ECOL, V82, P673, DOI 10.1111/1365-2656.12025; R Core Team, 2014, R LANG ENV STAT COMP; Risely K., 2016, GARDEN BIRDS OTHER W; Robb GN, 2008, BIOL LETTERS, V4, P220, DOI 10.1098/rsbl.2007.0622; Robb GN, 2011, CONDOR, V113, P475, DOI 10.1525/cond.2011.090111; Ruffino L, 2014, FRONT ZOOL, V11, DOI 10.1186/s12983-014-0080-y; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Senar JC, 2002, P ROY SOC B-BIOL SCI, V269, P257, DOI 10.1098/rspb.2001.1882; SIES H, 1995, AM J CLIN NUTR, V62, P1315; SIMONS LS, 1990, ECOLOGY, V71, P869, DOI 10.2307/1937358; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Surai P. F., 2007, NATURAL ANTIOXIDANTS; The Royal Society for the Protection of Birds, 2018, HELP BIRDS YOUR GARD; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171 55 0 0 8 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAY 2018 8 10 5059 5068 10.1002/ece3.4048 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GI0XG WOS:000434093100029 29876081 DOAJ Gold 2019-02-21 J Del Giudice, M; Gangestad, SW Del Giudice, Marco; Gangestad, Steven W. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters BRAIN BEHAVIOR AND IMMUNITY English Article Cytokines; CRP; Depression; IL-6; Inflammation; Life history theory; Socioeconomic status; Somatic maintenance; Stress; Tolerance C-REACTIVE PROTEIN; LOW-GRADE INFLAMMATION; NECROSIS-FACTOR-ALPHA; MAJOR DEPRESSIVE DISORDER; SOCIOECONOMIC-STATUS; MENDELIAN RANDOMIZATION; IMMUNE-SYSTEM; PSYCHOLOGICAL STRESS; ADIPOSE-TISSUE; TIME-COURSE Behavioral researchers have increasingly become interested in the idea that chronic, low-grade inflammation is a pathway through which social and behavioral variables exert long-term effects on health. Much research in the area employs putative inflammatory biomarkers to infer an underlying state of inflammation. Interleukin 6 (IL-6) and C-reactive protein (CRP, whose production is stimulated by IL-6) are arguably the two most commonly assayed biomarkers. Yet, in contrast with near-universal assumptions in the field, discoveries in immunology over the past two decades show that neither IL-6 nor CRP are unambiguous inflammatory markers. IL-6 operates through two distinct signaling pathways, only one of which is specifically upregulated during inflammation; both pathways have a complex range of effects and influence multiple physiological processes even in absence of inflammation. Similarly, CRP has two isoforms, one of which is produced locally in inflamed or damaged tissues. The other isoform is routinely produced in absence of inflammation and may have net anti-inflammatory effects. We propose a functional framework to account for the multiple actions of IL-6 and CRP. Specifically, we argue that both molecules participate in somatic maintenance efforts; hence elevated levels indicate that an organism is investing in protection, preservation, and/or repair of somatic tissue. Depending on the state of the organism, maintenance may be channeled into resistance against pathogens (including inflammation), pathogen tolerance and harm reduction, or tissue repair. The findings and framework we present have a range of potential implications for the interpretation of empirical findings in this area a point we illustrate with alternative interpretations of research on socioeconomic status, stress, and depression. (C) 2018 Elsevier Inc. All rights reserved. [Del Giudice, Marco; Gangestad, Steven W.] Univ New Mexico, Dept Psychol, Logan Hall,2001 Redondo Dr NE, Albuquerque, NM 87131 USA Del Giudice, M (reprint author), Univ New Mexico, Dept Psychol, Logan Hall,2001 Redondo Dr NE, Albuquerque, NM 87131 USA. marcodg@unm.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 Adamo SA, 2014, INTEGR COMP BIOL, V54, P419, DOI 10.1093/icb/icu005; AKIRA S, 1990, FASEB J, V4, P2860; Allin KH, 2010, JNCI-J NATL CANCER I, V102, P202, DOI 10.1093/jnci/djp459; Andrews P. W., 2017, OXFORD HDB MOOD DISO, P24; Andrews PW, 2015, NEUROSCI BIOBEHAV R, V51, P164, DOI 10.1016/j.neubiorev.2015.01.018; Ashley NT, 2012, ANNU REV ECOL EVOL S, V43, P385, DOI 10.1146/annurev-ecolsys-040212-092530; Ayres JS, 2012, ANNU REV IMMUNOL, V30, P271, DOI 10.1146/annurev-immunol-020711-075030; Bai Y, 2015, OBES REV, V16, P127, DOI 10.1111/obr.12242; Baumann H, 1996, P NATL ACAD SCI USA, V93, P8374, DOI 10.1073/pnas.93.16.8374; Baumeister D, 2016, MOL PSYCHIATR, V21, P642, DOI 10.1038/mp.2015.67; Berk M, 2013, BMC MED, V11, DOI 10.1186/1741-7015-11-74; Black S, 2004, J BIOL CHEM, V279, P48487, DOI 10.1074/jbc.R400025200; Blackwell AD, 2016, ANN HUM BIOL, V43, P382, DOI 10.1080/03014460.2016.1189963; Blevins CL, 2017, BRAIN BEHAV IMMUN, V61, P21, DOI 10.1016/j.bbi.2016.07.149; Bosma-den Boer MM, 2012, NUTR METAB, V9, DOI 10.1186/1743-7075-9-32; Brooks GD, 2016, CANCER RES, V76, P866, DOI 10.1158/0008-5472.CAN-15-2388; Brunner EJ, 2008, PLOS MED, V5, P1278, DOI 10.1371/journal.pmed.0050155; Burton MD, 2011, J NEUROINFLAMM, V8, DOI 10.1186/1742-2094-8-54; Cain DW, 2017, NAT REV IMMUNOL, V17, P233, DOI 10.1038/nri.2017.1; Calcagni E, 2006, ANN NY ACAD SCI, V1069, P62, DOI 10.1196/annals.1351.006; Campbell IL, 2014, J NEUROSCI, V34, P2503, DOI 10.1523/JNEUROSCI.2830-13.2014; Capuron L, 2017, NEUROPSYCHOPHARMACOL, V42, P115, DOI 10.1038/npp.2016.123; Carpenter LL, 2010, NEUROPSYCHOPHARMACOL, V35, P2617, DOI 10.1038/npp.2010.159; Chalaris A, 2011, EUR J CELL BIOL, V90, P484, DOI 10.1016/j.ejcb.2010.10.007; Cohen S, 2012, P NATL ACAD SCI USA, V109, P5995, DOI 10.1073/pnas.1118355109; Cua DJ, 2010, NAT REV IMMUNOL, V10, P479, DOI 10.1038/nri2800; Cullen T, 2017, MED SCI SPORT EXER, V49, P1176, DOI 10.1249/MSS.0000000000001210; Danese A, 2012, PHYSIOL BEHAV, V106, P29, DOI 10.1016/j.physbeh.2011.08.019; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; DeRijk R, 1997, J CLIN ENDOCR METAB, V82, P2182, DOI 10.1210/jc.82.7.2182; Dhabhar FS, 2009, NEUROIMMUNOMODULAT, V16, P300, DOI 10.1159/000216188; Di Napoli M, 2012, NEUROLOGY, V79, P690, DOI 10.1212/WNL.0b013e318264e3be; Dinarello CA, 2009, ANNU REV IMMUNOL, V27, P519, DOI 10.1146/annurev.immunol.021908.132612; Dou H., 2015, FASEB J S, V29, P634; Dou HJ, 2017, ARTERIOSCL THROM VAS, V37, P1180, DOI 10.1161/ATVBAHA.117.309430; Dowlati Y, 2010, BIOL PSYCHIAT, V67, P446, DOI 10.1016/j.biopsych.2009.09.033; Du Clos TW, 2004, IMMUNOL RES, V30, P261, DOI 10.1385/IR:30:3:261; Preez A, 2016, PSYCHOL MED, V46, P2041, DOI 10.1017/S0033291716000672; Ehrlich KB, 2016, DEV PSYCHOPATHOL, V28, P127, DOI 10.1017/S0954579415000334; Eisenhardt SU, 2009, CELL CYCLE, V8, P3885, DOI 10.4161/cc.8.23.10068; Elliot AJ, 2017, ANN BEHAV MED, V51, P240, DOI 10.1007/s12160-016-9847-z; Elliot AJ, 2016, HEALTH PSYCHOL, V35, P1205, DOI 10.1037/hea0000392; Ellis BJ, 2017, CHILD ADOLESCENT PSY, P237; Fagundes CP, 2014, CURR DIR PSYCHOL SCI, V23, P277, DOI 10.1177/0963721414535603; Fantuzzi G, 2000, J LEUKOCYTE BIOL, V68, P437; Fernandes BS, 2016, MOL PSYCHIATR, V21, P554, DOI 10.1038/mp.2015.87; Fiorentino L, 2010, HEPATOLOGY, V51, P103, DOI 10.1002/hep.23250; Friedman EM, 2010, PSYCHOSOM MED, V72, P290, DOI 10.1097/PSY.0b013e3181cfe4c2; Fuster JJ, 2014, EMBO J, V33, P1425, DOI 10.15252/embj.201488856; Gabay C, 2001, EUR J IMMUNOL, V31, P490, DOI 10.1002/1521-4141(200102)31:2<490::AID-IMMU490>3.0.CO;2-H; Garbers C, 2012, CYTOKINE GROWTH F R, V23, P85, DOI 10.1016/j.cytogfr.2012.04.001; Georgiev AV, 2016, EVOL MED PUBLIC HLTH, P256, DOI 10.1093/emph/eow022; Gold PW, 2002, MOL PSYCHIATR, V7, P254, DOI 10.1038/sj/mp/4001032; Goldberg EL, 2015, IMMUNOL REV, V265, P63, DOI 10.1111/imr.12295; Gunnar M, 2007, ANNU REV PSYCHOL, V58, P145, DOI 10.1146/annurev.psych.58.110405.085605; Haapakoski R, 2015, BRAIN BEHAV IMMUN, V49, P206, DOI 10.1016/j.bbi.2015.06.001; Haddick PCG, 2017, J ALZHEIMERS DIS, V56, P1037, DOI 10.3233/JAD-160524; Himmerich H, 2006, EUR CYTOKINE NETW, V17, P196, DOI 10.1684/ecn.2006.0037; Horowitz MA, 2015, ANN NY ACAD SCI, V1351, P68, DOI 10.1111/nyas.12781; Hosokawa Y, 2014, INFLAMMATION, V37, P381, DOI 10.1007/s10753-013-9750-8; Houston AI, 2007, P ROY SOC B-BIOL SCI, V274, P2835, DOI 10.1098/rspb.2007.0934; Howren MB, 2009, PSYCHOSOM MED, V71, P171, DOI 10.1097/PSY.0b013e3181907c1b; Ispirlidis I, 2008, CLIN J SPORT MED, V18, P423, DOI 10.1097/JSM.0b013e3181818e0b; Janicki-Deverts D, 2009, PSYCHOSOM MED, V71, P541, DOI [10.1097/PSY.0b013e31819c7526, 10.1097/PSY.0b013e31819e7526]; Juster RP, 2015, SLEEP MED, V16, P7, DOI [10.1016/j.sleep.2014.07.029, 10.1016/j.jsmc.2014.11.007]; Kasapis C, 2005, J AM COLL CARDIOL, V45, P1563, DOI 10.1016/j.jacc.2004.12.077; Kinney DK, 2009, J NERV MENT DIS, V197, P561, DOI 10.1097/NMD.0b013e3181b05fa8; Kohler CA, 2017, ACTA PSYCHIAT SCAND, V135, P373, DOI 10.1111/acps.12698; Koopman JJE, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046855; Koster A, 2006, J GERONTOL A-BIOL, V61, P284, DOI 10.1093/gerona/61.3.284; Krogh-Madsen R, 2006, AM J PHYSIOL-ENDOC M, V291, pE108, DOI 10.1152/ajpendo.00471.2005; Kuhlman KR, 2017, NEUROSCI BIOBEHAV R, V80, P166, DOI 10.1016/j.neubiorev.2017.05.020; Kunz-Ebrecht SR, 2003, BRAIN BEHAV IMMUN, V17, P373, DOI 10.1016/S0889-1591(03)00029-1; Lamers F, 2016, BRIT J PSYCHIAT, V208, P62, DOI 10.1192/bjp.bp.114.153098; Lamers F, 2013, MOL PSYCHIATR, V18, P692, DOI 10.1038/mp.2012.144; Li YW, 2017, ATHEROSCLEROSIS, V259, P75, DOI 10.1016/j.atherosclerosis.2017.02.003; Liu RS, 2017, J EPIDEMIOL COMMUN H, V71, P817, DOI 10.1136/jech-2016-208646; Lo CW, 2011, CANCER RES, V71, P424, DOI 10.1158/0008-5472.CAN-10-1496; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Luchetti M, 2014, PSYCHONEUROENDOCRINO, V50, P181, DOI 10.1016/j.psyneuen.2014.08.014; Marott SCW, 2010, J AM COLL CARDIOL, V56, P789, DOI 10.1016/j.jacc.2010.02.066; Marsland A. L, 2017, BRAIN BEHAV IMMUN; Martinez FO, 2009, ANNU REV IMMUNOL, V27, P451, DOI 10.1146/annurev.immunol.021908.132532; Matsui Y, 2014, EXP MOL PATHOL, V97, P354, DOI 10.1016/j.yexmp.2014.09.017; Mauer J, 2015, TRENDS IMMUNOL, V36, P92, DOI 10.1016/j.it.2014.12.008; Mavilio M, 2016, CELL REP, V16, P731, DOI 10.1016/j.celrep.2016.06.027; McDade TW, 2016, EVOL MED PUBLIC HLTH, P1, DOI 10.1093/emph/eov033; McDade TW, 2016, J NUTR, V146, P353, DOI 10.3945/jn.115.224279; McDade TW, 2013, BRAIN BEHAV IMMUN, V31, P23, DOI 10.1016/j.bbi.2012.08.010; McDade TW, 2012, P NATL ACAD SCI USA, V109, P17281, DOI 10.1073/pnas.1202244109; McDade TW, 2012, AM J HUM BIOL, V24, P675, DOI 10.1002/ajhb.22296; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; McEwen BS, 2007, PHYSIOL REV, V87, P873, DOI 10.1152/physrev.00041.2006; McEwen BS, 2012, P NATL ACAD SCI USA, V109, P17180, DOI 10.1073/pnas.1121254109; Mcfarlin BK, 2007, INT J PEDIATR OBES, V2, P235, DOI 10.1080/17477160701440455; Medzhitov R, 2012, SCIENCE, V335, P936, DOI 10.1126/science.1214935; Mihlan M, 2011, FASEB J, V25, P4198, DOI 10.1096/fj.11-186460; Millar K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058256; Miller AH, 2016, NAT REV IMMUNOL, V16, P22, DOI 10.1038/nri.2015.5; Miller G, 2009, ANNU REV PSYCHOL, V60, P501, DOI 10.1146/annurev.psych.60.110707.163551; Miller GE, 2008, BIOL PSYCHIAT, V64, P266, DOI 10.1016/j.biopsych.2008.03.017; Miller GE, 2011, PSYCHOL BULL, V137, P959, DOI 10.1037/a0024768; Miller MR, 2007, EVOLUTION, V61, P2, DOI 10.1111/j.1558-5646.2007.00001.x; Minihane AM, 2015, BRIT J NUTR, V114, P999, DOI 10.1017/S0007114515002093; Mohamed-Ali V, 1997, J CLIN ENDOCR METAB, V82, P4196, DOI 10.1210/jc.82.12.4196; Munoz-Durango N, 2015, BIOMED RES INT, DOI 10.1155/2015/652738; Nguyen-Vermillion A, 2011, J PEDIATR-US, V159, P121, DOI 10.1016/j.jpeds.2010.12.048; Nieman DC, 2003, J APPL PHYSIOL, V94, P1917, DOI 10.1152/japplphysiol.01130.2002; Nitsch D, 2006, AM J EPIDEMIOL, V163, P397, DOI 10.1093/aje/kwj062; Osler M, 2016, BRAIN BEHAV IMMUN, V58, P248, DOI 10.1016/j.bbi.2016.07.154; Pagano S, 2012, CURR SIGNAL TRANSD T, V7, P142, DOI 10.2174/157436212800376681; Parkin J, 2001, LANCET, V357, P1777, DOI 10.1016/S0140-6736(00)04904-7; Pedersen BK, 2012, NAT REV ENDOCRINOL, V8, P457, DOI 10.1038/nrendo.2012.49; Petersen AMW, 2006, J PHYSIOL PHARMACOL, V57, P43; Prins BP, 2016, PLOS MED, V13, DOI 10.1371/journal.pmed.1001976; Raberg L, 2009, PHILOS T R SOC B, V364, P37, DOI 10.1098/rstb.2008.0184; Raichlen DA, 2017, AM J HUM BIOL, V29, DOI 10.1002/ajhb.22919; Raison CL, 2013, MOL PSYCHIATR, V18, P15, DOI 10.1038/mp.2012.2; Raison CL, 2013, JAMA PSYCHIAT, V70, P31, DOI 10.1001/2013.jamapsychiatry.4; Raison CL, 2013, BRAIN BEHAV IMMUN, V31, P1, DOI 10.1016/j.bbi.2013.04.009; Rauw Wendy M., 2012, Frontiers in Genetics, V3, P267, DOI 10.3389/fgene.2012.00267; Rethorst CD, 2015, TRANSL PSYCHIAT, V5, DOI 10.1038/tp.2015.104; ROFF DA, 2002, LIFE HIST EVOLUTION; Rose-John S, 2017, NAT REV RHEUMATOL, V13, P399, DOI 10.1038/nrrheum.2017.83; Ruiz-Nunez B, 2013, J NUTR BIOCHEM, V24, P1183, DOI 10.1016/j.jnutbio.2013.02.009; Samols D., 2001, ENCY LIFE SCI, DOI [10.1038/npg.els.0000497, DOI 10.1038/NPG.ELS.0000497]; Schaller M., 2015, HDB EVOLUTIONARY PSY, P206; Schaper F, 2015, CYTOKINE GROWTH F R, V26, P475, DOI 10.1016/j.cytogfr.2015.07.004; Scheller J, 2011, BBA-MOL CELL RES, V1813, P878, DOI 10.1016/j.bbamcr.2011.01.034; SCHINDLER R, 1990, BLOOD, V75, P40; Schmit X, 2008, INFECTION, V36, P213, DOI 10.1007/s15010-007-7077-9; Schnabel RB, 2013, ARTERIOSCL THROM VAS, V33, P1728, DOI 10.1161/ATVBAHA.112.301174; Sears BF, 2011, TRENDS PARASITOL, V27, P382, DOI 10.1016/j.pt.2011.05.004; Segerstrom SC, 2004, PSYCHOL BULL, V130, P601, DOI 10.1037/0033-2909.130.4.601; Seppala J, 2012, J AFFECT DISORDERS, V136, P543, DOI 10.1016/j.jad.2011.10.032; Silverman MN, 2004, ENDOCRINOLOGY, V145, P3580, DOI 10.1210/en.2003-1421; Singh-Manoux A, 2017, CAN MED ASSOC J, V189, pE384, DOI 10.1503/cmaj.160313; Sommer I, 2015, BMC PUBLIC HEALTH, V15, DOI 10.1186/s12889-015-2227-y; Sowa-Kucma M, 2018, PROG NEURO-PSYCHOPH, V81, P372, DOI 10.1016/j.pnpbp.2017.08.024; Steensberg A, 2001, J PHYSIOL-LONDON, V537, P633, DOI 10.1111/j.1469-7793.2001.00633.x; Steptoe A, 2007, BRAIN BEHAV IMMUN, V21, P901, DOI 10.1016/j.bbi.2007.03.011; Stieglitz J, 2015, BRAIN BEHAV IMMUN, V49, P130, DOI 10.1016/j.bbi.2015.05.008; Straub RH, 2010, J INTERN MED, V267, P543, DOI 10.1111/j.1365-2796.2010.02218.x; Stringhini S, 2017, LANCET, V389, P1229, DOI 10.1016/S0140-6736(16)32380-7; Stringhini S, 2013, PLOS MED, V10, DOI 10.1371/journal.pmed.1001479; Sturgeon JA, 2016, PSYCHOSOM MED, V78, P134, DOI 10.1097/PSY.0000000000000276; Szabo-Fresnais N, 2010, CELL SIGNAL, V22, P1143, DOI 10.1016/j.cellsig.2010.03.009; Taylor MA, 2008, J AFFECT DISORDERS, V105, P1, DOI 10.1016/j.jad.2007.05.023; Thiele JR, 2014, CIRCULATION, V130, P35, DOI 10.1161/CIRCULATIONAHA.113.007124; Timper K, 2017, CELL REP, V19, P267, DOI 10.1016/j.celrep.2017.03.043; Trial J, 2016, INFLAMM CELL SIGNAL, V3, pe1409; van Dongen J, 2015, INT J OBESITY, V39, P899, DOI 10.1038/ijo.2015.24; VanderWeele TJ, 2014, EPIDEMIOLOGY, V25, P427, DOI 10.1097/EDE.0000000000000081; Velasquez IM, 2015, ATHEROSCLEROSIS, V240, P477, DOI 10.1016/j.atherosclerosis.2015.04.014; WAAGE A, 1990, EUR J IMMUNOL, V20, P2439, DOI 10.1002/eji.1830201112; Wium-Andersen MK, 2014, BIOL PSYCHIAT, V76, P249, DOI 10.1016/j.biopsych.2013.10.009; Wong B. C. F., 2017, BIORXIV, DOI [10.1101/140590, DOI 10.1101/140590]; Xu PC, 2015, BMC IMMUNOL, V16, DOI 10.1186/s12865-015-0077-0; Yeager MP, 2011, DOSE-RESPONSE, V9, P332, DOI 10.2203/dose-response.10-013.Yeager; Zarkovic M, 2008, EUR J ENDOCRINOL, V159, P649, DOI 10.1530/EJE-08-0544; Zhang FM, 2005, VITAM HORM, V71, P345, DOI 10.1016/S0083-6729(05)71012-8 162 8 8 2 6 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0889-1591 1090-2139 BRAIN BEHAV IMMUN Brain Behav. Immun. MAY 2018 70 61 75 10.1016/j.bbi.2018.02.013 15 Immunology; Neurosciences; Psychiatry Immunology; Neurosciences & Neurology; Psychiatry GH4US WOS:000433400900010 29499302 2019-02-21 J Morris, AB; Shaw, J Morris, Ashley B.; Shaw, Joey Markers in time and space: A review of the last decade of plant phylogeographic approaches MOLECULAR ECOLOGY English Review chloroplast DNA; divergence time estimation; ecological niche modelling; plant phylogeography ECOLOGICAL NICHE MODELS; CHLOROPLAST DNA; EVOLUTIONARY BIOLOGY; NONCODING REGIONS; NORTH-AMERICA; DATA SETS; TORTOISE; DIVERSIFICATION; ANGIOSPERMS; INTEGRATION Plant studies comprise a relatively small proportion of the phylogeographic literature, likely as a consequence of the fundamental challenges posed by the complex genomic structures and life history strategies of these organisms. Comparative plastomics (i.e., comparisons of mutation rates within and among regions of the chloroplast genome) across plant lineages has led to an increased understanding of which markers are likely to provide the most information at low taxonomic levels. However, the extent to which the results of such work have influenced the literature has not been fully assessed, nor has the extent to which plant phylogeographers explicitly analyse markers in time and space, both of which are integral components of the field. Here, we reviewed more than 400 publications from the last decade of plant phylogeography to specifically address the following questions: (i) What is the phylogenetic breadth of studies to date? (ii) What molecular markers have been used, and why were they chosen? (iii) What kinds of markers are most frequently used and in what combinations? (iv) How frequently are divergence time estimation and ecological niche modelling used in plant phylogeography? Our results indicate that chloroplast DNA sequence data remain the primary tool of choice, followed distantly by nuclear DNA sequences and microsatellites. Less than half (42%) of all studies use divergence time estimation, while even fewer use ecological niche modelling (14%). We discuss the implications of our findings, as well as the need for community standards on data reporting. [Morris, Ashley B.] Middle Tennessee State Univ, Dept Biol, Murfreesboro, TN 37130 USA; [Morris, Ashley B.] Middle Tennessee State Univ, Ctr Mol Biosci, Murfreesboro, TN 37130 USA; [Shaw, Joey] Univ Tennessee, Dept Biol Geol & Environm Sci, Chattanooga, TN USA Morris, AB (reprint author), Middle Tennessee State Univ, Dept Biol, Murfreesboro, TN 37130 USA. ashley.morris@mtsu.edu Alvarado-Serrano DF, 2014, MOL ECOL RESOUR, V14, P233, DOI 10.1111/1755-0998.12184; Andres JA, 2011, METHODS MOL BIOL, V772, P211, DOI 10.1007/978-1-61779-228-1_12; [Anonymous], 2013, PLANT LIST VERS 1 1; Avise J. C., 2000, PHYLOGEOGRAPHY HIST; Beck J, 2014, ECOL INFORM, V19, P10, DOI 10.1016/j.ecoinf.2013.11.002; Beheregaray LB, 2008, MOL ECOL, V17, P3754, DOI 10.1111/j.1365-294X.2008.03857.x; Boria RA, 2014, ECOL MODEL, V275, P73, DOI 10.1016/j.ecolmodel.2013.12.012; Brown JL, 2016, AM J BOT, V103, P153, DOI 10.3732/ajb.1500117; Carstens BC, 2007, EVOLUTION, V61, P1439, DOI 10.1111/j.1558-5646.2007.00117.x; Carstens BC, 2017, MOL PHYLOGENET EVOL, V116, P136, DOI 10.1016/j.ympev.2017.08.018; Chan LM, 2011, MOL PHYLOGENET EVOL, V59, P523, DOI 10.1016/j.ympev.2011.01.020; Collevatti RG, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00653; Davey JW, 2011, NAT REV GENET, V12, P499, DOI 10.1038/nrg3012; de Lima NE, 2014, J BIOGEOGR, V41, P673, DOI 10.1111/jbi.12269; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Edwards SV, 2016, P NATL ACAD SCI USA, V113, P8025, DOI 10.1073/pnas.1601066113; Egan AN, 2012, AM J BOT, V99, P175, DOI 10.3732/ajb.1200020; Ekblom R, 2011, HEREDITY, V107, P1, DOI 10.1038/hdy.2010.152; Emerson KJ, 2010, P NATL ACAD SCI USA, V107, P16196, DOI 10.1073/pnas.1006538107; FitzJohn RG, 2014, J ECOL, V102, P1266, DOI 10.1111/1365-2745.12260; Garrick RC, 2015, MOL ECOL, V24, P1164, DOI 10.1111/mec.13108; Gavin DG, 2014, NEW PHYTOL, V204, P37, DOI 10.1111/nph.12929; Guichoux E, 2011, MOL ECOL RESOUR, V11, P591, DOI 10.1111/j.1755-0998.2011.03014.x; Hey J, 2007, P NATL ACAD SCI USA, V104, P2785, DOI 10.1073/pnas.0611164104; Hickerson MJ, 2006, EVOLUTION, V60, P2435; Hipp AL, 2018, NEW PHYTOL, V217, P439, DOI 10.1111/nph.14773; Hipsley CA, 2014, FRONT GENET, V5, DOI 10.3389/fgene.2014.00138; Knowles LL, 2002, MOL ECOL, V11, P2623, DOI 10.1046/j.1365-294X.2002.01637.x; Kozak KH, 2008, TRENDS ECOL EVOL, V23, P141, DOI 10.1016/j.tree.2008.02.001; Kumar S, 2016, MOL BIOL EVOL, V33, P863, DOI 10.1093/molbev/msw026; Lance SL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081853; Larson-Johnson K, 2016, NEW PHYTOL, V209, P418, DOI 10.1111/nph.13570; Lexer C, 2013, J BIOGEOGR, V40, P1013, DOI 10.1111/jbi.12076; Lozier JD, 2009, J BIOGEOGR, V36, P1623, DOI 10.1111/j.1365-2699.2009.02152.x; Maldonado C, 2015, GLOBAL ECOL BIOGEOGR, V24, P973, DOI 10.1111/geb.12326; Manos PS, 2007, SYSTEMATIC BIOL, V56, P412, DOI 10.1080/10635150701408523; McCormack JE, 2013, MOL PHYLOGENET EVOL, V66, P526, DOI 10.1016/j.ympev.2011.12.007; O'Reilly JE, 2015, TRENDS GENET, V31, P637, DOI 10.1016/j.tig.2015.08.001; Petit RJ, 2007, PHYLOGEOGRAPHY OF SOUTHERN EUROPEAN REFUGIA, P23, DOI 10.1007/1-4020-4904-8_2; Prince LM, 2015, APPL PLANT SCI, V3, DOI 10.3732/apps.1400085; Romeiro-Brito M, 2016, APPL PLANT SCI, V4, DOI 10.3732/apps.1500074; Roskov Y., 2017, SPECIES 2000 ITIS C; Sarkinen T, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0082266; Schaal BA, 1998, MOL ECOL, V7, P465, DOI 10.1046/j.1365-294x.1998.00318.x; Schellenberg JJ, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146510; Selkoe KA, 2006, ECOL LETT, V9, P615, DOI 10.1111/j.1461-0248.2006.00889.x; Shaw J, 2005, AM J BOT, V92, P142, DOI 10.3732/ajb.92.1.142; Shaw J, 2007, AM J BOT, V94, P275, DOI 10.3732/ajb.94.3.275; Shaw J, 2014, AM J BOT, V101, P1987, DOI 10.3732/ajb.1400398; Soltis DE, 2006, MOL ECOL, V15, P4261, DOI 10.1111/j.1365-294X.2006.03061.x; Soltis Douglas E., 2016, Plant Diversity, V38, P264, DOI 10.1016/j.pld.2016.12.001; Soltis PS, 2017, AM J BOT, V104, P1281, DOI 10.3732/ajb.1700281; Sork VL, 2016, P NATL ACAD SCI USA, V113, P8064, DOI 10.1073/pnas.1602675113; Stevens PF, 2001, ANGIOSPERM PHYLOGENY; TABERLET P, 1991, PLANT MOL BIOL, V17, P1105, DOI 10.1007/BF00037152; Waltari E, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000563; WOLFE KH, 1987, P NATL ACAD SCI USA, V84, P9054, DOI 10.1073/pnas.84.24.9054; Zimmer EA, 2015, J SYST EVOL, V53, P371, DOI 10.1111/jse.12174 58 1 2 17 29 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. MAY 2018 27 10 2317 2333 10.1111/mec.14695 17 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GH6YC WOS:000433589000001 29675939 2019-02-21 J Gimenez, O; Cam, E; Gaillard, JM Gimenez, Olivier; Cam, Emmanuelle; Gaillard, Jean-Michel Individual heterogeneity and capture-recapture models: what, why and how? OIKOS English Article JOLLY-SEBER MODEL; AGE-SPECIFIC SURVIVAL; LONG-LIVED SEABIRD; LIFETIME REPRODUCTIVE SUCCESS; POPULATION-GROWTH RATE; MARK-RECAPTURE; EVOLUTIONARY ECOLOGY; UNOBSERVED HETEROGENEITY; TRADE-OFFS; ENVIRONMENTAL VARIABILITY Variation between and within individuals in life history traits is ubiquitous in natural populations. When affecting fitness-related traits such as survival or reproduction, individual heterogeneity plays a key role in population dynamics and life history evolution. However, it is only recently that properly accounting for individual heterogeneity when studying population dynamics of free-ranging populations has been made possible through the development of appropriate statistical models. We aim here to review case studies of individual heterogeneity in the context of capture-recapture models for the estimation of population size and demographic parameters with imperfect detection. First, we define what individual heterogeneity means and clarify the terminology used in the literature. Second, we review the literature and illustrate why individual heterogeneity is used in capture-recapture studies by focusing on the detection of life-history tradeoffs, including senescence. Third, we explain how to model individual heterogeneity in capture-recapture models and provide the code to fit these models . The distinction is made between situations in which heterogeneity is actually measured and situations in which part of the heterogeneity remains unobserved. Regarding the latter, we outline recent developments of random-effect models and finite-mixture models. Finally, we discuss several avenues for future research. [Gimenez, Olivier] Univ Paul Valery Montpellier, Univ Montpellier, CNRS, EPHE,CEFE UMR 5175, 1919 Route Mende, FR-34293 Montpellier 5, France; [Cam, Emmanuelle] Univ Toulouse, CNRS, ENSFEA, IRD,UMR 5174,Evolut & Div Biol, Toulouse, France; [Gaillard, Jean-Michel] Univ Lyon, Lab Biometrie & Biol Evolut, UMR 5558, Villeurbanne, France Gimenez, O (reprint author), Univ Paul Valery Montpellier, Univ Montpellier, CNRS, EPHE,CEFE UMR 5175, 1919 Route Mende, FR-34293 Montpellier 5, France. olivier.gimenez@cefe.cnrs.fr Laboratoire d'Excellence LabEx TULIP [ANR-10-LABX-41]; [ANR-16-CE02-0007] EC was supported by the Laboratoire d'Excellence LabEx TULIP (ANR-10-LABX-41). OG was supported by ANR-16-CE02-0007. Abadi F, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062636; Abbring JH, 2007, BIOMETRIKA, V94, P87, DOI 10.1093/biomet/asm013; Ahmad N., 2014, INT J EC FINANC, V4, P93; Allison PD, 1982, SOCIOL METHODOL, V13, P61, DOI [DOI 10.2307/270718, 10.2307/270718]; Andriopoulou E, 2015, RES ECON INEQUAL, V23, P23, DOI 10.1108/S1049-258520150000023002; ARNASON A N, 1973, Researches on Population Ecology (Tokyo), V15, P1; ARNASON A N, 1972, Researches on Population Ecology (Tokyo), V13, P97; Aubry LM, 2011, J ANIM ECOL, V80, P375, DOI 10.1111/j.1365-2656.2010.01784.x; Authier M, 2017, ECOL EVOL, V7, P3348, DOI 10.1002/ece3.2874; Barbraud C, 2005, ECOLOGY, V86, P682, DOI 10.1890/04-0075; Barbraud C., 2004, Animal Biodiversity and Conservation, V27, P109; Barbraud C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060353; Baudisch A, 2012, SCIENCE, V338, P618, DOI 10.1126/science.1226467; Beauplet G, 2006, OIKOS, V112, P430, DOI 10.1111/j.0030-1299.2006.14412.x; Berger V, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1167; Blomberg EJ, 2013, J AVIAN BIOL, V44, P149, DOI 10.1111/j.1600-048X.2012.00013.x; Blums P, 2005, OECOLOGIA, V143, P365, DOI 10.1007/s00442-004-1794-x; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Bonenfant C, 2009, J ANIM ECOL, V78, P161, DOI 10.1111/j.1365-2656.2008.01477.x; Bonner SJ, 2010, BIOMETRICS, V66, P1256, DOI 10.1111/j.1541-0420.2010.01390.x; Bonner SJ, 2006, BIOMETRICS, V62, P142, DOI 10.1111/j.1541-0420.2005.00399.x; Bonnet T, 2016, AM NAT, V187, P60, DOI 10.1086/684158; Borchers D, 2012, J ORNITHOL, V152, pS435, DOI 10.1007/s10336-010-0583-z; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Briggs CW, 2011, J WILDLIFE MANAGE, V75, P1307, DOI 10.1002/jwmg.167; Buoro M, 2012, EVOLUTION, V66, P996, DOI 10.1111/j.1558-5646.2011.01484.x; Buoro M, 2010, EVOLUTION, V64, P2629, DOI 10.1111/j.1558-5646.2010.01029.x; Burnham K. P, 2002, MODEL SELECTION MULT; BURNHAM KP, 1993, BIOMETRICS, V49, P1194, DOI 10.2307/2532261; BURNHAM KP, 1979, ECOLOGY, V60, P927, DOI 10.2307/1936861; Cam E, 2000, OIKOS, V90, P560, DOI 10.1034/j.1600-0706.2000.900314.x; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Cam E, 2004, OIKOS, V106, P386, DOI 10.1111/j.0030-1299.2003.13097.x; Cam E, 2003, J ANIM ECOL, V72, P411, DOI 10.1046/j.1365-2656.2003.00708.x; Cam E, 2002, J APPL STAT, V29, P163, DOI 10.1080/02664760120108502; Cam E, 2016, TRENDS ECOL EVOL, V31, P872, DOI 10.1016/j.tree.2016.08.002; Cam E, 2013, OIKOS, V122, P739, DOI 10.1111/j.1600-0706.2012.20532.x; CAROTHERS AD, 1973, BIOMETRICS, V29, P79, DOI 10.2307/2529678; Caswell H, 2009, OIKOS, V118, P1763, DOI 10.1111/j.1600-0706.2009.17620.x; Catchpole EA, 2008, J ROY STAT SOC B, V70, P445, DOI 10.1111/j.1467-9868.2007.00644.x; CAUGHLEY G, 1966, ECOLOGY, V47, P906, DOI 10.2307/1935638; Chamberlain G., 1979, 691 HARV U HARV I EC; Chambert T, 2015, ECOLOGY, V96, P479, DOI 10.1890/14-0911.1; Chambert T, 2014, ECOL EVOL, V4, P1389, DOI 10.1002/ece3.993; Chambert T, 2013, ECOL EVOL, V3, P2047, DOI 10.1002/ece3.615; CHAO A, 1987, BIOMETRICS, V43, P783, DOI 10.2307/2531532; Choquet R, 2013, METHODS ECOL EVOL, V4, P474, DOI 10.1111/2041-210X.12030; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Clutton-Brock T H, 1988, REPROD SUCCESS STUDI; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; COHEN JE, 1986, AM STAT, V40, P32, DOI 10.2307/2683114; Conner Mary M., 1999, Natural Resource Modeling, V12, P109; Conroy MJ, 2009, ENVIRON ECOL STAT SE, V3, P131, DOI 10.1007/978-0-387-78151-8_6; Cooch EG, 2002, J APPL STAT, V29, P19, DOI 10.1080/02664760120108421; CORMACK RM, 1964, BIOMETRIKA, V51, P429, DOI 10.1093/biomet/51.3-4.429; Coull BA, 1999, BIOMETRICS, V55, P294, DOI 10.1111/j.0006-341X.1999.00294.x; Coulson T, 2011, SCIENCE, V334, P1275, DOI 10.1126/science.1209441; Crespin L, 2008, POPUL ECOL, V50, P247, DOI 10.1007/s10144-008-0090-8; Cubaynes S, 2012, METHODS ECOL EVOL, V3, P564, DOI 10.1111/j.2041-210X.2011.00175.x; Cubaynes S, 2012, ECOLOGY, V93, P248, DOI 10.1890/11-0258.1; Cubaynes S, 2010, CONSERV BIOL, V24, P621, DOI 10.1111/j.1523-1739.2009.01431.x; Descamps S, 2009, BIOL LETTERS, V5, P278, DOI 10.1098/rsbl.2008.0704; Desprez M, 2013, ECOL EVOL, V3, P4658, DOI 10.1002/ece3.846; Dingemanse NJ, 2013, J ANIM ECOL, V82, P39, DOI 10.1111/1365-2656.12013; DOBZHANSKY T, 1973, AM BIOL TEACH, V35, P125, DOI 10.2307/4444260; Douhard M, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0276; Drummond H, 2011, P ROY SOC B-BIOL SCI, V278, P3421, DOI 10.1098/rspb.2010.2569; Duffie D, 2009, J FINANC, V64, P2089, DOI 10.1111/j.1540-6261.2009.01495.x; EBERHARDT LL, 1969, J WILDLIFE MANAGE, V33, P28, DOI 10.2307/3799647; Efford M, 2004, OIKOS, V106, P598, DOI 10.1111/j.0030-1299.2004.13043.x; EMLEN JM, 1970, ECOLOGY, V51, P588, DOI 10.2307/1934039; Enki DG, 2014, ANN APPL STAT, V8, P430, DOI 10.1214/13-AOAS693; Estes JA, 2003, J ANIM ECOL, V72, P144, DOI 10.1046/j.1365-2656.2003.00690.x; FALCONER DS, 1967, ANN HUM GENET, V31, P1; Farcomeni A, 2010, TEST-SPAIN, V19, P187, DOI 10.1007/s11749-009-0147-9; Fay R, 2016, ECOLOGY, V97, P1842, DOI 10.1890/15-1485.1; Fay R, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2318; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Fletcher D, 2012, METHODS ECOL EVOL, V3, P206, DOI 10.1111/j.2041-210X.2011.00137.x; Ford J. H., 2015, ARXIV151107103V1; Fox GA, 2006, J ANIM ECOL, V75, P921, DOI 10.1111/j.1365-2656.2006.01110.x; Garnier A, 2016, ECOLOGY, V97, P205, DOI 10.1890/15-0014.1; Gelman A, 2014, STAT COMPUT, V24, P997, DOI 10.1007/s11222-013-9416-2; Gershman SJ, 2012, J MATH PSYCHOL, V56, P1, DOI 10.1016/j.jmp.2011.08.004; Ghosh SK, 2005, J AGR BIOL ENVIR ST, V10, P35, DOI 10.1198/10871105X28651; Gimenez O, 2010, ECOLOGY, V91, P951, DOI 10.1890/09-1903.1; Gimenez O., 2017, DATA INDIVIDUAL HETE; Gimenez O, 2008, AM NAT, V172, P441, DOI 10.1086/589520; Gimenez O, 2007, ECOL MODEL, V206, P431, DOI 10.1016/j.ecolmodel.2007.03.040; Gimenez O, 2012, THEOR POPUL BIOL, V82, P307, DOI 10.1016/j.tpb.2012.02.001; Gimenez O, 2009, EVOLUTION, V63, P3097, DOI 10.1111/j.1558-5646.2009.00783.x; GREEN RF, 1977, WILSON BULL, V89, P173; Guery L, 2017, J ANIM ECOL, V86, P683, DOI 10.1111/1365-2656.12643; Gullett P, 2014, OIKOS, V123, P389, DOI 10.1111/j.1600-0706.2013.00620.x; Hadley GL, 2007, J ANIM ECOL, V76, P448, DOI 10.1111/j.1365-2656.2007.01219.x; Hamel S, 2016, ECOL MONOGR, V86, P517, DOI 10.1002/ecm.1232; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Hamel S, 2014, OIKOS, V123, P151, DOI 10.1111/j.1600-0706.2013.00819.x; Hartson RB, 2015, ECOL FRESHW FISH, V24, P276, DOI 10.1111/eff.12145; Heckman J.J., 1981, INCIDENTAL PARAMETER; HECKMAN JJ, 1980, ECONOMICA, V47, P247, DOI 10.2307/2553150; HECKMAN JJ, 1977, J POLIT ECON, V85, P27, DOI 10.1086/260544; Hernandez-Matias A, 2011, IBIS, V153, P846, DOI 10.1111/j.1474-919X.2011.01158.x; HESTBECK JB, 1991, ECOLOGY, V72, P523, DOI 10.2307/2937193; Hileman ET, 2015, J HERPETOL, V49, P428, DOI 10.1670/13-217; Hooten MB, 2015, ECOL MONOGR, V85, P3, DOI 10.1890/14-0661.1; Horswill C, 2014, J ANIM ECOL, V83, P1057, DOI 10.1111/1365-2656.12229; HOUGAARD P, 1991, J APPL PROBAB, V28, P695, DOI 10.2307/3214503; Hougaard P, 1995, Lifetime Data Anal, V1, P255; HOUGAARD P, 1984, BIOMETRIKA, V71, P75, DOI 10.1093/biomet/71.1.75; Hua D, 2015, ECOL EVOL, V5, P1076, DOI 10.1002/ece3.1348; Johnson D. H. et al., 1986, P 13 INT BIOM C SESS; Johnson DS, 2016, STAT SCI, V31, P233, DOI 10.1214/15-STS542; JOHNSON DH, 1979, AUK, V96, P651; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.1093/biomet/52.1-2.225; Kannisto V, 1991, Genus, V47, P101; Kaplan D, 2008, DEV PSYCHOL, V44, P457, DOI 10.1037/0012-1649.44.2.457; Kendall BE, 2002, CONSERV BIOL, V16, P109, DOI 10.1046/j.1523-1739.2002.00036.x; Kendall BE, 2011, ECOLOGY, V92, P1985, DOI 10.1890/11-0079.1; Kendall WL, 2003, ECOLOGY, V84, P1058, DOI 10.1890/0012-9658(2003)084[1058:AMCMFM]2.0.CO;2; Kennamer RA, 2016, AUK, V133, P439, DOI 10.1642/AUK-15-183.1; KEYFITZ N, 1979, POP STUD-J DEMOG, V33, P333, DOI 10.2307/2173538; King R, 2012, INTERFACE FOCUS, V2, P190, DOI 10.1098/rsfs.2011.0078; Knape J, 2011, ECOLOGY, V92, P813, DOI 10.1890/10-0183.1; KOENIG WD, 1995, ANIM BEHAV, V50, P607, DOI 10.1016/0003-3472(95)80123-5; Koons DN, 2014, METHODS ECOL EVOL, V5, P924, DOI 10.1111/2041-210X.12239; Kovach RP, 2010, HYDROBIOLOGIA, V652, P49, DOI 10.1007/s10750-010-0317-5; KRAMER GH, 1983, AM POLIT SCI REV, V77, P92, DOI 10.2307/1956013; Laake J. L., 2013, 2013012013125 AFSC, P25; Laake JL, 2013, METHODS ECOL EVOL, V4, P885, DOI 10.1111/2041-210X.12065; Langrock R, 2013, ANN APPL STAT, V7, P1709, DOI 10.1214/13-AOAS644; Le Bohec C, 2007, J ANIM ECOL, V76, P1149, DOI 10.1111/j.1365-2656.2007.01268.x; Lebreton JD, 2002, J APPL STAT, V29, P353, DOI 10.1080/02664760120108638; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lebreton JD, 2009, ADV ECOL RES, V41, P87, DOI 10.1016/S0065-2504(09)00403-6; Lee DE, 2011, J MAMMAL, V92, P517, DOI 10.1644/10-MAMM-A-042.1; Lee SM, 2016, BIOMETRICS, V72, P1294, DOI 10.1111/biom.12498; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Lescroel A, 2009, J ANIM ECOL, V78, P798, DOI 10.1111/j.1365-2656.2009.01542.x; Lindberg MS, 2013, ECOL EVOL, V3, P4045, DOI 10.1002/ece3.767; Link W. A., 2004, Animal Biodiversity and Conservation, V27, P87; Link WA, 2003, BIOMETRICS, V59, P1123, DOI 10.1111/j.0006-341X.2003.00129.x; Link WA, 2015, J AGR BIOL ENVIR ST, V20, P343, DOI 10.1007/s13253-015-0211-8; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; LOMNICKI A, 1978, J ANIM ECOL, V47, P461, DOI 10.2307/3794; Lynch M, 1998, GENETICS ANAL QUANTI; Manda SOM, 2005, STAT MED, V24, P1263, DOI 10.1002/sim.1995; Maniscalco JM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010076; MANLY BFJ, 1968, T SOC BRIT ENTOMOL, V18, P81; Manrique-Vallier D, 2016, BIOMETRICS, V72, P1246, DOI 10.1111/biom.12502; MANTON KG, 1986, J AM STAT ASSOC, V81, P635, DOI 10.2307/2288991; MANTON KG, 1981, DEMOGRAPHY, V18, P389, DOI 10.2307/2061005; Marescot L, 2011, ECOL APPL, V21, P2898, DOI 10.1890/10-2321.1; Marzolin G, 2011, ECOLOGY, V92, P562, DOI 10.1890/10-0306.1; Matechou E, 2016, ENVIRON ECOL STAT, V23, P531, DOI 10.1007/s10651-016-0352-0; Mcloughlin PD, 2007, ECOLOGY, V88, P3192, DOI 10.1890/06-1974.1; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Millon A, 2010, J ANIM ECOL, V79, P426, DOI 10.1111/j.1365-2656.2009.01637.x; Morano S, 2013, J MAMMAL, V94, P162, DOI 10.1644/12-MAMM-A-074.1; Morgan BJT, 2008, J R STAT SOC C-APPL, V57, P433, DOI 10.1111/j.1467-9876.2008.00620.x; Moyes K, 2011, J ANIM ECOL, V80, P456, DOI 10.1111/j.1365-2656.2010.01789.x; Nevoux M, 2007, J ANIM ECOL, V76, P159, DOI 10.1111/j.1365-2656.2006.01191.x; Newton I, 1989, LIFETIME REPROD BIRD; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; NICHOLS JD, 1992, ECOLOGY, V73, P306, DOI 10.2307/1938741; Nichols JD, 2002, J APPL STAT, V29, P49, DOI 10.1080/02664760120108449; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; Norris JL, 1996, BIOMETRICS, V52, P639, DOI 10.2307/2532902; NORTH PM, 1979, BIOMETRICS, V35, P667, DOI 10.2307/2530260; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; O'Hara RB, 2009, BAYESIAN ANAL, V4, P85, DOI 10.1214/09-BA403; Ohlssen DI, 2007, STAT MED, V26, P2088, DOI 10.1002/sim.2666; Oliver LJ, 2011, ECOL MODEL, V222, P776, DOI 10.1016/j.ecolmodel.2010.11.021; Orzack SH, 2011, OIKOS, V120, P369, DOI 10.1111/j.1600-0706.2010.17996.x; OTIS DL, 1978, WILDLIFE MONOGR, P1; Papaix J, 2010, J EVOLUTION BIOL, V23, P2176, DOI 10.1111/j.1420-9101.2010.02079.x; Pennell ML, 2006, BIOMETRICS, V62, P1044, DOI 10.1111/j.1541-0420.2006.00571.x; Peron G, 2016, EVOLUTION, V70, P2909, DOI 10.1111/evo.13098; Peron G, 2010, OIKOS, V119, P524, DOI 10.1111/j.1600-1706.2009.17882.x; Pirotta E, 2015, ANIM CONSERV, V18, P20, DOI 10.1111/acv.12132; Pistorius PA, 2008, J MAMMAL, V89, P567, DOI 10.1644/07-MAMM-A-219R.1; Plard F, 2012, THEOR POPUL BIOL, V82, P317, DOI 10.1016/j.tpb.2012.03.006; Plard F, 2015, J ANIM ECOL, V84, P1434, DOI 10.1111/1365-2656.12393; Pledger S, 2005, BIOMETRICS, V61, P868, DOI 10.1111/j.1541-020X.2005.00411_1.x; Pledger S, 2000, BIOMETRICS, V56, P434, DOI 10.1111/j.0006-341X.2000.00434.x; Pledger S, 2003, BIOMETRICS, V59, P786, DOI 10.1111/j.0006-341X.2003.00092.x; Pledger S, 2002, J APPL STAT, V29, P315, DOI 10.1080/02664760120108737; Pledger S, 2010, BIOMETRICS, V66, P883, DOI 10.1111/j.1541-0420.2009.01361.x; Pledger S, 2008, BIOMETRICAL J, V50, P1022, DOI 10.1002/bimj.200810446; Plum A, 2015, ECON LETT, V136, P85, DOI 10.1016/j.econlet.2015.09.006; Plummer M., 2003, P 3 INT WORK DISTR S; Pollock K. H., 1981, STUDIES AVIAN BIOL, V6, P426; POLLOCK KH, 1981, BIOMETRICS, V37, P521, DOI 10.2307/2530565; POLLOCK KH, 1990, WILDLIFE MONOGR, P1; Pollock KH, 2002, J APPL STAT, V29, P85, DOI 10.1080/02664760120108430; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; Pradel R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051016; Pradel R, 2010, J AGR BIOL ENVIR ST, V15, P248, DOI 10.1007/s13253-009-0008-8; Pradel R, 2009, ENVIRON ECOL STAT SE, V3, P781, DOI 10.1007/978-0-387-78151-8_36; Prowse V, 2012, J BUS ECON STAT, V30, P411, DOI 10.1080/07350015.2012.697851; Putter H, 2015, BIOSTATISTICS, V16, P550, DOI 10.1093/biostatistics/kxv002; Raman S, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-S8-S8; Rasmussen CE, 2000, ADV NEUR IN, V12, P554; Reichert BE, 2012, ECOLOGY, V93, P2580, DOI 10.1890/12-0233.1; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; Reid JM, 2003, J ANIM ECOL, V72, P765, DOI 10.1046/j.1365-2656.2003.00750.x; REXSTAD EA, 1992, CAN J ZOOL, V70, P1878, DOI 10.1139/z92-256; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Robert A, 2012, ECOLOGY, V93, P1944, DOI 10.1890/11-1840.1; Roff Derek A., 1992; Roulin A, 2003, J AVIAN BIOL, V34, P393, DOI 10.1111/j.0908-8857.2003.03139.x; Royle JA, 2008, BIOMETRICS, V64, P364, DOI 10.1111/j.1541-0420.2007.00891.x; Sanz-Aguilar A, 2011, ECOL APPL, V21, P555, DOI 10.1890/09-2339.1; Sanz-Aguilar A, 2008, ECOLOGY, V89, P3195, DOI 10.1890/08-0431.1; SAUER JR, 1987, ECOLOGY, V68, P642, DOI 10.2307/1938469; Schwarz CJ, 2001, J AGRIC BIOL ENVIR S, V6, P195, DOI 10.1198/108571101750524706; SCHWARZ CJ, 1993, BIOMETRICS, V49, P177, DOI 10.2307/2532612; SEBER GAF, 1965, BIOMETRIKA, V52, P249; Sedinger JS, 2008, J ANIM ECOL, V77, P702, DOI 10.1111/j.1365-2656.2008.01403.x; Senner NR, 2015, P ROY SOC B-BIOL SCI, V282, P5, DOI 10.1098/rspb.2015.1050; SHORT RV, 1994, DIFFERENCES SEXES; Skrondal A, 2014, J R STAT SOC C-APPL, V63, P211, DOI 10.1111/rssc.12023; Souchay G, 2014, ECOLOGY, V95, P2745, DOI 10.1890/13-1277.1; Spiegelhalter DJ, 2014, J R STAT SOC B, V76, P485, DOI 10.1111/rssb.12062; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Steiner UK, 2010, J ANIM ECOL, V79, P436, DOI 10.1111/j.1365-2656.2009.01653.x; Steiner UK, 2012, P NATL ACAD SCI USA, V109, P4684, DOI 10.1073/pnas.1018096109; Stoelting RE, 2015, AUK, V132, P46, DOI 10.1642/AUK-14-98.1; Stover JP, 2012, THEOR ECOL-NETH, V5, P297, DOI 10.1007/s12080-011-0129-x; Tenan S, 2014, ECOL MODEL, V283, P62, DOI 10.1016/j.ecolmodel.2014.03.017; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vaupel JW, 2014, DEMOGR RES, V31, P659, DOI 10.4054/DemRes.2014.31.22; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; White GC, 2017, J WILDLIFE MANAGE, V81, P322, DOI 10.1002/jwmg.21199; White GC, 1999, BIRD STUDY, V46, P120; Wienke A, 2010, FRAILTY MODELS SURVI; Wienke A., 2003, 2003032 MPIDR; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Wintrebert CMA, 2005, ECOL MODEL, V181, P203, DOI 10.1016/j.ecolmodel.2004.02.021; Wooldridge JM, 2005, J APPL ECONOM, V20, P39, DOI 10.1002/jae.770; Worthington H, 2015, J AGR BIOL ENVIR ST, V20, P28, DOI 10.1007/s13253-014-0184-z; Yashin A. I., 2001, HIDDEN FRAILTY MYTHS; Yashin AI, 2008, THEOR POPUL BIOL, V73, P1, DOI 10.1016/j.tpb.2007.09.001; Yoccoz NG, 2002, J APPL STAT, V29, P57, DOI 10.1080/02664760120108458; Zens MS, 2003, TRENDS ECOL EVOL, V18, P366, DOI 10.1016/S0169-5347(03)00096-X; Zheng CZ, 2007, ECOLOGY, V88, P1970, DOI 10.1890/06-1246.1; Zucchini W., 2016, HIDDEN MARKOV MODELS 257 12 12 21 29 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos MAY 2018 127 5 664 686 10.1111/oik.04532 23 Ecology Environmental Sciences & Ecology GF5RM WOS:000432025300003 2019-02-21 J Vedder, O; Bouwhuis, S Vedder, Oscar; Bouwhuis, Sandra Heterogeneity in individual quality in birds: overall patterns and insights from a study on common terns OIKOS English Article LIFETIME REPRODUCTIVE SUCCESS; LONG-LIVED SEABIRD; AGE-SPECIFIC REPRODUCTION; KESTREL FALCO-TINNUNCULUS; TIT PARUS-MAJOR; NATURAL-SELECTION; GREAT TITS; BROOD SIZE; ENVIRONMENTAL VARIABILITY; DYNAMIC HETEROGENEITY While life-history theory predicts a tradeoff between reproduction and survival, positive covariance, indicative of heterogeneity in individual quality, is often reported among individuals from natural populations. We review longitudinal studies of wild bird populations that test the relationship between annual reproductive success and lifespan and find the majority to report a positive correlation, while none reports a negative correlation. Heterogeneity in individual quality in resource acquisition, masking resource-based tradeoffs, therefore appears to be common in birds. Considering that there is little evidence for heritable variation in fitness, heterogeneity in individual quality among adults may be due to life-long effects of developmental conditions. In a 20-year case study on common terns Sterna hirundo, we test for life-long effects of cohort quality and within-cohort nest quality, but find no significant effects on long-term proxies of quality. Since other studies do find strong life-long effects of developmental conditions, we suggest that the brood reduction strategy adopted by common terns, causing the majority of offspring to die rapidly after hatching, efficiently reduces variation in offspring quality at independence. As such, a brood reduction strategy may contribute to reduced heterogeneity in adult survival in stochastic environments, both suggested to be more common and adaptive in long-lived species. Further study is required to assess heterogeneity in individual reproduction, especially in relation to environmental stochasticity and species' life-history strategies, in order to assess whether the relative strength of selection in early and late life may indeed affect the magnitude of heterogeneity in individual quality over life, and how this is mediated by parent-offspring conflict. [Vedder, Oscar; Bouwhuis, Sandra] Inst Avian Res Vogelwarte Helgoland, Vogelwarte 21, DE-26386 Wilhelmshaven, Germany; [Vedder, Oscar] Univ Groningen, Groningen Inst Evolutionary Life Sci, POB 11103, NL-9700 CC Groningen, Netherlands Vedder, O (reprint author), Inst Avian Res Vogelwarte Helgoland, Vogelwarte 21, DE-26386 Wilhelmshaven, Germany. oscarvedder@hotmail.com 'Veni' grant of the division Earth and Life Sciences (ALW) of the Netherlands Organisation for Scientific Research (NWO) [863.14.010] O. Vedder was supported by a 'Veni' grant (863.14.010) of the division Earth and Life Sciences (ALW) of the Netherlands Organisation for Scientific Research (NWO). Aubry LM, 2009, ECOLOGY, V90, P2491, DOI 10.1890/08-1475.1; Balbontin J, 2012, J EVOLUTION BIOL, V25, P2298, DOI 10.1111/j.1420-9101.2012.02606.x; Balbontin J, 2007, J ANIM ECOL, V76, P915, DOI 10.1111/j.1365-2656.2007.01269.x; Becker PH, 2008, P NATL ACAD SCI USA, V105, P12349, DOI 10.1073/pnas.0804179105; Becker Peter H., 2004, BWP Update, V6, P91; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Blas J, 2009, ECOGRAPHY, V32, P647, DOI 10.1111/j.1600-0587.2008.05700.x; Bonnet T, 2016, AM NAT, V187, P60, DOI 10.1086/684158; Boonekamp JJ, 2014, ECOL LETT, V17, P599, DOI 10.1111/ele.12263; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Bouwhuis S., 2017, EVOLUTION SENESCENCE; Bouwhuis S, 2015, EVOLUTION, V69, P1760, DOI 10.1111/evo.12692; Bouwhuis S, 2010, J AVIAN BIOL, V41, P615, DOI 10.1111/j.1600-048X.2010.05111.x; Bouwhuis S, 2010, J ANIM ECOL, V79, P1251, DOI 10.1111/j.1365-2656.2010.01730.x; Brown WP, 2009, ECOLOGY, V90, P218, DOI 10.1890/07-2061.1; Cam E, 2003, J ANIM ECOL, V72, P411, DOI 10.1046/j.1365-2656.2003.00708.x; Cam E, 2016, TRENDS ECOL EVOL, V31, P872, DOI 10.1016/j.tree.2016.08.002; Cam E, 2011, J ORNITHOL, V152, P187, DOI 10.1007/s10336-011-0707-0; Caswell H., 2001, MATRIX POPULATION MO; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Danhardt A, 2011, ECOSYSTEMS, V14, P791, DOI 10.1007/s10021-011-9445-7; Descamps S, 2016, J EVOLUTION BIOL, V29, P1860, DOI 10.1111/jeb.12901; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Drummond H, 2013, J EVOLUTION BIOL, V26, P625, DOI 10.1111/jeb.12087; Erikstad KE, 1998, ECOLOGY, V79, P1781; Evans SR, 2011, EVOLUTION, V65, P1623, DOI 10.1111/j.1558-5646.2011.01253.x; Fay R, 2017, FUNCT ECOL, V31, P1275, DOI 10.1111/1365-2435.12831; Fisher RA, 1930, GENETICAL THEORY NAT; Froy H, 2013, ECOL LETT, V16, P642, DOI 10.1111/ele.12092; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gimenez O, 2018, OIKOS, V127, P664, DOI 10.1111/oik.04532; Grafen A., 1988, REPROD SUCCESS, P454; GUSTAFSSON L, 1986, AM NAT, V128, P761, DOI 10.1086/284601; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hammers M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040413; HOWE HF, 1976, ECOLOGY, V57, P1195, DOI 10.2307/1935044; Kim SY, 2011, OECOLOGIA, V166, P615, DOI 10.1007/s00442-011-1914-3; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KOZLOWSKI J, 1989, EVOLUTION, V43, P1369, DOI 10.1111/j.1558-5646.1989.tb02588.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LAZARUS J, 1986, ANIM BEHAV, V34, P1791, DOI 10.1016/S0003-3472(86)80265-2; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Lopez-Idiaquez D, 2016, ECOL EVOL, V6, P1224, DOI 10.1002/ece3.1910; MAGRATH RD, 1989, NATURE, V339, P536, DOI 10.1038/339536a0; McCleery RH, 2004, AM NAT, V164, pE62, DOI 10.1086/422660; Medawar P, 1952, UNSOLVED PROBLEM BIO; Merila J, 2000, AM NAT, V155, P301, DOI 10.1086/303330; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Millon A, 2011, J ANIM ECOL, V80, P968, DOI 10.1111/j.1365-2656.2011.01842.x; MOCK DW, 1995, TRENDS ECOL EVOL, V10, P130, DOI 10.1016/S0169-5347(00)89014-X; Muller M, 2013, AM NAT, V181, P125, DOI 10.1086/668601; Peron G, 2016, EVOLUTION, V70, P2909, DOI 10.1111/evo.13098; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Postma E, 2014, QUANTITATIVE GENETICS IN THE WILD, P16; Potti J, 2013, J EVOLUTION BIOL, V26, P1445, DOI 10.1111/jeb.12145; RASBASH J, 2005, USERS GUIDE MLWIN VE; Reid JM, 2003, J ANIM ECOL, V72, P36, DOI 10.1046/j.1365-2656.2003.00673.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Saino N, 2012, J ANIM ECOL, V81, P1004, DOI 10.1111/j.1365-2656.2012.01989.x; Schroeder J, 2012, J EVOLUTION BIOL, V25, P149, DOI 10.1111/j.1420-9101.2011.02412.x; Schroeder J, 2015, P NATL ACAD SCI USA, V112, P4021, DOI 10.1073/pnas.1422715112; SLAGSVOLD T, 1984, AUK, V101, P685, DOI 10.2307/4086895; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Steiner UK, 2010, J ANIM ECOL, V79, P436, DOI 10.1111/j.1365-2656.2009.01653.x; Szostek KL, 2012, J ORNITHOL, V153, P313, DOI 10.1007/s10336-011-0745-7; TEMME DH, 1987, J THEOR BIOL, V126, P137, DOI 10.1016/S0022-5193(87)80225-4; Teplitsky C, 2009, EVOLUTION, V63, P716, DOI 10.1111/j.1558-5646.2008.00581.x; TINBERGEN JM, 1990, BEHAVIOUR, V114, P161, DOI 10.1163/156853990X00103; Torres R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027245; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Van de Pol M, 2006, J ANIM ECOL, V75, P616, DOI 10.1111/j.1365-2656.2006.01079.x; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vedder O, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2016.2724; Visser ME, 1999, OIKOS, V85, P445, DOI 10.2307/3546694; Wheelwright NT, 2014, EVOLUTION, V68, P3325, DOI 10.1111/evo.12499; Wilkin TA, 2009, CURR BIOL, V19, P1998, DOI 10.1016/j.cub.2009.09.065; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Zhang H, 2015, J ANIM ECOL, V84, P797, DOI 10.1111/1365-2656.12321; Zhang H, 2015, ECOLOGY, V96, P71, DOI 10.1890/14-0064.1 86 2 2 10 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos MAY 2018 127 5 719 727 10.1111/oik.04273 9 Ecology Environmental Sciences & Ecology GF5RM WOS:000432025300006 2019-02-21 J Jouvet, L; Rodriguez-Rojas, A; Steiner, UK Jouvet, Lionel; Rodriguez-Rojas, Alexandro; Steiner, Ulrich K. Demographic variability and heterogeneity among individuals within and among clonal bacteria strains OIKOS English Article fixed heterogeneity; dynamic heterogeneity; neutral variability; tradeoff; life history evolution; senescence; aging STOCHASTIC GENE-EXPRESSION; LIFE-HISTORY; STRUCTURED POPULATIONS; DYNAMIC HETEROGENEITY; FITNESS COMPONENTS; NATURAL-SELECTION; NEUTRAL THEORY; SPAN; EVOLUTION; GROWTH Identifying what drives individual heterogeneity has been of long interest to ecologists, evolutionary biologists and biodemographers, because only such identification provides deeper understanding of ecological and evolutionary population dynamics. In natural populations one is challenged to accurately decompose the drivers of heterogeneity among individuals as genetically fixed or selectively neutral. Rather than working on wild populations we present here data from a simple bacterial system in the lab, Escherichia coli. Our system, based on cutting-edge microfluidic techniques, provides high control over the genotype and the environment. It therefore allows to unambiguously decompose and quantify fixed genetic variability and dynamic stochastic variability among individuals. We show that within clonal individual variability (dynamic heterogeneity) in lifespan and lifetime reproduction is dominating at about 90-92%, over the 8-10% genetically (adaptive fixed) driven differences. The genetic differences among the clonal strains still lead to substantial variability in population growth rates (fitness), but, as well understood based on foundational work in population genetics, the within strain neutral variability slows adaptive change, by enhancing genetic drift, and lowering overall population growth. We also revealed a surprising diversity in senescence patterns among the clonal strains, which indicates diverse underlying cell-intrinsic processes that shape these demographic patterns. Such diversity is surprising since all cells belong to the same bacteria species, E. coli, and still exhibit patterns such as classical senescence, non-senescence, or negative senescence. We end by discussing whether similar levels of non-genetic variability might be detected in other systems and close by stating the open questions how such heterogeneity is maintained, how it has evolved, and whether it is adaptive. [Jouvet, Lionel; Steiner, Ulrich K.] Max Planck Odense Ctr Biodemog Aging, Campusvej 55, DK-5230 Odense, Denmark; [Jouvet, Lionel; Steiner, Ulrich K.] Univ Southern Denmark, Biol Dept, Odense, Denmark; [Rodriguez-Rojas, Alexandro] Free Univ Berlin, Inst Biol, Berlin, Germany Steiner, UK (reprint author), Max Planck Odense Ctr Biodemog Aging, Campusvej 55, DK-5230 Odense, Denmark.; Steiner, UK (reprint author), Univ Southern Denmark, Biol Dept, Odense, Denmark. usteiner@biology.sdu.dk Max Planck Society; Deutsche Forschungsgemeinschaft [SFB 973] We were supported by the Max Planck Society (LJ, UKS) and SFB 973 (Deutsche Forschungsgemeinschaft), project C5 (ARR). Ackermann M, 2007, AGING CELL, V6, P235, DOI 10.1111/j.1474-9726.2007.00281.x; Ackermann M, 2015, NAT REV MICROBIOL, V13, P497, DOI 10.1038/nrmicro3491; Balazsi G, 2011, CELL, V144, P910, DOI 10.1016/j.cell.2011.01.030; Bonnet T, 2016, AM NAT, V187, P60, DOI 10.1086/684158; Bremer Hans, 2008, EcoSal Plus, V3, DOI 10.1128/ecosal.5.2.3; Cam E, 2016, TRENDS ECOL EVOL, V31, P872, DOI 10.1016/j.tree.2016.08.002; Caswell H., 2001, MATRIX POPULATION MO; CURTSINGER JW, 1992, SCIENCE, V258, P461, DOI 10.1126/science.1411541; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Elowitz MB, 2002, SCIENCE, V297, P1183, DOI 10.1126/science.1070919; Endler J. A., 1986, NATURAL SELECTION WI; Evans SN, 2007, THEOR POPUL BIOL, V71, P473, DOI 10.1016/j.tpb.2007.02.004; FINCH C. E, 2000, CHANCE DEV AGING; Fiske IJ, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003080; Fitzpatrick SW, 2016, EVOL APPL, V9, P879, DOI 10.1111/eva.12356; Gangan MS, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.160417; Gomez Jose M G, 2010, Curr Aging Sci, V3, P198; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hartemink N, 2017, THEOR POPUL BIOL, V114, P107, DOI 10.1016/j.tpb.2017.01.001; Hartl DL, 2007, PRINCIPLES POPULATIO; HELMSTETTER CE, 1968, J MOL BIOL, V31, P507, DOI 10.1016/0022-2836(68)90424-5; Hubbell Stephen P., 2001, V32, pi; Johnson LR, 2006, MECH AGEING DEV, V127, P786, DOI 10.1016/j.mad.2006.07.004; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; KENNEDY BK, 1994, J CELL BIOL, V127, P1985, DOI 10.1083/jcb.127.6.1985; Kirkwood TBL, 2005, MECH AGEING DEV, V126, P439, DOI 10.1016/j.mad.2004.09.008; Lande R., 2003, STOCHASTIC POPULATIO; Leigh EG, 2007, J EVOLUTION BIOL, V20, P2075, DOI 10.1111/j.1420-9101.2007.01410.x; Lindner AB, 2008, P NATL ACAD SCI USA, V105, P3076, DOI 10.1073/pnas.0708931105; Lindner AB, 2009, BBA-GEN SUBJECTS, V1790, P980, DOI 10.1016/j.bbagen.2009.06.005; Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039; Medawar P. B., 1952, UNIQUENESS INDIVIDUA; Metcalf CJE, 2016, AM NAT, V187, pIII, DOI 10.1086/685487; Nystrom T, 2007, PLOS GENET, V3, P2355, DOI 10.1371/journal.pgen.0030224; Raj A, 2008, CELL, V135, P216, DOI 10.1016/j.cell.2008.09.050; Reshes G, 2008, PHYS BIOL, V5, DOI 10.1088/1478-3975/5/4/046001; Roach DA, 2012, EXP GERONTOL, V47, P782, DOI 10.1016/j.exger.2012.05.020; SCHIEMER F, 1982, OECOLOGIA, V54, P122, DOI 10.1007/BF00541118; Stearns S, 1992, EVOLUTION LIFE HIST; Steiner U. K., 2017, BIORXIV, DOI [10. 1101/105387, DOI 10.1101/105387]; Steiner UK, 2014, AM NAT, V183, P771, DOI 10.1086/675894; Steiner UK, 2012, EXP GERONTOL, V47, P773, DOI 10.1016/j.exger.2012.05.015; Steiner UK, 2010, J ANIM ECOL, V79, P436, DOI 10.1111/j.1365-2656.2009.01653.x; Steiner UK, 2012, P NATL ACAD SCI USA, V109, P4684, DOI 10.1073/pnas.1018096109; Stewart EJ, 2005, PLOS BIOL, V3, P295, DOI 10.1371/journal.pbio.0030045; Travis J, 2014, ADV ECOL RES, V50, P1, DOI 10.1016/B978-0-12-801374-8.00001-3; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x; Tyedmers J, 2010, NAT REV MOL CELL BIO, V11, P777, DOI 10.1038/nrm2993; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vindenes Y, 2015, ECOL LETT, V18, P417, DOI 10.1111/ele.12421; Wang P, 2010, CURR BIOL, V20, P1099, DOI 10.1016/j.cub.2010.04.045; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 52 2 2 8 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos MAY 2018 127 5 728 737 10.1111/oik.04292 10 Ecology Environmental Sciences & Ecology GF5RM WOS:000432025300007 2019-02-21 J Ohlberger, J; Ward, EJ; Schindler, DE; Lewis, B Ohlberger, Jan; Ward, Eric J.; Schindler, Daniel E.; Lewis, Bert Demographic changes in Chinook salmon across the Northeast Pacific Ocean FISH AND FISHERIES English Article age composition; climate; fishing; population demography; predation; size-structure WHALES ORCINUS-ORCA; MARINE MAMMAL PREDATORS; LIFE-HISTORY; POPULATION-DYNAMICS; BODY-SIZE; ONCORHYNCHUS-TSHAWYTSCHA; BRITISH-COLUMBIA; STABLE-ISOTOPE; TIME-SERIES; WEST-COAST The demographic structure of populations is affected by life history strategies and how these interact with natural and anthropogenic factors such as exploitation, climate change, and biotic interactions. Previous work suggests that the mean size and age of some North American populations of Chinook salmon (Oncorhynchus tshawytscha, Salmonidae) are declining. These trends are of concern because Chinook salmon are highly valued commercially for their exceptional size and because the loss of the largest and oldest individuals may lead to reduced population productivity. Using long-term data from wild and hatchery populations, we quantified changes in the demographic structure of Chinook salmon populations over the past four decades across the Northeast Pacific Ocean, from California through western Alaska. Our results show that wild and hatchery fish are becoming smaller and younger throughout most of the Pacific coast. Proportions of older age classes have decreased over time in most regions. Simultaneously, the length-at-age of older fish has declined while the length-at-age of younger fish has typically increased. However, negative size trends of older ages were weak or non-existent at the southern end of the range. While it remains to be explored whether these trends are caused by changes in climate, fishing practices or species interactions such as predation, our qualitative review of the potential causes of demographic change suggests that selective removal of large fish has likely contributed to the apparent widespread declines in average body sizes. [Ohlberger, Jan; Schindler, Daniel E.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA; [Ward, Eric J.] NOAA, Conservat Biol Div, Northwest Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA USA; [Lewis, Bert] Alaska Dept Fish & Game, Commercial Fisheries Div, 333 Raspberry Rd, Anchorage, AK 99518 USA Ohlberger, J (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA. janohl@uw.edu Ohlberger, Jan/0000-0001-6795-240X Cook Inlet Salmon Disaster Technical Committee through the Pacific States Marine Fisheries Commission Cook Inlet Salmon Disaster Technical Committee through the Pacific States Marine Fisheries Commission Adams J, 2016, ECOL INFORM, V34, P44, DOI 10.1016/j.ecoinf.2016.04.010; Allen B. M., 2013, NMFSAFSC277 NOAA US; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; Bigler BS, 1996, CAN J FISH AQUAT SCI, V53, P455, DOI 10.1139/cjfas-53-2-455; Bromaghin JF, 2011, NAT RESOUR MODEL, V24, P1, DOI 10.1111/j.1939-7445.2010.00077.x; Bugaev A.V, 2015, IZVESTIA TINRO, V180, P273; Burnham K. P, 2002, MODEL SELECTION MULT; Calduch-Verdiell N, 2014, CAN J FISH AQUAT SCI, V71, P1113, DOI 10.1139/cjfas-2014-0034; Center for Whale Research, 2017, SO RES KILL WHAL ID; Chasco B, 2017, CAN J FISH AQUAT SCI, V74, P1173, DOI 10.1139/cjfas-2016-0203; Chasco BE, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-14984-8; Cheung WWL, 2013, NAT CLIM CHANGE, V3, P254, DOI 10.1038/NCLIMATE1691; Chinook Technical Committee (CTC), 2016, 1602 CTC TCCHINOOK P; Ebenman B., 1988, SIZE STRUCTURED POPU; Eldridge WH, 2010, ECOL APPL, V20, P1936, DOI 10.1890/09-1186.1; ELLIS GM, 2007, NO RESIDENT KILLER W; Ford JKB, 1998, CAN J ZOOL, V76, P1456, DOI 10.1139/cjz-76-8-1456; Ford JKB, 2006, MAR ECOL PROG SER, V316, P185, DOI 10.3354/meps316185; Gardner JL, 2011, TRENDS ECOL EVOL, V26, P285, DOI 10.1016/j.tree.2011.03.005; Hanson M. Bradley, 2010, Endangered Species Research, V11, P69, DOI 10.3354/esr00263; Hard J. J., 2009, P AM FISH SOC S, V70, P759; Hare SR, 1999, FISHERIES, V24, P6, DOI 10.1577/1548-8446(1999)024<0006:IPR>2.0.CO;2; Healey M. C., 1984, CAN J FISH AQUAT SCI, V41, P1; Healey M. C, 1991, PACIFIC SALMON LIFE; Herman DP, 2005, MAR ECOL PROG SER, V302, P275, DOI 10.3354/meps302275; Hilborn R, 2012, EFFECTS SALMON FISHE; Hixon MA, 2014, ICES J MAR SCI, V71, P2171, DOI 10.1093/icesjms/fst200; Holmes EE, 2012, R J, V4, P11; Hosmer D, 2013, APPL LOGISTIC REGRES, DOI [10.1002/9781118548387, DOI 10.1002/9781118548387]; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Hutchings JA, 2005, PHILOS T ROY SOC B, V360, P315, DOI 10.1098/rstb.2004.1586; Irvine JR, 2009, 1199 NPAFC, V11991, P153; Jeffrey KM, 2017, CAN J FISH AQUAT SCI, V74, P191, DOI 10.1139/cjfas-2015-0600; Jenkins TM, 1999, ECOLOGY, V80, P941, DOI 10.2307/177029; Johnson SP, 2009, ECOL RES, V24, P855, DOI 10.1007/s11284-008-0559-0; Johnstone JA, 2014, P NATL ACAD SCI USA, V111, P14360, DOI 10.1073/pnas.1318371111; JTC (Joint Technical Committee of the Yukon River US/Canada Panel), 2006, 3A0607 JTC AL DEP FI; Kalnay E, 1996, B AM METEOROL SOC, V77, P437, DOI 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2; Kendall NW, 2011, T AM FISH SOC, V140, P611, DOI 10.1080/00028487.2011.585575; Kilduff DP, 2015, P NATL ACAD SCI USA, V112, P10962, DOI 10.1073/pnas.1503190112; Krueger C., 2013, ARCTIC YUKON KUSKOKW; Larson WA, 2013, CAN J FISH AQUAT SCI, V70, P128, DOI 10.1139/cjfas-2012-0233; Lewis B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130184; Magera AM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077908; Mantua NJ, 1997, B AM METEOROL SOC, V78, P1069, DOI 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2; Matkin CO, 2014, MAR MAMMAL SCI, V30, P460, DOI 10.1111/mms.12049; McNicol RE, 2010, T AM FISH SOC, V139, P727, DOI 10.1577/T09-033.1; Moore JW, 2011, CAN J FISH AQUAT SCI, V68, P1161, DOI 10.1139/F2011-054; Muto M. M., 2017, NMFSAFSC355 NOAA US; Ohlberger J, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1333; Ohlberger J, 2013, FUNCT ECOL, V27, P991, DOI 10.1111/1365-2435.12098; Pahlke K. A., 1989, FISHERY RES B, V89-02; Pinheiro J, 2010, MIXED EFFECTS MODELS; Popova T. A., 2015, RES AQUATIC BIOL RES, V38, P29; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; R Core Team, 2016, R LANG ENV STAT COMP; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; Ruggerone GT, 2015, CAN J FISH AQUAT SCI, V72, P818, DOI 10.1139/cjfas-2014-0134; Ruggerone Gregory T., 2009, North Pacific Anadromous Fish Commission Bulletin, V5, P279; Ruggerone GT, 2004, CAN J FISH AQUAT SCI, V61, P1756, DOI 10.1139/F04-112; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Schindler DE, 2003, FRONT ECOL ENVIRON, V1, P31, DOI 10.1890/1540-9295(2003)001[0031:PSATEO]2.0.CO;2; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Sheridan JA, 2011, NAT CLIM CHANGE, V1, P401, DOI 10.1038/NCLIMATE1259; Stan Development Team, 2016, RSTAN R INT STAN R P; Stan Development Team, 2016, MOD LANG US GUID REF; Stopha M., 2017, 5J1704 AL DEP FISH G; Thomas AC, 2017, CAN J FISH AQUAT SCI, V74, P907, DOI 10.1139/cjfas-2015-0558; Van Doornik DM, 2013, N AM J FISH MANAGE, V33, P693, DOI 10.1080/02755947.2013.790861; WALTERS CJ, 1993, T AM FISH SOC, V122, P34, DOI 10.1577/1548-8659(1993)122<0034:DDGACA>2.3.CO;2; Ward EJ, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1276; Ward E. J., 2018, ATSAR APPL TIME SERI, DOI [10. 5281/zenodo. 1158021, DOI 10.5281/ZEN0D0.1158021]; Weitkamp LA, 2010, T AM FISH SOC, V139, P147, DOI 10.1577/T08-225.1; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Zuur AF, 2003, CAN J FISH AQUAT SCI, V60, P542, DOI 10.1139/F03-030 75 3 3 14 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. MAY 2018 19 3 533 546 10.1111/faf.12272 14 Fisheries Fisheries GF5EY WOS:000431990200010 Other Gold 2019-02-21 J Cavraro, F; Gheno, G; Ganzerla, R; Zucchetta, M; Franzoi, P; Malavasi, S Cavraro, Francesco; Gheno, Giulia; Ganzerla, Renzo; Zucchetta, Matteo; Franzoi, Piero; Malavasi, Stefano Habitat constraints on carotenoid-based coloration in a small euryhaline teleost ECOLOGY AND EVOLUTION English Article carotenoids; coastal lagoons; habitat structure; killifish; life history STICKLEBACKS GASTEROSTEUS-ACULEATUS; KILLIFISH APHANIUS-FASCIATUS; GUPPIES POECILIA-RETICULATA; MALE MATING SUCCESS; MEDITERRANEAN KILLIFISH; LIGHTING ENVIRONMENT; BLUEFIN KILLIFISH; SEXUAL COLORATION; LUCANIA-GOODEI; CICHLID FISH Display of bright and striking color patterns is a widespread way of communication in many animal species. Carotenoid-based coloration accounts for most of the bright yellow, orange, and red displays in invertebrates, fish, amphibians, reptiles, and birds, being widely considered a signal of individual health. This type of coloration is under the influence of several factors, such as sexual selection, predator pressure, pigment availability, and light transmission. Fish offer numerous examples of visual communication by means of color patterns. We used a small cyprinodontid fish, Aphanius fasciatus (Valenciennes, 1821), as a model species to assess habitat constraints on the color display in male caudal fin. Populations from natural and open/closed artificial habitats were tested for differences in the pigmentation of caudal fins. The most important factors explaining the intensity of coloration were the habitat type and the chlorophyll concentration in the sediment, followed by water turbidity; yellow fins were observed in natural habitats with low chlorophyll concentration and high water turbidity, while orange fins occurred in artificial habitats with high chlorophyll concentration and low turbidity. Furthermore, A. fasciatus in artificial habitats showed a higher somatic and a lower reproductive allotment with respect to natural habitats, according to the existing literature on the species. Furthermore, in closed artificial habitats, where the most intense reddish coloration of caudal fins was observed, a trade-off between somatic growth and the coloration intensity of a carotenoid-based sexual ornament has been observed; in these populations, intensity of caudal fin coloration was negatively related to the somatic allotment. Results of this study suggested how both the pigmentation of male's caudal fin and the life history strategies of the species are constrained by habitat characteristics. [Cavraro, Francesco; Zucchetta, Matteo; Franzoi, Piero; Malavasi, Stefano] Ca Foscari Univ Venice, Dept Environm Sci Informat & Stat, Venice, Italy; [Gheno, Giulia; Ganzerla, Renzo] Ca Foscari Univ Venice, Dept Mol Sci & Nanosyst, Venice, Italy Cavraro, F (reprint author), Ca Foscari Univ Venice, Dept Environm Sci Informat & Stat, Venice, Italy. cavraro@unive.it Alonso-Alvarez C, 2008, J EVOLUTION BIOL, V21, P1789, DOI 10.1111/j.1420-9101.2008.01591.x; Andersson Staffan, 2000, P47; Brigolin D, 2016, ESTUAR COAST SHELF S, V172, P60, DOI 10.1016/j.ecss.2016.01.038; Brown AC, 2014, FUNCT ECOL, V28, P612, DOI 10.1111/1365-2435.12205; Burtt E. H. J., 1979, BEHAV SIGNIFICANCE C, P209; Candolin U, 2007, J EVOLUTION BIOL, V20, P233, DOI 10.1111/j.1420-9101.2006.01207.x; Cavraro F, 2013, BIOL BULL-US, V225, P71, DOI 10.1086/BBLv225n2p71; Cavraro F., 2013, Transitional Waters Bulletin, V7, P23; Cavraro F, 2017, ECOL ENG, V99, P228, DOI 10.1016/j.ecoleng.2016.11.045; Cavraro F, 2014, J SEA RES, V85, P205, DOI 10.1016/j.seares.2013.05.004; Clotfelter ED, 2007, BEHAV ECOL, V18, P1139, DOI 10.1093/beheco/arm090; Cott H. B., 1940, ADAPTIVE COLORATION; Deutsch JC, 1997, BIOL J LINN SOC, V62, P1; ENDLER JA, 1988, PHILOS T ROY SOC B, V319, P505, DOI 10.1098/rstb.1988.0062; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; ENDLER JA, 1992, AM NAT, V139, pS125, DOI 10.1086/285308; Evans MR, 1996, BEHAV ECOL, V7, P1, DOI 10.1093/beheco/7.1.1; FRISCHKNECHT M, 1993, EVOL ECOL, V7, P439, DOI 10.1007/BF01237640; Fuller RC, 2004, EVOLUTION, V58, P1086; Fuller RC, 2002, P ROY SOC B-BIOL SCI, V269, P1457, DOI 10.1098/rspb.2002.2042; Gandolfi G., 1991, PESCI ACQUE INTERNE, P361; Grether GF, 2000, EVOLUTION, V54, P1712; Grether GF, 1999, P ROY SOC B-BIOL SCI, V266, P1317, DOI 10.1098/rspb.1999.0781; Grether GF, 2001, P ROY SOC B-BIOL SCI, V268, P1245, DOI 10.1098/rspb.2001.1624; Hailman J.P., 1979, P289; Hill GE, 1996, ETHOL ECOL EVOL, V8, P157, DOI 10.1080/08927014.1996.9522926; HOLM-HANSEN OSMUND, 1965, J CONS CONS PERMS INTE EXPLOR MER, V30, P3; Johnson AM, 2015, BEHAV ECOL, V26, P158, DOI 10.1093/beheco/aru164; Kalinowski CT, 2005, AQUACULTURE, V244, P223, DOI 10.1016/j.aquaculture.2004.11.001; Kodric-Brown A, 1998, AM ZOOL, V38, P70; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; Latscha T., 1990, CAROTENOIDS THEIR NA; Leonardos I, 2008, SCI MAR, V72, P393; Levin N, 2005, INT J REMOTE SENS, V26, P5475, DOI 10.1080/01431160500099444; Maan ME, 2010, BIOL J LINN SOC, V99, P398, DOI 10.1111/j.1095-8312.2009.01368.x; MacIntyre HL, 1996, ESTUARIES, V19, P186, DOI 10.2307/1352224; Malavasi S, 2010, MAR FRESHW BEHAV PHY, V43, P157, DOI 10.1080/10236244.2010.480837; Maltagliati F, 1999, MAR ECOL PROG SER, V179, P155, DOI 10.3354/meps179155; Marshall NJ, 2000, PHILOS T ROY SOC B, V355, P1243, DOI 10.1098/rstb.2000.0676; McGraw KJ, 2005, ANIM BEHAV, V69, P757, DOI 10.1016/j.anbehav.2004.06.022; MCMAHON TE, 1988, J FISH BIOL, V32, P825, DOI 10.1111/j.1095-8649.1988.tb05426.x; Mcneil GV, 2016, BIOL J LINN SOC, V118, P551, DOI 10.1111/bij.12748; Olson VA, 1998, TRENDS ECOL EVOL, V13, P510, DOI 10.1016/S0169-5347(98)01484-0; Pauers M. J., 2011, INT J EVOLUTIONARY B, V2011; Pike TW, 2010, BIOL LETTERS, V6, P191, DOI 10.1098/rsbl.2009.0815; Pinheiro J., 2017, NLME LINEAR NONLINEA, DOI DOI 10.5194/TC-10-2291-2016; Pinheiro JC, 2000, MIXED EFFECTS MODELS, P528, DOI DOI 10.1007/978-1-4419-0318-1; REIMCHEN TE, 1989, EVOLUTION, V43, P450, DOI 10.1111/j.1558-5646.1989.tb04239.x; Rowland W.J., 1979, P381; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Svensson PA, 2006, FUNCT ECOL, V20, P689, DOI 10.1111/j.1365-2435.2006.01151.x; Vinkler M, 2010, NATURWISSENSCHAFTEN, V97, P19, DOI 10.1007/s00114-009-0595-9; Webster IT, 2002, ESTUARIES, V25, P540, DOI 10.1007/BF02804889; Zang LY, 1997, FREE RADICAL BIO MED, V23, P1086, DOI 10.1016/S0891-5849(97)00138-X; Zuur AF, 2009, MIXED EFFECTS MODELS, P574, DOI DOI 10.1007/978-0-387-87458-6 56 0 0 11 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAY 2018 8 9 4422 4430 10.1002/ece3.4003 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GF5DY WOS:000431987300006 29760884 DOAJ Gold, Green Published 2019-02-21 J McFarlane, SE; Alund, M; Sirkia, PM; Qvarnstrom, A McFarlane, S. Eryn; Alund, Murielle; Sirkia, Paivi M.; Qvarnstrom, Anna Difference in plasticity of resting metabolic rate - the proximate explanation to different niche breadth in sympatric Ficedula flycatchers ECOLOGY AND EVOLUTION English Article cross-fostering; Ficedula flycatchers; plasticity; resting metabolic rate PHENOTYPIC FLEXIBILITY; PIED FLYCATCHER; ENERGY-EXPENDITURE; SIBERIAN HAMSTERS; CLIMATE-CHANGE; CLUTCH SIZE; FOOD-INTAKE; BODY-MASS; COEXISTENCE; ADAPTATION Variation in relative fitness of competing recently formed species across heterogeneous environments promotes coexistence. However, the physiological traits mediating such variation in relative fitness have rarely been identified. Resting metabolic rate (RMR) is tightly associated with life history strategies, thermoregulation, diet use, and inhabited latitude and could therefore moderate differences in fitness responses to fluctuations in local environments, particularly when species have adapted to different climates in allopatry. We work in a long-term study of collared (Ficedula albicollis) and pied flycatchers (Ficedula hypoleuca) in a recent hybrid zone located on the Swedish island of Oland in the Baltic Sea. Here, we explore whether differences in RMR match changes in relative performance of growing flycatcher nestlings across environmental conditions using an experimental approach. The fitness of pied flycatchers has previously been shown to be less sensitive to the mismatch between the peak in food abundance and nestling growth among late breeders. Here, we find that pied flycatcher nestlings have lower RMR in response to higher ambient temperatures (associated with low food availability). We also find that experimentally relaxed nestling competition is associated with an increased RMR in this species. In contrast, collared flycatcher nestlings did not vary their RMR in response to these environmental factors. Our results suggest that a more flexible nestling RMR in pied flycatchers is responsible for the better adaptation of pied flycatchers to the typical seasonal changes in food availability experienced in this hybrid zone. Generally, subtle physiological differences that have evolved when species were in allopatry may play an important role to patterns of competition, coexistence, or displacements between closely related species in secondary contact. [McFarlane, S. Eryn; Alund, Murielle; Qvarnstrom, Anna] Uppsala Univ, Evolutionary Biol Ctr, Anim Ecol Ecol & Genet, Uppsala, Sweden; [Sirkia, Paivi M.] Univ Helsinki, Finnish Museum Nat Hist, Zool Unit, Helsinki, Finland; [Sirkia, Paivi M.] Univ Turku, Dept Biol, Sect Ecol, Turku, Finland; [McFarlane, S. Eryn] Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland McFarlane, SE (reprint author), Uppsala Univ, Evolutionary Biol Ctr, Anim Ecol Ecol & Genet, Uppsala, Sweden. eryn.mcfarlane@gmail.com Alund, Murielle/0000-0003-2861-9721 Vetenskapsradet [621-2012-3722]; Suomen Akatemia [267430]; Natural Sciences and Engineering Research Council of Canada [PGSD-444379-2013]; Stiftelsen for Zoologisk Forskning Vetenskapsradet, Grant/Award Number: 621-2012-3722; Suomen Akatemia, Grant/Award Number: 267430; Natural Sciences and Engineering Research Council of Canada, Grant/Award Number: PGSD-444379-2013; Stiftelsen for Zoologisk Forskning Amarasekare P, 2001, AM NAT, V158, P572, DOI 10.1086/323586; Amarasekare P, 2003, ECOL LETT, V6, P1109, DOI 10.1046/j.1461-0248.2003.00530.x; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Belmaker J, 2011, GLOBAL ECOL BIOGEOGR, V20, P464, DOI 10.1111/j.1466-8238.2010.00615.x; Boratynski JS, 2017, PHYSIOL BIOCHEM ZOOL, V90, P139, DOI 10.1086/689870; Boratynski JS, 2016, J COMP PHYSIOL B, V186, P387, DOI 10.1007/s00360-016-0959-3; Both C, 2004, P ROY SOC B-BIOL SCI, V271, P1657, DOI 10.1098/rspb.2004.2770; Both C., 2010, FOOD AVAILABILITY MI, P129; Broggi J, 2007, FUNCT ECOL, V21, P528, DOI 10.1111/j.1365-2435.2007.01255.x; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Bushuev AV, 2012, J ZOOL, V288, P245, DOI 10.1111/j.1469-7998.2012.00947.x; Chesson P, 1997, AM NAT, V150, P519, DOI 10.1086/286080; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; CHESSON PL, 1981, AM NAT, V117, P923, DOI 10.1086/283778; Christensen B., 2014, LMERTEST TESTS RANDO; Cramer ERA, 2016, EVOLUTION, V70, DOI 10.1111/evo.12986; Darwin C., 1859, ORIGIN SPECIES MEANS; Forstmeier W, 2011, BEHAV ECOL SOCIOBIOL, V65, P47, DOI 10.1007/s00265-010-1038-5; Hadfield JD, 2013, EVOLUTION, V67, P2701, DOI 10.1111/evo.12144; Handelsman CA, 2013, INTEGR COMP BIOL, V53, P975, DOI 10.1093/icb/ict057; Keller I, 2012, MOL ECOL, V21, P782, DOI 10.1111/j.1365-294X.2011.05397.x; KERSTEN M, 1987, ARDEA, V75, P175; Klaassen M, 2004, COMP BIOCHEM PHYS A, V137, P639, DOI 10.1016/j.cbpb.2003.12.004; LASIEWSKI R. C., 1964, CONDOR, V66, P212, DOI 10.2307/1365646; Lewden A, 2012, J COMP PHYSIOL B, V182, P381, DOI 10.1007/s00360-011-0625-8; Lighton J. R., 2008, MEASURING METABOLIC, DOI [10. 1093/acprof:oso/9780195310610. 001. 0001, DOI 10.1093/ACPR0F:0S0/9780195310610.001.0001]; Lourdais O, 2004, OIKOS, V104, P551, DOI 10.1111/j.0030-1299.2004.12961.x; Lovegrove BG, 2003, J COMP PHYSIOL B, V173, P87, DOI 10.1007/s00360-002-0309-5; Lundberg A., 1992, PIED FLYCATCHER; McFarlane SE, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0161547; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; McKechnie AE, 2008, J COMP PHYSIOL B, V178, P235, DOI 10.1007/s00360-007-0218-8; MORENO J, 1989, ORNIS SCAND, V20, P123, DOI 10.2307/3676879; MORENO J, 1995, J ANIM ECOL, V64, P721, DOI 10.2307/5851; Mueller P, 2001, P NATL ACAD SCI USA, V98, P12550, DOI 10.1073/pnas.221456698; Nadachowska-Brzyska K, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003942; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Naya DE, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1629; Nilsson JA, 2009, J EVOLUTION BIOL, V22, P1867, DOI 10.1111/j.1420-9101.2009.01798.x; Pigot AL, 2013, ECOL LETT, V16, P330, DOI 10.1111/ele.12043; Qvarnstrom A, 2005, BIOL LETTERS, V1, P68, DOI 10.1098/rsbl.2004.0265; Qvarnstrom A, 2016, EVOL APPL, V9, P119, DOI 10.1111/eva.12276; Qvarnstrom A, 2010, PHILOS T R SOC B, V365, P1841, DOI 10.1098/rstb.2009.0306; Qvarnstrom A, 2009, ECOLOGY, V90, P1948, DOI 10.1890/08-0494.1; R Core Team, 2013, R LANG ENV STAT COMP; Ronning B, 2007, J EVOLUTION BIOL, V20, P1815, DOI 10.1111/j.1420-9101.2007.01384.x; Rybinski J, 2016, EVOLUTION, V70, P2226, DOI 10.1111/evo.13019; Sanz JJ, 1997, J AVIAN BIOL, V28, P157, DOI 10.2307/3677309; Schmidt-Nielsen K, 1997, ANIMAL PHYSL ADAPTAT; Sirkia PM, 2018, EVOLUTION, V72, P363, DOI 10.1111/evo.13404; Somero GN, 2010, J EXP BIOL, V213, P912, DOI 10.1242/jeb.037473; Song ZG, 2006, PHYSIOL BEHAV, V89, P704, DOI 10.1016/j.physbeh.2006.08.016; Speakman JR, 1996, PHYSIOL ZOOL, V69, P746, DOI 10.1086/physzool.69.4.30164228; Spicer J., 2009, PHYSL DIVERSITY ECOL; Stager M, 2016, ECOGRAPHY, V39, P787, DOI 10.1111/ecog.01465; Stenseth NC, 2002, SCIENCE, V297, P1292, DOI 10.1126/science.1071281; Swanson DL, 2017, J COMP PHYSIOL B, V187, P1039, DOI 10.1007/s00360-017-1096-3; Tayleur C, 2015, GLOBAL ECOL BIOGEOGR, V24, P859, DOI 10.1111/geb.12308; Vallin N, 2012, EVOL ECOL, V26, P927, DOI 10.1007/s10682-011-9536-0; Versteegh MA, 2008, COMP BIOCHEM PHYS A, V150, P452, DOI 10.1016/j.cbpa.2008.05.006; Visser ME, 1998, P ROY SOC B-BIOL SCI, V265, P1867, DOI 10.1098/rspb.1998.0514; Wallace A. R., 1878, TROPICAL NATURE OTHE, DOI [10.5962/bhl.title.1261, DOI 10.5962/BHL.TITLE.1261]; Wiley C, 2007, J EVOLUTION BIOL, V20, P854, DOI 10.1111/j.1420-9101.2007.01316.x; Zub K, 2014, BIOL J LINN SOC, V113, P297, DOI 10.1111/bij.12306 64 0 0 2 3 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAY 2018 8 9 4575 4586 10.1002/ece3.3987 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GF5DY WOS:000431987300020 29760898 DOAJ Gold, Green Published 2019-02-21 J Spagopoulou, F; Blom, MPK Spagopoulou, Foteini; Blom, Mozes P. K. Digest: Life history evolution in Darwin's dream ponds EVOLUTION English Article Can variation in sex-specific parental investment lead to sexual dimorphism in immune response? Keller et al. (2018) measured immune cell parameters, expression of candidate genes, and composition of buccal microbiota in mouthbrooding cichlid species from Lake Tanganyika that show either maternal or biparental care. They found that maternal mouthbrooding species have increased sexual dimorphism in immune parameters, while biparental mouthbrooders exhibit an upregulated adaptive immune response, suggesting resource allocation shifts between parental investment and the immune system. [Spagopoulou, Foteini] Uppsala Univ, Dept Ecol & Genet, Anim Ecol, Norbyvagen 18D, S-75236 Uppsala, Sweden; [Blom, Mozes P. K.] Nat Hist Riksmuseet, Dept Bioinformat & Genet, Frescativagen 40, S-10405 Stockholm, Sweden Spagopoulou, F (reprint author), Uppsala Univ, Dept Ecol & Genet, Anim Ecol, Norbyvagen 18D, S-75236 Uppsala, Sweden. spagopoulou@gmail.com Blom, Mozes/0000-0002-6304-9827 Adler MI, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a017566; Keller IS, 2018, EVOLUTION, V72, P1109, DOI 10.1111/evo.13452; Morley JI, 2003, ENVIRON BIOL FISH, V66, P169, DOI 10.1023/A:1023610905675; Rowe L., 1996, P ROY SOC LOND B BIO, V263, P1414; Stearns S, 1992, EVOLUTION LIFE HIST; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547 6 0 0 0 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution MAY 2018 72 5 1186 1188 10.1111/evo.13473 3 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GF5EQ WOS:000431989400015 29603725 Bronze 2019-02-21 J Araya-Ajoy, YG; Bolstad, GH; Brommer, J; Careau, V; Dingemanse, NJ; Wright, J Araya-Ajoy, Yimen G.; Bolstad, Geir H.; Brommer, Jon; Careau, Vincent; Dingemanse, Niels J.; Wright, Jonathan Demographic measures of an individual's "pace of life": fecundity rate, lifespan, generation time, or a composite variable? BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Fast-slowcontinuum; Individual variation; Life history trade-offs; Multi-level variation FAST-SLOW CONTINUUM; POPULATION-GROWTH RATE; HISTORY VARIATION; MAMMALIAN POPULATIONS; EMPIRICAL-EVIDENCE; TRADE-OFFS; REPRODUCTION; TRAITS; COSTS; COVARIATION Comparative analyses have demonstrated the existence of a "pace-of-life" (POL) continuum of life-history strategies, from fast-reproducing short-lived species to slow-reproducing long-lived species. This idea has been extended to the concept of a "pace-of-life syndrome" (POLS), an axis of phenotypic covariation among individuals within species, concerning morphological, physiological, behavioral and life-history traits. Several life-history metrics can be used to place species in the fast-slow continuum; here, we asked whether individual variation in POL can also be studied using similar life-history measures. We therefore translated measures commonly used in demographic studies into individual-level estimates. We studied fecundity rate, generation time, lifespan, age at first reproduction, fecundity at first reproduction, and principal component scores integrating these different metrics. Using simulations, we show how demographic stochasticity and individual variation in resources affect the ability to predict an individual's POL using these individual-level parameters. We found that their accuracy depends on how environmental stochasticity varies with the species' position on the fast-slow continuum and with the amount of (co) variation in life-history traits caused by individual differences in resources. These results highlight the importance of studying the sources of life-history covariation to determine whether POL explains the covariation between morphological, physiological, and behavioral traits within species. Our simulations also show that quantifying not only among-individual but also among-population patterns of life-history covariation helps in interpreting demographic estimates in the study of POLSs within species. Significance statement It has been demonstrated that there is a continuum of life-history strategies, from fast-reproducing short-lived species to slow-reproducing long-lived species. This pattern of variation in the tempo of life-history strategies has been named the pace-of-life continuum. Recently, it has been suggested that within a population, variation in pace of life explains differences between individuals in their morphological, behavioral, and physiological traits. This paper provides guidelines on how to quantify the pace of life of individuals using demographic approaches that have been developed to study the pace of life of species. [Araya-Ajoy, Yimen G.; Wright, Jonathan] Norwegian Univ Sci & Technol NTNU, CBD, Dept Biol, N-7491 Trondheim, Norway; [Bolstad, Geir H.] Norwegian Inst Nat Res NINA, N-7485 Trondheim, Norway; [Brommer, Jon] Univ Turku, Dept Biol, Univ Hill, Turku 20014, Finland; [Careau, Vincent] Univ Ottawa, Dept Biol, Canada Res Chair Funct Ecol, Ottawa, ON K1N 6N5, Canada; [Dingemanse, Niels J.] Ludwig Maximilian Univ Munich LMU, Dept Biol, Behav Ecol, Planegg, Martinsried, Germany Araya-Ajoy, YG (reprint author), Norwegian Univ Sci & Technol NTNU, CBD, Dept Biol, N-7491 Trondheim, Norway. yimencr@gmail.com Careau, Vincent/A-9778-2008; Brommer, Jon/C-3613-2008 Careau, Vincent/0000-0002-2826-7837; Brommer, Jon/0000-0002-2435-2612; Bolstad, Geir H./0000-0003-1356-8239 European Research Council [ERC-2010-AdG 268,562]; Research Council of Norway [SFF-III 223257/F50] We are grateful to the sponsors, organizers, and participants of the VW-funded workshops "Towards a general theory of POLS," Hannover 2015-6, which inspired this journal topical collection and provided feedback during discussions of earlier versions of the ideas presented here. We also thank Jean-Michel Gaillard, Melanie Dammhahn, Denis Reale, and one anonymous reviewer for the insightful comments during the reviewing process. This work was supported by the European Research Council (ERC-2010-AdG 268,562) and the Research Council of Norway (SFF-III 223257/F50). Araya-Ajoy YG, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2645; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Bjorkvoll E, 2012, AM NAT, V180, P372, DOI 10.1086/666983; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Dammhahn M, 2018, BEHAV ECOL SOCIOBIOL; Descamps S, 2016, J EVOLUTION BIOL, V29, P1860, DOI 10.1111/jeb.12901; Dingemanse NJ, 2010, ANIM BEHAV, V79, P439, DOI 10.1016/j.anbehav.2009.11.024; Ferrari SLP, 2004, J APPL STAT, V31, P799, DOI 10.1080/0266476042000214501; FRY JD, 1993, EVOLUTION, V47, P327, DOI 10.1111/j.1558-5646.1993.tb01224.x; Gaillard J.-M., 2016, ENCY EVOLUTIONARY BI, P312; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Goodwin NB, 2006, CAN J FISH AQUAT SCI, V63, P494, DOI 10.1139/f05-234; Grace JB, 2010, ECOL MONOGR, V80, P67, DOI 10.1890/09-0464.1; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kendall BE, 2010, AM NAT, V175, P461, DOI 10.1086/650724; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; MacNulty DR, 2009, ECOL LETT, V12, P1347, DOI 10.1111/j.1461-0248.2009.01385.x; Mathot KJ, 2018, BEHAV ECOL SOCIOBIOL; Montiglio P-O, 2018, BEHAV ECOL SOCIOBIOL; Oli MK, 2005, AM NAT, V166, P124, DOI 10.1086/430332; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff D., 1993, EVOLUTION LIFE HIST; Saether BE, 2005, NATURE, V436, P99, DOI 10.1038/nature03666; Saether BE, 2004, AM NAT, V164, P793, DOI 10.1086/425371; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Santostefano F, 2017, P R SOC B, V284, P1864; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tarka M, 2018, BEHAV ECOL SOCIOBIOL; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x 46 2 2 10 17 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. MAY 2018 72 5 UNSP 75 10.1007/s00265-018-2477-7 14 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology GF1PJ WOS:000431706500001 2019-02-21 J Hilderbrand, GV; Gustine, DD; Mangipane, BA; Joly, K; Leacock, W; Mangipane, LS; Erlenbach, J; Sorum, MS; Cameron, MD; Belant, JL; Cambier, T Hilderbrand, G. V.; Gustine, D. D.; Mangipane, B. A.; Joly, K.; Leacock, W.; Mangipane, L. S.; Erlenbach, J.; Sorum, M. S.; Cameron, M. D.; Belant, J. L.; Cambier, T. Body size and lean mass of brown bears across and within four diverse ecosystems JOURNAL OF ZOOLOGY English Article age; body size; brown bear; lean mass; Ursus arctos; intraspecific variation; niche variation NICHE VARIATION HYPOTHESIS; URSUS-ARCTOS; INDIVIDUAL-DIFFERENCES; NORTHERN CANADA; RESOURCE USE; GROWTH; SALMON; ECOLOGY; HABITAT; LENGTH Variation in body size across populations of brown bears (Ursus arctos) is largely a function of the availability and quality of nutritional resources while plasticity within populations reflects utilized niche width with implications for population resiliency. We assessed skull size, body length, and lean mass of adult female and male brown bears in four Alaskan study areas that differed in climate, primary food resources, population density, and harvest regime. Full body-frame size, as evidenced by asymptotic skull size and body length, was achieved by 8-14years of age across populations and sexes. Lean body mass of both sexes continued to increase throughout their life. Differences between populations existed for all morphological measures in both sexes, bears in ecosystems with abundant salmon were generally larger. Within all populations, broad variation was seen in body size measures of adults with females displaying roughly a 2-fold difference in lean mass and males showing a 3- to 4-fold difference. The high level of intraspecific variation seen across and within populations suggests the presence of multiple life-history strategies and niche variation relative to resource partitioning, risk tolerance or aversion, and competition. Furthermore, this level of variation indicates broad potential to adapt to changes within a given ecosystem and across the species' range. [Hilderbrand, G. V.] US Geol Survey, Alaska Sci Ctr, Univ Dr, Anchorage, AK 99508 USA; [Gustine, D. D.] Natl Pk Serv, Grand Teton Natl Pk, Moose, WY USA; [Mangipane, B. A.] Natl Pk Serv, Lake Clark Natl Pk & Preserve, Port Alsworth, AK USA; [Joly, K.; Sorum, M. S.; Cameron, M. D.] Natl Pk Serv, Gates Arctic Natl Pk & Preserve, Fairbanks, AK USA; [Leacock, W.] US Fish & Wildlife Serv, Kodiak Natl Wildlife Refuge, Kodiak, AK USA; [Mangipane, L. S.; Belant, J. L.] Mississippi State Univ, Forest & Wildlife Res Ctr, Carnivore Ecol Lab, Mississippi State, MS 39762 USA; [Erlenbach, J.] Washington State Univ, Dept Zool, Pullman, WA 99164 USA; [Cambier, T.] Chena River Aviat, Fairbanks, AK USA Hilderbrand, GV (reprint author), US Geol Survey, Alaska Sci Ctr, Univ Dr, Anchorage, AK 99508 USA. ghilderbrand@usgs.gov Cameron, Matthew/0000-0001-7347-4491; Gustine, Dave/0000-0003-1087-1937; Hilderbrand, Grant/0000-0002-0051-8315 National Park Service; US Fish and Wildlife Service; US Geological Survey Funding was provided by the National Park Service, US Fish and Wildlife Service, and the US Geological Survey. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government. W. Deacy, A. Morehouse, J. Powers, A Greenblatt, M. Keller, J. DeCreeft, R. Richotte, C. Cebulski, D. Welty, I. Bedingfield, K. Rees, K. VanHatten, and J. and J. Cummings assisted with field data collection. K. Rode provided advice on analyses of growth rates. The efforts of M. Haroldson, T. Bartareau, and an anonymous reviewer greatly improved this manuscript. Bartareau TM, 2011, CAN J ZOOL, V89, P1128, DOI 10.1139/Z11-088; Bartareau TM, 2012, URSUS, V23, P12; Belant JL, 2006, ECOL APPL, V16, P2333, DOI 10.1890/1051-0761(2006)016[2333:IRPISU]2.0.CO;2; Belant JL, 2010, POLAR BIOL, V33, P31, DOI 10.1007/s00300-009-0682-6; Ben-David M, 2004, OECOLOGIA, V138, P465, DOI 10.1007/s00442-003-1442-x; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Bolnick DI, 2007, P NATL ACAD SCI USA, V104, P10075, DOI 10.1073/pnas.0703743104; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Dahle B, 2003, BEHAV ECOL SOCIOBIOL, V54, P352, DOI 10.1007/s00265-003-0638-8; Dall SRX, 2012, ECOL LETT, V15, P1189, DOI 10.1111/j.1461-0248.2012.01846.x; Deacy W, 2016, ECOLOGY, V97, P1091, DOI 10.1890/15-1060.1; Deacy WW, 2017, P NATL ACAD SCI USA, V114, P10432, DOI 10.1073/pnas.1705248114; Derocher AE, 2002, J ZOOL, V256, P343, DOI 10.1017/S0952836902000377; Erlenbach JA, 2014, J MAMMAL, V95, P160, DOI 10.1644/13-MAMM-A-161; FARLEY SD, 1994, CAN J ZOOL, V72, P220, DOI 10.1139/z94-029; Gonzalez O, 2012, BEHAV ECOL SOCIOBIOL, V66, P1025, DOI 10.1007/s00265-012-1350-3; Gur H, 2012, J ZOOL, V287, P104, DOI 10.1111/j.1469-7998.2011.00893.x; Harley CDG, 2006, ECOL LETT, V9, P228, DOI 10.1111/j.1461-0248.2005.00871.x; HENSEL RJ, 1969, J WILDLIFE MANAGE, V33, P357, DOI 10.2307/3799836; Hilderbrand G.V, 2018, BROWN BEAR PHENOTYPI, DOI 10. 5066/F7MS3R0C; Hilderbrand GV, 1998, J WILDLIFE MANAGE, V62, P406, DOI 10.2307/3802306; Hilderbrand GV, 2000, J WILDLIFE MANAGE, V64, P178, DOI 10.2307/3802988; Hilderbrand GV, 1999, CAN J ZOOL, V77, P132, DOI 10.1139/cjz-77-1-132; Hilderbrand GV, 1999, CAN J ZOOL, V77, P1623, DOI 10.1139/cjz-77-10-1623; HOLM S, 1979, SCAND J STAT, V6, P65; Hudin NS, 2016, BEHAV ECOL, V27, P1833, DOI 10.1093/beheco/arw108; Jeffrey KM, 2017, CAN J FISH AQUAT SCI, V74, P191, DOI 10.1139/cjfas-2015-0600; Lafferty DJR, 2015, OIKOS, V124, P732, DOI 10.1111/oik.01741; Leclerc M, 2016, OECOLOGIA, V180, P697, DOI 10.1007/s00442-015-3500-6; Mangipane L.S., 2017, POLAR BIOL; Markon Carl J., 1995, Polar Record, V31, P179; McLellan BN, 2011, CAN J ZOOL, V89, P546, DOI 10.1139/Z11-026; Mowat G, 2006, CAN J ZOOL, V84, P473, DOI 10.1139/z06-016; O'Brien J.P., 2005, ALASKA FISHERIES DAT, V2005-15, P23; O'Neel S, 2015, BIOSCIENCE, V65, P499, DOI 10.1093/biosci/biv027; Pasitschniak-Arts M, 1993, AM J MAMMOLOGISTS, V439, P1, DOI DOI 10.HTTPS://D0I.0RG/10.2307; R Core Team, 2013, R LANG ENV STAT COMP; Rode KD, 2006, ECOLOGY, V87, P2636, DOI 10.1890/0012-9658(2006)87[2636:SDRSAH]2.0.CO;2; Rode KD, 2014, GLOBAL CHANGE BIOL, V20, P76, DOI 10.1111/gcb.12339; Rode KD, 2010, ECOL APPL, V20, P768, DOI 10.1890/08-1036.1; SAND H, 1995, OECOLOGIA, V102, P433, DOI 10.1007/BF00341355; Semmens BX, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006187; Servheen C., 1999, BEAR STATUS SURVEY C; SIDAK Z, 1967, J AM STAT ASSOC, V62, P626, DOI 10.2307/2283989; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stahler DR, 2013, J ANIM ECOL, V82, P222, DOI 10.1111/j.1365-2656.2012.02039.x; Stanek AE, 2017, CAN J ZOOL, V95, P555, DOI 10.1139/cjz-2016-0203; Stoen OG, 2006, BEHAV ECOL SOCIOBIOL, V61, P1, DOI 10.1007/s00265-006-0231-z; TAYLOR WP, 1989, J WILDLIFE MANAGE, V53, P978, DOI 10.2307/3809598; Tinker MT, 2012, ECOL LETT, V15, P475, DOI 10.1111/j.1461-0248.2012.01760.x; Van Hemert C, 2015, BIOSCIENCE, V65, P718, DOI 10.1093/biosci/biv069; Van Valen L., 1965, AM NAT, V99, P377, DOI DOI 10.1086/282379; Villegas-Amtmann S, 2008, MAR ECOL PROG SER, V363, P299, DOI 10.3354/meps07457; Welch CA, 1997, ECOLOGY, V78, P1105, DOI 10.2307/2265862; Wilson RR, 2014, ARCTIC, V67, P472, DOI 10.14430/arctic4421; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Zar J. H., 1999, BIOSTATISTICAL ANAL; Zedrosser A, 2007, J ANIM ECOL, V76, P368, DOI 10.1111/j.1365-2656.2006.01203.x 58 1 1 7 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. MAY 2018 305 1 53 62 10.1111/jzo.12536 10 Zoology Zoology GF1AN WOS:000431663500007 2019-02-21 J Bellamy, SK; Alto, BW Bellamy, Shawna K.; Alto, Barry W. Mosquito responses to trait- and density-mediated interactions of predation OECOLOGIA English Article Predator-prey; Disease vector ecology; Life histories; Aedes aegypti; Toxorhynchites rutilus LIFE-HISTORY EVOLUTION; AEDES-AEGYPTI DIPTERA; BIOLOGICAL-CONTROL; BEHAVIOR; COMPETITION; RISK; FOOD; PLASTICITY; CULICIDAE; SURVIVAL Mosquito and predatory larvae often share the same habitat. Predators may influence mosquito prey populations through both lethal effect and non-lethal pathways. A series of experimental manipulations were used to distinguish between lethal (density-mediated interaction) and non-lethal (trait-mediated interaction) effects in a model system comprised of invasive prey mosquito, Aedes aegypti, and a predatory mosquito Toxorhynchites rutilus. Treatments with predators present or manipulations mimicking daily mortality (density reduction) reduced developmental time and recruitment to the adult stage. Daily records of adult survival of A. aegypti showed that exposure to predators during the juvenile stage shortened the lifespan of adults. This was also observed in treatments, where A. aegypti were replaced at the rate of consumption by T. rutilus. In contrast, numerical reductions in A. aegypti that mimicked daily rate of predation led to adults with the longest lifespan. These observations suggest strong effects of density and trait-mediated interactions in the influence of predators on mosquito biology relevant to their ability to transmit pathogens. These results have potentially important implications for disease control strategies. The primary approach to reduce risk of mosquito-borne diseases is through population reduction of the vectors. We show an unanticipated benefit of biological control by predation for the control of juvenile stages of mosquitoes. Specifically, mosquitoes that are exposed to predators but survive to adulthood will have compromised life expectancy, a key parameter in determining risk of disease transmission. [Bellamy, Shawna K.; Alto, Barry W.] Univ Florida, Florida Med Entomol Lab, Dept Entomol & Nematol, IFAS, 200 9th St SE, Vero Beach, FL 32962 USA Alto, BW (reprint author), Univ Florida, Florida Med Entomol Lab, Dept Entomol & Nematol, IFAS, 200 9th St SE, Vero Beach, FL 32962 USA. bwalto@ufl.edu Abrams PA, 2007, ECOLOGY, V88, P2555, DOI 10.1890/06-1381.1; Alto BW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045785; Alto BW, 2005, OECOLOGIA, V146, P300, DOI 10.1007/s00442-005-0198-x; Babbitt KJ, 1998, OECOLOGIA, V114, P258, DOI 10.1007/s004420050444; Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; Barrera R, 2006, J MED ENTOMOL, V43, P484, DOI 10.1603/0022-2585(2006)43[484:EFIAAD]2.0.CO;2; Bedhomme S, 2003, J EVOLUTION BIOL, V16, P721, DOI 10.1046/j.1420-9101.2003.00576.x; Beketov MA, 2007, ECOL ENTOMOL, V32, P405, DOI 10.1111/j.1365-2311.2007.00889.x; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; Briegel H, 2001, J VECTOR ECOL, V26, P21; CAIN AJ, 1952, HEREDITY, V6, P217, DOI 10.1038/hdy.1952.22; CALTAGIRONE LE, 1981, ANNU REV ENTOMOL, V26, P213, DOI 10.1146/annurev.en.26.010181.001241; Cook PE, 2008, ADV EXP MED BIOL, V627, P126, DOI 10.1007/978-0-387-78225-6_11; Corbet P. S., 1963, Proceedings of the Royal Entomological Society of London, V38, P125; Costanzo KS, 2011, ECOL ENTOMOL, V36, P605, DOI 10.1111/j.1365-2311.2011.01302.x; Creel S, 2007, SCIENCE, V315, P960, DOI 10.1126/science.1135918; Daugherty MP, 2000, J MED ENTOMOL, V37, P364, DOI 10.1603/0022-2585(2000)037[0364:ICAARF]2.0.CO;2; FOX LR, 1975, ANNU REV ECOL SYST, V6, P87, DOI 10.1146/annurev.es.06.110175.000511; Gerling D, 2001, CROP PROT, V20, P779, DOI 10.1016/S0261-2194(01)00111-9; GERLING D, 1992, FLA ENTOMOL, V75, P446, DOI 10.2307/3496126; Grill CP, 1996, J ANIM ECOL, V65, P63, DOI 10.2307/5700; Gurevitch J, 2000, AM NAT, V155, P435, DOI 10.1086/303337; Iturbe-Ormaetxe I, 2011, EMBO REP, V12, P508, DOI 10.1038/embor.2011.84; Juliano SA, 2002, BEHAV ECOL, V13, P301, DOI 10.1093/beheco/13.3.301; KOHLER SL, 1989, ECOLOGY, V70, P1811, DOI 10.2307/1938114; Laurila A, 1998, OIKOS, V83, P307, DOI 10.2307/3546842; Lounibos L.P., 1985, P65; LOUNIBOS LP, 1993, OIKOS, V66, P114, DOI 10.2307/3545203; Matz C, 2005, TRENDS MICROBIOL, V13, P302, DOI 10.1016/j.tim.2005.05.009; Mayntz D, 2006, J ANIM ECOL, V75, P288, DOI 10.1111/j.1365-2656.2006.01046.x; McCauley SJ, 2011, ECOLOGY, V92, P2043, DOI 10.1890/11-0455.1; McCollum SA, 1997, OECOLOGIA, V109, P615, DOI 10.1007/s004420050124; MERRITT RW, 1992, ANNU REV ENTOMOL, V37, P349, DOI 10.1146/annurev.en.37.010192.002025; MORIN PJ, 1983, ECOL MONOGR, V53, P119, DOI 10.2307/1942491; Nicieza AG, 2000, OECOLOGIA, V123, P497, DOI 10.1007/s004420000343; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Pechenik JA, 2006, INTEGR COMP BIOL, V46, P323, DOI 10.1093/icb/icj028; PECKARSKY BL, 1982, BIOSCIENCE, V32, P261, DOI 10.2307/1308532; Preisser EL, 2005, ECOLOGY, V86, P501, DOI 10.1890/04-0719; Rasgon JL, 2003, J MED ENTOMOL, V40, P125, DOI 10.1603/0022-2585-40.2.125; Relyea RA, 2000, ECOLOGY, V81, P2278, DOI 10.2307/177114; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Roux O, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.2430; Sailer RI, 1971, NE1953244 USDA FOR S; Scheiner S.M, 2001, DESIGN ANAL ECOLOGIC, P99; SKELLY DK, 1990, ECOLOGY, V71, P2313, DOI 10.2307/1938642; STEFFAN WA, 1981, ANNU REV ENTOMOL, V26, P159, DOI 10.1146/annurev.en.26.010181.001111; Stoks R, 2006, ECOLOGY, V87, P809, DOI 10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2; TONN WM, 1992, ECOLOGY, V73, P951, DOI 10.2307/1940171; Tun-Lin W, 2000, MED VET ENTOMOL, V14, P31, DOI 10.1046/j.1365-2915.2000.00207.x; van Uitregt VO, 2012, J ANIM ECOL, V81, P108, DOI 10.1111/j.1365-2656.2011.01880.x; VANDENBOSCH R, 1975, ENVIRON LETT, V8, P5, DOI 10.1080/00139307509435833; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WERNER EE, 1983, ECOLOGY, V64, P1540, DOI 10.2307/1937508; WERNER EE, 1991, ECOLOGY, V72, P1709, DOI 10.2307/1940970; Yee DA, 2007, J MED ENTOMOL, V44, P580, DOI 10.1603/0022-2585(2007)44[580:DAIEOA]2.0.CO;2 59 0 0 5 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia MAY 2018 187 1 233 243 10.1007/s00442-018-4107-5 11 Ecology Environmental Sciences & Ecology GF1CA WOS:000431668500020 29594613 2019-02-21 J Myers, PJ; Young, JK Myers, Patrick J.; Young, Julie K. Consistent individual behavior: evidence of personality in black bears JOURNAL OF ETHOLOGY English Article Novel object; Open field; Repeatability; Ursus americanus; Captive; Startle object; Activity ANIMAL PERSONALITY; OPEN-FIELD; URSUS-AMERICANUS; GASTEROSTEUS-ACULEATUS; NATAL DISPERSAL; UNITED-STATES; EARLY DEATH; BOLDNESS; WILD; EXPLORATION Personality is defined as consistency in individual differences in organismal behavior across time or context, a phenomenon of interest within behavioral and evolutionary ecology. Empirical data have revealed an ever-increasing number and diversity of taxa that display these phenotypic patterns in both wild and captive settings. Moreover, these behavioral traits are frequently linked to wild behavior, life history strategies, and measures of individual fitness. Understanding personality is of particular importance for some animals, such as large carnivores, which may express maladaptive behavior that can lead to conflict with humans. To date, few studies of personality exist on large carnivores and none have investigated the presence of personality in black bears (Ursus americanus). Through focal animal sampling, and open field, novel object, and startle object tests, we investigate the potential for personality in captive black bear cubs. Results indicate the presence of personality, with consistency in behavior across five metrics for the bold-shy axis, and eight sampling events measuring responses for the activity axis. Information presented here reveals the presence of personality in black bear cubs, and may provide a framework for future investigations into relationships of personality with ecology and life history. [Myers, Patrick J.] Utah State Univ, Dept Wildland Resources, 5230 Old Main Hill, Logan, UT 84322 USA; [Young, Julie K.] Utah State Univ, USDA, Natl Wildlife Res Ctr, Predator Res Facil,Dept Wildland Resources, 5230 Old Main Hill, Logan, UT 84322 USA Young, JK (reprint author), Utah State Univ, USDA, Natl Wildlife Res Ctr, Predator Res Facil,Dept Wildland Resources, 5230 Old Main Hill, Logan, UT 84322 USA. julie.young@usu.edu Utah Division of Wildlife Resources; Department of Wildland Resources at Utah State University; USDA National Wildlife Resource Center We wish to thank the Utah Division of Wildlife Resources for allowing us to conduct this study and for their technical support. We thank S. Brummer, E. Stevenson, J. Schultz, N. Floyd, and M. Davis at the USDA NWRC Predator Research Facility for their assistance. Earlier drafts of this manuscript were reviewed by F. Howe, K. Jordan, and two anonymous reviewers. Funding was provided by the Utah Division of Wildlife Resources, the Department of Wildland Resources at Utah State University, and the USDA National Wildlife Resource Center. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; Bateman PW, 2012, J ZOOL, V287, P1, DOI 10.1111/j.1469-7998.2011.00887.x; Beckmann JP, 2003, J ZOOL, V261, P207, DOI 10.1017/S0952836903004126; Beecham JJ, 2007, P 2007 INT WORKSH RE, P23; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Benson-Amram S, 2016, P NATL ACAD SCI USA, V113, P2532, DOI 10.1073/pnas.1505913113; Biro PA, 2012, ANIM BEHAV, V83, P1295, DOI 10.1016/j.anbehav.2012.01.036; Boon AK, 2007, ECOL LETT, V10, P1094, DOI 10.1111/j.1461-0248.2007.01106.x; Boyer N, 2010, J ANIM ECOL, V79, P538, DOI 10.1111/j.1365-2656.2010.01659.x; Bremner-Harrison S, 2004, ANIM CONSERV, V7, P313, DOI 10.1017/S1367943004001490; Brydges NM, 2008, J ANIM ECOL, V77, P229, DOI 10.1111/j.1365-2656.2007.01343.x; Burns JG, 2008, J COMP PSYCHOL, V122, P344, DOI 10.1037/0735-7036.122.4.344; Butlers SJ, 2006, BEHAVIOUR, V143, P535, DOI 10.1163/156853906776240632; Can OE, 2014, CONSERV LETT, V7, P501, DOI 10.1111/conl.12117; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Caspi A, 2005, ANNU REV PSYCHOL, V56, P453, DOI 10.1146/annurev.psych.55.090902.141913; Cavigelli SA, 2003, P NATL ACAD SCI USA, V100, P16131, DOI 10.1073/pnas.2535721100; Chapman BB, 2010, BEHAV ECOL, V21, P501, DOI 10.1093/beheco/arq003; Cole EF, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2014.0178; Coleman K, 1998, ANIM BEHAV, V56, P927, DOI 10.1006/anbe.1998.0852; Cote J, 2007, P R SOC B, V274, P383, DOI 10.1098/rspb.2006.3734; Cote J, 2010, PHILOS T R SOC B, V365, P4065, DOI 10.1098/rstb.2010.0176; Dammhahn M, 2012, P ROY SOC B-BIOL SCI, V279, P2645, DOI 10.1098/rspb.2012.0212; Darwin C., 1861, ORIGIN SPECIES; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dingemanse NJ, 2003, P ROY SOC B-BIOL SCI, V270, P741, DOI 10.1098/rspb.2002.2300; Fagen R, 1996, ETHOLOGY, V102, P212; Fraser DF, 2001, AM NAT, V158, P124, DOI 10.1086/321307; Gamer M, 2012, IRR VARIOUS COEFFICI; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Gosling SD, 1998, J COMP PSYCHOL, V112, P107, DOI 10.1037/0735-7036.112.2.107; Groothuis TGG, 2011, DEV PSYCHOBIOL, V53, P641, DOI 10.1002/dev.20574; Herde A, 2013, BMC ECOL, V13, DOI 10.1186/1472-6785-13-49; Hostetler JA, 2009, BIOL CONSERV, V142, P2456, DOI 10.1016/j.biocon.2009.05.029; HUNTINGFORD FA, 1976, ANIM BEHAV, V24, P245, DOI 10.1016/S0003-3472(76)80034-6; Johnson HE, 2015, BIOL CONSERV, V187, P164, DOI 10.1016/j.biocon.2015.04.014; Johnson JC, 2005, BEHAV ECOL SOCIOBIOL, V58, P390, DOI 10.1007/s00265-005-0943-5; Johnson-Ulrich Z, 2016, ANIM COGN, V19, P1237, DOI 10.1007/s10071-016-1011-4; KAISER HF, 1991, PSYCHOL REP, V68, P855, DOI 10.2466/pr0.1991.68.3.855; Kallai J, 2007, BEHAV NEUROSCI, V121, P21, DOI 10.1037/0735-7044.121.1.21; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Kortet R, 2007, BIOL J LINN SOC, V91, P475, DOI 10.1111/j.1095-8312.2007.00812.x; Lantova P, 2011, ETHOLOGY, V117, P124, DOI 10.1111/j.1439-0310.2010.01860.x; Lariviere Serge, 2001, Mammalian Species, V647, P1, DOI 10.1644/1545-1410(2001)647<0001:UA>2.0.CO;2; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Linnell JDC, 1999, WILDLIFE SOC B, V27, P698; MACDONALD K, 1983, J COMP PSYCHOL, V97, P99; MCCALL RB, 1969, DEV PSYCHOL, V1, P750, DOI 10.1037/h0028200; McDougall PT, 2006, ANIM CONSERV, V9, P39, DOI 10.1111/j.1469-1795.2005.00004.x; Meehan CL, 2002, APPL ANIM BEHAV SCI, V79, P75, DOI 10.1016/S0168-1591(02)00118-1; Mettke-Hofmann C, 2002, ETHOLOGY, V108, P249, DOI 10.1046/j.1439-0310.2002.00773.x; Minderman J, 2010, BEHAV ECOL, V21, P1321, DOI 10.1093/beheco/arq151; R Core Team, 2016, R LANG ENV STAT COMP; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P3937, DOI 10.1098/rstb.2010.0222; Reinhold K, 2002, J HERED, V93, P400, DOI 10.1093/jhered/93.6.400; RENNER MJ, 1990, PSYCHOBIOLOGY, V18, P16; Rieucau G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044801; Seyfarth RM, 2012, P NATL ACAD SCI USA, V109, P16980, DOI 10.1073/pnas.1210780109; Sharma S, 2009, J COMP PHYSIOL A, V195, P225, DOI 10.1007/s00359-008-0400-9; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2008, ADV STUD BEHAV, V38, P227, DOI 10.1016/S0065-3454(08)00005-3; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; STIRLING I, 1990, INT C BEAR, V8, P189; Stoinski TS, 2003, BEHAVIOUR, V140, P137, DOI 10.1163/156853903321671479; TREIT D, 1988, PHARMACOL BIOCHEM BE, V31, P959, DOI 10.1016/0091-3057(88)90413-3; Treves A, 2003, CONSERV BIOL, V17, P1491, DOI 10.1111/j.1523-1739.2003.00059.x; VALLE FP, 1970, AM J PSYCHOL, V83, P103, DOI 10.2307/1420860; van Oers K, 2004, P ROY SOC B-BIOL SCI, V271, P65, DOI 10.1098/rspb.2003.2518; Vonk J, 2012, ANIM BEHAV, V84, P953, DOI 10.1016/j.anbehav.2012.07.020; WALSH RN, 1976, PSYCHOL BULL, V83, P482, DOI 10.1037//0033-2909.83.3.482; Ward AJW, 2007, P R SOC B, V274, P1071, DOI 10.1098/rspb.2006.0231; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WHITTIER JL, 1965, CAN J PSYCHOLOGY, V19, P224, DOI 10.1037/h0082909; Wilcove DS, 1998, BIOSCIENCE, V48, P607, DOI 10.2307/1313420; WILSON DS, 1994, TRENDS ECOL EVOL, V9, P442, DOI 10.1016/0169-5347(94)90134-1; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001 83 1 1 20 37 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 0289-0771 1439-5444 J ETHOL J. Ethol. MAY 2018 36 2 117 124 10.1007/s10164-018-0541-4 8 Behavioral Sciences; Zoology Behavioral Sciences; Zoology GE4GI WOS:000431173000002 Green Published 2019-02-21 J Ryo, M; Yoshimura, C; Iwasaki, Y Ryo, Masahiro; Yoshimura, Chihiro; Iwasaki, Yuichi Importance of antecedent environmental conditions in modeling species distributions ECOGRAPHY English Article ESTIMATING SITE OCCUPANCY; LIFE-HISTORY STRATEGIES; RANDOM FORESTS; STREAM MACROINVERTEBRATES; SPATIAL AUTOCORRELATION; BIOTIC INTERACTIONS; NEIGHBOR MATRICES; THERMAL REGIMES; ECOLOGICAL DATA; FLOW REGIME Although species distributions can change in an unexpectedly short period of time, most species distribution models (SDMs) use only long-term averaged environmental conditions to explain species distributions. We aimed to demonstrate the importance of incorporating antecedent environmental conditions into SDMs in comparison to long-term averaged environmental conditions. We modeled the presence/absence of 18 fish species captured across 108 sampling events along a 50-km length of the Sagami River in Japan throughout the 1990s (one to four times per site at 45 sites). We constructed and compared the two types of SDMs: 1) a conventional model that uses only long-term averaged (10-yr) environmental conditions; and 2) a proposed model that incorporates environmental conditions 2 yr prior to a sampling event (antecedent conditions) together with long-term averages linked to life-history stages. These models both included geomorphological, hydrological, and sampling conditions as predictors. A random forest algorithm was applied for modeling and quantifying the relative importance of the predictors. For seven species, antecedent hydrological conditions were more important than the long-term averaged hydrological conditions. Furthermore, the distributions of two species with low prevalence could not be predicted using long-term averaged hydrological conditions but only using antecedent hydrological conditions. In conclusion, incorporating antecedent environmental factors linked with life-history stages at appropriate time scales can better explain changes in species distribution through time. [Ryo, Masahiro] Eawag Swiss Fed Inst Aquat Sci & Technol, Dubendorf, Switzerland; [Ryo, Masahiro] Free Univ Berlin, Berlin, Germany; [Ryo, Masahiro; Yoshimura, Chihiro] Tokyo Inst Technol, Meguro Ku, Tokyo, Japan; [Iwasaki, Yuichi] Natl Inst Adv Ind Sci & Technol, Res Inst Sci Safety & Sustainabil, Tsukuba, Ibaraki, Japan Ryo, M (reprint author), Eawag Swiss Fed Inst Aquat Sci & Technol, Dubendorf, Switzerland.; Ryo, M (reprint author), Free Univ Berlin, Berlin, Germany.; Ryo, M (reprint author), Tokyo Inst Technol, Meguro Ku, Tokyo, Japan. masahiroryo@gmail.com IWASAKI, Yuichi/A-4634-2009 IWASAKI, Yuichi/0000-0001-7006-8113 'Young Researchers Exchange Programme between Japan and Switzerland' under the Japanese-Swiss Science and Technology Programme [EG 11-2015]; JSPS research fellowship [26-11771]; KAKENHI [15K00592]; JST CREST The study was performed as part of a fellowship in the 'Young Researchers Exchange Programme between Japan and Switzerland' under the 'Japanese-Swiss Science and Technology Programme' (EG 11-2015) and supported by a JSPS research fellowship (26-11771), KAKENHI (15K00592), and JST CREST. Amorim F, 2015, MAMM BIOL, V80, P228, DOI 10.1016/j.mambio.2015.01.005; Araujo MB, 2012, ECOLOGY, V93, P1527, DOI 10.1890/11-1930.1; Battisti A, 2006, GLOBAL CHANGE BIOL, V12, P662, DOI 10.1111/j.1365-2486.2006.01124.x; Benda L, 2004, BIOSCIENCE, V54, P413, DOI 10.1641/0006-3568(2004)054[0413:TNDHHC]2.0.CO;2; Blanchet FG, 2008, ECOL MODEL, V215, P325, DOI 10.1016/j.ecolmodel.2008.04.001; Borcard D, 2002, ECOL MODEL, V153, P51, DOI 10.1016/S0304-3800(01)00501-4; Boulangeat I, 2012, ECOL LETT, V15, P584, DOI 10.1111/j.1461-0248.2012.01772.x; Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324; Breiman L., 1984, CLASSIFICATION REGRE; Chen IC, 2011, SCIENCE, V333, P1024, DOI 10.1126/science.1206432; Comte L, 2013, DIVERS DISTRIB, V19, P996, DOI 10.1111/ddi.12078; Cottenie K, 2005, ECOL LETT, V8, P1175, DOI 10.1111/j.1461-0248.2005.00820.x; DEANGELIS DL, 1987, ECOL MONOGR, V57, P1, DOI 10.2307/1942636; Dewson ZS, 2007, J N AM BENTHOL SOC, V26, P401, DOI 10.1899/06-110.1; Dextrase AJ, 2014, FRESHWATER BIOL, V59, P1799, DOI 10.1111/fwb.12384; Diaz-Uriarte R, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-3; Domisch S, 2015, FUND APPL LIMNOL, V186, P45, DOI 10.1127/fal/2015/0627; Domisch S, 2013, GLOBAL CHANGE BIOL, V19, P752, DOI 10.1111/gcb.12107; Dormann CF, 2007, ECOGRAPHY, V30, P609, DOI 10.1111/j.2007.0906-7590.05171.x; Dormann CF, 2007, GLOBAL ECOL BIOGEOGR, V16, P129, DOI 10.1111/j.1466-8238.2006.00279.x; Dray S, 2006, ECOL MODEL, V196, P483, DOI 10.1016/j.ecolmodel.2006.02.015; Elith J, 2009, ANNU REV ECOL EVOL S, V40, P677, DOI 10.1146/annurev.ecolsys.110308.120159; Enders EC, 2009, RIVER RES APPL, V25, P2, DOI 10.1002/rra.1214; Falke JA, 2012, ECOLOGY, V93, P858, DOI 10.1890/11-1515.1; Filipe AF, 2002, RIVER RES APPL, V18, P123, DOI 10.1002/rra.638; Freeman EA, 2008, ECOL MODEL, V217, P48, DOI 10.1016/j.ecolmodel.2008.05.015; George SD, 2015, FRESHWATER BIOL, V60, P2511, DOI 10.1111/fwb.12577; Ghedini G., 2015, CLIM CHANGE RES, V2, P6; Gorski K, 2012, RIVER RES APPL, V28, P1121, DOI 10.1002/rra.1499; Grabowski TB, 2007, SOUTHEAST NAT, V6, P471, DOI 10.1656/1528-7092(2007)6[471:EOFFOT]2.0.CO;2; Growns I, 2005, J FISH BIOL, V66, P404, DOI 10.1111/j.1095-8649.2004.00605.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hanski I, 1998, NATURE, V396, P41, DOI 10.1038/23876; Hapfelmeier A, 2013, COMPUT STAT DATA AN, V60, P50, DOI 10.1016/j.csda.2012.09.020; Hothorn T., 2015, LAB RECURSIVE PARTIT; Howard C, 2014, METHODS ECOL EVOL, V5, P506, DOI 10.1111/2041-210X.12184; Huang J, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129995; Iwasaki Y, 2012, FRESHWATER BIOL, V57, P2173, DOI 10.1111/j.1365-2427.2012.02861.x; Jahnig SC, 2012, J BIOGEOGR, V39, P2253, DOI 10.1111/jbi.12009; Janitza S, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-119; Kanno Y, 2017, FRESHWATER BIOL, V62, P868, DOI 10.1111/fwb.12906; Kawanabe H., 2001, JAPANESE FRESHWATER; King AJ, 2009, RIVER RES APPL, V25, P1205, DOI 10.1002/rra.1209; Kinzig A. P., 2006, ECOL SOC, V11, P23; Kuemmerlen M, 2014, ECOL MODEL, V277, P77, DOI 10.1016/j.ecolmodel.2014.01.020; Kuhn M., 2015, CLASSIFICATION REGRE; Lancaster J, 2010, RIVER RES APPL, V26, P385, DOI 10.1002/rra.1274; Legendre P, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2728; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; MacKenzie DI, 2011, METHODS ECOL EVOL, V2, P612, DOI 10.1111/j.2041-210X.2011.00110.x; MacKenzie DI, 2003, ECOLOGY, V84, P2200, DOI 10.1890/02-3090; MacKenzie DI, 2002, ECOLOGY, V83, P2248, DOI 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2; Magalhaes MF, 2007, FRESHWATER BIOL, V52, P1494, DOI 10.1111/j.1365-2427.2007.01781.x; McCluskey SM, 2008, FISH FISH, V9, P188, DOI 10.1111/j.1467-2979.2008.00283.x; Minomiya A., 2008, B KANAGAWA PREFECTUR, V3, P1; Muneepeerakul R, 2008, NATURE, V453, P220, DOI 10.1038/nature06813; Nicodemus KK, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-110; Ogle K, 2015, ECOL LETT, V18, P221, DOI 10.1111/ele.12399; Oksanen J, 2017, R PACKAGE VERSION, V2, P4; Olden JD, 2010, FRESHWATER BIOL, V55, P86, DOI 10.1111/j.1365-2427.2009.02179.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; RICHARDS LJ, 1986, CAN J FISH AQUAT SCI, V43, P1214, DOI 10.1139/f86-151; Rolls RJ, 2013, FRESHWATER BIOL, V58, P1804, DOI [10.1111/fwb.12169, 10.111]; Ryo M., 2017, DRYAD DIGITAL REPOSI, DOI [10. 5061/dryad. m41g1, DOI 10.5061/DRYAD.M41G1]; Ryo M, 2016, HYDROL EARTH SYST SC, V20, P3411, DOI 10.5194/hess-20-3411-2016; Ryo M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133833; Santika T, 2014, DIVERS DISTRIB, V20, P786, DOI 10.1111/ddi.12189; Soininen J, 2014, GLOBAL ECOL BIOGEOGR, V23, P1264, DOI 10.1111/geb.12204; Strobl C, 2007, BMC BIOINFORMATICS, V8, DOI 10.1186/1471-2105-8-25; Strobl C, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-307; Tetzlaff D, 2005, HYDROBIOLOGIA, V549, P65, DOI 10.1007/s10750-005-4166-6; Thompson RM, 2013, ECOL LETT, V16, P799, DOI 10.1111/ele.12095; Thuiller W, 2013, ECOL LETT, V16, P94, DOI 10.1111/ele.12104; Tockner K, 2010, FRESHWATER BIOL, V55, P135, DOI 10.1111/j.1365-2427.2009.02371.x; Tonkin ZD, 2011, FRESHWATER BIOL, V56, P1769, DOI 10.1111/j.1365-2427.2011.02612.x; Vazquez DP, 2017, BIOL REV, V92, P22, DOI 10.1111/brv.12216; Vezza P, 2015, ENVIRON MODELL SOFTW, V67, P173, DOI 10.1016/j.envsoft.2015.01.005; Winder M, 2011, ECOL LETT, V14, P749, DOI 10.1111/j.1461-0248.2011.01635.x; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; Yoshimura C, 2005, RIVER RES APPL, V21, P93, DOI 10.1002/rra.835 82 3 3 7 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography MAY 2018 41 5 825 836 10.1111/ecog.02925 12 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology GE0OU WOS:000430915200010 2019-02-21 J Uematsu, K; Shibao, H Uematsu, K.; Shibao, H. Extended lifespan and overlapping of generations in a gall-forming social aphid, Quadrartus yoshinomiyai INSECTES SOCIAUX English Article Social aphids; Gall; Evolution of aging; Life history evolution SUMMER DIAPAUSE; CLOSED GALL; HORMAPHIDINAE; HEMIPTERA; NYMPHS; HOMOPTERA; EVOLUTION; DEFENDERS; DEFENSE; REPRODUCTION The evolutionary relationship between sociality and extended lifespan has been studied in many taxa. We investigated the seasonal population dynamics and individual lifespan in a gall-forming social aphid, Quadrartus yoshinomiyai, whose wingless adults defend the colony after ceasing reproduction. The galls of this species are completely closed for over a year, which facilitates monitoring aphid mortality rates in natural galls. Gall foundresses, which were born before winter and formed galls in April, were alive until December, indicating that they can survive for a year. The second-generation wingless adults, born in May or June of the first year, were alive in mature galls collected in March or April of the second year. Morphometric analysis revealed an overlap of three generations in a mature gall; the appendages of the second-generation wingless adults were smaller than those of the third-generation wingless adults. Our results suggest that the extended lifespan, favored in a completely closed gall where extrinsic mortality is very low, promotes the overlap of generations and post-reproductive colony defense by the wingless adults. An extended post-reproductive lifespan might also be favored if the cost of death by the potentially rapid spread of infectious diseases in the completely closed space exceeds the cost of living without reproduction. [Uematsu, K.; Shibao, H.] Univ Tokyo, Dept Gen Syst Sci, Tokyo 1538902, Japan; [Shibao, H.] Univ Tsukuba, Grad Sch Life & Environm Sci, 1-1-1 Tennoudai, Tsukuba, Ibaraki 3058572, Japan Uematsu, K (reprint author), Univ Tokyo, Dept Gen Syst Sci, Tokyo 1538902, Japan. keigouematsu@gmail.com; harunobushibao@gmail.com JSPS; JSPS KAKENHI [JP08J10171, JP20570016] We thank two anonymous reviewers for comments on the manuscript. This study was supported by a JSPS Research Fellowship for Young Scientists to K.U., and also by JSPS KAKENHI Grant nos. JP08J10171, JP20570016. Abbot P, 2017, COMP SOCIAL EVOLUTIO, P124; Abbot P, 2015, ADV INSECT PHYSIOL, V48, P163, DOI 10.1016/bs.aiip.2014.12.005; Akimoto S, 1996, INSECT SOC, V43, P1, DOI 10.1007/BF01253951; Aoki S, 1998, J ETHOL, V16, P91, DOI 10.1007/BF02769287; Aoki S, 2015, ENTOMOL SCI, V18, P420, DOI 10.1111/ens.12144; Beauchamp G, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0844; Brent LJN, 2015, CURR BIOL, V25, P746, DOI 10.1016/j.cub.2015.01.037; Croft DP, 2015, TRENDS ECOL EVOL, V30, P407, DOI 10.1016/j.tree.2015.04.011; Dixon AFG, 1998, APHID ECOLOGY OPTIMI; Downing PA, 2017, BIOESSAYS, V39, DOI 10.1002/bies.201600136; Downing PA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1663; Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539; Foster W.A., 1994, Systematics Association Special Volume Series, V49, P161; Fukatsu T, 2005, INSECT SOC, V52, P132, DOI 10.1007/s00040-005-0790-4; Heinze J, 2008, GERONTOLOGY, V54, P160, DOI 10.1159/000122472; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Kurosu U., 1998, P235; Kurosu U, 2003, P ROY SOC B-BIOL SCI, V270, pS12, DOI 10.1098/rsbl.2003.0026; KUROSU U, 1995, J ETHOL, V13, P133, DOI 10.1007/BF02352573; Kurosu U, 2009, PSYCHE A, DOI 10.1155/2009/159478; Kurosu Utako, 2016, Psyche (Cambridge), P4036571; Kutsukake M, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms2187; Kutsukake M, 2009, P ROY SOC B-BIOL SCI, V276, P1555, DOI 10.1098/rspb.2008.1628; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Li ChangSong, 2000, Soybean Science, V19, P337; MASAKI S, 1980, ANNU REV ENTOMOL, V25, P1, DOI 10.1146/annurev.en.25.010180.000245; MICHENER CD, 1969, ANNU REV ENTOMOL, V14, P299, DOI 10.1146/annurev.en.14.010169.001503; Ngakan PO, 2004, ESAKIA, V44, P125; NISHITANI I, 1991, Japanese Journal of Entomology, V59, P577; Pianka E. R, 1994, EVOLUTIONARY ECOLOGY; Pike N, 2004, ECOL ENTOMOL, V29, P89, DOI 10.1111/j.0307-6946.2004.00569.x; Pike N, 2008, ECOLOGY SOCIAL EVOLU, P36; Pike N, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-185; R Core Team, 2017, R LANG ENV STAT COMP; Richardson ML, 2011, ENTOMOL EXP APPL, V140, P139, DOI 10.1111/j.1570-7458.2011.01144.x; SAKATA K, 1991, INSECT SOC, V38, P317, DOI 10.1007/BF01314917; Shibao H, 2002, J INSECT PHYSIOL, V48, P495, DOI 10.1016/S0022-1910(02)00073-2; Sorin Masato, 2001, Bulletin of the Faculty of Literature Kogakkan University, V40, P127; Tabuchi K, 2009, ANN ENTOMOL SOC AM, V102, P456, DOI 10.1603/008.102.0315; Tilmon KJ, 2011, J INTEGR PEST MANAG, V2, DOI 10.1603/IPM10016; Uematsu K, 2007, SOCIOBIOLOGY, V50, P711; Uematsu K, 2014, ENTOMOL SCI, V17, P118, DOI 10.1111/ens.12029; Uematsu K, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1053; Uematsu K, 2010, CURR BIOL, V20, P1182, DOI 10.1016/j.cub.2010.04.057; Wilson E. O., 1971, INSECT SOC; Winston M. L., 1991, BIOL HONEY BEE; Withgott JH, 1997, P ROY SOC B-BIOL SCI, V264, P1197, DOI 10.1098/rspb.1997.0165 47 0 0 1 1 SPRINGER BASEL AG BASEL PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND 0020-1812 1420-9098 INSECT SOC Insect. Soc. MAY 2018 65 2 241 249 10.1007/s00040-018-0604-0 9 Entomology Entomology GD5HV WOS:000430538900006 2019-02-21 J Rasmann, S; Vilas, JS; Glauser, G; Cartolano, M; Lempe, J; Tsiantis, M; Pannell, JR Rasmann, Sergio; Vilas, Julia Sanchez; Glauser, Gaetan; Cartolano, Maria; Lempe, Janne; Tsiantis, Miltos; Pannell, John R. Pleiotropic effect of the Flowering Locus C on plant resistance and defence against insect herbivores JOURNAL OF ECOLOGY English Article altitudinal gradients; flowering time; glucosinolates; growth-defence trade-off hypothesis; jasmonic acid; Pieris; plant-herbivore interaction NATURAL ALLELIC VARIATION; ARABIDOPSIS-THALIANA; CARDAMINE-HIRSUTA; RESOURCE AVAILABILITY; INDUCED RESPONSES; TRAITS; SPECIALIST; ACID; METAANALYSIS; GENERALIST Plants vary widely in the extent to which they defend themselves against herbivores. Because the resources available to plants are often site-specific, variation among sites dictates investment into defence and may reveal a growth-defence trade-off. Moreover, plants that have evolved different life-history strategies in different environments may situate themselves on this trade-off curve differently. For instance, plants that flower later have a longer vegetative life span and may accordingly defend themselves differently than those that flower earlier. Here, we tested whether late-flowering plants, with a longer vegetative life span, invest more in defence than early-flowering plants, using recombinant genotypes of the annual herb Cardamine hirsuta that differ in flowering time as a result of differences in the activity of the major floral repressor Flowering Locus C (FLC). We found that variation at FLC was mainly responsible for regulating flowering time and allocation to reproduction, but this partially depended on where the plants grew. We also found that variation at FLC mediated plant allocation to defence, with late-flowering plants producing higher levels of total glucosinolates and stress-related phytohormones. Nonetheless, plant growth and the qualitative values of plant defence and plant resistance against specialist herbivores were mainly independent from FLC.Synthesis. Our results highlight pleiotropic effects associated with flowering-time genes that might influence plant defence and plant-herbivore interactions. [Rasmann, Sergio] Univ Neuchatel, Inst Biol, Neuchatel, Switzerland; [Vilas, Julia Sanchez] Cardiff Univ, Cardiff Sch Biosci, Organisms & Environm Div, Cardiff, S Glam, Wales; [Glauser, Gaetan] Univ Neuchatel, Neuchatel Platform Analyt Chem, Neuchatel, Switzerland; [Cartolano, Maria; Lempe, Janne; Tsiantis, Miltos] Max Planck Inst Plant Breeding Res, Dept Comparat Dev & Genet, Cologne, Germany; [Pannell, John R.] Univ Lausanne, Dept Ecol & Evolut, Lausanne, Switzerland Rasmann, S (reprint author), Univ Neuchatel, Inst Biol, Neuchatel, Switzerland. sergio.rasmann@unine.ch SANCHEZ VILAS, JULIA/0000-0002-4049-8443; Glauser, Gaetan/0000-0002-0983-8614 Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung [31003A_159869, PZ00P3_131956]; Max-Planck-Gesellschaft; Deutsche Forschungsgemeinschaft [TS 229/1-1] Schweizerischer Nationalfonds zur Forderung der Wissenschaftlichen Forschung, Grant/Award Number: 31003A_159869 and PZ00P3_131956; Max-Planck-Gesellschaft; Deutsche Forschungsgemeinschaft, Grant/Award Number: TS 229/1-1 Agrawal A. A., 2010, EVOLUTION SINCE DARW, V150, P243; Agrawal AA, 2006, ECOLOGY, V87, pS132, DOI 10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2; Agrawal AA, 2013, AM NAT, V181, pS35, DOI 10.1086/666727; Ali JG, 2012, TRENDS PLANT SCI, V17, P293, DOI 10.1016/j.tplants.2012.02.006; Alonso-Blanco C, 2003, GENETICS, V164, P711; Alonso-Blanco C, 1999, P NATL ACAD SCI USA, V96, P4710, DOI 10.1073/pnas.96.8.4710; Barkoulas M, 2008, NAT GENET, V40, P1136, DOI 10.1038/ng.189; Barton KE, 2010, AM NAT, V175, P481, DOI 10.1086/650722; Benderoth M, 2006, P NATL ACAD SCI USA, V103, P9118, DOI 10.1073/pnas.0601738103; Bodenhausen N, 2007, MOL PLANT MICROBE IN, V20, P1406, DOI 10.1094/MPMI-20-11-1406; Canales C, 2010, J PLANT RES, V123, P25, DOI 10.1007/s10265-009-0263-3; Cartolano M, 2015, P NATL ACAD SCI USA, V112, P10539, DOI 10.1073/pnas.1419791112; CATES RG, 1975, ECOLOGY, V56, P410, DOI 10.2307/1934971; CHAPIN FS, 1980, J ECOL, V68, P189; Cheverud J. M., 2000, CHARACTER CONCEPT EV, P411; CHEW FS, 1991, AM NAT, V138, P729, DOI 10.1086/285246; Chiang GCK, 2009, P NATL ACAD SCI USA, V106, P11661, DOI 10.1073/pnas.0901367106; Cipollini D, 2003, BASIC APPL ECOL, V4, P79, DOI 10.1078/1439-1791-00134; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; COLEY PD, 1983, ECOL MONOGR, V53, P209, DOI 10.2307/1942495; De Vos M, 2005, MOL PLANT MICROBE IN, V18, P923, DOI 10.1094/MPMI-18-0923; Endara MJ, 2011, FUNCT ECOL, V25, P389, DOI 10.1111/j.1365-2435.2010.01803.x; Erb M, 2010, CHEM-EUR J, V16, P10280, DOI 10.1002/chem.201001219; Erb M, 2009, PLANT SIGNAL BEHAV, V4, P636, DOI 10.1111/j.1365-313X.2009.03868.x; Farmer EE, 2003, CURR OPIN PLANT BIOL, V6, P372, DOI 10.1016/S1369-5266(03)00045-1; Fine PVA, 2004, SCIENCE, V305, P663, DOI 10.1126/science.1098982; Futuyma DJ, 2009, P NATL ACAD SCI USA, V106, P18054, DOI 10.1073/pnas.0904106106; Glauser G, 2014, METHODS MOL BIOL, V1062, P597, DOI 10.1007/978-1-62703-580-4_31; Glauser G, 2012, PHYTOCHEM ANALYSIS, V23, P520, DOI 10.1002/pca.2350; Hall MC, 2006, GENETICS, V172, P1829, DOI 10.1534/genetics.105.051227; Hay A, 2010, DEVELOPMENT, V137, P3153, DOI 10.1242/dev.030049; Hay AS, 2014, PLANT J, V78, P1, DOI 10.1111/tpj.12447; HERMS DA, 1992, Q REV BIOL, V67, P283, DOI 10.1086/417659; Howe GA, 2008, ANNU REV PLANT BIOL, V59, P41, DOI 10.1146/annurev.arplant.59.032607.092825; Huot B, 2014, MOL PLANT, V7, P1267, DOI 10.1093/mp/ssu049; Janzen D. H., 1971, A Rev Ecol Syst, V2, P465, DOI 10.1146/annurev.es.02.110171.002341; Johnson MTJ, 2016, ECOL ENTOMOL, V41, P112, DOI 10.1111/een.12280; Karban R., 1997, INDUCED RESPONSES HE, DOI [10. 7208/chicago/9780226424972. 001. 0001, DOI 10.7208/CHICAGO/9780226424972.001.0001]; Katsir L, 2008, CURR OPIN PLANT BIOL, V11, P428, DOI 10.1016/j.pbi.2008.05.004; Kazan K, 2016, J EXP BOT, V67, P47, DOI 10.1093/jxb/erv441; KIDDLE GA, 1994, J EXP BOT, V45, P1343, DOI 10.1093/jxb/45.9.1343; Korner C, 2007, TRENDS ECOL EVOL, V22, P569, DOI 10.1016/j.tree.2007.09.006; Kooke R, 2012, J EXP BOT, V63, P3353, DOI 10.1093/jxb/err373; Korves TM, 2003, PLANT PHYSIOL, V133, P339, DOI 10.1104/pp.103.027094; Krimmel BA, 2014, ARTHROPOD-PLANT INTE, V8, P403, DOI 10.1007/s11829-014-9318-z; Loudet O, 2003, GENETICS, V163, P711; Marais DLD, 2013, ANNU REV ECOL EVOL S, V44, P5, DOI 10.1146/annurev-ecolsys-110512-135806; MAURICIO R, 1990, ECOL ENTOMOL, V15, P153, DOI 10.1111/j.1365-2311.1990.tb00796.x; McKay JK, 2003, MOL ECOL, V12, P1137, DOI 10.1046/j.1365-294X.2003.01833.x; Michaels SD, 1999, PLANT CELL, V11, P949, DOI 10.1105/tpc.11.5.949; Michaels SD, 2003, P NATL ACAD SCI USA, V100, P10102, DOI 10.1073/pnas.1531467100; Mitchell-Olds T, 2006, NATURE, V441, P947, DOI 10.1038/nature04878; Oksanen J, 2013, VEGAN COMMUNITY ECOL; Parachnowitsch AL, 2008, ECOLOGY, V89, P1802, DOI 10.1890/07-0555.1; Paul-Victor C, 2010, NEW PHYTOL, V187, P1102, DOI 10.1111/j.1469-8137.2010.03325.x; Pellissier L, 2016, J ECOL, V104, P1116, DOI 10.1111/1365-2745.12580; Pieterse CMJ, 2009, NAT CHEM BIOL, V5, P308, DOI 10.1038/nchembio.164; R Development Core Team, 2015, R LANG ENV STAT COMP; Rasmann S, 2014, ANNU PLANT REV, V47, P338, DOI 10.1002/9781118472507.ch10; Scarcelli N, 2007, P NATL ACAD SCI USA, V104, P16986, DOI 10.1073/pnas.0708209104; Schmelz EA, 2003, PLANTA, V216, P665, DOI 10.1007/s00425-002-0898-y; Schoonhoven L. M., 2005, INSECT PLANT BIOL; Swarup K, 1999, PLANT J, V20, P67, DOI 10.1046/j.1365-313X.1999.00577.x; Thaler JS, 2012, TRENDS PLANT SCI, V17, P260, DOI 10.1016/j.tplants.2012.02.010; Ton J, 2002, PLANT J, V29, P11, DOI 10.1046/j.1365-313x.2002.01190.x; van Dam NM, 2003, BASIC APPL ECOL, V4, P63, DOI 10.1078/1439-1791-00133; Wheeler R.E., 2010, MULTRESP LMPERM; Winter K, 2011, J EXP BOT, V62, P4037, DOI 10.1093/jxb/err106; Zust T, 2015, OIKOS, V124, P1404, DOI 10.1111/oik.02075 69 1 1 3 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. MAY 2018 106 3 1244 1255 10.1111/1365-2745.12894 12 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology GC9NE WOS:000430123800038 Green Published 2019-02-21 J Parker, GA; Ramm, SA; Lehtonen, J; Henshaw, JM Parker, Geoff A.; Ramm, Steven A.; Lehtonen, Jussi; Henshaw, Jonathan M. The evolution of gonad expenditure and gonadosomatic index (GSI) in male and female broadcast-spawning invertebrates BIOLOGICAL REVIEWS English Review gonado-somatic index; gonad index; gonad expenditure; sperm competition; broadcast spawning; sperm casting; sex roles ANNUAL REPRODUCTIVE-CYCLE; PARACENTROTUS-LIVIDUS ECHINODERMATA; URCHIN LYTECHINUS-VARIEGATUS; PURPLE SEA-URCHIN; ABALONE HALIOTIS-DIVERSICOLOR; BRITTLE STARS ECHINODERMATA; BRACHIOPOD LIOTHYRELLA-UVA; SUB-ANTARCTIC ENVIRONMENT; SPERM COMPETITION GAMES; SEXUAL SIZE DIMORPHISM Sedentary broadcast-spawning marine invertebrates, which release both eggs and sperm into the water for fertilization, are of special interest for sexual selection studies. They provide unique insight into the early stages of the evolutionary succession leading to the often-intense operation of both pre- and post-mating sexual selection in mobile gonochorists. Since they are sessile or only weakly mobile, adults can interact only to a limited extent with other adults and with their own fertilized offspring. They are consequently subject mainly to selection on gamete production and gamete success, and so high gonad expenditure is expected in both sexes. We review literature on gonadosomatic index (GSI; the proportion of body tissue devoted to gamete production) of gonochoristic broadcast spawners, which we use as a proxy for gonad expenditure. We show that such taxa most often have a high GSI that is approximately equal in both sexes. When GSI is asymmetric, female GSI usually exceeds male GSI, at least in echinoderms (the majority of species recorded). Intriguingly, though, higher male GSI also occurs in some species and appears more common than female-biased GSI in certain orders of gastropod molluscs. Our limited data also suggest that higher male GSI may be the prevalent pattern in sperm casters (where only males release gametes). We explore how selection might have shaped these patterns using game theoretic models for gonad expenditure that consider possible trade-offs with (i) somatic maintenance or (ii) growth, while also considering sperm competition, sperm limitation, and polyspermy. Our models of the trade-off between somatic tissue (which increases survival) and gonad (which increases reproductive success) predict that GSI should be equal for the two sexes when sperm competition is intense, as is probably common in broadcast spawners due to synchronous spawning in aggregations. Higher female GSI occurs under low sperm competition. Sperm limitation appears unlikely to alter these conclusions qualitatively, but can also act as a force to keep male GSI high, and close to that of females. Polyspermy can act to reduce male GSI. Higher male than female GSI is predicted to be less common (as observed in the data), but can occur when ova/ovaries are sufficiently more resource-intensive to produce than sperm/testes, for which some evidence exists. We also show that sex-specific trade-offs between gonads and growth can generate different life-history strategies for males and females, with males beginning reproduction earlier. This could lead to apparently higher male GSI in empirical studies if immature females are included in calculations of mean GSI. The existence of higher male GSI nonetheless remains somewhat problematic and requires further investigation. When sperm limitation is low, we suggest that the natural logarithm of the male/female GSI ratio may be a suitable index for sperm competition level in broadcast spawners, and that this may also be considered as an index for internally fertilizing taxa. [Parker, Geoff A.] Univ Liverpool, Inst Integrat Biol, Dept Evolut Ecol & Behav, Liverpool L69 7ZB, Merseyside, England; [Ramm, Steven A.] Bielefeld Univ, Evolutionary Biol, D-33615 Bielefeld, Germany; [Lehtonen, Jussi] Univ New South Wales, Sch Biol Earth & Environm Sci, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia; [Henshaw, Jonathan M.] Australian Natl Univ, Res Sch Biol, Div Ecol & Evolut, Canberra, ACT 2601, Australia; [Henshaw, Jonathan M.] Karl Franzens Univ Graz, Inst Zool, A-8010 Graz, Austria Parker, GA (reprint author), Univ Liverpool, Inst Integrat Biol, Dept Evolut Ecol & Behav, Liverpool L69 7ZB, Merseyside, England. gap@liv.ac.uk Ramm, Steven/C-4907-2008 Ramm, Steven/0000-0001-7786-7364; Henshaw, Jonathan/0000-0001-7306-170X Deutsche Forschungsgemeinschaft [RA 2468/1-1]; University of New South Wales Vice-Chancellor's Postdoctoral Research Fellowship; Australian Department of Education and Training; Osterreichischer Austauschdienst (OeAD-GmbH) We are most grateful to Omar Avila-Poveda, Francisco Benitez-Villalobos, Luciano Chiaverano, Greg Foster, Juliana Gimenez, Cathy Lucas, Tianlong Qiu, Paul Tyler, and several others for supplying papers and/or for their helpful email discussions. We also thank two anonymous reviewers whose suggestions have much improved the manuscript. Funding was provided by the Deutsche Forschungsgemeinschaft, research grant RA 2468/1-1 (S. A. R.), a University of New South Wales Vice-Chancellor's Postdoctoral Research Fellowship (J. L.), and the Australian Department of Education and Training and the Osterreichischer Austauschdienst (OeAD-GmbH) (J. M. H.). Acosta A, 1997, MAR BIOL, V128, P141, DOI 10.1007/s002270050077; Acosta V, 2009, J WORLD AQUACULT SOC, V40, P226, DOI 10.1111/j.1749-7345.2009.00245.x; Aguirre JD, 2016, AM NAT, V187, P647, DOI 10.1086/685892; Ahlfield T. E., 1977, THESIS; Ali I. M. Y., 2015, RES J FISHERIES HYDR, V10, P1; Almeida F. P., 1994, MATURATION GEORGES B, V94; Arafa S, 2012, SCI WORLD J, DOI 10.1100/2012/815935; Asha PS, 2008, AQUACULT INT, V16, P231, DOI 10.1007/s10499-007-9140-z; Ayres DWP, 2013, THESIS; Babcock R., 1992, MARINE FRESHWATER RE, V43, P525; Barbaglio A, 2007, COMP BIOCHEM PHYS A, V147, P466, DOI 10.1016/j.cbpa.2007.01.682; Barker M. F., 1985, ECHINODERMATA, P207; BARKER MF, 1991, MAR BIOL, V108, P97, DOI 10.1007/BF01313476; BAUER JC, 1976, B MAR SCI, V26, P273; BEACH DH, 1975, NATURE, V254, P135, DOI 10.1038/254135a0; Beekman M, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0541; BELMAN BW, 1974, BIOL BULL, V146, P157, DOI 10.2307/1540614; BENINGER PG, 1987, CAN J ZOOL, V65, P495, DOI 10.1139/z87-077; Benitez-Villalobos F, 2007, CIENC MAR, V33, P49, DOI 10.7773/cm.v33i1.329; Benitez-Villalobos F., 2013, SEXUALITY EARLY DEV, V1, P13, DOI [10.3354/sedao00003, DOI 10.3354/SEDAO00003]; Benitez-Villalobos F, 2015, INVERTEBR REPROD DEV, V59, P237, DOI 10.1080/07924259.2015.1108935; Benitez-Villalobos F, 2012, AQUAT BIOL, V17, P119, DOI 10.3354/ab00467; Benitez-Villalobos F, 2012, J MAR BIOL ASSOC UK, V92, P1409, DOI 10.1017/S0025315412000070; Benitez-Villalobos F, 2010, DEEP-SEA RES PT I, V57, P157, DOI 10.1016/j.dsr.2009.09.006; BENNETT J, 1955, BIOL BULL, V109, P226, DOI 10.2307/1538723; Bishop JDD, 2006, INTEGR COMP BIOL, V46, P398, DOI 10.1093/icb/icj037; Bode M, 2007, EVOLUTION, V61, P2693, DOI 10.1111/j.1558-5646.2007.00232.x; BOIVIN Y, 1986, MAR BIOL, V92, P329, DOI 10.1007/BF00392673; BOOLOOTIAN RICHARD A., 1964, HELGOLANDER WISSENSCHAFTLICHE MEERESUNTERSUCH, V11, P186, DOI 10.1007/BF01612371; Bottger SA, 2002, J EXP ZOOL, V292, P660, DOI 10.1002/jez.10104; BOURGOIN A, 1990, J MAR BIOL ASSOC UK, V70, P57, DOI 10.1017/S0025315400034196; Brady SM, 2006, J EXP MAR BIOL ECOL, V335, P277, DOI 10.1016/j.jembe.2006.03.016; BRANCH GM, 1974, T ROY SOC S AFR, V41, P111, DOI 10.1080/00359197409520068; BRETOS M, 1983, BIOL BULL-US, V165, P559, DOI 10.2307/1541465; Brewin PE, 2000, MAR BIOL, V137, P543, DOI 10.1007/s002270000366; BROCKMANN HJ, 1994, BEHAV ECOL SOCIOBIOL, V35, P153, DOI 10.1007/BF00167954; Brockmann HJ, 2000, ANIM BEHAV, V60, P837, DOI 10.1006/anbe.2000.1547; BROCKMANN HJ, 1990, BEHAVIOUR, V114, P206, DOI 10.1163/156853990X00121; Brogger MI, 2013, AQUAT BIOL, V19, P275, DOI 10.3354/ab00537; Bronstein O, 2016, SCI REP-UK, V6, DOI 10.1038/srep29569; Bronstein O, 2015, CORAL REEFS, V34, P275, DOI 10.1007/s00338-014-1209-3; BROWN GG, 1973, BIOL BULL, V144, P462, DOI 10.2307/1540300; Bureau D., 1996, THESIS; BYRNE M, 1992, MAR BIOL, V114, P297, DOI 10.1007/BF00349533; CAMERON JL, 1986, CAN J ZOOL, V64, P168, DOI 10.1139/z86-027; Carvalho ALPS, 2002, MAR BIOL, V141, P947, DOI 10.1007/s00227-002-0881-y; CATALAN MAB, 1994, CAN J ZOOL, V72, P387, DOI 10.1139/z94-055; Chadwick-Furman NE, 2000, J EXP MAR BIOL ECOL, V249, P199, DOI 10.1016/S0022-0981(00)00204-5; CHAO SM, 1994, MAR BIOL, V119, P565, DOI 10.1007/BF00354319; CHARNOV E L, 1982; CHEN BY, 1992, MAR BIOL, V113, P271; CHESHER RH, 1969, B MAR SCI, V19, P72; Chiaverano L, 2004, HYDROBIOLOGIA, V530, P373, DOI 10.1007/s10750-004-2666-4; CHOAT JH, 1979, J EXP MAR BIOL ECOL, V41, P25, DOI 10.1016/0022-0981(79)90079-0; Choe S., 1963, BIOL JAPANESE COMMON; COCANOUR B, 1967, COMP BIOCHEM PHYSIOL, V20, P327, DOI 10.1016/0010-406X(67)90749-9; COHEN JA, 1983, B MAR SCI, V33, P274; COMA R, 1995, MAR ECOL PROG SER, V117, P173, DOI 10.3354/meps117173; CONAND C, 1981, B MAR SCI, V31, P523; CONAND C, 1993, MAR BIOL, V116, P439, DOI 10.1007/BF00350061; Conand C., 1982, INT ECH C BALK ROTT, P437; Conand C., 1985, ECHINODERMATA; Cossi PF, 2015, POLAR BIOL, V38, P1321, DOI 10.1007/s00300-015-1696-x; COSTELLOE J, 1985, MAR BIOL, V88, P155, DOI 10.1007/BF00397163; Crean AJ, 2008, P NATL ACAD SCI USA, V105, P13508, DOI 10.1073/pnas.0806590105; CURRIE DR, 1990, INVERTEBR REPROD DEV, V17, P25, DOI 10.1080/07924259.1990.9672084; Dale B, 2016, RES REP BIOL, V7, P47, DOI 10.2147/RRB.S84085; Dale B, 2011, J ASSIST REPROD GEN, V28, P199, DOI 10.1007/s10815-010-9513-5; Darwin C, 1871, DESCENT MAN SELECTIO; Delgado M, 2003, J SHELLFISH RES, V22, P435; Delroisse J, 2013, CAH BIOL MAR, V54, P593; DIX T G, 1970, New Zealand Journal of Marine and Freshwater Research, V4, P385; DOTAN A, 1990, AUST J MAR FRESH RES, V41, P457, DOI 10.1071/MF9900457; Doyle G., 2011, THESIS; Drumm DJ, 2005, NEW ZEAL J MAR FRESH, V39, P141, DOI 10.1080/00288330.2005.9517297; Ebert TA, 2011, MAR BIOL, V158, P47, DOI 10.1007/s00227-010-1541-2; Engstrom N. A., 1974, THESIS; Engstrom N. A., 1982, P INT C ECHINODERMS, P447; ENGSTROM NA, 1980, INT J INVER REP DEV, V2, P237; Epherra L, 2015, MAR FRESHWATER RES, V66, P329, DOI 10.1071/MF14080; ERICKSON DL, 1985, COMP BIOCHEM PHYS A, V81, P117, DOI 10.1016/0300-9629(85)90276-2; Evans JP, 2013, BIOL BULL-US, V224, P166, DOI 10.1086/BBLv224n3p166; Fabbrocini A, 2010, J SHELLFISH RES, V29, P1051, DOI 10.2983/035.029.0407; FARMANFARMAIAN A, 1958, J EXP ZOOL, V138, P355, DOI 10.1002/jez.1401380209; Fearon JM, 2000, J REPROD FERTIL, V119, P293, DOI 10.1530/reprod/119.2.293; FERGUSON J C, 1974, Florida Scientist, V37, P57; FERGUSON JC, 1975, COMP BIOCHEM PHYS A, V51, P341, DOI 10.1016/0300-9629(75)90379-5; Fernandez C, 1997, MAR ECOL PROG SER, V152, P145, DOI 10.3354/meps152145; Filbee-Dexter K, 2015, AQUAT BIOL, V23, P71, DOI 10.3354/ab00607; FORD CHARLES E., 1964, PAC SCI, V18, P138; Foster G. G., 1997, THESIS; Foster GG, 1999, MAR BIOL, V134, P307, DOI 10.1007/s002270050548; FOSTER GG, 1995, INVERTEBR REPROD DEV, V27, P49, DOI 10.1080/07924259.1995.9672433; Franke ES, 2002, AM NAT, V160, P485, DOI 10.1086/342075; Fuji A., 1967, Memoirs of the Faculty of Fisheries Hokkaido University, V15, P83; FUJI AKIRA, 1960, BULL FAC FISH HOKKAIDO UNIV, V11, P1; FUJI AKIRA, 1960, BULL FAC FISH HOKKAIDO UNIV, V11, P49; Galley EA, 2008, DEEP-SEA RES PT II, V55, P2515, DOI 10.1016/j.dsr2.2008.07.002; Garrido M. J., 2001, Arquipelago Life and Marine Sciences Supplement, P77; Georgiades ET, 2006, J EXP MAR BIOL ECOL, V332, P188, DOI 10.1016/j.jembe.2005.11.014; GIESE AC, 1959, BIOL BULL, V116, P49, DOI 10.2307/1539155; Goffredo S, 2006, MAR BIOL, V148, P923, DOI 10.1007/s00227-005-0137-8; GONOR J J, 1972, Journal of Experimental Marine Biology and Ecology, V10, P89; Gori A, 2007, MAR BIOL, V151, P1571, DOI 10.1007/s00227-006-0595-7; Grange L. J., 2005, THESIS; Grange LJ, 2007, MAR BIOL, V153, P15, DOI 10.1007/s00227-007-0776-z; Grange LJ, 2004, MAR ECOL PROG SER, V278, P141, DOI 10.3354/meps278141; GRANT A, 1983, INT J INVER REP DEV, V6, P259, DOI 10.1080/01651269.1983.10510052; GREENFIELD L, 1958, J EXP ZOOL, V139, P507, DOI 10.1002/jez.1401390308; GUTT J, 1992, POLAR BIOL, V11, P533; Guzman HM, 2003, MAR BIOL, V142, P271, DOI 10.1007/s00227-002-0939-x; Guzman HM, 2002, MAR BIOL, V141, P1077, DOI 10.1007/s00227-002-0898-2; Hamel J.F., 1995, SPC BECHE DE MER INF, V7, P12; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; HAYASHI I, 1980, J MAR BIOL ASSOC UK, V60, P415, DOI 10.1017/S0025315400028435; Hayward A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016557; Heino M, 1999, J EVOLUTION BIOL, V12, P423; HENDLER G, 1986, MAR ECOL-P S Z N I, V7, P115, DOI 10.1111/j.1439-0485.1986.tb00151.x; HENDLER G, 1982, BIOL BULL, V162, P273, DOI 10.2307/1540983; Hendler G. L., 1973, THESIS; Henninger TO, 2001, J MOLLUS STUD, V67, P385, DOI 10.1093/mollus/67.3.385; Henshaw JM, 2014, AM NAT, V184, pE32, DOI 10.1086/676641; Herrero-Perezrul MD, 1999, MAR BIOL, V135, P521, DOI 10.1007/s002270050653; HINES GA, 1992, GEN COMP ENDOCR, V87, P451, DOI 10.1016/0016-6480(92)90053-M; Hiremath S. V., 1994, 11 NAT S REPR BIOL C, V45, P26; HOLLAND ND, 1965, BIOL BULL, V128, P241, DOI 10.2307/1539553; Honma L. O., 1995, THESIS; HOOKER SH, 1995, MAR FRESHWATER RES, V46, P617, DOI 10.1071/MF9950617; Hopper DR, 1998, B MAR SCI, V63, P1; Horn P. L., 1983, THESIS; Hua N., 2014, J AQUACULTURE RES DE, V5; Hughes AD, 2005, MAR ECOL PROG SER, V305, P101, DOI 10.3354/meps305101; Ito S, 1998, SPC BECHE DE MER INF, V10, P24; Iwata F., 1982, PUBLICATIONS SETO MA, V17, P143; JANGOUX M, 1973, Netherlands Journal of Sea Research, V6, P389, DOI 10.1016/0077-7579(73)90024-0; Janicke T, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1500983; Janicke T, 2013, EVOLUTION, V67, P3233, DOI 10.1111/evo.12189; Jayarsee V., 1994, B CENT MAR FISH RES, V46, P57; JONSSON N, 1991, J FISH BIOL, V39, P739, DOI 10.1111/j.1095-8649.1991.tb04403.x; Jumah Y. U., 2016, ABAH Bioflux, V8, P10; Kandeel K.E., 2013, EGYPT J AQUATIC RES, V39, P249, DOI DOI 10.1016/j.ejar.2013.12.003; KAPLAN RH, 1979, AM NAT, V113, P671, DOI 10.1086/283425; Keesing JK, 2011, MAR BIOL, V158, P1163, DOI 10.1007/s00227-011-1638-2; KELLER BD, 1983, ECOLOGY, V64, P1581, DOI 10.2307/1937512; Kerr AM, 2011, P ROY SOC B-BIOL SCI, V278, P75, DOI 10.1098/rspb.2010.1196; Kim D., 2000, THESIS; KIM Y S, 1968, Bulletin of the Faculty of Fisheries Hokkaido University, V19, P97; Kindred A. L., 2009, THESIS; Knigge T, 2015, J MOLLUS STUD, V81, P58, DOI 10.1093/mollus/eyu056; Knip DM, 2007, J EXP MAR BIOL ECOL, V351, P150, DOI 10.1016/j.jembe.2007.06.011; Kobayashi N., 1967, Publications of the Seto Marine Biological Laboratory, V14, P403; Kobayashi N., 1967, Publications of the Seto Marine Biological Laboratory, V15, P173; Kohler Sophie, 2009, Western Indian Ocean Journal of Marine Science, V8, P97; Kowalski R., 1955, KIELER MEERESFORSCH, V9, P201; KRISHNASWAMY S, 1967, CURR SCI INDIA, V36, P155; LARSON RJ, 1986, J PLANKTON RES, V8, P995, DOI 10.1093/plankt/8.5.995; LAWRENCE J M, 1973, Journal of Experimental Marine Biology and Ecology, V11, P263, DOI 10.1016/0022-0981(73)90026-9; Lawrence J.M., 1982, P331; Lawrence J. M., 2000, WORKSH COORD GREEN S; LAWRENCE JM, 1994, ZOOL SCI, V11, P133; Lee Ju Ha, 2001, Korean Journal of Biological Sciences, V5, P37; Lee Seung Ju, 2006, Journal of the Korean Fisheries Society, V39, P398; LEE SY, 1988, J MOLLUS STUD, V54, P317, DOI 10.1093/mollus/54.3.317; Lefebvre A, 1999, HYDROBIOLOGIA, V414, P25, DOI 10.1023/A:1003827532385; Lehtonen J, 2016, TRENDS ECOL EVOL, V31, P752, DOI 10.1016/j.tree.2016.07.006; Lehtonen J, 2016, EVOLUTION, V70, P1129, DOI 10.1111/evo.12926; Lehtonen J, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150175; Lehtonen J, 2014, MOL HUM REPROD, V20, P1161, DOI 10.1093/molehr/gau068; Lehtonen J, 2011, BEHAV ECOL SOCIOBIOL, V65, P445, DOI 10.1007/s00265-010-1116-8; LEIGHTON BJ, 1991, DIS AQUAT ORGAN, V10, P71, DOI 10.3354/dao010071; Leonard Janet L., 2010, P15; LESSIOS HA, 1981, J EXP MAR BIOL ECOL, V50, P47, DOI 10.1016/0022-0981(81)90062-9; Levitan D, 1998, EVOLUTION, V52, P1043, DOI 10.1111/j.1558-5646.1998.tb01832.x; Levitan Don R., 2010, P365; Levitan DR, 2006, INTEGR COMP BIOL, V46, P298, DOI 10.1093/icb/icj025; Levitan DR, 2005, INTEGR COMP BIOL, V45, P848, DOI 10.1093/icb/45.5.848; LEVITAN DR, 1995, TRENDS ECOL EVOL, V10, P228, DOI 10.1016/S0169-5347(00)89071-0; Levitan DR, 2004, AM NAT, V164, P298, DOI 10.1086/423150; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; Levitan DR, 1998, SPERM COMPETITION SE, P175; Lodeiros CJ, 1999, REV BIOL TROP, V47, P411; Lotterhos K. E., 2010, EVOLUTION PRIMARY SE, P99; Lowe E. F., 1978, THESIS; Luttikhuizen PC, 2011, J EXP MAR BIOL ECOL, V396, P156, DOI 10.1016/j.jembe.2010.10.017; MacCord FS, 2004, MAR BIOL, V145, P603, DOI 10.1007/s00227-004-1344-4; MAGNIEZ P, 1983, MAR BIOL, V74, P55, DOI 10.1007/BF00394275; Mariante FLF, 2010, ZOOLOGIA-CURITIBA, V27, P897, DOI 10.1590/S1984-46702010000600010; Marshall DJ, 2005, J EVOLUTION BIOL, V18, P1244, DOI 10.1111/j.1420-9101.2005.00947.x; Martinez MI, 2011, INVERTEBR REPROD DEV, V55, P124, DOI 10.1080/07924259.2011.553423; Martinez-Pita I, 2008, SCI MAR, V72, P603; Martone RG, 2012, MAR ECOL PROG SER, V457, P85, DOI 10.3354/meps09693; Marzinelli EM, 2006, B MAR SCI, V79, P127; MAUZEY KP, 1966, BIOL BULL, V131, P127, DOI 10.2307/1539653; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; McFadden CS, 2001, EVOLUTION, V55, P54; McHugh D, 1998, TRENDS ECOL EVOL, V13, P182, DOI 10.1016/S0169-5347(97)01285-8; MCPHERSON BF, 1969, B MAR SCI, V19, P194; MCPHERSON BF, 1968, B MAR SCI, V18, P400; Mecho A, 2015, J MAR BIOL ASSOC UK, V95, P805, DOI 10.1017/S0025315415000065; Meidel SK, 1998, MAR BIOL, V131, P461, DOI 10.1007/s002270050338; Meidel SK, 1999, MAR BIOL, V134, P155, DOI 10.1007/s002270050534; Meidlinger K, 1998, MAR BIOL, V132, P153, DOI 10.1007/s002270050381; Mendo T, 2016, MAR BIOL, V163, DOI 10.1007/s00227-015-2785-7; MENGE BA, 1975, MAR BIOL, V31, P87, DOI 10.1007/BF00390651; Menge BA, 1970, THESIS; Mercier A, 2011, J BIOL RHYTHM, V26, P82, DOI 10.1177/0748730410391948; Meretta PE, 2014, J SEA RES, V85, P222, DOI 10.1016/j.seares.2013.05.006; Mesterton-Gibbons M, 1999, P ROY SOC B-BIOL SCI, V266, P269, DOI 10.1098/rspb.1999.0632; Mezali K, 2014, INVERTEBR REPROD DEV, V58, P179, DOI 10.1080/07924259.2014.883337; Miloslavich P, 2010, J MAR BIOL ASSOC UK, V90, P509, DOI 10.1017/S0025315409991287; MLADENOV PV, 1983, B MAR SCI, V33, P363; Molinet C, 2010, REV BIOL MAR OCEANOG, V45, P19, DOI 10.4067/S0718-19572010000100002; Monaco CJ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0104658; MOORE H. B., 1963, BULL MAR SCI GULF AND CARIBBEAN, V13, P23; MOORE HB, 1966, B MAR SCI, V16, P648; MOORE HILARY B., 1965, BULL MAR SCI, V15, P855; MOORE HILARY B., 1934, JOUR MARINE BIOL ASSOC UNITED KINGDOM, V19-20, P869; MOORE HILARY B., 1936, JOUR MARINE BIOL ASSOC UNITED KINGDOM, V20, P655; Morais S, 2003, J EXP MAR BIOL ECOL, V294, P61, DOI 10.1016/S0022-0981(03)00258-2; Morriconi E, 1999, SCI MAR, V63, P417, DOI 10.3989/scimar.1999.63s1417; Muthiga N. A., 2009, Western Indian Ocean Journal of Marine Science, V8, P183; Muthiga NA, 2009, ESTUAR COAST SHELF S, V84, P353, DOI 10.1016/j.ecss.2009.04.011; Muthiga N. A., 2008, P 11 INT COR REEF S, P356; Muthiga NA, 2006, MAR BIOL, V149, P585, DOI 10.1007/s00227-005-0224-x; Muthiga NA, 2005, MAR BIOL, V146, P445, DOI 10.1007/s00227-004-1449-9; Muthiga NA, 2003, MAR BIOL, V143, P669, DOI 10.1007/s00227-003-1095-7; NAGABHUSHANAM R, 1982, MAR BIOL, V67, P9, DOI 10.1007/BF00397089; Nagasawa K, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0129571; Najmudeen TM, 2007, MOLLUSCAN RES, V27, P140; Navarro PG, 2012, SCI MAR, V76, P741, DOI 10.3989/scimar.03543.15B; NICHOLS D, 1984, J MAR BIOL ASSOC UK, V64, P461, DOI 10.1017/S0025315400030125; NIMITZ MA, 1964, Q J MICROSC SCI, V105, P481; NOJIMA S, 1979, Publications from the Amakusa Marine Biological Laboratory Kyushu University, V5, P45; O Connor C. O, 1976, Thalassia Jugosl, V12, P245; Okamoto DK, 2016, AM NAT, V187, pE129, DOI 10.1086/685813; Olivares-Banuelos T, 2012, CIENC MAR, V38, P411, DOI 10.7773/cm.v38i2.1922; Omar H.A., 2013, Egyptian Journal of Aquatic Research, V39, P115; Onitsuka T, 2008, J SHELLFISH RES, V27, P843, DOI 10.2983/0730-8000(2008)27[843:SGAROA]2.0.CO;2; Onitsuka T, 2010, JARQ-JPN AGR RES Q, V44, P375, DOI 10.6090/jarq.44.375; Oyarzun ST, 1999, SCI MAR, V63, P439, DOI 10.3989/scimar.1999.63s1439; PAIN SL, 1982, MAR BIOL, V70, P41, DOI 10.1007/BF00397295; Park Kwan Ha, 2011, Korean Journal of Malacology, V27, P261; Parker GA, 2016, J ZOOL, V298, P3, DOI 10.1111/jzo.12297; Parker G.A., 1984, P1; Parker G. A, 2015, CURRENT PERSPECTIVES, P119; PARKER GA, 1992, J FISH BIOL, V41, P1, DOI 10.1111/j.1095-8649.1992.tb03864.x; PARKER GA, 1982, J THEOR BIOL, V96, P281, DOI 10.1016/0022-5193(82)90225-9; Parker GA, 2000, P ROY SOC B-BIOL SCI, V267, P1027, DOI 10.1098/rspb.2000.1106; Parker GA, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a017509; Parker GA, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0836; Parker Geoff A., 2011, P17; Parker GA, 2010, BIOL REV, V85, P897, DOI 10.1111/j.1469-185X.2010.00140.x; PARRY GD, 1982, MAR BIOL, V67, P267, DOI 10.1007/BF00397667; Pearse J.S., 1981, Developments in Endocrinology, V11, P53; PEARSE JS, 1966, BIOL BULL, V130, P387, DOI 10.2307/1539745; PECK LS, 1989, J EXP MAR BIOL ECOL, V134, P25, DOI 10.1016/0022-0981(90)90054-G; Pedersen Soren Anker, 1994, Journal of Northwest Atlantic Fishery Science, V16, P75; Pemberton AJ, 2003, P ROY SOC B-BIOL SCI, V270, pS223, DOI 10.1098/rsbl.2003.0076; Perez AF, 2008, POLAR BIOL, V31, P443, DOI 10.1007/s00300-007-0370-3; Perez AF, 2013, REV BIOL MAR OCEANOG, V48, P459, DOI 10.4067/S0718-19572013000300005; Plank LR, 2002, J WORLD AQUACULT SOC, V33, P127, DOI 10.1111/j.1749-7345.2002.tb00487.x; Podolsky RD, 2004, AM NAT, V163, P735, DOI 10.1086/382791; Ram Mohan M. K., 2001, THESIS; Ramesh R., 2010, World Journal of Fish and Marine Sciences, V2, P14; Ramirez-Llodra E, 2002, MAR BIOL, V140, P773, DOI 10.1007/s00227-001-0750-0; Ramm SA, 2014, MOL HUM REPROD, V20, P1169, DOI 10.1093/molehr/gau070; Ramm SA, 2014, BIOL REV, V89, P874, DOI 10.1111/brv.12084; RAO KS, 1965, CURR SCI INDIA, V34, P87; Rasolofonirina Richard, 2005, Western Indian Ocean Journal of Marine Science, V4, P61; RUN JQ, 1988, MAR BIOL, V99, P247, DOI 10.1007/BF00391987; RUTHERFORD JC, 1973, MAR BIOL, V22, P167, DOI 10.1007/BF00391780; Santos R, 2016, AQUAC RES, V47, P2307, DOI 10.1111/are.12683; SARASWATHY M, 1973, HYDROBIOLOGIA, V43, P13, DOI 10.1007/BF00014253; Sasaki Y., 2008, AQUACULTURE SCI, V56, P211; Schafer S, 2011, MAR ENVIRON RES, V71, P70, DOI 10.1016/j.marenvres.2010.10.004; Scharer L, 2009, EVOLUTION, V63, P1377, DOI 10.1111/j.1558-5646.2009.00669.x; Scharer L, 2004, BEHAV ECOL SOCIOBIOL, V56, P420, DOI 10.1007/s00265-004-0802-9; Scheibling R. E., 1979, THESIS; SCHEIBLING RE, 1981, J EXP MAR BIOL ECOL, V54, P39, DOI 10.1016/0022-0981(81)90101-5; SCHEIBLING RE, 1982, MAR BIOL, V70, P51, DOI 10.1007/BF00397296; Scheibling RE, 2001, MAR BIOL, V139, P139; Scheibling RE, 2013, DEV AQUAC FISH SCI, V38, P381, DOI 10.1016/B978-0-12-396491-5.00026-5; SCHWARTZ D, 1981, REPROD NUTR DEV, V21, P979, DOI 10.1051/rnd:19810710; Sellem F, 2007, J MAR BIOL ASSOC UK, V87, P763, DOI 10.1017/S002531540705521X; Sereflisan H, 2013, PAK J ZOOL, V45, P1311; SEWELL MA, 1990, INVERTEBR REPROD DEV, V17, P1, DOI 10.1080/07924259.1990.9672081; SHEPHERD SA, 1974, AUST J MAR FRESH RES, V25, P49; Shiell GR, 2006, MAR BIOL, V148, P973, DOI 10.1007/s00227-005-0113-3; Siikavuopio SI, 2014, J WORLD AQUACULT SOC, V45, P481, DOI 10.1111/jwas.12138; Simmons LW, 2012, REPRODUCTION, V144, P519, DOI 10.1530/REP-12-0285; SIMPSON RD, 1981, J EXP MAR BIOL ECOL, V56, P33, DOI 10.1016/0022-0981(81)90006-X; Smith JM, 1982, EVOLUTION THEORY GAM; Smith MD, 2014, ANIM BEHAV, V96, P127, DOI 10.1016/j.anbehav.2014.08.005; Smith R. H., 1971, THESIS; Soliman F. El., 1997, Qatar University Science Journal, V16, P95; Soong K, 2005, MAR ECOL PROG SER, V292, P195, DOI 10.3354/meps292195; Spirlet C, 1998, INVERTEBR REPROD DEV, V34, P69, DOI 10.1080/07924259.1998.9652355; Spirlet C, 2000, AQUACULTURE, V185, P85, DOI 10.1016/S0044-8486(99)00340-3; Stancyk S. E., 1974, THESIS; Stanwell-Smith D, 1998, MAR BIOL, V131, P479, DOI 10.1007/s002270050339; STEWART BG, 1995, MAR BIOL, V123, P543, DOI 10.1007/BF00349233; Stockley P, 1997, AM NAT, V149, P933, DOI 10.1086/286031; STRATHMANN RR, 1990, AM ZOOL, V30, P197; Stump R.J., 1994, THESIS; Styan CA, 1998, AM NAT, V152, P290, DOI 10.1086/286168; Styan CA, 2000, MAR BIOL, V137, P943, DOI 10.1007/s002270000401; Suzuki T, 2014, INT J DISTRIB SENS N, DOI 10.1155/2014/189643; Garcia YAT, 2015, REV BIOL TROP, V63, P243, DOI 10.15517/rbt.v63i2.23158; Taylor BE, 1996, AQUACULTURE, V140, P153, DOI 10.1016/0044-8486(96)80444-3; Taylor PD, 1996, EVOLUTION, V50, P2106, DOI 10.1111/j.1558-5646.1996.tb03598.x; Tenuzzo BA, 2012, ITAL J ZOOL, V79, P200, DOI 10.1080/11250003.2011.626803; Tiemann H, 2009, J MAR BIOL ASSOC UK, V89, P63, DOI 10.1017/S0025315408001264; Tomkins JL, 2002, ANIM BEHAV, V63, P1009, DOI 10.1006/anbe.2001.1994; Toro JE, 2002, MAR BIOL, V141, P897, DOI 10.1007/s00227-002-0897-3; Town J. C., 1979, THESIS; TUCKER JS, 1962, J EXP ZOOL, V150, P33, DOI 10.1002/jez.1401500106; TURNER RL, 1979, J EXP MAR BIOL ECOL, V36, P41, DOI 10.1016/0022-0981(79)90099-6; TUWO A, 1992, J MAR BIOL ASSOC UK, V72, P745, DOI 10.1017/S0025315400060021; Tyler PA, 2003, POLAR BIOL, V26, P727, DOI 10.1007/s00300-003-0548-2; TYLER PA, 1982, J MAR BIOL ASSOC UK, V62, P57, DOI 10.1017/S0025315400020105; Uthicke S, 2014, CORAL REEFS, V33, P831, DOI 10.1007/s00338-014-1165-y; Vahed K, 2011, BIOL LETTERS, V7, P261, DOI 10.1098/rsbl.2010.0840; Vat L. Z., 2000, THESIS; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; VOGEL H, 1982, MATH BIOSCI, V58, P189, DOI 10.1016/0025-5564(82)90073-6; vonsBismark O., 1959, KIELER MEERESFORSCH, V15, P164; Wang Q, 2015, STEREOSELECTIVE MULTIPLE BOND-FORMING TRANSFORMATIONS IN ORGANIC SYNTHESIS, P87; Wangensteen OS, 2013, MAR BIOL, V160, P3157, DOI 10.1007/s00227-013-2303-8; WEBBER HH, 1969, MAR BIOL, V4, P152, DOI 10.1007/BF00347041; WEDI SE, 1983, BIOL BULL, V165, P458, DOI 10.2307/1541212; Welch W. R., 1967, AM BIOL TEACH, V29, P465; White M. D., 1998, THESIS; WILSON NHF, 1995, MAR FRESHWATER RES, V46, P629, DOI 10.1071/MF9950629; WILSON WH, 1991, B MAR SCI, V48, P500; YAMAMOTO T, 1985, B JPN SOC SCI FISH, V51, P357; Yong L, 2014, ENVIRON BIOL FISH, V97, P321, DOI 10.1007/s10641-013-0142-6; YOSHIOKA E, 1987, MAR BIOL, V96, P371, DOI 10.1007/BF00412520; Young CM, 2003, ECOSY WORLD, V28, P381; Yund PO, 2000, TRENDS ECOL EVOL, V15, P10, DOI 10.1016/S0169-5347(99)01744-9; Zhou Wei, 2001, Chinese Journal of Applied and Environmental Biology, V7, P254 340 3 3 6 28 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. MAY 2018 93 2 693 753 10.1111/brv.12363 61 Biology Life Sciences & Biomedicine - Other Topics GC3QR WOS:000429699100001 28921784 2019-02-21 J Rolls, RJ; Heino, J; Ryder, DS; Chessman, BC; Growns, IO; Thompson, RM; Gido, KB Rolls, Robert J.; Heino, Jani; Ryder, Darren S.; Chessman, Bruce C.; Growns, Ivor O.; Thompson, Ross M.; Gido, Keith B. Scaling biodiversity responses to hydrological regimes BIOLOGICAL REVIEWS English Review biotic homogenisation; climate change; community composition; diversity; drought; environmental flows; flow regulation; spatial scaling; species richness PLANT-SPECIES RICHNESS; ALTERED FLOW REGIMES; FRESH-WATER FISH; HYPORHEIC INVERTEBRATE ASSEMBLAGES; LIFE-HISTORY STRATEGIES; MURRAY-DARLING BASIN; BETA-DIVERSITY; MACROINVERTEBRATE ASSEMBLAGES; FUNCTIONAL DIVERSITY; ENVIRONMENTAL FLOWS Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water-resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape-scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi-scaled understanding of freshwater biodiversity responses to hydrological regimes. The protection and restoration of freshwater biodiversity is both a fundamental justification and a central goal of environmental water allocation worldwide. Clearer integration of concepts of spatial scaling in the context of understanding impacts of hydrological regimes on biodiversity will increase uptake of evidence into environmental flow implementation, identify suitable biodiversity targets responsive to hydrological change or restoration, and identify and manage risks of environmental flows contributing to biodiversity decline. [Rolls, Robert J.; Thompson, Ross M.] Univ Canberra, Inst Appl Ecol, Canberra, ACT 2601, Australia; [Rolls, Robert J.; Ryder, Darren S.; Growns, Ivor O.] Univ New England, Sch Environm & Rural Sci, Armidale, NSW 2351, Australia; [Heino, Jani] Finnish Environm Inst, Nat Environm Ctr, Biodivers, Oulu, Finland; [Chessman, Bruce C.] 7 Dalrymple Crescent, Pymble, NSW 2073, Australia; [Gido, Keith B.] Kansas State Univ, Div Biol, Ackert Hall, Manhattan, KS 66506 USA Rolls, RJ (reprint author), Univ Canberra, Inst Appl Ecol, Canberra, ACT 2601, Australia.; Rolls, RJ (reprint author), Univ New England, Sch Environm & Rural Sci, Armidale, NSW 2351, Australia. robert.rolls@canberra.edu.au Rolls, Robert/O-3356-2014 Rolls, Robert/0000-0002-0402-411X Acreman MC, 2010, FRESHWATER BIOL, V55, P32, DOI 10.1111/j.1365-2427.2009.02181.x; Acreman M, 2014, FRONT ECOL ENVIRON, V12, P466, DOI 10.1890/130134; Adamek Z, 2016, POL J ENVIRON STUD, V25, P495, DOI 10.15244/pjoes/60243; Aguiar FC, 2006, PLANT ECOL, V184, P189, DOI 10.1007/s11258-005-9064-5; Akasaka M, 2012, ECOLOGY, V93, P967, DOI 10.1890/11-0879.1; Alexandre CM, 2013, RIVER RES APPL, V29, P1042, DOI 10.1002/rra.2591; Algarte VM, 2009, BRAZ J BIOL, V69, P609, DOI 10.1590/S1519-69842009000300015; Almeida BD, 2017, AUSTRAL ECOL, V42, P84, DOI 10.1111/aec.12403; Amoros C, 2002, FRESHWATER BIOL, V47, P761, DOI 10.1046/j.1365-2427.2002.00905.x; Anderson MJ, 2011, ECOL LETT, V14, P19, DOI 10.1111/j.1461-0248.2010.01552.x; Anderson MJ, 2006, ECOL LETT, V9, P683, DOI 10.1111/j.1461-0248.2006.00926.x; Angermeier P. L., 2010, COMMUNITY ECOLOGY ST; ARMCANZ & ANZECC, 1996, 3 SWR, P14; Arnan X, 2017, ECOGRAPHY, V40, P448, DOI 10.1111/ecog.01938; Arscott DB, 2010, J N AM BENTHOL SOC, V29, P530, DOI 10.1899/08-124.1; Arthaud F, 2012, AQUAT SCI, V74, P471, DOI 10.1007/s00027-011-0241-4; Arthington AH, 2003, RIVER RES APPL, V19, P377, DOI 10.1002/rra.745; Assis RL, 2015, PLANT ECOL, V216, P41, DOI 10.1007/s11258-014-0415-y; Atkinson CL, 2014, BIOL CONSERV, V176, P30, DOI 10.1016/j.biocon.2014.04.029; Baiser B, 2011, GLOBAL ECOL BIOGEOGR, V20, P134, DOI 10.1111/j.1466-8238.2010.00583.x; Baker DB, 2004, J AM WATER RESOUR AS, V40, P503, DOI 10.1111/j.1752-1688.2004.tb01046.x; Baldwin DS, 2013, MOL ECOL, V22, P1746, DOI 10.1111/mec.12190; Baselga A, 2010, GLOBAL ECOL BIOGEOGR, V19, P134, DOI 10.1111/j.1466-8238.2009.00490.x; Beche LA, 2009, ECOGRAPHY, V32, P778, DOI 10.1111/j.1600-0587.2009.05612.x; Beesley LS, 2010, MAR FRESHWATER RES, V61, P605, DOI 10.1071/MF09137; Beja P, 2010, BIODIVERS CONSERV, V19, P129, DOI 10.1007/s10531-009-9711-6; Belmar O, 2013, ECOHYDROLOGY, V6, P363, DOI 10.1002/eco.1274; Benke AC, 2000, ECOLOGY, V81, P2730, DOI 10.1890/0012-9658(2000)081[2730:FPDOAU]2.0.CO;2; Besemer K, 2009, APPL ENVIRON MICROB, V75, P7189, DOI 10.1128/AEM.01284-09; Bhamjee R, 2016, HYDROL PROCESS, V30, P888, DOI 10.1002/hyp.10677; Biggs BJF, 2002, LIMNOL OCEANOGR, V47, P1175, DOI 10.4319/lo.2002.47.4.1175; Biggs BJF, 2005, RIVER RES APPL, V21, P283, DOI 10.1002/rra.847; Bini LM, 2003, ACTA OECOL, V24, pS145, DOI 10.1016/S1146-609X(03)00040-7; Blanchet S, 2014, FRESHWATER BIOL, V59, P450, DOI 10.1111/fwb.12277; Bogan MT, 2013, FRESHWATER BIOL, V58, P1016, DOI 10.1111/fwb.12105; Bogan MT, 2011, FRESHWATER BIOL, V56, P2070, DOI 10.1111/j.1365-2427.2011.02638.x; Borics G, 2003, HYDROBIOLOGIA, V502, P145, DOI 10.1023/B:HYDR.0000004277.07316.c8; Bornette G, 1998, FRESHWATER BIOL, V39, P267, DOI 10.1046/j.1365-2427.1998.00273.x; Bortolini JC, 2016, HYDROBIOLOGIA, V763, P223, DOI 10.1007/s10750-015-2378-y; Boulton A, 2014, AUSTR FRESHWATER ECO; BOULTON AJ, 1995, ARCH HYDROBIOL, V134, P27; Boulton AJ, 2003, FRESHWATER BIOL, V48, P1173, DOI 10.1046/j.1365-2427.2003.01084.x; Brendonck L, 2015, OIKOS, V124, P741, DOI 10.1111/oik.01710; Brock MA, 2003, FRESHWATER BIOL, V48, P1207, DOI 10.1046/j.1365-2427.2003.01083.x; Budke JC, 2008, FLORA, V203, P162, DOI 10.1016/j.flora.2007.03.001; Buendia C, 2014, ECOHYDROLOGY, V7, P1105, DOI 10.1002/eco.1443; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Calle R, 2014, NORTH-WEST J ZOOL, V10, P36; Capon SJ, 2005, J ARID ENVIRON, V60, P283, DOI 10.1016/j.jaridenv.2004.04.004; Cardinale BJ, 2006, J ECOL, V94, P609, DOI 10.1111/j.1365-2745.2006.01107.x; Cardinale BJ, 2005, ECOLOGY, V86, P716, DOI 10.1890/03-0727; Cardoso P, 2014, J BIOGEOGR, V41, P749, DOI 10.1111/jbi.12239; Carlisle DM, 2011, FRONT ECOL ENVIRON, V9, P264, DOI 10.1890/100053; Carvalho JC, 2012, GLOBAL ECOL BIOGEOGR, V21, P760, DOI 10.1111/j.1466-8238.2011.00694.x; Casanova MT, 2000, PLANT ECOL, V147, P237, DOI 10.1023/A:1009875226637; Chakona A, 2008, HYDROBIOLOGIA, V607, P199, DOI 10.1007/s10750-008-9391-3; Chalmers AC, 2012, AUSTRAL ECOL, V37, P193, DOI 10.1111/j.1442-9993.2011.02262.x; Chappuis E, 2014, AQUAT BOT, V113, P72, DOI 10.1016/j.aquabot.2013.11.007; Chase JM, 2007, P NATL ACAD SCI USA, V104, P17430, DOI 10.1073/pnas.0704350104; Chessman BC, 2015, FRESHWATER BIOL, V60, P50, DOI 10.1111/fwb.12466; Chessman BC, 2014, WETLANDS, V34, P661, DOI 10.1007/s13157-014-0532-3; Chester ET, 2011, FRESHWATER BIOL, V56, P2094, DOI 10.1111/j.1365-2427.2011.02644.x; Chiarucci A, 2011, PHILOS T R SOC B, V366, P2426, DOI 10.1098/rstb.2011.0065; Clarke A, 2010, CAN J FISH AQUAT SCI, V67, P1649, DOI 10.1139/F10-087; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Couto AP, 2017, HERPETOLOGICA, V73, P10, DOI 10.1655/HERPETOLOGICA-D-16-00020.1; D'agata S, 2014, CURR BIOL, V24, P555, DOI 10.1016/j.cub.2014.01.049; Damasco G, 2013, J VEG SCI, V24, P384, DOI 10.1111/j.1654-1103.2012.01464.x; Datry T, 2014, ECOGRAPHY, V37, P94, DOI 10.1111/j.1600-0587.2013.00287.x; Datry T, 2007, FRESHWATER BIOL, V52, P1452, DOI 10.1111/j.1365-2427.2007.01775.x; Datry T, 2016, FRESHWATER BIOL, V61, P277, DOI 10.1111/fwb.12702; Datry T, 2014, FRESHWATER BIOL, V59, P1308, DOI 10.1111/fwb.12350; Datry T, 2012, FRESHWATER BIOL, V57, P716, DOI 10.1111/j.1365-2427.2012.02737.x; Datry T, 2012, FRESHWATER BIOL, V57, P563, DOI 10.1111/j.1365-2427.2011.02725.x; Davey AJH, 2007, FRESHWATER BIOL, V52, P1719, DOI 10.1111/j.1365-2427.2007.01800.x; Davidson TA, 2012, FRESHWATER BIOL, V57, P1253, DOI 10.1111/j.1365-2427.2012.02795.x; Davies PE, 2010, MAR FRESHWATER RES, V61, P764, DOI 10.1071/MF09043; Davies PM, 2014, MAR FRESHWATER RES, V65, P133, DOI 10.1071/MF13110; De Jager NR, 2016, APPL VEG SCI, V19, P164, DOI 10.1111/avsc.12189; de Macedo-Soares PHM, 2010, ECOL FRESHW FISH, V19, P7, DOI 10.1111/j.1600-0633.2009.00384.x; Death RG, 2005, OIKOS, V111, P392, DOI 10.1111/j.0030-1299.2005.13799.x; DEATH RG, 1995, ECOLOGY, V76, P1446, DOI 10.2307/1938147; Della Bella V, 2005, AQUAT CONSERV, V15, P583, DOI 10.1002/aqc.743; Detenbeck NE, 2005, J HYDROL, V309, P258, DOI 10.1016/j.jhydrol.2004.11.024; Devictor V, 2010, ECOL LETT, V13, P1030, DOI 10.1111/j.1461-0248.2010.01493.x; Dewson ZS, 2007, J N AM BENTHOL SOC, V26, P401, DOI 10.1899/06-110.1; Dos Santos AM, 2007, AUSTRAL ECOL, V32, P177, DOI 10.1111/j.1442-9993.2007.01665.x; Downes BJ, 2010, FRESHWATER BIOL, V55, P60, DOI 10.1111/j.1365-2427.2009.02377.x; Driver LJ, 2016, MAR FRESHWATER RES, V67, P1667, DOI 10.1071/MF15072; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Edge CB, 2017, LANDSCAPE ECOL, V32, P647, DOI 10.1007/s10980-016-0472-9; Escalera-Vazquez LH, 2010, FRESHWATER BIOL, V55, P2557, DOI 10.1111/j.1365-2427.2010.02486.x; Euliss NH, 2004, WETLANDS, V24, P448, DOI 10.1672/0277-5212(2004)024[0448:TWCACF]2.0.CO;2; FAITH DP, 1992, BIOL CONSERV, V61, P1, DOI 10.1016/0006-3207(92)91201-3; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; Fazi S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064109; Febria CM, 2012, ISME J, V6, P1078, DOI 10.1038/ismej.2011.173; Feminella JW, 1996, J N AM BENTHOL SOC, V15, P651, DOI 10.2307/1467814; Fernandes R, 2009, ENVIRON BIOL FISH, V85, P99, DOI 10.1007/s10641-009-9466-7; Ferreira LV, 1999, OECOLOGIA, V120, P582, DOI 10.1007/s004420050893; Fitzgerald DB, 2017, ECOLOGY, V98, P21, DOI 10.1002/ecy.1616; Foulquier A, 2014, FRESHWATER BIOL, V59, P463, DOI 10.1111/fwb.12278; Fraisse S, 2013, AQUAT ECOL, V47, P315, DOI 10.1007/s10452-013-9446-z; Freedman JA, 2014, HYDROBIOLOGIA, V727, P19, DOI 10.1007/s10750-013-1780-6; FRISSELL CA, 1986, ENVIRON MANAGE, V10, P199, DOI 10.1007/BF01867358; Fritz KM, 2005, MAR FRESHWATER RES, V56, P13, DOI 10.1071/MF04244; Frutos SM, 2006, ANN LIMNOL-INT J LIM, V42, P277, DOI 10.1051/limn/2006028; Fukami T, 2005, P ROY SOC B-BIOL SCI, V272, P2105, DOI 10.1098/rspb.2005.3277; Gallardo B, 2014, FRESHWATER BIOL, V59, P630, DOI 10.1111/fwb.12292; Garcia-Roger EM, 2013, FUND APPL LIMNOL, V183, P89, DOI 10.1127/1863-9135/2013/0429; Gaston K. J., 1998, BIODIVERSITY INTRO; Gaston KJ, 1996, BIODIVERSITY BIOL NU; Giam X, 2017, AQUAT SCI, V79, P705, DOI 10.1007/s00027-017-0530-7; Gomes LC, 2012, HYDROBIOLOGIA, V685, P97, DOI 10.1007/s10750-011-0870-6; Gordon N. D., 2004, STREAM HYDROLOGY INT; Graham CH, 2008, ECOL LETT, V11, P1265, DOI 10.1111/j.1461-0248.2008.01256.x; Greenwood MJ, 2015, ECOHYDROLOGY, V8, P188, DOI 10.1002/eco.1499; Griffiths D, 2010, BIOL J LINN SOC, V100, P46, DOI 10.1111/j.1095-8312.2010.01404.x; Grubbs SA, 2011, AQUAT ECOL, V45, P185, DOI 10.1007/s10452-010-9345-5; Hamilton AJ, 2005, J ENVIRON MANAGE, V75, P89, DOI 10.1016/j.jenvman.2004.11.012; Hart DD, 1999, ANNU REV ECOL SYST, V30, P363, DOI 10.1146/annurev.ecolsys.30.1.363; Hassall C, 2011, BIODIVERS CONSERV, V20, P3189, DOI 10.1007/s10531-011-0142-9; Heino J., 2017, LIMNOLOGY OCEANOGRAP; Heino J, 2015, FRESHWATER BIOL, V60, P223, DOI 10.1111/fwb.12502; Heino J, 2011, FRESHWATER BIOL, V56, P1703, DOI 10.1111/j.1365-2427.2011.02610.x; Heino J, 2010, ECOL INDIC, V10, P112, DOI 10.1016/j.ecolind.2009.04.013; Horrigan N, 2008, CAN J FISH AQUAT SCI, V65, P670, DOI 10.1139/F07-191; Hui C, 2014, AM NAT, V184, P684, DOI 10.1086/678125; Iwasaki Y, 2012, FRESHWATER BIOL, V57, P2173, DOI 10.1111/j.1365-2427.2012.02861.x; Jacquemin SJ, 2011, J BIOGEOGR, V38, P982, DOI 10.1111/j.1365-2699.2010.02457.x; James CS, 2007, PLANT ECOL, V190, P205, DOI 10.1007/s11258-006-9201-9; Jansson R, 2007, ECOLOGY, V88, P131, DOI 10.1890/0012-9658(2007)88[131:TIOGDF]2.0.CO;2; Jardine TD, 2015, ECOLOGY, V96, P684, DOI 10.1890/14-0991.1; Jarzyna MA, 2016, TRENDS ECOL EVOL, V31, P527, DOI 10.1016/j.tree.2016.04.002; Jenkins KM, 2003, ECOLOGY, V84, P2708, DOI 10.1890/02-0326; Johnson RK, 2014, AQUAT SCI, V76, P51, DOI 10.1007/s00027-013-0311-x; Johnson SE, 2016, ECOLOGY, V97, P3019, DOI 10.1002/ecy.1556; Jurasinski G, 2009, OECOLOGIA, V159, P15, DOI 10.1007/s00442-008-1190-z; Katz GL, 2012, FRESHWATER BIOL, V57, P467, DOI 10.1111/j.1365-2427.2011.02714.x; Kennard MJ, 2007, CAN J FISH AQUAT SCI, V64, P1346, DOI 10.1139/F07-108; Keruzore AA, 2013, AQUAT CONSERV, V23, P301, DOI 10.1002/aqc.2288; Kiflawi M, 2003, J ANIM ECOL, V72, P447, DOI 10.1046/j.1365-2656.2003.00712.x; Kingsford RT, 2004, ECOLOGY, V85, P2478, DOI 10.1890/03-0470; Konrad CP, 2008, FRESHWATER BIOL, V53, P1983, DOI 10.1111/j.1365-2427.2008.02024.x; Kuglerova L, 2014, ECOLOGY, V95, P715, DOI 10.1890/13-0363.1; Kurzatkowski D, 2015, ACTA OECOL, V69, P21, DOI 10.1016/j.actao.2015.08.002; Lake PS, 2003, FRESHWATER BIOL, V48, P1161, DOI 10.1046/j.1365-2427.2003.01086.x; Lake PS, 2000, J N AM BENTHOL SOC, V19, P573, DOI 10.2307/1468118; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.1890/0012-9658(2002)083[1792:ICOSFC]2.0.CO;2; Lansac-Toha FM, 2016, HYDROBIOLOGIA, V781, P81, DOI 10.1007/s10750-016-2824-5; LARIMORE RW, 1959, T AM FISH SOC, V88, P261, DOI DOI 10.1577/1548-8659(1959)88[261:DAROSF]2.0.CO;2; Larned ST, 2011, ECOHYDROLOGY, V4, P532, DOI 10.1002/eco.126; Larned ST, 2010, J AM WATER RESOUR AS, V46, P541, DOI 10.1111/j.1752-1688.2010.00433.x; Larned ST, 2010, FRESHWATER BIOL, V55, P717, DOI 10.1111/j.1365-2427.2009.02322.x; Laske SM, 2016, FRESHWATER BIOL, V61, P1090, DOI 10.1111/fwb.12769; Lasne E, 2007, BIOL CONSERV, V139, P258, DOI 10.1016/j.biocon.2007.07.002; Lawson JR, 2015, FRESHWATER BIOL, V60, P2208, DOI 10.1111/fwb.12649; Ledger ME, 2008, OECOLOGIA, V155, P809, DOI 10.1007/s00442-007-0950-5; Legendre P, 2014, GLOBAL ECOL BIOGEOGR, V23, P1324, DOI 10.1111/geb.12207; Legendre P, 2013, ECOL LETT, V16, P951, DOI 10.1111/ele.12141; Leigh C, 2009, FRESHWATER BIOL, V54, P549, DOI 10.1111/j.1365-2427.2008.02130.x; Leigh C, 2017, ECOGRAPHY, V40, P487, DOI 10.1111/ecog.02230; Leigh C, 2016, AQUAT SCI, V78, P291, DOI 10.1007/s00027-015-0427-2; Leigh C, 2013, ECOL INDIC, V32, P62, DOI 10.1016/j.ecolind.2013.03.006; Leira M, 2008, HYDROBIOLOGIA, V613, P171, DOI 10.1007/s10750-008-9465-2; Lepori F, 2006, BIOSCIENCE, V56, P809, DOI 10.1641/0006-3568(2006)56[809:DAABRC]2.0.CO;2; LEVIN SA, 1992, ECOLOGY, V73, P1943, DOI 10.2307/1941447; Li DJ, 2015, ECOLOGY, V96, P1030, DOI 10.1890/14-0893.1; Lind PR, 2006, FRESHWATER BIOL, V51, P2282, DOI 10.1111/j.1365-2427.2006.01650.x; Lopes PM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0109581; Lougheed VL, 2008, FRESHWATER BIOL, V53, P2402, DOI 10.1111/j.1365-2427.2008.02064.x; Zilli FL, 2011, HYDROBIOLOGIA, V663, P245, DOI 10.1007/s10750-010-0576-1; Mackay SJ, 2014, ECOHYDROLOGY, V7, P1485, DOI 10.1002/eco.1473; Magilligan FJ, 2005, GEOMORPHOLOGY, V71, P61, DOI 10.1016/j.geomorph.2004.08.017; Magurran A. E., 2004, MEASURING BIOL DIVER; Maltchik L, 2010, ENVIRON BIOL FISH, V88, P25, DOI 10.1007/s10641-010-9614-0; Marchetti MP, 2011, J FRESHWATER ECOL, V26, P459, DOI 10.1080/02705060.2011.577974; Marcogliese DJ, 2009, INT J PARASITOL, V39, P1345, DOI 10.1016/j.ijpara.2009.04.007; Marques MCM, 2009, PLANT ECOL DIVERS, V2, P57, DOI 10.1080/17550870902946569; Marshall JC, 2006, MAR FRESHWATER RES, V57, P61, DOI 10.1071/MF05021; McCargo JW, 2010, T AM FISH SOC, V139, P29, DOI 10.1577/T09-036.1; Mccluney KE, 2012, FRESHWATER BIOL, V57, P91, DOI 10.1111/j.1365-2427.2011.02698.x; McCune JL, 2013, J ECOL, V101, P1542, DOI 10.1111/1365-2745.12156; McGarvey DJ, 2016, J BIOGEOGR, V43, P1436, DOI 10.1111/jbi.12618; McGarvey DJ, 2014, FRESHW SCI, V33, P18, DOI 10.1086/674967; McGill BJ, 2015, TRENDS ECOL EVOL, V30, P104, DOI 10.1016/j.tree.2014.11.006; McHugh PA, 2015, ECOGRAPHY, V38, P700, DOI 10.1111/ecog.01193; McKinney ML, 1999, TRENDS ECOL EVOL, V14, P450, DOI 10.1016/S0169-5347(99)01679-1; McManamay RA, 2015, ECOHYDROLOGY, V8, P460, DOI 10.1002/eco.1517; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; McManamay RA, 2012, J HYDROL, V424, P217, DOI 10.1016/j.jhydrol.2012.01.003; McMullen LE, 2012, ECOL APPL, V22, P2164, DOI 10.1890/11-1650.1; Meynard CN, 2011, GLOBAL ECOL BIOGEOGR, V20, P893, DOI 10.1111/j.1466-8238.2010.00647.x; Miller AC, 1998, REGUL RIVER, V14, P179, DOI 10.1002/(SICI)1099-1646(199803/04)14:2<179::AID-RRR496>3.0.CO;2-S; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Mouw JEB, 2009, RIVER RES APPL, V25, P929, DOI 10.1002/rra.1196; Murray-Hudson M, 2014, WETLANDS, V34, P927, DOI 10.1007/s13157-014-0554-x; Mustonen KR, 2016, FRESHW SCI, V35, P559, DOI 10.1086/685104; Naaf T, 2012, PLANT ECOL, V213, P431, DOI 10.1007/s11258-011-9990-3; Nielsen DL, 2013, HYDROBIOLOGIA, V708, P81, DOI 10.1007/s10750-011-0989-5; Niu SQ, 2012, FRESHWATER BIOL, V57, P2367, DOI 10.1111/fwb.12016; O'Dea CB, 2014, RHODORA, V116, P187, DOI 10.3119/12-17; Oberdorff T, 1995, ECOGRAPHY, V18, P345, DOI 10.1111/j.1600-0587.1995.tb00137.x; Olden JD, 2006, GLOBAL ECOL BIOGEOGR, V15, P113, DOI 10.1111/j.1466-822x.2006.00214.x; Olden JD, 2014, FRONT ECOL ENVIRON, V12, P176, DOI 10.1890/130076; Olden JD, 2010, DIVERS DISTRIB, V16, P496, DOI 10.1111/j.1472-4642.2010.00655.x; Padial AA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111227; Padial AA, 2009, AQUAT SCI, V71, P389, DOI 10.1007/s00027-009-0109-z; Paillex A, 2013, J APPL ECOL, V50, P97, DOI 10.1111/1365-2664.12018; Palmer MA, 2008, FRONT ECOL ENVIRON, V6, P81, DOI 10.1890/060148; Palmer MA, 2010, FRESHWATER BIOL, V55, P205, DOI 10.1111/j.1365-2427.2009.02372.x; Pasquaud S, 2015, ESTUAR COAST SHELF S, V154, P122, DOI 10.1016/j.ecss.2014.12.050; Passy SI, 2007, DIVERS DISTRIB, V13, P670, DOI 10.1111/j.1472-4642.2007.00361.x; Pavoine S, 2011, BIOL REV, V86, P792, DOI 10.1111/j.1469-185X.2010.00171.x; Pavoine S, 2016, METHODS ECOL EVOL, V7, P1152, DOI 10.1111/2041-210X.12591; Pavoine S, 2014, METHODS ECOL EVOL, V5, P666, DOI 10.1111/2041-210X.12193; Pegg MA, 2007, J BIOGEOGR, V34, P549, DOI 10.1111/j.1365-2699.2006.01624.x; Penha J, 2017, HYDROBIOLOGIA, V797, P115, DOI 10.1007/s10750-017-3164-9; Perkin JS, 2015, ECOL MONOGR, V85, P73, DOI 10.1890/14-0121.1; Petchey OL, 2006, ECOL LETT, V9, P741, DOI 10.1111/j.1461-0248.2006.00924.x; Pettit NE, 2001, REGUL RIVER, V17, P201, DOI 10.1002/rrr.624; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 2006, GEOMORPHOLOGY, V79, P264, DOI 10.1016/j.geomorph.2006.06.032; Poff NL, 2013, CURR OPIN ENV SUST, V5, P667, DOI 10.1016/j.cosust.2013.11.006; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 2010, FRESHWATER BIOL, V55, P194, DOI 10.1111/j.1365-2427.2009.02272.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1992, J N AM BENTHOL SOC, V11, P86, DOI 10.2307/1467885; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Pollock MM, 1998, ECOLOGY, V79, P94; Porst G, 2012, HYDROBIOLOGIA, V696, P47, DOI 10.1007/s10750-012-1181-2; Porter JL, 2007, PLANT ECOL, V188, P215, DOI 10.1007/s11258-006-9158-8; Procopio NA, 2012, ECOHYDROLOGY, V5, P306, DOI 10.1002/eco.220; Puckridge JT, 2010, MAR FRESHWATER RES, V61, P832, DOI 10.1071/MF09069; Puckridge JT, 1998, MAR FRESHWATER RES, V49, P55, DOI 10.1071/MF94161; Purvis A, 2000, NATURE, V405, P212, DOI 10.1038/35012221; Rahel FJ, 2010, AM FISH S S, V73, P311; Raulings EJ, 2010, FRESHWATER BIOL, V55, P701, DOI 10.1111/j.1365-2427.2009.02311.x; RESH VH, 1988, J N AM BENTHOL SOC, V7, P433, DOI 10.2307/1467300; Reyers B, 2012, BIOSCIENCE, V62, P503, DOI 10.1525/bio.2012.62.5.12; Riis T, 2003, LIMNOL OCEANOGR, V48, P1488, DOI 10.4319/lo.2003.48.4.1488; Riis T, 2008, FRESHWATER BIOL, V53, P1531, DOI 10.1111/j.1365-2427.2008.01987.x; Robach F, 1997, GLOBAL ECOL BIOGEOGR, V6, P267, DOI 10.2307/2997740; Robson BJ, 2005, FRESHWATER BIOL, V50, P944, DOI 10.1111/j.1365-2427.2005.01376.x; Rodrigues DJ, 2010, HERPETOLOGICA, V66, P124, DOI 10.1655/09-020R2.1; Rooney TP, 2007, BIOL CONSERV, V134, P447, DOI 10.1016/j.biocon.2006.07.008; Rose P, 2008, FRESHWATER BIOL, V53, P2626, DOI 10.1111/j.1365-2427.2008.02074.x; Santos AN, 2011, NORTHEAST NAT, V18, P7, DOI 10.1656/045.018.0102; Schalk CM, 2017, FRESHWATER BIOL, V62, P519, DOI 10.1111/fwb.12882; Schneider B, 2015, AQUAT BOT, V121, P67, DOI 10.1016/j.aquabot.2014.11.003; Schoen J, 2013, J FRESHWATER ECOL, V28, P271, DOI 10.1080/02705060.2012.739578; Schriever TA, 2015, FRESHW SCI, V34, P399, DOI 10.1086/680518; Serrano L, 2005, WETLANDS, V25, P101, DOI 10.1672/0277-5212(2005)025[0101:ZCAAHG]2.0.CO;2; Sheldon F, 2002, BIOL CONSERV, V103, P13, DOI 10.1016/S0006-3207(01)00111-2; Silver CA, 2012, ACTA OECOL, V39, P1, DOI 10.1016/j.actao.2011.10.001; Sim LL, 2013, FRESHW SCI, V32, P327, DOI 10.1899/12-024.1; Spencer M, 1999, ECOL LETT, V2, P157; Sponseller RA, 2013, ECOSPHERE, V4, DOI 10.1890/ES12-00225.1; Starr SM, 2014, LANDSCAPE ECOL, V29, P1017, DOI 10.1007/s10980-014-0037-8; Sternberg D, 2013, FRESHWATER BIOL, V58, P1767, DOI 10.1111/fwb.12166; Storey R, 2016, AQUAT SCI, V78, P395, DOI 10.1007/s00027-015-0443-2; Strayer DL, 2010, J N AM BENTHOL SOC, V29, P344, DOI 10.1899/08-171.1; Strecker AL, 2011, ECOL APPL, V21, P3002, DOI 10.1890/11-0599.1; Stromberg JC, 2005, RIVER RES APPL, V21, P925, DOI 10.1002/rra.858; Stromberg JC, 2009, WETLANDS, V29, P330, DOI 10.1672/08-124.1; Stubbington R, 2015, FRESHW SCI, V34, P344, DOI 10.1086/679467; Sullivan SMP, 2009, J FISH BIOL, V74, P1394, DOI 10.1111/j.1095-8649.2009.02205.x; Svec JR, 2005, FOREST ECOL MANAG, V214, P170, DOI 10.1016/j.foreco.2005.04.008; Swenson NG, 2011, AM J BOT, V98, P472, DOI 10.3732/ajb.1000289; Swirepik JL, 2016, RIVER RES APPL, V32, P1153, DOI 10.1002/rra.2975; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Thomaz SM, 2007, HYDROBIOLOGIA, V579, P1, DOI 10.1007/s10750-006-0285-y; Thoms MC, 2003, RIVER RES APPL, V19, P443, DOI 10.1002/rra.737; Timoner X, 2014, HYDROBIOLOGIA, V727, P185, DOI 10.1007/s10750-013-1802-4; Tornes E, 2013, FRESHWATER BIOL, V58, P2555, DOI 10.1111/fwb.12232; Tornwall Brett, 2015, Diversity-Basel, V7, P16; Townsend CR, 1997, LIMNOL OCEANOGR, V42, P938, DOI 10.4319/lo.1997.42.5.0938; Trentanovi G, 2013, DIVERS DISTRIB, V19, P738, DOI 10.1111/ddi.12028; Tucker CM, 2017, BIOL REV, V92, P698, DOI 10.1111/brv.12252; Turak E, 2017, BIOL CONSERV, V213, P272, DOI 10.1016/j.biocon.2016.09.005; Uchida Y, 2010, FRESHWATER BIOL, V55, P983, DOI 10.1111/j.1365-2427.2009.02335.x; Urban MC, 2004, ECOLOGY, V85, P2971, DOI 10.1890/03-0631; Van Den Brink F. W. B., 1996, Netherlands Journal of Aquatic Ecology, V30, P129; van der Nat D, 2002, ECOSYSTEMS, V5, P636, DOI 10.1007/s10021-002-0170-0; van Grunsvent RHA, 2015, TRENDS ECOL EVOL, V30, P563, DOI 10.1016/j.tree.2015.07.010; Van Looy K, 2017, SCI TOTAL ENVIRON, V580, P34, DOI 10.1016/j.scitotenv.2016.12.009; Vanschoenwinkel B, 2007, OIKOS, V116, P1255, DOI 10.1111/j.2007.0030-1299.15860.x; Villeger S, 2013, GLOBAL ECOL BIOGEOGR, V22, P671, DOI 10.1111/geb.12021; Villeger S, 2011, P NATL ACAD SCI USA, V108, P18003, DOI 10.1073/pnas.1107614108; Vinson MR, 2003, ECOGRAPHY, V26, P751, DOI 10.1111/j.0906-7590.2003.03397.x; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; WALKER KF, 1995, REGUL RIVER, V11, P85, DOI 10.1002/rrr.3450110108; Ward DP, 2013, ECOHYDROLOGY, V6, P312, DOI 10.1002/eco.1270; Ward JV, 2001, FRESHWATER BIOL, V46, P807, DOI 10.1046/j.1365-2427.2001.00713.x; Ward JV, 1999, REGUL RIVER, V15, P125, DOI 10.1002/(SICI)1099-1646(199901/06)15:1/3<125::AID-RRR523>3.0.CO;2-E; WARD JV, 1989, J N AM BENTHOL SOC, V8, P2, DOI 10.2307/1467397; Warfe DM, 2014, FRESHWATER BIOL, V59, P2064, DOI 10.1111/fwb.12407; Warren SD, 2007, RESTOR ECOL, V15, P606, DOI 10.1111/j.1526-100X.2007.00272.x; Webb EB, 2010, J WILDLIFE MANAGE, V74, P109, DOI 10.2193/2008-577; Werner EE, 2007, OIKOS, V116, P1697, DOI 10.1111/j.2007.0030-1299.15935.x; Westgate MJ, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4899; Whittaker RJ, 2001, J BIOGEOGR, V28, P453, DOI 10.1046/j.1365-2699.2001.00563.x; WHITTAKER ROBERT H., 1960, ECOL MONOGR, V30, P279, DOI 10.2307/1943563; WIENS JA, 1989, FUNCT ECOL, V3, P385, DOI 10.2307/2389612; Wiens JJ, 2015, ECOL LETT, V18, P1234, DOI 10.1111/ele.12503; Wintle BC, 2007, AUSTRAL ECOL, V32, P592, DOI 10.1111/j.1442-9993.2007.01753.x; Wissinger SA, 2009, J N AM BENTHOL SOC, V28, P12, DOI 10.1899/08-007.1; Wood PJ, 2005, HYDROBIOLOGIA, V545, P55, DOI 10.1007/s10750-005-2213-y; Xenopoulos MA, 2005, GLOBAL CHANGE BIOL, V11, P1557, DOI 10.1111/j.1365-2486.2005.01008.x; Xenopoulos MA, 2006, ECOLOGY, V87, P1907, DOI 10.1890/0012-9658(2006)87[1907:GWTFUS]2.0.CO;2; Yang W, 2016, RESTOR ECOL, V24, P731, DOI 10.1111/rec.12435; Zmihorski M, 2016, J APPL ECOL, V53, P587, DOI 10.1111/1365-2664.12588 312 1 1 24 75 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. MAY 2018 93 2 971 995 10.1111/brv.12381 25 Biology Life Sciences & Biomedicine - Other Topics GC3QR WOS:000429699100014 29115026 2019-02-21 J Fisher, DN; David, M; Rodriguez-Munoz, R; Tregenza, T Fisher, David N.; David, Morgan; Rodriguez-Munoz, Rolando; Tregenza, Tom Lifespan and age, but not residual reproductive value or condition, are related to behaviour in wild field crickets ETHOLOGY English Article behavioural type; Gryllus; life history; pace of life; personality ADAPTIVE PERSONALITY-DIFFERENCES; ANIMAL PERSONALITY; INDIVIDUAL CORRELATIONS; HISTORY STRATEGIES; INSECT POPULATION; SEXUAL SELECTION; BODY CONDITION; TRADE-OFFS; TRAITS; EVOLUTION Individuals frequently show long-term consistency in behaviour over their lifetimes, referred to as personality. Various models, revolving around the use of resources and how they are valued by individuals, attempt to explain the maintenance of these different behavioural types within a population, and evaluating them is the key for understanding the evolution of behavioural variation. The pace-of-life syndrome hypothesis suggests that differences in personalities result from divergent life-history strategies, with more active/risk-taking individuals reproducing rapidly but dying young. However, studies of wild animals provide only limited support for key elements of this and related hypotheses, such as a negative relationship between residual reproductive value and activity. Furthermore, alternative models make divergent predictions regarding the relationship between risk-taking behaviours and variables consistent in the short-term, such as condition. To test these predictions, we regularly measured willingness to leave a shelter and the activity level of wild adult field crickets (Gryllus campestris) at both short and long intervals over their entire adult lives. We found some support for a pace-of-life syndrome influencing personality, as lifespan was negatively related to willingness to leave the shelter and activity. Crickets did not appear to protect their assets however, as estimates of residual reproductive value were not related to behaviour. Although there was considerable variance attributed to the short-term consistency, neither trait was affected by phenotypic condition, failing to support either of the models we tested. Our study confirms that behaviours may covary with some life-history traits and highlights the scales of temporal consistency that are more difficult to explain. [Fisher, David N.; David, Morgan; Rodriguez-Munoz, Rolando; Tregenza, Tom] Univ Exeter, Ctr Ecol & Conservat, Penryn, Cornwall, England; [Fisher, David N.] Univ Guelph, Dept Integrat Biol, Guelph, ON, Canada; [David, Morgan] Univ Antwerp, Dept Biol Ethol, Drie Eiken Campus, Antwerp, Belgium; [David, Morgan] Drylaw House Gardens, Edinburgh, Midlothian, Scotland Tregenza, T (reprint author), Univ Exeter, Ctr Ecol & Conservat, Penryn, Cornwall, England. t.tregenza@exeter.ac.uk Fisher, David/0000-0002-4444-4450 Natural Environment Research Council [NE/H02249X/1, NE/H02364X/1] Natural Environment Research Council, Grant/Award Number: NE/H02249X/1 and NE/H02364X/1 Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Bolker B., 2012, COEFPLOT2; Bretman A, 2011, MOL ECOL, V20, P3045, DOI 10.1111/j.1365-294X.2011.05140.x; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; Dammhahn M, 2012, P ROY SOC B-BIOL SCI, V279, P2645, DOI 10.1098/rspb.2012.0212; David M, 2015, BEHAV ECOL SOCIOBIOL, V69, P1085, DOI 10.1007/s00265-015-1921-1; David M, 2012, ETHOLOGY, V118, P932, DOI 10.1111/j.1439-0310.2012.02085.x; David M, 2012, IBIS, V154, P372, DOI 10.1111/j.1474-919X.2012.01216.x; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dosmann A, 2015, ANIM BEHAV, V101, P179, DOI 10.1016/j.anbehav.2014.12.026; Dosmann AJ, 2015, ETHOLOGY, V121, P125, DOI 10.1111/eth.12320; Duckworth RA, 2010, AUK, V127, P752, DOI 10.1525/auk.2010.127.4.752; Ferrari C, 2013, ANIM BEHAV, V85, P1385, DOI 10.1016/j.anbehav.2013.03.030; Fisher DN, 2015, BEHAV ECOL, V26, P975, DOI 10.1093/beheco/arv048; Fisher DN, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0708; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hall ML, 2015, FRONT ECOL EVOL, V3, P28; Hawlena D, 2009, AMPHIBIA-REPTILIA, V30, P587, DOI 10.1163/156853809789647167; HEIDELBERGER P, 1983, OPER RES, V31, P1109, DOI 10.1287/opre.31.6.1109; Houston A.l, 1999, MODELS ADAPTIVE BEHA; Hunt J, 2005, AM NAT, V166, P79, DOI 10.1086/430672; Kluen E, 2014, BEHAV ECOL SOCIOBIOL, V68, P205, DOI 10.1007/s00265-013-1635-1; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; Mangel M, 2001, EVOL ECOL RES, V3, P583; Martin J, 2006, BEHAV ECOL SOCIOBIOL, V60, P778, DOI 10.1007/s00265-006-0221-1; McElreath R, 2007, NATURE, V450, pE5, DOI 10.1038/nature06326; Montiglio PO, 2015, BEHAV ECOL SOCIOBIOL, V69, P1, DOI 10.1007/s00265-014-1812-x; Montiglio PO, 2014, J ANIM ECOL, V83, P720, DOI 10.1111/1365-2656.12174; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Niemela PT, 2013, BEHAV ECOL, V24, P935, DOI 10.1093/beheco/art014; Niemela PT, 2015, BEHAV ECOL, V26, P936, DOI 10.1093/beheco/arv036; Niemela PT, 2014, TRENDS ECOL EVOL, V29, P245, DOI 10.1016/j.tree.2014.02.007; R Development Core Team R, 2016, R FOUND STAT COMPUT, V1, P409; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Rillich J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028891; Rodriguez-Munoz R, 2010, SCIENCE, V328, P1269, DOI 10.1126/science.1188102; Schielzeth H, 2010, METHODS ECOL EVOL, V1, P103, DOI 10.1111/j.2041-210X.2010.00012.x; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; Seltmann MW, 2012, ANIM BEHAV, V84, P889, DOI 10.1016/j.anbehav.2012.07.012; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1; Wilson DS, 1998, PHILOS T ROY SOC B, V353, P199, DOI 10.1098/rstb.1998.0202; Wolf M, 2007, NATURE, V450, pE5, DOI 10.1038/nature06327; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001; Wolf M, 2010, PHILOS T R SOC B, V365, P3959, DOI 10.1098/rstb.2010.0215 55 0 0 6 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology MAY 2018 124 5 338 346 10.1111/eth.12735 9 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology GC7WC WOS:000430003100007 Green Published, Other Gold 2019-02-21 J Villellas, J; Garcia, MB Villellas, J.; Garcia, M. B. Life-history trade-offs vary with resource availability across the geographic range of a widespread plant PLANT BIOLOGY English Article Environmental stress; growth and reproduction costs; life-history theory; Plantago coronopus; species' distribution area; survival POPULATION-DYNAMICS; REPRODUCTIVE EFFORT; PERENNIAL HERB; CLIMATE-CHANGE; GROWTH; COSTS; EVOLUTION; ORCHID; SIZE; FECUNDITY Trade-offs between reproduction, growth and survival arise from limited resource availability in plants. Environmental stress is expected to exacerbate these negative correlations, but no studies have evaluated variation in life-history trade-offs throughout species geographic ranges. Here we analyse the costs of growth and reproduction across the latitudinal range of the widespread herb Plantago coronopus in Europe. We monitored the performance of thousands of individuals in 11 populations of P.coronopus, and tested whether the effects of growth and reproduction on a set of vital rates (growth, probability of survival, probability of reproduction and fecundity) varied with local precipitation and soil fertility. To account for variation in internal resources among individuals, we analysed trade-offs correcting for differences in size. Growth was negatively affected by previous growth and reproduction. We also found costs of growth and reproduction on survival, reproduction probability and fecundity, but only in populations with low soil fertility. Costs also increased with precipitation, possibly due to flooding-related stress. In contrast, growth was positively correlated with subsequent survival, and there was a positive covariation in reproduction between consecutive years under certain environments, a potential strategy to exploit temporary benign conditions. Overall, we found both negative and positive correlations among vital rates across P.coronopus geographic range. Trade-offs predominated under stressful conditions, and positive correlations arose particularly between related traits like reproduction investment across years. By analysing multiple and diverse fitness components along stress gradients, we can better understand life-history evolution across species' ranges, and their responses to environmental change. [Villellas, J.; Garcia, M. B.] CSIC, IPE, Zaragoza, Spain; [Villellas, J.] Trinity Coll Dublin, Sch Nat Sci, Dublin 2, Ireland Villellas, J (reprint author), Trinity Coll Dublin, Sch Nat Sci, Dublin 2, Ireland. jesus.villellas@gmail.com Villellas, Jesus/0000-0001-7805-5683 Spanish Ministry of Science and Innovation [CGL2006-08507, CGL2010-21642]; FPU scholarship [AP-2006-00237] This study was funded by the Spanish Ministry of Science and Innovation through two National Projects (CGL2006-08507; CGL2010-21642) to MBG and a FPU scholarship (AP-2006-00237) to JV. We are grateful to R. Braza, J. Ehrlen, J. Olesen and numerous assistants throughout years for their valuable help with field and laboratory work. BIERE A, 1995, J ECOL, V83, P629, DOI 10.2307/2261631; Burnham K. P, 2002, MODEL SELECTION MULT; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Chater A. O., 1976, FLORA EUROPAEA, P38; Dahlgren JP, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.1217; DEJONG G, 1993, FUNCT ECOL, V7, P75, DOI 10.2307/2389869; Despland E, 1997, AM J BOT, V84, P928, DOI 10.2307/2446283; Etterson JR, 2001, SCIENCE, V294, P151, DOI 10.1126/science.1063656; Ferguson SH, 2000, ECOGRAPHY, V23, P193, DOI 10.1034/j.1600-0587.2000.230205.x; Freckleton RP, 2011, BEHAV ECOL SOCIOBIOL, V65, P91, DOI 10.1007/s00265-010-1045-6; Garcia MB, 2002, AM J BOT, V89, P1295, DOI 10.3732/ajb.89.8.1295; Gaston KJ, 2009, P R SOC B, V276, P1395, DOI 10.1098/rspb.2008.1480; Gregg KB, 2006, BIOL CONSERV, V129, P50, DOI 10.1016/j.biocon.2005.09.044; Hacket-Pain AJ, 2017, TREE PHYSIOL, V37, P744, DOI 10.1093/treephys/tpx025; Hansen CF, 2013, J EVOLUTION BIOL, V26, P993, DOI 10.1111/jeb.12114; Harper J. L., 1977, POPULATION BIOL PLAN; HEANES DL, 1984, COMMUN SOIL SCI PLAN, V15, P1191, DOI 10.1080/00103628409367551; Hegyi G, 2011, BEHAV ECOL SOCIOBIOL, V65, P69, DOI 10.1007/s00265-010-1036-7; Hulten E, 1986, ATLAS N EUROPEAN VAS; Huot B, 2014, MOL PLANT, V7, P1267, DOI 10.1093/mp/ssu049; HUTCHINGS MJ, 1987, J ECOL, V75, P729, DOI 10.2307/2260202; INGHE O, 1985, OIKOS, V45, P400, DOI 10.2307/3565576; Jacquemyn H, 2010, J ECOL, V98, P1204, DOI 10.1111/j.1365-2745.2010.01697.x; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Knops JMH, 2007, P NATL ACAD SCI USA, V104, P16982, DOI 10.1073/pnas.0704251104; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; Lesica P, 2007, J ECOL, V95, P1360, DOI 10.1111/j.1365-2745.2007.01291.x; Loehle C, 1998, J BIOGEOGR, V25, P735, DOI 10.1046/j.1365-2699.1998.2540735.x; Lord J, 1998, NEW ZEAL J ECOL, V22, P25; Mangel M, 2001, EVOL ECOL RES, V3, P583; MARK A. F., 1965, NEW ZEAL J BOT, V3, P180; Mommer L, 2005, ANN BOT-LONDON, V96, P581, DOI 10.1093/aob/mci212; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; OBESO JR, 1993, ECOGRAPHY, V16, P365, DOI 10.1111/j.1600-0587.1993.tb00226.x; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; R Core Team, 2017, R LANG ENV STAT COMP; Reeves DW, 1997, SOIL TILL RES, V43, P131, DOI 10.1016/S0167-1987(97)00038-X; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roach DA, 2001, EXP GERONTOL, V36, P687, DOI 10.1016/S0531-5565(00)00235-7; ROFF DA, 2002, LIFE HIST EVOLUTION; Salguero-Gomez R, 2012, PHILOS T R SOC B, V367, P3100, DOI 10.1098/rstb.2012.0074; Salguero-Gomez R, 2010, J ECOL, V98, P312, DOI 10.1111/j.1365-2745.2009.01616.x; SCHAT H, 1984, OECOLOGIA, V62, P279, DOI 10.1007/BF00379027; Shefferson RP, 2014, J ECOL, V102, P1318, DOI 10.1111/1365-2745.12281; Sletvold N, 2015, ECOL LETT, V18, P357, DOI 10.1111/ele.12417; SMITH AP, 1982, OECOLOGIA, V55, P243, DOI 10.1007/BF00384494; Stearns S, 1992, EVOLUTION LIFE HIST; Strauss SY, 2002, TRENDS ECOL EVOL, V17, P278, DOI 10.1016/S0169-5347(02)02483-7; Thompson FL, 2004, J EVOLUTION BIOL, V17, P581, DOI 10.1111/j.1420-9101.2004.00701.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Villellas J, 2013, PLANT BIOLOGY, V15, P899, DOI 10.1111/j.1438-8677.2012.00684.x; Villellas J, 2013, ECOGRAPHY, V36, P136, DOI 10.1111/j.1600-0587.2012.07425.x; Waite S., 1980, THESIS; Wapstra E, 2001, AUSTRAL ECOL, V26, P179, DOI 10.1046/j.1442-9993.2001.01104.x; Westerband AC, 2015, AM J BOT, V102, P1290, DOI 10.3732/ajb.1500041; Williams JL, 2015, J ECOL, V103, P798, DOI 10.1111/1365-2745.12369 58 1 1 3 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1435-8603 1438-8677 PLANT BIOLOGY Plant Biol. MAY 2018 20 3 483 489 10.1111/plb.12682 7 Plant Sciences Plant Sciences GC7YQ WOS:000430010500010 29247581 2019-02-21 J Troisi, A Troisi, Alfonso Psychotraumatology: What researchers and clinicians can learn from an evolutionary perspective SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY English Review Psychotraumatology; Psychosocial stressor; Evolutionary theory; Life history theory; Sexual selection; Goal priorities; Developmental plasticity; Predictive adaptive responses; Differential susceptibility POSTTRAUMATIC-STRESS-DISORDER; LIFE-HISTORY STRATEGY; RECEPTOR GENE OPRM1; GENDER-DIFFERENCES; INFANT-DEATH; BRAIN; HEALTH; MODEL; PTSD; VULNERABILITY This review outlines the contribution of evolutionary science to experimental and clinical psychotraumatology. From an evolutionary perspective, traumatic and psychosocial stressors are conceived of as events or circumstances that thwart the achievement of biological goals. The more important is the adaptive value of the goal, the more painful is the emotional impact of the life event that endangers goal achievement. Life history theory and sexual selection theory help to explain why goal priorities differ between the sexes and across age groups. Cultural values and social learning interact with evolved inclinations in determining the hierarchy of goals for a specific person in a specific phase of his or her life. To illustrate the applicability of the evolutionary model, epidemiological and clinical data concerning individual differences in stress sensitivity and stress generation are reviewed and discussed. The final part of the review summarizes new hypotheses that explain how early and current psychosocial stressors can activate a series of adaptive mechanisms including developmental plasticity, predictive adaptive responses and differential susceptibility. Ultimately, the contribution of evolutionary science to psychotraumatology is the idea that experimental and clinical studies should shift the focus of research from the external environment (defined as all stressful factors external to the subjects under investigation) to the ecological environment (defined as those stressful factors of the external environment that have a greater potential to threaten the adaptive equilibrium of the subjects under investigation because of their evolved inclinations). (C) 2017 Elsevier Ltd. All rights reserved. [Troisi, Alfonso] Univ Roma Tor Vergata, Dept Syst Med, Viale Montpellier 1, I-00133 Rome, Italy Troisi, A (reprint author), Univ Roma Tor Vergata, Dept Syst Med, Viale Montpellier 1, I-00133 Rome, Italy. alfonso.troisi@uniroma2.it Alsop-Shields L, 2001, J ADV NURS, V35, P50, DOI 10.1046/j.1365-2648.2001.01821.x; American Psychiatric Association, DIAGN STAT MAN MENT; American Psychiatric Association, 1980, DIAGN STAT MAN MENT; Amos T., 2014, COCHRANE DATABASE SY, V8; Anderson KM, 2003, J PSYCHOSOM RES, V54, P353, DOI 10.1016/S0022-3999(02)00398-7; BARTHOLOMEW K, 1991, J PERS SOC PSYCHOL, V61, P226, DOI 10.1037//0022-3514.61.2.226; Bateson P., 2014, J PHYSL, V592; Becker DV, 2014, BEHAV BRAIN SCI, V37, P137, DOI 10.1017/S0140525X13001957; Belsky J, 2016, JAMA PEDIATR, V170, P321, DOI 10.1001/jamapediatrics.2015.4263; Bick J, 2016, NEUROPSYCHOPHARMACOL, V41, P177, DOI 10.1038/npp.2015.252; Bonanno GA, 2011, ANNU REV CLIN PSYCHO, V7, P511, DOI 10.1146/annurev-clinpsy-032210-104526; Bowlby J., 1969, ATTACHMENT LOSS, V1; Breslau N, 1998, ARCH GEN PSYCHIAT, V55, P626, DOI 10.1001/archpsyc.55.7.626; Christiansen DM, 2017, CLIN PSYCHOL REV, V51, P60, DOI 10.1016/j.cpr.2016.10.007; Chua KJ, 2017, EVOL PSYCHOL-US, V15, DOI 10.1177/1474704916677342; Davies A. P. C., 2008, FDN EVOLUTIONARY PSY; Davies KJA, 2016, MOL ASPECTS MED, V49, P1, DOI 10.1016/j.mam.2016.04.007; Del Giudice M, 2014, J DEV ORIG HLTH DIS, V5, P270, DOI 10.1017/S2040174414000257; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis L, 2011, PERS INDIV DIFFER, V51, P552, DOI 10.1016/j.paid.2011.04.004; Friedman MJ, 2017, NEUROSCI LETT, V649, P181, DOI 10.1016/j.neulet.2016.11.048; Guina J, 2015, J PSYCHIATR PRACT, V21, P281, DOI 10.1097/PRA.0000000000000091; Hanson MA, 2014, PHYSIOL REV, V94, P1027, DOI 10.1152/physrev.00029.2013; Hatch SL, 2007, AM J COMMUN PSYCHOL, V40, P313, DOI 10.1007/s10464-007-9134-z; HOLMES TH, 1967, J PSYCHOSOM RES, V11, P213, DOI 10.1016/0022-3999(67)90010-4; Ireland M., 1993, RECONCEIVING WOMEN S; Kendler K. S., 2014, AM J PSYCHIAT, V171; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; KESSLER RC, 1995, ARCH GEN PSYCHIAT, V52, P1048, DOI 10.1001/archpsyc.1995.03950240066012; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Larsen SE, 2016, J ANXIETY DISORD, V38, P37, DOI 10.1016/j.janxdis.2016.01.001; Lieberman MD, 2009, SCIENCE, V323, P890, DOI 10.1126/science.1170008; Liu RT, 2013, CLIN PSYCHOL REV, V33, P406, DOI 10.1016/j.cpr.2013.01.005; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Madsen S, 2008, HDB ATTACHMENT THEOR, P23, DOI 10.1177/1468017309342543; Mason F, 2013, BEST PRACT RES CL OB, V27, P27, DOI 10.1016/j.bpobgyn.2012.08.015; Mata R, 2016, PSYCHOL SCI, V27, P231, DOI 10.1177/0956797615617811; Matar MA, 2009, EUR NEUROPSYCHOPHARM, V19, P283, DOI 10.1016/j.euroneuro.2008.12.004; McEwen BS, 2013, PERSPECT PSYCHOL SCI, V8, P673, DOI 10.1177/1745691613506907; Monroe SM, 2008, ANNU REV CLIN PSYCHO, V4, P33, DOI 10.1146/annurev.clinpsy.4.022007.141207; Nesse R. M, 2005, HDB EVOLUTIONARY PSY, P903; Nesse R. M, 2016, STRESS CONCEPTS COGN, P95, DOI 10.1016/8978-0-12-800951-2.00011-X; Nesse RM, 2004, PHILOS T ROY SOC B, V359, P1333, DOI 10.1098/rstb.2004.1511; Ortman Dennis C, 2005, J Psychosoc Nurs Ment Health Serv, V43, P46; Paykel ES, 2001, J AFFECT DISORDERS, V62, P141, DOI 10.1016/S0165-0327(00)00174-9; Puts D, 2016, CURR OPIN PSYCHOL, V7, P28, DOI 10.1016/j.copsyc.2015.07.011; Riboni FV, 2017, CURR OPIN BEHAV SCI, V14, P72, DOI 10.1016/j.cobeha.2016.12.011; Roberts S. C., 2012, APPL EVOLUTIONARY PS, P277; Robertson J., 1953, 2 YEAR OLD GOES HOSP; Sacco Donald F, 2012, Front Evol Neurosci, V4, P13, DOI 10.3389/fnevo.2012.00013; Sapolsky RM, 2015, NAT NEUROSCI, V18, P1344, DOI 10.1038/nn.4109; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131; Slavich GM, 2016, TEACH PSYCHOL, V43, P346, DOI 10.1177/0098628316662768; Sotgiu I, 2010, SOC SCI J, V47, P189, DOI 10.1016/j.soscij.2009.09.002; Thornhill R., 2000, NATURAL HIST RAPE; Tost H, 2015, NAT NEUROSCI, V18, P1421, DOI 10.1038/nn.4108; Troisi A, 2001, PHYSIOL BEHAV, V73, P443, DOI 10.1016/S0031-9384(01)00459-0; Troisi A, 1998, ENCY MENTAL HLTH, V2, P173; Troisi A, 2012, SOC COGN AFFECT NEUR, V7, P542, DOI 10.1093/scan/nsr037; VANCE JC, 1991, MED J AUSTRALIA, V155, P292; Verhaak CM, 2005, J BEHAV MED, V28, P181, DOI 10.1007/s10865-005-3667-0; Way BM, 2009, P NATL ACAD SCI USA, V106, P15079, DOI 10.1073/pnas.0812612106; Wiesenthal D. L., 2012, APPL EVOLUTIONARY PS; Ying LY, 2015, INT J NURS STUD, V52, P1640, DOI 10.1016/j.ijnurstu.2015.05.004 66 0 0 5 12 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 1084-9521 SEMIN CELL DEV BIOL Semin. Cell Dev. Biol. MAY 2018 77 SI 153 160 10.1016/j.semcdb.2017.09.001 8 Cell Biology; Developmental Biology Cell Biology; Developmental Biology GA0SY WOS:000428025800018 28889019 2019-02-21 J Jimenez, AG; Winward, J; Beattie, U; Cipolli, W Jimenez, Ana Gabriela; Winward, Josh; Beattie, Ursula; Cipolli, William Cellular metabolism and oxidative stress as a possible determinant for longevity in small breed and large breed dogs PLOS ONE English Article LIFE-HISTORY EVOLUTION; DNA-REPAIR; TELOMERE LENGTHS; TRADE-OFFS; DIE YOUNG; SPAN; MECHANISMS; CAPACITY; BIOLOGY; DAMAGE Among species, larger animals tend to live longer than smaller ones, however, the opposite seems to be true for dogs-smaller dogs tend to live significantly longer than larger dogs across all breeds. We were interested in the mechanism that may allow for small breeds to age more slowly compared with large breeds in the context of cellular metabolism and oxidative stress. Primary dermal fibroblasts from small and large breed dogs were grown in culture. We measured basal oxygen consumption (OCR), proton leak, and glycolysis using a Seahorse XF96 oxygen flux analyzer. Additionally, we measured rates of reactive species (RS) production, reduced glutathione (GSH) content, mitochondrial content, lipid peroxidation (LPO) damage and DNA (8-OHdg) damage. Our data suggests that as dogs of both size classes age, proton leak is significantly higher in older dogs, regardless of size class. We found that all aspects of glycolysis were significantly higher in larger breeds compared with smaller breeds. We found significant differences between age classes in GSH concentration, and a negative correlation between DNA damage in puppies and mean breed life-span. Interestingly, RS production showed no differences across size and age class. Thus, large breed dogs may have higher glycolytic rates, and DNA damage, suggesting a potential mechanism for their decreased lifespan compared with small breed dogs. [Jimenez, Ana Gabriela; Winward, Josh; Beattie, Ursula] Colgate Univ, Dept Biol, Hamilton, NY 13346 USA; [Cipolli, William] Colgate Univ, Dept Math, Hamilton, NY 13346 USA Jimenez, AG (reprint author), Colgate Univ, Dept Biol, Hamilton, NY 13346 USA. ajimenez@colgate.edu Colgate University Colgate University funded this project. Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701; Austad SN, 2005, MECH AGEING DEV, V126, P43, DOI 10.1016/j.mad.2004.09.022; Austad SN, 2010, INTEGR COMP BIOL, V50, P783, DOI 10.1093/icb/icq131; Baserga R, 2003, INT J CANCER, V107, P873, DOI 10.1002/ijc.11487; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Berryman DE, 2008, GROWTH HORM IGF RES, V18, P455, DOI 10.1016/j.ghir.2008.05.005; Brand MD, 2011, BIOCHEM J, V435, P297, DOI 10.1042/BJ20110162; Bratic I, 2010, BBA-BIOENERGETICS, V1797, P961, DOI 10.1016/j.bbabio.2010.01.004; Cohen A. A., 2017, BIOCH BIOPHYSICA ACT; Cortopassi GA, 1996, MECH AGEING DEV, V91, P211, DOI 10.1016/S0047-6374(96)01788-5; Cottet-Rousselle C, 2011, CYTOM PART A, V79A, P405, DOI 10.1002/cyto.a.21061; Deeb BJ, 1994, VET MED S, V89, P702; Divakaruni AS, 2014, METHOD ENZYMOL, V547, P309, DOI 10.1016/B978-0-12-801415-8.00016-3; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Fan R, 2016, AGING-US, V8, P3209, DOI 10.18632/aging.101081; Fick LJ, 2012, CELL REP, V2, P1530, DOI 10.1016/j.celrep.2012.11.021; Galis F, 2007, J EXP ZOOL PART B, V308B, P119, DOI 10.1002/jez.b.21116; Gebhard AW, 2013, MOL CANCER THER, V12, P2446, DOI 10.1158/1535-7163.MCT-13-0310; Gerencser AA, 2009, ANAL CHEM, V81, P6868, DOI 10.1021/ac900881z; Greer KA, 2011, AGE, V33, P475, DOI 10.1007/s11357-010-9182-4; Guo JR, 2005, BIOTECHNOL LETT, V27, P3, DOI 10.1007/s10529-004-6294-x; HART RW, 1979, MECH AGEING DEV, V9, P203, DOI 10.1016/0047-6374(79)90100-3; Hasty P, 2003, SCIENCE, V299, P1355, DOI 10.1126/science.1079161; Head E, 2002, J NEUROCHEM, V82, P375, DOI 10.1046/j.1471-4159.2002.00969.x; Hill BG, 2012, BIOL CHEM, V393, P1485, DOI 10.1515/hsz-2012-0198; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Hursting SD, 2003, ANNU REV MED, V54, P131, DOI [10.1146/annurev.med.54.101601.152156, 10.1146/annurev.med.54.101601.15216]; Jimenez AG, 2016, J COMP PHYSIOL B, V186, P813, DOI 10.1007/s00360-016-1002-4; Jin K, 2016, PATHOBIOL AGING AGE, V6, DOI 10.3402/pba.v6.33276; Kaneko T, 1996, MUTAT RES-DNAGING G, V316, P277, DOI 10.1016/S0921-8734(96)90010-7; Kapahi P, 1999, FREE RADICAL BIO MED, V26, P495, DOI 10.1016/S0891-5849(98)00323-2; Kirkwood TBL, 2005, CELL, V120, P437, DOI 10.1016/j.cell.2005.01.027; Kraus C, 2013, AM NAT, V181, P492, DOI 10.1086/669665; Leiros M, 2015, ACS CHEM NEUROSCI, V6, P331, DOI 10.1021/cn500258c; Li Y, 1996, J GERONTOL A-BIOL, V51, pB403, DOI 10.1093/gerona/51A.6.B403; LITTLE JB, 1976, GERONTOLOGY, V22, P28; Ljubisavljevic S, 2016, NEUROTOX RES, V30, P530, DOI 10.1007/s12640-016-9639-z; Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039; Lowseth Lisa A., 1990, Vet Clin Pathol, V19, P13; Mandavilli Bhaskar S, 2010, Curr Protoc Cytom, VChapter 9, DOI 10.1002/0471142956.cy0935s53; McKevitt TP, 2002, J NUTR, V132, p1604S, DOI 10.1093/jn/132.6.1604S; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Michell AR, 1999, VET REC, V145, P625, DOI 10.1136/vr.145.22.625; Miller RA, 2011, AGEING RES REV, V10, P181, DOI 10.1016/j.arr.2010.01.002; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; MORGAN JA, 1972, TECHNOMETRICS, V14, P317, DOI 10.2307/1267424; MOSIER JE, 1989, VET CLIN N AM-SMALL, V19, P1; Nasir L, 2001, NEOPLASIA, V3, P351, DOI 10.1038/sj.neo.7900173; Nemec A, 2000, ACTA VET BRNO, V69, P297, DOI 10.2754/avb200069040297; Patronek GJ, 1997, J GERONTOL A-BIOL, V52, pB171, DOI 10.1093/gerona/52A.3.B171; R Core Team, 2016, R LANG ENV STAT COMP; Ricklefs RE, 2008, FUNCT ECOL, V22, P379, DOI 10.1111/j.1365-2435.2008.01420.x; Rollo CD, 2002, EVOL DEV, V4, P55, DOI 10.1046/j.1525-142x.2002.01053.x; Samaras TT, 2002, AGEING RES REV, V1, P673, DOI 10.1016/S1568-1637(02)00029-6; Sanz A, 2006, ANTIOXID REDOX SIGN, V8, P582, DOI 10.1089/ars.2006.8.582; Schumacher B, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000161; SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136; Selman C, 2013, CURR BIOL, V23, pR451, DOI 10.1016/j.cub.2013.04.005; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Shi Y, 2010, INTEGR COMP BIOL, V50, P869, DOI 10.1093/icb/icq079; Sohal RS, 2002, FREE RADICAL BIO MED, V33, P575, DOI 10.1016/S0891-5849(02)00886-9; SOHAL RS, 1990, EXP GERONTOL, V25, P499, DOI 10.1016/0531-5565(90)90017-V; Speakman John R, 2015, ECOLOGY EVOLUTION, P1; Todorova I., 2005, COMP CLIN PATHOL, V13, P190, DOI DOI 10.1007/S00580-005-0547-5; Tomsic K, 2016, ACTA VET-BEOGRAD, V66, P534, DOI 10.1515/acve-2016-0046; Urfer S. R., 2010, AGE, V33, P451; Vajdovich P, 1997, VET RES COMMUN, V21, P463, DOI 10.1023/A:1005929801735; Wang YL, 2007, J PROTEOME RES, V6, P1846, DOI 10.1021/pr060685n; WARBURG O, 1956, SCIENCE, V124, P269, DOI 10.1126/science.124.3215.267; Waters DJ, 2009, AGING CELL, V8, P752, DOI 10.1111/j.1474-9726.2009.00513.x 70 2 2 7 10 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 25 2018 13 4 e0195832 10.1371/journal.pone.0195832 20 Multidisciplinary Sciences Science & Technology - Other Topics GD8ZI WOS:000430802400045 29694441 DOAJ Gold 2019-02-21 J Christie, MR; McNickle, GG; French, RA; Blouin, MS Christie, Mark R.; McNickle, Gordon G.; French, Rod A.; Blouin, Michael S. Life history variation is maintained by fitness trade-offs and negative frequency-dependent selection PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article Lotka-Volterra competition; evolutionary game theory; fitness; iteroparity; salmon ALTERNATIVE REPRODUCTIVE STRATEGIES; BAYESIAN PARENTAGE ANALYSIS; TROUT SALMO-GAIRDNERI; STEELHEAD TROUT; PACIFIC SALMON; ONCORHYNCHUS-MYKISS; SYSTEMATIC ACCOUNTABILITY; SEXUAL SELECTION; GENOTYPING ERROR; SOCKEYE-SALMON The maintenance of diverse life history strategies within and among species remains a fundamental question in ecology and evolutionary biology. By using a near-complete 16-year pedigree of 12,579 winter-run steelhead (Oncorhynchus mykiss) from the Hood River, Oregon, we examined the continued maintenance of two life history traits: the number of lifetime spawning events (semelparous vs. iteroparous) and age at first spawning (2-5 years). We found that repeat-spawning fish had more than 2.5 times the lifetime reproductive success of single-spawning fish. However, first-time repeat-spawning fish had significantly lower reproductive success than single-spawning fish of the same age, suggesting that repeat-spawning fish forego early reproduction to devote additional energy to continued survival. For single-spawning fish, we also found evidence for a fitness trade-off for age at spawning: older, larger males had higher reproductive success than younger, smaller males. For females, in contrast, we found that 3-year-old fish had the highest mean lifetime reproductive success despite the observation that 4-and 5-year-old fish were both longer and heavier. This phenomenon was explained by negative frequency-dependent selection: as 4-and 5-year-old fish decreased in frequency on the spawning grounds, their lifetime reproductive success became greater than that of the 3-year-old fish. Using a combination of mathematical and individual-based models parameterized with our empirical estimates, we demonstrate that both fitness trade-offs and negative frequency-dependent selection observed in the empirical data can theoretically maintain the diverse life history strategies found in this population. [Christie, Mark R.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA; [Christie, Mark R.] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA; [McNickle, Gordon G.] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA; [McNickle, Gordon G.] Purdue Univ, Ctr Plant Pathol, W Lafayette, IN 47907 USA; [French, Rod A.] Oregon Dept Fish & Wildlife, The Dalles, OR 97058 USA; [Blouin, Michael S.] Oregon State Univ, Dept Integrat Biol, Corvallis, OR 97331 USA Christie, MR (reprint author), Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA.; Christie, MR (reprint author), Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA. markchristie@purdue.edu McNickle, Gordon/F-3699-2017 McNickle, Gordon/0000-0002-7188-7265; Christie, Mark/0000-0001-7285-5364; Blouin, Michael/0000-0002-8439-2878 Purdue Biological Sciences Department; Purdue Forestry and Natural Resources Department; Bonneville Power Administration We thank W. Ardren, B. Cooper, V. Amarasinghe, M. Marine, B. Van Orman, and the Oregon State Center for Genome Research and Biotechnology for laboratory protocols and genotyping efforts. We also thank M. Ford, C. Searle, and M. Sparks for insightful discussions and the editor and anonymous reviewers for thought-provoking comments that greatly improved the manuscript. We acknowledge all ODFW staff members who collected field data, performed scale aging, and acquired tissue samples for this data set. This research was funded by support to M.R.C. from the Purdue Biological Sciences and Forestry and Natural Resources Departments and by a grant to M.S.B. from the Bonneville Power Administration. Adler PB, 2007, ECOL LETT, V10, P95, DOI 10.1111/j.1461-0248.2006.00996.x; Anderson EC, 2014, BIOINFORMATICS, V30, P743, DOI 10.1093/bioinformatics/btt588; Araki H, 2007, CONSERV BIOL, V21, P181, DOI 10.1111/j.1523-1739.2006.00564.x; BRADFORD MJ, 1995, CAN J FISH AQUAT SCI, V52, P1327, DOI 10.1139/f95-129; Brown JS, 2005, EVOLUTIONARY GAME TH; Carius HJ, 2001, EVOLUTION, V55, P1136; Carlson SM, 2011, HEREDITY, V106, P438, DOI 10.1038/hdy.2010.163; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Christie MR, 2012, HEREDITY, V109, P254, DOI 10.1038/hdy.2012.39; Christie MR, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10676; Christie MR, 2014, EVOL APPL, V7, P883, DOI 10.1111/eva.12183; Christie MR, 2013, BIOINFORMATICS, V29, P725, DOI 10.1093/bioinformatics/btt039; Christie MR, 2012, P NATL ACAD SCI USA, V109, P238, DOI 10.1073/pnas.1111073109; Christie MR, 2011, MOL ECOL, V20, P1263, DOI 10.1111/j.1365-294X.2010.04994.x; Christie MR, 2010, MOL ECOL RESOUR, V10, P115, DOI 10.1111/j.1755-0998.2009.02687.x; Cressman R, 2017, THEOR POPUL BIOL, V116, P1, DOI 10.1016/j.tpb.2017.04.003; Cunningham CJ, 2013, AM NAT, V181, P663, DOI 10.1086/670026; Darwin C, 1859, ORIGIN SPECIES; FLEMING IA, 1994, EVOLUTION, V48, P637, DOI 10.1111/j.1558-5646.1994.tb01350.x; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Futuyma D.J., 2017, EVOLUTION; Gigord LDB, 2001, P NATL ACAD SCI USA, V98, P6253, DOI 10.1073/pnas.111162598; Grafen A, 1988, STUDIES INDIVIDUAL V, P454; Gross M.T., 1984, P55; GROSS MR, 1991, PHILOS T R SOC B, V332, P59, DOI 10.1098/rstb.1991.0033; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; HANKIN DG, 1993, CAN J FISH AQUAT SCI, V50, P347, DOI 10.1139/f93-040; Hatchwell BJ, 2000, ANIM BEHAV, V59, P1079, DOI 10.1006/anbe.2000.1394; Hendry AP, 2004, P ROY SOC B-BIOL SCI, V271, P259, DOI 10.1098/rspb.2003.2600; HOLTBY LB, 1986, CAN J FISH AQUAT SCI, V43, P1946, DOI 10.1139/f86-240; JORDAN DS, 1923, AM FOOD GAME FISHES; Keefer ML, 2008, CAN J FISH AQUAT SCI, V65, P2592, DOI 10.1139/F08-160; KESNER WD, 1972, CALIF FISH GAME, V58, P204; Koskella B, 2009, EVOLUTION, V63, P2213, DOI 10.1111/j.1558-5646.2009.00711.x; Leimar O, 2013, J THEOR BIOL, V339, P3, DOI 10.1016/j.jtbi.2013.08.005; Manly B. F. J., 2006, RANDOMIZATION BOOTST; McMillan JR, 2012, ENVIRON BIOL FISH, V93, P343, DOI 10.1007/s10641-011-9921-0; Metcalf JC, 2003, TRENDS ECOL EVOL, V18, P471, DOI 10.1016/S0169-5347(03)00162-9; PARKER RR, 1962, J FISH RES BOARD CAN, V19, P561, DOI 10.1139/f62-037; Quinn T. P., 2015, CANADIAN J FISHERIES, V73, P1015; Quinn TP, 2011, T AM FISH SOC, V140, P45, DOI 10.1080/00028487.2010.550244; QUINN TP, 1994, ANIM BEHAV, V48, P751, DOI 10.1006/anbe.1994.1300; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; RICKER WE, 1976, J FISH RES BOARD CAN, V33, P1483, DOI 10.1139/f76-191; Ricklefs R, 2014, ECOLOGY EC NATURE; Ripa J, 2009, EVOL ECOL RES, V11, P305; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; ROUGHGARDEN J, 1972, AM NAT, V106, P683, DOI 10.1086/282807; Seamons TR, 2010, BEHAV ECOL SOCIOBIOL, V64, P505, DOI 10.1007/s00265-009-0866-7; Seamons TR, 2009, N AM J FISH MANAGE, V29, P396, DOI 10.1577/M08-044.1; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; WARD BR, 1989, CAN J FISH AQUAT SCI, V46, P1853, DOI 10.1139/f89-233; WITHLER IL, 1966, J FISH RES BOARD CAN, V23, P365, DOI 10.1139/f66-031; Zimmerman CE, 2002, T AM FISH SOC, V131, P986, DOI 10.1577/1548-8659(2002)131<0986:IOSARR>2.0.CO;2 56 0 0 12 21 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. APR 24 2018 115 17 4441 4446 10.1073/pnas.1801779115 6 Multidisciplinary Sciences Science & Technology - Other Topics GD7MZ WOS:000430697500064 29643072 2019-02-21 J Urlacher, SS; Ellison, PT; Sugiyama, LS; Pontzer, H; Eick, G; Liebert, MA; Cepon-Robins, TJ; Gildner, TE; Snodgrass, JJ Urlacher, Samuel S.; Ellison, Peter T.; Sugiyama, Lawrence S.; Pontzer, Herman; Eick, Geeta; Liebert, Melissa A.; Cepon-Robins, Tara J.; Gildner, Theresa E.; Snodgrass, J. Josh Tradeoffs between immune function and childhood growth among Amazonian forager-horticulturalists PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article life history theory; energetics; phenotypic plasticity; inflammation; adaptive immunity C-REACTIVE PROTEIN; DRIED BLOOD SPOTS; FAT OXIDATION; LIFE-HISTORY; CHRONIC INFLAMMATION; MARKET INTEGRATION; IMMUNOGLOBULIN-E; LOWLAND BOLIVIA; SAO-PAULO; CHILDREN Immune function is an energetically costly physiological activity that potentially diverts calories away from less immediately essential life tasks. Among developing organisms, the allocation of energy toward immune function may lead to tradeoffs with physical growth, particularly in high-pathogen, low-resource environments. The present study tests this hypothesis across diverse timeframes, branches of immunity, and conditions of energy availability among humans. Using a prospective mixed-longitudinal design, we collected anthropometric and blood immune biomarker data from 261 Amazonian forager-horticulturalist Shuar children (age 4-11 y old). This strategy provided baseline measures of participant stature, s.c. body fat, and humoral and cell-mediated immune activity as well as subsample longitudinal measures of linear growth (1 wk, 3 mo, 20 mo) and acute inflammation. Multilevel analyses demonstrate consistent negative effects of immune function on growth, with children experiencing up to 49% growth reduction during periods of mildly elevated immune activity. The direct energetic nature of these relationships is indicated by (i) the manifestation of biomarker-specific negative immune effects only when examining growth over timeframes capturing active competition for energetic resources, (ii) the exaggerated impact of particularly costly inflammation on growth, and (iii) the ability of children with greater levels of body fat (i.e., energy reserves) to completely avoid the growth-inhibiting effects of acute inflammation. These findings provide evidence for immunologically and temporally diverse body fat-dependent tradeoffs between immune function and growth during childhood. We discuss the implications of this work for understanding human developmental energetics and the biological mechanisms regulating variation in human ontogeny, life history, and health. [Urlacher, Samuel S.; Pontzer, Herman] CUNY Hunter Coll, Dept Anthropol, New York, NY 10065 USA; [Ellison, Peter T.] Harvard Univ, Dept Human Evolutionary Biol, Cambridge, MA 02138 USA; [Sugiyama, Lawrence S.; Eick, Geeta; Gildner, Theresa E.; Snodgrass, J. Josh] Univ Oregon, Dept Anthropol, Eugene, OR 97403 USA; [Pontzer, Herman] Duke Univ, Dept Evolutionary Anthropol, Durham, NC 27708 USA; [Liebert, Melissa A.] No Arizona Univ, Dept Anthropol, Flagstaff, AZ 86011 USA; [Cepon-Robins, Tara J.] Univ Colorado, Dept Anthropol, Colorado Springs, CO 80918 USA Ellison, PT (reprint author), Harvard Univ, Dept Human Evolutionary Biol, Cambridge, MA 02138 USA. pellison@fas.harvard.edu Eick, Geeta/0000-0001-7512-3265 National Science Foundation [BCS-1340958, DGE-1144152]; Leakey Foundation; Harvard University; University of Oregon We thank the Shuar. This work was supported by National Science Foundation Grants BCS-1340958 and DGE-1144152, the Leakey Foundation, Harvard University, and the University of Oregon. Abbas A.K, 2014, CELLULAR MOL IMMUNOL; Anton SC, 2014, SCIENCE, V345, P45, DOI 10.1126/science.1236828; BARKER DJP, 1995, BRIT MED J, V311, P171, DOI 10.1136/bmj.311.6998.171; Bates D, 2015, J STAT SOFTW, V67, P1; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Berryman DE, 2013, NAT REV ENDOCRINOL, V9, P346, DOI 10.1038/nrendo.2013.64; Biolo G, 1997, NUTRITION, V13, pS52, DOI 10.1016/S0899-9007(97)00206-2; Blackwell AD, 2017, AM J PHYS ANTHROPOL, V162, P441, DOI 10.1002/ajpa.23128; Blackwell AD, 2016, ANN HUM BIOL, V43, P382, DOI 10.1080/03014460.2016.1189963; Blackwell AD, 2010, AM J HUM BIOL, V22, P836, DOI 10.1002/ajhb.21092; Blurton Jones NG, 2016, DEMOGRAPHY EVOLUTION; Bogin B, 1996, AM J HUM BIOL, V8, P703, DOI 10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U; Cepon-Robins TJ, 2014, J PARASITOL, V100, P598, DOI 10.1645/13-383.1; Collinson A, 2005, AM J CLIN NUTR, V81, P488; Crimmins EM, 2006, P NATL ACAD SCI USA, V103, P498, DOI 10.1073/pnas.0501470103; de Onis M, 2012, PUBLIC HEALTH NUTR, V15, P142, DOI 10.1017/S1368980011001315; DeBenedetti F, 1997, J CLIN INVEST, V99, P643, DOI 10.1172/JCI119207; Decaro JA, 2010, AM J HUM BIOL, V22, P657, DOI 10.1002/ajhb.21062; Demas GE, 2011, ECOIMMUNOLOGY; Derting TL, 2003, PHYSIOL BIOCHEM ZOOL, V76, P744, DOI 10.1086/375662; Dufour DL, 2016, ANN HUM BIOL, V43, P330, DOI 10.1080/03014460.2016.1196245; Eick G, 2016, BIODEMOGR SOC BIOL, V62, P222, DOI 10.1080/19485565.2016.1169396; ELLISON PT, 1981, AM J PHYS ANTHROPOL, V56, P71, DOI 10.1002/ajpa.1330560108; FILTEAU SM, 1995, AM J CLIN NUTR, V62, P434; Frisancho AR, 2003, AM J HUM BIOL, V15, P522, DOI 10.1002/ajhb.10191; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gat-Yablonski G, 2008, CURR OPIN CLIN NUTR, V11, P303, DOI 10.1097/MCO.0b013e3282f795cf; Gibson R, 2005, PRINCIPLES NUTR ASSE; Gildner TE, 2016, J PHYSIOL ANTHROPOL, V35, DOI 10.1186/s40101-016-0118-2; Gluckman P, 2006, DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE, P1, DOI 10.2277/ 0521847435; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; Gurven M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055679; HERMANUSSEN M, 1988, EUR J PEDIATR, V147, P350, DOI 10.1007/BF00496409; Hill K., 1996, ACHE LIFE HIST ECOLO; Hoffman DJ, 2007, NUTRITION, V23, P640, DOI 10.1016/j.nut.2007.06.006; Hoffman DJ, 2017, ANN HUM BIOL, V44, P201, DOI 10.1080/03014460.2016.1267261; Hoffman DJ, 2000, AM J CLIN NUTR, V72, P702; Jokisch BD, 2006, INFORM RESULTADOS DI; Keusch GT, 2014, CLIN INFECT DIS, V59, pS207, DOI 10.1093/cid/ciu485; Kidon MI, 2005, ISR MED ASSOC J, V7, P799; Konishi S, 2014, AM J PHYS ANTHROPOL, V154, P42, DOI 10.1002/ajpa.22470; Kroeger A, 1983, SALUD ALIMENTACION E; Kuczmarski RJ, 2000, VITAL HLTH STAT, V2002, P1; Kuzawa CW, 2014, P NATL ACAD SCI USA, V111, P13010, DOI 10.1073/pnas.1323099111; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Kuzawa CW, 1998, YEARB PHYS ANTHROPOL, V41, P177; LAMPL M, 1992, SCIENCE, V258, P801, DOI 10.1126/science.1439787; Leonard WR, 2009, AM J HUM BIOL, V21, P664, DOI 10.1002/ajhb.20903; Liebert MA, 2013, ANN HUM BIOL, V40, P228, DOI 10.3109/03014460.2012.759621; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lohman T. G., 1988, ANTHROPOMETRIC STAND; Lu F, 2009, ETHNOLOGY, V48, P239; McCarthy HD, 2006, INT J OBESITY, V30, P598, DOI 10.1038/sj.ijo.0803232; McDade TW, 2008, AM J PHYS ANTHROPOL, V136, P478, DOI 10.1002/ajpa.20831; Mcdade TW, 2007, DEMOGRAPHY, V44, P899, DOI 10.1353/dem.2007.0038; McDade TW, 2017, P NATL ACAD SCI USA, V114, P7611, DOI 10.1073/pnas.1620661114; McDade TW, 2016, EVOL MED PUBLIC HLTH, P1, DOI 10.1093/emph/eov033; McDade TW, 2012, AM J HUM BIOL, V24, P675, DOI 10.1002/ajhb.22296; McDade TW, 2007, CAM S BIO EVOL ANTHR, V49, P181; McDade TW, 2005, AM J PHYS ANTHROPOL, V128, P906, DOI 10.1002/ajpa.20222; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; McDade TW, 2004, CLIN CHEM, V50, P652, DOI 10.1373/clinchem.2003.029488; Muehlenbein MP, 2010, AM J HUM BIOL, V22, P546, DOI 10.1002/ajhb.21045; Pepys MB, 2003, J CLIN INVEST, V111, P1805, DOI 10.1172/JCI200318921; Pontzer H, 2016, NATURE, V533, P390, DOI 10.1038/nature17654; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Samaras K, 2010, OBESITY, V18, P884, DOI 10.1038/oby.2009.443; Samaras TT, 2007, HUMAN BODY SIZE LAWS; Schroeder DG, 1999, AM J EPIDEMIOL, V149, P177; Sederquist B, 2014, J MOL ENDOCRINOL, V53, pT35, DOI 10.1530/JME-14-0006; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SOLOMONS NW, 1993, NUTR REV, V51, P327; Stearns S, 1992, EVOLUTION LIFE HIST; Stephensen CB, 1999, J NUTR, V129, p534S, DOI 10.1093/jn/129.2.534S; Tanner JM, 1981, HIST STUDY HUMAN GRO; Urlacher SS, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-017-18738-4; Urlacher SS, 2016, ANN HUM BIOL, V43, P316, DOI 10.1080/03014460.2016.1192219; Urlacher SS, 2016, AM J PHYS ANTHROPOL, V160, P353, DOI 10.1002/ajpa.22953; Urlacher SS, 2016, AM J HUM BIOL, V28, P16, DOI 10.1002/ajhb.22747; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Wander K, 2012, AM J HUM BIOL, V24, P565, DOI 10.1002/ajhb.22261; Wells J. C. K., 2010, EVOLUTIONARY BIOL HU; Wolowczuk I, 2008, CLIN DEV IMMUNOL, P1, DOI 10.1155/2008/639803; Wolthers OD, 2010, PEDIAT ALLERG IMM-UK, V21, pE190, DOI 10.1111/j.1399-3038.2009.00882.x; Xu HY, 2003, J CLIN INVEST, V112, P1821, DOI 10.1172/JCI200319451; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zihlman AL, 2015, P NATL ACAD SCI USA, V112, P7466, DOI 10.1073/pnas.1505071112 87 3 3 9 14 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. APR 24 2018 115 17 E3914 E3921 10.1073/pnas.1717522115 8 Multidisciplinary Sciences Science & Technology - Other Topics GD7MZ WOS:000430697500010 29632170 2019-02-21 J Wood, ZT; Palkovacs, EP; Kinnison, MT Wood, Zachary T.; Palkovacs, Eric P.; Kinnison, Michael T. Eco-evolutionary Feedbacks from Non-target Species Influence Harvest Yield and Sustainability SCIENTIFIC REPORTS English Article FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY EVOLUTION; MOSQUITOFISH GAMBUSIA-AFFINIS; PREDATOR-PREY SYSTEM; FOOD-WEB COMPLEXITY; TROPHIC CASCADES; RAPID EVOLUTION; CONTEMPORARY EVOLUTION; PHENOTYPIC PLASTICITY; CONSERVATION BIOLOGY Evolution in harvested species has become a major concern for its potential to affect yield, sustainability, and recovery. However, the current singular focus on harvest-mediated evolution in target species overlooks the potential for evolution in non-target members of communities. Here we use an individual-based model to explore the scope and pattern of harvest-mediated evolution at non-target trophic levels and its potential feedbacks on abundance and yield of the harvested species. The model reveals an eco-evolutionary trophic cascade, in which harvest at top trophic levels drives evolution of greater defense or competitiveness at subsequently lower trophic levels, resulting in alternating feedbacks on the abundance and yield of the harvested species. The net abundance and yield effects of these feedbacks depends on the intensity of harvest and attributes of non-target species. Our results provide an impetus and framework to evaluate the role of non-target species evolution in determining fisheries yield and sustainability. [Wood, Zachary T.; Kinnison, Michael T.] Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA; [Wood, Zachary T.; Kinnison, Michael T.] Univ Maine, Ecol & Environm Sci Program, Orono, ME 04469 USA; [Palkovacs, Eric P.] Univ Calif Santa Cruz, Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA Wood, ZT (reprint author), Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA.; Wood, ZT (reprint author), Univ Maine, Ecol & Environm Sci Program, Orono, ME 04469 USA. zachary.t.wood@maine.edu Wood, Zachary/0000-0001-7369-9199 USDA National Institute of Food and Agriculture, Hatch through the Maine Agricultural & Forest Experiment Station [ME0-31706, 3592]; University of Maine Graduate Student Government; US National Science Foundation [DEB 1457112, DEB 1457333]; NOAA Cooperative Institute for Marine Ecosystems and Climate This project was supported by the USDA National Institute of Food and Agriculture, Hatch project number ME0-31706 through the Maine Agricultural & Forest Experiment Station, publication number 3592. Other funding sources include: University of Maine Graduate Student Government; US National Science Foundation DEB 1457112 and DEB 1457333; and NOAA Cooperative Institute for Marine Ecosystems and Climate. The authors thank Tim Waring [University of Maine] and Ariel Wertheim [Dartmouth College] for advice on model management, as well as Steve Munch [NOAA] and Anna Kuparinen [University of Helsinki] for manuscript comments and advice. The University of Maine Ecology and Evolution of Everything group also provided invaluable comments during the early stages of this project. Abrams P. A., 1997, EVOL ECOL, V10, P167; Abrams PA, 1997, EVOLUTION, V51, P1742, DOI 10.1111/j.1558-5646.1997.tb05098.x; Abrams PA, 2009, J THEOR BIOL, V261, P294, DOI 10.1016/j.jtbi.2009.07.026; Agrawal AA, 1998, ACTA OECOL, V19, P331, DOI 10.1016/S1146-609X(98)80037-4; Audzijonyte A, 2014, MAR ECOL PROG SER, V495, P219, DOI 10.3354/meps10579; Audzijonyte A, 2013, EVOL APPL, V6, P585, DOI 10.1111/eva.12044; Audzijonyte A, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1103; Baer CF, 2007, NAT REV GENET, V8, P619, DOI 10.1038/nrg2158; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Berlow EL, 1999, ECOLOGY, V80, P2206, DOI 10.1890/0012-9658(1999)080[2206:QVITSO]2.0.CO;2; Borer ET, 2005, ECOLOGY, V86, P528, DOI 10.1890/03-0816; Carlson SM, 2007, ECOL LETT, V10, P512, DOI 10.1111/j.1461-0248.2007.01046.x; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Conrad JL, 2011, J FISH BIOL, V78, P395, DOI 10.1111/j.1095-8649.2010.02874.x; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Drake JW, 1998, GENETICS, V148, P1667; Duffy MA, 2007, ECOL LETT, V10, P44, DOI 10.1111/j.1461-0248.2006.00995.x; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Epstein J. M., 1999, Complexity, V4, P41, DOI 10.1002/(SICI)1099-0526(199905/06)4:5<41::AID-CPLX9>3.0.CO;2-F; Estes JA, 2011, SCIENCE, V333, P301, DOI 10.1126/science.1205106; Eyre-Walker A, 2007, NAT REV GENET, V8, P610, DOI 10.1038/nrg2146; Fellowes MDE, 1999, EVOLUTION, V53, P1302, DOI 10.1111/j.1558-5646.1999.tb04544.x; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Fisher RA, 1930, GENETICAL THEORY NAT; Frank KT, 2005, SCIENCE, V308, P1621, DOI 10.1126/science.1113075; Fussmann GF, 2007, FUNCT ECOL, V21, P465, DOI 10.1111/j.1365-2435.2007.01275.x; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Gross T, 2009, SCIENCE, V325, P747, DOI 10.1126/science.1173536; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Heino M, 2015, ANNU REV ECOL EVOL S, V46, P461, DOI 10.1146/annurev-ecolsys-120213-054339; Hill WG, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000008; Hiltunen T, 2014, ECOL LETT, V17, P915, DOI 10.1111/ele.12291; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Kasada M, 2014, P NATL ACAD SCI USA, V111, P16035, DOI 10.1073/pnas.1406357111; Kinnison MT, 2007, FUNCT ECOL, V21, P444, DOI 10.1111/j.1365-2435.2007.01278.x; Kinnison MT, 2015, ANN NY ACAD SCI, V1360, P120, DOI 10.1111/nyas.12974; Kondoh M, 2003, SCIENCE, V299, P1388, DOI 10.1126/science.1079154; Kraaijeveld AR, 2002, PARASITOLOGY, V125, pS71, DOI 10.1017/S0031182002001750; Kuparinen A, 2016, SCI REP-UK, V6, DOI 10.1038/srep22245; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Laugen AT, 2014, FISH FISH, V15, P65, DOI 10.1111/faf.12007; Law R, 2015, FISH FISH, V16, P160, DOI 10.1111/faf.12056; LeCraw RM, 2014, OECOLOGIA, V176, P903, DOI 10.1007/s00442-014-3083-7; Lennon JT, 2008, ECOL LETT, V11, P1178, DOI 10.1111/j.1461-0248.2008.01225.x; Lind EM, 2013, ECOL LETT, V16, P513, DOI 10.1111/ele.12078; MAGURRAN AE, 1990, ANIM BEHAV, V39, P834, DOI 10.1016/S0003-3472(05)80947-9; MOLE S, 1994, OIKOS, V71, P3, DOI 10.2307/3546166; Mollet FM, 2016, CAN J FISH AQUAT SCI, V73, P1126, DOI 10.1139/cjfas-2014-0568; Pace ML, 1999, TRENDS ECOL EVOL, V14, P483, DOI 10.1016/S0169-5347(99)01723-1; PAINE RT, 1980, J ANIM ECOL, V49, P667; Palkovacs EP, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018879; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; PIMENTEL D, 1988, OIKOS, V53, P289, DOI 10.2307/3565527; PIMENTEL D, 1961, AM NAT, V95, P65, DOI 10.1086/282160; PIMENTEL DAVID, 1965, ANN ENTOMOL SOC AMER, V58, P1; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Schmitz OJ, 1997, ECOLOGY, V78, P1388; Schmitz OJ, 2004, ECOL LETT, V7, P153, DOI 10.1111/j.1461-0248.2003.00560.x; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Serbezov D, 2010, J EVOLUTION BIOL, V23, P1631, DOI 10.1111/j.1420-9101.2010.02028.x; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Shurin JB, 2002, ECOL LETT, V5, P785, DOI 10.1046/j.1461-0248.2002.00381.x; Smith TB, 2014, ANNU REV ECOL EVOL S, V45, P1, DOI 10.1146/annurev-ecolsys-120213-091747; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1983, EVOLUTION, V37, P618, DOI 10.1111/j.1558-5646.1983.tb05578.x; Stockwell CA, 2003, TRENDS ECOL EVOL, V18, P94, DOI 10.1016/S0169-5347(02)00044-7; Yoshida T, 2003, NATURE, V424, P303, DOI 10.1038/nature01767; Yoshida T, 2007, PLOS BIOL, V5, P1868, DOI 10.1371/journal.pbio.0050235 72 0 0 5 7 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep APR 23 2018 8 6389 10.1038/s41598-018-24555-0 11 Multidisciplinary Sciences Science & Technology - Other Topics GD5IB WOS:000430539500025 29686227 DOAJ Gold, Green Published 2019-02-21 J Keinan, Y; Braun, R; Keasar, T Keinan, Yael; Braun, Rachel; Keasar, Tamar Phenotypic plasticity of pre-adult egg maturation in a parasitoid: Effects of host-starvation and brood size PLOS ONE English Article POTATO-TUBER MOTH; COPIDOSOMA-KOEHLERI HYMENOPTERA; LIFE-HISTORY EVOLUTION; TRADE-OFFS; BODY-SIZE; PHTHORIMAEA-OPERCULELLA; OVIPOSITION SUCCESS; BIOLOGICAL-CONTROL; WASP; SUPERPARASITISM Larvae of parasitoid wasps develop on a single arthropod host, and often face resource limitation that induces a tradeoff between egg maturation and somatic growth. Part of the variation in the growth-reproduction allocation was shown to be heritable, but how the larval developmental environment affects this allocation is not well-known. Detection of life history tradeoffs is often facilitated under stress conditions. We therefore exposed developing female larvae of the polyembryonic parasitoid Copidosoma koehleri (Hymenoptera: Encyrtidae) to laboratory manipulations aimed to restrict host resources (either host-starvation or high larval density). We compared the females' body sizes and egg loads shortly after adult emergence (<24 h) to those of closely related control females, which developed at a lower larval density within non-starved hosts. Host-starvation reduced the females' body sizes but not their initial egg loads. Females that experienced high larval density produced more eggs but were similar in body size to the low-density controls. Thus, the relative allocation to reproduction increased in response to both manipulations of host condition. Developmental duration and longevity were similar in all treatments. The negative correlation between body size and reproductive allocation, observed in the host-starvation treatment, is compatible with previous evidence from other parasitoids. In the high larval density treatment, however, reproductive allocation increased while body size was maintained, suggesting that the higher density increased rather than limited host resources per developing parasitoid female. The additional host resources that were diverted into egg production possibly resulted from increased feeding and body mass gain by hosts parasitized by large broods of wasps. Our results demonstrate phenotypic plasticity in resource allocation between growth and reproduction in a developing parasitoid. This plasticity may contribute to an adaptive balance between longevity and mobility vs. fecundity during the adult stage. [Keinan, Yael] Univ Haifa, Evolutionary & Environm Biol, Haifa, Israel; [Braun, Rachel] Univ Haifa, Human Biol, Haifa, Israel; [Keasar, Tamar] Univ Haifa, Biol & Environm, Tivon, Israel Keasar, T (reprint author), Univ Haifa, Biol & Environm, Tivon, Israel. tkeasar@research.haifa.ac.il Israel Science Foundation [414/10] The study was supported by the Israel Science Foundation, grant no. 414/10 to TK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Abram PK, 2016, BIOL J LINN SOC, V117, P620, DOI 10.1111/bij.12658; Baggen LR, 1998, BIOL CONTROL, V11, P9, DOI 10.1006/bcon.1997.0566; Berlinger M. J., 1997, TRENDS ENTOMOLOGY, V1, P137; Browder LW., 1985, DEV BIOL COMPREHENSI; Cicero L, 2011, J INSECT PHYSIOL, V57, P1471, DOI 10.1016/j.jinsphys.2011.07.014; Cronin JT, 1996, HEREDITY, V76, P43, DOI 10.1038/hdy.1996.6; DOUTT R. L., 1952, CANADIAN ENT, V84, P247; DOUTT RL, 1947, AM NAT, V81, P435, DOI 10.1086/281554; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Ismail M, 2012, OIKOS, V121, P2072, DOI 10.1111/j.1600-0706.2012.20582.x; Jervis MA, 2003, FUNCT ECOL, V17, P375, DOI 10.1046/j.1365-2435.2003.00742.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Keasar T, 2008, BIOCONTROL SCI TECHN, V18, P325, DOI 10.1080/09583150801905596; Keasar T, 2007, BIOL CONTROL, V42, P55, DOI 10.1016/j.biocontrol.2007.03.012; Keasar T, 2006, ECOL ENTOMOL, V31, P277, DOI 10.1111/j.1365-2311.2006.00788.x; Keinan Y, 2017, ECOL ENTOMOL, V42, P587, DOI 10.1111/een.12422; Keinan Y, 2012, BEHAV ECOL, V23, P1263, DOI 10.1093/beheco/ars111; KFIR R, 1981, ANN APPL BIOL, V99, P225; Laughton AM, 2011, J INSECT PHYSIOL, V57, P830, DOI 10.1016/j.jinsphys.2011.03.015; Llandres AL, 2015, ECOL MONOGR, V85, P353, DOI 10.1890/14-0976.1; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Pelosse P, 2011, BIOL J LINN SOC, V104, P621, DOI 10.1111/j.1095-8312.2011.01741.x; R Core Team, 2016, R LANG ENV STAT COMP; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Saeki Y, 2013, FUNCT ECOL, V27, P155, DOI 10.1111/1365-2435.12014; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Segoli M, 2009, ARTHROPOD STRUCT DEV, V38, P84, DOI 10.1016/j.asd.2008.05.003; Segoli M, 2015, ECOL ENTOMOL, V40, P483, DOI 10.1111/een.12194; Segoli M, 2013, FUNCT ECOL, V27, P1224, DOI 10.1111/1365-2435.12109; Segoli M, 2010, EVOL ECOL RES, V12, P259; Segoli M, 2009, BEHAV ECOL, V20, P761, DOI 10.1093/beheco/arp057; Seltman H. J., 2015, EXPT DESIGN ANAL; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Thorne AD, 2006, P ROY SOC B-BIOL SCI, V273, P1099, DOI 10.1098/rspb.2005.3416; Visser B, 2010, P NATL ACAD SCI USA, V107, P8677, DOI 10.1073/pnas.1001744107; Wajnberg E, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045915; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 39 0 0 3 3 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 16 2018 13 4 e0195767 10.1371/journal.pone.0195767 12 Multidisciplinary Sciences Science & Technology - Other Topics GC8QO WOS:000430061100028 29659607 DOAJ Gold, Green Published 2019-02-21 J McManamay, RA; Smith, JG; Jett, RT; Mathews, TJ; Peterson, MJ McManamay, Ryan A.; Smith, John G.; Jett, Robert T.; Mathews, Teresa J.; Peterson, Mark J. Identifying non-reference sites to guide stream restoration and long-term monitoring SCIENCE OF THE TOTAL ENVIRONMENT English Article Restoration; Anthropogenic disturbance; Contamination; Stream; Fish communities; Landscape alteration CONTERMINOUS UNITED-STATES; LIFE-HISTORY STRATEGIES; RIVER RESTORATION; WATER-QUALITY; LAND-USE; POPULATION REGULATION; HABITAT MANIPULATION; TROUT POPULATIONS; IMPACT ASSESSMENT; COLORADO STREAMS The reference condition paradigm has served as the standard for assessing the outcomes of restoration projects, particularly their success in meeting project objectives. One limitation of relying solely on the reference condition in designing and monitoring restoration projects is that reference conditions do not necessarily elucidate impairments to effective restoration, especially diagnosing the causal mechanisms behind unsuccessful outcomes. We provide a spatial framework to select both reference and non-reference streams to guide restoration planning and long-term monitoring through reliance on anthropogenically altered ecosystems to understand processes that govern ecosystem biophysical properties and ecosystem responses to restoration practices. We then applied the spatial framework to East Fork Poplar Creek (EFPC), Tennessee (USA), a system receiving 30 years of remediation and pollution abatement actions from industrialization, pollution, and urbanization. Out of > 13,000 stream reaches, we identified anywhere from 4 to 48 reaches, depending on the scenario, that could be used in restoration planning and monitoring for specific sites. Preliminary comparison of fish species composition at these sites compared to EFPC sites were used to identify potential mechanisms limiting the ecological recovery following remediation. We suggest that understanding the relative role of anthropogenic pressures in governing ecosystem responses is required to successful, process-driven restoration. (c) 2017 Elsevier B.V. All rights reserved. [McManamay, Ryan A.; Smith, John G.; Jett, Robert T.; Mathews, Teresa J.; Peterson, Mark J.] Oak Ridge Natl Lab, Environm Sci Div, Bldg 1504,MS-6351, Oak Ridge, TN 37831 USA McManamay, RA (reprint author), Oak Ridge Natl Lab, Environm Sci Div, Bldg 1504,MS-6351, Oak Ridge, TN 37831 USA. mcmanamayra@ornl.gov US Department of Energy [DE-AC05-00OR22725]; Environmental Compliance Department of the Y-12 National Security Complex; Oak Ridge National Laboratory's Environmental Protection Services Division's Water Quality Programs The study was authored by employees of UT-Battelleunder contract DE-AC05-00OR22725 with the US Department of Energy. This research was sponsored by the Environmental Compliance Department of the Y-12 National Security Complex and by the Oak Ridge National Laboratory's Environmental Protection Services Division's Water Quality Programs. We thank Allison Fortner and two anonymous reviewers for providing valuable comments on earlier versions of this manuscript. Arthington AH, 2006, ECOL APPL, V16, P1311, DOI 10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; Beechie T, 2008, N AM J FISH MANAGE, V28, P891, DOI 10.1577/M06-174.1; Beisner BE, 2003, FRONT ECOL ENVIRON, V1, P376, DOI 10.2307/3868190; Bernhardt ES, 2007, RESTOR ECOL, V15, P482, DOI 10.1111/j.1526-100X.2007.00244.x; Bernhardt ES, 2011, ECOL APPL, V21, P1926, DOI 10.1890/10-1574.1; Bernhardt ES, 2005, SCIENCE, V308, P636, DOI 10.1126/science.1109769; Bohn BA, 2002, J ENVIRON MANAGE, V64, P355, DOI 10.1006/jema.2001.0496; Bond N. R., 2003, Ecological Management & Restoration, V4, P193, DOI 10.1046/j.1442-8903.2003.00156.x; Booth DB, 2005, J N AM BENTHOL SOC, V24, P724, DOI 10.1899/0887-3593(2005)024\[0724:CAPFRU\]2.0.CO;2; Brewer JS, 2009, RESTOR ECOL, V17, P4, DOI 10.1111/j.1526-100X.2008.00456.x; Brooks SC, 2011, ENVIRON POLLUT, V159, P219, DOI 10.1016/j.envpol.2010.09.009; Brown DG, 2005, ECOL APPL, V15, P1851, DOI 10.1890/03-5220; Burcher CL, 2006, J N AM BENTHOL SOC, V25, P356, DOI 10.1899/0887-3593(2006)25[356:PABROS]2.0.CO;2; Calabrese JM, 2014, GLOBAL ECOL BIOGEOGR, V23, P99, DOI 10.1111/geb.12102; Carlisle DM, 2003, BIOLOGICAL RESPONSE SIGNATURES: INDICATOR PATTERNS USING AQUATIC COMMUNITIES, P271; Clewell A., 2005, GUIDELINES DEV MANAG; Dallas HF, 2013, HYDROBIOLOGIA, V719, P483, DOI 10.1007/s10750-012-1305-8; Davies SP, 2006, ECOL APPL, V16, P1251, DOI 10.1890/1051-0761(2006)016[1251:TBCGAD]2.0.CO;2; Dubuis A, 2011, DIVERS DISTRIB, V17, P1122, DOI 10.1111/j.1472-4642.2011.00792.x; EBERHARDT LL, 1976, J ENVIRON MANAGE, V4, P27; Elith J, 2008, J ANIM ECOL, V77, P802, DOI 10.1111/j.1365-2656.2008.01390.x; Esselman PC, 2013, ECOL INDIC, V26, P163, DOI 10.1016/j.ecolind.2012.10.028; Etnier D. A., 1993, FISHES OF TENNESSEE; Feio MJ, 2014, SCI TOTAL ENVIRON, V476, P745, DOI 10.1016/j.scitotenv.2013.05.056; Gowan C, 1996, ECOL APPL, V6, P931, DOI 10.2307/2269496; Harris RR, 1999, ENVIRON MANAGE, V24, P55, DOI 10.1007/s002679900214; Hawkins CP, 2010, J N AM BENTHOL SOC, V29, P312, DOI 10.1899/09-092.1; Hilt S, 2011, OIKOS, V120, P766, DOI 10.1111/j.1600-0706.2010.18553.x; Hobbs RJ, 2009, TRENDS ECOL EVOL, V24, P599, DOI 10.1016/j.tree.2009.05.012; HSC (Horizon Systems Corporation), 2017, NHDPLUS VERS 2; Huang J., 2015, PLOS ONE; HUGHES RM, 1986, ENVIRON MANAGE, V10, P629, DOI 10.1007/BF01866767; Jenks G. F., 1967, INT YB CARTOGRAPHY, V7, P186; Kasten J. L, 1986, WATER CONSERVATION P, V21; King RS, 2005, ECOL APPL, V15, P137, DOI 10.1890/04-0481; Kondolf GM, 2008, ENVIRON MANAGE, V42, P933, DOI 10.1007/s00267-008-9162-y; Konrad CP, 2011, BIOSCIENCE, V61, P948, DOI 10.1525/bio.2011.61.12.5; Kosnicki E, 2014, ENVIRON MANAGE, V54, P494, DOI 10.1007/s00267-014-0320-0; Krumholz L. A, 1954, ORO587 OAK RIDG NAT; Loar J. M., 1992, YTS886 OAK RIDG Y 12; Loar JM, 2011, ENVIRON MANAGE, V47, P1010, DOI 10.1007/s00267-011-9625-4; Lunde KB, 2013, ENVIRON MANAGE, V51, P1262, DOI 10.1007/s00267-013-0057-1; Mathews TJ, 2014, ENVIRON TOXICOL CHEM, V33, P2273, DOI 10.1002/etc.2673; McManamay RA, 2017, P NATL ACAD SCI USA, V114, P9581, DOI 10.1073/pnas.1706201114; McManamay RA, 2016, HYDROBIOLOGIA, V771, P45, DOI 10.1007/s10750-015-2612-7; McManamay RA, 2015, CAN J FISH AQUAT SCI, V72, P1731, DOI 10.1139/cjfas-2015-0227; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; Meador MR, 2005, AM FISH S S, V47, P409; Meador MR, 2003, ENVIRON MANAGE, V31, P504, DOI 10.1007/s00267-002-2805-5; Midway SR, 2015, ENVIRON BIOL FISH, V98, P1295, DOI 10.1007/s10641-014-0359-z; Miller JR, 2007, RESTOR ECOL, V15, P382, DOI 10.1111/j.1526-100X.2007.00234.x; Miller JR, 2016, RESTOR ECOL, V24, P577, DOI 10.1111/rec.12378; Morandi B, 2014, J ENVIRON MANAGE, V137, P178, DOI 10.1016/j.jenvman.2014.02.010; Muotka T, 2002, BIOL CONSERV, V105, P243, DOI 10.1016/S0006-3207(01)00202-6; Murcia C, 2014, RESTOR ECOL, V22, P279, DOI 10.1111/rec.12100; Nagel DE, 2014, RMRSGTR321 USDA FOR; NFHP (National Fish Habitat Partnership), 2017, FISHS EYE STAT FISH; Ode PR, 2016, FRESHW SCI, V35, P237, DOI 10.1086/684003; Olden J. D, 2010, AM FISHERIES SOC S, V73, P109; Olivero Sheldon A., 2015, STREAM CLASSIFICATIO; OMERNIK JM, 1987, ANN ASSOC AM GEOGR, V77, P118, DOI 10.1111/j.1467-8306.1987.tb00149.x; Palmer MA, 2006, WATER RESOUR RES, V42, DOI 10.1029/2005WR004354; Palmer MA, 2005, J APPL ECOL, V42, P208, DOI 10.1111/j.1365-2664.2005.01004.x; Palmer MA, 2010, FRESHWATER BIOL, V55, P205, DOI 10.1111/j.1365-2427.2009.02372.x; Paul MJ, 2001, ANNU REV ECOL SYST, V32, P333, DOI 10.1146/annurev.ecolsys.32.081501.114040; Peoples BK, 2016, J BIOGEOGR, V43, P923, DOI 10.1111/jbi.12699; Peterson MJ, 2011, ENVIRON MANAGE, V47, P1005, DOI 10.1007/s00267-011-9627-2; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Ridgeway G., 2017, PACKAGE BBM GEN BOOS; Roni P, 2008, N AM J FISH MANAGE, V28, P856, DOI 10.1577/M06-169.1; Ryon M.G., 1988, Journal of the Tennessee Academy of Science, V63, P97; Ryon MG, 2011, ENVIRON MANAGE, V47, P1096, DOI 10.1007/s00267-010-9596-x; Scott MC, 2001, FISHERIES, V26, P6, DOI 10.1577/1548-8446(2001)026<0006:NIHATM>2.0.CO;2; Smith JG, 2016, ENVIRON TOXICOL CHEM, V35, P1159, DOI 10.1002/etc.3253; Smith JG, 2011, ENVIRON MANAGE, V47, P1077, DOI 10.1007/s00267-010-9610-3; STEWARTOATEN A, 1986, ECOLOGY, V67, P929, DOI 10.2307/1939815; Stoddard JL, 2006, ECOL APPL, V16, P1267, DOI 10.1890/1051-0761(2006)016[1267:SEFTEC]2.0.CO;2; Suding KN, 2011, ANNU REV ECOL EVOL S, V42, P465, DOI 10.1146/annurev-ecolsys-102710-145115; Tear TH, 2005, BIOSCIENCE, V55, P835, DOI 10.1641/0006-3568(2005)055[0835:HMIETR]2.0.CO;2; Troia MJ, 2016, ECOL EVOL, V6, P4654, DOI 10.1002/ece3.2225; UNDERWOOD AJ, 1994, ECOL APPL, V4, P3, DOI 10.2307/1942110; USFS (United States Department of Agriculture Forest Service), 2013, BEAR TREES VER IMP M; USGS (United States Geological Survey Patuxent Wildlife Research Center), 2017, PRESENCE; USGS (United States Geological Survey) United States Department of the Interior, 2016, NAT GAP AN PROGR PRO; Utz RM, 2009, ECOL INDIC, V9, P556, DOI 10.1016/j.ecolind.2008.08.008; Violin CR, 2011, ECOL APPL, V21, P1932, DOI 10.1890/10-1551.1; Walsh CJ, 2005, J N AM BENTHOL SOC, V24, P690, DOI 10.1899/0887-3593(2005)024\\[0690:SRIUCT\\]2.0.CO;2; WALTERS C, 1997, CONSERV ECOL, V1, DOI DOI 10.1016/J.ECOLECON.2015.04.027; White SL, 2011, CAN J FISH AQUAT SCI, V68, P2057, DOI 10.1139/F2011-125; Whittier TR, 2007, J N AM BENTHOL SOC, V26, P349, DOI 10.1899/0887-3593(2007)26[349:SRSFSB]2.0.CO;2; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wolock DM, 2004, ENVIRON MANAGE, V34, pS71, DOI 10.1007/s00267-003-5077-9; Zheng L, 2008, J AM WATER RESOUR AS, V44, P1521, DOI 10.1111/j.1752-1688.2008.00257.x 95 0 0 7 34 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0048-9697 1879-1026 SCI TOTAL ENVIRON Sci. Total Environ. APR 15 2018 621 1208 1223 10.1016/j.scitotenv.2017.10.107 16 Environmental Sciences Environmental Sciences & Ecology FU9SJ WOS:000424196800119 29074249 2019-02-21 J Mededovic, J Mededovic, Janko Testing the state-dependent behavior models in humans: Environmental harshness moderates the link between personality and mating PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Behavioral ecology; State-dependent behavior; Life-history theory; HEXACO personality traits; Harsh environment LIFE-HISTORY STRATEGY; ANIMAL PERSONALITY; EVOLUTIONARY GENETICS; TRAITS; RISK; SOCIOSEXUALITY; PSYCHOPATHY; DIMENSIONS; MENARCHE; STRESS In behavioral ecology, state-dependent models are frequently used for the explanation of inter-individual variance in personality traits. Environmental characteristics are one of the external states which could influence this variance. The model predicts that environmental harshness should be related to fast life-history personality traits and that these traits should be more beneficial for fitness-related behavior in a harsh environment. In order to test the state-dependent behavior models in humans, we explored the relations between environmental harshness (exposure to long-term inter-group conflict), HEXACO personality traits and mating success (N = 204). We found that exposure to conflict is related to a fast life-history personality profile: lower Honesty, Agreeableness and Conscientiousness, followed by higher Extraversion. Furthermore, interaction effects showed that high Extraversion and low Emotionality are related to higher mating success, but only in a harsh environment. All obtained results are in line with state-dependent models predictions. Research findings reveal the rich explanatory potential of behavioral ecological models in explaining key questions of human behavior, such as inter-individual variance in personality. [Mededovic, Janko] Inst Criminol & Sociol Res, Gracanicka 18, Belgrade 11000, Serbia Mededovic, J (reprint author), Inst Criminol & Sociol Res, Gracanicka 18, Belgrade 11000, Serbia. janko.medjedovic@fmk.edu.rs Ministry of Education, Science and Technological Development of Serbia [47011] This research was funded by Ministry of Education, Science and Technological Development of Serbia via grant #47011. Belsky J, 2008, INT J BEHAV DEV, V32, P260, DOI 10.1177/0165025408090969; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Carlson MD, 2014, DEV PSYCHOL, V50, P1532, DOI 10.1037/a0035479; Carter AJ, 2013, BIOL REV, V88, P465, DOI 10.1111/brv.12007; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Jokela M, 2011, EUR J PERSONALITY, V25, P487, DOI 10.1002/per.822; Jonason P. K., 2011, INDIVIDUAL DIFFERENC, V9, P52; Kogan SM, 2015, ARCH SEX BEHAV, V44, P609, DOI 10.1007/s10508-014-0410-3; Lee K, 2008, J PERS, V76, P1001, DOI 10.1111/j.1467-6494.2008.00512.x; Lee K, 2006, PSYCHOL ASSESSMENT, V18, P182, DOI 10.1037/1040-3590.18.2.182; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; Manson JH, 2015, EVOL PSYCHOL-US, V13, P48, DOI 10.1177/147470491501300104; Mededovic J., 2017, J PERSONALI IN PRESS; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Nettle D, 2010, PHILOS T R SOC B, V365, P4043, DOI 10.1098/rstb.2010.0061; Patch EA, 2017, PERS INDIV DIFFER, V115, P108, DOI 10.1016/j.paid.2016.04.023; Penke L., 2013, HDB SEXUALITY RELATE, P622; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Penke L, 2016, CURR OPIN PSYCHOL, V7, P104, DOI 10.1016/j.copsyc.2015.08.021; Pilch I., 2015, PSYCHOL SPOLECZNA, V10, P435, DOI DOI 10.7366/1896180020153506; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; ROFF DA, 2002, LIFE HIST EVOLUTION; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Ruchensky JR, 2017, PERS INDIV DIFFER, V119, P129, DOI 10.1016/j.paid.2017.07.006; Schaller M, 2008, J PERS SOC PSYCHOL, V95, P212, DOI 10.1037/0022-3514.95.1.212; Schmitt DP, 2008, EVOL PSYCHOL-US, V6, P246, DOI 10.1177/147470490800600204; Sheppard P, 2016, AM J HUM BIOL, V28, P356, DOI 10.1002/ajhb.22793; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Sih A, 2012, PHILOS T R SOC B, V367, P2762, DOI 10.1098/rstb.2012.0216; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Snopkowski K, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0156; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Strouts PH, 2017, PERS INDIV DIFFER, V115, P128, DOI 10.1016/j.paid.2016.03.047; West SG, 1996, J PERS, V64, P1, DOI 10.1111/j.1467-6494.1996.tb00813.x; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2010, PHILOS T R SOC B, V365, P3959, DOI 10.1098/rstb.2010.0215 42 2 2 1 25 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. APR 15 2018 125 68 73 10.1016/j.paid.2017.12.035 6 Psychology, Social Psychology FW8CW WOS:000425555900011 2019-02-21 J Kayal, E; Bentlage, B; Pankey, MS; Ohdera, AH; Medina, M; Plachetzki, DC; Collins, AG; Ryan, JF Kayal, Ehsan; Bentlage, Bastian; Pankey, M. Sabrina; Ohdera, Aki H.; Medina, Monica; Plachetzki, David C.; Collins, Allen G.; Ryan, Joseph F. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits BMC EVOLUTIONARY BIOLOGY English Article Cnidaria; Genome scale dataset; Phylogenomic analysis; Acraspeda; Staurozoa; Life history evolution ANTHOZOA CNIDARIA; PHYLUM-CNIDARIA; CHARACTER EVOLUTION; SEQUENCE DATA; LIFE-CYCLES; SEA-ANEMONE; HYDROZOA; PHYLOGENETICS; MEDUSOZOA; MYXOZOA Background: The phylogeny of Cnidaria has been a source of debate for decades, during which nearly all possible relationships among the major lineages have been proposed The ecological success of Cnidaria is predicated on several fascinating organismal innovations including stinging cells, symbiosis, colonial body plans and elaboiate life histories However, understanding the origins and subsequent diversification of these traits remains difficult due to persistent uncertainty surrounding the evolutionary/ relationships within Cnidaria. While recent phylogenomic studies have advanced our knowledge of the cnidarian tree of life, no analysis to date has included genome scale data for each major cnidarian lineage. Results: Here we describe a well supported hypothesis for cnidarian phylogeny based on phylogenomic analyses of new and existing genome scale data that includes representatives of all cnidarian classes Our results are robust to alternative modes of phylogenetic estimation and phylogenomic dataset construction We show that two popular phylogenomic matrix construction pipelines yield profoundly different datasets, both in the identities and in the functional classes of the loci they include, but resolve the same topology We then level age our phylogenetic resolution of Cnidaria to understand the character histones of several critical organismal traits Ancestral state reconstruction analyses based on our phylogeny establish several notable oiganismal transitions in the evolutionary history of Cnidaria and depict the ancestral cnidarian as a solitary/, non symbiotic polyp that lacked a medusa stage In addition, Bayes factor tests strongly suggest that symbiosis has evolved multiple times independently across the cnidarian radiation. Conclusions: Cnidaria have experienced more than 600 million years of independent evolution and in the process generated an array of organismal innovations Our results add significant clarification on the cnidarian tree of life and the histories of some of these innovations Further, we confirm the existence of Acraspeda (staurozoans plus scyphozoans and cubozoans),, thus reviving an evolutionary hypothesis put forward more than a century ago. [Kayal, Ehsan; Bentlage, Bastian; Collins, Allen G.] Smithsonian Inst, Dept Invertebrate Zool, Natl Museum Nat Hist, Washington, DC 20560 USA; [Kayal, Ehsan] UPMC, CNRS, FR2424, ABiMS,Stn Biol, F-29680 Roscoff, France; [Bentlage, Bastian] Univ Guam, Marine Lab, UOG Stn, Mangilao, GU 96923 USA; [Ohdera, Aki H.; Medina, Monica] Penn State Univ, Dept Biol, University Pk, PA 16802 USA; [Pankey, M. Sabrina; Plachetzki, David C.] Univ New Hampshire, Dept Mol Cellular & Biomed Sci, Durham, NH 03824 USA; [Collins, Allen G.] Smithsonian Inst, Natl Systemat Lab, NOAA Fisheries, Natl Museum Nat Hist, Washington, DC 20560 USA; [Ryan, Joseph F.] Univ Florida, Whitney Lab Marine Biosci, St Augustine, FL 32084 USA; [Ryan, Joseph F.] Univ Florida, Dept Biol, Gainesville, FL 32611 USA Plachetzki, DC (reprint author), Univ New Hampshire, Dept Mol Cellular & Biomed Sci, Durham, NH 03824 USA.; Ryan, JF (reprint author), Univ Florida, Whitney Lab Marine Biosci, St Augustine, FL 32084 USA.; Ryan, JF (reprint author), Univ Florida, Dept Biol, Gainesville, FL 32611 USA. david.plachetzki@unh.edu; joseph.ryan@whitney.ufl.edu Collins, Allen/0000-0002-3664-9691; Medina, Monica/0000-0001-8367-0293 Peter Buck Fellowships; NSF EPSCoR [OIA-1457769]; New Hampshire Agricultural Experiment Station; USDA National Institute of Food and Agriculture [00654] This work was supported by Peter Buck Fellowships to EK and BB and by NSF EPSCoR grant OIA-1457769 to BB. Partial funding was also provided by the New Hampshire Agricultural Experiment Station and USDA National Institute of Food and Agriculture Hatch Project 00654. This is NHAES Scientific Contribution Number 2759. The funding bodies played no role in the design of the study, or the collection, analysis, interpretation of data or in writing the manuscript. ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999; AX P, 1996, MULTICELLULAR ANIMAL; Barbeitos MS, 2010, P NATL ACAD SCI USA, V107, P11877, DOI 10.1073/pnas.0914380107; Beaulieu JM, 2013, SYST BIOL, V62, P725, DOI 10.1093/sysbio/syt034; Berntson EA, 1999, MOL PHYLOGENET EVOL, V13, P417, DOI 10.1006/mpev.1999.0649; Bolger AM, 2014, BIOINFORMATICS, V30, P2114, DOI 10.1093/bioinformatics/btu170; Bollback JP, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-88; Borowiec ML, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-2146-4; Bourne GC, 1919, Q J MICROSC SCI, V64, P27; Cartwright P, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001121; Cartwright P, 2010, INTEGR COMP BIOL, V50, P456, DOI 10.1093/icb/icq089; Cartwright P, 2008, J MAR BIOL ASSOC UK, V88, P1663, DOI 10.1017/S0025315408002257; Chang ES, 2015, P NATL ACAD SCI USA, V112, P14912, DOI 10.1073/pnas.1511468112; CHEN CA, 1995, MOL PHYLOGENET EVOL, V4, P175, DOI 10.1006/mpev.1995.1017; Clark HJ, 1862, P BOSTON NAT HIST SO, Vix, P47; Claus C, 1883, UNTERSUCHUNGEN ORG E; Collins AG, 2006, SYST BIOL, V55, P97, DOI 10.1080/10635150500433615; Collins AG, 2002, J EVOLUTION BIOL, V15, P418, DOI 10.1046/j.1420-9101.2002.00403.x; COLLINS AG, 2010, INTEGR COMP BIOL S1, V50, pE32; Collins Allen G., 2009, Smithsonian Contributions to the Marine Sciences, P139; Collins AG, 2008, J MAR BIOL ASSOC UK, V88, P1673, DOI 10.1017/S0025315408001732; Cuvier G., 1830, REGNE ANIMAL DISTRIB, V3; Cuvier G., 1817, REGNE ANIMAL DISTRIB, V4; Daly M, 2003, ZOOL J LINN SOC-LOND, V139, P419, DOI 10.1046/j.1096-3642.2003.00084.x; Daly M, 2002, EVOLUTION, V56, P502; Daly M, 2007, ZOOTAXA, P127; Duerden JE, 1898, J LINN SOC ZOOL, V26, P635; Dunn C, 2009, CURR BIOL, V19, pR233, DOI 10.1016/j.cub.2009.02.009; Dunn CW, 2008, NATURE, V452, P745, DOI 10.1038/nature06614; Dunn CW, 2013, BMC BIOINFORMATICS, V14, DOI 10.1186/1471-2105-14-330; Emms DM, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0721-2; Evans NM, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-139; Eyun SI, 2017, BMC EVOL BIOL, V17, DOI 10.1186/s12862-017-0883-5; Finnerty JR, 2004, SCIENCE, V304, P1335, DOI 10.1126/science.1091946; Foox J, 2015, J PARASITOL, V101, P269, DOI 10.1645/14-671.1; France SC, 1996, MOL MAR BIOL BIOTECH, V5, P15; Gegenbaur C, 1886, Z WISS ZOOL LEIPZIG, V8, P202; Gibbons TR, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/s12859-015-0625-x; Gnerre S, 2011, P NATL ACAD SCI USA, V108, P1513, DOI 10.1073/pnas.1017351108; Goette A, 1887, ENTWICKELUNGSGESCHIC; Gosse PH, 1858, ANN MAGAZINE NATURAL, V3, P414; Goy J, 1979, MEDUSES RESULTATS SC, P263; Gruhl A, 2012, EVODEVO, V3, DOI 10.1186/2041-9139-3-10; Haas B, 2016, TRANSDECODER FIND CO; Haas BJ, 2013, NAT PROTOC, V8, P1494, DOI 10.1038/nprot.2013.084; Haeckel E., 1880; Hampl V, 2009, P NATL ACAD SCI USA, V106, P3859, DOI 10.1073/pnas.0807880106; Hornell J, 1893, NAT SCI, V3, P204; Huang C, 2016, GENOME BIOL EVOL, V8, P3045, DOI 10.1093/gbe/evw204; HUGHES RN, 1989, FUNCTIONAL BIOL CLON; Hurst CH, 1893, PHYLOGENY LUCERNARIA, P208; Hyman, 1940, INVERTEBRATES PROTOZ; Jimenez-Guri E, 2007, INTEGR COMP BIOL, V47, P752, DOI 10.1093/icb/icm026; Jones P, 2014, BIOINFORMATICS, V30, P1236, DOI 10.1093/bioinformatics/btu031; Kajitani R, 2014, GENOME RES, V24, P1384, DOI 10.1101/gr.170720.113; Kayal E, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-5; Kiderlen H, 1937, NEUES JB MINERALOGIE, P113; KIKINGER R, 1995, J MAR BIOL ASSOC UK, V75, P899, DOI 10.1017/S0025315400038236; Kocot KM, 2013, EVOL BIOINFORM, V9, P429, DOI 10.4137/EBO.S12813; Kocot KM, 2011, NATURE, V477, P452, DOI 10.1038/nature10382; KRAMP PL, 1961, J MAR BIOL ASSOC UK, V40, P7, DOI 10.1017/S0025315400007347; Lanfear R, 2017, MOL BIOL EVOL, V34, P772, DOI 10.1093/molbev/msw260; Lartillot N, 2013, SYST BIOL, V62, P611, DOI 10.1093/sysbio/syt022; Leclere L, 2009, SYST BIOL, V58, P509, DOI 10.1093/sysbio/syp044; Li L, 2003, GENOME RES, V13, P2178, DOI 10.1101/gr.1224503; Maas O, 1903, SIBOGA EXPED, V6, P91; Maas Otto, 1907, Ergebnisse der Zoologie Jena, V1; MARISCAL RN, 1977, BIOL BULL, V152, P392, DOI 10.2307/1540427; Marques AC, 2004, INVERTEBR BIOL, V123, P23; McFadden CS, 2010, INTEGR COMP BIOL, V50, P389, DOI 10.1093/icb/icq056; Minin VN SM, 2014, INDORIGIN TESTING MA; MIRANDA LS, 2016, PEERJ, V4, DOI DOI 10.7717/PEERJ.2594; MIRANDA LS, 2016, PEERJ, V4, DOI DOI 10.7717/PEERJ.1951; Miranda LS, 2013, J MORPHOL, V274, P1365, DOI 10.1002/jmor.20185; Molodtsova, 2003, COELENTERATE BIOL; Morandini AC, 2016, B MAR SCI, V92, P343, DOI 10.5343/bms.2016.1018; Nielsen R, 2002, SYST BIOL, V51, P729, DOI 10.1080/10635150290102393; Okamura B, 2015, MYXOZOAN EVOLUTION E, P45, DOI DOI 10.1007/978-3-319-14753-6; Ou Q, 2017, P NATL ACAD SCI USA, V114, P8835, DOI 10.1073/pnas.1701650114; Pankey MS, 2014, P NATL ACAD SCI USA, V111, pE4736, DOI 10.1073/pnas.1416574111; Park E, 2012, MOL PHYLOGENET EVOL, V62, P329, DOI 10.1016/j.ympev.2011.10.008; Pratlong M, 2017, ZOOL SCR, V46, P363, DOI 10.1111/zsc.12208; Putnam NH, 2007, SCIENCE, V317, P86, DOI 10.1126/science.1139158; Qiu YL, 2006, P NATL ACAD SCI USA, V103, P15511, DOI 10.1073/pnas.0603335103; Quattrini AM, 2018, MOL ECOL RESOUR, V18, P281, DOI 10.1111/1755-0998.12736; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Rodriguez CS, 2011, ZOOTAXA, P49; Rodriguez E, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096998; Roth MS, 2014, FRONT MICROBIOL, V5, DOI 10.3389/fmicb.2014.00422; Ryan JF, 2015, J ZOOL SYST EVOL RES, V16, P40; SALVINIPLAWEN LV, 1978, Z ZOOL SYST EVOL, V16, P40; Sars M, 1846, FAUNA LITTORALIS NOR; Schmidt H., 1974, Proceedings int Coral Reef Symp, V2, P533; Shen XX, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0126; Siddall ME, 1995, J PARASITOL, V81, P961, DOI 10.2307/3284049; Simakov O, 2013, NATURE, V493, P526, DOI 10.1038/nature11696; Simion P, 2017, CURR BIOL, V27, P958, DOI 10.1016/j.cub.2017.02.031; Smith SA, 2008, BIOINFORMATICS, V24, P715, DOI 10.1093/bioinformatics/btm619; Song JI, 1997, KOREAN J BIOL SCI, P43; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Stampar SN, 2015, MAR BIOL, V162, P2161, DOI 10.1007/s00227-015-2747-0; Stampar SN, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086612; Stampar SN, 2016, CNIDARIA PRESENT FUT, P61; Stanke M, 2008, BIOINFORMATICS, V24, P637, DOI 10.1093/bioinformatics/btn013; Stolarski J, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-316; Supek F, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021800; Tekaia F, 2016, GENOM INSIGHTS, P17, DOI [10.4137/GEIEI.S37925, 10.4137/GEI.S37925]; Thiel H, 1966, EVOLUTION SCYPHOZOA; Uchida T, 1972, PUBL SETO MAR BIOL, P133; Van Dongen S. M, 2000, GRAPH CLUSTERING FLO; Van Iten H, 2006, J SYST PALAEONTOL, V4, P109, DOI 10.1017/S1477201905001793; Vanhoeffen E, 1895, BIBLIOTHECA ZOOLOGIC, V20, P1; VANITEN H, 1992, PALAEONTOLOGY, V35, P335; Werner B., 1973, Publications Seto Mar Biol Lab, V20, P35; Wietrzykowski W., 1912, Archives de Zoologie Paris (Ser 5), V10; Zapata F, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139068 116 4 4 14 26 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. APR 13 2018 18 68 10.1186/s12862-018-1142-0 18 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity GG0JL WOS:000432364200001 DOAJ Gold, Green Published 2019-02-21 J Blanchoud, S; Rutherford, K; Zondag, L; Gemmell, NJ; Wilson, MJ Blanchoud, Simon; Rutherford, Kim; Zondag, Lisa; Gemmell, Neil J.; Wilson, Megan J. De novo draft assembly of the Botrylloides leachii genome provides further insight into tunicate evolution SCIENTIFIC REPORTS English Article WHOLE-BODY REGENERATION; ASCIDIAN CIONA-INTESTINALIS; HOMEOBOX GENE CLUSTERS; OIKOPLEURA-DIOICA; STEM-CELLS; SEQUENCE DATA; ASEXUAL REPRODUCTION; VENETIAN LAGOON; ORAL SIPHON; BLOOD-CELLS Tunicates are marine invertebrates that compose the closest phylogenetic group to the vertebrates. These chordates present a particularly diverse range of regenerative abilities and life-history strategies. Consequently, tunicates provide an extraordinary perspective into the emergence and diversity of these traits. Here we describe the genome sequencing, annotation and analysis of the Stolidobranchian Botrylloides leachii. We have produced a high-quality 159 Mb assembly, 82% of the predicted 194 Mb genome. Analysing genome size, gene number, repetitive elements, orthologs clustering and gene ontology terms show that B. leachii has a genomic architecture similar to that of most solitary tunicates, while other recently sequenced colonial ascidians have undergone genome expansion. In addition, ortholog clustering has identified groups of candidate genes for the study of colonialism and whole-body regeneration. By analysing the structure and composition of conserved gene linkages, we observed examples of cluster breaks and gene dispersions, suggesting that several lineage-specific genome rearrangements occurred during tunicate evolution. We also found lineage-specific gene gain and loss within conserved cell-signalling pathways. Such examples of genetic changes within conserved cell-signalling pathways commonly associated with regeneration and development that may underlie some of the diverse regenerative abilities observed in tunicates. Overall, these results provide a novel resource for the study of tunicates and of colonial ascidians. [Blanchoud, Simon; Rutherford, Kim; Zondag, Lisa; Gemmell, Neil J.; Wilson, Megan J.] Univ Otago, Sch Biomed Sci, Dept Anat, POB 56, Dunedin 9054, New Zealand; [Blanchoud, Simon] Univ Fribourg, Dept Biol, Fribourg, Switzerland Wilson, MJ (reprint author), Univ Otago, Sch Biomed Sci, Dept Anat, POB 56, Dunedin 9054, New Zealand. meganj.wilson@otago.ac.nz Rutherford, Kim/Y-7995-2018 Rutherford, Kim/0000-0001-6277-726X; Blanchoud, Simon/0000-0001-6903-5154; Gemmell, Neil/0000-0003-0671-3637 Otago BMS Deans Bequest and Department of Anatomy; Swiss National Science Foundation (SNSF) [P2ELP3_158873, PZ00P3_173981] Funding support was provided to M.J.W. by the Otago BMS Deans Bequest and Department of Anatomy. S.B. was supported by the Swiss National Science Foundation (SNSF) grant numbers P2ELP3_158873 and PZ00P3_173981. We would like to thank Peter Maxwell and the New Zealand eScience Infrastructure (NeSI); Christelle Dantec and ANISEED for help and advice during the annotation process, as well as for the accompanying B. leachii genome browser; Aude Blanchoud and James Smith for proofreading the manuscript. Abascal F, 2005, BIOINFORMATICS, V21, P2104, DOI 10.1093/bioinformatics/bti263; Agarwala R, 2016, NUCLEIC ACIDS RES, V44, pD7, DOI 10.1093/nar/gkv1290; Albalat R, 2016, NAT REV GENET, V17, P379, DOI 10.1038/nrg.2016.39; Ashburner M, 2000, NAT GENET, V25, P25, DOI 10.1038/75556; Auger H, 2010, DEV BIOL, V339, P374, DOI 10.1016/j.ydbio.2009.12.040; Ballarin L, 2001, BIOL BULL, V201, P59, DOI 10.2307/1543526; Bateman A, 2015, NUCLEIC ACIDS RES, V43, pD204, DOI 10.1093/nar/gku989; Belyaeva OV, 2015, CHEM-BIOL INTERACT, V234, P135, DOI 10.1016/j.cbi.2014.10.026; Belyaeva OV, 2009, BBA-GEN SUBJECTS, V1790, P1266, DOI 10.1016/j.bbagen.2009.06.002; Benazeraf B, 2013, ANNU REV CELL DEV BI, V29, P1, DOI 10.1146/annurev-cellbio-101011-155703; Berna L, 2014, GENOME BIOL EVOL, V6, P1724, DOI 10.1093/gbe/evu122; BERRILL NJ, 1947, Q J MICROSC SCI, V88, P393; Bock DG, 2012, P ROY SOC B-BIOL SCI, V279, P2377, DOI 10.1098/rspb.2011.2610; Bolger AM, 2014, BIOINFORMATICS, V30, P2114, DOI 10.1093/bioinformatics/btu170; Bostock M, 2011, IEEE T VIS COMPUT GR, V17, P2301, DOI 10.1109/TVCG.2011.185; Bradnam KR, 2013, GIGASCIENCE, V2, DOI 10.1186/2047-217X-2-10; Brown FD, 2012, DEV BIOL, V369, P151, DOI 10.1016/j.ydbio.2012.05.038; Brozovic M, 2016, NUCLEIC ACIDS RES, V44, pD808, DOI 10.1093/nar/gkv966; BRUNETTI R, 1976, VIE MILIEU A BIOL MA, V26, P105; BRUNETTI R, 1974, Bollettino di Zoologia, V41, P225; BRUNETTI R, 1980, MAR ECOL PROG SER, V2, P303, DOI 10.3354/meps002303; Brunetti R, 2015, J ZOOL SYST EVOL RES, V53, P186, DOI 10.1111/jzs.12101; BURIGHEI P, 1976, Bollettino di Zoologia, V43, P293; Camacho C, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-421; Canestro C, 2005, DEV BIOL, V285, P298, DOI 10.1016/j.ydbio.2005.06.039; Canestro C, 2006, EVOL DEV, V8, P394, DOI 10.1111/j.1525-142X.2006.00113.x; Chikhi R, 2014, BIOINFORMATICS, V30, P31, DOI 10.1093/bioinformatics/btt310; Chillakuri CR, 2012, SEMIN CELL DEV BIOL, V23, P421, DOI 10.1016/j.semcdb.2012.01.009; Cunningham TJ, 2015, NAT REV MOL CELL BIO, V16, P110, DOI 10.1038/nrm3932; Dahlberg C, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004458; Dehal P, 2002, SCIENCE, V298, P2157, DOI 10.1126/science.1080049; Delcher AL, 1999, NUCLEIC ACIDS RES, V27, P4636, DOI 10.1093/nar/27.23.4636; Delsuc F, 2006, NATURE, V439, P965, DOI 10.1038/nature04336; Dobin A, 2013, BIOINFORMATICS, V29, P15, DOI 10.1093/bioinformatics/bts635; Eden E, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-48; Edvardsen RB, 2005, CURR BIOL, V15, pR12, DOI 10.1016/j.cub.2004.12.010; Ewels P., 2016, BIOINFORMATICS; Franchi N, 2011, IMMUNOBIOLOGY, V216, P725, DOI 10.1016/j.imbio.2010.10.011; FREEMAN G, 1964, J EXP ZOOL, V156, P157, DOI 10.1002/jez.1401560204; Garcia-Fernandez J, 2005, NAT REV GENET, V6, P881, DOI 10.1038/nrg1723; Gasparini F, 2008, EVOL DEV, V10, P591, DOI 10.1111/j.1525-142X.2008.00274.x; Gazave E, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-249; Gnerre S, 2011, P NATL ACAD SCI USA, V108, P1513, DOI 10.1073/pnas.1017351108; Goessling W, 2014, DIS MODEL MECH, V7, P769, DOI 10.1242/dmm.016352; GOLDIN A, 1948, BIOL BULL, V94, P184, DOI 10.2307/1538246; GRAHAM GJ, 1995, J THEOR BIOL, V175, P71, DOI 10.1006/jtbi.1995.0122; Griggio F, 2014, GENOME BIOL EVOL, V6, P931, DOI 10.1093/gbe/evu080; Guder C, 2006, ONCOGENE, V25, P7450, DOI 10.1038/sj.onc.1210052; Guindon S, 2010, SYST BIOL, V59, P307, DOI 10.1093/sysbio/syq010; Guruharsha KG, 2012, NAT REV GENET, V13, P654, DOI 10.1038/nrg3272; Gutierrez S, 2017, DEV BIOL, V423, P152, DOI 10.1016/j.ydbio.2017.01.012; Hamada M, 2015, DEV BIOL, V405, P304, DOI 10.1016/j.ydbio.2015.07.017; Wences AH, 2015, GENOME BIOL, V16, DOI 10.1186/s13059-015-0764-4; Hoegg S, 2005, TRENDS GENET, V21, P421, DOI 10.1016/j.tig.2005.06.004; Holland P. W., 2017, PHILOS T ROYAL SOC B, V372; Holt C, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-491; Ikuta T, 2010, DEVELOPMENT, V137, P1505, DOI 10.1242/dev.046938; Jackson Brian, 2011, Human Genomics, V5, P283; Janssen R, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-374; Jeanmougin F, 1998, TRENDS BIOCHEM SCI, V23, P403, DOI 10.1016/S0968-0004(98)01285-7; Jeffery WR, 2015, INT REV CEL MOL BIO, V319, P255, DOI 10.1016/bs.ircmb.2015.06.005; Jones DL, 2011, NAT CELL BIOL, V13, P506, DOI 10.1038/ncb0511-506; Jones P, 2014, BIOINFORMATICS, V30, P1236, DOI 10.1093/bioinformatics/btu031; Jue NK, 2016, GENOME BIOL EVOL, V8, P3171, DOI 10.1093/gbe/evw215; Karami A, 2015, INT J STEM CELLS, V8, P128, DOI 10.15283/ijsc.2015.8.2.128; Kent WJ, 2002, GENOME RES, V12, P656, DOI [10.1101/gr.229202, 10.1101/gr.229202. Article published online before March 2002]; Korf I, 2004, BMC BIOINFORMATICS, V5, DOI 10.1186/1471-2105-5-59; Kurn U, 2011, BIOL BULL-US, V221, P43, DOI 10.1086/BBLv221n1p43; Kusserow A, 2005, NATURE, V433, P156, DOI 10.1038/nature03158; Lauzon R. J., 2012, DEV BIOL; Lee SA, 2009, CHEM-BIOL INTERACT, V178, P182, DOI 10.1016/j.cbi.2008.09.019; Lemaire P, 2008, CURR BIOL, V18, pR620, DOI 10.1016/j.cub.2008.05.039; Li L, 2003, GENOME RES, V13, P2178, DOI 10.1101/gr.1224503; Loh KM, 2016, DEV CELL, V38, P643, DOI 10.1016/j.devcel.2016.08.011; Lowe TM, 1999, SCIENCE, V283, P1168, DOI 10.1126/science.283.5405.1168; Lowe TM, 1997, NUCLEIC ACIDS RES, V25, P955, DOI 10.1093/nar/25.5.955; Luke GN, 2003, P NATL ACAD SCI USA, V100, P5292, DOI 10.1073/pnas.0836141100; Luo RB, 2012, GIGASCIENCE, V1, DOI 10.1186/2047-217X-1-18; MacDonald BT, 2009, DEV CELL, V17, P9, DOI 10.1016/j.devcel.2009.06.016; Manni L, 2007, DEV DYNAM, V236, P335, DOI 10.1002/dvdy.21037; Marti-Solans J, 2016, MOL BIOL EVOL, V33, P2401, DOI 10.1093/molbev/msw118; Martin A, 2012, EVOL DEV, V14, P178, DOI 10.1111/j.1525-142X.2012.00534.x; MILLAR RH, 1971, ADV MAR BIOL, V9, P1, DOI 10.1016/S0065-2881(08)60341-7; Nawrocki EP, 2015, NUCLEIC ACIDS RES, V43, pD130, DOI 10.1093/nar/gku1063; Nawrocki EP, 2013, BIOINFORMATICS, V29, P2933, DOI 10.1093/bioinformatics/btt509; Nishida H, 2005, DEV DYNAM, V233, P1177, DOI 10.1002/dvdy.20469; Nydam ML, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0169944; O'Connell J, 2015, BIOINFORMATICS, V31, P2035, DOI 10.1093/bioinformatics/btv057; Pascual-Anaya J, 2013, BMC DEV BIOL, V13, DOI 10.1186/1471-213X-13-26; Piette J, 2015, Q REV BIOL, V90, P117, DOI 10.1086/681440; Primmer CR, 2013, MOL ECOL, V22, P3216, DOI 10.1111/mec.12309; Priyam A, 2015, SEQUENCESERVER MODER; Prud'homme B, 2002, CURR BIOL, V12, P1395, DOI 10.1016/S0960-9822(02)01068-0; Rice P, 2000, TRENDS GENET, V16, P276, DOI 10.1016/S0168-9525(00)02024-2; RINKEVICH B, 1995, P NATL ACAD SCI USA, V92, P7695, DOI 10.1073/pnas.92.17.7695; Rinkevich Y, 2007, DEV BIOL, V312, P131, DOI 10.1016/j.ydbio.2007.09.005; Rinkevich Y, 2007, PLOS BIOL, V5, P900, DOI 10.1371/journal.pbio.0050071; Rinkevich Y, 2013, DEV CELL, V24, P76, DOI 10.1016/j.devcel.2012.11.010; Rinkevich Y, 2008, BMC DEV BIOL, V8, DOI 10.1186/1471-213X-8-100; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; Ross AC, 2011, ANNU REV NUTR, V31, P65, DOI 10.1146/annurev-nutr-072610-145127; Rubinstein ND, 2013, GENOME BIOL EVOL, V5, P1185, DOI 10.1093/gbe/evt081; SABBADIN A, 1975, DEV BIOL, V46, P79, DOI 10.1016/0012-1606(75)90088-3; Saito Y, 2001, BIOLOGY OF ASCIDIANS, P315; Santagati F, 2003, GENETICS, V165, P235; Sasakura Y., 2017, WILEY INTERDISCIP RE; Savigny JC, 1816, MEMOIRES ANIMAUX SAN; Seo HC, 2004, NATURE, V431, P67, DOI 10.1038/nature02709; Seo HC, 2001, SCIENCE, V294, P2506, DOI 10.1126/science.294.5551.2506; Sievers F, 2011, MOL SYST BIOL, V7, DOI 10.1038/msb.2011.75; Simakov O, 2015, NATURE, V527, P459, DOI 10.1038/nature16150; Simao FA, 2015, BIOINFORMATICS, V31, P3210, DOI 10.1093/bioinformatics/btv351; Simpson JT, 2014, BIOINFORMATICS, V30, P1228, DOI 10.1093/bioinformatics/btu023; Simpson JT, 2009, GENOME RES, V19, P1117, DOI 10.1101/gr.089532.108; Small KS, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-3-r41; Smit A., 2008, REPEATMODELER OPEN 1; Smit A., 2013, REPEATMASKER OPEN 4, P2013; Sobreira TJP, 2011, P NATL ACAD SCI USA, V108, P226, DOI 10.1073/pnas.1011223108; Somorjai IML, 2012, P NATL ACAD SCI USA, V109, P517, DOI 10.1073/pnas.1100045109; Spagnuolo A, 2003, GENE, V309, P71, DOI 10.1016/S0378-1119(03)00488-8; Stach T, 2002, MOL PHYLOGENET EVOL, V25, P408, DOI 10.1016/S1055-7903(02)00305-6; Stanke M, 2003, BIOINFORMATICS, V19, pII215, DOI 10.1093/bioinformatics/btg1080; Stapley J, 2015, MOL ECOL, V24, P2241, DOI 10.1111/mec.13089; Stoick-Cooper CL, 2007, DEVELOPMENT, V134, P479, DOI 10.1242/dev.001123; Stolfi A, 2014, ELIFE, V3, DOI 10.7554/eLife.03728; Supek F, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021800; Takatori N, 2008, DEV GENES EVOL, V218, P579, DOI 10.1007/s00427-008-0245-9; Taketa DA, 2015, IMMUNOGENETICS, V67, P605, DOI 10.1007/s00251-015-0870-1; Tsagkogeorga G., 2009, BMC EVOLUTIONARY BIO, V9; Tsagkogeorga G, 2012, GENOME BIOL EVOL, V4, P852, DOI 10.1093/gbe/evs054; Tsagkogeorga G, 2010, J MOL EVOL, V71, P153, DOI 10.1007/s00239-010-9372-9; Velandia-Huerto CA, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-2934-5; Vinson JP, 2005, GENOME RES, V15, P1127, DOI 10.1101/gr.3722605; Voskoboynik A, 2007, FASEB J, V21, P1335, DOI 10.1096/fj.06-7337com; Voskoboynik A, 2015, INVERTEBR REPROD DEV, V59, P33, DOI 10.1080/07924259.2014.944673; Voskoboynik A, 2013, ELIFE, V2, DOI 10.7554/eLife.00569; Voskoboynik A, 2013, SCIENCE, V341, P384, DOI 10.1126/science.1238036; Wada S, 2003, DEV GENES EVOL, V213, P222, DOI 10.1007/s00427-003-0321-0; Wang W, 2007, MOL BIOL EVOL, V24, P784, DOI 10.1093/molbev/msl205; Zerbino DR, 2008, GENOME RES, V18, P821, DOI 10.1101/gr.074492.107; Zhan AB, 2015, MAR BIOL, V162, P2449, DOI 10.1007/s00227-015-2734-5; Zhang GF, 2012, NATURE, V490, P49, DOI 10.1038/nature11413; Zimin AV, 2013, BIOINFORMATICS, V29, P2669, DOI 10.1093/bioinformatics/btt476; Zondag LE, 2016, BMC GENOMICS, V17, DOI 10.1186/s12864-016-2435-6 144 0 0 3 11 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep APR 3 2018 8 5518 10.1038/s41598-018-23749-w 18 Multidisciplinary Sciences Science & Technology - Other Topics GB3ZK WOS:000428999200054 29615780 DOAJ Gold, Green Published 2019-02-21 J Laine, AL; Makinen, H Laine, Anna-Liisa; Makinen, Hannu Life-history correlations change under coinfection leading to higher pathogen load EVOLUTION LETTERS English Article Disease biology; evolution of virulence; host genotype; host-pathogen interactions; life-history theory; pathogen genotype; virulence DIVERSE MALARIA INFECTIONS; TRADE-OFFS; PARASITE VIRULENCE; MULTIPLE INFECTION; DISEASE DYNAMICS; EVOLUTION; METAPOPULATION; GENOTYPE; AGGRESSIVENESS; CONSEQUENCES The ability of a parasite strain to establish and grow on its host may be drastically altered by simultaneous infection by other parasite strains. However, we still lack an understanding of how life-history allocations may change under coinfection, although life-history correlations are a critical mechanism restricting the evolutionary potential and epidemiological dynamics of pathogens. Here, we study how life-history stages and their correlations change in the obligate fungal pathogen Podosphaera plantaginis under single infection and coinfection scenarios. We find increased pathogen loads under coinfection, but this is not explained by an enhanced performance at any of the life-history stages that constitute infections. Instead, we show that under coinfection the correlation between timing of sporulation and final pathogen load becomes positive. The changes in pathogen life-history allocations leading to more severe infections under coinfection can have far-reaching epidemiological consequences, as well as implication for our understanding of the evolution of virulence. [Laine, Anna-Liisa; Makinen, Hannu] Univ Helsinki, Res Programme Organismal & Evolutionary Biol, POB 65,Viikinkaari 1, FI-00014 Helsinki, Finland Laine, AL (reprint author), Univ Helsinki, Res Programme Organismal & Evolutionary Biol, POB 65,Viikinkaari 1, FI-00014 Helsinki, Finland. anna-liisa.laine@helsinki.fi Academy of Finland [250444, 133499]; European Research Council [281517] We want to thank K. Raveala for assistance in the inoculation study and C. Tollenaere for help in designing the qPCR primers. This work was supported by funding from the Academy of Finland (grant nos. 250444, 133499) and the European Research Council (Independent Starting grant PATHEVOL; 281517 and Consolidator grant RESISTANCE) to A-LL. Aljanabi SM, 1997, NUCLEIC ACIDS RES, V25, P4692, DOI 10.1093/nar/25.22.4692; Anderson PK, 2004, TRENDS ECOL EVOL, V19, P535, DOI 10.1016/j.tree.2004.07.021; Balmer O, 2011, LANCET INFECT DIS, V11, P868, DOI 10.1016/S1473-3099(11)70241-9; Barrett LG, 2011, ECOL LETT, V14, P1149, DOI 10.1111/j.1461-0248.2011.01687.x; Buckling A, 2008, HEREDITY, V100, P484, DOI 10.1038/sj.hdy.6801093; BULL JJ, 1994, EVOLUTION, V48, P1423, DOI 10.1111/j.1558-5646.1994.tb02185.x; Carter LM, 2014, MALARIA J, V13, DOI 10.1186/1475-2875-13-115; de Roode JC, 2005, P NATL ACAD SCI USA, V102, P7624, DOI 10.1073/pnas.0500078102; de Roode JC, 2005, AM NAT, V166, P531, DOI 10.1086/491659; Edward D. A., 2011, MECHS LIFE HIST EVOL; FLOR HH, 1971, ANNU REV PHYTOPATHOL, V9, P275, DOI 10.1146/annurev.py.09.090171.001423; Fraile A, 2011, MOL BIOL EVOL, V28, P1425, DOI 10.1093/molbev/msq327; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; Hamilton W. D., 1972, ANNU REV ECOL SYST, V3, P1921; Heraudet V., 2011, EVOL APPL, V4, P696; Heraudet V, 2008, EVOL ECOL RES, V10, P913; Hochberg ME, 1998, EVOLUTION, V52, P1865, DOI 10.1111/j.1558-5646.1998.tb02266.x; Hochberg ME, 2000, DEV AN VET, V32, P81; Jousimo J, 2014, SCIENCE, V344, P1289, DOI 10.1126/science.1253621; Karvonen A, 2012, P ROY SOC B-BIOL SCI, V279, P171, DOI 10.1098/rspb.2011.0879; Laine AL, 2007, J EVOLUTION BIOL, V20, P2371, DOI 10.1111/j.1420-9101.2007.01406.x; Laine AL, 2013, PLANT PATHOL, V62, P96, DOI 10.1111/ppa.12129; Laine AL, 2004, J ECOL, V92, P990, DOI 10.1111/j.0022-0477.2004.00925.x; Laine AL, 2008, ECOL LETT, V11, P327, DOI 10.1111/j.1461-0248.2007.01146.x; Laine AL, 2011, J ECOL, V99, P96, DOI 10.1111/j.1365-2745.2010.01738.x; Littell RC, 2006, SAS MIXED MODELS; Lopez-Villavicencio M, 2007, PLOS PATHOG, V3, P1710, DOI 10.1371/journal.ppat.0030176; Matz MV, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071448; Mideo N, 2008, TRENDS ECOL EVOL, V23, P511, DOI 10.1016/j.tree.2008.05.009; NOWAK MA, 1994, P ROY SOC B-BIOL SCI, V255, P81, DOI 10.1098/rspb.1994.0012; Penczykowski RM, 2015, NEW PHYTOL, V205, P1142, DOI 10.1111/nph.13145; Salvaudon L, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-189; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Susi H, 2015, AM NAT, V186, P252, DOI 10.1086/682069; Susi H, 2015, J ECOL, V103, P303, DOI 10.1111/1365-2745.12373; Susi H, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms6975; Susi H, 2013, EVOLUTION, V67, P3362, DOI 10.1111/evo.12182; Tack AJM, 2012, J EVOLUTION BIOL, V25, P1918, DOI 10.1111/j.1420-9101.2012.02588.x; Thrall PH, 2012, ECOL LETT, V15, P425, DOI 10.1111/j.1461-0248.2012.01749.x; Thrall PH, 2003, SCIENCE, V299, P1735, DOI 10.1126/science.1080070; Tollenaere C, 2013, J EVOLUTION BIOL, V26, P1716, DOI 10.1111/jeb.12169; Tollenaere C, 2016, TRENDS PLANT SCI, V21, P80, DOI 10.1016/j.tplants.2015.10.014; Tollenaere C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052492; Vale PF, 2011, AM NAT, V177, P510, DOI 10.1086/659002; Williams PD, 2014, J EVOLUTION BIOL, V27, P1271, DOI 10.1111/jeb.12379; Wolinska J, 2009, TRENDS PARASITOL, V25, P236, DOI 10.1016/j.pt.2009.02.004; Woodhams DC, 2008, ECOLOGY, V89, P1627, DOI 10.1890/06-1842.1 47 1 1 1 1 JOHN WILEY & SONS LTD CHICHESTER THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND 2056-3744 EVOL LETT Evol. Lett. APR 2018 2 2 126 133 10.1002/evl3.48 8 Evolutionary Biology Evolutionary Biology GW3BK WOS:000446764700007 30283670 DOAJ Gold 2019-02-21 J Takada, T; Shefferson, R Takada, Takenori; Shefferson, Richard The long and winding road of evolutionary demography: preface POPULATION ECOLOGY English Editorial Material Eco-evolutionary dynamics; Evolutionary demography; Fitness; Special issue LIFE-HISTORY; DYNAMICS; COMMUNITIES; FEEDBACKS; PERENNIALS; RESPONSES; SELECTION; PLANTS; SCALES Fitness can be calculated using demographic parameters such as survival and fecundity, which are normally used to examine population dynamics in ecology. This concept is at the heart of Darwin's thinking on natural selection. Natural selection optimizes survival and fertility schedules through differential fitness, and these optimal schedules drive changes in population dynamics. Therefore, there must exist an interaction between ecology and evolution. One of the disciplines that focus on the interaction is "Evolutionary demography". It uses age-or stage-specific demographic parameters throughout the whole life history to explore the evolution of life histories. Data throughout the life history of a species is indispensable to study evolutionary demography. To this end, two large-scale databases of plant and animal life history are now available online, the COMPADRE Plant Matrix Database and the COMADRE Animal Matrix Database. We are now in a revolutionary era in the demographic research of plant and animal populations (including human populations). Many skills and approaches are needed to answer questions on evolutionary demography including bodies of theory and analytical toolkits. This special issue covers a wide array of subjects: (1) Demographic analysis of populations (including human populations) from the point of view of evolutionary ecology, (2) Meta-analysis using big databases of populations, (3) Eco-evolutionary studies at the population and/or community level and (4) Theoretical studies and the development of mathematical models of life history evolution. 14 collected papers are published to answer a variety of questions using original ideas, new tools, and big data. [Takada, Takenori] Hokkaido Univ, Grad Sch Environm Sci, Kita Ku, Sapporo, Hokkaido 0600810, Japan; [Shefferson, Richard] Univ Tokyo, Org Programs Environm Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan Takada, T (reprint author), Hokkaido Univ, Grad Sch Environm Sci, Kita Ku, Sapporo, Hokkaido 0600810, Japan. takada@ees.hokudai.ac.jp Anderson JJ, 2018, POPUL ECOL, V60, P111, DOI 10.1007/s10144-018-0617-6; Baudisch A, 2013, J ECOL, V101, P596, DOI 10.1111/1365-2745.12084; Cameron TC, 2013, ECOL LETT, V16, P754, DOI 10.1111/ele.12107; Caswell H., 2001, MATRIX POPULATION MO; Colleran H, 2018, POPUL ECOL, V60, P155, DOI 10.1007/s10144-018-0626-5; Darwin C., 1859, ORIGIN SPECIES MEANS; DeLong JP, 2018, POPUL ECOL, V60, P9, DOI 10.1007/s10144-018-0608-7; Fussmann GF, 2007, FUNCT ECOL, V21, P465, DOI 10.1111/j.1365-2435.2007.01275.x; Genung MA, 2011, FUNCT ECOL, V25, P408, DOI 10.1111/j.1365-2435.2010.01797.x; Gimenez O, 2018, POPUL ECOL, V60, P101, DOI 10.1007/s10144-017-0598-x; Griffith AB, 2016, J ECOL, V104, P271, DOI 10.1111/1365-2745.12547; Haloin JR, 2008, ANN NY ACAD SCI, V1133, P87, DOI 10.1196/annals.1438.003; Hartemink N, 2018, POPUL ECOL, V60, P89, DOI 10.1007/s10144-018-0616-7; Hendry A. P., 2016, ECOEVOLUTIONARY DYNA; Horvitz CC, 2018, POPUL ECOL, V60, P61, DOI 10.1007/s10144-018-0613-x; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Kellett KM, 2018, POPUL ECOL, V60, P77, DOI 10.1007/s10144-018-0618-5; Metcalf CJE, 2015, J ECOL, V103, P819, DOI 10.1111/1365-2745.12391; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Metcalf JC, 2003, TRENDS ECOL EVOL, V18, P471, DOI 10.1016/S0169-5347(03)00162-9; Morita M, 2018, POPUL ECOL, V60, P143, DOI 10.1007/s10144-017-0597-y; Nakahashi W, 2018, POPUL ECOL, V60, P127, DOI 10.1007/s10144-018-0610-0; Nicol-Harper A, 2018, POPUL ECOL, V60, P185, DOI 10.1007/s10144-018-0620-y; OLORIZ F, 1991, ECLOGAE GEOL HELV, V84, P83; Rees M, 2016, METHODS ECOL EVOL, V7, P157, DOI 10.1111/2041-210X.12487; Rose MR, 1997, BETWEEN ZEUS AND THE SALMON, P96; Salguero-Gomez R, 2016, J ANIM ECOL, V85, P371, DOI 10.1111/1365-2656.12482; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Shefferson RP, 2018, POPUL ECOL, V60, P49, DOI 10.1007/s10144-018-0614-9; Shefferson RP, 2015, J ECOL, V103, P789, DOI 10.1111/1365-2745.12432; Shefferson RP, 2014, J ECOL, V102, P1318, DOI 10.1111/1365-2745.12281; Shyu E, 2018, POPUL ECOL, V60, P21, DOI 10.1007/s10144-018-0615-8; Silvertown J, 1982, INTRO PLANT POPULATI; Strauss SY, 2014, OIKOS, V123, P257, DOI 10.1111/j.1600-0706.2013.01093.x; Tai TH, 2018, POPUL ECOL, V60, P171, DOI 10.1007/s10144-018-0609-6; Takada T, 2018, POPUL ECOL, V60, P37, DOI 10.1007/s10144-018-0619-4; Vaupel JW, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057133; Vaupel JW, 2010, NATURE, V464, P536, DOI 10.1038/nature08984; WIKBERG S, 1995, OIKOS, V72, P293, DOI 10.2307/3546232; WILBUR HM, 1975, ECOLOGY, V56, P64, DOI 10.2307/1935300 40 0 0 5 6 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. APR 2018 60 1-2 SI 3 7 10.1007/s10144-018-0622-9 5 Ecology Environmental Sciences & Ecology GK5ET WOS:000436197700001 Bronze 2019-02-21 J Kellett, KM; Shefferson, RP Kellett, Kimberly M.; Shefferson, Richard P. Temporal variation in reproductive costs and payoffs shapes the flowering strategy of a neotropical milkweed, Asclepias curassavica POPULATION ECOLOGY English Article Demography; Life history evolution; Optimality models; Reproductive costs; Stochastic population models INTEGRAL PROJECTION MODELS; LIFE-HISTORY PERSPECTIVE; LONG-LIVED PLANT; VARIABLE ENVIRONMENT; CLIMATE-CHANGE; EVOLUTIONARY DEMOGRAPHY; POPULATION-DYNAMICS; SIZE; CONSEQUENCES; PERENNIALS A central goal of evolutionary ecology is to understand the factors that select for particular life history strategies, such as delaying reproduction. For example, environmental variation and reproductive costs to survival and growth often select for reproductive delays in semelparous and iteroparous species. In this study, we examine how variation in reproductive cost, which we define as a reduction to growth, survival, or future reproduction after a reproductive event, may select for reproductive delay in an iteroparous Neotropical milkweed with no obvious reproductive season. We analyzed demographic data collected every 3 months for 3 years from four populations of Asclepias curassavica in Monteverde, Costa Rica. We detected costs of flowering to survival and growth that varied in magnitude between our 12 transition periods without a seasonal pattern. The populations also exhibited temporal variation in reproductive payoffs measured as seedling establishment. We incorporated these reproductive costs into demographic projection models, which predicted a delayed flowering strategy only when we included temporal variation in costs and payoffs. Temporal variation in reproductive costs and payoffs is an important selective force in the evolution of delayed flowering in iteroparous species. Further, a lack of predictable seasonal pattern to reproductive costs and payoffs may contribute to the lack of seasonal reproductive patterns observed in our study species and other Neotropical species. [Kellett, Kimberly M.] Georgia State Univ, Perimeter Coll, Dept Life & Earth Sci, Dunwoody, GA 30302 USA; [Kellett, Kimberly M.; Shefferson, Richard P.] Univ Tokyo, Grad Sch Arts & Sci, Org Programs Environm Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan; [Shefferson, Richard P.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA Kellett, KM (reprint author), Georgia State Univ, Perimeter Coll, Dept Life & Earth Sci, Dunwoody, GA 30302 USA.; Kellett, KM (reprint author), Univ Tokyo, Grad Sch Arts & Sci, Org Programs Environm Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538902, Japan. kkellett@gsu.edu Sigma Xi [G2012162529]; Graduate Field Research Award from The Tinker Foundation Funding for this research provided in part by Sigma Xi Grants in Aid of Research Grant ID:. G2012162529 and a Graduate Field Research Award from The Tinker Foundation. Bates D, 2015, J STAT SOFTW, V67, P1; BAZZAZ FA, 1987, BIOSCIENCE, V37, P58, DOI 10.2307/1310178; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Burnham K. P, 2002, MODEL SELECTION MULT; Childs DZ, 2010, P ROY SOC B-BIOL SCI, V277, P3055, DOI 10.1098/rspb.2010.0707; Childs DZ, 2004, P ROY SOC B-BIOL SCI, V271, P425, DOI 10.1098/rspb.2003.2597; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Croat T. B., 1978, FLORA BARRO COLORADO; Crozier LG, 2008, EVOL APPL, V1, P252, DOI 10.1111/j.1752-4571.2008.00033.x; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.2307/177370; Gremer JR, 2014, ECOL LETT, V17, P380, DOI 10.1111/ele.12241; HART R, 1977, AM NAT, V111, P792, DOI 10.1086/283209; HORVITZ CC, 1988, ECOLOGY, V69, P1741, DOI 10.2307/1941152; Jacquemyn H, 2010, J ECOL, V98, P1204, DOI 10.1111/j.1365-2745.2010.01697.x; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Law R, 1979, POPULATION DYNAMICS, P81; Malcolm S.B., 1991, P251; MANGEL M, 1994, DEEP-SEA RES PT II, V41, P75, DOI 10.1016/0967-0645(94)90063-9; Metcalf CJE, 2008, P NATL ACAD SCI USA, V105, P10466, DOI 10.1073/pnas.0800777105; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Metcalf JC, 2003, TRENDS ECOL EVOL, V18, P471, DOI 10.1016/S0169-5347(03)00162-9; Miller TEX, 2012, P ROY SOC B-BIOL SCI, V279, P2831, DOI 10.1098/rspb.2012.0326; MOLE S, 1994, OIKOS, V71, P3, DOI 10.2307/3546166; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Orzack Steven Hecht, 1993, Lecture Notes in Biomathematics, V98, P63; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; Proaktor G, 2008, ECOLOGY, V89, P2604, DOI 10.1890/07-0833.1; R Core Team, 2014, R LANG ENV STAT COMP; Rees M, 2004, P ROY SOC B-BIOL SCI, V271, P471, DOI 10.1098/rspb.2003.2596; Rees M, 2006, AM NAT, V168, pE53, DOI 10.1086/505762; Rees M, 2009, ECOL MONOGR, V79, P575, DOI 10.1890/08-1474.1; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; ROFF DA, 2002, LIFE HIST EVOLUTION; Shefferson RP, 2014, J ECOL, V102, P1318, DOI 10.1111/1365-2745.12281; Sletvold N, 2015, J ECOL, V103, P1205, DOI 10.1111/1365-2745.12430; Sletvold N, 2015, ECOL LETT, V18, P357, DOI 10.1111/ele.12417; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns S.C., 1984, P13; Tuljapurkar S., 1990, POPULATION DYNAMICS; WELLS TCE, 1967, J ECOL, V55, P83, DOI 10.2307/2257718; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; Williams JL, 2015, J ECOL, V103, P798, DOI 10.1111/1365-2745.12369; Wyatt R, 1997, BIOTROPICA, V29, P232, DOI 10.1111/j.1744-7429.1997.tb00029.x 45 1 1 4 5 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. APR 2018 60 1-2 SI 77 87 10.1007/s10144-018-0618-5 11 Ecology Environmental Sciences & Ecology GK5ET WOS:000436197700007 2019-02-21 J Riesch, R; Plath, M; Bierbach, D Riesch, Rudiger; Plath, Martin; Bierbach, David Ecology and evolution along environmental gradients CURRENT ZOOLOGY English Editorial Material LIFE-HISTORY EVOLUTION; LOCAL ADAPTATION; SELECTION; GUPPIES; PATTERNS; STICKLEBACKS; COMPETITION; DIVERGENCE; SPECIATION; FISHES [Riesch, Rudiger] Royal Holloway Univ London, Ctr Ecol Evolut & Behav, Sch Biol Sci, Egham TW20 0EX, Surrey, England; [Plath, Martin] Northwest A&F Univ, Coll Anim Sci & Technol, Yangling 712100, Shaanxi, Peoples R China; [Bierbach, David] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Biol & Ecol Fishes, Muggelseedamm 310, D-12587 Berlin, Germany Riesch, R (reprint author), Royal Holloway Univ London, Ctr Ecol Evolut & Behav, Sch Biol Sci, Egham TW20 0EX, Surrey, England. Rudiger.Riesch@rhul.ac.uk Alvarez-Ruiz L, 2018, CURR ZOOL, V64, P197, DOI 10.1093/cz/zoy002; Bierbach D, 2015, BEHAV ECOL, V26, P1314, DOI 10.1093/beheco/arv079; Blanquart F, 2013, ECOL LETT, V16, P1195, DOI 10.1111/ele.12150; Brown JH, 2014, J BIOGEOGR, V41, P8, DOI 10.1111/jbi.12228; Cadotte MW, 2017, TRENDS ECOL EVOL, V32, P429, DOI 10.1016/j.tree.2017.03.004; Caliman A, 2010, BRAZ J BIOL, V70, P803, DOI 10.1590/S1519-69842010000400011; Cattelan S, 2018, CURR ZOOL, V64, P205, DOI 10.1093/cz/zoy008; Deacon AE, 2018, CURR ZOOL, V64, P213, DOI 10.1093/cz/zoy004; Diamond J.M., 1975, P342; Diamond SE, 2018, CURR ZOOL, V64, P223, DOI 10.1093/cz/zox072; Egea-Serrano A, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3266; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Evans JP, 1999, ANIM BEHAV, V58, P1001, DOI 10.1006/anbe.1999.1212; Fetzer I, 2015, P NATL ACAD SCI USA, V112, P14888, DOI 10.1073/pnas.1505587112; Gordon TAC, 2018, CURR ZOOL, V64, P231, DOI 10.1093/cz/zoy011; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Hatfield T, 1999, EVOLUTION, V53, P866, DOI 10.1111/j.1558-5646.1999.tb05380.x; Heinen-Kay JL, 2013, J EVOLUTION BIOL, V26, DOI 10.1111/jeb.12229; Hendry AP, 2002, EVOLUTION, V56, P1199; Hu YB, 2017, P NATL ACAD SCI USA, V114, P1081, DOI 10.1073/pnas.1613870114; Jacquemyn H, 2018, OIKOS, V127, P73, DOI 10.1111/oik.04329; Jones FC, 2012, NATURE, V484, P55, DOI 10.1038/nature10944; Jourdan J, 2016, SCI REP-UK, V6, DOI 10.1038/srep38971; Kaeuffer R, 2012, EVOLUTION, V66, P402, DOI 10.1111/j.1558-5646.2011.01440.x; Kawakami T, 2011, MOL ECOL, V20, P2318, DOI 10.1111/j.1365-294X.2011.05105.x; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Keagy J, 2018, CURR ZOOL, V64, P243, DOI 10.1093/cz/zox074; Kraft NJB, 2015, FUNCT ECOL, V29, P592, DOI 10.1111/1365-2435.12345; Kraft NJB, 2011, SCIENCE, V333, P1755, DOI 10.1126/science.1208584; Laverty G, 2015, EXTREMOPHILE FISHES, P85; Losos JB, 2011, EVOLUTION, V65, P1827, DOI 10.1111/j.1558-5646.2011.01289.x; Maan ME, 2011, ECOL LETT, V14, P591, DOI 10.1111/j.1461-0248.2011.01606.x; Monier M, 2018, CURR ZOOL, V64, P251, DOI 10.1093/cz/zoy014; Muck I, 2018, CURR ZOOL, V64, P259, DOI 10.1093/cz/zoy006; MURCIA C, 1995, TRENDS ECOL EVOL, V10, P58, DOI 10.1016/S0169-5347(00)88977-6; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; Pfenninger M, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4873; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Riesch R, 2015, EXTREMOPHILE FISHES, P137; Riesch R, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0705-1; Riesch R, 2014, ECOL LETT, V17, P65, DOI 10.1111/ele.12209; Rouse J, 2016, ANIM BEHAV, V122, P1, DOI 10.1016/j.anbehav.2016.09.011; Rundle HD, 2002, EVOLUTION, V56, P322; STATZNER B, 1985, CAN J FISH AQUAT SCI, V42, P1038, DOI 10.1139/f85-129; Torres-Dowdall J, 2013, BIOL J LINN SOC, V108, P790, DOI 10.1111/bij.12031; Torres-Dowdall J, 2012, FUNCT ECOL, V26, P616, DOI 10.1111/j.1365-2435.2012.01980.x; Via S, 2000, EVOLUTION, V54, P1626; Westneat MW, 2005, P ROY SOC B-BIOL SCI, V272, P993, DOI 10.1098/rspb.2004.3013; Whitehead A, 2010, EVOLUTION, V64, P2070, DOI 10.1111/j.1558-5646.2010.00957.x; Winkelmann K, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4412 50 2 2 7 10 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1674-5507 2396-9814 CURR ZOOL Curr. Zool. APR 2018 64 2 193 196 10.1093/cz/zoy015 4 Zoology Zoology GK7VD WOS:000436417900006 30402059 DOAJ Gold 2019-02-21 J Deacon, AE; Jones, FAM; Magurran, AE Deacon, Amy E.; Jones, Faith A. M.; Magurran, Anne E. Gradients in predation risk in a tropical river system CURRENT ZOOLOGY English Article abundance currency; gradients; Poecilia reticulata; predation risk; Trinidad; Trinidadian guppy GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; SPECIES ABUNDANCE DISTRIBUTIONS; DESERT RODENT COMMUNITY; ANTIPREDATOR BEHAVIOR; NATURAL-POPULATIONS; TRINIDADIAN GUPPY; STREAM FISH; BODY-SIZE; ENERGETIC EQUIVALENCE The importance of predation risk as a key driver of evolutionary change is exemplified by the Northern Range in Trinidad, where research on guppies living in multiple parallel streams has provided invaluable insights into the process of evolution by natural selection. Although Trinidadian guppies are now a textbook example of evolution in action, studies have generally categorized predation as a dichotomous variable, representing high or low risk. Yet, ecologists appreciate that community structure and the attendant predation risk vary substantially over space and time. Here, we use data from a longitudinal study of fish assemblages at 16 different sites in the Northern Range to quantify temporal and spatial variation in predation risk. Specifically we ask: 1) Is there evidence for a gradient in predation risk? 2) Does the ranking of sites (by risk) change with the definition of the predator community (in terms of species composition and abundance currency), and 3) Are site rankings consistent over time? We find compelling evidence that sites lie along a continuum of risk. However, site rankings along this gradient depend on how predation is quantified in terms of the species considered to be predators and the abundance currency is used. Nonetheless, for a given categorization and currency, rankings are relatively consistent over time. Our study suggests that consideration of predation gradients will lead to a more nuanced understanding of the role of predation risk in behavioral and evolutionary ecology. It also emphasizes the need to justify and report the definition of predation risk being used. [Deacon, Amy E.] Univ West Indies, Dept Life Sci, St Augustine, Trinid & Tobago; [Deacon, Amy E.; Jones, Faith A. M.; Magurran, Anne E.] Univ St Andrews, Sch Biol, St Andrews KY16 9TH, Fife, Scotland Deacon, AE (reprint author), Univ West Indies, Dept Life Sci, St Augustine, Trinid & Tobago.; Deacon, AE (reprint author), Univ St Andrews, Sch Biol, St Andrews KY16 9TH, Fife, Scotland. amy.deacon@sta.uwi.edu Jones, Faith/0000-0001-6571-714X; Magurran, Anne/0000-0002-0036-2795 European Research Council [BIOTIME 250189, BioCHANGE 727440] We are grateful for 2 European Research Council grants (BIOTIME 250189 and BioCHANGE 727440). Barbosa M, 2018, P ROY SOC B-BIOL SCI, V285, DOI 10.1098/rspb.2017.1499; BEECHER HA, 1988, ENVIRON BIOL FISH, V22, P193, DOI 10.1007/BF00005381; Botham MS, 2006, NATURWISSENSCHAFTEN, V93, P431, DOI 10.1007/s00114-006-0131-0; Brook BW, 2006, ECOLOGY, V87, P1445, DOI 10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO;2; Brown GE, 2006, BEHAV ECOL SOCIOBIOL, V61, P9, DOI 10.1007/s00265-006-0232-y; Carroll SP, 2007, FUNCT ECOL, V21, P387, DOI 10.1111/j.1365-2435.2007.01289.x; Deacon AE, 2017, ENVIRON BIOL FISH, V100, P1; Deacon AE, 2016, BIOLOGICAL INVASIONS AND ANIMAL BEHAVIOUR, P266; Deacon Amy E., 2015, Living World, P57; Ehnes RB, 2014, ECOLOGY, V95, P527, DOI 10.1890/13-0620.1; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; Fraser DF, 2013, ECOLOGY, V94, P640, DOI 10.1890/12-0803.1; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; HARVEY BC, 1991, OECOLOGIA, V87, P336, DOI 10.1007/BF00634588; HASKINS CP, 1951, EVOLUTION, V5, P216, DOI 10.1111/j.1558-5646.1951.tb02780.x; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/f00-239; Jourdan J, 2016, SCI REP-UK, V6, DOI 10.1038/srep38971; Kenny J. S., 1995, VIEWS BRIDGE MEMOIR; Kindt R., 2007, VEGAN PACKAGE COMMUN, P631; Knouft JH, 2002, CAN J FISH AQUAT SCI, V59, P1350, DOI 10.1139/F02-110; Kotrschal A, 2017, EVOL ECOL, V31, P619, DOI 10.1007/s10682-017-9901-8; Liley NR, 1975, FUNCTION EVOLUTION B; Magurran A. E., 2004, MEASURING BIOL DIVER; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1995, ADV STUD BEHAV, V24, P155, DOI 10.1016/S0065-3454(08)60394-0; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; MAGURRAN AE, 1990, BEHAVIOUR, V112, P194, DOI 10.1163/156853990X00194; Magurran AE, 2010, PHILOS T R SOC B, V365, P3611, DOI 10.1098/rstb.2010.0285; Matthews W. J., 1998, PATTERNS FRESHWATER; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; McGill BJ, 2007, ECOL LETT, V10, P995, DOI 10.1111/j.1461-0248.2007.01094.x; Millar NP, 2006, OIKOS, V113, P1; Mittelbach G.G., 1988, P219; Morlon H, 2009, ECOL LETT, V12, P488, DOI 10.1111/j.1461-0248.2009.01318.x; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1554/0014-3820(2002)056[0776:REOEAI]2.0.CO;2; PAGEL MD, 1991, AM NAT, V138, P836, DOI 10.1086/285255; Pettersson LB, 2004, BEHAV ECOL SOCIOBIOL, V55, P461, DOI 10.1007/s00265-003-0727-8; Phillip DAT, 2013, ZOOTAXA, V3711, P1; Reimchen Thomas E., 1994, P240; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Saint-Germain M, 2007, J APPL ECOL, V44, P330, DOI 10.1111/j.1365-2664.2006.01269.x; SEGHERS BH, 1974, OECOLOGIA, V14, P93, DOI 10.1007/BF00344900; Seghers BH, 1973, THESIS, DOI 10.14288/1.0100947; Stead TK, 2005, J ANIM ECOL, V74, P475, DOI 10.1111/j.1365-2656.2005.00943.x; SUGIHARA G, 1989, AM NAT, V133, P458, DOI 10.1086/284929; Taper ML, 1996, AM NAT, V147, P1072, DOI 10.1086/285893; Thibault KM, 2004, ECOLOGY, V85, P2649, DOI 10.1890/04-0321; Tokeshi M., 1993, ADV ECOL RES, V24, P112, DOI DOI 10.1016/S0065-2504; Torok P, 2016, FUNCT ECOL, V30, P1593, DOI 10.1111/1365-2435.12631; Torres-Dowdall J, 2012, FUNCT ECOL, V26, P616, DOI 10.1111/j.1365-2435.2012.01980.x; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; White EP, 2004, AM NAT, V164, P670, DOI 10.1086/424766; White EP, 2007, TRENDS ECOL EVOL, V22, P323, DOI 10.1016/j.tree.2007.03.007 60 2 2 2 5 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1674-5507 2396-9814 CURR ZOOL Curr. Zool. APR 2018 64 2 213 221 10.1093/cz/zoy004 9 Zoology Zoology GK7VD WOS:000436417900009 30402062 DOAJ Gold, Green Published 2019-02-21 J Rubin, MJ; Friedman, J Rubin, Matthew J.; Friedman, Jannice The role of cold cues at different life stages on germination and flowering phenology AMERICAN JOURNAL OF BOTANY English Article climate; Erythranthe guttata; flowering time; genetic variation; germination; life history; local adaptation; Mimulus guttatus; stratification; vernalization ARABIDOPSIS-THALIANA BRASSICACEAE; QUANTITATIVE TRAIT LOCI; SEED-GERMINATION; MIMULUS-GUTTATUS; NATURAL-SELECTION; REPRODUCTIVE ISOLATION; CRITICAL PHOTOPERIOD; HISTORY CHARACTERS; LATITUDINAL CLINE; GENETIC-BASIS PREMISE OF THE STUDY: The timing of major phenological transitions is critical to lifetime fitness, and life history theory predicts differences for annual and perennial plants. To correctly time these transitions, many plants rely on environmental cues such as exposure to extended periods of cold, which may occur at different stages throughout their lifetime. METHODS: We studied the role of cold at different life stages, by jointly exposing seed (stratification) and rosettes (vernalization) to cold. We used 23 populations of Mimulus guttatus, which vary from annuals to perennials, and investigated how cold at one or both stages affected germination, flowering, growth, and biomass. KEY RESULTS: We found that stratification and vernalization interact to affect life cycle transitions, and that cold at either stage could synchronize flowering phenology. For perennials, either stratification or vernalization is necessary for maximum flowering. We also found that germination timing covaried with later traits. Moreover, plants from environments with dissimilar climates displayed different phenological responses to stratification or vernalization. CONCLUSIONS: In general, cold is more important for seed germination in annuals and plants from environments with warm temperatures and variable precipitation. In contrast, cold is more important for flowering in perennials: it accelerates flowering in plants from lower precipitation environments, and it increases flowering proportion in plants from cooler, more stable precipitation environments. We discuss our findings in the context of the variable environments plants experience within a population and the variation encountered across the biogeographic native range of the species. [Rubin, Matthew J.; Friedman, Jannice] Syracuse Univ, Dept Biol, 110 Coll Pl, Syracuse, NY 13244 USA Rubin, MJ (reprint author), Syracuse Univ, Dept Biol, 110 Coll Pl, Syracuse, NY 13244 USA. mjrub100@syr.edu NSF [DEB-1354259] We are grateful to M. den Bakker, J. Darkwa, and R. Halloran for assistance with plant care. This research was supported by NSF grant DEB-1354259 to JF. Additionally, we thank F. X. Pico, anonymous reviewers, and the Associate Editor, N. Sletvold, for comments that improved the manuscript. Andres F, 2012, NAT REV GENET, V13, P627, DOI 10.1038/nrg3291; Auge GA, 2017, NEW PHYTOL, V216, P388, DOI 10.1111/nph.14520; Baskin C. C, 1998, SEEDS ECOLOGY BIOGEO; BASKIN JM, 1984, B TORREY BOT CLUB, V111, P329, DOI 10.2307/2995914; BASKIN JM, 1972, AM MIDL NAT, V88, P318, DOI 10.2307/2424357; BASKIN JM, 1979, B TORREY BOT CLUB, V106, P176, DOI 10.2307/2484550; Bentsink L, 2006, P NATL ACAD SCI USA, V103, P17042, DOI 10.1073/pnas.0607877103; Blair L, 2017, FUNCT PLANT BIOL, V44, P493, DOI 10.1071/FP16368; Boyd EW, 2007, INT J PLANT SCI, V168, P205, DOI 10.1086/509587; Caicedo AL, 2004, P NATL ACAD SCI USA, V101, P15670, DOI 10.1073/pnas.0406232101; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Chiang GCK, 2009, P NATL ACAD SCI USA, V106, P11661, DOI 10.1073/pnas.0901367106; CHOUARD P, 1960, ANNU REV PLANT PHYS, V11, P191, DOI 10.1146/annurev.pp.11.060160.001203; Clarke PJ, 2000, AUST J BOT, V48, P687, DOI 10.1071/BT99077; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; de Casas RR, 2012, NEW PHYTOL, V194, P868, DOI 10.1111/j.1469-8137.2012.04097.x; Debieu M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061075; Diggle PK, 1999, INT J PLANT SCI, V160, pS123, DOI 10.1086/314217; Donohue K, 2005, EVOLUTION, V59, P758; Donohue K, 2005, EVOLUTION, V59, P771; Donohue K, 2005, EVOLUTION, V59, P740; Donohue K, 2002, ECOLOGY, V83, P1006; Donohue K, 2010, ANNU REV ECOL EVOL S, V41, P293, DOI 10.1146/annurev-ecolsys-102209-144715; Ferris KG, 2015, ANN BOT-LONDON, V116, P213, DOI 10.1093/aob/mcv080; Finch-Savage WE, 2006, NEW PHYTOL, V171, P501, DOI 10.1111/j.1469-8137.2006.01787.x; Fishman L, 2014, NEW PHYTOL, V201, P1498, DOI 10.1111/nph.12618; Footitt S, 2013, PLANT J, V74, P1003, DOI 10.1111/tpj.12186; Forrest J, 2010, PHILOS T R SOC B, V365, P3101, DOI 10.1098/rstb.2010.0145; FOX GA, 1993, EVOL ECOL, V7, P1, DOI 10.1007/BF01237731; Franks SJ, 2007, P NATL ACAD SCI USA, V104, P1278, DOI 10.1073/pnas.0608379104; Friedman J, 2015, AM J BOT, V102, P497, DOI 10.3732/ajb.1500062; Friedman J, 2013, NEW PHYTOL, V199, P571, DOI 10.1111/nph.12260; GALEN C, 1991, AM J BOT, V78, P978, DOI 10.2307/2445177; Gremer JR, 2016, ECOL LETT, V19, P1209, DOI 10.1111/ele.12655; Gremer JR, 2014, ECOL LETT, V17, P380, DOI 10.1111/ele.12241; Hamaala T, 2017, MOL ECOL, V26, P3484, DOI 10.1111/mec.14135; Harper J. L., 1977, POPULATION BIOL PLAN; Herman JJ, 2011, FRONT PLANT SCI, V2, DOI 10.3389/fpls.2011.00102; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Huang XQ, 2010, MOL ECOL, V19, P1335, DOI 10.1111/j.1365-294X.2010.04557.x; Huijser P, 2011, DEVELOPMENT, V138, P4117, DOI 10.1242/dev.063511; Huo H., 2016, P NATL ACAD SCI USA, V1, P1; Ivey CT, 2012, ANN BOT-LONDON, V109, P583, DOI 10.1093/aob/mcr160; KALISZ S, 1986, EVOLUTION, V40, P479, DOI 10.1111/j.1558-5646.1986.tb00501.x; KEELEY JE, 1985, J ECOL, V73, P445, DOI 10.2307/2260486; Kendall S, 2012, SEED SCI RES, V22, pS23, DOI 10.1017/S0960258511000390; Kim DH, 2009, ANNU REV CELL DEV BI, V25, P277, DOI 10.1146/annurev.cellbio.042308.113411; Lindsay D., 1964, P UTAH ACAD SCI ARTS, V41, P327; Lowry DB, 2008, PHILOS T R SOC B, V363, P3009, DOI 10.1098/rstb.2008.0064; Marcer A, 2018, PLANT BIOLOGY, V20, P148, DOI 10.1111/plb.12558; MARKS M, 1981, OIKOS, V36, P326, DOI 10.2307/3544630; MASUDA M, 1992, OECOLOGIA, V89, P42, DOI 10.1007/BF00319013; Michaels SD, 2000, PLANT CELL ENVIRON, V23, P1145, DOI 10.1046/j.1365-3040.2000.00643.x; Mojica JP, 2012, MOL ECOL, V21, P3718, DOI 10.1111/j.1365-294X.2012.05662.x; Montesinos-Navarro A, 2012, EVOLUTION, V66, P3417, DOI 10.1111/j.1558-5646.2012.01689.x; Nordborg M, 1999, AM J BOT, V86, P470, DOI 10.2307/2656807; Pennell F. W., 1947, P ACAD NAT SCI PHILA, V99, P155; Peterson ML, 2016, NEW PHYTOL, V211, P345, DOI 10.1111/nph.13971; Pierce GL, 1999, WEED TECHNOL, V13, P421; Postma FM, 2016, P NATL ACAD SCI USA, V113, P7590, DOI 10.1073/pnas.1606303113; Preston JC, 2016, G3-GENES GENOM GENET, V6, P1239, DOI 10.1534/g3.115.026468; Purrington CB, 1998, J ECOL, V86, P397, DOI 10.1046/j.1365-2745.1998.00262.x; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.es.18.110187.001233; ROFF DA, 2002, LIFE HIST EVOLUTION; SAS, 2013, BAS SAS 9 4 PROC GUI; Simons AM, 2000, AM J BOT, V87, P124, DOI 10.2307/2656690; Simons AM, 2006, EVOLUTION, V60, P2280, DOI 10.1554/05-396.1; Simpson GG, 2002, SCIENCE, V296, P285, DOI 10.1126/science.296.5566.285; Sola AJ, 2007, J ECOL, V95, P208, DOI 10.1111/j.1365-2745.2006.01191.x; STILES EW, 1980, AM NAT, V116, P670, DOI 10.1086/283657; Stinchcombe JR, 2004, P NATL ACAD SCI USA, V101, P4712, DOI 10.1073/pnas.0306401101; Stinchcombe JR, 2005, AM J BOT, V92, P1701, DOI 10.3732/ajb.92.10.1701; Sweigart AL, 2008, MOL ECOL, V17, P2089, DOI 10.1111/j.1365-294X.2008.03707.x; THOMPSON JN, 1979, EVOLUTION, V33, P973, DOI 10.1111/j.1558-5646.1979.tb04751.x; Toorop PE, 2012, ANN BOT-LONDON, V109, P481, DOI 10.1093/aob/mcr301; Truscott AM, 2006, J ECOL, V94, P1080, DOI 10.1111/j.1365-2745.2006.01171.x; Twyford AD, 2015, EVOLUTION, V69, P1476, DOI 10.1111/evo.12663; van Staden Johannes, 2000, Plant Species Biology, V15, P167, DOI 10.1046/j.1442-1984.2000.00037.x; VICKERY RK, 1967, ECOLOGY, V48, P647, DOI 10.2307/1936508; VICKERY RK, 1983, GREAT BASIN NAT, V43, P470; VICKERY RK, 1986, AM MIDL NAT, V116, P206, DOI 10.2307/2425954; Vidigal DS, 2016, PLANT CELL ENVIRON, V39, P1737, DOI 10.1111/pce.12734; Vleeshouwers LM, 1995, J ECOL, V83, P1031, DOI 10.2307/2261184; Vuorisalo T. O., 1999, LIFE HIST EVOLUTION; WASER NM, 1982, EVOLUTION, V36, P753, DOI 10.1111/j.1558-5646.1982.tb05441.x; Yuan W, 2016, MOL ECOL, V25, P4177, DOI 10.1111/mec.13768; Zhou DW, 2005, CAN J BOT, V83, P28, DOI [10.1139/B04-148, 10.1139/b04-148] 89 0 0 8 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9122 1537-2197 AM J BOT Am. J. Bot. APR 2018 105 4 749 759 10.1002/ajb2.1055 11 Plant Sciences Plant Sciences GI0FJ WOS:000434044500013 29683478 2019-02-21 J Bernal, JS; Medina, RF Bernal, Julio S.; Medina, Raul F. Agriculture sows pests: how crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores CURRENT OPINION IN INSECT SCIENCE English Review VIRGIFERA-VIRGIFERA LECONTE; LIFE-HISTORY EVOLUTION; PLANT DEFENSE; ENVIRONMENTAL HISTORY; SPECIALIST LEAFHOPPER; COTTON FLEAHOPPER; MAIZE; MANAGEMENT; STRATEGIES; FOOD We argue that agriculture as practiced creates pests. We use three examples (Corn leafhopper, Dalbulus maidis; Western corn rootworm, Diabrotica virgifera virgifera; Cotton fleahopper, Pseudatomoscelis seriatus) to illustrate: firstly, how since its origins, agriculture has proven conducive to transforming selected herbivores into pests, particularly through crop domestication and spread, and agricultural intensification, and; secondly, that the herbivores that became pests were among those hosted by crop wild relatives or associates, and were pre-adapted either as whole species or component subpopulations. Two of our examples, Corn leafhopper and Western corn rootworm, illustrate how following a host shift to a domesticated host, emergent pests 'hopped' onto crops and rode expansion waves to spread far beyond the geographic ranges of their wild hosts. Western corn rootworm exemplifies how an herbivore-tolerant crop was left vulnerable when it was bred for yield and protected with insecticides. Cotton fleahopper illustrates how removing preferred wild host plants from landscapes and replacing them with crops, allows herbivores with flexible host preferences to reach pest-level populations. We conclude by arguing that in the new geological epoch we face, the Anthropocene, we can improve agriculture by looking to our past to identify and avoid missteps of early and recent farmers. [Bernal, Julio S.; Medina, Raul F.] Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA Bernal, JS (reprint author), Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA. juliobernal@tamu.edu Agrawal AA, 2008, P NATL ACAD SCI USA, V105, P10057, DOI 10.1073/pnas.0802368105; Agrawal AA, 2009, P NATL ACAD SCI USA, V106, P18067, DOI 10.1073/pnas.0904862106; Bar-Yosef O, 2017, QUATERN INT, V428, P64, DOI 10.1016/j.quaint.2015.11.037; Barman AK, 2012, ENVIRON ENTOMOL, V41, P125, DOI 10.1603/EN11221; Barzman M, 2015, SUSTAIN AGR REV, V17, DOI [10.1007/978-3-319-16742-8_12015, DOI 10.1007/978-3-319-16742-8_12015]; Belfer-Cohen A, 2011, CURR ANTHROPOL, V52, pS209, DOI 10.1086/658861; Bellota E, 2018, NEOTROP ENTOMOL, V47, P171, DOI 10.1007/s13744-017-0516-0; Bellota E, 2013, ENTOMOL EXP APPL, V149, P185, DOI 10.1111/eea.12122; Bernal JS, 2018, INSECT SCI, DOI [10.1111/1744-7917.12555, DOI 10.1111/1744-7917.12555]; Bianchi FJJA, 2006, P ROY SOC B-BIOL SCI, V273, P1715, DOI 10.1098/rspb.2006.3530; Brandenburg JT, 2017, PLOS GENET, V13, DOI 10.1371/journal.pgen.1006666; Chen YH, 2016, ELEMENTA-SCI ANTHROP, V4, P1, DOI 10.12952/journal.elementa.000106; Chen YH, 2015, ANNU REV ENTOMOL, V60, P35, DOI 10.1146/annurev-ento-010814-020601; Chinchilla-Ramirez M, 2017, ANN APPL BIOL, V170, P315, DOI 10.1111/aab.12331; Cipollini D, 2014, ANNU PLANT REV, V47, P263, DOI 10.1002/9781118472507.ch8; Clark PU, 2012, P NATL ACAD SCI USA, V109, pE1134, DOI 10.1073/pnas.1116619109; Committee on Abrupt Climate Change, 2002, NAT RES COUNC ABR CL; Cotton JM, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1501346; d'Eeckenbrugge GC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0107458; Davila-Flores AM, 2013, OECOLOGIA, V173, P1425, DOI 10.1007/s00442-013-2728-2; Denison R. F., 2012, DARWINIAN AGR UNDERS; Desneux N, 2010, ECOTOXICOLOGY, V19, P1642, DOI 10.1007/s10646-010-0550-8; Diamond SE, 2010, OIKOS, V119, P542, DOI 10.1111/j.1600-0706.2009.17242.x; Dietrich CH, 1998, ANN ENTOMOL SOC AM, V91, P590, DOI 10.1093/aesa/91.5.590; DOEBLEY J, 1988, ECON BOT, V42, P120, DOI 10.1007/BF02859042; Duvick DN, 2005, ADV AGRON, V86, P83, DOI 10.1016/S0065-2113(05)86002-X; Dyer A, 2014, CHASING RED QUEEN EV; Ehler LE, 2006, PEST MANAG SCI, V62, P787, DOI 10.1002/ps.1247; Esquivel JF, 2009, ENVIRON ENTOMOL, V38, P766, DOI 10.1603/022.038.0329; Gaillard MDP, 2018, NEW PHYTOL, V217, P355, DOI 10.1111/nph.14757; Gray ME, 2009, ANNU REV ENTOMOL, V54, P303, DOI 10.1146/annurev.ento.54.110807.090434; Gross BL, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-137; Guedes RNC, 2014, PEST MANAG SCI, V70, P690, DOI 10.1002/ps.3669; Harlan J.R., 1995, LIVING FIELDS OUR AG; Hufford MB, 2012, NAT GENET, V44, P808, DOI 10.1038/ng.2309; Kant MR, 2015, ANN BOT-LONDON, V115, P1015, DOI 10.1093/aob/mcv054; Kennett DJ, 2017, P NATL ACAD SCI USA, V114, P9026, DOI 10.1073/pnas.1705052114; Knutson AJ, 2002, P BELTW COTT C, P8; Koornneef A, 2008, PLANT PHYSIOL, V146, P839, DOI 10.1104/pp.107.112029; Lazebnik J, 2014, J CHEM ECOL, V40, P730, DOI 10.1007/s10886-014-0480-7; Letourneau DK, 2012, J APPL ECOL, V49, P1405, DOI 10.1111/1365-2664.12001; Lewis SL, 2015, NATURE, V519, P171, DOI 10.1038/nature14258; Lewis WJ, 1997, P NATL ACAD SCI USA, V94, P12243, DOI 10.1073/pnas.94.23.12243; Lombaert E, 2018, BIOL INVASIONS, V20, P665, DOI 10.1007/s10530-017-1566-2; Macfadyen S, 2010, BASIC APPL ECOL, V11, P116, DOI 10.1016/j.baae.2009.11.008; Matsuoka Y, 2002, P NATL ACAD SCI USA, V99, P6080, DOI 10.1073/pnas.052125199; Mayewski PA, 2004, QUATERNARY RES, V62, P243, DOI 10.1016/j.yqres.2004.07.001; McArthur C, 2014, OECOLOGIA, V176, P677, DOI 10.1007/s00442-014-3076-6; Medina RF, 2012, ENTOMOL EXP APPL, V142, P223, DOI 10.1111/j.1570-7458.2012.01220.x; Meinke LJ, 2009, AGR FOREST ENTOMOL, V11, P29, DOI 10.1111/j.1461-9563.2008.00419.x; Meyer RS, 2012, NEW PHYTOL, V196, P29, DOI 10.1111/j.1469-8137.2012.04253.x; NAULT LR, 1990, MAYDICA, V35, P165; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Oliver JC, 2006, OIKOS, V112, P456, DOI 10.1111/j.0030-1299.2006.14185.x; Perfecto I, 2009, NATURES MATRIX LINKI; Perkins John H., 1982, INSECTS EXPERTS INSE; Peterson RKD, 2017, PEERJ, V5, DOI [10.7717/Peerj.3934, 10.7717/peerj.3934]; Piperno DR, 2007, P NATL ACAD SCI USA, V104, P11874, DOI 10.1073/pnas.0703442104; Piperno DR, 2006, ANN MO BOT GARD, V93, P274, DOI 10.3417/0026-6493(2006)93[274:QEHAAI]2.0.CO;2; Piperno DR, 2015, QUATERN INT, V363, P65, DOI 10.1016/j.quaint.2013.12.049; Piperno DR, 2011, CURR ANTHROPOL, V52, pS453, DOI 10.1086/659998; Rejeb Ines Ben, 2014, Plants (Basel), V3, P458, DOI 10.3390/plants3040458; Roitberg BD, 1999, ENTOMOL EXP APPL, V91, P187, DOI 10.1046/j.1570-7458.1999.00483.x; Rosenthal JP, 1997, EVOL ECOL, V11, P337, DOI 10.1023/A:1018420504439; Shakun JD, 2012, NATURE, V484, P49, DOI 10.1038/nature10915; Singer MS, 2004, ECOLOGY, V85, P2747, DOI 10.1890/03-0827; Spencer JL, 2009, AGR FOREST ENTOMOL, V11, P9, DOI 10.1111/j.1461-9563.2008.00399.x; Stamp N, 2003, Q REV BIOL, V78, P23, DOI 10.1086/367580; Tallamy DW, 2005, Western Corn Rootworm: Ecology and Management, P67, DOI 10.1079/9780851998176.0067; Thomas MB, 1999, P NATL ACAD SCI USA, V96, P5944, DOI 10.1073/pnas.96.11.5944; Turcotte MM, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0033; Turley NE, 2013, NEW PHYTOL, V197, P359, DOI 10.1111/nph.12103; van Heerwaarden J, 2012, P NATL ACAD SCI USA, V109, P12420, DOI 10.1073/pnas.1209275109; Waters CN, 2016, SCIENCE, V351, DOI [10.1126/science.aad26222016, DOI 10.1126/SCIENCE.AAD26222016]; Webber BL, 2015, P NATL ACAD SCI USA, V112, P10565, DOI 10.1073/pnas.1514258112; Whitehead SR, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0034; Wright Angus, 2005, DEATH R GONZALEZ MOD; Zhan JS, 2015, ANNU REV PHYTOPATHOL, V53, P19, DOI 10.1146/annurev-phyto-080614-120040; Zizumbo-Villarreal D, 2010, GENET RESOUR CROP EV, V57, P813, DOI 10.1007/s10722-009-9521-4 79 1 1 5 6 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 2214-5745 2214-5753 CURR OPIN INSECT SCI Curr. Opin. Insect Sci. APR 2018 26 76 81 10.1016/j.cois.2018.01.008 6 Biology; Ecology; Entomology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Entomology GG2KX WOS:000432522700013 29764664 2019-02-21 J Schuelke, T; Pereira, TJ; Hardy, SM; Bik, HM Schuelke, Taruna; Pereira, Tiago Jose; Hardy, Sarah M.; Bik, Holly M. Nematode-associated microbial taxa do not correlate with host phylogeny, geographic region or feeding morphology in marine sediment habitats MOLECULAR ECOLOGY English Article 16S rRNA; 18S rRNA; feeding ecology; host-associated microbiome; marine nematodes; metabarcoding SKIN MICROBIOME; SALT-MARSH; SP NOV.; DIVERSITY; GENUS; ECOLOGY; SEQUENCES; EVOLUTION; COMMUNITY; HEALTH Studies of host-associated microbes are critical for advancing our understanding of ecology and evolution across diverse taxa and ecosystems. Nematode worms are ubiquitous across most habitats on earth, yet little is known about host-associated microbial assemblages within the phylum. Free-living nematodes are globally abundant and diverse in marine sediments, with species exhibiting distinct buccal cavity (mouth) morphologies that are thought to play an important role in feeding ecology and life history strategies. Here, we investigated patterns in marine nematode microbiomes, by characterizing host-associated microbial taxa in 281 worms isolated from a range of habitat types (deep-sea, shallow water, methane seeps, Lophelia coral mounds, kelp holdfasts) across three distinct geographic regions (Arctic, Southern California and Gulf of Mexico). Microbiome profiles were generated from single worms spanning 33 distinct morphological genera, using a two-gene metabarcoding approach to amplify the V4 region of the 16S ribosomal RNA (rRNA) gene targeting bacteria/archaea and the V1-V2 region of the 18S rRNA gene targeting microbial eukaryotes. Contrary to our expectations, nematode microbiome profiles demonstrated no distinct patterns either globally (across depths and ocean basins) or locally (within site); prokaryotic and eukaryotic microbial assemblages did not correlate with nematode feeding morphology, host phylogeny or morphological identity, ocean region or marine habitat type. However, fine-scale analysis of nematode microbiomes revealed a variety of novel ecological interactions, including putative parasites and symbionts, and potential associations with bacterial/archaeal taxa involved in nitrogen and methane cycling. Our results suggest that in marine habitats, free-living nematodes may utilize diverse and generalist foraging strategies that are not correlated with host genotype or feeding morphology. Furthermore, some abiotic factors such as geographic region and habitat type do not appear to play an obvious role in structuring host-microbe associations or feeding preferences. [Schuelke, Taruna; Pereira, Tiago Jose; Bik, Holly M.] Univ Calif Riverside, Dept Nematol, Riverside, CA 92521 USA; [Hardy, Sarah M.] Univ Alaska, Sch Fisheries & Ocean Sci, Fairbanks, AK 99701 USA Bik, HM (reprint author), Univ Calif Riverside, Dept Nematol, Riverside, CA 92521 USA. holly.bik@ucr.edu Bik, Holly/0000-0002-4356-3837 North Pacific Research Board [1303]; Gulf of Mexico Research Initiative North Pacific Research Board, Grant/Award Number: NPRB Project 1303; Gulf of Mexico Research Initiative Ainsworth TD, 2015, ISME J, V9, P2261, DOI 10.1038/ismej.2015.39; Baquiran JP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0067425; Bataille A, 2016, MICROB ECOL, V71, P221, DOI 10.1007/s00248-015-0653-0; Bayer B, 2016, ISME J, V10, P1051, DOI 10.1038/ismej.2015.200; Bayer C, 2009, ENV MICROBIOL REP, V1, P136, DOI 10.1111/j.1758-2229.2009.00019.x; Bezerra T. N., 2018, NEMYS WORLD DATABASE; Bhadury P, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026445; BIK HM, 2010, BMC EVOL BIOL, V10; Bik HM, 2012, TRENDS ECOL EVOL, V27, P233, DOI 10.1016/j.tree.2011.11.010; Blanco Y, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114180; Blaxter ML, 1998, NATURE, V392, P71, DOI 10.1038/32160; Bokulich NA, 2013, NAT METHODS, V10, P57, DOI [10.1038/NMETH.2276, 10.1038/nmeth.2276]; Bourne DG, 2016, ANNU REV MICROBIOL, V70, P317, DOI 10.1146/annurev-micro-102215-095440; Bowman J, 2006, PROKARYOTES: A HANDBOOK ON THE BIOLOGY OF BACTERIA, VOL 5, THIRD EDITION, P266, DOI 10.1007/0-387-30745-1_15; Caporaso JG, 2012, ISME J, V6, P1621, DOI 10.1038/ismej.2012.8; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303; Carugati L, 2015, MAR GENOM, V24, P11, DOI 10.1016/j.margen.2015.04.010; Cavalier-Smith T, 2003, PROTIST, V154, P341, DOI 10.1078/143446103322454112; Chauhan A., 2014, GENOME ANNOUNCEMENTS, V2; Cheng XY, 2013, SCI REP-UK, V3, DOI 10.1038/srep01869; Clarke KR, 2006, PRIMER V6 USER MANUA; Creer S, 2010, MOL ECOL, V19, P4, DOI 10.1111/j.1365-294X.2009.04473.x; Danovaro R., 2009, METHODS STUDY DEEP S, DOI [10.1201/9781439811382, DOI 10.1201/9781439811382]; De Barba M, 2014, MOL ECOL RESOUR, V14, P306, DOI 10.1111/1755-0998.12188; De Beeck MO, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097629; De Ley P, 2002, J NEMATOL, V34, P296; Deagle BE, 2009, MOL ECOL, V18, P2022, DOI 10.1111/j.1365-294X.2009.04158.x; DeLeon-Rodriguez N, 2013, P NATL ACAD SCI USA, V110, P2575, DOI 10.1073/pnas.1212089110; Derycke S, 2016, MOL ECOL, V25, P2093, DOI 10.1111/mec.13597; Derycke S, 2010, ZOOL SCR, V39, P276, DOI 10.1111/j.1463-6409.2009.00420.x; Dewhirst FE, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036067; Dheilly NM, 2017, MSYSTEMS, V2, DOI 10.1128/mSystems.00050-17; Dirksen P, 2016, BMC BIOL, V14, DOI 10.1186/s12915-016-0258-1; Distel DL, 2017, P NATL ACAD SCI USA, V114, pE3652, DOI 10.1073/pnas.1620470114; Dorn ES, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180299; Dubilier N, 2008, NAT REV MICROBIOL, V6, P725, DOI 10.1038/nrmicro1992; Elhadyl A, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177145; Fan L, 2013, ISME J, V7, P991, DOI 10.1038/ismej.2012.165; Findley K, 2009, EUKARYOT CELL, V8, P353, DOI 10.1128/EC.00373-08; Fonseca V. G., 2011, PROTOCOL EXCHANGE, DOI [10. 1038/nprot. 2010. 157, DOI 10.1038/NPROT.2010.157]; Gilbert JA, 2014, BMC BIOL, V12, DOI 10.1186/s12915-014-0069-1; Glasl B, 2016, ISME J, V10, P2280, DOI 10.1038/ismej.2016.9; He LM, 2014, MICROB ECOL, V67, P951, DOI 10.1007/s00248-014-0393-6; HELLWIGARMONIES M, 1991, HELGOLANDER MEERESUN, V45, P357, DOI 10.1007/BF02365525; Hentschel U, 2012, NAT REV MICROBIOL, V10, P641, DOI 10.1038/nrmicro2839; JENSEN P, 1987, MAR ECOL PROG SER, V35, P187, DOI 10.3354/meps035187; Kautz S, 2013, APPL ENVIRON MICROB, V79, P525, DOI 10.1128/AEM.03107-12; Kelly D. P., 2014, PROKARYOTES ALPHAPRO, P313, DOI DOI 10.1007/978-3-642-30197-1; Koneru SL, 2016, MOL ECOL, V25, P2312, DOI 10.1111/mec.13614; Kubo K, 2012, ISME J, V6, P1949, DOI 10.1038/ismej.2012.37; Larsen AM, 2015, MICROB ECOL, V70, P534, DOI 10.1007/s00248-015-0578-7; Leclerque A, 2008, APPL ENVIRON MICROB, V74, P5263, DOI 10.1128/AEM.00446-08; Lejzerowicz F, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0283; Leliaert F, 2012, CRIT REV PLANT SCI, V31, P1, DOI 10.1080/07352689.2011.615705; Lokmer A, 2015, ISME J, V9, P670, DOI 10.1038/ismej.2014.160; Lopez-Perez M, 2016, GENOME BIOL EVOL, V8, P1556, DOI 10.1093/gbe/evw098; Lorenzen S., 1994, The phylogenetic systematics of free living nematodes.; Lory S., 2014, PROKARYOTES, P197; McDonald D, 2012, ISME J, V6, P610, DOI 10.1038/ismej.2011.139; McKenzie VJ, 2012, ISME J, V6, P588, DOI 10.1038/ismej.2011.129; McMurdie PJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061217; Meunier A, 1910, MICROPLANKTON MERS B; Meyer JM, 2017, ENVIRON MICROBIOL, V19, P1476, DOI 10.1111/1462-2920.13697; Moens T, 2000, MAR ECOL PROG SER, V205, P185, DOI 10.3354/meps205185; Moens T, 1999, MAR BIOL, V134, P585, DOI 10.1007/s002270050573; Moens T, 1997, J MAR BIOL ASSOC UK, V77, P211, DOI 10.1017/S0025315400033889; Moens T, 2013, NEMATODA, V2, P109, DOI DOI 10.1515/9783110274257.109; Moens T, 2004, NEMATOL MONOGR PERSP, V2, P529; Mohamed NM, 2010, ISME J, V4, P38, DOI 10.1038/ismej.2009.84; Moro I, 2003, PROTIST, V154, P331, DOI 10.1078/143446103322454103; Musat N, 2007, ENVIRON MICROBIOL, V9, P1345, DOI 10.1111/j.1462-2920.2006.01232.x; Nakagawa S, 2008, FEMS MICROBIOL ECOL, V65, P1, DOI 10.1111/j.1574-6941.2008.00502.x; Newton ILG, 2007, SCIENCE, V315, P998, DOI 10.1126/science.1138438; Nicks T, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00384; Nunes-Alves C, 2015, NAT REV MICROBIOL, V13, P737, DOI 10.1038/nrmicro3588; Parfrey LW, 2011, FRONT MICROBIOL, V2, DOI 10.3389/fmicb.2011.00153; Park S, 2014, PROKARYOTES, P849; Pawlowski J, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001419; Platt H. M., 1983, FREELIVING MARINE 1; Platt H. M., 1988, SYNOPSIS FREELIVIN 2; Poulsen M, 2012, MOL ECOL, V21, P2054, DOI 10.1111/j.1365-294X.2012.05510.x; Price MN, 2009, MOL BIOL EVOL, V26, P1641, DOI 10.1093/molbev/msp077; Quast C, 2013, NUCLEIC ACIDS RES, V41, pD590, DOI 10.1093/nar/gks1219; R Core Team, 2017, R LANG ENV STAT COMP; Raghukumar S, 2002, EUR J PROTISTOL, V38, P127, DOI 10.1078/0932-4739-00832; Raghukumar S., 2011, BOT MAR, V54, P245; Ramirez-Llodra E, 2010, BIOGEOSCIENCES, V7, P2851, DOI 10.5194/bg-7-2851-2010; Rideout JR, 2014, PEERJ, V2, DOI 10.7717/peerj.545; Riisberg I, 2009, PROTIST, V160, P191, DOI 10.1016/j.protis.2008.11.004; Ross S. W., 2012, DEEPWATER PROGRAM ST; Salter SJ, 2014, BMC BIOL, V12, DOI 10.1186/s12915-014-0087-z; Sayavedra L, 2015, ELIFE, V4, DOI 10.7554/eLife.07966; Schommer NN, 2013, TRENDS MICROBIOL, V21, P660, DOI 10.1016/j.tim.2013.10.001; SEGATA N, 2011, GENOME BIOL, V12; Sharpton TJ, 2014, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00209; Skovgaard A, 2008, PROTIST, V159, P401, DOI 10.1016/j.protis.2008.02.003; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Swanson KS, 2011, ISME J, V5, P639, DOI 10.1038/ismej.2010.162; Taylor FJR, 2008, BIODIVERS CONSERV, V17, P407, DOI 10.1007/s10531-007-9258-3; Thaler M, 2012, J EUKARYOT MICROBIOL, V59, P291, DOI 10.1111/j.1550-7408.2012.00631.x; Thompson JR, 2015, FRONT CELL INFECT MI, V4, DOI 10.3389/fcimb.2014.00176; Toledo AV, 2006, J INVERTEBR PATHOL, V92, P7, DOI 10.1016/j.jip.2005.10.005; Tsao HF, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-03642-8; Turnbaugh PJ, 2007, NATURE, V449, P804, DOI 10.1038/nature06244; Van Trappen S, 2004, INT J SYST EVOL MICR, V54, P1765, DOI 10.1099/ijs.0.63123-0; vonsVaupel Klein C., 2015, TREATISE ZOOLOGY ANA; Walke JB, 2017, ENVIRON MICROBIOL, V19, P3387, DOI 10.1111/1462-2920.13850; Walter J, 2011, ANNU REV MICROBIOL, V65, P411, DOI 10.1146/annurev-micro-090110-102830; Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07; WARWICK RM, 1998, FREE LIVING MARINE 3; Wasserfallen A, 2000, INT J SYST EVOL MICR, V50, P43, DOI 10.1099/00207713-50-1-43; Weese JS, 2013, VET DERMATOL, V24, P137, DOI 10.1111/j.1365-3164.2012.01076.x; Werren JH, 1997, ANNU REV ENTOMOL, V42, P587, DOI 10.1146/annurev.ento.42.1.587; Wickham H, 2007, THE GGPLOT PACKAGE; WIESER W., 1953, ARKIV ZOOL, V4, P439; XIA XM, 2017, FRONT MICROBIOL, V8, P5224; Xu DP, 2005, J MAR BIOL ASSOC UK, V85, P787, DOI 10.1017/S0025315405011719; Xu ZX, 2016, ANTON LEEUW INT J G, V109, P371, DOI 10.1007/s10482-015-0639-4; Yan S, 2009, SYST APPL MICROBIOL, V32, P124, DOI 10.1016/j.syapm.2008.12.001; Yu DW, 2012, METHODS ECOL EVOL, V3, P613, DOI 10.1111/j.2041-210X.2012.00198.x; Yu XJ, 2006, PROKARYOTES: A HANDBOOK ON THE BIOLOGY OF BACTERIA, VOL 5, THIRD EDITION, P493, DOI 10.1007/0-387-30745-1_20; Zeale MRK, 2011, MOL ECOL RESOUR, V11, P236, DOI 10.1111/j.1755-0998.2010.02920.x; Zhalnina KV, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101648 123 4 4 13 23 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. APR 2018 27 8 SI 1930 1951 10.1111/mec.14539 22 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GF1BV WOS:000431667800014 29600535 2019-02-21 J Vanderpool, D; Bracewell, RR; McCutcheon, JP Vanderpool, Dan; Bracewell, Ryan R.; McCutcheon, John P. Know your farmer: Ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars MOLECULAR ECOLOGY English Article ectosymbiosis; genomics; insect agriculture; life history evolution; symbiosis ANCESTRAL STATE RECONSTRUCTION; MAXIMUM-LIKELIHOOD APPROACH; DE-NOVO IDENTIFICATION; BARK BEETLES; GROSMANNIA-CLAVIGERA; PHYLOGENETIC TREES; DNA-SEQUENCES; XYLEBORUS-GLABRATUS; GENE PREDICTION; PLANT HOSTS Bark and ambrosia beetles are highly specialized weevils (Curculionidae) that have established diverse symbioses with fungi, most often from the order Ophiostomatales (Ascomycota, Sordariomycetes). The two types of beetles are distinguished by their feeding habits and intimacy of interactions with their symbiotic fungi. The tree tissue diet of bark beetles is facilitated by fungi, while ambrosia beetles feed solely on fungi that they farm. The farming life history strategy requires domestication of a fungus, which the beetles consume as their sole food source. Ambrosia beetles in the subfamily Platypodinae originated in the mid-Cretaceous (119-88 Ma) and are the oldest known group of farming insects. However, attempts to resolve phylogenetic relationships and the timing of domestication events for fungal cultivars have been largely inconclusive. We sequenced the genomes of 12 ambrosia beetle fungal cultivars and bark beetle associates, including the devastating laurel wilt pathogen, Raffaelea lauricola, to estimate a robust phylogeny of the Ophiostomatales. We find evidence for contemporaneous diversification of the beetles and their associated fungi, followed by three independent domestication events of the ambrosia fungi genus Raffaelea. We estimate the first domestication of an Ophiostomatales fungus occurred similar to 86 Ma, 25 million years earlier than prior estimates and in close agreement with the estimated age of farming in the Platypodinae (96 Ma). Comparisons of the timing of fungal domestication events with the timing of beetle radiations support the hypothesis that the first large beetle radiations may have spread domesticated "ambrosia" fungi to other fungi-associated beetle groups, perhaps facilitating the evolution of new farming lineages. [Vanderpool, Dan; McCutcheon, John P.] Univ Montana, Div Biol Sci, Missoula, MT 59812 USA; [Bracewell, Ryan R.] Univ Montana, Dept Ecosyst & Conservat Sci, Missoula, MT 59812 USA; [Bracewell, Ryan R.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA Vanderpool, D (reprint author), Univ Montana, Div Biol Sci, Missoula, MT 59812 USA. daniel1.vanderpool@umontana.edu Vanderpool, Dan/0000-0002-6856-5636 NSF GRFP; NSF GROW [DGE-1313190]; University of Montana Institute on Ecosystems Graduate Fellowship [IAA-1443108]; EPSCoR [EPS-1101342]; USDA AFRI NIFA [2013-67011-21113] NSF GRFP; NSF GROW, Grant/Award Number: DGE-1313190; University of Montana Institute on Ecosystems Graduate Fellowship, Grant/Award Number: IAA-1443108; EPSCoR, Grant/Award Number: EPS-1101342; USDA AFRI NIFA, Grant/Award Number: 2013-67011-21113 Aanen Duur K., 2005, P191; Aberer AJ, 2013, SYST BIOL, V62, P162, DOI 10.1093/sysbio/sys078; Alamouti SM, 2009, MYCOL RES, V113, P822, DOI 10.1016/j.mycres.2009.03.003; ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999; [Anonymous], 2015, IMA FUNGUS, V6, P493, DOI 10.5598/imafungus.2015.06.02.13; Bao ZR, 2002, GENOME RES, V12, P1269, DOI 10.1101/gr.88502; Bateman C, 2017, FUNGAL ECOL, V25, P41, DOI 10.1016/j.funeco.2016.10.008; BATRA LEKH R., 1963, TRANS KANAS ACAD SCI, V66, P213, DOI 10.2307/3626562; BATRA LR, 1966, SCIENCE, V153, P193, DOI 10.1126/science.153.3732.193; Benson G, 1999, NUCLEIC ACIDS RES, V27, P573, DOI 10.1093/nar/27.2.573; Bentz BJ, 2006, ANN ENTOMOL SOC AM, V99, P189, DOI 10.1603/0013-8746(2006)099[0189:ECOFAW]2.0.CO;2; Biedermann PHW, 2017, CURR OPIN INSECT SCI, V22, P92, DOI 10.1016/j.cois.2017.06.003; Biedermann PHW, 2013, FEMS MICROBIOL ECOL, V83, P711, DOI 10.1111/1574-6941.12026; Biedermann PHW, 2009, ENVIRON ENTOMOL, V38, P1096, DOI 10.1603/022.038.0417; Blomquist GJ, 2010, INSECT BIOCHEM MOLEC, V40, P699, DOI 10.1016/j.ibmb.2010.07.013; Branstetter MG, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.0095; Bronson AW, 2013, INT J PLANT SCI, V174, P278, DOI 10.1086/668227; Minh BQ, 2013, MOL BIOL EVOL, V30, P1188, DOI 10.1093/molbev/mst024; Butler J, 2008, GENOME RES, V18, P810, DOI 10.1101/gr.7337908; Camacho C, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-421; Cassar S, 1996, MYCOLOGIA, V88, P596, DOI 10.2307/3761153; Castresana J, 2000, MOL BIOL EVOL, V17, P540, DOI 10.1093/oxfordjournals.molbev.a026334; Chin CS, 2013, NAT METHODS, V10, P563, DOI [10.1038/nmeth.2474, 10.1038/NMETH.2474]; Clark K, 2016, NUCLEIC ACIDS RES, V44, pD67, DOI 10.1093/nar/gkv1276; Clayton JW, 2009, SYST BIOL, V58, P395, DOI 10.1093/sysbio/syp041; Comeau AM, 2015, GENOME BIOL EVOL, V7, P410, DOI 10.1093/gbe/evu281; Currie CR, 2003, SCIENCE, V299, P386, DOI 10.1126/science.1078155; de Beer Z. W, 2013, OPHIOSTOMATOID FUNGI, V12, P21; Dean RA, 2005, NATURE, V434, P980, DOI 10.1038/nature03449; DiGuistini S, 2011, P NATL ACAD SCI USA, V108, P2504, DOI 10.1073/pnas.1011289108; DiGuistini S, 2009, GENOME BIOL, V10, DOI 10.1186/gb-2009-10-9-r94; Dorfelt H, 2005, MYCOL RES, V109, P956, DOI 10.1017/S0953756205003497; Dreaden TJ, 2014, FUNGAL BIOL-UK, V118, P970, DOI 10.1016/j.funbio.2014.09.001; Ekman S, 2008, SYSTEMATIC BIOL, V57, P141, DOI 10.1080/10635150801910451; Farrell BD, 2001, EVOLUTION, V55, P2011; FELSENSTEIN J, 1978, SYST ZOOL, V27, P401, DOI 10.2307/2412923; FELSENSTEIN J, 1981, J MOL EVOL, V17, P368, DOI 10.1007/BF01734359; Felsenstein J, 2005, PHYLIP PHYLOGENY INF; Forgetta Vincenzo, 2013, J Biomol Tech, V24, P39, DOI 10.7171/jbt.12-2401-005; Fraedrich SW, 2008, PLANT DIS, V92, P215, DOI 10.1094/PDIS-92-2-0215; FRANCKEGROSMANN H, 1956, Z MORPHOL OKOL TIERE, V45, P275, DOI DOI 10.1007/BF00430256; Friis EM, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.1325; Gohli J, 2017, EVOLUTION, V71, P1258, DOI 10.1111/evo.13219; Goldberg EE, 2008, EVOLUTION, V62, P2727, DOI 10.1111/j.1558-5646.2008.00505.x; Grabherr MG, 2011, NAT BIOTECHNOL, V29, P644, DOI 10.1038/nbt.1883; Griffith OW, 2015, J EXP ZOOL PART B, V324, P493, DOI 10.1002/jez.b.22614; Haas BJ, 2008, GENOME BIOL, V9, DOI 10.1186/gb-2008-9-1-r7; Haas BJ, 2013, NAT PROTOC, V8, P1494, DOI 10.1038/nprot.2013.084; Haridas S, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-373; Harrington TC, 2010, PHYTOPATHOLOGY, V100, P1118, DOI 10.1094/PHYTO-01-10-0032; Harrington TC, 2010, MYCOTAXON, V111, P337, DOI 10.5248/111.337; He ZL, 2016, NUCLEIC ACIDS RES, V44, pW236, DOI 10.1093/nar/gkw370; Hibbett DS, 1997, AM J BOT, V84, P981, DOI 10.2307/2446289; Hillis DM, 1998, SYST BIOL, V47, P3, DOI 10.1080/106351598260987; Holldobler B., 1990, ANTS; Holt C, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-491; Huelsenbeck JP, 2003, SYST BIOL, V52, P641, DOI 10.1080/10635150390235467; Hulcr J, 2017, ANNU REV ENTOMOL, V62, P285, DOI 10.1146/annurev-ento-031616-035105; Huson DH, 2012, SYST BIOL, V61, P1061, DOI 10.1093/sysbio/sys062; Inch SA, 2012, FOREST PATHOL, V42, P239, DOI 10.1111/j.1439-0329.2011.00749.x; Jones P, 2014, BIOINFORMATICS, V30, P1236, DOI 10.1093/bioinformatics/btu031; Jordal BH, 2000, BIOL J LINN SOC, V71, P483, DOI 10.1006/bijl.2000.0457; Jordal BH, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-133; Jordal BH, 2015, MOL PHYLOGENET EVOL, V92, P294, DOI 10.1016/j.ympev.2015.05.028; Jordal BH, 2011, MOL PHYLOGENET EVOL, V59, P708, DOI 10.1016/j.ympev.2011.03.016; Kasson MT, 2016, FUNGAL ECOL, V23, P86, DOI 10.1016/j.funeco.2016.07.002; Kasson MT, 2013, FUNGAL GENET BIOL, V56, P147, DOI 10.1016/j.fgb.2013.04.004; Katoh K, 2013, MOL BIOL EVOL, V30, P772, DOI 10.1093/molbev/mst010; Kirkendall L. R., 2014, BARK BEETLES BIOL EC, P85; Klepzig KD, 2004, SYMBIOSIS, V37, P189; Kolarik M, 2010, FUNGAL BIOL-UK, V114, P676, DOI 10.1016/j.funbio.2010.06.005; Korf I, 2004, BMC BIOINFORMATICS, V5, DOI 10.1186/1471-2105-5-59; Kostovcik M, 2015, ISME J, V9, P126, DOI 10.1038/ismej.2014.115; Labandeira CC, 2002, P NATL ACAD SCI USA, V99, P2061, DOI 10.1073/pnas.042492999; Nguyen LT, 2015, MOL BIOL EVOL, V32, P268, DOI 10.1093/molbev/msu300; Lanfear R, 2012, MOL BIOL EVOL, V29, P1695, DOI 10.1093/molbev/mss020; Larsen TS, 2003, BMC BIOINFORMATICS, V4, DOI 10.1186/1471-2105-4-21; Larsson A, 2014, BIOINFORMATICS, V30, P3276, DOI 10.1093/bioinformatics/btu531; Lartillot N, 2009, BIOINFORMATICS, V25, P2286, DOI 10.1093/bioinformatics/btp368; Leggett RM, 2014, BIOINFORMATICS, V30, P566, DOI 10.1093/bioinformatics/btt702; Lewis PO, 2001, SYST BIOL, V50, P913, DOI 10.1080/106351501753462876; Li L, 2003, GENOME RES, V13, P2178, DOI 10.1101/gr.1224503; Li You, 2016, PLoS One, V11, pe0147305, DOI 10.1371/journal.pone.0147305; Licht HHDF, 2013, P NATL ACAD SCI USA, V110, P583, DOI 10.1073/pnas.1212709110; Litsios G, 2012, SYST BIOL, V61, P533, DOI 10.1093/sysbio/syr124; Liu J, 2015, APPL PLANT SCI, V3, DOI 10.3732/apps.1400088; Lohse M, 2012, NUCLEIC ACIDS RES, V40, pW622, DOI 10.1093/nar/gks540; Malloch D., 1993, CERATOCYSTIS OPHIOST, P195; Mayers CG, 2015, FUNGAL BIOL-UK, V119, P1075, DOI 10.1016/j.funbio.2015.08.002; McKenna DD, 2009, P NATL ACAD SCI USA, V106, P7083, DOI 10.1073/pnas.0810618106; Morley RJ, 2003, PERSPECT PLANT ECOL, V6, P5, DOI 10.1078/1433-8319-00039; Mueller UG, 2001, Q REV BIOL, V76, P169, DOI 10.1086/393867; Mueller UG, 1998, SCIENCE, V281, P2034, DOI 10.1126/science.281.5385.2034; Mueller UG, 2002, P NATL ACAD SCI USA, V99, P15247, DOI 10.1073/pnas.242594799; Mueller UG, 2005, ANNU REV ECOL EVOL S, V36, P563, DOI 10.1146/annurev.ecolsys.36.102003.152626; Musvuugwa T, 2015, ANTON LEEUW INT J G, V108, P933, DOI 10.1007/s10482-015-0547-7; NEGER FW, 1908, BER DEUT BOT GES, V26, P735; Nielsen R, 2002, SYST BIOL, V51, P729, DOI 10.1080/10635150290102393; Pagel M, 1999, SYST BIOL, V48, P612, DOI 10.1080/106351599260184; Pattengale ND, 2011, IEEE ACM T COMPUT BI, V8, P902, DOI 10.1109/TCBB.2011.28; Philippe H, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1000602; Ploetz RC, 2012, PLANT PATHOL, V61, P801, DOI 10.1111/j.1365-3059.2011.02564.x; Ploetz RC, 2013, PLANT DIS, V97, P856, DOI 10.1094/PDIS-01-13-0056-FE; Price AL, 2005, BIOINFORMATICS, V21, pI351, DOI 10.1093/bioinformatics/bti1018; Raffa KF, 2008, BIOSCIENCE, V58, P501, DOI 10.1641/B580607; Roberts EM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0156847; Salichos L, 2014, MOL BIOL EVOL, V31, P1261, DOI 10.1093/molbev/msu061; Salichos L, 2013, NATURE, V497, P327, DOI 10.1038/nature12130; Sanchez-Pena SR, 2005, ANN ENTOMOL SOC AM, V98, P151, DOI 10.1603/0013-8746(2005)098[0151:NVOOOA]2.0.CO;2; Shimodaira H, 2002, SYST BIOL, V51, P492, DOI 10.1080/10635150290069913; Simao FA, 2015, BIOINFORMATICS, V31, P3210, DOI 10.1093/bioinformatics/btv351; Simmons DR, 2016, IMA FUNGUS, V7, P265, DOI 10.5598/imafungus.2016.07.02.06; Six DL, 2004, SYMBIOSIS, V37, P207; Skovgaard M, 2001, TRENDS GENET, V17, P425, DOI 10.1016/S0168-9525(01)02372-1; Slater GS, 2005, BMC BIOINFORMATICS, V6, DOI 10.1186/1471-2105-6-31; Smit A., 2008, REPEATMODELER 1 0 7; Smit A., 1996, REPEATMASKER OPEN 3; Stanke M, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-62; STUBBLEFIELD SP, 1985, AM J BOT, V72, P1765, DOI 10.2307/2443734; Suen G, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002007; Sung GH, 2008, MOL PHYLOGENET EVOL, V49, P495, DOI 10.1016/j.ympev.2008.08.028; Taerum SJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0078126; Talavera G, 2007, SYST BIOL, V56, P564, DOI 10.1080/10635150701472164; Tavare S, 1986, LECT MATH LIFE SCI, V17, P57; Taylor JW, 2006, MYCOLOGIA, V98, P838, DOI 10.3852/mycologia.98.6.838; Taylor TN, 2005, MYCOLOGIA, V97, P269, DOI 10.3852/mycologia.97.1.269; Ter-Hovhannisyan V, 2008, GENOME RES, V18, P1979, DOI 10.1101/gr.081612.108; Thorne JL, 1998, MOL BIOL EVOL, V15, P1647, DOI 10.1093/oxfordjournals.molbev.a025892; Tsui CKM, 2012, MOL ECOL, V21, P71, DOI 10.1111/j.1365-294X.2011.05366.x; van der Nest MA, 2014, IMA FUNGUS, V5, P473, DOI 10.5598/imafungus.2014.05.02.11; Van Dongen S. M, 2000, GRAPH CLUSTERING FLO; Wang H.-C., 2017, SYST BIOL, DOI [10. 1093/sysbio/syx068, DOI 10.1093/SYSBI0/SYX068]; Wang Y, 2014, APPL ENVIRON MICROB, V80, P4566, DOI 10.1128/AEM.00670-14; Wang Y, 2013, NEW PHYTOL, V197, P886, DOI 10.1111/nph.12063; Wright AM, 2015, J EXP ZOOL PART B, V324, P504, DOI 10.1002/jez.b.22642; YANG ZH, 1993, MOL BIOL EVOL, V10, P1396; Zachos J, 2001, SCIENCE, V292, P686, DOI 10.1126/science.1059412; Zerbino DR, 2008, GENOME RES, V18, P821, DOI 10.1101/gr.074492.107; Zwickl DJ, 2002, SYST BIOL, V51, P588, DOI 10.1080/10635150290102339 139 6 6 9 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. APR 2018 27 8 SI 2077 2094 10.1111/mec.14394 18 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GF1BV WOS:000431667800024 29087025 2019-02-21 J Xiang, XJ; Gibbons, SM; Li, H; Shen, HH; Fang, JY; Chu, HY Xiang, Xingjia; Gibbons, Sean M.; Li, He; Shen, Haihua; Fang, Jingyun; Chu, Haiyan Shrub encroachment is associated with changes in soil bacterial community composition in a temperate grassland ecosystem PLANT AND SOIL English Article Shrub encroachment; Bacterial community; Soil pH; Soil depth; Grassland ecosystem WOODY PLANT ENCROACHMENT; ORGANIC-CARBON; TIBETAN PLATEAU; MESIC GRASSLAND; MICROBIAL COMMUNITIES; JUNIPERUS-VIRGINIANA; RETAMA-SPHAEROCARPA; SEMIARID GRASSLAND; NEW-MEXICO; LAND-USE Aims The effects of shrub encroachment on plant and soil properties have been well studied. However, little is known about how shrub encroachment influences soil bacterial communities. We investigated the effects of shrub encroachment on grassland soil bacterial communities along a soil depth gradient in the Inner Mongolian region of China. Methods The belowground bacterial communities were examined using high-throughput sequencing of the 16S rRNA gene (V4-V5 region, Illumina MiSeq). Results Bacterial alpha-diversity was higher in shrub-encroached soils than in control grassland soils. Bacterial OTU richness was highest at 0-20 cm soil depths, while phylogenetic diversity was greatest at 10-20 cm soil depths. At each soil depth layer, shrub encroachment was associated with a significant shift in bacterial community composition. Change in soil pH was the factor most strongly related to change in bacterial community composition associated with shrub encroachment at all four depth horizons in the soils. Shrub encroachment appears to alter the distribution of bacterial life history strategies in the surface soil (i.e., showing an enrichment in copiotrophs and a depletion in oligotrophs) and shrubs are associated with an increase in nitrification potential in deeper soil horizons. Conclusions Our results indicate that the influence of shrub encroachment on bacterial community composition extends deep into the soil. The intensity of shrub encroachment at this study site suggests that this ecosystem is undergoing dramatic succession towards shrub-dominance, which will likely trigger shifts in ecosystem function. [Xiang, Xingjia; Chu, Haiyan] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, East Beijing Rd 71, Nanjing 210008, Jiangsu, Peoples R China; [Xiang, Xingjia] Anhui Univ, Sch Resources & Environm Engn, Hefei 230601, Anhui, Peoples R China; [Xiang, Xingjia] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Gibbons, Sean M.] MIT, Dept Biol Engn, Cambridge, MA 02139 USA; [Gibbons, Sean M.] Broad Inst MIT & Harvard, Cambridge, MA 02139 USA; [Li, He; Shen, Haihua; Fang, Jingyun] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China; [Fang, Jingyun] Peking Univ, Dept Ecol, Coll Urban & Environm, Beijing 100871, Peoples R China; [Fang, Jingyun] Peking Univ, Key Lab Earth Surface Proc, Minist Educ, Beijing 100871, Peoples R China Chu, HY (reprint author), Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, East Beijing Rd 71, Nanjing 210008, Jiangsu, Peoples R China. hychu@issas.ac.cn National Program on Key Basic Research Project (973 Program) [2014CB954002]; Strategic Priority Research Program of Chinese Academy of Sciences [XDB15010101]; National Natural Science Foundation of China [41071121, 31330012] We thank Ms. Feng He and Mr. Jiawei Xiao from University of Chinese Academy of Sciences, for assistance in soil sampling. This work was supported by the National Program on Key Basic Research Project (973 Program, Grant #2014CB954002), Strategic Priority Research Program (Grant #XDB15010101) of Chinese Academy of Sciences, and National Natural Science Foundation of China (41071121; 31330012). ADAMOLI J, 1990, J BIOGEOGR, V17, P491, DOI 10.2307/2845381; Angel R, 2010, ISME J, V4, P553, DOI 10.1038/ismej.2009.136; ARCHER S, 1995, CLIMATIC CHANGE, V29, P91, DOI 10.1007/BF01091640; Baer SG, 2006, AGR ECOSYST ENVIRON, V115, P174, DOI 10.1016/j.agee.2006.01.004; Baker KL, 2009, SOIL BIOL BIOCHEM, V41, P2292, DOI 10.1016/j.soilbio.2009.08.010; Biddle JF, 2008, P NATL ACAD SCI USA, V105, P10583, DOI 10.1073/pnas.0709942105; Bragazza L, 2015, NEW PHYTOL, V205, P1175, DOI 10.1111/nph.13116; Breshears DD, 2006, FRONT ECOL ENVIRON, V4, P96, DOI 10.1890/1540-9295(2006)004[0096:TGCTIE]2.0.CO;2; Briggs JM, 2005, BIOSCIENCE, V55, P243, DOI 10.1641/0006-3568(2005)055[0243:AEITCA]2.0.CO;2; Briggs JM, 2002, AM MIDL NAT, V147, P287, DOI 10.1674/0003-0031(2002)147[0287:EOWPIT]2.0.CO;2; Brown JR, 1999, ECOLOGY, V80, P2385; Brown JR, 1998, LANDSCAPE ECOL, V13, P93, DOI 10.1023/A:1007939203931; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303; Chen LY, 2015, LANDSCAPE ECOL, V30, P1627, DOI 10.1007/s10980-014-0044-9; Chu HY, 2016, ENVIRON MICROBIOL, V18, P1523, DOI 10.1111/1462-2920.13236; Coetsee C, 2013, J TROP ECOL, V29, P49, DOI 10.1017/S0266467412000697; Coetzee BWT, 2008, AFR J ECOL, V46, P449, DOI 10.1111/j.1365-2028.2007.00842.x; Costello DA, 2000, BIOL CONSERV, V96, P113, DOI 10.1016/S0006-3207(00)00058-6; D'Odorico P, 2010, ECOSPHERE, V1, DOI 10.1890/ES10-00073.1; Daims H, 2015, NATURE, V528, P504, DOI 10.1038/nature16461; Dussart E, 1998, J RANGE MANAGE, V51, P685, DOI 10.2307/4003613; Edgar RC, 2010, BIOINFORMATICS, V26, P2460, DOI 10.1093/bioinformatics/btq461; Eldridge DJ, 2011, ECOL LETT, V14, P709, DOI 10.1111/j.1461-0248.2011.01630.x; Fierer N, 2006, P NATL ACAD SCI USA, V103, P626, DOI 10.1073/pnas.0507535103; Gomez-Rey MX, 2013, PLANT SOIL, V371, P339, DOI 10.1007/s11104-013-1695-z; GROVER HD, 1990, CLIMATIC CHANGE, V17, P305, DOI 10.1007/BF00138373; Hart SC, 2005, FOREST ECOL MANAG, V220, P166, DOI 10.1016/j.foreco.2005.08.012; Hibbard KA, 2001, ECOLOGY, V82, P1999, DOI 10.2307/2680064; Houghton RA, 1999, SCIENCE, V285, P574, DOI 10.1126/science.285.5427.574; Jackson RB, 2002, NATURE, V418, P623, DOI 10.1038/nature00910; Jobbagy EG, 2000, ECOL APPL, V10, P423, DOI 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2; Kaye JP, 1997, TRENDS ECOL EVOL, V12, P139, DOI 10.1016/S0169-5347(97)01001-X; Knapp AK, 2008, GLOBAL CHANGE BIOL, V14, P615, DOI 10.1111/j.1365-2486.2007.01512.x; Kulmatiski A, 2013, NAT CLIM CHANGE, V3, P833, DOI [10.1038/NCLIMATE1904, 10.1038/nclimate1904]; Kurc SA, 2004, WATER RESOUR RES, V40, DOI 10.1029/2004WR003068; Leff JW, 2015, P NATL ACAD SCI USA, V112, P10967, DOI 10.1073/pnas.1508382112; Lett MS, 2003, J VEG SCI, V14, P487, DOI 10.1658/1100-9233(2003)014[0487:COSEIM]2.0.CO;2; Li HH, 2016, SCI REP-UK, V6, DOI 10.1038/srep31616; Liao JD, 2006, SOIL BIOL BIOCHEM, V38, P3184, DOI 10.1016/j.soilbio.2006.04.003; Lopez-Pintor A, 2006, ACTA OECOL, V29, P247, DOI 10.1016/j.actao.2005.11.001; Magoc T, 2011, BIOINFORMATICS, V27, P2957, DOI 10.1093/bioinformatics/btr507; McCarron JK, 2003, PLANT SOIL, V257, P183, DOI 10.1023/A:1026255214393; McClaran MP, 2008, GEODERMA, V145, P60, DOI 10.1016/j.geoderma.2008.02.006; McKinley DC, 2008, ECOSYSTEMS, V11, P454, DOI 10.1007/s10021-008-9133-4; Moleele NM, 1998, J ARID ENVIRON, V40, P245, DOI 10.1006/jare.1998.0451; Oksanen J, 2011, VEGAN COMMUNITY ECOL; Peng HY, 2013, CATENA, V109, P39, DOI 10.1016/j.catena.2013.05.008; R Development Core Team, 2006, R LANG ENV STAT COMP; Reynolds JF, 1999, ECOL MONOGR, V69, P69, DOI 10.1890/0012-9615(1999)069[0069:IODODS]2.0.CO;2; Rivest D, 2011, AGR ECOSYST ENVIRON, V141, P447, DOI 10.1016/j.agee.2011.04.018; Schlesinger WH, 1998, BIOGEOCHEMISTRY, V42, P169, DOI 10.1023/A:1005939924434; SCHLESINGER WH, 1990, SCIENCE, V247, P1043, DOI 10.1126/science.247.4946.1043; Scholes RJ, 1997, ANNU REV ECOL SYST, V28, P517, DOI 10.1146/annurev.ecolsys.28.1.517; Schweitzer JA, 2004, ECOL LETT, V7, P127, DOI 10.1111/j.1461-0248.2003.00562.x; Segata N, 2011, GENOME BIOL, V12, DOI 10.1186/gb-2011-12-6-r60; Shi Y, 2015, APPL ENVIRON MICROB, V81, P492, DOI 10.1128/AEM.03229-14; Smith DL, 2003, GLOBAL BIOGEOCHEM CY, V17, DOI 10.1029/2002GB001990; Soliveres S, 2014, FUNCT ECOL, V28, P530, DOI 10.1111/1365-2435.12196; Throop HL, 2008, GLOBAL CHANGE BIOL, V14, P2420, DOI 10.1111/j.1365-2486.2008.01650.x; Trumbore SE, 1997, P NATL ACAD SCI USA, V94, P8284, DOI 10.1073/pnas.94.16.8284; VANVEGTEN JA, 1984, VEGETATIO, V56, P3; Wallenstein MD, 2007, FEMS MICROBIOL ECOL, V59, P428, DOI 10.1111/j.1574-6941.2006.00260.x; Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07; Xiang XJ, 2015, PLANT SOIL, V397, P347, DOI 10.1007/s11104-015-2633-z; Xiang XJ, 2014, SCI REP-UK, V4, DOI 10.1038/srep03829; Yannarell AC, 2014, MICROB ECOL, V67, P897, DOI 10.1007/s00248-014-0369-6; Yuan YL, 2014, FEMS MICROBIOL ECOL, V87, P121, DOI 10.1111/1574-6941.12197; Zhang XF, 2014, RES MICROBIOL, V165, P128, DOI 10.1016/j.resmic.2014.01.002; Zhang Z, 2006, J ARID ENVIRON, V67, P671, DOI 10.1016/j.jaridenv.2006.03.015; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x 70 0 0 27 50 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0032-079X 1573-5036 PLANT SOIL Plant Soil APR 2018 425 1-2 539 551 10.1007/s11104-018-3605-x 13 Agronomy; Plant Sciences; Soil Science Agriculture; Plant Sciences GE1QR WOS:000430992300038 2019-02-21 J Jachowski, CMB; Hopkins, WA Jachowski, Catherine M. Bodinof; Hopkins, William A. Loss of catchment-wide riparian forest cover is associated with reduced recruitment in a long-lived amphibian BIOLOGICAL CONSERVATION English Article Land use; Riparian; Forest cover; Hellbender; Demography; Life history CRYPTOBRANCHUS-ALLEGANIENSIS-ALLEGANIENSIS; LIFE-HISTORY THEORY; LAND-USE; EASTERN HELLBENDER; GIANT SALAMANDER; CAPTURE EXPERIMENTS; OZARK HELLBENDERS; POPULATION STATUS; CONSERVATION; MANAGEMENT Land use alteration is recognized as a threat for many aquatic species, but demographic drivers of land use associated declines are poorly studied. We examined hellbender, Cryptobranchus alleganiensis, demography in six stream reaches stratified across a land use gradient to understand how land use might influence a long-lived species. We used robust-design surveys (2014-2015) to estimate abundance and demographic structure, and all captures recorded between 2007 and 2015 to estimate demographic rates. Catchment-wide riparian (CWR) forest predicted demography better than catchment or local riparian forest. Across space, sub-adult/adult abundance declined and demographic structure became increasingly skewed towards older adults as CWR forest declined. Demographic rates indicated sub-adults/adults were being lost from each reach at a similar rate and most populations remained stable over the period for which data were available (1-8 years per reach). Our findings suggest recruitment (via births, juvenile survival and/or immigration) of young age classes facilitated stability of high-density populations when CWR forest was relatively high. When CWR forest was lower, survivorship and longevity of old adults facilitated persistence of low-density populations for multiple years while recruitment of young age classes suffered. Fine sediment was not correlated with land use but water temperature, conductivity and pH declined as CWR forest increased, highlighting water quality as a possible mechanism linking forest cover to hellbender demography. Our findings suggest maintaining forest in upstream riparian areas is critical for conserving downstream biota, and emphasize the difficulty of detecting declines in long-lived species when environmental alterations act specifically on recruitment of young age classes. [Jachowski, Catherine M. Bodinof; Hopkins, William A.] Virginia Tech, Dept Fish & Wildlife Conservat, 100 Cheatham Hall, Blacksburg, VA 24061 USA; [Jachowski, Catherine M. Bodinof] Clemson Univ, Dept Forestry & Environm Conservat, 261 Lehotsky Hall, Clemson, SC 29634 USA Jachowski, CMB (reprint author), Virginia Tech, Dept Fish & Wildlife Conservat, 100 Cheatham Hall, Blacksburg, VA 24061 USA.; Jachowski, CMB (reprint author), Clemson Univ, Dept Forestry & Environm Conservat, 261 Lehotsky Hall, Clemson, SC 29634 USA. cjachow@clemson.edu Virginia Department of Game and Inland Fisheries [449597]; Global Change Center [441988]; Fralin Life Science Institute at Virginia Tech [445166] Funding for this project was provided by Virginia Department of Game and Inland Fisheries (449597), the Global Change Center (441988) and the Fralin Life Science Institute at Virginia Tech (445166). We especially thank J.D. Kleopfer for making this work possible. Field assistance was provided by D. Garst, D. Edmonson, B. Todd, D. Drewett, S. Bone, B.H. Coe, H. Vogel, J. DaSilva, J. Hannan, D. Medina, J. Botero, S. DuRant, M. Hepner, J. McPherson, A. Blumenthal and V. Alaasam. P. Angermeier, L Belden, J. Millspaugh, R. Jachowsld, J. Walters, J. D. Willson and two anonymous reviewers provided input that vastly improved the quality of this manuscript. This research was conducted under VDGIF permits 035981 and 048093 and complied with Virginia Tech Institutional Animal Care and Use protocols 08-085, 11-140 and 13-128. ABELL R. A., 2000, FRESHWATER ECOREGION; Alavi SMH, 2006, CELL BIOL INT, V30, P1, DOI [10.1016/j.cellbi.2005.06.004, 10.1016/j.cellbr.2005.06.004]; ALLAN J. D., 2007, STREAM ECOLOGY STRUC; Allan JD, 2004, ANNU REV ECOL EVOL S, V35, P257, DOI 10.1146/annurev.ecolsys.35.120202.110122; Bodinof CM, 2012, HERPETOLOGICA, V68, P160, DOI 10.1655/HERPETOLOGICA-D-11-00033.1; Bodinof CM, 2012, COPEIA, P150, DOI 10.1643/CH-11-024; Bodinof Jachowski C. M, 2016, EFFECTS LAND USE HEL, P216; Bonislawska M, 2015, ACTA ICHTHYOL PISCAT, V45, P143, DOI 10.3750/AIP2015.45.2.04; Briggler J. T., 2007, FINAL REPORT, P116; Burgmeier NG, 2011, J HERPETOL, V45, P195, DOI 10.1670/10-094.1; Burnham K. P, 2002, MODEL SELECTION MULT; Carignan V, 2002, ENVIRON MONIT ASSESS, V78, P45, DOI 10.1023/A:1016136723584; Cecala KK, 2014, FRESHWATER BIOL, V59, P2354, DOI 10.1111/fwb.12439; Coe B. Hopkins, 2016, Herpetological Review, V47, P99; CONGDON JD, 1994, AM ZOOL, V34, P397; COPE WG, 1995, REGUL RIVER, V11, P147, DOI 10.1002/rrr.3450110204; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; DuRant SE, 2015, J EXP BIOL, V218, P2297, DOI 10.1242/jeb.118703; Ettling Jeffery A., 2013, Herpetological Review, V44, P605; Evans D.H., 1980, NATO ASI (Advanced Science Institutes) Series Series A Life Sciences, V35, P93; Ficke AD, 2007, REV FISH BIOL FISHER, V17, P581, DOI 10.1007/s11160-007-9059-5; Foster RL, 2009, J HERPETOL, V43, P579, DOI 10.1670/08-156.1; Garst D.W., 2011, POPULATION STATUS HA; GIBBS RJ, 1970, SCIENCE, V170, P1088, DOI 10.1126/science.170.3962.1088; Graham SP, 2011, HERPETOL CONSERV BIO, V6, P242; GUIMOND RW, 1973, SCIENCE, V182, P1263, DOI 10.1126/science.182.4118.1263; Haag WR, 2014, HYDROBIOLOGIA, V735, P45, DOI 10.1007/s10750-013-1524-7; Hecht-Kardasz K. A, 2011, INFLUENCE GEOMORPHOL, P101; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Hopkins W.A, 2016, CONSERV PHYSIOL, DOI [10.1093/conphys/cow1002, DOI 10.1093/CONPHYS/COW1002]; Hopkins WA, 2011, GEN COMP ENDOCR, V174, P107, DOI 10.1016/j.ygcen.2011.08.006; HUGGINS RM, 1991, BIOMETRICS, V47, P725, DOI 10.2307/2532158; HUGGINS RM, 1989, BIOMETRIKA, V76, P133, DOI 10.1093/biomet/76.1.133; HUTCHISON V H, 1976, Herpetologica, V32, P327; Jachowski CMB, 2016, DIVERS DISTRIB, V22, P865, DOI 10.1111/ddi.12446; James KR, 2003, AUST J BOT, V51, P703, DOI 10.1071/BT02110; Keitzer SC, 2013, NORTHEAST NAT, V20, P666, DOI 10.1656/045.020.0418; Lorenz AW, 2013, HYDROBIOLOGIA, V704, P489, DOI 10.1007/s10750-012-1326-3; Marsh DM, 2001, CONSERV BIOL, V15, P40, DOI 10.1046/j.1523-1739.2001.00129.x; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Nickerson M. A, 1973, HELLBENDERS N AM GIA; Nickerson MA, 2003, SOUTHEAST NAT, V2, P619, DOI 10.1656/1528-7092(2003)002[0619:HDAACD]2.0.CO;2; Nowak DJ, 2010, ENVIRON MANAGE, V46, P378, DOI 10.1007/s00267-010-9536-9; Okada S, 2008, HERPETOL CONSERV BIO, V3, P192; Osterling M, 2014, HYDROBIOLOGIA, V735, P213, DOI 10.1007/s10750-013-1501-1; Ota H, 2000, POPUL ECOL, V42, P5, DOI 10.1007/s101440050003; PETERSON CL, 1988, AM MIDL NAT, V119, P291, DOI 10.2307/2425812; Pitt AL, 2017, FRESHWATER BIOL, V62, P967, DOI 10.1111/fwb.12917; POLLOCK KH, 1982, J WILDLIFE MANAGE, V46, P752, DOI 10.2307/3808568; Pradel R, 1996, BIOMETRICS, V52, P703, DOI 10.2307/2532908; Pugh M. W., 2016, HYDROBIOLOGIA, V62, P967; Quinn SA, 2013, J HERPETOL, V47, P78, DOI 10.1670/11-127; Sala OE, 2000, SCIENCE, V287, P1770, DOI 10.1126/science.287.5459.1770; Sheldon F, 2012, ECOL APPL, V22, P2188, DOI 10.1890/11-1792.1; Smith BG, 1907, BIOL BULL-US, V13, P5, DOI 10.2307/1535594; Stanfield LW, 2013, RIVER RES APPL, V29, P891, DOI 10.1002/rra.2585; Stearns S, 1992, EVOLUTION LIFE HIST; STEPHENSON SL, 1984, B TORREY BOT CLUB, V111, P69, DOI 10.2307/2996213; Strayer DL, 2004, BIOSCIENCE, V54, P429, DOI 10.1641/0006-3568(2004)054[0429:CPOPMN]2.0.CO;2; Sutherland AB, 2002, FRESHWATER BIOL, V47, P1791, DOI 10.1046/j.1365-2427.2002.00927.x; TABER CA, 1975, COPEIA, P633; Taylor BE, 2006, CONSERV BIOL, V20, P792, DOI 10.1111/j.1523-1739.2005.00321.x; Team R.C., 2013, R LANG ENV STAT COMP; TOPPING MS, 1981, COPEIA, P873; USFWS, 2011, FED REGISTER, P61978; USFWS, 2011, FED REGISTER, P61956; USGS, 2014, NLCD 2011 LAND COV; USGS USEPA, 2012, NAT HYDR DAT PLUS NH; Wang XMM, 2004, ORYX, V38, P197, DOI 10.1017/S0030605304000341; Warren ML, 1998, T AM FISH SOC, V127, P637, DOI 10.1577/1548-8659(1998)127<0637:RCABTS>2.0.CO;2; Wentworth CK, 1922, J GEOL, V30, P377, DOI 10.1086/622910; Wheeler BA, 2003, BIOL CONSERV, V109, P151, DOI 10.1016/S0006-3207(02)00136-2; White GC, 1999, BIRD STUDY, V46, P120; Willson JD, 2003, CONSERV BIOL, V17, P763, DOI 10.1046/j.1523-1739.2003.02069.x; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Wolman M. G., 1954, T AM GEOPHYS UNION, V35, P951, DOI DOI 10.1029/TR035I006P00951; Wood PJ, 1997, ENVIRON MANAGE, V21, P203, DOI 10.1007/s002679900019 78 2 2 14 17 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0006-3207 1873-2917 BIOL CONSERV Biol. Conserv. APR 2018 220 215 227 10.1016/j.biocon.2018.02.012 13 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology GC4OS WOS:000429765000024 2019-02-21 J Oro, D; Alvarez, D; Velando, A Oro, Daniel; Alvarez, David; Velando, Alberto Complex demographic heterogeneity from anthropogenic impacts in a coastal marine predator ECOLOGICAL APPLICATIONS English Article anthropogenic impacts; habitat heterogeneity; life histories; long-lived species; resilience; survival PRESTIGE OIL-SPILL; SHAGS PHALACROCORAX-ARISTOTELIS; LIFE-HISTORY TRAITS; LONG-LIVED SEABIRD; EUROPEAN SHAGS; CONSERVATION IMPLICATIONS; DIFFERENTIAL RESPONSES; POPULATION-DYNAMICS; SEXUAL-DIMORPHISM; COLONIAL SEABIRD Environmental drivers, including anthropogenic impacts, affect vital rates of organisms. Nevertheless, the influence of these drivers may depend on the physical features of the habitat and how they affect life history strategies depending on individual covariates such as age and sex. Here, the long-term monitoring (1994-2014) of marked European Shags in eight colonies in two regions with different ecological features, such as foraging habitat, allowed us to test several biological hypotheses about how survival changes by age and sex in each region by means of multi-event capture-recapture modeling. Impacts included fishing practices and bycatch, invasive introduced carnivores and the severe Prestige oil spill. Adult survival was constant but, unexpectedly, it was different between sexes. This difference was opposite in each region. The impact of the oil spill on survival was important only for adults (especially for females) in one region and lasted a single year. Juvenile survival was time dependent but this variability was not synchronized between regions, suggesting a strong signal of regional environmental variability. Mortality due to bycatch was also different between sex, age and region. Interestingly the results showed that the size of the fishing fleet is not necessarily a good proxy for assessing the impact of bycatch mortality, which may be more dependent on the fishing grounds and the fishing gears employed in each season of the year. Anthropogenic impacts affected survival differently by age and sex, which was expected for a long-lived organism with sexual size dimorphism. Strikingly, these differences varied depending on the region, indicating that habitat heterogeneity is demographically important to how environmental variability (including anthropogenic impacts) and resilience influence population dynamics. [Oro, Daniel] CSIC UIB, IMEDEA, Populat Ecol Grp, Esporles, Spain; [Oro, Daniel] CSIC, Theoret Ecol Lab, CEAB, Blanes, Spain; [Alvarez, David] Rio San Pedro 7, Oviedo, Spain; [Velando, Alberto] Univ Vigo, Dept Ecol & Biol Anim, Vigo, Spain Oro, D (reprint author), CSIC UIB, IMEDEA, Populat Ecol Grp, Esporles, Spain.; Oro, D (reprint author), CSIC, Theoret Ecol Lab, CEAB, Blanes, Spain. d.oro@csic.es Almaraz P, 2011, ECOLOGY, V92, P1948, DOI 10.1890/11-0181.1; Alvarez D, 2004, ARDEOLA, V51, P451; alvarez D., 2015, TECHNICAL REPORT; Alvarez D., 2007, CORMORAN MONUDO ESPA; Alvarez David, 1998, Seabird, V20, P22; ANDERSON DJ, 1989, MAR ECOL PROG SER, V52, P209, DOI 10.3354/meps052209; Barros A, 2016, BIOL INVASIONS, V18, P3149, DOI 10.1007/s10530-016-1205-3; Barros A, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2013.1041; Barros A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071358; Bode A, 2011, CLIM RES, V48, P293, DOI 10.3354/cr00935; Bogdanova MI, 2014, BIOL CONSERV, V170, P292, DOI 10.1016/j.biocon.2013.12.025; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bugoni L, 2011, J ORNITHOL, V152, P261, DOI 10.1007/s10336-010-0577-x; Burnham K. P, 2002, MODEL SELECTION MULT; Noguera JC, 2012, BIOL LETTERS, V8, P61, DOI 10.1098/rsbl.2011.0756; CASWELL H, 1983, AM ZOOL, V23, P35; Charlesworth B, 1997, CURR BIOL, V7, pR440, DOI 10.1016/S0960-9822(06)00213-2; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Clutton-Brock TH, 2007, P ROY SOC B-BIOL SCI, V274, P3097, DOI 10.1098/rspb.2007.1138; Cook TR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056297; Daunt F, 2007, BIOL LETTERS, V3, P371, DOI 10.1098/rsbl.2007.0157; De Rijcke S., 2015, THESIS; Doherty PF, 2004, OIKOS, V105, P606; Fernandez-Chacon A, 2013, ECOGRAPHY, V36, P1117, DOI 10.1111/j.1600-0587.2013.00246.x; Frederiksen M, 2008, J ANIM ECOL, V77, P1020, DOI 10.1111/j.1365-2656.2008.01422.x; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Genovart M, 2017, GLOBAL CHANGE BIOL, V23, P3012, DOI 10.1111/gcb.13670; Gianuca D, 2017, BIOL CONSERV, V205, P60, DOI 10.1016/j.biocon.2016.11.028; Harris MP, 1996, BIRD STUDY, V43, P220, DOI 10.1080/00063659609461014; Igual JM, 2007, BIOL CONSERV, V137, P189, DOI 10.1016/j.biocon.2007.02.003; INDUROT, 2010, AN CAR SOC FLOT PESQ; Jenouvrier S, 2005, ECOLOGY, V86, P2889, DOI 10.1890/05-0514; Jiguet F, 2007, GLOBAL CHANGE BIOL, V13, P1672, DOI 10.1111/j.1365-2486.2007.01386.x; Laneri K, 2010, MAR ECOL PROG SER, V420, P241, DOI 10.3354/meps08847; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lewis S, 2015, J ANIM ECOL, V84, P1490, DOI 10.1111/1365-2656.12419; Lewison R., 2012, Endangered Species Research, V17, P93, DOI 10.3354/esr00419; Lewison RL, 2014, P NATL ACAD SCI USA, V111, P5271, DOI 10.1073/pnas.1318960111; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; MAGRAMA, 2012, ESTR MAR DEM MAR NOR; Martinez-Abrain A, 2003, POPUL ECOL, V45, P133, DOI 10.1007/s10144-003-0150-z; Martinez-Abrain A, 2001, WATERBIRDS, V24, P97, DOI 10.2307/1522248; Martinez-Abrain A, 2006, MAR ECOL PROG SER, V318, P271, DOI 10.3354/meps318271; Mills MSL, 2005, ANIM CONSERV, V8, P359, DOI 10.1017/S1367943005002386; Moreno R, 2011, MAR ECOL PROG SER, V442, P229, DOI 10.3354/meps09420; Munilla I, 2011, ECOSPHERE, V2, DOI 10.1890/ES11-00020.1; Nelson B, 2005, PELICANS CORMORANTS; Oro D., 2014, FRONT ECOL EVOL, V2, P79, DOI DOI 10.3389/FEV0.2014.00079; Oro D, 2014, ECOLOGY, V95, P446, DOI 10.1890/13-0331.1; Oro D, 2013, ECOL LETT, V16, P1501, DOI 10.1111/ele.12187; Oro D, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042753; Oro D, 2010, ECOLOGY, V91, P1205, DOI 10.1890/09-0939.1; Ourens R., 2010, GESTION PESQUERA SOS; OWENS IPF, 1994, P ROY SOC B-BIOL SCI, V257, P1, DOI 10.1098/rspb.1994.0086; Pardo D, 2013, ECOLOGY, V94, P208, DOI 10.1890/12-0215.1; Parn H, 2009, J ANIM ECOL, V78, P1216, DOI 10.1111/j.1365-2656.2009.01597.x; Payo-Payo A, 2017, SCI REP-UK, V7, DOI 10.1038/srep42866; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V250, P143, DOI 10.1098/rspb.1992.0142; Rolland V, 2010, GLOBAL CHANGE BIOL, V16, P1910, DOI 10.1111/j.1365-2486.2009.02070.x; Saino N, 2017, J ANIM ECOL, V86, P239, DOI 10.1111/1365-2656.12625; Salvador A., 2013, ENCICLOPEDIA VIRTUAL; Sanz-Aguilar A, 2016, BIOL CONSERV, V198, P33, DOI 10.1016/j.biocon.2016.03.034; Sanz-Aguilar A, 2009, ECOGRAPHY, V32, P637, DOI 10.1111/j.1600-0587.2009.05596.x; SNOW BARBARA, 1960, IBIS, V102, P554, DOI 10.1111/j.1474-919X.1960.tb07132.x; Stearns S, 1992, EVOLUTION LIFE HIST; Steiner UK, 2010, J ANIM ECOL, V79, P436, DOI 10.1111/j.1365-2656.2009.01653.x; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.2307/2680094; Tavecchia G, 2008, ECOLOGY, V89, P77, DOI 10.1890/06-0326.1; Thiebot JB, 2014, IBIS, V156, P511, DOI 10.1111/ibi.12151; Towns D., 2011, SEABIRD ISLANDS ECOL; Velando A, 1999, MAR ECOL PROG SER, V188, P225, DOI 10.3354/meps188225; Velando A, 2000, ANIM BEHAV, V60, P181, DOI 10.1006/anbe.2000.1445; Velando A, 2005, MAR ECOL PROG SER, V302, P263, DOI 10.3354/meps302263; Velando A, 2005, J ORNITHOL, V146, P116, DOI 10.1007/s10336-004-0068-z; Velando A, 2002, BIOL CONSERV, V107, P59, DOI 10.1016/S0006-3207(02)00044-7; Velando A, 2002, IBIS, V144, P9, DOI 10.1046/j.0019-1019.2001.00002.x; Velando A, 2001, J ETHOL, V19, P121, DOI 10.1007/s101640170008; Velando A, 2008, PLAN CONSERVACION CO; Velando A, 2017, BIOL INVASIONS, V19, P1227, DOI 10.1007/s10530-016-1326-8; Velando A, 2015, MOL ECOL, V24, P1007, DOI 10.1111/mec.13092; Velando A, 2010, ENVIRON POLLUT, V158, P1275, DOI 10.1016/j.envpol.2010.01.029; Veran S, 2009, ECOL LETT, V12, P129, DOI 10.1111/j.1461-0248.2008.01268.x; Votier SC, 2008, J ANIM ECOL, V77, P974, DOI 10.1111/j.1365-2656.2008.01421.x; Watanuki Y, 2008, MAR ECOL PROG SER, V356, P283, DOI 10.3354/meps07266; Weimerskirch H, 1997, BIOL CONSERV, V79, P257, DOI 10.1016/S0006-3207(96)00084-5; Weimerskirch H, 2014, J EXP MAR BIOL ECOL, V450, P68, DOI 10.1016/j.jembe.2013.10.021; Wiens JA, 2007, BIOSCIENCE, V57, P769, DOI 10.1641/B570909 89 1 1 14 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. APR 2018 28 3 612 621 10.1002/eap.1679 10 Ecology; Environmental Sciences Environmental Sciences & Ecology GD4IH WOS:000430466300002 29297945 Green Published 2019-02-21 J Holzer, AS; Bartosova-Sojkova, P; Born-Torrijos, A; Lovy, A; Hartigan, A; Fiala, I Holzer, Astrid S.; Bartosova-Sojkova, Pavla; Born-Torrijos, Ana; Lovy, Alena; Hartigan, Ashlie; Fiala, Ivan The joint evolution of the Myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity MOLECULAR ECOLOGY English Article Cnidaria; host-parasite codiversification; life history evolution; molecular clock analyses; Myxozoa; Polypodium hydriforme PHYLOGENETIC-RELATIONSHIPS; TETRACAPSULA-BRYOZOIDES; MYXOSPOREANS MYXOZOA; SPECIES INTERACTIONS; MOLECULAR EVOLUTION; ENVIRONMENTAL DNA; RIBOSOMAL-RNA; FOSSIL RECORD; MIXED MODELS; N. SP The relationships between parasites and their hosts are intimate, dynamic and complex; the evolution of one is inevitably linked to the other. Despite multiple origins of parasitism in the Cnidaria, only parasites belonging to the Myxozoa are characterized by a complex life cycle, alternating between fish and invertebrate hosts, as well as by high species diversity. This inspired us to examine the history of adaptive radiations in myxozoans and their hosts by determining the degree of congruence between their phylogenies and by timing the emergence of myxozoan lineages in relation to their hosts. Recent genomic analyses suggested a common origin of Polypodium hydriforme, a cnidarian parasite of acipenseriform fishes, and the Myxozoa, and proposed fish as original hosts for both sister lineages. We demonstrate that the Myxozoa emerged long before fish populated Earth and that phylogenetic congruence with their invertebrate hosts is evident down to the most basal branches of the tree, indicating bryozoans and annelids as original hosts and challenging previous evolutionary hypotheses. We provide evidence that, following invertebrate invasion, fish hosts were acquired multiple times, leading to parallel cospeciation patterns in all major phylogenetic lineages. We identify the acquisition of vertebrate hosts that facilitate alternative transmission and dispersion strategies as reason for the distinct success of the Myxozoa, and identify massive host specification-linked parasite diversification events. The results of this study transform our understanding of the origins and evolution of parasitism in the most basal metazoan parasites known. [Holzer, Astrid S.; Bartosova-Sojkova, Pavla; Born-Torrijos, Ana; Lovy, Alena; Hartigan, Ashlie; Fiala, Ivan] Czech Acad Sci, Biol Ctr, Inst Parasitol, Ceske Budejovice, Czech Republic; [Born-Torrijos, Ana] Univ Valencia, Cavanilles Inst Biodivers & Evolutionary Biol, Valencia, Spain; [Lovy, Alena] Univ Haifa, Leon H Charney Sch Marine Sci, Marine Biol Dept, Haifa, Israel Holzer, AS (reprint author), Czech Acad Sci, Biol Ctr, Inst Parasitol, Ceske Budejovice, Czech Republic. astrid.holzer@paru.cas.cz Fiala, Ivan/G-7962-2014; Sojkova, Pavla/G-7314-2014; Hartigan, Ashlie/G-7310-2014; Born-Torrijos, Ana/N-9126-2017; Holzer, Astrid Sibylle/E-2531-2011; Kodadkova, Alena/L-9740-2015 Born-Torrijos, Ana/0000-0002-1258-3616; Holzer, Astrid Sibylle/0000-0002-4916-3172; Horizon 2020 Framework Programme [634429]; Grantova Agentura Ceske Republiky [16-20744S, 505/12/G112]; European Commission's Research and Innovation Action [634429] Horizon 2020 Framework Programme, Grant/Award Number: 634429; Grantova Agentura Ceske Republiky, Grant/Award Number: 16-20744S, 505/12/G112; European Commission's Research and Innovation Action, Grant/Award Number: #634429 Althoff DM, 2014, TRENDS ECOL EVOL, V29, P82, DOI 10.1016/j.tree.2013.11.003; Andrade SCS, 2015, MOL BIOL EVOL, V32, P2860, DOI 10.1093/molbev/msv157; Banks JC, 2005, INT J PARASITOL, V35, P741, DOI 10.1016/j.ijpara.2005.03.003; Bartosova P, 2013, MOL PHYLOGENET EVOL, V68, P93, DOI 10.1016/j.ympev.2013.02.026; Bartosova P, 2009, MOL PHYLOGENET EVOL, V53, P81, DOI 10.1016/j.ympev.2009.05.018; Betancur-R R, 2017, BMC EVOL BIOL, V17, DOI 10.1186/s12862-017-0958-3; Bouckaert R, 2014, PLOS COMPUT BIOL, V10, DOI 10.1371/journal.pcbi.1003537; Brockhurst MA, 2013, TRENDS ECOL EVOL, V28, P367, DOI 10.1016/j.tree.2013.02.009; Bromham L., 2013, BMC EVOLUTIONARY BIO, V13, P11; Buckling A, 2002, NATURE, V420, P496, DOI 10.1038/nature01164; Budd GE, 2008, PHILOS T R SOC B, V363, P1425, DOI 10.1098/rstb.2007.2232; Burger MAA, 2011, FOLIA PARASIT, V58, P1; Canning EU, 1996, FOLIA PARASIT, V43, P249; Carmona D, 2015, MOL ECOL, V24, P5315, DOI 10.1111/mec.13389; Cartwright P, 2007, INTEGR COMP BIOL, V47, P744, DOI 10.1093/icb/icm071; Castro LR, 2002, MOL BIOL EVOL, V19, P1100, DOI 10.1093/oxfordjournals.molbev.a004168; Chang ES, 2015, P NATL ACAD SCI USA, V112, P14912, DOI 10.1073/pnas.1511468112; Charleston NA, 2006, J BIOMED INFORM, V39, P62, DOI 10.1016/j.jbi.2005.08.006; Darriba D, 2011, BIOINFORMATICS, V27, P1164, DOI 10.1093/bioinformatics/btr088; de Castro F, 2005, ECOL LETT, V8, P117, DOI 10.1111/j.1461-0248.2004.00693.x; Desdevises Y, 2002, EVOLUTION, V56, P2459; DESVIENNE DM, 2013, NEW PHYTOL, V198, P347; Dobson A, 2008, P NATL ACAD SCI USA, V105, P11482, DOI 10.1073/pnas.0803232105; Dohrmann M, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-03791-w; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Dunn CW, 2008, NATURE, V452, P745, DOI 10.1038/nature06614; ELMATBOULI M, 1995, J FISH BIOL, V46, P919, DOI 10.1006/jfbi.1995.0088; Eo SH, 2010, P ROY SOC B-BIOL SCI, V277, P3587, DOI 10.1098/rspb.2010.0965; Erwin DH, 2011, SCIENCE, V334, P1091, DOI 10.1126/science.1206375; Eschmeyer W.N., 2017, CATALOG FISHES GENER; Evans NM, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-139; Fedonkin Mikhail A., 2003, Paleontological Research, V7, P9, DOI 10.2517/prpsj.7.9; Fiala I, 2015, MYXOZOAN EVOLUTION E, P69, DOI DOI 10.1007/978-3-319-14753-6_4; Fiala I, 2006, INT J PARASITOL, V36, P1521, DOI 10.1016/j.ijpara.2006.06.016; Forro B, 2016, FOLIA PARASIT, V63, DOI 10.14411/fp.2016.019; FREEMAN MA, 2011, PARASITE VECTOR, V4; Gao C, 2013, MOL ECOL, V22, P3403, DOI 10.1111/mec.12297; Gilles A, 2001, MOL PHYLOGENET EVOL, V19, P22, DOI 10.1006/mpev.2000.0916; Gleeson RJ, 2012, PARASITOL INT, V61, P267, DOI 10.1016/j.parint.2011.10.008; Gleeson RJ, 2010, PARASITOLOGY, V137, P1885, DOI 10.1017/S0031182010000855; Hartigan A, 2016, SCI REP-UK, V6, DOI 10.1038/srep39093; Hartikainen H, 2016, INT J PARASITOL, V46, P781, DOI 10.1016/j.ijpara.2016.07.006; Holzer AS, 2007, INT J PARASITOL, V37, P1281, DOI 10.1016/j.ijpara.2007.03.014; Ikeda Iwaji, 1912, Archiv fuer Protistenkunde Jena, V25; Inoue JG, 2010, MOL BIOL EVOL, V27, P2576, DOI 10.1093/molbev/msq147; Jeffroy O, 2006, TRENDS GENET, V22, P225, DOI 10.1016/j.tig.2006.02.003; Karlsbakk E, 2009, FOLIA PARASIT, V56, P86; Karvonen Anssi, 2012, International Journal of Ecology, P1; Katoh K, 2002, NUCLEIC ACIDS RES, V30, P3059, DOI 10.1093/nar/gkf436; Kearse M, 2012, BIOINFORMATICS, V28, P1647, DOI 10.1093/bioinformatics/bts199; Kent ML, 2001, J EUKARYOT MICROBIOL, V48, P395, DOI 10.1111/j.1550-7408.2001.tb00173.x; Kodadkova A, 2015, INT J PARASITOL, V45, P269, DOI 10.1016/j.ijpara.2014.12.004; Koletic N, 2015, ECOL EVOL, V5, P255, DOI 10.1002/ece3.1352; Legendre P, 2002, SYST BIOL, V51, P217, DOI 10.1080/10635150252899734; Licht M, 2012, ORG DIVERS EVOL, V12, P421, DOI 10.1007/s13127-011-0071-1; Lootvoet A, 2013, FUNCT ECOL, V27, P1403, DOI 10.1111/1365-2435.12140; Margulis L, 1991, SYMBIOSISOURCE EVO; Merkle D, 2010, BMC BIOINFORMATIC S1, V11, P10; Molnar K, 2015, MYXOZOAN EVOLUTION E, P295, DOI DOI 10.1007/978-3-319-14753-6_16; Morand S, 2015, PARASITE DIVERSITY AND DIVERSIFICATION: EVOLUTIONARY ECOLOGY MEETS PHYLOGENETICS, P1, DOI 10.1017/CBO9781139794749; Morris DJ, 2008, PARASITOLOGY, V135, P1075, DOI 10.1017/S0031182008004605; Morris DJ, 2012, INT J PARASITOL, V42, P829, DOI 10.1016/j.ijpara.2012.06.001; Morris DJ, 2010, P ROY SOC B-BIOL SCI, V277, P2565, DOI 10.1098/rspb.2010.0282; Near TJ, 2012, P NATL ACAD SCI USA, V109, P13698, DOI 10.1073/pnas.1206625109; Nelson J. S., 2016, FISHES WORLD, DOI [10.1002/9781119174844, DOI 10.1002/9781119174844, 10. 1002/9781119174844]; Nesnidal MP, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-253; Okamura B, 2015, MYXOZOAN EVOLUTION E, P45, DOI DOI 10.1007/978-3-319-14753-6; Okamura B, 2016, TRENDS PARASITOL, V32, P268, DOI 10.1016/j.pt.2016.01.007; OVERSTREET RM, 1976, J PARASITOL, V62, P680, DOI 10.2307/3278937; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Pariselle Antoine, 2003, P147; Park E, 2012, MOL PHYLOGENET EVOL, V62, P329, DOI 10.1016/j.ympev.2011.10.008; Paterson S, 2010, NATURE, V464, P275, DOI 10.1038/nature08798; Patra S, 2017, PARASITOLOGY, V144, P497, DOI 10.1017/S0031182016001931; Pennell MW, 2014, BIOINFORMATICS, V30, P2216, DOI 10.1093/bioinformatics/btu181; Peterson KJ, 2008, PHILOS T R SOC B, V363, P1435, DOI 10.1098/rstb.2007.2233; Pilosof S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117909; Poisot T, 2015, PARASITE DIVERSITY AND DIVERSIFICATION: EVOLUTIONARY ECOLOGY MEETS PHYLOGENETICS, P420; Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083; Poulin R., 2004, PARASITE BIODIVERSIT; Poulin R., 2011, EVOLUTIONARY ECOLOGY, DOI [10. 1515/9781400840809, DOI 10.1515/9781400840809]; Price P. W., 1980, EVOLUTIONARY BIOL PA; Pybus OG, 2000, P ROY SOC B-BIOL SCI, V267, P2267, DOI 10.1098/rspb.2000.1278; R Core Team, 2013, R LANG ENV STAT COMP; RAIKOVA EV, 1994, J PARASITOL, V80, P1, DOI 10.2307/3283338; Rokas A, 2006, PLOS BIOL, V4, P1899, DOI 10.1371/journal.pbio.0040352; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Sansom IJ, 2012, PALAEONTOLOGY, V55, P243, DOI 10.1111/j.1475-4983.2012.01127.x; Seilacher A, 1998, SCIENCE, V282, P80, DOI 10.1126/science.282.5386.80; Shin SP, 2014, MOL PHYLOGENET EVOL, V72, P31, DOI 10.1016/j.ympev.2014.01.002; SIAU Y, 1981, PROTISTOLOGICA, V17, P131; Simakov O, 2015, NATURE, V527, P459, DOI 10.1038/nature16150; Sitja-Bobadilla A, 2012, FISH PARASITES: PATHOBIOLOGY AND PROTECTION, P163, DOI 10.1079/9781845938062.0163; Stamatakis A, 2006, BIOINFORMATICS, V22, P2688, DOI 10.1093/bioinformatics/btl446; Stout CC, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0819-5; Struck TH, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-57; Struck TH, 2011, NATURE, V471, P95, DOI 10.1038/nature09864; Swofford D. L., 2003, PAUP PHYLOGENETIC AN; SZATHMARY E, 1995, NATURE, V374, P227, DOI 10.1038/374227a0; Takeuchi F, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0132030; Taylor PD, 2015, PALAEONTOLOGY, V58, P585, DOI 10.1111/pala.12170; Tedersoo L, 2014, MOL ECOL, V23, P992, DOI 10.1111/mec.12660; Thompson JN, 1999, SCIENCE, V284, P2116, DOI 10.1126/science.284.5423.2116; Thorne JL, 2002, SYST BIOL, V51, P689, DOI 10.1080/10635150290102456; Valenzuela-Sanchez A., 2017, P ROYAL SOC B, V284, P1098; Van Iten H, 2013, ACTA PALAEONTOL POL, V58, P111, DOI 10.4202/app.2011.0096; Vanhove MPM, 2015, SCI REP-UK, V5, DOI 10.1038/srep13669; Vega GC, 2012, P ROY SOC B-BIOL SCI, V279, P2323, DOI 10.1098/rspb.2012.0075; Waeschenbach A, 2012, MOL PHYLOGENET EVOL, V62, P718, DOI 10.1016/j.ympev.2011.11.011; Ward GM, 2016, INT J PARASITOL, V46, P605, DOI 10.1016/j.ijpara.2016.04.010; Weinstein SB, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0324; Whipps CM, 2006, J EUKARYOT MICROBIOL, V53, P364, DOI 10.1111/j.1550-7408.2006.00114.x; Wiens JJ, 2005, SYST BIOL, V54, P731, DOI 10.1080/10635150500234583; Windsor DA, 1998, INT J PARASITOL, V28, P1939, DOI 10.1016/S0020-7519(98)00153-2; Yahalomi D, 2017, MOL BIOL EVOL, V34, P1551, DOI 10.1093/molbev/msx072; Yoder JB, 2010, AM NAT, V176, P802, DOI 10.1086/657048; Yokoyama H, 2001, BULL EUR ASSN FISH P, V21, P266; Zattara EE, 2015, FRONT ZOOL, V12, DOI 10.1186/s12983-015-0100-6; Zhang ZQ, 2011, ZOOTAXA, P7, DOI 10.11646/zootaxa.3703.1.1; Zrzavy J, 2003, CLADISTICS, V19, P164, DOI 10.1016/S0748-3007(03)0007-0; Zrzavy J, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-189 121 5 5 13 23 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. APR 2018 27 7 1651 1666 10.1111/mec.14558 16 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GE0QE WOS:000430919600010 29575260 Other Gold 2019-02-21 J Rapkin, J; Jensen, K; Archer, CR; House, CM; Sakaluk, SK; del Castillo, E; Hunt, J Rapkin, James; Jensen, Kim; Archer, C. Ruth; House, Clarissa M.; Sakaluk, Scott K.; del Castillo, Enrique; Hunt, John The Geometry of Nutrient Space-Based Life-History Trade-Offs: Sex-Specific Effects of Macronutrient Intake on the Trade-Off between Encapsulation Ability and Reproductive Effort in Decorated Crickets AMERICAN NATURALIST English Article dietary choice; geometric framework; Gryllodes sigillatus; immune function; reproductive effort; trade-offs IMMUNE-RESPONSE; GRYLLODES-SIGILLATUS; DROSOPHILA-MELANOGASTER; TELEOGRYLLUS-COMMODUS; RESOURCE ACQUISITION; CONFIDENCE-REGIONS; PROTEIN COSTS; EVOLUTION; RESISTANCE; SELECTION Life-history theory assumes that traits compete for limited resources, resulting in trade-offs. The most commonly manipulated resource in empirical studies is the quantity or quality of diet. Recent studies using the geometric framework for nutrition, however, suggest that trade-offs are often regulated by the intake of specific nutrients, but a formal approach to identify and quantify the strength of such trade-offs is lacking. We posit that trade-offs occur whenever life-history traits are maximized in different regions of nutrient space, as evidenced by nonoverlapping 95% confidence regions of the global maximum for each trait and large angles () between linear nutritional vectors and Euclidean distances (d) between global maxima. We then examined the effects of protein and carbohydrate intake on the trade-off between reproduction and aspects of immune function in male and female Gryllodes sigillatus. Female encapsulation ability and egg production increased with the intake of both nutrients, whereas male encapsulation ability increased with protein intake but calling effort increased with carbohydrate intake. The trade-offs between traits was therefore larger in males than in females, as demonstrated by significant negative correlations between the traits in males, nonoverlapping 95% confidence regions, and larger estimates of and d. Under dietary choice, the sexes had similar regulated intakes, but neither optimally regulated nutrient intake for maximal trait expression. We highlight the fact that greater consideration of specific nutrient intake is needed when examining nutrient space-based trade-offs. [Rapkin, James; Jensen, Kim; Archer, C. Ruth; House, Clarissa M.; Hunt, John] Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Tremough Campus, Penryn TR10 9EZ, England; [Jensen, Kim] Aarhus Univ, Dept Biosci, Terr Ecol, Vejlsovej 25, DK-8600 Silkeborg, Denmark; [House, Clarissa M.; Hunt, John] Western Sydney Univ, Sch Sci & Hlth, Hawkesbury Campus,Locked Bag 1797, Richmond, NSW 2753, Australia; [House, Clarissa M.; Hunt, John] Western Sydney Univ, Hawkesbury Inst Environm, Hawkesbury Campus,Locked Bag 1797, Richmond, NSW 2753, Australia; [Sakaluk, Scott K.] Illinois State Univ, Sch Biol Sci, Normal, IL 61790 USA; [del Castillo, Enrique] Penn State Univ, Dept Ind Engn, 357 Leonhard Bldg, University Pk, PA 16802 USA; [del Castillo, Enrique] Penn State Univ, Dept Stat, 357 Leonhard Bldg, University Pk, PA 16802 USA Hunt, J (reprint author), Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Tremough Campus, Penryn TR10 9EZ, England.; Hunt, J (reprint author), Western Sydney Univ, Sch Sci & Hlth, Hawkesbury Campus,Locked Bag 1797, Richmond, NSW 2753, Australia.; Hunt, J (reprint author), Western Sydney Univ, Hawkesbury Inst Environm, Hawkesbury Campus,Locked Bag 1797, Richmond, NSW 2753, Australia. J.Hunt@westernsydney.edu.au Jensen, Kim/0000-0003-0261-3831 National Science Foundation (NSF) [IOS-1118160, IOS-1654028]; Leverhulme Early Career Fellowship; Royal Society Fellowship [UF120087]; Natural Environment Research Council (NERC) [NE/G00949X/1]; NERC; NSF [CMII 1634878]; [RG090854] S.K.S. was funded by the National Science Foundation (NSF; IOS-1118160 and IOS-1654028). C.M.H. was funded by a Leverhulme Early Career Fellowship. J.H. was funded by a Royal Society Fellowship (UF120087) and Equipment Grant (RG090854) and by the Natural Environment Research Council (NERC; NE/G00949X/1). J.R. was funded by a NERC studentship (awarded to J.H.). E.D.C. was partially funded by NSF grant CMII 1634878. Adamo SA, 2001, ANIM BEHAV, V62, P417, DOI 10.1006/anbe.2001.1786; Anagnostou C, 2010, OIKOS, V119, P533, DOI 10.1111/j.1600-0706.2009.18001.x; Archer CR, 2012, EVOLUTION, V66, P3088, DOI 10.1111/j.1558-5646.2012.01673.x; Archer CR, 2013, EVOLUTION, V67, P620, DOI 10.1111/j.1558-5646.2012.01805.x; Barthel A, 2015, BMC EVOL BIOL, V15, DOI 10.1186/s12862-015-0562-3; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Behmer ST, 2009, ANNU REV ENTOMOL, V54, P165, DOI 10.1146/annurev.ento.54.110807.090537; Bentsen CL, 2006, AM NAT, V167, pE102, DOI 10.1086/501376; Bidochka MJ, 1998, J INVERTEBR PATHOL, V72, P231, DOI 10.1006/jipa.1998.4782; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Box G. E., 1987, EMPIRICAL MODEL BUIL; Brown GP, 2002, J ZOOL, V258, P63, DOI 10.1017/S0952836902001218; Bunning H, 2016, ECOL EVOL, V6, P4711, DOI 10.1002/ece3.2243; Bunning H, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2144; Canty A., 2016, BOOTSTRAP R S PLUS F; Chippindale AK, 1998, EVOLUTION, V52, P1342, DOI 10.1111/j.1558-5646.1998.tb02016.x; Cotter SC, 2011, FUNCT ECOL, V25, P186, DOI 10.1111/j.1365-2435.2010.01766.x; del Castillo E., 2016, OPTIMAREGION CONFIDE; DRAPER NR, 1988, TECHNOMETRICS, V30, P423, DOI 10.2307/1269805; Dudycha JL, 2005, EVOLUTION, V59, P565; Efron B, 1998, ANN STAT, V26, P1687; Fedorka KM, 2004, EVOLUTION, V58, P2478; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; Galicia A, 2014, ISRN EVOL BIOL, V2014, P1, DOI [10.1155/2014/329736, DOI 10.1155/2014/329736]; Gershman SN, 2010, HEREDITY, V105, P282, DOI 10.1038/hdy.2010.1; Gershman SN, 2010, J EVOLUTION BIOL, V23, P829, DOI 10.1111/j.1420-9101.2010.01951.x; Gonzalez-Santoyo I, 2012, ENTOMOL EXP APPL, V142, P1, DOI 10.1111/j.1570-7458.2011.01187.x; Gotz P., 1986, P153; Green P, 1994, NONPARAMETRIC REGRES; Hadfield JD, 2010, J STAT SOFTW, V33, P1; HAGEN HE, 1994, PARASITOLOGY, V109, P649, DOI 10.1017/S0031182000076538; Harrison SJ, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0539; Hastie T., 2001, ELEMENTS STAT LEARNI; HENSON SM, 1995, J THEOR BIOL, V176, P33, DOI 10.1006/jtbi.1995.0173; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; HIRUMA K, 1988, DEV BIOL, V130, P87, DOI 10.1016/0012-1606(88)90416-2; House CM, 2016, FUNCT ECOL, V30, P769, DOI 10.1111/1365-2435.12567; Houslay TM, 2015, J EVOLUTION BIOL, V28, P1067, DOI 10.1111/jeb.12630; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Jacot A, 2008, P R SOC B, V275, P579, DOI 10.1098/rspb.2007.1500; Jensen K, 2015, AGING CELL, V14, P605, DOI 10.1111/acel.12333; Johnson S. G., 2014, NLOPT NONLINEAR OPTI; Kalbe M, 2009, P R SOC B, V276, P925, DOI 10.1098/rspb.2008.1466; Karell P, 2007, J EVOLUTION BIOL, V20, P2248, DOI 10.1111/j.1420-9101.2007.01423.x; Kauermann G., 2012, J COMPUTATIONAL GRAP, V18, P126; KAVANAGH MW, 1987, J EXP BIOL, V130, P107; Kelly CD, 2016, CAN J ZOOL, V94, P787, DOI 10.1139/cjz-2016-0108; Kolluru GR, 2005, BEHAV ECOL, V16, P294, DOI 10.1093/beheco/arh161; Korner P, 2004, J INVERTEBR PATHOL, V87, P59, DOI 10.1016/j.jip.2004.07.004; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Lardner B, 2003, OECOLOGIA, V137, P541, DOI 10.1007/s00442-003-1390-5; Lee KP, 2008, FUNCT ECOL, V22, P1052, DOI 10.1111/j.1365-2435.2008.01459.x; Lee KP, 2006, P R SOC B, V273, P823, DOI 10.1098/rspb.2005.3385; Lee KP, 2008, P NATL ACAD SCI USA, V105, P2498, DOI 10.1073/pnas.0710787105; Maklakov AA, 2008, CURR BIOL, V18, P1062, DOI 10.1016/j.cub.2008.06.059; MATHAI AM, 1992, ANN I STAT MATH, V44, P769, DOI 10.1007/BF00053405; McCallum ML, 2007, HERPETOLOGICA, V63, P269, DOI 10.1655/0018-0831(2007)63[269:PTBIAR]2.0.CO;2; McNamara KB, 2013, J ANIM ECOL, V82, P235, DOI 10.1111/j.1365-2656.2012.02018.x; Medley GF, 2002, PARASITOLOGY, V125, pS61, DOI 10.1017/S0031182002002354; Mills SC, 2009, AM NAT, V173, P475, DOI 10.1086/597222; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Moreno J, 2001, OECOLOGIA, V129, P492, DOI 10.1007/s004420100767; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Nychka D., 2015, FIELDS TOOLS SPATIAL; Nychka DW, 2000, WILEY SER PROB STAT, P393; OURTH DD, 1993, COMP BIOCHEM PHYS B, V105, P719, DOI 10.1016/0305-0491(93)90111-H; PENRY DL, 1990, OECOLOGIA, V82, P1, DOI 10.1007/BF00318526; Peterson JJ, 2002, BIOMETRICS, V58, P422, DOI 10.1111/j.0006-341X.2002.00422.x; Poulin R, 1996, AM NAT, V147, P287, DOI 10.1086/285851; Povey S, 2009, J ANIM ECOL, V78, P437, DOI 10.1111/j.1365-2656.2008.01499.x; Rajpurohit S, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163414; Rapkin J, 2017, J EVOLUTION BIOL, V30, P711, DOI 10.1111/jeb.13036; Rapkin J, 2016, J EVOLUTION BIOL, V29, P395, DOI 10.1111/jeb.12794; Rapkin J., 2018, AM NATURALIST; Reddiex AJ, 2013, AM NAT, V182, P91, DOI 10.1086/670649; Restif O, 2010, P ROY SOC B-BIOL SCI, V277, P2247, DOI 10.1098/rspb.2010.0188; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Sadd BM, 2006, P R SOC B, V273, P2571, DOI 10.1098/rspb.2006.3574; SAKALUK SK, 1987, BEHAVIOUR, V100, P202, DOI 10.1163/156853987X00134; SAUL SJ, 1989, FEBS LETT, V249, P155, DOI 10.1016/0014-5793(89)80614-3; SCHUURS AHWM, 1990, J STEROID BIOCHEM, V35, P157, DOI 10.1016/0022-4731(90)90270-3; Schwenke RA, 2016, ANNU REV ENTOMOL, V61, P239, DOI 10.1146/annurev-ento-010715-023924; Sheridan LAD, 2000, OIKOS, V88, P327, DOI 10.1034/j.1600-0706.2000.880211.x; Simpson S. J., 2012, NATURE NUTR UNIFYING; SIMPSON SJ, 1985, PHYSIOL ENTOMOL, V10, P443, DOI 10.1111/j.1365-3032.1985.tb00066.x; South SH, 2011, EVOLUTION, V65, P1594, DOI 10.1111/j.1558-5646.2011.01233.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stoehr AM, 2006, BEHAV ECOL, V17, P751, DOI 10.1093/beheco/ark018; Tsakas S, 2010, ISJ-INVERT SURVIV J, V7, P228; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wheeler D, 1996, ANNU REV ENTOMOL, V41, P407, DOI 10.1146/annurev.en.41.010196.002203; Wolak ME, 2012, METHODS ECOL EVOL, V3, P129, DOI 10.1111/j.2041-210X.2011.00125.x; Woutersen Tiemen, 2013, CALCULATING CONFIDEN; Yeh AB, 1997, J ROY STAT SOC B MET, V59, P639, DOI 10.1111/1467-9868.00088; Yin HC, 2016, FRONT PHYSIOL, V7, DOI 10.3389/fphys.2016.00401; Ypma J., 2014, NLOPR R INTERFACE NL; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131; Zuk M, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000267 106 6 6 5 10 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. APR 2018 191 4 452 474 10.1086/696147 23 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GA4GH WOS:000428287200005 29570407 Green Published 2019-02-21 J Meuthen, D; Baldauf, SA; Bakker, TCM; Thunken, T Meuthen, Denis; Baldauf, Sebastian A.; Bakker, Theo C. M.; Thuenken, Timo Neglected Patterns of Variation in Phenotypic Plasticity: Age- and Sex-Specific Antipredator Plasticity in a Cichlid Fish AMERICAN NATURALIST English Article Pelvicachromis taeniatus; Pelvicachromis kribensis; alarm cues; predation risk; ontogenetic plasticity; morphology CHEMICAL ALARM CUES; PREDATOR-INDUCED PLASTICITY; FEMALE NUPTIAL COLORATION; LIFE-HISTORY STRATEGIES; MUTUAL MATE CHOICE; MATING PREFERENCES; BODY-SIZE; DEVELOPMENTAL PLASTICITY; POECILIA-RETICULATA; INDUCIBLE DEFENSES The ability of organisms to plastically respond to changing environments is well studied. However, variation in phenotypic plasticity during ontogeny is less well understood despite its relevance of being an important source of phenotypic variation in nature. Here, we comprehensively study ontogenetic variation in morphological antipredator plasticity across multiple traits in Pelvicachromis taeniatus, a western African cichlid fish with sexually dimorphic ornamentation. In a split-clutch design, fish were raised under different levels of perceived predation risk (conspecific alarm cues or distilled water). Morphological plasticity varied substantially across ontogeny: it was first observable at an early juvenile stage where alarm cue-exposed fish grew faster. Subsequently, significant plasticity was absent until the onset of sexual maturity. Here, alarm cue-exposed males were larger than control males, which led to deeper bodies, longer dorsal spines, larger caudal peduncles, and increased eye diameters. Sexual ornamentation emerged delayed in alarm cue-exposed males. In later adulthood, the plastic responses receded. Despite small effect sizes, these responses represent putative adaptive plasticity, as they are likely to reduce predation risk. In females, we did not observe any plasticity. In accordance with theory, these results suggest fine-tuned expression of plasticity that potentially increases defenses during vulnerable developmental stages and reproductive output. [Meuthen, Denis; Baldauf, Sebastian A.; Bakker, Theo C. M.; Thuenken, Timo] Univ Bonn, Inst Evolutionary Biol & Ecol, Immenburg 1, D-53121 Bonn, Germany; [Meuthen, Denis] Univ Saskatchewan, Dept Biol, 112 Sci Pl, Saskatoon, SK S7N 5E2, Canada Meuthen, D (reprint author), Univ Bonn, Inst Evolutionary Biol & Ecol, Immenburg 1, D-53121 Bonn, Germany.; Meuthen, D (reprint author), Univ Saskatchewan, Dept Biol, 112 Sci Pl, Saskatoon, SK S7N 5E2, Canada. dmeuthen@evolution.uni-bonn.de Meuthen, Denis/C-6908-2011 Meuthen, Denis/0000-0002-3373-5383; Baldauf, Sebastian/0000-0003-4853-678X Deutsche Forschungsgemeinschaft (DFG) [TH 1615/1-1, BA 2885/5-1] We thank the Bakker research group for discussion. Furthermore, we are grateful to Leif Engqvist for statistical advice. Also, we thank Yannis Michalakis, Rebecca Fuller, and three anonymous reviewers for comments that considerably improved the manuscript. This research was funded by the Deutsche Forschungsgemeinschaft (DFG; BA 2885/5-1, TH 1615/1-1). Ab Ghani NI, 2016, BIOL J LINN SOC, V118, P520, DOI 10.1111/bij.12783; Abate ME, 2010, CURR ZOOL, V56, P36; ANDERSSON M, 1982, BIOL J LINN SOC, V17, P375, DOI 10.1111/j.1095-8312.1982.tb02028.x; Andersson M., 1994, SEXUAL SELECTION; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Auld JR, 2011, P ROY SOC B-BIOL SCI, V278, P2726, DOI 10.1098/rspb.2011.1150; Auld JR, 2010, P ROY SOC B-BIOL SCI, V277, P503, DOI 10.1098/rspb.2009.1355; Baldauf SA, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6233; Baldauf SA, 2013, BEHAV ECOL SOCIOBIOL, V67, P1179, DOI 10.1007/s00265-013-1543-4; Baldauf SA, 2011, BEHAV ECOL, V22, P478, DOI 10.1093/beheco/arq226; Baldauf SA, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-129; Barlow G. W., 2000, THE CICHLID FISHES; Barreto RE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054642; Bell AM, 2011, J EVOLUTION BIOL, V24, P943, DOI 10.1111/j.1420-9101.2011.02247.x; Berejikian BA, 1999, CAN J FISH AQUAT SCI, V56, P830, DOI 10.1139/cjfas-56-5-830; Beston SM, 2017, ECOL EVOL, V7, P884, DOI 10.1002/ece3.2668; Beverton R.J.H., 1957, DYNAMICS EXPLOITED F; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Blaustein AR, 2005, AM MIDL NAT, V154, P375, DOI 10.1674/0003-0031(2005)154[0375:ALOURC]2.0.CO;2; BOOTH CL, 1990, BIOL J LINN SOC, V40, P125, DOI 10.1111/j.1095-8312.1990.tb01973.x; Bourdeau PE, 2012, OIKOS, V121, P1175, DOI 10.1111/j.1600-0706.2012.20235.x; BOX GEP, 1964, J ROY STAT SOC B, V26, P211; BREDEN F, 1987, NATURE, V329, P831, DOI 10.1038/329831a0; Bressler K, 2004, ISR J AQUACULT-BAMID, V56, P5; BRONMARK C, 1992, SCIENCE, V258, P1348, DOI 10.1126/science.258.5086.1348; Brown GE, 2004, ANN ZOOL FENN, V41, P487; Callahan HS, 2008, ANN NY ACAD SCI, V1133, P44, DOI 10.1196/annals.1438.008; Ceballos CP, 2011, EVOL BIOL, V38, P163, DOI 10.1007/s11692-011-9117-8; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Chen Y, 2004, LECT NOTES COMPUT SC, V3211, P269; Chivers DP, 2008, EVOL ECOL, V22, P561, DOI 10.1007/s10682-007-9182-8; Chivers DP, 2012, CHEMICAL ECOLOGY IN AQUATIC SYSTEMS, P127; CHIVERS DP, 1994, J FISH BIOL, V44, P273, DOI 10.1006/jfbi.1994.1026; CHIVERS DP, 1994, ANIM BEHAV, V48, P597, DOI 10.1006/anbe.1994.1279; Chivers DP, 1998, ECOSCIENCE, V5, P338, DOI 10.1080/11956860.1998.11682471; Christe P, 2006, OIKOS, V114, P381, DOI 10.1111/j.2006.0030-1299.15130.x; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; Collier A, 2008, J FRESHWATER ECOL, V23, P281, DOI 10.1080/02705060.2008.9664200; Connallon T, 2016, EVOLUTION, V70, P2186, DOI 10.1111/evo.13025; Connallon T, 2015, EVOLUTION, V69, P2333, DOI 10.1111/evo.12737; Connallon T, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2123; Craig JK, 2001, EVOLUTION, V55, P380, DOI 10.1111/j.0014-3820.2001.tb01301.x; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Cumming G, 2005, AM PSYCHOL, V60, P170, DOI 10.1037/0003-066X.60.2.170; DeWitt T. J., 2004, PHENOTYPIC PLASTICIT, P1; DeWitt TJ, 1999, ANIM BEHAV, V58, P397, DOI 10.1006/anbe.1999.1158; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Dufty AM, 2002, TRENDS ECOL EVOL, V17, P190, DOI 10.1016/S0169-5347(02)02498-9; Dybala KE, 2013, GLOBAL CHANGE BIOL, V19, P2688, DOI 10.1111/gcb.12228; Edgell TC, 2008, BIOL LETTERS, V4, P385, DOI 10.1098/rsbl.2008.0204; Eklov P, 2007, J FISH BIOL, V70, P155, DOI 10.1111/j.1095-8649.2006.01283.x; Ercit K, 2015, EVOLUTION, V69, P419, DOI 10.1111/evo.12579; Fischer B, 2014, AM NAT, V183, P108, DOI 10.1086/674008; Frommen JG, 2011, EVOL ECOL, V25, P641, DOI 10.1007/s10682-010-9454-6; Gadomski DM, 2005, N AM J FISH MANAGE, V25, P667, DOI 10.1577/M03-220.1; Gianoli E, 2012, BIOL J LINN SOC, V105, P1, DOI 10.1111/j.1095-8312.2011.01793.x; Godin JGJ, 2003, BEHAV ECOL, V14, P194, DOI 10.1093/beheco/14.2.194; Gosline AK, 2008, AQUAT ECOL, V42, P693, DOI 10.1007/s10452-007-9138-7; Hadfield JD, 2010, J STAT SOFTW, V33, P1; HAMBRIGHT KD, 1991, ARCH HYDROBIOL, V121, P389; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; Hjelm J, 2001, OIKOS, V95, P311, DOI 10.1034/j.1600-0706.2001.950213.x; HOOGLAND R., 1956, BEHAVIOUR, V10, P205, DOI 10.1163/156853956X00156; Hooper RE, 1999, PHYSIOL ENTOMOL, V24, P364, DOI 10.1046/j.1365-3032.1999.00152.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; Hoverman JT, 2005, OECOLOGIA, V144, P481, DOI 10.1007/s00442-005-0082-8; Humphries JM, 2004, J CEREAL SCI, V40, P151, DOI 10.1016/j.jcs.2004.07.005; Husak JF, 2006, ETHOLOGY, V112, P572, DOI 10.1111/j.1439-0310.2005.01189.x; Imre I, 2016, ENVIRON BIOL FISH, V99, P613, DOI 10.1007/s10641-016-0503-z; IWAMA GK, 1989, CAN J ZOOL, V67, P2065, DOI 10.1139/z89-294; Januszkiewicz AJ, 2007, BIOL J LINN SOC, V90, P25, DOI 10.1111/j.1095-8312.2007.00708.x; Kishida O, 2010, POPUL ECOL, V52, P37, DOI 10.1007/s10144-009-0182-0; KODRICBROWN A, 1984, AM NAT, V124, P309, DOI 10.1086/284275; Koga T, 2001, ANIM BEHAV, V62, P201, DOI 10.1006/anbe.2001.1740; Kokko H, 2002, PHILOS T ROY SOC B, V357, P319, DOI 10.1098/rstb.2001.0926; Koumoundouros G, 2001, MAR BIOL, V139, P817; LaFiandra EM, 2004, OECOLOGIA, V138, P350, DOI 10.1007/s00442-003-1412-3; Laforsch C, 2006, LIMNOL OCEANOGR, V51, P1466, DOI 10.4319/lo.2006.51.3.1466; Lamboj A., 2017, AM NATURALIST; Lamboj A., 2004, CICHLIDEN WESTLICHEN; Lamboj A, 2014, CYBIUM, V38, P205; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; Langerhans RB, 2007, EVOLUTION, V61, P2056, DOI 10.1111/j.1558-5646.2007.00171.x; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Lima SL, 1998, ADV STUD BEHAV, V27, P215; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lindstrom L, 2006, J EVOLUTION BIOL, V19, P649, DOI 10.1111/j.1420-9101.2005.01043.x; Lonnstedt OM, 2013, SCI REP-UK, V3, DOI 10.1038/srep02259; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; McCollum SA, 1996, EVOLUTION, V50, P583, DOI 10.1111/j.1558-5646.1996.tb03870.x; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Meuthen D., 2014, F1000 RES, V1, P27, DOI DOI 10.12688/F1000RESEARCH.1-27.V2; Meuthen D, 2016, OECOLOGIA, V181, P947, DOI 10.1007/s00442-015-3478-0; Meuthen D, 2016, HYDROBIOLOGIA, V767, P37, DOI 10.1007/s10750-015-2473-0; Meuthen D, 2011, AQUAT BIOL, V13, P35, DOI 10.3354/ab00348; Morgan IJ, 2000, J FISH BIOL, V56, P637, DOI 10.1006/jfbi.1999.1183; Murren CJ, 2015, HEREDITY, V115, P293, DOI 10.1038/hdy.2015.8; NILSSON PA, 1995, OECOLOGIA, V104, P291, DOI 10.1007/BF00328363; Nilsson-Ortman V, 2015, HEREDITY, V115, P366, DOI 10.1038/hdy.2014.126; Ostrowski MF, 2002, HEREDITY, V88, P342, DOI 10.1038/sj/hdy/6800049; Pigliucci M, 1997, AM J BOT, V84, P887, DOI 10.2307/2446278; Pinheiro J. C., 2000, MIXED EFFECT MODELS; POCKLINGTON R, 1995, ANIM BEHAV, V49, P1122, DOI 10.1006/anbe.1995.0141; Pollock MS, 2005, ANN ZOOL FENN, V42, P485; Putter A, 1920, PFLUG ARCH GES PHYS, V180, P298, DOI 10.1007/BF01755094; R Core Team, 2016, R LANG ENV STAT COMP; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Relyea RA, 2003, ECOLOGY, V84, P1840, DOI 10.1890/0012-9658(2003)084[1840:PCAPGT]2.0.CO;2; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Roberts JA, 2007, BEHAV ECOL, V18, P236, DOI 10.1093/beheco/arl079; Robertson A. R., 1977, COLOR RES APPL, V2, P7, DOI DOI 10.1002/J.1520-6378.1977.TB00104.X; Roh E, 2004, BEHAVIOUR, V141, P1235, DOI 10.1163/1568539042729667; Ruell EW, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2019; Seebacher F, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160316; Segers FHID, 2012, P ROY SOC B-BIOL SCI, V279, P1241, DOI 10.1098/rspb.2011.1290; Selden R, 2009, MAR BIOL, V156, P1057, DOI 10.1007/s00227-009-1150-0; Shatilova Y., 2008, THESIS; Sih A, 2000, TRENDS ECOL EVOL, V15, P3, DOI 10.1016/S0169-5347(99)01766-8; Skold HN, 2008, HORM BEHAV, V54, P549, DOI 10.1016/j.yhbeh.2008.05.018; Sofaer HR, 2013, J AVIAN BIOL, V44, P469, DOI 10.1111/j.1600-048X.2013.05719.x; Sommer S, 2000, ANIM BEHAV, V59, P1087, DOI 10.1006/anbe.2000.1381; Stabell OB, 1997, ENVIRON BIOL FISH, V49, P145; Stillwell RC, 2010, ANNU REV ENTOMOL, V55, P227, DOI 10.1146/annurev-ento-112408-085500; Stoks R, 2006, ECOLOGY, V87, P809, DOI 10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; STONER G, 1988, BEHAV ECOL SOCIOBIOL, V22, P285, DOI 10.1007/BF00299844; Stuart-Fox DM, 2003, ANIM BEHAV, V66, P541, DOI 10.1006/anbe.2003.2235; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Svensson PA, 2005, J EXP BIOL, V208, P4391, DOI 10.1242/jeb.01925; Teder T, 2005, OIKOS, V108, P321, DOI 10.1111/j.0030-1299.2005.13609.x; Teplitsky C, 2005, OECOLOGIA, V145, P364, DOI 10.1007/s00442-005-0132-2; THOMAS P, 1991, AQUACULTURE, V96, P69, DOI 10.1016/0044-8486(91)90140-3; Thunken T, 2007, CURR BIOL, V17, P225, DOI 10.1016/j.cub.2006.11.053; Thunken T, 2012, P ROY SOC B-BIOL SCI, V279, P2959, DOI 10.1098/rspb.2012.0333; Touchon JC, 2008, OIKOS, V117, P634, DOI 10.1111/j.2008.0030-1299.16354.x; Urban MC, 2007, ECOLOGY, V88, P2587, DOI 10.1890/06-1946.1; Valimaki K, 2012, J ANIM ECOL, V81, P859, DOI 10.1111/j.1365-2656.2012.01971.x; van Heerwaarden B, 2016, FUNCT ECOL, V30, P1947, DOI 10.1111/1365-2435.12687; van Kleunen M, 2005, NEW PHYTOL, V166, P49, DOI 10.1111/j.1469-8137.2004.01296.x; Veilleux CC, 2014, BRAIN BEHAV EVOLUT, V83, P43, DOI 10.1159/000357830; Vollestad LA, 2004, ECOL FRESHW FISH, V13, P197, DOI 10.1111/j.1600-0633.2004.00048.x; von Bertalanffy L, 1934, ROUX ARCH DEV BIOL, V131, P613, DOI 10.1007/BF00650112; WALLS M, 1991, OECOLOGIA, V87, P43, DOI 10.1007/BF00323778; Weber MJ, 2012, J FISH BIOL, V80, P49, DOI 10.1111/j.1095-8649.2011.03140.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wiedenmayer CP, 2009, NEUROSCI BIOBEHAV R, V33, P432, DOI 10.1016/j.neubiorev.2008.11.004; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; Wisenden BD, 2000, PHILOS T ROY SOC B, V355, P1205, DOI 10.1098/rstb.2000.0668; Woods WA, 2007, AM NAT, V170, P702, DOI 10.1086/521964; Wright Sarah D., 2002, Plant Species Biology, V17, P119, DOI 10.1046/j.1442-1984.2002.00082.x; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; ZEH DW, 1988, AM NAT, V132, P454, DOI 10.1086/284863; Zuk M, 1998, Q REV BIOL, V73, P415, DOI 10.1086/420412; Zuur Alain F., 2009, P1 154 2 2 8 15 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. APR 2018 191 4 475 490 10.1086/696264 16 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GA4GH WOS:000428287200006 29570404 2019-02-21 J Dezerald, O; Leroy, C; Corbara, B; Dejean, A; Talaga, S; Cereghino, R Dezerald, Olivier; Leroy, Celine; Corbara, Bruno; Dejean, Alain; Talaga, Stanislas; Cereghino, Regis Tank bromeliads sustain high secondary production in neotropical forests AQUATIC SCIENCES English Article Biomass turnover; Epiphytes; Functional traits; Food webs; Invertebrates; Rainforests HUMID TROPICAL FOREST; INVERTEBRATE COMMUNITIES; PUERTO-RICO; FOOD-WEB; FUNCTIONAL DIVERSITY; HABITAT SIZE; RAIN-FOREST; LIFE-CYCLE; ECOSYSTEMS; DECOMPOSITION In neotropical landscapes, a substantial fraction of the still waters available is found within tank bromeliads, plants which hold a few milliliters to several litres of rainwater within their leaf axils. The bromeliad ecosystem is integrated into the functioning of rainforest environments, but no study has ever estimated the secondary production, nor the biomass turnover rates of bromeliad macroinvertebrates in relation to other functional traits. We estimated secondary production at invertebrate population to metacommunity level in bromeliads of French Guiana. Coleoptera, Diptera and Crustacea with traits that confer resistance to drought had lower biomass turnover, longer generation times, and slower individual growth than species without particular resistance traits, suggesting convergent life history strategies in phylogenetically distant species. Detritivores and predators accounted for 87% and 13% of the overall annual production, respectively, but had similar production to biomass ratios. An average bromeliad sustained a production of 23.93 g dry mass m(-2) year(-1), a value which exceeds the medians of 5.0-14.8 g DM m(-2) year(-1) for lakes and rivers worldwide. Extrapolations to the total water volumes held by bromeliads at our field site yielded secondary production estimates of 226.8 +/- 32.5 g DM ha(-1) year(-1). We conclude that the ecological role of tank bromeliads in neotropical rainforests may be as important as that of other freshwater ecosystems. [Dezerald, Olivier; Dejean, Alain] Univ Guyane, Univ Antilles, UMR Ecol Forets Guyane, CNRS,AgroParisTech,CIRAD,INRA, Campus Agron, F-97379 Kourou, France; [Dezerald, Olivier] Univ Lorraine, UMR Lab Interdisciplinaire Environm Continentaux, CNRS, Campus Bridoux, F-57070 Metz, France; [Leroy, Celine] Univ Montpellier, CNRS, INRA, AMAP,IRD, Montpellier, France; [Corbara, Bruno] Univ Clermont Auvergne, CNRS, LMGE, F-63000 Clermont Ferrand, France; [Dejean, Alain; Cereghino, Regis] Univ Toulouse, Lab Ecol Fonct & Environm, Ecolab, CNRS,UPS,INPT, 118 Route Narbonne, F-31062 Toulouse, France; [Talaga, Stanislas] Univ Antilles, UMR Ecol Forets Guyane, Univ Guyane, AgroParisTech,CIRAD,CNRS,INRA, Campus Agron,BP 316, F-97379 Kourou, France Dezerald, O (reprint author), Univ Guyane, Univ Antilles, UMR Ecol Forets Guyane, CNRS,AgroParisTech,CIRAD,INRA, Campus Agron, F-97379 Kourou, France.; Dezerald, O (reprint author), Univ Lorraine, UMR Lab Interdisciplinaire Environm Continentaux, CNRS, Campus Bridoux, F-57070 Metz, France. olivier.dezerald@gmail.com Leroy, Celine/0000-0003-4859-8040; CORBARA, Bruno/0000-0003-4232-8234; Cereghino, Regis/0000-0003-3981-3159; Dejean, Alain/0000-0002-3561-2248 Agence Nationale de la Recherche throught the Rainwebs project [ANR-12-BSV7-0022-01]; "Investissement d'Avenir" grant (Labex CEBA) [ANR-10-LABX-25-01]; CNRS; FSE; Universite de Guyane Financial support was provided by the Agence Nationale de la Recherche throught the Rainwebs project (grant ANR-12-BSV7-0022-01) and an "Investissement d'Avenir" grant (Labex CEBA, ref. ANR-10-LABX-25-01). OD and ST were funded by a PhD scholarship (CNRS and the FSE for OD; Universite de Guyane for ST). Amundrud SL, 2015, ECOLOGY, V96, P1957, DOI 10.1890/14-1828.1; Armbruster P, 2002, OIKOS, V96, P225, DOI 10.1034/j.1600-0706.2002.960204.x; Babler AL, 2008, J N AM BENTHOL SOC, V27, P108, DOI 10.1899/07-053.1; Benbow ME, 2003, ANN LIMNOL-INT J LIM, V39, P103, DOI 10.1051/limn/2003008; BENKE AC, 1984, ECOL MONOGR, V54, P25, DOI 10.2307/1942455; Benke AC, 2015, FRESHWATER BIOL, V60, P236, DOI 10.1111/fwb.12460; Benke AC, 2010, J N AM BENTHOL SOC, V29, P264, DOI 10.1899/08-075.1; Benzing D. H., 2000, BROMELIACEAE PROFILE; Brett MT, 2017, FRESHWATER BIOL, V62, P833, DOI 10.1111/fwb.12909; Brouard O, 2012, FRESHWATER BIOL, V57, P815, DOI 10.1111/j.1365-2427.2012.02749.x; Cereghino R, 2011, FUNCT ECOL, V25, P954, DOI 10.1111/j.1365-2435.2011.01863.x; Chessel D., 2004, R NEWS, V4, P5, DOI DOI 10.HTTP://DX.D0I.0RG/10.2307/3780087; Coq S, 2010, ECOLOGY, V91, P2080, DOI 10.1890/09-1076.1; Dezerald O, 2017, FRESHWATER BIOL, V62, P229, DOI 10.1111/fwb.12862; Dezerald O, 2015, FRESHWATER BIOL, V60, P1917, DOI 10.1111/fwb.12621; Dezerald O, 2014, HYDROBIOLOGIA, V723, P77, DOI 10.1007/s10750-013-1464-2; Dezerald O, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071735; Farjalla VF, 2016, ECOLOGY, V97, P2147, DOI 10.1002/ecy.1432; Frank J.H., 2009, Terrestrial Arthropod Reviews, V1, P125; Gamez-Virues S, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms9568; Givnish TJ, 2011, AM J BOT, V98, P872, DOI 10.3732/ajb.1000059; Goncalves-Souza T, 2010, J ARACHNOL, V38, P270, DOI 10.1636/P09-58.1; Gratton C, 2009, ECOLOGY, V90, P2689, DOI 10.1890/08-1546.1; Haubrich CS, 2009, HYDROBIOLOGIA, V632, P347, DOI 10.1007/s10750-009-9841-6; HURYN AD, 1990, LIMNOL OCEANOGR, V35, P339, DOI 10.4319/lo.1990.35.2.0339; HYNES HBN, 1968, LIMNOL OCEANOGR, V13, P569, DOI 10.4319/lo.1968.13.4.0569; Lau DCP, 2014, ECOLOGY, V95, P1506, DOI 10.1890/13-1141.1; LeCraw RM, 2017, ECOGRAPHY, V40, P1445, DOI 10.1111/ecog.02796; Leroy C, 2017, HYDROBIOLOGIA, V802, P85, DOI 10.1007/s10750-017-3242-z; Leroy C, 2016, J PLANT ECOL, V9, P241, DOI 10.1093/jpe/rtv052; Marino NAC, 2017, GLOBAL CHANGE BIOL, V23, P673, DOI 10.1111/gcb.13399; Marino NAC, 2016, OIKOS, V125, P1017, DOI 10.1111/oik.02664; Marino NAC, 2011, HYDROBIOLOGIA, V678, P191, DOI 10.1007/s10750-011-0848-4; Merritt R. W, 2008, INTRO AQUATIC INSECT; MORIN A, 1987, LIMNOL OCEANOGR, V32, P1342, DOI 10.4319/lo.1987.32.6.1342; Ngai JT, 2006, SCIENCE, V314, P963, DOI 10.1126/science.1132598; Peran A, 1999, HYDROBIOLOGIA, V400, P187, DOI 10.1023/A:1003717424687; Petermann JS, 2015, ECOLOGY, V96, P428, DOI 10.1890/14-0304.1; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PLANTE C, 1989, CAN J FISH AQUAT SCI, V46, P1489, DOI 10.1139/f89-191; Poelman EH, 2013, EVOL ECOL, V27, P661, DOI 10.1007/s10682-013-9633-3; R Core Team, 2015, R LANG ENV STAT COMP; Richardson BA, 1999, BIOTROPICA, V31, P321, DOI 10.1111/j.1744-7429.1999.tb00144.x; Richardson BA, 2000, J TROP ECOL, V16, P167, DOI 10.1017/S0266467400001346; Richardson BA, 2005, J ANIM ECOL, V74, P926, DOI 10.1111/j.1365-2656.2005.00990.x; Richardson BA, 2000, ECOL ENTOMOL, V25, P348, DOI 10.1046/j.1365-2311.2000.00255.x; Romero GQ, 2010, J ANIM ECOL, V79, P1122, DOI 10.1111/j.1365-2656.2010.01716.x; Sabagh LT, 2014, NATURWISSENSCHAFTEN, V101, P493, DOI 10.1007/s00114-014-1178-y; Starzomski BM, 2010, ECOL ENTOMOL, V35, P53, DOI 10.1111/j.1365-2311.2009.01155.x; Stead TK, 2005, LIMNOL OCEANOGR, V50, P398, DOI 10.4319/lo.2005.50.1.0398; Stork N. E., 1992, American Journal of Alternative Agriculture, V7, P38; Wallace JB, 2015, ECOLOGY, V96, P1213, DOI 10.1890/14-1589.1 52 0 0 4 10 SPRINGER BASEL AG BASEL PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND 1015-1621 1420-9055 AQUAT SCI Aquat. Sci. APR 2018 80 2 UNSP 14 10.1007/s00027-018-0566-3 12 Environmental Sciences; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology GB9ZW WOS:000429435600010 2019-02-21 J Wilson, KL; Honsey, AE; Moe, B; Venturelli, P Wilson, Kyle L.; Honsey, Andrew E.; Moe, Brian; Venturelli, Paul Growing the biphasic framework: Techniques and recommendations for fitting emerging growth models' METHODS IN ECOLOGY AND EVOLUTION English Review Bayesian; growth estimation; hierarchical models; life-history theory; likelihood profiling; polyphasic growth; somatic growth LIFE-HISTORY; INDETERMINATE GROWTH; SOMATIC GROWTH; ESTIMATING AGE; GENERAL-MODEL; FISH; REPRODUCTION; EVOLUTION; FISHERIES; TRAJECTORIES 1. Several new growth models have been proposed to account for the life-history trade-offs that occur when indeterminately growing species allocate energy between somatic growth and reproduction. These models can improve the understanding of lifetime growth and life history, but can be more difficult to fit than conventional growth models. Increased data demands, multiple growth phases and increased parameterization all serve as barriers to the adoption and proper use of these new models. 2. We review and comment on confounding issues during model fitting for several of these models, and provide advice on surmounting such issues. We then simulation-test an example model, the Lester biphasic growth model, using several common fitting approaches. We highlight the biases and precision of each approach and provide guiding documents using r and jags code. 3. The Bayesian Markov chain Monte Carlo and likelihood profiling approaches generally provided the best fits. Simpler approaches can be unbiased and precise if sampled data are of relatively high quality (e.g. moderate sample sizes for juvenile and adult phases) and model assumptions are met. Bayesian hierarchical approaches can accommodate more complicated data scenarios (e.g. unbalanced design across multiple populations); we provide an example of such an approach by recovering growth trajectories and inferring growth-associated trait variation and environmental effects across multiple populations. 4. Conventional growth models provide limited inference on life history. Many biphasic growth models can provide direct inference on multiple life-history traits, but can be difficult to fit. The recommended approaches herein provide a path forward for fitting biphasic growth models in a variety of scenarios, allowing for wider application and tests of life history and ecological theory. [Wilson, Kyle L.] Univ Calgary, Dept Biol Sci, Calgary, AB, Canada; [Honsey, Andrew E.] Univ Minnesota, Ecol Evolut & Behav Grad Program, St Paul, MN 55108 USA; [Honsey, Andrew E.] Univ Minnesota, Dept Fisheries Wildlife & Conservat Biol, St Paul, MN 55108 USA; [Moe, Brian] Florida State Univ, Coastal & Marine Lab, St Teresa, FL USA; [Venturelli, Paul] Ball State Univ, Dept Biol, Muncie, IN 47306 USA Wilson, KL (reprint author), Univ Calgary, Dept Biol Sci, Calgary, AB, Canada. wilsok@ucalgary.ca Wilson, Kyle/0000-0002-0870-0509 Vanier Canada Graduate Scholarship program; Killam Trust Vanier Canada Graduate Scholarship program; Killam Trust Alos J, 2010, ICES J MAR SCI, V67, P502, DOI 10.1093/icesjms/fsp265; Baulier L, 2008, J FISH BIOL, V73, P2452, DOI 10.1111/j.1095-8649.2008.02088.x; Bayliff W. H., 1991, INTERAMERICAN TROPIC, V20, P94; Bolker BM, 2013, METHODS ECOL EVOL, V4, P501, DOI 10.1111/2041-210X.12044; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Boukal DS, 2014, J THEOR BIOL, V359, P199, DOI 10.1016/j.jtbi.2014.05.022; Brody S., 1945, BIOENERGETICS GROWTH; Brunel T, 2013, OECOLOGIA, V172, P631, DOI 10.1007/s00442-012-2527-1; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Condrey R., 1988, LOUISIANA RED DRUM R, P26; Cotton CF, 2015, DEEP-SEA RES PT II, V115, P41, DOI 10.1016/j.dsr2.2014.10.009; Craig PC, 1997, FISH B-NOAA, V95, P680; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; Denwood MJ, 2016, J STAT SOFTW, V71, P1, DOI 10.18637/jss.v071.i09; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dobbertin M, 2005, EUR J FOREST RES, V124, P319, DOI 10.1007/s10342-005-0085-3; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Fiorentino F., 2013, NATURALISTA SICIL S4, V32, P529; Gelman A., 2013, BAYESIAN DATA ANAL; Giacomini HC, 2013, J THEOR BIOL, V339, P100, DOI 10.1016/j.jtbi.2013.08.020; Glazier DS, 2010, BIOL REV, V85, P111, DOI 10.1111/j.1469-185X.2009.00095.x; Hearn WS, 2003, FISH B-NOAA, V101, P58; Helser TE, 2004, ECOL MODEL, V178, P399, DOI 10.1016/j.ecolmodel.2004.02.013; Hoese H. D., 1991, FISHERY MANGEMENT 1, V4; Honsey AE, 2017, ECOL APPL, V27, P182, DOI 10.1002/eap.1421; Johnston FD, 2010, CAN J FISH AQUAT SCI, V67, P1507, DOI 10.1139/F10-046; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Laslett GM, 2002, CAN J FISH AQUAT SCI, V59, P976, DOI 10.1139/F02-069; Lester NP, 2014, ECOL APPL, V24, P38, DOI 10.1890/12-2020.1; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lorenzen K, 2016, FISH RES, V180, P4, DOI 10.1016/j.fishres.2016.01.006; Matthias BG, 2016, FISH RES, V179, P67, DOI 10.1016/j.fishres.2016.02.006; Maunder MN, 2016, FISH RES, V180, P1, DOI 10.1016/j.fishres.2016.03.005; McDermid JL, 2010, CAN J FISH AQUAT SCI, V67, P314, DOI 10.1139/F09-183; Minte-Vera CV, 2016, FISH RES, V180, P31, DOI 10.1016/j.fishres.2015.10.023; Moe B. J., 2015, ESTIMATING GROWTH MO; Mollet FM, 2010, OIKOS, V119, P10, DOI 10.1111/j.1600-0706.2009.17746.x; Nakayama S, 2017, J ANIM ECOL, V86, P192, DOI 10.1111/1365-2656.12603; Ogle D. H., 2016, INTRO FISHERIES ANAL; Ohnishi S, 2012, FISH B-NOAA, V110, P223; Okie JG, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1007; Paine CET, 2012, METHODS ECOL EVOL, V3, P245, DOI 10.1111/j.2041-210X.2011.00155.x; PALOHEIMO JE, 1965, J FISH RES BOARD CAN, V22, P521, DOI 10.1139/f65-048; Pardo SA, 2013, METHODS ECOL EVOL, V4, P353, DOI 10.1111/2041-210x.12020; PARKER RR, 1959, J FISH RES BOARD CAN, V16, P721, DOI 10.1139/f59-052; Plummer M., 2003, P 3 INT WORKSH DISTR, P125; Porch CE, 2002, FISH B-NOAA, V100, P149; Quince C, 2008, J THEOR BIOL, V254, P207, DOI 10.1016/j.jtbi.2008.05.030; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; R Core Team, 2016, R LANG ENV STAT COMP; Rennie M. D., 2015, BIOL CULTURE PERCID, P499; Rennie MD, 2005, CAN J FISH AQUAT SCI, V62, P767, DOI 10.1139/F05-052; Rijnsdorp AD, 1995, BEL BAR LIB, P581; Roff DA, 2006, J EVOLUTION BIOL, V19, P1920, DOI 10.1111/j.1420-9101.2006.01155.x; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Royle J. A., 2008, HIERARCHICAL MODELIN; Scott RD, 2012, MAR ECOL PROG SER, V450, P147, DOI 10.3354/meps09565; Shuter BJ, 1998, CAN J FISH AQUAT SCI, V55, P2161, DOI 10.1139/cjfas-55-9-2161; Shuter BJ, 2005, CAN J FISH AQUAT SCI, V62, P738, DOI 10.1139/F05-070; SORIANO M, 1992, T AM FISH SOC, V121, P486, DOI 10.1577/1548-8659(1992)121<0486:NFFTAO>2.3.CO;2; Stearns S, 1992, EVOLUTION LIFE HIST; Tracey SR, 2005, FISH B-NOAA, V103, P169; Trip EDL, 2014, J ANIM ECOL, V83, P866, DOI 10.1111/1365-2656.12183; Uusi-Heikkila S, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0584; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; Ward HGM, 2017, CAN J FISH AQUAT SCI, V74, P464, DOI 10.1139/cjfas-2016-0023; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; West GB, 1999, SCIENCE, V284, P1677, DOI 10.1126/science.284.5420.1677; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122 69 2 2 4 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2041-210X 2041-2096 METHODS ECOL EVOL Methods Ecol. Evol. APR 2018 9 4 822 833 10.1111/2041-210X.12931 12 Ecology Environmental Sciences & Ecology GB9VI WOS:000429421800003 2019-02-21 J Lenser, T; Tarkowska, D; Novak, O; Wilhelmsson, PKI; Bennett, T; Rensing, SA; Strnad, M; Theissen, GU Lenser, Teresa; Tarkowska, Danuse; Novak, Ondrej; Wilhelmsson, Per K. I.; Bennett, Tom; Rensing, Stefan A.; Strnad, Miroslav; Theissen, Guenter When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in Aethionema PLANT JOURNAL English Article Aethionema arabicum; auxin; BRANCHED1; carpic dominance; cytokinin; fruit development; fruit dimorphism; molecular evolution; phytohormones; shoot branching DIPTYCHOCARPUS-STRICTUS BRASSICACEAE; PHASEOLUS-VULGARIS L; PISUM-SATIVUM-L; APICAL DOMINANCE; ABSCISIC-ACID; AXILLARY BUD; ARABIDOPSIS-THALIANA; SEED HETEROMORPHISM; ATRIPLEX-SAGITTATA; DISPERSAL ABILITY Life in unpredictably changing habitats is a great challenge, especially for sessile organisms like plants. Fruit and seed heteromorphism is one way to cope with such variable environmental conditions. It denotes the production of distinct types of fruits and seeds that often mediate distinct life-history strategies in terms of dispersal, germination and seedling establishment. But although the phenomenon can be found in numerous species and apparently evolved several times independently, its developmental time course or molecular regulation remains largely unknown. Here, we studied fruit development in Aethionema arabicum, a dimorphic member of the Brassicaceae family. We characterized fruit morph differentiation by comparatively analyzing discriminating characters like fruit growth, seed abortion and dehiscence zone development. Our data demonstrate that fruit morph determination is a last-minute' decision happening in flowers after anthesis directly before the first morphotypical differences start to occur. Several growth experiments in combination with hormone and gene expression analyses further indicate that an accumulation balance of the plant hormones auxin and cytokinin in open flowers together with the transcript abundance of the Ae. arabicum ortholog of BRANCHED1, encoding a transcription factor known for its conserved function as a branching repressor, may guide fruit morph determination. Thus, we hypothesize that the plasticity of the fruit morph ratio in Ae. arabicum may have evolved through the modification of a preexisting network known to govern correlative dominance between shoot organs. Significance Statement Although the production of two distinct types of fruits is often found in plants that thrive in unpredictably changing habitats, no work has been reported yet examining the developmental time course or molecular basis of fruit dimorphism. Here, we discover the developmental time point of fruit morph determination in dimorphic Aethionema arabicum and identify molecular candidates that may mechanistically link fruit type determination to the developmental program governing carpic dominance. [Lenser, Teresa; Theissen, Guenter] Friedrich Schiller Univ Jena, Dept Genet, Philosophenweg 12, D-07743 Jena, Germany; [Tarkowska, Danuse; Novak, Ondrej; Strnad, Miroslav] Palacky Univ, Ctr Reg Hana Biotechnol & Agr Res, Lab Growth Regulators, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic; [Tarkowska, Danuse; Novak, Ondrej; Strnad, Miroslav] Acad Sci Czech Republ, Inst Expt Bot, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic; [Wilhelmsson, Per K. I.] Univ Marburg, Fac Biol, Plant Cell Biol, Karl von Frisch Str 8, D-35043 Marburg, Germany; [Bennett, Tom] Univ Leeds, Fac Biol Sci, Sch Biol, Leeds LS2 9JT, W Yorkshire, England Theissen, GU (reprint author), Friedrich Schiller Univ Jena, Dept Genet, Philosophenweg 12, D-07743 Jena, Germany. guenter.theissen@uni-jena.de Novak, Ondrej/F-7031-2014; Strnad, Miroslav/H-1858-2014 Novak, Ondrej/0000-0003-3452-0154; Strnad, Miroslav/0000-0002-2806-794X Deutsche Forschungsgemeinschaft (DFG) [TH 417/10-1]; Ministry of Education, Youth and Sports of the Czech Republic [RE 1697/8-1, LO1204]; IGA grant of Palacky University [IGA PrF 2017_013] The authors give sincere thanks to Heidi Kuster, Sandrina Lerch, Hana Martinkova, Ivan Petrik and Andrea Novotna for their excellent technical assistance and to Sara Mayland-Quellhorst for help with harvesting fruit material. The project was funded by grants from the Deutsche Forschungsgemeinschaft (DFG) to G.T. (TH 417/10-1) and S.A.R. (RE 1697/8-1), and from the Ministry of Education, Youth and Sports of the Czech Republic (the National Program for Sustainability I Nr. LO1204) and the IGA grant of Palacky University (IGA PrF 2017_013) to M.S. This work is part of the ERA-CAPS 'SeedAdapt' consortium project (www.seedadapt.eu). We thank all members of this consortium for fruitful cooperation and discussion. Abley K, 2016, ANN BOT-LONDON, V117, P733, DOI 10.1093/aob/mcw016; Afonso A, 2014, AM J BOT, V101, P892, DOI 10.3732/ajb.1400030; Aguilar-Martinez JA, 2007, PLANT CELL, V19, P458, DOI 10.1105/tpc.106.048934; Al-Shehbaz IA, 2006, PLANT SYST EVOL, V259, P89, DOI 10.1007/s00606-006-0415-z; Al-Shehbaz I.A., 2011, BRASSICACEAE MUSTARD; ALEXANDER MP, 1969, STAIN TECHNOL, V44, P117, DOI 10.3109/10520296909063335; ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999; Antoniadi I, 2015, PLANT CELL, V27, P1955, DOI 10.1105/tpc.15.00176; Avino M, 2012, EVODEVO, V3, DOI 10.1186/2041-9139-3-20; BAKER GA, 1982, J ECOL, V70, P201, DOI 10.2307/2259873; BANGERTH F, 1989, PHYSIOL PLANTARUM, V76, P608, DOI 10.1111/j.1399-3054.1989.tb05487.x; Bangerth F, 2000, PLANT GROWTH REGUL, V31, P43, DOI 10.1023/A:1006398513703; Bartrina I, 2011, PLANT CELL, V23, P69, DOI 10.1105/tpc.110.079079; Baskin JM, 2014, PERSPECT PLANT ECOL, V16, P93, DOI 10.1016/j.ppees.2014.02.004; BEGONIA G B, 1990, Biotronics, V19, P7; Braun N, 2012, PLANT PHYSIOL, V158, P225, DOI 10.1104/pp.111.182725; CARBONELL J, 1980, PLANTA, V147, P444, DOI 10.1007/BF00380186; Chatfield SP, 2000, PLANT J, V24, P159, DOI 10.1046/j.1365-313x.2000.00862.x; Clamp M, 2004, BIOINFORMATICS, V20, P426, DOI 10.1093/bioinformatics/btg430; Cline MG, 1997, AM J BOT, V84, P1064, DOI 10.2307/2446149; Cruz-Mazo G, 2009, MOL PHYLOGENET EVOL, V53, P835, DOI 10.1016/j.ympev.2009.08.001; de Clavijo ER, 1998, INT J PLANT SCI, V159, P637, DOI 10.1086/297582; Dobrev PI, 2002, J CHROMATOGR A, V950, P21, DOI 10.1016/S0021-9673(02)00024-9; Domagalska MA, 2011, NAT REV MOL CELL BIO, V12, P211, DOI 10.1038/nrm3088; Dubois J, 2012, ANN BOT-LONDON, V110, P1245, DOI 10.1093/aob/mcs203; Dun EA, 2012, PLANT PHYSIOL, V158, P487, DOI 10.1104/pp.111.186783; Eldridge T, 2016, DEVELOPMENT, V143, P3394, DOI 10.1242/dev.135327; ELIASSON L, 1975, PHYSIOL PLANTARUM, V34, P117, DOI 10.1111/j.1399-3054.1975.tb03803.x; Emery RJN, 1998, J EXP BOT, V49, P555, DOI 10.1093/jexbot/49.320.555; Evans MEK, 2005, Q REV BIOL, V80, P431, DOI 10.1086/498282; Ferguson BJ, 2009, PLANT PHYSIOL, V149, P1929, DOI 10.1104/pp.109.135475; Fernandez IA, 2001, MOL PHYLOGENET EVOL, V20, P41, DOI 10.1006/mpev.2001.0954; Ferrandiz C, 1999, ANNU REV BIOCHEM, V68, P321, DOI 10.1146/annurev.biochem.68.1.321; Flokova K, 2014, PHYTOCHEMISTRY, V105, P147, DOI 10.1016/j.phytochem.2014.05.015; Franzke A, 2011, TRENDS PLANT SCI, V16, P108, DOI 10.1016/j.tplants.2010.11.005; Frickenhaus S., 2008, QUICKTREE SD; Galoch E, 1998, ACTA PHYSIOL PLANT, V20, P399, DOI 10.1007/s11738-998-0026-0; Gerlach D., 1984, BOT MIKROTECHNIK EIN; GOCAL GFW, 1991, PLANT PHYSIOL, V95, P344, DOI 10.1104/pp.95.2.344; Gomez-Roldan V, 2008, NATURE, V455, P189, DOI 10.1038/nature07271; Gonzalez-Grandio E, 2013, PLANT CELL, V25, P834, DOI 10.1105/tpc.112.108480; GRUBER J, 1990, PHYSIOL PLANTARUM, V79, P354; Hall JC, 2002, AM J BOT, V89, P1826, DOI 10.3732/ajb.89.11.1826; Howe K, 2002, BIOINFORMATICS, V18, P1546, DOI 10.1093/bioinformatics/18.11.1546; Imbert E, 2002, PERSPECT PLANT ECOL, V5, P13, DOI 10.1078/1433-8319-00021; Imbert E, 2001, OIKOS, V93, P126, DOI 10.1034/j.1600-0706.2001.930114.x; Ishiguro S, 2001, PLANT CELL, V13, P2191, DOI 10.1105/tpc.13.10.2191; Katoh K, 2013, MOL BIOL EVOL, V30, P772, DOI 10.1093/molbev/mst010; KNOX JP, 1984, J EXP BOT, V35, P239, DOI 10.1093/jxb/35.2.239; Langowski L, 2016, PLANT REPROD, V29, P149, DOI 10.1007/s00497-016-0278-6; Lenser T, 2016, PLANT PHYSIOL, V172, P1691, DOI 10.1104/pp.16.00838; Leyser O, 2005, CURR OPIN GENET DEV, V15, P468, DOI 10.1016/j.gde.2005.06.010; Lu JJ, 2013, PLANT ECOL, V214, P351, DOI 10.1007/s11258-013-0171-4; Lu JJ, 2015, PERSPECT PLANT ECOL, V17, P255, DOI 10.1016/j.ppees.2015.04.001; Lu JJ, 2013, ANN BOT-LONDON, V112, P1815, DOI 10.1093/aob/mct240; Lu JJ, 2010, ANN BOT-LONDON, V105, P999, DOI 10.1093/aob/mcq041; Mandak B, 1999, OECOLOGIA, V119, P63, DOI 10.1007/s004420050761; Mandak B, 2001, J ECOL, V89, P159, DOI 10.1046/j.1365-2745.2001.00536.x; Marsch-Martinez N, 2012, PLANT J, V72, P222, DOI 10.1111/j.1365-313X.2012.05062.x; Mason MG, 2014, P NATL ACAD SCI USA, V111, P6092, DOI 10.1073/pnas.1322045111; McCallum WB, 1905, BOT GAZ, V40, P0097, DOI 10.1086/328654; McCallum WB, 1905, BOT GAZ, V40, P0241, DOI 10.1086/328675; Muhlhausen A, 2013, PLANT J, V73, P824, DOI 10.1111/tpj.12079; Muller D, 2015, PLANT J, V82, P874, DOI 10.1111/tpj.12862; Niwa M, 2013, PLANT CELL, V25, P1228, DOI 10.1105/tpc.112.109090; Ongaro V, 2008, MOL PLANT, V1, P388, DOI 10.1093/mp/ssn007; Ozga JA, 2003, J PLANT GROWTH REGUL, V22, P73, DOI 10.1007/s00344-003-0024-9; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; PILLAY I, 1983, PLANT PHYSIOL, V71, P972, DOI 10.1104/pp.71.4.972; QUINLAN JD, 1971, J HORTIC SCI BIOTECH, V46, P525, DOI 10.1080/00221589.1971.11514431; Ramakers C, 2003, NEUROSCI LETT, V339, P62, DOI 10.1016/S0304-3940(02)01423-4; Rameau C, 2015, FRONT PLANT SCI, V5, DOI 10.3389/fpls.2014.00741; Rost B, 1999, PROTEIN ENG, V12, P85, DOI 10.1093/protein/12.2.85; Ruijter JM, 2009, NUCLEIC ACIDS RES, V37, DOI 10.1093/nar/gkp045; Ruttink T, 2007, PLANT CELL, V19, P2370, DOI 10.1105/tpc.107.052811; Sadeh A, 2009, EVOL ECOL, V23, P373, DOI 10.1007/s10682-007-9232-2; Schmulling T, 2003, J PLANT RES, V116, P241, DOI 10.1007/s10265-003-0096-4; Seale M, 2017, DEVELOPMENT, V144, P1661, DOI 10.1242/dev.145649; Sehra B, 2015, WIRES DEV BIOL, V4, P555, DOI 10.1002/wdev.193; Simons AM, 2011, P ROY SOC B-BIOL SCI, V278, P1601, DOI 10.1098/rspb.2011.0176; Smith H, 1997, PLANT CELL ENVIRON, V20, P840, DOI 10.1046/j.1365-3040.1997.d01-104.x; Smith HM, 2013, PLANT SCI, V207, P158, DOI 10.1016/j.plantsci.2013.02.014; Snow R., 1925, ANN BOT, V39, P841; Solms-Laubach H.G.z., 1901, BOT ZEITUNG, P61; Sorefan K, 2009, NATURE, V459, P583, DOI 10.1038/nature07875; Sotelo-Silveira M, 2014, PLANTA, V239, P1147, DOI 10.1007/s00425-014-2057-7; Spence J, 1996, J MICROSC-OXFORD, V181, P195, DOI 10.1046/j.1365-2818.1996.111391.x; Svacinova J, 2012, PLANT METHODS, V8, DOI 10.1186/1746-4811-8-17; Tarkowska D, 2014, PLANTA, V240, P55, DOI 10.1007/s00425-014-2063-9; Teichmann T, 2015, FRONT PLANT SCI, V6, DOI 10.3389/fpls.2015.00233; Thimann KV, 1933, P NATL ACAD SCI USA, V19, P714, DOI 10.1073/pnas.19.7.714; Thomas RG, 2011, J EXP BOT, V62, P1027, DOI 10.1093/jxb/erq330; Thomas RG, 2003, J EXP BOT, V54, P2091, DOI 10.1093/jxb/erg223; TUCKER DJ, 1976, ANN BOT-LONDON, V40, P1033, DOI 10.1093/oxfordjournals.aob.a085211; Umehara M, 2008, NATURE, V455, P195, DOI 10.1038/nature07272; van Gelderen K, 2016, MOL PLANT, V9, P857, DOI 10.1016/j.molp.2016.03.005; Vandesompele J, 2002, GENOME BIOL, V3, DOI 10.1186/gb-2002-3-7-research0034; VENABLE DL, 1995, AM J BOT, V82, P410, DOI 10.2307/2445587; VENABLE DL, 1980, OECOLOGIA, V46, P272, DOI 10.1007/BF00540137; Walker C.H., ANN PLANT R IN PRESS; WICKSON M, 1958, PHYSIOL PLANTARUM, V11, P62, DOI 10.1111/j.1399-3054.1958.tb08426.x; YAMAGUCHI H, 1990, BOT MAG TOKYO, V103, P177, DOI 10.1007/BF02489624; Yang F, 2015, ANN BOT-LONDON, V115, P137, DOI 10.1093/aob/mcu210; ZOHARY M., 1950, PALESTINE JOUR BOT JERUSALEM SER, V5, P28 104 2 2 9 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0960-7412 1365-313X PLANT J Plant J. APR 2018 94 2 352 371 10.1111/tpj.13861 20 Plant Sciences Plant Sciences GB2OD WOS:000428891700012 29418033 2019-02-21 J Birget, PLG; Greischar, MA; Reece, SE; Mideo, N Birget, Philip L. G.; Greischar, Megan A.; Reece, Sarah E.; Mideo, Nicole Altered life history strategies protect malaria parasites against drugs EVOLUTIONARY APPLICATIONS English Article gametocytes; life history evolution; nonclassical drug resistance; Plasmodium; pyrimethamine; transmission investment WITHIN-HOST COMPETITION; PLASMODIUM-FALCIPARUM; REPRODUCTIVE RESTRAINT; TRANSMISSION STRATEGIES; ARTEMISININ RESISTANCE; EVOLUTION; COMMITMENT; ERYTHROCYTES; CHEMOTHERAPY; INFECTIVITY Drug resistance has been reported against all antimalarial drugs, and while parasites can evolve classical resistance mechanisms (e.g., efflux pumps), it is also possible that changes in life history traits could help parasites evade the effects of treatment. The life history of malaria parasites is governed by an intrinsic resource allocation problem: specialized stages are required for transmission, but producing these stages comes at the cost of producing fewer of the forms required for within-host survival. Drug treatment, by design, alters the probability of within-host survival, and so should alter the costs and benefits of investing in transmission. Here, we use a within-host model of malaria infection to predict optimal patterns of investment in transmission in the face of different drug treatment regimes and determine the extent to which alternative patterns of investment can buffer the fitness loss due to drugs. We show that over a range of drug doses, parasites are predicted to adopt "reproductive restraint" (investing more in asexual replication and less in transmission) to maximize fitness. By doing so, parasites recoup some of the fitness loss imposed by drugs, though as may be expected, increasing dose reduces the extent to which altered patterns of transmission investment can benefit parasites. We show that adaptation to drug-treated infections could result in more virulent infections in untreated hosts. This work emphasizes that in addition to classical resistance mechanisms, drug treatment generates selection for altered parasite life history. Understanding how any shifts in life history will alter the efficacy of drugs, as well as any limitations on such shifts, is important for evaluating and predicting the consequences of drug treatment. [Birget, Philip L. G.; Reece, Sarah E.] Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland; [Birget, Philip L. G.; Reece, Sarah E.] Univ Edinburgh, Inst Immunol & Infect Res, Edinburgh, Midlothian, Scotland; [Greischar, Megan A.; Mideo, Nicole] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON, Canada Birget, PLG (reprint author), Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland.; Birget, PLG (reprint author), Univ Edinburgh, Inst Immunol & Infect Res, Edinburgh, Midlothian, Scotland. philipbirget@gmail.com Reece, Sarah/0000-0001-6716-6732; Greischar, Megan/0000-0002-7521-9344 FNR; University of Edinburgh; Royal Society; NERC; Wellcome Trust; Human Frontiers Science Program; Natural Sciences and Engineering Research Council of Canada FNR; University of Edinburgh; the Royal Society; NERC; Wellcome Trust; Human Frontiers Science Program; Natural Sciences and Engineering Research Council of Canada [Anonymous], 2015, GUID TREATM MAL; Babayan SA, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000525; Baruah S, 2009, INFECT GENET EVOL, V9, P853, DOI 10.1016/j.meegid.2009.05.006; Bell AS, 2006, EVOLUTION, V60, P1358, DOI 10.1554/05-611.1; Bell AS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037172; Birget PLG, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.1229; Bousema T, 2011, CLIN MICROBIOL REV, V24, P377, DOI 10.1128/CMR.00051-10; Brancucci NMB, 2015, NAT PROTOC, V10, P1131, DOI 10.1038/nprot.2015.072; BRUCE MC, 1990, PARASITOLOGY, V100, P191, DOI 10.1017/S0031182000061199; Buckling AGJ, 1997, P ROY SOC B-BIOL SCI, V264, P553, DOI 10.1098/rspb.1997.0079; Carter Lucy M., 2013, Evolution Medicine and Public Health, P135, DOI 10.1093/emph/eot011; Codd A, 2011, MALARIA J, V10, DOI 10.1186/1475-2875-10-56; de Roode JC, 2005, P NATL ACAD SCI USA, V102, P7624, DOI 10.1073/pnas.0500078102; de Roode JC, 2005, AM NAT, V166, P531, DOI 10.1086/491659; DEARSLY AL, 1990, PARASITOLOGY, V100, P359, DOI 10.1017/S0031182000078628; Dondorp AM, 2009, NEW ENGL J MED, V361, P455, DOI 10.1056/NEJMoa0808859; Gatton ML, 2013, EVOLUTION, V67, P1218, DOI 10.1111/evo.12063; Gautret P, 1996, J PARASITOL, V82, P900, DOI 10.2307/3284196; Greischar MA, 2016, EVOLUTION, V70, P1542, DOI 10.1111/evo.12969; Greischar MA, 2016, PLOS COMPUT BIOL, V12, DOI 10.1371/journal.pcbi.1004718; Greischar MA, 2016, PARASITOLOGY, V143, P905, DOI 10.1017/S0031182015000815; Greischar MA, 2014, AM NAT, V183, pE36, DOI 10.1086/674357; Hott A, 2015, ANTIMICROB AGENTS CH, V59, P3156, DOI 10.1128/AAC.00197-15; Huijben S, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003578; Huijben S, 2010, EVOLUTION, V64, P2952, DOI 10.1111/j.1558-5646.2010.01068.x; Hyde JE, 2005, TRENDS PARASITOL, V21, P494, DOI 10.1016/j.pt.2005.08.020; Hyde JE, 2002, MICROBES INFECT, V4, P165, DOI 10.1016/S1286-4579(01)01524-6; Juliano JJ, 2010, P NATL ACAD SCI USA, V107, P20138, DOI 10.1073/pnas.1007068107; Kachur SP, 2006, TROP MED INT HEALTH, V11, P441, DOI 10.1111/j.1365-3156.2006.01588.x; KOELLA JC, 1995, THEOR POPUL BIOL, V47, P277, DOI 10.1006/tpbi.1995.1012; LANDAU I, 1965, CR HEBD ACAD SCI, V260, P3758; Landau I, 1978, RODENT MALARIA LIFE; Lew VL, 2003, BLOOD, V101, P4189, DOI 10.1182/blood-2002-08-2654; Lynch PA, 2008, PARASITOLOGY, V135, P1599, DOI 10.1017/S0031182008000309; McDonald V, 2009, PARASITOLOGY, V136, P1477, DOI 10.1017/S0031182009006349; Mckenzie FE, 1998, J THEOR BIOL, V193, P419, DOI 10.1006/jtbi.1998.0710; Mideo N, 2008, AM NAT, V172, pE214, DOI 10.1086/591684; Mideo N, 2008, P ROY SOC B-BIOL SCI, V275, P1217, DOI 10.1098/rspb.2007.1545; Mideo N, 2016, EVOL MED PUBLIC HLTH, P21, DOI 10.1093/emph/eov036; Miller MR, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1000946; Paloque L, 2016, MALARIA J, V15, DOI 10.1186/s12936-016-1206-9; Paul REL, 2007, INFECT GENET EVOL, V7, P577, DOI 10.1016/j.meegid.2007.04.004; Peatey CL, 2009, J INFECT DIS, V200, P1518, DOI 10.1086/644645; Pollitt LC, 2011, AM NAT, V177, P358, DOI 10.1086/658175; Reece SE, 2010, P ROY SOC B-BIOL SCI, V277, P3123, DOI 10.1098/rspb.2010.0564; Reece SE, 2005, P ROY SOC B-BIOL SCI, V272, P511, DOI 10.1098/rspb.2004.2972; Saralamba S, 2011, P NATL ACAD SCI USA, V108, P397, DOI 10.1073/pnas.1006113108; Savill NJ, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000416; SCHMIDT W, 1994, BLOOD, V83, P3746; Schneider P, 2012, P ROY SOC B-BIOL SCI, V279, P4677, DOI 10.1098/rspb.2012.1792; Schneider P, 2008, MALARIA J, V7, DOI 10.1186/1475-2875-7-257; Sinha A, 2014, NATURE, V507, P253, DOI 10.1038/nature12970; Sokhna C, 2013, CLIN MICROBIOL INFEC, V19, P902, DOI 10.1111/1469-0691.12314; Taylor LH, 1997, PARASITOL TODAY, V13, P135, DOI 10.1016/S0169-4758(97)89810-9; Teuscher F, 2010, J INFECT DIS, V202, P1362, DOI 10.1086/656476; White NJ, 2014, MALARIA J, V13, DOI 10.1186/1475-2875-13-483; White NJ, 2014, LANCET, V383, P723, DOI 10.1016/S0140-6736(13)60024-0; White NJ, 2004, J CLIN INVEST, V113, P1084, DOI 10.1172/JCI200421682; White NJ, 1998, ANN TROP MED PARASIT, V92, P449; WHO and UNICEF, 2015, ACH MAL MDG TARG REV 60 1 1 3 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. APR 2018 11 4 SI 442 455 10.1111/eva.12516 14 Evolutionary Biology Evolutionary Biology GB9TZ WOS:000429418200006 29636798 DOAJ Gold, Green Published 2019-02-21 J Flores-Ferrer, A; Marcou, O; Waleckx, E; Dumonteil, E; Gourbiere, S Flores-Ferrer, Alheli; Marcou, Olivier; Waleckx, Etienne; Dumonteil, Eric; Gourbiere, Sebastien Evolutionary ecology of Chagas disease; what do we know and what do we need? EVOLUTIONARY APPLICATIONS English Review adaptive dynamics; domiciliation; generalist parasite; insecticide resistance; local adaptation; microevolution; multihost virulence evolution; Trypanosomatidae TRIATOMA-INFESTANS HEMIPTERA; DISCRETE TYPING UNITS; BLOOD MEAL SOURCE; TRYPANOSOMA-CRUZI TRANSMISSION; BUG MEPRAIA-SPINOLAI; INSECTICIDE RESISTANCE; VECTOR CONTROL; LABORATORY CONDITIONS; GRAN CHACO; PYRETHROID RESISTANCE The aetiological agent of Chagas disease, Trypanosoma cruzi, is a key human pathogen afflicting most populations of Latin America. This vectorborne parasite is transmitted by haematophageous triatomines, whose control by large-scale insecticide spraying has been the main strategy to limit the impact of the disease for over 25 years. While those international initiatives have been successful in highly endemic areas, this systematic approach is now challenged by the emergence of insecticide resistance and by its low efficacy in controlling species that are only partially adapted to human habitat. In this contribution, we review evidences that Chagas disease control shall now be entering a second stage that will rely on a better understanding of triatomines adaptive potential, which requires promoting microevolutionary studies and -omic approaches. Concomitantly, we show that our knowledge of the determinants of the evolution of T.cruzi high diversity and low virulence remains too limiting to design evolution-proof strategies, while such attributes may be part of the future of Chagas disease control after the 2020 WHO's target of regional elimination of intradomiciliary transmission has been reached. We should then aim at developing a theory of T.cruzi virulence evolution that we anticipate to provide an interesting enrichment of the general theory according to the specificities of transmission of this very generalist stercorarian trypanosome. We stress that many ecological data required to better understand selective pressures acting on vector and parasite populations are already available as they have been meticulously accumulated in the last century of field research. Although more specific information will surely be needed, an effective research strategy would be to integrate data into the conceptual and theoretical framework of evolutionary ecology and life-history evolution that provide the quantitative backgrounds necessary to understand and possibly anticipate adaptive responses to public health interventions. [Flores-Ferrer, Alheli; Marcou, Olivier; Gourbiere, Sebastien] Univ Perpignan, Inst Modelisat & Anal Geoenvironm & Sante, ESPACE DEV IMAGES, UMR 228, Via Domitia, Perpignan, France; [Flores-Ferrer, Alheli; Gourbiere, Sebastien] Univ Perpignan, Lab Genome & Dev Plantes, UMR 5096, Via Domitia, Perpignan, France; [Waleckx, Etienne] Univ Autonoma Yucatan, Ctr Invest Reg Dr Hideyo Noguchi, Lab Parasitol, Merida, Mexico; [Dumonteil, Eric] Tulane Univ, Sch Publ Hlth & Trop Med, Dept Trop Med, New Orleans, LA USA Gourbiere, S (reprint author), Univ Perpignan, Inst Modelisat & Anal Geoenvironm & Sante, ESPACE DEV IMAGES, UMR 228, Via Domitia, Perpignan, France. gourbiere@univ-perp.fr Dumonteil, Eric/0000-0001-9376-0209; Waleckx, Etienne/0000-0002-3270-6476 CONACYT [239540]; Consejo Nacional de Ciencia y Tecnologia Basic Science [CB2015-258752]; National Problems [PN2015-893] CONACYT (Person Number 239540); Consejo Nacional de Ciencia y Tecnologia Basic Science, Grant/Award Number: CB2015-258752; National Problems, Grant/Award Number: PN2015-893 Abad-Franch F, 2007, MEM I OSWALDO CRUZ, V102, P57, DOI 10.1590/S0074-02762007005000108; Abad-Franch F, 2016, MEM I OSWALDO CRUZ, V111, P649, DOI 10.1590/0074-02760160203; Agosta SJ, 2010, ZOOLOGIA-CURITIBA, V27, P151, DOI 10.1590/S1984-46702010000200001; de Noya BA, 2015, ACTA TROP, V151, P94, DOI 10.1016/j.actatropica.2015.06.004; Alizon S, 2009, J EVOLUTION BIOL, V22, P245, DOI 10.1111/j.1420-9101.2008.01658.x; Almeida CE, 2009, MED VET ENTOMOL, V23, P410, DOI 10.1111/j.1365-2915.2009.00822.x; Andrade Sonia G., 1997, Revista da Sociedade Brasileira de Medicina Tropical, V30, P27, DOI 10.1590/S0037-86821997000100006; [Anonymous], 2015, Wkly Epidemiol Rec, V90, P33; Arroyo CM, 2007, BIOMEDICA, V27, P92, DOI 10.7705/biomedica.v27i1.252; Audino PG, 2004, MEM I OSWALDO CRUZ, V99, P335, DOI 10.1590/S0074-02762004000300018; Barbu C, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0001045; Barbu C, 2009, PLOS NEGLECT TROP D, V3, DOI 10.1371/journal.pntd.0000416; Basile L., 2011, CHAGAS DIS EUROPEAN, P18; Basombrio MA, 1996, MEM I OSWALDO CRUZ, V91, P421, DOI 10.1590/S0074-02761996000400006; Bermudez H, 1993, AM J TROP MED HYG S, V49, P371; Bern C, 2011, CLIN MICROBIOL REV, V24, P655, DOI 10.1128/CMR.00005-11; Boots M, 1999, P ROY SOC B-BIOL SCI, V266, P1933, DOI 10.1098/rspb.1999.0869; Botto-Mahan C, 2009, VECTOR-BORNE ZOONOT, V9, P505, DOI 10.1089/vbz.2008.0003; Botto-Mahan C, 2006, ACTA TROP, V98, P219, DOI 10.1016/j.actatropica.2006.05.005; Breniere SF, 1997, MEM I OSWALDO CRUZ, V92, P401, DOI 10.1590/S0074-02761997000300018; Breniere SF, 1998, J MED ENTOMOL, V35, P911, DOI 10.1093/jmedent/35.6.911; Breniere SF, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004792; Breniere SF, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080786; Briceho-Leon R, 2007, CAD SAUDE PUBLICA, V23, pS33, DOI 10.1590/S0102-311X2007001300005; Briceno-Leon R, 2007, MEM I OSWALDO CRUZ, V102, P109, DOI 10.1590/S0074-02762007005000095; BROWN AWA, 1986, J AM MOSQUITO CONTR, V2, P123; Brown SP, 2012, TRENDS MICROBIOL, V20, P336, DOI 10.1016/j.tim.2012.04.005; Buitrago R, 2010, AM J TROP MED HYG, V82, P574, DOI 10.4269/ajtmh.2010.09-0325; Bull JJ, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1004387; Bull JJ, 2008, EVOL APPL, V1, P172, DOI 10.1111/j.1752-4571.2007.00003.x; Cecere MC, 2013, J MED ENTOMOL, V50, P394, DOI 10.1603/ME12109; CARNEIRO M, 1991, MEM I OSWALDO CRUZ, V86, P387, DOI 10.1590/S0074-02761991000400002; Caswell H., 2001, MATRIX POPULATION MO; Catala SS, 2004, MEM I OSWALDO CRUZ, V99, P25, DOI 10.1590/S0074-02762004000100005; CDC, 2013, CS242221A CDC CTR GL; Cencig S, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002271; Chagas C., 1909, Memorias do Instituto Oswaldo Cruz, V1; Chatelain E, 2017, COMPUT STRUCT BIOTEC, V15, P98, DOI 10.1016/j.csbj.2016.12.002; Cortez MR, 2006, EXP PARASITOL, V114, P305, DOI 10.1016/j.exppara.2006.04.010; Costa J, 2016, INFECT GENET EVOL, V37, P77, DOI 10.1016/j.meegid.2015.10.025; Cressler CE, 2016, PARASITOLOGY, V143, P915, DOI 10.1017/S003118201500092X; Crocco L, 1997, ANN TROP MED PARASIT, V91, P927, DOI 10.1080/00034983.1997.11813220; Cura CI, 2012, PARASITOLOGY, V139, P516, DOI 10.1017/S0031182011002186; Cura CI, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003765; Cura CI, 2010, INT J PARASITOL, V40, P1599, DOI 10.1016/j.ijpara.2010.06.006; Germano MD, 2015, J VECTOR ECOL, V40, P59, DOI 10.1111/jvec.12132; Pessoa GCD, 2015, REV SOC BRAS MED TRO, V48, P380, DOI 10.1590/0037-8682-0081-2015; Depickere S, 2012, MEM I OSWALDO CRUZ, V107, P1042, DOI 10.1590/S0074-02762012000800013; Dieckmann U., 2002, ADAPTIVE DYNAMICS IN; Dujardin JP, 2009, ACTA TROP, V110, P101, DOI 10.1016/j.actatropica.2008.09.026; Dujardin JP, 1999, MEM I OSWALDO CRUZ, V94, P565, DOI 10.1590/S0074-02761999000400024; DUJARDIN JP, 2002, VECTORES ENFERMEDAD; Dumonteil E, 2002, AM J TROP MED HYG, V67, P176, DOI 10.4269/ajtmh.2002.67.176; Dumonteil E, 2009, J PARASITOL, V95, P469, DOI 10.1645/GE-1712.1; Rabinovich JE, 2011, MEM I OSWALDO CRUZ, V106, P479, DOI 10.1590/S0074-02762011000400016; Elliot SL, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003646; Elliot SL, 2003, ECOLOGY, V84, P2568, DOI 10.1890/02-8013; Emmanuelle-Machado P, 2002, MEM I OSWALDO CRUZ, V97, P583, DOI 10.1590/S0074-02762002000400025; Ewald PW, 2004, INFECT DIS CLIN N AM, V18, P1, DOI 10.1016/S0891-5520(02)00099-0; EWALD PW, 1993, SCI AM, V268, P86, DOI 10.1038/scientificamerican0493-86; Fabro J, 2012, INFECT GENET EVOL, V12, P487, DOI 10.1016/j.meegid.2011.12.006; Fernandez AF, 2014, ADV EXP MED BIOL, V753, P97, DOI 10.1007/978-1-4939-0820-2_6; Fronza G, 2016, J MED ENTOMOL, V53, P880, DOI 10.1093/jme/tjw056; Gandon S, 2004, EVOLUTION, V58, P455, DOI 10.1111/j.0014-3820.2004.tb01669.x; Garcia MN, 2017, INFECT GENET EVOL, V49, P151, DOI 10.1016/j.meegid.2017.01.016; Georghiou GP, 1986, PESTICIDE RESISTANCE, P11; Germano MD, 2013, ACTA TROP, V128, P561, DOI 10.1016/j.actatropica.2013.08.007; Gjullin C. M., 1952, MOSQ NEWS, V12, P1; GOMES JEPL, 1990, MEM I OSWALDO CRUZ, V85, P299, DOI 10.1590/S0074-02761990000300006; Gomez MB, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004561; Gomez MB, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-1211-9; Gonzalez Valdivieso P., 1971, SUSCEPTIBILITY R PRO; Gorla D, 1994, ACTA TOXICOL ARGENT, V2, P48; Gourbiere S, 2012, HEREDITY, V108, P190, DOI 10.1038/hdy.2011.71; Gourbiere S, 2002, J THEOR BIOL, V217, P351, DOI 10.1006/yjtbi.3033; Gourbiere S, 2008, AM J TROP MED HYG, V78, P133, DOI 10.4269/ajtmh.2008.78.133; Gourbiere S, 2009, EVOLUTION, V63, P1879, DOI 10.1111/j.1558-5646.2009.00731.x; Guarneri AA, 2000, J MED ENTOMOL, V37, P373, DOI 10.1603/0022-2585(2000)037[0373:IOTBMS]2.0.CO;2; Guarneri AA, 2011, VECTOR-BORNE ZOONOT, V11, P443, DOI 10.1089/vbz.2010.0086; Guhl F., 1996, PARASITOL TODAY, V12, P1996; Gurtler RE, 2009, MEM I OSWALDO CRUZ, V104, P52, DOI 10.1590/S0074-02762009000900009; Gurtler RE, 2009, PLOS NEGLECT TROP D, V3, DOI 10.1371/journal.pntd.0000447; Hashimoto K, 2012, PARASITE VECTOR, V5, DOI 10.1186/1756-3305-5-45; Henriques C, 2014, PARASITE VECTOR, V7, DOI 10.1186/1756-3305-7-89; Hernandez L, 2008, ACTA TROP, V106, P60, DOI 10.1016/j.actatropica.2008.01.006; Herrera CP, 2015, LOUISIANA PARASIT VE, V8, P123, DOI DOI 10.1186/S13071-015-0730-8; Herrera L, 2005, T ROY SOC TROP MED H, V99, P379, DOI 10.1016/j.trstmh.2004.07.006; Ibanez-Cervantes G, 2013, PARASITOL INT, V62, P36, DOI 10.1016/j.parint.2012.09.003; Jackson Y, 2014, TROP MED INT HEALTH, V19, P212, DOI 10.1111/tmi.12235; Jansen AM, 2010, ELSEV INSIGHT, P249, DOI 10.1016/B978-0-12-384876-5.00011-3; JIRON LF, 1982, REV BIOL TROP, V30, P151; Jones CM, 2012, PARASITE VECTOR, V5, DOI 10.1186/1756-3305-5-78; Lee BY, 2013, LANCET INFECT DIS, V13, P342, DOI 10.1016/S1473-3099(13)70002-1; Leggett HC, 2013, TRENDS ECOL EVOL, V28, P592, DOI 10.1016/j.tree.2013.07.002; LENT H, 1979, Bulletin of the American Museum of Natural History, V163, P123; Lewis MD, 2016, TRENDS PARASITOL, V32, P899, DOI 10.1016/j.pt.2016.08.009; Lewis MD, 2016, CELL MICROBIOL, V18, P1429, DOI 10.1111/cmi.12584; Lewis MD, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0001363; LIMA MF, 1984, J PARASITOL, V70, P155, DOI 10.2307/3281944; LIMA MM, 1992, ANN ENTOMOL SOC AM, V85, P458, DOI 10.1093/aesa/85.4.458; Liu NN, 2015, ANNU REV ENTOMOL, V60, P537, DOI 10.1146/annurev-ento-010814-020828; Llewellyn MS, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003458; Llewellyn MS, 2011, INT J PARASITOL, V41, P609, DOI 10.1016/j.ijpara.2010.12.004; Llewellyn MS, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000410; Loza-Murguia M, 2010, NEOTROP ENTOMOL, V39, P799, DOI 10.1590/S1519-566X2010000500020; Lunardi RR, 2015, ACTA TROP, V149, P220, DOI 10.1016/j.actatropica.2015.05.023; MALLET J, 1989, TRENDS ECOL EVOL, V4, P336, DOI 10.1016/0169-5347(89)90088-8; Mancero T., 2011, INICIATIVA PAISES AM; Orozco MM, 2013, AM J TROP MED HYG, V88, P872, DOI 10.4269/ajtmh.12-0519; Marliere NP, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003973; Marquez EJ, 2013, J BIOSCIENCES, V38, P549, DOI 10.1007/s12038-013-9332-9; Martinez-Ibarra JA, 2004, J AM MOSQUITO CONTR, V20, P328; Martinez-Ibarra JA, 2006, MEM I OSWALDO CRUZ, V101, P787, DOI 10.1590/S0074-02762006000700014; Martinez-Perez A, 2016, ACTA TROP, V157, P145, DOI 10.1016/j.actatropica.2016.01.032; Medone P, 2015, J MED ENTOMOL, V52, P1282, DOI 10.1093/jme/tjv138; Menu F, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000691; Messenger LA, 2015, ACTA TROP, V151, P150, DOI 10.1016/j.actatropica.2015.05.007; Messenger LA, 2015, EXPERT REV ANTI-INFE, V13, P995, DOI 10.1586/14787210.2015.1056158; De Pablos LM, 2012, INFECT IMMUN, V80, P2258, DOI 10.1128/IAI.06225-11; MINTERGOEDBLOED E, 1981, T ROY SOC TROP MED H, V75, P350, DOI 10.1016/0035-9203(81)90090-0; Monje-Rumi MM, 2015, INFECT GENET EVOL, V29, P53, DOI 10.1016/j.meegid.2014.11.001; Monteiro FA, 2001, TRENDS PARASITOL, V17, P344, DOI 10.1016/S1471-4922(01)01921-3; Mougabure-Cueto G, 2015, ACTA TROP, V149, P70, DOI 10.1016/j.actatropica.2015.05.014; Nattero J, 2015, INFECT GENET EVOL, V36, P539, DOI 10.1016/j.meegid.2015.08.032; Nattero J, 2013, J VECTOR ECOL, V38, P127, DOI 10.1111/j.1948-7134.2013.12018.x; Nattero J, 2011, ACTA TROP, V119, P183, DOI 10.1016/j.actatropica.2011.05.015; Noireau F, 1997, T ROY SOC TROP MED H, V91, P653, DOI 10.1016/S0035-9203(97)90508-3; Noireau F, 1999, MEM I OSWALDO CRUZ, V94, P347, DOI 10.1590/S0074-02761999000300011; Nouvellet P, 2015, ADV PARASIT, V87, P135, DOI 10.1016/bs.apar.2014.12.004; Nouvellet P, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002505; Nouvellet P, 2011, INFECT GENET EVOL, V11, P1243, DOI 10.1016/j.meegid.2011.04.008; Otto S., 2007, BIOL GUIDE MATH MODE; Panzera F, 2004, EMERG INFECT DIS, V10, P438, DOI 10.3201/eid1003.020812; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; Patterson JS, 2010, ELSEV INSIGHT, P83, DOI 10.1016/B978-0-12-384876-5.00005-8; Pelosse P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070830; Pennington PM, 2009, AM J TROP MED HYG, V80, P239, DOI 10.4269/ajtmh.2009.80.239; Perez-Molina JA, 2011, EUROSURVEILLANCE, V16, P52; Perez-Molina JA, 2014, INFECT GENET EVOL, V21, P440, DOI 10.1016/j.meegid.2013.12.018; Peterson JK, 2015, PARASITE VECTOR, V8, DOI 10.1186/s13071-015-1146-1; PHAC, 2015, SURV CHANG DIS AM TR; Picollo MI, 2005, J MED ENTOMOL, V42, P637, DOI 10.1603/0022-2585(2005)042[0637:HRTPIA]2.0.CO;2; Pires HHR, 2000, MEM I OSWALDO CRUZ, V95, P883, DOI 10.1590/S0074-02762000000600025; Rabinovich J, 2001, AM J TROP MED HYG, V65, P125, DOI 10.4269/ajtmh.2001.65.125; RABINOVICH JE, 1990, B WORLD HEALTH ORGAN, V68, P737; Ragone PG, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0119866; Ramirez-Sierra MJ, 2010, TROP MED INT HEALTH, V15, P77, DOI 10.1111/j.1365-3156.2009.02422.x; Ranson H, 2016, TRENDS PARASITOL, V32, P187, DOI 10.1016/j.pt.2015.11.010; Rascalou G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036858; Rassi A, 2010, ELSEV INSIGHT, P709, DOI 10.1016/B978-0-12-384876-5.00027-7; Read AF, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000058; Reed DH, 2001, EVOLUTION, V55, P1095; Reisenman CE, 2011, AM J TROP MED HYG, V85, P648, DOI 10.4269/ajtmh.2011.11-0137; Rey O, 2016, TRENDS ECOL EVOL, V31, P514, DOI 10.1016/j.tree.2016.03.013; Reyes-Lugo M, 2000, T ROY SOC TROP MED H, V94, P508, DOI 10.1016/S0035-9203(00)90068-3; Risso MG, 2011, AM J TROP MED HYG, V84, P78, DOI 10.4269/ajtmh.2011.10-0177; Rivero A, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1001000; Acevedo GR, 2011, J MED ENTOMOL, V48, P828, DOI 10.1603/ME10208; Roca-Acevedo G, 2015, J MED ENTOMOL, V52, P987, DOI 10.1093/jme/tjv078; Roellig DM, 2008, EMERG INFECT DIS, V14, P1123, DOI 10.3201/eid1407.080175; Roff D. A., 2010, MODELING EVOLUTION I, P59; ROFF DA, 2002, LIFE HIST EVOLUTION; Salvatella R, 2007, MEM I OSWALDO CRUZ, V102, P39, DOI 10.1590/S0074-02762007005000105; Sandoval Ramirez C. M., 2015, PSYCHE, V2015, P1; SCHAUB GA, 1989, PARASITOL TODAY, V5, P185, DOI 10.1016/0169-4758(89)90142-7; SCHAUB GA, 1988, T ROY SOC TROP MED H, V82, P94, DOI 10.1016/0035-9203(88)90273-8; SCHIPPER H, 1980, CAN MED ASSOC J, V122, P165; Schofield CJ, 2009, ACTA TROP, V110, P88, DOI 10.1016/j.actatropica.2009.01.010; Schofield CJ, 2006, TRENDS PARASITOL, V22, P583, DOI 10.1016/j.pt.2006.09.011; Schofield CJ, 1999, MEM I OSWALDO CRUZ, V94, P375, DOI 10.1590/S0074-02761999000700073; Schofield CJ, 1999, ADV PARASIT, V42, P1, DOI 10.1016/S0065-308X(08)60147-5; Sierra I, 2016, ACTA TROP, V158, P208, DOI 10.1016/j.actatropica.2016.03.014; Silva-dos-Santos D, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005507; Silveira AC, 1999, MEM I OSWALDO CRUZ, V94, P405, DOI 10.1590/S0074-02761999000700080; Silveira AC, 2002, CONTROL ENFERMEDAD C; Teixeira ARL, 2006, MEM I OSWALDO CRUZ, V101, P463, DOI 10.1590/S0074-02762006000500001; Tibayrenc M, 2015, ACTA TROP, V151, P156, DOI 10.1016/j.actatropica.2015.05.006; Torres-Montero J, 2012, AM J TROP MED HYG, V86, P677, DOI 10.4269/ajtmh.2012.11-0746; TORRICO RA, 1946, ANN LAB CENTRAL COCH, V1, P19; Traverso L, 2017, PLOS NEGLECT TROP D, V11, DOI 10.1371/journal.pntd.0005313; Sanchez LV, 2013, PARASITOLOGY, V140, P147, DOI 10.1017/S0031182012001394; Vontas J, 2012, PESTIC BIOCHEM PHYS, V104, P126, DOI 10.1016/j.pestbp.2012.05.008; Vorraro F, 2014, MEDIAT INFLAMM, DOI 10.1155/2014/952857; Waleckx E, 2016, PARASITE VECTOR, V9, DOI 10.1186/s13071-016-1852-3; Waleckx E, 2015, MEM I OSWALDO CRUZ, V110, P324, DOI 10.1590/0074-02760140409; Waleckx E, 2015, T ROY SOC TROP MED H, V109, P143, DOI 10.1093/trstmh/tru200; Waleckx E, 2012, AM J TROP MED HYG, V86, P455, DOI 10.4269/ajtmh.2012.11-0205; Waleckx E, 2011, INFECT GENET EVOL, V11, P1045, DOI 10.1016/j.meegid.2011.03.020; World Health Organisation, 2005, OPSDPCCD32105 WHO; World Health Organisation, 2000, REP WHO CONS OB, P9; World Health Organisation, 2014, SMALL BIT BIG THREAT; World Health Organisation, 2002, CONTR CHANG DIS 2 RE; World Health Organisation, 1998, WHA51 14 EL TRANSM C; World Health Organisation, 2010, PER MOQ LOGR INT TRA; World Health Organisation, 2012, UR UR PAIS AM LAT LI; World Health Organisation, 2010, WHA63 20 CHAG DIS CO; World Health Organisation, 2006, NEWSBR BRAZ MARKS CH; World Health Organization, 2015, GEN FRAM CONTR EL ER; Yeo M, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0001049; Yon F Carmen, 2004, Rev. perú. med. exp. salud publica, V21, P179; Zafra G, 2011, HUM PATHOL, V42, P1159, DOI 10.1016/j.humpath.2010.11.012; Zingales B, 2009, MEM I OSWALDO CRUZ, V104, P1051, DOI 10.1590/S0074-02762009000700021; Zingales B, 2012, INFECT GENET EVOL, V12, P240, DOI 10.1016/j.meegid.2011.12.009 203 0 0 6 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. APR 2018 11 4 SI 470 487 10.1111/eva.12582 18 Evolutionary Biology Evolutionary Biology GB9TZ WOS:000429418200008 29636800 DOAJ Gold, Green Published 2019-02-21 J Khatri, D; He, XZ; Wang, Q Khatri, D.; He, X. Z.; Wang, Q. Effective biological control depends on life history strategies of both parasitoid and its host: evidence from Aphidius colemani-Myzus persicae System (vol 110, pg 400, 2017) JOURNAL OF ECONOMIC ENTOMOLOGY English Correction Khatri D, 2017, J ECON ENTOMOL, V110, P400, DOI 10.1093/jee/tow324; Lewis EG, 1942, SANKHYA, V6, P93; Lotka A. J., 1913, J WASH ACAD SCI, V3, P241 3 0 0 3 8 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 0022-0493 1938-291X J ECON ENTOMOL J. Econ. Entomol. APR 2018 111 2 1000 1000 10.1093/jee/tox322 1 Entomology Entomology GB8II WOS:000429319200066 Bronze 2019-02-21 J Moody, EK; Lozano-Vilano, ML Moody, E. K.; Lozano-Vilano, M. L. Predation drives morphological convergence in the Gambusia panuco species group among lotic and lentic habitats JOURNAL OF EVOLUTIONARY BIOLOGY English Article desert fish; mosquitofish; parallel evolution; Poeciliidae; trajectory analysis GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; PHENOTYPIC DIVERSIFICATION; SWIMMING PERFORMANCE; LIVEBEARING FISH; TRADE-OFF; DIVERGENCE; SELECTION; SHAPE; AFFINIS Fish morphology is often constrained by a trade-off between optimizing steady vs. unsteady swimming performance due to opposing effects of caudal peduncle size. Lotic environments tend to select for steady swimming performance, leading to smaller caudal peduncles, whereas predators tend to select for unsteady swimming performance, leading to larger caudal peduncles. However, it is unclear which aspect of performance should be optimized across heterogeneous flow and predation environments and how this heterogeneity may affect parallel phenotypic evolution. We investigated this question among four Gambusia species in north-eastern Mexico, specifically the riverine G.panuco, the spring endemics G.alvarezi and G.hurtadoi, and a fourth species, G.marshi, found in a variety of habitats with varying predation pressure in the Cuatro Cienegas Basin and Rio Salado de Nadadores. We employed a geometric morphometric analysis to examine how body shapes of both male and female fish differ among species and habitats and with piscivore presence. We found that high-predation and low-predation species diverged morphologically, with G.marshi exhibiting a variable, intermediate body shape. Within G.marshi, body morphology converged in high-predation environments regardless of flow velocity, and fish from high-predation sites had larger relative caudal peduncle areas. However, we found that G.marshi from low-predation environments diverged in morphology between sub-basins of Cuatro Cienegas, indicating other differences among these basins that merit further study. Our results suggest that a morphological trade-off promotes parallel evolution of body shape in fishes colonizing high-predation environments and that changing predation pressure can strongly impact morphological evolution in these species. [Moody, E. K.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, 251 Bessey Hall, Ames, IA 50011 USA; [Lozano-Vilano, M. L.] Univ Autnoma Nuevo Leon, Lab Ictiol, San Nicolas De Los Garza, NL, Mexico Moody, EK (reprint author), Iowa State Univ, Dept Ecol Evolut & Organismal Biol, 251 Bessey Hall, Ames, IA 50011 USA. erickmoody@gmail.com ASU School of Life Sciences Research and Training Initiatives fund We thank the many people who collected the specimens used in this study, particularly Salvador Contreras, as well as the staff at the UANL fish collection who assisted with logistics. Diana Sharpe and Dean Adams provided guidance with the use of geomorphic morphometric analysis for fishes, and Michael Sanchez assisted with marking landmarks on images. Rick Simpson provided the modified phylogenetic tree in Fig. 1. The manuscript was greatly improved by comments on earlier drafts from Jim Elser, Justa Heinen-Kay, Krista Capps, James Collins, the Sabo Lab and the anonymous reviewers. We thank the ASU School of Life Sciences Research and Training Initiatives fund for providing funding to travel to Monterrey to complete this work. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Adams DC, 2004, ITAL J ZOOL, V71, P5, DOI 10.1080/11250000409356545; Adams DC, 2013, METHODS ECOL EVOL, V4, P393, DOI 10.1111/2041-210X.12035; Adams DC, 2009, EVOLUTION, V63, P1143, DOI 10.1111/j.1558-5646.2009.00649.x; Boersma M, 1998, AM NAT, V152, P237, DOI 10.1086/286164; BRONMARK C, 1992, SCIENCE, V258, P1348, DOI 10.1126/science.258.5086.1348; Carson EW, 2014, CONSERV GENET, V15, P483, DOI 10.1007/s10592-013-0548-x; Carson EW, 2008, COPEIA, P794, DOI 10.1643/CP-06-292; Cohen Adam E., 2005, Hidrobiológica, V15, P169; Collyer ML, 2013, HYSTRIX, V24, P75, DOI 10.4404/hystrix-24.1-6298; Contreras-Balderas S, 2008, AQUAT ECOSYST HEALTH, V11, P246, DOI 10.1080/14634980802319986; Contreras-Balderas S., 1984, J ARIZONA NEVADA ACA, V19, P85; Culumber ZW, 2017, NAT ECOL EVOL, V1, P1185, DOI 10.1038/s41559-017-0233-4; ECHELLE AF, 1989, CONSERV BIOL, V3, P159, DOI 10.1111/j.1523-1739.1989.tb00068.x; Foster K, 2015, BIOL J LINN SOC, V114, P152, DOI 10.1111/bij.12413; Fu C, 2015, J EXP BIOL, V218, P255, DOI 10.1242/jeb.109561; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; GODIN JGJ, 1995, OECOLOGIA, V103, P224, DOI 10.1007/BF00329084; GOODALL C, 1991, J ROY STAT SOC B MET, V53, P285; Heinen-Kay JL, 2014, EVOL APPL, V7, P1252, DOI 10.1111/eva.12223; Hendry AP, 2002, EVOLUTION, V56, P1199; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Hubbs C, 2001, TEX J SCI, V53, P299; Hubbs C., 1957, Texas Journal of Science, V9, P279; Hubbs C, 1995, COPEIA, P989, DOI 10.2307/1447053; Hubbs Clark, 2003, Texas Tech University Museum Special Publications, V46, P127; Ingley SJ, 2016, EVOLUTION, V70, P600, DOI 10.1111/evo.12872; Jourdan J, 2016, SCI REP-UK, V6, DOI 10.1038/srep38971; Kopf RK, 2017, CONSERV BIOL, V31, P581, DOI 10.1111/cobi.12882; Landy JA, 2015, ECOL EVOL, V5, P5616, DOI 10.1002/ece3.1780; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; Langerhans R.B., 2017, J HERED, V2017, P1; Langerhans RB, 2007, EVOLUTION, V61, P2056, DOI 10.1111/j.1558-5646.2007.00171.x; Langerhans R. Brian, 2010, P200, DOI 10.1201/b10190-8; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Langerhans RB, 2009, EVOLUTION, V63, P561, DOI 10.1111/j.1558-5646.2008.00556.x; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; LYDEARD C, 1995, SYST BIOL, V44, P221, DOI 10.2307/2413708; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Meffe G.K., 1985, Copeia, V1985, P898, DOI 10.2307/1445239; MILLER RR, 1989, FISHERIES, V14, P22, DOI 10.1577/1548-8446(1989)014<0022:EONAFD>2.0.CO;2; Minckley W.L., 1984, Journal of the Arizona-Nevada Academy of Science, V19, P13; Minckley W. L., 1962, Copeia, V1962, P391, DOI 10.2307/1440906; Minckley WL, 1999, GREAT BASIN NAT, V59, P230; MINCKLEY WL, 1969, ENV BOLSON CUATRO CI; Moody E.K., 2017, THESIS; OBREGONBARBOZA H, 1994, HYDROBIOLOGIA, V286, P79, DOI 10.1007/BF00008499; Oke KB, 2017, AM NAT, V190, P1, DOI 10.1086/691989; PEDEN AE, 1973, COPEIA, P210; PISTER EP, 1974, T AM FISH SOC, V103, P531, DOI 10.1577/1548-8659(1974)103<531:DFATH>2.0.CO;2; Pollux BJA, 2014, NATURE, V513, P233, DOI 10.1038/nature13451; R Core Team, 2015, R LANG ENV STAT COMP; Rauchenberger M., 1989, SYSTEMATICS BIOGEOGR, V2951; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Rohlf F.J., 2015, TPSRELW; Rohlf F.J., 2015, TPSDIG; ROHLF FJ, 1993, TRENDS ECOL EVOL, V8, P129, DOI 10.1016/0169-5347(93)90024-J; Sabo JL, 2010, SCIENCE, V330, P965, DOI 10.1126/science.1196005; Senay C, 2015, J ANIM ECOL, V84, P219, DOI 10.1111/1365-2656.12269; Sharpe DMT, 2015, J EVOLUTION BIOL, V28, P2054, DOI 10.1111/jeb.12720; Souza V, 2006, P NATL ACAD SCI USA, V103, P6565, DOI 10.1073/pnas.0601434103; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1983, EVOLUTION, V37, P618, DOI 10.1111/j.1558-5646.1983.tb05578.x; Tobler M, 2011, EVOLUTION, V65, P2213, DOI 10.1111/j.1558-5646.2011.01298.x; Touchon JC, 2008, OIKOS, V117, P634, DOI 10.1111/j.2008.0030-1299.16354.x; Wilson RS, 2005, ANIM BEHAV, V70, P1387, DOI 10.1016/j.anbehav.2004.12.024; Wolaver BD, 2013, GEOSPHERE, V9, P113, DOI 10.1130/GES00849.1 68 1 1 4 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. APR 2018 31 4 491 501 10.1111/jeb.13226 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GB4AJ WOS:000429001800002 29266513 2019-02-21 J Munoz, AP; Kery, M; Martins, PV; Ferraz, G Munoz, Alejandra Pizarro; Kery, Marc; Martins, Pedro Vitor; Ferraz, Goncalo Age effects on survival of Amazon forest birds and the latitudinal gradient in bird survival AUK English Article age-mixture survival model; age-specific survival; age uncertainty; Amazon; Cormack-Jolly-Seber; hierarchical model; tropical birds LIFE-HISTORY EVOLUTION; SOUTH TEMPERATE BIRDS; TROPICAL BIRDS; APPARENT SURVIVAL; SLOW PACE; RATES; MOLT; DIVERSIFICATION; POPULATIONS; FECUNDITY The search for explanations of the well-documented positive relationship between latitude and avian clutch size has created the expectation that tropical birds should balance their smaller clutch sizes with relatively high survival probabilities. So far, efforts to detect a latitudinal gradient in survival have found no statistical support, leading to the hypothesis that a gradient may be present in the survival of juveniles alone. Such a gradient could be masked by the data on adults when field records make no distinction between ages. We aimed to (1) assess the effect of age on survival of tropical birds by estimating age-specific annual apparent survival probabilities for a set of 40 passerine understory species from the central Brazilian Amazon and (2) test the hypothesis of a latitudinal gradient in adult survival with a meta-analysis of tropical and temperate-zone forest passerine survival probabilities at study areas from Peru to Alaska. We estimated age-specific survival using a hierarchical, multispecies Cormack-Jolly-Seber (CJS) model that treats species-specific parameters as random effects. To extend our analysis to data on birds of unknown age at the time of banding, we developed a novel CJS model with a mixture component for the survival of birds of unknown age. We found a strong effect of age on survival at our site, with juveniles having lower survival than adults. The meta-analysis of 342 survival estimates from 175 species and a latitude span of.60 degrees revealed a negative effect of latitude on survival, which supports the widely accepted hypothesis that, on average, tropical birds have higher annual survival than their temperate counterparts. We conclude that there is no need for an alternative latitudinal trend in juvenile survival to account for the general trend in clutch size. [Munoz, Alejandra Pizarro; Ferraz, Goncalo] Univ Fed Rio Grande do Sul, Dept Ecol, Porto Alegre, RS, Brazil; [Kery, Marc] Swiss Ornithol Inst, Sempach, Switzerland; [Martins, Pedro Vitor] Klamath Bird Observ, Ashland, OR USA Ferraz, G (reprint author), Univ Fed Rio Grande do Sul, Dept Ecol, Porto Alegre, RS, Brazil. goncalo.ferraz@ufrgs.br Ferraz, Goncalo/C-3860-2008 Ferraz, Goncalo/0000-0001-8748-0462 Brazil's Amazonas State Government (FAPEAM Universal) [209/2012]; U.S. National Science Foundation [LTREB 545491]; Swiss National Science Foundation [31003A_1464125]; Brazil's CNPq [PP 312606/2013-3] Fieldwork was supported by Brazil's Amazonas State Government (FAPEAM Universal 209/2012) and the U.S. National Science Foundation (LTREB 545491). M.K. received support from the Swiss National Science Foundation (31003A_1464125 to M.K. and M. Schaub) and G.F. from Brazil's CNPq (PP 312606/2013-3). Anders AD, 1997, CONSERV BIOL, V11, P698, DOI 10.1046/j.1523-1739.1997.95526.x; Blake JG, 2008, BIOTROPICA, V40, P485, DOI 10.1111/j.1744-7429.2007.00395.x; Blake JG, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081028; Bohning-Gaese K, 2000, EVOL ECOL RES, V2, P823; Brawn JD, 1999, P INT ORN C, V22, P297; Brawn JD, 2017, NAT CLIM CHANGE, V7, P133, DOI [10.1038/NCLIMATE3183, 10.1038/nclimate3183]; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Cox WA, 2014, J WILDLIFE MANAGE, V78, P183, DOI 10.1002/jwmg.670; DeSante D. F., 2015, VITAL RATES N AM LAN; Faaborg J, 1995, AUK, V112, P503, DOI 10.2307/4088741; Francis C. M., 1999, INT ORNITHOL C, V22, P326; Gascon Claude, 2001, P31; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gould WR, 1998, ECOLOGY, V79, P2531, DOI 10.1890/0012-9658(1998)079[2531:EOTVOS]2.0.CO;2; Howell SNG, 2003, CONDOR, V105, P635, DOI 10.1650/7225; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnson EI, 2011, J FIELD ORNITHOL, V82, P422, DOI 10.1111/j.1557-9263.2011.00345.x; Johnston J. P., 2015, AM NAT, V150, P771; Jullien M, 2000, ECOLOGY, V81, P3416, DOI 10.1890/0012-9658(2000)081[3416:TSVOFI]2.0.CO;2; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Kellner K, 2016, JAGSUI WRAPPER RJAGS; Kery M, 2012, BAYESIAN POPULATION ANALYSIS USING WINBUGS: A HIERARCHICAL PERSPECTIVE, P1; Kery M., 2016, APPL HIERARCHICAL MO, V1; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lahoz-Monfort JJ, 2011, METHODS ECOL EVOL, V2, P116, DOI 10.1111/j.2041-210X.2010.00050.x; Lloyd P, 2014, J AVIAN BIOL, V45, P493, DOI 10.1111/jav.00454; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; McCarthy MA, 2005, J APPL ECOL, V42, P1012, DOI 10.1111/j.1365-2664.2005.01101.x; McCrea RS, 2013, J R STAT SOC C-APPL, V62, P101, DOI 10.1111/j.1467-9876.2012.01043.x; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Murray B.G. Jr, 1985, Ornithological Monographs, P505; Naef-Daenzer B, 2016, J FIELD ORNITHOL, V87, P227, DOI 10.1111/jofo.12157; OWENS IPF, 1995, P ROY SOC B-BIOL SCI, V261, P227, DOI 10.1098/rspb.1995.0141; Papadatou E, 2012, ECOGRAPHY, V35, P153, DOI 10.1111/j.1600-0587.2011.07084.x; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Plummer M., 2003, JAGS PROGRAM ANAL BA; Pradel R, 1997, BIOMETRICS, V53, P60, DOI 10.2307/2533097; Pyle P, 1997, IDENTIFICATION GUIDE; R Development Core Team, 2017, R LANG ENV STAT COMP; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Royle JA, 2008, BIOMETRICS, V64, P364, DOI 10.1111/j.1541-0420.2007.00891.x; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Ryder TB, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2314; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Sauer JR, 2002, ECOLOGY, V83, P1743, DOI 10.2307/3071992; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Tarwater CE, 2011, ECOLOGY, V92, P1271, DOI 10.1890/10-1386.1; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Wolfe J. D., 2012, ORNITOLOGIA NEOTRO S, V23, P169; Wolfe JD, 2015, OECOLOGIA, V178, P715, DOI 10.1007/s00442-015-3256-z; Wolfe JD, 2014, OIKOS, V123, P964, DOI 10.1111/oik.00849; Wolfe JD, 2010, J FIELD ORNITHOL, V81, P186, DOI 10.1111/j.1557-9263.2010.00276.x; Zipkin EF, 2009, J APPL ECOL, V46, P815, DOI 10.1111/j.1365-2664.2009.01664.x 60 1 1 11 15 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK APR 2018 135 2 299 313 10.1642/AUK-17-91.1 15 Ornithology Zoology GB1US WOS:000428836500011 2019-02-21 J McNicholl, DG; Davoren, GK; Reist, JD McNicholl, D. G.; Davoren, G. K.; Reist, J. D. Life history variation across latitudes: observations between capelin (Mallotus villosus) from Newfoundland and the eastern Canadian Arctic POLAR BIOLOGY English Article Capelin; Climate change; Life history trait variation; Spawning ecology BARENTS SEA CAPELIN; REPRODUCTIVE EFFORT; FISH; EVOLUTION; GROWTH; ZOOPLANKTON; SURVIVAL; ECOLOGY; CLIMATE; STOCKS Life history trait variation within a species promotes regional-specific strategies that optimize fitness in a particular environment. Capelin (Mallotus villosus) is an important forage fish species with a circumpolar, temperate distribution, but has increased in relative abundance in Arctic regions recently. To examine for region-specific life history strategies, we compared life history characteristics (length, body condition, age of sexual maturity and growth) of spawning male capelin collected from the eastern Canadian Arctic, in Pangnirtung Fjord, Nunavut (66A degrees N; July 2014 and June-July 2015) with a sub-Arctic location on the northeast coast of Newfoundland (49A degrees N; July 2014 and 2015). First year growth was higher for sub-Arctic relative to Arctic capelin. In contrast, body condition (regression of total length versus mass) was lower for capelin in the Arctic compared to the sub-Arctic population. The age structure of spawning males suggested that Newfoundland capelin reached sexual maturity earlier, as the youngest spawners in Newfoundland were age 2+ (median age: 3+) relative to Pangnirtung where the median spawning age was 4+ (maximum age 5+). Overall, Arctic capelin were generally characterized by lower growth, especially in the first year, later age of reproduction, and lower body condition, relative to the sub-Arctic population. These differences may be the result of limited gene flow on the northern margins of this species' geographical distribution. They also support previously reported genetic distinction among the sub-Arctic and Arctic clades in the North Atlantic. [McNicholl, D. G.; Davoren, G. K.] Univ Manitoba, Dept Biol Sci, 50 Sifton Rd, Winnipeg, MB, Canada; [McNicholl, D. G.; Reist, J. D.] Fisheries & Oceans Canada, Inst Freshwater, 501 Univ Crescent, Winnipeg, MB, Canada McNicholl, DG (reprint author), Univ Manitoba, Dept Biol Sci, 50 Sifton Rd, Winnipeg, MB, Canada.; McNicholl, DG (reprint author), Fisheries & Oceans Canada, Inst Freshwater, 501 Univ Crescent, Winnipeg, MB, Canada. darcy.mcnicholl@gmail.com Fisheries and Oceans Canada; Natural Sciences and Engineering Research Council; University of Manitoba We thank R. Tallman for aid in sampling and support for fishes collected in Pangnirtung, and members of the Davoren Lab, University of Manitoba for assistance with sampling fishes collected in Newfoundland. This project is supported by Fisheries and Oceans Canada, Natural Sciences and Engineering Research Council Discovery Grant (GKD) and annual Ship Time Grants (GKD) along with annual University of Manitoba Faculty of Science Field Work Support Grants (GKD) and a University of Manitoba Faculty of Science Scholarship to DGM. BAILEY WB, 1957, J FISH RES BOARD CAN, V14, P731, DOI 10.1139/f57-030; Bergmann C., 1847, GOTTINGER STUDIEN, V3, P595; Beverton R.J.H., 1987, Basic Life Sciences, V42, P161; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; CAMPANA SE, 1990, CAN J FISH AQUAT SCI, V47, P2219, DOI 10.1139/f90-246; Carroll SP, 2007, FUNCT ECOL, V21, P387, DOI 10.1111/j.1365-2435.2007.01289.x; Carscadden JE, 2013, PROG OCEANOGR, V114, P84, DOI 10.1016/j.pocean.2013.05.006; Carscadden JE, 2013, PROG OCEANOGR, V114, P64, DOI 10.1016/j.pocean.2013.05.005; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; Christiansen JS, 2008, J EXP MAR BIOL ECOL, V360, P47, DOI 10.1016/j.jembe.2008.04.003; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Daase M, 2013, CAN J FISH AQUAT SCI, V70, P871, DOI 10.1139/cjfas-2012-0401; Dodson JJ, 2007, MOL ECOL, V16, P5030, DOI 10.1111/j.1365-294X.2007.03559.x; Dunbar M, 1951, E ARCTIC WATERS SUMM; Eckert AJ, 2008, MOL PHYLOGENET EVOL, V49, P832, DOI 10.1016/j.ympev.2008.09.008; Flynn SR, 2001, J MAR BIOL ASSOC UK, V81, P307, DOI 10.1017/S0025315401003782; Gaston AJ, 2003, ARCTIC, V56, P227; Gjosaeter H, 1998, SARSIA, V83, P453, DOI 10.1080/00364827.1998.10420445; GJOSAETER H, 1987, ENVIRON BIOL FISH, V20, P293; Gjosaeter H, 2002, ICES J MAR SCI, V59, P959, DOI 10.1006/jmsc.2002.1240; Gjosaeter H, 1999, THESIS; Gjosaeter H, 1984, P SOV NORW S BAR SEA, P119; HASSEL A, 1991, POLAR RES, V10, P371, DOI 10.1111/j.1751-8369.1991.tb00660.x; Hedeholm R, 2010, ICES J MAR SCI, V67, P1128, DOI 10.1093/icesjms/fsq024; Hjermann DO, 2004, MAR ECOL PROG SER, V273, P229, DOI 10.3354/meps273229; Huse G, 1998, CAN J FISH AQUAT SCI, V55, P631, DOI 10.1139/cjfas-55-3-631; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; LOENG H, 1989, Journal of Northwest Atlantic Fishery Science, V9, P103; Marcoux M, 2012, MAR ECOL PROG SER, V471, P283, DOI 10.3354/meps10029; Maxner E, 2016, FISH RES, V179, P202, DOI 10.1016/j.fishres.2016.03.002; Mowbray FK, 2002, ICES J MAR SCI, V59, P942, DOI 10.1006/jmsc.2002.1259; O'Driscoll RL, 2001, SARSIA, V86, P165, DOI 10.1080/00364827.2001.10420472; Penton PM, 2012, CAN J ZOOL, V90, P248, DOI 10.1139/Z11-132; Petrie B., 1988, NAFO SCI COUNC STUD, V12, P57; Praebel K, 2008, MAR ECOL PROG SER, V360, P189, DOI 10.3354/meps07363; Resetarits WJ, 1996, AM ZOOL, V36, P205; Rose GA, 2005, ICES J MAR SCI, V62, P1524, DOI 10.1016/j.icesjms.2005.05.008; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Sexton JP, 2009, ANNU REV ECOL EVOL S, V40, P415, DOI 10.1146/annurev.ecolsys.110308.120317; SHACKELL NL, 1994, CAN J FISH AQUAT SCI, V51, P642, DOI 10.1139/f94-065; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Templeman W, 1948, RES B NEWFOUNDLAND G; Ulrich KL, 2013, THESIS; Vilhjalmsson Hjalmar, 1994, Rit Fiskideildar, V13, P1; Weisberg S, 2010, CAN J FISH AQUAT SCI, V67, P269, DOI 10.1139/F09-181; WINTERS G H, 1982, Journal of Northwest Atlantic Fishery Science, V3, P105; WINTERS GH, 1971, J FISH RES BOARD CAN, V28, P1029, DOI 10.1139/f71-149; Yurkowski DJ, 2016, OECOLOGIA, V180, P631, DOI 10.1007/s00442-015-3384-5 51 0 0 3 7 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. APR 2018 41 4 643 651 10.1007/s00300-017-2225-x 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology GA8QC WOS:000428603800005 2019-02-21 J Hilderbrand, GV; Gustine, DD; Mangipane, B; Joly, K; Leacock, W; Mangipane, L; Erlenbach, J; Sorum, MS; Cameron, MD; Belant, JL; Cambier, T Hilderbrand, Grant V.; Gustine, David D.; Mangipane, Buck; Joly, Kyle; Leacock, William; Mangipane, Lindsey; Erlenbach, Joy; Sorum, Mathew S.; Cameron, Matthew D.; Belant, Jerrold L.; Cambier, Troy Plasticity in physiological condition of female brown bears across diverse ecosystems POLAR BIOLOGY English Article Body composition; Brown bear; Energy; Plasticity; Ursus arctos BODY-COMPOSITION; GRIZZLY BEARS; LACTATION PERFORMANCE; KENAI PENINSULA; MASS GAIN; PROTEIN; ALASKA; WINTER; HIBERNATION; DYNAMICS Variation in life history strategies facilitates the near global distribution of mammals by expanding realized niche width. We investigated physiological plasticity in the spring body composition of adult female brown bears (Ursus arctos) across 4 diverse Alaskan ecosystems. Brown bears are a highly intelligent omnivore with a historic range spanning much of North America, Europe, and Asia. We hypothesized that body mass, fat mass, lean mass, and total caloric content would increase across populations with increasing food resource availability. Throughout their range, brown bears enter a period of torpor during winter months, decreasing their metabolic rate as an adaptation to this period of reduced food availability. They also give birth to and nourish offspring during this time. Due to this specific life history strategy, we further hypothesized that proportional body fat and the proportion of total calories derived from fat would be consistent across populations. Our results supported our first hypothesis: body, fat, and lean masses, and caloric content of bears across populations increased with the quality and abundance of available food. However, the proportional body fat content and proportion of calories from fat differed across populations indicating population-specific strategies to meet the demands of reduced seasonal food availability, offspring production and rearing, and climate as well as some plasticity to respond to environmental change or ecosystem perturbations. Investigations of body condition and energetics benefit from combined assessments of absolute, proportional, and caloric metrics to understand the nuances of brown bear physiological dynamics across and within populations. [Hilderbrand, Grant V.] US Geol Survey, Alaska Sci Ctr, 4210 Univ Dr, Anchorage, AK 99508 USA; [Gustine, David D.] Natl Pk Serv, Grand Teton Natl Pk, POB 170, Moose, WY 83012 USA; [Mangipane, Buck] Natl Pk Serv, Lake Clark Natl Pk & Preserve, Port Alsworth, AK 99653 USA; [Joly, Kyle; Sorum, Mathew S.; Cameron, Matthew D.] Natl Pk Serv, Gates Arctic Natl Pk & Preserve, 4175 Geist Rd, Fairbanks, AK 99709 USA; [Leacock, William] US Fish & Wildlife Serv, Kodiak Natl Wildlife Refuge, 1390 Buskin River Rd, Kodiak, AK 99615 USA; [Mangipane, Lindsey; Belant, Jerrold L.] Mississippi State Univ, Forest & Wildlife Res Ctr, Carnivore Ecol Lab, Starkville, MS 39762 USA; [Erlenbach, Joy] Washington State Univ, Sch Environm, Pullman, WA 99164 USA; [Cambier, Troy] Chena River Aviat, 1366 Wike Way, Fairbanks, AK 99709 USA Hilderbrand, GV (reprint author), US Geol Survey, Alaska Sci Ctr, 4210 Univ Dr, Anchorage, AK 99508 USA. ghilderbrand@usgs.gov Hilderbrand, Grant/0000-0002-0051-8315; Cameron, Matthew/0000-0001-7347-4491; Gustine, Dave/0000-0003-1087-1937 National Park Service; U.S. Fish and Wildlife Service; U.S. Geological Survey We thank biologists W. Deacy and A. Morehouse, wildlife veterinarian J. Powers, and pilots A. Greenblatt, M. Keller, J. DeCreeft, R. Richotte, C. Cebulski, D. Welty, I. Bedingfield, K. Rees, K. VanHatten, and J. and J. Cummings for their assistance with animal capture and handling. N. Svoboda and three anonymous reviewers provided insightful comments and improved the manuscript. Funding was provided by the National Park Service, U.S. Fish and Wildlife Service, and U.S. Geological Survey. All procedures performed in studies involving animals were in accordance with the ethical standards of the institutions or practice at which the studies were conducted. Use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Barboza PS, 2008, PHYSIOL BIOCHEM ZOOL, V81, P835, DOI 10.1086/590414; Bergmann C., 1847, GOTTINGER STUDIEN, V3, P595; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Bowen WD, 2001, FUNCT ECOL, V15, P325, DOI 10.1046/j.1365-2435.2001.00530.x; Buck CL, 1999, J MAMMAL, V80, P1264, DOI 10.2307/1383177; Cramer W, 1999, GLOBAL CHANGE BIOL, V5, P1, DOI 10.1046/j.1365-2486.1999.00009.x; Deacy W, 2016, ECOLOGY, V97, P1091, DOI 10.1890/15-1060.1; Erlenbach JA, 2014, J MAMMAL, V95, P160, DOI 10.1644/13-MAMM-A-161; Farley SD, 1995, CAN J ZOOL, V73, P2216, DOI 10.1139/z95-262; FARLEY SD, 1994, CAN J ZOOL, V72, P220, DOI 10.1139/z94-029; Felicetti LA, 2003, PHYSIOL BIOCHEM ZOOL, V76, P256, DOI 10.1086/374279; Fortin JK, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0141983; Gustine DD, 2010, PHYSIOL BIOCHEM ZOOL, V83, P687, DOI 10.1086/652729; Harlow HJ, 1997, J THERM BIOL, V22, P21, DOI 10.1016/S0306-4565(96)00031-9; Hertel AG, 2017, OIKOS; Hilderbrand GV, 2013, CAN J ZOOL, V91, P1, DOI 10.1139/cjz-2012-0205; Hilderbrand GV, 1998, J WILDLIFE MANAGE, V62, P406, DOI 10.2307/3802306; Hilderbrand GV, 2000, J WILDLIFE MANAGE, V64, P178, DOI 10.2307/3802988; Hilderbrand GV, 1999, CAN J ZOOL, V77, P1623, DOI 10.1139/cjz-77-10-1623; Hilderbrand GV, 2017, BROWN BEAR SPRING EN; Hilderbrand GV, J ZOOL IN PRESS; HOLM S, 1979, SCAND J STAT, V6, P65; Hood WR, 2006, J COMP PHYSIOL B, V176, P807, DOI 10.1007/s00360-006-0102-y; Kuntz R, 2006, J EXP BIOL, V209, P4557, DOI 10.1242/jeb.02535; Lafferty DJR, 2015, OIKOS, V124, P732, DOI 10.1111/oik.01741; Lesage L, 2001, OECOLOGIA, V126, P30, DOI 10.1007/s004420000499; Lopez-Alfaro C, 2013, ECOL MODEL, V270, P1, DOI 10.1016/j.ecolmode1.2013.09.002; Mangipane L.S., 2017, POLAR BIOL; Mellish JAE, 1999, PHYSIOL BIOCHEM ZOOL, V72, P677, DOI 10.1086/316708; Monahan WB, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1465; Monson DH, 2000, OIKOS, V90, P457, DOI 10.1034/j.1600-0706.2000.900304.x; Monteith KL, 2013, J ANIM ECOL, V82, P377, DOI 10.1111/1365-2656.12016; Mowat G, 2006, CAN J ZOOL, V84, P473, DOI 10.1139/z06-016; Oftedal OT, 2000, P NUTR SOC, V59, P99, DOI 10.1017/S0029665100000124; Pasitschniak-Arts M, 1993, AM J MAMMOLOGISTS, V439, P1, DOI DOI 10.HTTPS://D0I.0RG/10.2307; Robbins CT, 2007, OIKOS, V116, P1675, DOI 10.1111/j.2007.0030-1299.16140.x; Robbins CT, 2001, WILDLIFE FEEDING NUT; Rode KD, 2000, CAN J ZOOL, V78, P1640, DOI 10.1139/cjz-78-9-1640; Schwartz C. C., 2006, WILDLIFE MONOGR, V161, P18; Servheen C., 1999, BEAR STATUS SURVEY C; SIDAK Z, 1967, J AM STAT ASSOC, V62, P626, DOI 10.2307/2283989; Stanek AE, 2017, CAN J ZOOL, V95, P555, DOI 10.1139/cjz-2016-0203; Suring LH, 2002, URSUS, V13, P237; Suring LH, 2006, J WILDLIFE MANAGE, V70, P1580, DOI 10.2193/0022-541X(2006)70[1580:POLUBF]2.0.CO;2; TAYLOR WP, 1989, J WILDLIFE MANAGE, V53, P978, DOI 10.2307/3809598; Wilson RR, 2014, ARCTIC, V67, P472, DOI 10.14430/arctic4421; Winstanley RK, 1999, CAN J ZOOL, V77, P406, DOI 10.1139/cjz-77-3-406; Zar J. H., 1999, BIOSTATISTICAL ANAL; Zuercher GL, 1999, J MAMMAL, V80, P443, DOI 10.2307/1383292 49 0 0 3 8 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. APR 2018 41 4 773 780 10.1007/s00300-017-2238-5 8 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology GA8QC WOS:000428603800016 2019-02-21 J Crandall, A; Magnusson, BM; Novilla, MLB Crandall, AliceAnn; Magnusson, Brianna M.; Novilla, M. Lelinneth B. Growth in Adolescent Self-Regulation and Impact on Sexual Risk-Taking: A Curve-of-Factors Analysis JOURNAL OF YOUTH AND ADOLESCENCE English Article Self-regulation; Sexual risk-taking; Family stress; Growth curve analysis; Structural equation modeling LIFE-HISTORY STRATEGIES; COGNITIVE CONTROL; AFRICAN-AMERICAN; STRESS; CHILDHOOD; YOUNG; PERSPECTIVE; TRANSITION; BEHAVIORS; ADULTHOOD Adolescent self-regulation is increasingly seen as an important predictor of sexual risk-taking behaviors, but little is understood about how changes in self-regulation affect later sexual risk-taking. Family financial stress may affect the development of self-regulation and later engagement in sexual risk-taking. We examined whether family financial stress influences self-regulation in early adolescence (age 13) and growth in self-regulation throughout adolescence (from age 13-17 years). We then assessed the effects of family financial stress, baseline self-regulation, and the development of self-regulation on adolescent sexual risk-taking behaviors at age 18 years. Using a curve-of-factors model, we examined these relationships in a 6-year longitudinal study of 470 adolescents (52% female) and their parents from a large northwestern city in the United States. Results indicated that family financial stress was negatively associated with baseline self-regulation but not with growth in self-regulation throughout adolescence. Both baseline self-regulation and growth in self-regulation were predictive of decreased likelihood of engaging in sexual risk-taking. Family financial stress was not predictive of later sexual risk-taking. Intervening to support the development of self-regulation in adolescence may be especially protective against later sexual risk-taking. [Crandall, AliceAnn; Magnusson, Brianna M.; Novilla, M. Lelinneth B.] Brigham Young Univ, Dept Hlth Sci, 4103 LSB, Provo, UT 84602 USA Crandall, A (reprint author), Brigham Young Univ, Dept Hlth Sci, 4103 LSB, Provo, UT 84602 USA. ali_crandall@byu.edu Brigham Young University (U.S.) College of Family, Home, and Social Science The Flourishing Families Project was funded by Brigham Young University (U.S.) College of Family, Home, and Social Science (Principal Investigator: Randal D. Day). Barbarin O, 2013, AM J ORTHOPSYCHIAT, V83, P156, DOI 10.1111/ajop.12024; Birthrong A, 2014, PERS INDIV DIFFER, V57, P8, DOI 10.1016/j.paid.2013.09.009; Blair C, 2010, CHILD DEV PERSPECT, V4, P181, DOI 10.1111/j.1750-8606.2010.00145.x; Browning CR, 2008, J HEALTH SOC BEHAV, V49, P269, DOI 10.1177/002214650804900303; Cavazos-Rehg PA, 2010, ARCH SEX BEHAV, V39, P664, DOI 10.1007/s10508-008-9397-y; Centers for Disease Control and Prevention, 2016, SEX TRANSM DIS SURV; Cheung GW, 2002, STRUCT EQU MODELING, V9, P233, DOI 10.1207/S15328007SEM0902_5; Crandall A, 2017, J YOUTH ADOLESCENCE, V46, P45, DOI 10.1007/s10964-016-0543-x; Crichton J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0104943; Dahlin E, 2008, PSYCHOL AGING, V23, P720, DOI 10.1037/a0014296; Dariotis JK, 2011, PERSPECT SEX REPRO H, V43, P51, DOI 10.1363/4305111; Diamond A, 2007, SCIENCE, V318, P1387, DOI 10.1126/science.1151148; Duckworth AL, 2011, EDUC PSYCHOL-UK, V31, P17, DOI 10.1080/01443410.2010.506003; Duncan T. E., 2006, INTRO LATENT VARIABL; El-Sadr WM, 2010, NEW ENGL J MED, V362, P967, DOI 10.1056/NEJMp1000069; Evans GW, 2008, EARLY CHILD RES Q, V23, P504, DOI 10.1016/j.ecresq.2008.07.002; Finer LB, 2016, NEW ENGL J MED, V374, P843, DOI 10.1056/NEJMsa1506575; Fuhrmann D, 2015, TRENDS COGN SCI, V19, P558, DOI 10.1016/j.tics.2015.07.008; Gestsdottir S, 2008, HUM DEV, V51, P202, DOI 10.1159/000135757; Gibbons FX, 2012, DEV PSYCHOL, V48, P722, DOI 10.1037/a0026599; Griffin KW, 2012, INT J ENV RES PUB HE, V9, P1, DOI 10.3390/ijerph9010001; Hackman DA, 2015, DEVELOPMENTAL SCI, V18, P686, DOI 10.1111/desc.12246; Hampson SE, 2016, PERS INDIV DIFFER, V88, P120, DOI 10.1016/j.paid.2015.08.052; Harvard Center on the Developing Child, 2014, ENH PRACT EX FUNCT S; Kautz T., 2014, W20749 NAT BUR EC RE; Kavanaugh ML, 2017, SOC SCI MED, V174, P133, DOI 10.1016/j.socscimed.2016.12.024; King KM, 2013, J ABNORM CHILD PSYCH, V41, P57, DOI 10.1007/s10802-012-9665-0; Li MY, 2017, J DEV BEHAV PEDIATR, V38, P99, DOI 10.1097/DBP.0000000000000380; Little T., 2013, LONGITUDINAL STRUCTU; Lupien SJ, 2009, NAT REV NEUROSCI, V10, P434, DOI 10.1038/nrn2639; Moilanen KL, 2015, J SEX RES, V52, P758, DOI 10.1080/00224499.2014.959881; Mullainathan S., 2013, SCARCITY WHY HAVING; Murray D. W., 2015, 201521 OPRE US DEP H; Muthen L. K. & Muthen B. O., 1998, MPLUS USERS GUIDE; Niendam TA, 2012, COGN AFFECT BEHAV NE, V12, P241, DOI 10.3758/s13415-011-0083-5; Novak SP, 2001, HEALTH PSYCHOL, V20, P196, DOI 10.1037//0278-6133.20.3.196; Ponnet K, 2015, J RES ADOLESCENCE, V25, P765, DOI 10.1111/jora.12171; Shonkoff JP, 2012, PEDIATRICS, V129, pE232, DOI 10.1542/peds.2011-2663; Spilman S. K., 2006, CRITICAL TRANSITIONS; StataCorp, 2014, STAT STAT SOFTW REL; Steinberg L, 2008, DEV REV, V28, P78, DOI 10.1016/j.dr.2007.08.002; Tsevat DG, 2017, AM J OBSTET GYNECOL, V216, P1, DOI 10.1016/j.ajog.2016.08.008; Turchik JA, 2009, ARCH SEX BEHAV, V38, P936, DOI 10.1007/s10508-008-9388-z; Umberson D, 2005, J MARRIAGE FAM, V67, P1332, DOI 10.1111/j.1741-3737.2005.00220.x; Volkow ND, 2014, NEW ENGL J MED, V370, P2219, DOI 10.1056/NEJMra1402309; WHO, 2017, MAT NEWB CHILD AD HL; Woltering S, 2009, MIND BRAIN EDUC, V3, P160, DOI 10.1111/j.1751-228X.2009.01066.x; Yeager DS, 2014, J PERS SOC PSYCHOL, V107, P559, DOI [10.1037/a0037637, 10.1037/a0037637.supp]; Young Margaret B., 2012, Morbidity and Mortality Weekly Report, V61, P1 49 1 1 3 10 SPRINGER/PLENUM PUBLISHERS NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0047-2891 1573-6601 J YOUTH ADOLESCENCE J. Youth Adolesc. APR 2018 47 4 793 806 10.1007/s10964-017-0706-4 14 Psychology, Developmental Psychology FZ5ER WOS:000427615200008 28664311 2019-02-21 J Lagattuta, KH; Tashjian, SM; Kramer, HJ Lagattuta, Kristin Hansen; Tashjian, Sarah M.; Kramer, Hannah J. Does the Past Shape Anticipation for the Future? Contributions of Age and Executive Function to Advanced Theory of Mind ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY English Article theory of mind; executive function; future thinking; emotion understanding MEDIAL PREFRONTAL CORTEX; MIDDLE CHILDHOOD; INHIBITORY CONTROL; WORKING-MEMORY; INDIVIDUAL-DIFFERENCES; FRONTAL-CORTEX; DAY-NIGHT; PRESCHOOLERS; ADULTS; CHILDREN A positive association between executive function (a set of higher order, self-regulatory cognitive skills) and theory of mind (beliefs about mental states) has been well documented during early childhood. As investigations extend beyond false belief understanding (that the mind can misrepresent reality), there is growing interest in examining contributions of executive function to more advanced aspects of theory of mind in older age groups. To add to this literature, we showed 4- to 10-year-olds and adults (N = 274) scenarios in which a perpetrator acted positively (P) and/or negatively (N) toward a focal character on two separate days (PP, NN, NP, and PN). Participants inferred focal characters' future-oriented mental states upon seeing perpetrators for the third time. Children and adults also completed executive function measures (working memory and inhibitory control). Both age and executive function independently predicted higher life history theory of mind: Recognition that prior life experiences influence how individuals think, feel, and make decisions about the future. [Lagattuta, Kristin Hansen; Tashjian, Sarah M.; Kramer, Hannah J.] Univ Calif Davis, Dept Psychol, One Shields Ave, Davis, CA 95616 USA Lagattuta, KH (reprint author), Univ Calif Davis, Dept Psychol, One Shields Ave, Davis, CA 95616 USA. khlaga@ucdavis.edu National Science Foundation [0723375]; National Science Foundation Graduate Research Fellowship [2016207607]; Predoctoral Training Consortium in Affective Science from the National Institute of Mental Health [201302291] We thank the children and adults for participating in this study. As well, we thank the undergraduate research assistants and graduate students in the Mind-Emotion Development Lab.; This research was funded by a grant from the National Science Foundation to K. H. Lagattuta (0723375). While writing this manuscript, as a graduate student at University of California, Los Angeles, S. M. Tashjian was supported by the National Science Foundation Graduate Research Fellowship (2016207607). H. J. Kramer was supported by the Predoctoral Training Consortium in Affective Science from the National Institute of Mental Health (201302291). Aiken LS, 1991, MULTIPLE REGRESSION; Amodio DM, 2006, NAT REV NEUROSCI, V7, P268, DOI 10.1038/nrn1884; Apperly IA, 2009, DEV PSYCHOL, V45, P190, DOI 10.1037/a0014098; Astington J. W., 2005, WHY LANGUAGE MATTERS; BADDELEY A, 1992, SCIENCE, V255, P556, DOI 10.1016/j.cub.2009.12.014; Banerjee R, 2011, CHILD DEV, V82, P1887, DOI 10.1111/j.1467-8624.2011.01669.x; Bechara A, 2005, GAME ECON BEHAV, V52, P336, DOI 10.1016/j.geb.2004.06.010; Benoit RG, 2014, P NATL ACAD SCI USA, V111, P16550, DOI 10.1073/pnas.1419274111; Blanchard-Fields F, 2007, CURR DIR PSYCHOL SCI, V16, P26, DOI 10.1111/j.1467-8721.2007.00469.x; Boseovski JJ, 2014, CHILD DEV, V85, P824, DOI 10.1111/cdev.12156; Boseovski JJ, 2010, CHILD DEV PERSPECT, V4, P212, DOI 10.1111/j.1750-8606.2010.00149.x; Boseovski JJ, 2006, DEV PSYCHOL, V42, P500, DOI 10.1037/0012-1649.42.3.500; Caplan D, 1999, BEHAV BRAIN SCI, V22, P77; Carlson SM, 2002, INFANT CHILD DEV, V11, P73, DOI 10.1002/icd.298; Carlson SM, 2001, CHILD DEV, V72, P1032, DOI 10.1111/1467-8624.00333; Carlson SM, 2004, J EXP CHILD PSYCHOL, V87, P299, DOI 10.1016/j.jecp.2004.01.002; Carstensen LL, 1999, AM PSYCHOL, V54, P165, DOI 10.1037//0003-066X.54.3.165; Charles ST, 2008, PSYCHOL AGING, V23, P495, DOI 10.1037/a0013284; de Rosnay Marc, 2002, Attach Hum Dev, V4, P39, DOI 10.1080/14616730210123139; Denny BT, 2012, J COGNITIVE NEUROSCI, V24, P1742, DOI 10.1162/jocn_a_00233; Derksen DG, 2018, Z PSYCHOL, V226, P87, DOI 10.1027/2151-2604/a000325; Devine RT, 2016, DEV PSYCHOL, V52, P758, DOI 10.1037/dev0000105; Devine RT, 2014, CHILD DEV, V85, P1777, DOI 10.1111/cdev.12237; Devine RT, 2013, CHILD DEV, V84, P989, DOI 10.1111/cdev.12017; Diamond A, 2013, ANNU REV PSYCHOL, V64, P135, DOI 10.1146/annurev-psych-113011-143750; Euston DR, 2012, NEURON, V76, P1057, DOI 10.1016/j.neuron.2012.12.002; Friedman NP, 2016, DEV PSYCHOL, V52, P326, DOI 10.1037/dev0000075; Gallagher HL, 2000, NEUROPSYCHOLOGIA, V38, P11, DOI 10.1016/S0028-3932(99)00053-6; German TP, 2006, COGNITION, V101, P129, DOI 10.1016/j.cognition.2005.05.007; GERSTADT CL, 1994, COGNITION, V53, P129, DOI 10.1016/0010-0277(94)90068-X; Giles JW, 2003, SOC DEV, V12, P182, DOI 10.1111/1467-9507.00228; Guajardo NR, 2009, BRIT J DEV PSYCHOL, V27, P681, DOI 10.1348/026151008X357886; Hala S, 2003, J COGN DEV, V4, P275, DOI 10.1207/S15327647JCD0403_03; Hayes AF, 2013, INTRO MEDIATION MODE; Henderson BB, 1999, J CROSS CULT PSYCHOL, V30, P32, DOI 10.1177/0022022199030001002; Henning A, 2011, J EXP CHILD PSYCHOL, V108, P513, DOI 10.1016/j.jecp.2010.10.006; Heyman GD, 2004, MERRILL PALMER QUART, V50, P86, DOI 10.1353/mpq.2004.0004; Hughes C, 1998, BRIT J DEV PSYCHOL, V16, P233, DOI 10.1111/j.2044-835X.1998.tb00921.x; Kennedy K, 2015, J EXP CHILD PSYCHOL, V132, P121, DOI 10.1016/j.jecp.2014.11.007; Kesner RP, 2011, NEUROBIOL LEARN MEM, V96, P417, DOI 10.1016/j.nlm.2011.07.002; Lagattuta KH, 2007, CHILD DEV, V78, P1492, DOI 10.1111/j.1467-8624.2007.01079.x; Lagattuta KH, 2016, J EXP CHILD PSYCHOL, V149, P116, DOI 10.1016/j.jecp.2016.01.013; Lagattuta KH, 2015, ADV CHILD DEV BEHAV, V48, P185, DOI 10.1016/bs.acdb.2014.11.005; Lagattuta KH, 2014, CONTEMP PERSPECT EAR, P245; Lagattuta KH, 2014, CHILD DEV PERSPECT, V8, P90, DOI 10.1111/cdep.12065; Lagattuta KH, 2014, CHILD DEV, V85, P659, DOI 10.1111/cdev.12154; Lagattuta KH, 2013, CHILD DEV, V84, P2094, DOI 10.1111/cdev.12082; Lagattuta KH, 2011, DEVELOPMENTAL SCI, V14, P481, DOI 10.1111/j.1467-7687.2010.00994.x; Lagattuta KH, 2010, DEV PSYCHOL, V46, P1417, DOI 10.1037/a0021062; Lane JD, 2013, DEV PSYCHOL, V49, P825, DOI 10.1037/a0028825; Lapan C, 2017, EARLY CHILD RES Q, V41, P95, DOI 10.1016/j.ecresq.2017.06.004; Lara K. H., 2017, CHILD DEV; Lecce S, 2017, J EXP CHILD PSYCHOL, V163, P69, DOI 10.1016/j.jecp.2017.06.011; Lipko AR, 2009, J EXP CHILD PSYCHOL, V103, P152, DOI 10.1016/j.jecp.2008.10.002; Luke N, 2013, DEV REV, V33, P1, DOI 10.1016/j.dr.2012.10.001; Marcovitch S, 2015, COGNITIVE DEV, V33, P40, DOI 10.1016/j.cogdev.2014.07.001; McAlister A, 2006, BRIT J DEV PSYCHOL, V24, P733, DOI 10.1348/026151005X70094; McKinnon MC, 2007, COGNITION, V102, P179, DOI 10.1016/j.cognition.2005.12.011; Miller S. A., 2012, THEORY MIND PRESCHOO; Miyake A, 2000, COGNITIVE PSYCHOL, V41, P49, DOI 10.1006/cogp.1999.0734; Qureshi AW, 2010, COGNITION, V117, P230, DOI 10.1016/j.cognition.2010.08.003; Raikes HA, 2006, BRIT J DEV PSYCHOL, V24, P89, DOI 10.1348/026151005X70427; Ridderinkhof KR, 2004, SCIENCE, V306, P443, DOI 10.1126/science.1100301; Sabbagh MA, 2006, PSYCHOL SCI, V17, P74, DOI 10.1111/j.1467-9280.2005.01667.x; Schacter DL, 2007, NAT REV NEUROSCI, V8, P657, DOI 10.1038/nrn2213; Suddendorf T, 2010, BRIT J DEV PSYCHOL, V28, P491, DOI 10.1348/026151009X479169; Thorndike R, 1986, STANFORD BINET INTEL; TULVING E, 1994, P NATL ACAD SCI USA, V91, P2016, DOI 10.1073/pnas.91.6.2016; Wang B., 2011, BRIT J DEV PSYCHOL, V30, P123; Wellman H. M., 2014, MAKING MINDS THEORY; Wellman HM, 2011, DEVELOPMENTAL SCI, V14, P319, DOI 10.1111/j.1467-7687.2010.00977.x; Yuan P, 2014, NEUROSCI BIOBEHAV R, V42, P180, DOI 10.1016/j.neubiorev.2014.02.005 72 3 3 7 8 HOGREFE & HUBER PUBLISHERS GOTTINGEN MERKELSTR 3, D-37085 GOTTINGEN, GERMANY 2190-8370 2151-2604 Z PSYCHOL Z. Psychol.-J. Psychol. APR 2018 226 2 122 133 10.1027/2151-2604/a000328 12 Psychology, Multidisciplinary Psychology FZ0XU WOS:000427299400005 2019-02-21 J Bellota, E; Davila-Flores, A; Bernal, JS Bellota, E.; Davila-Flores, A.; Bernal, J. S. A Bird in the Hand Versus Two in the Bush? The Specialist Leafhopper Dalbulus maidis (Hemiptera: Cicadellidae) Does Not Discriminate Against Sub-optimal Host Plants (Zea spp.) NEOTROPICAL ENTOMOLOGY English Article Host selection; preference-performance hypothesis; corn leafhopper; maize; teosinte; domestication SPIROPLASMA-KUNKELII MYCOPLASMATALES; LIFE-HISTORY EVOLUTION; RAYADO-FINO-VIRUS; CORN LEAFHOPPER; MAIZE; DOMESTICATION; OVIPOSITION; HOMOPTERA; INSECT; PERFORMANCE The corn leafhopper [Dalbulus maidis (DeLong & Wolcott)] is a specialist on Zea (Poaceae) that coevolved with maize (Zea mays mays) and its teosinte (Zea spp.) relatives. This study tested the hypothesis that host acceptance by females varies among Zea hosts, and is correlated with variation in defensive levels across those hosts. Prior studies revealed differences in plant defenses among Zea hosts and corresponding differences in corn leafhopper performance. Thus, host acceptance was expected to be correlated with defensive levels and offspring performance across Zea hosts, following the hypothesis that offspring performance mediates host preference. In parallel, host acceptance was expected to be correlated with transitions in life history strategy (perennial to annual life cycle), domestication status (wild to domesticated), and breeding intensity (landrace to hybrid variety) in Zea because variation in defensive levels and corn leafhopper performance were shown in prior studies to be correlated with those transitions. The study's hypotheses were tested by comparing, under no-choice conditions, host acceptance by corn leafhopper of a suite of Zea hosts encompassing those transitions: perennial teosinte (Zea diploperennis), Balsas teosinte (Zea mays parviglumis), and landrace and commercial hybrid maize. The results did not show differences in host acceptance for oviposition or feeding among the hosts. Thus, under no-choice conditions, all Zea hosts may be similarly acceptable for feeding and oviposition, despite marked ovipositional preferences under choice conditions and poorer offspring performance on teosintes relative to maize shown previously. The results suggested also that oviposition frequency per plant by females was not correlated with their offspring's performance. [Bellota, E.; Davila-Flores, A.; Bernal, J. S.] Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA Bernal, JS (reprint author), Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA. juliobernal@tamu.edu Bellota, Edwin/0000-0002-4971-6056 NSF-DEB [0818240]; [TEX07234] Partial support for this research was provided by NSF-DEB (0818240) and Hatch funding (TEX07234) to JSB. BACKUS EA, 1988, J ECON ENTOMOL, V81, P1819, DOI 10.1093/jee/81.6.1819; Bellota E, 2013, ENTOMOL EXP APPL, V149, P185, DOI 10.1111/eea.12122; Carpane P, 2011, ANN ENTOMOL SOC AM, V104, P515, DOI 10.1603/AN10052; Chen YH, 2015, ANNU REV ENTOMOL, V60, P35, DOI 10.1146/annurev-ento-010814-020601; Chinchilla-Ramirez M, 2017, ANN APPL BIOL, V170, P315, DOI 10.1111/aab.12331; Davila-Flores AM, 2013, OECOLOGIA, V173, P1425, DOI 10.1007/s00442-013-2728-2; de Lange ES, 2014, NEW PHYTOL, V204, P329, DOI 10.1111/nph.13005; Gripenberg S, 2010, ECOL LETT, V13, P383, DOI 10.1111/j.1461-0248.2009.01433.x; HEADY SE, 1985, ANN ENTOMOL SOC AM, V78, P723, DOI 10.1093/aesa/78.6.723; Heisswolf A, 2005, ECOL ENTOMOL, V30, P299, DOI 10.1111/j.0307-6946.2005.00706.x; Hilker M, 2011, PHYTOCHEMISTRY, V72, P1612, DOI 10.1016/j.phytochem.2011.02.018; Hu J, 2011, PLANT PHYSIOL, V156, P856, DOI 10.1104/pp.111.174334; Louis J, 2015, PLANT PHYSIOL, V169, P313, DOI 10.1104/pp.15.00958; Zambrano JL, 2013, PLANT DIS, V97, P1418, DOI 10.1094/PDIS-01-13-0037-RE; Maag D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135722; MADDEN LV, 1984, ANN APPL BIOL, V105, P431, DOI 10.1111/j.1744-7348.1984.tb03069.x; MADDEN LV, 1986, ANN APPL BIOL, V108, P475, DOI 10.1111/j.1744-7348.1986.tb01986.x; Matsuoka Y, 2002, P NATL ACAD SCI USA, V99, P6080, DOI 10.1073/pnas.052125199; Mayhew PJ, 2001, TRENDS ECOL EVOL, V16, P165, DOI 10.1016/S0169-5347(00)02099-1; Medina RF, 2012, ENTOMOL EXP APPL, V142, P223, DOI 10.1111/j.1570-7458.2012.01220.x; Moya-Raygoza G, 2007, ANN APPL BIOL, V151, P373, DOI 10.1111/j.1744-7348.2007.00185.x; Nault L.R., 1979, P561; NAULT LR, 1990, MAYDICA, V35, P165; NAULT LR, 1980, ANN ENTOMOL SOC AM, V73, P349, DOI 10.1093/aesa/73.4.349; NAULT LR, 1985, ECOL ENTOMOL, V10, P57, DOI 10.1111/j.1365-2311.1985.tb00534.x; Palomera V, 2012, FLA ENTOMOL, V95, P150, DOI 10.1653/024.095.0123; PITRE HN, 1967, J ECON ENTOMOL, V60, P417, DOI 10.1093/jee/60.2.417; Redinbaugh MG, 2014, ADV VIRUS RES, V90, P391, DOI 10.1016/B978-0-12-801246-8.00008-1; Refsnider JM, 2010, ANNU REV ECOL EVOL S, V41, P39, DOI 10.1146/annurev-ecolsys-102209-144712; Roitberg BD, 1999, ENTOMOL EXP APPL, V91, P187, DOI 10.1046/j.1570-7458.1999.00483.x; Rosenthal JP, 1997, EVOL ECOL, V11, P337, DOI 10.1023/A:1018420504439; Sanchez-Gonzalez JJ, 2011, MANUSCRITO; Scheirs J, 2000, P ROY SOC B-BIOL SCI, V267, P2065, DOI 10.1098/rspb.2000.1250; Summers CG, 2004, ENVIRON ENTOMOL, V33, P1644, DOI 10.1603/0046-225X-33.6.1644; UNESCO, 2011, MAB BIOSPH RES DIR; Vasquez J, 2007, EUPHYTICA, V153, P339, DOI 10.1007/s10681-006-3889-4; Virla E. G., 2004, Boletin de Sanidad Vegetal, Plagas, V30, P403; Wayadande AC, 1996, J INSECT BEHAV, V9, P3, DOI 10.1007/BF02213720; Wen WW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032626 39 3 3 1 11 ENTOMOLOGICAL SOC BRASIL LONDRINA, CAIXA POSTAL 481, 86001-970 LONDRINA,, PR, BRAZIL 1519-566X 1678-8052 NEOTROP ENTOMOL Neotrop. Entomol. APR 2018 47 2 171 180 10.1007/s13744-017-0516-0 10 Entomology Entomology FY6XS WOS:000427006800002 28397144 2019-02-21 J Zhu, Y; Queenborough, SA; Condit, R; Hubbell, SP; Ma, KP; Comita, LS Zhu, Y.; Queenborough, S. A.; Condit, R.; Hubbell, S. P.; Ma, K. P.; Comita, L. S. Density-dependent survival varies with species life-history strategy in a tropical forest ECOLOGY LETTERS English Article fast-slow continuum; growth-mortality trade-off; intraspecific competition; Janzen-Connell hypothesis; niche partitioning; regeneration niche; shade tolerance; species coexistence SHADE TOLERANCE; FUNCTIONAL TRAITS; ECONOMICS SPECTRUM; NEOTROPICAL FOREST; SEEDLING SURVIVAL; PLANT DIVERSITY; TREE SEEDLINGS; RAIN-FOREST; DISPERSAL DISTANCE; STRESS TOLERANCE Species coexistence in diverse communities likely results from multiple interacting factors. Mechanisms such as conspecific negative density dependence (CNDD) and varying life-history strategies related to resource partitioning are known to influence plant fitness, and thereby community composition and diversity. However, we have little understanding of how these mechanisms interact and how they vary across life stages. Here, we document the interaction between CNDD and life-history strategy, based on growth-mortality trade-offs, from seedling to adult tree for 47 species in a tropical forest. Species' life-history strategies remained consistent across stages: fast-growing species had higher mortality than slow-growing species at all stages. In contrast, mean CNDD was strongest at early life stages (i.e. seedling, sapling). Fast-growing species tended to suffer greater CNDD than slow-growing species at several, but not all life stages. Overall, our results demonstrate that coexistence mechanisms interact across multiple life stages to shape diverse tree communities. [Zhu, Y.; Queenborough, S. A.; Comita, L. S.] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA; [Zhu, Y.; Ma, K. P.] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, 20 Nanxincun, Beijing 100093, Peoples R China; [Condit, R.] Morton Arboretum, 4100 Illinois Rte 53, Lisle, IL 60532 USA; [Condit, R.] Field Museum Nat Hist, 1400 S Lake Shore Dr, Chicago, IL 60605 USA; [Hubbell, S. P.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA; [Hubbell, S. P.; Comita, L. S.] Smithsonian Trop Res Inst, Box 0843-03092, Balboa, Ancon, Panama Zhu, Y (reprint author), Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA.; Zhu, Y (reprint author), Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, 20 Nanxincun, Beijing 100093, Peoples R China. zhuyan1205@gmail.com Chinese Academy of Sciences [XDPB0203]; National key basic R&D program of China [2017YFA0605100]; China Scholarship Council (CSC); Yale University; National Science Foundation [NSF DEB 1242622, 1464389]; U.S. National Science Foundation Y.Z. was financially supported by Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB0203), National key basic R&D program of China (2017YFA0605100), the State Scholarship Fund organised by China Scholarship Council (CSC) and Yale University. The BCI seedling census was funded by the National Science Foundation (NSF DEB 1242622 and 1464389 to L.S.C.). The BCI forest dynamics research project was founded by S.P. Hubbell and R.B. Foster and is now managed by R. Condit, S. Lao and R. Perez under the Center for Tropical Forest Science and the Smithsonian Tropical Research in Panama. We thank the BCI seedling and tree census crews for data collection; Rolando Perez, Salomon Aguilar and Robin Foster for botanical expertise; and Suzanne Lao for data management. Numerous organisations have provided funding, principally the U.S. National Science Foundation, and hundreds of field workers have contributed. We also thank Stephen Murphy, Meghna Krishnadas and three anonymous reviewers for helpful feedback on the manuscript. Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; AUGSPURGER CK, 1984, OECOLOGIA, V61, P211, DOI 10.1007/BF00396763; AUGSPURGER CK, 1984, ECOLOGY, V65, P1705, DOI 10.2307/1937766; Bagchi R, 2014, NATURE, V506, P85, DOI 10.1038/nature12911; Bates D., 2016, LME4 LINEAR MIXEDEFF; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Chen L, 2010, ECOL LETT, V13, P695, DOI 10.1111/j.1461-0248.2010.01468.x; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; COLEY PD, 1988, OECOLOGIA, V74, P531, DOI 10.1007/BF00380050; Coley PD, 1996, ANNU REV ECOL SYST, V27, P305, DOI 10.1146/annurev.ecolsys.27.1.305; Comita LS, 2007, J VEG SCI, V18, P163, DOI 10.1658/1100-9233(2007)18[163:POWPSA]2.0.CO;2; Comita LS, 2017, SCIENCE, V356, P1328, DOI 10.1126/science.aan6356; Comita LS, 2014, J ECOL, V102, P845, DOI 10.1111/1365-2745.12232; Comita LS, 2010, SCIENCE, V329, P330, DOI 10.1126/science.1190772; Comita LS, 2009, J ECOL, V97, P1346, DOI 10.1111/j.1365-2745.2009.01551.x; Comita LS, 2009, ECOLOGY, V90, P328, DOI 10.1890/08-0451.1; Condit R, 1996, J TROP ECOL, V12, P231, DOI 10.1017/S0266467400009433; Condit R., 2017, BCI 50 HA PLOT TAXON; Condit R., 1998, TROPICAL FOREST CENS; Condit R, 2006, SCIENCE, V313, P98, DOI 10.1126/science.1124712; CONNELL J H, 1971, P298; Fine PVA, 2006, ECOLOGY, V87, pS150, DOI 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2; Freckleton RP, 2006, P R SOC B, V273, P2909, DOI 10.1098/rspb.2006.3660; Gelman A, 2006, TECHNOMETRICS, V48, P241, DOI 10.1198/004017005000000517; Getzin S, 2008, J ECOL, V96, P807, DOI 10.1111/j.1365-2745.2008.01377.x; Green PT, 2014, P NATL ACAD SCI USA, V111, P18649, DOI 10.1073/pnas.1321892112; Greenwood S, 2017, ECOL LETT, V20, P539, DOI 10.1111/ele.12748; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; Harms KE, 2000, NATURE, V404, P493, DOI 10.1038/35006630; Heilmann-Clausen J, 2004, FOREST ECOL MANAG, V201, P105, DOI 10.1016/j.foreco.2004.07.010; HERMS DA, 1992, Q REV BIOL, V67, P283, DOI 10.1086/417659; HilleRisLambers J, 2012, ANNU REV ECOL EVOL S, V43, P227, DOI 10.1146/annurev-ecolsys-110411-160411; Hubbell S. P., 2005, BARRO COLORADO FORES; Hubbell S.P., 1983, TROPICAL RAIN FOREST, P25; Hubbell SP, 1999, SCIENCE, V283, P554, DOI 10.1126/science.283.5401.554; Hunt R., 1982, PLANT GROWTH CURVES; Inman-Narahari F, 2016, J ECOL, V104, P773, DOI 10.1111/1365-2745.12553; JANZEN DH, 1970, AM NAT, V104, P501, DOI 10.1086/282687; Johnson DJ, 2012, SCIENCE, V336, P904, DOI 10.1126/science.1220269; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kitajima K, 2010, NEW PHYTOL, V186, P708, DOI 10.1111/j.1469-8137.2010.03212.x; Kobe RK, 2011, ECOL LETT, V14, P503, DOI 10.1111/j.1461-0248.2011.01612.x; Kobe RK, 1997, OIKOS, V80, P226, DOI 10.2307/3546590; KOBE RK, 1995, ECOL APPL, V5, P517, DOI 10.2307/1942040; Kobe RK, 1999, ECOLOGY, V80, P187, DOI 10.2307/176989; Kunstler G, 2016, NATURE, V529, P204, DOI 10.1038/nature16476; Kunstler G, 2009, J ECOL, V97, P685, DOI 10.1111/j.1365-2745.2009.01482.x; Laliberte E, 2015, NEW PHYTOL, V206, P507, DOI 10.1111/nph.13203; LaManna JA, 2017, SCIENCE, V356, P1389, DOI 10.1126/science.aam5678; LaManna JA, 2016, ECOL LETT, V19, P657, DOI 10.1111/ele.12603; Lebrija-Trejos E, 2016, ECOL LETT, V19, P1071, DOI 10.1111/ele.12643; Lebrija-Trejos E, 2014, ECOLOGY, V95, P940, DOI 10.1890/13-0623.1; Lin LX, 2012, J ECOL, V100, P905, DOI 10.1111/j.1365-2745.2012.01964.x; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; Mangan SA, 2010, NATURE, V466, P752, DOI 10.1038/nature09273; Marden JH, 2017, MOL ECOL, V26, P2498, DOI 10.1111/mec.13999; McCarthy-Neumann S, 2008, ECOLOGY, V89, P1883, DOI 10.1890/07-0211.1; McCarthy-Neumann S, 2013, ECOLOGY, V94, P780, DOI 10.1890/12-1338.1; Muller-Landau HC, 2004, BIOTROPICA, V36, P20, DOI 10.1111/j.1744-7429.2004.tb00292.x; Myers JA, 2007, J ECOL, V95, P383, DOI 10.1111/j.1365-2745.2006.01207.x; Niinemets U, 2010, FOREST ECOL MANAG, V260, P1623, DOI 10.1016/j.foreco.2010.07.054; Paine CET, 2008, BIOTROPICA, V40, P432, DOI 10.1111/j.1744-7429.2007.00390.x; Peters HA, 2003, ECOL LETT, V6, P757, DOI 10.1046/j.1461-0248.2003.00492.x; Piao T, 2013, OECOLOGIA, V172, P207, DOI 10.1007/s00442-012-2481-y; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Pratt RB, 2007, ECOL MONOGR, V77, P239, DOI 10.1890/06-0780; Pringle EG, 2007, PLANT ECOL, V193, P211, DOI 10.1007/s11258-006-9259-4; Queenborough SA, 2013, ANN BOT-LONDON, V112, P677, DOI 10.1093/aob/mct144; R Development Core Team, 2016, R LANG ENV STAT COMP; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; Reich PB, 1998, FUNCT ECOL, V12, P327, DOI 10.1046/j.1365-2435.1998.00208.x; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; Ruger N, 2012, ECOLOGY, V93, P2626, DOI 10.1890/12-0622.1; Sack L, 2001, FUNCT ECOL, V15, P145, DOI 10.1046/j.1365-2435.2001.00507.x; Silvertown J, 2004, TRENDS ECOL EVOL, V19, P605, DOI 10.1016/j.tree.2004.09.003; Terborgh J, 2012, AM NAT, V179, P303, DOI 10.1086/664183; Valladares F, 2008, ANNU REV ECOL EVOL S, V39, P237, DOI 10.1146/annurev.ecolsys.39.110707.173506; Visser MD, 2016, FUNCT ECOL, V30, P168, DOI 10.1111/1365-2435.12621; Walters MB, 1996, ECOLOGY, V77, P841, DOI 10.2307/2265505; Wang X.G., 2012, PLOS ONE, V7; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Windsor D. M., 1990, CLIMATE MOISTURE VAR; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright SJ, 2002, OECOLOGIA, V130, P1, DOI 10.1007/s004420100809; Zhu K, 2015, ECOLOGY, V96, P2319, DOI 10.1890/14-1780.1; Zhu Y, 2015, J ECOL, V103, P957, DOI 10.1111/1365-2745.12414; Zhu Y, 2010, OIKOS, V119, P109, DOI 10.1111/j.1600-0706.2009.17758.x; ZIMMERMAN JK, 1994, J ECOL, V82, P911, DOI 10.2307/2261454 90 7 7 18 83 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. APR 2018 21 4 506 515 10.1111/ele.12915 10 Ecology Environmental Sciences & Ecology FY6XY WOS:000427007400004 29446220 2019-02-21 J Sepp, T; McGraw, KJ; Kaasik, A; Giraudeau, M Sepp, Tuul; McGraw, Kevin J.; Kaasik, Ants; Giraudeau, Mathieu A review of urban impacts on avian life-history evolution: Does city living lead to slower pace of life? GLOBAL CHANGE BIOLOGY English Review anthropogenic effects; meta-analysis; pace-of-life syndrome; physiology; POLS; reproduction; survival; urbanization BLACKBIRD TURDUS-MERULA; TITS PARUS-MAJOR; NESTLING GREAT TITS; SPARROW MELOSPIZA-MELODIA; MAGPIES PICA-PICA; IN-HOUSE SPARROWS; REPRODUCTIVE SUCCESS; BODY CONDITION; URBANIZATION GRADIENT; TROPICAL BIRDS The concept of a pace-of-life syndrome describes inter- and intraspecific variation in several life-history traits along a slow-to-fast pace-of-life continuum, with long lifespans, low reproductive and metabolic rates, and elevated somatic defences at the slow end of the continuum and the opposite traits at the fast end. Pace-of-life can vary in relation to local environmental conditions (e.g. latitude, altitude), and here we propose that this variation may also occur along an anthropogenically modified environmental gradient. Based on a body of literature supporting the idea that city birds have longer lifespans, we predict that urban birds have a slower pace-of-life compared to rural birds and thus invest more in self maintenance and less in annual reproduction. Our statistical meta-analysis of two key traits related to pace-of-life, survival and breeding investment (clutch size), indicated that urban birds generally have higher survival, but smaller clutch sizes. The latter finding (smaller clutches in urban habitats) seemed to be mainly a characteristic of smaller passerines. We also reviewed urbanization studies on other traits that can be associated with pace-of-life and are related to either reproductive investment or self-maintenance. Though sample sizes were generally too small to conduct formal meta-analyses, published literature suggests that urban birds tend to produce lower-quality sexual signals and invest more in offspring care. The latter finding is in agreement with the adult survival hypothesis, proposing that higher adult survival prospects favour investment in fewer offspring per year. According to our hypothesis, differences in age structure should arise between urban and rural populations, providing a novel alternative explanation for physiological differences and earlier breeding. We encourage more research investigating how telomere dynamics, immune defences, antioxidants and oxidative damage in different tissues vary along the urbanization gradient, and suggest that applying pace-of-life framework to studies of variation in physiological traits along the urbanization gradient might be the next direction to improve our understanding of urbanization as an evolutionary process. [Sepp, Tuul; McGraw, Kevin J.; Giraudeau, Mathieu] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA; [Sepp, Tuul; Kaasik, Ants] Univ Tartu, Inst Ecol & Earth Sci, Tartu, Estonia; [Giraudeau, Mathieu] Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Penryn, England Sepp, T (reprint author), Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. tuul.sepp@gmail.com H Marie Sklodowska-Curie Actions [701747]; National Science Foundation [BCS-1026865]; Natural Environment Research Council [NE/M00256X] H2020 Marie Sklodowska-Curie Actions, Grant/Award Number: 701747; National Science Foundation, Grant/Award Number: BCS-1026865; Natural Environment Research Council, Grant/Award Number: NE/M00256X Alberti M, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0029; Aldredge RA, 2012, J AVIAN BIOL, V43, P369, DOI 10.1111/j.1600-048X.2012.05665.x; Antonov A, 2003, ORNIS FENNICA, V80, P21; Atwell JW, 2012, BEHAV ECOL, V23, P960, DOI 10.1093/beheco/ars059; Audet JN, 2016, BEHAV ECOL, V27, P637, DOI 10.1093/beheco/arv201; Auman HJ, 2008, WATERBIRDS, V31, P122, DOI 10.1675/1524-4695(2008)31[122:SMDAFC]2.0.CO;2; Ausprey IJ, 2011, AUK, V128, P293, DOI 10.1525/auk.2011.10158; Badyaev AV, 2008, EVOLUTION, V62, P1951, DOI 10.1111/j.1558-5646.2008.00428.x; Bailly J, 2016, J ORNITHOL, V157, P377, DOI 10.1007/s10336-015-1293-3; Bentz S, 2006, PARASITOLOGY, V133, P685, DOI 10.1017/S0031182006001090; Bichet C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0053866; Boal CW, 1998, J WILDLIFE DIS, V34, P590, DOI 10.7589/0090-3558-34.3.590; Bokony V, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036639; Bokony V, 2012, LANDSCAPE URBAN PLAN, V104, P75, DOI 10.1016/j.landurbplan.2011.10.006; Bokony V, 2010, OIKOS, V119, P437, DOI 10.1111/j.1600-0706.2009.17848.x; Bonier F, 2012, HORM BEHAV, V61, P763, DOI 10.1016/j.yhbeh.2012.03.016; Bonier F, 2007, BEHAV ECOL, V18, P121, DOI 10.1093/beheco/arl050; Both C, 2000, ECOLOGY, V81, P3391, DOI 10.2307/177502; Boyle WA, 2016, BIOL REV, V91, P469, DOI 10.1111/brv.12180; Bradley CA, 2008, ECOL APPL, V18, P1083, DOI 10.1890/07-0822.1; Brahmia Z, 2013, ENVIRON POLLUT, V174, P171, DOI 10.1016/j.envpol.2012.11.028; Brumm H, 2004, J ANIM ECOL, V73, P434, DOI 10.1111/j.0021-8790.2004.00814.x; Calegaro-Marques C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0103144; Cardilini APA, 2013, LANDSCAPE URBAN PLAN, V115, P72, DOI 10.1016/j.landurbplan.2013.04.001; Careau V, 2012, PHYSIOL BIOCHEM ZOOL, V85, P543, DOI 10.1086/666970; Senar JC, 2014, ECOL EVOL, V4, P2625, DOI 10.1002/ece3.999; Chamberlain DE, 2009, IBIS, V151, P1, DOI 10.1111/j.1474-919X.2008.00899.x; Charmantier A., 2017, FRONTIERS ECOLOGY EV; Chavez-Zichinelli CA, 2010, LANDSCAPE URBAN PLAN, V98, P183, DOI 10.1016/j.landurbplan.2010.08.001; Davies S, 2015, GEN COMP ENDOCR, V224, P1, DOI 10.1016/j.ygcen.2015.05.005; Davies S, 2013, PHYSIOL BIOCHEM ZOOL, V86, P47, DOI 10.1086/667990; Debecker S, 2016, J ANIM ECOL, V85, P726, DOI 10.1111/1365-2656.12499; Delgado CA, 2015, PARASITOL RES, V114, P2231, DOI 10.1007/s00436-015-4414-2; Delgado CA, 2012, LANDSCAPE URBAN PLAN, V105, P5, DOI 10.1016/j.landurbplan.2011.12.019; Dominoni D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.3017; EDEN SF, 1985, J ZOOL, V205, P325; Edwards DB, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0053066; Estes WA, 2003, CONDOR, V105, P107, DOI 10.1650/0010-5422(2003)105[107:FBOCHA]2.0.CO;2; Evans BS, 2015, ECOLOGY, V96, P1631, DOI 10.1890/14-0171.1; Evans KL, 2009, OIKOS, V118, P774, DOI 10.1111/j.1600-0706.2008.17226.x; Evans KL, 2009, OIKOS, V118, P251, DOI 10.1111/j.1600-0706.2008.17092.x; Fischer JD, 2012, BIOSCIENCE, V62, P809, DOI 10.1525/bio.2012.62.9.6; Fokidis HB, 2008, J AVIAN BIOL, V39, P300, DOI [10.1111/j.2008.0908-8857.04248.x, 10.1111/j.0908-8857.2008.04248.x]; Fokidis HB, 2011, PHYSIOL BIOCHEM ZOOL, V84, P595, DOI 10.1086/662068; Fokidis HB, 2011, COMP BIOCHEM PHYS A, V159, P32, DOI 10.1016/j.cbpa.2011.01.011; Fokidis HB, 2009, GEN COMP ENDOCR, V160, P259, DOI 10.1016/j.ygcen.2008.12.005; Foltz SL, 2015, J EXP ZOOL PART A, V323, P109, DOI 10.1002/jez.1906; Fuller RA, 2007, BIOLOGY LETT, V3, P368, DOI 10.1098/rsbl.2007.0134; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Gaston KJ, 2013, BIOL REV, V88, P912, DOI 10.1111/brv.12036; Geue D, 2008, CAN J ZOOL, V86, P1419, DOI 10.1139/Z08-129; Giraudeau M, 2015, BEHAV ECOL SOCIOBIOL, V69, P957, DOI 10.1007/s00265-015-1908-y; Giraudeau M, 2014, INTEGR COMP BIOL, V54, P622, DOI 10.1093/icb/icu024; Giraudeau M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086747; Giraudeau M, 2017, SCI TOTAL ENVIRON, V580, P425, DOI 10.1016/j.scitotenv.2016.09.224; Gregoire A, 2002, IBIS, V144, P640, DOI 10.1046/j.1474-919X.2002.00102.x; Grunst ML, 2014, J AVIAN BIOL, V45, P574, DOI 10.1111/jav.00459; Hargitai R, 2016, SCI TOTAL ENVIRON, V544, P31, DOI 10.1016/j.scitotenv.2015.11.116; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; HARVEY PH, 1984, BIRD STUDY, V31, P57, DOI 10.1080/00063658409476816; Hasegawa M, 2014, BEHAV ECOL, V25, DOI 10.1093/beheco/aru034; Haussmann MF, 2010, CURR ZOOL, V56, P714; Heiss RS, 2009, ECOL APPL, V19, P829, DOI 10.1890/08-0140.1; HENNEMANN WW, 1983, OECOLOGIA, V56, P104, DOI 10.1007/BF00378224; Herrera-Duenas A, 2014, ECOL INDIC, V42, P6, DOI 10.1016/j.ecolind.2013.08.014; Hille SM, 2015, BIOL REV, V90, P204, DOI 10.1111/brv.12106; Hindmarch S, 2014, CONDOR, V116, P507, DOI 10.1650/CONDOR-13-052.1; Hinsley SA, 2008, LANDSCAPE ECOL, V23, P615, DOI 10.1007/s10980-008-9225-8; Holmes DJ, 2003, EXP GERONTOL, V38, P751, DOI 10.1016/S0531-5565(03)00103-7; Horak P, 1998, IBIS, V140, P205, DOI 10.1111/j.1474-919X.1998.tb04380.x; Horak P, 2000, NATURWISSENSCHAFTEN, V87, P460, DOI 10.1007/s001140050759; Horak P, 2004, J AVIAN BIOL, V35, P63, DOI 10.1111/j.0908-8857.2004.03167.x; HORAK P, 1994, ORNIS FENNICA, V71, P47; Horak P, 2001, OECOLOGIA, V126, P166, DOI 10.1007/s004420000513; Hui CA, 2002, ENVIRON POLLUT, V120, P201, DOI 10.1016/S0269-7491(02)00158-6; Hutton P., 2016, FRONTIERS ECOLOGY EV, V4; Isaksson C, 2007, FUNCT ECOL, V21, P1123, DOI 10.1111/j.1365-2435.2007.01317.x; Isaksson C, 2008, PHYSIOL BIOCHEM ZOOL, V81, P112, DOI 10.1086/522650; Isaksson C, 2007, BIOL J LINN SOC, V92, P521, DOI 10.1111/j.1095-8312.2007.00852.x; Isaksson C, 2007, J AVIAN BIOL, V38, P564, DOI 10.1111/j.2007.0908-8857.04030.x; Isaksson Caroline, 2005, EcoHealth, V2, P138, DOI 10.1007/s10393-005-3869-5; Jacquin L, 2013, OECOLOGIA, V173, P1089, DOI 10.1007/s00442-013-2663-2; Jimenez AG, 2014, J COMP PHYSIOL B, V184, P545, DOI 10.1007/s00360-014-0825-0; Johnson PTJ, 2012, ECOL LETT, V15, P235, DOI 10.1111/j.1461-0248.2011.01730.x; Johnston RF, 1995, FERAL PIGEONS; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Jones TM, 2010, WILSON J ORNITHOL, V122, P326, DOI 10.1676/09-082.1; Kalinski A, 2009, IBIS, V151, P667, DOI 10.1111/j.1474-919X.2009.00959.x; Kelleher KM, 2007, BIRD STUDY, V54, P221, DOI 10.1080/00063650709461478; Kempenaers B, 2010, CURR BIOL, V20, P1735, DOI 10.1016/j.cub.2010.08.028; Kight CR, 2007, BIOL CONSERV, V138, P189, DOI 10.1016/j.biocon.2007.04.014; Koricheva J, 2014, J ECOL, V102, P828, DOI 10.1111/1365-2745.12224; Kosinski Z, 2001, ORNIS FENNICA, V78, P175; Laiolo P, 2010, BIOL CONSERV, V143, P1635, DOI 10.1016/j.biocon.2010.03.025; Lee KA, 2008, J ANIM ECOL, V77, P356, DOI 10.1111/j.1365-2656.2007.01347.x; Leston LFV, 2006, BIOL CONSERV, V131, P566, DOI 10.1016/j.biocon.2006.03.003; Liker A, 2008, J ANIM ECOL, V77, P789, DOI 10.1111/j.1365-2656.2008.01402.x; Lin WL, 2015, BIRD STUDY, V62, P177, DOI 10.1080/00063657.2015.1005570; Liven-Schulman I, 2004, IBIS, V146, P145, DOI 10.1111/j.1474-919X.2004.00245.x; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Londono GA, 2015, FUNCT ECOL, V29, P338, DOI 10.1111/1365-2435.12348; MAC ARTHUR ROBERT H., 1967; Mackinven K, 2014, EMU, V114, P154, DOI 10.1071/MU13047; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin LB, 2007, ECOLOGY, V88, P2516, DOI 10.1890/07-0060.1; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Marzluff JM, 2008, URBAN ECOLOGY INT PE; Marzluff JM, 2006, BIOL CONSERV, V130, P301, DOI 10.1016/j.biocon.2005.12.026; Marzluff JM, 2017, IBIS, V159, P1, DOI 10.1111/ibi.12430; McGowan Kevin J., 2001, P365; McGraw KJ, 2002, J EXP BIOL, V205, P3747; MCGREGOR PK, 1981, AM NAT, V118, P149, DOI 10.1086/283811; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Meillere A, 2016, SCI TOTAL ENVIRON, V566, P93, DOI 10.1016/j.scitotenv.2016.05.014; Meillere A, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135685; Mennechez G, 2006, ACTA OECOL, V30, P182, DOI 10.1016/j.actao.2006.03.002; Minias P, 2016, CURR ZOOL, V62, P79, DOI 10.1093/cz/zow034; Miranda AC, 2013, GLOBAL CHANGE BIOL, V19, P2634, DOI 10.1111/gcb.12258; Moller AP, 2009, OECOLOGIA, V159, P849, DOI 10.1007/s00442-008-1259-8; Monaghan P, 2006, TRENDS ECOL EVOL, V21, P47, DOI 10.1016/j.tree.2005.11.007; Morrissey CA, 2014, ENVIRON TOXICOL CHEM, V33, P1315, DOI 10.1002/etc.2555; Mueller JC, 2013, MOL ECOL, V22, P3629, DOI 10.1111/mec.12288; Murray MH, 2016, BIOL CONSERV, V204, P163, DOI 10.1016/j.biocon.2016.10.034; Newhouse MJ, 2008, WILSON J ORNITHOL, V120, P99, DOI 10.1676/06-156.1; Niemela PT, 2013, BEHAV ECOL, V24, P935, DOI 10.1093/beheco/art014; Niemela PT, 2012, FUNCT ECOL, V26, P450, DOI 10.1111/j.1365-2435.2011.01939.x; Nordt A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0071476; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; Obukhova NY, 2007, RUSS J GENET+, V43, P492, DOI 10.1134/S1022795407050031; Ohlberger J, 2011, P ROY SOC B-BIOL SCI, V278, P35, DOI 10.1098/rspb.2010.0960; Pap PL, 2015, OECOLOGIA, V177, P147, DOI 10.1007/s00442-014-3108-2; Papp S, 2015, BEHAV ECOL SOCIOBIOL, V69, P471, DOI 10.1007/s00265-014-1859-8; Partecke J, 2006, J ORNITHOL, V147, P549, DOI 10.1007/s10336-006-0078-0; Peach WJ, 2008, ANIM CONSERV, V11, P493, DOI 10.1111/j.1469-1795.2008.00209.x; PEHRSSON O, 1991, CAN J ZOOL, V69, P156, DOI 10.1139/z91-024; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Potvin DA, 2013, EVOL ECOL, V27, P381, DOI 10.1007/s10682-012-9591-1; Preiszner B, 2017, ANIM COGN, V20, P53, DOI 10.1007/s10071-016-1008-z; Rattiste K, 2004, P ROY SOC B-BIOL SCI, V271, P2059, DOI 10.1098/rspb.2004.2832; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Rebolo-Ifran N, 2015, SCI REP-UK, V5, DOI 10.1038/srep13723; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Riessen HP, 1999, CAN J FISH AQUAT SCI, V56, P2487, DOI 10.1139/cjfas-56-12-2487; Riyahi S, 2017, J ETHOL, V35, P101, DOI 10.1007/s10164-016-0496-2; Robb GN, 2008, BIOL LETTERS, V4, P220, DOI 10.1098/rsbl.2007.0622; Robinson WD, 2010, AUK, V127, P253, DOI 10.1525/auk.2010.127.2.253; Rodewald AD, 2008, ECOLOGY, V89, P515, DOI 10.1890/07-0358.1; Rodewald AD, 2008, J ANIM ECOL, V77, P83, DOI 10.1111/j.1365-2656.2007.01313.x; Roff DA, 2006, J EVOLUTION BIOL, V19, P1920, DOI 10.1111/j.1420-9101.2006.01155.x; Ruiz G, 2002, CONDOR, V104, P162, DOI 10.1650/0010-5422(2002)104[0162:HPASII]2.0.CO;2; Ryder TB, 2010, ECOL APPL, V20, P419, DOI 10.1890/09-0040.1; Rzad I, 2014, HELMINTHOLOGIA, V51, P117, DOI 10.2478/s11687-014-0219-6; Salmon P, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0155; Scales J, 2011, ETHOLOGY, V117, P887, DOI 10.1111/j.1439-0310.2011.01943.x; Schoech SJ, 2007, GEN COMP ENDOCR, V154, P150, DOI 10.1016/j.ygcen.2007.05.027; Sepil I, 2013, MOL ECOL, V22, P384, DOI 10.1111/mec.12123; Seress G, 2015, ACTA ZOOL ACAD SCI H, V61, P373; Seress G, 2012, J AVIAN BIOL, V43, P403, DOI 10.1111/j.1600-048X.2012.05527.x; Seress G, 2011, ETHOLOGY, V117, P896, DOI 10.1111/j.1439-0310.2011.01944.x; Seto KC, 2012, P NATL ACAD SCI USA, V109, P16083, DOI 10.1073/pnas.1211658109; Shizuka D, 2013, ECOL LETT, V16, P315, DOI 10.1111/ele.12040; Shustack DP, 2011, J AVIAN BIOL, V42, P204, DOI 10.1111/j.1600-048X.2011.05231.x; Shustack DP, 2010, AUK, V127, P421, DOI 10.1525/auk.2009.09129; Sih A, 2011, EVOL APPL, V4, P367, DOI 10.1111/j.1752-4571.2010.00166.x; Sitko J, 2014, J HELMINTHOL, V88, P97, DOI 10.1017/S0022149X12000818; Skarphedinsdottir H, 2010, MUTAT RES-GEN TOX EN, V702, P24, DOI 10.1016/j.mrgentox.2010.07.002; Slabbekoorn H, 2013, ANIM BEHAV, V85, P1089, DOI 10.1016/j.anbehav.2013.01.021; Sol D, 2014, ECOL LETT, V17, P942, DOI 10.1111/ele.12297; Solonen T, 2001, ORNIS FENNICA, V78, P49; Solonen T, 2014, ORNIS FENNICA, V91, P209; Solonen T, 2014, J ORNITHOL, V155, P27, DOI 10.1007/s10336-013-0983-y; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; Sprau P, 2017, BEHAV ECOL, V28, P59, DOI 10.1093/beheco/arw130; Stan Development Team, 2016, RSTAN R INT STAN; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stephenson JF, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0806; Stracey CM, 2012, J AVIAN BIOL, V43, P50, DOI 10.1111/j.1600-048X.2011.05520.x; Stracey CM, 2011, BIOL CONSERV, V144, P1545, DOI 10.1016/j.biocon.2011.01.022; Strasser EH, 2013, J APPL ECOL, V50, P912, DOI 10.1111/1365-2664.12103; Sumasgutner P, 2014, FRONT ZOOL, V11, DOI 10.1186/1742-9994-11-48; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Tringali A, 2015, AVIAN CONSERV ECOL, V10, DOI 10.5751/ACE-00746-100109; Turner BM, 2009, PHILOS T R SOC B, V364, P3403, DOI 10.1098/rstb.2009.0125; Unfried TM, 2013, CONSERV GENET, V14, P41, DOI 10.1007/s10592-012-0422-2; Valcarcel A, 2009, BEHAV ECOL SOCIOBIOL, V63, P673, DOI 10.1007/s00265-008-0701-6; Vangestel C, 2012, HEREDITY, V109, P163, DOI 10.1038/hdy.2012.26; Varner DM, 2014, CONDOR, V116, P134, DOI 10.1650/CONDOR-13-078.1; Vaugoyeau M, 2016, ECOL EVOL, V6, P5907, DOI 10.1002/ece3.2335; Vincze E., 2017, FRONTIERS ECOLOGY EV, V5; Vogrin M., 1997, Butlleti del Grup Catala d'Anellament, V14, P37; Watson H, 2017, SCI REP-UK, V7, DOI 10.1038/srep44180; Wawrzyniak J, 2015, ARDEOLA, V62, P311; Whittaker KA, 2009, AUK, V126, P288, DOI 10.1525/auk.2009.07136; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Williams JB, 2010, INTEGR COMP BIOL, V50, P855, DOI 10.1093/icb/icq024; Yeh PJ, 2007, OIKOS, V116, P1473, DOI 10.1111/j.2007.0030-1299.15910.x; Yeh PJ, 2004, EVOLUTION, V58, P166; Zhang SP, 2011, J ORNITHOL, V152, P801, DOI 10.1007/s10336-011-0663-8; Zollinger SA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023198 205 10 10 36 83 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1354-1013 1365-2486 GLOBAL CHANGE BIOL Glob. Change Biol. APR 2018 24 4 1452 1469 10.1111/gcb.13969 18 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology FY0MB WOS:000426504400004 29168281 Bronze 2019-02-21 J Berger, E; Haase, P; Schafer, RB; Sundermann, A Berger, Elisabeth; Haase, Peter; Schaefer, Ralf B.; Sundermann, Andrea Towards stressor-specific macroinvertebrate indices: Which traits and taxonomic groups are associated with vulnerable and tolerant taxa? SCIENCE OF THE TOTAL ENVIRONMENT English Article Trait-based biomonitoring; Micropollutants; Wastewater; Ecotoxicology; Multiple stressors FRESH-WATER MACROINVERTEBRATES; LIFE-HISTORY STRATEGIES; BENTHIC INVERTEBRATES; BIOLOGICAL TRAITS; MULTIPLE STRESSORS; INTRINSIC SENSITIVITY; ECOLOGICAL TRAITS; FUNCTIONAL TRAITS; ASSESSING STREAMS; COMMUNITIES Monitoring of macroinvertebrate communities is frequently used to define the ecological health status of rivers. Ideally, biomonitoring should also give an indication on the major stressors acting on the macroinvertebrate communities supporting the selection of appropriate management measures. However, most indices are affected by more than one stressor. Biological traits (e.g. size, generation time, reproduction) could potentially lead to more stressor-specific indices. However, such an approach has rarely been tested. In this study we classify 324 macroinvertebrate taxa as vulnerable (decreasing abundances) or tolerant (increasing abundances) along 21 environmental gradients (i.e. nutrients, major ions, oxygen and micropollutants) from 422 monitoring sites in Germany using Threshold Indicator Taxa Analysis (TITAN). Subsequently, we investigate which biological traits and taxonomic groups are associated with taxa classified as vulnerable or tolerant with regard to specific gradients. The response of most taxa towards different gradients was similar and especially high for correlated gradients. Traits associated with vulnerable taxa across most gradients included: larval aquatic life stages, isolated cemented eggs, reproductive cycle per year <1, scrapers, aerial and aquatic active dispersal and plastron respiration. Traits associated with tolerant taxa included: adult aquatic life stages, polyvoltinism, ovoviviparity or egg clutches in vegetation, food preference for dead animals or living microinvertebrates, substrate preference for macrophytes, microphytes, silt or mud and a body size >2-4 cm. Our results question whether stressor-specific indices based on macroinvertebrate assemblages can be achieved using single traits, because we observed that similar taxa responded to different gradients and also similar traits were associated with vulnerable and tolerant taxa across a variety of water quality gradients. Future studies should examine whether combinations of traits focusing on specific taxonomic groups achieve higher stressor specificity. (c) 2017 Elsevier B.V. All rights reserved. [Berger, Elisabeth; Haase, Peter; Sundermann, Andrea] Senckenberg Res Inst, Gelnhausen, Germany; [Berger, Elisabeth; Haase, Peter; Sundermann, Andrea] Nat Hist Museum Frankfurt, Dept River Ecol & Conservat, Gelnhausen, Germany; [Berger, Elisabeth; Sundermann, Andrea] Goethe Univ Frankfurt Main, Fac Biol Sci, Dept Aquat Ecotoxicol, Frankfurt, Germany; [Haase, Peter] Univ Duisburg Essen, Dept River & Floodplain Ecol, Fac Biol, Essen, Germany; [Berger, Elisabeth; Schaefer, Ralf B.] Univ Koblenz Landau, Inst Environm Sci, Dept Quantitat Landscape Ecol, Landau, Germany Berger, E (reprint author), Senckenberg Res Inst, Gelnhausen, Germany.; Berger, E (reprint author), Nat Hist Museum Frankfurt, Dept River Ecol & Conservat, Gelnhausen, Germany. berger@uni-landau.de Haase, Peter/A-5644-2011; Schaefer, Ralf/E-1926-2011; Sundermann, Andrea/A-2938-2009 Schaefer, Ralf/0000-0003-3510-1701; FAZIT-STIFTUNG Gemeinnutzige Verlagsgesellschaft mbH, Frankfurt We thank the Saxon State Agency for Environment, Agriculture and Geology (LfULG) and the Saxon State Company for Environment and Agriculture (BfUL) for the collection and provision of all chemical and macroinvertebrate data used in this study. Elisabeth Berger gratefully acknowledges funding by a non-profitable publishing group (FAZIT-STIFTUNG Gemeinnutzige Verlagsgesellschaft mbH, Frankfurt). The foundation took no influence on the content of the manuscript. Archaimbault V, 2010, FRESHWATER BIOL, V55, P1430, DOI 10.1111/j.1365-2427.2009.02281.x; ARMITAGE PD, 1983, WATER RES, V17, P333, DOI 10.1016/0043-1354(83)90188-4; Baird Donald J, 2008, Integr Environ Assess Manag, V4, P2, DOI 10.1897/IEAM_2007-063.1; Baker ME, 2010, METHODS ECOL EVOL, V1, P25, DOI 10.1111/j.2041-210X.2009.00007.x; Berger E, 2017, SCI TOTAL ENVIRON, V587, P1, DOI 10.1016/j.scitotenv.2017.02.031; Berger E, 2016, SCI TOTAL ENVIRON, V544, P864, DOI 10.1016/j.scitotenv.2015.12.006; Birk S, 2012, ECOL INDIC, V18, P31, DOI 10.1016/j.ecolind.2011.10.009; Bohmer J, 2004, LIMNOLOGICA, V34, P416, DOI 10.1016/S0075-9511(04)80010-0; Bohmer J, 2004, HYDROBIOLOGIA, V516, P215, DOI 10.1023/B:HYDR.0000025267.58196.5f; Bonada N, 2007, GLOBAL CHANGE BIOL, V13, P1658, DOI 10.1111/j.1365-2486.2007.01375.x; Boxall ABA, 2012, ENVIRON HEALTH PERSP, V120, P1221, DOI 10.1289/ehp.1104477; Cairns John Jr., 1993, P10; CHEVENET F, 1994, FRESHWATER BIOL, V31, P295, DOI 10.1111/j.1365-2427.1994.tb01742.x; Culp Joseph M., 2011, Integrated Environmental Assessment and Management, V7, P187, DOI 10.1002/ieam.128; Doledec S, 1999, FRESHWATER BIOL, V42, P737, DOI 10.1046/j.1365-2427.1999.00509.x; Doledec S, 2008, FRESHWATER BIOL, V53, P617, DOI 10.1111/j.1365-2427.2007.01924.x; Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2; Elliott J. Malcolm, 2008, Freshwater Reviews, V1, P189, DOI 10.1608/FRJ-1.2.4; EXTENCE C A, 1989, Regulated Rivers Research and Management, V4, P139, DOI 10.1002/rrr.3450040206; Friberg N, 2011, ADV ECOL RES, V44, P1, DOI 10.1016/B978-0-12-374794-5.00001-8; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Haase P, 2004, LIMNOLOGICA, V34, P349, DOI 10.1016/S0075-9511(04)80005-7; Haase P., 2006, OPER TAXALISTE MINDE; Ieromina O, 2016, ECOTOXICOLOGY, V25, P1170, DOI 10.1007/s10646-016-1671-5; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; King R. S., 2014, APPL THRESHOLD CONCE, P231; Lange K, 2014, FRESHWATER BIOL, V59, P2431, DOI 10.1111/fwb.12437; Lenat DR, 2001, J N AM BENTHOL SOC, V20, P287, DOI 10.2307/1468323; Leps M, 2016, FRESHWATER BIOL, V61, P1773, DOI 10.1111/fwb.12817; Li FQ, 2016, SCI TOTAL ENVIRON, V569, P1570, DOI 10.1016/j.scitotenv.2016.06.251; Liess M, 2005, ENVIRON TOXICOL CHEM, V24, P954, DOI 10.1897/03-652.1; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Diaz AM, 2008, FRESHWATER BIOL, V53, P1, DOI 10.1111/j.1365-2427.2007.01854.x; Menezes S, 2010, J APPL ECOL, V47, P711, DOI 10.1111/j.1365-2664.2010.01819.x; Mondy CP, 2016, SCI TOTAL ENVIRON, V572, P196, DOI 10.1016/j.scitotenv.2016.07.227; Mondy CP, 2014, FRESHWATER BIOL, V59, P584, DOI 10.1111/fwb.12289; Mondy CP, 2013, SCI TOTAL ENVIRON, V461, P750, DOI 10.1016/j.scitotenv.2013.05.072; Mondy CP, 2012, ECOL INDIC, V18, P452, DOI 10.1016/j.ecolind.2011.12.013; Piliere AFH, 2016, FRESHWATER BIOL, V61, P181, DOI 10.1111/fwb.12690; Piscart C, 2006, ARCH HYDROBIOL, V166, P185, DOI 10.1127/0003-9136/2006/0166-0185; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; R Core Team, 2016, R LANG ENV STAT COMP; Rasmussen JJ, 2012, ENVIRON POLLUT, V164, P142, DOI 10.1016/j.envpol.2012.01.007; Rico A, 2015, ENVIRON TOXICOL CHEM, V34, P1907, DOI 10.1002/etc.3008; Rubach MN, 2012, ECOTOXICOLOGY, V21, P2088, DOI 10.1007/s10646-012-0962-8; Rubach Mascha N., 2011, Integrated Environmental Assessment and Management, V7, P172, DOI 10.1002/ieam.105; Schafer RB, 2016, FRESHWATER BIOL, V61, P2116, DOI 10.1111/fwb.12811; Schafer RB, 2011, SCI TOTAL ENVIRON, V409, P2055, DOI 10.1016/j.scitotenv.2011.01.053; Schafer RB, 2007, SCI TOTAL ENVIRON, V382, P272, DOI 10.1016/j.scitotenv.2007.04.040; Serra SRQ, 2016, ECOL INDIC, V61, P282, DOI 10.1016/j.ecolind.2015.09.028; SOKAL ROBERT R., 1958, UNIV KANSAS SCI BULL, V38, P1409; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Sundermann A, 2015, ECOL INDIC, V57, P314, DOI 10.1016/j.ecolind.2015.04.043; Tachet H., 2000, INVERTEBRES EAU DOUC; Taylor J, 2015, P NATL ACAD SCI USA, V112, P7629, DOI 10.1073/pnas.1507583112; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Tullos DD, 2009, J N AM BENTHOL SOC, V28, P80, DOI 10.1899/07-122.1; Union E., 2000, OFFICIAL J EUROPEA L, V327, P1, DOI DOI 10.1039/AP9842100196; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Villeneuve B, 2018, SCI TOTAL ENVIRON, V612, P660, DOI 10.1016/j.scitotenv.2017.08.197; Winking C, 2014, FRESHWATER BIOL, V59, P1932, DOI 10.1111/fwb.12397 63 3 3 9 53 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0048-9697 1879-1026 SCI TOTAL ENVIRON Sci. Total Environ. APR 1 2018 619 144 154 10.1016/j.scitotenv.2017.11.022 11 Environmental Sciences Environmental Sciences & Ecology FU8ZA WOS:000424144200016 29145051 2019-02-21 J Huse, G; Melle, W; Skogen, MD; Hjollo, SS; Svendsen, E; Budgell, WP Huse, Geir; Melle, Webjorn; Skogen, Morten D.; Hjollo, Solfrid S.; Svendsen, Einar; Budgell, W. Paul Modeling Emergent Life Histories of Copepods FRONTIERS IN ECOLOGY AND EVOLUTION English Article individual based models; Calanus finmarchicus; emergent properties; ecology; Norwegian sea CALANUS-FINMARCHICUS; NORWEGIAN SEA; SEASONAL DYNAMICS; MARINE COPEPOD; NORTH-ATLANTIC; FISH; DIAPAUSE; GROWTH; BASIN; VARIABILITY The distribution and population dynamics of zooplankton are affected by the interplay between currents, behavior, and selective growth, mortality, and reproduction. Here, we present an individual based model for a copepod where life-history and behavioral traits are adapted using a genetic algorithm approach. The objectives were to investigate the importance of spatial and inter-annual variability in biophysical forcing and different predator densities on the adaptation of emergent life history traits in a copepod. The results show that in simulations with adaptation, the populations remained viable (positive population growth) within the study area over 100-year simulation whereas without adaptation populations were unviable. In one dimensional simulations with fixed spatial position there were small differences between replicate simulations. Inter-annual variability in forcing resulted in increased difference in fitness between years. Simulations with spatial-, but without inter-annual variability in forcing produced large differences in the geographic distribution, fitness, and life history strategies between replicate simulations. In simulations with both spatial and inter-annual variability the replicates had rather small variability in traits. Increased predator density lead to increased day depth and avoidance of the lit upper waters. The model can be used for a range of different applications such as studying individual and population responses to environmental changes including climate change as well as to yield robust behavioral strategies for use in fully coupled end to end ecosystem models. [Huse, Geir; Melle, Webjorn; Skogen, Morten D.; Hjollo, Solfrid S.; Svendsen, Einar; Budgell, W. Paul] Inst Marine Res, Marine Ecosyst & Resources, Bergen, Norway Huse, G (reprint author), Inst Marine Res, Marine Ecosyst & Resources, Bergen, Norway. geir.huse@hi.no Research Council of Norway; European Commission [212085, ENV.2010.2.2.1-1, 264993]; Institute of Marine Research The work was supported by the Research Council of Norway, the European Commission through the projects MEECE (Grant number 212085) and EUROBASIN (ENV.2010.2.2.1-1) (Contract number 264993), and the Institute of Marine Research. Aksnes DL, 1996, OPHELIA, V44, P7, DOI 10.1080/00785326.1995.10429836; AKSNES DL, 1995, OPHELIA, V41, P5, DOI 10.1080/00785236.1995.10422035; Aksnes DL, 1997, SARSIA, V82, P137, DOI 10.1080/00364827.1997.10413647; AKSNES DL, 1993, ECOL MODEL, V67, P233, DOI 10.1016/0304-3800(93)90007-F; BOLLENS SM, 1989, LIMNOL OCEANOGR, V34, P1072, DOI 10.4319/lo.1989.34.6.1072; Brown JS, 1999, J MAMMAL, V80, P385, DOI 10.2307/1383287; Bryant AD, 1998, FISH OCEANOGR, V7, P235, DOI 10.1046/j.1365-2419.1998.00074.x; Campbell RG, 2001, MAR ECOL PROG SER, V221, P161, DOI 10.3354/meps221161; CARLOTTI F, 1993, LIMNOL OCEANOGR, V38, P1125; Carlotti F, 1996, LIMNOL OCEANOGR, V41, P522, DOI 10.4319/lo.1996.41.3.0522; CARLOTTI F, 1992, MAR ECOL PROG SER, V84, P219, DOI 10.3354/meps084219; Carlotti F, 1998, FISH OCEANOGR, V7, P191, DOI 10.1046/j.1365-2419.1998.00085.x; Carlotti F., 2000, P571, DOI 10.1016/B978-012327645-2/50013-X; CHAMBERS RC, 1993, T AM FISH SOC, V122, P404, DOI 10.1577/1548-8659(1993)122<0404:PVIFPA>2.3.CO;2; Creel S, 2008, TRENDS ECOL EVOL, V23, P194, DOI 10.1016/j.tree.2007.12.004; Dragesund O, 1997, SARSIA, V82, P97, DOI 10.1080/00364827.1997.10413643; Eiane K, 1998, SARSIA, V83, P87; Fiksen O, 2000, ICES J MAR SCI, V57, P1825, DOI 10.1006/jmsc.2000.0976; Gentleman W, 2002, HYDROBIOLOGIA, V480, P69, DOI 10.1023/A:1021289119442; GISKE J, 1993, EVOL ECOL, V7, P233, DOI 10.1007/BF01237741; Grimm V, 2005, INDIVIDUAL BASED MOD; Grimm V, 2006, ECOL MODEL, V198, P115, DOI 10.1016/j.ecolmodel.2006.04.023; Haidvogel DB, 2000, DYNAM ATMOS OCEANS, V32, P239, DOI 10.1016/S0377-0265(00)00049-X; Heath Michael R., 1999, Fisheries Oceanography, V8, P84, DOI 10.1046/j.1365-2419.1999.00013.x; Heath MR, 2000, ICES J MAR SCI, V57, P1628, DOI 10.1006/jmsc.2000.0978; Hirche HJ, 1996, OPHELIA, V44, P129, DOI 10.1080/00785326.1995.10429843; Hirche HJ, 1996, OPHELIA, V44, P111, DOI 10.1080/00785326.1995.10429842; Hjollo SS, 2012, MAR BIOL RES, V8, P508, DOI 10.1080/17451000.2011.642805; Hjort J., 1914, RAPP P V REUN CONS I, V20, P1; Holland J. H., 1975, ADAPTATION NATURAL A; Holst JC, 2002, ICES MARINE SCI S, V215, P352; Huse G, 1998, FISH RES, V37, P163, DOI 10.1016/S0165-7836(98)00134-9; Huse G, 2001, SARSIA, V86, P477, DOI 10.1080/00364827.2001.10420487; Huse G, 1999, EVOL ECOL, V13, P469, DOI 10.1023/A:1006746727151; Huse G, 2005, NON TRADITIONAL REF, V11; Huse G, 1998, LIFE HIST STRATEGIES; Huse G, 2008, CLIMATIC CHANGE, V87, P177, DOI 10.1007/s10584-007-9347-z; Huse Geir, 2002, P228; Kaartvedt S, 2000, ICES J MAR SCI, V57, P1819, DOI 10.1006/jmsc.2000.0964; Marshall S. M, 1955, BIOL MARINE COPEPOD; Melle Webjorn, 2004, P137; Miller CB, 1998, FISH OCEANOGR, V7, P219, DOI 10.1046/j.1365-2419.1998.00072.x; Mitchell M, 1995, ARTIFICIAL LIFE OVER; Neuheimer AB, 2010, J MARINE SYST, V81, P122, DOI 10.1016/j.jmarsys.2009.12.009; Ohman MD, 2004, ICES J MAR SCI, V61, P687, DOI 10.1016/j.icesjms.2004.03.016; Pedersen OP, 2001, DEEP-SEA RES PT II, V48, P567, DOI 10.1016/S0967-0645(00)00127-2; Rey F, 2004, NORWEGIAN SEA ECOSYS, P97; Roff Derek A., 1992; Samuelsen A, 2009, MAR ECOL PROG SER, V386, P163, DOI 10.3354/meps08060; SCHEFFER M, 1995, ECOL MODEL, V80, P161, DOI 10.1016/0304-3800(94)00055-M; Sinclair M, 1988, MARINE POPULATIONS; Skartveit A, 1988, VARIGHETSTABELLER TI; Skjoldal Hein Rune, 2004, P447; Skogen MD, 2007, ICES J MAR SCI, V64, P889, DOI 10.1093/icesjms/fsm063; Soiland H, 2012, MAR BIOL RES, V8, P502, DOI 10.1080/17451000.2011.639780; Speirs DC, 2005, FISH OCEANOGR, V14, P333, DOI 10.1111/j.1365-2419.2005.00339.x; Speirs DC, 2006, MAR ECOL PROG SER, V313, P173, DOI 10.3354/meps313173; Stearns S, 1992, EVOLUTION LIFE HIST; Strand E, 2002, AM NAT, V159, P624, DOI 10.1086/339997; Tittensor DP, 2003, FISH OCEANOGR, V12, P299, DOI 10.1046/j.1365-2419.2003.00266.x; Torgersen T, 2005, ICES J MAR SCI, V62, P1301, DOI 10.1016/j.icesjms.2005.05.016; Utne KR, 2012, MAR BIOL RES, V8, P548, DOI 10.1080/17451000.2011.639781; Utne KR, 2012, MAR BIOL RES, V8, P527, DOI 10.1080/17451000.2011.642804 63 0 0 2 2 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 2296-701X FRONT ECOL EVOL Front. Ecol. Evol. MAR 21 2018 6 23 10.3389/fevo.2018.00023 14 Ecology Environmental Sciences & Ecology HC2MM WOS:000451636200001 DOAJ Gold, Green Published 2019-02-21 J Needham, J; Merow, C; Chang-Yang, CH; Caswell, H; McMahon, SM Needham, Jessica; Merow, Cory; Chang-Yang, Chia-Hao; Caswell, Hal; McMahon, Sean M. Inferring forest fate from demographic data: from vital rates to population dynamic models PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article forest ecology; demography; individual-based models; integral projection models; population projections; life-history strategies INTEGRAL PROJECTION MODELS; TREE-SIZE DISTRIBUTIONS; TROPICAL FOREST; RAIN-FOREST; DENSITY-DEPENDENCE; NEOTROPICAL TREE; CLIMATE-CHANGE; GROWTH; LIGHT; DIVERSITY As population-level patterns of interest in forests emerge from individual vital rates, modelling forest dynamics requires making the link between the scales at which data are collected (individual stems) and the scales at which questions are asked (e.g. populations and communities). Structured population models (e.g. integral projection models (IPMs)) are useful tools for linking vital rates to population dynamics. However, the application of such models to forest trees remains challenging owing to features of tree life cycles, such as slow growth, long lifespan and lack of data on crucial ontogenic stages. We developed a survival model that accounts for size-dependent mortality and a growth model that characterizes individual heterogeneity. We integrated vital rate models into two types of population model; an analytically tractable form of IPM and an individual-based model (IBM) that is applied with stochastic simulations. We calculated longevities, passage times to, and occupancy time in, different life cycle stages, important metrics for understanding how demographic rates translate into patterns of forest turnover and carbon residence times. Here, we illustrate the methods for three tropical forest species with varying life-forms. Population dynamics from IPMs and IBMs matched a 34 year time series of data (albeit a snapshot of the life cycle for canopy trees) and highlight differences in life-history strategies between species. Specifically, the greater variation in growth rates within the two canopy species suggests an ability to respond to available resources, which in turn manifests as faster passage times and greater occupancy times in larger size classes. The framework presented here offers a novel and accessible approach to modelling the population dynamics of forest trees. [Needham, Jessica; Chang-Yang, Chia-Hao; McMahon, Sean M.] Smithsonian Inst, Forest Global Earth Observ, Smithsonian Environm Res Ctr, 647 Contees Wharf Rd, Edgewater, MD 21307 USA; [Merow, Cory] Yale Univ, Ecol & Evolutionary Biol, 165 Prospect St, New Haven, CT 06511 USA; [Caswell, Hal] Univ Amsterdam, IBED, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands Needham, J (reprint author), Smithsonian Inst, Forest Global Earth Observ, Smithsonian Environm Res Ctr, 647 Contees Wharf Rd, Edgewater, MD 21307 USA. needhamj@si.edu Chang-Yang, Chia-Hao/0000-0003-3635-4946 Clarendon Scholarship; New College Scholarship; BBSRC; USA National Science Foundation [NSF 640261]; [NSF DEB-1046113] This work formed part of J.N.'s PhD which was funded by a Clarendon Scholarship, a New College Scholarship and the BBSRC. S.M.M. and C.M. were partially funded by the USA National Science Foundation (NSF 640261 to S.M.M.). This project began and was developed at ForestGEO workshops in 2014 and 2016 (NSF DEB-1046113 to S.J. Davies). Adams TP, 2007, P ROY SOC B-BIOL SCI, V274, P3039, DOI 10.1098/rspb.2007.0891; Anderson-Teixeira KJ, 2015, GLOBAL CHANGE BIOL, V21, P528, DOI 10.1111/gcb.12712; Bennett AC, 2015, NAT PLANTS, V1, DOI [10.1038/NPLANTS.2015.139, 10.1038/nplants.2015.139]; BOTKIN DB, 1972, J ECOL, V60, P849, DOI 10.2307/2258570; Brienen RJW, 2006, J ECOL, V94, P481, DOI 10.1111/j.1365-2745.2005.01080.x; Caswell H, 2013, J ECOL, V101, P585, DOI 10.1111/1365-2745.12088; Caswell H, 2012, THEOR ECOL-NETH, V5, P403, DOI 10.1007/s12080-011-0132-2; Clark JS, 2010, SCIENCE, V327, P1129, DOI 10.1126/science.1183506; Cobb RC, 2012, J ECOL, V100, P712, DOI 10.1111/j.1365-2745.2012.01960.x; Comita LS, 2007, J VEG SCI, V18, P163, DOI 10.1658/1100-9233(2007)18[163:POWPSA]2.0.CO;2; CONDIT R, 1993, FOREST ECOL MANAG, V62, P107, DOI 10.1016/0378-1127(93)90045-O; CONDIT R, 1995, ECOL MONOGR, V65, P419, DOI 10.2307/2963497; Condit R., 1998, TROPICAL FOREST CENS; Condit R, 2006, SCIENCE, V313, P98, DOI 10.1126/science.1124712; Coomes DA, 2007, J ECOL, V95, P27, DOI 10.1111/j.1365-2745.2006.01179.x; Coomes DA, 2012, J ECOL, V100, P42, DOI 10.1111/j.1365-2745.2011.01920.x; Cramer W, 2001, GLOBAL CHANGE BIOL, V7, P357, DOI 10.1046/j.1365-2486.2001.00383.x; Croat T. B., 1978, FLORA BARRO COLORADO; DENSLOW JS, 1990, ECOLOGY, V71, P165, DOI 10.2307/1940257; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.2307/177370; Ellner S., 2016, DATA DRIVEN MODELLIN; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Enquist BJ, 2007, INT J PLANT SCI, V168, P729, DOI 10.1086/513479; Farrior CE, 2016, SCIENCE, V351, P155, DOI 10.1126/science.aad0592; Fisher JB, 2014, ANNU REV ENV RESOUR, V39, P91, DOI 10.1146/annurev-environ-012913-093456; Foster Robin B., 1982, ECOLOGY TROPICAL FOR, P67; Frasson RPD, 2015, J GEOPHYS RES-BIOGEO, V120, P2178, DOI 10.1002/2015JG003035; Friedlingstein P, 2006, J CLIMATE, V19, P3337, DOI 10.1175/JCLI3800.1; Friend AD, 2014, P NATL ACAD SCI USA, V111, P3280, DOI 10.1073/pnas.1222477110; Grote S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0081787; Hubbell S. P., 2005, BARRO COLORADO FORES; Hubbell S.P., 1983, TROPICAL RAIN FOREST, P25; Hubbell SP, 1999, SCIENCE, V283, P554, DOI 10.1126/science.283.5401.554; Jucker T, 2017, GLOBAL CHANGE BIOL, V23, P177, DOI 10.1111/gcb.13388; King DA, 2005, FUNCT ECOL, V19, P445, DOI 10.1111/j.1365-2435.2005.00982.x; Kurz WA, 2008, NATURE, V452, P987, DOI 10.1038/nature06777; Leigh E. G., 1999, TROPICAL FOREST ECOL; Leigh Egbert Giles, 1982, ECOLOGY TROPICAL FOR; Lichstein JW, 2010, ECOL APPL, V20, P684, DOI 10.1890/08-2334.1; Lim TK., 2012, EDIBLE MED NONMEDICI, V2, P62; Lines ER, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013212; Malhi Y, 2002, J VEG SCI, V13, P439, DOI 10.1658/1100-9233(2002)013[0439:AINTMT]2.0.CO;2; McRoberts RE, 2005, J FOREST, V103, P304; Medvigy D, 2009, J GEOPHYS RES-BIOGEO, V114, DOI 10.1029/2008JG000812; Merow C, 2017, P NATL ACAD SCI USA, V114, pE3276, DOI 10.1073/pnas.1609633114; Merow C, 2014, ECOGRAPHY, V37, P1167, DOI 10.1111/ecog.00839; Merow C, 2014, ECOGRAPHY, V37, P1267, DOI 10.1111/ecog.00845; Merow C, 2014, METHODS ECOL EVOL, V5, P99, DOI 10.1111/2041-210X.12146; Metcalf CJE, 2008, P NATL ACAD SCI USA, V105, P10466, DOI 10.1073/pnas.0800777105; Metcalf CJE, 2015, METHODS ECOL EVOL, V6, P1007, DOI 10.1111/2041-210X.12405; Metcalf CJE, 2009, ECOLOGY, V90, P2766, DOI 10.1890/08-1645.1; MONSERUD RA, 1976, FOREST SCI, V22, P438; Moorcroft PR, 2006, TRENDS ECOL EVOL, V21, P400, DOI 10.1016/j.tree.2006.04.009; Muller-Landau HC, 2006, ECOL LETT, V9, P589, DOI 10.1111/j.1461-0248.2006.00915.x; Needham J, 2016, J ECOL, V104, P315, DOI 10.1111/1365-2745.12545; OBRIEN ST, 1995, ECOLOGY, V76, P1926, DOI 10.2307/1940724; Pacala SW, 1996, ECOL MONOGR, V66, P1, DOI 10.2307/2963479; PACALA SW, 1994, CAN J FOREST RES, V24, P2172, DOI 10.1139/x94-280; Paine CET, 2012, METHODS ECOL EVOL, V3, P245, DOI 10.1111/j.2041-210X.2011.00155.x; Parker GG, 2000, AM NAT, V155, P473, DOI 10.1086/303340; Pfister CA, 2005, ECOLOGY, V86, P2673, DOI 10.1890/04-1952; Picard N, 2003, FOREST ECOL MANAG, V180, P389, DOI [10.1016/S0378-1127(02)00653-9, 10.1016/S0378-1127(02)00635-9]; Purves D, 2008, SCIENCE, V320, P1452, DOI 10.1126/science.1155359; Purves DW, 2008, P NATL ACAD SCI USA, V105, P17018, DOI 10.1073/pnas.0807754105; R Core Team, 2017, R LANG ENV STAT COMP; Rebarber R, 2012, THEOR POPUL BIOL, V81, P81, DOI 10.1016/j.tpb.2011.11.002; Ruger N, 2009, J ECOL, V97, P1360, DOI 10.1111/j.1365-2745.2009.01552.x; Smith WB, 2002, ENVIRON POLLUT, V116, pS233, DOI 10.1016/S0269-7491(01)00255-X; Snyder RE, 2016, AM NAT, V188, pE28, DOI 10.1086/686996; Strigul N, 2008, ECOL MONOGR, V78, P523, DOI 10.1890/08-0082.1; Umana MN, 2016, AM NAT, V187, P99, DOI 10.1086/684174; Uriarte M, 2005, J ECOL, V93, P291, DOI 10.1111/j.1365-2745.2005.00984.x; vanderMeer PJ, 1996, VEGETATIO, V126, P167; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Zuidema PA, 2009, AM NAT, V174, P709, DOI 10.1086/605981 75 2 2 6 13 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAR 14 2018 285 1874 20172050 10.1098/rspb.2017.2050 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GB3FE WOS:000428940300001 29514966 Other Gold, Green Published 2019-02-21 J Fujiwara, M Fujiwara, Masami Selection of trilateral continuums of life history strategies under food web interactions SCIENTIFIC REPORTS English Article POPULATION REGULATION; TRINIDADIAN GUPPIES; COMMUNITY STRUCTURE; REPRODUCTIVE EFFORT; K-SELECTION; R-SELECTION; FISH; EVOLUTION; DIVERSITY; STABILITY The study of life history strategies has a long history in ecology and evolution, but determining the underlying mechanisms driving the evolution of life history variation and its consequences for population regulation remains a major challenge. In this study, a food web model with constant environmental conditions was used to demonstrate how multi-species consumer-resource interactions (food-web interactions) can create variation in the duration of the adult stage, age of maturation, and fecundity among species. The model included three key ecological processes: size-dependent species interactions, energetics, and transition among developmental stages. Resultant patterns of life history variation were consistent with previous empirical observations of the life history strategies of aquatic organisms referred to as periodic, equilibrium, and opportunistic strategies (trilateral continuums of life history strategies). Results from the simulation model suggest that these three life history strategies can emerge from food web interactions even when abiotic environmental conditions are held constant. [Fujiwara, Masami] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA Fujiwara, M (reprint author), Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA. fujiwara@tamu.edu Fujiwara, Masami/C-3115-2012 Fujiwara, Masami/0000-0002-9255-6043 [Anonymous], 2012, MATLAB VER 7; Bassar RD, 2016, ECOL LETT, V19, P268, DOI 10.1111/ele.12563; Bergerot B, 2015, FRESHWATER BIOL, V60, P1279, DOI 10.1111/fwb.12561; BIRCH LC, 1948, J ANIM ECOL, V17, P15, DOI 10.2307/1605; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1994, EVOLUTION AGE STRUCT; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; De Roos AM, 2008, THEOR POPUL BIOL, V73, P47, DOI 10.1016/j.tpb.2007.09.004; Fisher RA, 1930, GENETICAL THEORY NAT; Fujiwara M, 2016, ECOL MODEL, V322, P10, DOI 10.1016/j.ecolmodel.2015.11.015; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; MAC ARTHUR ROBERT H., 1967; Meador MR, 2015, ENVIRON BIOL FISH, V98, P663, DOI 10.1007/s10641-014-0304-1; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Nisbet RM, 2000, J ANIM ECOL, V69, P913, DOI 10.1046/j.1365-2656.2000.00448.x; Otto SB, 2007, NATURE, V450, P1226, DOI 10.1038/nature06359; Pecuchet L, 2017, GLOBAL ECOL BIOGEOGR, V26, P812, DOI 10.1111/geb.12587; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; RAND DA, 1994, PHILOS T ROY SOC B, V343, P261, DOI 10.1098/rstb.1994.0025; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Rooney N, 2008, ECOL LETT, V11, P867, DOI 10.1111/j.1461-0248.2008.01193.x; Rooney N, 2012, TRENDS ECOL EVOL, V27, P40, DOI 10.1016/j.tree.2011.09.001; Rudolf VHW, 2011, ECOL LETT, V14, P75, DOI 10.1111/j.1461-0248.2010.01558.x; Rudolf VHW, 2013, ECOLOGY, V94, P1046, DOI 10.1890/12-0378.1; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Shurin JB, 2006, P ROY SOC B-BIOL SCI, V273, P1, DOI 10.1098/rspb.2005.3377; Stanley CE, 2012, T AM FISH SOC, V141, P1000, DOI 10.1080/00028487.2012.675893; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stouffer DB, 2011, P NATL ACAD SCI USA, V108, P3648, DOI 10.1073/pnas.1014353108; Teichert N, 2017, ESTUAR COAST SHELF S, V188, P18, DOI 10.1016/j.ecss.2017.02.006; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; VANWINKLE W, 1993, T AM FISH SOC, V122, P459, DOI 10.1577/1548-8659(1993)122<0459:LLHTES>2.3.CO;2; Vasseur DA, 2004, ECOLOGY, V85, P1146, DOI 10.1890/02-3122; Wiedenmann J, 2009, BIOL CONSERV, V142, P2990, DOI 10.1016/j.biocon.2009.07.031; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; Wollrab S, 2013, ECOLOGY, V94, P2886, DOI 10.1890/12-1490.1; Zhou C, 2013, ECOL MODEL, V268, P25, DOI 10.1016/j.ecolmodel.2013.07.028 45 0 0 4 8 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep MAR 14 2018 8 4517 10.1038/s41598-018-22789-6 8 Multidisciplinary Sciences Science & Technology - Other Topics FZ1VS WOS:000427366200047 29540759 DOAJ Gold, Green Published 2019-02-21 J Tredennick, AT; Kleinhesselink, AR; Taylor, JB; Adler, PB Tredennick, Andrew T.; Kleinhesselink, Andrew R.; Taylor, J. Bret; Adler, Peter B. Ecosystem functional response across precipitation extremes in a sagebrush steppe PEERJ English Article Climate change; Ecosystem function; Sagebrush steppe; Plant community; Precipitation; Annual net primary producitivity CLIMATE EXTREMES; PRODUCTIVITY; VARIABILITY; SENSITIVITY; GRASSLANDS; FRAMEWORK; DYNAMICS Background. Precipitation is predicted to become more variable in the western United States, meaning years of above and below average precipitation will become more common. Periods of extreme precipitation are major drivers of interannual variability in ecosystem functioning in water limited communities, but how ecosystems respond to these extremes over the long-term may shift with precipitation means and variances. Long-term changes in ecosystem functional response could reflect compensatory changes in species composition or species reaching physiological thresholds at extreme precipitation levels. Methods. We conducted a five year precipitation manipulation experiment in a sagebrush steppe ecosystem in Idaho, United States. We used drought and irrigation treatments (approximately 50% decrease/increase) to investigate whether ecosystem functional response remains consistent under sustained high or low precipitation. We recorded data on aboveground net primary productivity (ANPP), species abundance, and soil moisture. We fit a generalized linear mixed effects model to determine if the relationship between ANPP and soil moisture differed among treatments. We used nonmetric multidimensional scaling to quantify community composition over the five years. Results. Ecosystem functional response, defined as the relationship between soil moisture and ANPP, was similar among irrigation and control treatments, but the drought treatment had a greater slope than the control treatment. However, all estimates for the effect of soil moisture on ANPP overlapped zero, indicating the relationship is weak and uncertain regardless of treatment. There was also large spatial variation in ANPP within-years, which contributes to the uncertainty of the soil moisture effect. Plant community composition was remarkably stable over the course of the experiment and did not differ among treatments. Discussion. Despite some evidence that ecosystem functional response became more sensitive under sustained drought conditions, the response of ANPP to soil moisture was consistently weak and community composition was stable. The similarity of ecosystem functional responses across treatments was not related to compensatory shifts at the plant community level, but instead may reflect the insensitivity of the dominant species to soil moisture. These species may be successful precisely because they have evolved life history strategies which buffer them against precipitation variability. [Tredennick, Andrew T.; Kleinhesselink, Andrew R.; Adler, Peter B.] Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA; [Tredennick, Andrew T.; Kleinhesselink, Andrew R.; Adler, Peter B.] Utah State Univ, Ecol Ctr, Logan, UT 84322 USA; [Kleinhesselink, Andrew R.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA USA; [Taylor, J. Bret] ARS, USDA, US Sheep Expt Stn, Dubois, ID USA Tredennick, AT (reprint author), Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA.; Tredennick, AT (reprint author), Utah State Univ, Ecol Ctr, Logan, UT 84322 USA. atredenn@gmail.com Utah Agricultural Experiment Station, Utah State University; National Science Foundation [DBI-1400370, DEB-1353078, DEB-1054040] This research was supported by the Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 9035. The research was also supported by the National Science Foundation, through a Postdoctoral Research Fellowship in Biology and Mathematics to Andrew T. Tredennick (DBI-1400370), a Graduate Research Fellowship to Andrew R. Kleinhesselink, and grants DEB-1353078 and DEB-1054040 to Peter B. Adler. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Adler PB, 2012, J ECOL, V100, P478, DOI 10.1111/j.1365-2745.2011.01930.x; Avolio ML, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00317.1; Bates D, 2015, J STAT SOFTW, V67, P1; BLAISDELL JP, 1958, USDA TECHNICAL B, V1190; Bradford JB, 2014, ECOSYSTEMS, V17, P590, DOI 10.1007/s10021-013-9745-1; Byrne KM, 2011, RANGELAND ECOL MANAG, V64, P498, DOI 10.2111/REM-D-10-00145.1; Dalgleish HJ, 2011, ECOLOGY, V92, P75, DOI 10.1890/10-0780.1; De Boeck HJ, 2011, NEW PHYTOL, V189, P806, DOI 10.1111/j.1469-8137.2010.03515.x; Epstein HE, 1997, ECOLOGY, V78, P2628; Gelman A., 2009, DATA ANAL USING REGR; Gherardi LA, 2015, ECOL LETT, V18, P1293, DOI 10.1111/ele.12523; Gherardi LA, 2015, P NATL ACAD SCI USA, V112, P12735, DOI 10.1073/pnas.1506433112; Gherardi LA, 2013, ECOSPHERE, V4, DOI 10.1890/ES12-00371.1; Hill RR, 1920, ECOLOGY, V1, P270, DOI 10.2307/1929561; Hoover DL, 2014, ECOLOGY, V95, P2646, DOI 10.1890/13-2186.1; Hsu JS, 2012, GLOBAL CHANGE BIOL, V18, P2246, DOI 10.1111/j.1365-2486.2012.02687.x; Huxman TE, 2004, NATURE, V429, P651, DOI 10.1038/nature02561; Kleinhesselink AR, 2017, THESIS, P1; Knapp AK, 2017, GLOBAL CHANGE BIOL, V23, P1774, DOI 10.1111/gcb.13504; Knapp AK, 2015, OECOLOGIA, V177, P949, DOI 10.1007/s00442-015-3233-6; Knapp AK, 2012, FUNCT ECOL, V26, P1231, DOI 10.1111/j.1365-2435.2012.02053.x; Kulmatiski A, 2017, ECOSPHERE, V8, DOI 10.1002/ecs2.1738; La Pierre KJ, 2016, ECOSYSTEMS, V19, P521, DOI 10.1007/s10021-015-9949-7; Lemoine NP, 2016, METHODS ECOL EVOL, V7, P1396, DOI 10.1111/2041-210X.12582; Oksanen J, 2017, R PACKAGE VERSION, V2, P4; Peters DPC, 2012, GLOBAL CHANGE BIOL, V18, P151, DOI 10.1111/j.1365-2486.2011.02498.x; R Core Team, 2016, R LANG ENV STAT COMP; SALA OE, 1992, ECOLOGY, V73, P1175, DOI 10.2307/1940667; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Smith MD, 2003, ECOL LETT, V6, P509, DOI 10.1046/j.1461-0248.2003.00454.x; Smith MD, 2011, J ECOL, V99, P656, DOI 10.1111/j.1365-2745.2011.01798.x; Smith MD, 2009, ECOLOGY, V90, P3279, DOI 10.1890/08-1815.1; Stan Development Team, 2016, STAN C LIB PROB SAMP; Stan Development Team, 2016, RSTAN R INT STAN VER; Wilcox KR, 2017, GLOBAL CHANGE BIOL, V23, P4376, DOI 10.1111/gcb.13706; Wilcox KR, 2016, ECOLOGY, V97, P561, DOI 10.1890/15-1437.1 36 0 0 6 7 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ MAR 13 2018 6 e4485 10.7717/peerj.4485 19 Multidisciplinary Sciences Science & Technology - Other Topics FZ1GF WOS:000427324200005 29576958 DOAJ Gold, Green Published 2019-02-21 J Csatho, A; Birkas, B Csatho, Arpad; Birkas, Bela Early-Life Stressors, Personality Development, and Fast Life Strategies: An Evolutionary Perspective on Malevolent Personality Features FRONTIERS IN PSYCHOLOGY English Review life history theory; early-life stress; fast life strategies; personality development; the Dark Triad DARK TRIAD NARCISSISM; HISTORY STRATEGIES; REPRODUCTIVE STRATEGIES; DYING YOUNG; MACHIAVELLIANISM; CHILDHOOD; HEALTH; PSYCHOPATHY; ATTACHMENT; TRAITS Life history theory posits that behavioral adaptation to various environmental (ecological and/or social) conditions encountered during childhood is regulated by a wide variety of different traits resulting in various behavioral strategies. Unpredictable and harsh conditions tend to produce fast life history strategies, characterized by early maturation, a higher number of sexual partners to whom one is less attached, and less parenting of offspring. Unpredictability and harshness not only affects dispositional social and emotional functioning, but may also promote the development of personality traits linked to higher rates of instability in social relationships or more self-interested behavior. Similarly, detrimental childhood experiences, such as poor parental care or high parent-child conflict, affect personality development and may create a more distrustful, malicious interpersonal style. The aim of this brief review is to survey and summarize findings on the impact of negative early-life experiences on the development of personality and fast life history strategies. By demonstrating that there are parallels in adaptations to adversity in these two domains, we hope to lend weight to current and future attempts to provide a comprehensive insight of personality traits and functions at the ultimate and proximate levels. [Csatho, Arpad; Birkas, Bela] Univ Pecs, Inst Behav Sci, Med Sch, Pecs, Hungary Birkas, B (reprint author), Univ Pecs, Inst Behav Sci, Med Sch, Pecs, Hungary. bela.birkas@aok.pte.hu Hungarian Scientific Research Fund-OTKA [K 125437] This work was supported by the Hungarian Scientific Research Fund-OTKA (K 125437). Anacker C, 2014, DIALOGUES CLIN NEURO, V16, P321; Andras L, 2018, PERS INDIV DIFFER, V120, P213, DOI 10.1016/j.paid.2017.08.043; Beaver KM, 2015, CRIM JUSTICE BEHAV, V42, P546, DOI 10.1177/0093854814553620; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Bereczkei T, 2001, INT J BEHAV DEV, V25, P501, DOI 10.1080/01650250042000573; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Birkas B., 2015, AM J APPL PSYCHOL, V3, P109; Birkas B, 2016, PERS INDIV DIFFER, V88, P134, DOI 10.1016/j.paid.2015.09.007; Birkas B, 2015, PERS INDIV DIFFER, V86, P318, DOI 10.1016/j.paid.2015.06.035; Birkas B, 2015, PERS INDIV DIFFER, V74, P112, DOI 10.1016/j.paid.2014.09.046; Bjorklund DF, 2015, DEV REV, V38, P13, DOI 10.1016/j.dr.2015.07.002; Bjorklund DF, 2014, DEV REV, V34, P225, DOI 10.1016/j.dr.2014.05.005; Bohane L, 2017, CLIN PSYCHOL REV, V57, P75, DOI 10.1016/j.cpr.2017.07.005; Bowlby J, 1980, ATTACHMENT LOSS, V3; Briley DA, 2014, PSYCHOL BULL, V140, P1303, DOI 10.1037/a0037091; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buss D., 2015, EVOLUTIONARY PSYCHOL; Chang L, 2018, EVOL HUM BEHAV, V39, P59, DOI 10.1016/j.evolhumbehav.2017.10.003; Chen BB, 2016, EVOL PSYCHOL-US, V14, DOI 10.1177/1474704916630314; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; de Baca TC, 2016, ADAPT HUM BEHAV PHYS, V2, P93, DOI 10.1007/s40750-016-0042-z; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2012, PSYCHONEUROENDOCRINO, V37, P1614, DOI 10.1016/j.psyneuen.2012.05.014; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2013, HORM BEHAV, V64, P215, DOI 10.1016/j.yhbeh.2013.02.012; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo A. J., 2012, TEMAS PSICOLOGIA, V20, P87; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Furnham A, 2013, SOC PERSONAL PSYCHOL, V7, P199, DOI 10.1111/spc3.12018; Gladden P. R., 2013, J METHODS MEASUREMEN, V4, P48, DOI DOI 10.2458/AZU_JMMSS.V4I1.17774; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Hawkes K, 2006, SCH AM RES, P95; Heylighen F., 2004, SOCIAL INDICATORS RE, P1; Hurst JE, 2017, EVOL HUM BEHAV, V38, P1, DOI 10.1016/j.evolhumbehav.2016.06.001; Jonason PK, 2017, PERS INDIV DIFFER, V116, P38, DOI 10.1016/j.paid.2017.04.027; Jonason PK, 2016, EVOL PSYCHOL-US, V14, DOI 10.1177/1474704915623699; Jonason PK, 2015, PERS INDIV DIFFER, V78, P5, DOI 10.1016/j.paid.2015.01.008; Jonason PK, 2014, PERS INDIV DIFFER, V67, P30, DOI 10.1016/j.paid.2013.10.006; Jonason PK, 2013, EVOL PSYCHOL-US, V11, P172, DOI 10.1177/147470491301100116; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kennis M, 2013, NEUROSCI BIOBEHAV R, V37, P73, DOI 10.1016/j.neubiorev.2012.10.012; Kraus C, 2005, J ANIM ECOL, V74, P171, DOI 10.1111/j.1365-2656.2004.00910.x; Kundakovic M, 2015, NEUROPSYCHOPHARMACOL, V40, P141, DOI 10.1038/npp.2014.140; Lang A, 2015, SAGE OPEN, V5, DOI 10.1177/2158244015571639; Lang A, 2015, PERS INDIV DIFFER, V77, P81, DOI 10.1016/j.paid.2014.12.054; Lang A, 2014, PERS INDIV DIFFER, V63, P69, DOI 10.1016/j.paid.2014.01.065; Markon KE, 2005, J PERS SOC PSYCHOL, V88, P139, DOI 10.1037/0022-3514.88.1.139; McDonald MM, 2012, PERS INDIV DIFFER, V52, P601, DOI 10.1016/j.paid.2011.12.003; McFarlane Alexander, 2005, Journal of Integrative Neuroscience, V4, P27, DOI 10.1142/S0219635205000689; Muris P, 2017, PERSPECT PSYCHOL SCI, V12, P183, DOI 10.1177/1745691616666070; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Newton-Howes G, 2015, LANCET, V385, P727, DOI 10.1016/S0140-6736(14)61283-6; Ng HKS, 2014, PERS INDIV DIFFER, V70, P7, DOI 10.1016/j.paid.2014.06.006; Noser AE, 2014, J RES PERS, V53, P158, DOI 10.1016/j.jrp.2014.10.007; Ogle CM, 2015, PSYCHOL TRAUMA-US, V7, P324, DOI 10.1037/tra0000015; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Pfattheicher S, 2016, PERS INDIV DIFFER, V97, P115, DOI 10.1016/j.paid.2016.03.015; Richardson EN, 2016, PERS INDIV DIFFER, V92, P148, DOI 10.1016/j.paid.2015.12.039; RIM Y, 1992, PERS INDIV DIFFER, V13, P487, DOI 10.1016/0191-8869(92)90079-5; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P769, DOI 10.1016/0191-8869(85)90088-1; Simpson J. A., 2011, HDB INTERPERSONAL PS, P75; Vize CE, 2018, PERSONAL DISORD, V9, P101, DOI 10.1037/per0000222; White AE, 2013, PSYCHOL SCI, V24, P715, DOI 10.1177/0956797612461919; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Young ES, 2019, SELF IDENTITY, V18, P22, DOI 10.1080/15298868.2017.1353540 78 2 2 4 21 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. MAR 12 2018 9 305 10.3389/fpsyg.2018.00305 6 Psychology, Multidisciplinary Psychology FY9OG WOS:000427195500001 29593609 DOAJ Gold, Green Published 2019-02-21 J Purzycki, BG; Ross, CT; Apicella, C; Atkinson, QD; Cohen, E; McNamara, RA; Willard, AK; Xygalatas, D; Norenzayan, A; Henrich, J Purzycki, Benjamin Grant; Ross, Cody T.; Apicella, Coren; Atkinson, Quentin D.; Cohen, Emma; McNamara, Rita Anne; Willard, Aiyana K.; Xygalatas, Dimitris; Norenzayan, Ara; Henrich, Joseph Material security, life history, and moralistic religions: A cross-cultural examination PLOS ONE English Article SUPERNATURAL PUNISHMENT; TRADE-OFF; FERTILITY; MORTALITY; EDUCATION; EVOLUTION; CONSEQUENCES; HYPOTHESIS; SOCIETIES; HUMANS Researchers have recently proposed that "moralistic" religions-those with moral doctrines, moralistic supernatural punishment, and lower emphasis on ritual-emerged as an effect of greater wealth and material security. One interpretation appeals to life history theory, predicting that individuals with "slow life history" strategies will be more attracted to moralistic traditions as a means to judge those with "fast life history" strategies. As we had reservations about the validity of this application of life history theory, we tested these predictions with a data set consisting of 592 individuals from eight diverse societies. Our sample includes individuals from a wide range of traditions, including world religions such as Buddhism, Hinduism and Christianity, but also local traditions rooted in beliefs in animism, ancestor worship, and worship of spirits associated with nature. We first test for the presence of associations between material security, years of formal education, and reproductive success. Consistent with popular life history predictions, we find evidence that material security and education are associated with reduced reproduction. Building on this, we then test whether or not these demographic factors predict the moral concern, punitiveness, attributed knowledge-breadth, and frequency of ritual devotions towards two deities in each society. Here, we find no reliable evidence of a relationship between number of children, material security, or formal education and the individual-level religious beliefs and behaviors. We conclude with a discussion of why life-history theory is an inadequate interpretation for the emergence of factors typifying the moralistic traditions. [Purzycki, Benjamin Grant; Ross, Cody T.] Max Planck Inst Evolutionary Anthropol, Leipzig, Germany; [Apicella, Coren] Univ Penn, Philadelphia, PA 19104 USA; [Atkinson, Quentin D.] Univ Auckland, Auckland, New Zealand; [Atkinson, Quentin D.] Max Planck Inst Sci Human Hist, Jena, Germany; [Cohen, Emma; Willard, Aiyana K.] Univ Oxford, Oxford, England; [McNamara, Rita Anne] Victoria Univ Wellington, Wellington, New Zealand; [Xygalatas, Dimitris] Univ Connecticut, Storrs, CT USA; [Norenzayan, Ara] Univ British Columbia, Vancouver, BC, Canada; [Henrich, Joseph] Harvard Univ, Cambridge, MA 02138 USA Purzycki, BG (reprint author), Max Planck Inst Evolutionary Anthropol, Leipzig, Germany. benjamin_purzycki@eva.mpg.de John Templeton Foundation; Social Sciences and Humanities Research Council of Canada [895-2011-1009] This work was supported by John Templeton Foundation (https://templeton.org/) and Social Sciences and Humanities Research Council of Canada (http://www.sshrc-crsh.gc.ca/home-accueil-eng.aspx [grant #895-2011-1009]). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Baldini R., 2015, BIORXIV; Baumard Nicolas, 2015, Commun Integr Biol, V8, pe1046657, DOI 10.1080/19420889.2015.1046657; Baumard N, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1593; Baumard N, 2015, CURR BIOL, V25, P10, DOI 10.1016/j.cub.2014.10.063; Baumard N, 2013, TRENDS COGN SCI, V17, P272, DOI 10.1016/j.tics.2013.04.003; Becker SO, 2010, J ECON GROWTH, V15, P177, DOI 10.1007/s10887-010-9054-x; Bellah Robert N., 2011, RELIG HUMAN EVOLUTIO; Botero CA, 2014, P NATL ACAD SCI USA, V111, P16784, DOI 10.1073/pnas.1408701111; Charnov EL, 2014, EVOL ECOL RES, V16, P435; Charnov EL, 2011, EVOL ECOL RES, V13, P661; Eibach RP, 2011, J EXP SOC PSYCHOL, V47, P694, DOI 10.1016/j.jesp.2010.12.009; Goodman A, 2012, P ROY SOC LOND B BIO; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hruschka D, 2014, HUM NATURE-INT BIOS, V25, P567, DOI 10.1007/s12110-014-9217-0; Hungerman DM, 2014, J ECON BEHAV ORGAN, V104, P52, DOI 10.1016/j.jebo.2013.09.004; Jaspers K, 2011, ORIGIN GOAL HIST; Johnson DDP, 2005, HUM NATURE-INT BIOS, V16, P410, DOI 10.1007/s12110-005-1017-0; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kaplan H, 2000, ADAPTATION HUMAN BEH, P283; Lawson DW, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0145; Lawson DW, 2012, P ROY SOC B-BIOL SCI, V279, P4755, DOI 10.1098/rspb.2012.1635; Leslie P, 2002, AM J HUM BIOL, V14, P168, DOI 10.1002/ajhb.10044; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; Nettle D, 2011, PHILOS T R SOC B, V366, P357, DOI 10.1098/rstb.2010.0073; Norenzayan A, 2016, BEHAV BRAIN SCI, V39, DOI 10.1017/S0140525X14001356; Norris P, 2012, SACRED SECULAR RELIG; Peoples HC, 2012, HUM NATURE-INT BIOS, V23, P253, DOI 10.1007/s12110-012-9148-6; Purzycki BG, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.99; Purzycki BG, 2016, NATURE, V530, P327, DOI 10.1038/nature16980; Ross CT, 2016, EVOLUTION HUMAN BEHA; Schwadel P, 2015, J SCI STUD RELIG, V54, P402, DOI 10.1111/jssr.12187; Solt F, 2011, SOC SCI QUART, V92, P447, DOI 10.1111/j.1540-6237.2011.00777.x; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Watts J, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2556; Whitehead H, 2009, EVOL HUM BEHAV, V30, P261, DOI 10.1016/j.evolhumbehav.2009.02.003; Winterhalder B, 2002, EVOL HUM BEHAV, V23, P59, DOI 10.1016/S1090-5138(01)00089-7; Winterhalder B, 2015, ENVIRON ARCHAEOL, V20, P337, DOI 10.1179/1749631415Y.0000000025 41 1 1 4 7 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAR 7 2018 13 3 e0193856 10.1371/journal.pone.0193856 14 Multidisciplinary Sciences Science & Technology - Other Topics FY5TA WOS:000426896800082 29513766 DOAJ Gold, Green Published 2019-02-21 J Risques, RA; Promislow, DEL Risques, Rosa Ana; Promislow, Daniel E. L. All's well that ends well: why large species have short telomeres PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article telomeres; cancer; Peto's paradox; cellular senescence; body size; life-history evolution CANCER; SENESCENCE; MAMMALS; EVOLUTION; BIOLOGY; METAANALYSIS; PROTECTION; LONGEVITY; MECHANISM; SELECTION Among mammal species, almost all life-history traits are strongly size dependent. This size dependence even occurs at a molecular level. For example, both telomere length and telomerase expression show a size-dependent threshold. With some exceptions, species smaller than approximately 2 kg express telomerase, while species larger than that do not. Among species greater than approximately 5 kg, telomeres tend to be short-less than 25 kb-while among smaller species, some species have short and some have long telomeres. Here, we present a model to explore the role of body size-dependent trade-offs in shaping this threshold. We assume that selection favours short telomeres as a mechanismto protect against cancer. At the same time, selection favours long telomeres as a protective mechanism against DNA damage and replicative senescence. The relative importance of these two selective forces will depend on underlying intrinsic mortality and risk of cancer, both of which are size-dependent. Results from this model suggest that a cost-benefit model for the evolution of telomere length could explain phylogenetic patterns observed within the Class Mammalia. In addition, the model suggests a general conceptual framework to think about the role that body size plays in the evolution of tumour suppressor mechanisms.y [Risques, Rosa Ana; Promislow, Daniel E. L.] Univ Washington, Dept Pathol, Seattle, WA 98195 USA; [Promislow, Daniel E. L.] Univ Washington, Dept Biol, Seattle, WA 98195 USA Risques, RA (reprint author), Univ Washington, Dept Pathol, Seattle, WA 98195 USA. rrisques@uw.edu Promislow, Daniel/0000-0001-7088-4495 NIH [AG049494, AG044284, R01CA181308]; International Network on Telomere Biology During the course of this work, D.E.L.P. was supported in part by NIH grant nos. AG049494 and AG044284 and R.A.R. was supported in part by NIH grant no. R01CA181308. Our initial efforts on this project were supported by a travel grant from the International Network on Telomere Biology. Abegglen LM, 2015, JAMA-J AM MED ASSOC, V314, P1850, DOI 10.1001/jama.2015.13134; Arkus N, 2005, J THEOR BIOL, V235, P13, DOI 10.1016/j.jtbi.2005.12.016; ARMITAGE P, 1954, BRIT J CANCER, V8, P1, DOI 10.1038/bjc.1954.1; Bacon Francis, 1638, HIST LIFE DEATH; Blackburn EH, 2015, SCIENCE, V350, P1193, DOI 10.1126/science.aab3389; Campisi J, 2001, TRENDS CELL BIOL, V11, pS27, DOI 10.1016/S0962-8924(01)02151-1; Campisi J, 2011, CURR OPIN GENET DEV, V21, P107, DOI 10.1016/j.gde.2010.10.005; Caulin AF, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2014.0222; Caulin AF, 2011, TRENDS ECOL EVOL, V26, P175, DOI 10.1016/j.tree.2011.01.002; Collado M, 2006, NAT REV CANCER, V6, P472, DOI 10.1038/nrc1884; den Buijs JO, 2004, MECH AGEING DEV, V125, P437, DOI 10.1016/j.mad.2004.03.007; di Fagagna FD, 2003, NATURE, V426, P194, DOI 10.1038/nature02118; EFFRON M, 1977, JNCI-J NATL CANCER I, V59, P185, DOI 10.1093/jnci/59.1.185; Factor-Litvak P, 2016, PEDIATRICS, V137, DOI 10.1542/peds.2015-3927; Gardner M, 2014, EXP GERONTOL, V51, P15, DOI 10.1016/j.exger.2013.12.004; Gomes NMV, 2011, AGING CELL, V10, P761, DOI 10.1111/j.1474-9726.2011.00718.x; Gomes NMV, 2010, FEBS LETT, V584, P3741, DOI 10.1016/j.febslet.2010.07.031; Gompertz B., 1825, PHILOS T ROY SOC LON, V115, P513, DOI [10.1098/rstl.1825.0026, DOI 10.1098/RSTL.1825.0026]; Gorbunova V, 2014, NAT REV GENET, V15, P531, DOI 10.1038/nrg3728; Gorbunova V, 2009, MECH AGEING DEV, V130, P3, DOI 10.1016/j.mad.2008.02.008; Green J, 2011, LANCET ONCOL, V12, P785, DOI 10.1016/S1470-2045(11)70154-1; He SH, 2017, CELL, V169, P1000, DOI 10.1016/j.cell.2017.05.015; Jafri MA, 2016, GENOME MED, V8, DOI 10.1186/s13073-016-0324-x; Katzourakis A, 2014, PLOS PATHOG, V10, DOI 10.1371/journal.ppat.1004214; KIM NW, 1994, SCIENCE, V266, P2011, DOI 10.1126/science.7605428; Kokko H, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2014.0234; LOMBARD LS, 1959, CANCER RES, V19, P127; Madsen T, 2017, ECOLOGY EVOLUTION CA, P11, DOI [10.1016/B978-0-12-804310-3.00002-8, DOI 10.1038/374227A0]; Masa M, 2006, PHYSICA A, V364, P324, DOI 10.1016/j.physa.2005.08.043; McClintock B, 1931, U MISSOURI AGR RES S, V163, P3; Medawar P, 1952, UNSOLVED PROBLEM BIO; Monaghan P, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0446; Noble R, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2015.0104; NOWELL PC, 1976, SCIENCE, V194, P23, DOI 10.1126/science.959840; Nunney L, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2015.0161; Nunney L, 1999, P ROY SOC B-BIOL SCI, V266, P493, DOI 10.1098/rspb.1999.0664; Nunney L, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2014.0177; Nunney L, 2013, EVOL APPL, V6, P11, DOI 10.1111/eva.12018; OLOVNIKOV AM, 1973, J THEOR BIOL, V41, P181, DOI 10.1016/0022-5193(73)90198-7; Olsson M, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0449; Otto S., 2007, BIOL GUIDE MATH MODE; Park JY, 2016, SCI REP-UK, V6, DOI 10.1038/srep25246; Peto R, 1977, ORIGINS HUMAN CANCER, P1403; Proctor CJ, 2002, MECH AGEING DEV, V123, P351, DOI 10.1016/S0047-6374(01)00380-3; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Ringsby TH, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.2331; Sfeir A, 2012, SCIENCE, V336, P593, DOI 10.1126/science.1218498; Stone RC, 2016, PLOS GENET, V12, DOI 10.1371/journal.pgen.1006144; Tian X, 2018, PHIL T R SOC B, V373, DOI [10.1098/rstb, DOI 10.1098/RSTB]; Tollis M, 2017, BMC BIOL, V15, DOI 10.1186/s12915-017-0401-7; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Young AJ, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0452 52 8 8 5 34 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. MAR 5 2018 373 1741 20160448 10.1098/rstb.2016.0448 8 Biology Life Sciences & Biomedicine - Other Topics FT1OB WOS:000422904900013 29335372 Bronze 2019-02-21 J Young, AJ Young, Andrew J. The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review telomere; senescence; oxidative stress; cancer; constraint; adaptation DNA-DAMAGE-RESPONSE; CELLULAR SENESCENCE; CHROMOSOME ENDS; HUMAN-CELLS; CANCER; LENGTH; SPAN; LONGEVITY; REPRODUCTION; BIOLOGY Evolutionary biology and biomedicine have seen a surge of recent interest in the possibility that telomeres play a role in life-history trade-offs and ageing. Here, I evaluate alternative hypotheses for the role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing, and highlight outstanding challenges. First, while recent findings underscore the possibility of a proximate causal role for telomeres in current-future trade-offs and ageing, it is currently unclear (i) whether telomeres ever play a causal role in either and (ii) whether any causal role for telomeres arises via shortening or length-independent mechanisms. Second, I consider why, if telomeres do play a proximate causal role, selection has not decoupled such a telomeremediated trade-off between current and future performance. Evidence suggests that evolutionary constraints have not rendered such decoupling impossible. Instead, a causal role for telomeres would more plausibly reflect an adaptive strategy, born of telomere maintenance costs and/or a function for telomere attrition (e.g. in countering cancer), the relative importance of which is currently unclear. Finally, I consider the potential for telomere biology to clarify the constraints at play in life-history evolution, and to explain the form of the current-future trade-offs and ageing trajectories that we observe today. [Young, Andrew J.] Univ Exeter Penryn Campus, Sch Biosci, Penryn TR10 9FE, England Young, AJ (reprint author), Univ Exeter Penryn Campus, Sch Biosci, Penryn TR10 9FE, England. a.j.young@exeter.ac.uk Biotechnology and Biological Sciences Research Council, David Phillips Research Fellowship [BB/H022716/1] This study was funded by a Biotechnology and Biological Sciences Research Council, David Phillips Research Fellowship (BB/H022716/1). Ackermann M, 2007, AGING CELL, V6, P235, DOI 10.1111/j.1474-9726.2007.00281.x; Aktipis CA, 2015, PHILOS T R SOC B, V370, DOI 10.1098/rstb.2014.0219; ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Asghar M, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2263; Baar MP, 2017, CELL, V169, P132, DOI 10.1016/j.cell.2017.02.031; Baird DM, 2003, NAT GENET, V33, P203, DOI 10.1038/ng1084; Baker DJ, 2016, NATURE, V530, P184, DOI 10.1038/nature16932; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Bateson M, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0438; Bateson M, 2017, AGING CELL, V16, P312, DOI 10.1111/acel.12555; Bateson M, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2140; Bauch C, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2540; Beirne C, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1086; Beirne C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108964; Bennett P., 2002, EVOLUTIONARY ECOLOGY; de Jesus BB, 2012, CURR OPIN CELL BIOL, V24, P739, DOI 10.1016/j.ceb.2012.09.004; de Jesus BB, 2012, EMBO MOL MED, V4, P691, DOI 10.1002/emmm.201200245; Blackburn EH, 2001, CELL, V106, P661, DOI 10.1016/S0092-8674(01)00492-5; Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179; Bodnar AG, 1998, SCIENCE, V279, P349, DOI 10.1126/science.279.5349.349; Boonekamp JJ, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3287; Boonekamp JJ, 2013, AGING CELL, V12, P330, DOI 10.1111/acel.12050; Britt-Compton B, 2009, BIOGERONTOLOGY, V10, P683, DOI 10.1007/s10522-009-9216-4; Campisi J, 2013, ANNU REV PHYSIOL, V75, P685, DOI 10.1146/annurev-physiol-030212-183653; Caulin AF, 2011, TRENDS ECOL EVOL, V26, P175, DOI 10.1016/j.tree.2011.01.002; Cong YS, 2002, MICROBIOL MOL BIOL R, V66, P407, DOI 10.1128/MMBR.66.3.407-425.2002; Cong YS, 2008, CELL RES, V18, P725, DOI 10.1038/cr.2008.74; Criscuolo F, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0440; Daniali L, 2013, NAT COMMUN, V4; Dantzer B, 2015, EXP GERONTOL, V71, P38, DOI 10.1016/j.exger.2015.08.012; de Lange T, 1999, CELL, V98, P273, DOI 10.1016/S0092-8674(00)81955-8; de Lange T, 2009, SCIENCE, V326, P948, DOI 10.1126/science.1170633; DeGregori J, 2011, CANCER RES, V71, P3739, DOI 10.1158/0008-5472.CAN-11-0342; di Fagagna FD, 2008, NAT REV CANCER, V8, P512, DOI 10.1038/nrc2440; Dugdale HL, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0450; EFFRON M, 1977, JNCI-J NATL CANCER I, V59, P185, DOI 10.1093/jnci/59.1.185; Eisenberg DTA, 2011, AM J HUM BIOL, V23, P149, DOI 10.1002/ajhb.21127; Evans JA, 2016, J ENDOCRINOL, V230, pR27, DOI 10.1530/JOE-16-0054; Fairlie J, 2016, AGING CELL, V15, P140, DOI 10.1111/acel.12417; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Fumagalli M, 2012, NAT CELL BIOL, V14, P355, DOI 10.1038/ncb2466; Geiger S, 2012, MOL ECOL, V21, P1500, DOI 10.1111/j.1365-294X.2011.05331.x; Gomes NMV, 2011, AGING CELL, V10, P761, DOI 10.1111/j.1474-9726.2011.00718.x; Gorbunova V, 2009, MECH AGEING DEV, V130, P3, DOI 10.1016/j.mad.2008.02.008; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Haussmann MF, 2007, EXP GERONTOL, V42, P610, DOI 10.1016/j.exger.2007.03.004; Haussmann MF, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0396; Heidinger BJ, 2012, P NATL ACAD SCI USA, V109, P1743, DOI 10.1073/pnas.1113306109; Herbig U, 2006, SCIENCE, V311, P1257, DOI 10.1126/science.1122446; Hewitt G, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms1708; Hjelmborg JB, 2015, J MED GENET, V52, P297, DOI 10.1136/jmedgenet-2014-102736; Houle David, 2001, P109, DOI 10.1016/B978-012730055-9/50015-X; Jaskelioff M, 2011, NATURE, V469, P102, DOI 10.1038/nature09603; KIM NW, 1994, SCIENCE, V266, P2011, DOI 10.1126/science.7605428; Kim W, 2016, PLOS BIOL, V14, DOI 10.1371/journal.pbio.2000016; Kirkwood T.B.L, 2017, EVOLUTION SENESCENCE, P23; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kirkwood TBL, 2011, PHILOS T R SOC B, V366, P64, DOI 10.1098/rstb.2010.0275; Lansdorp PM, 2005, TRENDS BIOCHEM SCI, V30, P388, DOI 10.1016/j.tibs.2005.05.004; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Le Vaillant M, 2015, POLAR BIOL, V38, P2059, DOI 10.1007/s00300-015-1766-0; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Leroi AM, 2003, NAT REV CANCER, V3, P226, DOI 10.1038/nrc1016; Lessells K, 2001, TRENDS ECOL EVOL, V16, P284, DOI 10.1016/S0169-5347(01)02162-0; Lopez-Otin C, 2013, CELL, V153, P1194, DOI 10.1016/j.cell.2013.05.039; Ma SM, 2016, ELIFE, V5, DOI 10.7554/eLife.19130; Mclennan D, 2016, MOL ECOL, V25, P5425, DOI 10.1111/mec.13857; Monaghan P, 2006, TRENDS ECOL EVOL, V21, P47, DOI 10.1016/j.tree.2005.11.007; Monaghan P, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0446; Monaghan P, 2014, J EXP BIOL, V217, P57, DOI 10.1242/jeb.090043; NINIO J, 1975, BIOCHIMIE, V57, P587, DOI 10.1016/S0300-9084(75)80139-8; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Nystrom T, 2007, PLOS GENET, V3, P2355, DOI 10.1371/journal.pgen.0030224; Olsson M, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0449; Palazzo AF, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004351; Pardue ML, 2011, P NATL ACAD SCI USA, V108, P20317, DOI 10.1073/pnas.1100278108; Risques RA, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0448; ROFF DA, 2002, LIFE HIST EVOLUTION; Salomons HM, 2009, P ROY SOC B-BIOL SCI, V276, P3157, DOI 10.1098/rspb.2009.0517; SAVAGEAU MA, 1979, P NATL ACAD SCI USA, V76, P4507, DOI 10.1073/pnas.76.9.4507; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Shay JW, 2016, CANCER DISCOV, V6, P584, DOI 10.1158/2159-8290.CD-16-0062; Simons MJP, 2015, AGEING RES REV, V24, P191, DOI 10.1016/j.arr.2015.08.002; Soerensen M, 2012, AGING CELL, V11, P223, DOI 10.1111/j.1474-9726.2011.00775.x; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; Stearns S, 1992, EVOLUTION LIFE HIST; Tian X, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0443; Tricola GM, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0445; Ujvari B, 2017, FUNCT ECOL, V31, P753, DOI 10.1111/1365-2435.12764; Van De Peer Y, 2017, NAT REV GENET, V18, P411, DOI 10.1038/nrg.2017.26; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Vera E, 2012, CELL REP, V2, P732, DOI 10.1016/j.celrep.2012.08.023; Vittecoq M, 2013, TRENDS ECOL EVOL, V28, P628, DOI 10.1016/j.tree.2013.07.005; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; Wilbourn RV, 2018, PHILOS T R SOC B, V373, DOI 10.1098/rstb.2016.0447; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wood E., 2017, CAUSES FITNESS CONSE; Ye J, 2014, NAT REV GENET, V15, P491, DOI 10.1038/nrg3743; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 101 16 16 23 59 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. MAR 5 2018 373 1741 20160452 10.1098/rstb.2016.0452 12 Biology Life Sciences & Biomedicine - Other Topics FT1OB WOS:000422904900017 29335379 Green Published 2019-02-21 J Wong-Ala, JATK; Comfort, CM; Gove, JM; Hixon, MA; McManus, MA; Powell, BS; Whitney, JL; Neuheimer, AB Wong-Ala, Jennifer A. T. K.; Comfort, Christina M.; Gove, Jamison M.; Hixon, Mark A.; McManus, Margaret A.; Powell, Brian S.; Whitney, Jonathan L.; Neuheimer, Anna B. How Life History Characteristics and Environmental Forcing Shape Settlement Success of Coral Reef Fishes FRONTIERS IN MARINE SCIENCE English Article early life history; settlement; recruitment; pelagic larval duration; reef fish; individual-based model; connectivity; Hawai'i Island LARVAL DISPERSAL; POPULATION-DYNAMICS; PARTICLE-TRACKING; NATURAL-SELECTION; MESOSCALE EDDIES; OYSTER LARVAE; YELLOW TANG; RANGE SIZE; RECRUITMENT; MORTALITY Larval settlement is shaped by the interaction of biological processes (e.g., life history strategies, behavior etc.) and the environment (e.g., temperature, currents etc.). This is particularly true for many reef fishes where larval stages disperse offshore, often spending weeks to months in the pelagic realm before settling to shallow-water reefs. Our ability to predict reef fish settlement and subsequent recruitment and population dynamics depends on our ability to characterize how biological processes interact with the dynamic physical environment. Here we develop and apply an individual-based model that combines biological processes with high-resolution physical forcing to predict larval fish dispersal and settlement over time and space. Our model tracks individual larval fish from spawning to settlement and allows for the inclusion of biologically relevant stochasticity (individual variability) in modeled processes. Our model is also trait-based, which allows individuals to vary in life history characteristics, making it possible to mechanistically link the resulting variability in settlement probabilities to underlying traits such as spawning date and location, pelagic larval duration (PLD), body morphology, etc. We employ our biophysical model to examine how biology interacts with the physical environment to shape settlement predictions for reef fish off western and southern Hawai'i Island. Linked to prevailing surface currents, we find increased probabilities of settling associated with shorter PLDs and fish spawned in southern and southwestern locations. Superimposed on this, eddies, common to leeward Hawaii Island, offer a second pathway to successful settlement for individuals with longer PLDs, particularly for fish spawning in summer months. Finally, we illustrate how lunar-timed spawning as well as morphological features (e.g., fin and head spines) may impact settlement success by altering the mortality landscape experienced by larvae. This work identifies life history characteristics that predict the self-recruitment pathways necessary for population persistence for the relatively isolated Hawai`i Island. Our results can be used to develop future hypotheses regarding temporal and spatial variation in recruitment for reef fishes on Hawai'i Island and beyond. [Wong-Ala, Jennifer A. T. K.; Comfort, Christina M.; McManus, Margaret A.; Powell, Brian S.; Whitney, Jonathan L.; Neuheimer, Anna B.] Univ Hawaii Manoa, Dept Oceanog, Honolulu, HI 96822 USA; [Gove, Jamison M.; Whitney, Jonathan L.] NOAA, Pacific Isl Fisheries Sci Ctr, Honolulu, HI USA; [Hixon, Mark A.] Univ Hawaii Manoa, Dept Biol, Honolulu, HI 96822 USA; [Whitney, Jonathan L.] Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA; [Neuheimer, Anna B.] Aarhus Univ, AIAS, Aarhus, Denmark; [Wong-Ala, Jennifer A. T. K.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA Wong-Ala, JATK (reprint author), Univ Hawaii Manoa, Dept Oceanog, Honolulu, HI 96822 USA.; Wong-Ala, JATK (reprint author), Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. jennwongala@gmail.com National Science Foundation (NSF) [0424599, 1416889, 1565950]; University of Hawai'i Hsiao Endowment Funding to JW-A was provided by the National Science Foundation (NSF) grants OIA #0424599 and GEO #1565950 courtesy of the Center of Microbial Oceanography: Research and Education (CMORE) Scholars Program, Kamehameha Schools, Dr. Robert Toonen (NSF/OA #1416889), and the University of Hawai'i Hsiao Endowment (courtesy of MH). This manuscript is IEA Contribution Number 2018_3. Augustin NH, 2012, COMPUT STAT DATA AN, V56, P2404, DOI 10.1016/j.csda.2012.01.026; BAILEY KM, 1984, MAR BIOL, V79, P303, DOI 10.1007/BF00393262; Bakun A, 2003, FISH OCEANOGR, V12, P458, DOI 10.1046/j.1365-2419.2003.00258.x; Balch T, 1999, CAN J ZOOL, V77, P1657, DOI 10.1139/cjz-77-10-1657; Banas NS, 2009, ESTUAR COAST, V32, P893, DOI 10.1007/s12237-009-9175-7; Bidegain G, 2013, ECOL MODEL, V268, P78, DOI 10.1016/j.ecolmodel.2013.07.020; Boehlert G. W, 1996, NMFSSWSC2359 NOAA, P1148; Bushnell ME, 2010, J FISH BIOL, V76, P1343, DOI 10.1111/j.1095-8649.2010.02569.x; Caley MJ, 1996, ANNU REV ECOL SYST, V27, P477, DOI 10.1146/annurev.ecolsys.27.1.477; Christie MR, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015715; Claisse JT, 2009, CORAL REEFS, V28, P95, DOI 10.1007/s00338-008-0447-7; Claisse JT, 2011, ENVIRON BIOL FISH, V91, P185, DOI 10.1007/s10641-011-9771-9; Colin P, 2011, REEF FISH SPAWNING A, P117; COLIN PL, 1988, B MAR SCI, V43, P249; de Souza JMAC, 2015, J PHYS OCEANOGR, V45, P424, DOI 10.1175/JPO-D-14-0074.1; Dekshenieks MM, 1997, J PLANKTON RES, V19, P1583, DOI 10.1093/plankt/19.11.1583; Dekshenieks MM, 1996, MAR ECOL PROG SER, V136, P97, DOI 10.3354/meps136097; DEKSHENIEKS MM, 1993, J SHELLFISH RES, V12, P241; Domeier ML, 1997, B MAR SCI, V60, P698; Donahue MJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130694; Efron B, 2017, COMPUTER AGE STAT IN, V5; Fiksen O, 2007, MAR ECOL PROG SER, V347, P195, DOI 10.3354/meps06978; Fox HE, 2012, MAR ECOL PROG SER, V463, P259, DOI 10.3354/meps09838; FUIMAN LA, 1994, REV FISH BIOL FISHER, V4, P145, DOI 10.1007/BF00044127; Gilbert CS, 2010, PROG OCEANOGR, V87, P37, DOI 10.1016/j.pocean.2010.09.021; Greer AT, 2016, MAR ECOL PROG SER, V551, P1, DOI 10.3354/meps11751; GROSS HP, 1978, CAN J ZOOL, V56, P398, DOI 10.1139/z78-058; Holt G. J., 2001, P 28 US JAP NAT RES, P33; HOUDE ED, 1989, FISH B-NOAA, V87, P471; Houde Edward D., 2009, P91, DOI 10.1002/9781444312133.ch3; Irigoien X, 2007, PROG OCEANOGR, V74, P132, DOI 10.1016/j.pocean.2007.04.011; James MK, 2002, P ROY SOC B-BIOL SCI, V269, P2079, DOI 10.1098/rspb.2002.2128; Januszkiewicz AJ, 2007, BIOL J LINN SOC, V90, P25, DOI 10.1111/j.1095-8312.2007.00708.x; JOHANNES R E, 1978, Environmental Biology of Fishes, V3, P65, DOI 10.1007/BF00006309; Jones GP, 2005, CURR BIOL, V15, P1314, DOI 10.1016/j.cub.2005.06.061; LANDRY MR, 1976, MAR BIOL, V35, P1, DOI 10.1007/BF00386669; Leis JM, 2001, CORAL REEFS, V19, P247; Lester SE, 2005, P ROY SOC B-BIOL SCI, V272, P585, DOI 10.1098/rspb.2004.2985; LOBEL PS, 1986, DEEP-SEA RES, V33, P483, DOI 10.1016/0198-0149(86)90127-5; LOBEL PS, 1989, ENVIRON BIOL FISH, V24, P161, DOI 10.1007/BF00001221; Luiz OJ, 2013, P NATL ACAD SCI USA, V110, P16498, DOI 10.1073/pnas.1304074110; Lumpkin C. F, 1998, EDDIES CURRENTS HAWA; Maiti K, 2008, DEEP-SEA RES PT II, V55, P1445, DOI 10.1016/j.dsr2.2008.02.008; MATSUURA Y, 1981, JPN J ICHTHYOL, V28, P267; MCCORMICK MI, 1995, MAR ECOL PROG SER, V118, P59, DOI 10.3354/meps118059; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; McManus MA, 2012, J EXP BIOL, V215, P1008, DOI 10.1242/jeb.059014; MOODIE GEE, 1972, HEREDITY, V28, P155, DOI 10.1038/hdy.1972.21; MORGAN SG, 1989, ECOLOGY, V70, P464, DOI 10.2307/1937551; Moser H.G., 1981, P89; Munch SB, 2004, EVOLUTION, V58, P661, DOI 10.1111/j.0014-3820.2004.tb01689.x; Neuheimer AB, 2010, J MARINE SYST, V81, P122, DOI 10.1016/j.jmarsys.2009.12.009; North EW, 2008, MAR ECOL PROG SER, V359, P99, DOI 10.3354/meps07317; Paris CB, 2005, MAR ECOL PROG SER, V296, P93, DOI 10.3354/meps296093; Paris CB, 2013, ENVIRON MODELL SOFTW, V42, P47, DOI 10.1016/j.envsoft.2012.12.006; Patzert W. C, 1969, HIG698 U HAW; Platt T, 2003, NATURE, V423, P398, DOI 10.1038/423398b; Polovina JJ, 2001, PROG OCEANOGR, V49, P469, DOI 10.1016/S0079-6611(01)00036-2; Price SA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1428; Puritz JB, 2016, SCI REP-UK, V6, DOI 10.1038/srep36095; Pusack TJ, 2014, MOL ECOL, V23, P3396, DOI 10.1111/mec.12824; Qiu B, 1997, J PHYS OCEANOGR, V27, P431, DOI 10.1175/1520-0485(1997)027<0431:EAFMOT>2.0.CO;2; R Core Team, 2016, R LANG ENV STAT COMP; Shulzitski K, 2018, CAN J FISH AQUAT SCI, V75, P180, DOI 10.1139/cjfas-2016-0304; Shulzitski K, 2016, P NATL ACAD SCI USA, V113, P6928, DOI 10.1073/pnas.1601606113; Sogard SM, 1997, B MAR SCI, V60, P1129; Staaterman E, 2014, ICES J MAR SCI, V71, P918, DOI 10.1093/icesjms/fst103; Storlazzi CD, 2006, CONT SHELF RES, V26, P401, DOI 10.1016/j.csr.2005.12.006; Thresher R. E, 1984, REPROD REEF FISHES; Toonen RJ, 2011, J MARINE BIOL, V2011, P1, DOI DOI 10.1155/2011/460173; VICTOR BC, 1983, SCIENCE, V219, P419, DOI 10.1126/science.219.4583.419; Walsh W. J, 1984, THESIS; WALSH WJ, 1987, ENVIRON BIOL FISH, V18, P257, DOI 10.1007/BF00004879; Warner RR, 1997, CORAL REEFS, V16, pS115, DOI 10.1007/s003380050247; Weber MJ, 2012, FISHERIES MANAG ECOL, V19, P293, DOI 10.1111/j.1365-2400.2011.00838.x; Wood SN, 2011, J R STAT SOC B, V73, P3, DOI 10.1111/j.1467-9868.2010.00749.x; Wren JLK, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0167626 77 1 1 0 0 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 2296-7745 FRONT MAR SCI Front. Mar. Sci. MAR 1 2018 5 UNSP 65 10.3389/fmars.2018.00065 12 Environmental Sciences; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology HJ1OJ WOS:000456932700002 DOAJ Gold, Green Published 2019-02-21 J Pequeno, PACL; Franklin, E Pequeno, P. A. C. L.; Franklin, E. The Scaling of Growth, Reproduction and Defense in Colonies of Amazonian Termites SOCIOBIOLOGY English Article Adaptive demography; caste allocation; Isoptera; optimal caste ratio; resource limitation; social insect PER-CAPITA PRODUCTIVITY; SIZE; LIMITATION; EVOLUTION; DYNAMICS; MODELS; FOREST; ANTS Phenotypes can evolve through life-history tradeoffs. Termites have been the first eusocial insects on Earth, prompting life history evolution at the colony level. Despite this, termite life-history allocation strategies are poorly known. Here, we addressed this issue using novel data on three common species from the diverse, yet understudied Amazonian termite fauna: Neocapritermes braziliensis, Labiotermes labralis and Anoplotermes banksi. Using Oster and Wilson's optimal caste ratio theory and Higashi et al.'s termite caste allocation theory as frameworks, we assessed how termite colonies should invest in growth (immatures), reproduction (alates) and defense (soldiers) as they accumulate workers. We also examined whether soldier loss in soil-feeding Apicotermitinae (A. banksi) may have affected allocation strategies. We found that: (1) the scaling of immature number was isometric in the three species, contrary to the leveling off expected under resource limitation; (2) colonies of all sizes were equally likely to produce any number of alates, rather than having a size threshold for reproduction; (3) the scaling of soldier number was unrelated to alate production, but varied from isometry in N. braziliensis to negative allometry in L. labralis despite their similar defense strategies; (4) A. banksi had more immatures per worker and a higher maximum alate number per worker than the other species, suggesting that soldier loss may have allowed higher relative investment in colony growth and, possibly, reproduction. Termites can provide novel insights into life-history allocation strategies and their relation to social evolution, and should be better incorporated into sociobiological theory. [Pequeno, P. A. C. L.] Natl Inst Amazonia Res, Ecol Grad Program, Av Andre Araujo 2936, BR-69067375 Manaus, Amazonas, Brazil; [Pequeno, P. A. C. L.; Franklin, E.] Natl Inst Amazonia Res, Lab Systemat & Ecol Terr Arthropods, Manaus, Amazonas, Brazil Pequeno, PACL (reprint author), Natl Inst Amazonia Res, Ecol Grad Program, Av Andre Araujo 2936, BR-69067375 Manaus, Amazonas, Brazil. pacolipe@gmail.com Foundation for Research Support of Amazonas State (FAPEAM); National Council of Scientific and Technological Development (CNPq) [470375/2006-0, 558318/2009-6]; Brazilian Coordination for Training of Higher Education Personnel (CAPES) We are grateful to the staff of the Experimental Farm of the Federal University of Amazonas, Jonatha Pereira da Silva, Rosinaldo Conceicao Nascimento, Pedro Jose dos Santos Fernandes, and Ana Paula Porto for their support during fieldwork. We also thank Joana D'Arc Ribeiro, Fabiano Apolinario and Christopher Martius for providing data on termite colony composition. The first author received a POSGRAD scholarship from the Foundation for Research Support of Amazonas State (FAPEAM) and financial support from the National Council of Scientific and Technological Development (CNPq) (grants: 470375/2006-0; 558318/2009-6) during fieldwork, and a scholarship from the Brazilian Coordination for Training of Higher Education Personnel (CAPES) during the preparation of this manuscript. Araujo APA, 2017, AUSTRAL ENTOMOL, V56, P235, DOI 10.1111/aen.12226; Beekman M, 1998, ENTOMOL EXP APPL, V88, P147, DOI 10.1046/j.1570-7458.1998.00356.x; Billick I, 2001, J ANIM ECOL, V70, P895, DOI 10.1046/j.0021-8790.2001.00562.x; Bourguignon T, 2016, INSECT SOC, V63, P39, DOI 10.1007/s00040-015-0446-y; Bourguignon T, 2011, ECOL ENTOMOL, V36, P776, DOI 10.1111/j.1365-2311.2011.01328.x; Bouwma AM, 2006, INSECT SOC, V53, P412, DOI 10.1007/s00040-005-0886-5; Cole Blaine J., 2009, P74; Pequeno PACL, 2015, BASIC APPL ECOL, V16, P365, DOI 10.1016/j.baae.2015.03.001; Dornhaus A, 2012, ANNU REV ENTOMOL, V57, P123, DOI 10.1146/annurev-ento-120710-100604; Dupont L, 2009, INSECT CONSERV DIVER, V2, P53, DOI 10.1111/j.1752-4598.2008.00040.x; Engel MS, 2016, CURR BIOL, V26, P522, DOI 10.1016/j.cub.2015.12.061; Higashi M, 2000, TERMITES: EVOLUTION, SOCIALITY, SYMBIOSES, ECOLOGY, P169; Holldobler B., 2009, SUPERORGANISM; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; KASPARI M, 1995, BEHAV ECOL SOCIOBIOL, V37, P255, DOI 10.1007/s002650050189; Kaspari M, 1996, OIKOS, V76, P443, DOI 10.2307/3546338; Korb J, 2017, COMPARATIVE SOCIAL EVOLUTION, P124; Kramer BH, 2014, BEHAV ECOL SOCIOBIOL, V68, P41, DOI 10.1007/s00265-013-1620-8; Krishna K., 2013, AM MUSEUM NATURAL HI, V377, P1, DOI [10.1206/377.1, DOI 10.1206/377.1]; Lepage M, 2000, TERMITES: EVOLUTION, SOCIALITY, SYMBIOSES, ECOLOGY, P333; Pequeno PACL, 2013, ECOL ENTOMOL, V38, P515, DOI 10.1111/een.12044; Martius C, 1996, STUD NEOTROP FAUNA E, V31, P82, DOI 10.1076/snfe.31.2.82.13328; McGlynn TP, 2006, BIOTROPICA, V38, P419, DOI 10.1111/j.1744-7429.2006.00153.x; Naug D, 2006, BEHAV ECOL SOCIOBIOL, V60, P62, DOI 10.1007/s00265-005-0141-5; Oster GF, 1978, CASTE ECOLOGY SOCIAL; Pequeno PACL, 2017, ECOL ENTOMOL, V42, P115, DOI 10.1111/een.12362; Poitrineau K, 2009, INSECT SOC, V56, P119, DOI 10.1007/s00040-009-0004-6; R Development Core Team, 2016, R LANG ENV STAT COMP; Reznick D., 2014, PRINCETON GUIDE EVOL, P268; Shik JZ, 2008, FUNCT ECOL, V22, P674, DOI 10.1111/j.1365-2435.2008.01428.x; Smith AR, 2007, BEHAV ECOL SOCIOBIOL, V61, P1111, DOI 10.1007/s00265-006-0344-4; Thomas ML, 2003, AUST J ZOOL, V51, P551, DOI 10.1071/ZO03037; THORNE BL, 1984, BEHAV ECOL SOCIOBIOL, V14, P117, DOI 10.1007/BF00291903; Tian L, 2014, INT J BIOL SCI, V10, P296, DOI 10.7150/ijbs.6847; WALKER J, 1986, ECOLOGY, V67, P1052, DOI 10.2307/1939828 35 0 0 4 5 UNIV ESTADUAL FEIRA SANTANA FEIRA DE SANTANA AV TRANSORDESTINA S N NOVO HORIZONTE, FEIRA DE SANTANA, BAHAI CEP44036-900, BRAZIL 0361-6525 SOCIOBIOLOGY Sociobiology MAR 2018 65 1 1 9 10.13102/sociobiology.v65i1.1786 9 Entomology Entomology GI0DU WOS:000434040400002 2019-02-21 J Ivanov, N; Vuong, J; Gray, PB Ivanov, Nicholas; Vuong, Jimmy; Gray, Peter B. A Content Analysis of Testosterone Websites: Sex, Muscle, and Male Age-Related Thematic Differences AMERICAN JOURNAL OF MENS HEALTH English Article testosterone; androgen; life history theory; aging REPLACEMENT THERAPY; REPRODUCTIVE EFFORT; LIFE-HISTORIES; OLDER MEN; PRESCRIPTION; DEFICIENCY; EVOLUTION; TRENDS; METAANALYSIS; FATHERHOOD Male testosterone supplementation is a large and growing industry. How is testosterone marketed to male consumers online? The present exploratory study entailed a content coding analysis of the home pages of 49 websites focused on testosterone supplementation for men in the United States. Four hypotheses concerning anticipated age-related differences in content coding were also tested: more frequent longevity content toward older men, and more frequent social dominance/physical formidability, muscle, and sex content toward younger men. Codes were created based on inductive observations and drawing upon the medical, life history, and human behavioral endocrinology literatures. Approximately half (n = 24) of websites were oriented toward younger men (estimated audience of men 40 years of age or younger) and half (n = 25) toward older men (estimated audience over 40 years of age). Results indicated that the most frequent content codes concerned online sales (e.g., product and purchasing information). Apart from sales information, the most frequent codes concerned, in order, muscle, sex/sexual functioning, low T, energy, fat, strength, aging, and well-being, with all four hypotheses also supported. These findings are interpreted in the light of medical, evolutionary life history, and human behavioral endocrinology approaches. [Ivanov, Nicholas; Vuong, Jimmy; Gray, Peter B.] Univ Nevada, Dept Anthropol, Las Vegas, NV 89154 USA Gray, PB (reprint author), Univ Nevada, Dept Anthropol, Las Vegas, NV 89154 USA. peter.gray@unlv.edu Gray, Peter/0000-0003-1774-2468 Araujo AB, 2011, J CLIN ENDOCR METAB, V96, P3007, DOI 10.1210/jc.2011-1137; Archer J, 2006, NEUROSCI BIOBEHAV R, V30, P319, DOI 10.1016/j.neubiorev.2004.12.007; Aversa A, 2015, NAT REV UROL, V12, P641, DOI 10.1038/nrurol.2015.238; Bhasin S, 2005, J CLIN ENDOCR METAB, V90, P678, DOI 10.1210/jc.2004-1184; Bhasin S, 1996, NEW ENGL J MED, V335, P1, DOI 10.1056/NEJM199607043350101; Bhasin S, 2016, J CLIN ENDOCR METAB, V101, P827, DOI 10.1210/jc.2015-3843; Bhasin S, 2010, J CLIN ENDOCR METAB, V95, P2536, DOI 10.1210/jc.2009-2354; Brennan BP, 2013, AM J ADDICTION, V22, P158, DOI 10.1111/j.1521-0391.2013.00311.x; Bribiescas RG, 2016, MEN AGE WHAT EVOLUTI; Bribiescas RG, 2012, CURR ANTHROPOL, V53, pS424, DOI 10.1086/667538; Buss DM, 2016, EVOLUTION DESIRE STR; Chilet-Rosell E, 2010, BMC PUBLIC HEALTH, V10, DOI 10.1186/1471-2458-10-134; Clutton-Brock T, 2016, MAMMAL SOC; Coall DA, 2010, BEHAV BRAIN SCI, V33, P1, DOI 10.1017/S0140525X09991105; Corona G, 2014, J SEX MED, V11, P1577, DOI 10.1111/jsm.12536; Couper MP, 2013, SURV RES METHODS-GER, V7, P145; Daly M., 1988, HOMICIDE; Darwin C, 1871, DESCENT MAN SELECTIO; Gabrielsen JS, 2016, UROL CLIN N AM, V43, P261, DOI 10.1016/j.ucl.2016.01.010; Gangestad SW, 2015, HDB EVOLUTIONARY PSY; Geary D. C., 2010, MALE FEMALE EVOLUTIO; Geniole SN, 2017, HORM BEHAV, V92, P37, DOI 10.1016/j.yhbeh.2016.10.002; Gettler LT, 2014, EVOL ANTHROPOL, V23, P146, DOI 10.1002/evan.21412; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; Grana RA, 2014, AM J PREV MED, V46, P395, DOI 10.1016/j.amepre.2013.12.010; Gray P. B., EVOLUTIONAR IN PRESS; Gray P. B, 2010, FATHERHOOD EVOLUTION; Gray PB, 2013, EVOLUTION HUMAN SEXU; Gray PB, 2014, FATHERING, V12, P121; Gray PB, 2017, HORM BEHAV, V91, P52, DOI 10.1016/j.yhbeh.2016.07.004; Gray PB, 2012, EVOL PSYCHOL-US, V10, P631, DOI 10.1177/147470491201000319; Gray PB, 2011, P NATL ACAD SCI USA, V108, P16141, DOI 10.1073/pnas.1113323108; Griskevicius V., 2015, CAMBRIDGE HDB CONSUM, P122, DOI [10.1017/CBO9781107706552.005, DOI 10.1017/CBO9781107706552.005]; Grossmann M, 2015, CLIN ENDOCRINOL, V82, P234, DOI 10.1111/cen.12594; Handelsman DJ, 2013, MED J AUSTRALIA, V199, P548, DOI 10.5694/mja13.10111; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Henrich J, 2001, EVOL HUM BEHAV, V22, P165, DOI 10.1016/S1090-5138(00)00071-4; Kravitz RL, 2017, JAMA-J AM MED ASSOC, V317, P1124, DOI 10.1001/jama.2017.1364; KRIPPENDORF K, 2012, CONTENT ANAL INTRO I; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Marshall B. L., 2006, SEXUALITIES, V9, P345, DOI DOI 10.1177/1363460706065057; Mascarenhas A, 2016, AGING MALE, V19, P90, DOI 10.3109/13685538.2016.1150994; Mehta PH, 2008, J PERS SOC PSYCHOL, V94, P1078, DOI 10.1037/0022-3514.94.6.1078; Fernandez-Balsells MM, 2010, J CLIN ENDOCR METAB, V95, P2560, DOI 10.1210/jc.2009-2575; Min KJ, 2012, CURR BIOL, V22, pR792, DOI 10.1016/j.cub.2012.06.036; Morgentaler A, 2014, J SEX MED, V11, P1636, DOI 10.1111/jsm.12546; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; Muehlenbein MP, 2010, HUMAN EVOLUTIONARY B; Puts D, 2016, CURR OPIN PSYCHOL, V7, P28, DOI 10.1016/j.copsyc.2015.07.011; Puts DA, 2010, EVOL HUM BEHAV, V31, P157, DOI 10.1016/j.evolhumbehav.2010.02.005; Rao PK, 2017, J UROLOGY, V197, P1121, DOI 10.1016/j.juro.2016.10.063; Read J, 2013, J SEX MARITAL THER, V39, P541, DOI 10.1080/0092623X.2012.736922; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Saad F, 2012, CURR DIABETES REV, V8, P131, DOI 10.2174/157339912799424573; Saad G., 2011, CONSUMING INSTINCT W; Schwartz LM, 2013, JAMA INTERN MED, V173, P1460, DOI 10.1001/jamainternmed.2013.7579; Sell A, 2012, HUM NATURE-INT BIOS, V23, P30, DOI 10.1007/s12110-012-9131-2; Slatcher RB, 2011, SOC PSYCHOL PERS SCI, V2, P531, DOI 10.1177/1948550611400099; Snyder PJ, 2016, NEW ENGL J MED, V374, P611, DOI 10.1056/NEJMoa1506119; Snyder PJ, 2014, CLIN TRIALS, V11, P362, DOI 10.1177/1740774514524032; Stearns S, 1992, EVOLUTION LIFE HIST; Storer TW, 2017, J CLIN ENDOCR METAB, V102, P583, DOI 10.1210/jc.2016-2771; Trumble BC, 2015, J GERONTOL A-BIOL, V70, P1262, DOI 10.1093/gerona/glv051; Tuljapurkar SD, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000785; VAINIONPAA K, 2006, CRITICAL PUBLIC HLTH, V16, P19, DOI DOI 10.1080/09581590600601882; von Rueden CR, 2016, P NATL ACAD SCI USA, V113, P10824, DOI 10.1073/pnas.1606800113 66 0 0 0 2 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1557-9883 1557-9891 AM J MENS HEALTH Am. J. Mens Health MAR 2018 12 2 388 397 10.1177/1557988317734667 10 Public, Environmental & Occupational Health Public, Environmental & Occupational Health GC4JV WOS:000429751700021 29025355 DOAJ Gold, Green Published 2019-02-21 J Sepp, T; Giraudeau, M; Mcgraw, K; Kaasik, A Sepp, T.; Giraudeau, M.; Mcgraw, K.; Kaasik, A. Does City Living Lead to Slower Pace of Life: Urban Impacts on Avian Life-History Evolution INTEGRATIVE AND COMPARATIVE BIOLOGY English Meeting Abstract Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB) JAN 03-07, 2018 San Francisco, CA Soc Integrat & Comparat Biol Arizona State Univ, Tempe, AZ 85287 USA; Univ Tartu, Tartu, Estonia tuul.sepp@gmail.com 0 0 0 0 1 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. MAR 2018 58 1 90-4 E208 E208 1 Zoology Zoology GB8FA WOS:000429309602350 2019-02-21 J Treidel, LA; Chung, DJ; Williams, CM Treidel, L. A.; Chung, D. J.; Williams, C. M. Mitochondrial performance differs in concordance with life history strategies and energetic demands in the wing-polymorphic cricket, Gryllus firmus INTEGRATIVE AND COMPARATIVE BIOLOGY English Meeting Abstract Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB) JAN 03-07, 2018 San Francisco, CA Soc Integrat & Comparat Biol Univ Calif Berkeley, Berkeley, CA USA; Univ British Columbia, Vancouver, BC, Canada lisa.treidel@berkeley.edu 0 0 0 0 0 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. MAR 2018 58 1 128-4 E237 E237 1 Zoology Zoology GB8FA WOS:000429309603067 2019-02-21 J Bouteiller, XP; Barraquand, F; Garnier-Gere, P; Harmand, N; Laizet, Y; Raimbault, A; Segura, R; Lassois, L; Monty, A; Verdu, C; Mariette, S; Porte, AJ Bouteiller, Xavier P.; Barraquand, Frederic; Garnier-Gere, Pauline; Harmand, Noemie; Laizet, Yec'han; Raimbault, Alexandre; Segura, Raphael; Lassois, Ludivine; Monty, Arnaud; Verdu, Cindy; Mariette, Stephanie; Porte, Annabel J. No evidence for genetic differentiation in juvenile traits between Belgian and French populations of the invasive tree Robinia pseudoacacia PLANT ECOLOGY AND EVOLUTION English Article Biological invasion; Q(ST) - F-ST comparisons; local adaptation; selection; temperature; Robinia pseudoacacia LIFE-HISTORY EVOLUTION; PHENOTYPIC PLASTICITY; LOCAL ADAPTATION; QUANTITATIVE TRAITS; Q(ST)-F-ST COMPARISONS; MULTIVARIATE-ANALYSIS; ARABIDOPSIS-THALIANA; BIOLOGICAL INVASION; NATURAL-SELECTION; CLIMATE-CHANGE Background - The role of evolution in biological invasion studies is often overlooked. In order to evaluate the evolutionary mechanisms behind invasiveness, both quantitative and population genetics studies are underway on Robinia pseudoacacia L., one of the worst invasive tree species in Europe. Methods - A controlled experiment was set up using 2000 seeds from ten populations in Southern France and ten populations in Belgium. Seedlings were cultivated in two climatic chambers set at 18 degrees C and 22 degrees C. Early development life history traits (e.g. seedling phenology) and functional traits (e. g. growth rates) were monitored. Genotyping using SNP markers was used to evaluate the genetic differentiation among the populations and a Q(ST) - F-ST comparison was done in order to test for the role of selection. Results - Populations exhibited a strong plasticity to temperature for all measured traits, the warmer environment being generally more suitable, irrespective of their origin. No significant departure from neutral evolution was evidenced by the Q(ST) - F-ST comparisons, although we found a slightly significant differentiation at the molecular level. Conclusion - Plasticity for the functional and life history traits was evidenced but no genetic interaction suggesting no possible evolution of plasticity at those traits. Moreover, no support for genetic differentiation and local adaptation was found among studied populations within invasive range, raising two main questions: first, what is the role of selection on functional and life-history traits; and second, is the elapsed time since first introduction sufficient to allow evolution and local adaptation? [Bouteiller, Xavier P.; Garnier-Gere, Pauline; Harmand, Noemie; Laizet, Yec'han; Raimbault, Alexandre; Segura, Raphael; Mariette, Stephanie; Porte, Annabel J.] Univ Bordeaux, BIOGECO, INRA, FR-33610 Cestas, France; [Barraquand, Frederic] Univ Bordeaux, IMB, CNRS, FR-33600 Pessac, France; [Barraquand, Frederic] Univ Bordeaux, LabEx COTE, FR-33600 Pessac, France; [Lassois, Ludivine; Verdu, Cindy] Univ Liege, Biodivers & Landscape Unit, Gembloux Agrobio Tech, BE-5030 Gembloux, Belgium; [Monty, Arnaud] Univ Liege, Forest Management Unit, Gembloux Agrobio Tech, BE-5030 Gembloux, Belgium Bouteiller, XP (reprint author), Univ Bordeaux, BIOGECO, INRA, FR-33610 Cestas, France. bouteiller.xavier@gmail.com Barraquand, Frederic/0000-0002-4759-0269 French National Research Agency (ANR) within the Cluster of Excellence COTE [ANR-10-LABX-45]; [ANR-10-EQPX-16 Xyloforest] We are very grateful to Alexandra Quenu, Benjamin Dencausse, Nastasia Merceron, Patrick Reynet for their help in choosing populations, and to Adline Delcamp and Myriam Paillet for their help in realizing the lab work. This study has been carried out with financial support from the French National Research Agency (ANR) in the frame of the Investments for the future Program, within the Cluster of Excellence COTE (ANR-10-LABX-45). This study was funded by the ANR-10-EQPX-16 Xyloforest. Agrawal AA, 2001, SCIENCE, V294, P321, DOI 10.1126/science.1060701; Barrett SCH, 2008, MOL ECOL, V17, P373, DOI 10.1111/j.1365-294X.2007.03503.x; Blair AC, 2004, ECOLOGY, V85, P3035, DOI 10.1890/04-0341; Bonner FT, 2008, AGR HDB, V727; Bouteiller XP, 2017, SEED SCI RES, V27, P243, DOI 10.1017/S0960258517000150; Burns R. M., 1990, HARDWOODS AGR HDB, V654; Chhatre VE, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1593-0; Chun YJ, 2011, MOL ECOL, V20, P1378, DOI 10.1111/j.1365-294X.2011.05013.x; Chun YJ, 2009, MOL ECOL, V18, P3020, DOI 10.1111/j.1365-294X.2009.04254.x; Cierjacks A, 2013, J ECOL, V101, P1623, DOI 10.1111/1365-2745.12162; Colautti RI, 2015, MOL ECOL, V24, P1999, DOI 10.1111/mec.13162; Colautti RI, 2013, SCIENCE, V342, P364, DOI 10.1126/science.1242121; Coutts SR, 2011, BIOL INVASIONS, V13, P1649, DOI 10.1007/s10530-010-9922-5; DAISIE, 2009, HDB AL SPEC EUR, DOI [10.1007/978-1-4020-8280-1, DOI 10.1007/978-1-4020-8280-1]; Davidson AM, 2011, ECOL LETT, V14, P419, DOI 10.1111/j.1461-0248.2011.01596.x; De Frenne P, 2010, FOREST ECOL MANAG, V259, P809, DOI 10.1016/j.foreco.2009.04.038; Dlugosch KM, 2008, ECOL LETT, V11, P701, DOI 10.1111/j.1461-0248.2008.01181.x; Donohue K, 2005, EVOLUTION, V59, P758; Donohue K, 2010, ANNU REV ECOL EVOL S, V41, P293, DOI 10.1146/annurev-ecolsys-102209-144715; Earl DA, 2012, CONSERV GENET RESOUR, V4, P359, DOI 10.1007/s12686-011-9548-7; Ebeling SK, 2011, J PLANT ECOL-UK, V4, P209, DOI 10.1093/jpe/rtr007; Eriksen RL, 2012, BIOL INVASIONS, V14, P1459, DOI 10.1007/s10530-012-0172-6; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Fick SE, 2017, INT J CLIMATOLOGY; Forest Research, 2015, SEED STOR PRET ROB P; GENTY B, 1989, BIOCHIM BIOPHYS ACTA, V990, P87, DOI 10.1016/S0304-4165(89)80016-9; Gilbert KJ, 2015, MOL ECOL RESOUR, V15, P262, DOI 10.1111/1755-0998.12303; Gioria M, 2017, BIOL INVASIONS, V19, P1055, DOI 10.1007/s10530-016-1349-1; Goudet J, 2006, GENETICS, V172, P1337, DOI 10.1534/genetics.105.050583; Hendry AP, 2002, TRENDS ECOL EVOL, V17, P502, DOI 10.1016/S0169-5347(02)02603-4; HEYWOOD VH, 1989, BIOL INVASIONS GLOBA, P31; Holsinger KE, 1999, HEREDITAS, V130, P245, DOI 10.1111/j.1601-5223.1999.00245.x; Hyldgaard B, 2012, AQUAT BOT, V97, P49, DOI 10.1016/j.aquabot.2011.11.004; Isik F., 2009, 145 SAS, P1; Iverson LR, 1998, ECOL MONOGR, V68, P465, DOI 10.1890/0012-9615(1998)068[0465:PAOTSF]2.0.CO;2; Johansen P, 2013, FORENSIC SCI INT-GEN, V7, P482, DOI 10.1016/j.fsigen.2013.04.009; Jombart T, 2009, HEREDITY, V102, P330, DOI 10.1038/hdy.2008.130; Jombart T, 2008, BIOINFORMATICS, V24, P1403, DOI 10.1093/bioinformatics/btn129; Keller SR, 2008, ECOL LETT, V11, P852, DOI 10.1111/j.1461-0248.2008.01188.x; Kopelman NM, 2015, MOL ECOL RESOUR, V15, P1179, DOI 10.1111/1755-0998.12387; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; Kruschke J., 2014, DOING BAYESIAN DATA; Lamarque LJ, 2015, BIOL INVASIONS, V17, P1109, DOI 10.1007/s10530-014-0781-3; Lavergne S, 2007, P NATL ACAD SCI USA, V104, P3883, DOI 10.1073/pnas.0607324104; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Leger EA, 2007, J EVOLUTION BIOL, V20, P1090, DOI 10.1111/j.1420-9101.2006.01292.x; Leinonen T, 2013, NAT REV GENET, V14, P179, DOI 10.1038/nrg3395; Maron JL, 2004, ECOL MONOGR, V74, P261, DOI 10.1890/03-4027; Maron JL, 2007, EVOLUTION, V61, P1912, DOI 10.1111/j.1558-5646.2007.00153.x; Matesanz S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044955; Merila J, 2001, J EVOLUTION BIOL, V14, P892, DOI 10.1046/j.1420-9101.2001.00348.x; Molina-Montenegro MA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047620; Monty A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0055627; O'Hara RB, 2005, GENETICS, V171, P1331, DOI 10.1534/genetics.105.044545; Ovaskainen O, 2011, GENETICS, V189, P621, DOI 10.1534/genetics.111.129387; Pimentel D, 2001, AGR ECOSYST ENVIRON, V84, P1, DOI 10.1016/S0167-8809(00)00178-X; Plummer M., 2003, P 3 INT WORKSH DISTR, V3, P20; Postma FM, 2016, P NATL ACAD SCI USA, V113, P7590, DOI 10.1073/pnas.1606303113; PRENTICE IC, 1992, J BIOGEOGR, V19, P117, DOI 10.2307/2845499; Prentis PJ, 2008, TRENDS PLANT SCI, V13, P288, DOI 10.1016/j.tplants.2008.03.004; Pritchard JK, 2000, GENETICS, V155, P945; R Development Core Team, 2015, R LANG ENV STAT COMP; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; Richards CL, 2006, ECOL LETT, V9, P981, DOI 10.1111/j.1461-0248.2006.00950.x; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Royal Botanic Gardens Kew, 2015, SEED INF DAT; Santis X, 2015, PERSPECT PLANT ECOL, V17, P185, DOI 10.1016/j.ppees.2015.02.006; SPITZE K, 1993, GENETICS, V135, P367; Su Y., 2012, R2JAGS PACK RUNN JAG; Valladares F, 2006, J ECOL, V94, P1103, DOI 10.1111/j.1365-2745.2006.01176.x; Verdu CF, 2016, ECOL EVOL, V6, P7323, DOI 10.1002/ece3.2466; Vitkova M, 2017, FOREST ECOL MANAG, V384, P287, DOI 10.1016/j.foreco.2016.10.057; Vitousek PM, 1997, NEW ZEAL J ECOL, V21, P1; Vitousek PM, 1996, AM SCI, V84, P468; Wainwright CE, 2013, BIOL INVASIONS, V15, P2253, DOI 10.1007/s10530-013-0449-4; Walck JL, 2011, GLOBAL CHANGE BIOL, V17, P2145, DOI 10.1111/j.1365-2486.2010.02368.x; WARD JH, 1963, J AM STAT ASSOC, V58, P236, DOI 10.2307/2282967; Whitlock MC, 1999, GENET RES, V74, P215, DOI 10.1017/S0016672399004127; Whitlock MC, 2008, MOL ECOL, V17, P1885, DOI 10.1111/j.1365-294X.2008.03712.x; Whitlock MC, 2009, GENETICS, V183, P1055, DOI 10.1534/genetics.108.099812; Woodward FI, 1987, CLIMATE PLANT DISTRI; WRIGHT S, 1951, ANN EUGENIC, V15, P323 82 0 0 4 4 SOC ROYAL BOTAN BELGIQUE MEISE NIEUWELAAN 38, B-1860 MEISE, BELGIUM 2032-3913 2032-3921 PLANT ECOL EVOL Plant Ecol. Evol. MAR 2018 151 1 5 17 10.5091/plecevo.2018.1403 13 Plant Sciences Plant Sciences GC0GP WOS:000429455500002 2019-02-21 J Immonen, E; Hamalainen, A; Schuett, W; Tarka, M Immonen, Elina; Hamalainen, Anni; Schuett, Wiebke; Tarka, Maja Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Review Sexual conflict; Sexual dimorphism; Genetic architecture; Personality; Life history evolution; Physiology ESTROGEN-RECEPTOR-ALPHA; SEXUALLY ANTAGONISTIC ALLELES; SNAKE THAMNOPHIS-ORDINOIDES; ANXIETY-RELATED BEHAVIORS; PITUITARY-ADRENAL AXIS; JUVENILE-HORMONE; DROSOPHILA-MELANOGASTER; SIZE DIMORPHISM; CORRELATIONAL SELECTION; SEED BEETLES Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration. [Immonen, Elina] Uppsala Univ, Dept Ecol & Genet, EBC, Norbyvagen 18 D, SE-75236 Uppsala, Sweden; [Hamalainen, Anni] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada; [Schuett, Wiebke] Univ Hamburg, Inst Zool, Martin Luther King Pl 3, D-20146 Hamburg, Germany; [Tarka, Maja] Norwegian Univ Sci & Technol NTNU, Ctr Biodivers Dynam, Dept Biol, Hogskoleringen 5, N-7491 Trondheim, Norway Immonen, E (reprint author), Uppsala Univ, Dept Ecol & Genet, EBC, Norbyvagen 18 D, SE-75236 Uppsala, Sweden. elina.immonen@ebc.uu.se Hamalainen, Anni/L-9894-2018 Schuett, Wiebke/0000-0002-4149-6095 European Research Council [AdG-294333]; Alberta Biodiversity Conservation Chair; Research Council of Norway through Centres of Excellence [223257]; POLS; VW Foundation EI was funded by European Research Council (AdG-294333, grant to Goran Arnqvist), AH was supported by the Alberta Biodiversity Conservation Chair and MT by the Research Council of Norway through its Centres of Excellence funding scheme, project number 223257. This study was also funded by the POLS workshop organizers Melanie Dammhahn, Niels Dingemanse, Petri Niemela, and Denis Reale as well as the VW Foundation. Abouheif E, 1997, AM NAT, V149, P540, DOI 10.1086/286004; Adler MI, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a017566; Albert AYK, 2005, SCIENCE, V310, P119, DOI 10.1126/science.1115328; ALICCHIO R, 1971, Bollettino di Zoologia, V38, P75; Andersson M., 1994, SEXUAL SELECTION; Armbruster WS, 2014, PHILOS T R SOC B, V369, DOI 10.1098/rstb.2013.0245; Arnold AP, 2004, ENDOCRINOLOGY, V145, P1057, DOI 10.1210/en.2003-1491; Arnold AP, 2009, HORM BEHAV, V55, P570, DOI 10.1016/j.yhbeh.2009.03.011; ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Arnqvist G, 2005, SEXUAL CONFLICT; Arnqvist G, 2017, FUNCT ECOL, P1; Arnqvist G, 2010, EVOLUTION, V64, P3354, DOI 10.1111/j.1558-5646.2010.01135.x; Arnqvist G, 2010, P ROY SOC B-BIOL SCI, V277, P1345, DOI 10.1098/rspb.2009.2026; Avale ME, 2004, MOL PSYCHIATR, V9, P718, DOI 10.1038/sj.mp.4001474; Avila FW, 2011, ANNU REV ENTOMOL, V56, P21, DOI 10.1146/annurev-ento-120709-144823; Baar EL, 2016, AGING CELL, V15, P155, DOI 10.1111/acel.12425; Bale TL, 2015, NAT NEUROSCI, V18, P1413, DOI 10.1038/nn.4112; Bales KL, 2016, HORM BEHAV, V77, P249, DOI 10.1016/j.yhbeh.2015.05.021; Barker BS, 2010, EVOLUTION, V64, P2601, DOI 10.1111/j.1558-5646.2010.01023.x; Barnes AI, 2008, P ROY SOC B-BIOL SCI, V275, P1675, DOI 10.1098/rspb.2008.0139; Barrett CE, 2014, NEUROPHARMACOLOGY, V85, P357, DOI 10.1016/j.neuropharm.2014.05.041; Barson NJ, 2015, NATURE, V528, P405, DOI 10.1038/nature16062; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bath E, 2016, NAT ECOL EVOL, V1; Belgacem YH, 2006, J NEUROBIOL, V66, P19, DOI 10.1002/neu.20193; Ben Zion IZ, 2006, MOL PSYCHIATR, V11, P782, DOI 10.1038/sj.mp.4001832; Bendesky A, 2017, NATURE, V544, P434, DOI 10.1038/nature22074; Berg EC, 2012, P ROY SOC B-BIOL SCI, V279, P4296, DOI 10.1098/rspb.2012.1345; Berger D, 2016, AM NAT, V188, pE98, DOI 10.1086/687963; Berger D, 2014, EVOLUTION, V68, P3457, DOI 10.1111/evo.12528; Berger D, 2014, EVOLUTION, V68, P2184, DOI 10.1111/evo.12439; Bilde T, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-33; BIRD MA, 1972, GENETICS, V72, P475; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Bjorklund M, 2013, J EVOLUTION BIOL, V26, P1, DOI 10.1111/jeb.12044; Blanckenhorn WU, 2007, AM NAT, V169, P245, DOI 10.1086/510597; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Book AS, 2001, AGGRESS VIOLENT BEH, V6, P579, DOI 10.1016/S1359-1789(00)00032-X; Bosch OJ, 2012, HORM BEHAV, V61, P293, DOI 10.1016/j.yhbeh.2011.11.002; Bourke CH, 2012, HORM BEHAV, V62, P210, DOI 10.1016/j.yhbeh.2012.02.024; BRODIE ED, 1992, EVOLUTION, V46, P1284, DOI 10.1111/j.1558-5646.1992.tb01124.x; BRODIE ED, 1989, NATURE, V342, P542, DOI 10.1038/342542a0; Brooks RC, 2017, ANN NY ACAD SCI, V1389, P92, DOI 10.1111/nyas.13302; Burger JM, 2004, SCI AGING KNOWLEDGE, V28, pe30; Cain K, 2016, SNOWBIRD INTEGRATIVE, P120; Camus MF, 2015, CURR BIOL, V25, P2717, DOI 10.1016/j.cub.2015.09.012; Camus MF, 2012, CURR BIOL, V22, P1717, DOI 10.1016/j.cub.2012.07.018; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Careau V, 2012, PHYSIOL BIOCHEM ZOOL, V85, P543, DOI 10.1086/666970; Careau V, 2010, AM NAT, V175, P753, DOI 10.1086/652435; Carere C, 2010, CURR ZOOL, V56, P728; Celec P, 2015, FRONT NEUROSCI-SWITZ, V9, DOI 10.3389/fnins.2015.00012; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; Cheng CD, 2016, PLOS GENET, V12, DOI 10.1371/journal.pgen.1006170; CHEVERUD JM, 1984, J THEOR BIOL, V110, P155, DOI 10.1016/S0022-5193(84)80050-8; Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991; Cleary C, 2008, BRAIN RES BULL, V76, P469, DOI 10.1016/j.brainresbull.2008.03.005; Cone RD, 2005, NAT NEUROSCI, V8, P571, DOI 10.1038/nn1455; Connallon T, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2123; Connallon T, 2011, GENETICS, V187, P919, DOI 10.1534/genetics.110.123729; Connallon T, 2010, EVOLUTION, V64, P3417, DOI 10.1111/j.1558-5646.2010.01136.x; Cox RM, 2017, AM NAT, V189, P315, DOI 10.1086/690105; Cox RM, 2009, AM NAT, V173, P176, DOI 10.1086/595841; Coyne SP, 2015, BEHAV BRAIN RES, V292, P50, DOI 10.1016/j.bbr.2015.06.014; Cushing BS, 2008, J NEUROSCI, V28, P10399, DOI 10.1523/JNEUROSCI.1928-08.2008; da Fonseca RR, 2016, MAR GENOM, V30, P3, DOI 10.1016/j.margen.2016.04.012; Da Silva JAP, 1999, ANN NY ACAD SCI, V876, P102; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; De Vries GJ, 2004, ENDOCRINOLOGY, V145, P1063, DOI 10.1210/en.2003-1504; De Vries GJ, 2002, J NEUROSCI, V22, P9005; Dean R, 2014, J EVOLUTION BIOL, V27, P1443, DOI 10.1111/jeb.12345; Delahaie B, 2017, HEREDITY, V119, P76, DOI 10.1038/hdy.2017.15; Delph LF, 2011, EVOLUTION, V65, P2872, DOI 10.1111/j.1558-5646.2011.01350.x; Dobler R, 2014, J EVOLUTION BIOL, V27, P2021, DOI 10.1111/jeb.12468; Dochtermann NA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2201; Dochtermann NA, 2011, EVOLUTION, V65, P1814, DOI 10.1111/j.1558-5646.2011.01264.x; Dordevic M, 2017, EVOLUTION, V71, P274, DOI 10.1111/evo.13109; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; Dumais KM, 2016, FRONT NEUROENDOCRIN, V40, P1, DOI 10.1016/j.yfrne.2015.04.003; Edwards HA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0138439; Ellegren H, 2007, NAT REV GENET, V8, P689, DOI 10.1038/nrg2167; Emaresi G, 2014, AM NAT, V183, P269, DOI 10.1086/674444; Emlen DJ, 2012, SCIENCE, V337, P860, DOI 10.1126/science.1224286; FAIRBAIRN DJ, 1994, AM NAT, V144, P101, DOI 10.1086/285663; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; FAIRBAIRN DJ, 2007, SEX SIZE GENDER ROLE; Faraone SV, 2001, AM J PSYCHIAT, V158, P1052, DOI 10.1176/appi.ajp.158.7.1052; Fargallo JA, 2014, BEHAV ECOL, V25, P76, DOI 10.1093/beheco/art088; Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539; Fox CW, 2004, J EVOLUTION BIOL, V17, P1007, DOI 10.1111/j.1420-9101.2004.00752.x; Fricke C, 2010, EVOLUTION, V64, P2746, DOI 10.1111/j.1558-5646.2010.01022.x; Fry JD, 2010, EVOLUTION, V64, P1510, DOI 10.1111/j.1558-5646.2009.00898.x; Futuyma DJ, 2010, EVOLUTION, V64, P1865, DOI 10.1111/j.1558-5646.2010.00960.x; Gaillard J.-M, 2016, ENCY EVOLUTIONARY BI, V2, P312; Gallach M, 2011, TRENDS ECOL EVOL, V26, P222, DOI 10.1016/j.tree.2011.02.004; Garamszegi LZ, 2014, ECOL EVOL, V4, P1466, DOI 10.1002/ece3.1041; Garant D, 2008, MOL ECOL, V17, P179, DOI 10.1111/j.1365-294X.2007.03436.x; Gatewood JD, 2006, J NEUROSCI, V26, P2335, DOI 10.1523/JNEUROSCI.3743-05.2006; Gemmell NJ, 2004, TRENDS ECOL EVOL, V19, P238, DOI 10.1016/j.tree.2004.02.002; GILBERT LI, 1961, GEN COMP ENDOCR, V1, P453, DOI 10.1016/0016-6480(61)90008-9; Glazier DS, 2015, BIOL REV, V90, P377, DOI 10.1111/brv.12115; Gosden TP, 2014, EVOLUTION, V68, P1687, DOI 10.1111/evo.12398; Gosden TP, 2012, EVOLUTION, V66, P2106, DOI 10.1111/j.1558-5646.2012.01579.x; GOULD SJ, 1966, BIOL REV, V41, P587, DOI 10.1111/j.1469-185X.1966.tb01624.x; Grady DL, 2013, J NEUROSCI, V33, P286, DOI 10.1523/JNEUROSCI.3515-12.2013; Grady DL, 2005, AM J MED GENET B, V136B, P33, DOI 10.1002/ajmg.b.30182; Grath S, 2016, ANNU REV GENET, V50, P29, DOI 10.1146/annurev-genet-120215-035429; Hamalainen A, 2015, OECOLOGIA, V178, P1063, DOI 10.1007/s00442-015-3297-3; Halloran J, 2012, NEUROSCIENCE, V223, P102, DOI 10.1016/j.neuroscience.2012.06.054; Hamalainen A, 2018, BEHAV ECOL SOCIOBIOL; Han CS, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2017.1658; HANDA RJ, 1994, HORM BEHAV, V28, P464, DOI 10.1006/hbeh.1994.1044; Hansen TF, 2008, J EVOLUTION BIOL, V21, P1201, DOI 10.1111/j.1420-9101.2008.01573.x; Harrison PW, 2015, P NATL ACAD SCI USA, V112, P4393, DOI 10.1073/pnas.1501339112; Hartmann B, 2011, RNA, V17, P453, DOI 10.1261/rna.2460411; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hau M, 2015, FRONT ZOOL, V12, DOI 10.1186/1742-9994-12-S1-S7; Hayward AD, 2013, PARASITE IMMUNOL, V35, P362, DOI 10.1111/pim.12054; Hollis B, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4482; Holmes A, 2003, GENES BRAIN BEHAV, V2, P365, DOI 10.1046/j.1601-183X.2003.00050.x; Holtmann B, 2016, MOL ECOL, V25, P706, DOI 10.1111/mec.13514; Horton BM, 2014, P NATL ACAD SCI USA, V111, P1443, DOI 10.1073/pnas.1317165111; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Husby A, 2013, EVOLUTION, V67, P609, DOI 10.1111/j.1558-5646.2012.01806.x; Immonen E, 2016, HEREDITY, V116, P329, DOI 10.1038/hdy.2015.112; Immonen E, 2016, J EVOLUTION BIOL, V29, P360, DOI 10.1111/jeb.12789; Immonen E, 2017, GENOME BIOL EVOL, V9, P677, DOI 10.1093/gbe/evx029; Immonen E, 2014, ECOL EVOL, V4, P2186, DOI 10.1002/ece3.1098; Innocenti P, 2011, SCIENCE, V332, P845, DOI 10.1126/science.1201157; Isaac JL, 2005, MAMMAL REV, V35, P101, DOI 10.1111/j.1365-2907.2005.00045.x; Iwasa Y, 2001, GENETICS, V158, P1801; Jazin E, 2010, NAT REV NEUROSCI, V11, P9, DOI 10.1038/nrn2754; JONES G, 1995, ANNU REV ENTOMOL, V40, P147, DOI 10.1146/annurev.en.40.010195.001051; Juntti SA, 2010, NEURON, V66, P260, DOI 10.1016/j.neuron.2010.03.024; Ketterson ED, 2005, AM NAT, V166, pS85, DOI 10.1086/444602; Killen SS, 2013, TRENDS ECOL EVOL, V28, P651, DOI 10.1016/j.tree.2013.05.005; Kim SY, 2013, HEREDITY, V111, P139, DOI 10.1038/hdy.2013.29; KINGSOLVER JG, 1987, EVOLUTION, V41, P491, DOI 10.1111/j.1558-5646.1987.tb05820.x; Kittilsen S, 2009, HORM BEHAV, V56, P292, DOI 10.1016/j.yhbeh.2009.06.006; Klingenberg CP, 2008, ANNU REV ECOL EVOL S, V39, P115, DOI 10.1146/annurev.ecolsys.37.091305.110054; Kolluru GR, 2004, J COMP PHYSIOL B, V174, P641, DOI 10.1007/s00360-004-0455-z; Konarzewski M, 2013, J COMP PHYSIOL B, V183, P27, DOI 10.1007/s00360-012-0698-z; Koolhaas JM, 2010, FRONT NEUROENDOCRIN, V31, P307, DOI 10.1016/j.yfrne.2010.04.001; Korsten P, 2010, MOL ECOL, V19, P832, DOI 10.1111/j.1365-294X.2009.04518.x; Krams IA, 2017, P ROY SOC B-BIOL SCI, V284, DOI 10.1098/rspb.2016.2481; Krasnov BR, 2004, J INSECT PHYSIOL, V50, P149, DOI 10.1016/j.jinsphys.2003.11.001; Kudielka BM, 2005, BIOL PSYCHOL, V69, P113, DOI 10.1016/j.biopsycho.2004.11.009; Kudwa AE, 2003, J NEUROENDOCRINOL, V15, P978, DOI 10.1046/j.1365-2826.2003.01089.x; Kudwa AE, 2006, NEUROSCIENCE, V138, P921, DOI 10.1016/j.neuroscience.2005.10.018; Kupper C, 2016, NAT GENET, V48, P79, DOI 10.1038/ng.3443; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Lank DB, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0653; Lank DB, 1999, P ROY SOC B-BIOL SCI, V266, P2323, DOI 10.1098/rspb.1999.0926; LANK DB, 1995, NATURE, V378, P59, DOI 10.1038/378059a0; Le Couteur DG, 2016, CELL MOL LIFE SCI, V73, P1237, DOI 10.1007/s00018-015-2120-y; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lehtonen J, 2016, EVOLUTION, V70, P1129, DOI 10.1111/evo.12926; Lemos B, 2008, SCIENCE, V319, P91, DOI 10.1126/science.1148861; Lenormand T, 2003, GENETICS, V163, P811; Lensing CJ, 2016, ACS CHEM NEUROSCI, V7, P1283, DOI 10.1021/acschemneuro.6b00156; Lighthall NR, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006002; Lovlie H, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1039; Lund TD, 2005, ENDOCRINOLOGY, V146, P797, DOI 10.1210/en.2004-1158; Luo JN, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099732; Lynch M, 1998, GENETICS ANAL QUANTI; Mafli A, 2011, ANIM BEHAV, V81, P859, DOI 10.1016/j.anbehav.2011.01.025; Magurran AE, 2000, J FISH BIOL, V57, P839, DOI 10.1006/jfbi.2000.1391; Magwere T, 2004, J GERONTOL A-BIOL, V59, P3; Maklakov AA, 2013, BIOESSAYS, V35, P717, DOI 10.1002/bies.201300021; Maklakov AA, 2008, CURR BIOL, V18, P1062, DOI 10.1016/j.cub.2008.06.059; Mank JE, 2007, GENOME RES, V17, P618, DOI 10.1101/gr.6031907; Mank JE, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-016-0006; Mank JE, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a017715; Mank JE, 2009, AM NAT, V173, P141, DOI 10.1086/595754; Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012; Mateos-Gonzalez F, 2012, ANIM BEHAV, V83, P229, DOI 10.1016/j.anbehav.2011.10.030; Maures TJ, 2014, SCIENCE, V343, P541, DOI 10.1126/science.1244160; McGlothlin JW, 2007, AM NAT, V170, P864, DOI 10.1086/522838; Melis MR, 2006, EUR J NEUROSCI, V24, P2021, DOI 10.1111/j.1460-9568.2006.05043.x; Meunier J, 2011, BEHAV ECOL SOCIOBIOL, V65, P559, DOI 10.1007/s00265-010-1092-z; Mills SC, 2012, P ROY SOC B-BIOL SCI, V279, P1889, DOI 10.1098/rspb.2011.2340; Mokkonen M, 2011, SCIENCE, V334, P972, DOI 10.1126/science.1208708; Moshitzky P, 1996, ARCH INSECT BIOCHEM, V32, P363, DOI 10.1002/(SICI)1520-6327(1996)32:3/4<363::AID-ARCH9>3.3.CO;2-J; Silva PIM, 2010, APPL ANIM BEHAV SCI, V124, P75, DOI 10.1016/j.applanim.2010.01.008; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; Mueller JC, 2014, MOL ECOL, V23, P2876, DOI 10.1111/mec.12763; Mueller JC, 2013, MOL ECOL, V22, P3629, DOI 10.1111/mec.12288; Mundy NI, 2005, P ROY SOC B-BIOL SCI, V272, P1633, DOI 10.1098/rspb.2005.3107; NIJHOUT HF, 1982, Q REV BIOL, V57, P109, DOI 10.1086/412671; Novicic ZK, 2015, J EVOLUTION BIOL, V28, P338, DOI 10.1111/jeb.12565; Ogawa S, 2000, P NATL ACAD SCI USA, V97, P14737, DOI 10.1073/pnas.250473597; Overli O, 2006, PHYSIOL BEHAV, V87, P506, DOI 10.1016/j.physbeh.2005.11.012; Overli O, 2007, NEUROSCI BIOBEHAV R, V31, P396, DOI 10.1016/j.neubiorev.2006.10.006; Paaby AB, 2013, TRENDS GENET, V29, P66, DOI 10.1016/j.tig.2012.10.010; Panaitof SC, 2004, J INSECT PHYSIOL, V50, P715, DOI 10.1016/j.jinsphys.2004.05.008; Parker G. A., 1979, SEXUAL SELECTION SEX; Perez-Barberia FJ, 2008, OECOLOGIA, V157, P21, DOI 10.1007/s00442-008-1056-4; Perry JC, 2014, MOL BIOL EVOL, V31, P1206, DOI 10.1093/molbev/msu072; Peters R.H., 1983, P1; Poiani A, 2006, BEHAV ECOL SOCIOBIOL, V60, P289, DOI 10.1007/s00265-006-0178-0; Pointer MA, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003697; Poissant J, 2010, EVOLUTION, V64, P97, DOI 10.1111/j.1558-5646.2009.00793.x; Raine A, 2008, CURR DIR PSYCHOL SCI, V17, P323, DOI 10.1111/j.1467-8721.2008.00599.x; Rantala MJ, 2003, P ROY SOC B-BIOL SCI, V270, P2257, DOI 10.1098/rspb.2003.2472; Raskin K, 2009, J NEUROSCI, V29, P4461, DOI 10.1523/JNEUROSCI.0296-09.2009; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reeve JP, 1996, EVOLUTION, V50, P1927, DOI 10.1111/j.1558-5646.1996.tb03580.x; Reinhold K, 2013, EVOLUTION, V67, P3662, DOI 10.1111/evo.12224; Reinius B, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000100; Restif O, 2010, P ROY SOC B-BIOL SCI, V277, P2247, DOI 10.1098/rspb.2010.0188; Reynolds John D., 2003, P195; RICE WR, 1984, EVOLUTION, V38, P735, DOI 10.1111/j.1558-5646.1984.tb00346.x; Rice WR, 2001, J EVOLUTION BIOL, V14, P685, DOI 10.1046/j.1420-9101.2001.00319.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Ritz KR, 2017, TRENDS GENET, V33, P364, DOI 10.1016/j.tig.2017.03.003; Riyahi S, 2015, EPIGENETICS-US, V10, P516, DOI 10.1080/15592294.2015.1046027; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; Rollins LA, 2015, CURR ZOOL, V61, P505, DOI 10.1093/czoolo/61.3.505; Ronning B, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108675; Roulin A, 2013, SEMIN CELL DEV BIOL, V24, P594, DOI 10.1016/j.semcdb.2013.05.005; Saccone G, 2002, GENETICA, V116, P15, DOI 10.1023/A:1020903523907; Saino N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058024; Saltz JB, 2017, TRENDS ECOL EVOL, V32, P279, DOI 10.1016/j.tree.2016.12.008; Sapolsky RM, 2005, SCIENCE, V308, P648, DOI 10.1126/science.1106477; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schal C, 1997, ARCH INSECT BIOCHEM, V35, P405, DOI 10.1002/(SICI)1520-6327(1997)35:4<405::AID-ARCH5>3.3.CO;2-3; SCHEINER SM, 1991, GENETICA, V84, P123, DOI 10.1007/BF00116552; Schinka JA, 2002, AM J MED GENET, V114, P643, DOI 10.1002/ajmg.10649; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; Shelby JA, 2007, J EXP ZOOL PART B, V308B, P417, DOI 10.1002/jez.b.21165; Shih J. C., 1999, Neurobiology (Budapest), V7, P235; SHINE R, 1989, AM NAT, V134, P311, DOI 10.1086/284982; Sichova K, 2014, ANIM BEHAV, V92, P229, DOI 10.1016/j.anbehav.2014.04.011; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sinervo B, 2002, HEREDITY, V89, P329, DOI 10.1038/sj.hdy.6800148; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; Singh P, 2015, GENETICS, V199, P1, DOI 10.1534/genetics.114.169771; Sirot LK, 2015, CSH PERSPECT BIOL, V7, DOI 10.1101/cshperspect.a017533; Smith CA, 2004, BIOESSAYS, V26, P120, DOI 10.1002/bies.10400; Smith JM, 1982, EVOLUTION THEORY GAM; Sokal R. R., 1978, Ecological genetics: the interface., P215; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stillwell RC, 2010, ANNU REV ENTOMOL, V55, P227, DOI 10.1146/annurev-ento-112408-085500; Strambi A, 1997, ARCH INSECT BIOCHEM, V35, P393, DOI 10.1002/(SICI)1520-6327(1997)35:4<393::AID-ARCH4>3.3.CO;2-J; Svensson E, 2001, EVOLUTION, V55, P2053; Swanson EM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2458; Tarka M, 2018, BEHAV ECOL IN PRESS; Tarka M, 2014, AM NAT, V183, P62, DOI 10.1086/674072; Tatar M, 2003, SCIENCE, V299, P1346, DOI 10.1126/science.1081447; Teplitsky C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090444; Tower J, 2006, MECH AGEING DEV, V127, P705, DOI 10.1016/j.mad.2006.05.001; Trumbo Stephen T., 2002, P115; Tudorache C, 2013, J ENDOCRINOL, V219, P251, DOI 10.1530/JOE-13-0225; Tuttle EM, 2016, CURR BIOL, V26, P344, DOI 10.1016/j.cub.2015.11.069; van Dongen WFD, 2015, BMC EVOL BIOL, V15, DOI 10.1186/s12862-015-0533-8; van Oers K, 2005, BEHAVIOUR, V142, P1185, DOI 10.1163/156853905774539364; Veltsos P, 2017, NAT COMMUN, V8, DOI 10.1038/s41467-017-02232-6; Vieira C, 2000, GENETICS, V154, P213; Vinogradov AE, 1998, ACTA BIOTHEOR, V46, P157, DOI 10.1023/A:1001181921303; Walsh B, 2009, ANNU REV ECOL EVOL S, V40, P41, DOI 10.1146/annurev.ecolsys.110308.120232; Wedell N, 2006, ANIM BEHAV, V71, P999, DOI 10.1016/j.anbehav.2005.06.023; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Wright AE, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14251; Wu MV, 2011, CURR OPIN NEUROBIOL, V21, P116, DOI 10.1016/j.conb.2010.09.014; Wu MV, 2009, CELL, V139, P61, DOI 10.1016/j.cell.2009.07.036; Wyatt GR, 1996, ADV INSECT PHYSIOL, V26, P1, DOI 10.1016/S0065-2806(08)60030-2; Wyman MJ, 2013, J EVOLUTION BIOL, V26, P2428, DOI 10.1111/jeb.12236; Wyman MJ, 2013, J EVOLUTION BIOL, V26, P2070, DOI 10.1111/jeb.12188; Wyman MJ, 2014, AM NAT, V184, P326, DOI 10.1086/677310; Xu XH, 2012, CELL, V148, P1066, DOI 10.1016/j.cell.2012.02.026; Yamamoto R, 2013, BMC BIOL, V11, DOI 10.1186/1741-7007-11-85; Zauner H, 2003, EVOL DEV, V5, P466, DOI 10.1046/j.1525-142X.2003.03053.x; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131; Zuloaga DG, 2008, HORM BEHAV, V54, P758, DOI 10.1016/j.yhbeh.2008.08.004 280 1 1 10 18 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. MAR 2018 72 3 UNSP 60 10.1007/s00265-018-2462-1 23 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology GB2EN WOS:000428864200019 29576676 Green Published, Other Gold 2019-02-21 J Machin, P; Fernandez-Elipe, J; Klaassen, RHG Machin, Paula; Fernandez-Elipe, Juan; Klaassen, Raymond H. G. The relative importance of food abundance and weather on the growth of a sub-arctic shorebird chick BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Chick growth; Resources; Wader; Weather; Year-effect PLUVIALIS-APRICARIA CHICKS; HABITAT SELECTION; CLIMATE-CHANGE; BIRDS; AVAILABILITY; POPULATION; FITNESS; SURVIVAL; TUNDRA; WADER Understanding how environmental conditions affect growth is important because conditions experienced during early development could have immediate as well as long-term fitness consequences. Annual fluctuations in (environmental) conditions may influence life histories of entire cohorts of offspring. In birds, food availability and weather have been identified to affect chick growth. However, the relative importance of these factors in explaining growth in different years is poorly understood. We studied the growth of golden plover Pluvialis apricaria chicks by radio-tracking individuals from hatching till fledging and related variation in chick growth to food availability (as sampled by pitfall trapping) and weather conditions. 2011 appeared to be a favourable season in which the chicks achieved notably fast growth rates. In 2013, in contrast, chicks were lagging behind in growth and possibly even achieved smaller ultimate sizes. Food abundance had a dominant effect on growth, whereas temperature only had short-term effects (at least in body weight). Thus, variation in food availability rather than variation in weather could explain the marked difference in growth of the plover chicks between the years. A short but intense flush of Bibio flies late in the breeding season in 2011 seems the reason why the plover chicks managed to achieve high growth rates in that year, despite hatching after the main arthropod peak. Thus, understanding cohort effects in the growth of plover chicks, for example in relation to climate change, requires an understanding of the seasonal dynamics of individual prey species. Significance statement Yearly variation in environmental conditions may influence the life histories of whole cohorts of offspring. Understanding these 'cohort effects' is important to ultimately understand life history evolution. We studied the growth of golden plover chicks, a sub-arctic breeding shorebird, during two breeding seasons, and found that chick growth lagged behind in 2013. In birds, food availability and weather have been identified to be the two main factors affecting chick growth, but the relative importance of these factors in explaining differences in growth between years is poorly understood. These examples are indeed needed to ultimately understand population dynamics and life history evolution in the field. [Machin, Paula; Klaassen, Raymond H. G.] Univ Groningen, Conservat Ecol Grp, Groningen Inst Evolutionary Life Sci GELIFES, POB 11103, NL-9700 CC Groningen, Netherlands; [Klaassen, Raymond H. G.] Dutch Montagus Harrier Fdn, POB 46, NL-9679 ZG Scheemda, Netherlands Machin, P (reprint author), Univ Groningen, Conservat Ecol Grp, Groningen Inst Evolutionary Life Sci GELIFES, POB 11103, NL-9700 CC Groningen, Netherlands. machinpaula@gmail.com; raymond.klaassen2@gmail.com Lund University; Lunds Djurskyddsfond; Elis Wide fund of the Swedish Ornithological Society (SOF) Radio transmitters were funded by Lund University, Lunds Djurskyddsfond and the Elis Wide fund of the Swedish Ornithological Society (SOF). Accommodation at Vindelfjallen Research Station and travel expenses were covered by the LUVRE-project (Lund University). ANDERSEN PK, 1982, ANN STAT, V10, P1100, DOI 10.1214/aos/1176345976; BEINTEMA AJ, 1989, ARDEA, V77, P169; Byrkjedal I., 1998, TUNDRA PLOVERS EURAS; Callaghan Terry V., 2005, P243; Cam E, 2011, J ORNITHOL, V152, P187, DOI 10.1007/s10336-011-0707-0; Development Core Team R, 2008, R LANG ENV STAT COMP; Dunn JC, 2010, J APPL ECOL, V47, P994, DOI 10.1111/j.1365-2664.2010.01856.x; Fridolfsson AK, 1999, J AVIAN BIOL, V30, P116, DOI 10.2307/3677252; Giner G, 2016, R J, V8, P339; Grafen A., 1988, REPROD SUCCESS, P454; Handel CM, 2001, BIRDS N AM; Kentie R, 2013, J APPL ECOL, V50, P243, DOI 10.1111/1365-2664.12028; Krijgsveld KL, 2003, CONDOR, V105, P268, DOI 10.1650/0010-5422(2003)105[0268:TBABTO]2.0.CO;2; Liebezeit JR, 2007, CONDOR, V109, P32, DOI 10.1650/0010-5422(2007)109[32:ATDOSE]2.0.CO;2; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Machin P, 2012, INT WAD STUD GROUP C; Machin P, 2017, IBIS, V159, P657, DOI 10.1111/ibi.12479; Machin P, 2015, J AVIAN BIOL, V46, P634, DOI 10.1111/jav.00768; McKinnon L, 2013, SCI REP-UK, V3, DOI 10.1038/srep01816; Meltofte Hans, 2007, Meddelelser om Gronland Bioscience, V59, P1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Newton I, 1989, LIFETIME REPROD BIRD; Parmesan C, 2007, GLOBAL CHANGE BIOL, V13, P1860, DOI 10.1111/j.1365-2486.2007.01404.x; Pearce-Higgins JW, 2010, GLOBAL CHANGE BIOL, V16, P12, DOI 10.1111/j.1365-2486.2009.01883.x; Pearce-Higgins JW, 2005, OECOLOGIA, V143, P470, DOI 10.1007/s00442-004-1820-z; Pearce-Higgins JW, 2004, IBIS, V146, P335, DOI 10.1111/j.1474-919X.2004.00278.x; Pearce-Higgins JW, 2002, IBIS, V144, P200, DOI 10.1046/j.1474-919X.2002.00048.x; Piersma T, 2003, FUNCT ECOL, V17, P356, DOI 10.1046/j.1365-2435.2003.00741.x; Pinheiro J., 2017, NLME LINEAR NONLINEA, DOI DOI 10.5194/TC-10-2291-2016; Qvenild Tore, 2017, Fauna Norvegica, V37, P1, DOI 10.5324/fn.v37i0.219; Reid JM, 2003, J ANIM ECOL, V72, P36, DOI 10.1046/j.1365-2656.2003.00673.x; RICKLEFS RE, 1973, IBIS, V115, P177, DOI 10.1111/j.1474-919X.1973.tb02636.x; Ritz C, 2005, J STAT SOFTW, V12, P1; Roff D., 1993, EVOLUTION LIFE HIST; ROGERS LE, 1976, ANN ENTOMOL SOC AM, V69, P387, DOI 10.1093/aesa/69.2.387; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Saino N, 2011, P ROY SOC B-BIOL SCI, V278, P835, DOI 10.1098/rspb.2010.1778; Schekkerman H, 2003, OECOLOGIA, V134, P332, DOI 10.1007/s00442-002-1124-0; Schekkerman H, 1998, ARDEA, V86, P153; Schekkerman H, 2004, 922 ALT; Skartveit John, 1995, Fauna Norvegica Series B, V42, P83; Stearns S, 1992, EVOLUTION LIFE HIST; Therneau T., 2000, MODELING SURVIVAL DA; THOMSON DL, 1994, BIRD STUDY, V41, P61, DOI 10.1080/00063659409477198; Tjorve K.M.C., 2007, Wader Study Group Bulletin, V112, P12; Tjorve KMC, 2007, J AVIAN BIOL, V38, P552, DOI 10.1111/j.2007.0908-8857.04014.x; Tjorve KMC, 2009, J AVIAN BIOL, V40, P553, DOI 10.1111/j.1600-048X.2009.04661.x; Tulp I, 2001, 451 ALT; Tulp I, 2008, ARCTIC, V61, P48; Van de Pol M, 2006, J ANIM ECOL, V75, P616, DOI 10.1111/j.1365-2656.2006.01079.x; van der Velde M, 2017, WADER STUDY, V124; van Gils JA, 2016, SCIENCE, V352, P819, DOI 10.1126/science.aad6351 52 0 0 11 15 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. MAR 2018 72 3 UNSP 42 10.1007/s00265-018-2457-y 12 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology GB2EN WOS:000428864200014 2019-02-21 J Sol, D; Maspons, J; Gonzalez-Voyer, A; Morales-Castilla, I; Garamszegi, LZ; Moller, AP Sol, Daniel; Maspons, Joan; Gonzalez-Voyer, Alejandro; Morales-Castilla, Ignacio; Zsolt Garamszegi, Laszlo; Moller, Anders Pape Risk-taking behavior, urbanization and the pace of life in birds BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Life history theory; Phenotypic plasticity; Human-induced rapid environmental changes; Learning FLIGHT INITIATION DISTANCE; HISTORY TRAITS; URBAN ENVIRONMENTS; INDIVIDUAL HUMANS; TROPICAL BIRDS; LARGE BRAINS; EVOLUTION; ECOLOGY; PERSONALITY; PATTERNS Despite growing appreciation of the importance of considering a pace-of-life syndrome (POLS) perspective to understand how animals interact with their environment, studies relating behavior to life history under altered environmental conditions are still rare. By means of a comparative analysis of flight initiation distances (i.e., the distance at which an animal takes flight when a human being is approaching) across > 300 bird species distributed worldwide, we document here the existence of a POLS predicted by theory where slow-lived species tend to be more risk-averse than fast-lived species. This syndrome largely emerges from the influence of body mass, and is highly dependent on the environmental context. Accordingly, the POLS structure vanishes in urbanized environments due to slow-lived species adjusting their flight distances based on the perception of risk. While it is unclear whether changes in POLS reflect plastic and/or evolutionary adjustments, our findings highlight the need to integrate behavior into life history theory to fully understand how animals tolerate human-induced environmental changes. Significance statement Animals can often respond to changing environmental conditions by adjusting their behavior. However, the degree to which different species can modify their behavior depends on their life history strategy and on the environmental context. Species-specific perception of risk is a conspicuous example of adjustable behavior tightly associated with life history strategy. While there is a general tendency of higher risk aversion in rural than city-dwelling birds, it is dependent on the species' life history strategy. Slow-lived species are more prone to adjust their flight initiation distances based on the perception of risk, allowing humans to approach closer in urban than rural environments. Behavior must therefore be taken into account together with life history to reliably assess species' vulnerability at the face of ongoing environmental change. [Sol, Daniel; Maspons, Joan] CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain; [Gonzalez-Voyer, Alejandro] Univ Nacl Autonoma Mexico, Inst Ecol, Lab Conducta Anim, Mexico City 04510, DF, Mexico; [Gonzalez-Voyer, Alejandro] Stockholm Univ, Dept Zool, Stockholm, Sweden; [Morales-Castilla, Ignacio] Harvard Univ, Dept Organism & Evolutionary Biol, 26 Oxford St, Cambridge, MA 02138 USA; [Zsolt Garamszegi, Laszlo] Estn Biol Donana, Dept Evolutionary Ecol, Ave Americo Vespucio 26, Seville 41092, Spain; [Moller, Anders Pape] Univ Paris Saclay, Univ Paris Sud, AgroParisTech, Ecol Systemat Evolut,CNRS, F-91405 Orsay, France Sol, D (reprint author), CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain.; Moller, AP (reprint author), Univ Paris Saclay, Univ Paris Sud, AgroParisTech, Ecol Systemat Evolut,CNRS, F-91405 Orsay, France. d.sol@creaf.uab.cat; anders.moller@u-psud.fr Garamszegi, Laszlo/M-1488-2015 Garamszegi, Laszlo/0000-0001-8920-2183; Morales-Castilla, Ignacio/0000-0002-8570-9312 Spanish Government [CGL2013-47448-P]; Swedish Research Council [2013-4834]; PAPIIT [IA201716]; UNAM; Fonds de Recherches du Quebec-Nature et Technologies (FQRNT) programme; Harvard University; Ministry of Economy and Competitiveness (Spain) [CGL2015-70639-P]; National Research, Development and Innovation Office (Hungary) [K-115970] DS was supported by the project CGL2013-47448-P from the Spanish Government, AGV by project 2013-4834 from the Swedish Research Council and project IA201716 from PAPIIT, UNAM, IMC by the Fonds de Recherches du Quebec-Nature et Technologies (FQRNT) programme and by Harvard University, and LZG was supported by funds from The Ministry of Economy and Competitiveness (Spain) (CGL2015-70639-P) and The National Research, Development and Innovation Office (Hungary) (K-115970). Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Blumstein DT, 2006, ANIM BEHAV, V71, P389, DOI 10.1016/j.anbehav.2005.05.010; BOGERT CM, 1949, EVOLUTION, V3, P195, DOI 10.2307/2405558; Carrete M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018859; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.2307/177364; Charmantier A, 2017, FRONT ECOL EVOL, V5, DOI 10.3389/fevo.2017.00053; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Estrada A, 2016, TRENDS ECOL EVOL, V31, P190, DOI 10.1016/j.tree.2015.12.014; Evans KL, 2012, OIKOS, V121, P634, DOI 10.1111/j.1600-0706.2011.19722.x; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Gonzalez-Voyer A., 2014, MODERN PHYLOGENETIC, P201, DOI DOI 10.1007/978-3-662-43550-2_8; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Greenberg R, 2003, ANIMAL INNOVATION, P176; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Hediger H., 1934, Biologisches Zentralblatt Leipzig, V54, P21; Hemmingsen A, 1951, SPOLIA ZOOL MUSEI HA, V11, P74; Hille SM, 2015, BIOL REV, V90, P204, DOI 10.1111/brv.12106; Housworth EA, 2004, AM NAT, V163, P84, DOI 10.1086/380570; Huey RB, 2003, AM NAT, V161, P357, DOI 10.1086/346135; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Kark S, 2007, J BIOGEOGR, V34, P638, DOI 10.1111/j.1365-2699.2006.01638.x; Klopfer PH, 1962, BEHAV ASPECTS ECOLOG; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Lee WY, 2011, ANIM COGN, V14, P817, DOI 10.1007/s10071-011-0415-4; Levey DJ, 2009, P NATL ACAD SCI USA, V106, P8959, DOI 10.1073/pnas.0811422106; Lowry H, 2013, BIOL REV, V88, P537, DOI 10.1111/brv.12012; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Mayr E., 1965, P29; Moller AP, 2014, J EVOLUTION BIOL, V27, P34, DOI 10.1111/jeb.12272; MOller A. P., 1994, SEXUAL SELECTION BAR; Moller A. P, 2015, ESCAPING PREDATORS I, P88; Moller AP, 2008, BEHAV ECOL SOCIOBIOL, V63, P63, DOI 10.1007/s00265-008-0636-y; Moller AP, 2015, OECOLOGIA, V178, P943, DOI 10.1007/s00442-015-3268-8; Moller AP, 2013, BEHAV ECOL, V24, P1211, DOI 10.1093/beheco/art054; Moller AP, 2013, BEHAV ECOL, V24, P267, DOI 10.1093/beheco/ars163; Moller AP, 2012, BEHAV ECOL, V23, P843, DOI 10.1093/beheco/ars040; Moller AP, 2010, BEHAV ECOL, V21, P365, DOI 10.1093/beheco/arp199; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; Orme D., 2013, CAPER COMP ANAL PHYL; Overington SE, 2009, ANIM BEHAV, V78, P1001, DOI 10.1016/j.anbehav.2009.06.033; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Perals D, 2017, ANIM BEHAV, V123, P69, DOI 10.1016/j.anbehav.2016.10.006; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Saether Bernt-Erik, 2003, P218; Salguero-Gomez R, 2016, J ANIM ECOL, V85, P371, DOI 10.1111/1365-2656.12482; Sayol F, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms13971; Shipley B, 2013, ECOLOGY, V94, P560, DOI 10.1890/12-0976.1; Shochat E, 2006, TRENDS ECOL EVOL, V21, P186, DOI 10.1016/j.tree.2005.11.019; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2012, PHILOS T R SOC B, V367, P2762, DOI 10.1098/rstb.2012.0216; Sih A, 2012, ECOL LETT, V15, P278, DOI 10.1111/j.1461-0248.2011.01731.x; Sol D, 2016, BIOLOGICAL INVASIONS AND ANIMAL BEHAVIOUR, P63; Sol D, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0187; Sol D, 2014, ECOL LETT, V17, P942, DOI 10.1111/ele.12297; Sol D, 2013, ANIM BEHAV, V85, P1101, DOI 10.1016/j.anbehav.2013.01.023; Sol D, 2012, SCIENCE, V337, P580, DOI 10.1126/science.1221523; Sol D, 2012, OECOLOGIA, V169, P553, DOI 10.1007/s00442-011-2203-x; Sol D, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019535; Sol Daniel, 2009, P111; Sol D, 2009, BIOL LETTERS, V5, P130, DOI 10.1098/rsbl.2008.0621; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Van Schaik CP, 2003, ANIMAL SOCIAL COMPLEXITY, P5; VERBEEK MEM, 1994, ANIM BEHAV, V48, P1113, DOI 10.1006/anbe.1994.1344; von Hardenberg A, 2013, EVOLUTION, V67, P378, DOI 10.1111/j.1558-5646.2012.01790.x; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 78 9 9 19 33 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. MAR 2018 72 3 UNSP 59 10.1007/s00265-018-2463-0 9 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology GB2EN WOS:000428864200020 2019-02-21 J Johansson, J; Brannstrom, A; Metz, JAJ; Dieckmann, U Johansson, Jacob; Braennstroem, Ake; Metz, Johan A. J.; Dieckmann, Ulf Twelve fundamental life histories evolving through allocation-dependent fecundity and survival ECOLOGY AND EVOLUTION English Article determinate growth; dynamic programming; indeterminate growth; marginal value theorem; reproductive allocation NATURAL-SELECTION; BODY-SIZE; REPRODUCTIVE EFFORT; ADAPTIVE DYNAMICS; SEED PRODUCTION; EVOLUTION; GROWTH; COSTS; STRATEGIES; INVESTMENT An organism's life history is closely interlinked with its allocation of energy between growth and reproduction at different life stages. Theoretical models have established that diminishing returns from reproductive investment promote strategies with simultaneous investment into growth and reproduction (indeterminate growth) over strategies with distinct phases of growth and reproduction (determinate growth). We extend this traditional, binary classification by showing that allocation-dependent fecundity and mortality rates allow for a large diversity of optimal allocation schedules. By analyzing a model of organisms that allocate energy between growth and reproduction, we find twelve types of optimal allocation schedules, differing qualitatively in how reproductive allocation increases with body mass. These twelve optimal allocation schedules include types with different combinations of continuous and discontinuous increase in reproduction allocation, in which phases of continuous increase can be decelerating or accelerating. We furthermore investigate how this variation influences growth curves and the expected maximum life span and body size. Our study thus reveals new links between eco-physiological constraints and life-history evolution and underscores how allocation-dependent fitness components may underlie biological diversity. [Johansson, Jacob; Braennstroem, Ake; Metz, Johan A. J.; Dieckmann, Ulf] Int Inst Appl Syst Anal, Evolut & Ecol Program, Laxenburg, Austria; [Johansson, Jacob] Lund Univ, Dept Biol, Theoret Populat Ecol & Evolut Grp, Lund, Sweden; [Braennstroem, Ake] Umea Univ, Dept Math & Math Stat, Umea, Sweden; [Metz, Johan A. J.] Leiden Univ, Sect Theoret Biol, Inst Biol, Leiden, Netherlands; [Metz, Johan A. J.] Leiden Univ, Math Inst, Leiden, Netherlands; [Metz, Johan A. J.] Nat Biodivers Ctr, Leiden, Netherlands Johansson, J (reprint author), Lund Univ, Dept Biol, Theoret Populat Ecol & Evolut Grp, Lund, Sweden. jacob.johansson@biol.lu.se Johansson, Jacob/0000-0002-0018-7018; Dieckmann, Ulf/0000-0001-7089-0393 Svenska Forskningsradet Formas [2015-839]; Vetenskapsradet [2015-00302] Svenska Forskningsradet Formas, Grant/Award Number: 2015-839; Vetenskapsradet, Grant/Award Number: 2015-00302 AKSNES DL, 1993, ECOL MODEL, V67, P233, DOI 10.1016/0304-3800(93)90007-F; Andersson M, 1996, TRENDS ECOL EVOL, V11, P53, DOI 10.1016/0169-5347(96)81042-1; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Benedetti MG, 2008, EXP GERONTOL, V43, P882, DOI 10.1016/j.exger.2008.08.049; Bertsekas DP, 1987, DYNAMIC PROGRAMMING; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; CALOW P, 1977, J ANIM ECOL, V46, P765, DOI 10.2307/3639; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; Charnov Eric L., 1993, P1; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; Dieckmann U, 2006, J THEOR BIOL, V241, P370, DOI 10.1016/j.jtbi.2005.12.002; Ejsmond MJ, 2010, AM NAT, V175, P551, DOI 10.1086/651589; Feeny P., 1976, RECENT ADV PHYTOCHEM, V10, P1, DOI DOI 10.1007/978-1-4684-2646-5_1; FRAENKEL GS, 1959, SCIENCE, V129, P1466, DOI 10.1126/science.129.3361.1466; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; GREENE DF, 1994, ECOLOGY, V75, P642, DOI 10.2307/1941722; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Hendriks AJ, 2007, ECOL MODEL, V205, P196, DOI 10.1016/j.ecolmodel.2007.02.029; Houston A.l, 1999, MODELS ADAPTIVE BEHA; INTRILLIGATOR M, 1971, MATH OPTIMIZATION EC; Janczur M. K., 2009, OPTIMAL ENERGY ALLOC; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; Klinkhamer PGL, 1997, J EVOLUTION BIOL, V10, P529; KOZLOWSKI J, 1991, ACTA OECOL, V12, P11; KOZLOWSKI J, 1988, THEOR POPUL BIOL, V34, P118, DOI 10.1016/0040-5809(88)90037-8; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LEON JA, 1976, J THEOR BIOL, V60, P301, DOI 10.1016/0022-5193(76)90062-X; Lord JM, 2012, EVOLUTION, V66, P200, DOI 10.1111/j.1558-5646.2011.01425.x; McNamara JM, 2009, P ROY SOC B-BIOL SCI, V276, P4061, DOI 10.1098/rspb.2009.0959; Metz JAJ, 2008, EVOL ECOL RES, V10, P629; Metz JAJ, 2016, J MATH BIOL, V72, P1125, DOI 10.1007/s00285-015-0938-4; Miller TEX, 2008, AM NAT, V171, P141, DOI 10.1086/524961; MYERS RA, 1983, CAN J FISH AQUAT SCI, V40, P612, DOI 10.1139/f83-080; ORTON J. H., 1929, JOUR MARINE BIOL ASSOC, V16, P277; PAINE RT, 1976, ECOLOGY, V57, P858, DOI 10.2307/1941053; PARKER GA, 1974, BEHAVIOUR, V48, P157, DOI 10.1163/156853974X00327; Parvinen K, 2013, J MATH BIOL, V67, P509, DOI 10.1007/s00285-012-0549-2; Perrin N, 1987, FUNCT ECOL, V1, P223, DOI 10.2307/2389424; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; PERRIN N, 1993, EVOL ECOL, V7, P576, DOI 10.1007/BF01237822; Pontryagin L. S., 1962, MATH THEORY OPTIMISA, P4; Reiss M. J, 1989, ALLOMETRY GROWTH REP; Roff Derek A., 1992; SALLABANKS R, 1992, OECOLOGIA, V91, P296, DOI 10.1007/BF00317800; Satoh A, 2013, CELL METAB, V18, P416, DOI 10.1016/j.cmet.2013.07.013; Scharer L, 2009, EVOLUTION, V63, P1377, DOI 10.1111/j.1558-5646.2009.00669.x; SCHAFFER WM, 1979, ECOLOGY, V60, P1051, DOI 10.2307/1936872; SHINE R, 1988, EVOLUTION, V42, P17, DOI 10.1111/j.1558-5646.1988.tb04104.x; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; Sletvold N, 2015, J ECOL, V103, P1205, DOI 10.1111/1365-2745.12430; Stockley P, 2002, P NATL ACAD SCI USA, V99, P12932, DOI 10.1073/pnas.192125999; Svensson JE, 1997, HYDROBIOLOGIA, V344, P155, DOI 10.1023/A:1002966614054; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; WARE DM, 1980, CAN J FISH AQUAT SCI, V37, P1012, DOI 10.1139/f80-129; Wenk EH, 2015, ECOL EVOL, V5, P5521, DOI 10.1002/ece3.1802; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 59 0 0 6 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAR 2018 8 6 3172 3186 10.1002/ece3.3730 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GA7NB WOS:000428522100011 29607016 DOAJ Gold, Green Published 2019-02-21 J Yanagihara, S; Suehiro, W; Mitaka, Y; Matsuura, K Yanagihara, Saki; Suehiro, Wataru; Mitaka, Yuki; Matsuura, Kenji Age-based soldier polyethism: old termite soldiers take more risks than young soldiers BIOLOGY LETTERS English Article task allocation; division of labour; ageing; social insects; life-history strategy DIVISION-OF-LABOR; PHEIDOLE-DENTATA; SOCIAL INSECTS; WORKERS; ANTS Who should take on risky tasks in an age-heterogeneous society? Life-history theory predicts that, in social insects, riskier tasks should be undertaken by sterile individuals with a shorter life expectancy. The loss of individuals with shorter life expectancy is less costly for colony reproductive success than the loss of individuals with longer life expectancy. Termite colonies have a sterile soldier caste, specialized defenders engaged in the most risky tasks. Here we show that termite soldiers exhibit age-dependent polyethism, as old soldiers are engaged in front-line defence more than young soldiers. Our nest defence experiment showed that old soldiers went to the front line and blocked the nest opening against approaching predatory ants more often than young soldiers. We also found that young soldiers were more biased toward choosing central nest defence as royal guards than old soldiers. These results demonstrate that termite soldiers have age-based task allocation, by which ageing predisposes soldiers to switch to more dangerous tasks. This age-dependent soldier task allocation increases the life expectancy of soldiers, allowing them to promote their lifetime contribution to colony reproductive success. [Yanagihara, Saki; Suehiro, Wataru; Mitaka, Yuki; Matsuura, Kenji] Kyoto Univ, Grad Sch Agr, Lab Insect Ecol, Kitashirakawa Oiwakecho, Kyoto 6068502, Japan Matsuura, K (reprint author), Kyoto Univ, Grad Sch Agr, Lab Insect Ecol, Kitashirakawa Oiwakecho, Kyoto 6068502, Japan. kenjijpn@kais.kyoto-u.ac.jp Mitaka, Yuki/0000-0002-3399-3470; Matsuura, Kenji/0000-0002-9099-6694 Japan Society for the Promotion of Science [Kiban Kenkyu S: 25221206] This work was funded by the Japan Society for the Promotion of Science to K.M. (Kiban Kenkyu S: 25221206). Buchli H., 1958, ANN SCI NAT ZOOL, V11, P261; Crosland MWJ, 1997, ANIM BEHAV, V54, P999, DOI 10.1006/anbe.1997.0509; Giehr J, 2017, BMC EVOL BIOL, V17, DOI 10.1186/s12862-017-1026-8; Giraldo YM, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2603; Giraldo YM, 2014, BEHAV ECOL SOCIOBIOL, V68, P1901, DOI 10.1007/s00265-014-1826-4; Holldobler B., 2009, SUPERORGANISM BEAUTY; Lane SM, 2017, ANIM BEHAV, V126, P23, DOI 10.1016/j.anbehav.2017.01.015; Matsuura K, 2002, BEHAV ECOL SOCIOBIOL, V51, P172, DOI 10.1007/s00265-001-0426-2; Matsuura K, 2002, THESIS; Muscedere ML, 2011, NATURWISSENSCHAFTEN, V98, P783, DOI 10.1007/s00114-011-0828-6; Oster GF, 1978, CASTE ECOLOGY SOCIAL; SEELEY TD, 1982, BEHAV ECOL SOCIOBIOL, V11, P287, DOI 10.1007/BF00299306; Seid MA, 2006, BEHAV ECOL SOCIOBIOL, V60, P631, DOI 10.1007/s00265-006-0207-z; Sobotnik J, 2012, SCIENCE, V337, P436, DOI 10.1126/science.1219129; Thorne BL, 2003, P NATL ACAD SCI USA, V100, P12808, DOI 10.1073/pnas.2133530100; Tofilski A, 2002, BEHAV ECOL SOCIOBIOL, V51, P234, DOI [10.1007/s00265-001-0429-z, 10.1007/S00265-001-0429-Z]; TRANIELLO JFA, 1989, ANNU REV ENTOMOL, V34, P191, DOI 10.1146/annurev.en.34.010189.001203; Wakano JY, 1998, J THEOR BIOL, V193, P153, DOI 10.1006/jtbi.1998.0697 18 0 0 9 15 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. MAR 2018 14 3 20180025 10.1098/rsbl.2018.0025 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology GA8DQ WOS:000428568700010 29514993 2019-02-21 J Jara-Arancio, P; Vidal, PM; Arroyo, MTK Jara-Arancio, Paola; Vidal, Paula M.; Arroyo, Mary T. K. Phylogenetic reconstruction of the genus Triptilion (Asteraceae, Nassauvieae) based on nuclear and chloroplast DNA sequences JOURNAL OF SYSTEMATICS AND EVOLUTION English Article central Chile; life-form; paraphyletic; patagonia; Triptilion LIFE-HISTORY EVOLUTION; NONCODING REGIONS; SOUTH-AMERICA; MUTISIEAE; CLIMATE; DIVERSIFICATION; AMPLIFICATION; ANGIOSPERMS; COMPOSITAE; VEGETATION The genus Triptilion is endemic to central Chile, the Mendoza Province and western Patagonia in Argentina. It is currently composed of seven species: T. achilleae, T. benaventii, T. berteroi, T. capillatum, T. cordifolium, T. gibbosum, and T. spinosum. The main objectives of this paper were to determine the phylogenetic relationships of species of Triptilion. We also traced the evolution of annual and perennial life-forms. Historically a close relationship has been described between genera Triptilion and Nassauvia. Phylogenetic analysis of the genus Triptilion and more closely related genera was undertaken using two nuclear (ITS, ETS) and two chloroplast (trnL-F, rpl32-trnL) markers. The topology of the Bayesian inference tree shows that the genus Triptilion is paraphyletic, because Nassauvia lagascae, the only representative of Nassauvia section Caloptilium grouped with T. achilleae, Clade I. The other species of Triptilion form two clades: Clade II composed of T. cordifolium and T. gibbosum and Clade III that includes T. benaventii, T. berteroi, T. capillatum, and T. spinosum. The genus Triptilion originated and diverged during the Miocene. The results of the life history reconstructions indicate that the common ancestor of Triptilion and Nassauvia was perennial. The annual habit appears to be derived in Triptilion. The life-form of the common ancestor of Triptilion was ambiguous; it may have been annual or perennial. [Jara-Arancio, Paola; Vidal, Paula M.; Arroyo, Mary T. K.] Univ Chile, Inst Ecol & Biodiversidad, Palmeras 3425, Santiago, Chile; [Jara-Arancio, Paola] Univ Andres Bello, Dept Ciencias Biol, Republ 275, Santiago, Chile; [Jara-Arancio, Paola] Univ Andres Bello, Dept Ecol & Biodiversidad, Republ 275, Santiago, Chile; [Arroyo, Mary T. K.] Univ Chile, Fac Ciencias, Palmeras 3425, Santiago, Chile Jara-Arancio, P (reprint author), Univ Chile, Inst Ecol & Biodiversidad, Palmeras 3425, Santiago, Chile.; Jara-Arancio, P (reprint author), Univ Andres Bello, Dept Ciencias Biol, Republ 275, Santiago, Chile.; Jara-Arancio, P (reprint author), Univ Andres Bello, Dept Ecol & Biodiversidad, Republ 275, Santiago, Chile. parancio@gmail.com FONDECYT initiation [11130299]; ICM-MINECON [P05-002-IEB, PBF-23] We thank ULS, CONC, SGO and AGUCH for their disposition to supply herbarium material for DNA extraction. Instituto de Investigaciones Agropecuarias INIA for their disposition to supply material for the tribe Nassauvieae. CONAF and SAG for allowing sample collection in protected areas. This study was funded by FONDECYT initiation 11130299 and ICM-MINECON P05-002-IEB, PBF-23. Arroyo MTK, 1995, ECOLOGY BIOGEOGRAPHY, P62; Barker MS, 2016, AM J BOT, V103, P1203, DOI 10.3732/ajb.1600113; Barreda VD, 2010, SCIENCE, V329, P1621, DOI 10.1126/science.1193108; Barreda V, 2008, REV PALAEOBOT PALYNO, V151, P51, DOI 10.1016/j.revpalbo.2008.02.002; Barreda VD, 2015, P NATL ACAD SCI USA, V112, P10989, DOI 10.1073/pnas.1423653112; Beaulieu JM, 2013, SYST BIOL, V62, P725, DOI 10.1093/sysbio/syt034; Bena G, 1998, P ROY SOC B-BIOL SCI, V265, P1141, DOI 10.1098/rspb.1998.0410; Blisniuk PM, 2005, EARTH PLANET SC LETT, V230, P125, DOI 10.1016/j.epsl.2004.11.015; CABRERA A L, 1982, Darwiniana (San Isidro), V24, P283; Chromas 2. 6. 4, 1996, CHROM 2 6 4; CRISCI JV, 1974, J ARNOLD ARBORETUM, V55, P568; CRISCI JV, 1980, TAXON, V29, P213, DOI 10.2307/1220283; Cruz-Mazo G, 2009, MOL PHYLOGENET EVOL, V53, P835, DOI 10.1016/j.ympev.2009.08.001; Datson PM, 2008, PLANT SYST EVOL, V270, P39, DOI 10.1007/s00606-007-0612-4; Don D., 1832, PHILOS MAGAZINE ANN, V11, P387; Don D., 1833, DESCRIPTIONS NEW GEN, P219; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Evans MEK, 2005, EVOLUTION, V59, P1914; Fiz O, 2002, MOL PHYLOGENET EVOL, V25, P157, DOI 10.1016/S1055-7903(02)00228-2; FREIRE SE, 1993, BOT J LINN SOC, V112, P293; Funk V. A., 2005, BIOL SKR, V55, P343; Gengler-Nowak K, 2002, BOT REV, V68, P171, DOI 10.1663/0006-8101(2002)068[0171:ROTBHO]2.0.CO;2; Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008; Hershkovitz MA, 2006, MOL PHYLOGENET EVOL, V41, P594, DOI 10.1016/j.ympev.2006.05.003; Hinojosa LF, 1997, REV CHIL HIST NAT, V70, P225; Huang CH, 2016, MOL BIOL EVOL, V33, P2820, DOI 10.1093/molbev/msw157; Iglesias A, 2011, BIOL J LINN SOC, V103, P409, DOI 10.1111/j.1095-8312.2011.01657.x; Jara-Arancio P, 2017, PLANT SYST EVOL, V303, P221, DOI 10.1007/s00606-016-1366-7; Jara-Arancio P, 2014, J BIOGEOGR, V41, P328, DOI 10.1111/jbi.12186; Katinas L, 2008, AM J BOT, V95, P229, DOI 10.3732/ajb.95.2.229; Katinas L, 2008, BOT REV, V74, P469, DOI 10.1007/s12229-008-9016-6; Katinas Liliana, 1992, Boletin de la Sociedad de Biologia de Concepcion, V63, P101; Kim HG, 2002, SYST BOT, V27, P598; Kim KJ, 2005, MOL BIOL EVOL, V22, P1783, DOI 10.1093/molbev/msi174; Linder CR, 2000, MOL PHYLOGENET EVOL, V14, P285, DOI 10.1006/mpev.1999.0706; Maddison W. P., 2017, MESQUITE MODULAR SYS; Maraner F, 2012, PLANT SYST EVOL, V298, P399, DOI 10.1007/s00606-011-0553-9; Nylander JA., 2004, MR MODELTES; Panero JL, 2016, MOL PHYLOGENET EVOL, V99, P116, DOI 10.1016/j.ympev.2016.03.007; Rambaut A, 2014, TRACER V1 6; Rivero RM, 2007, P NATL ACAD SCI USA, V104, P19631, DOI 10.1073/pnas.0709453104; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; Ruiz H, 1797, FLORAE PERUVIANAE CH, P90; Rundel PW, 2016, ANNU REV ECOL EVOL S, V47, P383, DOI 10.1146/annurev-ecolsys-121415-032330; Schaffer WM, 1975, ECOLOGY EVOLUTION CO, P142; Shaw J, 2007, AM J BOT, V94, P275, DOI 10.3732/ajb.94.3.275; Simpson BB, 2009, J SYST EVOL, V47, P431, DOI 10.1111/j.1759-6831.2009.00039.x; STEBBINS GL, 1957, AM NAT, V91, P337, DOI 10.1086/281999; TABERLET P, 1991, PLANT MOL BIOL, V17, P1105, DOI 10.1007/BF00037152; Tank DC, 2008, AM J BOT, V95, P608, DOI 10.3732/ajb.2007346; Tank DC, 2015, NEW PHYTOL, V207, P454, DOI 10.1111/nph.13491; White TJ, 1990, PCR PROTOCOLS GUIDE, P315, DOI DOI 10.1016/B978-0-12-372180-8.50042-1; Zachos J, 2001, SCIENCE, V292, P686, DOI 10.1126/science.1059412; Zuloaga FO, 2008, CATALOGO PLANTAS VAS, P3348 54 0 0 5 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1674-4918 1759-6831 J SYST EVOL J. Syst. Evol. MAR 2018 56 2 120 128 10.1111/jse.12294 9 Plant Sciences Plant Sciences GA6JT WOS:000428439900005 2019-02-21 J Hockenberry, AJ; Stern, AJ; Amaral, LAN; Jewett, MC Hockenberry, Adam J.; Stern, Aaron J.; Amaral, Luis A. N.; Jewett, Michael C. Diversity of Translation Initiation Mechanisms across Bacterial Species Is Driven by Environmental Conditions and Growth Demands MOLECULAR BIOLOGY AND EVOLUTION English Article translation initiation; Shine-Dalgarno sequence; bacterial growth; genome evolution SHINE-DALGARNO SEQUENCE; RIBOSOME BINDING-SITES; TRANSFER-RNA GENES; ESCHERICHIA-COLI; BACILLUS-SUBTILIS; MESSENGER-RNA; CODON CHOICE; EXPRESSION; PROKARYOTES; GENOMES The Shine-Dalgarno (SD) sequence motif is frequently found upstream of protein coding genes and is thought to be the dominant mechanism of translation initiation used by bacteria. Experimental studies have shown that the SD sequence facilitates start codon recognition and enhances translation initiation by directly interacting with the highly conserved anti-SD sequence on the 30S ribosomal subunit. However, the proportion of SD-led genes within a genome varies across species and the factors governing this variation in translation initiation mechanisms remain largely unknown. Here, we conduct a phylogenetically informed analysis and find that species capable of rapid growth contain a higher proportion of SD-led genes throughout their genomes. We show that SD sequence utilization covaries with a suite of genomic features that are important for efficient translation initiation and elongation. In addition to these endogenous genomic factors, we further show that exogenous environmental factors may influence the evolution of translation initiation mechanisms by finding that thermophilic species contain significantly more SD-led genes than mesophiles. Our results demonstrate that variation in translation initiation mechanisms across bacterial species is predictable and is a consequence of differential life-history strategies related to maximum growth rate and environmental-specific constraints. [Hockenberry, Adam J.; Stern, Aaron J.; Amaral, Luis A. N.; Jewett, Michael C.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA; [Hockenberry, Adam J.] Northwestern Univ, Interdisciplinary Program Biol Sci, Evanston, IL USA; [Amaral, Luis A. N.; Jewett, Michael C.] Northwestern Univ, Northwestern Inst Complex Syst, Evanston, IL 60208 USA; [Amaral, Luis A. N.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA; [Jewett, Michael C.] Northwestern Univ, Ctr Synthet Biol, Evanston, IL 60208 USA; [Jewett, Michael C.] Northwestern Univ, Simpson Querrey Inst BioNanotechnol, Evanston, IL 60208 USA Amaral, LAN; Jewett, MC (reprint author), Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA.; Amaral, LAN; Jewett, MC (reprint author), Northwestern Univ, Northwestern Inst Complex Syst, Evanston, IL 60208 USA.; Amaral, LAN (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.; Jewett, MC (reprint author), Northwestern Univ, Ctr Synthet Biol, Evanston, IL 60208 USA.; Jewett, MC (reprint author), Northwestern Univ, Simpson Querrey Inst BioNanotechnol, Evanston, IL 60208 USA. adam.hockenberry@utexas.edu; m-jewett@northwestern.edu Amaral, Luis/A-4980-2008; Jewett, Michael/E-3506-2010; Amaral, Luis N./C-5485-2009 Amaral, Luis/0000-0002-3762-789X; Northwestern University Presidential Fellowship; Army Research Office [W911NF-16-1-0372]; National Science Foundation [MCB 1413563, MCB-1716766]; David and Lucile Packard Foundation; Camille-Dreyfus Teacher-Scholar Program The authors wish to thank Thomas Stoeger for helpful discussions and critical reading of the manuscript, and Helio Tejedor for general computational support. AJH acknowledges financial support from the Northwestern University Presidential Fellowship. LANA acknowledges a gift from Leslie and John Mac McQuown. MCJ acknowledges the Army Research Office (W911NF-16-1-0372), the National Science Foundation (MCB 1413563, MCB-1716766), the David and Lucile Packard Foundation, and the Camille-Dreyfus Teacher-Scholar Program. Barendt PA, 2013, ACS CHEM BIOL, V8, P958, DOI 10.1021/cb3005726; BARRICK D, 1994, NUCLEIC ACIDS RES, V22, P1287, DOI 10.1093/nar/22.7.1287; Bloom-Ackermann Z, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004084; Bonde MT, 2016, NAT METHODS, V13, P233, DOI [10.1038/NMETH.3727, 10.1038/nmeth.3727]; Borujeni AE, 2017, NUCLEIC ACIDS RES, V45, P5437, DOI 10.1093/nar/gkx061; Borujeni AE, 2016, J AM CHEM SOC, V138, P7016, DOI 10.1021/jacs.6b01453; Borujeni AE, 2014, NUCLEIC ACIDS RES, V42, P2646, DOI 10.1093/nar/gkt1139; Brbic M, 2016, NUCLEIC ACIDS RES, V44, P10074, DOI 10.1093/nar/gkw964; Brown CT, 2016, NAT BIOTECHNOL, V34, P1256, DOI 10.1038/nbt.3704; Chang B, 2006, GENE, V373, P90, DOI 10.1016/j.gene.2006.01.033; CHEN HY, 1994, NUCLEIC ACIDS RES, V22, P4953, DOI 10.1093/nar/22.23.4953; Colussi TM, 2015, NATURE, V519, P110, DOI 10.1038/nature14219; Cortes T, 2013, CELL REP, V5, P1121, DOI 10.1016/j.celrep.2013.10.031; DESMIT MH, 1994, J MOL BIOL, V235, P173, DOI 10.1016/S0022-2836(05)80024-5; Devaraj A, 2010, MOL MICROBIOL, V78, P1500, DOI 10.1111/j.1365-2958.2010.07421.x; Diwan GD, 2016, GENOME BIOL EVOL, V8, P1722, DOI 10.1093/gbe/evw107; Duval M, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001731; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; Goodman DB, 2013, SCIENCE, V342, P475, DOI 10.1126/science.1241934; Gu WJ, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1000664; Guiziou S, 2016, NUCLEIC ACIDS RES, V44, P7495, DOI 10.1093/nar/gkw624; Hecht A, 2017, NUCLEIC ACIDS RES, V45, P3615, DOI 10.1093/nar/gkx070; Hockenberry AJ, 2017, OPEN BIOL, V7, DOI 10.1098/rsob.160239; Hug LA, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.48, 10.1038/nmicrobiol.2016.48]; Keller TE, 2012, GENOME BIOL EVOL, V4, P80, DOI 10.1093/gbe/evr129; Komarova AV, 2005, J BACTERIOL, V187, P1344, DOI 10.1128/JB.187.4.1344-1349.2005; Kosuri S, 2013, P NATL ACAD SCI USA, V110, P14024, DOI 10.1073/pnas.1301301110; Kramer P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094979; Krisko A, 2014, GENOME BIOL, V15, DOI 10.1186/gb-2014-15-3-r44; Kudla G, 2009, SCIENCE, V324, P255, DOI 10.1126/science.1170160; Lagesen K, 2007, NUCLEIC ACIDS RES, V35, P3100, DOI 10.1093/nar/gkm160; Li GW, 2012, NATURE, V484, P538, DOI 10.1038/nature10965; Lim K, 2012, MOL BIOL EVOL, V29, P2937, DOI 10.1093/molbev/mss101; Lowe TM, 2016, NUCLEIC ACIDS RES, V44, pW54, DOI 10.1093/nar/gkw413; Ma J, 2002, J BACTERIOL, V184, P5733, DOI 10.1128/JB.184.20.5733-5745.2002; Markley AL, 2015, ACS SYNTH BIOL, V4, P595, DOI 10.1021/sb500260k; Mohammad F, 2016, CELL REP, V14, P686, DOI 10.1016/j.celrep.2015.12.073; Na D, 2010, BMC SYST BIOL, V4, DOI 10.1186/1752-0509-4-71; Nakagawa S, 2010, P NATL ACAD SCI USA, V107, P6382, DOI 10.1073/pnas.1002036107; Napolitano MG, 2016, P NATL ACAD SCI USA, V113, pE5588, DOI 10.1073/pnas.1605856113; Omotajo D, 2015, BMC GENOMICS, V16, DOI 10.1186/s12864-015-1808-6; Orelle C, 2015, NATURE, V524, P119, DOI 10.1038/nature14862; Osada Y, 1999, BIOINFORMATICS, V15, P578, DOI 10.1093/bioinformatics/15.7.578; Ostrov N, 2016, SCIENCE, V353, P819, DOI 10.1126/science.aaf3639; Revell LJ, 2010, METHODS ECOL EVOL, V1, P319, DOI 10.1111/j.2041-210X.2010.00044.x; Roller BRK, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.160, 10.1038/nmicrobiol.2016.160]; Sakai H, 2001, J MOL EVOL, V52, P164, DOI 10.1007/s002390010145; Salis HM, 2009, NAT BIOTECHNOL, V27, P946, DOI 10.1038/nbt.1568; Samhita L, 2014, J BACTERIOL, V196, P2607, DOI 10.1128/JB.01620-14; Scharff LB, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002155; Schrader JM, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004463; Shell SS, 2015, PLOS GENET, V11, DOI 10.1371/journal.pgen.1005641; SHINE J, 1974, Proceedings of the National Academy of Sciences of the United States of America, V71, P1342, DOI 10.1073/pnas.71.4.1342; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Starmer J, 2006, PLOS COMPUT BIOL, V2, P454, DOI 10.1371/journal.pcbi.0020057; Stevenson BS, 2004, APPL ENVIRON MICROB, V70, P6670, DOI 10.1128/AEM.70.11.6670-6677.2004; Tauer C, 2014, MICROB CELL FACT, V13, DOI 10.1186/s12934-014-0150-z; Vieira-Silva S, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000808; Vimberg V, 2007, BMC MOL BIOL, V8, DOI 10.1186/1471-2199-8-100; Weinstock MT, 2016, NAT METHODS, V13, P849, DOI 10.1038/nmeth.3970; Yamamoto H, 2016, P NATL ACAD SCI USA, V113, pE1180, DOI 10.1073/pnas.1524554113; Yang CY, 2016, G3-GENES GENOM GENET, V6, P3467, DOI 10.1534/g3.116.032227; Yano K, 2013, MICROBIOL-SGM, V159, P2225, DOI 10.1099/mic.0.067025-0; Yi JS, 2017, ACS SYNTH BIOL, V6, P555, DOI 10.1021/acssynbio.6b00263; Zheng XB, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-361 65 2 2 2 4 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0737-4038 1537-1719 MOL BIOL EVOL Mol. Biol. Evol. MAR 2018 35 3 582 592 10.1093/molbev/msx310 11 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity FZ0LK WOS:000427260700006 29220489 Bronze 2019-02-21 J Emms, SK; Hove, AA; Dudley, LS; Mazer, SJ; Verhoeven, AS Emms, Simon K.; Hove, Alisa A.; Dudley, Leah S.; Mazer, Susan J.; Verhoeven, Amy S. Could seasonally deteriorating environments favour the evolution of autogamous selfing and a drought escape physiology through indirect selection? A test of the time limitation hypothesis using artificial selection in Clarkia ANNALS OF BOTANY English Article Artificial selection; autogamy; Clarkia unguiculata; drought escape; flowering date; herkogamy; life history; mating system; photosynthetic rate; self-fertilization; time limitation hypothesis; water use efficiency MIXED MATING SYSTEMS; FLORAL TRAITS; ARABIDOPSIS-THALIANA; FLOWERING TIME; ANNUAL PLANT; GENETIC CORRELATIONS; NATURAL-SELECTION; JOINT EVOLUTION; LIFE-HISTORY; REPRODUCTIVE ASSURANCE Background and Aims The evolution of selfing from outcrossing may be the most common transition in plant reproductive systems and is associated with a variety of ecological circumstances and life history strategies. The most widely discussed explanation for these associations is the reproductive assurance hypothesis -the proposition that selfing is favoured because it increases female fitness when outcross pollen receipt is limited. Here an alternative explanation, the time limitation hypothesis, is addressed, one scenario of which proposes that selfing may evolve as a correlated response to selection for a faster life cycle in seasonally deteriorating environments. Methods Artificial selection for faster maturation (early flowering) or for low herkogamy was performed on Clarkia unguiculata (Onagraceae), a largely outcrossing species whose closest relative, C. exilis, has evolved higher levels of autogamous selfing. Direct responses to selection and correlated evolutionary changes in these traits were measured under greenhouse conditions. Direct responses to selection on early flowering and correlated evolutionary changes in the node of the first flower, herkogamy, dichogamy, gas exchange rates and water use efficiency (WUE) were measured under field conditions. Key Results Lines selected for early flowering and for low herkogamy showed consistent, statistically significant responses to direct selection. However, there was little or no evidence of correlated evolutionary changes in flowering date, floral traits, gas exchange rates or WUE. Conclusions These results suggest that the maturation rate and mating system have evolved independently in Clarkia and that the time limitation hypothesis does not explain the repeated evolution of selfing in this genus, at least through its indirect selection scenario. They also suggest that the life history and physiological components of drought escape are not genetically correlated in Clarkia, and that differences in gas exchange physiology between C. unguiculata and C. exilis have evolved independently of differences in mating system and life history. [Emms, Simon K.; Verhoeven, Amy S.] Univ St Thomas, Dept Biol, St Paul, MN 55105 USA; [Hove, Alisa A.] Warren Wilson Coll, Dept Biol, Asheville, NC 28815 USA; [Dudley, Leah S.] Univ Wisconsin Stout, Dept Biol, Menomonie, WI 54751 USA; [Mazer, Susan J.] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA Emms, SK (reprint author), Univ St Thomas, Dept Biol, St Paul, MN 55105 USA. skemms@stthomas.edu National Science Foundation [OIS-0718253, OIS-0718227]; University of St. Thomas We thank Dr Jennifer Cruise and undergraduates Kasey Diekmann, Rachael Eaton and Emily Novak for assistance with greenhouse work at UST, and undergraduates Bryce Rauterkus and Joel Kirskey for assistance with fieldwork in California. Numerous other undergraduates also helped with greenhouse work at both UST and UCSB. This work was supported by the National Science Foundation [OIS-0718253 to S.K.E. and A.S.V., and OIS-0718227 to S.J.M. and L.S.D.] and by the University of St. Thomas. Aarssen LW, 2000, OIKOS, V89, P606, DOI 10.1034/j.1600-0706.2000.890321.x; Amasino R, 2010, PLANT J, V61, P1001, DOI 10.1111/j.1365-313X.2010.04148.x; Armbruster WS, 2002, AM J BOT, V89, P37, DOI 10.3732/ajb.89.1.37; ARONSON J, 1992, OECOLOGIA, V89, P17, DOI 10.1007/BF00319010; ARROYO MTK, 1973, BRITTONIA, V25, P177, DOI 10.2307/2805936; Ashman TL, 2006, HEREDITY, V96, P343, DOI 10.1038/sj.hdy.6800815; BAKER H. G., 1965, The genetics of colonizing species: Proc. 1st Internat, Union biol Sci., Asilomar, California., P147; Barrett SCH, 1990, BIOL APPROACHES EVOL, P229; Bartkowska MP, 2012, NEW PHYTOL, V193, P1039, DOI 10.1111/j.1469-8137.2011.04013.x; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Burgess KS, 2007, HEREDITY, V99, P641, DOI 10.1038/sj.hdy.6801043; Busch JW, 2012, ANN BOT-LONDON, V109, P553, DOI 10.1093/aob/mcr219; Campbell DR, 2009, ANN BOT-LONDON, V103, P1557, DOI 10.1093/aob/mcp032; Campbell DR, 1996, EVOLUTION, V50, P1442, DOI 10.1111/j.1558-5646.1996.tb03918.x; CHARLESWORTH D, 1987, EVOLUTION, V41, P948, DOI 10.1111/j.1558-5646.1987.tb05869.x; CHARLESWORTH D, 1990, EVOLUTION, V44, P1469, DOI 10.1111/j.1558-5646.1990.tb03839.x; Charlesworth D, 2006, CURR BIOL, V16, pR726, DOI 10.1016/j.cub.2006.07.068; Conner JK, 2011, AM NAT, V178, P429, DOI 10.1086/661907; Darwin C, 1876, EFFECTS CROSS SELF F; Dawson TE, 2002, ANNU REV ECOL SYST, V33, P507, DOI 10.1146/annurev.ecolsys.33.020602.095451; Delph LF, 2004, EVOLUTION, V58, P1936; Delph LF, 2004, EVOL DEV, V6, P438, DOI 10.1111/j.1525-142X.2004.04052.x; Dudley LS, 2007, J EVOLUTION BIOL, V20, P2200, DOI 10.1111/j.1420-9101.2007.01421.x; Dudley LS, 2015, AM J BOT, V102, P962, DOI 10.3732/ajb.1400557; Dudley LS, 2012, AM J BOT, V99, P488, DOI 10.3732/ajb.1100387; Eckert C. G., 2006, ECOLOGY EVOLUTION FL, P183; Eckhart Vincent M., 1999, Madrono, V46, P117; Eckhart VM, 2004, EVOLUTION, V58, P59; Elle E, 2010, AM J BOT, V97, P1894, DOI 10.3732/ajb.1000223; FENSTER CB, 1995, HEREDITY, V74, P258, DOI 10.1038/hdy.1995.39; Fisher RA, 1941, ANN EUGENIC, V11, P53, DOI 10.1111/j.1469-1809.1941.tb02272.x; Fishman L, 2008, NEW PHYTOL, V177, P802, DOI 10.1111/j.1469-8137.2007.02265.x; Franke DM, 2006, INT J PLANT SCI, V167, P83, DOI 10.1086/497648; Franks SJ, 2007, P NATL ACAD SCI USA, V104, P1278, DOI 10.1073/pnas.0608379104; Franks SJ, 2011, NEW PHYTOL, V190, P249, DOI 10.1111/j.1469-8137.2010.03603.x; Galloway LF, 2012, J ECOL, V100, P852, DOI 10.1111/j.1365-2745.2012.01967.x; Garcia LV, 2004, OIKOS, V105, P657, DOI 10.1111/j.0030-1299.2004.13046.x; Geber MA, 1997, OECOLOGIA, V109, P535, DOI 10.1007/s004420050114; Geber MA, 2003, INT J PLANT SCI, V164, pS21, DOI 10.1086/368233; GEBER MA, 1990, OECOLOGIA, V85, P153, DOI 10.1007/BF00319396; Goodwillie C, 2005, ANNU REV ECOL EVOL S, V36, P47, DOI 10.1146/annurev.ecolsys.36.091704.175539; Goodwillie C, 2010, NEW PHYTOL, V185, P311, DOI 10.1111/j.1469-8137.2009.03043.x; Gould B, 2014, J ECOL, V102, P95, DOI 10.1111/1365-2745.12188; Guerrant EO, 1989, EVOLUTIONARY ECOLOGY, P61; Hall MC, 2006, EVOLUTION, V60, P2466, DOI 10.1554/05-688.1; Heschel MS, 2005, AM J BOT, V92, P37, DOI 10.3732/ajb.92.1.37; HOLSINGER KE, 1991, AM NAT, V138, P606, DOI 10.1086/285237; Holsinger KE, 1996, EVOL BIOL, V29, P107; HOLTSFORD TP, 1992, EVOLUTION, V46, P216, DOI 10.1111/j.1558-5646.1992.tb01996.x; Hove AA, 2016, ECOL EVOL, V6, P6524, DOI 10.1002/ece3.2372; Igic B, 2013, NEW PHYTOL, V198, P386, DOI 10.1111/nph.12182; Ivey CT, 2016, ANN BOT-LONDON, V118, P897, DOI 10.1093/aob/mcw134; Ivey CT, 2012, ANN BOT-LONDON, V109, P583, DOI 10.1093/aob/mcr160; JAIN SK, 1976, ANNU REV ECOL SYST, V7, P469, DOI 10.1146/annurev.es.07.110176.002345; Jonas CS, 1999, AM J BOT, V86, P333, DOI 10.2307/2656755; Juenger TE, 2005, PLANT CELL ENVIRON, V28, P697, DOI 10.1111/j.1365-3040.2004.01313.x; Kenney AM, 2014, ECOL EVOL, V4, P4505, DOI 10.1002/ece3.1270; Kimball S, 2013, AM NAT, V182, P191, DOI 10.1086/671058; Kinoshita T, 2011, CURR BIOL, V21, P1232, DOI 10.1016/j.cub.2011.06.025; Kooyers NJ, 2015, PLANT SCI, V234, P155, DOI 10.1016/j.plantsci.2015.02.012; LANDE R, 1985, EVOLUTION, V39, P24, DOI 10.1111/j.1558-5646.1985.tb04077.x; Lendvai G, 2003, HEREDITY, V90, P336, DOI 10.1038/sj.hdy.6800249; Lloyd DG, 1987, FUNCT ECOL, V1, P83, DOI 10.2307/2389709; LLOYD DG, 1992, INT J PLANT SCI, V153, P370, DOI 10.1086/297041; LLOYD DG, 1979, AM NAT, V113, P67, DOI 10.1086/283365; Lovell JT, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1043; LUDLOW MM, 1989, STRUCTURAL AND FUNCTIONAL RESPONSES TO ENVIRONMENTAL STRESSES : WATER SHORTAGE, P269; Manzaneda AJ, 2015, EVOLUTION, V69, P2689, DOI 10.1111/evo.12776; Mazer SJ, 2004, AM J BOT, V91, P2041, DOI 10.3732/ajb.91.12.2041; Mazer SJ, 2010, INT J PLANT SCI, V171, P1029, DOI 10.1086/656305; McKay JK, 2003, MOL ECOL, V12, P1137, DOI 10.1046/j.1365-294X.2003.01833.x; McKay JK, 2008, EVOLUTION, V62, P3014, DOI 10.1111/j.1558-5646.2008.00474.x; Moeller DA, 2006, ECOLOGY, V87, P1510, DOI 10.1890/0012-9658(2006)87[1510:GSOPCR]2.0.CO;2; MOORE DM, 1965, EVOLUTION, V19, P104, DOI 10.1111/j.1558-5646.1965.tb01695.x; Morgan MT, 1997, AM NAT, V150, P618, DOI 10.1086/286085; Olsson K, 2002, J EVOLUTION BIOL, V15, P983, DOI 10.1046/j.1420-9101.2002.00457.x; ONeil P, 1997, EVOLUTION, V51, P267, DOI 10.1111/j.1558-5646.1997.tb02408.x; Runions CJ, 2000, AM J BOT, V87, P1439, DOI 10.2307/2656870; Runquist RDB, 2014, EVOLUTION, V68, P2885, DOI 10.1111/evo.12488; Schneider HE, 2016, AM J BOT, V103, P140, DOI 10.3732/ajb.1500108; Schoen DJ, 1996, PHILOS T R SOC B, V351, P1281, DOI 10.1098/rstb.1996.0111; Sherrard ME, 2006, EVOLUTION, V60, P2478, DOI 10.1554/06-150.1; Sletvold N, 2015, ECOLOGY, V96, P214, DOI 10.1890/14-0119.1; Snell Rebecca, 2005, BMC Ecology, V5, P2, DOI 10.1186/1472-6785-5-2; Stebbins G. L., 1974, FLOWERING PLANTS EVO; STEBBINS GL, 1957, AM NAT, V91, P337, DOI 10.1086/281999; Takebayashi N, 2001, AM J BOT, V88, P1143, DOI 10.2307/3558325; Van Dijk H, 2009, J EXP BOT, V60, P3143, DOI 10.1093/jxb/erp142; VASEK FC, 1971, ECOLOGY, V52, P1046, DOI 10.2307/1933811; VASEK FC, 1968, AM NAT, V102, P25, DOI 10.1086/282521; VASEK FC, 1958, AM J BOT, V45, P150, DOI 10.2307/2439364; VASEK FC, 1977, SYST BOT, V2, P251, DOI 10.2307/2418458; VASEK FC, 1965, EVOLUTION, V19, P152, DOI 10.1111/j.1558-5646.1965.tb01702.x; VASEK FC, 1971, ECOLOGY, V52, P1038, DOI 10.2307/1933810; Weintraub MN, 2005, BIOGEOCHEMISTRY, V73, P359, DOI 10.1007/s10533-004-0363-z; Worley AC, 2000, EVOLUTION, V54, P1533; Wright SI, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0133; Wu CA, 2010, OECOLOGIA, V162, P23, DOI 10.1007/s00442-009-1448-0 98 1 1 6 15 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0305-7364 1095-8290 ANN BOT-LONDON Ann. Bot. MAR 2018 121 4 753 766 10.1093/aob/mcx197 14 Plant Sciences Plant Sciences FZ8TX WOS:000427884200019 29351591 2019-02-21 J Dillon, KG; Conway, CJ Dillon, Kristen G.; Conway, Courtney J. Nest predation risk explains variation in avian clutch size BEHAVIORAL ECOLOGY English Article elevational gradient; evolutionary constraints; offspring mortality; life-history evolution; phenotypic plasticity; predation risk manipulation; reproductive investment; resource availability LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; LITTER-SIZE; TROPICAL BIRDS; REPRODUCTIVE-PERFORMANCE; SUPPLEMENTAL FOOD; PASSERINE BIRDS; SONG SPARROWS; TRADE-OFFS; STRATEGIES The risk that an animal's offspring are eaten by predators is thought to strongly influence an animal's decisions regarding reproductive effort. We found that birds breeding in locations with a high risk of nest predation laid fewer eggs than their conspecifics nesting in areas with a lower risk of nest predation. Montane birds nesting at higher elevations lay fewer eggs than at lower elevations because of the higher risk of nest predation at higher elevations.Questions about the ecological drivers of, and mechanistic constraints on, productivity have driven research on life-history evolution for decades. Resource availability and offspring mortality are considered among the 2 most important influences on the number of offspring per reproductive attempt. We used a factorial experimental design to manipulate food abundance and perceived offspring predation risk in a wild avian population (red-faced warblers; Cardellina rubrifrons) to identify the mechanistic cause of variation in avian clutch size. Additionally, we tested whether female quality helped explain the extant variation in clutch size. We found no support for the Food Limitation or Female Quality Hypotheses, but we did find support for both predictions of the Nest Predation Risk Hypothesis. Females that experienced an experimentally heightened perception of offspring predation risk responded by laying a smaller clutch than females in the control group. Additionally, predation rates at artificial nests were highest where red-faced warbler clutch size was smallest (at high elevations). Life-history theory predicts that an individual should invest less in reproduction when high nest predation risk reduces the likely benefit from that nesting attempt and, indeed, we found that birds exhibit phenotypic plasticity in clutch size by laying fewer eggs in response to increasing nest predation risk. [Dillon, Kristen G.] Univ Arizona, Sch Nat Resources & Environm, Arizona Cooperat Fish & Wildlife Res Unit, BioSci East 325, Tucson, AZ 85721 USA; [Dillon, Kristen G.] Univ Idaho, Idaho Cooperat Fish & Wildlife Res Unit, 875 Perimeter Dr,MS 1141, Moscow, ID 83844 USA; [Conway, Courtney J.] Univ Idaho, Idaho Cooperat Fish & Wildlife Res Unit, US Geol Survey, 875 Perimeter Dr,MS 1141, Moscow, ID 83844 USA Dillon, KG (reprint author), Univ Arizona, Sch Nat Resources & Environm, Arizona Cooperat Fish & Wildlife Res Unit, BioSci East 325, Tucson, AZ 85721 USA.; Dillon, KG (reprint author), Univ Idaho, Idaho Cooperat Fish & Wildlife Res Unit, 875 Perimeter Dr,MS 1141, Moscow, ID 83844 USA. dillon@uidaho.edu National Science Foundation Graduate Research Fellowship Grant [DGE-1143953]; National Science Foundation Graduate Research Fellowship [DGE-1143953] This work was supported by National Science Foundation Graduate Research Fellowship Grant No. DGE-1143953 and in-kind support from the U.S. Geological Survey.; R.D. and K.P. provided helpful feedback throughout this study. M.C., M.C., M.C-S., L.F., J.R., E.S., A.S., and J.T. provided field assistance. D.L. and B.S. provided analytical guidance. Two anonymous reviewers provided helpful comments that improved the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This work was supported by National Science Foundation Graduate Research Fellowship Grant No. DGE-1143953. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation. ARCESE P, 1988, J ANIM ECOL, V57, P119, DOI 10.2307/4768; ARNOLD TW, 1992, CAN J ZOOL, V70, P1904, DOI 10.1139/z92-259; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Bears H, 2009, J ANIM ECOL, V78, P365, DOI 10.1111/j.1365-2656.2008.01491.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Boyce AJ, 2015, AUK, V132, P424, DOI 10.1642/AUK-14-150.1; Boyle WA, 2008, OECOLOGIA, V155, P397, DOI 10.1007/s00442-007-0897-6; Boyle WA, 2016, BIOL REV, V91, P469, DOI 10.1111/brv.12180; Briskie JV, 1999, P ROY SOC B-BIOL SCI, V266, P2153, DOI 10.1098/rspb.1999.0902; Conway CJ, 2000, EVOLUTION, V54, P670; Creel S, 2007, SCIENCE, V315, P960, DOI 10.1126/science.1135918; Decker KL, 2012, EVOL ECOL, V26, P683, DOI 10.1007/s10682-011-9521-7; Dillon KG, 2017, DRYAD DIGITAL REPOSI; Dillon KG, 2015, J FIELD ORNITHOL, V86, P163, DOI 10.1111/jofo.12099; DOONAN TJ, 1995, ECOLOGY, V76, P814, DOI 10.2307/1939347; Doughty P, 1997, OECOLOGIA, V110, P508, DOI 10.1007/s004420050187; Eggers S, 2006, P ROY SOC B-BIOL SCI, V273, P701, DOI 10.1098/rspb.2005.3373; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Fontaine JJ, 2007, OIKOS, V116, P1887, DOI 10.1111/j.2007.0030-1299.16043.x; Hatchwell BJ, 2000, ANIM BEHAV, V59, P1079, DOI 10.1006/anbe.2000.1394; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; Ibanez-Alamo JD, 2015, J ORNITHOL, V156, pS247, DOI 10.1007/s10336-015-1207-4; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Kery M., 2016, APPL HIERARCHICAL MO; Kirkpatrick C, 2009, 200901 US GEOL SURV; Kirkpatrick C, 2010, WILSON J ORNITHOL, V122, P614, DOI 10.1676/09-166.1; KORPIMAKI E, 1994, EVOL ECOL, V8, P357, DOI 10.1007/BF01238188; Laake J. L., 2013, 201301 AFSC NOAA NAT; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lessard JP, 2011, OIKOS, V120, P333, DOI 10.1111/j.1600-0706.2010.18772.x; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; Lukacs PM, 2010, ANN I STAT MATH, V62, P117, DOI 10.1007/s10463-009-0234-4; Martin T, 1995, BIRDS N AM ONLINE; Martin TE, 2001, P NATL ACAD SCI USA, V98, P2071, DOI 10.1073/pnas.98.4.2071; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; McDonald PG, 2009, BEHAV ECOL, V20, P821, DOI 10.1093/beheco/arp066; MILLAR JS, 1973, EVOLUTION, V27, P134, DOI 10.1111/j.1558-5646.1973.tb05925.x; Morris DW, 1998, OIKOS, V83, P518, DOI 10.2307/3546679; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; Mukherjee S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088832; Neuhaus P, 2003, P ROY SOC B-BIOL SCI, V270, pS213, DOI 10.1098/rsbl.2003.0073; NILSSON JA, 1993, ECOLOGY, V74, P244, DOI 10.2307/1939519; Olsson M, 1997, AM NAT, V149, P179, DOI 10.1086/285985; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Ridout MS, 2004, STAT MODEL, V4, P77, DOI 10.1191/1471082X04st064oa; RODENHOUSE NL, 1992, ECOLOGY, V73, P357, DOI 10.2307/1938747; Roff Derek A., 1992; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; Smith RJ, 2003, OECOLOGIA, V134, P325, DOI 10.1007/s00442-002-1152-9; Sofaer HR, 2013, BEHAV ECOL, V24, P698, DOI 10.1093/beheco/ars212; Stahlschmidt ZR, 2013, FUNCT ECOL, V27, P800, DOI 10.1111/1365-2435.12071; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; Venne L., 2004, TAMIAS DORSALIS; Wiehn J, 1997, ECOLOGY, V78, P2043, DOI 10.2307/2265943; Winkler DW, 1995, AUK, V112, P737; Zanette LY, 2011, SCIENCE, V334, P1398, DOI 10.1126/science.1210908; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 68 1 1 10 23 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. MAR-APR 2018 29 2 301 311 10.1093/beheco/arx130 11 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology FZ8UL WOS:000427885600009 Bronze 2019-02-21 J terHorst, CP; Zee, PC; Heath, KD; Miller, TE; Pastore, AI; Patel, S; Schreiber, SJ; Wade, MJ; Walsh, MR terHorst, Casey P.; Zee, Peter C.; Heath, Katy D.; Miller, Thomas E.; Pastore, Abigail I.; Patel, Swati; Schreiber, Sebastian J.; Wade, Michael J.; Walsh, Matthew R. Evolution in a Community Context: Trait Responses to Multiple Species Interactions AMERICAN NATURALIST English Article coevolution; diffuse selection; indirect effects; natural selection; species interactions LIFE-HISTORY EVOLUTION; ECOLOGICAL COMMUNITIES; G-MATRIX; CHARACTER DISPLACEMENT; INTRAGUILD PREDATION; DIFFUSE COEVOLUTION; NATURAL-SELECTION; LOCAL ADAPTATION; RAPID EVOLUTION; INTRASPECIFIC VARIATION Species that coexist in diverse natural communities interact in complex ways that alter each other's abundances and affect selection on each other's traits. Consequently, predicting trait evolution in natural communities may require understanding ecological and evolutionary dynamics involving a number of species. In August 2016, the American Society of Naturalists sponsored a symposium to explore evolution in a community context, focusing on microevolutionary processes. Here we provide an introduction to our perspectives on this topic by defining the context and describing some examples of when and how microevolutionary responses to multiple species may differ from evolution in isolation or in two-species communities. We find that indirect ecological and evolutionary effects can result in nonadditive selection and evolution that cannot be predicted from pairwise interactions. Genetic correlations of ecological traits in one species can alter trait evolution and adaptation aswell as the abundances of other species. In general, evolution in multispecies communities can change ecological interactions, which then feed back to future evolutionary changes in ways that depend on these indirect effects. We suggest avenues for future research in this field, including determining the circumstances under which pairwise evolution does not adequately describe evolutionary trajectories. [terHorst, Casey P.; Zee, Peter C.] Calif State Univ Northridge, Biol Dept, Northridge, CA 91330 USA; [Heath, Katy D.] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA; [Miller, Thomas E.; Pastore, Abigail I.] Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA; [Patel, Swati] Univ Calif Davis, Grad Grp Appl Math, Davis, CA 95616 USA; [Patel, Swati] Univ Vienna, Fac Math, Vienna, Austria; [Schreiber, Sebastian J.] Univ Calif Davis, Dept Ecol & Evolut, Davis, CA 95616 USA; [Wade, Michael J.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA; [Walsh, Matthew R.] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA terHorst, CP (reprint author), Calif State Univ Northridge, Biol Dept, Northridge, CA 91330 USA. casey.terhorst@csun.edu AARSSEN LW, 1983, AM NAT, V122, P707, DOI 10.1086/284167; ABRAMS PA, 1986, THEOR POPUL BIOL, V29, P107, DOI 10.1016/0040-5809(86)90007-9; Agrawal AA, 2012, SCIENCE, V338, P113, DOI 10.1126/science.1225977; Arnold SJ, 2008, EVOLUTION, V62, P2451, DOI 10.1111/j.1558-5646.2008.00472.x; Barabas G, 2016, ECOL LETT, V19, P977, DOI 10.1111/ele.12636; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Berenbaum MR, 2006, ECOLOGY, V87, P3070, DOI 10.1890/0012-9658(2006)87[3070:PWAHPA]2.0.CO;2; Bonte D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011174; BROWN WL, 1956, SYST ZOOL, V5, P49, DOI 10.2307/2411924; CASE TJ, 1981, AM NAT, V118, P554, DOI 10.1086/283848; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Colautti RI, 2015, MOL ECOL, V24, P1999, DOI 10.1111/mec.13162; Conner JK, 2004, PRIMER ECOLOGICAL GE; Darwin C., 1859, ORIGIN SPECIES MEANS; Doebeli M, 1997, J THEOR BIOL, V188, P109, DOI 10.1006/jtbi.1997.0454; Ellner SP, 2013, FUNCT ECOL, V27, P1087, DOI 10.1111/1365-2435.12174; Endler J. A., 2013, EVOLUTIONARY APPL, V6, P70; Endler J. A., 1986, NATURAL SELECTION WI; Etterson JR, 2001, SCIENCE, V294, P151, DOI 10.1126/science.1063656; Ewald PW, 2004, INFECT DIS CLIN N AM, V18, P1, DOI 10.1016/S0891-5520(02)00099-0; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fort H, 2009, THEOR ECOL-NETH, V2, P171, DOI 10.1007/s12080-009-0040-x; Fox JW, 2008, AM NAT, V172, P667, DOI 10.1086/591689; Friman VP, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2920; Friman VP, 2013, ECOL LETT, V16, P39, DOI 10.1111/ele.12010; Fussmann GF, 2007, FUNCT ECOL, V21, P465, DOI 10.1111/j.1365-2435.2007.01275.x; Gagliano M, 2007, P R SOC B, V274, P1575, DOI 10.1098/rspb.2007.0242; Galetti M, 2013, SCIENCE, V340, P1086, DOI 10.1126/science.1233774; Gomez JM, 2003, AM NAT, V162, P242, DOI 10.1086/376574; Gomulkiewicz R, 2007, HEREDITY, V98, P249, DOI 10.1038/sj.hdy.6800949; Haloin JR, 2008, ANN NY ACAD SCI, V1133, P87, DOI 10.1196/annals.1438.003; Harmon LJ, 2009, NATURE, V458, P1167, DOI 10.1038/nature07974; Heath KD, 2010, EVOLUTION, V64, P1446, DOI 10.1111/j.1558-5646.2009.00913.x; Hiltunen T, 2013, ECOLOGY, V94, P773, DOI 10.1890/12-0786.1; Hine E, 2006, GENETICS, V173, P1135, DOI 10.1534/genetics.105.054627; HOUGENEITZMAN D, 1994, AM NAT, V143, P677, DOI 10.1086/285626; Hubbell SP, 2005, FUNCT ECOL, V19, P166, DOI 10.1111/j.0269-8463.2005.00965.x; Hubbell SP, 2006, ECOLOGY, V87, P1387, DOI 10.1890/0012-9658(2006)87[1387:NTATEO]2.0.CO;2; Inouye B, 2001, OIKOS, V95, P353, DOI 10.1034/j.1600-0706.2001.950218.x; Iwao K, 1997, AM NAT, V149, P316, DOI 10.1086/285992; JANZEN DH, 1980, EVOLUTION, V34, P611, DOI 10.1111/j.1558-5646.1980.tb04849.x; Johnson MTJ, 2007, TRENDS ECOL EVOL, V22, P250, DOI 10.1016/j.tree.2007.01.014; Juenger T, 1998, EVOLUTION, V52, P1583, DOI 10.1111/j.1558-5646.1998.tb02239.x; KIESTER AR, 1984, AM NAT, V124, P220, DOI 10.1086/284265; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Klauschies T, 2016, ECOL EVOL, V6, P4141, DOI 10.1002/ece3.2172; Kondoh M, 2003, SCIENCE, V299, P1388, DOI 10.1126/science.1079154; Kopp M, 2006, EVOLUTION, V60, P1321, DOI 10.1111/j.0014-3820.2006.tb01212.x; Kopp M, 2014, EVOL APPL, V7, P169, DOI 10.1111/eva.12127; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; Lankau RA, 2008, AM NAT, V171, P150, DOI 10.1086/524959; Lankau RA, 2007, SCIENCE, V317, P1561, DOI 10.1126/science.1147455; Lankau RA, 2011, ANNU REV ECOL EVOL S, V42, P335, DOI 10.1146/annurev-ecolsys-102710-145100; Lau JA, 2008, ECOLOGY, V89, P1023, DOI 10.1890/06-1999.1; Lau JA, 2015, MOL ECOL, V24, P1987, DOI 10.1111/mec.13084; Lavergne S, 2010, ANNU REV ECOL EVOL S, V41, P321, DOI 10.1146/annurev-ecolsys-102209-144628; Leibold MA, 2005, METACOMMUNITIES: SPATIAL DYNAMICS AND ECOLOGICAL COMMUNITIES, P439; Levine JM, 2009, NATURE, V461, P254, DOI 10.1038/nature08251; Levins R., 1968, EVOLUTION CHANGING E; LEWONTIN RC, 1960, EVOLUTION, V14, P458, DOI 10.2307/2405995; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; Matthews B, 2016, CURR BIOL, V26, P483, DOI 10.1016/j.cub.2015.11.070; MENGE BA, 1995, ECOL MONOGR, V65, P21, DOI 10.2307/2937158; Miller T.E., 1987, P33; Miller TE, 1996, ECOLOGY, V77, P1329, DOI 10.2307/2265530; Miller TE, 2014, AM NAT, V184, P277, DOI 10.1086/676943; Moran EV, 2014, ECOL LETT, V17, P637, DOI 10.1111/ele.12262; NEILL WE, 1974, AM NAT, V108, P399, DOI 10.1086/282922; Nosil P, 2004, EVOLUTION, V58, P102, DOI 10.1111/j.0014-3820.2004.tb01577.x; Nuismer SL, 2004, EVOLUTION, V58, P1165, DOI 10.1111/j.0014-3820.2004.tb01697.x; Ossler JN, 2018, AM NAT, V191, P395, DOI 10.1086/695829; Otto SP, 2008, CURR BIOL, V18, pR1121, DOI 10.1016/j.cub.2008.09.039; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Palkovacs EP, 2009, ECOLOGY, V90, P300, DOI 10.1890/08-1673.1; Pantel JH, 2015, ECOL LETT, V18, P992, DOI 10.1111/ele.12480; Parker AR, 1995, P ROY SOC B-BIOL SCI, V262, P349, DOI 10.1098/rspb.1995.0216; Patel S, 2018, AM NAT, V191, P381, DOI 10.1086/695834; Patel S, 2015, AM NAT, V186, pE98, DOI 10.1086/683170; POLIS GA, 1992, TRENDS ECOL EVOL, V7, P151, DOI 10.1016/0169-5347(92)90208-S; Post DM, 2008, ECOLOGY, V89, P2019, DOI 10.1890/07-1216.1; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; Rausher MD, 1996, TRENDS GENET, V12, P212, DOI 10.1016/0168-9525(96)10020-2; Reznick DN, 2013, AM NAT, V181, pS1, DOI 10.1086/670030; Reznick DN, 2012, EVOLUTION, V66, P2903, DOI 10.1111/j.1558-5646.2012.01650.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Roff D, 2000, HEREDITY, V84, P135, DOI 10.1046/j.1365-2540.2000.00695.x; Rudman SM, 2016, CURR BIOL, V26, P490, DOI 10.1016/j.cub.2016.01.004; Scheffer M, 2006, P NATL ACAD SCI USA, V103, P6230, DOI 10.1073/pnas.0508024103; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Schreiber SJ, 2018, AM NAT, V191, P407, DOI 10.1086/695832; Schreiber SJ, 2011, ECOLOGY, V92, P1582; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Steppan SJ, 2002, TRENDS ECOL EVOL, V17, P320, DOI 10.1016/S0169-5347(02)02505-3; Stinchcombe JR, 2001, AM NAT, V158, P376, DOI 10.1086/321990; Stinchcombe JR, 2002, P ROY SOC B-BIOL SCI, V269, P1241, DOI 10.1098/rspb.2002.2015; Strauss SY, 2005, NEW PHYTOL, V165, P81, DOI 10.1111/j.1469-8137.2004.01228.x; Strauss SY, 2004, ANNU REV ECOL EVOL S, V35, P435, DOI 10.1146/annurev.ecolsys.35.112202.130215; STRAUSS SY, 1991, TRENDS ECOL EVOL, V6, P206, DOI 10.1016/0169-5347(91)90023-Q; TAPER ML, 1992, EVOLUTION, V46, P317, DOI 10.1111/j.1558-5646.1992.tb02040.x; terHorst CP, 2011, J EVOLUTION BIOL, V24, P36, DOI 10.1111/j.1420-9101.2010.02140.x; Terhorst CP, 2017, ECOLOGY, V98, P1171, DOI 10.1002/ecy.1744; terHorst CP, 2016, FUNCT ECOL, V30, P1062, DOI 10.1111/1365-2435.12671; TerHorst CP, 2015, ECOLOGY, V96, P2360, DOI 10.1890/14-0619.1; terHorst CP, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0028; terHorst CP, 2010, EVOL ECOL RES, V12, P843; Terhorst CP, 2010, AM NAT, V176, P675, DOI 10.1086/657047; Terhorst CP, 2010, ECOLOGY, V91, P629, DOI 10.1890/09-1481.1; Thompson JN, 1998, TRENDS ECOL EVOL, V13, P329, DOI 10.1016/S0169-5347(98)01378-0; Thompson JN, 2009, AM NAT, V173, P125, DOI 10.1086/595752; Tifffn P, 2002, ECOLOGY, V83, P1981, DOI 10.1890/0012-9658(2002)083[1981:CATODA]2.0.CO;2; Travis J, 2013, AM NAT, V181, pS9, DOI 10.1086/669970; Turcotte MM, 2013, AM NAT, V181, pS46, DOI 10.1086/668078; Urban MC, 2008, TRENDS ECOL EVOL, V23, P311, DOI 10.1016/j.tree.2008.02.007; Urban MC, 2011, ECOL LETT, V14, P723, DOI 10.1111/j.1461-0248.2011.01632.x; VANDERMEER JH, 1969, ECOLOGY, V50, P362, DOI 10.2307/1933884; Vasseur DA, 2011, AM NAT, V178, pE96, DOI 10.1086/662161; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; Wade MJ, 2007, NAT REV GENET, V8, P185, DOI 10.1038/nrg2031; Wade MJ, 2016, ECOL EVOL, V6, P6460, DOI 10.1002/ece3.2345; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2013, TRENDS ECOL EVOL, V28, P23, DOI 10.1016/j.tree.2012.08.006; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Weber MG, 2017, TRENDS ECOL EVOL, V32, P291, DOI 10.1016/j.tree.2017.01.003; Werner EE, 2003, ECOLOGY, V84, P1083, DOI 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2; Williamson JE, 2004, ECOLOGY, V85, P1355, DOI 10.1890/02-4083; Wise MJ, 2013, EVOLUTION, V67, P1767, DOI 10.1111/evo.12061; Wolf J. B., 2000, EPISTASIS EVOLUTIONA, P158; Wood CW, 2015, EVOLUTION, V69, P2927, DOI 10.1111/evo.12795; WOOTTON JT, 1994, ANNU REV ECOL SYST, V25, P443, DOI 10.1146/annurev.es.25.110194.002303; Yamaguchi W, 2011, POPUL ECOL, V53, P59, DOI 10.1007/s10144-010-0212-y; Yamamichi M, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2926; Yoshida T, 2003, NATURE, V424, P303, DOI 10.1038/nature01767 132 5 5 10 40 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. MAR 2018 191 3 368 380 10.1086/695835 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FZ4UV WOS:000427588400013 2019-02-21 J Helfrecht, C; Hagen, EH; DeAvila, D; Bernstein, RM; Dira, SJ; Meehan, CL Helfrecht, Courtney; Hagen, Edward H.; DeAvila, David; Bernstein, Robin M.; Dira, Samuel J.; Meehan, Courtney L. DHEAS patterning across childhood in three sub-Saharan populations: Associations with age, sex, ethnicity, and cortisol AMERICAN JOURNAL OF HUMAN BIOLOGY English Article adrenarche; cortisol; DHEAS; life history theory; sub-Saharan Africa DEHYDROEPIANDROSTERONE-SULFATE LEVELS; PROTEIN-CALORIE MALNUTRITION; HUMAN LIFE-HISTORY; HAIR CORTISOL; NUTRITIONAL-STATUS; STRESS-RESPONSE; HPA AXIS; REPRODUCTIVE STRATEGY; TESTOSTERONE LEVELS; NONHUMAN-PRIMATES ObjectivesHormones have many roles in human ontogeny, including the timing of life history switch points' across development. Limited hormonal data exist from non-Western children, leaving a significant gap in our understanding of the diversity of life history patterning. This cross-sectional study examines dehydroepiandrosterone sulfate (DHEAS) production in relation to age, sex, ethnicity, and cortisol concentrations, as well as average age of adrenarche, among Aka and Ngandu children of the Central African Republic and Sidama children of Ethiopia. MethodsHair was collected from 480 children (160 per population) aged 3-18years old. These samples were analyzed for DHEAS and cortisol concentrations using ELISAs. A generalized additive model was used to examine DHEAS patterning in relation to age, sex, cortisol, and ethnicity. The derivative of DHEAS as a function of age was used to identify average age of adrenarche in each population. ResultsDHEAS patterning in these three populations is distinct from Euro-American patterns of production. In all three groups, the population-level age at adrenarche onset occurs slightly later than Euro-American averages, with both Central African populations experiencing a later onset than the Ethiopian population. ConclusionsDHEAS patterns and age at adrenarche vary across cultures, perhaps indicating adaptive life history responses in diverse eco-cultural environments. Delayed involution of the fetal zone and DHEAS patterning may offer both cognitive protection and immune defense in high-risk, nutritionally-poor environments. Additional research in the majority world is essential to improving our understanding of the diversity of hormonal development and timing of switch points' in life history trajectories. [Helfrecht, Courtney; Hagen, Edward H.; DeAvila, David; Bernstein, Robin M.; Dira, Samuel J.; Meehan, Courtney L.] Washington State Univ, Dept Anthropol, POB 4910, Pullman, WA 99164 USA Helfrecht, C (reprint author), Washington State Univ, Dept Anthropol, POB 644910, Pullman, WA 99164 USA. chelfrecht@wsu.edu ALLEYNE GAO, 1967, CLIN SCI, V33, P189; Asefach H., 2008, ORIENTAL ANTHR, V8, P169; Bahuchet S., 1990, African Study Monographs, V11, P27; Bahuchet S, 1982, POLITICS HIST BAND S, P189; Bale TL, 2015, NAT NEUROSCI, V18, P1413, DOI 10.1038/nn.4112; Bartz JA, 2010, P NATL ACAD SCI USA, V107, P21371, DOI 10.1073/pnas.1012669107; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bernstein R., 2016, CHILDHOOD ORIGINS EV, P103; Boesch M, 2015, STRESS, V18, P35, DOI 10.3109/10253890.2014.974028; BOGIN B, 2002, HUMAN GROWTH DEV, P295; Bozzola M, 2009, MOL GENET METAB, V98, P310, DOI 10.1016/j.ymgme.2009.05.009; Bribiescas RG, 1996, HUM NATURE-INT BIOS, V7, P163, DOI 10.1007/BF02692109; Brogger J., 1986, BELIEF EXPERIENCE SI; Burnham TC, 2003, HORM BEHAV, V44, P119, DOI 10.1016/S0018-506X(03)00125-9; Campbell B, 2006, AM J HUM BIOL, V18, P569, DOI 10.1002/ajhb.20528; Campbell BC, 2007, AGING MALE, V10, P203, DOI 10.1080/13685530701533151; Campbell BC, 2011, HUM NATURE-INT BIOS, V22, P327, DOI 10.1007/s12110-011-9120-x; Charnov Eric L., 1993, P1; Chen Z, 2013, J CHROMATOGR B, V929, P187, DOI 10.1016/j.jchromb.2013.04.026; CHISHOLM JS, 2005, ORIGINS SOCIAL MIND, P76; Chrousos GP, 1998, ANN NY ACAD SCI, V851, P311, DOI 10.1111/j.1749-6632.1998.tb09006.x; Cooper GAA, 2012, FORENSIC SCI INT, V218, P20, DOI 10.1016/j.forsciint.2011.10.024; D'Anna-Hernandez KL, 2011, PHYSIOL BEHAV, V104, P348, DOI 10.1016/j.physbeh.2011.02.041; Davenport MD, 2006, GEN COMP ENDOCR, V147, P255, DOI 10.1016/j.ygcen.2006.01.005; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; DEPERETTI E, 1978, J CLIN ENDOCR METAB, V47, P572, DOI 10.1210/jcem-47-3-572; DHOM G, 1973, BEITR PATHOL, V150, P357; DIETZ WH, 1989, AM J PHYS ANTHROPOL, V78, P509, DOI 10.1002/ajpa.1330780406; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2008, CURR DIR PSYCHOL SCI, V17, P183, DOI 10.1111/j.1467-8721.2008.00571.x; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellison PT, 2001, FERTILE GROUND; Fernald LC, 1998, AM J CLIN NUTR, V68, P691, DOI 10.1093/ajcn/68.3.691; FIewlett Barry S., 1992, FATHER CHILD RELATIO, P153; Flinn M. V., 2005, ORIGINS SOCIAL MIND, P19; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Flinn Mark V, 1999, HORMONES HLTH BEHAV, P105; Fourie NH, 2016, ZOOLOGY, V119, P119, DOI 10.1016/j.zool.2016.01.001; Fourie NH, 2011, GEN COMP ENDOCR, V174, P150, DOI 10.1016/j.ygcen.2011.08.013; Gettler LT, 2013, HORM BEHAV, V64, P755, DOI 10.1016/j.yhbeh.2013.08.019; Goodyer IM, 1998, PSYCHOL MED, V28, P265, DOI 10.1017/S0033291797006314; Goodyer IM, 2001, BRIT J PSYCHIAT, V179, P243, DOI 10.1192/bjp.179.3.243; Gow R, 2010, FORENSIC SCI INT, V196, P32, DOI 10.1016/j.forsciint.2009.12.040; Gray Peter B., 2009, ENDOCRINOLOGY SOCIAL, P270; Groeneveld MG, 2013, STRESS, V16, P711, DOI 10.3109/10253890.2013.817553; Grunau RE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073926; Hamel AF, 2011, CLIN CHIM ACTA, V412, P382, DOI 10.1016/j.cca.2010.10.019; Hamer John H., 1987, HUMANE DEV PARTICIPA; Hastie T, 1986, STAT SCI, V1, P297, DOI DOI 10.1214/SS/1177013604; Hechter O, 1997, MED HYPOTHESES, V49, P85, DOI 10.1016/S0306-9877(97)90258-9; Helfrecht C., 2016, THESIS; Helfrecht C, 2016, AM J HUM BIOL, V28, P159, DOI 10.1002/ajhb.22763; Hewlett B.S., 1986, AFRICAN PYGMIES, P45; Hewlett Barry S., 1991, INTIMATE FATHERS NAT; Hewlett BS, 2000, CURR ANTHROPOL, V41, P287, DOI 10.1086/300135; HEWLETT BS, 1986, AM ANTHROPOL, V88, P922; Hill K, 1999, ANNU REV ANTHROPOL, V28, P297; Hui XG, 2009, J ENDOCRINOL, V203, P241, DOI 10.1677/JOE-09-0127; Ito N, 2005, FASEB J, V19, P1332, DOI 10.1096/fj.04-1968fje; Jarvis J. P., 2012, PLOS GENET, V8, P1; Kaplan H, 2003, POPUL DEV REV, V29, P152; Karlen J, 2013, PEDIATRICS, V132, pE1333, DOI 10.1542/peds.2013-1178; Karlen J, 2011, BMC CLIN PATHOL, V11, DOI 10.1186/1472-6890-11-12; Kintz P, 1999, J ANAL TOXICOL, V23, P424, DOI 10.1093/jat/23.6.424; Kudielka BM, 2005, BIOL PSYCHOL, V69, P113, DOI 10.1016/j.biopsycho.2004.11.009; KULIN HE, 1982, AM J CLIN NUTR, V36, P527, DOI 10.1093/ajcn/36.3.527; Kurtis JD, 2001, INFECT IMMUN, V69, P123, DOI 10.1128/IAI.69.1.123-128.2001; Labrie F, 2005, J ENDOCRINOL, V187, P169, DOI 10.1677/joe.1.06264; Lamb M. E, 2002, CULTURE BIOL PERSPEC, P241; Lancy DF, 2011, HUM NATURE-INT BIOS, V22, P281, DOI 10.1007/s12110-011-9117-5; Lane MA, 1997, J CLIN ENDOCR METAB, V82, P2093, DOI 10.1210/jc.82.7.2093; Laudenslager ML, 2012, PSYCHONEUROENDOCRINO, V37, P1736, DOI 10.1016/j.psyneuen.2012.03.015; Lee HJ, 2009, PROG NEUROBIOL, V88, P127, DOI 10.1016/j.pneurobio.2009.04.001; Leenstra T, 2003, J INFECT DIS, V188, P297, DOI 10.1086/376508; Majewska MD, 1995, ANN NY ACAD SCI, V774, P111, DOI 10.1111/j.1749-6632.1995.tb17375.x; Martorell R, 1984, POPUL DEV REV, V10, P49, DOI 10.2307/2807955; McEwen BS, 1998, ANN NY ACAD SCI, V840, P33, DOI 10.1111/j.1749-6632.1998.tb09546.x; MCEWEN BS, 1993, ARCH INTERN MED, V153, P2093, DOI 10.1001/archinte.153.18.2093; Meehan C., 2017, HUNTER GATHERERS CHA, P213; Meehan C. L., 2005, HUMAN NATURE, V6, P62; Meehan CL, 2008, HUM NATURE-INT BIOS, V19, P211, DOI 10.1007/s12110-008-9039-z; Meehan CL, 2014, AM J PHYS ANTHROPOL, V153, P513, DOI 10.1002/ajpa.22415; Meyer JS, 2012, ENDOCRINOLOGY, V153, P4120, DOI 10.1210/en.2012-1226; Moore SE, 1997, NATURE, V388, P434, DOI 10.1038/41245; Nakamura Y., 2010, ASIA PACIFIC J ENDOC, P1; Nepomnaschy P., 2009, ENDOCRINOLOGY SOCIAL, P364; Noppe G, 2014, HORM RES PAEDIAT, V82, P97, DOI 10.1159/000362519; Ong KK, 2004, J CLIN ENDOCR METAB, V89, P2647, DOI 10.1210/jc.2003-031848; ORENTREICH N, 1984, J CLIN ENDOCR METAB, V59, P551, DOI 10.1210/jcem-59-3-551; Parent AS, 2003, ENDOCR REV, V24, P668, DOI 10.1210/er.2002-0019; PARKER LN, 1991, ENDOCRIN METAB CLIN, V20, P71, DOI 10.1016/S0889-8529(18)30282-2; PARKER LN, 1995, SEMIN REPROD ENDOCR, V13, P275, DOI 10.1055/s-2007-1016370; Pelletier DL, 2003, J NUTR, V133, P107; Phillips AC, 2010, EUR J ENDOCRINOL, V162, P919, DOI 10.1530/EJE-09-1078; Piko BF, 2002, ADM POLICY MENT HLTH, V29, P275, DOI 10.1023/A:1015199727651; PRATT JH, 1994, METABOLISM, V43, P186, DOI 10.1016/0026-0495(94)90243-7; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; RAO KSJ, 1968, ARCH DIS CHILD, V43, P365; Remer T, 1999, J CLIN ENDOCR METAB, V84, P3936, DOI 10.1210/jc.84.11.3936; Rippe RCA, 2016, PSYCHONEUROENDOCRINO, V66, P56, DOI 10.1016/j.psyneuen.2015.12.016; ROGOFF B, 1975, HUM DEV, V18, P353, DOI 10.1159/000271496; ROTTER JI, 1985, METABOLISM, V34, P731, DOI 10.1016/0026-0495(85)90023-X; Russell E, 2014, THER DRUG MONIT, V36, P30, DOI 10.1097/FTD.0b013e31829daa0a; Russell E, 2012, PSYCHONEUROENDOCRINO, V37, P589, DOI 10.1016/j.psyneuen.2011.09.009; Sapolsky R. M., 1999, HORMONES HLTH BEHAV, P18; Sapolsky R. M., 1994, WHY ZEBRAS DONT GET; Sauve B, 2007, CLIN INVEST MED, V30, pE183, DOI 10.25011/cim.v30i5.2894; Scrimshaw NS, 1968, WHO MONOGRAPH SERIES; Shen M, 2009, FORENSIC SCI INT, V184, P32, DOI 10.1016/j.forsciint.2008.11.014; Shi LJ, 2009, AM J CLIN NUTR, V90, P1321, DOI 10.3945/ajcn.2009.27964; SMITH IF, 1981, P SOC EXP BIOL MED, V167, P607; Society of Hair Testing, 1997, FORENSIC SCI INT, V84, P3; Stalder T, 2012, BRAIN BEHAV IMMUN, V26, P1019, DOI 10.1016/j.bbi.2012.02.002; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Steudte S, 2011, PSYCHONEUROENDOCRINO, V36, P1193, DOI 10.1016/j.psyneuen.2011.02.012; Sulcova J, 1997, J ENDOCRINOL, V154, P57, DOI 10.1677/joe.0.1540057; Takeuchi K., 2005, CULTURE CONSERVATION, P11; Terefe A, 2011, ETHIOP J HEALTH DEV, V25, P46; Vaghri Z, 2013, PSYCHONEUROENDOCRINO, V38, P331, DOI 10.1016/j.psyneuen.2012.06.009; VansUum S. H. M., 2008, STRESS, V11, P483; Webb E, 2010, J ARCHAEOL SCI, V37, P807, DOI 10.1016/j.jas.2009.11.010; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; White BA, 2013, ENDOCRINE REPROD PHY; WHITE SH, 1996, MAC FDN MEN, P17; WORTHMAN CM, 1987, PSYCHONEUROENDOCRINO, V12, P449, DOI 10.1016/0306-4530(87)90079-5; Worthman CM, 1999, HORMONES HLTH BEHAV, P47; WORTHMAN CM, 1993, JUVENILE PRIMATES LI, P339; Yang HZ, 1998, J STEROID BIOCHEM, V67, P447, DOI 10.1016/S0960-0760(98)00120-4; Yewelsew A., 2008, 17 ANN C ETH STAT AS; ZEMEL BS, 1986, AM J PHYS ANTHROPOL, V71, P459, DOI 10.1002/ajpa.1330710409; 2010, WORLD MAL REP 2010, P1 137 1 1 3 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. MAR-APR 2018 30 2 e23090 10.1002/ajhb.23090 17 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics FZ0CB WOS:000427233300016 29226590 Bronze 2019-02-21 J Hentges, RF; Wang, MT Hentges, Rochelle F.; Wang, Ming-Te Gender Differences in the Developmental Cascade From Harsh Parenting to Educational Attainment: An Evolutionary Perspective CHILD DEVELOPMENT English Article DRUG PREVENTION PROGRAMS; HIGH-SCHOOL DROPOUT; MAXIMUM-LIKELIHOOD; EARLY ADOLESCENTS; MISSING DATA; PEER ORIENTATION; SEXUAL SELECTION; LIFE-HISTORY; BEHAVIOR; PREDICTORS This study utilized life history theory to test a developmental cascade model linking harsh parenting to low educational attainment. Multigroup models were examined to test for potential gender differences. The sample consisted of 1,482 adolescents followed up for 9years starting in seventh grade (M-age=12.74). Results supported indirect links between harsh parenting and low educational attainment through the development of extreme peer orientations, early sexual behavior, and delinquency. Among male adolescents, harsh parenting was related to the development of an extreme peer orientation, which further led to increased delinquency, and subsequently lower educational attainment. Among female adolescents, harsh parenting predicted extreme peer orientations, which increased both delinquency and early sexual behavior. Early sexual behavior further predicted lower educational attainment in female adolescents. [Hentges, Rochelle F.; Wang, Ming-Te] Univ Pittsburgh, Pittsburgh, PA USA Hentges, RF (reprint author), Univ Pittsburgh, Dept Psychol, 230 South Bouquet St, Pittsburgh, PA 15260 USA. rhentges@pitt.edu Hentges, Rochelle/0000-0002-5813-7013 National Institute of Child Health and Human Development [R01 HD33437] The Maryland Adolescent Development in Context Study (MADICS) was supported in part by the National Institute of Child Health and Human Development Grant R01 HD33437 awarded to Jacquelynne S. Eccles and Arnold J. Sameroff. Alexander KL, 1997, SOCIOL EDUC, V70, P87, DOI 10.2307/2673158; Arbuckle J. L., 2009, AMOS 18 0; Baker MD, 2008, EVOL HUM BEHAV, V29, P391, DOI 10.1016/j.evolhumbehav.2008.06.001; Battin-Pearson S, 2000, J EDUC PSYCHOL, V92, P568, DOI 10.1037/0022-0663.92.3.568; Baum S., 2013, ED PAYS 2013 BENEFIT; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bjorklund DF, 2014, DEV REV, V34, P225, DOI 10.1016/j.dr.2014.05.005; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; Chang L, 2003, J FAM PSYCHOL, V17, P598, DOI 10.1037/0893-3200.17.4.598; Chang L, 2011, PERS SOC PSYCHOL B, V37, P976, DOI 10.1177/0146167211402216; Claes M, 2005, J YOUTH ADOLESCENCE, V34, P401, DOI 10.1007/s10964-005-7258-8; Cutler D, 2006, J ECON PERSPECT, V20, P97, DOI 10.1257/jep.20.3.97; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Del Giudice M, 2015, NEW DIR CHILD ADOLES, V148, P15, DOI 10.1002/cad.20101; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Dodge K. A., 2006, SOCIAL POLICY REPORT, V20, P1; ECCLES JS, 1991, AM J EDUC, V99, P521, DOI 10.1086/443996; Elliott D. S., 1989, MULTIPLE YOUTH PROBL; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Enders CK, 2001, PSYCHOL METHODS, V6, P352, DOI 10.1037//1082-989X.6.4.352; Enders CK, 2001, STRUCT EQU MODELING, V8, P128, DOI 10.1207/S15328007SEM0801_7; FULIGNI AJ, 1993, DEV PSYCHOL, V29, P622, DOI 10.1037/0012-1649.29.4.622; Fuligni AJ, 2001, DEV PSYCHOL, V37, P28, DOI 10.1037//0012-1649.37.1.28; Galvan A, 2011, J APPL DEV PSYCHOL, V32, P346, DOI 10.1016/j.appdev.2011.08.005; Geary D. C, 2012, APPL EVOLUTIONARY PS, P78; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Goldstein SE, 2005, DEV PSYCHOL, V41, P401, DOI 10.1037/0012-1649.41.2.401; Halpern CT, 2000, J ADOLESCENT HEALTH, V26, P213, DOI 10.1016/S1054-139X(99)00061-0; Hoffmann JP, 2013, CRIMINOLOGY, V51, P629, DOI 10.1111/1745-9125.12014; Jackson JJ, 2009, BEHAV BRAIN SCI, V32, P31, DOI 10.1017/S0140525X09000132; Jimerson S, 2000, J SCHOOL PSYCHOL, V38, P525, DOI 10.1016/S0022-4405(00)00051-0; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kiefer SM, 2008, J EDUC PSYCHOL, V100, P417, DOI 10.1037/0022-0663.100.2.417; Kirby D. B., 2008, Sexuality Research and Social Policy, V5, P18, DOI 10.1525/srsp.2008.5.3.18; Maguin E, 1996, CRIME JUSTICE, V20, P145, DOI 10.1086/449243; Masten AS, 2010, DEV PSYCHOPATHOL, V22, P491, DOI 10.1017/S0954579410000222; MILLER BC, 1988, J YOUTH ADOLESCENCE, V17, P521, DOI 10.1007/BF01537829; National Center for Education Statistics, 2013, DIG ED STAT; Newman DA, 2003, ORGAN RES METHODS, V6, P328, DOI 10.1177/1094428103254673; Nickerson AB, 2005, J EARLY ADOLESCENCE, V25, P223, DOI 10.1177/0272431604274174; OECD, 2010, OV SCH FAIL POL WORK; Olthof T, 2008, SOC DEV, V17, P24, DOI 10.1111/j.1467-9507.2007.00413.x; Ou SR, 2008, SCHOOL PSYCHOL QUART, V23, P199, DOI 10.1037/1045-3830.23.2.199; PATTERSON GR, 1991, J CONSULT CLIN PSYCH, V59, P491, DOI 10.1037//0022-006X.59.4.491; Richardson G. B., 2016, EVOLUTIONARY PSYCHOL, V2, P58, DOI DOI 10.1007/s40806-015-0034-4; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Sabates R., 2007, EFFECTS ADULT LEARNI; Santor DA, 2000, J YOUTH ADOLESCENCE, V29, P163, DOI 10.1023/A:1005152515264; Schmitt D. P., 2001, PSYCHOL EVOLUTION GE, V3, P211, DOI DOI 10.1080/14616660110119331; SHAFFER D, 1990, JAMA-J AM MED ASSOC, V264, P3151, DOI 10.1001/jama.264.24.3151; SHAH F, 1981, J MARRIAGE FAM, V43, P339, DOI 10.2307/351385; STRAUS MA, 1979, J MARRIAGE FAM, V41, P75, DOI 10.2307/351733; Sturge-Apple M. L., DEV PSYCHOP IN PRESS; Tobler NS, 1999, SCHOOL PSYCHOL INT, V20, P105, DOI 10.1177/0143034399201008; Tofighi D, 2011, BEHAV RES METHODS, V43, P692, DOI 10.3758/s13428-011-0076-x; Wang MT, 2014, CHILD DEV, V85, P722, DOI 10.1111/cdev.12138; Werch CE, 2002, J STUD ALCOHOL, V63, P581, DOI 10.15288/jsa.2002.63.581; Wilson M, 2004, P ROY SOC B-BIOL SCI, V271, pS177, DOI 10.1098/rsbl.2003.0134; Zimmer-Gembeck MJ, 2004, ARCH SEX BEHAV, V33, P381, DOI 10.1023/B:ASEB.0000028891.16654.2c 60 0 0 1 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0009-3920 1467-8624 CHILD DEV Child Dev. MAR-APR 2018 89 2 397 413 10.1111/cdev.12719 17 Psychology, Educational; Psychology, Developmental Psychology FY8KP WOS:000427113700016 28176329 Bronze 2019-02-21 J Wollebaek, J; Heggenes, J; Roed, KH Wollebaek, Jens; Heggenes, Jan; Roed, Knut H. Life histories and ecotype conservation in an adaptive vertebrate: Genetic constitution of piscivorous brown trout covaries with habitat stability ECOLOGY AND EVOLUTION English Article assortative mating; ecotype; feeding; habitat; life history; piscivory SALMON SALMO-SALAR; MULTILOCUS GENOTYPE DATA; FRESH-WATER RESIDENT; ATLANTIC SALMON; SALVELINUS-NAMAYCUSH; POPULATION-STRUCTURE; LAKE-SUPERIOR; FEROX TROUT; FINE-SCALE; BODY-SIZE Ecotype variation in species exhibiting different life history strategies may reflect heritable adaptations to optimize reproductive success, and potential for speciation. Traditionally, ecotypes have, however, been defined by morphometrics and life history characteristics, which may be confounded with individual plasticity. Here, we use the widely distributed and polytypic freshwater fish species brown trout (Salmo trutta) as a model to study piscivorous life history and its genetic characteristics in environmentally contrasting habitats; a large lake ecosystem with one major large and stable tributary, and several small tributaries. Data from 550 fish and 13 polymorphic microsatellites (H-e=0.67) indicated ecotype-specific genetic differentiation (=0.0170, p<.0001) among Bayesian assigned small riverine resident and large, lake migrating brown trout (>35cm), but only in the large tributary. In contrast, large trout did not constitute a distinct genetic group in small tributaries, or across riverine sites. Whereas life history data suggest a small, river resident and a large migratory piscivorous ecotype in all studied tributaries, genetic data indicated that a genetically distinct piscivorous ecotype is more likely to evolve in the large and relatively more stable river habitat. In the smaller tributaries, ecotypes apparently resulted from individual plasticity. Whether different life histories and ecotypes result from individual plasticity or define different genetic types, have important consequence for conservation strategies. [Wollebaek, Jens; Heggenes, Jan] Univ Coll Southeast Norway, Dept Nat Sci & Environm Hlth, Bo I Telemark, Norway; [Roed, Knut H.] Norwegian Univ Life Sci, Dept Basic Sci & Aquat Med, Oslo, Norway Wollebaek, J (reprint author), Univ Coll Southeast Norway, Dept Nat Sci & Environm Hlth, Bo I Telemark, Norway. jens.wollebak@usn.no University College of Southeast Norway The Laboratory of Freshwater Ecology and Inland fisheries (LFI), University of Oslo, is acknowledged for assistance in sampling and age analyses. Part of this work was funded by the University College of Southeast Norway. AASS P, 1990, MANAGEMENT OF FRESHWATER FISHERIES, P382; AASS P, 1989, Regulated Rivers Research and Management, V3, P255, DOI 10.1002/rrr.3450030125; Aass P., 1984, P277; Aass P., 1973, THESIS; Adams CE, 2016, J FISH BIOL, V88, P580, DOI 10.1111/jfb.12855; Allendorf FW, 2008, TRENDS ECOL EVOL, V23, P327, DOI 10.1016/j.tree.2008.02.008; Avise JC, 2002, ANNU REV GENET, V36, P19, DOI 10.1146/annurev.genet.36.030602.090831; Aykanat T, 2015, MOL ECOL, V24, P5158, DOI 10.1111/mec.13383; Baillie SM, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0788-8; Baillie SM, 2016, J GREAT LAKES RES, V42, P204, DOI 10.1016/j.jglr.2016.02.001; Bernatchez S, 2016, MOL ECOL, V25, P4773, DOI 10.1111/mec.13795; Borgstrom R, 2005, ECOL FRESHW FISH, V14, P375, DOI 10.1111/j.1600-0633.2005.00112.x; BRANNAS E, 1995, EVOL ECOL, V9, P411, DOI 10.1007/BF01237763; Bremnes T., 2008, FISKERIBIOLOGISKE UN; CAMPBELL RN, 1979, J FISH BIOL, V14, P1; Carlson SM, 2008, FUNCT ECOL, V22, P663, DOI 10.1111/j.1365-2435.2008.01416.x; Carlsson J, 1999, J FISH BIOL, V55, P1290, DOI 10.1006/jfbi.1999.1123; CARVALHO GR, 1994, REV FISH BIOL FISHER, V4, P326, DOI 10.1007/BF00042908; CARVALHO GR, 1993, J FISH BIOL, V43, P53, DOI 10.1111/j.1095-8649.1993.tb01179.x; Charmantier A, 2005, P ROY SOC B-BIOL SCI, V272, P1415, DOI 10.1098/rspb.2005.3117; Ciannelli L, 2015, ICES J MAR SCI, V72, P285, DOI 10.1093/icesjms/fsu145; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Cornuet JM, 1996, GENETICS, V144, P2001; Couturier S, 2010, J WILDLIFE MANAGE, V74, P395, DOI 10.2193/2008-384; CRECCO VA, 1985, CAN J FISH AQUAT SCI, V42, P1640, DOI 10.1139/f85-205; Crispo E, 2008, J EVOLUTION BIOL, V21, P1460, DOI 10.1111/j.1420-9101.2008.01592.x; de Jong G, 2005, NEW PHYTOL, V166, P101, DOI 10.1111/j.1469-8137.2005.01322.x; Docker MF, 2003, CONSERV GENET, V4, P227, DOI 10.1023/A:1023355114612; Duguid RA, 2006, J FISH BIOL, V69, P89, DOI 10.1111/j.1095-8649.2006.01118.x; Edmands S, 2007, MOL ECOL, V16, P463, DOI 10.1111/j.1365-294X.2006.03148.x; Elliot J.M., 1994, QUANTITATIVE ECOLOGY; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Falush D, 2003, GENETICS, V164, P1567; FERGUSON A, 1991, BIOL J LINN SOC, V43, P221, DOI 10.1111/j.1095-8312.1991.tb00595.x; Ferguson A., 2004, P ROYAL IRISH ACAD B, V104B, P33; Foote AD, 2009, MOL ECOL, V18, P5207, DOI 10.1111/j.1365-294X.2009.04407.x; Gharrett AJ, 2013, MOL ECOL, V22, P4457, DOI 10.1111/mec.12400; Goetz F, 2010, MOL ECOL, V19, P176, DOI 10.1111/j.1365-294X.2009.04481.x; Goudet J, 1995, J HERED, V86, P485, DOI 10.1093/oxfordjournals.jhered.a111627; Hanski I. A., 1997, METAPOPULATION BIOL; Heath DD, 2008, T AM FISH SOC, V137, P1268, DOI 10.1577/T05-278.1; Heggenes J, 2009, MOL ECOL, V18, P1100, DOI 10.1111/j.1365-294X.2009.04101.x; Hendry A. P., 2003, EVOLUTION ILLUMINATE; Hendry AP, 2009, CAN J FISH AQUAT SCI, V66, P1383, DOI 10.1139/F09-074; Heywood V. H., 1995, GLOBAL BIODIVERSITY; HINDAR K, 1991, HEREDITY, V66, P83, DOI 10.1038/hdy.1991.11; Huitfeldt-Kaas H., 1918, FERSKVANDSFISKENS UT; Indrelid S., 1985, HARDANGERVIDDA, P97; Ioannidis JPA, 2005, PLOS MED, V2, P696, DOI 10.1371/journal.pmed.0020124; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/f00-239; Jensen H, 2012, J FISH BIOL, V80, P2448, DOI 10.1111/j.1095-8649.2012.03294.x; Jensen H, 2008, CAN J FISH AQUAT SCI, V65, P1831, DOI 10.1139/F08-096; JONSSON N, 1991, J ANIM ECOL, V60, P937, DOI 10.2307/5423; Jonsson N, 1999, J FISH BIOL, V55, P1129, DOI 10.1006/jfbi.1999.1115; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Keeley ER, 2007, J EVOLUTION BIOL, V20, P725, DOI 10.1111/j.1420-9101.2006.01240.x; KITCHELL JF, 1994, J FISH BIOL, V45, P209, DOI 10.1006/jfbi.1994.1224; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; KRUEGER CC, 1987, T AM FISH SOC, V116, P785, DOI 10.1577/1548-8659(1987)116<785:SIONBT>2.0.CO;2; Kume M, 2010, J EVOLUTION BIOL, V23, P1436, DOI 10.1111/j.1420-9101.2010.02009.x; L'Abee-Lund JH, 2002, ECOL FRESHW FISH, V11, P260, DOI 10.1034/j.1600-0633.2002.00020.x; Labonne J, 2009, ANIM BEHAV, V77, P129, DOI 10.1016/j.anbehav.2008.09.018; Langella O., 1999, POPULATIONS 1 2 30 P; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Lea E., 1910, ICES PUBLICATION CIR, V53, P5; Lin J, 2008, HEREDITY, V101, P341, DOI 10.1038/hdy.2008.59; Mangel M, 1996, EVOL ECOL, V10, P249, DOI 10.1007/BF01237683; Mangel M, 2001, EXP GERONTOL, V36, P765, DOI 10.1016/S0531-5565(00)00240-0; Marshall DJ, 2008, ECOLOGY, V89, P2506, DOI 10.1890/07-0267.1; McDermid JL, 2010, CAN J FISH AQUAT SCI, V67, P314, DOI 10.1139/F09-183; McLaughlin RL, 1999, BEHAV ECOL SOCIOBIOL, V45, P386, DOI 10.1007/s002650050575; Mehner T, 2011, EVOL ECOL, V25, P547, DOI 10.1007/s10682-011-9468-8; Miller MP, 1997, TOOLS POPULATION GEN; Mittelbach GG, 1998, CAN J FISH AQUAT SCI, V55, P1454, DOI 10.1139/f98-041; Morinville GR, 2006, J ANIM ECOL, V75, P693, DOI 10.1111/j.1365-2656.2006.01090.x; MORITZ C, 1994, TRENDS ECOL EVOL, V9, P373, DOI 10.1016/0169-5347(94)90057-4; Narum SR, 2004, J FISH BIOL, V65, P471, DOI [10.1111/j.0022-1112.2004.00461.x, 10.1111/j.1095-8649.2004.00461.x]; NEI M, 1983, GENETICS, V103, P557; Niehaus AC, 2006, J ANIM ECOL, V75, P686, DOI 10.1111/j.1365-2656.2006.01089.x; Northcote T.G., 1978, P326; Olofsson H, 2009, P ROY SOC B-BIOL SCI, V276, P2963, DOI 10.1098/rspb.2009.0500; Olsen JB, 2006, CONSERV GENET, V7, P613, DOI 10.1007/s10592-005-9099-0; Ostergaard S, 2003, MOL ECOL, V12, P3123, DOI 10.1046/j.1365-294X.2003.01976.x; OTTAWAY EM, 1981, J FISH BIOL, V19, P593, DOI 10.1111/j.1095-8649.1981.tb03825.x; Paetkau D, 1999, CONSERV BIOL, V13, P1507, DOI 10.1046/j.1523-1739.1999.98507.x; PAETKAU D, 1995, MOL ECOL, V4, P347, DOI 10.1111/j.1365-294X.1995.tb00227.x; Page RDM, 1996, COMPUT APPL BIOSCI, V12, P357; Palme A, 2013, CONSERV GENET, V14, P795, DOI 10.1007/s10592-013-0475-x; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; Pearse DE, 2009, J HERED, V100, P515, DOI 10.1093/jhered/esp040; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Perez-Figueroa A, 2005, J EVOLUTION BIOL, V18, P191, DOI 10.1111/j.1420-9101.2004.00773.x; Perreault-Payette A, 2017, MOL ECOL, V26, P1477, DOI 10.1111/mec.14018; Piry S, 2004, J HERED, V95, P536, DOI 10.1093/jhered/esh074; POWER G, 1981, CAN J FISH AQUAT SCI, V38, P1601, DOI 10.1139/f81-210; Pritchard JK, 2000, GENETICS, V155, P945; QUINN TP, 1987, ENVIRON BIOL FISH, V18, P155, DOI 10.1007/BF00002604; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; Ramstad KM, 2010, EVOL ECOL, V24, P391, DOI 10.1007/s10682-009-9313-5; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Rueffler C, 2006, TRENDS ECOL EVOL, V21, P238, DOI 10.1016/j.tree.2006.03.003; Sanchez-Hernandez J, 2017, ECOL EVOL, V7, P358, DOI 10.1002/ece3.2600; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; Seehausen O, 2014, ANNU REV ECOL EVOL S, V45, P621, DOI 10.1146/annurev-ecolsys-120213-091818; Segura I, 2006, BIOL CONSERV, V133, P336, DOI 10.1016/j.biocon.2006.06.017; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; Simpson SJ, 1999, BIOL REV, V74, P461, DOI 10.1017/S000632319900540X; SKAALA O, 1989, J FISH BIOL, V34, P597, DOI 10.1111/j.1095-8649.1989.tb03338.x; Stuart T. A., 1957, FRESHWATER SALMON FI, V18, P1; Sultan SE, 2002, AM NAT, V160, P271, DOI 10.1086/341015; Taylor EB, 1999, REV FISH BIOL FISHER, V9, P299, DOI 10.1023/A:1008955229420; Taylor EB, 2016, HYDROBIOLOGIA, V783, P283, DOI 10.1007/s10750-015-2613-6; Turesson G, 1922, HEREDITAS, V3, P211, DOI 10.1111/j.1601-5223.1922.tb02734.x; Tysse Asmund, 2004, Fisken og Havet, V7, P1; Vaha JP, 2006, MOL ECOL, V15, P63, DOI 10.1111/j.1365-294X.2005.02773.x; Vaha JP, 2007, MOL ECOL, V16, P2638, DOI 10.1111/j.1365-294X.2007.03329.x; Valiquette E, 2014, EVOL APPL, V7, P625, DOI 10.1111/eva.12160; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Vandoni M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0149997; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Wilson AJ, 2003, J EVOLUTION BIOL, V16, P584, DOI 10.1046/j.1420-9101.2003.00563.x; Wilson CC, 2008, N AM J FISH MANAGE, V28, P1307, DOI 10.1577/M05-190.1; Wollebaek J, 2008, N AM J FISH MANAGE, V28, P1249, DOI 10.1577/M07-069.1; Wollebaek J, 2012, AQUACULTURE, V356, P158, DOI 10.1016/j.aquaculture.2012.05.020; Wollebaek J, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-207; Wollebaek J, 2010, FRESHWATER BIOL, V55, P2626, DOI 10.1111/j.1365-2427.2010.02485.x; Wood CC, 2008, EVOL APPL, V1, P207, DOI 10.1111/j.1752-4571.2008.00028.x 130 2 2 5 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAR 2018 8 5 2729 2745 10.1002/ece3.3828 17 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FY3ND WOS:000426725900030 29531690 DOAJ Gold, Green Published 2019-02-21 J Anton, RF; Schories, D; Wilson, NG; Wolf, M; Abad, M; Schrodl, M Anton, Roland F.; Schories, Dirk; Wilson, Nerida G.; Wolf, Maya; Abad, Marcos; Schroedl, Michael Host specificity versus plasticity: testing the morphology-based taxonomy of the endoparasitic copepod family Splanchnotrophidae with COI barcoding JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM English Article species delimitation; molecular phylogeny; DNA taxonomy; speciation; Copepoda; sea slugs; parasite SPECIES DELIMITATION METHOD; PHYLOGENETIC ANALYSIS; CAOS SOFTWARE; POECILOSTOMATOIDA; INVERTEBRATES; EVOLUTIONARY; ALIGNMENTS; CRUSTACEA; BLOCKS The Splanchnotrophidae is a family of highly modified endoparasitic copepods known to infest nudibranch or sacoglossan sea slug hosts. Most splanchnotrophid species appear to be specific to a single host, but some were reported from up to nine different host species. However, splanchnotrophid taxonomy thus far is based on external morphology, and taxonomic descriptions are, mostly, old and lack detail. They are usually based on few specimens, with intraspecific variability rarely reported. The present study used molecular data for the first time to test (1) the current taxonomic hypotheses, (2) the apparently strict host specificity of the genus Ismaila and (3) the low host specificity of the genus Splanchnotrophus with regard to the potential presence of cryptic species. Phylogenetic analyses herein used sequences of the barcoding region of the cytochrome oxidase I (COI) gene from 40 specimens representing 13 species of five genera. Species delimitation approaches include distance and barcoding gap analyses, haplotype networks and diagnostic nucleotides. Molecular results are largely compatible with the commonly accepted, morphology-based taxonomy of the Splanchnotrophidae. Strict host specificity could be confirmed for two Ismaila species. COI analyses also supported the idea that Splanchnotrophus angulatus is host-promiscuous. In Ismaila, morphology seems more suitable than barcoding to display speciation events via host switches in a recent Chilean radiation. In Splanchnotrophus, some genetic structure suggests ongoing diversification, which should be investigated further given the inadequate morphology-based taxonomy. The present study thus supports the presence of two different life history strategies in splanchnotrophids, which should be explored integratively. [Anton, Roland F.; Schroedl, Michael] SNSB Bavarian State Collect Zool Munich, Mollusca Dept, Munchhausenstr 21, D-81247 Munich, Germany; [Schories, Dirk] Univ Austral Chile, Inst Ciencias Marinas & Limnol, Valdivia, Chile; [Wilson, Nerida G.] Western Australian Museum, Mol Systemat Unit, Welshpool, WA 6106, Australia; [Wilson, Nerida G.] Univ Western Australia, Sch Anim Biol, Crawley, WA 6009, Australia; [Wolf, Maya] Univ Oregon, Dept Biol, Oregon Inst Marine Biol, Charleston, OR 97420 USA; [Abad, Marcos] Univ Santiago de Compostela, Estn Biol Marina Grana, Rua Ribeira 1, Ferrol 15590, A Grana, Spain; [Schroedl, Michael] Ludwig Maximilians Univ Munchen, Biozentrum, Dept Biol 2, Grosshaderner Str 2, D-82152 Planegg Martinsried, Germany; [Schroedl, Michael] GeoBioCtr LMU, Munich, Germany Anton, RF (reprint author), SNSB Bavarian State Collect Zool Munich, Mollusca Dept, Munchhausenstr 21, D-81247 Munich, Germany. rolandanton1@gmail.com Universitat of Bayern e.V; GeoBioCenter LMU/Germany; German Research Foundation [SCHR667/13-1, SCHR667/15-1] The study and the collection trip to southern Chile were financed by a graduate scholarship of the Universitat of Bayern e.V. and the GeoBioCenter LMU/Germany. Further support came from the German Research Foundation (SCHR667/13-1 and SCHR667/15-1). Abad M, 2011, THALASSAS, V27, P49; Anton RF, 2016, MAR BIODIVERS, V46, P183, DOI 10.1007/s12526-015-0350-8; Anton RF, 2013, SPIXIANA, V36, P183; Anton RF, 2013, SPIXIANA, V36, P201; Anton RF, 2013, ZOOL J LINN SOC-LOND, V167, P501, DOI 10.1111/zoj.12008; Bassett-Smith PW, 1903, P ZOOL SOC LOND, V1903, P104; Blanco-Berical L., 2014, PLOS CURRENTS TREE L, V6, DOI [10. 1371/currents. tol. cdf1378b74881f74887e74883b74801d74856b43791626d43791622, DOI 10.1371/CURRENTS.T0L.CDF1378B74881F74887E74883B74801D74856B43791626D43791622]; Canu E., 1891, Compte Rendu, Vcxiii, P435; Carmona L, 2014, ZOOL J LINN SOC-LOND, V170, P132, DOI 10.1111/zoj.12098; Castresana J, 2000, MOL BIOL EVOL, V17, P540, DOI 10.1093/oxfordjournals.molbev.a026334; Clement M, 2000, MOL ECOL, V9, P1657, DOI 10.1046/j.1365-294x.2000.01020.x; Deboutteville C. D., 1950, Vie et Milieu Paris, V1, P74; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; Gotto R.V., 1979, Advances in Marine Biology, V16, P1, DOI 10.1016/S0065-2881(08)60292-8; Gotto R.V., 2004, COMMENSAL PARASITIC; Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008; Haumayr Ulrike, 2003, Spixiana, V26, P1; Hecht E, 1895, MEMOIRES SOC ZOOLOGI, V8, P539; Ho JS, 2001, HYDROBIOLOGIA, V453, P1, DOI 10.1023/A:1013139212227; Huson DH, 2006, MOL BIOL EVOL, V23, P254, DOI 10.1093/molbev/msj030; Huys R, 2001, J CRUSTACEAN BIOL, V21, P106, DOI 10.1651/0278-0372(2001)021[0106:SSACOP]2.0.CO;2; Jensen K.R., 1990, P 3 INT MAR BIOL WOR, V1, P291; Jorger KM, 2014, AM MALACOL BULL, V32, P290; Jorger KM, 2014, SPIXIANA, V37, P21; Jorger KM, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-323; Layton KKS, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095003; Meier R, 2006, SYST BIOL, V55, P715, DOI 10.1080/10635150600969864; Miralles A, 2011, ZOOL SCR, V40, P16, DOI 10.1111/j.1463-6409.2010.00453.x; MONOD THEODORE, 1932, ANN PARA SITOL HUM ET COMP, V10, P129; O'Donoghue C. H., 1924, Journal of the Linnean Society London Zoology, V35, P521; Padula V, 2014, J MOLLUS STUD, V80, P575, DOI 10.1093/mollus/eyu052; Puillandre N, 2012, MOL ECOL, V21, P2671, DOI 10.1111/j.1365-294X.2012.05559.x; Puillandre N, 2012, MOL ECOL, V21, P1864, DOI 10.1111/j.1365-294X.2011.05239.x; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Salmen A, 2008, SPIXIANA, V31, P199; Sarkar IN, 2008, MOL ECOL RESOUR, V8, P1256, DOI 10.1111/j.1755-0998.2008.02235.x; Schrodl M., 2003, SEA SLUGS SO S AM HA; Schrodl M., 1997, OPISTHOBRANCH NEWSLE, V23, P45; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Talavera G, 2007, SYST BIOL, V56, P564, DOI 10.1080/10635150701472164; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Uyeno D, 2012, ZOOKEYS, P1, DOI 10.3897/zookeys.247.3698; Weis A, 2012, SYST BIODIVERS, V10, P361, DOI 10.1080/14772000.2012.716462; Xia XH, 2003, MOL PHYLOGENET EVOL, V26, P1, DOI 10.1016/S1055-7903(02)00326-3; Xia XH, 2009, PHYLOGENETIC HANDBOOK: A PRACTICAL APPROACH TO PHYLOGENETIC ANALYSIS AND HYPOTHESIS TESTING, 2ND EDITION, P615; YOSHIKOSHI K, 1975, B JPN SOC SCI FISH, V41, P929; Zhang JJ, 2013, BIOINFORMATICS, V29, P2869, DOI 10.1093/bioinformatics/btt499 47 0 0 1 7 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0025-3154 1469-7769 J MAR BIOL ASSOC UK J. Mar. Biol. Assoc. U.K. MAR 2018 98 2 231 243 10.1017/S002531541600120X 13 Marine & Freshwater Biology Marine & Freshwater Biology FY5NU WOS:000426876800003 2019-02-21 J Schaefer, M; Menz, S; Jeltsch, F; Zurell, D Schaefer, Merlin; Menz, Stephan; Jeltsch, Florian; Zurell, Damaris sOAR: a tool for modelling optimal animal life-history strategies in cyclic environments ECOGRAPHY English Article OPTIMAL ANNUAL ROUTINES; MIGRATORY BIRDS; BEHAVIOR; BIOLOGY; ECOLOGY; PHYSIOLOGY; CONTEXT Periodic environments determine the life cycle of many animals across the globe and the timing of important life history events, such as reproduction and migration. These adaptive behavioural strategies are complex and can only be fully understood (and predicted) within the framework of natural selection in which species adopt evolutionary stable strategies. We present sOAR, a powerful and user-friendly implementation of the well-established framework of optimal annual routine modelling. It allows determining optimal animal life history strategies under cyclic environmental conditions using stochastic dynamic programming. It further includes the simulation of population dynamics under the optimal strategy. sOAR provides an important tool for theoretical studies on the behavioural and evolutionary ecology of animals. It is especially suited for studying bird migration. In particular, we integrated options to differentiate between costs of active and passive flight into the optimal annual routine modelling framework, as well as options to consider periodic wind conditions affecting flight energetics. We provide an illustrative example of sOAR where food supply in the wintering habitat of migratory birds significantly alters the optimal timing of migration. sOAR helps improving our understanding of how complex behaviours evolve and how behavioural decisions are constrained by internal and external factors experienced by the animal. Such knowledge is crucial for anticipating potential species' response to global environmental change. [Schaefer, Merlin; Jeltsch, Florian] Univ Potsdam, Inst Biochem & Biol, Potsdam, Germany; [Schaefer, Merlin] Leibniz Ctr Agr Landscape Res ZALF, Muncheberg, Germany; [Menz, Stephan] Univ Potsdam, Inst Math, Potsdam, Germany; [Menz, Stephan] Bayer AG, Drug Discovery, Pharmaceut, Res Pharmacokinet, Berlin, Germany; [Zurell, Damaris] Swiss Fed Res Inst WSL, Birmensdorf, Switzerland Schaefer, M (reprint author), Univ Potsdam, Inst Biochem & Biol, Potsdam, Germany. merlin.schaefer@uni-potsdam.de Zurell, Damaris/0000-0002-4628-3558 DIP grants (DFG) [NA 846/1-1, WI 3576/1-1]; DFG-GRK [2118/1]; People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme under REA [624958]; Swiss National Science Foundation SNSF [PZ00P3_168136/1] We acknowledge the generous support of DIP grants (DFG) NA 846/1-1 and WI 3576/1-1 and DFG-GRK grants 2118/1 to FJ in the framework of the BioMove Research Training Group. DZ received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 624958, and from the Swiss National Science Foundation SNSF (grant no. PZ00P3_168136/1). Alerstam T, 1990, BIRD MIGRATION; Barta Z, 2008, PHILOS T R SOC B, V363, P211, DOI 10.1098/rstb.2007.2136; Bauer S, 2013, J ANIM ECOL, V82, P498, DOI 10.1111/1365-2656.12054; Bellman R, 1957, DYNAMIC PROGRAMMING; Bertsekas D, 2005, DYNAMIC PROGRAMMING; Brent R. P, 1973, ALGORITHMS MINIMIZAT; Clark C, 2000, DYNAMIC STATE VARIAB; Fero O, 2008, ECOL APPL, V18, P1563, DOI 10.1890/07-1012.1; Hake M, 2003, OIKOS, V103, P385, DOI 10.1034/j.1600-0706.2003.12145.x; Helm B, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0016; Hostetler JA, 2015, AUK, V132, P433, DOI 10.1642/AUK-14-211.1; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; Houston A.l, 1999, MODELS ADAPTIVE BEHA; Jeltsch F, 2013, MOV ECOL, V1, DOI 10.1186/2051-3933-1-6; Mangel M, 2015, B MATH BIOL, V77, P857, DOI 10.1007/s11538-014-9973-3; McNamara JM, 1998, J AVIAN BIOL, V29, P416, DOI 10.2307/3677160; McNamara JM, 2001, SIAM REV, V43, P413, DOI 10.1137/S0036144500385263; McNamara JM, 2008, PHILOS T R SOC B, V363, P301, DOI 10.1098/rstb.2007.2141; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19052, DOI 10.1073/pnas.0800375105; Numata H., 2014, ANN LUNAR TIDAL CLOC; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PENNYCUICK CJ, 1972, IBIS, V114, P178, DOI 10.1111/j.1474-919X.1972.tb02603.x; STEARNS SC, 2004, EVOLUTION LIFE HIST; Visser ME, 2010, PHILOS T R SOC B, V365, P3113, DOI 10.1098/rstb.2010.0111; Wilcove DS, 2008, PLOS BIOL, V6, P1361, DOI 10.1371/journal.pbio.0060188 25 1 1 0 7 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography MAR 2018 41 3 551 557 10.1111/ecog.03328 7 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology FY3MY WOS:000426725400011 Bronze 2019-02-21 J Hulsmann, L; Bugmann, H; Cailleret, M; Brang, P Hulsmann, Lisa; Bugmann, Harald; Cailleret, Maxime; Brang, Peter How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model ECOLOGICAL APPLICATIONS English Article dynamic vegetation models; empirical mortality models; European tree species; forest inventory data; forest reserves; generalized logistic regression; individual tree mortality; tree growth LIFE-HISTORY STRATEGIES; WESTERN UNITED-STATES; CLIMATE-CHANGE; VEGETATION MODELS; BRITISH-COLUMBIA; MOUNTAIN FORESTS; FUNCTIONAL TYPES; GROWTH-PATTERNS; SHADE TOLERANCE; RESEARCH PLOTS Dynamic Vegetation Models (DVMs) are designed to be suitable for simulating forest succession and species range dynamics under current and future conditions based on mathematical representations of the three key processes regeneration, growth, and mortality. However, mortality formulations in DVMs are typically coarse and often lack an empirical basis, which increases the uncertainty of projections of future forest dynamics and hinders their use for developing adaptation strategies to climate change. Thus, sound tree mortality models are highly needed. We developed parsimonious, species-specific mortality models for 18 European tree species using >90,000 records from inventories in Swiss and German strict forest reserves along a considerable environmental gradient. We comprehensively evaluated model performance and incorporated the new mortality functions in the dynamic forest model ForClim. Tree mortality was successfully predicted by tree size and growth. Only a few species required additional covariates in their final model to consider aspects of stand structure or climate. The relationships between mortality and its predictors reflect the indirect influences of resource availability and tree vitality, which are further shaped by species-specific attributes such as maximum longevity and shade tolerance. Considering that the behavior of the models was biologically meaningful, and that their performance was reasonably high and not impacted by changes in the sampling design, we suggest that the mortality algorithms developed here are suitable for implementation and evaluation in DVMs. In the DVM ForClim, the new mortality functions resulted in simulations of stand basal area and species composition that were generally close to historical observations. However, ForClim performance was poorer than when using the original, coarse mortality formulation. The difficulties of simulating stand structure and species composition, which were most evident for Fagus sylvatica L. and in long-term simulations, resulted from feedbacks between simulated growth and mortality as well as from extrapolation to very small and very large trees. Growth and mortality processes and their species-specific differences should thus be revisited jointly, with a particular focus on small andvery large trees in relation to their shade tolerance. [Hulsmann, Lisa; Brang, Peter] WSL Swiss Fed Inst Forest Snow & Landscape Res, Forest Resources & Management, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland; [Hulsmann, Lisa; Bugmann, Harald; Cailleret, Maxime] Swiss Fed Inst Technol, Inst Terr Ecosyst, Forest Ecol, Univ Str 16, CH-8092 Zurich, Switzerland; [Hulsmann, Lisa] Univ Regensburg, Theoret Ecol, Univ Str 31, D-93053 Regensburg, Germany; [Cailleret, Maxime] WSL Swiss Fed Inst Forest Snow & Landscape Res, Forest Dynam, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland Hulsmann, L (reprint author), WSL Swiss Fed Inst Forest Snow & Landscape Res, Forest Resources & Management, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland.; Hulsmann, L (reprint author), Swiss Fed Inst Technol, Inst Terr Ecosyst, Forest Ecol, Univ Str 16, CH-8092 Zurich, Switzerland.; Hulsmann, L (reprint author), Univ Regensburg, Theoret Ecol, Univ Str 31, D-93053 Regensburg, Germany. lisa.huelsmann@ur.de Hulsmann, Lisa/B-6680-2017 Hulsmann, Lisa/0000-0003-4252-2715 Federal Office of the Environment; Swiss National Science Foundation [31003A_140968] This study relies on the enormous efforts invested in the monitoring of Swiss and German forest reserves since the 1950s. The monitoring in the Swiss reserves obtains significant funding by the Federal Office of the Environment. We would like to express our gratitude to Peter Meyer who kindly provided the data from Lower Saxony. In addition, we like to thank Nicolas Bircher and Johannes Sutmoller for processing the climate data and Andreas Ruckstuhl and Jurgen Zell for valuable statistical discussions. This study was funded by the Swiss National Science Foundation project "Predicting growth-dependent tree mortality: a key challenge for population ecology" (grant no. 31003A_140968). Adams HD, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00438; Allen CD, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00203.1; Allen CD, 2010, FOREST ECOL MANAG, V259, P660, DOI 10.1016/j.foreco.2009.09.001; Ammer C., 1996, FORSTLICHE FORSCHUNG; Anderegg WRL, 2015, NEW PHYTOL, V208, P674, DOI 10.1111/nph.13477; Bigler C, 2004, ECOL APPL, V14, P902, DOI 10.1890/03-5011; Bircher N, 2015, THESIS; Bircher N, 2015, ECOL APPL, V25, P1303, DOI 10.1890/14-1462.1; Brang P, 2011, WALDRESERVATE 50 JAH; Brang P., 2014, 100 JAHRE FORSCHUNG, P212; Brasier CM, 2000, ELMS BREEDING CONSER, P61, DOI DOI 10.1007/978-1-4615-4507-1_4; Bravo-Oviedo A, 2006, FOREST ECOL MANAG, V222, P88, DOI 10.1016/j.foreco.2005.10.016; Breiman L., 1984, CLASSIFICATION REGRE; BRZEZIECKI B, 1994, FOREST ECOL MANAG, V69, P167, DOI 10.1016/0378-1127(94)90227-5; BUCHMAN RG, 1983, CAN J FOREST RES, V13, P601, DOI 10.1139/x83-087; Bugmann H, 2001, CLIMATIC CHANGE, V51, P259, DOI 10.1023/A:1012525626267; Bugmann H, 1996, J VEG SCI, V7, P359, DOI 10.2307/3236279; Bugmann H., 1994, THESIS; Bugmann HKM, 1996, ECOLOGY, V77, P2055, DOI 10.2307/2265700; Bugmann HKM, 2000, ECOL APPL, V10, P95, DOI 10.1890/1051-0761(2000)010[0095:EFCABA]2.0.CO;2; Burkhart HE, 2012, MODELING FOREST TREE; Cailleret M, 2017, GLOBAL CHANGE BIOL, V23, P1675, DOI 10.1111/gcb.13535; Cailleret M, 2016, ECOL APPL, V26, P1827, DOI 10.1890/15-1402.1; Canham CD, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1424; Condes S, 2015, EUR J FOREST RES, V134, P1095, DOI 10.1007/s10342-015-0912-0; Cressie N, 2009, ECOL APPL, V19, P553, DOI 10.1890/07-0744.1; Das AJ, 2016, ECOLOGY, V97, P2616, DOI 10.1002/ecy.1497; de Groot RS, 2002, ECOL ECON, V41, P393, DOI 10.1016/S0921-8009(02)00089-7; Didion M, 2011, CLIMATIC CHANGE, V109, P647, DOI 10.1007/s10584-011-0054-4; Dietze MC, 2011, GLOBAL CHANGE BIOL, V17, P3312, DOI 10.1111/j.1365-2486.2011.02477.x; Dobbertin M, 2005, EUR J FOREST RES, V124, P319, DOI 10.1007/s10342-005-0085-3; Eid T, 2001, FOREST ECOL MANAG, V154, P69, DOI 10.1016/S0378-1127(00)00634-4; Ellenberg H. H, 2009, VEGETATION ECOLOGY C; Evans MR, 2016, ECOL EVOL, V6, P4812, DOI 10.1002/ece3.2217; FRANKLIN JF, 1987, BIOSCIENCE, V37, P550, DOI 10.2307/1310665; Friend AD, 2014, P NATL ACAD SCI USA, V111, P3280, DOI 10.1073/pnas.1222477110; Gillner S, 2013, FOREST ECOL MANAG, V302, P372, DOI 10.1016/j.foreco.2013.03.032; GIVNISH TJ, 1988, AUST J PLANT PHYSIOL, V15, P63, DOI 10.1071/PP9880063; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Grote R, 2016, TREES-STRUCT FUNCT, V30, P1467, DOI 10.1007/s00468-016-1446-x; HARCOMBE PA, 1987, BIOSCIENCE, V37, P557, DOI 10.2307/1310666; Harrell F, 2015, REGRESSION MODELING; Hartig F, 2012, J BIOGEOGR, V39, P2240, DOI 10.1111/j.1365-2699.2012.02745.x; HASENAUER H, 2006, SUSTAINABLE FOREST M; Hastie T., 2001, ELEMENTS STAT LEARNI; Hawkes C, 2000, ECOL MODEL, V126, P225, DOI 10.1016/S0304-3800(00)00267-2; Hein S, 2009, FORESTRY, V82, P361, DOI 10.1093/forestry/cpn043; Heiri C., 2011, WALDRESERVATE 50 JAH, P74; Hillgarter F., 1971, THESIS; Holzwarth F, 2013, J ECOL, V101, P220, DOI 10.1111/1365-2745.12015; Hosmer D. W., 2000, APPL LOGISTIC REGRES; Hulsmann L, 2017, CAN J FOREST RES, V47, P890, DOI 10.1139/cjfr-2016-0224; Hulsmann L, 2016, ECOL APPL, V26, P2463, DOI 10.1002/eap.1388; Keane RE, 2001, CLIMATIC CHANGE, V51, P509, DOI 10.1023/A:1012539409854; Kobe RK, 1997, CAN J FOREST RES, V27, P227, DOI 10.1139/cjfr-27-2-227; Kuhn M., 2013, APPL PREDICTIVE MODE; Larocque GR, 2011, ECOL MODEL, V222, P2570, DOI 10.1016/j.ecolmodel.2010.08.035; Larson AJ, 2010, CAN J FOREST RES, V40, P2091, DOI 10.1139/X10-149; Loehle C, 1996, ECOL MODEL, V90, P1, DOI 10.1016/0304-3800(96)83709-4; LORIMER CG, 1984, B TORREY BOT CLUB, V111, P193, DOI 10.2307/2996019; Lutz JA, 2015, NORTHWEST SCI, V89, P255, DOI 10.3955/046.089.0306; Manion P., 1981, TREE DIS CONCEPTS; Manusch C, 2012, ECOL MODEL, V243, P101, DOI 10.1016/j.ecolmodel.2012.06.008; McDowell NG, 2013, NEW PHYTOL, V200, P289, DOI 10.1111/nph.12502; Meddens AJH, 2012, ECOL APPL, V22, P1876, DOI 10.1890/11-1785.1; Meir P, 2015, NEW PHYTOL, V207, P28, DOI 10.1111/nph.13382; Meyer P, 2011, FOREST ECOL MANAG, V261, P342, DOI 10.1016/j.foreco.2010.08.037; Meyer P., 2015, NATURWALDER NIEDERSA, V2; Meyer P., 2006, NATURWALDER NIEDERSA, V1; Millar CI, 2015, SCIENCE, V349, P823, DOI 10.1126/science.aaa9933; Mina M., 2015, REGIONAL ENV CHANGE, V17, P49; MONSERUD RA, 1976, FOREST SCI, V22, P438; MOORE AD, 1989, ECOL MODEL, V45, P63, DOI 10.1016/0304-3800(89)90100-2; Mosteller F, 1977, DATA ANAL REGRESSION; Moustakas A, 2015, BMC ECOL, V15, DOI 10.1186/s12898-015-0038-8; Neuner S, 2015, GLOBAL CHANGE BIOL, V21, P935, DOI 10.1111/gcb.12751; Peterken GF, 1996, FORESTRY, V69, P125, DOI 10.1093/forestry/69.2.125; R Core Team, 2015, R STAT SOFTW R FDN S; Rasche L, 2012, ECOL MODEL, V232, P133, DOI 10.1016/j.ecolmodel.2012.03.004; Reyer CPO, 2015, J ECOL, V103, P5, DOI 10.1111/1365-2745.12337; Rowland L, 2015, NATURE, V528, P119, DOI 10.1038/nature15539; Ruiz-Benito P, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056843; Sala A, 2010, NEW PHYTOL, V186, P274, DOI 10.1111/j.1469-8137.2009.03167.x; San-Miguel-Ayanz J, 2016, EUROPEAN ATLAS FORES; Seidl R, 2011, ECOL MODEL, V222, P903, DOI 10.1016/j.ecolmodel.2010.09.040; Sims A, 2009, ANN BOT FENN, V46, P336, DOI 10.5735/085.046.0409; Smith B, 2001, GLOBAL ECOL BIOGEOGR, V10, P621, DOI 10.1046/j.1466-822X.2001.t01-1-00256.x; Stahel W., 2015, REGR0 BUILDING REGRE; Steinkamp J, 2015, J ECOL, V103, P31, DOI 10.1111/1365-2745.12335; Stephenson NL, 2011, ECOL MONOGR, V81, P527, DOI 10.1890/10-1077.1; Steyerberg EW, 2010, EPIDEMIOLOGY, V21, P128, DOI 10.1097/EDE.0b013e3181c30fb2; Svoboda M, 2010, FOREST ECOL MANAG, V260, P707, DOI 10.1016/j.foreco.2010.05.027; Temperli C, 2013, ECOL MONOGR, V83, P383, DOI 10.1890/12-1503.1; Temperli C, 2012, ECOL APPL, V22, P2065, DOI 10.1890/12-0210.1; Valladares F, 2008, ANNU REV ECOL EVOL S, V39, P237, DOI 10.1146/annurev.ecolsys.39.110707.173506; van Mantgem PJ, 2009, SCIENCE, V323, P521, DOI 10.1126/science.1165000; WARING RH, 1987, BIOSCIENCE, V37, P569, DOI 10.2307/1310667; Wehrli A, 2005, FOREST ECOL MANAG, V205, P149, DOI 10.1016/j.foreco.2004.10.043; Wehrli A, 2007, EUR J FOREST RES, V126, P131, DOI 10.1007/s10342-006-0142-6; Weiskittel AR, 2011, FOREST GROWTH AND YIELD MODELING, P1, DOI 10.1002/9781119998518; Wernsdorfer H, 2008, ECOL MODEL, V218, P290, DOI 10.1016/j.ecolmodel.2008.07.017; Woolley T, 2012, INT J WILDLAND FIRE, V21, P1, DOI 10.1071/WF09039; Wullschleger SD, 2014, ANN BOT-LONDON, V114, P1, DOI 10.1093/aob/mcu077; Wunder J., 2007, THESIS; Wunder J, 2008, OIKOS, V117, P815, DOI 10.1111/j.2008.0030-1299.16371.x; Wunder J, 2006, ECOL MODEL, V197, P196, DOI 10.1016/j.ecolmodel.2006.02.037; Wyckoff PH, 2002, J ECOL, V90, P604, DOI 10.1046/j.1365-2745.2002.00691.x; Yang YQ, 2013, FOREST SCI, V59, P177, DOI 10.5849/forsci.10-092 108 5 5 7 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. MAR 2018 28 2 522 540 10.1002/eap.1668 19 Ecology; Environmental Sciences Environmental Sciences & Ecology FY0KE WOS:000426499100020 29266516 2019-02-21 J Modesto, V; Ilarri, M; Souza, AT; Lopes-Lima, M; Douda, K; Clavero, M; Sousa, R Modesto, Vanessa; Ilarri, Martina; Souza, Allan T.; Lopes-Lima, Manuel; Douda, Karel; Clavero, Miguel; Sousa, Ronaldo Fish and mussels: Importance of fish for freshwater mussel conservation FISH AND FISHERIES English Article co-extinctions; fish; freshwater mussels; hosts; secondary extinctions; Unionida MARGARITIFERA-MARGARITIFERA L.; LIFE-HISTORY STRATEGIES; CLIMATE-CHANGE; BIVALVIA UNIONIDAE; MISSISSIPPI RIVER; HOST FISH; UTTERBACKIA-IMBECILLIS; BIOLOGICAL INVASIONS; TESTING HYPOTHESES; GLOBAL DIVERSITY Co-extinctions are increasingly recognized as one of the major processes leading to the global biodiversity crisis, but there is still limited scientific evidence on the magnitude of potential impacts and causal mechanisms responsible for the decline of affiliate (dependent) species. Freshwater mussels (Bivalvia, Unionida), one of the most threatened faunal groups on Earth, need to pass through a parasitic larval (glochidia) phase using fishes as hosts to complete their life cycle. Here, we provide a synthesis of published evidence on the fish-mussel relationship to explore possible patterns in co-extinction risk and discuss the main threats affecting this interaction. We retrieved 205 publications until December 2015, most of which were performed in North America, completed under laboratory conditions and were aimed at characterizing the life cycle and/or determining the suitable fish hosts for freshwater mussels. Mussel species were reported to infest between one and 53 fish species, with some fish families (e.g., Cyprinidae and Percidae) being used more often as hosts than others. No relationship was found between the breadth of host use and the extinction risk of freshwater mussels. Very few studies focused on threats affecting the fish-mussel relationship, a knowledge gap that may impair the application of future conservation measures. Here, we identify a variety of threats that may negatively affect fish species, document and discuss the concomitant impacts on freshwater mussels, and suggest directions for future studies. [Modesto, Vanessa; Sousa, Ronaldo] Univ Minho, Dept Biol, CBMA Ctr Mol & Environm Biol, Braga, Portugal; [Modesto, Vanessa; Ilarri, Martina; Lopes-Lima, Manuel; Sousa, Ronaldo] Interdisciplinary Ctr Marine & Environm Res CIIMA, Terminal De Cruzeiros do, Portugal; [Souza, Allan T.] Czech Acad Sci, Inst Hydrobiol, Biol Ctr, Ceske Budejovice, Czech Republic; [Lopes-Lima, Manuel] InBIO, CIBIO Res Ctr Biodivers & Genet Resources, Vairao, Vila Do Conde, Portugal; [Douda, Karel] Czech Univ Life Sci Prague, Dept Zool & Fisheries, Prague, Czech Republic; [Clavero, Miguel] Estn Biol Donana CSIC, Seville, Spain Modesto, V (reprint author), Univ Minho, Dept Biol, CBMA Ctr Mol & Environm Biol, Braga, Portugal. vane.modesto@gmail.com CBMA, CBMA/J-1937-2016; Douda, Karel/D-4759-2011; Souza, Allan/I-8799-2012; Lopes-Lima, Manuel/N-1222-2014 CBMA, CBMA/0000-0002-2841-2678; Douda, Karel/0000-0002-7778-5147; Souza, Allan/0000-0002-1851-681X; Lopes-Lima, Manuel/0000-0002-2761-7962; Ilarri, Martina/0000-0001-6780-8221; Sousa, Ronaldo/0000-0002-5961-5515; Modesto, Vanessa/0000-0001-7619-5463 Fundacao para a Ciencia e a Tecnologia [SFRH/BD/108298/2015, SFRH/BPD/90088/2012, SFRH/BD/115728/2016, PTDC/AGRFOR/1627/2014]; Grantova Agentura Ceske Republiky [1305872S] Fundacao para a Ciencia e a Tecnologia, Grant/Award Number: SFRH/BD/108298/2015, SFRH/BPD/90088/2012, SFRH/BD/115728/2016, PTDC/AGRFOR/1627/2014; Grantova Agentura Ceske Republiky, Grant/Award Number: 1305872S Addy S, 2012, SCI TOTAL ENVIRON, V432, P318, DOI 10.1016/j.scitotenv.2012.05.079; Allan JD, 2005, BIOSCIENCE, V55, P1041, DOI 10.1641/0006-3568(2005)055[1041:OOIW]2.0.CO;2; ALLAN JD, 1993, BIOSCIENCE, V43, P32, DOI 10.2307/1312104; Almodovar A, 2012, GLOBAL CHANGE BIOL, V18, P1549, DOI 10.1111/j.1365-2486.2011.02608.x; Araujo R, 2003, J CONCHOL, V38, P53; Atkinson CL, 2014, ECOSYSTEMS, V17, P485, DOI 10.1007/s10021-013-9736-2; Audzijonyte A, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1103; Barnhart MC, 2008, J N AM BENTHOL SOC, V27, P370, DOI 10.1899/07-093.1; BAUER G, 1994, J ANIM ECOL, V63, P933, DOI 10.2307/5270; BAUER G, 1987, Archiv fuer Hydrobiologie Supplement, V76, P413; BAUER G, 1987, Archiv fuer Hydrobiologie Supplement, V76, P403; Bauer G., 2001, ECOLOGY EVOLUTION FR, P223; Blazek R, 2006, FOLIA PARASIT, V53, P98, DOI 10.14411/fp.2006.013; Box JB, 1999, J N AM BENTHOL SOC, V18, P99, DOI 10.2307/1468011; Brainwood M, 2008, RIVER RES APPL, V24, P1325, DOI 10.1002/rra.1087; Brodie JF, 2014, TRENDS ECOL EVOL, V29, P664, DOI 10.1016/j.tree.2014.09.012; Brook BW, 2008, TRENDS ECOL EVOL, V23, P453, DOI 10.1016/j.tree.2008.03.011; BUDDENSIEK V, 1995, BIOL CONSERV, V74, P33, DOI 10.1016/0006-3207(95)00012-S; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Caldwell ML, 2016, FRESHWATER BIOL, V61, P1035, DOI 10.1111/fwb.12756; Castaldelli G, 2013, AQUAT CONSERV, V23, P405, DOI 10.1002/aqc.2345; Clavero M, 2015, J APPL ECOL, V52, P960, DOI 10.1111/1365-2664.12446; Clavero M, 2013, FRESHWATER BIOL, V58, P1190, DOI 10.1111/fwb.12120; Clavero M, 2011, FRESHWATER BIOL, V56, P2145, DOI 10.1111/j.1365-2427.2011.02642.x; Closs GP, 2016, CONSERV BIOL SER, P1, DOI 10.1017/CBO9781139627085; Comte L, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms6053; Comte L, 2013, FRESHWATER BIOL, V58, P625, DOI 10.1111/fwb.12081; Cope WG, 2008, J N AM BENTHOL SOC, V27, P451, DOI 10.1899/07-094.1; Correa SB, 2015, BIOL CONSERV, V191, P159, DOI 10.1016/j.biocon.2015.06.019; Costa-Pereira R, 2015, BIOL CONSERV, V191, P809, DOI 10.1016/j.biocon.2015.07.011; Cucherousset J, 2011, FISHERIES, V36, P215, DOI 10.1080/03632415.2011.574578; Darwall WRT, 2011, CONSERV LETT, V4, P474, DOI 10.1111/j.1755-263X.2011.00202.x; Dickinson B. D., 2008, ELLIPSARIA, V10, P7; DILLON RT, 2000, ECOLOGY FRESHWATER M; Dodd BJ, 2006, FISH SHELLFISH IMMUN, V21, P473, DOI 10.1016/j.fsi.2006.02.002; Donrovich SW, 2017, AQUAT CONSERV, V27, P1325, DOI 10.1002/aqc.2759; Douda K, 2012, ANIM CONSERV, V15, P536, DOI 10.1111/j.1469-1795.2012.00546.x; Douda K, 2012, BIOL INVASIONS, V14, P127, DOI 10.1007/s10530-011-9989-7; Douda K, 2018, HYDROBIOLOGIA, V810, P265, DOI 10.1007/s10750-016-2895-3; Douda K, 2015, AQUACULTURE, V445, P5, DOI 10.1016/j.aquaculture.2015.04.008; Douda K, 2014, J APPL ECOL, V51, P1085, DOI 10.1111/1365-2664.12264; Douda K, 2013, DIVERS DISTRIB, V19, P933, DOI 10.1111/ddi.12044; Dubansky B, 2011, BIOL BULL-US, V220, P97, DOI 10.1086/BBLv220n2p97; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Dunn RR, 2009, P ROY SOC B-BIOL SCI, V276, P3037, DOI 10.1098/rspb.2009.0413; Larios-Lopez JE, 2015, ITAL J ZOOL, V82, P404, DOI 10.1080/11250003.2015.1018351; Fishbase, 2015, GLOB SPEC DAT FISH S; Fisher GR, 2002, J MOLLUS STUD, V68, P159, DOI 10.1093/mollus/68.2.159; FitzHugh TW, 2011, RIVER RES APPL, V27, P1192, DOI 10.1002/rra.1417; FMCS (Freshw. Mollusk Conserv. Soc.), 2016, FRESHWATER MOLLUSK B, V19, P1; Freeman MC, 2003, AM FISH S S, V35, P255; Fritts MW, 2013, J MOLLUS STUD, V79, P163, DOI 10.1093/mollus/eyt008; Garner JT, 1999, AM MIDL NAT, V141, P277, DOI 10.1674/0003-0031(1999)141[0277:RCOQMB]2.0.CO;2; Gerke N, 2001, CONSERV GENET, V2, P287; Gozlan RE, 2008, FISH FISH, V9, P106, DOI 10.1111/j.1467-2979.2007.00267.x; Graf D. L., 2015, FRESHWATER MUSSELS U; Graf DL, 2007, J MOLLUS STUD, V73, P291, DOI 10.1093/mollus/eym029; Graham CT, 2009, J FISH BIOL, V74, P1143, DOI 10.1111/j.1095-8649.2009.02180.x; Gu ZG, 2014, BIOINFORMATICS, V30, P2811, DOI 10.1093/bioinformatics/btu393; Haag WR, 2015, OECOLOGIA, V178, P1159, DOI 10.1007/s00442-015-3310-x; Haag WR, 2013, BIOL REV, V88, P745, DOI 10.1111/brv.12028; Haag WR, 2012, NORTH AMERICAN FRESHWATER MUSSELS: NATURAL HISTORY, ECOLOGY, AND CONSERVATION, P1, DOI 10.1017/CBO9781139048217; Haag WR, 2003, J N AM BENTHOL SOC, V22, P78, DOI 10.2307/1467979; Hastie LC, 2003, FRESHWATER BIOL, V48, P2107, DOI 10.1046/j.1365-2427.2003.01153.x; Hermoso V, 2011, ECOL APPL, V21, P175, DOI 10.1890/09-2011.1; Hilborn R, 2003, ANNU REV ENV RESOUR, V28, P359, DOI 10.1146/annurev.energy.28.050302.105509; Horky P, 2014, FRESHWATER BIOL, V59, P1452, DOI 10.1111/fwb.12357; Howard A. D., 1915, Nautilus Boston Mass, V29; Jacobson PJ, 1997, ENVIRON TOXICOL CHEM, V16, P2384, DOI 10.1897/1551-5028(1997)016<2384:SOGSOF>2.3.CO;2; Jansen W, 2001, ECOL STU AN, V145, P185; Jenkins M, 2003, SCIENCE, V302, P1175, DOI 10.1126/science.1088666; Jones KE, 2008, NATURE, V451, P990, DOI 10.1038/nature06536; JOSHI A, 1995, EVOL ECOL, V9, P82, DOI 10.1007/BF01237699; Karlsson S, 2014, HYDROBIOLOGIA, V735, P179, DOI 10.1007/s10750-013-1679-2; KAT PW, 1984, BIOL REV, V59, P189, DOI 10.1111/j.1469-185X.1984.tb00407.x; Kelly DW, 2009, ECOLOGY, V90, P2047, DOI 10.1890/08-1085.1; Kelner DE, 2000, J FRESHWATER ECOL, V15, P371, DOI 10.1080/02705060.2000.9663755; Kerckhove D. T., 2015, PLOS ONE, V10; Kneeland SC, 2008, J N AM BENTHOL SOC, V27, P150, DOI 10.1899/07-036.1; Koh LP, 2004, SCIENCE, V305, P1632, DOI 10.1126/science.1101101; Kolar CS, 2001, TRENDS ECOL EVOL, V16, P199, DOI 10.1016/S0169-5347(01)02101-2; Koops MA, 2004, FISH FISH, V5, P120, DOI 10.1111/j.1467-2979.2004.00149.x; Kovach RP, 2016, REV FISH BIOL FISHER, V26, P135, DOI 10.1007/s11160-015-9414-x; Larinier M, 2002, B FR PECHE PISCIC, P181, DOI 10.1051/kmae/2002102; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Lellis W. A., 1998, TRIANNUAL UNIONID RE, V16, P23; Lellis WA, 2013, J FISH WILDL MANAG, V4, P75, DOI 10.3996/102012-JFWM-094; Leprieur F., 2008, PLOS BIOL, V6, P28, DOI DOI 10.1371/J0URNAL.PBI0.0060028; Leveque C, 2008, HYDROBIOLOGIA, V595, P545, DOI 10.1007/s10750-007-9034-0; Levine TD, 2012, FRESHWATER BIOL, V57, P1854, DOI 10.1111/j.1365-2427.2012.02844.x; Liermann CR, 2012, BIOSCIENCE, V62, P539, DOI 10.1525/bio.2012.62.6.5; Liew JH, 2016, FRESHWATER BIOL, V61, P1421, DOI 10.1111/fwb.12781; Limburg KE, 2009, BIOSCIENCE, V59, P955, DOI 10.1525/bio.2009.59.11.7; Lopes-Lima M, 2017, BIOL REV, V92, P572, DOI 10.1111/brv.12244; Lopes-Lima M, 2014, HYDROBIOLOGIA, V735, P1, DOI 10.1007/s10750-014-1902-9; Marchetti MP, 2004, ECOL APPL, V14, P1507, DOI 10.1890/03-5173; Marchetti MP, 2001, ECOL APPL, V11, P530, DOI 10.2307/3060907; Mcmanamay RA, 2015, ECOL APPL, V25, P243, DOI 10.1890/14-0247.1; Miller-Struttmann NE, 2015, SCIENCE, V349, P1541, DOI 10.1126/science.aab0868; MINNS CK, 1995, CAN J FISH AQUAT SCI, V52, P1499, DOI 10.1139/f95-144; Moir ML, 2010, CONSERV BIOL, V24, P682, DOI 10.1111/j.1523-1739.2009.01398.x; Nakano S, 1996, FRESHWATER BIOL, V36, P711, DOI 10.1046/j.1365-2427.1996.d01-516.x; Newton TJ, 2008, J N AM BENTHOL SOC, V27, P424, DOI 10.1899/07-076.1; NEZLIN LP, 1994, CAN J ZOOL, V72, P15, DOI 10.1139/z94-003; Ondrackova M, 2005, J APPL ICHTHYOL, V21, P345, DOI 10.1111/j.1439-0426.2005.00682.x; Osterling ME, 2013, AQUAT CONSERV, V23, P564, DOI 10.1002/aqc.2320; Osterling ME, 2010, J APPL ECOL, V47, P759, DOI 10.1111/j.1365-2664.2010.01827.x; Padilla DK, 2004, FRONT ECOL ENVIRON, V2, P131; Palkovacs EP, 2011, TRENDS ECOL EVOL, V26, P616, DOI 10.1016/j.tree.2011.08.004; Pelicice FM, 2015, FISH FISH, V16, P697, DOI 10.1111/faf.12089; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poulin R, 2011, FRESHWATER BIOL, V56, P676, DOI 10.1111/j.1365-2427.2010.02425.x; R Development Core Team, 2014, R LANG ENV STAT COMP; Rabalais NN, 2002, BIOSCIENCE, V52, P129, DOI 10.1641/0006-3568(2002)052[0129:BSIPGO]2.0.CO;2; Rach JJ, 2006, N AM J AQUACULT, V68, P348, DOI 10.1577/A05-077.1; RAUSHER MD, 1984, EVOLUTION, V38, P582, DOI 10.1111/j.1558-5646.1984.tb00324.x; Reichard M, 2015, P ROY SOC B-BIOL SCI, V282, P167, DOI 10.1098/rspb.2015.1063; Reis J, 2014, FOLIA PARASIT, V61, P81; Ricciardi A, 1998, J ANIM ECOL, V67, P613, DOI 10.1046/j.1365-2656.1998.00220.x; Roberts AD, 1999, J N AM BENTHOL SOC, V18, P477, DOI 10.2307/1468380; Rogers SO, 2001, J N AM BENTHOL SOC, V20, P582, DOI 10.2307/1468089; Ruckelshaus MH, 2002, ANNU REV ECOL SYST, V33, P665, DOI 10.1146/annurev.ecolysis.33.010802.150504; Salonen JK, 2016, AQUAT CONSERV, V26, P1130, DOI 10.1002/aqc.2614; Santos RMB, 2015, SCI TOTAL ENVIRON, V511, P477, DOI 10.1016/j.scitotenv.2014.12.090; Schmidt C, 2010, AQUAT CONSERV, V20, P735, DOI 10.1002/aqc.1150; Schwalb AN, 2015, FRESHWATER BIOL, V60, P911, DOI 10.1111/fwb.12544; Schwalb AN, 2011, AQUAT SCI, V73, P223, DOI 10.1007/s00027-010-0171-6; Serb JM, 2008, ANN MO BOT GARD, V95, P248, DOI 10.3417/2006103; Simberloff D, 2013, TRENDS ECOL EVOL, V28, P58, DOI 10.1016/j.tree.2012.07.013; Simic VM, 2014, SCI TOTAL ENVIRON, V497, P642, DOI 10.1016/j.scitotenv.2014.07.092; Slavik O, 2017, PHYSIOL BEHAV, V171, P127, DOI 10.1016/j.physbeh.2017.01.010; Smith C, 2004, J ZOOL, V262, P107, DOI 10.1017/S0952836903004497; Smith TB, 2008, MOL ECOL, V17, P1, DOI 10.1111/j.1365-294X.2007.03607.x; Sousa R, 2016, SCI TOTAL ENVIRON, V547, P405, DOI 10.1016/j.scitotenv.2016.01.003; Spooner DE, 2012, OECOLOGIA, V168, P533, DOI 10.1007/s00442-011-2110-1; Spooner DE, 2011, GLOBAL CHANGE BIOL, V17, P1720, DOI 10.1111/j.1365-2486.2010.02372.x; Strayer DL, 2012, ECOL APPL, V22, P1780, DOI 10.1890/11-1536.1; Strayer DL, 2004, BIOSCIENCE, V54, P429, DOI 10.1641/0006-3568(2004)054[0429:CPOPMN]2.0.CO;2; Strayer DL, 2008, FRESHW ECOL SER, V1, P1; Taeubert JE, 2014, AQUAT CONSERV, V24, P231, DOI 10.1002/aqc.2385; Taeubert JE, 2010, AQUAT CONSERV, V20, P728, DOI 10.1002/aqc.1147; Taraschewski H, 2006, J HELMINTHOL, V80, P99, DOI 10.1079/JOH2006364; Terui A, 2014, ECOL EVOL, V4, P3004, DOI 10.1002/ece3.1135; THELER JL, 1987, NAUTILUS, V101, P143; Thomas F, 2005, BEHAV PROCESS, V68, P185, DOI 10.1016/j.beproc.2004.06.010; Van Hassel J. H., 2006, FRESHWATER BIVALVE E, P1; Varandas S, 2013, AQUAT CONSERV, V23, P374, DOI 10.1002/aqc.2321; Vaughn CC, 2008, J N AM BENTHOL SOC, V27, P409, DOI 10.1899/07-058.1; Vaughn CC, 2018, HYDROBIOLOGIA, V810, P15, DOI 10.1007/s10750-017-3139-x; Vaughn CC, 2012, FRESHWATER BIOL, V57, P982, DOI 10.1111/j.1365-2427.2012.02759.x; Vaughn CC, 2001, FRESHWATER BIOL, V46, P1431, DOI 10.1046/j.1365-2427.2001.00771.x; Verity PG, 2002, ENVIRON CONSERV, V29, P207, DOI 10.1017/S0376892902000139; Villeger S, 2015, DIVERS DISTRIB, V21, P223, DOI 10.1111/ddi.12242; Watters G. T., 1994, ANNOTATED BIBLIO REP; Watters G. Thomas, 2007, P51; Watters GT, 1996, BIOL CONSERV, V75, P79, DOI 10.1016/0006-3207(95)00034-8; Watters GT, 1998, AM MIDL NAT, V139, P49; Woolhouse MEJ, 2005, TRENDS ECOL EVOL, V20, P238, DOI 10.1016/j.tree.2005.02.009; Xenopoulos MA, 2005, GLOBAL CHANGE BIOL, V11, P1557, DOI 10.1111/j.1365-2486.2005.01008.x; YOUNG M, 1984, ARCH HYDROBIOL, V99, P405; Zaffarano PL, 2008, EVOLUTION, V62, P1418, DOI 10.1111/j.1558-5646.2008.00390.x; Zieritz A, 2018, HYDROBIOLOGIA, V810, P29, DOI 10.1007/s10750-017-3104-8; Zieritz A, 2012, ECOL EVOL, V2, P740, DOI 10.1002/ece3.220 163 7 7 6 25 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. MAR 2018 19 2 244 259 10.1111/faf.12252 16 Fisheries Fisheries FY0LO WOS:000426503000004 2019-02-21 J Worthington, TA; Echelle, AA; Perkin, JS; Mollenhauer, R; Farless, N; Dyer, JJ; Logue, D; Brewer, SK Worthington, Thomas A.; Echelle, Anthony A.; Perkin, Joshuah S.; Mollenhauer, Robert; Farless, Nicole; Dyer, Joseph J.; Logue, Daniel; Brewer, Shannon K. The emblematic minnows of the North American Great Plains: A synthesis of threats and conservation opportunities FISH AND FISHERIES English Article conservation; flow alteration; fragmentation; Great Plains; habitat complexity; non-native species GRANDE SILVERY MINNOW; NOTROPIS-SIMUS-PECOSENSIS; ARKANSAS RIVER SHINER; LOWER YELLOWSTONE RIVERS; FRESH-WATER FISHES; MIDDLE RIO-GRANDE; AESTIVALIS COMPLEX TELEOSTEI; ECOLOGICAL RISK-ASSESSMENT; EFFECTIVE POPULATION-SIZE; LIFE-HISTORY ATTRIBUTES Anthropogenic changes to the Great Plains rivers of North America have had a large, negative effect on a reproductive guild of pelagic-broadcast spawning (PBS) cyprinid fishes. The group is phylogenetically diverse, with multiple origins of the PBS mode. However, because of incomplete life-history information, PBS designation often relies only on habitat and egg characteristics. We identified 17 known or candidate PBS fishes and systematically synthesized the literature on their biology and ecology in relation to major threats to persistence. Research output on an individual species was unrelated to conservation status, but positively correlated with breadth of distribution. The PBS species have opportunistic life-history strategies and are typically short-lived (generally 1-3years) fishes. Many PBS species have truncated ranges showing declines in both distribution and abundance, especially those endemic to the Rio Grande catchment. Fundamental habitat associations are unknown for many species, particularly regarding seasonal shifts and early life stages. Critical thermal tolerances have been quantified for five PBS species and are generally >35 degrees C. Turbidity and salinity changes are linked to responses at multiple life stages, but information is lacking on interactions between water quality and quantity. Hydrologic alteration appears to be a primary threat to PBS species, through complex interactions with landscape fragmentation, and habitat change. We highlight areas where scientific and management communities are lacking information and underline areas of potential conservation gain. [Worthington, Thomas A.; Mollenhauer, Robert; Farless, Nicole; Dyer, Joseph J.; Logue, Daniel] Oklahoma State Univ, Oklahoma Cooperat Fish & Wildlife Res Unit, Stillwater, OK 74078 USA; [Echelle, Anthony A.] Oklahoma State Univ, Dept Integrat Biol, Stillwater, OK 74078 USA; [Perkin, Joshuah S.] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA; [Brewer, Shannon K.] Oklahoma State Univ, US Geol Survey, Oklahoma Cooperat Fish & Wildlife Res Unit, Stillwater, OK 74078 USA; [Worthington, Thomas A.] Univ Cambridge, Dept Zool, Conservat Sci Grp, Cambridge, England Brewer, SK (reprint author), Oklahoma State Univ, US Geol Survey, Oklahoma Cooperat Fish & Wildlife Res Unit, Stillwater, OK 74078 USA. shannon.brewer@okstate.edu Worthington, Thomas/0000-0002-8138-9075; Brewer, Shannon/0000-0002-1537-3921 AL-RAWL ABDUL HAKIM, 1964, TRANS KANS ACAD SCI, V67, P154, DOI 10.2307/3626689; Albers JL, 2017, J FISH BIOL, V91, P58, DOI 10.1111/jfb.13329; Albers J. L., 2014, KANSAS FISHES, P178; Allendorf F. W., 2012, CONSERVATION GENETIC; Allendorf FW, 2003, CONSERV BIOL, V17, P24, DOI 10.1046/j.1523-1739.2003.02365.x; Alo D, 2005, CONSERV BIOL, V19, P1138, DOI 10.1111/j.1523-1739.2005.00081.x; Amori G, 2000, BIODIVERS CONSERV, V9, P785, DOI 10.1023/A:1008971823774; Archdeacon TP, 2015, WEST N AM NATURALIST, V75, P271, DOI 10.3398/064.075.0304; Archdeacon TP, 2015, N AM J FISH MANAGE, V35, P578, DOI 10.1080/02755947.2015.1023405; Archdeacon TP, 2012, N AM J FISH MANAGE, V32, P648, DOI 10.1080/02755947.2012.681013; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; Barko VA, 2004, AM MIDL NAT, V152, P369, DOI 10.1674/0003-0031(2004)152[0369:IEGASP]2.0.CO;2; Barko VA, 2003, J FRESHWATER ECOL, V18, P377, DOI 10.1080/02705060.2003.9663973; BATTLE HI, 1960, J FISH RES BOARD CAN, V17, P245, DOI 10.1139/f60-020; Beatty S, 2017, BIOL CONSERV, V209, P188, DOI 10.1016/j.biocon.2017.02.007; Becker GC, 1983, FISHES WISCONSIN; Berry Charles R. Jr, 2004, Great Plains Research, V14, P89; BESTGEN K. R., 1990, OCC PAP MUS SW BIOL, V6, P1; Bestgen KR, 2010, T AM FISH SOC, V139, P433, DOI 10.1577/T09-085.1; Bestgen KR, 1996, COPEIA, P41; BESTGEN KR, 1989, AM MIDL NAT, V122, P228, DOI 10.2307/2425907; BESTGEN KR, 1991, SOUTHWEST NAT, V36, P225, DOI 10.2307/3671925; Birkeland C, 2004, BIOSCIENCE, V54, P1021, DOI 10.1641/0006-3568(2004)054[1021:RDTCR]2.0.CO;2; Blanchet S, 2010, EVOL APPL, V3, P291, DOI 10.1111/j.1752-4571.2009.00110.x; Bonner T. H., 2000, THESIS, P147; Bonner T. H., 1997, HABITAT USE EC UNPUB, P72; Bonner TH, 2000, J FRESHWATER ECOL, V15, P189, DOI 10.1080/02705060.2000.9663736; Bonner TH, 2002, T AM FISH SOC, V131, P1203, DOI 10.1577/1548-8659(2002)131<1203:EOTOPC>2.0.CO;2; BOTTRELL CLYDE E., 1964, TRANS AMER MICROSCOP SOC, V83, P391, DOI 10.2307/3224757; Bounds S. M., 1977, Proceedings of the Arkansas Academy of Science, V31, P112; Braaten PJ, 2002, T AM FISH SOC, V131, P931, DOI 10.1577/1548-8659(2002)131<0931:LHAOFA>2.0.CO;2; BRANSON BA, 1967, AM MIDL NAT, V78, P126, DOI 10.2307/2423375; Brito D, 2008, BIOL CONSERV, V141, P2912, DOI 10.1016/j.biocon.2008.08.016; Brito D, 2009, TROP CONSERV SCI, V2, P353, DOI 10.1177/194008290900200305; BRYAN JD, 1984, T AM FISH SOC, V113, P557, DOI 10.1577/1548-8659(1984)113<557:IOATPA>2.0.CO;2; Buchanan T.M., 1973, Proceedings of the Arkansas Academy of Science, V27, P27; Buchanan Thomas M., 2003, Journal of the Arkansas Academy of Science, V57, P18; Burkhead NM, 2012, BIOSCIENCE, V62, P798, DOI 10.1525/bio.2012.62.9.5; BURR B M, 1980, Brimleyana, P53; Caldwell CA, 2010, N AM J AQUACULT, V72, P57, DOI 10.1577/A09-011.1; Ceballos G, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1400253; Chase NM, 2015, CAN J FISH AQUAT SCI, V72, P1575, DOI 10.1139/cjfas-2014-0574; Cheek CA, 2016, ECOL FRESHW FISH, V25, P340, DOI 10.1111/eff.12214; Chernoff B., 1982, OCCAS PAP MUS ZOOL U, V698, P1; CLARK T, 1979, Transactions of the Kansas Academy of Science, V82, P188, DOI 10.2307/3627408; Coleman C. G., 2015, THESIS, P52; Contreras-Balderas S, 2002, REV FISH BIOL FISHER, V12, P241, DOI 10.1023/A:1025053001155; Contreras-Balderas S, 2002, REV FISH BIOL FISHER, V12, P219, DOI 10.1023/A:1025048106849; Conway KW, 2016, ICHTHYOL EXPLOR FRES, V26, P305; COOK JA, 1992, COPEIA, P36; Cooke Steven J., 2012, Endangered Species Research, V17, P179, DOI 10.3354/esr00426; Costigan KH, 2012, J HYDROL, V444, P90, DOI 10.1016/j.jhydrol.2012.04.008; Cote D, 2009, LANDSCAPE ECOL, V24, P101, DOI 10.1007/s10980-008-9283-y; Cowley DE, 2009, SCI MAR, V73, P47, DOI 10.3989/scimar.2009.73s1047; Cowley DE, 2006, REV FISH SCI, V14, P169, DOI 10.1080/10641260500341619; Cowley DE, 2006, REV FISH SCI, V14, P111, DOI 10.1080/10641260500341494; Crites JW, 2012, J FRESHWATER ECOL, V27, P19, DOI 10.1080/02705060.2011.599988; Cross F.B., 1986, P363; CROSS F B, 1983, Transactions of the Kansas Academy of Science, V86, P93, DOI 10.2307/3627917; Cross F. B., 1970, SWest. Nat., V14, P370, DOI 10.2307/3668976; Cross F. B., 1953, Texas Journal of Science, V5, P252; Cross F.B., 1987, P155; Cross F. B., 1995, FISHES IN KANSAS; Cross F. B., 1967, HDB FISHES KANSAS; Cross F. B., 1985, ASSESSMENT DEWATERIN, P161; CROSS FB, 1950, AM MIDL NAT, V43, P128, DOI 10.2307/2421883; CUNNINGHAM G. R., 1995, P S DAK ACAD SCI, V74, P55; Dale J, 2015, AGR WATER MANAGE, V160, P144, DOI 10.1016/j.agwat.2015.07.007; Davenport SR, 2013, SOUTHWEST NAT, V58, P126, DOI 10.1894/0038-4909-58.1.126; DAVIS BJ, 1967, COPEIA, P1; Davis WN, 2010, FRESHWATER BIOL, V55, P2612, DOI 10.1111/j.1365-2427.2010.02480.x; Dawson V. K., 2003, INTEGRATED MANAGEMEN, P146; DEACON JE, 1979, FISHERIES, V4, P29; Dieterman DJ, 2005, J FRESHWATER ECOL, V20, P561, DOI 10.1080/02705060.2005.9664772; Dieterman DJ, 2004, T AM FISH SOC, V133, P577, DOI 10.1577/T03-002.1; Dieterman Douglas J., 2006, Prairie Naturalist, V38, P113; Dodds WK, 2004, BIOSCIENCE, V54, P205, DOI 10.1641/0006-3568(2004)054[0205:LOTETE]2.0.CO;2; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Dudley R. K., 1997, HABITAT USE RIO GRAN; Dudley R. K., 2004, THESIS, P111; Dudley RK, 2007, ECOL APPL, V17, P2074, DOI 10.1890/06-1252.1; Durham BW, 2008, ECOL FRESHW FISH, V17, P528, DOI 10.1111/j.1600-0633.2008.00303.x; Durham BW, 2006, T AM FISH SOC, V135, P1644, DOI 10.1577/T05-133.1; Durham BW, 2014, AQUAT ECOL, V48, P91, DOI 10.1007/s10452-014-9469-0; Durham BW, 2009, T AM FISH SOC, V138, P666, DOI 10.1577/T07-234.1; Durham BW, 2009, COPEIA, P21, DOI 10.1643/CE-07-166; Durham BW, 2005, ENVIRON BIOL FISH, V72, P45, DOI 10.1007/s10641-004-4186-5; EBERLE M E, 1989, Transactions of the Kansas Academy of Science, V92, P24, DOI 10.2307/3628186; Eberle M. E., 2014, KANSAS FISHES, P155; Eberle Mark E., 1993, Transactions of the Kansas Academy of Science, V96, P114, DOI 10.2307/3628323; Eberle Mark E., 1997, Transactions of the Kansas Academy of Science, V100, P123, DOI 10.2307/3628000; ECHELLE AA, 1972, AM MIDL NAT, V88, P109, DOI 10.2307/2424492; Edwards R. J., 2013, E91R TX TEX PARKS WI, P40; Edwards RJ, 2002, REV FISH BIOL FISHER, V12, P119, DOI 10.1023/A:1025098229262; EDWARDS RJ, 1991, SOUTHWEST NAT, V36, P201, DOI 10.2307/3671922; Eisenhour David J., 2004, Bulletin Alabama Museum of Natural History, V23, P9; Eisenhour DJ, 1999, COPEIA, P969, DOI 10.2307/1447972; Etnier D. A., 1993, FISHES TENNESSEE; Everett SR, 2004, HYDROBIOLOGIA, V527, P183, DOI 10.1023/B:HYDR.0000043300.69401.66; Falke JA, 2011, ECOHYDROLOGY, V4, P682, DOI 10.1002/eco.158; Falke JA, 2010, T AM FISH SOC, V139, P1566, DOI 10.1577/T09-143.1; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; Fausch KD, 2008, BIOL INVASIONS, V10, P685, DOI 10.1007/s10530-007-9162-5; Fausch Kurt D., 1997, Ecological Studies, V125, P131; FELLEY J D, 1981, Southwestern Naturalist, V25, P564, DOI 10.2307/3670864; FELLEY JD, 1984, COPEIA, P442, DOI 10.2307/1445202; Finlayson B. J., 2000, ROTENONE USE FISHERI, P199; Flittner G. A., 1964, THESIS; Franssen NR, 2006, AM MIDL NAT, V156, P1, DOI 10.1674/0003-0031(2006)156[1:UOSITT]2.0.CO;2; Fuller P., 2015, USGS NONINDIGENOUS A; Fullerton AH, 2010, FRESHWATER BIOL, V55, P2215, DOI 10.1111/j.1365-2427.2010.02448.x; Furlow FB, 1996, ENVIRON BIOL FISH, V46, P382, DOI 10.1007/BF00005017; Galat DL, 1998, BIOSCIENCE, V48, P721, DOI 10.2307/1313335; Gates S, 2002, J ANIM ECOL, V71, P547, DOI 10.1046/j.1365-2656.2002.00634.x; Gaughan S., 2016, THESIS, P94; George AL, 2009, FISHERIES, V34, P529, DOI 10.1577/1548-8446-34.11.529; Gidmark NJ, 2014, FRESHWATER FISHES OF NORTH AMERICA, VOL 1: PETROMYZONTIDAE TO CATOSTOMIDAE, P354; Gido KB, 2007, ECOL FRESHW FISH, V16, P457, DOI 10.1111/j.1600-0633.2007.00235.x; Gido Keith B., 2002, Transactions of the Kansas Academy of Science, V105, P193, DOI 10.1660/0022-8443(2002)105[0193:LTCITF]2.0.CO;2; Gido KB, 2010, J N AM BENTHOL SOC, V29, P970, DOI 10.1899/09-116.1; GILBERT C R, 1978, Bulletin of the Florida State Museum Biological Sciences, V23, P1; Gilbert CR, 2017, ZOOTAXA, V4247, P501, DOI 10.11646/zootaxa.4247.5.1; Glibert PM, 2010, REV FISH SCI, V18, P211, DOI 10.1080/10641262.2010.492059; Goldstein R. J., 2000, AM AQUARIUM FISHES; GOTELLI NJ, 1993, OIKOS, V68, P36, DOI 10.2307/3545306; Griffith JA, 2003, J FRESHWATER ECOL, V18, P451, DOI 10.1080/02705060.2003.9663981; HALL GORDON E., 1956, SOUTHWESTERN NAT, V1, P16, DOI 10.2307/3668894; Hall RI, 1999, LIMNOL OCEANOGR, V44, P739, DOI 10.4319/lo.1999.44.3_part_2.0739; Hampton Douglas R., 1997, Proceedings of the South Dakota Academy of Science, V76, P11; Harel I, 2015, CELL, V160, P1013, DOI 10.1016/j.cell.2015.01.038; Harnik PG, 2012, TRENDS ECOL EVOL, V27, P608, DOI 10.1016/j.tree.2012.07.010; HARREL RC, 1967, AM MIDL NAT, V78, P428, DOI 10.2307/2485240; Hashim R, 2009, TROP LIFE SCI RES, V20, P29; Haslouer Stephen G., 2005, Transactions of the Kansas Academy of Science, V108, P32, DOI 10.1660/0022-8443(2005)108[0032:CSONFS]2.0.CO;2; HATCH MD, 1985, SOUTHWEST NAT, V30, P555, DOI 10.2307/3671049; Haworth MR, 2016, N AM J FISH MANAGE, V36, P744, DOI 10.1080/02755947.2016.1165772; Heard TC, 2012, WEST N AM NATURALIST, V72, P1; HEINS D C, 1981, Tulane Studies in Zoology and Botany, V22, P67; HENDRICKSON D.A., 2015, FISHES TEXAS PROJECT; Herbert ME, 2003, COPEIA, P273, DOI 10.1643/0045-8511(2003)003[0273:SVOHFA]2.0.CO;2; Herzog DP, 2009, J FRESHWATER ECOL, V24, P103, DOI 10.1080/02705060.2009.9664270; Hesse Larry W., 1994, Transactions of the Nebraska Academy of Sciences, V21, P99; Higgins CL, 2005, HYDROBIOLOGIA, V549, P197, DOI 10.1007/s10750-005-0844-7; HLOHOWSKYJ CP, 1989, COPEIA, P172; Hoagstrom CW, 2008, RIVER RES APPL, V24, P789, DOI 10.1002/rra.1082; Hoagstrom CW, 2008, COPEIA, P5, DOI 10.1643/CE-07-002; Hoagstrom CW, 2007, WEST N AM NATURALIST, V67, P161, DOI 10.3398/1527-0904(2007)67[161:ZPAFCO]2.0.CO;2; Hoagstrom Christopher W., 2006, Great Plains Research, V16, P117; Hoagstrom CW, 2015, CAN J FISH AQUAT SCI, V72, P527, DOI 10.1139/cjfas-2014-0191; Hoagstrom CW, 2015, FISH FISH, V16, P282, DOI 10.1111/faf.12054; Hoagstrom CW, 2014, J FRESHWATER ECOL, V29, P449, DOI 10.1080/02705060.2014.908422; Hoagstrom CW, 2011, BIOL CONSERV, V144, P21, DOI 10.1016/j.biocon.2010.07.015; Hoagstrom CW, 2010, AQUAT INVASIONS, V5, P141, DOI 10.3391/ai.2010.5.2.03; Hoagstrom CW, 2010, SOUTHWEST NAT, V55, P78, DOI 10.1894/GG-38.1; Hoagstrom Christopher W., 2006, Proceedings of the South Dakota Academy of Science, V85, P171; Hoagstrom Christopher W., 2009, Great Plains Research, V19, P27; Hoagstrom Christopher W., 2006, Proceedings of the South Dakota Academy of Science, V85, P213; Hoagstrom CW, 2005, TEX J SCI, V57, P35; Hollingsworth PR, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-272; Holmlund CM, 1999, ECOL ECON, V29, P253, DOI 10.1016/S0921-8009(99)00015-4; Houston J, 1998, CAN FIELD NAT, V112, P147; HRABIK R. A., 2015, FISHES NEBRASKA; HUBBS C, 1991, TEX J SCI, V43, P1; Hubbs C., 2008, ANNOTATED CHECKLIST, P87; Hubbs C. L., 1929, PUBL U OKLAHOMA BIOL, V1, P47; HUBBS CLARK, 1957, SOUTHWESTERN NAT, V2, P89, DOI 10.2307/3669496; HUBER R, 1992, ENVIRON BIOL FISH, V33, P153, DOI 10.1007/BF00002561; Hughes DA, 2005, RIVER RES APPL, V21, P899, DOI 10.1002/rra.857; Jackson ST, 2009, P NATL ACAD SCI USA, V106, P19685, DOI 10.1073/pnas.0901644106; Jelks HL, 2008, FISHERIES, V33, P372, DOI 10.1577/1548-8446-33.8.372; Johnston C.E., 1993, P600; Johnston CE, 1999, ENVIRON BIOL FISH, V55, P21, DOI 10.1023/A:1007576502479; Kehmeier JW, 2007, N AM J FISH MANAGE, V27, P750, DOI 10.1577/M06-016.1; Keller DL, 2014, ENVIRON MANAGE, V54, P465, DOI 10.1007/s00267-014-0318-7; KELSCH SW, 1994, J FRESHWATER ECOL, V9, P331, DOI 10.1080/02705060.1994.9664903; Kilgore D. L., 1965, Transactions of the Kansas Academy of Science, V68, P137, DOI 10.2307/3626356; Kuhajda B. R., 2006, STUDIES N AM DESERT, P72; Lee D. S., 1980, ATLAS N AM FRESHWATE; LEHTINEN SF, 1988, SOUTHWEST NAT, V33, P27, DOI 10.2307/3672085; Lindenmayer D., 2006, HABITAT FRAGMENTATIO; Louda SM, 2003, CONSERV BIOL, V17, P73, DOI 10.1046/j.1523-1739.2003.02020.x; Lutterschmidt WI, 1997, CAN J ZOOL, V75, P1553, DOI 10.1139/z97-782; Luttrell Geffery R., 1995, Proceedings of the Oklahoma Academy of Science, V75, P61; Luttrell Geffery R., 2002, Transactions of the Kansas Academy of Science, V105, P153, DOI 10.1660/0022-8443(2002)105[0153:HCOTDO]2.0.CO;2; Luttrell GR, 1999, COPEIA, P981, DOI 10.2307/1447973; LYNCH JA, 1985, J SOIL WATER CONSERV, V40, P164; Lynch John D., 1996, Transactions of the Nebraska Academy of Sciences, V23, P65; MacKenzie D. I., 2006, OCCUPANCY ESTIMATION; Magana H. A., 2009, Reviews in Fisheries Science, V17, P468; Magana HA, 2013, REV FISH BIOL FISHER, V23, P507, DOI 10.1007/s11160-013-9313-y; Magana HA, 2012, ENVIRON BIOL FISH, V95, P201, DOI 10.1007/s10641-012-9977-5; Marchetti MP, 2004, ECOL APPL, V14, P1507, DOI 10.1890/03-5173; Marcogliese DJ, 2001, CAN J ZOOL, V79, P1331, DOI 10.1139/cjz-79-8-1331; Marks DE, 2001, TEX J SCI, V53, P327; MARSHALL C L, 1978, Proceedings of the Oklahoma Academy of Science, V58, P109; MATTHEWS W J, 1980, Southwestern Naturalist, V25, P51, DOI 10.2307/3671211; Matthews W.J., 1987, P111; MATTHEWS W J, 1974, Arkansas Academy of Science Proceedings, V28, P39; MATTHEWS WJ, 1979, AM MIDL NAT, V102, P374, DOI 10.2307/2424665; MATTHEWS WJ, 1990, FISHERIES, V15, P26, DOI 10.1577/1548-8446(1990)015<0026:PEOGWO>2.0.CO;2; MATTHEWS WJ, 1988, J N AM BENTHOL SOC, V7, P387, DOI 10.2307/1467298; Mayden R. L., 2004, HOMENAJE DOCTOR AR M, P299; Mayden RL, 2002, REV FISH BIOL FISHER, V12, P327, DOI 10.1023/A:1025056809814; McAllister CT, 2010, TEX J SCI, V62, P271; McCallum ML, 2006, HERPETOL CONSERV BIO, V1, P62; Medley CN, 2013, ECOHYDROLOGY, V6, P491, DOI 10.1002/eco.1373; MILLER DONALD R., 1953, PROC OKLAHOMA ACAD SCI, V34, P33; Miller R. J., 2004, FISHES OF OKLAHOMA; MILLER R R, 1986, Anales de la Escuela Nacional de Ciencias Biologicas Mexico, V30, P121; MILLER RR, 1989, FISHERIES, V14, P22, DOI 10.1577/1548-8446(1989)014<0022:EONAFD>2.0.CO;2; Miller RR, 2005, FRESHWATER FISHES ME; MILLS CA, 1985, J FISH BIOL, V27, P209, DOI 10.1111/j.1095-8649.1985.tb03243.x; Miranda LE, 2014, RIVER RES APPL, V30, P347, DOI 10.1002/rra.2652; Miyazono S, 2015, SCI TOTAL ENVIRON, V511, P444, DOI 10.1016/j.scitotenv.2014.12.079; MOORE GEORGE A., 1950, TRANS AMER MICROSC SOC, V69, P69, DOI 10.2307/3223350; Moore George A., 1944, COPEIA, V1944, P209, DOI 10.2307/1438675; MORING JR, 1994, REHABILITATION OF FRESHWATER FISHERIES, P194; Moyer GR, 2005, MOL ECOL, V14, P1263, DOI 10.1111/j.1365-294X.2005.02481.x; Moyle Peter B., 2004, San Francisco Estuary & Watershed Science, V2, P1; Mueller JS, 2017, J FISH WILDL MANAG, V8, P79, DOI 10.3996/112015-JFWM-111; NATURESERVE, 2017, NATURESERVE EXPL ONL; Neebling TE, 2010, FISHERIES MANAG ECOL, V17, P369, DOI 10.1111/j.1365-2400.2010.00730.x; Nunn AD, 2003, FRESHWATER BIOL, V48, P579, DOI 10.1046/j.1365-2427.2003.01033.x; Offill K. R., 2003, THESIS, P80; OMERNIK JM, 1987, ANN ASSOC AM GEOGR, V77, P118, DOI 10.1111/j.1467-8306.1987.tb00149.x; Osborne MJ, 2014, MOL ECOL, V23, P5663, DOI 10.1111/mec.12970; Osborne MJ, 2013, CONSERV GENET, V14, P637, DOI 10.1007/s10592-013-0457-z; Osborne MJ, 2013, J HERED, V104, P437, DOI 10.1093/jhered/est013; Osborne MJ, 2012, EVOL APPL, V5, P553, DOI 10.1111/j.1752-4571.2011.00235.x; Osborne MJ, 2010, MOL ECOL, V19, P2832, DOI 10.1111/j.1365-294X.2010.04695.x; Osborne MJ, 2006, REV FISH SCI, V14, P127, DOI 10.1080/10641260500341544; Osborne MJ, 2005, ENVIRON BIOL FISH, V73, P463, DOI 10.1007/s10641-005-3215-3; Ostrand KG, 2004, T AM FISH SOC, V133, P1329, DOI 10.1577/T03-193.1; Ostrand KG, 2002, ECOL FRESHW FISH, V11, P137, DOI 10.1034/j.1600-0633.2002.00005.x; Ostrand KG, 2001, COPEIA, P563; Ostrand KG, 2001, T AM FISH SOC, V130, P742, DOI 10.1577/1548-8659(2001)130<0742:TDOAST>2.0.CO;2; Palmer MA, 2005, J APPL ECOL, V42, P208, DOI 10.1111/j.1365-2664.2005.01004.x; Palstra FP, 2008, MOL ECOL, V17, P3428, DOI 10.1111/j.1365-294X.2008.03842.x; Parham RW, 2009, SOUTHWEST NAT, V54, P382, DOI 10.1894/GG-28.1; Passell HD, 2007, ECOL APPL, V17, P2087, DOI 10.1890/06-1293.1; Patrikeev M, 2005, SOUTHWEST NAT, V50, P488, DOI 10.1894/0038-4909(2005)050[0488:OOTRSN]2.0.CO;2; Patton TM, 1998, CONSERV BIOL, V12, P1120, DOI 10.1046/j.1523-1739.1998.97087.x; PEARSON WD, 1989, OHIO J SCI, V89, P181; Pearsons T. N., 1989, THESIS, P89; Pegg MA, 2002, HYDROBIOLOGIA, V479, P155, DOI 10.1023/A:1021038207741; Pennock C. A., 2017, CANADIAN J FISHERIES; Pennock CA, 2017, AM MIDL NAT, V177, P57, DOI 10.1674/0003-0031-177.1.57; Perkin JS, 2011, RIVER RES APPL, V27, P566, DOI 10.1002/rra.1373; Perkin J. S., 2014, KANSAS FISHES, P181; Perkin JS, 2017, P NATL ACAD SCI USA, V114, P7373, DOI 10.1073/pnas.1618936114; Perkin JS, 2015, AQUAT CONSERV, V25, P639, DOI 10.1002/aqc.2501; Perkin JS, 2015, ECOL MONOGR, V85, P73, DOI 10.1890/14-0121.1; Perkin JS, 2013, T AM FISH SOC, V142, P1287, DOI 10.1080/00028487.2013.806352; Perkin JS, 2011, FISHERIES, V36, P371, DOI 10.1080/03632415.2011.597666; Perkin JS, 2009, AM MIDL NAT, V162, P276, DOI 10.1674/0003-0031-162.2.276; Petticrew M, 2001, BMJ-BRIT MED J, V322, P98, DOI 10.1136/bmj.322.7278.98; Pezold F., 1993, P SE FISHES COUNCIL, V27, P2; Pflieger WL, 1997, FISHES MISSOURI; PIGG J, 1991, Proceedings of the Oklahoma Academy of Science, V71, P5; PIGG J, 1987, Proceedings of the Oklahoma Academy of Science, V67, P45; PIGG J, 1977, Proceedings of the Oklahoma Academy of Science, V57, P68; Pigg Jimmie, 1997, Proceedings of the Oklahoma Academy of Science, V77, P43; Pigg Jimmie, 1999, Proceedings of the Oklahoma Academy of Science, V79, P7; PLATANIA SP, 1991, SOUTHWEST NAT, V36, P186, DOI 10.2307/3671919; Platania SP, 1998, COPEIA, P559, DOI 10.2307/1447786; Poff NL, 2010, FRESHWATER BIOL, V55, P194, DOI 10.1111/j.1365-2427.2009.02272.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1990, ENVIRON MANAGE, V14, P629, DOI 10.1007/BF02394714; Polivka KM, 1999, ENVIRON BIOL FISH, V55, P265, DOI 10.1023/A:1007577411279; Pollard S. M., 2003, 47 ALB SUST RES DEV; POWER ME, 1995, BIOSCIENCE, V45, P159, DOI 10.2307/1312555; Pracheil BM, 2012, FISHERIES, V37, P449, DOI 10.1080/03632415.2012.722877; Price AL, 2010, N AM J FISH MANAGE, V30, P481, DOI 10.1577/M09-122.1; Pringle CM, 1997, J N AM BENTHOL SOC, V16, P425, DOI 10.2307/1468028; Propst D. L., 1999, 1 NEW MEX DEP GAM FI; PROPST DL, 1987, SOUTHWEST NAT, V32, P408, DOI 10.2307/3671468; PROPST DL, 1991, COPEIA, P29; Pullin AS, 2004, BIOL CONSERV, V119, P245, DOI 10.1016/j.biocon.2003.11.007; Quist MC, 2004, T AM FISH SOC, V133, P727, DOI 10.1577/T03-124.1; Rabeni Charles F., 1996, P111; RANEY EDWARD C., 1939, AMER MIDLAND NAT, V21, P674, DOI 10.2307/2420524; Reigh R.C., 1979, Prairie Naturalist, V11, P49; RHODES K, 1992, SOUTHWEST NAT, V37, P178, DOI 10.2307/3671666; Ridenour CJ, 2009, RIVER RES APPL, V25, P472, DOI 10.1002/rra.1175; Roach KA, 2015, CAN J FISH AQUAT SCI, V72, P1099, DOI 10.1139/cjfas-2014-0459; Robertson L., 1997, US C IRR DRAIN S 199, P407; ROBINSON DORTHEA TREVINO, 1959, COPEIA, V1959, P253, DOI 10.2307/1440404; Robison H.W., 1974, Proceedings of the Arkansas Academy of Science, V28, P59; Robison H.W., 1974, Proceedings of the Arkansas Academy of Science, V28, P65; ROBISON H W, 1974, Southwestern Naturalist, V19, P220, DOI 10.2307/3670289; ROBISON HW, 1988, FISHES ARKANSAS; Rosenfeld J, 2003, T AM FISH SOC, V132, P953, DOI 10.1577/T01-126; ROSS S.T., 2001, INLAND FISHES MISSIS; Royle JA, 2006, J AGR BIOL ENVIR ST, V11, P249, DOI 10.1198/108571106X129153; Royle JA, 2004, BIOMETRICS, V60, P108, DOI 10.1111/j.0006-341X.2004.00142.x; Sax DF, 2000, GLOBAL ECOL BIOGEOGR, V9, P363, DOI 10.1046/j.1365-2699.2000.00217.x; Schaefer JF, 2011, EVOL ECOL, V25, P1145, DOI 10.1007/s10682-011-9461-2; Scheurer JA, 2003, COPEIA, P1; Schleier JJ, 2008, BIOL INVASIONS, V10, P1277, DOI 10.1007/s10530-007-9202-1; Schlosser I.J., 1987, P17; SCHLOSSER IJ, 1990, ENVIRON MANAGE, V14, P621, DOI 10.1007/BF02394713; SCHLOSSER IJ, 1991, BIOSCIENCE, V41, P704, DOI 10.2307/1311765; Schramm HL, 2016, AM FISH S S, V84, P53; Shirey PD, 2008, J PALEOLIMNOL, V40, P263, DOI 10.1007/s10933-007-9156-4; Simon Thomas P., 1999, P97; Simons AM, 1999, COPEIA, P13, DOI 10.2307/1447380; Smith CD, 2014, AM MIDL NAT, V172, P160, DOI 10.1674/0003-0031-172.1.160; Smith P. W., 1979, FISHES ILLINOIS; Sophocleous M, 2002, HYDROGEOL J, V10, P52, DOI 10.1007/s10040-001-0170-8; Souchon Y, 2008, RIVER RES APPL, V24, P506, DOI 10.1002/rra.1134; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; STARRETT WC, 1950, AM MIDL NAT, V43, P112, DOI 10.2307/2421882; STARRETT WC, 1951, ECOLOGY, V32, P13, DOI 10.2307/1930969; STARRETT WC, 1950, ECOLOGY, V31, P216, DOI 10.2307/1932388; Steffensen KD, 2014, J FRESHWATER ECOL, V29, P413, DOI 10.1080/02705060.2014.909891; Stewart D. D., 1981, THESIS, P53; Sublette J. E., 1990, FISHES NEW MEXICO; Taylor C. M., 2014, KANSAS FISHES, P159; Taylor CM, 1996, COPEIA, P280, DOI 10.2307/1446844; TAYLOR CM, 1993, ECOGRAPHY, V16, P16, DOI 10.1111/j.1600-0587.1993.tb00054.x; TAYLOR CM, 1990, AM MIDL NAT, V123, P32, DOI 10.2307/2425757; Tewksbury JJ, 2014, BIOSCIENCE, V64, P300, DOI 10.1093/biosci/biu032; Thomas C, 2007, FRESHWATER FISHES TE; Troia MJ, 2016, ECOL EVOL, V6, P4654, DOI 10.1002/ece3.2225; Turner TF, 2006, P R SOC B, V273, P3065, DOI 10.1098/rspb.2006.3677; Underwood DM, 2003, COPEIA, P493; Urbanczyk A. C., 2012, THESIS, P74; US Fish and Wildlife Service, 2014, SPEC STAT ASS REP SH, P104; US Fish and Wildlife Service, 2001, UPD STAT REV SICKL C, P74; US Fish & Wildlife Service, 2010, RIO GRAND SILV MINN, P210; Warren ML, 2000, FISHERIES, V25, P7, DOI 10.1577/1548-8446(2000)025<0007:DDACSO>2.0.CO;2; Welker TL, 2004, ECOL FRESHW FISH, V13, P8, DOI 10.1111/j.0906-6691.2004.00036.x; Wilde G. R., 2007, DISTRIBUTION STATUS, P90; Wilde G. R., 2015, MONITORING RIPARIAN, P67; Wilde G. R, 2016, MIGRATION ARKANSAS R; Wilde GR, 2014, J FRESHWATER ECOL, V29, P453, DOI 10.1080/02705060.2014.908791; Wilde GR, 2013, J FRESHWATER ECOL, V28, P453, DOI 10.1080/02705060.2013.817358; Wilde GR, 2013, J FRESHWATER ECOL, V28, P445, DOI 10.1080/02705060.2013.785984; Wilde GR, 2008, T AM FISH SOC, V137, P1657, DOI 10.1577/T07-075.1; Wilde GR, 1999, TEX J SCI, V51, P203; Wilde GR, 2002, ENVIRON BIOL FISH, V65, P98, DOI 10.1023/A:1019620506520; Wilde GR, 2001, J FRESHWATER ECOL, V16, P403, DOI 10.1080/02705060.2001.9663829; Williams CS, 2007, ENVIRON BIOL FISH, V80, P7, DOI 10.1007/s10641-006-9118-0; Williams CS, 2006, AM MIDL NAT, V155, P84, DOI 10.1674/0003-0031(2006)155[0084:HALHAD]2.0.CO;2; WILLIAMS JE, 1990, J FISH BIOL, V37, P79, DOI 10.1111/j.1095-8649.1990.tb05023.x; WILLIAMS JE, 1989, FISHERIES, V14, P2, DOI 10.1577/1548-8446(1989)014<0002:FONAET>2.0.CO;2; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINSTON MR, 1991, T AM FISH SOC, V120, P98, DOI 10.1577/1548-8659(1991)120<0098:UEOFMS>2.3.CO;2; Witmer GW, 2011, CURR ZOOL, V57, P559, DOI 10.1093/czoolo/57.5.559; Worthington TA, 2016, ECOL MODEL, V342, P1, DOI 10.1016/j.ecolmodel.2016.09.016; Worthington TA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096599; Worthington TA, 2014, GLOBAL CHANGE BIOL, V20, P89, DOI 10.1111/gcb.12329; Yu SL, 2003, FISHERIES SCI, V69, P154, DOI 10.1046/j.1444-2906.2003.00600.x 353 1 1 4 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. MAR 2018 19 2 271 307 10.1111/faf.12254 37 Fisheries Fisheries FY0LO WOS:000426503000006 2019-02-21 J Danko, A; Schaible, R; Pijanowska, J; Danko, MJ Danko, Aleksandra; Schaible, Ralf; Pijanowska, Joanna; Danko, Maciej J. Population density shapes patterns of survival and reproduction in Eleutheria dichotoma (Hydrozoa: Anthoathecata) MARINE BIOLOGY English Article K-SELECTION; LIFE-CYCLES; R-SELECTION; MORTALITY; CNIDARIA; SIZE; DYNAMICS; AGE; METAGENESIS; TEMPERATURE Budding hydromedusae have high reproductive rates due to asexual reproduction and can occur in high population densities along the coasts, specifically in tidal pools. In laboratory experiments, we investigated the effects of population density on the survival and reproductive strategies of a single clone of Eleutheria dichotoma. We found that sexual reproduction occurs with the highest rate at medium population densities. Increased sexual reproduction was associated with lower budding (asexual reproduction) and survival probability. Sexual reproduction results in the production of motile larvae that can, in contrast to medusae, seek to escape unfavorable conditions by actively looking for better environments. The successful settlement of a larva results in starting the polyp stage, which is probably more resistant to environmental conditions. This is the first study that has examined the life-history strategies of the budding hydromedusa E. dichotoma by conducting a long-term experiment with a relatively large sample size that allowed for the examination of age-specific mortality and reproductive rates. We found that most sexual and asexual reproduction occurred at the beginning of life following a very rapid process of maturation. The parametric models fitted to the mortality data showed that population density was associated with an increase in the rate of aging, an increase in the level of late-life mortality plateau, and a decrease in the hidden heterogeneity in individual mortality rates. The effects of population density on life-history traits are discussed in the context of resource allocation and the r/K-strategies' continuum concept. [Danko, Aleksandra; Schaible, Ralf; Danko, Maciej J.] Max Planck Inst Demog Res, Lab Evolutionary Biodemog, Konrad Zuse Str 1, D-18057 Rostock, Germany; [Pijanowska, Joanna] Univ Warsaw, Dept Hydrobiol, Zwirki & Wigury 101, PL-02089 Warsaw, Poland Danko, A; Danko, MJ (reprint author), Max Planck Inst Demog Res, Lab Evolutionary Biodemog, Konrad Zuse Str 1, D-18057 Rostock, Germany. adanko@demogr.mpg.de; danko@demogr.mpg.de Max Planck Institute for Demographic Research, Germany This work was funded by the Max Planck Institute for Demographic Research, Rostock, Germany, for A.D, R.S., and M.J.D. Bouillon J, 2004, SCI MAR, V68, P5, DOI 10.3989/scimar.2004.68s25; Camarda CG, 2012, J STAT SOFTW, V50, P1; Carey JR, 1995, EXP GERONTOL, V30, P605, DOI 10.1016/0531-5565(95)00013-5; Ceh J, 2015, SCI REP-UK, V5, DOI 10.1038/srep12037; Collins AG, 2002, J EVOLUTION BIOL, V15, P418, DOI 10.1046/j.1420-9101.2002.00403.x; COSTELLO JH, 1995, J PLANKTON RES, V17, P199, DOI 10.1093/plankt/17.1.199; Cox PR, 1972, LIFE TABLES; Danko MJ, 2017, EXP GERONTOL, V95, P107, DOI 10.1016/j.exger.2017.05.008; Danko MJ, 2015, J THEOR BIOL, V382, P137, DOI 10.1016/j.jtbi.2015.06.043; Danko MJ, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0186661; Eckman JE, 1996, J EXP MAR BIOL ECOL, V200, P207, DOI 10.1016/S0022-0981(96)02644-5; Fautin DG, 2002, CAN J ZOOL, V80, P1735, DOI 10.1139/Z02-133; Fraser C, 2006, J MAR BIOL ASSOC UK, V86, P699, DOI 10.1017/S0025315406013592; Gompertz B., 1825, PHILOS T ROY SOC LON, V115, P513, DOI [10.1098/rstl.1825.0026, DOI 10.1098/RSTL.1825.0026]; HAUENSCHILD C, 1956, Z NATURFORSCH PT B, V11, P394; Hirano YM, 2000, SCI MAR, V64, P179, DOI 10.3989/scimar.2000.64s1179; Kaliszewicz A, 2013, ACTA ZOOL-STOCKHOLM, V94, P177, DOI 10.1111/j.1463-6395.2011.00536.x; Kawamura M, 2008, J MAR BIOL ASSOC UK, V88, P1601, DOI 10.1017/S0025315408002944; Klein J, 2003, SURVIVAL ANAL TECHNI, P243; KLEIVEN OT, 1992, OIKOS, V65, P197, DOI 10.2307/3545010; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 2006, POL J ECOL, V54, P585; Leissen S, 2009, STAT INFERENCE ECONO, P41; LOMNICKI A, 1978, J ANIM ECOL, V47, P461, DOI 10.2307/3794; Lomnicki A, 1988, POPULATION ECOLOGY I, P223; Ma XP, 2005, MAR BIOL, V147, P225, DOI 10.1007/s00227-004-1539-8; Makeham WM, 1867, J I ACTUARIES, V13, P325; MANTEL N, 1967, BIOMETRICS, V23, P65, DOI 10.2307/2528282; Marshall DJ, 2007, BIOL BULL-US, V212, P6, DOI 10.2307/25066575; Mills CE, 2007, ENCY TIDEPOOLS ROCKY, P286; Missov TI, 2016, PALGR COMMUN, V2, DOI 10.1057/palcomms.2015.49; Morandini AC, 2016, B MAR SCI, V92, P343, DOI 10.5343/bms.2016.1018; Ota R, 2000, MOL BIOL EVOL, V17, P798, DOI 10.1093/oxfordjournals.molbev.a026358; PETERS TM, 1977, ANNU REV ENTOMOL, V22, P431, DOI 10.1146/annurev.en.22.010177.002243; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pietrzak B, 2015, EXP GERONTOL, V69, P1, DOI 10.1016/j.exger.2015.05.008; Pijanowska J, 2004, GENESIS, V38, P81, DOI 10.1002/gene.20000; Pletcher SD, 1999, J EVOLUTION BIOL, V12, P430; R Core Team, 2017, R LANG ENV STAT COMP; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Ringelhan F, 2015, THESIS; Schaible R, 2015, P NATL ACAD SCI USA, V112, P15701, DOI 10.1073/pnas.1521002112; SCHIERWATER B, 1989, J MORPHOL, V200, P255, DOI 10.1002/jmor.1052000304; Schierwater B, 1998, INVERTEBR REPROD DEV, V34, P139, DOI 10.1080/07924259.1998.9652646; Schierwater B., 1990, Advances in Invertebrate Reproduction, V5, P37; Schuchert P, 2009, REV SUISSE ZOOL, V116, P441, DOI 10.5962/bhl.part.117779; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224 49 1 1 1 1 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0025-3162 1432-1793 MAR BIOL Mar. Biol. MAR 2018 165 3 48 10.1007/s00227-018-3309-z 10 Marine & Freshwater Biology Marine & Freshwater Biology FY4BE WOS:000426765000007 29497211 Green Published, Other Gold 2019-02-21 J Garay, J; Csiszar, V; Mori, TF; Szilagyi, A; Varga, Z; Szamado, S Garay, Jozsef; Csiszar, Villo; Mori, Tamas F.; Szilagyi, Andras; Varga, Zoltan; Szamado, Szabolcs Juvenile honest food solicitation and parental investment as a life history strategy: A kin demographic selection model PLOS ONE English Article TRADE-OFF; NEED; EVOLUTION; SIGNALS; HUNGER; CONFLICT; QUESTION; QUALITY; BIRDS Parent-offspring communication remains an unresolved challenge for biologist. The difficulty of the challenge comes from the fact that it is a multifaceted problem with connections to life-history evolution, parent-offspring conflict, kin selection and signalling. Previous efforts mainly focused on modelling resource allocation at the expense of the dynamic interaction during a reproductive season. Here we present a two-stage model of begging where the first stage models the interaction between nestlings and parents within a nest and the second stage models the life-history trade-offs. We show in an asexual population that honest begging results in decreased variance of collected food between siblings, which leads to mean number of surviving offspring. Thus, honest begging can be seen as a special bet-hedging against informational uncertainty, which not just decreases the variance of fitness but also increases the arithmetic mean. [Garay, Jozsef; Szilagyi, Andras] Eotvos Lorand Univ, Dept Plant Systemat Ecol & Theoret Biol, MTA ELTE Res Grp Theoret Biol & Evolutionary Ecol, Budapest, Hungary; [Garay, Jozsef; Szilagyi, Andras; Szamado, Szabolcs] MTA Ctr Ecol Res, Evolutionary Syst Res Grp, Tihany, Hungary; [Csiszar, Villo; Mori, Tamas F.] Eotvos Lorand Univ, Dept Probabil Theory & Stat, Budapest, Hungary; [Varga, Zoltan] Szent Istvan Univ, Dept Math, Godollo, Hungary; [Szamado, Szabolcs] MTA Ctr Social Sci, RECENS Lendulet Res Grp, Budapest, Hungary Garay, J (reprint author), Eotvos Lorand Univ, Dept Plant Systemat Ecol & Theoret Biol, MTA ELTE Res Grp Theoret Biol & Evolutionary Ecol, Budapest, Hungary.; Garay, J (reprint author), MTA Ctr Ecol Res, Evolutionary Syst Res Grp, Tihany, Hungary. garayj@caesar.elte.hu Szamado, Szabolcs/A-9804-2013; Varga, Zoltan/W-6418-2018; Csiszar, Villo/I-8546-2018; Mori, Tamas/B-5507-2012 Szamado, Szabolcs/0000-0003-2204-9705; Csiszar, Villo/0000-0002-7021-3162; Mori, Tamas/0000-0002-9328-7471; Szilagyi, Andras/0000-0002-6894-4652 Hungarian National Research, Development and Innovation Office NKFIH [K 125569, K 108974, K 119347]; European Structural and Investment Funds (ESIF) in Hungary [GINOP 2.3.2-15-2016-00057]; European Research Council [648693] This work was supported by the Hungarian National Research, Development and Innovation Office NKFIH: K 125569 (T.M.), K 108974 (J.G. and SZ.SZ), K 119347 (A.SZ) (http://nkfih.gov.hu/english); European Structural and Investment Funds (ESIF) in Hungary (GINOP 2.3.2-15-2016-00057) (https://www.palyazat.gov.hu/evaluation); and European Research Council (No 648693) (https://erc.europa.eu/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Bebbington K, 2017, EVOL LETT, V1, P132, DOI 10.1002/evl3.18; Bossan B, 2013, P R SOC B; Caro SM, 2016, P NATL ACAD SCI USA, V113, P13803, DOI 10.1073/pnas.1606378113; Caro SM, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10985; Dugas M. B., 2016, P NATL ACAD SCI USA; Garay J, 2016, ECOL MODEL, V334, P51, DOI 10.1016/j.ecolmodel.2016.05.001; Garay J, 2012, B MATH BIOL, V74, P2676, DOI 10.1007/s11538-012-9772-7; GODFRAY HCJ, 1991, NATURE, V352, P328, DOI 10.1038/352328a0; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Grantham ME, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0654; Hinde CA, 2011, BEHAV ECOL, V22, P1147, DOI 10.1093/beheco/arr117; Johnstone RA, 2002, EVOLUTION OF BEGGING: COMPETITION, COOPERATION AND COMMUNICATION, P1, DOI 10.1007/0-306-47660-6_1; Johnstone RA, 2011, BEHAV ECOL, V22, P918, DOI 10.1093/beheco/arr095; Kilner R, 1997, TRENDS ECOL EVOL, V12, P11, DOI 10.1016/S0169-5347(96)10061-6; Kolliker M, 2011, BEHAV ECOL, V22, P919, DOI 10.1093/beheco/arr081; Mas F, 2008, ANIM BEHAV, V76, P1121, DOI 10.1016/j.anbehav.2008.06.011; Mock DW, 2011, BEHAV ECOL, V22, P909, DOI 10.1093/beheco/arr091; Noldeke G, 1999, J THEOR BIOL, V197, P527, DOI 10.1006/jtbi.1998.0893; Olofsson H, 2009, P ROY SOC B-BIOL SCI, V276, P2963, DOI 10.1098/rspb.2009.0500; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Ripa J, 2010, P ROY SOC B-BIOL SCI, V277, P1153, DOI 10.1098/rspb.2009.2023; Starrfelt J, 2012, BIOL REV, V87, P742, DOI 10.1111/j.1469-185X.2012.00225.x; TRIVERS RL, 1974, AM ZOOL, V14, P249; Wright J, 2011, BEHAV ECOL, V22, P920, DOI 10.1093/beheco/arr080 24 0 0 1 5 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAR 1 2018 13 3 e0193420 10.1371/journal.pone.0193420 13 Multidisciplinary Sciences Science & Technology - Other Topics FX8RR WOS:000426363200047 29494630 DOAJ Gold, Green Published 2019-02-21 J Durkin, ES; Luong, LT Durkin, E. S.; Luong, L. T. Experimental evolution of infectious behaviour in a facultative ectoparasite JOURNAL OF EVOLUTIONARY BIOLOGY English Article artificial selection; Drosophila; evolution of parasitism; infectivity; Macrocheles muscaedomesticae; realized heritability DROSOPHILA-MACROCHELES SYSTEM; LIFE-HISTORY; PARASITISM; MITES; ACARI; HERITABILITY; REPRODUCTION; STRATEGIES; RESISTANCE; PHYLOGENY Parasitic lifestyles have evolved many times in animals, but how such life-history strategies evolved from free-living ancestors remains a great puzzle. Transitional symbiotic strategies, such as facultative parasitism, are hypothesized evolutionary stepping stones towards obligate parasitism. However, to consider this hypothesis, heritable genetic variation in infectious behaviour of transitional symbiotic strategies must exist. In this study, we experimentally evolved infectivity and estimated the additive genetic variation in a facultative parasite. We performed artificial selection experiments in which we selected for either increased or decreased propensity to infect in a facultatively parasitic mite (Macrocheles muscaedomesticae). Here, infectiousness was expressed in terms of mite attachment to a host (Drosophila hydei) and modelled as a threshold trait. Mites responded positively to selection for increased infectivity; realized heritability of infectious behaviour was significantly different from zero and estimated to be 16.6% (+/- 4.4% SE). Further, infection prevalence was monitored for 20 generations post-selection. Selected lines continued to display relatively high levels of infection, demonstrating a degree of genetic stability in infectiousness. Our study is the first to provide an estimate of heritability and additive genetic variation for infectious behaviour in a facultative parasite, which suggests natural selection can act upon facultative strategies with important implications for the evolution of parasitism. [Durkin, E. S.; Luong, L. T.] Univ Alberta, Dept Biol Sci, CW405,Biol Sci Bldg, Edmonton, AB T6G 2E9, Canada Durkin, ES (reprint author), Univ Alberta, Dept Biol Sci, CW405,Biol Sci Bldg, Edmonton, AB T6G 2E9, Canada. edurkin@ualberta.ca Luong, Lien/A-5839-2016 Luong, Lien/0000-0003-4350-4164 Natural Sciences and Engineering Research Council of Canada [435245] This research was funded by the Natural Sciences and Engineering Research Council of Canada, Discovery Grant #435245. We thank S. Fang and P. Phiri for their invaluable assistance with fly maintenance and some data collection. We also thank M. Polak for his help with heritability calculations and S. Bush for reviewing an earlier draft of our manuscript. ANDERSON RC, 1984, CAN J ZOOL, V62, P317, DOI 10.1139/z84-050; Athias-Binche F., 1993, Research and Reviews in Parasitology, V53, P73; ATHIASBINCHE F, 1993, CAN J ZOOL, V71, P1793, DOI 10.1139/z93-255; CROSS EA, 1988, ENVIRON ENTOMOL, V17, P309, DOI 10.1093/ee/17.2.309; Crossan J, 2007, EVOLUTION, V61, P675, DOI 10.1111/j.1558-5646.2007.00057.x; de Azevedo LH, 2015, PROG BIOL CONTROL, V19, P103, DOI 10.1007/978-3-319-15042-0_4; Dieterich C, 2009, TRENDS GENET, V25, P203, DOI 10.1016/j.tig.2009.03.006; Dowling A, 2015, PARASITE DIVERSITY AND DIVERSIFICATION: EVOLUTIONARY ECOLOGY MEETS PHYLOGENETICS, P265; Falconer D. S., 1996, INTRO QUANTITATIVE G; FARISH D J, 1971, Acarologia (Paris), V13, P16; Gilbert S F, 2009, ECOLOGICAL DEV BIOL; HILL WG, 1971, BIOMETRICS, V27, P293, DOI 10.2307/2528996; Hoffmann AA, 2016, EVOLUTION, V70, DOI 10.1111/evo.12992; JALIL M, 1970, ANN ENTOMOL SOC AM, V63, P738, DOI 10.1093/aesa/63.3.738; LINDQUIST EE, 1989, CAN J ZOOL, V67, P1291, DOI 10.1139/z89-184; Littlewood DTJ, 1999, BIOL J LINN SOC, V68, P257, DOI 10.1006/bijl.1999.0341; Luong L.T., 2017, PARASITOLOGY, V23, P1; Luong LT, 2007, EVOLUTION, V61, P1391, DOI 10.1111/j.1558-5646.2007.00116.x; Luong LT, 2015, ECOL ENTOMOL, V40, P518, DOI 10.1111/een.12218; MASLOV DA, 1995, PARASITOL TODAY, V11, P30, DOI 10.1016/0169-4758(95)80106-5; Mironov SV, 2005, ZOOL ANZ, V243, P155, DOI 10.1016/j.jcz.2004.10.001; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; MUIR WM, 1986, BIOMETRICS, V42, P381, DOI 10.2307/2531058; Nachappa P, 2010, EVOL ECOL, V24, P631, DOI 10.1007/s10682-009-9318-0; Osche G., 1956, Verhandlungen der Deutschen Zoologischen Gesellschaft, V19, P391; Paterson S, 2007, P R SOC B, V274, P1467, DOI 10.1098/rspb.2006.0433; Polak M, 2003, J EVOLUTION BIOL, V16, P74, DOI 10.1046/j.1420-9101.2003.00500.x; Poulin R., 2007, EVOLUTIONARY ECOLOGY; Price P. W., 1980, EVOLUTIONARY BIOL PA; R Core Team, 2014, R LANG ENV STAT COMP; Reece SE, 2009, EVOL APPL, V2, P11, DOI 10.1111/j.1752-4571.2008.00060.x; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; Stasiuk SJ, 2012, EVODEVO, V3, DOI 10.1186/2041-9139-3-1; Stearns S, 1992, EVOLUTION LIFE HIST; WAAGE JK, 1979, BIOL J LINN SOC, V12, P187, DOI 10.1111/j.1095-8312.1979.tb00055.x; Weinstein SB, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0324; West-Eberhard MJ, 2005, P NATL ACAD SCI USA, V102, P6543, DOI 10.1073/pnas.0501844102; Westwood JH, 2010, TRENDS PLANT SCI, V15, P227, DOI 10.1016/j.tplants.2010.01.004 38 0 0 2 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAR 2018 31 3 362 370 10.1111/jeb.13227 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity FY3OU WOS:000426731400003 29282821 2019-02-21 J Plard, F; Arlettaz, R; Schaub, M Plard, Floriane; Arlettaz, Raphael; Schaub, Michael Hoopoe males experience intra-seasonal while females experience inter-seasonal reproductive costs OECOLOGIA English Article Double-breeding; Environmental conditions; Individual quality; Trade-off; Upupa epops NATURAL-POPULATIONS; CLUTCH SIZE; PARENTAL INVESTMENT; INDIVIDUAL QUALITY; SEXUAL SELECTION; UPUPA-EPOPS; BROOD SIZE; TRADE-OFF; GREAT TIT; BIRDS Reproductive and survival costs due to reproductive investment are a central element for the evolution of life histories. Both intra- (reduction of reproductive performance of second brood due to investment in first brood) and inter-seasonal costs (reduction of reproductive performance or annual survival due to reproductive investment in preceding year) may appear in multiple breeding species. Knowledge about how trade-offs within and between seasons shape individual trajectories and influence fitness are crucial in life-history evolution, yet intra- and inter-seasonal reproductive costs are rarely analysed simultaneously. We investigated sex-specific differences in intra- and inter-seasonal reproductive and survival costs in response to previous reproductive effort in a monogamous, double-brooding bird, the hoopoe (Upupa epops), accounting for heterogeneity in individual and annual quality. Intra-seasonal reproductive costs were detected in males and inter-seasonal reproductive and survival costs were detected in females. In males, the probability of being a successful double breeder was negatively correlated with the number of hatchlings produced in the first brood. In females, the number of fledglings raised in the first brood was negatively correlated with the reproductive effort in the preceding season. Female annual survival was also negatively influenced by the number of broods produced in the previous reproductive season. Most of these reproductive costs were detected only in years with low productivity, suggesting that costs become evident when environmental conditions are harsh. Our results illustrate how different investment in current vs. future reproduction and survival shape different life-history strategies in males and females of a monogamous bird species. [Plard, Floriane; Schaub, Michael] Swiss Ornithol Inst, CH-6204 Sempach, Switzerland; [Arlettaz, Raphael] Univ Bern, Inst Ecol & Evolut, Div Conservat Biol, Baltzerstr 6a, CH-3012 Bern, Switzerland; [Arlettaz, Raphael] Swiss Ornithol Inst, Valais Field Stn, Rue Rhone 11, CH-1950 Sion, Switzerland Plard, F (reprint author), Swiss Ornithol Inst, CH-6204 Sempach, Switzerland. floriane.plard@vogelwarte.ch ANDERSSON M, 1980, ANIM BEHAV, V28, P536, DOI 10.1016/S0003-3472(80)80062-5; Arlettaz R, 2010, BIOSCIENCE, V60, P835, DOI 10.1525/bio.2010.60.10.10; Arlettaz R, 2010, J ORNITHOL, V151, P889, DOI 10.1007/s10336-010-0527-7; Barbraud C, 2005, ECOLOGY, V86, P682, DOI 10.1890/04-0075; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; BLACK JM, 1995, J ANIM ECOL, V64, P234, DOI 10.2307/5758; Bleu J, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2600; Caro SM, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10985; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; Clutton-Brock TH, 2007, P ROY SOC B-BIOL SCI, V274, P3097, DOI 10.1098/rspb.2007.1138; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Core Team R., 2014, R LANG ENV STAT COMP; Courchamp F, 1999, TRENDS ECOL EVOL, V14, P405, DOI 10.1016/S0169-5347(99)01683-3; Descamps S, 2009, BIOL LETTERS, V5, P278, DOI 10.1098/rsbl.2008.0704; DRENT RH, 1980, ARDEA, V68, P225; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; Gruebler MU, 2008, ANIM BEHAV, V75, P1877, DOI 10.1016/j.anbehav.2007.12.002; HAHN DC, 1981, ANIM BEHAV, V29, P421, DOI 10.1016/S0003-3472(81)80101-7; Hamel S, 2010, ECOLOGY, V91, P2034, DOI 10.1890/09-1311.1; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HILDEBRANDT B, 2017, IBIS IN PRESS; Hoffmann J, 2015, IBIS, V157, P17, DOI 10.1111/ibi.12188; HOLMES RT, 1992, AUK, V109, P321, DOI 10.2307/4088201; KELLNER K, 2015, R PACKAGE VERSION, V1, P7; Kery M, 2012, BAYESIAN POPULATION ANALYSIS USING WINBUGS: A HIERARCHICAL PERSPECTIVE, P1; King R., 2009, BAYESIAN ANAL POPULA; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kolliker M, 2007, BEHAV ECOL SOCIOBIOL, V61, P1489, DOI 10.1007/s00265-007-0381-7; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Lessells CM, 2012, P ROY SOC B-BIOL SCI, V279, P1506, DOI 10.1098/rspb.2011.1690; Liker A, 2005, EVOLUTION, V59, P890, DOI 10.1554/04-560; Martin-Vivaldi M, 1999, BIRD STUDY, V46, P205, DOI 10.1080/00063659909461132; Merila J, 2001, GENETICA, V112, P199, DOI 10.1023/A:1013391806317; MICHENER GR, 1990, ECOLOGY, V71, P855, DOI 10.2307/1937357; Moller A. P, 1998, SPERM COMPETITION SE; MOLLER AP, 1992, OIKOS, V63, P309, DOI 10.2307/3545393; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; NUR N, 1988, ARDEA, V76, P155; Parejo D, 2006, BEHAV ECOL SOCIOBIOL, V60, P184, DOI 10.1007/s00265-005-0155-z; PLARD F, 2017, AM NAT; Plard F, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001828; Plummer M., 2003, P 3 INT WORKSH DISTR, V124; Queller DC, 1997, P ROY SOC B-BIOL SCI, V264, P1555, DOI 10.1098/rspb.1997.0216; RICKLEFS ROBERT E., 1965, CONDOR, V67, P505, DOI 10.2307/1365614; ROBINSON KD, 1991, AUK, V108, P277; Roff Derek A., 1992; Ryser S, 2016, ANIM BEHAV, V117, P15, DOI 10.1016/j.anbehav.2016.04.015; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Schaub M, 2012, OECOLOGIA, V168, P97, DOI 10.1007/s00442-011-2070-5; Siefferman L, 2008, IBIS, V150, P32; Stearns S, 1992, EVOLUTION LIFE HIST; SYDEMAN WJ, 1995, CONDOR, V97, P1048, DOI 10.2307/1369543; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; TINBERGEN JM, 1987, ARDEA, V75, P111; Tschumi M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097679; VANDE POLM, 2006, AM NAT, V128, P137; Verhulst S, 1998, FUNCT ECOL, V12, P132, DOI 10.1046/j.1365-2435.1998.00165.x; Visser ME, 2005, P ROY SOC B-BIOL SCI, V272, P2561, DOI 10.1098/rspb.2005.3356; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams TD, 2015, J ORNITHOL, V156, pS441, DOI 10.1007/s10336-015-1213-6; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002 65 0 0 3 8 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia MAR 2018 186 3 665 675 10.1007/s00442-017-4028-8 11 Ecology Environmental Sciences & Ecology FX8DF WOS:000426320400007 29248976 2019-02-21 J van der Linden, D; Schermer, JA; de Zeeuw, E; Dunkel, CS; Pekaar, KA; Bakker, AB; Vernon, PA; Petrides, KV van der Linden, Dimitri; Schermer, Julie A.; de Zeeuw, Eveline; Dunkel, Curtis S.; Pekaar, Keri A.; Bakker, Arnold B.; Vernon, Philip A.; Petrides, K. V. Overlap Between the General Factor of Personality and Trait Emotional Intelligence: A Genetic Correlation Study BEHAVIOR GENETICS English Article General factor of personality; Trait emotional intelligence; Heritability; Twins; Genetic correlation; TEIQue LIFE-HISTORY THEORY; SOCIAL-EFFECTIVENESS; K-FACTOR; HERITABILITY; METAANALYSIS; STRATEGY; TWIN; INVENTORIES; COVITALITY; EPISTASIS A previous meta-analysis (Van der Linden et al., Psychol Bull 143:36-52, 2017) showed that the General Factor of Personality (GFP) overlaps with ability as well as trait emotional intelligence (EI). The correlation between trait EI and the GFP was so high (rho = 0.88) in that meta-analysis that these two may be considered virtually identical constructs. The present study builds on these findings by examining whether the strong phenotypic correlation between the GFP and trait EI has a genetic component. In a sample of monozygotic and dizygotic twins, the heritability estimates for the GFP and trait EI were 53 and 45%, respectively. Moreover, there was a strong genetic correlation of r = .90 between the GFP and trait EI. Additional analyses suggested that a substantial proportion of the genetic correlations reflects non-additive genetic effects (e.g., dominance and epistasis). These findings are discussed in light of evolutionary accounts of the GFP. [van der Linden, Dimitri; Pekaar, Keri A.; Bakker, Arnold B.] Erasmus Univ, Dept Psychol Educ & Child Studies, POB 9104, NL-3000 DR Rotterdam, Netherlands; [Schermer, Julie A.] Univ Western Ontario, Management & Org Studies, London, ON, Canada; [de Zeeuw, Eveline] Free Univ Amsterdam, Dept Biol Psychol, Amsterdam, Netherlands; [Dunkel, Curtis S.] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA; [Vernon, Philip A.] Univ Western Ontario, Dept Psychol, London, ON, Canada; [Petrides, K. V.] UCL, London Psychometr Lab, London, England van der Linden, D (reprint author), Erasmus Univ, Dept Psychol Educ & Child Studies, POB 9104, NL-3000 DR Rotterdam, Netherlands. vanderlinden@essb.eur.nl de Zeeuw, Eveline/0000-0001-9042-7419; Pekaar, Keri/0000-0002-4612-0476 Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; Bell E, 2012, PERS INDIV DIFFER, V53, P546, DOI 10.1016/j.paid.2012.04.027; BOUCHARD TJ, 1993, NATO ADV SCI INST SE, V72, P15; Connelly BS, 2016, J PERS, V84, P319, DOI 10.1111/jopy.12161; Cordell HJ, 2002, HUM MOL GENET, V11, P2463, DOI 10.1093/hmg/11.20.2463; Costa P. T., 1992, PSYCHOL ASSESSMENT, V4, P5, DOI [10.1037/1040-3590.4.1.5, DOI 10.1037/1040-3590.4.1.5]; Darwin C., 1871, DESCENT MAN; Dunkel C. S., 2014, HUMAN ETHOLOGY B, V29, P14; Dunkel CS, 2016, PERS INDIV DIFFER, V92, P143, DOI 10.1016/j.paid.2015.12.034; Dunkel CS, 2014, PERS INDIV DIFFER, V64, P147, DOI 10.1016/j.paid.2014.02.030; Dunkel CS, 2014, PERS INDIV DIFFER, V61-62, P13, DOI 10.1016/j.paid.2013.12.017; Eaves LJ, 1996, BEHAV GENET, V26, P519, DOI 10.1007/BF02359757; Falconer DS, 1989, INTRO QUANTITATIVE G; Figueredo AJ, 2015, HDB EVOLUTIONARY PSY, P943; Figueredo AJ, 2011, EVOLUTION PERSONALIT, P210; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; FISHER RA, 1954, HEREDITY, V8, P187, DOI 10.1038/hdy.1954.17; Geary DC, 2005, EVOLUTION GEN INTELL; GOLDBERG LR, 1990, J PERS SOC PSYCHOL, V59, P1216, DOI 10.1037//0022-3514.59.6.1216; Irwing P, 2013, PERS INDIV DIFFER, V55, P234, DOI 10.1016/j.paid.2013.03.002; Jang KL, 1996, J PERS, V64, P577, DOI 10.1111/j.1467-6494.1996.tb00522.x; Keller MC, 2010, EVOLUTION PERSONALIT, P280; Linden D. van der, 2015, EVOLUTIONARY BEHAV S, V9, P145, DOI [DOI 10.1037/EBS0000027, 10.1037/ebs0000027]; Loehlin JC, 2012, J RES PERS, V46, P258, DOI 10.1016/j.jrp.2012.02.003; Martins A, 2010, PERS INDIV DIFFER, V49, P554, DOI 10.1016/j.paid.2010.05.029; Matthews G, 2004, EMOTIONAL INTELLIGEN; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Neale M, 2013, METHODOLOGY GENETIC; Neale MC, 2016, PSYCHOMETRIKA, V81, P535, DOI 10.1007/s11336-014-9435-8; O'Boyle EH, 2011, J ORGAN BEHAV, V32, P788, DOI 10.1002/job.714; Petrides KV, 2007, BRIT J PSYCHOL, V98, P273, DOI 10.1348/00712606X120618; Petrides KV, 2009, SPRINGER SER HUM EXC, P85, DOI 10.1007/978-0-387-88370-0_5; Petrides K. V., 2011, BLACKWELL WILEY HDB; Petrides KV, 2004, PERS INDIV DIFFER, V36, P277, DOI 10.1016/S0191-8869(03)00084-9; Phillips PC, 2008, NAT REV GENET, V9, P855, DOI 10.1038/nrg2452; Polderman TJC, 2015, NAT GENET, V47, P702, DOI 10.1038/ng.3285; Posthuma D, 2003, TWIN RES, V6, P361, DOI 10.1375/twin.6.5.361; Riemann R, 2010, EUR J PERSONALITY, V24, P258, DOI 10.1002/per.760; Risch N, 2009, JAMA-J AM MED ASSOC, V301, P2462, DOI 10.1001/jama.2009.878; Risch NJ, 2000, NATURE, V405, P847, DOI 10.1038/35015718; Rushton J. P., 2011, WILEY BLACKWELL HDB, P134; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2009, TWIN RES HUM GENET, V12, P356, DOI 10.1375/twin.12.4.356; van der Linden D, 2017, PSYCHOL BULL, V143, P36, DOI 10.1037/bul0000078; van der Linden D, 2016, PERS INDIV DIFFER, V101, P98, DOI 10.1016/j.paid.2016.05.020; van der Linden D, 2015, PERS INDIV DIFFER, V73, P84, DOI 10.1016/j.paid.2014.09.027; Van der Linden D, 2012, PERS INDIV DIFFER, V53, P175, DOI 10.1016/j.paid.2012.03.001; van der Linden D, 2010, J RES PERS, V44, P669, DOI 10.1016/j.jrp.2010.08.007; van der Linden D, 2010, J RES PERS, V44, P315, DOI 10.1016/j.jrp.2010.03.003; Vernon PA, 2008, EMOTION, V8, P635, DOI 10.1037/a0013439; Verweij KJH, 2012, EVOLUTION, V66, P3238, DOI 10.1111/j.1558-5646.2012.01679.x; Veselka L, 2009, TWIN RES HUM GENET, V12, P420, DOI 10.1375/twin.12.5.420; Vink JM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047371 56 2 2 2 7 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0001-8244 1573-3297 BEHAV GENET Behav. Genet. MAR 2018 48 2 147 154 10.1007/s10519-017-9885-8 8 Behavioral Sciences; Genetics & Heredity; Psychology, Multidisciplinary Behavioral Sciences; Genetics & Heredity; Psychology FY1FQ WOS:000426557700005 29264815 Green Published, Other Gold 2019-02-21 J Armstrong, DP; Keevil, MG; Rollinson, N; Brooks, RJ Armstrong, Doug P.; Keevil, Matthew G.; Rollinson, Njal; Brooks, Ronald J. Subtle individual variation in indeterminate growth leads to major variation in survival and lifetime reproductive output in a long-lived reptile FUNCTIONAL ECOLOGY English Article Bayesian hierarchical modelling; indeterminate growth; individual variation; life-history evolution; long-lived ectotherms; survival modelling; von Bertalanffy growth model TURTLES CHELYDRA-SERPENTINA; LOGGERHEAD SEA-TURTLES; SNAPPING TURTLES; POPULATION-GROWTH; DEMOGRAPHIC STOCHASTICITY; SIZE; COSTS; HISTORY; CONSERVATION; STRATEGIES The consequences of individual variation in life-history traits have been well studied due to their importance in evolutionary ecology. However, a trait that has received little empirical attention is the rate of indeterminate growth. In long-lived ectotherms, subtle variation in growth after maturity could have major effects over the animals' lifetimes. These effects are difficult to measure due to the challenges involved in reliably estimating individual variation in the face of environmental stochasticity, and the need to account for trade-offs among growth, reproduction and survival. However, modelling advances have made such analysis possible if long-term high-quality datasets are available. We used an integrated state-space modelling framework to reveal relationships between indeterminate growth, reproduction and survival in a population of North American snapping turtles (Chelydra serpentina) using a 41-year dataset for 298 adult females. A hierarchical version of the von Bertalanffy model fitted to data on carapace lengths showed substantial individual variation in growth trajectories, and hierarchical models fitted to clutch-mass data and recapture histories showed that reproductive output and survival probability increased with size. Integration of these models revealed no detectable trade-offsi.e., individual growth parameters were not correlated with size-specific survival or reproduction rates, and individual variation in reproductive output did not affect the size-specific survival rate. Consequently, individual variation in growth parameters was estimated to result in >2-fold variation in post-maturity life expectancy and >4-fold variation in expected lifetime reproductive output. These results illustrate that indeterminate growth can have major fitness consequences in long-lived species. We suggest that the individual variation in growth rates reflects variation in environments experienced during development or later life. An understanding of this variation may be essential for predicting the population dynamics of long-lived species under threat and identifying the most important environments to protect. [Armstrong, Doug P.] Massey Univ, Wildlife Ecol Grp, Palmerston North, New Zealand; [Keevil, Matthew G.] Laurentian Univ, Dept Biol, Sudbury, ON, Canada; [Rollinson, Njal] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON, Canada; [Rollinson, Njal] Univ Toronto, Sch Environm, Toronto, ON, Canada; [Brooks, Ronald J.] Univ Guelph, Dept Integrat Biol, Guelph, ON, Canada Armstrong, DP (reprint author), Massey Univ, Wildlife Ecol Grp, Palmerston North, New Zealand. d.p.armstrong@massey.ac.nz National Science and Engineering Research Council of Canada; Ontario Ministry of the Environment; Ontario Ministry of Natural Resources National Science and Engineering Research Council of Canada; Ontario Ministry of the Environment; Ontario Ministry of Natural Resources Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Armstrong D. P., 2017, DRYAD DIGITAL REPOSI; Armstrong DP, 2014, CHELONIAN CONSERV BI, V13, P9, DOI 10.2744/CCB-1055.1; Armstrong DP, 2013, ECOL MODEL, V250, P119, DOI 10.1016/j.ecolmodel.2012.10.022; BALSHINEEARN S, 1995, ANIM BEHAV, V50, P1, DOI 10.1006/anbe.1995.0214; Besbeas P, 2005, AUST NZ J STAT, V47, P35, DOI 10.1111/j.1467-842X.2005.00370.x; BROOKS RJ, 1991, CAN J ZOOL, V69, P1314, DOI 10.1139/z91-185; Cam E, 2016, TRENDS ECOL EVOL, V31, P872, DOI 10.1016/j.tree.2016.08.002; CASWELL H, 1988, ECOL MODEL, V43, P33, DOI 10.1016/0304-3800(88)90071-3; Congdon J.D., 1990, P45; Congdon JD, 2001, EXP GERONTOL, V36, P813, DOI 10.1016/S0531-5565(00)00242-4; CONGDON JD, 1994, AM ZOOL, V34, P397; Congdon JD, 2003, EXP GERONTOL, V38, P765, DOI 10.1016/S0531-5565(03)00106-2; Congdon JD, 2013, EVOL ECOL, V27, P445, DOI 10.1007/s10682-012-9595-x; Congdon Justin D., 2008, P123; Coulson T, 2006, P ROY SOC B-BIOL SCI, V273, P547, DOI 10.1098/rspb.2005.3357; Crawford BA, 2014, J APPL ECOL, V51, P359, DOI 10.1111/1365-2664.12194; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Cressler CE, 2017, AM NAT, V190, pE13, DOI 10.1086/691779; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; Cunnington DC, 1996, CAN J ZOOL, V74, P291, DOI 10.1139/z96-036; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dufty AM, 2002, TRENDS ECOL EVOL, V17, P190, DOI 10.1016/S0169-5347(02)02498-9; Edge CB, 2017, ECOLOGY, V98, P512, DOI [10.1002/ecy.1665/suppinfo, 10.1002/ecy.1665]; Ejsmond MJ, 2015, AM NAT, V186, pE111, DOI 10.1086/683119; Ejsmond MJ, 2010, AM NAT, V175, P551, DOI 10.1086/651589; FABENS AJ, 1965, GROWTH, V29, P265; Folt B, 2016, HERPETOL MONOGR, V30, P21, DOI 10.1655/HERPMONOGRAPHS-D-15-00004; GABRIEL W, 1982, ARCH HYDROBIOL, V95, P69; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Kendall BE, 2002, CONSERV BIOL, V16, P109, DOI 10.1046/j.1523-1739.2002.00036.x; Kery M, 2012, BAYESIAN POPULATION ANALYSIS USING WINBUGS: A HIERARCHICAL PERSPECTIVE, P1; Kozlowski J, 2006, POL J ECOL, V54, P585; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Lee WS, 2012, ECOLOGY, V93, P902, DOI 10.1890/11-0890.1; Lindberg MS, 2013, ECOL EVOL, V3, P4045, DOI 10.1002/ece3.767; Lindgren B, 2005, J EVOLUTION BIOL, V18, P820, DOI 10.1111/j.1420-9101.2004.00875.x; Lunn D, 2009, STAT MED, V28, P3049, DOI 10.1002/sim.3680; MCLAREN IA, 1966, ECOLOGY, V47, P852, DOI 10.2307/1934273; Mesquita DO, 2016, AM NAT, V187, P689, DOI 10.1086/686055; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; PERRIN N, 1993, EVOL ECOL, V7, P576, DOI 10.1007/BF01237822; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Plaistow SJ, 2015, AM NAT, V186, P376, DOI 10.1086/682277; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Rollinson N, 2016, BIOL REV, V91, P1134, DOI 10.1111/brv.12214; Rollinson N, 2015, EVOLUTION, V69, P2441, DOI 10.1111/evo.12753; Rollinson N, 2012, ZOOLOGY, V115, P160, DOI 10.1016/j.zool.2011.10.005; Salice CJ, 2014, ENVIRON POLLUT, V184, P154, DOI 10.1016/j.envpol.2013.08.031; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Scharf I, 2015, GLOBAL ECOL BIOGEOGR, V24, P396, DOI 10.1111/geb.12244; Schofield MR, 2009, ENVIRON ECOL STAT, V16, P369, DOI 10.1007/s10651-007-0069-1; Spiegelhalter D., 2014, OPENBUGS USER MANUAL; Starfield AM, 1997, J WILDLIFE MANAGE, V61, P261, DOI 10.2307/3802581; Steyermark A., 2008, BIOL SNAPPING TURTLE; Taborsky B, 2003, P ROY SOC B-BIOL SCI, V270, P713, DOI 10.1098/rspb.2002.2255; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vindenes Y, 2008, AM NAT, V171, P455, DOI 10.1086/528965; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; Warner DA, 2016, P NATL ACAD SCI USA, V113, P6502, DOI 10.1073/pnas.1600035113; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zhang H, 2015, J ANIM ECOL, V84, P797, DOI 10.1111/1365-2656.12321; Zimmer-Shaffer SA, 2014, CHELONIAN CONSERV BI, V13, P227, DOI 10.2744/CCB-1109.1 68 3 3 6 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. MAR 2018 32 3 752 761 10.1111/1365-2435.13014 10 Ecology Environmental Sciences & Ecology FY0LX WOS:000426503900015 2019-02-21 J Pettersen, AK; White, CR; Bryson-Richardson, RJ; Marshall, DJ Pettersen, Amanda K.; White, Craig R.; Bryson-Richardson, Robert J.; Marshall, Dustin J. Does the cost of development scale allometrically with offspring size? FUNCTIONAL ECOLOGY English Article allometry; development; embryo size; geometric biology; maternal effect EGG-SIZE; METABOLIC-RATE; INTRASPECIFIC VARIATION; POSTLARVAL PERFORMANCE; VARIABLE ENVIRONMENTS; FITNESS CONSEQUENCES; MARINE-INVERTEBRATES; HATCHLING TURTLES; SEA-URCHIN; BODY-SIZE Within many species, larger offspring have higher fitness. While the presence of an offspring size-fitness relationship is canonical in life-history theory, the mechanisms that determine why this relationship exists are unclear. Linking metabolic theory to life-history theory could provide a general explanation for why larger offspring often perform better than smaller offspring. In many species, energy reserves at the completion of development drive differences in offspring fitness. Development is costly, so any factor that decreases energy expenditure during development should result in higher energy reserves and thus subsequently offspring fitness. Metabolic theory predicts that larger offspring should have relatively lower metabolic rates and thus emerge with a higher level of energy reserves (assuming developmental times are constant). The increased efficiency of development in larger offspring may therefore be an underlying driver of the relationship between offspring size and offspring fitness, but this has not been tested within species. To determine how the costs of development scale with offspring size, we measured energy expenditure throughout development in the model organism Danio rerio across a range of natural offspring sizes. We also measured how offspring size affects the length of the developmental period. We then examined how hatchling size and condition scale with offspring size. We find that larger offspring have lower mass-specific metabolic rates during development, but develop at the same rate as smaller offspring. Larger offspring also hatch relatively heavier and in better condition than smaller offspring. That the relative costs of development decrease with offspring size may provide a widely applicable explanation for why larger offspring often perform better than smaller offspring. [Pettersen, Amanda K.; White, Craig R.; Marshall, Dustin J.] Monash Univ, Ctr Geometr Biol, Sch Biol Sci, Melbourne, Vic, Australia; [Bryson-Richardson, Robert J.] Monash Univ, Sch Biol Sci, Melbourne, Vic, Australia Pettersen, AK (reprint author), Monash Univ, Ctr Geometr Biol, Sch Biol Sci, Melbourne, Vic, Australia. amanda.pettersen@monash.edu White, Craig/0000-0002-0200-2187; Bryson-Richardson, Robert/0000-0002-9501-8208 Australian Postgraduate Award; Australian Research Council Australian Postgraduate Award; Australian Research Council Allen RM, 2008, AM NAT, V171, P225, DOI 10.1086/524952; BAKER JD, 1992, J ZOOL, V227, P231, DOI 10.1111/j.1469-7998.1992.tb04819.x; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Bernardo J, 1996, AM ZOOL, V36, P216; Bishop RE, 1999, J EXP BIOL, V202, P2485; Bownds C, 2010, J EXP BIOL, V213, P3796, DOI 10.1242/jeb.043356; Busch A, 1996, MAR ECOL PROG SER, V130, P39, DOI 10.3354/meps130039; Cameron J., 1986, PRINCIPLES PHYSL MEA, P254; CIPOLLINI ML, 1991, OIKOS, V60, P205, DOI 10.2307/3544867; Clarke A, 2006, FUNCT ECOL, V20, P405, DOI 10.1111/j.1365-2435.2006.01109.x; Crisp D. J., 1971, P197; DAMME K, 1987, POULTRY SCI, V66, P881, DOI 10.3382/ps.0660881; Deeming DC, 2007, J ZOOL, V271, P78, DOI 10.1111/j.1469-7998.2006.00219.x; Gaitan-Espitia JD, 2013, COMP BIOCHEM PHYS A, V165, P169, DOI 10.1016/j.cbpa.2013.03.002; Einum S, 2002, P ROY SOC B-BIOL SCI, V269, P2325, DOI 10.1098/rspb.2002.2150; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Emlet RB, 1997, EVOLUTION, V51, P141, DOI 10.1111/j.1558-5646.1997.tb02395.x; Fox CW, 1996, OECOLOGIA, V107, P541, DOI 10.1007/BF00333946; Gagliano M, 2007, J ANIM ECOL, V76, P174, DOI 10.1111/j.1365-2656.2006.01187.x; Gillooly JF, 2002, NATURE, V417, P70, DOI 10.1038/417070a; Glazier DS, 2014, SYSTEMS, V2, P451, DOI 10.3390/systems2040451; Glazier DS, 2010, BIOL REV, V85, P111, DOI 10.1111/j.1469-185X.2009.00095.x; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; GOULDEN CE, 1987, OECOLOGIA, V72, P28, DOI 10.1007/BF00385040; Greenlee KJ, 2004, J EXP BIOL, V207, P509, DOI 10.1242/jeb.00766; Hachicho N, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0134755; HINEGARDNER RT, 1975, AM ZOOL, V15, P679; Hjort J., 1914, RAPP P V REUN CONS I, V20, P1; HOEGHGULDBERG O, 1995, AM ZOOL, V35, P415; Houde Edward D., 2002, P64; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; JANZEN FJ, 1993, ECOLOGY, V74, P332, DOI 10.2307/1939296; Janzen FJ, 2000, J EVOLUTION BIOL, V13, P947, DOI 10.1046/j.1420-9101.2000.00234.x; Jardine D, 2003, J FISH BIOL, V63, P388, DOI 10.1046/j.1095-8649.2003.00161.x; Jarrett JN, 1997, ECOLOGY, V78, P1262, DOI 10.2307/2265876; Kamler E, 2008, REV FISH BIOL FISHER, V18, P143, DOI 10.1007/s11160-007-9070-x; KIMMEL CB, 1995, DEV DYNAM, V203, P253, DOI 10.1002/aja.1002030302; Kooijman S. A. L. M., 2009, DYNAMIC ENERGY BUDGE; Kosman ET, 2011, MAR ECOL PROG SER, V429, P67, DOI 10.3354/meps09096; Kozlowski J, 2003, P NATL ACAD SCI USA, V100, P14080, DOI 10.1073/pnas.2334605100; Labocha MK, 2004, P ROY SOC B-BIOL SCI, V271, P367, DOI 10.1098/rspb.2003.2612; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LECREN ED, 1951, J ANIM ECOL, V20, P201; Marshall DJ, 2003, MAR ECOL PROG SER, V246, P153, DOI 10.3354/meps246153; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; Marshall DJ, 2007, BIOL BULL-US, V212, P6, DOI 10.2307/25066575; Marshall DJ, 2006, INTEGR COMP BIOL, V46, P643, DOI 10.1093/icb/ic1013; Merkey AB, 2011, J INSECT PHYSIOL, V57, P1437, DOI 10.1016/j.jinsphys.2011.07.013; Mitchell NJ, 2000, PHYSIOL BIOCHEM ZOOL, V73, P829, DOI 10.1086/318097; Monro K, 2010, FUNCT ECOL, V24, P676, DOI 10.1111/j.1365-2435.2009.01665.x; Moran AL, 2001, ECOLOGY, V82, P1597, DOI 10.2307/2679803; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Niklas KJ, 2014, INT J PLANT SCI, V175, P754, DOI 10.1086/677238; OSSE JWM, 1990, NETH J ZOOL, V40, P362, DOI 10.1163/156854289X00354; Parichy DM, 2009, DEV DYNAM, V238, P2975, DOI 10.1002/dvdy.22113; PAULY D, 1988, ENVIRON BIOL FISH, V22, P261, DOI 10.1007/BF00004892; Pettersen A. K., 2017, DRYAD DIGITAL REPOSI; Pettersen AK, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1946; Probst WN, 2006, ICES J MAR SCI, V63, P224, DOI 10.1016/j.icesjms.2005.11.015; Quinn G. P., 2002, EXPT DESIGN DATA ANA; R Development Core Team, 2016, R LANG ENV STAT COMP; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RIVEST BR, 1983, J EXP MAR BIOL ECOL, V69, P217, DOI 10.1016/0022-0981(83)90071-0; Semmens D, 2011, J FISH BIOL, V79, P980, DOI 10.1111/j.1095-8649.2011.03074.x; SEYMOUR RS, 1991, PHYSIOL ZOOL, V64, P688, DOI 10.1086/physzool.64.3.30158201; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; Sinervo B., 1990, UNITY EVOLUTIONARY B, P725; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; Svanfeldt K., 2016, DISPERSAL DURATION M; Uller T, 2010, OECOLOGIA, V162, P663, DOI 10.1007/s00442-009-1503-x; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; VANDENHURK R, 1983, CAN J ZOOL, V61, P2381, DOI 10.1139/z83-317; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; Vilizzi L, 1998, J FISH BIOL, V52, P997, DOI 10.1111/j.1095-8649.1998.tb00599.x; Vleck C.M., 1991, P285, DOI 10.1017/CBO9780511585739.019; Wendt DE, 2000, BIOL BULL, V198, P346, DOI 10.2307/1542690; Westerfield M, 2000, ZEBRAFISH BOOK GUIDE; White CR, 2011, AM NAT, V178, P746, DOI 10.1086/662666; WIESER W, 1984, PEDOBIOLOGIA, V26, P415; WILLIAMS JB, 1984, PHYSIOL ZOOL, V57, P118, DOI 10.1086/physzool.57.1.30155974; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; Wootton R.J., 2014, REPROD LIFE HIST EVO, P323 85 3 3 3 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. MAR 2018 32 3 762 772 10.1111/1365-2435.13015 11 Ecology Environmental Sciences & Ecology FY0LX WOS:000426503900016 2019-02-21 J Yli-Renko, M; Pettay, JE; Vesakoski, O Yli-Renko, Maria; Pettay, Jenni E.; Vesakoski, Outi Sex and size matters: Selection on personality in natural prey-predator interactions BEHAVIOURAL PROCESSES English Article Idotea balthica; Life-history; Survival; Predation; Sex-differences; Littoral habitat ISOPOD IDOTEA-BALTICA; FITNESS CONSEQUENCES; BEHAVIORAL SYNDROMES; ANIMAL PERSONALITIES; LIFE-HISTORY; FUCUS-VESICULOSUS; MARINE HERBIVORE; POPULATIONS; EVOLUTION; BALTHICA Optimal life-history strategies are currently considered to be a major driving force for the maintenance of animal personalities. In this experimental study we tested whether naturally occurring predation causes personality dependent mortality of a marine isopod (Idotea balthica), which could maintain personality variation in nature. Moreover, as isopods are known to have sex-differences in behaviour, we were interested in whether personality-dependent predation was sex-specific. We also hypothesised that predation pressure among personality types could vary according to habitat type, as it has been shown in correlative studies that habitat may influence personality variation. We used natural predator (European perch Perca fluviatilis) of I. balthica and studied relative mortality of males and females with a different personality types in laboratory settings with two different habitats. We found that survival in males was lower than in females for high active individuals. Moreover, survival under predation was linked to body size differently in females and males. This, however, depended on personality class as larger size was advantageous for low-active males and middle- and high-active females. Conversely, smaller size was advantageous for low-active females and middle-active males. Size did not affect survival in high-active males. Our results suggest that predation can encourage life-history differences between sexes leading to different optimal life-history strategies and also maintains consistent activity for both sexes. [Yli-Renko, Maria; Pettay, Jenni E.; Vesakoski, Outi] Univ Turku, Dept Biol, FIN-20014 Turku, Finland; [Vesakoski, Outi] Univ Turku, Archipelago Res Inst, FIN-20014 Turku, Finland Yli-Renko, M (reprint author), Univ Turku, Dept Biol, FIN-20014 Turku, Finland. maria.yli-renko@utu.fi Emil Aaltonen Foundation; Ella and Georg Ehrnrooth Foundation; Finnish Cultural Fundation; Finnish Concordia Fund; Finnish Foundation for Nature Conservation; Kone Foundation We thank Kimmo Rasa, Esko Pettay, Lauri Rahkamaa, Meri Lindqvist, Anders Holm, Anne Hemmi, Janika Ulenius, and Kirsti, Risto, Olli and Johanna Vesakoski for assistance with the experiments. We are grateful for Archipelago Research Institute of the University of Turku for providing the facilities and Veijo Jormalainen for providing all the equipment for the experiment. We greatly appreciate the valuable comments by an anonymous referee on the manuscript and Jon Brommer, Sami Merilaita, and Emma Sharp on earlier drafts of this paper. We thank Kirsty Maurits and Leena Mantyla for improving the language of this paper. Animal welfare was respected during all stages of the study. The experiment was a 0-class experiment and did not require permission for the use of laboratory animals according to Finnish laws. This work was supported by Emil Aaltonen Foundation (MY-R), Ella and Georg Ehrnrooth Foundation (MY-R), Finnish Cultural Fundation (MY-R) and The Finnish Concordia Fund (MY-R), Finnish Foundation for Nature Conservation (OV), and Kone Foundation (OV, JP). Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Bostrom C, 2006, J EXP MAR BIOL ECOL, V335, P52, DOI 10.1016/j.jembe.2006.02.015; Brown C, 2007, J FISH BIOL, V71, P1590, DOI 10.1111/j.1095-8649.2007.01627.x; Brown C, 2005, ANIM BEHAV, V70, P1003, DOI 10.1016/j.anbehav.2004.12.022; Brydges NM, 2008, J ANIM ECOL, V77, P229, DOI 10.1111/j.1365-2656.2007.01343.x; Burger R, 2002, GENET RES, V80, P31, DOI 10.1017/S0016672302005682; Chippindale AK, 2001, P NATL ACAD SCI USA, V98, P1671, DOI 10.1073/pnas.041378098; Dall S.R.X., 2014, FRONT ECOL EVOL, V2, P1; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Dingemanse NJ, 2013, ANIMAL PERSONALITIES, P201, DOI DOI 10.7208/CHICAGO/9780226922065.001.0001; Edenbrow M, 2013, OIKOS, V122, P667, DOI 10.1111/j.1600-0706.2012.20556.x; Hemmi A, 2004, MAR BIOL, V145, P759, DOI 10.1007/s00227-004-1360-4; JORMALAINEN V, 1994, ETHOLOGY, V96, P46; JORMALAINEN V, 1989, ANIM BEHAV, V38, P576, DOI 10.1016/S0003-3472(89)80002-8; JORMALAINEN V, 1995, BEHAV ECOL SOCIOBIOL, V36, P43; Jormalainen V, 2001, OIKOS, V93, P77, DOI 10.1034/j.1600-0706.2001.930108.x; JORMALAINEN V, 1992, ANN ZOOL FENN, V29, P161; Kortet R, 2010, ECOL LETT, V13, P1449, DOI 10.1111/j.1461-0248.2010.01536.x; Krams I, 2013, ACTA ETHOL, V16, P163, DOI 10.1007/s10211-013-0147-3; Krams I, 2013, ENTOMOL EXP APPL, V148, P94, DOI 10.1111/eea.12079; Mattila JM, 2014, J EXP MAR BIOL ECOL, V455, P22, DOI 10.1016/j.jembe.2014.02.010; Merilaita S, 2000, OECOLOGIA, V122, P445, DOI 10.1007/s004420050965; Patrick SC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087269; Pruitt JN, 2008, ANIM BEHAV, V76, P871, DOI 10.1016/j.anbehav.2008.05.009; Pruitt JN, 2009, ANIM BEHAV, V78, P175, DOI 10.1016/j.anbehav.2009.04.016; Reale D, 2003, ANIM BEHAV, V65, P463, DOI 10.1006/anbe.2003.2100; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; SALEMAA H, 1979, OPHELIA, V18, P133, DOI 10.1080/00785326.1979.10425495; SALEMAA H, 1978, HEREDITAS, V88, P165; Schurch R, 2010, BEHAV ECOL, V21, P588, DOI 10.1093/beheco/arq024; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Smith BR, 2010, BEHAV ECOL, V21, P919, DOI 10.1093/beheco/arq084; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; TUOMI J, 1988, ANN ZOOL FENN, V25, P145; Vesakoski O, 2009, J EVOLUTION BIOL, V22, P1545, DOI 10.1111/j.1420-9101.2009.01767.x; Vesakoski O., 2009, THESIS; Vesakoski O, 2008, BEHAV PROCESS, V79, P175, DOI 10.1016/j.beproc.2008.07.005; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001; Yli-Renko M, 2015, ETHOLOGY, V121, P135, DOI 10.1111/eth.12323 48 0 0 5 17 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0376-6357 1872-8308 BEHAV PROCESS Behav. Processes MAR 2018 148 20 26 10.1016/j.beproc.2017.12.023 7 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology FX4FT WOS:000426028800004 29287627 2019-02-21 J Montgomery, EM; Hamel, JF; Mercier, A Montgomery, E. M.; Hamel, J. -F.; Mercier, A. Ontogenetic variation in photosensitivity of developing echinoderm propagules JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Embryo; Larvae; Ontogeny; Phototaxis; Swimming capacity; Echinodermata; Swimming speed; Lecithotrophy; Planktotrophy URCHIN STRONGYLOCENTROTUS-DROEBACHIENSIS; LARVAL DEVELOPMENT; DENDRASTER-EXCENTRICUS; INVERTEBRATE LARVAE; BEHAVIORAL-RESPONSES; SPATIAL-DISTRIBUTION; VERTICAL MIGRATION; SENSORY MECHANISMS; SETTLING BEHAVIOR; LIGHT-INTENSITY Swimming behaviours and sensory abilities of early pelagic stages play a prominent role in the life history and ecology of sessile/sedentary benthic species, with implications for settlement, recruitment and dispersal. Light is a particularly important driver of navigational behaviour in the ocean, as a signal of key habitat characteristics (e.g., depth, shelter). Work to date on phototaxis has largely focused on planktotrophic larvae that feed during development, and much less on the larger lecithotrophic larvae that rely on maternal provisions (yolk). It remains unclear how responses to light might differ among ciliated propagules of different sizes and nutritional modes. The present study explored if/how phototactic responses are modulated by ontogeny (from embryo to larva), nutritional mode and light colour (wavelength) in ciliated propagules using four co-occurring species of echinoderms: the sea stars Asterias rubens and Crossaster papposus, the sea urchin Strongylocentrotus droebachiensis and the sea cucumber Cucumaria frondosa. Two types of behavioural responses to stimuli (white, red, and blue light) were examined: 1) taxis when the light stimulus was placed at one end of the chamber (net movement towards or away from the light stimulus) and 2) activity level, using a suite of swimming metrics, under uniform illumination. All four species consistently displayed some level of photosensitivity to white light and responses varied intra- and interspecifically. When the stimulus was red or blue light, planktotrophs modified their phototactic responses in a species- and stage-specific manner, while lecithotrophs generally displayed responses without a clear net direction. Swimming speeds displayed stage and species-specific variation under constant red or blue light, but swimming trajectories were consistently straighter under red light, resulting in greater displacement. Taken together, the results suggest that propagules of species with different life-history strategies respond to light stimuli in distinctive stage-wise manners. Interestingly, ontogenetic patterns were not conserved within nutritional modes or taxa. Further investigations of species-specific responses to light might help clarify its roles, in combination with factors such as buoyancy and gravity, in the ecology of propagules of benthic invertebrates. [Montgomery, E. M.; Mercier, A.] Mem Univ, Dept Ocean Sci, St John, NF A1C 5S7, Canada; [Hamel, J. -F.] SEVE, Portugal Cove St Philip, NF A1M 2B7, Canada Montgomery, EM (reprint author), Mem Univ, Dept Ocean Sci, St John, NF A1C 5S7, Canada. e.montgomery@mun.ca Natural Sciences and Engineering Research Council [311406]; Canadian Foundation for Innovation [11231]; NSERC CGS-D Award The authors wish to thank Memorial University Field Services for species collections, and K. Gamperl (Memorial University) for constructive comments on the manuscript. This work was completed with funding from a Natural Sciences and Engineering Research Council Discovery Grant (# 311406) and Canadian Foundation for Innovation Grant (# 11231) issued to A. Mercier and an NSERC CGS-D Award to E. Montgomery. Adams NL, 2001, MAR ECOL PROG SER, V213, P87, DOI 10.3354/meps213087; Anil AC, 2010, J EXP MAR BIOL ECOL, V392, P89, DOI 10.1016/j.jembe.2010.04.012; BARILE PJ, 1994, J EXP MAR BIOL ECOL, V183, P147; BAYNE BL, 1964, OIKOS, V15, P162, DOI 10.2307/3564753; BINGHAM BL, 1993, DEEP-SEA RES PT I, V40, P1, DOI 10.1016/0967-0637(93)90051-4; BOTERO L, 1982, Journal of Crustacean Biology, V2, P59, DOI 10.2307/1548113; Butler MJ, 2011, MAR ECOL PROG SER, V422, P223, DOI 10.3354/meps08878; BUTMAN CA, 1988, OPHELIA, V29, P43, DOI 10.1080/00785326.1988.10430818; Byrne M, 2010, MAR ENVIRON RES, V69, P234, DOI 10.1016/j.marenvres.2009.10.014; CAMERON JL, 1989, J EXP MAR BIOL ECOL, V127, P43, DOI 10.1016/0022-0981(89)90208-6; Campbell I, 2007, STAT MED, V26, P3661, DOI 10.1002/sim.2832; Chan KYK, 2012, INTEGR COMP BIOL, V52, P458, DOI 10.1093/icb/ics092; Chenouard N, 2014, NAT METHODS, V11, P281, DOI 10.1038/nmeth.2808; Civelek CV, 2013, J EXP MAR BIOL ECOL, V445, P1, DOI 10.1016/j.jembe.2013.03.010; Collin R, 2010, INVERTEBR BIOL, V129, P121, DOI 10.1111/j.1744-7410.2010.00196.x; Cowen RK, 2009, MAR SCI, V1; Dickey TD, 2011, PHYS TODAY, V64, P44, DOI 10.1063/1.3580492; Domenici P, 2003, J MAR BIOL ASSOC UK, V83, P285, DOI 10.1017/S0025315403007094h; DOREE M, 1976, P NATL ACAD SCI USA, V73, P1669, DOI 10.1073/pnas.73.5.1669; Ettinger-Epstein P, 2008, MAR ECOL PROG SER, V365, P103, DOI 10.3354/meps07503; Fox HM, 1925, P CAMB PHILOS SOC-B, V1, P219, DOI 10.1111/j.1469-185X.1925.tb00550.x; Gemmill JF, 1914, PHILOS T R SOC LON B, V205; Gemmill JF, 1920, Q J MICROSC SCI, V64, P155; HADFIELD MG, 1986, B MAR SCI, V39, P418; Hamel JF, 1996, CAN J FISH AQUAT SCI, V53, P253, DOI 10.1139/cjfas-53-2-253; HANEY JF, 1988, B MAR SCI, V43, P583; Hansen BW, 2010, J EXP BIOL, V213, P3237, DOI 10.1242/jeb.038810; HENDLER G, 1984, PSZNI MAR ECOL, V5, P379, DOI 10.1111/j.1439-0485.1984.tb00131.x; Hoist S., 2006, MAR BIOL, V151, P863; Jekely G, 2008, NATURE, V456, P395, DOI 10.1038/nature07590; Jekely G, 2009, PHILOS T R SOC B, V364, P2795, DOI 10.1098/rstb.2009.0072; Johnson KB, 2003, MAR ECOL PROG SER, V248, P125, DOI 10.3354/meps248125; LANG WH, 1979, BIOL BULL, V157, P166, DOI 10.2307/1541085; LATZ MI, 1977, BIOL BULL, V153, P163, DOI 10.2307/1540699; Leys SP, 2002, J COMP PHYSIOL A, V188, P199, DOI 10.1007/s00359-002-0293-y; Leys SP, 2001, BIOL BULL-US, V201, P323, DOI 10.2307/1543611; LYNCH WF, 1947, BIOL BULL, V92, P115, DOI 10.2307/1538162; McCarthy DA, 2002, MAR ECOL PROG SER, V241, P215, DOI 10.3354/meps241215; MCFARLAND WN, 1986, AM ZOOL, V26, P389; McHenry MJ, 2003, MAR BIOL, V142, P173, DOI 10.1007/s00227-002-0929-z; Meidel SK, 1999, J EXP MAR BIOL ECOL, V240, P161, DOI 10.1016/S0022-0981(99)00046-5; Meidel SK, 2001, BIOL BULL, V201, P84, DOI 10.2307/1543529; Mercier A, 2013, J EXP MAR BIOL ECOL, V449, P100, DOI 10.1016/j.jembe.2013.09.007; Mercier A, 2013, GLOBAL ECOL BIOGEOGR, V22, P517, DOI 10.1111/geb.12018; Mercier A, 2010, BEHAV ECOL SOCIOBIOL, V64, P1749, DOI 10.1007/s00265-010-0987-z; Metaxas A, 2008, B MAR SCI, V83, P471; Michalec FG, 2010, J PLANKTON RES, V32, P805, DOI 10.1093/plankt/fbq006; MILLER SE, 1986, J EXP MAR BIOL ECOL, V97, P95, DOI 10.1016/0022-0981(86)90070-5; MLADENOV PV, 1983, MAR BIOL, V73, P309, DOI 10.1007/BF00392257; MOGAMI Y, 1988, J EXP BIOL, V137, P141; Montgomery EM, 2017, MAR BIOL, V164, DOI 10.1007/s00227-017-3072-6; Mundy CN, 1998, J EXP MAR BIOL ECOL, V223, P235, DOI 10.1016/S0022-0981(97)00167-6; Nilsson DE, 2009, PHILOS T R SOC B, V364, P2833, DOI 10.1098/rstb.2009.0083; PARKS AL, 1989, BIOL BULL, V177, P96, DOI 10.2307/1541838; Pechenik JA, 1999, MAR ECOL PROG SER, V177, P269, DOI 10.3354/meps177269; PENNINGTON JT, 1986, J EXP MAR BIOL ECOL, V104, P69, DOI 10.1016/0022-0981(86)90098-5; PENNINGTON JT, 1986, B MAR SCI, V39, P234; Pizarro V., 2008, FORT LAUDERDALE FLOR, V1, P464; Prowse TAA, 2009, EVOL ECOL RES, V11, P1069; Richmond CE, 1996, MAR ECOL PROG SER, V133, P167, DOI 10.3354/meps133167; Robins PE, 2013, LIMNOL OCEANOGR, V58, P505, DOI 10.4319/lo.2013.58.2.0505; Roy A, 2012, MAR ECOL-EVOL PERSP, V33, P194, DOI 10.1111/j.1439-0485.2011.00480.x; RYLAND JS, 1960, J EXP BIOL, V37, P783; SALAZAR M H, 1970, Journal of Experimental Marine Biology and Ecology, V5, P254, DOI 10.1016/0022-0981(70)90004-3; SHIRLEY SM, 1988, MAR BEHAV PHYSIOL, V13, P369, DOI 10.1080/10236248809378686; So JJ, 2011, MAR BIOL, V158, P859, DOI 10.1007/s00227-010-1613-3; Staver JM, 2002, BIOL BULL, V203, P58, DOI 10.2307/1543458; SULKIN SD, 1975, BIOL BULL, V148, P333, DOI 10.2307/1540551; SVANE I, 1995, J EXP MAR BIOL ECOL, V187, P51, DOI 10.1016/0022-0981(94)00171-9; Svane I., 1989, Oceanography and Marine Biology an Annual Review, V27, P45; TAYLOR MH, 1984, T AM FISH SOC, V113, P484, DOI 10.1577/1548-8659(1984)113<484:LSOFR>2.0.CO;2; THORSON GUNNAR, 1964, OPHELIA, V1, P167; Tran C, 2013, INVERTEBR BIOL, V132, P195, DOI 10.1111/ivb.12025; Vaughn D, 2010, INTEGR COMP BIOL, V50, P552, DOI 10.1093/icb/icq037; Vazquez E, 1998, J EXP MAR BIOL ECOL, V231, P267, DOI 10.1016/S0022-0981(98)00094-X; Wendt DE, 2000, BIOL BULL, V198, P346, DOI 10.2307/1542690; YOSHIDA M, 1968, BIOL BULL, V134, P516, DOI 10.2307/1539869; Yoshida M, 1984, PHOTORECEPTION VISIO, P743; Young C., 1999, ENCY REPROD, P89; YOUNG CM, 1982, BIOL BULL, V162, P457, DOI 10.2307/1540996; YOUNG CM, 1982, MAR BIOL, V69, P195, DOI 10.1007/BF00396899 81 1 1 3 13 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 1879-1697 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. MAR 2018 500 63 72 10.1016/j.jembe.2017.12.003 10 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FX6XL WOS:000426230500008 2019-02-21 J Callil, CT; Leite, MCS; Mateus, LAF; Jones, JW Callil, Claudia T.; Leite, Marilene C. S.; Mateus, LAcia A. F.; Jones, Jess W. Influence of the flood pulse on reproduction and growth of Anodontites trapesialis (Lamarck, 1819) (Bivalvia: Mycetopodidae) in the Pantanal wetland, Brazil HYDROBIOLOGIA English Article Freshwater mussel; Reproduction; Life history tradeoff; Conservation; Wetland; Seasonal flood pulse; Pantanal; Brazil FRESH-WATER MUSSELS; LIFE-HISTORY EVOLUTION; MATO-GROSSO; CHILENSIS GRAY; PEARL MUSSEL; WADDEN SEA; RIVER; ALLOCATION; HYRIIDAE; LAKE Determining how, when, and why energy allocation occurs based on different life history traits, provides core knowledge for understanding evolution, ecology, and conservation of populations. We assumed that, in seasonal environments, Anodontites trapesialis, a common freshwater mussel in the Pantanal wetland, has to time its maturation, its larvae incubation time, and adjusts its breeding strategy seasonally. From histological analyses of gametes, larval count, and marginal increment of the shell rings, we present information about phenology and growth strategies to investigate the influence of environment and reproductive period on growth. We determined for the first time, asymptotic maximum size and longevity for this mussel. This species is a functional hermaphrodite, with maturation and spawning starting at the end of the flood period, when the water begins to recede and fishes return to the main river channel. The larvae, lasidium in this case, disperse on host fishes at this time. As we predicted, the flood pulse is the main regulatory factor to the growth patterns and reproductive period establishment. The species' life history traits are discussed in the context of life history theory as adaptive responses to the dynamic balance imposed by the seasonality of the Pantanal. [Callil, Claudia T.] Univ Fed Mato Grosso, Dept Biol & Zool, EcoBiv Ecol & Conservat Freshwater Mussel Grp, Inst Biociencias, Ave Fernando Correa da Costa 2367, BR-78060900 Cuiaba, MT, Brazil; [Leite, Marilene C. S.] Univ Fed Mato Grosso, Dept Bot & Ecol, Inst Biociencias, Cuiaba, MT, Brazil; [Mateus, LAcia A. F.] Univ Fed Mato Grosso, Inst Biociencias, Programa Posgrad Ecol & Conservacao Biodiversidad, Cuiaba, MT, Brazil; [Jones, Jess W.] Virginia Polytech Inst & State Univ, US Fish & Wildlife Serv, Dept Fish & Wildlife Conservat, Blacksburg, VA 24061 USA Callil, CT (reprint author), Univ Fed Mato Grosso, Dept Biol & Zool, EcoBiv Ecol & Conservat Freshwater Mussel Grp, Inst Biociencias, Ave Fernando Correa da Costa 2367, BR-78060900 Cuiaba, MT, Brazil. callil@ufmt.br CNPq [246223/2012-0]; Institute of Biosciences; Graduate Program in Water Resources of UFMT We are grateful to CNPq Process No. 246223/2012-0 for the support provided during the post-doctoral and sabbatical period of C. Callil. Our thanks are also directed to the Institute of Biosciences and to the Graduate Program in Water Resources of UFMT for the financial support and logistics. We also are indebted to Manuel Lopes Lima, who invited and encouraged us to present these results at the II International Meeting of Biology and Freshwater Conservation of Bivalves, Buffalo, New York, U.S.A. Our many thanks to Professor Felipe Franco Curcio, from PPG of Zoology - UFMT, who reviewed the manuscript and made suggestions to improve it. The views expressed in this article are of the authors and do not necessarily represent those of the United States Fish and Wildlife. Anderson MJ, 2003, J STAT COMPUT SIM, V73, P85, DOI 10.1080/0094965021000015558; Anthony JL, 2001, FRESHWATER BIOL, V46, P1349, DOI 10.1046/j.1365-2427.2001.00755.x; Avelar WEP, 1998, AM MALACOL BULL, V14, P157; BAIRD DJ, 1986, J ANIM ECOL, V55, P295, DOI 10.2307/4709; Bauer G, 1998, OECOLOGIA, V117, P90, DOI 10.1007/s004420050635; BAUER G, 1992, J ANIM ECOL, V61, P425, DOI 10.2307/5333; BAUER G, 1987, J ANIM ECOL, V56, P691, DOI 10.2307/5077; Bayne BL, 2004, INTEGR COMP BIOL, V44, P425, DOI 10.1093/icb/44.6.425; Beasley CR, 2000, J MOLLUS STUD, V66, P393, DOI 10.1093/mollus/66.3.393; Beasley CR, 2005, AMAZONIANA, V18, P173; Beukema JJ, 2009, MAR ECOL PROG SER, V384, P135, DOI 10.3354/meps07952; Beukema JJ, 2005, MAR ECOL PROG SER, V287, P149, DOI 10.3354/meps287149; Beukema JJ, 2001, MAR ECOL PROG SER, V211, P143, DOI 10.3354/meps211143; BONETTO ARGENTINO A., 1962, PHYSIS REV ASOC ARGENT CIENC NATUR, V23, P195; Burnham K. P, 2002, MODEL SELECTION MULT, P488; Callil C. T., 2012, BRAZ J BIOL, V72, P1; Callil CT, 2007, REV BRAS ZOOL, V24, P825, DOI 10.1590/S0101-81752007000300033; Callil CT, 2005, REV BRAS ZOOL, V22, P724, DOI 10.1590/S0101-81752005000300033; Coe WR, 1943, Q REV BIOL, V18, P154, DOI 10.1086/394673; Colle AC, 2012, BRAZ J BIOL, V72, P249, DOI 10.1590/S1519-69842012000200004; da Silva Junk W. J. C. J., 2011, PANTANAL ECOLOGY BIO, P857; Fernandes IM, 2014, ECOGRAPHY, V37, P464, DOI 10.1111/j.1600-0587.2013.00527.x; Haag WR, 2013, BIOL REV, V88, P745, DOI 10.1111/brv.12028; Haag WR, 2011, BIOL REV, V86, P225, DOI 10.1111/j.1469-185X.2010.00146.x; Haag WR, 2012, NORTH AMERICAN FRESHWATER MUSSELS: NATURAL HISTORY, ECOLOGY, AND CONSERVATION, P1, DOI 10.1017/CBO9781139048217; Haag WR, 2003, FRESHWATER BIOL, V48, P2118, DOI 10.1046/j.1365-2427.2003.01155.x; Haddon M, 2001, MODELLING QUANTITATI; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Higgins J., 2004, INTRO MODERN NONPARA, P384; Hunter J.R., 1985, NOAA Technical Report NMFS, V36, P63; JOKELA J, 1995, OECOLOGIA, V104, P122, DOI 10.1007/BF00365570; Jones J. W., 2012, WALKERANA, V35, P27; Jones JW, 2011, AQUAT CONSERV, V21, P57, DOI 10.1002/aqc.1161; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; Junk WJ, 2014, AQUAT CONSERV, V24, P5, DOI 10.1002/aqc.2386; Junk WJ, 2005, ECOL ENG, V24, P391, DOI [10.1016/j.ecoleng.2004.11.012, 10.1016/j.econleng.2004.11.012]; Kanazawa T, 2008, J MOLLUS STUD, V74, P89, DOI 10.1093/mollus/eym049; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; LINDSTROM MJ, 1990, BIOMETRICS, V46, P673, DOI 10.2307/2532087; Loverde-Oliveira S.M., 2007, ACTA LIMNOL BRAS, V19, P117; Loverde-Oliveira SM, 2009, ECOSYSTEMS, V12, P807, DOI 10.1007/s10021-009-9258-0; Marcal Sandra Francisca, 2015, Biotemas, V28, P9, DOI 10.5007/2175-7925.2015v28n2p9; McMahon R. F., 2001, ECOLOGY CLASSIFICATI; Morris TJ, 1999, FRESHWATER BIOL, V42, P59, DOI 10.1046/j.1365-2427.1999.00468.x; PARADA E, 1989, ARCH HYDROBIOL, V115, P563; PARADA E, 1990, REV CHIL HIST NAT, V63, P23; Peharda M, 2002, J MOLLUS STUD, V68, P307, DOI 10.1093/mollus/68.4.307; Penha J, 2015, ENVIRON BIOL FISH, V98, P1023, DOI 10.1007/s10641-014-0336-6; Pereira D, 2014, HYDROBIOLOGIA, V735, P15, DOI 10.1007/s10750-013-1639-x; Roff Derek A., 1992; Sainmont J, 2014, AM NAT, V184, P466, DOI 10.1086/677926; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; Vaughn CC, 2000, ECOGRAPHY, V23, P11, DOI 10.1034/j.1600-0587.2000.230102.x; Vazzoler A. E. A. M., 1996, BIOL REPROD PEIXES T; Von Bertalanffy L., 1938, HUM BIOL, V10, P181, DOI DOI 10.2307/41447359 59 0 0 2 6 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia MAR 2018 810 1 SI 433 448 10.1007/s10750-017-3097-3 16 Marine & Freshwater Biology Marine & Freshwater Biology FW4PP WOS:000425296400031 Bronze 2019-02-21 J Kominoski, JS; Ruhi, A; Hagler, MM; Petersen, K; Sabo, JL; Sinha, T; Sankarasubramanian, A; Olden, JD Kominoski, John S.; Ruhi, Albert; Hagler, Megan M.; Petersen, Kelly; Sabo, John L.; Sinha, Tushar; Sankarasubramanian, Arumugam; Olden, Julian D. Patterns and drivers of fish extirpations in rivers of the American Southwest and Southeast GLOBAL CHANGE BIOLOGY English Article biodiversity loss; dams; flow regime; global change; imperiled species FRESH-WATER FISHES; LIFE-HISTORY STRATEGIES; ALTERED FLOW REGIMES; ENVIRONMENTAL FLOWS; SPECIES TRAITS; CLIMATE-CHANGE; ECOSYSTEM RESPONSES; NORTH-AMERICA; BIODIVERSITY; CONSERVATION Effective conservation of freshwater biodiversity requires spatially explicit investigations of how dams and hydroclimatic alterations among climate regions may interact to drive species to extinction. We investigated how dams and hydroclimatic alterations interact with species ecological and life history traits to influence past extirpation probabilities of native freshwater fishes in the Upper and Lower Colorado River (CR), Alabama-Coosa-Tallapoosa (ACT), and Apalachicola-Chattahoochee-Flint (ACF) basins. Using long-term discharge data for continuously gaged streams and rivers, we quantified streamflow anomalies (i.e., departure expected streamflow) at the sub-basin scale over the past half-century.Next, we related extirpation probabilities of native fishes in both regions to streamflow anomalies, river basin characteristics, species traits, and non-native species richness using binomial logistic regression. Sub-basin extirpations in the Southwest (n=95 Upper CR, n=130 Lower CR) were highest in lowland mainstem rivers impacted by large dams and in desert springs. Dampened flow seasonality, increased longevity (i.e., delayed reproduction), and decreased fish egg sizes (i.e., lower parental care) were related to elevated fish extirpation probability in the Southwest. Sub-basin extirpations in the Southeast (ACT n=46, ACF n=22) were most prevalent in upland rivers, with flow dependency, greater age and length at maturity, isolation by dams, and greater distance upstream. Our results confirm that dams are an overriding driver of native fish species losses, irrespective of basin-wide differences in native or non-native species richness. Dams and hydrologic alterations interact with species traits to influence community disassembly, and very high extirpation risks in the Southeast are due to interactions between high dam density and species restricted ranges. Given global surges in dam building and retrofitting, increased extirpation risks should be expected unless management strategies that balance flow regulation with ecological outcomes are widely implemented. [Kominoski, John S.] Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA; [Ruhi, Albert; Sabo, John L.] Arizona State Univ, Sch Life Sci, Tempe, AZ USA; [Ruhi, Albert; Sabo, John L.] Arizona State Univ, Julie Ann Wrigley Global Inst Sustainabil, Tempe, AZ USA; [Ruhi, Albert] Univ Maryland, Natl Socioenvironm Synth Ctr SESYNC, Annapolis, MD USA; [Ruhi, Albert] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA; [Hagler, Megan M.] Lewis & Clark Coll, Sponsored Res, Portland, OR 97219 USA; [Hagler, Megan M.; Petersen, Kelly] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA; [Sinha, Tushar] Texas A&M Univ Kingsville, Dept Environm Engn, Kingsville, TX USA; [Sinha, Tushar; Sankarasubramanian, Arumugam] North Carolina State Univ, Dept Civil Construct & Environm Engn, Raleigh, NC USA; [Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA Kominoski, JS (reprint author), Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA. jkominos@fiu.edu Kominoski, John/0000-0002-0978-3326 National Science Foundation [CBET 1204368, 1204478, 1318140, DBI-1052875] National Science Foundation, Grant/Award Number: CBET 1204368, 1204478, 1318140, DBI-1052875 Acreman M, 2014, FRONT ECOL ENVIRON, V12, P466, DOI 10.1890/130134; Arthington A. H., 2012, ENV FLOWS SAVING RIV, V4; Arthington AH, 2016, AQUAT CONSERV, V26, P838, DOI 10.1002/aqc.2712; Boschung Jr H. T., 2004, FISHES ALABAMA; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Chessman BC, 2013, BIOL CONSERV, V160, P40, DOI 10.1016/j.biocon.2012.12.032; Daufresne M, 2009, P NATL ACAD SCI USA, V106, P12788, DOI 10.1073/pnas.0902080106; Dornelas M, 2014, SCIENCE, V344, P296, DOI 10.1126/science.1248484; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Freeman MC, 2005, AM FISH S S, V45, P557; Gelman A., 2007, DATA ANAL USING REGR; Gido KB, 2010, J N AM BENTHOL SOC, V29, P970, DOI 10.1899/09-116.1; Gillespie BR, 2015, FRESHWATER BIOL, V60, P410, DOI 10.1111/fwb.12506; Goldstein RM, 2004, T AM FISH SOC, V133, P971, DOI 10.1577/T03-080.1; Graf WL, 1999, WATER RESOUR RES, V35, P1305, DOI 10.1029/1999WR900016; Jaeger KL, 2014, P NATL ACAD SCI USA, V111, P13894, DOI 10.1073/pnas.1320890111; Jelks HL, 2008, FISHERIES, V33, P372, DOI 10.1577/1548-8446-33.8.372; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; McDonald R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048018; McManamay RA, 2012, J HYDROL, V424, P217, DOI 10.1016/j.jhydrol.2012.01.003; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Moore JW, 2017, GLOBAL CHANGE BIOL, V23, P1871, DOI 10.1111/gcb.13536; Naimi B., 2013, USDM UNCERTAINTY ANA; Naimi B, 2014, ECOGRAPHY, V37, P191, DOI 10.1111/j.1600-0587.2013.00205.x; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2007, GLOBAL ECOL BIOGEOGR, V16, P694, DOI 10.1111/j.1466-8238.2007.00337.x; Olden JD, 2016, CONSERV BIOL SER, P107; Olden JD, 2014, FRONT ECOL ENVIRON, V12, P176, DOI 10.1890/130076; Page L.M., 1991, FIELD GUIDE FRESHWAT; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 2016, NAT CLIM CHANGE, V6, P25, DOI 10.1038/NCLIMATE2765; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1992, J N AM BENTHOL SOC, V11, P86, DOI 10.2307/1467885; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; R Core Team, 2013, R LANG ENV STAT COMP; Richter BD, 2010, RIVER RES APPL, V26, P1052, DOI 10.1002/rra.1320; Rolls RJ, 2015, ENVIRON MANAGE, V55, P1315, DOI 10.1007/s00267-015-0462-8; Rolls RJ, 2012, FRESHW SCI, V31, P1163, DOI 10.1899/12-002.1; Ruhi A., 2016, FRONT ECOL ENVIRON, V14, P1; Ruhi A, 2015, GLOBAL CHANGE BIOL, V21, P1482, DOI 10.1111/gcb.12780; Sabo JL, 2008, ECOL MONOGR, V78, P19, DOI 10.1890/06-1340.1; Sabo JL, 2010, P NATL ACAD SCI USA, V107, P21263, DOI 10.1073/pnas.1009734108; Seager R, 2007, SCIENCE, V316, P1181, DOI 10.1126/science.1139601; Seager R, 2013, NAT CLIM CHANGE, V3, P482, DOI [10.1038/nclimate1787, 10.1038/NCLIMATE1787]; Seager R, 2009, J CLIMATE, V22, P5021, DOI 10.1175/2009JCLI2683.1; Slack J. R., 1993, HYDROCLIMATIC DATA N; Strecker AL, 2011, ECOL APPL, V21, P3002, DOI 10.1890/11-0599.1; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Vogel R. M., 2005, USGS HYDROCLIMATIC D; Weeks BC, 2016, P NATL ACAD SCI USA, V113, P10109, DOI 10.1073/pnas.1603866113; Wenger SJ, 2013, GLOBAL CHANGE BIOL, V19, P3343, DOI 10.1111/gcb.12294; Winemiller KO, 2016, SCIENCE, V351, P128, DOI 10.1126/science.aac7082; Zavaleta E, 2009, ANN NY ACAD SCI, V1162, P311, DOI 10.1111/j.1749-6632.2009.04448.x 55 1 1 5 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1354-1013 1365-2486 GLOBAL CHANGE BIOL Glob. Change Biol. MAR 2018 24 3 1175 1185 10.1111/gcb.13940 11 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology FW5YZ WOS:000425396700026 29139216 2019-02-21 J Oliveira, AG; Baumgartner, MT; Gomes, LC; Dias, RM; Agostinho, AA Oliveira, Anielly G.; Baumgartner, Matheus T.; Gomes, Luiz C.; Dias, Rosa M.; Agostinho, Angelo A. Long-term effects of flow regulation by dams simplify fish functional diversity FRESHWATER BIOLOGY English Article functional redundancy; ichthyofauna; intervention analysis; Parana River; Rao's quadratic entropy UPPER PARANA RIVER; ENVIRONMENTAL-IMPACT ASSESSMENT; LIFE-HISTORY STRATEGIES; MULTIVARIATE-ANALYSIS; SPECIES RICHNESS; MULTIPLE TRAITS; PATTERNS; ASSEMBLAGES; BIODIVERSITY; COMMUNITY The long-term impact of river regulation on fish functional diversity by a dam immediately upstream from the upper Parana River floodplain, Brazil, was evaluated. It was expected that the resulting alterations in natural flow, downstream from the dam, would negatively impact fish species, resulting in a functional simplification of the ichthyofauna. In addition, this effect was expected to be more pronounced in the directly affected main channel of the Parana River than in its tributaries, the Baia and Ivinhema rivers. Fish were sampled before (pre) and after (post) dam closure (the intervention). The functional traits used were diet, habitat use, mouth position, migration, parental care, internal fertilisation and maximum total length. Differences in trait composition between periods (pre and post) were tested using a PERMANOVA main-test. An indicator value analysis (IndVal) was applied to identify which traits significantly increased or decreased in abundance after the intervention. The indexes used were functional richness (FRic), Rao's quadratic entropy (FDQ) and functional redundancy (FRed). The intervention analysis based on linear models for time series was used to evaluate differences in these indexes over time. Traits most representative during pre-intervention were large-bodied species with long reproductive migrations, pelagic, with subterminal and superior mouths, and herbivorous. Traits most representative during the post-intervention were omnivorous species, with parental care, benthopelagic and insectivorous, which typically characterise fishes that inhabit stable environments. FRic decreased in Parana and Baia rivers after the construction of the dam. However, the Ivinhema River showed an increase in mean FRic in the post-intervention period. FDQ decreased substantially in all three rivers, while FRed increased. The combined results of FRic, FDQ and FRed corroborate the functional simplification hypothesis expected from flow regulation by dams on functional diversity. As expected, the most pronounced simplification occurred in the Parana River. Therefore, hydroelectric power plants can act as environmental filters strongly selecting functional traits of the downstream fish fauna, generating long-lasting impacts on ecosystem functioning and services. [Oliveira, Anielly G.; Baumgartner, Matheus T.; Gomes, Luiz C.; Dias, Rosa M.; Agostinho, Angelo A.] Programa Pos Grad Ecol Ambiente Aquat Continentai, Maringa, Parana, Brazil; [Oliveira, Anielly G.; Baumgartner, Matheus T.; Gomes, Luiz C.; Dias, Rosa M.; Agostinho, Angelo A.] Univ Estadual Maringa, Maringa, Parana, Brazil; [Gomes, Luiz C.; Agostinho, Angelo A.] Nucleo Pesquisas Limnol Ictiol & Aquicultura NUPE, Maringa, Parana, Brazil Oliveira, AG (reprint author), Programa Pos Grad Ecol Ambiente Aquat Continentai, Maringa, Parana, Brazil. anielly_oliveira@hotmail.com Gomes, Luiz/D-5886-2013 Oliveira, Anielly/0000-0002-6185-1728; Agostinho, Angelo Antonio/0000-0002-4707-9444 Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) Agostinho AA, 2008, BRAZ J BIOL, V68, P1119, DOI 10.1590/S1519-69842008000500019; Agostinho AA, 2004, REV FISH BIOL FISHER, V14, P11, DOI 10.1007/s11160-004-3551-y; Agostinho AA, 2007, ECOLOGIA MANEJO RECU; Agostinho AA, 2016, FISH RES, V173, P26, DOI 10.1016/j.fishres.2015.04.006; Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1046/j.1442-9993.2001.01070.x; Botta-Dukat Z, 2005, J VEG SCI, V16, P533, DOI 10.1658/1100-9233(2005)16[533:RQEAAM]2.0.CO;2; Box G., 1970, TIME SERIES ANAL FOR; Box George E. P., 1994, TIME SERIES ANAL FOR; Buisson L, 2013, GLOBAL CHANGE BIOL, V19, P387, DOI 10.1111/gcb.12056; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Cardinale BJ, 2012, NATURE, V486, P59, DOI 10.1038/nature11148; Cianciaruso Marcus Vinicius, 2009, Biota Neotrop., V9, P93, DOI 10.1590/S1676-06032009000300008; de Souza EE, 2004, BIO INL WAT, P55; Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2; EBERHARDT LL, 1991, ECOL MONOGR, V61, P53, DOI 10.2307/1942999; Empresa de Pesquisas Energeticas EPE, 2013, BAL EN NAC; Ernst R, 2006, BIOL CONSERV, V133, P143, DOI 10.1016/j.biocon.2006.05.028; Flynn DFB, 2009, ECOL LETT, V12, P22, DOI 10.1111/j.1461-0248.2008.01255.x; Fonseca CR, 2001, J ECOL, V89, P118, DOI 10.1046/j.1365-2745.2001.00528.x; Fourier J., 1988, THEORIE ANAL CHALEUR; Gonzalez CG, 2011, TRATAMIENTO DATOS CO; GOWER JC, 1966, BIOMETRIKA, V53, P325, DOI 10.2307/2333639; Gubiani EA, 2007, ECOL FRESHW FISH, V16, P191, DOI 10.1111/j.1600-0633.2006.00211.x; Halpern BS, 2008, MAR ECOL PROG SER, V364, P147, DOI 10.3354/meps07553; Heino J, 2008, LIMNOL OCEANOGR, V53, P1446, DOI 10.4319/lo.2008.53.4.1446; Hoeinghaus DJ, 2009, CONSERV BIOL, V23, P1222, DOI 10.1111/j.1523-1739.2009.01248.x; Johnson PTJ, 2008, FRONT ECOL ENVIRON, V6, P359, DOI 10.1890/070156; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; dos Santos NCL, 2017, HYDROBIOLOGIA, V802, P245, DOI 10.1007/s10750-017-3274-4; Laliberte E, 2010, ECOLOGY, V91, P299, DOI 10.1890/08-2244.1; Legendre P, 1998, NUMERICAL ECOLOGY; da Silva LGM, 2012, NEOTROP ICHTHYOL, V10, P751, DOI 10.1590/S1679-62252012000400008; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Miranda LE, 2016, RIVER RES APPL, V32, P1187, DOI 10.1002/rra.2936; Morettin P. E., 2014, ANALISES SERIES TEMP; Mouillot D, 2013, TRENDS ECOL EVOL, V28, P167, DOI 10.1016/j.tree.2012.10.004; NEIFF JJ, 1990, INTERCIENCIA, V15, P424; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Ortega JCG, 2015, HYDROBIOLOGIA, V745, P31, DOI 10.1007/s10750-014-2089-9; Pelicice FM, 2015, FISH FISH, V16, P697, DOI 10.1111/faf.12089; Petchey OL, 2002, P ROY SOC B-BIOL SCI, V269, P1721, DOI 10.1098/rspb.2002.2073; Petchey OL, 2002, ECOL LETT, V5, P402, DOI 10.1046/j.1461-0248.2002.00339.x; Pillar VD, 2009, J VEG SCI, V20, P334, DOI 10.1111/j.1654-1103.2009.05666.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Pool TK, 2012, DIVERS DISTRIB, V18, P366, DOI 10.1111/j.1472-4642.2011.00836.x; Pool TK, 2010, CAN J FISH AQUAT SCI, V67, P1791, DOI 10.1139/F10-095; POWER ME, 1995, BIOSCIENCE, V45, P159, DOI 10.2307/1312555; R Core Team, 2016, R LANG ENV STAT COMP; Rahel FJ, 2007, FRESHWATER BIOL, V52, P696, DOI 10.1111/j.1365-2427.2006.01708.x; RASMUSSEN PW, 2001, DESIGN ANAL ECOLOGIC, P158; Ricotta C, 2016, METHODS ECOL EVOL, V7, P1386, DOI 10.1111/2041-210X.12604; SANTOS D. P, 2012, THESIS; Santos F. J., 2004, INTRO SERIES FOURIER; Schilt CR, 2007, APPL ANIM BEHAV SCI, V104, P295, DOI 10.1016/j.applanim.2006.09.004; StatSoft Inc, 2004, STAT DAT AN SOFTW SY; Stevens RD, 2003, ECOL LETT, V6, P1099, DOI 10.1046/j.1461-0248.2003.00541.x; Stewart-Oaten A, 2001, ECOL MONOGR, V71, P305, DOI 10.1890/0012-9615(2001)071[0305:TASVIE]2.0.CO;2; STEWARTOATEN A, 1986, ECOLOGY, V67, P929, DOI 10.2307/1939815; Suzuki HI, 2009, BRAZ J BIOL, V69, P649, DOI 10.1590/S1519-69842009000300019; Thomaz SM, 2007, HYDROBIOLOGIA, V579, P1, DOI 10.1007/s10750-006-0285-y; Villeger S, 2008, ECOLOGY, V89, P2290, DOI 10.1890/07-1206.1; Villeger S, 2010, ECOL APPL, V20, P1512, DOI 10.1890/09-1310.1; WARD JV, 1995, REGUL RIVER, V11, P105, DOI 10.1002/rrr.3450110109; Winemiller KO, 2016, SCIENCE, V351, P128, DOI 10.1126/science.aac7082; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; Zarfl C, 2015, AQUAT SCI, V77, P161, DOI 10.1007/s00027-014-0377-0 66 4 4 13 80 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. MAR 2018 63 3 293 305 10.1111/fwb.13064 13 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FU8VG WOS:000424133500004 2019-02-21 J Gruijters, SLK; Fleuren, BPI Gruijters, Stefan L. K.; Fleuren, Bram P. I. Measuring the Unmeasurable The Psychometrics of Life History Strategy HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Life history strategy; Ultimate-proximate distinction; Measurement models; Psychometrics; Formative models; Latent variables; Validity MEASUREMENT MODELS; K-FACTOR; MULTIDIMENSIONAL CONSTRUCTS; INDIVIDUAL-DIFFERENCES; REPRODUCTIVE STRATEGY; FORMATIVE MEASUREMENT; EVOLUTIONARY-THEORY; CAUSAL INDICATORS; LATENT-VARIABLES; TRADE-OFFS Within evolutionary biology, life-history theory is used to explain cross-species differences in allocation strategies regarding reproduction, maturation, and survival. Behavioral scientists have recently begun to conceptualize such strategies as a within-species individual characteristic that is predictive of behavior. Although life history theory provides an important framework for behavioral scientists, the psychometric approach to life-history strategy measurement-as operationalized by K-factors-involves conceptual entanglements. We argue that current psychometric approaches attempting to identify K-factors are based on an unwarranted conflation of functional descriptions and proximate mechanisms-a conceptual mix-up that may generate unviable hypotheses and invites misinterpretation of empirical findings. The assumptions underlying generic psychometric methodology do not allow measurement of functionally defined variables; rather these methods are confined to Mayr's proximate causal realm. We therefore conclude that K-factor scales lack validity, and that life history strategy cannot be identified with psychometrics as usual. To align theory with methodology, suggestions for alternative methods and new avenues are proposed. [Gruijters, Stefan L. K.] Maastricht Univ, Dept Work & Social Psychol, Maastricht, Netherlands; [Fleuren, Bram P. I.] Maastricht Univ, Dept Work & Social Psychol, Fac Psychol & Neurosci, Maastricht, Netherlands; [Gruijters, Stefan L. K.] Open Univ Netherlands, Fac Psychol & Educ Sci, Heerlen, Netherlands Gruijters, SLK (reprint author), Maastricht Univ, Dept Work & Social Psychol, Maastricht, Netherlands.; Gruijters, SLK (reprint author), Open Univ Netherlands, Fac Psychol & Educ Sci, Heerlen, Netherlands. Stefan.Gruijters@ou.nl Fleuren, Bram/0000-0002-9748-2522; Gruijters, Stefan/0000-0003-0141-0071 ALESSI G, 1992, AM PSYCHOL, V47, P1359, DOI 10.1037//0003-066X.47.11.1359; Bateson P, 2013, TRENDS ECOL EVOL, V28, P712, DOI 10.1016/j.tree.2013.09.013; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bollen KA, 2002, ANNU REV PSYCHOL, V53, P605, DOI 10.1146/annurev.psych.53.100901.135239; Bollen KA, 2017, PSYCHOL METHODS, V22, P581, DOI 10.1037/met0000056; Bollen KA, 2011, PSYCHOL METHODS, V16, P265, DOI 10.1037/a0024448; Borsboom D, 2003, PSYCHOL REV, V110, P203, DOI 10.1037/0033-295X.110.2.203; Borsboom D, 2004, PSYCHOL REV, V111, P1061, DOI 10.1037/0033-295x.111.4.1061; Borsboom D, 2013, ANNU REV CLIN PSYCHO, V9, P91, DOI 10.1146/annurev-clinpsy-050212-185608; Borsboom D, 2008, MEAS-INTERDISCIP RES, V6, P25, DOI 10.1080/15366360802035497; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; Copping L. T., 2017, EVOLUTIONARY PSYCHOL, V15, P1; Copping LT, 2014, EVOL PSYCHOL-US, V12, P200, DOI 10.1177/147470491401200115; Del Giudice M., 2004, HDB EVOLUTIONARY PSY, V2, P68; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Diamantopoulos A, 2006, BRIT J MANAGE, V17, P263, DOI 10.1111/j.1467-8551.2006.00500.x; Diamantopoulos A, 2008, J BUS RES, V61, P1203, DOI 10.1016/j.jbusres.2008.01.009; Edwards JR, 2011, ORGAN RES METHODS, V14, P370, DOI 10.1177/1094428110378369; Edwards JR, 2001, ORGAN RES METHODS, V4, P144, DOI 10.1177/109442810142004; Edwards JR, 2000, PSYCHOL METHODS, V5, P155, DOI 10.1037//1082-989X.5.2.155; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Epskamp S., 2016, BEHAV RES; Figueredo A. J., 2017, EVOLUTIONARY PSYCHOL, V15; Figueredo A. J., 2014, EVOLUTIONARY BEHAV S, V8, P148, DOI DOI 10.1037/H0099837; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; FRANCIS RC, 1990, BIOL PHILOS, V5, P401, DOI 10.1007/BF02207379; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; Frankenhuis WE, 2013, CURR DIR PSYCHOL SCI, V22, P407, DOI 10.1177/0963721413484324; Garland T, 2014, CURR BIOL, V24, pR60, DOI 10.1016/j.cub.2013.11.036; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Gruijters SLK, 2017, HEALTH PSYCHOL REV, V11, P125, DOI 10.1080/17437199.2017.1306716; Haig D, 2013, BIOL PHILOS, V28, P781, DOI 10.1007/s10539-013-9369-z; Jarvis CB, 2003, J CONSUM RES, V30, P199, DOI 10.1086/376806; Laland KN, 2011, SCIENCE, V334, P1512, DOI 10.1126/science.1210879; Law KS, 1999, J MANAGE, V25, P143, DOI 10.1177/014920639902500202; MAYR E, 1993, BIOL PHILOS, V8, P93, DOI 10.1007/BF00868508; MAYR E, 1961, SCIENCE, V134, P1501, DOI 10.1126/science.134.3489.1501; Nettle D., 2010, P ROYAL SOC B, V278, P1721; Nettle D., 2013, P ROYAL SOC B, V280; Nettle D., 2015, P ROYAL SOC B, V282; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Rhemtulla M, 2015, MEAS-INTERDISCIP RES, V13, P59, DOI 10.1080/15366367.2015.1016343; Richardson G. B., 2017, EVOLUTIONARY PSYCHOL, V15; Richardson G. B., 2017, EVOLUTIONARY PSYCHOL, V15; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Scott-Phillips TC, 2011, PERSPECT PSYCHOL SCI, V6, P38, DOI 10.1177/1745691610393528; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410 54 1 1 0 9 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. MAR 2018 29 1 33 44 10.1007/s12110-017-9307-x 12 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences FU4TS WOS:000423846100004 29143184 Green Published, Other Gold 2019-02-21 J Fidler, RY; Carroll, J; Rynerson, KW; Matthews, DF; Turingan, RG Fidler, Robert Y.; Carroll, Jessica; Rynerson, Kristen W.; Matthews, Danielle F.; Turingan, Ralph G. Coral reef fishes exhibit beneficial phenotypes inside marine protected areas PLOS ONE English Article LIFE-HISTORY EVOLUTION; COD GADUS-MORHUA; GREAT-BARRIER-REEF; ECOLOGICAL CONSEQUENCES; ACANTHURUS-NIGROFUSCUS; CONTEMPORARY EVOLUTION; PLECTROPOMUS-LEOPARDUS; BATCH FECUNDITY; REACTION NORMS; TRAIT CHANGES Human fishing effort is size-selective, preferentially removing the largest individuals from harvested stocks. Intensive, size-specific fishing mortality induces directional shifts in phe-notypic frequencies towards the predominance of smaller and earlier-maturing individuals, which are among the primary causes of declining fish biomass. Fish that reproduce at smaller size and younger age produce fewer, smaller, and less viable larvae, severely reducing the reproductive capacity of harvested populations. Marine protected areas (MPAs) are extensively utilized in coral reefs for fisheries management, and are thought to mitigate the impacts of size-selective fishing mortality and supplement fished stocks through larval export. However, empirical evidence of disparities in fitness-relevant phenotypes between MPAs and adjacent fished reefs is necessary to validate this assertion. Here, we compare key life-history traits in three coral-reef fishes (Acanthurus nigrofuscus, Cteno-chaetus striatus, and Parupeneus multifasciatus) between MPAs and fished reefs in the Philippines. Results of our analyses support previous hypotheses regarding the impacts of MPAs on phenotypic traits. Asymptotic length (L-inf) and growth rates (K) differed between conspecifics in MPAs and fished reefs, with protected populations exhibiting phenotypes that are known to confer higher fecundity. Additionally, populations demonstrated increases in length at 50% maturity (L-50) inside MPAs compared to adjacent areas, although age at 50% maturity (A(50)) did not appear to be impacted by MPA establishment. Shifts toward advantageous phenotypes were most common in the oldest and largest MPAs, but occurred in all of the MPAs examined. These results suggest that MPAs may provide protection against the impacts of size-selective harvest on life-history traits in coral-reef fishes. [Fidler, Robert Y.; Matthews, Danielle F.; Turingan, Ralph G.] Florida Inst Technol, Dept Biol Sci, Melbourne, FL 32901 USA; [Carroll, Jessica; Rynerson, Kristen W.] Florida Fish & Wildlife Conservat Commiss, Fish & Wildlife Res Inst, St Petersburg, FL USA Fidler, RY (reprint author), Florida Inst Technol, Dept Biol Sci, Melbourne, FL 32901 USA. rfidler2011@my.fit.edu Fidler, Robert/0000-0001-8796-9161 U.S. Student Fulbright Fellowship; Philippine-American Education Foundation [34143036] This research was funded through a U.S. Student Fulbright Fellowship (https://us.fulbrightonline.org/fulbright-us-student-program) in association with the Philippine-American Education Foundation (https://fulbright.org.ph/) awarded to RYF (ID #34143036). The funders had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript. Adams S, 2000, CAN J FISH AQUAT SCI, V57, P1448, DOI 10.1139/cjfas-57-7-1448; Babcock RC, 2010, P NATL ACAD SCI USA, V107, P18256, DOI 10.1073/pnas.0908012107; Baskett ML, 2005, ECOL APPL, V15, P882, DOI 10.1890/04-0723; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Birkeland C, 2005, TRENDS ECOL EVOL, V20, P356, DOI 10.1016/j.tree.2005.03.015; Bobko SJ, 2003, FISH B, V102, P418; Boonzaier L, 2016, ORYX, V50, P27, DOI 10.1017/S0030605315000848; Carter AB, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-10180-w; Carter AB, 2014, CORAL REEFS, V33, P751, DOI 10.1007/s00338-014-1164-z; Choat JH, 1996, MAR ECOL PROG SER, V134, P15, DOI 10.3354/meps134015; Claudet J, 2010, ECOL APPL, V20, P830, DOI 10.1890/08-2131.1; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; de Roos AM, 2006, P ROY SOC B-BIOL SCI, V273, P1873, DOI 10.1098/rspb.2006.3518; Devine JA, 2012, CAN J FISH AQUAT SCI, V69, P1105, DOI 10.1139/F2012-047; Dunlop ES, 2015, ECOL APPL, V25, P1860, DOI 10.1890/14-1862.1; Dunlop ES, 2009, EVOL APPL, V2, P371, DOI 10.1111/j.1752-4571.2009.00089.x; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; Eikeset AM, 2016, P NATL ACAD SCI USA, V113, P15030, DOI 10.1073/pnas.1525749113; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Evans RD, 2008, CORAL REEFS, V27, P179, DOI 10.1007/s00338-007-0309-8; Fidler RY, 2017, MAR ECOL PROG SER, V570, P187, DOI 10.3354/meps12067; Fidler Robert Y., 2014, Biology - Basel, V3, P264, DOI 10.3390/biology3020264; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Gruss A, 2011, BIOL CONSERV, V144, P692, DOI 10.1016/j.biocon.2010.12.015; Hart AM, 1996, MAR ECOL PROG SER, V136, P25, DOI 10.3354/meps136025; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2002, B MAR SCI, V70, P639; Heino M, 2009, ENCY LIFE SCI ELS; Hsieh CH, 2010, AQUAT SCI, V72, P165, DOI 10.1007/s00027-009-0122-2; Hutchings JA, 2011, CAN J ZOOL, V89, P386, DOI [10.1139/Z11-022, 10.1139/z11-022]; Januchowski-Hartley FA, 2012, MAR ECOL PROG SER, V469, P113, DOI 10.3354/meps09971; Januchowski-Hartley FA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022761; Jennings S, 2000, REV FISH BIOL FISHER, V10, P209, DOI 10.1023/A:1016619102955; KIMURA DK, 1980, FISH B-NOAA, V77, P765; Krone R, 2008, CORAL REEFS, V27, P619, DOI 10.1007/s00338-008-0365-8; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuparinen A, 2012, P ROY SOC B-BIOL SCI, V279, P2571, DOI 10.1098/rspb.2012.0120; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Lester SE, 2009, MAR ECOL PROG SER, V384, P33, DOI 10.3354/meps08029; Martins GM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044297; MAZEROLL AI, 1995, ETHOLOGY, V99, P89; McClanahan TR, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1938; McClanahan TR, 2012, MAR ECOL PROG SER, V469, P121, DOI 10.3354/meps10009; McCormick MI, 1997, MAR ECOL PROG SER, V153, P247, DOI 10.3354/meps153247; McLeod E, 2009, FRONT ECOL ENVIRON, V7, P362, DOI 10.1890/070211; Micheli F, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040832; Miethe T, 2010, ICES J MAR SCI, V67, P412, DOI 10.1093/icesjms/fsp248; Mittelbach GG, 2014, CAN J FISH AQUAT SCI, V71, P927, DOI 10.1139/cjfas-2013-0558; Mosqueira I, 2000, ANIM CONSERV, V3, P321, DOI 10.1017/S1367943000001049; Murua H., 2003, Journal of Northwest Atlantic Fishery Science, V33, P33, DOI 10.2960/J.v33.a3; Myers RA, 1997, CAN J FISH AQUAT SCI, V54, P1, DOI 10.1139/f96-262; Nelson G. A., 2017, FISHMETHODS FISHERY; Ogle D. H., 2017, FSA FISHERIES STOCK; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Palkovacs EP, 2012, EVOL APPL, V5, P183, DOI 10.1111/j.1752-4571.2011.00212.x; ROBERTSON DR, 1983, ENVIRON BIOL FISH, V9, P193, DOI 10.1007/BF00692372; Rose GA, 2015, CAN J FISH AQUAT SCI, V72, P1789, DOI 10.1139/cjfas-2015-0346; Russ Garry R., 2002, P421, DOI 10.1016/B978-012615185-5/50024-4; Russ GR, 1998, CORAL REEFS, V17, P399, DOI 10.1007/s003380050146; RUSS GR, 1989, MAR ECOL PROG SER, V56, P13, DOI 10.3354/meps056013; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Soykan CU, 2015, CONSERV BIOL, V29, P775, DOI 10.1111/cobi.12445; Stockwell CA, 2003, TRENDS ECOL EVOL, V18, P94, DOI 10.1016/S0169-5347(02)00044-7; Stokes K, 2000, MAR ECOL PROG SER, V208, P307; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; Taborsky B, 2003, P ROY SOC B-BIOL SCI, V270, P713, DOI 10.1098/rspb.2002.2255; Trexler JC, 2000, B MAR SCI, V66, P853; Uusi-Heikkila S, 2015, EVOL APPL, V8, P597, DOI 10.1111/eva.12268; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x 75 0 0 5 8 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One FEB 22 2018 13 2 e0193426 10.1371/journal.pone.0193426 15 Multidisciplinary Sciences Science & Technology - Other Topics FX1SB WOS:000425831000053 29470525 DOAJ Gold, Green Published 2019-02-21 J Albertson, LK; Ouellet, V; Daniels, MD Albertson, Lindsey K.; Ouellet, Valerie; Daniels, Melinda D. Impacts of stream riparian buffer land use on water temperature and food availability for fish JOURNAL OF FRESHWATER ECOLOGY English Article Riparian zone; macroinvertebrates; insects; salmonids; brook trout; restoration; food web TROUT SALVELINUS-FONTINALIS; NATIVE BROOK TROUT; CLIMATE-CHANGE; BROWN TROUT; HEADWATER STREAMS; TROPHIC MISMATCH; URBAN STREAMS; PREY SIZE; TERRESTRIAL; SUBSIDIES Restoration of degraded freshwater ecosystems has gained considerable attention in the USA over the past decades. However, most projects focus almost entirely on the restoration of physical habitat or specific water quality parameters, while ignoring critical ecological processes related to food web re-establishment. In this study, we investigate the impact of riparian habitat in different stages of restoration on food availability for fish in four streams in Pennsylvania, USA. The riparian buffer habitats ranged from open meadow to mature forest and included new to long-term restoration sites. We quantified abundance and community composition of aquatic macroinvertebrates and riparian arthropods with aerial and ground-dwelling life history strategies. We found that riparian habitat and water temperature exert a strong influence over potential food resources for fish, with the open meadow habitat having highest abundance of terrestrial and aquatic insects, lowest taxa richness, and possible multivoltine aquatic insect life-history. Our results provide insight into the importance of riparian buffer habitat and water temperature on the composition of food availability for fish species of concern such as brook trout. The significant differences emphasize the need to include food web dynamics into riparian habitat restoration design to guide future rehabilitation projects focusing on fish conservation. [Albertson, Lindsey K.; Ouellet, Valerie; Daniels, Melinda D.] Stroud Water Res Ctr, Avondale, PA 19311 USA; [Albertson, Lindsey K.] Montana State Univ, Ecol Dept, Bozeman, MT 59717 USA; [Ouellet, Valerie] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England Ouellet, V (reprint author), Stroud Water Res Ctr, Avondale, PA 19311 USA.; Ouellet, V (reprint author), Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England. valeria.ouellet@gmail.com Ouellet, Valerie/I-3914-2018 Ouellet, Valerie/0000-0001-7410-1857; Daniels, Melinda/0000-0002-1577-3597 Stroud Water Research Center; Fonds de recherche du Quebec - Nature et technologies; National Science Foundation [DEB LTREB 1052716-1557063, REU 1550821]; Montana State University Stroud Water Research Center, Montana State University, the Fonds de recherche du Quebec - Nature et technologies, and National Science Foundation [grant number DEB LTREB 1052716-1557063], [grant number REU 1550821]. Alliance for the Chesapeake Bay (ACB), 2015, CHES BAY RIP FOR BUF; Baxter CV, 2005, FRESHWATER BIOL, V50, P201, DOI 10.1111/j.1365-2427.2004.01328.x; Beechie T, 2008, N AM J FISH MANAGE, V28, P891, DOI 10.1577/M06-174.1; Benke Arthur C., 2006, P691; Bernhardt ES, 2005, SCIENCE, V308, P636, DOI 10.1126/science.1109769; Bernot MJ, 2010, FRESHWATER BIOL, V55, P1874, DOI 10.1111/j.1365-2427.2010.02422.x; Biktashev VN, 2003, J PLANKTON RES, V25, P21, DOI 10.1093/plankt/25.1.21; Blann K, 2002, N AM J FISH MANAGE, V22, P441, DOI 10.1577/1548-8675(2002)022<0441:RORBTT>2.0.CO;2; Booth DB, 2005, J N AM BENTHOL SOC, V24, P724, DOI 10.1899/0887-3593(2005)024\[0724:CAPFRU\]2.0.CO;2; Booth DB, 2016, WATER-SUI, V8, DOI 10.3390/w8050174; Bradshaw WE, 2006, SCIENCE, V312, P1477, DOI 10.1126/science.1127000; Briers RA, 2004, HYDROL EARTH SYST SC, V8, P545, DOI 10.5194/hess-8-545-2004; Burke DM, 1998, AUK, V115, P96, DOI 10.2307/4089115; Carlson SM, 2007, J FISH BIOL, V71, P1430, DOI 10.1111/j.1095-8649.2007.01615.x; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Courtwright J, 2013, FRESHWATER BIOL, V58, P2423, DOI 10.1111/fwb.12221; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; Downing J. A, 1984, MANUAL METHODS ASSES, P1; Edwards M, 2004, NATURE, V430, P881, DOI 10.1038/nature02808; EPA, 2015, EPA600R14475F; FAUSCH KD, 1981, CAN J FISH AQUAT SCI, V38, P1220, DOI 10.1139/f81-164; Flebbe PA, 2006, T AM FISH SOC, V135, P1371, DOI 10.1577/T05-217.1; Haines T, 1982, P INT S AC PREC FISH; Harper MP, 2006, ECOL APPL, V16, P612, DOI 10.1890/1051-0761(2006)016[0612:ECOAMI]2.0.CO;2; Hauer FR, 2007, METHODS STREAM ECOLO; HAYWARD RS, 1987, T AM FISH SOC, V116, P210, DOI 10.1577/1548-8659(1987)116<210:EEOPSA>2.0.CO;2; Henderson P. A., 2016, ECOLOGICAL METHODS; Hudy M, 2008, N AM J FISH MANAGE, V28, P1069, DOI 10.1577/M07-017.1; Humphries P, 2009, BIOSCIENCE, V59, P673, DOI 10.1525/bio.2009.59.8.9; Huston MA, 2014, ECOLOGY, V95, P2382, DOI 10.1890/13-1397.1; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Jellyman PG, 2016, BIOL INVASIONS, V18, P3419, DOI 10.1007/s10530-016-1233-z; Kawaguchi Y, 2003, ECOLOGY, V84, P701, DOI 10.1890/0012-9658(2003)084[0701:TIIDTL]2.0.CO;2; Keeley ER, 2001, CAN J FISH AQUAT SCI, V58, P1122, DOI 10.1139/cjfas-58-6-1122; Lamberti GA, 1997, J N AM BENTHOL SOC, V16, P95, DOI 10.2307/1468241; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; MARTEN PS, 1992, PROG FISH CULT, V54, P1, DOI 10.1577/1548-8640(1992)054<0001:EOTVOT>2.3.CO;2; McCluney KE, 2014, FRONT ECOL ENVIRON, V12, P48, DOI 10.1890/120367; Merritt R. W, 2008, INTRO AQUATIC INSECT; Mulholland PJ, 2001, FRESHWATER BIOL, V46, P1503, DOI 10.1046/j.1365-2427.2001.00773.x; Naiman RJ, 2012, P NATL ACAD SCI USA, V109, P21201, DOI 10.1073/pnas.1213408109; Nakano S, 2001, P NATL ACAD SCI USA, V98, P166, DOI 10.1073/pnas.98.1.166; Nilsson C, 2000, BIOSCIENCE, V50, P783, DOI 10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2; Nislow KH, 2006, FRESHWATER BIOL, V51, P388, DOI 10.1111/j.1365-2427.2005.01492.x; Ouellet V, 2016, P 11 INT S EC FEB 7, P1; Pennsylvania Fish and Boat Commission (PFBC), 2009, STRAT PLAN MAN TROUT; Persson L., 1988, P203; Post E, 2008, PHILOS T R SOC B, V363, P2369, DOI 10.1098/rstb.2007.2207; Reeves GH, 1995, AM FISH SOC S, V17, P234; Rice KC, 2015, CLIMATIC CHANGE, V128, P127, DOI 10.1007/s10584-014-1295-9; Roon DA, 2016, CAN J FISH AQUAT SCI, V73, P1679, DOI 10.1139/cjfas-2015-0548; Seddon PJ, 2007, CONSERV BIOL, V21, P1388; SOTA T, 1988, RES POPUL ECOL, V30, P135, DOI 10.1007/BF02512608; Stewart GB, 2009, ECOL APPL, V19, P931, DOI 10.1890/07-1311.1; Stranko SA, 2012, RESTOR ECOL, V20, P747, DOI 10.1111/j.1526-100X.2011.00824.x; Sweeney B, 1991, GLOB WARM; Sweeney BW, 2014, J AM WATER RESOUR AS, V50, P560, DOI 10.1111/jawr.12203; Sweeney BW, 2004, P NATL ACAD SCI USA, V101, P14132, DOI 10.1073/pnas.0405895101; Utz RM, 2007, T AM FISH SOC, V136, P177, DOI 10.1577/T06-057.1; Van Leeuwen TE, 2016, BEHAV ECOL, V27, P385, DOI 10.1093/beheco/arv163; Wagner T, 2013, T AM FISH SOC, V142, P353, DOI 10.1080/00028487.2012.734892; Wallace JB, 1996, ANNU REV ENTOMOL, V41, P115, DOI 10.1146/annurev.en.41.010196.000555; WARD JV, 1982, ANNU REV ENTOMOL, V27, P97, DOI 10.1146/annurev.en.27.010182.000525; WATERS T F, 1988, Polskie Archiwum Hydrobiologii, V35, P545; Wehrly KE, 2007, T AM FISH SOC, V136, P365, DOI 10.1577/T06-163.1; Weisinger S., 2010, THESIS; Whitaker DM, 2000, CAN J ZOOL, V78, P740, DOI 10.1139/cjz-78-5-740; Wilson MK, 2014, FRESHWATER BIOL, V59, P187, DOI 10.1111/fwb.12257; Wipfli MS, 2010, FISHERIES, V35, P373, DOI 10.1577/1548-8446-35.8.373; Wipfli MS, 1997, CAN J FISH AQUAT SCI, V54, P1259, DOI 10.1139/cjfas-54-6-1259; Xu CL, 2010, J FISH BIOL, V76, P2342, DOI 10.1111/j.1095-8649.2010.02619.x; Yarnell SM, 2010, BIOSCIENCE, V60, P114, DOI 10.1525/bio.2010.60.2.6 72 1 1 6 29 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 0270-5060 2156-6941 J FRESHWATER ECOL J. Freshw. Ecol. FEB 21 2018 33 1 195 210 10.1080/02705060.2017.1422558 16 Ecology; Limnology Environmental Sciences & Ecology; Marine & Freshwater Biology GB0GH WOS:000428723400001 DOAJ Gold 2019-02-21 J Manhart, M; Adkar, BV; Shakhnovich, EI Manhart, Michael; Adkar, Bharat V.; Shakhnovich, Eugene I. Trade-offs between microbial growth phases lead to frequency-dependent and non-transitive selection PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article microbial growth; frequency-dependent selection; coexistence; non-transitive selection LIFE-HISTORY EVOLUTION; ROCK-PAPER-SCISSORS; BACTERIAL-GROWTH; ESCHERICHIA-COLI; EXPERIMENTAL POPULATIONS; ANTIBIOTIC TOLERANCE; K-SELECTION; COMPETITION; COEXISTENCE; RESOURCE Mutations in a microbial population can increase the frequency of a genotype not only by increasing its exponential growth rate, but also by decreasing its lag time or adjusting the yield (resource efficiency). The contribution of multiple life-history traits to selection is a critical question for evolutionary biology as we seek to predict the evolutionary fates of mutations. Here we use a model of microbial growth to show that there are two distinct components of selection corresponding to the growth and lag phases, while the yield modulates their relative importance. The model predicts rich population dynamics when there are trade-offs between phases: multiple strains can coexist or exhibit bistability due to frequencydependent selection, and strains can engage in rock-paper-scissors interactions due to non-transitive selection. We characterize the environmental conditions and patterns of traits necessary to realize these phenomena, which we show to be readily accessible to experiments. Our results provide a theoretical framework for analysing high-throughput measurements of microbial growth traits, especially interpreting the pleiotropy and correlations between traits across mutants. This work also highlights the need for more comprehensive measurements of selection in simple microbial systems, where the concept of an ordinary fitness landscape breaks down. [Manhart, Michael; Adkar, Bharat V.; Shakhnovich, Eugene I.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA Shakhnovich, EI (reprint author), Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. shakhnovich@chemistry.harvard.edu Adkar, Bharat/0000-0002-9168-051X; Manhart, Michael/0000-0003-3791-9056; Shakhnovich, Eugene/0000-0002-4769-2265 NIH [F32 GM116217, R01 GM068670] This work was supported by NIH awards F32 GM116217 to M.M. and R01 GM068670 to E.I.S. Adkar BV, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0149; [Anonymous], HEREDITY, V100, P471, DOI [10.1038/sj.hdy, DOI 10.1038/SJ.HDY]; Bachmann H, 2013, P NATL ACAD SCI USA, V110, DOI [10.1073/pnas, DOI 10.1073/PNAS]; BARANYI J, 1994, INT J FOOD MICROBIOL, V23, P277, DOI 10.1016/0168-1605(94)90157-0; Baranyi J, 1998, J THEOR BIOL, V192, P403, DOI 10.1006/jtbi.1998.0673; Buchanan RL, 1997, FOOD MICROBIOL, V14, P313, DOI 10.1006/fmic.1997.0125; CHESSON P, 1990, THEOR POPUL BIOL, V37, P26, DOI 10.1016/0040-5809(90)90025-Q; Chevin LM, 2011, BIOL LETTERS, V7, P210, DOI 10.1098/rsbl.2010.0580; CROW J F, 1970, P591; Edwards KF, 2010, OIKOS, V119, P1201, DOI 10.1111/j.1600-0706.2009.18068.x; Elena SF, 2003, NAT REV GENET, V4, P457, DOI 10.1038/nrg1088; Fitzsimmons JM, 2010, EVOL ECOL, V24, P227, DOI 10.1007/s10682-009-9302-8; Fridman O, 2014, NATURE, V513, P418, DOI 10.1038/nature13469; HARDIN G, 1960, SCIENCE, V131, P1292, DOI 10.1126/science.131.3409.1292; Himeoka Y, 2017, PHYS REV X, V7, DOI 10.1103/PhysRevX.7.021049; JACKSON JBC, 1975, P NATL ACAD SCI USA, V72, P5160, DOI 10.1073/pnas.72.12.5160; Jasmin JN, 2012, EVOLUTION, V66, P3789, DOI 10.1111/j.1558-5646.2012.01711.x; Jasmin JN, 2012, P ROY SOC B-BIOL SCI, V279, P4382, DOI 10.1098/rspb.2012.1659; Kaprelyants AS, 1996, TRENDS MICROBIOL, V4, P237, DOI 10.1016/0966-842X(96)10035-4; Kerr B, 2002, NATURE, V418, P171, DOI 10.1038/nature00823; LEVIN BR, 1972, SCIENCE, V175, P1272, DOI 10.1126/science.175.4027.1272; Levin-Reisman I, 2017, SCIENCE, V355, P826, DOI 10.1126/science.aaj2191; Levin-Reisman I, 2010, NAT METHODS, V7, P737, DOI 10.1038/nmeth.1485; LUCKINBILL LS, 1978, SCIENCE, V202, P1201, DOI 10.1126/science.202.4373.1201; MacLean RC., 2007, THE TRAGEDY OF THE C; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Novak M, 2006, AM NAT, V168, P242, DOI 10.1086/506527; Orr HA, 2009, NAT REV GENET, V10, P531, DOI 10.1038/nrg2603; Pfeiffer T, 2001, SCIENCE, V292, P504, DOI 10.1126/science.1058079; Reding-Roman C, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-016-0050; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Sinervo B, 1996, NATURE, V380, P240, DOI 10.1038/380240a0; Smith HL, 2011, MATH BIOSCI, V229, P149, DOI 10.1016/j.mbs.2010.12.001; STEWART FM, 1973, AM NAT, V107, P171, DOI 10.1086/282825; Swinnen IAM, 2004, INT J FOOD MICROBIOL, V94, P137, DOI 10.1016/j.ijfoodmicro.2004.01.006; Tanaka H, 2017, P NATL ACAD SCI USA, V114, P8452, DOI 10.1073/pnas.1705868114; Turner PE, 1996, ECOLOGY, V77, P2119, DOI 10.2307/2265706; VASI F, 1994, AM NAT, V144, P432, DOI 10.1086/285685; Velicer GJ, 1999, ECOLOGY, V80, P1168, DOI 10.1890/0012-9658(1999)080[1168:ETOUCO]2.0.CO;2; Verhoef HA, 2010, COMMUNITY ECOLOGY PR; Wahl LM, 2015, GENETICS, V200, P309, DOI 10.1534/genetics.114.172890; Wang J, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002041; Warmflash A, 2012, PHYS BIOL, V9, DOI 10.1088/1478-3975/9/5/056001; Warringer J, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002111; Wong WW, 2009, BIOTECHNOL BIOENG, V102, P73, DOI 10.1002/bit.22046; Zackrisson M, 2016, G3-GENES GENOM GENET, V6, P3003, DOI 10.1534/g3.116.032342; Ziv N, 2013, MOL BIOL EVOL, V30, P2568, DOI 10.1093/molbev/mst138; ZWIETERING MH, 1990, APPL ENVIRON MICROB, V56, P1875 48 0 0 1 5 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. FEB 14 2018 285 1872 20172459 10.1098/rspb.2017.2459 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology FX9ZH WOS:000426469200006 29445020 2019-02-21 J Frynta, D; Jancuchova-Laskova, J; Frydlova, P; Landova, E Frynta, Daniel; Jancuchova-Laskova, Jitka; Frydlova, Petra; Landova, Eva A comparative study of growth: different body weight trajectories in three species of the genus Eublepharis and their hybrids SCIENTIFIC REPORTS English Article SEXUAL SIZE DIMORPHISM; INVARIANT CLUTCH SIZE; GECKOS SQUAMATA; LIFE-HISTORY; OREOCHROMIS-NILOTICUS; METABOLIC CAPACITY; INDIVIDUAL GROWTH; GONADAL ANDROGENS; MONITOR LIZARDS; LACERTA-AGILIS An extensive research effort is devoted to the evolution of life-histories and processes underlying the variation in adult body weight; however, in this regard, some animal taxa remain neglected. Here we report rates and timing of growth recorded in two wild-derived populations of a model lizard species, Eublepharis macularius (M, W), other two related species, i.e., E. angramainyu (A) and E. sp. (D), and their between-species hybrids. We detected clear differences among the examined species/populations, which can be interpreted in the terms of "fast-slow" continuum of life-history strategies. The mean asymptotic body size was the highest in A and further decreased in the following order: M, W, and D. In contrast, the growth rate showed an opposite pattern. Counter-intuitively, the largest species exhibited the slowest growth rates. The final body size was determined mainly by the inflexion point. This parameter reflecting the duration of exponential growth increased with mean asymptotic body size and easily overcompensated the effect of decreasing growth rates in larger species. Compared to the parental species, the F-1 and backcross hybrids exhibited intermediate values of growth parameters. Thus, except for the case of the F-2 hybrid of MxA, we failed to detect deleterious effects of hybridization in these animals with temperature sex determination. [Frynta, Daniel; Jancuchova-Laskova, Jitka; Frydlova, Petra; Landova, Eva] Charles Univ Prague, Fac Sci, Dept Zool, Vinicna 7, CZ-12844 Prague 2, Czech Republic; [Landova, Eva] Natl Inst Mental Hlth, Topolova 748, CZ-25067 Klecany, Czech Republic Frydlova, P (reprint author), Charles Univ Prague, Fac Sci, Dept Zool, Vinicna 7, CZ-12844 Prague 2, Czech Republic. petra.frydlova@seznam.cz SVV project [260 434 / 2017]; Grant Agency of Charles University [754213]; Grant Agency of Czech Republic [17-15991 S] We would like to thank Veronika Musilova, Pavlina Sevcikova and Petra Suchomelova for taking care for animals, Klara Palupcikova and Barbora Somerova Opelkova for preliminary genetic analyses of the examined geckos, Lukas Kratochvil, Pavel Munclinger, Ivan Rehak and Petr Kodym for discussions and encouragement. We are grateful to Barbora Zampachova for critical reading and valuable comments and Jakub Polak and Silvie Radlova for proofreading and English improvements. The research was supported by the SVV project (260 434 / 2017), Grant Agency of Charles University (No. 754213) and Grant Agency of Czech Republic (17-15991 S). Abbott R, 2013, J EVOLUTION BIOL, V26, P229, DOI 10.1111/j.1420-9101.2012.02599.x; Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x; Anderson S. C., 1999, CONTRIBUTIONS HERPET, V15; Arnold ML, 1997, NATURAL HYBRIDIZATIO; Bartley DM, 2000, REV FISH BIOL FISHER, V10, P325, DOI 10.1023/A:1016691725361; Bennett P., 2002, EVOLUTIONARY ECOLOGY; Bertalanffy L von, 1934, ARCH ENTWICKLUNGMECH, V131, P613, DOI DOI 10.1007/BF00650112(1934; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Boback SM, 2003, COPEIA, P81, DOI 10.1643/0045-8511(2003)003[0081:BSEISE]2.0.CO;2; Bosworth B, 2014, AQUACULTURE, V420, P147, DOI 10.1016/j.aquaculture.2013.10.026; BRADSHAW SD, 1971, J ZOOL, V165, P1; Bragg WK, 2000, BIOL J LINN SOC, V69, P319, DOI 10.1006/bijl.1999.0359; BULL JJ, 1988, J EVOLUTION BIOL, V1, P177, DOI 10.1046/j.1420-9101.1988.1020177.x; Burke JM, 2001, ANNU REV GENET, V35, P31, DOI 10.1146/annurev.genet.35.102401.085719; Chen ZJ, 2013, NAT REV GENET, V14, P471, DOI 10.1038/nrg3503; Clark TD, 2005, AM J PHYSIOL-REG I, V288, pR992, DOI 10.1152/ajpregu.00593.2004; Coomber P, 1997, J COMP NEUROL, V380, P409, DOI 10.1002/(SICI)1096-9861(19970414)380:3<409::AID-CNE9>3.0.CO;2-6; Cox RM, 2009, J EVOLUTION BIOL, V22, P1586, DOI 10.1111/j.1420-9101.2009.01772.x; Cox RM, 2005, J EXP BIOL, V208, P4679, DOI 10.1242/jeb.01948; Crews D, 1996, HORM BEHAV, V30, P474, DOI 10.1006/hbeh.1996.0051; Crews D, 1997, BRAIN RES, V758, P169, DOI 10.1016/S0006-8993(97)00222-9; Czerniejewski P, 2011, ACTA ICHTHYOL PISCAT, V41, P215, DOI 10.3750/AIP2011.41.3.09; Darwin C, 1871, DESCENT MAN SELECTIO; de Verdal H, 2014, AQUACULTURE, V430, P159, DOI 10.1016/j.aquaculture.2014.03.051; Dittrich-Reed DR, 2013, EVOL BIOL, V40, P310, DOI 10.1007/s11692-012-9209-0; Dobzhansky T, 1936, GENETICS, V21, P113; Dobzhansky T, 1937, GENETICS ORIGIN SPEC, V11; DUNHAM AE, 1978, ECOLOGY, V59, P770, DOI 10.2307/1938781; DUTTA H, 1994, GERONTOLOGY, V40, P97, DOI 10.1159/000213581; EKLUND J, 1977, NATURE, V265, P48, DOI 10.1038/265048b0; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; Flores DL, 1995, HORM BEHAV, V29, P458, DOI 10.1006/hbeh.1995.1277; Fossen I, 1999, ICES J MAR SCI, V56, P689, DOI 10.1006/jmsc.1999.0486; Frydlova P, 2013, INTEGR ZOOL, V8, P39, DOI 10.1111/j.1749-4877.2012.00295.x; Frynta Daniel, 1997, Acta Societatis Zoologicae Bohemicae, V61, P3; Frynta D, 2010, ZOOL SCI, V27, P917, DOI 10.2108/zsj.27.917; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Guarino FM, 2010, ACTA HERPETOL, V5, P23; Haenel GJ, 2002, OIKOS, V96, P70, DOI 10.1034/j.1600-0706.2002.10915.x; Hatfield T, 1999, EVOLUTION, V53, P866, DOI 10.1111/j.1558-5646.1999.tb05380.x; Jancuchova-Laskova J., 2015, PLOS ONE, V10; Jancuchova-Laskova J, 2015, CURR ZOOL, V61, P155; Johnson JI, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106014; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kratochvil L, 2006, J ZOOL SYST EVOL RES, V44, P217, DOI 10.1111/j.1439-0469.2005.00339.x; Kratochvil L, 2003, FOLIA ZOOL, V52, P317; Kratochvil L, 2002, BIOL J LINN SOC, V76, P303, DOI 10.1046/j.1095-8312.2002.00064.x; Kratochvil L, 2007, FUNCT ECOL, V21, P171, DOI 10.1111/j.1365-2435.2006.01202.x; Kratochvil L, 2006, BIOL J LINN SOC, V88, P527, DOI 10.1111/j.1095-8312.2006.00627.x; Kubicka L, 2017, J EXP BIOL, V220, P787, DOI 10.1242/jeb.146597; Kubicka L, 2015, GEN COMP ENDOCR, V224, P273, DOI 10.1016/j.ygcen.2015.09.028; Kubicka L, 2013, GEN COMP ENDOCR, V188, P183, DOI 10.1016/j.ygcen.2013.03.016; Landova E, 2016, CURR ZOOL, V62, P439, DOI 10.1093/cz/zow050; Landova E, 2013, BEHAV ECOL SOCIOBIOL, V67, P1113, DOI 10.1007/s00265-013-1536-3; Lee R. M., 1912, ICES J MAR SCI, V1, P3, DOI [10.1093/icesjms/s1.63.3, DOI 10.1093/ICESJMS/S1.63.3]; Lee RM, 1921, NATURE, V106, P49; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lui JC, 2011, ENDOCR REV, V32, P422, DOI 10.1210/er.2011-0001; Mangel M, 2001, EVOL ECOL RES, V3, P583; Mayr E., 1963, ANIMAL SPECIES EVOLU; Montanari SR, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173212; Muller H. J., 1942, BIOL S, V6, P185; Muller H. J., 1940, NEW SYSTEMATICS, P185; Odierna G, 2001, ECOGRAPHY, V24, P332, DOI 10.1034/j.1600-0587.2001.240311.x; Olsson M, 2002, EVOLUTION, V56, P1867; PALOHEIMO JE, 1965, J FISH RES BOARD CAN, V22, P521, DOI 10.1139/f65-048; PARKER RR, 1959, J FISH RES BOARD CAN, V16, P721, DOI 10.1139/f59-052; Pfennig KS, 2007, SCIENCE, V318, P965, DOI 10.1126/science.1146035; Pokorna M, 2010, CHROMOSOME RES, V18, P809, DOI 10.1007/s10577-010-9154-7; Pokorna M, 2009, ZOOL J LINN SOC-LOND, V156, P168, DOI 10.1111/j.1096-3642.2008.00481.x; Roitberg ES, 2006, HERPETOL J, V16, P133; Rykena S, 2002, MERTENSIELLA, V13, P78; Schilthuizen M, 2011, HEREDITY, V107, P95, DOI 10.1038/hdy.2010.170; Schmidt-Nielsen K, 1984, SCALING WHY IS ANIMA; SCHOENER TW, 1978, COPEIA, P390, DOI 10.2307/1443602; SEUFER H, 2005, EYELASH GECKOS CARE; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; Starck JM, 1998, AVIAN GROWTH DEV EVO; Starostova Z, 2005, FUNCT ECOL, V19, P744, DOI 10.1111/j.1365-2435.2005.01020.x; Starostova Z, 2008, ZOOLOGY, V111, P377, DOI 10.1016/j.zool.2007.10.005; Starostova Z, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064715; Starostova Z, 2013, J EXP BIOL, V216, P1872, DOI 10.1242/jeb.079442; Starostova Z, 2009, AM NAT, V174, pE100, DOI 10.1086/603610; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Taylor IG, 2013, FISH RES, V142, P75, DOI 10.1016/j.fishres.2012.08.021; Turelli M, 2000, GENETICS, V154, P1663; WAGNER E, 1980, Q REV BIOL, V55, P21; Walker TI, 1998, FISH RES, V39, P139, DOI 10.1016/S0165-7836(98)00180-5; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Willis PM, 2013, ACTA ETHOL, V16, P127, DOI 10.1007/s10211-013-0144-6; Winsor CP, 1932, P NATL ACAD SCI USA, V18, P1, DOI 10.1073/pnas.18.1.1; Yan BA, 2010, AQUAC RES, V41, pe336, DOI 10.1111/j.1365-2109.2010.02542.x 93 0 0 3 6 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep FEB 8 2018 8 2658 10.1038/s41598-018-19864-3 11 Multidisciplinary Sciences Science & Technology - Other Topics FV3DV WOS:000424449100036 29422546 DOAJ Gold 2019-02-21 J Chen, LJ; Zhu, L; Hu, YB; Liu, PF; Lyu, N; Sun, YH Chen, Lijun; Zhu, Lei; Hu, Yunbiao; Liu, Pengfei; Lyu, Nan; Sun, Yuehua The breeding biology of endemic Spectacled Parrotbill (Sinosuthora conspicillatus) in Lianhuashan National Nature Reserve, Gansu Province, China AVIAN RESEARCH English Article Reproduction; Paradoxornithidae; Nest description; Brood size; Egg size; Nest survival LIFE-HISTORY EVOLUTION; AVIAN SUPERFAMILY SYLVIOIDEA; EGG-COLOR; THROATED PARROTBILL; PARADOXORNIS-HEUDEI; HABITAT; WAWUSHAN; SUCCESS; SICHUAN; AVES Background: Life history traits play critical roles in population survival and evolution. Breeding information should be particularly detailed in order to provide significant insights into the population status and the evolution of other traits. To our knowledge, there is still no information about the breeding biology of Spectacled Parrotbill (Sinosuthora conspicillatus), an endemic parrotbill in China. Methods: We searched the nests, checked all nests found and recorded the information of eggs, nestlings and nest sites of the Spectacled Parrotbill from 2013 to 2015 at Lianhuashan National Nature Reserve in Gansu Province, China. Results: A total of 16 nests were found. Nest trees were artificial young spruces and honeysuckles. Mean nest height was 0.89 +/- 0.47 m (n = 16) above the ground level. All nests were cup-shaped and constructed using leaves, fine strips of barks and grasses by both parents. The mean clutch size was 4.42 +/- 0.79 (n = 12). The eggs were oval in pale blue without speckles, and the mean egg mass was 1.25 +/- 0.07 g (n = 27). The egg length was 15.56 +/- 0.46 mm (n = 27) and the width was 12.46 +/- 0.29 mm (n = 27). Incubation period was 13 days and nestling period was 13-14 days. The breeding success rate was 46%, and among those failed nest, 71% were depredated and 29% were deserted. Conclusion: Detailed life history information about parrotbill is still limited. The breeding biology of Spectacled Parrotbill reported in the present study should be helpful for further research about population, breeding behavior and conservation of this bird. [Chen, Lijun; Hu, Yunbiao; Liu, Pengfei; Lyu, Nan; Sun, Yuehua] Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing 100101, Peoples R China; [Chen, Lijun] Chinese Acad Sci, Inst Zool, State Key Lab Integrated Management Pest Insects, Beijing 100101, Peoples R China; [Zhu, Lei] Chengdu Bird Watching Soc, Chengdu 610041, Sichuan, Peoples R China Sun, YH (reprint author), Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing 100101, Peoples R China. sunyh@ioz.ac.cn National Natural Science Foundation of China [31472012, 31270468] Our study was supported by the National Natural Science Foundation of China (31472012, 31270468). Alstrom P, 2006, MOL PHYLOGENET EVOL, V38, P381, DOI 10.1016/j.ympev.2005.05.015; Alstrom Per, 2013, Chinese Birds, V4, P99; Boulord A, 2011, BIRD CONSERV INT, V21, P25, DOI 10.1017/S0959270910000109; Chen LJ, 2016, ORNITHOL SCI, V15, P119; [董斌 Dong Bin], 2010, [生态学报, Acta Ecologica Sinica], V30, P4351; Guo Zong-ming, 2006, Sichuan Journal of Zoology, V25, P858; Hu YB, 2017, J ORNITHOL, V158, P1111, DOI 10.1007/s10336-017-1476-1; Hu YB, 2014, J NAT HIST, V48, P975, DOI 10.1080/00222933.2013.826829; Jiang YX, 2009, WILSON J ORNITHOL, V121, P800, DOI 10.1676/08-154.1; Julliard R, 2006, ECOL LETT, V9, P1237, DOI 10.1111/j.1461-0248.2006.00977.x; Kim CH, 1995, AUK, V112, P831; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lee Jin-Won, 2012, Chinese Birds, V3, P312; Lee JW, 2010, J ORNITHOL, V151, P483, DOI 10.1007/s10336-009-0484-1; LEI FM, 2006, CHINA ENDEMIC BIRDS; Li Sheng, 2014, Chinese Journal of Zoology, V49, P435; MARTIN TE, 1993, J FIELD ORNITHOL, V64, P507; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Moreno J, 2003, ECOL LETT, V6, P803, DOI 10.1046/j.1461-0248.2003.00505.x; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Robson C, 2014, HDB BIRDS WORLD ALIV; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Sun YH, 2008, NATURE LIANHUASHAN N; Underwood TJ, 2002, OX ORN SER, V13, P280; WANG Z, 1988, Zoological Research, V9, P216; Warren MS, 2001, NATURE, V414, P65, DOI 10.1038/35102054; Xiong LH, 2013, FORKTAIL, P64; Yang CC, 2011, J NAT HIST, V45, P1817, DOI 10.1080/00222933.2011.560969; Yang C, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015383; Yeung CKL, 2011, MOL PHYLOGENET EVOL, V61, P192, DOI 10.1016/j.ympev.2011.06.004; Zhao ZJ, 2001, HDB BIRDS CHINA PASS; Zheng G, 2017, CHECKLIST CLASSIFICA; Zhu L, 2014, STUDIES CONSERVATION 35 0 0 1 5 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 2053-7166 AVIAN RES Avian Res. FEB 8 2018 9 5 10.1186/s40657-018-0097-6 6 Ornithology Zoology FV3OM WOS:000424477800001 DOAJ Gold 2019-02-21 J Kavanagh, PS; Kahl, BL Kavanagh, Phillip S.; Kahl, Bianca L. Are Expectations the Missing Link between Life History Strategies and Psychopathology? FRONTIERS IN PSYCHOLOGY English Article life history theory; psychopathology; evolutionary psychology; expectations; mismatch; predicative adaptive responses CHILDHOOD ADVERSITY; EXECUTIVE FUNCTION; RISK-TAKING; STRESS; MODEL; PERSONALITY; PERSPECTIVE; PLASTICITY; EVOLUTION; TRAITS Despite advances in knowledge and thinking about using life history theory to explain psychopathology there is still a missing link. That is, we all have a life history strategy, but not all of us develop mental health problems. We propose that the missing link is expectations - a mismatch between expected environmental conditions (including social) set by variations in life history strategies and the current environmental conditions. The mismatch hypothesis has been applied at the biological level in terms of health and disease and we believe that it can also be applied more broadly at the psychological level in terms of perceived expectations in the social environment and the resulting distress psychopathology- that manifests when our expectations are not met. [Kavanagh, Phillip S.] ISN Psychol, Inst Social Neurosci, Heidelberg, Vic, Australia; [Kavanagh, Phillip S.] Florey Inst Neurosci & Mental Hlth, Heidelberg, Vic, Australia; [Kavanagh, Phillip S.; Kahl, Bianca L.] Univ South Australia, Sch Psychol Social Work & Social Policy, Adelaide, SA, Australia Kavanagh, PS (reprint author), ISN Psychol, Inst Social Neurosci, Heidelberg, Vic, Australia.; Kavanagh, PS (reprint author), Florey Inst Neurosci & Mental Hlth, Heidelberg, Vic, Australia.; Kavanagh, PS (reprint author), Univ South Australia, Sch Psychol Social Work & Social Policy, Adelaide, SA, Australia. pkavanagh@isn.edu.au Kahl, Bianca/0000-0002-7194-3060 Altshuler DM, 2015, NATURE, V526, P68, DOI 10.1038/nature15393; American Psychiatric Association, 2013, DIAGN STAT MAN MENT, DOI [10.1176/appi.books.9780890425596, DOI 10.1176/APPI.BOOKS.9780890425596]; Beck AT, 2016, CLIN PSYCHOL SCI, V4, P596, DOI 10.1177/2167702616628523; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Cabeza de Baca T., 2016, EVOLUTIONARY BEHAV S, V10, P43, DOI DOI 10.1037/EBS0000056; Champagne DL, 2008, J NEUROSCI, V28, P6037, DOI 10.1523/JNEUROSCI.0526-08.2008; Champagne DL, 2009, SEMIN FETAL NEONAT M, V14, P136, DOI 10.1016/j.siny.2008.11.006; Collins NL, 2004, J PERS SOC PSYCHOL, V87, P363, DOI 10.1037/0022-3514.87.3.363; Daskalakis NP, 2012, PHYSIOL BEHAV, V106, P707, DOI 10.1016/j.physbeh.2012.01.015; Del Giudice M., 2016, DEV PSYCHOPATHOL, V2, P1, DOI [DOI 10.1002/9781119125556.DEVPSY201, 10.1002/9781119125556.devpsy201]; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Del Giudice M, 2016, CLIN PSYCHOL SCI, V4, P299, DOI 10.1177/2167702615583628; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2014, EVOL HUM BEHAV, V35, P415, DOI 10.1016/j.evolhumbehav.2014.05.007; Ellegren H, 2008, NATURE, V452, P169, DOI 10.1038/nature06737; Ellis B. J., 2017, CHILD ADOLESCENT PSY; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fagiolini M, 2009, CURR OPIN NEUROBIOL, V19, P207, DOI 10.1016/j.conb.2009.05.009; Figueredo A. J., 2017, EVOL BEHAV SCI, V12, P1, DOI [10.1037/ebs0000101, DOI 10.1037/EBS0000101]; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Gluckman PD, 2008, INT J OBESITY, V32, pS62, DOI 10.1038/ijo.2008.240; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hill E., 2008, J SOCIO-ECON, V37, P1381, DOI DOI 10.1016/J.S0CEC.2006.12.081; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill SE, 2016, PSYCHOL SCI, V27, P354, DOI 10.1177/0956797615621901; Hurst JE, 2017, EVOL HUM BEHAV, V38, P1, DOI 10.1016/j.evolhumbehav.2016.06.001; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Kavanagh P. S., 2016, ENCY EVOLUTIONARY PS, P1, DOI DOI 10.1007/978-3-319-16999-6_1914-1; Kruger DJ, 2013, AM J HUM BIOL, V25, P225, DOI 10.1002/ajhb.22369; Kudinova AY, 2016, J ABNORM PSYCHOL, V125, P482, DOI 10.1037/abn0000158; Laucht M, 2000, J AM ACAD CHILD PSY, V39, P1229, DOI 10.1097/00004583-200010000-00009; Lee YS, 2009, ANN ACAD MED SINGAP, V38, P45; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; McGowan PO, 2009, NAT NEUROSCI, V12, P342, DOI 10.1038/nn.2270; Mitropoulou V, 2004, SCHIZOPHR RES, V70, P27, DOI 10.1016/j.schres.2003.10.008; Mittal C, 2015, J PERS SOC PSYCHOL, V109, P604, DOI 10.1037/pspi0000028; Morrison S. F., 2011, CENTRAL NERVOUS SYST; Nesse RM, 2005, EVOL HUM BEHAV, V26, P88, DOI 10.1016/j.evolhumbehav.2004.08.002; Nettle D, 2006, P ROY SOC B-BIOL SCI, V273, P611, DOI 10.1098/rspb.2005.3349; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Oomen CA, 2010, J NEUROSCI, V30, P6635, DOI 10.1523/JNEUROSCI.0247-10.2010; Pajer K, 2012, TRANSL PSYCHIAT, V2, DOI 10.1038/tp.2012.26; Reser JE, 2007, MED HYPOTHESES, V69, P383, DOI 10.1016/j.mehy.2006.12.031; Ross LT, 2002, SOC BEHAV PERSONAL, V30, P453, DOI 10.2224/sbp.2002.30.5.453; Schmidt MV, 2011, PSYCHONEUROENDOCRINO, V36, P330, DOI 10.1016/j.psyneuen.2010.07.001; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Sung S, 2016, PSYCHOL SCI, V27, P667, DOI 10.1177/0956797616631958; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004; Woodley of Menie M. A., 2017, EVOL PSYCHOL SCI, V3, P109, DOI [10.1007/s40806-016-0077-1, DOI 10.1007/S40806-016-0077-1]; Zilioli S, 2016, PSYCHOL SCI, V27, P1249, DOI 10.1177/0956797616658287 58 0 0 1 4 FRONTIERS MEDIA SA LAUSANNE PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND 1664-1078 FRONT PSYCHOL Front. Psychol. FEB 6 2018 9 89 10.3389/fpsyg.2018.00089 7 Psychology, Multidisciplinary Psychology FV0NF WOS:000424252600002 29467701 DOAJ Gold, Green Published 2019-02-21 J Peck, MA; Arvanitidis, C; Butenschon, M; Canu, DM; Chatzinikolaou, E; Cucco, A; Domenici, P; Fernandes, JA; Gasche, L; Huebert, KB; Hufnagl, M; Jones, MC; Kempf, A; Keyl, F; Maar, M; Mahevas, S; Marchal, P; Nicolas, D; Pinnegar, JK; Rivot, E; Rochette, S; Sell, AF; Sinerchia, M; Solidoro, C; Somerfield, PJ; Teal, LR; Travers-Trolet, M; van de Wolfshaar, KE Peck, Myron A.; Arvanitidis, Christos; Butenschon, Momme; Canu, Donata Melaku; Chatzinikolaou, Eva; Cucco, Andrea; Domenici, Paolo; Fernandes, Jose A.; Gasche, Loic; Huebert, Klaus B.; Hufnagl, Marc; Jones, Miranda C.; Kempf, Alexander; Keyl, Friedemann; Maar, Marie; Mahevas, Stephanie; Marchal, Paul; Nicolas, Deiphine; Pinnegar, John K.; Rivot, Etienne; Rochette, Sebastien; Sell, Anne F.; Sinerchia, Matteo; Solidoro, Cosimo; Somerfield, Paul J.; Teal, Lorna R.; Travers-Trolet, Morgan; van de Wolfshaar, Karen E. Projecting changes in the distribution and productivity of living marine resources: A critical review of the suite of modelling approaches used in the large European project VECTORS ESTUARINE COASTAL AND SHELF SCIENCE English Review Distribution; Modelling; Habitat; Resources; Man-induced effects CLIMATE-CHANGE IMPACTS; INDIVIDUAL-BASED MODEL; SMALL PELAGIC FISH; FOOD-WEB MODEL; TO-END MODELS; NORTH-SEA; ECOSYSTEM MODELS; ISIS-FISH; CONSERVATION PHYSIOLOGY; SPECIES DISTRIBUTIONS We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling. (C) 2016 Elsevier Ltd. All rights reserved. [Peck, Myron A.; Huebert, Klaus B.; Hufnagl, Marc] Univ Hamburg, Inst Hydrobiol & Fisheries Sci, Olbersweg 24, D-22767 Hamburg, Germany; [Arvanitidis, Christos; Chatzinikolaou, Eva] Inst Marine Biol Biotechnol & Aquaculture, Hellen Ctr Marine Res, POB 2214, Iraklion 71003, Crete, Greece; [Butenschon, Momme; Fernandes, Jose A.; Somerfield, Paul J.] Plymouth Marine Lab, Prospect Pl, Plymouth PL13 DH, Devon, England; [Canu, Donata Melaku; Solidoro, Cosimo] OGS Ist Nazl Oceanog & Geofis Sperimentale, Borgo Grotta Gigante 42-C, I-34010 Sgonico, TS, Italy; [Cucco, Andrea; Domenici, Paolo; Sinerchia, Matteo] IAMC, CNR, Loc Sa Mardini, I-09170 Torregrande, Italy; [Gasche, Loic; Mahevas, Stephanie] IFREMER, Unite Ecol & Modeles Halieut, Rue Lile Yeu,BP21105, F-44311 Nantes, France; [Jones, Miranda C.; Pinnegar, John K.] Ctr Environm Fisheries & Aquaculture Sci, Lowestoft NR33 0HT, Suffolk, England; [Kempf, Alexander; Keyl, Friedemann; Sell, Anne F.] Inst Sea Fisheries, Thunen Inst, Palmaille 9, D-22767 Hamburg, Germany; [Maar, Marie] Univ Aarhus, Dept Biosci, Frederiksbotgvej 399,POB 358, DK-4000 Roskilde, Denmark; [Marchal, Paul; Travers-Trolet, Morgan] IFREMER, Lab Fishery Resources, 150 Quai Gambetta,BP 699, F-62321 Boulogne Sur Mer, France; [Nicolas, Deiphine] SAHIFOS, Lab, Citadel Hill, Plymouth PL1 2PB, Devon, England; [Rivot, Etienne] ESE Ecol & Ecosystem Hlth, UMR 985, Agrocampus Ouest, F-35042 Rennes, France; [Rochette, Sebastien] IFREMER, Unite Dynam Environm Cotier, Lab Applicat Geomat, BP 70, F-29280 Plouzane, France; [Teal, Lorna R.; van de Wolfshaar, Karen E.] Inst Marine Resources & Ecosyst Studies, Haringkade 1, Ijmuiden, Netherlands; [Huebert, Klaus B.] Univ Maryland, Ctr Environm Sci, Horn Point Lab, POB 775, Cambridge, MD 21613 USA; [Jones, Miranda C.] Univ British Columbia, Fisheries Ctr, Vancouver, BC, Canada Peck, MA (reprint author), Univ Hamburg, Inst Hydrobiol & Fisheries Sci, Olbersweg 24, D-22767 Hamburg, Germany. myron.peck@uni-hamburg.de Maar, Marie/C-5837-2008; Chatzinikolaou, Eva/G-9439-2011; Huebert, Klaus/G-2362-2011 Maar, Marie/0000-0001-8594-2993; Chatzinikolaou, Eva/0000-0002-7171-5105; Huebert, Klaus/0000-0002-2432-7337; Peck, Myron/0000-0001-7423-1854; Arvanitidis, Christos/0000-0002-6924-5255; Travers-Trolet, Morgane/0000-0003-1493-662X European Union [266445]; UK Natural Environment Research Council; Department for Environment, Food and Rural Affairs [NE/L003279/1] The research leading to these results has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration (FP7/2007-2013) within the Ocean of Tomorrow call under Grant Agreement No.266445 for the project Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors (VECTORS). This work is also a contribution to the EU Cost Action FA1004 "Conservation Physiology". PS acknowledges support from the UK Natural Environment Research Council and Department for Environment, Food and Rural Affairs [grant number NE/L003279/1, Marine Ecosystems Research Programme. The authors wish to thank Drs. Jason Link, Elizabeth Fulton and Oivind Fiksen as well as an anonymous reviewer for their helpful comments on an earlier version of this manuscript. This work also benefitted from discussions among members of the ICES Working Group on Integrated Physical biological and Ecosystem Modelling (WGIPEM) and the ICES-PICES Strategic Initiative on Climate Change Impacts on Marine Ecosystems (SICCME). Allen JI, 2007, J MARINE SYST, V64, P3, DOI 10.1016/j.jmarsys.2006.02.010; Allen JI, 2001, SARSIA, V86, P423, DOI 10.1080/00364827.2001.10420484; Altieri AH, 2008, ECOLOGY, V89, P2808, DOI 10.1890/07-0994.1; Anderson BJ, 2009, P ROY SOC B-BIOL SCI, V276, P1415, DOI 10.1098/rspb.2008.1681; Barange M., 2009, CLIMATE CHANGE IMPLI, P7; Bax N, 2003, MAR POLICY, V27, P313, DOI 10.1016/S0308-597X(03)00041-1; Beare DJ, 2004, MAR ECOL PROG SER, V284, P269, DOI 10.3354/meps284269; Beaugrand G, 2003, GLOBAL CHANGE BIOL, V9, P801, DOI 10.1046/j.1365-2486.2003.00632.x; Beaugrand G, 2003, NATURE, V426, P661, DOI 10.1038/nature02164; Blanchard J. L., 2011, THEORETICAL ECOLOGY, V4, P1; Blanchard JL, 2012, PHILOS T R SOC B, V367, P2979, DOI 10.1098/rstb.2012.0231; Brodeur RD, 2011, INTERDISCIPLINARY ST, P57; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Canu DM, 2010, CLIM RES, V42, P13, DOI 10.3354/cr00859; Cheung WWL, 2011, ICES J MAR SCI, V68, P1008, DOI 10.1093/icesjms/fsr012; Cheung WWL, 2009, FISH FISH, V10, P235, DOI 10.1111/j.1467-2979.2008.00315.x; Chown SL, 2007, P R SOC B, V274, P2531, DOI 10.1098/rspb.2007.0772; Christensen V, 2004, ECOL MODEL, V172, P109, DOI 10.1016/j.ecolmodel.2003.09.003; Christensen V, 2014, ECOSYSTEMS, V17, P1397, DOI 10.1007/s10021-014-9803-3; Clark Robin A., 2001, Environmental Reviews, V9, P131, DOI 10.1139/er-9-3-131; Cooke SJ, 2012, PHILOS T R SOC B, V367, P1757, DOI 10.1098/rstb.2012.0022; Cucco A, 2012, ECOL MODEL, V237, P132, DOI 10.1016/j.ecolmodel.2012.04.019; Daewel U, 2008, J PLANKTON RES, V30, P1, DOI 10.1093/plankt/fbm094; Daewel U, 2014, ICES J MAR SCI, V71, P254, DOI 10.1093/icesjms/fst125; Daewel U, 2011, CAN J FISH AQUAT SCI, V68, P426, DOI 10.1139/F10-164; Degnbol P., 2002, IIFET 2002; Diaz RJ, 2008, SCIENCE, V321, P926, DOI 10.1126/science.1156401; Doney SC, 2010, SCIENCE, V328, P1512, DOI 10.1126/science.1185198; Dulvy NK, 2008, J APPL ECOL, V45, P1029, DOI 10.1111/j.1365-2664.2008.01488.x; Durbin AG, 1998, ESTUARIES, V21, P449, DOI 10.2307/1352843; FAO, 2007, STAT WORLD FISH AQ 2; FAO, 2008, FAO FISH TECH GUI S2, V4; Fernandes JA, 2013, GLOBAL CHANGE BIOL, V19, P2596, DOI 10.1111/gcb.12231; Fernandes JA, 2013, ENVIRON MODELL SOFTW, V40, P245, DOI 10.1016/j.envsoft.2012.10.001; Fielding AH, 1997, ENVIRON CONSERV, V24, P38, DOI 10.1017/S0376892997000088; Frank KT, 2005, SCIENCE, V308, P1621, DOI 10.1126/science.1113075; Freitas V, 2010, PHILOS T R SOC B, V365, P3553, DOI 10.1098/rstb.2010.0049; Fry F.E.J., 1971, P1; Fry F.E.J., 1957, PHYSIOL FISHES, P1; Fulton EA, 2011, ICES J MAR SCI, V68, P1329, DOI 10.1093/icesjms/fsr032; Fulton EA, 2003, MAR ECOL PROG SER, V253, P1, DOI 10.3354/meps253001; Fulton EA, 2011, FISH FISH, V12, P171, DOI 10.1111/j.1467-2979.2011.00412.x; Fulton EA, 2010, J MARINE SYST, V81, P171, DOI 10.1016/j.jmarsys.2009.12.012; Galil BS, 2014, ETHOL ECOL EVOL, V26, P152, DOI 10.1080/03949370.2014.897651; Garcia S. M, 2003, 443 FAO; Gardmark A, 2013, ECOL APPL, V23, P742, DOI 10.1890/12-0267.1; Gasche L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077566; Gaston KJ, 1999, OIKOS, V84, P353, DOI 10.2307/3546417; Griffith GP, 2012, CONSERV BIOL, V26, P1145, DOI 10.1111/j.1523-1739.2012.01937.x; Guenette S, 2006, CAN J FISH AQUAT SCI, V63, P2495, DOI 10.1139/F06-136; Hanson P.C., 1997, WISCUT97001 U WISC S; Hare SR, 2000, PROG OCEANOGR, V47, P103, DOI 10.1016/S0079-6611(00)00033-1; Hengl T., 2009, PRACTICAL GUIDE GEOS; Herborg LM, 2007, ECOL APPL, V17, P663, DOI 10.1890/06-0239; Hiddink JG, 2015, GLOBAL CHANGE BIOL, V21, P117, DOI 10.1111/gcb.12726; Hobbs RJ, 2009, TRENDS ECOL EVOL, V24, P599, DOI 10.1016/j.tree.2009.05.012; Hufnagl M, 2015, PROG OCEANOGR, V138, P486, DOI 10.1016/j.pocean.2014.04.029; Hufnagl M, 2011, ICES J MAR SCI, V68, P1170, DOI 10.1093/icesjms/fsr078; Hulme P. E., 2008, HDB EUROPEAN ALIEN S; Hunt GL, 2002, DEEP-SEA RES PT II, V49, P5821, DOI 10.1016/S0967-0645(02)00321-1; Huntley B, 2010, ECOGRAPHY, V33, P621, DOI 10.1111/j.1600-0587.2009.06023.x; Huret M, 2013, J MARINE SYST, V109, pS77, DOI 10.1016/j.jmarsys.2012.02.009; Huse G, 2008, CLIMATIC CHANGE, V87, P177, DOI 10.1007/s10584-007-9347-z; Hyder K, 2015, MAR POLICY, V61, P291, DOI 10.1016/j.marpol.2015.07.015; IPCC, 2013, CLIMATE CHANGE 2013; Jackson DJ, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-2; Jennings S, 2008, P ROY SOC B-BIOL SCI, V275, P1375, DOI 10.1098/rspb.2008.0192; Jennings S, 2010, J MARINE SYST, V79, P418, DOI 10.1016/j.jmarsys.2008.12.016; Jolliff JK, 2009, J MARINE SYST, V76, P64, DOI 10.1016/j.jmarsys.2008.05.014; Jones M. C., 2014, ICES J MAR SCI; Jones MC, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054216; Jones MC, 2012, ECOL MODEL, V225, P133, DOI 10.1016/j.ecolmodel.2011.11.003; Jorgensen C., 2012, BIOL LETT; Kaplan I. C., 2012, FISH FISH; Kempf A, 2013, FISH OCEANOGR, V22, P174, DOI 10.1111/fog.12013; KERR SR, 2001, BIOMASS SPECTRUM PRE; Kishi MJ, 2011, J OCEANOGR, V67, P3, DOI 10.1007/s10872-011-0009-4; Koenigstein S, 2016, FISH FISH, V17, P972, DOI 10.1111/faf.12155; Kooijman S. A. L. M, 2010, DYNAMIC ENERGY BUDGE; Kraus G, 2002, CAN J FISH AQUAT SCI, V59, P1908, DOI 10.1139/F02-159; Kuhn W, 2008, J MARINE SYST, V74, P329, DOI 10.1016/j.jmarsys.2008.02.002; Lam VWY, 2012, AFR J MAR SCI, V34, P103, DOI 10.2989/1814232X.2012.673294; Lehodey P, 2008, PROG OCEANOGR, V78, P304, DOI 10.1016/j.pocean.2008.06.004; Lehuta S., 2013, CAN J FISH AQUATIC S, V70, P2013; Lehuta S, 2013, FISH RES, V143, P57, DOI 10.1016/j.fishres.2013.01.008; Lehuta S, 2010, ICES J MAR SCI, V67, P1063, DOI 10.1093/icesjms/fsq002; Libralato S., 2012, FOOD WEB TRAITS PROT, V143, P2182; Lindeboom HJ, 2011, ENVIRON RES LETT, V6, DOI 10.1088/1748-9326/6/3/035101; Littell JS, 2010, CLIMATIC CHANGE, V102, P129, DOI 10.1007/s10584-010-9858-x; Llope M, 2012, GLOBAL CHANGE BIOL, V18, P106, DOI 10.1111/j.1365-2486.2011.02492.x; Luisetti T, 2011, OCEAN COAST MANAGE, V54, P212, DOI 10.1016/j.ocecoaman.2010.11.003; Mackinson S, 2009, ECOL MODEL, V220, P2972, DOI 10.1016/j.ecolmodel.2008.10.021; Mahevas S, 2004, ECOL MODEL, V171, P65, DOI 10.1016/j.ecolmodel.2003.04.001; Marshall C. T., 2000, CAN J FISH AQUAT SCI, V57, P1; Marzloff M, 2009, J MARINE SYST, V75, P290, DOI 10.1016/j.jmarsys.2008.10.009; Maunder MN, 2006, ICES J MAR SCI, V63, P969, DOI 10.1016/j.icesjms.2006.03.016; Merino G, 2012, GLOBAL ENVIRON CHANG, V22, P795, DOI 10.1016/j.gloenvcha.2012.03.003; Merino G, 2010, J MARINE SYST, V81, P196, DOI 10.1016/j.jmarsys.2009.12.010; Metcalfe JD, 2012, PHILOS T R SOC B, V367, P1746, DOI 10.1098/rstb.2012.0017; Metcalfe K, 2015, J APPL ECOL, V52, P665, DOI 10.1111/1365-2664.12404; Milly PCD, 2008, SCIENCE, V319, P573, DOI 10.1126/science.1151915; Moller KO, 2012, MAR ECOL PROG SER, V468, P57, DOI 10.3354/meps09984; Morzaria-Luna HN, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042917; Mueter FJ, 2006, PROG OCEANOGR, V68, P152, DOI 10.1016/j.pocean.2006.02.012; Nicolas D, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0088447; Nisbet RM, 2012, J EXP BIOL, V215, P892, DOI 10.1242/jeb.059675; O'Connor MI, 2007, P NATL ACAD SCI USA, V104, P1266, DOI 10.1073/pnas.0603422104; Parent E., 2012, INTRO HIERARCHICAL B; Pearce J, 2000, ECOL MODEL, V133, P225, DOI 10.1016/S0304-3800(00)00322-7; Pearson RG, 2003, GLOBAL ECOL BIOGEOGR, V12, P361, DOI 10.1046/j.1466-822X.2003.00042.x; Peck MA, 2013, PROG OCEANOGR, V116, P220, DOI 10.1016/j.pocean.2013.05.012; Peck MA, 2012, J MARINE SYST, V93, P77, DOI 10.1016/j.jmarsys.2011.08.005; Pelletier D, 2009, ECOL MODEL, V220, P1013, DOI 10.1016/j.ecolmodel.2009.01.007; Perry AL, 2005, SCIENCE, V308, P1912, DOI 10.1126/science.1111322; Perry RI, 2010, J MARINE SYST, V79, P427, DOI 10.1016/j.jmarsys.2008.12.017; Petitgas P, 2013, FISH OCEANOGR, V22, P121, DOI 10.1111/fog.12010; Petitgas P, 2012, MAR ECOL PROG SER, V444, P1, DOI 10.3354/meps09451; Phillips SJ, 2008, ECOGRAPHY, V31, P161, DOI 10.1111/j.0906-7590.2008.5203.x; Pikitch EK, 2004, SCIENCE, V305, P346, DOI 10.1126/science.1098222; Pinnegar JK, 2014, ECOL MODEL, V272, P379, DOI 10.1016/j.ecolmodel.2013.09.027; Piroddi C, 2015, ECOL INDIC, V58, P175, DOI 10.1016/j.ecolind.2015.05.037; Plaganyi E. E., 2007, FAO FISHERIES TECHNI, P108; Planque B, 2011, ICES J MAR SCI, V68, P1045, DOI 10.1093/icesjms/fsr007; Planque B, 2011, FISH OCEANOGR, V20, P1, DOI 10.1111/j.1365-2419.2010.00546.x; PLATT T, 1977, HELGOLAND WISS MEER, V30, P575, DOI 10.1007/BF02207862; Portner HO, 2010, J FISH BIOL, V77, P1745, DOI 10.1111/j.1095-8649.2010.02783.x; Portner HO, 2007, SCIENCE, V315, P95, DOI 10.1126/science.1135471; Portner HO, 2012, MAR ECOL PROG SER, V470, P273, DOI 10.3354/meps10123; Rabalais NN, 2010, BIOGEOSCIENCES, V7, P585, DOI 10.5194/bg-7-585-2010; Rijnsdorp AD, 2009, ICES J MAR SCI, V66, P1570, DOI 10.1093/icesjms/fsp056; Robinson LM, 2011, GLOBAL ECOL BIOGEOGR, V20, P789, DOI 10.1111/j.1466-8238.2010.00636.x; Rochette S, 2013, ECOL APPL, V23, P1659, DOI 10.1890/12-0336.1; Rombouts I, 2013, ECOL INDIC, V24, P353, DOI 10.1016/j.ecolind.2012.07.001; Rose KA, 1999, MAR ECOL PROG SER, V185, P113, DOI 10.3354/meps185113; Rose KA, 2015, PROG OCEANOGR, V138, P348, DOI 10.1016/j.pocean.2015.01.012; Rose KA, 2010, MAR COAST FISH, V2, P115, DOI 10.1577/C09-059.1; Sarah SL, 2015, MAR POLICY, V51, P281, DOI 10.1016/j.marpol.2014.08.017; Seebacher F, 2012, PHILOS T R SOC B, V367, P1607, DOI 10.1098/rstb.2012.0036; SHELDON RW, 1972, LIMNOL OCEANOGR, V17, P327, DOI 10.4319/lo.1972.17.3.0327; Shin YJ, 2004, AFR J MAR SCI, V26, P95, DOI 10.2989/18142320409504052; Shin YJ, 2001, AQUAT LIVING RESOUR, V14, P65, DOI 10.1016/S0990-7440(01)01106-8; Shurin JB, 2002, ECOL LETT, V5, P785, DOI 10.1046/j.1461-0248.2002.00381.x; Simpson SD, 2011, CURR BIOL, V21, P1565, DOI 10.1016/j.cub.2011.08.016; Soberon J, 2007, ECOL LETT, V10, P1115, DOI 10.1111/j.1461-0248.2007.01107.x; Solidoro C, 2000, MAR ECOL PROG SER, V199, P137, DOI 10.3354/meps199137; Speirs DC, 2010, FISH RES, V106, P474, DOI 10.1016/j.fishres.2010.09.023; Steenbeek J, 2013, ECOL MODEL, V263, P139, DOI 10.1016/j.ecolmodel.2013.04.027; Stips A, 2004, OCEAN DYNAM, V54, P266, DOI 10.1007/s10236-003-0077-0; Stock CA, 2011, PROG OCEANOGR, V88, P1, DOI 10.1016/j.pocean.2010.09.001; Sugihara G, 2012, SCIENCE, V338, P496, DOI 10.1126/science.1227079; Sumaila UR, 2011, NAT CLIM CHANGE, V1, P449, DOI 10.1038/NCLIMATE1301; Sunday JM, 2012, NAT CLIM CHANGE, V2, P686, DOI 10.1038/NCLIMATE1539; Sundby S, 2000, SARSIA, V85, P277, DOI 10.1080/00364827.2000.10414580; Sykes MT, 1996, J BIOGEOGR, V23, P203; Taylor AH, 2002, NATURE, V416, P629, DOI 10.1038/416629a; Teal L, 2016, ESTUAR COAS IN PRESS; Teal LR, 2012, GLOBAL CHANGE BIOL, V18, P3291, DOI 10.1111/j.1365-2486.2012.02795.x; Temming A, 2007, ECOSYSTEMS, V10, P865, DOI 10.1007/s10021-007-9066-3; Thomas L, 2005, AUST NZ J STAT, V47, P19, DOI 10.1111/j.1467-842X.2005.00369.x; Thuiller W, 2003, GLOBAL CHANGE BIOL, V9, P1353, DOI 10.1046/j.1365-2486.2003.00666.x; Travers M, 2007, PROG OCEANOGR, V75, P751, DOI 10.1016/j.pocean.2007.08.001; Travers M, 2010, J MARINE SYST, V79, P101, DOI 10.1016/j.jmarsys.2009.07.005; Travers M, 2009, ECOL MODEL, V220, P3089, DOI 10.1016/j.ecolmodel.2009.08.016; van der Veer HW, 2009, J SEA RES, V62, P83, DOI 10.1016/j.seares.2009.02.001; VECTORS, 2014, 422 VECTORS; Walters C, 2008, B MAR SCI, V83, P251; Werner FE, 2001, SARSIA, V86, P411, DOI 10.1080/00364827.2001.10420483; Yemane D, 2009, ICES J MAR SCI, V66, P378, DOI 10.1093/icesjms/fsn171 168 13 13 18 37 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0272-7714 1096-0015 ESTUAR COAST SHELF S Estuar. Coast. Shelf Sci. FEB 5 2018 201 SI 40 55 10.1016/j.ecss.2016.05.019 16 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography FY9TP WOS:000427210100005 2019-02-21 J Ostbye, K; Taugbol, A; Ravinet, M; Harrod, C; Pettersen, RA; Bernatchez, L; Vollestad, LA Ostbye, Kjartan; Taugbol, Annette; Ravinet, Mark; Harrod, Chris; Pettersen, Ruben Alexander; Bernatchez, Louis; Vollestad, Leif Asbjorn Ongoing niche differentiation under high gene flow in a polymorphic brackish water threespine stickleback (Gasterosteus aculeatus) population BMC EVOLUTIONARY BIOLOGY English Article Adaptation; Ectodysplasin; Evolution; Gill raker; Natural selection; Panmixia; Stable isotope analyses; Stn382; Theristina gasterostei; Trematoda spp NEIGHBOR-JOINING METHOD; BALTIC SEA; 3-SPINED STICKLEBACK; CRYPTOCOTYLE-CONCAVUM; NATURAL-SELECTION; ECTODYSPLASIN ALLELES; PARALLEL EVOLUTION; ADAPTIVE VARIATION; ARMOR REDUCTION; LIFE-HISTORY Background: Marine threespine sticklebacks colonized and adapted to brackish and freshwater environments since the last Pleistocene glacial. Throughout the Holarctic, three lateral plate morphs are observed; the low, partial and completely plated morph. We test if the three plate morphs in the brackish water Lake Engervann, Norway, differ in body size, trophic morphology (gill raker number and length), niche (stable isotopes; delta N-15, delta C-13, and parasites (Theristina gasterostei, Trematoda spp.)), genetic structure (microsatellites) and the lateral-plate encoding Stn382 (Ectodysplasin) gene. We examine differences temporally (autumn 2006/spring 2007) and spatially (upper/lower sections of the lake -reflecting low versus high salinity). Results: All morphs belonged to one gene pool. The complete morph was larger than the low plated, with the partial morph intermediate. The number of lateral plates ranged 8-71, with means of 64.2 for complete, 40.3 for partial, and 14.9 for low plated morph. Stickleback delta N-15 was higher in the lower lake section, while delta C-13 was higher in the upper section. Stickleback isotopic values were greater in autumn. The low plated morph had larger variances in delta N-15 and delta C-13 than the other morphs. Sticklebacks in the upper section had more T. gasterostei than in the lower section which had more Trematoda spp. Sticklebacks had less T. gasterostei, but more Trematoda spp. in autumn than spring. Sticklebacks with few and short rakers had more T. gasterostei, while sticklebacks with longer rakers had more Trematoda. spp. Stickleback with higher delta N-15 values had more T. gasterostei, while sticklebacks with higher delta N-15 and delta C-13 values had more Trematoda spp. The low plated morph had fewer Trematoda spp. than other morphs. Conclusions: Trait-ecology associations may imply that the three lateral plate morphs in the brackish water lagoon of Lake Engervann are experiencing ongoing divergent selection for niche and migratory life history strategies under high gene flow. As such, the brackish water zone may generally act as a generator of genomic diversity to be selected upon in the different environments where threespine sticklebacks can live. [Ostbye, Kjartan] Inland Norway Univ Appl Sci, Dept Forestry & Wildlife Management, Campus Evenstad, NO-2418 Elverum, Norway; [Ostbye, Kjartan; Ravinet, Mark; Pettersen, Ruben Alexander; Vollestad, Leif Asbjorn] Univ Oslo, Dept Biosci, CEES, POB 1066, N-0316 Oslo, Norway; [Taugbol, Annette] Norwegian Inst Nat Res NINA, N-2624 Lillehammer, Norway; [Harrod, Chris] Max Planck Inst Limnol, Dept Physiol Ecol, Postfach 165, D-24302 Plon, Germany; [Harrod, Chris] Univ Antofagasta, Fish & Stable Isotope Ecol Lab, Inst Ciencias Nat Alexander Von Humbolt, Ave Angamos 601, Antofagasta, Chile; [Bernatchez, Louis] Univ Laval, Dept Biol, Pavillon Charles Eugene Marchand 1030,Ave Med, Quebec City, PQ G1V 0A6, Canada Ostbye, K (reprint author), Inland Norway Univ Appl Sci, Dept Forestry & Wildlife Management, Campus Evenstad, NO-2418 Elverum, Norway.; Ostbye, K (reprint author), Univ Oslo, Dept Biosci, CEES, POB 1066, N-0316 Oslo, Norway. kjartan.ostbye@ibv.uic.no Harrod, Chris/A-8830-2008 Harrod, Chris/0000-0002-5353-1556 Research Council of Norway [170755/V20] This study was financially supported by the Research Council of Norway (grant no 170755/V20 to LAV). Antao T, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-323; BANBURA J, 1989, ZOOL SCR, V18, P157, DOI 10.1111/j.1463-6409.1989.tb00129.x; Barrett RDH, 2008, SCIENCE, V322, P255, DOI 10.1126/science.1159978; Barrett RDH, 2011, P ROY SOC B-BIOL SCI, V278, P233, DOI 10.1098/rspb.2010.0923; Barrett RDH, 2009, BIOL LETTERS, V5, P788, DOI 10.1098/rsbl.2009.0416; Barrett RDH, 2009, EVOLUTION, V63, P2831, DOI 10.1111/j.1558-5646.2009.00762.x; Beaumont MA, 1996, P ROY SOC B-BIOL SCI, V263, P1619, DOI 10.1098/rspb.1996.0237; Bell M. F., 1994, EVOLUTIONARY BIOL TH; Bell MA, 2004, EVOLUTION, V58, P814; Bell MA, 2010, ENVIRON BIOL FISH, V89, P189, DOI 10.1007/s10641-010-9712-z; Bjaerke O, 2010, ECOL FRESHW FISH, V19, P249, DOI 10.1111/j.1600-0633.2010.00409.x; Blegvad H., 1917, REP DAN BIOL STN, V24, P19; Blindheim T, 2005153S SIST SJANS; Borges JN, 2015, FOOD CONTROL, V50, P371, DOI 10.1016/j.foodcont.2014.09.021; Bowles E, 2016, CURR ZOOL, V62, P71, DOI 10.1093/cz/zov007; BREDER C. M., 1960, ZOOLOGICA [NEW YORK], V45, P155; Bykovskaya-Pavlovskaya IE, 1964, KEY PARASITES FRES 1, P180; Colosimo PF, 2005, SCIENCE, V307, P1928, DOI 10.1126/science.1107239; DeFaveri J, 2013, J EVOLUTION BIOL, V26, P1700, DOI 10.1111/jeb.12168; DeFaveri J, 2013, EVOLUTION, V67, P2530, DOI 10.1111/evo.12097; DeFaveri J, 2011, EVOLUTION, V65, P1800, DOI 10.1111/j.1558-5646.2011.01247.x; DELBEEK JC, 1987, J ANIM ECOL, V56, P949, DOI 10.2307/4959; Demchuk A, 2015, J MAR BIOL ASSOC UK, V95, P1635, DOI 10.1017/S0025315415000569; DONOGHUE S, 1986, ANN PARASIT HUM COMP, V61, P673, DOI 10.1051/parasite/1986616673; Dzikowski R, 2004, DIS AQUAT ORGAN, V59, P35, DOI 10.3354/dao059035; Earl DA, 2012, CONSERV GENET RESOUR, V4, P359, DOI 10.1007/s12686-011-9548-7; ElMayas H, 1995, J HELMINTHOL, V69, P285, DOI 10.1017/S0022149X00014851; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x; Greenwood AK, 2016, GENETICS, V203, P677, DOI 10.1534/genetics.116.188342; Grey J, 2000, VERHANDLUNGEN INT VE, V27, P3187; GROSS HP, 1978, CAN J ZOOL, V56, P398, DOI 10.1139/z78-058; Grotan K, 2012, CAN J ZOOL, V90, P1386, DOI 10.1139/cjz-2012-0121; Guo BC, 2015, BMC BIOL, V13, DOI 10.1186/s12915-015-0130-8; HAGEN DW, 1972, EVOLUTION, V26, P32, DOI 10.1111/j.1558-5646.1972.tb00172.x; Halvorsen G, 2005, NINA MINIRAPPORT, V2005, P136; HANEK G, 1969, CAN J ZOOLOG, V47, P627, DOI 10.1139/z69-107; Harrod C, 2005, OECOLOGIA, V144, P673, DOI 10.1007/s00442-005-0161-x; Harrod C, 2010, J ANIM ECOL, V79, P1057, DOI 10.1111/j.1365-2656.2010.01702.x; Hendry AP, 2004, EVOL ECOL RES, V6, P1219; Hendry AP, 2004, EVOLUTION, V58, P2319; Isakov LS, 1966, FISH RES BD CAN TRAN, V780, P1; Jones FC, 2012, CURR BIOL, V22, P83, DOI 10.1016/j.cub.2011.11.045; Kiljunen M, 2006, J APPL ECOL, V43, P1213, DOI 10.1111/j.1365-2664.2006.01224.x; Kitano J, 2008, CURR BIOL, V18, P769, DOI 10.1016/j.cub.2008.04.027; KJENSMO JOHANNES, 1966, SCHWEIZ Z HYDROL, V28, P29, DOI 10.1007/BF02502999; KLEPAKER T, 1995, CAN J ZOOL, V73, P898, DOI 10.1139/z95-105; Klepaker T, 1996, COPEIA, P832; Klepaker TO, 2008, J ZOOL, V276, P81, DOI 10.1111/j.1469-7998.2008.00471.x; Klepaker T, 2012, EVOL ECOL RES, V14, P169; Konijnendijk N, 2015, ECOL EVOL, V5, P4174, DOI 10.1002/ece3.1671; Le Rouzic A, 2011, MOL ECOL, V20, P2483, DOI 10.1111/j.1365-294X.2011.05071.x; LEVSEN A, 1992, Fauna (Oslo), V45, P40; Lucek K, 2012, J HERED, V103, P579, DOI 10.1093/jhered/ess021; Lucek K, 2010, MOL ECOL, V19, P3995, DOI 10.1111/j.1365-294X.2010.04781.x; Marchinko KB, 2007, EVOLUTION, V61, P1084, DOI 10.1111/j.1558-5646.2007.00103.x; McCairns RJS, 2012, J EVOLUTION BIOL, V25, P1097, DOI 10.1111/j.1420-9101.2012.02496.x; Moller H., 1978, Journal of Fish Biology, V12, P311; Morozinska-Gogol J., 1999, BALTIC COAST ZONE, V3, P77; Morozinska-Gogol J., 2000, BALTIC COASTAL ZONE, V4, P87; Morozinska-Gogol J, 2015, OCEANOLOGIA, V57, P280, DOI 10.1016/j.oceano.2015.03.001; Nei M.K.S., 2000, MOL EVOLUTION PHYLOG; Nordstrom MC, 2010, J EXP MAR BIOL ECOL, V391, P101, DOI 10.1016/j.jembe.2010.06.015; Ostbye K, 2016, BMC EVOL BIOL, V16, DOI 10.1186/s12862-016-0676-2; Peddle JC, 2004, THESIS; Peeke HVS, 2000, BEHAVIOUR, V137, P1011, DOI 10.1163/156853900502402; Pinnegar JK, 1999, FUNCT ECOL, V13, P225, DOI 10.1046/j.1365-2435.1999.00301.x; Post DM, 2002, ECOLOGY, V83, P703, DOI 10.2307/3071875; POULIN R, 1987, CAN J ZOOL, V65, P2793, DOI 10.1139/z87-421; Pritchard JK, 2000, GENETICS, V155, P945; Raeymaekers JAM, 2007, MOL ECOL, V16, P891, DOI 10.1111/j.1365-294X.2006.03190.x; Raeymaekers JAM, 2014, MOL ECOL, V23, P162, DOI 10.1111/mec.12582; Ravinet M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0122825; Ravinet M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112404; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; Reichenback-Klinke H, 1965, PRINCIPAL DIS LOWER; REIMCHEN TE, 1983, EVOLUTION, V37, P931, DOI 10.1111/j.1558-5646.1983.tb05622.x; Rennison DJ, 2015, AM NAT, V185, P150, DOI 10.1086/679280; Robertson S, 2017, SCI REP-UK, V7, DOI 10.1038/srep42677; Rybkina EV, 2016, EVOL ECOL RES, V17, P335; RZHETSKY A, 1992, MOL BIOL EVOL, V9, P945; SAITOU N, 1987, MOL BIOL EVOL, V4, P406; Sambrook J., 1989, MOL CLONING LAB MANU; Sanchez-Gonzales S, 2001, ECOL FRESHW FISH, V10, P191, DOI 10.1034/j.1600-0633.2001.100401.x; SAS Institute Inc, 2010, US JMP 9; Savoie VL, 2004, THESIS SAINT MARYS U; Scott T, 1913, BRIT PARASITIC COPEP, VI; Shulman SS, 1953, PARASITES FISHES WHI; SNYDER RJ, 1989, CAN J ZOOL, V67, P2448, DOI 10.1139/z89-345; SNYDER RJ, 1991, ENVIRON BIOL FISH, V31, P381, DOI 10.1007/BF00002363; Spence R, 2013, ECOL EVOL, V3, P1717, DOI 10.1002/ece3.581; Tamura K, 2004, P NATL ACAD SCI USA, V101, P11030, DOI 10.1073/pnas.0404206101; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Taugbol A, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106894; Taylor EB, 2000, P ROY SOC B-BIOL SCI, V267, P2375, DOI 10.1098/rspb.2000.1294; THORMAN S, 1983, MAR ECOL PROG SER, V10, P223, DOI 10.3354/meps010223; THRELFALL W, 1968, CAN J ZOOLOG, V46, P105, DOI 10.1139/z68-016; VALDEZ RA, 1974, T AM FISH SOC, V103, P632, DOI 10.1577/1548-8659(1974)103<632:TPOTSF>2.0.CO;2; van Duijn Jr C, 1967, DIS OF FISHES; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Vennerod K., 1984, METODEBOK LIMNOLOGI, P283; WALKEY M, 1970, J ZOOL, V162, P371; Webster MM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021060; WOOTTON DM, 1957, J PARASITOL, V43, P271, DOI 10.2307/3274345; YAMAGUTI S, 1963, PARASITIC COPEPODA B; Zander CD, 2007, PARASITOL RES, V100, P287, DOI 10.1007/s00436-006-0282-0; ZANDER CD, 1984, HELGOLANDER MEERESUN, V37, P433, DOI 10.1007/BF01989322; Zander CD, 1999, PARASITOL RES, V85, P356, DOI 10.1007/s004360050562; Zander CD, 2002, PARASITOL RES, V88, P734, DOI 10.1007/s00436-002-0652-1; Zietara MS, 2002, PARASITOLOGY, V124, P39, DOI 10.1017/S0031182001008939 110 0 0 5 17 BMC LONDON CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. FEB 5 2018 18 10.1186/s12862-018-1128-y 18 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity FV3IO WOS:000424461700002 29402230 DOAJ Gold, Green Published 2019-02-21 J Hooper, AK; Lehtonen, J; Schwanz, LE; Bonduriansky, R Hooper, Amy K.; Lehtonen, Jussi; Schwanz, Lisa E.; Bonduriansky, Russell Sexual competition and the evolution of condition-dependent ageing EVOLUTION LETTERS English Article Ageing; condition-dependence; resource acquisition; resource allocation; secondary sexual traits; sexual selection ALTERNATIVE REPRODUCTIVE STRATEGIES; SWALLOWS HIRUNDO-RUSTICA; TRADE-OFFS; RESOURCE-ALLOCATION; LIFE-SPAN; RED DEER; SENESCENCE; AGE; SURVIVAL; SELECTION Increased individual resources (condition) can be correlated with either increased or decreased longevity. While variation in resource acquisition and allocation can account for some of this variation, the general conditions that select for either pattern remain unclear. Previous models suggest that nonlinearity of payoffs from investment in reproduction (e.g., male secondary sexual traits) can select for high-condition individuals that sacrifice longevity to increase reproductive opportunity. However, it remains unclear what mating systems or patterns of sexual competition might select for such life-history strategies. We used a model of condition-dependent investment to explore how expected payoffs from increased expression of secondary sexual traits affect optimal investment in lifespan. We find that nonlinearity of these payoffs results in a negative relationship between condition and lifespan under two general conditions: first, when there are accelerating marginal benefits from increasing investment; second, when individuals that invest minimally in secondary sexual trait expression can still achieve matings. In the second scenario, the negative relationship occurs due to selection on low-condition individuals to extend lifespan at the cost of secondary sexual trait expression. Our findings clarify the potential role of sexual selection in shaping patterns of condition-dependent ageing, and highlight the importance of considering the strategies of both low- and high-condition individuals when investigating patterns of condition-dependent ageing. [Hooper, Amy K.; Lehtonen, Jussi; Schwanz, Lisa E.; Bonduriansky, Russell] Univ New South Wales, Evolut & Ecol Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia Hooper, AK (reprint author), Univ New South Wales, Evolut & Ecol Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia. amy.hooper@unsw.edu.au Australian Research Council Future Fellowship This work was funded through an Australian Research Council Future Fellowship to R. B. The authors would like to thank N. Burke and E. Macartney for comments on previous drafts. We are very grateful to H. Kokko, J-F. Lemaitre, and Associate Editor Anne Charmantier for their helpful comments and constructive input. Adler MI, 2014, CSH PERSPECT BIOL, V6, DOI 10.1101/cshperspect.a017566; ANDERSSON M, 1982, BIOL J LINN SOC, V17, P375, DOI 10.1111/j.1095-8312.1982.tb02028.x; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bonduriansky R, 2007, AM NAT, V169, P9, DOI 10.1086/510214; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Clark RA, 1997, ETHOLOGY, V103, P531; Cotton S, 2004, P ROY SOC B-BIOL SCI, V271, P771, DOI 10.1098/rspb.2004.2688; Davison R, 2014, J THEOR BIOL, V360, P251, DOI 10.1016/j.jtbi.2014.07.015; Descamps S, 2016, J EVOLUTION BIOL, V29, P1860, DOI 10.1111/jeb.12901; Dunn PO, 2013, EVOLUTION, V67, P679, DOI 10.1111/j.1558-5646.2012.01799.x; Emlen DJ, 1997, BEHAV ECOL SOCIOBIOL, V41, P335, DOI 10.1007/s002650050393; EMLEN DJ, 1994, P ROY SOC B-BIOL SCI, V256, P131, DOI 10.1098/rspb.1994.0060; Evans MR, 2003, BIOL J LINN SOC, V80, P125, DOI 10.1046/j.1095-8312.2003.00224.x; Faivre B, 2003, SCIENCE, V300, P103, DOI 10.1126/science.1081802; Fromhage L, 2014, EVOLUTION, V68, P1332, DOI 10.1111/evo.12349; Giraudeau M, 2016, BIOL LETTERS, V12, DOI 10.1098/rsbl.2016.0077; Goncalves D, 2003, J FISH BIOL, V63, P528, DOI 10.1046/j.1095-8649.2003.00157.x; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hill GE, 2011, ECOL LETT, V14, P625, DOI 10.1111/j.1461-0248.2011.01622.x; Hooper AK, 2017, EVOLUTION, V71, P671, DOI 10.1111/evo.13172; Hughes KA, 2005, ANNU REV ENTOMOL, V50, P421, DOI 10.1146/annurev.ento.50.071803.130409; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Judge KA, 2008, EVOLUTION, V62, P868, DOI 10.1111/j.1558-5646.2008.00318.x; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kokko H, 2001, ECOL LETT, V4, P322, DOI 10.1046/j.1461-0248.2001.00224.x; Kowald A, 2015, EXP GERONTOL, V71, P89, DOI 10.1016/j.exger.2015.08.006; Kruuk LEB, 2002, EVOLUTION, V56, P1683; LEBOEUF BJ, 1974, AM ZOOL, V14, P163; Lemaitre JF, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.0209; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; Moller AP, 2002, ECOLOGY, V83, P2220, DOI 10.2307/3072053; Munguia-Steyer R, 2010, J EVOLUTION BIOL, V23, P175, DOI 10.1111/j.1420-9101.2009.01894.x; NUR N, 1984, J THEOR BIOL, V110, P275, DOI 10.1016/S0022-5193(84)80059-4; Preston BT, 2011, ECOL LETT, V14, P1017, DOI 10.1111/j.1461-0248.2011.01668.x; Radwan J, 2000, EXP APPL ACAROL, V24, P115, DOI 10.1023/A:1006492903270; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Saino N, 1997, P NATL ACAD SCI USA, V94, P549, DOI 10.1073/pnas.94.2.549; Setchell JM, 2005, ANIM BEHAV, V70, P1105, DOI 10.1016/j.anbehav.2005.02.021; Simmons LW, 2017, TRENDS ECOL EVOL, V32, P964, DOI 10.1016/j.tree.2017.09.011; Simons MJP, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040721; SUTTIE JM, 1983, J ZOOL, V201, P153; Thusius KJ, 2001, ANIM BEHAV, V62, P435, DOI 10.1006/anbe.2001.1758; van den Heuvel J, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0145544; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vinogradov AE, 1998, ACTA BIOTHEOR, V46, P157, DOI 10.1023/A:1001181921303; Zuk M, 1998, Q REV BIOL, V73, P415, DOI 10.1086/420412 54 2 2 2 2 JOHN WILEY & SONS LTD CHICHESTER THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND 2056-3744 EVOL LETT Evol. Lett. FEB 2018 2 1 37 48 10.1002/evl3.36 12 Evolutionary Biology Evolutionary Biology GW3AT WOS:000446762700004 30283663 DOAJ Gold 2019-02-21 J Carrier, TJ; Macrander, J; Reitzel, AM Carrier, Tyler J.; Macrander, Jason; Reitzel, Adam M. A microbial perspective on the life-history evolution of marine invertebrate larvae: If where and when to feed MARINE ECOLOGY-AN EVOLUTIONARY PERSPECTIVE English Review benthic marine invertebrates; dysbiosis; larvae; life-history evolution; microbiome; oceanography SEA-URCHIN LARVAE; DEVELOPMENTAL PLASTICITY; PHENOTYPIC PLASTICITY; OCEAN ACIDIFICATION; HOLOGENOME THEORY; ECHINOID LARVAE; BACTERIA; PHYTOPLANKTON; SYMBIOSIS; DISEASE The feeding environment for planktotrophic larvae has a major impact on development and progression towards competency for metamorphosis. High phytoplankton environments that promote growth and development also correlate with a greater abundance of environmental microbes and incidence of pathogenic microbes, making these habitats potentially risky for larvae. Trade-offs between metabolic processes for growth and immune functionality have been described throughout the animal kingdom and may influence the life-history evolution of marine invertebrate planktotrophic larvae. Specifically, larvae would be predicted to regulate time spent between these feeding environments to avoid potential incidences of microbial-mediated mortality and/or dysbiosis. Using transcriptomic and microbiome data, we provide evidence for this trade-off in larvae of the sea urchin Strongylocentrotus droebachiensis. When cultured in a well-fed environment, larvae upregulate genes associated with metabolism while decreasing the expression of genes associated with immune function. At the same time, the associated bacterial community shifts towards a state of dysbiosis that is followed by mortality. To test whether the environmental micro biota is a selective force on if, where and when planktotrophic larvae should feed, we conclude by presenting a strategy for determining the specific interactions of larvae and microbes at a scale representative of their pelagic environment. [Carrier, Tyler J.; Macrander, Jason; Reitzel, Adam M.] Univ North Carolina Charlotte, Dept Biol Sci, Charlotte, NC 28223 USA Carrier, TJ (reprint author), Univ North Carolina Charlotte, Dept Biol Sci, Charlotte, NC 28223 USA. tcarrie1@uncc.edu National Science Foundation; Human Frontiers Science Program [RGY0079/2016]; North Carolina Sea Grant [2014-1920-23]; Charles Lambert Memorial Endowment at the Friday Harbor Laboratories; Sigma Xi the National Science Foundation; the Human Frontiers Science Program, Grant/Award Number: RGY0079/2016; North Carolina Sea Grant, Grant/Award Number: 2014-1920-23; the Charles Lambert Memorial Endowment at the Friday Harbor Laboratories; Sigma Xi Acha E.M, 2015, ECOLOGICAL PROCESSES; Adams DK, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1603; Alberdi A, 2016, TRENDS ECOL EVOL, V31, P689, DOI 10.1016/j.tree.2016.06.008; Apprill A, 2012, APPL ENVIRON MICROB, V78, P7467, DOI 10.1128/AEM.01232-12; Arellano SM, 2012, J EXP MAR BIOL ECOL, V414, P28, DOI 10.1016/j.jembe.2012.01.008; Azam F, 1998, SCIENCE, V280, P694, DOI 10.1126/science.280.5364.694; Azam F, 2007, NAT REV MICROBIOL, V5, P782, DOI 10.1038/nrmicro1747; Bidigare RR, 1996, DEEP-SEA RES PT II, V43, P809, DOI 10.1016/0967-0645(96)00019-7; BOIDRONMETAIRON IF, 1988, J EXP MAR BIOL ECOL, V119, P31, DOI 10.1016/0022-0981(88)90150-5; Bolger AM, 2014, BIOINFORMATICS, V30, P2114, DOI 10.1093/bioinformatics/btu170; Bordenstein SR, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002226; BROWN MRW, 1985, ANNU REV MICROBIOL, V39, P527, DOI 10.1146/annurev.mi.39.100185.002523; Brum JR, 2015, SCIENCE, V348, DOI 10.1126/science.1261498; Burgess SC, 2016, BIOL REV, V91, P867, DOI 10.1111/brv.12198; Byrne M, 2008, FUNCT ECOL, V22, P643, DOI 10.1111/j.1365-2435.2008.01427.x; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303; Carrier TJ, 2018, EVOLUTIONARY ECOLOGY OF MARINE INVERTEBRATE LARVAE, P1, DOI 10.1093/oso/9780198786962.001.0001; Carrier TJ, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00802; Carrier TJ, 2015, BIOL BULL-US, V228, P171, DOI 10.1086/BBLv228n3p171; Chavez FP, 1996, DEEP-SEA RES PT II, V43, P835, DOI 10.1016/0967-0645(96)00028-8; Cloern JE, 2010, ESTUAR COAST, V33, P230, DOI 10.1007/s12237-009-9195-3; Dekshenieks MM, 2001, MAR ECOL PROG SER, V223, P61, DOI 10.3354/meps223061; Egan S, 2016, FRONT MICROBIOL, V7, DOI [10.3339/fmicb.2016.00997, 10.3389/fmicb.2016.00991]; Feehan C. J., 2018, LIMNOLOGY OCEANOGRAP; Fuchs HL, 2015, J EXP BIOL, V218, P1419, DOI 10.1242/jeb.118562; Galac MR, 2016, MAR BIOL, V163, DOI 10.1007/s00227-016-2938-3; GALLAGER SM, 1994, MAR BIOL, V119, P251, DOI 10.1007/BF00349564; Gaylord B, 2013, P NATL ACAD SCI USA, V110, P6901, DOI 10.1073/pnas.1220680110; Gilbert SF, 2016, CURR TOP DEV BIOL, V116, P415, DOI 10.1016/bs.ctdb.2015.12.006; Gilbert SF, 2015, NAT REV GENET, V16, P611, DOI 10.1038/nrg3982; Gosselin LA, 1997, MAR ECOL PROG SER, V161, P93, DOI 10.3354/meps161093; HART MW, 1994, BIOL BULL, V186, P291, DOI 10.2307/1542275; Harvell CD, 2002, SCIENCE, V296, P2158, DOI 10.1126/science.1063699; Harvell D, 2007, OCEANOGRAPHY, V20, P172, DOI 10.5670/oceanog.2007.91; Hodin J, 2017, EVOLUTIONARY ECOLOGY; Hodin J, 2015, ROY SOC OPEN SCI, V2, DOI 10.1098/rsos.150114; Jaeckle W. B., 1995, ECOLOGY MARINE INVER; Jaeckle W. B., 2017, EVOLUTIONARY ECOLOGY; JEFFRIES VE, 1982, AQUACULTURE, V29, P201, DOI 10.1016/0044-8486(82)90136-3; Kelly MW, 2013, GLOBAL CHANGE BIOL, V19, P2536, DOI 10.1111/gcb.12251; Kinnula H, 2017, EVOL APPL, V10, P462, DOI 10.1111/eva.12466; Lema KA, 2014, MOL ECOL, V23, P4682, DOI 10.1111/mec.12899; Lillis A, 2015, PEERJ, V3, DOI 10.7717/peerj.999; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; MANAHAN DT, 1983, SCIENCE, V220, P204, DOI 10.1126/science.220.4593.204; Marshall DJ, 2012, ANNU REV ECOL EVOL S, V43, P97, DOI 10.1146/annurev-ecolsys-102710-145004; McAlister J. S., 2017, EVOLUTIONARY ECOLOGY; McEdward L, 1995, ECOLOGY MARINE INVER; MCEDWARD LR, 1984, J EXP MAR BIOL ECOL, V82, P259, DOI 10.1016/0022-0981(84)90109-6; McFall-Ngai M, 2013, P NATL ACAD SCI USA, V110, P3229, DOI 10.1073/pnas.1218525110; McFall-Ngai MJ, 2000, CURR OPIN MICROBIOL, V3, P603, DOI 10.1016/S1369-5274(00)00147-8; McFall-Ngai MJ, 2002, DEV BIOL, V242, P1, DOI 10.1006/dbio.2001.0522; MCKENNEY D, 1995, J BACTERIOL, V177, P4140, DOI 10.1128/jb.177.14.4140-4143.1995; Metaxas A, 2009, MAR ECOL PROG SER, V377, P157, DOI 10.3354/meps07835; MILEIKOVSKY SA, 1971, MAR BIOL, V10, P193, DOI 10.1007/BF00352809; Milici M, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.00649; Miner BG, 2005, J EXP MAR BIOL ECOL, V315, P117, DOI 10.1016/j.jembe.2004.09.011; Morgan Steven G., 1995, P279; Mortzfeld BM, 2016, ENVIRON MICROBIOL, V18, P1764, DOI 10.1111/1462-2920.12926; Needham DM, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2016.5, 10.1038/nmicrobiol.2016.5]; Pechenik JA, 1999, MAR ECOL PROG SER, V177, P269, DOI 10.3354/meps177269; Pespeni MH, 2013, P NATL ACAD SCI USA, V110, P6937, DOI 10.1073/pnas.1220673110; RIVKIN RB, 1986, SCIENCE, V233, P1311, DOI 10.1126/science.233.4770.1311; Rosenberg E, 2011, BIRTH DEFECTS RES C, V93, P56, DOI 10.1002/bdrc.20196; Rosenberg E, 2009, ENVIRON MICROBIOL, V11, P2959, DOI 10.1111/j.1462-2920.2009.01995.x; RUMRILL SS, 1990, OPHELIA, V32, P163, DOI 10.1080/00785236.1990.10422030; Schloss PD, 2009, APPL ENVIRON MICROB, V75, P7537, DOI 10.1128/AEM.01541-09; Schwab DB, 2016, AM NAT, V188, P679, DOI 10.1086/688926; Shanks AL, 2009, BIOL BULL-US, V216, P373; SIGNOR PW, 1994, PALEOBIOLOGY, V20, P297; Soars NA, 2009, MAR ECOL PROG SER, V383, P113, DOI 10.3354/meps07848; Stanley JA, 2010, BEHAV ECOL, V21, P113, DOI 10.1093/beheco/arp159; STARR M, 1990, SCIENCE, V247, P1071, DOI 10.1126/science.247.4946.1071; Strathmann MF, 1987, REPROD DEV MARINE IN; Strathmann R.R., 1987, P465; STRATHMANN RR, 1990, AM ZOOL, V30, P197; Strathmann RR, 2006, INTEGR COMP BIOL, V46, P312, DOI 10.1093/icb/icj031; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Sunagawa S, 2015, SCIENCE, V348, DOI 10.1126/science.1261359; Supek F, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021800; Theis KR, 2016, MSYSTEMS, V1, DOI 10.1128/mSystems.00028-16; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Vaughn D, 2010, INTEGR COMP BIOL, V50, P552, DOI 10.1093/icb/icq037; WALKER CW, 1989, MAR BIOL, V103, P519, DOI 10.1007/BF00399584; Webster NS, 2007, ENVIRON MICROBIOL, V9, P1363, DOI 10.1111/j.1462-2920.2007.01303.x; Webster NS, 2011, ENV MICROBIOL REP, V3, P756, DOI 10.1111/j.1758-2229.2011.00296.x; Young C. M., 1987, REPROD MARINE INVERT; Zhang C., 2010, ACTA MICROBIOLOGICA, V49, P631; Zhang JJ, 2014, BIOINFORMATICS, V30, P614, DOI 10.1093/bioinformatics/btt593; Zilber-Rosenberg I, 2008, FEMS MICROBIOL REV, V32, P723, DOI 10.1111/j.1574-6976.2008.00123.x 90 1 1 4 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0173-9565 1439-0485 MAR ECOL-EVOL PERSP Mar. Ecol.-Evol. Persp. FEB 2018 39 1 e12490 10.1111/maec.12490 9 Marine & Freshwater Biology Marine & Freshwater Biology GA5ON WOS:000428383500001 2019-02-21 J Bauer, JT; Koziol, L; Bever, JD Bauer, Jonathan T.; Koziol, Liz; Bever, James D. Ecology of Floristic Quality Assessment: testing for correlations between coefficients of conservatism, species traits and mycorrhizal responsiveness AOB PLANTS English Article Arbuscular mycorrhizal fungi; coefficients of conservatism; disturbance; Floristic Quality Assessment; functional traits; inoculation; succession; tallgrass prairie FUNCTIONAL TRAITS; ECONOMICS SPECTRUM; TALLGRASS PRAIRIE; DEMOGRAPHIC RATES; GROWTH-RATE; SEED SIZE; PLANT; WORLDWIDE; SOIL; PRODUCTIVITY Many plant species are limited to habitats relatively unaffected by anthropogenic disturbance, so protecting these undisturbed habitats is essential for plant conservation. Coefficients of conservatism (C values) were developed as indicators of a species' sensitivity to anthropogenic disturbance, and these values are used in Floristic Quality Assessment as a means of assessing natural areas and ecological restoration. However, assigning of these values is subjective and improved quantitative validation of C values is needed. We tested whether there are consistent differences in life histories between species with high and low C values. To do this, we grew 54 species of tallgrass prairie plants in a greenhouse and measured traits that are associated with trade-offs on the fast-slow continuum of life-history strategies. We also grew plants with and without mycorrhizal fungi as a test of these species' reliance on this mutualism. We compared these traits and mycorrhizal responsiveness to C values. We found that six of the nine traits we measured were correlated with C values, and together, traits predicted up to 50 % of the variation in C values. Traits including fast growth rates and greater investment in reproduction were associated with lower C values, and slow growth rates, long-lived leaves and high root: shoot ratios were associated with higher C values. Additionally, plants with high C values and a slow life history were more responsive to mutualisms with mycorrhizal fungi. Overall, our results connect C values with life-history trade-offs, indicating that high C value species tend to share a suite of traits associated with a slow life history. [Bauer, Jonathan T.] Indiana Univ, Dept Biol, 1001 E 3rd St, Bloomington, IN 47405 USA; [Koziol, Liz; Bever, James D.] Kansas Biol Survey, 2101 Constant Ave, Lawrence, KS 66047 USA; [Bever, James D.] Univ Kansas, Dept Ecol & Evolutionary Biol, 1200 Sunnyside Ave, Lawrence, KS 66045 USA Bauer, JT (reprint author), Indiana Univ, Dept Biol, 1001 E 3rd St, Bloomington, IN 47405 USA. jonathantbauer@gmail.com Agriculture and Food Research Initiative Competitive from the USDA National Institute of Food and Agriculture [2016-67011-25166, 2016-67012-24680]; National Science Foundation [DEB 0919434, 1556664]; SERDP [RC-2330] This project was supported by the Agriculture and Food Research Initiative Competitive Grant Nos. 2016-67011-25166 (L.K.) and 2016-67012-24680 (J.T.B.) from the USDA National Institute of Food and Agriculture. We also acknowledge support from National Science Foundation DEB 0919434 and 1556664 and from SERDP (RC-2330). Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Bauer JT, 2015, ECOSPHERE, V6, DOI 10.1890/ES14-00480.1; Bauer JT, 2012, OECOLOGIA, V170, P1089, DOI 10.1007/s00442-012-2363-3; Bekker RM, 1998, FUNCT ECOL, V12, P834, DOI 10.1046/j.1365-2435.1998.00252.x; Bernthal T.W., 2003, DEV FLORISTIC QUALIT; Bried JT, 2013, ECOL INDIC, V34, P260, DOI 10.1016/j.ecolind.2013.05.012; Bried JT, 2012, NORTHEAST NAT, V19, P101, DOI 10.1656/045.019.s608; Cohen MJ, 2004, ECOL APPL, V14, P784, DOI 10.1890/02-5378; CONNELL JH, 1977, AM NAT, V111, P1119, DOI 10.1086/283241; Craine JM, 2003, PLANT ECOL, V165, P85, DOI 10.1023/A:1021414615001; Diaz S, 2016, NATURE, V529, P167, DOI 10.1038/nature16489; Gustavsson E, 2007, BIOL CONSERV, V138, P47, DOI 10.1016/j.biocon.2007.04.004; Helgason T, 1998, NATURE, V394, P431, DOI 10.1038/28764; Herman KD, 1997, NAT AREA J, V17, P265; Herrera-Peraza RA, 2016, ACTA BOT CUBANA, V215, P232; Hoekstra JM, 2005, ECOL LETT, V8, P23, DOI 10.1111/j.1461-0248.2004.00686.x; Hunt R, 1997, NEW PHYTOL, V135, P395, DOI 10.1046/j.1469-8137.1997.00671.x; Johnson NC, 1997, NEW PHYTOL, V135, P575, DOI 10.1046/j.1469-8137.1997.00729.x; Koziol L, 2017, J APPL ECOL, V54, P1301, DOI 10.1111/1365-2664.12843; Koziol L, 2016, ECOSPHERE, V7, DOI 10.1002/ecs2.1555; Koziol L, 2015, ECOLOGY, V96, P1768, DOI 10.1890/14-2208.1; Martinez-Vilalta J, 2010, J ECOL, V98, P1462, DOI 10.1111/j.1365-2745.2010.01718.x; Matthews JW, 2009, ECOL APPL, V19, P2093, DOI 10.1890/08-1371.1; Matthews JW, 2014, ECOLOGICAL INDICATOR, V52, P1; Middleton EL, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00152.1; Middleton EL, 2012, RESTOR ECOL, V20, P218, DOI 10.1111/j.1526-100X.2010.00752.x; Milburn S. A., 2007, FLORISTIC QUALITY AS; Moeslund JE, 2016, BIORXIV, DOI [10.1101/057315, DOI 10.1101/057315]; MONK C, 1966, B TORREY BOT CLUB, V93, P402, DOI 10.2307/2483412; Perez-Harguindeguy N, 2013, AUST J BOT, V61, P167, DOI 10.1071/BT12225; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Reich PB, 2014, J ECOL, V102, P275, DOI 10.1111/1365-2745.12211; REYNOLDS HL, 1993, AM NAT, V141, P51, DOI 10.1086/285460; Rocchio J, 2007, FLORISTIC QUALITY AS; Rothrock Paul E., 2005, Proceedings of the Indiana Academy of Science, V114, P9; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Smith M, 2005, ECOL APPL, V15, P1036, DOI 10.1890/04-0434; Spyreas G, 2012, J APPL ECOL, V49, P339, DOI 10.1111/j.1365-2664.2011.02100.x; Swink F, 1994, PLANTS CHICAGO REGIO; TAFT J. B., 1997, ERIGENIA, V15, P3; Taft JB, 2006, BIOL CONSERV, V131, P42, DOI 10.1016/j.biocom.2006.02.006; THOMPSON K, 1993, FUNCT ECOL, V7, P236, DOI 10.2307/2389893; TILMAN D, 1985, AM NAT, V125, P827, DOI 10.1086/284382; TILMAN D, 1991, ECOLOGY, V72, P685, DOI 10.2307/2937208; U.S. Army Corps of Engineers Chicago District, 2009, CHIC DISTR CHIC DIST; U.S. Fish and Wildlife Service (USFWS), 1990, DEC FALS AST REC PLA; Vogelsang KM, 2006, NEW PHYTOL, V172, P554, DOI 10.1111/j.1469-8137.2006.01854.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 49 2 2 7 16 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2041-2851 AOB PLANTS Aob Plants FEB 2018 10 1 plx073 10.1093/aobpla/plx073 13 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology FY9ZV WOS:000427226900012 29383232 DOAJ Gold, Green Published 2019-02-21 J Goldmann, L; Weir, A Goldmann, Lauren; Weir, Alex Molecular phylogeny of the Laboulbeniomycetes (Ascomycota) FUNGAL BIOLOGY English Article Insect-associated fungi; Laboulbeniales; Morphology; Phylogeny; SSU rDNA MINUTE ECTOPARASITIC FUNGI; PCR AMPLIFICATION; LABOULBENIALES; DNA; TERMITARIUS; HERPOMYCETINEAE; ULTRASTRUCTURE; PYXIDIOPHORA; EXTRACTION; COLEOPTERA A first molecular-based phylogeny is presented for the Laboulbeniomycetes, a group of ascomycete fungi that utilize arthropods for nutrition and/or dispersal. Morphological diversification and life-history evolution has made it difficult to resolve relationships within the group, and to identify close relatives. Here, we infer a preliminary phylogeny based on acquisition of 51 new SSU rDNA sequences, representing a total of 65 taxa. The results of this study demonstrate that Laboulbeniomycetes is monophyletic, and related to Sordariomycetes. The class could be divided into at least 4 or 5 orders, though we refrain from formally giving names to these at this stage. Further evidence for the occurrence of asexuality within the class is provided by the inclusion of the genera Chantransiopsis and Tetrameronycha. both known only as asexual taxa with thalli consisting of linearly superposed cells. The precise placement of the genus Herpornyces (Herpomycetaceae), on cockroaches, remains unresolved in our analysis, but lies outside of the main Glade of sexually reproducing Laboulbeniales. There is good support for this latter grouping, comprising taxa that are found on both aquatic and terrestrial hosts. Within this large assemblage, we recognize 5 distinct clades (clades E, F, G, H, I). Relationships among the so-called "aquatic genera" (equivalent to Ceratomycetaceae + some Euceratomycetaceae and Zodiomyces) are poorly resolved in our analyses, accounting for 3 of these clades (E, F, G), with the remainder of the taxa (largely equivalent to Laboulbeniaceae) split into two major groupings (clades H. I). Across all taxa, antheridial characteristics, features on which the earliest classifications were based, are shown to be homoplastic. On the other hand, features of perithecial development show an overall trend towards reduction, and appear to be phylogenetically informative. Morphological characters are identified that support the dichotomy in the Laboulbeniaceae and subclades within the two major groupings are discussed further in light of information on thallus morphology, development, and host relationships. (C) 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved. [Goldmann, Lauren] SUNY Coll Cortland, Dept Biol Sci, Cortland, NY 13045 USA; [Weir, Alex] SUNY Coll Environm Sci & Forestry, Dept Environm & Forest Biol, Syracuse, NY 13210 USA Goldmann, L (reprint author), SUNY Coll Cortland, Dept Biol Sci, Cortland, NY 13045 USA. lmgold01@syr.edu United States National Science Foundation Partnerships for Enhancing Expertise in Taxonomy (PEET) program [0529722]; Josiah L. Lowe and Hugh E. Wilcox Graduate Scholarship; Robert A. Zabel Graduate Scholarship; Patricia A. and Jeffrey J. Morrell Scholarship Award; Research Experience for Undergraduate (REU) through the National Science Foundation The authors would like to thank the following for financial support: the United States National Science Foundation Partnerships for Enhancing Expertise in Taxonomy (PEET) program (Grant # 0529722 to A.Weir), Josiah L. Lowe and Hugh E. Wilcox Graduate Scholarship, Robert A. Zabel Graduate Scholarship, and Patricia A. and Jeffrey J. Morrell Scholarship Award (to L. Goldmann). We also thank Walter Rossi for provision of collected material, Monica Hughes, Lisa Thompson, and Jessica Gibson, for provision of collected material and sequence generation and Fred Rainey for sequence generation. Scott Turner for assistance and accommodations in South Africa and Namibia, and Carlos Leon for assistance and accommodations in Costa Rica. We thank the following students for field and laboratory assistance supported by Research Experience for Undergraduate (REU) funding through the National Science Foundation: Rachel Abbott, Darren Card, Carrie Cimo, Rae DeVan, Jessica Ortiz, Hana Pandori, Carol Anne Pugliese, Kim Quell, Amy Reilly, Luke Sarantino, Colin Swider, Eva Sztechmiler, Angela Wright. BENJAMIN R K, 1983, Aliso, V10, P345; BENJAMIN R. K., 1955, ALISO, V3, P183; BENJAMIN R K, 1984, Aliso, V10, P489; BENJAMIN R K, 1981, Aliso, V10, P1; BENJAMIN R K, 1979, Aliso, V9, P379; Benjamin R.K, 1968, ALISO, V6, P47; Benjamin R. K, 1973, FUNGI ADVANCED TREAT, P223; Benjamin R. K., 2001, ALISO, V19, P99; Benjamin R. K., 1971, BIBLIOTHECA MYCOL, V80, P1; Benjamin Richard K., 1998, Aliso, V17, P1; BENJAMIN RK, 1952, AM J BOT, V39, P125, DOI 10.2307/2438179; Benjamin RK, 1970, ALISO, V7, P165; BENJAMINE R K, 1985, Aliso, V11, P127; BLACKWELL M, 1976, MYCOLOGIA, V68, P541, DOI 10.2307/3758977; BLACKWELL M, 1989, CAN J BOT, V67, P2552, DOI 10.1139/b89-330; BLACKWELL M, 1986, SCIENCE, V232, P993, DOI 10.1126/science.232.4753.993; BLACKWELL M, 1994, MYCOLOGIA, V86, P1, DOI 10.2307/3760716; Cepede C., 1907, COMPTES RENDUS ASS F, V2, P778; Goldmann L, 2013, FUNGAL BIOL-UK, V117, P807, DOI 10.1016/j.funbio.2013.10.004; Goldmann L, 2012, MYCOLOGIA, V104, P1143, DOI 10.3852/11-358; Griekspoor A., 2005, 4 PEAKS PROGRAM HELP, V7; Guindon S, 2003, SYST BIOL, V52, P696, DOI 10.1080/10635150390235520; Haelewaters D, 2015, IMA FUNGUS, V6, P363, DOI 10.5598/imafungus.2015.06.02.08; Henk DA, 2003, MYCOLOGIA, V95, P561, DOI 10.2307/3761931; HILL TW, 1977, CAN J BOT, V55, P2015, DOI 10.1139/b77-228; KIMBROUGH JW, 1970, J INVERTEBR PATHOL, V16, P205, DOI 10.1016/0022-2011(70)90061-3; MAJEWSKI T, 1972, Acta Mycologica, V8, P229; Posada D, 1998, BIOINFORMATICS, V14, P817, DOI 10.1093/bioinformatics/14.9.817; Rambaut A, 2014, TRACER V1 6; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; ROSSI W, 1990, MYCOLOGIA, V82, P138, DOI 10.2307/3759975; Santamaria S, 2004, MYCOLOGIA, V96, P761, DOI 10.2307/3762110; Santamaria S, 2001, NOVA HEDWIGIA, V73, P339; Schoch CL, 2012, P NATL ACAD SCI USA, V109, P6241, DOI 10.1073/pnas.1117018109; Schoch CL, 2009, SYST BIOL, V58, P224, DOI 10.1093/sysbio/syp020; Spegazzini C, 1912, ANALES MUSEO NACL HI, V23, P167; Spegazzini C, 1918, AN SOC CIENT ARGENT, V85, P311; SPEGAZZINI C, 1917, ANALES MUS NAC HIST, V29, P445; Stamatakis A, 2014, BIOINFORMATICS, V30, P1312, DOI 10.1093/bioinformatics/btu033; Swofford D. L., 2003, PAUP PHYLOGENETIC AN; TAVARES II, 1980, MYCOTAXON, V11, P485; TAVARES II, 1981, MYCOTAXON, V13, P469; TAVARES II, 1965, MYCOLOGIA, V57, P704, DOI 10.2307/3757007; TAVARES II, 1970, MYCOLOGIA, V62, P741, DOI 10.2307/3757663; Tavares II, 1985, MYCOLOGIA MEMOIR, V9, P1; Thaxter R, 1912, P AM ACAD ARTS SCI, V48, P153; Thaxter R, 1900, P AM ACAD ARTS SCI, V35, P407; Thaxter R., 1924, MEM AM ACAD ARTS, V14, P309, DOI DOI 10.2307/25058114; Thaxter R., 1926, MEM AM ACAD ARTS, V15, P427, DOI DOI 10.2307/25058132; Thaxter R, 1902, P AM ACAD ARTS SCI, V38, P7; THAXTER R, 1896, MEM AM ACAD ARTS, V12, P187, DOI DOI 10.2307/25058114; Thaxter R, 1914, BOT GAZ, V69, P1; Thaxter R., 1908, MEMOIRS AM ACADEMY A, V13, P217, DOI DOI 10.2307/25058090; THAXTER ROLAND, 1931, MEM AMER ACAD ARTS & SCI, V16, P1, DOI 10.2307/25058136; Thaxter R, 1920, BOT GAZ, V69, P1, DOI 10.1086/332606; Venkateswaran K, 2003, J MICROBIOL METH, V52, P367, DOI 10.1016/S0167-7012(02)00192-6; WEIR A, 1995, MYCOL RES, V99, P841, DOI 10.1016/S0953-7562(09)80739-9; Weir A, 1996, MYCOLOGIA, V88, P677, DOI 10.2307/3760962; Weir A, 2001, MYCOL RES, V105, P1182, DOI 10.1016/S0953-7562(08)61989-9; Weir A, 2001, MYCOLOGIA, V93, P802, DOI 10.2307/3761835; Weir A, 1998, MYCOL RES, V102, P327, DOI 10.1017/S0953756297005030; WHISLER HC, 1968, MYCOLOGIA, V60, P65, DOI 10.2307/3757314; White TJ, 1990, PCR PROTOCOLS GUIDE, P315, DOI DOI 10.1016/B978-0-12-372180-8.50042-1 63 2 2 2 6 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 1878-6146 1878-6162 FUNGAL BIOL-UK Fungal Biol. FEB-MAR 2018 122 2-3 87 100 10.1016/j.funbio.2017.11.004 14 Mycology Mycology FY9WB WOS:000427216500001 29458722 2019-02-21 J Tonnabel, J; Schurr, FM; Boucher, F; Thuiller, W; Renaud, J; Douzery, EJP; Ronce, O Tonnabel, Jeanne; Schurr, Frank M.; Boucher, Florian; Thuiller, Wilfried; Renaud, Julien; Douzery, Emmanuel J. P.; Ronce, Ophelie Life-History Traits Evolved Jointly with Climatic Niche and Disturbance Regime in the Genus Leucadendron (Proteaceae) AMERICAN NATURALIST English Article functional traits; niche evolution; comparative analyses; bet hedging; seed bank; fire CANOPY SEED STORAGE; SOUTH-AFRICA; WOODY-PLANTS; STABILIZING SELECTION; BIODIVERSITY HOTSPOT; ADAPTIVE EVOLUTION; EMPIRICAL-EVIDENCE; PERSISTENCE NICHE; NATURAL-SELECTION; FIRE MANAGEMENT Organisms have evolved a diversity of life-history strategies to cope with variation in their environment. Persistence as adults and/or seeds across recruitment events allows species to dampen the effects of environmental fluctuations. The evolution of life cycles with overlapping generations should thus permit the colonization of environments with uncertain recruitment. We tested this hypothesis in Leucadendron (Proteaceae), a genus with high functional diversity native to fire-prone habitats in the South African fynbos. We analyzed the joint evolution of life-history traits (adult survival and seed-bank strategies) and ecological niches (climate and fire regime), using comparative methods and accounting for various sources of uncertainty. In the fynbos, species with canopy seed banks that are unable to survive fire as adults display nonoverlapping generations. In contrast, resprouters with an underground seed bank may be less threatened by extreme climatic events and fire intervals, given their iteroparity and long-lasting seed bank. Life cycles with nonoverlapping generations indeed jointly evolved with niches with less exposure to frost but not with those with less exposure to drought. Canopy seed banks jointly evolved with niches with more predictable fire return, compared to underground seed banks. The evolution of extraordinary functional diversity among fynbos plants thus reflects, at least in part, the diversity of both climates and fire regimes in this region. [Tonnabel, Jeanne; Schurr, Frank M.; Douzery, Emmanuel J. P.; Ronce, Ophelie] Univ Montpellier, CNRS, IRD, Inst Sci Evolut,Unite Mixte Rech 5554,EPHE, Pl Eugene Bataillon, F-34095 Montpellier 05, France; [Tonnabel, Jeanne] Univ Lausanne, Dept Ecol & Evolut, Biophore, Quartier UNIL Sorge, CH-1015 Lausanne, Switzerland; [Schurr, Frank M.] Univ Hohenheim, Inst Landscape & Plant Ecol, D-70593 Stuttgart, Germany; [Boucher, Florian; Thuiller, Wilfried; Renaud, Julien] Univ Grenoble Alpes, Lab Ecol Alpine LECA, F-38000 Grenoble, France; [Boucher, Florian; Thuiller, Wilfried; Renaud, Julien] CNRS, LECA, F-38000 Grenoble, France; [Boucher, Florian] Univ Stellenbosch, Dept Bot & Zool, Private Bag 11, ZA-7602 Matieland, South Africa Tonnabel, J (reprint author), Univ Montpellier, CNRS, IRD, Inst Sci Evolut,Unite Mixte Rech 5554,EPHE, Pl Eugene Bataillon, F-34095 Montpellier 05, France.; Tonnabel, J (reprint author), Univ Lausanne, Dept Ecol & Evolut, Biophore, Quartier UNIL Sorge, CH-1015 Lausanne, Switzerland. jeanne.tonnabel@unil.ch Boucher, Florian C./0000-0002-1151-0028 Ministry of Research and Higher Education; Agence National pour la Recherche project "Evorange" [ANR-09-PEXT-011]; European Research Council under the European Community's Seven Framework Programme FP7 [281422 TEEMBIO]; German Research Foundation (DFG) [SCHU 2259/5-1] In memoriam: Isabelle Olivieri initiated the work of our group on the evolutionary underpinnings of the extraordinary diversity of life history in the fynbos. We are grateful for this and for so many other things that she transmitted to us. For helpful discussions, we thank Sebastien Lavergne, Agnes Mignot, Isabelle Olivieri, Adam Wilson, Jeremy Midgley, Tony Rebelo, Daniele Silvestro, Joern Pagel, and John Pannell. We warmly thank Don Waller for his careful editing of our manuscript and two reviewers for their helpful comments. This work was supported by a PhD grant of the Ministry of Research and Higher Education to J.T., a grant from the Agence National pour la Recherche project "Evorange" (ANR-09-PEXT-011) to O.R. and W.T., a grant from the European Research Council under the European Community's Seven Framework Programme FP7/2007-2013 (281422 TEEMBIO) to W.T., J.R., and F.B., and a grant from the German Research Foundation (DFG; SCHU 2259/5-1) to F.M.S. The calculations were run on the cluster of the Institut des Sciences de l'Evolution-Montpellier (ISEM). This is publication ISEM 2017-189. Auld TD, 2006, PLANT ECOL, V187, P15, DOI 10.1007/s11258-006-9129-0; Barker NP, 2004, MOL PHYLOGENET EVOL, V33, P845, DOI 10.1016/j.ympev.2004.07.007; Beaulieu JM, 2012, EVOLUTION, V66, P2369, DOI 10.1111/j.1558-5646.2012.01619.x; Boettiger C, 2012, EVOLUTION, V66, P2240, DOI 10.1111/j.1558-5646.2011.01574.x; Bond WJ, 2001, TRENDS ECOL EVOL, V16, P45, DOI 10.1016/S0169-5347(00)02033-4; Bond WJ, 2003, S AFR J BOT, V69, P79, DOI 10.1016/S0254-6299(15)30362-8; Bond WJ, 1996, FIRE PLANTS; Boucher FC, 2014, AM NAT, V183, P573, DOI 10.1086/675506; Boucher FC, 2012, EVOLUTION, V66, P1255, DOI 10.1111/j.1558-5646.2011.01483.x; BROWN NAC, 1993, NEW PHYTOL, V123, P575, DOI 10.1111/j.1469-8137.1993.tb03770.x; Burnham K. P, 2002, MODEL SELECTION MULT; Butler MA, 2004, AM NAT, V164, P683, DOI 10.1086/426002; Cayuela H, 2016, ECOLOGY, V97, P980, DOI 10.1890/15-0693.1; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Childs DZ, 2010, P ROY SOC B-BIOL SCI, V277, P3055, DOI 10.1098/rspb.2010.0707; Clarke PJ, 2015, AM NAT, V185, P747, DOI 10.1086/681160; Cooper N, 2016, BIOL J LINN SOC, V118, P64, DOI 10.1111/bij.12701; Cooper N, 2010, AM NAT, V175, P727, DOI 10.1086/652466; COWLING RM, 1987, J APPL ECOL, V24, P645, DOI 10.2307/2403899; Cowling RM, 2001, P NATL ACAD SCI USA, V98, P5452, DOI 10.1073/pnas.101093498; Cramer MD, 2009, AUSTRAL ECOL, V34, P653, DOI 10.1111/j.1442-9993.2009.01971.x; de Klerk HM, 2012, INT J WILDLAND FIRE, V21, P36, DOI 10.1071/WF11002; de Villemereuil P, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-102; Enright NJ, 2015, FRONT ECOL ENVIRON, V13, P265, DOI 10.1890/140231; Enright NJ, 2014, J ECOL, V102, P1572, DOI 10.1111/1365-2745.12306; ENRIGHT NJ, 1992, ACTA OECOL, V13, P727; Enright NJ, 1998, J ECOL, V86, P946, DOI 10.1046/j.1365-2745.1998.00312.x; Enright NJ, 1998, J ECOL, V86, P960, DOI 10.1046/j.1365-2745.1998.00311.x; Evans M, 2014, SYST BIOL, V63, P698, DOI 10.1093/sysbio/syu035; Evans MEK, 2011, NEW PHYTOL, V191, P555, DOI 10.1111/j.1469-8137.2011.03697.x; Fischer B, 2011, EVOLUTION, V65, P1221, DOI 10.1111/j.1558-5646.2010.01198.x; Gremer JR, 2014, ECOL LETT, V17, P380, DOI 10.1111/ele.12241; Hansen TF, 1997, EVOLUTION, V51, P1341, DOI 10.1111/j.1558-5646.1997.tb01457.x; He TH, 2012, NEW PHYTOL, V194, P751, DOI 10.1111/j.1469-8137.2012.04079.x; Hernandez-Serrano A, 2013, AM J BOT, V100, P2349, DOI 10.3732/ajb.1300182; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Holmes PM, 2002, AUSTRAL ECOL, V27, P110, DOI 10.1046/j.1442-9993.2002.01164.x; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P415, DOI 10.1101/SQB.1957.022.01.039; Illing N, 2009, DEV GENES EVOL, V219, P331, DOI 10.1007/s00427-009-0293-9; Iwasa Y, 1997, EVOL ECOL, V11, P41, DOI 10.1023/A:1018483429029; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Jump AS, 2006, MOL ECOL, V15, P3469, DOI 10.1111/j.1365-294X.2006.03027.x; Keeley J. E., 2012, FIRE MEDITERRANEAN E; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Kostikova A, 2013, AM NAT, V182, P760, DOI 10.1086/673527; Kraaij T, 2013, KOEDOE, V55, DOI 10.4102/koedoe.v55i1.1104; LAMONT BB, 1991, BOT REV, V57, P277, DOI 10.1007/BF02858770; Langan SJ, 1997, PLANT CELL ENVIRON, V20, P425, DOI 10.1046/j.1365-3040.1997.d01-94.x; Linder HP, 2015, ANNU REV ECOL EVOL S, V46, P393, DOI 10.1146/annurev-ecolsys-112414-054322; Litsios G, 2014, EVOLUTION, V68, P453, DOI 10.1111/evo.12273; Lloret F, 2005, OECOLOGIA, V146, P461, DOI 10.1007/s00442-005-0206-1; Merow C, 2014, ECOGRAPHY, V37, P1167, DOI 10.1111/ecog.00839; Mesquita DO, 2016, AM NAT, V187, P689, DOI 10.1086/686055; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; Munkemuller T, 2015, FUNCT ECOL, V29, P627, DOI 10.1111/1365-2435.12388; Ng J, 2014, J EVOLUTION BIOL, V27, P2035, DOI 10.1111/jeb.12460; Ogburn RM, 2015, MOL PHYLOGENET EVOL, V92, P181, DOI 10.1016/j.ympev.2015.06.006; Ojeda F, 2005, NEW PHYTOL, V168, P155, DOI 10.1111/j.1469-8137.2005.01486.x; Olivieri I, 2016, EVOL APPL, V9, P196, DOI 10.1111/eva.12336; Onstein RE, 2016, GLOBAL ECOL BIOGEOGR, V25, P1239, DOI 10.1111/geb.12481; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Pausas JG, 2014, NEW PHYTOL, V204, P55, DOI 10.1111/nph.12921; R Development Core Team, 2012, R LANG ENV STAT COMP; Rajon E, 2014, AM NAT, V184, pE1, DOI 10.1086/676506; Rebelo A. G., 2001, FIELD GUIDE PROTEAS; Sanderson MJ, 2002, MOL BIOL EVOL, V19, P101, DOI 10.1093/oxfordjournals.molbev.a003974; Sauquet H, 2009, MOL PHYLOGENET EVOL, V51, P31, DOI 10.1016/j.ympev.2008.12.013; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Schnitzler J, 2011, SYST BIOL, V60, P343, DOI 10.1093/sysbio/syr006; Schulze R. E., 2014, EVOLUTION, V68, P2775; SCHULZE RE, 1997, TT8296 WAT RES COMM; Schurr FM, 2012, S AFR J SCI, V108, P10, DOI 10.4102/sajs.v108i11/12.1446; Scott MF, 2014, J EVOLUTION BIOL, V27, P2219, DOI 10.1111/jeb.12474; Silvestro D, 2015, METHODS ECOL EVOL, V6, P340, DOI 10.1111/2041-210X.12337; Simons AM, 2011, P ROY SOC B-BIOL SCI, V278, P1601, DOI 10.1098/rspb.2011.0176; Smith SA, 2009, P ROY SOC B-BIOL SCI, V276, P4345, DOI 10.1098/rspb.2009.1176; Starrfelt J, 2012, BIOL REV, V87, P742, DOI 10.1111/j.1469-185X.2012.00225.x; Steadma K. J., 2010, ANN BOT, V107, P303; Tonnabel J, 2014, EVOLUTION, V68, P2775, DOI 10.1111/evo.12480; Tonnabel J, 2014, MOL PHYLOGENET EVOL, V70, P37, DOI 10.1016/j.ympev.2013.07.027; Tonnabel J, 2012, J ECOL, V100, P1464, DOI 10.1111/j.1365-2745.2012.02023.x; Treurnicht M, 2016, J ECOL, V104, P331, DOI 10.1111/1365-2745.12508; Tufto J, 2015, EVOLUTION, V69, P2034, DOI 10.1111/evo.12716; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; van Wilgen BW, 2013, FRONT ECOL ENVIRON, V11, pE35, DOI 10.1890/120137; van Wilgen BW, 2010, J APPL ECOL, V47, P631, DOI 10.1111/j.1365-2664.2010.01800.x; Vila-Cabrera A, 2008, ECOSCIENCE, V15, P519, DOI 10.2980/15-4-3164; West AG, 2012, NEW PHYTOL, V195, P396, DOI 10.1111/j.1469-8137.2012.04170.x; Williams I. J. M., 1972, CONTRIBUTIONS BOLUS; Wilson A. W., 2012, THESIS; Wilson AM, 2015, P NATL ACAD SCI USA, V112, P9058, DOI 10.1073/pnas.1416710112; Wilson AM, 2010, ECOL MODEL, V221, P106, DOI 10.1016/j.ecolmodel.2009.09.016; Zanne AE, 2014, NATURE, V506, P89, DOI 10.1038/nature12872 93 0 0 2 10 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. FEB 2018 191 2 220 234 10.1086/695283 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FT2BW WOS:000422944300008 29351009 2019-02-21 J Becker, FS; Tolley, KA; Measey, GJ; Altwegg, R Becker, Francois S.; Tolley, Krystal A.; Measey, G. John; Altwegg, Res Extreme Climate-Induced Life-History Plasticity in an Amphibian AMERICAN NATURALIST English Article adaptive plasticity; capital breeder; ectotherm; rainfall; survival; toad WILD BIRD POPULATION; REPRODUCTIVE ALLOCATION; PHENOTYPIC PLASTICITY; ANURA BUFONIDAE; MARKED ANIMALS; WINTER WEATHER; SURVIVAL; DYNAMICS; COSTS; RECRUITMENT Age-specific survival and reproduction are closely linked to fitness and therefore subject to strong selection that typically limits their variability within species. Furthermore, adult survival rate in vertebrate populations is typically less variable over time than other life-history traits, such as fecundity or recruitment. Hence, adult survival is often conserved within a population over time, compared to the variation in survival found across taxa. In stark contrast to this general pattern, we report evidence of extreme short-term variation of adult survival in Rose's mountain toadlet (Capensibufo rosei), which is apparently climate induced. Over 7 years, annual survival rate varied between 0.04 and 0.92, and 94% of this variation was explained by variation in breeding-season rainfall. Preliminary results suggest that this variation reflects adaptive life-history plasticity to a degree thus far unrecorded for any vertebrate, rather than direct rainfall-induced mortality. In wet years, these toads appeared to achieve increased reproduction at the expense of their own survival, whereas in dry years, their survival increased at the expense of reproduction. Such environmentally induced plasticity may reflect a diversity of life-history strategies not previously appreciated among vertebrates. [Becker, Francois S.; Tolley, Krystal A.] South African Natl Biodivers Inst, Cape Town, South Africa; [Becker, Francois S.; Altwegg, Res] Univ Cape Town, Dept Stat Sci, Ctr Stat Ecol Environm & Conservat, Cape Town, South Africa; [Tolley, Krystal A.] Univ Johannesburg, Dept Zool, Ctr Ecol Genom & Wildlife Conservat, ZA-2000 Johannesburg, South Africa; [Measey, G. John] Stellenbosch Univ, Ctr Excellence Invas Biol, Stellenbosch, South Africa; [Altwegg, Res] Univ Cape Town, African Climate & Dev Initiat, Rondebosch, South Africa Altwegg, R (reprint author), Univ Cape Town, Dept Stat Sci, Ctr Stat Ecol Environm & Conservat, Cape Town, South Africa.; Altwegg, R (reprint author), Univ Cape Town, African Climate & Dev Initiat, Rondebosch, South Africa. res.altwegg@gmail.com Tolley, Krystal/0000-0002-7778-1963 South African National Biodiversity Institute-National Biodiversity Monitoring Program; University of Cape Town; South African National Research Foundation (NRF) We thank Brad Anholt for commenting on the manuscript and Emily Cressey, Shelley Edwards, Paula Strauss, Tlou Manyelo, Tesray Linveeve, Tessa van der Lingen, and Hanlie Engelbrecht for assisting with the data gathering. We acknowledge the primary financial support of the South African National Biodiversity Institute-National Biodiversity Monitoring Program. Thanks to the University of Cape Town and the South African National Research Foundation (NRF) for additional funding. The NRF accepts no liability for opinions, findings, and conclusions or recommendations expressed in this publication. We thank South African National Parks (SANParks) for the permission to work at the breeding sites as well as their support and helpfulness during this project. In particular, we thank Leighan Mossop, Justin Buchman, and Marisa de Kock from SANParks for their personal involvement, assistance, and helpfulness during the project. Altwegg R, 2005, OIKOS, V110, P55, DOI 10.1111/j.0030-1299.2005.13723.x; Anholt BR, 2003, ECOLOGY, V84, P391, DOI 10.1890/0012-9658(2003)084[0391:OSORLA]2.0.CO;2; Bardsen BJ, 2008, ECOLOGY, V89, P829, DOI 10.1890/07-0414.1; Bardsen BJ, 2011, OIKOS, V120, P245, DOI 10.1111/j.1600-0706.2010.18597.x; Benton TG, 1999, EVOLUTION, V53, P677, DOI 10.1111/j.1558-5646.1999.tb05363.x; Blomberg EJ, 2012, ECOSPHERE, V3, DOI 10.1890/ES11-00304.1; Blomberg EJ, 2013, J AVIAN BIOL, V44, P149, DOI 10.1111/j.1600-048X.2012.00013.x; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bonnet X, 2002, ECOLOGY, V83, P2124, DOI 10.1890/0012-9658(2002)083[2124:RIATCB]2.0.CO;2; Botero CA, 2015, P NATL ACAD SCI USA, V112, P184, DOI 10.1073/pnas.1408589111; Burnham K. P, 2002, MODEL SELECTION MULT; Channing A, 2017, ZOOTAXA, V4232, P282, DOI 10.11646/zootaxa.4232.2.11; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Cressey ER, 2015, ORYX, V49, P521, DOI 10.1017/S0030605313001051; DRENT RH, 1980, ARDEA, V68, P225; Edwards S, 2017, HERPETOL J, V27, P287; Ehrlen J, 2003, AM NAT, V162, P796, DOI 10.1086/379350; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gibbs JP, 2001, CONSERV BIOL, V15, P1175, DOI 10.1046/j.1523-1739.2001.0150041175.x; Grandison A.G.C., 1980, Bulletin of the British Museum (Natural History) Zoology, V39, P293; Hillman SS, 2014, PHYSIOL BIOCHEM ZOOL, V87, P105, DOI 10.1086/671109; JAMES FC, 1983, SCIENCE, V221, P184, DOI 10.1126/science.221.4606.184; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Karsten KB, 2008, P NATL ACAD SCI USA, V105, P8980, DOI 10.1073/pnas.0802468105; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LEMCKERT FL, 1993, J HERPETOL, V27, P420, DOI 10.2307/1564830; Merila J, 2014, EVOL APPL, V7, P1, DOI 10.1111/eva.12137; Morano S, 2013, J MAMMAL, V94, P162, DOI 10.1644/12-MAMM-A-074.1; MORTON ML, 1981, COPEIA, P234, DOI 10.2307/1444067; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Pradel R, 1996, BIOMETRICS, V52, P703, DOI 10.2307/2532908; Ranta E, 2002, J THEOR BIOL, V217, P391, DOI 10.1006/yjtbi.3029; Rebelo AG, 2006, STRELITZIA, V19, P53; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Saether BE, 1996, OIKOS, V77, P217, DOI 10.2307/3546060; Saether BE, 2000, SCIENCE, V287, P854, DOI 10.1126/science.287.5454.854; Skalski J.R., 1993, P9; Skalski J. R., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Teplitsky C, 2008, P NATL ACAD SCI USA, V105, P13492, DOI 10.1073/pnas.0800999105; Ummenhofer CC, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0135; Urban MC, 2014, EVOL APPL, V7, P88, DOI 10.1111/eva.12114; White GC, 1999, BIRD STUDY, V46, P120; WITHERS PC, 1984, J EXP ZOOL, V232, P11, DOI 10.1002/jez.1402320103 48 1 1 5 12 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. FEB 2018 191 2 250 258 10.1086/695315 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FT2BW WOS:000422944300010 29351012 2019-02-21 J Pirotta, E; Mangel, M; Costa, DP; Mate, B; Goldbogen, JA; Palacios, DM; Huckstadt, LA; McHuron, EA; Schwarz, L; New, L Pirotta, Enrico; Mangel, Marc; Costa, Daniel P.; Mate, Bruce; Goldbogen, Jeremy A.; Palacios, Daniel M.; Huckstadt, Luis A.; McHuron, Elizabeth A.; Schwarz, Lisa; New, Leslie A Dynamic State Model of Migratory Behavior and Physiology to Assess the Consequences of Environmental Variation and Anthropogenic Disturbance on Marine Vertebrates AMERICAN NATURALIST English Article bioenergetic modeling; environmental changes; marine mammal; population consequences of disturbance; stochastic dynamic programming; uncertainty COASTAL UPWELLING SYSTEM; DAYTIME SURFACE SWARMS; ATLANTIC FIN WHALES; BAJA-CALIFORNIA; BLUE WHALES; NYCTIPHANES-SIMPLEX; BODY CONDITION; NORTH PACIFIC; WEST-COAST; EL-NINO Integrating behavior and physiology is critical to formulating new hypotheses on the evolution of animal life-history strategies. Migratory capital breeders acquire most of the energy they need to sustain migration, gestation, and lactation before parturition. Therefore, when predicting the impact of environmental variation on such species, a mechanistic understanding of the physiology of their migratory behavior is required. Using baleen whales as a model system, we developed a dynamic state variable model that captures the interplay among behavioral decisions, energy, reproductive needs, and the environment. We applied the framework to blue whales (Balaenoptera musculus) in the eastern North Pacific Ocean and explored the effects of environmental and anthropogenic perturbations on female reproductive success. We demonstrate the emergence of migration to track prey resources, enabling us to quantify the trade-offs among capital breeding, body condition, and metabolic expenses. We predict that periodic climatic oscillations affect reproductive success less than unprecedented environmental changes do. The effect of localized, acute anthropogenic impacts depended on whales' behavioral response to the disturbance; chronic, but weaker, disturbances had little effect on reproductive success. Because we link behavior and vital rates by modeling individuals' energetic budgets, we provide a general framework to investigate the ecology of migration and assess the population consequences of disturbance, while identifying critical knowledge gaps. [Pirotta, Enrico; New, Leslie] Washington State Univ, Sch Math, Vancouver, WA 98686 USA; [Mangel, Marc] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA; [Mangel, Marc] Univ Bergen, Dept Biol, Theoret Ecol Grp, N-9020 Bergen, Norway; [Costa, Daniel P.; Huckstadt, Luis A.; McHuron, Elizabeth A.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95060 USA; [Mate, Bruce; Palacios, Daniel M.] Oregon State Univ, Marine Mammal Inst, Newport, OR 97365 USA; [Mate, Bruce; Palacios, Daniel M.] Oregon State Univ, Dept Fisheries & Wildlife, Newport, OR 97365 USA; [Goldbogen, Jeremy A.] Stanford Univ, Hopkins Marine Stn, Dept Biol, Pacific Grove, CA 93950 USA; [Schwarz, Lisa] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA Pirotta, E (reprint author), Washington State Univ, Sch Math, Vancouver, WA 98686 USA. enrico.pirotta@wsu.edu Huckstadt, Luis/0000-0002-2453-7350 Office of Naval Research (ONR); ONR [N00014-08-1-1195]; E&P Sound and Marine Life Joint Industry Project of the International Association of Oil and Gas Producers; ONR Young Investigator Program [N00014-16-1-2477]; Tagging of Pacific Pelagics program; ONR; National Science Foundation; Alfred P. Sloan Foundation; Moore Foundation; Packard Foundation; National Geographic Society This research was developed in association with the Office of Naval Research (ONR)-supported Population Consequences of Acoustic Disturbance/Population Consequences of Disturbance working group and by ONR grant N00014-08-1-1195, the E&P Sound and Marine Life Joint Industry Project of the International Association of Oil and Gas Producers. J.A.G. was supported by funding from the ONR Young Investigator Program (award N00014-16-1-2477). We acknowledge the field crews, the research, and the administrative staff at the Oregon State University (OSU) Marine Mammal Institute for their support of blue whale tagging and telemetry data collection. These activities were conducted under authorization of the National Marine Fisheries Service Marine Mammal Protection Act/Endangered Species Act (research/enhancement permits 4495, 841, 369 -1440, 369-1757, and 14856) and the OSU Institutional Animal Care and Use Committee (permit 4495). Funding for these activities came from the Tagging of Pacific Pelagics program, the ONR, the National Science Foundation, the Alfred P. Sloan Foundation, the Moore Foundation, the Packard Foundation, and the National Geographic Society, with additional contributions from dozens of private donor gifts to the Marine Mammal Institute. We would also like to thank Ian Jonsen for suggestions on data analysis, as well as Jean Potvin, Elliott Hazen, and the OSU analytical team (Ladd Irvine, Barbara Lagerquist, Martha Winsor, and Tomas Follett) for useful discussions on the structure of the model and value of the parameters. The manuscript greatly benefited from inputs and comments of Editor-in-Chief Judith Bronstein, Associate Editor Jurgen Groeneveld, and two anonymous reviewers. Finally, we thank Emer Rogan and University College Cork for providing office space to E. P. Adachi T, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.2120; Alerstam T, 2003, OIKOS, V103, P247, DOI 10.1034/j.1600-0706.2003.12559.x; Bailey Helen, 2010, Endangered Species Research, V10, P93, DOI 10.3354/esr00239; Barlow J, 1997, ECOLOGY, V78, P535; Baxter K., 1989, ENERGY METABOLISM AN; Beale CM, 2004, ANIM BEHAV, V68, P1065, DOI 10.1016/j.anbehav.2004.07.002; Bejder L, 2009, MAR ECOL PROG SER, V395, P177, DOI 10.3354/meps07979; Benson SR, 2002, PROG OCEANOGR, V54, P279, DOI 10.1016/S0079-6611(02)00054-X; Braithwaite JE, 2015, CONSERV PHYSIOL, V3, DOI 10.1093/conphys/cov001; Braithwaite JE, 2015, POLAR BIOL, V38, P1195, DOI 10.1007/s00300-015-1685-0; Brinton E., 1962, Bulletin Scripps Institution of Oceanography, V8, P51; Brinton E., 1980, California Cooperative Oceanic Fisheries Investigations Reports, V21, P211; Brodeur R. D., 2005, GEOPHYS RES LETT, V33, DOI DOI 10.1029/2006GLO26614; Brody S., 1968, BIOENERGETICS GROWTH; CAIRNS D K, 1987, Biological Oceanography, V5, P261; Calambokidis J, 2009, MAR MAMMAL SCI, V25, P816, DOI 10.1111/j.1748-7692.2009.00298.x; Cartwright R, 2009, MAR MAMMAL SCI, V25, P659, DOI 10.1111/j.1748-7692.2009.00286.x; Chavez FP, 2002, PROG OCEANOGR, V54, P205, DOI 10.1016/S0079-6611(02)00050-2; Christiansen F, 2015, CONSERV LETT, V8, P424, DOI 10.1111/conl.12166; Christiansen F, 2014, FUNCT ECOL, V28, P579, DOI 10.1111/1365-2435.12200; Clark C.W, 2000, OXFORD SERIES ECOLOG; Clark WC, 2016, P NATL ACAD SCI USA, V113, P4570, DOI 10.1073/pnas.1601266113; Cohen J., 1977, STAT POWER ANAL BEHA; Cooke SJ, 2014, PHYSIOL BIOCHEM ZOOL, V87, P1, DOI 10.1086/671165; Croll DA, 2005, MAR ECOL PROG SER, V289, P117, DOI 10.3354/meps289117; Croll DA, 1998, DEEP-SEA RES PT II, V45, P1353, DOI 10.1016/S0967-0645(98)00031-9; Currey RJC, 2009, AQUAT CONSERV, V19, P658, DOI 10.1002/aqc.1015; de Guevara PL, 2008, J MAMMAL, V89, P559; De Silva-Davila R, 2002, J PLANKTON RES, V24, P1057, DOI 10.1093/plankt/24.10.1057; DeRuiter SL, 2016, MULTIVARIATE MIXED H, V1602, P1; Ellison WT, 2012, CONSERV BIOL, V26, P21, DOI 10.1111/j.1523-1739.2011.01803.x; Etnoyer P, 2006, DEEP-SEA RES PT II, V53, P340, DOI 10.1016/j.dsr2.2006.01.010; Fauchald P, 1999, AM NAT, V153, P603, DOI 10.1086/303203; Fernandez-Alamo MA, 2006, PROG OCEANOGR, V69, P318, DOI 10.1016/j.pocean.2006.03.003; Fiedler PC, 1998, DEEP-SEA RES PT II, V45, P1781, DOI 10.1016/S0967-0645(98)80017-9; Foley MM, 2010, MAR POLICY, V34, P955, DOI 10.1016/j.marpol.2010.02.001; Foukal NP, 2014, DEEP-SEA RES PT I, V92, P11, DOI 10.1016/j.dsr.2014.06.008; Friedlaender AS, 2016, ECOL APPL, V26, P1075, DOI 10.1002/15-0783; Gales NJ, 2009, MAR MAMMAL SCI, V25, P725, DOI 10.1111/j.1748-7692.2008.00279.x; GENDRON D, 1992, MAR ECOL PROG SER, V87, P1, DOI 10.3354/meps087001; George JC, 2015, PROG OCEANOGR, V136, P250, DOI 10.1016/j.pocean.2015.05.001; Gilpatrick James W. Jr., 2008, Journal of Cetacean Research and Management, V10, P9; Goldbogen JA, 2011, J EXP BIOL, V214, P131, DOI 10.1242/jeb.048157; Goldbogen J. A., 2009, P R SOC B, V277, P861; Goldbogen JA, 2015, FUNCT ECOL, V29, P951, DOI 10.1111/1365-2435.12395; Goldbogen JA, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0657; GOMEZ JG, 1995, MAR ECOL PROG SER, V119, P63, DOI 10.3354/meps119063; Gomez-Gutierrez J, 2005, DEEP-SEA RES PT II, V52, P289, DOI 10.1016/j.dsr2.2004.09.023; Gomez-Gutierrez J, 2010, DEEP-SEA RES PT II, V57, P616, DOI 10.1016/j.dsr2.2009.10.011; GomezGutierrez J, 1996, MAR ECOL PROG SER, V138, P309, DOI 10.3354/meps138309; GomezGutierrez J, 1997, SCI MAR, V61, P27; GOMEZGUTIERREZ J, 1995, MAR ECOL PROG SER, V120, P41, DOI 10.3354/meps120041; Halpern BS, 2008, SCIENCE, V319, P948, DOI 10.1126/science.1149345; Harwood J, 2003, TRENDS ECOL EVOL, V18, P617, DOI 10.1016/j.tree.2003.08.001; Hazen EL, 2013, NAT CLIM CHANGE, V3, P234, DOI 10.1038/NCLIMATE1686; Hazen EL, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1500469; Henson SA, 2007, J GEOPHYS RES-OCEANS, V112, DOI 10.1029/2006JC003960; Houston A.l, 1999, MODELS ADAPTIVE BEHA; Huang SL, 2009, MAR MAMMAL SCI, V25, P875, DOI 10.1111/j.1748-7692.2009.00288.x; Huggett A. S. G., 1950, J PHYSL, V4, P306; Hussey NE, 2015, SCIENCE, V348, DOI 10.1126/science.1255642; Ichihara T., 1962, Sci Rep Whales Res Inst Tokyo No, V16, P47; Inger R, 2009, J APPL ECOL, V46, P1145, DOI 10.1111/j.1365-2664.2009.01697.x; IPCC, 2014, IPCC CLIMATE CHANGE; Irvine LM, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102959; Jonsen ID, 2013, DEEP-SEA RES PT II, V88-89, P34, DOI 10.1016/j.dsr2.2012.07.008; Jonsen ID, 2005, ECOLOGY, V86, P2874, DOI 10.1890/04-1852; KAREIVA P, 1987, AM NAT, V130, P233, DOI 10.1086/284707; King SL, 2015, METHODS ECOL EVOL, V6, P1150, DOI 10.1111/2041-210X.12411; Kleiber M., 1975, FIRE LIFE INTRO ANIM; Le Boeuf BJ, 2005, BMC BIOL, V3, DOI 10.1186/1741-7007-3-9; Lennox RJ, 2016, CONSERV PHYSIOL, V4, DOI 10.1093/conphys/cov072; LOCKYER C, 1986, CAN J FISH AQUAT SCI, V43, P142, DOI 10.1139/f86-015; LOCKYER C, 1976, J CONSEIL, V36, P259; Lockyer C., 1987, SPECIAL PUBLICATION, V1, P183; Lockyer C., 1981, FAO FISHERIES SERIES, V3, P379; Lockyer C, 2007, J MAR BIOL ASSOC UK, V87, P1035, DOI 10.1017/S0025315407054720; Mackintosh N. A., 1929, Discovery Reports Cambridge, V1, P257; Malavear M. Y. G., 2002, MODELING ENERGETICS; Mangel M, 1988, DYNAMIC MODELING BEH; Marinovic BB, 2002, PROG OCEANOGR, V54, P265, DOI 10.1016/S0079-6611(02)00053-8; Mate BR, 1999, MAR MAMMAL SCI, V15, P1246, DOI 10.1111/j.1748-7692.1999.tb00888.x; Maxwell SM, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3688; McHuron EA, 2017, METHODS ECOL EVOL, V8, P552, DOI 10.1111/2041-210X.12701; McMahon CR, 2003, J ANIM ECOL, V72, P61, DOI 10.1046/j.1365-2656.2003.00685.x; Miller CA, 2011, MAR ECOL PROG SER, V438, P267, DOI 10.3354/meps09174; Nabe-Nielsen J, 2014, ECOL MODEL, V272, P242, DOI 10.1016/j.ecolmodel.2013.09.025; National Academies of Sciences, 2016, APPR UND CUM EFF STR; National Research Council, 2005, MAR MAMM POP OC NOIS; New LF, 2014, MAR ECOL PROG SER, V496, P99, DOI 10.3354/meps10547; NORDOY ES, 1985, AM J PHYSIOL, V249, pR471; Noren DP, 2004, FUNCT ECOL, V18, P233, DOI 10.1111/j.0269-8463.2004.00840.x; Nowacek DP, 2007, MAMMAL REV, V37, P81, DOI 10.1111/j.1365-2907.2007.00104.x; Oftedal OT, 1997, J MAMMARY GLAND BIOL, V2, P205, DOI 10.1023/A:1026328203526; Pirotta E., 2015, P ROYAL SOC B, V282, P2015; Pirotta E., 2017, AM NATURALIST; Plaganyi EE, 2014, FISH FISH, V15, P1, DOI 10.1111/j.1467-2979.2012.00488.x; Poloczanska ES, 2013, NAT CLIM CHANGE, V3, P919, DOI [10.1038/NCLIMATE1958, 10.1038/nclimate1958]; POND CM, 1988, CAN J ZOOL, V66, P534, DOI 10.1139/z88-077; Potvin J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044854; R Development Core Team, 2016, R LANG ENV STAT COMP; Reeves R., 2001, WORKSH HELD APR 26 2; REILLY JJ, 1990, J APPL PHYSIOL, V69, P885; SCHOENHERR JR, 1991, CAN J ZOOL, V69, P583, DOI 10.1139/z91-088; Schwing FB, 1996, NOAA TECH MEM NOAA, V231, P1; Schwing FB, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2006GL026911; Seyboth E, 2016, SCI REP-UK, V6, DOI 10.1038/srep28205; SMITH SE, 1988, B MAR SCI, V42, P76; Stephens PA, 2014, ECOLOGY, V95, P882, DOI 10.1890/13-1434.1; Stokes D. E., 1997, PASTEURS QUADRANT BA; Thomas PO, 2016, MAR MAMMAL SCI, V32, P682, DOI 10.1111/mms.12281; Tomilin A. G., 1946, CR Acad Sci Moscou NS, V52, P277; Vikingsson Gisli A., 1997, Journal of Northwest Atlantic Fishery Science, V22, P77; Villegas-Amtmann S, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00146.1; WEINER J, 1992, TRENDS ECOL EVOL, V7, P384, DOI 10.1016/0169-5347(92)90009-Z; WHITTEMORE CT, 1998, SCI PRACTICE PIG PRO; Wiedenmann J, 2011, ECOL MODEL, V222, P3366, DOI 10.1016/j.ecolmodel.2011.07.013; Williams R, 2013, ICES J MAR SCI, V70, P1273, DOI 10.1093/icesjms/fst059; Williams TM, 1999, PHILOS T R SOC B, V354, P193, DOI 10.1098/rstb.1999.0371; Wood SN., 2006, GEN ADDITIVE MODELS 120 6 6 12 25 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. FEB 2018 191 2 E40 E56 10.1086/695135 17 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FT2BW WOS:000422944300002 29351020 2019-02-21 J Badas, EP; Martinez, J; Rivero-de Aguilar, J; Ponce, C; Stevens, M; Merino, S Badas, E. P.; Martinez, J.; Rivero-de Aguilar, J.; Ponce, C.; Stevens, M.; Merino, S. Colour change in a structural ornament is related to individual quality, parasites and mating patterns in the blue tit SCIENCE OF NATURE English Article Achromatic colouration; Body mass; Life-history theory; Sexual selection; Signalling; Structural colouration CURRENT REPRODUCTIVE EFFORT; MULTIPLE SEXUAL ORNAMENTS; FEMALE PIED FLYCATCHERS; LINEAR MIXED MODELS; PARUS-CAERULEUS; PLUMAGE COLORATION; TRADE-OFF; ANTIOXIDANT SUPPLEMENTATION; MEDICATION EXPERIMENT; ENERGY-EXPENDITURE Carry-over effects refer to processes that occur in one season and influence fitness in the following. In birds, two costly activities, namely reproduction and moult, are restricted to a small time window, and sometimes overlap. Thus, colour in newly moulted feathers is likely to be affected by the costs of reproduction. Using models of bird vision we investigated male colour change in a free-living population of blue tits (Cyanistes caeruleus) in three sampling occasions: spring 1, winter and spring 2. We related crown, tail, breast and cheek feather colouration after the moult (winter) to the intensity of infections by blood parasites during reproduction (spring 1). In the following spring (spring 2), we explored mating patterns with respect to changes in feather colour (springs 1 vs. 2). Males that were less intensely infected by the malaria parasite Plasmodium while breeding showed purer white cheek feathers in winter, which may indicate higher feather quality. Increased brightness in the white cheek was associated with better body condition during reproduction. In the following season, males with brighter cheeks paired with females that had noticeably brighter cheek patches compared to the male's previous mate. These results suggest that the conditions experienced during reproduction are likely to affect moult and thus feather colouration, at least in the white patch. High quality individuals may allocate resources efficiently during reproduction increasing future reproductive success through variation in mating patterns. Carry-over effects from reproduction might extend not only to the non-breeding phase, but also to the following breeding season. [Badas, E. P.; Ponce, C.; Merino, S.] Natl Museum Nat Sci, Dept Evolutionary Ecol, Jose Gutierrez Abascal 2, Madrid 28006, Spain; [Martinez, J.; Rivero-de Aguilar, J.] Univ Alcala de Henares, Dept Biomed & Biotechnol, Ctra Madrid Barcelona Km 33600, Madrid 28871, Spain; [Stevens, M.] Univ Exeter, Ctr Ecol & Conservat, Penryn Campus, Penryn TR10 9FE, Cornwall, England Badas, EP (reprint author), Natl Museum Nat Sci, Dept Evolutionary Ecol, Jose Gutierrez Abascal 2, Madrid 28006, Spain. E.Perez@leeds.ac.uk Merino, Santiago/A-6183-2008; Martinez, Javier/H-2827-2015 Martinez, Javier/0000-0003-2657-1154 MEC (Ministerio de Economia y Competitividad) [CGL2012-40026-C02-01, CGL2012-40026-C02-02] This study was funded by projects CGL2012-40026-C02-01 and CGL2012-40026-C02-02 from the MEC (Ministerio de Economia y Competitividad). Asghar M, 2015, SCIENCE, V347, P436, DOI 10.1126/science.1261121; Badas EP, 2017, BEHAV ECOL SOCIOBIOL, V71, DOI 10.1007/s00265-017-2286-4; Badas EP, 2015, J EVOLUTION BIOL, V28, P896, DOI 10.1111/jeb.12615; Bates D, 2015, J STAT SOFTW, V67, P1; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Cantarero A, 2017, J AVIAN BIOL, V48, P243, DOI 10.1111/jav.01032; Cohen J., 1998, STAT POWER ANAL BEHA; Cuthill Innes C., 2006, P3; Cyr NE, 2008, PHYSIOL BIOCHEM ZOOL, V81, P452, DOI 10.1086/589547; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; del Cerro S, 2010, OECOLOGIA, V162, P825, DOI 10.1007/s00442-009-1510-y; Delhey K, 2006, BEHAV ECOL, V17, P790, DOI 10.1093/beheco/arl012; Delhey K, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011582; Dhondt AA, 1998, IBIS, V140, P580, DOI 10.1111/j.1474-919X.1998.tb04702.x; Doucet SM, 2005, BEHAV ECOL, V16, P218, DOI 10.1093/beheco/arh154; Doucet SM, 2003, BEHAV ECOL, V14, P503, DOI 10.1093/beheco/arg035; Doutrelant C, 2012, J ANIM ECOL, V81, P87, DOI 10.1111/j.1365-2656.2011.01889.x; Dreiss AN, 2010, BIOL J LINN SOC, V101, P689, DOI 10.1111/j.1095-8312.2010.01503.x; Dyck J., 1976, P INT ORNITHOL C, V16, P426; Endler JA, 2005, BIOL J LINN SOC, V86, P405, DOI 10.1111/j.1095-8312.2005.00540.x; Evans SR, 2010, BIOL J LINN SOC, V101, P777, DOI 10.1111/j.1095-8312.2010.01548.x; Fargallo JA, 1999, ARDEA, V87, P261; Fitze PS, 2002, BEHAV ECOL, V13, P401, DOI 10.1093/beheco/13.3.401; Fitzpatrick S, 1998, ANN ZOOL FENN, V35, P67; Fox J, 2002, ANN STAT, V9, P1218; Fox J., 2011, R COMPANION APPL REG; Galvan I, 2010, IBIS, V152, P359; Griffith SC, 2000, P ROY SOC B-BIOL SCI, V267, P1115, DOI 10.1098/rspb.2000.1116; Griggio M, 2009, J EVOLUTION BIOL, V22, P782, DOI 10.1111/j.1420-9101.2009.01700.x; Griggio M, 2011, BEHAV ECOL SOCIOBIOL, V65, P655, DOI 10.1007/s00265-010-1067-0; Griggio M, 2010, BEHAV PROCESS, V84, P739, DOI 10.1016/j.beproc.2010.05.003; Gunnarsson TG, 2006, J ANIM ECOL, V75, P1119, DOI 10.1111/j.1365-2656.2006.01131.x; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; Halekoh U, 2014, J STAT SOFTW, V59, P1; Hanssen SA, 2006, ANIM BEHAV, V71, P337, DOI 10.1016/j.anbehav.2005.04.021; Hanssen SA, 2003, OECOLOGIA, V136, P457, DOI 10.1007/s00442-003-1282-8; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hart NS, 2000, J COMP PHYSIOL A, V186, P375, DOI 10.1007/s003590050437; Hegyi G, 2007, J AVIAN BIOL, V38, P698, DOI 10.1111/j.2007.0908-8857.04075.x; Hemborg C, 2001, OECOLOGIA, V129, P206, DOI 10.1007/s004420100710; Hill G, 2006, BIRD COLORATION, V1; Hill GE, 2005, ANIM BEHAV, V69, P387, DOI 10.1016/j.anbehav.2004.03.013; Hill Geoffrey E., 2006, P507; Hill Geoffrey E., 2006, P137; Jenni L, 1994, MOULT AGEING EUROPEA; Johnsen A, 2003, P ROY SOC B-BIOL SCI, V270, P1263, DOI 10.1098/rspb.2003.2375; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Kemp DJ, 2015, AM NAT, V185, P705, DOI 10.1086/681021; Knowles SCL, 2010, J EVOLUTION BIOL, V23, P557, DOI 10.1111/j.1420-9101.2009.01920.x; Komdeur J, 2005, BEHAV ECOL, V16, P805, DOI 10.1093/beheco/ari059; Lind O, 2016, ROY SOC OPEN SCI, V3, DOI 10.1098/rsos.160383; Loiseau C, 2008, ECOL LETT, V11, P258, DOI 10.1111/j.1461-0248.2007.01141.x; Lopez-Arrabe J, 2014, CAN J ZOOL, V92, P1019, DOI 10.1139/cjz-2014-0199; Mahr K, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-14; Martinez-de la Puente J, 2010, BIOL LETTERS, V6, P663, DOI 10.1098/rsbl.2010.0046; McGraw KJ, 2004, BIOL J LINN SOC, V83, P273, DOI 10.1111/j.1095-8312.2004.00388.x; McGraw KJ, 2002, J EXP BIOL, V205, P3747; Merino S, 2000, P ROY SOC B-BIOL SCI, V267, P2507, DOI 10.1098/rspb.2000.1312; Merino S, 1997, POLAR BIOL, V17, P14, DOI 10.1007/s003000050099; Merino S, 1997, J WILDLIFE DIS, V33, P638, DOI 10.7589/0090-3558-33.3.638; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MOLLER AP, 1993, BEHAV ECOL SOCIOBIOL, V32, P167; Morales J, 2007, ECOSCIENCE, V14, P31, DOI 10.2980/1195-6860(2007)14[31:EMILSA]2.0.CO;2; Moreno J, 2001, OECOLOGIA, V129, P492, DOI 10.1007/s004420100767; Mousseau TA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066939; Nacher M, 2002, J PARASITOL, V88, P55, DOI 10.1645/0022-3395(2002)088[0055:IHIAAW]2.0.CO;2; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Orledge JM, 2012, FUNCT ECOL, V26, P688, DOI 10.1111/j.1365-2435.2012.01977.x; Ornborg J, 2002, BIOL J LINN SOC, V76, P237, DOI 10.1046/j.1095-8312.2002.00061.x; Osorio D, 1999, J EXP BIOL, V202, P2951; Partan S, 1999, SCIENCE, V283, P1272, DOI 10.1126/science.283.5406.1272; Prum RO, 2006, BIRD COLORATION, V1, P295; Robb GN, 2008, BIOL LETTERS, V4, P220, DOI 10.1098/rsbl.2007.0622; Ruiz-De-Castaneda R, 2015, IBIS, V157, P871, DOI 10.1111/ibi.12281; Saks L, 2003, FUNCT ECOL, V17, P555, DOI 10.1046/j.1365-2435.2003.00765.x; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Sanz JJ, 2004, J ANIM ECOL, V73, P441, DOI 10.1111/j.0021-8790.2004.00815.x; Sanz JJ, 1999, OECOLOGIA, V121, P377, DOI 10.1007/s004420050942; Senar JC, 2002, BEHAV ECOL, V13, P725, DOI 10.1093/beheco/13.6.725; Serra L, 2007, J EVOLUTION BIOL, V20, P2028, DOI 10.1111/j.1420-9101.2007.01360.x; SEUTIN G, 1994, OIKOS, V70, P280, DOI 10.2307/3545639; Shawkey MD, 2007, AM NAT, V169, pS112, DOI 10.1086/510100; Siddiqi A, 2004, J EXP BIOL, V207, P2471, DOI 10.1242/jeb.01047; Siefferman L, 2005, EVOLUTION, V59, P1819; SMITH HG, 1987, AUK, V104, P109, DOI 10.2307/4087239; Sorensen MC, 2009, J ANIM ECOL, V78, P460, DOI 10.1111/j.1365-2656.2008.01492.x; Spottiswoode CN, 2011, P ROY SOC B-BIOL SCI, V278, P3566, DOI 10.1098/rspb.2011.0401; Stearns S, 1992, EVOLUTION LIFE HIST; Stevens M., 2014, FRONT ECOL EVOL, V2, P1, DOI DOI 10.3389/FEVO.2014.00014; Stevens M, 2011, AVIAN BIOL RES, V4, P168, DOI 10.3184/175815511X13207790177958; Stevens M, 2009, INT J PRIMATOL, V30, P893, DOI 10.1007/s10764-009-9356-z; Stoddard MC, 2008, AM NAT, V171, P755, DOI 10.1086/587526; SUGIURA N, 1978, COMMUN STAT A-THEOR, V7, P13, DOI 10.1080/03610927808827599; Svensson E, 1997, BEHAV ECOL, V8, P92, DOI 10.1093/beheco/8.1.92; Svensson L., 1992, IDENTIFICATION GUIDE; Valkiunas G, 2005, AVIAN MALARIA PARASI; Vorobyev M, 1998, J COMP PHYSIOL A, V183, P621, DOI 10.1007/s003590050286; Zanollo V, 2012, J ORNITHOL, V153, P1233, DOI 10.1007/s10336-012-0855-x 101 2 2 11 22 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0028-1042 1432-1904 SCI NAT-HEIDELBERG Sci. Nat. FEB 2018 105 1-2 17 10.1007/s00114-018-1539-z 12 Multidisciplinary Sciences Science & Technology - Other Topics FY0TY WOS:000426526000014 29404701 2019-02-21 J Paniw, M; Ozgul, A; Salguero-Gomez, R Paniw, Maria; Ozgul, Arpat; Salguero-Gomez, Roberto Interactive life-history traits predict sensitivity of plants and animals to temporal autocorrelation ECOLOGY LETTERS English Article Environmental variation; fast-slow continuum; life-history strategy; matrix population model; multivariate analysis; population projections; reproductive strategy; seed dormancy; vital rates FAST-SLOW CONTINUUM; STRUCTURED POPULATION-MODELS; VITAL-RATES; DEMOGRAPHIC VARIABILITY; STOCHASTIC ENVIRONMENTS; VARIABLE ENVIRONMENTS; CLIMATE-CHANGE; GROWTH-RATE; DYNAMICS; DISTURBANCE Temporal autocorrelation in demographic processes is an important aspect of population dynamics, but a comprehensive examination of its effects on different life-history strategies is lacking. We use matrix population models from 454 plant and animal populations to simulate stochastic population growth rates (log lambda(s)) under different temporal autocorrelations in demographic rates, using simulated and observed covariation among rates. We then test for differences in sensitivities, or changes of log lambda(s) to changes in autocorrelation among two major axes of life-history strategies, obtained from phylogenetically informed principal component analysis: the fast-slow and reproductive-strategy continua. Fast life histories exhibit highest sensitivities to simulated autocorrelation in demographic rates across reproductive strategies. Slow life histories are less sensitive to temporal autocorrelation, but their sensitivities increase among highly iteroparous species. We provide cross-taxonomic evidence that changes in the autocorrelation of environmental variation may affect a wide range of species, depending on complex interactions of life-history strategies. [Paniw, Maria; Ozgul, Arpat] Univ Zurich, Dept Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland; [Paniw, Maria] Univ Cadiz, Dept Biol, Puerto Real 11510, Spain; [Salguero-Gomez, Roberto] Univ Oxford, Dept Zool, Radcliffe Observ Quarter, New Radcliffe House,Woodstock Rd, Oxford OX2 6GG, England; [Salguero-Gomez, Roberto] Univ Sheffield, Dept Anim & Plant Sci, Western Bank, Alfred Denny Bldg, Sheffield S10 2TN, S Yorkshire, England; [Salguero-Gomez, Roberto] Univ Queensland, Ctr Biodivers & Conservat Sci, St Lucia, Qld 4071, Australia; [Salguero-Gomez, Roberto] Max Plank Inst Demog Res, Evolutionary Demog Lab, D-18057 Rostock, Germany Paniw, M (reprint author), Univ Zurich, Dept Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland.; Paniw, M (reprint author), Univ Cadiz, Dept Biol, Puerto Real 11510, Spain. maria.paniw@ieu.uzh.ch Salguero-Gomez, Roberto/0000-0002-6085-4433; Paniw, Maria/0000-0002-1949-4448 Max Planck Institute for Demographic Research; BREATHAL (Spanish Ministerio de Economia y Competitividad) [CGL2011-28759/BOS]; FPI scholarship; Spanish Ministerio de Economia y Competitividad; ERC Starting Grant [337785]; Australian Research Council [DE140100505]; NERC [R/142195-11-1] We thank H. Caswell, J.D. Lebreton and S. Tuljapurkar for helpful suggestions on the characterisation of life histories, Dr. Ezard and three anonymous reviewers for constructive criticism on earlier version of this work, and the Max Planck Institute for Demographic Research for support and open-access to COMPADRE & COMADRE. This study was partly financed by BREATHAL (CGL2011-28759/BOS; Spanish Ministerio de Economia y Competitividad). MP was supported by a FPI scholarship, a travel bursary granted by the Spanish Ministerio de Economia y Competitividad and an ERC Starting Grant (#337785) to AO and RSG was supported by the Australian Research Council (DE140100505) and NERC (R/142195-11-1). Akaike H., 1971, 2 INT S INF THEOR, P267; Angert AL, 2006, ECOLOGY, V87, P2014, DOI 10.1890/0012-9658(2006)87[2014:DOCAMP]2.0.CO;2; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Buckley YM, 2010, ECOL LETT, V13, P1182, DOI 10.1111/j.1461-0248.2010.01506.x; Caceres CE, 1997, INVERTEBR BIOL, V116, P371, DOI 10.2307/3226870; CASWELL H, 2001, MATRIX POPULATION MO, P722; COHEN JE, 1979, THEOR POPUL BIOL, V16, P159, DOI 10.1016/0040-5809(79)90011-X; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Doak DF, 2002, POPULATION VIABILITY ANALYSIS, P312; Ehrlen J, 2016, J ECOL, V104, P292, DOI 10.1111/1365-2745.12523; Engen S, 2013, METHODS ECOL EVOL, V4, P573, DOI 10.1111/2041-210X.12043; Ezard THG, 2010, ECOL MODEL, V221, P191, DOI 10.1016/j.ecolmodel.2009.09.017; Fey SB, 2017, GLOBAL CHANGE BIOL, V23, P635, DOI 10.1111/gcb.13468; Franco M, 2004, ECOLOGY, V85, P531, DOI 10.1890/02-0651; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Gaillard J.-M, 2016, ENCY EVOLUTIONARY BI, V2, P312; Gamelon M, 2014, AM NAT, V184, P673, DOI 10.1086/677929; Garnier A, 2006, ECOL MODEL, V194, P141, DOI 10.1016/j.ecolmodel.2005.10.009; Gioria M, 2012, PRESLIA, V84, P327; Greenman JV, 2005, THEOR POPUL BIOL, V68, P217, DOI 10.1016/j.tpb.2005.06.007; Halley JM, 2004, FLUCT NOISE LETT, V4, pR1, DOI 10.1142/S0219477504001884; Heino M, 2003, BIOL CONSERV, V110, P315, DOI 10.1016/S0006-3207(02)00235-5; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Jongejans E, 2010, ECOL LETT, V13, P736, DOI 10.1111/j.1461-0248.2010.01470.x; Koons DN, 2016, ECOL LETT, V19, P1023, DOI 10.1111/ele.12628; Koons DN, 2009, OIKOS, V118, P972, DOI 10.1111/j.1600-0706.2009.16399.x; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Laakso J, 2003, ECOL MODEL, V162, P247, DOI 10.1016/S0304-3800(02)00385-X; Levine JM, 2004, AM NAT, V164, P350, DOI 10.1086/422859; McDonald JL, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-016-0029; Metcalf CJE, 2007, P ROY SOC B-BIOL SCI, V274, P2153, DOI 10.1098/rspb.2007.0561; Metcalf CJE, 2015, METHODS ECOL EVOL, V6, P1007, DOI 10.1111/2041-210X.12405; Metcalf CJE, 2009, ECOLOGY, V90, P2766, DOI 10.1890/08-1645.1; Morris WF, 2006, ECOL LETT, V9, P1331, DOI 10.1111/j.1461-0248.2006.00988.x; Morris WF, 2004, AM NAT, V163, P579, DOI 10.1086/382550; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; Morris WF, 2011, AM NAT, V177, pE14, DOI 10.1086/657443; Nadeau CP, 2017, GLOBAL CHANGE BIOL, V23, P12, DOI 10.1111/gcb.13475; ORZACK SH, 1985, AM NAT, V125, P550, DOI 10.1086/284362; Post E, 2009, SCIENCE, V325, P1355, DOI 10.1126/science.1173113; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Ruokolainen L, 2009, TRENDS ECOL EVOL, V24, P555, DOI 10.1016/j.tree.2009.04.009; Saether BE, 2013, AM NAT, V182, P743, DOI 10.1086/673497; Salguero-Gomez R, 2017, NEW PHYTOL, V213, P1618, DOI 10.1111/nph.14289; Salguero-Gomez R, 2016, J ANIM ECOL, V85, P371, DOI 10.1111/1365-2656.12482; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Schiesari L, 2013, CURR TOP DEV BIOL, V105, P213, DOI 10.1016/B978-0-12-396968-2.00008-7; Smallegange IM, 2014, AM NAT, V183, P784, DOI [10.1086/675894, 10.1086/675817]; Stearns S.C., 1992, EVOLIUTION LIFE HOIS, P247; STEELE JH, 1985, NATURE, V313, P355, DOI 10.1038/313355a0; Stige LC, 2007, P NATL ACAD SCI USA, V104, P16188, DOI 10.1073/pnas.0706813104; Tuljapurkar S, 2006, ECOL LETT, V9, P324, DOI 10.1111/j.1461-0248.2006.00881.x; Tuljapurkar S, 2003, AM NAT, V162, P489, DOI 10.1086/378648; Tuljapurkar S., 1990, POPULATION DYNAMICS; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P114, DOI 10.1016/0040-5809(82)90009-0; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Turner MG, 2010, ECOLOGY, V91, P2833, DOI 10.1890/10-0097.1; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; VANDERMEIJDEN E, 1992, ACTA BOT NEERL, V41, P249, DOI 10.1111/j.1438-8677.1992.tb01333.x; Vasseur DA, 2004, ECOLOGY, V85, P1146, DOI 10.1890/02-3122 62 4 4 6 23 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. FEB 2018 21 2 275 286 10.1111/ele.12892 12 Ecology Environmental Sciences & Ecology FX1PJ WOS:000425823900013 29266843 Bronze 2019-02-21 J Pap, PL; Vincze, O; Fulop, A; Szekely-Beres, O; Patras, L; Penzes, J; Vagasi, CI Pap, Peter L.; Vincze, Orsolya; Fulop, Attila; Szekely-Beres, Orsolya; Patras, Laura; Penzes, Janka; Vagasi, Csongor I. Oxidative physiology of reproduction in a passerine bird: a field experiment BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Antioxidants; Barn swallows; Life-history trade-offs; Lipid peroxidation; Oxidative stress; Parasitism LIFE-HISTORY EVOLUTION; ANTIOXIDANT CAPACITY; HIRUNDO-RUSTICA; BARN SWALLOW; TRADE-OFFS; SERUM TRIGLYCERIDES; LIPID-PEROXIDATION; BREEDING EFFORT; HOUSE SPARROWS; EFFORT LEADS Organisms face resource trade-offs to support their parental effort and survival. The life-history oxidative stress hypothesis predicts that an individual's redox state modulates the trade-off between current and residual fitness, but this has seldom been tested experimentally in non-captive organisms. In this study, we manipulated the brood size in breeding pairs of barn swallows (Hirundo rustica) and found that females tending enlarged broods had increased levels of plasma oxidative damage (malondialdehyde concentration). This effect, however, was not accompanied by either a depletion, or defensive upregulation in antioxidants (glutathione, total antioxidant capacity, and uric acid) that may explain the increase in oxidative damage. Brood size manipulation and the level of plasma oxidative damage during brood rearing are not translated into decreased annual return rate, which does not support the oxidative stress hypothesis of life-history trade-offs. On the contrary, we found that female's oxidative damage and total glutathione levels, an important intracellular non-enzymatic antioxidant measured at hatching decreased and correlated positively, respectively with annual return rate, suggesting that oxidative condition at hatching might be a more important contributor to fitness than the oxidative physiology measured during chick rearing. We also show that individual traits and ecological factors, such as the timing of breeding and the abundance of blood-sucking nest mites, correlated with the redox state of males and females during brood care. Significance statement Oxidative stress is one of the most important physiological costs of reproduction and thus a key modulator of life-history trade-offs. In this study, we manipulated reproductive effort in breeding pairs of barn swallows and found that females tending enlarged broods had increased levels of plasma oxidative damage. This effect, however, was not accompanied by either a depletion or upregulation in antioxidants that may explain the increase in oxidative damage. We found that female's oxidative damage and total glutathione levels measured at hatching decreased and correlated positively, respectively with annual return rate, suggesting that oxidative condition at hatching might be an important contributor to fitness. Brood size manipulation and the increased levels of plasma oxidative damage are not translated into decreased annual return rate; thus, our results support the hypothesis that reproductive effort has a transient effect on oxidative physiology. [Pap, Peter L.; Vincze, Orsolya; Fulop, Attila; Szekely-Beres, Orsolya; Penzes, Janka; Vagasi, Csongor I.] Babes Bolyai Univ, Evolutionary Ecol Grp, Hungarian Dept Biol & Ecol, Clinicilor St 5-7, Cluj Napoca 400006, Romania; [Pap, Peter L.; Vincze, Orsolya; Fulop, Attila; Vagasi, Csongor I.] Univ Debrecen, Dept Evolutionary Zool & Human Biol, MTA DE Behav Ecol Res Grp, Egyet Sq 1, H-4032 Debrecen, Hungary; [Patras, Laura] Babes Bolyai Univ, Dept Mol Biol & Biotechnol, Clinicilor St 5-7, Cluj Napoca 400006, Romania; [Patras, Laura] Babes Bolyai Univ, Inst Interdisciplinary Res Bionanosci, Ctr Mol Biol, Treboniu Laurean St 42, Cluj Napoca 400271, Romania Pap, PL (reprint author), Babes Bolyai Univ, Evolutionary Ecol Grp, Hungarian Dept Biol & Ecol, Clinicilor St 5-7, Cluj Napoca 400006, Romania.; Pap, PL (reprint author), Univ Debrecen, Dept Evolutionary Zool & Human Biol, MTA DE Behav Ecol Res Grp, Egyet Sq 1, H-4032 Debrecen, Hungary. peterlpap@gmail.com Patras, Laura/C-4477-2017 Patras, Laura/0000-0002-6981-3881; Vagasi, Csongor I./0000-0002-8736-2391; Fulop, Attila/0000-0001-5337-336X Romanian and Hungarian research groups [RO-HU 679/2010]; Romanian Ministry of Education and Research [PN-III-P4-ID-PCE-2016-0404]; Hungarian National Research, Development and Innovation Office (OTKA) [K11308, K112527]; Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences (HAS); Hungarian Eotvos Scholarship - Tempus Public Foundation [MAEO2017_16/156845]; Ginko Investments Ltd.; New National Excellence Program of the Ministry of Human Capacities of Hungary [UNKP-16-3-IV]; Campus Hungary Program [B2/1SZ/11551, B2/1R/19362]; Janos Bolyai Research Scholarship of the HAS; Hungarian National Research, Development and Innovation Office [PD 121166] This study was founded by a bilateral collaboration grant between Romanian and Hungarian research groups (RO-HU 679/2010), by a research grant of the Romanian Ministry of Education and Research (#PN-III-P4-ID-PCE-2016-0404), and by the Hungarian National Research, Development and Innovation Office (OTKA grant K11308 to Adam Z. Lendvai). PLP was financed by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences (HAS), and OV was supported by the Hungarian Eotvos Scholarship (MAEO2017_16/156845) awarded by the Tempus Public Foundation and by the Ginko Investments Ltd. AF was supported through the UNKP-16-3-IV New National Excellence Program of the Ministry of Human Capacities of Hungary, and also by two scholarships of the Campus Hungary Program (grants B2/1SZ/11551 and B2/1R/19362), and by a grant from the Hungarian National Research, Development and Innovation Office (OTKA grant no. K112527). CIV was financed by the Janos Bolyai Research Scholarship of the HAS and a post-doctoral grant of the Hungarian National Research, Development and Innovation Office (PD 121166). Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Romero-Haro AA, 2015, AM NAT, V185, P390, DOI 10.1086/679613; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Beaulieu M, 2015, EVOLUTION, V69, P1786, DOI 10.1111/evo.12697; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blount JD, 2016, BIOL REV, V91, P483, DOI 10.1111/brv.12179; Bokony V, 2014, BEHAV ECOL, V25, P124, DOI 10.1093/beheco/art094; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; BUCOLO G, 1973, CLIN CHEM, V19, P476; Noguera JC, 2012, BIOL LETTERS, V8, P61, DOI 10.1098/rsbl.2011.0756; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Cohen A, 2007, COMP BIOCHEM PHYS B, V147, P110, DOI 10.1016/j.cbpb.2006.12.015; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2016, FUNCT ECOL, V30, P1169, DOI 10.1111/1365-2435.12608; Costantini D, 2015, CONSERV PHYSIOL, V3, DOI 10.1093/conphys/cov024; Costantini D, 2014, J EXP BIOL, V217, P4237, DOI 10.1242/jeb.114116; Costantini D, 2014, NATURWISSENSCHAFTEN, V101, P541, DOI 10.1007/s00114-014-1190-2; Costantini D, 2009, COMP BIOCHEM PHYS A, V153, P339, DOI 10.1016/j.cbpa.2009.03.010; Costantini D, 2009, FUNCT ECOL, V23, P506, DOI 10.1111/j.1365-2435.2009.01546.x; Cram DL, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.2031; Del Rio D, 2005, NUTR METAB CARDIOVAS, V15, P316, DOI 10.1016/j.numecd.2005.05.003; Emaresi G, 2016, J EXP BIOL, V219, P73, DOI 10.1242/jeb.128959; Erel O, 2004, CLIN BIOCHEM, V37, P277, DOI [10.1016/j.clinbiochem.2003.11.015, 10.1016/j.clinbiochem.2003.11.1015]; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; FOSSATI P, 1982, CLIN CHEM, V28, P2077; Fox J., 2011, R COMPANION APPL REG; Freeman-Gallant CR, 2011, BIOL LETTERS, V7, P429, DOI 10.1098/rsbl.2010.1186; Fulop A, 2017, J AVIAN BIOL, V48, P1005, DOI 10.1111/jav.01262; Galvan I, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003335; Garratt M, 2013, J EXP BIOL, V216, P2879, DOI 10.1242/jeb.082669; Halliwell B, 2007, FREE RADICALS BIOL M; Horak P, 2010, J EXP BIOL, V213, P2225, DOI 10.1242/jeb.042085; Isaksson C, 2013, ECOL EVOL, V3, P2730, DOI 10.1002/ece3.663; Jenni-Eiermann S, 2002, J EXP BIOL, V205, P2453; Jenni-Eiermann S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097650; King EDA, 2013, ECOL EVOL, V3, P4161, DOI 10.1002/ece3.786; KLASING KC, 1984, P SOC EXP BIOL MED, V176, P276; Lendvai AZ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0141194; Lopez-Arrabe J, 2015, OECOLOGIA, V179, P29, DOI 10.1007/s00442-015-3321-7; Losdat S, 2011, BEHAV ECOL, V22, P1218, DOI 10.1093/beheco/arr116; Marko G, 2011, J COMP PHYSIOL B, V181, P73, DOI 10.1007/s00360-010-0502-x; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; MOller A. P., 1994, SEXUAL SELECTION BAR; MOLLER AP, 1990, ECOLOGY, V71, P2345, DOI 10.2307/1938645; Moller AP, 1999, J ANIM ECOL, V68, P163, DOI 10.1046/j.1365-2656.1999.00274.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Ninni P, 2004, OIKOS, V105, P55, DOI 10.1111/j.0030-1299.2004.12516.x; Pap PL, 2015, PHYSIOL BIOCHEM ZOOL, V88, P395, DOI 10.1086/681243; Pap PL, 2005, IBIS, V147, P169, DOI 10.1111/j.1474-919x.2004.00386; Partadiredja G, 2009, BRAIN RES, V1285, P22, DOI 10.1016/j.brainres.2009.06.010; Perez-Rodriguez L, 2015, PHYSIOL BIOCHEM ZOOL, V88, P345, DOI 10.1086/680688; R Core Team, 2016, LANG ENV STAT COMP; Rey B, 2015, EVOLUTION, V69, P815, DOI 10.1111/evo.12586; Rothman K J, 1990, Epidemiology, V1, P43, DOI 10.1097/00001648-199001000-00010; Rothman KJ, 2014, J GEN INTERN MED, V29, P1060, DOI 10.1007/s11606-013-2755-z; Saino N, 2004, FUNCT ECOL, V18, P50, DOI 10.1046/j.0269-8463.2004.00808.x; Saino N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019593; Schaub M, 2009, J ANIM ECOL, V78, P625, DOI 10.1111/j.1365-2656.2008.01508.x; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Senn SS, 2008, STAT ISSUES DRUG DEV, P95; Sepp T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036495; Sepp T, 2010, PHYSIOL BIOCHEM ZOOL, V83, P276, DOI 10.1086/648580; Sorci G, 2009, PHILOS T R SOC B, V364, P71, DOI 10.1098/rstb.2008.0151; Speakman JR, 2015, ECOL EVOL, V5, pS745, DOI 10.1002/ece3.1790; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stier A, 2015, EXP GERONTOL, V71, P118, DOI 10.1016/j.exger.2015.09.001; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Surai PF, 2002, NATURAL ANTIOXIDANTS; van de Crommenacker J, 2012, P ROY SOC B-BIOL SCI, V279, P1466, DOI 10.1098/rspb.2011.1865; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Wu GY, 2004, J NUTR, V134, P489; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049 73 4 4 4 18 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. FEB 2018 72 2 UNSP 18 10.1007/s00265-017-2434-x 14 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology FW6HI WOS:000425418600003 2019-02-21 J Saino, N; Ambrosini, R; Rubolini, D; Romano, M; Caprioli, M; Romano, A; Parolini, M Saino, Nicola; Ambrosini, Roberto; Rubolini, Diego; Romano, Maria; Caprioli, Manuela; Romano, Andrea; Parolini, Marco Carry-over effects of brood size on morphology, reproduction, and lifespan in barn swallows BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Breeding success; Brood size manipulation; Lifespan; Survival; Trade-off; Wing length TITS PARUS-MAJOR; EARLY DEVELOPMENTAL CONDITIONS; HIRUNDO-RUSTICA; ZEBRA FINCHES; HISTORY TRAITS; ENVIRONMENTAL-CONDITIONS; COLLARED FLYCATCHER; PHENOTYPIC QUALITY; TELOMERE LENGTH; NATAL DISPERSAL Early life ecological conditions have well-documented short-term effects on offspring phenotype and survival, but the extent to which these effect carry-over into adulthood is much less known. Yet, unveiling such carry-over effects is essential to understand the evolution of parental life-history strategies. In altricial birds, the number of brood mates can affect competition regime and other nest ecological conditions, whose effects may be at least partly expressed in adulthood. We either increased or decreased the size of barn swallow (Hirundo rustica) broods and analyzed the consequences of brood size manipulation on morphological feather traits, breeding performance, and lifespan of the offspring when adult. Upon recruitment (age 1 year), individuals from enlarged broods had shorter wings, later reproduction, and lower breeding output than those from reduced broods. The negative effect of brood enlargement on wing length persisted at age 2 years. Recruits from enlarged broods had longer lifespan but the proportion of nestlings that were recruited tended to be smaller for enlarged compared to reduced broods. Hence, large brood size had negative phenotypic effects in adulthood. Our results also suggest that stronger viability selection on offspring from enlarged broods results in differential survival of highly viable offspring that express longer life expectancy when adult and/or that smaller reproductive effort of 1-year-old offspring from enlarged broods boosts their life expectancy, potentially compensating for reduced annual fecundity. Number of brood mates can thus have carry-over effects on fitness components, including lifespan, which should be incorporated in the analysis of complex reproductive trade-offs. Significance statement Ecological conditions in early life can affect survival and physical conditions but the extent to which these effects extend into adulthood is largely unknown. In this experiment, we altered the size of barn swallow broods and monitored the consequences of the change in competition regime in the brood of rearing in adulthood. When adult, individuals that had been reared in an enlarged brood had shorter wings and decreased breeding success. However, individuals from enlarged broods lived longer, possibly because only high-quality individuals from such broods survived through the first year of life. Thus, rearing conditions have important long-term effects, implying that parents have to optimize the number of offspring they decide to produce. [Saino, Nicola; Rubolini, Diego; Romano, Maria; Caprioli, Manuela; Romano, Andrea; Parolini, Marco] Univ Milan, Dept Environm Sci & Policy, Via Celoria 26, I-20133 Milan, Italy; [Ambrosini, Roberto] Univ Milano Bicocca, Dept Earth & Environm Sci, Piazza Sci 2, I-20126 Milan, Italy Saino, N (reprint author), Univ Milan, Dept Environm Sci & Policy, Via Celoria 26, I-20133 Milan, Italy. nicola.saino@unimi.it ROMANO, ANDREA/A-2780-2017 ROMANO, ANDREA/0000-0002-0945-6018 Alonso-Alvarez C, 2007, BIOL J LINN SOC, V91, P469, DOI 10.1111/j.1095-8312.2007.00811.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Boncoraglio G, 2008, BEHAV ECOL SOCIOBIOL, V62, P729, DOI 10.1007/s00265-007-0498-8; Bonisoli-Alquati A, 2008, ECOLOGY, V89, P2315, DOI 10.1890/07-1066.1; Boonekamp JJ, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.3287; Bowers EK, 2015, J ANIM ECOL, V84, P473, DOI 10.1111/1365-2656.12294; Burness GP, 2000, J EXP BIOL, V203, P3513; Christe P, 1998, OIKOS, V83, P175, DOI 10.2307/3546559; Costanzo A, 2017, BEHAV ECOL, V28, P204, DOI 10.1093/beheco/arw147; Cramp S, 1998, COMPLETE BIRDS W PAL, P815; DeKogel CH, 1997, J ANIM ECOL, V66, P167; DeKogel CH, 1996, ANIM BEHAV, V51, P699, DOI 10.1006/anbe.1996.0073; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Fitze PS, 2004, ECOLOGY, V85, P2018, DOI 10.1890/03-0138; Gil D, 2004, J EXP BIOL, V207, P2215, DOI 10.1242/jeb.01013; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; HAYWOOD S, 1992, P ROY SOC B-BIOL SCI, V249, P195, DOI 10.1098/rspb.1992.0103; Hegyi G, 2011, BEHAV ECOL SOCIOBIOL, V65, P1647, DOI 10.1007/s00265-011-1175-5; Jenni L, 1994, MOULT AGEING EUROPEA; Kim SY, 2015, BIOL LETTERS, V11, DOI 10.1098/rsbl.2015.0211; Laaksonen T, 2004, J ANIM ECOL, V73, P342, DOI 10.1111/j.0021-8790.2004.00811.x; Le Vaillant M, 2015, POLAR BIOL, V38, P2059, DOI 10.1007/s00300-015-1766-0; Lessells C.M., 1991, P32; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Lummaa V, 2002, TRENDS ECOL EVOL, V17, P141, DOI 10.1016/S0169-5347(01)02414-4; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moller AP, 2004, OIKOS, V104, P299, DOI 10.1111/j.0030-1299.2004.12844.x; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Naguib M, 2005, BIOL LETT-UK, V1, P95, DOI 10.1098/rsbl.2004.0277; Naguib M, 2008, ETHOLOGY, V114, P255, DOI 10.1111/j.1439-0310.2007.01466.x; Naguib M, 2006, P R SOC B, V273, P1901, DOI 10.1098/rspb.2006.3526; Neuenschwander S, 2003, BEHAV ECOL, V14, P457, DOI 10.1093/beheco/arg025; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; Nussey DH, 2011, ECOLOGY, V92, P1936, DOI 10.1890/11-0308.1; Pettifor RA, 2001, J ANIM ECOL, V70, P62, DOI 10.1046/j.1365-2656.2001.00465.x; Reichert S, 2015, J EXP BIOL, V218, P491, DOI 10.1242/jeb.109942; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff Derek A., 1992; Romano A, 2017, J EVOLUTION BIOL, V30, P1929, DOI 10.1111/jeb.13151; Romano A, 2014, ETHOL ECOL EVOL, V26, P80, DOI 10.1080/03949370.2013.800912; Romano A, 2017, BIOL REV, V92, P1582, DOI 10.1111/brv.12297; Rubolini D, 2007, P ROY SOC B-BIOL SCI, V274, P137, DOI 10.1098/rspb.2006.3696; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; Saino N, 1999, J ANIM ECOL, V68, P999, DOI 10.1046/j.1365-2656.1999.00350.x; Saino N, 2002, OECOLOGIA, V133, P139, DOI 10.1007/s00442-002-1015-4; Saino N, 2000, AM NAT, V156, P637, DOI 10.1086/316996; Saino N, 2008, OECOLOGIA, V156, P441, DOI 10.1007/s00442-008-0971-8; Saino N, 2017, J AVIAN BIOL, V48, P1441, DOI 10.1111/jav.01469; Saino N, 2017, OECOLOGIA, V184, P799, DOI 10.1007/s00442-017-3918-0; Saino N, 2017, J ANIM ECOL, V86, P239, DOI 10.1111/1365-2656.12625; Saino N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060426; Saino N, 2012, J ANIM ECOL, V81, P1004, DOI 10.1111/j.1365-2656.2012.01989.x; Santos ESA, 2012, J EVOLUTION BIOL, V25, P1911, DOI 10.1111/j.1420-9101.2012.02569.x; Scandolara C, 2014, BEHAV ECOL, V25, P180, DOI 10.1093/beheco/art103; SEDINGER JS, 1995, ECOLOGY, V76, P2404, DOI 10.2307/2265816; Shutler D, 2006, ECOLOGY, V87, P2938, DOI 10.1890/0012-9658(2006)87[2938:TARCAC]2.0.CO;2; Simons MJP, 2015, AGEING RES REV, V24, P191, DOI 10.1016/j.arr.2015.08.002; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Stearns S, 1992, EVOLUTION LIFE HIST; Thomson RL, 2014, OECOLOGIA, V176, P423, DOI 10.1007/s00442-014-3020-9; Tinbergen JM, 2005, J ANIM ECOL, V74, P1112, DOI 10.1111/j.1365-2656.2005.01010.x; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; Tschirren B, 2009, J EVOLUTION BIOL, V22, P387, DOI 10.1111/j.1420-9101.2008.01656.x; Turner A, 2006, BARN SWALLOW; Verhulst S, 2006, BIOL LETT-UK, V2, P478, DOI 10.1098/rsbl.2006.0496; Voillemot M, 2012, BMC ECOL, V12, DOI 10.1186/1472-6785-12-17; Wilkin TA, 2009, CURR BIOL, V19, P1998, DOI 10.1016/j.cub.2009.09.065; Young RC, 2017, MOL ECOL, V26, P3572, DOI 10.1111/mec.14121; Young RC, 2016, MAR ECOL PROG SER, V556, P251, DOI 10.3354/meps11864 73 1 1 10 22 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. FEB 2018 72 2 UNSP 30 10.1007/s00265-018-2446-1 12 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology FW6HI WOS:000425418600012 2019-02-21 J Lodjak, J; Mand, R; Magi, M Lodjak, Jaanis; Mand, Raivo; Magi, Marko Insulin-like growth factor 1 and life-history evolution of passerine birds FUNCTIONAL ECOLOGY English Article adaptation; comparative study; hormones; insulin-like growth factor 1; phylogeny; trade-off WILD PASSERINE; FACTOR-I; IGF-I; SIGNALING PATHWAYS; POSTNATAL-GROWTH; OVARIAN STEROIDOGENESIS; CAENORHABDITIS-ELEGANS; OXIDATIVE STRESS; BODY-MASS; EGG SIZE 1. Natural selection has generated a diversity of ways in which vertebrates allocate their resources between fundamental life-history traits. The availability of possible evolutionary trajectories of these traits is limited by various genetic, physiological and phylogenetic constraints. This causes trade-offs due to shared resource pools for, or genetic linkage of, competing traits. The majority of these trade-offs are mediated by hormones and create the variability in phenotypes that can be -observed in nature. 2. Insulin-like growth factor 1 (IGF-1) is an evolutionarily conserved peptide, which has been shown to be essential in the regulation of body size, the pattern of reproductive investment and life span across a broad taxonomic range of model species in laboratory and domesticated conditions. However, studies addressing corresponding evolutionary hypotheses on a broader scale and in free-living vertebrates are very rare. 3. In this phylogenetic comparative study on free-living passerines (Passeriformes), we explore the way in which plasma IGF-1 levels underlie the evolution of body size and demographic fitness correlates (clutch size, egg weight, life span). 4. We showed firstly that IGF-1 levels were positively associated with the body size of passerines, although smaller birds had larger IGF-1-mediated investment into building up their body faster. IGF-1 levels were negatively associated with life span of passerines, and more so in birds with smaller body weight. Finally, IGF-1 levels were negatively associated with clutch size in heavier species, and positively associated with egg weight in species with higher body weight and longer duration of parental care. The pattern was opposite in species with smaller body weight and shorter duration of parental care. 5. The described evolutionary framework indicates that variation in IGF-1 levels can be regarded as an important mechanism that may underlie life-history evolution in passerines. IGF-1 could act as a physiological link mediating the inter-regulatory growth-reproduction-lifespan "life-history triangle" on the pace-of-life continuum. Interestingly, body weight and investment into parental care have likely imposed a constraining effect on the IGF-1-mediated co-evolution of demographic fitness traits, such as life span or reproductive investment. This has limited the availability of adaptive pathways via which those traits could evolve as passerines diversified. [Lodjak, Jaanis; Mand, Raivo; Magi, Marko] Univ Tartu, Inst Ecol & Earth Sci, Dept Zool, Tartu, Estonia Lodjak, J (reprint author), Univ Tartu, Inst Ecol & Earth Sci, Dept Zool, Tartu, Estonia. jaanis.lodjak@ut.ee Lodjak, Jaanis/0000-0001-8089-948X Eesti Teadusagentuur [IUT 34-8]; Eesti Teadusfondi [8985] Eesti Teadusagentuur, Grant/Award Number: IUT 34-8; Eesti Teadusfondi, Grant/Award Number: 8985 Agha A, 2007, CLIN ENDOCRINOL, V66, P459, DOI 10.1111/j.1365-2265.2007.02763.x; Baker J, 1996, MOL ENDOCRINOL, V10, P903, DOI 10.1210/me.10.7.903; BAKER J, 1993, CELL, V75, P73, DOI 10.1016/S0092-8674(05)80085-6; Barbieri M, 2003, AM J PHYSIOL-ENDOC M, V285, pE1064, DOI 10.1152/ajpendo.00296.2003; BASSAS L, 1988, DIABETES, V37, P637, DOI 10.2337/diabetes.37.5.637; Beccavin C, 2001, J ENDOCRINOL, V168, P297, DOI 10.1677/joe.0.1680297; Chabrolle C, 2007, DOMEST ANIM ENDOCRIN, V33, P480, DOI 10.1016/j.domaniend.2006.08.002; CLEMMONS DR, 1991, ANNU REV NUTR, V11, P393, DOI 10.1146/annurev.nu.11.070191.002141; Clinchy M, 2004, P ROY SOC B-BIOL SCI, V271, P2473, DOI 10.1098/rspb.2004.2913; Daftary SS, 2005, EXP BIOL MED, V230, P292, DOI 10.1177/153537020523000503; Das D, 2017, MOL REPROD DEV, V84, P444, DOI 10.1002/mrd.22806; Dhakal Pramod, 2011, J Equine Sci, V22, P29, DOI 10.1294/jes.22.29; Else PL, 2004, J EXP BIOL, V207, P2305, DOI 10.1242/jeb.01017; FINDLAY JK, 1993, BIOL REPROD, V48, P15, DOI 10.1095/biolreprod48.1.15; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Gill F. B., 1995, ORNITHOLOGY; Greer EL, 2005, ONCOGENE, V24, P7410, DOI 10.1038/sj.onc.1209086; Hawlena D, 2010, AM NAT, V176, P537, DOI 10.1086/656495; Healy K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0298; Hellstrom A, 2016, AM J PERINAT, V33, P1067, DOI 10.1055/s-0036-1586109; HOCKING PM, 1994, BRIT POULTRY SCI, V35, P299, DOI 10.1080/00071669408417694; Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298; KAISER A, 1993, J FIELD ORNITHOL, V64, P246; Kenyon C, 2010, ANN NY ACAD SCI, V1204, P156, DOI 10.1111/j.1749-6632.2010.05640.x; Ketterson ED, 2009, INTEGR COMP BIOL, V49, P365, DOI 10.1093/icb/icp057; Kloet DEA, 2011, BBA-MOL CELL RES, V1813, P1926, DOI 10.1016/j.bbamcr.2011.04.003; KREMENTZ DG, 1989, OIKOS, V56, P203, DOI 10.2307/3565337; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Li HF, 2008, TURK J VET ANIM SCI, V32, P281; LIU JP, 1993, CELL, V75, P59, DOI 10.1016/S0092-8674(05)80084-4; Lodjak J., 2017, DRYAD DIGITAL REPOSI; Lodjak J, 2017, FUNCT ECOL, V31, P184, DOI 10.1111/1365-2435.12679; Lodjak J, 2016, GEN COMP ENDOCR, V225, P149, DOI 10.1016/j.ygcen.2015.10.016; Lodjak J, 2015, OECOLOGIA, V179, P937, DOI 10.1007/s00442-015-3357-8; Lodjak J, 2014, FUNCT ECOL, V28, P159, DOI 10.1111/1365-2435.12164; Lupu F, 2001, DEV BIOL, V229, P141, DOI 10.1006/dbio.2000.9975; Mangel M, 2007, EVOLUTION, V61, P1208, DOI 10.1111/j.1558-5646.2007.00094.x; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Mazziotti G, 2013, NAT REV ENDOCRINOL, V9, P265, DOI 10.1038/nrendo.2013.5; McGlothlin JW, 2008, PHILOS T R SOC B, V363, P1611, DOI 10.1098/rstb.2007.0002; Nagaraja SC, 2000, J HERED, V91, P150, DOI 10.1093/jhered/91.2.150; O'Kusky JR, 2000, J NEUROSCI, V20, P8435, DOI 10.1523/JNEUROSCI.20-22-08435.2000; Onagbesan OM, 1999, DOMEST ANIM ENDOCRIN, V17, P299, DOI 10.1016/S0739-7240(99)00046-6; Ong K, 2002, J CLIN ENDOCR METAB, V87, P1041, DOI 10.1210/jc.87.3.1041; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Perrini S, 2010, J ENDOCRINOL, V205, P201, DOI 10.1677/JOE-09-0431; Pitetti JL, 2013, MOL ENDOCRINOL, V27, P814, DOI 10.1210/me.2012-1258; Qin QM, 2013, REPROD BIOL ENDOCRIN, V11, DOI 10.1186/1477-7827-11-65; R Development Core Team, 2017, R LANG ENV STAT COMP; Reinecke M, 1998, INT REV CYTOL, V183, P1, DOI 10.1016/S0074-7696(08)60142-4; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Seo K, 2013, AGING CELL, V12, P1073, DOI 10.1111/acel.12140; Sparkman AM, 2009, ECOLOGY, V90, P720, DOI 10.1890/08-0850.1; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Stearns S, 1992, EVOLUTION LIFE HIST; Steinkraus KA, 2008, AGING CELL, V7, P394, DOI 10.1111/j.1474-9726.2008.00385.x; Stuart JA, 2010, MECH AGEING DEV, V131, P591, DOI 10.1016/j.mad.2010.08.005; Swanson EM, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2458; Tosca L, 2008, DOMEST ANIM ENDOCRIN, V34, P204, DOI 10.1016/j.domaniend.2007.03.001; Weber GM, 2000, BIOL REPROD, V63, P1049, DOI 10.1095/biolreprod63.4.1049; Wilkinson RJ, 2006, COMP BIOCHEM PHYS A, V145, P214, DOI 10.1016/j.cbpa.2006.06.010; Williams TD, 2001, P ROY SOC B-BIOL SCI, V268, P423, DOI 10.1098/rspb.2000.1374; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x; Williams TD, 2012, GEN COMP ENDOCR, V176, P286, DOI 10.1016/j.ygcen.2011.11.028; Wilson AJ, 2014, HEREDITY, V112, P70, DOI 10.1038/hdy.2013.7; Yamamoto M, 2005, J BIOL CHEM, V280, P38029, DOI 10.1074/jbc.M509039200; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 67 1 1 3 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. FEB 2018 32 2 313 323 10.1111/1365-2435.12993 11 Ecology Environmental Sciences & Ecology FV1UJ WOS:000424350000008 2019-02-21 J Minias, P; Wlodarczyk, R; Meissner, W Minias, Piotr; Wlodarczyk, Radoslaw; Meissner, Wlodzimierz Leukocyte profiles are associated with longevity and survival, but not migratory effort: A comparative analysis of shorebirds FUNCTIONAL ECOLOGY English Article birds; comparative method; H/L ratio; life history; migration; stress response FREE-LIVING VERTEBRATES; PHYSIOLOGICAL STRESS; COMPARATIVE BIOLOGY; PIED FLYCATCHERS; HANDLING STRESS; IMMUNE FUNCTION; PASSERINE BIRD; R PACKAGE; SIZE; CORTICOSTERONE Assessment of leukocyte profiles has become an increasingly popular tool in the fields of ecology and ecophysiology. The ratio of heterophils to lymphocytes (H/L ratio) is of special utility, as it reflects physiological adaptation of an organism to cope either with an infection through injury (via heterophils) or a communicable disease (via lymphocytes). Thus, elevated H/L ratios may constitute an adaptation to risky environments (i.e. associated with high risk of injury). While intra-population variation in avian H/L ratio has been extensively studied, we are aware of no studies that linked this trait to life-history components at the interspecific level. We measured H/L ratio in over 400 shorebirds from 19 species during their autumn migration through Central Europe. Phylogenetically informed comparative methods were used to test whether H/L ratio was related to: (1) annual survival and life span; (2) migratory effort, as measured with total migration distance and migratory energy reserves and (3) confounding variables such as body size or breeding latitude. A relatively strong phylogenetic signal and spatial phylogenetic autocorrelation indicated that most diversification in shorebird H/L ratios occurred relatively early in radiation of this group. Comparative analysis gave strong support for the negative associations of H/L ratio with residual life span and annual survival. In contrast, we found no support for the effect of migratory behaviour on H/L ratios, suggesting that leukocyte profiles in shorebirds may not constitute an important physiological adaptation for long-distance migration. Our study provided the first comparative evidence for a link between H/L ratios and important life-history traits in birds. Strong negative associations with annual survival and residual life span indicate that leukocyte profiles may form an adaptive basis for life-history strategies in birds. [Minias, Piotr; Wlodarczyk, Radoslaw] Univ Lodz, Fac Biol & Environm Protect, Dept Biodivers Studies & Bioeduc, Lodz, Poland; [Meissner, Wlodzimierz] Univ Gdansk, Dept Vertebrate Ecol & Zool, Avian Ecophysiol Unit, Gdansk, Poland Minias, P (reprint author), Univ Lodz, Fac Biol & Environm Protect, Dept Biodivers Studies & Bioeduc, Lodz, Poland. pminias@op.pl Meissner, Wlodzimierz/A-3657-2008 Meissner, Wlodzimierz/0000-0001-5995-9185; Minias, Piotr/0000-0002-7742-6750; Wlodarczyk, Radoslaw/0000-0001-5932-0226 Buehler DM, 2008, PHYSIOL BIOCHEM ZOOL, V81, P673, DOI 10.1086/588591; Busse P, 2015, BIRD RINGING STATION; Butler MA, 2004, AM NAT, V164, P683, DOI 10.1086/426002; Campo JL, 2002, POULTRY SCI, V81, P1448, DOI 10.1093/ps/81.10.1448; Cirule D, 2012, J ORNITHOL, V153, P161, DOI 10.1007/s10336-011-0719-9; D'Amico VL, 2017, J WILDLIFE DIS, V53, P437, DOI 10.7589/2016-02-039; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Davis A.K., 2004, ECOHEALTH, V1, P362, DOI DOI 10.1007/S10393-004-0134-2; Davis AK, 2005, J FIELD ORNITHOL, V76, P334, DOI 10.1648/0273-8570-76.4.334; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; de Magalhaes JP, 2007, J GERONTOL A-BIOL, V62, P149; Dhabhar FS, 1996, J IMMUNOL, V157, P1638; Dhabhar FS, 1997, BRAIN BEHAV IMMUN, V11, P286, DOI 10.1006/brbi.1997.0508; Eeva T, 2005, J AVIAN BIOL, V36, P405, DOI 10.1111/j.0908-8857.2005.03449.x; Ericson PGP, 2006, BIOL LETT-UK, V2, P543, DOI 10.1098/rsbl.2006.0523; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fokidis HB, 2008, J AVIAN BIOL, V39, P300, DOI [10.1111/j.2008.0908-8857.04248.x, 10.1111/j.0908-8857.2008.04248.x]; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Gamer M, 2012, IRR VARIOUS COEFFICI; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Genovese KJ, 2013, DEV COMP IMMUNOL, V41, P334, DOI 10.1016/j.dci.2013.03.021; GITTLEMAN JL, 1990, SYST ZOOL, V39, P227, DOI 10.2307/2992183; Gonzalez-Lagos C, 2010, J EVOLUTION BIOL, V23, P1064, DOI 10.1111/j.1420-9101.2010.01976.x; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Guillerme T., 2014, MULTREE PACKAGE RUNN; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hansen TF, 1997, EVOLUTION, V51, P1341, DOI 10.1111/j.1558-5646.1997.tb01457.x; Hanssen SA, 2003, OECOLOGIA, V136, P457, DOI 10.1007/s00442-003-1282-8; Hinam HL, 2008, BIOL CONSERV, V141, P524, DOI 10.1016/j.biocon.2007.11.011; Ilmonen P, 2003, OECOLOGIA, V136, P148, DOI 10.1007/s00442-003-1243-2; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Johnstone CP, 2012, J COMP PHYSIOL B, V182, P861, DOI 10.1007/s00360-012-0656-9; Karlionova Natalia, 2007, Ringing & Migration, V23, P134; Kilgas P, 2006, PHYSIOL BIOCHEM ZOOL, V79, P565, DOI 10.1086/502817; Krams I, 2011, J ORNITHOL, V152, P889, DOI 10.1007/s10336-011-0672-7; Laaksonen T, 2004, J ANIM ECOL, V73, P342, DOI 10.1111/j.0021-8790.2004.00811.x; Laiolo P, 2007, BEHAV ECOL, V18, P507, DOI 10.1093/beheco/arm008; Landys-Ciannelli MM, 2002, PHYSIOL BIOCHEM ZOOL, V75, P101, DOI 10.1086/338285; Lobato E, 2005, ECOSCIENCE, V12, P27, DOI 10.2980/i1195-6860-12-1-27.1; Meissner W, 2009, J FIELD ORNITHOL, V80, P289, DOI 10.1111/j.1557-9263.2009.00232.x; Minias P., 2017, DRYAD DIGITAL REPOSI; Minias P, 2015, IBIS, V157, P528, DOI 10.1111/ibi.12262; Minias P, 2015, EVOL ECOL, V29, P283, DOI 10.1007/s10682-014-9752-5; Minias P, 2013, COMP BIOCHEM PHYS A, V165, P7, DOI 10.1016/j.cbpa.2013.02.008; Mizrahi DS, 2001, AUK, V118, P79, DOI 10.1642/0004-8038(2001)118[0079:POCSIM]2.0.CO;2; Moller AP, 2007, J EVOLUTION BIOL, V20, P750, DOI 10.1111/j.1420-9101.2006.01236.x; Moller AP, 1998, EVOL ECOL, V12, P945, DOI 10.1023/A:1006516222343; Moreno J, 2002, ECOSCIENCE, V9, P434, DOI 10.1080/11956860.2002.11682731; Owen JC, 2006, CONDOR, V108, P389, DOI 10.1650/0010-5422(2006)108[389:SDIICO]2.0.CO;2; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Pap PL, 2015, OECOLOGIA, V177, P147, DOI 10.1007/s00442-014-3108-2; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Perez-Rodriguez L, 2008, NATURWISSENSCHAFTEN, V95, P821, DOI 10.1007/s00114-008-0389-5; Piersma T, 1998, J AVIAN BIOL, V29, P511, DOI 10.2307/3677170; Pinheiro J., 2014, R PACKAGE VERSION, V3, P1; PRATER AJ, 1977, GUIDE IDENTIFICATION; R Development Core Team, 2013, R LANG ENV STAT COMP; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; SCHWABL H, 1991, J COMP PHYSIOL B, V161, P576, DOI 10.1007/BF00260747; Sol D, 2007, P R SOC B, V274, P763, DOI 10.1098/rspb.2006.3765; Suorsa P, 2004, P ROY SOC B-BIOL SCI, V271, P435, DOI 10.1098/rspb.2003.2620; Tacutu R, 2013, NUCLEIC ACIDS RES, V41, pD1027, DOI 10.1093/nar/gks1155; Tsigos C, 2002, J PSYCHOSOM RES, V53, P865, DOI 10.1016/S0022-3999(02)00429-4; Warnock N, 2010, J AVIAN BIOL, V41, P621, DOI 10.1111/j.1600-048X.2010.05155.x; Wilcoxen TE, 2013, CAN J ZOOL, V91, P789, DOI 10.1139/cjz-2013-0075; Williams SA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.1664; Wingfield JC, 1998, AM ZOOL, V38, P191 70 1 1 5 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. FEB 2018 32 2 369 378 10.1111/1365-2435.12991 10 Ecology Environmental Sciences & Ecology FV1UJ WOS:000424350000013 2019-02-21 J Soulsbury, CD; Siitari, H; Lebigre, C Soulsbury, Carl D.; Siitari, Heli; Lebigre, Christophe Stabilising selection on immune response in male black grouse Lyrurus tetrix OECOLOGIA English Article Ecological immunology; ELISA; Immunocompetance; Life history theory; Stabilising selection MALE MATING SUCCESS; REPRODUCTIVE EFFORT; TRADE-OFFS; ECOLOGICAL IMMUNOLOGY; PARASITE RESISTANCE; HYGROLYCOSA-RUBROFASCIATA; ANTIBODY RESPONSIVENESS; SYSTEM ACTIVATION; NATURAL-SELECTION; SEXUAL SELECTION Illnesses caused by a variety of micro- and macro- organisms can negatively affect individuals' fitness, leading to the expectation that immunity is under positive selection. However, immune responses are costly and individuals must trade-off their immune response with other fitness components (e.g. survival or reproductive success) meaning that individuals with intermediate response may have the greatest overall fitness. Such a process might be particularly acute in species with strong sexual selection because the condition-dependence of male secondary sexual-traits might lead to striking phenotypic differences amongst males of different immune response levels. We tested whether there is selection on immune response by survival and reproduction in yearling and adult male black grouse (Lyrurus tetrix) following an immune challenge with a novel antigen and tested the hypothesis that sexual signals and body mass are honest signals of the immune response. We show that yearling males with highest immune response to these challenges had higher survival, but the reverse was true for adults. Adults with higher responses had highest mass loss and adult males with intermediate immune response had highest mating success. Tail length was related to baseline response in adults and more weakly in yearlings. Our findings reveal the complex fitness consequences of mounting an immune response across age classes. Such major differences in the direction and magnitude of selection in multiple fitness components is an alternative route underpinning the stabilising selection of immune responses with an intermediate immune response being optimal. [Soulsbury, Carl D.] Univ Lincoln, Sch Life Sci, Lincoln, England; [Siitari, Heli] Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, Jyvaskyla 40014, Finland; [Lebigre, Christophe] IFREMER, Ctr Brest, F-29820 Plouzane, France Soulsbury, CD (reprint author), Univ Lincoln, Sch Life Sci, Lincoln, England. csoulsbury@lincoln.ac.uk Soulsbury, Carl/0000-0001-8808-5210 Academy of Finland [7211271]; Centre of Excellence in Evolutionary Ecology We are greatly indebted to the late Rauno Alatalo and to Janne Kilpimaa, who were instrumental in designing this study, and carrying out the field experiment. We thank Panu Halme, Matti Halonen, Heikki Helle, Jenni Hamalainen, Laura Hasa, Gilbert Ludwig, Eeli Mykkanen, Elina Rantanen, and Raimo Saunanen for assistance in the field work and Ilmari Jokinen and Elina Virtanen for ELISA assay. This study was funded by the Academy of Finland (7211271) and the Centre of Excellence in Evolutionary Ecology. Ahtiainen JJ, 2006, BEHAV ECOL SOCIOBIOL, V60, P826, DOI 10.1007/s00265-006-0226-9; Ahtiainen JJ, 2005, J EVOLUTION BIOL, V18, P985, DOI 10.1111/j.1420-9101.2005.00907.x; ALATALO RV, 1992, BEHAV ECOL, V3, P53, DOI 10.1093/beheco/3.1.53; ALATALO RV, 1991, NATURE, V352, P155, DOI 10.1038/352155a0; Bonato M, 2009, ANIM BEHAV, V77, P1033, DOI 10.1016/j.anbehav.2009.02.008; Caizergues A, 2002, IBIS, V144, P478, DOI 10.1046/j.1474-919X.2002.00040.x; Christe P, 1998, OIKOS, V83, P175, DOI 10.2307/3546559; Cichon M, 2005, J EVOLUTION BIOL, V18, P962, DOI 10.1111/j.1420-9101.2005.00910.x; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Dunn PO, 2013, EVOLUTION, V67, P679, DOI 10.1111/j.1558-5646.2012.01799.x; Ekblom R, 2005, BEHAV ECOL, V16, P346, DOI 10.1093/beheco/arh168; Eraud C, 2005, FUNCT ECOL, V19, P110, DOI 10.1111/j.0269-8463.2005.00934.x; Eraud C, 2009, EVOLUTION, V63, P1036, DOI 10.1111/j.1558-5646.2008.00540.x; Gershman SN, 2010, J EVOLUTION BIOL, V23, P829, DOI 10.1111/j.1420-9101.2010.01951.x; Graham AL, 2011, FUNCT ECOL, V25, P5, DOI 10.1111/j.1365-2435.2010.01777.x; Graham AL, 2010, SCIENCE, V330, P662, DOI 10.1126/science.1194878; Hale ML, 2009, J EVOLUTION BIOL, V22, P1284, DOI 10.1111/j.1420-9101.2009.01746.x; Hamalainen A, 2012, BEHAV ECOL SOCIOBIOL, V66, P1577, DOI 10.1007/s00265-012-1411-7; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hasselquist D, 2012, ANIM BEHAV, V83, P1303, DOI 10.1016/j.anbehav.2012.03.025; Hayward AD, 2011, J EVOLUTION BIOL, V24, P1664, DOI 10.1111/j.1420-9101.2011.02300.x; Helminen M., 1963, RIISTATIET JULK, V8, P142; Hoglund J, 1997, ANIM BEHAV, V54, P255, DOI 10.1006/anbe.1996.0459; Houston AI, 2007, P ROY SOC B-BIOL SCI, V274, P2835, DOI 10.1098/rspb.2007.0934; HOVI M, 1994, P ROY SOC B-BIOL SCI, V258, P303, DOI 10.1098/rspb.1994.0177; Jacot A, 2004, EVOLUTION, V58, P2280; Kervinen M, 2016, J ANIM ECOL, V85, P715, DOI 10.1111/1365-2656.12496; Kervinen M, 2015, AM NAT, V185, P13, DOI 10.1086/679012; Kervinen M, 2012, BEHAV ECOL, V23, P1209, DOI 10.1093/beheco/ars104; Lebigre C, 2008, MOL ECOL, V17, P4512, DOI 10.1111/j.1365-294X.2008.03926.x; Lebigre C, 2013, OECOLOGIA, V172, P983, DOI 10.1007/s00442-012-2548-9; Loyau A, 2005, BEHAV ECOL SOCIOBIOL, V58, P552, DOI 10.1007/s00265-005-0958-y; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; Mendes L, 2006, J EXP BIOL, V209, P284, DOI 10.1242/jeb.02015; Moller AP, 2004, OIKOS, V104, P299, DOI 10.1111/j.0030-1299.2004.12844.x; Moller AP, 2002, BEHAV ECOL, V13, P248, DOI 10.1093/beheco/13.2.248; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Mougeot F, 2004, BEHAV ECOL, V15, P930, DOI 10.1093/beheco/arh087; Muller W, 2004, FUNCT ECOL, V18, P719, DOI 10.1111/j.0269-8463.2004.00902.x; Nieminen E, 2016, BEHAVIOUR, V153, P927, DOI 10.1163/1568539X-00003374; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Poulin R., 2007, EVOLUTIONARY ECOLOGY; R Development Core Team, 2012, R LANG ENV STAT COMP; Raberg L, 2003, EVOLUTION, V57, P1670, DOI 10.1554/02-417; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; Raberg L, 2009, PHILOS T R SOC B, V364, P37, DOI 10.1098/rstb.2008.0184; Rantala MJ, 2010, OECOLOGIA, V163, P825, DOI 10.1007/s00442-010-1582-8; Rintamaki PT, 2001, ANN ZOOL FENN, V38, P99; Saino N, 1997, P NATL ACAD SCI USA, V94, P549, DOI 10.1073/pnas.94.2.549; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Smith HG, 2007, J EVOLUTION BIOL, V20, P310, DOI 10.1111/j.1420-9101.2006.01203.x; Sorci G, 2009, PHILOS T R SOC B, V364, P71, DOI 10.1098/rstb.2008.0151; Soulsbury CD, 2017, OECOLOGIA FIGSHARE; Stjernman M, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002463; Svensson E, 1998, FUNCT ECOL, V12, P912, DOI 10.1046/j.1365-2435.1998.00271.x; Uller T, 2006, FUNCT ECOL, V20, P873, DOI 10.1111/j.1365-2435.2006.01163.x; Valtonen TM, 2010, EVOL BIOL, V37, P49, DOI 10.1007/s11692-009-9078-3; van der Most PJ, 2011, FUNCT ECOL, V25, P74, DOI 10.1111/j.1365-2435.2010.01800.x; van Dijk JGB, 2016, INTEGR COMP BIOL, V56, P290, DOI 10.1093/icb/icw045; VEHRENCAMP SL, 1989, ANIM BEHAV, V38, P885, DOI 10.1016/S0003-3472(89)80120-4; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; Warren PK, 2002, WILDLIFE BIOL, V8, P91; Westneat DF, 2003, BEHAV ECOL SOCIOBIOL, V53, P315, DOI 10.1007/s00265-003-0579-2; Zuk M, 1998, P ROY SOC B-BIOL SCI, V265, P1631, DOI 10.1098/rspb.1998.0481 67 0 0 3 6 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia FEB 2018 186 2 405 414 10.1007/s00442-017-4014-1 10 Ecology Environmental Sciences & Ecology FU9XI WOS:000424210100010 29177843 Green Published, Other Gold 2019-02-21 J Salguero-Gomez, R Salguero-Gomez, Roberto Implications of clonality for ageing research EVOLUTIONARY ECOLOGY English Article Clonal reproduction; CLO-PLA database; Demography; Fast-slow continuum; Genet; Life history strategy; Life history trait; Population LIFE-HISTORY VARIATION; MATRIX PROJECTION MODELS; CENTRAL-EUROPEAN FLORA; FAST-SLOW CONTINUUM; BUD-BANK TRAITS; HYDRAULIC SECTORIALITY; POPULATION-GROWTH; NATURAL-SELECTION; PLANT DEMOGRAPHY; TEMPERATE TREE Senescence, an organismal performance decline with age, has historically been considered a universal phenomenon by evolutionary biologists and zoologist. Yet, increasing fertility and survival with age are nothing new to plant ecologists, among whom it is common knowledge that senescence is not universal. Recently, these two realities have come into a confrontation, begging for the rephrasing of the classical question that has led ageing research for decades: "why do we senesce?" to a more practical "what are the mechanisms by which some organisms escape from senescence?" Plants are amenable to examining this question because of their rich repertoire of life history strategies. These include the existence of permanent seed banks, vegetative dormancy and ability to produce clones, among others. Here, I use a large number of high resolution demographic models from 181 species that reflect life history strategies and their trade-offs among herbaceous perennials, succulents and shrubs measured under field conditions worldwide to examine whether senescence rates of ramets from clonal plants differ from those of whole plants reproducing either strictly sexually, or with a combination of sexual and clonal mechanisms. Contrary to the initial expectation from the mutation accumulation theory of senescence, ramets of clonal plants were more likely to exhibit senescence than those species employing sexual reproduction. I discuss why these comparisons between ramets and genets are useful, as well as its implications and future directions for ageing research. [Salguero-Gomez, Roberto] Univ Oxford, Dept Zool, Radcliffe Observ Quarter, New Radcliffe House, Oxford OX2 6GG, England; [Salguero-Gomez, Roberto] Univ Queensland, Ctr Excellence Environm Decis, St Lucia, Qld 4072, Australia Salguero-Gomez, R (reprint author), Univ Oxford, Dept Zool, Radcliffe Observ Quarter, New Radcliffe House, Oxford OX2 6GG, England.; Salguero-Gomez, R (reprint author), Univ Queensland, Ctr Excellence Environm Decis, St Lucia, Qld 4072, Australia. rob.salguero@zoo.ox.ac.uk Salguero-Gomez, Roberto/0000-0002-6085-4433 Australian Research Council Discovery Early Career Research Award fellowship [DE140100505]; UK Natural Environment Research Council independent research fellowship [NE/M018458/1] The data used in this work come from the COMPADRE Plant Matrix Database, which have been generously supported by the Laboratory of Evolutionary Biodemography at the Max Planck Institute for Demographic Research (MPIDR), led by J. Vaupel. I acknowledge financial support from an Australian Research Council Discovery Early Career Research Award fellowship (DE140100505) and from an UK Natural Environment Research Council independent research fellowship (NE/M018458/1). I thank J. Klimesova and T. Herben for their kind invitation to the Plant Clone Meeting in Trebon in 2015, as well as J. Klimesova, Z. Janovsky and an anonymous reviewer for constructive suggestions. Ally D, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000454; Barrett SCH, 2002, NAT REV GENET, V3, P274, DOI 10.1038/nrg776; Barrett SCH, 2010, PHILOS T R SOC B, V365, P99, DOI 10.1098/rstb.2009.0199; Baskin CC, 2001, SEEDS ECOLOGY BIOGEO; Baudisch A, 2013, J ECOL, V101, P596, DOI 10.1111/1365-2745.12084; Baudisch A, 2012, SCIENCE, V338, P618, DOI 10.1126/science.1226467; BIERZYCHUDEK P, 1982, ECOL MONOGR, V52, P335, DOI 10.2307/2937350; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Brito PH, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-354; Brown JS, 2005, AM J BOT, V92, P495, DOI 10.3732/ajb.92.3.495; Bruggeman J, 2003, GENETICS, V164, P479; Burger O, 2012, P NATL ACAD SCI USA, V109, P18210, DOI 10.1073/pnas.1215627109; Burns JH, 2010, J ECOL, V98, P334, DOI 10.1111/j.1365-2745.2009.01634.x; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2013, J ECOL, V101, P585, DOI 10.1111/1365-2745.12088; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; de Kroon H, 2005, NEW PHYTOL, V166, P73, DOI 10.1111/j.1469-8137.2004.01310.x; DEMETRIUS L, 1978, NATURE, V275, P213, DOI 10.1038/275213a0; Eckert CG, 2002, EVOLUTIONARY ECOLOGY, V15, P501, DOI DOI 10.1023/A:1016005519651; Eckstein RL, 2006, PERSPECT PLANT ECOL, V8, P45, DOI 10.1016/j.ppees.2006.01.001; Finch C.E, 1990, LONGEVITY SENESCENCE; Franco M, 2004, ECOLOGY, V85, P531, DOI 10.1890/02-0651; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GANAPATHI TR, 1992, PLANT CELL REP, V11, P571, DOI 10.1007/BF00233095; Garcia MB, 2011, J ECOL, V99, P1424, DOI 10.1111/j.1365-2745.2011.01871.x; Gardner SN, 1997, AM NAT, V150, P462, DOI 10.1086/286076; GOODMAN LA, 1969, BIOMETRICS, V25, P659, DOI 10.2307/2528566; GRIFFITHS AJF, 1992, ANNU REV GENET, V26, P351, DOI 10.1146/annurev.ge.26.120192.002031; Hamilton W. D., 1996, NARROW ROADS GENE LA, V1; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Harper J. L., 1977, POPULATION BIOL PLAN; Hayward AD, 2013, FUNCT ECOL, V27, P184, DOI 10.1111/1365-2435.12029; Heloir MC, 1997, PLANT CELL TISS ORG, V49, P223, DOI 10.1023/A:1005867908942; Herben T, 2014, ANN BOT-LONDON, V114, P377, DOI 10.1093/aob/mct308; Hinchliff CE, 2015, P NATL ACAD SCI USA, V112, P12764, DOI 10.1073/pnas.1423041112; Horvitz CC, 2008, AM NAT, V172, P203, DOI 10.1086/589453; Hutchings MJ, 2010, J ECOL, V98, P867, DOI 10.1111/j.1365-2745.2010.01661.x; HUTCHINGS MJ, 1986, BIOSCIENCE, V36, P178, DOI 10.2307/1310305; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Kelly D, 2002, ANNU REV ECOL SYST, V33, P427, DOI 10.1146/annurev.ecolsys.33.020602.095433; Kerkhoff AJ, 2004, EVOL ECOL RES, V6, P1003; Keyfitz N, 2005, STAT BIOL HEALTH, P1, DOI 10.1007/b139042; KEYFITZ N, 1977, APPL MATH DEMOGRAPHY; Klimesova J, 2017, ECOLOGY, V98, P1179, DOI 10.1002/ecy.1745; Klimesova J, 2009, J VEG SCI, V20, P511, DOI 10.1111/j.1654-1103.2009.01050.x; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; LEOPOLD AC, 1975, BIOSCIENCE, V25, P659, DOI 10.2307/1297034; LESLIE PH, 1945, BIOMETRIKA, V33, P183, DOI DOI 10.1093/BI0MET/33.3.183; Mardia K. V., 1979, MULTIVARIATE ANAL; Mattison JA, 2012, NATURE, V489, P318, DOI 10.1038/nature11432; Medawar P, 1952, UNSOLVED PROBLEM BIO; Mencuccini M, 2014, J ECOL, V102, P555, DOI 10.1111/1365-2745.12219; Metcalf CJE, 2013, METHODS ECOL EVOL, V4, P195, DOI 10.1111/2041-210x.12001; Morales M, 2013, J ECOL, V101, P555, DOI 10.1111/1365-2745.12080; Nooden LD, 2004, PLANT CELL DEATH PRO, P331; Orians CM, 2005, J EXP BOT, V56, P2267, DOI 10.1093/jxb/eri233; ORIVE ME, 1995, AM NAT, V145, P90, DOI 10.1086/285729; Pedersen B, 1999, LIFE HIST EVOLUTION, P239; Pfister CA, 2005, ECOLOGY, V86, P2673, DOI 10.1890/04-1952; Price EAC, 1996, VEGETATIO, V127, P41, DOI 10.1007/BF00054846; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Revell LJ, 2013, R PACKAGE PHYTOOLS; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Salguero-Gomez R, 2017, NEW PHYTOL, V213, P1618, DOI 10.1111/nph.14289; Salguero-Gomez R, 2016, P NATL ACAD SCI USA, V113, P230, DOI 10.1073/pnas.1506215112; Salguero-Gomez R, 2015, J ECOL, V103, P202, DOI 10.1111/1365-2745.12334; Salguero-Gomez R, 2013, J ECOL, V101, P545, DOI 10.1111/1365-2745.12089; Salguero-Gomez R, 2011, NEW PHYTOL, V191, P173, DOI 10.1111/j.1469-8137.2011.03679.x; Salguero-Gomez R, 2011, NEW PHYTOL, V189, P229, DOI 10.1111/j.1469-8137.2010.03447.x; Salguero-Gomez R, 2010, J ECOL, V98, P250, DOI 10.1111/j.1365-2745.2009.01635.x; Schenk HJ, 2008, P NATL ACAD SCI USA, V105, P11248, DOI 10.1073/pnas.0804294105; Schenk HJ, 1999, PLANT ECOL, V141, P41, DOI 10.1023/A:1009895603783; Shefferson RP, 2017, EVOLUTION SENESCENCE; Silvertown J., 2001, INTRO PLANT POPULATI; Taylor JW, 2015, P NATL ACAD SCI USA, V112, P8901, DOI 10.1073/pnas.1503159112; van Buuren S, 2011, J STAT SOFTW, V45, P1; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003; VAUPEL JW, 1986, POP STUD-J DEMOG, V40, P147, DOI 10.1080/0032472031000141896; Whitaker TW, 1936, AM J BOT, V23, P517, DOI 10.2307/2436078; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J; Zambrano J, 2014, BIOTROPICA, V46, P556, DOI 10.1111/btp.12144; Zanne AE, 2006, FUNCT ECOL, V20, P200, DOI 10.1111/j.1365-2435.2006.01101.x 86 1 1 7 12 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. FEB 2018 32 1 9 28 10.1007/s10682-017-9923-2 20 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity FU7GW WOS:000424021400002 Other Gold 2019-02-21 J Brown, CR; Brown, MB Brown, Charles R.; Brown, Mary Bomberger Parasites favour intermediate nestling mass and brood size in cliff swallows JOURNAL OF EVOLUTIONARY BIOLOGY English Article brood size; cliff swallow; ectoparasites; first-year survival; life-history trade-offs; nestling mass; survival selection INDIVIDUAL GREAT TITS; BODY-SIZE; LIFE-HISTORY; HOST SIZE; POSTFLEDGING SURVIVAL; COLONIAL BIRD; FLEDGING MASS; CLUTCH SIZE; STABILIZING SELECTION; OECIACUS-VICARIUS A challenge of life-history theory is to explain why animal body size does not continue to increase, given various advantages of larger size. In birds, body size of nestlings and the number of nestlings produced (brood size) have occasionally been shown to be constrained by higher predation on larger nestlings and those from larger broods. Parasites also are known to have strong effects on life-history traits in birds, but whether parasitism can be a driver for stabilizing selection on nestling body size or brood size is unknown. We studied patterns of first-year survival in cliff swallows (Petrochelidon pyrrhonota) in western Nebraska in relation to brood size and nestling body mass in nests under natural conditions and in those in which hematophagous ectoparasites had been removed by fumigation. Birds from parasitized nests showed highest first-year survival at the most common, intermediate brood-size and nestling-mass categories, but cliff swallows from nonparasitized nests had highest survival at the heaviest nestling masses and no relationship with brood size. A survival analysis suggested stabilizing selection on brood size and nestling mass in the presence (but not in the absence) of parasites. Parasites apparently favour intermediate offspring size and number in cliff swallows and produce the observed distributions of these traits, although the mechanisms are unclear. Our results emphasize the importance of parasites in life-history evolution. [Brown, Charles R.] Univ Tulsa, Dept Biol Sci, 800 S Tucker Dr, Tulsa, OK 74104 USA; [Brown, Mary Bomberger] Univ Nebraska, Sch Nat Resources, Lincoln, NE USA Brown, CR (reprint author), Univ Tulsa, Dept Biol Sci, 800 S Tucker Dr, Tulsa, OK 74104 USA. charles-brown@utulsa.edu National Science Foundation [BSR-8600608, BSR-9015734, DEB-9613638, IBN-9974733, DEB-0075199, DEB-0514824, DEB-1019423, DEB-1453971, IOS-1556356]; National Institutes of Health [R01AI057569]; National Geographic Society; Erna and Victor Hasselblad Foundation; National Academy of Sciences; Chapman Fund of the American Museum of Natural History; American Philosophical Society; Sigma Xi; University of Tulsa; Yale University; Princeton University We thank numerous research assistants for help in the field; Erin Roche for organizing data; the University of Nebraska-Lincoln for use of the Cedar Point Biological Station; the Oren Clary family, Duane Dunwoody, Dave and Deb Knight, Loren Soper and the Union Pacific Railroad for access to land; and two anonymous reviewers for helpful comments on the manuscript. This work was supported by the National Science Foundation (BSR-8600608, BSR-9015734, DEB-9613638, IBN-9974733, DEB-0075199, DEB-0514824, DEB-1019423, DEB-1453971, IOS-1556356), the National Institutes of Health (R01AI057569), the National Geographic Society, the Erna and Victor Hasselblad Foundation, the National Academy of Sciences, the Chapman Fund of the American Museum of Natural History, the American Philosophical Society, Sigma Xi, the University of Tulsa, Yale University and Princeton University. Adriaensen F, 1998, P ROY SOC B-BIOL SCI, V265, P1011, DOI 10.1098/rspb.1998.0392; Bize P, 2008, AM NAT, V171, P107, DOI 10.1086/523943; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Bonnet T, 2017, PLOS BIOL, V15, DOI 10.1371/journal.pbio.1002592; Bouslama Z, 2002, IBIS, V144, pE73, DOI 10.1046/j.1474-919X.2002.00070_5.x; Bouwhuis S, 2015, J ANIM ECOL, V84, P208, DOI 10.1111/1365-2656.12264; Braasch A, 2009, J ORNITHOL, V150, P401, DOI 10.1007/s10336-008-0362-2; Brown C. R., 2017, BIRDS N AM; Brown CR, 2016, P NATL ACAD SCI USA, V113, P5113, DOI 10.1073/pnas.1600218113; Brown CR, 2015, OECOLOGIA, V177, P413, DOI 10.1007/s00442-014-3095-3; Brown CR, 2013, ECOL MONOGR, V83, P511, DOI 10.1890/12-2001.1; Brown CR, 1998, EVOLUTION, V52, P1461, DOI 10.1111/j.1558-5646.1998.tb02027.x; Brown CR, 2005, J VECTOR ECOL, V30, P137; BROWN CR, 1986, ECOLOGY, V67, P1206, DOI 10.2307/1938676; Brown CR, 2004, BEHAV ECOL SOCIOBIOL, V56, P498, DOI 10.1007/s00265-004-0813-6; Brown CR, 2004, ECOLOGY, V85, P1619, DOI 10.1890/03-0206; Brown CR, 2002, J EVOLUTION BIOL, V15, P1067, DOI 10.1046/j.1420-9101.2002.00474.x; Brown CR, 2001, CURR ORNITHOL, V16, P1; BROWN CR, 1992, ECOLOGY, V73, P1718, DOI 10.2307/1940023; BROWN CR, 1988, BEHAV ECOL SOCIOBIOL, V23, P379, DOI 10.1007/BF00303712; BROWN CR, 1996, COLONIALITY CLIFF SW; BROWN CR, 1998, SWALLOW SUMMER; Brown MB, 2009, AUK, V126, P853, DOI 10.1525/auk.2009.09048; Burnham K. P, 2002, MODEL SELECTION MULT; Cable J, 2007, INT J PARASITOL, V37, P1449, DOI 10.1016/j.ijpara.2007.04.013; Charmantier A, 2004, J EVOLUTION BIOL, V17, P732, DOI 10.1111/j.1420-9101.2004.00734.x; Charmantier A, 2004, EVOLUTION, V58, P203; Cleasby IR, 2010, BIOL J LINN SOC, V101, P680, DOI 10.1111/j.1095-8312.2010.01515.x; Clegg SM, 2008, EVOLUTION, V62, P2393, DOI 10.1111/j.1558-5646.2008.00437.x; Covas R, 2002, P ROY SOC B-BIOL SCI, V269, P1905, DOI 10.1098/rspb.2002.2106; Dudaniec RY, 2006, AUSTRAL ECOL, V31, P88, DOI 10.1111/j.1442-9993.2006.01553.x; EDMAN JD, 1971, ANN ENTOMOL SOC AM, V64, P513, DOI 10.1093/aesa/64.2.513; Fitze PS, 2004, J ANIM ECOL, V73, P216, DOI 10.1111/j.0021-8790.2004.00799.x; Garant D, 2004, AM NAT, V164, pE115, DOI 10.1086/424764; Gotanda KM, 2015, EVOLUTION, V69, P1345, DOI 10.1111/evo.12653; Gotmark F, 2002, OECOLOGIA, V130, P25, DOI 10.1007/s004420100769; Gow EA, 2014, OECOLOGIA, V175, P95, DOI 10.1007/s00442-014-2890-1; Grutter AS, 1998, MAR ECOL PROG SER, V164, P263, DOI 10.3354/meps164263; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Horak P, 1999, OECOLOGIA, V121, P316, DOI 10.1007/s004420050934; KREMENTZ DG, 1989, ECOLOGY, V70, P646, DOI 10.2307/1940216; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lind J, 2010, CURR ORNITHOL, V17, P1, DOI 10.1007/978-1-4419-6421-2_1; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; Martin TE, 2001, P NATL ACAD SCI USA, V98, P2071, DOI 10.1073/pnas.98.4.2071; Medeiros MC, 2009, AUK, V126, P319, DOI 10.1525/auk.2009.08013; MOHR CO, 1961, J PARASITOL, V47, P978, DOI 10.2307/3275037; MOLLER AP, 1991, FUNCT ECOL, V5, P351, DOI 10.2307/2389806; Monros JS, 2002, OIKOS, V99, P481, DOI 10.1034/j.1600-0706.2002.11909.x; Moore AT, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2014.0117; Moreno J, 2005, J AVIAN BIOL, V36, P251, DOI 10.1111/j.0908-8857.2005.03413.x; MOSS WW, 1970, SCIENCE, V168, P1000, DOI 10.1126/science.168.3934.1000; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Norris AR, 2010, J TROP ECOL, V26, P619, DOI 10.1017/S026646741000043X; O'Brien VA, 2011, P ROY SOC B-BIOL SCI, V278, P239, DOI 10.1098/rspb.2010.1098; PORT GR, 1980, B ENTOMOL RES, V70, P133, DOI 10.1017/S0007485300009834; Rasgon JL, 2004, J MED ENTOMOL, V41, P1175, DOI 10.1603/0022-2585-41.6.1175; RICHNER H, 1995, OIKOS, V73, P435, DOI 10.2307/3545973; Roche EA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058092; Rollinson N, 2015, EVOLUTION, V69, P2441, DOI 10.1111/evo.12753; Roulin A, 2003, J ANIM ECOL, V72, P75, DOI 10.1046/j.1365-2656.2003.00677.x; Runjaic J, 2017, J MED ENTOMOL, V54, P994, DOI 10.1093/jme/tjw230; Saino N, 2002, OECOLOGIA, V133, P139, DOI 10.1007/s00442-002-1015-4; Schwagmeyer PL, 2008, ANIM BEHAV, V75, P291, DOI 10.1016/j.anbehav.2007.05.023; Tinbergen JM, 2004, BEHAV ECOL, V15, P525, DOI 10.1093/beheco/arh045; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; Valera F, 2004, PARASITOLOGY, V129, P59, DOI 10.1017/S0031182004005232; VANNOORDWIJK AJ, 1980, ARDEA, V68, P193; vansNoordwijk A.J., 1988, GENET RES, V51, P149; Vergouw D, 2010, BMC MED RES METHODOL, V10, DOI 10.1186/1471-2288-10-81; Verhulst S, 1997, ECOLOGY, V78, P864; Wesolowski T, 2001, J ZOOL, V255, P495; White GC, 1999, BIRD STUDY, V46, P120; Zelmer DA, 1998, J PARASITOL, V84, P24, DOI 10.2307/3284522 74 0 0 3 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. FEB 2018 31 2 254 266 10.1111/jeb.13218 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity FV0OG WOS:000424255500007 29194840 2019-02-21 J de la Fuente, M; Bonada, N; Beche, L; Dahm, CN; Mendez, PK; Tockner, K; Uehlinger, U; Acuna, V de la Fuente, Mireia; Bonada, Nuria; Beche, Leah; Dahm, Clifford N.; Mendez, Patina K.; Tockner, Klement; Uehlinger, Urs; Acuna, Vicenc Evolutionary responses of aquatic macroinvertebrates to two contrasting flow regimes HYDROBIOLOGIA English Article Droughts; Floods; Predictability; Resilience; Resistance; River ecosystems LIFE-HISTORY EVOLUTION; HYDROLOGIC ALTERATION; CLIMATE-CHANGE; STREAMS; PREDICTABILITY; DISTURBANCE; DIVERSITY; COMMUNITY; PATTERNS; TRAITS Natural disturbances are agents of natural selection that drive multiple biological adaptations along evolutionary time. Frequent, high magnitude disturbances are expected to select for morphological and behavioral traits to resist or to avoid them. In contrast, predictable and seasonal disturbances are expected to select for synchronized life cycles to avoid unfavorable periods. We assessed the effect of flood disturbances on aquatic macroinvertebrates in two rivers with contrasting flow regimes: the Gila (USA) with seasonal floods and droughts, and the Thur (Switzerland) with a high frequency of aseasonal floods. Macroinvertebrates were analyzed based on 46 biological trait categories classified into morphological, life-cycle synchronization, and behavioral strategies. Flood effects on diversity and composition were much clearer for the Gila than for the Thur. Overall, biological adaptations were related to the flood regime of each river. Morphological adaptations to resist or avoid floods prevailed under frequent and aseasonal disturbances (the Thur), whereas life-cycle synchronization and behavioral adaptations were associated with highly seasonal, predictable, and low-frequency disturbances (the Gila). Given that forecasted future flow regimes differ between regions, our results suggest that the effects of future flow regime alterations will ultimately depend on the adaptation strategies to current flow regimes. [de la Fuente, Mireia; Bonada, Nuria] Univ Barcelona, Inst Recerca Biodiversitat IRBio, Grp Recerca Freshwater Ecol & Management FEM, Dept Biol Evolut Ecol & Ciencies Ambientals,Fac B, Diagonal 643, E-08028 Barcelona, Spain; [Beche, Leah] EDF CIH, Serv Environm & Soc, F-73370 Le Bourget Du Lac, France; [Dahm, Clifford N.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; [Mendez, Patina K.] Univ Calif Berkeley, Dept Environm Sci Policy & Management ESPM, Berkeley, CA 94720 USA; [Tockner, Klement] Free Univ Berlin, Inst Biol, D-14195 Berlin, Germany; [Tockner, Klement] Leibniz Inst Freshwater Ecol & Inland Fisheries, D-12587 Berlin, Germany; [Tockner, Klement] Austrian Sci Fund, Sensengasse 1, A-1010 Vienna, Austria; [Acuna, Vicenc] Catalan Inst Water Res ICRA, Carrer Emili Grahit 101, Girona 17003, Catalonia, Spain Bonada, N (reprint author), Univ Barcelona, Inst Recerca Biodiversitat IRBio, Grp Recerca Freshwater Ecol & Management FEM, Dept Biol Evolut Ecol & Ciencies Ambientals,Fac B, Diagonal 643, E-08028 Barcelona, Spain. bonada@ub.edu Bonada, Nuria/0000-0002-2983-3335 MEC-Fulbright fellowship of the Spanish Science and Education Ministry; Marie Curie Intra-European Fellowship within the 6th European Community Framework Programme; National Science Foundation (IGERT Freshwater Sciences Interdisciplinary Doctoral Program) [DGE 9972810]; University of New Mexico; Swiss Federal Institute of Aquatic Science and Technology (Eawag); Nature Conservancy John Craig, Richard Illi, Sergi Sabater, Martha Schumann, Dave Van Horn, and Andreas Wolf (in alphabetical order) assisted in the field or in the laboratory. The research was funded by a MEC-Fulbright fellowship of the Spanish Science and Education Ministry, by a Marie Curie Intra-European Fellowship within the 6th European Community Framework Programme, the National Science Foundation (IGERT Freshwater Sciences Interdisciplinary Doctoral Program, DGE 9972810), the University of New Mexico, the Swiss Federal Institute of Aquatic Science and Technology (Eawag), and The Nature Conservancy. Acuna V, 2007, J GEOPHYS RES-BIOGEO, V112, DOI 10.1029/2007JG000493; Bae MJ, 2016, INLAND WATERS, V6, P461, DOI 10.5268/IW-6.3.891; Beche LA, 2006, FRESHWATER BIOL, V51, P56, DOI 10.1111/j.1365-2427.2005.01473.x; Bonada N, 2011, LIMNETICA, V30, P129; Bonada N, 2007, GLOBAL CHANGE BIOL, V13, P1658, DOI 10.1111/j.1365-2486.2007.01375.x; Bonada N, 2013, HYDROBIOLOGIA, V719, P1, DOI 10.1007/s10750-013-1634-2; Burgess SC, 2014, OIKOS, V123, P769, DOI 10.1111/oik.01235; Calapez AR, 2014, LIMNETICA, V33, P281; Champely S, 2002, ENVIRON ECOL STAT, V9, P167, DOI 10.1023/A:1015170104476; Chessel D., 2004, R NEWS, V4, P5, DOI DOI 10.HTTP://DX.D0I.0RG/10.2307/3780087; CHEVENET F, 1994, FRESHWATER BIOL, V31, P295, DOI 10.1111/j.1365-2427.1994.tb01742.x; CLEVELAND WS, 1979, J AM STAT ASSOC, V74, P829, DOI 10.2307/2286407; COLWELL RK, 1974, ECOLOGY, V55, P1148, DOI 10.2307/1940366; Cook BI, 2013, J GEOPHYS RES-ATMOS, V118, P1690, DOI 10.1002/jgrd.50111; Death R. G., 2008, Aquatic insects: challenges to populations, P103, DOI 10.1079/9781845933968.0103; Feeley HB, 2012, J LIMNOL, V71, P299, DOI 10.4081/jlimnol.2012.e32; Filipe AF, 2013, HYDROBIOLOGIA, V719, P331, DOI 10.1007/s10750-012-1244-4; Fleituch T, 2003, INT REV HYDROBIOL, V88, P332, DOI 10.1002/iroh.200390029; Gasith A, 1999, ANNU REV ECOL SYST, V30, P51, DOI 10.1146/annurev.ecolsys.30.1.51; Gutzler DS, 2013, ECOSPHERE, V4, DOI 10.1890/ES12-00283.1; Heino J, 2009, BIOL REV, V84, P39, DOI 10.1111/j.1469-185X.2008.00060.x; Hershkovitz Y, 2013, HYDROBIOLOGIA, V719, P59, DOI 10.1007/s10750-012-1387-3; Imhof A., 1994, THESIS; Lake PS, 2011, DROUGHT AND AQUATIC ECOSYSTEMS: EFFECTS AND RESPONSES, P1, DOI 10.1002/9781444341812; Lake PS, 2000, J N AM BENTHOL SOC, V19, P573, DOI 10.2307/1468118; Lepori F, 2006, BIOSCIENCE, V56, P809, DOI 10.1641/0006-3568(2006)56[809:DAABRC]2.0.CO;2; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Lytle DA, 2002, ECOLOGY, V83, P370; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; Lytle DA, 2008, P R SOC B, V275, P453, DOI 10.1098/rspb.2007.1157; McCluney KE, 2014, FRONT ECOL ENVIRON, V12, P48, DOI 10.1890/120367; Merritt R. W., 1996, AN INTRODUCTION TO T; MOLLES MC, 1990, J N AM BENTHOL SOC, V9, P68, DOI 10.2307/1467935; Oksanen J, 2013, VEGAN COMMUNITY ECOL; Piniewski M, 2017, ECOHYDROLOGY, V10, DOI 10.1002/eco.1793; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1989, CAN J FISH AQUAT SCI, V46, P1805, DOI 10.1139/f89-228; R Core Team, 2013, R LANG ENV STAT COMP; Richter BD, 1996, CONSERV BIOL, V10, P1163, DOI 10.1046/j.1523-1739.1996.10041163.x; Robinson CT, 2004, J N AM BENTHOL SOC, V23, P853, DOI 10.1899/0887-3593(2004)023<0853:IAHROM>2.0.CO;2; Robinson CT, 2003, AQUAT SCI, V65, P210, DOI 10.1007/s00027-003-0663-8; Rolls RJ, 2014, ECOL INDIC, V39, P179, DOI 10.1016/j.ecolind.2013.12.017; Schleuter D, 2010, ECOL MONOGR, V80, P469, DOI 10.1890/08-2225.1; Schneider C, 2012, HYDROL EARTH SYST SC, V9, P9193, DOI DOI 10.5194/HESSD-9-9193-2012; Schneider SC, 2017, SCI TOTAL ENVIRON, V579, P1059, DOI 10.1016/j.scitotenv.2016.11.060; Seager R, 2007, SCIENCE, V316, P1181, DOI 10.1126/science.1139601; Skelly DK, 2007, CONSERV BIOL, V21, P1353, DOI 10.1111/j.1523-1739.2007.00764.x; Statzner B, 2007, BIODIVERS CONSERV, V16, P3609, DOI 10.1007/s10531-007-9150-1; Tomanova S, 2007, FUND APPL LIMNOL, V170, P243, DOI 10.1127/1863-9135/2007/0170-0243; Uehlinger U, 2000, FRESHWATER BIOL, V45, P319, DOI 10.1111/j.1365-2427.2000.00620.x; Usseglio-Polatera P, 2010, INVERTEBRES EAU DOUC; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Wang X.-F., 2010, FANCOVA NONPARAMETRI; Woodward G, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0274; Woodward G, 2015, FRESHWATER BIOL, V60, P2497, DOI 10.1111/fwb.12592 57 1 1 6 14 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia FEB 2018 808 1 353 370 10.1007/s10750-017-3437-3 18 Marine & Freshwater Biology Marine & Freshwater Biology FU4MK WOS:000423827000025 2019-02-21 J Gislason, D; McLaughlin, RL; Robinson, BW; Cook, A; Dunlop, ES Gislason, Davio; McLaughlin, Robert L.; Robinson, Beren W.; Cook, Andy; Dunlop, Erin S. Rapid changes in age and size at maturity in Lake Erie yellow perch (Perca flavescens) are not explained by harvest CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article MATURATION REACTION NORMS; FISHERIES-INDUCED EVOLUTION; LAURENTIAN GREAT-LAKES; LIFE-HISTORY EVOLUTION; EXPLOITED FISH STOCKS; NORTHEAST ARCTIC COD; INDUCED SELECTION; TEMPORAL TRENDS; GADUS-MORHUA; GROWTH-RATE Harvest can change phenotypic traits of populations through immediate demographic consequences, evolutionary responses to harvest selection, or developmental responses by individuals. This study investigated the plastic phenotypic effects of harvest on size and age at maturity in a commercially exploited freshwater fish. We tested an individual growth and life history plasticity model using lagged correlations incorporating how harvesting fish ages 2 and older influenced the abundance of juvenile fish, resource availability, individual growth rates, and carry-over responses in age and size at maturity. Our test used cohort data for Lake Erie yellow perch (Perca flavescens). Age and size at maturity fluctuated widely and rapidly across 23 cohorts between 1991 and 2013, suggesting phenotypic plasticity contributed strongly to maturation dynamics. The changes in maturity could not be explained by responses to harvest, as expected under the plasticity model. In Lake Erie, age and size at maturity in yellow perch appear to be responding to other drivers, such as harvest-induced dynamics of other fish stocks or ecosystem changes that are independent of harvest. [Gislason, Davio; McLaughlin, Robert L.; Robinson, Beren W.] Univ Guelph, Dept Integrat Biol, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada; [Cook, Andy] Ontario Minist Nat Resources & Forestry, Lake Erie Management Unit, 320 Milo Rd,RR 2, Wheatley, ON N0P 2P0, Canada; [Dunlop, Erin S.] Ontario Minist Nat Resources & Forestry, Aquat Res & Monitoring Sect, 2140 East Bank Dr, Peterborough, ON K9L 0G2, Canada Gislason, D (reprint author), Univ Guelph, Dept Integrat Biol, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada. dgislaso@uoguelph.ca Robinson, Beren/0000-0003-2868-5411 Natural Sciences and Engineering Research Council of Canada Strategic Networks grant; Ontario Commercial Fisheries Association We thank Tom D. Nudds and Kevin McCann (University of Guelph), Kevin B. Reid (Ontario Commercial Fisheries Association), and two anonymous reviewers for their comments on earlier drafts. We thank the Lake Erie Management Unit (Ministry of Natural Resources and Forestry) for providing the database from the Partnership Index Gillnet Survey. This research was funded by a Natural Sciences and Engineering Research Council of Canada Strategic Networks grant to the Canadian Fisheries Research Network and a grant-in-aid of research from the Ontario Commercial Fisheries Association. Data for this research were provided under written agreement with the Lake Erie Committee of the Great Lakes Fishery Commission. Alm G., 1959, 40 I FRESHW RES; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; Andree SR, 2015, ECOL FRESHW FISH, V24, P384, DOI 10.1111/eff.12153; Arend KK, 2011, FRESHWATER BIOL, V56, P366, DOI 10.1111/j.1365-2427.2010.02504.x; Baldwin N. A., 2009, COMMERCIAL FISH PROD; Belore M., 2014, REPORT LAKE ERIE YEL; Belore M., 2016, REPORT LAKE ERIE YEL; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; Brenden T. O., 2013, GREAT LAKES FISHERIE, P339; Brooks EN, 2015, CAN J FISH AQUAT SCI, V72, P634, DOI 10.1139/cjfas-2014-0231; Bunnell DB, 2014, BIOSCIENCE, V64, P26, DOI 10.1093/biosci/bit001; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; de Roos AM, 2006, P ROY SOC B-BIOL SCI, V273, P1873, DOI 10.1098/rspb.2006.3518; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2015, ECOL APPL, V25, P1860, DOI 10.1890/14-1862.1; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Dunlop ES, 2005, CAN J FISH AQUAT SCI, V62, P844, DOI 10.1139/F05-045; Eikeset AM, 2013, P NATL ACAD SCI USA, V110, P12259, DOI 10.1073/pnas.1212593110; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Engelhard GH, 2004, FISH RES, V66, P299, DOI 10.1016/S0165-7836(03)00195-4; Farmer TM, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8724; Feiner ZS, 2015, EVOL APPL, V8, P724, DOI 10.1111/eva.12285; Froese R., 2016, FISHBASE; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Hard JJ, 2008, EVOL APPL, V1, P388, DOI 10.1111/j.1752-4571.2008.00020.x; Hecky RE, 2004, CAN J FISH AQUAT SCI, V61, P1285, DOI 10.1139/F04-065; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; Heino M, 2002, B MAR SCI, V70, P639; Heino M, 2008, B MAR SCI, V83, P69; Heino M, 2008, P R SOC B, V275, P1111, DOI 10.1098/rspb.2007.1429; HOULE D, 1992, GENETICS, V130, P195; Jansen WA, 1996, ANN ZOOL FENN, V33, P403; Jobes F. W., 1952, FISH B, V52, P1; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; JORGENSEN T, 1990, J CONSEIL, V46, P235; KNIGHT RL, 1984, T AM FISH SOC, V113, P677, DOI 10.1577/1548-8659(1984)113<677:PBWAYP>2.0.CO;2; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuparinen A, 2012, EVOL APPL, V5, P245, DOI 10.1111/j.1752-4571.2011.00215.x; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Marty L, 2014, MAR ECOL PROG SER, V497, P179, DOI 10.3354/meps10580; McAdam BJ, 2014, FISH RES, V159, P105, DOI 10.1016/j.fishres.2014.05.014; Michalak AM, 2013, P NATL ACAD SCI USA, V110, P6448, DOI 10.1073/pnas.1216006110; Munawar M., 2005, Aquatic Ecosystem Health & Management, V8, P375, DOI 10.1080/14634980500411606; Nussle S, 2009, EVOL APPL, V2, P200, DOI 10.1111/j.1752-4571.2008.00054.x; O'Brien Loretta, 1999, Journal of Northwest Atlantic Fishery Science, V25, P179, DOI 10.2960/J.v25.a17; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; OMNRF, 2016, 2015 STAT MAJ STOCKS; OMRNF and OCFA, 2016, 2016 LAK ER PARTN IN; Pardoe H, 2009, CAN J FISH AQUAT SCI, V66, P1719, DOI 10.1139/F09-132; Pinsky ML, 2014, MOL ECOL, V23, P29, DOI 10.1111/mec.12509; Policansky D., 1993, EXPLOITATION EVOLVIN, P8, DOI DOI 10.1007/978-3-642-48394-3_1; Probst WN, 2012, ICES J MAR SCI, V69, P670, DOI 10.1093/icesjms/fss015; Purchase CF, 2005, T AM FISH SOC, V134, P1369, DOI 10.1577/T04-182.1; Purchase CF, 2005, EVOL ECOL RES, V7, P549; R Core Team, 2014, R LANG ENV STAT COMP; Rochet MJ, 1998, ICES J MAR SCI, V55, P371, DOI 10.1006/jmsc.1997.0324; Scavia D, 2014, J GREAT LAKES RES, V40, P226, DOI 10.1016/j.jglr.2014.02.004; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Sokal R. R., 2012, BIOMETRY PRINCIPLES; Stapanian MA, 2009, FRESHWATER BIOL, V54, P1593, DOI 10.1111/j.1365-2427.2009.02186.x; Stearns S, 1992, EVOLUTION LIFE HIST; Thorpe JE, 2007, MAR ECOL PROG SER, V335, P285, DOI 10.3354/meps335285; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Vainikka A, 2009, MAR ECOL PROG SER, V383, P285, DOI 10.3354/meps07970; Vanderploeg HA, 2002, CAN J FISH AQUAT SCI, V59, P1209, DOI 10.1139/F02-087; Zhang F, 2017, CAN J FISH AQUAT SCI, V74, P1125, DOI 10.1139/cjfas-2016-0155; Zhang F, 2015, CAN J FISH AQUAT SCI, V72, P1494, DOI 10.1139/cjfas-2014-0489 71 4 4 3 23 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. FEB 2018 75 2 211 223 10.1139/cjfas-2016-0211 13 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology FU1NW WOS:000423617700005 2019-02-21 J Palkovacs, EP; Moritsch, MM; Contolini, GM; Pelletier, F Palkovacs, Eric P.; Moritsch, Monica M.; Contolini, Gina M.; Pelletier, Fanie Ecology of harvest-driven trait changes and implications for ecosystem management FRONTIERS IN ECOLOGY AND THE ENVIRONMENT English Review LIFE-HISTORY EVOLUTION; BODY-SIZE; SOUTHERN CALIFORNIA; TRINIDADIAN GUPPIES; MARINE RESERVES; HUNTING SEASON; ATLANTIC COD; RED DEER; POPULATION; FISHERIES Harvest of wild animals and plants is pervasive, exerts ecological and evolutionary pressure on populations, and is known to drive rapid changes in organismal traits. Although the factors that lead to rapid trait changes have received increased attention, the ecological consequences of harvest-driven trait changes are less appreciated. We review recent evidence that harvest-driven trait changes can affect community and ecosystem processes. Growing experimental evidence, modeling studies, and field observations have revealed that common responses to harvest include changes in life-history and behavioral traits, which have the potential to reshape the ecology of harvested systems. On the basis of existing evidence, we propose a set of general mechanisms that link harvest-driven trait changes to ecological processes, including trophic cascades, nutrient dynamics, keystone interactions, ecosystem stability, and habitat use. Managing harvested ecosystems sustainably may require strategies that account for harvest-driven trait changes. We recommend that trait changes be monitored closely as part of ecosystem-based management plans, especially in cases where targeted traits are known to affect important aspects of ecosystem function. [Palkovacs, Eric P.; Moritsch, Monica M.; Contolini, Gina M.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA; [Pelletier, Fanie] Univ Sherbrooke, Dept Biol, Sherbrooke, PQ, Canada Palkovacs, EP (reprint author), Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA. epalkova@ucsc.edu NSF (DEB) [1457333, 1556378]; NOAA Cooperative Institute for Marine Ecosystems and Climate; NSERC; Canada Research Chair in Evolutionary Demography and Conservation; NSF (DEB) [1457333, 1556378]; NOAA Cooperative Institute for Marine Ecosystems and Climate; NSERC; Canada Research Chair in Evolutionary Demography and Conservation Thanks to J Estes, M Kinnison, and the authors' lab groups for comments that improved the manuscript. EPP was supported by NSF (DEB # 1457333, DEB # 1556378) and the NOAA Cooperative Institute for Marine Ecosystems and Climate. FP was supported by NSERC and the Canada Research Chair in Evolutionary Demography and Conservation. The authors declare they have no financial incentives or conflicts of interest for producing this work. Arlinghaus R, 2017, FISH FISH, V18, P360, DOI 10.1111/faf.12176; Audzijonyte A, 2014, MAR ECOL PROG SER, V495, P219, DOI 10.3354/meps10579; Babcock RC, 2010, P NATL ACAD SCI USA, V107, P18256, DOI 10.1073/pnas.0908012107; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Bellwood DR, 2012, P ROY SOC B-BIOL SCI, V279, P1621, DOI 10.1098/rspb.2011.1906; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Broughton J. M., 2015, J CALIF GREAT BASIN, V35, P3; Carlson SM, 2014, TRENDS ECOL EVOL, V29, P521, DOI 10.1016/j.tree.2014.06.005; Chiyo PI, 2015, ECOL EVOL, V5, P5216, DOI 10.1002/ece3.1769; Ciuti S, 2012, P ROY SOC B-BIOL SCI, V279, P4407, DOI 10.1098/rspb.2012.1483; Clinchy M, 2016, BEHAV ECOL, V27, P1826, DOI 10.1093/beheco/arw117; Correa SB, 2015, BIOL CONSERV, V191, P159, DOI 10.1016/j.biocon.2015.06.019; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Davis JP, 2009, MAR COAST FISH, V1, P90, DOI 10.1577/C08-003.1; Diaz Pauli B, 2015, J FISH BIOL, V86, P1030, DOI 10.1111/jfb.12620; Dunlop ES, 2015, ECOL APPL, V25, P1860, DOI 10.1890/14-1862.1; Dunlop ES, 2009, EVOL APPL, V2, P371, DOI 10.1111/j.1752-4571.2009.00089.x; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; Eikeset AM, 2016, P NATL ACAD SCI USA, V113, P15030, DOI 10.1073/pnas.1525749113; El-Sabaawi RW, 2015, OIKOS, V124, P1181, DOI 10.1111/oik.01769; Estes JA, 2011, SCIENCE, V333, P301, DOI 10.1126/science.1205106; Forster J, 2012, P NATL ACAD SCI USA, V109, P19310, DOI 10.1073/pnas.1210460109; Fraser DJ, 2013, CAN J FISH AQUAT SCI, V70, P1417, DOI 10.1139/cjfas-2013-0171; Fryxell DC, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1970; Garcia SM, 2012, SCIENCE, V335, P1045, DOI 10.1126/science.1214594; Hamilton SL, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.1817; Heino M, 2015, ANNU REV ECOL EVOL S, V46, P461, DOI 10.1146/annurev-ecolsys-120213-054339; Hoey AS, 2008, CORAL REEFS, V27, P37, DOI 10.1007/s00338-007-0287-x; IUCN, 2015, IUCN RED LIST THREAT; Kendall NW, 2014, EVOL APPL, V7, P313, DOI 10.1111/eva.12123; Kindsvater HK, 2017, COPEIA, V105, P475, DOI 10.1643/OT-16-533; Kuparinen A, 2017, PHILOS T R SOC B, V372, DOI 10.1098/rstb.2016.0036; Kuparinen A, 2016, SCI REP-UK, V6, DOI 10.1038/srep22245; Laugen AT, 2014, FISH FISH, V15, P65, DOI 10.1111/faf.12007; Lewis B, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0132872; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Ling SD, 2009, P NATL ACAD SCI USA, V106, P22341, DOI 10.1073/pnas.0907529106; Loe LE, 2016, EUR J WILDLIFE RES, V62, P315, DOI 10.1007/s10344-016-1004-2; Lone K, 2015, ANIM BEHAV, V102, P127, DOI 10.1016/j.anbehav.2015.01.012; Lundsgaard-Hansen B, 2014, ECOLOGY, V95, P2723, DOI 10.1890/13-2338.1; Martinez M, 2005, BIOL LETT-UK, V1, P353, DOI 10.1098/rsbl.2005.0330; Matsumura S, 2011, EVOL ECOL, V25, P711, DOI 10.1007/s10682-010-9444-8; Miethe T, 2011, J MAR BIOL ASSOC UK, V91, P1369, DOI 10.1017/S0025315410001268; O'Dea A, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0159; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Ordiz A, 2012, BIOL CONSERV, V152, P21, DOI 10.1016/j.biocon.2012.04.006; Palkovacs EP, 2012, EVOL APPL, V5, P183, DOI 10.1111/j.1752-4571.2011.00212.x; Palkovacs EP, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018879; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Pigeon G, 2016, EVOL APPL, V9, P521, DOI 10.1111/eva.12358; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2005, CAN J FISH AQUAT SCI, V62, P791, DOI 10.1139/F05-079; Roy K, 2003, ECOL LETT, V6, P205, DOI 10.1046/j.1461-0248.2003.00419.x; Schindler DE, 2003, FRONT ECOL ENVIRON, V1, P31, DOI 10.1890/1540-9295(2003)001[0031:PSATEO]2.0.CO;2; Shackell NL, 2010, P ROY SOC B-BIOL SCI, V277, P1353, DOI 10.1098/rspb.2009.1020; Stearns S, 1992, EVOLUTION LIFE HIST; Steyaert SMJG, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.0906; Suraci JP, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10698; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; Taylor BW, 2006, SCIENCE, V313, P833, DOI 10.1126/science.1128223; Twining CW, 2017, CAN J FISH AQUAT SCI, V74, P609, DOI 10.1139/cjfas-2016-0136; Uusi-Heikkila S, 2008, TRENDS ECOL EVOL, V23, P419, DOI 10.1016/j.tree.2008.04.006; van Wijk SJ, 2013, FRONT ECOL ENVIRON, V11, P181, DOI 10.1890/120229; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x 65 4 4 13 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1540-9295 1540-9309 FRONT ECOL ENVIRON Front. Ecol. Environ. FEB 2018 16 1 20 28 10.1002/fee.1743 9 Ecology; Environmental Sciences Environmental Sciences & Ecology FU4GX WOS:000423812600015 Bronze 2019-02-21 J Roberts, BW Roberts, Brent W. A Revised Sociogenomic Model of Personality Traits JOURNAL OF PERSONALITY English Article Evolutionary theory; personality change; personality development; personality traits; sociogenomic model HONEY-BEE AGGRESSION; GENE-EXPRESSION; SITUATION DEBATE; LIFE; ADULTHOOD; BEHAVIOR; METAANALYSIS; ADOLESCENCE; NEUROTICISM; TRANSITION In this article, I seek to update the sociogenomic model of personality traits (Roberts & Jackson, 2008). Specifically, I seek to outline a broader and more comprehensive theoretical perspective on personality traits than offered in the original version of the sociogenomic model of personality traits. First, I review the major points of our 2008 article. Second, I update our earlier model mostly with insights derived from a deeper reading of evolutionary theoretical systems, such as those found in life-history theory and ecological-evolutionary-developmental biology. In particular, this revision incorporates two evolutionary-informed systems, labeled pliable and elastic systems, that provide new insights into how personality traits develop. Third, I describe some of the implications of this new understanding of the biological and evolutionary architecture that underlies human phenotypes such as personality traits. [Roberts, Brent W.] Univ Illinois, Urbana, IL 61801 USA; [Roberts, Brent W.] Univ Tubingen, Tubingen, Germany Roberts, BW (reprint author), Univ Illinois, Dept Psychol, 603 East Daniel St, Champaign, IL 61822 USA. bwrobrts@illinois.edu Roberts, Brent/0000-0002-3244-1164 AINSWORTH MDS, 1991, AM PSYCHOL, V46, P333, DOI 10.1037//0003-066X.46.4.333; Alaux C, 2007, J CHEM ECOL, V33, P1346, DOI 10.1007/s10886-007-9301-6; Alaux C, 2009, P NATL ACAD SCI USA, V106, P15400, DOI 10.1073/pnas.0907043106; Bailey D., 2015, PERSISTENCE FADEOUT; Bargh JA, 1999, AM PSYCHOL, V54, P462, DOI 10.1037//0003-066X.54.7.462; Baumeister RF, 2007, PERSPECT PSYCHOL SCI, V2, P396, DOI 10.1111/j.1745-6916.2007.00051.x; Bell AM, 2007, NATURE, V447, P539, DOI 10.1038/447539a; Bleidorn W, 2012, PERS SOC PSYCHOL B, V38, P1594, DOI 10.1177/0146167212456707; Bleidorn W, 2009, J PERS SOC PSYCHOL, V97, P142, DOI 10.1037/a0015434; Briley DA, 2014, PSYCHOL BULL, V140, P1303, DOI 10.1037/a0037091; Chow PI, 2014, J RES PERS, V51, P38, DOI 10.1016/j.jrp.2014.04.007; COLLINS AM, 1982, SCIENCE, V218, P72, DOI 10.1126/science.218.4567.72; De Jager PL, 2014, NAT NEUROSCI, V17, P1156, DOI 10.1038/nn.3786; Driver CC, 2017, J STAT SOFTW, V77, P1, DOI 10.18637/jss.v077.i05; EYSENCK HJ, 1972, PSYCHOL IS PEOPLE; Fleeson W, 2004, CURR DIR PSYCHOL SCI, V13, P83, DOI 10.1111/j.0963-7214.2004.00280.x; Fleeson W, 2001, J PERS SOC PSYCHOL, V80, P1011, DOI 10.1037/0022-3514.80.6.1011; Forster J, 2009, PERS SOC PSYCHOL B, V35, P1479, DOI 10.1177/0146167209342755; Fraley RC, 2005, PSYCHOL REV, V112, P60, DOI 10.1037/0033-295X.112.1.60; Galler JR, 2013, J CHILD PSYCHOL PSYC, V54, P911, DOI 10.1111/jcpp.12066; Ghisletta P, 2012, STRUCT EQU MODELING, V19, P651, DOI 10.1080/10705511.2012.713275; Gilbert S F, 2009, ECOLOGICAL DEV BIOL; Gollner R, 2017, J PERS, V85, P376, DOI 10.1111/jopy.12246; Headey B, 2008, SOC INDIC RES, V86, P213, DOI 10.1007/s11205-007-9138-y; Heijmans BT, 2008, P NATL ACAD SCI USA, V105, P17046, DOI 10.1073/pnas.0806560105; Hill PL, 2012, SOC PSYCHOL PERS SCI, V3, P698, DOI 10.1177/1948550611433888; Hudson NW, 2012, J RES PERS, V46, P334, DOI 10.1016/j.jrp.2012.03.002; HUGHES P, 1995, PHARMACOL REV, V47, P133; Hutteman R, 2015, J PERS SOC PSYCHOL, V108, P767, DOI 10.1037/pspp0000015; Kandler C, 2012, CURR DIR PSYCHOL SCI, V21, P290, DOI 10.1177/0963721412452557; KAWAHATA A., 1951, JAPANESE JOUR PHYSIOL, V2, P166; Koenen KC, 2006, ANN NY ACAD SCI, V1071, P255, DOI 10.1196/annals.1364.020; Krueger R. F., 2008, HDB PERSONALITY THEO; LEWINSOHN PM, 1994, J AM ACAD CHILD PSY, V33, P809, DOI 10.1097/00004583-199407000-00006; Lewis M, 2001, PSYCHOL INQ, V12, P67, DOI 10.1207/S15327965PLI1202_02; Liu N, 2015, TRANSL RES, V165, P28, DOI 10.1016/j.trsl.2014.04.003; Lucas RE, 2007, CURR DIR PSYCHOL SCI, V16, P75, DOI 10.1111/j.1467-8721.2007.00479.x; Magidson JF, 2014, DEV PSYCHOL, V50, P1442, DOI 10.1037/a0030583; McCrae R. R., 2008, SAGE HDB PERSONALITY, V1, P273, DOI DOI 10.4135/9781849200462.N13; McCrae R. R., 2008, HDB PERSONALITY THEO; Metzger DCH, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2016.1734; Morgan HD, 1999, NAT GENET, V23, P314, DOI 10.1038/15490; Oh G, 2015, BIOL PSYCHIAT, V77, P246, DOI 10.1016/j.biopsych.2014.06.016; Olweus D, 1997, IRISH J PSYCHOL, V18, P170, DOI 10.1080/03033910.1997.10558138; Ormel J, 2012, CLIN PSYCHOL REV, V32, P71, DOI 10.1016/j.cpr.2011.10.004; Osmond C, 2000, ENVIRON HEALTH PERSP, V108, P545, DOI 10.1289/ehp.00108s3545; Rabbi Mashfiqui, 2011, Proc ACM Int Conf Ubiquitous Comput, V2011, P385; Rittschof CC, 2013, GENES BRAIN BEHAV, V12, P802, DOI 10.1111/gbb.12087; Roberts BW, 2008, J PERS, V76, P1523, DOI 10.1111/j.1467-6494.2008.00530.x; Roberts BW, 2008, CURR DIR PSYCHOL SCI, V17, P31, DOI 10.1111/j.1467-8721.2008.00543.x; Roberts BW, 2017, PSYCHOL BULL, V143, P117, DOI 10.1037/bul0000088; Roberts BW, 2006, RES ORGAN BEHAV, V27, P1, DOI 10.1016/S0191-3085(06)27001-1; Roberts BW, 2009, J RES PERS, V43, P137, DOI 10.1016/j.jrp.2008.12.015; Roberts BW, 2006, PSYCHOL BULL, V132, P29, DOI 10.1037/0033-2909.132.1.29; Roberts BW, 2001, PSYCHOL INQ, V12, P104, DOI 10.1207/S15327965PLI1202_04; Robinson GE, 2005, NAT REV GENET, V6, P257, DOI 10.1038/nrg1575; Robinson GE, 2004, SCIENCE, V304, P397, DOI 10.1126/science.1095766; ROBINSON GE, 1987, J COMP PHYSIOL A, V160, P613, DOI 10.1007/BF00611934; Senner NR, 2015, P ROY SOC B-BIOL SCI, V282, P5, DOI 10.1098/rspb.2015.1050; Sih A, 2015, TRENDS ECOL EVOL, V30, P50, DOI 10.1016/j.tree.2014.11.004; Snell-Rood EC, 2013, ANIM BEHAV, V85, P1004, DOI 10.1016/j.anbehav.2012.12.031; Southey BR, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146430; Stamps JA, 2016, CURR OPIN BEHAV SCI, V12, P18, DOI 10.1016/j.cobeha.2016.08.008; Stamps JA, 2016, TRENDS ECOL EVOL, V31, P260, DOI 10.1016/j.tree.2016.01.012; Stamps JA, 2014, AM NAT, V184, P647, DOI 10.1086/678116; Stein LR, 2014, ANIM BEHAV, V95, P165, DOI 10.1016/j.anbehav.2014.07.010; Steyer R, 1999, EUR J PERSONALITY, V13, P389, DOI 10.1002/(SICI)1099-0984(199909/10)13:5<389::AID-PER361>3.3.CO;2-1; Tucker-Drob EM, 2016, J PERS SOC PSYCHOL, V111, P790, DOI 10.1037/pspp0000098; Vazire S, 2010, J PERS SOC PSYCHOL, V98, P281, DOI 10.1037/a0017908; Vukasovic T, 2015, PSYCHOL BULL, V141, P769, DOI 10.1037/bul0000017; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whitehurst G. J., 2016, EVIDENCE SPEAKS REPO, V1, P1; Wolff GL, 1998, FASEB J, V12, P949; Wrzus C, 2017, PERS SOC PSYCHOL REV, V21, P253, DOI 10.1177/1088868316652279 74 8 8 0 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-3506 1467-6494 J PERS J. Pers. FEB 2018 86 1 SI 23 35 10.1111/jopy.12323 13 Psychology, Social Psychology FS7OC WOS:000419986300003 28509389 Bronze 2019-02-21 J Fischbein, D; Villacide, JM; De La Vega, G; Corley, JC Fischbein, Deborah; Villacide, Jose M.; De La Vega, Gerardo; Corley, Juan C. Sex, life history and morphology drive individual variation in flight performance of an insect parasitoid ECOLOGICAL ENTOMOLOGY English Article Flight mills; flight morphological traits; flight patterns; insect movement; Megarhyssa nortoni; parasitoids MATING STATUS; L LEPIDOPTERA; TRADE-OFFS; DISPERSAL; HYMENOPTERA; BEHAVIOR; REPRODUCTION; ALLOCATION; PHYSIOLOGY; GENDER 1. The movement of organisms can be driven by multiple factors and has implications for fitness and the spatial distribution of populations. Insects spend a large proportion of their adult lives foraging by flying for resources; however, their capability and motivation to move can vary across individuals. 2. The aims of this study were to examine interindividual and sex differences in flight performance and flight characteristics, using a flight mill bioassay, in Megarhyssa nortoni (Hymenoptera; Ichneumonidae), a parasitoid of the invasive woodwasp Sirex noctilio (Hymenoptera: Siricidae), one of the most important pests of pine afforestation worldwide. We also assessed the influence of morphological traits in combination with sex on flight and explored the cost of flight on longevity and mass loss. 3. The results show a difference between sexes in flight characteristics and performance. Females show greater total distance flown than males, and have a better capacity to undergo sustained flight. Sexual size dimorphism was also found and it was noted that size positively affects distances travelled. Females have a longer life span than males, yet no differences were noted in longevity within sex between individuals that did not fly and those that flew. Age did not influence flight performance of females or impacted on post-flight longevity. Females lost less body mass than males even after flying longer distances. 4. These results suggest that sex-specific behaviours probably govern flight abilities together with (and not only because of) morphological traits. The paper discusses sex-specific life-history strategies in parasitoids and their implications for biocontrol programmes. [Fischbein, Deborah; De La Vega, Gerardo; Corley, Juan C.] Consejo Nacl Invest Cient & Tecn, San Carlos De Bariloche, Rio Negro, Argentina; [Fischbein, Deborah; Villacide, Jose M.; De La Vega, Gerardo; Corley, Juan C.] INTA EEA Bariloche, Grp Ecol Poblac Insectos, Modesta Victoria 4450, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina Fischbein, D (reprint author), INTA EEA Bariloche, Grp Ecol Poblac Insectos, Modesta Victoria 4450, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. deborah.fischbein@gmail.com Fischbein, Deborah/0000-0002-0457-0073 Agencia Nacional de Promocion Cientifica y Tecnologica [PICT 2014-527, PICT 2013-557]; Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET [PIP 0730/14] We are thankful for the technical assistance offered by Ariel Mayoral and Josefina Lorhmann. This work was supported by PICT 2014-527 and PICT 2013-557 (Agencia Nacional de Promocion Cientifica y Tecnologica) and PIP 0730/14 (Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET). DF, GV and JCC are Research Fellows of CONICET. JMV is Research Fellow of the Instituto Nacional de Tecnologia Agropecuaria (INTA). The authors have no conflict of interest regarding this publication. Authors' contributions: DF, JCC, and JMV conceived the ideas and designed the methodology; DF collected the data; DF and GV analysed the data; and DF and JCC led the writing of the manuscript. All authors contributed to critical interpretation of the data, revising the draft and gave their final approval for publication. DF and JCC provided the funds and organised the research programme. ANHOLT BR, 1990, OECOLOGIA, V83, P385, DOI 10.1007/BF00317564; Barbraud C, 2003, J ANIM ECOL, V72, P246, DOI 10.1046/j.1365-2656.2003.00695.x; Bellamy DE, 2001, ECOL ENTOMOL, V26, P571, DOI 10.1046/j.1365-2311.2001.00370.x; Benton TG, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P41; Berwaerts K, 2002, FUNCT ECOL, V16, P484, DOI 10.1046/j.1365-2435.2002.00650.x; Berwaerts K, 2006, BIOL J LINN SOC, V89, P675, DOI 10.1111/j.1095-8312.2006.00699.x; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Bowlin MS, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002154; Bruzzone OA, 2009, J EXP BIOL, V212, P731, DOI 10.1242/jeb.022517; Cameron EA, 2012, SIREX WOODWASP AND ITS FUNGAL SYMBIONT: RESEARCH AND MANAGEMENT OF A WORLDWIDE INVASIVE PEST, P103, DOI 10.1007/978-94-007-1960-6_8; Chapman R.F., 2007, INSECTS STRUCTURE FU; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; CRANKSHAW OS, 1981, BEHAV ECOL SOCIOBIOL, V9, P1, DOI 10.1007/BF00299846; Dudley R., 2002, BIOMECHANICS INSECT; Elliott CG, 2012, PHYSIOL ENTOMOL, V37, P219, DOI 10.1111/j.1365-3032.2012.00835.x; Elliott CG, 2009, PHYSIOL ENTOMOL, V34, P71, DOI 10.1111/j.1365-3032.2008.00654.x; Fischbein D, 2011, J INSECT BEHAV, V24, P456, DOI 10.1007/s10905-011-9270-z; Guerra PA, 2011, BIOL REV, V86, P813, DOI 10.1111/j.1469-185X.2010.00172.x; Hanski I, 2006, J ANIM ECOL, V75, P91, DOI 10.1111/j.1365-2656.2005.01024.x; Hardy Ian C.W., 2005, P261, DOI 10.1007/1-4020-2625-0_5; HASSELL MP, 1973, J ANIM ECOL, V42, P693, DOI 10.2307/3133; Heimpel GE, 2011, BIOCONTROL, V56, P441, DOI 10.1007/s10526-011-9381-7; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Kidd N.A.C., 2007, INSECTS NATURAL ENEM, P435; KING B, 1993, J INSECT BEHAV, V6, P313, DOI 10.1007/BF01048112; Kisdi E, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P139; Liu Y., 2008, FRONT BIOL CHINA, V3, P375; Lukas J, 2010, ENTOMOL EXP APPL, V136, P80, DOI 10.1111/j.1570-7458.2010.01000.x; MATTHEWS RW, 1979, FLA ENTOMOL, V62, P3, DOI 10.2307/3494037; Matthysen E, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P3; NUTTALL M J, 1973, New Zealand Entomologist, V5, P112; Ode PJ, 1998, ECOL ENTOMOL, V23, P314, DOI 10.1046/j.1365-2311.1998.00134.x; R Core Development Team, 2016, R LANG ENV STAT COMP; Rasband W. S, 2014, IMAGEJ; Roland J, 1997, NATURE, V386, P710, DOI 10.1038/386710a0; Sarvary MA, 2008, J ECON ENTOMOL, V101, P314, DOI 10.1603/0022-0493(2008)101[314:DFPAFP]2.0.CO;2; Schumacher P, 1997, PHYSIOL ENTOMOL, V22, P149, DOI 10.1111/j.1365-3032.1997.tb01152.x; Shirai Y, 1995, RES POPUL ECOL, V37, P269, DOI 10.1007/BF02515829; YONG W, 1994, AUK, V111, P683; Zboralski A, 2016, BIOCONTROL, V61, P13, DOI 10.1007/s10526-015-9696-x; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 43 2 2 3 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6946 1365-2311 ECOL ENTOMOL Ecol. Entomol. FEB 2018 43 1 60 68 10.1111/een.12469 9 Entomology Entomology FR7IC WOS:000419240200007 Bronze 2019-02-21 J Hasegawa, E; Watanabe, S; Murakami, Y Hasegawa, Eisuke; Watanabe, Saori; Murakami, Yuuka Evolution of the optimal reproductive schedule in the ant Camponotus (Colobopsis) nipponicus (wheeler): a demographic approach ECOLOGICAL ENTOMOLOGY English Article Ant; evolution; life history; reproduction; reproductive schedule LIFE-HISTORY EVOLUTION; CYCLE 1. Traits are hypothesised to optimise via natural selection. The schedule of reproduction is an important adaptive trait, but its evolution is difficult to study, as measuring parameters is usually difficult. However, the sufficient amounts of demographic data enable us to estimate these parameters. 2. Here, it is shown that the reproductive schedule of the ant Camponotus (Colobopsis) nipponicus is tuned to maximise the lifetime production of alates. 3. A colony started its reproduction 4 years after the colony founding, at which time they were far smaller than well-developed colonies. This contradicts the prediction of the bang-bang strategy theory. The size distribution of colonies in the study area showed that the mortality of small colonies is much higher than that of large colonies. 4. A simulation analysis suggests that the colonies that are smaller than the threshold can still achieve significant improvement in colny survival to the following year by investing all resources in colony growth instead of reproduction. A sensitivity analysis for the starting year of reproduction showed that the observed schedule maximises lifetime alate production. The demographic data suggest a stable population, which is required for optimisation through this maximisation. 5. The observed reproductive schedule must be optimised, and the breakdown of the bang-bang theory is due to higher mortalities during the incipient stage of colonies. This study demonstrates that having enough demographic data creates a useful tool for studying the evolution of life-history characteristics. [Hasegawa, Eisuke] Tokyo Metropolitan Univ, Dept Biol, Fac Sci, Tokyo, Japan; [Hasegawa, Eisuke; Watanabe, Saori] Hokkaido Univ, Grad Sch Agr, Dept Ecol & Systemat, Lab Anim Ecol, Sapporo, Hokkaido 0608589, Japan; [Murakami, Yuuka] Hokkaido Univ, Grad Sch Med, Dept Neuropharmacol, Sapporo, Hokkaido, Japan Hasegawa, E (reprint author), Hokkaido Univ, Lab Anim Ecol, Dept Ecol & Systemat, Grad Sch Agr,Kuta Ku, Kita 9,Nishi 9, Sapporo, Hokkaido 0608589, Japan. ehase@res.agr.hokudai.ac.jp Ministry of Education, Culture, Sports, Science, and Technology of Japan [26440228] This work was partly supported by grants-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan to E.H. (no. 26440228). We thank K. Miyashita, T. Suzuki, and T. Kusano for many suggestions and much encouragement over the course of this study. I am grateful to M. Shimada for helpful comments on an early draft. I also thank the members of the Kominato Laboratory of the Marine Ecosystems Research Centre of Chiba University for permission to use their equipment. The authors declare no competing financial interests. Agrawal AA, 2013, AM NAT, V181, pS35, DOI 10.1086/666727; BRIAN M. V., 1957, INSECTES SOCIAUX, V4, P177, DOI 10.1007/BF02222152; Burns JH, 2010, J ECOL, V98, P334, DOI 10.1111/j.1365-2745.2009.01634.x; CASSIE R. M., 1954, AUSTRALIAN JOUR MARINE AND FRESHWATER RES, V5, P513; CASSIE RM, 1962, J ANIM ECOL, V31, P65, DOI 10.2307/2333; HASEGAWA E, 1993, INSECT SOC, V40, P261, DOI 10.1007/BF01242362; HASEGAWA E, 1993, BEHAV ECOL SOCIOBIOL, V33, P73; HASEGAWA E, 1994, EVOLUTION, V48, P1121, DOI 10.1111/j.1558-5646.1994.tb05299.x; HASEGAWA E, 1992, INSECT SOC, V39, P439, DOI 10.1007/BF01240626; Hasegawa E, 1997, AM NAT, V149, P706, DOI 10.1086/286016; Imai H. T., 2003, ANTS JAPAN; Kery M, 2005, OIKOS, V108, P307, DOI 10.1111/j.0030-1299.2005.13589.x; Maynard-Smith J., 1989, EVOLUTIONARY GENETIC; Oster G.F., 1978, CASTE ECOLOGY EOCIAL; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; Preston S., 2000, DEMOGRAPHY MEASURING; Rees P., 1986, POPULATION STRUCTURE, P301; Ross KG, 1991, SOCIAL BIOL WASPS; Stearns S, 1992, EVOLUTION LIFE HIST; Stephens D. W, 1986, FORAGING THEORY; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; TSCHINKEL WR, 1993, ECOL MONOGR, V63, P425, DOI 10.2307/2937154; Williams George C., 1992, NATURAL SELECTION DO; Wilson E. O., 1971, INSECT SOC 25 0 0 0 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6946 1365-2311 ECOL ENTOMOL Ecol. Entomol. FEB 2018 43 1 126 133 10.1111/een.12478 8 Entomology Entomology FR7IC WOS:000419240200014 Bronze 2019-02-21 J Bakhiet, SFA; Dutton, E; Ashaer, KYA; Essa, YAS; Blahmar, TAM; Hakami, SM; Madison, G Bakhiet, Salaheldin Farah Attallah; Dutton, Edward; Ashaer, Khalil Yousif Ali; Essa, Yossry Ahmed Sayed; Blahmar, Tahani Abdulrahman Muhammad; Hakami, Sultan Mohammed; Madison, Guy Understanding the Simber Effect: Why is the age-dependent increase in children's cognitive ability smaller in Arab countries than in Britain? PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Flynn effect; Life history theory; Arabic; IQ; Intelligence STANDARD PROGRESSIVE MATRICES; SEX-DIFFERENCES; SAUDI-ARABIA; INTELLIGENCE; NORMS; BRAIN; LIBYA; IQ; ADOLESCENTS; EDUCATION Previous research indicates that the typical increase in IQ during childhood is greater in European countries than in Arab countries. A systematic literature review of age-dependent IQ in Arab countries is conducted, yielding relevant studies for 12 countries that fulfil the inclusion criteria. In almost all of these studies, Arab children exhibit an age-dependent IQ decline relative to Caucasian children, from 5 to about 12 years of age in particular. We term this phenomenon the Simber Effect. We propose two non-exclusive explanations. (1) The Flynn Effect is less intense in Arab countries because of localised differences, including poorer education quality and greater religiosity. (2) Those from Arab countries follow a faster Life History Strategy than Europeans, for environmental and possibly genetic reasons. Either way, the Simber Effect may amount to a Wilson Effect, meaning that the impact of genetic IQ increases with age. [Bakhiet, Salaheldin Farah Attallah; Essa, Yossry Ahmed Sayed; Blahmar, Tahani Abdulrahman Muhammad; Hakami, Sultan Mohammed] King Saud Univ, Dept Special Educ, Riyadh, Saudi Arabia; [Dutton, Edward] Ulster Inst Social Res, London, England; [Ashaer, Khalil Yousif Ali] Najran Univ, Dept Special Educ, Najran, Saudi Arabia; [Madison, Guy] Umea Univ, Umea, Sweden Bakhiet, SFA (reprint author), King Saud Univ, Dept Special Educ, Riyadh, Saudi Arabia. slh9999@yahoo.com; ysayed@ksu.edu.sa; tbalahmar@ksu.edu.sa; guy.madison@umu.se Madison, Guy/0000-0001-5366-1169 King Saud University [RGP-1438-007] The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through Research Group no. RGP-1438-007. Abdel-Khalek AM, 2009, MANKIND QUART, V50, P106; Abdel-Khalek AM, 2008, MANKIND QUART, V49, P183; Abdelrahman N., 2016, ED ARAB SPRING; Al-Shahomee AA, 2010, MANKIND QUART, V51, P97; Bakhiet S., 2015, MANKIND Q, V56, P87; Bakhiet S., 2014, OPEN DIFFERENTIAL PS; Bakhiet S., 2015, MANKIND Q, V56, P70; Bakhiet S., 2015, MANKIND Q, V56, P167; Bakhiet S., 2015, MANKIND Q, V55, P268; Bakhiet S., MANKIND Q IN PRESS; Bakhiet S., 2015, MANKIND Q, V56, P79; Bakhiet SFA, 2014, PSYCHOL REP, V115, P810, DOI 10.2466/04.PR0.115c27z3; Bakhiet SFA, 2014, INTELLIGENCE, V47, P10, DOI 10.1016/j.intell.2014.08.004; Batterjee AA, 2013, INTELLIGENCE, V41, P91, DOI 10.1016/j.intell.2012.10.011; Batterjee AA, 2011, MANKIND QUART, V52, P133; Bouchard TJ, 2014, BEHAV GENET, V44, P549, DOI 10.1007/s10519-014-9646-x; Bouchard TJ, 2013, TWIN RES HUM GENET, V16, P923, DOI 10.1017/thg.2013.54; Dutton E., 2017, EVOLUTIONARY PSYCHOL; Dutton E, 2017, INTELLIGENCE, V63, P51, DOI 10.1016/j.intell.2017.05.003; Dutton E, 2017, PERS INDIV DIFFER, V114, P69, DOI 10.1016/j.paid.2017.03.060; Dutton E, 2016, INTELLIGENCE, V59, P163, DOI 10.1016/j.intell.2016.10.002; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Flynn JR, 2012, ARE WE GETTING SMARTER?: RISING IQ IN THE TWENTY-FIRST CENTURY, P1, DOI 10.1017/CBO9781139235679; Fryer RG, 2013, AM ECON REV, V103, P981, DOI 10.1257/aer.103.2.981; Harnqvist K, 1997, SCAND J PSYCHOL, V38, P55, DOI 10.1111/1467-9450.00009; HARNQVIST K, 1962, MANUAL TILL DBA; International Monetary Fund, 1997, SOC EFF EC ADJ AR CO; Jensen AR, 1998, G FACTOR SCI MENTAL; Khaleefa O, 2012, MANKIND QUART, V53, P238; Khaleefa O, 2010, MANKIND QUART, V50, P311; Khaleefa O, 2008, MANKIND QUART, V49, P65; Khaleefa O, 2008, MANKIND QUART, V49, P58; Kirasic K., 1989, EVERYDAY COGNITION A; Lynn R, 2000, PERS INDIV DIFFER, V29, P555, DOI 10.1016/S0191-8869(99)00215-9; Lynn R., 2015, RACE DIFFERENCES INT; Lynn R, 2009, MANKIND QUART, V50, P114; Lynn R, 2009, MANKIND QUART, V49, P292; Lynn R, 2008, MANKIND QUART, V49, P71; Milgram NW, 2003, NEUROCHEM RES, V28, P1677, DOI 10.1023/A:1026009005108; Noble KG, 2015, NAT NEUROSCI, V18, P773, DOI 10.1038/nn.3983; Pietschnig J, 2015, PERSPECT PSYCHOL SCI, V10, P282, DOI 10.1177/1745691615577701; Raven J, 2000, MANUAL RAVENS PROGRE; Roux C., 1998, RELIG POLITICS S AFR, V1; Rushton J. P., 2000, RACE EVOLUTION BEHAV; Stoet G, 2017, INTELLIGENCE, V62, P71, DOI 10.1016/j.intell.2017.03.001; Vanhanen T, 2012, INTELLIGENCE UNIFYIN; von Stumm S, 2015, INTELLIGENCE, V48, P30, DOI 10.1016/j.intell.2014.10.002; Woodley of Menie M. A., 2014, PERSONALITY INDIVIDU, V55, P387; Zebec MS, 2015, INTELLIGENCE, V49, P94, DOI 10.1016/j.intell.2015.01.004; Ziada K., MANKIND Q IN PRESS 50 5 5 3 9 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. FEB 1 2018 122 38 42 10.10164/j.paid.2017.10.002 5 Psychology, Social Psychology FP6ZA WOS:000417774900007 2019-02-21 J Spurgeon, JJ; Pegg, MA; Halden, NM Spurgeon, Jonathan J.; Pegg, Mark A.; Halden, Norman M. Mixed-origins of channel catfish in a large-river tributary FISHERIES RESEARCH English Article Otolith microchemistry; Connectivity; Population mixing; River network WESTSLOPE CUTTHROAT TROUT; OTOLITH MICROCHEMISTRY; MISSOURI RIVER; TRACE-ELEMENT; MOVEMENTS; FISH; WATER; CONSERVATION; CONNECTIVITY; POPULATIONS An understanding of factors responsible for population structure including the origins of individuals from among habitats is fundamental to conservation and management of large-river fishes. The prevalence of population mixing of channel catfish Ictalurus punctatus was evaluated within a large-river tributary environment using information from recent environmental history and natal origin derived from otolith microchemistry. Trace elements in water and otoliths were assessed using univariate and multivariate statistical approaches. Water and otolith trace elements differed among river segments facilitating classification of channel catfish to the river segment of capture. Accuracy of the classification tree model for juvenile channel catfish ranged from 44% to 88%. Recent environmental and natal origin microchemistry signatures suggested the channel catfish population within a large-river tributary comprises individuals from multiple locations. Population demographics of channel catfish is likely influenced by mixing of individuals from across the riverine-network. Consideration of the importance of connectivity between main-stem and tributary systems may, therefore, benefit conservation and management of channel catfish and other large -river fishes displaying similar life-history strategies. [Spurgeon, Jonathan J.; Pegg, Mark A.] Univ Nebraska, Sch Nat Resources, Hardin Hall 314 3310 Holdredge St, Lincoln, NE 68583 USA; [Halden, Norman M.] Univ Manitoba, Dept Geol Sci, Winnipeg, MB, Canada Spurgeon, JJ (reprint author), Univ Nebraska, Sch Nat Resources, Hardin Hall 314 3310 Holdredge St, Lincoln, NE 68583 USA. jonathan.spurgeon@huskers.unl.edu Nebraska Game and Parks Commission through the National Sport Fish Restoration Fund [F-75-R]; University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources We thank the Nebraska Game and Parks Commission for project funding through the National Sport Fish Restoration Fund (F-75-R) and the University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources. We thank members of the Fremont Airboat Club for aiding in channel catfish sample collection. We thank P. Yang and Z. Song for their technical support along with the University of Manitoba LA-ICPMS facility. Abell R, 2007, BIOL CONSERV, V134, P48, DOI 10.1016/j.biocon.2006.08.017; Allan JD, 2005, BIOSCIENCE, V55, P1041, DOI 10.1641/0006-3568(2005)055[1041:OOIW]2.0.CO;2; Benda L, 2004, BIOSCIENCE, V54, P413, DOI 10.1641/0006-3568(2004)054[0413:TNDHHC]2.0.CO;2; Benjamin JR, 2014, CAN J FISH AQUAT SCI, V71, P131, DOI 10.1139/cjfas-2013-0279; Breiman L., 1984, CLASSIFICATION REGRE; Brodersen J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090294; Brodnik RM, 2016, CAN J FISH AQUAT SCI, V73, P416, DOI 10.1139/cjfas-2015-0161; Bronmark C, 2014, CAN J ZOOL, V92, P467, DOI 10.1139/cjz-2012-0277; Butler SE, 2011, RIVER RES APPL, V27, P1182, DOI 10.1002/rra.1416; Campana SE, 2001, CAN J FISH AQUAT SCI, V58, P30, DOI 10.1139/cjfas-58-1-30; Chapman BB, 2012, J FISH BIOL, V81, P456, DOI 10.1111/j.1095-8649.2012.03342.x; Chase NM, 2015, CAN J FISH AQUAT SCI, V72, P1575, DOI 10.1139/cjfas-2014-0574; Clarke AD, 2015, ENVIRON BIOL FISH, V98, P1583, DOI 10.1007/s10641-015-0384-6; Cooke S. J., 2016, ENVIRON MONIT ASSESS, V188, P1; DAMES HR, 1989, T AM FISH SOC, V118, P670, DOI 10.1577/1548-8659(1989)118<0670:MOCAFC>2.3.CO;2; De'ath G, 2000, ECOLOGY, V81, P3178, DOI 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2; Duponchelle F, 2016, J APPL ECOL, V53, P1511, DOI 10.1111/1365-2664.12665; Eder BL, 2016, N AM J FISH MANAGE, V36, P140, DOI 10.1080/02755947.2015.1114538; Grant EHC, 2007, ECOL LETT, V10, P165, DOI 10.1111/j.1461-0248.2006.01007.x; Gwinn DC, 2015, FISH FISH, V16, P259, DOI 10.1111/faf.12053; Hamel MJ, 2016, RIVER RES APPL, V32, P320, DOI 10.1002/rra.2850; Hawkins SJ, 2016, FISH RES, V179, P333, DOI 10.1016/j.fishres.2016.01.015; Hogan ZS, 2011, AM FISH S S, V77, P39; Holland Richard S., 1992, Transactions of the Nebraska Academy of Sciences, V19, P33; Hubert WA, 1999, AM FISH S S, V24, P3; Humston R, 2017, J FISH BIOL, V90, P528, DOI 10.1111/jfb.13073; Humston R, 2010, T AM FISH SOC, V139, P171, DOI 10.1577/T08-192.1; Jager HI, 2016, FISHERIES, V41, P140, DOI 10.1080/03632415.2015.1132705; Koehn JD, 2016, J FISH BIOL, V88, P1350, DOI 10.1111/jfb.12884; Laughlin TW, 2016, RIVER RES APPL, V32, P1808, DOI 10.1002/rra.3015; Loewen TN, 2015, FISH RES, V170, P116, DOI 10.1016/j.fishres.2015.05.025; Long JM, 2010, T AM FISH SOC, V139, P1775, DOI 10.1577/T10-102.1; Melancon S, 2005, CAN J FISH AQUAT SCI, V62, P2609, DOI 10.1139/F05-161; Mercier L, 2011, ECOL APPL, V21, P1352, DOI 10.1890/09-1887.1; Moore JW, 2015, CAN J FISH AQUAT SCI, V72, P785, DOI 10.1139/cjfas-2014-0478; Muhlfeld CC, 2012, CAN J FISH AQUAT SCI, V69, P906, DOI 10.1139/F2012-033; Neely BC, 2009, ECOL FRESHW FISH, V18, P437, DOI 10.1111/j.1600-0633.2009.00360.x; Newcomb B.A., 1989, North American Journal of Fisheries Management, V9, P195, DOI 10.1577/1548-8675(1989)009<0195:WAOCCI>2.3.CO;2; Nilsson C, 2005, SCIENCE, V308, P405, DOI 10.1126/science.1107887; Norman JD, 2015, BIOL INVASIONS, V17, P2999, DOI 10.1007/s10530-015-0929-9; Pangle KL, 2010, CAN J FISH AQUAT SCI, V67, P1475, DOI 10.1139/F10-076; Pegg MA, 2003, AQUAT SCI, V65, P63, DOI 10.1007/s000270300005; Pellett T. D., 1998, N AM J FISH MANAGE, V18, P85, DOI DOI 10.1577/1548-8675(1998)018<0085:SMAH; Porreca AP, 2016, CAN J FISH AQUAT SCI, V73, P877, DOI 10.1139/cjfas-2015-0352; Pracheil BM, 2009, ECOL FRESHW FISH, V18, P603, DOI 10.1111/j.1600-0633.2009.00376.x; Pracheil BM, 2014, FISHERIES, V39, P451, DOI 10.1080/03632415.2014.937858; Pracheil BM, 2013, FRONT ECOL ENVIRON, V11, P124, DOI 10.1890/120179; Pugh LL, 1999, AM FISH S S, V24, P193; R Core Team, 2015, R LANG ENV STAT COMP; Ramsay AL, 2011, CAN J FISH AQUAT SCI, V68, P823, DOI 10.1139/F2011-027; Schaffler JJ, 2015, T AM FISH SOC, V144, P1, DOI 10.1080/00028487.2014.954056; Schlosser IJ, 1995, AM FISH S S, V17, P392; Schoen LS, 2016, LIMNOL OCEANOGR, V61, P1800, DOI 10.1002/lno.10340; Schtickzelle N, 2007, FISH FISH, V8, P297, DOI 10.1111/j.1467-2979.2007.00256.x; Shiller AM, 2003, ENVIRON SCI TECHNOL, V37, P3953, DOI 10.1021/es0341182; Siddons S.F., 2017, RIVER RES APPL; Smith WE, 2014, J FISH BIOL, V84, P913, DOI 10.1111/jfb.12317; Spurgeon JJ, 2016, RIVER RES APPL, V32, P1841, DOI 10.1002/rra.3041; Sturrock AM, 2015, METHODS ECOL EVOL, V6, P806, DOI 10.1111/2041-210X.12381; Therneau TM, 2015, RPART PACKAG MANUAL, V4, P1, DOI DOI 10.HTTPS://CRAN.R-PR0JECT.0RG/PACKAGE=; Turner SM, 2015, T AM FISH SOC, V144, P873, DOI 10.1080/00028487.2015.1059888; Veinott G, 2012, ECOL FRESHW FISH, V21, P541, DOI 10.1111/j.1600-0633.2012.00574.x; Wells BK, 2003, T AM FISH SOC, V132, P409, DOI 10.1577/1548-8659(2003)132<0409:RBWOAS>2.0.CO;2; Wendel JL, 1999, AM FISH S S, V24, P203; Whitledge GW, 2007, T AM FISH SOC, V136, P1263, DOI 10.1577/T06-045.1; Woods RJ, 2010, CAN J FISH AQUAT SCI, V67, P1098, DOI 10.1139/F10-043; Zeigler JM, 2011, HYDROBIOLOGIA, V661, P289, DOI 10.1007/s10750-010-0538-7; Ziv G, 2012, P NATL ACAD SCI USA, V109, P5609, DOI 10.1073/pnas.1201423109 68 2 2 0 16 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. FEB 2018 198 195 202 10.1016/j.fishres.2017.09.001 8 Fisheries Fisheries FN7JJ WOS:000416194200021 2019-02-21 J Comte, L; Olden, JD Comte, Lise; Olden, Julian D. Evidence for dispersal syndromes in freshwater fishes PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article dispersal ability; life-history strategies; ecological specialization; co-adaptation; evolutionary trade-offs; repeatability TRAIT-BASED APPROACH; LIFE-HISTORY; ECOLOGICAL SPECIALIZATION; FRAGMENTED LANDSCAPES; CLIMATE-CHANGE; NORTH-AMERICA; EVOLUTION; STRATEGIES; DISTANCE; CONNECTIVITY Dispersal is a fundamental process defining the distribution of organisms and has long been a topic of inquiry in ecology and evolution. Emerging research points to an interdependency of dispersal with a diverse suite of traits in terrestrial organisms, however the extent to which such dispersal syndromes exist in freshwater species remains uncertain. Here, we test whether dispersal in freshwater fishes (1) is a fixed property of species, and (2) correlates with life-history, morphological, ecological and behavioural traits, using a global dataset of dispersal distances collected from the literature encompassing 116 riverine species and 196 locations. Our meta-analysis revealed a high degree of repeatability and heritability in the dispersal estimates and strong associations with traits related to life-history strategies, energy allocation to reproduction, ecological specialization and swimming skills. Together, these results demonstrate that similar to terrestrial organisms, the multi-dimensional nature of dispersal syndromes in freshwater species offer opportunities for the development of a unifying paradigm of movement ecology that transcend taxonomic and biogeographical realms. The high explanatory power of the models also suggests that trait-based and phylogenetic approaches hold considerable promises to inform conservation efforts in a rapidly changing world. [Comte, Lise; Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA Comte, L (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. lcomte@uw.edu H. Mason Keeler Endowed Professorship (School of Aquatic and Fishery Sciences, University of Washington) Financial support was provided by a H. Mason Keeler Endowed Professorship (School of Aquatic and Fishery Sciences, University of Washington) to J.D.O. (also supporting L.C.). Baguette M, 2013, BIOL REV, V88, P310, DOI 10.1111/brv.12000; Berg MP, 2010, GLOBAL CHANGE BIOL, V16, P587, DOI 10.1111/j.1365-2486.2009.02014.x; Bitume EV, 2013, ECOL LETT, V16, P430, DOI 10.1111/ele.12057; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Bonte D, 2017, OIKOS, V126, P472, DOI 10.1111/oik.03801; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Bradbury IR, 2008, P ROY SOC B-BIOL SCI, V275, P1803, DOI 10.1098/rspb.2008.0216; Buoro M, 2014, ECOL LETT, V17, P756, DOI 10.1111/ele.12275; Burgess SC, 2016, BIOL REV, V91, P867, DOI 10.1111/brv.12198; Bush A, 2017, FRESHWATER BIOL, V62, P382, DOI 10.1111/fwb.12874; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Cote J, 2017, ECOGRAPHY, V40, P56, DOI 10.1111/ecog.02538; Dahirel M, 2015, J ANIM ECOL, V84, P228, DOI 10.1111/1365-2656.12276; Delgado MD, 2010, J ANIM ECOL, V79, P620, DOI 10.1111/j.1365-2656.2009.01655.x; Doledec S, 2000, ECOLOGY, V81, P2914, DOI 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2; Duputie A, 2013, INTERFACE FOCUS, V3, DOI 10.1098/rsfs.2013.0028; Dynesius M, 2000, P NATL ACAD SCI USA, V97, P9115, DOI 10.1073/pnas.97.16.9115; Edelaar P, 2008, EVOLUTION, V62, P2462, DOI 10.1111/j.1558-5646.2008.00459.x; Fullerton AH, 2010, FRESHWATER BIOL, V55, P2215, DOI 10.1111/j.1365-2427.2010.02448.x; Grant EHC, 2007, ECOL LETT, V10, P165, DOI 10.1111/j.1461-0248.2006.01007.x; Griffiths D, 2015, BIOL J LINN SOC, V116, P773, DOI 10.1111/bij.12638; Guerra PA, 2011, BIOL REV, V86, P813, DOI 10.1111/j.1469-185X.2010.00172.x; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield J. D., 2016, MCMCGLMM COURSE NOTE; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hein AM, 2012, ECOL LETT, V15, P104, DOI 10.1111/j.1461-0248.2011.01714.x; Hovestadt T, 2011, J ANIM ECOL, V80, P1070, DOI 10.1111/j.1365-2656.2011.01848.x; Jocque M, 2010, GLOBAL ECOL BIOGEOGR, V19, P244, DOI 10.1111/j.1466-8238.2009.00510.x; Kisdi E, 2002, AM NAT, V159, P579, DOI 10.1086/339989; Koenig WD, 1996, TRENDS ECOL EVOL, V11, P514, DOI 10.1016/S0169-5347(96)20074-6; Lester SE, 2007, ECOL LETT, V10, P745, DOI 10.1111/j.1461-0248.2007.01070.x; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nathan R, 2003, OIKOS, V103, P261, DOI 10.1034/j.1600-0706.2003.12146.x; Nathan R, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P187; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19052, DOI 10.1073/pnas.0800375105; Nurmi T, 2011, J THEOR BIOL, V275, P78, DOI 10.1016/j.jtbi.2011.01.023; PAULY D, 1989, FISHBYTE NEWSLETTER, V7, P22; Pavoine S, 2014, ECOLOGY, V95, P3304, DOI 10.1890/13-2036.1; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Poisot T, 2011, ECOL LETT, V14, P841, DOI 10.1111/j.1461-0248.2011.01645.x; R Development Core Team, 2014, R LANG ENV STAT COMP; Rabosky DL, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2958; Radinger J, 2014, FISH FISH, V15, P456, DOI 10.1111/faf.12028; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; Sambilay Jr V. C., 1990, FISHBYTE, V8, P16; Santini L, 2016, GLOBAL CHANGE BIOL, V22, P2415, DOI 10.1111/gcb.13271; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Sternberg D, 2014, ECOGRAPHY, V37, P54, DOI 10.1111/j.1600-0587.2013.00362.x; Stevens VM, 2014, ECOL LETT, V17, P1039, DOI 10.1111/ele.12303; Stevens VM, 2012, ECOL LETT, V15, P74, DOI 10.1111/j.1461-0248.2011.01709.x; Stevens VM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011123; Sutherland GD, 2000, CONSERV ECOL, V4; Tesson SVM, 2013, MOV ECOL, V1, DOI 10.1186/2051-3933-1-10; Travis JMJ, 2013, OIKOS, V122, P1532, DOI 10.1111/j.1600-0706.2013.00399.x; Urban MC, 2013, ANN NY ACAD SCI, V1297, P44, DOI 10.1111/nyas.12184; Van Dyck H, 2005, BASIC APPL ECOL, V6, P535, DOI 10.1016/j.baae.2005.03.005; Villemereuil P. De., 2014, MODERN PHYLOGENETIC, P287, DOI 10.1007/978-3-662-43550-2; Whitmee S, 2013, J ANIM ECOL, V82, P211, DOI 10.1111/j.1365-2656.2012.02030.x; Wiens JA, 2002, FRESHWATER BIOL, V47, P501, DOI 10.1046/j.1365-2427.2002.00887.x; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 65 3 3 10 29 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JAN 31 2018 285 1871 20172214 10.1098/rspb.2017.2214 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology FU3TN WOS:000423774700012 29343597 2019-02-21 J Downs, CJ; Boan, BV; Lohuis, TD; Stewart, KM Downs, Cynthia J.; Boan, Brianne V.; Lohuis, Thomas D.; Stewart, Kelley M. Investigating Relationships between Reproduction, Immune Defenses, and Cortisol in Dall Sheep FRONTIERS IN IMMUNOLOGY English Article allocation theory; carryover effect; constitutive immunity; glucocorticoids; immune defenses; Ovis dalli dalli; reproduction; trade-offs LIFE-HISTORY CONSEQUENCES; NORTH-AMERICAN ELK; TRADE-OFFS; CHRONIC STRESS; BIGHORN SHEEP; ECOLOGICAL IMMUNOLOGY; NUTRITIONAL CONDITION; EVOLUTIONARY ECOLOGY; LARGE HERBIVORES; WILD IMMUNOLOGY Life-history theory is fundamental to understanding how animals allocate resources among survival, development, and reproduction, and among traits within these categories. Immediate trade-offs occur within a short span of time and, therefore, are more easily detected. Trade-offs, however, can also manifest across stages of the life cycle, a phenomenon known as carryover effects. We investigated trade-offs on both time scales in two populations of Dall sheep (Ovis dalli dalli) in Southcentral Alaska. Specifically, we (i) tested for glucocorticoid-mediated carryover effects from the breeding season on reproductive success and immune defenses during parturition and (ii) tested for trade-offs between immune defenses and reproduction within a season. We observed no relationship between cortisol during mating and pregnancy success; however, we found marginal support for a negative relationship between maternal cortisol and neonate birth weights. Low birth weights, resulting from high maternal cortisol, may result in low survival or low fecundity for the neonate later in life, which could result in overall population decline. We observed a negative relationship between pregnancy and bacterial killing ability, although we observed no relationship between pregnancy and haptoglobin. Study site affected bactericidal capacity and the inflammatory response, indicating the influence of external factors on immune responses, although we could not test hypotheses about the cause of those differences. This study helps advance our understanding of the plasticity and complexity of the immune system and provides insights into the how individual differences in physiology may mediate differences in fitness. [Downs, Cynthia J.] Hamilton Coll, Dept Biol, Clinton, NY 13323 USA; [Boan, Brianne V.; Stewart, Kelley M.] Univ Nevada, Dept Nat Resources & Environm Sci, Reno, NV 89557 USA; [Lohuis, Thomas D.] Alaska Dept Fish & Game, 333 Raspberry Rd, Anchorage, AK 99518 USA; [Boan, Brianne V.] US Forest Serv, Sierraville, CA USA Downs, CJ (reprint author), Hamilton Coll, Dept Biol, Clinton, NY 13323 USA. cdowns@hamilton.edu Alaska Department of Fish and Game grant; University of Nevada Reno; Nevada Agriculture Experimental Station This study was supported by an Alaska Department of Fish and Game grant, a Hatch grant awarded by Nevada Agriculture Experimental Station, and funding from the University of Nevada Reno awarded to KS. Abolins S, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14811; Adamo SA, 2004, ANIM BEHAV, V68, P1443, DOI 10.1016/j.anbehav.2004.05.005; Adamo SA, 2017, HORM BEHAV, V88, P25, DOI [10.1015/j.yhbeh.2016.10.003, 10.1016/j.yhbeh.2016.10.003]; AGYEMANG K, 1991, ACTA TROP, V50, P91, DOI 10.1016/0001-706X(91)90001-Z; Alaska Climate Research Center, 2017, CLIM NORM; [Anonymous], 2012, J EVOLUTION BIOL, V25, P1864, DOI [10.1111/j.1420-9101.2012.02574.x, DOI 10.1111/J.1420-9101.2012.02574.X]; Ashley NT, 2011, GEN COMP ENDOCR, V172, P382, DOI 10.1016/j.ygcen.2011.03.029; Baker ML, 2013, ZOONOSES PUBLIC HLTH, V60, P104, DOI 10.1111/j.1863-2378.2012.01528.x; Bonneaud C, 2003, AM NAT, V161, P367, DOI 10.1086/346134; Bowyer R.T., 2000, ECOLOGY MANAGEMENT L, P491; Buchanan KL, 2004, ANIM BEHAV, V67, P183, DOI 10.1016/j.anbehav.2003.09.002; Buehler DM, 2008, J AVIAN BIOL, V39, P560, DOI 10.1111/j.2008.0908-8857.04408.x; Buehler DM, 2008, AM NAT, V172, P783, DOI 10.1086/592865; CAMERON RD, 1994, J MAMMAL, V75, P10, DOI 10.2307/1382230; Christe P, 2000, ECOL LETT, V3, P207; Coe C., 2012, ECOIMMUNOLOGY, P144; Cohen AA, 2012, TRENDS ECOL EVOL, V27, P428, DOI 10.1016/j.tree.2012.04.008; Cook RC, 2007, J WILDLIFE MANAGE, V71, P1934, DOI 10.2193/2006-262; Cook RC, 2010, J WILDLIFE MANAGE, V74, P880, DOI 10.2193/2009-031; Cox RM, 2010, FUNCT ECOL, V24, P1262, DOI 10.1111/j.1365-2435.2010.01756.x; Davenport MD, 2006, GEN COMP ENDOCR, V147, P255, DOI 10.1016/j.ygcen.2006.01.005; De Coster G, 2010, J EXP BIOL, V213, P3012, DOI 10.1242/jeb.042721; DELERS F, 1988, BIOCHEM CELL BIOL, V66, P208, DOI 10.1139/o88-028; Demas GE, 2011, J ANIM ECOL, V80, P710, DOI 10.1111/j.1365-2656.2011.01813.x; Dhabhar FS, 1997, BRAIN BEHAV IMMUN, V11, P286, DOI 10.1006/brbi.1997.0508; Dobryszycka W, 1997, EUR J CLIN CHEM CLIN, V35, P647; Downs CJ, 2014, INTEGR COMP BIOL, V54, P340, DOI 10.1093/icb/icu082; Downs CJ, 2014, CALIF FISH GAME, V100, P371; Downs CJ, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0125586; DRENT RH, 1980, ARDEA, V68, P225; EBBINGE BS, 1995, J AVIAN BIOL, V26, P105, DOI 10.2307/3677058; Festa-Bianchet M, 1998, ECOL LETT, V1, P91; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; FestaBianchet M, 1996, CAN J ZOOL, V74, P330, DOI 10.1139/z96-041; FESTABIANCHET M, 1989, J ANIM ECOL, V58, P785, DOI 10.2307/5124; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P375; French SS, 2007, FUNCT ECOL, V21, P1115, DOI 10.1111/j.1365-2435.2007.01311.x; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; French SS, 2010, HORM BEHAV, V58, P792, DOI 10.1016/j.yhbeh.2010.08.001; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GEIST V, 1966, J WILDLIFE MANAGE, V30, P634, DOI 10.2307/3798763; Graham AL, 2010, SCIENCE, V330, P662, DOI 10.1126/science.1194878; Hamel S, 2009, ECOLOGY, V90, P1981, DOI 10.1890/08-0596.1; HARKEY MR, 1993, FORENSIC SCI INT, V63, P9, DOI 10.1016/0379-0738(93)90255-9; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Horrocks NPC, 2015, OECOLOGIA, V177, P281, DOI 10.1007/s00442-014-3136-y; Houston AI, 2007, P ROY SOC B-BIOL SCI, V274, P2835, DOI 10.1098/rspb.2007.0934; Hume I. D., 2009, INTEGRATIVE WILDLIFE; Hurley MA, 2011, WILDLIFE MONOGR, P1, DOI 10.1002/wmon.4; Ilmonen P, 2000, P ROY SOC B-BIOL SCI, V267, P665, DOI 10.1098/rspb.2000.1053; Jolles AE, 2015, PARASITE IMMUNOL, V37, P255, DOI 10.1111/pim.12153; Keech MA, 2000, J WILDLIFE MANAGE, V64, P450, DOI 10.2307/3803243; Kirschbaum C, 2009, PSYCHONEUROENDOCRINO, V34, P32, DOI 10.1016/j.psyneuen.2008.08.024; Koren L, 2002, ANIM BEHAV, V63, P403, DOI 10.1006/anbe.2001.1907; Koren L, 2012, GEN COMP ENDOCR, V177, P113, DOI 10.1016/j.ygcen.2012.02.020; KRAUSMAN PR, 1985, WILDLIFE SOC B, V13, P71; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lifjeld JT, 2002, OECOLOGIA, V130, P185, DOI 10.1007/s004420100798; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Martin LB, 2016, INTEGR COMP BIOL, V56, P1225, DOI 10.1093/icb/icw064; Martin LB, 2009, GEN COMP ENDOCR, V163, P70, DOI 10.1016/j.ygcen.2009.03.008; Matson KD, 2006, P ROY SOC B-BIOL SCI, V273, P815, DOI 10.1098/rspb.2005.3376; Matson KD, 2012, COMP BIOCHEM PHYS A, V162, P7, DOI 10.1016/j.cbpa.2012.01.010; Millet S, 2007, DEV COMP IMMUNOL, V31, P188, DOI 10.1016/j.dci.2006.05.013; Monteith KL, 2014, WILDLIFE MONOGR, V186, P1, DOI 10.1002/wmon.1011; Monteith KL, 2009, J MAMMAL, V90, P651, DOI 10.1644/08-MAMM-A-191R1.1; Morano S, 2013, J MAMMAL, V94, P162, DOI 10.1644/12-MAMM-A-074.1; Murphy K, 2007, JANEWAYS IMMUNOBIOLO; Noyes JH, 1997, WILDLIFE SOC B, V25, P695; Ortego J, 2007, IBIS, V149, P386, DOI 10.1111/j.1474-919X.2007.00656.x; Owen-Ashley NT, 2006, HORM BEHAV, V49, P15, DOI 10.1016/j.yhbeh.2005.04.009; Parker KL, 2009, FUNCT ECOL, V23, P57, DOI 10.1111/j.1365-2435.2009.01528.x; Pedersen AB, 2011, MOL ECOL, V20, P872, DOI 10.1111/j.1365-294X.2010.04938.x; Pitzman M., 1970, THESIS; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; Robinson DP, 2012, HORM BEHAV, V62, P263, DOI 10.1016/j.yhbeh.2012.02.023; Romero LM, 2008, AM J PHYSIOL-REG I, V294, pR614, DOI 10.1152/ajpregu.00752.2007; Romero LM, 2016, COMP BIOCHEM PHYS A, V202, P112, DOI 10.1016/j.cbpa.2016.05.002; Romero LM, 2002, CONDOR, V104, P129, DOI 10.1650/0010-5422(2002)104[0129:CRIWBT]2.0.CO;2; Rughetti M, 2015, OECOLOGIA, V178, P197, DOI 10.1007/s00442-014-3192-3; Russell E, 2012, PSYCHONEUROENDOCRINO, V37, P589, DOI 10.1016/j.psyneuen.2011.09.009; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schmid-Hempel P, 2003, TRENDS ECOL EVOL, V18, P27, DOI 10.1016/S0169-5347(02)00013-7; Schmitt C, 2017, PHYSIOL BIOCHEM ZOOL, V90, P201, DOI 10.1086/689679; Schultner J, 2014, MAR ECOL PROG SER, V496, P125, DOI 10.3354/meps10603; SCHWARTZ CC, 1988, J WILDLIFE MANAGE, V52, P26, DOI 10.2307/3801052; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sikes RS, 2011, J MAMMAL, V92, P235, DOI 10.1644/10-MAMM-F-355.1; Singer FJ, 1997, J WILDLIFE MANAGE, V61, P12, DOI 10.2307/3802410; Smith GD, 2017, INTEGR COMP BIOL, V57, P344, DOI 10.1093/icb/icx062; Stearns S, 1992, EVOLUTION LIFE HIST; Stephenson TR, 2002, WILDLIFE SOC B, V30, P557; Stewart KM, 2005, OECOLOGIA, V143, P85, DOI 10.1007/s00442-004-1785-y; Szekeres-Bartho Julia, 2002, Int Rev Immunol, V21, P471, DOI 10.1080/08830180215017; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Viney M, 2015, PARASITE IMMUNOL, V37, P267, DOI 10.1111/pim.12150; Warne RW, 2015, ECOL EVOL, V5, P557, DOI 10.1002/ece3.1360; Waterhouse MD, 2017, ECOL EVOL, V7, P4099, DOI 10.1002/ece3.3009; Wingfield J. C., 2000, HDB PHYSL 7, P211; Wobeser G. A., 2010, DIS WILD ANIMALS INV; Zar JH, 2010, BIOSTATISTICAL ANAL; Zysling DA, 2009, FUNCT ECOL, V23, P979, DOI 10.1111/j.1365-2435.2009.01572.x 104 0 0 9 13 FRONTIERS MEDIA SA LAUSANNE PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND 1664-3224 FRONT IMMUNOL Front. Immunol. JAN 31 2018 9 105 10.3389/fimmu.2018.00105 11 Immunology Immunology FU2QW WOS:000423696100001 29445376 DOAJ Gold, Green Published 2019-02-21 J Pinceel, T; Buschke, F; Weckx, M; Brendonck, L; Vanschoenwinkel, B Pinceel, Tom; Buschke, Falko; Weckx, Margo; Brendonck, Luc; Vanschoenwinkel, Bram Climate change jeopardizes the persistence of freshwater zooplankton by reducing both habitat suitability and demographic resilience BMC ECOLOGY English Article Bet hedging; Dormancy; Diapause; Environmental change; Life history EVOLUTIONARY ASPECTS; EXTINCTION RISK; CHANGE IMPACTS; LIFE-HISTORY; EGG BANKS; INVERTEBRATES; CRUSTACEA; BRANCHIOPODA; DISPERSAL; TEMPERATURES Background: Higher temperatures and increased environmental variability under climate change could jeopardize the persistence of species. Organisms that rely on short windows of rainfall to complete their life-cycles, like desert annual plants or temporary pool animals, may be particularly at risk. Although some could tolerate environmental changes by building-up banks of propagules (seeds or eggs) that buffer against catastrophes, climate change will threaten this resilience mechanism if higher temperatures reduce propagule survival. Using a crustacean model species from temporary waters, we quantified experimentally the survival and dormancy of propagules under anticipated climate change and used these demographic parameters to simulate long term population dynamics. Results: By exposing propagules to present-day and projected daily temperature cycles in an 8 month laboratory experiment, we showed how increased temperatures reduce survival rates in the propagule bank. Integrating these reduced survival rates into population models demonstrated the inability of the bank to maintain populations; thereby exacerbating extinction risk caused by shortened growing seasons. Conclusions: Overall, our study demonstrates that climate change could threaten the persistence of populations by both reducing habitat suitability and eroding life-history strategies that support demographic resilience. [Pinceel, Tom; Weckx, Margo; Brendonck, Luc] Katholieke Univ Leuven, Anim Ecol Global Change & Sustainable Dev, Charles Deberiotstr 32, B-3000 Louvain, Belgium; [Pinceel, Tom; Buschke, Falko] Univ Free State, Ctr Environm Management, POB 339, ZA-9300 Bloemfontein, South Africa; [Brendonck, Luc] North West Univ, Unit Environm Sci & Management, Water Res Grp, Private Bag X6001, ZA-2520 Potchefstroom, South Africa; [Vanschoenwinkel, Bram] Vrije Univ Brussel VUB, Dept Biol, Community Ecol Lab, Pl Laan 2, B-1050 Brussels, Belgium Pinceel, T (reprint author), Katholieke Univ Leuven, Anim Ecol Global Change & Sustainable Dev, Charles Deberiotstr 32, B-3000 Louvain, Belgium.; Pinceel, T (reprint author), Univ Free State, Ctr Environm Management, POB 339, ZA-9300 Bloemfontein, South Africa. tom.pinceel@kuleuven.be Buschke, Falko/G-1698-2012 Buschke, Falko/0000-0003-1167-7810 Research Foundation-Flanders (FWO) [12F0716 N]; Research Foundation-Flanders [3E090007, 3E110799]; Excellence Center 'Eco and socio-evolutionary dynamics' of the KU Leuven Research Fund [PF/10/007] TP is currently supported by a postdoctoral fellowship of the Research Foundation-Flanders (FWO, 12F0716 N). This research benefited from additional financial support from the Research Foundation-Flanders 3E090007 and 3E110799 and the Excellence Center 'Eco and socio-evolutionary dynamics' (PF/10/007) of the KU Leuven Research Fund. The funding agencies did not contribute directly to the design of the study, the collection, analysis and interpretation of the data nor to the writing of the manuscript. [Anonymous], 2014, SARVA S AFR RISK VUL; Brendonck L, 2000, ARCH HYDROBIOL, V148, P71; Brendonck L, 2008, HYDROBIOLOGIA, V595, P167, DOI 10.1007/s10750-007-9119-9; De Roeck ERM, 2005, HYDROBIOLOGIA, V542, P103, DOI 10.1007/s10750-004-2411-z; Evans MEK, 2005, Q REV BIOL, V80, P431, DOI 10.1086/498282; Foden WB, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065427; Garcia-Roger EM, 2017, HYDROBIOLOGIA, V796, P223, DOI 10.1007/s10750-016-2869-5; Geerts AN, 2015, NAT CLIM CHANGE, V5, P665, DOI 10.1038/NCLIMATE2628; Gilman SE, 2010, TRENDS ECOL EVOL, V25, P325, DOI 10.1016/j.tree.2010.03.002; Gremer JR, 2014, ECOL LETT, V17, P380, DOI 10.1111/ele.12241; Hairston NG, 1996, LIMNOL OCEANOGR, V41, P1087, DOI 10.4319/lo.1996.41.5.1087; Hairston NG, 2002, INTEGR COMP BIOL, V42, P481, DOI 10.1093/icb/42.3.481; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Moss B, 2012, SCI TOTAL ENVIRON, V434, P130, DOI 10.1016/j.scitotenv.2011.07.069; Nielsen DL, 2015, MAR FRESHWATER RES, V66, P1138, DOI 10.1071/MF14272; Ooi MKJ, 2009, GLOBAL CHANGE BIOL, V15, P2375, DOI 10.1111/j.1365-2486.2009.01887.x; Pachauri R. K., 2014, CLIMATE CHANGE 2014; Pacifici M, 2015, NAT CLIM CHANGE, V5, P215, DOI 10.1038/NCLIMATE2448; Pearson RG, 2014, NAT CLIM CHANGE, V4, P217, DOI [10.1038/NCLIMATE2113, 10.1038/nclimate2113]; Philippi TE, 2001, ISRAEL J ZOOL, V47, P387, DOI 10.1560/LU8G-9HVP-YR80-XCL0; Pinceel T, 2017, OECOLOGIA, V184, P161, DOI 10.1007/s00442-017-3858-8; Pinceel T, 2016, SCI REP-UK, V6, DOI 10.1038/srep29451; Pinceel T, 2013, FRESHW SCI, V32, P517, DOI 10.1899/12.157.1; Pyke CR, 2005, ECOSYSTEMS, V8, P95, DOI 10.1007/s10021-004-0086-y; Radzikowski J, 2013, J PLANKTON RES, V35, P707, DOI 10.1093/plankt/fbt032; Simons AM, 2011, P ROY SOC B-BIOL SCI, V278, P1601, DOI 10.1098/rspb.2011.0176; Spencer M, 2001, ISRAEL J ZOOL, V47, P397, DOI 10.1560/23F2-2XBW-252B-DU5C; Stoks R, 2014, EVOL APPL, V7, P42, DOI 10.1111/eva.12108; Tuytens K, 2014, FRESHWATER BIOL, V59, P955, DOI 10.1111/fwb.12319; Urban MC, 2016, SCIENCE, V353, P1113, DOI 10.1126/science.aad8466; Urban MC, 2015, SCIENCE, V348, P571, DOI 10.1126/science.aaa4984; Vandekerkhove J, 2005, FRESHWATER BIOL, V50, P96, DOI 10.1111/j.1365-2427.2004.01312.x; VANDERLINDEN A, 1986, MAR BIOL, V91, P239, DOI 10.1007/BF00569439; Vanschoenwinkel B, 2008, ECOGRAPHY, V31, P567, DOI 10.1111/j.0906-7590.2008.05442.x; Vanschoenwinkel B, 2013, ECOLOGY, V94, P2547, DOI 10.1890/12-1576.1; Vanschoenwinkel B, 2010, AQUAT ECOL, V44, P771, DOI 10.1007/s10452-010-9315-y; Vanschoenwinkel B, 2009, HYDROBIOLOGIA, V635, P363, DOI 10.1007/s10750-009-9929-z; Vanschoenwinkel B, 2009, FRESHWATER BIOL, V54, P1487, DOI 10.1111/j.1365-2427.2009.02198.x; Venable DL, 2007, ECOLOGY, V88, P1086, DOI 10.1890/06-1495; Ziervogel G, 2014, WIRES CLIM CHANGE, V5, P605, DOI 10.1002/wcc.295 40 1 1 2 10 BMC LONDON CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1472-6785 BMC ECOL BMC Ecol. JAN 24 2018 18 2 10.1186/s12898-018-0158-z 9 Ecology Environmental Sciences & Ecology FU3AJ WOS:000423721200001 29361977 DOAJ Gold, Green Published 2019-02-21 J Barbosa, M; Deacon, AE; Janeiro, MJ; Ramnarine, I; Morrissey, MB; Magurran, AE Barbosa, Miguel; Deacon, Amy E.; Janeiro, Maria Joao; Ramnarine, Indar; Morrissey, Michael Blair; Magurran, Anne E. Individual variation in reproductive behaviour is linked to temporal heterogeneity in predation risk PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article personality; predation risk; heterogeneity; behavioural diversification; sexual behaviour LIFE-HISTORY EVOLUTION; GUPPY POECILIA-RETICULATA; ANIMAL PERSONALITY; PHENOTYPIC PLASTICITY; REACTION NORMS; ECOLOGY; FISH; CONSEQUENCES; POPULATIONS; TRAITS Variation in predation risk is a major driver of ecological and evolutionary change, and, in turn, of geographical variation in behaviour. While predation risk is rarely constant in natural populations, the extent to which variation in predation risk shapes individual behaviour in wild populations remains unclear. Here, we investigated individual differences in reproductive behaviour in 16 Trinidadian guppy populations and related it to the observed variation in predator biomass each population experienced. Our results show that high heterogeneity in predator biomass is linked to individual behavioural diversification. Increased within-population heterogeneity in predator biomass is also associated with behavioural polymorphism. Some individuals adjust the frequency of consensual mating behaviour in response to differences in sex ratio context, while others display constantly at elevated frequencies. This pattern is analogous to a 'live fast, die young' pace-of-life syndrome. Notably, both high and low mean differences in predator biomass led to a homogenization of individual frequency of consensual mating displays. Overall, our results demonstrate that individual behavioural variation is associated with heterogeneity in predator biomass, but not necessarily with changes in mean values of predator biomass. We suggest that heterogeneity in predator biomass is an informative predictor of adaptive responses to changes in biotic conditions. [Barbosa, Miguel; Magurran, Anne E.] Univ St Andrews, Ctr Biol Divers, St Andrews KY16 8LB, Fife, Scotland; [Barbosa, Miguel; Deacon, Amy E.; Janeiro, Maria Joao; Morrissey, Michael Blair; Magurran, Anne E.] Univ St Andrews, Sch Biol, St Andrews KY16 8LB, Fife, Scotland; [Barbosa, Miguel; Janeiro, Maria Joao] Univ Aveiro, Dept Biol, CESAM, Campus Santiago, P-3810 Aveiro, Portugal; [Deacon, Amy E.; Ramnarine, Indar] Univ West Indies, Dept Life Sci, St Augustine, Trinid & Tobago Barbosa, M (reprint author), Univ St Andrews, Ctr Biol Divers, St Andrews KY16 8LB, Fife, Scotland.; Barbosa, M (reprint author), Univ St Andrews, Sch Biol, St Andrews KY16 8LB, Fife, Scotland.; Barbosa, M (reprint author), Univ Aveiro, Dept Biol, CESAM, Campus Santiago, P-3810 Aveiro, Portugal. mb334@st-andrews.ac.uk CESAM, UA/M-3762-2015 Barbosa, Miguel/0000-0003-0327-9580; Magurran, Anne/0000-0002-0036-2795 University Research Fellowship from the Royal Society (London); ERC [AgG BioTIME 250189, PoC Bio-CHANGE 727440]; Royal Society; [SFRH/BPD/82259/2011] This study was funded by a Postdoctoral fellowship to M.B. (SFRH/BPD/82259/2011). M.B.M. was supported by a University Research Fellowship from the Royal Society (London). A.E.M. acknowledges the ERC (AgG BioTIME 250189, and PoC Bio-CHANGE 727440), and the Royal Society. Alonzo SH, 2015, CURR OPIN BEHAV SCI, V6, P69, DOI 10.1016/j.cobeha.2015.09.008; BAERENDS G. P., 1955, BEHAVIOUR, V8, P249, DOI 10.1163/156853955X00238; Barbosa M, 2015, ECOL EVOL, V5, P4567, DOI 10.1002/ece3.1723; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bierbach D, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms15361; Bierbach D, 2015, BEHAV ECOL, V26, P1314, DOI 10.1093/beheco/arv079; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Daan Serge, 1997, P311; Dan D, 1997, BEHAV ECOLOGY EVOLUT, P456; Deacon AE, 2017, ENVIRON BIOL FISH, V100, P839, DOI 10.1007/s10641-017-0610-5; Dingemanse NJ, 2015, TRENDS ECOL EVOL, V30, P88, DOI 10.1016/j.tree.2014.12.002; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Dochtermann NA, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2201; Griffin AS, 2015, TRENDS ECOL EVOL, V30, P207, DOI 10.1016/j.tree.2015.01.012; Hadfield JD, 2010, J STAT SOFTW, V33, P1; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hammill E, 2015, FRESHWATER BIOL, V60, P125, DOI 10.1111/fwb.12475; Harris MA, 2016, PSYCHOL AGING, V31, P862, DOI 10.1037/pag0000133; Harris S, 2010, OIKOS, V119, P1711, DOI 10.1111/j.1600-0706.2010.18028.x; Kelley JL, 2013, NATURWISSENSCHAFTEN, V100, P965, DOI 10.1007/s00114-013-1097-3; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; Martin JGA, 2011, METHODS ECOL EVOL, V2, P362, DOI 10.1111/j.2041-210X.2010.00084.x; McNamara J. M., 2010, SOCIAL BEHAV GENES E, P109; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nakayama S, 2017, J ANIM ECOL, V86, P192, DOI 10.1111/1365-2656.12603; Nettle D, 2005, EVOL HUM BEHAV, V26, P363, DOI 10.1016/j.evolhumbehav.2004.12.004; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Oke KB, 2017, AM NAT, V190, P1, DOI 10.1086/691989; Plard F, 2016, J ANIM ECOL, V85, P356, DOI 10.1111/1365-2656.12477; Rajon E, 2014, AM NAT, V184, pE1, DOI 10.1086/676506; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SHUSTER SM, 1991, NATURE, V350, P608, DOI 10.1038/350608a0; Sih A, 2000, TRENDS ECOL EVOL, V15, P3, DOI 10.1016/S0169-5347(99)01766-8; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Smith RK, 2010, CONSERV BIOL, V24, P820, DOI 10.1111/j.1523-1739.2009.01421.x; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; Starrfelt J, 2012, BIOL REV, V87, P742, DOI 10.1111/j.1469-185X.2012.00225.x; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; WILSON DS, 1994, ETHOL SOCIOBIOL, V15, P219; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001 53 2 2 6 26 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JAN 10 2018 285 1870 20171499 10.1098/rspb.2017.1499 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology FS7JF WOS:000419973000002 29321293 2019-02-21 J Auer, SK; Dick, CA; Metcalfe, NB; Reznick, DN Auer, Sonya K.; Dick, Cynthia A.; Metcalfe, Neil B.; Reznick, David N. Metabolic rate evolves rapidly and in parallel with the pace of life history NATURE COMMUNICATIONS English Article GUPPIES POECILIA-RETICULATA; GENETIC CORRELATIONS; TRINIDADIAN GUPPIES; QUANTITATIVE GENETICS; NATURAL-POPULATION; WILD RODENT; SLOW PACE; EVOLUTION; BASAL; TRAITS Metabolic rates and life history strategies are both thought to set the "pace of life", but whether they evolve in tandem is not well understood. Here, using a common garden experiment that compares replicate paired populations, we show that Trinidadian guppy (Poecilia reticulata) populations that evolved a fast-paced life history in high-predation environments have consistently higher metabolic rates than guppies that evolved a slow-paced life history in low-predation environments. Furthermore, by transplanting guppies from high-to low-predation environments, we show that metabolic rate evolves in parallel with the pace of life history, at a rapid rate, and in the same direction as found for naturally occurring populations. Together, these multiple lines of inference provide evidence for a tight evolutionary coupling between metabolism and the pace of life history. [Auer, Sonya K.; Metcalfe, Neil B.] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland; [Dick, Cynthia A.; Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Auer, SK (reprint author), Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland. sonya.auer@gmail.com Metcalfe, Neil/C-5997-2009 Metcalfe, Neil/0000-0002-1970-9349; reznick, david/0000-0002-1144-0568 University of Glasgow Lister Bellahouston Travelling Fellowship; US National Science Foundation; European Research Council [322784]; US National Science Foundation [DEB-0623632EF, DEB-1258231] The authors thank Joshua Goldberg and Robert Prather for collecting fish in Trinidad and Yuridia Reynoso for helping to maintain the laboratory stocks. This research was funded by a University of Glasgow Lister Bellahouston Travelling Fellowship to S.K.A., a US National Science Foundation Pre-Doctoral Fellowship to C.A.D., a European Research Council Advanced grant (no. 322784) to N.B.M., and US National Science Foundation grants (DEB-0623632EF and DEB-1258231) to D.N.R. Anderson KJ, 2005, ECOL LETT, V8, P310, DOI 10.1111/j.1461-0248.2005.00723.x; Auer SK, 2017, FUNCT ECOL, V31, P1728, DOI 10.1111/1365-2435.12879; Auer SK, 2015, FUNCT ECOL, V29, P479, DOI 10.1111/1365-2435.12396; Auer SK, 2010, AM NAT, V176, P818, DOI 10.1086/657061; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; Bech C, 2016, J COMP PHYSIOL B, V186, P503, DOI 10.1007/s00360-016-0964-6; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; Boratynski Z, 2013, EVOL ECOL, V27, P301, DOI 10.1007/s10682-012-9590-2; Bozinovic F, 2009, COMP BIOCHEM PHYS A, V152, P560, DOI 10.1016/j.cbpa.2008.12.015; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Careau V, 2009, FUNCT ECOL, V23, P150, DOI 10.1111/j.1365-2435.2008.01468.x; Careau V, 2015, INTEGRATIVE ORGANISMAL BIOLOGY, P219; Christie MR, 2012, P NATL ACAD SCI USA, V109, P238, DOI 10.1073/pnas.1111073109; Clark TD, 2013, J EXP BIOL, V216, P2771, DOI 10.1242/jeb.084251; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fisher DO, 2001, ECOLOGY, V82, P3531, DOI 10.2307/2680170; Fredensborg BL, 2006, J ANIM ECOL, V75, P44, DOI 10.1111/j.1365-2656.2005.01021.x; GARLAND T, 1991, ANNU REV ECOL SYST, V22, P193, DOI 10.1146/annurev.es.22.110191.001205; Gingerich PD, 2001, GENETICA, V112, P127, DOI 10.1023/A:1013311015886; Glazier DS, 2015, BIOL REV, V90, P377, DOI 10.1111/brv.12115; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; HARVEY PH, 1991, AM NAT, V137, P556, DOI 10.1086/285183; Hendry AP, 2008, MOL ECOL, V17, P20, DOI 10.1111/j.1365-294X.2007.03428.x; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Hulbert AJ, 2004, PHYSIOL BIOCHEM ZOOL, V77, P869, DOI 10.1086/422768; Killen SS, 2016, AM NAT, V187, P592, DOI 10.1086/685893; Lovegrove BG, 2009, J COMP PHYSIOL B, V179, P391, DOI 10.1007/s00360-008-0322-4; Lovegrove BG, 2003, J COMP PHYSIOL B, V173, P87, DOI 10.1007/s00360-002-0309-5; Monaghan P, 2006, TRENDS ECOL EVOL, V21, P47, DOI 10.1016/j.tree.2005.11.007; Moore MP, 2016, ECOL LETT, V19, P435, DOI 10.1111/ele.12576; Mueller P, 2001, P NATL ACAD SCI USA, V98, P12550, DOI 10.1073/pnas.221456698; Nespolo RF, 2005, EVOLUTION, V59, P1829; Nespolo RF, 2017, AM NAT, V189, P13, DOI 10.1086/689598; Pearl R, 1928, RATE LIVING BEING AC; Piersma T, 2003, TRENDS ECOL EVOL, V18, P228, DOI 10.1016/S0169-5347(03)00036-3; Pires MN, 2010, BIOL J LINN SOC, V99, P784, DOI 10.1111/j.1095-8312.2010.01391.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reynolds John D., 2001, Conservation Biology Series (Cambridge), V6, P147; Rezende EL, 2004, EVOLUTION, V58, P1361; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; ROFF DA, 2002, LIFE HIST EVOLUTION; Ronning B, 2007, J EVOLUTION BIOL, V20, P1815, DOI 10.1111/j.1420-9101.2007.01384.x; ROSENTHAL HL, 1952, BIOL BULL, V102, P30, DOI 10.2307/1538621; Sadowska ET, 2009, EVOLUTION, V63, P1530, DOI 10.1111/j.1558-5646.2009.00641.x; Sadowska ET, 2005, EVOLUTION, V59, P672; Stearns S, 1992, EVOLUTION LIFE HIST; TREVELYAN R, 1990, FUNCT ECOL, V4, P135, DOI 10.2307/2389332; Van Voorhies WA, 1999, P NATL ACAD SCI USA, V96, P11399, DOI 10.1073/pnas.96.20.11399; White CR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P929, DOI 10.1086/425186; White CR, 2013, J COMP PHYSIOL B, V183, P1, DOI 10.1007/s00360-012-0676-5; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Willing EM, 2010, MOL ECOL, V19, P968, DOI 10.1111/j.1365-294X.2010.04528.x; Wone B, 2009, P R SOC B, V276, P3695, DOI 10.1098/rspb.2009.0980; Zub K, 2012, MOL ECOL, V21, P1283, DOI 10.1111/j.1365-294X.2011.05436.x 66 1 1 13 42 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2041-1723 NAT COMMUN Nat. Commun. JAN 2 2018 9 14 10.1038/s41467-017-02514-z 6 Multidisciplinary Sciences Science & Technology - Other Topics FR8DZ WOS:000419306000005 29295982 DOAJ Gold, Green Published 2019-02-21 J De Fries, L; da Rosa, G; da Silva, JP; Vilella, FS; Becker, FG De Fries, Lucas; da Rosa, Gilberto; da Silva, Jose Pezzi; Vilella, Fabio Silveira; Becker, Fernando Gertum Reproduction of two loricariid species in a confined river and implications for environmental impacts of dams NEOTROPICAL ICHTHYOLOGY English Article Biodiveisity; Environment; Flow regulation; Hydropower; Reservoirs LIFE-HISTORY STRATEGIES; FALSE DISCOVERY RATE; UPPER URUGUAY RIVER; PARANA RIVER; TEMPORAL DISTRIBUTION; FISH ASSEMBLAGE; SEXUAL-MATURITY; AMERICAN FISHES; FLOOD REGIME; SILURIFORMES Fish reproduction in floodplain rivers is often linked to flow regime and with the inundation of floodplain habitats. However, in confined rivers, where floodplains are absent, the relation between reproduction and flow can in comparison be expected to be distinct. In this study, we describe the reproductive life-history of Hemiancistrus,fuliginosus and Hypostomus isbrueckeri in a confined river and discuss its differences relative to floodplain loricariids and also the implications for effects of dam construction and flow regulation. We found the reproductive peak of both species occurred during lowering waters, just after maximum river flow, in contrast to floodplain species that tend to spawn during rising waters. The studied species presented attributes of equilibrium life-history strategy, which are related to predictable river flow variation. Because both species spawned during low river flow, which is historically predictable in summer, we suggest that their reproduction may be severely disrupted, depending on how flow regime is affected by dam operation. These results have implications for assessing and mitigating the impacts of river damming on fish populations in confined rivers, and we point to ecologically driven flow management and conservation of free-flowing rivers as mitigation and conservation alternatives. [De Fries, Lucas; da Rosa, Gilberto; Becker, Fernando Gertum] Univ Fed Rio Grande do Sul, Dept Ecol, Av Bento Goncalves 9500,Setor 4,Predio 43422, BR-91501970 Porto Alegre, RS, Brazil; [da Silva, Jose Pezzi] JPSBIO Consultoria Ambiental, Estr Francisca de Oliveira Vieira 796, BR-91780050 Porto Alegre, RS, Brazil; [Vilella, Fabio Silveira] Simbiota Consultoria Ambiental, Rua Emiliano de Macedo 1425, BR-95800000 Venancio Aires, RS, Brazil De Fries, L (reprint author), Univ Fed Rio Grande do Sul, Dept Ecol, Av Bento Goncalves 9500,Setor 4,Predio 43422, BR-91501970 Porto Alegre, RS, Brazil. lucas.defries@yahoo.com.br; gilberto.rosa@ufrgs.br; josefpezzi@gmail.com; fabio@simbiota.com.br; fgbecker@ufrgs.br De Fries, Lucas/0000-0001-8361-2608 Monjolinho Energetica Ltda. Camila Fagundes Dias e Francini de Souza provided help in the field and laboratory. Monel (Monjolinho Energetica Ltda.) provided financial support for data collection. We are thankful to Sandra M. Hartz and Renato B. Dala-Corte for several suggestions to earlier versions of the manuscript. We also would like to acknowledge the referees for several comments that helped improving the manuscript. Agostinho A.A., 1991, Revista Brasileira de Biologia, V51, P31; Agostinho AA, 2008, BRAZ J BIOL, V68, P1119, DOI 10.1590/S1519-69842008000500019; AGOSTINHO A A, 1987, Revista Brasileira de Biologia, V47, P319; AGOSTINHO AA, 1995, FISH RES, V23, P333, DOI 10.1016/0165-7836(94)00347-Y; Agostinho AA, 2004, REV FISH BIOL FISHER, V14, P11, DOI 10.1007/s11160-004-3551-y; Agostinho AA, 1999, THEORETICAL RESERVOIR ECOLOGY AND ITS APPLICATIONS, P227; Agostinho AA, 2007, ECOLOGIA MANEJO RECU; Andrade P. M., 2005, Braz. J. Biol., V65, P387, DOI 10.1590/S1519-69842005000300003; Bailly D, 2008, RIVER RES APPL, V24, P1218, DOI 10.1002/rra.1147; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Burgess WE, 1989, ATLAS FRESHWATER MAR; Bye V.J., 1984, P187; Cardoso Alexandre R., 1999, Comunicacoes do Museu de Ciencias e Tecnologia da PUCRS Serie Zoologia, V12, P141; Correa RN, 2011, ENVIRON BIOL FISH, V91, P51, DOI 10.1007/s10641-010-9759-x; Dala-Corte RB, 2010, IHERINGIA SER ZOOL, V100, P259, DOI 10.1590/S0073-47212010000300012; de Avila-Simas S, 2014, NEOTROP ICHTHYOL, V12, P611, DOI 10.1590/1982-0224-20130116; Gomes ID, 2015, ENVIRON BIOL FISH, V98, P249, DOI 10.1007/s10641-014-0256-5; Goulart Erivelto, 1992, Revista UNIMAR, V14, P19; Hermes-Silva S, 2009, BRAZ ARCH BIOL TECHN, V52, P933, DOI 10.1590/S1516-89132009000400017; Hirschmann Alice, 2011, Neotropical Biology and Conservation, V6, P250, DOI 10.4013/nbc.2011.63.10; Hirschmann A, 2008, IHERINGIA SER ZOOL, V98, P481, DOI 10.1590/S0073-47212008000400011; Humphries P, 1999, ENVIRON BIOL FISH, V56, P129, DOI 10.1023/A:1007536009916; KRAMER DL, 1978, ECOLOGY, V59, P976, DOI 10.2307/1938549; Lampert Vinicius Renner, 2004, Neotrop. ichthyol., V2, P209, DOI 10.1590/S1679-62252004000400003; LECREN ED, 1951, J ANIM ECOL, V20, P201; Lopes Carolina Antonieta, 2014, Acta Scientiarum Biological Sciences, V36, P59, DOI 10.4025/actascibiolsci.v36i1.17993; Lowe-McConnell R. H., 1999, ESTUDOS ECOLOGICOS C; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; MAZZONI R, 1995, J FISH BIOL, V47, P841, DOI 10.1111/j.1095-8649.1995.tb06006.x; Mazzoni R, 1997, ECOL FRESHW FISH, V6, P53, DOI 10.1111/j.1600-0633.1997.tb00143.x; Mazzoni Rosana, 1997, Revista Brasileira de Biologia, V57, P455; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2010, AM FISH S S, V73, P83; Paugy D, 2002, AQUAT LIVING RESOUR, V15, P25, DOI 10.1016/S0990-7440(01)01144-5; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Pusey BJ, 2001, ECOL FRESHW FISH, V10, P75, DOI 10.1034/j.1600-0633.2001.100202.x; RAMOS L. A., 1999, BOL INST PESCA, V25, P45; Ramos Lisiane Acosta, 1998, Acta Biologica Leopoldensia, V20, P299; REIS RE, 1990, REV SUISSE ZOOL, V97, P729, DOI 10.5962/bhl.part.79760; Reynalte-Tataje DA, 2008, RESERVATORIO ITA EST, P159; Reynalte-Tataje DA, 2012, NEOTROP ICHTHYOL, V10, P837, DOI 10.1590/S1679-62252012000400017; Roa R, 1999, FISH B-NOAA, V97, P570; Rutaisire J, 2005, ENVIRON BIOL FISH, V73, P153, DOI 10.1007/s10641-004-5564-8; Suzuki HI, 2004, BIO INL WAT, P271; Suzuki HI, 2000, J FISH BIOL, V57, P791, DOI 10.1006/jfbi.2000.1352; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Tedesco P, 2006, OIKOS, V115, P117, DOI 10.1111/j.2006.0030-1299.14847.x; Torres-Mejia M, 2008, COPEIA, P99, DOI 10.1643/CP-06-256; Vazzoler A. E. A. M., 1996, BIOL REPROD PEIXES T; Verhoeven KJF, 2005, OIKOS, V108, P643, DOI 10.1111/j.0030-1299.2005.13727.x; Waite TA, 2006, ECOSCIENCE, V13, P439, DOI 10.2980/1195-6860(2006)13[439:CTFDRA]2.0.CO;2; Winemiller KO, 2008, AQUAT ECOL SER, P107, DOI 10.1016/B978-012088449-0.50007-8; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Zeug SC, 2007, CAN J FISH AQUAT SCI, V64, P1291, DOI 10.1139/F07-094 57 0 0 0 0 SOC BRASILEIRA ICTIOLOGIA SAO PAULO UNIV SAO PAULO, DEPT FISIOLOGIA-IB, RUA DO MATAO, TRAVESSA 14 N 321, SAO PAULO, SP 05508-900, BRAZIL 1679-6225 NEOTROP ICHTHYOL Neotrop. Ichthyol. 2018 16 4 e170163 10.1590/1982-0224-20170163 12 Zoology Zoology HE1ST WOS:000453054400001 DOAJ Gold 2019-02-21 J Winemiller, KO; Taphom, DC; Kelso-Winemiller, LC; Lopez-Delgado, EO; Keppeler, FW; Montana, CG Winemiller, Kirk O.; Taphom, Donald C.; Kelso-Winemiller, Leslie C.; Lopez-Delgado, Edwin O.; Keppeler, Friedrich W.; Montana, Carmen G. Fish metacommunity structure in Cano Maraca, an important nursery habitat in the Western Llanos of Venezuela NEOTROPICAL ICHTHYOLOGY English Article Dispersal; Fluvial gradient; Freshwater fish; Neotropics; Nestedness LIFE-HISTORY; HYDROLOGIC CONNECTIVITY; COMMUNITY STRUCTURE; AMERICAN FISHES; RIVER-BASIN; STREAM; ASSEMBLAGES; PATTERNS; FLOODPLAIN; GRADIENTS We investigated spatial and seasonal variation of fish assemblages of Cano Maraca, a creek in Venezuela's Western Llanos, a region with strong wet-dry seasonality. Fishes were surveyed over a 19-year period at three sites along the longitudinal gradient: a headwater site with a narrow channel, a middle site with shallow channels traversing a seasonal wetland, and a lower site where the channel has higher banks. Assemblage composition and presence of species with juveniles and various life history strategies were compared during wet and dry seasons. Overall, fish species richness was lowest at the headwater site and highest at the downstream site. During the wet season, however, species richness is greatest at the middle site, a pattern associated with migration into the site for reproduction and use of the wetland as a nursery. During the dry season, species richness is greater at the downstream site where habitat quality is sufficient to provide suitable habitat for many species. Fish movements and population dynamics in Cano Maraca respond to seasonal environmental changes, and the fish metacommunity appears influenced by species sorting (habitat selection), mass effects (source-sink dynamics), patch dynamics (interspecific differences in colonization and species interaction) as well as random factors (dry-season strandings). [Winemiller, Kirk O.; Lopez-Delgado, Edwin O.; Keppeler, Friedrich W.] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA; [Taphom, Donald C.] Univ Expt Los Llanos Occidentales Ezequiel Zamora, Museo Ciencias Nat, Guanare 3310, Portuguese, Venezuela; [Kelso-Winemiller, Leslie C.] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA; [Montana, Carmen G.] Sam Houston State Univ, Dept Biol Sci, Huntsville, TX 77341 USA Winemiller, KO (reprint author), Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA. k-winemiller@tamu.edu; taphoni@gmail.com; lesliew@bio.tamu.edu; eolopezd@mail.com; kepp1990@tamu.edu; cgm026@shsu.edu National Geographic Society; US Fulbright Scholar Exchange Program; Brazil's Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); Colombia's COLCIENCIAS We thank the Urriola and Strebbin families for access to sites on their properties. We are grateful for assistance with fieldwork from many individuals, including Aniello Barbarino, Oscar de Leon Mata, Leo Nico, Eric Pianka, David Jepsen, Tamara McGuire, John Williams, Hernan Lopez-Fernandez, Megan Winemiller and Brent Winemiller. We thank the staff of the Museo de Ciencias Naturales, Universidad Nacional de Los Llanos Occidentales Ezequiel Zamora for access to specimens and field notes. KOW acknowledges financial support from the National Geographic Society and US Fulbright Scholar Exchange Program. Scientific collecting permits were obtained from the Direccion Administracion y Desarrollo Pesquero de la Republica de Venezuela. FWK received fellowship support from Brazil's Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), and EOLD received fellowship support from Colombia's COLCIENCIAS. Abes SD, 2001, HYDROBIOLOGIA, V445, P217; Almeida RS, 2016, NAT CONSERVACAO, V14, P112, DOI 10.1016/j.ncon.2016.10.001; ANGERMEIER PL, 1983, ENVIRON BIOL FISH, V9, P117, DOI 10.1007/BF00690857; Arrington DA, 2005, OECOLOGIA, V144, P157, DOI 10.1007/s00442-005-0014-7; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Casatti Lilian, 2005, Biota Neotrop., V5, P75, DOI 10.1590/S1676-06032005000100009; Chao A, 2014, ECOL MONOGR, V84, P45, DOI 10.1890/13-0133.1; Couto TBD, 2018, CAN J FISH AQUAT SCI, V75, P319, DOI 10.1139/cjfas-2016-0388; Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2; Duque AB, 1998, ENVIRON BIOL FISH, V53, P33, DOI 10.1023/A:1007447004451; Freeman MC, 2007, J AM WATER RESOUR AS, V43, P5, DOI 10.1111/j.1752-1688.2007.00002.x; Goncalves CD, 2012, NEOTROP ICHTHYOL, V10, P675, DOI 10.1590/S1679-62252012000300022; Goulding M, 2019, FISH FISH, V20, P138, DOI 10.1111/faf.12328; IBARRA M, 1989, COPEIA, P364; Jackson AT, 2013, ECOL FRESHW FISH, V22, P295, DOI 10.1111/eff.12026; Juen L, 2016, RIVER RES APPL, V32, P2081, DOI 10.1002/rra.3050; Legendre P, 2001, OECOLOGIA, V129, P271, DOI 10.1007/s004420100716; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Lowe-McConnell RH, 1987, ECOLOGICAL STUDIES T; Lujan NK, 2015, EXTREMOPHILE FISHES, P107; Mago Leccia F., 1970, Acta biol. venez., V7, P71; MATTHEWS WJ, 1986, COPEIA, P388; Mazzoni R, 2000, ECOGRAPHY, V23, P588, DOI 10.1034/j.1600-0587.2000.230510.x; Oksanen J., 2016, R PACKAGE VERSION, V2, P3, DOI DOI 10.4135/9781412971874.N145; PALLER MH, 1994, T AM FISH SOC, V123, P150, DOI 10.1577/1548-8659(1994)123<0150:RBFASA>2.3.CO;2; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; R Core Team, 2017, R LANG ENV STAT COMP; SCHLOSSER IJ, 1982, ECOL MONOGR, V52, P395, DOI 10.2307/2937352; Suarez YR, 2007, NEOTROP ICHTHYOL, V5, P61, DOI 10.1590/S1679-62252007000100008; Taphorn D. C., 1985, REV UNELLEZ CIENCIA, V3, P55; Winemiller Kirk, 1996, BioLlania, V12, P13; Winemiller KO, 2010, J N AM BENTHOL SOC, V29, P84, DOI 10.1899/08-048.1; Winemiller KO, 2008, AQUAT ECOL SER, P107, DOI 10.1016/B978-012088449-0.50007-8; WINEMILLER KO, 1990, ECOL MONOGR, V60, P331, DOI 10.2307/1943061; WINEMILLER KO, 1989, COPEIA, P382; WINEMILLER KO, 1992, ENVIRON BIOL FISH, V34, P29, DOI 10.1007/BF00004783; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINEMILLER KO, 1990, ECOL MONOGR, V60, P27, DOI 10.2307/1943025; WINEMILLER KO, 2010, COMMUNITY ECOLOGY ST, V73, P23; Wolff LL, 2017, ZOOLOGIA-CURITIBA, V34, DOI 10.3897/zoologia.34.e12975 42 0 0 0 0 SOC BRASILEIRA ICTIOLOGIA SAO PAULO UNIV SAO PAULO, DEPT FISIOLOGIA-IB, RUA DO MATAO, TRAVESSA 14 N 321, SAO PAULO, SP 05508-900, BRAZIL 1679-6225 NEOTROP ICHTHYOL Neotrop. Ichthyol. 2018 16 4 180074 10.1590/1982-0224-20180074 11 Zoology Zoology HE1TN WOS:000453056400001 DOAJ Gold 2019-02-21 S Bentley, RA; Ross, CN; O'Brien, MJ Ottinger, MA Bentley, R. Alexander; Ross, Corinna N.; O'Brien, Michael. J. Obesity, Metabolism, and Aging: A Multiscalar Approach METABOLIC ASPECTS OF AGING Progress in Molecular Biology and Translational Science English Review; Book Chapter SUGAR-SWEETENED BEVERAGES; FRUCTOSE CORN SYRUP; BODY-MASS; CALORIC RESTRICTION; NONHUMAN PRIMATE; LIFE-SPAN; MARMOSET; CHILDHOOD; EVOLUTION; FAT Obesity contributes to the aging process through the alteration of metabolic pathways evidenced biochemically in the relationship between caloric restriction and longevity. Humans have entered into an era of metabolism and aging entirely unprecedented in their evolution, with a diet that, for many, contains a majority of calories as sugar and yields an expected lifespan of over 80 years in industrialized nations. Deeply embedded in the complex issue of obesity are questions of behavior, causality versus correlation, and appropriate models. For example, are primates a better reference than mice for studying metabolic connections between obesity and aging? We consider those issues from the standpoint of life-history theory, especially implications of the interplay of refined sugar and socioeconomic disparities for the future of human health. [Bentley, R. Alexander] Univ Tennessee, Knoxville, TN 37996 USA; [Ross, Corinna N.; O'Brien, Michael. J.] Texas A&M Univ San Antonio, San Antonio, TX USA Bentley, RA (reprint author), Univ Tennessee, Knoxville, TN 37996 USA. rabentley@utk.edu Aoki KA, 1996, P NATL ACAD SCI USA, V83, P2929; Avena NM, 2008, NEUROSCI BIOBEHAV R, V32, P20, DOI 10.1016/j.neubiorev.2007.04.019; Bagi CM, 2007, ANAT REC, V290, P1005, DOI 10.1002/ar.20561; Bartke Andrzej, 2012, Frontiers in Genetics, V3, P288, DOI 10.3389/fgene.2012.00288; Basu S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057873; Bentley RA, 2015, ANTIQUITY, V89, P1203, DOI 10.15184/aqy.2015.98; Bersaglieri T, 2004, AM J HUM GENET, V74, P1111, DOI 10.1086/421051; Bocarsly ME, 2010, PHARMACOL BIOCHEM BE, V97, P101, DOI 10.1016/j.pbb.2010.02.012; BODKIN NL, 1993, INT J OBESITY, V17, P53; Bray GA, 2004, AM J CLIN NUTR, V79, P537; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Burkewitz K, 2014, CELL METAB, V20, P10, DOI 10.1016/j.cmet.2014.03.002; Catenacci VA, 2016, OBESITY, V24, P1874, DOI 10.1002/oby.21581; Cheke LG, 2016, Q J EXP PSYCHOL, V69, P2305, DOI 10.1080/17470218.2015.1099163; Christakis NA, 2013, STAT MED, V32, P556, DOI 10.1002/sim.5408; Colman RJ, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms4557; Comuzzie AG, 2003, OBES RES, V11, P75, DOI 10.1038/oby.2003.12; Cordain L, 2005, AM J CLIN NUTR, V81, P341; Cordain L, 2002, EUR J CLIN NUTR, V56, pS42, DOI 10.1038/sj/ejcn/1601353; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; Didier ES, 2016, VET PATHOL, V53, P277, DOI 10.1177/0300985815622974; Eltis David, 1997, SLAVERY ABOLIT, V18, P1; Ely JJ, 2013, ZOO BIOL, V32, P79, DOI 10.1002/zoo.21044; Enattah NS, 2002, NAT GENET, V30, P233, DOI 10.1038/ng826; Feldman M. W., 1989, MATH EVOLUTIONARY TH, P145; Finch C, 2014, ANNU REV GERONTOL GE, V34, P139, DOI 10.1891/0198-8794.34.139; Finkel T, 2015, NAT MED, V21, P1416, DOI 10.1038/nm.3998; Flegal KM, 2010, JAMA-J AM MED ASSOC, V303, P235, DOI 10.1001/jama.2009.2014; Fogel RW, 1994, CONSENT CONTRACT RIS; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Villar JG, 2009, ECON HUM BIOL, V7, P73, DOI 10.1016/j.ehb.2009.01.006; Gerbault P, 2011, PHILOS T R SOC B, V366, P863, DOI 10.1098/rstb.2010.0268; Geula C, 2002, ACTA NEUROPATHOL, V103, P48, DOI 10.1007/s004010100429; Gillooly JF, 2002, NATURE, V417, P70, DOI 10.1038/417070a; Go YM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0142916; Goryakin Y, 2017, ECON HUM BIOL, V26, P151, DOI 10.1016/j.ehb.2017.03.004; Guyenet S., 2012, 2606 US DIET WILL BE; Harpending H, 1990, DIS POPULATIONS TRAN, P251; Hernandez DC, 2015, SOC SCI RES, V50, P292, DOI 10.1016/j.ssresearch.2014.12.007; Hernandez DC, 2014, J EPIDEMIOL COMMUN H, V68, P478, DOI 10.1136/jech-2013-203062; Hernandez DC, 2014, J MARRIAGE FAM, V76, P175, DOI 10.1111/jomf.12080; Hoffman CL, 2010, BEHAV ECOL, V21, P972, DOI 10.1093/beheco/arq098; Horton M, 2015, CONVERSATION; Hruschka DJ, 2014, AM J PHYS ANTHROPOL, V153, P542, DOI 10.1002/ajpa.22452; Hruschka DJ, 2012, AM J HUM BIOL, V24, P277, DOI 10.1002/ajhb.22231; Hu FB, 2010, PHYSIOL BEHAV, V100, P47, DOI 10.1016/j.physbeh.2010.01.036; Hudson LN, 2013, J ANIM ECOL, V82, P1009, DOI 10.1111/1365-2656.12086; Jackson P, 2016, APPETITE, V98, P1, DOI 10.1016/j.appet.2015.11.032; Jensen MD, 2014, OBESITY, V22, pS5, DOI 10.1002/oby.20821; Johnson ML, 2016, DIABETES, V65, P74, DOI 10.2337/db15-0675; Johnson RK, 2009, CIRCULATION, V120, P1011, DOI 10.1161/CIRCULATIONAHA.109.192627; Johnson RJ, 2007, AM J CLIN NUTR, V86, P899; Jolliffe D, 2011, ECON HUM BIOL, V9, P342, DOI 10.1016/j.ehb.2011.07.004; Jurgens H, 2005, OBES RES, V13, P1146, DOI 10.1038/oby.2005.136; Kanfi Y, 2012, NATURE, V483, P218, DOI 10.1038/nature10815; Kanoski SE, 2011, PHYSIOL BEHAV, V103, P59, DOI 10.1016/j.physbeh.2010.12.003; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kaplan H, 2017, LANCET, V389, P1730, DOI 10.1016/S0140-6736(17)30752-3; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Kearns CE, 2015, PLOS MED, V12, DOI 10.1371/journal.pmed.1001798; Kemnitz JW, 2011, ILAR J, V52, P66, DOI 10.1093/ilar.52.1.66; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Klempel MC, 2013, METABOLISM, V62, P137, DOI 10.1016/j.metabol.2012.07.002; Klimentidis YC, 2011, P ROY SOC B-BIOL SCI, V278, P1626, DOI 10.1098/rspb.2010.1890; Kroeger CM, 2012, NUTR METAB, V9, DOI 10.1186/1743-7075-9-98; Liao CY, 2011, AGING CELL, V10, P629, DOI 10.1111/j.1474-9726.2011.00702.x; Lowenstine LJ, 2016, VET PATHOL, V53, P250, DOI 10.1177/0300985815612154; Lustig RH, 2012, NATURE, V482, P27, DOI 10.1038/482027a; Madeo F, 2015, J CLIN INVEST, V125, P85, DOI 10.1172/JCI73946; Mani A, 2013, SCIENCE, V341, P976, DOI 10.1126/science.1238041; Martin RD, 1996, NEWS PHYSIOL SCI, V11, P149; Mattson MP, 2014, P NATL ACAD SCI USA, V111, P16647, DOI 10.1073/pnas.1413965111; Moreno JP, 2016, J RACIAL ETHN HEALTH, V3, P582, DOI 10.1007/s40615-015-0177-9; Nakhimovsky SS, 2016, PLOS ONE, V11, DOI [10.1371/journal.pone.0163358, 10.1371/jour]; Nestle M, 2016, JAMA INTERN MED, V176, P1685, DOI 10.1001/jamainternmed.2016.5400; Nettle D, 2017, BEHAV BRAIN SCI; O'Brien MJ, 2012, CURR ANTHROPOL, V53, P434, DOI 10.1086/666585; Ogden CL, 2014, JAMA-J AM MED ASSOC, V311, P806, DOI 10.1001/jama.2014.732; Pilling LC, 2016, AGING-US, V8, P547, DOI 10.18632/aging.100930; Ravussin E, 2015, J GERONTOL A-BIOL, V70, P1097, DOI 10.1093/gerona/glv057; Redsell SA, 2010, BMC PUBLIC HEALTH, V10, P7; Reinert Kaela R S, 2013, J Obes, V2013, P820956, DOI 10.1155/2013/820956; Riera CE, 2015, NAT CELL BIOL, V17, P196, DOI 10.1038/ncb3107; Ross Corinna N, 2012, J Aging Res, V2012, P567143, DOI 10.1155/2012/567143; Ross CN, 2013, OBESITY, V21, P1891, DOI 10.1002/oby.20432; Sear R, 2015, POP STUD-J DEMOG, V69, pS39, DOI 10.1080/00324728.2014.982905; Shakya HB, 2015, OBESITY, V23, P2477, DOI 10.1002/oby.21201; Shang XW, 2012, BIOMED ENVIRON SCI, V25, P125, DOI 10.3967/0895-3988.2012.02.001; Shively CA, 2009, AM J PRIMATOL, V71, P715, DOI 10.1002/ajp.20720; Shrewsbury V, 2008, OBESITY, V16, P275, DOI 10.1038/oby.2007.35; Smucny DA, 2001, J MED PRIMATOL, V30, P161, DOI 10.1111/j.1600-0684.2001.tb00005.x; So J., 2015, HEALTH COMMUN, V31, P193; Song WO, 2012, NUTRITION, V28, P1137, DOI 10.1016/j.nut.2012.03.008; Speakman JR, 2011, MOL ASPECTS MED, V32, P159, DOI 10.1016/j.mam.2011.07.001; Spurlock ME, 2008, J NUTR, V138, P397; Subramanian SV, 2011, AM J CLIN NUTR, V93, P413, DOI 10.3945/ajcn.110.004820; Tardif SD, 2011, ILAR J, V52, P54, DOI 10.1093/ilar.52.1.54; Tardif SD, 2009, OBESITY, V17, P1499, DOI 10.1038/oby.2009.77; Tomimatsu K, 2015, NAT CELL BIOL, V17, P1230, DOI 10.1038/ncb3244; Vandamme TF, 2014, J PHARM BIOALLIED SC, V6, P2, DOI 10.4103/0975-7406.124301; Videan EN, 2008, AM J PRIMATOL, V70, P327, DOI 10.1002/ajp.20494; Vieira A., 2004, TROPICAL BABYLONS SU, P42; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; White JS, 2014, FRUCTOSE HIGH FRUCTO, P13; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wooding SP, 2007, NAT GENET, V39, P7, DOI 10.1038/ng0107-7; Wu CK, 2003, NEUROSCIENCE, V120, P249, DOI 10.1016/S0306-4522(03)00248-3; Zoran DL, 2010, VET CLIN N AM-SMALL, V40, P221, DOI 10.1016/j.cvsm.2009.10.009 109 0 0 0 0 ELSEVIER ACADEMIC PRESS INC SAN DIEGO 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA 1877-1173 978-0-12-809391-7 PROG MOL BIOL TRANSL Prog. Molec. Biol. Transl. Sci. 2018 155 25 42 10.1016/bs.pmbts.2017.11.016 18 Biochemistry & Molecular Biology; Geriatrics & Gerontology Biochemistry & Molecular Biology; Geriatrics & Gerontology BL5NN WOS:000452375300004 29653680 2019-02-21 J Toro-Nunez, O; Leiva-Salcedo, A; Fernandez-Alarcon, N; Ruiz-Lozano, A; Baeza, CM; Ruiz-Ponce, E Toro-Nunez, Oscar; Leiva-Salcedo, Alan; Fernandez-Alarcon, Naomi; Ruiz-Lozano, Andrea; Baeza, Carlos M.; Ruiz-Ponce, Eduardo Report of chromosome number and karyotype asymmetry in Schizopetalon Sims. and related genera from the South American tribe Schizopetalae (Brassicaceae) CARYOLOGIA English Article Schizopetalae; Brassicaceae; Atacama Desert; chromosome number; interchromosomal asymmetry ATACAMA DESERT; GENOME SIZE; EVOLUTION; HYBRIDIZATION; DIVERSITY Schizopetalae is one of the representative South American tribes of Brassicaceae, which has remained poorly studied for cytological data. With a single report existing, no additional cytological information is known for the rest of the species and genera of this tribe (Atacama, Mathewsia and Schizopetalon). The present study reports the chromosome number and karyotype asymmetry for five species of Schizopetalon, two for Mathewsia and the only species of the monotypic genus Atacama. While a constant 2n = 18 is confirmed in all analysed samples, larger interchromosomal asymmetry levels were found in Schizopetalon than Atacama and Mathewsia. Both results suggest different processes of fixation and recombination in chromosome architecture among genera, probably associated to life history strategies maintaining genetic diversity under extreme and unpredicted environmental conditions. The present study represents the first report of chromosome number in any South American Brassicaceae in the last 30 years, revealing the need of more cytological studies to contextualize the diversification of Schizopetalae and other closely related tribes. [Toro-Nunez, Oscar; Leiva-Salcedo, Alan; Fernandez-Alarcon, Naomi; Ruiz-Lozano, Andrea; Baeza, Carlos M.; Ruiz-Ponce, Eduardo] Univ Concepcion, Dept Bot, Fac Ciencias Nat & Oceanog, Concepcion, Chile Toro-Nunez, O (reprint author), Univ Concepcion, Dept Bot, Fac Ciencias Nat & Oceanog, Concepcion, Chile. oftoro@gmail.com CONICYT [3160453]; University of Kansas (US) Fratcher Botany Fellowship Scholarship; Sigma Xi (US) This work was supported by CONICYT No 3160453 (Chile); The University of Kansas (US) Fratcher Botany Fellowship Scholarship; Sigma Xi (US) Grants-in-Aid of Research Awards. Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; AL-SHEHBAZ I. A., 1989, HARVARD PAP BOT, V1, P10; Altinordu F, 2016, TAXON, V65, P586, DOI 10.12705/653.9; Barker MS, 2009, GENOME BIOL EVOL, V1, P391, DOI 10.1093/gbe/evp040; Charlesworth D, 2003, PHILOS T R SOC B, V358, P1051, DOI 10.1098/rstb.2003.1296; Cheung KW, 2015, J PLANT RES, V128, P469, DOI 10.1007/s10265-015-0702-2; Dinno A, 2017, DUNN TEST DUNNS TEST; Forster B, 2004, MICROSC RES TECHNIQ, V65, P33, DOI 10.1002/jemt.20092; Franzke A, 2011, TRENDS PLANT SCI, V16, P108, DOI 10.1016/j.tplants.2010.11.005; Gonzalez AV, 2010, INT J PLANT SCI, V171, P607, DOI 10.1086/653135; Grant V., 1981, PLANT SPECIATION; Guerra M, 2008, CYTOGENET GENOME RES, V120, P339, DOI 10.1159/000121083; Houston J, 2003, INT J CLIMATOL, V23, P1453, DOI 10.1002/joc.938; Houston J, 2006, INT J CLIMATOL, V26, P2181, DOI 10.1002/joc.1359; Houston J, 2006, J HYDROL, V330, P402, DOI 10.1016/j.jhydrol.2006.03.036; Johnston JS, 2005, ANN BOT-LONDON, V95, P229, DOI 10.1093/aob/mci016; Kiefer M, 2014, PLANT CELL PHYSIOL, V55, DOI 10.1093/pcp/pct158; Koch MA, 2012, TAXON, V61, P1001; LEVAN A, 1964, HEREDITAS-GENETISK A, V52, P201, DOI 10.1111/j.1601-5223.1964.tb01953.x; Levin DA, 2002, ROLE CHROMOSOMAL CHA; Lysak MA, 2006, PLANT SYST EVOL, V259, P175, DOI 10.1007/s00606-006-0418-9; Lysak MA, 2009, BIOL BREEDING CRUCIF; Lysak MA, 2009, MOL BIOL EVOL, V26, P85, DOI 10.1093/molbev/msn223; Manton I, 1932, ANN BOT-LONDON, V46, P509, DOI 10.1093/oxfordjournals.aob.a090334; Martin E, 2016, CYTOLOGIA, V81, P53, DOI 10.1508/cytologia.81.53; Peruzzi L, 2009, ANN BOT-LONDON, V103, P459, DOI 10.1093/aob/mcn230; Peruzzi L, 2013, COMP CYTOGENET, V7, P1, DOI 10.3897/CompCytogen.v7i1.4431; R Development Core Team, 2017, R LANG ENV STAT COMP; Salariato DL, 2016, BOT J LINN SOC, V181, P543, DOI 10.1111/boj.12430; Schranz ME, 2006, TRENDS PLANT SCI, V11, P535, DOI 10.1016/j.tplants.2006.09.002; Soltis PS, 2009, ANNU REV PLANT BIOL, V60, P561, DOI 10.1146/annurev.arplant.043008.092039; Stebbins GL, 1971, CHROMOSMAL EVOLUTION; Toro-Nunez O, 2013, TAXON, V62, P343; Vidiella PE, 1999, J ARID ENVIRON, V43, P449, DOI 10.1006/jare.1999.0565; Warwick SI, 2006, PLANT SYST EVOL, V259, P237, DOI 10.1007/s00606-006-0421-1; Wright SI, 2008, INT J PLANT SCI, V169, P105, DOI 10.1086/523366; Yue JP, 2004, BOT J LINN SOC, V145, P77, DOI 10.1111/j.1095-8339.2003.00268.x; Zhou LR, 2008, NORD J BOT, V26, P375, DOI 10.1111/j.1756-1051.2008.00242.x 38 0 0 0 0 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0008-7114 2165-5391 CARYOLOGIA Caryologia 2018 71 4 315 321 10.1080/00087114.2018.1469815 7 Plant Sciences; Genetics & Heredity Plant Sciences; Genetics & Heredity HC5ES WOS:000451826900005 2019-02-21 J Kavish, N; Boutwell, B Kavish, Nicholas; Boutwell, Brian The unified crime theory and the social correlates of crime and violence: problems and solutions JOURNAL OF CRIMINAL PSYCHOLOGY English Review Criminology; Evolutionary taxonomy; Genetic confounding; Life history theory; Pace of life; Social correlates of crime LIFE-HISTORY STRATEGY; REPRODUCTIVE STRATEGY; SEX-DIFFERENCES; FATHER ABSENCE; CRIMINAL BEHAVIOR; SELF-CONTROL; K-FACTOR; EVOLUTIONARY; AGE; PERSONALITY Purpose Criminology has produced more than a century of informative research on the social correlates of criminal behavior. Recently, a growing body of theoretical and empirical work has begun to apply evolutionary principles, particularly from life history theory (LHT), to the study of crime. As this body of research continues to grow, it is important that work in this area synthesizes evolutionary principles with the decades of sociological research on the correlates of crime. The paper aims to discuss these issues. Design/methodology/approach The current paper reviews the brief history of research applying life history concepts to criminology, providing an overview of the underlying framework, exploring examples of empirically testable and tested hypotheses that have been derived from the theory, discussing cautions and criticisms of life history research, and discussing how this area of research can be further integrated with existing theory. Findings A growing body of research has, with relative consistency, associated indicators of a faster life history strategy with aggression and violence in humans and across the animal kingdom. Research into these associations is still vulnerable to genetic confounding and more research with genetically sensitive designs is needed. The use of hypotheses informed by evolutionary insight and tested with genetically sensitive designs provides the best option for understanding how environmental factors can have an impact on violent and criminal behavior. Originality/value The current paper provides an updated review of the growing application of LHT to the study of human behavior and acknowledges criticisms and areas of concern that need to be considered when forming hypotheses for research. [Kavish, Nicholas] Sam Houston State Univ, Dept Psychol & Philosophy, Huntsville, TX 77340 USA; [Boutwell, Brian] St Louis Univ, Coll Publ Hlth & Social Justice, St Louis, MO 63103 USA Boutwell, B (reprint author), St Louis Univ, Coll Publ Hlth & Social Justice, St Louis, MO 63103 USA. brian.boutwell@slu.edu AGNEW R, 1992, CRIMINOLOGY, V30, P47, DOI 10.1111/j.1745-9125.1992.tb01093.x; Akers Ronald L., 1977, DEVIANT BEHAV SOCIAL; Archer J, 2004, REV GEN PSYCHOL, V8, P291, DOI 10.1037/1089-2680.8.4.291; Armour S, 2007, J YOUTH ADOLESCENCE, V36, P141, DOI 10.1007/s10964-006-9128-4; Babbie E, 2004, PRACTICE SOCIAL RES; Baldini R., 2015, BIORXIV; Barbaro N, 2017, EVOL HUM BEHAV, V38, P357, DOI 10.1016/j.evolhumbehav.2016.11.007; Bardsen BJ, 2014, ECOL EVOL, V4, P1030, DOI 10.1002/ece3.1010; Barnes JC, 2014, J CRIM JUST, V42, P471, DOI 10.1016/j.jcrimjus.2014.08.003; Beaver Kevin M, 2008, Biodemography Soc Biol, V54, P47, DOI 10.1080/19485565.2008.9989131; Belsky DW, 2014, BIODEMOGR SOC BIOL, V60, P137, DOI 10.1080/19485565.2014.946591; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2014, J ANIM ECOL, V83, P1186, DOI 10.1111/1365-2656.12210; Bjorklund DF, 1999, CURR DIR PSYCHOL SCI, V8, P86, DOI 10.1111/1467-8721.00020; Boutwell BB, 2017, INTELLIGENCE, V62, P155, DOI 10.1016/j.intell.2017.04.003; Boutwell BB, 2015, AGGRESS VIOLENT BEH, V25, P343, DOI 10.1016/j.avb.2015.09.003; BURGESS RL, 1966, SOC PROBL, V14, P128, DOI 10.1525/sp.1966.14.2.03a00020; Caspi A, 2006, NAT REV NEUROSCI, V7, P583, DOI 10.1038/nrn1925; Charles KE, 2005, PERS INDIV DIFFER, V38, P1035, DOI 10.1016/j.paid.2004.06.021; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Connolly E.J., J YOUTH ADOLESCENCE; Copeland W, 2010, AM J PSYCHIAT, V167, P1218, DOI 10.1176/appi.ajp.2010.09081190; Copping L.T., 2014, EVOLUTIONARY PSYCHOL, V12; Copping L. T., 2017, EVOLUTIONARY PSYCHOL, V15, P1; Darwin C., 1871, DESCENT MAN; Darwin C, 1859, ORIGIN SPECIES; Dawkins R., 1976, SELFISH GENE; Debecker S, 2016, J ANIM ECOL, V85, P726, DOI 10.1111/1365-2656.12499; Del Giudice M., ARCH SEXUAL BEHAV; Del Giudice M., 2018, EVOLUTIONARY PSYCHOP; Del Giudice M, 2016, CLIN PSYCHOL SCI, V4, P299, DOI 10.1177/2167702615583628; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dennett D. C., 1995, DARWINS DANGEROUS ID; Dick DM, 2011, ANNU REV CLIN PSYCHO, V7, P383, DOI 10.1146/annurev-clinpsy-032210-104518; Dick DM, 2001, J YOUTH ADOLESCENCE, V30, P385, DOI 10.1023/A:1010471015102; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Ellis B.J., 2018, ANN REV PSYCHOL, V70; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellis L, 2003, SCIENTIFIC STUDY OF GENERAL INTELLIGENCE: TRIBUTE TO ARTHUR R. J ENSEN, P343, DOI 10.1016/B978-008043793-4/50054-4; ELLIS L, 1988, PERS INDIV DIFFER, V9, P697, DOI 10.1016/0191-8869(88)90059-1; Ellis L, 2015, AGGRESS VIOLENT BEH, V24, P61, DOI 10.1016/j.avb.2015.05.002; Falconer D. S., 1996, INTRO QUANTITATIVE G; FARRINGTON DP, 1986, CRIME JUSTICE, V7, P189, DOI 10.1086/449114; Figueredo A.J., 2018, EVOLUTIONARY BEHAV S, V12, P1; Figueredo A.J., 2015, EVOLUTIONARY PSYCHOL, V13; Figueredo A. J., 2011, J SOCIAL EVOLUTIONAR, V5, P14, DOI DOI 10.1037/H0099277; Figueredo A. J., 2014, EVOLUTIONARY BEHAV S, V8, P148, DOI DOI 10.1037/H0099837; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; FLANNERY DJ, 1993, J ADOLESCENT RES, V8, P21, DOI DOI 10.1177/074355489381003; Flexon JL, 2016, J INTERPERS VIOLENCE, V31, P2052, DOI 10.1177/0886260515572471; Gaydosh L., 2017, BIORXIV; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Gottfredson M. R., 1990, GEN THEORY CRIME; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Harvey JA, 2017, J INSECT PHYSIOL, V98, P134, DOI 10.1016/j.jinsphys.2016.12.003; Hua FY, 2014, BEHAV ECOL, V25, P509, DOI 10.1093/beheco/aru017; Hunt J, 2006, J LAW ECON, V49, P533, DOI 10.1086/501090; Joireman J, 2003, J PERS SOC PSYCHOL, V84, P1287, DOI 10.1037/0022-3514.84.6.1287; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Juruena M.F., 2018, UNDERSTANDING DEPRES, P71; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kavish N., 2018, PERSONALITY INDIVIDU, V138, P11; Kavish N, 2017, EVOL PSYCHOL-SER, P171, DOI 10.1007/978-3-319-60576-0_7; KENDLER KS, 1986, AM J PSYCHIAT, V143, P279; Kirk KM, 2001, EVOLUTION, V55, P423; LAURITSEN JL, 1991, CRIMINOLOGY, V29, P265, DOI 10.1111/j.1745-9125.1991.tb01067.x; Lessells C.M., 1991, P32; Lippa RA, 2009, ARCH SEX BEHAV, V38, P631, DOI 10.1007/s10508-007-9242-8; MAC ARTHUR ROBERT H., 1967; Mathot KJ, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2459-9; Mendle J, 2006, DEV PSYCHOL, V42, P533, DOI 10.1037/0012-1649.42.3.233; Merton RK, 1938, AM SOCIOL REV, V3, P672, DOI 10.2307/2084686; Minkov M, 2016, PERS INDIV DIFFER, V97, P186, DOI 10.1016/j.paid.2016.03.063; Moffitt T.E., 2005, DEV PSYCHOL AGGRESS, P161; Moffitt TE, 1996, DEV PSYCHOPATHOL, V8, P399, DOI 10.1017/S0954579400007161; MOFFITT TE, 1993, PSYCHOL REV, V100, P674, DOI 10.1037//0033-295X.100.4.674; Odgers CL, 2007, ARCH GEN PSYCHIAT, V64, P476, DOI 10.1001/archpsyc.64.4.476; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Owens IPF, 2002, SCIENCE, V297, P2008; Park R. E., 1925, CITY; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Piquero AR, 2014, JUSTICE Q, V31, P445, DOI 10.1080/07418825.2011.641027; Polderman TJC, 2015, NAT GENET, V47, P702, DOI 10.1038/ng.3285; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Richardson G.B., 2017, EVOLUTIONARY PSYCHOL, V15; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; ROWE DC, 1995, J RES CRIME DELINQ, V32, P84, DOI 10.1177/0022427895032001004; Rowe DC, 2002, EVOL HUM BEHAV, V23, P365, DOI 10.1016/S1090-5138(02)00102-2; Royaute R, 2018, BEHAV ECOL SOCIOBIOL, V72, DOI 10.1007/s00265-018-2472-z; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P769, DOI 10.1016/0191-8869(85)90088-1; SANTROCK JW, 1977, J GENET PSYCHOL, V130, P3, DOI 10.1080/00221325.1977.10533224; SCARR S, 1992, CHILD DEV, V63, P1, DOI 10.2307/1130897; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; Simpson J. A., 2011, HDB INTERPERSONAL PS, P75; Skrzynecka AM, 2016, EVOLUTION, V70, P2611, DOI 10.1111/evo.13038; Stearns S. C., 1992, EVOLUTION LIFE HIST, V249; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Strouts PH, 2017, PERS INDIV DIFFER, V115, P128, DOI 10.1016/j.paid.2016.03.047; Tielbeek J., 2018, BRIT J PSYCHIAT OPEN; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Tittle CR, 2003, J QUANT CRIMINOL, V19, P333, DOI 10.1023/B:JOQC.0000005439.45614.24; Ttofi MM, 2016, J CRIM JUST, V45, P4, DOI 10.1016/j.jcrimjus.2016.02.003; Turkheimer E, 2014, HANDBOOK OF RESEARCH METHODS IN SOCIAL AND PERSONALITY PSYCHOLOGY, SECOND EDITION, P159; Walters GD, 2011, J CONSULT CLIN PSYCH, V79, P96, DOI 10.1037/a0021519; Webster G.D., 2014, EVOLUTIONARY PSYCHOL, V12; White HR, 2001, J ABNORM PSYCHOL, V110, P600, DOI 10.1037//0021-843X.110.4.600; Wiebe RP, 2012, J CONTEMP CRIM JUST, V28, P346, DOI 10.1177/1043986212450231; Wiesner M, 2003, J RES CRIME DELINQ, V40, P231, DOI 10.1177/0022427803253802; Yao SY, 2014, EVOL HUM BEHAV, V35, P481, DOI 10.1016/j.evolhumbehav.2014.06.007 117 0 0 0 0 EMERALD GROUP PUBLISHING LTD BINGLEY HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND 2009-3829 J CRIM PSYCHOL J. Crim. Psychol. 2018 8 4 SI 287 301 10.1108/JCP-06-2018-0028 15 Criminology & Penology Criminology & Penology HC3DA WOS:000451680200003 2019-02-21 S Snell-Rood, EC; Kobiela, ME; Sikkink, KL; Shephard, AM Futuyma, DJ Snell-Rood, Emilie C.; Kobiela, Megan E.; Sikkink, Kristin L.; Shephard, Alexander M. Mechanisms of Plastic Rescue in Novel Environments ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS, VOL 49 Annual Review of Ecology Evolution and Systematics English Review; Book Chapter developmental plasticity; learning; life history; evolutionary rescue; anthropogenic change HEAT-SHOCK PROTEINS; DENSITY-DEPENDENT PROPHYLAXIS; LIFE-HISTORY EVOLUTION; OF-ALL-TRADES; PHENOTYPIC PLASTICITY; GENETIC ASSIMILATION; CLIMATE-CHANGE; MOLECULAR CHAPERONES; ADAPTIVE PLASTICITY; DISEASE RESISTANCE Adaptive phenotypic plasticity provides a mechanism of developmental rescue in novel and rapidly changing environments. Understanding the underlying mechanism of plasticity is important for predicting both the likelihood that a developmental response is adaptive and associated life-history trade-offs that could influence patterns of subsequent evolutionary rescue. Although evolved developmental switches may move organisms toward a new adaptive peak in a novel environment, such mechanisms often result in maladaptive responses. The induction of generalized physiological mechanisms in new environments is relatively more likely to result in adaptive responses to factors such as novel toxins, heat stress, or pathogens. Developmental selection forms of plasticity, which rely on within-individual selective processes, such as shaping of tissue architecture, trial-and-error learning, or acquired immunity, are particularly likely to result in adaptive plasticity in a novel environment. However, both the induction of plastic responses and the ability to be plastic through developmental selection come with significant costs, resulting in delays in reproduction, increased individual investment, and reduced fecundity. Thus, we might expect complex interactions between plastic responses that allow survival in novel environments and subsequent evolutionary responses at the population level. [Snell-Rood, Emilie C.; Kobiela, Megan E.; Sikkink, Kristin L.; Shephard, Alexander M.] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA Snell-Rood, EC (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA. emilies@umn.edu; kobie003@umn.edu; ksikkink@umn.edu; sheph095@umn.edu Abelson ES, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2772; Acar M, 2008, NAT GENET, V40, P471, DOI 10.1038/ng.110; Agrawal AA, 2002, EVOLUTION, V56, P2206, DOI 10.1111/j.0014-3820.2002.tb00145.x; Agrawal AA, 1999, EVOLUTION, V53, P1093, DOI 10.1111/j.1558-5646.1999.tb04524.x; Aitken SN, 2008, EVOL APPL, V1, P95, DOI 10.1111/j.1752-4571.2007.00013.x; Alberdi A, 2016, TRENDS ECOL EVOL, V31, P689, DOI 10.1016/j.tree.2016.06.008; Arai JA, 2011, BRAIN RES BULL, V85, P30, DOI 10.1016/j.brainresbull.2010.11.003; Badyaev AV, 2005, P ROY SOC B-BIOL SCI, V272, P877, DOI 10.1098/rspb.2004.3045; Baker AC, 2003, ANNU REV ECOL EVOL S, V34, P661, DOI 10.1146/annurev.ecolsys.34.011802.132417; Baldwin IT, 1998, P NATL ACAD SCI USA, V95, P8113, DOI 10.1073/pnas.95.14.8113; Barribeau SM, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0159635; Barrickman NL, 2008, J HUM EVOL, V54, P568, DOI 10.1016/j.jhevol.2007.08.012; Beaumont HJE, 2009, NATURE, V462, P90, DOI 10.1038/nature08504; Beever EA, 2017, FRONT ECOL ENVIRON, V15, P299, DOI 10.1002/fee.1502; Bell G, 2008, EVOL APPL, V1, P3, DOI 10.1111/j.1752-4571.2007.00011.x; Bergonzi S, 2013, SCIENCE, V340, P1094, DOI 10.1126/science.1234116; Berkelmans R, 2006, P R SOC B, V273, P2305, DOI 10.1098/rspb.2006.3567; Best A, 2013, ECOL EVOL, V3, P2223, DOI 10.1002/ece3.611; BLACK AR, 1990, OECOLOGIA, V83, P117, DOI 10.1007/BF00324642; Bock KW, 2016, BIOCHEM PHARMACOL, V99, P11, DOI 10.1016/j.bcp.2015.10.001; Boettiger AN, 2009, SCIENCE, V325, P471, DOI 10.1126/science.1173976; Boots M, 2004, P ROY SOC B-BIOL SCI, V271, P715, DOI 10.1098/rspb.2003.2655; Boots M, 2011, AM NAT, V178, P214, DOI 10.1086/660833; Borghans JAM, 2004, IMMUNOGENETICS, V55, P732, DOI 10.1007/s00251-003-0630-5; Boulding EG, 2001, HEREDITY, V86, P313, DOI 10.1046/j.1365-2540.2001.00829.x; BRAKEFIELD PM, 1991, ECOL ENTOMOL, V16, P291, DOI 10.1111/j.1365-2311.1991.tb00220.x; Bruno JF, 1997, ECOLOGY, V78, P2177, DOI 10.2307/2265954; Butchart SHM, 2010, SCIENCE, V328, P1164, DOI 10.1126/science.1187512; Callahan HS, 2005, NEW PHYTOL, V166, P129, DOI 10.1111/j.1469-8137.2005.01368.x; Carlson SM, 2014, TRENDS ECOL EVOL, V29, P521, DOI 10.1016/j.tree.2014.06.005; Caruso CM, 2006, EVOLUTION, V60, P980, DOI 10.1554/06-050.1; Cerenius L, 2013, J EXP BIOL, V216, P4313, DOI 10.1242/jeb.085191; Charmantier A, 2014, EVOL APPL, V7, P15, DOI 10.1111/eva.12126; Chen WL, 2016, P NATL ACAD SCI USA, V113, P8741, DOI 10.1073/pnas.1601006113; Chevalier C, 2015, CELL, V163, P1360, DOI 10.1016/j.cell.2015.11.004; Chevin LM, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0089; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Chevin LM, 2010, EVOLUTION, V64, P1143, DOI 10.1111/j.1558-5646.2009.00875.x; Cohen JD, 2007, PHILOS T R SOC B, V362, P933, DOI 10.1098/rstb.2007.2098; Congdon KA, 2012, J EXP BIOL, V215, P1472, DOI 10.1242/jeb.061531; COOK SA, 1968, EVOLUTION, V22, P496, DOI 10.1111/j.1558-5646.1968.tb03988.x; Costantini D, 2014, FRONT ECOL ENVIRON, V12, P209, DOI 10.1890/14.WB.005; Costantini D, 2014, BIOL LETTERS, V10, DOI 10.1098/rsbl.2013.1010; Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x; Crispo E, 2007, EVOLUTION, V61, P2469, DOI 10.1111/j.1558-5646.2007.00203.x; Cumbo VR, 2013, CORAL REEFS, V32, P111, DOI 10.1007/s00338-012-0951-7; Dall SRX, 2005, TRENDS ECOL EVOL, V20, P187, DOI 10.1016/j.tree.2005.01.010; DAVIES PF, 1995, PHYSIOL REV, V75, P519; Davis JM, 2004, TRENDS ECOL EVOL, V19, P411, DOI 10.1016/j.tree.2004.04.006; de Kroon H, 2005, NEW PHYTOL, V166, P73, DOI 10.1111/j.1469-8137.2004.01310.x; Deak M, 1999, NAT BIOTECHNOL, V17, P192; Demas G, 2012, ECOIMMUNOLOGY; Demas G, 2012, ENERGETICS IMMUNITY, P259; Despres L, 2007, TRENDS ECOL EVOL, V22, P298, DOI 10.1016/j.tree.2007.02.010; Ding Y, 2012, NAT COMMUN, V3, P9; Donelson JM, 2012, NAT CLIM CHANGE, V2, P30, DOI 10.1038/NCLIMATE1323; DOUST LL, 1981, J ECOL, V69, P743, DOI 10.2307/2259633; Ducher G, 2004, J CLIN DENSITOM, V7, P399, DOI 10.1385/JCD:7:4:399; Dukas Reuven, 1998, P129; DUNCAN RL, 1995, CALCIFIED TISSUE INT, V57, P344, DOI 10.1007/BF00302070; Duputie A, 2015, GLOBAL CHANGE BIOL, V21, P3062, DOI 10.1111/gcb.12914; Ebert MS, 2012, CELL, V149, P515, DOI 10.1016/j.cell.2012.04.005; Edelaar P, 2012, TRENDS ECOL EVOL, V27, P659, DOI 10.1016/j.tree.2012.07.009; Efferth T, 2017, ARCH TOXICOL, V91, P2515, DOI 10.1007/s00204-017-1938-5; Ehrenreich IM, 2016, ANN BOT-LONDON, V117, P769, DOI 10.1093/aob/mcv130; Eldar A, 2010, NATURE, V467, P167, DOI 10.1038/nature09326; Eliassen S, 2007, OIKOS, V116, P513, DOI 10.1111/j.2006.0030-1299.15462.x; Ellis EC, 2008, FRONT ECOL ENVIRON, V6, P439, DOI 10.1890/070062; Feder ME, 1999, ANNU REV PHYSIOL, V61, P243, DOI 10.1146/annurev.physiol.61.1.243; Feinberg AP, 2010, P NATL ACAD SCI USA, V107, P1757, DOI 10.1073/pnas.0906183107; Fischer EK, 2016, J EVOLUTION BIOL, V29, P991, DOI 10.1111/jeb.12839; Francis NJ, 2001, NAT REV MOL CELL BIO, V2, P409, DOI 10.1038/35073039; Frank Steven A., 1996, P451; Franklin KA, 2008, NEW PHYTOL, V179, P930, DOI 10.1111/j.1469-8137.2008.02507.x; Franks SJ, 2014, EVOL APPL, V7, P123, DOI 10.1111/eva.12112; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; Galvan I, 2014, FUNCT ECOL, V28, P1387, DOI 10.1111/1365-2435.12283; Garud NR, 2017, 210955 BIORXIV, DOI [10.1101/210955, DOI 10.1101/210955]; GERSCHMAN R, 1954, SCIENCE, V119, P623, DOI 10.1126/science.119.3097.623; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Gilbert SF, 2010, PHILOS T R SOC B, V365, P671, DOI 10.1098/rstb.2009.0245; Glanville J, 2009, P NATL ACAD SCI USA, V106, P20216, DOI 10.1073/pnas.0909775106; Gloss AD, 2014, MOL BIOL EVOL, V31, P2441, DOI 10.1093/molbev/msu201; GOMULKIEWICZ R, 1995, EVOLUTION, V49, P201, DOI 10.1111/j.1558-5646.1995.tb05971.x; Gonzalez FJ, 2005, MUTAT RES-FUND MOL M, V569, P101, DOI 10.1016/j.mrfmmm.2004.04.021; Gonzalez-Voyer A, 2016, EVOLUTION, V70, P1364, DOI 10.1111/evo.12943; Gopnik A, 2017, P NATL ACAD SCI USA, V114, P7892, DOI 10.1073/pnas.1700811114; Gordon JA, 1996, J NEUROSCI, V16, P3274; Grindstaff JL, 2008, J EXP BIOL, V211, P654, DOI 10.1242/jeb.012344; Gruber J, 2007, ANN NY ACAD SCI, V1100, P530, DOI 10.1196/annals.1395.059; Guillemin K, 1996, DEVELOPMENT, V122, P1353; Hamann E, 2013, ANN BOT-LONDON, V112, P1869, DOI 10.1093/aob/mct221; Hammond AS, 2010, ANAT REC, V293, P658, DOI 10.1002/ar.21136; Herman JJ, 2011, FRONT PLANT SCI, V2, DOI 10.3389/fpls.2011.00102; Hodge A, 2004, NEW PHYTOL, V162, P9, DOI 10.1111/j.1469-8137.2004.01015.x; Hoffmann AA, 1997, EXTREME ENV CHANGE E; HONJO T, 1985, ANNU REV BIOCHEM, V54, P803, DOI 10.1146/annurev.bi.54.070185.004103; Houthoofd W, 2003, DEV BIOL, V258, P57, DOI 10.1016/S0012-1606(03)00101-5; Hove JR, 2003, NATURE, V421, P172, DOI 10.1038/nature01282; Huerta R, 2004, NEURAL COMPUT, V16, P1601, DOI 10.1162/089976604774201613; Hull DL, 2001, BEHAV BRAIN SCI, V24, P511; Isler K, 2009, J HUM EVOL, V57, P392, DOI 10.1016/j.jhevol.2009.04.009; Iwaniuk AN, 2003, CAN J ZOOL, V81, P1913, DOI 10.1139/Z03-190; Johnston LA, 2009, SCIENCE, V324, P1679, DOI 10.1126/science.1163862; Kaelbling LP, 1996, J ARTIF INTELL RES, V4, P237, DOI 10.1613/jair.301; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kensler TW, 2007, ANNU REV PHARMACOL, V47, P89, DOI 10.1146/annurev.pharmtox.46.120604.141046; Keppler C, 2001, AQUAT TOXICOL, V54, P195, DOI 10.1016/S0166-445X(01)00151-5; Kiers ET, 2011, SCIENCE, V333, P880, DOI 10.1126/science.1208473; Kirschner M, 1998, P NATL ACAD SCI USA, V95, P8420, DOI 10.1073/pnas.95.15.8420; Koga R, 2003, P R SOC B, V270, P2543; Kotrschal A, 2013, CURR BIOL, V23, P168, DOI 10.1016/j.cub.2012.11.058; Krammer PH, 2000, NATURE, V407, P789, DOI 10.1038/35037728; Kregel KC, 2002, J APPL PHYSIOL, V92, P2177, DOI 10.1152/japplphysiol.01267.2001; Kubinak J, 2012, TRADE OFFS LIMITING, P225; Kurtz J, 2006, TRENDS IMMUNOL, V27, P493, DOI 10.1016/j.it.2006.09.001; Kussell E, 2005, SCIENCE, V309, P2075, DOI 10.1126/science.1114383; Lande R, 1998, RES POPUL ECOL, V40, P259, DOI 10.1007/BF02763457; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Langkilde T, 2017, ADV STUD BEHAV, V49, P199, DOI 10.1016/bs.asb.2016.12.003; Laughlin SB, 1998, NAT NEUROSCI, V1, P36, DOI 10.1038/236; LAVERTY TM, 1988, ANIM BEHAV, V36, P733, DOI 10.1016/S0003-3472(88)80156-8; Ledon-Rettig CC, 2010, P ROY SOC B-BIOL SCI, V277, P3569, DOI 10.1098/rspb.2010.0877; Levy SF, 2008, PLOS BIOL, V6, P2588, DOI 10.1371/journal.pbio.0060264; Ley RE, 2006, CELL, V124, P837, DOI 10.1016/j.cell.2006.02.017; Li XC, 2004, P NATL ACAD SCI USA, V101, P2939, DOI 10.1073/pnas.0308691101; Li XC, 2007, ANNU REV ENTOMOL, V52, P231, DOI 10.1146/annurev.ento.51.110104.151104; LITMAN GW, 1993, MOL BIOL EVOL, V10, P60; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Luo LQ, 2005, ANNU REV NEUROSCI, V28, P127, DOI 10.1146/annurev.neuro.28.061604.135632; Lynch M, 2010, P NATL ACAD SCI USA, V107, P961, DOI 10.1073/pnas.0912629107; Maklakov AA, 2011, BIOL LETTERS, V7, P730, DOI 10.1098/rsbl.2011.0341; Marshall KE, 2010, P R SOC B, V277, P963, DOI 10.1098/rspb.2009.1807; Marzluff J, 2008, URBAN ECOLOGY AN INT; Mattson MP, 2008, HUM EXP TOXICOL, V27, P155, DOI 10.1177/0960327107083417; Mazzocchi F, 2008, EMBO REP, V9, P10, DOI 10.1038/sj.embor.7401147; McAdams HH, 1997, P NATL ACAD SCI USA, V94, P814, DOI 10.1073/pnas.94.3.814; Menegaz RA, 2010, ANAT REC, V293, P630, DOI 10.1002/ar.21134; Mery F, 2004, ANIM BEHAV, V68, P589, DOI 10.1016/j.anbehav.2003.12.005; MEYER A, 1987, EVOLUTION, V41, P1357, DOI 10.1111/j.1558-5646.1987.tb02473.x; Miller-Jensen K, 2011, TRENDS BIOTECHNOL, V29, P517, DOI 10.1016/j.tibtech.2011.05.004; Mitchell SE, 2005, P ROY SOC B-BIOL SCI, V272, P2601, DOI 10.1098/rspb.2005.3253; Mladenovic N, 1997, COMPUT OPER RES, V24, P1097, DOI 10.1016/S0305-0548(97)00031-2; Moczek AP, 2000, ANIM BEHAV, V59, P459, DOI 10.1006/anbe.1999.1342; Moore SW, 2003, EVOL DEV, V5, P61, DOI 10.1046/j.1525-142X.2003.03010.x; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Murren CJ, 2015, HEREDITY, V115, P293, DOI 10.1038/hdy.2015.8; Nielsen ME, 2017, J EVOLUTION BIOL, V30, P1919, DOI 10.1111/jeb.13168; Nijhout HF, 1999, BIOSCIENCE, V49, P181, DOI 10.2307/1313508; Niklas KJ, 2009, J BIOSCIENCES, V34, P613, DOI 10.1007/s12038-009-0079-2; OPPENHEIM RW, 1991, ANNU REV NEUROSCI, V14, P453, DOI 10.1146/annurev.neuro.14.1.453; PAPAJ DR, 1989, ANNU REV ENTOMOL, V34, P315, DOI 10.1146/annurev.en.34.010189.001531; Pette D, 2000, MICROSC RES TECHNIQ, V50, P500, DOI 10.1002/1097-0029(20000915)50:6<500::AID-JEMT7>3.0.CO;2-7; Pigliucci M, 2003, EVOLUTION, V57, P1455; Pillai P, 2017, THEOR ECOL-NETH, V10, P51, DOI 10.1007/s12080-016-0310-3; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; Purchase CF, 2012, ECOL EVOL, V2, P2562, DOI 10.1002/ece3.364; PURVES D, 1980, SCIENCE, V210, P153, DOI 10.1126/science.7414326; Ragsdale EJ, 2013, CELL, V155, P922, DOI 10.1016/j.cell.2013.09.054; Raj A, 2006, PLOS BIOL, V4, P1707, DOI 10.1371/journal.pbio.0040309; Rajewsky K, 1996, NATURE, V381, P751, DOI 10.1038/381751a0; Rautio M, 2002, LIMNOL OCEANOGR, V47, P295, DOI 10.4319/lo.2002.47.1.0295; Ravigne V, 2009, AM NAT, V174, pE141, DOI 10.1086/605369; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Riechers DE, 2010, PLANT PHYSIOL, V153, P3, DOI 10.1104/pp.110.153601; Risau W, 1997, NATURE, V386, P671, DOI 10.1038/386671a0; ROFF D, 2001, LIFE HIST EVOLUTION; Romiguier J, 2014, NATURE, V515, P261, DOI 10.1038/nature13685; Ruiz-Gonzalez MX, 2009, BIOL LETTERS, V5, P781, DOI 10.1098/rsbl.2009.0505; Rutherford SL, 1998, NATURE, V396, P336, DOI 10.1038/24550; SACHS T, 1993, PLANT CELL ENVIRON, V16, P765, DOI 10.1111/j.1365-3040.1993.tb00498.x; Sachs T, 2004, J THEOR BIOL, V230, P197, DOI 10.1016/j.jtbi.2004.05.006; Sanchis-Moysi J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022858; Scheiner SM, 2016, AM NAT, V187, P633, DOI 10.1086/685812; Schlichting CD, 2008, ANN NY ACAD SCI, V1133, P187, DOI 10.1196/annals.1438.010; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Schluter J, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001424; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Schramm K, 2012, INSECT BIOCHEM MOLEC, V42, P174, DOI 10.1016/j.ibmb.2011.12.002; Schuler MA, 2011, BBA-PROTEINS PROTEOM, V1814, P36, DOI 10.1016/j.bbapap.2010.09.012; Shephard AM, 2016, Q REV BIOL, V91, P419, DOI 10.1086/689482; Shettleworth S., 1998, COGNITION EVOLUTION; Sih A, 2011, EVOL APPL, V4, P367, DOI 10.1111/j.1752-4571.2010.00166.x; Sikkink KL, 2015, EVOLUTION, V69, P1128, DOI 10.1111/evo.12651; Singh S, 2013, FREE RADICAL BIO MED, V56, P89, DOI 10.1016/j.freeradbiomed.2012.11.010; Snell-Rood EC, 2015, HEREDITY, V115, P379, DOI 10.1038/hdy.2015.47; Snell-Rood EC, 2016, EVOL ECOL, V30, P251, DOI 10.1007/s10682-015-9813-4; Snell-Rood EC, 2013, ANIM BEHAV, V85, P1004, DOI 10.1016/j.anbehav.2012.12.031; Snell-Rood EC, 2012, INTEGR COMP BIOL, V52, P31, DOI 10.1093/icb/ics067; Snell-Rood EC, 2011, BEHAV ECOL, V22, P291, DOI 10.1093/beheco/arq169; Snell-Rood EC, 2011, EVOLUTION, V65, P231, DOI 10.1111/j.1558-5646.2010.01106.x; Snell-Rood EC, 2010, BIOESSAYS, V32, P71, DOI 10.1002/bies.200900132; Sol D, 2005, P NATL ACAD SCI USA, V102, P5460, DOI 10.1073/pnas.0408145102; Sol D, 2009, BIOL LETTERS, V5, P130, DOI 10.1098/rsbl.2008.0621; Speck T, 2011, ANNU REV MATER RES, V41, P169, DOI 10.1146/annurev-matsci-062910-100425; Sporns O, 2000, NEURAL NETWORKS, V13, P909, DOI 10.1016/S0893-6080(00)00053-8; Stamps JA, 2016, TRENDS ECOL EVOL, V31, P260, DOI 10.1016/j.tree.2016.01.012; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Steinger T, 2003, J EVOLUTION BIOL, V16, P313, DOI 10.1046/j.1420-9101.2003.00518.x; Sultan SE, 2002, AM NAT, V160, P271, DOI 10.1086/341015; Tamori Y, 2011, J GENET GENOMICS, V38, P483, DOI 10.1016/j.jgg.2011.09.006; Telemeco RS, 2017, GLOBAL CHANGE BIOL, V23, P1075, DOI 10.1111/gcb.13476; Thattai M, 2004, GENETICS, V167, P523, DOI 10.1534/genetics.167.1.523; Turner PE, 2000, GENETICS, V156, P1465; Van Buskirk J, 2000, ECOLOGY, V81, P2813, DOI 10.1890/0012-9658(2000)081[2813:TCOAID]2.0.CO;2; Van Buskirk J, 2009, J EVOLUTION BIOL, V22, P852, DOI 10.1111/j.1420-9101.2009.01685.x; Van de Peer T, 2017, FOREST ECOL MANAG, V385, P1, DOI 10.1016/j.foreco.2016.11.015; van Kleunen M, 2000, EVOLUTION, V54, P1947, DOI 10.1554/0014-3820(2000)054[1947:COPIFC]2.0.CO;2; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; van Praag H, 2000, NAT REV NEUROSCI, V1, P191, DOI 10.1038/35044558; VANTIENDEREN PH, 1991, EVOLUTION, V45, P1317, DOI 10.1111/j.1558-5646.1991.tb02638.x; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; WAINWRIGHT PC, 1991, FUNCT ECOL, V5, P40, DOI 10.2307/2389554; Wang WX, 2004, TRENDS PLANT SCI, V9, P244, DOI 10.1016/j.tplants.2004.03.006; Watson FL, 2005, SCIENCE, V309, P1874, DOI 10.1126/science.1116887; Weinig C, 2006, AM NAT, V167, P826, DOI 10.1086/503530; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WHEELER DE, 1991, AM NAT, V138, P1218, DOI 10.1086/285279; Whitlock MC, 1996, AM NAT, V148, pS65, DOI 10.1086/285902; Wilson K, 1998, ECOL ENTOMOL, V23, P100, DOI 10.1046/j.1365-2311.1998.00107.x; Wood CW, 2015, EVOLUTION, V69, P2927, DOI 10.1111/evo.12795; Yi HY, 2014, APPL MICROBIOL BIOT, V98, P5807, DOI 10.1007/s00253-014-5792-6; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 224 0 0 8 8 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA 1543-592X 978-0-8243-1449-1 ANNU REV ECOL EVOL S Annu. Rev. Ecol. Evol. Syst. 2018 49 331 354 10.1146/annurev-ecolsys-110617-062622 24 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology BL4NS WOS:000450612900015 2019-02-21 J Zhang, LX; An, D; He, YX; Li, ZB; Fang, BH; Chen, XH; Lu, X Zhang, Lixia; An, Dong; He, Yuxiao; Li, Zhibing; Fang, Bohao; Chen, Xiaohong; Lu, Xin Variation in testis weight of the Tibetan toad Scutiger boulengeri along a narrow altitudinal gradient ANIMAL BIOLOGY English Article Altitude; anurans; asymmetry; energy allocation; life history; sperm competition LIFE-HISTORY CHARACTERISTICS; SEXUAL SIZE DIMORPHISM; SPERM COMPETITION; BODY-SIZE; RANA-TEMPORARIA; REPRODUCTIVE INVESTMENT; COMPARATIVE DEMOGRAPHY; ELEVATIONAL GRADIENT; CONDITION DEPENDENCE; GEOGRAPHIC-VARIATION Life-history theory predicts that organisms inhabiting harsh environments such as high altitudes should invest less in reproduction and more in survival. Testis size is associated with the intensity of male-male competition for mating and thus may be treated as an indicator of male reproductive investment. Hence, it may be expected that organisms will reduce their testis size with increasingly harsh environments. Here we test this prediction in a toad species, Scutiger boulengeri, endemic to the Tibetan plateau using data from three populations located at altitudes of 4078, 4276, and 4387 m. Consistent with the prediction, male toads exhibited smaller testes at higher altitudes, despite the relatively narrow altitudinal span. It is likely that cold climates and strong seasonality constrain the ability of high-altitude male toads to allocate more energy into reproduction, thereby leading to small testis size. In addition, the left testis was significantly heavier than the right one and the degree of size asymmetry was unrelated to either altitude or body condition. [Zhang, Lixia; An, Dong; He, Yuxiao; Li, Zhibing; Chen, Xiaohong] Henan Normal Univ, Coll Life Sci, Dept Ecol, Xinxiang 453007, Peoples R China; [Fang, Bohao; Lu, Xin] Wuhan Univ, Coll Life Sci, Dept Ecol, Wuhan 430072, Hubei, Peoples R China Lu, X (reprint author), Wuhan Univ, Coll Life Sci, Dept Ecol, Wuhan 430072, Hubei, Peoples R China. luxinwh@163.com Joint Funds for Fostering Talents of NSFC; People's Government of Henan Province [U1304309]; National Sciences Foundation of China [31501870]; Scientific Research Foundation for the Doctor of Henan Normal University [qd12132] Thanks to Xiaowen Lv and Zhe Gao for laboratory assistance. This study was supported by the Joint Funds for Fostering Talents of NSFC and the People's Government of Henan Province (No. U1304309), National Sciences Foundation of China (No. 31501870), and Scientific Research Foundation for the Doctor of Henan Normal University (No. qd12132). Field and laboratory work was performed under licenses from the Wildlife Protection Law of China. BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; Briskie J.V., 2007, REPROD BIOL PHYLOG A, V6, P513; Brown J. L., 1964, Wilson Bulletin, V76, P160; Byrne PG, 2002, J EVOLUTION BIOL, V15, P347, DOI 10.1046/j.1420-9101.2002.00409.x; Calhim S, 2007, BEHAV ECOL, V18, P271, DOI 10.1093/beheco/arl076; Chen W, 2013, J EVOLUTION BIOL, V26, P2710, DOI 10.1111/jeb.12271; Chen W, 2014, HERPETOL J, V24, P183; Clutton-Brock TH, 2008, ANIM BEHAV, V76, P689, DOI 10.1016/j.anbehav.2008.03.015; CUMMINS CP, 1986, J ANIM ECOL, V55, P303, DOI 10.2307/4710; Czarnoleski M, 1998, ECOL LETT, V1, P5, DOI 10.1046/j.1461-0248.1998.0007b.x; Duellman W. E., 1986, BIOL AMPHIBIANS; Dziminski MA, 2009, P ROY SOC B-BIOL SCI, V276, P3955, DOI 10.1098/rspb.2009.1334; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Fei L., 2009, FAUNA SINICA AMPHIBI, V3; GIBBONS MM, 1986, J ZOOL, V209, P579, DOI 10.1111/j.1469-7998.1986.tb03613.x; Gollmann B, 1996, HERPETOLOGICA, V52, P181; Grant JWA, 2000, BEHAV ECOL, V11, P670, DOI 10.1093/beheco/11.6.670; HALLIDAY TR, 1988, J HERPETOL, V22, P253, DOI 10.2307/1564148; HARCOURT AH, 1981, NATURE, V293, P55, DOI 10.1038/293055a0; Hettyey A, 2005, NATURWISSENSCHAFTEN, V92, P188, DOI 10.1007/s00114-005-0607-3; HOWARD JH, 1985, AM MIDL NAT, V113, P361, DOI 10.2307/2425582; Jin L, 2016, ANIM BIOL, V66, P289, DOI 10.1163/15707563-00002505; Jin L, 2016, BEHAV ECOL SOCIOBIOL, V70, P1197, DOI 10.1007/s00265-016-2128-9; Kappeler PM, 1997, BEHAV ECOL, V8, P10, DOI 10.1093/beheco/8.1.10; KOSKELA P, 1975, Aquilo Ser Zoologica, V16, P1; Lake P.E., 1981, P1; Liao WB, 2016, AM NAT, V188, P693, DOI 10.1086/688894; Liao WB, 2011, ITAL J ZOOL, V78, P215, DOI 10.1080/11250001003639590; Liao WB, 2010, J HERPETOL, V44, P172, DOI 10.1670/08-104.1; Liao WB, 2012, EVOL ECOL, V26, P579, DOI 10.1007/s10682-011-9501-y; LICHT LE, 1975, CAN J ZOOL, V53, P1254, DOI 10.1139/z75-150; Liu YH, 2011, ASIAN HERPETOL RES, V2, P234, DOI 10.3724/SP.J.1245.2011.00234; Lu X, 2006, CAN J ZOOL, V84, P1789, DOI 10.1139/Z06-180; Ma X, 2009, J ZOOL, V279, P364, DOI 10.1111/j.1469-7998.2009.00627.x; Ma XY, 2009, AMPHIBIA-REPTILIA, V30, P351, DOI 10.1163/156853809788795155; Ma XY, 2009, AMPHIBIA-REPTILIA, V30, P111, DOI 10.1163/156853809787392685; Mai CL, 2017, ZOOL ANZ, V266, P189, DOI 10.1016/j.jcz.2016.12.002; Merila J, 1999, BEHAV ECOL SOCIOBIOL, V45, P115, DOI 10.1007/s002650050545; Mi ZP, 2012, ZOOL SCI, V29, P368, DOI 10.2108/zsj.29.368; MOLLER AP, 1994, P ROY SOC B-BIOL SCI, V258, P147, DOI 10.1098/rspb.1994.0155; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; PARKER GA, 1970, BIOL REV, V45, P525, DOI 10.1111/j.1469-185X.1970.tb01176.x; Pitcher TE, 2005, J EVOLUTION BIOL, V18, P557, DOI 10.1111/j.1420-9101.2004.00874.x; Pitcher TE, 1998, CAN J ZOOL, V76, P618, DOI 10.1139/cjz-76-4-618; Rising JD, 1996, AUK, V113, P224, DOI 10.2307/4088950; ROFF DA, 2002, LIFE HIST EVOLUTION; Ryser Jan, 1996, Amphibia-Reptilia, V17, P183, DOI 10.1163/156853896X00379; Schulte-Hostedde AI, 2005, EVOL ECOL RES, V7, P143; Schulte-Hostedde AI, 2004, BEHAV ECOL SOCIOBIOL, V55, P272, DOI 10.1007/s00265-003-0707-z; Simmons LW, 2002, EVOLUTION, V56, P1622; SONG Z, 1990, Acta Zoologica Sinica, V36, P187; Tang T, 2018, ANIM BIOL, V68, P277, DOI 10.1163/15707563-17000142; TILLEY SG, 1980, COPEIA, P806, DOI 10.2307/1444460; Zamudio KR, 2016, AM NAT, V188, pS41, DOI 10.1086/687547; Zeng Y, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-104; Zhang LX, 2012, BIOL J LINN SOC, V107, P558, DOI 10.1111/j.1095-8312.2012.01953.x; Zhang LX, 2012, BIOL J LINN SOC, V106, P623, DOI 10.1111/j.1095-8312.2012.01876.x; Zhou CQ, 2011, HERPETOL J, V21, P181 58 1 1 5 5 BRILL ACADEMIC PUBLISHERS LEIDEN PLANTIJNSTRAAT 2, P O BOX 9000, 2300 PA LEIDEN, NETHERLANDS 1570-7555 1570-7563 ANIM BIOL Anim. Biol. 2018 68 4 429 439 10.1163/15707563-17000016 11 Zoology Zoology GW5RU WOS:000446995400007 2019-02-21 J Bergqvist, G; Paulson, S; Elmhagen, B Bergqvist, Goran; Paulson, Sam; Elmhagen, Bodil Effects of female body mass and climate on reproduction in northern wild boar WILDLIFE BIOLOGY English Article SUS-SCROFA; LITTER SIZE; CROP DAMAGE; POPULATIONS; PARAMETERS; SURVIVAL; GERMANY; EUROPE; AREA Mammalian life history strategies depend on climate conditions. Hence, reproductive parameters may vary regionally, and knowledge on such patterns are important for sustainable management. Wild boar research has been biased towards south and central Europe. Here we investigate the effects of mother's carcass mass, season and climate (summer temperature and precipitation as well as January temperature) on pregnancy rate and litter size in 601 free-ranging female wild boar from hemiboreal Sweden, close to the north border of wild boar distribution range in Europe. Pregnancy rate was on average 33.4 +/- 1.94% (mean +/- SE), whereas average litter size of pregnant females was 4.7 +/- 0.12. Pregnancy rate was highest during the seasonal reproduction peak in winter and spring, and both pregnancy rate and litter size increased significantly with increasing female body mass. The probability of a female being pregnant exceeded 50% when carcass mass exceeded 58 kg, equivalent to a live mass of 113 kg, and litter size increased by one for each 16 kg increase in female carcass mass. We found no significant effects of temporal variations in climate, and suggest that such variations were not sufficiently large to affect wild boar reproduction. Alternatively, the reproductive strategy of wild boar may be adjusted to prevailing regional climate conditions. In that case, other life history traits, such as mortality, may be more sensitive to short-term climate fluctuations. Wild boar management needs to take temporal variations in reproduction, as well as in resource availability, into consideration when deciding on prudent management actions. [Bergqvist, Goran] Swedish Assoc Hunting & Wildlife Management, SE-61191 Nykoping, Sweden; [Bergqvist, Goran] Swedish Univ Agr Sci, Southern Swedish Forest Res Ctr, POB 49, SE-23053 Alnarp, Sweden; [Elmhagen, Bodil] Stockholm Univ, Dept Zool, Stockholm, Sweden Bergqvist, G (reprint author), Swedish Assoc Hunting & Wildlife Management, SE-61191 Nykoping, Sweden.; Bergqvist, G (reprint author), Swedish Univ Agr Sci, Southern Swedish Forest Res Ctr, POB 49, SE-23053 Alnarp, Sweden. goran.bergqvist@jagareforbundet.se Elmhagen, Bodil/0000-0001-5496-4727 Swedish Association for Hunting and Wildlife Management Financing was provided by the Swedish Association for Hunting and Wildlife Management. Ahti T, 1968, ANN BOT FENN, V5, P169; BRONSON FH, 1985, BIOL REPROD, V32, P1, DOI 10.1095/biolreprod32.1.1; Bywater KA, 2010, MAMMAL REV, V40, P212, DOI 10.1111/j.1365-2907.2010.00160.x; Cai J, 2008, EUR J WILDLIFE RES, V54, P723, DOI 10.1007/s10344-008-0203-x; Cellina S., 2008, THESIS; Elmhagen B, 2015, AMBIO, V44, P39, DOI 10.1007/s13280-014-0606-8; Fernandez-Llario P, 1998, ACTA THERIOL, V43, P439, DOI 10.4098/AT.arch.98-54; Fonseca C, 2011, EUR J WILDLIFE RES, V57, P363, DOI 10.1007/s10344-010-0441-6; Frauendorf M, 2016, SCI TOTAL ENVIRON, V541, P877, DOI 10.1016/j.scitotenv.2015.09.128; Gamelon M, 2013, J ANIM ECOL, V82, P937, DOI 10.1111/1365-2656.12073; Gethoffer F, 2007, EUR J WILDLIFE RES, V53, P287, DOI 10.1007/s10344-007-0097-z; Grosbois V, 2008, BIOL REV, V83, P357, DOI 10.1111/j.1469-185X.2008.00047.x; Holland EP, 2009, ECOL MODEL, V220, P1203, DOI 10.1016/j.ecolmodel.2009.02.013; Jonsson L., 1986, Striae, V24, P125; Jordbruksverket, 2012, VAXTSK 2012 SOD OST, V12, P7; Keuling O, 2013, EUR J WILDLIFE RES, V59, P805, DOI 10.1007/s10344-013-0733-8; Kindberg J, 2008, ARSRAPPORT VILTOVERV, P2; Liberg Olof, 2010, P37; Malmsten A, 2017, ACTA VET SCAND, V59, DOI 10.1186/s13028-017-0321-0; Malmsten A, 2017, REPROD DOMEST ANIM, V52, P570, DOI 10.1111/rda.12947; Malmsten A, 2016, ACTA VET SCAND, V58, DOI 10.1186/s13028-016-0236-1; Massei G, 2015, PEST MANAG SCI, V71, P492, DOI 10.1002/ps.3965; Melis C, 2006, J BIOGEOGR, V33, P803, DOI 10.1111/j.1365-2699.2006.01434.x; Nahlik A, 2003, WILDLIFE BIOL, V9, P37; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Oja R, 2014, ACTA THERIOL, V59, P553, DOI 10.1007/s13364-014-0190-0; Roic B, 2005, J WILDLIFE DIS, V41, P796; Rosell C, 2012, ANIM BIODIV CONSERV, V35, P209; Schley L, 2003, MAMMAL REV, V33, P43, DOI 10.1046/j.1365-2907.2003.00010.x; Schley L, 2008, EUR J WILDLIFE RES, V54, P589, DOI 10.1007/s10344-008-0183-x; Servanty S, 2009, J ANIM ECOL, V78, P1278, DOI 10.1111/j.1365-2656.2009.01579.x; Swedish Meteorological and Hydrological Institute, 2013, TEMP PREC DAT CLIM S; The Swedish Forest Agency, 2012, SWED STAT YB FOR; Tokolyi J, 2014, BIOL J LINN SOC, V111, P719, DOI 10.1111/bij.12238; Vetter SG, 2016, ANIM BEHAV, V115, P193, DOI 10.1016/j.anbehav.2016.03.026; Vetter SG, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0132178 36 0 0 2 2 WILDLIFE BIOLOGY RONDE C/O JAN BERTELSEN, GRENAAVEJ 14, KALO, DK-8410 RONDE, DENMARK 0909-6396 1903-220X WILDLIFE BIOL Wildlife Biol. 2018 wlb.00421 10.2981/wlb.00421 6 Ecology; Zoology Environmental Sciences & Ecology; Zoology GW3TT WOS:000446831600001 DOAJ Gold 2019-02-21 J Woog, F; Ramanitra, N; Rasamison, AS; Tahiry, RL Woog, Friederike; Ramanitra, Narisoa; Rasamison, Andrianarivelosoa Solohery; Tahiry, Rasolondraibe Lovahasina Longevity in some Malagasy rainforest passerines OSTRICH English Article age; diet; longevity; Madagascar; mass; songbirds; taxonomic group SLOW PACE; BIRDS; LIFE; SENESCENCE; SIZE Data on longevity is a prerequisite to understand the life-history strategies of a species. For Malagasy songbirds no information has been previously published. Therefore, we studied their longevity in a capture-recapture effort in a rainforest in eastern Madagascar (Maromizaha, Andasibe) between 2003 and 2016. We present first data on the longevity of 23 species of Malagasy songbirds. A female Dark Newtonia Newtonia amphichroa (Vangidae) and a Grey-crowned Greenbul Bernieria cinereiceps (Bernieridae) attained an age of at least 12 years, followed by two male Madagascar Brush Warblers Nesillas typica (Acrocephalidae), female Madagascar Bulbul Hypsipetes madagascariensis (Pycnonotidae) and Madagascar Drongo Dicrurus forficatus (Dicruridae) that attained at least 10 years. There was much variation within some taxonomic groups, longevity did not increase with the mass of a bird species and most insectivorous birds lived longer than granivorous ones. [Woog, Friederike] Staatliches Museum Nat Kunde Stuttgart, Stuttgart, Germany; [Ramanitra, Narisoa] Univ Antananarivo, Ecole Normale Super, Ampefiloha, Madagascar; [Rasamison, Andrianarivelosoa Solohery; Tahiry, Rasolondraibe Lovahasina] Univ Antananarivo, Fac Sci, Ment Zool & Biodiversite Anim, Antananarivo, Madagascar Woog, F (reprint author), Staatliches Museum Nat Kunde Stuttgart, Stuttgart, Germany. friederike.woog@smns-bw.de Gesellschaft zur Forderung des Naturkundemuseums Stuttgart We are indebted to the Malagasy Government for permission to carry out this research. Our appreciation goes to the "NAT"-foundation and to GERP for inviting us to work at Maromizaha. We thank our Malagasy colleagues at the University of Antananarivo, ANGAP, the Ministere de l'Environnement, des Eaux et Forets and all the people that helped us in the field. The "Gesellschaft zur Forderung des Naturkundemuseums Stuttgart" funded part of this research. All observations, field work and sampling complied with the Malagasy regulations, and the ringing standard of the British Trust for Ornithology was followed (Redfern and Clark 2001). We sincerely thank Dieter Oschadleus and two anonymous reviewers for improving the manuscript. Backhurst G.C., 1977, Journal of the East Afric nat Hist Soc and natn Mus, VNo. 163, P1; Baker L, 2001, AFRING NEWS, V30, P44; Beauchamp G, 2010, BIOL LETTERS, V6, P42, DOI 10.1098/rsbl.2009.0691; BROWN L., 1982, BIRDS AFRICA, V1; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; de Swardt Dawid H., 2004, Afring News, V33, P38; de Swardt Dawid H., 2003, Afring News, V32, P11; Dowsett RJ., 1985, B ZAMBIAN ORNITHOLOG, V9, P30; Eck S., 2011, MEASURING BIRDS VOGE; Farner DS., 1955, RECENT STUDIES AVIAN, P397; Fry C. H., 2004, BIRDS AFRICA, VVII; Fry CH, 1988, BIRDS AFRICA, V3; Fry CH, 2000, BIRDS AFRICA, V6; Gurney J. H., 1899, Ibis, P19; Hanmer D.B., 2001, Afring News, V30, P3; Hanmer D.B., 1989, Nyala, V14, P21; Hanmer Dale B., 1997, Honeyguide, V43, P220; Healy K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0298; Holmes DJ, 2001, EXP GERONTOL, V36, P869, DOI 10.1016/S0531-5565(00)00247-3; Jullien M, 2000, ECOLOGY, V81, P3416, DOI 10.1890/0012-9658(2000)081[3416:TSVOFI]2.0.CO;2; Keith S, 1992, BIRDS AFRICA, V4; Lane S., 1995, Safring News, V24, P51; LANGRAND O, 1990, GUIDE BIRDS MADAGASC; LINDSTEDT SL, 1976, CONDOR, V78, P91, DOI 10.2307/1366920; Moller AP, 2007, J EVOLUTION BIOL, V20, P750, DOI 10.1111/j.1420-9101.2006.01236.x; Moller AP, 2006, J EVOLUTION BIOL, V19, P682, DOI 10.1111/j.1420-9101.2005.01065.x; Morris P., 1998, BIRDS MADAGASCAR PHO; Newton I, 2010, MIGRATION ECOLOGY BI; Oschadleus HD, 2013, OSTRICH, V84, P89, DOI 10.2989/00306525.2013.775190; Oschadleus HD, 2016, BIODIVERSITY OBSERVA, V7, P1; Partridge L, 2002, CURR BIOL, V12, pR544, DOI 10.1016/S0960-9822(02)01048-5; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; PRINZINGER R, 1993, COMP BIOCHEM PHYS A, V105, P609, DOI 10.1016/0300-9629(93)90260-B; Ratsimbazafy J, 2014, HOUSTON ZOO ANN REPO; Redfern PF, 2001, RINGERS MANUAL; Ricklefs RE, 2010, P NATL ACAD SCI USA, V107, P10314, DOI 10.1073/pnas.1005862107; Roberts P.J., 1987, Safring News, V16, P16; Ryan B., 2001, MINITAB HDB; Safford R., 2013, BIRDS AFRICA, VVIII; Sinclair I, 1998, BIRDS INDIAN OCEAN I; Symes Craig T., 2001, Afring News, V30, P35; Urban E.K., 1975, Bulletin Br Orn Club, V95, P96; URBAN E. K., 1986, BIRDS AFRICA, V2; Urban EK, 1997, BIRDS AFRICA, V5; Wasser DE, 2010, J ZOOL, V280, P103, DOI 10.1111/j.1469-7998.2009.00671.x; Wiersma P, 2012, J EXP BIOL, V215, P1662, DOI 10.1242/jeb.065144; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Woog F, 2006, J ORNITHOL, V147, P275; Woog F, 2006, P GERM MAL RES COOP, P203 49 0 0 2 2 NATL INQUIRY SERVICES CENTRE PTY LTD GRAHAMSTOWN 19 WORCESTER STREET, PO BOX 377, GRAHAMSTOWN 6140, SOUTH AFRICA 0030-6525 1727-947X OSTRICH Ostrich 2018 89 3 281 286 10.2989/00306525.2018.1502693 6 Ornithology Zoology GS8NX WOS:000443969800010 2019-02-21 J Peres, PA; Terossi, M; Iguchi, J; Mantelatto, FL Peres, Pedro A.; Terossi, Mariana; Iguchi, Jully; Mantelatto, Fernando L. Can reproductive traits help to explain the coexistence of mud crabs Panopeus (Decapoda: Panopeidae)? A case of two sympatric species inhabiting an impacted mangrove area of Southern Brazil INVERTEBRATE REPRODUCTION & DEVELOPMENT English Article Panopeus americanus; Panopeus occidentalis; fecundity; life history strategies; sympatric species PACIFIC COSTA-RICA; AMERICANUS BRACHYURA; K-SELECTION; R-SELECTION; STRATEGIES; CRUSTACEA; ATLANTIC; ECOLOGY; SHRIMP; INVERTEBRATES Coexistence among species is commonly related to niche divergence. However, congenerics usually are very similar in their microhabitat selection and food consumption. Thus, divergent life history strategies may represent the mechanism that allows sympatry in related species. Here, we describe and compare reproductive features in two sympatric mud crabs Panopeus americanus and P. occidentalis in an impacted mangrove area in Southern Brazil. As these species are ecologically similar, we hypothesize that these species diverge in their reproductive traits, which could explain their coexistence. Crabs were collected every two months from September 2004 to July 2006. Reproductive features such as number and size of ovigerous females, breeding season, fecundity, reproductive output, and embryo volume were assessed. Panopeus americanus produced embryos during the entire sampled period, while P. occidentalis produced only between September and March. Panopeus americanus produced more embryos considering the size of the species, had significantly lower embryo volume, and higher reproductive output than P. occidentalis. These data permit to classify P. americanus as an r-strategist and P. occidentalis as a K-strategist regarding their reproductive traits. In conclusion, our results support the hypothesis that divergent reproductive features may allow coexistence of these mud crabs. [Peres, Pedro A.; Terossi, Mariana; Iguchi, Jully; Mantelatto, Fernando L.] Univ Sao Paulo, Dept Biol Sci & Letters Ribeirao Preto FFCLRP, Fac Philosophy, Lab Bioecol & Crustacean Systemat LBSC,Postgrad P, Ribeirao Preto, Brazil; [Terossi, Mariana] Univ Fed Rio Grande do Sul, Inst Biociencias, Dept Zool, Lab Carcinol, Porto Alegre, RS, Brazil Mantelatto, FL (reprint author), Univ Sao Paulo, Dept Biol Sci & Letters Ribeirao Preto FFCLRP, Fac Philosophy, Lab Bioecol & Crustacean Systemat LBSC,Postgrad P, Ribeirao Preto, Brazil. flmantel@usp.br Mantelatto, Fernando/0000-0002-8497-187X Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP [2002/08178-9, 2007/54358-2]; Scientific Initiation from Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq [116692/2007-3]; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - CAPES; FAPESP [Ciencias do Mar II - 2005/2014 - 23038.004308/201414, 2017/12376-6]; CAPES; CNPq [PQ 304968/2014-5] This work was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP [grant number 2002/08178-9 and 2007/54358-2], Scientific Initiation from Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq [grant number 116692/2007-3 to JMSI], PAP is grateful to Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - CAPES and FAPESP for PhD scholarships [grant number Ciencias do Mar II - 2005/2014 - 23038.004308/201414 and 2017/12376-6, respectively], and MT to CAPES for MSc scholarship and FLM to CNPq for research scholarship [grant number PQ 304968/2014-5]. Angelini R, 2018, OCEAN COAST MANAGE, V164, P92, DOI 10.1016/j.ocecoaman.2018.02.007; BROWN KM, 1992, J EXP MAR BIOL ECOL, V160, P67, DOI 10.1016/0022-0981(92)90111-M; Castiglioni DDS, 2007, J NAT HIST, V41, P1571, DOI 10.1080/00222930701464604; CLARKE A, 1987, MAR ECOL PROG SER, V38, P89, DOI 10.3354/meps038089; Colpo KD, 2011, BIODIVERS CONSERV, V20, P3239, DOI 10.1007/s10531-011-0125-x; COREY S, 1991, CRUSTACEANA, V60, P270, DOI 10.1163/156854091X00056; Corte GN, 2017, PEERJ, V5, DOI 10.7717/peerj.3360; Echeverria-Saenz S, 2011, J CRUSTACEAN BIOL, V31, P434, DOI 10.1651/10-3400.1; Garcia-Guerrero M, 2006, BELG J ZOOL, V136, P249; GIESE AC, 1959, ANNU REV PHYSIOL, V21, P547, DOI 10.1146/annurev.ph.21.030159.002555; GUIDA VG, 1976, J EXP MAR BIOL ECOL, V25, P109, DOI 10.1016/0022-0981(76)90012-5; HINES AH, 1991, CAN J FISH AQUAT SCI, V48, P267, DOI 10.1139/f91-037; HINES AH, 1982, MAR BIOL, V69, P309, DOI 10.1007/BF00397496; Ingle R.W., 1985, Bulletin of the British Museum (Natural History) Zoology, V48, P233; Keunecke KA, 2012, J MAR BIOL ASSOC UK, V92, P343, DOI 10.1017/S0025315411000397; Kneitel JM, 2004, ECOL LETT, V7, P69, DOI 10.1046/j.1461-0248.2003.00551.x; Kuris A.M., 1991, Crustacean Issues, V7, P117; Losos JB, 2008, ECOL LETT, V11, P995, DOI 10.1111/j.1461-0248.2008.01229.x; MCDONALD J, 1982, MAR ECOL PROG SER, V8, P173, DOI 10.3354/meps008173; Melo G. A. S, 1996, MANUAL IDENTIFICACAO; Melo GAS, 2008, NAUPLIUS, V16, P1; MENGE BA, 1975, MAR BIOL, V31, P87, DOI 10.1007/BF00390651; Milke LM, 2001, INVERTEBR BIOL, V120, P67; Nagelkerken I, 2000, ESTUAR COAST SHELF S, V51, P31, DOI 10.1006/ecss.2000.0617; NEGREIROS-FRANSOZO M L, 1986, Revista Brasileira de Biologia, V46, P173; Nissling A, 2010, J SEA RES, V64, P190, DOI 10.1016/j.seares.2010.02.001; Paerl HW, 1999, MAR ECOL PROG SER, V176, P205, DOI 10.3354/meps176205; PARRY GD, 1981, OECOLOGIA, V48, P260, DOI 10.1007/BF00347974; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Rebolledo AP, 2016, MAR ECOL-EVOL PERSP, V37, P1210, DOI 10.1111/maec.12300; Rodriguez A, 1997, MAR ECOL PROG SER, V149, P133, DOI 10.3354/meps149133; Rodriguez EM, 2000, ECOTOX ENVIRON SAFE, V46, P202, DOI 10.1006/eesa.1999.1896; Sastry A.N., 1983, P179; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Snedaker SC, 1993, IMPACT MANGROVES CLI, P282; SPIGHT TM, 1976, OECOLOGIA, V24, P283, DOI 10.1007/BF00381135; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Terossi M, 2010, J CRUSTACEAN BIOL, V30, P571, DOI 10.1651/09-3233.1; Thiel M, 2000, CRUSTACEAN ISS, V12, P211; TODD CD, 1981, MAR ECOL PROG SER, V4, P75, DOI 10.3354/meps004075; TURRA ALEXANDER, 2017, Ambient. soc., V20, P155, DOI 10.1590/1809-4422asoc166v2022017; Vergamini FG, 2008, J NAT HIST, V42, P1581, DOI 10.1080/00222930802109157; Vergamini FG, 2008, INVERTEBR REPROD DEV, V51, P1, DOI 10.1080/07924259.2008.9652251; WEHRTMANN IS, 1990, REV BIOL TROP, V38, P327; Amaral ACZ, 2010, BIOTA NEOTROP, V10, P219, DOI 10.1590/S1676-06032010000100022; Zampieri BD, 2016, MICROB ECOL, V72, P582, DOI 10.1007/s00248-016-0821-x; Zapata V, 2001, ENVIRON TOXICOL CHEM, V20, P1579, DOI 10.1897/1551-5028(2001)020<1579:EOCOHA>2.0.CO;2 47 0 0 2 2 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0792-4259 2157-0272 INVERTEBR REPROD DEV Invertebr. Reprod. Dev. 2018 62 3 154 161 10.1080/07924259.2018.1465482 8 Reproductive Biology; Zoology Reproductive Biology; Zoology GS7MX WOS:000443887000004 2019-02-21 J Gwinn, DC; Ingram, BA Gwinn, Daniel C.; Ingram, Brett A. Optimising fishery characteristics through control of an invasive species: strategies for redfin perch control in Lake Purrumbete, Australia MARINE AND FRESHWATER RESEARCH English Article European perch; exotic species; overcompensation; recreational fisheries management LIFE-HISTORY STRATEGIES; FLUVIATILIS L; NONNATIVE FISHES; STOCKING DENSITY; LARGEMOUTH BASS; EURASIAN PERCH; POPULATION; GROWTH; MORTALITY; SIZE Invasive fish species can present difficult management problems, particularly when the species has recreational value. One such case is redfin perch in Lake Purrumbete, Australia, which have recreational value but have become invasive in the lake. In this study we evaluated removal strategies for redfin perch in Lake Purrumbete with the aim of improving the quality of the recreational fishery. We evaluated removal scenarios for redfin perch with a population model and conducted a sensitivity analysis to determine the robustness of our general results. The results suggest that removal scenarios that direct exploitation, on an annual time scale, at fish 150-mm total length, with high levels of exploitation, will result in the greatest reduction in small undesirable fish and the greatest increase in large desirable fish in the lake. This was consistent across most assumptions about life-history characteristics, density-dependent processes and population dynamics rates, suggesting that this management strategy is robust to most relevant biological uncertainties. Furthermore, exploiting redfin perch on an annual time scale would result in the lowest annual variation in the population because of disruption of the age and size structure. These results can help managers choose strategies to manipulate the fishery of Lake Purrumbete to achieve more desirable characteristics. [Gwinn, Daniel C.] Biometr Res, 3 Hulbert St, South Fremantle, WA 6162, Australia; [Gwinn, Daniel C.] Univ Western Australia, Sch Biol Sci, M004,35 Stirling Highway, Perth, WA 6009, Australia; [Ingram, Brett A.] Victorian Fisheries Author, Private Bag 20, Alexandra, Vic 3714, Australia Gwinn, DC (reprint author), Biometr Res, 3 Hulbert St, South Fremantle, WA 6162, Australia.; Gwinn, DC (reprint author), Univ Western Australia, Sch Biol Sci, M004,35 Stirling Highway, Perth, WA 6009, Australia. dgwinnbr@gmail.com Lake Purrumbete Angling Club (LPAC) Inc.; Victorian Government The authors acknowledge the funding that supported this work granted by the Lake Purrumbete Angling Club (LPAC) Inc. using funds from the Victorian Government to improve recreational fishing in Victoria through revenue from Recreational Fishing Licenses. The authors thank Rob Hems (LPAC) for his support of the work and Simon Conron (Victorian Fisheries Authority) for comments that improved this paper. The authors extend their thanks to three anonymous reviewers whose comments and suggestions greatly improved this work. Ahrens RNM, 2012, FISH FISH, V13, P41, DOI 10.1111/j.1467-2979.2011.00432.x; Allen M. S., 2013, BIOL MANAGEMENT INLA; Allen MS, 2011, T AM FISH SOC, V140, P1093, DOI 10.1080/00028487.2011.599259; [Anonymous], 2015, CAMPERDOWN CHRO 0921; BAGENAL TB, 1982, HYDROBIOLOGIA, V86, P201, DOI 10.1007/BF00005811; Baras E, 2003, AQUACULTURE, V219, P241, DOI 10.1016/S0044-8486(02)00349-6; Baxter A., 1989, 27 DEP CONS FOR LAND; Baxter A. F., 1985, A RYLAH I ENV RES TE, V16; Beverton R.J.H., 1957, DYNAMICS EXPLOITED F; Bonvechio TF, 2011, AM FISH S S, V77, P395; Britton JR, 2011, FISH FISH, V12, P256, DOI 10.1111/j.1467-2979.2010.00390.x; BUIJSE AD, 1992, FISH RES, V13, P95, DOI 10.1016/0165-7836(92)90021-K; Catalano MJ, 2011, N AM J FISH MANAGE, V31, P1153, DOI 10.1080/02755947.2011.646457; Coggins LG, 2007, FISH FISH, V8, P196, DOI 10.1111/j.1467-2679.2007.00247.x; Coggins LG, 2011, T AM FISH SOC, V140, P456, DOI 10.1080/00028487.2011.572009; CRAIG JF, 1983, J FISH BIOL, V22, P713, DOI 10.1111/j.1095-8649.1983.tb04231.x; CRAIG JF, 1978, FRESHWATER BIOL, V8, P59, DOI 10.1111/j.1365-2427.1978.tb01426.x; Department of Primary Industries, 2008, FISH VICT MAN REP SE, V59; Eddy S., 1998, 62 DEP NAT RES ENV F; Finlayson B. J., 2000, ROTENONE USE FISHERI; Garcia-Berthou E, 2007, J FISH BIOL, V71, P33, DOI 10.1111/j.1095-8649.2007.01668.x; GOLDSPINK CR, 1979, J FISH BIOL, V14, P489, DOI 10.1111/j.1095-8649.1979.tb03547.x; Gould WR, 1997, CAN J FISH AQUAT SCI, V54, P890, DOI 10.1139/cjfas-54-4-890; Gwinn DC, 2015, FISH FISH, V16, P259, DOI 10.1111/faf.12053; Gwinn DC, 2010, T AM FISH SOC, V139, P626, DOI 10.1577/T08-089.1; Hall K., 2010, 35 DEP PRIM IND FISH; Heibo E, 2005, ECOLOGY, V86, P3377, DOI 10.1890/04-1620; Hoddle MS, 2004, CONSERV BIOL, V18, P38, DOI 10.1111/j.1523-1739.2004.00249.x; HOENIG JM, 1983, FISH B-NOAA, V81, P898; Hunt TL, 2014, CAN J FISH AQUAT SCI, V71, P1554, DOI 10.1139/cjfas-2013-0517; Ingram B. A., 2016, OPTIONS MANAGING RED; JELLYMAN DJ, 1980, NEW ZEAL J MAR FRESH, V14, P391, DOI 10.1080/00288330.1980.9515881; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Jiang MY, 2018, J WORLD AQUACULT SOC, V49, P315, DOI 10.1111/jwas.12492; Karatayev VA, 2015, ECOSPHERE, V6, DOI 10.1890/ES14-00513.1; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Kopf RK, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0172; LECREN ED, 1958, J ANIM ECOL, V27, P287; Linlokken A, 1996, ANN ZOOL FENN, V33, P427; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Lorenzen K, 2000, CAN J FISH AQUAT SCI, V57, P2374, DOI 10.1139/cjfas-57-12-2374; Lorenzen K, 2016, FISH RES, V180, P4, DOI 10.1016/j.fishres.2016.01.006; Marchetti MP, 2004, FRESHWATER BIOL, V49, P646, DOI 10.1111/j.1365-2427.2004.01202.x; McColl KA, 2017, J FISH DIS, V40, P1141, DOI 10.1111/jfd.12591; Messing RH, 2006, FRONT ECOL ENVIRON, V4, P132, DOI 10.1890/1540-9295(2006)004[0132:BCOISS]2.0.CO;2; Morgan DL, 2002, MAR FRESHWATER RES, V53, P1211, DOI 10.1071/MF02047; Myers RA, 1999, CAN J FISH AQUAT SCI, V56, P2404, DOI 10.1139/cjfas-56-12-2404; Ohlberger J, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0938; Ohlberger J, 2011, ECOLOGY, V92, P2175, DOI 10.1890/11-0410.1; Paxton CGM, 2004, J FISH BIOL, V65, P1622, DOI 10.1111/j.1095-8649.2004.00573.x; PEN LJ, 1992, AQUAT CONSERV, V2, P243, DOI 10.1002/aqc.3270020304; Pine WE, 2003, FISHERIES, V28, P10, DOI 10.1577/1548-8446(2003)28[10:AROTMF]2.0.CO;2; Pollock K. H., 1998, ENCY STAT SCI UPDATE, P109; Pomorin K, 2004, FISHERIES VICTORIA R, V05; POPOVA OA, 1977, J FISH RES BOARD CAN, V34, P1559, DOI 10.1139/f77-219; Ribeiro F, 2008, BIOL INVASIONS, V10, P89, DOI 10.1007/s10530-007-9112-2; Sabetian A, 2015, NEW ZEAL J MAR FRESH, V49, P119, DOI 10.1080/00288330.2014.958089; Schill DJ, 2017, N AM J FISH MANAGE, V37, P1054, DOI 10.1080/02755947.2017.1342720; Schroder A, 2014, TRENDS ECOL EVOL, V29, P614, DOI 10.1016/j.tree.2014.08.006; Von Bertalanffy L., 1938, HUM BIOL, V10, P181, DOI DOI 10.2307/41447359; Walters C. J., 2004, FISHERIES ECOLOGY MA; WEATHERLEY AH, 1977, J FISH RES BOARD CAN, V34, P1464, DOI 10.1139/f77-210; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Zipkin EF, 2008, CAN J FISH AQUAT SCI, V65, P2279, DOI 10.1139/F08-133; Zipkin EF, 2009, ECOL APPL, V19, P1585, DOI 10.1890/08-1467.1 66 0 0 3 3 CSIRO PUBLISHING CLAYTON UNIPARK, BLDG 1, LEVEL 1, 195 WELLINGTON RD, LOCKED BAG 10, CLAYTON, VIC 3168, AUSTRALIA 1323-1650 1448-6059 MAR FRESHWATER RES Mar. Freshw. Res. 2018 69 9 1333 1345 10.1071/MF17326 13 Fisheries; Limnology; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography GR2BW WOS:000442365500001 2019-02-21 J Bonier, F; Martin, PR; Small, TW; Danner, JE; Danner, RM; Nelson, WA; Moore, IT Bonier, Frances; Martin, Paul R.; Small, Thomas W.; Danner, Julie E.; Danner, Raymond M.; Nelson, William A.; Moore, Ignacio T. ENERGETIC COSTS AND STRATEGIES OF POST-JUVENAL MOLT IN AN EQUATORIAL BIRD, THE RUFOUS-COLLARED SPARROW (ZONOTRICHIA CAPENSIS) ORNITOLOGIA NEOTROPICAL English Article Energetic costs; Feather growth; Latitude; Post-juvenal molt; Rufous-collared Sparrow BASAL METABOLIC-RATE; CURRENT REPRODUCTIVE EFFORT; COMMON-GARDEN EXPERIMENT; LIFE-HISTORY EVOLUTION; BODY CONDITION; TRADE-OFFS; DIFFERENT LATITUDES; SLOW PACE; POPULATION; SURVIVAL Many tropical birds have slow-paced life history strategies, exhibiting lower metabolic rates, reduced annual investment in reproduction, and longer lifespans relative to birds at higher latitudes. Life history strategies have been relatively well documented in adult individuals in the tropics, but we know comparatively little about the immature life history stage. Here we examine strategies of feather replacement (molt) and fattening in immature Rufous-collared Sparrows (Zonotrichia capensis) in a high elevation equatorial population, following a parallel, previous study on an arctic congener, the White-crowned Sparrow (Zonotrichia leucophrys gambelii). In captivity, Rufouscollared Sparrows incurred energetic costs of experimentally induced feather growth, similar to those previously described for Zonotrichia at higher latitudes. In contrast, free-ranging immature Rufous-collared Sparrows in natural molt had fat stores that declined over time, opposite to patterns evident in arctic Zonotrichia that fatten before migration. Equatorial birds in good condition molted more heavily (controlling for fat stores), suggesting that body condition limits the intensity of molt. Heavily molting equatorial sparrows also had lower amounts of fat (controlling for body condition), suggesting a trade-off between allocation of resources to fat stores versus feather growth. Molt progressed slowly in Rufous-collared Sparrows relative to previously described patterns in their arctic congener, which is concordant with a slower pace-of-life syndrome in tropical, as compared with high latitude, birds. [Bonier, Frances; Martin, Paul R.; Nelson, William A.] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada; [Bonier, Frances; Small, Thomas W.; Danner, Julie E.; Danner, Raymond M.; Moore, Ignacio T.] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA; [Small, Thomas W.] Univ Memphis, Dept Biol, Memphis, TN 38152 USA; [Danner, Raymond M.] Univ North Carolina Wilmington, Wilmington, NC 28403 USA Bonier, F (reprint author), Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada.; Bonier, F (reprint author), Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA. bonierf@queensu.ca Virginia Tech Advance postdoctoral fellowship; National Science Foundation (NSF) International Research Fellowship [OISE-0700651, OISE-0602084]; Natural Sciences and Engineering Research Council of Canada; Baillie Family Endowment; NSF [IOS-0545735] We would like to thank Termas de Papallacta and Fundacion Terra for accommodations and access to field sites in Ecuador, and Sievert Rohwer for providing valuable feedback on an early version of the manuscript. We acknowledge funding from a Virginia Tech Advance postdoctoral fellowship (FB), National Science Foundation (NSF) International Research Fellowship (OISE-0700651 to FB; OISE-0602084 to TWS), Natural Sciences and Engineering Research Council of Canada Discovery Grant (PRM), a Baillie Family Endowment (PRM), and NSF Grant (IOS-0545735 to ITM). Barker FK, 2015, AUK, V132, P333, DOI 10.1642/AUK-14-110.1; Bonier F, 2007, ECOLOGY, V88, P2729, DOI 10.1890/07-0696.1; CONOVER DO, 1992, J FISH BIOL, V41, P161, DOI 10.1111/j.1095-8649.1992.tb03876.x; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; Faaborg J, 2010, ECOL MONOGR, V80, P3, DOI 10.1890/09-0395.1; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Guallar SX, 2016, WILSON J ORNITHOL, V128, P543, DOI 10.1676/1559-4491-128.3.543; Helm B, 1999, AUK, V116, P589, DOI 10.2307/4089321; Helm B, 2009, J EXP BIOL, V212, P1259, DOI 10.1242/jeb.025411; Hemborg C, 1999, J ANIM ECOL, V68, P429, DOI 10.1046/j.1365-2656.1999.00295.x; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; LINDSTROM A, 1993, PHYSIOL ZOOL, V66, P490, DOI 10.1086/physzool.66.4.30163805; LINDSTROM A, 1994, ANIM BEHAV, V48, P1173, DOI 10.1006/anbe.1994.1349; Lovegrove BG, 2000, AM NAT, V156, P201, DOI 10.1086/303383; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Merila J, 2001, J EVOLUTION BIOL, V14, P918, DOI 10.1046/j.1420-9101.2001.00353.x; Moore IT, 2005, BEHAV ECOL, V16, P755, DOI 10.1093/beheco/ari049; Moore IT, 2004, ANIM BEHAV, V67, P411, DOI 10.1016/j.anbehav.2003.03.021; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; MURPHY ME, 1992, ORNIS SCAND, V23, P304, DOI 10.2307/3676654; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Newton I, 1998, POPULATION LIMITATIO; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Pfister C, 1998, AUK, V115, P904; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Ricklefs RE, 1997, ECOL MONOGR, V67, P23, DOI 10.1890/0012-9615(1997)067[0023:CDONWP]2.0.CO;2; RICKLEFS RE, 1976, IBIS, V118, P179, DOI 10.1111/j.1474-919X.1976.tb03065.x; Ricklefs RE, 2010, AM NAT, V175, P350, DOI 10.1086/650371; Rising J., 2016, HDB BIRDS WORLD ALIV; Robinson WD, 2008, AM NAT, V171, P532, DOI 10.1086/528964; Robinson WD, 2010, AUK, V127, P253, DOI 10.1525/auk.2010.127.2.253; Rubolini D, 2002, J ZOOL, V258, P441, DOI 10.1017/S0952836902001590; Schamber JL, 2009, J AVIAN BIOL, V40, P49, DOI 10.1111/j.1600-048X.2008.04462.x; SCHIELTZ PC, 1995, COMP BIOCHEM PHYS A, V112, P265, DOI 10.1016/0300-9629(95)00097-6; Serra L, 2007, J EVOLUTION BIOL, V20, P2028, DOI 10.1111/j.1420-9101.2007.01360.x; Serra L, 2001, J AVIAN BIOL, V32, P377, DOI 10.1111/j.0908-8857.2001.320415.x; Shaver G, 2003, DAILY SOIL TEMPERATU; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Strong AM, 2000, J ANIM ECOL, V69, P883, DOI 10.1046/j.1365-2656.2000.00447.x; Versteegh MA, 2008, COMP BIOCHEM PHYS A, V150, P452, DOI 10.1016/j.cbpa.2008.05.006; WEATHERS WW, 1989, ECOL MONOGR, V59, P223, DOI 10.2307/1942600; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; WINGFIELD JC, 1978, PHYSIOL ZOOL, V51, P188, DOI 10.1086/physzool.51.2.30157866; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; Wojciechowski MS, 2009, J EXP BIOL, V212, P3068, DOI 10.1242/jeb.033001 52 0 0 1 1 NEOTROPICAL ORNITHOLOGICAL SOC, USGS PATUXENT WILDLIFE RESEARCH CTR ATHENS UNIV GEORGIA, WARNELL SCH FOREST RESOURCES, ATHENS, GA 30602-2152 USA 1075-4377 ORNITOL NEOTROP ORNITOL. NEOTROP. 2018 29 SI S19 S28 10 Ornithology Zoology GQ6UR WOS:000441862400004 2019-02-21 J Ferreira, LJ; Lopes, LE Ferreira, Luana Jessica; Lopes, Leonardo Esteves Breeding biology of the Pale-bellied Tyrant-manakin Neopelma pallescens (Aves: Pipridae) in south-eastern Brazil JOURNAL OF NATURAL HISTORY English Article Courtship behaviour; lek; Neotropical birds; reproduction PHYLOGENETIC ANALYSIS; DISPLAY BEHAVIOR; NATURAL-HISTORY; BIRDS; EVOLUTION; CLASSIFICATION The Pale-bellied Tyrant-manakin (Neopelma pallescens) inhabits semi-deciduous and riparian forests in central-north South America. Contrary to most manakins, there is no evident sexual dichromatism in the species and little is known about its breeding biology. We studied the breeding biology of a colour-banded population of the species from August to December 2016 and from August to October 2017 in the Campus Florestal of the Universidade Federal de Vicosa, south-eastern Brazil. The breeding season extended from early September to late November. The species is promiscuous, with males exhibiting simple courtship displays (exploded leks) in individual arenas. The nest (n=13) is a cup attached by its top lip between forked branches and is very simple, with a structural layer made with dry grass stems and heads, attached to the branch with spider silk. The outer and lining layers are absent. The mean clutch size was 1.8 eggs (n=11), which are oval and pale coloured, covered with spots of different shades of brown, often concentrated in the larger pole. Mean egg length and width (+/- SD) were 21.0 +/- 0.9x15.8 +/- 0.7mm (n=14) and the mean weight was 2.8 +/- 0.4g (n=10). The incubation period could not be estimated, but the nestling period was 15days (n=2). The simple percentage of successful nests was 15.4%, with 76.9% of the nests depredated and 7.7% abandoned. This is the first detailed study about the breeding biology of any Neopelma species, providing relevant data for the study of the evolution of life history strategies not only for the genus, but for the whole family Pipridae. [Ferreira, Luana Jessica; Lopes, Leonardo Esteves] Univ Fed Vicosa, Lab Biol Anim, IBF, Florestal, Brazil Lopes, LE (reprint author), Univ Fed Vicosa, Lab Biol Anim, IBF, Florestal, Brazil. leo.cerrado@gmail.com Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [305401/20149]; Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) This work was supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [305401/20149] and Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG). Alonso JA, 2003, CONDOR, V105, P552, DOI 10.1650/7159; Alvares CA, 2013, METEOROL Z, V22, P711, DOI 10.1127/0941-2948/2013/0507; ALVAREZ ALONSO J., 2001, COTINGA, V16, P87; Belcher C, 1937, IBIS, V1, P225; Birkhead T. R., 2016, MOST PERFECT THING I; Braga EM, 2010, ORNITOLOGIA CONSERVA, P395; CEMAVE, 1994, MAN AN AV SILV; Nóbrega Paula Fernanda Albonette de, 2010, Pap. Avulsos Zool. (São Paulo), V50, P511, DOI 10.1590/S0031-10492010003100001; Dickinson EC, 2014, HOWARD MOORE COMPLET, V2; Ferreira DF, 2017, J NAT HIST, V51, P1; Gochfeld M., 1984, Behavior of Marine Animals, V5, P289; Hansell M, 2000, BIRD NESTS CONSTRUCT; Hoffmann D., 2010, COTINGA, V32, P142; Instituto Brasileiro de Geografia e Estatistica-IBGE, 2004, MAP BIOM BRAS 1 APR; Johnsgard PA, 1994, ARENA BIRDS SEXUAL S; Kirwan G. M, 2011, COTINGAS MANAKINS; Kirwan Guy M., 2016, Bulletin of the British Ornithologists' Club, V136, P293; Krabbe N, 2007, REV BRAS ORNITOL, V15, P331; Lebbin Daniel J., 2007, Boletin SAO, V17, P119; Lees Alexander C., 2008, Cotinga, V29, P149; Lima CA, 2010, ORNITOL NEOTROP, V21, P425; Lopes LE, 2016, ATUAL ORNITOL, V193, P41; Marini MA, 2001, CONDOR, V103, P767, DOI 10.1650/0010-5422(2001)103[0767:APOMAR]2.0.CO;2; Marini Ma, 2010, ORNITOLOGIA CONSERVA, P297; Matta NE, 2004, MEM I OSWALDO CRUZ, V99, P271, DOI 10.1590/S0074-02762004000300005; Mckay BD, 2010, MOL PHYLOGENET EVOL, V55, P733, DOI 10.1016/j.ympev.2010.02.024; Munsell, 2000, MUNSELL SOIL COLOR C; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; Nascimento J., 2000, ARARAJUBA, V8, P115; Nimer E., 1989, CLIMATOLOGIA BRASIL; Novaes FC, 1978, ORNITOLOGIA TERRITOR; Ohlson JI, 2013, MOL PHYLOGENET EVOL, V69, P796, DOI 10.1016/j.ympev.2013.06.024; ONIKI Y, 1979, BIOTROPICA, V11, P60, DOI 10.2307/2388174; PAYNE RB, 1984, ORNITHOL MONOGR, V33, P1, DOI DOI 10.2307/40166729; Pichorim Mauro, 2002, Ararajuba, V10, P149; Pinto O., 1940, Arquivos de Zoologia do Estado de Sao Paulo, V1, P219; Prum Richard O., 2017, EVOLUTION BEAUTY DAR; Prum RO, 1998, ANIM BEHAV, V55, P977, DOI 10.1006/anbe.1997.0647; PRUM RO, 1994, EVOLUTION, V48, P1657, DOI 10.1111/j.1558-5646.1994.tb02203.x; Prum RO, 1996, CONDOR, V98, P722, DOI 10.2307/1369854; PRUM RO, 1990, ETHOLOGY, V84, P202; Roper James J., 2003, Ornitologia Neotropical, V14, P1; Schonwetter M., 1960, HDB OOLOGIE; SCHUBART OTTO, 1965, ARQ ZOOL ESTAD SAO PAULO, V12, P95; SCHWARTZ P, 1978, Living Bird, V17, P51; Sick H, 1997, ORNITOLOGIA BRASILEI; SICK HELMUT, 1967, LIVING BIRD, V6, P5; SICK HELMUT, 1959, BOL MUS NAC RIO DE JANEIRO ZOOL, V213, P1; Simon Jose Eduardo, 2005, ARARAJUBA, V13, P143; Skutch A. F., 1969, PACIFIC COAST AVIFAU, V35, P1; Snethlage H, 1928, J ORNITHOL, V76, P668; Snow D, 2004, HDB BIRDS WORLD, P110; SNOW D. W., 1962, ZOOLOGICA [NEW YORK], V47, P65; SNOW DAVID, 1961, IBIS, V103a, P110, DOI 10.1111/j.1474-919X.1961.tb02423.x; TOSTAIN O, 1988, Alauda, V56, P159; Turnhout E, 2016, CONSERV BIOL, V30, P532, DOI 10.1111/cobi.12696; Ubaid F. K., 2013, ORNITHOLOGIA, V5, P122; Von Ihering H, 1900, REV MUSEU PAUL, V419, pl; Walther BA, 2004, ORNITOL NEOTROP, V15, P41; Whittaker Andrew, 2009, Cotinga, V31, P20 60 0 0 3 3 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0022-2933 1464-5262 J NAT HIST J. Nat. Hist. 2018 52 29-30 1893 1908 10.1080/00222933.2018.1498548 16 Biodiversity Conservation; Ecology; Zoology Biodiversity & Conservation; Environmental Sciences & Ecology; Zoology GP8LC WOS:000441160900001 2019-02-21 J Ogonowski, M; Edlund, U; Gorokhova, E; Linde, M; Ek, K; Liewenborg, B; Konnecke, O; Navarro, JRG; Breitholtz, M Ogonowski, Martin; Edlund, Ulrica; Gorokhova, Elena; Linde, Margareta; Ek, Karin; Liewenborg, Birgitta; Konnecke, Oda; Navarro, Julien R. G.; Breitholtz, Magnus Multi-level toxicity assessment of engineered cellulose nanofibrils in Daphnia magna NANOTOXICOLOGY English Article Cellulose nanofibrils; Daphnia magna; feeding; caloric restriction; toxicity LIFE-HISTORY EVOLUTION; FEEDING-BEHAVIOR; SILVER NANOPARTICLES; FOOD CONCENTRATION; NANOCELLULOSE; GROWTH; NANOCRYSTALS; RESPONSES; POPULATION; CLADOCERA Cellulose nanofibril (CNF)-based materials are increasingly used in industrial and commercial applications. However, the impacts of CNF on aquatic life are poorly understood, and there are concerns regarding their potential toxicity. Using a combination of standard ecotoxicological tests and feeding experiments, we assessed the effects of CNF exposure (0.206-20.6 mg/L) on the feeding (food uptake and gut residence time) and life-history traits (growth and reproduction) in the cladoceran Daphnia magna. No mortality was observed in a 48 h acute exposure at 2060 mg/L. Moreover, a 21-day exposure at low food and moderate CNF levels induced a stimulatory effect on growth, likely driven by increased filtration efficiency, and, possibly, partial assimilation of the CNF by the animals. However, at low food levels and the highest CNF concentrations, growth and reproduction were negatively affected. These responses were linked to caloric restriction caused by dilution of the food source, but not an obstruction of the alimentary canal. Finally, no apparent translocation of CNF past the alimentary canal was detected. We conclude that CNF displays a low toxic potential to filter-feeding organisms and the expected environmental risks are low. [Ogonowski, Martin; Gorokhova, Elena; Linde, Margareta; Ek, Karin; Liewenborg, Birgitta; Konnecke, Oda; Breitholtz, Magnus] Stockholm Univ, Dept Environm Sci & Analyt Chem, Svante Arrhenius Vag 8, S-11418 Stockholm, Sweden; [Edlund, Ulrica; Navarro, Julien R. G.] KTH Royal Inst Technol, Fiber & Polymer Technol Dept, Stockholm, Sweden Ogonowski, M; Gorokhova, E (reprint author), Stockholm Univ, Dept Environm Sci & Analyt Chem, Svante Arrhenius Vag 8, S-11418 Stockholm, Sweden. martin.ogonowski@aces.su.se; elena.gorokhova@aces.su.se Ogonowski, Martin/0000-0002-7082-0990 Swedish Research Council Formas [2014-151] This project was funded by the Swedish Research Council Formas under Grant number [2014-151]. ARRUDA JA, 1983, ECOLOGY, V64, P1225, DOI 10.2307/1937831; Baun A, 2008, ECOTOXICOLOGY, V17, P387, DOI 10.1007/s10646-008-0208-y; Bouchnak R, 2014, LIMNOLOGICA, V44, P23, DOI 10.1016/j.limno.2013.06.002; Bour A, 2016, ENVIRON SCI-NANO, V3, P830, DOI 10.1039/c6en00116e; BURNS CW, 1969, LIMNOL OCEANOGR, V14, P392, DOI 10.4319/lo.1969.14.3.0392; BURNS CW, 1968, LIMNOL OCEANOGR, V13, P675, DOI 10.4319/lo.1968.13.4.0675; Campos B, 2013, AQUAT TOXICOL, V130, P174, DOI 10.1016/j.aquatox.2013.01.005; Carpenter AW, 2015, ENVIRON SCI TECHNOL, V49, P5277, DOI 10.1021/es506351r; Cedervall T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032254; Csoka L, 2012, ACS MACRO LETT, V1, P867, DOI 10.1021/mz300234a; Darchambeau F, 2003, OECOLOGIA, V136, P336, DOI 10.1007/s00442-003-1283-7; Deepa B, 2011, BIORESOURCE TECHNOL, V102, P1988, DOI 10.1016/j.biortech.2010.09.030; DeMott WR, 1998, LIMNOL OCEANOGR, V43, P1147, DOI 10.4319/lo.1998.43.6.1147; Eichhorn SJ, 2010, J MATER SCI, V45, P1, DOI 10.1007/s10853-009-3874-0; Elser JJ, 2000, ECOL LETT, V3, P540, DOI 10.1046/j.1461-0248.2000.00185.x; Endes C., 2016, J NANOBIOTECHNOL, V4, P21, DOI [10.3390/fib4030021, DOI 10.3390/FIB4030021]; Farcas MT, 2016, J TOXICOL ENV HEAL A, V79, P984, DOI 10.1080/15287394.2016.1211045; Furuhagen S, 2014, ENVIRON SCI TECHNOL, V48, P12886, DOI 10.1021/es5044722; Gliwicz M. Z., 1980, EVOLUTION ECOLOGY ZO; Harper BJ, 2016, CELLULOSE, V23, P1763, DOI 10.1007/s10570-016-0947-5; HART RC, 1992, J PLANKTON RES, V14, P1425, DOI 10.1093/plankt/14.10.1425; HARTMANN HJ, 1991, HYDROBIOLOGIA, V225, P129, DOI 10.1007/BF00028392; Heugens EHW, 2006, ENVIRON TOXICOL CHEM, V25, P1399, DOI 10.1897/05-294R.1; Hua K, 2014, RSC ADV, V4, P2892, DOI 10.1039/c3ra45553j; Hubbe MA, 2008, BIORESOURCES, V3, P929; Jovanovic B, 2016, NANOTOXICOLOGY, V10, P902, DOI 10.3109/17435390.2016.1140242; Kalia S, 2011, INT J POLYM SCI, DOI 10.1155/2011/837875; Katz S., 1984, SVEN PAPPERSTIDN, V87, P48; Kim JH, 2015, INT J PR ENG MAN-GT, V2, P197, DOI 10.1007/s40684-015-0024-9; KIRK KL, 1992, FRESHWATER BIOL, V28, P103, DOI 10.1111/j.1365-2427.1992.tb00566.x; Klemm D, 2011, ANGEW CHEM INT EDIT, V50, P5438, DOI 10.1002/anie.201001273; Kovacs T, 2010, NANOTOXICOLOGY, V4, P255, DOI 10.3109/17435391003628713; Krassig H., 1993, CELLULOSE; Lee KY, 2014, COMPOS SCI TECHNOL, V105, P15, DOI 10.1016/j.compscitech.2014.08.032; Lin N, 2014, EUR POLYM J, V59, P302, DOI 10.1016/j.eurpolymj.2014.07.025; MACIEJGLIWICZ Z, 1980, ARCH HYDROBIOL, V88, P155; Mackevica A, 2015, AQUAT TOXICOL, V161, P10, DOI 10.1016/j.aquatox.2015.01.023; MCMAHON JW, 1965, CAN J ZOOLOG, V43, P603, DOI 10.1139/z65-060; MEISE CJ, 1985, LIMNOL OCEANOGR, V30, P862, DOI 10.4319/lo.1985.30.4.0862; MITCHELL SF, 1992, J PLANKTON RES, V14, P379, DOI 10.1093/plankt/14.3.379; MUCK P, 1980, Journal of Plankton Research, V2, P367, DOI 10.1093/plankt/2.4.367; MURTAUGH PA, 1985, J PLANKTON RES, V7, P415, DOI 10.1093/plankt/7.3.415; Navarro JRG, 2016, BIOMACROMOLECULES, V17, P1101, DOI 10.1021/acs.biomac.5b01716; OECD, 2012, TEST 211 DAPHN MAGN; OECD, 2004, TEST 202 DAPHN SP AC; Ogonowski M, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0155063; Opsteen JA, 2007, J POLYM SCI POL CHEM, V45, P2913, DOI 10.1002/pola.22047; Paakko M, 2007, BIOMACROMOLECULES, V8, P1934, DOI 10.1021/bm061215p; PORTER KG, 1983, ECOLOGY, V64, P735, DOI 10.2307/1937196; PORTER KG, 1982, LIMNOL OCEANOGR, V27, P935, DOI 10.4319/lo.1982.27.5.0935; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roco MC, 2011, J NANOPART RES, V13, P427, DOI 10.1007/s11051-010-0192-z; Sakka Y, 2016, INT J MARINE BIOL RE, V1, P1, DOI DOI 10.15226/24754706/1/1/00105; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; SCHOENBERG SA, 1984, LIMNOL OCEANOGR, V29, P1132, DOI 10.4319/lo.1984.29.5.1132; Shvedova AA, 2016, PART FIBRE TOXICOL, V13, DOI 10.1186/s12989-016-0140-x; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stetefeld Jorg, 2016, Biophys Rev, V8, P409, DOI 10.1007/s12551-016-0218-6; Tlili A, 2017, ENVIRON SCI TECHNOL, V51, P2447, DOI 10.1021/acs.est.6b05508; Trier TM, 2003, ENVIRON ENTOMOL, V32, P1, DOI 10.1603/0046-225X-32.1.1; Voisin H, 2017, NANOMATERIALS-BASEL, V7, DOI 10.3390/nano7030057; Young S, 1997, J PLANKTON RES, V19, P391, DOI 10.1093/plankt/19.3.391 63 0 0 5 6 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 1743-5390 1743-5404 NANOTOXICOLOGY Nanotoxicology 2018 12 6 509 521 10.1080/17435390.2018.1464229 13 Nanoscience & Nanotechnology; Toxicology Science & Technology - Other Topics; Toxicology GO4LU WOS:000439981600002 29732936 Bronze 2019-02-21 J Wang, HY; Heino, M Wang, Hui-Yu; Heino, Mikko Adaptive and plastic variation in growth and maturation of the cutlassfish Trichiurus japonicus in the subtropical Pacific Ocean FISHERY BULLETIN English Article PROBABILISTIC REACTION NORMS; LIFE-HISTORY EVOLUTION; EAST CHINA SEA; CLIMATE-CHANGE; BODY-SIZE; PHENOTYPIC PLASTICITY; POPULATION-STRUCTURE; POECILIA-RETICULATA; MITOCHONDRIAL-DNA; FISHERIES CATCH We investigated variation in growth and maturation in response to 1) spatial variation in climate and 2) exploitation of the subtropical cutlassfish Trichiurus japonicus, an important fishery species whose population ecology is virtually unknown. Individuals of this cutlassfish species were sampled monthly at 2 primary landing sites: Kengfang, in northeast (NE) Taiwan, and Tsukuan, in southwest (SW) Taiwan, during 2013-2015. Habitat temperatures were about 1-4 degrees C lower at the NE site than at the SW site, and the length at age of adult fish had an inverse pattern with temperature (NE lengths >SW lengths at age). The probabilistic maturation reaction norms did not differ significantly between the 2 areas, but ages and lengths at maturation were higher for males from NE than for males from SW. Differences in asymptotic lengths (NE>SW) and growth coefficients (NE3.0.CO;2-7; Kenyon Dienje, 1985, STATUS STRUCTURE STR, P347; Kirleis W., 2016, TRYPILLIA MEGASITES, V2, P195; Kline M.A., 2015, BEHAV BRAIN SCI, V38, P1, DOI DOI 10.1017/S0140525X14000090; Kline MA, 2013, HUM NATURE-INT BIOS, V24, P351, DOI 10.1007/s12110-013-9180-1; Knoll LJ, 2016, PSYCHOL SCI, V27, P1620, DOI 10.1177/0956797616671327; Konner Melvin J., 2010, EVOLUTION CHILDHOOD; Korvin-Piotrovskiy A, 2016, TRYPILLIA MEGASITES, P221; Kvavadze E, 2009, SCIENCE, V325, P1359, DOI 10.1126/science.1175404; Lancy DF, 2015, CURR ANTHROPOL, V56, P545, DOI 10.1086/682286; Lancy DF, 2017, CHILDHOOD, V10, P72; Langley MC, 2018, OXFORD J ARCHAEOL, V37, P3, DOI 10.1111/ojoa.12128; Lee R. B., 1979, KUNG SAN MEN WOMEN W; Liebenberg L., 1990, ART TRACKING ORIGIN; Lombard M, 2015, CAMB ARCHAEOL J, V25, P877, DOI 10.1017/S0959774315000219; Lombard M, 2012, QUATERN INT, V270, P140, DOI 10.1016/j.quaint.2012.02.033; Lucas CG, 2014, COGNITION, V131, P284, DOI 10.1016/j.cognition.2013.12.010; MacDonald K, 2007, HUM NATURE-INT BIOS, V18, P386, DOI 10.1007/s12110-007-9019-8; Maran J., 2004, ARCHAOLOGISCHE MITTE, V40, P429; MATHIASSEN T, 1927, ARCHAEOLOGY CENTRAL; Matuschik I, 2006, 1 CHARIOTS 1 ARAIRES, P279; Mesoudi A, 2008, BIOL PHILOS, V23, P243, DOI 10.1007/s10539-007-9097-3; Milne SB, 2005, J FIELD ARCHAEOL, V30, P329, DOI 10.1179/009346905791072224; Mischka D, 2011, ANTIQUITY, V85, P742, DOI 10.1017/S0003598X00068289; MITHEN SJ, 1988, WORLD ARCHAEOL, V19, P297, DOI 10.1080/00438243.1988.9980043; Muller J, 2016, TRYPILLIA MEGASITES; Musgrave S, 2016, SCI REP-UK, V6, DOI 10.1038/srep34783; NEIMAN FD, 1995, AM ANTIQUITY, V60, P7, DOI 10.2307/282074; Nielsen M, 2010, PSYCHOL SCI, V21, P729, DOI 10.1177/0956797610368808; Nowell A., 2015, CHILDHOOD, V8, P122; Nowell A, 2016, VERTEBR PALEOBIOL PA, P87, DOI 10.1007/978-94-017-7426-0_9; Nowell A, 2015, CAMB ARCHAEOL J, V25, P889, DOI 10.1017/S0959774315000360; Nowell A, 2010, STONE TOOLS AND THE EVOLUTION OF HUMAN COGNITION, P67; Oswalt W., 1976, ANTHR ANAL FOOD GETT; Palagi E, 2015, BEHAV BRAIN SCI, V38, DOI 10.1017/S0140525X14000557; Park Robert W., 2005, ARCHEOLOGICAL PAPERS, V15, P53, DOI [10.1525/ap3a.2005.15.53, DOI 10.1525/AP3A.2005.15.53]; Park RW, 1998, ANTIQUITY, V72, P269; Pellegrini AD, 1998, CHILD DEV, V69, P577, DOI 10.2307/1132187; Pellegrini AD, 2007, DEV REV, V27, P261, DOI 10.1016/j.dr.2006.09.001; PEPLER DJ, 1981, CHILD DEV, V52, P1202, DOI 10.2307/1129507; Pigeot Nicolle, 1990, ARCHAEOLOGICAL REV C, V9, P126; Roveland B., 2000, CHILDREN MAT CULTURE, P29; Russ S., 2010, CAMBRIDGE HDB CREATI, P233, DOI DOI 10.1017/CBO9780511763205.015; Schillinger K, 2016, J ARCHAEOL SCI, V70, P23, DOI 10.1016/j.jas.2016.04.013; Shea JJ, 2008, J HUM EVOL, V55, P448, DOI 10.1016/j.jhevol.2008.05.014; Shea JJ, 2006, EVOL ANTHROPOL, V15, P212, DOI 10.1002/evan.20112; SHELLEY PH, 1990, J FIELD ARCHAEOL, V17, P187, DOI 10.1179/009346990791548349; Smith Peter K., 2010, CHILDREN AND PLAY; Soffer O, 2004, CURR ANTHROPOL, V45, P407, DOI 10.1086/420907; Soffer O, 2002, ENDURING RECORDS ENV, P233; Stapert D, 2007, ARCHAOL KORRESPONDEN, V37, P19; Sternke F., 2009, MESOLITHIC HORIZONS, P722; Tehrani JJ, 2008, WORLD ARCHAEOL, V40, P316, DOI 10.1080/00438240802261267; Thompson JL, 2011, HUM NATURE-INT BIOS, V22, P249, DOI 10.1007/s12110-011-9119-3; Tomasello M, 1999, ANNU REV ANTHROPOL, V28, P509, DOI 10.1146/annurev.anthro.28.1.509; Ugan A, 2003, J ARCHAEOL SCI, V30, P1315, DOI 10.1016/S0305-4403(03)00022-0; VANDENBERG B, 1984, DEV PSYCHOL, V20, P3, DOI 10.1037/0012-1649.20.1.3; VansGelder L, 2015, CHILDHOOD, V8, P149; Wadley L, 2015, AZANIA, V50, P155, DOI 10.1080/0067270X.2015.1039236; Yellen John, 2005, Paleoanthropology, V3, P25 105 3 3 1 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1060-1538 1520-6505 EVOL ANTHROPOL Evol. Anthropol. JAN-FEB 2018 27 1 46 59 10.1002/evan.21555 14 Anthropology Anthropology FW2PO WOS:000425146500008 29446561 Green Published, Other Gold 2019-02-21 J Makinen, H; Savilammi, T; Papakostas, S; Leder, E; Vollestad, LA; Primmer, CR Makinen, Hannu; Savilammi, Tiina; Papakostas, Spiros; Leder, Erica; Vollestad, Leif A.; Primmer, Craig R. Modularity Facilitates Flexible Tuning of Plastic and Evolutionary Gene Expression Responses during Early Divergence GENOME BIOLOGY AND EVOLUTION English Article gene expression; module; plasticity; thermal adaptation LIFE-HISTORY EVOLUTION; PHENOTYPIC PLASTICITY; CLIMATE-CHANGE; ENVIRONMENTAL VARIATION; COEXPRESSION NETWORKS; STABILIZING SELECTION; ADAPTIVE EVOLUTION; COMMON ANCESTORS; RAPID EVOLUTION; CD-HIT Gene expression changes have been recognized as important drivers of adaptation to changing environmental conditions. Little is known about the relative roles of plastic and evolutionary responses in complex gene expression networks during the early stages of divergence. Large gene expression data sets coupled with in silico methods for identifying coexpressed modules now enable systems genetics approaches also in nonmodel species for better understanding of gene expression responses during early divergence. Here, we combined gene coexpression analyses with population genetics to separate plastic and population (evolutionary) effects in expression networks using small salmonid populations as a model system. We show that plastic and population effects were highly variable among the six identified modules and that the plastic effects explained larger proportion of the total eigengene expression than population effects. A more detailed analysis of the population effects using a Q(ST)-F-ST comparison across 16,622 annotated transcripts revealed that gene expression followed neutral expectations within modules and at the global level. Furthermore, two modules showed enrichment for genes coding for early developmental traits that have been previously identified as important phenotypic traits in thermal responses in the same model system indicating that coexpression analysis can capture expression patterns underlying ecologically important traits. We suggest that module-specific responses may facilitate the flexible tuning of expression levels to local thermal conditions. Overall, our study indicates that plasticity and neutral evolution are the main drivers of gene expression variance in the early stages of thermal adaptation in this system. [Makinen, Hannu; Savilammi, Tiina; Papakostas, Spiros; Leder, Erica] Univ Turku, Dept Biol, Turku, Finland; [Leder, Erica] Univ Oslo, Nat Hist Museum, Oslo, Norway; [Vollestad, Leif A.] Univ Oslo, Dept Biosci, Ctr Ecol & Evolutionary Synth, Oslo, Norway; [Primmer, Craig R.] Univ Helsinki, Dept Biosci, Helsinki, Finland; [Primmer, Craig R.] Univ Helsinki, Inst Biotechnol, Helsinki, Finland Makinen, H (reprint author), Univ Turku, Dept Biol, Turku, Finland. hamakine@gmail.com Primmer, Craig/0000-0002-3687-8435 Academy of Finland [287342, 302873]; Norwegian Research Council [177728]; Finnish Cultural Foundation This study was financially supported through grants from the Academy of Finland (project numbers 287342 and 302873) and the Norwegian Research Council (project number 177728), and the Finnish Cultural Foundation. The authors thank Tutku Aykanat for assistance with QST-FST comparisons, and Ane Kvinge for assistance with field sampling and the common garden experiment. We acknowledge the CSC-IT Center for Science in Finland for providing computational resources. We also thank two anonymous reviewers for constructive comments on an earlier version of this manuscript. Alvarez M, 2015, MOL ECOL, V24, P710, DOI 10.1111/mec.13055; Andrews S, 2010, FASTQC QUALITY CONTR; Aubin-Horth N, 2009, MOL ECOL, V18, P3763, DOI 10.1111/j.1365-294X.2009.04313.x; Aykanat T, 2011, GENETICA, V139, P233, DOI 10.1007/s10709-010-9540-2; Bates D, 2015, J STAT SOFTW, V67, P1; Benson DA, 2013, NUCLEIC ACIDS RES, V41, pD36, DOI 10.1093/nar/gks1195; Brommer JE, 2011, J EVOLUTION BIOL, V24, P1160, DOI 10.1111/j.1420-9101.2011.02268.x; Camacho C, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-421; Chan YF, 2010, SCIENCE, V327, P302, DOI 10.1126/science.1182213; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Chezik KA, 2014, CAN J FISH AQUAT SCI, V71, P47, DOI 10.1139/cjfas-2013-0295; Clune J, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2863; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Crispo E, 2007, EVOLUTION, V61, P2469, DOI 10.1111/j.1558-5646.2007.00203.x; Crozier LG, 2014, EVOL APPL, V7, P68, DOI 10.1111/eva.12135; Cunningham F, 2015, NUCLEIC ACIDS RES, V43, pD662, DOI 10.1093/nar/gku1010; De Wit P, 2015, MOL ECOL, V24, P2310, DOI 10.1111/mec.13165; DeBiasse MB, 2016, J HERED, V107, P71, DOI 10.1093/jhered/esv073; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Diz AP, 2012, MOL ECOL, V21, P1060, DOI 10.1111/j.1365-294X.2011.05426.x; Draghi JA, 2012, EVOLUTION, V66, P2891, DOI 10.1111/j.1558-5646.2012.01649.x; Ehrenreich IM, 2016, ANN BOT-LONDON, V117, P769, DOI 10.1093/aob/mcv130; Espinosa-Soto C, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1000719; Feltus FA, 2014, PLANT SCI, V223, P45, DOI 10.1016/j.plantsci.2014.03.003; Fierst JL, 2011, J EVOLUTION BIOL, V24, P1992, DOI 10.1111/j.1420-9101.2011.02333.x; Filteau M, 2013, MOL BIOL EVOL, V30, P1384, DOI 10.1093/molbev/mst053; Fischer EK, 2016, INTEGR COMP BIOL, V56, P877, DOI 10.1093/icb/icw087; Foll M, 2008, GENETICS, V180, P977, DOI 10.1534/genetics.108.092221; Forsman A, 2015, HEREDITY, V115, P276, DOI 10.1038/hdy.2014.92; Franks SJ, 2012, ANNU REV GENET, V46, P185, DOI 10.1146/annurev-genet-110711-155511; Fraser HB, 2011, BIOESSAYS, V33, P469, DOI 10.1002/bies.201000094; Fu LM, 2012, BIOINFORMATICS, V28, P3150, DOI 10.1093/bioinformatics/bts565; Fusco G, 2010, PHILOS T R SOC B, V365, P547, DOI 10.1098/rstb.2009.0267; Garfield DA, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001696; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Ghalambor CK, 2015, NATURE, V525, P372, DOI 10.1038/nature15256; Gienapp P, 2008, MOL ECOL, V17, P167, DOI 10.1111/j.1365-294X.2007.03413.x; Gregersen F, 2008, ECOL FRESHW FISH, V17, P110, DOI 10.1111/j.1600-0633.2007.00264.x; Guenther CA, 2014, NAT GENET, V46, P748, DOI 10.1038/ng.2991; Haas BJ, 2013, NAT PROTOC, V8, P1494, DOI 10.1038/nprot.2013.084; Han JDJ, 2004, NATURE, V430, P88, DOI 10.1038/nature02555; Harrison PW, 2012, SEMIN CELL DEV BIOL, V23, P222, DOI 10.1016/j.semcdb.2011.12.004; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Haugen TO, 2000, J EVOLUTION BIOL, V13, P897, DOI 10.1046/j.1420-9101.2000.00242.x; Haugen TO, 2000, J FISH BIOL, V56, P1173, DOI 10.1006/jfbi.2000.1238; Hendry AP, 2016, J HERED, V107, P25, DOI 10.1093/jhered/esv060; Hoekstra HE, 2007, EVOLUTION, V61, P995, DOI 10.1111/j.1558-5646.2007.00105.x; Jarvela AMC, 2015, EVODEVO, V6, DOI 10.1186/2041-9139-6-3; Jombart T, 2011, BIOINFORMATICS, V27, P3070, DOI 10.1093/bioinformatics/btr521; Junge C, 2014, AQUAT CONSERV, V24, P297, DOI 10.1002/aqc.2391; Kavanagh KD, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-350; Khaitovich P, 2004, PLOS BIOL, V2, P682, DOI 10.1371/journal.pbio.0020132; Kohn MH, 2008, GENES GENET SYST, V83, P265, DOI 10.1266/ggs.83.265; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; Laarits T, 2016, J EVOLUTION BIOL, V29, P1602, DOI 10.1111/jeb.12897; Lande R, 2015, MOL ECOL, V24, P2038, DOI 10.1111/mec.13037; Langfelder P, 2007, BMC SYST BIOL, V1, DOI 10.1186/1752-0509-1-54; Langfelder P, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-559; Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/nmeth.1923, 10.1038/NMETH.1923]; Leder EH, 2015, MOL BIOL EVOL, V32, P674, DOI 10.1093/molbev/msu328; Leinonen T, 2008, J EVOLUTION BIOL, V21, P1, DOI 10.1111/j.1420-9101.2007.01445.x; Leinonen T, 2013, NAT REV GENET, V14, P179, DOI 10.1038/nrg3395; Lemos B, 2005, EVOLUTION, V59, P126; Levy SF, 2008, PLOS BIOL, V6, P2588, DOI 10.1371/journal.pbio.0060264; Li H, 2009, BIOINFORMATICS, V25, P2078, DOI 10.1093/bioinformatics/btp352; Li WZ, 2006, BIOINFORMATICS, V22, P1658, DOI 10.1093/bioinformatics/btl158; Lopez-Maury L, 2008, NAT REV GENET, V9, P583, DOI 10.1038/nrg2398; Merila J, 2012, BIOESSAYS, V34, P811, DOI 10.1002/bies.201200054; Merila J, 2014, EVOL APPL, V7, P1, DOI 10.1111/eva.12137; Messer PW, 2016, TRENDS GENET, V32, P408, DOI 10.1016/j.tig.2016.04.005; Morris MRJ, 2013, CURR ZOOL, V59, P526, DOI 10.1093/czoolo/59.4.526; Murren CJ, 2015, HEREDITY, V115, P293, DOI 10.1038/hdy.2015.8; Narum SR, 2013, MOL ECOL, V22, P3090, DOI 10.1111/mec.12240; Nei M, 2010, ANNU REV GENOM HUM G, V11, P265, DOI 10.1146/annurev-genom-082908-150129; O'Hara RB, 2005, GENETICS, V171, P1331, DOI 10.1534/genetics.105.044545; Papakostas S, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5071; Parter M, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-169; Pearson JC, 2005, NAT REV GENET, V6, P893, DOI 10.1038/nrg1726; Phifer-Rixey M, 2014, GENETICS, V198, P283, DOI 10.1534/genetics.114.166827; Pigliucci M, 2006, J EXP BIOL, V209, P2362, DOI 10.1242/jeb.02070; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; Puebla O, 2014, MOL ECOL, V23, P5291, DOI 10.1111/mec.12926; Reusch TBH, 2014, EVOL APPL, V7, P104, DOI 10.1111/eva.12109; Rifkin SA, 2003, NAT GENET, V33, P138, DOI 10.1038/ng1086; Risso D, 2014, NAT BIOTECHNOL, V32, P896, DOI 10.1038/nbt.2931; Roberge C, 2007, GENETICS, V177, P1011, DOI 10.1534/genetics.107.073759; Roberts A, 2013, NAT METHODS, V10, P71, DOI [10.1038/NMETH.2251, 10.1038/nmeth.2251]; Rohlfs RV, 2014, MOL BIOL EVOL, V31, P201, DOI 10.1093/molbev/mst190; Romero IG, 2012, NAT REV GENET, V13, P505, DOI 10.1038/nrg3229; Ruprecht C, 2017, TRENDS PLANT SCI, V22, P298, DOI 10.1016/j.tplants.2016.12.011; Salinas S, 2012, ECOL LETT, V15, P159, DOI 10.1111/j.1461-0248.2011.01721.x; Schlichting CD, 2014, EVOLUTION, V68, P656, DOI 10.1111/evo.12348; Schneider RF, 2017, MOL ECOL, V26, P330, DOI 10.1111/mec.13880; Shama LNS, 2016, EVOL APPL, V9, P1096, DOI 10.1111/eva.12370; Shaw RG, 2012, NEW PHYTOL, V195, P752, DOI 10.1111/j.1469-8137.2012.04230.x; Siegal ML, 2007, GENETICA, V129, P83, DOI 10.1007/s10709-006-0035-0; Sikkink KL, 2014, G3-GENES GENOM GENET, V4, P1103, DOI 10.1534/g3.114.010553; Smeds L, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026314; Snell-Rood EC, 2010, BIOESSAYS, V32, P71, DOI 10.1002/bies.200900132; Soyer OS, 2013, BIOESSAYS, V35, P696, DOI 10.1002/bies.201300029; Supek F, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021800; Szklarczyk D, 2015, NUCLEIC ACIDS RES, V43, pD447, DOI 10.1093/nar/gku1003; Thomassen G, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-360; WADDINGTON CH, 1953, EVOLUTION, V7, P118, DOI 10.2307/2405747; Wagner GP, 1996, AM ZOOL, V36, P36; Wagner GP, 1996, EVOLUTION, V50, P967, DOI 10.1111/j.1558-5646.1996.tb02339.x; Wagner GP, 2007, NAT REV GENET, V8, P921, DOI 10.1038/nrg2267; Walworth NG, 2016, P NATL ACAD SCI USA, V113, pE7367, DOI 10.1073/pnas.1605202113; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whitehead A, 2006, MOL ECOL, V15, P1197, DOI 10.1111/j.1365-294X.2006.02868.x; Whitlock MC, 2008, MOL ECOL, V17, P1885, DOI 10.1111/j.1365-294X.2008.03712.x; Xiong F, 2017, HUM MUTAT, V38, P95, DOI 10.1002/humu.23130 113 0 0 3 6 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1759-6653 GENOME BIOL EVOL Genome Biol. Evol. JAN 2018 10 1 77 93 10.1093/gbe/evx278 17 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity FV9FR WOS:000424893500007 29293993 DOAJ Gold, Green Published 2019-02-21 J Montero-Serra, I; Garrabou, J; Doak, DF; Figuerola, L; Hereu, B; Ledoux, JB; Linares, C Montero-Serra, Ignasi; Garrabou, Joaquim; Doak, Daniel F.; Figuerola, Laura; Hereu, Bernat; Ledoux, Jean-Baptiste; Linares, Cristina Accounting for Life-History Strategies and Timescales in Marine Restoration CONSERVATION LETTERS English Article Comparative demography; coral reefs; Corallium rubrum; integral projection models; life-history tradeoffs; octocorals; restoration; Mediterranean sea; transplants MEDITERRANEAN RED CORAL; PRECIOUS CORALS; REEF CORALS; CONSERVATION; TRANSPLANTATION; MANAGEMENT; TRAITS; BIODIVERSITY; RECRUITMENT; POPULATIONS Understanding the drivers of restoration success is a central issue for marine conservation. Here, we explore the role of life-history strategies of sessile marine species in shaping restoration outcomes and their associated timescales. A transplantation experiment for the extremely slow-growing and threatened octocoral Corallium rubrum was highly successful over a relatively short term due to high survival and reproductive potential of the transplanted colonies. However, demographic projections predict that from 30 to 40 years may be required for fully functional C. rubrum populations to develop. More broadly, a comprehensive meta-analysis revealed a negative correlation between survival after transplanting and growth rates among sessile species. As a result, simulated dynamics for a range of marine sessile invertebrates predict that longer recovery times are positively associated with survival rates. These results demonstrate a tradeoff between initial transplantation efforts and the speed of recovery. Transplantation of slow-growing species will tend to require lower initial effort due to higher survival after transplanting, but the period required to fully recover habitat complexity will tend to be far longer. This study highlights the important role of life history as a driver of marine restoration outcomes and shows how demographic knowledge and modeling tools can help managers to anticipate the dynamics and timescales of restored populations. [Montero-Serra, Ignasi; Figuerola, Laura; Hereu, Bernat; Linares, Cristina] Univ Barcelona, Dept Biol Evolut Ecol & Ciencies Ambientals, Avda Diagonal 643, E-08028 Barcelona, Spain; [Garrabou, Joaquim; Ledoux, Jean-Baptiste] CSIC, Inst Ciencias Mar, Passeig Maritim Barceloneta 37-49, E-08003 Barcelona, Spain; [Garrabou, Joaquim] Univ Toulon & Var, Aix Marseille Univ, UM CNRS IRD 110, MIO, Campus Luminy Oceanomed,Batiment Mediterranee, F-13288 Marseille 09, France; [Doak, Daniel F.] Univ Colorado, Environm Studies Program, Boulder, CO 80309 USA; [Ledoux, Jean-Baptiste] Univ Porto, Interdisciplinary Ctr Marine & Environm Res, CIIMAR CIMAR, Rua Bragas 177, P-4050123 Oporto, Portugal Montero-Serra, I (reprint author), Univ Barcelona, Dept Biol Evolut Ecol & Ciencies Ambientals, Avda Diagonal 643, E-08028 Barcelona, Spain. monteroserra@gmail.com Montero-Serra, Ignasi/0000-0003-0284-0591; Linares, Cristina/0000-0003-3855-2743 Spanish MINECO [CTM2009-08045, CGL2012-32194]; Oak Foundation; TOTAL Foundation Perfect Project; European Union's Horizon research and innovation programme [689518]; FPI grant [BES-2013-066150]; Ramon y Cajal [RyC-2011-08134]; [SFRH/BPD/74400/2010] The authors thank the Agents Rurals de Catalunya for their invaluable work against red coral poaching. We are indebted to A Lorente for his support. We thank E Aspillaga and L Navarro for field assistance. P Capdevila, A Gori, K Kaplan, A Medrano, and two anonymous reviewers provided valuable comments on the manuscript. Funding was provided by the Spanish MINECO (CTM2009-08045 and CGL2012-32194), the Oak Foundation, the TOTAL Foundation Perfect Project, and the European Union's Horizon 2020 research and innovation programme under grant agreement No 689518 (MERCES). This output reflects only the author's view and the European Union cannot be held responsible for any use that may be made of the information contained therein. IMS was supported by a FPI grant (BES-2013-066150), CL by a Ramon y Cajal (RyC-2011-08134), and JBL by a Postdoctoral grant (SFRH/BPD/74400/2010). Authors are part of the Medrecover group (2014SGR1297). Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Airoldi L, 2007, OCEANOGR MAR BIOL, V45, P345; Bayraktarov E, 2016, ECOL APPL, V26, P1055, DOI 10.1890/15-1077; Bruckner AW, 2014, CURR OPIN ENV SUST, V7, P1, DOI 10.1016/j.cosust.2013.11.024; Bruckner AW, 2009, MAR ECOL PROG SER, V397, P319, DOI 10.3354/meps08110; Bull JW, 2014, CONSERV BIOL, V28, P799, DOI 10.1111/cobi.12243; Cabaitan PC, 2008, J EXP MAR BIOL ECOL, V357, P85, DOI 10.1016/j.jembe.2008.01.001; Cau A., 2013, ADAPTIVE MANAGEMENT; Darling ES, 2012, ECOL LETT, V15, P1378, DOI 10.1111/j.1461-0248.2012.01861.x; Dizon RT, 2006, MAR BIOL, V148, P933, DOI 10.1007/s00227-005-0142-y; DRAP P, 2013, 24 INT CIPA S STRASB, V40, P231; Edgar GJ, 2014, NATURE, V506, P216, DOI 10.1038/nature13022; Edwards A. J, 2007, CORAL REEF TARGETED; Edwards AJ, 1998, MAR POLLUT BULL, V37, P474; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Garrabou J, 2002, J ANIM ECOL, V71, P966, DOI 10.1046/j.1365-2656.2002.00661.x; Glassom D, 2006, MAR ECOL PROG SER, V318, P111, DOI 10.3354/meps318111; Gomez ED, 2014, RESTOR ECOL, V22, P142, DOI 10.1111/rec.12041; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; Kennedy EV, 2013, CURR BIOL, V23, P912, DOI 10.1016/j.cub.2013.04.020; Ledoux JB, 2010, MOL ECOL, V19, P4204, DOI 10.1111/j.1365-294X.2010.04814.x; Linares C, 2008, BIOL CONSERV, V141, P427, DOI 10.1016/j.biocon.2007.10.012; Linares C, 2012, CONSERV BIOL, V26, P88, DOI 10.1111/j.1523-1739.2011.01795.x; Linares C, 2010, MAR ECOL PROG SER, V402, P69, DOI 10.3354/meps08436; Lindenmayer DB, 2009, TRENDS ECOL EVOL, V24, P482, DOI 10.1016/j.tree.2009.03.005; Madin JS, 2016, SCI DATA, V3, DOI 10.1038/sdata.2016.17; Madin JS, 2014, ECOL LETT, V17, P1008, DOI 10.1111/ele.12306; Marba N, 1998, MAR ECOL PROG SER, V174, P269, DOI 10.3354/meps174269; Morris WF, 2002, QUANTITATIVE CONSERV; Ortiz JC, 2014, NAT CLIM CHANGE, V4, P1090, DOI 10.1038/NCLIMATE2439; Palumbi SR, 2009, FRONT ECOL ENVIRON, V7, P204, DOI 10.1890/070135; Perring MP, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00121.1; Possingham HP, 2015, PLOS BIOL, V13, DOI 10.1371/journal.pbio.1002052; Precht William F., 2006, P1, DOI 10.1201/9781420003796.ch1; Benayas JMR, 2009, SCIENCE, V325, P1121, DOI 10.1126/science.1172460; Rinkevich B, 2014, CURR OPIN ENV SUST, V7, P28, DOI 10.1016/j.cosust.2013.11.018; Shaish L, 2010, ECOL ENG, V36, P1424, DOI 10.1016/j.ecoleng.2010.06.022; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tsounis G, 2006, MAR BIOL, V148, P513, DOI 10.1007/s00227-005-0100-8; Tsounis G, 2010, OCEANOGR MAR BIOL, V48, P161, DOI 10.1201/EBK1439821169-c3; Vesk PA, 2008, BIOL CONSERV, V141, P174, DOI 10.1016/j.biocon.2007.09.010 41 4 4 6 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1755-263X CONSERV LETT Conserv. Lett. JAN-FEB 2018 11 1 10.1111/conl.12341 9 Biodiversity Conservation Biodiversity & Conservation FV8HA WOS:000424825900003 DOAJ Gold, Green Published 2019-02-21 J Conroy, CW; Calvert, J; Sherwood, GD; Grabowski, JH Conroy, Christian W.; Calvert, Jay; Sherwood, Graham D.; Grabowski, Jonathan H. Distinct responses of sympatric migrant and resident Atlantic cod phenotypes to substrate and temperature at a remote Gulf of Maine seamount ICES JOURNAL OF MARINE SCIENCE English Article Atlantic cod; behaviour; benthic habitat; gadid; Gadus morhua; internal waves; migrant; migration; migratory strategy; partial migration; red cod; resident; substrate; temperature; thermal condition GADUS-MORHUA L.; PARTIAL MIGRATION; PLACOPECTEN-MAGELLANICUS; POPULATION-STRUCTURE; VERTICAL MIGRATION; NORTHWEST ATLANTIC; BROADCAST SPAWNER; FOOD AVAILABILITY; STOCK STRUCTURE; SOCKEYE-SALMON Life-history strategies often vary within motile marine species, affecting morphometry, growth, diet, and fecundity. Atlantic cod (Gadus morhua) in the Gulf of Maine display marked variation in a number of life-history traits, exemplified by differences in body colour. Migratory behaviours are suspected to differ among these colour types, but have yet to be shown definitively. Here, we used the combination of an acoustic telemetry system and fine-scale benthic habitat maps to reveal that the red phenotype cod adhered to an isolated kelp forest covering <2 km(2) of a seamount in the central Gulf of Maine. Meanwhile, the olive phenotype cod adopted diel vertical migratory behaviour, possibly in response to a temperature gradient. Use of shallow, structured habitat was influenced by temperature and may be enabled by dynamic conditions related to internal waves that persist throughout the summer and early fall. Detections decreased in response to changing thermal conditions, although phenotypes reacted to these changes in distinct ways: the olive phenotype abandoned shallow habitat prior to peak summer temperatures, while the red phenotype remained until mid-fall when temperatures and temperature variability declined. Our findings support a link between morphometry, colour, behavioural strategies, and habitat preferences that may be widespread in Atlantic cod. [Conroy, Christian W.; Grabowski, Jonathan H.] Northeastern Univ, Coll Sci, Marine Sci Ctr, Dept Marine & Environm Sci, Nahant, MA 01908 USA; [Calvert, Jay] Univ Ulster, Sch Environm Sci, Ctr Coastal & Marine Res, Cromore Rd, Londonderry BT52 1SA, North Ireland; [Sherwood, Graham D.] Gulf Maine Res Inst, 350 Commercial St, Portland, ME 04101 USA Conroy, CW (reprint author), Northeastern Univ, Coll Sci, Marine Sci Ctr, Dept Marine & Environm Sci, Nahant, MA 01908 USA. conroy.chr@husky.neu.edu American Fisheries Society Marine Fisheries Section's Steven Berkeley Marine Conservation Fellowship This research was generously supported by The American Fisheries Society Marine Fisheries Section's Steven Berkeley Marine Conservation Fellowship. Ames EP, 2004, FISHERIES, V29, P10, DOI 10.1577/1548-8446(2004)29[10:ACSSIT]2.0.CO;2; ARNOLD GP, 1992, ICES J MAR SCI, V49, P357, DOI 10.1093/icesjms/49.3.357; Auster P. J., 2005, P AM ACAD UNDERWATER, P89; Baroarson H., 2017, CANADIAN J FISHERIES, DOI [10.1139/cjfas-2016-0307, DOI 10.1139/CJFAS-2016-0307]; Bjornsson B, 2002, CAN J FISH AQUAT SCI, V59, P494, DOI [10.1139/f02-028, 10.1139/F02-028]; Bjornsson B, 2001, ICES J MAR SCI, V58, P29, DOI 10.1006/jmsc.2000.0986; Bradbury IR, 2008, FISH RES, V91, P299, DOI 10.1016/j.fishres.2007.12.006; Burnham K. P, 2002, MODEL SELECTION MULT; Carey JD, 2011, J SHELLFISH RES, V30, P569, DOI 10.2983/035.030.0301; Chapman BB, 2012, J FISH BIOL, V81, P456, DOI 10.1111/j.1095-8649.2012.03342.x; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; Cheng Y., 2011, J GEOPHYS RES OCEANS, V116; CLAIREAUX G, 1995, J EXP BIOL, V198, P49; Claireaux G, 2000, J SEA RES, V44, P257, DOI 10.1016/S1385-1101(00)00053-8; Conroy CW, 2015, MAR ECOL PROG SER, V541, P179, DOI 10.3354/meps11474; Cote D, 2004, J FISH BIOL, V64, P665, DOI 10.1111/j.1095-8649.2004.00331.x; Dannevig A., 1953, RAPPORTS PROCES VERB, V136, P7; Dodson JJ, 2013, BIOL REV, V88, P602, DOI 10.1111/brv.12019; Dormann CF, 2013, ECOGRAPHY, V36, P27, DOI 10.1111/j.1600-0587.2012.07348.x; Dunn MR, 2002, J FISH BIOL, V61, P360, DOI 10.1006/jfbi.2002.2039; Espeland SH, 2007, ICES J MAR SCI, V64, P920, DOI 10.1093/icesjms/fsm028; Freitas C., 2015, ECOLOGY EVOLUTION; Freitas C, 2016, J ANIM ECOL, V85, P628, DOI 10.1111/1365-2656.12458; Freitas V, 2010, PHILOS T R SOC B, V365, P3553, DOI 10.1098/rstb.2010.0049; GARRETT C, 1979, ANNU REV FLUID MECH, V11, P339, DOI 10.1146/annurev.fl.11.010179.002011; Goode G. B., 1887, FISHERIES FISHERY IN; Gosse KR, 2004, ICES J MAR SCI, V61, P752, DOI 10.1016/j.icejms.2004.04.003; Grabowski TB, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017528; Green JM, 2000, J MAR BIOL ASSOC UK, V80, P1077, DOI 10.1017/S0025315400003143; HOP H, 1992, ICES J MAR SCI, V49, P453, DOI 10.1093/icesjms/49.4.453; Howe A. B., 2002, TR12 MASS DIV MAR FI, P1; Howell WH, 2008, FISH RES, V91, P123, DOI 10.1016/j.fishres.2007.11.021; Hutchings JA, 1999, CAN J FISH AQUAT SCI, V56, P97, DOI 10.1139/cjfas-56-1-97; Karlsen BO, 2013, MOL ECOL, V22, P5098, DOI 10.1111/mec.12454; Kerr LA, 2010, ICES J MAR SCI, V67, P1631, DOI 10.1093/icesjms/fsq053; Knutsen H, 2007, MAR ECOL PROG SER, V333, P249, DOI 10.3354/meps333249; Kovach AI, 2010, MAR ECOL PROG SER, V410, P177, DOI 10.3354/meps08612; Kuparinen A, 2016, ICES J MAR SCI, V73, P286, DOI 10.1093/icesjms/fsv181; LESSER MP, 1994, BIOL BULL, V187, P319, DOI 10.2307/1542289; LEVY DA, 1990, CAN J FISH AQUAT SCI, V47, P1796, DOI 10.1139/f90-204; Lindholm J, 2003, MAR TECHNOL SOC J, V37, P27, DOI 10.4031/002533203787537401; Lindholm J, 2007, MAR ECOL PROG SER, V342, P239, DOI 10.3354/meps342239; Lokkeborg S, 1999, ENVIRON BIOL FISH, V54, P345, DOI 10.1023/A:1007504712163; Lough R. G., 2004, NMFSNE190; Lundblad E.R., 2006, MAR GEOD, V29, P89, DOI DOI 10.1080/01490410600738021; MACDONALD PDM, 1979, J FISH RES BOARD CAN, V36, P987, DOI 10.1139/f79-137; McGonigle C, 2011, ESTUAR COAST SHELF S, V91, P87, DOI 10.1016/j.ecss.2010.10.016; Methratta ET, 2006, N AM J FISH MANAGE, V26, P473, DOI 10.1577/M05-041.1; Mills KE, 2013, OCEANOGRAPHY, V26, P191, DOI 10.5670/oceanog.2013.27; Morinville GR, 2008, ENVIRON BIOL FISH, V81, P171, DOI 10.1007/s10641-007-9186-9; Morris CJ, 2002, ICES J MAR SCI, V59, P666, DOI 10.1006/jmsc.2002.1228; Nakagawa S, 2013, METHODS ECOL EVOL, V4, P133, DOI 10.1111/j.2041-210x.2012.00261.x; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19052, DOI 10.1073/pnas.0800375105; Neat FC, 2006, MAR BIOL, V148, P643, DOI 10.1007/s00227-005-0110-6; Neat F, 2007, P R SOC B, V274, P789, DOI 10.1098/rspb.2006.0212; Neuenfeldt S, 2013, J FISH BIOL, V82, P741, DOI 10.1111/jfb.12043; NOAA, 2016, STAT 44005; NOAA, 2016, SOL CALC; Palsson OK, 2003, CAN J FISH AQUAT SCI, V60, P1409, DOI 10.1139/F03-117; Pampoulie C, 2008, BEHAV GENET, V38, P76, DOI 10.1007/s10519-007-9175-y; Perkins H. C., 1997, B NATL RES I AQUAC S, V3, P101; Phillips SJ, 2006, ECOL MODEL, V190, P231, DOI 10.1016/j.ecolmodel.2005.03.026; Phillips SJ, 2008, ECOGRAPHY, V31, P161, DOI 10.1111/j.0906-7590.2008.5203.x; Pile AJ, 1996, MAR ECOL PROG SER, V141, P95, DOI 10.3354/meps141095; Pulido F, 2011, OIKOS, V120, P1776, DOI 10.1111/j.1600-0706.2011.19844.x; R CORE TEAM, 2016, R LANG ENV STAT COMP; Rasband WS, 2012, IMAGE J; Ratz HJ, 2003, FISH RES, V60, P369, DOI 10.1016/S0165-7836(02)00132-7; Reubens JT, 2013, FISH RES, V139, P28, DOI 10.1016/j.fishres.2012.10.011; RILEY S.J, 1999, INTERMOUNT J SCI, V5, P23; Robichaud D, 2004, FISH FISH, V5, P185, DOI 10.1111/j.1467-2679.2004.00141.x; ROSE GA, 1993, NATURE, V366, P458, DOI 10.1038/366458a0; Ruzzante DE, 2000, J FISH BIOL, V56, P431, DOI 10.1006/jfbi.1999.1168; SAIC, 2005, 05TR017 SAIC; Sherwood GD, 2016, ICES J MAR SCI, V73, P316, DOI 10.1093/icesjms/fsv215; Sherwood GD, 2010, ICES J MAR SCI, V67, P1640, DOI 10.1093/icesjms/fsq094; Skov C, 2011, P ROY SOC B-BIOL SCI, V278, P1414, DOI 10.1098/rspb.2010.2035; Steneck RS, 2002, ENVIRON CONSERV, V29, P436, DOI 10.1017/S0376892902000322; Stokesbury KDE, 2010, J SHELLFISH RES, V29, P369, DOI 10.2983/035.029.0212; Strand E, 2007, CAN J FISH AQUAT SCI, V64, P1747, DOI 10.1139/F07-135; Svedang H, 2006, J FISH BIOL, V69, P151, DOI 10.1111/j.1095-8649.2006.01272.x; Uchupi E, 2008, EARTH-SCI REV, V91, P27, DOI 10.1016/j.earscirev.2008.09.002; VADAS RL, 1988, J PHYCOL, V24, P338; Vemco, 2016, 69 KHZ SEA WAT RANG; Witman J. D., 1988, MAR RESOUR GULF MAIN, V88, P67; Witman JD, 2004, FOOD WEB AT THE LANDSCAPE LEVEL, P133; WITMAN JD, 1987, ECOL MONOGR, V57, P167, DOI 10.2307/1942623; WITMAN JD, 1993, P NATL ACAD SCI USA, V90, P1686, DOI 10.1073/pnas.90.5.1686; WITMAN JD, 1992, OECOLOGIA, V90, P305, DOI 10.1007/BF00317686; WITMAN JD, 1985, ECOL MONOGR, V55, P421, DOI 10.2307/2937130; Woody CA, 2002, J FISH BIOL, V60, P340, DOI 10.1006/jfbi.2001.1842; Wroblewski J, 2005, COAST MANAGE, V33, P411, DOI 10.1080/08920750500217930; Wysujack K, 2009, ECOL FRESHW FISH, V18, P52, DOI 10.1111/j.1600-0633.2008.00322.x; Yoneda M, 2005, ICES J MAR SCI, V62, P1387, DOI 10.1016/j.icesjms.2005.04.018 94 1 1 2 6 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1054-3139 1095-9289 ICES J MAR SCI ICES J. Mar. Sci. JAN-FEB 2018 75 1 122 134 10.1093/icesjms/fsx101 13 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography FU8CR WOS:000424080500012 Bronze 2019-02-21 J MacKay, AE; Forsyth, DM; Coulson, G; Festa-Bianchet, M MacKay, Allison E.; Forsyth, David M.; Coulson, Graeme; Festa-Bianchet, Marco Maternal resource allocation adjusts to timing of parturition in an asynchronous breeder BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Early growth rate; Income or capital breeding; Life-history theory; Maternal effects EASTERN GREY KANGAROOS; GESTATION LENGTH; MACROPUS-GIGANTEUS; POUCH YOUNG; GROWTH-RATE; REPRODUCTIVE SUCCESS; INCOME BREEDER; TAMMAR WALLABY; BIGHORN EWES; BIRTH-WEIGHT Environmental variation affects foraging decisions and resources available for allocation among competing life-history traits. In seasonal environments, variation in breeding phenology leads to differences in relative timing of resource intake and expenditure, which can lead to variation in maternal allocation tactics. Monitoring maternal allocation to fetal growth in wild mammals is challenging, however, and few studies have linked seasonal effects of forage and maternal condition to early offspring development. Asynchronous parturition and short gestation make kangaroos ideal for studying phenological effects on very early growth, since pouch young born in different seasons can be measured during stages equivalent to in utero development for eutherian mammals. Over 4 years, we recaptured 68 eastern grey kangaroomother-young pairs with parturition dates spanning 5 months to evaluate how birthdate affects maternal allocation to offspring growth before pouch exit. Structural equation modeling revealed that mothers that gave birth in autumn gained mass during lactation, and their young grew faster than young born in early summer. When later lactation coincided with poor winter forage and cold temperatures, mothers prioritized maintenance of their own mass over offspring growth. Differences in maternal mass change and allocation to early and late-born young suggest that seasonal resource availability influenced tactics of resource storage and expenditure. Our results provide a mechanistic link between reproductive phenology, seasonal forage, and allocation trade-offs in wild mammals, and demonstrate a clear effect of maternal mass change on growth of young during a phase that occurs in utero for eutherian mammals. Significance statement Capital and income breeding are often presented as opposing tactics of resource provisioning. Many species, however, use a combination of stored and concurrent resources to reproduce. In seasonal environments, reproductive phenology should affect the relative timing of resource acquisition and expenditure, which could affect maternal allocation to offspring. We used repeated captures of mother-young kangaroo pairs and path analysis to explain how maternal allocation tactics adjust to season of parturition. Mothers that timed later lactation with cold weather and low winter forage relied more heavily on stored resources for reproduction and allocated less to offspring growth. Flexibility in foraging tactics may explain the variability in kangaroo parturition date by allowing mothers to use stored energy to sustain reproduction during periods of scarce forage. [MacKay, Allison E.; Festa-Bianchet, Marco] Univ Sherbrooke, Dept Biol, 2500 Blvd Univ, Sherbrooke, PQ J1K 2R1, Canada; [MacKay, Allison E.; Festa-Bianchet, Marco] McGill Univ, Quebec Ctr Biodivers Sci, Dept Biol, Stewart Biol Bldg,1205 Dr Penfield Ave, Montreal, PQ H3A 1B1, Canada; [Forsyth, David M.; Coulson, Graeme; Festa-Bianchet, Marco] Univ Melbourne, Sch BioSci, Melbourne, Vic 3010, Australia; [Forsyth, David M.] New South Wales Dept Primary Ind, Vertebrate Pest Res Unit, 1447 Forest Rd, Orange, NSW 2800, Australia MacKay, AE (reprint author), Univ Sherbrooke, Dept Biol, 2500 Blvd Univ, Sherbrooke, PQ J1K 2R1, Canada.; MacKay, AE (reprint author), McGill Univ, Quebec Ctr Biodivers Sci, Dept Biol, Stewart Biol Bldg,1205 Dr Penfield Ave, Montreal, PQ H3A 1B1, Canada. allison.mackay@Usherbrooke.ca Natural Sciences and Engineering Research Council of Canada (NSERC); Australian Research Council (ARC) Linkage Program [LP0560344]; Ministere de l'Education, du Loisir et du Sport of Quebec (MELS); Parks Victoria; Quebec Center for Biodiversity Science; University of Melbourne; Universite de Sherbrooke This research was supported financially by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Australian Research Council (ARC) Linkage Program (LP0560344), the Ministere de l'Education, du Loisir et du Sport of Quebec (MELS), Parks Victoria, the Quebec Center for Biodiversity Science, the University of Melbourne and the Universite de Sherbrooke. We appreciate the logistic support of Parks Victoria. ALBON SD, 1983, J ZOOL, V200, P295; Andersen R, 2000, J ANIM ECOL, V69, P672, DOI 10.1046/j.1365-2656.2000.00425.x; ATRAMENTOWICZ M, 1995, J MAMMAL, V76, P1213, DOI 10.2307/1382614; Beauplet G, 2005, J ANIM ECOL, V74, P1160, DOI 10.1111/j.1365-2656.2005.01016.x; BOGGS CL, 1992, FUNCT ECOL, V6, P508, DOI 10.2307/2390047; Bollen KA, 2013, HDB CAUSAL ANAL SOCI, P245; Boltnev AI, 1998, CAN J ZOOL, V76, P843, DOI 10.1139/cjz-76-5-843; BOWEN WD, 1992, PHYSIOL ZOOL, V65, P844, DOI 10.1086/physzool.65.4.30158543; BOWMAN JE, 1995, AM J PHYS ANTHROPOL, V96, P159, DOI 10.1002/ajpa.1330960205; Brommer J, 2000, AM NAT, V155, P454, DOI 10.1086/303335; Broussard DR, 2005, CAN J ZOOL, V83, P546, DOI 10.1139/Z05-044; Byers JA, 1995, BEHAV ECOL, V6, P451, DOI 10.1093/beheco/6.4.451; Ceesay SM, 1997, BMJ-BRIT MED J, V315, P786; Christiansen F, 2014, FUNCT ECOL, V28, P579, DOI 10.1111/1365-2435.12200; Clements MN, 2011, FUNCT ECOL, V25, P691, DOI 10.1111/j.1365-2435.2010.01812.x; Cote SD, 2001, OECOLOGIA, V127, P230, DOI 10.1007/s004420000584; Davis NE, 2010, BIOL INVASIONS, V12, P1079, DOI 10.1007/s10530-009-9525-1; Degabriel JL, 2009, ECOLOGY, V90, P711, DOI 10.1890/08-0940.1; DELANEY R, 1990, AUST WILDLIFE RES, V17, P491, DOI 10.1071/WR9900491; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Feder C, 2008, OECOLOGIA, V156, P773, DOI 10.1007/s00442-008-1035-9; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; Festa-Bianchet M, 1998, BEHAV ECOL, V9, P144, DOI 10.1093/beheco/9.2.144; FORCHHAMMER MC, 1995, CAN J ZOOL, V73, P1344, DOI 10.1139/z95-158; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Garel M, 2006, ECOLOGY, V87, P745, DOI 10.1890/05-0584; Gelin U, 2016, OECOLOGIA, V180, P1127, DOI 10.1007/s00442-015-3531-z; Gelin U, 2013, ANIM BEHAV, V86, P885, DOI 10.1016/j.anbehav.2013.08.016; Glass R, 2015, WILDLIFE RES, V42, P633, DOI 10.1071/WR15029; HAYSSEN V, 1985, AM NAT, V126, P617, DOI 10.1086/284443; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Hogg JT, 2017, ECOSPHERE, V8, DOI 10.1002/ecs2.1766; HOLST PJ, 1992, AUST J EXP AGR, V32, P11, DOI 10.1071/EA9920011; JARMAN PJ, 1991, ADV STUD BEHAV, V20, P1, DOI 10.1016/S0065-3454(08)60318-6; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Kerby J, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0484; King W. J., 2011, Australian Mammalogy, V33, P47, DOI 10.1071/AM10029; Kuruppath S, 2012, J BIOSCIENCES, V37, P581, DOI 10.1007/s12038-012-9247-x; Lewis RJ, 2005, AM J PRIMATOL, V67, P365, DOI 10.1002/ajp.20190; Little T. D., 2007, MODELING CONTEXTUAL, P207, DOI DOI 10.1198/TECH.2006.S369; Lowry PB, 2014, IEEE T PROF COMMUN, V57, P123, DOI 10.1109/TPC.2014.2312452; Lummaa V, 2002, TRENDS ECOL EVOL, V17, P141, DOI 10.1016/S0169-5347(01)02414-4; Marcil-Ferland D, 2013, AM NAT, V182, P775, DOI 10.1086/673534; Martin JGA, 2010, AM NAT, V176, P414, DOI 10.1086/656267; Mazerolle MJ, 2015, PACKAGE AICCMODAVG; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Morel MCGD, 2002, ANIM REPROD SCI, V74, P175, DOI 10.1016/S0378-4320(02)00171-9; Nicholas K, 2012, SEMIN CELL DEV BIOL, V23, P547, DOI 10.1016/j.semcdb.2012.03.016; Oftedal OT, 2000, P NUTR SOC, V59, P99, DOI 10.1017/S0029665100000124; Pearl J., 2012, HDB STRUCTURAL EQUAT, P68; POOLE WE, 1982, AUST WILDLIFE RES, V9, P9; Quesnel L, 2017, J ZOOL, V302, P252, DOI 10.1111/jzo.12453; R Core Team, 2016, R LANG ENV STAT COMP; Reimers Eigil, 1997, Rangifer, V17, P105; Rosseel Y., 2015, PACKAGE LAVAAN; Schwanz LE, 2012, AUST J ZOOL, V60, P111, DOI 10.1071/ZO12024; Shipley B, 2016, CAUSE CORRELATION BI; Shipley B, 2013, ECOLOGY, V94, P560, DOI 10.1890/12-0976.1; SKOGLAND T, 1984, Rangifer, V4, P39; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Stern H, 2000, AUST METEOROL MAG, V49, P87; Strand LB, 2011, ENVIRON RES, V111, P451, DOI 10.1016/j.envres.2011.01.023; Therrien JF, 2008, ANIM BEHAV, V75, P235, DOI 10.1016/j.anbehav.2007.04.030; Trott JF, 2003, BIOL REPROD, V68, P929, DOI 10.1095/biolreprod.102.005934; Tyndale-Biscoe H., 1987, REPROD PHYSL MARSUPI; West HJ, 1996, BRIT J NUTR, V75, P593, DOI 10.1079/BJN19960162; Wheatley KE, 2008, OECOLOGIA, V155, P11, DOI 10.1007/s00442-007-0888-7; WOOD JT, 1983, AUST WILDLIFE RES, V10, P213 68 0 0 11 14 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JAN 2018 72 1 UNSP 7 10.1007/s00265-017-2419-9 10 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology FU4XG WOS:000423855300007 2019-02-21 J Meister, H; Hamalainen, HR; Valdma, D; Martverk, M; Tammaru, T Meister, Hendrik; Hamalainen, Henna Reetta; Valdma, Daniel; Martverk, Merili; Tammaru, Toomas How to become larger: ontogenetic basis of among-population size differences in a moth ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article altitudinal and latitudinal differences; common garden; converse Bergmann's rule; development time; egg size; fecundity; growth curve; instantaneous growth rate; Lepidoptera; longevity; Ematurga atomaria; Geometridae FOREST TENT CATERPILLAR; LIFE-HISTORY EVOLUTION; VARIABLE INSTAR NUMBER; BODY-SIZE; EGG SIZE; GEOMETRID MOTH; BERGMANNS RULE; LEPIDOPTERA-GEOMETRIDAE; GEOGRAPHIC-VARIATION; DEVELOPMENT TIME Evolutionary studies on animal body size have primarily focussed on selective pressures operating during the adult life. In contrast, ontogenetic pathways leading to differently sized adults have received less attention. In the present study, based on a common garden experiment, we report considerable genetic differences in body size among European populations of Ematurga atomaria (L.) (Lepidoptera: Geometridae). In terms of body mass, the moths from a southern (Georgian) population are twice as large as their northern (Estonian) conspecifics. Detailed monitoring of larval growth schedules revealed that the size difference arises through a longer development period of the Georgian larvae, with no difference in the number of instars. Differential (instantaneous) growth rates of the larvae do not differ between the populations. Eggs and newly hatched larvae are larger in the Georgian population but the difference vanishes in the second instar. The larger size of the Georgian moths is regained through higher relative mass increments during each of the three final instars. Such gradual accumulation of the difference' confirms the idea about constraints on substantial evolutionary changes in growth patterns within a single instar. The larger Georgian moths were found to be considerably more fecund which implies a strong selection for large female size. It remains unclear which counteracting selective pressures have favored the smaller size of Estonian conspecifics. As the associated difference in egg size appears not to be carried over to larger larval size, the adaptive value of larger eggs is not likely in contributing to the prospective large adult size. The larger eggs of the Georgian population should have an adaptive value per se, or represent a mechanistic consequence of larger maternal body size. [Meister, Hendrik; Valdma, Daniel; Martverk, Merili; Tammaru, Toomas] Univ Tartu, Dept Zool, Vanemuise 46, EE-51014 Tartu, Estonia; [Hamalainen, Henna Reetta] Univ Oulu, Dept Ecol & Genet, Oulu, Finland Meister, H (reprint author), Univ Tartu, Dept Zool, Vanemuise 46, EE-51014 Tartu, Estonia. hendrik.meister@gmail.com Meister, Hendrik/0000-0002-3276-0835 institutional research funding IUT of the Estonian Ministry of Education and Research [IUT20-33] We thank Ando Vaan, Annika Suu, Eve Mols, Hedvig Liblikas, Liisi Laks, Niko Rainer Johansson, Sonja Viinamaki, and Tiina Stanevit for help in the lab. We thank Freerk Molleman, Mari-Liis Viljur, Robert Barry Davis, Sami Mikael Kivela, Sille Holm, Tiit Teder, Toomas Esperk, and Virve Sober for comments on the manuscript, and George Japoshvili for his help with expeditions to Georgia. The study was supported by institutional research funding IUT (IUT20-33) of the Estonian Ministry of Education and Research. All data have been deposited in public digital repository figshare: . Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Armbruster P, 2006, ANN ENTOMOL SOC AM, V99, P1234, DOI 10.1603/0013-8746(2006)99[1234:GVOLGI]2.0.CO;2; Arnett AE, 1999, J BIOGEOGR, V26, P275, DOI 10.1046/j.1365-2699.1999.00271.x; Arnett AE, 2003, ECOL ENTOMOL, V28, P645, DOI 10.1111/j.1365-2311.2003.00554.x; AYRES MP, 1987, OIKOS, V48, P273, DOI 10.2307/3565514; Azevedo RBR, 1996, EVOLUTION, V50, P2338, DOI 10.1111/j.1558-5646.1996.tb03621.x; Azevedo RBR, 2002, J INSECT PHYSIOL, V48, P231, DOI 10.1016/S0022-1910(01)00168-8; Barraclough EI, 2014, EUR J ENTOMOL, V111, P501, DOI 10.14411/eje.2014.062; Barton M, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095258; Berger D, 2006, EVOL ECOL, V20, P575, DOI 10.1007/s10682-006-9118-8; Berger D, 2012, J ANIM ECOL, V81, P1244, DOI 10.1111/j.1365-2656.2012.02010.x; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; Berthiaume R, 2009, B ENTOMOL RES, V99, P493, DOI 10.1017/S0007485308006536; Blanckenhorn WU, 2007, AM NAT, V169, P245, DOI 10.1086/510597; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Blanckenhorn WU, 2005, J THERM BIOL, V30, P213, DOI 10.1016/j.jtherbio.2004.11.004; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; BLANCKENHORN WU, 1995, J EVOLUTION BIOL, V8, P21, DOI 10.1046/j.1420-9101.1995.8010021.x; BLAU WS, 1981, OECOLOGIA, V48, P116, DOI 10.1007/BF00346997; BRITTAIN JE, 1984, J ANIM ECOL, V53, P161, DOI 10.2307/4349; Budriene A, 2013, CR BIOL, V336, P57, DOI 10.1016/j.crvi.2013.03.001; Callier V, 2011, P NATL ACAD SCI USA, V108, P14664, DOI 10.1073/pnas.1106556108; CHAPMAN R. F., 2013, INSECTS STRUCTURE FU; Chown SL, 2010, BIOL REV, V85, P139, DOI 10.1111/j.1469-185X.2009.00097.x; Czesak ME, 2003, EVOLUTION, V57, P1121; Davis RB, 2012, J EVOLUTION BIOL, V25, P210, DOI 10.1111/j.1420-9101.2011.02420.x; Davis RB, 2016, ECOLOGY, V97, P2112, DOI 10.1002/ecy.1435; Esperk T, 2004, PHYSIOL ENTOMOL, V29, P56, DOI 10.1111/j.1365-3032.2004.0365.x; Esperk T, 2007, ECOL ENTOMOL, V32, P243, DOI 10.1111/j.1365-2311.2007.00872.x; Esperk T, 2006, EUR J ENTOMOL, V103, P575, DOI 10.14411/eje.2006.078; Esperk T, 2013, EVOL ECOL, V27, P315, DOI 10.1007/s10682-012-9598-7; Etile E, 2008, OIKOS, V117, P135, DOI 10.1111/j.2007.0030-1299.16114.x; Fischer K, 2001, POPUL ECOL, V43, P105, DOI 10.1007/PL00012009; FOX CW, 1994, OECOLOGIA, V97, P382, DOI 10.1007/BF00317329; FOX CW, 1993, EVOLUTION, V47, P166, DOI 10.1111/j.1558-5646.1993.tb01207.x; Friberg M, 2012, OECOLOGIA, V169, P623, DOI 10.1007/s00442-011-2238-z; Garcia-Barros E., 1992, Graellsia, V48, P45; Gomi T, 2006, APPL ENTOMOL ZOOL, V41, P303, DOI 10.1303/aez.2006.303; Gotthard K, 1999, OIKOS, V84, P453, DOI 10.2307/3546424; Gotthard K, 2008, BIOSCIENCE, V58, P222, DOI 10.1641/B580308; Greenlee KJ, 2004, J EXP BIOL, V207, P509, DOI 10.1242/jeb.00766; Grunert LW, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0127988; HARVEY GT, 1983, CAN ENTOMOL, V115, P1103, DOI 10.4039/Ent1151103-9; Higgins LE, 1996, EVOLUTION, V50, P573, DOI 10.1111/j.1558-5646.1996.tb03869.x; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Horne CR, 2015, P ROYAL SOC B, V284; Huston MA, 2011, ECOL MONOGR, V81, P349, DOI 10.1890/10-1523.1; IWASA Y, 1994, SERIES ENTOM, V52, P69; Javois J, 2011, ENTOMOL EXP APPL, V139, P187, DOI 10.1111/j.1570-7458.2011.01120.x; JAYASINGH DB, 1980, BIOL J LINN SOC, V13, P167, DOI 10.1111/j.1095-8312.1980.tb00079.x; Kim JY, 1999, BEHAV ECOL, V10, P552, DOI 10.1093/beheco/10.5.552; Kingsolver JG, 2012, FUNCT ECOL, V26, P598, DOI 10.1111/j.1365-2435.2012.01972.x; Kivela SM, 2012, J EVOLUTION BIOL, V25, P881, DOI 10.1111/j.1420-9101.2012.02478.x; Kivela SM, 2016, J EXP BIOL, V219, P3061, DOI 10.1242/jeb.140442; Kivela SM, 2016, BIOL J LINN SOC, V117, P586, DOI 10.1111/bij.12689; Kivela SM, 2011, J ANIM ECOL, V80, P1184, DOI 10.1111/j.1365-2656.2011.01864.x; Leraut P, 2009, MOTHS EUROPE; Littell RC, 1996, SAS SYSTEM MIXED MOD; Macke E, 2011, P ROY SOC B-BIOL SCI, V278, P1054, DOI 10.1098/rspb.2010.1706; Maino JL, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2015.1973; MASAKI S, 1967, EVOLUTION, V21, P725, DOI 10.1111/j.1558-5646.1967.tb03430.x; Meister H, 2017, OIKOS, V126, P1726, DOI 10.1111/oik.04233; Mikkola K, 1979, SUOMEN PERHOSET YOKK; Mikkola K, 1977, SUOMEN PERHOSET YOKK; Montezano DG, 2014, J INSECT SCI, V14, DOI 10.1093/jisesa/ieu100; Nijhout HF, 2014, WIRES DEV BIOL, V3, P113, DOI 10.1002/wdev.124; NIJHOUT HF, 1981, AM ZOOL, V21, P631; Nilsson-Ortman V, 2015, HEREDITY, V115, P366, DOI 10.1038/hdy.2014.126; Nygren GH, 2008, J INSECT SCI, V8; Parry D, 2001, ECOL ENTOMOL, V26, P281, DOI 10.1046/j.1365-2311.2001.00319.x; Parsons SMA, 2014, OECOLOGIA, V174, P379, DOI 10.1007/s00442-013-2785-6; Pincheira-Donoso D, 2010, THEOR BIOSCI, V129, P247, DOI 10.1007/s12064-010-0101-0; Porter J., 1997, COLOUR IDENTIFICATIO; Remmel T, 2011, BIOL J LINN SOC, V104, P1, DOI 10.1111/j.1095-8312.2011.01721.x; Ringsby TH, 2015, P ROYAL SOC B, V282, P1; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Rollinson N, 2015, EVOLUTION, V69, P2441, DOI 10.1111/evo.12753; Roslin T, 2017, SCIENCE, V356, P742, DOI 10.1126/science.aaj1631; Saastamoinen M, 2013, J ANIM ECOL, V82, P529, DOI 10.1111/1365-2656.12034; Sandre SL, 2013, OIKOS, V122, P1626, DOI 10.1111/j.1600-0706.2013.00504.x; Schenk K, 2005, ECOL ENTOMOL, V30, P456, DOI 10.1111/j.0307-6946.2005.00707.x; Sehnal F., 1985, P1; Shelomi M, 2012, AM NAT, V180, P511, DOI 10.1086/667595; Shingleton AW, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P43; Sniegula S, 2016, ECOL ENTOMOL, V41, P459, DOI 10.1111/een.12314; SOLBRECK C, 1989, OIKOS, V55, P387, DOI 10.2307/3565599; Stearns S, 1992, EVOLUTION LIFE HIST; Stillwell RC, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0106548; Stillwell RC, 2010, P ROY SOC B-BIOL SCI, V277, P2069, DOI 10.1098/rspb.2009.2277; Stoks R, 2014, EVOL APPL, V7, P42, DOI 10.1111/eva.12108; Tammaru T, 1996, OIKOS, V77, P407, DOI 10.2307/3545931; Tammaru T, 2002, OECOLOGIA, V133, P430, DOI 10.1007/s00442-002-1057-7; Tammaru T, 2001, ECOL ENTOMOL, V26, P646, DOI 10.1046/j.1365-2311.2001.00363.x; Tammaru T, 2007, FUNCT ECOL, V21, P1099, DOI 10.1111/j.1365-2435.2007.01319.x; Tammaru T, 2015, BIOL J LINN SOC, V114, P296, DOI 10.1111/bij.12417; Tammaru T, 2010, EVOL ECOL, V24, P161, DOI 10.1007/s10682-009-9297-1; Teder T, 1999, ECOGRAPHY, V22, P79, DOI 10.1111/j.1600-0587.1999.tb00456.x; Teder T, 2014, FUNCT ECOL, V28, P479, DOI 10.1111/1365-2435.12172; Teder T, 2010, OECOLOGIA, V162, P117, DOI 10.1007/s00442-009-1439-1; Telfer MG, 1999, OECOLOGIA, V121, P245, DOI 10.1007/s004420050926; Tikkanen OP, 2000, OECOLOGIA, V122, P529, DOI 10.1007/s004420050976; Valimaki P, 2013, J EVOLUTION BIOL, V26, P118, DOI 10.1111/jeb.12033; Vellau H, 2013, EUR J ENTOMOL, V110, P599, DOI 10.14411/eje.2013.081; Vellau H, 2012, EUR J ENTOMOL, V109, P181, DOI 10.14411/eje.2012.024; Vijendravarma RK, 2011, J EVOLUTION BIOL, V24, P897, DOI 10.1111/j.1420-9101.2010.02225.x; Walzer A, 2015, J EXP BIOL, V218, P2603, DOI 10.1242/jeb.123752; Yasuda H, 2002, ECOL ENTOMOL, V27, P493, DOI 10.1046/j.1365-2311.2002.00428.x 109 2 2 4 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0013-8703 1570-7458 ENTOMOL EXP APPL Entomol. Exp. Appl. JAN 2018 166 1 SI 4 16 10.1111/eea.12634 13 Entomology Entomology FV0HS WOS:000424237200002 Bronze 2019-02-21 J Tran, J; Aksenov, V; Rollo, CD Tran, Jonathan; Aksenov, Vadim; Rollo, C. David A multi-ingredient athletic supplement disproportionately enhances hind leg musculature, jumping performance, and spontaneous locomotion in crickets (Acheta domesticus) ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article life history; nutrition; survivorship; exercise mimetic; Orthoptera; Gryllidae LIFE-HISTORY EVOLUTION; COMPLEX DIETARY-SUPPLEMENT; FREE-RADICAL PROCESSES; ACETYL-L-CARNITINE; ALPHA-LIPOIC ACID; SKELETAL-MUSCLE; TRADE-OFFS; CALORIC RESTRICTION; HOUSE CRICKET; BODY-SIZE Nutrition is a key component of life-history theory with profound impacts on fitness traits. We examined lifetime impacts of a multi-ingredient athletic supplement (MAS) on physical performance, anatomical morphology, survivorship, and general life-history features in the house cricket, Acheta domesticus (L.) (Orthoptera: Gryllidae). The MAS was formulated using 13 nutraceutical supplements that are commonly used by human athletes specifically to improve athletic performance. Cricket doses were based on human doses adjusted for body size and metabolic rate. Markers of athletic performance included: jumping distance, spontaneous locomotor activity, and morphology of the hind legs (femurs). Supplemented adult crickets jumped ca. 25% further and expressed elevated spontaneous locomotion relative to controls. The MAS disproportionately increased hind leg femur length and width. Life-history endpoints included survivorship, juvenile growth rate, maturation age, and mature body size. Supplemented crickets showed faster juvenile growth and earlier maturation, but no change in final adult size. A 20% increase in mean survivorship (extending into older ages) was also documented. Crickets represent an excellent new model for assessing athletic diets and associated performance criteria. Finally, as experimental animals were untrained, we argue that our supplement may represent a novel exercise mimetic' that impacts both performance and survivorship. [Tran, Jonathan; Aksenov, Vadim; Rollo, C. David] McMaster Univ, Dept Biol, 1280 Main St W, Hamilton, ON L8S 4K1, Canada Tran, J (reprint author), McMaster Univ, Dept Biol, 1280 Main St W, Hamilton, ON L8S 4K1, Canada. tranjb2@mcmaster.ca Natural Sciences and Engineering Research Council of Canada [RGPIN-5693-2015] This work was supported by the Natural Sciences and Engineering Research Council of Canada (RGPIN-5693-2015). Aksenov V, 2014, MUTAGENESIS, V29, P177, DOI 10.1093/mutage/geu002; Aksenov V, 2013, AGE, V35, P23, DOI 10.1007/s11357-011-9325-2; Aksenov V, 2010, EXP BIOL MED, V235, P66, DOI 10.1258/ebm.2009.009219; Augustin H, 2009, BBA-GEN SUBJECTS, V1790, P1084, DOI 10.1016/j.bbagen.2009.06.011; Azzouz H, 2004, BIOL CONTROL, V31, P445, DOI 10.1016/j.biocontrol.2004.07.013; Bartke A, 2013, PHYSIOL REV, V93, P571, DOI 10.1152/physrev.00006.2012; Bell K, 2017, FASEB J, V31; Bellini R, 2014, ACTA TROP, V132, pS116, DOI 10.1016/j.actatropica.2013.11.022; Blomstrand E, 2006, J NUTR, V136, p269S, DOI 10.1093/jn/136.1.269S; Bogin B, 2007, AM J HUM BIOL, V19, P631, DOI 10.1002/ajhb.20666; Carey AL, 2009, DIABETOLOGIA, V52, P2015, DOI 10.1007/s00125-009-1420-x; Chen WL, 2012, DIABETOLOGIA, V55, P1824, DOI 10.1007/s00125-012-2530-4; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; Chippindale AK, 1997, J EVOLUTION BIOL, V10, P269, DOI 10.1007/s000360050023; Demontis F, 2013, DIS MODEL MECH, V6, P1339, DOI 10.1242/dmm.012559; Demontis F, 2010, CELL, V143, P813, DOI 10.1016/j.cell.2010.10.007; Drummond MJ, 2010, AM J PHYSIOL-ENDOC M, V298, pE1011, DOI 10.1152/ajpendo.00690.2009; Emlen DJ, 2000, ANNU REV ENTOMOL, V45, P661, DOI 10.1146/annurev.ento.45.1.661; Grotewiel MS, 2005, AGEING RES REV, V4, P372, DOI 10.1016/j.arr.2005.04.001; Hagen TM, 2002, P NATL ACAD SCI USA, V99, P1870, DOI 10.1073/pnas.261708898; Hans H, 2015, AGE, V37, DOI 10.1007/s11357-015-9769-x; Hawlena D, 2011, FUNCT ECOL, V25, P1223, DOI 10.1111/j.1365-2435.2011.01891.x; Hawlena D, 2011, FUNCT ECOL, V25, P279, DOI 10.1111/j.1365-2435.2010.01767.x; HEUSNER AA, 1982, RESP PHYSIOL, V48, P1, DOI 10.1016/0034-5687(82)90046-9; HEUSNER AA, 1982, RESP PHYSIOL, V48, P13, DOI 10.1016/0034-5687(82)90047-0; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kayo T, 2001, P NATL ACAD SCI USA, V98, P5093, DOI 10.1073/pnas.081061898; Kreider RB, 1999, SPORTS MED, V27, P97, DOI 10.2165/00007256-199927020-00003; Kreider RB, 1998, MED SCI SPORT EXER, V30, P73, DOI 10.1097/00005768-199801000-00011; Laplante M, 2012, CELL, V149, P274, DOI 10.1016/j.cell.2012.03.017; Lass A, 1998, FREE RADICAL BIO MED, V25, P1089, DOI 10.1016/S0891-5849(98)00144-0; Lavine L, 2015, ANNU REV ENTOMOL, V60, P453, DOI 10.1146/annurev-ento-010814-021045; Le Bourg E, 1999, EXP GERONTOL, V34, P157, DOI 10.1016/S0531-5565(98)00077-1; Lemon JA, 2008, MUTAGENESIS, V23, P473, DOI 10.1093/mutage/gen036; Lemon JA, 2016, ENVIRON MOL MUTAGEN, V57, P382, DOI 10.1002/em.22019; Lemon JA, 2005, J GERONTOL A-BIOL, V60, P275, DOI 10.1093/gerona/60.3.275; Lemon JA, 2003, EXP BIOL MED, V228, P800, DOI 10.1177/15353702-0322807-05; Lemon JA, 2008, MUTAGENESIS, V23, P465, DOI 10.1093/mutage/gen038; LEONARD WR, 1994, AM J HUM BIOL, V6, P77, DOI 10.1002/ajhb.1310060111; Lyn J, 2012, EVOL BIOL, V39, P371, DOI 10.1007/s11692-012-9160-0; Lyn JC, 2011, AGE, V33, P509, DOI 10.1007/s11357-010-9195-z; MCFARLANE JE, 1964, CAN J ZOOLOG, V42, P645, DOI 10.1139/z64-055; MCFARLANE JE, 1964, CAN J ZOOLOG, V42, P767, DOI 10.1139/z64-074; Must A, 1999, JAMA-J AM MED ASSOC, V282, P1523, DOI 10.1001/jama.282.16.1523; Narkar VA, 2008, CELL, V134, P405, DOI 10.1016/j.cell.2008.06.051; Nijhout HF, 2015, BOST STUD PHILOS HIS, V307, P147, DOI 10.1007/978-94-017-9412-1_7; Nijhout HF, 1998, P NATL ACAD SCI USA, V95, P3685, DOI 10.1073/pnas.95.7.3685; PATTON RL, 1967, ANN ENTOMOL SOC AM, V60, P1238, DOI 10.1093/aesa/60.6.1238; Prieto-Hontoria PL, 2013, EUR J NUTR, V52, P779, DOI 10.1007/s00394-012-0384-7; Puppa MJ, 2015, HEALTHY AGEING LONG, V3, P107, DOI 10.1007/978-3-319-18326-8_5; RITCHOT C, 1962, CAN J ZOOLOG, V40, P371, DOI 10.1139/z62-032; RITCHOT C, 1961, CAN J ZOOLOG, V39, P11, DOI 10.1139/z61-002; Rohde J, 2001, J BIOL CHEM, V276, P9583, DOI 10.1074/jbc.R000034200; Rollo CD, 2010, AGING DIS, V1, P105; Rollo CD, 1996, CAN J ZOOL, V74, P606, DOI 10.1139/z96-070; Rollo CD, 2002, EVOL DEV, V4, P55, DOI 10.1046/j.1525-142x.2002.01053.x; Sanchez AMJ, 2014, CELL MOL LIFE SCI, V71, P1657, DOI 10.1007/s00018-013-1513-z; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; SCRIBER JM, 1981, ANNU REV ENTOMOL, V26, P183, DOI 10.1146/annurev.en.26.010181.001151; Shimomura Y, 2004, J NUTR, V134, p1583S, DOI 10.1093/jn/134.6.1583S; SILLS TL, 1994, PSYCHOPHARMACOLOGY, V116, P1, DOI 10.1007/BF02244864; Suchy J, 2009, NUTR RES, V29, P70, DOI 10.1016/j.nutres.2008.11.004; Swanson EM, 2016, P ROY SOC B-BIOL SCI, V283, DOI 10.1098/rspb.2015.2764; Swinburn BA, 2004, PUBLIC HEALTH NUTR, V7, P123, DOI 10.1079/PHN2003585; TAUBER E, 1995, J EXP BIOL, V198, P1895; Tsai KL, 2011, MOL NUTR FOOD RES, V55, pS227, DOI 10.1002/mnfr.201100147; Valdez G, 2010, P NATL ACAD SCI USA, V107, P14863, DOI 10.1073/pnas.1002220107; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; ZERA AJ, 1990, J INSECT PHYSIOL, V36, P271, DOI 10.1016/0022-1910(90)90111-R; Zera AJ, 2016, PHYSIOL ENTOMOL, V41, P313, DOI 10.1111/phen.12166; Zhang ZF, 2009, FEBS LETT, V583, P470, DOI 10.1016/j.febslet.2008.12.053 71 0 0 1 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0013-8703 1570-7458 ENTOMOL EXP APPL Entomol. Exp. Appl. JAN 2018 166 1 SI 63 73 10.1111/eea.12642 11 Entomology Entomology FV0HS WOS:000424237200008 Bronze 2019-02-21 J Braimoh, B; Iwajomo, S; Wilson, M; Chaskda, A; Ajang, A; Cresswell, W Braimoh, Bukola; Iwajomo, Soladoye; Wilson, Mark; Chaskda, Adams; Ajang, Afan; Cresswell, Will Managing human disturbance: factors influencing flight-initiation distance of birds in a West African nature reserve OSTRICH English Article conservation buffer; escape distance; flight-initiation distance; human disturbance; setback distance LIFE-HISTORY EVOLUTION; ECONOMIC ESCAPE THEORY; BUFFER-ZONE DISTANCES; RISK-ASSESSMENT; PREDATION RISK; LAGONOSTICTA-SANGUINODORSALIS; SCIURUS-CAROLINENSIS; RESPONSE DISTANCES; STARTING DISTANCE; TRINGA-TOTANUS Escape behaviour in response to perceived predators can be employed as a guide when designating protected areas around sensitive bird species to minimise the impact of human disturbance. A key measure of escape response is flight-initiation distance (FID), the distance at which a prey animal initiates its escape when approached by a potential predator. We tested the predictions of optimal escape theory by determining the factors that influence FID of bird species in a Nigerian reserved area and its surrounding habitats, and so the potential utility of FID in managing human disturbance on birds, for the first time within a West African context. We tested how FID varied with group size, proximity to vegetation acting as protective cover, levels of human use, and survival rate, and whether these relationships varied by species. We collected 504 FIDs for seven bird species in Amurum Forest Reserve and its surrounding habitats (Jos, Nigeria). The FID was lower in larger groups and when species were closer to protective cover. The FID was lower outside of the protected area because animals in sites with higher levels of human presence and use may become habituated. The FID was higher for species with higher survival, being consistent with predictions from life history theory. Overall, birds perceived humans as a potential threat and responded in accordance to the predictions of optimal escape theory, with FID increasing with increased cost of staying. Reserve managers in Africa could use species- and context-specific FIDs to designate buffer distances for the protection of wildlife from human disturbance. [Braimoh, Bukola; Chaskda, Adams; Ajang, Afan; Cresswell, Will] Univ Jos, AP Leventis Ornithol Res Inst, Jos, Nigeria; [Braimoh, Bukola] Univ Cape Town, Dept Biol Sci, Anim Demog Unit, Cape Town, South Africa; [Iwajomo, Soladoye] Univ Lagos, Dept Zool, Fac Sci, Akoka, Yaba, Nigeria; [Wilson, Mark] Univ Stirling, British Trust Ornithol, Stirling FK9 4LA, Scotland; [Cresswell, Will] Univ St Andrews, Ctr Biol Divers, St Andrews KY16 9TH, Fife, Scotland Braimoh, B (reprint author), Univ Jos, AP Leventis Ornithol Res Inst, Jos, Nigeria.; Braimoh, B (reprint author), Univ Cape Town, Dept Biol Sci, Anim Demog Unit, Cape Town, South Africa. godsbatlax@yahoo.ca SCCS Miriam Rothschild Travel Bursary Programme; Leventis Conservation Foundation The authors would like to thank the AP Leventis Ornithological Research Institute (APLORI) for help with logistics. We acknowledge field visits made by Manu Shiiwua and Ulf Ottosson. We also acknowledge the SCCS Miriam Rothschild Travel Bursary Programme for travel funds during the period of writing this paper. Thanks to the Leventis Conservation Foundation for providing full funding for this study. The study was carried out in Nigeria where no licences are required for the procedures used. Nevertheless, this study was carried out under the ethical guidelines of the APLORI Scientific Committee (APLORI is the only ornithological research institute in Nigeria) based on the Association for the Study of Animal Behaviour guidelines. This paper is number 125 published by the AP Leventis Ornithological Research Institute. Abalaka J., 2009, IMPORTANT ARE UNPUB; Abalaka J, 2014, AFR ZOOL, V49, P301, DOI 10.3377/004.049.0202; Akinpelu AI, 2004, REV BIOL TROP, V52, P1001; Ali AD, 2016, RES PLANT SCI, V4, P10; Barshep Y, 2005, J ORNITHOL, V29, P5711; Bennett P., 2002, EVOLUTIONARY ECOLOGY; Blumstein DT, 2005, J APPL ECOL, V42, P943, DOI 10.1111/j.1365-2664.2005.01071.x; Blumstein DT, 2003, J WILDLIFE MANAGE, V67, P852, DOI 10.2307/3802692; Borrow N., 2008, BIRDS W AFRICA; Brandt MJ, 2008, IBIS, V150, P495, DOI 10.1111/j.1474-919X.2008.00811.x; Bregnballe Thomas, 2009, Wildfowl, P115; Brooke MD, 1999, P ROY SOC B-BIOL SCI, V266, P405, DOI 10.1098/rspb.1999.0652; BURGER J, 1981, BIOL CONSERV, V21, P231, DOI 10.1016/0006-3207(81)90092-6; Burger J, 2010, J WILDLIFE MANAGE, V74, P102, DOI 10.2193/2008-576; Burns JG, 2002, BEHAV ECOL SOCIOBIOL, V52, P128, DOI 10.1007/s00265-002-0494-y; Clucas B, 2012, AUK, V129, P8, DOI 10.1525/auk.2011.11121; Cooper W. E, 2015, ESCAPING PREDATORS I; Cooper WE, 2008, HERPETOLOGICA, V64, P200, DOI 10.1655/07-081.1; Cooper WE, 2007, HERPETOLOGICA, V63, P144, DOI 10.1655/0018-0831(2007)63[144:EAIRTP]2.0.CO;2; Cooper WE, 2003, CAN J ZOOL, V81, P979, DOI 10.1139/Z03-079; Cooper WE, 2015, ADV STUD BEHAV, V47, P147, DOI 10.1016/bs.asb.2015.02.002; Cooper WE, 2014, BEHAV ECOL, V25, P44, DOI 10.1093/beheco/art083; Crawley M.J., 2005, STAT INTRO USING R; CRESSWELL W, 1994, J ANIM ECOL, V63, P589, DOI 10.2307/5225; CRESSWELL W, 1993, ANIM BEHAV, V46, P609, DOI 10.1006/anbe.1993.1231; Daru Barnabas H., 2015, Malimbus, V37, P1; Dear EJ, 2015, WETL ECOL MANAG, V23, P315, DOI 10.1007/s11273-014-9376-0; Diaz M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064634; DILL LM, 1987, CAN J ZOOL, V65, P223, DOI 10.1139/z87-036; DILL LM, 1990, ENVIRON BIOL FISH, V27, P147, DOI 10.1007/BF00001944; DILL LM, 1989, CAN J ZOOL, V67, P233, DOI 10.1139/z89-033; Eason PK, 2006, J WILDLIFE MANAGE, V70, P1796, DOI 10.2193/0022-541X(2006)70[1796:FAFIDI]2.0.CO;2; ELGOOD J. H., 1994, THE BIRDS OF NIGERIA; Engelhardt SC, 2011, CAN J ZOOL, V89, P823, DOI 10.1139/Z11-054; Ezealor A. U., 2002, CRITICAL SITES BIODI; Fernandez-Juricic E, 2001, ENVIRON CONSERV, V28, P263; Fernandez-Juricic E, 2006, EVOL ECOL RES, V8, P731; FOSTER WA, 1981, NATURE, V293, P466, DOI 10.1038/293466a0; Frid A, 2002, CONSERV ECOL, V6; Fry C. H., 2004, BIRDS AFRICA, VVII; Geffroy B, 2015, TRENDS ECOL EVOL, V30, P755, DOI 10.1016/j.tree.2015.09.010; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Glover HK, 2011, LANDSCAPE URBAN PLAN, V103, P326, DOI 10.1016/j.landurbplan.2011.08.006; Grolle Elizabeth K., 2014, Bulletin Southern California Academy of Sciences, V113, P42; Guay PJ, 2016, AMBIO, V45, P841, DOI 10.1007/s13280-016-0779-4; Guay PJ, 2013, ETHOLOGY, V119, P552, DOI 10.1111/eth.12094; Hines KN, 2011, HERPETOL CONSERV BIO, V6, P250; Januchowski-Hartley FA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022761; Javurkova V, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032522; Keith S, 1992, BIRDS AFRICA, V4; Kiltie RA, 2000, FUNCT ECOL, V14, P226, DOI 10.1046/j.1365-2435.2000.00404.x; Lagos PA, 2009, CAN J ZOOL, V87, P1016, DOI 10.1139/Z09-089; LAZARUS J, 1979, ANIM BEHAV, V27, P855, DOI 10.1016/0003-3472(79)90023-X; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Livezey KB, 2016, J FISH WILDL MANAG, V7, P181, DOI 10.3996/082015-JFWM-078; Lloyd P, 2014, J AVIAN BIOL, V45, P493, DOI 10.1111/jav.00454; Magige FJ, 2009, BIODIVERS CONSERV, V18, P1361, DOI 10.1007/s10531-008-9481-6; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; MILINSKI M, 1977, Z TIERPSYCHOL, V43, P311; Moller AP, 2016, BIOL J LINN SOC, V117, P823, DOI 10.1111/bij.12706; Moller AP, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0107883; Moller AP, 2013, BEHAV ECOL, V24, P267, DOI 10.1093/beheco/ars163; Moller AP, 2010, BEHAV ECOL, V21, P365, DOI 10.1093/beheco/arp199; Monclus R, 2015, ETHOLOGY, V121, P831, DOI 10.1111/eth.12397; NEILL SRS, 1974, J ZOOL, V172, P549, DOI 10.1111/j.1469-7998.1974.tb04385.x; Nelson MK, 2005, J ARACHNOL, V33, P153, DOI 10.1636/S03-37; Nyahongo JW, 2008, AFR J ECOL, V46, P227, DOI 10.1111/j.1365-2028.2007.00818.x; Owens N. W., 1977, Wildfowl, V28, P5; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Pease ML, 2005, WILDLIFE SOC B, V33, P103, DOI 10.2193/0091-7648(2005)33[103:EOHDOT]2.0.CO;2; PULLIAM HR, 1973, J THEOR BIOL, V38, P419, DOI 10.1016/0022-5193(73)90184-7; R Development Core Team, 2013, R LANG ENV STAT COMP; Reimers E, 2009, J WILDLIFE MANAGE, V73, P844, DOI 10.2193/2008-133; Roberts G, 1996, ANIM BEHAV, V51, P1077, DOI 10.1006/anbe.1996.0109; Rodgers JA, 2002, CONSERV BIOL, V16, P216, DOI 10.1046/j.1523-1739.2002.00316.x; Rodgers JA, 1997, WILDLIFE SOC B, V25, P139; Rodriguez-Prieto I, 2008, BEHAVIOUR, V145, P1125, DOI 10.1163/156853908784474489; Samia DSM, 2017, FRONT ECOL EVOL, V5, DOI 10.3389/fevo.2017.00066; SIEGFRIED WR, 1975, ANIM BEHAV, V23, P504, DOI 10.1016/0003-3472(75)90126-8; Sreekar R, 2015, TROP CONSERV SCI, V8, P505, DOI 10.1177/194008291500800214; Stankowich T, 2005, P ROY SOC B-BIOL SCI, V272, P2627, DOI 10.1098/rspb.2005.3251; Stankowich T, 2006, BEHAV ECOL, V17, P246, DOI 10.1093/beheco/arj020; Stevens MC, 2013, OSTRICH, V84, P11, DOI 10.2989/00306525.2013.772544; Tarakini T, 2014, S AFR J WILDL RES, V44, P76, DOI 10.3957/056.044.0110; Thiel D, 2007, J WILDLIFE MANAGE, V71, P1784, DOI 10.2193/2006-268; Tidwell KS, 2013, HERPETOL CONSERV BIO, V8, P426; URBAN E. K., 1986, BIRDS AFRICA, V2; Webb NV, 2005, CONDOR, V107, P178, DOI 10.1650/7607; Weston MA, 2012, EMU, V112, P269, DOI 10.1071/MU12026; YDENBERG RC, 1986, ADV STUD BEHAV, V16, P229, DOI 10.1016/S0065-3454(08)60192-8 92 0 0 7 22 NATL INQUIRY SERVICES CENTRE PTY LTD GRAHAMSTOWN 19 WORCESTER STREET, PO BOX 377, GRAHAMSTOWN 6140, SOUTH AFRICA 0030-6525 1727-947X OSTRICH Ostrich 2018 89 1 59 69 10.2989/00306525.2017.1388300 11 Ornithology Zoology FU8JN WOS:000424099300009 2019-02-21 J Yu, TL; Xu, Y; Busam, M; Deng, YH Yu, Tong Lei; Xu, Yu; Busam, Michael; Deng, Yao Hui Maternal investment decreases under stressful environments in 11 plateau brown frog (Rana kukunoris) populations ETHOLOGY ECOLOGY & EVOLUTION English Article Rana kukunoris; temperature; clutch size; clutch volume; egg size; trade-off LIFE-HISTORY TRAITS; TOAD BUFO-CALAMITA; EGG SIZE; ALTITUDINAL VARIATION; TRADE-OFF; FITNESS CONSEQUENCES; REPRODUCTIVE-BIOLOGY; GEOGRAPHIC-VARIATION; TIBETAN PLATEAU; OFFSPRING SIZE Environmental pressures vary by geographic location and will lead to differentiation in life history traits according to which maximize fitness. Life history theory predicts that harsh environments are likely to select for larger egg or offspring size, and for a stronger trade-off between offspring size and number. To test this prediction, we compared life history traits among 11 plateau brown frog (Rana kukunoris) populations at different altitudes. We found that females with a concomitant increase in body size produce larger eggs and more offspring in warm environments than females in cold environments do. Moreover, females from two natural populations produced offspring of different sizes between years. The decreasing resource allocation to current offspring size and number may increase survival and future fecundity in harsh environments. Thus, there may be a trade-off between mortality and fecundity in different environments. In addition to body size, we suggest that temperature plays an important role in shaping maternal investment variation in R. kukunoris across geographical gradients. [Yu, Tong Lei; Deng, Yao Hui] Xinyang Normal Univ, Coll Life Sci, Xinyang, Peoples R China; [Xu, Yu] Guizhou Normal Univ, Coll Life Sci, Guiyang, Guizhou, Peoples R China; [Busam, Michael] Univ Maryland, Coll Agr & Nat Resources, College Pk, MD 20742 USA Yu, TL (reprint author), Xinyang Normal Univ, Coll Life Sci, Dept Biol, Xinyang 464000, SD, Peoples R China. yutonglei_00000@163.com Program for Innovative Research Team (in Science and Technology) in universities of Henan Province [17IRTSTHN019] This work was supported by the Program for Innovative Research Team (in Science and Technology) in universities of Henan Province [17IRTSTHN019]. Armbruster P, 2001, EVOLUTION, V55, P439; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; Castellano S, 2004, COPEIA, P659, DOI 10.1643/CE-03-182R2; Chen W, 2013, J EVOLUTION BIOL, V26, P2710, DOI 10.1111/jeb.12271; Chen W, 2011, HERPETOL J, V21, P149; Crump M.L., 1974, Miscellaneous Publs Mus nat Hist Univ Kans, VNo. 61, P1; CRUMP ML, 1984, COPEIA, P302, DOI 10.2307/1445185; CUMMINS CP, 1986, J ANIM ECOL, V55, P303, DOI 10.2307/4710; DEMARCO VG, 1989, OECOLOGIA, V80, P525, DOI 10.1007/BF00380077; Duellman W. E., 1986, BIOL AMPHIBIANS; Dziminski MA, 2005, OECOLOGIA, V146, P98, DOI 10.1007/s00442-005-0177-2; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; ELMBERG J, 1991, FUNCT ECOL, V5, P340, DOI 10.2307/2389805; Gosner K. L., 1960, Herpetologica, V16, P183; Heatwole H., 1987, ECOLOGY OF REPTILES; HEMELAAR A, 1988, J HERPETOL, V22, P369, DOI 10.2307/1564332; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Jin L, 2016, BEHAV ECOL SOCIOBIOL, V70, P1197, DOI 10.1007/s00265-016-2128-9; Johnston TA, 2002, ECOLOGY, V83, P1777, DOI 10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2; Kaplan RH, 1997, HERPETOLOGICA, V53, P149; KOZLOWSKA M, 1971, ACTA BIOL CRACOV ZOO, V14, P17; KURAMOTO M, 1978, EVOLUTION, V32, P287, DOI 10.1111/j.1558-5646.1978.tb00644.x; Laugen AT, 2002, BIOL J LINN SOC, V76, P61, DOI 10.1046/j.1095-8312.2002.00048.x; Liao WB, 2014, J ZOOL, V293, P84, DOI 10.1111/jzo.12122; Liao WB, 2016, FRONT ZOOL, V13, DOI 10.1186/s12983-016-0138-0; LICHT LE, 1975, CAN J ZOOL, V53, P1254, DOI 10.1139/z75-150; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Luddecke H, 2002, OECOLOGIA, V130, P403, DOI 10.1007/s00442-001-0820-5; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Morrison C, 2002, P FROGS COMM S ENV A, P52; Oromi N, 2012, ZOOLOGY, V115, P30, DOI 10.1016/j.zool.2011.08.003; PETTUS D, 1967, EVOLUTION, V21, P500, DOI 10.1111/j.1558-5646.1967.tb03406.x; Rasanen K, 2005, OECOLOGIA, V142, P546, DOI 10.1007/s00442-004-1762-5; Roff Derek A., 1992; Ryser Jan, 1996, Amphibia-Reptilia, V17, P183, DOI 10.1163/156853896X00379; Salthe SN, 1973, EVOLUTIONARY BIOL AN, P110; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; TEJEDO M, 1992, OECOLOGIA, V90, P294, DOI 10.1007/BF00317189; TEJEDO M, 1992, J HERPETOL, V26, P146, DOI 10.2307/1564855; TILLEY SG, 1980, COPEIA, P806, DOI 10.2307/1444460; Wells K. D., 2007, ECOLOGY BEHAV AMPHIB; Yu TL, 2013, ANIM BIOL, V63, P131, DOI 10.1163/15707563-00002400 48 1 1 5 8 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0394-9370 1828-7131 ETHOL ECOL EVOL Ethol. Ecol. Evol. 2018 30 2 168 177 10.1080/03949370.2017.1336117 10 Behavioral Sciences; Zoology Behavioral Sciences; Zoology FU1GQ WOS:000423597800006 2019-02-21 J Longman, DP; Prall, SP; Shattuck, EC; Stephen, ID; Stock, JT; Wells, JCK; Muehlenbein, MP Longman, Daniel P.; Prall, Sean P.; Shattuck, Eric C.; Stephen, Ian D.; Stock, Jay T.; Wells, Jonathan C. K.; Muehlenbein, Michael P. Short-term resource allocation during extensive athletic competition AMERICAN JOURNAL OF HUMAN BIOLOGY English Article ULTRA-ENDURANCE EXERCISE; SEXUAL AROUSAL; FUNCTIONAL IMMUNITY; PHYSICAL-ACTIVITY; TESTOSTERONE; RESPONSES; MUSCLE; STRENGTH; ANTIOXIDANT; PHYSIOLOGY ObjectivesFollowing predictions from life history theory, we sought to identify acute trade-offs between reproductive effort (as measured by psychological arousal) and somatic maintenance (via functional measures of innate immunity) during conditions of severe energetic imbalance. MethodsSixty-six male ultramarathon runners (ages 20 to 37 years) were sampled before and after a lengthy race. Saliva and sera were collected for testosterone and immunological analyses (hemolytic complement activity and bacterial killing ability). Lean body mass was assessed by bioelectrical impedance, and libido was measured using a slideshow of arousing and neutral images. ResultsFollowing predictions, there was a significant decrease in salivary testosterone levels (109.59 pg/mL versus 97.61 pg/mL, P<.001) and arousal scores in response to provocative images (5.40 versus 4.89, P=.001) between prerace and postrace time points. Additionally, participant bacterial killing ability (P=.035) and hemolytic complement activity (P=.021) increased between prerace and postrace. ConclusionsDecreased libido and testosterone with concomitant heightened innate immune responses suggest a shift in energetic priorities away from reproduction and toward maintenance/defense during a period of energetic stress. [Longman, Daniel P.; Stock, Jay T.] Univ Cambridge, Dept Archaeol & Anthropol, Cambridge, England; [Prall, Sean P.; Shattuck, Eric C.] Univ Texas San Antonio, Dept Anthropol, Lab Evolutionary Med, San Antonio, TX USA; [Stephen, Ian D.] Macquarie Univ, Dept Psychol, Sydney, NSW, Australia; [Wells, Jonathan C. K.] UCL Inst Child Hlth, Childhood Nutr Res Ctr, London, England; [Stock, Jay T.] Western Univ, Dept Anthropol, London, ON N6A 3K7, Canada; [Muehlenbein, Michael P.] Baylor Univ, Dept Anthropol, Lab Evolutionary Med, Waco, TX 76798 USA Longman, DP (reprint author), Dept Archaeol & Anthropol, Pembroke St, Cambridge CB2 3QG, England. dl329@cam.ac.uk Stock, Jay/B-6453-2011 Stock, Jay/0000-0003-0147-8631; Longman, Danny/0000-0003-3025-7053; Stephen, Ian/0000-0001-9714-8295 European Research Council under European Union/ERC [617627]; Indiana University European Research Council under the European Union's Seventh Framework Programme, Grant/Award Number: (FP/ 2007-2013)/ERC Grant Agreement n.617627 to JTS, Funding for laboratory analyses was provided by Indiana University to MPM. Andersson M., 1994, SEXUAL SELECTION; Angilletta MJ, 2003, TRENDS ECOL EVOL, V18, P234, DOI 10.1016/S0169-5347(03)00087-9; Ariely D, 2006, J BEHAV DECIS MAKING, V19, P87, DOI 10.1002/bdm.501; BAGATELL CJ, 1990, FERTIL STERIL, V53, P688; BAGATELL CJ, 1993, J CLIN ENDOCR METAB, V77, P427, DOI 10.1210/jc.77.2.427; Bancroft J, 1988, SEX MARITAL THER, V3, P11; Baumeister RF, 2001, PERS SOC PSYCHOL REV, V5, P242, DOI 10.1207/S15327957PSPR0503_5; BEACH FA, 1976, HORM BEHAV, V7, P105, DOI 10.1016/0018-506X(76)90008-8; Berg U, 2008, SCAND J MED SCI SPOR, V18, P706, DOI 10.1111/j.1600-0838.2007.00758.x; Bhasin S, 1996, NEW ENGL J MED, V335, P1, DOI 10.1056/NEJM199607043350101; Bishop NC, 2009, FRONT BIOSCI, V14, P4444, DOI 10.2741/3540; Bouman A, 2005, HUM REPROD UPDATE, V11, P411, DOI 10.1093/humupd/dmi008; BRADLEY MM, 1994, J BEHAV THER EXP PSY, V25, P49, DOI 10.1016/0005-7916(94)90063-9; Bribiescas RG, 2001, FOUND HUM B, P107; Bronson F. H., 1991, MAMMALIAN REPROD BIO; CARRIER DR, 1984, CURR ANTHROPOL, V25, P483, DOI 10.1086/203165; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Costa RJS, 2012, INT J SPORT NUTR EXE, V22, P184, DOI 10.1123/ijsnem.22.3.184; Crabbe JB, 2007, PHYSIOL BEHAV, V90, P394, DOI 10.1016/j.physbeh.2006.10.001; DABBS JM, 1990, PHYSIOL BEHAV, V48, P83, DOI 10.1016/0031-9384(90)90265-6; Darwin C, 1871, DESCENT MAN SELECTIO; DAVIES CTM, 1986, J APPL PHYSIOL, V61, P611; Demas GE, 2011, J ANIM ECOL, V80, P710, DOI 10.1111/j.1365-2656.2011.01813.x; Dijkstra P, 2002, EUR J SOC PSYCHOL, V32, P829, DOI 10.1002/ejsp.125; Dixson AF, 2003, ARCH SEX BEHAV, V32, P29, DOI 10.1023/A:1021889228469; ELIAS M, 1981, AGGRESSIVE BEHAV, V7, P215, DOI 10.1002/1098-2337(1981)7:3<215::AID-AB2480070305>3.0.CO;2-M; Elias M., 1992, ENERGY METABOLISM TI, P51; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Evans W J, 1991, Exerc Sport Sci Rev, V19, P99; Fan JT, 2005, P ROY SOC B-BIOL SCI, V272, P219, DOI 10.1098/rspb.2004.2922; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Frederick DA, 2007, PERS SOC PSYCHOL B, V33, P1167, DOI 10.1177/0146167207303022; FREUND K, 1974, BEHAV RES THER, V12, P117, DOI 10.1016/0005-7967(74)90100-4; FRIEDL KE, 1994, J APPL PHYSIOL, V77, P933; Gallup AC, 2007, EVOL HUM BEHAV, V28, P423, DOI 10.1016/j.evolhumbehav.2007.07.001; Georgiev AV, 2015, BEHAV ECOL, V26, P763, DOI 10.1093/beheco/arv008; Glazier DS, 1999, EVOL ECOL, V13, P539, DOI 10.1023/A:1006793600600; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Graziottin A, 2000, MATURITAS, V34, pS9, DOI 10.1016/S0378-5122(99)00072-9; GRIGGS RC, 1989, J APPL PHYSIOL, V66, P498; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; HEIMAN JR, 1977, PSYCHOPHYSIOLOGY, V14, P266, DOI 10.1111/j.1469-8986.1977.tb01173.x; Hietanen JK, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024408; HODES RL, 1985, PSYCHOPHYSIOLOGY, V22, P545, DOI 10.1111/j.1469-8986.1985.tb01649.x; JOHNSON RC, 1985, AM J CLIN NUTR, V41, P846; JULIEN E, 1984, ARCH SEX BEHAV, V13, P211, DOI 10.1007/BF01541648; Kadi F, 2008, BRIT J PHARMACOL, V154, P522, DOI 10.1038/bjp.2008.118; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Knechtle B, 2005, Praxis (Bern 1994), V94, P371; Knechtle B, 2005, INT J SPORTS MED, V26, P499, DOI 10.1055/s-2004-821136; Knez WL, 2006, SPORTS MED, V36, P429, DOI 10.2165/00007256-200636050-00005; Lang P., 2005, A8 U FLOR; Lang P.J., 1980, TECHNOLOGY MENTAL HL, P119; Lang P. J., 1988, INT AFFECTIVE PICTUR; Lassek WD, 2009, EVOL HUM BEHAV, V30, P322, DOI 10.1016/j.evolhumbehav.2009.04.002; LAVRAKAS PJ, 1975, J RES PERS, V9, P324, DOI 10.1016/0092-6566(75)90006-9; Levin R., 1994, HUMAN APPETITE NEURA, P127; Liebenberg L, 2006, CURR ANTHROPOL, V47, P1017, DOI 10.1086/508695; Lieberman D. E., 2009, 1 HUMANS ORIGIN EARL, P77; Longman D, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0121560; Lotka AJ, 1922, P NATL ACAD SCI USA, V8, P147, DOI 10.1073/pnas.8.6.147; Lucas SJE, 2008, J SPORT SCI, V26, P477, DOI 10.1080/02640410701552872; MALARKEY WB, 1993, J GERONTOL, V48, pM134, DOI 10.1093/geronj/48.4.M134; Marieb E., 2010, HUMAN ANATOMY PHYSL; Mayer M., 1948, EXPT IMMUNOCHEMISTRY, P100; McArdle WD, 2001, EXERCISE PHYSL ENERG; McFarlin BK, 2008, APPL PHYSIOL NUTR ME, V33, P1007, DOI 10.1139/H08-076; Mestre-Alfaro A, 2012, FREE RADICAL RES, V46, P799, DOI 10.3109/10715762.2012.680193; Morley JE, 2003, CLIN GERIATR MED, V19, P605, DOI 10.1016/S0749-0690(02)00106-4; Mosley W., 2012, NUTR HUMAN REPROD; Muehlenbein MP, 2011, AM J HUM BIOL, V23, P267; Muehlenbein MP, 2006, VIROL J, V3, DOI 10.1186/1743-422X-3-19; Muehlenbein Michael P, 2006, Soc Biol, V53, P13; Muehlenbein MP, 2010, BIOPSYCHOSOC MED, V4, DOI 10.1186/1751-0759-4-21; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; Nieman DC, 2012, J SPORT HEALTH SCI, V1, P12, DOI 10.1016/j.jshs.2012.04.004; NORTHOFF H, 1994, INT J SPORTS MED, V15, pS167, DOI 10.1055/s-2007-1021132; Pennington C., 1963, TARAHUMARA MEXICO; Petersen AMW, 2005, J APPL PHYSIOL, V98, P1154, DOI 10.1152/japplphysiol.00164.2004; Pontzer H, 2016, CURR BIOL, V26, P410, DOI 10.1016/j.cub.2015.12.046; Prall SP, 2015, AM J HUM BIOL, V27, P877, DOI 10.1002/ajhb.22724; Prall SP, 2015, AM J PRIMATOL, V77, P642, DOI 10.1002/ajp.22387; Prall SP, 2014, INT J PRIMATOL, V35, P805, DOI 10.1007/s10764-014-9752-x; Quinsey VL, 1996, ETHOL SOCIOBIOL, V17, P341, DOI 10.1016/S0162-3095(96)00060-X; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff Derek A., 1992; ROSEN RC, 1973, PSYCHOSOM MED, V35, P509, DOI 10.1097/00006842-197311000-00006; ROUBENOFF R, 1996, THE AMERICAN JOURNAL, V64, pS459; Rubin H., 1976, PSYCHOPHARMACOLOGY, V15, P366; Shankar Akhil Anilkumar, 2012, Dent Update, V39, P566; SHEPHARD RJ, 1994, BRIT J SPORT MED, V28, P247, DOI 10.1136/bjsm.28.4.247; SHERWIN BB, 1988, PSYCHOBIOLOGY, V16, P416; Shirtcliff EA, 2002, HORM BEHAV, V42, P62, DOI 10.1006/hbeh.2002.1798; Sinclair JA, 2000, CAN J ZOOL, V78, P254, DOI 10.1139/cjz-78-2-254; Smith JC, 2013, MED SCI SPORT EXER, V45, P372, DOI 10.1249/MSS.0b013e31826d5ce5; Stearns S, 1992, EVOLUTION LIFE HIST; Stuempfle KJ, 2010, WILD ENVIRON MED, V21, P22, DOI 10.1016/j.wem.2009.12.020; Sureda A, 2015, J THERM BIOL, V47, P91, DOI 10.1016/j.jtherbio.2014.11.011; Talluri T, 1999, ANN NY ACAD SCI, V873, P94, DOI 10.1111/j.1749-6632.1999.tb09454.x; Tidball JG, 2005, AM J PHYSIOL-REG I, V288, pR345, DOI 10.1152/ajpregu.00454.2004; Tsai LW, 1996, AGGRESSIVE BEHAV, V22, P357; VANSNOORDWIJK A, 1986, THE AMERICAN NATURAL, V128, P137; WADE GN, 1992, NEUROSCI BIOBEHAV R, V16, P235, DOI 10.1016/S0149-7634(05)80183-6; Wade GN, 1996, AM J PHYSIOL-ENDOC M, V270, pE1; WEIGHT LM, 1991, CLIN SCI, V81, P677, DOI 10.1042/cs0810677; Wells JCK, 2007, INT J OBESITY, V31, P507, DOI 10.1038/sj.ijo.0803441; Wells JCK, 2006, ARCH DIS CHILD, V91, P612; Woods JA, 1999, MED SCI SPORT EXER, V31, P57, DOI 10.1097/00005768-199901000-00011; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 110 2 2 1 3 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. JAN-FEB 2018 30 1 e23052 10.1002/ajhb.23052 11 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics FT7ZQ WOS:000423372100002 28994489 Green Published, Other Gold 2019-02-21 J Tonkin, JD; Altermatt, F; Finn, DS; Heino, J; Olden, JD; Pauls, SU; Lytle, DA Tonkin, Jonathan D.; Altermatt, Florian; Finn, Debra S.; Heino, Jani; Olden, Julian D.; Pauls, Steffen U.; Lytle, David. A. The role of dispersal in river network metacommunities: Patterns, processes, and pathways FRESHWATER BIOLOGY English Article dendritic ecological networks; dispersal proxy; lotic; metacommunity dynamics; watercourse POPULATION GENETIC-STRUCTURE; FRESH-WATER FISHES; LOCAL ENVIRONMENTAL-FACTORS; ABEDUS-HERBERTI HEMIPTERA; CADDISFLY DRUSUS-DISCOLOR; SPINY MOUNTAIN CRAYFISH; LIFE-HISTORY STRATEGIES; ADULT AQUATIC INSECTS; OVERLAND DISPERSAL; STREAM NETWORKS 1. River networks are hierarchical dendritic habitats embedded within the terrestrial landscape, with varying connectivity between sites depending on their positions along the network. This physical organisation influences the dispersal of organisms, which ultimately affects metacommunity dynamics and biodiversity patterns. 2. We provide a conceptual synthesis of the role of river networks in structuring metacommunities in relation to dispersal processes in riverine ecosystems. We explore where the river network best explains observed metacommunity structure compared to other measurements of physical connectivity. We mostly focus on invertebrates, but also consider other taxonomic groups, including microbes, fishes, plants, and amphibians. 3. Synthesising studies that compared multiple spatial distance metrics, we found that the importance of the river network itself in explaining metacommunity patterns depended on a variety of factors, including dispersal mode (aquatic versus aerial versus terrestrial) and landscape type (arid versus mesic), as well as location- specific factors, such as network connectivity, land use, topographic heterogeneity, and biotic interactions. The river network appears to be less important for strong aerial dispersers and insects in arid systems than for other groups and biomes, but there is considerable variability. Borrowing from other literature, particularly landscape genetics, we developed a conceptual model that predicts that the explanatory power of the river network peaks in mesic systems for obligate aquatic dispersers. 4. We propose directions of future avenues of research, including the use of manipulative field and laboratory experiments that test metacommunity theory in river networks. While field and laboratory experiments have their own benefits and drawbacks (e.g. reality, control, cost), both are powerful approaches for understanding the mechanisms structuring metacommunities, by teasing apart dispersal and niche-related factors. 5. Finally, improving our knowledge of dispersal in river networks will benefit from expanding the breadth of cost-distance modelling to better infer dispersal from observational data; an improved understanding of life-history strategies rather than relying on independent traits; exploring individual-level variation in dispersal through detailed genetic studies; detailed studies on fine-scale environmental (e.g. daily hydrology) and organismal spatiotemporal variability; and synthesising comparative, experimental, and theoretical work. Expanding in these areas will help to push the current state of the science from a largely pattern-detection mode into a new phase of more mechanistically driven research. [Tonkin, Jonathan D.; Lytle, David. A.] Oregon State Univ, Dept Integrat Biol, Corvallis, OR 97331 USA; [Altermatt, Florian] Eawag Swiss Fed Inst Aquat Sci & Technol, Dept Aquat Ecol, Dubendorf, Switzerland; [Altermatt, Florian] Univ Zurich, Dept Evolutionary Biol & Environm Studies, Zurich, Switzerland; [Finn, Debra S.] Missouri State Univ, Dept Biol, Springfield, MO USA; [Heino, Jani] Finnish Environm Inst, Nat Environm Ctr, Biodivers, Oulu, Finland; [Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA; [Pauls, Steffen U.] Senckenberg Res Inst, Frankfurt, Germany; [Pauls, Steffen U.] Nat Hist Museum, Frankfurt, Germany Tonkin, JD (reprint author), Oregon State Univ, Dept Integrat Biol, Corvallis, OR 97331 USA. jdtonkin@gmail.com Pauls, Steffen/C-2192-2011 Tonkin, Jonathan/0000-0002-6053-291X; Altermatt, Florian/0000-0002-4831-6958 Academy of Finland; Swiss National Science Foundation [PP00P3_150698]; Deutsche Forschungsgemeinschaft [PA 1617/2-1]; U.S. Department of Defense [SERDP RC-2511] Academy of Finland; Swiss National Science Foundation, Grant/Award Number: PP00P3_150698; Deutsche Forschungsgemeinschaft, Grant/Award Number: PA 1617/2-1; U.S. Department of Defense, Grant/Award Number: SERDP RC-2511 Alexander LC, 2011, FRESHWATER BIOL, V56, P1456, DOI 10.1111/j.1365-2427.2010.02566.x; ALLAN J. D., 2007, STREAM ECOLOGY STRUC; Alp M, 2012, FRESHWATER BIOL, V57, P969, DOI 10.1111/j.1365-2427.2012.02758.x; ALTERMATT F, 2017, FRESHWATER BIOL, V0063; Altermatt F, 2015, METHODS ECOL EVOL, V6, P218, DOI 10.1111/2041-210X.12312; Altermatt F, 2013, J BIOGEOGR, V40, P2249, DOI 10.1111/jbi.12178; Altermatt F, 2013, AQUAT ECOL, V47, P365, DOI 10.1007/s10452-013-9450-3; Baggiano O, 2011, FRESHWATER BIOL, V56, P230, DOI 10.1111/j.1365-2427.2010.02490.x; Balint M, 2011, NAT CLIM CHANGE, V1, P313, DOI 10.1038/NCLIMATE1191; Bilton DT, 2001, ANNU REV ECOL SYST, V32, P159, DOI 10.1146/annurev.ecolsys.32.081501.114016; Blanchet FG, 2008, ECOL MODEL, V215, P325, DOI 10.1016/j.ecolmodel.2008.04.001; Blanchet S, 2014, FRESHWATER BIOL, V59, P450, DOI 10.1111/fwb.12277; Boersma KS, 2014, SOUTHWEST NAT, V59, P301, DOI 10.1894/N09-FRG-07.1; Bohonak AJ, 2003, ECOL LETT, V6, P783, DOI 10.1046/j.1461-0248.2003.00486.x; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Bonada N, 2009, GLOBAL ECOL BIOGEOGR, V18, P202, DOI 10.1111/j.1466-8238.2008.00434.x; Bostock BM, 2006, BIOL J LINN SOC, V87, P537, DOI 10.1111/j.1095-8312.2006.00587.x; Boumans L., 2016, ECOLOGY EVOLUTION, V7, P1635; Briers RA, 2004, FRESHWATER BIOL, V49, P425, DOI 10.1111/j.1365-2427.2004.01198.x; Briers RA, 2003, ECOL ENTOMOL, V28, P31, DOI 10.1046/j.1365-2311.2003.00480.x; BRITTAIN JE, 1988, HYDROBIOLOGIA, V166, P77, DOI 10.1007/BF00017485; Brown B., 2017, FRESHWATER BIOL, V63, P48; Brown BL, 2010, J ANIM ECOL, V79, P571, DOI 10.1111/j.1365-2656.2010.01668.x; Brown BL, 2017, OECOLOGIA, V183, P643, DOI 10.1007/s00442-016-3792-1; Brown BL, 2011, J N AM BENTHOL SOC, V30, P310, DOI 10.1899/10-129.1; Bunn SE, 1997, J N AM BENTHOL SOC, V16, P338, DOI 10.2307/1468022; Bush A, 2017, FRESHWATER BIOL, V62, P382, DOI 10.1111/fwb.12874; Campbell R. L., 2010, THESIS; Canedo-Arguelles M, 2015, J BIOGEOGR, V42, P778, DOI 10.1111/jbi.12457; Carrara F, 2014, AM NAT, V183, P13, DOI 10.1086/674009; Carrara F, 2012, P NATL ACAD SCI USA, V109, P5761, DOI 10.1073/pnas.1119651109; Carraro L., 2017, FRESHWATER BIOL, V63, P114; Chester ET, 2015, FRESHWATER BIOL, V60, P2066, DOI 10.1111/fwb.12630; Chester ET, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0091925; Clarke A, 2008, FRESHWATER BIOL, V53, P1707, DOI 10.1111/j.1365-2427.2008.02041.x; Clarke A, 2010, DIVERS DISTRIB, V16, P725, DOI 10.1111/j.1472-4642.2010.00692.x; Collier KJ, 1998, HYDROBIOLOGIA, V361, P53; Coughlan NE, 2017, FRESHWATER BIOL, V62, P631, DOI 10.1111/fwb.12894; Couto T. B. A., 2017, CANADIAN J FISHERIES; Crook DA, 2015, SCI TOTAL ENVIRON, V534, P52, DOI 10.1016/j.scitotenv.2015.04.034; Datry T, 2016, OIKOS, V125, P149, DOI 10.1111/oik.02922; Datry T, 2016, FRESHWATER BIOL, V61, P277, DOI 10.1111/fwb.12702; Declerck SAJ, 2011, ECOGRAPHY, V34, P296, DOI 10.1111/j.1600-0587.2010.06462.x; Dexter KG, 2012, P NATL ACAD SCI USA, V109, P7787, DOI 10.1073/pnas.1203523109; Dias MS, 2013, ECOGRAPHY, V36, P683, DOI 10.1111/j.1600-0587.2012.07724.x; Didham RK, 2012, FUND APPL LIMNOL, V180, P27, DOI 10.1127/1863-9135/2012/0243; Dillon RT., 2004, ECOLOGY FRESHWATER M; Dong X., 2016, SCI REPORTS, V6, P1; Downes BJ, 2017, J APPL ECOL, V54, P588, DOI 10.1111/1365-2664.12759; Downes BJ, 2010, J ANIM ECOL, V79, P235, DOI 10.1111/j.1365-2656.2009.01620.x; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Economo EP, 2011, AM NAT, V177, pE167, DOI 10.1086/659946; Eros T, 2017, FRESHWATER BIOL, V62, P215, DOI 10.1111/fwb.12857; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; Finn DS, 2007, FRESHWATER BIOL, V52, P1881, DOI 10.1111/j.1365-2427.2007.01813.x; Finn DS, 2006, MOL ECOL, V15, P3553, DOI 10.1111/j.1365-294X.2006.03034.x; Finn DS, 2016, FRESHWATER BIOL, V61, P702, DOI 10.1111/fwb.12740; Finn DS, 2011, J N AM BENTHOL SOC, V30, P963, DOI 10.1899/11-012.1; Finn DS, 2011, J N AM BENTHOL SOC, V30, P273, DOI 10.1899/10-035.1; Finn DS, 2008, ARCT ANTARCT ALP RES, V40, P638, DOI 10.1657/1523-0430(07-072)[FINN]2.0.CO;2; Fourtune L, 2016, FRESHWATER BIOL, V61, P1830, DOI 10.1111/fwb.12826; Fraser DF, 1999, ECOLOGY, V80, P597, DOI 10.1890/0012-9658(1999)080[0597:HQIAHR]2.0.CO;2; Fronhofer E. A., 2017, ECOGRAPHY, V40; Fronhofer EA, 2015, ECOL LETT, V18, P954, DOI 10.1111/ele.12475; Garcia RA, 2014, SCIENCE, V344, P486, DOI 10.1126/science.1247579; Geismar J, 2015, FRESHWATER BIOL, V60, P209, DOI 10.1111/fwb.12489; Gilliam JF, 2001, ECOLOGY, V82, P258, DOI 10.2307/2680101; Gothe E, 2013, J ANIM ECOL, V82, P449, DOI 10.1111/1365-2656.12004; Grant EHC, 2007, ECOL LETT, V10, P165, DOI 10.1111/j.1461-0248.2006.01007.x; Gronroos M, 2013, ECOL EVOL, V3, P4473, DOI 10.1002/ece3.834; Haase P., 2015, PEERJ PREPRINTS, V3; Heino J, 2008, ECOL ENTOMOL, V33, P614, DOI 10.1111/j.1365-2311.2008.01012.x; Heino J, 2017, ENVIRON REV, V25, P334, DOI 10.1139/er-2016-0110; Heino J, 2015, ECOL EVOL, V5, P1235, DOI 10.1002/ece3.1439; Heino J, 2015, FRESHWATER BIOL, V60, P845, DOI 10.1111/fwb.12533; Heino J, 2014, CURR OPIN INSECT SCI, V2, P7, DOI 10.1016/j.cois.2014.06.002; Heino J, 2013, BIOL REV, V88, P166, DOI 10.1111/j.1469-185X.2012.00244.x; Heino J, 2012, OIKOS, V121, P537, DOI 10.1111/j.1600-0706.2011.19715.x; Helton A., 2017, FRESHWATER BIOL, V63, P128; Hering D, 2009, AQUAT SCI, V71, P3, DOI 10.1007/s00027-009-9159-5; HERSHEY AE, 1993, ECOLOGY, V74, P2315, DOI 10.2307/1939584; Holyoak M., 2005, METACOMMUNITIES SPAT; Hoppeler F, 2016, FRESHWATER BIOL, V61, P1905, DOI 10.1111/fwb.12824; Hughes JM, 2009, BIOSCIENCE, V59, P573, DOI 10.1525/bio.2009.59.7.8; IPCC, 2013, CONTRIBUTION WORKING; Jacobson B, 2010, LANDSCAPE ECOL, V25, P495, DOI 10.1007/s10980-009-9442-9; Jaeger KL, 2012, RIVER RES APPL, V28, P1843, DOI 10.1002/rra.1554; Jaeger KL, 2014, P NATL ACAD SCI USA, V111, P13894, DOI 10.1073/pnas.1320890111; Jamoneau A., 2017, FRESHWATER BIOL, V63, P62; Johansson ME, 1996, J VEG SCI, V7, P593, DOI 10.2307/3236309; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; Karna OM, 2015, J ANIM ECOL, V84, P1342, DOI 10.1111/1365-2656.12397; Khazan ES, 2014, BIOL CONSERV, V177, P117, DOI 10.1016/j.biocon.2014.06.006; Kuglerova L, 2015, ECOLOGY, V96, P381, DOI 10.1890/14-0552.1; Kuusela K, 1996, ECOL ENTOMOL, V21, P171, DOI 10.1111/j.1365-2311.1996.tb01184.x; Lancaster J, 2013, AQUATIC ENTOMOLOGY, P1, DOI 10.1093/acprof:oso/9780199573219.001.0001; Lancaster J, 2017, OECOLOGIA, V184, P171, DOI 10.1007/s00442-017-3856-x; Lancaster J, 2017, ECOLOGY, V98, P565, DOI [10.1002/ecy.1671/suppinfo, 10.1002/ecy.1671]; Landeiro VL, 2011, FRESHWATER BIOL, V56, P1184, DOI 10.1111/j.1365-2427.2010.02563.x; Lawton JH, 1999, OIKOS, V84, P177, DOI 10.2307/3546712; Le Pichon C, 2009, ENVIRONMETRICS, V20, P512, DOI 10.1002/env.948; Legendre P, 2005, ECOL MONOGR, V75, P435, DOI 10.1890/05-0549; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Leys M, 2017, MOL ECOL, V26, P1670, DOI 10.1111/mec.14026; Li F., 2015, PEERJ PREPRINTS, V3, pe1125, DOI DOI 10.7287/PEERJ.PREPRINTS.911V1; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Logue JB, 2011, TRENDS ECOL EVOL, V26, P482, DOI 10.1016/j.tree.2011.04.009; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Lytle DA, 1999, J INSECT BEHAV, V12, P1, DOI 10.1023/A:1020940012775; Lytle DA, 2008, P R SOC B, V275, P453, DOI 10.1098/rspb.2007.1157; Macneale KH, 2005, FRESHWATER BIOL, V50, P1117, DOI 10.1111/j.1365-2427.2005.01387.x; Maloney KO, 2011, ECOGRAPHY, V34, P287, DOI 10.1111/j.1600-0587.2010.06518.x; Marques M, 2015, HYDROBIOLOGIA, V742, P81, DOI 10.1007/s10750-014-1968-4; Marquet PA, 2004, Frontiers of Biogeography: New Directions in the Geography of Nature, P191; McRae BH, 2006, EVOLUTION, V60, P1551, DOI 10.1111/j.0014-3820.2006.tb00500.x; MEFFE G K, 1988, Conservation Biology, V2, P157, DOI 10.1111/j.1523-1739.1988.tb00167.x; Miller MP, 2002, FRESHWATER BIOL, V47, P1660, DOI 10.1046/j.1365-2427.2002.00911.x; Miller WL, 2015, ECOSPHERE, V6, DOI 10.1890/ES15-00302.1; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Mims MC, 2015, ECOLOGY, V96, P1371, DOI 10.1890/14-0490.1; Moran-Ordonez A, 2015, DIVERS DISTRIB, V21, P1230, DOI 10.1111/ddi.12342; Morrissey MB, 2009, AM NAT, V174, P875, DOI 10.1086/648311; Mossop KD, 2015, J BIOGEOGR, V42, P2374, DOI 10.1111/jbi.12596; MULLER K, 1982, OECOLOGIA, V52, P202, DOI 10.1007/BF00363837; Muller K., 1954, Report Institute of Freshwater Research Drottningholm, P133; Muneepeerakul R, 2008, NATURE, V453, P220, DOI 10.1038/nature06813; Murphy AL, 2015, ECOL EVOL, V5, P5252, DOI 10.1002/ece3.1741; Murphy NP, 2010, FRESHWATER BIOL, V55, P2499, DOI 10.1111/j.1365-2427.2010.02479.x; Murria C, 2013, FRESHWATER BIOL, V58, P2226, DOI 10.1111/fwb.12204; O'Connor MI, 2012, GLOBAL ECOL BIOGEOGR, V21, P693, DOI 10.1111/j.1466-8238.2011.00713.x; Olden JD, 2001, OECOLOGIA, V127, P572, DOI 10.1007/s004420000620; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2016, CONSERV BIOL SER, P107; Olden JD, 2010, DIVERS DISTRIB, V16, P496, DOI 10.1111/j.1472-4642.2010.00655.x; Padial AA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111227; Pauls SU, 2006, MOL ECOL, V15, P2153, DOI 10.1111/j.1365-294X.2006.02916.x; Petersen I, 2004, J APPL ECOL, V41, P934, DOI 10.1111/j.0021-8901.2004.00942.x; Petersen I, 1999, FRESHWATER BIOL, V42, P401, DOI 10.1046/j.1365-2427.1999.00466.x; Peterson EE, 2007, FRESHWATER BIOL, V52, P267, DOI 10.1111/j.1365-2427.2006.01686.x; Peterson EE, 2013, ECOL LETT, V16, P707, DOI 10.1111/ele.12084; Phillipsen IC, 2015, MOL ECOL, V24, P54, DOI 10.1111/mec.13003; Phillipsen IC, 2013, ECOGRAPHY, V36, P731, DOI 10.1111/j.1600-0587.2012.00002.x; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Ponniah M, 2006, MAR FRESHWATER RES, V57, P349, DOI 10.1071/MF05172; Ponniah M, 2004, EVOLUTION, V58, P1073; Radinger J, 2014, FISH FISH, V15, P456, DOI 10.1111/faf.12028; Ramalho RO, 2015, HYDROBIOLOGIA, V746, P135, DOI 10.1007/s10750-014-2052-9; Razeng E, 2017, FRESHWATER BIOL, V62, P1443, DOI 10.1111/fwb.12959; Razeng E, 2016, FRESHWATER BIOL, V61, P745, DOI 10.1111/fwb.12744; Rodriguez-Iturbe I, 2001, FRACTAL RIVER BASINS; Rodriguez-Iturbe I., 2009, WATER RESOUR RES, V45, P1; Sarremejane R, 2017, FRESHWATER BIOL, V62, P1073, DOI 10.1111/fwb.12926; Sauer J, 2011, BIODIVERS CONSERV, V20, P3133, DOI 10.1007/s10531-011-0140-y; Schmera D., 2017, FRESHWATER BIOL, V63, P74; Schmidt-Kloiber A, 2015, ECOL INDIC, V53, P271, DOI 10.1016/j.ecolind.2015.02.007; Schmiedel D, 2013, FOREST ECOL MANAG, V304, P437, DOI 10.1016/j.foreco.2013.04.027; Schriever TA, 2015, FRESHW SCI, V34, P399, DOI 10.1086/680518; Seymour M, 2016, FRESHWATER BIOL, V61, P1819, DOI 10.1111/fwb.12816; Seymour M, 2015, OIKOS, V124, P908, DOI 10.1111/oik.02354; Shama LNS, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-278; Sheldon F, 2010, MAR FRESHWATER RES, V61, P885, DOI 10.1071/MF09239; Short AEZ, 2009, MOL ECOL, V18, P403, DOI 10.1111/j.1365-294X.2008.04039.x; Shurin JB, 2009, OECOLOGIA, V159, P151, DOI 10.1007/s00442-008-1174-z; SIH A, 1982, ECOLOGY, V63, P786, DOI 10.2307/1936799; Siqueira T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043626; Spear SF, 2010, MOL ECOL, V19, P3576, DOI 10.1111/j.1365-294X.2010.04657.x; Stanford J. A., 1988, NATURE, V336, P403; STANFORD JA, 1993, J N AM BENTHOL SOC, V12, P48, DOI 10.2307/1467685; Tachet H., 2000, INVERTEBRES EAU DOUC; TAYLOR PD, 1993, OIKOS, V68, P571, DOI 10.2307/3544927; Teslenko VA, 2012, ZOOTAXA, P1; Theissinger K, 2013, J BIOGEOGR, V40, P236, DOI 10.1111/j.1365-2699.2012.02793.x; Thompson PL, 2017, NAT ECOL EVOL, V1, DOI 10.1038/s41559-017-0162; Thompson R, 2006, J ANIM ECOL, V75, P476, DOI 10.1111/j.1365-2656.2006.01068.x; Tonkin J. D., 2016, BIORXIV; Tonkin JD, 2017, ECOLOGY, V98, P1201, DOI 10.1002/ecy.1761; Tonkin JD, 2017, J BIOGEOGR, V44, P62, DOI 10.1111/jbi.12895; Tonkin JD, 2016, OIKOS, V125, P686, DOI 10.1111/oik.02717; Tonkin JD, 2016, FRESHWATER BIOL, V61, P607, DOI 10.1111/fwb.12728; Tonkin JD, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0135450; Tonkin JD, 2014, FRESHWATER BIOL, V59, P1843, DOI 10.1111/fwb.12387; TOWNSEND CR, 1991, OIKOS, V61, P347, DOI 10.2307/3545242; Tuomisto H, 2006, ECOLOGY, V87, P2697, DOI 10.1890/0012-9658(2006)87[2697:AOEBDU]2.0.CO;2; Van Leeuwen CHA, 2013, FRESHWATER BIOL, V58, P88, DOI 10.1111/fwb.12041; Vander Vorste R, 2016, FRESHWATER BIOL, V61, P1276, DOI 10.1111/fwb.12658; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Vellend M, 2005, AM NAT, V166, P199, DOI 10.1086/431318; Vellend M, 2014, OIKOS, V123, P1420, DOI 10.1111/oik.01493; Vellend M, 2010, Q REV BIOL, V85, P183, DOI 10.1086/652373; Ver Hoef JM, 2006, ENVIRON ECOL STAT, V13, P449, DOI 10.1007/s10651-006-0022-8; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Walther AC, 2008, J FRESHWATER ECOL, V23, P337, DOI 10.1080/02705060.2008.9664207; WARD JV, 1994, HYDROBIOLOGIA, V287, P147, DOI 10.1007/BF00006903; Wiberg-Larsen P., 2004, THESIS; Wilcock HR, 2007, FRESHWATER BIOL, V52, P1907, DOI 10.1111/j.1365-2427.2007.01818.x; Winegardner AK, 2012, TRENDS ECOL EVOL, V27, P253, DOI 10.1016/j.tree.2012.01.007; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Woodward G, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0274; Wubs ERJ, 2016, FRESHWATER BIOL, V61, P580, DOI 10.1111/fwb.12736; Zeller KA, 2012, LANDSCAPE ECOL, V27, P777, DOI 10.1007/s10980-012-9737-0; Zhang Y, 2014, AQUAT BIOL, V20, P185, DOI 10.3354/ab00560 203 19 19 27 65 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. JAN 2018 63 1 SI 141 163 10.1111/fwb.13037 23 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FT6RG WOS:000423280700012 Bronze, Green Published 2019-02-21 J Gray, LJ; Simpson, SJ; Polak, M Gray, Lindsey J.; Simpson, Stephen J.; Polak, Michal Fruit flies may face a nutrient-dependent life-history trade-off between secondary sexual trait quality, survival and developmental rate JOURNAL OF INSECT PHYSIOLOGY English Article Drosophila melanogaster; Life-history; Nutrition; Sexual selection; Geometric framework DROSOPHILA-MELANOGASTER; FLUCTUATING ASYMMETRY; HANDICAP PRINCIPLE; IMMUNOCOMPETENCE HANDICAP; CARBOHYDRATE INTAKE; GENETIC-VARIATION; MATING SUCCESS; MATE CHOICE; GROWTH-RATE; SELECTION Optimal life-history strategies are those that best allocate finite environmental resources to competing traits. We used the geometric framework for nutrition to evaluate life-history strategies followed by Drosophila melanogaster by measuring the condition-dependent performance of life-history traits, including the morphology of male secondary sexual characters, sex combs. We found that depending on their rearing environment flies faced different forms of trait trade-offs and accordingly followed different life-history strategies. High-energy, high carbohydrate, low-protein diets supported development of the largest and most symmetrical sex combs, however, consistent with handicap models of sexual selection these foods were associated with reduced fly survival and developmental rate. Expressing the highest quality sex combs may have required secondary sexual trait quality to be traded-off with developmental rate, and our results indicated that flies unable to slow development died. As larval nutritional environments are predominantly determined by female oviposition substrate choice, we tested where mated female flies laid the most eggs. Mothers chose high-energy, high-protein foods associated with rapid larval development. Mothers avoided high-carbohydrate foods associated with maximal sex comb expression, showing they may avoid producing fewer 'sexy' sons in favour of producing offspring that develop rapidly. [Gray, Lindsey J.; Simpson, Stephen J.] Univ Sydney, Sch Life & Environm Sci, Charles Perkins Ctr, Sydney, NSW 2006, Australia; [Polak, Michal] Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA Gray, LJ (reprint author), Univ Sydney, Sch Life & Environm Sci, Charles Perkins Ctr, Sydney, NSW 2006, Australia. lindsey.gray@sydney.edu.au; stephen.simpson@sydney.edu.au; michal.polak@uc.edu CSIRO Office of the Chief Executive PhD studentship Thank you to Matt Renner for his singular assistance. Thank you also to Viet Pham, Tanja von Behrens, John Hunt, Alistair Senior and our anonymous reviewers for their assistance, it is sincerely appreciated. LJG was funded through a CSIRO Office of the Chief Executive PhD studentship. Ahuja A, 2011, GENETICA, V139, P505, DOI 10.1007/s10709-011-9572-2; de Carvalho MJA, 2017, ANIM BEHAV, V126, P195, DOI 10.1016/j.anbehav.2017.02.005; ANDERSSON M, 1982, BIOL J LINN SOC, V17, P375, DOI 10.1111/j.1095-8312.1982.tb02028.x; Andersson M., 1994, SEXUAL SELECTION; Andersson M, 2006, TRENDS ECOL EVOL, V21, P296, DOI 10.1016/j.tree.2006.03.015; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Berglund A, 1996, BIOL J LINN SOC, V58, P385, DOI 10.1111/j.1095-8312.1996.tb01442.x; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Bunning H, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2144; CALOW P, 1982, AM NAT, V120, P416, DOI 10.1086/284001; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; Chen S, 2002, P NATL ACAD SCI USA, V99, P5664, DOI 10.1073/pnas.082102599; Cotton S, 2004, P ROY SOC B-BIOL SCI, V271, P771, DOI 10.1098/rspb.2004.2688; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; Dickson BJ, 2008, SCIENCE, V322, P904, DOI 10.1126/science.1159276; Dongen SV, 2006, J EVOLUTION BIOL, V19, P1727, DOI 10.1111/j.1420-9101.2006.01175.x; Eberhard W. G, 1985, SEXUAL SELECTION ANI; Emlen DJ, 2008, ANNU REV ECOL EVOL S, V39, P387, DOI 10.1146/annurev.ecolsys.39.110707.173502; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Giery ST, 2015, AM NAT, V186, P187, DOI 10.1086/682068; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; HANSEN AJ, 1986, ANIM BEHAV, V34, P69, DOI 10.1016/0003-3472(86)90007-2; HEISLER IL, 1984, EVOLUTION, V38, P1283, DOI 10.1111/j.1558-5646.1984.tb05650.x; Hill GE, 2015, EVOL BIOL, V42, P251, DOI 10.1007/s11692-015-9331-x; House CM, 2016, FUNCT ECOL, V30, P769, DOI 10.1111/1365-2435.12567; Hoyer SC, 2008, CURR BIOL, V18, P159, DOI 10.1016/j.cub.2007.12.052; Hurtado-Gonzales JL, 2015, ETHOLOGY, V121, P45, DOI 10.1111/eth.12316; JARVI T, 1990, ETHOLOGY, V84, P123; Jennions MD, 2001, Q REV BIOL, V76, P3, DOI 10.1086/393743; Jensen K, 2015, AGING CELL, V14, P605, DOI 10.1111/acel.12333; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; JOHNSTONE RA, 1995, BIOL REV, V70, P1, DOI 10.1111/j.1469-185X.1995.tb01439.x; Jones SD, 2015, ZOOLOGY, V118, P439, DOI 10.1016/j.zool.2015.07.003; Keleman K, 2012, NATURE, V489, P145, DOI 10.1038/nature11345; Khila A, 2012, SCIENCE, V336, P585, DOI 10.1126/science.1217258; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kopp A, 2002, EVOL DEV, V4, P278, DOI 10.1046/j.1525-142X.2002.02017.x; KRAAIJEVELD AR, 1994, ECOL ENTOMOL, V19, P221, DOI 10.1111/j.1365-2311.1994.tb00413.x; Lee KP, 2004, J INSECT PHYSIOL, V50, P1171, DOI 10.1016/j.jinsphys.2004.10.009; Lee KP, 2008, P NATL ACAD SCI USA, V105, P2498, DOI 10.1073/pnas.0710787105; Lihoreau M, 2016, J EXP BIOL, V219, P2514, DOI 10.1242/jeb.142257; Markow TA, 1996, ANIM BEHAV, V52, P759, DOI 10.1006/anbe.1996.0220; MERILA J, 1995, SYST BIOL, V44, P97, DOI 10.2307/2413486; MOLLER AP, 1990, ANIM BEHAV, V40, P1185, DOI 10.1016/S0003-3472(05)80187-3; Morimoto J., 2016, SCI REP; Morris MR, 2012, FUNCT ECOL, V26, P723, DOI 10.1111/j.1365-2435.2012.01983.x; ODUM HT, 1955, AM SCI, V43, P331; Palmer A. Richard, 2003, P279; PALMER AR, 1986, ANNU REV ECOL SYST, V17, P391, DOI 10.1146/annurev.es.17.110186.002135; Panhuis TM, 2001, TRENDS ECOL EVOL, V16, P364, DOI 10.1016/S0169-5347(01)02160-7; Piper MDW, 2015, NAT METHODS, V12, P1098, DOI 10.1038/nmeth1115-1098d; Polak M, 2004, EVOLUTION, V58, P597, DOI 10.1111/j.0014-3820.2004.tb01682.x; Polak M, 2012, J EVOLUTION BIOL, V25, P277, DOI 10.1111/j.1420-9101.2011.02429.x; Polak M., 2003, DEV INSTABILITY CAUS; Polak M, 2007, P R SOC B, V274, P3133, DOI 10.1098/rspb.2007.1272; Polak M, 2016, BEHAV ECOL, V27, P444, DOI 10.1093/beheco/arv174; Polak M, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1081; Polak M, 2009, BEHAV ECOL, V20, P753, DOI 10.1093/beheco/arp056; Prokop ZM, 2016, EVOLUTION, V70, P913, DOI 10.1111/evo.12898; Rapkin J, 2016, J EVOLUTION BIOL, V29, P395, DOI 10.1111/jeb.12794; Raubenheimer D, 2009, INTEGR COMP BIOL, V49, P329, DOI 10.1093/icb/icp050; Reddiex AJ, 2013, AM NAT, V182, P91, DOI 10.1086/670649; Refsnider JM, 2010, ANNU REV ECOL EVOL S, V41, P39, DOI 10.1146/annurev-ecolsys-102209-144712; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; Robinson BW, 2002, ENVIRON BIOL FISH, V63, P67, DOI 10.1023/A:1013820101348; Rodrigues MA, 2015, J INSECT PHYSIOL, V81, P69, DOI 10.1016/j.jinsphys.2015.07.002; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roulin A, 2016, BIOL REV, V91, P328, DOI 10.1111/brv.12171; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Schilder RJ, 2006, P NATL ACAD SCI USA, V103, P18805, DOI 10.1073/pnas.0603156103; Sentinella AT, 2013, FUNCT ECOL, V27, P1134, DOI 10.1111/1365-2435.12104; Sharma MD, 2011, BIOL J LINN SOC, V103, P923, DOI 10.1111/j.1095-8312.2011.01709.x; SIBLY R, 1984, J THEOR BIOL, V111, P463, DOI 10.1016/S0022-5193(84)80234-9; Simmons LW, 1995, BEHAV ECOL, V6, P376, DOI 10.1093/beheco/6.4.376; Simpson S. J., 2012, NATURE NUTR UNIFYING; Simpson SJ, 2002, J EXP BIOL, V205, P121; Skorupa DA, 2008, AGING CELL, V7, P478, DOI 10.1111/j.1474-9726.2008.00400.x; SOKOLOWSKI MB, 1987, CAN J ZOOL, V65, P461, DOI 10.1139/z87-071; SOKOLOWSKI MB, 1985, J INSECT PHYSIOL, V31, P857, DOI 10.1016/0022-1910(85)90103-9; Sokolowski MB, 2001, NAT REV GENET, V2, P879, DOI 10.1038/35098592; South SH, 2011, EVOLUTION, V65, P1594, DOI 10.1111/j.1558-5646.2011.01233.x; SPIESS EB, 1981, P NATL ACAD SCI-BIOL, V78, P3088, DOI 10.1073/pnas.78.5.3088; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Suzuki K, 1997, APPL ENTOMOL ZOOL, V32, P235, DOI 10.1303/aez.32.235; THOMPSON JN, 1988, ENTOMOL EXP APPL, V47, P3, DOI 10.1111/j.1570-7458.1988.tb02275.x; Thompson SN, 2003, J COMP PHYSIOL B, V173, P149, DOI 10.1007/s00360-002-0322-8; Tomkins JL, 2004, TRENDS ECOL EVOL, V19, P323, DOI 10.1016/j.tree.2004.03.029; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; Vonesh JR, 2006, ECOLOGY, V87, P556, DOI 10.1890/05-0930; Waddington C. H., 1957, STRATEGY GENES; Warbrick-Smith J, 2006, P NATL ACAD SCI USA, V103, P14045, DOI 10.1073/pnas.0605225103; ZAHAVI A, 1977, J THEOR BIOL, V67, P603, DOI 10.1016/0022-5193(77)90061-3; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; Zeller M, 2016, ECOL EVOL, V6, P552, DOI 10.1002/ece3.1888 97 2 2 7 19 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. JAN 2018 104 60 70 10.1016/j.jinsphys.2017.11.010 11 Entomology; Physiology; Zoology Entomology; Physiology; Zoology FT2XI WOS:000423008900008 29203178 2019-02-21 J Martin, TE; Ton, R; Oteyza, JC Martin, Thomas E.; Ton, Riccardo; Oteyza, Juan C. Adaptive influence of extrinsic and intrinsic factors on variation of incubation periods among tropical and temperate passerines AUK English Article adult survival; egg temperature; parental effort; physiological trade-offs LIFE-HISTORY EVOLUTION; ADULT MORTALITY PROBABILITY; EMBRYONIC-DEVELOPMENT RATES; BREEDING BIOLOGY; AVIAN INCUBATION; PREDATION RISK; PARENTAL CARE; HATCHING ASYNCHRONY; THERMAL TOLERANCE; NATURAL-SELECTION Understanding intrinsic (physiological) and extrinsic (e.g., temperature) causes of variation in embryonic development time (incubation period) is important because they can have different impacts on individual quality. Robert Ricklefs and colleagues have argued that longer incubation periods result primarily from intrinsic physiological programs that increase individual quality and adult survival. They claim that incubation periods are largely invariant and that extrinsic factors like temperature have little impact. We have argued that adult survival may be a cause rather than a consequence of much of the variation in embryonic development time. A reduction in extrinsic sources of annual adult mortality (e.g., migration, predation, nonbreeding-season mortality) favors reduced parental effort during incubation to minimize costs to future reproduction and survival. Reduced parental effort, in turn, manifests as cooler average egg temperatures that yield longer incubation periods. Ricklefs and colleagues mischaracterized our hypothesis and deconstructed their own incorrect version, while also making some incorrect statements. We show that reevaluation of previous evidence provided by this group actually supports a role of egg temperature for the variation in incubation periods. We also summarize other observational and experimental evidence that incubation periods are not invariant and that egg temperature has a strong causal influence on variation within and among species. In fact, egg temperature explains similar to 60% of the difference in incubation periods among species. The remaining similar to 40% reflects intrinsic physiological programs and other factors, potentially providing intrinsic benefits. Ultimately, annual adult mortality explains substantial variation in parental effort and egg temperature, and the latter strongly explains variation in incubation periods. Both intrinsic programs and extrinsic temperature effects need to be considered in attempts to understand incubation strategies. [Martin, Thomas E.] Univ Montana, Montana Cooperat Wildlife Res Unit, US Geol Survey, Missoula, MT 59812 USA; [Ton, Riccardo; Oteyza, Juan C.] Univ Montana, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA Martin, TE (reprint author), Univ Montana, Montana Cooperat Wildlife Res Unit, US Geol Survey, Missoula, MT 59812 USA. tom.martin@umontana.edu National Science Foundation [DEB-1241041, IOS-1349178, DEB-1651283, IOS-1656120] This work was supported by the National Science Foundation (DEB-1241041, IOS-1349178, DEB-1651283, IOS-1656120). Amat JA, 2004, ANIM BEHAV, V67, P293, DOI 10.1016/j.anbehav.2003.06.014; Ardia DR, 2006, J AVIAN BIOL, V37, P137, DOI 10.1111/j.0908-8857.2006.03747.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arnold TW, 2012, AVIAN CONSERV ECOL, V7, DOI 10.5751/ACE-00504-070101; Auer SK, 2007, J AVIAN BIOL, V38, P278, DOI 10.1111/j.2007.0908-8857.04092.x; Auer SK, 2017, BEHAV ECOL, V28, P1176, DOI 10.1093/beheco/arx082; Barbraud C, 2001, NATURE, V411, P183, DOI 10.1038/35075554; Bartlett TL, 2005, AUK, V122, P835, DOI 10.1642/0004-8038(2005)122[0835:DOLIAB]2.0.CO;2; Billerbeck JM, 2001, EVOLUTION, V55, P1863; BOERSMA PD, 1982, AM NAT, V120, P733, DOI 10.1086/284027; BRISKIE JV, 1990, AUK, V107, P789, DOI 10.2307/4088016; Briskie JV, 2004, P NATL ACAD SCI USA, V101, P558, DOI 10.1073/pnas.0305103101; Bryan SM, 1999, P ROY SOC B-BIOL SCI, V266, P157, DOI 10.1098/rspb.1999.0616; Bryant D. M, 1999, P 22 INT ORN C DURB, P412; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; CINTRA R, 1988, WILSON BULL, V100, P443; Deeming DC, 2008, J THERM BIOL, V33, P345, DOI 10.1016/j.jtherbio.2008.05.002; DEERENBERG C, 1995, ZOOL-ANAL COMPLEX SY, V99, P39; Eiby Y, 2008, AUK, V125, P594, DOI 10.1525/auk.2008.07083; Evans SB, 2006, J WILDLIFE MANAGE, V70, P1372, DOI 10.2193/0022-541X(2006)70[1372:SOAFEI]2.0.CO;2; Fedy BC, 2009, BEHAV ECOL, V20, P1034, DOI 10.1093/beheco/arp094; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Geffen E, 2000, J ANIM ECOL, V69, P59, DOI 10.1046/j.1365-2656.2000.00370.x; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; HAFTORN S, 1988, ORNIS SCAND, V19, P97, DOI 10.2307/3676458; HAFTORN S, 1983, Fauna Norvegica Series C Cinclus, V6, P22; Hare KM, 2004, COPEIA, P383; Heming NM, 2015, J AVIAN BIOL, V46, P352, DOI 10.1111/jav.00629; Hepp GR, 2006, FUNCT ECOL, V20, P307, DOI 10.1111/j.1365-2435.2006.01108.x; Kim SY, 2006, J THERM BIOL, V31, P416, DOI 10.1016/j.jtherbio.2006.02.002; KLEINDORFER S, 1995, BEHAVIOUR, V132, P607, DOI 10.1163/156853995X00234; Klimstra JD, 2009, AVIAN BIOL RES, V2, P121, DOI 10.3184/175815509X12473903090713; LaManna JA, 2016, ECOL LETT, V19, P403, DOI 10.1111/ele.12573; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LIFJELD JT, 1986, ANIM BEHAV, V34, P1441, DOI 10.1016/S0003-3472(86)80215-9; LILL A, 1979, CONDOR, V81, P225, DOI 10.2307/1367621; Llambias PE, 2015, J ORNITHOL, V156, P933, DOI 10.1007/s10336-015-1217-2; Low M, 2010, J ANIM ECOL, V79, P214, DOI 10.1111/j.1365-2656.2009.01595.x; LYON BE, 1985, BEHAV ECOL SOCIOBIOL, V17, P279, DOI 10.1007/BF00300147; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; MAGRATH RD, 1988, AM NAT, V131, P893, DOI 10.1086/284829; Magrath RD, 2000, AUK, V117, P479, DOI 10.1642/0004-8038(2000)117[0479:LITSLR]2.0.CO;2; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2008, P NATL ACAD SCI USA, V105, P9268, DOI 10.1073/pnas.0709366105; Martin TE, 2008, PHILOS T R SOC B, V363, P1663, DOI 10.1098/rstb.2007.0009; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; Martin TE, 2015, SCIENCE, V349, P966, DOI 10.1126/science.aad1173; Martin TE, 2015, AM NAT, V186, P223, DOI 10.1086/681986; Martin TE, 2015, AM NAT, V185, P380, DOI 10.1086/679612; Martin TE, 2013, ECOL LETT, V16, P738, DOI 10.1111/ele.12103; Martin TE, 2011, BIOL LETTERS, V7, P425, DOI 10.1098/rsbl.2010.1031; Matsuzawa Y, 2002, MAR BIOL, V140, P639, DOI 10.1007/s00227-001-0724-2; McCay C M, 1933, Science, V77, P410, DOI 10.1126/science.77.2000.410; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Munoz D, 2014, WILSON J ORNITHOL, V126, P717, DOI 10.1676/14-011.1; Niklison AM, 2008, WILSON J ORNITHOL, V120, P345, DOI 10.1676/07-007.1; NILSSON JA, 1988, ANIM BEHAV, V36, P641, DOI 10.1016/S0003-3472(88)80145-3; Nord A, 2011, AM NAT, V178, P639, DOI 10.1086/662172; Nord A, 2010, FUNCT ECOL, V24, P1031, DOI 10.1111/j.1365-2435.2010.01719.x; Paxton EH, 2017, J AVIAN BIOL, V48, P1126, DOI 10.1111/jav.01371; Qualls CP, 1999, BIOL J LINN SOC, V67, P353, DOI 10.1111/j.1095-8312.1999.tb01939.x; RAHN H, 1974, CONDOR, V76, P147, DOI 10.2307/1366724; Rahn H., 1983, Polar Research, V1, P171, DOI 10.1111/j.1751-8369.1983.tb00701.x; Reid JM, 2000, P ROY SOC B-BIOL SCI, V267, P37, DOI 10.1098/rspb.2000.0963; Reid JM, 2002, BEHAV ECOL SOCIOBIOL, V51, P255, DOI 10.1007/S00265-001-0435-1; Reidy JL, 2009, WILSON J ORNITHOL, V121, P416, DOI 10.1676/08-076.1; RICKLEFS RE, 1984, AM NAT, V123, P710, DOI 10.1086/284232; RICKLEFS RE, 1983, AUK, V100, P926; Ricklefs RE, 2017, AUK, V134, P542, DOI 10.1642/AUK-16-171.1; Robinson WD, 2008, AM NAT, V171, P532, DOI 10.1086/528964; Robinson WD, 2014, J ORNITHOL, V155, P45, DOI 10.1007/s10336-013-0985-9; Rowley I., 1991, Oxford Ornithology Series, P22; Ruggera RA, 2010, WILSON J ORNITHOL, V122, P447, DOI 10.1676/09-151.1; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.2307/177213; Schneider NA, 2013, BEHAV ECOL, V24, P47, DOI 10.1093/beheco/ars134; Shine R, 1997, ECOLOGY, V78, P1713; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; Skutch A. F, 1954, LIFE HIST CENTRAL AM, VI; Skutch A. F, 1960, LIFE HIST CENTRAL AM, VII; Skutch AF, 1969, LIFE HIST CENTRAL AM; Skutch Alexander F., 1945, AUK, V62, P8; Stoleson SH, 2001, CONDOR, V103, P85, DOI 10.1650/0010-5422(2001)103[0085:DRONFO]2.0.CO;2; Tieleman BI, 2004, FUNCT ECOL, V18, P571, DOI 10.1111/j.0269-8463.2004.00882.x; Ton R, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00885-3; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; VANDAMME R, 1992, HERPETOLOGICA, V48, P220; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; Ward J. E, 1940, B NY ZOOL SOC, V63, P146; WEBB DR, 1987, CONDOR, V89, P874, DOI 10.2307/1368537; WHEELWRIGHT NT, 1979, PHYSIOL ZOOL, V52, P231, DOI 10.1086/physzool.52.2.30152566; WHITE FN, 1974, SCIENCE, V186, P107, DOI 10.1126/science.186.4159.107; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams Joseph B., 1996, P375; Zhao JM, 2017, BIOL LETTERS, V13, DOI 10.1098/rsbl.2016.0967 98 0 0 3 8 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK JAN 2018 135 1 101 113 10.1642/AUK-17-124.1 13 Ornithology Zoology FT1BV WOS:000422868600010 2019-02-21 J Parsons, KT; Maisano, J; Gregg, J; Cotton, CF; Latour, RJ Parsons, K. T.; Maisano, J.; Gregg, J.; Cotton, C. F.; Latour, R. J. Age and growth assessment of western North Atlantic spiny butterfly ray Gymnura altavela (L. 1758) using computed tomography of vertebral centra ENVIRONMENTAL BIOLOGY OF FISHES English Article Myliobatiformes; Gymnuridae; HRXCT; Growth coefficient; Logistic growth model GULF-OF-MEXICO; REPRODUCTIVE-BIOLOGY; LIFE-HISTORY; ISKENDERUN BAY; SANDBAR SHARK; BATOIDS; MATURITY; STINGRAY; SKATES; CHONDRICHTHYES Life history strategies of batoid fishes have evolved within dynamic marine ecosystems. Adaptations in reproductive and developmental biology are paramount to the survival of species, and therefore knowledge of growth rates to maturity is fundamental for identifying constraints on the conservation of populations. The butterfly rays (Myliobatiformes: Gymnuridae) are highly derived batoids with generally low reproductive potentials for which age and growth information remains unknown. In this study we applied high-resolution X-ray computed tomography (HRXCT) to vertebral centra from a stingray for the first time to estimate age, and used a multimodel approach to investigate growth of spiny butterfly ray, Gymnura altavela. Estimated ages of the oldest male and female were 11 and 18 yrs. at disk widths (WD) 1355 mm and 2150 mm, respectively. Disk width-at-age data were analyzed using three growth models (von Bertalanffy, logistic, Gompertz), and the most parsimonious and empirically supported model was the logistic function with sex treated as a fixed effect on asymptotic disk width (WD infinity) and k parameters. Model parameter estimates were (males) WD infinity = 1285.46 +/- 67.27 mm, k = 0.60 +/- 0.10, and (females) WD infinity = 2173.51 +/- 129.78 mm, k = 0.27 +/- 0.04. Results indicated sexually dimorphic growth patterns, with males growing faster and reaching asymptotic size at earlier ages than females. These age and growth results are the first reported for the genus, and suggest that G. altavela grows at a similar rate as some teleosts and batoids, and relatively fast among chondrichthyans. [Parsons, K. T.; Gregg, J.; Latour, R. J.] Coll William & Mary, Virginia Inst Marine Sci, POB 1346, Gloucester Point, VA 23062 USA; [Maisano, J.] Univ Texas Austin, Dept Geol Sci, 2275 Speedway Stop C9000, Austin, TX 78712 USA; [Cotton, C. F.] Florida State Univ, Coastal & Marine Lab, 3618 Coastal Highway 98, St Teresa, FL 32358 USA Parsons, KT (reprint author), Coll William & Mary, Virginia Inst Marine Sci, POB 1346, Gloucester Point, VA 23062 USA. kparsons@vims.edu NOAA Chesapeake Bay Office; Virginia Environmental Endowment; U.S. Fish and Wildlife Service; Virginia Marine Resources Commission (ChesMMAP); Atlantic States Marine Fisheries Commission; Mid Atlantic Fisheries Management Council; Commercial Fisheries Research Foundation; Northeast Fisheries Science Center (NEAMAP); NOAA Fisheries (Silver Spring, MD) (VASMAP); Virginia Marine Resources Commission (Juvenile Fish and Blue Crab Survey); Virginia Institute of Marine Science, College of William Mary [3674] We thank the staff of the Virginia Institute of Marine Science (VIMS) Survey Programs (ChesMMAP, NEAMAP, VASMAP, Juvenile Fish and Blue Crab Survey) and the Northeast Fisheries Science Center Multispecies Bottom Trawl Survey for providing specimens for this study. We are grateful to Captains Jimmy Ruhle, Durand Ward and John Olney Jr. for their contributions to vessel operations, and John Galbraith for ensuring access to exceptionally large specimens. We also recognize Julia White and Kamila Aguiar Gabaldo for their assistance with processing vertebrae and HRXCT images. Thanks to M. Kolmann, J. McDowell, and E. Hilton for reviewing previous versions of this paper. Funding for VIMS Survey Programs was provided by: NOAA Chesapeake Bay Office, the Virginia Environmental Endowment, the U.S. Fish and Wildlife Service, and the Virginia Marine Resources Commission (ChesMMAP); the Atlantic States Marine Fisheries Commission, the Mid Atlantic Fisheries Management Council, the Commercial Fisheries Research Foundation, and the Northeast Fisheries Science Center (NEAMAP); NOAA Fisheries (Silver Spring, MD) (VASMAP); the U.S. Fish and Wildlife Service and the Virginia Marine Resources Commission (Juvenile Fish and Blue Crab Survey). This is contribution number 3674 of the Virginia Institute of Marine Science, College of William & Mary. Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; Alkusairy H, 2014, ACTA ICHTHYOL PISCAT, V44, P229, DOI 10.3750/AIP2014.44.3.07; Basusta A, 2012, J APPL ICHTHYOL, V28, P850, DOI 10.1111/j.1439-0426.2012.02013.x; BEAMISH RJ, 1981, CAN J FISH AQUAT SCI, V38, P982, DOI 10.1139/f81-132; BEVERTON RJH, 1957, FISHERY INVEST LON 2, V19, P533; Bigelow H.R., 1953, MEMOIRS SEARS FDN MA; Bini G, 1967, ATLANTE PESCI COSTE, VI, P206; Bornatowski H, 2014, J MAR BIOL ASSOC UK, V94, P1491, DOI 10.1017/S0025315414000472; BOWKER AH, 1948, J AM STAT ASSOC, V43, P572, DOI 10.2307/2280710; BRANDER K, 1981, NATURE, V290, P48, DOI 10.1038/290048a0; BROWN CA, 1988, COPEIA, P747; Burnham K. P, 2002, MODEL SELECTION MULT; Cailliet GM, 2004, CRC MAR BIOL SER, P399; Cailliet GM, 2006, AGE GROWTH CHONDRICH, P211; CAMPANA SE, 1995, T AM FISH SOC, V124, P131, DOI 10.1577/1548-8659(1995)124<0131:GASMFD>2.3.CO;2; Capape C., 1992, Scientia Marina, V56, P347; CASEY JG, 1985, CAN J FISH AQUAT SCI, V42, P963, DOI 10.1139/f85-121; CHANG WYB, 1982, CAN J FISH AQUAT SCI, V39, P1208, DOI 10.1139/f82-158; Cuevas-Zimbron E, 2013, ENVIRON BIOL FISH, V96, P907, DOI 10.1007/s10641-012-0086-2; DAIBER FRANKLIN C., 1960, COPEIA, V1960, P137, DOI 10.2307/1440209; Dale JJ, 2012, MAR FRESHWATER RES, V63, P475, DOI 10.1071/MF11231; Dulvy NK, 2014, ELIFE, V3, DOI 10.7554/eLife.00590; Dulvy NK, 2000, CONSERV BIOL, V14, P283, DOI 10.1046/j.1523-1739.2000.98540.x; Ebert D. A., 2013, FAO SPECIES CATALOGU; Ebert DA, 2007, ENVIRON BIOL FISH, V80, P221, DOI 10.1007/s10641-007-9227-4; Evans GT, 1998, BIOMETRICS, V54, P620, DOI 10.2307/3109768; Fisher RA, 2013, MAR COAST FISH, V5, P224, DOI 10.1080/19425120.2013.812587; Frisk MG, 2008, ECOL APPL, V18, P234, DOI 10.1890/06-1392.1; Frisk MG, 2010, CRC MAR BIOL SER, P283; Froese R, 2006, J APPL ICHTHYOL, V22, P241, DOI 10.1111/j.1439-0426.2006.00805.x; Geraghty PT, 2012, J FISH BIOL, V80, P1292, DOI 10.1111/j.1095-8649.2011.03188.x; Goldman K. J, 2005, ELASMOBRANCH FISHERI, P97; Gopal Raje Sadashiv, 2003, Indian Journal of Fisheries, V50, P89; Heithaus MR, 2010, CRC MAR BIOL SER, P611; Henningsen AD, 1996, ZOO BIOL, V15, P135, DOI 10.1002/(SICI)1098-2361(1996)15:2<135::AID-ZOO4>3.0.CO;2-C; Hilton EJ, 2015, COPEIA, V103, P858, DOI 10.1643/CI-14-178; HOENIG J M, 1990, NOAA Technical Report NMFS, P1; HOENIG JM, 1995, CAN J FISH AQUAT SCI, V52, P364, DOI 10.1139/f95-038; Ismen A, 2003, FISH RES, V60, P169, DOI 10.1016/S0165-7836(02)00058-9; IUCN Red List, 2016, INT UN CONS NAT NAT; Jacobsen IP, 2011, J FISH BIOL, V78, P1249, DOI 10.1111/j.1095-8649.2011.02933.x; Jacobsen IP, 2010, J FISH BIOL, V77, P2405, DOI 10.1111/j.1095-8649.2010.02829.x; Jacobsen IP, 2009, J FISH BIOL, V75, P2475, DOI 10.1111/j.1095-8649.2009.02432.x; Kimura DK, 2008, CAN J FISH AQUAT SCI, V65, P1879, DOI 10.1139/F08-091; Kume G, 2008, FISHERIES SCI, V74, P736, DOI 10.1111/j.1444-2906.2008.01584.x; Maisey JG, 2001, J VERTEBR PALEONTOL, V21, P807, DOI 10.1671/0272-4634(2001)021[0807:CSRNCF]2.0.CO;2; Maisey JG, 2004, AM MUS NOVIT, P1, DOI 10.1206/0003-0082(2004)429<0001:MOTBIT>2.0.CO;2; Maisey JG, 2001, J MORPHOL, V250, P236, DOI 10.1002/jmor.1068; Mandelman J. W., 2012, FISH RES, V139, P76; MARTIN LK, 1988, COPEIA, P754; McEachran J. D., 1990, CHECKLIST FISHES E T, V1, P64; McEachran J. D., 1984, FISHES NE ATLANTIC M, V1, P203; McEachran JD, 1998, COPEIA, P271; MCEACHRAN JD, 2002, SPECIAL PUBLICATION, V5, P508; Mejia-Falla PA, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0096077; Mollet HF, 2002, MAR FRESHWATER RES, V53, P531, DOI 10.1071/MF01074; Moyer JK, 2015, J MORPHOL, V276, P797, DOI 10.1002/jmor.20380; MURAWSKI SA, 1991, FISHERIES, V16, P5, DOI 10.1577/1548-8446(1991)016<0005:CWMOMF>2.0.CO;2; NATANSON LJ, 1993, COPEIA, P199; Naylor G.J.P., 2012, B AM NATURAL HIST MU, V367, P263; Neer JA, 2005, ENVIRON BIOL FISH, V73, P321, DOI 10.1007/s10641-005-2136-5; O'Shea OR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077194; Okamura H, 2013, J FISH BIOL, V82, P1239, DOI 10.1111/jfb.12062; Ozbek Elif Ozgur, 2016, Journal of the Black Sea Mediterranean Environment, V22, P16; Quinn TJ, 1999, QUANTITATIVE FISH DY, P560; R Development Core Team, 2016, R LANG ENV STAT COMP; Ranzi S., 1934, Pubblicazioni della Stazione Zoologica di Napoli, V13, P331; RICKER WE, 1979, FISH PHYSIOL, V8, P677, DOI DOI 10.1016/S1546-5098(08)60034-5; Ridewood WG, 1921, PHILOS T R SOC LON B, V210, P311, DOI 10.1098/rstb.1921.0008; Ritz C, 2008, USE R, P1; Robins CR, 1986, FIELD GUIDE ATLANTIC, P354; Romine JG, 2013, MAR COAST FISH, V5, P189, DOI 10.1080/19425120.2013.793631; SCHULTZE HP, 1991, ENVIRON BIOL FISH, V32, P159, DOI 10.1007/BF00007451; Schwartz FJ, 1984, SPECIAL PUBLICATION; Seber G. A. F., 1982, ESTIMATION ANIMAL AB, P654; Simpfendorfer CA, 2011, MAR FRESHWATER RES, V62, P518, DOI 10.1071/MF11086; Smart JJ, 2016, FISH FISH, V17, P955, DOI 10.1111/faf.12154; Smith WD, 2007, MAR FRESHWATER RES, V58, P54, DOI 10.1071/MF06083; SPRUGEL DG, 1983, ECOLOGY, V64, P209, DOI 10.2307/1937343; Stevens John D., 2005, P48; Sulikowski JA, 2003, FISH B-NOAA, V101, P405; Sulikowski JA, 2007, MAR FRESHWATER RES, V58, P98, DOI 10.1071/MF05178; Tamini LL, 2006, FISH RES, V77, P326, DOI 10.1016/j.fishres.2005.08.013; Teixeira EC, 2017, J APPL ICHTHYOL, V33, P594, DOI 10.1111/jai.13255; Thorson JT, 2009, FISH RES, V98, P75, DOI 10.1016/j.fishres.2009.03.016; Vooren C. M., 2007, IUCN RED LIST THREAT, V2007; Walker PA, 1996, ICES J MAR SCI, V53, P1085, DOI 10.1006/jmsc.1996.0135; Walker PA, 1998, ICES J MAR SCI, V55, P392, DOI 10.1006/jmsc.1997.0325; Walls RHL, 2016, IUCN RED LIST THREAT, V2016; White J, 2014, J FISH BIOL, V84, P1340, DOI 10.1111/jfb.12359; White WT, 2007, J FISH BIOL, V70, P1809, DOI 10.1111/j.1095-8649.2007.01458.x; White WT, 2002, MAR BIOL, V140, P699, DOI 10.1007/s00227-001-0756-7; White WT, 2001, MAR BIOL, V138, P135, DOI 10.1007/s002270000436; Wigley S. E., 2003, NOAA TECH MEMO NMFS, V171, P1992; Witmer LM, 2008, ANATOMICAL IMAGING: TOWARDS A NEW MORPHOLOGY, P67, DOI 10.1007/978-4-431-76933-0_6; Yokota L, 2012, J FISH BIOL, V81, P1315, DOI 10.1111/j.1095-8649.2012.03413.x; Zhu LX, 2009, CHIN J OCEANOL LIMN, V27, P457, DOI 10.1007/s00343-009-9236-6 97 1 1 4 17 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes JAN 2018 101 1 137 151 10.1007/s10641-017-0687-x 15 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology FS0KL WOS:000419462700010 2019-02-21 J Sample, C; Fryxell, JM; Bieri, JA; Federico, P; Earl, JE; Wiederholt, R; Mattsson, BJ; Flockhart, DTT; Nicol, S; Diffendorfer, JE; Thogmartin, WE; Erickson, RA; Norris, DR Sample, Christine; Fryxell, John M.; Bieri, Joanna A.; Federico, Paula; Earl, Julia E.; Wiederholt, Ruscena; Mattsson, Brady J.; Flockhart, D. T. Tyler; Nicol, Sam; Diffendorfer, Jay E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan A general modeling framework for describing spatially structured population dynamics ECOLOGY AND EVOLUTION English Article connectivity; dispersal; metapopulations; migration; models; networks DENSITY-DEPENDENCE; LANDSCAPE CONNECTIVITY; YELLOWSTONE ELK; GRAPH-THEORY; MIGRATION; HABITAT; CONSERVATION; DISPERSAL; NETWORK; FITNESS Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles. [Sample, Christine] Emmanuel Coll, Dept Math, Boston, MA 02115 USA; [Fryxell, John M.; Flockhart, D. T. Tyler; Norris, D. Ryan] Univ Guelph, Dept Integrat Biol, Guelph, ON, Canada; [Bieri, Joanna A.] Univ Redlands, Dept Math, Redlands, CA 92373 USA; [Federico, Paula] Capital Univ, Dept Math Comp Sci & Phys, Columbus, OH USA; [Earl, Julia E.] Louisiana Tech Univ, Sch Biol Sci, Ruston, LA 71270 USA; [Wiederholt, Ruscena] Everglades Fdn, Palmetto Bay, FL USA; [Mattsson, Brady J.] Univ Nat Resources & Life Sci, Inst Silviculture, Vienna, Austria; [Nicol, Sam] EcoSci Precinct, CSIRO Land & Water, Dutton Pk, Qld, Australia; [Diffendorfer, Jay E.] US Geol Survey, Geosci & Environm Change Sci Ctr, Box 25046, Denver, CO 80225 USA; [Thogmartin, Wayne E.; Erickson, Richard A.] US Geol Survey, Upper Midwest Environm Sci Ctr, La Crosse, WI USA; [Mattsson, Brady J.] Univ Nat Resources & Life Sci BOKU, Inst Wildlife Biol & Game Management, Vienna, Austria Sample, C (reprint author), Emmanuel Coll, Dept Math, Boston, MA 02115 USA. samplec@emmanuel.edu Flockhart, Tyler/C-3132-2018; Nicol, Samuel/I-1074-2012 Flockhart, Tyler/0000-0002-5832-8610; Nicol, Samuel/0000-0002-1160-7444; Diffendorfer, James/0000-0003-1093-6948; Mattsson, Brady/0000-0002-3182-9538; Erickson, Richard/0000-0003-4649-482X National Institute for Mathematical and Biological Synthesis' working group; National Science Foundation [DBI-1300426] National Institute for Mathematical and Biological Synthesis' working group; National Science Foundation, Grant/Award Number: #DBI-1300426 Bauer S, 2013, J ANIM ECOL, V82, P498, DOI 10.1111/1365-2656.12054; Betini GS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0110; Boulet Marylene, 2006, P1; Bretagnolle V, 2005, ANIM CONSERV, V8, P59, DOI 10.1017/S1367943004001866; BROWN JH, 1984, AM NAT, V124, P255, DOI 10.1086/284267; BROWN JH, 1995, ECOLOGY, V76, P2028, DOI 10.2307/1941678; Buler JJ, 2014, CONDOR, V116, P357, DOI 10.1650/CONDOR-13-162.1; Chapman BB, 2014, ANIMAL MOVEMENT ACROSS SCALES, P11; COLLINS SL, 1991, ECOLOGY, V72, P654, DOI 10.2307/2937205; Cottee-Jones HEW, 2016, ANIM CONSERV, V19, P227, DOI 10.1111/acv.12243; Donaldson MR, 2010, PHYSIOL BIOCHEM ZOOL, V83, P446, DOI 10.1086/649627; Erickson R. A., 2014, LETT BIOMATHEMATICS, V1, P157; Esler D, 2000, CONSERV BIOL, V14, P366, DOI 10.1046/j.1523-1739.2000.98147.x; Federico P, 2008, ECOL APPL, V18, P826, DOI 10.1890/07-0556.1; Flockhart DTT, 2015, J ANIM ECOL, V84, P155, DOI 10.1111/1365-2656.12253; Flockhart DTT, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045080; Fortuna MA, 2006, P ROY SOC B-BIOL SCI, V273, P1429, DOI 10.1098/rspb.2005.3448; Fronhofer EA, 2012, ECOLOGY, V93, P1967, DOI 10.1890/11-1814.1; GADGIL M, 1971, ECOLOGY, V52, P253, DOI 10.2307/1934583; GASTON KJ, 1990, OIKOS, V58, P329, DOI 10.2307/3545224; Hanski I., 1999, METAPOPULATION ECOLO; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Houston D. B., 1982, NO YELLOWSTONE ELK E; Iwamura T, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0325; Jonzen N, 2011, ANIMAL MIGRATION: A SYNTHESIS, P91; Keeling MJ, 2000, SCIENCE, V290, P1758, DOI 10.1126/science.290.5497.1758; Kerr B, 2006, NATURE, V442, P75, DOI 10.1038/nature04864; Kirchner F, 2003, CONSERV BIOL, V17, P401, DOI 10.1046/j.1523-1739.2003.01392.x; Kneitel JM, 2003, AM NAT, V162, P165, DOI 10.1086/376585; Kubisch A, 2014, OIKOS, V123, P5, DOI 10.1111/j.1600-0706.2013.00706.x; Lamy T, 2013, AM NAT, V181, P479, DOI 10.1086/669676; Leirs H, 1997, NATURE, V389, P176; Levins R., 1970, LECT NOTES MATH, V2, P75; MacArthur R., 1972, GEOGRAPHICAL ECOLOGY; Mack J. A., 1993, SCI MONOGRAPH NAT PA, P270; Mattsson BJ, 2012, ECOL MODEL, V225, P146, DOI 10.1016/j.ecolmodel.2011.10.028; McCracken GF, 1997, J MAMMAL, V78, P348, DOI 10.2307/1382888; MCPEEK MA, 1992, AM NAT, V140, P1010, DOI 10.1086/285453; Middleton AD, 2013, ECOLOGY, V94, P1245, DOI 10.1890/11-2298.1; Minor ES, 2008, CONSERV BIOL, V22, P297, DOI 10.1111/j.1523-1739.2007.00871.x; Minor ES, 2007, ECOL APPL, V17, P1771, DOI 10.1890/06-1073.1; Morris DW, 2004, OIKOS, V107, P559; MORRIS DW, 1989, EVOL ECOL, V3, P80, DOI 10.1007/BF02147934; MORRIS DW, 1987, ECOL MONOGR, V57, P269, DOI 10.2307/2937087; Newton I, 2010, MIGRATION ECOLOGY BI; Nicol S, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2984; Noel F, 2013, BIOL CONSERV, V158, P167, DOI 10.1016/j.biocon.2012.07.029; Norris DR, 2006, BIOL LETT-UK, V2, P148, DOI 10.1098/rsbl.2005.0397; O'Connor CM, 2014, ECOSPHERE, V5, DOI 10.1890/ES13-00388.1; Peterman WE, 2013, LANDSCAPE ECOL, V28, P1601, DOI 10.1007/s10980-013-9906-9; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Proulx SR, 2005, TRENDS ECOL EVOL, V20, P345, DOI 10.1016/j.tree.2005.04.004; Prysby MD, 2004, MONARCH BUTTERFLY BIOLOGY AND CONSERVATION, P9; Rudnick D.A., 2012, ISSUES ECOLOGY, V16, P1; Runge JP, 2006, AM NAT, V167, P925, DOI 10.1086/503531; Sample C., 2017, NIMBIOS NETWORKCODE; Schaub M, 2011, J ORNITHOL, V152, P227, DOI 10.1007/s10336-010-0632-7; Singer FJ, 1997, J WILDLIFE MANAGE, V61, P12, DOI 10.2307/3802410; Stanley CQ, 2015, CONSERV BIOL, V29, P164, DOI 10.1111/cobi.12352; Taper ML, 2002, J WILDLIFE MANAGE, V66, P106, DOI 10.2307/3802877; Taylor CM, 2007, BIOLOGY LETT, V3, P280, DOI 10.1098/rsbl.2007.0053; Taylor CM, 2012, BIOL LETTERS, V8, P477, DOI 10.1098/rsbl.2011.0916; Taylor CM, 2010, THEOR ECOL-NETH, V3, P65, DOI 10.1007/s12080-009-0054-4; Tilman D., 1997, SPATIAL ECOLOGY ROLE, V30; Urban D, 2001, ECOLOGY, V82, P1205, DOI 10.1890/0012-9658(2001)082[1205:LCAGTP]2.0.CO;2; Urban DL, 2009, ECOL LETT, V12, P260, DOI 10.1111/j.1461-0248.2008.01271.x; Wiederholt R, 2013, ECOSPHERE, V4, DOI 10.1890/ES13-00023.1; Willson JD, 2012, ECOL APPL, V22, P1791, DOI 10.1890/11-0915.1; Willson JD, 2013, CONSERV BIOL, V27, P595, DOI 10.1111/cobi.12044 69 2 2 5 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JAN 2018 8 1 493 508 10.1002/ece3.3685 16 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology FS0SE WOS:000419483200043 29321888 DOAJ Gold, Green Published 2019-02-21 J Amat, F; Meiri, S Amat, Felix; Meiri, Shai Geographical, climatic and biological constraints on age at sexual maturity in amphibians BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article amphibians; climate; demography LIFE-HISTORY TRAITS; BODY-SIZE; ALTITUDINAL VARIATION; WILDLIFE SCIENCE; K-SELECTION; R-SELECTION; GROWTH-RATE; EVOLUTION; PATTERNS; FROG Age at sexual maturity is a central life-history parameter, strongly related to key traits such as body size and longevity. It is influenced by environmental and intrinsic factors that affect growth rates and gonad development. Using data on the age at sexual maturity in 123 species of amphibians worldwide, we tested whether sexual maturity is delayed at high altitudes and latitudes, in cold and dry regions and on islands. We further tested whether sexual maturity is delayed in species with parental care and direct development (no tadpole stage). Using phylogenetic regression and correcting for body size, we found a positive relationship between latitude and sexual maturity. Surprisingly, altitude was negatively correlated with sexual maturity in small species. Temperature was negatively related to sexual maturity in females but not in males. Precipitation and seasonality did not effect on either sex. Species that engage in parental care or have direct-developing larvae mature early. We found no effect of insularity, contradicting the insular syndrome hypothesis. Meta-analyses revealed that, within species, sexual maturity is reached at younger ages in warm temperatures in aseasonal environments and in low altitudes. Thus, although life-history strategies affect maturation time, climate can further delay or accelerate development - probably through effects on metabolic rates and season length. [Amat, Felix] Museu Granollers Ciencies Nat, BiBIO, Area Herpetol, 102 Jardins Antoni Jonch Cuspinera, Granollers 08402, Catalonia, Spain; [Meiri, Shai] Tel Aviv Univ, Dept Zool, Fac Life Sci, IL-6997801 Tel Aviv, Israel; [Meiri, Shai] Tel Aviv Univ, Steinhardt Museum Nat Hist, IL-6997801 Tel Aviv, Israel Amat, F (reprint author), Museu Granollers Ciencies Nat, BiBIO, Area Herpetol, 102 Jardins Antoni Jonch Cuspinera, Granollers 08402, Catalonia, Spain. felixamat09@gmail.com Meiri, Shai/D-2403-2010 Meiri, Shai/0000-0003-3839-6330 ADLER GH, 1994, Q REV BIOL, V69, P473, DOI 10.1086/418744; Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; Ashton KG, 2003, EVOLUTION, V57, P1151, DOI 10.1111/j.0014-3820.2003.tb00324.x; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Borenstein M., 2007, METAANALYSIS FIXED E; BRADFORD DF, 1990, PHYSIOL ZOOL, V63, P1157, DOI 10.1086/physzool.63.6.30152638; Brown DJ, 2013, AM MIDL NAT, V169, P303; Cadeddu G, 2012, J ZOOL, V286, P285, DOI 10.1111/j.1469-7998.2011.00878.x; CASTANET J, 1990, ANN SCI NAT ZOOL, V11, P191; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Covas R, 2012, P ROY SOC B-BIOL SCI, V279, P1531, DOI 10.1098/rspb.2011.1785; Davenport JM, 2016, J ZOOL, V299, P304, DOI 10.1111/jzo.12352; Dayan T, 1998, MAMMAL REV, V28, P99, DOI 10.1046/j.1365-2907.1998.00029.x; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; Gatten Robert E. Jr, 1992, P314; Gomez-Mestre I, 2012, EVOLUTION, V66, P3687, DOI 10.1111/j.1558-5646.2012.01715.x; Gouveia SF, 2016, J BIOGEOGR, V43, P2075, DOI 10.1111/jbi.12842; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Gramapurohit NP, 2005, HERPETOL J, V15, P113; Guthery FS, 2008, J WILDLIFE MANAGE, V72, P1872, DOI 10.2193/2008-179; Guthery FS, 2005, J WILDLIFE MANAGE, V69, P457, DOI 10.2193/0022-541X(2005)069[0457:ITIWSC]2.0.CO;2; Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008; Han X, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-27; Heinermann J, 2015, J NAT HIST, V49, P2213, DOI 10.1080/00222933.2015.1009513; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Jorgensen C. Barker, 1992, P439; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Leclair R, 1996, ECOGRAPHY, V19, P296, DOI 10.1111/j.1600-0587.1996.tb00239.x; Lou SL, 2012, ZOOL SCI, V29, P493, DOI 10.2108/zsj.29.493; Matsuki Takashi, 2009, Current Herpetology, V28, P41, DOI 10.3105/018.028.0201; Meiri S, 2013, GLOBAL ECOL BIOGEOGR, V22, P834, DOI 10.1111/geb.12053; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Navas CA, 1996, PHYSIOL ZOOL, V69, P1418; Novosolov M, 2013, J BIOGEOGR, V40, P2385, DOI 10.1111/jbi.12179; Oromi N, 2012, ZOOLOGY, V115, P30, DOI 10.1016/j.zool.2011.08.003; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pyron RA, 2011, MOL PHYLOGENET EVOL, V61, P543, DOI 10.1016/j.ympev.2011.06.012; RAY CARLETON, 1960, JOUR MORPHOL, V106, P85, DOI 10.1002/jmor.1051060104; Reniers J, 2015, OECOLOGIA, V178, P931, DOI 10.1007/s00442-015-3258-x; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Richardson J.S., 2000, P C BIOL MAN SPEC HA, P407; Ridgway ID, 2011, J GERONTOL A-BIOL, V66, P183, DOI 10.1093/gerona/glq172; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Ryan KJ, 2015, J HERPETOL, V49, P257, DOI 10.1670/12-230; RYAN MJ, 1983, ECOLOGY, V64, P1456, DOI 10.2307/1937500; RYSER J, 1989, OECOLOGIA, V78, P264, DOI 10.1007/BF00377165; Scharf I, 2015, GLOBAL ECOL BIOGEOGR, V24, P396, DOI 10.1111/geb.12244; Slavenko A, 2015, J BIOGEOGR, V42, P1246, DOI 10.1111/jbi.12516; Stamps J, 1997, EVOL ECOL, V11, P21, DOI 10.1023/A:1018479312191; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stuart SN, 2004, SCIENCE, V306, P1783, DOI 10.1126/science.1103538; Summers K, 2006, P ROY SOC B-BIOL SCI, V273, P687, DOI 10.1098/rspb.2005.3368; Tamura K, 2012, P NATL ACAD SCI USA, V109, P19333, DOI 10.1073/pnas.1213199109; Wagner A, 2011, HERPETOL J, V21, P145; Wang Y, 2009, J ZOOL, V278, P65, DOI 10.1111/j.1469-7998.2009.00552.x; Wells K. D., 2007, ECOLOGY BEHAV AMPHIB; Yartsev VV, 2015, ASIAN HERPETOL RES, V6, P69; Yu TL, 2013, INTEGR ZOOL, V8, P315, DOI 10.1111/j.1749-4877.2012.00294.x 67 0 0 5 18 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. JAN 2018 123 1 34 42 10.1093/biolinnean/blx127 9 Evolutionary Biology Evolutionary Biology FS2LA WOS:000419609000004 2019-02-21 J Mell, H; Safra, L; Algan, Y; Baumard, N; Chevallier, C Mell, Hugo; Safra, Lou; Algan, Yann; Baumard, Nicolas; Chevallier, Coralie Childhood environmental harshness predicts coordinated health and reproductive strategies: A cross-sectional study of a nationally representative sample from France EVOLUTION AND HUMAN BEHAVIOR English Article Psychosocial acceleration theory; Childhood adversity; Life History Theory; Reproductive strategies; Health strategies; Structural equation modeling LIFE-HISTORY STRATEGIES; STRUCTURAL EQUATION MODELS; BODY-MASS INDEX; UNPREDICTABLE ENVIRONMENTS; INDIVIDUAL-DIFFERENCES; MENARCHE; RISK; MATURATION; MORTALITY; STRESS There is considerable variation in health and reproductive behaviours within and across human populations. Drawing on principles from Life History Theory, psychosocial acceleration theory predicts that individuals developing in harsh environments decrease their level of somatic investment and accelerate their reproductive schedule. Although there is consistent empirical support for this general prediction, most studies have focused on a few isolated life history traits and few have investigated the way in which individuals apply life strategies across reproductive and somatic domains to produce coordinated behavioural responses to their environment. In our study, we thus investigate the impact of childhood environmental harshness on both reproductive strategies and somatic investment by applying structural equation modeling (SEM) to cross-sectional survey data obtained in a representative sample of the French population (n = 1015, age: 19-87 years old, both genders). This data allowed us to demonstrate that (i) inter-individual variation in somatic investment (e.g. effort in looking after health) and reproductive timing (e.g. age at first birth) can be captured by a latent fast-slow continuum, and (ii) faster strategies along this continuum are predicted by higher childhood harshness. Overall, our results support the existence of a fast-slow continuum and highlight the relevance of the life history approach for understanding variations in reproductive and health related behaviours. (C) 2017 Elsevier Inc All rights reserved. [Mell, Hugo; Safra, Lou; Chevallier, Coralie] PSL Res Univ, Ecole Normale Super, INSERM U960, Dept Etud Cognit, F-75005 Paris, France; [Algan, Yann] OFCE, Sci Po, 27 Rue St Guillaume, F-75005 Paris, France; [Mell, Hugo; Baumard, Nicolas; Chevallier, Coralie] PSL Res Univ, Ecole Normale Super, Inst Jean Nicod, CNRS,UMR8129,Dept Etud Cognit, F-75005 Paris, France Mell, H (reprint author), Ecole Normale Super, Dept Etud Cognit, INSERM U960, CNRS UMR 8129, 29 Rue Ulm, F-75005 Paris, France. hugo.mell@ens.fr Institut d'Etudes Cognitives [ANR-10-LABX-0087 IEC, ANR-10-IDEX-0001-02 PSL*]; Institut national de la sante et de la recherche medicale (INSERM); ERC consolidator grant [8657]; Action Incitative - Ecole Normale Superieure This study was supported by the Institut d'Etudes Cognitives (ANR-10-LABX-0087 IEC and ANR-10-IDEX-0001-02 PSL*), the Institut national de la sante et de la recherche medicale (INSERM), an ERC consolidator grant (no. 8657) and an "Action Incitative" funding from the Ecole Normale Superieure. We are grateful to Anne L'Hote for programming the survey and to Celine Dusautois for her help in preliminary analyses. Almond D., 2007, LONG TERM EFFECTS 19; Baldini R., 2015, BIORXIV, V14647; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; BENTLER PM, 1980, PSYCHOL BULL, V88, P588, DOI 10.1037/0033-2909.107.2.238; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Colleran H, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0152; de Baca TC, 2017, CURR OPIN PSYCHOL, V15, P1, DOI 10.1016/j.copsyc.2017.02.005; de Rooij SR, 2010, P NATL ACAD SCI USA, V107, P16881, DOI 10.1073/pnas.1009459107; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Dong X, 2016, NATURE, V538, P257, DOI 10.1038/nature19793; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Etchison WC, 2011, SPORTS HEALTH, V3, P249, DOI 10.1177/1941738111404655; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Frankenhuis WE, 2016, CURR OPIN PSYCHOL, V7, P76, DOI 10.1016/j.copsyc.2015.08.011; Frankenhuis WE, 2011, P ROY SOC B-BIOL SCI, V278, P3558, DOI 10.1098/rspb.2011.0055; Frankenhuis WE, 2011, PERSPECT PSYCHOL SCI, V6, P336, DOI 10.1177/1745691611412602; Grace JB, 2008, ENVIRON ECOL STAT, V15, P191, DOI 10.1007/s10651-007-0047-7; Grace JB, 2010, ECOL MONOGR, V80, P67, DOI 10.1890/09-0464.1; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Guegan JF, 2001, EVOLUTION, V55, P1308; Hallsworth M., 2016, APPL BEHAV INSIGHTS; Hardt J, 2004, J CHILD PSYCHOL PSYC, V45, P260, DOI 10.1111/j.1469-7610.2004.00218.x; Hartman S., 2017, DEV PSYCHOP IN PRESS; Hartman S, 2015, DEV PSYCHOPATHOL, V27, P747, DOI 10.1017/S0954579414000856; HOFFMAN SD, 1993, DEMOGRAPHY, V30, P1, DOI 10.2307/2061859; Kaplan H, 2003, POPUL DEV REV, V29, P152; Kline R. B., 2016, METHODOLOGY SOCIAL S; Lavy V., 2016, OUT AFRICA HUMAN CAP; Lawson DW, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0145; LI KH, 1991, STAT SINICA, V1, P65; Lin M.-J., 2014, DOES UTERO EXPOSURE; Locke AE, 2015, NATURE, V518, P197, DOI 10.1038/nature14177; McCullough ME, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2104; Miller F C, 2000, J Pediatr Adolesc Gynecol, V13, P5, DOI 10.1016/S1083-3188(99)00035-2; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.1111/j.1467-8624.1992.tb03594.x; Nettle D, 2012, DEV PSYCHOL, V48, P718, DOI 10.1037/a0027507; Nettle D, 2011, PHILOS T R SOC B, V366, P357, DOI 10.1098/rstb.2010.0073; Nettle D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013371; Nettle D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012690; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; Neugebauer R, 1999, JAMA-J AM MED ASSOC, V282, P455, DOI 10.1001/jama.282.5.455; Pepper GV, 2014, HUM NATURE-INT BIOS, V25, P378, DOI 10.1007/s12110-014-9204-5; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; ROFF DA, 2002, LIFE HIST EVOLUTION; Rosseel Y, 2012, J STAT SOFTW, V48, P1; Rubin DB, 2004, MULTIPLE IMPUTATION; Sassi F., 2008, OECD HLTH WORKING PA, V32; SCHERMELLEH-ENGEL K., 2003, METHODS PSYCHOL RES, V8, P23, DOI DOI 10.1002/0470010940; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Steams S. C., 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stringhini S, 2010, JAMA-J AM MED ASSOC, V303, P1159, DOI 10.1001/jama.2010.297; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; van Buuren S, 2011, J STAT SOFTW, V45, P1 66 4 4 1 4 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2018 39 1 1 8 10.1016/j.evolhumbehav.2017.08.006 8 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences FR9WJ WOS:000419423600001 Green Published 2019-02-21 J Jones, AL Jones, Alex L. The influence of shape and colour cue classes on facial health perception EVOLUTION AND HUMAN BEHAVIOR English Article Faces; Health; Colouration; Averageness; Cues LIFE-HISTORY EVOLUTION; SEXUAL-DIMORPHISM; SKIN COLOR; PHYSICAL APPEARANCE; MATE PREFERENCES; APPARENT HEALTH; HUMAN FACES; ATTRACTIVENESS; SYMMETRY; BEAUTY Facial appearance signals information about an individual, and one trait in particular is vitally important for social interaction and mate choice decisions: physical health. Facial cues to health can be divided into two broad classes - facial shape, which is linked to previous health and is relatively fixed; and facial colouration, which changes over the short-term, reflecting current health. These cue classes in themselves give insight into the kinds of health condition valued by human observers when making social inferences. Here, using novel and generalizable methods, the influence of these cue classes on health perception and their link to a measure of general health are examined. Study One employs a Brunswik lens model approach, finding that observers utilise exclusively shape cues to judge health, and that of these shape cues, only averageness is related to a measure of self-reported general health. Study Two shows that when averageness and carotenoid colouration are varied together, both make separable contributions to perceived health, but that averageness explains a larger proportion of variance. Taken together, these results indicate that humans may have evolved to favour cues to previous condition when judging health, because they are more valid. However, the findings also suggest that the role of facial appearance in perceiving health is more complex than previously thought, with different cues potentially reflecting specific aspects of physiological health. Crown Copyright (C) 2017 Published by Elsevier Inc. All rights reserved. [Jones, Alex L.] Swansea Univ, Dept Psychol, Vivian Tower,Singleton Pk, Swansea SA2 8PP, W Glam, Wales Jones, AL (reprint author), Swansea Univ, Dept Psychol, Vivian Tower,Singleton Pk, Swansea SA2 8PP, W Glam, Wales. alex.l.jones@swansea.ac.uk Jones, Alex/0000-0003-3600-3644 Adamo SA, 2005, BEHAV ECOL, V16, P871, DOI 10.1093/beheco/ari068; Adamo SA, 2009, ANIM BEHAV, V77, P67, DOI 10.1016/j.anbehav.2008.09.011; ALEXANDER M, 1985, IMMUNOL LETT, V9, P221, DOI 10.1016/0165-2478(85)90036-7; Axelsson J, 2010, BMJ-BRIT MED J, V341, DOI 10.1136/bmj.c6614; Baudouin JY, 2004, ACTA PSYCHOL, V117, P313, DOI 10.1016/j.actpsy.2004.07.002; Belsky DW, 2015, P NATL ACAD SCI USA, V112, pE4104, DOI 10.1073/pnas.1506264112; Bridges L, 2012, FACE READING CHINESE; BRUNSWIK E, 1955, PSYCHOL REV, V62, P193, DOI 10.1037/h0047470; Brunswik E., 1956, PERCEPTION REPRESENT; Burriss RP, 2007, ARCH SEX BEHAV, V36, P377, DOI 10.1007/s10508-006-9136-1; Carrito MD, 2016, EVOL HUM BEHAV, V37, P125, DOI 10.1016/j.evolhumbehav.2015.09.006; Caspari R, 2006, AM J PHYS ANTHROPOL, V129, P512, DOI 10.1002/ajpa.20360; Chang F, 2009, NEURAL COMPUT, V21, P890, DOI 10.1162/neco.2008.07-07-566; Chen WY, 2015, CELL RES, V25, P574, DOI 10.1038/cr.2015.36; Cho YH, 2012, KOREAN J FAM MED, V33, P105, DOI 10.4082/kjfm.2012.33.2.105; Coetzee V, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0099629; Coetzee V, 2009, PERCEPTION, V38, P1700, DOI 10.1068/p6423; COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037//0033-2909.112.1.155; Crimmins EM, 2006, P NATL ACAD SCI USA, V103, P498, DOI 10.1073/pnas.0501470103; Cumming G., 2011, UNDERSTANDING NEW ST; CUNNINGHAM MR, 1986, J PERS SOC PSYCHOL, V50, P925, DOI 10.1037/0022-3514.50.5.925; DeBruine LM, 2010, P ROY SOC B-BIOL SCI, V277, P2405, DOI 10.1098/rspb.2009.2184; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; EBERST RM, 1984, J SCHOOL HEALTH, V54, P99, DOI 10.1111/j.1746-1561.1984.tb08780.x; Etcoff NL, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025656; Farkas Leslie G., 1994, P3; Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146; Finch CE, 2010, P NATL ACAD SCI USA, V107, P1718, DOI 10.1073/pnas.0909606106; Finch CE, 2004, SCIENCE, V305, P1736, DOI 10.1126/science.1092556; Fisher CI, 2014, PERCEPTION, V43, P499, DOI 10.1068/p7728; Foo Y. Z., 2017, SCI REPORTS, V7; Getty T, 2002, AM NAT, V159, P363, DOI 10.1086/338992; Gosling SD, 2002, J PERS SOC PSYCHOL, V82, P379, DOI 10.1037//0022-3514.82.3.379; Grandfield TA, 2005, J HEALTH PSYCHOL, V10, P821, DOI 10.1177/1359105305057316; Gray AW, 2012, EVOL PSYCHOL-US, V10, P66, DOI 10.1177/147470491201000108; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; Gurven M, 2007, AM J HUM BIOL, V19, P376, DOI 10.1002/ajhb.20600; Guyuron B, 2009, PLAST RECONSTR SURG, V123, P1321, DOI 10.1097/PRS.0b013e31819c4d42; Henderson AJ, 2017, BRAIN BEHAV IMMUN, V60, P312, DOI 10.1016/j.bbi.2016.11.008; Henderson AJ, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0380; Hope D, 2013, ECON HUM BIOL, V11, P236, DOI 10.1016/j.ehb.2011.06.006; Jones AL, 2016, BODY IMAGE, V17, P57, DOI 10.1016/j.bodyim.2016.02.001; Jones AL, 2015, EVOL PSYCHOL-US, V13, P210, DOI 10.1177/147470491501300113; Jones AL, 2012, J EXP PSYCHOL HUMAN, V38, P1353, DOI 10.1037/a0027078; Jonesu AL, 2015, PERCEPTION, V44, P79, DOI 10.1068/p7904; Kalick SM, 1998, PSYCHOL SCI, V9, P8, DOI 10.1111/1467-9280.00002; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kleisner K., EVOLUTION H IN PRESS; Koscinski K, 2012, BEHAV ECOL, V23, P334, DOI 10.1093/beheco/arr190; Kramer RSS, 2010, Q J EXP PSYCHOL, V63, P2273, DOI 10.1080/17470211003770912; Law-Smith MJ, 2006, P ROY SOC B-BIOL SCI, V273, P135, DOI 10.1098/rspb.2005.3296; Lee AJ, 2016, EVOL HUM BEHAV, V37, P61, DOI 10.1016/j.evolhumbehav.2015.08.003; Lefevre CE, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0633; Lefevre CE, 2015, Q J EXP PSYCHOL, V68, P284, DOI 10.1080/17470218.2014.944194; Lie HC, 2008, EVOLUTION, V62, P2473, DOI 10.1111/j.1558-5646.2008.00478.x; Little AC, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002106; Little AC, 2011, P ROY SOC B-BIOL SCI, V278, P2032, DOI 10.1098/rspb.2010.1925; Matts PJ, 2007, J AM ACAD DERMATOL, V57, P977, DOI 10.1016/j.jaad.2007.07.040; Mazumder B, 2010, J DEV ORIG HLTH DIS, V1, P26, DOI 10.1017/S2040174409990031; MCCALLUM J, 1995, AUST J PUBLIC HEALTH, V19, P160; Mogilski JK, 2017, HUM NATURE-INT BIOS, V28, P53, DOI 10.1007/s12110-016-9277-4; Moller AP, 1997, ASYMMETRY DEV STABIL; Monin B, 2005, SOC COGNITION, V23, P257, DOI 10.1521/soco.2005.23.3.257; Morrison ER, 2013, J NONVERBAL BEHAV, V37, P59, DOI 10.1007/s10919-013-0145-1; Nash R, 2006, J APPL SOC PSYCHOL, V36, P493, DOI 10.1111/j.0021-9029.2006.00016.x; Naumann LP, 2009, PERS SOC PSYCHOL B, V35, P1661, DOI 10.1177/0146167209346309; Oeppen J, 2002, SCIENCE, V296, P1029, DOI 10.1126/science.1069675; Oyetakin-White P, 2015, CLIN EXP DERMATOL, V40, P17, DOI 10.1111/ced.12455; Ozener B, 2010, EVOL HUM BEHAV, V31, P436, DOI 10.1016/j.evolhumbehav.2010.06.003; Panesar P, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154202; Penton-Voak IS, 2001, P ROY SOC B-BIOL SCI, V268, P1617, DOI 10.1098/rspb.2001.1703; Pezdirc K, 2017, AUSTR J PSYCHOL; Ponsonby AL, 1997, PEDIATRICS, V99, pE31, DOI 10.1542/peds.99.1.e3; Porcheron A., 2017, VISUAL COGNITION; Porcheron A, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057985; Pound N, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.1639; Rantala MJ, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2495; Rao AV, 2007, PHARMACOL RES, V55, P207, DOI 10.1016/j.phrs.2007.01.012; Re DE, 2016, SOC PSYCHOL PERS SCI, V7, P69, DOI 10.1177/1948550615599829; Rhodes G, 2006, ANNU REV PSYCHOL, V57, P199, DOI 10.1146/annurev.psych.57.102904.190208; Rhodes G, 2001, EVOL HUM BEHAV, V22, P31, DOI 10.1016/S1090-5138(00)00060-X; Rhodes G, 2007, PERCEPTION, V36, P1244, DOI 10.1068/p5712; Russell R, 2003, PERCEPTION, V32, P1093, DOI 10.1068/p5101; Russell R, 2016, J EXP PSYCHOL HUMAN, V42, P1354, DOI 10.1037/xhp0000219; Russell R, 2014, PSYCHOL AGING, V29, P626, DOI 10.1037/a0036142; Samson N., 2010, International Journal of Cosmetic Science, V32, P167, DOI 10.1111/j.1468-2494.2009.00535.x; Scheib JE, 1999, P ROY SOC B-BIOL SCI, V266, P1913, DOI 10.1098/rspb.1999.0866; Scott IML, 2013, BEHAV ECOL, V24, P579, DOI 10.1093/beheco/ars092; Scott IML, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013585; Shackelford TK, 1997, J PERS SOC PSYCHOL, V72, P456, DOI 10.1037/0022-3514.72.2.456; Smith FG, 2009, BEHAV ECOL, V20, P441, DOI 10.1093/beheco/arn141; Stephen ID, 2011, EVOL HUM BEHAV, V32, P216, DOI 10.1016/j.evolhumbehav.2010.09.003; Stephen ID, 2010, PERCEPTION, V39, P1104, DOI 10.1068/p6730; Stephen ID, 2009, INT J PRIMATOL, V30, P845, DOI 10.1007/s10764-009-9380-z; Stephen ID, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005083; Sundelin T, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.160918; Sundelin T, 2013, SLEEP, V36, P1355, DOI 10.5665/sleep.2964; Tan KW, 2017, EVOL HUM BEHAV, V38, P522, DOI 10.1016/j.evolhumbehav.2017.02.004; Thornhill R, 2006, EVOL HUM BEHAV, V27, P131, DOI 10.1016/j.evolhumbehav.2005.06.001; Tiddeman B, 2001, IEEE COMPUT GRAPH, V21, P42, DOI 10.1109/38.946630; Tybur JM, 2011, PHILOS T R SOC B, V366, P3375, DOI 10.1098/rstb.2011.0136; Vazire S, 2008, J RES PERS, V42, P1439, DOI 10.1016/j.jrp.2008.06.007; Ware JE, 1996, MED CARE, V34, P220, DOI 10.1097/00005650-199603000-00003; WEATHERALL IL, 1992, J INVEST DERMATOL, V99, P468, DOI 10.1111/1523-1747.ep12616156; Welling L. L., 2007, J EVOLUTIONARY PSYCH, V5, P131, DOI DOI 10.1556/JEP.2007.1012; Whitehead RD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032988; Younsi M, 2014, QUAL LIFE RES, V23, P2047, DOI 10.1007/s11136-014-0641-8; Zebrowitz LA, 2004, J NONVERBAL BEHAV, V28, P167, DOI 10.1023/B:JONB.0000039648.30935.1b; Zebrowitz LA, 2014, PSYCHOL AGING, V29, P454, DOI 10.1037/a0036255; Zhen R., 2015, COLOR IMAGE VIDEO EN, P13 110 3 3 3 18 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2018 39 1 19 29 10.1016/j.evolhumbehav.2017.09.005 11 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences FR9WJ WOS:000419423600003 2019-02-21 J Xu, Y; Norton, S; Rahman, Q Xu, Yin; Norton, Sam; Rahman, Qazi Early life conditions, reproductive and sexuality-related life history outcomes among human males: A systematic review and meta-analysis EVOLUTION AND HUMAN BEHAVIOR English Article Early life conditions; Life history theory; Life history strategy; Meta-analysis; Sexual orientation; Men FATHER ABSENCE; SOCIOECONOMIC-STATUS; DEVELOPMENTAL PLASTICITY; ENVIRONMENTAL-INFLUENCES; INDIVIDUAL-DIFFERENCES; GENDER NONCONFORMITY; FAMILY RELATIONSHIPS; PUBERTAL MATURATION; EVOLUTIONARY MODEL; 1ST INTERCOURSE In order to investigate the association between early life conditions and reproductive and sexuality-related life history outcomes among men, we conducted a meta-analysis that compiled the results of 198 articles. A total of 331 effect sizes drawn from 573 samples were included. The meta-analysis revealed that low family socioeconomic status was associated with early sexual debut (r = 0.07), early first birth (r = 0.14), and early marriage (r = 0.03). There was no significant association between family socioeconomic status and pubertal timing or number of sexual partners. Parental absence was associated with early sexual debut (r = 0.12), greater number of sexual partners (r = 0.19), early first birth (r = 0.14), and early marriage (r = 0.13). There was no significant association between parental absence and pubertal timing. Small body size before puberty was associated with delayed pubertal timing (r = 0.10). There was no significant association between adult body size and number of offspring, and between body size at birth and pubertal timing. Small adult body size, greater number of siblings, and older parents were associated with non-heterosexual orientation (rs = 0.12, 0.03, and 0.03 respectively). Factors such as sampling procedure, data collection method, and age cutoff used to measure family structure change influenced the association between some predictors (e.g., family socioeconomic status) and outcomes (e.g., first birth). The findings are discussed in relation to the utility of life history theory for understanding human male reproductive and sexuality-related outcomes. (C) 2017 Elsevier Inc. All rights reserved. [Xu, Yin; Norton, Sam; Rahman, Qazi] Kings Coll London, Inst Psychiat, Dept Psychol, 5th Floor Bermondsey Wing,Guys Hosp Campus, London SE1 9RT, England Xu, Y; Rahman, Q (reprint author), Kings Coll London, Inst Psychiat, Dept Psychol, 5th Floor Bermondsey Wing,Guys Hosp Campus, London SE1 9RT, England. yin.xu@kcl.ac.uk; qazi.rahman@kcl.ac.uk , Yin/0000-0002-4214-5836; Rahman, Qazi/0000-0001-8346-4529; Norton, Sam/0000-0003-1714-9963 King's-China Scholarship Council PhD Studentship This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The first author is supported by a King's-China Scholarship Council PhD Studentship. Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Altman DG, 2011, BMJ-BRIT MED J, V343, DOI 10.1136/bmj.d2304; Anderson KG, 2015, HUM NATURE-INT BIOS, V26, P401, DOI 10.1007/s12110-015-9243-6; Arim RG, 2011, J YOUTH ADOLESCENCE, V40, P1423, DOI 10.1007/s10964-011-9638-6; ARNOLD SJ, 1994, AM NAT, V144, pS126, DOI 10.1086/285656; Bailey JM, 2016, PSYCHOL SCI PUBL INT, V17, P45, DOI 10.1177/1529100616637616; Bailey JM, 2000, J PERS SOC PSYCHOL, V78, P524, DOI 10.1037//0022-3514.78.3.524; BAILEY JM, 1995, DEV PSYCHOL, V31, P43, DOI 10.1037/0012-1649.31.1.43; Barbaro N, 2017, EVOL HUM BEHAV, V38, P357, DOI 10.1016/j.evolhumbehav.2016.11.007; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bell A. P., 1978, HOMOSEXUALITIES STUD; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Blanchard R, 2004, J THEOR BIOL, V230, P173, DOI 10.1016/j.jtbi.2004.04.021; Blanchard R, 2012, ARCH SEX BEHAV, V41, P1507, DOI 10.1007/s10508-011-9896-0; Blumenshine P, 2010, AM J PREV MED, V39, P263, DOI 10.1016/j.amepre.2010.05.012; Bogaert AF, 2005, J ADOLESCENCE, V28, P541, DOI 10.1016/j.adolescence.2004.10.008; Bogaert AF, 2011, FRONT NEUROENDOCRIN, V32, P247, DOI 10.1016/j.yfrne.2011.02.004; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bogin B, 2007, AM J HUM BIOL, V19, P631, DOI 10.1002/ajhb.20666; Bonett DG, 2007, AM PSYCHOL, V62, P254, DOI 10.1037/0003-066X.62.3.254; Borenstein M., 2009, INTRO METAANALYSIS, P225, DOI DOI 10.1002/9780470743386.CH24; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Campbell BC, 2004, ANN HUM BIOL, V31, P213, DOI 10.1080/03014460310001656604; Carlson MJ, 2013, DEMOGRAPHY, V50, P1421, DOI 10.1007/s13524-013-0201-9; Charnov E. L, 1993, LIFE HIST INVARIANTS, V6; Chasiotis A, 1998, HUM NATURE-INT BIOS, V9, P321, DOI 10.1007/s12110-998-1008-z; Coall DA, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0146; D'Onofrio BM, 2006, DEV PSYCHOL, V42, P486, DOI 10.1037/0012-1649.42.3.486; Davis EC, 2001, J MARRIAGE FAM, V63, P669, DOI 10.1111/j.1741-3737.2001.00669.x; Del Giudice M., 2015, HDB EVOLUTIONARY PSY, V1, P88, DOI DOI 10.1002/9781119125563.EVPSYCH102; DelPriore DJ, 2017, DEV PSYCHOL, V53, P1330, DOI 10.1037/dev0000327; Dick DM, 2001, J YOUTH ADOLESCENCE, V30, P385, DOI 10.1023/A:1010471015102; DIGBY PGN, 1983, BIOMETRICS, V39, P753, DOI 10.2307/2531104; Doom JR, 2016, DEV PSYCHOPATHOL, V28, P1505, DOI 10.1017/S0954579415001169; Drewnowski A, 2004, AM J CLIN NUTR, V79, P6; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2012, DEV PSYCHOPATHOL, V24, P317, DOI 10.1017/S095457941100085X; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLIS L, 1987, PSYCHOL BULL, V101, P233, DOI 10.1037/0033-2909.101.2.233; Fagot BI, 1998, DEV PSYCHOL, V34, P1209, DOI 10.1037//0012-1649.34.6.1209; Faurie C, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005680; FURSTENBERG FF, 1989, AM PSYCHOL, V44, P313, DOI 10.1037//0003-066X.44.2.313; Gates G, 2011, MANY PEOPLE ARE LESB; Gipson JD, 2014, J ADOLESCENT HEALTH, V54, P599, DOI 10.1016/j.jadohealth.2013.10.014; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; Gluckman PD, 2009, LANCET, V373, P1654, DOI 10.1016/S0140-6736(09)60234-8; Godfrey KM, 2010, TRENDS ENDOCRIN MET, V21, P199, DOI 10.1016/j.tem.2009.12.008; Grafen A., 1988, REPROD SUCCESS, P454; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Hackshaw A, 2009, CONCISE GUIDE CLIN T, P205, DOI DOI 10.1002/9781444311723.OTH2; HANSON SL, 1989, DEMOGRAPHY, V26, P579, DOI 10.2307/2061259; Helle S, 2008, EVOL HUM BEHAV, V29, P189, DOI 10.1016/j.evolhumbehav.2007.11.009; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Jaffee SR, 2001, J CHILD PSYCHOL PSYC, V42, P803, DOI 10.1111/1469-7610.00777; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Janicke T, 2016, SCI ADV, V2, DOI 10.1126/sciadv.1500983; Jones A, 2017, J CHILD PSYCHOL PSYC, V58, P1201, DOI 10.1111/jcpp.12757; Jones JH, 2005, AM J HUM BIOL, V17, P22, DOI 10.1002/ajhb.20099; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kim K, 1998, INT J BEHAV DEV, V22, P729, DOI 10.1080/016502598384144; KIRCHENGAST S, 1995, HUM BIOL, V67, P291; Krieger N, 2003, J EPIDEMIOL COMMUN H, V57, P186, DOI 10.1136/jech.57.3.186; KU L, 1993, PUBLIC HEALTH REP, V108, P680; Lummaa V, 2002, TRENDS ECOL EVOL, V17, P141, DOI 10.1016/S0169-5347(01)02414-4; Marston M, 2013, INT PERSPECT SEX R H, V39, P22, DOI 10.1363/3902213; Martin RD, 2003, J REPROD IMMUNOL, V59, P111, DOI 10.1016/S0165-0375(03)00042-1; McMillen IC, 2005, PHYSIOL REV, V85, P571, DOI 10.1152/physrev.00053.2003; Mendle J, 2009, CHILD DEV, V80, P1463, DOI 10.1111/j.1467-8624.2009.01345.x; MICHAEL RT, 1985, DEMOGRAPHY, V22, P515, DOI 10.2307/2061586; Miller BC, 1997, YOUTH SOC, V29, P54, DOI 10.1177/0044118X97029001003; Miller BC, 2001, DEV REV, V21, P1, DOI 10.1006/drev.2000.0513; Mustanski BS, 2004, DEV PSYCHOL, V40, P1188, DOI 10.1037/0012-1649.40.6.1188; Nettle D., 2013, P ROYAL SOC B, V280, P1; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Paeratakul S, 2002, INT J OBESITY, V26, P1205, DOI 10.1038/sj.ijo.0802026; Parent AS, 2003, ENDOCR REV, V24, P668, DOI 10.1210/er.2002-0019; Paul C, 2000, J ADOLESCENT HEALTH, V27, P136, DOI 10.1016/S1054-139X(99)00095-6; Pawlowski B, 2000, NATURE, V403, P156, DOI 10.1038/35003107; Pedersen W, 2003, J SEX RES, V40, P333, DOI 10.1080/00224490209552199; Peterson RA, 2005, J APPL PSYCHOL, V90, P175, DOI 10.1037/0021-9010.90.1.175; Polderman TJC, 2015, NAT GENET, V47, P702, DOI 10.1038/ng.3285; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Rahman Q, 2005, NEUROSCI BIOBEHAV R, V29, P1057, DOI 10.1016/j.neubiorev.2005.03.002; Ramirez-Valles J, 2002, YOUTH SOC, V33, P418, DOI 10.1177/0044118X02033003004; Rickard IJ, 2007, P ROY SOC B-BIOL SCI, V274, P2981, DOI 10.1098/rspb.2007.1051; Roberts BW, 2007, PERSPECT PSYCHOL SCI, V2, P313, DOI 10.1111/j.1745-6916.2007.00047.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Rosenthal R, 2001, ANNU REV PSYCHOL, V52, P59, DOI 10.1146/annurev.psych.52.1.59; Rosenthal R, 2003, PSYCHOL METHODS, V8, P492, DOI 10.1037/1082-989X.8.4.492; Sartorius GA, 2010, HUM REPROD UPDATE, V16, P65, DOI 10.1093/humupd/dmp027; Savin-Williams RC, 2009, NEBR SYM MOTIV, V54, P5; Schmidt F. L., 2015, METHODS METAANALYSIS; Sear R, 2004, RES ECON ANTHROPOL, V23, P203, DOI 10.1016/S0190-1281(04)23008-6; Sear R, 2006, HUM NATURE-INT BIOS, V17, P405, DOI 10.1007/s12110-006-1003-1; Shenk MK, 2012, J BIOSOC SCI, V44, P549, DOI 10.1017/S0021932012000053; Sheppard P, 2016, AM J HUM BIOL, V28, P356, DOI 10.1002/ajhb.22793; Sheppard Paula, 2015, Evolution Medicine and Public Health, P332, DOI 10.1093/emph/eov028; Sheppard P, 2014, EVOL HUM BEHAV, V35, P161, DOI 10.1016/j.evolhumbehav.2013.12.002; Sheppard P, 2012, BIOL LETTERS, V8, P237, DOI 10.1098/rsbl.2011.0747; Silventoinen K, 2008, PEDIATRICS, V121, pE885, DOI 10.1542/peds.2007-1615; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Smith CA, 1997, SOC WORK, V42, P334, DOI 10.1093/sw/42.4.334; Stearns S, 1992, EVOLUTION LIFE HIST; Valentine JC, 2010, J EDUC BEHAV STAT, V35, P215, DOI 10.3102/1076998609346961; Valle AK, 2009, ADOLESCENCE, V44, P479; Vizmanos B, 2000, EUR J CLIN NUTR, V54, P203, DOI 10.1038/sj.ejcn.1600920; Waynforth D, 1998, EVOL HUM BEHAV, V19, P369, DOI 10.1016/S1090-5138(98)00031-2; Webster GD, 2014, EVOL PSYCHOL-US, V12, P273, DOI 10.1177/147470491401200202; Wellings F, 2001, LANCET, V358, P1843, DOI 10.1016/S0140-6736(01)06885-4; Wells JCK, 2012, AM J HUM BIOL, V24, P261, DOI 10.1002/ajhb.22253; Wells JCK, 2012, INT J EPIDEMIOL, V41, P229, DOI 10.1093/ije/dyr239; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004; Winking J, 2011, EVOL HUM BEHAV, V32, P79, DOI 10.1016/j.evolhumbehav.2010.08.002; Winterhalder B, 2002, EVOL HUM BEHAV, V23, P59, DOI 10.1016/S1090-5138(01)00089-7; Xie HL, 2001, SOC DEV, V10, P488, DOI 10.1111/1467-9507.00177; Xu Y, 2017, SEX ABUSE-J RES TR, V29, P786, DOI 10.1177/1079063215618378; Yermachenko A, 2014, BIOMED RES INT, DOI 10.1155/2014/371583; Zietsch BP, 2016, CURR OPIN PSYCHOL, V7, P71, DOI 10.1016/j.copsyc.2015.08.014 122 0 0 7 16 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2018 39 1 40 51 10.1016/j.evolhumbehav.2017.08.005 12 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences FR9WJ WOS:000419423600005 2019-02-21 J Dunkel, CS; Nedelec, JL; van der Linden, D Dunkel, Curtis S.; Nedelec, Joseph L.; van der Linden, Dimitri Using monozygotic twin differences to examine the relationship between parental affection and personality: a life history account EVOLUTION AND HUMAN BEHAVIOR English Article Parental affection; Monozygotic twins; Plasticity; Stability; General factor of personality; Life history theory HIGHER-ORDER FACTORS; GENERAL FACTOR; BIG 5; REPRODUCTIVE STRATEGY; SOCIAL-EFFECTIVENESS; OFFSPRING CONFLICT; HERITABILITY; ATTACHMENT; BEHAVIOR; TRAITS The relationship between maternal and paternal affection, reported in adulthood, and personality was examined using a genetically sensitive research design comparing differences between monozygotic twins. Using life history theory as a framework, it was predicted that differences in maternal and paternal affection would be predictive of differences in personality such that the twin reporting greater maternal and paternal affection would also report a personality profile reflective of a slow life history strategy. Specifically, it was predicted that the twin that reported greater maternal and paternal affection would also score high on the meta-traits of plasticity, stability, and the general factor of personality (GFP). The results supported the hypotheses, with most variance accounted for by the GFP. Additional results suggest that differences in paternal affection exhibit a stronger effect and that stability and plasticity may provide unique information about the association between differences in parental affection and differences in personality. Attachment and parental investment theories offer possible explanations for the findings, although alternative explanations are also proffered. It may also be beneficial for future research using a monozygotic twin difference approach to utilize biometric measures of life history strategy. (C) 2017 Elsevier Inc. All rights reserved. [Dunkel, Curtis S.] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA; [Nedelec, Joseph L.] Univ Cincinnati, Sch Criminal Justice, Cincinnati, OH 45221 USA; [van der Linden, Dimitri] Erasmus Univ, Rotterdam, Netherlands Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. c-dunkel@wiu.edu Backstrom M, 2016, PERS INDIV DIFFER, V96, P31, DOI 10.1016/j.paid.2016.02.058; Barbaro N, 2017, PSYCHOL BULL, V143, P107, DOI 10.1037/bul0000066; Beaver K. M., 2013, BIOSOCIAL CRIMINOLOG; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Brim O. G., 1995, ICPSR02760V11; Caspi A, 2004, DEV PSYCHOL, V40, P149, DOI 10.1037/0012-1649.40.20.149; Copping L. T., 2017, EVOLUTIONARY PSYCHOL, V15, P1; Copping LT, 2014, EVOL PSYCHOL-US, V12, P200, DOI 10.1177/147470491401200115; Davies SE, 2015, PERS INDIV DIFFER, V81, P13, DOI 10.1016/j.paid.2015.01.006; Del Giudice M, 2014, PSYCHOL INQ, V25, P261, DOI 10.1080/1047840X.2014.884918; Del Giudice M, 2012, J THEOR BIOL, V297, P48, DOI 10.1016/j.jtbi.2011.12.004; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DelPriore DJ, 2017, DEV PSYCHOL, V53, P1330, DOI 10.1037/dev0000327; DeYoung CG, 2006, J PERS SOC PSYCHOL, V91, P1138, DOI 10.1037/0022-3514.91.6.1138; Digman JM, 1997, J PERS SOC PSYCHOL, V73, P1246, DOI 10.1037/0022-3514.73.6.1246; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Dunkel CS, 2016, PERS INDIV DIFFER, V92, P143, DOI 10.1016/j.paid.2015.12.034; Dunkel CS, 2015, EVOL HUM BEHAV, V36, P374, DOI 10.1016/j.evolhumbehav.2015.02.006; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Dunkel CS, 2009, J GENET PSYCHOL, V170, P159, DOI 10.3200/GNTP.170.2.159-175; Fearon P, 2014, J CHILD PSYCHOL PSYC, V55, P1033, DOI 10.1111/jcpp.12171; Figueredo A. J., 2016, HDB EVOLUTIONARY PSY, V2, P1299; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2015, EVOL PSYCHOL-US, V13, P299, DOI 10.1177/147470491501300202; Galton F., 1884, FORTNIGHTLY REV, V36, P179; Glazebrook C, 2004, FERTIL STERIL, V81, P505, DOI 10.1016/j.fertnstert.2003.10.020; HARRIS JR, 1995, PSYCHOL REV, V102, P458, DOI 10.1037//0033-295X.102.3.458; Hurst JE, 2017, EVOL HUM BEHAV, V38, P1, DOI 10.1016/j.evolhumbehav.2016.06.001; Irwing P, 2013, PERS INDIV DIFFER, V55, P234, DOI 10.1016/j.paid.2013.03.002; Jenkins JM, 2003, DEV PSYCHOL, V39, P99, DOI 10.1037//0012-1649.39.1.99; Kerr M, 2012, DEV PSYCHOL, V48, P1540, DOI 10.1037/a0027720; Loehlin JC, 2012, J RES PERS, V46, P258, DOI 10.1016/j.jrp.2012.02.003; Maestripieri D, 2007, DEV PSYCHOBIOL, V49, P165, DOI 10.1002/dev.20200; Manson JH, 2017, EVOL HUM BEHAV, V38, P552, DOI 10.1016/j.evolhumbehav.2017.01.005; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Nedelec JL, 2016, J CRIM JUST, V47, P84, DOI 10.1016/j.jcrimjus.2016.07.001; Noftle EE, 2006, J RES PERS, V40, P179, DOI 10.1016/j.jrp.2004.11.003; Paquette D, 2004, HUM DEV, V47, P193, DOI 10.1159/000078723; Pinker Steven, 2002, BLANK SLATE; Plomin R, 2011, INT J EPIDEMIOL, V40, P563, DOI 10.1093/ije/dyq148; Polderman TJC, 2015, NAT GENET, V47, P702, DOI 10.1038/ng.3285; Robinson OC, 2014, PERS INDIV DIFFER, V56, P180, DOI 10.1016/j.paid.2013.09.004; Rovine M. J., 1994, SEPARATE SOCIAL WORL, P33; Rushton J. P., 2011, WILEY BLACKWELL HDB, P132; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; SCARR S, 1992, CHILD DEV, V63, P1, DOI 10.2307/1130897; Schlomer GL, 2011, PSYCHOL REV, V118, P496, DOI 10.1037/a0024043; Sjovold T., 2017, AM J PHYS ANTHR; Steinberg L, 2001, J RES ADOLESCENCE, V11, P1, DOI 10.1111/1532-7795.00001; Steiner U. K., 2015, PNAS, V109, P4684; TRIVERS RL, 1974, AM ZOOL, V14, P249; Turkheimer E, 2000, CURR DIR PSYCHOL SCI, V9, P160, DOI 10.1111/1467-8721.00084; Van den Akker AL, 2014, J PERS SOC PSYCHOL, V107, P736, DOI 10.1037/a0037248; van der Linden D, 2016, PERS INDIV DIFFER, V101, P98, DOI 10.1016/j.paid.2016.05.020; van der Linden D, 2010, J RES PERS, V44, P315, DOI 10.1016/j.jrp.2010.03.003; Verweij KJH, 2012, EVOLUTION, V66, P3238, DOI 10.1111/j.1558-5646.2012.01679.x; Webb E., 1915, CHARACTER INTELLIGEN 57 1 1 2 6 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2018 39 1 52 58 10.1016/j.evolhumbehav.2017.09.004 7 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences FR9WJ WOS:000419423600006 2019-02-21 J Kyweluk, MA; Georgiev, AV; Borja, JB; Gettler, LT; Kuzawa, CW Kyweluk, Moira A.; Georgiev, Alexander V.; Borja, Judith B.; Gettler, Lee T.; Kuzawa, Christopher W. Menarcheal timing is accelerated by favorable nutrition but unrelated to developmental cues of mortality or familial instability in Cebu, Philippines EVOLUTION AND HUMAN BEHAVIOR English Article Life history theory; Puberty; Reproductive timing; Human growth; Fertility milestones LIFE-HISTORY VARIATION; FATHER ABSENCE; REPRODUCTIVE MATURATION; BIOLOGICAL SENSITIVITY; CHILDHOOD EXPERIENCE; PUBERTAL MATURATION; ENVIRONMENTAL RISK; PREDICTS AGE; BIRTH-WEIGHT; STRESS Understanding the determinants of pubertal timing, particularly menarche in girls, is an important area of investigation owing to the many health, psychosocial, and demographic outcomes related to reproductive maturation. Traditional explanations emphasized the role of favorable nutrition in maturational acceleration. More recently, work has documented early maturity in relation to markers of familial and environmental instability (e.g. paternal absence), which are hypothesized to serve as cues triggering adaptive adjustment of life history scheduling. While these studies hint at an ability of human females to accelerate maturity in stressful environments, most have focused on populations characterized by energetic excess. The present study investigates the role of developmental nutrition alongside cues of environmental risk and instability (maternal absence, paternal absence, and sibling death) as predictors of menarcheal age in a well-characterized birth cohort born in 1983 in metropolitan Cebu, the Philippines. In this sample, which was marked by a near-absence of childhood overweight and obesity, we find that menarcheal age is not predicted by cues of risk and instability measured at birth and during childhood and early adolescence, but that infancy weight gain and measures of favorable childhood nutrition are strong predictors of maturational acceleration. These findings contrast with studies of populations in which psychosocial stress and instability co-occur with excess weight. The present findings suggest that infancy and childhood nutrition may exert greater influence on age at menarche than psychosocial cues in environments characterized by marginal nutrition, and that puberty is often delayed, rather than accelerated, in the context of stressful environments. (C) 2017 Elsevier Inc. All rights reserved. [Kyweluk, Moira A.; Georgiev, Alexander V.; Kuzawa, Christopher W.] Northwestern Univ, Dept Anthropol, 1810 Hinman Ave, Evanston, IL 60208 USA; [Georgiev, Alexander V.] Bangor Univ, Sch Biol Sci, Bangor LL57 2UW, Gwynedd, Wales; [Borja, Judith B.] Off Populat Studies Fdn Inc, Cebu, Philippines; [Borja, Judith B.] Univ San Carlos, Dept Nutr & Dietet, Cebu, Philippines; [Gettler, Lee T.] Univ Notre Dame, Dept Anthropol, Notre Dame, IN 46556 USA; [Kuzawa, Christopher W.] Northwestern Univ, Inst Policy Res, Evanston, IL 60208 USA Kuzawa, CW (reprint author), Northwestern Univ, Dept Anthropol, 1810 Hinman Ave, Evanston, IL 60208 USA. kuzawa@northwestern.edu Kyweluk, Moira/0000-0001-5342-5043 MEASURE Evaluation Project; US Agency for International Development [HRN-A-00-97-00018-00] The authors thank the USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines, and Linda Adair, for their role in study design and data collection, and the Filipino participants in the CLHNS for their decades of participation in the project. This research was supported by funding from the MEASURE Evaluation Project and the US Agency for International Development under Cooperative Agreement HRN-A-00-97-00018-00. Adair LS, 2011, INT J EPIDEMIOL, V40, P619, DOI 10.1093/ije/dyq085; Adair LS, 1997, J NUTR, V127, P314; Adair LS, 2001, PEDIATRICS, V107, DOI 10.1542/peds.107.4.e59; Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; Anderson KG, 2015, HUM NATURE-INT BIOS, V26, P401, DOI 10.1007/s12110-015-9243-6; Banks J, 2006, JAMA-J AM MED ASSOC, V295, P2037, DOI 10.1001/jama.295.17.2037; Barbaro N., 2017, EVOLUTION HUMAN BEHA, V38; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; BERCOVITCH FB, 1993, BEHAV ECOL SOCIOBIOL, V33, P313; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charpentier MJE, 2008, MOL ECOL, V17, P2026, DOI 10.1111/j.1365-294X.2008.03724.x; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; Del Giudice M, 2014, CHILD DEV PERSPECT, V8, P193, DOI 10.1111/cdep.12084; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2008, CURR DIR PSYCHOL SCI, V17, P183, DOI 10.1111/j.1467-8721.2008.00571.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Eveleth PB, 1990, WORLDWIDE VARIATION; *FNRI, 1990, FOOD COMP TABL REC U; Gettler LT, 2015, AM J PHYS ANTHROPOL, V158, P175, DOI 10.1002/ajpa.22783; Gurven M, 2004, BEHAV ECOL SOCIOBIOL, V56, P366, DOI 10.1007/s00265-004-0793-6; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K., 1996, ACHE LIFE HIST ECOLO; Howell N., 2010, LIFE HIST DOBE KUNG; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Konner Melvin J., 2010, EVOLUTION CHILDHOOD; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Kuzawa CW, 2003, AM J HUM BIOL, V15, P688, DOI 10.1002/ajhb.10200; Lohman T. G., 1988, ANTHROPOMETRIC STAND; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; MARSHALL WA, 1969, ARCH DIS CHILD, V44, P291, DOI 10.1136/adc.44.235.291; McEwen BS, 1999, ANN NY ACAD SCI, V896, P30, DOI 10.1111/j.1749-6632.1999.tb08103.x; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.1111/j.1467-8624.1992.tb03594.x; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; Parent AS, 2003, ENDOCR REV, V24, P668, DOI 10.1210/er.2002-0019; Prebeg Z, 2000, AM J HUM BIOL, V12, P503; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Sheppard P, 2014, HUM NATURE-INT BIOS, V25, P213, DOI 10.1007/s12110-014-9195-2; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Sohn K, 2017, HUM NATURE-INT BIOS, V28, P407, DOI 10.1007/s12110-017-9299-6; Stearns S, 1992, EVOLUTION LIFE HIST; Stormer C, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0083633; Tanner J. M., 1966, GROWTH ADOLESCENCE G; UNICEF, 2013, IMPR CHILD NUTR ACH; Upadhyay UD, 2007, STUD FAMILY PLANN, V38, P173, DOI 10.1111/j.1728-4465.2007.00129.x; Webster G.D., 2014, EVOLUTIONARY PSYCHOL, V12; Werner-Wilson RJ, 1998, ADOLESCENCE, V33, P519; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; World Bank, 1983, GROSS DOM PROD PER C 58 5 5 7 13 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2018 39 1 76 81 10.1016/j.evolhumbehav.2017.10.002 6 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences FR9WJ WOS:000419423600009 2019-02-21 J Schniter, E; Wilcox, NT; Beheim, BA; Kaplan, HS; Gurven, M Schniter, Eric; Wilcox, Nathaniel T.; Beheim, Bret A.; Kaplan, Hillard S.; Gurven, Michael Information transmission and the oral tradition: Evidence of a late-life service niche for Tsimane Amerindians EVOLUTION AND HUMAN BEHAVIOR English Article Oral tradition; Information transmission; Storytelling; Expertise; Development; Life history theory BOLIVIAN FORAGER-FARMERS; HISTORY; KNOWLEDGE; SOCIETY; WOMEN; SPAN Storytelling can affect wellbeing and fitness by transmitting information and reinforcing cultural codes of conduct. Despite their potential importance, the development and timing of storytelling skills, and the transmission of story knowledge have received minimal attention in studies of subsistence societies that more often focus on food production skills. Here we examine how storytelling and patterns of information transmission among Tsimane forager-horticulturalists are predicted by the changing age profiles of storytellers' abilities and accumulated experience. We find that storytelling skills are most developed among older adults who demonstrate superior knowledge of traditional stories and who report telling stories most. We find that the important information transmitted via storytelling typically flows from older to younger generations, and stories are primarily learned from older same-sex relatives, especially grandparents. Our findings suggest that the oral tradition provides a specialized late-life service niche for Tsimane adults who have accumulated important experience and knowledge relevant to foraging and sociality, but have lost comparative advantage in other productive domains. These findings may help extend our understanding of the evolved human life history by illustrating how changes in embodied capital predict the development of information transmission services in a forager-horticulturalist economy. (C) 2017 Elsevier Inc. All rights reserved. [Schniter, Eric; Wilcox, Nathaniel T.; Kaplan, Hillard S.] Chapman Univ, Econ Sci Inst, One Univ Dr, Orange, CA 92866 USA; [Beheim, Bret A.] Max Planck Inst Evolutionary Anthropol, Leipzig, Germany; [Gurven, Michael] Univ Calif Santa Barbara, Integrat Anthropol Sci Unit, Santa Barbara, CA 93106 USA Schniter, E (reprint author), Chapman Univ, Econ Sci Inst, One Univ Dr, Orange, CA 92866 USA. eschniter@gmail.com Kaplan, Hillard/0000-0002-7398-7358 National Science Foundation DDIG [0612903, BCS0136274, BCS0422690] This work was supported by National Science Foundation DDIG Award #0612903, and awards #BCS0136274, #BCS0422690. Acerbi A, 2017, EVOL HUM BEHAV, V38, P474, DOI 10.1016/j.evolhumbehav.2017.03.005; Antezana J. L., 1983, HIPOTESIS, V20, P63; APPLE D, 1956, AM ANTHROPOL, V58, P656, DOI 10.1525/aa.1956.58.4.02a00060; Archibald JA, 2008, INDIGENOUS STORYWORK: EDUCATING THE HEART, MIND, BODY, AND SPIRIT, P1; Berkes F, 2000, ECOL APPL, V10, P1251, DOI 10.1890/1051-0761(2000)010[1251:ROTEKA]2.0.CO;2; Biesele M., 1993, WOMEN MEAT FOLKLORE; Bock J, 2002, HUM NATURE-INT BIOS, V13, P161, DOI 10.1007/s12110-002-1007-4; Bock J, 2002, HUM NATURE-INT BIOS, V13, P153, DOI 10.1007/s12110-002-1006-5; Boyd B., 2009, ORIGIN STORIES; Cavalli-Sforza LL, 1981, CULTURAL TRANSMISSIO; Chesterfield R., 1977, EDUCACION TRADITIONA; Coe K., 2005, ENTELECHY MIND CULTU, V6; Coe K., 2008, WORLD CULTURES EJOUR, V16; Coe K, 2006, ANTHROPOL FORUM, V16, P21, DOI 10.1080/00664670600572421; Crittenden AN, 2013, EVOL HUM BEHAV, V34, P299, DOI 10.1016/j.evolhumbehav.2013.04.004; Daillant I., 1999, DOJITY MICHA MITO TS; De Backer CJS, 2006, ADAPT BEHAV, V14, P249, DOI 10.1177/105971230601400303; de Laguna F., 1997, MOUNT SAINT ELIAS HI; Ellis R., 1996, THESIS; Gurven M, 2008, CULTURAL CONTEXT AGI, V3, P53; Gurven M, 2006, HUM NATURE-INT BIOS, V17, P1, DOI 10.1007/s12110-006-1019-6; Gurven M, 2017, DEV PSYCHOL, V53, P160, DOI 10.1037/dev0000175; Gurven M, 2015, HUM ECOL, V43, P515, DOI 10.1007/s10745-015-9764-y; Gurven M, 2012, EXP GERONTOL, V47, P807, DOI 10.1016/j.exger.2012.05.006; Gurven M, 2009, HUM NATURE-INT BIOS, V20, P151, DOI 10.1007/s12110-009-9062-8; Hale T. A., 1998, GRIOTS GRIOTTES MAST; Hallowell Alfred Irving, 1992, OJIBWA BERENS RIVER; Hartshorne JK, 2015, PSYCHOL SCI, V26, P433, DOI 10.1177/0956797614567339; Hewlett BS, 2011, PHILOS T R SOC B, V366, P1168, DOI 10.1098/rstb.2010.0373; HEWLETT BS, 1986, AM ANTHROPOL, V88, P922; Hooper PL, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2808; Huanca T., 2006, TSIMANE ORAL TRADITI; Huanca T., 1999, THESIS; Iamele G, 2001, PALABRAS ANTIGUAS NU; Kaplan H, 2010, ANN NY ACAD SCI, V1204, P30, DOI [10.1111/j.1749-6632.2010.05528.x, 10.1111/J.1749-6632.2010.05528.x]; Lee R., 2002, THE DOBE JU HOANSI; Martin MA, 2012, MATERN CHILD NUTR, V8, P404, DOI 10.1111/j.1740-8709.2012.00412.x; Mayer F., 2000, PUBLICACIONES PROYEC, V7; Miller G., 2011, MATING MIND SEXUAL C; Miller G. F, 1999, EVOLUTION CULTURE, P71; Moore D, 2014, LANG DOC CONSERV, V8, P613; Morewedge CK, 2014, J EXP PSYCHOL GEN, V143, P1742, DOI 10.1037/a0036775; Nabhan G. P., 1993, BIOPHILIA HYPOTHESIS; Ohmagari K, 1997, HUM ECOL, V25, P197, DOI 10.1023/A:1021922105740; Pinker S., 1997, MIND WORKS; Radcliffe-Brown A., 1950, AFRICAN SYSTEMS KINS; Reyes-Garcia V, 2009, EVOL HUM BEHAV, V30, P274, DOI 10.1016/j.evolhumbehav.2009.02.001; Richerson P. J, 1985, CULTURE EVOLUTIONARY; Riester J., 1978, CANCION PRODUCCION V; Ross RM, 2016, EVOL HUM BEHAV, V37, P47, DOI 10.1016/j.evolhumbehav.2015.08.001; Rubin D, 1997, MEMORY ORAL TRADITIO; Schniter E., 2009, THESIS; Schniter E., 2017, MENDELEY DATA; Schniter E, 2014, ANTHROPOL AGING, V35, P56, DOI 10.5195/aa.2014.62; Schniter E, 2015, AM J PHYS ANTHROPOL, V158, P3, DOI 10.1002/ajpa.22757; Schwarz F, 2016, P NATL ACAD SCI USA, V113, P74, DOI 10.1073/pnas.1517951112; Sebeok TA, 1976, SPEECH SURROGATES DR; Simmons Leo W., 1945, ROLE AGED PRIMITIVE; Skirbekk V., 2004, VIENNA YB POPULATION, P133, DOI DOI 10.1553/P0PULATI0NYEARB00K; Steadman LB, 1997, ZYGON, V32, P341, DOI 10.1111/0591-2385.00095; Stieglitz J, 2015, AM J PHYS ANTHROPOL, V156, P637, DOI 10.1002/ajpa.22681; Sugiyama MS, 1996, HUM NATURE-INT BIOS, V7, P403, DOI 10.1007/BF02732901; Sugiyama MS, 2001, EVOL HUM BEHAV, V22, P221; von Rueden C, 2014, HUM NATURE-INT BIOS, V25, P538, DOI 10.1007/s12110-014-9213-4; Wiessner PW, 2014, P NATL ACAD SCI USA, V111, P14027, DOI 10.1073/pnas.1404212111; Wright S, 1922, AM NAT, V56, P330, DOI 10.1086/279872 66 1 1 2 4 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2018 39 1 94 105 10.1016/j.evolhumbehav.2017.10.006 12 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences FR9WJ WOS:000419423600011 2019-02-21 J Shine, R; Wapstra, E; Olsson, M Shine, R.; Wapstra, E.; Olsson, M. Seasonal shifts along the oviparity-viviparity continuum in a cold-climate lizard population JOURNAL OF EVOLUTIONARY BIOLOGY English Article life-history evolution; reproductive mode; seasonality; thermal biology INCUBATION PERIOD; OFFSPRING SIZE; EGG SIZE; LACERTA-AGILIS; SAND LIZARD; INTRASPECIFIC VARIATION; GEOGRAPHIC-VARIATION; SQUAMATE REPTILES; MATERNAL BASKING; LIVE-BEARING Squamate embryos require weeks of high temperature to complete development, with the result that cool climatic areas are dominated by viviparous taxa (in which gravid females can sun-bask to keep embryos warm) rather than oviparous taxa (which rely on warm soil to incubate their eggs). How, then, can some oviparous taxa reproduce successfully in cool climates - especially late in summer, when soil temperatures are falling? Near the northern limit of their distribution (in Sweden), sand lizards (Lacerta agilis) shift tactics seasonally, such that the eggs in late clutches complete development more quickly (when incubated at a standard temperature) than do those of early clutches. That acceleration is achieved by a reduction in egg size and by an increase in the duration of uterine retention of eggs (especially, after cool weather). Our results clarify the ability of oviparous reptiles to reproduce successfully in cool climates and suggest a novel advantage to reptilian viviparity in such conditions: by maintaining high body temperatures, viviparous females may escape the need to reduce offspring size in late-season litters. [Shine, R.] Univ Sydney, Sch Life & Environm Sci, Heydon Laurence Bldg A08, Sydney, NSW 2006, Australia; [Wapstra, E.] Univ Tasmania, Sch Biol Sci, Hobart, Tas, Australia; [Olsson, M.] Univ Gothenburg, Dept Biol & Environm Sci, Gothenburg, Sweden Shine, R (reprint author), Univ Sydney, Sch Life & Environm Sci, Heydon Laurence Bldg A08, Sydney, NSW 2006, Australia. rick.shine@sydney.edu.au Olsson, Mats/0000-0002-4130-1323; Wapstra, Erik/0000-0002-2050-8026 Swedish Science Council (VR); Australian Research Council We thank the Swedish Science Council (VR) and the Australian Research Council for financial support, and Greg Brown for statistical advice. Amiel JJ, 2012, BIOL LETTERS, V8, P372, DOI 10.1098/rsbl.2011.1161; Andrews R.M., 2004, P75; Blackburn D. G, 2011, REPROD BIOL PHYLOGEN, P119; Blackburn DG, 2015, J EXP ZOOL PART B, V324, P473, DOI 10.1002/jez.b.22625; Brown GP, 2006, ECOLOGY, V87, P133, DOI 10.1890/04-1882; Deeming DC, 2006, J ZOOL, V270, P209, DOI 10.1111/j.1469-7998.2006.00131.x; DEMARCO VG, 1989, OECOLOGIA, V80, P525, DOI 10.1007/BF00380077; Du WG, 2009, J EXP BIOL, V212, P1302, DOI 10.1242/jeb.027425; Geffen E, 2000, J ANIM ECOL, V69, P59, DOI 10.1046/j.1365-2656.2000.00370.x; Georges A, 2005, PHYSIOL BIOCHEM ZOOL, V78, P18, DOI 10.1086/425200; Harkonen L, 2013, PARASITOLOGY, V140, P229, DOI 10.1017/S0031182012001503; HENDERSON E. W., 1950, Quarterly Bulletin. Michigan State University Agricultural Experiment Station, V32, P520; Hepp GR, 2006, FUNCT ECOL, V20, P307, DOI 10.1111/j.1365-2435.2006.01108.x; HUEY RB, 1977, COPEIA, P373, DOI 10.2307/1443919; Jungqvist G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093957; King B, 2015, SYST BIOL, V64, P532, DOI 10.1093/sysbio/syv005; LANDA K, 1992, EVOLUTION, V46, P1553, DOI 10.1111/j.1558-5646.1992.tb01145.x; Le Henanff M, 2013, BIOL J LINN SOC, V108, P384, DOI 10.1111/j.1095-8312.2012.02005.x; Ljungstrom G, 2016, J EVOLUTION BIOL, V29, P979, DOI 10.1111/jeb.12838; Ljungstrom G, 2015, BMC EVOL BIOL, V15, DOI 10.1186/s12862-015-0476-0; MacCluskie MC, 1997, CONDOR, V99, P224, DOI 10.2307/1370245; MACROBERTS MH, 1972, THE IBIS, V114, P93; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; Masaki S., 1965, B FAC AGR HIROSAKI U, V11, P59; Massaro M, 2004, IBIS, V146, P526, DOI 10.1111/j.1474-919X.2004.00267.x; MATHIES T, 1995, OECOLOGIA, V104, P101, DOI 10.1007/BF00365568; Matsuzawa Y, 2002, MAR BIOL, V140, P639, DOI 10.1007/s00227-001-0724-2; McGlashan JK, 2017, PHYSIOL BIOCHEM ZOOL, V90, P34, DOI 10.1086/689744; NEILL WT, 1964, AM NAT, V98, P35, DOI 10.1086/282299; Noble D.W.A., 2017, BIOL REV IN PRESS; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; Olsson M, 1997, J EVOLUTION BIOL, V10, P369, DOI 10.1007/s000360050030; Olsson M, 1996, EVOLUTION, V50, P1328, DOI 10.1111/j.1558-5646.1996.tb02372.x; Olsson M, 1997, AM NAT, V149, P179, DOI 10.1086/285985; PARSONS J, 1972, IBIS, V114, P536, DOI 10.1111/j.1474-919X.1972.tb00855.x; Pyron RA, 2014, ECOL LETT, V17, P13, DOI 10.1111/ele.12168; Qualls CP, 1999, BIOL J LINN SOC, V67, P353, DOI 10.1111/j.1095-8312.1999.tb01939.x; RICKLEFS RE, 1983, AUK, V100, P926; Robinson WD, 2008, AM NAT, V171, P532, DOI 10.1086/528964; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roitberg ES, 2015, J EVOLUTION BIOL, V28, P613, DOI 10.1111/jeb.12594; RUNDE OJ, 1981, ORNIS SCAND, V12, P80, DOI 10.2307/3675908; Rykena S., 1987, P339; Sergeev A.M., 1940, MOSCOW SOC NATURALIS, P1; Shine R, 2003, J EVOLUTION BIOL, V16, P823, DOI 10.1046/j.1420-9101.2003.00600.x; Shine R, 2003, P ROY SOC B-BIOL SCI, V270, P995, DOI 10.1098/rspb.2002.2307; SHINE R, 1983, HERPETOLOGICA, V39, P1; SHINE R, 1978, OECOLOGIA, V33, P261, DOI 10.1007/BF00348112; SHINE R, 1979, AM NAT, V113, P905, DOI 10.1086/283444; Shine R, 1997, ECOLOGY, V78, P2559; Shine R, 1999, J EVOLUTION BIOL, V12, P918, DOI 10.1046/j.1420-9101.1999.00093.x; Shine R., 1985, Biology of Reptilia, V15, P605; Shine R, 2006, J EXP ZOOL PART A, V305A, P524, DOI 10.1002/jez.a.291; Shine R, 2015, J EXP ZOOL PART B, V324, P487, DOI 10.1002/jez.b.22622; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; Smith SA, 1997, AUST J ZOOL, V45, P435, DOI 10.1071/ZO97023; Stewart J.R., 2014, REPROD BIOL PHYLOGEN, P448; Telemeco RS, 2010, BIOL J LINN SOC, V100, P642, DOI 10.1111/j.1095-8312.2010.01439.x; Tieleman BI, 2004, FUNCT ECOL, V18, P571, DOI 10.1111/j.0269-8463.2004.00882.x; Tinkle D.W, 1977, Miscellaneous Publs Mus Zool Univ Michigan, VNo. 154, P1; Wapstra E, 2010, J EVOLUTION BIOL, V23, P651, DOI 10.1111/j.1420-9101.2009.01924.x; Warner DA, 2007, OECOLOGIA, V154, P65, DOI 10.1007/s00442-007-0809-9; Webb JK, 2006, EVOLUTION, V60, P115, DOI 10.1554/05-460.1; While GM, 2015, P ROY SOC B-BIOL SCI, V282, DOI 10.1098/rspb.2014.2638; Zakharov V.M., 1989, Soviet Scientific Reviews Section F Physiology and General Biology Reviews, V4, P1 66 1 1 4 25 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JAN 2018 31 1 4 13 10.1111/jeb.13202 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity FR8EJ WOS:000419307000001 29080390 Bronze 2019-02-21 J Michel, ES; Demarais, S; Strickland, BK; Wang, GM Michel, Eric S.; Demarais, Stephen; Strickland, Bronson K.; Wang, Guiming Birth date promotes a tortoise or hare tactic for body mass development of a long-lived male ungulate OECOLOGIA English Article Birth date; Compensatory growth; Life history theory; Maternal effects; Path analysis; White-tailed deer WHITE-TAILED DEER; LIFE-HISTORY CONSEQUENCES; COMPENSATORY GROWTH; REPRODUCTIVE SUCCESS; ARTIFICIAL SELECTION; MATERNAL INVESTMENT; BIGHORN EWES; D-SEPARATION; PATH MODELS; TRADE-OFFS Maternal and early-life influences may affect life-long individual phenotype, potentially influencing reproductive success. However, some individuals may compensate for a poor start to life, which may improve longevity and reproductive success later in life. We developed four models to assess whether maternal characteristics (age, body mass and previous year cumulative lactation demand) and/or birth date influenced a long-lived mammal's phenotype to maturity. We used a directional separation analysis to assess the relative influence of each maternal characteristic and birth date on captive male white-tailed deer (Odocoileus virginianus) body mass and antler size. We found that birth date was the only characteristic that persistently influenced male body mass. Depending on when offspring were born, they used alternative tactics to increase their body mass. Birth date positively influenced body mass at 1, 2 and 3 years of age-indicating males displayed faster growth and compensated for late birth (hare tactic). However, early-, heavy-born males were heavy juveniles, and juvenile body mass positively influenced mature body mass (slow but steady growth; tortoise tactic). Our findings provide a first evidence that a long-lived ungulate can display alternative tactics to achieve heavy body mass; individuals are either born early and heavy and are heavy throughout life (tortoise), or light, late-born individuals compensate for a poor start in life by growing at a faster rate to equal or surpass the body mass of early-born individuals (hare). Either tactic may be viable if it influences reproductive success as body mass positively influences access to mates in ungulates. [Michel, Eric S.; Demarais, Stephen; Strickland, Bronson K.] Mississippi State Univ, Forest & Wildlife Res Ctr, Dept Wildlife Fisheries & Aquaculture, Deer Ecol & Management Lab, Mississippi State, MS 39762 USA; [Wang, Guiming] Mississippi State Univ, Dept Wildlife Fisheries & Aquaculture, Mississippi State, MS 39762 USA; [Michel, Eric S.] South Dakota State Univ, Dept Nat Resource Management, 1390 Coll Ave,Biostress Lab Room 138, Brookings, SD 57007 USA Michel, ES (reprint author), Mississippi State Univ, Forest & Wildlife Res Ctr, Dept Wildlife Fisheries & Aquaculture, Deer Ecol & Management Lab, Mississippi State, MS 39762 USA.; Michel, ES (reprint author), South Dakota State Univ, Dept Nat Resource Management, 1390 Coll Ave,Biostress Lab Room 138, Brookings, SD 57007 USA. eric.michel@sdstate.edu Wang, Guiming/0000-0001-5002-0120 Mississippi Department of Wildlife, Fisheries and Parks (MDWFP) We thank the Mississippi Department of Wildlife, Fisheries and Parks (MDWFP) for financial support using resources from the Federal Aid in Wildlife Restoration Act. We thank MDWFP biologists W. McKinley, A. Blaylock, A. Gary and L. Wilf for their extensive involvement in data collection. We also thank S. Tucker as facility coordinator and multiple graduate students and technicians for their help collecting data. We also thank J. M. Gaillard and two anonymous reviewers for their helpful comments. This manuscript is contribution WFA-412 of the Mississippi State Forest and Wildlife Research Center. ABBOTT MJ, 1984, J WILDLIFE MANAGE, V48, P776, DOI 10.2307/3801424; Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Bates D., 2014, LME4 LINEAR MIXED EF, DOI DOI 10.18637/JSS.V067.I01; Bernardo J, 1996, AM ZOOL, V36, P83; Blaylock AC, 2007, THESIS; Burnham K. P., 1998, MODEL SELECTION INFE; Clutton-Brock T, 1982, RED DEER BEHAV ECOLO; Coltman DW, 2002, P ROY SOC B-BIOL SCI, V269, P165, DOI 10.1098/rspb.2001.1851; Cook JG, 2004, WILDLIFE MONOGR, P1; Cote SD, 2001, OECOLOGIA, V127, P230, DOI 10.1007/s004420000584; Crocker DE, 2012, PHYSIOL BIOCHEM ZOOL, V85, P11, DOI 10.1086/663634; Demarais S., 2000, ECOLOGY MANAGEMENT L, P601; Demarais S, 2011, Biology and Management of White-Tailed Deer, P107; DeYoung RW, 2011, Biology and Management of White-Tailed Deer, P311; Ditchkoff SS, 2011, Biology and Management of White-Tailed Deer, P43; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Douhard F, 2017, OIKOS, V126, P1329, DOI 10.1111/oik.04421; Favre M, 2008, ANIM BEHAV, V76, P1373, DOI 10.1016/j.anbehav.2008.07.003; Feder C, 2008, OECOLOGIA, V156, P773, DOI 10.1007/s00442-008-1035-9; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; Flinn EB, 2013, SOUTHEAST NAT, V12, P297, DOI 10.1656/058.012.0205; GAILLARD JM, 1993, OECOLOGIA, V94, P57, DOI 10.1007/BF00317301; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; GREEN WCH, 1991, OECOLOGIA, V86, P521, DOI 10.1007/BF00318318; GREEN WCH, 1993, J ZOOL, V230, P177, DOI 10.1111/j.1469-7998.1993.tb02680.x; Gurney WSC, 2003, ECOLOGY, V84, P2777, DOI 10.1890/02-0536; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Hewison AJM, 1999, TRENDS ECOL EVOL, V14, P229, DOI 10.1016/S0169-5347(99)01592-X; Hewitt DG, 2011, Biology and Management of White-Tailed Deer, P1; Iossa G, 2008, J MAMMAL, V89, P1481, DOI 10.1644/07-MAMM-A-405.1; Kie JG, 2013, WILDLIFE BIOL, V19, P302, DOI 10.2981/12-051; Kreeger T. J, 1996, HDB WILDLIFE CHEM IM; Kruuk LEB, 2000, P NATL ACAD SCI USA, V97, P698, DOI 10.1073/pnas.97.2.698; Lang SLC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019487; Loehr J, 2007, J EVOLUTION BIOL, V20, P818, DOI 10.1111/j.1420-9101.2006.01272.x; Loison A, 2004, ECOLOGY, V85, P1992, DOI 10.1890/03-0600; Loison A, 1999, ECOGRAPHY, V22, P20, DOI 10.1111/j.1600-0587.1999.tb00451.x; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; Margraf N, 2003, FUNCT ECOL, V17, P605, DOI 10.1046/j.1365-2435.2003.00775.x; McAdam AG, 2002, EVOLUTION, V56, P846; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Michel ES, 2016, ECOL EVOL, V6, P7276, DOI 10.1002/ece3.2457; Michel ES, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136034; Miller BF, 2004, J WILDLIFE DIS, V40, P533, DOI 10.7589/0090-3558-40.3.533; MITCHELL RJ, 2001, DESIGN ANAL ECOLOGIC, P217; Monteith KL, 2013, J ANIM ECOL, V82, P377, DOI 10.1111/1365-2656.12016; Monteith KL, 2009, J MAMMAL, V90, P651, DOI 10.1644/08-MAMM-A-191R1.1; Nesbitt W. H., 2009, MEASURING SCORING N; Orizaola G, 2010, OIKOS, V119, P980, DOI 10.1111/j.1600-0706.2009.17956.x; Palomares F, 1998, J ANIM ECOL, V67, P967, DOI 10.1046/j.1365-2656.1998.6760967.x; Parker KL, 2009, FUNCT ECOL, V23, P57, DOI 10.1111/j.1365-2435.2009.01528.x; Plard F, 2015, ECOLOGY, V96, P1516, DOI 10.1890/14-0106.1; Rasanen K, 2007, FUNCT ECOL, V21, P408, DOI 10.1111/j.1365-2435.2007.01246.x; Robinson MR, 2006, EVOLUTION, V60, P2168, DOI 10.1111/j.0014-3820.2006.tb01854.x; Rughetti M, 2010, J WILDLIFE MANAGE, V74, P1024, DOI 10.2193/2009-335; Saether BE, 2003, J WILDLIFE MANAGE, V67, P455, DOI 10.2307/3802703; SCHULTZ SR, 1995, J MAMMAL, V76, P575, DOI 10.2307/1382366; Schumacker R., 2004, BEGINNERS GUIDE STRU; Shama LNS, 2006, EVOL ECOL RES, V8, P169; Shipley B, 2003, STRUCT EQU MODELING, V10, P214, DOI 10.1207/S15328007SEM1002_3; Shipley B, 2000, CAUSE CORRELATION BI; Shipley B, 2000, STRUCT EQU MODELING, V7, P206, DOI 10.1207/S15328007SEM0702_4; Shipley B, 2013, ECOLOGY, V94, P560, DOI 10.1890/12-0976.1; Shipley B, 2009, ECOLOGY, V90, P363, DOI 10.1890/08-1034.1; Simard MA, 2014, J MAMMAL, V95, P311, DOI 10.1644/13-MAMM-A-036; Skalski GT, 2005, ECOLOGY, V86, P1452, DOI 10.1890/04-0896; Solberg E, 2008, OECOLOGIA, V158, P485, DOI 10.1007/s00442-008-1158-z; Solberg EJ, 2007, OECOLOGIA, V154, P259, DOI 10.1007/s00442-007-0833-9; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Steiger S, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1225; Stier A, 2014, FUNCT ECOL, V28, P601, DOI 10.1111/1365-2435.12204; Strickland BK, 2000, J WILDLIFE MANAGE, V64, P903, DOI 10.2307/3803198; Therrien JF, 2008, ANIM BEHAV, V75, P235, DOI 10.1016/j.anbehav.2007.04.030; Thomas DW, 2007, FUNCT ECOL, V21, P947, DOI 10.1111/j.1365-2435.2007.01301.x; THOMPSON CB, 1973, J WILDLIFE MANAGE, V37, P301, DOI 10.2307/3800120; Verme L.J., 1984, P91; VERME LJ, 1980, J WILDLIFE MANAGE, V44, P315, DOI 10.2307/3807961; VERME LJ, 1989, J MAMMAL, V70, P438, DOI 10.2307/1381538 80 1 1 4 10 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JAN 2018 186 1 117 128 10.1007/s00442-017-4013-2 12 Ecology Environmental Sciences & Ecology FS0QC WOS:000419477800013 29164369 2019-02-21 J Berv, JS; Field, DJ Berv, Jacob S.; Field, Daniel J. Genomic Signature of an Avian Lilliput Effect across the K-Pg Extinction SYSTEMATIC BIOLOGY English Article Birds, body size; divergence times; K-Pg; life history evolution; mass extinction; metabolic rate; molecular clocks LIFE-HISTORY TRAITS; BODY-SIZE; PHYLOGENETIC SIGNAL; METABOLIC-RATE; MOLECULAR EVOLUTION; PLACENTAL MAMMALS; MASS EXTINCTION; PROTEIN EVOLUTION; DIVERGENCE TIMES; POPULATION-SIZE Survivorship following major mass extinctions may be associated with a decrease in body size-a phenomenon called the Lilliput Effect. Body size is a strong predictor of many life history traits (LHTs), and is known to influence demography and intrinsic biological processes. Pronounced changes in organismal size throughout Earth history are therefore likely to be associated with concomitant genome-wide changes in evolutionary rates. Here, we report pronounced heterogeneity in rates of molecular evolution (varying up to similar to 20-fold) across a large-scale avian phylogenomic data set and show that nucleotide substitution rates are strongly correlated with body size and metabolic rate. We also identify potential body size reductions associated with the Cretaceous-Paleogene (K-Pg) transition, consistent with a Lilliput Effect in the wake of that mass extinction event. We posit that selection for reduced body size across theK-Pg extinction horizon may have resulted in transient increases in substitution rate along the deepest branches of the extant avian tree of life. This "hidden" rate acceleration may result in both strict and relaxed molecular clocks over-estimating the age of the avian crown group through the relationship between life history and demographic parameters that scale with molecular substitution rate. If reductions in body size (and/or selection for related demographic parameters like short generation times) are a common property of lineages surviving mass extinctions, this phenomenon may help resolve persistent divergence time debates across the tree of life. Furthermore, our results suggest that selection for certain LHTs may be associated with deterministic molecular evolutionary outcomes. [Berv, Jacob S.] Cornell Univ, Dept Ecol & Evolutionary Biol, 215 Tower Rd, Ithaca, NY 14853 USA; [Field, Daniel J.] Yale Univ, Dept Geol & Geophys, 210 Whitney Ave, New Haven, CT 06511 USA; [Field, Daniel J.] Univ Bath, Milner Ctr Evolut, Dept Biol & Biochem, Bldg 4 South, Bath BA2 7AY, Avon, England Berv, JS (reprint author), Cornell Univ, Dept Ecol & Evolutionary Biol, 215 Tower Rd, Ithaca, NY 14853 USA. jsb439@cornell.edu Field, Daniel/0000-0002-1786-0352 National Science Foundation [DGE-1650441, DEB-170078]; National Sciences and Engineering Council of Canada Graduate Scholarship; Cornell Laboratory of Ornithology Athena Grant; 50th Anniversary Prize Fellowship at the University of Bath This research was supported by a National Science Foundation Graduate Research Fellowship and Doctoral Dissertation Improvement Grant [DGE-1650441, DEB-1700786 to J.S.B.]; National Sciences and Engineering Council of Canada Graduate Scholarship to D.J.F.; and Cornell Laboratory of Ornithology Athena Grant to to J.S.B. DJF is supported by a 50th Anniversary Prize Fellowship at the University of Bath. Alroy J, 1999, SYST BIOL, V48, P107, DOI 10.1080/106351599260472; ALVAREZ LW, 1980, SCIENCE, V208, P1095, DOI 10.1126/science.208.4448.1095; Archibald JD, 1996, DINOSAUR EXTINCTION; Baker AJ, 2007, BIOL LETTERS, V3, P205, DOI 10.1098/rsbl.2006.0606; Barnosky AD, 2011, NATURE, V471, P51, DOI 10.1038/nature09678; Beaulieu JM, 2015, SYST BIOL, V64, P869, DOI 10.1093/sysbio/syv027; Benson RBJ, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001853; Benton MJ, 1999, BIOESSAYS, V21, P1043; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Brayard A, 2010, GEOLOGY, V38, P147, DOI 10.1130/G30553.1; Bromham L, 2003, J MOL EVOL, V57, pS13, DOI 10.1007/s00239-003-0002-7; Brown CM, 2013, PALAEOGEOGR PALAEOCL, V372, P108, DOI 10.1016/j.palaeo.2012.06.027; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Brown JH, 1995, MACROECOLOGY; Brusatte SL, 2014, CURR BIOL, V24, P2386, DOI 10.1016/j.cub.2014.08.034; Claramunt S, 2015, SCI ADV, V1, DOI 10.1126/sciadv.1501005; Cracraft J, 2015, SCIENCE, V349, DOI 10.1126/science.aab1578; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; Dorn A, 2014, BMC EVOL BIOL, V14, DOI 10.1186/s12862-014-0210-3; Drummond AJ, 2015, BAYESIAN EVOLUTIONAR; Drummond AJ, 2006, PLOS BIOL, V4, P699, DOI 10.1371/journal.pbio.0040088; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Duncan RP, 2002, P ROY SOC B-BIOL SCI, V269, P517, DOI 10.1098/rspb.2001.1918; Dunning Jr JB, 1992, CRC HDB AVIAN BODY M; Easteal S, 1999, BIOESSAYS, V21, P1052, DOI 10.1002/(SICI)1521-1878(199912)22:1<1052::AID-BIES9>3.0.CO;2-6; Faurby S, 2016, AM NAT, V187, P812, DOI 10.1086/686268; Faux C, 2017, BIOL LETTERS, V13, DOI 10.1098/rsbl.2017.0234; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Field DJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0082000; Figuet E, 2016, MOL BIOL EVOL, V33, P1517, DOI 10.1093/molbev/msw033; Fontanillas E, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-95; Friedman M, 2009, P NATL ACAD SCI USA, V106, P5218, DOI 10.1073/pnas.0808468106; GASTON KJ, 1995, PHILOS T R SOC B, V347, P205, DOI 10.1098/rstb.1995.0022; Gelman A, 2012, J RES EDUC EFF, V5, P189, DOI 10.1080/19345747.2011.618213; Gillooly JF, 2007, BIOL LETTERS, V3, P655, DOI 10.1098/rsbl.2007.0403; Gillooly JF, 2005, P NATL ACAD SCI USA, V102, P140, DOI 10.1073/pnas.0407735101; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; Hansen TF, 1997, EVOLUTION, V51, P1341, DOI 10.1111/j.1558-5646.1997.tb01457.x; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Harmon LJ, 2010, EVOLUTION, V64, P2385, DOI 10.1111/j.1558-5646.2010.01025.x; Hsiang AY, 2015, BMC EVOL BIOL, V15, DOI 10.1186/s12862-015-0358-5; Huang B, 2010, PALAEOGEOGR PALAEOCL, V285, P277, DOI 10.1016/j.palaeo.2009.11.020; Hugall AF, 2007, EVOLUTION, V61, P2293, DOI 10.1111/j.1558-5646.2007.00188.x; Hull PM, 2015, NATURE, V528, P345, DOI 10.1038/nature16160; Jablonski D, 2004, NATURE, V427, P589, DOI 10.1038/427589a; Jablonski D, 2008, ANNU REV ECOL EVOL S, V39, P501, DOI 10.1146/annurev.ecolsys.39.110707.173510; Jarvis ED, 2014, SCIENCE, V346, P1320, DOI 10.1126/science.1253451; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; KIMURA M, 1968, NATURE, V217, P624, DOI 10.1038/217624a0; Ksepka DT, 2015, ANN MO BOT GARD, V100, P300, DOI 10.3417/2014032; Lanfear R, 2010, P NATL ACAD SCI USA, V107, P20423, DOI [10.1073/pnas.0703359104, 10.1073/pnas.1007888107]; Lanfear R, 2014, TRENDS ECOL EVOL, V29, P33, DOI 10.1016/j.tree.2013.09.009; Lanfear R, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2836; Lartillot N, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0132; Lartillot N, 2012, EVOLUTION, V66, P1773, DOI 10.1111/j.1558-5646.2011.01558.x; Lartillot N, 2011, MOL BIOL EVOL, V28, P729, DOI 10.1093/molbev/msq244; Lee MSY, 2014, SCIENCE, V345, P562, DOI 10.1126/science.1252243; Lee MSY, 2013, CURR BIOL, V23, P1889, DOI 10.1016/j.cub.2013.07.055; Lemmon AR, 2012, SYST BIOL, V61, P727, DOI 10.1093/sysbio/sys049; Litsios G, 2012, SYST BIOL, V61, P533, DOI 10.1093/sysbio/syr124; Longrich NR, 2011, P NATL ACAD SCI USA, V108, P15253, DOI 10.1073/pnas.1110395108; Losos JB, 2008, ECOL LETT, V11, P995, DOI 10.1111/j.1461-0248.2008.01229.x; MARTIN AP, 1993, P NATL ACAD SCI USA, V90, P4087, DOI 10.1073/pnas.90.9.4087; Mayr G., 2009, PALEOGENE FOSSIL BIR; McKinney M.L., 1990, P75; McLellan R., 2014, LIVING PLANET REPORT; McNab B. K., 2012, EXTREME MEASURES ECO; Mindell DP, 1996, MOL BIOL EVOL, V13, P422, DOI 10.1093/oxfordjournals.molbev.a025601; Mitchell JS, 2015, EVOLUTION, V69, P2414, DOI 10.1111/evo.12738; Mitchell KJ, 2014, SCIENCE, V344, P898, DOI 10.1126/science.1251981; Nabholz B, 2016, MOL ECOL, V25, P4438, DOI 10.1111/mec.13780; Nabholz B, 2013, GENOME BIOL EVOL, V5, P1273, DOI 10.1093/gbe/evt083; OHTA T, 1973, NATURE, V246, P96, DOI 10.1038/246096a0; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Phillips MJ, 2016, SYST BIOL, V65, P546, DOI 10.1093/sysbio/syv115; Prum RO, 2015, NATURE, V526, P569, DOI 10.1038/nature15697; Puttick MN, 2014, EVOLUTION, V68, P1497, DOI 10.1111/evo.12363; Raftery Adrian E, 2006, ESTIMATING INTEGRATE; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Revell LJ, 2008, SYST BIOL, V57, P591, DOI 10.1080/10635150802302427; Reynolds PS, 1996, AM NAT, V147, P735, DOI 10.1086/285877; ROFF DA, 2002, LIFE HIST EVOLUTION; Romiguier J, 2014, NATURE, V515, P261, DOI 10.1038/nature13685; Romiguier J, 2010, GENOME RES, V20, P1001, DOI 10.1101/gr.104372.109; Sallan L, 2015, SCIENCE, V350, P812, DOI 10.1126/science.aac7373; Sibley CG, 1990, PHYLOGENY CLASSIFICA; Simpson GG, 1944, TEMPO MODE EVOLUTION; Slater GJ, 2012, EVOLUTION, V66, P3931, DOI 10.1111/j.1558-5646.2012.01723.x; Smith SA, 2008, SCIENCE, V322, P86, DOI 10.1126/science.1163197; Tacutu R, 2013, NUCLEIC ACIDS RES, V41, pD1027, DOI 10.1093/nar/gks1155; Twitchett RJ, 2007, PALAEOGEOGR PALAEOCL, V252, P132, DOI 10.1016/j.palaeo.2006.11.038; Urbanek Adam, 1993, Historical Biology, V7, P29; VANVALEN LM, 1994, MASS-EXTINCTION DEBATES: HOW SCIENCE WORKS IN A CRISIS, P200; Weber CC, 2014, GENOME BIOL, V15, P1; Weber CC, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0549-1; Webster AJ, 2002, P ROY SOC B-BIOL SCI, V269, P143, DOI 10.1098/rspb.2001.1873; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; Wilson GP, 2013, PALEOBIOLOGY, V39, P429, DOI 10.1666/12041; Yonezawa T, 2017, CURR BIOL, V27, P68, DOI 10.1016/j.cub.2016.10.029 100 8 8 11 23 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1063-5157 1076-836X SYST BIOL Syst. Biol. JAN 2018 67 1 1 13 10.1093/sysbio/syx064 13 Evolutionary Biology Evolutionary Biology FS2DH WOS:000419588000001 28973546 Bronze 2019-02-21